
Chapter 5
Convolution operators

Having focused on algebras of singular integral operators in the last chapter, in this
chapter convolution operator algebras will be treated. The idea is to give a general
perspective of how the material in the first part of the book has been applied in the
context of convolution operator algebras in recent decades, while at the same time
including some previously unpublished material.

Throughout this chapter, let 1 < p < ∞ and let w be a power weight on R, i.e., w
is of the form (4.1) with ti ∈ R for i = 1, . . . , n. We always assume that w belongs to
the class Ap(R).

5.1 Multipliers and commutators

We will start this section by developing the subject begun in Section 4.2, focusing
on specific classes of multipliers on the real line.

A function a ∈ L∞(R) is called piecewise linear if there is a partition −∞ = t0 <
t1 < .. . < tn = +∞ of the real line and complex constants ck, dk such that a(t) =
c0χ]−∞,t1 [ +∑n−2

k=1(ck +dkt)χ]tk ,tk+1 [ +d0χ]tn−1,+∞[ . As usual, the function χI represents
the characteristic function of the set I.

Since w ∈ Ap(R), Stechkin’s equality (4.13) implies that the multiplier algebra
Mp,w contains the (non-closed) algebras C0 of all continuous and piecewise linear
functions on Ṙ, and PC0 of all piecewise constant functions on R having only finitely
many discontinuities (jumps). Let Cp,w and PCp,w represent the closure of C0 and
PC0 in Mp,w, respectively. When w ≡ 1, abbreviate Cp,w and PCp,w to Cp and PCp,
and write C and PC for C2 and PC2, respectively. Thus, the algebras C and PC
coincide with the algebras denoted by C(Ṙ) and PC(Ṙ) in previous chapters.

It is unknown for general weights w (not necessarily of power form) whether the
multiplier algebra Mp,w is continuously embedded into L∞(R) = M2. So it is by no
means evident that functions in PCp,w are piecewise continuous again.
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Proposition 5.1.1. Let 1 < p < ∞ and w ∈ Ap(R). Then the algebra PCp,w is con-
tinuously embedded into L∞(R) and, thus, into PC. Moreover, for a ∈ PCp,w,

‖a‖L∞(R) ≤ 3‖SR‖p,w ‖a‖Mp,w .

Proof. For a ∈ PCp,w, we find a sequence of piecewise constant functions an such
that

‖a−an‖Mp,w = ‖W 0(a)−W 0(an)‖L (Lp(R,w)) → 0

as n → ∞. Given indices m, n ∈ N and a point x ∈ R, choose piecewise constant
characteristic functions χ±

x
with “small” support, both having a jump at x and both

of total variation 2, such that

χ±
x

(an −am) =
(
an(x±)−am(x±)

)
χ±

x
.

The Stechkin inequality (4.13) yields

|an(x±)−am(x±)|‖χ±
x
‖Mp,w = ‖

(
an(x±)−am(x±)

)
χ±

x
‖Mp,w

= ‖χ±
x

(an −am)‖Mp,w

≤ 3‖SR‖p,w‖an −am‖Mp,w . (5.1)

Since χ±
x

is real-valued, the conjugate operator to W 0(χ±
x

) ∈ L (Lp(R,w)) is
W 0(χ±

x
) ∈ L

(
Lq(R,w−1)

)
, with 1/p + 1/q = 1. Thus, by the Stein-Weiss inter-

polation theorem 4.8.1,

1 = ‖χ±
x
‖L∞(R) = ‖W 0(χ±

x
)‖L (L2(R))

≤ ‖W 0(χ±
x

)‖1/2
L (Lp(R,w))‖W 0(χ±

x
)‖1/2

L (Lq(R,w−1))

= ‖W 0(χ±
x

)‖L (Lp(R,w)) = ‖χ±
x
‖Mp,w ,

whence via (5.1)

|an(x±)−am(x±)| ≤ 3‖SR‖p,w‖an −am‖Mp,w . (5.2)

So we arrive at the inequality

‖an −am‖L∞(R) ≤ 3‖SR‖p,w‖an −am‖Mp,w , (5.3)

from which we conclude that an → a in L∞(R). Hence, by (5.3),

‖a‖L∞(R) ≤ ‖an‖L∞(R) +‖a−an‖L∞(R)

≤ 3‖SR‖p,w
(
‖an‖Mp,w +‖a−an‖Mp,w

)
.

Letting n go to infinity we get the assertion.

Once the continuous embedding of PCp,w into L∞(R) is established, the follow-
ing propositions can be proved as in the case w ≡ 1 (see [43, Section 2]).
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Proposition 5.1.2.

(i) The Banach algebra Cp,w is continuously embedded into C.
(ii) The maximal ideal space of Cp,w is homeomorphic to Ṙ. In particular, any

multiplier a ∈Cp,w is invertible in Cp,w if and only if a(t) �= 0 for all t ∈ Ṙ.
(iii) The algebras Cp,w and PCp,w ∩C(Ṙ) coincide with the closure in Mp,w of the

set of all continuous functions on Ṙ with finite total variation.

Remark 5.1.3. Note that the inclusion Cp,w ⊆ Mp,w ∩C(Ṙ) is proper for p �= 2, see
[53]. �

Proposition 5.1.4.

(i) The maximal ideal space of PCp,w is homeomorphic to Ṙ×{0,1}. In partic-
ular, a multiplier a ∈ PCp,w is invertible in PCp,w if and only if a(t±) �= 0 for
all t ∈ Ṙ.

(ii) The algebra PCp,w coincides with the closure in Mp,w of the set of all piecewise
continuous functions with finite total variation.

5.2 Wiener-Hopf and Hankel operators

Denote, as before, the characteristic functions of the positive and negative half axis
by χ+ and χ− , respectively, and let J stand for the operator (Ju)(t) = u(−t) which
is bounded and has norm 1 on Lp(R,w) if the weight function is symmetric, i.e., if
w(t) = w(−t) for all t ∈ R.

Let a ∈ Mp,w. The restriction of the operator χ+W 0(a)χ+I onto the weighted
Lebesgue space Lp(R+,χ+w) is called a Wiener-Hopf operator and will be denoted
by W (a). If, moreover, the weight on R is symmetric, then the restriction of the
operator χ+W 0(a)χ−J onto Lp(R+,χ+w) is a Hankel operator and will be denoted
by H(a).

For symmetric weights, it is easy to see that for a ∈ Mp,w the function ã :=
Ja, ã(t) = a(−t), is also a multiplier on Lp(R,w), and that the restriction of the
operator Jχ−W 0(a)χ+I onto Lp(R+,χ+w) coincides with the Hankel operator H(ã).
For a, b ∈ Mp,w one then has the fundamental identity

W (ab) = W (a)W (b)+H(a)H(b̃) (5.4)

which, in a similar way to Proposition 4.5.1, follows easily from

W (ab) = χ+W 0(ab)χ+I = χ+W 0(a)W 0(b)χ+I

= χ+W 0(a)(χ+ + χ−JJχ−)W 0(b)χ+I

= χ+W 0(a)χ+ ·χ+W 0(b)χ+I + χ+W 0(a)χ−J · Jχ−W 0(b)χ+I.
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The following theorems collect some basic properties of Wiener-Hopf operators
with continuous generating functions. These results are the analogs of Theorems
4.1.5 and 4.1.8 for singular integral operators. Detailed proofs can be found in [21,
9.9. and 9.10].

Theorem 5.2.1. The smallest closed subalgebra of L (Lp(R+)) which contains all
Wiener-Hopf operators W ( f ) with f ∈Cp contains the ideal of the compact opera-
tors on Lp(R+).

Theorem 5.2.2 (Krein, Gohberg). Let f ∈Cp. Then the Wiener-Hopf operator W ( f )
is Fredholm on Lp(R+) if and only if f (x) �= 0 for all x ∈ Ṙ. If this condition is
satisfied, then the Fredholm index of W ( f ) is the negative winding number of the
curve f (Ṙ) with respect to the origin. If the index of W ( f ) is zero, then W ( f ) is
invertible.

We digress for a moment and return to the context of Chapter 3. The point is
that we can now give an example of a sufficiently simple algebra which is generated
by three idempotents, but which does not possess a finite-dimensional invertibility
symbol.

Example 5.2.3. Let A denote the smallest closed unital subalgebra of L (L2(R))
which contains the operator PR = (I + SR)/2 and the operators χR+I and χ[0,1]I of
multiplication by the characteristic functions of the intervals R

+ and [0,1], respec-
tively. Thus, A is generated by three idempotents (actually, three orthogonal pro-
jections). Further, let B refer to the smallest closed subalgebra of A which contains
all operators

χ[0,1](χR+SRχR+I)kχ[0,1]I with k ∈ N.

We identify B with a unital subalgebra of L (L2([0, 1])) in the natural way.
From Proposition 4.2.17 we conclude that the algebra B contains all operators
χ[0,1]M

0(h)χ[0,1]I with h ∈C(R) with h(±∞) = 0. The definition (4.24) of a Mellin

convolution further entails that B contains all operators E−1
2 W (a)E2 with a ∈C(Ṙ).

But then B must contain all compact operators on L2([0, 1]) by Theorem 5.2.1.
Since the ideal of all compact operators contains a copy of C

l×l for all l, it is imme-
diate that B (hence, A ) cannot possess a matrix symbol of any finite order.

Thus, even if the three idempotents are projections, and even if two of them
commute, a matrix symbol does not need to exist. �

5.3 Commutators of convolution operators

Now we turn our attention to commutators of convolution and related operators. The
commutator AB−BA of two operators A and B will be denoted by [A,B].

Let L̄∞(R) denote the set of all functions a ∈ L∞(R) for which the essential limits
at infinity exist, i.e., for which there are complex numbers a(−∞) and a(+∞) such
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that

lim
t→−∞

esssup
s≤t

|a(s)−a(−∞)| = 0,

lim
t→+∞

esssup
s≥t

|a(s)−a(+∞)| = 0

and write L̇∞(R) for the set of all functions a ∈ L̄∞(R) such that a(−∞) = a(+∞).
Next we define the analogous classes M̄p,w and Ṁp,w of multipliers. Let Qt de-

note the characteristic function of the interval R\ [−t, t]. Then we let M̄p,w refer to
the set of all multipliers a ∈ Mp,w for which there are numbers a(−∞) and a(+∞)
such that

lim
t→∞

‖Qt(a−a(−∞)χ− −a(+∞)χ+)‖Mp,w = 0. (5.5)

Notice that this definition makes sense since, by the Stechkin inequality (4.13),
the characteristic functions Qt , χ+ and χ− of R \ [−t, t], R

+ and R
−, respectively,

belong to Mp,w. Also notice that the numbers a(−∞) and a(+∞) are uniquely de-
termined by a and that L̄∞(R) = M̄2. Further, let Ṁp,w denote the class of all mul-
tipliers a ∈ M̄p,w such that a(−∞) = a(+∞). Via Proposition 5.1.1 one easily gets
that

PCp,w ⊆ M̄p,w and Cp,w ⊆ Ṁp,w.

Recall finally that K (X) stands for the ideal of all compact operators on the Banach
space X .

Proposition 5.3.1.

(i) If a ∈ L̄∞(R), b ∈ Ṁp,w, and a(±∞) = b(±∞) = 0, then aW 0(b) and W 0(b)aI
are in K (Lp(R,w)).

(ii) If one of the conditions

1. a ∈C(Ṙ) and b ∈ M̄p,w, or
2. a ∈ L̄∞(R) and b ∈Cp,w, or
3. a ∈C(R) and b ∈C(R)∩PCp,w

is fulfilled, then [aI,W 0(b)] ∈ K (Lp(R,w)).

Proof. (i) Since, by assumption, ‖Qta‖∞ → 0 and ‖Qtb‖Mp,w → 0, we can assume
without loss of generality that a and b have compact support. Choose functions
u,v ∈C∞

0 (R), the space of infinitely differentiable functions with compact support,
such that u|supp a = 1 and v|supp b = 1. Then

aW 0(b) = (au)W 0(vb) = auW 0(v)W 0(b),

and the assertion follows once we have shown that uW 0(v) is compact. Put k =
F−1v. Then, for f ∈ Lp(R,w),

(
uW 0(v) f

)
(t) =

∫ +∞

−∞
u(t)k(t − s) f (s)ds.
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Since k is an infinitely differentiable function for which the function t �→ tmk(t) is
bounded for any m ∈ N, we have (with 1

p + 1
q = 1)

∫ +∞

−∞

(∫ +∞

−∞
|u(t)k(t − s)w−1(s)|q ds

)p/q

dt < ∞,

whence the compactness of uW 0(v) and, hence, of aW 0(b) follows. Similarly, the
compactness of W 0(b)aI can be established.

(ii) 1. Write b = b(−∞)χ− + b(+∞)χ+ + b′ with b′ ∈ Ṁp,w and b′(±∞) = 0. Then
[aI,W 0(b)] = K1 +K2 +K3 with

K1 = (a−a(+∞))W 0(b′), K2 = −W 0(b′)(a−a(+∞))I,

and

K3 = [aI,W 0(b(−∞)χ− +b(+∞)χ+)]

=
b(+∞)−b(−∞)

2
[aI,W 0(sgn)].

The compactness of K1 and K2 is a consequence of part (i), and the compactness of
K3 follows from Theorem 4.1.4, since W 0(sgn) = SR.

2. Write a = a(−∞)χ− + a(+∞)χ+ + a′ with a′ ∈ L̇∞(R) and a′(±∞) = 0, and
write b as b′ +b(±∞). Then [aI,W 0(b)] = K1 +K2 +K3 with

K1 = a′W 0(b′), K2 = −W 0(b′)a′I,

and

K3 = [(a(−∞)χ− +a(+∞)χ+)I,W 0(b)]

= (a(+∞)−a(−∞))(χ+W 0(b)χ−I −χ−W 0(b)χ+I).

By (i), the operators K1 and K2 are compact. To get the compactness of K3 note that,
by Proposition 5.1.2 (iii), we can assume, without loss of generality, that b has finite
total variation. Hence, the operator K4 := χ+W 0(b)χ− −χ−W 0(b)χ+ is bounded on
each space Lp(R,w) with 1 < p < ∞ and w ∈ Ap(R). By Krasnoselskii’s interpola-
tion theorem 4.8.2, it is sufficient to verify the compactness of K4 in L2(R). Since
the Fourier transform is a unitary operator on L2(R), the operator K4 is compact if
and only if the operator

FK4F−1 = (Fχ+F−1)b(Fχ−F−1)− (Fχ−F−1)b(Fχ+F−1)

=
(FsgnF−1)bI −b(FsgnF−1)

2

=
SRbI −bSR

2

is compact. The compactness of this operator has been established in Theorem 4.1.4.
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3. As in 2. above we can assume without loss of generality that b is of finite
total variation. By Krasnoselskii’s interpolation theorem, we just have to verify the
compactness of [aI,W 0(b)] in L2(R). Put b± := (b(+∞)±b(−∞))/2. Then

b(z) = b+ +b− coth
(
(z+ i/2)π

)
+b0(z)

with b0 ∈C(R) and b0(±∞) = 0. By (ii) 2., the commutator [aI,W 0(b0)] is compact,
and it remains to show the compactness of [aI,W 0(coth(·+ i/2)π)]. Let E2 be the
operator defined in (4.21) for the weight w ≡ 1. Since M0(c) = E−1

2 W 0(c)E2 for all
c ∈ Mp, one has

E−1
2

[
aI,W 0(coth((·+ i/2)π)

)]
E2 =

[
a′I,M0(coth((·+ i/2)π)

)]
= [a′I,SR+]

by Proposition 4.2.11, where we wrote a′(t) := a( 1
2π ln t) for t ∈ R

+. The compact-
ness of [a′I,SR+] on L2(R+) follows from Theorem 4.1.4 by applying the operator
χ+I to both sides of the commutator [cI,SR] where c ∈C(Ṙ) is such that cχ+ = a′.

Let L̄∞(R+) refer to the Banach space of all measurable functions which pos-
sess essential limits at 0 and at ∞, write L̇∞(R+) for the set of these functions a
from L̄∞(R+) with a(0) = a(∞), and put C̄(R+) := C(R+)∩ L̄∞(R+) and Ċ(R+) :=
C(R+)∩ L̇∞(R+).

Proposition 5.3.2.
(i) If a ∈ L̄∞(R+), b ∈ Mp and a(0) = a(∞) = b(±∞) = 0, then aM0(b) and

M0(b)aI are in K (Lp(R+,w)).
(ii) If one of the conditions

1. a ∈ Ċ(R+) and b ∈ M̄p,
2. a ∈ L̄∞(R+) and b ∈Cp, or
3. a ∈C(R) and b ∈C(R)∩PCp

is fulfilled, then [aI,M0(b)] ∈ K (Lp(R+,w)).

Proof. An operator A on Lp(R+,w) is compact if and only if wAw−1 ∈L (Lp(R+))
is compact. Since waw−1 = a for all a ∈ L∞(R+) and since wM0(b)w−1I = M0(b)
is bounded on Lp(R+), it suffices to prove the compactness of aM0(b), M0(b)aI and
[aI,M0(b)] on Lp(R+) without weight. For this case, the assertions are immediate
consequences of Proposition 5.3.1 via the isomorphism Ep.

Proposition 5.3.3. Let a,b ∈ PCp,w. Then:

(i) if a and b have no common discontinuities,

W (ab)−W (a)W (b) = H(a)H(b̃) ∈ K (Lp(R+,w));

(ii) [W (a),W (b)] ∈ K (Lp(R+,w)).
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Proof. By definition, the functions a and b are Mp,w-limits of piecewise constant
functions. So we can assume without loss of generality that a and b are piecewise
constant. Since, moreover, every piecewise constant function is a finite sum of func-
tions with one discontinuity, we can assume that a and b have at most one discon-
tinuity. Finally, it is a clear consequence of Krasnoselskii’s interpolation theorem,
that it is sufficient to prove the result for p = 2 and w ≡ 1.

(i) Working on L2(R+), it is sufficient for us to consider, instead of K1 := W (ab)−
W (a)W (b), the unitarily equivalent operator

K2 := FK1F−1 = Fχ+F−1abFχ+F−1 −Fχ+F−1aFχ+F−1bFχ+F−1

= QRabQR −QRaQRbQR = QRaPRbQR

with PR = (I + SR)/2 and QR = I −PR. Note that if one of the functions a and b
is in C(Ṙ), then the result follows immediately from Theorem 4.1.4. So let both a
and b be discontinuous. Let ta, tb ∈ Ṙ denote the (only) points of discontinuity of
a and b, respectively, and assume for definiteness that ta < tb. If χ stands for the
characteristic function of the interval [ta, tb], then a and b can be written as a =
a1χ + a2, b = b1χ + b2, respectively, with continuous functions a1, a2, b1 and b2

such that
a1(tb) = b1(ta) = 0. (5.6)

Then

K2 = QRaPRbQR

= QRa1χPRb1χQR +QRa1χPRb2QR +QRa2PRb1χQR +QRa2PRb2QR,

and it remains to verify that the operator QRa1χPRb1χQR is compact. But

QRa1χPRb1χQR = QRχa1PRb1χQR

= QRχPRa1b1χQR +K3

= QRχa1b1χPRQR +K4 = K4

with certain compact operators K3 and K4, because a1b1χ is continuous due to (5.6).

(ii) If a and b have no common points of discontinuity, then the assertion is an im-
mediate consequence of the preceding one. So let a and b have common disconti-
nuities. As above, we may assume that both a and b have exactly one point s ∈ R of
discontinuity. Then there exist a constant β and a continuous function f such that
a = βb+ f . Thus,

[W (a),W (b)] = [W (βb+ f ),W (b)] = [W ( f ),W (b)],

and the assertion follows from part (i) of this proposition.
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Proposition 5.3.4. Let the weight function wα be given by wα(t) = |t|α . Then:

(i) if a ∈Cp,wα , b ∈ Ṁp and a(0) = a(±∞) = b(±∞) = 0, we have W (a)M0(b) ∈
K (Lp(R+,wα)) and M0(b)W (a) ∈ K (Lp(R+,wα));

(ii) each of the following conditions is sufficient for the compactness of the com-
mutator [W (a),M0(b)] on Lp(R+,wα):

1. a ∈ PCp,wα and b ∈C(R)∩PCp;
2. a ∈Cp,wα with a(±∞) = a(0) and b ∈ M̄p.

Proof. (i) Since ‖Qtb‖Mp,wα → 0 as t → ∞, we can assume that b has compact
support. Let fb be a continuous function with total variation 2 and such that fb(t) = 1
for t ∈ supp b. Then

M0(b) = M0( fbb) = M0( fb)M0(b),

so that it remains to show the compactness of W (a)M0( fb). Due to Proposition
4.2.10, we can approximate fb by functions of the form

f (t) =
n

∑
k=0

βk cothk ((t + i(1/p+α))π
)
, (5.7)

for which

M0( f ) =
n

∑
k=0

βkSk
R+ =

n

∑
k=0

βk(W (sgn))k.

Since a · sgn is a continuous function, we deduce from Proposition 5.3.3 (i) that

W (a)M0( f ) =
n

∑
k=0

βkW (a)(W (sgn))k

=
n

∑
k=0

βkW (a(sgn)k)+K1

= W

(

a
n

∑
k=0

βk(sgn)k

)

+K2

with compact operators K1 and K2. The assumption b(±∞) = 0 and (5.7) imply that
∑n

k=0 βk(±1)k = 0. Thus,
n

∑
k=0

βk(sgn)k ≡ 0,

which gives our claim. The inclusion M0(b)W (a)∈K (Lp(R+,wα)) can be proved
similarly.

(ii) By Proposition 4.2.10, every Mellin convolution M0(b) with b ∈ C(R)∩PCp

belongs to the algebra Ep,α generated by the operators I and SR+ . Thus, M0(b)
is contained in the algebra generated by all Wiener-Hopf operators W (a) with
a∈PCp. The latter algebra is commutative modulo the compact operators by Propo-
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sition 5.3.3 (ii), which implies the first assertion of (ii). For a proof of the second
assertion, write b± = (b(+∞)±b(−∞))/2 again. Then

b(z) = b+ +b− coth
(
(z+ i(1/p+α))π

)
+b0(z)

with b0 ∈ Ṁp and b0(±∞) = 0. By part (i) of this assertion, the operators

W (a) and M0
(

b+ +b− coth
(
(z+ i(1/p+α))π

))

commute modulo a compact operator, and we have only to deal with the commuta-
tor [W (a),M0(b0)]. Put a′ = a−a(∞). Then a′ ∈ Ċp,w with a′(±∞) = a′(0) = 0 and
[W (a),M0(b0)] = [W (a′),M0(b0)]. Part (i) now gives that [W (a′),M0(b0)] is com-
pact, and the proof is finished.

Proposition 5.3.5. Let wα(t) = tα , a ∈ L̄∞(R+), b ∈ Ċp,w and c ∈ M̄p. Then each
of the conditions:

(i) a(0) = b(0) = c(±∞) = 0;
(ii) a(0) = c(−∞) = 0 and b(t) = 0 for all t > 0;

(iii) a(0) = c(+∞) = 0 and b(t) = 0 for all t < 0

is sufficient for the compactness of aW (b)M0(c) on Lp(R+,wα).

Proof. First we show that it is sufficient to prove the assertion in the case when
a ∈ C̄(R+) and c ∈ C(R)∩PCp. Let the function a′ ∈ C̄(R+) have the same limits
at 0 and ∞ as the function a, and let c′ ∈C(R)∩PCp have the same limits at ±∞ as
the function c. Then

aW (b)M0(c) = a′W (b)M0(c)+(a−a′)W (b)M0(c)

= a′W (b)M0(c′)+a′W (b)M0(c− c′)

+(a−a′)W (b)M0(c′)+(a−a′)W (b)M0(c− c′).

The functions a−a′ and c−c′ can be approximated (in the supremum and the mul-
tiplier norm, respectively) by functions a0 ∈ L̄∞(R+) and c0 ∈ M̄p with compact
support in [0,+∞[ and ]−∞,+∞[, respectively. Thus, aW (b)M0(c) can be approx-
imated (in the operator norm) as closely as desired by operators of the form

a′W (b)M0(c′)+a′W (b)M0(c0)+a0W (b)M0(c′)+a0W (b)M0(c0). (5.8)

Choose continuous functions f0 and g0 with total variation 2 such that f0 ≡ 1 on
supp a0 and g0 ≡ 1 on supp c0. Then the operator (5.8) can be written as

a′W (b)M0(c′)+a′W (b)M0(g0)M0(c0)
+ a0 f0W (b)M0(c′)+a0 f0W (b)M0(g0)M0(c0).
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It is easy to check that if the triple (a,b,c) satisfies the conditions of the proposition,
then so does each of the triples

(a′,b,g0), (a′,b,c′), ( f0,b,g0) and ( f0,b,c′).

Since each of the functions in these triples is continuous, we are indeed left with the
proof of the assertion in the continuous setting.

We start the proof in the continuous setting by proving the assertion for a special
choice of the functions a, b, c. Let

a1(t) := e−1/t2
, b1(t) :=

t4

(1+ t2)2 , c1(t) := e−t2/4.

Then c1 = Mk with

k(x) =
2
π

x−1/p−αe− ln2 x.

Indeed, since the function z �→ e−z2
is analytic in any strip −m < ℑ(z) < m and

vanishes as z → ∞ in that strip, one has, by the Cauchy integral theorem,

(Mk)(t) =
2
π

∫ +∞

0
s−it e− ln2 ss−1 ds =

2
π

∫ +∞

−∞
e−iyt−y2

dy

=
2
π

e−t2/4
∫ +∞

−∞
e−(y+ i

2 t)2
dy =

2
π

e−t2/4
∫

R+ t
2 i

e−z2
dz

=
2
π

e−t2/4
∫ +∞

−∞
e−z2

dz = e−t2/4 = c1(t).

Let

g(t) :=
(
F−1(1−b1)

)
(t) =

∫ +∞

−∞
e2πiλ t 1+2λ 2

(1+λ 2)2 dλ .

For u ∈ Lp(R+,wα), we then have

(W (b1)u)(t) = u(t)−
∫ ∞

0
g(t − s)u(s)ds

and (
M0(c1)u

)
(t) =

∫ ∞

0
k
( t

s

)
u(s)s−1 ds,

and the kernel K of the integral operator T := a1W (b1)M0(c1)a1I is given by

K(x,y) = a1(x)a1(y)
(

y−1k

(
x
y

)
−
∫ +∞

0
k

(
t
y

)
g(x− t)y−1 dt

)

= a1(x)a1(y)
(

y−1h

(
x
y

)
−
∫ +∞

−∞
h

(
t
y

)
g(x− t)y−1 dt

)

with
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h(z) =

{
k(z) if z > 0,

0 if z < 0.

It is easy to see that h belongs to the Schwartz space S (R) of the rapidly decreasing
infinitely differentiable functions on R. Set d := Fh ∈ S (R). A simple calculation
shows that then

1
y

h

(
x
y

)
= (F−1dy)(x)

where dy(z) := d(yz) for y > 0 and z ∈ R. Taking into account that g = F−1(1−b1),
we can write K(x,y) as

a1(x)a1(y)
(∫ +∞

−∞
e2πizxd(yz)dz−

∫ +∞

−∞
(F−1dy)(t) · (F−1(1−b1))(x− t)dt

)

or, equivalently,

a1(x)a1(y)
(
(F−1dy)(x)− (F−1dy)∗ (F−1(1−b1))(x)

)
.

By the convolution theorem, we thus get

K(x,y) = a1(x)a1(y)
(
(F−1dy)(x)−F−1(dy(1−b1))(x)

)

= a1(x)a1(y)F−1(dyb1)(x)

= a1(x)a1(y)
∫ +∞

−∞
e2πizxd(yz)b1(z)dz.

Integrating twice by parts we find

K(x,y) = −a1(x)a1(y)
(2πix)2

∫ +∞

−∞
e2πizx ∂ 2

∂ z2

(
d(yz)

z4

(1+ z2)2

)
dz.

Thus, there are constants C1,C2 and functions d1,d2,d3 ∈ S (R) such that

|K(x,y)| ≤C1
|a1(x)||a1(y)|

x2

2

∑
m=0

ym
∫ +∞

−∞
|dm(yz)|zm+2 dz

= C1
|a1(x)|

x2

|a1(y)|
y2

2

∑
m=0

ym
∫ +∞

−∞
|dm(yz)|(yz)m+2 dz

≤C2
|a1(x)|

x2

|a1(y)|
y2 .

Now insert a1(x) = e−1/x2
and q = p/(p−1) to obtain

∫ +∞

0

(∫ +∞

0
|K(x,y)x−α |qdx

)p/q

dy < ∞.
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This estimate implies that the operator a1W (b1)M0(c1) is compact on Lp(R+,wα),
which settles the assertion for the specific functions a1, b1 and c1.

Now we return to the general case when a∈ C̄(R+), b∈ Ċp,w and c∈C(R)∩PCp.

(i) Let a(0) = b(0) = c(±∞) = 0. Standard approximation arguments show that it
is sufficient to consider functions with a(t) = 0 for 0 < t < δ with some δ > 0,
b(t) = 0 for |t|< ε with some ε > 0, and c(t) = 0 for |t|> N with some N > 0. Due
to Propositions 5.3.1–5.3.4,

aW (b)M0(c) =
a

a2
1

W (b/b1)M0(c/c1)
(
a1W (b1)M0(c1)a1I

)
+K1

with a compact operator K1. Since the operator a1W (b1)M0(c1) is compact, the
assertion follows.

(ii) Write

c(t) = c(+∞)
1+ coth

(
(t + i(1/p+α))π

)

2
+ c′(t).

Then

aW (b)M0(c) = aW (b)M0(c′)+ c(+∞)aW (b)M0

(
1+ coth

(
(t + i(1/p+α))π

)

2

)

= aW (b)M0(c′)+ c(+∞)aW (bχ+)+K2

with a compact operator K2 (here we took into account Proposition 4.2.11). Since
bχ+ ≡ 0 by assumption, and since c′(±∞) = 0, this reduces our claim to the case
previously considered in part (i). The proof of part (iii) proceeds analogously.

The next proposition concerns commutators with Hankel operators. Since the flip
operator is involved, we assume the weight to be symmetric.

Proposition 5.3.6. Let w be a symmetric weight on R, i.e., w(x) = w(−x). Then:

(i) if b ∈Cp,w then H(b) ∈ K (Lp(R+,w));
(ii) if a ∈ L̄∞(R+) and b ∈ Ṁp,w with a(+∞) = 0 and b(±∞) = 0, then aH(b) and

H(b)aI are in K (Lp(R+,w));
(iii) if a ∈ C̄(R+) and b ∈ M̄p,w, then [aI,H(b)] ∈ K (Lp(R+,w));
(iv) if a ∈Cp,w and b ∈ Mp,w with a even, then [W (a),H(b)] ∈ K (Lp(R+,w));
(v) if a ∈Cp,w and b ∈ Mp,w, then [W (a),W (b)] ∈ K (Lp(R+,w)).

Proof. (i) As in the proof of Proposition 5.3.3, we can restrict ourselves to the case
when p = 2 and w ≡ 1. Then H(b) is unitarily equivalent to the operator

FH(b)F−1 = Fχ+F−1bFJχ+F−1 = Fχ+F−1bFJχ−F−1J = QRbPRJ,

which is compact.

(ii) Extend a symmetrically onto the whole axis. Then a ∈ L̇∞(R) with a(±∞) = 0,
and from Proposition 5.3.1 (i) we conclude
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aχ+W 0(b)χ−J = χ+aW 0(b)χ−J ∈ K (Lp(R,w))

and
χ+W 0(b)χ−JaI = χ+W 0(b)aχ−J ∈ K (Lp(R,w)) .

(iii) This follows from Proposition 5.3.1 (ii) via the same arguments as in (ii).

(iv) The identity
H(ab) = W (a)H(b)+H(a)W(b̃) (5.9)

can be shown as (5.4). Consequently, if ã = a, then

W (a)H(b) = H(ab)−H(a)W (b̃) = H(ba)−H(a)W (b̃)

= W (b)H(a)+H(b)W (a)−H(a)W (b̃)

which implies the assertion since H(a) is compact by (i).

(v) Finally, by (5.4),

W (a)W (b)−W (b)W (a) = H(b)H(ã)−H(a)H(b̃).

Since a and ã are continuous, the assertion follows from (i).

5.4 Homogenization of convolution operators

Here we continue the technical preparation for the local study of algebras of con-
volution operators. In particular we show that the homogenization technique from
Section 4.2.5 applies to large classes of convolutions. Recall the definitions of the
operators Ut , Vs and Zτ in (4.19), (4.20) and (4.37), respectively.

For s ∈ R and −1/p < α < 1− 1/p, let wα,s be the weight on R defined by
wα,s(t) := |t − s|α and write wα for wα,0. Let A ∈ L (Lp(R,wα,s)). If the strong
limit

s-lim
τ→+∞

ZτV−sAVsZ
−1
τ (5.10)

exists, we denote it by Hs,∞(A). Analogously, if A∈L (Lp(R,wα)) and if the strong
limit

s-lim
τ→+∞

Z−1
τ UtAU−tZτ (5.11)

exists for some t ∈ R, we denote it by H∞,t(A). It is easy to see that the set of all
operators for which the strong limits Hs,∞(A) (resp. H∞,t(A)) exist forms a Banach
algebra, that

‖Hs,∞(A)‖L (Lp(R,wα ,0)) ≤ ‖A‖L (Lp(R,wα ,s)) (5.12)

respectively
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‖H∞,t(A)‖L (Lp(R,wα ,0)) ≤ ‖A‖L (Lp(R,wα ,0)) (5.13)

for all operators in these algebras and that, hence, the operators Hs,∞ and H∞,t are
bounded homomorphisms.

For x ∈ R, let b(x±) denote the right/left one-sided limit of the piecewise contin-
uous function b at x.

Proposition 5.4.1. Let a ∈ L̄∞(R), b ∈ PCp,wα and c ∈ M̄p. Then, for t ∈ R:

(i) H∞,t(aI) = a(−∞)χ−I +a(+∞)χ+I;
(ii) H∞,t(W 0(b)) = b(t−)QR +b(t+)PR;

(iii) H∞,t(χ+M0(c)χ+I + χ−I) =

⎧
⎪⎨

⎪⎩

c(+∞)χ+I + χ−I if t > 0,

χ+M0(c)χ+I + χ−I if t = 0,

c(−∞)χ+I + χ−I if t < 0.

Proof. Assertion (i) is immediate from Proposition 4.2.22 (ii) since UtaU−t = aI.

(ii) It is sufficient to prove the assertion for t = 0. Write b as b(0−)χ− +b(0+)χ+ +
b0 where the function b0 ∈ PCp,wα is continuous at 0 and b0(0) = 0. Since

W 0 (b(0−)χ− +b(0+)χ+

)
= b(0−)QR +b(0+)PR

and the operators PR and QR commute with Zτ , it remains to show that

Z−1
τ W 0(b0)Zτ → 0 strongly as τ → ∞.

By the definition of the class PCp,wα and by Proposition 5.1.1, we can approximate
the function b0 in the multiplier norm as closely as desired by a piecewise constant
function b00 which is zero in an open neighborhood U of 0. It is thus sufficient to
show that

Z−1
τ W 0(b00)Zτ → 0 strongly as τ → ∞.

Since the operators on the left-hand side are uniformly bounded with respect to τ , it
is further sufficient to show that

Z−1
τ W 0(b00)Zτ u → 0

for all functions u in a certain dense subset of Lp(R,wα). For, consider the set of all
functions in the Schwartz space S (R), the Fourier transform of which has compact
support. This space is indeed dense in Lp(R,wα) since the space D(R) of the com-
pactly supported infinitely differentiable functions is dense in S (R) ([171, Theo-
rem 7.10]), since the Fourier transform F is a continuous bijection on S (R), and
since S (R) is dense in Lp(R,wα). In this special setting, the latter fact can easily
be proved by hand. Note in this connection that already D(R) is dense in Lp(R,w)
for every Muckenhoupt weight w; see [80, Exercise 9.4.1]. If u is a function with
these properties, then

Z−1
τ W 0(b00)Zτ u = F−1Zτ b00Z−1

τ Fu. (5.14)
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If τ is sufficiently large, then the support of Fu is contained in U ; hence, the function
on the right-hand side of (5.14) is the zero function.

(iii) For t = 0, the assertion follows immediately from Lemma 4.2.13 and the fact
that Zτ χ− I = χ−Zτ . Let t �= 0. Then, clearly, U−tZτ = ZτU−tτ and Z−1

τ Ut = Utτ Z−1
τ ,

whence

Z−1
τ Ut(χ+M0(c)χ+I + χ−I)U−tZτ = Utτ Z−1

τ (χ+M0(c)χ+I + χ−I)ZτU−tτ

= Utτ(χ+M0(c)χ+I + χ−I)U−tτ

due to Lemma 4.2.13. Thus,

H∞,t(χ+M0(c)χ+I + χ−I)

=

{
s-limτ→+∞Uτ(χ+M0(c)χ+I + χ−I)U−τ if t > 0,

s-limτ→−∞Uτ(χ+M0(c)χ+I + χ−I)U−τ if t < 0.
(5.15)

To deal with the strong limits (5.15), suppose first that c is a polynomial in the
function coth

(
(·+ i(1/p+α))π

)
, i.e.

c(t) =
n

∑
k=0

ck cothk ((t + i(1/p+α))π
)
,

with certain constants ck. Then

χ+M0(c)χ+I + χ−I = χ+

(
n

∑
k=0

ck(W (sgn))k

)

χ+I + χ−I. (5.16)

So it remains to consider the strong limits

s-lim
τ→±∞

Uτ(χ+W 0(sgn)χ+I + χ−I)U−τ .

Since UτW 0(sgn)U−τ = W 0(V−τ sgnVτ) by Lemma 4.2.4, we have just to check the
strong convergence of V−τ sgnVτ as τ →±∞. One has

V−τ aVτ →
{

a(+∞)I as τ → +∞,

a(−∞)I as τ →−∞
(5.17)

for every function a ∈ M̄p,wα . Thus,

UτW 0(sgn)U−τ →±I as τ →±∞

whence, via (5.16),

s-lim
τ→±∞

Uτ(χ+M0(c)χ+I + χ−I)U−τ = χ+

n

∑
k=0

ck(±1)kχ+I + χ−I = c(±∞)χ+I + χ−I
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for each polynomial c. Since the set of all polynomials is dense in C̄p, we obtain
assertion (iii) for functions c ∈ C̄p. To treat the general case, let c ∈ M̄p and write c
as

c(t) = c+ + c− coth
(
(t + i(1/p+α))π

)
+ c′(t)

with
c± := (c(+∞)± c(−∞))/2

and with a function c′ ∈ Ṁp with c′(±∞) = 0. After what has just been proved, we
are left to verify that

H∞,t(χ+M0(c′)χ+I + χ−I) = χ−I for t �= 0.

Without loss of generality, we can assume that the support of c′ is compact. Choose
a function u ∈C∞

0 (R) with total variation 2 which is identically 1 on the support of
c′. Then

Uτ χ+M0(c′)χ+U−τ = Uτ χ+M0(c′u)χ+U−τ

=
(
Uτ χ+M0(c′)χ+U−τ

)(
Uτ χ+M0(u)χ+U−τ

)
.

The operators in the first parentheses are uniformly bounded with respect to τ ,
whereas the operators in the second ones tend strongly to zero as τ →±∞ by what
we have already shown.

The assertions of the following lemma are either taken directly from the preced-
ing proof, or they follow by repeating some arguments of that proof.

Lemma 5.4.2.
(i) If a ∈ L̄∞(R), then V−τ aVτ → a(±∞)I as τ →±∞.

(ii) If b ∈ M̄p,wα , then UτW 0(b)U−τ → b(±∞)I as τ →±∞.
(iii) If c ∈ M̄p, then Uτ M0(c)U−τ → c(±∞)I as τ →±∞.

The following is the analog of Proposition 5.4.1 for the second family of strong
limits.

Proposition 5.4.3. Let s ∈ R, a ∈ PC, b ∈ M̄p,wα ,s and c ∈ M̄p. Then:

(i) Hs,∞(aI) = a(s−)χ−I +a(s+)χ+I;
(ii) Hs,∞(W 0(b)) = b(−∞)QR +b(+∞)PR;

(iii) Hs,∞(χ+M0(c)χ+I + χ−I) =

⎧
⎪⎨

⎪⎩

c(−∞)QR + c(+∞)PR if s > 0,

χ+M0(c)χ+I + χ−I if s = 0,

I if s < 0.

Proof. Assertion (i) is immediate from Proposition 4.2.22 (ii) since (V−saVs)(t) =
a(t +s). For assertion (ii), one uses Lemma 4.2.4 and Proposition 4.2.22 (ii) as in the
proof of Proposition 5.4.1(ii). Note that V−sW 0(b)Vs = W 0(b). For s = 0, assertion
(iii) is a consequence of Lemma 4.2.13 and the commutativity of χ−I and Zτ , and
for s < 0 it follows from the already proved part (i). For s > 0, write
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c(t) = c+ + c− coth
(
(t + i(1/p+α))π

)
+ c′(t)

with c± := (c(+∞)± c(−∞))/2. First note that

Hs,∞

(
χ+M0

(
c+ + c− coth

(
(·+ i(1/p+α))π

)
+ c′(t)

)
χ+I + χ−I

)

= c+I + c−SR = c(−∞)
I −SR

2
+ c(+∞)

I +SR

2
.

Indeed, since

M0
(

c+ + c− coth
(
(·+ i(1/p+α))π

))
= c+χ+I + c−SR+ = c+χ+I + c−W (sgn),

this follows easily from what we proved in parts (i) and (ii). Next, similarly to the
proof of part (iii) of Proposition 5.4.1, one verifies the assertion for c being a poly-
nomial in coth

(
(·+ i(1/p + α))π

)
. Finally, one shows that Hs,∞(χ+M0(c′)χ+I +

χ−I) = 0, again by employing the approximation arguments from the proof of
Proposition 5.4.1.

Proposition 5.4.4.
(i) If K is a compact operator on Lp(R,wα), then H∞,s(K) = 0 for all s ∈ R.

(ii) If K is compact on Lp(R,wα,s), then Hs,∞(K) = 0 for all s ∈ R.

The proof runs as that of Proposition 4.2.22 (iii).

5.5 Algebras of multiplication, Wiener-Hopf and Mellin
operators

Given subsets X ⊆ L∞(R+), Y ⊆ Mp,wα and Z ⊆ Mp, we let A (X ,Y,Z) denote
the smallest closed subalgebra of the algebra of all bounded linear operators on
Lp(R+,wα) which contains all multiplication operators aI with a ∈ X , all Wiener-
Hopf operators W (b) with b ∈ Y , and all Mellin convolutions M0(c) with c ∈ Z.
By A K (X ,Y,Z) we denote the image of A (X ,Y,Z) in the Calkin algebra over
Lp(R+,wα), and we write Φ for the corresponding canonical homomorphism.

The invertibility of elements of the algebra A K (X ,Y,Z) will again be studied
by using Allan’s local principle. Thus we must single out central subalgebras of
this algebra which are suitable for localization. For special choices of X , Y and Z,
this is done in the next proposition, which follows immediately from Propositions
5.3.1–5.3.6.

Proposition 5.5.1. In each of the cases below, B is a central subalgebra of A :

(i) A = A K
(
L∞(R+),M̄p,wα ,M̄p

)
and B = A K

(
Ċ(R+),C0

p,wα ,C(R)∩PCp
)
;

(ii) A = A K
(
PC(R+),PCp,wα ,PCp

)
and B = A K

(
Ċ(R+),C0

p,wα ,Cp
)
;
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(iii) A = A K
(
PC(R+),PCp,wα ,PCp

)
and B = A K

(
Ċ(R+),C0

p,wα , /0
)
;

(iv) A = A K
(
C̄(R+),PCp,wα ,C(R)∩PCp

)
and B = A ;

(v) A = A K
(
PC(R+),PCp,wα , /0

)
and B = A K

(
C̄(R+),Cp,wα , /0

)
.

It is evident that the setting of case (i) is too general for a successful analysis.
It will be our goal in this section to examine cases (ii) and (iii). One peculiarity of
the present context is that, in general, (A , B) is not a faithful localizing pair unless
p = 2 (since one has to localize over algebras of multipliers). Thus, one cannot ex-
pect the same elegant and complete results as for the algebra A K (Γ ,w) considered
in the previous chapter. The objectives of this section are quite modest when com-
pared with Chapter 4: We will only derive necessary and sufficient conditions for the
invertibility of cosets in A K , and we will show that this algebra is inverse-closed
in the Calkin algebra, i.e., that invertibility in A K is equivalent to the Fredholm
property. On the other hand, we will at least be able to establish isometrically iso-
morphic representations of the local algebras that arise. If p = 2, the localizing
pairs become faithful, and one gets an isometrically isomorphic representation of
the (global) algebra A K .

We derive the maximal ideal spaces for some algebras B which appear in the
above proposition. Let us start with two very simple situations. Corollary 1.4.9 and
Proposition 1.4.11 (which we need here for weighted Lp-spaces) imply that the max-
imal ideal space of the commutative Banach algebra A K

(
Ċ(R+), /0, /0

)
is homeo-

morphic to the one-point compactification Ṙ
+ of R

+ by the point ∞ = 0 (and, thus,
homeomorphic to a circle). The maximal ideal which corresponds to s∈ Ṙ

+ is equal
to {Φ(aI) : a ∈ Ċ(R+),a(s) = 0}.

Taking into account Proposition 5.1.2 (i), it is also not hard to see that the max-
imal ideal space of the commutative Banach algebra A K

(
/0,C0

p,wα , /0
)

is homeo-
morphic to the compactification of R which arises by identifying the three points
−∞, 0, and +∞. We denote this compactification by Ṙ0. One can think of Ṙ0 as the

Fig. 5.1 The maximal ideal space of the algebra A K
(

/0,C0
p,wα , /0

)
.

the union of two circles which have exactly one point, ∞ say, in common (see Figure
5.1). The maximal ideal of A K

(
/0,C0

p,wα , /0
)

which corresponds to the point s ∈ Ṙ0

is then {
Φ(W (a)) : a ∈C0

p,wα , a(s) = 0
}

if s �= ∞,
{

Φ(W (a)) : a ∈C0
p,wα , a(0) = a(±∞) = 0

}
if s = ∞.

For the next result, we have to combine the maximal ideal spaces Ṙ
+ and Ṙ0 of

these algebras.
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Proposition 5.5.2. The maximal ideal space of the commutative Banach alge-
bra A K

(
Ċ(R+),C0

p,wα , /0
)

is homeomorphic to that subset of the “double torus”
Ṙ

+ × Ṙ0 which consists of the circle Ṙ
+ ×{∞} and the “double circle” {∞}× Ṙ0.

In particular, the value of the Gelfand transform of the coset Φ(aW (b)) with
a ∈ Ċ(R+) and b ∈C0

p,wα at the point (s, t) ∈ (Ṙ+×{∞})∪ ({∞}× Ṙ0) is a(s)b(t).

Fig. 5.2 The maximal ideal space of the algebra A K
(
Ċ(R+),C0

p,wα , /0
)
. The intersection point is

∞×∞ (or 0×0); the points on the single circle are of the form s×∞, and the ones on the double
circle of the form ∞× t.

Proof. Let J be a maximal ideal of A K
(
Ċ(R+),C0

p,wα , /0
)
. By Proposition

2.2.1, J ∩A K
(
Ċ(R+), /0, /0

)
and J ∩A K

(
/0,C0

p,wα , /0
)

are maximal ideals of
A K

(
Ċ(R+), /0, /0

)
and A K

(
/0,C0

p,wα , /0
)
, respectively. Thus, there are points s∈ Ṙ

+

and t ∈ Ṙ0 such that the value of the Gelfand transform of the coset Φ(aW (b)) at
the ideal J equals a(s)b(t) for each choice of a ∈ Ċ(R+) and b ∈C0

p,wα . Hence, the
maximal ideal space of the algebra A K

(
Ċ(R+),C0

p,wα , /0
)

can be identified with a
subset of the double torus Ṙ

+ × Ṙ0.
Now let s ∈ Ṙ

+ \ {∞} and t ∈ Ṙ0 \ {∞}. Given functions a ∈ Ċ(R+) and b ∈
C0

p,wα , choose functions a′ ∈ C∞
0 (R+) and b′ ∈ C∞

0 (R) of finite total variation such
that a(s) = a′(s), b(t) = b′(t) and 0 �∈ supp b′. Then,

aW (b) = (a−a′)W (b−b′)+(a−a′)W (b′)+a′W (b−b′)+a′W (b′).

The first three items of the sum on the right-hand side belong to the ideal J = (s, t),
whereas while the fourth item is compact by Proposition 5.3.1. Thus, the smallest
closed ideal of A K

(
Ċ(R+),C0

p,wα , /0
)

which corresponds to (s, t) with s ∈ Ṙ
+ \

{∞} and t ∈ Ṙ0 \ {∞} coincides with the whole algebra. So, the maximal ideals
of the algebra under consideration can only correspond to points (s, t) from (Ṙ+ ×
{∞})∪ ({∞}× Ṙ0). On the other hand, each of these points gives a maximal ideal
of A K

(
Ċ(R+),C0

p,wα , /0
)
, which is a consequence of Theorem 2.1.9 (ii). Since the
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Shilov boundaries of the algebras A K
(
Ċ(R+), /0, /0

)
and A K

(
/0,C0

p,wα , /0
)

coincide
with Ṙ

+ and Ṙ0, respectively (recall Exercise 2.1.7), the assertion follows.

For s ∈ Ṙ
+ ×{∞} and t ∈ {∞}× Ṙ0, let Is,t denote the smallest closed ideal of

the Banach algebra A K
(
PC(R+),PCp,wα ,PCp

)
which contains the ideal (s, t), and

let ΦK
s,t refer to the canonical homomorphism from A

(
PC(R+),PCp,wα ,PCp

)
onto

the local quotient algebra

A K
s,t

(
PC(R+),PCp,wα ,PCp

)
:= A K

(
PC(R+),PCp,wα ,PCp

)
/Is,t .

As in Section 4.2.3, Ep,α denotes the smallest closed subalgebra of L
(
Lp(R+, tα)

)

which contains the identity operator I = χ+ and the operator SR+ . We provide a
description of the local algebras of A K

(
PC(R+),PCp,wα ,PCp

)
in a couple of sep-

arate statements.

Theorem 5.5.3. Let s = ∞ and t ∈ Ṙ0 \{∞}. Then the local algebra

A K
s,t

(
PC(R+),PCp,wα ,PCp

)

is isometrically isomorphic to Ep,α . The isomorphism is given by

ΦK
s,t (A) �→ Hs,t(A) (5.18)

for each operator A ∈ A
(
PC(R+),PCp,wα ,PCp

)
. In particular, for a ∈ PC(R+),

b ∈ PCp,wα and c ∈ PCp,

Hs,t(aI) = a(+∞)I,

Hs,t(W (b)) = b(t−)
I −SR+

2
+b(t+)

I +SR+

2
,

Hs,t(M0(c)) =

{
c(+∞)I if t > 0,

c(−∞)I if t < 0.

Proof. Let A ∈ A
(
PC(R+),PCp,wα ,PCp

)
. First we show that the mapping (5.18)

is correctly defined in the sense that the operator Hs,t(A) depends only on the lo-
cal coset ΦK

s,t (A) of A. Indeed, by Proposition 5.4.4, the ideal K (Lp(R+,wα)) is
contained in the kernel of the operator Hs,t . Hence, Hs,t(A) depends only on the
coset Φ(A) of A. Moreover, if b ∈Cp,wα and b(t) = 0 then, by Proposition 5.4.1 (ii),
Hs,t (Φ(W (b))) = 0. Consequently, the operator Hs,t(A) depends only on the coset
ΦK

s,t (A) of A in the local algebra.
It follows from the definition of Hs,t that (5.18) is a bounded algebra homomor-

phism with a norm not greater than 1. The images of the operators aI, W (b) and
M0(c) under this homomorphism were studied in Proposition 5.4.1. From the con-
crete form of these images, one concludes that Hs,t is in fact a mapping onto Ep,α .

It remains to show that the homomorphism (5.18) is an isometry and, hence, an
isomorphism. To that end we prove that, for each A ∈ A

(
PC(R+),PCp,wα ,PCp

)
,
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ΦK
s,t (A) = ΦK

s,t (U−tHs,t(A)Ut). (5.19)

Once this equality is verified, the assertion will follow from

‖ΦK
s,t (A)‖ = ‖ΦK

s,t (U−tHs,t(A)Ut)‖ ≤ ‖U−tHs,t(A)Ut‖ ≤ ‖Hs,t(A)‖ ≤ ‖ΦK
s,t (A)‖

by (5.12). So we are left to verify the identity (5.19). Since ΦK
s,t and Hs,t are contin-

uous homomorphisms, it suffices to check (5.19) with A replaced by the operators
aI, W (b) and M0(c). Let A = aI with a ∈ PC(R+). Then (5.19) reduces to

ΦK
s,t (aI) = ΦK

s,t (a(∞)I). (5.20)

Choose f ∈ Ċ(R+) with f (∞) = f (0) = 1 and such that the support of f is contained
in [0,1]∪ [N,∞] with N large enough, and write f as f0 + f∞ with

f0(t) =

{
f (t) if t ∈ [0,1],
0 if t ∈ ]1,∞]

and f∞(t) =

{
f (t) if t ∈ [N,∞],
0 if t ∈ [0,N[ .

Further choose g ∈ C0
p,wα with g(t) = 1 and g(∞) = g(0) = 0. Then, obviously,

ΦK
s,t ( fW (g)) = ΦK

s,t (I). From this equality and from

fW (g) = f0W (g)+ f∞W (g) = f∞W (g)+ compact,

by Proposition 5.3.1 (i) we obtain

‖ΦK
s,t

(
(a−a(∞))I

)
‖ = ‖ΦK

s,t

(
(a−a(∞)) fW (g)

)
‖

= ‖ΦK
s,t

(
(a−a(∞)) f∞W (g)

)
‖

≤ ‖(a−a(∞)) f∞‖∞‖W (g)‖.

The right-hand side of this estimate can be made as small as desired if N is chosen
large enough. Now let A = W (b) with b ∈ PCp,wα . Let χt refer to the characteristic
function of the interval [t,+∞], and choose the function g as above, but with the
additional property that g has total variation 2. Using Proposition 5.4.1 (ii), we then
conclude that

∥
∥
∥ΦK

s,t

(
W (b)−U−tHs,t

(
W (b)

)
Ut

)∥∥
∥

=
∥
∥
∥ΦK

s,t

(
W (b)−U−t

(
W (b(t−)χ− +b(t+)χ+)

)
UtW (g)

)∥∥
∥

=
∥
∥
∥ΦK

s,t

(
W
(
b− (b(t−)(1−χt )+b(t+)χt )

)
W (g)

)∥∥
∥

≤
∥
∥((b− (b(t−)(1−χt )+b(t+)χt ))g

)∥∥
Mp,wα

.

The right-hand side of this estimate becomes as small as desired if the support of g
is chosen small enough. Finally, let A = M0(c) with c ∈ PCp. For definiteness, let
t > 0. Then (5.19) reduces to
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ΦK
s,t

(
M0(c)

)
= ΦK

s,t

(
c(+∞)I

)
.

To verify this equality, choose f , f0, f∞ and g as above and suppose that supp g ⊆
R

+. Then

ΦK
s,t

(
M0(c− c(+∞))

)
= ΦK

s,t

(
fW (g)M0(c− c(+∞))

)

= ΦK
s,t

(
f∞W (g)M0(c− c(+∞))

)
= 0

since f∞W (g)M0(c− c(+∞)) is a compact operator by Proposition 5.3.5 (iii).

Let alg{I,χ+I,SR} denote the smallest closed subalgebra of L (Lp(R)) which
contains the operators I,χ+ I and SR. The following theorem identifies a second
family of the local algebras.

Theorem 5.5.4. Let s ∈ Ṙ
+ \{∞} and t = ∞. Then the local algebra

A K
s,t

(
PC(R+),PCp,wα ,PCp

)

is isometrically isomorphic to the subalgebra alg{I,χ+ I,SR} of L (Lp(R)). The
isomorphism is given by

ΦK
s,t (A) �→ Hs,t(A) (5.21)

for each operator A ∈ A
(
PC(R+),PCp,wα ,PCp

)
. In particular, for a ∈ PC(R+),

b ∈ PCp,wα and c ∈ PCp,

Hs,t(aI) = a(s−)χ−I +a(s+)χ+I,

Hs,t(W (b)) = b(−∞)
I −SR

2
+b(+∞)

I +SR

2
,

Hs,t(M0(c)) = c(−∞)
I −SR

2
+ c(+∞)

I +SR

2
.

Proof. Taking into account that the weight function wα is locally non-trivial only
at the points 0 and ∞, one can show by repeating the arguments of the proof of
Proposition 4.3.2 that the local algebras A K

s,t

(
PC(R+),PCp,wα ,PCp

)
generated by

operators acting on Lp(R+,wα) and A K
s,t

(
PC(R+),PCp,PCp

)
generated by opera-

tors on Lp(R+) are isometrically isomorphic. So we shall only deal with the latter
algebra.

The correctness of the definition (5.21) as well as the fact that it defines a bounded
algebra homomorphism with norm not greater than 1 can be checked as in the pre-
ceding proof. The values of this homomorphism at the operators aI, W (b) and M0(c)
are a consequence of Proposition 5.4.3, from which we also conclude that (5.21)
maps the local algebra onto alg{I,χ+I,SR}. That this homomorphism is an isome-
try and, hence, an isomorphism, will follow once we have shown that

ΦK
s,t (A) = ΦK

s,t

(
χ+VsHs,t(A)V−sχ+I|Lp(R+)

)
(5.22)
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for all operators A in A
(
PC(R+),PCp,wα ,PCp

)
. To verify this identity, it is again

sufficient to check it for the generating operators aI, W (b) and M0(c) in place of A.
Let A = aI with a ∈ PC(R+). Then (5.22) states that

ΦK
s,t (aI) = ΦK

s,t

(
a(s−)(1−χs)χ+I +a(s+)χs I

)
. (5.23)

To prove this equality, choose a function f ∈ Ċ(R+) with f (s) = 1 and compact
support and a function g ∈ C0

p with g(∞) = 1 with support in [−∞,−N]∪ [−1,1]∪
[N,+∞] where N is chosen sufficiently large. Then

∥
∥ΦK

s,t

(
aI −a(s−)(1−χs)χ+I +a(s+)χs I

)∥∥

=
∥
∥
∥ΦK

s,t

(
(aI −a(s−)(1−χs)χ+ +a(s+)χs) fW (g)

)∥∥
∥

≤
∥
∥((aI −a(s−)(1−χs)χ+ +a(s+)χs) f

)∥∥
∞ ‖W (g)‖,

and the right-hand side of this estimate becomes as small as desired if supp f is
chosen small enough.

Now let A = W (b) with b ∈ PCp,wα . Choose f and g as above and write g as
g0 +g∞ with a function g0 vanishing outside the interval [−1,1]. Then, according to
Proposition 5.3.1 (i), ΦK

s,t (I) = ΦK
s,t ( fW (g)) = ΦK

s,t ( fW (g∞)), whence

∥
∥ΦK

s,t

(
W (b−b(−∞)χ− −b(+∞)χ+)

)∥∥

=
∥
∥
∥ΦK

s,t

(
W
(
(b−b(−∞)χ− −b(+∞)χ+)g∞

)
f I
)∥∥
∥

≤
∥
∥(b−b(−∞)χ− −b(+∞)χ+)g∞

∥
∥

Mp
‖ f‖∞.

Again, the norm on the right-hand side becomes arbitrarily small if N is chosen large
enough. Hence,

ΦK
s,t (W (b)) = ΦK

s,t

(
b(−∞)W (χ−)+b(+∞)W (χ+)

)
(5.24)

which verifies (5.22) for A = W (b). Finally, let A = M0(c) with c ∈ PCp. Now one
has to show that

ΦK
s,t (M0(c)) = ΦK

s,t

(
c(−∞)

I −SR+

2
+ c(+∞)

I +SR+

2

)
. (5.25)

For, write c as

c(t) = c(−∞)
1− coth

(
(t + i/p)π

)

2
+ c(+∞)

1+ coth
(
(t + i/p)π

)

2
+ c′(t).

Then M0(c) = c(−∞) I−S
R+

2 + c(+∞) I+S
R+

2 + M0(c′), and it remains to show that
ΦK

s,t

(
M0(c′)

)
is the zero coset. For, choose f and g = g0 + g∞ as above and take
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into account that ΦK
s,t ( fW (g∞)) = ΦK

s,t (I) and that the operator fW (g∞)M0(c′) is
compact by Proposition 5.3.5.

One can show by the same arguments as above that Theorems 5.5.3 and 5.5.4 re-
main valid if the algebra A K

(
PC(R+),PCp,wα ,PCp

)
is replaced by the larger alge-

bra A K
(
PC(R+),PCp,wα ,M̄p

)
and if the same subalgebra A K

(
Ċ(R+),C0

p,wα , /0
)

is used for localizing both algebras.
Let us now turn to the local algebra at (∞,∞), which has a more involved struc-

ture than the local algebras already studied. For this reason we start with analyzing
the smaller algebra A K

∞,∞
(
PC(R+),PCp,wα ,Cp

)
before dealing with the full local

algebra A K
∞,∞
(
PC(R+),PCp,wα ,PCp

)
.

We shall need a few more strong limit operators. For A ∈ L (Lp(R,w)), let

H+±(A) := s-lim
t→±∞

s-lim
s→+∞

UtV−sAVsU−t , (5.26)

provided that this strong limit exists.

Proposition 5.5.5. For A ∈ A
(
PC(Ṙ),PCp,w,Cp

)
, the strong limits (5.26) exist,

and the mappings
H+± : A

(
PC(Ṙ),PCp,w,Cp

)
→ CI

are algebra homomorphisms. In particular, for a ∈ PC(Ṙ), b ∈ PCp,w, c ∈ Cp and
K ∈ K (Lp(R,w)),

H+±(aI) = a(+∞)I, H+±(W 0(b)) = b(±∞)I,

H+±(M0(c)) = c(±∞)I and H+±(K) = 0.

Proof. The first assertion comes from Lemma 5.4.2. The multiplicativity of H+± is
due to the uniform boundedness of U−tV−sAVsUt . The existence of the first three of
the strong limits was established in Lemma 5.4.2. The last assertion follows from
Lemma 1.4.6 since the Vs tend weakly to zero and the V−s are uniformly bounded.

We have to introduce some new notation in order to give a description of the local
algebras at (∞,∞). Let f be a function in Ċ(R+) with f (∞) = f (0) = 1 the support
of which is contained in [0,1]∪ [N,∞] with some sufficiently large N, and write f as
f0 + f∞ with

f0(t) =

{
f (t) if t ∈ [0,1],
0 if t ∈ ]1,∞]

and f∞(t) =

{
f (t) if t ∈ [N,∞],
0 if t ∈ [0,N[ .

Further, let g ∈ C0
p,wα with g(∞) = g(0) = 1 and supp g ⊆ [−∞,−N]∪ [−1,1]∪

[N,+∞], and write g = g0 +g∞ with
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g0(t) =

{
g(t) if t ∈ [−1,1],
0 if t ∈ R\ [−1,1]

and g∞(t) =

{
0 if t ∈ [−N,N],
g(t) if t ∈ R\ [−N,N].

Set g±∞ := χ±g∞. Since the operator f0W (g0) is compact by Proposition 5.3.1, one
gets

ΦK
∞,∞(I) = ΦK

∞,∞( fW (g))

= ΦK
∞,∞( f0W (g∞))+ΦK

∞,∞( f∞W (g0))+ΦK
∞,∞( f∞W (g∞)).

Denote the first, second and third item in the sum of the right-hand side by P0,∞, P∞,0

and P∞,∞, respectively, and define for (x,y) ∈ {(0,∞),(∞,0),(∞,∞)},

A x,y
∞,∞ := Px,yA

K
∞,∞
(
PC(R+),PCp,wα ,Cp

)
Px,y.

Theorem 5.5.6. Let s = ∞ and t = ∞. Then:

(i) the sets A 0,∞
∞,∞ , A ∞,0

∞,∞ and A ∞,∞
∞,∞ are Banach algebras, and

A K
∞,∞
(
PC(R+),PCp,wα ,Cp

)
= A 0,∞

∞,∞ �A ∞,0
∞,∞ �A ∞,∞

∞,∞

where the sums are direct;
(ii) the algebra A 0,∞

∞,∞ is isometrically isomorphic to Ep,α , and the isomorphism is
given by

P0,∞ΦK
∞,∞(A)P0,∞ �→ H0,∞(A)

for each A ∈ A K
∞,∞
(
PC(R+),PCp,wα ,Cp

)
;

(iii) the algebra A ∞,0
∞,∞ is isometrically isomorphic to Ep,α , and the isomorphism is

given by
P∞,0ΦK

∞,∞(A)P∞,0 �→ H∞,0(A)

for each A ∈ A
(
PC(R+),PCp,wα ,Cp

)
;

(iv) the algebra A ∞,∞
∞,∞ is commutative and finitely generated. Its generators are

the cosets ΦK
∞,∞ ( f∞W (g±∞)). For A ∈ A K

∞,∞
(
PC(R+),PCp,wα ,Cp

)
, the coset

P∞,∞ΦK
∞,∞(A)P∞,∞ is invertible if and only if the operators H+±(A), which are

constant multiples of the identity, are invertible.

Proof. (i) It is easy to see that P∞,0, P0,∞ and P∞,∞ are idempotents which satisfy

P∞,0 +P0,∞ +P∞,∞ = ΦK
∞,∞(I),

and
Px1,y1Px2,y2 = 0 if (x1,y1) �= (x2,y2).

Hence, assertion (i) will follow once we have shown that P∞,0, P0,∞ and P∞,∞ belong
to the center of the local algebra A K

∞,∞
(
PC(R+),PCp,wα ,Cp

)
. By Proposition 4.2.10,

every Mellin convolution M0(c) with c ∈Cp can be approximated by a polynomial
in SR+ . Since SR+ = W (sgn), it thus suffices to check whether P∞,0, P0,∞ and P∞,∞
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commute with ΦK
∞,∞(aI) and ΦK

∞,∞(W (b)) for all functions a ∈ PC(R+) and b ∈
PCp,wα .

First consider the commutator [P0,∞,ΦK
∞,∞(aI)]. A little thought shows that there

is a function a∞ ∈ C̄(R+) such that ΦK
∞,∞(aI) = ΦK

∞,∞(a∞I). So the assertion follows
immediately from the compactness of [W (g∞),a∞], which we infer from Proposition
5.3.1 (ii). Now consider [P0,∞,ΦK

∞,∞(W (b))] where b ∈ PCp,wα . Since g∞ is continu-
ous on Ṙ, we conclude via Proposition 5.3.3 (i) that

W (g∞)W (b) = W (g∞b)+K1 = W (b)W (g∞)+K2

with compact operators K1 and K2. As above, one finds a function b∞ ∈ PCp,wα ∩
C(R) such that ΦK

∞,∞(W (b)) = ΦK
∞,∞(W (b∞)). Since the commutator [ f0W (b∞)] is

compact by Proposition 5.3.1 (ii), it follows that P0,∞ commutes with all elements
of the local algebra.

To get that the commutator [P∞,0,ΦK
∞,∞(aI)] vanishes, one can argue as above. So

we are left to verify that [P∞,0,ΦK
∞,∞(W (b))] = 0 for all b ∈ PCp,wα . Using Propo-

sition 5.3.3 again, we obtain that [W (g0),W (b)] is compact, and from Proposition
5.3.1 (ii) we infer that [ f∞,W (b)] is compact. Thus, P∞,0 is also in the center of the
local algebra. Since P∞,∞ = I−P∞,0 −P0,∞, the coset P∞,∞ belongs to the center, too.

(ii) Propositions 5.4.1 and 5.4.3 imply that the operator H0,∞(A) depends only on
the coset P0,∞ΦK

∞,∞(A)P0,∞. The specific form of H0,∞(A) is also a consequence of
Propositions 5.4.1 and 5.4.3. The identity,

P0,∞ΦK
∞,∞(A)P0,∞ = P0,∞ΦK

∞,∞(H0,∞(A))P0,∞

can be checked by repeating arguments from the proofs of Theorems 5.5.3 and 5.5.4.
This proves assertion (ii), and assertion (iii) of the theorem follows in a similar way.

(iv) Let a ∈ PC(R+) and b ∈ PCp,wα . Then

P∞,∞ΦK
∞,∞
(
aW (b)

)
P∞,∞

= P∞,∞ΦK
∞,∞
(
a(∞) f∞W (b(−∞)g−∞ +b(+∞)g+

∞)
)
P∞,∞

= a(∞)b(−∞)ΦK
∞,∞
(

f∞W (g−∞)
)
+a(∞)b(+∞)ΦK

∞,∞
(

f∞W (g+
∞)
)
.

(5.27)

Taking into account that ΦK
∞,∞
(

f∞W (g−∞)
)
+ΦK

∞,∞
(

f∞W (g+
∞)
)

= P∞,∞ is the identity
element in A ∞,∞

∞,∞ and that

ΦK
∞,∞
(

f∞W (g−∞)
)
ΦK

∞,∞
(

f∞W (g+
∞)
)

= ΦK
∞,∞
(

f∞W (g−∞) f∞W (g+
∞) f∞I

)

= ΦK
∞,∞
(

f∞W 0(g−∞) f∞W 0(g+
∞) f∞I

)

= ΦK
∞,∞
(

f∞W 0(g−∞)W 0(g+
∞) f∞I

)
= 0

by Proposition 5.3.1 (ii), we conclude that every element B of A ∞,∞
∞,∞ can be written

in the form
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B = α−(B)ΦK
∞,∞
(

f∞W (g−∞)
)
+α+(B)ΦK

∞,∞
(

f∞W (g+
∞)
)

with uniquely determined complex numbers α±(B). Since the existence of the
strong limits follows from Proposition 5.5.5, it remains to show that

H+±(A) = α±
(
P∞,∞ΦK

∞,∞(A)P∞,∞
)
I. (5.28)

The mappings A �→H+±(A) and A �→ α±
(
P∞,∞ΦK

∞,∞(A)P∞,∞
)

are continuous homo-
morphisms. It is thus sufficient to verify (5.28) with A replaced by aI and W (b).
For these operators, the assertion follows immediately from Proposition 5.5.5 and
equality (5.27).

Now we turn our attention to the larger algebra A K
∞,∞
(
PC(R+),PCp,wα ,PCp

)
.

Again one can show that the idempotent P∞,∞ belongs to the center of this algebra,
but the idempotents P0,∞ and P∞,0 no longer possess this property. Therefore, this
larger local algebra does not admit as simple a decomposition as that one observed
in Theorem 5.5.6. We shall study the local algebra A K

∞,∞
(
PC(R+),PCp,wα ,PCp

)

via a second localization. To that end notice that, for c ∈ C(R)∩ PCp, the coset
ΦK

∞,∞(M0(c)) belongs to the center of this algebra by Propositions 5.3.2 (ii) and
5.3.4 (ii) (take into account that, for each a ∈ PC(R+), there is an a∞ ∈ C̄(R+)
such that ΦK

∞,∞(aI −a∞I) = 0). Thus, using Allan’s local principle, we can localize
A K

∞,∞
(
PC(R+),PCp,wα ,PCp

)
with respect to the maximal ideal space of the Banach

algebra {
ΦK

∞,∞(M0(c)) : c ∈C(R)∩PCp

}
,

which can be identified with the two-point compactification R of the real axis in an
obvious way. For x ∈ R, let A K

∞,∞,x denote the corresponding bilocal algebra, and
write ΦK

∞,∞,x for the canonical homomorphism from A onto A K
∞,∞,x. Further, let the

functions f0, f∞, g0 and g∞ be defined as before Theorem 5.5.6. For x ∈ {±∞} and
(y,z) ∈ {(0,∞),(∞,0),(∞,∞)}, set

Py,z
x := ΦK

∞,∞,x

(
fyW (gz)

)

and abbreviate
A y,z

∞,∞,x := Py,z
x A K

∞,∞,xPy,z
x .

Finally, let Bp,α denote the smallest closed subalgebra of L (Lp(R,wα)) which
contains SR and χ+I. The following theorem identifies the local algebras A K

∞,∞,x.

Theorem 5.5.7.
(i) Let x ∈ R. For each A ∈A

(
PC(R+),PCp,wα ,PCp

)
, there is an operator A∞ ∈

A
(
PC(R+), /0,PCp

)
such that ΦK

∞,∞,x(A−A∞) = 0. The local algebra A y,z
∞,∞,x

is isometrically isomorphic to the algebra Bp,α , and the isomorphism is given
by

H∞,∞,x : ΦK
∞,∞,x(A) �→ H∞,x(Ep,wα A∞E−1

p,wα ).
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In particular,

H∞,∞,x
(
ΦK

∞,∞,x(aI)
)

= a(+∞)χ−I +a(0+)χ+I,

H∞,∞,x
(
ΦK

∞,∞,x(W (b))
)

=
(

b(−∞)
1−d(x)

2
+b(+∞)

1+d(x)
2

)
χ−I

+
(

b(0−)
1−d(x)

2
+b(0+)

1+d(x)
2

)
χ+ I

with d(x) := coth
(
(x+ i(1/p+α))π

)
, and

H∞,∞,x
(
ΦK

∞,∞,x(M
0(c))

)
= c(x−)QR + c(x+)PR.

(ii) Let x ∈ {±∞}. Then A 0,∞
∞,∞,x, A ∞,0

∞,∞,x and A ∞,∞
∞,∞,x are Banach algebras, and the

algebra A K
∞,∞,x decomposes into the direct sum

A K
∞,∞,x = A 0,∞

∞,∞,x �A ∞,0
∞,∞,x �A ∞,∞

∞,∞,x.

Moreover, for (y,z) ∈ {(0,∞),(∞,0),(∞,∞)}, there is an isomorphism Hy,z
x

from A y,z
∞,∞,x onto C. In particular,

Hy,z
x

(
Py,z
±∞ΦK

∞,∞,±∞(aW (b)M0(c))Py,z
±∞
)

= a(y)b(z±)c(x)

where ∞± := ±∞.

Proof. (i) Choose cx ∈C(R)∩PCp so that supp cx is compact and cx(x) = 1. Then
the operator f∞W (g∞)M0(cx) is compact by Proposition 5.3.5 (i). Hence, for every
function b ∈ PCp,wα , which is continuous at the point 0 and satisfies b(0) = 0, we
obtain

ΦK
∞,∞,x

(
W (b)

)
= ΦK

∞,∞,x

(
W (b)

(
f0W (g∞)+ f∞W (g0)+ f∞W (g∞)

)
M0(cx)

)

= ΦK
∞,∞,x

(
W (bg∞) f0M0(cx)+W (bg0) f∞M0(cx)

)

= ΦK
∞,∞,x

(
W (bg∞) f0M0(cx)

)
(5.29)

= ΦK
∞,∞,x

(
W (b(−∞)χ− +b(+∞)χ+) f0M0(cx)

)

= ΦK
∞,∞,x

(
(b(−∞)W (χ−)+b(+∞)W (χ+)) f0M0(cx)

)
.

If now b is an arbitrary function in PCp,wα , then we write

W (b) = b(0−)W (χ−)+b(0+)W (χ+)+W (b′) (5.30)

with b′ being continuous at zero and b′(0) = 0. Then the first part of assertion (i)
follows, since the W (χ±) are also Mellin operators.

Since the images of aI and M0(c) under the mapping A �→ Ep,wα AE−1
p,wα are

the operators ăI with ă(t) = a(e2πt) and W 0(c), respectively, the strong limits
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H∞,x(Ep,wα A∞E−1
p,wα ) exist for each operator A∞ ∈ A

(
PC(R+),0,PCp

)
by Propo-

sition 5.4.1.
Let J∞,∞,x stand for the closed ideal generated by all cosets ΦK

∞,∞(M0(c)) with
c ∈ C(R)∩PCp and c(x) = 0. In order to get the correctness of the definition of
H∞,∞,x, we must show that if A ∈ A

(
PC(R+),PCp,wα ,PCp

)
and ΦK

∞,∞,x(A) = 0,
then the strong limit H(A) := H∞,x(Ep,wα A∞E−1

p,wα ) exists and is equal to 0.
To see this, note first that the ideal K of the compact operators belongs to the

kernel of H. Thus, H depends only on the coset Φ(A). Further, since H(aI) = 0 for
each continuous function a with a(0) = a(∞) = 0 by Proposition 5.4.1 (i), the local
ideal I∞,∞ lies in the kernel of H. Notice that for this conclusion we do not need
to know whether the strong limit H(Φ(W (b)) exists: indeed, each operator A with
Φ(A) ∈ I∞,∞ can be approximated by finite sums

∑
j

A ja jI +K

where a j(0) = a j(∞) = 0 and K is compact. If A is of this form then

H(A) = s-lim
τ→+∞

Z−1
τ U−xEp,wα AE−1

p,wαUxZτ

= s-lim
τ→+∞ ∑

j
(Z−1

τ U−xEp,wα A jE
−1
p,wαUxZτ)(Z−1

τ U−xEp,wα a jE
−1
p,wαUxZτ),

from which the conclusion follows since Z−1
τ U−xEp,wα a jE−1

p,wαUxZτ → 0 and since
the norms of Z−1

τ U−xEp,wα A jE−1
p,wαUxZτ are uniformly bounded with respect to τ .

Hence, H(A) depends only on ΦK
∞,∞(A). The same arguments show that the local

ideal J∞,∞,x is contained in the kernel of the mapping ΦK
∞,∞(A) �→ H(A) (take into

account that H(M0(c)) = 0 whenever c ∈C(R)∩PCp and c(x) = 0). This observa-
tion establishes the correctness of the definition of H∞,∞,x.

We further have to show that the invertibility of

H∞,∞,x
(
ΦK

∞,∞,x(A)
)

= H∞,x(Ep,wα A∞E−1
p,wα )

implies the invertibility of ΦK
∞,∞,x(A). But this is an easy consequence of the identity

ΦK
∞,∞,x(A) = ΦK

∞,∞,x

(
E−1

p,wαUxH∞,x(Ep,wα A∞E−1
p,wα )UxEp,wα

)

which can be verified in a similar way as the corresponding identity in the proof of
Theorem 5.5.3. Finally, the special values of H∞,∞,x at the generators of the algebra
follow from the equalities (4.21), (5.29) and (5.30) and from Proposition 5.4.1.

(ii) Since ΦK
∞,∞,x(M

0(c)) = c(x)ΦK
∞,∞,x(I), the proof of the first part of this assertion

runs as that of Theorem 5.5.6. The second part of the assertion will follow immedi-
ately from the identity

Py,z
±∞ΦK

∞,∞,±∞(aW (b)M0(c)) = a(y)b(z±)c(±∞)Py,z
±∞



5.5 Algebras of multiplication, Wiener-Hopf and Mellin operators 289

which we shall verify only for the basic case when a ≡ 1 and c ≡ 1. For definiteness,
let (y,z) = (∞,0). Then

P∞,0
±∞ ΦK

∞,∞,±∞
(
W (b)

)
= ΦK

∞,∞,±∞
(
W (bg0) f∞I

)

= ΦK
∞,∞,±∞

(
W
(
b(0−)χ− +b(0+)χ+

))
P∞,0
±∞

= ΦK
∞,∞,±∞

(
b(0−)W (χ−)+b(0+)W (χ+)

)
P∞,0
±∞

= ΦK
∞,∞,±∞

(
b(0−)M0

(
1−d

2

)
+b(0+)M0

(
1+d

2

))
P∞,0
±∞

=
(

b(0−)
1−d(±∞)

2
+b(0+)

1+d(±∞)
2

)
P∞,0
±∞

= b(0±)P∞,0
±∞ .

Similarly one gets that, for every operator A ∈A
(
PC(R+),PCp,wα ,PCp

)
, there is a

function c ∈C(R)∩PCp such that

Py,z
±∞ΦK

∞,∞,±∞(A) = ΦK
∞,∞,±∞(M0(c))Py,z

±∞ = c(±∞)Py,z
±∞.

This observation finishes the proof.

We summarize the results obtained in this section in the following theorem.

Theorem 5.5.8. Let A∈A
(
PC(R+),PCp,wα ,PCp

)
. The coset A+K (Lp(R+,wα))

is invertible in A K
(
PC(R+),PCp,wα ,PCp

)
if and only if the operators

H∞,t(A) ∈ Ep,α for r ∈ Ṙ0 \{∞},
Hs,∞(A) ∈ Bp for s ∈ Ṙ

+ \{∞},
H∞,∞,x

(
ΦK

∞,∞,x(A)
)
∈ Bp,α for x ∈ R

are invertible in the respective algebras and if the complex numbers

Hy,z
x

(
Py,z
±∞ΦK

∞,∞,±∞(A)
)

for (y,z) ∈ {(0,∞),(∞,0),(∞,∞)}

are not zero.

The following theorem establishes the relation of this result to the Fredholm
property of operators in A

(
PC(R+),PCp,wα ,PCp

)
.

Theorem 5.5.9. The algebra A K
(
PC(R+),PCp,wα ,PCp

)
is inverse-closed in the

Calkin algebra L (Lp(R+,wα))/K (Lp(R+,wα)).

Proof. There are several ways to verify the inverse-closedness. One way is to con-
sider the smallest (non-closed) subalgebra A0 of A

(
PC(R+),PCp,wα ,PCp

)
which

contains all operators aI, W (b) and M0(c) with piecewise constant functions a, b
and c. Applying Theorem 5.5.8 to an operator A ∈ A0, we find that the spectrum
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of the coset A+K (Lp(R+,wα)) in A K
(
PC(R+),PCp,wα ,PCp

)
is a thin subset of

the complex plane. Since A0 is dense in A
(
PC(R+),PCp,wα ,PCp

)
, the assertion

follows from Corollary 1.2.32.
For another proof, one shows that, for every Fredholm operator A in the alge-

bra A
(
PC(R+),PCp,wα ,PCp

)
, the H-limits quoted in Theorem 5.5.8 are invert-

ible (as operators on the respective Banach spaces). Then one employs the inverse-
closedness of the algebras Ep,α and Bp,α in the algebra L (Lp(R+,wα)) and applies
Theorem 5.5.8.

Corollary 5.5.10. Let A ∈ A
(
PC(R+),PCp,wα ,PCp

)
. Then A is a Fredholm oper-

ator on Lp(R+,wα) if and only if the operators

H∞,t(A) ∈ Ep,α for r ∈ Ṙ0 \{∞}
Hs,∞(A) ∈ Bp for s ∈ Ṙ

+ \{∞}
H∞,∞,x

(
ΦK

∞,∞,x(A)
)
∈ Bp,α for x ∈ R

are invertible (as operators on the respective Banach spaces) and if the complex
numbers

Hy,z
x

(
Py,z
±∞ΦK

∞,∞,±∞(A)
)

for (y,z) ∈ {(0,∞),(∞,0),(∞,∞)}

are not zero.

Combining this result with the results of Section 4.2 one easily gets a matrix-
valued symbol for the Fredholmness of operators in A

(
PC(R+),PCp,wα ,PCp

)
.

Remark 5.5.11. In this section we constructed representations of the local algebras
by employing a basic property of the operators which constitute the local algebras:
their local homogeneity. This property enabled us to identify the local algebras via
homogenizing strong limits. It would also have been possible to identify the local
algebras by means of the concepts developed in Section 2.6 and Chapter 3: PI-
algebras and, in particular, algebras generated by idempotents. We will illustrate
the use of those concepts in Section 5.7 to identify some of the local algebras that
appear there. �

5.6 Algebras of multiplication and Wiener-Hopf operators

Let the weight function w be given by (4.8). In this section we address the smallest
closed subalgebra of L (Lp(R,w)) which contains all operators aI of multiplication
by a function a ∈ PC(Ṙ) and all Fourier convolutions W 0(b) where b ∈ PCp,w. We
denote this algebra by A

(
PC(Ṙ),PCp,w

)
, and we write A K

(
PC(Ṙ),PCp,w

)
for the
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image of this algebra in the Calkin algebra and Φ for the canonical homomorphism
from A

(
PC(Ṙ),PCp,w

)
onto A K

(
PC(Ṙ),PCp,w

)
.

If f ∈ C(Ṙ) and g ∈ Cp,w then the coset Φ
(

fW 0(g)
)

belongs to the center of
A K

(
PC(Ṙ),PCp,w

)
by Proposition 5.3.1. So we can localize this algebra with re-

spect to the maximal ideal space of A K
(
C(Ṙ),Cp,w

)
, which is homeomorphic to

the subset (Ṙ×{∞})∪ ({∞}× Ṙ) of the torus Ṙ× Ṙ. The proof of the latter fact is
similar to the proof of Proposition 5.5.2.

Given (s, t) ∈ (Ṙ×{∞})∪ ({∞}× Ṙ), let Is,t denote the smallest closed ideal
of the Banach algebra A K

(
PC(Ṙ),PCp,w

)
which contains the point (s, t), and let

ΦK
s,t refer to the canonical homomorphism from A K

(
PC(Ṙ),PCp,w

)
onto the local

quotient algebra
A K

s,t := A K
(
PC(Ṙ),PCp,w

)
/Is,t .

Further, for each weight w of the form (4.8) and for each x ∈ R, define the local
weight wα(x) at x by wα(x)(t) := |t|α(x) with

α(x) :=

⎧
⎪⎨

⎪⎩

0 if x �∈ {t1, . . . , tn,∞},
α j if x = t j for some ( j = 1, . . . ,n),
∑n

j=0 α j if x = ∞.

(5.31)

To describe the local algebras A K
s,t , we have to introduce some new strong limit

operators. For A ∈ L (Lp(R,w)), let

H±±(A) := s-lim
t→±∞

s-lim
s→±∞

UtV−sAVsU−t (5.32)

provided that the strong limits exist. Here, by convention, the first superscript in
H±± refers to the strong limit with respect to s→±∞ and the second one to t →±∞.

Proposition 5.6.1. The strong limits (5.32) exist for A ∈ A
(
PC(Ṙ),PCp,w

)
, and

the mappings H±± are algebra homomorphisms from A
(
PC(Ṙ),PCp,w

)
onto the

algebra CI. In particular, for a ∈ PC(Ṙ) and b ∈ PCp,w,

H+±(aI) = a(+∞)I, H−±(aI) = a(−∞)I, (5.33)

H±+(W 0(b)) = b(+∞)I, H±−(W 0(b))= b(−∞)I, (5.34)

and
H±±(K) = 0 for K ∈ K (Lp(R,w)) . (5.35)

Proof. The first assertion comes from Lemma 5.4.2. The multiplicativity of H±± is
due to the uniform boundedness of UtV−sAVsU−t . Finally, if K is compact then, by
Lemma 1.4.6, KVs goes strongly to zero, as Vs tends weakly to zero. The result then
follows from the uniform boundedness of V−s.
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Theorem 5.6.2. Let A ∈ A
(
PC(Ṙ),PCp,w

)
.

(i) The coset A+K (Lp(R,w)) is invertible in A K
(
PC(Ṙ),PCp,w

)
if and only if

the coset ΦK
s,t (A) is invertible in A K

s,t for each (s, t)∈ (Ṙ×{∞})∪({∞}×Ṙ).
(ii) For s∈R, the local algebra A K

s,∞ is isometrically isomorphic to the subalgebra
alg{I,χ+I,SR} of L

(
Lp(R,wα(s))

)
, and the isomorphism is given by

ΦK
s,∞(A) �→ Hs,∞(A) (5.36)

for each operator A ∈ A
(
PC(Ṙ),PCp,w

)
.

(iii) For t ∈R, the local algebra A K
∞,t is isometrically isomorphic to the subalgebra

alg{I,χ+I,SR} of L
(
Lp(R,wα(∞))

)
, and the isomorphism is given by

ΦK
∞,t (A) �→ H∞,t(A) (5.37)

for each operator A ∈ A
(
PC(Ṙ),PCp,w

)
.

(iv) The local algebra A K
∞,∞ is generated by the four idempotent elements

ΦK
∞,∞(W (χ±)χ±I),

and the coset ΦK
∞,∞(A) is invertible if and only if the four operators

H±±(A),

which are complex multiples of the identity operator, are invertible.

Proof. Assertion (i) is just a reformulation of Allan’s local principle. For the proof
of assertion (ii), one employs the same arguments as in the first and second step of
the proof of Proposition 4.3.2 to obtain that the algebras A K

s,∞ corresponding to the

spaces Lp(R,w) and Lp(R,ws) with ws(x) = |x−s|α(s) are isometrically isomorphic.
The remainder of the proof of assertion (ii) can be done as in Theorem 5.5.4.

The proof of part (iii) runs parallel to that of Theorem 5.5.3. One only has to
take into account that the local algebras related to Lp(R,w) and Lp(R,w∞) with
w∞(x) = |x|α(∞) are isometrically isomorphic. To prove assertion (iv), note that there
are functions f ∈C(R) and g ∈C(R)∩PCp,w such that

ΦK
∞,∞( f I −χ+I) = 0 and ΦK

∞,∞(W 0(g−χ+)) = 0.

From Proposition 5.3.1(ii) we infer that the commutator [ f I,W 0(g)] is compact.
Thus, the cosets ΦK

∞,∞(χ+I) and ΦK
∞,∞(W 0(χ+)) commute. Since

ΦK
∞,∞(aI) = ΦK

∞,∞(a(−∞)χ−I +a(+∞)χ+I)

for every a ∈ PC(Ṙ) and

ΦK
∞,∞(W 0(b)) = ΦK

∞,∞(b(−∞)W 0(χ−)+b(+∞)W 0(χ+)),
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for every b∈PCp,w, we find that, for each A∈A
(
PC(Ṙ),PCp,w

)
, the coset ΦK

∞,∞(A)
can be represented in the form

ΦK
∞,∞

(
h−−W (χ−)χ−I +h−+W (χ+)χ−I +h+−W (χ−)χ+I +h++W (χ+)χ+I

)

with uniquely determined complex numbers h±± = h±±(A). Thereby,

h+±(aI) = a(+∞)I, h−±(aI) = a(−∞)I, (5.38)

h±+(W 0(b)) = b(+∞)I, h±−(W 0(b))= b(−∞)I, (5.39)

and the coset ΦK
∞,∞(A) is invertible if and only if the numbers h±±(A) are not zero.

Since H±±(A) = h±±(A)I by Proposition 5.6.1, the result follows.

The following corollary can be proved by repeating the arguments from the proof
of Theorem 5.5.9.

Corollary 5.6.3. The algebra A K
(
PC(Ṙ),PCp,w

)
is inverse-closed in the Calkin

algebra L (Lp(R,w))/K (Lp(R,w)), and an operator A ∈ A
(
PC(Ṙ),PCp,w

)
is

Fredholm if and only if the operators Hs,∞(A), H∞,t(A) and H±±(A) are invertible
for all s, t ∈ R.

To illustrate the previous results, we consider a particular class of operators, the
so-called paired convolution operators. These are operators of the form

A = a1W 0(b1)+a2W 0(b2) (5.40)

with a1,a2 ∈ PC(Ṙ) and b1,b2 ∈ PCp,w. The following result is an immediate con-
sequence of Corollary 5.6.3.

Theorem 5.6.4. The operator A in (5.40) is Fredholm on Lp(R,w) if and only if the
following three conditions are fulfilled:

(i) the operator c+PR + c−QR with

c±(s) :=
(
a1(s−)b1(±∞)+a2(s−)b2(±∞)

)
χ−I

+
(
a1(s+)b1(±∞)+a2(s+)b2(±∞)

)
χ+I

is invertible on Lp(R,wα(s)) for each s ∈ R;
(ii) the operator d+PR +d−QR with

d±(t) :=
(
a1(−∞)b1(t±)+a2(−∞)b2(t±)

)
χ−I

+
(
a1(+∞)b1(t±)+a2(+∞)b2(t±)

)
χ+I

is invertible on Lp(R,wα(∞)) for each t ∈ R;
(iii) none of the following numbers is zero:

a1(+∞)b1(±∞)+a2(+∞)b2(±∞), a1(−∞)b1(±∞)+a2(−∞)b2(±∞).
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Of particular interest are paired operators of the form

A = a1W 0(χ+)+a2W 0(χ−) = a1PR +a2QR (5.41)

with a1,a2 ∈ PC(Ṙ), which can also be written as the singular integral operator

a1 +a2

2
I +

a1 −a2

2
SR.

For these operators, Corollary 5.6.3 implies the following.

Corollary 5.6.5. Let a1,a2 ∈ PC(Ṙ). The singular integral operator a1PR + a2QR

is Fredholm on Lp(R,w) if and only if

(i) the operator (a2(s−)χ− +a2(s+)χ+)QR +(a1(s−)χ− +a1(s+)χ+)PR is invert-
ible on Lp(R,wα(s)) for each s ∈ R and

(ii) the operator (a2(−∞)χ− + a2(+∞)χ+)QR + (a1(−∞)χ− + a1(+∞)χ+)PR is
invertible on Lp(R,wα(∞)).

The corresponding result for operators on the semi-axis reads as follows.

Corollary 5.6.6. Let a1,a2 ∈ PC(R+). The singular integral operator a1PR+ +
a2QR+ is Fredholm on Lp(R+,w) if and only if

(i) the operator a1(0+)PR+ +a2(0+)QR+ is invertible on Lp(R,wα(0)),
(ii) the operator (a2(s−)χ− +a2(s+)χ+)QR +(a1(s−)χ− +a1(s+)χ+)PR is invert-

ible on Lp(R,wα(s)) for each s ∈ R
+ \{0}, and

(iii) the operator a1(+∞)PR+ +a2(+∞)QR+ is invertible on Lp(R+,wα(∞)).

Proof. This follows by applying Corollary 5.6.3 to the operator
(
a1W 0(χ+)+a1W 0(χ−)

)
χ+I + χ−I ∈ L (Lp(R,w))

with a1 and a2 extended to the whole line by zero. This operator is equivalent to
the singular integral operator a1PR+ + a2QR+ in the sense that these operators are
Fredholm, or not, simultaneously. (Of course, one could also apply Corollary 5.5.10
directly.)

Note that Propositions 4.2.11 and 4.2.19 combined with the above results give a
matrix-valued symbol for the Fredholmness of the operators considered. Note fur-
ther that one can derive similar results for operators of the form a1M(b1)+a2M(b2)
with a1,a2 ∈ PC([0,1]) and b1,b2 ∈ PCp,wα considered on the space Lp([0,1],wα).
The easiest way to do this is to reduce them to the operators considered above via
the mapping A �→ E−1

p,wAEp,w.
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5.7 Algebras of multiplication, convolution and flip operators

Let w̃ be a weight function on R
+ of the form (4.8), and let w denote its symmetric

extension to R, i.e.

w(t) :=

{
w̃(t) if t ≥ 0,

w̃(−t) if t < 0.

The symmetry of the weight implies that the flip operator J given by (Ju)(t) :=
u(−t) is bounded on Lp(R,w). It thus makes sense to consider the smallest closed
subalgebra of L (Lp(R,w)) which contains all operators aI of multiplication by
a function a ∈ PC(Ṙ), all Fourier convolutions W 0(b) where b ∈ PCp,w, and the
flip J. We denote this algebra by A

(
PC(Ṙ),PCp,w,J

)
. Note that this algebra con-

tains the Hankel operators H(b) := χ+W 0(b)Jχ+I with b ∈ PCp,w. Further, we let
A K

(
PC(Ṙ),PCp,w,J

)
refer to the image of A

(
PC(Ṙ),PCp,w,J

)
in the Calkin al-

gebra and write Φ for the corresponding canonical homomorphism.
Let C̃(Ṙ) and C̃p,w denote the subalgebras of C(Ṙ) and Cp,w, respectively, which

are constituted by the even functions, i.e., by the functions f with J f = f .

Proposition 5.7.1. If f ∈ C̃(Ṙ) and g ∈ C̃p,w, then the coset Φ( fW 0(g)) belongs to
the center of A K

(
PC(Ṙ),PCp,w,J

)
.

Proof. It easy to see that fW 0(g)J = J fW 0(g). From

fW 0(g) = ( f − f (∞))W 0(g−g(∞))+( f − f (∞))W 0(g(∞))

+ f (∞)W 0(g−g(∞))+ f (∞)W 0(g(∞))

= ( f − f (∞))W 0(g−g(∞))+( f − f (∞))g(∞)I

+ f (∞)W 0(g−g(∞))+ f (∞)g(∞)I

and from Proposition 5.3.1 it becomes clear that fW 0(g) also commutes with the
other generators of the algebra modulo compact operators.

Let R
+

denote the compactification of R
+ by the point {∞}, i.e., R

+
is home-

omorphic to [0,1]. The maximal ideal space of the algebra generated by all cosets
Φ( fW 0(g)) with f ∈ C̃(Ṙ) and g ∈ C̃p,w is homeomorphic to the subset (R+ ×
{∞})∪ ({∞}×R

+) of the square R
+×R

+
, which can be checked as in the proof of

Proposition 5.5.2. The maximal ideal corresponding to (s, t)∈ (R+×{∞})∪({∞}×
R

+) is just the class of all cosets Φ( fW 0(g)) where f ∈ C̃(Ṙ) with f (s) = 0 and
g ∈ C̃p,w with g(t) = 0.

We proceed by localization over this maximal ideal space. Let Is,t stand for the
smallest closed ideal of the Banach algebra A K

(
PC(Ṙ),PCp,w,J

)
which contains

the maximal ideal (s, t)∈ (R+×{∞})∪({∞}×R
+), and write A K

s,t for the quotient
algebra

A K
(
PC(Ṙ),PCp,w,J

)
/Is,t
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and ΦK
s,t for the canonical homomorphism from A

(
PC(Ṙ),PCp,w,J

)
onto A K

s,t .

For x ∈ R
+

, let α(x) be the local exponent defined by (5.31).
Let A ∈ A

(
PC(Ṙ),PCp,w,J

)
. Allan’s local principle implies that the coset A +

K (Lp(R,w)) is invertible in A K
(
PC(Ṙ),PCp,w,J

)
if and only if the local cosets

ΦK
s,t (A) are invertible for all (s, t) ∈ (R+ ×{∞})∪ ({∞}×R

+). We are thus left
to analyze the local algebras A K

s,t . Some care is in order since, in contrast to the
previous sections, the strong limits Hs,∞(J) and H∞,t(J) exist only at s = 0 and t = 0,
respectively.

We are going to start with the local algebras A K
0,∞ and A K

∞,0.

Proposition 5.7.2. The local algebra A K
0,∞ is isometrically isomorphic to the closed

subalgebra alg{I,χ+I,PR,J} of L (Lp(R+,wα(0))), with the isomorphism given by
ΦK

0,∞(A) �→ H0,∞(A). In particular, for a ∈ PC(Ṙ) and b ∈ PCp,w,

ΦK
0,∞(aI) �→ a(0−)χ−I +a(0+)χ+I,

ΦK
0,∞ (W (b)) �→ b(−∞)QR +b(+∞)PR,

ΦK
0,∞(J) �→ J.

Proof. First note that the algebras A K
0,∞ related to Lp(R+,w) and to Lp(R+, |t|α(0)),

respectively, are isometrically isomorphic, as can be seen by the same arguments as
in Proposition 4.3.2, steps 1 and 2. From this fact one deduces the independence of
H0,∞(A) of operators belonging to the local ideal I0,∞, whence the correctness of
the definition of the homomorphism follows. The concrete form of the values of the
homomorphism at the generators comes from Proposition 5.4.3 and the fact that the
operator J is homogeneous. Thus we conclude that ΦK

0,∞(A) �→H0,∞(A) is a mapping

onto alg{I,χ+I,PR,J}. Finally, since ΦK
0,∞(A) = ΦK

0,∞(H0,∞(A)), this mapping is an
isometry.

In a similar way, one gets the following description of the local algebra at (∞,0).

Proposition 5.7.3. The local algebra A K
∞,0 is isometrically isomorphic to the closed

subalgebra alg{I,χ+I,PR,J} of L (Lp(R+,wα(∞))), and the isomorphism is given
by ΦK

∞,0(A) �→ H∞,0(A). In particular, for a ∈ PC(Ṙ) and b ∈ PCp,w,

ΦK
∞,0(aI) �→ a(−∞)χ−I +a(+∞)χ+I,

ΦK
∞,0 (W (b)) �→ b(0−)QR +b(0+)PR,

ΦK
∞,0(J) �→ J.

Now we turn to the local algebras A K
s,∞ and A K

∞,t where s, t > 0. As already men-
tioned, the mappings Hs,∞ and H∞,t are not well defined on A

(
PC(Ṙ),PCp,w,J

)

for s, t �= 0. So we will have to use a modified approach which is based on the
fact that every operator A in A

(
PC(Ṙ),PCp,w,J

)
can be approximated as closely
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as desired by operators of the form A1 + JA2 where A1 and A2 belong to the al-
gebra A

(
PC(Ṙ),PCp,w

)
without flip. To be precise, A

(
PC(Ṙ),PCp,w

)
stands for

the smallest closed subalgebra of L (Lp(R,w)) which contains all multiplication
operators aI with a ∈ PC(Ṙ) and all convolution operators W 0(b) with b ∈ PCp,w.
Note that the decomposition of an operator A in the form A1 + JA2 is not unique in
general.

We start with verifying that the homomorphisms Hs,∞ and H∞,t are well defined
on the elements of the ideals Is,t . Note that Hs,∞(K) = 0 and H∞,t(K) = 0 for every
compact operator K.

Proposition 5.7.4. If A+K ∈ Is,t , then Hs,∞(A+K ) = 0 and H∞,t(A+K ) = 0.

Proof. It is evident from the definition of the ideal Is,t that each of its elements
can be approximated as closely as desired by operators of the form A1 + JA2 with
A1,A2 ∈ A

(
PC(Ṙ),PCp,w

)
belonging to the smallest closed ideal of that algebra

which contains all cosets Φ( fW 0(g)) with f ∈ C̃(Ṙ) with f (s) = 0 and g ∈ C̃p,w

with g(t) = 0. So we can assume, without loss of generality, that A is of this form.
Then

Hs,∞(A+K ) = s-lim
τ→+∞

ZτV−sAVsZ
−1
τ

= s-lim
τ→+∞

ZτV−s(A1 + JA2)VsZ
−1
τ

= s-lim
τ→+∞

ZτV−sA1VsZ
−1
τ + s-lim

τ→+∞
(ZτV−sJVsZ

−1
τ )(ZτV−sA2VsZ

−1
τ ).

For i = 1,2, one has s-limZτV−sAiVsZ−1
τ = 0, and the operators ZτV−sJVsZ−1

τ are
uniformly bounded with respect to τ . Thus, Hs,∞(A + K ) = 0. The proof of the
second assertion is similar.

Let fs be a continuous function with support in R
+ and such that fs(s) = 1. Set

p := ΦK
s,∞( fsI), j := ΦK

s,∞(J), and e := ΦJ
s,∞(I). Then p2 = p, p commutes with all

generators of the algebra except with j, and jp j = e− p. Thus, by Corollary 1.1.20,
every element of A K

s,∞ can be (uniquely) written as a = a1 +a2 j, where the ai belong
to the corresponding local algebra without flip, and we can employ this corollary to
eliminate the flip by doubling the dimension. Let L denote the mapping defined
before Proposition 1.1.19 and consider the mapping

Hs,∞:= Hs,∞L : A K
s,∞ → [alg{I, χ+I, PR}]2×2, (5.42)

where Hs,∞ now refers to the canonical (diagonal) extension for matrix operators of

the strong limit defined in (5.10). The mapping Hs,∞ is well defined due to Propo-
sition 5.7.4, and it acts as an homomorphism between the algebras mentioned. In
what follows, the notation −s± is understood as (−s)±.

Proposition 5.7.5. Let s > 0. The local algebra A K
s,∞ is isomorphic to the matrix

algebra [alg{I, χ+I, PR}]2×2 with entries acting on Lp(R,wα(s)). The isomorphism
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is given by ΦK
s,∞(A) �→ Hs,∞ (A). In particular, for a ∈ PC(Ṙ) and b ∈ PCp,w,

ΦK
s,∞(aI) �→

[
a(s−)χ−I +a(s+)χ+I 0

0 a(−s+)χ−I +a(−s−)χ+I

]
,

ΦK
s,∞
(
W 0(b)

)
�→

[
b(−∞)QR +b(+∞)PR 0

0 b(+∞)QR +b(−∞)PR

]
,

ΦK
s,∞(J) �→

[
0 I
I 0

]
.

Proof. The mapping Hs,∞ is well defined on A K
s,∞ by Proposition 5.7.4. The values

of the homomorphism can be derived from Corollary 1.1.20 and Proposition 5.4.3.

To see that the homomorphism Hs,∞ is injective, define

H
′
s,∞: [alg{I, χ+I, PR}]2×2 → A K

s,∞ ,
([

A11 A12

A21 A22

])
�→ L−1

([
pΦK

s,∞(VsA11V−s) pΦK
s,∞(VsA12V−s)

pΦK
s,∞(VsA21V−s) pΦK

s,∞(VsA22V−s)

])
.

(5.43)

The injectivity will follow once we have shown that

H
′
s,∞

(
Hs,∞ (ΦK

s,∞(A))
)

= ΦK
s,∞(A) for all ΦK

s,∞(A) ∈ A K
s,∞ .

It is sufficient to check this equality for the generating cosets of A K
s,∞ , i.e., for

ΦK
s,∞(I), ΦK

s,∞(J), ΦK
s,∞(PR), and ΦK

s,∞(χs I), where χs stands for the characteristic
function of ]−∞,s]. This check is straightforward.

Finally, to verify the surjectivity of the homomorphism Hs,∞, we again rely on

H
′
s,∞. Indeed, this mapping is well defined on all of [alg{I, χ+I, PR}]2×2, and one

has Hs,∞

(
H
′
s,∞ (A)

)
= A for all A ∈ [alg{I, χ+I, PR}]2×2.

Now let t > 0. For the local algebras A K
∞,t , we again apply Corollary 1.1.20 to

eliminate the flip by doubling the dimension. Let ft be a continuous function with
support in R

+ such that ft(t) = 1, and put p := ΦK
∞,t (W 0( ft)), j := ΦK

∞,t (J), and
e := ΦK

∞,t (I). Then p is an idempotent which commutes with all generators of the
algebra except with j, for which one has jp j = e− p. Every element of A K

∞,t can be
(uniquely) written as a = a1 + a2 j, where the ai belong to the corresponding local
algebra without flip. Define the homomorphism

H∞,t := H∞,tL : A K
∞,t → [alg{I, χ+I, PR}]2×2 (5.44)

where H∞,t now refers to the canonical (diagonal) extension for matrix operators of
the strong limit defined in (5.11), and where L is again the mapping defined before
Proposition 1.1.19.
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The proof of the next result is the same as that of Proposition 5.7.5.

Proposition 5.7.6. Let t > 0. The local algebra A K
∞,t is isomorphic to the matrix

algebra [alg{I, χ+ I, PR}]2×2 with entries acting on Lp(R,wα(∞)). The isomorphism

is given by ΦK
∞,t (A) �→ H∞,t (A). In particular, for a ∈ PC(Ṙ) and b ∈ PCp,w,

ΦK
∞,t (aI) �→

[
a(−∞)χ−I +a(+∞)χ+I 0

0 a(+∞)χ−I +a(−∞)χ+I

]
,

ΦK
∞,t

(
W 0(b)

)
�→

[
b(t−)QR +b(t+)PR 0

0 b(−t+)QR +b(−t−)PR

]
,

ΦK
∞,t (J) �→

[
0 I
I 0

]
.

Our final concern is the local algebra A K
∞,∞. We are going to show that A K

∞,∞ is a
unital algebra generated by two commuting projections and a flip.

Proposition 5.7.7. The local algebra A K
∞,∞ is generated by the elements e :=

ΦK
∞,∞(I), p := ΦK

∞,∞(χ+I), r := ΦK
∞,∞(W 0(χ+)) and j := ΦK

∞,∞(J).

Proof. For a ∈ PC(Ṙ), write ΦK
∞,∞(aI) as

ΦK
∞,∞(a(−∞)χ−I +a(+∞)χ+I)−ΦK

∞,∞((a−a(−∞)χ− −a(+∞)χ+)I).

Since the function a− a(−∞)χ− − a(+∞)χ+ is continuous at infinity and has the
value 0 there, we obtain

ΦK
∞,∞(aI) = ΦK

∞,∞((a(−∞)χ− +a(+∞)χ+)I) = 0.

For b ∈ PCp,w, one gets similarly

ΦK
∞,∞(W 0(b)) = ΦK

∞,∞(b(−∞)W 0(χ−)+b(+∞)W 0(χ+)).

For the other generators, the result is obvious.

The generators of the algebra A K
∞,∞ satisfy the relations

rp = pr, jr j = e− r and jp j = e− p.

Only the first of these relations is not completely evident. It can be verified by re-
peating arguments from the proof of Theorem 5.6.2 (iv). Thus, the algebra A K

∞,∞ is
generated by two commuting projections and a flip.

To get a matrix-valued symbol for the invertibility in the algebra A K
∞,∞, one can

apply Proposition 1.1.19 to eliminate the flip by doubling the dimension, or, one
refers formally to Theorem 3.3.13,. For the latter, note that the elements b and c
defined in (3.53) and (3.54) are given by b = pr+(e− p)(e−r) and c = (pr−rp) j =
0 in the present context, and that the spectrum of b is {0,1} since b is a non-trivial
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idempotent. Thus, Theorem 3.3.13 applies with y = 0 and x = ±1. In each case, we
arrive at the following.

Proposition 5.7.8. The local algebra A K
∞,∞ is generated by the commuting projec-

tions p = ΦK
∞,∞(χ+I) and r = ΦK

∞,∞(W 0(χ+)) and by the flip j = ΦK
∞,∞(J). There is a

symbol mapping which assigns with e, p, j and r a matrix-valued function on {0,1}
by

(smbe)(x) =
[

1 0
0 1

]
, (smb p)(x) =

[
1 0
0 0

]
,

(smb j)(x) =
[

0 1
1 0

]
, (smbr)(x) =

[
x 0
0 1− x

]
.

Combining the previous results with Allan’s local principle, we arrive at the fol-
lowing.

Theorem 5.7.9. Let A ∈ A
(
PC(Ṙ),PCp,w,J

)
. The coset A +K (Lp(R,w)) is in-

vertible in the quotient algebra A K
(
PC(Ṙ),PCp,w,J

)
if and only if:

(i) the operator H0,∞(A) is invertible in the subalgebra alg{I,χ+I,PR,J} of
L (Lp(R,wα(0)));

(ii) the operator H∞,0(A) is invertible in the subalgebra alg{I,χ+I,PR,J} of
L (Lp(R,wα(∞)));

(iii) the operator Hs,∞ (A) is invertible in the subalgebra [alg{I, χ+I, PR}]2×2 of
[L (Lp(R,wα(s)))]2×2 for every s > 0;

(iv) the operator H∞,t (A) is invertible in the subalgebra [alg{I, χ+I, PR}]2×2 of
[L (Lp(R,wα(∞)))]2×2 for every t > 0;

(v) the matrix smbΦK
∞,∞(A) is invertible in C

2×2.

The following corollary can be proved by repeating the arguments from the proof
of Theorem 5.5.9.

Corollary 5.7.10. The algebra A K
(
PC(Ṙ),PCp,w,J

)
is inverse-closed in the Cal-

kin algebra L (Lp(R,w))/K (Lp(R,w)). An operator A ∈ A
(
PC(Ṙ),PCp,w,J

)
is

Fredholm if and only if:
(i) the operator H0,∞(A) is invertible on Lp(R,wα(0));

(ii) the operator H∞,0(A) is invertible on Lp(R,wα(∞));
(iii) the operator Hs,∞ (A) is invertible on Lp

2(R,wα(s)) for every s > 0;
(iv) the operator H∞,t (A) is invertible on Lp

2(R,wα(∞)) for every t > 0;
(v) the matrix smbΦK

∞,∞(A) is invertible in C
2×2.

In the remainder of this section we are going to apply this corollary to a class of
operators of particular interest: the Wiener-Hopf plus Hankel operators. These are
the operators W (b)+ H(c) on Lp(R+,w) with b,c ∈ PCp,w. Equivalently, one can
think of a Wiener-Hopf plus Hankel operator W (b)+H(c) as the operator

χ+W 0(b)χ+I + χ+W 0(c)Jχ+I + χ−I, (5.45)

acting on Lp(R,w).
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Theorem 5.7.11. Let b,c ∈ PCp,w. The operator (5.45) is Fredholm on Lp(R,w) if
and only if b(±∞) �= 0 and if the functions

(i) y �→ (b(+∞)+b(−∞))sinh
(
(y+ iυ)π

)
+(b(+∞)−b(−∞))cosh

(
(y+ iυ)π

)

+ c(+∞)− c(−∞) with υ := 1/p+α(0),
(ii) y �→ (b(0+)+b(0−))sinh

(
(y+ iυ)π

)
+(b(0+)−b(0−))cosh

(
(y+ iυ)π

)

+ c(0+)− c(0−) with υ := 1/p+α(∞), and

(iii) y �→ b+
t b+

−t +(b−t b+
−t +b+

t b−−t)coth
(
(y+ iυ)π

)
+b−t b−−t

(
coth

(
(y+ iυ)π

))2

− ctc−t

(
sinh

(
(y + iυ)π

))−2
with υ := 1/p + α(∞), b±t := b(t+)± b(t−),

b±−t := b(−t+)±b(−t−) and c±t := c(±t+)− c(±t−) for t > 0

do not vanish on R.

Proof. By Corollary 5.7.10, the operator (5.45) is Fredholm if and only if a collec-
tion of related operators, labeled by the points of the set (R+×{∞})∪ ({∞}×R

+),
is invertible. We are going to examine the invertibility of the related operators for
each point in this set.

For the point (0,∞), the related operator is

χ+ (b(−∞)QR +b(+∞)PR +(c(−∞)QR + c(+∞)PR)J)χ+I + χ−I.

This operator is invertible on Lp(R,wα(0)) if and only if the operator

b(+∞)+b(−∞)
2

I +
b(+∞)−b(−∞)

2
SR+ +

c(+∞)− c(−∞)
2

Hπ

is invertible on Lp(R+,wα(0)). The latter condition is equivalent to condition (i)
which can easily be seen by inserting the Mellin symbols of the operators SR+ and
Hπ quoted in Section 4.2.2.

For the point (∞,0), the related operator

χ+

(
b(0−)QR +b(0+)PR +(c(0−)QR + c(0+)PR)J

)
χ+I + χ−I

is invertible on Lp(R,wα(∞)) if and only if the operator

b(0+)+b(0−)
2

I +
b(0+)−b(0−)

2
SR+ +

c(0+)− c(0−)
2

Hπ

is invertible on Lp(R+,wα(∞)). Condition (ii) states the conditions for the invertibil-
ity of the Mellin symbol of this operator.

For (s,∞) with s > 0, we have

b(−∞)QR +b(+∞)PR

as the related operator. This operator is invertible on Lp(R,wα(s)) if and only if
b(±∞) �= 0.

For (∞, t) with t > 0, the invertibility of the related operator
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[
χ+(b(t−)QR +b(t+)PR)χ+I + χ−I χ+(c(t−)QR + c(t+)PR)χ−I

χ−(c(−t+)QR + c(−t−)PR)χ+I χ−(b(−t+)QR +b(−t−)PR)χ−I + χ+I

]

on Lp
2(R,wα(∞)) is equivalent to the invertibility of the operator

[
b(t−)QR+ +b(t+)PR+

c(t+)−c(t−)
2 Hπ

c(−t+)−c(−t−)
2 Hπ b(−t+)PR+ +b(−t−)QR+

]

.

The Mellin symbol of this operator is
⎡

⎢
⎣

b+
t +b−t coth

(
(y+ iυ)π

) ct
2

(
sinh

(
(y+ iυ)π

))−1

c−t
2

(
sinh

(
(y+ iυ)π

))−1
b+
−t +b−−t coth

(
(y+ iυ)π

)

⎤

⎥
⎦ , (5.46)

and condition (iii) states exactly the conditions for the invertibility of this matrix
function. Finally, the matrix related to the point (∞,∞) is invertible if and only if
b(±∞) �= 0.

What the above results tell us about the essential spectrum of the Wiener-Hopf
plus Hankel operator is in some sense expected. The local spectrum at each point
where both b and c are continuous corresponds to the value of the function b at that
point. If only b is discontinuous at some point, then the local spectrum corresponds
to the left and right one-sided limits, joined by a circular arc, the shape of which
depends on the space and weight (see Figure 4.4). If only c is discontinuous at some
point t, but not at −t, there is no effect on the essential spectrum. If both b and
c share a point of discontinuity at 0 or ∞, the effect on the essential spectrum is
the “sum” of the circular arc with the “water drop” arc (see Figure 4.5 (a)). The
more complex effects occur when both b and c share points of discontinuity on ±t,
t ∈ R

+. In this case, the essential spectrum is given by the spectrum of the matrix
function (5.46).

Example 5.7.12. Let the weight w be such that 1/p + α(∞) ∈ {1/2,1/2 +
0.01,2/3}. Define b ∈ PCp by

b(t) =

⎧
⎪⎨

⎪⎩

t+10
10 + t+10

2 i for −20 < t < 0,
t−10

10 + t−10
2 i for 0 < t < 20,

−3i for all other t

and consider a function c which is continuous at all points except the integer points
in [−19, 19]\{−10,0,10}, where it satisfies c(t+)−c(t−) = 1, c(−t+)−c(−t−) =
1 if 1 ≤ t ≤ 9 and c(t+)−c(t−) = 1, c(−t+)−c(−t−) =−1 in the case 11 ≤ t ≤ 19.
Then the essential spectrum of the operator W (b)+H(c) on the space L (Lp(R,w))
is given by Figure 5.3. The three arcs joining the points of discontinuity of the
function b are clear, as is the variation of the size of the “water drop” arcs derived
from the distance between b(−t) and b(t). When the jumps of c have the same sign,
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they will actually interfere with one another and form other geometric figures. If we
change p or the weight, such that υ = 1/p+α(∞) approaches 1/2, all curves from
discontinuities turn into line segments. �

Fig. 5.3 The essential spectrum of W (b)+H(c) for υ = 1/2, 1/2+0.01 and 2/3.

Remark 5.7.13. In contrast to Section 4.5, the proof of Theorem 5.7.11 yields im-
mediately a 2-symbol for the Wiener-Hopf plus Hankel operators with piecewise
generating functions due to the finer localization used to obtain Theorem 5.7.9. �

5.8 Multidimensional convolution type operators

Now we turn our attention to the Fredholm property of multidimensional convo-
lution type operators on R

N . We will see that the techniques developed so far –
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localization and homogenization – work well also in the multidimensional context,
but that a new difficulty appears if N > 1: already the generators of the algebra will
have massive spectra. Hence, Corollary 1.2.32 does not apply to prove the inverse-
closedness of the operator algebra under consideration (and, actually, we still do not
know if this algebra is inverse-closed). In this section, we will point out one way to
overcome this difficulty.

Let N be a positive integer. We denote the Euclidean norm on R
N by | · | and write

〈·, ·〉 for the related scalar product on R
N . Thus, |x|2 = 〈x, x〉 for x ∈ R

N . The unit
sphere in R

N will be denoted by S
N−1, and the open unit ball by B

N .
It is easy to see that the mapping

ξ : B
N → R

N , x �→ x
1−|x| , (5.47)

is a homeomorphism with inverse

ξ−1 : R
N → B

N , x �→ x
1+ |x| . (5.48)

In particular, a function f on R
N is continuous if and only if the function f ◦ ξ is

continuous on B
N . We denote by C(RN) the set of all continuous complex-valued

functions f on R
N for which the (continuous) function f ◦ξ on B

N possesses a con-
tinuous extension f∼ onto the closed ball BN . Provided with pointwise operations
and the supremum norm, C(RN) forms a commutative C∗-algebra, and this algebra
is isomorphic to C(BN). Thus, the maximal ideal spaces of these algebras are home-
omorphic. The maximal ideal space of C(BN) is the closed unit ball BN , which is a
union of the open ball B

N and the unit sphere S
N−1. Analogously, one can think of

the maximal ideal space of C(RN) as the union of R
N and of an “infinitely distant”

sphere. More precisely, every multiplicative linear functional on C(RN) is either of
the form

f �→ f (x) with x ∈ R
N

or of the form
f �→ ( f ◦ξ )∼(θ) with θ ∈ S

N−1.

We denote the latter functional by θ∞ and write f (θ∞) in place of θ∞( f ). Clearly,
f (θ∞) = limt→∞ f (tθ), and a sequence h∈R

N converges to θ∞ if ξ−1(hn) converges
to θ . A basis of neighborhoods of θ∞ is provided by the sets of the form

UR,ε(θ∞) :=
{
|x|ψ ∈ R

N : |x| > R, ψ ∈ S
N−1 and |ψ −θ | < ε

}

⋃{
ψ∞ : ψ ∈ S

N−1 and |ψ −θ | < ε
}

. (5.49)

We denote the maximal ideal space of C(RN) by RN .
Every function a ∈ L1(RN) defines an operator W 0

a of convolution by a by

W 0
a : Lp(RN) → Lp(RN), g �→

∫

RN
a(t − s)g(s)ds. (5.50)
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The operator of convolution by a ∈ L1(RN) is bounded on Lp(RN), and

‖W 0
a ‖L (Lp(RN)) ≤ ‖a‖L1(RN).

The goal of this section is to study the Fredholm property of operators which belong
to the smallest closed subalgebra Ap of L (Lp(RN)) which contains

• all convolution operators W 0
a with a ∈ L1(RN),

• all operators of multiplication by a function in C(RN),
• all operators χH(θ)I of multiplication by the characteristic function of a half-

space
H(θ) := {x ∈ R

N : 〈x, θ〉 ≥ 0} with θ ∈ S
N−1.

Proposition 5.8.1. The algebra Ap contains the ideal K (Lp(RN)) of the compact
operators.

Proof. Let A ′
p denote the smallest closed subalgebra of L (Lp(RN)) which contains

all operators W 0
a with a ∈ L1(RN) and all operators of multiplication by a function

in C∞
0 (RN). We will show K (Lp(RN)) is already contained in A ′

p, which implies
the assertion .

It is sufficient to show that A ′
p contains all operators of rank one. Every operator

of rank one on Lp(RN) has the form

(Ku)(t) = a(t)
∫

RN
b(s)u(s)ds, t ∈ R

N , (5.51)

where a ∈ Lp(RN) and b ∈ Lq(RN) with 1/p + 1/q = 1. Since C∞
0 (RN) is dense

in Lp(RN) and in Lq(RN) (with respect to the corresponding norms), it is further
sufficient to show that every operator (5.51) with a, b ∈C∞

0 (RN) belongs to A ′
p.

Let a, b ∈C∞
0 (RN), and choose a function k ∈ L1(RN) which is 1 on the compact

set {t − s : t ∈ supp f , s ∈ suppg}. Then the operator (5.51) can be written as

(Ku)(t) = a(t)
∫

RN
k(t − s)b(s)u(s)ds, t ∈ R

N .

Evidently, this operator belongs to A ′
p.

As already mentioned, we do not know if the algebra A K
p := Ap/K (Lp(RN)) is

inverse-closed in the Calkin algebra. Therefore we have to apply the local principle
in a larger algebra which we are going to introduce in a couple of steps.

Let Λp ⊂ L (Lp(RN)) denote the Banach algebra of all operators of local type
with respect to the algebra C(RN), that is, an operator A ∈ L (Lp(RN)) belongs to
Λp if and only if

f A−A f I ∈ K
(
Lp(RN)

)
for every f ∈C(RN).

In order to show that Ap ⊂ Λp, we need the following lemma.



306 5 Convolution operators

Lemma 5.8.2. Let F1 and F2 be disjoint closed subsets of RN. Then there exists a
δ > 0 such that |x−y|> (R+1)δ for all R > 0, all x ∈ F1 ∩R

N with |x|> R and all
y ∈ F2 ∩R

N with |y| > R.

Proof. Let ξ̃ stand for the homeomorphism from BN onto RN which coincides with
ξ on B

N , and set F̃1 := ξ̃−1(F1) and F̃2 := ξ̃−1(F2). Then F̃1 and F̃2 are disjoint
compact subsets of BN ; hence, δ := dist(F̃1, F̃2) > 0. Thus, for x ∈ F1 and y ∈ F2

one has |ξ−1(x)−ξ−1(y)| > δ or, equivalently,
∣
∣
∣
∣

x
1+ |x| −

y
1+ |y|

∣
∣
∣
∣> δ . (5.52)

Let y �= 0 and consider the function f (t) := |x− ty| on R. This function attains its
minimum at the point t∗ := 〈x, y〉/〈y, y〉 and is therefore monotonically increasing
on the interval [t∗,∞ [ . Since t∗ ≤ |x| |y|/|y|2 = |x|/|y| and

|x|
|y| ≤

1+ |x|
1+ |y| ≤ 1 if |x| ≤ |y|,

we conclude that f ( 1+|x|
1+|y|) ≤ f (1). Thus, by (5.52),

|x− y| ≥
∣
∣
∣
∣x−

1+ |x|
1+ |y|y

∣
∣
∣
∣= (1+ |x|)

∣
∣
∣
∣

x
1+ |x| −

y
1+ |y|

∣
∣
∣
∣≥ (1+ |x|)δ (5.53)

for |x| ≤ |y|. Analogously, if |y| ≤ |x|, then |x− y| ≥ (1+ |y|)δ . So one gets

|x− y| ≥ min{1+ |x|, 1+ |y|}δ ,

which implies the assertion.

Proposition 5.8.3. If f ∈ C(RN) and a ∈ L1(RN), then W 0
a f I − fW 0

a is a compact
operator. Thus, Ap ⊂ Λp.

Proof. By Krasnoselskii’s interpolation theorem, it is sufficient to verify the com-
pactness of W 0

a f I − fW 0
a on L2(R). By Theorem 2.5.6, this operator is compact if

and only if the operator χF1
W 0

a χF2
I is compact for each choice of closed disjoint

subsets F1 and F2 of RN . For g in L2(RN), one has

(χF1
W 0

a χF2
g)(s) =

∫

RN
χF1

(s)a(s− t)χF2
(t)g(t)dt.

Since functions in L1(RN) can be approximated by continuous functions with com-
pact support, we can assume that a is a continuous function with support contained
in the centered ball of radius M. Set ã(s, t) := χF1

(s)a(s− t)χF2
(t). By the previous

lemma, there exists δ > 0 such that |s− t| > Rδ for every R > 0 and for arbitrary
points s ∈ F1 ∩R

N and t ∈ F2 ∩R
N with |s| > R and |t| > R. Choose R such that
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R > M and Rδ > M. Then ã(s, t) = 0 if s ∈ F1 and |s|> 2R, or if t ∈ F2 and |t|> 2R.
Indeed, if |s| > 2R and |t| ≤ R, then |s− t| ≥ |s| − |t| > R > M, and if |s| > 2R
and |t| > R, then |s− t| > Rδ > M due to the choice of R. Similarly, |t| > 2R im-
plies that |s− t| > M. Hence, ã is a compactly supported bounded function, whence
ã ∈ L2(RN ×R

N). Therefore, χF1
W 0

a χF2
I is a Hilbert-Schmidt operator, and thus

compact.

Our next goal is to introduce certain strong limit operators which will be used
later to identify local algebras. For k ∈ R

N , we define the shift operator

Vk : Lp(RN) → Lp(RN), (Vku)(s) = u(s− k),

and for t > 0, the dilation operator

Zt : Lp(RN) → Lp(RN), (Ztu)(s) := t−N/pu(s/t).

Both operators act as bijective isometries, with inverses given by V−1
k = V−k and

Z−1
t = Zt−1 .

Proposition 5.8.4. Let x ∈ R
N. Then the strong limit

Hx(A) := s-lim
t→∞

ZtV−xAVxZ−1
t (5.54)

exists for every operator A ∈ Ap, the mapping Hx defines a homomorphism on Ap,
and

(i) Hx(W 0
a ) = 0 for a ∈ L1(RN);

(ii) Hx( f I) = f (x)I for f ∈C(RN);
(iii) Hx(χH(θ)I) is 0, I or χH(θ)I, depending on whether x is outside, in the interior

or on the boundary of H(θ), respectively, where θ ∈ S
N−1;

(iv) Hx(K) = 0 for K compact.

The proof follows as that of Proposition 5.4.3 (but is actually much simpler since
all the functions are continuous). The details are left to the reader.

For θ ∈ S
N−1, consider the sequence hθ : N → R

N defined by hθ (n) := nθ .

Proposition 5.8.5. Let θ ∈ S
N−1. Then the strong limit

H◦
θ (A) := s-lim

n→∞
V−hθ (n)AVhθ (n) (5.55)

exists for every operator A ∈ Ap, the mapping H◦
θ defines a homomorphism on Ap,

and

(i) H◦
θ (W 0

a ) = W 0
a for a ∈ L1(RN);

(ii) H◦
θ ( f I) = f (θ∞)I for f ∈C(RN);

(iii) H◦
θ (χH(ψ)I) is 0, I or χH(ψ)I, depending on whether θ is outside, inside or on

the boundary of H(ψ), respectively, where ψ ∈ S
N−1;

(iv) H◦
θ (K) = 0 for K compact.
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Proof. Assertion (i) is evident since convolution operators are shift invariant. For
assertion (ii), let g be a function in Lp(RN) the support of which is in the ball BM(0)
with radius M for some M > 0. By definition, we have

(V−hθ (n) fVhθ (n)g)(x) = f (x+hθ (n))g(x).

Since f is continuous at θ∞ there is, for every ε > 0, a neighborhood UR,δ (θ∞) of θ∞
as in (5.49) such that | f (x)− f (θ∞)| < ε for every x ∈UR,δ (θ∞). The compactness
of BM(0) guarantees that there is an n0 ∈ N such that BM(0)+hθ (n) is contained in
UR,δ (θ∞) whenever n ≥ n0. Thus, for n ≥ n0,

‖(V−hθ (n) fVhθ (n) − f (θ∞))g‖Lp

≤ supx∈BM(0)| f (x+hθ (n))− f (θ∞)|‖g‖Lp ≤ ε‖g‖Lp .

Since the functions with compact support are dense in Lp(RN), we get

‖(V−hθ (n) fVhθ (n) − f (θ∞))g‖Lp → 0

for every g in Lp(RN).
Assertion (iii) is again evident, since V−hθ (n)χH(ψ)Vhθ (n) is the operator of mul-

tiplication by the characteristic function of the shifted half space −hθ (n)+H(ψ).
Assertion (iv) follows from the compactness of T and from the weak convergence
of the operators Vh(n) to zero as |h(n)| → ∞.

Let Λ hom
p stand for the set of all operators A ∈ L (Lp(RN)) which are subject to

the following conditions:

• A is of local type, i.e., A ∈ Λp;
• the strong limits Hx(A) on Lp(RN) and Hx(A∗) on (Lp(RN))∗ defined by (5.54)

exist for every x ∈ R
N ;

• the strong limits H◦
θ (A) on Lp(RN) and H◦

θ (A∗) on (Lp(RN))∗ defined by (5.55)
exist for every θ ∈ S

N−1.

Proposition 5.8.6.
(i) Λ hom

p is a closed subalgebra of L (Lp(RN)) which contains Ap;
(ii) the algebra Λ hom

p is inverse-closed in L (Lp(RN)); and
(iii) the quotient algebra Λ hom

p /K (Lp(RN)) is inverse-closed in the Calkin alge-
bra L (Lp(RN))/K (Lp(RN)).

Proof. The proof of the first part of assertion (i) is straightforward, and the second
part is a consequence of Propositions 5.8.3, 5.8.4 and 5.8.5. Assertion (ii) follows
from assertion (iii) via Lemma 1.2.33 (note that the ideal of the compact operators
is included in Ap ⊆ Λ hom

p by Proposition 5.8.1).
So we are left with verifying assertion (iii). Let A be an operator in Λ hom

p which
has the Fredholm property, i.e., the coset A+K (Lp(RN)) is invertible in the Calkin
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algebra L (Lp(RN))/K (Lp(RN)). Let R ∈ L (Lp(RN)) be an operator such that
RA− I =: K and AR− I =: L are compact. We have to show that R ∈ Λ hom

p . Let

f ∈C(RN). Then the operator

f R−R f I = (RA−K) f R−R f (AR−L) = R(A f I − f A)R−K f R+R f L

is compact, whence R ∈ Λp. It remains to show that all required strong limits of
R exist. We will verify this for the strong limit H0; the proof for the other limits
proceeds analogously.

First we show that H0(A) is an invertible operator. Since A is Fredholm, there is
a positive number c and a compact operator T such that

‖Au‖+‖Tu‖ ≥ c‖u‖ for all u ∈ Lp(RN)

(see Exercise 1.4.7). Since the operators Zt are isometries, this estimate implies

‖ZtAZ−1
t u‖+‖ZtT Z−1

t u‖ ≥ c‖u‖

for all u ∈ Lp(RN). Passing to the strong limit as t → ∞ we finally obtain

‖H0(A)u‖ ≥ c‖u‖ for all u ∈ Lp(RN).

Thus, H0(A) is bounded below. Applying the same argument to the adjoint operator
A∗ (which is Fredholm, too) we find that H0(A∗) = H0(A)∗ is also bounded below.
Hence, H0(A) is invertible.

Now we show that the strong limit H0(R) exists and that H0(R) = H0(A)−1. In-
deed, let RA− I =: K as before. Then, for each u ∈ Lp(RN),

‖(ZtRZ−1
t −H0(A)−1)u‖

= ‖(ZtRZ−1
t −Zt(RA−K)Z−1

t H0(A)−1)u‖
= ‖(ZtRZ−1

t − (ZtRZ−1
t ZtAZ−1

t −ZtKZ−1
t )H0(A)−1)u‖

≤ ‖ZtRZ−1
t ‖‖u−ZtAZ−1

t H0(A)−1u‖+‖ZtKZ−1
t H0(A)−1u‖

≤ ‖R‖‖H0(A)v−ZtAZ−1
t v‖+‖ZtKZ−1

t v‖

with v := H0(A)−1u. Since the right-hand side of this estimate tends to zero as t →∞,
the assertion follows.

Thus, an operator A ∈ Λ hom
p is Fredholm if and only if its coset modulo compact

operators is invertible in Λ hom
p /K (Lp(RN)). For operators A ∈ Ap, we will study

the invertibility of the coset A +K (Lp(RN)) in this quotient algebra by localizing
the algebra Λ hom

p /K (Lp(RN)) by Allan’s local principle over its central subalgebra

which consists of all cosets f I +K (Lp(RN)) with f ∈C(RN).

Proposition 5.8.7. The algebra C := { f I +K (Lp(RN)) : f ∈C(RN)} is isometri-
cally isomorphic to the algebra C(RN) in a natural way.
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Proof. One has only to prove that

‖ f‖ = ‖ f I +K (Lp(RN))‖ := inf
K∈K (Lp(RN))

‖ f I +K‖

for every f ∈ C(RN). Proposition 5.8.4 (ii), (iv) ensure that ‖ f I + K‖ ≥ | f (x)| for
every f ∈ C(RN), K ∈ K (Lp(RN)) and x ∈ R

N . Hence, ‖ f I + K (Lp(RN))‖ ≥
| f (x)| for all x ∈ R

N . Since R
N is dense in RN with respect to the Gelfand topology,

we get
‖ f‖ ≥ ‖ f I +K (Lp(RN))‖ ≥ ‖ f‖,

which is the assertion.

In particular, the maximal ideal space of the algebra C is homeomorphic to
RN . The maximal ideal which corresponds to x ∈ RN is the set of all cosets
f I + K (Lp(RN)) with f (x) = 0. We denote this maximal ideal by x and let Jx

stand for the smallest closed ideal of Λ hom
p /K (Lp(RN)) which contains x. Further

we write Φx for the canonical homomorphism

Λ hom
p → (Λ hom

p /K (Lp(RN)))/Jx, A �→ (A+K (Lp(RN)))+Jx.

Note that the compact operators lie in the kernel of each homomorphism Hx and
H◦

θ with x ∈ R
N and θ ∈ S

N−1 by (iv) in Propositions 5.8.4 and 5.8.5. Thus, the
mappings

A+K (Lp(RN)) �→ Hx(A) and A+K (Lp(RN)) �→ H◦
θ (A)

are correctly defined for each operator A ∈ Λ hom
p . We denote them again by Hx and

H◦
θ , respectively. Further, by (ii) in Propositions 5.8.4 and 5.8.5, the local ideal Jx

lies in the kernel of Hx : Λ hom
p /K (Lp(RN)) → L (Lp(RN)) for every x ∈ R

N , and
the local ideal Jθ∞ lies in the kernel of H◦

θ : Λ hom
p /K (Lp(RN))→L (Lp(RN)) for

every Θ ∈ S
N−1. Hence, the mappings

(A+K (Lp(RN)))+Jx �→ Hx(A) and (A+K (Lp(RN)))+Jθ∞ �→ H◦
θ (A)

are correctly defined for each A ∈ Λ hom
p , and we denote them again by Hx and H◦

θ ,

respectively. The following propositions identify the algebras Φx(Ap) for x ∈ RN .

Proposition 5.8.8. Let x = 0 ∈ R
N. Then:

(i) the local algebra Φ0(Ap) is isometrically isomorphic to the smallest closed
subalgebra PC(SN−1) of L (Lp(RN)) which contains all operators χH(ψ) with
ψ ∈ S

N−1;
(ii) for every operator A ∈ Ap, the coset Φ0(A) is invertible in the local algebra

(Λ hom
p /K (Lp(RN)))/J0 if and only if the operator H0(A) is invertible (in

L (Lp(RN)));
(iii) the algebra Φ0(Ap) is inverse-closed in (Λ hom

p /K (Lp(RN)))/J0.
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The notation PC(SN−1) has been chosen since PC(S1) can be identified (by
restriction) with the algebra of all piecewise continuous functions on the (one-
dimensional) unit sphere.

Proof. (i) It follows from Proposition 5.8.4 that H0 is a homomorphism from
Φ0(Ap) into PC(SN−1). This homomorphism is onto since PC(SN−1) is a subal-
gebra of Ap and H0(A) = A for every operator A ∈ PC(SN−1). Further, since the Zt

are isometries, it is clear that the mapping

H0 : Φ0(Ap) → PC(SN−1)

is a contraction. In order to show that this mapping is an isometric isomorphism, we
claim that

Φ0(A) = Φ0(H0(A)) for every A ∈ Ap. (5.56)

Since the mappings Φ0 and H0 are continuous homomorphisms, it is sufficient to
check (5.56) for the generating operators of the algebra Ap.

For the operators A = f I with f ∈C(RN) one has H0( f I) = f (0)I by Proposition
5.8.4; so one has to check that Φ0( f I) = Φ0( f (0)I), which is immediate from the
definition of the local ideals. For A = χH(ψ)I with ψ ∈ S

N−1, the claim (5.56) is
evident.

So we are left with the case when A = W 0
a with a ∈ L1(RN). Then we have to

show that Φ0(W 0
a ) = 0. Let f be a continuous function on R

N with compact support
and with f (0) = 1. The operator W 0

a f I which acts on Lp(RN) by

[W 0
a f (g)](x) =

∫

RN
a(x− t) f (t)g(t)dt, x ∈ R

N ,

is compact. Indeed, we can suppose, without loss of generality, that a is a contin-
uous function with compact support, because the functions with these properties
are dense in L1(RN). Further, by Krasnoselskii’s interpolation theorem, we can also
suppose that p = 2. Since then the kernel of the integral operator W 0

a f I is a continu-
ous and compactly supported function, we conclude that W 0

a f I is a Hilbert-Schmidt
operator, and therefore compact. Thus, Φx(W 0

a f I) = 0. Since Φx( f I) is the identity
element of the local algebra, we have Φx(W 0

a ) = 0, which proves the claim.

(ii) Let A be an operator in Ap for which the coset Φ0(A) is invertible in
(Λ hom

p /K (Lp(RN)))/J0. Since H0 acts as a homomorphism on that algebra, we
conclude that H0(A) is an invertible operator.

Conversely, let the operator H0(A) be invertible (in L (Lp(RN))). From part (i)
we know that H0(A) belongs to the algebra Λ hom

p , and from Proposition 5.8.6 (ii)
we infer that the algebra Λ hom

p is inverse-closed in L (Lp(RN)). Hence, the inverse
operator H0(A)−1 belongs to Λ hom

p . Applying the local mapping Φ0 to the equality

H0(A)−1H0(A) = H0(A)H0(A)−1 = I

and recalling (5.56) we conclude that Φ0(A) is invertible.

(iii) This is the same proof as before if one takes into account that the algebra
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PC(SN−1) is inverse-closed in L (Lp(RN)). The latter fact can easily be proved
via Corollary 1.2.32; it follows also from Theorem 2.2.8.

Proposition 5.8.9. Let x ∈ R
N \{0}. Then:

(i) the local algebra Φx(Ap) is isometrically isomorphic to the smallest closed
subalgebra Bx of L (Lp(RN)) which contains all operators χH(ψ)I for which
x lies on the boundary of H(ψ);

(ii) for every operator A ∈ Ap, the coset Φx(A) is invertible in the local algebra
(Λ hom

p /K (Lp(RN)))/Jx if and only if the operator Hx(A) is invertible (in
L (Lp(RN)));

(iii) the algebra Φx(Ap) is inverse-closed in (Λ hom
p /K (Lp(RN)))/Jx.

Clearly, if N = 2, there are only two values of ψ such that x lies on the boundary
of H(ψ). If ψ(x) is one of these values, then −ψ(x) is the other one, and the algebra
Bx consists of all linear combinations of χH(ψ(x))I and χH(−ψ(x))I. Thus, Bx

∼= C
2

in this case. If N > 2, then x lies on the boundary of each half space H(ψ) with ψ
being orthogonal to x. The set of these ψ can be identified with S

N−2.

Proof. The proof proceeds as that of the preceding proposition. In place of (5.56),
one now has to verify that

Φx(A) = Φx(Hx(A)) for every A ∈ Ap. (5.57)

We only note that χH(ψ) is continuous and equal to one in a neighborhood of x if x is
in the interior of H(ψ). Thus, Φx(χH(ψ)I) is the local identity element in this case.
Similarly, if x is in the exterior of H(ψ), then Φx(χH(ψ)I) is the local zero element.
In the case x lies on the boundary of H(ψ) then Φx(χH(ψ)I) is a proper idempotent
(i.e., the spectrum of this local coset is {0, 1}), by Proposition 5.8.4 (iii).

Proposition 5.8.10. Let θ ∈ S
N−1. Then:

(i) the local algebra Φθ∞(Ap) is isometrically isomorphic to the smallest closed
subalgebra Bθ∞ of L (Lp(RN)) which contains all convolutions W 0

a with a ∈
L1(RN) and all operators χH(ψ)I for which θ lies on the boundary of H(ψ);

(ii) for every operator A ∈ Ap, the coset Φθ∞(A) is invertible in the local algebra
(Λ hom

p /K (Lp(RN)))/Jθ∞ if and only if the operator H◦
θ (A) is invertible in

L (Lp(RN));
(iii) for every operator A ∈ Ap, the coset Φθ∞(A) is invertible in the local algebra

Φθ∞(Ap) if and only if the operator H◦
θ (A) is invertible in Bθ∞ .

Proof. The proof follows the same lines as that of the preceding propositions, where
one has now to check that

Φθ∞(A) = Φθ∞(H◦
θ (A)) for every A ∈ Ap. (5.58)

Note that in the case at hand, we do not know if the algebras Bθ∞ are inverse-closed
in L (Lp(RN)). That is why we give two invertibility criteria: one for invertibility
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in (Λ hom
p /K (Lp(RN)))/Jθ∞ , and one for invertibility in Φθ∞(Ap). Assertion (iii)

can be proved as assertion (ii) of Proposition 5.8.8.

Now one can formulate and prove the main result of this section.

Theorem 5.8.11. An operator A∈Ap is Fredholm if and only if all operators Hx(A)
with x ∈ R

N and all operators H◦
θ (A) with θ ∈ S

N−1 are invertible (as operators on
Lp(RN)).

Proof. The proof follows immediately from Allan’s local principle and from the
criteria for invertibility in the corresponding local algebras which are stated in as-
sertions (ii) of Propositions 5.8.8, 5.8.9 and 5.8.10.

For completeness, let us mention that the coset A + K (Lp(RN)) of an opera-
tor A ∈ Ap is invertible in the quotient algebra Ap/K (Lp(RN)) if and only if the
operator Hx(A) is invertible in L (Lp(RN)) for every x ∈ R

N and if the operator
H◦

θ (A) is invertible in Bθ∞ for every θ ∈ S
N−1. This follows again from Allan’s

local principle, but now applied in Ap/K (Lp(RN)), and from assertions (iii) of
Propositions 5.8.8, 5.8.9 and 5.8.10.

To illustrate the previous results we let N = 2 and consider restrictions of convo-
lution operators to half-planes and cones. By a cone in R

2 with vertex at the origin
we mean a set of the form K(ψ1,ψ2) := H(ψ1)∩H(ψ2) with ψ1,ψ2 ∈ S

1. To avoid
trivialities, we assume that neither ψ1 = ψ2 nor ψ1 = −ψ2. Thus, K(ψ1,ψ2) is nei-
ther a half-plane nor a line.

Let χM refer to the characteristic function of a measurable subset M of R
2. The

following is an immediate consequence of the Fredholm criterion in Theorem 5.8.11
and of Propositions 5.8.4 and 5.8.5.

Corollary 5.8.12. Let a ∈ L1(R2) and f ∈C(R2), and let ψ ,ψ1,ψ2 ∈ S
1 be subject

to the above agreement.

(i) The operator χ
H(ψ) (W

0
a + f I)χ

H(ψ)I + (1− χ
H(ψ) )I is Fredholm on Lp(R2) if

and only if

• f (x) �= 0 for all x ∈ H(ψ),
• W 0

a + f (θ∞)I is invertible for every θ ∈ S
1 in the interior of H(ψ),

• χ
H(ψ) (W

0
a + f (θ∞)I)χ

H(ψ)I +(1− χ
H(ψ) )I is invertible for every θ ∈ S

1 on
the boundary of H(ψ).

(ii) The operator χ
K(ψ1 ,ψ2) (W

0
a + f I)χ

K(ψ1,ψ2) I + (1 − χ
K(ψ1,ψ2) )I is Fredholm on

Lp(R2) if and only if

• f (x) �= 0 for all x ∈ K(ψ1,ψ2),
• W 0

a + f (θ∞)I is invertible for every θ ∈ S
1 in the interior of K(ψ1,ψ2),

• χ
H(ψi)

(W 0
a + f (θ∞)I)χ

H(ψi)
I +(1−χ

H(ψi)
)I is invertible for every θ ∈ S

1 on

the boundary of K(ψ1,ψ2).
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Note that the invertibility of the half-plane operators in (i) and (ii) can be effec-
tively checked by means of a result by Goldenstein and Gohberg [77] which states
that the following conditions are equivalent for a ∈ L1(R2), λ ∈ C and ψ ∈ S

1:

(i) the operator χ
H(ψ) (W

0
a +λ I)χ

H(ψ)I +(1−χ
H(ψ) )I is invertible on Lp(R2),

(ii) the operator W 0
a +λ I is invertible on Lp(R2),

(iii) λ �= 0, and the function Fa +λ , with F standing for the Fourier transform on
R

2, does not vanish on R
2.

With this additional information, Corollary 5.8.12 can be reformulated as follows.

Corollary 5.8.13. Let a ∈ L1(R2) and f ∈C(R2), and let ψ ,ψ1,ψ2 ∈ S
1 be subject

to the above agreement.

(i) The operator χ
H(ψ) (W

0
a + f I)χ

H(ψ)I + (1− χ
H(ψ) )I is Fredholm on Lp(R2) if

and only if

• f (x) �= 0 for all x ∈ H(ψ),
• W 0

a + f (θ∞)I is invertible for every θ ∈ S
1 ∩H(ψ).

(ii) The operator χ
K(ψ1 ,ψ2) (W

0
a + f I)χ

K(ψ1,ψ2) I + (1 − χ
K(ψ1,ψ2) )I is Fredholm on

Lp(R2) if and only if

• f (x) �= 0 for all x ∈ K(ψ1,ψ2),
• W 0

a + f (θ∞)I is invertible for every θ ∈ S
1 ∩K(ψ1,ψ2).

Note in this connection also that the following assertions are equivalent for a ∈
L1(R2), λ ∈ C and ψ1,ψ2 ∈ S

1 (see [21, Section 9.53]):

(i) χ
K(ψ1,ψ2) (W

0
a +λ I)χ

K(ψ1,ψ2)I +(1−χ
K(ψ1,ψ2) )I is Fredholm on Lp(R2),

(ii) χ
H(ψi)

(W 0
a +λ I)χ

H(ψi)
I +(1−χ

H(ψi)
)I is invertible on Lp(R2) for i ∈ {1,2}.

Corollary 5.8.14. Let A belong to the smallest closed subalgebra on L (Lp(R2))
which contains all operators W 0

a with a ∈ L1(R2) and the operator χ
H(θ)I for a fixed

θ ∈ S
1. Then A is Fredholm if and only if A is invertible.

Proof. If A is Fredholm then by (the easy half of) Theorem 5.8.11, the limit operator
H◦

θ (A) is invertible. From Proposition 5.8.5 we infer that H◦
θ (A) = A. Thus, A is

invertible.

Let us finally mention that the algebras Λp/K (Lp(RN)) and C(RN) consti-
tute a faithful localization pair by Theorem 2.5.13. Thus, the machinery of norm-
preserving localization and local enclosement theorems as well as Simonenko’s the-
ory of local operators work in the present setting.
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5.9 Notes and comments

Wiener-Hopf integral equations of the type

cu(t)+
∫ ∞

0
k(t − s)u(s)ds = v(t) (t > 0),

with k ∈ L1(R), had been the subject of detailed studies by many people, including
Wiener and Hopf [201], Paley and Wiener [133], Smithies [190], Reissner [161],
Fock [57], Titchmarsh [193], Rapoport [158] and Noble [129]. The fundamental
1958 paper [105] of Krein, translated into English by the American Mathematical
Society in 1962, presented a clear and complete theory of this topic at the time.
The case of systems of Wiener-Hopf integral equations with kernels belonging to
L1(R) was studied by Gohberg and Krein in [68]. Gohberg and Feldman’s book
[66], published originally in Russian in 1971, is devoted to a unified approach to
different kinds of convolution equations with continuous generating functions. But
Duduchava’s book [43] marked the start of a new era in the topic, with the study of
convolution operators with piecewise continuous generating functions and of alge-
bras generated by such operators.

The results of Sections 5.1, 5.2 and 5.3 are taken from Duduchava’s works [43,
44] with exception of Proposition 5.1.2 which is due to Schneider [176]. The results
from Section 5.4 go back to two of the authors [168]. In Sections 5.3 and 5.4 some
of the proofs are streamlined with respect to their original versions.

Duduchava [44] studied the algebra A := A (X ,Y,Z) in the particular case
X = C(R+), Y = PCp,wα and Z = Cp. These restrictions imply the commutativ-
ity of the related quotient algebra A K . Duduchava further wrote that ...the same
methods make it possible to investigate a more complicated algebra..., namely the
algebra A K

(
PC(R+),PCp,wα ,PCp

)
in our notation. As far as we know, he never

published these results. Moreover, even in the case of continuous generating func-
tions, the approach presented above in this chapter gives a more precise information
than Duduchava’s approach: it allows us to characterize the local algebras up to
isometry as algebras of Mellin convolution operators.

The algebra A
(
PC(R+),PCp,w, /0

)
studied in Section 5.5 was the subject of

Duduchava’s investigations in the particular case of unweighted spaces or for
weights w(t) := |t|α . For Khvedelidze weights, Schneider proved a criterion for
the Fredholm property of the Wiener-Hopf operator W (a) with a ∈ PCp,w.

The results of Section 5.6 are again taken from [168]. These results can be ex-
tended to algebras generated by Wiener-Hopf and Hankel operators with piecewise
continuous generating functions. But in Section 5.7 we present more general results
based on considering the flip as an independent generator for the algebra. That possi-
bility was used initially in [165] by the authors to analyze algebras resulting from ap-
proximating methods, the theme of Chapter 6. Algebras generated by Wiener-Hopf
and Hankel operators have an analog in algebras generated by Toeplitz and Hankel
operators with piecewise continuous generating function (defined on the unit circle
T). That problem was studied by Power in [147, 149] and by one of the authors [182]
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by different means, but only for the C∗-case. Interestingly, the approach of [182] is
based upon the two projections theorem. Moreover, Theorem 4.4.5 leads to the de-
scription of the Fredholm properties of operators belonging to the Banach algebras
generated by Toeplitz and Hankel operators with piecewise continuous generating
functions and acting on Hardy spaces with weight. In particular, the essential spec-
trum of Hankel operators with piecewise continuous generating functions acting on
a variety of Banach spaces has been known since 1990 [168]. Some of these results
were reproved in [94].

Section 5.8 is devoted to the reproduction of some results obtained by Simonenko
[187] who derived them by using the local principle named after him. Our exposition
is based on a combination of Allan’s local principle and limit operator techniques
and is in the spirit of the previous sections.

The methods described in Chapter 5 also apply to other classes of operators
such as multidimensional singular integral operators, singular integral operators
with fixed singularities, singular integro-differential operators and certain classes of
boundary integral operators (e.g., single and double layer potential operators). Con-
cerning the investigation of multidimensional operators on Lp(Rn) by local princi-
ples see also the nice recent book by Simonenko [188]. It contains a complete study
of shift-invariant operators as well as a description of a few important subclasses of
such operators. Simonenko also considered Banach algebras generated by operators
which are locally equivalent to operators in one of the mentioned subclasses.
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