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Preface

The central notion in this book is that of a local principle. Local principles provide
an abstract frame for the natural and extremely useful idea of localization, i.e. to
divide a global problem into a family of local problems. The local principles the
reader will encounter in this text are formulated in the language of Banach algebras
and can be characterized as non-commutative Gelfand theories. They now form an
integral part of the theory of Banach and C∗-algebras, and they provide an indis-
pensable tool to study concrete problems in operator theory and numerical analysis.

More than thirty years ago, Douglas derived the Gohberg-Krupnik symbol cal-
culus for singular integral operators via a combination of a local principle (which
now bears his name) and Halmos’ two projections theorem. Around the same time
Kozak proved the equivalence between the stability of an operator sequence and the
invertibility of a related element in a certain Banach algebra which he then studied
by Simonenko’s local principle. Since that time there have appeared dozens of pa-
pers where the idea of localization has been used, further developed, and applied in
several contexts. As the outcome of this development, we now have a powerful, rich
and beautiful theory of algebraic localization, the principles and results of which
are widely scattered in the literature. The lack of a general context, and the use of
different notation from paper to paper make it difficult for the researcher and the
graduate student to familiarize themselves with the theory behind local principles
and to make use of these results to study their own problems.

It is this defect that the present book seeks to solve. It started as a much sim-
pler task: an updated re-edition of an out-of-print report [168], back in 1998. The
changing objectives and professional obligations of the authors kept on increasing
the scope and delaying the work. After more than ten years, we are finally able to
present it. We think that the delay has been worth it, and the reader has a readable
and useful text in his hands.

It is our intention that this work be a basic but complete introduction to local
principles, formulated in the language of Banach algebras, that allows the reader
to get a general view of the area and enables him to read more specialized works.
Many results that appeared in periodicals or reports, and can be hard to find, are
presented, streamlined and contextualized here, and the relations with other results
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viii Preface

are made clear. Some results which were in complete form available only in the
Russian literature, like the local principle by Simonenko, are included. And finally,
a few existing gaps in the theory are filled in with full proofs, which appear here for
the first time.

The text starts with a chapter on the relevant notions for local principles of Ba-
nach algebra theory. As such, the first part can serve as a textbook for a one semester
graduate course on Banach algebras with emphasis on local principles. Exercises
and examples are given throughout the text. We focus on applications to singular in-
tegral operators and convolution type operators on weighted Lebesgue spaces. The
choice of applications is the result both of our particular interests as researchers and
of the genetic inheritance of the text, which was born as a report on algebras of
convolution type operators.

Most figures in the book were produced with the help of Mathematica1. A couple
of figures were produced with Adobe Illustrator2. The authors acknowledge the
research center CMA and its successor CEAF (Portugal) for travel and meeting
support during the writing of the book.

We would like to thank our colleagues Marko Lindner and Helena Mascarenhas
for their stimulating and helpful discussions during the work on this text. We are
specially grateful to Alexei Karlovich, who carefully read the manuscript and gave
many valuable suggestions for its improvement.

Our sincere thanks goes to Springer and Karen Borthwick for including the book
in the Universitext series and for pleasant and helpful co-operation.

Chemnitz, Darmstadt, Lisboa Steffen Roch
December 2009 Pedro A. Santos

Bernd Silbermann

1 Mathematica is a registered trademark of Wolfram Research, Inc.
2 Adobe Illustrator is a trademark of Adobe, Inc.
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Introduction

This is a text on tools which can help to solve invertibility problems in Banach
algebras. The number of such problems is much larger than one might guess at
first glance. Of course, the most obvious invertibility problem one has in mind is
the question of whether a given operator is invertible in an algebra of operators,
or whether a given function is invertible in an algebra of functions. A classical ex-
ample, solved by Wiener, is the question of whether the inverse of a non-vanishing
function in the algebra of functions with absolutely convergent Fourier series be-
longs to the same algebra again.

But there are many more problems in analysis, operator theory, or numerical anal-
ysis which turn out to be equivalent to invertibility problems in suitably associated
Banach algebras. For example, think of the question of whether a given bounded
linear operator on a Banach space possesses the Fredholm property, i.e., whether its
kernel and its cokernel are linear spaces of finite dimension. One of the equivalent
characterizations of this notion states that an operator has the Fredholm property
if and only if its image in the Calkin algebra is invertible. Hence, Fredholmness is
indeed an invertibility problem.

For technical reasons, this invertibility problem is often studied in a suitable sub-
algebra of the Calkin algebra. An example which will be treated in detail in this text
is the smallest closed subalgebra of the Banach algebra of all bounded linear oper-
ators on L2(T) which contains all singular integral operators with continuous coef-
ficients. Here, T denotes the complex unit circle, and L2(T) is the related Lebesgue
space with respect to the normalized Lebesgue measure. The Calkin image of this
subalgebra is a commutative C∗-algebra, and hence subject to the Gelfand-Naimark
theorem. In particular, this algebra proves to be isometrically isomorphic to the al-
gebra C(T)×C(T), where C(T) is the algebra of all complex-valued continuous
functions on T. In that sense, we know all about this algebra. However, if the coeffi-
cients are merely piecewise continuous, this subalgebra of the Calkin algebra is no
longer commutative, and the classical Gelfand theory fails.

A different collection of examples stems from a problem in numerical analysis.
To solve an operator equation Au = v numerically, one chooses a sequence of op-
erators An which act on finite-dimensional spaces, and which converges strongly
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xii Introduction

to A, and one replaces the equation Au = v by the sequence of finite linear sys-
tems Anun = vn with suitable approximations vn of the right-hand side v. A crucial
question is whether the sequence (An) is stable, i.e., whether the operators An are
invertible for large n and whether the norms of their inverses are uniformly bounded.

The stability of a sequence of operators is again equivalent to an invertibility
problem. For simplicity, assume that each An is an n× n matrix. We consider the
direct product E of the sequence (Cn×n)n≥1 of algebras, i.e., the set of all bounded
sequences (An)n≥1 of matrices An ∈ C

n×n. Provided with pointwise defined opera-
tions and the supremum norm, this set becomes a Banach algebra. Further, we write
G for the restricted product of the sequence (Cn×n)n≥1, i.e., for the collection of all
sequences (Gn)n≥1 ∈ E such that ‖Gn‖ → 0 as n → ∞. The set G is a closed two-
sided ideal of E . Now a simple Neumann series argument shows that a sequence
(An) ∈ E is indeed stable if and only if its coset (An)+G is invertible in the quo-
tient algebra E /G . Hence, stability is also an invertibility problem.

Commutative Banach algebras are subject to the Gelfand theory, one of the most
beautiful pieces of functional analysis. The essence of this theory is given by the
following observation: To each unital commutative Banach algebra A , there is as-
sociated a compact Hausdorff space MA such that A can be represented (up to
elements in the radical) as an algebra ̂A of continuous functions on MA . More
precisely, there is a continuous homomorphism ̂ : A → ̂A (called the Gelfand
transform) which has the radical of A as its kernel, and which owns the following
property: an element a is invertible in A if and only if its Gelfand transform â does
not vanish on MA .

To state the latter fact in a different way note that, for each x∈MA , the point eval-
uation a �→ â(x) defines a homomorphism from A onto C, and one can show that
every non-trivial homomorphism from A onto C is of this form. Thus, an element
a of a unital commutative Banach algebra A is invertible if and only if ϕ(a) �= 0 for
every non-trivial homomorphism ϕ : A → C.

For general (non-commutative) unital Banach algebras A , non-trivial homomor-
phisms from A onto C need not exist. Think of the Banach algebra C

n×n with n > 1,
which does not possess non-trivial ideals. To derive a theory for non-commutative
Banach algebras which can serve as a substitute for the classical Gelfand theory it
is therefore necessary to allow for more general homomorphisms on A rather than
homomorphisms into C. We shall see that such generalizations of the Gelfand the-
ory indeed exist, provided the underlying algebra is not too far from a commutative
algebra. In particular, we shall consider two classes of Banach algebras which sat-
isfy this assumption: algebras which possess a rich center, and algebras which ful-
fill a standard polynomial identity. The center of an algebra consists of all elements
which commute with each other element of the algebra. Thus, commutative algebras
are algebras which coincide with their center, and algebras with a large center can
thus be considered as close to commutative algebras. On the other hand, polynomial
identities serve as a substitute for the simplest polynomial identity ab = ba, which
characterizes the commutative algebras. In that sense also, algebras with polynomial
identity are close to commutative algebras.
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Algebras with a large center occur in many places. So it is no wonder that con-
cepts for their study have been worked out since the nineteen-sixties. These concepts
were called local principles, because the underlying ideas resemble the method of
localization or freezing of coefficients widely used in the theory of partial differ-
ential equations. Local principles can indeed be considered as non-commutative
Gelfand theories in the sense that they associate to a given Banach algebra A with
a non-trivial central subalgebra C , a family of Banach algebras Aτ with continuous
homomorphisms Wτ : A → Aτ – labeled by the maximal ideals of C – such that
an element a ∈ A is invertible in A if and only if its “shadow” Wτ(a) is invertible
in Aτ for every τ . Of course, one should expect that the invertibility of the elements
Wτ(a) is easier to verify than the invertibility of a itself, in which case the local
principle provides an effective tool to study invertibility.

The book starts with a concise exposition about Banach algebra theory centered
around the notions of invertibility and spectrum. In Chapter 2, we study several local
principles, namely the local principles by Allan-Douglas, Simonenko, and Gohberg-
Krupnik. In their original form, they appeared about 40 years ago, and the relation-
ship between them was not fully understood. The latter changed in the last years,
mainly thanks to the introduction of new technical ingredients like norm-preserving
localization, local inclusion theorems, and theorems of Weierstrass type.

Chapter 2 is concluded by a discussion of Krupnik’s generalization of Gelfand
theory to Banach algebras that fulfill a standard polynomial identity, the so-called
PI-algebras. The latter proved to be extremely useful to study Banach algebras gen-
erated by idempotents (with some relations between them), which is the subject of
Chapter 3. Our goal is to present this material, which until now has been spread over
many publications, in a systematic way. These first three chapters form the first part
of the book.

The second part of this text deals with case studies where local principles are
applied to various particular Banach algebras generated by bounded operators of a
special type or generated by approximation sequences of special operator classes.
For instance, we shall consider algebras generated by one-dimensional singular inte-
gral operators with piecewise continuous coefficients on composed curves acting on
Lp-spaces with Khvedelidze weights, and algebras generated by Wiener-Hopf and
Hankel operators with piecewise continuous generating functions. The local princi-
ples will be employed to derive criteria for the Fredholm property of operators in
these algebras. However we will not deal with index computation since it is not a
matter of local theories but is of a global nature.

Among the concrete examples of algebras of approximation sequences we shall
be concerned with in Chapter 6 are algebras of the finite sections method and of
spline Galerkin methods for one- and two-dimensional singular integral and Wiener-
Hopf operators. A peculiarity of these algebras is that their center is trivial in many
cases. It is therefore a further goal of Chapter 6 to introduce some tools, the so-
called lifting theorems, which allow one to overcome these difficulties by passing
to a suitable quotient algebra which then has a nice center.

The authors have tried to make this book as easy to read as possible, giving spe-
cial attention to coherence of notation throughout the book. Usually the font of a
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symbol will give an immediate clue to the type of mathematical object it represents.
For example, sets (like those in the complex plane) are usually represented by the
same font as the one used for the real line or the complex plane (R, C), while general
curves in the complex plane are represented by Γ . Algebras and ideals are usually
represented in a calligraphic font, as in A , B, C , etc. Lower case letters a, b, c
can either represent elements of an abstract algebra (with e the identity), or func-
tions. In the case of functions we reserved f and g for continuous functions, u and
v for elements of Lebesgue spaces, but i−n we left for indexes. The imaginary unit
is represented by i. Upper case roman letters A, B, C etc, usually represent opera-
tors, whereas H and W (specified by additional parameters) are used to designate
homomorphisms.
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Non-commutative Gelfand Theories



Chapter 1
Banach algebras

Banach algebras provide a framework for many of the local principles. This chapter
summarizes the material from Banach algebra theory which is needed in order to
understand the following chapters. A reader who is acquainted with the basics of
Banach algebras can certainly skip this chapter. On the other hand, we have tried
to present the text in a (nearly) self-contained manner. Thus, all basic results are
provided with a proof, whereas we have to refer to the literature for the proofs of
some results which are mentioned only as an aside. This concerns in particular some
results on C∗-algebras, which form certainly the most important subclass of Banach
algebras, but which will not play a distinguished role in this text.

We have also included and systematized in the present chapter some results, for
example on matrix algebras and inverse-closedness, that are hard to find in text-
books.

1.1 Basic definitions

In this section, we collect some basic notions and facts concerning Banach and C∗-
algebras, their ideals and homomorphisms. For more comprehensive and detailed
introductions to this topic, see the references in the notes and comments section, at
the end of the chapter.

1.1.1 Algebras

Let F be a field with zero element 0 and identity 1. In what follows, only the fields
Q of the rational numbers, R of the real numbers, and C of the complex numbers
will occur. We will also use the notation K to refer to one of the fields R and C.

An algebra over the field F is a linear space A over F together with an additional
bilinear operation

S. Roch et al., Non-commutative Gelfand Theories, Universitext,
DOI 10.1007/978-0-85729-183-7 1, © Springer-Verlag London Limited 2011
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4 1 Banach algebras

A ×A → A , (a, b) �→ ab,

called multiplication, which satisfies the associativity law

(ab)c = a(bc) for all a, b, c ∈ A .

We also refer to algebras over R and C as real and complex algebras.
The algebra A is commutative or Abelian if ab = ba for all a, b∈A . An element

e ∈ A is called a unit element or an identity if ae = ea = a for all a ∈ A . The
unit element is unique if it exists. Algebras which possess a unit element are called
unital. In a unital algebra, we define a0 := e.

A non-empty subset B of an algebra A which forms an algebra with respect to
the inherited operations is called a subalgebra of A . If A is unital and if the unit
element of A belongs to B, then B is called a unital subalgebra of A . Notice that
a subalgebra can be a unital algebra without being a unital subalgebra.

Example 1.1.1. The zero-dimensional linear space {0} forms an algebra with re-
spect to the multiplication 0 · 0 = 0. This algebra has an identity element which
coincides with the zero element, and it is the only algebra with this property. When
speaking henceforth on unital algebras we will always mean an algebra with at least
two elements. �

Example 1.1.2. The field F itself can be considered as a unital algebra with respect
to its natural operations. �

Example 1.1.3. Given an algebra A , the set A n×n of all n×n matrices with entries
in A becomes an algebra with respect to the standard matrix operations. If A has an
identity element e, then the diagonal matrix diag(e, e, . . . , e) serves as the identity
element of A n×n.

For n > 1, the set of all matrices (ai j)∈A n×n with ai j = 0 unless i = j = 1 forms
a non-unital subalgebra of A n×n which also can be considered as a unital algebra
with identity element diag(e, 0, . . . , 0). �

Example 1.1.4. Given a non-commutative algebra A , the set

Cen A := {c ∈ A : ca = ac for any a ∈ A }

forms a subalgebra of A . It is called the center of A . �

A linear subspace J of an algebra A is called a left ideal if

a j ∈ J for all a ∈ A and j ∈ J .
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Analogously, right ideals are defined. An ideal of an algebra is a subspace which
is both a left and a right ideal. Ideals are subalgebras. The algebra A itself and the
zero ideal {0} are the trivial ideals of A . An algebra without non-trivial ideals is
said to be simple. An ideal J of A is called proper if J �= A . If the algebra
A is unital, then no proper left-sided ideal of A contains the identity element. In
particular, proper ideals are never unital.

Given an algebra A and an ideal J of A , the quotient A /J is defined as the
set of all cosets a + J of elements a ∈ A . There is a natural linear structure on
A /J which makes the quotient into a linear space. Moreover, provided with the
multiplication (a +J )(b +J ) := ab +J , the quotient becomes an algebra, the
quotient algebra of A by J . If the algebra A has an identity e, then e+J is the
identity element of A /J .

Let A and B be algebras over the same field F. A homomorphism from A into
B is a mapping W which reflects the algebraic structure, i.e., W is F-linear and
multiplicative. The latter means that

W(ab) = W(a)W(b) for all a, b ∈ A .

In the case that A and B are unital algebras with unit elements e and f , respec-
tively, a homomorphism W : A → B is said to be unital if W(e) = f . The inverse
of a bijective homomorphism is a homomorphism again. Bijective homomorphisms
are called isomorphisms, and algebras with an isomorphism between them are called
algebraically isomorphic. Algebraic isomorphy is an equivalence relation in the cat-
egory of algebras.

There is a close connection between ideals and homomorphisms: The kernel
Ker W = {a ∈ A : W(a) = 0} of a homomorphism W : A → B is an ideal of
A and, conversely, every ideal J of an algebra A is the kernel of the associated
canonical homomorphism

A → A /J , a �→ a+J .

Let W : A → B be a homomorphism and C a subalgebra of A . The restriction of
W onto C is a homomorphism from C into B which we denote by W|C . Further, if
J is an ideal of A which lies in the kernel of W, then

A /J → B, a+J �→ W(a)

defines the quotient homomorphism of W by J . Thus, every homomorphism
W : A →B factors into W2 ◦W1 where W1 is the canonical (surjective) homomor-
phism from A onto A /J with J = Ker W, and W2 is the (injective) quotient
homomorphism of W by J .

Let A be an algebra over K. A mapping a �→ a∗ of A into itself is an involution
if, for all a, b ∈ A and all λ , μ ∈ K,

(a∗)∗ = a, (λa+μb)∗ = λa∗ +μb∗ and (ab)∗ = b∗a∗
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where the bar stands for complex conjugation (which becomes the identity map
for real algebras). The element a∗ is also called the adjoint of a. Algebras with
involution are also called ∗-algebras.

Involutions are surjective. Hence, if A has an identity e, then e∗ = e. An element
a of a ∗-algebra is called self-adjoint or Hermitian if a∗ = a and normal if aa∗ =
a∗a . A non-empty subset M of a ∗-algebra is called symmetric if m ∈ M implies
m∗ ∈M . Symmetric ideals are also called ∗-ideals. A homomorphism W : A →B
between ∗-algebras over the same field K is symmetric or a ∗-homomorphism if
W(a∗) = W(a)∗ for every element a ∈A . If J is a ∗-ideal of the ∗-algebra A then

(a+J )∗ := a∗ +J

defines an involution on the quotient algebra A /J . This gives a correspondence
between symmetric ideals and kernels of symmetric homomorphisms.

A bijective ∗-homomorphism is called a ∗-isomorphism, and the ∗-algebras A
and B are called ∗-isomorphic if there is a ∗-isomorphism between them.

We will write A ∼= B in order to indicate that there is an algebraic (continu-
ous, symmetric) isomorphism between the algebras (Banach algebras, C∗-algebras,
respectively) A and B.

1.1.2 Banach and C∗-algebras

An algebra A over K is normed if it is a normed linear space over K and if

‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A .

This condition implies the continuity of the multiplication:

‖xy−ab‖= ‖xy−xb+xb−ab‖= ‖x(y−b)+(x−a)b‖≤ ‖x‖‖y−b‖+‖x−a‖‖b‖

for arbitrary elements a, b, x, y ∈ A .
If A is unital then one requires in addition that the identity element has norm

1. If the underlying linear space of a normed algebra is a Banach space, then the
algebra is called a Banach algebra over K.

The natural substructures of Banach algebras are their closed subalgebras and
their closed ideals, and the natural morphisms between Banach algebras are the
continuous homomorphisms. If there is a continuous isomorphism between Banach
algebras A and B over the same field K, then A and B are called topologically
isomorphic. By Banach’s theorem ([160, Theorem III.11]), the inverse of a contin-
uous isomorphism is continuous again. Thus, topological isomorphy is an equiva-
lence relation in the category of Banach algebras. The algebras A and B are called
isometrically isomorphic if there is an isometric isomorphism between them.

Closed subalgebras of Banach algebras are often defined in terms of their gen-
erators. We agree upon the following convention. Given a unital Banach algebra A
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and elements a1, . . . ,an ∈ A , we let alg{a1, . . . ,an} stand for the smallest closed
subalgebra of A which contains the elements a1, . . . ,an and the identity. The ele-
ments a1, . . . ,an are called the generators of alg{a1, . . . ,an} and we say then that the
algebra A is generated by the elements a1, . . . ,an ∈ A . The number of generators
of an algebra can be infinite.

If A is a Banach algebra and J a closed ideal of A , then the quotient al-
gebra A /J becomes a Banach algebra on defining the norm by ‖a + J ‖ :=
inf j∈J ‖a + j‖, and the canonical homomorphism from A onto A /J is a con-
traction (i.e., its norm is not greater than one). Thus, the duality between ideals and
kernels of homomorphisms discussed above implies a duality between closed ideals
and kernels of continuous homomorphisms.

A Banach algebra B with an involution ∗ is called a Banach ∗-algebra if the
involution acts as an isometry, and it is called a C∗-algebra if

‖a∗a‖ = ‖a‖2 for a ∈ A . (1.1)

C∗-algebras are Banach ∗-algebras: the C∗-axiom (1.1) implies ‖a‖2 ≤ ‖a∗‖‖a‖,
whence ‖a‖ ≤ ‖a∗‖, and changing the roles of a and a∗ gives ‖a‖ = ‖a∗‖.

The following basic facts indicate why it is much more convenient to work in
C∗-algebras than in general Banach algebras.

Theorem 1.1.5.
(i) Closed ideals of C∗-algebras are symmetric.

(ii) Quotients of C∗-algebras by their closed ideals are C∗-algebras.
(iii) ∗-Homomorphisms between C∗-algebras are contractions.
(iv) Injective ∗-homomorphisms between C∗-algebras are isometries.

Assertion (iii) is a result on automatic continuity since the continuity of the ∗-
homomorphism is not a priori required.

Parts of the following isomorphism theorems are well known from general ring
theory. Their important new aspects are that all the algebras are C∗-algebras again,
i.e., the range Im W of W is closed, K is an ideal of A , and B +J is closed in
Theorems 1.1.6, 1.1.7 and 1.1.8, respectively. Note that the order of the isomorphism
theorems is not unique in the literature.

Theorem 1.1.6 (First isomorphism theorem). Let A and B be C∗-algebras and
W : A → B a ∗-homomorphism. Then Im W is a C∗-subalgebra of B, and there is
a natural ∗-isomorphism

A /Ker W ∼= Im W

which is given by the quotient homomorphism of W by Ker W.

Theorem 1.1.7 (Second isomorphism theorem). Let J be a closed ideal of a C∗-
algebra A , and K a closed ideal of J . Then K is a closed ideal of A , and there
is a natural ∗-isomorphism

(A /K )/(J /K ) ∼= A /J .
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Theorem 1.1.8 (Third isomorphism theorem). Let A be a C∗-algebra, B a C∗-sub-
algebra of A , and J a closed ideal of A . Then B +J (= the algebraic sum) is
a C∗-subalgebra of A , and there is a natural ∗-isomorphism

(B +J )/J ∼= B/(B∩J ).

We mention a few examples which illustrate the richness of the class of Banach
algebras. The verification of the aforementioned properties is left as an exercise.
Some of these examples will be considered in detail later on.

Example 1.1.9. Let A be a normed algebra. Then each of the following expressions
defines a norm on the matrix algebra A n×n:

‖[ai j]‖l := max
1≤i≤n

n

∑
j=1

|ai j| and ‖[ai j]‖c := max
1≤ j≤n

n

∑
i=1

|ai j|

and these norms are equivalent. If A is a Banach algebra, then A n×n is a Banach
algebra with respect to each of the given norms. Besides those already mentioned,
there is a multitude of other norms on A n×n with the same properties (as one knows
from linear algebra). In contrast to this, if A is a C∗-algebra, then there is a unique
norm on A n×n which makes A n×n into a C∗-algebra with respect to the involution
(ai j)∗ := (a∗ji) (again as known from linear algebra where the spectral norm plays
this role). �

Example 1.1.10. Consider a compact Hausdorff space X (a compact subset of the
plane, for example). The set of all continuous functions f : X → C becomes a com-
mutative unital complex Banach algebra with respect to pointwise defined opera-
tions and the maximum norm, that is,

( f +g)(s) := f (s)+g(s), (λ f )(s) := λ f (s), ( f g)(s) := f (s)g(s),

and ‖ f‖ := max{| f (x)| : x ∈ X}. This algebra will be denoted by C(X). If X = [a, b]
is a subinterval of the real line, we will sometimes write C[a, b] in place of C([a, b]).
Provided with the involution ( f ∗)(x) := f (x) (with the bar referring to complex
conjugation), C(X) becomes a C∗-algebra.

For each closed subset A of X , the set { f ∈C(X) : f (x) = 0 for x ∈ A} is a closed
ideal of C(X). �

Example 1.1.11. Let X be not a compact but a locally compact Hausdorff space
and consider the space L∞(X) of all essentially bounded measurable functions on X ,
with the norm

‖ f‖∞ := esssup
x∈X

| f (x)|.
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Then C0(X), the closure in L∞(X) of the set of all continuous functions f : X → C

with compact support, becomes a non-unital commutative Banach algebra when
provided again with pointwise defined operations and the supremum norm. �

Example 1.1.12. Let T denote the complex unit circle {ξ ∈ C : |ξ | = 1}. Consider
the set W of all functions f : T → C with absolutely convergent power series repre-
sentation, i.e.,

f (ξ ) = ∑
n∈Z

fnξ n with ∑
n∈Z

| fn| < ∞.

Being absolutely convergent, the series converges uniformly. Thus, by the Weier-
strass’ criterion of uniform convergence, f is a continuous function. We define
pointwise operations in W and the norm by

‖ f‖W =

∥

∥

∥

∥

∥

∑
n∈Z

fnξ n

∥

∥

∥

∥

∥

W

:= ∑
n∈Z

| fn|.

Then W becomes a unital Banach algebra, the so-called Wiener algebra. �

Example 1.1.13. Let X be a Banach space over K and L (X) the Banach space of
the bounded linear operators on X with norm

‖T‖L := sup
‖x‖≤1

‖T x‖.

With multiplication defined as the composition of operators, L (X) becomes a unital
Banach algebra over K. This algebra is non-commutative if dim X > 1. In the case
X = H is a Hilbert space, the involution A �→ A∗, the Hilbert space adjoint, makes
L (H) into a C∗-algebra. �

1.1.3 Unitization

Let A be a non-unital algebra over a field F. There are several ways to embed A

into a unital algebra. The most obvious one is to consider the product ˜A := A ×F

which becomes a unital algebra with identity (0, 1) on defining the operations

(a, λ )+(b, μ) := (a+b, λ +μ), α (a, λ ) := (αa, αλ ),

(a, λ )(b, μ) := (ab+μa+λb, λμ).

The set ̂A of all pairs (a, 0) with a ∈ A forms a subalgebra of ˜A , and the embed-
ding a �→ (a, 0) establishes an isomorphism between A and ̂A . Moreover, A ∼= ̂A
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is an ideal of ˜A , and ˜A / ̂A ∼= F. Thus, ˜A is the smallest unital extension of A , its
so-called minimal unitization.

In case A is a normed algebra over the field K, there is a natural norm on ˜A
given by

‖(a, λ )‖ := ‖a‖+ |λ |. (1.2)

With this choice, the embedding of A into its minimal unitization becomes an
isometry, and A ∼= ̂A is a closed ideal of ˜A . Since ̂A and ˜A differ by the one-
dimensional linear space K only, the minimal unitization of a Banach algebra is a
Banach algebra again. Of course, there are other norms on ˜A besides (1.2) which
lead to the same results.

If A is a ∗-algebra, then (a, λ )∗ := (a∗, λ̄ ) defines an involution on ˜A . But it
turns out that (1.2) does not define a C∗-norm on ˜A . Instead, one considers

‖(a, λ )‖∗ := sup{‖ab+λb‖ : b ∈ A , ‖b‖ = 1}. (1.3)

Theorem 1.1.14. If A is a non-unital C∗-algebra, then (1.3) defines a C∗-norm on
the minimal unitization of A .

Proof. We will check only the two main details. First we show that ‖(a, λ )‖∗ = 0
implies that a = 0 and λ = 0. If λ = 0, then ‖(a, 0)‖∗ = ‖a‖, and the implica-
tion holds. If λ �= 0, then one can arrange by scalar multiplication that λ = −1. If
‖(a, −1)‖∗ = 0, then the estimate

‖ab−b‖ = ‖ab+(−1)b‖ ≤ ‖(a, −1)‖∗

implies that ab = b for each b ∈ A with norm 1 and, hence, for each b. Taking
adjoints one finds ba∗ = b for each b ∈ A . In particular, a = aa∗ = a∗ and ab =
ba = b. Thus, a is the identity element of A , a contradiction.

The second point we will check is the C∗-axiom for the norm (1.3). From

‖(a, λ )‖2
∗ = sup{‖ab+λb‖2 : b ∈ A , ‖b‖ = 1}

= sup{‖b∗(a∗ab+λa∗b+λab+λλb)‖ : b ∈ A , ‖b‖ = 1}
≤ ‖(a, λ )∗(a, λ )‖∗
≤ ‖(a, λ )∗‖∗ ‖(a, λ )‖∗

we get ‖(a, λ )‖∗ ≤ ‖(a, λ )∗‖∗. Replacing (a, λ ) by (a, λ )∗ gives the reverse in-
equality, and the estimate

‖(a, λ )‖2
∗ ≤ ‖(a, λ )∗(a, λ )‖∗ ≤ ‖(a, λ )‖2

∗

finally yields the C∗-axiom.

We will provide the minimal unitization of a C∗-algebra always with the norm
(1.3), and we will omit the subscript ∗ in what follows.
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Formally, the minimal unitization construction can be applied to every algebra,
being unital or not. To avoid trivialities (and for serious mathematical reasons, see
the proof of the previous theorem), we will apply this construction only to non-unital
algebras.

1.1.4 Matrix algebras

Here we collect some further material on matrix algebras (see Examples 1.1.3 and
1.1.9). The first result characterizes the ideals of a matrix algebra, and the second
one provides necessary and sufficient conditions for an algebra to be a matrix al-
gebra. Both results are formulated first in a purely algebraic setting and then for
Banach algebras.

Proposition 1.1.15. Let A be an algebra with identity, and let J be an ideal of
A n×n. Then there is an ideal G of A such that J = G n×n.

Proof. Let G denote the set of all elements g11 ∈ A for which there exist elements
gi j ∈ A such that

⎡

⎢

⎣

g11 . . . g1n
...

...
gn1 . . . gnn

⎤

⎥

⎦ ∈ J .

It is easy to see that G is an ideal of A . To prove the inclusion J ⊆ G n×n, let
g = [gi j]ni, j=1 ∈J . Write elm for the lmth matrix unit in A n×n, i.e., elm is the matrix
which has the identity element e at its jkth entry whereas all other entries are zero.
Then

e1ige j1 =

⎡

⎢

⎢

⎢

⎣

gi j 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤

⎥

⎥

⎥

⎦

whence J ⊆ G n×n. The proof of the reverse inclusion is left as an exercise.

Corollary 1.1.16. Let A be a Banach algebra with identity, and let J be a closed
ideal of A n×n. Then there is a closed ideal G of A such that J = G n×n.

Indeed, one easily checks that the ideal G defined in the previous proof is closed
if J is closed.

Theorem 1.1.17. Let A be a unital algebra over a field F. If A contains a unital
subalgebra A0 which is isomorphic to F

n×n, then there exists a unital subalgebra
D of A such that A is isomorphic to Dn×n. Moreover, the centers of A and D
coincide.

Proof. Let E jk ∈ F
n×n denote the matrix the jkth entry of which is 1 ∈ F whereas

all other entries are 0 ∈ F. Let μ stand for the isomorphism between A0 and F
n×n,



12 1 Banach algebras

and let e jk ∈ A0 be the uniquely determined elements such that μ(e jk) = E jk. Note
that e jkeim = δkie jm. For a ∈ A and j,k = 1, . . . ,n, set

w jk(a) :=
n

∑
i=1

ei jaeki

and
w(a) := [w jk(a)]nj,k=1 ∈ A n×n.

We will prove that w is the desired isomorphism. Clearly w is linear, and it is easy
to check that w(a)w(b) = w(ab). Thus, w is an algebra homomorphism. Further, the
identity

∑
m
∑

l

em1wml(a)e1l =∑
m
∑

l
∑

i
em1eimaelie1l =∑

m
∑

l

emmzell = a (1.4)

shows that the kernel of w is trivial. Let D := w11(A ). The set D is a linear space,
and since

w11(a)w11(b) =∑
i
∑

j
ei1ae1ie j1be1 j =∑

i
ei1ae11be1i = w11(ae11b)

is also an algebra. We will show next that w jk(A ) = D for all 1 ≤ j,k ≤ n. Define
elements p j′ j := ∑n

i=1 el(i, j′),l(i, j) where

l(i, j) =

⎧

⎪

⎨

⎪

⎩

j′ if i = j,

j if i = j′,

i if i �= j, j′.

Note that p2
j′ j = e. Now let a ∈ A and j,k ∈ {1, . . . ,n}. Then

w jk(a) =
n

∑
i=1

ei jaeki =
n

∑
i=1

ei j p
2
j1ap2

1keki =
n

∑
i=1

ei1a′e1i = w11(a′)

with a′ := p j1ap1k. Thus, w maps A into Dn×n. To see that w maps A onto Dn×n,
let [ f jk]nj,k=1 ∈ Dn×n and put f := ∑i∑m eim fim. Then

w jk( f ) =∑
l
∑

i
∑
m

el jeim fimekl

=∑
l
∑

i
∑
m

fimel jeimekl (since fim ∈ D)

=∑
l

f jkell = f jk.

Hence, w is an algebra isomorphism between A and Dn×n.
It remains to show that the centers of A and D coincide. First note that de jk =

e jkd for all d ∈ D and j,k ∈ {1, . . . ,n}. For c ∈ Cen A , we have
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w11(c) =
n

∑
i=1

ei1ce1i =
n

∑
i=1

eiic = c.

Hence, c ∈ D and, consequently, c ∈ Cen D . Conversely, let c ∈ Cen D . Then
diag(c, . . . ,c) is in the center of Dn×n, whence w−1(diag(c, . . . ,c)) ∈ Cen A . But

w−1(diag(c, . . . ,c)) =∑
i
∑
m

eimcim =∑
i

eiic = c,

so we conclude that c ∈ Cen A , and the proof is finished.

Now let A be a Banach algebra and endow Dn×n with a matrix norm, say

‖[d jk]‖ := max
j
∑
k

‖d jk‖. (1.5)

Corollary 1.1.18. Let A be a unital Banach algebra over C, which contains a uni-
tal subalgebra A0 isomorphic to C

n×n. Then the algebra D defined by the previous
theorem is closed, and w is a continuous isomorphism between A and Dn×n.

Proof. Put c = max j,k ‖e jk‖. Then

‖w(a)‖ = max
j
∑
k

‖w jk(a)‖ ≤ max
j
∑
k
∑

i
c2‖a‖ = n2c2‖a‖,

and

‖a‖ =

∥

∥

∥

∥

∥

∑
j
∑
k

e j1w jk(a)e1k

∥

∥

∥

∥

∥

≤ nc2‖w(a)‖

by (1.4).

1.1.5 A flip elimination technique

We conclude this introductory section by an elementary flip elimination technique
which is useful for studying particular algebras and will be important, for instance,
in Section 5.7.

An element p of an algebra is called an idempotent if p2 = p. If A is an algebra
with identity e, an element j ∈ A is called a flip if j2 = e. We will see that certain
algebras which contain a flip can be identified with 2× 2 matrix algebras without
flip. Again we start with a purely algebraic setting.

Let A be an algebra with identity e which contains an idempotent p and a flip j
such that jp j = e− p. The mapping M : A → A 2×2,

a �→
[

pap pa(e− p)
(e− p)ap (e− p)a(e− p)

]
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and the associated mapping L : A → A 2×2,

L(a) :=
[

e 0
0 j

]

M(a)
[

e 0
0 j

]

=
[

pap pa jp
p jap p ja jp

]

.

are injective homomorphisms. Now assume that A is generated by the flip j and
by (the elements of) an algebra B with p in its center and with jB j ⊆ B. Then
every element a ∈ A can be written as a sum a1 + a2 j with a1,a2 ∈ B, and this
decomposition is unique. Indeed, let a1,a2 be elements of B such that a1 +a2 j = 0.
Multiplying this equality from both sides by p and taking into account that p belongs
to the center of B, we find that pa1 p = 0. Similarly, (e− p)a1(e− p) = 0, whence

a1 = pa1 p+(e− p)a1(e− p) = 0.

But then a2 must be zero, too. Now let a = a1 +a2 j with a1,a2 ∈ B. Then

L(a) =
[

pa1 p+ pa2 jp pa1 jp+ pa2 p
p ja1 p+ p ja2 jp p ja1 jp+ p ja2 p

]

=
[

pa1 p pa2 p
p ja2 jp p ja1 jp

]

=
[

pa1 p pa2 p
pã2 p pã1 p

]

where we wrote ãi for jai j ∈ B. Hence, L maps A into [pBp]2×2. To show that L
is onto, let a1,a2,a3,a4 be elements of B and set

a := pa1 p+ pa2 j(e− p)+(e− p) ja3 p+(e− p) ja4 j(e− p).

Then a ∈ A , and it easy to see that

L(a) =
[

pa1 p pa2 p
pa3 p pa4 p

]

.

So we just proved the following result.

Proposition 1.1.19. Let B be an algebra with identity e which contains an idem-
potent p in its center. Let A be the algebra generated by B and a flip j with the
properties jB j ⊆ B and jp j = e− p. Then every element a ∈ A can be written
uniquely as the sum a1 +a2 j with a1,a2 ∈ B, and the mapping

L : A → [pBp]2×2, a �→
[

pa1 p pa2 p
pã2 p pã1 p

]

with ã := ja j is an isomorphism.

The result for the Banach case is exactly the same.
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Corollary 1.1.20. Let B be a Banach algebra with identity e the center of which
contains an idempotent p. Let A be the Banach algebra generated by B and a flip
j with the properties jB j ⊆ B and jp j = e− p. Then every element a ∈ A can be
written uniquely as the sum a1 +a2 j with a1,a2 ∈ B, and the mapping

L : A → [pBp]2×2, a �→
[

pa1 p pa2 p
pã2 p pã1 p

]

with ã := ja j is a continuous isomorphism.

The difference between the formulations of Proposition 1.1.19 and its corollary is
the meaning of the word generated. In the proposition it means algebraically gener-
ated, whereas in the corollary it stands for algebraically generated and completed.

Proof. The assertions follow either as in the algebraic setting or are straightfor-
ward. Let us verify, for example, that every element a ∈ A can be written as the

sum a1 +a2 j with a1,a2 ∈ B. Let a ∈ A , and let a(n)
1 +a(n)

2 j with a(n)
1 , a(n)

2 ∈ B be
elements which converge to a. Then the elements

p
(

a(n)
1 +a(n)

2 j
)

p+(e− p)
(

a(n)
1 +a(n)

2 j
)

(e− p) = pa(n)
1 p+(e− p)a(n)

1 (e− p)

converge to pap +(e− p)a(e− p) which implies that pap +(e− p)a(e− p) ∈ B.
Similarly, the elements

p
(

a(n)
1 +a(n)

2 j
)

jp+(e− p)
(

a(n)
1 +a(n)

2 j
)

j(e− p) = pa(n)
2 p+(e− p)a(n)

2 (e− p)

converge to pa jp+(e− p)a j(e− p) which implies that pa jp+(e− p)a j(e− p) ∈
B. Consequently,

a = pap+(e− p)a(e− p)+ pa(e− p)+(e− p)ap

= [pap+(e− p)a(e− p)]+ [pa jp− (e− p)a j(e− p)] j,

where the expressions in brackets belong to B.

Note that if A and B are C∗-algebras and if p and j are self-adjoint elements,
then L is actually an isometric *-isomorphism.

1.1.6 Exercises

Exercise 1.1.1. Check all the details in the construction of a quotient algebra. Con-
sider both the pure algebraic setting and the setting of Banach algebras.



16 1 Banach algebras

Exercise 1.1.2. Let A be a unital normed algebra and a ∈ A . Show that the subal-
gebra alg{a} of A is the closure of the set of polynomials with complex coefficients
in a and that alg{a} is a commutative subalgebra of A .

Exercise 1.1.3. Two norms ‖·‖1 and ‖·‖2 on a normed algebra A are called equiv-
alent if there is a positive constant C such that C−1‖a‖1 ≤ ‖a‖2 ≤ C‖a‖1 for each
a ∈ A .

a) Show that equivalence of norms is an equivalence relation.
b) Show that the property ‖e‖= 1 in the definition of a normed unital algebra is not

essential in the following sense: Every normed algebra with ‖e‖ �= 1 possesses
an equivalent norm ‖ · ‖1 which makes it to a normed algebra with ‖e‖1 = 1.

Exercise 1.1.4. Let J be a closed ideal of a unital normed algebra A . Show that
the canonical homomorphism from A onto the quotient algebra A /J is continu-
ous with norm 1.

Exercise 1.1.5. Prove all statements of Examples 1.1.91.1.10, 1.1.11, 1.1.12 and
1.1.13. For the Wiener algebra, one can consult [171].

Exercise 1.1.6. Give an example of a non-closed ideal of the Banach algebra
C[0, 1].

Exercise 1.1.7. Consider the Wiener algebra W in Example 1.1.12.

a) Given functions f and g in W with power series representations ∑n∈Z fnξ n and
∑n∈Z gnξ n, respectively, find the representation of the product f g as a power
series.

b) Consider the Banach space l1(Z) of all sequences x : Z → C with ‖x‖ :=
∑n∈Z |xn| < ∞. Define a product in l1(Z) which makes this space a Banach
algebra which is isomorphic to the Wiener algebra.

Exercise 1.1.8. Prove that the Lebesgue space L1(R) with the usual norm and with
the convolution product defined by

( f ∗g)(t) :=
∫ +∞

−∞
f (t − s)g(s)ds

is a commutative Banach algebra. Does it have a unit?

Exercise 1.1.9. Check the details of the unitization construction.

Exercise 1.1.10. Check the details in the proofs of Proposition 1.1.15 and Theo-
rem 1.1.17.

Exercise 1.1.11. Let p1, . . . , pn be elements of a unital Banach algebra A such that
pi �∈ {0,e}, p2

i = pi and ∑n
i=1 pi = e. Endow A n×n with the matrix norm (1.5) and

define the mapping

M : A → A n×n, a �→ [piap j]ni, j=1.

Set P := diag(pi). Prove that M is a Banach algebra isomorphism between A and
PA n×nP.
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1.2 Invertibility and spectrum

1.2.1 Invertibility

Let A be an algebra with identity e over a field F. An element a ∈ A is left (right,
resp. two-sided) invertible if there exists an element b ∈A such that ba = e (ab = e,
resp. ab = ba = e). Two-sided invertible elements are called invertible. It is easy
to see that the two-sided inverse of an element a ∈ A is uniquely determined if it
exists. We denote it by a−1. Obviously,

(a−1)−1 = a and (ab)−1 = b−1a−1

for all invertible elements a, b ∈ A . Thus, the set GA of all invertible elements of
A forms a group with respect to multiplication.

Let A1, A2 be unital algebras over the same field. A homomorphism smb : A1 →
A2 is called a symbol mapping if it has the property that a ∈ A1 is invertible if and
only if smb(a) ∈ A2 is invertible.

The following observation is often useful.

Lemma 1.2.1. Let A be an algebra with identity e �= 0, and let a, b ∈ A . If e−ab
is invertible, then e−ba is invertible.

Indeed, one can easily check that (e−ba)−1 = e−b(ab− e)−1a.

Theorem 1.2.2 (Neumann series). Let A be a unital Banach algebra over K.

(i) If u ∈ A and ‖u‖ < 1, then e−u is invertible and (e−u)−1 = ∑∞n=0 un.
(ii) If a ∈A is invertible and ‖w‖< ‖a−1‖−1, then a−w is also invertible. More-

over,

‖(a−w)−1‖ ≤ ‖a−1‖
1−‖a−1‖‖w‖ (1.6)

and

‖(a−w)−1 −a−1‖ ≤ ‖a−1‖2‖w‖
1−‖a−1‖‖w‖ . (1.7)

Proof. Due to
∥

∥

∥

∥

∥

∞

∑
n=0

un

∥

∥

∥

∥

∥

≤
∞

∑
n=0

‖un‖ ≤
∞

∑
n=0

‖u‖n =
1

1−‖u‖ ,

the Neumann series ∑∞n=0 un converges absolutely in the norm of A , and its sum is
just the inverse of e−u:

(e−u)(e+u+u2 + . . .) = (e+u+u2 + . . .)− (u+u2 + . . .) = e.

Now let a ∈ A be an arbitrary invertible element, and let w ∈ A with ‖w‖ <
‖a−1‖−1. Then ‖a−1w‖ ≤ ‖a−1‖‖w‖ < 1, whence it follows that the element e−
a−1w is invertible and that its inverse is∑∞n=0(a

−1w)n. But then a−w = a(e−a−1w)
is also invertible, and its inverse is ∑∞n=0(a

−1w)na−1. Moreover,
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‖(a−w)−1‖ ≤ ‖a−1‖
∞

∑
n=0

(‖a−1‖‖w‖)n ≤ ‖a−1‖
1−‖a−1‖‖w‖

and
‖(a−w)−1 −a−1‖ ≤ ‖a−1‖‖(a−w)−1‖‖a− (a−w)‖

which proves the second assertion.

Corollary 1.2.3. The group GA of the invertible elements of a unital Banach alge-
bra is open, and the mapping x �→ x−1 is a homeomorphism of GA onto itself.

Proof. If a ∈ A is invertible then, by the previous theorem, GA contains the open
neighborhood {w ∈ A : ‖a−w‖ < ‖a−1‖−1} of a. Thus, GA is open.

For the second assertion, let (xn) be a sequence in GA such that xn → x ∈ GA . We
have to show that then x−1

n → x−1. This follows immediately from (1.7) by choosing
a := x and w := x− xn.

Example 1.2.4. Theorem 1.2.2 is important from several points of view. For in-
stance, it immediately implies an iterative method to calculate the solution of equa-
tions of the form x−Ax = y where y is a given element of a Banach space X and
A ∈ L (X) is an operator with ‖A‖ < 1. For y ∈ X , define

x0 := y

x1 := y+Ax0 = y+Ay

x2 := y+Ax1 = y+Ay+A2y

...

xn := y+Axn−1 = Sny with Sn =
n

∑
k=0

Ak.

If ‖A‖ < 1 then ∑∞k=0 Ak converges, xn → x = (I −A)−1y, and the error of the nth
approximation can be estimated by

‖x− xn‖ ≤ ‖(I −A)−1 −Sn‖‖y‖ ≤
(

∞

∑
k=n+1

‖A‖k

)

‖y‖ =
‖A‖n+1

1−‖A‖‖y‖.

�

1.2.2 Spectrum

Let A be a unital algebra over F and let a ∈ A . The resolvent set of a is the set

ρA (a) := {λ ∈ F : λe−a ∈ GA }.
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Its complement σA (a) := F \ ρA (a) is called the spectrum of a in A . When the
underlying algebra is understood we will denote the resolvent set and the spectrum
of an element a simply by ρ(a) and σ(a). For λ ∈ ρ(a), the element Rλ (a) :=
(λe−a)−1 is called the resolvent of a at λ , and the function

ρ(a) → A , λ �→ (λe−a)−1

is called the resolvent function of a.
The following is the spectral mapping theorem for polynomials.

Proposition 1.2.5. Let A be a complex algebra with identity e and let p be a poly-
nomial with complex coefficients of positive degree. Then, for all a∈A and b∈GA ,

σ(p(a)) = p(σ(a)) and σ(b−1) = (σ(b))−1.

Proof. For every λ ∈ C, there is a polynomial q such that

p(a)− p(λ )e = (a−λe)q(a).

Thus, if λ ∈ σ(a), then p(λ ) ∈ σ(p(a)), whence the inclusion p(σ(a)) ⊆ σ(p(a)).
For the reverse inclusion, let λ ∈ σ(p(a)), and let

p(x)−λ = α(x−μ1) . . .(x−μn)

be the factorization of the polynomial p−λ into linear factors. Then

p(a)−λe = α(a−μ1e) . . .(a−μne),

and at least one of the factors a− μie is not invertible. Thus, μi ∈ σ(a) for some i,
which implies that λ = p(μi) ∈ p(σ(a)).

The second assertion is evident.

Proposition 1.2.6. Let A be an algebra over F with identity e, and let a, b ∈ A .
Then

σ(ab)\{0} = σ(ba)\{0}. (1.8)

The proof of the proposition above is just a modification of the proof in Lemma
1.2.1 and is left as an exercise.

The resolvent Rλ (a) can also be considered as a function of the element a.

Proposition 1.2.7. In a unital Banach algebra over K, the resolvent Rλ (a) depends
continuously both on λ and on a.

Proof. The function ρ(a)×A → A , (λ , a) �→ λe−a is clearly continuous in the
product topology of ρ(a)×A . By Corollary 1.2.3, the inversion is also a continuous
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function, and since the composition of continuous functions is continuous again, the
result follows.

Example 1.2.8. For n ∈ N, consider the algebra K
n×n of the n× n matrices with

entries in K as an algebra over K. The spectrum of an element of K
n×n is just the

set of its eigenvalues in K. Thus, if K = R, it can happen that the spectrum of an
element is empty, as the matrix

[

0 −1
1 0

]

without real eigenvalues shows. �

Example 1.2.9. Let X be a compact Hausdorff space and consider the complex
algebra C(X). A function f ∈ C(X) is invertible if and only if it has no zero on X .
Thus, the spectrum σ( f ) coincides with the set of values of f on X ; i.e., σ( f ) =
f (X). �

The main properties of the spectrum of an element of a complex Banach algebra
are summarized in the following. Whereas the boundedness and the closedness of
the spectrum also hold for real Banach algebras, the existence of points in the spec-
trum is a peculiarity of complex algebras (recall Example 1.2.8). The proof makes
use of some concepts from complex analysis which can be found in [1], for instance.

Theorem 1.2.10. Let A be a complex Banach algebra with identity e, and let a ∈
A . Then:

(i) the resolvent set of a is open in C, and the mapping ζ �→ (a−ζe)−1 from the
resolvent set of a into A is analytic;

(ii) the spectrum of a is a non-empty and compact subset of the complex plane.

Proof. (i) Let ζ0 be in the resolvent set of a, and set a0 := (a− ζ0e)−1. For every
ζ ∈ C, one has a− ζe = a− ζ0e− (ζ − ζ0)e. So we get from Theorem 1.2.2 that
if ‖(ζ − ζ0)e‖ = |ζ − ζ0| < ‖a0‖−1, then ζ is in the resolvent set of a and the
inverse of a− ζe is given by ∑∞n=0(ζ − ζ0)nan+1

0 . This series converges absolutely
on {ζ ∈ C : |ζ −ζ0| < ‖a0‖−1}, and every function ζ �→ (ζ −ζ0)nan+1

0 is analytic
on this disk.

(ii) The spectrum of a is a closed subset of C by assertion (i). Moreover, if |λ |> ‖a‖
then, by Theorem 1.2.2 again, the element e−λ−1a is invertible. Hence, the element
a−λe = −λ (e−λ−1a) is invertible, and its inverse is

(a−λe)−1 =
∞

∑
n=0

λ−n−1an (1.9)

where the series converges absolutely. Thus, |λ | ≤ ‖a‖ for all λ ∈ σ(a), and σ(a)
is a compact subset of C.
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Assume that σ(a) is empty. Then λ �→ (a−λe)−1 is an analytic function on C by
part (i). Moreover, this function is uniformly bounded. Indeed, from (1.9) we obtain

‖(a−λe)−1‖ ≤
∞

∑
n=0

|λ |−n−1‖a‖n = (|λ |−‖a‖)−1

for all |λ | > ‖a‖−1. Thus, if |λ | > 2‖a‖, then ‖(a−λe)−1‖ ≤ ‖a‖−1. Further, the
resolvent function is obviously bounded on the closed disk {λ ∈ C : |λ | ≤ 2‖a‖}.
Thus, by Liouville’s theorem, the function λ �→ (a − λe)−1 is constant. Since
limλ→∞(a− λe)−1 = 0, the constant value of this function is 0, which is impos-
sible.

The following is an important consequence of the non-emptiness of the spectrum.

Corollary 1.2.11 (Gelfand–Mazur theorem). Let A be both a complex Banach al-
gebra with identity e �= 0 and a skew field. Then A is isomorphic to the field C.

Proof. Let a ∈A . By the preceding proposition, there is a complex number λ such
that a−λe is not invertible. The only non-invertible element of a skew field is 0.
Hence, a = λe and A = C.

1.2.3 Spectral radius

Let A be an algebra over K with identity e. If the spectrum of an element a ∈ A is
not empty, then the (possibly infinite) number

rA (a) := sup{|λ | : λ ∈ σA (a)}

is called the spectral radius of a. If the underlying algebra is evident, we will
also write r(a) for the spectral radius of a. Thus, r(a) is the radius of the smallest
closed disk in the complex plane with center at 0 that contains the spectrum of the
element a. Notice that, for a real or complex Banach algebra A with identity, it is
an immediate consequence of Theorem 1.2.2 that

r(a) ≤ ‖a‖ for all a ∈ A . (1.10)

Unless stated otherwise, algebra will mean complex algebra hereafter.

Theorem 1.2.12. Let A be a Banach algebra with identity e. For every a ∈ A , the
limit limn→∞ ‖an‖1/n exists, and it coincides with the spectral radius r(a) of a.

Proof. Let λ ∈ σ(a). Then, by Proposition 1.2.5, λ n ∈ σ(an). The estimate (1.10)
gives |λ n| ≤ ‖an‖ and, consequently, |λ | ≤ ‖an‖1/n for all positive integers n. Thus,
r(a) ≤ ‖an‖1/n for all positive integers n, and this implies
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r(a) ≤ inf‖an‖1/n.

Further, recall from assertion (i) of Theorem 1.2.10 that the function λ �→ (a−λe)−1

is analytic in {λ ∈ C : |λ | > r(a)}. On the other hand, if |λ | is large enough, then
(a− λe)−1 = ∑n≥0λ−n−1an, and the series converges absolutely. By Hadamard’s
formula, the radius of convergence of this series is just limsup‖an‖1/n. Since the
series represents the Laurent series of (a−λe)−1, and it cannot be analytic outside
its convergence radius we must have

limsup‖an‖1/n ≤ r(a).

The estimates obtained imply both the existence of the limit and the formula for the
spectral radius.

The formula for the spectral radius is remarkable: It connects purely algebraic
quantities (the spectral radius of a) with metric quantities (the norms of an).

If two elements commute, one has the following, the proof of which is left as an
exercise.

Proposition 1.2.13. Let A be a Banach algebra with identity e and let a, b ∈ A . If
ab = ba, then

r(ab) ≤ r(a)r(b) and r(a+b) ≤ r(a)+ r(b).

1.2.4 Continuity of the spectrum

The trivial example of the numbers 1/n shows that the limit of a sequence of invert-
ible elements is not necessarily invertible again.

Proposition 1.2.14. Let A be a Banach algebra with identity e, and let an, a ∈ A
with an → a.

(i) If a is invertible, then the an are invertible for all sufficiently large n, and
a−1

n → a−1.
(ii) If the an are invertible, and if sup‖a−1

n ‖ < ∞, then a is invertible, and a−1
n →

a−1.

Proof. (i) The invertibility of the an is a consequence of Theorem 1.2.2, which also
yields the uniform boundedness of the norms of the a−1

n . Thus,

‖a−1
n −a−1‖ ≤ ‖a−1

n ‖‖a−an‖‖a−1‖→ 0.

(ii) One has ‖e− a−1
n a‖ ≤ ‖a−1

n ‖‖an − a‖ → 0. Hence, a−1
n a = e− (e− a−1

n a) is
invertible for all sufficiently large n, whence the left invertibility of a follows. The
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right invertibility can be shown analogously. Thus, a is invertible. The convergence
of a−1

n to a−1 can be checked as in part (i).

The conditions in assertion (ii) can be considerably weakened in the commutative
context.

Proposition 1.2.15. Let A , a, an be as in Proposition 1.2.14. If the an are invertible,
if ana = aan for all n, and if supr(a−1

n ) < ∞, then a is invertible, and a−1
n → a−1.

Proof. We have

r(e−a−1
n a) = r(a−1

n (an −a)) ≤ r(a−1
n )r(an −a) ≤ r(a−1

n )‖an −a‖→ 0

by Proposition 1.2.13 and by (1.10). Hence, for all sufficiently large n, 1 �∈ σ(e−
a−1

n a) so that a−1
n a = e− (e−a−1

n a) is invertible, whence the invertibility of a. The
convergence of a−1

n to a−1 is a consequence of part (i) of Proposition 1.2.14.

Next we consider continuity properties of the spectrum of an element a as a
function of a. Let (Mn)n∈Z+ be a sequence of subsets of the complex plane C. The
partial limiting set or limes superior limsupn→∞Mn consists of all points m ∈ C

which are a partial limit of a sequence (mn) with mn ∈ Mn. Limiting sets are closed.

Proposition 1.2.16. Let A be a Banach algebra with identity e, and let an, a ∈ A
with an → a. Then

limsup
n→∞

σ(an) ⊆ σ(a).

Proof. Let λ ∈ limsupσ(an), and let (λnk) with λnk ∈ σ(ank) be a sequence which
converges to λ . Then ank −λnk e converges to a−λe. Assume a−λe to be invertible.
Then ank −λnk e is invertible for all sufficiently large k due to Proposition 1.2.14 (i),
which is a contradiction.

Proposition 1.2.17. Let A be a Banach algebra with identity e, let a ∈ A , and let
V be a neighborhood of 0 ∈ C. Then there is a number δ > 0 such that

σ(b) ⊆ σ(a)+V for all b ∈ A with ‖b−a‖ < δ .

A mapping φ of a topological space S into the set of the subsets of a topological
space T is upper semi-continuous if, for each s0 ∈ S and each neighborhood U of
φ(s0), there is a neighborhood V of s0 such that

φ(s) ⊆U for all s ∈V.

In that sense, the mapping a �→σ(a) of a Banach algebra A into the compact subsets
of C is upper semi-continuous. The proof of Proposition 1.2.17 follows easily from
the next result by specifying S = {a ∈ A : ‖a‖ ≤ r} and T = {z ∈ C : |z| ≤ r} with
some sufficiently large r.
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Lemma 1.2.18. Let φ be a mapping of a metric space S into the set of the closed
subsets of a compact metric space T . Then φ is upper semi-continuous if and only
if limsupn→∞ φ(sn) ⊆ φ(s) for all sequences sn → s.

Proof. Let φ be upper semi-continuous, and let U be a neighborhood of φ(s).
Then, to every sequence sn → s, φ(sn) ⊆ U for all sufficiently large n, hence,
limsupφ(sn) ⊆ U . Thus, limsupφ(sn) lies in the intersection of all open neigh-
borhoods of φ(s), and this intersection coincides with φ(s) because φ(s) is closed.

Conversely, let limsupφ(sn) ⊆ φ(s) for every sequence sn → s, but assume φ to
be not upper semi-continuous. Then there exists a neighborhood U of φ(s) as well
as a sequence (mnk) of points mnk ∈ φ(snk) \U . The sequence (mnk) possesses a
convergent subsequence (because T is compact). The limit of this subsequence does
not belong to U and thus, not to φ(s). This contradicts the hypothesis.

The upper semi-continuity of the mapping a �→ σ(a) is – without further con-
ditions – the sharpest continuity property that can be obtained. This is illustrated
by the following example of a sequence of quasinilpotent elements (i.e., of ele-
ments with spectrum {0}) which converges to a non-quasinilpotent element. Non-
quasinilpotent elements which can be obtained in this manner are called limpotent.
This example goes back to Kakutani and is taken, as it stands, from Rickart [162].
The notion limpotent element was proposed by Gohberg and Krupnik [72].

Example 1.2.19 (Kakutani). Let H be a separable Hilbert space and (em)∞m=1 be an
orthonormal basis of H. Consider the sequence of scalars

αm = exp(−k), for m = 2k(2l +1),

where k, l = 0, 1, 2, . . ., and define the weighted shift operator A on H by

Aem = αmem+1, m = 1, 2, . . . .

The norm of A is just supm |αm|. Observe also that

Anem = αmαm+1 . . .αm+n−1em+n

and hence ‖An‖ = supm(αmαm+1 . . .αm+n−1). By the definition of the αm,

α1α2 . . .α2t−1 =Π t−1
j=1 exp(− j2t− j−1),

and therefore

(α1α2 . . .α2t−1)1/2t−1
>
(

Π t−1
j=1 exp

(

−( j/2 j+1)
)

)2
.

If we set β := ∑∞j=1 j/2 j+1, then

exp(−2β ) ≤ lim
n→∞

‖An‖1/n = r(A).
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In particular, A is not quasinilpotent. Now define operators Ak by

Akem :=
{

0 if m = 2k(2l +1),
αmem+1 if m �= 2k(2l +1).

The operators Ak are nilpotent (that is, a certain power of Ak is zero, namely A2k+1
k =

0). On the other hand,

(A−Ak)em =
{

e−kem+1 if m = 2k(2l +1),
0 if m �= 2k(2l +1).

Therefore, ‖A−Ak‖ = e−k, so that limAk = A. �

The next result shows that commutativity forces the spectrum to be continuous.

Proposition 1.2.20. Let A be a Banach algebra with identity e, let a ∈ A , and let
V be a neighborhood of 0 ∈ C. Then there is a δ > 0 such that

σ(b) ⊆ σ(a)+V and σ(a) ⊆ σ(b)+V

for all b with ‖b−a‖ < δ and ab = ba.

Proof. The first inclusion follows from Lemma 1.2.18. For a proof of the second
one, we can assume without loss that V is a disk with center at zero and with radius
ε > 0.

Suppose the assertion to be false. Then there is a sequence (bn) such that
limbn = a and abn = bna, but σ(a) �⊆ σ(bn) +V for every n. For n ∈ N, choose
xn ∈ σ(a)\ (σ(bn)+V ), and let x0 be a partial limit of the sequence (xn) (which ex-
ists due to the compactness of σ(a)). Then |x0−x| ≥ ε for every x∈σ(bn) and every
n or, equivalently, dist (σ(bn−x0e), 0)≥ ε. Hence, r((bn−x0e)−1)≤ ε−1 (cf. Exer-
cise 1.2.6), whence via Proposition 1.2.15 the invertibility of a−x0e = lim(bn−x0e)
follows. This contradicts the assumption x0 ∈ σ(a).

Observe that the commutativity of bn with a has only been used to obtain a con-
tradiction via Proposition 1.2.15. Thus, if it happens that the boundedness of the
spectral radii (r(b−1

n −xe)) implies the boundedness of (‖b−1
n −xe‖), then we again

have a contradiction, and continuity follows. In particular we see that the spectrum
is a continuous function when restricted to the set of the normal elements of a C∗-
algebra, since in this case r(b) = ‖b‖ (see Proposition 1.2.36 below). This result
is due to Newburgh [127], who also proved the following refinement of Proposi-
tion 1.2.17.

Proposition 1.2.21. Let A be a Banach algebra with identity e �= 0, let a ∈A , and
let an ∈ A be elements with liman = a. Then, if n is large enough, σ(an) has points
in the neighborhood of each connected component of σ(a).

Corollary 1.2.22. Limpotent elements of Banach algebras have connected spectra.
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1.2.5 Subalgebras and invertibility

All algebras considered in this section are supposed to be unital. Let A be an algebra
and B be a subalgebra of A containing the identity. If b ∈ B, what is the relation
between σB(b) and σA (b)? Evidently, if b is not invertible in A , then it cannot
be invertible in B. Thus, σA (a) ⊆ σB(a). But if b ∈ B is invertible in A , then it
might happen that b−1 �∈ B and thus, the spectra of b in A and B can be different.
This fact is illustrated by the following example.

Example 1.2.23 (The disk algebra). Consider the unit circle T = {z ∈ C : |z| = 1}
and the open unit disk D = {z ∈ C : |z| < 1}, and let A := C(T). The disk algebra
A is the closure in A of the algebra of all polynomials p in z ∈ T (the reason for the
name will become clear from Exercise 2.1.2).

The spectrum of the polynomial p(z) := z, when considered as an element of
the algebra A of all continuous functions, is T by Example 1.2.9. We are going
to determine the spectrum of p, now considered as an element of the disk algebra
A. Since ‖p‖∞ = 1, σA(p) is contained in the closed unit disk. We claim that it
coincides with that disk. Let |λ | < 1 and suppose that λ �∈ σA(p). Then there is
an f ∈ A such that (p− λ ) f = 1. Let (pn) be a sequence of polynomials which
converges to f uniformly on T. Then, for any ε > 0, there exists an n0 ∈ N such that

sup{|pn(z)− pm(z)| : z ∈ T} = ‖pn − pm‖∞ < ε

for n, m > n0. By the maximum modulus principle,

sup{|pn(z)− pm(z)| : z ∈ D} < ε

for n, m > n0. Consequently, the limit function g := lim pn is analytic on D and
continuous on its closure. Moreover, g|T = f . By the same argument, since pn(p−
λ ) → 1 uniformly on T, one has pn(p − λ ) → 1 uniformly on D. In particular,
g(z)(z−λ ) = 1 for each z ∈ D. Choosing z := λ , we arrive at a contradiction. Thus,
D ⊂ σA(p), whence σA(p) = T∪D. In particular, σA(p) �= σA (p). �

The following notion will help to clarify the situation.

Definition 1.2.24. Let A be a normed algebra. An element z ∈ A is said to be a
left (right) topological divisor of zero of A if there exists a sequence (zn) in A such
that

(i) ‖zn‖ = 1 for all n ∈ N;
(ii) limn→∞ zzn = 0 (limn→∞ znz = 0).

An element which is both a left and right topological divisor of zero is simply called
a topological divisor of zero.

Example 1.2.25. Let z denote the identical mapping of the interval [0, 1]. The func-
tion z is a topological divisor of zero of the algebra C[0,1]. For, one easily checks
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that the functions defined by

zn(t) :=

{

1−nt if 0 ≤ t < 1/n,

0 if 1/n ≤ t ≤ 1

fulfill the conditions of the definition. �

Proposition 1.2.26. Left (right) topological divisors of zero of a unital normed al-
gebra cannot be invertible.

Proof. Let B be a unital normed algebra and suppose z ∈B to be a left topological
divisor of zero. Then there exists a sequence (zn) in B such that ‖zn‖ = 1 and
zzn → 0. If z would be invertible, then z−1zzn = zn → 0. But this is impossible
because ‖zn‖ = 1 for all n ∈ N. The reasoning for a right topological divisor of zero
is the same.

Every topological divisor of zero of a subalgebra of a given normed algebra is
also a topological divisor of zero of the algebra itself. This is because the definition
of a topological divisor of zero only involves norm properties (which do not change
when passing to a subalgebra).

Corollary 1.2.27. If z is a left (right) topological divisor of zero in a subalgebra of
a unital normed algebra A then z cannot be invertible in A .

Thus, topological divisors of zero are “fundamentally” non-invertible. There is
no larger normed algebra in which they might become invertible.

We establish one more relation between GA and the set of topological divisors
of zero of an algebra A .

Proposition 1.2.28. Let A be a Banach algebra. Then every element in the bound-
ary of GA is a topological divisor of zero of A .

Proof. Let z be in the boundary of GA . We will show that z is a right topological
divisor of zero. In the same way, one can check that z is also a left topological divisor
of zero.

Since GA is open, z is not invertible and there is a sequence (xn) in GA which
converges to z. Set zn := x−1

n /‖x−1
n ‖ for n ∈ N. We check that the sequence (zn)

meets the conditions of Definition 1.2.24. Evidently, ‖zn‖ = 1. Further,

‖znz‖ =
‖x−1

n z‖
‖x−1

n ‖
=

‖(x−1
n z− e)+ e‖
‖x−1

n ‖
≤ ‖x−1

n z− e‖
‖x−1

n ‖
+

1

‖x−1
n ‖

≤ ‖x−1
n ‖‖z− xn‖
‖x−1

n ‖
+

1

‖x−1
n ‖

= ‖z− xn‖+
1

‖x−1
n ‖

.

The first term on the right-hand side tends to zero. For the second one notice that,
since z is not invertible, x−1

n z cannot be invertible. Thus, ‖e−x−1
n z‖≥ 1 by Neumann

series. This implies that
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1 ≤ ‖e− x−1
n z‖ = ‖x−1

n (xn − z)‖ ≤ ‖x−1
n ‖‖xn − z‖,

whence ‖x−1
n ‖−1 ≤ ‖xn − z‖, too. The conclusion is that znz → 0, that is, z is a right

topological divisor of zero.

Proposition 1.2.29. Let B be a closed unital subalgebra of a unital Banach algebra
A and let b ∈ B. Then

σA (b) ⊆ σB(b), ∂σB(b) ⊆ ∂σA (b), and rB(b) = rA (b),

where ∂M refers to the boundary of the set M ⊂ C.

Proof. The first inclusion is obvious and has been already mentioned. For the sec-
ond inclusion, let μ ∈ ∂σB(b). Then μe−b lies in the boundary of GB and is, thus,
a topological divisor of zero in B by Proposition 1.2.28. By Corollary 1.2.27, μe−b
is not invertible in A , i.e., μ ∈ σA (b). In fact one even has μ ∈ ∂σA (b), because
μ ∈ ∂σB(b) is the limit of a sequence in ρB(b), and this sequence is also contained
in ρA (b). Finally, the equality of the spectral radii is an immediate consequence of
the formula for the spectral radius stated in Theorem 1.2.12.

This proposition shows that, when one goes from an algebra B to a larger alge-
bra, the spectrum of an element can only be reduced at the cost of interior points,
not losing any points in its boundary. Conversely, when passing to a subalgebra, the
spectrum of an element can only increase by suppressing “holes”, not by increas-
ing its boundary. To be precise, by a hole in σA (a) we mean a bounded, connected
component of the resolvent set ρA (a).

Theorem 1.2.30. Let A be a unital Banach algebra, B a closed unital subalgebra
of A and b ∈ B.

(i) Let B be a hole of σA (b). Then either B ⊂ σB(b) or B∩σB(b) = /0.
(ii) If ρA (b) is connected, then σA (b) = σB(b).

Proof. Given a hole B, define B1 := B\σB(b) and B2 := B∩σB(b). Then B1∩B2 =
/0 and B1 ∪B2 = B.

Clearly, B1 is open. Since ∂σB(b) ⊆ σA (b) and B∩σA (b) = /0, one has B2 =
B∩ intσB(b) which implies that B2 is open, too. Since B is connected, either B1 or
B2 must be empty. This proves assertion (i).

For a proof of assertion (ii), we first show that σB(b)\σA (b) is open. Suppose
there is a point

λ ∈ ∂ (σB(b)\σA (b))∩ (σB(b)\σA (b)).

Then λ is the limit of a sequence (λn) in the complement of σB(b)\σA (b), i.e., in
ρB(b)∪σA (b). There cannot be infinitely many of the λn in σA (b) since otherwise
λ ∈ σA (b) due to the closedness of spectra. Thus, λ is the limit of a sequence in
ρB(b). But then

λ ∈ ∂ρB(b) = ∂σB(b) ⊆ ∂σA (b) ⊆ σA (b)
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by Proposition 1.2.29, which is again impossible. Thus, σB(b) \ σA (b) is open,
and the connected set ρA (a) is the union of its disjoint open subsets ρB(b) and
σB(b)\σA (b). Since ρB(b) is non-empty by Theorem 1.2.2, the set σB(b)\σA (b)
must be empty.

In applications one often meets situations where one is interested in the invert-
ibility of an element b in an algebra A , but where technical limitations force one
and allow one to study the invertibility of b in a suitable subalgebra of A only. This
causes no problem if the subalgebra is inverse-closed in the following sense.

Definition 1.2.31. Let A be an algebra with unit e and B a unital subalgebra of A .
We say that B is inverse-closed in A if every element of B, which is invertible in
A , is also invertible in B.

There are large classes of algebras for which the inverse-closedness can be
granted. For example, this happens for closed symmetric subalgebras of C∗-algebras,
as we shall see below. But in general it might be a difficult task to verify the inverse-
closedness of a subalgebra of a given algebra. The following assertions provide
some simple, but often effective, criteria for deciding the inverse-closedness of a
given algebra.

Recall that a subset of the complex plane is called thin if it does not contain inner
points (with respect to C).

Corollary 1.2.32. Let A be a unital Banach algebra and B a unital closed subal-
gebra of A . If B contains a dense subalgebra B0 the elements of which have thin
spectra in B then B is inverse-closed in A .

Proof. Let c ∈ B0. Since σB(c) is thin, we have σB(c) = σA (c) by Proposi-
tion 1.2.29, whence it follows that the elements in B0 are invertible in B if and
only if they are invertible in A . Now let c ∈ B be invertible in A . Approximate c
by a sequence (cn) ⊆ B0. For large n, the cn are invertible in A , too, and it is easy
to check that c−1

n → c−1 as n →∞. But c−1
n ∈B, and since B is a closed subalgebra

we conclude that c−1 ∈ B.

Lemma 1.2.33. Let B be a unital subalgebra of a unital algebra A , and let J ⊂
B be an ideal of A . Then J is an ideal of B, and if the quotient algebra B/J
is inverse-closed in A /J , then B is inverse-closed in A .

Proof. We only prove the second assertion. Let b ∈ B be invertible in A . Then
the coset b+J is invertible in A /J . Since B/J is inverse-closed in A /J by
assumption, b+J is already invertible in B/J . Thus, there are elements b′ ∈ B
and j ∈ J such that bb′ = e + j. Multiplying by b−1 we obtain b′ = b−1 + b−1 j,
whence b−1 = b′ −b−1 j ∈ B.

Note that the converse of Lemma 1.2.33 does not hold. For a counter-example
see Exercise 1.4.9.
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As far as we know, it is still unknown if the inverse-closedness of B in A implies
the inverse-closedness of the matrix algebra Bn×n in A n×n for n > 1. But in the
simple but important special case when B is commutative, the answer is affirmative.
The proof is based on the following lemma, which is taken from [108].

Lemma 1.2.34. Let A be an algebra with identity e, and let A = [ai j] ∈ A n×n be
a matrix whose entries commute. Then A is invertible in A n×n if and only it the
determinant detA (defined in the common way) is invertible in A .

Proof. We denote the identity matrix diag(e, . . . ,e) in A n×n by en. Let adjA denote
the transpose of the matrix of cofactors from A. Using the commutativity of the
entries of A one can easily check that adjAA = AadjA = detAen. Hence, if detA is
invertible in A then A is invertible in A n×n.

Let now A be invertible in A n×n and A−1 = [ci j]. We will show that the entries
ci j commute and that they also commute with the entries of A. Let r be any of the
entries of A. Then

[rci j] = rA−1 = A−1A(rA−1) = (A−1r)AA−1 = A−1r = [ci jr],

hence, r commutes with the entries of A−1. Repeating this argument, now with r
taken from the ci j, and using the fact just proved we get that the entries of A−1 also
commute. Thus, the identities AA−1 = A−1A = en imply that

detAdet(A−1) = det(A−1)detA = e,

hence, detA is invertible in A .

Proposition 1.2.35. Let B be a commutative unital subalgebra of a unital algebra
A . If B is inverse-closed in A , then Bn×n is inverse-closed in A n×n.

Proof. If A ∈ Bn×n is invertible in A n×n then, by Lemma 1.2.34, detA ∈ B is
invertible in A . It follows that detA is invertible in B due to the inverse-closedness
property. Using the lemma again, we conclude that A is invertible in Bn×n.

1.2.6 The spectrum of elements of C∗-algebras

Let A be an involutive algebra with identity e. Remember that an element a ∈ A is
called

- normal if aa∗ = a∗a,
- self-adjoint or Hermitian if a = a∗,
- unitary if a∗a = aa∗ = e,
- an isometry if a∗a = e,
- a partial isometry if aa∗a = a.
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Proposition 1.2.36. Let A be a C∗-algebra with identity e �= 0.

(i) If a is normal, then r(a) = ‖a‖.
(ii) If a is isometric, then r(a) = 1.

(iii) If a is unitary, then σ(a) ⊆ T.
(iv) If a is self-adjoint, then σ(a) ⊆ R.

Proof. (i) We have
∥

∥a2n∥
∥

2 =
∥

∥(a∗)2n
a2n∥
∥=

∥

∥(a∗a)2n∥
∥. The self-adjointness of a∗a

yields
∥

∥(a∗a)2n∥
∥=

∥

∥(a∗a)2n−1∥
∥

2 = . . . = ‖a∗a‖2n
= ‖a‖2n+1

.

Thus,
∥

∥a2n∥
∥= ‖a‖2n

, and by Theorem 1.2.12,

r(a) = lim
∥

∥a2n∥
∥

2−n

= lim‖a‖2n2−n
= ‖a‖.

(ii) It is

‖an‖2 = ‖(a∗)nan‖ = ‖(a∗)n−1a∗aan−1‖ = ‖(a∗)n−1an−1‖
= . . . = ‖a∗a‖ = ‖e‖ = 1.

Consequently, r(a) = lim‖an‖1/n = 1.

(iii) The spectrum of a is contained in the closed unit disk {λ ∈ C : |λ | ≤ 1} by
assertion (ii). Since a−1 is also unitary, the spectrum of a−1 is contained in the
closed unit disk, too. The equality σ(a−1) = σ(a)−1 implies that σ(a) ⊆ T.

(iv) Self-adjoint elements are normal. Hence, r(a) = ‖a‖ by assertion (i). It remains
to show that a− λe is invertible for all λ ∈ C \R with |λ | ≤ ‖a‖. Choose a real
number μ with 1/μ > ‖a‖. Then e+ iμa is invertible. Define

u := (e− iμa)(e+ iμa)−1.

The element u is unitary, and because of |(1− iμλ )(1 + iμλ )−1| �= 1, the element
(1− iμλ )(1+ iμλ )−1e−u is invertible by assertion (iii). Now we have

(1− iμλ )(1+ iμλ )−1e−u =
= (1− iμλ )(1+ iμλ )−1e− (e− iμa)(e+ iμa)−1

= (1+ iμλ )−1[(1− iμλ )(e+ iμa)− (1+ iμλ )(e− iμa)](e+ iμa)−1

= (1+ iμλ )−1[2μ i(a−λe)](e+ iμa)−1,

hence, a−λe is invertible.

An element of a C∗-algebra with identity is called positive if it is self-adjoint and
if its spectrum is in [0, ∞ [ .

Proposition 1.2.37. An element of a C∗-algebra A with identity is positive if and
only if it is of the form b∗b for some b ∈ A .
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Finally, we mention two useful results concerning invertibility in C∗-algebras.
The proofs are left as exercises (see Exercises 1.2.24 and 1.2.25, where also some
hints are given).

Theorem 1.2.38 (Inverse-closedness). Let A be a C∗-algebra with identity e, and
let B be a C∗-subalgebra of A containing e. Then B is inverse-closed in A .

Theorem 1.2.39 (Semi-simplicity). Let A be a unital C∗-algebra and r ∈ A be
an element having the property that, whenever an element a ∈ A is invertible, then
a+ r is also invertible. Then r = 0.

We will see in Proposition 1.3.6 that this property is indeed equivalent to the
semi-simplicity of A , which will be defined in Section 1.3.

1.2.7 Exercises

Exercise 1.2.1. Consider a unital algebra A , and let a ∈A . Prove that if a is nilpo-
tent (i.e., if an = 0 for some n ∈ N), then σ(a) = {0}.

Exercise 1.2.2. Give an example of a C∗-algebra A with identity and of an element
a ∈ A such that σ(a∗a) �= σ(aa∗). Prove that this cannot happen if A = C

n×n.
Show that A∗A and AA∗ are unitarily equivalent for each matrix A ∈ C

n×n, that is,
there is a unitary matrix C such that C∗A∗AC = AA∗.

Exercise 1.2.3. Prove Proposition 1.2.6.

Exercise 1.2.4. Let A be a unital algebra and a ∈ A . Show the resolvent identity

Rλ (a)−Rμ(a) = (μ−λ )Rλ (a)Rμ(a)

for μ ,λ ∈ ρ(a).

Exercise 1.2.5. Show that if the product of two commuting elements of a unital
algebra is invertible then both elements are invertible.

Exercise 1.2.6. Let A be a Banach algebra with identity e and let a ∈ A be invert-
ible. Show that ‖a−1‖ ≥ r(a−1) = dist(σ(a), 0)−1.

Exercise 1.2.7. Consider the shift operator

V : l2(Z+) → l2(Z+), (x0, x1, x2, . . .) �→ (0, x0, x1, x2, . . .).

Show that V is a bounded operator and calculate its norm. Prove that V is left in-
vertible but not right invertible, and determine its spectrum.

Exercise 1.2.8. Let A be a unital Banach algebra, and let (an) be a sequence in A
with limit a ∈ A . Prove that if αn ∈ σ(an) and αn → α , then α ∈ σ(a).
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Exercise 1.2.9. Let A be a unital Banach algebra, and let a, b be commuting ele-
ments of A (i.e., ab = ba). Show that

r(ab) ≤ r(a)r(b) and r(a+b) ≤ r(a)+ r(b).

Exercise 1.2.10. Let A be a unital Banach algebra. Prove that:

a) r(a2) = r2(a) for each a ∈ A ;
b) the following statements are equivalent:

i. there exists c > 0 such that c‖a‖2 ≤ ‖a2‖ for all a ∈ A ;
ii. there exists d > 0 such that d‖a‖ ≤ r(a) for all a ∈ A ;

c) ‖a‖2 = ‖a2‖ for all a ∈ A if and only if ‖a‖ = r(a) for all a ∈ A .

Exercise 1.2.11. Let A be a unital Banach algebra. Define the exponential of a∈A
by

exp(a) :=
∞

∑
n=0

an

n!
. (1.11)

Show that:

a) the series converges absolutely for every a ∈ A ;
b) ‖exp(a)‖ ≤ exp(‖a‖);
c) if ab = ba, then exp(a+b) = exp(a)exp(b);
d) exp(a) is invertible for all a ∈ A , and (exp(a))−1 = exp(−a);
e) if H is a Hilbert space and if (An) is a sequence in L (H) which converges

strongly to an operator A ∈ L (H), then the sequence (exp(An)) converges
strongly to exp(A). (A sequence (An) of operators converges strongly to A if
‖Anx−Ax‖→ 0 for each x ∈ H.)

Exercise 1.2.12. Let B be a closed unital subalgebra of a Banach algebra A , and
let b ∈ B be an element for which σB(b) has no interior points. Show that then
σB(b) = σA (b).

Exercise 1.2.13. Let B be a finite-dimensional unital subalgebra of an algebra A .
Prove that B is inverse-closed in A .

Exercise 1.2.14. Prove that the center of a unital algebra A is inverse-closed in A .
More generally, show that, for each subset B of A , its commutator {c ∈ A : cb =
bc for all b ∈ B} is an inverse-closed subalgebra of A .

Exercise 1.2.15. Let B be a Banach algebra with identity e, A a closed and inverse-
closed subalgebra of B with e ∈ A , and W : A → B a bounded unital homomor-
phism. Show that

C := {a ∈ A : W (a) ∈ A }

contains the identity element and that C is a closed and inverse-closed subalgebra
of A .
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Exercise 1.2.16. Zorn’s lemma implies that every commutative subalgebra of a Ba-
nach algebra A with identity is contained in a maximal commutative (= Abelian)
subalgebra of A , i.e., in a commutative subalgebra which is not properly contained
in a larger commutative subalgebra. Show that maximal Abelian subalgebras (usu-
ally abbreviated to masas) are inverse-closed.

Exercise 1.2.17. Let A be an algebra over F with identity e, and let p �= e be a
non-zero idempotent in A .

a) Show that alg{p} consists of all linear combinations α p + βq with α, β ∈ F

where q := e− p.
b) Determine the spectrum of α p+βq in alg{p}.
c) Determine exp(a) for each element a ∈ alg{p}. (The exponential is defined by

(1.11).)

Exercise 1.2.18. Let A be an algebra over F with identity e, and let j be an el-
ement of A with j2 = e. Describe the algebra alg{ j}, and derive an invertibility
criterion for the elements of this algebra. (Hint: consider the element (e+ j)/2 and
use Exercise 1.2.17.)

Exercise 1.2.19. Let A be an algebra with identity e, and let p ∈ A an idempotent
with complementary idempotent q := e− p.

a) Prove that e+qap is invertible for every element a ∈ A .
b) Let a ∈ A . Prove that ap+q is invertible if and only if pap+q is invertible.
c) Let a, b ∈ A be invertible elements with ab = ba. Prove that ap+bq is invert-

ible if and only if pa+qb is invertible.

Exercise 1.2.20. Let A be a unital algebra, B an inverse-closed subalgebra of A
and p ∈ B an idempotent. Show that:

a) pA p := {pap : a ∈ A } is a unital algebra with identity p;
b) pBp is inverse-closed in pA p.

The algebra pA p is called a corner of A .

Exercise 1.2.21. Let A be an algebra with identity e, J an ideal of A and p an
idempotent in A . Show that:

a) the set B of all elements pap + j +(e− p) with a ∈ A and j ∈ J is a unital
subalgebra of A ;

b) B is inverse-closed in A .

Exercise 1.2.22. Let A be an algebra with identity element e, p∈A an idempotent,
q := e− p, and let a be an invertible element of A . Show that pap is invertible in
pA p if and only if qa−1q is invertible in qA q. Verify Kozak’s identity

(pap)−1 = pa−1 p− pa−1q(qa−1q)−1qa−1 p.
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Exercise 1.2.23. Prove the following properties of inverse-closed algebras.

a) The intersection of a family of inverse-closed subalgebras of an algebra is
inverse-closed again.

b) Let A be a unital Banach algebra and B be a unital closed subalgebra of A
with the following property: there is a dense subset B0 ⊂ B such that every
element in B0 which is invertible in A possesses an inverse in B. Then B is
inverse-closed in A .

c) The closure of an inverse-closed subalgebra of a Banach algebra is inverse-
closed again.

Exercise 1.2.24. Let A be a unital involutive algebra. Show that an element a is
invertible if and only if both a∗a and aa∗ are invertible. Use this fact together with
Proposition 1.2.36 and Exercise 1.2.12 to prove Theorem 1.2.38.

Exercise 1.2.25. Prove Theorem 1.2.39. (Hint: prove that σ(r) = {0} and that r±r∗

have the property mentioned in the theorem whenever r has this property.)

1.3 Maximal ideals and representations

1.3.1 Maximal ideals and the radical

The ideals of an algebra are ordered with respect to the inclusion relation. A proper
left (right, resp. two-sided) ideal is called a maximal left (right, resp. two-sided)
ideal if it is not properly contained in any other proper left (right, resp. two-sided)
ideal.

Proposition 1.3.1 (Krull’s lemma). Every proper left (right, two-sided) ideal of a
unital algebra A is contained in a maximal left (right, two-sided) ideal of A .

Proof. Let J be a left ideal of A , and letΛ stand for the set of all proper left ideals
of A which contain J , ordered with respect to inclusion. If Λ ′ is a totally ordered
subset of Λ , then J ′ := ∪I∈Λ ′I is a left ideal of A , which is proper (it does not
contain the identity). Thus, every linearly ordered subset ofΛ is bounded above. By
Zorn’s lemma,Λ has a maximal element. Evidently, every maximal element of Λ is
a maximal left ideal of A which contains J .

Let A be an algebra with identity e. The intersection of all maximal left ideals of
A is called the radical of A and will be denoted by RA . The radical of an algebra
is a left ideal of this algebra. An algebra is called semi-simple if its radical is {0}.

Maximal ideals and the radical of an algebra are closely related with the invertible
elements of that algebra.

Proposition 1.3.2. Let A be an algebra with identity e �= 0. An element of A is left
invertible if and only if it is not contained in some maximal left ideal of A .
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Proof. Let a ∈ A be left invertible, and let J be a maximal left ideal of A which
contains a. Then ba = e for some b ∈ A and, thus, e ∈ J . The latter is impossible
since J is proper. Conversely, if a is not left invertible, then A a is a left ideal of
A which contains a and which is proper (because e �∈ A a). By Krull’s lemma, A a
is contained in some maximal left ideal of A .

Proposition 1.3.3. The following conditions are equivalent for an element r of an
algebra A with identity e:

(i) r is in the radical of A ;
(ii) e−ar is left invertible for every a ∈ A ;

(iii) e−arb is invertible for every a, b ∈ A ;
(iv) e− ra is right invertible for every a ∈ A ;
(v) r is in the intersection of all maximal right ideals of A .

Proof. (i) ⇒ (ii): Let r ∈ RA , but suppose that e−ar is not left invertible for some
a ∈ A . Then A (e−ar) lies in a proper left ideal of A which is contained in some
maximal left ideal J by Krull’s lemma. Since A is unital, one has e− ar ∈ J .
Moreover, ar ∈ J since r is in the radical and, consequently, in J . Thus, e ∈ J ,
in contradiction of the properness of J .

(ii) ⇒ (i): Let e− ar be left invertible for every a ∈ A . If r �∈ RA , then there is a
maximal left ideal J with r �∈ J . The set L := {l −ar : l ∈ J , a ∈ A } is a left
ideal of A which contains J properly (because r ∈ L \J ). The maximality of
J implies L = A , hence, there are elements l ∈L and a∈A such that l +ar = e.
By hypothesis, l = e− ar is a left invertible element which lies in a maximal left
ideal. This contradicts Proposition 1.3.2.

(i), (ii) ⇒ (iii): Let r ∈ RA and a ∈ A . Then e−ar is left invertible. We claim that
it is right invertible, too. Let e+b be a left inverse of e−ar, i.e., (e+b)(e−ar) = e
or, equivalently, b = (a + ba)r. Since r ∈ RA and the radical is a left ideal, we
conclude that b belongs to the radical, too. Consequently, e+cb is left invertible for
all c ∈ A . In particular, e + b is left invertible, and e + b is also right invertible by
its definition. Thus, e+b is invertible, and so is e−ar.

Now let a, b ∈ A and r ∈ RA . Then e− bar is invertible as we have just seen,
and Lemma 1.2.1 implies the invertibility of e−arb. This settles assertion (iii). The
implication (iii) ⇒ (ii) is obvious, and the remaining implications follow as before
thanks to the left-right symmetry of assertion (iii).

Corollary 1.3.4. Every nilpotent element of a commutative algebra belongs to the
radical of this algebra.

Proof. If rn = 0 for some n, then one can see immediately that e+ar+a2r2 + . . .+
an−1rn−1 is the inverse of e−ar.

Now we turn to the context of Banach algebras.
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Theorem 1.3.5. Let A be a unital Banach algebra over K. Then:

(i) the closure of a proper (left, right, two-sided) ideal of A is a proper (left,
right, two-sided) ideal;

(ii) every (left, right, two-sided) maximal ideal is closed;
(iii) the radical is a closed ideal of A .

Proof. Let J be a proper (left, right, or two-sided) ideal of A . The closure of J is
an ideal of the same type due to the continuity of the algebraic operations. As GA is
open and GA ∩J = /0 by Proposition 1.3.2, the closure of J is properly contained
in A . This proves assertion (i). Assertions (ii) and (iii) are immediate consequences
of (i).

The following proposition states that the elements of the radical are, in a certain
sense, “inessential” to the invertibility of other elements of the algebra. Thus, as long
as one is concerned with invertibility properties only, the radical can be factored out,
and one can work in a semi-simple algebra.

An element s of an algebra A with identity is said to be a perturbation for in-
vertibility if a− s is invertible for every invertible element a ∈ A .

Proposition 1.3.6. Let A be a Banach algebra over K with identity e. Then the set
of the perturbations for invertibility in A coincides with the radical of A .

Proof. If s is in the radical of A and a ∈ A is invertible, then e−a−1s is invertible
by Proposition 1.3.3. Thus, a− s = a(e−a−1s) is invertible, and s is a perturbation
for invertibility.

For the reverse inclusion, we first verify that the set S of all perturbations for
invertibility is a left ideal in A . It is immediate that S is a linear space. Further,
if a is invertible, then as is in S again. Indeed, if b is invertible, then b− as =
a(a−1b− s) is also invertible. For arbitrary a, choose a complex number λ such
that both a +λe and a−λe are invertible (which is possible because the spectrum
of a is bounded) and, hence, both (a +λe)s and (a−λe)s belong to S . Then the
linearity of S implies that as = a+λe

2 s + a−λe
2 s belongs to S , too, whence the left

ideal property of S follows. Now it is evident that e− as is left invertible for all
a ∈ A . By Proposition 1.3.3 again, s ∈ RA .

Due to the maximality, quotients of algebras by maximal ideals cannot contain
non-trivial proper ideals. The converse is also true. This observation is the basis
of a remarkable correspondence between maximal ideals and multiplicative func-
tionals which holds in the commutative setting and which will be the subject of
Section 1.3.3.

Theorem 1.3.7. A proper closed ideal M of a unital Banach algebra A over K is
maximal if and only if the quotient algebra A /M is simple.

Proof. Let M be a proper closed ideal of the algebra A with identity e, and let Φ
be the canonical homomorphism from A onto A /M . Suppose there exists a non-
trivial proper ideal J of A /M . It is easy to check that Φ−1(J ) is an ideal of A
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which properly contains M , but does not coincide with A . Thus, if M is maximal,
then A /M is simple.

Conversely, if M is not maximal, then there exists a proper ideal J of A such
that M is properly contained in J . Then Φ(J ) is an ideal of A /M such that
Φ(J ) �= 0+M because J �= M and Φ(J ) �= A /M because e+M �∈Φ(J ).
Thus, Φ(J ) is a non-trivial ideal of A /M , and A /M is not simple.

The following is a consequence of various results about ideals and invertibility
obtained so far.

Theorem 1.3.8. Let A be a commutative unital Banach algebra over K, and let M
be a maximal ideal of A . Then the quotient algebra A /M is a field. In the case
K = C, the quotient A /M is isometrically isomorphic to C.

Proof. If M is a maximal ideal, the quotient algebra A /M is simple by Theorem
1.3.7. Thus, every non-zero element of A /M is invertible in A /M by Proposition
1.3.2. This settles the first assertion, and the second one results from the Gelfand-
Mazur theorem 1.2.11.

1.3.2 Representations

In this section, we summarize some basic notions and results from the representation
theory of Banach and C∗-algebras. Albeit most notions apply to Banach algebras,
the strongest results will follow only for C∗-algebras. More detailed expositions as
well as proofs can be found in every textbook on C∗-algebras.

A representation of an algebra A over a field F is a pair (X , π) consisting of a
linear space X over F and an algebra homomorphism π from A into the algebra
L(X) of all linear operators on X . If the space X is evident from π , sometimes it
is omitted, and we talk simply of a representation π . The representation (X , π) is
faithful if the kernel of π consists of the zero element only. In this case, π is an
algebra isomorphism from A onto a subalgebra of L(X).

Example 1.3.9. Let A be a unital algebra. Every element a ∈A determines a linear
operator La : A →A by La(x) := ax. The mapping L : a �→ La is a representation of
A , the so-called left regular representation. More generally, if J is a left ideal of
A then A /J becomes a linear space in a natural way. LetΦ : A →A /J denote
the canonical linear mapping a �→ a+J . To each element a ∈ A , we associate an

operator LJ
a : A /J →A /J via LJ

a (Φ(x)) :=Φ(ax). The homomorphism LJ :

A → L(A /J ), a �→ LJ
a is called the left regular representation of A induced by

J . See Exercise 1.3.6 for some details of these constructions. �
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Let A be an algebra and (X , π) a representation of A . A subspace K of X is
invariant for π if

π(a)K ⊆ K for all a ∈ A .

The subspaces {0} and X are invariant for every representation. A non-zero repre-
sentation (X , π) of an algebra A is called algebraically irreducible if {0} and X are
the only invariant subspaces for π .

Lemma 1.3.10 (Schur). Let (X , π) be an algebraically irreducible representation
of the algebra A and B �= 0 a linear operator on X. If Bπ(a) = π(a)B for all a ∈A ,
then B is invertible.

Proof. The condition Bπ(a) = π(a)B implies that Ker B and Im B are invariant
subspaces for π . Since π is irreducible, and since Ker B �= X and Im B �= {0} by
hypothesis, we have Ker B = {0} and Im B = X . Thus, B is injective and surjective,
hence invertible.

In the category of Banach algebras, an appropriate notion of a representation is
defined as follows. Let A be a complex Banach algebra. A representation of A is a
pair (X , π) where X is a complex Banach space and π is an algebra homomorphism
from A into the algebra L (X) of the bounded linear operators on X . Note that the
continuity of π is not required. A non-zero representation (X , π) of a Banach algebra
A is called topologically irreducible if {0} and X are the only closed subspaces of
X which are invariant for π .

Sometimes, the continuity of π follows automatically. One instance is provided
by the following theorem, a proof of which can be found in [10, Chapter 3, Section
25].

Theorem 1.3.11. If (X ,π) is an algebraically irreducible representation of a Ba-
nach algebra A , then π is continuous.

Example 1.3.12. Let J be a closed left ideal of a Banach algebra A . Then the
left regular representation LJ is continuous and has norm 1. Moreover, every left
regular representation of A induced by a maximal left ideal J is algebraically
irreducible. The proof is left as an exercise (Exercise 1.3.7). �

We will need the following corollary of Schur’s lemma.

Corollary 1.3.13. Let A be a unital Banach algebra and J a maximal left ideal
of A , and let LJ : A → L (A /J ) be the induced left regular representation.

Further let B be a (not necessarily bounded) linear operator on A /J . If BLJ
a =

LJ
a B for all a ∈ A , then B is a scalar multiple of the identity operator.

Proof. Let x ∈ A /J and choose a ∈ A such that ‖a‖ ≤ 2‖Φ(a)‖ and Φ(a) = x.
Then
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‖Bx‖ =
∥

∥

∥BLJ
a Φ(e)

∥

∥

∥=
∥

∥

∥LJ
a BΦ(e)

∥

∥

∥

≤ ‖a‖‖BΦ(e)‖ ≤ 2‖Φ(a)‖‖BΦ(e)‖ = 2‖BΦ(e)‖‖x‖.

Thus B is bounded. Being a bounded operator on a Banach space, B has a non-
empty spectrum by Theorem 1.2.10. Choose any point λ in the spectrum of B. By
Exercise 1.3.7, the left regular representation LJ is algebraically irreducible. So
we can apply Schur’s lemma to λ I −B. Since λ I −B is not invertible, it must be 0.
Thus, B = λ I.

Definition 1.3.14. A Banach algebra is primitive if it contains a maximal left ideal
for which the induced left regular representation is injective.

Lemma 1.3.15. A Banach algebra A is primitive if and only if there exists a maxi-
mal left ideal in A that does not contain non-trivial maximal ideals of A .

Proof. First let J be a maximal left ideal of A which induces an injective left
regular representation. Let Φ : A → A /J denote the canonical linear mapping

a �→ a+J . Further let I ⊂J be an ideal and a∈I . Then LJ
a (Φ(x)) =Φ(ax) =

0 for any x ∈ A , i.e., LJ
a is the zero operator. Since LJ is an isomorphism, a =

(LJ )−1(LJ
a ) = 0. Thus, I is the zero ideal.

For the reverse direction assume that the left ideal J does not contain proper
non-trivial ideals. If LJ (a) = 0, then ax ∈ J for all elements x ∈ A . Define I :=
{b ∈ A : bA ⊂ J }. The set I is clearly an ideal of A contained in J and
a ∈ J . This implies a = 0, whence the injectivity of LJ .

In the context of C∗-algebras and their homomorphism, by a representation of
a C∗-algebra A one means a pair (H, π) where now H is a Hilbert space and π
is a ∗-homomorphism from A into the algebra L (H). By Theorem 1.1.5, π is
bounded (and even a contraction). In this setting, if K is a closed subspace of H
and PK denotes the orthogonal projection from H onto K, invariance of K for the
representation (H, π) just means that

PKπ(a)PK = π(a)PK for all a ∈ A (1.12)

which turns out to be equivalent to

PKπ(a) = π(a)PK for all a ∈ A . (1.13)

Indeed, (1.12) follows from (1.13) by multiplication by PK , and (1.12) implies
(1.13):

PKπ(a) = (π(a∗)PK)∗ = (PKπ(a∗)PK)∗ = PKπ(a)PK = π(a)PK .
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Theorem 1.3.16. The following assertions are equivalent for a representation
(H, π) of a C∗-algebra A :

(i) (H, π) is algebraically irreducible;
(ii) (H, π) is topologically irreducible;

(iii) every vector x ∈ H \{0} is algebraically cyclic, i.e., π(A )x coincides with H;
(iv) every vector x ∈ H \{0} is topologically cyclic, i.e., π(A )x is dense in H.

1.3.3 Multiplicative linear functionals

Let A be an algebra over a field F. An algebra homomorphism φ : A → F (where
the field F is considered as an algebra over itself) is also called a multiplicative linear
functional or a character of A . The homomorphism A → F : a �→ 0 is called the
trivial or the zero character. Trivial characters are usually excluded in what follows.

Proposition 1.3.17. Let A be an algebra with identity e and φ a non-zero multi-
plicative linear functional over A . Then:

(i) φ(e) = 1;
(ii) φ(a) ∈ σ(a) for each element a ∈ A ;

(iii) the kernel of φ is a maximal ideal of A .

Proof. For the first assertion, choose a ∈ A such that φ(a) �= 0. Then φ(a) =
φ(ea) = φ(e)φ(a), whence φ(e) = 1. For (ii), let a ∈ A . Then φ(a)e− a is in the
kernel of φ , which is a proper ideal by (i). So φ(a)e−a cannot be invertible. Finally,
the kernel of a non-zero multiplicative linear functional is a hyperplane of codimen-
sion 1 in the linear space A . So, as an ideal, it must be maximal.

Theorem 1.3.18. Non-zero multiplicative linear functionals over a unital Banach
algebra over K are bounded and have norm 1.

Proof. Let A be a Banach algebra with identity e. Suppose that there is an element
a ∈ A such that ‖a‖ = 1 and |φ(a)| > 1. Then φ(a)e−a is invertible, and

1 = φ(e) = φ
(

(φ(a)e−a)(φ(a)e−a)−1)= φ ((φ(a)e−a))φ
(

(φ(a)e−a)−1)= 0.

This contradiction implies that

‖φ‖ = sup
‖a‖=1

|φ(a)| ≤ 1.

As φ(e) = 1, one has ‖φ‖ = 1.

There is a close relationship between maximal ideals and characters of a com-
mutative complex Banach algebra.
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Theorem 1.3.19. Let A be a commutative unital Banach algebra over C. The ker-
nel of a non-trivial character of A is a maximal ideal of A and, vice versa, any
non-trivial maximal ideal in A is the kernel of one and only one non-trivial char-
acter of A .

Proof. The first part of the assertion is a particular case of Proposition 1.3.17 (iii).
For the second part, let M be a maximal ideal in A . Then the quotient algebra
A /M is isometrically isomorphic to the field C by Theorem 1.3.8. Identifying
A /M with C, one can consider the canonical homomorphism Φ : A → A /M
as a non-trivial character with the given maximal ideal as kernel. Thus, there exist
characters with kernel M . That there is only one such character will follow easily
from the following observation which we formulate as a separate lemma.

We call two linear functionals φ1 and φ2 on an algebra over F proportional if
there exists a non-zero constant α ∈ F such that φ1 = αφ2.

Lemma 1.3.20. Two linear functionals defined on an algebra over F have the same
kernel if and only if they are proportional.

Proof. Let φ1 and φ2 be functionals from an F-algebra A into F which have the
same kernel N . Choose any element c ∈A which is not in the kernel. This element
spans a one-dimensional subspace of A , which together with N spans the whole
algebra A . Let a ∈ A . Write a as αc + n with α ∈ F and n ∈ N . Then φ1(a) =
αφ1(c) and φ2(a) = αφ2(c), whence

φ2(a) = αφ2(c) = α
φ2(c)
φ1(c)

φ1(c) =
φ2(c)
φ1(c)

φ1(a).

The proof in the reverse direction is immediate.

Theorem 1.3.21. Let A be a unital commutative Banach algebra over C. An ele-
ment a ∈ A is invertible if and only if φ(a) �= 0 for every non-zero character φ of
A .

Proof. If a is invertible, then 1 = φ(e) = φ(a)φ(a−1) for every non-zero character
φ of A . Thus, φ(a) �= 0. If a is not invertible, then a belongs to a maximal ideal M
in A by Proposition 1.3.2. Let φ be the multiplicative functional which has M as
its kernel. Then φ(a) = 0.

Corollary 1.3.22. The set of the non-zero characters of a commutative unital com-
plex Banach algebra is not empty.

Proof. If the algebra is a field, one has the identity functional. If not, then the algebra
possesses at least one non-invertible non-zero element due to the Gelfand-Mazur
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theorem. Hence, there is a non-zero maximal ideal by Proposition 1.3.2 which in
turn implies the existence non-trivial character via Theorem 1.3.19.

Another consequence of Theorem 1.3.21 concerns spectra in singly generated
Banach algebras.

Theorem 1.3.23. Let A be a unital Banach algebra over C and let a ∈A . Further
let B refer to the algebra alg{a}, i.e., to the smallest closed subalgebra of A which
contains a and the identity element. Then ρB(a) is connected.

Proof. Contrary to what we want to show, suppose σA (a) has a hole B ⊂ ρA (a),
and let μ0 ∈ B. Let p be a polynomial. By the maximum modulus principle and the
spectral mapping theorem for polynomials (Proposition 1.2.5),

|p(μ0)| ≤ max{|p(μ)| : μ ∈ ∂B}
≤ max{|p(μ)| : μ ∈ σA (a)}
= max{|μ | : μ ∈ σA (p(a))} = r(p(a)) ≤ ‖p(a)‖. (1.14)

This estimate shows that if p1 and p2 are polynomials with p1(a) = p2(a), then
p1(μ0) = p2(μ0). Therefore, one can define a functional φ on the set of polynomials
of a by

φ(p(a)) := p(μ0)

which is evidently linear and multiplicative. By (1.14), this functional is continuous.
So it can be continuously extended onto the closure of the set of polynomials, which
coincides with B. Since a = p(a) for the polynomial p(z) := z, one has φ(a) = μ0,
whence μ0 ∈ σB(a). This contradiction proves the assertion.

We end this section with the notion of the joint spectrum of a collection of ele-
ments belonging to a commutative Banach algebra A . Let MA represent the set of
maximal ideals of A and φx denote the character associated with the maximal ideal
x ∈ MA .

Given a set A := {a1, . . . ,an} ⊂ A , the joint spectrum of A is the set

σA (a1, . . . ,an) := {(φx(a1), . . . ,φx(an)) : x ∈ MA } ⊂ C
n.

This notion coincides with the usual notion of spectrum, in the case A contains a
single element. The proof of the next proposition is trivial.

Proposition 1.3.24. Let A be a unital commutative Banach algebra over C, and
a1, . . . ,an ∈ A . Then the joint spectrum σA (a1, . . . ,an) coincides with the set of
points (λ1, . . . ,λn) ∈ C

n, such that the smallest closed ideal of A which contains
λie−ai, i = 1, . . . ,n, is proper.
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1.3.4 Exercises

Exercise 1.3.1. Consider the algebra R
2×2. Find its left, right and two-sided ideals.

What is its radical? Do the same for the subalgebra of R
2×2 which consists of upper

triangular matrices.

Exercise 1.3.2. For n > 1, determine the characters of the algebra R
n×n and of the

algebra of upper triangular matrices in R
n×n.

Exercise 1.3.3. Show that for each algebra A , the quotient algebra A /RA is semi-
simple and that the radical of RA is RA .

Exercise 1.3.4. Let A be a Banach algebra with identity. Show that a ∈ A is in-
vertible if and only if a+RA ∈ A /RA is invertible.

Exercise 1.3.5. Let A be a commutative unital algebra, and let p be a non-constant
polynomial, all zeros of which are simple. Show that if p(a) = 0 and p(a + r) = 0
for certain elements a ∈ A and r ∈ RA , then r = 0.

Exercise 1.3.6. Let A be a unital Banach algebra. Consider the left regular repre-
sentation a �→ La of A in Example 1.3.9, and denote it by ν .

a) Show that La ∈ L (A ).
b) Show that A1 := {La : a ∈ A } is a subalgebra of L (A ).
c) Prove that A1 is closed in L (A ) with respect to the norm ‖La‖:=sup‖x‖≤1‖ax‖.
d) Conclude that the algebras A and A1 are isometrically isomorphic.
e) Prove that ν : A → L (A ) has norm 1.
f) Prove that if F ⊂ E is a linear subspace of E such that La(F) ⊂ F for all a ∈

A then F = E or F = {0}. (Hint: check that the invariant subspaces for the
representation defined in Example 1.3.9 are the left ideals of A .) This result
means that ν is an algebraic irreducible representation of A .

Exercise 1.3.7. Show that the left regular representation of a Banach algebra A
induced by a maximal left ideal J is algebraically irreducible.

Exercise 1.3.8. Determine the maximal ideals of algebras which are generated by
one idempotent (Exercise 1.2.17). Do the same for algebras which are generated by
a flip (Exercise 1.2.18).

Exercise 1.3.9. Let l∞ refer to the Banach space of all bounded sequences u : N →
C with the supremum norm, and let lc

∞ and l0
∞ denote the subspaces of l∞ of all

convergent sequences and of all convergent sequences with limit zero, respectively.
Provide l∞ with pointwise defined multiplication.

a) Show that l∞ is a commutative Banach algebra and lc
∞ a closed subalgebra of l∞.

b) Show that l0
∞ is a proper closed ideal of l∞.

c) Find a multiplicative linear functional in lc
∞ with kernel l0

∞ and conclude that
l0
∞ is a maximal ideal in lc

∞. Is l0
∞ also a maximal ideal in l∞? (Hint: use Theo-

rem 1.3.8.)
d) Determine all maximal ideals of lc

∞.



1.4 Some examples of Banach algebras 45

Exercise 1.3.10. Determine the maximal ideals of the Wiener algebra discussed in
Example 1.1.12.

Exercise 1.3.11. Give an example of a real algebra A and of a maximal ideal J
of that algebra for which A /J is not isomorphic to R.

1.4 Some examples of Banach algebras

Here we present some concrete examples of Banach algebras. The first two and the
last example will provide us with a frame in which to study invertibility problems,
whereas the other examples will serve to illustrate the general theory of what fol-
lows.

1.4.1 L (X), K (X), and L (X)/K (X)

Let X be a Banach space. We have already met the Banach algebra L (X) of all
bounded linear operators on X . This algebra is unital, with the identity operator I as
the unit element. The set K (X)1 of the compact operators is a closed (two-sided)
ideal of X which is proper if X has infinite dimension, whereas the operators of
finite rank form an ideal which is non-closed in general. In the case that X = H is a
Hilbert space, L (H) is a C∗-algebra, and K (H) is a symmetric closed ideal of that
algebra. If, moreover, H is separable and has infinite dimension, then K (H) is the
only non-trivial closed ideal of L (H).

For each operator A ∈ L (X), we let Im A := AX denote its range and Ker A :=
{x ∈ X : Ax = 0} its kernel. By definition, an operator A ∈ L (X) is invertible in
L (X) if there exists an operator B ∈ L (X) such that AB = I and BA = I. The first
of these conditions implies that Im A = X , i.e., that A is onto, whereas the second
condition implies that Ker A = {0}, i.e., A is one-to-one. Thus, A is invertible as
a mapping. Conversely, if A is invertible as a mapping, then a theorem by Banach
establishes that the inverse mapping B is bounded again; thus, A is invertible in the
algebra L (X).

If X has infinite dimension, it makes sense to consider operators which are “al-
most invertible” in the sense that their kernel has finite dimension and that the add-
ition of a finite-dimensional space to their range already yields all of X . Opera-
tors with these properties are called Fredholm operators. Equivalently, an operator
A ∈ L (X) is a Fredholm operator if

• Im A is closed,
• dim Ker A < ∞, and
• dim Coker A < ∞
1 When the space X is evident from the context, we will sometimes write L and K in place of
L (X) and K (X), respectively.
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where Coker A = X/Im A. The Fredholm index (or index for short) ind A of a Fred-
holm operator A is the integer

ind A := dim Ker A−dim Coker A. (1.15)

Below we collect several important properties of Fredholm operators (for details see
[150]). Note the remarkable stability properties of the index under small and com-
pact perturbations. Neither the kernel dimension of A nor the cokernel dimension
behave particularly well under such perturbations, but their difference does.

Let A, B ∈ L (X) be Fredholm operators. Then:

• there exists an operator R ∈ L (X) and finite rank operators K1, K2 such that
AR = I +K1 and RA = I +K2; conversely, if there exist operators R1, R2 ∈L (X)
and compact operators K1, K2 on X such that R1A = I + K1 and AR2 = I + K2,
then A is a Fredholm operator;

• if ‖K‖ is small enough then A +K is a Fredholm operator and ind A = ind (A +
K); thus, the set of all Fredholm operators is open in L (X), and the index is a
continuous function on this set;

• if K is compact then A+K is a Fredholm operator and ind A = ind (A+K);
• AB is a Fredholm operator and ind (AB) = ind A+ ind B;
• the Banach adjoint A∗ of A is a Fredholm operator and ind A∗ = −ind A. The

same holds for the Hilbert space adjoint if X is a Hilbert space.

The quotient L (X)/K (X) is called the Calkin algebra of X . The first assertion
in the above list states that the coset A +K (X) is invertible in the Calkin algebra
if and only if A is a Fredholm operator. This fact is also known as Calkin’s theo-
rem. Thus, the Fredholm property is equivalent to invertibility in a suitable Banach
algebra.

1.4.2 Sequences of operators

For later reference, we collect some facts on the convergence of sequences of linear
bounded operators on a Banach space. In some places in what follows we will have
to deal with generalized sequences, which are defined on an unbounded subset of
the real line as the interval [1, ∞ [ . Hence, we will state the facts below for such gen-
eralized sequences. In general, this will not cause any changes when compared with
common sequences, with one exception: It is no longer true that strongly convergent
generalized sequences are bounded.

In the remainder of this section, let I be an unbounded subset of the positive semi-
axis R

+ and let X be a Banach space. By a generalized sequence in X we mean a
function n �→ xn from I to X , which we will often write as (xn)n∈I. As usual, the se-
quence (xn)n∈I is called bounded if supn∈I ‖xn‖<∞, and the sequence (xn)n∈I is said
to converge to x ∈ X if, for every ε > 0, there is an n0 such that ‖xn − x‖ < ε for all
n∈ I with n≥ n0. A convergent generalized sequence is not necessarily bounded, but
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it is eventually bounded in the following sense: The generalized sequence (xn)n∈I

in X is eventually bounded if there is an n0 ∈ I such that the sequence (‖xn‖)n≥n0 is
bounded. Clearly, if I = Z

+, then every eventually bounded sequence is bounded.
If the specification of I is evident from the context, we will often omit the word
generalized and speak simply about sequences.

Now we turn to (generalized) sequences of operators, that is, to functions n �→ An

from I to L (X), which we write as (An)n∈I. In accordance with the above notation,
the sequence (An)n∈I is said to be bounded if the sequence (‖An‖)n∈I is bounded,
and it is called eventually bounded if the sequence (‖An‖)n∈I has this property. Fur-
ther, we say that a sequence (An)n∈I in L (X) converges to A ∈ L (X) as n → ∞:

• in the norm if ‖An −A‖L (X) → 0;
• strongly if ‖(An −A)u‖X → 0 for every u ∈ X ;
• weakly if 〈v, (An −A)u〉 → 0 for every pair u ∈ X and v ∈ X∗.

Clearly, norm convergence implies strong convergence, and strong convergence im-
plies weak convergence. We will use the symbols “⇒”, “→” and “⇀” to indicate
convergence in the norm, strong convergence and weak convergence, respectively. It
is in general not true that the adjoint sequence of a strongly convergent sequence is
strongly convergent again. Thus we call a sequence (An) ∗-strongly convergent if the
sequence (An) converges strongly on X and the sequence (A∗

n) converges strongly
on X∗.

Lemma 1.4.1. Let an operator sequence (An) be eventually bounded.

(i) If 〈v, Anu〉 → 0 for all u and v belonging to a dense subset of X and X∗, re-
spectively, then the sequence (An) converges weakly to zero.

(ii) If ‖Anu‖ → 0 for each u belonging to a dense subset of X, then the sequence
(An) converges strongly to zero.

Proof. We will prove assertion (i) only. The proof of (ii) is similar. Choose n0 ∈ I

such that the sequence (An)n≥n0 is bounded, and set M := supn≥n0
‖An‖. Let ε > 0.

For u ∈ X and v ∈ X∗, choose uε in the dense subset of X and vε in the dense subset
of X∗ such that ‖u−uε‖ < ε and ‖v− vε‖ < ε . Then, for n ≥ n0,

|〈v, Anu〉| ≤ |〈v− vε , Anu〉|+ |〈vε , Anu〉|
≤ |〈v− vε , Anu〉|+ |〈vε , An(u−uε)〉|+ |〈vε , Anuε〉|
≤ ‖v− vε‖‖Anu‖+‖vε‖‖An‖‖u−uε‖+ |〈vε , Anuε〉|
≤ εM‖u‖+ εM(‖v‖+ ε)+ |〈vε , Anuε〉|
≤ εM(‖u‖+‖v‖+ ε)+ |〈vε , Anuε〉|.

Now let n1 ≥ n0 be such that |〈vε , Anuε〉| < ε for n ≥ n1. Then

|〈v, Anu〉| ≤ εM(‖u‖+‖v‖+ ε)+ ε for n ≥ n1,

whence the weak convergence of (An) to zero.
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We next discuss some consequences of the uniform boundedness principle,
which is one of the cornerstones of operator theory. For a detailed account, one
can consult [26, Chapter III, Section 14], for instance. The second assertion of the
following theorem is also known as the Banach-Steinhaus theorem.

Theorem 1.4.2 (Banach-Steinhaus).

(i) Every weakly convergent generalized sequence of operators is eventually
bounded.

(ii) Every strongly convergent generalized sequence (An) ⊆ L (X) is eventually
bounded, the strong limit A of this sequence belongs to L (X), and

‖A‖ ≤ liminf
n→+∞

‖An‖.

Proof. Again we prove assertion (i) only. Let (An)n∈I ⊆ L (X) be a weakly conver-
gent generalized sequence. Assume this sequence is not eventually bounded. Then
there exists, for every positive integer n, a number tn ∈ I with tn ≥ n and such that
‖Atn‖≥ n. For every pair u∈X and v∈X∗, the (common) sequence (〈v, Atnu〉)n∈N =
(〈A∗

tnv, u〉)n∈N is convergent. Then this sequence is bounded, and the uniform bound-
edness principle implies the boundedness of the sequence (A∗

tnv)n∈N of linear func-
tionals for every v ∈ X∗. Applying the uniform boundedness principle again, we get
the boundedness of the sequence (A∗

tn)n∈N, whence the boundedness of the sequence
(Atn)n∈N, a contradiction with the choice of tn.

Next we recall some results on products of convergent sequences of operators.
Because we are working with algebraic structures, questions like “Is the limit of
the product of sequences equal to the product of the limits?” are of great impor-
tance. The answer, as one can see in the following results, depends on the type of
convergence. Let A, B, An and Bn be operators in L (X).

Lemma 1.4.3. If An ⇒ A then A∗
n ⇒ A∗, and the sequence (An) is eventually

bounded. If also Bn ⇒ B then AnBn ⇒ AB.

Proof. The first assertion comes from the fact that ‖T‖ = ‖T ∗‖ for every operator
T ∈ L (X). The eventual boundedness of the sequence (An) can be seen by writing
‖An‖ ≤ ‖An −A‖+‖A‖. Finally one has

‖AB−AnBn‖ ≤ ‖A−An‖‖B‖+‖An‖‖B−Bn‖

which, together with the eventual boundedness, implies the last assertion.

Lemma 1.4.4. If the sequence (An) is eventually bounded and Bn → 0, then AnBn →
0. If An → A and Bn → B, then AnBn → AB.
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Proof. The first assertion follows from ‖AnBnu‖≤‖An‖‖Bnu‖ which holds for every
u ∈ X . For the second one, note that (An) is eventually bounded by the Banach-
Steinhaus theorem. Thus, the estimate

‖ABu−AnBnu‖ ≤ ‖(A−An)Bu‖+‖An‖‖(B−Bn)u‖

implies the assertion.

In contrast to the results above, the limit of the product of weakly convergent
sequences is not, in general, equal to the product of their limits. However, the fol-
lowing still holds.

Lemma 1.4.5. If An ⇀ A and B ∈ L (X), then AnB ⇀ AB and BAn ⇀ BA. More
generally, if An ⇀ A and B∗

n → B∗, then BnAn ⇀ BA.

Proof. The first result is an immediate consequence of the definition of weak con-
vergence. For the second assertion, note that for every pair u ∈ X and v ∈ X∗, we
have

〈v,BnAnu〉 = 〈B∗
nv,Anu〉 = 〈B∗v,Anu〉−〈(B∗ −B∗

n)v,Anu〉.

By hypothesis, 〈B∗v,Anu〉 → 〈B∗v,Au〉 = 〈v,BAu〉, whereas

|〈(B∗ −B∗
n)v,Anu〉| ≤ ‖(B∗ −B∗

n)v‖‖An‖‖u‖→ 0

due to the eventual boundedness of the An by Theorem 1.4.2.

Lemma 1.4.6. If K is compact on X and An ⇀ A weakly on X, then KAn → KA
strongly.

Proof. Let x ∈ X and put xn := (A−An)x. Then the sequence (xn) ⊂ X converges
weakly to zero, and we have to prove that the sequence (Kxn) converges to zero in
the norm of X . By the uniform boundedness principle, the sequence (xn) is eventu-
ally bounded. Without loss of generality, we assume that ‖xn‖≤ 1 for all sufficiently
large n ∈ I. Since K is compact, there is a (common) subsequence (xnk) of (xn) and
a y ∈ X such that ‖Kxnk −y‖→ 0 as k →∞. Since xnk ⇀ 0 weakly and K is continu-
ous, one has Kxnk ⇀ K0 = 0 weakly, whence y = 0. Since 0 is the only cluster point
of the sequence (Kxn) and this sequence is contained in a compact set, ‖Kxn‖ → 0.

Lemma 1.4.7. If K is compact on X and if An → A and B∗
n → B∗ strongly, then

AnKBn ⇒ AKB.

Proof. Consider first the case when Bn = I for all n ∈ I. Let V be the image of the
closed unit ball X1 := {u ∈ X : ‖u‖ ≤ 1} under the mapping K. Then V is relatively
compact, and for each ε > 0 there exists a finite ε-net in V , i.e., a finite set of
elements v1, . . . , vm ∈ V such that, given v ∈ V , one finds a vi with ‖v− vi‖ < ε .
Choose u1, . . . , um ∈ X1 such that Kxi = vi for i = 1, . . . , m. Then, for every u ∈ X1,



50 1 Banach algebras

‖(AnK −AK)u‖ ≤ min
1≤i≤m

(

‖(An −A)(Ku−Kui)‖+‖(An −A)Kui‖
)

≤ ε(‖An‖+‖A‖)+ min
1≤i≤m

‖(An −A)Kui‖. (1.16)

Since the sequence (An) is eventually bounded by the Banach-Steinhaus theorem,
the estimate (1.16) implies that ‖AnK −AK‖ → 0. Passing to adjoint operators, one
concludes that the assertion also holds in the case B∗

n → B∗ strongly and An = I for
all n ∈ I. Now the general assertion follows from

‖AnKBn −AKB‖ ≤ ‖AnKBn −AnKB‖+‖AnKB−AKB‖
≤ ‖An‖‖KBn −KB‖+‖AnK −AK‖‖B‖

and the eventual boundedness of the sequence (An) again.

1.4.3 Algebras of continuous functions

Let X be a topological space. The set C(X) of all complex-valued continuous func-
tions on X is a ∗-algebra with respect to pointwise operations and pointwise involu-
tion, and the function x �→ 1 serves as the identity element of C(X). If X is a compact
Hausdorff space, then the functions in C(X) are bounded, and C(X) becomes a C∗-
algebra on defining a norm by

‖ f‖ := sup
x∈X

| f (x)|.

If K is a closed subset of X , then { f ∈ C(X) : f |K = 0} is a closed ideal of C(X).
The following theorem states that every closed ideal of C(X) can be obtained in
this way. Given a closed ideal I of C(X), set X(I ) := ∩ f∈I f (−1)(0). Being the
intersection of closed sets, X(I ) is a closed subset of X .

Theorem 1.4.8. Let X be a compact Hausdorff space and I a closed ideal of C(X).
Then

I = { f ∈C(X) : f |X(I ) = 0}.

Thus, there is a one-to-one correspondence between the closed subsets of X and the
closed ideals of C(X).

Proof. The inclusion I ⊆ { f ∈ C(X) : f |X(I ) = 0} is evident. For the reverse
inclusion, let f ∈C(X) be a function which vanishes on X(I ). Given ε > 0, there
is an open neighborhood U(I ) of X(I ) such that | f (x)| < ε for all x ∈ U(I ).
Further, for every x ∈ X \X(I ), one can choose a function gx in I with gx(x) =
1. The functions hx := gxgx belong to the ideal I , too, they are real-valued, and
hx(x) = 1. Let Ux := {y ∈ X : hx(y) > 1/2}. The open sets U(I ) and Ux with x ∈
X \X(I ) cover the compact set X ; hence, there is a finite subcovering, say
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X = U(I )∪Ux1 ∪ . . .∪Uxn .

Write Ui in place of Uxi for brevity, and let 1 = fI + f1 + . . .+ fn be a partition of the
identity with respect to this covering, i.e., fI and the fi are non-negative continuous
functions with supp fI ⊆ U(I ) and supp fi ⊆ Ui. The function hi is greater than
or equal to 1/2 on the closure Ui of Ui, and thus, the restriction of hi onto Ui can
be inverted, and the inverse is continuous on Ui again. The Tietze-Uryson extension
theorem ([160, Theorem IV.11]) implies the existence of a continuous function ri on
X which coincides with (hi|Ui

)−1 on Ui. Hence,

fi = fihi(hi|Ui
)−1 = fihiri

which shows that fi belongs to I for all i. Because f = f ·1 = f fI + f f1 + . . .+ f fn,
we have

‖ f − f f1 − . . .− f fn‖ = ‖ f fI‖ ≤ ‖ f |U(I )‖ < ε.

Thus, f can be approximated as closely as desired by functions in I , which implies
f ∈ I due to the closedness of I .

The correspondence between the closed subsets of X and the closed ideals of
C(X) is monotone: The greater the ideal I , the smaller the set X(I ). An immediate
consequence is the following characterization of the maximal ideals of C(X).

Corollary 1.4.9. Let X be a compact Hausdorff space and x ∈ X. Then { f ∈C(X) :
f (x) = 0} is a maximal ideal of C(X), and every maximal ideal of C(X) is of this
form.

Thus, the non-trivial characters of C(X) are exactly the mappings f �→ f (x) with
fixed x ∈ X . The following proposition describes the topological divisors of zero of
the algebra C(X).

Proposition 1.4.10. Let X be a compact Hausdorff space. A function f ∈C(X) is a
topological divisor of zero of the algebra C(X) if and only if it has a zero on X.

Proof. If f has no zero on X , then f is invertible. Thus, f cannot be a topological
divisor of zero due to Proposition 1.2.26.

Now suppose that f (x) = 0 for some x ∈ X . Given n ∈ N, choose an open neigh-
borhood Un of x with f (y) < 1/n for y ∈ Un, and choose a continuous function
fn : X → [0, 1] which takes the value 1 at x and vanishes outside Un. (The existence
of a function with these properties is guaranteed by the Tietze-Uryson extension
theorem again.) Then ‖ fn‖ = 1 and ‖ f fn‖ ≤ 1/n. Thus, f is a topological divisor of
zero.

For a compact Hausdorff space X and 1 ≤ p < ∞, consider the Lebesgue space
Lp(X) of all measurable functions on X such that

‖ f‖p :=
(
∫

X
| f (x)|p dx

)1/p
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is finite. Consider also the space L∞(X) of all essentially bounded measurable func-
tions on X . The set Lp(X) equipped with the above defined norm is a Banach space.
Each function f ∈ L∞(X) gives rise to an operator on Lp(X), which is the opera-
tor u �→ f u of multiplication by f . We abbreviate this operator by f I. The follow-
ing result is valid for operators of multiplication by arbitrary essentially bounded
functions on Lebesgue spaces Lp(X) with p ≥ 1. For simplicity, we prove it for
continuous functions only.

Proposition 1.4.11. Let X be a compact Hausdorff space. Then the algebras

A1 := C(X),
A2 := { f I : f ∈C(X)} ⊂ L (Lp(X))

and

A3 := (A2 +K (Lp(X)))/K (Lp(X))
= { f I +K (Lp(X)) : f ∈C(X)} ⊂ L (Lp(X))/K (Lp(X))

are isometrically isomorphic. Moreover,

‖ f‖∞ = ‖ f I‖L (Lp(X)) = ‖ f I +K (Lp(X))‖L (Lp(X))/K (Lp(X))

for each function f ∈C(X).

Proof. Let f ∈C(X), and abbreviate the coset f I +K (Lp(X)) to f̂ . Then

‖ f̂‖L (Lp(X))/K (Lp(X)) ≤ ‖ f I‖L (Lp(X)) ≤ ‖ f‖∞,

with the first inequality coming from the definition of the quotient norm and the
second one following by a straightforward estimate. It remains to verify that ‖ f‖∞≤
‖ f̂‖. Assume that ‖ f̂‖ < ‖ f‖∞. Since X is compact, there exists an x0 ∈ X with
| f (x0)|= ‖ f‖∞. Consider the function f (x0)− f . This function is not invertible as a
continuous function; but the corresponding coset in the Calkin algebra is invertible,
as one easily gets by writing

f (x0)− f̂ = ‖ f‖∞
(

f (x0)
‖ f‖∞

I − f̂
‖ f‖∞

)

and employing a Neumann series argument (note that the norm of f̂ /‖ f‖∞ is less
than 1). Thus, ( f (x0)− f )I is a Fredholm operator. The set of all Fredholm operators
is open in L (Lp(X)) as mentioned in Section 1.4.1. Thus, if f0 ∈C(X) is a function
which is zero in a neighborhood of x0 and for which ‖ f (x0)− f − f0‖ is sufficiently
small, then f0I is a Fredholm operator, too. This is impossible because, being zero
in a neighborhood of x0, the multiplication operator f0I has an infinite-dimensional
kernel. This contradiction proves the assertion.
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1.4.4 Singular integral operators with continuous coefficients

Let T := {z ∈ C : |z| = 1} be the complex unit circle, which we provide with coun-
terclockwise orientation and normalized Lebesgue measure, and let 1 < p < ∞. We
are now going to examine a closed subalgebra of L (Lp(T)) which is generated by
the operators of multiplication by continuous functions and by the Cauchy singular
integral operator S on T. In the following two chapters, this algebra will serve as
an example to illustrate various concepts. Algebras of this type can be introduced in
much more general contexts: weighted Lebesgue spaces, curves with complicated
topology, coefficients with various kinds of discontinuities, etc. We will study these
algebras in detail in a quite general (but not too involved) setting in Chapter 4.

The singular integral operator S on T is formally defined by

(Su)(t) :=
1
πi

∫

T

u(s)
s− t

ds, t ∈ T.

In general, this integral does not exist in the common sense of an improper integral.
Rather one has to interpret this integral as a Cauchy principal value integral, i.e.,
one defines

(Su)(t) := lim
ε→0

1
πi

∫

T\Tt,ε

u(s)
s− t

ds, t ∈ T,

where Tt,ε is the part of T within the ε-disk centered at the point t. For p �= 2, it is
by no means a triviality to prove that (Su)(t) exists for u∈ Lp(T) almost everywhere
on T, that Su belongs to Lp(T) again, and that S is a bounded operator on that space.
The interested reader is referred to [120, Section II.2] where Riesz’ elegant proof
of the boundedness of S on Lp(T) for p �= 2 is presented. Let us also mention that
S is not well defined on the spaces L1(T), L∞(T) and C(T) (but spaces of Hölder
continuous functions will work).

In the case p = 2, there is a simple way to check all these facts. For n ∈ Z, let pn

refer to the function z �→ zn on T. It is an easy exercise in complex function theory
to show that

(Spn)(t) =
{

pn if n ≥ 0,
−pn if n < 0.

(1.17)

From (1.17), and since {pn}n∈Z forms an orthogonal basis of L2(T), it becomes ev-
ident that S acts as an isometry on the dense subspace of L2(T) which is spanned by
the trigonometric polynomials. Thus, S can be continuously extended to an isometry
on all of L2(T). We denote this extension by S again. It is also evident from (1.17)
that S2 = I. Thus, S is a self-adjoint and unitary operator.

The property S2 = I (which holds for general 1 < p < ∞) implies that the oper-
ators P := (I + S)/2 and Q := (I − S)/2 satisfy P2 = P and Q2 = Q, i.e., they are
projections, and they are even orthogonal projections if p = 2. Moreover,

P+Q = I, P−Q = S and PQ = QP = 0.
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By a singular integral operator (SIO) with continuous coefficients on Lp(T), we
mean an operator of the form

A = cI +dS +T = f P+gQ+T

where c, d ∈C(T), T is a compact operator, and f := c+d and g := c−d. It is not
hard to examine the smallest closed subalgebra Ap of L (Lp(T)) which contains all
singular integral operators of that form. We left this as an exercise (Exercise 1.4.6).
Our primary goal is to study the Fredholm properties of the operator A. Since the
Fredholmness of an operator is not influenced by a compact perturbation, we can
assume that T = 0.

First we show that the commutators f S−S f I, f P−P f I and f Q−Q f I are com-
pact for each continuous function f . It is clearly sufficient to prove the compactness
of the first of these commutators. From

f S−S f I = (P+Q)( f (P−Q)− (P−Q) f )(P+Q) = 2(Q f P−P f Q)

we further conclude that it is sufficient to check the compactness of Q f P and P f Q.
In case f is a trigonometric polynomial, the compactness of these operators is ev-
ident (both operators have finite rank). The case of a general continuous function
follows from the fact that every continuous function can be uniformly approximated
by trigonometric polynomials and

max{‖Q f P‖, ‖P f Q‖} ≤ ‖P‖‖Q‖‖ f‖∞

by Proposition 1.4.11. We summarize these facts in the following proposition. Re-
call that 1 < p < ∞ throughout this section.

Proposition 1.4.12.

(i) The singular integral operator S is well defined and bounded on Lp(T), and
S2 = I. In case p = 2, the operator S is moreover self-adjoint and unitary.

(ii) For every continuous function f on T, the operators

f S−S f I, f P−P f I, f Q−Q f I, P f Q and Q f P

are compact on Lp(T).

The following lemma will be needed in the proof of the Fredholm criterion.

Lemma 1.4.13.

(i) Let f1P+g1Q+T1 and f2P+g2Q+T2 be singular integral operators on Lp(T)
with continuous coefficients f1, f2, g1, g2 and with compact operators T1, T2.
Then their product is of the form f1 f2P + g1g2Q + T with a compact opera-
tor T .

(ii) Let f , g ∈C(T) and T ∈ K (Lp(T)). Then

max{‖ f‖∞, ‖g‖∞} ≤ ‖ f P+gQ+T‖. (1.18)
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Proof. The first assertion follows easily from Proposition 1.4.12. For the second
assertion, let u(s) := s for s ∈ T and consider the isometries U and U−1 on Lp(T)
acting by v �→ uv and v �→ u−1v, respectively. One has Un fU−n = f I for every
continuous function f . Further, UnPU−n → 0 strongly as n →+∞ and UnPU−n → I
strongly as n → −∞, as one can easily check. Finally, the weak convergence of
the sequences (Un) and (U−n) to zero and Lemma 1.4.6 imply that UnTU−n → 0
strongly as n →±∞. Thus,

Un( f P+gQ+T )U−n → gI strongly as n → +∞,

and, analogously,

U−n( f P+gQ+T )Un → f I strongly as n → +∞.

Since,

‖Un( f P+gQ+T )U−n‖ = ‖U−n( f P+gQ+T )Un‖ = ‖ f P+gQ+T‖,

assertion (1.18) follows from the Banach-Steinhaus theorem.

Here is the aforementioned Fredholm criterion for singular integral operators.

Theorem 1.4.14. The singular integral operator A := f P+gQ+T with f , g∈C(T)
and T compact is Fredholm on Lp(T) if and only if

( f g)(s) �= 0 for all s ∈ T. (1.19)

Proof. Let (1.19) be satisfied. Consider the operator B := f−1P + g−1Q. Using
Lemma 1.4.13 (i) one easily checks that AB− I and BA− I are compact operators.
Thus, A is a Fredholm operator.

Conversely, let condition (1.19) be violated. Then at least one of the functions f
and g has a zero on T. Let f (s0) = 0, for instance. Then the function f is a topo-
logical divisor of zero of the algebra C(T) due to Proposition 1.4.10. By definition,
there is a sequence ( fn) in C(T) with ‖ fn‖∞ = 1 such that ‖ fn f‖∞→ 0. Consider the
singular integral operators An := fnP. For the cosets of A and An modulo compact
operators one finds

‖(An +K (Lp(T)))(A+K (Lp(T)))‖ = ‖ fn f P+K (Lp(T))‖ ≤ ‖ fn f‖∞‖P‖→ 0

as well as ‖An +K (Lp(T))‖ ≥ ‖ fn‖ = 1 due to (1.18). Thus, A +K (Lp(T)) is a
topological divisor of zero in the Calkin algebra, which cannot be invertible in that
algebra. Hence, A fails to be Fredholm.

The statement of this theorem can also be formulated as follows: the singular in-
tegral operator A := f P+gQ+T with continuous coefficients is Fredholm on Lp(T)
if and only if each of the operators As := f (s)P +g(s)Q with s ∈ T is invertible on
that space. The equivalence between the invertibility of the operators As (which are
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singular integral operators with constant coefficients) and the condition f (s)g(s) �= 0
in (1.19) was the subject of Exercise 1.2.17.

An obvious interpretation of the operators As is that they are obtained by freezing
the coefficients at the point s ∈ T. This idea is widely used in the theory of partial
differential equations. So, the operator As can also be viewed as a local representa-
tive of the operator A at the point s. Note that the local representative is independent
of the compact operator T .

It seems to be promising to try the same idea for more involved objects, say
for singular integral operators with coefficients which are allowed to have jump
discontinuities. There are several questions which come immediately to attention:

• Which operators should be considered as local representatives?
• Does the Fredholmness of A imply the invertibility of its local representatives?

and, the basic question:

• Does the invertibility of all local representatives imply the Fredholmness of A?

Indeed, we will see in the forthcoming chapter that there are several general methods
– so-called local principles – which allow one to answer these questions in the affir-
mative. These principles are formulated in the context of Banach algebras. They can
be considered as non-commutative generalizations of the (commutative) Gelfand
theory. Therefore we open Chapter 2 with a section on classical Gelfand theory. We
will also see that the use of local principles is by no means limited to Fredholm
problems. In fact they are (in principle) applicable to all invertibility problems in
Banach algebras. Some applications to numerical analysis will be given later on.

1.4.5 Algebras of matrix sequences

For each sequence δ of positive integers, let F δ stand for the set of all bounded
sequences (An) of matrices An ∈ C

δ (n)×δ (n). We think of C
k×k as provided with the

spectral norm, i.e., with the operator norm induced by the Euclidean norm on the
complex Hilbert space C

k. With respect to the operations

(An)+(Bn) := (An +Bn), α(An) := (αAn), (An)(Bn) := (AnBn),

the involution (An)∗ := (A∗
n) and the norm ‖(An)‖F := supn ‖An‖, the set F δ be-

comes a C∗-algebra with identity (In) where In stands for the δ (n)× δ (n) identity
matrix. We refer to F δ as the algebra of matrix sequences and to δ as its dimension
function. Thus, the algebra of matrix sequences with constant dimension function
δ = 1 is l∞(N).

Let F δ be the algebra of matrix sequences with dimension function δ . The set
G δ of all sequences in F δ which tend to zero in the norm forms a closed ideal of
F δ . We call G δ the ideal of the zero sequences associated with F δ . In particular,
the ideal G δ with the constant dimension function δ = 1 is c0(N).
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The special choice of the dimension function is often not of importance; so as a
convention we will usually simply write F and G in place of F δ and G δ .

Our main interest lies in the quotient algebra F/G . Here is what can be said
about the norm and the invertibility of a coset (An)+G in F/G .

Proposition 1.4.15. For (An) ∈ F ,

‖(An)+G ‖F/G = limsup
n→∞

‖An‖. (1.20)

Proof. Let (An) ∈ F . Then, for every sequence (Gn) ∈ G ,

limsup‖An‖ = limsup‖An +Gn‖ ≤ sup‖An +Gn‖ = ‖(An)+(Gn)‖F

whence the estimate limsup‖An‖≤ ‖(An)+G ‖. For the reverse inequality, let ε > 0,
and choose n0 ∈ N such that ‖An‖ ≤ limsupn→∞ ‖An‖+ ε for all n ≥ n0. Set

Gn :=
{

−An if n < n0,
0 if n ≥ n0.

The sequence (Gn) belongs to the ideal G , and

‖(An)+G ‖ ≤ ‖(An)+(Gn)‖ = ‖(0, . . . , 0, An0 , An0+1, . . .)‖
= sup

n≥n0

‖An‖ ≤ limsup‖An‖+ ε.

Letting ε go to zero yields the desired result.

The importance of the quotient algebra F/G in numerical analysis rests on the
following observation, also known as Kozak’s theorem . It allows one to consider the
problem of stability of a sequence as an invertibility problem in a suitably chosen
Banach algebra. Here, as usual in the context of numerical analysis, a sequence (An)
is called stable if the entries An are invertible for all sufficiently large n and if the
norms of their inverses are uniformly bounded. There is a close relation between the
notions of stability and applicability of an approximation method; we will pick up
this topic at the beginning of Chapter 6.

Theorem 1.4.16 (Kozak). A sequence (An) ∈ F is stable if and only if its coset
(An)+G is invertible in F/G .

It is easily seen that the results of this section remain valid for algebras formed
by bounded sequences (An) of bounded operators An which act on Hilbert spaces
Hn (with some evident modifications).
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1.4.6 Exercises

Exercise 1.4.1. Let H be a separable infinite-dimensional Hilbert space. Prove that
K (H) is the only non-trivial closed ideal of L (H). (Hint: prove that every non-zero
ideal of L (H) contains operators of rank one.)

Exercise 1.4.2. Let V : l2(Z+) → l2(Z+) denote the shift operator considered in
Exercise 1.2.7. Set Vn := V n and V−n := (V ∗)n for each positive integer n and define
V0 := I. Show that each operator Vn (with n ∈ Z) is Fredholm and determine its
kernel, cokernel and index.

Exercise 1.4.3. Verify (1.17).

Exercise 1.4.4. Let X denote a compact Hausdorff space, X0 a closed subset of X
and J (X0) := { f ∈C(X) : f |X0 = 0}. Show that C(X)/J (X0) ∼= C(X0).

Exercise 1.4.5. Show that Theorem 1.4.8 does not hold for commutative Banach al-
gebras in general. That is, there is no one-to-one correspondence between the closed
ideals of an algebra B and the closed subsets of MB . Hint: consider the algebra
C1[0, 1] of all continuously differentiable functions as a Banach algebra under the
norm ‖ f‖C1[0,1] := ‖ f‖∞+‖ f ′‖∞. Let x ∈ [0,1]. Show that both

J0 := { f ∈C1[0, 1] : f (x) = 0} and J1 := { f ∈C1[0, 1] : f (x) = f ′(x) = 0}

are closed ideals of C1[0, 1].

Exercise 1.4.6. Let Ap denote the smallest closed subalgebra of L (Lp(T)) which
contains all singular integral operators aP + bQ + T with a, b continuous and T
compact.

a) Show that each operator A ∈ Ap can be written as A = aP + bQ + T with a, b
continuous and T compact. Moreover, the functions a, b and the compact oper-
ator T are uniquely determined by A.

b) Prove that the mapping

Ap →C(T)×C(T), aP+bQ+T �→ (a, b)

is a continuous algebra homomorphism. What is its kernel?
c) Conclude that the mapping

Ap/K (Lp(T)) →C(T)×C(T), aP+bQ+K (Lp(T)) �→ (a, b)

is well defined, and that it is an injective continuous algebra homomorphism.
d) Conclude that the algebras Ap/K (Lp(T)) and C(T)×C(T) are topologically

isomorphic.
e) Consider the smallest closed subalgebra ˜Ap of L (Lp(T)) which contains all

operators aP + bQ with a and b continuous. Prove that K (Lp(T)) ⊂ ˜Ap and,

thus, ˜Ap = Ap. (A proof will be given later on in Theorem 4.1.5.)
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Exercise 1.4.7. Let X be a Banach space. Show that A ∈ L (X) has a finite-
dimensional kernel and a closed image if and only if there is a number c > 0 and a
compact operator K ∈ K (X) such that

‖Ax‖+‖Kx‖ ≥ c‖x‖

for all x ∈ X .

Exercise 1.4.8. Let the notation be as in Exercise 1.4.6, but let p = 2.

a) Let a ∈C(T). Show that the matrix representation of the operator PaP : Im P →
Im P is given by the matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a0 a−1 a−2 a−3 · · ·

a1 a0 a−1 a−2
. . .

a2 a1 a0 a−1
. . .

a3 a2 a1 a0
. . .

...
. . .

. . .
. . .

. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1.21)

where

ak :=
1

2π

∫ 2π

0
a(eiθ )e−ikθ dθ , k ∈ Z.

is the kth Fourier coefficient of a. The matrix (1.21) induces a bounded linear
operator on l2(Z+) which is called the Toeplitz operator with generating func-
tion a. We denote it by T (a).

b) Conclude that the smallest closed subalgebra of L (Im P) which contains all
operators PaP with a ∈C(T) is isometrically isomorphic to the smallest closed
subalgebra of L (l2(Z+)) which contains all Toeplitz operators T (a) with a ∈
C(T). The latter algebra is called the Toeplitz algebra. We denote it by T (C).

c) Show that T (C) coincides with the smallest closed subalgebra of L (l2(Z+))
which contains the shift operators V and V−1 from Exercise 1.4.2.

d) Show that K (l2(Z+))⊂T (C) and that the quotient algebra T (C)/K (l2(Z+))
is isometrically isomorphic to the algebra C(T). Conclude that the Toeplitz op-
erator T (a) is Fredholm if and only if the function a has no zero on T.

e) Prove that the index of the Fredholm Toeplitz operator T (a) is equal to the neg-
ative winding number of the function a around the origin. (Hints: Start with a
rational function a without zeros and poles on T. Let κ be the winding num-
ber of a. Write a as a(t) = a−(t)tκa+(t) where the rational functions a±1

+ al-
low analytic continuation into the interior of the unit disk whereas the func-
tions a±1

− can be continued analytically into the exterior of the unit disk. Verify
that T (a) = T (a−)VκT (a+), with the outer factors being invertible. Use Exer-
cise 1.4.2.)

f) Using this result, propose a way to determine the index of the Fredholm singular
integral operator aP+bQ with continuous coefficients.



60 1 Banach algebras

Exercise 1.4.9. This exercise is aimed at providing a counter-example to the con-
verse of Lemma 1.2.33. Write K for K (l2(Z+)) and consider the smallest closed
subalgebra B of T (C) which contains the operators I and V and the ideal K .

a) Prove that B is inverse-closed in T (C). (Hints: Any element of T (C) can be
written as T (a)+ K with a ∈ C(T) and K compact. By Coburn’s theorem [21,
Theorem 2.38], a Fredholm Toeplitz operator with index zero is invertible.)

b) Check that B/K is not inverse-closed in T (C)/K .

Exercise 1.4.10. Let B be a closed and inverse-closed subalgebra of the sequence
algebra F which contains the ideal G of the zero sequences. Prove that B/G is
inverse closed in F/G . (Hint: if (Aτ) is a sequence in B for which (Aτ) + G is
invertible in F/G , then there are sequences (Bτ) and (Cτ) in F and (Gτ) and (Hτ)
in G such that BτAτ = I −Gτ and AτCτ = I −Hτ for all τ > 0; build a Neumann
series argument, by modifying the sequences above.)

Exercise 1.4.11. Prove that the set F of all bounded matrix sequences (introduced
in Section 1.4.5) is a unital C∗-algebra and that G is a closed ideal of that algebra.

Exercise 1.4.12. Prove Kozak’s theorem 1.4.16.

1.5 Notes and comments

The concept of operator algebra was introduced for the first time in 1913 by
Frigyes Riesz [163]. From 1929, von Neumann developed, in a series of papers
[198, 199, 200], also with Murray [122, 123, 124], the theory of the algebras that
were given his name. The other pioneering contribution came from Israel Gelfand
who, beginning with his Phd thesis in 1938, developed the theory of what he
called normed rings, that included the von Neumann algebras as a particular case
[59, 60, 61, 62]. Gelfand showed that these algebras could be characterized in an
abstract way, as Banach algebras with involution with some additional axioms. To-
gether with Naimark he proved that any commutative C∗-algebra with identity is
isomorphic to the algebra of continuous complex-valued functions defined on the
compact space of the maximal ideals of the C∗-algebra, and that any C∗-algebra
could be represented as an algebra of operators acting on a Hilbert space [63]. There
were other important early contributors like Köthe [101] and Jacobson [90] who de-
veloped concepts behind the radical of an algebra. We should also mention Shilov
and his work on commutative Banach algebras [180] (the notion of a Shilov bound-
ary and the Shilov idempotent theorem are due to him) and Segal [178] who also
contributed to representation theory (the “S” in the “GNS-construction”) and to de-
composition theory of C∗-algebras. Finally, a most influential paper for the devel-
opment of the topic of this book is Gohberg’s small note [65] from 1952 where he
first applied the then new theory of Banach algebras (normed rings) to algebras of
singular integral operators.

From the mid-nineteen-forties research on algebras expanded enormously and
proceeded along four main streams, each fertilizing the others. By ascending order
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of structure there was the abstract algebra theory stream that studied rings, finite-
dimensional algebras and PI-algebras, whose contribution to this book will be seen
in the next chapter; there was the complete normed algebra stream, where the ele-
ments of the algebra can be seen as operators acting on a Banach space, which is the
main subject of this book; there was the C∗-algebra stream, where the operators act
on a Hilbert space; and finally there was the von Neumann algebra stream, where
the C∗-algebra must be closed in the strong-operator topology. There were many
other streams, particularizations and generalizations crossing the main streams like
module theory, commutative algebras, non-unital algebras, etc. Depending on the
structure of elements of the algebra and the underlying structure of the space where
the operators act, the problems to solve are different, and different concepts need to
be introduced.

In the eighties, the field of operator algebras experienced a new dramatic evo-
lution, associated to application in other areas like non-commutative geometry, K-
theory, quantum field theory. Another new area of application developed at that time
was numerical analysis, which is also covered in this book, in Chapter 6.

At the current time, any (even basic) work on operator algebras that aspires to be
encyclopedic would need dozens of volumes. The most any work on this area can
aspire to, is to conduct the reader through a path in the immense field of operator
algebras. Each book has thus a particular tone, and it is difficult to choose one over
another. The book the reader has in his hands now follows and explores the path
leading to non-commutative local principles. For more comprehensive and detailed
introductions to the topic of Banach algebras, we refer to [4, 10, 32, 41, 67, 84,
134, 135, 162, 202]. For C∗-algebras there are good books like [3, 8, 24, 34, 39, 91,
92, 121, 137, 192]. The books from Kadison and Ringrose have a very interesting
collection of exercises, a couple of which we adapted for Chapters 1 and 2. From
the above books we can recommend in particular (authors’ personal taste) [3, 4, 41,
121, 202], whereas [32] and [8] provide nice overviews on the present theory of
Banach and C∗-algebras, respectively.



Chapter 2
Local principles

Before we start our walk through the world of local principles, it is useful to give a
general idea of what a local principle should be. A local principle will allow us to
study invertibility properties of an element of an algebra by studying the invertibility
properties of a (possibly large) family of (hopefully) simpler objects. These simpler
objects will usually occur as homomorphic images of the given element. To make
this more precise, consider a unital algebra A and a family W = (Wt)t∈T of unital
homomorphisms Wt : A →Bt from A into certain unital algebras Bt . We say that
W forms a sufficient family of homomorphisms for A if the following implication
holds for every element a ∈ A :

Wt(a) is invertible in Bt for every t ∈ T =⇒ a is invertible in A

(the reverse implication is satisfied trivially). Equivalently, the family W is sufficient
if and only if

σA (a) ⊆ ∪t∈TσBt for all a ∈ A

(again with the reverse inclusion holding trivially). In case the family W is a sin-
gleton, {W} say, then W is sufficient if and only if W is a symbol mapping in the
sense of Section 1.2.1.

Every sufficient family (Wt)t∈T of homomorphisms for A gives rise to a symbol
mapping W from A into the direct product Πt∈T Bt of the algebras Bt via

W : a �→ (t �→ Wt(a)).

Since symbol mappings preserve spectra, they preserve spectral radii. In the C∗-case
(i.e., if all occurring algebras are C∗ and the homomorphisms are symmetric), this
implies that they also preserve norms of self-adjoint elements (Proposition 1.2.36
(i)), and hence, by the C∗-axiom, the norms of arbitrary elements. Thus, a symmetric
symbol mapping W : A → B between C∗-algebras is nothing but a ∗-isomorphism
between A and a C∗-subalgebra of B. For general (in particular, Banach) algebras
there is a clear distinction between symbol mappings and isomorphisms. Note that
(Wt)t∈T being sufficient only implies that ∩t∈T Ker Wt ⊆ RA .

S. Roch et al., Non-commutative Gelfand Theories, Universitext,
DOI 10.1007/978-0-85729-183-7 2, © Springer-Verlag London Limited 2011
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So, in case of an algebraic environment, “local principle” will mean a process
to construct sufficient families of homomorphisms. All local principles encountered
in this chapter will use commutativity properties for this construction. It is either
the commutativity of the algebra itself (classical Gelfand theory), the presence of a
(sufficiently large) center (Allan’s local principle and its relatives due to Douglas,
Gohberg-Krupnik, and Simonenko), or the appearance of a completely new identity
which replaces the common ab = ba (Krupnik’s principle for PI-algebras) which
will be employed.

Unless stated otherwise, all algebras and homomorphisms occurring in this chap-
ter are complex.

2.1 Gelfand theory

The Gelfand transform for commutative Banach algebras which we are going to
discuss in this section, will not only provide us with the first and simplest local
principle; it will also serve as a model for other local principles. Gelfand’s theory
associates with every commutative Banach algebra B with identity a subalgebra of
the algebra C(X) of all continuous functions on an appropriately chosen compact
Hausdorff space X depending on the internal structure of the algebra. The Gelfand
transform is then a homomorphism from B into C(X), which is a symbol mapping
for B.

2.1.1 The maximal ideal space

Let B be a commutative unital Banach algebra, and let MB denote the set of all
maximal ideals of B. Let x be a maximal ideal1 of B. Then the quotient algebra
B/x is isomorphic to C by Theorem 1.3.8. Thus, to each x ∈ MB and each b ∈ B,
there is associated a complex number, ̂b(x), which is the image of the coset b + x
under the above mentioned isomorphism.

The mapping b �→ ̂b(x) is a multiplicative linear functional on B the kernel of
which is x. By Theorem 1.3.19, there are no other multiplicative linear functionals
with the same kernel on B, and there is a one-to-one correspondence between the
non-trivial multiplicative linear functionals on B and the maximal ideals of B: the
kernel of every non-trivial multiplicative linear functional is a maximal ideal, and
every maximal ideal is the kernel of a uniquely determined non-trivial multiplicative
linear functional.

1 The notation “x” for a maximal ideal may seem strange at first. But if one remembers Section
1.4.3 and the relation between the maximal ideals and the multiplicative linear functionals of the
algebra C(X), this choice of notation becomes clear.
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Definition 2.1.1. Given an element b ∈ B, the complex-valued function

̂b : MB → C, x �→ ̂b(x)

is called the Gelfand transform of the element b ∈ B, and the resulting mapping

̂ : B →C(MB), b �→ ̂b

is called the Gelfand transform on B.

The set MB can be made into a topological space by the requirement that all
Gelfand transforms of elements of B become continuous functions on it:

Definition 2.1.2. The Gelfand topology on MB is the coarsest topology on MB

that makes all Gelfand transforms ̂b with b ∈ B continuous. The set MB provided
with the Gelfand topology is referred to as the maximal ideal space of the Banach
algebra B.

Equivalently, the sets ̂b−1(U) with b and U running through B and the open
subsets of C, respectively, form a sub-basis of the Gelfand topology.

2.1.2 Classical Gelfand theory

The following two theorems, also known as Gelfand’s representation theorem, are
the central results of classical Gelfand theory. They claim that every complex com-
mutative unital semi-simple Banach algebra is isomorphic to an algebra of complex
functions, defined in a certain compact Hausdorff space.

Theorem 2.1.3. Let B be a commutative unital Banach algebra. Then:

(i) the Gelfand transform is a continuous homomorphism of norm 1;
(ii) the set ̂B is a subalgebra of C(MB) which separates the points of MB and

contains the identity of C(MB);
(iii) the element b ∈ B is invertible if and only if ̂b(x) �= 0 for all x ∈ MB;
(iv) the kernel of the Gelfand transform is the radical of B. Thus, the Gelfand

transform is an isomorphism between B and ̂B if and only if B is semi-
simple;

(v) the spectrum of b ∈ B coincides with the image of ̂b, and r(b) = ‖̂b‖∞.

Proof. The definition of the Gelfand topology in MB guarantees the continuity of
each function ̂b. As b̂1 +b2 = ̂b1 + ̂b2, ̂λb1 = λ ̂b1 and ̂b1b2 = ̂b1̂b2, for b1,b2 ∈ B
and λ ∈ C, the Gelfand transform is a homomorphism. By the definition of the
quotient norm, one also has

∥

∥̂b
∥

∥

∞ = sup
x∈MB

∣

∣̂b(x)
∣

∣≤ ‖b‖, (2.1)
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which implies the continuity of the Gelfand transform and that its norm is less than
or equal to 1. That ̂B is a subalgebra of C(MB) is obvious, because the Gelfand
transform is a homomorphism. To prove the rest of point (ii) let us suppose that we
have two maximal ideals x1 �= x2. Choosing an element b1 ∈ x1 such that b1 �∈ x2 we
obtain ̂b1(x1) = 0 but ̂b1(x2) �= 0. We have also ê(x) = 1 for all x ∈ MB , and using
point (i) we can now deduce that the norm of ̂ is 1. The third point is a direct
consequence of Theorem 1.3.21. The proof of point (iv) is easy: just remember that
̂b(x) = 0 for all x ∈ MB , if and only if b ∈ x for all x ∈ MB .

Finally, regarding (v), we have that λ ∈ σ(b)⇔ λe−b is not invertible, which is

equivalent to λ̂e−b(x) = 0 for some x ∈ MB by point (iii) above. This is equivalent
to λ −̂b(x) = 0 for some x ∈ MB , that is λ ∈ ̂b(MB). By the definition of spectral
radius we have r(b) = supx∈MB

|̂b(x)| = ‖̂b‖∞.

In general, neither equality holds in the estimate (2.1), nor is the Gelfand trans-
form ̂ : B → C(MB) injective or surjective. Examples are provided in Exercises
2.1.1 and 2.1.2.

Theorem 2.1.4. The maximal ideal space MB of a commutative Banach algebra
with identity is a compact Hausdorff space; thus normal.

Proof. We prepare the proof by recalling some facts from functional analysis. Let
X be a Banach space with Banach dual X∗. For each b ∈ X , define a function

fb : X∗ → C, φ �→ φ(b).

The w∗-topology on X∗ is, by definition, the weakest topology on X∗ for which all
functions fb with b ∈ X are continuous. The restriction of the w∗-topology to the
closed unit ball

E∗ := {φ : φ ∈ X∗ and ‖φ‖ ≤ 1}

of X∗ makes E∗ a compact subset of a Hausdorff space in the w∗-topology (see, for
instance, [184, Theorem 49-A]).

Now let B be a commutative Banach algebra with identity e, B∗ its Banach dual
space, and E∗ the closed unit ball of B∗, provided with its w∗-topology. Every non-
zero multiplicative functional on B has norm 1 and can thus be considered as an
element of E∗, which implies an embedding of the maximal ideal space MB into
E∗. It turns out that the restriction of the w∗-topology on E∗ to MB coincides with
the Gelfand topology. Indeed, the restriction of fb to MB coincides with the Gelfand
transform ̂b, because of fb(x) = fb(φx) = φx(b) = ̂b(x).

Since E∗ is a compact subset of a Hausdorff space with respect to the w∗-
topology, it remains only to prove that MB is a closed subset of E∗. Let I be a
directed set and (φα)α∈I a net in MB which converges to φ ∈ E∗ in the w∗-topology.
Then

φ(e) = lim
α
φα(e) = lim

α
1 = 1

and
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φ(b1b2) = lim
α
φα(b1b2)

= lim
α
φα(b1)φα(b2) = lim

α
φα(b1) lim

α
φα(b2) = φ(b1)φ(b2)

which shows that φ ∈ MB again.

Remark 2.1.5. Using the terminology given at the beginning of the chapter, as-
sertions (i) and (iii) of Theorem 2.1.3 can be rephrased as follows: The Gelfand
transform ̂ : B → C(MB) is a symbol mapping for B, and the family of all ho-
momorphisms Wx : b �→ ̂b(x) of B with x ∈ MB is a sufficient family. �

The following result provides a criterion for the injectivity of the Gelfand trans-
form.

Proposition 2.1.6. Let B be a commutative unital Banach algebra. The following
conditions are equivalent, for any b ∈ B:

(i) ‖b2‖ = ‖b‖2;
(ii) r(b) = ‖b‖;

(iii)
∥

∥̂b
∥

∥= ‖b‖.

Proof. Condition (i) implies ‖b2k‖ = ‖b‖2k
for any natural k. Then the formula for

the spectral radius (Theorem 1.2.12) gives

r(b) = lim
n→∞

‖bn‖ 1
n = lim

k→∞

∥

∥b2k∥
∥

1
2k = lim

k→∞
‖b‖ = ‖b‖,

which is (ii). Conversely, if λ ∈ σ(b) then λ 2 ∈ σ(b2) by Exercise 1.2.5. Hence,
‖b2‖= r(b2) = r(b)2 = ‖b‖2, showing that (ii) implies (i). The equivalence between
(ii) and (iii) comes from (v) in Theorem 2.1.3.

For normal elements in a C∗-algebra, condition (i) in the above proposition is
always satisfied and we have ‖a2‖= ‖a‖2 and r(a) = ‖a‖, as was seen in Proposition
1.2.36 (i). In a commutative C∗-algebra, all elements are normal. Thus, the Gelfand
transform acts as an isometry on commutative C∗-algebras. One can say even more
in this case.

Theorem 2.1.7 (Gelfand-Naimark). Let B be a commutative unital C∗-algebra.
Then the Gelfand transform is an (isometric) *-isomorphism from B onto the alge-
bra C(MB).

Proof. Let us first verify that the Gelfand transform is a *-homomorphism. If h ∈B
is self-adjoint, then σ(h) ⊂ R by Proposition 1.2.36, implying that Im ̂h ⊂ R by

Theorem 2.1.3 (iii). Consequently, ̂h = ̂h = ̂h∗. Now let b ∈ B be arbitrary. Write b
as b = h+ ik with h, k self-adjoint. Then

̂b∗ = ̂(h− ik) = ̂h− ̂ik = ̂h− îk = ĥ+ ik = ̂b.
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Thus, the Gelfand transform is symmetric, and by Propositions 1.2.36 and 2.1.6, it is
also an isometry. We are left with proving the surjectivity. The image ̂B is a closed
self-adjoint subalgebra of C(MB) by Theorem 1.1.6, and it separates the points of
MB and contains the constant functions. By the Stone-Weierstrass theorem (see for
example [171, Section 5.7]), ̂B coincides with C(MB).

The theorem above justifies thinking of elements of commutative unital C∗-
algebras as continuous functions on a compact Hausdorff space, and we shall use
this henceforth.

2.1.3 The Shilov boundary

Let X be a compact Hausdorff space. For each function a ∈ C(X) and each closed
non-empty subset E of X we set

‖a|E‖∞ := max
x∈E

|a(x)|.

Let C be a subset of C(X). A closed subset F of X is called a maximizing set for C
if

‖a|X ‖∞ = ‖a|F ‖∞ for all a ∈ C .

Lemma 2.1.8. Let C be a subalgebra of C(X) which contains the constant functions
and separates the points of X. Then the intersection of all maximizing sets for C is
a maximizing set for C .

Proof. Let S denote the intersection of all maximizing sets for C . We claim that
every point x0 ∈ X \S has an open neighborhood U such that F \U is a maximizing
set for C whenever F is a maximizing set for C .

Indeed, since x0 �∈ S, there is a maximizing set F0 for C which does not contain
x0. Since C contains the constant functions and separates the points of X , for each
y ∈ F0, there is a function ay ∈ C with ay(x0) = 0 and ay(y) = 2. Each set Uy :=
{x ∈ X : |ay(x)| > 1} is an open neighborhood of y. Thus, the compact set F0 can
be covered by a finite number of sets of the form Uy. We denote the corresponding
functions in C by a1, . . . , ar. Thus, ak(x0) = 0 for k = 1, . . . , r, and for each y ∈ F0

there is a k ∈ {1, . . . , r} such that ak(y) > 1. Let

U := {x : |ak(x)| < 1 for every k = 1, . . . , r}.

Then U is an open neighborhood of x0 and U ∩F0 = /0.
Now let F be a maximizing set for C , and suppose that the set F \U is not

maximizing for C . Then there is a function a ∈ C with

‖a|X ‖∞ = 1 > ‖a|F\U
‖∞.
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Let M := max{‖ak|X ‖∞ : k = 1, . . . , r} and choose n such that ‖a|F\U
‖n
∞ < 1/M.

Then ‖anak|F\U
‖∞ < 1 for every k = 1, . . . , r, and one also has |an(x)ak(x)| < 1 for

all x ∈U and k = 1, . . . , r. Since F is maximizing, this implies

‖anak|X
‖∞ = ‖anak|F‖∞ < 1 for every k = 1, . . . , r.

Since F0 is a maximizing set, there is a point y ∈ F0 with a(y) = 1. For this point,
one gets

|ak(y)| = |an(y)ak(y)| ≤ ‖anak|X ‖∞ < 1,

which implies that y ∈ F0 ∩U . Hence, F0 ∩U is not empty; a contradiction. This
contradiction proves our claim.

Having the claim at our disposal, the proof of the lemma can be completed as
follows. Let a ∈ C , and let K := {x ∈ X : |a(x)| = ‖a|X ‖∞}. We have to show that
S ∩ K is not empty. Contrary to what we want to show, assume that S ∩ K = /0.
Then each point x0 ∈ K has an open neighborhood U given by the claim. Since K
is compact, it is covered by a finite number of these neighborhoods, say U1, . . . , Un.
The set X is maximizing, and so are the sets

X \U1, X \ (U1 ∪U2), . . . , X \ (U1 ∪ . . .∪Un) =: E,

say. Since E∩K = /0 one obtains ‖a|E‖∞ < ‖a|X ‖∞ which contradicts the maximality
of E.

Now let A be a commutative Banach algebra with identity e. Then the algebra
C of all Gelfand transforms of elements of A contains the constant functions and
separates the points of the maximal ideal space MA . By the above lemma, the inter-
section of all maximizing sets for C is a maximizing set for C . This intersection is
called the Shilov boundary of MA . We denote it by ∂SMA .

Equivalently, a point x0 ∈ MA belongs to ∂SMA if and only if, for each open
neighborhood U ⊂ MA of x0, there exists an a ∈ A such that

‖â|MA \U‖∞ < ‖â|U‖∞.

Theorem 2.1.9. Let A and B be commutative unital Banach algebras.

(i) If W : A →B is a unital homomorphism which preserves spectral radii, i.e., if

rB(W(a)) = rA (a) for all a ∈ A ,

then ∂SMA ⊆ W∗(∂SMB) (with W∗ referring to the dual mapping of W).
(ii) Now let A be a unital closed subalgebra of B. Then each maximal ideal in the

Shilov boundary of MA is contained in some maximal ideal of B.

Proof. (i) We think of the elements of the maximal ideal space MB as non-trivial
multiplicative functionals, and thus as elements of the Banach dual B∗. Since W is
a homomorphism, its dual W∗ sends multiplicative functionals on B to multiplica-
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tive functionals on A . Let eA and eB denote the identity elements of A and B,
respectively. From

W∗(ϕ)(eA ) = ϕ(W(eA )) = ϕ(eB) = 1

one deduces that the image of a non-trivial multiplicative functional ϕ on B is non-
trivial again. Thus, W∗ maps MB into MA .

The Shilov boundary ∂SMB is a compact subset of MB , and W∗ : MB → MA

is continuous by the definition of the Gelfand topology. Hence, W∗(∂SMB) is a
compact subset of MA . Since MA is a compact Hausdorff space, the set W∗(∂SMB)
is closed in MA . The assertion will follow once we have shown that this set is
maximizing for the algebra of all Gelfand transforms of elements of A .

Let a ∈ A . Then

‖â|W∗(∂SMB)‖∞ =
∥

∥Ŵ(a)|∂SMB

∥

∥

∞ = rB(W(a)) = rA (a)

with r referring to the spectral radius. Thus, W∗(∂SMB) is maximizing and includes
the Shilov boundary of the maximal ideal space of A .

(ii) Consider the inclusion map W : A →B. Then W is a homomorphism which
preserves spectral radii (use the formula for the spectral radius to check this). Thus,
by part (i) of this theorem, every maximal ideal in the Shilov boundary of A arises
as the restriction of some maximal ideal (in the Shilov boundary) of B.

2.1.4 Example: SIOs with continuous coefficients

We return now to the SIOs introduced in Section 1.4.4, but will apply Gelfand’s rep-
resentation theorem. Let B be the smallest closed subalgebra of L (Lp(T)) which
contains all singular integral operators of the form

A = cI +dS +K = f P+gQ+K

where c, d ∈C(T), K is compact, and f := c +d and g := c−d. From Proposition
1.4.12 we infer that the Calkin image BK := B/K of B is a commutative and
unital Banach algebra which is, consequently, subject to Gelfand’s representation
theorem. We start with identifying the maximal ideal space of BK .

Proposition 2.1.10. All proper ideals of BK are contained in ideals of the form

IP,X0 := { f P+gQ+K : f (X0) = 0} or IQ,X0 := { f P+gQ+K : g(X0) = 0}

with a certain subset X0 of T.

Proof. Suppose there is an ideal I of BK , which does not have the claimed
property. Then, for every x ∈ T, there are functions fx and gx ∈ C(T) such that
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fx(x) �= 0, gx(x) �= 0, and fxP+gxQ+K ∈ I . Consequently,

Ax := ( fxP+gxQ+K )( f xP+gxQ+K ) = | fx|2P+ |gx|2Q+K ∈ I .

The functions | fx|2 and |gx|2 are positive in a certain open neighborhood Ux of x,
and the collection of all of these neighborhoods covers T. By compactness, one can
extract a finite subcovering T = Ux1 ∪ . . .∪Uxn , say. It is easy to see that then the
operator A = ∑n

k=1 Axk ∈ I is invertible in BK , which is a contradiction.

Proposition 2.1.10 implies that the maximal ideals of BK are necessarily of the
form

IP,x0 := { f P+gQ+K : f (x0) = 0} and IQ,x0 := { f P+gQ+K : g(x0) = 0}

with x0 ∈ T. These ideals are closed by Theorem 1.3.5. Thus, there is a bijection
between the maximal ideal space of BK and two copies of the unit circle T or, more
precisely, between the maximal ideal space of BK and the product T×{0,1}. A
closer look shows that this bijection is even a homeomorphism, which allows one
to identify the maximal ideal space of BK with T×{0,1}, provided with the usual
product topology. Under this identification, the Gelfand transform of an element
A+K = f P+gQ+K is given by

Â+K (x,n) =

{

f (x) if n = 0,

g(x) if n = 1.

Thus, the coset A+K is invertible (equivalently, the operator A is Fredholm) if and
only if f (x) �= 0 and g(x) �= 0 for all x ∈ T. It is also easy to see that the radical of
BK is {0}.

These results remain valid for curves Γ other than the unit circle, provided that
the singular integral operator SΓ on that curve satisfies S2

Γ = I and that the commu-
tator of SΓ with every operator of multiplication by a continuous function on Γ is
compact. Examples of such curves will be discussed in Chapter 4.

2.1.5 Exercises

Exercise 2.1.1. Let B be the algebra of all matrices

[

a b
0 a

]

with complex entries

a, b. Determine the maximal ideal space of B and the Gelfand transform on B.
Conclude that the Gelfand transform is not injective. (Evidently, the reason for being
not injective is that B has a non-trivial radical.)

Exercise 2.1.2. Let A refer to the disk algebra introduced in Example 1.2.23. Char-
acterize A as the set of all functions f ∈C(T) which possess an analytic continuation
into the open unit disk D := {z ∈C : |z|< 1}. Show that A is a commutative Banach
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algebra with identity and that every character of A is of the form f �→ f (z) with
some fixed point z ∈ D∪T. Conclude that the maximal ideal space of A is homeo-
morphic to the closed unit disk D∪T with its standard (Euclidean) topology. Show
further that the Gelfand transform of f ∈ A coincides with the analytic continuation
of f into the interior of the unit disk. Thus, the image of the Gelfand transform on
A is a proper subset of C(MA) = C(D∪T).

Exercise 2.1.3. A Banach algebra B with identity e is singly generated if there is
an element b ∈ B such that the smallest closed subalgebra of B which contains e
and b coincides with B. In this case, b is called a generator of B. Prove that the
maximal ideal space of a singly generated (by b, say) Banach algebra is homeo-
morphic to the spectrum σB(b). Suggestion: under this homeomorphism, the point
λ ∈ σB(b) corresponds to the smallest closed ideal of B which contains b−λe (see
[37, 15.3.6]).

Exercise 2.1.4. We know from Exercise 1.4.8 that the Toeplitz algebra T (C) con-
tains the ideal K (l2(Z+)) of the compact operators and that the quotient algebra
T (C)/K (l2(Z+)) is commutative. Identify the maximal ideal space of this quo-
tient algebra. Show that the Gelfand transform of T (a)+K (l2(Z+)) can be identi-
fied with a ∈C(T).

Exercise 2.1.5. Let B be a commutative Banach algebra with identity, generated
by the elements {b1, . . . , bn}. Show that MB is homeomorphic to the joint spectrum
σB(b1, . . . ,bn) in B.

Exercise 2.1.6. Review Exercise 1.3.9. Let Ml∞ be the space of multiplicative linear
functionals of l∞, with the w∗ topology. Given u ∈ l∞, define û(φ) as φ(u) for φ ∈
Ml∞ . Note that Ml∞ is a compact Hausdorff space.

a) Show that Ml∞ is extremely disconnected (i.e., the closure of every open set is
open).

b) Let φn(u) := un for n ∈ N and u ∈ l∞. Show that the subset {φn : n ∈ N} of Ml∞
is homeomorphic to N and that, consequently, N can be identified with a subset
of Ml∞ . Show that N is dense in Ml∞ .

c) Show that the one point subset {φn} of Ml∞ is open in Ml∞ .
d) Show that φ(u) = 0 when φ ∈ Ml∞ \N and u ∈ l0

∞.

Exercise 2.1.7. Determine the Shilov boundaries of the maximal ideal spaces of the
disk algebra A and of the C∗-algebra C(X) where X is a compact Hausdorff space.
(Hint: use the Tietze-Uryson extension theorem.)

2.2 Allan’s local principle

As we have seen, Gelfand theory associates with each unital commutative Banach
algebra B a compact Hausdorff space MB , called the maximal ideal space of B,
and with every element b∈B a continuous function ̂b : MB →C, called the Gelfand
transform of b, such that the mapping
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̂ : B →C(MB), b �→ ̂b

becomes a contractive algebra homomorphism which preserves spectra. Allan’s lo-
cal principle is a generalization of classical Gelfand theory to unital Banach alge-
bras which are close to commutative algebras in the sense that their centers are
non-trivial.

2.2.1 Central subalgebras

Let A be a unital Banach algebra. Recall that the center of A is the set Cen A of
all elements a ∈ A such that ab = ba for all b ∈ A . Evidently, Cen A is a closed
commutative subalgebra of A which contains the identity element. A central subal-
gebra of A is a closed subalgebra B of the center of A which contains the identity
element. Thus, B is a commutative Banach algebra with compact maximal ideal
space MB . For each maximal ideal x of B, consider the smallest closed two-sided
ideal Ix of A which contains x, and let Φx refer to the canonical homomorphism
from A onto the quotient algebra A /Ix.

In contrast to the commutative setting where B/x ∼= C for all x ∈ MB , the quo-
tient algebras A /Ix will depend on x∈MB in general. Moreover, it can happen that
Ix = A for certain maximal ideals x. In this case we define that Φx(a) is invertible
in A /Ix and that ‖Φx(a)‖ = 0 for each a ∈ A .

2.2.2 Allan’s local principle

The proof of Allan’s local principle is based on the following observation.

Proposition 2.2.1 (Allan). Let B be a central subalgebra of the unital Banach
algebra A . If M is a maximal left, right, or two-sided ideal of A , then M ∩B is
a (two-sided) maximal ideal of B.

Proof. For definiteness, let M be a maximal left ideal of A . Then M ∩B is a
proper (since e ∈ B \M ) closed two-sided ideal of B. The maximality of M ∩B
will follow once we have shown that

for all z ∈ B \M , there is a λ ∈ C\{0} with z−λe ∈ M . (2.2)

Indeed, let I be a two-sided ideal of B with M ∩B ⊂ I and M ∩B �= I .
Choose z ∈ I \ (M ∩B) ⊂ B \M . According to (2.2), there is a λ ∈ C and an
l ∈ M ∩B with e = λ−1z + l. Hence, e ∈ I , whence I = B and the maximality
of M ∩B.

We are left with verifying (2.2). In a first step we show that every element z ∈
B \M has a unique inverse modulo M . The set Iz := {l +az : l ∈M , a ∈A } is a
left ideal of A which contains M properly (since z �∈M ). Since M is maximal, we
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must have Iz = A . Hence, e ∈ Iz, and there is an a ∈ A with az− e, za− e ∈ M
(note that z ∈ Cen A). Thus, a is an inverse of z modulo M .

Further, Kz := {a ∈ A : az ∈ M } is a proper (since e �∈ Kz) left ideal of A
which contains M . Since M is maximal, we have Kz = M . In particular, if a1 and
a2 are inverses modulo M of z, then a1 − a2 ∈ M . Thus, the inverses modulo M
of z determine a unique element of the quotient space A /M .

Contrary to (2.2), suppose that z− λe �∈ M for all λ ∈ C. Let yπ(λ ) denote
the (uniquely determined) coset of A /M containing the inverses modulo M of
z−λe. Then yπ : C→A /M is an analytic function. Indeed, let λ0 ∈C, and let y0 ∈
yπ(λ0) be an inverse modulo M of z−λ0e. Then, for |λ−λ0|< 1/‖y0‖, the element
e− (λ −λ0)y0 is invertible in A , and it is readily verified that y0[e− (λ −λ0)y0]−1

is an inverse modulo M of z−λe. Thus, for |λ −λ0| < 1/‖y0‖,

yπ(λ ) = y0[e− (λ −λ0)y0]−1 +M ,

which implies the asserted analyticity. If |λ |> 2‖z‖, then z−λe is actually invertible
in A and

‖yπ(λ )‖ ≤ ‖(z−λe)−1‖ =
1
|λ | ‖(e− z/λ )−1‖ ≤ 1

|λ |
1

1−‖z‖/|λ | <
1
‖z‖ .

Therefore, yπ is bounded, whence yπ(λ ) = 0 for all λ ∈ C by Liouville’s theorem.
In particular, yπ(0) = 0. Thus, there is a y0 ∈M with y0z−e ∈M , whence e ∈M .
This is impossible since M is a proper ideal of A . This contradiction implies that
there is a λ ∈ C with z−λe ∈ M . Since z �∈ M , one also has λ �= 0.

Before tackling Allan’s principle, let us recall that a function f : MB → R is said
to be upper semi-continuous at x0 ∈ MB if, for each ε > 0, there exists a neighbor-
hood Uε ⊂ MB of x0 such that f (x) < f (x0)+ ε for any x ∈ Uε . The function f is
said to be upper semi-continuous on MB if it is upper semi-continuous at each point
of MB . Every upper semi-continuous function defined on a compact set attains its
supremum.

Theorem 2.2.2 (Allan’s local principle). Let B be a central subalgebra of the unital
Banach algebra A . Then:

(i) an element a ∈ A is invertible if and only if the cosets Φx(a) are invertible in
A /Ix for each x ∈ MB;

(ii) the mapping MB → R
+, x �→ ‖Φx(a)‖ is upper semi-continuous for every

a ∈ A ;
(iii) ‖a‖ ≥ maxx∈MB

‖Φx(a)‖;
(iv) ∩x∈MB

Ix lies in the radical of A .

Proof. To prove (i) we show that a ∈ A is left invertible if and only if Φx(a) is left
invertible for all x ∈ MB . The proof for the right invertibility is analogous.

Clearly, Φx(a) is left invertible if a is so. To verify the reverse implication as-
sume the contrary, i.e., suppose Φx(a) to be left invertible in A /Ix for all x ∈ MB
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but let a have no left inverse in A . Denote by M a maximal left ideal of A
which contains the set I := {ba : b ∈ A } (note that e �∈ I ). Put x = M ∩B.
By Proposition 2.2.1, x is a maximal ideal of B. We claim that Ix ⊆ M . In-
deed, if l = ∑n

k=1 akxkbk where xk ∈ x and ak, bk ∈ A , then l = ∑n
k=1 akbkxk (be-

cause B is central), and hence l ∈ M (because M is a left ideal). Thus, Ix ⊆
M . By our assumption, Φx(a) is left invertible in A /Ix, that is, there exists a
b ∈ A with ba− e ∈ Ix, and since Ix ⊆ M we have ba− e ∈ M . On the other
hand, ba ∈ I ⊆ M . This implies that e ∈ M which contradicts the maximality
of M .

(ii) Let x ∈ MB and ε > 0. We have to show that there is a neighborhood U of x
such that

‖Φy(a)‖ < ‖Φx(a)‖+ ε for all y ∈U.

Choose elements a1, . . . , an ∈ A and x1, . . . , xn ∈ x with
∥

∥

∥

∥

∥

a+
n

∑
j=1

a jx j

∥

∥

∥

∥

∥

< ‖Φx(a)‖+ ε/2, (2.3)

set δ := ∑n
i=1 ‖ai‖+1, and define an open neighborhood U ⊂ MB of x by

U := {y ∈ MB : |x̂ j(y)| < ε/(2δ ) for j = 1, . . . , n}.

Let y ∈ U and set y j := x j − x̂ j(y)e. Then ŷ j(y) = x̂ j(y)− x̂ j(y)ê(y) = 0, whence
y j ∈ y and

‖Φy(a)‖ ≤
∥

∥

∥

∥

∥

a+
n

∑
j=1

a jy j

∥

∥

∥

∥

∥

. (2.4)

The estimates (2.3) and (2.4) give

‖Φy(a)‖−‖Φx(a)‖ ≤
∥

∥a+∑a jy j
∥

∥−
∥

∥a+∑a jx j
∥

∥+ ε/2

≤
∥

∥∑a j(y j − x j)
∥

∥+ ε/2

=
∥

∥∑ x̂ j(y)a j
∥

∥+ ε/2 < ε,

whence the upper semi-continuity of y �→ ‖Φy(a)‖ at x.
(iii) By definition, ‖a‖ ≥ ‖Φx(a)‖ for any x ∈ MB , which implies that ‖a‖ ≥

supx∈MB
‖Φx(a)‖. The supremum in this estimate is actually a maximum due to the

compactness of MB .
(iv) Let k ∈∩x∈MB

Ix. Then, for any a ∈A ,Φx(e−ak) =Φx(e) and by (i) above
e−ak is invertible. Thus, by Proposition 1.3.3, k belongs to the radical of A .



76 2 Local principles

2.2.3 Local invertibility and local spectra

As consequences of the upper semi-continuity, we mention the following properties
of local invertibility and local spectra.

Let X be a locally compact Hausdorff space with one-point compactification X ∪
{x∞}, and let M be a mapping from X into the set of all compact subsets of the
complex plane. For each net y := (yt)t∈T in X with limit x∞, consider the set L(y)
of all limits of convergent nets (λt)t∈T with λt ∈ M(yt). The limes superior (also
called the partial limiting set) limsupx→x∞ M(x) is defined as the union of all sets
L(y), where the union is taken over all nets y in X tending to x∞. For X = Z

+, this
definition coincides with that one given before Proposition 1.2.16. Below we apply
this definition when Y is a compact Hausdorff space, x∞ ∈ Y and X := Y \{x∞}.

Proposition 2.2.3. Let the hypothesis be as in Theorem 2.2.2.

(i) If Φx(a) is invertible in A /Ix, then there is a neighborhood U of x ∈ MB as
well as a neighborhood V of a ∈A such that Φy(c) is invertible in A /Iy and

‖Φy(c)−1‖ ≤ 4‖Φx(a)−1‖ for all y ∈U and c ∈V.

(ii) For all a ∈ A and x ∈ MB ,

limsup
y→x

σ(Φy(a)) ⊆ σ(Φx(a)).

The number 4 in the estimate in assertion (i) can be replaced by any constant
greater than 1.
Proof. (i) Let Φx(a) be invertible and choose b ∈ A such that

Φx(ab− e) =Φx(ba− e) = 0.

By Theorem 2.2.2 (ii), the mappings

y �→ ‖Φy(ab− e)‖ and y �→ ‖Φy(ba− e)‖

are upper semi-continuous on the maximal ideal space of B. Hence,

‖Φy(ab− e)‖ < 1/4 and ‖Φy(ba− e)‖ < 1/4

for all maximal ideals y in a certain neighborhood U ′ of x. Further, let V stand for
the set of all elements c ∈ A with ‖c−a‖ < (4‖b‖)−1. Then

Φy(c)Φy(b) =Φy(e)+Φy(cb− e) and Φy(b)Φy(c) =Φy(e)+Φy(bc− e)

with

‖Φy(cb− e)‖ ≤ ‖Φy(ab− e)‖+‖Φy((c−a)b)‖ ≤ 1/4+‖c−a‖‖b‖ < 1/2
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and, analogously, ‖Φy(bc−e)‖ ≤ 1/2. Since Φ(e) is the identity element in A /Iy,
a Neumann series argument implies that Φy(c) is invertible in A /Iy and that

‖Φy(c)−1‖ ≤ 2‖Φy(b)‖ for all y ∈U ′ and c ∈V.

Employing the upper semi-continuity once more, one finally gets

‖Φy(b)‖ ≤ 2‖Φx(b)‖ = 2‖Φx(a)−1‖

for all y in a neighborhood U ⊆U ′ of x.
(ii) Let λ ∈ limsupy→xσ(Φy(a)). By definition of the limes superior, there is a

net (yt)t∈T ∈ MB with yt → x and numbers λt ∈ σ(Φyt (a)) with λt → λ . Consider
the elements a − λt e, which converge to a − λe in the norm of A . If the coset
Φx(a−λe) was invertible, then the local cosets Φyt (a−λt e) would be invertible for
all sufficiently large t by part (i) of this proposition. This is impossible due to the
choice of the points λt . Consequently, λ ∈ σ(Φx(a)).

2.2.4 Localization over central C∗-algebras

We will now have a closer look at Allan’s local principle in the case that the central
subalgebra B of A is a C∗-algebra. Thus, we let A ,B,MB,Ix and Φx be as in
the previous subsection, but in addition we assume that there is an involution on the
central subalgebra B of A which makes B to a C∗-algebra with respect to the norm
inherited from A . In this context, we will obtain a nice expression for the local norm
and a canonical representation for the elements in the local ideals. Further we will
briefly discuss some issues related to inverse-closedness.

Proposition 2.2.4. Let A be a unital Banach algebra and let B be a central C∗-
subalgebra of A which contains the identity. Then, for each a ∈ A and x ∈ MB ,

‖Φx(a)‖ = inf
b
‖ab‖

where the infimum is taken over all b ∈ B with 0 ≤ b ≤ 1 which are identically 1 in
a certain neighborhood of x.

Proof. Denote the infimum on the right-hand side by q. If b ∈ B is identically 1 in
some neighborhood of x, then a(b−1) belongs to the local ideal Ix, whence

‖Φx(a)‖ ≤ ‖a+a(b−1)‖ = ‖ab‖.

Taking the infimum over all b with the properties mentioned above gives the estimate
‖Φx(a)‖ ≤ q.

For the reverse estimate, let ε > 0. Choose functions b1, . . . , bn ∈B which vanish
at x and non-zero elements a1, . . . , an ∈ A such that
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‖a+a1b1 + . . .+anbn‖ ≤ ‖Φx(a)‖+ ε.

If b is any function in B with 0 ≤ b ≤ 1 which is identically 1 in a certain neighbor-
hood of x, then

‖ab‖ ≤
∥

∥(a+∑aibi)b
∥

∥+
∥

∥∑aibib
∥

∥

≤
∥

∥a+∑aibi
∥

∥+∑‖ai‖‖bib‖
≤ ‖Φx(a)‖+ ε+∑‖ai‖‖bib‖.

The quantity on the right-hand side becomes smaller than ‖Φx(a)‖+2ε if b is cho-
sen such that ‖bib‖ < ε/(n‖ai‖) for all i. Since ε > 0 is arbitrary, ‖ab‖ ≤ ‖Φx(a)‖,
whence the estimate q ≤ ‖Φx(a)‖.

Here is the aforementioned result on the structure of elements in the local ideals.

Proposition 2.2.5. Let A be a Banach algebra with identity e, B be a central
C∗-subalgebra of A which contains e, and x ∈ MB . Then

Ix = {ca : a ∈ A and c ∈ x} . (2.5)

Proof. By definition, the ideal Ix is the closure in A of the set of all finite sums

n

∑
j=1

c ja j with c j ∈ x and a j ∈ A .

We claim that each sum of this form can be written as a single product ca with
c j ∈ x and a j ∈ A . Clearly, it is sufficient to prove this fact for n = 2. Let c1,c2 ∈ x
and a1,a2 ∈ A . We identify the elements of B with the corresponding Gelfand
transforms. Define c :=

√

|c1|+ |c2|. Then c ∈ x, and the point x belongs to the set
Nc := {y ∈ MB : c(y) = 0}. For j = 1,2, put

g j(y) :=

{

c j(y)/c(y) if y �∈ Nc,

0 if y ∈ Nc.

For y �∈ Nc, one has

|g j(y)| =
|c j(y)|
|c(y)| =

|c j(y)|
|c1(y)|+ |c2(y)|

|c(y)| ≤ |c(y)|.

Since the estimate |g j(y)| ≤ |c(y)| holds for y ∈ Nc as well, the functions g j are
continuous. Thus, they can be identified with elements of B. Since c j = cg j, it
follows that c1a1 + c2a2 = c(g1a1 + g2a2) as desired. Hence, the set on the right-
hand side of (2.5) forms an ideal of A . We abbreviate this ideal by I ′

x for a mo-
ment.

Next we are going to prove that I ′
x is a closed ideal. Let d be in the closure of

I ′
x . Given any convergent series ∑∞k=1 εk of positive numbers, there are elements
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ak ∈ A and ck ∈ x such that ‖d − ckak‖ < εk/2 for every k. For each k, there is
an open neighborhood Uk ⊂ MB of x such that ‖ak‖|ck(y)| < εk/2 for all y ∈ Uk.
Without loss of generality, one can assume that Uk+1 ⊂ Uk for every k. Further, let
fk be elements of B with 0 ≤ fk ≤ 1 and such that fk|Uk+1

= 1 and fk|MB\Uk
= 0 for

all k. Then
‖ck fk‖ = ‖ck fk‖∞ ≤ sup

y∈Uk

|ck(y)|,

whence
‖ fkd‖ ≤ ‖d − ckak‖‖ fk‖+‖ak‖‖ck fk‖ < εk.

Consequently, the series d +∑∞k=1 fkd is absolutely convergent. Let d∞ ∈ A denote
the limit of that series. The estimate

0 ≤
(

1+
n

∑
k=1

fk(y)

)−1

−
(

1+
n+m

∑
k=1

fk(y)

)−1

≤
{

(1+∑n
k=1 fk(y))

−1 for y ∈Un+1

0 for y ∈ MB \Un+1
≤ 1

n+1

shows that (1 +∑n
k=1 fk)−1 converges in B as n → ∞ to some element c. Clearly,

c(x) = 0, whence c ∈ x. Since d = cd∞ by construction, I ′
x is closed. Thus, I ′

x is a
closed ideal of A which contains the ideal x of B. Since Ix is the smallest ideal of
A with these properties, the assertion follows.

Finally we will show that every central C∗-subalgebra of a Banach algebra is
inverse-closed. Recall that the algebra B is inverse-closed in A if every element
b ∈B which is invertible in A possesses an inverse in B. The following definitions
make sense in the context of the general local principle (i.e., without assuming the
C∗-property of B). Also Lemma 2.2.6 holds in the general context.

Write the maximal ideal space MB as M0
B ∪M+

B where M0
B collects those max-

imal ideals x of B for which Ix ≡ A and where M+
B is the complement of M0

B
in MB . The set M0

B is open in MB . Indeed, if x ∈ M0
B , then Φx(0) is invertible

by definition. By Proposition 2.2.3, Φy(0) is invertible for all y in a certain open
neighborhood U of x. This is only possible if y ∈ M0

B .

Lemma 2.2.6. If M0
B = /0, then B is inverse-closed in A .

Proof. Assume B is not inverse-closed. Then there is an element b ∈ B which is
invertible in A but not in B. Hence, b is contained in some maximal ideal x of B.
Then b ∈ Ix, and b+Ix is 0 in A /Ix. But on the other hand, b+Ix is invertible
in A /Ix. This is possible only if x ∈ M0

B . Hence, the component M0
B of MB is not

empty.
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Corollary 2.2.7. Let A be a Banach algebra with identity e and let B be a central
C∗-subalgebra of A which contains e. Then:

(i) M0
B is empty;

(ii) B is inverse-closed in A .

Proof. Let x ∈ M0
B . Then Φx(e) = 0. Proposition 2.2.4 implies that inf‖eb‖ =

inf‖b‖ = 0, with the infimum taken over all b ∈ B with 0 ≤ b ≤ 1 which are
identically 1 in a certain neighborhood of x. This is impossible since the Gelfand
transform acts as an isometry on B by the Gelfand-Naimark theorem, whence
‖b‖ ≥ |̂b(x)| = 1. The second assertion follows via Lemma 2.2.6.

The most general result regarding inverse-closedness of C∗-algebras in Banach
algebras was obtained by Goldstein [78]. By a C∗-subalgebra B of a Banach algebra
A we mean a (not necessarily closed) subalgebra of A which carries the structure
of a C∗-algebra, i.e., there is an involution and a norm on B which make B into a
C∗-algebra with respect to the operations inherited from A .

Theorem 2.2.8 (Goldstein). Let A be a unital Banach algebra, and let B be a
(not necessarily closed) C∗-subalgebra of A which contains the identity. Then B is
inverse-closed in A .

We wish to add a related result. It is well known that the maximal ideal space
of a singly generated unital Banach algebra is homeomorphic to the spectrum of its
generating element (see Exercise 2.1.3).

Proposition 2.2.9. Let A be a unital Banach algebra and let B be a central closed
subalgebra of A which contains the identity and which is singly generated by an
element b and the identity. Identify the maximal ideal space of B with σB(b). Then
M+

B = σA (b).

Proof. If x ∈ M+
B , then

Φx(b− xe) = ̂b(x)Φx(e)− xΦx(e) = 0Φx(e) =Φx(0)

is not invertible in Ax. (Note that if MB is identified with σB(b) then the Gelfand
transform of b is the identity mapping on σB(b).) By Allan’s local principle, b−xe
is not invertible in A , whence x ∈ σA (b).

Conversely, let x ∈ σA (b). Then b− xe is not invertible in A , and Allan’s local
principle implies the existence of a point y ∈ σB(b) = MB such that Φy(b− xe) is
not invertible. On the other hand, the element

Φz(b− xe) = ̂b(z)Φz(e)− xΦz(e) = (z− x)Φz(e)

is invertible for every z �= x. Thus, y = x, i.e., Φx(b− xe) is not invertible. This
implies that x ∈ M+

B .
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2.2.5 Douglas’ local principle and sufficient families

We are now going to specialize Allan’s local principle to the context of C∗-algebras.
Allan’s local principle provides us with a sufficient family of homomorphisms. We
will first discuss sufficient families in the context of C∗-algebras.

Let A be a unital C∗-algebra, (Bt)t∈T a family of unital C∗-algebras, and W :=
(Wt)t∈T a family of unital ∗-homomorphisms Wt : A → Bt . Further, let F stand
for the direct product of the C∗-algebras Bt with t ∈ T , and let W denote the ∗-
homomorphism

W : A → F , a �→ (t �→ Wt(a)). (2.6)

Besides sufficient families of homomorphisms it will be convenient to introduce
families of homomorphisms which are sufficient in a weaker sense. The family W
is called weakly sufficient if the implication

Wt(a) is invertible in Bt for every t ∈ T and supt∈T ‖Wt(a)−1‖ < ∞
⇒ a is invertible in A

holds for every a ∈ A .

Theorem 2.2.10. Let A be a unital C∗-algebra. The following conditions are equiv-
alent for a family W = (Wt)t∈T of unital ∗-homomorphisms Wt : A → Bt :

(i) the family W is weakly sufficient;
(ii) if Wt(a) = 0 for every t ∈ T , then a = 0;

(iii) for every a ∈ A , ‖a‖ = supt∈T ‖Wt(a)‖;
(iv) the homomorphism (2.6) is a symbol mapping for A .

Proof. For the implication (i) ⇒ (ii), let a ∈ A be an element such that Wt(a) =
0 for all t ∈ T , and let b be an arbitrary invertible element of A . Then Wt(b) is
invertible for all t ∈ T , and the norms ‖Wt(b)−1‖ are uniformly bounded by ‖b−1‖.
Consequently, the elements Wt(a+b) are invertible for all t ∈ T , and the norms of
their inverses are uniformly bounded, too. By (i), the element a + b is invertible.
Hence, a belongs to the radical of A which consists of the zero element only.

If hypothesis (ii) is satisfied, then the gluing mapping (2.6) is a ∗-homomorphism
with kernel {0}. Hence, W is an isometry, which is equivalent to (iii). The implica-
tion (iii) ⇒ (iv) follows since every isometry is a symbol mapping.

Finally, for the implication (iv) ⇒ (i), let a ∈ A be an element for which the
operators Wt(a) are invertible for all t ∈ T and the norms ‖Wt(a)−1‖ are uniformly
bounded. Then W(a) is invertible in the direct product F . Due to the inverse-
closedness of C∗-algebras, W(a) is also invertible in W(A ). Since W is a symbol
mapping, a is invertible in A .

In the proof of the next result, the concept of the square root of a positive element
will be used. The square root of a positive element in a C∗-algebra is defined via the
continuous functional calculus, which is an immediate corollary of the Gelfand-
Naimark theorem (Theorem 2.1.7).
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Theorem 2.2.11. Let A be a unital C∗-algebra. The following conditions are equiv-
alent for a family W = (Wt)t∈T of unital ∗-homomorphisms Wt : A → Bt :

(i) the family W is sufficient;
(ii) for every a ∈ A , there is a t ∈ T such that ‖Wt(a)‖ = ‖a‖.

Thus, a weakly sufficient family W is sufficient if and only if the supremum in
Theorem 2.2.10 (iii) is attained.

Proof. (i) ⇒ (ii): Suppose there is an a ∈ A such that

‖Wt(a)‖ < sup
s∈T

‖Ws(a)‖ for all t ∈ T. (2.7)

Since

‖Wt(a)‖2 = ‖Wt(a)∗Wt(a)‖
= ‖(Wt(a)∗Wt(a))1/2(Wt(a)∗Wt(a))1/2‖
= ‖(Wt(a)∗Wt(a))1/2‖2 = ‖Wt((a∗a)1/2)‖2,

one can assume without loss of generality that the element a in (2.7) is self-adjoint
and positive. Since the norm of a self-adjoint element b coincides with its spectral
radius r(b), (2.7) can be rewritten as

r(Wt(a)) < sup
s∈T

r(Ws(a)) for all t ∈ T. (2.8)

Denote the supremum on the right-hand side of (2.8) by M and set c := a−Me.
The elements Wt(c) = Wt(a)−Met are invertible for all t ∈ T since r(Wt(a)) <
M. Thus, c = a−Me is invertible by hypothesis (i). Since the set of the invertible
elements is open, we get the invertibility of a−me for all m ∈ R belonging to some
neighborhood U of M. On the other hand, by the definition of the supremum, there is
an sU ∈ T such that mU := r(WsU (a)) belongs to U . The element WsU (a)−mU esU

is not invertible, because the spectral radius of a positive element belongs to the
spectrum of that element. Hence, a−mU e is not invertible. This contradiction proves
the assertion.

(ii) ⇒ (i): Let a ∈A be not invertible. We claim that there is a t ∈ T such that Wt(a)
is not invertible.

If a is not invertible, then at least one of the elements aa∗ or a∗a is not invert-
ible, say a∗a for definiteness. Since a∗a is non-negative, a clear application of the
Gelfand-Naimark theorem yields

∥

∥‖a∗a‖e−a∗a
∥

∥= ‖a∗a‖. (2.9)

Set b := ‖a∗a‖e−a∗a, and choose t ∈ T such that ‖Wt(b)‖ = ‖b‖. Then (2.9) im-
plies

∥

∥‖a∗a‖et −Wt(a∗a)
∥

∥= ‖Wt(b)‖ = ‖b‖ = ‖a∗a‖.
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Since ‖Wt(a∗a)‖ ≤ ‖a∗a‖, one can apply the Gelfand-Naimark theorem once more
to get the non-invertibility of Wt(a∗a) and, thus, of Wt(a).

Theorem 2.2.12 (Douglas’ local principle). Let A be a unital C∗-algebra and B a
symmetric closed subalgebra of the center of A which contains the identity element.
Then the assertions of Allan’s local principle can be completed as follows:

(i) M0
B = /0;

(ii) ‖a‖ = maxx∈MB
‖Φx(a)‖ for each a ∈ A ;

(iii) ∩x∈MB
Ix = {0}.

Proof. Assertion (i) is Corollary 2.2.7 (i). Assertion (ii) follows from Theorem
2.2.11, and (iii) is a consequence of the semi-simplicity of C∗-algebras.

2.2.6 Example: SIOs with piecewise continuous coefficients

Consider the algebra PC(T) of all piecewise continuous functions on T, that is, the
algebra of all functions a : T → C which possess finite one-sided limits a(x±) at
each point of T. For definiteness, let a(x+) refer to the limit of a at x, taken in
the clockwise direction. The algebra PC(T) is naturally embedded in L∞(T) and
contains C(T). Further, let A := alg(S,PC(T)) stand for the smallest closed subal-
gebra of L (Lp(T)) which contains the singular integral operator S, all operators of
multiplication by a piecewise continuous function, and the ideal K of the compact
operators.

We are interested in the subalgebra A K := A /K of the Calkin algebra. Propo-
sition 1.4.12 implies that the set C(T)+K = { f I +K : f ∈C(T)} is a central sub-
algebra of A K , and this algebra is isometrically isomorphic to the algebra C(T) by
Proposition 1.4.11. The maximal ideal space of C(T)+K is homeomorphic to T,
and the maximal ideal corresponding to x ∈ T is {( f I)+J : f ∈C(T), f (x) = 0},
as was seen in Section 1.4.3.

Let Ix denote the smallest closed two-sided ideal in A K which contains the
maximal ideal x of C(T) + K . Allan’s local principle transfers the invertibility
problem in A K to a family of invertibility problems, one in each local algebra
A K

x := A K /Ix. LetΦK
x stand for the canonical homomorphism from A to A K

x .
The next results will give some clues about the nature of the local algebras A K

x .

Lemma 2.2.13. If c ∈ PC(T) is continuous at x and c(x) = 0, then ΦK
x (cI) = 0.

Proof. Given ε > 0, choose fε ∈ C(T) such that 0 ≤ fε < 1 except at x, where
fε(x) = 1, and that the support of fε is contained in the interval [xe−iε , xe+iε ] of T.
It is easy to see that ΦK

x ( fε I) is the identity in the local algebra. Consequently,

‖ΦK
x (cI)‖ = ‖ΦK

x (cI)ΦK
x ( fε I)‖ = ‖ΦK

x (c fε I)‖ ≤ ‖c fε‖L∞ ,
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and the last norm can be as small as desired by choosing ε small enough.

For x ∈ T, define

χx(t) :=

{

0 if t ∈ ]xe−iπ ,x[,
1 if t ∈ [x,xe−iπ ].

Proposition 2.2.14. Let x ∈ T. Every local algebra A K
x is unital, and it is gener-

ated by the identity element and by two idempotents, namelyΦK
x (χx I) andΦK

x (P).

Proof. It is evident that ΦK
x (I) is the identity element of A K

x and that ΦK
x (S) =

ΦK
x (2P − I) is a linear combination of the identity element and the idempotent

ΦK
x (P). Now let a ∈ PC(T). Then, by Lemma 2.2.13,

ΦK
x (aI) =ΦK

x

(

a(x−)(1−χx)I +a(x+)χx I
)

= a(x−)ΦK
x (I)+

(

a(x+)−a(x−)
)

ΦK
x (χx I),

representing ΦK
x (aI) as a linear combination of the identity element and the idem-

potent ΦK
x (χx I). Since ΦK

x (S) together with all cosets ΦK
x (aI) generate the alge-

bra A K
x , the assertion follows.

We would like to emphasize once more that the local algebras A K
x are gener-

ated by two idempotents (and the identity). Algebras generated by (two or more)
idempotents appear frequently as local algebras, and Chapter 3 will be devoted to a
detailed study of them.

2.2.7 Exercises

Exercise 2.2.1. Show that the family {δt}t∈[0,1] of homomorphisms δt : f �→ f (t) is
sufficient for C[0, 1], whereas {δt}t∈[0,1 [ is weakly sufficient but not sufficient.

Exercise 2.2.2. Describe the center of the algebra C
2×2. More generally, describe

the center of the algebra L (E) when E is a Banach space.

Exercise 2.2.3. Describe the center of the algebra M2([0,1],C) of the functions
f : [0,1] → C

2×2. What is the result of localization of M2([0,1],C) over its center
via Allan’s local principle?

Exercise 2.2.4. Localize C(T) with respect to the disk algebra A.

Exercise 2.2.5. Let T (PC) stand for the smallest closed subalgebra of L (l2(Z+))
which contains all Toeplitz operators with piecewise continuous functions.

(i) Show that T (C)/K (l2(Z+)) is a central subalgebra of T (PC)/K (l2(Z+)).
(ii) Using Allan’s local principle, localize the algebra T (PC)/K (l2(Z+)) over

the maximal ideal space T of T (C)/K (l2(Z+)) (recall Exercise 2.1.4 in
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this connection). For x ∈ T, write Φx for the canonical homomorphism from
T (PC) onto the associated local algebra at x. Show that

Φx(T (a)) =Φx(a(x−)T (1−χx)+a(x+)T (χx))

with the notation as in Section 2.2.6. Thus, the local algebra at x is singly
generated by Φx(T (χx)) (and the identity element).

(iii) Show that the spectrum of Φx(T (χx)) is the interval [0, 1].
(iv) Conclude that the Toeplitz operator T (a) with a ∈ PC(T) is Fredholm on

l2(Z+) if and only if the function

â : T× [0, 1] → C, (x, t) �→ a(x−)(1− t)+a(x+)t (2.10)

has no zeros.
(v) Conclude from Douglas’ local principle that the algebra T (PC)/K (l2(Z+))

is commutative.
(vi) Show that there is a bijection between the maximal ideal space of the quotient

algebra T (PC)/K (l2(Z+)) and T× [0, 1] and that, under the identification
of these two sets, the Gelfand transform of the coset T (a) + K (l2(Z+)) is
given by (2.10).

Warning: the maximal ideal space of T (PC)/K (l2(Z+)) and the product T×
[0, 1] coincide as sets, but the Gelfand topology on T × [0, 1] is quite differ-
ent from the common (Euclidean) product topology. For details see [21, Sec-
tion 4.88].

Exercise 2.2.6. Let A be a unital Banach algebra and p ∈ A a non-trivial idempo-
tent in the center of A . Then alg{p} and alg{e− p} are maximal ideals of alg{e, p}
which we denote by 0 and 1. Show that the local algebras A0 and A1 can be iden-
tified with (e− p)A (e− p) and pA p, respectively. (Note that e− p and p are con-
sidered as the identity elements of these algebras.)

2.3 Norm-preserving localization

2.3.1 Faithful localizing pairs

Allan’s local principle replaces the question of whether an element a in a unital
Banach algebra A is invertible by a whole variety of “simpler” invertibility prob-
lems in local algebras A /Ix. The transition from A to its local algebras perfectly
respects spectral properties: An element in A is invertible if and only if all local
representatives of that element are invertible. But if one is interested in the struc-
ture of the algebra rather than in the spectra of its elements then this localization
can fail. The point is that the intersection of the local ideals Ix can contain non-
zero elements, in which case some structural information gets lost in the process of
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localization. This cannot happen in the case that A is a C∗-algebra which is local-
ized over one of its central C∗-subalgebras (compare Douglas’ local principle). In
this section we are going to establish an effective mixture between Allan and Dou-
glas (likewise, between Banach and C∗-algebras) which combines the advantages of
Allan’s principle (broad applicability) with those of Douglas’ principle (no loss of
structural information).

Let ̂b again refer to the Gelfand transforms of the element b of a commutative
C∗-algebra.

Definition 2.3.1. Let A be a unital Banach algebra and B a subalgebra of A . We
say that (A , B) is a faithful localizing pair2 if:

a) B is contained in the center of A and includes the identity element of A ;
b) there is an involution b �→ b∗ in B that turns B into a C∗-algebra;
c) ‖a(b1 +b2)‖ ≤ max{‖ab1‖, ‖ab2‖} for all elements a ∈A and b1, b2 ∈B with

supp̂b1 ∩ supp̂b2 = /0.

Of course, c) is the striking condition in Definition 2.3.1. If, also, the “outer”
algebra A is C∗, then this condition is satisfied automatically.

Proposition 2.3.2. Let A be a unital C∗-algebra and B be a central and unital
C∗-subalgebra of A . Then (A , B) is a faithful localizing pair.

Proof. Let a ∈ A , and let b1, b2 be elements of B such that supp̂b1 ∩ supp̂b2 = /0.
Further, let r : A →R

+ denote the spectral radius function. Taking into account that
b1b2 = 0 one gets

‖a(b1 +b2)‖2 = r ((b1 +b2)(b∗1 +b∗2)a
∗a)

= lim
n→∞

‖(b1 +b2)n(b∗1 +b∗2)
n(a∗a)n‖1/n

= lim
n→∞

‖(b∗1)nbn
1(a

∗a)n +(b∗2)
nbn

2(a
∗a)n‖1/n

≤ lim
n→∞

(‖b∗1a∗ab1‖n +‖b∗2a∗ab2‖n)1/n

= max{‖ab1‖2, ‖ab2‖2 },

which is the assertion.

2 Formerly we used the notation “A is KMS with respect to B” instead of “(A , B) is a faithful lo-
calizing pair”, and we called c) the “KMS-property” of A . We changed this notation to avoid con-
fusion with a standard abbreviation in C∗-theory where KMS stands for “Kubo/Martin/Schwinger”
(and not for political reasons as one might guess: our “KMS” was named after the town “Karl-
Marx-Stadt” where the material presented in this section was developed in the eighties; since 1990
this town has again borne its historic name “Chemnitz”).
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2.3.2 Local norm estimates

Let (A , B) be a faithful localizing pair. In accordance with Allan’s local principle,
we localize A over B and get local ideals Ix and local homomorphisms Φx(a) for
every x in the maximal ideal space MB of B. In the present setting it seems to be
more convenient to write â(x) instead of Φx(a).

Here is the main result on faithful (norm-preserving) localization.

Theorem 2.3.3. Let A be a unital Banach algebra and B be a central and unital
C∗-subalgebra of A . Then (A , B) is a faithful localizing pair if and only if

‖a‖ = max
x∈MB

‖â(x)‖. (2.11)

Proof. Let (A , B) be a faithful localizing pair. By assertion (iii) of Theorem 2.2.2,
maxx∈MB

‖â(x)‖ ≤ ‖a‖. It remains to verify the reverse inequality. Let a be in A .
As a consequence of Proposition 2.2.4, given x ∈ MB and ε > 0, there is a b in
C(MB) such that 0≤̂b≤ 1, the support of̂b is contained in some open neighborhood
U(x) of x, and ‖ba‖ < ‖â(x)‖+ ε . Consequently, each x in MB possesses an open
neighborhood U(x) such that ‖ba‖ < maxx∈MB

‖â(x)‖+ ε whenever b ∈ C(MB),
0 ≤̂b ≤ 1, and supp̂b ⊆U(x). Choose a finite number U1, . . . , Un of these neighbor-
hoods which cover MB , fix any (large) positive integer m, and let k ∈ {1, . . . , m}.
Further, let e = f1 + · · ·+ fn be a partition of unity subordinate to the covering
MB = ∪n

i=1Ui (i.e., every ̂fi is a continuous function with values in [0, 1] and sup-
port in Ui), and put

V m
ki :=

{

x ∈ MB : ̂fi(x) ≥
k +1

n(m+1)
, ̂fi+1(x) ≤

k
n(m+1)

, . . . , ̂fn(x) ≤
k

n(m+1)

}

for i = 1, . . . , n−1, and

V m
kn :=

{

x ∈ MB : ̂fn(x) ≥ k +1
n(m+1)

}

.

A straightforward check shows that the sets V m
k1, . . . ,V

m
kn are closed and pairwise

disjoint, that V m
ki ⊂Ui for i = 1, . . . ,n, and that each x in MB belongs to at most n of

the sets Gm
k := MB \∪n

i=1V m
ki . Now let ĝm

k1, . . . , ĝ
m
kn be any functions in C(MB) such

that ĝm
ki |V m

ki
= 1 , supp ĝm

ki∩ supp ĝm
k j = /0 whenever i �= j , supp ĝm

ki ⊂Ui, and 0 ≤ ĝm
ki ≤

1. Finally, put ĝm
k = ĝm

k1 + · · ·+ ĝm
kn. Since (A , B) is a faithful localizing pair, we

have
‖gm

k a‖ = ‖(gm
k1 + · · ·+gm

kn)a‖ ≤ max
i

‖gm
kia‖ < max

x∈MB

‖â(x)‖+ ε

(for the last ’<’ recall that supp ĝm
ki ⊂Ui). Hence,

‖(gm
1 + · · ·+gm

m)a‖ ≤ m

(

max
x∈MB

‖â(x)‖+ ε
)

. (2.12)
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Put ̂hm
k := 1− ĝm

k . Then 0 ≤ ̂hm
k ≤ 1 and supp̂hm

k ⊆ Gm
k , and one has

‖(gm
1 + · · ·+gm

m)a‖ = ‖ma− (hm
1 + · · ·+hm

m)a‖ ≥ m‖a‖−‖hm
1 + · · ·+hm

m‖‖a‖.

Because supp(̂hm
1 + · · ·+̂hm

m) ⊂∪m
k=1Gm

k , and since each x ∈ MB belongs to at most

n of the sets Gm
k , it follows that ̂hm

1 (x)+ · · ·+̂hm
m(x)≤ n for all x in MB . This implies

‖(gm
1 + · · ·+gm

m)a‖ ≥ (m−n)‖a‖. (2.13)

Combining (2.12) and (2.13) we arrive at the inequality

‖a‖ ≤ m
m−n

(

max
x∈MB

‖â(x)‖+ ε
)

.

Letting m go to infinity and ε go to zero we obtain the desired inequality.
To prove the reverse implication, let a ∈A and let b1, b2 ∈B such that supp̂b1∩

supp̂b2 = /0. Then

‖a(b1 +b2)‖2 = max
x∈MB

∥

∥

∥â(x)
(

̂b1(x)+̂b2(x)
)∥

∥

∥ .

For each x ∈ MB , only one of the values ̂b1(x) and ̂b2(x) can be different from 0.
Consequently,

∥

∥

∥â(x)
(

̂b1(x)+̂b2(x)
)∥

∥

∥= max
{∥

∥

∥â(x)̂b1(x)
∥

∥

∥ ,
∥

∥

∥â(x)̂b2(x)
∥

∥

∥

}

,

and the result follows.

Besides the norm computation aspect, faithful localizing pairs are advantageous
to investigate local enclosement properties.

Theorem 2.3.4. Let A be a unital Banach algebra and B be a subalgebra of A
such that (A , B) forms a faithful localizing pair. Further, let C be a closed linear
subset of A such that bc∈C whenever b∈B and c∈C (i.e., C is a B-module). Let
a ∈A and assume that, for each x ∈ MB , there is an ax ∈C such that (â−ax)(x) =
(â− âx)(x) = 0. Then a ∈ C .

Proof. Let x ∈ MB and ε > 0. By Theorem 2.2.2 (b), there is a neighborhood U(x)
of x such that

∥

∥(â−ax)(y)
∥

∥< ε

for all y ∈ U(x). Choose a finite number U(x1), . . . , U(xn) of these neighborhoods
which cover MB , and let e = f1 + · · ·+ fn with fk ∈B be a partition of unity subor-
dinate to this covering. Put bε := ∑n

k=1 fkaxk . Then
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‖a−bε‖ =

∥

∥

∥

∥

∥

n

∑
k=1

fk(a−axk)

∥

∥

∥

∥

∥

= sup
y∈MB

∥

∥

∥

∥

∥

n

∑
k=1

̂fk(y)(â− âxk)(y)

∥

∥

∥

∥

∥

(Theorem 2.3.3)

= sup
y∈MB

∥

∥

∥

∥

∥

∑
k:y∈U(xk)

̂fk(y)(â−axk)(y)

∥

∥

∥

∥

∥

≤ sup
y∈MB

∑
k:y∈U(xk)

̂fk(y)ε = ε.

The algebraic properties of C ensure that bε ∈ C for every ε . Since C is closed and
‖a−bε‖ < ε for every ε > 0, we have a ∈ C .

As an application of the above result we will get a complete description of the
image ˜A of A in the direct product F of the local algebras A /Ix under the map-
ping

A → F , a �→ (x �→Φx(a)), (2.14)

provided (A , B) is a faithful localizing pair. To that end, we will have to intro-
duce the concept of semi-continuity with respect to a given set. Let X be a compact
Hausdorff space. To each point x ∈ X , we associate a Banach algebra Ax with unit
element ex. Denote the direct product of the algebras Ax by F . Evidently, this prod-
uct can be identified with the set of all bounded functions f on X which take at x∈ X
a value f (x) ∈ Ax. In particular, if g is a continuous complex-valued function on X ,
then the function

x �→ g(x)ex (2.15)

belongs to F . The set D of all functions of the form (2.15) is a closed subalgebra
of the center of F , and it is easy to check that (F , D) forms a faithful localizing
pair. Let E be a subset of F which is subject to the following conditions:

(i) D ⊆ E ;
(ii) given x ∈ X and a ∈ Ax, there is an f ∈ E such that f (x) = a;

(iii) the function x �→ ‖ f (x)‖Ax is upper semi-continuous on X for each f ∈ E ;
(iv) E is a (not necessarily closed) algebra.

We call a function g ∈ F semi-continuous with respect to E if, for each x0 ∈ X ,
each f ∈ E with f (x0) = g(x0), and each ε > 0, there is a neighborhood U =
U(x0, f , g, ε) of x0 such that ‖g(x)− f (x)‖Ax < ε for all x ∈ U . Thus, a func-
tion g is semi-continuous with respect to E if it behaves locally as a function
in E .

It is easy to show that the set of all functions which are semi-continuous with
respect to E forms a closed subalgebra of F which we will denote by F (E ). The
following result can be considered as a generalization of the classical Weierstrass
theorem (see Exercise 2.3.2).
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Theorem 2.3.5. The smallest closed subalgebra of F which contains E coincides
with F (E ).

Proof. The inclusion closE ⊆ F (E ) is an immediate consequence of the fact that,
by property (iii) of E , each function in E is semi-continuous with respect to E .
For the reverse inclusion, let b ∈ F (E ). By property (ii), there is an f ∈ E such

that f (x) = b(x) or, equivalently, ( f̂ −b)(x) = 0. Thus, the algebras F (E ) and D
and the D-module closE satisfy the assumptions imposed in Theorem 2.3.4 on the
algebras A and B and the B-module C . Thus, the conclusion follows immediately
from that theorem.

Let (A , B) be a faithful localizing pair. As a consequence of the preceding the-
orem, we get a description of the image ˜A of A in the direct product F of the local
algebras A /Ix under the mapping (2.14).

Corollary 2.3.6. ˜A coincides with the closed subalgebra of F which consists of
all functions f ∈ F which are semi-continuous with respect to ˜A .

Indeed, by Theorem 2.2.2 (b), ˜A satisfies the assumptions made for the set E in
Theorem 2.3.5 (with X being the maximal ideal space of B).

Remark 2.3.7. There are more general concepts of faithful localization: in [81],

the C∗-compatible norm in Definition 2.3.1 (a) is allowed to be different from the
original norm and also (b) is substituted by a more general condition. The price one
has to pay is that (2.11) is no longer an equality. Rather, one has

C1‖a‖ ≤ max
x∈MB

‖â(x)‖ ≤C2‖a‖ for all a ∈ A

with certain constants C1, C2 independent of a. Thus, the exact norm computation
aspect of Theorem 2.3.3 gets lost, but the local enclosement Theorem 2.3.4 remains
valid without changes. �

2.3.3 Exercises

Exercise 2.3.1. Show that (with the notation of the previous subsection) the set of
all functions which are semi-continuous with respect to E forms a closed subalgebra
of F .

Exercise 2.3.2. Let F := C[0, 1] and E := C (considered as constant functions).
Describe the functions in F which are semi-continuous with respect to E . Use
Theorem 2.3.5 to derive the classical Weierstrass theorem.
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2.4 Gohberg-Krupnik’s local principle

The local principle by Gohberg and Krupnik has several advantages: its formulation
as well as the proofs of its main results are quite elementary, and it works equally
well in the case of complex and real algebras.

2.4.1 Localizing classes

Let A be a (real or complex) Banach algebra with identity e. A subset M ⊂ A
is called a localizing class if it does not contain the element 0 and if for arbitrary
elements f1, f2 ∈ M, there exists a third element f ∈ M such that f j f = f f j = f for
j = 1, 2.

Let M be a localizing class. Two elements a, b ∈ A are said to be M-equivalent
from the left (resp. from the right) if

inf
f∈M

‖(a−b) f‖ = 0 (resp. inf
f∈M

‖ f (a−b)‖ = 0).

Finally, an element a ∈ A is called M-invertible from the left (resp. from the right)
if there exist elements b ∈ A and f ∈ M such that ba f = f (resp. f ab = f ).

Proposition 2.4.1. Let M be a localizing class, and let a1 and a2 be elements of A
which are M-equivalent from the left (resp. from the right). Then a1 is M-invertible
from the left (resp. from the right) if and only if a2 is so.

Proof. Let a1 be M-invertible from the left. Choose elements b1 ∈ A and f ∈ M
such that b1a1 f = f . Since a1 and a2 are M-equivalent from the left, there is a g ∈ M
such that ‖(a1 −a2)g‖ < ‖b1‖−1. Let h ∈ M be such that f h = gh = h. Then

b1a2h = b1a1h−b1(a1 −a2)h
= b1a1 f h−b1(a1 −a2)gh

= f h−b1(a1 −a2)gh

= h−b1(a1 −a2)gh.

Set u := b1(a1 −a2)g. Then the above identity can be rewritten as

b1a2h = (e−u)h.

Since ‖u‖ < 1, the element e−u is invertible in A . Setting b2 := (e−u)−1b1, one
obtains b2a2h = h. Thus, a2 is M-invertible from the left. The proof for right M-
invertibility is similar.
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Definition 2.4.2. Let T be a topological space. A system {Mτ}τ∈T of localizing
classes is said to be:

• covering if from each choice { fτ}τ∈T of elements fτ ∈ Mτ one can select a finite
number of elements { fτ1 , . . . , fτm} the sum of which is invertible in A ;

• overlapping if each Mτ is a bounded set in A , if f ∈ Mτ0 for some τ0 ∈ T implies
f ∈ Mτ for all τ in some open neighborhood of τ0, and if the elements of F :=
∪τ∈T Mτ commute pairwise.

Let {Mτ}τ∈T be an overlapping system of localizing classes. The commutant of
F is the set ComF := {a ∈ A : a f = f a ∀ f ∈ F}. It is easy to verify that ComF is
a closed subalgebra of A . For τ ∈ T , let Zτ denote the set of all elements in ComF
which are Mτ -equivalent to zero both from the left and from the right.

Lemma 2.4.3. The set Zτ is a proper closed two-sided ideal of ComF.

Proof. The closedness of Zτ follows easily from the boundedness of Mτ , and the
ideal property of Zτ can be also straightforwardly checked. The properness of Zτ

can be seen as follows. Suppose the identity element e of A belongs to Zτ . Then
there exists a sequence of fn ∈ Mτ such that ‖ fn‖ → 0 as n → ∞. Since there exist
non-zero elements gn ∈ Mτ such that fngn = gn, it follows that ‖ fn‖ ≥ 1, and we
obtained a contradiction.

For a ∈ ComF , let aτ denote the coset a + Zτ of a in the quotient algebra
ComF/Zτ .

Proposition 2.4.4. Let {Mτ}τ∈T be a system of localizing classes, with each Mτ
a bounded set in A . Let τ ∈ T and a ∈ ComF. Then a is Mτ -invertible in ComF
from the left (resp. from the right) if and only if aτ is left (resp. right) invertible in
ComF/Zτ .

Proof. Let aτ be left invertible in ComF/Zτ . Then there is a b ∈ ComF such that
ba− e ∈ Zτ . This implies that ba is Mτ -equivalent from the left to e. Proposition
2.4.1 yields the Mτ -invertibility of ba, and thus of a, from the left. Conversely, if
there is b∈ComF and f ∈Mτ such that ba f = f , then (ba−e) f = 0. Hence ba−e∈
Zτ , and thus bτaτ = e. The proof for right invertibility is similar.

2.4.2 Gohberg-Krupnik’s local principle

The following theorem is a very similar result to Theorem 2.2.2, with the ideals Ix

and the maximal ideal space of the central subalgebra substituted respectively by
the ideals Zτ and the index set T of the system of localizing classes {Mτ}τ∈T . But
contrary to Allan’s local principle (where complex function theoretic arguments are
used in the proof of Proposition 2.2.1), the local principle by Gohberg-Krupnik is
valid for real Banach algebras, too.
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Theorem 2.4.5 (Gohberg-Krupnik). Let A be a Banach algebra with identity and
{Mτ}τ∈T a covering system of localizing classes, the elements of which belong to
the center of A . Further, let a ∈ A and, for every τ ∈ T , let aτ be an element of A
which is Mτ -equivalent from the left to a.

(i) The element a is left invertible in A if and only if aτ is Mτ -invertible in A
from the left for every τ ∈ T .

(ii) Suppose that each Mτ is a bounded set in A . Then a is left invertible in A if
and only if aτ is left invertible in A /Zτ for all τ ∈ T .

(iii) If the system {Mτ}τ∈T is overlapping, then the function T → R
+, τ �→ ‖aτ‖ is

upper semi-continuous.
(iv) If A is a C∗-algebra, then the system {Mτ}τ∈T is overlapping. If moreover

M∗
τ = Mτ for all τ ∈ T , then

‖a‖ = sup
τ∈T

‖aτ‖.

The result remains valid if left is replaced by right everywhere.

Proof. We will give the proof in case of left equivalence and left invertibility. The
proof for right equivalence and right invertibility is, of course, similar.

(i) If a is left invertible, then a is Mτ -invertible in A (= ComF) from the left
for all τ ∈ T . By Proposition 2.4.1, aτ is Mτ -invertible from the left for all τ ∈
T . Conversely, suppose aτ is Mτ -invertible from the left for all τ ∈ T . Again by
Proposition 2.4.1, it follows that a is Mτ -invertible from the left for all τ ∈ T . Thus
there are bτ ∈A and fτ ∈ Mτ such that bτa fτ = fτ . Since {Mτ}τ∈T is covering, one
can choose a finite number of elements fτ1 , . . . , fτm so that ∑m

j=1 fτ j is invertible. Put

s :=
m

∑
j=1

bτ j fτ j

to obtain

sa =
m

∑
j=1

bτ j fτ j a =
m

∑
j=1

bτ j a fτ j =
m

∑
j=1

fτ j .

Thus, (∑m
j=1 fτ j)

−1s is a left inverse of a.

(ii) If aτ is left invertible in A /Zτ for all τ ∈ T , then a is left invertible in A by
Proposition 2.4.4. and part (i) above. The converse is trivial.

(iii) Let τ0 ∈ T and ε > 0. Choose z ∈ Zτ so that ‖a + z‖ < ‖aτ0‖+ ε/2. Since z
is Mτ0 -equivalent to zero from the left, there is an f ∈ Mτ0 such that ‖z f‖ < ε/2.
Because f ∈ Mτ0 implies that f ∈ Mτ for all τ in some open neighborhood of τ0

due to the overlapping property, we deduce that f ∈ Mτ for all τ in some open
neighborhood Uτ0 of τ0. Put y := z − z f . If τ ∈ Uτ0 , then there exists a g ∈ Mτ
such that f g = g. Consequently, we have that yg = zg− z f g = zg− zg = 0. Since
y ∈ ComF (by the definition of Zτ and due to the overlapping property), it follows
that y ∈ Zτ for all τ ∈Uτ0 . Hence, ‖aτ‖ ≤ ‖a+y‖ for τ ∈Uτ0 . Thus, if τ ∈Uτ0 , then
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‖aτ‖−‖aτ0‖ < ‖a+ y‖−‖a+ z‖+
ε
2
≤ ‖y− z‖+

ε
2

= ‖z f‖+
ε
2

< ε,

which proves the upper semi-continuity of the mapping τ �→ ‖aτ‖ at τ0.

(iv) If ComF and ComF/Zτ are C∗-algebras then, indeed,

‖a‖2 = r(aa∗) = sup
τ∈T

r ((aa∗)τ) by (ii)

= sup
τ∈T

r (aτ(aτ)∗)) = sup
τ∈T

‖aτ‖2.

2.4.3 Exercises

Exercise 2.4.1. Study the algebra A K considered in the example of Section 2.2.6,
now using Gohberg-Krupnik’s local principle, instead of Allan’s.

Exercise 2.4.2. Prove Allan’s local principle in the special case of localization with
respect to a unital central C∗-subalgebra (provided it exists) by means of Gohberg-
Krupnik’s local principle. Make sure that your proof does not employ properties
of complex analytic functions. Derive a version of Allan’s local principle for real
Banach algebras. (Hint: see the proof of Theorem 1.21 in [151].)

2.5 Simonenko’s local principle

Simonenko’s local principle can be viewed as a particular realization of the two
previously considered local principles by Allan-Douglas and Gohberg-Krupnik. It
is well adapted to the study of Fredholm properties, and its formulation is quite
intuitive. In particular, no Banach algebra “infrastructure” is involved.

2.5.1 Spaces and operators of local type

Let X be a locally compact Hausdorff topological space, and let μ be a non-negative
(possibly infinite) measure which is defined on a σ -algebra over X which contains
all Borel subsets of X . The characteristic function of a measurable subset U of X
will be denoted by χU in what follows.

Definition 2.5.1. A Banach space E, the elements of which are (equivalence classes
of) measurable functions f : X → C, is called an ideal Banach space over X if the
characteristic function of every compact subset of X belongs to E and if, for every
measurable function f : X → C and every function g ∈ E, the inequality
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| f (x)| ≤ |g(x)| a.e. on X (2.16)

implies that f ∈ E and ‖ f‖E ≤ ‖g‖E .

The archetypal examples of ideal Banach spaces are the Lebesgue spaces Lp(X)
with 1≤ p≤∞. Note also that an ideal Banach space over X contains every bounded
measurable function on X with compact support, which follows immediately from
the definition.

Lemma 2.5.2. Let E be an ideal Banach space over X, and let a be a bounded
measurable function on X. Then the product a f belongs to E for every function
f ∈ E. In particular, the operator aI : E → E, f �→ a f of multiplication by a is well
defined. This operator is bounded, and ‖aI‖ = ‖a‖∞.

Proof. For every f ∈ E, one has |a(x) f (x)| ≤ |‖a‖∞ f (x)| almost everywhere on X ,
whence

‖a f‖E ≤ ‖‖a‖∞ f‖E = ‖a‖∞‖ f‖E . (2.17)

The left inequality in (2.17) shows that a f ∈E (since ‖a‖∞ f ∈E), and the inequality
‖a f‖E ≤ ‖a‖∞‖ f‖E implies the boundedness of aI and the estimate ‖aI‖ ≤ ‖a‖∞.
For the reverse estimate, let ε > 0 and choose a compact subset U of X with μ(U) >
0 such that

(‖a‖∞− ε)χU (x) ≤ |a(x)χU (x)| a.e. on X .

Then the second condition in Definition 2.5.1 implies that

(‖a‖∞− ε)‖χU ‖E ≤ ‖aχU ‖E ≤ ‖aI‖‖χU ‖E

which gives the estimate ‖a‖∞−ε ≤ ‖aI‖. Letting ε go to zero we obtain the asser-
tion.

Definition 2.5.3. Let E be an ideal Banach space over X . An operator A ∈ L (E)
is said to be of local type if the operator χF1

AχF2
I is compact for every choice of

disjoint closed subsets F1, F2 of X . We denote the set of all operators of local type
by Λ(E).

Let A ∈L (E). The norm of the coset A+K (E) considered as an element of the
Calkin algebra L (E)/K (E) is called the essential norm of A. We denote it by |A|.
Thus,

|A| := inf
K∈K (E)

‖A+K‖.

Two operators A, B ∈ L (E) are said to be essentially equivalent if |A−B| = 0, in
which case we write A ∼ B.

Definition 2.5.4. An ideal Banach space E over X is called a Banach space of local
type over X if, for each pair A, B ∈ L (E) of operators of local type and for each
pair F1, F2 of disjoint closed subsets of X ,

|χF1
AχF1

I +χF2
BχF2

I| ≤ max{|A|, |B|}. (2.18)
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Example 2.5.5. The Lebesgue spaces Lp(X) =: E are Banach spaces of local type
for every 1 ≤ p ≤ ∞. To see this, notice that

‖χF1
AχF1

I +χF2
BχF2

I‖ ≤ max{‖A‖, ‖B‖} (2.19)

for each pair of operators A, B ∈ L (E) (not necessarily of local type) and for each
pair F1, F2 of disjoint closed subsets of X . Thus,

|χF1
AχF1

I +χF2
BχF2

I| = inf
M∈K (E)

‖χF1
AχF1

I +χF2
BχF2

I +M‖

≤ inf
K,L∈K (E)

‖χF1
AχF1

I +χF2
BχF2

I +χF1
KχF1

I +χF2
LχF2

I‖

= inf
K,L∈K (E)

‖χF1
(A+K)χF1

I +χF2
(B+L)χF2

I‖

≤ inf
K,L∈K (E)

max{‖A+K‖, ‖B+L‖} by (2.19)

= max{|A|, |B|}.

�

We proceed with equivalent characterizations of operators of local type which
will prove useful in what follows.

Theorem 2.5.6. Let E be a Banach space of local type over X. The following con-
ditions are equivalent for an operator A ∈ L (E):

(i) A is of local type;
(ii) for each function f ∈C(X), the commutator A f I − f A is compact;

(iii) for all measurable sets F1, F2 of X with closF1 ⊂ intF2, one has χF1
AχF2

I ∼
χF1

A and χF2
AχF1

I ∼ AχF1
I.

Proof. (i) ⇒ (ii): Let f ∈ C(X) be a real-valued function with 0 ≤ f ≤ 1. For
j, n ∈ N with 1 ≤ j ≤ 4n, define the sets

Fn
j :=

{
{

x ∈ X : 0 ≤ f (x) ≤ 1
4n

}

if j = 1,
{

x ∈ X : j−1
4n < f (x) ≤ j

4n

}

if j ≥ 2

and
Gn

j :=
{

x ∈ X : j−2
4n ≤ f (x) ≤ j+1

4n

}

,

and set χ j := χ
Fn

j
as well as χ̂ j := χ

Gn
j
. Finally, let χ0 = χ4n+1 := 0. Being preimages

of closed intervals under a continuous function, the sets Gn
j are closed. For each

operator A ∈Λ(E), one has

|A f I− f A| =
∣

∣

∣

∣

∣

4n

∑
j=1

4n

∑
k=1

(χ jAχk f I − f χ jAχkI)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

4n

∑
j=1

j+1

∑
k= j−1

(χ jAχk f I − f χ jAχkI)

∣

∣

∣

∣

∣
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since closFn
j ∩ closFn

k = /0 for | j− k| > 1 and since A is of local type. A shift of the
summation index yields

|A f I− f A| =
∣

∣

∣

∣

∣

4n

∑
j=1

1

∑
k=−1

(χ jAχ j+k f I − f χ jAχ j+kI)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

4n

∑
j=1

1

∑
k=−1

(

χ jAχ j+k

(

f − j−1
4n

)

l −
(

f − j−1
4n

)

χ jAχ j+kI
)

∣

∣

∣

∣

∣

≤
1

∑
k=−1

(∣

∣

∣

∣

∣

4n

∑
j=1

χ jAχ j+k

(

f − j−1
4n

)

I

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

4n

∑
j=1

(

f − j−1
4n

)

χ jAχ j+kI

∣

∣

∣

∣

∣

)

.

(2.20)

Consider the first of the two inner sums on the right-hand side of (2.20). Taking into
account that Gn

j ∩Gn
k = /0 for | j− k| ≥ 4 and χ j+k χ̂ j = χ j+k for k ∈ {−1, 0, 1} and

employing the local property of E, we get for k ∈ {−1, 0, 1},

∣

∣

∣

∣

∣

4n

∑
j=1

χ jAχ j+k

(

f − j−1
4n

)

I

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

4n

∑
j=1

χ̂ jχ jAχ j+k

(

f − j−1
4n

)

χ̂ jI

∣

∣

∣

∣

∣

≤
4

∑
r=1

∣

∣

∣

∣

∣

n−1

∑
j=0

χ̂4 j+rχ4 j+rAχ4 j+r+k

(

f − 4 j+r−1
4n

)

χ̂4 j+rI

∣

∣

∣

∣

∣

≤
4

∑
r=1

max
0≤ j≤n−1

∣

∣

∣χ4 j+rAχ4 j+r+k

(

f − 4 j+r−1
4n

)

I
∣

∣

∣ .

For x ∈ Fn
4 j+r+k one has

4 j + r + k−1
4n

< f (x) ≤ 4 j + r + k
4n

which implies
k

4n
< f (x)− 4 j + r−1

4n
≤ k +1

4n

and, consequently,
∣

∣

∣

∣

χ4 j+r+k

(

f − 4 j + r−1
4n

)∣

∣

∣

∣

≤ 1
2n

.

Thus, the first of the inner sums in (2.20) can be estimated by

1
2n

4

∑
r=1

max
0≤ j≤n−1

|χ4 j+rA| ≤
2
n
|A|,

and a similar estimate for the second sum finally yields

|A f I − f A| ≤ 3(2/n+2/n) = 12/n.
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Letting n go to infinity, we conclude that the operator A f I− f A is compact for every
continuous function f : X → [0, 1]. The generalization to arbitrary f ∈C(X) is made
by scaling and by writing f as the sum of its real, imaginary, positive and negative
parts.

(ii) ⇒ (iii): Let F1, F2 be measurable subsets of X with closF1 ⊂ intF2. Then closF1

and clos(X \F2) are disjoint. Since X is a locally compact Hausdorff space, there is
a continuous function f on X such that

f (x) =

{

0 if x ∈ closF1,

1 if x ∈ clos(X \F2).

Then

χF1
A−χF1

AχF2
I = χF1

Aχ
X\F2

I = χF1
A f χ

X\F2
I ∼ χF1

f Aχ
X\F2

I = 0.

The second relation follows in the same way.

(iii) ⇒ (i): Let F1, F2 be disjoint closed subsets of X . Then F1 ⊂ X \F2 which is
open. Thus, by (iii),

χF1
AχF2

I = χF1
A−χF1

Aχ
X\F2

I ∼ 0

which finishes the proof of the theorem.

As the first consequence of the above result, we mention the following.

Theorem 2.5.7. Let E be a Banach space of local type over X. Then Λ(E) is a
closed and inverse-closed subalgebra of L (E). The ideal K (E) of the compact
operators is contained in Λ(E), and the quotient algebra Λ(E)/K (E) is inverse-
closed in the Calkin algebra L (E)/K (E). In particular, if A is a Fredholm opera-
tor of local type, then each of its regularizers is of local type again.

Proof. The proof of this theorem becomes straightforward if the equivalence be-
tween conditions (i) and (ii) in Theorem 2.5.6 is employed. For example, the identi-
ties

f (AB)− (AB) f I = ( f A−A f )B+A( f B−B f I)

and
f A−1 −A−1 f I = A−1(A f − f A)A−1

show that AB ∈Λ(E) whenever A and B are inΛ(E) and that A−1 ∈Λ(E) whenever
A ∈ Λ(E) is invertible in L (E). If (An) is a sequence of operators of local type
which converges to A ∈ L (E) in the norm of L (E), then f A−A f I is the norm
limit of the sequence of compact operators ( f An −An f I), and hence compact. It
is also evident that K (E) ⊂ Λ(E). Finally, let A ∈ Λ(E) be a Fredholm operator.
Then, there are compact operators K, L, as well as an operator R ∈ L (E) such that
AR = I +K and RA = I +L. For each f ∈C(X) one obtains
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f R−R f I = (RA−L) f R−R f (AR−K)
= R(A f − f A)R−L f R+R f K ∈ K (E)

which shows that R ∈Λ(E), too.

2.5.2 Local equivalence and local norms

The following definitions of local equivalence and of local norms go back to Simo-
nenko.

Definition 2.5.8. Let E be an ideal Banach space over X and let x ∈ X . Then the
local essential norm of an operator A ∈Λ(E) at the point x is the quantity

|A|x := inf
U
|χU A|

where the infimum is taken over all open neighborhoods U of x. The operators A and
B are called locally equivalent at x if |A−B|x = 0. Local equivalence at the point x
will be denoted by A

x∼ B.

Lemma 2.5.9. Let X, E, A and x be as in the previous definition. Then the local
essential norm |A|x coincides with each of the following quantities:

(i) inf | f A|, where the infimum is taken over all continuous functions f : X → [0,1]
which are identically 1 in a neighborhood of x;

(ii) inf | f A|, where the infimum is taken over all continuous functions f on X with
f (x) = 1.

Proof. Let m1 and m2 denote the quantities defined in (i) and (ii), respectively.
Evidently, m2 ≤ m1. Further, given a neighborhood U of x, choose a neighborhood
W of x with W ⊂ U . Then there is a continuous function f : X → [0,1] which is
identically 1 on W and vanishes outside U . Thus,

| f A| = | f χU A| ≤ |χU A|,

whence the estimate m1 ≤ |A|x. For the estimate |A|x ≤ m2, let ε > 0 and choose
a continuous function f with f (x) = 1 and | f A| < m2 + ε . Since f is continuous,
there is a neighborhood U of x such that | f (y)− 1| < ε for all y ∈ U . With this
neighborhood, one gets

|χU A| ≤ |χU f A|+ |χU (1− f )A| ≤ | f A|+ |χU (1− f )||A| ≤ m2 + ε+ ε|A|.

Consequently, |A|x ≤ m2 + ε(1+ |A|). Letting ε go to zero yields the assertion.
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Remark 2.5.10. In combination with Theorem 2.5.6, the preceding lemma shows
that

|A|x = inf
U
|AχU I|

with the infimum taken over all open neighborhoods of x. �

Note that Theorem 2.5.6 offers another way to deal with local properties of op-
erators of local type. The second characterization of Λ(E) given in that theorem
implies that B := C(X) + K (E) is a central subalgebra of Λ(E)/K (E) which
contains the identity element. The central subalgebra B is isometrically isomorphic
to the algebra C(X). Indeed, as in Proposition 1.4.11 (where the case E = Lp(X) is
considered) one gets that ‖ f I +K (E)‖= ‖ f I‖ for each function f ∈C(X), and the
equality ‖ f I‖= ‖ f‖∞ has been established in Lemma 2.5.2. Thus, the maximal ideal
space of the commutative C∗-algebra B is homeomorphic to X , and one can apply
Allan’s local principle to localize the algebra A :=Λ(E)/K (E) over X . We let Jx

denote the local ideal of A which is induced by x ∈ X and write Φx for the canon-
ical homomorphism A → A /Jx. Further we letΨx stand for the homomorphism
Φx ◦ π , where π refers to the canonical homomorphism Λ(E) → Λ(E)/K (E).
Thus,

Ψx :Λ(E) → A /Jx, A �→Φx(A+K (E)).

Proposition 2.5.11. Let E be a Banach space of local type over X. Then, for each
A ∈Λ(E) and each x ∈ X,

‖Ψx(A)‖ = |A|x.

Proof. Let A ∈Λ(E) and x ∈ X . By Lemma 2.5.9, we have to show that

‖Ψx(A)‖ = inf | f A|, (2.21)

where the infimum is taken over all continuous functions f : X → [0,1] which are
identically 1 in a neighborhood of x. We denote this infimum by q. If f ∈ C(X) is
identically 1 in some neighborhood of x, then the coset ( f − 1)A +K (E) belongs
to Jx. Thus,

‖Ψx(A)‖ ≤ |A+( f −1)A| = | f A|.

Taking the infimum over all f with these properties we get ‖Ψx(A)‖ ≤ q.
For the reverse inequality, given ε > 0, choose functions f1, . . . , fn ∈C(X) which

vanish at x and operators B1, . . . ,Bn ∈Λ(E) such that

|A+ f1B1 + . . .+ fnBn| < ‖Ψx(A)‖+ ε.

If f is any function in C(X) with 0 ≤ f ≤ 1 and f ≡ 1 in some neighborhood of x,
then
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| f A| ≤
∣

∣ f
(

A+∑ fiBi
)∣

∣+
∣

∣∑ f fiBi
∣

∣

≤
∣

∣A+∑ fiBi
∣

∣+∑‖ f fi‖∞|Bi|
≤ ‖Ψx(A)‖+ ε+∑‖ f fi‖∞|Bi|.

The right-hand side of this estimate becomes smaller than ‖Ψx(A)‖+ 2ε if f is
chosen such that ‖ f fi‖∞ < ε/(n|Bi|) for every i. Hence, q ≤ ‖Ψx(A)‖.

Theorem 2.5.12. Let E be a Banach space of local type over X and let A ∈ L (E)
be an operator of local type. Then the essential norm of A can be expressed in terms
of local norms by

|A| = max
x∈X

|A|x.

This theorem will be an immediate consequence of Theorem 2.3.3 and Proposi-
tion 2.5.11 once we have shown the following.

Theorem 2.5.13. (Λ(E)/K (E), C(X)+K (E)) is a faithful localizing pair.

Proof. We have to show that

|( f +g)A| ≤ max{| f A|, |gA|}

whenever A∈Λ(E) and f and g are functions in C(X) with disjoint supports M, N ⊆
X , respectively. Since A is of local type, we conclude from (2.18) that

max{| f A|, |gA|} ≥ |χM f AχM I +χN gAχN I|
= | f AχM I +gAχN I|
= | f A+gA− f Aχ

X\M
I −gAχ

X\N
I|

= | f A+gA|.

Here we used that

f Aχ
X\M

I = ( f A−A f )χ
X\M

I +A f χ
X\M

I = ( f A−A f )χ
X\M

I

and gAχ
X\N

I are compact operators.

2.5.3 Local Fredholmness and Fredholmness

Definition 2.5.14. Let E be an ideal Banach space over X and A ∈ L (E). An op-
erator Rl ∈ L (E) (resp. Rr) is called a local left (resp. right) regularizer of the
operator A at the point x ∈ X if there is a neighborhood U of the point x such that
RlAχU I ∼ χU I (resp. χU ARr ∼ χU I). An operator A is said to be locally Fredholm at
x ∈ X if it possesses both a local left and a local right regularizer at that point.
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Proposition 2.5.15. Let E be a Banach space of local type over X and let A∈L (E)
be an operator of local type which is locally Fredholm at x ∈ X. Then A possesses
local left and right regularizers at x which are of local type.

Proof. Let U be an open neighborhood of x and let Rl , Rr ∈ L (E) be operators
such that

RlAχU I ∼ χU I and χU ARr ∼ χU I.

Let g be a continuous function on X which is identically 1 in a neighborhood V of x
and which has its support inside U . Since

gRlgAχV I ∼ gRlAgχV I = gRlAχU gχV I ∼ gχU gχV I = χV I,

the operator gRlgI is a local left regularizer of A at x, too. We claim that gRlgI is of
local type. Let f ∈C(X). Then

f gRlgI −gRlg f I = ( f gRl −gRl f )gχU I

∼ ( f gRl −gRl f )gχU ARr

∼ ( f gRl −gRl f )AgRr

∼ ( f gRlA−gRlA f )gRr

= ( f gRlAχU −gRlAχU f )gRr

∼ ( f g−g f )χU gRr = 0,

which proves the claim. Similarly one gets that gRrgI is a local right regularizer of
A at x which is of local type.

The main result on local Fredholmness reads as follows.

Theorem 2.5.16. Let E be a Banach space of local type over X. An operator A ∈
L (E) of local type is Fredholm if and only if it is locally Fredholm at every point
x ∈ X.

The proof will follow immediately from Allan’s local principle (Theorem 2.2.2)
and from Theorem 2.5.7 once we have checked the following assertion. The notation
is as in Section 2.5.2.

Proposition 2.5.17. Let E be a Banach space of local type over X. The operator
A∈Λ(E) is locally Fredholm at x∈X if and only if its local cosetΨx(A) is invertible
in A /Jx.

Proof. If A is locally Fredholm at x, then there are operators Rl and Rr of local type
as well as an open neighborhood U of x such that

RlAχU I ∼ χU I and χU ARr ∼ χU I.

Let f be a continuous function on X with f (x) = 1 and supp f ⊂U . Then

RlA f I ∼ f I and f ARr ∼ f I.
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Applying the local homomorphism Ψx to these identities and taking into account
thatΨx( f ) is the identity element of A /Jx, one gets the invertibility ofΨx(A). Con-
versely, letΨx(A) be invertible in A /Jx. Let R ∈Λ(E) be such thatΨx(R) is the in-
verse ofΨx(A). ThenΨx(RA− I) =Ψx(AR− I) = 0, whence |RA− I|x = 0 by Propo-
sition 2.5.11. By the definition of the local norm, there is an open neighborhood U of
x such that |RAχU I−χU I| < 1/2. Equivalently, there is an operator C ∈ L (E) with
‖C‖ < 1/2 and a compact operator K such that RAχU I − χU I = C +K. Multiplying
this equality from both sides by χU I we find

χU RAχU I = χU I +χU CχU I +χU KχU I. (2.22)

Since ‖χU CχU I‖ < 1/2, the operator χU I + χU CχU I (considered as an operator on
the range of the projection χU I) is invertible by Neumann series. Let D denote its
inverse. Then (2.22) implies

DχU RAχU I = χU I +K′

with a certain compact operator K′. Consequently, DχU RAχU I ∼ χU I, i.e., DχU R is
a local left regularizer of A at x. The existence of a local right regularizer follows
analogously.

2.5.4 The envelope of an operator function

Let E be an ideal Banach space over X .

Definition 2.5.18. An operator function X → Λ(E), x �→ Ax is said to possess an
envelope if there is an operator A ∈ Λ(E) such that A

x∼ Ax for all x ∈ X . Each
operator A with this property is called an envelope of the function (Ax)x∈X .

Definition 2.5.19. The operator function X → Λ(E), x �→ Ax is said to be locally
semi-continuous if for every point x0 ∈X and every ε > 0 there exists an open neigh-
borhood U of the point x0 such that every point x ∈ U has an open neighborhood
V ⊂U with

|(Ax0 −Ax)χV I| < ε (2.23)

Theorem 2.5.20. Let E be a Banach space of local type over X. Then a bounded
operator function X →Λ(E), x �→Ax possesses an envelope if and only if it is locally
semi-continuous. The envelope is uniquely determined up to a compact operator,
and

|A| ≤ sup
x∈X

|Ax|

for each envelope A of the given operator function.

Proof. It easy to check that the existence of an envelope implies the local semi-
continuity of the operator function. The reverse implication will be shown by having
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recourse to Theorem 2.3.5 and its application to faithful localizing pairs. Thus, we
let F refer to the set of all bounded functions on X which take, at x ∈ X , a value in
A /Jx (the notation is as in Subsection 2.5.2). The set F becomes a Banach algebra
by defining elementwise operations and the supremum norm. The Banach algebra
F together with its subalgebra D , consisting of all functions x �→ f (x)Ψx(I) where
f ∈C(X), forms a faithful localizing pair. Let E stand for the set of all functions in
F of the form

x �→Ψx(A) with A ∈Λ(E).

Then E is a subalgebra of F which satisfies conditions (i) - (iv) on page 89 in
Subsection 2.3.2. Moreover, E is closed. Indeed, let ( fn) with fn : x �→Ψx(An) be a
Cauchy sequence in F . From

‖ fn − fm‖F = sup
x∈X

‖Ψx(An −Am)‖ = |An −Am|

(by Theorem 2.3.3 and Proposition 2.5.11) we conclude that (An + K (E)) is a
Cauchy sequence in A . Let A ∈ Λ(E) be such that A +K (E) is the limit of that
sequence. Then f : x �→Ψx(A) is a function in F , and ‖ fn − f‖F → 0.

Now let X → Λ(E), x �→ Ax be a bounded and locally semi-continuous function
on X , and let x0 ∈ X . Let A ∈Λ(E) be an operator withΨx0(A) =Ψx0(Ax0). Due to
Allan’s local principle (Theorem 2.2.2), the function

X → R, x �→ ‖Ψx(A−Ax0)‖

is upper semi-continuous at x0, i.e., given ε > 0 there is a neighborhood U1 of x0

such that ‖Ψx(A−Ax0)‖ < ε for all x ∈ U1. Further we conclude from (2.23) that
there is a neighborhood U2 of x0 such that, for x ∈U2,

‖Ψx(Ax)−Ψx(Ax0)‖ = |Ax −Ax0 |x ≤ |(Ax −Ax0)χV I| < ε.

Hence, for all x ∈U := U1 ∩U2,

‖Ψx(Ax)−Ψx(A)‖ ≤ ‖Ψx(Ax)−Ψx(Ax0)‖+‖Ψx(Ax0)−Ψx(A)‖ ≤ 2ε.

Hence, the function x �→Ψx(Ax) is semi-continuous with respect to E in the sense
of Section 2.3.2. By Theorem 2.3.5, this function belongs to the closure of E in F ,
which actually coincides with E as we have already seen. Thus, this function is of
the form x �→Ψx(B) with a certain operator B of local type; in other words, B is an
envelope for (Ax)x∈X .

For the proof of the norm estimate, we take into account that |A|x = |Ax|x by the
definition of the local norm | · |x. Then

|A| = max
x∈X

|A|x = max
x∈X

|Ax|x ≤ sup
x∈X

|Ax|

where the first equality comes from Theorem 2.5.12.
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2.5.5 Exercises

Exercise 2.5.1. Prove that local equivalence is a reflexive, symmetric and transitive
relation. Moreover,

(i) if A, B, Ax and Bx are local type operators with A
x∼ Ax and B

x∼ Bx, then
AB

x∼ AxBx;
(ii) if A and B are local type operators and x ∈ X , then A

x∼ B if and only if for
every ε > 0 there exists a neighborhood U of x such that

|(A−B)χU I| < ε and |χU (A−B)| < ε;

(iii) if A and B are local type operators and Ui, i = 1, . . . ,8 are neighborhoods of
x ∈ X such that χU1

AχU2
I

x∼ χU3
BχU4

I, then χU5
AχU6

I
x∼ χU7

BχU8
I;

(iv) if (Ai) and (Bi) are sequences such that |Ai−A| → 0, |Bi−B| → 0, and Ai
x∼ Bi

for every i, then A
x∼ B.

Exercise 2.5.2. Let E be a Banach space of local type over X and A ∈L (E) a local
type operator. Prove that

|A| = sup
x∈X

|A|x.

Exercise 2.5.3. Show that the equality |A| = supx∈X |Ax| does not hold in general.

Exercise 2.5.4. Let A be an operator of local type, x ∈ X , W a neighborhood of
x, and Rl (resp. Rr) a local left (resp. right) regularizer of A at x. Prove also that
RlχW I and χW Rl (resp. RrχW I and χW Rr) are local left (resp. right) regularizers of A
at x.

Exercise 2.5.5. Let A be an operator of local type, x ∈ X , W a neighborhood of x,
and Rl (resp. Rr) a local left (resp. right) regularizer of A at x, and let f ∈C(X) be a
function which is identically 1 on W . Prove then that Rl f I and f Rl (resp. Rr f I and
f Rr) are local left (resp. right) regularizers of A at x.

Exercise 2.5.6. Show that if A is a local type operator which is locally Fredholm at
a point x ∈ X , then A possesses a local type regularizer at that point.

Exercise 2.5.7. Let operators A and B be locally equivalent at x ∈X and assume that
A possesses a left (resp. right) local regularizer at x. Show that then B also possesses
a left (resp. right) local regularizer at x. Prove that if A, B and the left (right) local
regularizer of A are local type operators, then the left (right) local regularizer of B
has the same property.

Exercise 2.5.8. Let operators A and B be locally equivalent at x ∈ X , and let A be
locally Fredholm at x. Show that B is also locally Fredholm at x.

Exercise 2.5.9. Let A be a local type operator which possesses a local left (right)
local type regularizer for any x ∈ X . Prove that A possesses a global left (right) local
type regularizer.



106 2 Local principles

2.6 PI-algebras and QI-algebras

In this section we are going to present another generalization of Gelfand’s transform,
applicable to special classes of Banach algebras, the so called PI- and QI-algebras,
where PI stands for polynomial identity and QI for quasi identity. These algebras are
close to commutative algebras in the sense that the defining condition ab = ba of
a commutative algebra is replaced by another polynomial identity. For PI- and QI-
algebras we will obtain sufficient families of finite-dimensional homomorphisms,
that is, the algebras Bt defined in the introduction of the chapter will prove to be
matrix algebras, Bt = C

l(t)×l(t), with sup l(t) < ∞.

2.6.1 Standard polynomial identities

In this section, A denotes a unital algebra over an arbitrary field F, and P is a
polynomial of positive degree in n non-commuting variables with coefficients in F.
Each time the variables in P are replaced by elements a1, . . . , an of the algebra, the
result is an element of the algebra which we denote by P(a1, . . . , an).

Definition 2.6.1. Let P be a polynomial of positive degree in n non-commuting
variables with coefficients in F. An algebra A is said to satisfy the polynomial
identity P if P(a1, . . . , an) = 0 for every choice of elements a1, . . . , an ∈ A . We
then call A a P-algebra. If A satisfies at least one non-trivial polynomial identity,
it is called a PI-algebra.

Let Σn refer to the permutation group of the set {1, . . . , n}. Polynomials of the
form

P(a1, . . . , an) = ∑
σ∈Σn

λσ aσ(1) . . .aσ(n) (2.24)

with coefficients λσ ∈ F are called multilinear. Considered as a mapping from A n

to A , a multilinear polynomial is indeed linear in each component.
A polynomial P of positive degree in n non-commuting variables is called al-

ternating if any repetition in the choice of elements a1, . . . , an yields 0, that is,
P( . . . , a j, . . . , a j, . . .) = 0. Finally, for 1 ≤ i �= j ≤ n, we let Pi j stand for the poly-
nomial Pwith the variables at places i and j interchanged.

Lemma 2.6.2. Let Pbe a multilinear polynomial. Then P is alternating if and only
if Pi j = −P for each choice of indices 1 ≤ i �= j ≤ n.

Proof. Let Pbe alternating and 1 ≤ i �= j ≤ n. Then

0 = P( . . . , ai +a j, . . . , ai +a j, . . .)
= P( . . . , ai, . . . , ai, . . .)+P( . . . , ai, . . . , a j, . . .)

+P( . . . , a j, . . . , ai, . . .)+P( . . . , a j, . . . , a j, . . .)
= P( . . . , ai, . . . , a j, . . .)+P( . . . , a j, . . . , ai, . . .).
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Conversely, by interchanging the positions where the repeated element a j is present,
we obtain

P( . . . , a j, . . . , a j, . . .) = −P( . . . , a j, . . . , a j, . . .),

which implies P( . . . , a j, . . . , a j, . . .) = 0.

The following definition introduces the process of multilinearization. Applied
to a (non-multilinear) polynomial, this process results in another polynomial, with
one “new” variable and a lesser degree in one of the “old” variables. This process,
taken repeatedly, finally allows a multilinear polynomial to be obtained from any
polynomial.

Definition 2.6.3. Let P : A n → A be a function in n variables. For 1 ≤ i ≤ n, we
define the function ΔiP : A n+1 → A by

ΔiP(a1, . . . , an+1) := P(a1, . . . , ai−1, ai +an+1, ai+1, . . . , an)
−P(a1, . . . , ai−1, ai, ai+1, . . . , an)
−P(a1, . . . , ai−1, an+1, ai+1, . . . , an).

(2.25)

Lemma 2.6.4. If an algebra A satisfies a polynomial identity of degree k, then it
also satisfies a multilinear identity of degree ≤ k.

Proof. Let A satisfy a polynomial identity P of degree k in n variables. If P is not
linear in the first variable (this happens if the degree of the first variable is greater
than 1), then consider

Δ1P(a1, . . . , an, an+1)
= Pn(a1 +an+1, a2, . . . , an)−P(a1, a2, . . . , an)−P(an+1, a2, . . . , an).

Clearly, A also satisfies the polynomial identity Δ1P, and the degree of Δ1P is not
greater than that of P. But the degree of the first variable in Δ1P is strictly lower
than the degree of the first variable in P. Repeated application of this procedure to
every nonlinear variable yields, after a finite number of steps, a multilinear identity
of degree not greater than k which is also satisfied by A .

Lemma 2.6.5. The matrix algebra F
n×n over the field F does not satisfy a polyno-

mial identity of degree less than 2n.

Proof. By the above lemma, we just have to check that F
n×n does not satisfy any

multilinear identity of degree less than 2n. Suppose that F
n×n satisfies a multilinear

identity Pm of degree m < 2n. Let Epq ∈ F
n×n be the matrix with zeros at every entry

except at the entry pq, which is 1. Inserting the matrices

ai :=

{

E i+1
2

i+1
2

if i is odd,

E i
2

i+2
2

if i is even
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into (2.24), we get immediately that the coefficient associated with the identity per-
mutation is zero. Rearranging the matrices above in Pm, we then conclude that all
coefficients must be zero. This contradiction proves the assertion.

We are now going to introduce a class of multilinear polynomials which will play
a dominant role in what follows.

Definition 2.6.6. Let A be an algebra and a1, . . . , an ∈A . The standard polynomial
of degree n is defined by

Sn(a1, . . . , an) := ∑
σ∈Σn

sgnσ aσ(1) . . .aσ(n),

where sgnσ takes the value +1 if the permutation σ ∈ Σn is even and −1 if it is odd.

The standard polynomials can also be defined recursively by S1(a1) := a1 and

Sn(a1, . . . , an) =
n

∑
i=1

(−1)i−1 aiSn−1(a1, . . . , ãi, . . . , an)

or, equivalently,

Sn(a1, . . . , an) =
n

∑
i=1

(−1)n−i Sn−1(a1, . . . , ãi, . . . , an)ai

if n > 1 where the tilde indicates that the corresponding element is omitted.
It easy to see that standard polynomials and their scalar multiples are alternating.

The next result shows the converse is also true.

Proposition 2.6.7. Any multilinear alternating polynomial of degree n is a multiple
of the standard polynomial Sn.

Proof. Let Pbe a multilinear alternating polynomial of the form (2.24). Since every
permutation is a composition of interchanges of variables, one has by Lemma 2.6.2,
P(a1, . . . , an) = sgnσ P(aσ(1), . . . , aσ(n)) for each permutation σ ∈ Σn. The coeffi-
cient of the monomial aσ(1) . . .aσ(n) in the polynomial on the left-hand side of this
equality is λσ ; its counterpart on the right-hand side is sgnσλid , with the identity
permutation id. Hence, λσ = sgnσλid , which implies

P(a1, . . . , an) = λid ∑
σ∈Σn

sgnσaσ(1) . . .aσ(n).

Thus, P= λidSn.

The following fact will be used in the proof of the Amitsur-Levitzki theorem.

Corollary 2.6.8. Let P(a1, . . . , a2n) =∑σ∈Σ2n
sgnσ [aσ1 ,aσ2 ] . . . [aσ2n−1 ,aσ2n ], where

[a,b] represents the commutator ab−ba. Then P= 2nS2n.
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Proof. It is not difficult to see that P is a multilinear and alternating polynomial
of degree 2n. By the above proposition, P is a multiple of the standard polynomial
S2n. The polynomial P is the sum of 2n(2n)! multilinear monomials, none of which
cancel. Thus, the constant is 2n.

Let tra denote the trace of the matrix a.

Lemma 2.6.9. Let a1, . . . ,a2k ∈ F
n×n. Then tr

[

S2k(a1, . . . ,a2k)
]

= 0.

Proof. For i = 1, . . . , 2k, let ai
2k denote the (2k−1)-tuple (a1, . . . , ãi, . . . , a2k) where

the tilde indicates that the corresponding element is omitted. Then

2tr
[

S2k(a1, . . . , a2k)
]

= tr

[

2k

∑
i=1

(−1)i−1 aiS2k−1(ai
2k)

]

+ tr

[

2k

∑
i=1

(−1)2k−i S2k−1(ai
2k)ai

]

=
2k

∑
i=1

(−1)i−1tr
[

aiS2k−1(ai
2k)−S2k−1(ai

2k)ai
]

= 0,

since the trace of the commutator of two matrices is zero.

Definition 2.6.10. The algebra A is said to satisfy the standard identity of order
n if Sn(a1, . . . ,an) = 0 for any a1, . . . ,an ∈ A . The family of all algebras with that
property will be denoted by SIn. Further, let SIm

2n stand for the family of all alge-
bras A with the property that (S2n(a1, . . . ,a2n))

m = 0 for all choices of elements
a1, . . . ,a2n ∈ A . Finally, if A is a (real or complex) Banach algebra, then we call
A a QI-algebra and write A ∈ SI∞2n if there is a number n such that, for any choice
of a1, . . . ,a2n ∈ A ,

lim
m→∞

‖(S2n(a1, . . . ,a2n))m‖1/m = 0.

The standard polynomial of order 2 is S2(a1,a2) = a1a2 −a2a1. Thus an algebra
satisfies the standard identity of order 2 if and only if it is commutative.

In Lemma 2.6.5 we have seen that the algebra F
n×n does not satisfy any poly-

nomial identity of order less than 2n. The next theorem states that it satisfies the
standard identity of degree 2n.

Theorem 2.6.11 (Amitsur-Levitzki). The algebra F
n×n satisfies the standard iden-

tity of degree 2n.

Proof. First let F = Q be the field of the rational numbers and consider a matrix
a ∈ Q

n×n. Newton’s formula for the coefficients of the characteristic polynomial Pa

of a,

Pa(λ ) := det(λ I −a) = λ n +
n

∑
k=1

αkλ n−k (2.26)

implies that the coefficients αk are given as follows. Let Ωk denote the set of all
j-tuples m = (m1, . . . ,m j) of integers with 1 ≤ m1 ≤ m2 ≤ ·· · ≤ m j and m1 +m2 +
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· · ·+m j = k. Notice that both the k-tuple (1, . . . , 1) as well as the 1-tuple (k) belong
to Ωk. Then, for k = 1, . . . , n,

αk = ∑
m∈Ωk

qm tr(am1) . . . tr(am j)

with certain rational numbers qm (see also [170, Theorem 1.3.19]).
By the Cayley-Hamilton theorem, Pa(a) = 0. We apply the multilinearization

process to the mapping P : F
n×n → F, a �→ Pa(a) to get the multivariable function

(ΔP)(a1, . . . , an) := (Δ1)n−1P(a1).

Clearly, (ΔP)(a1, . . . , an) = 0. Since the trace is additive, we thereby arrive at the
identity

0 = (ΔP)(a1, . . . , an) = ∑
σ∈Σn

aσ1 . . .aσn +

+
n

∑
k=1

∑
m∈Ωk

∑
σ∈Σn

qmtr(aσ1 . . .aσm1
) . . . tr(aσm1+...+m j−1+1 . . .aσk)aσk+1 . . .aσn .

For instance, for n = 2 one has

0 = ∑
σ∈∑2

aσ1aσ2 − ∑
σ∈∑2

(traσ1)aσ2 +
1
2 ∑σ∈∑2

(traσ1)(traσ2)−
1
2 ∑σ∈∑2

tr(aσ1aσ2)

due to

Pa(a) = a2 − (tra)a+
1
2
(tra)2 − 1

2
tr(a2).

Back to general n. Given 2n matrices a1, . . . , a2n ∈F
n×n and a permutation σ ′ ∈∑2n,

we replace each variable ai in the above identity by [aσ ′
2i−1

, aσ ′
2i
] and form the sum

0 = ∑
σ ′∈∑2n

sgnσ ′(ΔP)
(

[aσ ′
1
, aσ ′

2
], . . . , [aσ ′

2n−1
, aσ ′

2n
]
)

.

Using Corollary 2.6.8, we write this identity as

0 = 2nS2n(a1, . . . , a2n)+P′(a1, . . . , a2n)

where P′(a1, . . . ,a2n) is a sum of terms of the form

qm trS2m1(a2σ1−1, . . . , a2σm1
)×·· ·×

×trS2m j(a2σ(m1+···+m j−1+1)−1, . . . , a2σk)S2(n−k)(a2σk+1−1, . . . , a2σn)

for some σ ∈ ∑n. (Again, it is useful to consider the particular case n = 2 to
understand this construction.) By Lemma 2.6.9, each of these terms is 0. Thus,
P′(a1, . . .a2n) = 0 and, consequently, S2n(a1, . . .a2n) = 0.



2.6 PI-algebras and QI-algebras 111

Now let F be an arbitrary field, and ai ∈ F
n×n. Each matrix ai can be written

as a linear combination ai = ∑ j,k a(i)
jk E jk where the E jk are the unit matrices (i.e.,

the jkth entry of E jk is equal to 1, and the others are zero). Then, due to the multi-
linearity of S2n, the matrix S2n(a1, . . . ,a2n) is a linear combination of the matrices
S2n(E j1k1 , . . . ,E j2nk2n) which are all zero by the first part of the proof.

It is useful to observe that the argument used in the last part of the above proof
also applies to an arbitrary commutative unital algebra C over F. Thus the Amitsur-
Levitzki theorem remains valid if the field F is replaced by a commutative unital
algebra C .

Having this result at our disposal, we can extend the results on matrix algebras
from Section 1.1.4 as follows.

Theorem 2.6.12. Let A be a unital algebra over a field F, and C its center. Then
A is isomorphic to C n×n if and only if

(i) A ∈ SI2n, and
(ii) A contains a unital subalgebra A0 which is isomorphic to F

n×n.

Proof. If A is isomorphic to C n×n, then A ∈ SI2n by the Amitsur-Levitzki theorem.
Hence, (i) is satisfied, and (ii) is obvious. Conversely, let A satisfy (i) and (ii). Then
Theorem 1.1.17 establishes an isomorphism w =

[

w jk
]n

j,k=1 between the algebras

A and Dn×n, where D = w jk(A ) is a subalgebra of A . Moreover, the centers of
A and D coincide. It remains to prove the inclusion w jk(a)∈C for all 1 ≤ j, k ≤ n,
and a ∈ A . Since b = ∑i∑m eiibemm for all b ∈ A and w jk(a) = ∑n

i=1 ei jaeki by
definition, the commutator w jk(a)b−bw jk(a) is zero only if

ei jaekibemm − eiibem jaekm = 0

for all a, b∈A and 1≤ i, j, k, m≤ n. But the latter identity is a simple consequence
of

ei jaekibemm − eiibem jaekm

= ei1S2n+1(e1 jaek1, e1ibem1, e12, . . . , en−1,n, enn, en,n−1, . . . , e21)e1m

and of the fact that each SI2n-algebra also satisfies the standard identity of degree
2n+1.

Corollary 2.6.13. Let A ∈ SI2n be a complex Banach algebra with center C , which
contains a unital subalgebra A0 isomorphic to C n×n. Then the maximal ideal spaces
of A and C are homeomorphic.
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2.6.2 Matrix symbols

Let A be a Banach algebra with identity e over the field C and B ⊂ A be a subal-
gebra of A . Let X be an arbitrary set and l a bounded function from X into the set of
the positive integers. Set n := supx∈X l(x). Assume we are given a family {μx}x∈X

of representations of A having the property that μx(a) ∈ C
l(x)×l(x) for each a ∈ A .

If it is true for every element b ∈ B that b is invertible in A if and only if μx(b)
is invertible for all x ∈ X , then we say that {μx}x∈X generates a matrix symbol of
order n for B in A . The collection of all subalgebras B of A which possess a
matrix symbol of order n for B in A is denoted by IS(n,A ). In case A belongs to
IS(n,A ) we just say that A has a matrix symbol of order n.

Let J be a maximal left ideal of a Banach algebra A , and write E for the linear
space A /J and Φ : A → E for the canonical linear mapping. Further, let LJ

denote the left regular representation of A induced by J , which was introduced in
Example 1.3.12.

Lemma 2.6.14. Let E0 be a finite-dimensional linear manifold in E and let x ∈
E \E0. Then there is an a ∈ A such that LJ

a (E0) = {0} and LJ
a (x) �= 0.

Proof. The proof proceeds by induction with respect to the dimension of E0.
The assertion of the lemma is evidently true if dim E0 = 0. Suppose that it is
true for dim E0 = k. Choose y �∈ E0 and set E1 := E0 + Cy. Further let L :=
{LJ

a : LJ
a (E0) = {0}}. Consider the set {LJ

a (y) : LJ
a ∈ L }. This set is a non-

trivial linear subspace of E which is invariant under all operators LJ
b with b ∈ A .

Since LJ is an algebraically irreducible representation (by Exercise 1.3.7), one has
{LJ

a (y) : LJ
a ∈ L } = E.

Now suppose the assertion of the lemma is not valid for E1. Then there is a
z ∈ E \ E1 such that LJ

a (z) = 0 for every a satisfying LJ
a (E1) = {0}. Consider

the operator B that acts on E according to Bx := LJ
a (z), with a chosen such that

LJ
a (y) = x. It can easily be checked that B is correctly defined and satisfies the

conditions of Corollary 1.3.13. Consequently, B is a scalar operator, i.e., B = λ I

with a complex λ , and for every LJ
a ∈ L we have

LJ
a (z) = BLJ

a (y) = λLJ
a (y) ⇔ LJ

a (z−λy) = 0.

By hypothesis, if LJ
a (ξ ) = 0 for all LJ

a ∈L , then ξ ∈ E0. Thus z−λy ∈ E0, which
contradicts the choice of z ∈ E \E1.

Lemma 2.6.15. Let v1, . . . , vn and e1, . . . , en be elements of E, and suppose that the
elements ek are linearly independent. Then there is an element a ∈ A with LJ

a ek =
vk for all k = 1, . . . , n.

Proof. It follows from Lemma 2.6.14 that, for each k = 1, . . . , n, there is an ak ∈A

such that LJ
ak (ek) �= 0 and LJ

ak (em) = 0 for m �= k. Consider the linear manifold Ek :=
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{LJ
x LJ

ak (ek) : x ∈ A }. Since LJ
a (Ek) ⊂ Ek and LJ

e LJ
ak (ek) �= 0, we have Ek = E

for every k. Hence, there are elements xk ∈A such that LJ
xk LJ

ak (ek) = LJ
xkak(ek) = vk

and LJ
xkak(em) = 0 for m �= k. The element a := ∑n

k=1 xkak has the desired property.

Theorem 2.6.16 (Kaplansky). Every primitive Banach algebra A ∈ SI∞2n is isomor-
phic to C

l×l for some l ≤ n.

Proof. If the algebra A is primitive, then it contains a maximal left ideal J for

which the corresponding left regular representation LJ : A → {LJ
a : a ∈ A } is

an isomorphism. We show that if A ∈ SI∞2n then dim A /J ≤ n. Set E := A /J
and suppose dim E > n. Let e1, . . . , en+1 be linearly independent elements in E. For
i, j, k = 1, . . . , n+1, set

v(i j)
k := δ jkei

where δ jk is the Kronecker symbol. By Lemma 2.6.15, there are elements ai, j ∈ A

such that LJ
ai, j ek = v(i j)

k . Then a simple computation yields

S2n

(

LJ
an+1,n , LJ

an,n−1 , . . . , LJ
a2,1 , LJ

a1,2 , . . . , LJ
an,n+1

)

en+1 = en+1,

whence ∥

∥

∥Sm
2n

(

LJ
an+1,n , LJ

an,n−1 , . . . , LJ
a2,1 , LJ

a1,2 , . . . , LJ
an,n+1

)∥

∥

∥≥ 1

for all m. Since LJ is continuous, this contradicts our assumption that A ∈ SI∞2n.
Hence, dim E ≤ n. But then, clearly, L (E) ≡ C

l×l with some l ≤ n.

The following theorem can be considered as an analog of the Gelfand theory for
algebras satisfying a standard polynomial identity.

Theorem 2.6.17. Let A ∈ SI∞2n be a unital Banach algebra. Then:

(i) for each maximal ideal x of A , the quotient algebra Ax := A /x is isomorphic
to C

l×l with a certain l = l(x) less than or equal to n;
(ii) an element a ∈ A is invertible if and only if the matrices Φx(a) ∈ C

l(x)×l(x)

are invertible for all maximal ideals x of A (here we set Φx := ϕxπx where πx

denotes the canonical homomorphism from A onto Ax and ϕx is an arbitrarily
chosen isomorphism from Ax onto C

l(x)×l(x), which exists by (i));
(iii) the radical of A coincides with the intersection of all maximal ideals of A .

Proof. (i) If the algebra itself is primitive then A is isomorphic to C
l×l with some

l ≤ n by Theorem 2.6.16. We will exclude this trivial case. For all x in MA , the
quotient algebra Ax is primitive and belongs to SI∞2n. Then (i) follows from Theorem
2.6.16.

(ii) If a ∈ A is invertible, then Φx(a) is invertible for every x ∈ MA . To prove the
reverse implication, suppose that the Φx(a) are invertible for every x ∈ MA . Then
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a+x is invertible in Ax. Suppose that a is not left invertible. Then a belongs to a left
maximal ideal J by Proposition 1.3.2. Let LJ be the left regular representation
induced by J , and set I := Ker LJ . It is evident that I is an ideal which is con-
tained in J , that the quotient algebra A I is primitive, and A I ∈ SI∞2n. Theorem
2.6.16 implies that A I is isomorphic to C

l×l , with l ≤ n, whence the maximality
of I . Since x is a subset of J , the image Jx := πx(J ) is a left ideal again, and
πx(a) ∈ Jx. So πx(a) cannot be invertible in Ax. This contradicts the assumption.
Hence, a is left invertible.

Let us prove now that a is also right invertible. Since a is left invertible, there is
a b ∈ A such that ba = e. Thus, Φx(b)Φx(a) = Φx(e). Since Φx(a) is invertible in
Ax, it follows that Φx(a)Φx(b) =Φx(e) or, equivalently, ab− e ∈ x for all x ∈ MA .
Since each maximal left ideal contains a maximal ideal by Lemma 1.3.15, the el-
ement r = ab− e belongs to the radical of A . By Proposition 1.3.3, the element
ab = e+ r is invertible, which implies the right invertibility of a.

(iii) The intersection of all maximal ideals belongs to the radical RA of A . Con-
versely let r ∈ RA . Then rx := r + x belongs to RAx . Since Ax is semi-simple, this
implies that r ∈ x for all maximal ideals x.

Remark 2.6.18. The proof of Theorem 2.6.16 made use only of the multilinear
property of S2n. Thus the proof holds if instead of S2n one has any multilinear poly-
nomial. This in particular implies that a version of Theorem 2.6.17 is true if the
algebra A is a PI-algebra, because of Lemma 2.6.4. �

Theorem 2.6.19. Let A be a unital Banach algebra. The following assertions are
equivalent:

(i) A /RA is a PI-algebra;
(ii) A has a matrix symbol of order n;

(iii) A /RA ∈ SI2n;
(iv) A ∈ SI∞2n.

Proof. Suppose that A /RA is a PI-algebra. Then, A /RA satisfies a multilinear
polynomial, and thus has a matrix symbol of some order n (see Remark 2.6.18). As-
sertion (ii) follows due to the equivalence of the invertibility of an element a ∈ cA,
and the invertibility of the coset a +RA in A /RA . We continue with the impli-
cation (ii) ⇒ (iii): Assume that there is a family of matrix-valued homomorphisms
hx on A , labeled by the elements of some set X , such that an element a ∈ A is
invertible in A if and only if the matrices hx(a) are invertible for all x ∈ X .

We claim that if a ∈ A is invertible, then a + S2n(a1, . . . , a2n) is invertible for
each choice of elements a1, . . . , a2n of A . Since

hx (S2n(a1, . . . , a2n)) = S2n(hx(a1), . . . , hx(a2n))

and all entries hx(ak) are l × l matrices, Theorem 2.6.11 implies that
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hx (S2n(a1, . . . , a2n)) = 0

for all x ∈ X . Hence,

hx(a) = hx(a+S2n(a1, . . . , a2n))

for every x ∈ X . Since the hx constitute a matrix symbol, the claim follows. Then,
by Proposition 1.3.3, S2n(a1, . . . , a2n) is in the radical of A , whence the assertion.

The implication (iii) ⇒ (iv) is a consequence of the fact that elements of the
radical have spectral radius 0 and of Theorem 1.2.12. (iii) also trivially implies (i).
The final implication (iv) ⇒ (ii) comes directly from Theorem 2.6.17.

Example 2.6.20. Let A0 denote the set of all bounded linear operators A on l2, such
that the coefficients of the matrix representation (ai j)∞i, j=1 of A with respect to the
standard basis satisfy the following conditions:

• ai j = 0 whenever i > j;
• ai j = 0 whenever i < j with a finite number of exceptions;
• the limit limi→∞ aii exists and is finite.

The set A0, provided with the operations inherited from L (l2), forms an algebra.
Let A be the closure of A0 in L (l2). Then A is a QI-algebra in SI∞2 , the mappings

φn : A → C, φn(A) :=

{

ann if n ∈ N,

limi→∞ aii if n = ∞.
(2.27)

are continuous homomorphisms, and an element A ∈ A is invertible in A if and
only if φn(A) �= 0 for all n ∈ N∪{∞}. The proof of these facts is left as an exercise.

�

We conclude this section with two results on the existence of matrix symbols for
algebras with a non-trivial center.

Proposition 2.6.21. Let A be a unital Banach algebra, B be a closed subalgebra
and C a subalgebra of the center of B. If

sup
x∈MC

dim Bx =: m < ∞ (2.28)

then B ∈ IS(n,A ) for some n ≤
√

m.

Proof. By hypothesis, dim Bx ≤m for any x ∈MC . For b1, . . . , bm+1 ∈B, consider
Sm+1(b1 +x, . . . , bm+1 +x). Let e1, . . . , em be a basis of Bx. Since every coset bi +x
can be written as a linear combination of the basis elements e1, . . . , em, the multilin-
earity of the standard polynomial implies that Sm+1(b1 + x, . . . , bm+1 + x) = 0. By
Theorem 2.6.17, there exists a positive integer k ≤ �m+1

2 � such that Bx has a matrix
symbol of order k for all x ∈ MC . Consider the commutator
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D := {a ∈ A : ac = ca for every c ∈ C }

of the algebra C . It is easy to see that D is an inverse-closed Banach subalgebra of
A which contains B and which has C in its center. Thus, the local algebras Dx are
well defined for x ∈ MC . Since dim Bx < ∞, the algebra Bx is inverse-closed in Dx

(see Exercise 1.2.13). Thus, Bx ∈ IS(k,Dx) for all x ∈ MC .
We claim that B ∈ IS(k,A ). Indeed, let {Φx

τ}τ∈T (x) generate a matrix symbol
for Bx in Dx. For b ∈ B, set Φx,τ(b) := Φx

τ (bx), which defines a homomorphism
Φx,τ on B. Since D is inverse-closed in A , the element b ∈ B is invertible in A
if and only if it is invertible in D . By Allan’s local principle, b is invertible in D if
and only if bx is invertible in Dx for all x ∈ MC . Thus, b is invertible in A if and
only if Φx,τ(b) is invertible for all x ∈ MC and τ ∈ T (x), that is, the family {Φx,τ}
generates a matrix symbol for B in A .

The homomorphisms Φx,τ : A �→ C
l(x)×l(x) obviously satisfy dim Im Φx,τ ≤

dim Bx. Consequently, l2(x) ≤ m, and the result follows.

Corollary 2.6.22. Let A be a unital Banach algebra, B a closed subalgebra of A ,
and B0 be a dense subalgebra of B. If B0 is an m-dimensional module over its
center, then B ∈ IS(n,A ) with a certain n ≤

√
m.

2.6.3 Exercises

Exercise 2.6.1. Prove that every finite-dimensional algebra A with dim A < n
satisfies the standard identity of order n.

Exercise 2.6.2. Prove that the mappings φi in Example 2.6.20 are continuous ho-
momorphisms and that an element A ∈A is invertible in A if and only if φi(A) �= 0
for all i ∈ N∪{∞}.

2.7 Notes and comments

The simplest local principle is the classical Gelfand theory for commutative Banach
algebras. It was created by Gelfand in 1941. The original paper is [62]. The modern
reader can choose between a few textbooks on Banach algebras which present nice
introductions to Gelfand theory; see, for example, [162, 171, 202].

Classical Gelfand theory has found a variety of remarkable applications. For in-
stance, it provides an elegant and relatively simple proof of the famous Wiener the-
orem which states that if f is a non-vanishing function with an absolutely conver-
gent Fourier series expansion, then its inverse f−1 has the same property. It is thus
nothing but natural that several attempts were made to establish non-commutative
versions of Gelfand’s theory.
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Representation theory for C∗-algebras can be thought of as a non-commutative
generalization of the Gelfand theory which carries much of its spirit: the maximal
ideal space is replaced by the spectrum of the algebra (which coincides with the
space of the primitive ideals in many cases), and the multiplicative functionals cor-
respond to the irreducible representations.

The needs of operator theory, asymptotic spectral theory and numerical analysis
show that one has to go beyond C∗-algebras. Already in 1942, Bochner and Phillips
[9] generalized Wiener’s theorem to functions with values in a Banach algebra. In
their paper, they introduced a new tool which can be considered as the first appear-
ance of a (non-commutative) local principle. When speaking about local principles
in this text, we mean a generalization of Gelfand’s theory to non-commutative Ba-
nach algebras which are not too far away from commutative algebras in the sense
that they possess a large center, or that a “higher” commutator property is satisfied.

The idea to consider the cosets of an element a modulo the ideals Ix as a local-
ization of a, as was done in Section 2.2, is quite old. The first reference we know is
Glimm’s paper [64] from 1960 where he introduced these ideals in the case that A
is a C∗-algebra and B is the full center of that algebra, and where he already proved
the upper semi-continuity of the mapping x �→ ‖a+Ix‖ (Theorem 2.2.2 (ii) above).
In this setting, the ideals Ix are also known as Glimm’s ideals in the literature.

The general version of this kind of localization (where A is a unital Banach
algebra and B a closed central subalgebra) is known as Allan’s local principle
(Theorem 2.2.2). It appeared in its original form in [2]. Subsections 2.2.3 and
2.2.4 present some additional features related with local invertibility and inverse-
closedness. Note, in connection with Subsection 2.2.3, that Allan’s local principle
can be used to study the continuity of the spectrum of elements in Banach algebras,
as proposed in [50]. The combination of Allan’s local principle with ideas presented
in [9] leads to a piece of non-commutative Gelfand theory which is crucial in the
study of one-sided invertibility of Banach algebra-valued holomorphic functions.
The interested reader is directed to the monograph [128].

The material presented in Subsection 2.2.4 can be completed by a result which
is of interest in connection with Theorem 2.2.8. The result belongs to Hulanicki
[89] (see also [52] for a corrected proof) and reads as follows: Assume that A is an
involutive Banach algebra with identity IH and contained in L (H) for some Hilbert
space H. If

rA (A) = r(A) = ‖A‖op,

for all self-adjoint elements A ∈ A , then spA A = spA for all A ∈ A . Moreover, the
algebra A is symmetric, that is, spA A∗A ⊂ [0,∞[ for all A ∈ A .

Douglas’ local principle (Theorem 2.2.12) is the specification of Allan’s local
principle to C∗-algebras. It appeared independently in [41]. Originally, Allan’s local
principle was aimed at the study of invertibility properties of holomorphic Banach
algebra-valued functions, whereas Douglas’ local principle was used in the study of
invertibility properties of Toeplitz operators.

Proposition 2.2.5 goes back to Semenyuta and Khevelev ([179]). The proof pre-
sented here is an adaptation of the one presented in [14, Proposition 8.6].
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The subject of Section 2.3 is perhaps the most important supplement to Allan’s
local principle: the concept of norm-preserving localization. It appeared for the first
time in a paper by Krupnik [107] in the special context of Simonenko’s local prin-
ciple. This local principle is rather specific and works in the algebra of all bounded
linear operators of local type acting on spaces Lp(X ,μ), where X is a Hausdorff
space of finite dimension. In [107], Krupnik proposed a sharper version which is
true without any restriction to the dimension of X and which already offers norm-
preserving localization in the Calkin image of the algebra of all operators of local
type. What is called a faithful localizing pair in Subsection 2.3.1 first appeared in
a joint paper of Böttcher, Krupnik and one of the authors in [18] under the name
KMS-algebra. Theorem 2.3.3 is taken from that paper, whereas Theorems 2.3.4 and
2.3.5 are from [169].

Let us mention an independent circle of papers [33, 85, 194, 195] which were
published at about the same time as Simonenko’s and Allan’s local principles ap-
peared. The aim of these papers is to describe C∗-algebras as continuous fields C∗-
algebras.

Gohberg-Krupnik’s local principle was published in 1973 [70]. It is distinguished
by its simplicity and broad applicability. Assertions (i) and (ii) in Theorem 2.4.5 are
due to Gohberg and Krupnik, whereas (iii) appeared in [21]. Assertion (iv) is added
by the authors.

As already mentioned, Simonenko’s local principle, presented in Section 2.5, was
originally formulated for operators of local type acting on Lebesgue spaces Lp(X ,μ)
with X a Hausdorff space of finite dimension. In the original paper [185, 186], Si-
monenko had already introduced the notion of an envelope and presented Theorem
2.5.20 under the assumption that the operator function x �→ Ax is continuous. The
equivalence of (i) and (ii) in Theorem 2.5.6 had already been mentioned by Seeley
in his review of Simonenko’s paper [185] (see Mathematical Reviews MR0179630).
A partial case of Theorem 2.5.20 is contained in [189]. The proofs presented are in
the spirit of [18] and [169].

Allan’s local principle, completed by the concept of norm-preserving localiza-
tion, can be regarded as a far-reaching generalization of Simonenko’s local princi-
ple. For another generalization of Simonenko’s principle we refer to Kozak [102].

Operators of local type on spaces Cn(X) and Hölder spaces Hα(X) with 0 < α ≤
1 were studied in the Ph.D. thesis of Pöltz [146] and in the papers [116, 142, 143,
144, 145]. He constructed an analog of Simonenko’s theory for the above mentioned
spaces, none of which is of “local type” in the sense of Subsection 2.5.1. Unfortu-
nately, the results of Pöltz are almost unknown even among the experts.

In Section 2.6 we mainly follow Krupnik’s book [108] together with the pa-
per [54] by Finck and two of the authors. There are several proofs of the Amitsur-
Levitzki theorem, but unfortunately they are all rather technical. The proof presented
here belongs to Razmyslov [159] (see also [42, 170]). In [108], a different proof can
be found. The equivalence between (ii) and (iii) in Theorem 2.6.19 is a natural con-
clusion of both works [54, 108]. The last two results appeared in [75].

One basic question is left open in our exposition, namely whether it is possible to
provide the set of the maximal ideals of a Banach PI-algebra with a topology which
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has (compactness) properties similar to the Gelfand topology in the commutative
case. This questions seems to be delicate. Some partial results can be found in [108].
Regarding functional calculus for Banach PI-algebras, see [115].



Chapter 3
Banach algebras generated by idempotents

The goal of this chapter is to provide a possible tool to study the invertibility of the
local cosets which arise after localization of convolution type operators. The basic
observation is that the local algebras in some cases are generated by a finite number
of elements p which are idempotent in the sense that p2 = p. Under some additional
conditions, it turns out that such algebras possess matrix-valued symbols. Thus, one
can associate with every element of the algebra a matrix-valued function such that
the element is invertible if and only if the associated function is invertible at every
point. In this way, one gets an effective criterion for the invertibility of elements in
local algebras.

A few words to the notions “idempotent” and “projection”. In most cases, we use
idempotent for elements p in an algebra which satisfy p2 = p, whereas projection
is reserved for a self-adjoint idempotent in an involutive algebra. This choice is
in accordance, for example, with the use of these notions in “Shilov’s idempotent
theorem” and “Halmos’ two projections theorem”. On the other hand, it is also
usual to call a bounded linear operator P on a Banach space a projection if P = P2.
We will, therefore, also not be too nitpicking and use the words “idempotent” and
“projection” sometimes as synonyms.

3.1 Algebras generated by two idempotents

3.1.1 Motivation: Local algebras generated by two projections

To start with, we consider a simple and transparent situation. Let C2×2[0,1] denote
the C∗-algebra of all 2× 2 matrices, the entries of which are continuous functions
on the interval [0,1]. The functions

x �→
[

1 0
0 0

]

, x �→
[

x
√

x(1− x)
√

x(1− x) 1− x

]

, x ∈ [0,1],

S. Roch et al., Non-commutative Gelfand Theories, Universitext,
DOI 10.1007/978-0-85729-183-7 3, © Springer-Verlag London Limited 2011
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belong to C2×2[0,1], and they are projections, i.e., self-adjoint idempotents, in that
algebra. Employing the Stone-Weierstrass theorem, it is not hard to see that the
smallest C∗-subalgebra of C2×2[0,1] which contains these two projections coincides
with the C∗-subalgebra of C2×2[0,1], the elements of which are diagonal at 0 and
1. The following remarkable theorem states that this structure is archetypal for all
unital C∗-algebras which are generated by two projections p and r with σ(prp) =
[0,1].

Theorem 3.1.1 (Halmos). Let B be a C∗-algebra with identity e, and let p and r
be projections in B such that the smallest closed subalgebra of B which contains
p, r and e coincides with B. Further suppose that the spectrum of prp is [0, 1].
Then B is ∗-isomorphic to the algebra of all continuous matrix-valued functions
[0, 1] → C

2×2 which are diagonal at 0 and 1. The isomorphism can be chosen in
such a way that it maps e, p and r into

x �→
[

1 0
0 1

]

, x �→
[

1 0
0 0

]

, and x �→
[

x
√

x(1− x)
√

x(1− x) 1− x

]

,

respectively.

Before proceeding with generalizations of Halmos’ two projections theorem, we
would like to illustrate how this theorem can be employed in the context of Sec-
tion 2.2.6. In this section, we analyzed the algebra A = alg(S,PC(T)), which we
here consider as a subalgebra of L (L2(T)). Localization via Allan’s local principle
yields, for every t ∈ T, a local algebra A K

t which is generated by the local cosets
ΦK

t (χt I) and ΦK
t (P) and by the identity element ΦK

t (I). Since these cosets are
projections, every local algebra A K

t is a particular example of a unital C∗-algebra
generated by two projections. In order to apply Halmos’ theorem to these local al-
gebras one has to know if

σA K
t

(χt Pχt I) = [0, 1]. (3.1)

Fortunately, this fact is well known. A proof using properties of Toeplitz operators
can be found in [82, Propositions 4.18 and 4.41]. It is also not hard to give direct
proof of (3.1) using a homogenization argument. Indeed, in Section 4.2.5 we will
compute this local spectrum, but for the singular integral projection acting on the
real line. The translation of this result to the singular integral projection on the unit
circle and, thus, the derivation of (3.1), can be done via the mapping

(B f )(z) :=
1

z−1
f

(

i
z+1
z−1

)

which is a linear homeomorphism from L2(R) onto L2(T) and has the property that
B−1SB = −SR. The details are left to the reader.

Thus, Halmos’ two projections theorem implies that the singular integral operator
aP + bQ with Q = I −P is locally invertible at t ∈ T if and only if the associated
matrix function
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x �→
[

a+ 0
0 a−

][

x
√

x(1− x)
√

x(1− x) 1− x

]

+
[

b+ 0
0 b−

][

1− x −
√

x(1− x)
−
√

x(1− x) x

]

=
[

a+x+b+(1− x) (a+ −b+)
√

x(1− x)
(a−−b−)

√

x(1− x) a−(1− x)+b−x

]

,

with a± referring to the one-sided limits a(t±), is invertible on [0, 1]. In combination
with the local principle, this gives the desired criterion for the Fredholmness of the
singular integral operator aP+bQ with piecewise continuous coefficients and, more
generally, for the Fredholmness of any operator in A (S,PC(T)).

There is another convenient approach to studying local algebras via homoge-
nization techniques. We will consider this alternate approach in detail in the next
chapter. Let us mention already here that it is a striking advantage of the approach
via the two projections theorem that it also applies to the local invertibility of singu-
lar integral operators on more general spaces (actually on arbitrary Lp-spaces with
Muckenhoupt weights over Carleson curves) and also to a wealth of further local in-
vertibility problems (arising in numerical analysis, for example). One disadvantage
of this approach (again in comparison to homogenization) is that it only yields cri-
teria for (local) invertibility. Hence, using this approach, one only gets information
on the structure of the local algebras up to elements in the radical.

3.1.2 A general two idempotents theorem

It is evidently desirable to have at one’s disposal an analog of Halmos’ theorem
which holds for unital Banach algebras generated by two idempotents. One poten-
tial application of such a theorem could be the study of the Fredholm property of
singular integral operators on Lp-spaces for p �= 2. We shall see in this section that
there is indeed a general two idempotents theorem which associates with every ele-
ment of a Banach algebra (generated by the identity element and by two idempotents
p and r)1 a 2× 2 matrix-valued function such that the element is invertible if and
only if the associated function is invertible.

There are at least two approaches to attack the general two idempotents theorem,
each of which is based on one of the following observations:

• Every algebra B generated by the identity e and by two idempotents p and r has
the element c := prp+(e− p)(e− r)(e− p) in its center. This observation offers
a way to apply Allan’s local principle to analyse the algebra B by localization
over the spectrum of c.

1 The projection represented by p has obviously nothing to do with the index of the Lp-space. Both
are represented by the same letter, but is clear what is meant when the symbol appears.
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• The algebra B satisfies the standard identity S4. This fact renders the algebra B
accessible to Krupnik’s generalization of the Gelfand theory to PI-algebras.

For an application of Allan’s principle we refer to Section 3.2. In this section, we
will follow the second way. The basis for this approach is provided by the following
proposition and its corollary.

Proposition 3.1.2. Let A be an algebra which is generated by the identity element
e and by the idempotents p and r. Then A satisfies the standard polynomial identity
S4.

Proof. One easily checks that the element

c := prp+(e− p)(e− r)(e− p) = e− p− r + pr + rp

belongs to the center of the algebra A :

pc = prp = cp and rc = rpr = cr.

Further, each element of A can be written as

h1(c)e+h2(c)p+h3(c)r +h4(c)pr (3.2)

with polynomials h1, . . . , h4. Thus, the algebra A is a module over its center of
dimension not greater than four. To see this, note that the generating elements e, p, r
of A are of the form (3.2) and that the set of all elements of A which are of the
form (3.2) is a subalgebra of A . The latter follows from the multiplication table

p r pr
p p pr pr
r c− e+ p+ r− pr r cr
pr cp pr cpr

Since S4 is multilinear, and since all polynomials hi(c) belong to the center of A , it
remains to show that

S4(b1, b2, b3, b4) = 0 whenever {b1, b2, b3, b4} ⊆ {e, p, r, pr}.

This can be easily done: If two of the bi coincide, then clearly, S4(b1, b2, b3, b4) = 0.
Otherwise, one of the bi must be the identity element, say b1 = e. In this case one
has S4(e, a2, a3, a4) = 0 for arbitrary elements a2, a3, a4 of A .

Corollary 3.1.3. Let B be a Banach algebra which is generated (as a Banach
algebra) by the identity element e and by the idempotents p and r. Then B satisfies
the standard polynomial identity S4.

This follows immediately from the preceding proposition and the continuity of
the standard polynomial S4.
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Now let B be a Banach algebra which is generated by the identity element e and
by the idempotents p and r. From Corollary 3.1.3 and Theorem 2.6.17 we infer that,
for each maximal ideal x of B,

either B/x ∼= C
1×1 or B/x ∼= C

2×2.

For i = 1, 2, let Mi denote the set of all maximal ideals x of B with B/x ∼= C
i×i. As

in Theorem 2.6.17, for each x ∈ Mi, we choose an isomorphism ξx from B/x onto
C

i×i, and we define
Φx : B → C

i×i, a �→ ξx(a+ x).

By Theorem 2.6.17 again, the family {Φx}x∈Mi, i=1,2 forms a sufficient family of
homomorphisms of the algebra B.

We are going to describe the elements of this family up to similarity, that is,
the possible form of the representations. Since homomorphisms map idempotents
to idempotents, the restriction of each homomorphism Φx with x ∈ M1 onto the set
{e, p, r} coincides with one of the following mappings G0, . . . , G3 : {e, p, r} → C

given by
G0(e) = 1, G0(p) = 0, G0(r) = 0,

G1(e) = 1, G1(p) = 1, G1(r) = 0,

G2(e) = 1, G2(p) = 0, G2(r) = 1,

G3(e) = 1, G3(p) = 1, G3(r) = 1.

Conversely, every continuous homomorphism Φ : B → C is uniquely determined
by its action on the set {e, p, r} of the generators of B. Thus, there are at most four
elements in M1.

Now let x ∈ M2. The idempotent Φx(p) must have 0 and 1 as its eigenvalues
(otherwise Φx(p) is the zero or the identity matrix, and the range of Φx is a commu-
tative algebra which cannot coincide with C

2×2). Thus, there is an invertible matrix
Bx ∈ C

2×2 such that

Φx(p) = B−1
x

[

1 0
0 0

]

Bx.

We replace Φx by the mapping

Φ̃x : A → C
2×2, a �→ BxΦx(a)B−1

x

which is also a homomorphism and which has the property that Φ̃x(a) is invertible
if and only if Φx(a) is invertible. Consider

Φ̃x(r) =:

[

α β
γ δ

]

with complex numbers α,β ,γ and δ . We must have βγ �= 0 since otherwise

alg{Φ̃x(e),Φ̃x(p),Φ̃x(r)}
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is an algebra of (upper or lower) triangular matrices which cannot coincide with
C

2×2. From the idempotent property of Φ̃x(r) one then easily concludes that

Φ̃x(r) =
[

α εx
√

α(1−α)
ε−1

x

√

α(1−α) 1−α

]

with a non-zero complex number εx. Here,
√

α(1−α) denotes a complex number
with (

√

α(1−α))2 = α(1−α). Define

Ψx : B → C
2×2, a �→

[

1 0
0 εx

]

Φ̃x(a)
[

1 0
0 ε−1

x

]

.

ThenΨx is an isomorphism,Ψx(a) is invertible if and only if Φx(a) is invertible, and

Ψx(e) =
[

1 0
0 1

]

, Ψx(p) =
[

1 0
0 0

]

and

Ψx(r) =
[

α
√

α(1−α)
√

α(1−α) 1−α

]

with a certain α ∈C\{0,1}. Thus, if x ∈M2, thenΦx is equivalent (up to similarity)
to a homomorphismΨx, the restriction of which onto the set {e, p, r} coincides with
one of the mappings Fα : {e, p, r}→ C

2×2 given by

Fα(e) =
[

1 0
0 1

]

, Fα(p) =
[

1 0
0 0

]

, Fα(r) =
[

α
√

α(1−α)
√

α(1−α) 1−α

]

,

with α ∈ C\{0,1}.
Finally, one has to decide which of the mappings Gm with m ∈ {0,1,2,3} and

Fα with α ∈ C\{0,1} are indeed restrictions of homomorphisms of B. This can be
done by means of the indicator elements

b := p+2r and c = e− p− r + pr + rp.

One easily checks that

Gm(b) := Gm(p)+2Gm(r) = m for m = 0,1,2,3

and that none of the numbers 0,1,2,3 is in the spectrum of Fα(b) := Fα(p)+2Fα(q)
if α �∈ {0,1}. Since every point in the spectrum of b must be obtained as a point in
the spectrum of Φx(b) with x ∈ M1 or Ψx(b) with x ∈ M2, we conclude that each
point m in

σ(b)∩{0,1,2,3}
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must be obtained by a one-dimensional representation, and since only Gm(b) yields
m, we even have a one-to-one correspondence between M1 and σ(b)∩{0,1,2,3}.

Similarly, for c one easily checks that

Gm(c) := Gm(e)−Gm(p)−Gm(r)+Gm(p)Gm(r)+Gm(r)Gm(p)

is in {0,1} for each choice of m ∈ {0,1,2,3}. Thus the points in σ(c) \ {0,1} can
only be obtained by two-dimensional representationsΨx(c). From

Fα(c) := Fα(e)−Fα(p)−Fα(r)+Fα(p)Fα(r)+Fα(r)Fα(p) =
[

α 0
0 α

]

we conclude that each point α ∈ σ(c)\{0,1} induces one of the mappings Fα and
that, conversely, each of the mappings Fα (consequently, each of the Ψx) can con-
tribute only one point to σ(c) \ {0,1}. Thus, there is a one-to-one correspondence
between M2 and σ(c)\{0,1}.

Finally we consider what happens if one of the points 0 or 1 belongs to σ(c) but
is not isolated in σ(c). Suppose that 0 has this property. Then there is a sequence
(xn) ⊂ σ(c)\{0} such that xn → 0 as n →∞. We determine the spectrum of Fxn(b),
i.e. the solutions of the equation

det

[

2xn +1−λ 2
√

xn(1− xn)

2
√

xn(1− xn) 2(1− xn)−λ

]

= (2xn +1−λ )(2−2xn −λ )−4xn(1− xn) = 0.

Since the roots of a polynomial depend continuously on the coefficients, the so-
lutions λn and μn of the above equations tend to the solutions of the equation
(1− λ )(2− λ ) = 0 which comes from the above equation by letting xn converge
to 0. Thus, λn → 1 and μn → 2, whence 1,2 ∈ σ(b). In the same fashion one proves
that 0,3 ∈ σ(b) if 1 is in σ(c) and not isolated in σ(c).

We summarize these facts in the following theorem. In our terminology, this the-
orem describes algebras generated by two idempotents. But in what follows, we will
refer to this theorem as the “two projections theorem”, since it is a generalization
of Halmos’ theorem which is always referred to as “two projections theorem” in the
literature.

Theorem 3.1.4 (two projections theorem). Let A be a Banach algebra with identity
e, and let p and r be idempotents in A . The smallest closed subalgebra of A which
contains p, r and e will be denoted by B. Then:

(i) for each x ∈ σB(e− p− r + pr + rp)\{0,1}, the mapping

Fx : {e, p, r}→ C
2×2,

given by
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Fx(e) =
[

1 0
0 1

]

, Fx(p) =
[

1 0
0 0

]

, Fx(r) =
[

x
√

x(1− x)
√

x(1− x) 1− x

]

,

where
√

x(1− x) denotes any number with (
√

x(1− x))2 = x(1− x), extends
to a continuous algebra homomorphism from B onto C

2×2 which we denote
also by Fx;

(ii) for each m ∈ σB(p+2r)∩{0, 1, 2, 3}, the mapping

Gm : {e, p, r}→ C,

given by

G0(e) = 1, G0(p) = G0(r) = 0, G1(e) = G1(p) = 1, G1(r) = 0,

G2(e) = G2(r) = 1, G2(p) = 0, G3(e) = G3(p) = G3(r) = 1

extends to a continuous algebra homomorphism from B onto C;
(iii) an element a ∈ B is invertible in B if and only if the matrices Fx(a) are

invertible for all x∈σB(e− p−r+ pr+rp)\{0, 1} and if the numbers Gm(a)
are non-zero for all m ∈ σB(p+2r)∩{0, 1, 2, 3};

(iv) if 0 and 1 are not isolated points in the spectrum of c then each of the homo-
morphisms Gm, m = 0,1,2,3, occurs.

Theorem 3.1.4 can be completed as follows.

Corollary 3.1.5. Let Bp and Be−p be the Banach algebras {pbp : b ∈ B} and
{(e− p)b(e− p) : b ∈ B}, respectively.

(i) σB(c)\{0,1} = σBp(prp)\{0,1} = σBe−p((e− p)(e− r)(e− p))\{0,1}.
(ii) If {0,1}⊂σBp(prp) then σB(c) =σBp(prp). The same is true if one replaces

prp by (e− p)(e− r)(e− p).
(iii) If the closure of one of the sets σB(c)\{0,1}, σBp(prp)\{0,1},σBe−p((e−

p)(e− r)(e− p)) \ {0,1} contains the points 0 and 1, then these sets coin-
cide.

Proof. Take α ∈ σB(c)\{0,1}. A simple computation gives

Fα(c) =
[

α 0
0 α

]

, Fα(prp) =
[

α 0
0 0

]

, and Fα((e− p)(r− p)(e− p)) =
[

0 0
0 α

]

.

Then assertion (i) of Theorem 3.1.4 immediately implies (i). For assertion (ii), note
that

σB(c) = σBp(prp)∪σBe−p((e− p)(e− r)(e− p))

which, in combination with (i), gives (ii). Assertion (iii) is obvious.
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3.1.3 Exercises

Exercise 3.1.1. Show that an element p of a C∗-algebra is a projection if and only
if p = p∗p.

Exercise 3.1.2. Consider a piecewise constant function a on T which takes only
the values 0 and 1. Assume that the sets {t ∈ T : a(t) = 0} and {t ∈ T : a(t) =
1} have positive measure. Show that σ(PaP) = [0,1], and describe the smallest
closed subalgebra of L (L2(T)) which is generated by aI and by the singular integral
operator S defined in Section 1.4.4.

Exercise 3.1.3. Describe the set of all idempotent 2×2 matrices.

Exercise 3.1.4. Determine the smallest number l such that C
2×2 is generated by l

idempotents. Answer the same question for C
n×n with n > 2.

Exercise 3.1.5. Let the notation be as in the two projections theorem. For each sub-
set M of {0, 1, 2, 3}, provide an example where σB(p+2r) = M. Thus, all possible
combinations of one-dimensional representations occur. Prove the corresponding
assertion for the two-dimensional representations.

3.2 An N idempotents theorem

When trying to derive generalizations of the two projections theorem discussed in
Section 3.1 to algebras generated by three and more idempotents, one soon realizes
that, in general, such algebras do not possess a matrix-valued symbol at all. On
the other hand, in specific applications one often has additional relations between
the generating idempotents of the algebra which then guarantee the existence of a
matrix symbol. Here we will consider one version of an N idempotents theorem
which is motivated by properties of singular integral operators on composed curves.

3.2.1 Algebras generated by three idempotents

As we have seen, every algebra generated by two idempotents possesses a matrix
symbol of order 2. This simple picture changes substantially when one more idem-
potent is added to the generators. There are several examples which illustrate that,
in general, algebras generated by three idempotents cannot possess a matrix symbol
of a fixed order. So it is an easy exercise to show that, for every n ≥ 3, the algebra
C

n×n is generated by three idempotent matrices (see also [109]). Moreover, one has
the following characterization of algebras generated by three idempotents. Recall
that a topological space is separable if it possesses a countable dense subset.

Theorem 3.2.1. Every separable Banach algebra is isomorphic to a subalgebra of
a Banach algebra generated by three idempotents.
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The proof is in [12]. The converse of the theorem is evidently true: A Banach
algebra which is generated by three idempotents is separable.

Theorem 3.2.1 indicates that the category of all Banach algebras generated by
three idempotents is extremely large, and that these algebras will usually show a
rather involved structure. There is therefore no hope to derive some substantial re-
sults for this case. But, as we will see in the following sections, there are many
particular situations where some additional relations between the generators of the
algebra exist, and these additional relations render the algebra accessible.

It turns out that these additional conditions have to be rather strong in order to
guarantee the existence of matrix symbols. Indeed, even if the three idempotents
are orthogonal projections on a Hilbert space, and even if two of them commute, a
matrix symbol does not need to exist. For a particular situation where this happens
see Example 5.2.3 in Chapter 5.

3.2.2 Choice of the additional conditions

Let A be a Banach algebra with identity element e, and let p1, . . . , p2N be a partition
of the identity into non-zero idempotents, i.e., we suppose that pi �= 0 for all i,

pi · p j = δi j pi for all i, j (3.3)

where δi j is the Kronecker delta, and

p1 + p2 + . . .+ p2N = e. (3.4)

Further, let P be an idempotent element of A , set Q := e−P and p2N+1 := p1, and
suppose that the conditions

P(p2i−1 + p2i)P = (p2i−1 + p2i)P (3.5)

and
Q(p2i + p2i+1)Q = (p2i + p2i+1)Q (3.6)

hold for all i = 1, . . . , N. In what follows it will be convenient to define the idem-
potents pk for every integer k by pk := pl with l ∈ {1, . . . , 2N} whenever k− l is
divisible by 2N. It is clear that then (3.5) and (3.6) hold for all integers i.

The algebra B we are interested in is the smallest closed subalgebra of A which
contains the set {pi}2N

i=1 as well as the element P. Observe that B contains the
identity element e due to (3.4) and that P and Q are complementary idempotents.
Indeed, adding the identities (3.5) for i = 1, . . . , N and taking into account (3.4)
yields P2 = P. Thus, B is actually an algebra generated by the 2N +1 idempotents
p1, . . . , p2N and P.

Example 3.2.2. If N = 1, then the partition {pi} consists of two elements p1 and p2

with p2 = e− p1. Moreover, the axioms (3.5) and (3.6) reduce to P2 = P and Q2 = Q,
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respectively. Thus, Banach algebras generated by two idempotents are particular
cases of the situation described above. �

Example 3.2.3. Let A denote the algebra of all continuous functions on [0,1] which
take values in C

4×4. Define idempotents p1, . . . , p4 and P in A by

p1(t) := diag{1,0,0,0}, p2(t) := diag{0,1,0,0},
p3(t) := diag{0,0,1,0}, p4(t) := diag{0,0,0,1}

and

P(t) :=

⎡

⎢

⎢

⎣

t t −1 t −1 t −1
−t 1− t 1− t 1− t

t t t t −1
−t −t −t 1− t

⎤

⎥

⎥

⎦

for t ∈ [0,1]. Then conditions (3.3) and (3.4) obviously hold with N = 2. A straight-
forward computation shows that also (3.5) and (3.6) are fulfilled. �

The original motivation to consider (3.3)–(3.6) as the additional conditions
needed for an N projections theorem came from singular integral operators with
piecewise constant coefficients on composed curves. We will briefly discuss the re-
lated issues after the proof of Proposition 4.2.19 in Chapter 4.

3.2.3 The N projections theorem

If conditions (3.3)–(3.6) are satisfied then the algebra B possesses a matrix symbol
of order N. For a precise statement of this result, set

X :=
N

∑
i=1

(p2i−1Pp2i−1 + p2iQp2i) (3.7)

and

Y :=
N

∑
i=1

(p2i−1P+ p2iQ)+
2N

∑
i=1

(2i−1)pi. (3.8)

These elements will play the role of indicator elements, as the elements e− p− r +
pr + rp and p+2r did in the two projections theorem.

Theorem 3.2.4 (N projections theorem). Let A be a Banach algebra with identity e,
and let p1, . . . , p2N and P be non-zero elements of A satisfying (3.3)–(3.6). Further,
let B stand for the smallest closed subalgebra of A containing the elements P and
p1, . . . , p2N. Then the following assertions hold.

(i) If x ∈ σB(X)\{0, 1}, then the mapping Fx : {P, p1, . . . , p2N}→C
2N×2N given

by
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Fx(pi) := diag(0, . . . , 0, 1, 0, . . . , 0),

with the 1 standing at the ith place, and

Fx(P) := diag(1, −1, 1, −1, . . . , 1, −1)×
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x x−1 x−1 x−1 · · · x−1 x−1
x x−1 x−1 x−1 · · · x−1 x−1
x x x x−1 · · · x−1 x−1
x x x x−1 · · · x−1 x−1
...

...
...

...
. . .

...
...

x x x x · · · x x−1
x x x x · · · x x−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

extends to a continuous algebra homomorphism from B onto C
2N×2N.

(ii) If m ∈ σB(Y )∩ {1, . . . , 4N}, then the mapping Gm : {P, p1, . . . , p2N} → C

defined by

G4k(pi) :=
{

1 if i = 2k,
0 if i �= 2k,

G4k(P) := 0,

G4k−1(pi) :=
{

1 if i = 2k,
0 if i �= 2k,

G4k−1(P) := 1,

G4k−2(pi) :=
{

1 if i = 2k−1,
0 if i �= 2k−1,

G4k−2(P) := 1,

G4k−3(pi) :=
{

1 if i = 2k−1,
0 if i �= 2k−1,

G4k−3(P) := 0,

where k = 1, . . . , N, extends to a continuous algebra homomorphism from B
onto C.

(iii) An element b ∈ B is invertible in B if and only if the matrices Fx(b) are
invertible for all x ∈ σB(X) \ {0, 1} and if the numbers Gm(b) are non-zero
for all m ∈ σB(Y )∩{1, . . . , 4N}.

(iv) An element b ∈ B is invertible in A if and only if the matrices Fx(b) are
invertible for all x ∈ σA (X) \ {0, 1} and if the numbers Gm(b) are non-zero
for all m ∈ σA (Y )∩{1, . . . , 4N}.

We split the proof of this theorem into several steps.

3.2.4 Algebraic structure of B

We start with examining the smallest (not necessarily closed) subalgebra B0 which
contains the idempotents pi for 1 ≤ i ≤ 2N and the idempotent P.
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Proposition 3.2.5. The element X defined by (3.7) lies in the center of B0.

Proof. Evidently, X commutes with each of the idempotents pi. It remains to show
that PX = XP. Let us first prove that

X =
N

∑
i=1

((p2i + p2i+1)Qp2iQ+(p2i−1 + p2i)Pp2i−1P) . (3.9)

Since the p j form a partition of identity, it is sufficient to prove that

p jX = p j

N

∑
i=1

((p2i + p2i+1)Qp2iQ+(p2i−1 + p2i)Pp2i−1P)

for j = 1, . . . , 2N or, equivalently, that

p2iQp2i = p2iQp2iQ+ p2iPp2i−1P (3.10)

and
p2i−1Pp2i−1 = p2i−1Qp2i−2Q+ p2i−1Pp2i−1P (3.11)

for i = 1, . . . , N. For (3.10) observe that

p2iQp2iQ+ p2iPp2i−1P = p2iQ− p2iPp2iQ+ p2iPp2i−1P

= p2iQ− p2iPp2i + p2iPp2iP+ p2iPp2i−1P

= p2iQ− p2iPp2i + p2iP(p2i−1 + p2i)P
= p2iQ− p2iPp2i + p2iP

= p2i − p2iPp2i = p2i(P+Q)p2i − p2iPp2i

= p2iQp2i,

and (3.11) follows analogously. Thus (3.9) holds. Further, axioms (3.5) and (3.6)
imply

Q(p2i−1 + p2i)P = P(p2i + p2i+1)Q = 0 for i = 1, . . . , N, (3.12)

and the axioms (3.5), (3.6) together with the identities (3.9), (3.12) yield

PX = P ·
N

∑
i=1

((p2i + p2i+1)Qp2iQ+(p2i−1 + p2i)Pp2i−1P)

=
N

∑
i=1

(p2i−1 + p2i)Pp2i−1P,

and similarly XP = ∑N
i=1(p2i−1 + p2i)Pp2i−1P. Hence, PX = XP.
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Proposition 3.2.6. Considered as a module over its center, the algebra B0 is gen-
erated by the (2N)2 elements (pi)2N

i=1 and (piPp j)2N
i, j=1 with i �= j. In other words,

given a ∈ B0, there are polynomials Ri j in X such that

a =
2N

∑
i=1

Rii(X)pi +
2N

∑
i, j=1
i �= j

Ri j(X)piPp j. (3.13)

Proof. Let B1 denote the set of all elements of B0 which can be written in the
form (3.13). First we show that the generating elements of B0 belong to B1. This
is evident for the idempotents pi. Since further

piPpi = piPpi · pi =
{

X · pi if i is odd,
(e−X) · pi if i is even,

(3.14)

the assertion for P can be obtained as follows:

P =
2N

∑
i, j=1

piPp j =
N

∑
i=1

p2iPp2i +
N

∑
i=1

p2i−1Pp2i−1 +
2N

∑
i, j=1
i �= j

piPp j

=
N

∑
i=1

(e−X)p2i +
N

∑
i=1

X p2i−1 +
2N

∑
i, j=1
i �= j

piPp j.

In the second step we are going to show that B1 is actually an algebra. Since the
generating elements of B0 belong to B1, this fact implies that B0 = B1.

Evidently, the set B1 is closed under addition. Its closedness under multiplication
will follow once we have shown that the product of each pair of elements (pi)2N

i=1
and (piPp j)2N

i, j=1 with i �= j is in B1 again. This is obvious if one of these elements
is pi. Consider the product piPp j · pkPpl with i �= j and k �= l. This product is 0
(which is in B1) if j �= k, and it is equal to piPp jPpl in the case j = k. If j is even
(say, j = 2n) then

piPp2nPpl = piP(p2n−1 + p2n)Ppl − piPp2n−1Ppl

= pi(p2n−1 + p2n)Ppl − piPp2n−1Ppl (3.15)

by axiom (3.5), whereas in the case that j is odd (say, j = 2n−1),

piPp2n−1Ppl = piP(p2n−2 + p2n−1)Ppl − piPp2n−2Ppl

= piP(p2n−2 + p2n−1)pl − piPp2n−2Ppl (3.16)

by (3.12). The first items in (3.15) and (3.16) belong to B1. Indeed, they are ei-
ther 0 or equal to piPpl (depending on j). If i �= l then piPpl ∈ B1 by definition,
whereas the inclusion piPpi ∈ B1 follows from (3.14). Thus, identities (3.15) and
(3.16) reduce the question whether piPp jPpl belongs to B1 to the question whether
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piPp j−1Ppl belongs to B1. Repeating this argument, we finally arrive at an element
of the form piPpiPpl . This element belongs to B1 since

piPpiPpl = piPpi · piPpl =
{

X · piPpl if i is odd,
(e−X) · piPpl if i is even

and by (3.14).

Let us have a closer look at the products piPp j · p jPpl in the case i �= j and
j �= l.

Proposition 3.2.7. The following equalities hold:

(i) if l > j > i or j > i > l or i > l > j, then

piPp jPpl = (−1) j−1(X − e) piPpl ;

(ii) if l > i > j or j > l > i or i > j > l, then

piPp jPpl = (−1) j−1X piPpl ;

(iii) if i = l and i �= j, then

piPp jPpi = (−1) j−iX(X − e) pi.

Proof. Let j /∈ {i, l}. Then

piPp jPpl = piP(p j−i + p j)Ppl − piPp j−1Ppl . (3.17)

If, moreover, j−1 /∈ {i, l}, then we conclude from (3.5) and (3.12) that piP(p j−i +
p j)Ppl = 0, whence

piPp jPpl = −piPp j−1Ppl . (3.18)

Suppose now that the conditions of assertion (i) are satisfied. Then there is a smallest
positive integer k such that (all computations are done modulo 2N) j /∈ {i, l}, j−1 /∈
{i, l}, . . . , j− (k−1) /∈ {i, l}, but j−k = i. Consequently, a repeated application of
(3.18) gives

piPp jPpl = (−1)k−1 piPp j−(k−1)Ppl

whence, by virtue of (3.17),

piPp jPpl = (−1)k−1(piP(p j−k + p j−(k−1))Ppl − piPp j−kPpl)

= (−1)k−1(piP(pi + pi+1)Ppl − piPpiPpl).

Note that our assumptions imply that l �= i and l �= i+1 (otherwise j−(k−1) would
be equal to l). Thus,
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piPp jPpl =
{

(−1)k−1(pi(pi + pi+1)Ppl − piPpiPpl) if i is odd
(−1)k−1(piP(pi + pi+1)pl − piPpiPpl) if i is even

=
{

(−1)k−1(piPpl − piPpiPpl) if i is odd
(−1)k−1(−piPpiPpl) if i is even

=
{

(−1)k−1(e−X)piPpl if i is odd
(−1)k−1(−1)(e−X)piPpl if i is even,

where we have taken (3.14) into account. Replacing k by j− i yields assertion (i).
The proofs for (ii) and (iii) are analogous.

3.2.5 Localization, and identification of the local algebras

The element X belongs to the center of the algebra B0 by Proposition 3.2.5 and thus
to the center of B. Hence, the smallest closed subalgebra C of B which contains
both the identity element e and the element X is in the center of B, and this fact
offers the possibility of localizing B over C by the local principle of Allan and
Douglas. The maximal ideal space of the singly generated Banach algebra C is
homeomorphic to the spectrum σC (X) of its generator, where the homeomorphism
identifies the point x ∈ σC (X) with the smallest closed ideal of C which contains
X − xe (see Exercise 2.1.3). For each x ∈ σC (X), we introduce the ideal Ix of B
in accordance with the local principle. Further we let Bx := B/Ix denote the local
algebra associated with x and write Φx for the canonical homomorphism from B
onto Bx.

From Proposition 2.2.9 we infer that the ideal Ix coincides with B if and only
if x belongs to σC (X) \σB(X). Thus, by the local principle, an element b ∈ B is
invertible if and only if the cosets b+Ix are invertible for all x ∈ σB(X). Our next
goal is the explicit description of the local algebras Bx.

Proposition 3.2.8. If x ∈ σB(X)\{0, 1}, then Bx is isomorphic to C
2N×2N.

Proof. Consider the image Φx(B0) of the algebra B0 in Bx. Since each element
of B0 can be written in the form (3.13), and since Φx(X) = xΦx(e) by definition,
it follows that Φx(R(X)) = R(x)Φx(e) for each polynomial R. Consequently, every
element of Φx(B0) is a complex linear combination of the elements

Φx(pi) (i = 1, . . . , 2N) and Φx(piPp j) (i, j = 1, . . . , 2N, i �= j). (3.19)

Conversely, every linear combination of the elements (3.19) is in Φx(B0). Thus,
Φx(B0) is a linear space of dimension less than or equal to (2N)2. In particular,
Φx(B0) is closed in Bx. On the other hand, B0 is dense in B. Hence, Φx(B0) is
dense in Φx(B) = Bx, whence Bx =Φx(B0).

We claim that the dimension of Bx is exactly (2N)2 and that the elements (3.19)
form a basis of this space. Given i, j = 1, . . . , 2N, define elements ai j ∈ Bx by
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ai j =

⎧

⎨

⎩

(−1)i−1(x−1)−1Φx(piPp j) if i < j,
(−1)i−1x−1Φx(piPp j) if i > j,

Φx(pi) if i = j.

This definition makes sense since x �= 0 and x �= 1. Proposition 3.2.7 implies that

ai jakl = δ jk ·ail for all 1 ≤ i, j, k, l ≤ 2N. (3.20)

Indeed, in the case j = k and j > i > l we find

ai ja jl = (−1)i−1(x−1)−1Φx(piPp j) · (−1) j−1x−1Φx(p jPpl)

= (−1)i−1(−1) j−1x−1(x−1)−1Φx(piPp jPpl)

= (−1)i−1(−1) j−1x−1(x−1)−1Φx((−1) j−1(X − e)piPpl)
= (−1)i−1x−1Φx(piPpl) = ail .

The other cases can be treated analogously. Now suppose the elements ai j are lin-
early dependent. Then there are complex numbers ci j with

2N

∑
i, j=1

ci jai j = 0 (3.21)

and ci0 j0 �= 0 for a certain pair i0 j0. Multiplying (3.21) by aki0 from the left and by
a j0k from the right yields ci0 j0 aki0ai0 j0 a j0k = ci0 j0akk = 0, whence akk = 0 for all
k = 1, . . . , 2N. Consequently,

Φx(e) =Φx

(

2N

∑
k=1

pk

)

=
2N

∑
k=1

akk =Φx(0)

which is impossible since Ix �= B for x ∈ σB(X) by Proposition 2.2.9. Thus, the
elements (ai j)2N

i, j=1 are linearly independent. Therefore, also the elements (3.19) are
linearly independent, and both sets of elements form a basis of Bx. Finally, it is
immediate from (3.20) that the mapping

Ψx : (ai j)2N
i, j=1 → C

2N×2N , ai j �→ Ei j ,

where Ei j refers to the 2N × 2N matrix whose i j entry is 1 and all other entries of
which are zero, extends to an algebra isomorphism from Bx onto C

2N×2N .

The following corollary identifies the images of the generating elements of the
algebra B under the homomorphism Fx :=Ψx ◦Φx : B → C

2N×2N .

Corollary 3.2.9. Let x ∈ σB(X)\{0, 1}. Then

Fx(pi) = diag(0, . . . , 0, 1, 0, . . . , 0), (3.22)

the 1 standing at the ith place, and
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Fx(P) = diag(1, −1, 1, −1, . . . , 1, −1)×
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x x−1 x−1 x−1 · · · x−1 x−1
x x−1 x−1 x−1 · · · x−1 x−1
x x x x−1 · · · x−1 x−1
x x x x−1 · · · x−1 x−1
...

...
...

...
. . .

...
...

x x x x · · · x x−1
x x x x · · · x x−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.23)

Proof. For (3.22) recall that Φx(pi) = aii, and to get (3.23) observe that

Fx(P) = Fx

(

2N

∑
i, j=1

piPp j

)

= (Ψx ◦Φx)

⎛

⎜

⎝

2N

∑
i, j=1
i< j

piPp j

⎞

⎟

⎠+(Ψx ◦Φx)

⎛

⎜

⎝

2N

∑
i, j=1
i> j

piPp j

⎞

⎟

⎠+Fx

(

2N

∑
i=1

piPpi

)

=Ψx

⎛

⎜

⎝

2N

∑
i, j=1
i< j

(−1)i−1(x−1)ai j

⎞

⎟

⎠+Ψx

⎛

⎜

⎝

2N

∑
i, j=1
i> j

(−1)i−1xai j

⎞

⎟

⎠

+ Fx

(

2N

∑
i=1

piPpi

)

and take into account (3.14).

Our next object is the local algebras Bx associated with the points in σB(X)∩
{0, 1}. These algebras will not be identified completely; we will only show that all
irreducible representations are one-dimensional and compute them.

Proposition 3.2.10. If x ∈ σB(X)∩{0, 1}, then Bx is an SIN+1
2 -algebra.

Proof. Instead of working with the polynomial

SN+1
2 (a, b) = (ab−ba)N+1

in two variables, which is nonlinear, we consider the polynomial

P(a1, b1, . . . , aN+1, bN+1) :=
N+1

∏
k=1

(akbk −bkak)

in 2(N +1) variables, which is linear in each variable. Note that if Bx is a P-algebra,
then it is also an SIN+1

2 -algebra. Since Bx is a linear space and P is multilinear, it
remains to prove that
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N+1

∏
k=1

(akbk −bkak) = 0

for all choices of cosets ak, bk among the basis elements

Φx(pi) (i = 1, . . . , 2N) and Φx(piPp j) (i, j = 1, . . . , 2N, i �= j)

of the algebra Bx. Proposition 3.2.7 implies that each commutant akbk − bkak can
be written in the form ckΦx(pik Pp jk), where ik, jk ∈ {1, . . . , N +1} and ck ∈ C can
be zero. Hence,

N+1

∏
k=1

(akbk −bkak) = cΦx

(

N+1

∏
k=1

pik Pp jk

)

.

Since the partition {pi} of identity consists of 2N elements, there are two of the
elements pik and p jk with k = 1, . . . , N + 1 which coincide. Thus, ∏N+1

k=1 pik Pp jk
contains at least one subproduct of the form piPpl1Ppl2 . . .Pplr Ppi with r ≥ 1. In-
voking Proposition 3.2.7 once more, one easily getsΦx(piPpl1Ppl2 . . .Pplr Ppi) = 0.
Thus,

Φx

(

N+1

∏
k=1

pik Pp jk

)

= 0

for x ∈ σB(X)∩{0, 1}.

By the extended version of Theorem 2.6.17, the algebras Bx possess matrix
symbols of order 1, i.e., scalar-valued symbols. Since each algebra homomorphism
Ψ : Bx → C gives rise to an algebra homomorphismΨ ◦Φx : B → C, we have to
determine the one-dimensional representations of the algebra B.

Clearly, each homomorphism G : B → C maps idempotents to idempotents.
Thus, if p ∈ B is idempotent, then G(p) is either 0 or 1. Moreover, since G(e) = 1
for each non-zero homomorphism G, we conclude that there is an i0 such that
G(pi0) = 1 and G(pi) = 0 for all i �= i0. Hence, the restriction of a non-zero homo-
morphism G : B → C to the set {P, p1, p2, . . . , p2N} coincides with one of the
following mappings Gn with n ∈ {1, 2, . . . , 4N}:

G4m(pi) =
{

1 if i = 2m,
0 if i �= 2m,

G4m(P) = 0,

G4m−1(pi) =
{

1 if i = 2m,
0 if i �= 2m,

G4m−1(P) = 1,

(3.24)

G4m−2(pi) =
{

1 if i = 2m−1,
0 if i �= 2m−1,

G4m−2(P) = 1,

G4m−3(pi) =
{

1 if i = 2m−1,
0 if i �= 2m−1,

G4m−3(P) = 0,
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where m = 1, . . . , N. Set

Y :=
N

∑
i=1

(p2i−1P+ p2iQ)+
2N

∑
i=1

(2i−1)pi.

Proposition 3.2.11. Let m ∈ σB(Y )∩{1, 2, . . . , 4N}. Then the mapping

Gm : {P, p1, p2, . . . , p2N}→ C,

given by (3.24), extends to an algebra homomorphism from B onto C.

Proof. First note that if Gm extends to an algebra homomorphism, then

Gm(Y ) = m. (3.25)

We claim that, for m ∈ σB(Y )∩{1, 2, . . . , 4N} and x ∈ σB(X)\{0, 1},

m �∈ σBx(Φx(Y )). (3.26)

By Corollary 3.2.9, what we have to prove to justfy the claim is that the 2N × 2N
matrices

(Ψx ◦Φx)(Y )−diag (m, m, . . . , m)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x x−1 x−1 x−1 · · · x−1 x−1
x x x−1 x−1 · · · x−1 x−1
x x x x−1 · · · x−1 x−1
x x x x · · · x−1 x−1
...

...
...

...
. . .

...
...

x x x x · · · x x−1
x x x x · · · x x

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ diag (1−m, 3−m, . . . , 4N −1−m)

are invertible. For this goal we compute the determinant of a general M×M matrix
of the form

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x+λ1 x−1 x−1 x−1 · · · x−1 x−1
x x+λ2 x−1 x−1 · · · x−1 x−1
x x x+λ3 x−1 · · · x−1 x−1
x x x x+λ4 · · · x−1 x−1
...

...
...

...
. . .

...
...

x x x x · · · x+λM−1 x−1
x x x x · · · x x+λM

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.27)

with complex entries. Consider x as being variable and denote the determinant of
the matrix (3.27) by D(x). Subtracting the first row in (3.27) from all other rows,
and then the last column from all other columns, one gets a matrix the 1,N entry of
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which is x− 1 whereas all other entries are independent of x. Thus, D(x) is a first
order polynomial in x. Further, since D(0) =∏M

i=1λi and D(1) =∏M
i=1(1+λi), one

has

D(x) = x
M

∏
i=1

(1+λi)+(1− x)
M

∏
i=1

λi. (3.28)

Now let m ∈ {1, . . .4N}, M = 2N, and λi = 2i−1−m for i = 1, . . . , 2N. If m is odd,
then one of the numbers λi is equal to zero, but ∏M

i=1(1+λi) �= 0. If m is even, then
one of the numbers 1+λi is zero, but ∏M

i=1λi �= 0. Hence, in any case,

x
M

∏
i=1

(1+λi)+(1− x)
M

∏
i=1

λi �= 0

whenever x �∈ {0, 1}. This proves our claim (3.26).
Now the assertion can be obtained as follows. Let m ∈ σB(Y )∩{1, 2, . . . , 4N}.

Then, by the local principle,

m ∈ ∪x∈σB(X)σBx(Φx(Y ))

whereas, by (3.26),
m �∈ ∪x∈σB(X)\{0,1}σBx(Φx(Y )).

Hence,
m ∈ ∪x∈σB(X)∩{0,1}σBx(Φx(Y )).

The algebra Bx with x ∈ σB(X) ∩ {0,1} possesses a scalar-valued symbol by
Proposition 3.2.10 and Theorem 2.6.17. Thus, if m ∈ σBx0

(Φx0(Y )) with a certain
x0 ∈ σB(X)∩{0,1} then there is an algebra homomorphism G′ from Bx0 onto C

with G′(Φx0(Y )) = m. Then G := G′ ◦Φx0 is an algebra homomorphism from B
onto C with G(Y ) = m. The restriction of G to the set {P, p1, . . . , p2N} coincides
with one of the mappings Gn introduced in (3.24) and, by (3.25), this restriction is
just Gm. In other words, Gm extends to an (evidently continuous) algebra homomor-
phism from B onto C.

For m ∈ σB(Y )∩{1, 2, . . . , 4N}, we denote the extension of Gm by Gm again.
One easily checks that

Gm(X) =
{

0 if m is odd,
1 if m is even.

Thus, if 0 ∈ σB(X) and m is odd, then the local ideal I0 lies in the kernel of Gm and
consequently, for each a ∈ B the number Gm(a) depends on the coset Φ0(a) only.
This shows that the quotient mapping

G′
m : B0 → C, Φ0(a) �→ Gm(a)
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is well defined, and this mapping is an algebra homomorphism from B0 onto C.
Analogously, if 0 ∈ σB(X) and m is even, then

G′
m : B1 → C, Φ1(a) �→ Gm(a)

is a correctly defined and non-trivial algebra homomorphism.

Proposition 3.2.12. If 0 ∈ σB(X), then the mappings Gm with m an odd number
in σB(Y )∩{1, 2, . . . , 4N} constitute a scalar-valued symbol for B0. If 1 ∈ σB(X),
then the mappings Gm with even m in σB(Y )∩{1, 2, . . . , 4N} constitute a scalar-
valued symbol for B1.

Proof. The mappings G′
m with m odd (even) are the only non-trivial algebra homo-

morphisms from B0 (resp. B1) into C. Since the algebras B0 (resp. B1) possess a
scalar-valued symbol by Theorem 2.6.17 and Proposition 3.2.10, we conclude that
for all a ∈ B the coset Φ0(a) (resp. Φ1(a)) is invertible whenever all G′

m(Φ0(a)) =
Gm(a) with m odd (resp. even) are invertible.

After these preparations, we are now in a position to prove the N projections the-
orem:

Proof of Theorem 3.2.4. The proof of assertions (i), (ii) and (iii) is immediate from
Allan’s local principle in combination with the description of the local algebras
given in the preceding results. The continuity of the mappings Fx and Gm is a con-
sequence of a general result by Johnson (see, e.g., [84, Chapter 6, Theorem 2.65])
which states that an algebra homomorphism from a Banach algebra onto a semi-
simple Banach algebra must be continuous.

For a proof of assertion (iv) recall that the algebra B0 is a (2N)2-dimensional
module over its center. Thus, Corollary 2.6.22 tells us that there is a set {νt}, t ∈ T ,
of representations of B such that Im νt = C

l×l with l = l(t) ≤ 2N and such that
an element b of B is invertible in A if and only if detνt(b) �= 0 for all t ∈ T .
The very same arguments as in the proof of assertion (iii) imply that each of these
representations is of the form Fx (with an x ∈ C \ {0, 1}) as defined in Corollary
3.2.9, or Gm (with m ∈ {1, 2, . . . , 2N}) as defined after Proposition 3.2.10. Hence,
there exist two sets ξ = ξ (A , B)⊂C\{0, 1} and μ = μ(A , B)⊆ {1, 2, . . . , 2N}
such that

σA (b) = ∪x∈ξ σ(Fx(b))∪{Gm(b) : m ∈ μ} (3.29)

for all b ∈ B. We claim that ξ = σA (X)\{0, 1} and μ = σA (Y )∩{1, . . . , 4N}.
Since Gm(X) ∈ {0, 1} and ξ ∩{0, 1} = /0, one has

σA (X)\{0, 1} = ∪x∈ξ σ(Fx(X))∪{Gm(X) : m ∈ μ}\{0, 1} = ∪x∈ξ{x} = ξ .
(3.30)

For the second claim note that, for any λ ∈ C, the matrix Fx(Y −λe) coincides with
the matrix (3.25), with the λi in (3.25) replaced by 2i− 1−λ . It follows from the
explicit form (3.28) of the determinant of this matrix that every eigenvalue λ of
Fx(Y ) solves the equation
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x
2N

∏
i=1

(2i−λ )+(1− x)
2N

∏
i=1

(2i−1−λ ) = 0.

But, if x �∈ {0, 1}, then σ(Fx(Y ))∩{1, 2, . . . , 2N} = /0. Thus,

σA (Y )∩{1, . . . , 4N} = {Gm(Y ) : m ∈ μ}∩{1, . . . , 4N} = {m}m∈μ = μ . (3.31)

Now assertion (iv) follows immediately from (3.29), (3.30) and (3.31).

Observe that assertion (iv) is evident in the case that the algebra B is inverse-
closed in A . However, this is not always satisfied as the following example indi-
cates.

Example 3.2.13. Consider the algebra A of all continuous 2× 2 matrix functions
on the complex unit circle T. Let t denote the identical mapping of T. Then

P =
[

t 1− t
t 1− t

]

, p1 =
[

1 0
0 0

]

, and p2 =
[

0 0
0 1

]

are elements of A which satisfy the assumptions of Theorem 3.2.4 with N = 1. The
function

X := p1Pp1 + p2(e−P)p2 =
[

t 0
0 t

]

is invertible in A but not invertible in B since the latter algebra consists of matrix
functions holomorphic in the unit disk only. �

In this connection, let us emphasize an evident consequence of assertions (iii)
and (iv) of the previous theorem.

Corollary 3.2.14. If σB(X) = σA (X) and σB(Y ) = σA (Y ), then the algebra B is
inverse-closed in A .

The following additional information is often useful. The mappings F0 and F1 are
formally defined as in Theorem 3.2.4 for x = 0,1.

Proposition 3.2.15.

(i) If 0 �∈ σB(X) and 1 �∈ σB(X), then
σB(Y )∩{1, . . . , 4N} = /0.

(ii) If 0 ∈ σB(X) and 1 ∈ σB(X), and if none of these points is isolated in σB(X),
then the family (Fx) with x ∈ σB(X) is a matrix symbol for B.

(iii) If 0 �∈ σA (X) and 1 �∈ σA (X) then σA (Y )∩{1, . . . , 4N} = /0.
(iv) If 0 ∈ σA (X) and 1 ∈ σA (X), and if both points are not isolated in σA (X),

then the family (Fx) with x ∈ σA (X) is a matrix symbol for the invertibility of
the elements of B in the algebra A .

Proof. (i) Note that Gm(X) ∈ {0, 1} in any case. Thus, if σB(X)∩{0, 1} = /0, then
one-dimensional representations cannot exist.
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(ii) The function x �→ Fx(Y ) is continuous on σB(X). Due to the continuous depen-
dence of the eigenvalues of a matrix on the matrix itself (see [88, Appendix D]), one
has

σ(F0(Y )) = limsup
x→0

σ(Fx(Y ))

and consequently,
σ(F0(Y )) = limsup

x→0
σ(Φx(Y )). (3.32)

We further know from Proposition 2.2.3 (ii) that

limsup
x→0

σ(Φx(Y )) ⊆ σ(Φ0(Y )). (3.33)

From (3.32) and (3.33) we obtain σ(F0(Y ))⊆ σ(Φ0(Y )). Analogously, σ(F1(Y ))⊆
σ(Φ1(Y )). Hence,

σ(F0(Y ))∪σ(F1(Y )) ⊆ σ(Φ0(Y ))∪σ(Φ1(Y )) ⊆ σB(Y ).

A simple computation gives

σ(F0(Y ))∪σ(F1(Y )) = {1, 2, . . . , 4N},

whence
σB(Y )∩{1, 2, . . . , 4N} = {1, 2, . . . , 4N}.

In other words, all possible one-dimensional representations occur.
It remains to observe that, for each a ∈ B, the matrices F0(a) and F1(a) are tri-

angular and that the diagonal of F0(a) equals (G1(a), G3(a), . . . , G2N−1(a)), while
the diagonal of F1(a) is (G2(a), G4(a), . . . , G2N(a)).

The proof of assertions (iii) and (iv) can be given in a completely analogous
manner.

3.2.6 Other indicator elements

The elements X and Y indicate which matrix representations of the algebra B ac-
tually appear. While X is distinguished by the fact that it belongs to the center of
B, there is some latitude to choose Y . For example, one can show that the ele-
ment

Z := P+
2N

∑
i=1

2ipi

can substitute Y in the determination of all one-dimensional representations. Indeed,
consider the mappings Km given by K2i(P) = 0, K2i+1(P) = 1,
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K2i(pi) =
{

1 if i = j,
0 if i �= j,

K2i+1(pi) =
{

1 if i = j,
0 if i �= j,

where i = 1, . . . , 2N. The following is the analog of Proposition 3.2.11 and can be
proved in the same way.

Proposition 3.2.16. If m ∈ σB(Z)∩{2, 3, 4, . . . , 4N +1} then the complex-valued
mapping Km defined on {P, p1, . . . , p2N} extends to an algebra homomorphism from
B onto C.

The following observation is often helpful in order to determine the spec-
trum of X . For i = 1, 2, . . . , 2N, let Bi denote the algebra piBpi = {pibpi, b ∈
B}.

Proposition 3.2.17. If {0, 1} ⊆ σBi(piX pi) for some i then σB(X) = σBi(piX pi).

Proof. Since {pi} is a partition of identity and X is in the center of B, we
have

σB(X) = ∪2N
j=1σB j(p jX p j). (3.34)

We claim that

σB j(p jX p j)\{0, 1} = σBk
(pkX pk)\{0, 1} (3.35)

for all j, k = 1, . . . , 2N. Indeed, let λ �∈ σB j(p jX p j). Then there is an a in B such
that

p jap j(p jX p j −λ p j) = p j.

Multiplying this identity from the left-hand side by pkPp j and from the right-hand
side by p jPpk with some k �= j one gets

pkPp jap j(p jX p j −λ p j)p jPpk = pkPp jPpk

which can be written by means of Proposition 3.2.7 as

pkPp jap jPpk(pkX pk −λ pk) = (−1) j−kX(X − I)pk.

The element pkX pk lies in the center of the algebra Bk. Thus, localization of Bk

over its smallest closed subalgebra which contains pk and pkX pk via Allan’s local
principle yields that, at the point μ ∈ σBk

(pkX pk),

(μ−λ )Ωμ(pkPp jap jPpk) = (−1) j−kμ(μ−1)Ωμ(I),

where Ωμ refers to the canonical homomorphism from Bk onto its local algebra at
μ . Thus, if μ �∈ {0, 1} then μ −λ �= 0 and, hence, λ �∈ σBk

(pkX pk) \ {0, 1}. This
gives (3.35) which, in combination with (3.34), proves the assertion.
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3.2.7 The two projections theorem revisited

Let N = 1 in Theorem 3.2.4. Then, as we have already seen, the partition {pi}
consists of two elements p1 and p2 with p2 = e− p1, and the axioms (3.5) and
(3.6) reduce to P2 = P and Q2 = Q, respectively. Thus, B is the (general) algebra
generated by two idempotents P and p1 and the identity, with no further relations
between the generators.

Obviously, there are some differences between the specification of Theorem 3.2.4
to the case N = 1 and Theorem 3.1.4. In the case N = 1, set p := p1 and r := P
in Theorem 3.1.4. The first difference concerns the indicator element for the one-
dimensional representations. In Theorem 3.1.4, it is the element p+2r, whereas this
role is played by the element Y = pr +(e− p)(e− r)+ p + 3(e− p) = 2pr + 4e−
3p− r in Theorem 3.2.4, which seems to be much more complicated. But if Y is
replaced by the element Z from the preceding subsection, then Z = r + 2p + 4(e−
p) = r−2p+4e which is as simple as p+2r.

The second difference concerns the explicit form of the 2× 2 matrices. In The-
orems 3.1.4 and 3.2.4, the matrices associated with the idempotent r at the point
x ∈ σB(X)\{0, 1} are

[

x
√

x(1− x)
√

x(1− x) 1− x

]

and

[

x 1− x
x 1− x

]

, (3.36)

respectively. Since, for x ∈ C\{0, 1},

[

x
√

x(1− x)
√

x(1− x) 1− x

]

=

⎡

⎣

4
√

x
1−x 0

0 4
√

1−x
x

⎤

⎦

[

x 1− x
x 1− x

]

⎡

⎣

4
√

1−x
x 0

0 4
√

x
1−x

⎤

⎦

and, moreover,

[

1 0
0 0

]

=

⎡

⎣

4
√

x
1−x 0

0 4
√

1−x
x

⎤

⎦

[

1 0
0 0

]

⎡

⎣

4
√

1−x
x 0

0 4
√

x
1−x

⎤

⎦

where 4
√

x
1−x is any number with

(

4
√

x
1−x

)4
= x

1−x , and 4
√

1−x
x is

(

4
√

x
1−x

)−1
, both

representations in (3.36) are equivalent.
Note also that the assertion of Theorem 3.2.4 is more general than that of Theo-

rem 3.1.4 because it includes the inverse-closedness of B in A . We can thus add a
further point to Theorem 3.1.4:

(v) an element a ∈ B is invertible in A if and only if the matrices Fx(a) are invert-
ible for all x ∈ σA (e− p− r + pr + rp)\{0, 1} and if the numbers Gm(a) are
non-zero for all m ∈ σA (p+2r)∩{0, 1, 2, 3}.

Finally, notice that the invertibility assertion of the Halmos theorem (Theorem
3.1.1) follows from the general two projections theorem. But the latter theorem does
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not immediately imply a description of the C∗-algebras generated by two projections
as an algebra of continuous functions.

3.2.8 The spectrum of an abstract SIO

Our next concern is to demonstrate how Theorem 3.2.4 can be used to compute the
spectrum of singular integrals in the case that the spectrum of the operator

X =
N

∑
i=1

(p2i−1Pp2i−1 + p2iQp2i)

is known. Let T be a non-empty proper subset of {1, 2, . . . , 2N} and set p :=∑i∈T pi

and q := e− p. Elements of the form A := pPp + q (∈ B) are called abstract sin-
gular integral operators. From Theorem 3.2.4 we conclude that the spectrum of A
equals

⋃

x∈σF (X)\{0,1}
σ(Fx(A)) ∪

⋃

m∈σF (Y )∩{1,...,2N}
σ(Gm(A)),

where the choice of F ∈ {A ,B} depends on whether we want to know the spec-
trum of A in F = A or in F = B.

Let us first determine the spectrum of Fx(A) for x ∈ σF (X) \ {0,1}. Let λ ∈ C

and set D(x) := det(Fx(A−λe)). Further, let t, to, and te refer to the number of the
elements of the sets T, T ∩{1, 3, . . . , 2N−1}, and T ∩{2, 4, . . . , 2N}, respectively.
Also put v := to−te. Changing the rows and columns of Fx(A) in an appropriate way
produces a matrix of the form

[

F11 0
0 I

]

(3.37)

where F11 is a t × t matrix and I is the (2N − t)× (2N − t) identity matrix. The
determinant D(x) of (3.37) is a polynomial of first degree in x (see the proof of
Proposition 3.2.11), and

D(0) = (−λ )to(1−λ )te(1−λ )2N−t , D(1) = (1−λ )to(−λ )te(1−λ )2N−t ,

the factors (1−λ )2N−t coming from the lower right corner in (3.37) and the other
factors resulting from the upper left one. Thus,

D(x) = (1−λ )2N−t [x(1−λ )to(−λ )te +(1− x)(−λ )to(1−λ )te ].

Depending on whether v > 0, v = 0, or v < 0, this equals

D(x) = (1−λ )2N−t(1−λ )te(−λ )te [x(1−λ )v +(1− x)(−λ )v],

D(x) = (1−λ )2N−t(1−λ )to(−λ )to ,
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or
D(x) = (1−λ )2N−t(1−λ )to(−λ )to

[

x(−λ )|v| +(1− x)(1−λ )|v|
]

,

respectively. Thus, if v = 0, then σ(Fx(A)) = {0, 1}. In the case v > 0, we have

x(1−λ )v +(1− x)(−λ )v = 0 (3.38)

if and only if
(

λ
λ −1

)v

=
x

x−1
(3.39)

(note that x �= 1 by assumption and that (3.38) cannot vanish if λ = 1). Let
ζ0(x), . . . , ζv−1(x) denote the v roots of x/(x− 1). Then we infer from (3.39) that
the spectrum of Fx(A) equals

{0, 1}∪
{

ζ0(x)
ζ0(x)−1

, . . . ,
ζv−1(x)

ζv−1(x)−1

}

if te > 0, (3.40)

{1}∪
{

ζ0(x)
ζ0(x)−1

, . . . ,
ζv−1(x)

ζv−1(x)−1

}

if te = 0. (3.41)

In the case v < 0 we obtain analogously that σ(Fx(A)) is

{0, 1}∪
{

−1
ζ0(x)−1

, . . . ,
−1

ζ|v|−1(x)−1

}

if to > 0, (3.42)

{1}∪
{

−1
ζ0(x)−1

, . . . ,
−1

ζ|v|−1(x)−1

}

if to = 0. (3.43)

Finally, it is evident that Gm(A) ∈ {0, 1} for all m, and it is also clear which value is
actually assumed.

In the next chapter we are going to consider singular integral operators on admis-
sible curves. In this context, the case where σF (X) is a circular arc running from 0
to 1 is of particular interest. For 0 < γ < 1, set

Aγ :=
{

(

1+ coth((y+ iγ)π)
)

/2 : −∞< y < ∞
}

∪{0, 1}. (3.44)

Suppose that σF (X) = Aγ , and let x∈Aγ \{0, 1}. Assume first that v := to−te >
0 and te > 0. Then σ(Fx(A)) is given by (3.40). If x = (1 + coth((y + iγ)π))/2,
then a short calculation gives x/(x − 1) = e2ze2πiγ . Consequently, the v roots of
ζ v = x/(x−1) are

ζk(x) = e2z/ve2πi(ν+k)/v where k = 0, . . . , v−1.

Thus, if x traces out Aγ \{0, 1}, then

ζk(x)/(ζk(x)−1) = (1+ coth((z/v+ i(γ+ k)/v)π))/2
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Fig. 3.1 The arc Aγ for several values of γ . Note that for γ = 1/2 the “arc” is actually a line
segment.

moves along the circular arc A(γ+k)/v \ {0, 1}. In the case v < 0, we get similarly
that if x ranges over Aγ \ {0, 1}, then −1/(ζk(x)−1) runs along the circular arc
A(γ+k)/|v| \ {0, 1}. Taking into account that spectra are closed we obtain the follow-
ing from (3.40)–(3.43):

Theorem 3.2.18. Let F be A or B. If σF (X) is the circular arc Aγ , then the
spectrum of the abstract singular integral operator is

σF (pPp+q) =

⎧

⎨

⎩

{0, 1} if v = 0,

∪v−1
k=0A(γ+k)/v if v > 0,

∪|v|−1
k=0 A(γ+k)/|v| if v < 0.

3.2.9 Exercises

Exercise 3.2.1. Find explicit examples showing that all possibilities predicted by
the N projections theorem regarding existence of the one-dimensional representa-
tions indeed occur.

Exercise 3.2.2. Let A be the disk algebra introduced in Example 1.2.23. Describe
the smallest closed subalgebra of A

2×2 which contains the following functions on
the unit disk

P : t �→
[

t t −1
t t −1

]

, p1 : t �→
[

1 0
0 0

]

and p2 : t �→
[

0 0
0 1

]

.

Exercise 3.2.3. In the previous exercise, substitute A by C1[0,1], the Banach alge-
bra of all continuously differentiable functions defined on [0,1], and describe the
resulting algebra.
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Exercise 3.2.4. Consider again A
2×2 with the functions P and p1 as in Exercise

3.2.2 and with the flip

t �→
[

0 1
1 0

]

.

Are the conditions of the N projections theorem fulfilled?

3.3 Algebras generated by two idempotents and a flip which
changes the orientation

The goal of the next two sections is to study the invertibility of elements in Banach
algebras which are generated by two idempotents and one flip element. More pre-
cisely, let F be a complex Banach algebra with identity element e, and let p, r and
j be elements of F satisfying

p2 = p, r2 = r and j2 = e. (3.45)

The smallest closed subalgebra of F which contains the idempotents p and r and
the flip j will be denoted by A . Clearly, this definition implies that e ∈ A . We
consider two different sets of additional conditions which describe the interaction
between the idempotents and the flip, each of which is inspired by a particular class
of applications. Either we require

jp j = e− p and jr j = e− r, (3.46)

or
jp j = p and jr j = e− r. (3.47)

Example 3.3.1. Let F = L
(

L2(T)
)

, and let χ stand for the characteristic function
of the upper half circle {z ∈ C : |z| = 1, Im z > 0}. The operators

P :
+∞

∑
k=−∞

aktk �→
+∞

∑
k=0

aktk, (Ru)(t) := χ(t)u(t), (Ju)(t) :=
1
t

u(1/t)

satisfy conditions (3.45) and (3.46) in place of p,r and j, respectively. �

Example 3.3.2. In the context of the previous example, substitute J by the operator
(J1u)(t) := u(−t). Then P, R and J1 satisfy the conditions (3.45) and (3.47). �

Note that the flip J in Example 3.3.1 changes the orientation of the unit circle,
whereas the flip J1 in Example 3.3.2 preserves the orientation. That is why one
usually refers to a flip which satisfies (3.46) as orientation changing whereas flips
which satisfy (3.47) are called orientation preserving.
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Note also that the distinction between idempotents and flips is not essential. In-
deed, e− 2p is a flip for every idempotent p, and (e + j)/2 is an idempotent for
every flip j. So we can also think of A as an algebra which is generated by three
idempotents or, likewise, by three flips. It is the specific form of the conditions
(3.45)–(3.47) and the actual applications in operator theory which let us choose the
preferred terminology.

We will soon see that the two sets of conditions in (3.46) and (3.47) imply rather
different structures for the corresponding algebras. So we divide the treatment of
algebras generated by two idempotents and one flip into two sections and start in
this section with algebras where the flip changes the orientation. Thus, we assume
that conditions (3.45) and (3.46) are satisfied throughout this section.

We start with some elementary observations.

Proposition 3.3.3. The subalgebra of A which is generated by p and j is isomor-
phic to C

2×2, and the isomorphism can be chosen in such a way that it takes the
elements

e11 = p, e12 = p j(e− p), e21 = (e− p) jp, e22 = e− p

into the matrices

E11 =
[

1 0
0 0

]

, E12 =
[

0 1
0 0

]

, E21 =
[

0 0
1 0

]

, E22 =
[

0 0
0 1

]

,

respectively.

Proof. Let E ⊂A stand for the linear space spanned by e11, e12, e21 and e22. These
four elements are linearly independent. Indeed, suppose

α p+β p j(e− p)+ γ(e− p) jp+δ (e− p) = 0 (3.48)

with some α, β , γ, δ ∈ C. Multiplying (3.48) by p or e− p from the left- or right-
hand sides yields

α p = 0, β p j(e− p) = 0, γ(e− p) jp = 0, δ (e− p) = 0.

The assumption p = 0 together with the axiom jp j = e− p would imply 0 = e which
was excluded. Thus, α = 0 and, analogously, δ = 0. Similarly, if p j(e− p) were 0,
then p j(e− p) j = p would be 0, too, which is impossible as we have just seen. Thus,
β = 0 and, analogously, γ = 0.

So, E is a four-dimensional subspace of A which contains the elements p =
e11, e = e11 + e22 and j = e12 + e21. Moreover, E is an algebra, since

ei j · ekl = δ jkeil (3.49)

(with δ jk referring to the Kronecker delta), as one easily checks. Therefore, E is the
smallest algebra, which contains p and j, and the algebra is already closed due to its
finite dimensionality. The isomorphy of E to C

2×2 (with ei j corresponding to Ei j) is
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an immediate consequence of (3.49) and of the analogous relations holding for the
matrices Ei j.

For every i, j ∈ {1,2}, we define mappings

wi j : F → F , a �→ e1iae j1 + e2iae j2 (3.50)

and set

w : F → F 2×2, a �→
[

w11(a) w12(a)
w21(a) w22(a)

]

. (3.51)

Evidently,

w(e) =
[

e 0
0 e

]

, w(p) =
[

e 0
0 0

]

, w( j) =
[

0 e
e 0

]

. (3.52)

Proposition 3.3.4. Let a ∈ F be an element satisfying ja j = e−a. Then:

(i) w(a) =
[

b c
−c e−b

]

with b = pap+(e− p)(e−a)(e− p) and c = (pa−ap) j.

(ii) The elements b and c commute if and only if p(a2 −a) = (a2 −a)p.

Proof. (i) The axiom ja j = e − a and the equalities (3.52) imply that w(a) =
[

b c−c e−b

]

with some elements b,c ∈ F . Further,

b = w11(a) = pap+(e− p) ja j(e− p) = pap+(e− p)(e−a)(e− p),
c = w12(a) = pa(e− p) j +(e− p) ja(e− p)

= (pa(e− p)+(e− p)(e−a)p) j = (pa−ap) j.

(ii) It is easy to check that

bc− cb = p(a2 −a) jp+(e− p)(a2 −a) j(e− p).

Thus, bc− cb = 0 if and only if

p(a2 −a) jp = 0 and (e− p)(a2 −a) j(e− p) = 0.

Since jp j = e− p and j is invertible, this is equivalent to

p(a2 −a)(e− p) = (e− p)(a2 −a)p = 0

which, in turn, is equivalent to p(a2 −a) = (a2 −a)p.

In particular, Proposition 3.3.4 applies to the element a = r; so let b,c ∈ A be
defined by

b := prp+(e− p)(e− r)(e− p) = e− p− r + pr + rp, (3.53)

c := (pr− rp) j. (3.54)
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Then we have bc = cb due to Proposition 3.3.4 (ii) and, moreover,

c2 = b(b− e), (3.55)

the latter fact being a consequence of r2 = r and

[

b c
−c e−b

]2

=
[

b c
−c e−b

]

= w(r).

Now observe that finite products having the matrices w(e), w(p), w( j) and w(r) as
factors are matrices with entries which are polynomials in b and c.

Let C denote the smallest closed subalgebra of A which contains the elements
b, c and e. The following is a summary of Theorem 1.1.17 and Propositions 3.3.3–
3.3.4.

Proposition 3.3.5. Let A be a Banach algebra with identity e which is generated
by elements p, r, j satisfying (3.45) and (3.46), and let C be the smallest closed
subalgebra of A generated by e and the elements b, c, defined in (3.53) and (3.54).
Then C is the center of A , and the mapping w defined by (3.51) is a continuous
isomorphism from A onto C 2×2. The action of w on the generating elements of A
is given by (3.52) and Proposition 3.3.4 (i).

Thus, an element a ∈ A is invertible in A if and only if the matrix w(a) is
invertible in C 2×2. Since C is commutative, an element of C 2×2 is invertible if and
only if its determinant (which can be defined as is usual) is invertible in C , and the
latter invertibility is subject to commutative Gelfand theory. If we let MC refer to
the maximal ideal space of C and ̂ : C →C(MC ) to the Gelfand transform, then
we arrive at the following result.

Theorem 3.3.6. An element a ∈ A is invertible in A if and only if the function

MC → C
2×2, x �→

[

ŵ11(a)(x) ŵ12(a)(x)
ŵ21(a)(x) ŵ22(a)(x)

]

is invertible at every point x ∈ MC .

This theorem provides us with the desired matrix-valued calculus for the algebra
A . The symbol can be realized as a 2× 2 matrix function on the maximal ideal
space MC of C , and it is continuous if MC is endowed with its Gelfand topology.

Remark 3.3.7. The information bc = cb and c2 = b(b− e) about b and c is all that
can be derived from the axioms (3.45) and (3.46). Indeed, if b′ and c′ are elements
of a Banach algebra F ′ with identity e′ with b′c′ = c′b′ and c′2 = b′(b′ − e′) then

e =
[

e′ 0
0 e′

]

, p =
[

e′ 0
0 0

]

, j =
[

0 e′

e′ 0

]

, r =
[

b′ c′

−c′ e′ −b′

]

are elements of F ′2×2 which satisfy (3.45) and (3.46). Thus, the problem of estab-
lishing a matrix-valued symbol calculus for an algebra A which is generated by
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elements p, r, j satisfying (3.45) and (3.46) is completely equivalent to the deter-
mination of the maximal ideal space of the commutative Banach algebra which is
generated by e and by elements b, c satisfying c2 = b(b−e) and to the computation
of the Gelfand transform, at least for the generating elements b and c. This will be
done in the forthcoming subsections. �

3.3.1 Properties of the maximal ideal space MC

We are going to establish some characterizing properties of the maximal ideal space
MC of C . Since C is the center of A , one has σC (d) = σA (d) for every d ∈ C .

Since C is both a commutative algebra and generated by its elements b and c, MC

is homeomorphic to the joint spectrum σC (b,c) of b and c in C , see Exercise 2.1.5.
Recall from Proposition 1.3.24 that the joint spectrum σC (b,c) coincides with the
set of all pairs (x,y)∈C×C such that the smallest closed ideal of C which contains
b− xe and c− ye is proper.

Throughout the following, we shall identify MC and σC (b,c). Then we have

P̂(b,c)(x,y) = P(x,y) (3.56)

for every polynomial P in two variables and every pair (x,y)∈ MC . We have already
remarked that if (x,y) ∈ MC , then x ∈ σC (b). Conversely, given a point x ∈ σC (b),
there is (at least) one y ∈ σC (c) such that (x,y) ∈ MC . This is a simple consequence
of (3.55) and of the fact that the range of the Gelfand transform of an element coin-
cides with the spectrum of that element. Hence, MC = σC (b,c) can be decomposed
into fibers over σC (b): Given x ∈ σC (b), set Mx

C :=
{

(x,y) ∈ MC

}

. Then none of
the fibers Mx

C is empty, and ∪x∈σC (b)M
x
C = MC .

Proposition 3.3.8. Let x ∈ σC (b). Then the fiber Mx
C is either a singleton

{

(x,y)
}

or a doubleton
{

(x,y),(x,−y)
}

. In both cases, y ∈ C is a number such that y2 =
x(x−1).

Proof. From (3.56) we conclude that the value of the Gelfand transform of c2 −
b(b− e) at (x,y) is y2 − x(x−1). Since c2 −b(b− e) = 0, this implies that

y2 = x(x−1) for every (x,y) ∈ MC . (3.57)

Thus, given x ∈ σC (b), there are at most two numbers y such that (x,y) ∈ MC .

We denote the sets
{

x ∈ σC (b) : Mx
C is a singleton

}

and
{

x ∈ σC (b) : Mx
C is a doubleton

}

by Σ1 and Σ2, respectively.
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There is an alternate way to derive this fibration, namely via Allan’s local princi-
ple. We shall apply this theorem with C as the larger algebra and alg{b} in place of
the subalgebra of the center of C . We have seen in Exercise 2.1.3 that the maximal
ideal space of the (singly generated) Banach algebra alg{b} is homeomorphic to
the spectrum of b in this algebra. Moreover, the only maximal ideals x ∈ σalg{b}(b)
which generate proper ideals Ix in C are those in σC (b). Thus, Allan’s local prin-
ciple offers the possibility of localizing C over σC (b). Given x ∈ σC (b), we denote
the related local algebra C /Ix by Cx and the canonical homomorphism from C
onto Cx by Φx.

Proposition 3.3.9. Let (x,y) ∈ σC (b)×σC (c). Then (x,y) ∈ MC if and only if y ∈
σCx (Φx(c)).

Proof. If (x,y) /∈ MC , then the ideal of C which is generated by b− xe and c− ye
is not proper; that is, there are elements f , g ∈ C such that

f (b− xe)+g(c− ye) = e.

Applying the local homomorphism Φx to this equality and taking into account that
Φx(b) = xΦx(e), we find

Φx(g)(Φx(c)− yΦx(e)) =Φx(e),

i.e., y /∈σCx (Φx(c)). Let, conversely, y /∈σCx (Φx(c)). Then there are elements f ∈C
and j ∈ Ix such that

f (c− ye) = e+ j.

The set C (b− xe) is dense in Ix; hence, there are elements g, h ∈ C with ‖h‖ < 1
and j = −g(b− xe)+h. Consequently,

(e+h)−1g(b− xe)+(e+h)−1 f (c− ye) = e

which implies that (x,y) /∈ MC .

In particular, if x ∈ Σ1 (respectively x ∈ Σ2), then σCx (Φx(c)) consists of one (re-
spectively two) points, and the maximal ideal space of Cx is a singleton (respectively
a doubleton). We set Σ0 := σC (b)∩{0,1}. Evidently, Σ0 ⊆ Σ1.

Theorem 3.3.10. The following assertions hold:

(i) the set Σ2 ∪Σ0 is closed in σC (b) (hence, compact);
(ii) the set Σ1 \Σ0 is open in σC (b), and the mapping which assigns to every x ∈

Σ1 \Σ0 the second component of the (uniquely determined) pair (x,y) ∈ MC is
continuous on Σ1 \Σ0.

Proof. (i) Let x0 belong to the closure of Σ2 ∪Σ0. What we have to show is that
x0 ∈ Σ2 ∪Σ0. If x0 ∈ Σ0, then we are done. Let x0 /∈ Σ0. Then there is a sequence
(xn) ⊆ Σ2 which converges to x0. Our assumption x0 /∈ Σ0 guarantees that x2

0 −x0 �=
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0, thus, we can find an open neighborhood U of x2
0 −x0 in C such that there exists a

continuous branch, sqrt say, of the square root function on U . Hence,

σ (Φxn(c)) =
{

sqrt(x2
n − xn),−sqrt(x2

n − xn)
}

for all sufficiently large n. From Proposition 2.2.3 (ii) we infer that

lim
n→∞

σ (Φxn(c)) =
{

sqrt(x2
0 − x0),−sqrt(x2

0 − x0)
}

⊆ σ
(

Φx0(c)
)

.

But sqrt(x2
0 − x0) �= −sqrt(x2

0 − x0) because x0 /∈ Σ0, hence, σ
(

Φx0(c)
)

consists of
two points, i.e., x0 ∈ Σ2.
(ii) It is immediate from part (i) that Σ1 \ Σ0 is an open subset of σC (b). What
remains to show is the continuity of the mapping

Σ1 \Σ0 → σC (c), x �→ (x,y) �→ y.

If x0 ∈ Σ1 \Σ0, then x2
0 − x0 �= 0, and one can again choose a neighborhood U of

x2
0 − x0 in C as well as a continuous branch sqrt of the square root function on U

such that
y0 = y(x0) = sqrt(x2

0 − x0).

Let V be an open neighborhood of x0 in Σ1 \Σ0 such that x2 − x ∈ U for all x ∈ V .
Then, for every x ∈ V , either y(x) =sqrt(x2 − x) or y(x) = −sqrt(x2 − x). Assume
there exists a sequence (xn) ⊆V tending to x0 such that y(xn) = −sqrt(x2

n − xn) for
every n. Since

y(xn) = −sqrt(x2
n − xn) →−sqrt(x2

0 − x0)

we conclude, again via Proposition 2.2.3 (ii), that

−y0 = −sqrt(x2
0 − x0) ∈ σ

(

Φx0(c)
)

.

Since y0 �= −y0 (a consequence of x0 /∈ Σ0) and y0 ∈ σ
(

Φx0(c)
)

(by assumption),
this contradicts the hypothesis x0 ∈ Σ1. Therefore,

y = y(x) = sqrt(x2 − x) for all x ∈V

which implies the continuity of the function x �→ y at each point of Σ1 \Σ0.

The preceding theorem characterizes the potential symbol algebras completely.
Indeed, let Σ ′ be a compact subset of C, set Σ ′

0 = Σ ′ ∩ {0,1}, and let Σ ′
1, Σ ′

2 be
subsets of Σ ′ such that

Σ ′
1 ∩Σ ′

2 = /0, Σ ′
1 ∪Σ ′

2 = Σ ′, Σ ′
0 ⊆ Σ ′

1, Σ ′
2 ∪Σ ′

0 is compact

and such that there is a continuous function y′ = y′(x) on Σ ′
1 \Σ ′

0 satisfying

y′(x)2 = x2 − x for all x ∈ Σ ′
1 \Σ ′

0.
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Let M′
C be the set

M′
C :=

{

(x,y) : x ∈ Σ ′
1 \Σ ′

0, y = y′(x)
}

∪
{

(x,y) : x ∈ Σ ′
2 ∪Σ ′

0, y2 = x2 − x
}

,

and define functions e′, p′, j′, r′ from M′
C into C

2×2 by

e′(x,y) =
[

1 0
0 1

]

, p′(x,y) =
[

1 0
0 0

]

, j′(x,y) =
[

0 1
1 0

]

and

r′(x,y) =
[

x y
−y 1− x

]

.

Then e′, p′, j′ and r′ satisfy the axioms (3.45) and (3.46) in place of e, p, j and r,
respectively. The indicator elements corresponding to e′, p′, j′ and r′ are

b′(x,y) =
[

x 0
0 x

]

and c′(x,y) =
[

y 0
0 y

]

,

and for the corresponding maximal ideal space and its subsets one finds MC = M′
C ,

Σ1 = Σ ′
1, and Σ2 = Σ ′

2.

3.3.2 Determination of the maximal ideal space MC

Now we are going to point out one way to identify the components Σ0, Σ1 and Σ2 of
σC (b) as well as the correct branch of the square root function for every connected
component of Σ1 \Σ0. In particular, we shall see that the knowledge of the (global)
spectrum of only one element of C is sufficient for the desired identifications. This
element is b+ c. To get this, we need an elementary observation.

Proposition 3.3.11. Let x1, x2, y1, y2 ∈ C satisfy the conditions

y2
1 = x2

1 − x1, y2
2 = x2

2 − x2, and x1 + y1 = x2 + y2.

Then x1 = x2 and y1 = y2.

Proof. Squaring the equality x1 − x2 = y2 − y1 we get

x2
1 −2x1x2 + x2

2 = y2
1 −2y1y2 + y2

2 = x2
1 − x1 −2y1y2 + x2

2 − x2

so that
2x1x2 − x1 − x2 = 2y1y2.

Squaring once more, we obtain

x2
1 + x2

2 +4x2
1x2

2 −4x2
1x2 −4x1x2

2 +2x1x2 = 4y2
1y2

2

= 4(x2
1 − x1)(x2

2 − x2) = 4x2
1x2

2 −4x2
1x2 −4x1x2

2 +4x1x2
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so that
x2

1 −2x1x2 + x2
2 = (x1 − x2)2 = 0,

whence the assertion follows.

Now we can characterize the points in MC .

Proposition 3.3.12. The mapping

MC → C, (x,y) �→ x+ y (3.58)

is a bijection between MC and σC (b+ c).

Proof. From (3.56) we infer that

̂b+ c(x,y) = x+ y. (3.59)

Since the range of the Gelfand transform of an element coincides with the spectrum
of that element, (3.59) implies that (3.58) is a mapping from MC onto σC (b+ c). It
remains to verify the injectivity of (3.58). Let z ∈ σC (b+ c). Then, as we have just
seen, there is (at least) one point (x,y) ∈ MC such that z = x + y. But y2 = x2 − x
for every pair (x,y)∈ MC by (3.57). Hence, the point (x,y) is unique by Proposition
3.3.11.

Actually, Proposition 3.3.11 yields a little bit more than we have employed in
the proof of Proposition 3.3.12. Namely, every point z ∈ σC (b+ c) can be uniquely
written as x + y where y2 = x2 − x. We conclude from Proposition 3.3.12 that then,
necessarily, x ∈ σC (b), y ∈ σC (c), and (x,y) ∈ MC . Moreover, if we have the sum-
mands x and y at our disposal, we can ask whether or not z′ = x − y also be-
longs to σC (b + c). If no, then x ∈ Σ1, if yes, then x ∈ Σ2. Finally, if x ∈ Σ1 \Σ0

then the associated y indicates which branch of the square root function has to
be chosen in an open neighborhood of x. These observations allow one to deter-
mine MC , Σ0, Σ1, Σ2 as well as the explicit form of the symbol calculus in prac-
tice.

We summarize these facts in the following theorem.

Theorem 3.3.13. Let A be a Banach algebra generated by elements p, r and j
satisfying (3.45) and (3.46), and let C be the smallest closed subalgebra of A
generated by e and by the elements b and c defined by (3.53) and (3.54). Fur-
ther, let MC consist of all pairs (x,y) ∈ C × C where x2 − x = y2 and x + y ∈
σC (b+ c).

(i) The set MC (provided with the topology inherited from that of C×C) is home-
omorphic to the maximal ideal space of C .

(ii) The mapping smb which assigns to e, p, j and r a matrix-valued function on
MC by



3.3 Algebras with flip changing the orientation 159

(smbe)(x,y) =
[

1 0
0 1

]

, (smb p)(x,y) =
[

1 0
0 0

]

(smb j)(x,y) =
[

0 1
1 0

]

, (smbr)(x,y) =
[

x y
−y 1− x

]

extends to a continuous homomorphism from A into C(MC ,C2×2).
(iii) An element a∈A is invertible if and only if (smba)(x,y) is invertible for every

(x,y) ∈ MC .

Example 3.3.14. Here we discuss C∗-algebras generated by two projections and one
flip, and compare the results with [149]. Let F be a C∗-algebra with identity e, and
let p, r, j be self-adjoint elements of F satisfying

p2 = p, r2 = r, j2 = e, jp j = e− p, jq j = e− r. (3.60)

Further we suppose

σ(prp) = [0,1] and ip jrp ≥ 0, (3.61)

where i denotes the imaginary unit. Define b0 := prp and c0 := ip jrp. It is elemen-
tary to check that

b = b0 + jb0 j and − ic = c0 + jc0 j. (3.62)

Further, if a is an element of the algebra pA p (with identity element p), then ja j
belongs to the algebra (e− p)A (e− p) (with identity e− p), and a−λ p is invertible
in pA p if and only if ja j − λ (e− p) is invertible in (e− p)A (e− p). From this
observation one easily gets

σA (a) ⊆ σA (a+ ja j)∪{0} for every a ∈ pA p.

This fact together with (3.62) implies that (3.61) is equivalent to

σ(b) = [0,1] and − ic ≥ 0.

Since (−ic)2 = b−b2, this further implies that −ic is the (non-negative) square root
of the non-negative element b− b2, whence c ∈ alg{e,b}. Consequently, σ(b) =
[0,1] coincides with its component Σ1. If we let

√
· refer to the branch of the square

root function on [0,1] with
√

1 = 1, then Theorem 3.3.13 applies to this context as
follows.

Theorem 3.3.15 (Power). Let A be a C∗-algebra generated by self-adjoint ele-
ments e, p, j, r satisfying (3.60) and (3.61). Then A is isometrically isomorphic
to the algebra C([0,1],C2×2), and the isomorphism maps e, p, j, r to the functions
ê, p̂, ĵ, r̂ given by



160 3 Banach algebras generated by idempotents

ê(x) =
[

1 0
0 1

]

, p̂(x) =
[

1 0
0 0

]

,

ĵ(x) =
[

0 1
1 0

]

, r̂(x) =
[

x i
√

x(1− x)
−i
√

x(1− x) 1− x

]

.

For a proof, observe that MC can be identified with Σ1 (because Σ2 = /0). Thus,
only functions depending on one variable x appear. That A is isomorphic to the
whole algebra C

(

[0,1],C2×2
)

is a consequence of the Gelfand-Naimark theorem
for commutative C∗-algebras, which implies that

C = alg{e,b} ∼= C (σ(b)) = C[0,1].

Note that the form of the symbol in Theorem 3.3.15 differs slightly from the one
used by Power ([149, Lemma 7.1]). Power’s choice follows from the one presented

here by multiplying ê, p̂, ĵ and r̂ by

[

1 0
0 i

]

and

[

1 0
0 −i

]

from the left- and right- hand

side, respectively. �

Example 3.3.16. Now we weaken the assumptions (3.61) in the previous example
and require merely that

σC (b)\Σ0 is connected and Σ2 = /0. (3.63)

Further, we will not consider C∗-algebras only, but Banach algebras again. Then
we conclude from Theorem 3.3.10 that there is a continuous function y = y(x) on
σC (b)\Σ0 which satisfies y2 = x2 − x such that

(smbe)(x) = (smbe)(x,y(x)) =
[

1 0
0 1

]

,

(smb p)(x) = (smb p)(x,y(x)) =
[

1 0
0 0

]

,

(smb j)(x) = (smb j)(x,y(x)) =
[

0 1
1 0

]

.

Further, (smbr)(x) = (smbr)(x,y(x)) is either
[

x y(x)
−y(x) 1− x

]

or

[

x −y(x)
y(x) 1− x

]

for every x ∈ σC (b) \Σ0 (and, thus, for every x ∈ σC (b), since y(0) = y(1) = 0).
Consequently, one can consider the symbol as a function which depends on only
one complex variable, and to determine this function it is sufficient to determine the
sign of y in the symbol of r for only one point x ∈ σC (b)\Σ0; then this sign is the
same for all points x ∈ σC (b). �
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3.3.3 An alternate description of MC

Let A0 refer to the smallest (not necessarily closed) subalgebra of F which contains
p, r and j, define C0 as the smallest (not necessarily closed) subalgebra of A0 which
contains e, b and c, and alg0{b} as the non-closed algebra generated by e and b. As
above we conclude that alg0{b} is in the center of A0 and that C0 coincides with the
center of A0. The following proposition offers an alternate way to derive Theorem
3.3.6 via Corollary 2.6.22.

Proposition 3.3.17. The algebra A0 is a module of dimension at most four over C0

and a module of dimension at most eight over alg0{b}.

Proof. The first assertion is an immediate consequence of Theorem 3.3.6 (choose
p, p j, jp and e− p as a basis of the module), but it can also be verified directly
without effort. For the second assertion, define elements e1, . . . , e8 by

e1 = pr, e5 = e1 j = je4,
e2 = (e− p)r, e6 = e2 j = je3,
e3 = p(e− r), e7 = e3 j = je2,
e4 = (e− p)(e− r), e8 = e4 j = je1,

and let D stand for the set of all elements ∑ri(b)ei with polynomials ri in b. Evi-
dently, D is a linear space. For a proof that D is an algebra it is sufficient to check
the multiplication table

· e1 e2 e3 e4

e1 be1 (1−b)e1 be3 −be3

e2 be2 (1−b)e2 (b−1)e4 (1−b)e4

e3 (1−b)e1 (b−1)e1 (1−b)e3 be3

e4 −be2 be2 (1−b)e4 be4

as well as the identities

eme4+n = emen j,

e4+men = em jen = eme5−n j,

e4+me4+n = em jen j = eme5−n

for m,n ∈ {1,2,3,4}. Thus, D is an algebra, and p, r and j belong to D because

p = e1 + e3, r = e1 + e2 and j = e5 + e6 + e7 + e8.

Conversely, every algebra which contains p, r and j also includes D , which proves
the second assertion.

Employing Allan’s local principle, we can localize the algebra A over its central
subalgebra alg{b}, the maximal ideal space of which is homeomorphic to σA (b).
We denote the local coset of a ∈ A at x ∈ σA (b) by Φx(a). Since D is dense in A ,
the image Φx(D) of D under Φx is dense in Φx(A ) = A /Ix. But
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Φx
(

∑ri(b)ei
)

=∑ri(x)Φx(ei),

thus, Φx(D) is a complex linear space of dimension at most eight. In particular, this
implies that Φx(D) is closed in A /Ix. Hence, A /Ix = Φx(D), and A /Ix is a
linear space of dimension at most eight. We are going to show that the dimension of
A /Ix is equal to eight.

Proposition 3.3.18. The cosets Φx(e1), . . . ,Φx(e8) are linearly independent if and
only if the cosets Φx(e1) and Φx(e7) are linearly independent.

Proof. Suppose there are complex numbers αi with ∑ |αi| �= 0 such that

α1Φx(e1)+ . . .+α8Φx(e8) = 0.

Combining multiplying this equality by Φx(p) or Φx(e − p) from the left-hand
side with Φx(r) or Φx(e− r) from the right-hand side, we obtain the four equa-
tions

α1Φx(e1)+α7Φx(e7) = α1Φx(pr)+α7Φx(p jr) = 0,

α2Φx(e2)+α8Φx(e8) = α2Φx ((e− p)r)+α8Φx ((e− p) jr) = 0,

α3Φx(e3)+α5Φx(e5) = α3Φx (p(e− r))+α5Φx (p j(e− r)) = 0,

α4Φx(e4)+α6Φx(e6) = α4Φx ((e− p)(e− r))+α6Φx ((e− p) j(e− r)) = 0.

(3.64)

Thus, at least one of the pairs

(Φx(e1),Φx(e7)) , (Φx(e2),Φx(e8)) , (Φx(e3),Φx(e5)) , (Φx(e4),Φx(e6)) (3.65)

is linearly dependent. For definiteness, let (Φx(e1),Φx(e7)) be a pair with this prop-
erty. Multiplying the equality (3.64) from the left by Φx( j) we get

α1Φx( jpr)+α7Φx( jp jr) = α1Φx ((e− p) jr)+α7Φx ((e− p)r) = 0,

whence
α7Φx(e2)+α1Φx(e8) = 0.

Analogously, (3.64) implies

α7Φx(e3)+α1Φx(e5) = 0 and α7Φx(e4)+α1Φx(e6) = 0.

Hence, all pairs (3.65) are linearly dependent. Repeating these arguments with an-
other pair in place of (Φx(e1),Φx(e7)), we conclude that, whenever one of the pairs
(3.65) is linearly dependent, then all pairs (3.65) have this property. Thus, if the
Φx(ei), i = 1, . . . ,8, are linearly dependent, then Φx(e1) and Φx(e7) are linearly de-
pendent. The reverse conclusion is obvious.
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Proposition 3.3.19. The dimension of A /Ix is either four or eight.

Proof. We have already remarked that the dimension of A /Ix cannot be greater
than eight. If it is less than eight, then the preceding proposition and its proof imply
that the dimension is not greater than four. Suppose the dimension of A /Ix is less
than four. Then there are complex numbers αi with ∑ |αi| �= 0 such that

α1Φx(pr)+α2Φx ((e− p)r)+α3Φx (p(e− r))+α4Φx ((e− p)(e− r)) = 0.

Combining multiplication byΦx(p) orΦx(e− p) from the left, withΦx(r) orΦx(e−
r) from the right-hand side, yields

α1Φx(pr) = α2Φx ((e− p)r) = α3Φx (p(e− r)) = α4Φx ((e− p)(e− r)) = 0.

Since ∑ |αi| �= 0, this shows that at least one of the cosets Φx(ei) is zero. For defi-
niteness, let Φx(e1) = Φx(pr) = 0 (the other possibilities can be treated similarly).
Then, for all x ∈ σA (b),

xΦx(e) = Φx(b) =Φx (prp+(e− p)(e− r)(e− p))
= Φx(pr)Φx(p)+Φx ((e− r)(e− p))+Φx(pr)Φx(e− p)
= Φx ((e− p)(e− r)) .

First, let x �= 0. Then the latter identity shows that Φx(e− p) and Φx(e − r) are
invertible from one side. Since a one-sided invertible idempotent is necessarily the
identity, one gets Φx(p) = Φx(r) = 0. As in the proof of Proposition 3.3.18, this
implies that Φx(e) = Φx(0), i.e., A /Ix = {0} or Ix = A . This is impossible for
x ∈ σA (b) as we have already remarked.

So let x = 0. We conclude from the linear dependence of Φx(pr) and Φx(p jr)
that Φx(p jr) = 0 and, consequently,

Φx ((e− p)r) =Φx( j)Φx(p jp) = 0, Φx (p(e− r)) =Φx(p jr)Φx( j) = 0.

Thus,

Φx(e) =Φx (pr + p(e− r)+(e− p)r +(e− p)(e− r)) =Φx(0),

which is impossible again. Hence, cosets Φx(e1), . . . ,Φx(e4) are linearly indepen-
dent, and the dimension of A /Ix is four.

Now we are in a position to derive the aimed local characterization of the com-
ponents Σ1 and Σ2 of σA (b). Recall that σA (b) = σC (b).

Theorem 3.3.20. The following assertions are equivalent for x ∈ σA (b)\{0,1} :

(i.1) dim A /Ix = 8;
(i.2) Φx(pr) and Φx(p jr) are linearly independent;
(i.3) Φx(b) and Φx(c) are linearly independent;
(i.4) x ∈ Σ2.
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The following assertions are equivalent for x ∈ σA (b) :

(ii.1) dim A /Ix = 4;
(ii.2) Φx(pr) and Φx(p jr) are linearly dependent;
(ii.3) Φx(b) and Φx(c) are linearly dependent;
(ii.4) x ∈ Σ1.

Proof. The equivalences (i.1)⇔(i.2) and (ii.1)⇔(ii.2) are shown in Propositions
3.3.18 and 3.3.19.
(i.1), (i.2)⇒(i.4): If A /Ix is an eight-dimensional vector space, then every coset
Φx(a) (which can be thought of as a multiplication operator on A /Ix) corresponds
to a certain complex 8×8 matrix. Straightforward computation yields

Φx(e) �→ diag(1,1,1,1,1,1,1,1),
Φx(p) �→ diag(1,0,1,0,1,0,1,0),

Φx( j) �→
[

0 J
J 0

]

with J =

⎡

⎢

⎢

⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥

⎥

⎦

,

and

Φx(r) �→ diag(Q1,Q2,Q1,Q2)

with

Q1 =
[

x 1− x
x 1− x

]

, Q2 =
[

x −x
x−1 1− x

]

.

Thus,

Φx(c) =Φx ((pr− rp) j) �→

⎡

⎢

⎢

⎣

0 0 0 C1

0 0 C2 0
0 C1 0 0

C2 0 0 0

⎤

⎥

⎥

⎦

with

C1 =
[

1− x 0
0 −x

]

, C2 =
[

−x 0
0 1− x

]

.

The eigenvalues of the 8×8 matrix corresponding to Φx(c) are y1/2 = ±
√

x(x−1)
as one easily checks. Since x /∈ {0,1}, one has y1 �= y2, i.e., this matrix has two
different eigenvalues, whence x ∈ Σ2.

(ii.1), (ii.2)⇒(ii.3)⇒(ii.4): If the Φx(ei), i = 1, . . . ,8, are linearly dependent then
(as we have checked in Proposition 3.3.18 and its proof) there is an α ∈ C \ {0}
such that

αΦx(pr) = Φx(p jr), (3.66)

αΦx ((e− p)(e− r)) = Φx ((e− p) j(e− r)) . (3.67)
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Multiplying (3.66) (resp. (3.67)) by Φx(p) (resp. Φx(e− p)) from the right-hand
side and adding the equalities we find

αΦx(b) = Φx (prp+(e− p)(e− r)(e− p))
= Φx (p jrp+(e− p) j(e− r)(e− p))
= Φx ((p(e− r)(e− p)+(e− p)rp) j) =Φx(−c)

whence (ii.3). Now (ii.4) is almost evident: the spectrum of Φx(b) is a singleton
(namely {x}), hence σ (Φx(c)) is a singleton, too, i.e., x ∈ Σ1.

(i.4)⇒(i.1): Assume (i.1) to be violated. Then, by Proposition 3.3.19, (ii.1) is
valid, which implies (ii.4) as we have just checked. But (ii.4) contradicts (i.4). The
implications (ii.4)⇒(ii.1) and (i.3)⇒(i.1) follow analogously.

We have seen in Example 3.3.14 that it may happen that c belongs to the algebra
generated by e and b. This is not only a C∗-effect but can be observed in many cases
of practical importance (for example, we will see that Hankel operators with special
piecewise constant generating functions belong to algebras generated by Toeplitz
operators on l p or Lp(R+)). In Section 4.5 one of those cases will be presented. On
the other hand, if 0 or 1 are inner points of σC (b) in C, then c cannot be an element
of alg{e,b}. Indeed, in this case Σ1 cannot coincide with σC (b) since there is no
continuous branch of the square root function in the neighborhood of 0, thus Σ2 is
not empty, but thenΦx(c) andΦx(b) are linearly independent for every x∈ Σ2 by the
preceding theorem. It is still an open question whether c always belongs to alg{b}
whenever Φx(b) and Φx(c) are linearly dependent for every x ∈ σA (b).

3.4 Algebras generated by two projections and a flip which
preserves the orientation

Now we turn our attention to algebras with a flip which preserves the orientation.
Thus, we now let A be a complex Banach algebra with identity element e and with
elements p, r and j satisfying conditions (3.45) and (3.47).

Lemma 3.4.1. The non-closed algebra A 0 generated by p, r and j is a module of
dimension at most 16 over the center C of A 0.

Proof. Let t = (p− r)2 and w = e− 2t. It is not difficult to check that t and w
commute with p and r, and that w2 is in C . Set

z1 = e, z2 = p, z3 = r, z4 = pr, (3.68)

and let D stand for the set of all elements ∑xi(t)zi where the xi are polynomials in t.
The multiplication table
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z1 z2 z3 z4

z1 z1 z2 z3 z4

z2 z2 z2 z4 z4

z3 z3 z2 + z3 − tz1 − z4 z3 (e− t)z3

z4 z4 (e− t)z2 z4 (e− t)z4

shows that D is an algebra. It is easy to see that the algebra D coincides with
alg{p,r}; thus, every element x of alg{p,r} can be written as a linear combination

x1(t)z1 + x2(t)z2 + x3(t)z3 + x4(t)z4. (3.69)

Now let a ∈ A 0. We write a as a = x+y j with x,y ∈ alg{p,r}, then we write x and
y in the form (3.69) with coefficients xi and yi, and finally we write each of these
coefficients in the form xi(t) = xi1(t)(w2)+ xi2(t)(w2)w. Thus,

a =
4

∑
i=1

xi(t)zi +
4

∑
i=1

yi(t)zi j

=
4

∑
i=1

xi1(t)(w2)zi +
4

∑
i=1

xi2(t)(w2)wzi +
4

∑
i=1

yi1(t)(w2)zi j +
4

∑
i=1

yi2(t)(w2)wzi j

which shows the assertion.

Together with Corollary 2.6.22, this lemma implies that there exists a matrix
symbol of order ≤ 4 for the algebra A . Let In stand for the n×n identity matrix and
trA for the trace of the matrix A. The next lemma excludes that A has representa-
tions of order 1 or 3.

Lemma 3.4.2. Let R,J ∈ C
n×n, with R2 = R, J2 = In and JRJ = In −R. Then n is

even.

Proof. From JRJ +R = I we get n = trI = 2trR. Since R is an idempotent, the trace
of R is an integer. Thus, n is even.

In the next sections, we are going to examine the representations of the algebra
A of dimension 4 and 2.

3.4.1 Four-dimensional representations of the algebra A

For x ∈ C\{0, 1
2 , 1}, let Φx : A 0 → C

4×4 be the homomorphism defined by

Φx(p) =

⎡

⎢

⎢

⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤

⎥

⎥

⎦

, Φx( j) =

⎡

⎢

⎢

⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤

⎥

⎥

⎦

, (3.70)
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and

Φx(r) =

⎡

⎢

⎢

⎣

x
√

x(1− x) 0 0
√

x(1− x) 1− x 0 0
0 0 1− x −

√

x(1− x)
0 0 −

√

x(1− x) x

⎤

⎥

⎥

⎦

. (3.71)

Proposition 3.4.3. Let x ∈ C \ {0, 1
2 , 1}. Then Im Φx = C

4×4. Moreover, for each
irreducible four-dimensional representation Φ of A , there is an x ∈ C \ {0, 1

2 , 1}
and a basis of the space of the representation such that Φ =Φx in this basis.

Proof. To prove the first assertion, write q for e− p and set

B := Φx

(

1
√

x(1− x)
(prq+qrp)

)

=

⎡

⎢

⎢

⎣

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎤

⎥

⎥

⎦

,

C := Φx

(

1
2x−1

(prp+(x−1)p)
)

=

⎡

⎢

⎢

⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

,

and J :=Φx( j). From
⎡

⎢

⎢

⎣

x11 x12 0 0
x21 x22 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

= x11C + x12CB+ x21BC + x22BCB

we conclude that every 4× 4 matrix with an arbitrary 2× 2 block in its upper left
corner and zero blocks at the other corners belongs to the range of Φx. The identities

[

0 0
X 0

]

= J

[

X 0
0 0

]

,

[

0 X
0 0

]

=
[

X 0
0 0

]

J, and

[

0 0
0 X

]

= J

[

X 0
0 0

]

J

allow one to move this 2×2 block into one of the other corners of the matrix. Hence,
each 4×4 matrix with a 2×2 block in one of its corners and zero blocks at the other
corners lies in the range of Φx. Since this range is a linear space, we conclude that
Im Φx = C

4×4.
To prove the second assertion of the proposition, let s = 2p− e and h = 2r− e

denote the flips associated with the projections p and r, respectively. Then A =
alg{s,h, j}, and conditions (3.45) and (3.47) are equivalent to

s2 = h2 = j2 = e, js j = s, h jh = − j. (3.72)

Let Φ be an irreducible four-dimensional representation of the algebra A . Since
(Φ( j))2 = (Φ(h))2 = I4 and Φ(h)Φ( j)Φ(h) = −Φ( j), one has trΦ( j) = 0 and



168 3 Banach algebras generated by idempotents

σ(Φ( j)) ⊂ {−1,1}. Hence, in a suitable basis,

Φ( j) =
[

I2 0
0 −I2

]

. (3.73)

Using the equalities (3.72) and (3.73) we then obtain

Φ(h) =
[

0 A
A−1 0

]

and Φ(s) =
[

M1 0
0 M2

]

(3.74)

with 2× 2 blocks A and Mi where A is invertible and M2
i = I2. It easy to check

that the matrices M1 and M2 are diagonalizable. Let S = diag(S1,S2) be a block
diagonal matrix which diagonalizes Φ(s). Then the matrices S−1Φ( j)S, S−1Φ(h)S
and S−1Φ(s)S have still the same block structure as in (3.73) and (3.74). We can
thus assume, without loss of generality, that the Mi are diagonal matrices with
M2

i = I2.
If M1 = ±I2, then each of the matrices Φ(s), Φ(h) and Φ( j) is of the form

[

AD11A−1 AD12

D21A−1 D22

]

(3.75)

with 2×2 diagonal matrices Dik. One easily checks that the set of all matrices of the
form (3.75) constitutes a proper subalgebra of C

4×4. Thus, alg{Φ(s),Φ(h),Φ( j)} �=
C

4×4, and the representationΦ is reducible, which contradicts the hypothesis thatΦ
is an irreducible four-dimensional representation. Consequently, M1 = diag(1,−1),
and in a similar way one gets M2 = diag(1,−1).

Next we show that none of the entries aik of A is zero. Suppose that a11 = 0. Then
each of the matrices Φ(s), Φ(h) and Φ( j) is of the form

⎡

⎢

⎢

⎣

∗ 0 0 ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ 0 0 ∗

⎤

⎥

⎥

⎦

. (3.76)

The set of all matrices of this form is a proper subalgebra of C
4×4; hence Φ is

reducible, a contradiction. Analogously, if the entry a12, a21 or a22 is zero, then
alg{Φ(s),Φ(h),Φ( j)} is contained in a subalgebra of C

4×4 consisting of all matri-
ces of the form

⎡

⎢

⎢

⎣

∗ 0 ∗ 0
∗ ∗ ∗ ∗
∗ 0 ∗ 0
∗ ∗ ∗ ∗

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

∗ ∗ ∗ ∗
0 ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗

⎤

⎥

⎥

⎦

or

⎡

⎢

⎢

⎣

∗ ∗ ∗ ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ ∗ ∗ ∗

⎤

⎥

⎥

⎦

,

respectively, which is again impossible under our hypotheses. Thus, all entries of A
are non-zero. But then there exists an invertible diagonal matrix T such that
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TΦ(h)T−1 =
[

0 N
N 0

]

where N =
[

α β
β α

]

(3.77)

with complex numbers α and β such that α2 + β 2 = 1 and αβ �= 0. To get the
second assertion of the proposition, set α = 2x−1 and Φx(a) := HΦ(a)H−1 where
Φ(s), Φ(h) and Φ( j) are defined by (3.73) and (3.74), M1 = M2 = diag(1,−1), and
H = KT with

K =
1√
2

[

I2 I2

I2 −I2

]

.

It is not difficult to check that then Φx(p), Φx( j) and Φx(r) are of the form (3.70)
and (3.71), respectively. Note that the conditions αβ �= 0 and α2 + β 2 = 1 imply
that x �∈ {0, 1

2 , 1}.

Remark 3.4.4. The representation Φ1−x is equivalent to Φx; precisely,

Φ1−x(a) =Φx( js)Φ(a)Φx( js)−1

for every a ∈ A . Moreover, if the square root
√

x(1− x) in the definition of Φx

is substituted by −
√

x(1− x), then we obtain a representation Φ−
x which is again

equivalent to Φx via Φ−
x (a) =Φx(s)Φ(a)Φx(s)−1. �

3.4.2 Two-dimensional representations of the algebra A

For k ∈ {−2, −1, 1, 2}, letΨk : A 0 → C
2×2 be the homomorphism defined by

Ψ−2(p) :=
[

0 0
0 1

]

,Ψ−1(p) :=
[

0 0
0 0

]

, Ψ1(p) :=
[

1 0
0 1

]

, Ψ2(p) :=
[

1 0
0 0

]

,

Ψk(r) :=
1
2

[

1 1
1 1

]

and Ψk( j) :=
[

1 0
0 −1

]

(3.78)

The proof of the following proposition is straightforward and left as an exercise.

Proposition 3.4.5. Let k ∈ {−2, −1, 1, 2}. Then ImΨk = C
2×2. Moreover, for each

irreducible two-dimensional representation Ψ of A , there is a k ∈ {−2, −1, 1, 2}
and a basis in the space of the representation such thatΨ =Ψk in this basis.

Remark 3.4.6. From Proposition 3.4.3 we infer that the representations Φx are re-
ducible for x ∈ {0, 1

2 , 1}. Further, Φ0 and Φ1 are equivalent by Remark 3.4.4. The
relations between Φ1/2, Φ1 andΨk for k ∈ {−2, −1, 1, 2} are given by

Φ1/2 = R−1
1

[

Ψ1 0
0 Ψ−1

]

R1 and Φ1 = R−1
2

[

Ψ−2 0
0 Ψ2

]

R2 (3.79)
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with

R1 :=
1√
2

⎡

⎢

⎢

⎣

1 0 1 0
1 0 −1 0
0 1 0 1
0 −1 0 1

⎤

⎥

⎥

⎦

and R2 :=
1√
2

⎡

⎢

⎢

⎣

1 0 1 0
0 1 0 −1
0 1 0 1
1 0 −1 0

⎤

⎥

⎥

⎦

.

�

3.4.3 Main results

We are able now to state the main results regarding algebras generated by two idem-
potents and an orientation preserving flip of order 2.

Theorem 3.4.7 (Krupnik, Spigel). Let A be a Banach algebra generated by ele-
ments p, r and j which satisfy (3.45) and (3.47). Set σprp := σA (prp) \ {0, 1

2 , 1}
and σ := σA (b)∩{−2, −1, 1, 2} where b = s+2 j(rs+sr)+sr−rs and s = 2p−e.
Then:

(i) the algebra A has a matrix symbol of order 4;
(ii) for any x ∈ σprp and k ∈ σ , the homomorphisms Φx defined in (3.70) andΨk

defined in (3.78) can be extended to the algebra A ;
(iii) the set of homomorphisms

{Φx}x∈σprp ∪{Ψk}k∈σ (3.80)

is a matrix symbol of order 4 for A .

Proof. By Lemma 3.4.1, the non-closed algebra A 0 generated by p, r and j is a
module of dimension at most 16 over its center. Hence, by Corollary 2.6.22, there
is a matrix symbol of order n ≤ 4 for A , that is, there exists a set {ντ} of repre-
sentations of dimension l(τ) ≤ 4. By Lemma 3.4.2, these representations must be
of dimension two or four. We described these representations in Propositions 3.4.3
and 3.4.5. In particular, we have seen that there are sets Σ1(p,r, j) ⊂ C \ {0, 1

2 , 1}
and Σ2(p,r, j) ⊂ {−2, −1, 1, 2} such that

{Φx}x∈Σ1 ∪{Ψk}k∈Σ2 (3.81)

is a matrix symbol of order 4 for A .
It remains to identify the sets Σ1 and Σ2. The spectrum σA (prp) is related with

the spectra of Φx andΨk by

σA (prp) =
⋃

x∈Σ1

σ(Φx(prp))∪
⋃

k∈Σ2

σ(Ψk(prp))

= {0}∪Σ1 ∪ ̂Σ1 ∪
⋃

k∈Σ2

σ(Ψk(prp)),
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where ̂Σ1 := 1−Σ1 and ∪k∈Σ2σ(Ψk(prp)) ⊂ {0, 1
2 , 1}. Since

Σ1 ∪ ̂Σ1 ∩
{

0,
1
2
, 1

}

= /0,

we conclude that σA (prp) \ {0, 1
2 , 1} = Σ1 ∪ ̂Σ1. But Φx and Φ1−x are equivalent

representations by Remark 3.4.4. Hence, Σ1 can be taken as σA (prp) \ {0, 1
2 , 1}.

Concerning Σ2, note that

σA (b) =
⋃

x∈Σ1

σ(Φx(b))∪
⋃

k∈Σ2

σ(Ψk(b)).

A straightforward computation yields that σ(Ψk(b))∩{−2, −1, 1, 2}= {k} for k =
−2,−1,1,2 and σ(Φx(b))∩ {−2, −1, 1, 2} = /0 for x ∈ Σ1, whence the equality
Σ2 = σA (b)∩{−2, −1, 1, 2}.

Corollary 3.4.8. Let A be a Banach algebra generated by elements p, r and j
which satisfy (3.45) and (3.47), and assume that each of the numbers 1

2 and 1 is ei-
ther a regular point of prp or a non-isolated point of σA (prp). Let a,b ∈ alg{p,r}.
Then a+b j is invertible if and only if a−b j is invertible.

Proof. Let 1 be a regular point of prp. Since 1∈σ(Ψ1(prp)) and 1∈σ(Ψ−1(prp)),
this implies that ±1 �∈ σ . Analogously, if 1

2 is a regular point of prp, then ± 1
2 �∈ σ .

Now assume that 1 is a point of σA (prp) which is not isolated. Then there
exists a sequence {λn} in σA (prp) with λn �= 1 for each n which tends to 1.
Since

σ(Φλn(qrq)) = σ(Φλn(prp))

for q = e− p, we have λn ∈ σA (qrq), whence 1 ∈ σA (qrq). It is easy to check that,
for x ∈ Σ1,

1 �∈ σ(Φx(prp)) and 1 �∈ σ(Φx(qrq)).

Moreover,

1 �∈
⋃

k∈Σ2\{1}
σ(Ψk(prp)) and 1 �∈

⋃

k∈Σ2\{1}
σ(Ψk(qrq)).

Thus ±1 ∈ σ , and one can replace the two irreducible representationsΨ±1 in (3.81)
by the reducible representation Φ1.

Finally, let 1
2 be a point in σA (prp) which is not isolated. Let {λn} ⊂ σA (prp)

be a sequence with λn �= 1
2 which tends to 1

2 . For every a∈A 0, one has σ(Φλn(a))⊂
σA (a) and, thus, σ(Φ 1

2
(a)) ⊂ σA (a). Put a = prp + j. It is then easy to check

that
{

−1
2
,

3
2

}

⊂ σ
(

Φ 1
2
(prp+ j)

)
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and
{

−1
2
,

3
2

}

∩σ(Φx(prp+ j)) = /0

for x �= 1
2 . Also one has

{

−1
2
,

3
2

}

∩σ(Ψ±2(prp+ j)) = /0

and

σ(Ψ2(prp+ j)) =
{

0,
3
2

}

, σ(Ψ−2(prp+ j)) =
{

−1
2
,1

}

.

We conclude that ±2 ∈ σ and that the representations Ψ±2 can be replaced by the
representation Φ1/2. Thus the set {Ψx}x∈σA (prp) is a matrix symbol for A . To get
the assertion note that, for arbitrary elements a,b ∈ alg{p,r},

detΨx(a+b j) �= 0 ⇔ detΨx(a−b j) �= 0;

so a+b j is invertible if and only if the same is true for a−b j.

Remark 3.4.9. By Theorem 3.1.4, the algebra alg{p,r} possesses a matrix symbol
of order 2, say {ϒx}x∈X . The equality

[

a+b j 0
0 a−b j

]

=
1
2

[

e j
e − j

][

a b
jb j ja j

][

e e
j − j

]

(3.82)

then shows that the homomorphisms

ϒ̃x : A → C
l(x)×l(x), ϒ̃x(a+b j) :=

[

ϒx(a) ϒx(b)
ϒx( jb j) ϒx( ja j)

]

constitute a matrix symbol of order 4 for A . �

3.5 Coefficient algebras

One possible extension of the results for algebras generated by idempotents needed
for applications concerns the multidimensional case. It happens that this case can be
considered by the introduction of a coefficient algebra. We will show the proof in
detail for the two projections theorem, and enunciate without proof the generalized
results for other cases.
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3.5.1 A general version of the two projections theorem

We start by extending the notion of a symbol mapping defined in Section 1.2.1.
Let A , B, C and D be unital Banach algebras with A ⊆ B and C ⊆ D , and let
W : B → D be a bounded linear mapping. This mapping is called a symbol map for
A if:

(i) W (A ) ⊆ C ;
(ii) W (e) = e;

(iii) W (a)W (b) = W (ab) and W (b)W (a) = W (ba) for all a ∈ A and b ∈ B;
(iv) the invertibility of W (a) in D implies the invertibility of a in B for all a ∈ A .

The element W (a) is then referred to as the symbol of a. If W is a symbol map and
a ∈ A is invertible in B then, by (ii) and (iii), the symbol W (a) of a is invertible in
D . Since the reverse implication holds by (iv), we have

σB(a) = σD (W (a)) for all a ∈ A . (3.83)

We write smb(A ,B;C ,D) for the set of all symbol maps in the sense of (i)–
(iv) and abbreviate smb(A ,A ;C ,D) to smb(A ;C ,D) and smb(A ,A ;D ,D) to
smb(A ;D). The elements of the latter set are exactly the bounded homomorphisms
from A into D to which we referred earlier as symbols. The need to generalize
the earlier notion of a symbol comes from the idea of embedding A into a larger
algebra, B, and to study the invertibility of elements of A in B. Note that the sub-
algebra A of B is inverse-closed if and only if the embedding operator from A
into B belongs to smb(A ;B). It is obvious that

smb(A ,B;C ,D) ⊆ smb(A ,B;D) (3.84)

for all subalgebras C of D and that

smb(A ,B;C ) ⊆ smb(A ,B;C ,D) (3.85)

whenever C is inverse-closed in D . The latter inclusion is also a consequence of the
general implication

W1 ∈ smb(A ,B;C ,D), W2 ∈ smb(C ,D ;E ,F ) ⇒W2 ◦W1 ∈ smb(A ,B;E ,F ).
(3.86)

Given Banach algebras C1 and C2, we denote by C1 ×C2 the Banach algebra
of all ordered pairs (c1,c2) with c1 ∈ C1, c2 ∈ C2, provided with component-wise
operations and the norm ‖(c1,c2)‖ := max{‖c1‖, ‖c2‖}. Likewise one can think of
the pair (c1,c2) as the diagonal matrix diag(c1,c2).

Now let A be a unital Banach algebra with identity element e, let p and r be
idempotents in A , and let G be a unital subalgebra of A the elements of which
commute with p and r. Let B denote the smallest closed subalgebra of A which
contains the algebra G and the idempotents p and r. The elements of G will play
the role of coefficients in what follows.
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As in Section 3.1 one observes that the element2 c̃ := (p− r)2 = p + r − pr −
rp commutes with both p and r and therefore with all elements of B. Hence, the
smallest closed subalgebra alg{c̃} of B which contains c̃ and the identity element
e is a central subalgebra of B, a fact which offers the applicability of Allan’s local
principle in this context.

Before stating the general version of the two projections theorem we have to
introduce some more notation. We let D stand for the commutant of the element c̃
in A , that is

D := {d ∈ A : c̃d = dc̃}.

Obviously, D forms a closed subalgebra of A , D is inverse-closed in A , and D
contains B. Thus, the problem of investigating invertibility of elements of B in A
can be reduced to studying invertibility of elements of B in D .

Further, it is immediate from the definition of D that alg{c̃} is a central subal-
gebra of D . Since this subalgebra is singly generated, the maximal ideal space of
alg{c̃} can be identified with the spectrum of c̃ in alg{c̃} by Exercise 2.1.3.

For every maximal ideal t of alg{c̃}, we let It stand for the smallest closed ideal
of D which contains t, and we write Dt for the quotient algebra D/It , bt for the
coset b+It which contains the element b ∈ D , and Bt and Gt for the images of B
and G under the canonical homomorphism b �→ bt . Note that It = D whenever t
belongs to the spectrum of c̃ in alg{c̃} but not to the spectrum of c̃ in D by Propo-
sition 2.2.9. It is thus sufficient to consider the above definitions for maximal ideals
t ∈ σA (c̃).

In order to avoid some technicalities regarding the one-dimensional representa-
tions of the algebra, let us suppose here and hereafter that

0,1 ∈ C are not isolated points of σA (c̃). (3.87)

In the case that the intersection σA (c̃)∩{0,1} is not empty we further require that

Bt is inverse-closed in Dt for t ∈ σA (c̃)∩{0,1}. (3.88)

If 0 ∈ σA (c̃), then we let Ĩ0 refer to the smallest closed ideal of B0 which contains
the element (p− r)0. Possibly, this ideal consists of the zero element only. Later on
we shall see that Ĩ0 is always proper. Further we let I00 and I01 stand for the smallest
closed ideals of the quotient algebra B0/Ĩ0 which contain the cosets e0 − p0+r0

2 + Ĩ0

and p0+r0
2 + Ĩ0, respectively. We write B00 and B01 for the algebras (B0/Ĩ0)/I00

and (B0/Ĩ0)/I01, and we let a00 and a01 stand for the cosets (a0 + Ĩ0) + I00 and
(a0 + Ĩ0)+ I01, respectively.

Analogously, if 1∈σA (c̃), then Ĩ1 refers to the smallest closed ideal of B1 which
contains (e− p−r)1, and I10 and I11 denote the smallest closed ideals of B/Ĩ1 which
contain the elements e1−p1+r1

2 + Ĩ1 and e1+p1−r1
2 + Ĩ1, respectively. The quotient al-

gebras (B1/Ĩ1)/I10 and (B1/Ĩ1)/I11 will be abbreviated to B10 and B11, and the
cosets (a1 + Ĩ1)+ I10 and (a1 + Ĩ1)+ I11 to a10 and a11, respectively.

2 This element is equal to the element e− c of Section 3.1, and it plays a similar role. To use c or
c̃ = e− c is a question of convenience depending on the context.
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Finally, let F stand for the algebra of all bounded functions on σA (c̃) which
take a value in D2×2

t at the point t ∈ σA (c̃) \ {0,1} and a value in Bt0 ×Bt1 at
t ∈ σA (c̃)∩{0,1}.

Theorem 3.5.1. Let the algebras A ,B,D ,G and the elements p,r be as above,
and suppose that the hypotheses (3.87) and (3.88) are fulfilled. Then there exists a
symbol map

Φ ∈ smb(B,D ;F ),

and this map can be chosen such that it sends the elements g ∈ G , p, and r to the
functions

t �→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

1 0
0 1

]

gt if t ∈ σA (c̃)\{0,1},
[

gt0 0
0 gt1

]

if t ∈ σA (c̃)∩{0,1},

t �→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

1 0
0 0

]

et if t ∈ σA (c̃)\{0,1},
[

et0 0
0 0

]

if t ∈ σA (c̃)∩{0,1},

t �→

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

1− t
√

t(1− t)
√

t(1− t) t

]

et if t ∈ σA (c̃)\{0,1},
[

et0 0
0 0

]

if t ∈ σA (c̃)∩{0},
[

0 0
0 et1

]

if t ∈ σA (c̃)∩{1},

respectively. Herein,
√

t(1− t) refers to an arbitrarily chosen complex number the
square of which is t(1− t).

Taking into account the inverse-closedness of D in A one can rephrase the as-
sertion of Theorem 3.5.1 as follows: An element a ∈B is invertible in A if and only
if its symbol Φ(a) is invertible in F .

Proof. We shall verify the existence of symbol maps

Φt ∈ smb(Bt ,Dt ;D
2×2
t ) if t ∈ σA (c̃)\{0,1}

and
Φt ∈ smb(Bt ,Bt ;Bt0 ×Bt1) if t ∈ σA (c̃)∩{0,1}

which send the cosets gt ∈ Gt , pt and rt to the matrices

[

1 0
0 1

]

gt ,

[

1 0
0 0

]

et ,

[

1− t
√

t(1− t)
√

t(1− t) t

]

et (3.89)

if t ∈ σA (c̃)\{0,1}, to
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[

gt0 0
0 gt1

]

,

[

et0 0
0 0

]

,

[

et0 0
0 0

]

(3.90)

if t ∈ σA (c̃)∩{0}, and to
[

gt0 0
0 gt1

]

,

[

et0 0
0 0

]

,

[

0 0
0 et1

]

(3.91)

if t ∈ σA (c̃)∩{1}. Once this is done, then Allan’s local principle will imply that the
mapping Φ which sends the element b ∈ D to the function

t �→Φt(bt) (3.92)

is the desired symbol map, and we are done.
Consider the elements N := e− p− r and S := p− r. One easily checks that

S2 +N2 = e and SN +NS = 0. (3.93)

We first suppose that t ∈ σA (S2) \ {0,1}. Then tet − S2
t = 0, that is S2

t = tet , and
from (3.93) we conclude that N2

t = (1− t)et . Choose complex numbers α and β
such that α2 = t and β 2 = 1− t, and set st := 1

α St and nt := 1
β Nt . Then

s2
t = n2

t = et and stnt +ntst = 0. (3.94)

Consider the mapping

ηt : Dt → D2×2
t , bt �→

1
2

[

et et

nt −nt

][

et 0
0 st

][

bt 0
0 bt

][

et 0
0 st

][

et nt

et −nt

]

. (3.95)

The matrices standing on the left- and right-hand side of the diagonal matrix
diag(bt ,bt) in (3.95) are inverse to each other. Thus, ηt is a bounded algebra ho-
momorphism, and we claim that ηt is even a symbol map, precisely

ηt ∈ smb(Dt ;D
2×2
t ).

Indeed, if ηt(bt) is invertible in D2×2
t , then the diagonal matrix diag(bt ,bt) is in-

vertible in D2×2
t and, hence, bt is invertible in Dt . Let us emphasize that ηt maps

gt ∈ Gt , st , and nt to the matrices
[

gt 0
0 gt

]

,

[

st 0
0 −st

]

,

[

0 et

et 0

]

(3.96)

respectively. For the next step, let p+, p−, and j abbreviate the matrices

1
2

[

et + st 0
0 et + st

]

,
1
2

[

et − st 0
0 et − st

]

,

[

0 et

et 0

]

,

respectively, and define a mapping μt by
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μt : Dt → D2×2
t , bt �→ p+ηt(bt)p+ + p− jηt(bt) jp−.

We are going to show that μt is a symbol map, more exactly,

μt ∈ smb(Bt ,Dt ;D
2×2
t ). (3.97)

It is evident that μt is a linear bounded operator from Dt into D2×2
t . Taking into

account that p2
+ = p+, p2

− = p−, j2 = et and p+ + p− = et , it is also obvious that μt

is unital. Let us verify the semi-multiplicativity condition (iii), that is, given at ∈Bt

and bt ∈ Dt we have to show that

μt(at)μt(bt) = μt(atbt) and μt(bt)μt(at) = μt(btat). (3.98)

Explicitly written, the left-hand side of the first of these identities equals

(p+ηt(at)p+ + p− jηt(at) jp−)(p+ηt(bt)p+ + p− jηt(bt) jp−)
= p+ηt(at)p+ηt(bt)p+ + p− jηt(at)p−ηt(bt) jp−. (3.99)

Now use that p+ and p− commute with each element of ηt(Bt), which comes from
the fact that the cosets gt ∈ Gt , st , and nt span the whole algebra Bt and from the
special form of the matrices (3.96). Thus, the element of (3.99) is equal to

p+ηt(at)ηt(bt)p+ + p− jηt(at)ηt(bt) jp−,

which coincides with μt(atbt) by definition. The second identity in (3.98) follows
analogously. It remains to show that invertibility of μt(at) in D2×2

t implies that of
at in Dt for all at ∈ Bt or, equivalently since ηt is a symbol map, that of ηt(at) in
D2×2

t . Let m ∈ D2×2
t be the inverse of μt(at). A straightforward computation gives

p+μt(at)p+ + p− jμt(at) jp− = ηt(at)

for all at ∈ Bt . Thus,

ηt(at)(p+mp+ + p− jm jp−)
= (p+μt(at)p+ + p− jμt(at) jp−)(p+mp+ + p− jm jp−)
= p+μt(at)mp+ + p− jμt(at)m jp−
= diag(et , et),

which implies the invertibility of ηt(at) in D2×2
t and

ηt(at)−1 = p+mp+ + p− jm jp−.

This proves (3.97). To finish the proof in the case that t ∈ σA (S2)\{0,1} we choose
complex numbers γ and δ such that γ2 = 1 +α and δ 2 = 1−α and define a 2×2
matrix d by

d :=
1√
2

[

γ −δ
−δ −γ

]

et .
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Since d2 = diag(et , et), it is obvious that the mapping

Φt : Dt → D2×2
t , bt �→ dμt(bt)d

belongs to smb(Bt ,Dt ;D2×2
t ), and a direct computation yields that Φt(gt), Φt(pt)

and Φt(rt) are just the matrices (3.89).
Now let t = 0 ∈ σA (S2). Then one can argue as above to get that S2

0 = 0. Thus,
S0 and N0 are subject to the relations

S2
0 = 0, N2

0 = e0, S0N0 +N0S0 = 0. (3.100)

If a0 ∈ B0 is invertible in D0, then a0 is also invertible in B0 by hypothesis (3.88).
Our first claim is that the canonical homomorphism

ν0 : B0 → B0/Ĩ0, a0 �→ a0 + Ĩ0

is a symbol map, precisely

ν0 ∈ smb(B0;B0/Ĩ0). (3.101)

For, it is sufficient to show that the ideal Ĩ0 belongs to the radical of B0 or, since Ĩ0 is
generated by the element S0 = p0 − r0, that S0 belongs to that radical. Equivalently,
by Proposition 1.3.3, we have to show that e0 + a0S0 is left invertible in B0 for all
a0 ∈ B0. But the invertibility of that element follows from

(e0 −a0S0)(e0 +a0S0) = e0 −a0S0a0S0 = e0

(note that each element a0 ∈ B0 can be approximated by elements of the form
g1

0e0 +g2
0S0 +g3

0N0 +g4
0S0N0 with gi

0 ∈G0 and then use (3.100) to obtain a0S0a0S0 =
0).

Let p+ and p− stand for the elements ν0(
e0+N0

2 ) and ν0(
e0−N0

2 ) in B0/Ĩ0. Since
N2

0 = e0, p+ and p− are complementary idempotents. We claim that these idem-
potents are non-trivial, that is, neither p+ nor p− is the identity element. Indeed,
suppose p+ is the identity, hence invertible. Then e0+N0

2 is an invertible element of
B0 by (3.101). Since e0+N0

2 is an idempotent, this implies that e0+N0
2 = e0 or, equiv-

alently, N0 = e0. Since one also has S2
0 = 0, these two identities combine to give

p0 = r0 = 0. Consequently, the element e0 − p0 is invertible in B0. Then Proposi-
tion 2.2.3 (i) ensures that et − pt is invertible in Dt for all t ∈ σA (S2) which belong
to a certain neighborhood of 0 (note that such points exist by hypothesis (3.87)).
But, as we have already seen,

Φt(et − pt) =
[

0 0
0 et

]

which fails to be invertible. This contradiction shows that p+ is not the identity. The
assertion for p− follows similarly.
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Now a little thought shows that each element of B0/Ĩ0 can be approximated by
elements of the form

(g+
0 + Ĩ0)p+ +(g−0 + Ĩ0)p− with g+

0 , g−0 ∈ G0. (3.102)

Hence, the set of all complex linear combinations α p+ +β p− forms a central sub-
algebra of B0/Ĩ0, and one can study the invertibility of the elements (3.102) by
employing Allan’s local principle again. Since the central subalgebra is singly gen-
erated by p+, its maximal ideal space is homeomorphic to the spectrum of p+, and
the latter equals {0,1} because of the non-triviality of p+. The corresponding “lo-
cal ideals” are just the ideals I00 and I01 introduced above. Hence, by Allan’s local
principle, an element a0 ∈B0 is invertible in B0 if and only if (a0 + Ĩ0)+ I00 =: a00

is invertible in B00 and (a0 + Ĩ0)+ I01 =: a01 is invertible in B01 or, equivalently, if
the diagonal matrix

diag(a00, a01) (3.103)

is invertible in B00 ×B01. The simple observation that the homomorphism which
assigns to a0 ∈ B0 the matrix (3.103) sends the elements g0 ∈ G0, p0 and r0 to
the matrices (3.90), respectively, completes the proof for t = 0. In the case t = 1 ∈
σA (S2), the proof runs analogously.

Let us complete this result by a few corollaries. The first observation is that an
analog of Corollary 3.1.5 of Theorem 3.1.4 holds in the present setting as well. In
particular, one has the following.

Corollary 3.5.2. Let Dp and De−p be the Banach algebras {pbp : b ∈ D} and
{(e− p)b(e− p) : b ∈ D}, respectively. If {0,1} ⊂ σDp(prp), then

σD (c) = σDp(prp) = σDe−p((e− p)(e− r)(e− p)).

The proof is the same as that of Corollary 3.1.5.
The next corollary concerns the repeated factorization at the points 0 and 1 which

seems to make the whole story rather non-transparent. This impression will be mod-
erated by showing that the quotient algebras by the ideals Ĩ0 are always of a simple
structure.

Corollary 3.5.3. The algebra B0 is the direct sum of its subalgebra which is gen-
erated by G0 and N0 and of the ideal Ĩ0,

B0 = alg{G0, N0}� Ĩ0.

In particular, the quotient algebra B0/Ĩ0 is isomorphic to alg{G0, N0}.

Proof. Now let p+ and p− stand for the idempotents e0+N0
2 and e0−N0

2 , respectively,
and define a mapping ω : B0 → B0 by

ω(a0) =: p+a0 p+ + p−a0 p−.
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Straightforward computation shows that ω is a homomorphism and, since p+ and
p− are complementary idempotents, that ω(ω(a0)) = ω(a0) for all a0 ∈ B0. The
identity ω2 = ω implies that B0 decomposes into the direct sum

B0 = Im ω�Ker ω .

Noting that ω(g0) = g0 for g0 ∈ G0, ω(N0) = N0, and ω(S0) = 0, we find that
Im ω = alg(G0, N0) and Ker ω ⊇ Ĩ0. Now recall that each element of B0 can be
approximated by elements of the form g1

0e0 + g2
0S0 + g3

0N0 + g4
0S0N0 with gi

0 ∈ G0.
Since the elements of this form belong evidently to alg{G0,N0}+ Ĩ0, we conclude
that Ker ω ⊆ Ĩ0.

There are situations where no further factorization at 0 and 1 is needed.

Corollary 3.5.4. Let the hypotheses be as in Theorem 3.5.1 and suppose moreover
that

Gt is simple for t ∈ σA (S2)∩{0,1}. (3.104)

Then there exists a symbol map Φ ∈ smb(B,G ;F ), where now F stands for the
algebra of all functions on σA (S2) which take a value in D2×2

t at t ∈ σA (S2). The
map Φ sends the elements g ∈ G , p and r to the functions

t �→
[

1 0
0 1

]

gt , t �→
[

1 0
0 0

]

et and t �→
[

1− t
√

t(1− t)
√

t(1− t) t

]

et ,

respectively.

Proof. The proof rests on the simple fact that if C1 and C2 are Banach algebras and
H : C1 → C2 is a bounded homomorphism then Im H is isomorphic to C1/Ker H.
If, moreover, C1 is simple then either Ker H = {0} or Ker H = C1; hence, Im H is
either isomorphic to C1, or Im H = {0}. Thus, if G0 is simple, then G00 is either
isomorphic to G0, or it consists of the zero element only. But the latter is impos-
sible since p+ and p− generate proper ideals as we have already seen. Hence, G00

is isomorphic to G0, and applying this isomorphism to the symbol map quoted in
Theorem 3.5.1 we obtain the assertion.

In the case that G is simple, the same arguments show that (3.104) is satisfied.
In particular, Corollary 3.5.4 holds if the coefficient algebra G is C

k×k, i.e., in the
matrix case.

To avoid misunderstandings, let us mention a formal difference between Theo-
rems 3.1.4 and 3.5.1. In Theorem 3.1.4, the central role is played by the element
prp +(e− p)(e− r)(e− p) = e− p− r + pr + rp, in contrast to the element S2 in
Theorem 3.5.1. Since both elements are related by

prp+(e− p)(e− r)(e− p) = e−S2,

we have
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σA (prp+(e− p)(e− r)(e− p)) = 1−σA (S2)

which implies that the symbol maps of Theorems 3.1.4 and 3.5.1 can be transformed
into each other by substituting t ↔ 1− t. One possible reason to prefer to work
with the element prp+(e− p)(e− r)(e− p) is that the spectra of prp+(e− p)(e−
r)(e− p) and prp coincide under suitable conditions and that prp can quite often be
identified with a local Toeplitz operator. And the spectra of local Toeplitz operators
are known in many situations.

Finally we discuss the inverse-closedness of B in D .

Corollary 3.5.5. Let the hypotheses be as in Theorem 3.5.1 and suppose moreover
that

σA (S2) = σB(S2) (3.105)

and

G 2×2
t is inverse-closed inD2×2

t for t ∈ σA (S2)\{0,1}. (3.106)

Then B is inverse-closed in D , and the homomorphism Φ from Theorem 3.5.1 is a
symbol map in smb(B;F ).

Proof. Let Φ refer to the symbol map established in Theorem 3.5.1, and write Φ ′

for the symbol map which results from the same theorem by choosing A := F .
Both mappings coincide on B because of (3.105), and it is easy to see that Φt(a)
and Φ ′

t (a) belong to G 2×2
t for all t ∈ σA (S2)\{0,1} and all a ∈ B. Thus, if a ∈ B

is invertible in D , then Φt(a) is invertible in D2×2
t and, by (3.106), also in G 2×2

t .
The latter implies the invertibility of Φ ′

t (a) in G 2×2
t and, consequently, that of a in

B.

We conclude by an inverse-closedness result which is based on Corollary 1.2.32.
Note that, if G is isomorphic to C

k×k, then G is simple, and the elements of G and
G 2×2 have thin (actually, discrete) spectra.

Corollary 3.5.6. Let A ,B,D ,G and p,r be as above, suppose (3.87) and (3.105)
to be fulfilled, and let G be isomorphic to C

k×k. Then there exists a symbol map
Φ ∈ smb(B,D ;F ) where now F stands for the algebra of all functions on σA (c)
with values in C

2k×2k. The map Φ sends the elements g ∈ G ∼= C
k×k, p and r to the

matrix functions

t �→
[

g 0
0 g

]

, t �→
[

e 0
0 0

]

and t �→
[

(1− t)e
√

t(1− t)e
√

t(1− t)e te

]

where e stands for the k×k unit matrix. Moreover, B is inverse-closed in D , and Φ
belongs to smb(B;F ).
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3.5.2 N projections theorem

Again let A be a Banach algebra with identity e, let {pi}2N
i=1 be a partition of unity

into projections and P be an idempotent in A such that the axioms (3.5) and (3.6)
hold. The smallest closed subalgebra of A containing the partition {pi} as well
as the element P will be denoted by B again. Suppose G is a simple and closed
subalgebra of A containing e and having the property that

pig = gpi and gP = Pg for all i = 1, . . . ,2N and g ∈ G .

The algebra G is the coefficient algebra. It is possible to derive a version of Theorem
3.2.4 which provides us with an invertibility symbol for the smallest closed subalge-
bra C of A which contains the partition {pi}, the idempotent P and the algebra G .
Here is the formulation of such a version.

Theorem 3.5.7. Let C be as above and let G be simple.

(i) If x ∈ σB(X)\{0, 1}, then the mapping

Fx : {P, p1, . . . , p2N}∪G → G 2N×2N

given by
Fx(pi) = diag(0, . . . , 0, I, 0, . . . , 0),

with the I standing at the ith place,

Fx(P) = diag(I, −I, I, −I, . . . , I, −I)×
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x x−1 x−1 x−1 · · · x−1 x−1
x x−1 x−1 x−1 · · · x−1 x−1
x x x x−1 · · · x−1 x−1
x x x x−1 · · · x−1 x−1
...

...
...

...
. . .

...
...

x x x x · · · x x−1
x x x x · · · x x−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and

Fx(g) = diag(g, g, . . . , g),

extends to a continuous algebra homomorphism from C onto G 2N×2N.
(ii) If m ∈ σB(Y )∩{1, . . . , 4N}, then the mapping

Gm : {P, p1, . . . , p2N}∪G → G

given by
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G4m(pi) :=
{

I if i = 2m,
0 if i �= 2m,

G4m(P) = 0,

G4m−1(pi) :=
{

I if i = 2m,
0 if i �= 2m,

G4m−1(P) = I,

G4m−2(pi) :=
{

I if i = 2m−1,
0 if i �= 2m−1,

G4m−2(P) = I,

G4m−3(pi) :=
{

I if i = 2m−1,
0 if i �= 2m−1,

G4m−3(P) = 0,

where m = 1, . . . , N, and by Gm(g) = g extends to a continuous algebra ho-
momorphism from C onto G .

(iii) An element C ∈ C is invertible in C if and only if the matrices Fx(C) are
invertible for all x ∈ σB(X)\{0, 1} and the elements Gm(C) are invertible for
all m ∈ σB(Y )∩{1, . . . , 4N}.

(iv) An element C ∈ C is invertible in A if and only if the matrices Fx(C) are
invertible for all x ∈ σA (X)\{0, 1} and the elements Gm(C) are invertible for
all m ∈ σA (Y )∩{1, . . . , 4N}.

Observe that the conditions of the theorem are satisfied if, for example, G is the
algebra C

n×n which yields just the matrix version of Theorem 3.2.4. It is possible to
consider also the case where G is not simple. In [55] the case for the two projections
theorem with a coefficient algebra was resolved, and the techniques used therein are
applicable to the N projections case.

3.5.3 Two projections and a flip

Let F be a Banach algebra with identity element e. Let p, r, j be elements of F
satisfying the axioms (3.45) and (3.46). Let G be a unital subalgebra of F the ele-
ments of which commute with p, r and j. Denote the smallest closed subalgebra of
F containing G , p, r and j by AG . We are interested in criteria for the invertibility
of elements from AG in F . We embed it into a larger subalgebra of F . Let H
stand for the set

{ f ∈ F : f b = b f and f c = c f} , (3.107)

where b and c are defined by (3.53) and (3.54). H forms a closed subalgebra of F .
Moreover, H is inverse-closed in F and contains AG . Thus, the problem has been
reduced to the study of the invertibility of elements from AG in H . Now extend the
mapping w from (3.51) to the algebra H ,

w : H → H 2×2, a �→
[

w11(a) w12(a)
w21(a) w22(a)

]

. (3.108)
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The images of the generating elements of AG are given by (3.52), Proposition
3.3.4 (i), and

w(g) =
[

g 0
0 g

]

for g ∈ G . (3.109)

Let C = alg{b,c} be defined as before and let CG be the smallest closed subalgebra
of AG which contains C and G . The proposition below is the analog of Proposition
3.3.4.

Proposition 3.5.8. The following assertions hold:

(i) The set D := w11(H ) is a closed subalgebra of H which contains e.
(ii) The mapping w from (3.108) is a continuous isomorphism from H onto D2×2.

The image of w with respect to AG is C 2×2
G .

(iii) C belongs to the center of H .

Thus, an element a ∈ AG is invertible in H if and only if the matrix w(a) is in-
vertible in D2×2. As a consequence of part (iii) of the preceding proposition, Allan’s
local principle applies to H with C as the central subalgebra, and to D2×2 with

{[

c 0
0 c

]

: c ∈ C

}

as the central subalgebra. The maximal ideal space of C is MC . We know the struc-
ture of this set from Sections 3.3.1 and 3.3.2. Let M0

C stand for the collection of
those (x,y) ∈ MC for which I(x,y) �= A . Given (x,y) ∈ M0

C , we denote the related

local algebra H /I(x,y) (resp. D2×2/I 2×2
(x,y) ) by H(x,y) (resp. D2×2

(x,y)) and the canon-

ical homomorphism from H onto H(x,y) by Φ(x,y). Set G(x,y) = Φ(x,y)(G ). Then
Allan’s local principle states the following.

Proposition 3.5.9. An element a ∈AG is invertible in H if and only if the function

M0
C → G 2×2

(x,y) , (x,y) �→
[

Φ(x,y) (w11(a)) Φ(x,y) (w12(a))
Φ(x,y) (w21(a)) Φ(x,y) (w22(a))

]

is invertible in D2×2
(x,y) at every point (x,y) ∈ M0

C .

The functions which correspond to the elements g ∈ G , p, j and r, are given by

(x,y) �→
[

Φ(x,y) (g) 0
0 Φ(x,y) (g)

]

,

(x,y) �→
[

Φ(x,y) (e) 0
0 0

]

,

(x,y) �→
[

0 Φ(x,y) (e)
Φ(x,y) (e) 0

]

,

(x,y) �→
[

xΦ(x,y) (e) yΦ(x,y) (e)
−yΦ(x,y) (e) (1− x)Φ(x,y) (e)

]

.
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Before applying this result to a simple coefficient algebra we shall give some char-
acterization of the set M0

C . The local principle states that

σD (b+ c) =
⋃

(x,y)∈M0
C

σD(x,y)

(

Φ(x,y)(b+ c)
)

=
⋃

(x,y)∈M0
C

{x+ y},

and, hence, the mapping (3.58) from Proposition 3.3.12 sends M0
C onto σD (b + c).

But this means nothing except that the restriction of (3.58) onto M0
C ,

M0
C → C, (x,y) �→ x+ y (3.110)

is a bijection between M0
C and σD (b+ c).

Proposition 3.5.10. σD (b+ c) = σH (b+ c) = σF (b+ c).

Proof. The second equality follows from the inverse-closedness of H in F . The
first one is a consequence of Proposition 3.5.8 (ii) if we take into consideration that
w(b) = diag(b,b) and w(c) = diag(c,c).

We can specialize Propositions 3.5.9 and 3.5.10 by choosing AG itself as the
larger algebra (in place of F ). Comparing the invertibility criteria in both cases
leads to:

Corollary 3.5.11. The algebra AG is inverse-closed in F if and only if the follow-
ing two conditions are fulfilled:

σF (b+ c) = σCG
(b+ c), (3.111)

G 2×2
(x,y) is inverse-closed in D2×2

(x,y). (3.112)

In what follows we suppose G to be simple, i.e., G possesses trivial ideals only.
Then condition (3.112) proves to be fulfilled. Combining Propositions 3.5.9, 3.5.10
and Corollary 3.5.11 yields:

Theorem 3.5.12. Let F , G , AG , H , C and p, r, j be defined as above. Let MC

be the maximal ideal space of C . Further, let M0
C consist of all pairs (x,y) ∈ C×C

where x2 − x = y2 and x+ y ∈ σF (b+ c).

(i) The set M0
C coincides with the collection of those (x,y) ∈ MC for which

I(x,y) �= H .
(ii) The mapping smb which assigns to g ∈ G , p, j and r a matrix-valued function

on M0
C by

(smbg)(x,y) =
[

g 0
0 g

]

, (smb p)(x,y) =
[

e 0
0 0

]

,

(smb j)(x,y) =
[

0 e
e 0

]

, (smbr)(x,y) =
[

xe ye
−ye (1− x)e

]

extends to a continuous homomorphism from AG into C(M0
C ,G 2×2).
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(iii) An element a ∈ AG is invertible in F if and only if (smba)(x,y) is invertible
for every (x,y) ∈ M0

C .
(iv) If, in addition, condition (3.111) holds, then M0

C = MC , and AG is inverse-
closed in F .

Let us point out the case that G is isomorphic to C
k×k. Then the preceding the-

orem associates with every element a ∈ AG a matrix symbol of order 2k which
answers the invertibility of a in F . There is a somewhat different way to derive this
result. Since C

k×k is a full matrix algebra in AG we can define a homomorphism
ŵ from H into H 2k×2k which maps AG onto C

2k×2k. Now Allan’s local principle
applies and leads to an analogous result.

3.6 Notes and comments

Algebras generated by two projections appear in many places and have thus at-
tracted a lot of attention. Already in the late 1960’s, Halmos [83] and Pedersen [136]
studied the C∗-algebra generated by two self-adjoint projections p and r under the
assumption that σ(prp) = [0,1]. Besides this spectral condition, Halmos also sup-
posed that the projections are in general position, that is, X ∩Y = {0} whenever
X ,Y ∈ {Ker p, Im p, Ker r, Im r} and X �= Y . These conditions are fulfilled, for
example, if p is the operator of multiplication by the characteristic function of the
upper semi-circle T+ := {z ∈ T : Im z > 0} acting on L2(T), and r is the opera-
tor (I + ST)/2 where ST stands for the operator of singular integration on L2(T).
Theorem 3.1.1 appeared with full proof in [196] also. Independently, this result was
derived in [149]. Note that the case when σ(prp) = [0,1] is of particular impor-
tance, since it distinguishes the universal C∗-algebra generated by two self-adjoint
projections.

While Halmos’ paper from 1969 is certainly the most influential in this field, the
theory of two Hilbert space projections has a much longer history, including Krein,
Krasnoselski, Milman [106], Dixmier [38] and Davis [35], to mention some of the
main contributions. For a detailed overview on this history as well as for a survey
on applications of the two projections theorem (mainly in the fields of linear algebra
and Hilbert space theory), we refer to the recent “gentle guide” by Böttcher and
Spitkovsky [23].

As far as we know, Banach algebras generated by two idempotents were first
studied in the 1988 paper [167] by two of the authors. In that paper, the spectrum of
prp is supposed to be connected and to include the points 0 and 1. The approach of
[167] is based on Krupnik’s theory of Banach PI-algebras. In its final form, Theorem
3.1.4 first appeared in [75]. The proof presented above is in the spirit of [167].

In general, algebras generated by three idempotents are of an involved structure,
and there is no hope for a general classification. In order to say something substantial
about them, one has to impose strong restrictions on the generating elements of the
algebra, which often come from modeling specific applications.
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Banach algebras with generators which fulfill conditions (3.45) and (3.46) are of
particular interest. They occur as local models in the theory of Toeplitz and Hankel
operators. Theorem 3.3.15, which is the first result in the direction and treats the
C∗-case, belongs to Power [149]. The Banach algebra generated by two idempo-
tents and orientation reversing flip was considered by Finck and two of the authors
in [56], where Theorem 3.3.13 is derived. A forerunner of that paper is [167] where
we showed that this algebra satisfies the standard polynomial F4. Banach algebras
generated by elements which satisfy (3.45) and (3.47) (i.e., the case of an orientation
preserving flip) were completely studied by Krupnik and Spigel in [110]. The N pro-
jections theorem 3.2.4 appeared in [12] and is the result of joint efforts of Böttcher,
Gohberg, Yu. Karlovich, Krupnik, Spitkovsky, and two of the authors. The results
of Section 3.5 are mainly based on [55].

Let us finally mention that [112] and [152] present further interesting examples
of finitely generated Banach algebras, which turn out to be PI-algebras. See also
[132] for an overview of finitely generated (not necessarily normed) algebras.
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Chapter 4
Singular integral operators

Algebras generated by singular integral operators and convolution operators are one
of the numerous instances where local principles and projection theorems have been
successfully applied. And conversely, it was mainly the study of these algebras
which stimulated the development of local principles and projection theorems as
a tool in operator theory. We will now give a thorough exposition of algebras gener-
ated by singular integral operators on Lebesgue spaces over admissible curves. Note
that we have already encountered singular integral operators on the unit circle in the
previous chapters.

4.1 Curves and algebras

4.1.1 Admissible curves

Let C be the complex plane and Ω be a (possibly unbounded) subset of C. The set
of complex-valued continuous functions defined on Ω is denoted by C(Ω). Let λ ∈
]0,1[ . A continuous function f is said to be Hölder continuous in Ω with exponent
λ if there is a constant c such that

| f (t)− f (s)| ≤ c|t − s|λ

for all s, t ∈ Ω . The set of Hölder continuous functions on Ω will be denoted by
Cλ (Ω).

A Lyapunov arc , Γ , is an oriented, bounded curve in the complex plane which
is homeomorphic to the closed interval [0,1] and which fulfills the Lyapunov con-
dition, i.e., the tangent to Γ exists at each point t ∈ Γ , and the smallest angle θ(t)
between the tangent and the real axis, measured from the latter counterclockwise, is
a Hölder continuous function on Γ .

Let γ : [0,1] → Γ be a homeomorphism describing the Lyapunov arc Γ . At
the endpoints γ(0) and γ(1) of Γ , we define one-sided tangents as the half lines
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{γ(0)+ tγ ′(0) : t > 0} and {γ(1)+ tγ ′(1) : t < 0}, respectively, where γ ′ represents
the derivative of γ .

Let Γ1, . . . ,Γm be Lyapunov arcs and assume that, for each pair (i, j) with i �= j,
the intersection Γi ∩Γj is either empty, or it consists of exactly one point z, which is
an endpoint of both Γi and Γj and which has the property that the one-sided tangents
of Γi and Γj at z do not coincide. In this case we set n j(z) := 1 if Γj is directed away
from z and n j(z) := −1 if Γj is directed towards z. A (bounded) admissible curve is
the union of a finite number of Lyapunov arcs which are subject to these conditions.

Fig. 4.1 An admissible curve. . . . . . and a non-admissible one.

If an oriented admissible curve Γ divides the plane into two (not necessarily
connected) parts, each of them having Γ as its boundary and being located at one
side of Γ , then we say that Γ is closed.

Let k be a positive integer. A point z ∈ Γ is said to have order k if, for each
sufficiently small closed neighborhood U of z, the set Γ ∩U is the union of k
Lyapunov arcs Γ1, . . . ,Γk each of them having z as one of its endpoints and having
no other points besides z in common. The curve Γ is called simple if all its points
have an order less than three.

An unbounded curve Γ is called admissible if there is a point z0 ∈C\Γ such that
the image of Γ under the mapping z �→ (z−z0)−1 is a bounded admissible curve. Of
course, if this holds for one point z0, then it holds for every point z0 ∈ C\Γ .

It is sometimes useful to consider an unbounded (hence, non-compact) curveΓ as
a subset of the one-point compactification Ċ = C∪{∞} of the complex plane C, with
a basis of neighborhoods of the point ∞ ∈ Ċ given by the sets Ωε = {z : |z| > 1/ε}
where ε > 0. We then denote by Γ̇ the smallest compact set in Ċ containing the
unbounded admissible curve Γ . Note that Γ̇ = Γ for every bounded admissible
curve.

Remark 4.1.1. Admissible curves include curves like arcs, circles, polygons, or
lines. On the other hand, curves with cusps or spirals are not admissible in our
sense. The reader who is interested in singular integral operators on Lp-spaces over
general (Carleson) curves with general (Muckenhoupt) weights is referred to the
ground-breaking and prize-winning monograph [14]. We restrict our attention to
the admittedly simple case of admissible curves since our main emphasis is on il-
lustrating the use of local principles (which also play a major role in [14]) and since
admissible curves behave locally as star-shaped unions of half-axes. The latter fact
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Fig. 4.2 A closed curve. . . . . . and a non-closed one.

allows one to use Mellin techniques to identify the arising local algebras in a con-
venient way, as we shall see below. �

4.1.2 Lebesgue spaces and multiplication operators

Let Γ be an admissible curve in C. By a weight on Γ we will always mean a power
(or Khvedelidze) weight, which is a function on Γ of the form

w(t) :=
n

∏
i=0

|t − ti|αi (4.1)

with t0 ∈ C\Γ , t1, . . . , tn ∈ Γ , and α0, . . . ,αn ∈ R.
Let 1 < p < ∞, and let w be a weight on Γ . By Lp(Γ ,w) (or simply Lp(Γ ) if

w ≡ 1) we denote the weighted Lebesgue space of all measurable functions u on Γ
such that

∫

Γ
|u(t)|pwp(t)|dt| < ∞

with norm

‖u‖Γ ,p,w :=
(
∫

Γ
|u(t)|pwp(t)|dt|

) 1
p

.

The dual space of Lp(Γ ,w) can be identified with Lq(Γ ,w−1) where 1/p+1/q = 1
in the usual way. Further, we write L∞(Γ ) for the space of all essentially bounded
measurable functions on Γ , i.e., for the space of all measurable functions a :Γ → C

for which there exists a non-negative constant N such that the set {z∈Γ : |a(z)|> N}
has Lebesgue measure zero. The norm in L∞(Γ ) is the essential supremum norm,
i.e., the smallest N with this property.

A well-known fact from measure theory states that the set of all continuous func-
tions on Γ with compact support is dense in Lp(Γ ,w) if −1/p < αi for i = 1, . . . ,n.
The following is a consequence of that fact.
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Proposition 4.1.2. If −1/p < αi for i = 1, . . . ,n, then L2(Γ )∩Lp(Γ ,w) is dense in
Lp(Γ ,w).

Every function f ∈ L∞(Γ ) induces an operator f I of multiplication via

( f I u)(t) := f (t)u(t). (4.2)

which is obviously bounded on Lp(Γ ,w). Note that1

‖ f I‖ = ‖ f‖∞. (4.3)

The algebra L∞(Γ ) can thus be considered as a (commutative) subalgebra of
L
(

Lp(Γ ,w)
)

.
In Section 2.2.6 we have already met piecewise continuous functions on the unit

circle. More generally, a function is called piecewise continuous on the admissible
curve Γ if, at each point z0 ∈ Γ of order k, it possesses finite limits as z → z0 along
each Lyapunov arc having z0 as its endpoint. We denote the space of all functions
which are continuous at each point of Γ̇ by C(Γ̇ ), and we write PC(Γ̇ ) for the space
of all piecewise continuous functions on Γ̇ . The spaces C(Γ̇ ) and PC(Γ̇ ), equipped
with pointwise operations and the norm of L∞(Γ ), are Banach algebras. The set of
all piecewise constant functions is dense in PC(Γ̇ ) (see, for example, [43, Lemma
2.9]).

4.1.3 SIOs on admissible curves

Let Γ be an admissible curve and w a weight on Γ . The singular integral operator
(or SIO for short) SΓ on Γ is defined as the Cauchy principal value integral

lim
ε→0

1
πi

∫

Γ \Γt,ε

u(s)
s− t

ds, t ∈ Γ , (4.4)

with Γt,ε referring to the part of Γ within an ε-radius ball centered at the point t. For
u ∈ Lp(Γ ,w), the singular integral exists almost everywhere on Γ .

A basic result whose proof can be found in several textbooks on singular integral
operators (for instance, [73, Chapter 1] or [120, Chapter 2]) is the boundedness of
the singular integral operator under some restrictions on the weight. We will use the
result in the following form, which is sufficient for our purposes. For a general result
(stating that SΓ is bounded on Lp(Γ ,w) if and only if Γ is a Carleson curve and w
is a Muckenhoupt weight), see again [14].

If the curve Γ is bounded, we denote by Ap(Γ ) the set of all weights of the
form (4.1) with 0 < 1/p +αi < 1 for i = 1, . . . ,n. In case Γ is unbounded, we let
Ap(Γ ) stand for the set of all weights with 0 < 1/p +αi < 1 for i = 1, . . . ,n and
0 < 1/p+α0 +∑n

i=1αi < 1.

1 When the curve Γ is evident, we simply write ‖ · ‖∞ for the norm in L∞(Γ ).
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Fig. 4.3 The set Γt,ε , for an admissible curve Γ .

Theorem 4.1.3. Let 1 < p < ∞, Γ an admissible curve, and w ∈ Ap(Γ ). Then the
singular integral operator SΓ is bounded on Lp(Γ ,w).

In what follows we will work exclusively on spaces Lp(Γ ,w) where p, Γ and w
are as in the previous theorem.

Let A :=A (C(Γ ),SΓ ,w) denote the smallest closed subalgebra of L (Lp(Γ ,w))
which contains the singular integral operator SΓ and all operators of multiplication
by functions in C(Γ̇ ), and abbreviate by K := K (Lp(Γ ,w)) the ideal of the com-
pact operators on Lp(Γ ,w).

The following commutator result provides the basis for localization in algebras
generated by singular integral operators.

Theorem 4.1.4. Let w ∈ Ap(Γ ) and f ∈ C(Γ̇ ). Then the operator f SΓ − SΓ f I is
compact on Lp(Γ ,w).

Proof. First suppose that Γ is a bounded admissible curve and that f is a rational
function without poles on Γ . Then

(

(SΓ f − f SΓ )u
)

(t) =
1
πi

∫

Γ

f (s)− f (t)
s− t

u(s)ds. (4.5)

Since f is rational, the function (s, t) �→ f (s)− f (t)
s−t is continuous. Thus, SΓ f I − f SΓ

is an integral operator with continuous kernel on a compact set and, hence, compact
(see, for instance, [93]). Now let f ∈C(Γ ). The set of the rational functions without
poles on Γ is dense in C(Γ ) in the L∞ norm by the Stone-Weierstrass Theorem
(see, for instance, [26, Section V.8]). Thus, there is a sequence ( fn)n∈N of rational
functions such that ‖ f − fn‖∞ → 0 as n → ∞. Since

‖(SΓ f I − f SΓ )− (SΓ fnI − fnSΓ )‖ ≤ 2‖ f − fn‖∞‖SΓ ‖, (4.6)

the operator SΓ f I − f SΓ is the uniform limit of a sequence of compact operators
and, thus, compact. This proves the assertion for bounded curves.

Now let Γ be an unbounded admissible curve. By definition, there is a z0 ∈C\Γ
such that the image of Γ under the mapping z �→ (z− z0)−1 is a bounded admissible
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curve Γ ′. For λ ∈ Γ ′, let w′(λ ) := w
(

(λ − z0)−1
)

(λ − z0)−2/p and consider the
operator

B : Lp(Γ ,w) → Lp(Γ ′,w′), (Bu)(λ ) := u

(

1
λ − z0

)

(4.7)

which is an isometry between these spaces. We have to show that the operator K :
Lp(Γ ′,w′) → Lp(Γ ′,w′) given by

K := B(SΓ f I − f SΓ )B−1

is compact. The argument is the same as above, since the kernel

k(μ ,λ ) :=
f
(

1
μ−z0

)

− f
(

1
λ−z0

)

1
μ−z0

− 1
λ−z0

1
(μ− z0)2

of K is continuous on Γ ′ ×Γ ′ if f is rational without poles on Γ .

Theorem 4.1.5. The algebra A (C(Γ ),SΓ ,w) contains the ideal K .

Proof. First let Γ be bounded. Employing the density of the set of continuous
functions in Lp(Γ ,w) and in its dual space, it is not difficult to verify that the set of
all operators of the form a(φSΓ −SΓ φ I)bI with a,b ∈C(Γ ) and φ(t) := t is dense
in the set of all operators in L (Lp(Γ ,w)) with range dimension equal to 1. Since
the rank one operators span a dense subset of the compact operators on Lp(Γ ,w)
(see [26, VI, Section 3, Exercises 19, 20]), the assertion follows.

Now let Γ be unbounded and K be a compact operator in L (Lp(Γ ,w)). Define a
sequence of functions χn ∈C(Γ ) which have compact support and for which χn(z) =
1 for |z| < n. The sequence of multiplication operators χn I tends strongly to the
identity operator on Lp(Γ ,w), and the sequence of adjoint operators (χn I)∗ tends
strongly to the identity operator on (Lp(Γ ,w))∗. By Lemma 1.4.7, we thus have
‖χnKχn I −K‖ → 0, and it remains to show that the operators χnKχn I belong to
A (C(Γ ),SΓ ,w) for every n. This follows from the first part of this proof, since
χnKχn I can be considered as an operator on a bounded curve.

4.1.4 SIOs with continuous coefficients on closed curves

We have already observed that S2
Γ = I in the case that Γ is the unit circle. This

fact holds for general closed curves. A proof of the following theorem can be
found in [120, Chapter II, Theorem 3.1] for the case of bounded closed admissible
curves. The proof for unbounded closed admissible curves follows from the result
for bounded curves, as in Theorem 4.1.4, by employing the mapping z �→ (z− z0)−1

with z0 �∈ Γ .
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Theorem 4.1.6. Let 1 < p <∞, Γ an admissible curve, and w ∈Ap(Γ ). If the curve
Γ is closed, then S2

Γ = I.

Let Γ be a closed curve. We consider the algebra A (C(Γ ),SΓ ,w) generated by
the singular integral operator and all operators of multiplication by continuous func-
tions. From Theorems 4.1.4 and 4.1.5 we infer that the subalgebra A K := A /K
of the Calkin algebra is commutative and, thus, subject to Gelfand’s representation
theorem. We will briefly indicate how Gelfand theory works in this setting and start
with identifying the maximal ideal space of A K . Since we do not refer to these
results in what follows, and since these results will follow without effort from the
results for SIOs with piecewise continuous coefficients, we will not give all details
here.

Since Γ is closed, we have S2
Γ = I by Theorem 4.1.6. Thus, the operators PΓ :=

(I + SΓ )/2 and QΓ := (I − SΓ )/2 are projections2, and one can easily check that
every coset A+K ∈ A K can be written in the form

A+K = f PΓ +gQΓ +K with f ,g ∈C(Γ̇ ).

The following can be checked in a similar way to Proposition 2.1.10.

Proposition 4.1.7. Every proper ideal of A K is contained in an ideal of the form

IP,X0 := { f PΓ +gQΓ +K : f (X0) = 0}

or
IQ,X0 := { f PΓ +gQΓ +K : g(X0) = 0}

with a certain subset X0 of Γ̇ .

This proposition implies that the maximal ideals of A K are of the form

IP,x0 := { f PΓ +gQΓ +K : f (x0) = 0}

or
IQ,x0 := { f PΓ +gQΓ +K : g(x0) = 0}

with some point x0 ∈ Γ̇ . These ideals are maximal and by Theorem 1.3.5 closed.
Thus, the maximal ideal space of A K is homeomorphic to Γ̇ ×{0,1}, and the
Gelfand transform of the coset A+K = f PΓ +gQΓ +K is

̂(A+K )(x,n) =

{

f (x) if n = 0,

g(x) if n = 1.

In particular, the coset A+K is invertible if and only if f (x) �= 0 and g(x) �= 0 for
all x ∈ Γ̇ . It is also easy to see that the radical of A K is {0}.

The description of A K just obtained allows us to derive conclusions about the
Fredholm property and the essential spectrum of operators in A . The issue of in-

2 Remember Exercise 1.2.18.
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vertibility is more delicate, and local principles cannot help, since invertibility of
singular integral operators is a non-local property. Fortunately, in the case at hand,
there is an effectively checkable (non-local) criterion for the invertibility of a Fred-
holm singular integral operator. For that we need the index (or winding number) of
a function around the origin 0 ∈ C. The index of a : Γ → C is defined as

ind a =
1

2π
[arga(x)]Γ

where [·]Γ measures the increment of the expression in brackets taken as the result
of a circuit around Γ in the counter-clockwise direction. Then one has the following
result, a proof of which can be found in [73, Chapter 3] or [120, Chapter 3].

Theorem 4.1.8. Let f , g ∈ C(Γ̇ ). Then the operator f PΓ + gQΓ is Fredholm on
Lp(Γ ,w) if and only if f (x)g(x) �= 0 for all x ∈ Γ̇ . If this condition is satisfied, then
this operator is invertible (resp. invertible from the left, invertible from the right) if
the integer ind f /g is zero (resp. positive, negative). The same assertion holds for
the operator PΓ f I +QΓ gI.

4.2 Singular integral operators on homogeneous curves

We now turn our attention to singular integral operators on the real line and, more
generally, on homogeneous curves. Homogeneous curves are star-shaped unions
of rotated half-axes. Their special geometry permits the use of techniques like the
Fourier transform and homogenization. The importance of these curves lies in the
fact that they will serve as local models of general admissible curves.

4.2.1 SIOs on the real line

Let Γ be a subinterval of the real axis R, and let a weight w on Γ be defined by

w(t) = |t2 +1|α0/2
n

∏
i=1

|t − ti|αi . (4.8)

Note that w is not of the form (4.1), but it is equivalent to a weight w̃ of this form in
the sense that w/w̃ is bounded below and above by positive constants. We consider
Lp(Γ ,w) as a closed subspace of Lp(R,w) in the natural way. In particular, we
identify the identity operator on Lp(Γ ,w) with the operator χΓ I of multiplication by
the characteristic function of the interval Γ , acting on Lp(R,w). More generally, a
linear bounded operator on Lp(Γ ,w) is identified with the operator χΓ AχΓ I acting
on Lp(R,w). These identifications will be used without further comment.

An important property of the singular integral operator on the real line be-
comes visible via the Fourier transform. The Fourier transform F is defined on the
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Schwartz space of rapidly decreasing infinitely differentiable functions u by

(Fu)(y) =
∫ +∞

−∞
e−2πiyxu(x)dx, y ∈ R. (4.9)

The Fourier transform is invertible on the Schwartz space, and its inverse F−1 is
given by

(F−1v)(x) =
∫ +∞

−∞
e2πixyv(y)dy, x ∈ R. (4.10)

The operators F and F−1 can be extended continuously to bounded and unitary
operators on the Hilbert space L2(R) (this is Plancherel’s theorem, see [26, Theorem
6.17] or [193, Theorem 48]). It is also known that the Fourier transform extends
continuously to a bounded operator from Lp(R) into Lq(R) when 1 < p ≤ 2 and
q := p/(p−1) (see, for instance, [193, Theorem 74]).

For 1 < p < ∞ and w as above, let Mp,w denote the set of all Fourier mul-
tipliers, i.e., the set of all functions a ∈ L∞(R) with the following property: if
u ∈ L2(R)∩ Lp(R,w), then F−1aFu ∈ Lp(R,w), and there is a constant cp,w in-
dependent of u such that ‖F−1aFu‖Γ ,p,w ≤ cp,w‖u‖Γ ,p,w. If a ∈ Mp,w, then the op-
erator F−1aF : L2(R)∩ Lp(R,w) → Lp(R,w) extends continuously to a bounded
operator on Lp(R,w). This extension is called the operator of (Fourier) convolution
by a and will be denoted by W 0(a). The function a is also called the generating
function3 of the operator W 0(a).

The set Mp,w (written as Mp if w ≡ 1) of all multipliers forms a Banach algebra
when equipped with the usual operations and the norm

‖a‖Mp,w := ‖W 0(a)‖L (Lp(R,w)). (4.11)

Let R stand for the two-point compactification of R by ±∞ with bases of neighbor-
hoods of ±∞ given by the sets V±

ε = {t : ±t > 1/ε}.
To describe some further properties of the multiplier classes, we need the total

variation V (a) of a function a on an interval Γ = [c, d] ⊆ R, which is defined as

V (a) := sup

(

n

∑
k=1

|a(tk)−a(tk−1)|
)

(4.12)

where the supremum is taken over all partitions c ≤ t0 < t1 < .. . < tn ≤ d of the
interval Γ . Functions with finite total variation are bounded and measurable. The set
of all bounded functions on Γ with finite total variation will be denoted by BV (Γ ).
This set is a Banach space under the norm

‖a‖BV := ‖a‖∞+V (a).

3 Sometimes a is also called the symbol or presymbol of W 0(a).
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Remark 4.2.1. Note that the definition of total variation can be extended in a natural
way to curves homeomorphic to an interval. �

Proposition 4.2.2. Let 1 < p < ∞, 1/p+1/q = 1, and w ∈ Ap(R).

(i) If w(t) = w(−t) for all t ∈ R, then Mp,w = Mq,w ⊆ M2 = L∞(R) and

‖a‖Mp,w = ‖a‖Mq,w ≥ ‖a‖M2 = ‖a‖∞.

(ii) The set BV (R) is contained in Mp,w, and the Stechkin inequality

‖a‖Mp,w ≤ ‖SR‖p,w (‖a‖∞+V (a)) (4.13)

holds for a ∈ BV (R).

The proofs of the above results can easily be derived from Proposition 2.4 and The-
orem 2.11 in [43].

In general it is hard to decide whether a given function is a multiplier. Stechkin’s
inequality provides us with an easy-to-check sufficient condition for a function to
have this property. There are also no general results concerning the invertibility of
multipliers. Some partial results exist however, mainly for spaces without weights,
as we will see.

The convolution k ∗ u of functions k and u on the real line is the function on R

defined by

(k ∗u)(t) :=
∫ +∞

−∞
k(t − s)u(s)ds

whenever this makes sense (which happens, for example, if k, u ∈ L1(R)). In the
latter case (see for instance [193, Section 2.1]) the relation

F(k ∗u) = (Fk)(Fu), (4.14)

also known as the convolution theorem, is valid.
How this relation can be useful is shown in the next two examples. If k ∈ L1(R),

then the operator acting on L1(R) defined by

(Wu)(t) :=
∫ +∞

−∞
k(t − s)u(s)ds (4.15)

is just a convolution operator W 0(a) with a = Fk. But Equation (4.14) is valid even
for some functions k �∈ L1(R). Let sgn denote the sign function on R, which takes
the value 1 on [0, ∞[ and the value −1 otherwise, and for ξ ∈ R define sgnξ by
sgnξ (x) := sgn(x− ξ ). It turns out (see [43, Lemma 1.35 and Section 2]) that the
operator

(Wξu)(t) :=
1
πi

∫ +∞

−∞

eiξ (s−t)

s− t
u(s)ds, t ∈ R, (4.16)
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coincides with the convolution operator with sgnξ = F
(

1
πi

eiξ t

t

)

as its generating

function, that is,
Wξ ≡W 0(sgnξ ) (4.17)

and, in particular,
SR ≡W 0(sgn). (4.18)

From these equations we deduce an important property of the operators Wξ (which
is expected at least in the case of the singular integral operator since Ṙ, the one-
point compactification of the real line, is a closed curve): It is its own inverse. In
fact W 2

ξ = W 0(sgnξ )W
0(sgnξ ) = W 0(1) = I.

Remark 4.2.3. The identity (4.18) indicates that the theory of singular integral op-
erators on the real line can be considered as a part of the theory of convolution
operators. We would like to emphasize that the reverse is also true, that is, knowl-
edge on singular integral operators helps to understand large classes of convolution
operators. This relation will become evident when studying convolution operators
by local principles. �

For s, t ∈ R, consider the following kinds of shift operators, both with norm 1,

Us : Lp(R,w) �→ Lp(R,w), (Usu)(x) = e−2πixsu(x) (4.19)

and
Vt : Lp(R,w) �→ Lp(R,wt), (Vtu)(x) = u(x− t) (4.20)

with wt(x) = w(x− t). Clearly, U−1
s = U−s and V−1

t = V−t .
The following lemma can be proved by writing the operators explicitly and mak-

ing an obvious substitution of variables. For each multiplier a, define a multiplier
Vsa by (Vsa)(x) := a(x− s).

Lemma 4.2.4. Let s ∈ R and a ∈ Mp,w. Then

U−sW
0(a)Us = W 0(Vsa) and VsW

0(a)V−s = W 0(a).

Moreover, on L2(R), one has

FUs = V−sF and FVs = UsF.

The proof of the next result is left as an exercise.

Lemma 4.2.5. The operators Vt tend weakly to zero as t →±∞.

An operator A ∈ L (Lp(R)) with VsAV−s = A for all s ∈ R is called translation
invariant4. By Lemma 4.2.4, convolution operators are translation invariant. The
following proposition states that the converse is also true (see [87, Section 1.1]).

4 Sometimes the expression shift invariant is also used, but as there are different types of shifts, it
can be misleading.
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Proposition 4.2.6 (Hörmander). Let A ∈ L (Lp(R)) be translation invariant. Then
there exists a multiplier a ∈ Mp such that A = W 0(a).

Proposition 4.2.7. The only compact convolution operator on Lp(R) is the zero
operator.

Proof. Suppose W 0(a) is compact for some multiplier a. Since W 0(a) is translation
invariant, one has

W 0(a) = VsW
0(a)V−s,

and the right-hand side of this equality tends strongly to zero as s → ∞ by Lemma
1.4.6 because the operators V−s tend weakly to zero and the operators Vs are uni-
formly bounded with respect to s.

Proposition 4.2.8. Let a ∈ Mp. The operator W 0(a) ∈ L (Lp(R)) is invertible if
and only if it is a Fredholm operator.

Proof. Let W 0(a) be a Fredholm operator. Then there is a bounded operator B
and a compact operator K on Lp(R) such that BW 0(a) = I + K. Applying the shift
operators to both sides of this equality we obtain

VsBV−sVsW
0(a)V−s = I +VsKV−s ⇔ BsW

0(a) = I +VsKV−s

with Bs := VsBV−s. Since K is compact, and by Lemma 4.2.5, the right-hand
side of this equation tends strongly to the identity. Hence, BsW 0(a)u → u for all
u ∈ Lp(R,w), which implies that the kernel of W 0(a) is trivial. Since W 0(a) is a
Fredholm operator by assumption, this operator is invertible from the left. The in-
vertibility from the right can be shown by passing to the adjoint operator.

A function a ∈ L∞(R) is said to be bounded away from zero if there is an ε > 0
such that the measure of the set {t ∈ R : |a(t)| ≤ ε} is zero.

Proposition 4.2.9. If a ∈ Mp and W 0(a) is invertible on Lp(R), then a is bounded
away from zero.

Proof. Since the operator W 0(a) is translation invariant, its inverse is translation
invariant, too, and hence of the form W 0(a)−1 = W 0(b) with b ∈ Mp ⊂ L∞(R) by
Proposition 4.2.6. Then 1 ab = 1, hence a is invertible in L∞(R), whence the asser-
tion.

4.2.2 SIOs on the half axis

Let R
+ := [0,+∞[. Define the operator Ep,w : Lp(R+,w) → Lp(R) by

(Ep,wv)(t) := 2πe
2πt

p w(e2πt)v(e2πt). (4.21)
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This operator is invertible, and its inverse E−1
p,w : Lp(R) → Lp(R+,w) is given by

(E−1
p,wu)(x) =

1
2π

1

x1/pw(x)
u

(

1
2π

ln(x)
)

. (4.22)

An easy computation yields that

‖Ep,wv‖Lp(R) = 2π1−1/p‖v‖Lp(R+,w). (4.23)

Let a ∈ BV (R). Then the operator

M0(a) := E−1
p,wW 0(a)Ep,w (4.24)

is bounded on Lp(R+,w), and (4.23) together with the Stechkin inequality for W 0(a)
imply the estimate

‖M0(a)‖p,w ≤ ‖SR‖L (Lp(R))(‖a‖∞+V (a)) (4.25)

which is also referred to as the Stechkin inequality. From (4.3) and (4.23) we further
conclude

‖M0(a)‖2 = ‖a‖∞. (4.26)

The operator M0(a) is called the Mellin convolution with generating function a.
The operator Mp,w := FEp,w is called the Mellin transform which is explicitly given
by

(Mp,wv)(y) =
∫ +∞

0
t1/p−1−iyw(t)v(t)dt, (4.27)

with tx+iy := txeiy log t = tx(cos(y log t)+ isin(y log t)) for x,y ∈ R and t > 0.
As in the case of Fourier convolutions, one might call functions a ∈ Mp,w Mellin

multipliers and define a corresponding multiplier norm by

‖a‖M0,p,w := ‖M0(a)‖L (Lp(R+,w)) (4.28)

under which the set Mp,w, with the usual operations, becomes a Banach algebra. But
as a consequence of (4.23), the classes of Fourier and Mellin multipliers coincide,
and also the norms ‖a‖Mp,w and ‖a‖M0,p,w are the same. So we shall simply speak of
multipliers instead of Fourier or Mellin multipliers. Note, however, that the operator
M0(a) depends on the weight w in general.

Write Cp,w(R) for the closure in Mp,w of the set of all functions with finite total
variation which are continuous on R. Let a1 denote the function t �→ 1, and let a2 be
any other function in BV (R) which is continuous and one-to-one on R and for which
a2(R) is a smooth curve which does not contain the origin. By (4.25), the functions
a1 and a2 belong to Mp,w. The proof of the following proposition appeared for the
first time in [189].
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Proposition 4.2.10. The algebra Cp,w(R) coincides with the smallest closed subal-
gebra of Mp,w which contains a1 and a2.

Proof. Let A denote the Banach algebra generated by a1 and a2 in Mp,w. By
definition, A ⊆Cp,w(R). To get the reverse inclusion, put Γ := a2(R) and consider
the operator Q : C(Γ ) →C(R) by

Q : C(Γ ) →C(R), (Q f )(t) = f (a2(t)). (4.29)

Clearly, Q is an isometric isomorphism which does not change the total variation
of f (see Remark 4.2.1). Our first claim is the inclusion Q(C1(Γ )) ⊆ A where
C1(Γ ) stands for the Banach space of all continuously differentiable functions on the
curve Γ . Let f ∈ Q(C1(Γ )) and g = Q−1 f . Approximate g by a sequence {gn}n∈N

of polynomials in the norm of C1(Γ ). Then the sequence {gn} approximates g in
the norm of BV (Γ ) and, hence, the sequence { fn} with fn = Qgn approximates
f in the norms of both C(R) and BV (R). The inequality (4.25) shows that then
‖ f − fn‖Mp,w → 0, and since fn ∈ A we get our claim.

Next we will verify that C(R)∩BV (R) ⊆ A . Given f ∈ C(R)∩BV (R), there
exists a sequence { fn}n∈N of functions fn ∈ Q(C1(Γ )) which approximates f in the
norm of C(R) and which is uniformly bounded in the norm of BV (R). By what has
already been shown, fn ∈A . The Stein-Weiss interpolation theorem (Theorem 4.8.1
in the appendix of this chapter) implies

‖ fn − f‖M0,p,w ≤ ‖ fn − f‖1−θ
M0,2,1

‖ fn − f‖θ
M0,q,w1/θ , (4.30)

for a suitably chosen θ such that |1 − 2/p| < θ < 1, and q = 2pθ
2+p(θ−1) . By the

Stechkin inequality (4.25), the sequence ‖ fn − f‖M0,q,w1/θ is uniformly bounded,

and the sequence ( fn) converges to f in the norm of M0
2,1 (= L∞(R) by (4.26)).

Hence, ‖ fn− f‖M0,p,w → 0, which implies C(R)∩BV (R)⊆A and thus, Cp,w(R)⊆
A .

Let α ∈ R, and specialize the weight as wα(t) := tα . Similarly to the Fourier
transform, one has the following formal relation on Lp(R+,wα):

Mp,wα

(
∫ +∞

0
k
( t

s

)

u(s)s−1 ds

)

= (Mp,wα k)(Mp,wαu). (4.31)

Thus, if the given integrals are well defined, the operator M defined by

(Mu)(x) :=
∫ +∞

0
k
( t

s

)

u(s)s−1 ds (4.32)

can also be understood as the Mellin convolution M0(a) with generating function
a := Mp,wα k. The following result gives a concrete example of an operator of this
type.
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For z0 ∈ C with 0 <ℜ(z0) < 1, define the function

sz0(y) := coth((y+ iz0)π) . (4.33)

Proposition 4.2.11. The function sz0 has finite total variation and is, hence, a mul-
tiplier. The associated Mellin convolution operator is given by

(

M0(sz0)u
)

(t) =
1
πi

∫ +∞

0

( s
t

)σ u(s)
s− t

ds, t ∈ R
+, (4.34)

where σ := 1/p+α− z0.

Proof. From

1
πi

∫ +∞

0

( s
t

)σ u(s)
s− t

ds =
1
πi

∫ +∞

0

( s
t

)σ u(s)
1− t

s

s−1 ds (4.35)

it becomes clear that we have to find the Mellin transform of the function

k(t) =
1
πi

t−σ

1− t
.

For 0 <ℜ(υ) < 1, Formulas 3.238.1 and 3.238.2 in [79] give

1
2πi

∫ +∞

−∞

|t|υ−1

1− t
dt = − i

2
cot
(π

2
υ
)

and

1
2πi

∫ +∞

−∞

|t|υ−1

1− t
sgn(t)dt =

i
2

tan
(π

2
υ
)

.

Adding these two identities and substituting υ := 1/p+α−σ − iy we get

(Mp,wα k)(y) =
1
πi

∫ +∞

0
t1/p+α−1−iy t−σ

1− t
dt

=
i
2

(tan((1/p+α−σ − iy)π/2)− cot((1/p+α−σ − iy)π/2))

= coth
(

(y+ i(1/p+α−σ))π
)

. (4.36)

Now the assertion follows from (4.31).

Let τ > 0. We enlarge our arsenal of shift operators by the multiplicative shifts
Zτ , acting on Lp(R+,wα) by

(Zτ f )(x) := τ−1/p−α f (x/τ). (4.37)
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Evidently, Z−1
τ = Zτ−1 and ‖Zτ‖ = 1.

Lemma 4.2.12. The operators Z±1
τ converge weakly to zero as τ → ∞.

Proof. The dual of the space Lp(R+,wα) is the space Lq(R+,w−α) with 1/q :=
1−1/p. Let u := χ[a,b] and v := χ[c,d] be characteristic functions of intervals in R

+.
Then

〈v,Zτu〉 =
∫ d

c
τ−α−1/pχ[aτ ,bτ ] (x)dx ≤ τ−α−1/p(d − c) → 0

as τ→∞ since −α−1/p < 0. This implies that 〈ṽ,Zτ ũ〉→ 0 for arbitrary piecewise
constant functions ũ and ṽ in Lp(R+,wα) with a finite number of jumps. As these
functions are dense in Lp(R+,wα), the assertion for Zτ follows from Lemma 1.4.1.
For Z−1

τ and characteristic functions u and v as above one has

〈v,Z−1
τ u〉 =

∫ d

c
τα+1/pχ

[ a
τ , b
τ ]

(x)dx ≤ τα+1/p
(

b
τ
− a
τ

)

→ 0.

Now one can argue as above.

Lemma 4.2.13. Mellin convolution operators commute with multiplicative shift op-
erators.

Proof. We have to show that Z−1
τ M0(a)Zτ = M0(a) for all τ > 0. This equality

follows immediately from the definition of M0(a) in (4.24) and from the fact that
Ep,wαZτ = VsEp,wα with s = 1

2π log(τ).

Operators which commute with multiplicative shifts are also called homogeneous
operators. The proof of the following result is left as an exercise.

Proposition 4.2.14. The operator M0(a)∈L (Lp(R+,wα)) is invertible if and only
if it is Fredholm.

We return for a moment to the operator in Proposition 4.2.11. The range of the
generating function sz0 is a circular arc which joins −1 and 1 and passes through
the point −icot(πℜ(z0)) (see Figure 4.4). By Proposition 4.2.14, both the spectrum
and the essential spectrum of M0(sz0) are equal to the closure of the range of sz0 .
Note that putting σ = 0 in formula (4.34) gives the singular integral operator on
R

+. From the discussion above and the Stechkin inequality (4.25) we thus conclude
immediately that SR+ is bounded on Lp(R+, tα) for − 1

p <α < 1
q . Note that the latter

condition for α is equivalent to membership of the weight tα in Ap(R+).
We consider a few more concrete examples of Mellin convolutions. For 0 < υ :=

1/p+α < 1 and 0 <ℜ(β ) < 2π , let

hβ (y) :=
e(y+iυ)(π−β )

sinh((y+ iυ)π)
. (4.38)
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(a) ℜ(z0) < 1
2 (b) ℜ(z0) = 1

2 (c) ℜ(z0) > 1
2

Fig. 4.4 The spectrum of M0(sz0 ) for several values of ℜ(z0).

Proposition 4.2.15. Under the above conditions for α and β , the function hβ is a
Mellin multiplier on Lp(R+, tα), and the corresponding Mellin convolution operator
on this space is given by

(

M0(hβ )u
)

(t) =
1
πi

∫ +∞

0

u(s)
s− eiβ t

ds. (4.39)

Moreover,
S2

R+ − I = M0(hβ )M0(h2π−β ). (4.40)

Proof. The multiplier property comes from the Stechkin inequality. To prove (4.39),
we have to calculate the Mellin transform of the function

k(t) =
1
πi

1

s− eiβ t
,

which leads to the evaluation of the integral

(Mp,wα k)(y) =
1
πi

∫ +∞

0

t1/p+α−1−iy

1− eiβ t
dt. (4.41)

This integral coincides with hβ (y) by Formula 3.194.4 in [79]. Finally, since we are
working with Mellin convolutions, it is sufficient to verify the identity (4.40) on the
level of generating functions. The corresponding equality

s2
1/p+α −1 = hβh2π−β ,

can be verified straightforwardly.

Operators of the form (4.39) are also called Hankel operators. For real β , the
spectrum of M0(hβ ) can easily be obtained from the spectrum of M0(hπ) since
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|hβ (y)| = ey(π−β )|hπ(y)| and arg(hβ (y)) = υ(π−β )+ arg(hπ(y)).

The spectrum of M0(hβ ) is shown in Figure 4.5 for several values of υ and β . Note
that it always includes the point 0.

(a) β = π (b) β = π/2

Fig. 4.5 The spectrum of M0(hβ ) for υ = 1
2 (gives the straight line) and υ = 2

3 , 3
4 , 4

5 .

4.2.3 The algebra of SIOs on R
+

In this section, we are going to examine the smallest closed subalgebra Ep,α of
L
(

Lp(R+, tα)
)

which contains the identity operator I and the singular integral op-
erator SR+ . Let Sσ and Hβ abbreviate the operators M0(s1/p+α−σ ) and M0(hβ ),
respectively (compare propositions 4.2.11 and 4.2.15).

Proposition 4.2.16. Let 0 < 1/p+α < 1, 0 <ℜ(1/p+α−σ) < 1, and 0 <ℜ(β ) <
2π . Then

(i) Sσ ∈ Ep,α and Hβ ∈ Ep,α ;
(ii) the operators I and Sσ span a dense subalgebra of Ep,α ;

(iii) the algebras Ep,α and Ep,0 are isometrically isomorphic by the mapping A �→
tαAt−α I, and the image of the operator S0 ≡ SR+ under this mapping is S−α ;

(iv) the algebra Ep,α is inverse-closed in L (Lp(R+, tα)).

Proof. By Proposition 4.2.10, the mapping a �→ M0(a) is an isometric isomor-
phism from Cp,tα (R) onto Ep,α . This fact proves (i) and (ii). To prove (iii), note that
the mapping A �→ tαAt−α I is an isometric isomorphism from L

(

Lp(R+, tα)
)

onto
L
(

Lp(R+,0)
)

. By (ii), and since tαSR+t−α I = S−α , the image of the algebra Ep,α
under this mapping is contained in Ep,0. Conversely, if SR+ is the singular integral
operator in Ep,0 then, again by (i) and (ii), the operator t−αSR+tα I ∈ Ep,α spans, to-
gether with the identity, the whole algebra Ep,α . Thus, the isomorphism maps Ep,α
onto Ep,0. The inverse-closedness (assertion (iv)) follows from Corollary 1.2.32, ap-
plied to the dense subalgebra of Ep,α generated by SR+ . Note that the operators in
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this algebra have a thin spectrum which coincides with the closure of the range of
the generating Mellin symbol.

Let Np,α denote the smallest closed ideal of the Banach algebra Ep,α which
contains the operator Hπ .

Proposition 4.2.17. Let 0 < 1/p+α < 1. Then

(i) for M0(a) ∈ Ep,α , one has M0(a) ∈ Np,α if and only if a(±∞) = 0;
(ii) for 0 < 1/p+α−ℜ(σ) < 1, the algebra Ep,α decomposes into the direct sum

Ep,α = CI+̇CSσ +̇Np,α ;

(iii) for 0 <ℜ(β ) < 2π , the smallest closed ideal of Ep,α which contains the oper-
ator Hβ coincides with Np,α .

Proof. Let a be a polynomial in s1/p+α with vanishing absolute term. Since
a(±∞) = 0, there is a polynomial a1 such that a(s1/p+α) = (1− s2

1/p+α)a1(s1/p+α).
By Proposition 4.2.15, 1− s2

1/p+α = h2
π , whence

M0(a) = −H2
πM0(a1) ⊆ HπEp,α ⊆ Np,α .

Since the set of all polynomials in s1/p+α with vanishing absolute term is dense in
the set of all functions in Cp,tα (R) which vanish at ±∞ by Proposition 4.2.10, we
conclude that M0(a) ∈ Np,α . Conversely, let M0(a) ∈ Np,α . Then a can be written
as a = a1hβ with a1 ∈Cp,tα (R). This implies a(±∞) = 0, and assertion (i) is proved.

For a proof of (ii), let M0(a) ∈ Ep,α . Write a as

a =
a(+∞)+a(−∞)

2
+

a(+∞)−a(−∞)
2

s1/p+α +a0

with a0(±∞) = 0. Then

M0(a) =
a(+∞)+a(−∞)

2
I +

a(+∞)−a(−∞)
2

SR+ +M0(a0)

with M0(a0) ∈ Np,α by (i).
To prove assertion (iii), let N denote the smallest closed ideal of Ep,α which

contains the operator Hβ . From Hβ ∈ Np,α by (i), one gets immediately that N ⊆
Np,α . The reverse inclusion follows from the equality 1− s2

1/p+α = −hβh2π−β by
arguments similar to those in the proof of (i).

Here is another example of an integral operator which can be described as a
Mellin convolution.

Example 4.2.18. Let σ , β ∈C and n∈Z
+, and set υ := 1/p+α−σ . If 0 <ℜ(υ) <

n+1 and 0 <ℜ(β ) < 2π then the function
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b(y) := (−1)n
(

υ− iy−1
n

)

e(π−β )(y−iπ)

sinh
(

(y+ iυ)π
) (4.42)

is a Mellin multiplier on Lp(R+, tα), and the corresponding Mellin convolution op-
erator is given by

(

M0(b) f
)

(t) =
1
πi

∫ +∞

0

sn+σ t−σ

(s− eiβ t)n+1
f (s)ds. (4.43)

Moreover, the operator M0(b) belongs to the algebra Ep,α by Proposition 4.2.17.
The relation between (4.43) and (4.42) follows from Formula 3.194.4 in [79]. �

4.2.4 Algebras of SIOs on homogeneous curves

Homogeneous curves are unions of rotated half axes. They will serve us as local
models of admissible curves. More precisely, a homogeneous curve is a union Γ :=
∪k

j=1eiβ j R
+ with real numbers 0 ≤ β1 < β2 < .. . < βk < 2π . We suppose that each

half axis eiβ j R
+ is equipped with an orientation and put ν j := 1 if eiβ j R

+ is directed
away from 0 and ν j := −1 if eiβ j R

+ is directed towards 0. Further, we write χ j for

the characteristic function of eiβ j R
+ and let χ := {χ1 , . . . ,χk}. Note that by Theorem

4.1.3, the singular integral operator SΓ is bounded on Lp(Γ , |t|α) if 1 < p < ∞ and
0 < 1/p+α < 1.

Our goal is to study some algebras of operators on Lp(Γ , |t|α) generated by the
singular integral operator SΓ and by operators of multiplication by piecewise con-
tinuous functions. Given a set A of functions in L∞(Γ ), let A (A,SΓ ,α) denote the
smallest closed subalgebra of L

(

Lp(Γ , |t|α)
)

which contains the operator SΓ and
all operators of multiplication by functions in A.

One can think of operators in A (A,SΓ ,α) as a matrix of operators on the semi-
axis. For we let Lp

k (R+, tα) denote the Banach space of all vectors g := (g1, . . . ,gk)T

with entries g j ∈ Lp(R+, tα), endowed with the norm

‖g‖ :=

(

k

∑
j=1

‖g j‖p
R+,p,tα

)1/p

, (4.44)

and consider the mapping

η : Lp(Γ , |t|α) → Lp
k (R+, tα), (η f )(t) :=

⎛

⎜

⎝

f (eiβ1t)
...

f (eiβk t)

⎞

⎟

⎠ . (4.45)
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Clearly, η is a bijective isometry, and the mapping A �→ η−1Aη is an isometric
isomorphism between the algebras L

(

Lp(Γ , |t|α)
)

and L
(

Lp
k (R+, tα)

)

. For 1 <

p < ∞ and 0 < 1/p+α < 1, let E k
p,α ⊆ L

(

Lp
k (R+, tα)

)

denote the Banach algebra

of all matrices [Ai j]ki, j=1 with entries Ai j ∈ Ep,α , and write E k,N
p,α for the subset of

E k
p,α of all matrices [Ai j]ki, j=1 with Ai j ∈ Np,α whenever i �= j. Since Np,α is a two-

sided ideal of Ep,α , the set E k,N
p,α is a closed subalgebra of E k

p,α .

Proposition 4.2.19. The mapping A �→ ηAη−1 is an isometric isomorphism from
the algebra A (χ,SΓ ,α) onto E k,N

p,α . Thereby,

ηSΓ η−1 =

⎡

⎢

⎢

⎢

⎣

SR+ H2π+β1−β2
. . . H2π+β1−βk

Hβ2−β1
SR+ . . . H2π+β2−βk

...
...

. . .
...

Hβk−β1
Hβk−β2

. . . SR+

⎤

⎥

⎥

⎥

⎦

diag1≤ j≤k(ν j) (4.46)

and
ηχiη−1 = diag(0, . . . ,0, I,0, . . . ,0), (4.47)

the I standing at the ith position. Thus, the mapping A �→ ηAη−1 provides an invert-
ibility symbol for the algebra A (χ,SΓ ,α).

Proof. A straightforward computation of the entries of the operator [Ai j]ki, j=1 :=
ηSΓ η−1 yields

Ai j =

⎧

⎪

⎨

⎪

⎩

ν jSR+ if i = j,

ν jM0(hβi−β j
) if i > j,

ν jM0(h2π+βi−β j
) if i < j.

(4.48)

Thus, ηSΓ η−1 ∈ E k,N
p,α . Since ηχ jη−1 = diag(0, . . . ,0, I,0, . . . ,0) with the identity

standing at the jth position we get in fact that ηA (χ,SΓ ,α)η−1 ⊆ E k,N
p,α . It remains

to verify that the mapping A �→ ηAη−1 maps A (χ,SΓ ,α) onto E k,N
p,α .

Let B = [Bi j]ki, j=1 ∈ E k,N
p,α and put Ai j := [δmiδn jBi j]km,n=1 for each pair (i, j) of

subscripts, with δ referring to the Kronecker symbol again. Since B = ∑k
i, j=1 Ai j, it

suffices to prove that Ai j ∈ ηA (χ,SΓ ,α)η−1 for 1 ≤ i, j ≤ k. First let i = j. Then

ηχ jη
−1 = [δm jδn jI]km,n=1 and ν jηχ j SΓ χ jη

−1 = [δm jδn jSR+]km,n=1.

By definition, these operators generate the algebra [δm jδn jEp,α ]km,n=1. If i > j
then, by Proposition 4.2.17 (iii), one can approximate Bi j by sums of the form
∑l ClM0(hβi−β j

)Dl with operators Cl ,Dl ∈ Ep,α . Put

˜Cl = [δmiδniCl ]km,n=1 and ˜Dl = [δm jδn jDl ]km,n=1.

By what has been just proved, both C̃l and D̃l belong to ηA (χ,SΓ ,α)η−1. Since
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ν jηχiSΓ χ jη
−1 = [δmiδn jM

0(hβi−β j
)]km,n=1

by (4.48), the operator Ai j can be approximated by sums of the form

∑
l

˜Clν jηχiSΓ χ jη
−1
˜Dl ∈ [δmiδn jNp,α ]km,n=1

as desired. For i < j, the proof is analogous.

Interlude. We digress for a moment to describe another setting where the con-
ditions of the N projections theorem 3.2.4 are satisfied. Let Γ := ∪2n

j=1eiβ j R
+ with

angles 0 ≤ β1 < β2 < .. . < β2n < 2π and with the special orientation ν j = (−1) j

for 1 ≤ j ≤ 2n. Let p j stand for the operator of multiplication by the characteristic
function χ j of eiβ j R

+, and set P := (I + SΓ )/2 and Q := I −P. Then, evidently,
condition (3.4) holds. To show condition (3.5), i.e., the equality P(p2 j−1 + p2 j)P =
(p2 j−1 + p2 j)P, one can use the representations of the operators SΓ and p j derived
in the previous proposition. Thus, all computations can be done on the level of
generating functions of special Mellin convolution operators. Using the (already
mentioned) identity S2

R+ − I = HβH2π−β as well as the identities

Hα+β (I +SR+) = HαHβ and Hα+β (I −SR+) = −HαH2π+β = −H2π+αHβ ,

it is then straightforward to obtain (3.5) and (3.6). Finally, summing the identities
P(p2 j−1 + p2 j)P = (p2 j−1 + p2 j)P for j between 1 and n we get P2 = P, which is
(3.3). Note that the latter equality is equivalent to S2

Γ = I (which we already know
since Γ is a closed curve under the above assumptions).

Note also that for any homogeneous curve Γ , there is a closed homogeneous
curve ˜Γ (which satisfies the conditions for the orientation imposed above) such that
Γ ⊆ ˜Γ and the orientation of Γ coincides with the orientation inherited from ˜Γ .
Then operators in A (χ,SΓ ,α) can be studied via operators in the corresponding
algebra A (χ̃,S

˜Γ ,α). For instance, the operator SΓ is invertible if and only if the
operator χΓ S

˜Γ χΓ + (1− χΓ )I
˜Γ is invertible. This observation can be helpful for

operators on Banach spaces where a result like Proposition 4.2.19 is not available.

Corollary 4.2.20. The algebra A (χ,SΓ ,α) is inverse-closed in L
(

Lp(Γ , |t|α)
)

.

Proof. By the preceding proposition, it is sufficient to show that E k,N
p,α is an inverse-

closed subalgebra of L
(

Lp
k (R+, tα)

)

. This will follow once we have shown that

E k,N
p,α is inverse-closed in E k

p,α and E k
p,α is inverse-closed in L

(

Lp
k (R+, tα)

)

. The
first assertion follows immediately from the explicit formula of the inverse matrix
using cofactors. The second assertion is equivalent to the inverse-closedness of Ep,α
in L

(

Lp(R+, tα)
)

by Proposition 1.2.35 (note that the entries of the matrices in
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(4.46) and (4.47) commute). The inverse-closedness of Ep,α in L
(

Lp(R+, tα)
)

was
proved in Proposition 4.2.16 (iv).

Another remarkable consequence of Proposition 4.2.19 is that the algebra
A (χ,SΓ ,α) depends neither on the values of the angles β j nor on the orientation of
the axes eiβ j R

+. Moreover, by Proposition 4.2.16 (iii), it does not depend either on
the weight |t|α . For a precise statement, let Γk denote the curve

Γk = ∪k−1
j=0e

2π ji
k R

+ (4.49)

with each axis being directed away from 0.

Corollary 4.2.21. The algebras A (χ,SΓ ,α) and A (χ,SΓk ,0) are isometrically
isomorphic.

Proof. By Proposition 4.2.19, the algebras A (χ,SΓ ,α) and E k,N
p,α are isometrically

isomorphic, as well as the algebras A (χ,Γ ,0) and E k,N
p,0 . That the algebras E k,N

p,α

and E k,N
p,0 are isometrically isomorphic follows from Proposition 4.2.16 (iii) in com-

bination with Proposition 4.2.17 (i) (recall that the symbol of the operator t−αHβ tα I
is given by (4.42)).

So far we have studied operators with piecewise constant coefficients. Opera-
tors with piecewise continuous coefficients can be reduced to this special class by
means of a homogenization technique which we are going to introduce now. We
will need the multiplicative shift operators Zτ previously defined on R

+ by (4.37),
the definition of which can be naturally extended to general homogeneous curves.
Let A ∈ L

(

Lp(Γ , |t|α)
)

be an operator such that the strong limit s-limτ→0 Z−1
τ AZτ

(respectively the strong limit s-limτ→∞Z−1
τ AZτ ) exists. We denote this strong limit

by
H0(A) := s-lim

τ→0
Z−1
τ AZτ resp. H∞(A) := s-lim

τ→∞
Z−1
τ AZτ . (4.50)

It is easy to see that the set of all operators A with this property forms a Banach alge-
bra and that H0 (resp. H∞) acts continuously and homomorphically on this algebra.
Moreover,

‖H0(A)‖ ≤ ‖A‖ resp. ‖H∞(A)‖ ≤ ‖A‖. (4.51)

For a ∈ PC(Γ̇ ), we denote the one-sided limits of a at {0,∞} by

a j(0) := lim
t→0

t∈eiβ j R+

a(t), a j(∞) := lim
t→∞

t∈eiβ j R+

a(t). (4.52)

Proposition 4.2.22. The strong limits (4.50) exist for every operator A which be-
longs to A (PC(Γ̇ ),SΓ ,α). In particular,

(i) H0(SΓ ) = H∞(SΓ ) = SΓ ;
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(ii) for a ∈ PC(Γ̇ ),

H0(aI) =
k

∑
j=1

a j(0)χ j I , H∞(aI) =
k

∑
j=1

a j(∞)χ j I; (4.53)

(iii) if K is compact then H0(K) = H∞(K) = 0;
(iv) H0 and H∞ are homomorphisms from A (PC(Γ̇ ),SΓ ,α) onto A (χ,SΓ ,α).

Proof. Since H0 and H∞ are continuous homomorphisms, it suffices to check asser-
tions (i) – (iii). Assertion (i) follows by straightforward computation. The proof of
(ii) will be illustrated only for the curve Γ = R

+ from which the general case easily
follows. Let a ∈ PC(Ṙ+) and denote by χ+I the operator of multiplication by the
characteristic function of R

+. Then (Z−1
τ aZτu)(x) = a(τx)u(x), whence

‖(a(+∞)χ+ −Z−1
τ aZτ)u‖p =

∫ +∞

0
|(a(+∞)−a(τx))u(x)|pxα p dx.

Given ε > 0, choose xε ∈ R
+ such that |a(+∞)− a(x)|p‖u‖p < ε p

2 for x ≥ xε . For
some τ > 1, we write the above integral as the sum

∫ xε
τ

0
(|a(+∞)−a(τx)| |u(x)|)p xα p dx+

∫ +∞

xε
τ

(|a(+∞)−a(τx)| |u(x)|)p xα p dx

which is not greater than

max
0<x<xε

|a(+∞)−a(x)|p
∫ xε

τ

0
|u(x)|pxα p dx+

ε p

2
.

For sufficiently large τ , the first term of this sum becomes as small as desired. Thus,
H∞(aI) = a(∞)χ+I. Analogously, H0(aI) = a(0)χ+I.

Assertion (iii) follows from Lemma 1.4.7, since the operators Z−1
τ are uniformly

bounded and Zτ ⇀ 0 weakly by Lemma 4.2.12.

4.2.5 Algebras of SIOs and piecewise continuous functions on the
real line

The goal of this section is to illustrate how the tools developed so far (local prin-
ciples, projection theorems, homogenization) apply to the study of the Fredholm
property of singular integral operators with piecewise continuous coefficients. We
shall do this here in a context which allows us to avoid technicalities: we work on
the real line and in spaces without weight. The general setting is the subject of the
following section.
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Consider the smallest closed subalgebra A of L (Lp(R)) which contains the sin-
gular integral operator SR and all operators of multiplication by piecewise continu-
ous functions, thus A = A (PC(Ṙ),SR). Note that the one-point compactification
Ṙ is a closed curve in the sense of Section 4.1.1. The object of our interest is the
subalgebra A K of the Calkin algebra.

Theorem 4.1.4 implies that C(Ṙ)I + K = { f I + K : f ∈ C(Ṙ)} is a central
subalgebra of A K . This algebra is isometrically isomorphic to the algebra C(Ṙ) by
Proposition 1.4.11. Thus, its maximal ideal space is homeomorphic to Ṙ, with the
maximal ideal {( f I)+J : f ∈C(Ṙ), f (x) = 0} corresponding to x ∈ Ṙ (compare
with Section 1.4.3).

Let Ix denote the smallest closed ideal of A K which contains the maximal
ideal x of C(Ṙ)I + K . Allan’s local principle transfers the invertibility problem
in A K to a family of invertibility problems, one in each of the local algebras
A K

x := A K /Ix. Let ΦK
x denote the canonical homomorphism from A to A K

x .
The following lemma describes the local representatives of operators of multipli-
cation. For x ∈ R, let χx denote the characteristic function of the interval [x,+∞[ ,
and set χ∞ := 1− χ0 . Further, write a(x±) for the one-sided limits of the function
a ∈ PC(Ṙ) at x ∈ R. For x = ∞, we set a(∞−) = a(+∞) and a(∞+) = a(−∞).

Lemma 4.2.23. Let a ∈ PC(Ṙ) and x ∈ Ṙ.

(i) If a is continuous at x and a(x) = 0, then ΦK
x (aI) = 0;

(ii) ΦK
x (aI) =ΦK

x (a(x−)(1−χx)I +a(x+)χx I).

Proof. (i) First let x �= ∞. For ε > 0, choose a continuous function fε : Ṙ → [0, 1]
with fε(x) = 1 the support of which is contained in the interval [x−ε, x+ε]. It easy
to see that ΦK

x ( fε I) is the identity element of the local algebra at x. Thus,

‖ΦK
x (aI)‖ = ‖ΦK

x (aI)ΦK
x ( fε I)‖ = ‖ΦK

x (a fε I)‖ ≤ ‖a fε‖L∞ .

The norm on the right-hand side can be as small as desired by choosing ε small
enough. For x = ∞ the proof is similar, now with the support of fε contained in
{y ∈ R : |y| > 1/ε}.

(ii) Write a as
a = a(x−)(1−χx)+a(x+)χx +a′.

Since a′ is continuous at x and a′(x) = 0, the assertion follows from part (i).

The following is an immediate consequence.

Proposition 4.2.24. Every local algebra A K
x is unital and generated by two idem-

potents, namely ΦK
x (χx I) and ΦK

x (PR).

Thus, the local algebras are subject to the two projections theorem, with p =
ΦK

x (χx I) and q =ΦK
x (PR). The application of that theorem requires some knowl-

edge on the spectrum of
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pqp =ΦK
x (χx PRχx I). (4.54)

A convenient way to determine this spectrum is the use of homogenization tech-
niques. Let Vt refer to the (additive) shifts defined in Section 4.2.1, and write χ+ for
χ0 and χ− for 1− χ0 . We consider the set of all operators A for which the strong
limit H∞(A), defined in (4.50), and all strong limits

Hx(A) := s-lim
τ→+∞

ZτV−xAVxZ−1
τ

with x ∈ R exist. This set is an algebra, and every Hx is a homomorphism on this
algebra.

Proposition 4.2.25. The strong limits Hx(A) exist for all A ∈ A and x ∈ Ṙ. In
particular:

(i) Hx(SR) = SR;
(ii) Hx(aI) = a(x−)χ−I +a(x+)χ+I for a ∈ PC(Ṙ);

(iii) Hx(K) = 0 for K compact.

Proof. The case x = ∞ is proved in Proposition 4.2.22. Let x �= ∞. Then the proof
of (i) is a straightforward calculation using the definition of the singular integral
operator. For assertion (ii), note that

(ZτV−xaVxZ−1
τ u)(t) = (aVxZ−1

τ u)(t/τ+ x)
= a(t/τ+ x)(VxZ−1

τ u)(t/τ+ x)
= a(t/τ+ x)u(t)

and pass to the limit as τ → ∞. Assertion (iii) follows from Lemma 1.4.6, since the
operators Z±

τ are uniformly bounded and tend weakly to zero by Lemma 4.2.12.

Proposition 4.2.25 implies that each Ht maps the algebra A to the Banach al-
gebra alg{SR,χ+} generated by SR and χ+I. By assertion (iv) of the same propo-
sition, the quotient homomorphisms (denoted by the same symbol) Ht : A K →
alg{SR,χ+} are well defined. Moreover, due to (ii), the homomorphism Hx maps
the local ideal at x to 0 and is, thus, also well defined on the quotient algebra A K

x .
So finally we have a family of homomorphisms Hx : A K

x → alg{SR,χ+}.
In order to show that these homomorphisms are in fact isomorphisms, consider

the homomorphism W ′
x : alg{SR,χ+}→ A K

x defined by

W ′
x(A) :=ΦK

x (VxAV−x).

Using Propositions 4.2.24 and 4.2.25 one can easily check to see that every homo-
morphism W ′

x is onto and that W ′
x is the inverse of Hx. Thus, Hx is indeed an (even

isometric) isomorphism between the local algebra A K
x and the operator algebra

alg{SR,χ+}.
This fact can be employed to determine the spectrum of the indicator element

(4.54) needed for the application of the two-projections theorem. Indeed, this spec-
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trum coincides with the spectrum of the singular integral operator χ+PRχ+I =
(I + SR+)/2 which is a circular arc, namely the closure of the range of the func-
tion

R → C, y �→ (1+ coth((y+ i/p)π))/2

(see Proposition 4.2.11 and Figure 4.4). Now one can use the two projections theo-
rem to associate with every local coset ΦK

x (A) a 2× 2-matrix function defined on
this arc with the property that the coset is invertible if and only if the associated
matrix function is invertible.

As already mentioned, the same result follows from homogenization directly,
without invoking the two projections theorem explicitly. This is a consequence of
Proposition 4.2.19 and of the fact that the entries in the (2×2 matrix) operators in
E k,N

p,α are Mellin convolutions.
Since, by Allan’s local principle, the family {Hx}x∈Ṙ

of homomorphisms is suf-
ficient for A K , we can summarize as follows.

Theorem 4.2.26. Let A ∈ A := A (PC(Ṙ),SR). Then the coset of A modulo com-
pact operators is invertible in A K if and only if the operators Hx(A) are invertible
for all x ∈ Ṙ. The invertibility of these operators can effectively be checked via
Proposition 4.2.19.

The preceding theorem in combination with Corollary 1.2.32 easily implies that
the algebra A K is inverse-closed in the Calkin algebra. Thus, Theorem 4.2.26 is
actually a criterion for the Fredholm property of singular integral operators.

Theorem 4.2.27. Let A := A (PC(Ṙ),SR). The algebra A K is inverse-closed in
the Calkin algebra on Lp(R), and the algebra A is inverse-closed in L (Lp(R)).
Thus, an operator A ∈ A is Fredholm if and only if the operators Hx(A) are invert-
ible for all x ∈ Ṙ.

One should mention that in the case at hand, homogenization indeed yields much
more than the two projections theorem: It provides us with an isometric isomor-
phism between each local algebra and an algebra of operators. Since the operator
algebra is basically an algebra of convolutions, this implies, for example, that the
local algebras have a trivial radical. Questions of this kind cannot be answered by
the two projections theorem.

4.3 Algebras of singular integral operators on admissible curves

4.3.1 Algebras of SIOs and piecewise continuous functions on
admissible curves

Let Γ be an admissible curve and w ∈ Ap(Γ ) a power weight of the form (4.1). We
consider the smallest closed subalgebra A (PC(Γ̇ ),SΓ ,w) of L (Lp(Γ ,w)) which
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contains the operator SΓ and all operators of multiplication by a piecewise continu-
ous function.

In what follows, we need some additional notation. Let z be a finite point of Γ
of order k(z). There is a closed neighborhood U of z such that U ∩Γ is a union

∪k(z)
j=1Γj of Lyapunov arcs Γj with ∩k(z)

j=1Γj = {z}. We denote the angle between the
tangents of Γ1 and Γj at z by β j ≡ β j(z). Without loss of generality we can assume
that 0 = β1 < .. . < βk(z) < 2π . If Γ is unbounded and z = ∞, then the angles β j are
defined as the angles at the point 0 of the image of Γ under the conformal mapping
z �→ (z− z0)−1 with respect to some point z0 �∈ Γ .

Given the weight w, define a function

α : Γ → R, z �→

⎧

⎨

⎩

αi if z = ti, i ∈ {1, . . . ,n},
∑n

i=0αi if z = ∞,
0 if z �∈ {t1, . . . , tn,∞}

(4.55)

and call wz(t) := |t|α(z) with t ∈ C the local weight function at the point z. Finally,
abbreviate the Calkin algebra A (PC(Γ̇ ),SΓ ,w)/K to A K (Γ ,w) and write Φ for
the canonical homomorphism from A (PC(Γ̇ ),SΓ ,w) onto A K (Γ ,w).

We will employ localization in order to study the algebra A (PC(Γ̇ ),SΓ ,w). First
we have to identify a suitable central subalgebra of A K (Γ ,w). The following is an
immediate consequence of Theorem 4.1.4.

Proposition 4.3.1. The cosets f I + K with f ∈ C(Γ̇ ) belong to the center of
A K (Γ ,w).

We can use Allan’s local principle to localize A K (Γ ,w) over the central sub-
algebra Φ(C(Γ̇ )) generated by the set of cosets {( f I)+K : f ∈ C(Γ̇ )}. This al-
gebra is isomorphic to the algebra C(Γ̇ ), and its maximal ideal space is homeo-
morphic to Γ̇ , where the maximal ideal corresponding to x ∈ Γ̇ is {( f I)+K : f ∈
C(Ṙ), f (x) = 0}. Moreover, the pair consisting of the algebra A K (Γ ,w) and its
subalgebra Φ(C(Γ̇ )) is a faithful localizing pair by Theorem 2.3.5.

For z∈ Γ̇ = M(Φ(C(Γ̇ ))), we denote the corresponding local ideal of A K (Γ ,w)
by Iz, the quotient algebra A K (Γ ,w)/Iz by A K

z (Γ ,w), and the canonical ho-
momorphism from A K (Γ ,w) onto this quotient algebra by Φz. To each z ∈ Γ̇ , we

associate the suitable curve Γz := ∪k(z)
j=1eiβ j R

+ where eiβ j R
+ is endowed with the

same orientation as Γj (to z or away from z).
The following proposition establishes an isomorphism between local algebras

on Γ̇ and local algebras on the homogeneous curves Γz. Note that, in this setting,
“localization” does not only imply a localization (freeze in) of the coefficients of
the operator, but also of the weight function and even of the underlying curve. For
every measurable set M, let χM denote its characteristic function.

Proposition 4.3.2. Let z ∈ Γ̇ . Then the local algebras A K
z (Γ ,w) and A K

0 (Γz,wz)
are isometrically isomorphic. The isomorphism can be chosen so that Φz(SΓ ) and
Φz(χΓj

I) are carried over into Φ0(SΓz) and Φ0(χeiβ j R+I), respectively.
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Proof. First let z ∈ Γ . Choose a (sufficiently small) neighborhood U of z which
contains none of the weight points t0, t1, . . . , tn besides, possibly, the point z itself,

and for which U ∩Γ can be written as a union ∪k(z)
j=1Γj of Lyapunov arcs Γj such

that ∩k(z)
j=1Γj = {z}. For each function a and each set M, let a|M denote the restriction

of a onto M. We will prove the assertion by verifying that the following algebras are
isometrically isomorphic to each other:

• A1 := A K
z (Γ ,w);

• A2 := A K
z (Γ ∩U ,w|Γ∩U

);
• A3 := A K

z (Γ ∩U ,wz|Γ∩U
);

• A4 := A K
0 (Γz ∩U ′,wz|Γz∩U ′ );

• A5 := A K
0 (Γz,wz).

Step 1 A1
∼= A2: Choose a function f ∈ C(Γ̇ ) with f (z) = 1 and supp f ⊆ U .

Then the desired isomorphy follows immediately from

Φz(SΓ ) =Φz( f I)Φz(SΓ )Φz( f I) =Φz( f SΓ f I) =Φz( f SΓ∩U f I) =Φz(SΓ∩U )
(4.56)

and from

Φz(aI) =Φz( f I)Φz(aI)Φz( f I) =Φz( f a f I) =Φz( f a|Γ∩U
f I) =Φz(a|Γ∩U

I) (4.57)

for each function a ∈ PC(Γ̇ ).

Step 2 A2
∼= A3: For t ∈ Γ ∩ U , set ϑ(t) := w(t)w−1

z (t). The function ϑ is
continuous on Γ ∩U and does not degenerate there. Hence, the Banach spaces
Lp(Γ ∩U ,w|Γ∩U

) and Lp(Γ ∩U ,wz|Γ∩U
) coincide, and the mapping

T : Lp(Γ ∩U ,w|Γ∩U
) → Lp(Γ ∩U ,wz|Γ∩U

), f �→ ϑ f

is an isometry. Thus, the mapping

L
(

Lp(Γ ∩U ,w|Γ∩U
)
)

→ L
(

Lp(Γ ∩U ,wz|Γ∩U
)
)

: A �→ TAT−1

is an isometry, too. Since TAT−1 −A is a compact operator for each A ∈ A (Γ ∩
U ,w|Γ∩U

) by Theorem 4.1.4, this mapping determines an isometric isomorphism
between the quotient algebras A K (Γ ∩U ,w|Γ∩U

) and A K (Γ ∩U ,wz|Γ∩U
) under

the action of which the algebra Φ(C(Ṙ)) remains invariant. The conclusion is, that
the local algebras at z ∈ Γ are isometrically isomorphic, too.

Step 3 A3
∼= A4: Let U ′ be a neighborhood of 0 and υ : Γz ∩U ′ → Γ ∩U a home-

omorphism subject to the following conditions:

(i) the restriction of υ onto eiβ j R
+ ∩U ′ has a Hölder continuous derivative, and

the image of this restriction is Γj ∩U ;
(ii) the function υ ′ defined at inner points t ∈ eiβ j R

+ ∩U ′ by
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υ ′(t) =
1

t(s)
d(t(s))

ds

∣

∣

∣

∣

s=te−iβ j

can be extended to a continuous function on Γz ∩U ′;
(iii) υ(0) = z, υ ′(0) = 1.

It is not hard to see that a neighborhood U ′ and a function υ with these properties
always exist. The homeomorphism υ determines an isomorphism ϒ from Lp(Γ ∩
U ,wz|Γ∩U

) onto Lp(Γz ∩U ,wz|Γz∩U
) by (ϒ f )(t) := f (υ(t)). Our first claim is that

the algebras A3 and A4 are algebraically isomorphic. For brevity, put Aυ :=ϒAϒ−1

for each operator A ∈ L
(

Lp(Γ ∩U ,wz|Γ∩U
)
)

. If we knew that

SυΓ∩U = SΓ∩U ′ +K with K compact, (4.58)

then we could get our claim as follows: The operator Kυ is compact for each com-
pact K, and if a is piecewise continuous then (aI)υ is the operator of multiplication
by the piecewise continuous function aυ . Consequently, the mapping A �→ Aυ settles
an isomorphism between the quotient algebras A K (Γ ∩U ,wz|Γ∩U

) and A K (Γz ∩
U ′,wz|Γz∩U ′ ). Moreover, this isomorphism implies an isomorphism between the cor-

responding local algebras at the point z since the algebraϒC(Γ ∩U )ϒ−1 coincides
with C(Γz ∩U ) and since f υ(0) = f (z) for each continuous f . So we are left with
verifying (4.58). Let χ j denote the characteristic function of the arc Γj, and write χ̃ j

for the characteristic function of eiβ j R
+ ∩U ′. The equality

SυΓ∩U −SΓ∩U ′

=
k

∑
i, j=1

χ̃i(SυΓ∩U −SΓ∩U ′)χ̃ jI

=
k

∑
i, j=1

(

(χiSΓ∩U χ j I)
υ − χ̃iSΓ∩U ′ χ̃ jI

)

=
k

∑
i, j=1
i≤ j

(SυΓi∪Γj
−S

(eiβi R+∪eiβ j R+)∩U ′)− (k−1)
k

∑
j=1

(SυΓj
−S

eiβ j R+) (4.59)

with k ≡ k(z) shows that it suffices to consider the operators in the first and in
the second sum, which correspond to k = 2 and k = 1, respectively. We need the
following lemma.

Lemma 4.3.3. Let Γi, Γj , U ′, z, υ , βi, β j be as above and assume that Γi is directed
to z and Γj away from z. Then the operator

SυΓi∪Γj
−S

(eiβi R+∪eiβ j R+)∩U ′ (4.60)

is compact.
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Proof. Writing the operator (4.60) applied to a function u as an integral we obtain

1
πi

∫

(eiβi R+∪eiβ j R+)∩U ′

k(s, t)
s− t

u(s)ds (4.61)

with

k(s, t) =
υ ′(s)(s− t)
υ(s)−υ(t)

−1. (4.62)

We shall verify that

k(s, t) = O(|s− t|α) for some α ∈ (0, 1), (4.63)

which implies that the integral (4.61) has a weakly singular kernel and is, hence,
compact (see, for instance, [93, Section X.2]). First, suppose s and t are in the same
segment, say in eiβiR

+ ∩U ′. Without loss of generality, assume β j = 0. Then, by
condition (i) for υ ,

υ ′(s)−υ ′(t) = O(|s− t|α)

with some α ∈ (0, 1), whence

υ(s)−υ(t)−υ ′(t)(s− t) = O(|s− t|α+1).

Substituting these two equalities into (4.62) we immediately get (4.63). Now let
s ∈ eiβiR

+ and t ∈ eiβ j R
+ and assume again βi = 0. Then

υ(s) = υ(0)+υ ′(0)s+O(|s|1+α) = s+O(|s− t|1+α),

υ(t) = t +O(|s− t|1+α),

and
υ ′(s)−υ ′(0) = υ ′(s)−1 = O(|s− t|α).

The above gives

k(s, t) =
(1+O(|s− t|α))(s− t)− (s− t)+O(|s− t|1+α)

(s− t)+O(|s− t|)1+α

and this is just (4.63). The assertion is proved.

Resuming the proof of Proposition 4.3.2 we will now show that, for the special
cases k = 1 and k = 2, Lemma 4.3.3 implies (4.58). Indeed, if k = 1, then we multiply
(4.60) from both sides by χ̃ jI to obtain the compactness of SυΓj

− S
eiβ j R+ . If k = 2

and Γi and Γj are directed as in Lemma 4.3.3 then there is nothing to prove. Suppose
they are not. For instance, let both Γi and Γj be directed away from z. In this case
consider a new curve ˜Γ which is obtained from Γi ∪Γj by changing the orientation
of Γj. Define analogously the curve ˜Γz. Then, obviously,

SΓi∪Γj = −S
˜Γ χi I +S

˜Γ χ j I.
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Thus, there exist compact operators K1 and K2 such that

SυΓi∪Γj
= (−S

˜Γ χi I +S
˜Γ χ j I)

υ = −Sυ
˜Γ χ̃i I +Sυ

˜Γ χ̃ j I

= −S
˜Γz
χ̃i I +S

˜Γz
χ̃ j I +K1 = S

(eiβi R+∪eiβ j R+)∩U ′ +K2, (4.64)

which gives (4.58) and, consequently, our claim.
To finish the third step we have to check whetherϒ induces an isometry between

the corresponding local algebras. Let f ∈ Lp(Γ ∩U ,wz|Γ∩U
). Then

‖ϒ f‖p =
∫

Γz∩U ′
| f (υ(t))|pwp

z (t) |dt|

=
∫

Γ∩U
| f (s)|pwp

z (υ−1(s))
∣

∣

∣

∣

dυ−1(s)
ds

∣

∣

∣

∣

|ds|

≤ sup
s∈Γ∩U

wp
z (υ−1(s))

wp
z (s)

∣

∣

∣

∣

dυ−1(s)
ds

∣

∣

∣

∣

‖ f‖p. (4.65)

By hypotheses (i)–(iii), the function

h(s) :=
wp

z (υ−1(s))
wp

z (s)

∣

∣

∣

∣

dυ−1(s)
ds

∣

∣

∣

∣

(4.66)

is continuous on Γ ∩U , and h(z) = 1. Hence, given ε > 0, we find a sufficiently
small neighborhood V of z such that h(s) ≤ 1 + ε for s ∈ V . Analogously, for all
u ∈ Lp(Γz ∩U ′,wz|Γz∩U ′ ) and for all continuous functions g with g(0) = 1 and with
sufficiently small support, we have

‖υ−1(gu)‖ ≤ ‖gu‖(1+ ε)1/p.

Now let A ∈ A (Γ ,w), let K be a compact operator, and choose f as in Step 1 and g
as above. Since

‖Φ0(Aυ)‖ = ‖Φ0(ϒ (A+K)ϒ−1)‖ = ‖Φ0(ϒ f (A+K)ϒ−1gI)‖

we obtain

‖Φ0(Aυ)‖ ≤ ‖ϒ f (A+K)ϒ−1gI‖
= sup

‖u‖=1
‖ϒ f (A+K)ϒ−1gu‖

≤ sup
‖u‖=1

‖ f (A+K)ϒ−1gu‖(1+ ε)1/p

≤ sup
‖u‖=1

‖ f (A+K)‖‖ϒ−1gu‖(1+ ε)1/p

≤ ‖g1(A+K)‖(1+ ε)2/p.
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Since
‖Φ0(A)‖ = inf{‖Φ(gA)‖ : g ∈C(Γ̇ ) with g(0) = 1},

by Proposition 2.2.4, we conclude that

‖Φ0(Aυ)‖ ≤ ‖Φz(A)‖(1+ ε)2/p.

Letting ε go to zero, we finally obtain ‖Φ0(Aυ)‖ ≤ ‖Φz(A)‖. The reverse inequality
can be verified analogously.

Step 4 A4
∼= A5: This proof follows the same lines as the proof of the first step.

Finally we have to examine the case when z = ∞. Via the mapping z �→ (z− z0)−1

with z0 �∈ Γ ∩Γz and the transformation defined in (4.7), we trace back this case to
the situation when z = 0, which has already been treated. This finishes the proof of
Proposition 4.3.2.

For Γz = ∪k(z)
j=1eiβ j R

+ as above, let χz denote the set of characteristic functions of

the half lines eiβ j R
+, j = 1, . . . ,k(z).

Proposition 4.3.4. The local algebras A K
0 (Γz,wz) and A K

∞ (Γz,wz) are both iso-
morphic to the algebra A (χz ,SΓz ,α(z)) defined in Section 4.2.4.

Proof. Let A ∈ A (Γz,wz). Then the strong limit H0(A) exists, and it depends only
on the coset Φ(A) by Proposition 4.2.22 (iii). Moreover, by Proposition 4.2.22 (ii),
H0( f I) = 0 for each continuous function f on Γz with f (0) = 0. This shows that the
operator H0(A) only depends on the coset Φ0(A). We denote the resulting quotient
mapping Φ0(A) �→ H0(A) by H0 again. Clearly, the new H0 is a homomorphism
from A K

0 (Γz,wz) onto the algebra A (χz ,SΓz ,α(z)). We are going to show that H0

is even an isometry, i.e., that

‖Φ0(A)‖ = ‖H0(A)‖ (4.67)

for A ∈ A (Γz,wz). Taking into account the values of the norms of the operators
Z±
τ , we conclude via the Banach-Steinhaus theorem that ‖H0(A)‖ ≤ ‖A+K‖ for all

operators K with Φ0(K) = 0. Hence,

‖H0(A)‖ ≤ inf
K
‖A+K‖ = ‖Φ0(A)‖.

On the other hand, it is easy to see thatΦ0(H0(A)) =Φ0(A). So we have ‖Φ0(A)‖≤
‖H0(A)‖, which gives equality (4.67). The proof for the algebra A K

∞ (Γz,wz) is anal-
ogous.

We are now in a position to formulate and prove the main theorem of this section.
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Theorem 4.3.5. Let Γ be an admissible curve and w ∈ Ap(Γ ) a power weight of
the form (4.1). Then:

(i) for each z ∈ Γ̇ , there is a homomorphism A �→ smb(A,z) from the algebra

A (PC(Γ̇ ),SΓ ,w) onto E
k(z),N
p,α(z) . In particular,

smb(SΓ ,z) =

⎡

⎢

⎢

⎢

⎣

SR+ H2π+β1−β2
. . . H2π+β1−βk

Hβ2−β1
SR+ . . . H2π+β2−βk

...
...

. . .
...

Hβk−β1
Hβk−β2

. . . SR+

⎤

⎥

⎥

⎥

⎦

diag1≤ j≤k(ν j) (4.68)

where k := k(z) and ν j := ν j(z), and

smb(aI,z) = diag1≤ j≤k(z)(a j(z)I) (4.69)

for a ∈ PC(Γ̇ ), with
a j(z) := lim

t→z
t∈Γj

a(t); (4.70)

(ii) the coset of an operator A ∈ A (PC(Γ̇ ),SΓ ,w) modulo compact operators is
invertible in A K (PC(Γ̇ ),SΓ ,w) if and only if the operators smb(A,z) are
invertible for all z ∈ Γ̇ ;

(iii) the algebra A K (PC(Γ̇ ),SΓ ,w) is inverse-closed in the Calkin algebra of
Lp(Γ ,w), and the algebra A (PC(Γ̇ ),SΓ ,w) is inverse-closed in L (Lp(Γ ,w));
thus, an operator A ∈A (PC(Γ̇ ),SΓ ,w) is Fredholm if and only if smb(A,z) is
invertible for all z ∈ Γ̇ , and A possesses a regularizer in A (PC(Γ̇ ),SΓ ,w) in
this case;

(iv) for A ∈ A (PC(Γ̇ ),SΓ ,w), one has ‖Φ(A)‖ = supz∈Γ̇ ‖smb(A,z)‖;
(v) the radicals of A K (PC(Γ̇ ),SΓ ,w) and A K (C(Γ̇ ),SΓ ,w) are trivial. In par-

ticular, if A ∈ A (PC(Γ̇ ),SΓ ,w) and smb(A,z) = 0 for all z ∈ Γ̇ , then A is
compact;

(vi) the collection F (Γ ,w) of all functions {Bz}z∈Γ̇ such that Bz ∈ E
k(z),N
p,α(z) and

{Bz} is upper semi-continuous with respect to A K (PC(Γ̇ ),SΓ ,w), forms a
Banach algebra under the norm ‖{Bz}‖ := supz ‖Bz‖, and the mapping which
associates with Φ(A) the function z �→ {smb(A,z)} is an isometric isomor-
phism from the algebra A K (PC(Γ̇ ),SΓ ,w) onto F (Γ ,w).

Proof. (i) For z ∈ Γ̇ and A ∈ A (PC(Γ̇ ),SΓ ,w), put smb(A,z) := (ηH0ϒΦz)(A).
The particular form of smb(SΓ ,w) and smb(a,z) results from Propositions 4.2.22,
4.3.2 and 4.3.4. The surjectivity of the mapping

A (PC(Γ̇ ),SΓ ,w) → E
k(z),N
p,α(z) , A �→ smb(A,z)

was established in Proposition 4.2.19.

(ii) By Allan’s local principle, the coset of an operator A ∈ A (PC(Γ̇ ),SΓ ,w) mod-
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ulo compact operators is invertible in A K (PC(Γ̇ ),SΓ ,w) if and only if Φz(A) is
invertible in the corresponding local algebra A K

z (PC(Γ̇ ),SΓ ,w) for each z ∈ Γ̇ . By
Propositions 4.2.22, 4.3.2 and 4.3.4, this is equivalent to the invertibility of smb(A,z)
in E

k(z),N
p,α(z) . It remains to show that an operator B ∈ E k,N

p,α is invertible in E k,N
p,α if and

only if it is invertible in L (Lp
k (R+, |t|α)). This fact follows from Corollary 1.2.32.

Here is another argument: Write B ∈ E k,N
p,α as a matrix operator [Bi j]ki, j=1 with en-

tries Bi j ∈ Ep,α . Since Ep,α is a commutative algebra, the operator B is invertible if
and only if det[Bi j] is invertible, and

B−1 =
1

det[Bi j]
[Ci j]

with a certain operator [Ci j]∈ E k,N
p,α again. Moreover, since det[Bi j] is a Mellin mul-

tiplier, say M0(a) for some a ∈ Cp,tα (R), the determinant det[Bi j] is invertible if
and only if a(z) �= 0 for all z ∈ R. But the maximal ideal space of Ep,α = Cp,tα (R)
is homeomorphic to R by Proposition 4.2.10, and so a−1 ∈ Cp,tα (R), too. Thus,
(det[Bi j])−1 = M0(a−1) ∈ Ep,α .

(iii) The inverse-closedness of the algebra A K (PC(Γ̇ ),SΓ ,w) in the Calkin algebra
of Lp(Γ ,w) follows again via Corollary 1.2.32.

(iv) By Theorem 2.3.5, the algebra A K (PC(Γ̇ ),SΓ ,w) forms, together with its
subalgebra Φ(C(Γ̇ )), a faithful localizing pair. Thus, the assertion follows im-
mediately from Theorem 2.3.3 in combination with the fact that the mapping
Φz(A) �→ smb(A,z) is an isometry by Propositions 4.2.22, 4.3.2 and 4.3.4.

(v) Let Φ(A) belong to the radical of A K (PC(Γ̇ ),SΓ ,w). If Φ(A) belongs to the
part ∩z∈ΓIz of this radical then, by (iii), we have ‖Φ(A)‖= 0. Hence, A is compact.
Otherwise, there is a z ∈ Γ̇ such that Φz(A) �= 0. This implies that the coset Φz(A)
is a non-zero element of the radical of the local algebra A K

z (PC(Γ̇ ),SΓ ,w). But

this is impossible since A K
z (PC(Γ̇ ),SΓ ,w) is isomorphic to the algebra E k,N

p,α of
multipliers, which is semi-simple.

Assertion (vi) is an immediate consequence of Theorem 2.3.5 and of what we
have already proved.

A surprising consequence of Theorem 4.3.5, Proposition 4.2.19 and Corollary
4.2.21 is that the algebra A K (PC(Γ̇ ),SΓ ,w) only depends on p and on the topo-
logical properties of Γ , but neither on the metric properties of Γ nor on the weight.

Corollary 4.3.6. Let Γ1 and Γ2 be admissible curves such that Γ1 and Γ2 are home-
omorphic, and let w1 and w2 denote weight functions of the form (4.1) such that
w1,w2 ∈ Ap(Γ ). Then the quotient algebras

A K (PC(Γ̇i),SΓi ,wi) ⊂ L (Lp(Γi,wi))/K (Lp(Γi,wi))

with i = 1, 2 are isometrically isomorphic to each other.
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4.3.2 Essential spectrum of the SIO

We will now apply the results of the preceding section to determine the essential
spectrum of the singular integral operator SΓ on an admissible curveΓ . Allan’s local
principle reduces this problem to the determination of all local spectra σ(Φz(SΓ ))
where z ∈ Γ if Γ is a bounded curve and where z ∈ Γ̇ if Γ is unbounded (with
notation as in the previous section). As we know from the proof of Proposition 4.3.2,

σA K
z (Γ ,w)(Φz(SΓ )) = σA (χz,SΓz ,α(z))(SΓz).

Thus, it remains to compute the spectrum of SΓ ∈L (Lp(Γ , |t|α)) whenΓ =∪N
j=1Γj

with Γj = eiβ j R
+. We will do this in the general context of Section 3.2.8.

Suppose that to of the rays Γj are directed away from 0 and te of these rays are
directed towards 0. Thus, N = to + te. We call v := v(z) := to − te the valency of the
point z. Further, we write p j for the operator of multiplication by the characteristic
function of Γj. Then p1, p2, . . . , pN are idempotents whose sum is the identity and
which satisfy pi p j = δi j pi. In general, PΓ := (I +SΓ )/2 is not an idempotent, so that
Theorem 3.2.18 is not applicable immediately. We therefore embed Γ into a larger
homogeneous curve Γ E , where now S2

Γ E = I. For, let

Γ E := ∪2N
j=1Γ

E
j where Γ E

j = eiγ j R
+

with 0 ≤ γ1 < γ2 < .. . < γ2N < 2π and with Γ E
j being oriented away from zero

if j is even and towards zero if j is odd. The angles γ j are chosen in such a way
that all βk occur among the γ j and that Γk and Γ E

j possess the same orientation if
βk = γ j. The subset of {1, 2, . . . , 2N} which corresponds to the rays of the original
curve Γ will be denoted by T , and we abbreviate the operator of multiplication by
the characteristic function of Γ E

j by pE
j .

The result of this construction is that the operators pE
j with j = 1, . . . ,2N and

PΓ E := (I +SΓ E )/2 are idempotents which satisfy the axioms (3.3)–(3.6). Thus, we
may use the results of Section 3.2.8 to compute the spectrum of the singular integral
operator

A :=

(

∑
j∈T

pE
j

)

PΓ E

(

∑
j∈T

pE
j

)

+∑
j �∈T

pE
j . (4.71)

In order to apply Theorem 3.2.18, we need the spectrum of the operator

XE :=
N

∑
i=1

(pE
2i−1PΓ E pE

2i−1 + pE
2iQΓ E pE

2i)

where QΓ E := I −PΓ E .
By Proposition 3.2.6, the spectrum of XE coincides with the spectrum of the

singular projection
pE

1 XE pE
1 = pE

1 PΓ E pE
1 = PΓ E

1
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which is the circular arc Aα+1/p. More precisely, we know that the spectrum of PΓ E
1

in L (Lp(Γ E
1 , |t|α)) coincides with the arc Aα+1/p. But since the complement in C

of this arc is connected, Theorem 1.2.30 implies that the spectrum of PΓ E
1

equals

Aα+1/p in every unital closed subalgebra of L (Lp(Γ E
1 , |t|α)) which contains this

operator. Since 0 and 1 belong to the circular arc, this also justifies the application
of Proposition 3.2.6. Thus, specializing Theorem 3.2.18 to the present context yields
the following.

Theorem 4.3.7. The spectrum of the singular integral operator (4.71) on the space
Lp(Γ E , |t|α) equals

{0, 1} for v = 0, (4.72)

∪v−1
k=0 A(α+1/p+k)/v for v > 0, (4.73)

∪|v|−1
k=0 A(α+1/p+k)/|v| for v < 0. (4.74)

Now it becomes clear that the spectrum of PΓ = (I + SΓ )/2 on Lp(Γ , |t|α) is
given by (4.72)–(4.74). Since σ(SΓ ) = 2σ(PΓ )−1, this settles the problem of com-
puting the spectrum of the operator SΓ of singular integration on Lp(Γ , |t|α) for
homogeneous curves Γ and, via the local principle, also the problem of determining
the essential spectrum of SΓ for general admissible curves Γ and Lp-spaces with
power weights.

4.3.3 Essential norms

Assertion (iii) of Theorem 4.3.5 offers a way to compute essential norms of singu-
lar integral operators in terms of norms of associated homogeneous operators. To
illustrate this, we consider a simple closed piecewise Lyapunov curve Γ , denote the
angle of Γ at a point z ∈Γ by β (z), put Γz := R

+∪eiβ (z)
R

+, and let χ+ and χ− refer
to the characteristic functions of R

+ and eiβ (z)
R

+, respectively. Write α(z) for the
exponent of the local weight function and, given a ∈ PC(Γ ), denote the one-sided
limits of a at z by a±(z). Further, we use the notation wα(t) := |t|α .

Corollary 4.3.8. Let z ∈ Γ with 0 < 1/p+α(z) < 1 and a,b ∈ PC(Γ ). Then

‖Φ(aI +bSΓ )‖ =

sup
z∈Γ

∥

∥(a+(z)χ++a−(z)χ−)I +(b+(z)χ++b−(z)χ−)SΓz

∥

∥

L (Lp(Γz,wα(z))). (4.75)

For the case of continuous coefficients this result was established in [5]. For gen-
eral p, the determination of the norms of singular integral operators with piecewise
constant coefficients (as the ones occurring on the right-hand side of (4.75)) is by
no means evident.

The determination of these norms is much easier if p = 2. Then L2(R, |t|α) be-
comes a Hilbert space with respect to the weighted inner product
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〈 f ,g〉α :=
∫

R

|t|2α f (t)g(t)dt. (4.76)

Consequently, the norm of the operator cI +dSR with constant coefficients is equal
to the square root of the spectral radius of (cI + dSR)(cI + dSR)∗ where “∗” rep-
resents the adjoint with respect to the inner product (4.76). In order to keep the
formulas readable we agree to write cos(xπ) as cosxπ (with evident modification
for the other trigonometric functions) in this section.

Theorem 4.3.9. Let c,d ∈ C and υ := 1/2+α with 0 < υ < 1. Then

‖cI +dSR‖L (L2(R,wα )) =
1

sinυπ

[

|c|2(1− cos2υπ)+ |d|2(1+ cos2υπ)+

+
√

4|d|4 cos2υπ+((cd + cd)2 − (cd − cd)2 cos2υπ)sin2υπ
]1/2

.

Proof. It easy to see that the formula holds for d = 0. So we can assume without
loss of generality that d = 1. By Proposition 4.2.19, the norm of cI +SR is equal to
the norm of the matrix operator

[

cI +SR+ −Hπ
Hπ cI −SR+

]

,

considered on the Hilbert space L2
2(R

+,wα). Thus,

‖cI +SR‖2 =
∥

∥

∥

∥

[

cI +SR+ −Hπ
Hπ cI −SR+

][

cI +S∗
R+ H∗

π
−H∗

π cI −S∗
R+

]∥

∥

∥

∥

.

We write the operator on the right-hand side of this equality as [Bi j]2i, j=1. Since this
operator is self-adjoint by construction, its norm is equal to its spectral radius. We
determine the spectral radius via the Mellin transform. The Mellin symbols of the
Bi j are given by

(

M2,wαB11M−1
2,wα

)

(z)

=
(

M2,wα (SR+S∗
R+ + cSR+ + cS∗

R+ + |c|2 +HπH∗
π)M

−1
2,wα

)

(z)

=
cosh2 zπ+ cos2υπ
cosh2 zπ− cos2υπ

+ |c|2 + c
cosh(z+ iυ)π sinh(z− iυ)π

cosh2 zπ− cos2υπ

+
cosh(z− iυ)π sinh(z+ iυ)π

cosh2 zπ− cos2υπ
;
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(

M2,wαB12M−1
2,wα

)

(z) =
(

M2,wα (SR+H∗
π +HπS∗

R+ + cH∗
π + cHπ)M−1

2,wα

)

(z)

=
cosh(z+ iυ)π+ cosh(z− iυ)π

cosh2 zπ− cos2υπ

+
csinh(z+ iυ)π− csinh(z− iυ)π

cosh2 zπ− cos2υπ
;

and

M2,wαB21M−1
2,wα

= M2,wαB12M−1
2,wα

;

M2,wαB22M−1
2,wα

= M2,wα (SR+S∗
R+ − cSR+ − cS∗

R+ + |c|2 +HπH∗
π)M

−1
2,wα

.

Hence, after multiplication by the common divisor cosh2 zπ − cos2υπ , the eigen-
value equation becomes

(cosh2 zπ− cos2υπ)λ 2

− 2λ (cosh2 zπ− cos2υπ)
(

cosh2 zπ+ cos2υπ+ |c|2(cosh2 zπ− cos2υπ)
)

+
(

cosh2 zπ+ cos2υπ+ |c|2(cosh2 zπ− cos2υπ)
)2

−
(

ccosh(z+ iυ)π sinh(z− iυ)π+ ccosh(z− iυ)π sinh(z+ iυ)π
)2

−
(

cosh(z+ iυ)π+ cosh(z− iυ)π
)2 +

(

csinh(z+ iυ)π− csinh(z− iυ)π
)2 = 0.

A straightforward calculation yields that the largest eigenvalue λmax(z) is given by

λmax(x) = |c|2 +
1+ x
1− x

+
2

1− x

√

x+(ℜ(c)2 +ℑ(c)2x)(1− x) (4.77)

where we have written x := cos2υπ/cosh2 zπ .
In order to maximize λmax(z) with respect to z ∈R, we have to maximize λmax(x)

with respect to x ∈]0,cos2υπ] ⊆]0,1[. For the function λmax to attain its maximum
at an inner point x ∈]0,1[, it is necessary that the derivative λ ′

max(x) is zero. This
happens if and only if

(x−1)2 [(ℜ(c)2 +ℑ(c)2)+1+2
(

ℜ(c)2 −ℑ(c)2)]= 0.

If the term in square brackets is zero, then λ ′
max is identically zero and λmax(x) takes

its maximum at every point of ]0,1[. So let x = 1. The function λmax has a pole at
x = 1. So it is monotonically decreasing or increasing on [0,1[. Since

λmax(0) = 1+2|ℜ(c)| > 0

and

λ ′
max(0) = 1+

1+ℑ(c)2 −ℜ(c)2

|ℜ(c)| +1+2|ℜ(c)| ≥ 2+
ℑ(c)2

|ℜ(c)| + |ℜ(c)| > 0,
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the function λmax is increasing. Consequently, λmax(x) becomes maximal for max-
imal x, that is, for x = cos2υπ , whence z = 0. Now set z = 0 in (4.77) to get the
assertion.

Example 4.3.10. Setting c = 0 and d = 1 in Theorem 4.3.9 we get

‖SR‖L (L2(R,wα )) = ‖Φ(SR)‖ =
1+ |cosυπ|

sinυπ
=

{

cot υπ2 if 0 < υ ≤ 1
2 ,

tan υπ
2 if 1

2 < υ ≤ 1.

�

Example 4.3.11. Setting c = 1/2 and d = 1/2 or c = 1/2 and d =−1/2 in Theorem
4.3.9 we obtain

‖PR‖L (L2(R,wα )) = ‖I −PR‖L (L2(R,wα )) = ‖Φ(PR)‖ = ‖Φ(I −PR)‖ =
1

sinυπ
.

�

On curves with corners, the picture is more involved.

Theorem 4.3.12. The norm of the singular integral operator SΓ on the angle Γ =:
R

+ ∪ eiβ
R

+ is

‖SΓ ‖L (L2(Γ ,wα )) = ‖Φ(SΓ )‖ =
(

1+
√

m
1−

√
m

)1/2

where

m = sup
y∈R

cos2υπ+ sinh2 y(β −π)
cosh2 yπ+ sinh2 y(β −π)

. (4.78)

In particular, if α = 0 and β �= π , then this supremum is attained at the point y0

which is the only positive solution of the equation

coshβy
β

=
cosh(2π−β )y

2π−β
. (4.79)

Proof. As in the proof of the preceding theorem,

‖SΓ ‖ =

∥

∥

∥

∥

∥

[

SR+ −Hβ
H2π−β −SR+

]

[

S∗
R+ H∗

2π−β
−H∗

β −S∗
R+

]∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

[

SR+S∗
R+ +HβH∗

β SR+H∗
2π−β +HβS∗

R+

H2π−βS∗
R+ +SR+H∗

β SR+S∗
R+ +H2π−βH∗

2π−β

]∥

∥

∥

∥

∥

.
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We write the latter matrix as [Ci j]2i, j=1. For the Mellin symbols of the entries Ci j we
find

(M2,wαC11M−1
2,wα

)(y) =
sinh2 yπ+ cos2υπ+ e2y(π−β )

cosh2 yπ− cosυπ
;

(M2,wαC12M−1
2,wα

)(y) =
cosh(y+ iυ)πe(β−π)(y−iυ) + e(π−β )(y+iυ) cosh(y− iυ)π

cosh2πy− cos2υπ
;

(M2,wαC21M−1
2,wα

)(y) = (M2,wα (SR+H2π−β +HβS∗
R+)M−1

2,wα
)(y);

(M2,wαC22M−1
2,wα

)(y) =
sinh2πy+ cos2υπ+ e2y(β−π)

cosh2πy− cos2υπ
.

A straightforward calculation leads to the eigenvalue equation

λ 2 −2λ
cosh2 yπ− cos2υy+2sinh2 y(π−β )

cosh2 yπ− cos2υπ
+1 = 0

which implies that the largest eigenvalue λ is given by

sup
y∈R

(
√

cosh2 yπ+ sinh2 y(π−β )+
√

cos2υπ+ sinh2 y(π−β )
)2

cosh2 yπ− cos2υπ

= sup
y∈R

√

cosh2 yπ+ sinh2 y(π−β )+
√

cos2υπ+ sinh2 y(π−β )
√

cosh2 yπ+ sinh2 y(π−β )−
√

cos2υπ+ sinh2 y(π−β )
=

1+
√

m
1−

√
m

.

Now let υ = 1/2. For the function

f (y) :=
sinh2 y(π−β )

cosh2 yπ+ sinh2 y(π−β )
=

1
cosh2 yπ

sinh2 y(π−β )
+1

to become maximal it is necessary that the function

g(y) :=
sinhy(π−β )

coshyπ
, y ≥ 0,

becomes maximal. The equation g′(y) = 0 is equivalent to (4.79).
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Fig. 4.6 The norm of SΓ on the angle Γ = R
+ ∪eiβ

R
+, as a function of β and υ . A cut-section of

this figure for υ = 1/2 is given below.

In [130], Nyaga took the trouble to compute the norms of the singular integral
operator SΓ on Γ = R

+ ∪ eiβ
R

+ for some special values of β . Here is his result.

‖SΓ ‖L (L2(Γ )) = ‖Φ(SΓ )‖ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1+
√

5
2 if β = π

3 ,
√

2 if β = π
2 ,

√

3+4
√

3+2
√

6(
√

3−1)
3 if β = 2π

3 .

Compare also Figure 4.7 which shows the norms of SΓ calculated numerically using
computer software.

Fig. 4.7 The norm of SΓ on the angle Γ = R
+ ∪ eiβ

R
+, for υ = 1/2, as a function of β .
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Another simple consequence of Theorem 4.3.12 which we shall need later on is
the following.

Corollary 4.3.13. For SΓ in L
(

L2(Γ ,wα)
)

, the essential norm ‖Φ(SΓ )‖ is greater
than or equal to 1. This norm is equal to 1 if and only if α = 0 and β = π .

Proof. Evidently, the norm cannot be smaller than 1. It is equal to 1 if and only if
m = 0. But m = 0 holds if and only if α = 0 and β = π .

The corresponding result for the singular integral operator on the half axis reads
as follows.

Theorem 4.3.14. Let υ = 1/2+α . Then

‖SR+‖L (L2(R+,wα )) = ‖Φ(SR+)‖ =

{

1 if υ ∈
[

1
4 , 3

4

]

,

|cotυπ| if υ ∈
]

0, 1
4

[

∪
]

3
4 ,1
[

.

Fig. 4.8 The norm of SR+ , as a function of υ .

Proof. As above,

‖SR+‖2 = sup
y∈R

∣

∣

∣

∣

cosh2(y+ iυ)π
sinh2(y+ iυ)π

∣

∣

∣

∣

= sup
y∈R

cosh2 yπ− sin2υπ
cosh2 yπ− cos2υπ

= 1+ sup
y∈R

2cos2υπ−1

cosh2 yπ− cos2υπ
.

If 2cos2υπ−1 > 0 or, equivalently, if υ ∈
]

0, 1
4

[

∪
]

3
4 ,1
[

, then

‖SR+‖ =

√

cos2υπ
1− cos2υπ

= |cotυπ|.
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If 2cos2υπ−1 ≤ 0 or, equivalently, if υ ∈
[

1
4 , 3

4

]

, then the supremum is reached for
maximal cosh2 yπ , that is, when y → +∞. In this case, ‖SR+‖ = 1.

4.4 Singular integral operators with Carleman shift changing
orientation

Throughout this section, let Γ denote a simple, closed, bounded, admissible curve
with t : [0,L] → Γ as its parameter representation, the arc length. A Carleman shift
onΓ is a homeomorphism μ :Γ →Γ such that μm is the identical mapping for some
integer m > 1. A Carleman shift either changes or preserves the orientation of Γ .
Singular equations with a Carleman shift preserving the orientation can be reduced
to a system of singular integral equations without shift by a simple and standard
procedure, see [95, 104, 114] for these and other facts. We shall therefore only treat
shifts which do not preserve the orientation.

We shall consider shifts μ which satisfy the following conditions:

(i) μ changes the orientation of Γ ;
(ii) the mapping Jμ : f �→ f ◦μ defines a bounded linear operator on Lp(Γ ,w);

(iii) the derivative μ ′(t) := dμ(t(s))
ds

1
t ′(s) is piecewise Hölder continuous, and μ ′(t) �=

0 for all t ∈ Γ .

Condition (i) implies that μ has exactly two fixed points, say t0 and t1, and that μ2 =
I. Indeed, consider the functions t and μ ◦ t. Because of the change of orientation,
there exist points s0, s1 ∈ Γ such that t(s0) = μ(t(s0)) =: t0 and t(s1) = μ(t(s1)) =:
t1. To get that μ2 = I, just note that the Carleman shift μ2 preserves the orientation
and has fixed points. So it must be the identity.

Let Γ+ and Γ− refer to the arcs joining t0 with t1 and t1 with t0, respectively, i.e.,
Γ+ consists of all points of Γ which lie after t0 and before t1 with respect to the given
orientation of Γ . Condition (ii) implies that, for each z0 ∈ Γ+ \ {t0, t1}, the weight
function w is of the form

w(z) = |z− z0|α(z0)|μ(z)−μ(z0)|α(z0)w1(z) (4.80)

with w1 being a function which is continuous at z0 and such that w1(z0) �= 0.
We let B(Γ ,w,μ) refer to the smallest closed subalgebra of L (Lp(Γ ,w)) which

contains the operators SΓ and Jμ and all operators of multiplication by functions
in PC(Γ ). By Theorem 4.1.5, K (Lp(Γ ,w)) ⊆ B(Γ ,w,μ). So we can consider the
quotient algebra BK (Γ ,w,μ) := B(Γ ,w,μ)/K (Lp(Γ ,w)). The canonical homo-
morphism from B(Γ ,w,μ) onto this quotient algebra will be denoted by Φ .

Given z ∈ Γ+, write α(z) for the local exponent defined in (4.55), and let β (z)
stand for the angle of Γ at z as defined above. Further, for a ∈ PC(Γ ) we set
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a±(z) := lim
t→z
t >
< z

a(t). (4.81)

Finally, let E̊ 4
p,α stand for the subset of E 4

p,α which consists of all matrix operators
[Ai j]4i, j=1 of the form

⎡

⎢

⎢

⎣

∗ ◦ ◦ ∗
◦ ∗ ∗ ◦
◦ ∗ ∗ ◦
∗ ◦ ◦ ∗

⎤

⎥

⎥

⎦

where ∗ symbolizes elements from Ep,α and ◦ refers to elements from Np,α . One
can check, as in the proof of Theorem 4.3.5, that E̊ 4

p,α is a closed subalgebra of E 4
p,α

and that E̊ 4
p,α is inverse-closed in L (Lp

4(R+, tα)).
Our goal is an analog of Theorem 4.3.5 for singular integral operators with shifts.

We prepare this theorem with some auxiliary results. Let Cμ(Γ ) denote the Banach
algebra of all continuous functions f on Γ for which f (t) = f (μ(t)) for all t ∈ Γ .
From Theorem 4.1.4 and from

Jμ f Jμ = f for f ∈Cμ(Γ ), (4.82)

we deduce that the algebra Φ(Cμ(Γ )) lies in the center of BK (Γ ,w,μ), a fact
which allows us to use Allan’s local principle. Moreover, one can easily show that
the algebra BK (Γ ,w,μ) and its subalgebra Φ(Cμ(Γ )) form a faithful localizing
pair.

We localize the algebra BK (Γ ,w,μ) over the maximal ideal space ofΦ(Cμ(Γ )),
which is homeomorphic to Γ+. The localization at the fixed points t = t0 and t = t1
runs parallel to the case without shift. But at non-fixed points t ∈ Γ+ \ {t0, t1}, we
observe that every function f ∈Cμ(Γ ) which vanishes at t must vanish at μ(t), too.
In that sense, we have a “double-point localization” at the non-fixed points, which
causes some differences between the treatment of the local algebras at fixed points
and at non-fixed points.

Given a point z ∈ Γ+, we denote the local algebra at z by BK
z (Γ ,w) and the

canonical homomorphism from B(Γ ,w,μ) onto BK
z (Γ ,w) by Φz. If z is a fixed

point of μ , then the local weight wz and the curve Γz are defined as in Section 4.3.
In that case, Γz consists of two half axes having the same angle β (z) between as the
tangents of Γ at z. Since Γ is closed and oriented, one half axis must be oriented to
0 and the other away from 0. On Γz we consider the Carleman shift μz which sends
a point t ∈ Γz, t �= 0, to the point μz(t) which is located at the other half axis and has
the same distance to 0 as t. Thus, μz has 0 and ∞ as its fixed points.

Proposition 4.4.1. Let z be a fixed point of the Carleman shift μ . Then the local
algebras BK

z (Γ ,w,μ) and BK
0 (Γz,wz,μz) are isometrically isomorphic. The iso-

morphism can be chosen as in Proposition 4.3.2 where, additionally, Φz(Jμ) will be
carried over into Φ0(Jμz).
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Proof. The proof proceeds as that of Proposition 4.3.2. Let U be a sufficiently
small neighborhood of z such that μ(U ∩Γ ) = U ∩Γ . Then the local algebras

• B1 := BK
z (Γ ,w,μ);

• B2 := BK
z (Γ ∩U ,w|Γ∩U

,μ|Γ∩U
);

• B3 := BK
z (Γ ∩U ,wz|Γ∩U

,μ|Γ∩U
);

• B4 := BK
0 (Γz ∩U ′,wz|Γz∩U ′ ,μz|Γz∩U ′ );

• B5 := BK
0 (Γz,wz,μz)

are isometrically isomorphic to each other. Indeed, the proofs of the first and last
step are the same as in the proof of Proposition 4.3.2. In the second step some care
is in order since the operator T JμT−1 − Jμ does not need to be compact. But since

T JμT−1 =
ϑ

μ ◦ϑ Jμ

with the continuous function ϑ(μ ◦ϑ)−1 taking the value 1 at z, we get the isomor-
phy between B2 and B3 in the shift case, too. For a proof of B3

∼= B4 (= the third
step), we have to choose a homeomorphism υ which fulfills conditions (i)–(iii) in
the proof of Proposition 4.3.2 and which, moreover, satisfies the condition

(iv) μυ = υμ .

To get such a function, define υ on one of the half axes of Γz so that (i)–(iii) hold.
Then set υ(t) := (μυμz)(t) for all points t belonging to the other half axis. This
function has the desired properties. The remainder of the proof runs as that of Propo-
sition 4.3.2.

In order to represent the local algebra BK
0 (Γz,wz,μz) as an algebra of homoge-

neous operators, define the mapping H0 as in Section 4.2.4 and let D(Γz,wz) refer to
the smallest closed subalgebra of L (Lp(Γz,wz)) which contains the operators SΓz ,
Jμz and the operators of multiplication by the characteristic functions of the two half
axes which constitute Γz. Since H0(Jμz) = Jμz , the following can be proved in the
same way as Proposition 4.3.4.

Proposition 4.4.2. The mapping H0 is an isometric isomorphism between the local
algebra BK

0 (Γz,wz,μz) and the algebra D(Γz,wz).

Now we turn our attention to the localization at non-fixed points of μ . Let z ∈Γ+
be a non-fixed point. Set z̃ := μ(z), and denote the angle, with z (resp. with z̃) as
its vertex and with the tangents of Γ at z (resp. at z̃) as its legs, by Γ ′

z (resp. by Γ ′
z̃ ).

Choose real numbers ϕ and ϕ̃ such that the curves

Γz := eiϕ(Γ ′
z − z)+ z and Γz̃ := eiϕ̃(Γ ′

z̃ − z̃)+ z̃,
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obtained from Γ ′
z and Γ ′

z̃ by rotation, are disjoint. Further, let β1, . . . ,β4 ∈ [0,2π[ be
defined by (see Figure 4.9)

Γz = (eiβ1R
+ ∪ eiβ2R

+)+ z,

Γz̃ = (eiβ3R
+ ∪ eiβ4R

+)+ z̃.

Fig. 4.9 The construction of Γz and Γz̃ from the curve Γ .

We define the Carleman shift μz : Γz ∪Γz̃ → Γz ∪Γz̃ by

μz(z+ eiβ j t) = z̃+ eiβ5− j t if j = 1,2 (4.83)

and
μz(z̃+ eiβ j t) = z+ eiβ5− j t if j = 3,4 (4.84)

where t ∈ R
+ and define the operator Jμz by (Jμzu)(t) := u(μz(t)) as above. Finally,

denote the characteristic functions of the angles Γz and Γz̃ by χz and χz̃ respectively,
and put wz(t) = |t − z|α(z) and wz̃(t) = |t − z̃|α(z̃).

Proposition 4.4.3. Let z be a non-fixed point of the Carleman shift μ . Then the local
algebras BK

z (Γ ,w,μ) and BK
z (Γz ∪Γz̃,χzwz +χz̃ wz̃,μz) are isometrically isomor-

phic. The isomorphism maps ΦK
z (SΓ ) to ΦK

z (SΓz∪Γz̃), ΦK
z (a) with a ∈ PC(Γ ) to

ΦK
z (a′) with a certain a′ ∈ PC(Γz ∪Γz̃), and ΦK

z (μ) to ΦK
z (μz).

Proof. Let χ ′
z

and χ ′
z̃

denote the characteristic functions of Γ ′
z and Γ ′

z̃ , respectively,
and define numbers β ′

1, . . . ,β ′
4 ∈ [0,2π[ by

Γ ′
z = (eiβ ′

1R
+ ∪ eiβ ′

2R
+)+ z,

Γ ′
z̃ = (eiβ ′

3R
+ ∪ eiβ ′

4R
+)+ z̃,

where we assume that β ′
j +ϕ = β j mod 2π for j = 1,2 and β ′

j + ϕ̃ = β j mod 2π
for j = 3,4. Further, we let μ ′

z denote the Carleman shift defined on Γ ′
z ∪Γ ′

z̃ in a
neighborhood of z and z̃ by
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μ ′
z(z+ eiβ ′

j t) = z̃+ eiβ ′
5− j t if j = 1,2 (4.85)

and
μ ′

z(z̃+ eiβ ′
j t) = z+ eiβ ′

5− j t if j = 3,4 (4.86)

where t ∈ R
+.

Now take a sufficiently small neighborhood U0 of z (resp. U1 of z) such that
Γ ∩U0 (resp. (Γ ′

z ∪Γ ′
z̃ )∩U1) is invariant under action of μ (resp. μ ′

z) and such
that Γ ∩U0 (resp. (Γ ′

z ∪Γ ′
z̃ )∩U1) is not connected but consists of two connected

components. Let Γ j (resp. Γ ′ j) be the component of Γ ∩U0 (resp. (Γ ′
z ∪Γ ′

z̃ )∩U1)
which contains the point z if j = 0 and the point z̃ if j = 1, and let χ j (resp. χ ′

j
) refer

to the characteristic function of Γ j (resp. Γ j′ ) with j = 1,2. The same arguments as
in the proofs of Propositions 4.3.2 and 4.4.1 show that the algebras

D1 := BK
z (Γ ,w,μ) (4.87)

and
D2 := BK

z

(

Γ ∩U0,(χ0wz +χ1wz̃)|Γ∩U0
,μ|Γ∩U0

)

(4.88)

are isometrically isomorphic. In the next step we show that the algebras D2 and

D3 := BK
z

(

(Γ ′
z ∪Γ ′

z̃ )∩U1,(χ ′
0
wz +χ ′

1
wz̃)|(Γ ′z ∪Γ ′z̃ )∩U1

,μ ′
|(Γ ′z ∪Γ ′z̃ )∩U1

)

(4.89)

are isometrically isomorphic. Let υ0 : Γ ′
z → Γ 0 be a homeomorphism which is sub-

ject to the conditions:

(i) the restriction of υ0 onto eiβ j R
+∩U ′ has a Hölder continuous derivative, and

the image of this restriction is Γj ∩U ;
(ii) the function υ ′ defined at inner points t of eiβ j R

+ ∩U ′ by

υ ′(t) :=
1

t(s)
d(t(s))

ds

∣

∣

∣

∣

s=te−iβ j

can be extended to a continuous function on Γz ∩U ′;
(iii) υ0(z) = z, υ ′

0(z) = 1;

and put
υ1(t) := (μυ0μz)(t) for t ∈ Γ ′

z̃ . (4.90)

Then υ1 is a homeomorphism from Γ ′
z̃ onto Γ1 which also fulfills (i)–(iii). Set

υ(t) := υ j(t) (4.91)

where j = 0 if t ∈ Γ ′
z and j = 1 if t ∈ Γ ′

z̃ . Finally, for u ∈ Lp((Γ0 ∪Γ1)∩U ,χ0wz +
χ1wz̃), define

(ϒu)(t) := u(υ(t)). (4.92)

We claim that the mapping A �→ϒAϒ−1 is an isomorphism between the algebras
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B
(

Γ ∩U0,(χ0wz +χ1wz̃)|Γ∩U0
,μ|Γ∩U0

)

and

B

(

(Γ ′
z ∪Γ ′

z̃ )∩U1,(χ ′
0
wz +χ ′

1
wz̃)|(Γ ′z ∪Γ ′z̃ )∩U1

,μ ′
|(Γ ′z ∪Γ ′z̃ )∩U1

)

.

The claim will follow once we have shown thatϒAϒ−1 belongs to the latter algebra
whenever A is in the first one. If A = Jμ then, by the definition of υ1,ϒ Jμϒ−1 = Jμ ′z .
If A is the operator of multiplication by the piecewise continuous function a, then
ϒAϒ−1 is the operator of multiplication by a ◦ υ . Finally, for A being a singular
integral operator,

ϒSΓ∩Uϒ−1 =ϒ (χ0SΓ∩U χ0 +χ1SΓ∩U χ0 +χ0SΓ∩U χ1 +χ1SΓ∩U χ1)ϒ
−1

=ϒχ0SΓ∩U χ0ϒ
−1 +ϒχ1SΓ∩U χ1ϒ

−1 +K1

where K1 is compact, since the operators χ1SΓ∩U χ0 and χ0SΓ∩U χ1 are compact
(their kernels are bounded since Γ0 and Γ1 are disjoint). Repeating the arguments
from the proof of Proposition 4.3.2 (third step) we obtain

ϒSΓ∩Uϒ−1 =ϒχ0SΓ∩U χ0ϒ
−1 +ϒχ1SΓ∩U χ1ϒ

−1 +K1

= χ ′
z
SΓ ′

z ∪Γ ′
z̃ ∩U1

χ ′
z
+χ ′

z̃
SΓ ′

z ∪Γ ′
z̃ ∩U1

χ ′
z̃
+K2

= SΓ ′
z ∪Γ ′

z̃ ∩U1
+K3

with K2 and K3 compact. To finish the proof of the isomorphy D2
∼= D3 notice

that, for f ∈ Cμ(Γ ∩U ), ϒ f Iϒ−1 is the operator of multiplication by a function
in Cμ ′z((Γ

′
z ∪Γ ′

z̃ )∩U1) and thatϒ f Iϒ−1(z) = f (z) = f (z̃). Thus, the mapping A �→
ϒAϒ−1 induces an isomorphism between the local algebras at z ∈ Γ+. The same
reasoning as in the proof of Proposition 4.3.2 shows that this local isomorphism is
an isometry.

Finally we have to establish that the algebras D3 and

D4 := BK
z (Γz ∪Γz̃,χzwz +χz̃wz̃,μz) (4.93)

are isometrically isomorphic. For t ∈ (Γ ′
z ∪Γ ′

z̃ )∩U1, put

ζ (t) :=
{

eiψ(t − z)+ z if t ∈ Γ ′
z ,

eiψ̃(t − z)+ z if t ∈ Γ ′
z̃ ,

(4.94)

and let U2 be an open subset of C such that ζ ((Γ ′
z ∪Γ ′

z̃ )∩U1) = (Γz ∪Γz̃)∩U2.
As above, the homeomorphism ζ induces an isometric isomorphism from Lp((Γ ′

z ∪
Γ ′

z̃ )∩U1,χ ′
z
wz + χ ′

z̃
wz̃|U1

) onto Lp((Γz ∪Γz̃)∩U2,χzwz + χz̃wz̃|U2
) which we denote

by ζ again. For this isomorphism, it is easy to verify the identities

ζS(Γ ′
z ∪Γ ′

z̃ )∩U1
ζ−1 = S(Γz∪Γz̃)∩U2

+ compact
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and
ζJμ ′zζ

−1 = Jμz , ζχ ′
z
ζ−1 = χz , ζχ ′

z̃
ζ−1 = χz̃ .

These identities imply in a standard way that the algebras D3 and

D ′
4 := BK

z

(

(Γz ∪Γz̃)∩U2,(χzwz +χz̃wz̃)|U2
,μz|U2

)

(4.95)

are isometrically isomorphic. Since, evidently, D ′
4
∼= D4, the proof is finished.

Let χ j ( j = 1, . . . ,4) denote the characteristic functions of the sets z + eiβ j R
+ if

j = 1,2 and z̃+eiβ j R
+ if j = 3,4, and let Dz refer to the smallest closed subalgebra

of the Banach algebra L
(

Lp(Γz ∪Γz̃,χzwz + χz̃wz̃)
)

which contains the operators
(χ1 + χ2)SΓz∪Γz̃(χ1 + χ2)+ (χ3 + χ4)SΓz∪Γz̃(χ3 + χ4), Jμz , and the four operators of
multiplication by the χ j .

Proposition 4.4.4. The algebras BK
z (Γz ∪Γz̃,χzwz + χz̃ wz̃,μz) and Dz are isomet-

rically isomorphic.

Proof. This proof is a slight modification of the proof of Proposition 4.3.4. For
τ ∈ R

+, consider the operator Z′
τ given by

(Z′
τu)(s) =

{

u( s−z
τ+z ) if s ∈ Γz,

u( s−z̃
τ+z̃ ) if s ∈ Γz̃,

(4.96)

which maps the Banach space Lp(Γz ∪Γz̃,χzwz + χz̃wz̃) continuously onto itself. In
analogy with Section 4.2.4, define the operator H′

0 via the strong limit

H′
0(A) = s-lim

τ→0
Z′−1
τ AZ′

τ , (4.97)

provided this limit exists for A. In particular, one has

H′
0(SΓz∪Γz̃) = (χ1 +χ2)SΓz∪Γz̃(χ1 +χ2)+(χ3 +χ4)SΓz∪Γz̃(χ3 +χ4), (4.98)

H′
0(Jμz) = Jμz (4.99)

and, for a ∈ PC(Γz ∪Γz̃),

H′
0(aI) = a1χ1 + . . .+a4χ4 (4.100)

where a j denotes the one-sided limit of a as t → z (respectively t → z̃) along the
curve on which χ j does not vanish. We will only prove (4.98). The two other iden-
tities can be verified as in Proposition 4.2.22. Write

SΓz∪Γz̃ = (χ1 +χ2)SΓz∪Γz̃(χ1 +χ2)+(χ1 +χ2)SΓz∪Γz̃(χ3 +χ4)
+ (χ3 +χ4)SΓz∪Γz̃(χ1 +χ2)+(χ3 +χ4)SΓz∪Γz̃(χ3 +χ4).

For the first item on the right-hand side of this equality, we find at s ∈ Γz,
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(Z′−1
τ (χ1 +χ2)SΓz∪Γz̃(χ1 +χ2)Z

′
τu)(s)

=
1
πi

∫

Γz

u((t − z)/(τ+ z))
t − (s− z)τ− z

dt =
1
πi

∫

Γz

u(y)
y− s

dy

= ((χ1 +χ2)SΓz∪Γz̃(χ1 +χ2)u)(s).

For the second item, we have Z′−1
τ (χ1 +χ2)SΓz∪Γz̃(χ3 +χ4)Z

′
τ → 0 strongly as τ→ 0,

since the operator (χ1 + χ2)SΓz∪Γz̃(χ3 + χ4) is compact. Similar arguments apply to
the third and fourth items, whence (4.98). The remainder of the proof (which, in
particular, includes the norm equality) runs as in Proposition 4.3.4.

The following is the main result of this section.

Theorem 4.4.5.

(i) For each z ∈ Γ+, there is a homomorphism A �→ smb(A,z) from B(Γ ,w,μ)
onto the algebra E 2

p,α(z) if z is a fixed point of μ and onto the algebra E̊ 4
p,α(z)

in the case z is a non-fixed point of μ . In particular, if z is a fixed point of μ ,
then

smb(SΓ ,z) =
[

SR+ −H2π−β (z)
Hβ (z) −SR+

]

, (4.101)

smb(Jμ ,z) =
[

0 I
I 0

]

, (4.102)

smb(aI,z) =
[

a+(z)I 0
0 a−(z)I

]

, (4.103)

whereas if z is a non-fixed point,

smb(SΓ ,z) =

⎡

⎢

⎢

⎣

SR+ −H2π−β (z) 0 0
Hβ (z) −SR+ 0 0

0 0 SR+ −H2π−β (μ(z))
0 0 Hβ (μ(z)) −SR+

⎤

⎥

⎥

⎦

, (4.104)

smb(Jμ ,z) =

⎡

⎢

⎢

⎣

0 0 0 I
0 0 I 0
0 I 0 0
I 0 0 0

⎤

⎥

⎥

⎦

and (4.105)

smb(aI,z) =

⎡

⎢

⎢

⎣

a+(z)I 0 0 0
0 a−(z)I 0 0
0 0 a+(μ(z))I 0
0 0 0 a−(μ(z))I

⎤

⎥

⎥

⎦

. (4.106)

(ii) The algebra BK (Γ ,w,μ) is inverse-closed in the Calkin algebra. An operator
A ∈B(Γ ,w,μ) is Fredholm if and only if smb(A,z) is invertible for all z ∈Γ+.
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(iii) ‖Φ(A)‖ = supz∈Γ+ ‖smb(A,z)‖ for any A ∈ B(Γ ,w,μ).
(iv) The radical of BK (Γ ,w,μ) is trivial.
(v) The set F (Γ ,w) of all functions (Bz)z∈Γ+ such that

Bz ∈
{

E 2
p,α(z) if z is a fixed point of μ ,

E̊ 4
p,α(z) if z is a non-fixed point of μ ,

and (Bz)z∈Γ+ is upper semi-continuous with respect to BK (Γ ,w,μ) forms a
Banach algebra under the supremum norm, and the mapping which associates
with Φ(A) the function z �→ (smb(A,z)) is an isometric isomorphism from
BK (Γ ,w) onto F (Γ ,w).

Proof. (i) As in Section 4.2.4, one defines an isometric isomorphism η such that
the mapping Θ : A �→ ηAη−1 maps D(Γz,wz) to E 2

p,α(z) if z is a fixed point of the

Carleman shift and it maps Dz to E̊ 4
p,α(z) in the case z is a non-fixed point. It is

easy to see that Θ is onto. Now put smb(A,z) := (ΘH0ϒΦK
z )(A) for fixed points

z and smb(A,z) := (ΘH′
0ϒΦK

z )(A) for non-fixed points z. The special form of the
operators smb(SΓ ,z), smb(aI,z) and smb(Jμz ,z) results from Propositions 4.4.1–
4.4.4 in the same way as in Theorem 4.3.5.
(ii) One easily checks that if an operator A ∈ E 2

p,α(z) (resp. A ∈ E̊ 4
p,α(z)) is invertible,

then its inverse belongs to E 2
p,α(z) (resp. E̊ 4

p,α(z)), again. The remainder of the proof
is identical to that of Theorem 4.3.5.

As before, let β (z) denote the angle at z ∈ Γ .

Corollary 4.4.6. Let Γ be a piecewise Lyapunov curve and Jμ be a Carleman shift
changing the orientation of Γ . Then the operator SΓ + JμSΓ Jμ is compact if and
only if β (z)+β (μ(z)) = 2π for all z ∈ Γ .

Proof. By Theorem 4.4.5, the symbol of SΓ +JμSΓ Jμ at the fixed point z ∈Γ is the
matrix

[

0 Hβ (z) −H2π−β (z)
Hβ (z) −H2π−β (z) 0

]

,

whereas the symbol of this operator at a non-fixed point z is

⎡

⎢

⎢

⎣

0 Hβ (μ(z))−H2π−β (z) 0 0
Hβ (z)−H2π−β (μ(z)) 0 0 0

0 0 0 Hβ (z)−H2π−β (μ(z))
0 0 Hβ (μ(z))−H2π−β (z) 0

⎤

⎥

⎥

⎦

.

In both cases, this symbol is the zero matrix if and only if β (z)+β (μ(z)) = 2π .

This corollary implies, in particular, that for curves having complementary angles
at z and μ(z) the operator JμSΓ Jμ belongs to the algebra A (PC(Γ ),SΓ ,w). This fact
remains valid under more general conditions.
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Corollary 4.4.7. Let Γ be a piecewise Lyapunov curve and Jμ be a Carleman shift
changing the orientation of Γ . Then the operator JμSΓ Jμ belongs to the algebra
A (PC(Γ ),SΓ ,w).

Proof. Let ˜A (PC(Γ ),SΓ ,w) denote the smallest closed subalgebra of L
(

Lp(Γ ,w)
)

which contains the algebra A (PC(Γ ),SΓ ,w) and the operator JμSΓ Jμ , and let
˜A K (PC(Γ ),SΓ ,w) denote the image of ˜A (PC(Γ ),SΓ ,w) in the Calkin algebra

with canonical homomorphism Φ . Since the algebra Φ(Cμ(Γ )I) belongs to the

center of ˜A K (PC(Γ ),SΓ ,w), we can identify the sets A , B and C in Theorem
2.3.4 as the algebras ˜A K (PC(Γ ),SΓ ,w), Φ(Cμ(Γ )I) and A (PC(Γ ),SΓ ,w), re-
spectively. To apply this theorem, we must show that for each z ∈ Γ+ = M(B),
there is an operator Az ∈ A (PC(Γ ),SΓ ,w) such that Φz(JμSΓ Jμ −Az) = 0, where

Φz refers to the canonical homomorphism from ˜A K (PC(Γ ),SΓ ,w) onto the local
algebra at the point z.

Let z be a fixed point of μ . The same reasoning as that in the proof of Theorem
4.4.5 shows that local algebra ˜A K

z (PC(Γ ),SΓ ,w) is isometrically isomorphic to

E 2,N
p,α(z). Moreover, the same isomorphism maps the local algebra A K

z (PC(Γ ),SΓ ,w)

(which is a closed subalgebra of ˜A K
z (PC(Γ ),SΓ ,w)) also onto E 2,N

p,α(z). Hence,

the algebra ˜A K
z (PC(Γ ),SΓ ,w) and its subalgebra coincide, whence the inclusion

Φz(JμSΓ Jμ) ∈ A K
z (PC(Γ ),SΓ ,w).

Similarly, if z be a non-fixed point, then both the algebra ˜A K (PC(Γ ),SΓ ,w)
and its subalgebra A K

z (PC(Γ ),SΓ ,w) are isometrically isomorphic (again under
the same isomorphism) to the closed subalgebra of E 4

p,α(z) consisting of all matrices

[

A 0
0 B

]

with A,B ∈ E 2,N
p,α(z).

Thus, in each case, there is an operator Az ∈ A (PC(Γ ),SΓ ,w) such that JμSΓ Jμ
and Az have the same symbol. Since this local symbol is one-to-one, the assertion
follows.

4.5 Toeplitz and Hankel operators

In this section, we are going to introduce the Hardy spaces H p
w and the Toeplitz and

Hankel operators acting on them. In particular, we will study the smallest closed
subalgebra of L

(

H p
w
)

containing all Toeplitz and Hankel operators with piecewise
continuous generating functions. The use of Theorem 4.4.5 would provide us with
a matrix symbol of order 4. In this case we shall see that there exists in fact a matrix
symbol of order 2.
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Throughout this section, let 1 < p <∞. We start with the space Lp(T,w), where T

represents the complex unit circle oriented counter-clockwise, as usual. We consider
the flip J,

(Ju)(t) :=
1
t

u(1/t),

associated with the Carleman shift Jμ , u(t) �→ u(1/t), the fixed points of which are
−1 and +1. The weight w is assumed to fulfill the requirements of the last section
such that both S and J be bounded linear operators on Lp(T,w). We denote by H p

w

the image space of P := (I + S)/2. The projection P is called the Riesz projection,
and H p

w is the Hardy space. The classical Hardy spaces H p can be defined exactly
in this way. For n ∈ Z, let en : T → C be given by en(t) = tn. The set (en)n∈Z+ forms
a basis of H p

w , to which we refer as the canonical basis. One can easily see this by
using the boundedness of P. Indeed, for the operators

V := Pe1P : H p
w → H p

w and V (−1) := Pe−1P : H p
w → H p

w

and for n ≥ 1, one has

V n = (Pe1P)n = enP and
(

V (−1))n = (Pe−1P)n = Pe−n,

and the operators Pn := I −V n
(

V (−1))n
are projections onto span{e0,e1, ...,en}.

Moreover, the sequence (Pn)n∈Z+ is uniformly bounded. Since span{en}n∈Z+ is
dense in H p

w , the Banach-Steinhaus theorem (Theorem 1.4.2) ensures that (Pn) tends
strongly to the identity operator in H p

w which is equivalent to saying that {en}n∈Z+

is a basis in H p
w .

Let a ∈ L∞(T). The operator T (a) defined by

T (a) : H p
w → H p

w, u �→ PaPu,

is obviously bounded, and

‖T (a)‖L (H p
w) ≤ cp,w‖a‖∞,

where cp,w is the norm of the Riesz projection P. This operator is called the Toeplitz
operator on H p

w with generating function a. The associated Hankel operator H(a)
is defined by

H(a) : H p
w → H p

w, u �→ PaQJu = PaJPu,

with Q := I −P. We further let H(ã) denote the operator

H(ã) : H p
w → H p

w, u �→ JQaPu = PJaPu.

This notation is justified since H(ã) = PãJP and JaJ = ãI with ã(t) = a(1/t). It is
now readily verified that the matrix representations of T (a) and H(a) with respect
to the canonical basis are exactly

[a j−k]∞j,k=0 and [a j+k+1]∞j,k=0,
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respectively, where (a j) j∈Z is the sequence of Fourier coefficients of a. Note that
H(a) is a compact operator if a ∈C(T). The next proposition provides some useful
identities for Toeplitz and Hankel operators of products of functions.

Proposition 4.5.1. Let a,b ∈ L∞(T). Then

T (ab) = T (a)T (b)+H(a)H(b̃),

H(ab) = T (a)H(b)+H(a)T (b̃).

Proof. Indeed, for the Toeplitz operator T (ab) one has

T (ab) = PabP = Pa(P+QJJQ)bP

= PaPbP+PaQJ JQbP = T (a)T (b)+H(a)H(b̃).

The proof of the second identity is similar.

Let T (PC) and TH (PC) denote the smallest closed subalgebras of L (H p
w)

containing all Toeplitz operators with piecewise continuous generating function and
all Toeplitz and Hankel operators with piecewise continuous generating function,
respectively.

Clearly, operators acting on H p
w can be identified with operators acting on

Lp(T,w) that are equal to zero on Im (I−P). Thereby the spectrum or the essential
spectrum of the continuation may differ only by the point zero from that of the orig-
inal operator. Hence, T (PC) and TH (PC) can be identified with subalgebras of
the algebra B := B(T,w,μ) introduced in Section 4.4. The identity element in both
algebras is the projection P, and this has to be taken into account when determining
the essential spectrum of the elements belonging to these algebras.

Let us denote the images of the algebra T (PC) and TH (PC) under the symbol
map smb given in Theorem 4.4.5 and related to the point z ∈T+ := {z ∈T :ℑz ≥ 0}
by Az and Bz, respectively. Suppose first that z ∈ {−1,1}, i.e., z is a fixed point of
μ . Notice that in this case we have smb(J,z) = zsmb(Jμ ,z). We will show that Bz

is singly generated. Take, for definiteness, z = 1. It is easy to see that the operators

p :=
1
2

[

I +SR+ −Hπ
Hπ I −SR+

]

, r :=
[

I 0
0 0

]

and j :=
[

0 I
I 0

]

(4.107)

generate the algebra E 2
p,α(1) due to the relations (4.101)–(4.103) and (3.45), (3.46).

By Proposition 3.4.3, the center C of E 2
p,α(1) is generated by the elements

d := prp+(e− p)(e− r)(e− p) = rpr +(e− r)(e− p)(e− r)

and
c := (pr− rp) j = pr jp− (e− p)r j(e− p).

An easy computation yields
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d =
1
2

[

I +SR+ 0
0 I +SR+

]

, (4.108)

c =
1
2

[

Hπ 0
0 Hπ

]

, (4.109)

and Proposition 4.2.16 shows that C is singly generated by the element d, the spec-
trum of which is the range of the function

vp,α(y) :=
1
2

(

1+ coth
(

(y+ i(1/p+α))π
)

)

, y ∈ R, (4.110)

for α = α(1) and corresponds to the arc A1/p+α(1) defined in (3.44). According to
Theorem 4.4.5 we get for a,b ∈ PC(T)

smb(T (a),1) = a(1+)prp+a(1−)p(e− r)p

and

smb(H(b),1) = b(1+)pr jp−b(1−)pr jp

= (b(1+)−b(1−))pr jp.

Let ε > 0. Since C is singly generated by d, there is a polynomial q such that
‖q(d)− c‖ < ε . Hence,

‖q(prp)− pr jp‖ = ‖p(q(d)− c)p‖ ≤ ‖p‖2ε

and these arguments show that B1 is singly generated by prp and that A1 = B1.
It remains to determine the spectrum of prp. Applying Proposition 1.2.6 we get

σ(prp)\{0} = σ(rpr)\{0},

and from (4.108) (note that rdr = rpr) we conclude

σ(prp) = A1/p+α(1).

Using j(pr jp) j = −(e− p)r j(e− p) we see that σ(pr jp) \ {0} = σ(c) \ {0} and
by (4.109)

σ(pr jp) =
{

1
2

hπ(y) : y ∈ R

}

,

where

hπ(y) =
1

sinh
(

(y+ i(1/p+α(1)))π
) , y ∈ R.

As we know (Exercise 2.1.3), the maximal ideal space of B1 is homeomorphic to
σ(prp), and the Gelfand transforms of prp and pr jp coincide with the functions
vp,α(1) and 1

2 hπ , respectively. Putting all these things together we get that for a,b ∈
PC(T), the element smb

(

T (a)+H(b),1
)

is invertible in B1 if and only if
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a(1+)vp,α(1)(y)+a(1−)(1− vp,α(1)(y))+
b(1+)−b(1−)

2
hπ(y) �= 0

for all y ∈R. Identical considerations hold true for the point −1, that is, for the local
algebra B−1.

Now let z ∈ T+ \{−1,1}=:
◦
T+. Consider the circular arc with endpoints z and z

which contains the point −1. Denote its characteristic function by χz . Due to Propo-
sition 4.5.1,

(

T (χz)+H(χz)
)2 = T (χz)+H(χz).

Consequently, the algebra Bz contains the idempotent

pz := smb
(

T (χz)+H(χz),z
)

.

Take f0 ∈C(T) such that f0(z) = 1 and f0(z) = 0. Then an easy computation shows
that rz := smb

(

T ( f0),z
)

is also an idempotent in Bz. We are going to prove that Bz

is generated by pz and rz, and that

rzsmb
(

T (χz),z
)

rz = rz pzrz,

rzsmb
(

T (1−χz),z
)

rz = rz(e− pz)rz,

(e− rz)smb
(

T (χz),z
)

(e− rz) = (e− rz)pz(e− rz),

(e− rz)smb
(

T (1−χz),z
)

(e− rz) = (e− rz)(e− pz)(e− rz),

(4.111)

where e denotes the unit element in Bz. We will only prove the first equality in
(4.111); the remaining equalities can be proved in an analogous manner. The first
equality in (4.111) will follow as soon as we have checked that

rzsmb
(

H(χz),z
)

rz = 0.

Using that JχzJ = χ̃z I = χz I, an easy computation gives

T ( f0)H(χz)T ( f0) = H( f0χz
˜f0)+H( f0)T (χz)+T ( f0χz)H(˜f0).

Since f0χz
˜f0, f0 and ˜f0 are continuous functions, the symbol of this operator at the

point z equals zero. Now observe that, for any a ∈ PC(T),

smb
(

T (a),z
)

= a(z+)rzsmb
(

T (χz),z
)

rz +a(z−)rzsmb
(

T (1−χz),z
)

rz

+ a(z+)(e− rz)smb
(

T (1−χz),z
)

(e− rz)
+ a(z−)(e− rz)smb

(

T (χz),z
)

(e− rz).

Using (4.111) we get

smb
(

T (a),z
)

= a(z+)rz pzrz +a(z−)rz(e− pz)rz

+a(z+)(e− rz)(e− pz)(e− rz)+a(z−)(e− rz)pz(e− rz), (4.112)
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and the above implies that smb
(

T (a),z
)

belongs to the algebra generated by pz and
rz. Analogously one proves that, for any b ∈ PC(T),

smb
(

H(b),z
)

= b(z+)rz pz(e− rz)+b(z−)rz(e− pz)(e− rz)

+b(z−)(e− rz)pzrz +b(z+)(e− rz)(e− pz)rz. (4.113)

Hence, smb
(

H(b),z
)

is also in the algebra generated by pz and rz.
Now it is clear that Bz is generated by the idempotents pz and rz, and Theorem

3.1.4 applies. We must thus determine the spectrum of the element

cz := pzrz pz +(e− pz)(e− rz)(e− pz).

We have σ(pzrz pz)\{0} = σ(rz pzrz)\{0}. The first equality in (4.111) shows that

σ(rz pzrz) = σ
(

rzsmb
(

T (χz),z
)

rz
)

= σ(rpr) = σ
(

1
2

[

I +SR+ 0
0 0

])

,

where r and p are defined in (4.107). Thus, the spectrum of rz pzrz equals the range of
the function given by (4.110). Because the point zero is not isolated in this spectrum,
we also get that σ(pzrz pz) = σ(rz pzrz). Now it is easy to conclude that the spectra
of pzrz pz in pzBz pz and in Bz coincide. Since also the point 1 is not isolated in the
spectrum, we get by Corollary 3.1.5

σ(c) = A1/p+α (4.114)

where α = α(z) refers to the local exponent at z of the weight function in the re-
mainder of this subsection. Now we use Theorem 3.1.4 and assign to the elements
e,rz, pz the matrix functions

[

1 0
0 1

]

,

[

1 0
0 0

]

,

[

vp,α
√

vp,α(1− vp,α)
√

vp,α(1− vp,α) 1− vp,α

]

,

respectively, where vp,α is the function (4.110). Using (4.112) and (4.113) it is easily
seen that smb

(

T (a)+H(b),z
)

is mapped to

[

a(z+)vp,α +a(z−)(1− vp,α) (b(z+)−b(z−))
√

vp,α(1− vp,α)

(b(z−)−b(z+))
√

vp,α(1− vp,α) a(z+)vp,α +a(z−)(1− vp,α)

]

. (4.115)

Clearly, smb
(

T (a)+H(b),z
)

is invertible if and only if the matrix function (4.115)
is invertible for all y ∈ R. The equality vp,α(1−vp,α) = − 1

4 h2
π leads to a simplifica-

tion of (4.115), and we are able now to formulate the main result of this section.

Theorem 4.5.2. The operator T (a)+ H(b) ∈ TH (PC) is Fredholm on H p
w if and

only if the functions

(i) a(z+)vp,α +a(z−)(1− vp,α)+ z b(z+)−b(z−)
2 hπ , z ∈ {−1,1},
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(ii)

⎡

⎣

a(z+)vp,α +a(z−)(1− vp,α) b(z+)−b(z−)
2i hπ

b(z−)−b(z+)
2i hπ a(z+)vp,α +a(z−)(1− vp,α)

⎤

⎦ , z ∈
◦
T+,

are invertible.

Remark 4.5.3. Obviously, the algebras Az are commutative for z ∈ T+. Theorem
4.5.2 yields that T (a) is Fredholm on H p

w if and only if the functions

a(z+)vp,α +a(z−)(1− vp,α)

are invertible for all z ∈ T. �

4.6 Singular integral operators with conjugation

The double layer potential operator is a prominent example of an operator which is
constituted of a singular integral operator and the operator of complex conjugation
(see also later in this section). This is one reason to consider the smallest closed
algebra which is generated by the (linear) operators belonging to A (PC(Γ ),SΓ ,w)
and by the (antilinear) operator C of complex conjugation,

(C f )(t) := f (t). (4.116)

Proposition 4.6.1. Let Γ be an admissible curve and let w be the weight (4.1). Then
the linear operator CSΓC belongs to the algebra A (PC(Γ̇ ),SΓ ,w), and its symbol
is given by

smb(CSΓC,z) = −

⎡

⎢

⎢

⎢

⎣

SR+ Hβ2−β1
. . . Hβk−β1

H2π+β1−β2
SR+ . . . Hβk−β2

...
...

. . .
...

H2π+β1−βk
H2π+β2−βk

. . . SR+

⎤

⎥

⎥

⎥

⎦

diag1≤ j≤k(ν j(z)) (4.117)

where k = k(z) and 0 ≤ β1 < β2 < .. . < βk < 2π are the angles at z ∈ Γ̇ as in
Section 4.3.

Proof. Write ˜A (PC(Γ̇ ),SΓ ,w) for the smallest closed subalgebra of L
(

Lp(Γ ,w)
)

which contains the algebra A (PC(Γ̇ ),SΓ ,w) and the operator CSΓC. Further, let
˜A K (PC(Γ̇ ),SΓ ,w) stand for the image of ˜A (PC(Γ̇ ),SΓ ,w) in the respective

Calkin algebra. Since Φ(C(Γ̇ )I) lies in the center of ˜A K (PC(Γ̇ ),SΓ ,w), we can
replace the sets A , B and C in Theorem 2.3.4 by the algebras ˜A K (PC(Γ̇ ),SΓ ,w),
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Φ(C(Γ̇ )I) and A (PC(Γ̇ ),SΓ ,w), respectively. For z ∈ Γ̇ = M(B), let Φz denote
the canonical homomorphism from ˜A K (PC(Γ̇ ),SΓ ,w) onto the corresponding lo-
cal algebra ˜A K

z (PC(Γ̇ ),SΓ ,w) at the point z.

As in the proof of Proposition 4.3.2, the local algebra ˜A K
z (PC(Γ̇ ),SΓ ,w) is

isometrically isomorphic to the closed subalgebra of L
(

Lp(Γ ,w)
)

(with the local
curve Γz and the local weight wz being defined as in that proposition) which is gen-
erated by the operators CSΓC, SΓz , and by the operators of multiplication by the
characteristic functions of the half-axes eiβ j R

+ ( j = 1, . . . ,k(z)). This isomorphism
maps the subalgebra A K

z (PC(Γ̇ ),SΓ ,w) of ˜A K
z (PC(Γ̇ ),SΓ ,w) onto the algebra

A (χ,SΓz ,α(z)). It thus suffices to verify that CSΓzC ∈ A (χ,SΓz ,α(z)).
Let η denote the mapping (4.45). Since the mapping A �→ ηAη−1 is an isomor-

phism between A (χ,SΓz ,α(z)) and E
k(z),N
p,α(z) , it remains to show that ηCSΓzCη−1

belongs to E
k(z),N
p,α(z) .

Write ηCSΓzCη−1 as [Bi j]
k(z)
i, j=1 with Bi j ∈ L

(

Lp(R+,w)
)

, and assume for sim-
plicity that ν j(z) = 1 for all j. Then, for u ∈ Lp(R+,w),

(Bi ju)(t) = − 1
πi

∫

eiβ j R+

u(e−iβ j s)
s− eiβi t

ds = − 1
πi

∫

R+

u(s)eiβ j

eiβ j s− eiβi t
ds

= − 1
πi

∫

R+

u(s)
s− ei(β j−βi)t

ds =

⎧

⎨

⎩

−(Hβ j−βi
u)(t) if i < j,

−(SR+u)(t) if i = j,
−(H2π+β j−βi

u)(t) if i > j.

Consequently, ηCSΓzCη−1 ∈ E
k(z),N
p,α(z) , and the proof is finished.

Let L̃p(Γ ,w) denote the real Banach space Lp(Γ ,w) (i.e., L̃p(Γ ,w) is consid-
ered a linear space over R, but it still consists of complex-valued functions), and let
C (Γ ,w) stand for the smallest closed real subalgebra of L

(

L̃p(Γ ,w)
)

which en-
closes the operator C (which is now a linear operator on L̃p(Γ ,w)) and all operators
from A (PC(Γ̇ ),SΓ ,w). Further we denote by C K (Γ ,w) the image of C (Γ ,w) in
the respective Calkin algebra.

Theorem 4.6.2. Let Γ be an admissible curve.

(i) For each z ∈ Γ̇ , there exists a homomorphism A �→ smb(A,z) from C (Γ ,w)
onto the closed subalgebra of E

2k(z),N
p,α(z) consisting of all matrices [Ci j]2i, j=1

with Ci j ∈ E
k(z),N
p,α(z) . In particular, smb(SΓ ,z) = [Ai j]2i, j=1 with



4.6 Singular integral operators with conjugation 251

A11 = −

⎡

⎢

⎢

⎢

⎣

SR+ H2π+β1−β2
. . . H2π+β1−βk

Hβ2−β1
SR+ . . . H2π+β2−βk

...
...

. . .
...

Hβk−β1
Hβk−β2

. . . SR+

⎤

⎥

⎥

⎥

⎦

diag1≤ j≤k(ν j(z))

A22 = −

⎡

⎢

⎢

⎢

⎣

SR+ Hβ2−β1
. . . Hβk−β1

H2π+β1−β2
SR+ . . . Hβk−β2

...
...

. . .
...

H2π+β1−βk
H2π+β2−βk

. . . SR+

⎤

⎥

⎥

⎥

⎦

diag1≤ j≤k(ν j(z))

(where again k = k(z)) and A21 = A12 = 0,

smb(C,z) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 . . . 0 I . . . 0
...

...
...

. . .
...

0 . . . 0 0 . . . I
I . . . 0 0 . . . 0
...

. . .
...

...
...

0 . . . I 0 . . . 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and, if a is piecewise continuous,

smb(aI,z) = diag(a1(z), . . . ,ak(z)(z), a1(z), . . . , ak(z)(z)).

(ii) The algebra C K (Γ ,w) is inverse-closed in the Calkin algebra. An operator
A ∈ C (Γ ,w) is Fredholm if and only if smb(A,z) is invertible for all z ∈ Γ̇ .

(iii) Set ‖Φ(A)‖ := supz∈Γ̇ ‖smb(A,z)‖. Then ‖Φ(A)‖ is an equivalent norm for
C K (Γ ,w).

(iv) The radical of C K (Γ ,w) is trivial.

Proof. Every operator A ∈ C (Γ ,w) can be written as A = X +YC with operators
X ,Y ∈ A (PC(Γ̇ ),SΓ ,w). Indeed, simply put X := 1

2 (A− iAi) and Y := − i
2 (iA−

Ai)C. For X and Y to be linear with respect to C it is necessary and sufficient that
−iX i = X and −iY i = Y , which is easily verified.

Approximate X and Y by C-linear operators Bn ∈ C (Γ ,w) which are finite sums
of products Bn = ∑iΠ jBi j where either Bi j ∈ A (PC(Γ̇ ),SΓ ,w) or Bi j = C. It is
easy to see that this is always possible. Clearly, for the operators Bn to be linear it
is necessary that the operator C of conjugation occurs in each product Π jBi j in an
even number. From Proposition 4.6.1 we conclude then that Bn ∈ A (PC(Γ̇ ),SΓ ,w)
and, hence, X and Y both belong to A (PC(Γ̇ ),SΓ ,w).

Now let A = X +YC ∈ C (Γ ,w). Evidently, the operator iAi = X −YC is Fred-
holm if and only if the operator A is Fredholm. Hence, the operator

[

A 0
0 iAi

]

=
[

X +YC 0
0 X −YC

]

∈ L
(

L̃p(Γ ,w)
)
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is Fredholm if and only if the operator A is Fredholm. It remains to apply the simple
identity

[

X +YC 0
0 X −YC

]

=
1
2

[

I C
I −C

][

X Y
CYC CXC

][

I I
C −C

]

(4.118)

in which the matrices

[

I C
I −C

]

and

[

I I
C −C

]

are invertible and where the operator
[

X Y
CYC CXC

]

belongs to [A (PC(Γ̇ ),SΓ ,w)]2×2 due to Proposition 4.6.1. Then all

assertions of the theorem follow from equation (4.117) and Theorem 4.3.5. In par-

ticular, the norms ‖Φ(A)‖ and

∥

∥

∥

∥

Φ
([

X Y
CYC CXC

])∥

∥

∥

∥

are equivalent by (4.118).

The operator VΓ := (SΓ +CSΓC)/2 is known as the double layer potential oper-
ator . On a simple closed curve Γ , VΓ acts via

(VΓ u)(t) =
1
π

∫

Γ
u(τ)

d
dnτ

log |t − τ|dsτ , t ∈ Γ ,

where nτ is the inner normal toΓ at τ ∈Γ and dsτ refers to the arc length differential
(see Muskhelishvili’s classical monograph [125]).

Corollary 4.6.3. Let the curve Γ be admissible. Then the operator SΓ +CSΓC is
compact if and only if Γ is a simple Lyapunov curve (i.e., without intersections and
corners).

Proof. By (4.117) and Theorem 4.3.5, smb(SΓ +CSΓC,z) is equal to the matrix

⎡

⎢

⎢

⎢

⎣

0 H2π+β1−β2
−Hβ2−β1

. . . H2π+β1−βk
−Hβk−β1

Hβ2−β1
−H2π+β1−β2

0 . . . H2π+β2−βk
−Hβk−β2

...
...

...
Hβk−β1

−H2π+β1−βk
Hβk−β2

−H2π+β2−βk
. . . 0

⎤

⎥

⎥

⎥

⎦

×D

(4.119)
where D = diag1≤ j≤k(ν j(z)) and k = k(z) again. This matrix is zero if and only if

βi −β j = 2π+β j −βi for all i, j = 1, . . . ,k, i �= j,

which is equivalent to βi = π+β j. This is only possible if k = 2 and Γ is smooth at
z, or if k = 1.

Finally, and only for completeness, we mention that (unlike the case without
conjugation) the Fredholmness of an operator A ∈ C (Γ ,w) essentially depends on
the values of the angles of the curve Γ . This follows from the preceding corollary,
and it follows also from a remarkable fact discovered by Nyaga [131]. He considered
the operator A = I +

√
2SΓ +C on L2(Γ ). If Γ is a circle then A is Fredholm whereas

A fails to be Fredholm if Γ is the boundary of a rectangle.
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4.7 C∗-algebras generated by singular integral operators

In this section we ask under which conditions the algebras A (PC(Γ̇ ),SΓ ,w) and
A (C(Γ̇ ),SΓ ,w) carry the structure of a C∗-algebra. Let Γ be an admissible curve,
and let the weight function w be given by (4.1). With respect to the bilinear form

〈u,v〉1 :=
∫

Γ
u(t)v(t) |dt|, (4.120)

the Banach dual space of L2(Γ ,w) can be identified with L2(Γ ,w−1). We denote the
adjoint of an operator A on L2(Γ ,w) with respect to 〈·, ·〉1 by A∗. The Banach space
L2(Γ ,w) can also be considered as a Hilbert space, on defining a weighted inner
product by

〈u,v〉w := 〈wu,wv〉1. (4.121)

We denote the adjoint of an operator A∈L (L2(Γ ,w)) with respect to the new scalar
product 〈·, ·〉w by A†. To get the relation between A∗ and A† one can write

〈u,Av〉w = 〈wu,wAv〉1

= 〈wu,wAw−1wv〉1

= 〈(wAw−1)∗wu,wv〉1

= 〈ww−1(wAw−1)∗wu,wv〉1

= 〈w−1(wAw−1)∗wu,v〉w,

whence
A† = w−1(wAw−1)∗w = w−1w−1∗A∗w∗w. (4.122)

Theorem 4.7.1. Let p = 2. Then A (PC(Γ̇ ),SΓ ,w) is a C∗-algebra.

Proof. A (PC(Γ̇ ),SΓ ,w) is a closed subalgebra of the C∗-algebra L
(

L2(Γ ,w)
)

. So
we just have to show that the algebra A (PC(Γ̇ ),SΓ ,w) is symmetric. From (4.122)
it is obvious that for a piecewise continuous function a, the adjoint operator (aI)† of
aI coincides with aI, whence (aI)† ∈ A (PC(Γ̇ ),SΓ ,w). To prove that S†

Γ belongs
to A (PC(Γ̇ ),SΓ ,w), we proceed as in the proof of Corollary 4.4.7.

Let ˜A (PC(Γ̇ ),SΓ ,w) be the smallest closed C∗-subalgebra of L
(

L2(Γ ,w)
)

which contains the algebra A (PC(Γ̇ ),SΓ ,w), and let ˜A K (PC(Γ̇ ),SΓ ,w) denote
its image in the Calkin algebra. The algebra Φ(C(Γ̇ )I) belongs to the center of

˜A K (PC(Γ̇ ),SΓ ,w). So we can apply Theorem 2.3.4 with A = ˜A K (PC(Γ̇ ),SΓ ,w),
B =Φ(C(Γ̇ )I) and C = A (PC(Γ̇ ),SΓ ,w). Let Φz denote the canonical homomor-
phism from ˜A K (PC(Γ̇ ),SΓ ,w) onto the corresponding local algebra at z ∈ Γ̇ =
M(B).

By Theorem 2.3.4, the inclusion S†
Γ ∈ A (PC(Γ̇ ),SΓ ,w) will follow once we

have shown that, for each z ∈ Γ̇ , there is an operator Az ∈ A (PC(Γ̇ ),SΓ ,w) such
that Φz(S†

Γ −Az) = 0. Define the local curve Γz and the local weight wz(t) = |t|α(z)

as in Section 4.3 and consider first the operator SΓz on L2(Γz,wz).
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Write Γz as ∪k
j=1eiβ j R

+ with 0 ≤ β1 < .. . < βk < 2π . By [73, Chap. I, Theo-

rem 7.1], the Banach space adjoint S∗Γz
∈ L

(

L2(Γz,w−1
z )
)

of SΓz is given by

S∗Γz
= −h−1

z CSΓzChzI (4.123)

where C is the operator of complex conjugation and where the function hz on Γz is
defined by hz(t) := eiβ j if t ∈ eiβ j R

+. By (4.122), the adjoint of SΓz with respect to
the weighted inner product 〈·, ·〉w is then

S†
Γz

= −w−2
z h−1

z CSΓzChzw
2
z I. (4.124)

Let χ j denote the characteristic function of eiβ j R
+ and set χ := {χ1 , . . . ,χk}. From

Proposition 4.6.1 we infer that CSΓzC ∈ A (χ,SΓ ,−α). The function hz is piece-
wise continuous and, thus, in A (χ,SΓ ,−α). Since hz does not vanish on Γz, we
have h−1

z CSΓzChzI ∈A (χ,SΓ ,−α). Now (4.124), Proposition 4.2.16 and Corollary
4.2.21 imply that S†

Γz
∈A (χ,SΓ ,α). With this information, the proof can be finished

by the same arguments as in the proofs of Corollary 4.4.7 and Proposition 4.6.1.

Corollary 4.7.2. Let Γ be an admissible curve, and let the weight function w be
given by (4.1). Let S∗Γ denote the Banach space adjoint of SΓ ∈ L (L2(Γ ,w)) with
respect to the bilinear form (4.120). Then the operator S∗Γ −SΓ ∈L (L2(Γ ,w−1)) =
L (L2(Γ ,w)∗) is compact if and only if Γ is a simple Lyapunov curve.

The proof follows from (4.123) in a similar way as the proof of Corollary 4.6.3.
Note that this result also holds when p �= 2. The proof is the same.

Corollary 4.7.3. Let Γ and w be as in the preceding corollary, and let S†
Γ refer to

the adjoint of SΓ ∈L (L2(Γ ,w)) with respect to the inner product (4.121). Then the
operator S†

Γ −SΓ ∈ L (L2(Γ ,w)) is compact if and only if w ≡ 1 and Γ is a simple
Lyapunov curve.

Proof. One easily checks that the operator standing in the left upper corner of the
matrix smb(S†

Γ −SΓ ,z) is equal to SR+ −w−2
z SR+w2

z I = SR+ −S2α(z). From Proposi-
tion 4.2.11 and the definition of Sσ in Section 4.2.3 it is immediate that SR+ −S2α(z)
is the zero operator if and only if α(z) = 0. The point is that SR+ −S2α(z) is a Mellin
convolution with generating function s1/2+α(z) − s1/2−α(z) (see Proposition 4.2.11).
Thus, the weight function must be identically 1, and the remainder of the proof fol-
lows as in Corollary 4.7.2.

We emphasize that Theorem 4.7.1 is not a triviality. The fact is the more sur-
prising since the algebra A (C(Γ̇ ),SΓ ,w)⊆L (L2(Γ ,w)) which is generated by the
singular integral operator SΓ and by the operators of multiplication by continuous
functions on Γ̇ is not a C∗-algebra in general.
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Theorem 4.7.4. Let Γ be an admissible closed curve, and let the weight function w
be given by (4.1). Then the algebra A (C(Γ̇ ),SΓ ,w) is a C∗-algebra if and only if
w ≡ 1 and Γ is a simple Lyapunov curve.

Proof. Let T be the finite set which contains the weight points t1, . . . , tn and all
corners and endpoints ofΓ . From (4.124) one concludes easily thatΦz(SΓ −S†

Γ ) = 0
for z ∈ Γ̇ \T . Now assume that S†

Γ ∈ A (C(Γ̇ ),SΓ ,w). Then there are continuous
functions f ,g on Γ̇ such that Φz(S†

Γ − f I − gSΓ ) = 0 for all z ∈ Γ̇ . Thus, Φz(SΓ −
f I−gSΓ ) =Φz((1−g(z))SΓ − f (z)I) = 0 for all z ∈ Γ̇ \T . This implies that f ≡ 0
and g ≡ 1, hence, SΓ − S†

Γ is a compact operator. Then Φ(SΓ ) is self-adjoint, and
the norm of Φ(SΓ ) must be equal to its spectral radius, which in turn equals 1. On
the other hand, we know from Corollary 4.3.13 that ‖Φ(SΓ )‖ > 1 if w �≡ 1 or if Γ
has corners. The reverse direction follows from Corollary 4.7.3.

Proposition 4.7.5. The algebra A (C(Ṙ+),SR+ , tα) is a C∗-algebra for 0 < 1/2 +
α < 1.

Proof. By equations (4.124), (4.117) and Proposition 4.2.16, one has S†
R+ ∈ E2,α .

Thus, both A (C(Ṙ+),SR+ , tα) and E2,α are C∗-algebras.

Theorem 4.7.6. Let Γ be a suitable curve and let the weight function w be given by
w(t) = |t− t0|α0Π n

j=1|t− t j|α j . Then the algebra A (C(Γ̇ ),SΓ ,w)⊆L (L2(Γ ,w)) is
a C∗-algebra if and only if Γ is a simple Lyapunov curve and if the weight points t j

have order 1 for j = 1, . . . ,n.

Proof. It follows, as in the proof of Theorem 4.7.4, that a point of order greater
than 1 can be neither a corner nor a weight point. The reverse direction follows
from Corollary 4.7.3 and Proposition 4.7.5.

4.8 Appendix: Interpolation theorems

We use two interpolation theorems in this text. The first one is due to Stein and
Weiss [191, Chap. V, Theorem 1.3] and concerns the boundedness of operators on
interpolation spaces. Its proof can also be found in [7, Chapter 4, Theorem 3.6]. Let
1 ≤ p1, p2 < ∞ and n ≥ 1.

Theorem 4.8.1 (Stein–Weiss). Let A be a bounded operator acting on the spaces
Lp1(Rn,w1) and Lp2(Rn,w2). If

1
p

=
1−θ

p1
+
θ
p2

, 0 ≤ θ ≤ 1

and w = w1−θ
1 wθ

2 then A is bounded on Lp(Rn,w) and

‖A‖L (Lp(Rn,w)) ≤ ‖A‖1−θ
L (Lp1 (Rn,w1))‖A‖θL (Lp2 (Rn,w2)).
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Concerning the compactness of operators on interpolation spaces, one has the
following interpolation theorem by Krasnoselskii (see [103, Section 3.4]) and
Cwikel [31].

Theorem 4.8.2 (Krasnoselskii). Let A be a bounded operator acting on the space
Lp1(Rn,w1) and a bounded and compact operator acting on Lp2(Rn,w2). If

1
p

=
1−θ

p1
+
θ
p2

for some θ ∈ ]0, 1[

and w = w1−θ
1 wθ

2 , then A is compact on Lp(Rn,w).

4.9 Notes and comments

The theory of one-dimensional singular integral operators has a long and rich his-
tory. We only mention the now classical monographs [114, 120, 125, 197] and the
two volumes of [73, 74], where the foundations of the theory of singular integral op-
erators were laid and the theory of singular operators with piecewise coefficients on
Lp-spaces over Lyapunov curves and power weight was developed. Our presentation
also owes a lot to [28, 29, 30].

C∗-algebras generated by singular integral operators with discontinuous coeffi-
cients on composed curves were studied in [140, 141], with special emphasis paid
to the construction of a matrix-valued symbol calculus and to the determination of
the irreducible representations of the algebra. See also the monograph [139]. One-
dimensional singular integral operators can also be viewed as pseudo-differential
operators of order zero. For a comprehensive account on this topic see [27].

A spectacular breakthrough came with the advent of the monograph by Böttcher
and Yu. Karlovich [14], which is devoted to singular integral operators on general
Carleson curves and general Muckenhoupt weights and to their Fredholm proper-
ties. This monograph was considered as the definitive work in this field by many
people, but recently there has been an increasing interest in singular integral oper-
ators on more general spaces like Orlicz spaces and Lp-spaces with variable p, see
for instance [96, 97, 98, 100, 157, 172].

Our exposition is heavily based on the use of homogenization techniques and
Mellin operators. It is hard to say to whom this idea belongs, but Dynin and Eskin
must certainly be mentioned here. A first systematic use of this method to study
singular integral operators with piecewise continuous coefficients on Lp-spaces
over Lyapunov curves appeared in the lovely booklet [189]. The case of admissi-
ble curves and Lp-spaces with power weight was treated by two of the authors in
[167, 168].

In these papers, one also finds a treatment of singular operators with Carleman
shift changing the orientation and of singular operators with complex conjugation.
The investigation of algebras generated by singular integral operators with piece-
wise continuous coefficients and a Carleman shift changing the orientation has its
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origin in [69, 71]. The paper [30] can be considered as a continuation of these pa-
pers. Note that the results presented in these papers are less explicit in comparison
with the results of Section 4.4. For a comprehensive account on operators with Car-
leman shift see, besides the already mentioned [114], the more recent texts [95, 104].
For equations involving singular operators with complex conjugation we also refer
to [36].

A modified homogenization/Mellin approach does also work very well for sin-
gular integral operators, the coefficients of which are combinations of piecewise
continuous and slowly oscillating functions. Also, the curves and the weights can
be allowed to have singularities of a slowly oscillating type. The point is that the
idea of homogenization can (and must) be replaced by more subtle limit operator
techniques. For more in this direction see [15, 16, 153, 154, 155] and [156, Section
4.6].

Besides the homogenization/Mellin approach to study the (local) Fredholmness
of singular integral operators, there is an alternate approach via two (or more) pro-
jections theorems. The idea of marrying local principles with Halmos’ two projec-
tions theorem goes back to Douglas [40]. It has proved to be extremely success-
ful for several classes of operators on Hilbert spaces. See [11, 13, 19, 21, 22, 48,
76, 148, 149, 167, 182] for applications to algebras of singular integral operators,
Wiener-Hopf operators, Toeplitz plus Hankel operators, and more general Fourier
integral operators with piecewise continuous or piecewise quasicontinuous coeffi-
cients.

Both approaches have their merits and demerits. In this text, we have mainly used
the Mellin approach, simply because it provides some additional insights which
would be hard to get with projections theorems. For example, it implies without
effort that the Calkin images of the algebras considered in Sections 4.3–4.6 have a
trivial radical, which in turn implies that these algebras are algebras with a polyno-
mial identity. On the other hand, the real power of the projections theorems seem
to lie in a field which is beyond the scope of this text: They apply to the study of
algebras of singular integral operators on Lp-spaces over general Carleson curves
and with general Muckenhoupt weights (see [14, Chapter 9]), a situation where ho-
mogenization techniques must definitely fail.

The idea to use the two projections theorem for the study of Toeplitz plus Han-
kel operators with piecewise continuous generating functions is taken from [182].
More about the study of related algebras can be found in the comments on Sec-
tion 5.6 at the end of Chapter 5, and more about Toeplitz and Hankel operators in
the monographs [21, 128, 138].

The computation of norms of SIOs is a long and still developing story. In 1968,
Gohberg and Krupnik obtained lower estimates for the essential norms of SR, PR,
and QR. They also calculated the norm of SR for p = 2n and p = 2n/(2n −1) with
n ∈ Z

+. Then, in 1973, Pichorides obtained the upper estimate for the norm of SR

and solved, thus, the problem of norm calculation for SR on Lp(R). This fact and its
weighted analogs can be also found in [74, Chapter 13] and [108, Chapter 2]. The
calculation of the norm of projections PR and QR remained open for a long time. It
was solved only in 2000 by Hollenbeck and Verbitsky [86]; see also [126]. Further,
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Krupnik and Spigel [111] proved that, for any piecewise Lyapunov curve, there
exists a power weight w such that the essential norm of SΓ in the space L2(Γ ,w)
does not depend on angles of the curve. Essential norms of SΓ in L2(Γ ,w) over
more complex curves and weights were the subject of various works (see [45, 46,
51, 58, 113], for instance).

As noted on Remark 4.1.1 the curves considered in Chapter 4 do not have cusps.
Regarding singular integral operators with complex conjugation on curves with
cusps, we refer to [47] where it is shown that both the angles at the corners of the
curve and the order of the cusps strongly affect the Fredholm properties of the op-
erator. The case of cusps of arbitrary order (on weighted L2 spaces) was considered
in [46].

Also connected with the results of Section 4.6, Böttcher, Karlovich and Rabi-
novich [17] established Fredholm property criteria and index formulas for operators
in the algebra generated by singular integral operators with slowly oscillating coef-
ficients and the operator of complex conjugation, in the case of slowly oscillating
composed curves Γ and slowly oscillating Muckenhoupt weights w. In particular,
they were able to consider curves with whirl points, in which case massive local
spectra may emerge even for constant coefficients and weights. This was done us-
ing local principles and is a direct and far reaching generalization of the results of
Section 4.6, in the spirit of this chapter.

One-dimensional singular integral operators can also be considered on Hölder-
Zygmund spaces Hs with s > 0 and on weighted Hölder spaces. The work on these
spaces involves not only some unpleasant technical subtleties (in contrast to Lp-
spaces, Hölder spaces are neither reflexive nor separable), but also some more
serious obstacles. A main point is that one does not get faithful localizing pairs
when working with respect to the common essential norm. One way to overcome
this difficulty is to replace the essential norm by the Kuratowski measure of non-
compactness. The result of this substitution is an equivalent norm on the Calkin
algebra with respect to which the coset containing the operator aI of multiplication
by a function a ∈ Hs again has norm ‖a‖∞. This observation simplifies the theory
of singular integral operators on Hölder spaces significally. In particular, it allows
the application of the two projections theorem to the study of the Fredholmness of
singular integral operators on weighted Hölder spaces. For approaches to the study
of Fredholm properties of singular integral operators by means of the Kuratowski
measure of non-compactness, see [25, 142, 177].

The interpolation Theorem 4.8.2 was proved first in 1960 by Krasnoselskii for
Lp-spaces over finite measure domains (see [103, Section 3.4]). In 1992, Cwikel
[31] proved that if T : E0 → F0 is a compact linear operator and if T : E1 → F1 is a
bounded linear operator, then T : (E0,E1)θ ,q → (F0,F1)θ ,q is also a compact linear
operator, with (E0,E1)θ ,q and (F0,F1)θ ,q being the real interpolation spaces.



Chapter 5
Convolution operators

Having focused on algebras of singular integral operators in the last chapter, in this
chapter convolution operator algebras will be treated. The idea is to give a general
perspective of how the material in the first part of the book has been applied in the
context of convolution operator algebras in recent decades, while at the same time
including some previously unpublished material.

Throughout this chapter, let 1 < p < ∞ and let w be a power weight on R, i.e., w
is of the form (4.1) with ti ∈ R for i = 1, . . . , n. We always assume that w belongs to
the class Ap(R).

5.1 Multipliers and commutators

We will start this section by developing the subject begun in Section 4.2, focusing
on specific classes of multipliers on the real line.

A function a ∈ L∞(R) is called piecewise linear if there is a partition −∞= t0 <
t1 < .. . < tn = +∞ of the real line and complex constants ck, dk such that a(t) =
c0χ]−∞,t1 [ +∑n−2

k=1(ck +dkt)χ]tk ,tk+1 [ +d0χ]tn−1,+∞[ . As usual, the function χI represents
the characteristic function of the set I.

Since w ∈ Ap(R), Stechkin’s equality (4.13) implies that the multiplier algebra
Mp,w contains the (non-closed) algebras C0 of all continuous and piecewise linear
functions on Ṙ, and PC0 of all piecewise constant functions on R having only finitely
many discontinuities (jumps). Let Cp,w and PCp,w represent the closure of C0 and
PC0 in Mp,w, respectively. When w ≡ 1, abbreviate Cp,w and PCp,w to Cp and PCp,
and write C and PC for C2 and PC2, respectively. Thus, the algebras C and PC
coincide with the algebras denoted by C(Ṙ) and PC(Ṙ) in previous chapters.

It is unknown for general weights w (not necessarily of power form) whether the
multiplier algebra Mp,w is continuously embedded into L∞(R) = M2. So it is by no
means evident that functions in PCp,w are piecewise continuous again.

S. Roch et al., Non-commutative Gelfand Theories, Universitext,
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Proposition 5.1.1. Let 1 < p < ∞ and w ∈ Ap(R). Then the algebra PCp,w is con-
tinuously embedded into L∞(R) and, thus, into PC. Moreover, for a ∈ PCp,w,

‖a‖L∞(R) ≤ 3‖SR‖p,w ‖a‖Mp,w .

Proof. For a ∈ PCp,w, we find a sequence of piecewise constant functions an such
that

‖a−an‖Mp,w = ‖W 0(a)−W 0(an)‖L (Lp(R,w)) → 0

as n → ∞. Given indices m, n ∈ N and a point x ∈ R, choose piecewise constant
characteristic functions χ±

x
with “small” support, both having a jump at x and both

of total variation 2, such that

χ±
x

(an −am) =
(

an(x±)−am(x±)
)

χ±
x

.

The Stechkin inequality (4.13) yields

|an(x±)−am(x±)|‖χ±
x
‖Mp,w = ‖

(

an(x±)−am(x±)
)

χ±
x
‖Mp,w

= ‖χ±
x

(an −am)‖Mp,w

≤ 3‖SR‖p,w‖an −am‖Mp,w . (5.1)

Since χ±
x

is real-valued, the conjugate operator to W 0(χ±
x

) ∈ L (Lp(R,w)) is
W 0(χ±

x
) ∈ L

(

Lq(R,w−1)
)

, with 1/p + 1/q = 1. Thus, by the Stein-Weiss inter-
polation theorem 4.8.1,

1 = ‖χ±
x
‖L∞(R) = ‖W 0(χ±

x
)‖L (L2(R))

≤ ‖W 0(χ±
x

)‖1/2
L (Lp(R,w))‖W 0(χ±

x
)‖1/2

L (Lq(R,w−1))

= ‖W 0(χ±
x

)‖L (Lp(R,w)) = ‖χ±
x
‖Mp,w ,

whence via (5.1)

|an(x±)−am(x±)| ≤ 3‖SR‖p,w‖an −am‖Mp,w . (5.2)

So we arrive at the inequality

‖an −am‖L∞(R) ≤ 3‖SR‖p,w‖an −am‖Mp,w , (5.3)

from which we conclude that an → a in L∞(R). Hence, by (5.3),

‖a‖L∞(R) ≤ ‖an‖L∞(R) +‖a−an‖L∞(R)

≤ 3‖SR‖p,w
(

‖an‖Mp,w +‖a−an‖Mp,w

)

.

Letting n go to infinity we get the assertion.

Once the continuous embedding of PCp,w into L∞(R) is established, the follow-
ing propositions can be proved as in the case w ≡ 1 (see [43, Section 2]).
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Proposition 5.1.2.

(i) The Banach algebra Cp,w is continuously embedded into C.
(ii) The maximal ideal space of Cp,w is homeomorphic to Ṙ. In particular, any

multiplier a ∈Cp,w is invertible in Cp,w if and only if a(t) �= 0 for all t ∈ Ṙ.
(iii) The algebras Cp,w and PCp,w ∩C(Ṙ) coincide with the closure in Mp,w of the

set of all continuous functions on Ṙ with finite total variation.

Remark 5.1.3. Note that the inclusion Cp,w ⊆ Mp,w ∩C(Ṙ) is proper for p �= 2, see
[53]. �

Proposition 5.1.4.

(i) The maximal ideal space of PCp,w is homeomorphic to Ṙ×{0,1}. In partic-
ular, a multiplier a ∈ PCp,w is invertible in PCp,w if and only if a(t±) �= 0 for
all t ∈ Ṙ.

(ii) The algebra PCp,w coincides with the closure in Mp,w of the set of all piecewise
continuous functions with finite total variation.

5.2 Wiener-Hopf and Hankel operators

Denote, as before, the characteristic functions of the positive and negative half axis
by χ+ and χ− , respectively, and let J stand for the operator (Ju)(t) = u(−t) which
is bounded and has norm 1 on Lp(R,w) if the weight function is symmetric, i.e., if
w(t) = w(−t) for all t ∈ R.

Let a ∈ Mp,w. The restriction of the operator χ+W 0(a)χ+I onto the weighted
Lebesgue space Lp(R+,χ+w) is called a Wiener-Hopf operator and will be denoted
by W (a). If, moreover, the weight on R is symmetric, then the restriction of the
operator χ+W 0(a)χ−J onto Lp(R+,χ+w) is a Hankel operator and will be denoted
by H(a).

For symmetric weights, it is easy to see that for a ∈ Mp,w the function ã :=
Ja, ã(t) = a(−t), is also a multiplier on Lp(R,w), and that the restriction of the
operator Jχ−W 0(a)χ+I onto Lp(R+,χ+w) coincides with the Hankel operator H(ã).
For a, b ∈ Mp,w one then has the fundamental identity

W (ab) = W (a)W (b)+H(a)H(b̃) (5.4)

which, in a similar way to Proposition 4.5.1, follows easily from

W (ab) = χ+W 0(ab)χ+I = χ+W 0(a)W 0(b)χ+I

= χ+W 0(a)(χ+ +χ−JJχ−)W 0(b)χ+I

= χ+W 0(a)χ+ ·χ+W 0(b)χ+I +χ+W 0(a)χ−J · Jχ−W 0(b)χ+I.
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The following theorems collect some basic properties of Wiener-Hopf operators
with continuous generating functions. These results are the analogs of Theorems
4.1.5 and 4.1.8 for singular integral operators. Detailed proofs can be found in [21,
9.9. and 9.10].

Theorem 5.2.1. The smallest closed subalgebra of L (Lp(R+)) which contains all
Wiener-Hopf operators W ( f ) with f ∈Cp contains the ideal of the compact opera-
tors on Lp(R+).

Theorem 5.2.2 (Krein, Gohberg). Let f ∈Cp. Then the Wiener-Hopf operator W ( f )
is Fredholm on Lp(R+) if and only if f (x) �= 0 for all x ∈ Ṙ. If this condition is
satisfied, then the Fredholm index of W ( f ) is the negative winding number of the
curve f (Ṙ) with respect to the origin. If the index of W ( f ) is zero, then W ( f ) is
invertible.

We digress for a moment and return to the context of Chapter 3. The point is
that we can now give an example of a sufficiently simple algebra which is generated
by three idempotents, but which does not possess a finite-dimensional invertibility
symbol.

Example 5.2.3. Let A denote the smallest closed unital subalgebra of L (L2(R))
which contains the operator PR = (I + SR)/2 and the operators χR+I and χ[0,1]I of
multiplication by the characteristic functions of the intervals R

+ and [0,1], respec-
tively. Thus, A is generated by three idempotents (actually, three orthogonal pro-
jections). Further, let B refer to the smallest closed subalgebra of A which contains
all operators

χ[0,1](χR+SRχR+I)kχ[0,1]I with k ∈ N.

We identify B with a unital subalgebra of L (L2([0, 1])) in the natural way.
From Proposition 4.2.17 we conclude that the algebra B contains all operators
χ[0,1]M

0(h)χ[0,1]I with h ∈C(R) with h(±∞) = 0. The definition (4.24) of a Mellin

convolution further entails that B contains all operators E−1
2 W (a)E2 with a ∈C(Ṙ).

But then B must contain all compact operators on L2([0, 1]) by Theorem 5.2.1.
Since the ideal of all compact operators contains a copy of C

l×l for all l, it is imme-
diate that B (hence, A ) cannot possess a matrix symbol of any finite order.

Thus, even if the three idempotents are projections, and even if two of them
commute, a matrix symbol does not need to exist. �

5.3 Commutators of convolution operators

Now we turn our attention to commutators of convolution and related operators. The
commutator AB−BA of two operators A and B will be denoted by [A,B].

Let L̄∞(R) denote the set of all functions a ∈ L∞(R) for which the essential limits
at infinity exist, i.e., for which there are complex numbers a(−∞) and a(+∞) such
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that

lim
t→−∞

esssup
s≤t

|a(s)−a(−∞)| = 0,

lim
t→+∞

esssup
s≥t

|a(s)−a(+∞)| = 0

and write L̇∞(R) for the set of all functions a ∈ L̄∞(R) such that a(−∞) = a(+∞).
Next we define the analogous classes M̄p,w and Ṁp,w of multipliers. Let Qt de-

note the characteristic function of the interval R\ [−t, t]. Then we let M̄p,w refer to
the set of all multipliers a ∈ Mp,w for which there are numbers a(−∞) and a(+∞)
such that

lim
t→∞

‖Qt(a−a(−∞)χ− −a(+∞)χ+)‖Mp,w = 0. (5.5)

Notice that this definition makes sense since, by the Stechkin inequality (4.13),
the characteristic functions Qt , χ+ and χ− of R \ [−t, t], R

+ and R
−, respectively,

belong to Mp,w. Also notice that the numbers a(−∞) and a(+∞) are uniquely de-
termined by a and that L̄∞(R) = M̄2. Further, let Ṁp,w denote the class of all mul-
tipliers a ∈ M̄p,w such that a(−∞) = a(+∞). Via Proposition 5.1.1 one easily gets
that

PCp,w ⊆ M̄p,w and Cp,w ⊆ Ṁp,w.

Recall finally that K (X) stands for the ideal of all compact operators on the Banach
space X .

Proposition 5.3.1.

(i) If a ∈ L̄∞(R), b ∈ Ṁp,w, and a(±∞) = b(±∞) = 0, then aW 0(b) and W 0(b)aI
are in K (Lp(R,w)).

(ii) If one of the conditions

1. a ∈C(Ṙ) and b ∈ M̄p,w, or
2. a ∈ L̄∞(R) and b ∈Cp,w, or
3. a ∈C(R) and b ∈C(R)∩PCp,w

is fulfilled, then [aI,W 0(b)] ∈ K (Lp(R,w)).

Proof. (i) Since, by assumption, ‖Qta‖∞ → 0 and ‖Qtb‖Mp,w → 0, we can assume
without loss of generality that a and b have compact support. Choose functions
u,v ∈C∞

0 (R), the space of infinitely differentiable functions with compact support,
such that u|supp a = 1 and v|supp b = 1. Then

aW 0(b) = (au)W 0(vb) = auW 0(v)W 0(b),

and the assertion follows once we have shown that uW 0(v) is compact. Put k =
F−1v. Then, for f ∈ Lp(R,w),

(

uW 0(v) f
)

(t) =
∫ +∞

−∞
u(t)k(t − s) f (s)ds.
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Since k is an infinitely differentiable function for which the function t �→ tmk(t) is
bounded for any m ∈ N, we have (with 1

p + 1
q = 1)

∫ +∞

−∞

(
∫ +∞

−∞
|u(t)k(t − s)w−1(s)|q ds

)p/q

dt < ∞,

whence the compactness of uW 0(v) and, hence, of aW 0(b) follows. Similarly, the
compactness of W 0(b)aI can be established.

(ii) 1. Write b = b(−∞)χ− + b(+∞)χ+ + b′ with b′ ∈ Ṁp,w and b′(±∞) = 0. Then
[aI,W 0(b)] = K1 +K2 +K3 with

K1 = (a−a(+∞))W 0(b′), K2 = −W 0(b′)(a−a(+∞))I,

and

K3 = [aI,W 0(b(−∞)χ− +b(+∞)χ+)]

=
b(+∞)−b(−∞)

2
[aI,W 0(sgn)].

The compactness of K1 and K2 is a consequence of part (i), and the compactness of
K3 follows from Theorem 4.1.4, since W 0(sgn) = SR.

2. Write a = a(−∞)χ− + a(+∞)χ+ + a′ with a′ ∈ L̇∞(R) and a′(±∞) = 0, and
write b as b′ +b(±∞). Then [aI,W 0(b)] = K1 +K2 +K3 with

K1 = a′W 0(b′), K2 = −W 0(b′)a′I,

and

K3 = [(a(−∞)χ− +a(+∞)χ+)I,W 0(b)]

= (a(+∞)−a(−∞))(χ+W 0(b)χ−I −χ−W 0(b)χ+I).

By (i), the operators K1 and K2 are compact. To get the compactness of K3 note that,
by Proposition 5.1.2 (iii), we can assume, without loss of generality, that b has finite
total variation. Hence, the operator K4 := χ+W 0(b)χ− −χ−W 0(b)χ+ is bounded on
each space Lp(R,w) with 1 < p < ∞ and w ∈ Ap(R). By Krasnoselskii’s interpola-
tion theorem 4.8.2, it is sufficient to verify the compactness of K4 in L2(R). Since
the Fourier transform is a unitary operator on L2(R), the operator K4 is compact if
and only if the operator

FK4F−1 = (Fχ+F−1)b(Fχ−F−1)− (Fχ−F−1)b(Fχ+F−1)

=
(FsgnF−1)bI −b(FsgnF−1)

2

=
SRbI −bSR

2

is compact. The compactness of this operator has been established in Theorem 4.1.4.
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3. As in 2. above we can assume without loss of generality that b is of finite
total variation. By Krasnoselskii’s interpolation theorem, we just have to verify the
compactness of [aI,W 0(b)] in L2(R). Put b± := (b(+∞)±b(−∞))/2. Then

b(z) = b+ +b− coth
(

(z+ i/2)π
)

+b0(z)

with b0 ∈C(R) and b0(±∞) = 0. By (ii) 2., the commutator [aI,W 0(b0)] is compact,
and it remains to show the compactness of [aI,W 0(coth(·+ i/2)π)]. Let E2 be the
operator defined in (4.21) for the weight w ≡ 1. Since M0(c) = E−1

2 W 0(c)E2 for all
c ∈ Mp, one has

E−1
2

[

aI,W 0(coth((·+ i/2)π)
)]

E2 =
[

a′I,M0(coth((·+ i/2)π)
)]

= [a′I,SR+]

by Proposition 4.2.11, where we wrote a′(t) := a( 1
2π ln t) for t ∈ R

+. The compact-
ness of [a′I,SR+] on L2(R+) follows from Theorem 4.1.4 by applying the operator
χ+I to both sides of the commutator [cI,SR] where c ∈C(Ṙ) is such that cχ+ = a′.

Let L̄∞(R+) refer to the Banach space of all measurable functions which pos-
sess essential limits at 0 and at ∞, write L̇∞(R+) for the set of these functions a
from L̄∞(R+) with a(0) = a(∞), and put C̄(R+) := C(R+)∩ L̄∞(R+) and Ċ(R+) :=
C(R+)∩ L̇∞(R+).

Proposition 5.3.2.
(i) If a ∈ L̄∞(R+), b ∈ Mp and a(0) = a(∞) = b(±∞) = 0, then aM0(b) and

M0(b)aI are in K (Lp(R+,w)).
(ii) If one of the conditions

1. a ∈ Ċ(R+) and b ∈ M̄p,
2. a ∈ L̄∞(R+) and b ∈Cp, or
3. a ∈C(R) and b ∈C(R)∩PCp

is fulfilled, then [aI,M0(b)] ∈ K (Lp(R+,w)).

Proof. An operator A on Lp(R+,w) is compact if and only if wAw−1 ∈L (Lp(R+))
is compact. Since waw−1 = a for all a ∈ L∞(R+) and since wM0(b)w−1I = M0(b)
is bounded on Lp(R+), it suffices to prove the compactness of aM0(b), M0(b)aI and
[aI,M0(b)] on Lp(R+) without weight. For this case, the assertions are immediate
consequences of Proposition 5.3.1 via the isomorphism Ep.

Proposition 5.3.3. Let a,b ∈ PCp,w. Then:

(i) if a and b have no common discontinuities,

W (ab)−W (a)W (b) = H(a)H(b̃) ∈ K (Lp(R+,w));

(ii) [W (a),W (b)] ∈ K (Lp(R+,w)).



266 5 Convolution operators

Proof. By definition, the functions a and b are Mp,w-limits of piecewise constant
functions. So we can assume without loss of generality that a and b are piecewise
constant. Since, moreover, every piecewise constant function is a finite sum of func-
tions with one discontinuity, we can assume that a and b have at most one discon-
tinuity. Finally, it is a clear consequence of Krasnoselskii’s interpolation theorem,
that it is sufficient to prove the result for p = 2 and w ≡ 1.

(i) Working on L2(R+), it is sufficient for us to consider, instead of K1 := W (ab)−
W (a)W (b), the unitarily equivalent operator

K2 := FK1F−1 = Fχ+F−1abFχ+F−1 −Fχ+F−1aFχ+F−1bFχ+F−1

= QRabQR −QRaQRbQR = QRaPRbQR

with PR = (I + SR)/2 and QR = I −PR. Note that if one of the functions a and b
is in C(Ṙ), then the result follows immediately from Theorem 4.1.4. So let both a
and b be discontinuous. Let ta, tb ∈ Ṙ denote the (only) points of discontinuity of
a and b, respectively, and assume for definiteness that ta < tb. If χ stands for the
characteristic function of the interval [ta, tb], then a and b can be written as a =
a1χ + a2, b = b1χ + b2, respectively, with continuous functions a1, a2, b1 and b2

such that
a1(tb) = b1(ta) = 0. (5.6)

Then

K2 = QRaPRbQR

= QRa1χPRb1χQR +QRa1χPRb2QR +QRa2PRb1χQR +QRa2PRb2QR,

and it remains to verify that the operator QRa1χPRb1χQR is compact. But

QRa1χPRb1χQR = QRχa1PRb1χQR

= QRχPRa1b1χQR +K3

= QRχa1b1χPRQR +K4 = K4

with certain compact operators K3 and K4, because a1b1χ is continuous due to (5.6).

(ii) If a and b have no common points of discontinuity, then the assertion is an im-
mediate consequence of the preceding one. So let a and b have common disconti-
nuities. As above, we may assume that both a and b have exactly one point s ∈ R of
discontinuity. Then there exist a constant β and a continuous function f such that
a = βb+ f . Thus,

[W (a),W (b)] = [W (βb+ f ),W (b)] = [W ( f ),W (b)],

and the assertion follows from part (i) of this proposition.
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Proposition 5.3.4. Let the weight function wα be given by wα(t) = |t|α . Then:

(i) if a ∈Cp,wα , b ∈ Ṁp and a(0) = a(±∞) = b(±∞) = 0, we have W (a)M0(b) ∈
K (Lp(R+,wα)) and M0(b)W (a) ∈ K (Lp(R+,wα));

(ii) each of the following conditions is sufficient for the compactness of the com-
mutator [W (a),M0(b)] on Lp(R+,wα):

1. a ∈ PCp,wα and b ∈C(R)∩PCp;
2. a ∈Cp,wα with a(±∞) = a(0) and b ∈ M̄p.

Proof. (i) Since ‖Qtb‖Mp,wα → 0 as t → ∞, we can assume that b has compact
support. Let fb be a continuous function with total variation 2 and such that fb(t) = 1
for t ∈ supp b. Then

M0(b) = M0( fbb) = M0( fb)M0(b),

so that it remains to show the compactness of W (a)M0( fb). Due to Proposition
4.2.10, we can approximate fb by functions of the form

f (t) =
n

∑
k=0

βk cothk ((t + i(1/p+α))π
)

, (5.7)

for which

M0( f ) =
n

∑
k=0

βkSk
R+ =

n

∑
k=0

βk(W (sgn))k.

Since a · sgn is a continuous function, we deduce from Proposition 5.3.3 (i) that

W (a)M0( f ) =
n

∑
k=0

βkW (a)(W (sgn))k

=
n

∑
k=0

βkW (a(sgn)k)+K1

= W

(

a
n

∑
k=0

βk(sgn)k

)

+K2

with compact operators K1 and K2. The assumption b(±∞) = 0 and (5.7) imply that
∑n

k=0βk(±1)k = 0. Thus,
n

∑
k=0

βk(sgn)k ≡ 0,

which gives our claim. The inclusion M0(b)W (a)∈K (Lp(R+,wα)) can be proved
similarly.

(ii) By Proposition 4.2.10, every Mellin convolution M0(b) with b ∈ C(R)∩PCp

belongs to the algebra Ep,α generated by the operators I and SR+ . Thus, M0(b)
is contained in the algebra generated by all Wiener-Hopf operators W (a) with
a∈PCp. The latter algebra is commutative modulo the compact operators by Propo-
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sition 5.3.3 (ii), which implies the first assertion of (ii). For a proof of the second
assertion, write b± = (b(+∞)±b(−∞))/2 again. Then

b(z) = b+ +b− coth
(

(z+ i(1/p+α))π
)

+b0(z)

with b0 ∈ Ṁp and b0(±∞) = 0. By part (i) of this assertion, the operators

W (a) and M0
(

b+ +b− coth
(

(z+ i(1/p+α))π
)

)

commute modulo a compact operator, and we have only to deal with the commuta-
tor [W (a),M0(b0)]. Put a′ = a−a(∞). Then a′ ∈ Ċp,w with a′(±∞) = a′(0) = 0 and
[W (a),M0(b0)] = [W (a′),M0(b0)]. Part (i) now gives that [W (a′),M0(b0)] is com-
pact, and the proof is finished.

Proposition 5.3.5. Let wα(t) = tα , a ∈ L̄∞(R+), b ∈ Ċp,w and c ∈ M̄p. Then each
of the conditions:

(i) a(0) = b(0) = c(±∞) = 0;
(ii) a(0) = c(−∞) = 0 and b(t) = 0 for all t > 0;

(iii) a(0) = c(+∞) = 0 and b(t) = 0 for all t < 0

is sufficient for the compactness of aW (b)M0(c) on Lp(R+,wα).

Proof. First we show that it is sufficient to prove the assertion in the case when
a ∈ C̄(R+) and c ∈ C(R)∩PCp. Let the function a′ ∈ C̄(R+) have the same limits
at 0 and ∞ as the function a, and let c′ ∈C(R)∩PCp have the same limits at ±∞ as
the function c. Then

aW (b)M0(c) = a′W (b)M0(c)+(a−a′)W (b)M0(c)

= a′W (b)M0(c′)+a′W (b)M0(c− c′)

+(a−a′)W (b)M0(c′)+(a−a′)W (b)M0(c− c′).

The functions a−a′ and c−c′ can be approximated (in the supremum and the mul-
tiplier norm, respectively) by functions a0 ∈ L̄∞(R+) and c0 ∈ M̄p with compact
support in [0,+∞[ and ]−∞,+∞[, respectively. Thus, aW (b)M0(c) can be approx-
imated (in the operator norm) as closely as desired by operators of the form

a′W (b)M0(c′)+a′W (b)M0(c0)+a0W (b)M0(c′)+a0W (b)M0(c0). (5.8)

Choose continuous functions f0 and g0 with total variation 2 such that f0 ≡ 1 on
supp a0 and g0 ≡ 1 on supp c0. Then the operator (5.8) can be written as

a′W (b)M0(c′)+a′W (b)M0(g0)M0(c0)
+ a0 f0W (b)M0(c′)+a0 f0W (b)M0(g0)M0(c0).
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It is easy to check that if the triple (a,b,c) satisfies the conditions of the proposition,
then so does each of the triples

(a′,b,g0), (a′,b,c′), ( f0,b,g0) and ( f0,b,c′).

Since each of the functions in these triples is continuous, we are indeed left with the
proof of the assertion in the continuous setting.

We start the proof in the continuous setting by proving the assertion for a special
choice of the functions a, b, c. Let

a1(t) := e−1/t2
, b1(t) :=

t4

(1+ t2)2 , c1(t) := e−t2/4.

Then c1 = Mk with

k(x) =
2
π

x−1/p−αe− ln2 x.

Indeed, since the function z �→ e−z2
is analytic in any strip −m < ℑ(z) < m and

vanishes as z → ∞ in that strip, one has, by the Cauchy integral theorem,

(Mk)(t) =
2
π

∫ +∞

0
s−it e− ln2 ss−1 ds =

2
π

∫ +∞

−∞
e−iyt−y2

dy

=
2
π

e−t2/4
∫ +∞

−∞
e−(y+ i

2 t)2
dy =

2
π

e−t2/4
∫

R+ t
2 i

e−z2
dz

=
2
π

e−t2/4
∫ +∞

−∞
e−z2

dz = e−t2/4 = c1(t).

Let

g(t) :=
(

F−1(1−b1)
)

(t) =
∫ +∞

−∞
e2πiλ t 1+2λ 2

(1+λ 2)2 dλ .

For u ∈ Lp(R+,wα), we then have

(W (b1)u)(t) = u(t)−
∫ ∞

0
g(t − s)u(s)ds

and
(

M0(c1)u
)

(t) =
∫ ∞

0
k
( t

s

)

u(s)s−1 ds,

and the kernel K of the integral operator T := a1W (b1)M0(c1)a1I is given by

K(x,y) = a1(x)a1(y)
(

y−1k

(

x
y

)

−
∫ +∞

0
k

(

t
y

)

g(x− t)y−1 dt

)

= a1(x)a1(y)
(

y−1h

(

x
y

)

−
∫ +∞

−∞
h

(

t
y

)

g(x− t)y−1 dt

)

with
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h(z) =

{

k(z) if z > 0,

0 if z < 0.

It is easy to see that h belongs to the Schwartz space S (R) of the rapidly decreasing
infinitely differentiable functions on R. Set d := Fh ∈ S (R). A simple calculation
shows that then

1
y

h

(

x
y

)

= (F−1dy)(x)

where dy(z) := d(yz) for y > 0 and z ∈ R. Taking into account that g = F−1(1−b1),
we can write K(x,y) as

a1(x)a1(y)
(
∫ +∞

−∞
e2πizxd(yz)dz−

∫ +∞

−∞
(F−1dy)(t) · (F−1(1−b1))(x− t)dt

)

or, equivalently,

a1(x)a1(y)
(

(F−1dy)(x)− (F−1dy)∗ (F−1(1−b1))(x)
)

.

By the convolution theorem, we thus get

K(x,y) = a1(x)a1(y)
(

(F−1dy)(x)−F−1(dy(1−b1))(x)
)

= a1(x)a1(y)F−1(dyb1)(x)

= a1(x)a1(y)
∫ +∞

−∞
e2πizxd(yz)b1(z)dz.

Integrating twice by parts we find

K(x,y) = −a1(x)a1(y)
(2πix)2

∫ +∞

−∞
e2πizx ∂ 2

∂ z2

(

d(yz)
z4

(1+ z2)2

)

dz.

Thus, there are constants C1,C2 and functions d1,d2,d3 ∈ S (R) such that

|K(x,y)| ≤C1
|a1(x)||a1(y)|

x2

2

∑
m=0

ym
∫ +∞

−∞
|dm(yz)|zm+2 dz

= C1
|a1(x)|

x2

|a1(y)|
y2

2

∑
m=0

ym
∫ +∞

−∞
|dm(yz)|(yz)m+2 dz

≤C2
|a1(x)|

x2

|a1(y)|
y2 .

Now insert a1(x) = e−1/x2
and q = p/(p−1) to obtain

∫ +∞

0

(
∫ +∞

0
|K(x,y)x−α |qdx

)p/q

dy < ∞.
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This estimate implies that the operator a1W (b1)M0(c1) is compact on Lp(R+,wα),
which settles the assertion for the specific functions a1, b1 and c1.

Now we return to the general case when a∈ C̄(R+), b∈ Ċp,w and c∈C(R)∩PCp.

(i) Let a(0) = b(0) = c(±∞) = 0. Standard approximation arguments show that it
is sufficient to consider functions with a(t) = 0 for 0 < t < δ with some δ > 0,
b(t) = 0 for |t|< ε with some ε > 0, and c(t) = 0 for |t|> N with some N > 0. Due
to Propositions 5.3.1–5.3.4,

aW (b)M0(c) =
a

a2
1

W (b/b1)M0(c/c1)
(

a1W (b1)M0(c1)a1I
)

+K1

with a compact operator K1. Since the operator a1W (b1)M0(c1) is compact, the
assertion follows.

(ii) Write

c(t) = c(+∞)
1+ coth

(

(t + i(1/p+α))π
)

2
+ c′(t).

Then

aW (b)M0(c) = aW (b)M0(c′)+ c(+∞)aW (b)M0

(

1+ coth
(

(t + i(1/p+α))π
)

2

)

= aW (b)M0(c′)+ c(+∞)aW (bχ+)+K2

with a compact operator K2 (here we took into account Proposition 4.2.11). Since
bχ+ ≡ 0 by assumption, and since c′(±∞) = 0, this reduces our claim to the case
previously considered in part (i). The proof of part (iii) proceeds analogously.

The next proposition concerns commutators with Hankel operators. Since the flip
operator is involved, we assume the weight to be symmetric.

Proposition 5.3.6. Let w be a symmetric weight on R, i.e., w(x) = w(−x). Then:

(i) if b ∈Cp,w then H(b) ∈ K (Lp(R+,w));
(ii) if a ∈ L̄∞(R+) and b ∈ Ṁp,w with a(+∞) = 0 and b(±∞) = 0, then aH(b) and

H(b)aI are in K (Lp(R+,w));
(iii) if a ∈ C̄(R+) and b ∈ M̄p,w, then [aI,H(b)] ∈ K (Lp(R+,w));
(iv) if a ∈Cp,w and b ∈ Mp,w with a even, then [W (a),H(b)] ∈ K (Lp(R+,w));
(v) if a ∈Cp,w and b ∈ Mp,w, then [W (a),W (b)] ∈ K (Lp(R+,w)).

Proof. (i) As in the proof of Proposition 5.3.3, we can restrict ourselves to the case
when p = 2 and w ≡ 1. Then H(b) is unitarily equivalent to the operator

FH(b)F−1 = Fχ+F−1bFJχ+F−1 = Fχ+F−1bFJχ−F−1J = QRbPRJ,

which is compact.

(ii) Extend a symmetrically onto the whole axis. Then a ∈ L̇∞(R) with a(±∞) = 0,
and from Proposition 5.3.1 (i) we conclude



272 5 Convolution operators

aχ+W 0(b)χ−J = χ+aW 0(b)χ−J ∈ K (Lp(R,w))

and
χ+W 0(b)χ−JaI = χ+W 0(b)aχ−J ∈ K (Lp(R,w)) .

(iii) This follows from Proposition 5.3.1 (ii) via the same arguments as in (ii).

(iv) The identity
H(ab) = W (a)H(b)+H(a)W(b̃) (5.9)

can be shown as (5.4). Consequently, if ã = a, then

W (a)H(b) = H(ab)−H(a)W (b̃) = H(ba)−H(a)W (b̃)

= W (b)H(a)+H(b)W (a)−H(a)W (b̃)

which implies the assertion since H(a) is compact by (i).

(v) Finally, by (5.4),

W (a)W (b)−W (b)W (a) = H(b)H(ã)−H(a)H(b̃).

Since a and ã are continuous, the assertion follows from (i).

5.4 Homogenization of convolution operators

Here we continue the technical preparation for the local study of algebras of con-
volution operators. In particular we show that the homogenization technique from
Section 4.2.5 applies to large classes of convolutions. Recall the definitions of the
operators Ut , Vs and Zτ in (4.19), (4.20) and (4.37), respectively.

For s ∈ R and −1/p < α < 1− 1/p, let wα,s be the weight on R defined by
wα,s(t) := |t − s|α and write wα for wα,0. Let A ∈ L (Lp(R,wα,s)). If the strong
limit

s-lim
τ→+∞

ZτV−sAVsZ
−1
τ (5.10)

exists, we denote it by Hs,∞(A). Analogously, if A∈L (Lp(R,wα)) and if the strong
limit

s-lim
τ→+∞

Z−1
τ UtAU−tZτ (5.11)

exists for some t ∈ R, we denote it by H∞,t(A). It is easy to see that the set of all
operators for which the strong limits Hs,∞(A) (resp. H∞,t(A)) exist forms a Banach
algebra, that

‖Hs,∞(A)‖L (Lp(R,wα ,0)) ≤ ‖A‖L (Lp(R,wα ,s)) (5.12)

respectively
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‖H∞,t(A)‖L (Lp(R,wα ,0)) ≤ ‖A‖L (Lp(R,wα ,0)) (5.13)

for all operators in these algebras and that, hence, the operators Hs,∞ and H∞,t are
bounded homomorphisms.

For x ∈ R, let b(x±) denote the right/left one-sided limit of the piecewise contin-
uous function b at x.

Proposition 5.4.1. Let a ∈ L̄∞(R), b ∈ PCp,wα and c ∈ M̄p. Then, for t ∈ R:

(i) H∞,t(aI) = a(−∞)χ−I +a(+∞)χ+I;
(ii) H∞,t(W 0(b)) = b(t−)QR +b(t+)PR;

(iii) H∞,t(χ+M0(c)χ+I +χ−I) =

⎧

⎪

⎨

⎪

⎩

c(+∞)χ+I +χ−I if t > 0,

χ+M0(c)χ+I +χ−I if t = 0,

c(−∞)χ+I +χ−I if t < 0.

Proof. Assertion (i) is immediate from Proposition 4.2.22 (ii) since UtaU−t = aI.

(ii) It is sufficient to prove the assertion for t = 0. Write b as b(0−)χ− +b(0+)χ+ +
b0 where the function b0 ∈ PCp,wα is continuous at 0 and b0(0) = 0. Since

W 0 (b(0−)χ− +b(0+)χ+

)

= b(0−)QR +b(0+)PR

and the operators PR and QR commute with Zτ , it remains to show that

Z−1
τ W 0(b0)Zτ → 0 strongly as τ → ∞.

By the definition of the class PCp,wα and by Proposition 5.1.1, we can approximate
the function b0 in the multiplier norm as closely as desired by a piecewise constant
function b00 which is zero in an open neighborhood U of 0. It is thus sufficient to
show that

Z−1
τ W 0(b00)Zτ → 0 strongly as τ → ∞.

Since the operators on the left-hand side are uniformly bounded with respect to τ , it
is further sufficient to show that

Z−1
τ W 0(b00)Zτu → 0

for all functions u in a certain dense subset of Lp(R,wα). For, consider the set of all
functions in the Schwartz space S (R), the Fourier transform of which has compact
support. This space is indeed dense in Lp(R,wα) since the space D(R) of the com-
pactly supported infinitely differentiable functions is dense in S (R) ([171, Theo-
rem 7.10]), since the Fourier transform F is a continuous bijection on S (R), and
since S (R) is dense in Lp(R,wα). In this special setting, the latter fact can easily
be proved by hand. Note in this connection that already D(R) is dense in Lp(R,w)
for every Muckenhoupt weight w; see [80, Exercise 9.4.1]. If u is a function with
these properties, then

Z−1
τ W 0(b00)Zτu = F−1Zτb00Z−1

τ Fu. (5.14)
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If τ is sufficiently large, then the support of Fu is contained in U ; hence, the function
on the right-hand side of (5.14) is the zero function.

(iii) For t = 0, the assertion follows immediately from Lemma 4.2.13 and the fact
that Zτ χ− I = χ−Zτ . Let t �= 0. Then, clearly, U−tZτ = ZτU−tτ and Z−1

τ Ut = UtτZ−1
τ ,

whence

Z−1
τ Ut(χ+M0(c)χ+I +χ−I)U−tZτ = UtτZ−1

τ (χ+M0(c)χ+I +χ−I)ZτU−tτ

= Utτ(χ+M0(c)χ+I +χ−I)U−tτ

due to Lemma 4.2.13. Thus,

H∞,t(χ+M0(c)χ+I +χ−I)

=

{

s-limτ→+∞Uτ(χ+M0(c)χ+I +χ−I)U−τ if t > 0,

s-limτ→−∞Uτ(χ+M0(c)χ+I +χ−I)U−τ if t < 0.
(5.15)

To deal with the strong limits (5.15), suppose first that c is a polynomial in the
function coth

(

(·+ i(1/p+α))π
)

, i.e.

c(t) =
n

∑
k=0

ck cothk ((t + i(1/p+α))π
)

,

with certain constants ck. Then

χ+M0(c)χ+I +χ−I = χ+

(

n

∑
k=0

ck(W (sgn))k

)

χ+I +χ−I. (5.16)

So it remains to consider the strong limits

s-lim
τ→±∞

Uτ(χ+W 0(sgn)χ+I +χ−I)U−τ .

Since UτW 0(sgn)U−τ = W 0(V−τsgnVτ) by Lemma 4.2.4, we have just to check the
strong convergence of V−τsgnVτ as τ →±∞. One has

V−τaVτ →
{

a(+∞)I as τ → +∞,

a(−∞)I as τ →−∞
(5.17)

for every function a ∈ M̄p,wα . Thus,

UτW
0(sgn)U−τ →±I as τ →±∞

whence, via (5.16),

s-lim
τ→±∞

Uτ(χ+M0(c)χ+I +χ−I)U−τ = χ+

n

∑
k=0

ck(±1)kχ+I +χ−I = c(±∞)χ+I +χ−I
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for each polynomial c. Since the set of all polynomials is dense in C̄p, we obtain
assertion (iii) for functions c ∈ C̄p. To treat the general case, let c ∈ M̄p and write c
as

c(t) = c+ + c− coth
(

(t + i(1/p+α))π
)

+ c′(t)

with
c± := (c(+∞)± c(−∞))/2

and with a function c′ ∈ Ṁp with c′(±∞) = 0. After what has just been proved, we
are left to verify that

H∞,t(χ+M0(c′)χ+I +χ−I) = χ−I for t �= 0.

Without loss of generality, we can assume that the support of c′ is compact. Choose
a function u ∈C∞

0 (R) with total variation 2 which is identically 1 on the support of
c′. Then

Uτ χ+M0(c′)χ+U−τ = Uτ χ+M0(c′u)χ+U−τ

=
(

Uτ χ+M0(c′)χ+U−τ
)(

Uτ χ+M0(u)χ+U−τ
)

.

The operators in the first parentheses are uniformly bounded with respect to τ ,
whereas the operators in the second ones tend strongly to zero as τ →±∞ by what
we have already shown.

The assertions of the following lemma are either taken directly from the preced-
ing proof, or they follow by repeating some arguments of that proof.

Lemma 5.4.2.
(i) If a ∈ L̄∞(R), then V−τaVτ → a(±∞)I as τ →±∞.

(ii) If b ∈ M̄p,wα , then UτW 0(b)U−τ → b(±∞)I as τ →±∞.
(iii) If c ∈ M̄p, then UτM0(c)U−τ → c(±∞)I as τ →±∞.

The following is the analog of Proposition 5.4.1 for the second family of strong
limits.

Proposition 5.4.3. Let s ∈ R, a ∈ PC, b ∈ M̄p,wα ,s and c ∈ M̄p. Then:

(i) Hs,∞(aI) = a(s−)χ−I +a(s+)χ+I;
(ii) Hs,∞(W 0(b)) = b(−∞)QR +b(+∞)PR;

(iii) Hs,∞(χ+M0(c)χ+I +χ−I) =

⎧

⎪

⎨

⎪

⎩

c(−∞)QR + c(+∞)PR if s > 0,

χ+M0(c)χ+I +χ−I if s = 0,

I if s < 0.

Proof. Assertion (i) is immediate from Proposition 4.2.22 (ii) since (V−saVs)(t) =
a(t +s). For assertion (ii), one uses Lemma 4.2.4 and Proposition 4.2.22 (ii) as in the
proof of Proposition 5.4.1(ii). Note that V−sW 0(b)Vs = W 0(b). For s = 0, assertion
(iii) is a consequence of Lemma 4.2.13 and the commutativity of χ−I and Zτ , and
for s < 0 it follows from the already proved part (i). For s > 0, write
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c(t) = c+ + c− coth
(

(t + i(1/p+α))π
)

+ c′(t)

with c± := (c(+∞)± c(−∞))/2. First note that

Hs,∞

(

χ+M0
(

c+ + c− coth
(

(·+ i(1/p+α))π
)

+ c′(t)
)

χ+I +χ−I

)

= c+I + c−SR = c(−∞)
I −SR

2
+ c(+∞)

I +SR

2
.

Indeed, since

M0
(

c+ + c− coth
(

(·+ i(1/p+α))π
)

)

= c+χ+I + c−SR+ = c+χ+I + c−W (sgn),

this follows easily from what we proved in parts (i) and (ii). Next, similarly to the
proof of part (iii) of Proposition 5.4.1, one verifies the assertion for c being a poly-
nomial in coth

(

(·+ i(1/p +α))π
)

. Finally, one shows that Hs,∞(χ+M0(c′)χ+I +
χ−I) = 0, again by employing the approximation arguments from the proof of
Proposition 5.4.1.

Proposition 5.4.4.
(i) If K is a compact operator on Lp(R,wα), then H∞,s(K) = 0 for all s ∈ R.

(ii) If K is compact on Lp(R,wα,s), then Hs,∞(K) = 0 for all s ∈ R.

The proof runs as that of Proposition 4.2.22 (iii).

5.5 Algebras of multiplication, Wiener-Hopf and Mellin
operators

Given subsets X ⊆ L∞(R+), Y ⊆ Mp,wα and Z ⊆ Mp, we let A (X ,Y,Z) denote
the smallest closed subalgebra of the algebra of all bounded linear operators on
Lp(R+,wα) which contains all multiplication operators aI with a ∈ X , all Wiener-
Hopf operators W (b) with b ∈ Y , and all Mellin convolutions M0(c) with c ∈ Z.
By A K (X ,Y,Z) we denote the image of A (X ,Y,Z) in the Calkin algebra over
Lp(R+,wα), and we write Φ for the corresponding canonical homomorphism.

The invertibility of elements of the algebra A K (X ,Y,Z) will again be studied
by using Allan’s local principle. Thus we must single out central subalgebras of
this algebra which are suitable for localization. For special choices of X , Y and Z,
this is done in the next proposition, which follows immediately from Propositions
5.3.1–5.3.6.

Proposition 5.5.1. In each of the cases below, B is a central subalgebra of A :

(i) A = A K
(

L∞(R+),M̄p,wα ,M̄p
)

and B = A K
(

Ċ(R+),C0
p,wα ,C(R)∩PCp

)

;

(ii) A = A K
(

PC(R+),PCp,wα ,PCp
)

and B = A K
(

Ċ(R+),C0
p,wα ,Cp

)

;



5.5 Algebras of multiplication, Wiener-Hopf and Mellin operators 277

(iii) A = A K
(

PC(R+),PCp,wα ,PCp
)

and B = A K
(

Ċ(R+),C0
p,wα , /0

)

;

(iv) A = A K
(

C̄(R+),PCp,wα ,C(R)∩PCp
)

and B = A ;
(v) A = A K

(

PC(R+),PCp,wα , /0
)

and B = A K
(

C̄(R+),Cp,wα , /0
)

.

It is evident that the setting of case (i) is too general for a successful analysis.
It will be our goal in this section to examine cases (ii) and (iii). One peculiarity of
the present context is that, in general, (A , B) is not a faithful localizing pair unless
p = 2 (since one has to localize over algebras of multipliers). Thus, one cannot ex-
pect the same elegant and complete results as for the algebra A K (Γ ,w) considered
in the previous chapter. The objectives of this section are quite modest when com-
pared with Chapter 4: We will only derive necessary and sufficient conditions for the
invertibility of cosets in A K , and we will show that this algebra is inverse-closed
in the Calkin algebra, i.e., that invertibility in A K is equivalent to the Fredholm
property. On the other hand, we will at least be able to establish isometrically iso-
morphic representations of the local algebras that arise. If p = 2, the localizing
pairs become faithful, and one gets an isometrically isomorphic representation of
the (global) algebra A K .

We derive the maximal ideal spaces for some algebras B which appear in the
above proposition. Let us start with two very simple situations. Corollary 1.4.9 and
Proposition 1.4.11 (which we need here for weighted Lp-spaces) imply that the max-
imal ideal space of the commutative Banach algebra A K

(

Ċ(R+), /0, /0
)

is homeo-
morphic to the one-point compactification Ṙ

+ of R
+ by the point ∞= 0 (and, thus,

homeomorphic to a circle). The maximal ideal which corresponds to s∈ Ṙ
+ is equal

to {Φ(aI) : a ∈ Ċ(R+),a(s) = 0}.
Taking into account Proposition 5.1.2 (i), it is also not hard to see that the max-

imal ideal space of the commutative Banach algebra A K
(

/0,C0
p,wα , /0

)

is homeo-
morphic to the compactification of R which arises by identifying the three points
−∞, 0, and +∞. We denote this compactification by Ṙ0. One can think of Ṙ0 as the

Fig. 5.1 The maximal ideal space of the algebra A K
(

/0,C0
p,wα , /0

)

.

the union of two circles which have exactly one point,∞ say, in common (see Figure
5.1). The maximal ideal of A K

(

/0,C0
p,wα , /0

)

which corresponds to the point s ∈ Ṙ0

is then
{

Φ(W (a)) : a ∈C0
p,wα , a(s) = 0

}

if s �= ∞,
{

Φ(W (a)) : a ∈C0
p,wα , a(0) = a(±∞) = 0

}

if s = ∞.

For the next result, we have to combine the maximal ideal spaces Ṙ
+ and Ṙ0 of

these algebras.
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Proposition 5.5.2. The maximal ideal space of the commutative Banach alge-
bra A K

(

Ċ(R+),C0
p,wα , /0

)

is homeomorphic to that subset of the “double torus”
Ṙ

+ × Ṙ0 which consists of the circle Ṙ
+ ×{∞} and the “double circle” {∞}× Ṙ0.

In particular, the value of the Gelfand transform of the coset Φ(aW (b)) with
a ∈ Ċ(R+) and b ∈C0

p,wα at the point (s, t) ∈ (Ṙ+×{∞})∪ ({∞}× Ṙ0) is a(s)b(t).

Fig. 5.2 The maximal ideal space of the algebra A K
(

Ċ(R+),C0
p,wα , /0

)

. The intersection point is
∞×∞ (or 0×0); the points on the single circle are of the form s×∞, and the ones on the double
circle of the form ∞× t.

Proof. Let J be a maximal ideal of A K
(

Ċ(R+),C0
p,wα , /0

)

. By Proposition
2.2.1, J ∩A K

(

Ċ(R+), /0, /0
)

and J ∩A K
(

/0,C0
p,wα , /0

)

are maximal ideals of
A K

(

Ċ(R+), /0, /0
)

and A K
(

/0,C0
p,wα , /0

)

, respectively. Thus, there are points s∈ Ṙ
+

and t ∈ Ṙ0 such that the value of the Gelfand transform of the coset Φ(aW (b)) at
the ideal J equals a(s)b(t) for each choice of a ∈ Ċ(R+) and b ∈C0

p,wα . Hence, the
maximal ideal space of the algebra A K

(

Ċ(R+),C0
p,wα , /0

)

can be identified with a
subset of the double torus Ṙ

+ × Ṙ0.
Now let s ∈ Ṙ

+ \ {∞} and t ∈ Ṙ0 \ {∞}. Given functions a ∈ Ċ(R+) and b ∈
C0

p,wα , choose functions a′ ∈ C∞
0 (R+) and b′ ∈ C∞

0 (R) of finite total variation such
that a(s) = a′(s), b(t) = b′(t) and 0 �∈ supp b′. Then,

aW (b) = (a−a′)W (b−b′)+(a−a′)W (b′)+a′W (b−b′)+a′W (b′).

The first three items of the sum on the right-hand side belong to the ideal J = (s, t),
whereas while the fourth item is compact by Proposition 5.3.1. Thus, the smallest
closed ideal of A K

(

Ċ(R+),C0
p,wα , /0

)

which corresponds to (s, t) with s ∈ Ṙ
+ \

{∞} and t ∈ Ṙ0 \ {∞} coincides with the whole algebra. So, the maximal ideals
of the algebra under consideration can only correspond to points (s, t) from (Ṙ+ ×
{∞})∪ ({∞}× Ṙ0). On the other hand, each of these points gives a maximal ideal
of A K

(

Ċ(R+),C0
p,wα , /0

)

, which is a consequence of Theorem 2.1.9 (ii). Since the
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Shilov boundaries of the algebras A K
(

Ċ(R+), /0, /0
)

and A K
(

/0,C0
p,wα , /0

)

coincide
with Ṙ

+ and Ṙ0, respectively (recall Exercise 2.1.7), the assertion follows.

For s ∈ Ṙ
+ ×{∞} and t ∈ {∞}× Ṙ0, let Is,t denote the smallest closed ideal of

the Banach algebra A K
(

PC(R+),PCp,wα ,PCp
)

which contains the ideal (s, t), and
let ΦK

s,t refer to the canonical homomorphism from A
(

PC(R+),PCp,wα ,PCp
)

onto
the local quotient algebra

A K
s,t

(

PC(R+),PCp,wα ,PCp
)

:= A K
(

PC(R+),PCp,wα ,PCp
)

/Is,t .

As in Section 4.2.3, Ep,α denotes the smallest closed subalgebra of L
(

Lp(R+, tα)
)

which contains the identity operator I = χ+ and the operator SR+ . We provide a
description of the local algebras of A K

(

PC(R+),PCp,wα ,PCp
)

in a couple of sep-
arate statements.

Theorem 5.5.3. Let s = ∞ and t ∈ Ṙ0 \{∞}. Then the local algebra

A K
s,t

(

PC(R+),PCp,wα ,PCp
)

is isometrically isomorphic to Ep,α . The isomorphism is given by

ΦK
s,t (A) �→ Hs,t(A) (5.18)

for each operator A ∈ A
(

PC(R+),PCp,wα ,PCp
)

. In particular, for a ∈ PC(R+),
b ∈ PCp,wα and c ∈ PCp,

Hs,t(aI) = a(+∞)I,

Hs,t(W (b)) = b(t−)
I −SR+

2
+b(t+)

I +SR+

2
,

Hs,t(M0(c)) =

{

c(+∞)I if t > 0,

c(−∞)I if t < 0.

Proof. Let A ∈ A
(

PC(R+),PCp,wα ,PCp
)

. First we show that the mapping (5.18)
is correctly defined in the sense that the operator Hs,t(A) depends only on the lo-
cal coset ΦK

s,t (A) of A. Indeed, by Proposition 5.4.4, the ideal K (Lp(R+,wα)) is
contained in the kernel of the operator Hs,t . Hence, Hs,t(A) depends only on the
coset Φ(A) of A. Moreover, if b ∈Cp,wα and b(t) = 0 then, by Proposition 5.4.1 (ii),
Hs,t (Φ(W (b))) = 0. Consequently, the operator Hs,t(A) depends only on the coset
ΦK

s,t (A) of A in the local algebra.
It follows from the definition of Hs,t that (5.18) is a bounded algebra homomor-

phism with a norm not greater than 1. The images of the operators aI, W (b) and
M0(c) under this homomorphism were studied in Proposition 5.4.1. From the con-
crete form of these images, one concludes that Hs,t is in fact a mapping onto Ep,α .

It remains to show that the homomorphism (5.18) is an isometry and, hence, an
isomorphism. To that end we prove that, for each A ∈ A

(

PC(R+),PCp,wα ,PCp
)

,
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ΦK
s,t (A) =ΦK

s,t (U−tHs,t(A)Ut). (5.19)

Once this equality is verified, the assertion will follow from

‖ΦK
s,t (A)‖ = ‖ΦK

s,t (U−tHs,t(A)Ut)‖ ≤ ‖U−tHs,t(A)Ut‖ ≤ ‖Hs,t(A)‖ ≤ ‖ΦK
s,t (A)‖

by (5.12). So we are left to verify the identity (5.19). Since ΦK
s,t and Hs,t are contin-

uous homomorphisms, it suffices to check (5.19) with A replaced by the operators
aI, W (b) and M0(c). Let A = aI with a ∈ PC(R+). Then (5.19) reduces to

ΦK
s,t (aI) =ΦK

s,t (a(∞)I). (5.20)

Choose f ∈ Ċ(R+) with f (∞) = f (0) = 1 and such that the support of f is contained
in [0,1]∪ [N,∞] with N large enough, and write f as f0 + f∞ with

f0(t) =

{

f (t) if t ∈ [0,1],
0 if t ∈ ]1,∞]

and f∞(t) =

{

f (t) if t ∈ [N,∞],
0 if t ∈ [0,N[ .

Further choose g ∈ C0
p,wα with g(t) = 1 and g(∞) = g(0) = 0. Then, obviously,

ΦK
s,t ( fW (g)) =ΦK

s,t (I). From this equality and from

fW (g) = f0W (g)+ f∞W (g) = f∞W (g)+ compact,

by Proposition 5.3.1 (i) we obtain

‖ΦK
s,t

(

(a−a(∞))I
)

‖ = ‖ΦK
s,t

(

(a−a(∞)) fW (g)
)

‖
= ‖ΦK

s,t

(

(a−a(∞)) f∞W (g)
)

‖
≤ ‖(a−a(∞)) f∞‖∞‖W (g)‖.

The right-hand side of this estimate can be made as small as desired if N is chosen
large enough. Now let A = W (b) with b ∈ PCp,wα . Let χt refer to the characteristic
function of the interval [t,+∞], and choose the function g as above, but with the
additional property that g has total variation 2. Using Proposition 5.4.1 (ii), we then
conclude that

∥

∥

∥ΦK
s,t

(

W (b)−U−tHs,t
(

W (b)
)

Ut

)∥

∥

∥

=
∥

∥

∥ΦK
s,t

(

W (b)−U−t
(

W (b(t−)χ− +b(t+)χ+)
)

UtW (g)
)∥

∥

∥

=
∥

∥

∥ΦK
s,t

(

W
(

b− (b(t−)(1−χt )+b(t+)χt )
)

W (g)
)∥

∥

∥

≤
∥

∥

(

(b− (b(t−)(1−χt )+b(t+)χt ))g
)∥

∥

Mp,wα
.

The right-hand side of this estimate becomes as small as desired if the support of g
is chosen small enough. Finally, let A = M0(c) with c ∈ PCp. For definiteness, let
t > 0. Then (5.19) reduces to
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ΦK
s,t

(

M0(c)
)

=ΦK
s,t

(

c(+∞)I
)

.

To verify this equality, choose f , f0, f∞ and g as above and suppose that supp g ⊆
R

+. Then

ΦK
s,t

(

M0(c− c(+∞))
)

=ΦK
s,t

(

fW (g)M0(c− c(+∞))
)

=ΦK
s,t

(

f∞W (g)M0(c− c(+∞))
)

= 0

since f∞W (g)M0(c− c(+∞)) is a compact operator by Proposition 5.3.5 (iii).

Let alg{I,χ+I,SR} denote the smallest closed subalgebra of L (Lp(R)) which
contains the operators I,χ+ I and SR. The following theorem identifies a second
family of the local algebras.

Theorem 5.5.4. Let s ∈ Ṙ
+ \{∞} and t = ∞. Then the local algebra

A K
s,t

(

PC(R+),PCp,wα ,PCp
)

is isometrically isomorphic to the subalgebra alg{I,χ+ I,SR} of L (Lp(R)). The
isomorphism is given by

ΦK
s,t (A) �→ Hs,t(A) (5.21)

for each operator A ∈ A
(

PC(R+),PCp,wα ,PCp
)

. In particular, for a ∈ PC(R+),
b ∈ PCp,wα and c ∈ PCp,

Hs,t(aI) = a(s−)χ−I +a(s+)χ+I,

Hs,t(W (b)) = b(−∞)
I −SR

2
+b(+∞)

I +SR

2
,

Hs,t(M0(c)) = c(−∞)
I −SR

2
+ c(+∞)

I +SR

2
.

Proof. Taking into account that the weight function wα is locally non-trivial only
at the points 0 and ∞, one can show by repeating the arguments of the proof of
Proposition 4.3.2 that the local algebras A K

s,t

(

PC(R+),PCp,wα ,PCp
)

generated by
operators acting on Lp(R+,wα) and A K

s,t

(

PC(R+),PCp,PCp
)

generated by opera-
tors on Lp(R+) are isometrically isomorphic. So we shall only deal with the latter
algebra.

The correctness of the definition (5.21) as well as the fact that it defines a bounded
algebra homomorphism with norm not greater than 1 can be checked as in the pre-
ceding proof. The values of this homomorphism at the operators aI, W (b) and M0(c)
are a consequence of Proposition 5.4.3, from which we also conclude that (5.21)
maps the local algebra onto alg{I,χ+I,SR}. That this homomorphism is an isome-
try and, hence, an isomorphism, will follow once we have shown that

ΦK
s,t (A) =ΦK

s,t

(

χ+VsHs,t(A)V−sχ+I|Lp(R+)
)

(5.22)
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for all operators A in A
(

PC(R+),PCp,wα ,PCp
)

. To verify this identity, it is again
sufficient to check it for the generating operators aI, W (b) and M0(c) in place of A.

Let A = aI with a ∈ PC(R+). Then (5.22) states that

ΦK
s,t (aI) =ΦK

s,t

(

a(s−)(1−χs)χ+I +a(s+)χs I
)

. (5.23)

To prove this equality, choose a function f ∈ Ċ(R+) with f (s) = 1 and compact
support and a function g ∈ C0

p with g(∞) = 1 with support in [−∞,−N]∪ [−1,1]∪
[N,+∞] where N is chosen sufficiently large. Then

∥

∥ΦK
s,t

(

aI −a(s−)(1−χs)χ+I +a(s+)χs I
)∥

∥

=
∥

∥

∥ΦK
s,t

(

(aI −a(s−)(1−χs)χ+ +a(s+)χs) fW (g)
)

∥

∥

∥

≤
∥

∥

(

(aI −a(s−)(1−χs)χ+ +a(s+)χs) f
)∥

∥

∞ ‖W (g)‖,

and the right-hand side of this estimate becomes as small as desired if supp f is
chosen small enough.

Now let A = W (b) with b ∈ PCp,wα . Choose f and g as above and write g as
g0 +g∞ with a function g0 vanishing outside the interval [−1,1]. Then, according to
Proposition 5.3.1 (i), ΦK

s,t (I) =ΦK
s,t ( fW (g)) =ΦK

s,t ( fW (g∞)), whence

∥

∥ΦK
s,t

(

W (b−b(−∞)χ− −b(+∞)χ+)
)∥

∥

=
∥

∥

∥ΦK
s,t

(

W
(

(b−b(−∞)χ− −b(+∞)χ+)g∞
)

f I
)

∥

∥

∥

≤
∥

∥(b−b(−∞)χ− −b(+∞)χ+)g∞
∥

∥

Mp
‖ f‖∞.

Again, the norm on the right-hand side becomes arbitrarily small if N is chosen large
enough. Hence,

ΦK
s,t (W (b)) =ΦK

s,t

(

b(−∞)W (χ−)+b(+∞)W (χ+)
)

(5.24)

which verifies (5.22) for A = W (b). Finally, let A = M0(c) with c ∈ PCp. Now one
has to show that

ΦK
s,t (M0(c)) =ΦK

s,t

(

c(−∞)
I −SR+

2
+ c(+∞)

I +SR+

2

)

. (5.25)

For, write c as

c(t) = c(−∞)
1− coth

(

(t + i/p)π
)

2
+ c(+∞)

1+ coth
(

(t + i/p)π
)

2
+ c′(t).

Then M0(c) = c(−∞) I−S
R+

2 + c(+∞) I+S
R+

2 + M0(c′), and it remains to show that
ΦK

s,t

(

M0(c′)
)

is the zero coset. For, choose f and g = g0 + g∞ as above and take
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into account that ΦK
s,t ( fW (g∞)) = ΦK

s,t (I) and that the operator fW (g∞)M0(c′) is
compact by Proposition 5.3.5.

One can show by the same arguments as above that Theorems 5.5.3 and 5.5.4 re-
main valid if the algebra A K

(

PC(R+),PCp,wα ,PCp
)

is replaced by the larger alge-
bra A K

(

PC(R+),PCp,wα ,M̄p
)

and if the same subalgebra A K
(

Ċ(R+),C0
p,wα , /0

)

is used for localizing both algebras.
Let us now turn to the local algebra at (∞,∞), which has a more involved struc-

ture than the local algebras already studied. For this reason we start with analyzing
the smaller algebra A K

∞,∞
(

PC(R+),PCp,wα ,Cp
)

before dealing with the full local
algebra A K

∞,∞
(

PC(R+),PCp,wα ,PCp
)

.
We shall need a few more strong limit operators. For A ∈ L (Lp(R,w)), let

H+±(A) := s-lim
t→±∞

s-lim
s→+∞

UtV−sAVsU−t , (5.26)

provided that this strong limit exists.

Proposition 5.5.5. For A ∈ A
(

PC(Ṙ),PCp,w,Cp
)

, the strong limits (5.26) exist,
and the mappings

H+± : A
(

PC(Ṙ),PCp,w,Cp
)

→ CI

are algebra homomorphisms. In particular, for a ∈ PC(Ṙ), b ∈ PCp,w, c ∈ Cp and
K ∈ K (Lp(R,w)),

H+±(aI) = a(+∞)I, H+±(W 0(b)) = b(±∞)I,

H+±(M0(c)) = c(±∞)I and H+±(K) = 0.

Proof. The first assertion comes from Lemma 5.4.2. The multiplicativity of H+± is
due to the uniform boundedness of U−tV−sAVsUt . The existence of the first three of
the strong limits was established in Lemma 5.4.2. The last assertion follows from
Lemma 1.4.6 since the Vs tend weakly to zero and the V−s are uniformly bounded.

We have to introduce some new notation in order to give a description of the local
algebras at (∞,∞). Let f be a function in Ċ(R+) with f (∞) = f (0) = 1 the support
of which is contained in [0,1]∪ [N,∞] with some sufficiently large N, and write f as
f0 + f∞ with

f0(t) =

{

f (t) if t ∈ [0,1],
0 if t ∈ ]1,∞]

and f∞(t) =

{

f (t) if t ∈ [N,∞],
0 if t ∈ [0,N[ .

Further, let g ∈ C0
p,wα with g(∞) = g(0) = 1 and supp g ⊆ [−∞,−N]∪ [−1,1]∪

[N,+∞], and write g = g0 +g∞ with
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g0(t) =

{

g(t) if t ∈ [−1,1],
0 if t ∈ R\ [−1,1]

and g∞(t) =

{

0 if t ∈ [−N,N],
g(t) if t ∈ R\ [−N,N].

Set g±∞ := χ±g∞. Since the operator f0W (g0) is compact by Proposition 5.3.1, one
gets

ΦK
∞,∞(I) = ΦK

∞,∞( fW (g))

= ΦK
∞,∞( f0W (g∞))+ΦK

∞,∞( f∞W (g0))+ΦK
∞,∞( f∞W (g∞)).

Denote the first, second and third item in the sum of the right-hand side by P0,∞, P∞,0

and P∞,∞, respectively, and define for (x,y) ∈ {(0,∞),(∞,0),(∞,∞)},

A x,y
∞,∞ := Px,yA

K
∞,∞
(

PC(R+),PCp,wα ,Cp
)

Px,y.

Theorem 5.5.6. Let s = ∞ and t = ∞. Then:

(i) the sets A 0,∞
∞,∞ , A ∞,0

∞,∞ and A ∞,∞
∞,∞ are Banach algebras, and

A K
∞,∞
(

PC(R+),PCp,wα ,Cp
)

= A 0,∞
∞,∞ �A ∞,0

∞,∞ �A ∞,∞
∞,∞

where the sums are direct;
(ii) the algebra A 0,∞

∞,∞ is isometrically isomorphic to Ep,α , and the isomorphism is
given by

P0,∞ΦK
∞,∞(A)P0,∞ �→ H0,∞(A)

for each A ∈ A K
∞,∞
(

PC(R+),PCp,wα ,Cp
)

;
(iii) the algebra A ∞,0

∞,∞ is isometrically isomorphic to Ep,α , and the isomorphism is
given by

P∞,0ΦK
∞,∞(A)P∞,0 �→ H∞,0(A)

for each A ∈ A
(

PC(R+),PCp,wα ,Cp
)

;
(iv) the algebra A ∞,∞

∞,∞ is commutative and finitely generated. Its generators are
the cosets ΦK

∞,∞ ( f∞W (g±∞)). For A ∈ A K
∞,∞
(

PC(R+),PCp,wα ,Cp
)

, the coset
P∞,∞ΦK

∞,∞(A)P∞,∞ is invertible if and only if the operators H+±(A), which are
constant multiples of the identity, are invertible.

Proof. (i) It is easy to see that P∞,0, P0,∞ and P∞,∞ are idempotents which satisfy

P∞,0 +P0,∞+P∞,∞ =ΦK
∞,∞(I),

and
Px1,y1Px2,y2 = 0 if (x1,y1) �= (x2,y2).

Hence, assertion (i) will follow once we have shown that P∞,0, P0,∞ and P∞,∞ belong
to the center of the local algebra A K

∞,∞
(

PC(R+),PCp,wα ,Cp
)

. By Proposition 4.2.10,
every Mellin convolution M0(c) with c ∈Cp can be approximated by a polynomial
in SR+ . Since SR+ = W (sgn), it thus suffices to check whether P∞,0, P0,∞ and P∞,∞
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commute with ΦK
∞,∞(aI) and ΦK

∞,∞(W (b)) for all functions a ∈ PC(R+) and b ∈
PCp,wα .

First consider the commutator [P0,∞,ΦK
∞,∞(aI)]. A little thought shows that there

is a function a∞ ∈ C̄(R+) such that ΦK
∞,∞(aI) =ΦK

∞,∞(a∞I). So the assertion follows
immediately from the compactness of [W (g∞),a∞], which we infer from Proposition
5.3.1 (ii). Now consider [P0,∞,ΦK

∞,∞(W (b))] where b ∈ PCp,wα . Since g∞ is continu-
ous on Ṙ, we conclude via Proposition 5.3.3 (i) that

W (g∞)W (b) = W (g∞b)+K1 = W (b)W (g∞)+K2

with compact operators K1 and K2. As above, one finds a function b∞ ∈ PCp,wα ∩
C(R) such that ΦK

∞,∞(W (b)) = ΦK
∞,∞(W (b∞)). Since the commutator [ f0W (b∞)] is

compact by Proposition 5.3.1 (ii), it follows that P0,∞ commutes with all elements
of the local algebra.

To get that the commutator [P∞,0,ΦK
∞,∞(aI)] vanishes, one can argue as above. So

we are left to verify that [P∞,0,ΦK
∞,∞(W (b))] = 0 for all b ∈ PCp,wα . Using Propo-

sition 5.3.3 again, we obtain that [W (g0),W (b)] is compact, and from Proposition
5.3.1 (ii) we infer that [ f∞,W (b)] is compact. Thus, P∞,0 is also in the center of the
local algebra. Since P∞,∞ = I−P∞,0 −P0,∞, the coset P∞,∞ belongs to the center, too.

(ii) Propositions 5.4.1 and 5.4.3 imply that the operator H0,∞(A) depends only on
the coset P0,∞ΦK

∞,∞(A)P0,∞. The specific form of H0,∞(A) is also a consequence of
Propositions 5.4.1 and 5.4.3. The identity,

P0,∞ΦK
∞,∞(A)P0,∞ = P0,∞ΦK

∞,∞(H0,∞(A))P0,∞

can be checked by repeating arguments from the proofs of Theorems 5.5.3 and 5.5.4.
This proves assertion (ii), and assertion (iii) of the theorem follows in a similar way.

(iv) Let a ∈ PC(R+) and b ∈ PCp,wα . Then

P∞,∞ΦK
∞,∞
(

aW (b)
)

P∞,∞

= P∞,∞ΦK
∞,∞
(

a(∞) f∞W (b(−∞)g−∞ +b(+∞)g+
∞)
)

P∞,∞

= a(∞)b(−∞)ΦK
∞,∞
(

f∞W (g−∞)
)

+a(∞)b(+∞)ΦK
∞,∞
(

f∞W (g+
∞)
)

.

(5.27)

Taking into account that ΦK
∞,∞
(

f∞W (g−∞)
)

+ΦK
∞,∞
(

f∞W (g+
∞)
)

= P∞,∞ is the identity
element in A ∞,∞

∞,∞ and that

ΦK
∞,∞
(

f∞W (g−∞)
)

ΦK
∞,∞
(

f∞W (g+
∞)
)

=ΦK
∞,∞
(

f∞W (g−∞) f∞W (g+
∞) f∞I

)

=ΦK
∞,∞
(

f∞W 0(g−∞) f∞W 0(g+
∞) f∞I

)

=ΦK
∞,∞
(

f∞W 0(g−∞)W 0(g+
∞) f∞I

)

= 0

by Proposition 5.3.1 (ii), we conclude that every element B of A ∞,∞
∞,∞ can be written

in the form
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B = α−(B)ΦK
∞,∞
(

f∞W (g−∞)
)

+α+(B)ΦK
∞,∞
(

f∞W (g+
∞)
)

with uniquely determined complex numbers α±(B). Since the existence of the
strong limits follows from Proposition 5.5.5, it remains to show that

H+±(A) = α±
(

P∞,∞ΦK
∞,∞(A)P∞,∞

)

I. (5.28)

The mappings A �→H+±(A) and A �→ α±
(

P∞,∞ΦK
∞,∞(A)P∞,∞

)

are continuous homo-
morphisms. It is thus sufficient to verify (5.28) with A replaced by aI and W (b).
For these operators, the assertion follows immediately from Proposition 5.5.5 and
equality (5.27).

Now we turn our attention to the larger algebra A K
∞,∞
(

PC(R+),PCp,wα ,PCp
)

.
Again one can show that the idempotent P∞,∞ belongs to the center of this algebra,
but the idempotents P0,∞ and P∞,0 no longer possess this property. Therefore, this
larger local algebra does not admit as simple a decomposition as that one observed
in Theorem 5.5.6. We shall study the local algebra A K

∞,∞
(

PC(R+),PCp,wα ,PCp
)

via a second localization. To that end notice that, for c ∈ C(R)∩ PCp, the coset
ΦK
∞,∞(M0(c)) belongs to the center of this algebra by Propositions 5.3.2 (ii) and

5.3.4 (ii) (take into account that, for each a ∈ PC(R+), there is an a∞ ∈ C̄(R+)
such that ΦK

∞,∞(aI −a∞I) = 0). Thus, using Allan’s local principle, we can localize
A K
∞,∞
(

PC(R+),PCp,wα ,PCp
)

with respect to the maximal ideal space of the Banach
algebra

{

ΦK
∞,∞(M0(c)) : c ∈C(R)∩PCp

}

,

which can be identified with the two-point compactification R of the real axis in an
obvious way. For x ∈ R, let A K

∞,∞,x denote the corresponding bilocal algebra, and
write ΦK

∞,∞,x for the canonical homomorphism from A onto A K
∞,∞,x. Further, let the

functions f0, f∞, g0 and g∞ be defined as before Theorem 5.5.6. For x ∈ {±∞} and
(y,z) ∈ {(0,∞),(∞,0),(∞,∞)}, set

Py,z
x :=ΦK

∞,∞,x

(

fyW (gz)
)

and abbreviate
A y,z
∞,∞,x := Py,z

x A K
∞,∞,xPy,z

x .

Finally, let Bp,α denote the smallest closed subalgebra of L (Lp(R,wα)) which
contains SR and χ+I. The following theorem identifies the local algebras A K

∞,∞,x.

Theorem 5.5.7.
(i) Let x ∈ R. For each A ∈A

(

PC(R+),PCp,wα ,PCp
)

, there is an operator A∞ ∈
A
(

PC(R+), /0,PCp
)

such that ΦK
∞,∞,x(A−A∞) = 0. The local algebra A y,z

∞,∞,x

is isometrically isomorphic to the algebra Bp,α , and the isomorphism is given
by

H∞,∞,x : ΦK
∞,∞,x(A) �→ H∞,x(Ep,wαA∞E−1

p,wα ).
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In particular,

H∞,∞,x
(

ΦK
∞,∞,x(aI)

)

= a(+∞)χ−I +a(0+)χ+I,

H∞,∞,x
(

ΦK
∞,∞,x(W (b))

)

=
(

b(−∞)
1−d(x)

2
+b(+∞)

1+d(x)
2

)

χ−I

+
(

b(0−)
1−d(x)

2
+b(0+)

1+d(x)
2

)

χ+ I

with d(x) := coth
(

(x+ i(1/p+α))π
)

, and

H∞,∞,x
(

ΦK
∞,∞,x(M

0(c))
)

= c(x−)QR + c(x+)PR.

(ii) Let x ∈ {±∞}. Then A 0,∞
∞,∞,x, A ∞,0

∞,∞,x and A ∞,∞
∞,∞,x are Banach algebras, and the

algebra A K
∞,∞,x decomposes into the direct sum

A K
∞,∞,x = A 0,∞

∞,∞,x �A ∞,0
∞,∞,x �A ∞,∞

∞,∞,x.

Moreover, for (y,z) ∈ {(0,∞),(∞,0),(∞,∞)}, there is an isomorphism Hy,z
x

from A y,z
∞,∞,x onto C. In particular,

Hy,z
x

(

Py,z
±∞ΦK

∞,∞,±∞(aW (b)M0(c))Py,z
±∞
)

= a(y)b(z±)c(x)

where ∞± := ±∞.

Proof. (i) Choose cx ∈C(R)∩PCp so that supp cx is compact and cx(x) = 1. Then
the operator f∞W (g∞)M0(cx) is compact by Proposition 5.3.5 (i). Hence, for every
function b ∈ PCp,wα , which is continuous at the point 0 and satisfies b(0) = 0, we
obtain

ΦK
∞,∞,x

(

W (b)
)

= ΦK
∞,∞,x

(

W (b)
(

f0W (g∞)+ f∞W (g0)+ f∞W (g∞)
)

M0(cx)
)

= ΦK
∞,∞,x

(

W (bg∞) f0M0(cx)+W (bg0) f∞M0(cx)
)

= ΦK
∞,∞,x

(

W (bg∞) f0M0(cx)
)

(5.29)

= ΦK
∞,∞,x

(

W (b(−∞)χ− +b(+∞)χ+) f0M0(cx)
)

= ΦK
∞,∞,x

(

(b(−∞)W (χ−)+b(+∞)W (χ+)) f0M0(cx)
)

.

If now b is an arbitrary function in PCp,wα , then we write

W (b) = b(0−)W (χ−)+b(0+)W (χ+)+W (b′) (5.30)

with b′ being continuous at zero and b′(0) = 0. Then the first part of assertion (i)
follows, since the W (χ±) are also Mellin operators.

Since the images of aI and M0(c) under the mapping A �→ Ep,wαAE−1
p,wα are

the operators ăI with ă(t) = a(e2πt) and W 0(c), respectively, the strong limits



288 5 Convolution operators

H∞,x(Ep,wαA∞E−1
p,wα ) exist for each operator A∞ ∈ A

(

PC(R+),0,PCp
)

by Propo-
sition 5.4.1.

Let J∞,∞,x stand for the closed ideal generated by all cosets ΦK
∞,∞(M0(c)) with

c ∈ C(R)∩PCp and c(x) = 0. In order to get the correctness of the definition of
H∞,∞,x, we must show that if A ∈ A

(

PC(R+),PCp,wα ,PCp
)

and ΦK
∞,∞,x(A) = 0,

then the strong limit H(A) := H∞,x(Ep,wαA∞E−1
p,wα ) exists and is equal to 0.

To see this, note first that the ideal K of the compact operators belongs to the
kernel of H. Thus, H depends only on the coset Φ(A). Further, since H(aI) = 0 for
each continuous function a with a(0) = a(∞) = 0 by Proposition 5.4.1 (i), the local
ideal I∞,∞ lies in the kernel of H. Notice that for this conclusion we do not need
to know whether the strong limit H(Φ(W (b)) exists: indeed, each operator A with
Φ(A) ∈ I∞,∞ can be approximated by finite sums

∑
j

A ja jI +K

where a j(0) = a j(∞) = 0 and K is compact. If A is of this form then

H(A) = s-lim
τ→+∞

Z−1
τ U−xEp,wαAE−1

p,wαUxZτ

= s-lim
τ→+∞∑j

(Z−1
τ U−xEp,wαA jE

−1
p,wαUxZτ)(Z−1

τ U−xEp,wαa jE
−1
p,wαUxZτ),

from which the conclusion follows since Z−1
τ U−xEp,wαa jE−1

p,wαUxZτ → 0 and since
the norms of Z−1

τ U−xEp,wαA jE−1
p,wαUxZτ are uniformly bounded with respect to τ .

Hence, H(A) depends only on ΦK
∞,∞(A). The same arguments show that the local

ideal J∞,∞,x is contained in the kernel of the mapping ΦK
∞,∞(A) �→ H(A) (take into

account that H(M0(c)) = 0 whenever c ∈C(R)∩PCp and c(x) = 0). This observa-
tion establishes the correctness of the definition of H∞,∞,x.

We further have to show that the invertibility of

H∞,∞,x
(

ΦK
∞,∞,x(A)

)

= H∞,x(Ep,wαA∞E−1
p,wα )

implies the invertibility of ΦK
∞,∞,x(A). But this is an easy consequence of the identity

ΦK
∞,∞,x(A) =ΦK

∞,∞,x

(

E−1
p,wαUxH∞,x(Ep,wαA∞E−1

p,wα )UxEp,wα

)

which can be verified in a similar way as the corresponding identity in the proof of
Theorem 5.5.3. Finally, the special values of H∞,∞,x at the generators of the algebra
follow from the equalities (4.21), (5.29) and (5.30) and from Proposition 5.4.1.

(ii) Since ΦK
∞,∞,x(M

0(c)) = c(x)ΦK
∞,∞,x(I), the proof of the first part of this assertion

runs as that of Theorem 5.5.6. The second part of the assertion will follow immedi-
ately from the identity

Py,z
±∞ΦK

∞,∞,±∞(aW (b)M0(c)) = a(y)b(z±)c(±∞)Py,z
±∞
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which we shall verify only for the basic case when a ≡ 1 and c ≡ 1. For definiteness,
let (y,z) = (∞,0). Then

P∞,0
±∞ΦK

∞,∞,±∞
(

W (b)
)

=ΦK
∞,∞,±∞

(

W (bg0) f∞I
)

=ΦK
∞,∞,±∞

(

W
(

b(0−)χ− +b(0+)χ+

)

)

P∞,0
±∞

=ΦK
∞,∞,±∞

(

b(0−)W (χ−)+b(0+)W (χ+)
)

P∞,0
±∞

=ΦK
∞,∞,±∞

(

b(0−)M0
(

1−d
2

)

+b(0+)M0
(

1+d
2

))

P∞,0
±∞

=
(

b(0−)
1−d(±∞)

2
+b(0+)

1+d(±∞)
2

)

P∞,0
±∞

= b(0±)P∞,0
±∞ .

Similarly one gets that, for every operator A ∈A
(

PC(R+),PCp,wα ,PCp
)

, there is a
function c ∈C(R)∩PCp such that

Py,z
±∞ΦK

∞,∞,±∞(A) =ΦK
∞,∞,±∞(M0(c))Py,z

±∞ = c(±∞)Py,z
±∞.

This observation finishes the proof.

We summarize the results obtained in this section in the following theorem.

Theorem 5.5.8. Let A∈A
(

PC(R+),PCp,wα ,PCp
)

. The coset A+K (Lp(R+,wα))
is invertible in A K

(

PC(R+),PCp,wα ,PCp
)

if and only if the operators

H∞,t(A) ∈ Ep,α for r ∈ Ṙ0 \{∞},
Hs,∞(A) ∈ Bp for s ∈ Ṙ

+ \{∞},
H∞,∞,x

(

ΦK
∞,∞,x(A)

)

∈ Bp,α for x ∈ R

are invertible in the respective algebras and if the complex numbers

Hy,z
x

(

Py,z
±∞Φ

K
∞,∞,±∞(A)

)

for (y,z) ∈ {(0,∞),(∞,0),(∞,∞)}

are not zero.

The following theorem establishes the relation of this result to the Fredholm
property of operators in A

(

PC(R+),PCp,wα ,PCp
)

.

Theorem 5.5.9. The algebra A K
(

PC(R+),PCp,wα ,PCp
)

is inverse-closed in the
Calkin algebra L (Lp(R+,wα))/K (Lp(R+,wα)).

Proof. There are several ways to verify the inverse-closedness. One way is to con-
sider the smallest (non-closed) subalgebra A0 of A

(

PC(R+),PCp,wα ,PCp
)

which
contains all operators aI, W (b) and M0(c) with piecewise constant functions a, b
and c. Applying Theorem 5.5.8 to an operator A ∈ A0, we find that the spectrum
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of the coset A+K (Lp(R+,wα)) in A K
(

PC(R+),PCp,wα ,PCp
)

is a thin subset of
the complex plane. Since A0 is dense in A

(

PC(R+),PCp,wα ,PCp
)

, the assertion
follows from Corollary 1.2.32.

For another proof, one shows that, for every Fredholm operator A in the alge-
bra A

(

PC(R+),PCp,wα ,PCp
)

, the H-limits quoted in Theorem 5.5.8 are invert-
ible (as operators on the respective Banach spaces). Then one employs the inverse-
closedness of the algebras Ep,α and Bp,α in the algebra L (Lp(R+,wα)) and applies
Theorem 5.5.8.

Corollary 5.5.10. Let A ∈ A
(

PC(R+),PCp,wα ,PCp
)

. Then A is a Fredholm oper-
ator on Lp(R+,wα) if and only if the operators

H∞,t(A) ∈ Ep,α for r ∈ Ṙ0 \{∞}
Hs,∞(A) ∈ Bp for s ∈ Ṙ

+ \{∞}
H∞,∞,x

(

ΦK
∞,∞,x(A)

)

∈ Bp,α for x ∈ R

are invertible (as operators on the respective Banach spaces) and if the complex
numbers

Hy,z
x

(

Py,z
±∞Φ

K
∞,∞,±∞(A)

)

for (y,z) ∈ {(0,∞),(∞,0),(∞,∞)}

are not zero.

Combining this result with the results of Section 4.2 one easily gets a matrix-
valued symbol for the Fredholmness of operators in A

(

PC(R+),PCp,wα ,PCp
)

.

Remark 5.5.11. In this section we constructed representations of the local algebras
by employing a basic property of the operators which constitute the local algebras:
their local homogeneity. This property enabled us to identify the local algebras via
homogenizing strong limits. It would also have been possible to identify the local
algebras by means of the concepts developed in Section 2.6 and Chapter 3: PI-
algebras and, in particular, algebras generated by idempotents. We will illustrate
the use of those concepts in Section 5.7 to identify some of the local algebras that
appear there. �

5.6 Algebras of multiplication and Wiener-Hopf operators

Let the weight function w be given by (4.8). In this section we address the smallest
closed subalgebra of L (Lp(R,w)) which contains all operators aI of multiplication
by a function a ∈ PC(Ṙ) and all Fourier convolutions W 0(b) where b ∈ PCp,w. We
denote this algebra by A

(

PC(Ṙ),PCp,w
)

, and we write A K
(

PC(Ṙ),PCp,w
)

for the
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image of this algebra in the Calkin algebra and Φ for the canonical homomorphism
from A

(

PC(Ṙ),PCp,w
)

onto A K
(

PC(Ṙ),PCp,w
)

.
If f ∈ C(Ṙ) and g ∈ Cp,w then the coset Φ

(

fW 0(g)
)

belongs to the center of
A K

(

PC(Ṙ),PCp,w
)

by Proposition 5.3.1. So we can localize this algebra with re-
spect to the maximal ideal space of A K

(

C(Ṙ),Cp,w
)

, which is homeomorphic to
the subset (Ṙ×{∞})∪ ({∞}× Ṙ) of the torus Ṙ× Ṙ. The proof of the latter fact is
similar to the proof of Proposition 5.5.2.

Given (s, t) ∈ (Ṙ×{∞})∪ ({∞}× Ṙ), let Is,t denote the smallest closed ideal
of the Banach algebra A K

(

PC(Ṙ),PCp,w
)

which contains the point (s, t), and let
ΦK

s,t refer to the canonical homomorphism from A K
(

PC(Ṙ),PCp,w
)

onto the local
quotient algebra

A K
s,t := A K

(

PC(Ṙ),PCp,w
)

/Is,t .

Further, for each weight w of the form (4.8) and for each x ∈ R, define the local
weight wα(x) at x by wα(x)(t) := |t|α(x) with

α(x) :=

⎧

⎪

⎨

⎪

⎩

0 if x �∈ {t1, . . . , tn,∞},
α j if x = t j for some ( j = 1, . . . ,n),
∑n

j=0α j if x = ∞.

(5.31)

To describe the local algebras A K
s,t , we have to introduce some new strong limit

operators. For A ∈ L (Lp(R,w)), let

H±±(A) := s-lim
t→±∞

s-lim
s→±∞

UtV−sAVsU−t (5.32)

provided that the strong limits exist. Here, by convention, the first superscript in
H±± refers to the strong limit with respect to s→±∞ and the second one to t →±∞.

Proposition 5.6.1. The strong limits (5.32) exist for A ∈ A
(

PC(Ṙ),PCp,w
)

, and
the mappings H±± are algebra homomorphisms from A

(

PC(Ṙ),PCp,w
)

onto the
algebra CI. In particular, for a ∈ PC(Ṙ) and b ∈ PCp,w,

H+±(aI) = a(+∞)I, H−±(aI) = a(−∞)I, (5.33)

H±+(W 0(b)) = b(+∞)I, H±−(W 0(b))= b(−∞)I, (5.34)

and
H±±(K) = 0 for K ∈ K (Lp(R,w)) . (5.35)

Proof. The first assertion comes from Lemma 5.4.2. The multiplicativity of H±± is
due to the uniform boundedness of UtV−sAVsU−t . Finally, if K is compact then, by
Lemma 1.4.6, KVs goes strongly to zero, as Vs tends weakly to zero. The result then
follows from the uniform boundedness of V−s.
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Theorem 5.6.2. Let A ∈ A
(

PC(Ṙ),PCp,w
)

.

(i) The coset A+K (Lp(R,w)) is invertible in A K
(

PC(Ṙ),PCp,w
)

if and only if
the cosetΦK

s,t (A) is invertible in A K
s,t for each (s, t)∈ (Ṙ×{∞})∪({∞}×Ṙ).

(ii) For s∈R, the local algebra A K
s,∞ is isometrically isomorphic to the subalgebra

alg{I,χ+I,SR} of L
(

Lp(R,wα(s))
)

, and the isomorphism is given by

ΦK
s,∞(A) �→ Hs,∞(A) (5.36)

for each operator A ∈ A
(

PC(Ṙ),PCp,w
)

.
(iii) For t ∈R, the local algebra A K

∞,t is isometrically isomorphic to the subalgebra
alg{I,χ+I,SR} of L

(

Lp(R,wα(∞))
)

, and the isomorphism is given by

ΦK
∞,t (A) �→ H∞,t(A) (5.37)

for each operator A ∈ A
(

PC(Ṙ),PCp,w
)

.
(iv) The local algebra A K

∞,∞ is generated by the four idempotent elements

ΦK
∞,∞(W (χ±)χ±I),

and the coset ΦK
∞,∞(A) is invertible if and only if the four operators

H±±(A),

which are complex multiples of the identity operator, are invertible.

Proof. Assertion (i) is just a reformulation of Allan’s local principle. For the proof
of assertion (ii), one employs the same arguments as in the first and second step of
the proof of Proposition 4.3.2 to obtain that the algebras A K

s,∞ corresponding to the

spaces Lp(R,w) and Lp(R,ws) with ws(x) = |x−s|α(s) are isometrically isomorphic.
The remainder of the proof of assertion (ii) can be done as in Theorem 5.5.4.

The proof of part (iii) runs parallel to that of Theorem 5.5.3. One only has to
take into account that the local algebras related to Lp(R,w) and Lp(R,w∞) with
w∞(x) = |x|α(∞) are isometrically isomorphic. To prove assertion (iv), note that there
are functions f ∈C(R) and g ∈C(R)∩PCp,w such that

ΦK
∞,∞( f I −χ+I) = 0 and ΦK

∞,∞(W 0(g−χ+)) = 0.

From Proposition 5.3.1(ii) we infer that the commutator [ f I,W 0(g)] is compact.
Thus, the cosets ΦK

∞,∞(χ+I) and ΦK
∞,∞(W 0(χ+)) commute. Since

ΦK
∞,∞(aI) =ΦK

∞,∞(a(−∞)χ−I +a(+∞)χ+I)

for every a ∈ PC(Ṙ) and

ΦK
∞,∞(W 0(b)) =ΦK

∞,∞(b(−∞)W 0(χ−)+b(+∞)W 0(χ+)),
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for every b∈PCp,w, we find that, for each A∈A
(

PC(Ṙ),PCp,w
)

, the cosetΦK
∞,∞(A)

can be represented in the form

ΦK
∞,∞
(

h−−W (χ−)χ−I +h−+W (χ+)χ−I +h+−W (χ−)χ+I +h++W (χ+)χ+I
)

with uniquely determined complex numbers h±± = h±±(A). Thereby,

h+±(aI) = a(+∞)I, h−±(aI) = a(−∞)I, (5.38)

h±+(W 0(b)) = b(+∞)I, h±−(W 0(b))= b(−∞)I, (5.39)

and the coset ΦK
∞,∞(A) is invertible if and only if the numbers h±±(A) are not zero.

Since H±±(A) = h±±(A)I by Proposition 5.6.1, the result follows.

The following corollary can be proved by repeating the arguments from the proof
of Theorem 5.5.9.

Corollary 5.6.3. The algebra A K
(

PC(Ṙ),PCp,w
)

is inverse-closed in the Calkin
algebra L (Lp(R,w))/K (Lp(R,w)), and an operator A ∈ A

(

PC(Ṙ),PCp,w
)

is
Fredholm if and only if the operators Hs,∞(A), H∞,t(A) and H±±(A) are invertible
for all s, t ∈ R.

To illustrate the previous results, we consider a particular class of operators, the
so-called paired convolution operators. These are operators of the form

A = a1W 0(b1)+a2W 0(b2) (5.40)

with a1,a2 ∈ PC(Ṙ) and b1,b2 ∈ PCp,w. The following result is an immediate con-
sequence of Corollary 5.6.3.

Theorem 5.6.4. The operator A in (5.40) is Fredholm on Lp(R,w) if and only if the
following three conditions are fulfilled:

(i) the operator c+PR + c−QR with

c±(s) :=
(

a1(s−)b1(±∞)+a2(s−)b2(±∞)
)

χ−I

+
(

a1(s+)b1(±∞)+a2(s+)b2(±∞)
)

χ+I

is invertible on Lp(R,wα(s)) for each s ∈ R;
(ii) the operator d+PR +d−QR with

d±(t) :=
(

a1(−∞)b1(t±)+a2(−∞)b2(t±)
)

χ−I

+
(

a1(+∞)b1(t±)+a2(+∞)b2(t±)
)

χ+I

is invertible on Lp(R,wα(∞)) for each t ∈ R;
(iii) none of the following numbers is zero:

a1(+∞)b1(±∞)+a2(+∞)b2(±∞), a1(−∞)b1(±∞)+a2(−∞)b2(±∞).
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Of particular interest are paired operators of the form

A = a1W 0(χ+)+a2W 0(χ−) = a1PR +a2QR (5.41)

with a1,a2 ∈ PC(Ṙ), which can also be written as the singular integral operator

a1 +a2

2
I +

a1 −a2

2
SR.

For these operators, Corollary 5.6.3 implies the following.

Corollary 5.6.5. Let a1,a2 ∈ PC(Ṙ). The singular integral operator a1PR + a2QR

is Fredholm on Lp(R,w) if and only if

(i) the operator (a2(s−)χ− +a2(s+)χ+)QR +(a1(s−)χ− +a1(s+)χ+)PR is invert-
ible on Lp(R,wα(s)) for each s ∈ R and

(ii) the operator (a2(−∞)χ− + a2(+∞)χ+)QR + (a1(−∞)χ− + a1(+∞)χ+)PR is
invertible on Lp(R,wα(∞)).

The corresponding result for operators on the semi-axis reads as follows.

Corollary 5.6.6. Let a1,a2 ∈ PC(R+). The singular integral operator a1PR+ +
a2QR+ is Fredholm on Lp(R+,w) if and only if

(i) the operator a1(0+)PR+ +a2(0+)QR+ is invertible on Lp(R,wα(0)),
(ii) the operator (a2(s−)χ− +a2(s+)χ+)QR +(a1(s−)χ− +a1(s+)χ+)PR is invert-

ible on Lp(R,wα(s)) for each s ∈ R
+ \{0}, and

(iii) the operator a1(+∞)PR+ +a2(+∞)QR+ is invertible on Lp(R+,wα(∞)).

Proof. This follows by applying Corollary 5.6.3 to the operator
(

a1W 0(χ+)+a1W 0(χ−)
)

χ+I +χ−I ∈ L (Lp(R,w))

with a1 and a2 extended to the whole line by zero. This operator is equivalent to
the singular integral operator a1PR+ + a2QR+ in the sense that these operators are
Fredholm, or not, simultaneously. (Of course, one could also apply Corollary 5.5.10
directly.)

Note that Propositions 4.2.11 and 4.2.19 combined with the above results give a
matrix-valued symbol for the Fredholmness of the operators considered. Note fur-
ther that one can derive similar results for operators of the form a1M(b1)+a2M(b2)
with a1,a2 ∈ PC([0,1]) and b1,b2 ∈ PCp,wα considered on the space Lp([0,1],wα).
The easiest way to do this is to reduce them to the operators considered above via
the mapping A �→ E−1

p,wAEp,w.
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5.7 Algebras of multiplication, convolution and flip operators

Let w̃ be a weight function on R
+ of the form (4.8), and let w denote its symmetric

extension to R, i.e.

w(t) :=

{

w̃(t) if t ≥ 0,

w̃(−t) if t < 0.

The symmetry of the weight implies that the flip operator J given by (Ju)(t) :=
u(−t) is bounded on Lp(R,w). It thus makes sense to consider the smallest closed
subalgebra of L (Lp(R,w)) which contains all operators aI of multiplication by
a function a ∈ PC(Ṙ), all Fourier convolutions W 0(b) where b ∈ PCp,w, and the
flip J. We denote this algebra by A

(

PC(Ṙ),PCp,w,J
)

. Note that this algebra con-
tains the Hankel operators H(b) := χ+W 0(b)Jχ+I with b ∈ PCp,w. Further, we let
A K

(

PC(Ṙ),PCp,w,J
)

refer to the image of A
(

PC(Ṙ),PCp,w,J
)

in the Calkin al-
gebra and write Φ for the corresponding canonical homomorphism.

Let C̃(Ṙ) and C̃p,w denote the subalgebras of C(Ṙ) and Cp,w, respectively, which
are constituted by the even functions, i.e., by the functions f with J f = f .

Proposition 5.7.1. If f ∈ C̃(Ṙ) and g ∈ C̃p,w, then the coset Φ( fW 0(g)) belongs to
the center of A K

(

PC(Ṙ),PCp,w,J
)

.

Proof. It easy to see that fW 0(g)J = J fW 0(g). From

fW 0(g) = ( f − f (∞))W 0(g−g(∞))+( f − f (∞))W 0(g(∞))

+ f (∞)W 0(g−g(∞))+ f (∞)W 0(g(∞))

= ( f − f (∞))W 0(g−g(∞))+( f − f (∞))g(∞)I

+ f (∞)W 0(g−g(∞))+ f (∞)g(∞)I

and from Proposition 5.3.1 it becomes clear that fW 0(g) also commutes with the
other generators of the algebra modulo compact operators.

Let R
+

denote the compactification of R
+ by the point {∞}, i.e., R

+
is home-

omorphic to [0,1]. The maximal ideal space of the algebra generated by all cosets
Φ( fW 0(g)) with f ∈ C̃(Ṙ) and g ∈ C̃p,w is homeomorphic to the subset (R+ ×
{∞})∪ ({∞}×R

+) of the square R
+×R

+
, which can be checked as in the proof of

Proposition 5.5.2. The maximal ideal corresponding to (s, t)∈ (R+×{∞})∪({∞}×
R

+) is just the class of all cosets Φ( fW 0(g)) where f ∈ C̃(Ṙ) with f (s) = 0 and
g ∈ C̃p,w with g(t) = 0.

We proceed by localization over this maximal ideal space. Let Is,t stand for the
smallest closed ideal of the Banach algebra A K

(

PC(Ṙ),PCp,w,J
)

which contains

the maximal ideal (s, t)∈ (R+×{∞})∪({∞}×R
+), and write A K

s,t for the quotient
algebra

A K
(

PC(Ṙ),PCp,w,J
)

/Is,t
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and ΦK
s,t for the canonical homomorphism from A

(

PC(Ṙ),PCp,w,J
)

onto A K
s,t .

For x ∈ R
+

, let α(x) be the local exponent defined by (5.31).
Let A ∈ A

(

PC(Ṙ),PCp,w,J
)

. Allan’s local principle implies that the coset A +
K (Lp(R,w)) is invertible in A K

(

PC(Ṙ),PCp,w,J
)

if and only if the local cosets

ΦK
s,t (A) are invertible for all (s, t) ∈ (R+ ×{∞})∪ ({∞}×R

+). We are thus left
to analyze the local algebras A K

s,t . Some care is in order since, in contrast to the
previous sections, the strong limits Hs,∞(J) and H∞,t(J) exist only at s = 0 and t = 0,
respectively.

We are going to start with the local algebras A K
0,∞ and A K

∞,0.

Proposition 5.7.2. The local algebra A K
0,∞ is isometrically isomorphic to the closed

subalgebra alg{I,χ+I,PR,J} of L (Lp(R+,wα(0))), with the isomorphism given by
ΦK

0,∞(A) �→ H0,∞(A). In particular, for a ∈ PC(Ṙ) and b ∈ PCp,w,

ΦK
0,∞(aI) �→ a(0−)χ−I +a(0+)χ+I,

ΦK
0,∞ (W (b)) �→ b(−∞)QR +b(+∞)PR,

ΦK
0,∞(J) �→ J.

Proof. First note that the algebras A K
0,∞ related to Lp(R+,w) and to Lp(R+, |t|α(0)),

respectively, are isometrically isomorphic, as can be seen by the same arguments as
in Proposition 4.3.2, steps 1 and 2. From this fact one deduces the independence of
H0,∞(A) of operators belonging to the local ideal I0,∞, whence the correctness of
the definition of the homomorphism follows. The concrete form of the values of the
homomorphism at the generators comes from Proposition 5.4.3 and the fact that the
operator J is homogeneous. Thus we conclude thatΦK

0,∞(A) �→H0,∞(A) is a mapping

onto alg{I,χ+I,PR,J}. Finally, since ΦK
0,∞(A) =ΦK

0,∞(H0,∞(A)), this mapping is an
isometry.

In a similar way, one gets the following description of the local algebra at (∞,0).

Proposition 5.7.3. The local algebra A K
∞,0 is isometrically isomorphic to the closed

subalgebra alg{I,χ+I,PR,J} of L (Lp(R+,wα(∞))), and the isomorphism is given
by ΦK

∞,0(A) �→ H∞,0(A). In particular, for a ∈ PC(Ṙ) and b ∈ PCp,w,

ΦK
∞,0(aI) �→ a(−∞)χ−I +a(+∞)χ+I,

ΦK
∞,0 (W (b)) �→ b(0−)QR +b(0+)PR,

ΦK
∞,0(J) �→ J.

Now we turn to the local algebras A K
s,∞ and A K

∞,t where s, t > 0. As already men-
tioned, the mappings Hs,∞ and H∞,t are not well defined on A

(

PC(Ṙ),PCp,w,J
)

for s, t �= 0. So we will have to use a modified approach which is based on the
fact that every operator A in A

(

PC(Ṙ),PCp,w,J
)

can be approximated as closely
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as desired by operators of the form A1 + JA2 where A1 and A2 belong to the al-
gebra A

(

PC(Ṙ),PCp,w
)

without flip. To be precise, A
(

PC(Ṙ),PCp,w
)

stands for
the smallest closed subalgebra of L (Lp(R,w)) which contains all multiplication
operators aI with a ∈ PC(Ṙ) and all convolution operators W 0(b) with b ∈ PCp,w.
Note that the decomposition of an operator A in the form A1 + JA2 is not unique in
general.

We start with verifying that the homomorphisms Hs,∞ and H∞,t are well defined
on the elements of the ideals Is,t . Note that Hs,∞(K) = 0 and H∞,t(K) = 0 for every
compact operator K.

Proposition 5.7.4. If A+K ∈ Is,t , then Hs,∞(A+K ) = 0 and H∞,t(A+K ) = 0.

Proof. It is evident from the definition of the ideal Is,t that each of its elements
can be approximated as closely as desired by operators of the form A1 + JA2 with
A1,A2 ∈ A

(

PC(Ṙ),PCp,w
)

belonging to the smallest closed ideal of that algebra
which contains all cosets Φ( fW 0(g)) with f ∈ C̃(Ṙ) with f (s) = 0 and g ∈ C̃p,w

with g(t) = 0. So we can assume, without loss of generality, that A is of this form.
Then

Hs,∞(A+K ) = s-lim
τ→+∞

ZτV−sAVsZ
−1
τ

= s-lim
τ→+∞

ZτV−s(A1 + JA2)VsZ
−1
τ

= s-lim
τ→+∞

ZτV−sA1VsZ
−1
τ + s-lim

τ→+∞
(ZτV−sJVsZ

−1
τ )(ZτV−sA2VsZ

−1
τ ).

For i = 1,2, one has s-limZτV−sAiVsZ−1
τ = 0, and the operators ZτV−sJVsZ−1

τ are
uniformly bounded with respect to τ . Thus, Hs,∞(A + K ) = 0. The proof of the
second assertion is similar.

Let fs be a continuous function with support in R
+ and such that fs(s) = 1. Set

p := ΦK
s,∞( fsI), j := ΦK

s,∞(J), and e := ΦJ
s,∞(I). Then p2 = p, p commutes with all

generators of the algebra except with j, and jp j = e− p. Thus, by Corollary 1.1.20,
every element of A K

s,∞ can be (uniquely) written as a = a1 +a2 j, where the ai belong
to the corresponding local algebra without flip, and we can employ this corollary to
eliminate the flip by doubling the dimension. Let L denote the mapping defined
before Proposition 1.1.19 and consider the mapping

Hs,∞:= Hs,∞L : A K
s,∞ → [alg{I, χ+I, PR}]2×2, (5.42)

where Hs,∞ now refers to the canonical (diagonal) extension for matrix operators of

the strong limit defined in (5.10). The mapping Hs,∞ is well defined due to Propo-
sition 5.7.4, and it acts as an homomorphism between the algebras mentioned. In
what follows, the notation −s± is understood as (−s)±.

Proposition 5.7.5. Let s > 0. The local algebra A K
s,∞ is isomorphic to the matrix

algebra [alg{I, χ+I, PR}]2×2 with entries acting on Lp(R,wα(s)). The isomorphism
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is given by ΦK
s,∞(A) �→ Hs,∞ (A). In particular, for a ∈ PC(Ṙ) and b ∈ PCp,w,

ΦK
s,∞(aI) �→

[

a(s−)χ−I +a(s+)χ+I 0
0 a(−s+)χ−I +a(−s−)χ+I

]

,

ΦK
s,∞
(

W 0(b)
)

�→
[

b(−∞)QR +b(+∞)PR 0
0 b(+∞)QR +b(−∞)PR

]

,

ΦK
s,∞(J) �→

[

0 I
I 0

]

.

Proof. The mapping Hs,∞ is well defined on A K
s,∞ by Proposition 5.7.4. The values

of the homomorphism can be derived from Corollary 1.1.20 and Proposition 5.4.3.

To see that the homomorphism Hs,∞ is injective, define

H
′
s,∞: [alg{I, χ+I, PR}]2×2 → A K

s,∞ ,
([

A11 A12

A21 A22

])

�→ L−1
([

pΦK
s,∞(VsA11V−s) pΦK

s,∞(VsA12V−s)
pΦK

s,∞(VsA21V−s) pΦK
s,∞(VsA22V−s)

])

.
(5.43)

The injectivity will follow once we have shown that

H
′
s,∞

(

Hs,∞ (ΦK
s,∞(A))

)

=ΦK
s,∞(A) for all ΦK

s,∞(A) ∈ A K
s,∞ .

It is sufficient to check this equality for the generating cosets of A K
s,∞ , i.e., for

ΦK
s,∞(I), ΦK

s,∞(J), ΦK
s,∞(PR), and ΦK

s,∞(χs I), where χs stands for the characteristic
function of ]−∞,s]. This check is straightforward.

Finally, to verify the surjectivity of the homomorphism Hs,∞, we again rely on

H
′
s,∞. Indeed, this mapping is well defined on all of [alg{I, χ+I, PR}]2×2, and one

has Hs,∞

(

H
′
s,∞ (A)

)

= A for all A ∈ [alg{I, χ+I, PR}]2×2.

Now let t > 0. For the local algebras A K
∞,t , we again apply Corollary 1.1.20 to

eliminate the flip by doubling the dimension. Let ft be a continuous function with
support in R

+ such that ft(t) = 1, and put p := ΦK
∞,t (W 0( ft)), j := ΦK

∞,t (J), and
e := ΦK

∞,t (I). Then p is an idempotent which commutes with all generators of the
algebra except with j, for which one has jp j = e− p. Every element of A K

∞,t can be
(uniquely) written as a = a1 + a2 j, where the ai belong to the corresponding local
algebra without flip. Define the homomorphism

H∞,t := H∞,tL : A K
∞,t → [alg{I, χ+I, PR}]2×2 (5.44)

where H∞,t now refers to the canonical (diagonal) extension for matrix operators of
the strong limit defined in (5.11), and where L is again the mapping defined before
Proposition 1.1.19.
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The proof of the next result is the same as that of Proposition 5.7.5.

Proposition 5.7.6. Let t > 0. The local algebra A K
∞,t is isomorphic to the matrix

algebra [alg{I, χ+ I, PR}]2×2 with entries acting on Lp(R,wα(∞)). The isomorphism

is given by ΦK
∞,t (A) �→ H∞,t (A). In particular, for a ∈ PC(Ṙ) and b ∈ PCp,w,

ΦK
∞,t (aI) �→

[

a(−∞)χ−I +a(+∞)χ+I 0
0 a(+∞)χ−I +a(−∞)χ+I

]

,

ΦK
∞,t

(

W 0(b)
)

�→
[

b(t−)QR +b(t+)PR 0
0 b(−t+)QR +b(−t−)PR

]

,

ΦK
∞,t (J) �→

[

0 I
I 0

]

.

Our final concern is the local algebra A K
∞,∞. We are going to show that A K

∞,∞ is a
unital algebra generated by two commuting projections and a flip.

Proposition 5.7.7. The local algebra A K
∞,∞ is generated by the elements e :=

ΦK
∞,∞(I), p :=ΦK

∞,∞(χ+I), r :=ΦK
∞,∞(W 0(χ+)) and j :=ΦK

∞,∞(J).

Proof. For a ∈ PC(Ṙ), write ΦK
∞,∞(aI) as

ΦK
∞,∞(a(−∞)χ−I +a(+∞)χ+I)−ΦK

∞,∞((a−a(−∞)χ− −a(+∞)χ+)I).

Since the function a− a(−∞)χ− − a(+∞)χ+ is continuous at infinity and has the
value 0 there, we obtain

ΦK
∞,∞(aI) =ΦK

∞,∞((a(−∞)χ− +a(+∞)χ+)I) = 0.

For b ∈ PCp,w, one gets similarly

ΦK
∞,∞(W 0(b)) =ΦK

∞,∞(b(−∞)W 0(χ−)+b(+∞)W 0(χ+)).

For the other generators, the result is obvious.

The generators of the algebra A K
∞,∞ satisfy the relations

rp = pr, jr j = e− r and jp j = e− p.

Only the first of these relations is not completely evident. It can be verified by re-
peating arguments from the proof of Theorem 5.6.2 (iv). Thus, the algebra A K

∞,∞ is
generated by two commuting projections and a flip.

To get a matrix-valued symbol for the invertibility in the algebra A K
∞,∞, one can

apply Proposition 1.1.19 to eliminate the flip by doubling the dimension, or, one
refers formally to Theorem 3.3.13,. For the latter, note that the elements b and c
defined in (3.53) and (3.54) are given by b = pr+(e− p)(e−r) and c = (pr−rp) j =
0 in the present context, and that the spectrum of b is {0,1} since b is a non-trivial
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idempotent. Thus, Theorem 3.3.13 applies with y = 0 and x = ±1. In each case, we
arrive at the following.

Proposition 5.7.8. The local algebra A K
∞,∞ is generated by the commuting projec-

tions p =ΦK
∞,∞(χ+I) and r =ΦK

∞,∞(W 0(χ+)) and by the flip j =ΦK
∞,∞(J). There is a

symbol mapping which assigns with e, p, j and r a matrix-valued function on {0,1}
by

(smbe)(x) =
[

1 0
0 1

]

, (smb p)(x) =
[

1 0
0 0

]

,

(smb j)(x) =
[

0 1
1 0

]

, (smbr)(x) =
[

x 0
0 1− x

]

.

Combining the previous results with Allan’s local principle, we arrive at the fol-
lowing.

Theorem 5.7.9. Let A ∈ A
(

PC(Ṙ),PCp,w,J
)

. The coset A +K (Lp(R,w)) is in-
vertible in the quotient algebra A K

(

PC(Ṙ),PCp,w,J
)

if and only if:

(i) the operator H0,∞(A) is invertible in the subalgebra alg{I,χ+I,PR,J} of
L (Lp(R,wα(0)));

(ii) the operator H∞,0(A) is invertible in the subalgebra alg{I,χ+I,PR,J} of
L (Lp(R,wα(∞)));

(iii) the operator Hs,∞ (A) is invertible in the subalgebra [alg{I, χ+I, PR}]2×2 of
[L (Lp(R,wα(s)))]2×2 for every s > 0;

(iv) the operator H∞,t (A) is invertible in the subalgebra [alg{I, χ+I, PR}]2×2 of
[L (Lp(R,wα(∞)))]2×2 for every t > 0;

(v) the matrix smbΦK
∞,∞(A) is invertible in C

2×2.

The following corollary can be proved by repeating the arguments from the proof
of Theorem 5.5.9.

Corollary 5.7.10. The algebra A K
(

PC(Ṙ),PCp,w,J
)

is inverse-closed in the Cal-
kin algebra L (Lp(R,w))/K (Lp(R,w)). An operator A ∈ A

(

PC(Ṙ),PCp,w,J
)

is
Fredholm if and only if:

(i) the operator H0,∞(A) is invertible on Lp(R,wα(0));
(ii) the operator H∞,0(A) is invertible on Lp(R,wα(∞));

(iii) the operator Hs,∞ (A) is invertible on Lp
2(R,wα(s)) for every s > 0;

(iv) the operator H∞,t (A) is invertible on Lp
2(R,wα(∞)) for every t > 0;

(v) the matrix smbΦK
∞,∞(A) is invertible in C

2×2.

In the remainder of this section we are going to apply this corollary to a class of
operators of particular interest: the Wiener-Hopf plus Hankel operators. These are
the operators W (b)+ H(c) on Lp(R+,w) with b,c ∈ PCp,w. Equivalently, one can
think of a Wiener-Hopf plus Hankel operator W (b)+H(c) as the operator

χ+W 0(b)χ+I +χ+W 0(c)Jχ+I +χ−I, (5.45)

acting on Lp(R,w).
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Theorem 5.7.11. Let b,c ∈ PCp,w. The operator (5.45) is Fredholm on Lp(R,w) if
and only if b(±∞) �= 0 and if the functions

(i) y �→ (b(+∞)+b(−∞))sinh
(

(y+ iυ)π
)

+(b(+∞)−b(−∞))cosh
(

(y+ iυ)π
)

+ c(+∞)− c(−∞) with υ := 1/p+α(0),
(ii) y �→ (b(0+)+b(0−))sinh

(

(y+ iυ)π
)

+(b(0+)−b(0−))cosh
(

(y+ iυ)π
)

+ c(0+)− c(0−) with υ := 1/p+α(∞), and

(iii) y �→ b+
t b+

−t +(b−t b+
−t +b+

t b−−t)coth
(

(y+ iυ)π
)

+b−t b−−t

(

coth
(

(y+ iυ)π
)

)2

− ctc−t

(

sinh
(

(y + iυ)π
)

)−2
with υ := 1/p + α(∞), b±t := b(t+)± b(t−),

b±−t := b(−t+)±b(−t−) and c±t := c(±t+)− c(±t−) for t > 0

do not vanish on R.

Proof. By Corollary 5.7.10, the operator (5.45) is Fredholm if and only if a collec-
tion of related operators, labeled by the points of the set (R+×{∞})∪ ({∞}×R

+),
is invertible. We are going to examine the invertibility of the related operators for
each point in this set.

For the point (0,∞), the related operator is

χ+ (b(−∞)QR +b(+∞)PR +(c(−∞)QR + c(+∞)PR)J)χ+I +χ−I.

This operator is invertible on Lp(R,wα(0)) if and only if the operator

b(+∞)+b(−∞)
2

I +
b(+∞)−b(−∞)

2
SR+ +

c(+∞)− c(−∞)
2

Hπ

is invertible on Lp(R+,wα(0)). The latter condition is equivalent to condition (i)
which can easily be seen by inserting the Mellin symbols of the operators SR+ and
Hπ quoted in Section 4.2.2.

For the point (∞,0), the related operator

χ+

(

b(0−)QR +b(0+)PR +(c(0−)QR + c(0+)PR)J
)

χ+I +χ−I

is invertible on Lp(R,wα(∞)) if and only if the operator

b(0+)+b(0−)
2

I +
b(0+)−b(0−)

2
SR+ +

c(0+)− c(0−)
2

Hπ

is invertible on Lp(R+,wα(∞)). Condition (ii) states the conditions for the invertibil-
ity of the Mellin symbol of this operator.

For (s,∞) with s > 0, we have

b(−∞)QR +b(+∞)PR

as the related operator. This operator is invertible on Lp(R,wα(s)) if and only if
b(±∞) �= 0.

For (∞, t) with t > 0, the invertibility of the related operator
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[

χ+(b(t−)QR +b(t+)PR)χ+I +χ−I χ+(c(t−)QR + c(t+)PR)χ−I
χ−(c(−t+)QR + c(−t−)PR)χ+I χ−(b(−t+)QR +b(−t−)PR)χ−I +χ+I

]

on Lp
2(R,wα(∞)) is equivalent to the invertibility of the operator

[

b(t−)QR+ +b(t+)PR+
c(t+)−c(t−)

2 Hπ
c(−t+)−c(−t−)

2 Hπ b(−t+)PR+ +b(−t−)QR+

]

.

The Mellin symbol of this operator is
⎡

⎢

⎣

b+
t +b−t coth

(

(y+ iυ)π
) ct

2

(

sinh
(

(y+ iυ)π
)

)−1

c−t
2

(

sinh
(

(y+ iυ)π
)

)−1
b+
−t +b−−t coth

(

(y+ iυ)π
)

⎤

⎥

⎦ , (5.46)

and condition (iii) states exactly the conditions for the invertibility of this matrix
function. Finally, the matrix related to the point (∞,∞) is invertible if and only if
b(±∞) �= 0.

What the above results tell us about the essential spectrum of the Wiener-Hopf
plus Hankel operator is in some sense expected. The local spectrum at each point
where both b and c are continuous corresponds to the value of the function b at that
point. If only b is discontinuous at some point, then the local spectrum corresponds
to the left and right one-sided limits, joined by a circular arc, the shape of which
depends on the space and weight (see Figure 4.4). If only c is discontinuous at some
point t, but not at −t, there is no effect on the essential spectrum. If both b and
c share a point of discontinuity at 0 or ∞, the effect on the essential spectrum is
the “sum” of the circular arc with the “water drop” arc (see Figure 4.5 (a)). The
more complex effects occur when both b and c share points of discontinuity on ±t,
t ∈ R

+. In this case, the essential spectrum is given by the spectrum of the matrix
function (5.46).

Example 5.7.12. Let the weight w be such that 1/p + α(∞) ∈ {1/2,1/2 +
0.01,2/3}. Define b ∈ PCp by

b(t) =

⎧

⎪

⎨

⎪

⎩

t+10
10 + t+10

2 i for −20 < t < 0,
t−10

10 + t−10
2 i for 0 < t < 20,

−3i for all other t

and consider a function c which is continuous at all points except the integer points
in [−19, 19]\{−10,0,10}, where it satisfies c(t+)−c(t−) = 1, c(−t+)−c(−t−) =
1 if 1 ≤ t ≤ 9 and c(t+)−c(t−) = 1, c(−t+)−c(−t−) =−1 in the case 11 ≤ t ≤ 19.
Then the essential spectrum of the operator W (b)+H(c) on the space L (Lp(R,w))
is given by Figure 5.3. The three arcs joining the points of discontinuity of the
function b are clear, as is the variation of the size of the “water drop” arcs derived
from the distance between b(−t) and b(t). When the jumps of c have the same sign,
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they will actually interfere with one another and form other geometric figures. If we
change p or the weight, such that υ = 1/p+α(∞) approaches 1/2, all curves from
discontinuities turn into line segments. �

Fig. 5.3 The essential spectrum of W (b)+H(c) for υ = 1/2, 1/2+0.01 and 2/3.

Remark 5.7.13. In contrast to Section 4.5, the proof of Theorem 5.7.11 yields im-
mediately a 2-symbol for the Wiener-Hopf plus Hankel operators with piecewise
generating functions due to the finer localization used to obtain Theorem 5.7.9. �

5.8 Multidimensional convolution type operators

Now we turn our attention to the Fredholm property of multidimensional convo-
lution type operators on R

N . We will see that the techniques developed so far –
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localization and homogenization – work well also in the multidimensional context,
but that a new difficulty appears if N > 1: already the generators of the algebra will
have massive spectra. Hence, Corollary 1.2.32 does not apply to prove the inverse-
closedness of the operator algebra under consideration (and, actually, we still do not
know if this algebra is inverse-closed). In this section, we will point out one way to
overcome this difficulty.

Let N be a positive integer. We denote the Euclidean norm on R
N by | · | and write

〈·, ·〉 for the related scalar product on R
N . Thus, |x|2 = 〈x, x〉 for x ∈ R

N . The unit
sphere in R

N will be denoted by S
N−1, and the open unit ball by B

N .
It is easy to see that the mapping

ξ : B
N → R

N , x �→ x
1−|x| , (5.47)

is a homeomorphism with inverse

ξ−1 : R
N → B

N , x �→ x
1+ |x| . (5.48)

In particular, a function f on R
N is continuous if and only if the function f ◦ ξ is

continuous on B
N . We denote by C(RN) the set of all continuous complex-valued

functions f on R
N for which the (continuous) function f ◦ξ on B

N possesses a con-
tinuous extension f∼ onto the closed ball BN . Provided with pointwise operations
and the supremum norm, C(RN) forms a commutative C∗-algebra, and this algebra
is isomorphic to C(BN). Thus, the maximal ideal spaces of these algebras are home-
omorphic. The maximal ideal space of C(BN) is the closed unit ball BN , which is a
union of the open ball B

N and the unit sphere S
N−1. Analogously, one can think of

the maximal ideal space of C(RN) as the union of R
N and of an “infinitely distant”

sphere. More precisely, every multiplicative linear functional on C(RN) is either of
the form

f �→ f (x) with x ∈ R
N

or of the form
f �→ ( f ◦ξ )∼(θ) with θ ∈ S

N−1.

We denote the latter functional by θ∞ and write f (θ∞) in place of θ∞( f ). Clearly,
f (θ∞) = limt→∞ f (tθ), and a sequence h∈R

N converges to θ∞ if ξ−1(hn) converges
to θ . A basis of neighborhoods of θ∞ is provided by the sets of the form

UR,ε(θ∞) :=
{

|x|ψ ∈ R
N : |x| > R, ψ ∈ S

N−1 and |ψ−θ | < ε
}

⋃{

ψ∞ : ψ ∈ S
N−1 and |ψ−θ | < ε

}

. (5.49)

We denote the maximal ideal space of C(RN) by RN .
Every function a ∈ L1(RN) defines an operator W 0

a of convolution by a by

W 0
a : Lp(RN) → Lp(RN), g �→

∫

RN
a(t − s)g(s)ds. (5.50)
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The operator of convolution by a ∈ L1(RN) is bounded on Lp(RN), and

‖W 0
a ‖L (Lp(RN)) ≤ ‖a‖L1(RN).

The goal of this section is to study the Fredholm property of operators which belong
to the smallest closed subalgebra Ap of L (Lp(RN)) which contains

• all convolution operators W 0
a with a ∈ L1(RN),

• all operators of multiplication by a function in C(RN),
• all operators χH(θ)I of multiplication by the characteristic function of a half-

space
H(θ) := {x ∈ R

N : 〈x, θ〉 ≥ 0} with θ ∈ S
N−1.

Proposition 5.8.1. The algebra Ap contains the ideal K (Lp(RN)) of the compact
operators.

Proof. Let A ′
p denote the smallest closed subalgebra of L (Lp(RN)) which contains

all operators W 0
a with a ∈ L1(RN) and all operators of multiplication by a function

in C∞
0 (RN). We will show K (Lp(RN)) is already contained in A ′

p, which implies
the assertion .

It is sufficient to show that A ′
p contains all operators of rank one. Every operator

of rank one on Lp(RN) has the form

(Ku)(t) = a(t)
∫

RN
b(s)u(s)ds, t ∈ R

N , (5.51)

where a ∈ Lp(RN) and b ∈ Lq(RN) with 1/p + 1/q = 1. Since C∞
0 (RN) is dense

in Lp(RN) and in Lq(RN) (with respect to the corresponding norms), it is further
sufficient to show that every operator (5.51) with a, b ∈C∞

0 (RN) belongs to A ′
p.

Let a, b ∈C∞
0 (RN), and choose a function k ∈ L1(RN) which is 1 on the compact

set {t − s : t ∈ supp f , s ∈ suppg}. Then the operator (5.51) can be written as

(Ku)(t) = a(t)
∫

RN
k(t − s)b(s)u(s)ds, t ∈ R

N .

Evidently, this operator belongs to A ′
p.

As already mentioned, we do not know if the algebra A K
p := Ap/K (Lp(RN)) is

inverse-closed in the Calkin algebra. Therefore we have to apply the local principle
in a larger algebra which we are going to introduce in a couple of steps.

Let Λp ⊂ L (Lp(RN)) denote the Banach algebra of all operators of local type
with respect to the algebra C(RN), that is, an operator A ∈ L (Lp(RN)) belongs to
Λp if and only if

f A−A f I ∈ K
(

Lp(RN)
)

for every f ∈C(RN).

In order to show that Ap ⊂Λp, we need the following lemma.
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Lemma 5.8.2. Let F1 and F2 be disjoint closed subsets of RN. Then there exists a
δ > 0 such that |x−y|> (R+1)δ for all R > 0, all x ∈ F1 ∩R

N with |x|> R and all
y ∈ F2 ∩R

N with |y| > R.

Proof. Let ˜ξ stand for the homeomorphism from BN onto RN which coincides with
ξ on B

N , and set F̃1 := ˜ξ−1(F1) and F̃2 := ˜ξ−1(F2). Then F̃1 and F̃2 are disjoint
compact subsets of BN ; hence, δ := dist(F̃1, F̃2) > 0. Thus, for x ∈ F1 and y ∈ F2

one has |ξ−1(x)−ξ−1(y)| > δ or, equivalently,
∣

∣

∣

∣

x
1+ |x| −

y
1+ |y|

∣

∣

∣

∣

> δ . (5.52)

Let y �= 0 and consider the function f (t) := |x− ty| on R. This function attains its
minimum at the point t∗ := 〈x, y〉/〈y, y〉 and is therefore monotonically increasing
on the interval [t∗,∞ [ . Since t∗ ≤ |x| |y|/|y|2 = |x|/|y| and

|x|
|y| ≤

1+ |x|
1+ |y| ≤ 1 if |x| ≤ |y|,

we conclude that f ( 1+|x|
1+|y|) ≤ f (1). Thus, by (5.52),

|x− y| ≥
∣

∣

∣

∣

x− 1+ |x|
1+ |y|y

∣

∣

∣

∣

= (1+ |x|)
∣

∣

∣

∣

x
1+ |x| −

y
1+ |y|

∣

∣

∣

∣

≥ (1+ |x|)δ (5.53)

for |x| ≤ |y|. Analogously, if |y| ≤ |x|, then |x− y| ≥ (1+ |y|)δ . So one gets

|x− y| ≥ min{1+ |x|, 1+ |y|}δ ,

which implies the assertion.

Proposition 5.8.3. If f ∈ C(RN) and a ∈ L1(RN), then W 0
a f I − fW 0

a is a compact
operator. Thus, Ap ⊂Λp.

Proof. By Krasnoselskii’s interpolation theorem, it is sufficient to verify the com-
pactness of W 0

a f I − fW 0
a on L2(R). By Theorem 2.5.6, this operator is compact if

and only if the operator χF1
W 0

a χF2
I is compact for each choice of closed disjoint

subsets F1 and F2 of RN . For g in L2(RN), one has

(χF1
W 0

a χF2
g)(s) =

∫

RN
χF1

(s)a(s− t)χF2
(t)g(t)dt.

Since functions in L1(RN) can be approximated by continuous functions with com-
pact support, we can assume that a is a continuous function with support contained
in the centered ball of radius M. Set ã(s, t) := χF1

(s)a(s− t)χF2
(t). By the previous

lemma, there exists δ > 0 such that |s− t| > Rδ for every R > 0 and for arbitrary
points s ∈ F1 ∩R

N and t ∈ F2 ∩R
N with |s| > R and |t| > R. Choose R such that
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R > M and Rδ > M. Then ã(s, t) = 0 if s ∈ F1 and |s|> 2R, or if t ∈ F2 and |t|> 2R.
Indeed, if |s| > 2R and |t| ≤ R, then |s− t| ≥ |s| − |t| > R > M, and if |s| > 2R
and |t| > R, then |s− t| > Rδ > M due to the choice of R. Similarly, |t| > 2R im-
plies that |s− t| > M. Hence, ã is a compactly supported bounded function, whence
ã ∈ L2(RN ×R

N). Therefore, χF1
W 0

a χF2
I is a Hilbert-Schmidt operator, and thus

compact.

Our next goal is to introduce certain strong limit operators which will be used
later to identify local algebras. For k ∈ R

N , we define the shift operator

Vk : Lp(RN) → Lp(RN), (Vku)(s) = u(s− k),

and for t > 0, the dilation operator

Zt : Lp(RN) → Lp(RN), (Ztu)(s) := t−N/pu(s/t).

Both operators act as bijective isometries, with inverses given by V−1
k = V−k and

Z−1
t = Zt−1 .

Proposition 5.8.4. Let x ∈ R
N. Then the strong limit

Hx(A) := s-lim
t→∞

ZtV−xAVxZ−1
t (5.54)

exists for every operator A ∈ Ap, the mapping Hx defines a homomorphism on Ap,
and

(i) Hx(W 0
a ) = 0 for a ∈ L1(RN);

(ii) Hx( f I) = f (x)I for f ∈C(RN);
(iii) Hx(χH(θ)I) is 0, I or χH(θ)I, depending on whether x is outside, in the interior

or on the boundary of H(θ), respectively, where θ ∈ S
N−1;

(iv) Hx(K) = 0 for K compact.

The proof follows as that of Proposition 5.4.3 (but is actually much simpler since
all the functions are continuous). The details are left to the reader.

For θ ∈ S
N−1, consider the sequence hθ : N → R

N defined by hθ (n) := nθ .

Proposition 5.8.5. Let θ ∈ S
N−1. Then the strong limit

H◦
θ (A) := s-lim

n→∞
V−hθ (n)AVhθ (n) (5.55)

exists for every operator A ∈ Ap, the mapping H◦
θ defines a homomorphism on Ap,

and

(i) H◦
θ (W

0
a ) = W 0

a for a ∈ L1(RN);
(ii) H◦

θ ( f I) = f (θ∞)I for f ∈C(RN);
(iii) H◦

θ (χH(ψ)I) is 0, I or χH(ψ)I, depending on whether θ is outside, inside or on
the boundary of H(ψ), respectively, where ψ ∈ S

N−1;
(iv) H◦

θ (K) = 0 for K compact.
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Proof. Assertion (i) is evident since convolution operators are shift invariant. For
assertion (ii), let g be a function in Lp(RN) the support of which is in the ball BM(0)
with radius M for some M > 0. By definition, we have

(V−hθ (n) fVhθ (n)g)(x) = f (x+hθ (n))g(x).

Since f is continuous at θ∞ there is, for every ε > 0, a neighborhood UR,δ (θ∞) of θ∞
as in (5.49) such that | f (x)− f (θ∞)| < ε for every x ∈UR,δ (θ∞). The compactness
of BM(0) guarantees that there is an n0 ∈ N such that BM(0)+hθ (n) is contained in
UR,δ (θ∞) whenever n ≥ n0. Thus, for n ≥ n0,

‖(V−hθ (n) fVhθ (n) − f (θ∞))g‖Lp

≤ supx∈BM(0)| f (x+hθ (n))− f (θ∞)|‖g‖Lp ≤ ε‖g‖Lp .

Since the functions with compact support are dense in Lp(RN), we get

‖(V−hθ (n) fVhθ (n) − f (θ∞))g‖Lp → 0

for every g in Lp(RN).
Assertion (iii) is again evident, since V−hθ (n)χH(ψ)Vhθ (n) is the operator of mul-

tiplication by the characteristic function of the shifted half space −hθ (n)+ H(ψ).
Assertion (iv) follows from the compactness of T and from the weak convergence
of the operators Vh(n) to zero as |h(n)| → ∞.

Let Λ hom
p stand for the set of all operators A ∈ L (Lp(RN)) which are subject to

the following conditions:

• A is of local type, i.e., A ∈Λp;
• the strong limits Hx(A) on Lp(RN) and Hx(A∗) on (Lp(RN))∗ defined by (5.54)

exist for every x ∈ R
N ;

• the strong limits H◦
θ (A) on Lp(RN) and H◦

θ (A
∗) on (Lp(RN))∗ defined by (5.55)

exist for every θ ∈ S
N−1.

Proposition 5.8.6.
(i) Λ hom

p is a closed subalgebra of L (Lp(RN)) which contains Ap;
(ii) the algebra Λ hom

p is inverse-closed in L (Lp(RN)); and
(iii) the quotient algebra Λ hom

p /K (Lp(RN)) is inverse-closed in the Calkin alge-
bra L (Lp(RN))/K (Lp(RN)).

Proof. The proof of the first part of assertion (i) is straightforward, and the second
part is a consequence of Propositions 5.8.3, 5.8.4 and 5.8.5. Assertion (ii) follows
from assertion (iii) via Lemma 1.2.33 (note that the ideal of the compact operators
is included in Ap ⊆Λ hom

p by Proposition 5.8.1).
So we are left with verifying assertion (iii). Let A be an operator in Λ hom

p which
has the Fredholm property, i.e., the coset A+K (Lp(RN)) is invertible in the Calkin
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algebra L (Lp(RN))/K (Lp(RN)). Let R ∈ L (Lp(RN)) be an operator such that
RA− I =: K and AR− I =: L are compact. We have to show that R ∈ Λ hom

p . Let

f ∈C(RN). Then the operator

f R−R f I = (RA−K) f R−R f (AR−L) = R(A f I − f A)R−K f R+R f L

is compact, whence R ∈ Λp. It remains to show that all required strong limits of
R exist. We will verify this for the strong limit H0; the proof for the other limits
proceeds analogously.

First we show that H0(A) is an invertible operator. Since A is Fredholm, there is
a positive number c and a compact operator T such that

‖Au‖+‖Tu‖ ≥ c‖u‖ for all u ∈ Lp(RN)

(see Exercise 1.4.7). Since the operators Zt are isometries, this estimate implies

‖ZtAZ−1
t u‖+‖ZtT Z−1

t u‖ ≥ c‖u‖

for all u ∈ Lp(RN). Passing to the strong limit as t → ∞ we finally obtain

‖H0(A)u‖ ≥ c‖u‖ for all u ∈ Lp(RN).

Thus, H0(A) is bounded below. Applying the same argument to the adjoint operator
A∗ (which is Fredholm, too) we find that H0(A∗) = H0(A)∗ is also bounded below.
Hence, H0(A) is invertible.

Now we show that the strong limit H0(R) exists and that H0(R) = H0(A)−1. In-
deed, let RA− I =: K as before. Then, for each u ∈ Lp(RN),

‖(ZtRZ−1
t −H0(A)−1)u‖

= ‖(ZtRZ−1
t −Zt(RA−K)Z−1

t H0(A)−1)u‖
= ‖(ZtRZ−1

t − (ZtRZ−1
t ZtAZ−1

t −ZtKZ−1
t )H0(A)−1)u‖

≤ ‖ZtRZ−1
t ‖‖u−ZtAZ−1

t H0(A)−1u‖+‖ZtKZ−1
t H0(A)−1u‖

≤ ‖R‖‖H0(A)v−ZtAZ−1
t v‖+‖ZtKZ−1

t v‖

with v := H0(A)−1u. Since the right-hand side of this estimate tends to zero as t →∞,
the assertion follows.

Thus, an operator A ∈Λ hom
p is Fredholm if and only if its coset modulo compact

operators is invertible in Λ hom
p /K (Lp(RN)). For operators A ∈ Ap, we will study

the invertibility of the coset A +K (Lp(RN)) in this quotient algebra by localizing
the algebraΛ hom

p /K (Lp(RN)) by Allan’s local principle over its central subalgebra

which consists of all cosets f I +K (Lp(RN)) with f ∈C(RN).

Proposition 5.8.7. The algebra C := { f I +K (Lp(RN)) : f ∈C(RN)} is isometri-
cally isomorphic to the algebra C(RN) in a natural way.
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Proof. One has only to prove that

‖ f‖ = ‖ f I +K (Lp(RN))‖ := inf
K∈K (Lp(RN))

‖ f I +K‖

for every f ∈ C(RN). Proposition 5.8.4 (ii), (iv) ensure that ‖ f I + K‖ ≥ | f (x)| for
every f ∈ C(RN), K ∈ K (Lp(RN)) and x ∈ R

N . Hence, ‖ f I + K (Lp(RN))‖ ≥
| f (x)| for all x ∈ R

N . Since R
N is dense in RN with respect to the Gelfand topology,

we get
‖ f‖ ≥ ‖ f I +K (Lp(RN))‖ ≥ ‖ f‖,

which is the assertion.

In particular, the maximal ideal space of the algebra C is homeomorphic to
RN . The maximal ideal which corresponds to x ∈ RN is the set of all cosets
f I + K (Lp(RN)) with f (x) = 0. We denote this maximal ideal by x and let Jx

stand for the smallest closed ideal of Λ hom
p /K (Lp(RN)) which contains x. Further

we write Φx for the canonical homomorphism

Λ hom
p → (Λ hom

p /K (Lp(RN)))/Jx, A �→ (A+K (Lp(RN)))+Jx.

Note that the compact operators lie in the kernel of each homomorphism Hx and
H◦
θ with x ∈ R

N and θ ∈ S
N−1 by (iv) in Propositions 5.8.4 and 5.8.5. Thus, the

mappings

A+K (Lp(RN)) �→ Hx(A) and A+K (Lp(RN)) �→ H◦
θ (A)

are correctly defined for each operator A ∈Λ hom
p . We denote them again by Hx and

H◦
θ , respectively. Further, by (ii) in Propositions 5.8.4 and 5.8.5, the local ideal Jx

lies in the kernel of Hx : Λ hom
p /K (Lp(RN)) → L (Lp(RN)) for every x ∈ R

N , and
the local ideal Jθ∞ lies in the kernel of H◦

θ :Λ hom
p /K (Lp(RN))→L (Lp(RN)) for

everyΘ ∈ S
N−1. Hence, the mappings

(A+K (Lp(RN)))+Jx �→ Hx(A) and (A+K (Lp(RN)))+Jθ∞ �→ H◦
θ (A)

are correctly defined for each A ∈ Λ hom
p , and we denote them again by Hx and H◦

θ ,

respectively. The following propositions identify the algebras Φx(Ap) for x ∈ RN .

Proposition 5.8.8. Let x = 0 ∈ R
N. Then:

(i) the local algebra Φ0(Ap) is isometrically isomorphic to the smallest closed
subalgebra PC(SN−1) of L (Lp(RN)) which contains all operators χH(ψ) with
ψ ∈ S

N−1;
(ii) for every operator A ∈ Ap, the coset Φ0(A) is invertible in the local algebra

(Λ hom
p /K (Lp(RN)))/J0 if and only if the operator H0(A) is invertible (in

L (Lp(RN)));
(iii) the algebra Φ0(Ap) is inverse-closed in (Λ hom

p /K (Lp(RN)))/J0.
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The notation PC(SN−1) has been chosen since PC(S1) can be identified (by
restriction) with the algebra of all piecewise continuous functions on the (one-
dimensional) unit sphere.

Proof. (i) It follows from Proposition 5.8.4 that H0 is a homomorphism from
Φ0(Ap) into PC(SN−1). This homomorphism is onto since PC(SN−1) is a subal-
gebra of Ap and H0(A) = A for every operator A ∈ PC(SN−1). Further, since the Zt

are isometries, it is clear that the mapping

H0 : Φ0(Ap) → PC(SN−1)

is a contraction. In order to show that this mapping is an isometric isomorphism, we
claim that

Φ0(A) =Φ0(H0(A)) for every A ∈ Ap. (5.56)

Since the mappings Φ0 and H0 are continuous homomorphisms, it is sufficient to
check (5.56) for the generating operators of the algebra Ap.

For the operators A = f I with f ∈C(RN) one has H0( f I) = f (0)I by Proposition
5.8.4; so one has to check that Φ0( f I) = Φ0( f (0)I), which is immediate from the
definition of the local ideals. For A = χH(ψ)I with ψ ∈ S

N−1, the claim (5.56) is
evident.

So we are left with the case when A = W 0
a with a ∈ L1(RN). Then we have to

show that Φ0(W 0
a ) = 0. Let f be a continuous function on R

N with compact support
and with f (0) = 1. The operator W 0

a f I which acts on Lp(RN) by

[W 0
a f (g)](x) =

∫

RN
a(x− t) f (t)g(t)dt, x ∈ R

N ,

is compact. Indeed, we can suppose, without loss of generality, that a is a contin-
uous function with compact support, because the functions with these properties
are dense in L1(RN). Further, by Krasnoselskii’s interpolation theorem, we can also
suppose that p = 2. Since then the kernel of the integral operator W 0

a f I is a continu-
ous and compactly supported function, we conclude that W 0

a f I is a Hilbert-Schmidt
operator, and therefore compact. Thus, Φx(W 0

a f I) = 0. Since Φx( f I) is the identity
element of the local algebra, we have Φx(W 0

a ) = 0, which proves the claim.

(ii) Let A be an operator in Ap for which the coset Φ0(A) is invertible in
(Λ hom

p /K (Lp(RN)))/J0. Since H0 acts as a homomorphism on that algebra, we
conclude that H0(A) is an invertible operator.

Conversely, let the operator H0(A) be invertible (in L (Lp(RN))). From part (i)
we know that H0(A) belongs to the algebra Λ hom

p , and from Proposition 5.8.6 (ii)
we infer that the algebra Λ hom

p is inverse-closed in L (Lp(RN)). Hence, the inverse
operator H0(A)−1 belongs to Λ hom

p . Applying the local mapping Φ0 to the equality

H0(A)−1H0(A) = H0(A)H0(A)−1 = I

and recalling (5.56) we conclude that Φ0(A) is invertible.

(iii) This is the same proof as before if one takes into account that the algebra
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PC(SN−1) is inverse-closed in L (Lp(RN)). The latter fact can easily be proved
via Corollary 1.2.32; it follows also from Theorem 2.2.8.

Proposition 5.8.9. Let x ∈ R
N \{0}. Then:

(i) the local algebra Φx(Ap) is isometrically isomorphic to the smallest closed
subalgebra Bx of L (Lp(RN)) which contains all operators χH(ψ)I for which
x lies on the boundary of H(ψ);

(ii) for every operator A ∈ Ap, the coset Φx(A) is invertible in the local algebra
(Λ hom

p /K (Lp(RN)))/Jx if and only if the operator Hx(A) is invertible (in
L (Lp(RN)));

(iii) the algebra Φx(Ap) is inverse-closed in (Λ hom
p /K (Lp(RN)))/Jx.

Clearly, if N = 2, there are only two values of ψ such that x lies on the boundary
of H(ψ). If ψ(x) is one of these values, then −ψ(x) is the other one, and the algebra
Bx consists of all linear combinations of χH(ψ(x))I and χH(−ψ(x))I. Thus, Bx

∼= C
2

in this case. If N > 2, then x lies on the boundary of each half space H(ψ) with ψ
being orthogonal to x. The set of these ψ can be identified with S

N−2.

Proof. The proof proceeds as that of the preceding proposition. In place of (5.56),
one now has to verify that

Φx(A) =Φx(Hx(A)) for every A ∈ Ap. (5.57)

We only note that χH(ψ) is continuous and equal to one in a neighborhood of x if x is
in the interior of H(ψ). Thus, Φx(χH(ψ)I) is the local identity element in this case.
Similarly, if x is in the exterior of H(ψ), then Φx(χH(ψ)I) is the local zero element.
In the case x lies on the boundary of H(ψ) then Φx(χH(ψ)I) is a proper idempotent
(i.e., the spectrum of this local coset is {0, 1}), by Proposition 5.8.4 (iii).

Proposition 5.8.10. Let θ ∈ S
N−1. Then:

(i) the local algebra Φθ∞(Ap) is isometrically isomorphic to the smallest closed
subalgebra Bθ∞ of L (Lp(RN)) which contains all convolutions W 0

a with a ∈
L1(RN) and all operators χH(ψ)I for which θ lies on the boundary of H(ψ);

(ii) for every operator A ∈ Ap, the coset Φθ∞(A) is invertible in the local algebra
(Λ hom

p /K (Lp(RN)))/Jθ∞ if and only if the operator H◦
θ (A) is invertible in

L (Lp(RN));
(iii) for every operator A ∈ Ap, the coset Φθ∞(A) is invertible in the local algebra

Φθ∞(Ap) if and only if the operator H◦
θ (A) is invertible in Bθ∞ .

Proof. The proof follows the same lines as that of the preceding propositions, where
one has now to check that

Φθ∞(A) =Φθ∞(H◦
θ (A)) for every A ∈ Ap. (5.58)

Note that in the case at hand, we do not know if the algebras Bθ∞ are inverse-closed
in L (Lp(RN)). That is why we give two invertibility criteria: one for invertibility
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in (Λ hom
p /K (Lp(RN)))/Jθ∞ , and one for invertibility in Φθ∞(Ap). Assertion (iii)

can be proved as assertion (ii) of Proposition 5.8.8.

Now one can formulate and prove the main result of this section.

Theorem 5.8.11. An operator A∈Ap is Fredholm if and only if all operators Hx(A)
with x ∈ R

N and all operators H◦
θ (A) with θ ∈ S

N−1 are invertible (as operators on
Lp(RN)).

Proof. The proof follows immediately from Allan’s local principle and from the
criteria for invertibility in the corresponding local algebras which are stated in as-
sertions (ii) of Propositions 5.8.8, 5.8.9 and 5.8.10.

For completeness, let us mention that the coset A + K (Lp(RN)) of an opera-
tor A ∈ Ap is invertible in the quotient algebra Ap/K (Lp(RN)) if and only if the
operator Hx(A) is invertible in L (Lp(RN)) for every x ∈ R

N and if the operator
H◦
θ (A) is invertible in Bθ∞ for every θ ∈ S

N−1. This follows again from Allan’s
local principle, but now applied in Ap/K (Lp(RN)), and from assertions (iii) of
Propositions 5.8.8, 5.8.9 and 5.8.10.

To illustrate the previous results we let N = 2 and consider restrictions of convo-
lution operators to half-planes and cones. By a cone in R

2 with vertex at the origin
we mean a set of the form K(ψ1,ψ2) := H(ψ1)∩H(ψ2) with ψ1,ψ2 ∈ S

1. To avoid
trivialities, we assume that neither ψ1 = ψ2 nor ψ1 = −ψ2. Thus, K(ψ1,ψ2) is nei-
ther a half-plane nor a line.

Let χM refer to the characteristic function of a measurable subset M of R
2. The

following is an immediate consequence of the Fredholm criterion in Theorem 5.8.11
and of Propositions 5.8.4 and 5.8.5.

Corollary 5.8.12. Let a ∈ L1(R2) and f ∈C(R2), and let ψ ,ψ1,ψ2 ∈ S
1 be subject

to the above agreement.

(i) The operator χ
H(ψ) (W

0
a + f I)χ

H(ψ)I + (1− χ
H(ψ) )I is Fredholm on Lp(R2) if

and only if

• f (x) �= 0 for all x ∈ H(ψ),
• W 0

a + f (θ∞)I is invertible for every θ ∈ S
1 in the interior of H(ψ),

• χ
H(ψ) (W

0
a + f (θ∞)I)χ

H(ψ)I +(1− χ
H(ψ) )I is invertible for every θ ∈ S

1 on
the boundary of H(ψ).

(ii) The operator χ
K(ψ1 ,ψ2) (W

0
a + f I)χ

K(ψ1,ψ2) I + (1 − χ
K(ψ1,ψ2) )I is Fredholm on

Lp(R2) if and only if

• f (x) �= 0 for all x ∈ K(ψ1,ψ2),
• W 0

a + f (θ∞)I is invertible for every θ ∈ S
1 in the interior of K(ψ1,ψ2),

• χ
H(ψi)

(W 0
a + f (θ∞)I)χ

H(ψi)
I +(1−χ

H(ψi)
)I is invertible for every θ ∈ S

1 on

the boundary of K(ψ1,ψ2).
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Note that the invertibility of the half-plane operators in (i) and (ii) can be effec-
tively checked by means of a result by Goldenstein and Gohberg [77] which states
that the following conditions are equivalent for a ∈ L1(R2), λ ∈ C and ψ ∈ S

1:

(i) the operator χ
H(ψ) (W

0
a +λ I)χ

H(ψ)I +(1−χ
H(ψ) )I is invertible on Lp(R2),

(ii) the operator W 0
a +λ I is invertible on Lp(R2),

(iii) λ �= 0, and the function Fa +λ , with F standing for the Fourier transform on
R

2, does not vanish on R
2.

With this additional information, Corollary 5.8.12 can be reformulated as follows.

Corollary 5.8.13. Let a ∈ L1(R2) and f ∈C(R2), and let ψ ,ψ1,ψ2 ∈ S
1 be subject

to the above agreement.

(i) The operator χ
H(ψ) (W

0
a + f I)χ

H(ψ)I + (1− χ
H(ψ) )I is Fredholm on Lp(R2) if

and only if

• f (x) �= 0 for all x ∈ H(ψ),
• W 0

a + f (θ∞)I is invertible for every θ ∈ S
1 ∩H(ψ).

(ii) The operator χ
K(ψ1 ,ψ2) (W

0
a + f I)χ

K(ψ1,ψ2) I + (1 − χ
K(ψ1,ψ2) )I is Fredholm on

Lp(R2) if and only if

• f (x) �= 0 for all x ∈ K(ψ1,ψ2),
• W 0

a + f (θ∞)I is invertible for every θ ∈ S
1 ∩K(ψ1,ψ2).

Note in this connection also that the following assertions are equivalent for a ∈
L1(R2), λ ∈ C and ψ1,ψ2 ∈ S

1 (see [21, Section 9.53]):

(i) χ
K(ψ1,ψ2) (W

0
a +λ I)χ

K(ψ1,ψ2)I +(1−χ
K(ψ1,ψ2) )I is Fredholm on Lp(R2),

(ii) χ
H(ψi)

(W 0
a +λ I)χ

H(ψi)
I +(1−χ

H(ψi)
)I is invertible on Lp(R2) for i ∈ {1,2}.

Corollary 5.8.14. Let A belong to the smallest closed subalgebra on L (Lp(R2))
which contains all operators W 0

a with a ∈ L1(R2) and the operator χ
H(θ)I for a fixed

θ ∈ S
1. Then A is Fredholm if and only if A is invertible.

Proof. If A is Fredholm then by (the easy half of) Theorem 5.8.11, the limit operator
H◦
θ (A) is invertible. From Proposition 5.8.5 we infer that H◦

θ (A) = A. Thus, A is
invertible.

Let us finally mention that the algebras Λp/K (Lp(RN)) and C(RN) consti-
tute a faithful localization pair by Theorem 2.5.13. Thus, the machinery of norm-
preserving localization and local enclosement theorems as well as Simonenko’s the-
ory of local operators work in the present setting.
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5.9 Notes and comments

Wiener-Hopf integral equations of the type

cu(t)+
∫ ∞

0
k(t − s)u(s)ds = v(t) (t > 0),

with k ∈ L1(R), had been the subject of detailed studies by many people, including
Wiener and Hopf [201], Paley and Wiener [133], Smithies [190], Reissner [161],
Fock [57], Titchmarsh [193], Rapoport [158] and Noble [129]. The fundamental
1958 paper [105] of Krein, translated into English by the American Mathematical
Society in 1962, presented a clear and complete theory of this topic at the time.
The case of systems of Wiener-Hopf integral equations with kernels belonging to
L1(R) was studied by Gohberg and Krein in [68]. Gohberg and Feldman’s book
[66], published originally in Russian in 1971, is devoted to a unified approach to
different kinds of convolution equations with continuous generating functions. But
Duduchava’s book [43] marked the start of a new era in the topic, with the study of
convolution operators with piecewise continuous generating functions and of alge-
bras generated by such operators.

The results of Sections 5.1, 5.2 and 5.3 are taken from Duduchava’s works [43,
44] with exception of Proposition 5.1.2 which is due to Schneider [176]. The results
from Section 5.4 go back to two of the authors [168]. In Sections 5.3 and 5.4 some
of the proofs are streamlined with respect to their original versions.

Duduchava [44] studied the algebra A := A (X ,Y,Z) in the particular case
X = C(R+), Y = PCp,wα and Z = Cp. These restrictions imply the commutativ-
ity of the related quotient algebra A K . Duduchava further wrote that ...the same
methods make it possible to investigate a more complicated algebra..., namely the
algebra A K

(

PC(R+),PCp,wα ,PCp
)

in our notation. As far as we know, he never
published these results. Moreover, even in the case of continuous generating func-
tions, the approach presented above in this chapter gives a more precise information
than Duduchava’s approach: it allows us to characterize the local algebras up to
isometry as algebras of Mellin convolution operators.

The algebra A
(

PC(R+),PCp,w, /0
)

studied in Section 5.5 was the subject of
Duduchava’s investigations in the particular case of unweighted spaces or for
weights w(t) := |t|α . For Khvedelidze weights, Schneider proved a criterion for
the Fredholm property of the Wiener-Hopf operator W (a) with a ∈ PCp,w.

The results of Section 5.6 are again taken from [168]. These results can be ex-
tended to algebras generated by Wiener-Hopf and Hankel operators with piecewise
continuous generating functions. But in Section 5.7 we present more general results
based on considering the flip as an independent generator for the algebra. That possi-
bility was used initially in [165] by the authors to analyze algebras resulting from ap-
proximating methods, the theme of Chapter 6. Algebras generated by Wiener-Hopf
and Hankel operators have an analog in algebras generated by Toeplitz and Hankel
operators with piecewise continuous generating function (defined on the unit circle
T). That problem was studied by Power in [147, 149] and by one of the authors [182]
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by different means, but only for the C∗-case. Interestingly, the approach of [182] is
based upon the two projections theorem. Moreover, Theorem 4.4.5 leads to the de-
scription of the Fredholm properties of operators belonging to the Banach algebras
generated by Toeplitz and Hankel operators with piecewise continuous generating
functions and acting on Hardy spaces with weight. In particular, the essential spec-
trum of Hankel operators with piecewise continuous generating functions acting on
a variety of Banach spaces has been known since 1990 [168]. Some of these results
were reproved in [94].

Section 5.8 is devoted to the reproduction of some results obtained by Simonenko
[187] who derived them by using the local principle named after him. Our exposition
is based on a combination of Allan’s local principle and limit operator techniques
and is in the spirit of the previous sections.

The methods described in Chapter 5 also apply to other classes of operators
such as multidimensional singular integral operators, singular integral operators
with fixed singularities, singular integro-differential operators and certain classes of
boundary integral operators (e.g., single and double layer potential operators). Con-
cerning the investigation of multidimensional operators on Lp(Rn) by local princi-
ples see also the nice recent book by Simonenko [188]. It contains a complete study
of shift-invariant operators as well as a description of a few important subclasses of
such operators. Simonenko also considered Banach algebras generated by operators
which are locally equivalent to operators in one of the mentioned subclasses.



Chapter 6
Algebras of operator sequences

Now we change our topic and move from operator theory to numerical analysis. In
this chapter, X is a Banach space (which will be separable and of infinite dimension
in all actual settings that we consider), I is the identity operator on X , L (X) is the
Banach algebra of all bounded linear operators on X , and K (X) is the ideal of the
compact operators in L (X).

Let A ∈ L (X). It is a basic problem of numerical mathematics (if not the basic
problem of numerical mathematics) to provide approximations to the solution of the
operator equation

Au = v for given v ∈ X . (6.1)

The standard procedure (which occurs in thousands of variations in the literature)
is to choose a sequence of projections Pn (often assumed to be of finite rank) which
converge strongly to the identity operator, and a sequence of operators An : Im Pn →
Im Pn such that the AnPn converge strongly to A, and to replace equation (6.1) by the
sequence of linear systems

Anun = Pnv for n = 1,2, . . . , (6.2)

the solutions un of which are sought in Im Pn.

6.1 Approximation methods and sequences of operators

Definition 6.1.1. We say that the approximation method given by the sequence of
the equations (6.2) applies or converges to A if

(i) there is an n0 ∈ N such that, for any n > n0 and any v ∈ X , there exists a unique
solution un of the equation Anun = Pnv and if

(ii) for any v ∈ X , the sequence (un)n≥n0 of these solutions converges in the norm
of X to a solution of the equation Au = v.

S. Roch et al., Non-commutative Gelfand Theories, Universitext,
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317

http://dx.doi.org/10.1007/978-0-85729-183-7_6


318 6 Algebras of operator sequences

Note that condition (ii) implies that A is surjective. Note also that we suppose the
sequence (AnPn) to be strongly convergent. The point is that the norm convergence
of this sequence together with the finite rank property of the AnPn would imply
that its limit operator is compact. Since we want to consider equations Au = v with
non-compact A, strong convergence is the right choice here.

On the other hand, it is exactly this choice of convergence which involves serious
difficulties. Indeed, if a sequence (Bn) tends to an invertible operator B in the norm,
then the operators Bn are invertible for large n and the sequence of their inverses
tends to B−1 also in the norm (which follows from Theorem 1.2.2). With respect to
strong convergence, it is in general no longer true that the invertibility of B guaran-
tees the invertibility of the Bn for large n and the strong convergence of their inverses
to B−1.

The identification of necessary and sufficient conditions which ensure the appli-
cability of an approximation method is thus one of the main problems in numerical
analysis. While the strong convergence of the sequence (AnPn) to A is often easy to
show, the core of the applicability problem is to verify the stability of the method in
the following sense.

Definition 6.1.2. The sequence (An) is said to be stable if there is an n0 ∈ N such
that, for any n > n0, the operators An : Im Pn → Im Pn are invertible and the norms
of their inverses are uniformly bounded.

Note that the invertibility of the An is equivalent to condition (i) of the previous
definition, whereas the uniform boundedness of the A−1

n together with the strong
convergence of AnPn to A and the strong convergence of the adjoint sequence guar-
antee condition (ii). We will therefore pay our main attention to the stability problem
in what follows.

There are some instances where the stability problem is easy to solve. For a
simple example, let H be a Hilbert space, A a positive definite operator, and (Pn)n≥1

be a sequence of self-adjoint projections which converges strongly to the identity
operator. By the positive definiteness, there is a positive constant C such that

〈Ax, x〉 ≥C‖x‖2 for all x ∈ H.

Then it is immediate that

〈PnAPnxn, xn〉 = 〈APnxn, Pnxn〉 ≥C‖xn‖2 for all xn ∈ Im Pn.

Thus, the operators An : Im Pn → Im Pn are invertible for each n ≥ 1, and the norms
of their inverses are not greater that 1/C. In other words, the sequence (PnAPn) is
stable under these conditions, and one even has n0 = 1. An argument of similar sim-
plicity shows the more general fact that if A is the sum of a strongly elliptic operator
and a compact operator, then the invertibility of A already implies the stability of the
sequence (PnAPn). But, for most operators A (including operators considered in this
chapter), the stability of (PnAPn) or of any other approximation sequence (An) does
not follow from the invertibility of A simply by applying some general principles.
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To study the stability of such sequences, one thus needs techniques which are
able to exploit the special asymptotic properties of these sequences. We shall dis-
cuss one of these techniques in this chapter: the formulation of the stability problem
as an invertibility problem in a suitably constructed Banach algebra, and the use
of local principles (or other Banach and C∗-algebraic techniques) to study this in-
vertibility problem. The observation that stability is equivalent to invertibility goes
back to A. Kozak [102], who used Simonenko’s local principle to study the related
invertibility problem. We will use the local principle by Allan and Douglas instead.
Note that the above mentioned “asymptotic properties” of the sequence (An) are ex-
pressed in this approach by saying that certain strong limits exist for that sequence,
or that this sequences commutes with others modulo sequences in a certain ideal.

It is thus important to emphasize that there are many settings, also of practical
importance, where the stability follows from some general principles. But if they do
not, then the algebraic approach discussed below can sometimes offer one way to
study stability.

There is another point which we would like to emphasize: for many approxi-
mation methods, the Banach algebraic (local) approach is not just the only known
approach to study stability; it has also some other striking advantages. Indeed, if the
answer to the stability question is formulated in the correct (= algebraic) way, then it
provides a lot of additional information. For example, without any additional effort
it becomes evident then, that several spectral quantities of the An (e.g., the spectra of
the An if these operators are self-adjoint, the ε-pseudospectra, the numerical ranges,
the sets of the singular values) converge with respect to the Hausdorff metric, and
one can even describe the corresponding limit sets. We can not discuss all these
applications here and refer to [82] instead.

There is a general procedure for treating approximation problems with the alge-
braic approach, which we will use throughout this chapter. Suppose we are inter-
ested in deriving a stability criterion for all sequences in a certain algebra A . Then
we usually proceed according to the following steps.

(i) Algebraization: Find a unital Banach algebra E which contains A and a
closed ideal G ⊂ E such that the stability problem becomes equivalent to an
invertibility problem in the quotient algebra E /G .

(ii) Essentialization: Find a unital subalgebra F of E which contains A and G ,
and a closed ideal J of F/G such that the algebra A J := (A /G +J )/J
has a large center.
To be able to use the latter property, one has to guarantee that no essential
information is lost regarding the invertibility of a coset of a sequence A ∈ F
in the algebra E /G and the invertibility of the same sequence modulo the ideal
J . This is done employing inverse-closedness results and a lifting theorem.

(iii) Localization: Use a local principle to translate the invertibility problem in the
algebra A J to a family of simpler invertibility problems in local algebras.

(iv) Identification: Find necessary and sufficient conditions for the invertibility of
elements in the local algebras.
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This can hopefully be done by using results from Chapter 3, or by employing
the homogenization technique as in the previous chapter. Occasionally, in or-
der to treat more involved local algebras, a repeated localization can be useful.

We start with a closer look at the first two steps.

6.2 Algebraization

Sometimes it proves convenient to label the approximating operators by quantities
other than the positive integers. So we will allow here for an arbitrary unbounded
set I of non-negative real numbers in place of N. Recall from Section 1.4.2 the basic
convergence properties of (generalized) sequences (Aτ)τ∈I of operators in L (X)
labeled by the points in I. Of course, notions like the stability of a (generalized)
sequence and the applicability of the corresponding (generalized) approximation
method are defined as in the case I = N.

We will also occasionally assume that the approximation operators An act on
the whole space X rather than on the range of certain projections Pn. This does
not imply any restriction, since we can identify an operator An acting on Im Pn

with the operator AnPn + (I −Pn) acting on X . Evidently, the sequences (An) and
(AnPn +(I −Pn)) are stable (or not) simultaneously.

Let E be the set of all bounded sequences (Aτ)τ∈I of operators Aτ ∈ L (X).
Provided with the operations

(Aτ)+(Bτ) := (Aτ +Bτ), α(Aτ) := (αAτ), (Aτ)(Bτ) := (AτBτ)

and with the norm ‖(Aτ)‖ := supτ ‖Aτ‖L (X), the set E becomes a unital Banach
algebra. Note that the constant sequences (A) are included in E for every operator
A∈L (X). If X is a Hilbert space, then we equip E with the involution (Aτ)∗ := (A∗

τ)
which makes E a C∗-algebra.

Let G be the set of all sequences (Aτ) ∈ E with limτ→∞ ‖Aτ‖= 0. This set forms
a closed ideal in E .

Definition 6.2.1. We say that a sequence (Aτ) ∈ E is stable if there is a constant
τ0 ∈ I such that Aτ is invertible for all τ > τ0 and supτ>τ0

‖A−1
τ ‖ < ∞.

The next result establishes the relationship between applicability, stability and
invertibility. It is the basis for the use of Banach algebra techniques in numerical
analysis.

Theorem 6.2.2. Let (Aτ) ∈ E and A ∈L (X), and suppose that Aτ → A strongly as
τ → ∞. Then the following assertions are equivalent:

(i) the approximation method (6.2) applies to A;
(ii) (Aτ) is stable and A is invertible;

(iii) A is invertible, and the coset (Aτ) + G is invertible in the quotient algebra
E /G .
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Proof. (i) ⇒ (ii): Assertion (i) implies that there exists a constant τ0 such that
Aτ is invertible for τ > τ0 and the sequence (A−1

τ )τ≥τ0 converges strongly. By the
Banach-Steinhaus theorem, there is a τ1 > τ0 such that supτ>τ1

‖A−1
τ ‖ <∞, whence

the stability of (Aτ). To prove the invertibility of A, note that

‖u−A−1
τ Au‖ ≤ ‖A−1

τ ‖‖Aτu−Au‖

for τ ≥ τ1. The first factor on the right-hand side is uniformly bounded, and the
second one tends to zero as τ increases. Thus, if u∈Ker A, then necessarily ‖u‖= 0,
which shows that Ker A = {0}. Since Im A = X by the definition of an applicable
method, A is invertible.

(ii) ⇒ (iii): Let τ0 ∈ I be such that Aτ is invertible for τ ≥ τ0 and that the norms
of the inverses are uniformly bounded. Set Bτ := A−1

τ if τ > τ0 and Bτ := I if τ ≤ τ0.
Then, clearly,

(Bτ)(Aτ) = (Aτ)(Bτ) ∈ (I)+G ,

whence the invertibility of the coset (Aτ)+G .
(iii) ⇒ (i): Let (Bτ)+G be the inverse of (Aτ)+G . Thus,

BτAτ = I +Cτ and AτBτ = I +Dτ

with sequences (Cτ) and (Dτ) in G . Choose τ0 such that ‖Cτ‖ < 1/2 and ‖Dτ‖ <
1/2 for τ > τ0. Then I +Cτ and I + Dτ are invertible for τ > τ0, and the norms of
their inverses are uniformly bounded by 2. Thus, the operators Aτ are invertible for
τ > τ0, and the norms of their inverses are uniformly bounded. In particular, the
equations Aτuτ = v possess unique solutions

uτ = A−1
τ v = (I +Cτ)−1Bτv,

and it remains to prove that ‖u− uτ‖ → 0 where u is the solution of Au = v. This
follows easily from the estimate

‖u−uτ‖ = ‖u−A−1
τ Au‖ ≤ ‖A−1

τ ‖‖Aτu−Au‖;

with the last term going to zero because of the strong convergence of (Aτ) to A and
the uniform boundedness of the operators A−1

τ .

6.3 Essentialization and lifting theorems

The application of local principles requires a certain algebraic property which can
serve as a substitute for commutativity: the algebra must have a sufficiently large
center, or it must fulfill a polynomial identity, for instance. If the algebra under
consideration does not possess this property (which, unfortunately, happens quite
often when studying the stability of approximation methods), a prior lifting process
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can prove useful. The goal of this section is to discuss several lifting theorems. Our
starting point is a purely algebraic result.

Lemma 6.3.1 (N ideals lemma). Let A be an algebra with identity e, and let
J1, . . . , JN be ideals of A such that J1 · . . . ·JN is in the radical of A . Then
an element a ∈ A is invertible if and only if its cosets a + J1, . . . , a + JN are
invertible in the corresponding quotient algebras.

Proof. The invertibility of a implies the invertibility of every coset a +Ji. Con-
versely, let all cosets a + Ji be invertible. Then, for every i, there are elements
ci ∈ A and ji ∈ Ji such that cia = e− ji. Hence,

j := j1 . . . jN = (e− c1a) . . .(e− cNa) = e− ca

with a certain element c ∈ A . Since j is in the radical of A by hypothesis, the ele-
ment e− j = ca is invertible. Thus, a is invertible from the left, and the invertibility
of a from the right-hand side follows analogously.

Let A and B be unital algebras, J an ideal of A , and W : A → B a unital
homomorphism. We say that W lifts the ideal J if the intersection KerW∩J
lies in the radical of A . If A is semi-simple, then this is equivalent to the fact that
the restriction of W to J is injective. For example, every homomorphism lifts the
radical, and the identical homomorphism lifts every ideal. For another example, let

AnnJ := {a ∈ A : aJ ∪J a ⊆ RadA }

denote the annulator of the ideal J of A . Then AnnJ is an ideal of A , and the
canonical homomorphism from A onto A /AnnJ lifts the ideal J .

Now let {Wt}t∈T be a (finite or infinite) family of homomorphisms Wt which lift
certain ideals Jt . The lifting theorem states that the homomorphisms Wt and the
ideals Jt can be glued into a homomorphism W and an ideal J , respectively, such
that W lifts J . We first derive a general algebraic version of the lifting theorem,
and then embark upon the special settings where A is a Banach or a C∗-algebra.

Theorem 6.3.2 (General lifting theorem). Let A be a unital algebra and, for every
element t of a certain set T , let Jt be an ideal of A which is lifted by a unital
homomorphism Wt : A → Bt . Further, let J stand for the smallest ideal of A
which contains all ideals Jt . Then an element a ∈ A is invertible if and only if
the coset a +J is invertible in A /J and if all elements Wt(a) are invertible in
Wt(A ).

Proof. If a is invertible, then a + J and all Wt(a) are invertible. Conversely, if
a+J is invertible, then there are elements a′ ∈A and j ∈J such that a′a = e+ j.
Further, by the definition of J , there are finitely many elements jti ∈ Jti such that

j = jt1 + . . .+ jtm . Thus, a is invertible modulo the ideal ̂J := Jt1 + . . .+Jtn ⊆
J .

Further, since b + KerWt �→ Wt(b) is an isomorphism from A /KerWt onto
Wt(A ), we get the invertibility of the cosets a + KerWti in A /KerWti for i =
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1, . . . , n. Since Jti ∩KerWti ⊆ RadA by hypothesis, one has

̂J ·KerWt1 · . . . ·KerWtn = (Jt1 + . . .+Jtn) ·KerWt1 · . . . ·KerWtn

⊆ Jt1 ·KerWt1 + . . .+Jtn ·KerWtn ⊆ RadA .

The N = n+1 ideals lemma, applied to the ideals ̂J , KerWt1 , . . . , KerWtn , yields
the assertion.

The family {Tt}t∈T induces a homomorphism W from A into the product
∏t∈T Bt via

W : a �→ (t �→ Wt(a)). (6.3)

Corollary 6.3.3. Let the notation be as in the general lifting theorem with the Wt

being surjective, and let W be the homomorphism (6.3). Then W lifts the ideal J .

Proof. Let k ∈ KerW ∩J , and let a be an invertible element of A . Then the
following assertions are equivalent:

(i) a is invertible;
(ii) W(a) and a+J are invertible;

(iii) a+KerW and a+J are invertible;
(iv) a+ k +KerW and a+ k +J are invertible;
(v) W(a+ k) and a+ k +J are invertible;

(vi) a+ k is invertible.

The equivalences (i) ⇔ (ii) and (v) ⇔ (vi) are consequences of the general lifting
theorem, the equivalences (ii) ⇔ (iii) and (iv) ⇔ (v) follow via the isomorphy theo-
rem A /KerW ∼= W(A ), and (iii) ⇔ (iv) is obvious. Thus, k belongs to the radical
of A . Since W is unital, the assertion follows.

Now we turn over to the Banach algebra setting. Here one wishes to work with
closed ideals and continuous homomorphisms.

Theorem 6.3.4 (Lifting theorem, Banach algebra version). Let A be a unital Ba-
nach algebra and, for every element t of a certain set T , let Jt be a closed ideal
of A which is lifted by a unital and continuous homomorphism Wt from A into
a unital Banach algebra Bt . Further, let J stand for the smallest closed ideal of
A which contains all ideals Jt . Then an element a ∈ A is invertible if and only if
the coset a +J is invertible in A /J and if all elements Wt(a) are invertible in
Wt(A ).

The proof follows immediately from Theorem 6.3.2 and the following simple
observation.

Lemma 6.3.5. Let A be a unital Banach algebra and J0 an ideal in A . Then an
element a ∈ A is invertible modulo J0 if and only if it is invertible modulo the
closure J of J0.
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Proof. If a ∈ A is invertible modulo J , then there exists a b ∈ A and a j ∈ J
such that ba = e + j where e denotes the identity element of A . Choose j0 ∈ J0

such that ‖ j− j0‖ < 1. Then e+ j− j0 is invertible (Neumann series), and

(e+ j− j0)−1ba = e+(e+ j− j0)−1 j0 ∈ e+J0.

Thus, a is invertible modulo J0 from the left-hand side. The right-sided invertibility
follows analogously.

In practice, it will often prove hard to check the invertibility of the elements
Wt(a) in the subalgebra Wt(A ) of Bt . If Wt(A ) is inverse-closed in Bt , it is
possible to guaranty that if Wt(a) is invertible in Bt , then it is invertible in Wt(A ).
That is the case, if A is a C∗-algebra.

Theorem 6.3.6 (Lifting theorem, C∗-algebra version). Let A be a unital C∗-algebra
and, for every element t of a certain set T , let Jt be a closed ideal of A which is
lifted by a unital ∗-homomorphism Wt from A into a unital ∗-algebra Bt . Further,
let J stand for the smallest closed ideal of A which contains all ideals Jt . Then
an element a ∈ A is invertible if and only if the coset a+J is invertible in A /J
and if all elements Wt(a) are invertible in Bt .

Let us come back to the Banach version of the lifting theorem. Also in this case
one would clearly prefer a version of this theorem where only the invertibility of
Wt(a) in Bt is needed. We will see now that one can formulate the lifting theorem
in the desired way under the additional (but moderate) assumption that Wt(Jt) is
an ideal of Bt . We refer to these versions of the lifting theorems as the IC-versions,
with IC referring to Inverse-Closed.

Theorem 6.3.7 (General lifting theorem, IC-version). Let A be a unital algebra
and, for every element t of a certain set T , let Jt be an ideal of A which is lifted
by a unital homomorphism Wt : A → Bt . Suppose furthermore that Wt(Jt) is an
ideal of Bt . Let J stand for the smallest ideal of A which contains all ideals Jt .
Then an element a ∈ A is invertible if and only if the coset a +J is invertible in
A /J and if all elements Wt(a) are invertible in Bt .

Proof. The proof starts as that of Theorem 6.3.2. If a is invertible, then a + J
and all Wt(a) are invertible. Conversely, let a +J be invertible in A /J and let
Wt(a) be invertible in Bt for every t ∈ T . Then there are elements b ∈ A and
j ∈J such that ba = e+ j, and there are finitely many elements jti ∈Jti such that
j = jt1 + . . .+ jtm . Thus,

ba = e+ jt1 + . . .+ jtm . (6.4)

Let Wti(a)−1 stand for the inverse of Wti(a) in Bti . By assumption, Wti( jti)Wti(a)−1

belongs to the ideal Wti(Jti) of Bti . Choose elements kti ∈Jti such that Wti(kti) =
Wti( jti)Wti(a)−1, and define b′ := b− kt1 − . . .− ktm . Then

b′a = e+ jt1− kt1a+ . . .+ jtm− ktma. (6.5)
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Due to the choice of the kti , one has Wti( jti −ktia) = 0 and jti −ktia ∈ Jti for every
i. Thus, by the lifting property of Wti , the elements jti −ktia belong to the radical of
A . So we conclude from (6.5) that b′a− e is in the radical of A . Similarly, ab′ − e
is in the radical. Hence, a is invertible.

Note that this proof did not rely on the N ideals lemma. One could prove The-
orem 6.3.7 also by means of that lemma if another, again moderate, additional as-
sumption is fulfilled: The homomorphisms Wt have to be separating in the sense
that Wt(Js) = {0} whenever s �= t. Indeed, in this case we obtain from (6.5), by
applying Wti to both sides of this equality that

Wti(b
′)Wti(a) = Wti(e)+Wti( jti− ktia) = Wti(e).

Hence, Wti(a) is invertible in Wti(A ), whence the invertibility of a + KerWti in
A /KerWti follows. The remainder of the proof runs as that of Theorem 6.3.2.

Theorem 6.3.8 (Lifting theorem, Banach algebra IC-version). Let A be a unital
Banach algebra and, for every element t of a certain set T , let Jt be a closed ideal
of A which is lifted by a unital and continuous homomorphism Wt from A into a
unital Banach algebra Bt . Assume that Wt(Jt) is a closed ideal of Bt . Further, let
J stand for the smallest closed ideal of A which contains all ideals Jt . Then an
element a ∈ A is invertible if and only if the coset a +J is invertible in A /J
and if all elements Wt(a) are invertible in Bt .

In applications, we will often use this theorem with Bt being the Banach algebra
of all bounded linear operators on some Banach space Xt and with Wt(Jt) being
the ideal of the compact operators on Xt .

6.4 Finite sections of Wiener-Hopf operators

As a first illustration of the concepts discussed above, we consider the finite sections
method for Wiener-Hopf operators on Lp(R+) with continuous generating func-
tions. In this section, let 1 < p < ∞.

Let I denote the identity operator on Lp(R+). For every positive real number τ ,
define operators

(Pτu)(t) :=
{

u(t) if t < τ,
0 if t > τ, Qτ := I −Pτ (6.6)

on Lp(R+). The operators Pτ are projections with ‖Pτ‖ = 1. We consider finite sec-
tions with respect to these projections.

For f ∈Cp and v ∈ Lp(R+), consider the approximation method

PτW ( f )Pτuτ = Pτv, (6.7)
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to find an approximate solution uτ ∈ Im Pτ to the Wiener-Hopf equation

W ( f )u = v. (6.8)

According to (6.7), we introduce the Banach algebra E of all sequences (Aτ)τ>0

of bounded linear operators Aτ : Im Pτ → Im Pτ for which supτ ‖Aτ‖L (Lp(R+)) <∞.
Making the natural definition for the ideal G , Theorem 6.2.2 holds.

6.4.1 Essentialization

For τ > 0, define the operators acting on Lp(R+),

(Rτu)(t) =
{

u(τ− t) if t < τ,
0 if t > τ. (6.9)

It is easy to check that R2
τ = Pτ and ‖Rτ‖ = 1.

Let F ⊂ E be the set of all sequences A := (Aτ) for which there exist operators
W0(A) and W1(A) such that

AτPτ → W0(A), A∗
τPτ → W0(A)∗,

RτAτRτ → W1(A), (RτAτRτ)∗ → W1(A)∗,

where “→” again refers to strong convergence as τ → ∞.

Proposition 6.4.1. The set F forms a closed subalgebra of E that contains G , and
the mappings W0 and W1 are continuous homomorphisms on F .

Proof. Let A := (Aτ) and B := (Bτ) be sequences in F . Then W0(AB) =
W0(A)W0(B) by Lemma 1.4.4. Also,

RτAτBτRτ = RτAτPτBτRτ = RτAτRτRτBτRτ ,

whence W1(AB) = W1(A)W1(B). Thus, F is a subalgebra of E . It is further trivial
to check that F contains the ideal G .

To prove the closedness of F in E , let (Ak)k∈N with Ak := (A(k)
τ )τ>0 be a se-

quence in F which converges to a sequence A := (Aτ)τ>0 in E . Since (Ak)k∈N is a
Cauchy sequence and ‖W0(B)‖ ≤ ‖B‖ for every sequence B ∈F , we conclude that
(W0(Ak))k∈N is a Cauchy sequence in L (Lp(R+)). Let A0 denote the limit of that
sequence. We show that A0 is the strong limit of the sequence A. For let u∈ Lp(R+).
For every ε > 0, there exist a τ0 > 0 and a k0 ∈ N such that, for τ > τ0,

∥

∥(A0 −Aτ)Pτu
∥

∥ ≤
∥

∥

(

A0 −A(k0)
τ Pτ

)

u
∥

∥+
∥

∥A(k0)
τ Pτ −AτPτ

∥

∥‖u‖

≤
∥

∥

(

A0 −A(k0)
τ Pτ

)

u
∥

∥+
∥

∥A−Ak0

∥

∥‖u‖ < ε,
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which establishes the existence of the strong limit W0(A). In a similar way, the
existence of the strong limit W1(A) follows. Thus, A ∈ F , whence the closedness
of F .

Proposition 6.4.2. The algebra F/G is inverse-closed in the algebra E /G .

Proof. Let A := (Aτ) ∈ F , and suppose that A +G ∈ F/G is invertible in E /G .
Then there exists a sequence B := (Bτ) ∈ E and a sequence (Gτ) ∈ G such that
BτAτ = Pτ +Gτ for every τ > 0. Let u ∈ Lp(R+). Then

‖Pτu‖ = ‖(BτAτ −Gτ)u‖ ≤ c‖Aτu‖+‖Gτu‖

with a constant c := ‖B‖ > 0. Taking the limit as τ → ∞ we obtain

‖u‖ ≤ c‖W0(A)u‖,

which implies that the kernel of W0(A) is {0} and the range of W0(A) is closed.
Applying the same argument to the adjoint sequence we find that the kernel of
W0(A∗) = W0(A)∗ is {0}, too. Hence, W0(A) is invertible. Further, for u∈ Lp(R+),
we have

‖BτPτu−W0(A)−1u‖
= ‖BτPτu− (BτAτPτ −GτPτ +Qτ)W0(A)−1u‖
≤ ‖Bτ‖‖Pτu−AτPτW0(A)−1u‖+‖(−GτPτ +Qτ)W0(A)−1u‖
= ‖Bτ‖‖PτW0(A)v−AτPτv‖+‖(−GτPτ +Qτ)W0(A)−1u‖

with v = W0(A)−1u. Since the right-hand side of this estimate tends to zero as
τ →∞, the inverse sequence B is strongly convergent, too. Similarly, one shows the
strong convergence of the adjoint sequence B∗. From

RτBτRτ RτAτRτ = RτBτAτRτ = RτPτRτ +RτGτRτ = Pτ +G′
τ

with (G′
τ) ∈ G one concludes that the sequence (RτAτRτ) is invertible in E /G also.

As above, one concludes that W1(A) is invertible and that the sequences (RτBτRτ)
and (RτBτRτ)∗ are strongly convergent. Thus, the sequence B belongs to F , whence
the inverse-closedness of F/G .

Let K ⊂ L (Lp(R+)) denote the ideal of the compact operators and consider
the subsets of E

J0 := {(PτKPτ)+(Gτ) : K ∈ K , (Gτ) ∈ G }, (6.10)

J1 := {(RτKRτ)+(Gτ) : K ∈ K , (Gτ) ∈ G }. (6.11)

Proposition 6.4.3. J0 and J1 are closed ideals of F .
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Proof. We prove the assertion for J0. The proof for J1 is similar. Since Pτ → I
strongly and Rτ ⇀ 0 weakly, one has PτKPτ ⇒ K in the norm and RτKRτ → 0
strongly. Hence, J0 is contained in F , and one easily checks that J0 is a linear
subspace of F . To prove the left ideal property, one has to check that all sequences
AK with A := (Aτ) ∈ F and K := (PτKPτ) are in J0. Write

AK =
(

PτW0(A)KPτ
)

+
(

Pτ(AτPτ −W0(A))KPτ
)

.

Clearly, the first term on the right-hand side is in J0, and the second one is even
in G since Aτ → W0(A) strongly as τ → ∞ and from Lemma 1.4.7. The right ideal
property follows similarly (here we need the strong convergence of the adjoint se-
quences). We are left with the closedness of J0. Recall that (PτKPτ+Gτ) converges
to K in the norm. Therefore,

‖K‖ = lim
τ→∞

‖PτKPτ +Gτ‖ ≤ ‖(PτKPτ +Gτ)‖F . (6.12)

Consider a sequence (Jk)k∈N with Jk := (PτK(k)Pτ + G(k)
τ )τ∈R+ in J0 which con-

verges in F . Then (Jk) is a Cauchy sequence, and (6.12) implies that (K(k)) is
a Cauchy sequence of compact operators. Hence, there is a compact operator K
such that ‖K −K(k)‖ → 0. Consequently, ‖(PτKPτ)− (PτK(k)Pτ)‖F → 0. But then
(

(G(k)
τ )
)

k∈N
is also a Cauchy sequence, and the closedness of G implies that there

exists a sequence (Gτ)∈ G such that limk→∞ ‖(Gτ)−(G(k)
τ )‖= 0. We conclude that

the sequence J := (PτKPτ +Gτ) is the limit of (Jk). Evidently, J ∈ J0.

Let i ∈ {0,1}. Since G is in the kernel of Wi, one can define the corresponding
quotient homomorphism

F/G → L (Lp(R+)), A+G �→ Wi(A)

which we denote by Wi again. It turns out that Ji/G is a closed ideal of F/G
which is lifted by the quotient homomorphism Wi since KerWi ∩Ji = G . In ac-
cordance with the lifting theorem, define J as the smallest closed ideal in F/G
which contains J0/G and J1/G . By repeating arguments from the proof of the
preceding proposition, one easily finds that

J = {(PτKPτ)+(RτLRτ)+G : K,L ∈ K }.

The equality

RτW ( f )Rτ = PτW ( f̃ )Pτ with f̃ (t) := f (−t)

implies that the sequence (PτW ( f )Pτ) associated with the finite sections method
(6.7) belongs to F with W0(PτW ( f )Pτ) = W ( f ) and W1(PτW ( f )Pτ) = W ( f̃ ). The
lifting theorem implies the following preliminary result.
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Theorem 6.4.4. Let f ∈Cp. The finite sections method (6.7) applies to the Wiener-
Hopf operator W ( f ) if and only if the operator W ( f ) is invertible and the coset
(PτW ( f )Pτ)+J is invertible in (F/G )/J .

Proof. By Theorem 6.3.8, the coset (PτW ( f )Pτ)+G is invertible in F/G if and
only if the operators W0(PτW ( f )Pτ) = W ( f ) and W1(PτW ( f )Pτ) = W ( f̃ ) are in-
vertible on Lp(R+) and if the coset (PτW ( f )Pτ)+J is invertible in (F/G )/J .
But W ( f ) is invertible on Lp(R+) if and only if W ( f̃ ) is invertible there, which is
an immediate consequence of Theorem 5.2.2 (note that the winding number of f is
minus the winding number of f̃ ).

6.4.2 Structure and stability

Let A be the smallest closed subalgebra of F/G which contains the cosets
(PτW ( f )Pτ) + G with f ∈ Cp and the ideal J . Let A J stand for the quotient
algebra A /J . We are going to prove that the algebra A J is commutative and,
thus, subject to the simplest local principle, namely classical Gelfand theory. For
τ > 0, let Ṽτ and Ṽ−τ be the operators on Lp(R+) defined by

(Ṽτu)(t) =

{

0 if t < τ,
u(t − τ) if t ≥ τ,

(Ṽ−τu)(t) = u(t + τ). (6.13)

Clearly, Ṽ−τṼτ = I and ṼτṼ−τ = Qτ . It is also not hard to check by straight-
forward computation that RτW ( f )Ṽτ = PτH( f̃ ) and Ṽ−τW ( f )Rτ = H( f )Pτ , where
H( f ) refers to the Hankel operator introduced in Section 5.2. We will use these
equalities in the proof of the next proposition.

Proposition 6.4.5. The algebra A J is commutative, every element of A J has the
form (PτW ( f )Pτ)+J with f ∈Cp, and the mapping (PτW ( f )Pτ)+J �→ f is an
isometric isomorphism from A J onto Cp.

Proof. Let f ,g ∈Cp. Our first goal is the equality

(PτW ( f g)Pτ)+J = (PτW ( f )Pτ)(PτW (g)Pτ)+J . (6.14)

Write

(PτW ( f g)Pτ)− (PτW ( f )PτW (g)Pτ)
= (Pτ(W ( f g)−W ( f )W (g))Pτ)+(PτW ( f )QτW (g)Pτ).

By Proposition 5.3.3, the operator W ( f g)−W ( f )W (g) is compact. Thus, the se-
quence (Pτ(W ( f g)−W ( f )W (g))Pτ) is in J . Further,

PτW ( f )QτW (g)Pτ = Rτ RτW ( f )Ṽτ Ṽ−τW (g)Rτ Rτ = RτH( f̃ )H(g)Rτ .
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Since H( f̃ )H(g) is compact by Proposition 5.3.6, the sequence (PτW ( f )QτW (g)Pτ)
is in J , too. This settles equality (6.14). From this equality, one immediately gets
the first two assertions.

Equality (6.14) further implies that the mapping

Cp → A /J , f �→ (PτW ( f )Pτ)+J (6.15)

is an algebra homomorphism, the norm of which is not greater than one since

‖(PτW ( f )Pτ)+J ‖F/J ≤ ‖(PτW ( f )Pτ)‖F ≤ ‖W ( f )‖ ≤ ‖ f‖Cp . (6.16)

To show that the mapping (6.15) is an isometry (hence, an isomorphism), we identify
the Wiener-Hopf operator W ( f ) with the operator χ+W 0( f )χ+I acting on Lp(R).
With the shift operators on Lp(R) defined by (Vτu)(t) := u(t − τ), one has

V−τ(W ( f )+K)Vτ →W 0( f ) strongly as τ → ∞

for arbitrary generating functions f ∈Cp and compact operators K. Hence, for arbi-
trary compact operators K,L and sequences (Gτ) ∈ G ,

‖ f‖Cp = ‖W 0( f )‖ ≤ ‖W ( f )+K‖
= ‖W0(PτW ( f )Pτ +PτKPτ +RτLRτ +Gτ)‖
≤ ‖(PτW ( f )Pτ +PτKPτ +RτLRτ +Gτ)‖F .

Taking the infimum with respect to K,L and (Gτ) we obtain

‖ f‖Cp ≤ ‖(PτW ( f )Pτ)+J ‖F/J

which, together with (6.16) states the desired isometry.

Since the invertibility of the Wiener-Hopf operator W ( f ) implies the invertibil-
ity of f , the following result is an immediate consequence of Theorem 6.4.4 and
Proposition 6.4.5.

Theorem 6.4.6 (Gohberg-Feldman). Let f ∈ Cp. The finite sections method (6.7)
applies to the Wiener-Hopf operator W ( f ) if and only if this operator is invertible.

Remark 6.4.7. Thanks to Proposition 6.4.5, a formal localization step was not
needed to prove the preceding theorem. Of course, one gets the same result also
by describing the commutative Banach algebra A J via Gelfand theory, in a simi-
lar way to the one in the proof of Theorem 6.4.8, below.

It should be further emphasized that Gelfand theory implies conditions for the
invertibility in A J , whereas Theorem 6.4.4 refers to invertibility in (F/G )/J .
That no inverse-closedness problem occurs in the case at hand is a consequence of
the fact that if (PτW ( f )Pτ)+J is not invertible in A J then W ( f ) is not invertible.

�
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Theorem 6.4.8. Let A := (Aτ) ∈ F be such that A +G ∈ A . Then A is stable if
and only if the operators W0(A) and W1(A) are invertible.

Proof. By Proposition 6.4.5, there is a (uniquely defined) f ∈Cp such that

A = (PτW ( f )Pτ +PτKPτ +RτLRτ +Gτ) (6.17)

with compact operators K and L, and (Gτ) =: G ∈ G . Clearly, W0(A) = W ( f )+K,
W1(A) = W ( f̃ )+ L. Because G is in the kernel of both homomorphisms W0 and
W1, it can be assumed that W0 and W1 are also well defined on A as quotient homo-
morphisms. If A is stable then A+G is invertible in A by Theorem 6.3.8, whence it
follows that W0(A) and W1(A) are invertible. Conversely, let W0(A) and W1(A) be
invertible. Then the function f ∈Cp does not vanish on Ṙ by Theorem 5.2.2. Since
the maximal ideal space of Cp can be identified with Ṙ in a natural way, this means
that then also (PτW ( f )Pτ)+J is invertible, and Theorem 6.3.8 finally gives that
A+G is invertible in A . Hence, A is stable.

6.5 Spline Galerkin methods for Wiener-Hopf operators

The finite sections method for Wiener-Hopf operators discussed in the previous sec-
tion yields infinite-dimensional approximation equations. In this section, we will
examine an example of a fully discretized approximation method that results in
finite-dimensional approximation operators, through the use of splines. To keep it
simple, we will consider piecewise constant splines on uniform meshes. But the
techniques presented in this book allow for far more general settings. We refer to
the historical remarks at the end of the chapter for more information. We would also
like to turn the reader’s attention to the fact that the analysis of the stability condi-
tions for the finite sections method and the spline Galerkin method run completely
parallel. We will thus not provide all details here.

For n ∈ N consider the mesh sequence (Δ n) with

Δ n :=
{

x(n)
j = j/n, 0 ≤ j ≤ nτn

}

where the τn are given, positive numbers which go to ∞ as n increases and such that
n2τn is integer. Define also

Jn
j :=

]

j
n
,

j +1
n

[

,

and let χ jn refer to the characteristic function of the interval Jn
j . We consider the

subspace Sn of Lp(R+) of all functions which are piecewise constant with respect
to this mesh,

Sn :=
{

u ∈ Lp(R+) : u |Jn
j

is constant, u |
R+\∪Jn

j
= 0

}

.
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The Galerkin projection of Lp(R+) onto Sn is the operator

(Pnu)(x) =∑
j

(

n
∫

Jn
j

u(y)dy

)

χ jn(x).

Note that Pn is actually the orthogonal projection of Lp(R+) onto Sn in the case
p = 2 and that the Pn are uniformly bounded with respect to n in Lp(R+). We also
have that Pn → I as n → ∞. The complementary projection I −Pn will be denoted
by Qn.

Let f ∈Cp and u,v ∈ Lp(R+). We consider the approximation method

PnW ( f )Pnun = Pnv (6.18)

to find an approximate solution un to the equation

W ( f )u = v. (6.19)

The initial sequence algebra E is constituted by all sequences A = (An)n∈N of
bounded linear operators An : Im Pn → Im Pn such that supn ‖An‖L (X) < ∞. Fur-
ther, G again stands for the ideal of E which consists of all sequences tending to
zero in the norm.

6.5.1 Essentialization

For every positive integer n, define

(Rnu)(t) =
{

Pnu(τn − t) if t < τn,
0 if t > τn.

(6.20)

Clearly, the Rn bounded operators on every space Lp(R+), their norm is 1, and
R2

n = Pn. Let F be the set of all sequences A = (An) ∈ E for which there exist
operators W0(A) and W1(A) such that

An → W0(A), A∗
n → W0(A)∗,

RnAnRn → W1(A), (RnAnRn)∗ → W1(A)∗.

It is easy to see that F forms a closed and inverse-closed unital subalgebra of E .
The proof of the following proposition is similar to that of Proposition 6.4.2.

Proposition 6.5.1. The algebra F/G is inverse-closed in the algebra E /G .

We proceed in analogy to Section 6.4. As there, one can show that the sets

J0 := {(PnKPn)+(Gn) : K ∈ K , (Gn) ∈ G }, (6.21)

J1 := {(RnKRn)+(Gn) : K ∈ K , (Gn) ∈ G } (6.22)
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are closed ideals of F , and Ker Wi ∩Ji = G for i = 0,1. Thus, for i = 0,1, Ji/G
is a closed ideal of E /G , and the quotient homomorphism

E /G → L (Lp(R+)), A+G �→ Wi(A)

is well defined. We denote it by Wi again. Then Wi lifts the ideal Ji/G in the
sense of the lifting theorem. Define J as the smallest closed ideal in F/G which
contains J0/G and J1/G . Thus, J consists of all cosets

(PnKPn)+(RnLRn)+G with K,L ∈ K .

Let A := (PnW ( f )Pn) with f ∈Cp. It is easy to see that the sequence A belongs to
F/G and that

W0(A) = W ( f ) and W1(A) = W ( f̃ )

with f̃ (t) := f (−t). Via Theorem 6.3.4, we arrive at the following.

Theorem 6.5.2. The approximation method (6.18) applies to the Wiener-Hopf op-
erator W ( f ) with f ∈Cp if and only if the operator W ( f ) is invertible and the coset
(PnW ( f )Pn)+J is invertible in (F/G )/J .

6.5.2 Structure and stability

We will now have a closer look at the invertibility of the sequence (PnW (a)Pn)
modulo J . Let A denote the smallest closed subalgebra of F/G which contains
all cosets (PnW ( f )Pn)+G with f ∈Cp and the ideal J . Further, let A J stand for
the quotient algebra A /J .

Lemma 6.5.3. Let f ∈ Cp with f (∞) = 0. The norms of the operators Pτn QnW ( f )
and W ( f )PτnQn tend to zero as n → ∞.

Proof. Approximate W ( f ) in the operator norm by operators W ( fm) such that
km = F−1 fm are functions belonging, together with their derivatives, to L1(R). Re-
peating the arguments of the proof of [151, Lemma 5.25] we obtain that there exists
a constant d such that

‖QnW ( fm)u‖Jn
j
≤ d

n
‖DW ( fm)u‖Jn

j
,

the D referring to the operator of differentiation. Consequently,

‖PτnQnW ( fm)u‖Lp ≤ d
n
‖DW ( fm)u‖Lp ≤ d′

n
‖u‖Lp

with some constants d,d′. The last inequality is due to the continuity of W ( fm) from
Lp(R+) to the Sobolev space Lp,1(R+), the subspace of Lp(R+) containing all func-
tions with derivatives in Lp(R+). This proves the assertion for the first sequence of
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operators. The convergence of the second sequence follows by a duality argument,
since (Qn)∗ = Qn, the latter acting on the dual space Lq(R+), with q = p/(p−1).

Proposition 6.5.4. The algebra A J is commutative.

Proof. The result will follow once we have shown that

(PnW ( f g)Pn)+J = (PnW ( f )Pn)(PnW (g)Pn)+J

for arbitrary functions f ,g ∈Cp. Write

(PnW ( f g)Pn −PnW ( f )PnW (g)Pn)
= (Pn(W ( f g)−W ( f )W (g))Pn)+(PnW ( f )QnW (g)Pn). (6.23)

By Proposition 5.3.3, the operator W ( f g)−W ( f )W (g) is compact. Therefore, the
first part of the above sum is in J . Further, because Qn = Qn(Pτn +Qτn) = QnPτn +
Qτn and from Lemma 6.5.3, one has

PnW ( f )QnW (g)Pn = PnW ( f )PτnQnW (g)Pn +RnRnW ( f )VτnV−τnW (g)RnRn

= Gn +RnH( f̃ )H(g)Rn,

where (Gn) ∈ G . Since the operator H( f̃ )H(g) is compact by Proposition 5.3.6, the
second part of the sum (6.23) is in J , too.

Being a commutative Banach algebra, A J is subject to classical Gelfand the-
ory. The maximal ideal space of A J is homeomorphic to the maximal ideal space
of Cp which, in turn, is homeomorphic to Ṙ. Under these conditions, the Gelfand
transform of the coset F = (PnW ( f )Pn) + J with f ∈ Cp is just the function
̂F(x) := f (x) on Ṙ. In particular, the coset A is invertible in A J if and only if
the function f is invertible in C(Ṙ). Since the invertibility of W ( f ) implies the in-
vertibility of f , it therefore also implies the invertibility of F . In combination with
Theorem 6.5.2, this yields the following.

Theorem 6.5.5. Let f ∈Cp. Then the approximation method (6.18) applies to W ( f )
if and only if this operator is invertible.

More generally, one has the following analog of Theorem 6.4.8.

Theorem 6.5.6. A sequence A ∈A is stable if and only if the operators W0(A) and
W1(A) are invertible.
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6.6 Finite sections of convolution and multiplication operators on
Lp(R)

Here we come back to the setting of Section 6.4 and consider it in a larger context.
We are going to examine the finite sections method for operators which are con-
stituted by operators of convolution and operators of multiplication by piecewise
continuous functions. Of course, this includes the finite sections method for Wiener-
Hopf operators. In this section, we let 1 < p <∞ and work on the unweighted space
Lp(R). That we are now on the whole real line (thus, on a group) will allow us to
work with the shift operators

Vτ : Lp(R) → Lp(R), (Vτu)(x) := u(x− τ)

in place of the reflections Rτ used in Section 6.4, which will simplify some of the
arguments. We consider finite sections PτAPτ where A ∈ L (Lp(R)) and where the
projections Pτ , τ > 0, are defined by

Pτ : Lp(R) → Lp(R), (Pτu)(t) :=
{

u(t) if |t| ≤ τ,
0 if |t| > τ.

It will prove to be convenient to consider extended finite sections PτAPτ +Qτ where
Qτ := I−Pτ instead of the usual PτAPτ . The passage from finite sections to extended
finite sections does not involve any complications since, of course, both sequences
(PτAPτ + Qτ)τ>0 and (PτAPτ)τ>0 are simultaneously stable or not, and since they
have the same strong limit. One advantage of using extended finite sections is that
the operator A and its extended finite sections act on the same space.

Let E stand for the Banach algebra of all bounded sequences (Aτ)τ>0 of op-
erators Aτ ∈ L (Lp(R)), and let G denote the closed ideal of E which consists
of all sequences tending in the norm to zero. Of course, it is still true that a se-
quence (Aτ) ∈ E is stable if and only if its coset is invertible in the quotient algebra
E /G . The sequences we are interested in belong to the smallest closed subalgebra
A
(

PC(Ṙ),PCp,(Pτ)
)

of E which contains all constant sequences (aI) of operators
of multiplication by a function a ∈ PC(Ṙ), all constant sequences (W 0(b)) of oper-
ators of convolution by a multiplier b ∈ PCp, the sequence (Pτ)τ>0, and the ideal G .
This algebra can be seen as an extension of the algebra A

(

PC(Ṙ),PCp
)

, studied in
Section 5.6, with the addition of the non-constant sequence (Pτ).

6.6.1 Essentialization

Now we start the second step to analyze the stability of sequences in the algebra
A
(

PC(Ṙ),PCp,(Pτ)
)

: We describe a closed and inverse-closed subalgebra of E /G
in which we have available all the technical tools we need, i.e., we can apply the
lifting theorem, and the corresponding quotient algebra has a useful center.
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Let F denote the set of all sequences A := (Aτ) ∈ E which have the following
properties (all limits are considered with respect to strong convergence as τ → ∞):

• there is an operator W0(A) such that Aτ → W0(A) and A∗
τ → W0(A)∗;

• there are operators W±1(A) such that

V−τAτVτ → W1(A) and (V−τAτVτ)∗ → W1(A)∗

and
VτAτV−τ → W−1(A) and (VτAτV−τ)∗ → W−1(A)∗;

• for each y ∈ R, there is an operator H∞,y(A) such that

Z−1
τ UyAτU−yZτ → H∞,y(A) and (Z−1

τ UyAτU−yZτ)∗ → H∞,y(A)∗;

• for each x ∈ R, there is an operator Hx,∞(A) such that

ZτV−xAτVxZ−1
τ → Hx,∞(A) and (ZτV−xAτVxZ−1

τ )∗ → Hx,∞(A)∗.

Proposition 6.6.1.
(i) The set F is a closed subalgebra of E . The mappings Wi with i ∈ {−1,0,1},

H∞,y with y ∈ R, and Hx,∞ with x ∈ R act as bounded homomorphisms on F ,
and the ideal G of F lies in the kernel of each these homomorphisms.

(ii) The algebra F is inverse-closed in E , and the algebra F/G is inverse-closed
in E /G .

All facts stated in this proposition are either evident, or they follow by arguments
employed in the previous sections. So we omit the details of the proof.

The W- and the H-homomorphisms will play different roles in what follows.
Whereas the W-homomorphisms are needed to define an ideal of F which is subject
to the lifting theorem and for which the quotient algebra has a center which is useful
for applying Allan’s local principle, the family of H-homomorphisms will be used
to identify the corresponding local algebras (of a suitable subalgebra of F ).

Let us turn to the lifting theorem. Let K denote the ideal of the compact opera-
tors on Lp(R), and set

J := {(VτK1V−τ)+(K0)+(V−τK−1Vτ)+(Gτ) : K−1,K0,K1 ∈ K , (Gτ) ∈ G }.

Proposition 6.6.2. J is a closed ideal of F .

Proof. We will only prove that J is indeed a subset of F . Once this is clear, the
remainder of the proof runs completely parallel to that of Proposition 6.4.3.

In order to show that J ⊂ F , we have to show that all strong limits required in
the definition of F exist for the sequences (K0), (V−τK−1Vτ) and (VτK1V−τ) with
compact operators Ki. This is evident for the W-homomorphisms: One clearly has

W−1(V−τK−1Vτ) = K−1, W0(K0) = K0, W1(VτK1V−τ) = K1, (6.24)
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whereas all other W-homomorphisms give 0 when applied to these sequences since
the sequences (V−τ) and (Vτ) are uniformly bounded and tend weakly to zero as
τ → +∞.

We claim that the H-homomorphisms applied to a sequence in J also give zero.
This will follow once we have checked that the sequences

(U−yZτ), (VτU−yZτ), (V−τU−yZτ) and (VxZ−1
τ ), (VτVxZ−1

τ ), (V−τVxZ−1
τ )

are uniformly bounded and converge weakly to zero as τ → +∞ for every choice of
x,y∈R. Since the operators U−y and Vx are independent of τ and since Vx commutes
with Vτ , it is sufficient to check these assertions for the sequences

(Zτ), (VτU−yZτ), (V−τU−yZτ) and (Z−1
τ ), (VτZ−1

τ ), (V−τZ−1
τ ).

For the sequences (Z±1
τ ), this is done in Lemma 4.2.12. For the other sequences,

the uniform boundedness is evident, and for their weak convergence to zero we can
argue similarly to the proof of that lemma. Let Bτ denote any of the operators VτU−y

and V−τU−y with y ∈ R. Then

∣

∣

∣

(

Bτ χ[τa,τb]

)

(x)
∣

∣

∣≤ 1 and
∣

∣

∣

(

B∗
τ χ[c,d]

)

(x)
∣

∣

∣≤ 1

for every possible choice of Bτ , a, b, c, d, τ, s and x. Hence,

∣

∣

∣

〈

χ[c,d] , BτZτ χ[a,b]

〉

∣

∣

∣ =
∣

∣

∣

∣

1

τ1/p

〈

χ[c,d] , Bτ χ[τa,τb]

〉

∣

∣

∣

∣

=
1

τ1/p

∣

∣

∣

∣

∫ d

c
(Bτ χ[τa,τb] )(x)dx

∣

∣

∣

∣

≤ 1

τ1/p
(d − c) → 0

and

∣

∣

∣

〈

χ
[c,d]

, BτZ−1
τ χ

[a,b]

〉

∣

∣

∣ =
∣

∣

∣

∣

τ1/p〈B∗
τ χ[c,d]

, χ
[ a
τ , b

τ ]

〉

∣

∣

∣

∣

= τ1/p

∣

∣

∣

∣

∣

∫ b
τ

a
τ

(B∗
τ χ[c,d]

)(x)dx

∣

∣

∣

∣

∣

≤ τ1/p
(

b
τ
− a
τ

)

→ 0,

which proves the claimed weak convergence since the set of all linear combinations
of functions of the form χ[c,d] is dense both in Lp(R) and in its dual space.

Now the Lifting Theorem 6.3.8 reduces to the following. Note that the stability
of a sequence (Aτ) in F is equivalent to the invertibility of the coset (Aτ) + G
in the quotient algebra F/G due to the inverse-closedness of F/G in E /G by
Proposition 6.6.1.

Theorem 6.6.3. Let A := (Aτ) ∈ F . The sequence A is stable if and only if the
operators W−1(A), W0(A) and W1(A) are invertible in L (Lp(R)) and if the coset
A+J is invertible in the quotient algebra FJ := F/J .
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The goal of the following lemmas is to show that all strong limits required in
the definition of the algebra F exist for the generating sequences of the algebra
A
(

PC(Ṙ),PCp,(Pτ)
)

, which implies that this algebra is a closed subalgebra of F .

Lemma 6.6.4. The strong limit W0(Aτ) 1 exists for the following elements of E :

(i) W0(Pτ) = I;
(ii) W0(aI) = aI for a ∈ PC(Ṙ);

(iii) W0(W 0(b)) = W 0(b) for b ∈ PCp.

Lemma 6.6.5. The strong limit W−1(Aτ) exists for the following elements of E :

(i) W−1(Pτ) = χ+I;
(ii) W−1(aI) = a(−∞)I for a ∈ PC(Ṙ);

(iii) W−1(W 0(b)) = W 0(b) for b ∈ PCp.

Lemma 6.6.6. The strong limit W1(Aτ) exists for the following elements of E :

(i) W1(Pτ) = χ−I;
(ii) W1(aI) = a(+∞)I for a ∈ PC(Ṙ);

(iii) W1(W 0(b)) = W 0(b) for b ∈ PCp.

Indeed, for the constant sequences (aI), these assertions are shown in Lemma
5.4.2, and the remaining assertions are evident. For the H-homomorphisms one has
the following.

Lemma 6.6.7. Let y∈R. The strong limit H∞,y(Aτ) exists for the following elements
of E :

(i) H∞,y(Pτ) = P1;
(ii) H∞,y(aI) = a(−∞)χ−I +a(+∞)χ+I for a ∈ PC(Ṙ);

(iii) H∞,y(W 0(b)) = b(y−)W 0(χ−)+b(y+)W 0(χ+) for b ∈ PCp.

Lemma 6.6.8. Let x∈R. The strong limit Hx,∞(Aτ) exists for the following elements
of E :

(i) Hx,∞(Pτ) = I;
(ii) Hx,∞(aI) = a(x−)χ−I +a(x+)χ+I for a ∈ PC(Ṙ);

(iii) Hx,∞(W 0(b)) = b(−∞)W 0(χ−)+b(+∞)W 0(χ+) for b ∈ PCp.

Indeed, these assertions are easy to check for the sequence (Pτ), and they were
shown in Propositions 5.4.1 and 5.4.3 for the other sequences.

Corollary 6.6.9. A
(

PC(Ṙ),PCp,(Pτ)
)

is a closed subalgebra of the algebra F .

Let us emphasize that for a pure finite sections sequence (Aτ) = (PτAPτ + Qτ)
with (A) a constant sequence in F , the strong limits are given by

W−1(Aτ) = χ+W−1(A)χ+I+χ− I, W0(Aτ) = A, W1(Aτ) = χ−W1(A)χ−I+χ+ I

1 We write W0(Aτ ) and not W0((Aτ )) to make the notation less heavy, but remember that all
homomorphisms act on sequences, and not on particular operators.
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and
H∞,y(Aτ) = P1H∞,y(A)P1 +Q1, Hx,∞(Aτ) = Hx,∞(A)

for all x,y ∈ R.

6.6.2 Localization

The algebra F/J has a trivial center, thus, Allan’s local principle is not helpful to
study invertibility in this algebra. Therefore we are going to look for a subalgebra
F0 of F for which F0/G is inverse-closed in F/G , which contains the ideal J ,
and which has the property that the center of F0/J includes all cosets ( f I)+J
and (W 0(g))+J with f ∈ C(Ṙ) and g ∈ Cp. Note that the inverse-closedness of
F0/G in F/G and, thus, in E /G is needed to guarantee that the invertibility in
F0/G is still equivalent to the stability.

Exercise 1.2.14 offers a way to introduce a subalgebra with the desired proper-
ties. Following this exercise, we consider the set F0 of all sequences in F which
commute with all constant sequences ( f I) and (W 0(g)) where f ∈C(Ṙ) and g ∈Cp

modulo sequences in the ideal J .

Proposition 6.6.10.
(i) The set F0 is a closed subalgebra of F and contains the ideal J .

(ii) The mappings Wi with i ∈ {−1,0,1}, H∞,y with y ∈ R, and Hx,∞ with x ∈ R

act as bounded homomorphisms on F0. The ideal G of F lies in the kernel of
each these homomorphisms, and the ideal J lies in the kernel of each of the
H-homomorphisms.

(iii) The algebra F0 is inverse-closed in E , and the algebra F0/G is inverse-
closed in E /G .

By assertion (i), the lifting theorem applies to study invertibility in F0/G .

Theorem 6.6.11. Let A = (Aτ) ∈ F0. The sequence A is stable if and only if the
operators W−1(A), W0(A) and W1(A) are invertible in L (Lp(R)) and if the coset

A+J is invertible in the quotient algebra F
J
0 := F0/J .

The algebra F0 is still large enough to contain all sequences that interest us.

Proposition 6.6.12. A
(

PC(Ṙ),PCp,(Pτ)
)

is a closed subalgebra of F0.

Proof. We have to show that the generators (aI) with a ∈ PC(Ṙ), (W 0(b)) with
b ∈ PCp, and (Pτ) of A

(

PC(Ṙ),PCp,(Pτ)
)

commute with the constant sequences
( f I) where f ∈C(Ṙ) and (W 0(g)) where g ∈Cp modulo sequences in J . For the
generators which are constant sequences this follows immediately from Proposition
5.3.1. For instance, one has

( f I)(W 0(b))− (W 0(b))( f I) = ( fW 0(b)−W 0(b) f I),
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which is a constant sequence with a compact entry by Proposition 5.3.1 (ii). Hence,
this sequence is in J .

It is evident that (Pτ) commutes with (cI), and it remains to verify that the com-
mutator

(Pτ)(W 0(g))− (W 0(g))(Pτ)

belongs to J for every multiplier g ∈Cp. Write

(PτW 0(g)−W 0(g)Pτ) = (PτW 0(g)Qτ −QτW
0(g)Pτ)

= (Pτ χ+W 0(g)χ+Qτ −Qτ χ+W 0(g)χ+Pτ)

+ (Pτ χ+W 0(g)χ−Qτ −Qτ χ+W 0(g)χ−Pτ)

+ (Pτ χ−W 0(g)χ+Qτ −Qτ χ−W 0(g)χ+Pτ)

+ (Pτ χ−W 0(g)χ−Qτ −Qτ χ−W 0(g)χ−Pτ).

The sequences in the second and third line of the right-hand side of this equality
belong to the ideal G since the operators χ±W 0(g)χ∓I are compact by Proposi-
tion 5.3.1 (ii) and since the Qτ converge strongly to zero. The sequence in last line
can be treated as the sequence in the first line. So we are left to verify that

(Pτ χ+W 0(g)χ+Qτ −Qτ χ+W 0(g)χ+Pτ) ∈ J .

Write this sequence as
(

χ[0,τ ]W
0(g)χ[τ ,∞ [ I −χ[τ ,∞ [ W

0(g)χ[0,τ ]I
)

=
(

Vτ
(

V−τ
(

χ[0,τ ]W
0(g)χ[τ ,∞ [ I −χ[τ ,∞ [ W

0(g)χ[0,τ ]I
)

Vτ
)

V−τ
)

=
(

Vτ
(

χ
[−τ ,0]

W 0(g)χ
[0,∞ [

I −χ
[0,∞ [

W 0(g)χ
[−τ ,0]

I
)

V−τ
)

=
(

Vτ
(

χ
[−τ ,0]

χ−W 0(g)χ+I −χ+W 0(g)χ−χ[−τ ,0]
I
)

V−τ
)

.

Since the operators χ±W 0(g)χ∓I are compact and χ[−τ ,0]I → χ−I strongly as τ →
∞, we conclude that the sequence in the last line of this equality is of the form
(VτKV−τ)+(Gτ) with K compact and (Gτ) ∈ G . Hence, this sequence is in J .

We proceed with localization. Repeating arguments from the proof of Proposi-
tion 6.4.5, one can easily check that the algebra generated by the cosets of con-
stant sequences ( f I)+J and (W 0(g))+J with f ∈C(Ṙ) and g ∈Cp is isomor-
phic to the subalgebra of the Calkin algebra which is generated by f I + K and
W 0(g)+K . From Section 5.6 we infer that the maximal ideal space of the latter
algebra and, thus, of our present central subalgebra, is homeomorphic to the subset
(Ṙ×{∞})∪ ({∞}× Ṙ) of the torus Ṙ× Ṙ.

Given (s, t) ∈ (Ṙ×{∞})∪ ({∞}× Ṙ), let Is,t denote the smallest, closed, two-

sided ideal of the quotient algebra F
J
0 which contains the maximal ideal corre-
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sponding to the point (s, t), and let ΦJ
s,t refer to the canonical homomorphism from

F0 onto the quotient algebra F
J
s,t := F

J
0 /Is,t . In order not to burden the notation,

we write ΦJ
s,t (Aτ) instead of ΦJ

s,t ((Aτ)+J ) for every sequence (Aτ) ∈ F0.

Let (s, t)∈ (Ṙ×{∞})∪({∞}×Ṙ). One cannot expect that the local algebra F
J
s,t

can be identified completely. But we will be able to identify the smallest closed
subalgebra A

J
s,t of F

J
s,t which contains all cosets (Pτ)+Is,t , (aI)+Is,t with a ∈

PC(Ṙ) and (W 0(b))+Is,t with b ∈ PCp, and this identification will be sufficient

for our purposes. We will identify the algebras A
J

s,t by means of the family of H-
homomorphisms. Note that, by Proposition 6.6.10 (ii), the operators H∞,y(A) and
Hx,∞(A) depend only on the coset of the sequence A modulo J . Thus, the quotient
homomorphisms

A+J �→ H∞,y(A) and A+J �→ Hx,∞(A)

are well defined. We denote them again by H∞,y and Hx,∞, respectively.

6.6.3 The local algebras

We start with describing the local algebras A
J

s,∞ .

Theorem 6.6.13. Let s ∈ R. The algebra A
J

s,∞ is isometrically isomorphic to the
subalgebra alg{I,χ+I,W 0(χ+)} of L (Lp(R)), and the isomorphism is given by

ΦJ
s,∞(A) �→ Hs,∞(A). (6.25)

Proof. By definition, Is,∞ is the smallest two-sided ideal of F
J
0 which contains the

cosets ( fW 0(g))+J with f (s) = 0 and g(∞) = 0. From Lemma 6.6.8 we infer that
Hs,∞(Is,∞) = 0. Thus, the homomorphism Hs,∞ is well defined on the quotient alge-

bra A
J

s,∞ . The same lemma also implies that Hs,∞ maps A
J

s,∞ to alg{I,χ+I,W 0(χ+)}.

We claim that the homomorphism Hs,∞ : A J
s,∞ → alg{I,χ+I,W 0(χ+)} is an isom-

etry. This will follow once we have shown that the identity

ΦJ
s,∞(A) =ΦJ

s,∞(VsHs,∞(A)V−s) (6.26)

holds for all generators of the algebra A
(

PC(Ṙ),PCp,(Pτ)
)

in place of the sequence
A. Note that the right-hand side of (6.26) makes sense since the constant sequence
(VsHs,∞(A)V−s) belongs to the algebra F0 by Proposition 6.6.12.

For the generators (aI) and (W 0(b)) with a ∈ PC(Ṙ) and b ∈ PCp of the alge-
bra A

(

PC(Ṙ),PCp,(Pτ)
)

, the identity (6.26) can be proved by analogy with The-
orem 5.5.4. With the generating sequence (Pτ) in place of A, the right-hand side

of (6.26) is the identity element. So we have to show that ΦJ
s,∞(Pτ) is the identity

element of the local algebra.
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Choose y ∈ R greater than |s|, and let fs be a continuous function supported on

the interval ]− y,y[ such that fs(s) = 1. Since ΦJ
s,∞( fsI) is the identity in the local

algebra, we have

ΦJ
s,∞(Qτ) =ΦJ

s,∞( fsI)Φ
J
s,∞(Qτ) =ΦJ

s,∞( fsQτ).

Since fsQτ = 0 for τ sufficiently large, the sequence ( fsQτ)τ>0 belongs to the ideal

G , which implies ΦJ
s,∞(Qτ) = 0. Hence, ΦJ

s,∞(Pτ) = ΦJ
s,∞(I −Qτ) is the identity

element.

The previous theorem implies that, for sequences A ∈ A
(

PC(Ṙ),PCp,(Pτ)
)

,

the coset ΦJ
s,∞(A) is invertible in the local algebra A

J
s,∞ if and only if the operator

Hs,∞(A) is invertible in alg{I,χ+I,W 0(χ+)}. Of course, one would prefer to check
the invertibility of the operator Hs,∞(A) in L (Lp(R)), not in alg{I,χ+I,W 0(χ+)}.
In the present setting, this causes no problem since the algebra alg{I,χ+I,W 0(χ+)}
is inverse-closed in L (Lp(R)) by Corollary 4.2.20. The following proposition and
its proof show how the desired invertibility condition can be derived without any a
priori information on the inverse-closedness of the local algebras.

Proposition 6.6.14. Let A ∈ A
(

PC(Ṙ),PCp,(Pτ)
)

. Then the coset ΦJ
s,∞(A) is in-

vertible in the local algebra F
J
s,∞ if and only if the operator Hs,∞(A) is invertible in

L (Lp(R)).

Proof. For s ∈ R, let Ds,∞ denote the set of all operators A ∈ L (Lp(R)) with the
property that the constant sequence (VsAV−s) belongs to the algebra F0. One easily
checks that Ds,∞ is a closed subalgebra of L (Lp(R)). Moreover, Ds,∞ is inverse-
closed in L (Lp(R)), which can be seen as follows.

Let A ∈ Ds,∞ be invertible in L (Lp(R)). The constant sequence (VsAV−s) is
invertible in the algebra E of all bounded sequences, and its inverse is the se-
quence (VsA−1V−s). Since (VsAV−s) ∈ F0 by hypothesis, and since F0 is inverse-
closed in E by Proposition 6.6.10 (iii), we conclude that (VsA−1V−s) ∈ F0. Hence,
A−1 ∈ Ds,∞.

Now let A ∈ A
(

PC(Ṙ),PCp,(Pτ)
)

. If the coset ΦJ
s,∞(A) is invertible in F

J
s,∞ ,

then Hs,∞(A) is invertible in L (Lp(R)), since Hs,∞ acts as a homomorphism on that
local algebra. Conversely, let Hs,∞(A) be invertible in L (Lp(R)). We know already
that Hs,∞(A) belongs to the algebra alg{I,χ+I,W 0(χ+)}, and one easily checks that
this algebra is contained in Ds,∞. By the inverse-closedness of Ds,∞, the operator
Hs,∞(A) possesses an inverse in Ds,∞. Let B denote this inverse. From BHs,∞(A) = I
we get

(VsBV−s)(VsHs,∞(A)V−s) = (I). (6.27)

Note that the sequences in (6.27) are constant. Since the operators B and Hs,∞(A)
belong to Ds,∞, it is also clear that the sequences in (6.27) belong to F0. Hence, one

can apply the local homomorphism ΦJ
s,∞ to both sides of (6.27), which gives
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ΦJ
s,∞(VsBV−s)Φ

J
s,∞(VsHs,∞(A)V−s) =ΦJ

s,∞(I).

From (6.26) we conclude that ΦJ
s,∞(A) is invertible in F

J
s,∞ .

The following is an immediate consequence of Theorem 6.6.13, Proposition
6.6.14 and the well-known inverse-closedness of the algebra alg{I,χ+I,W 0(χ+)}
in L (Lp(R)).

Corollary 6.6.15. The local algebra A
J

s,∞ is inverse-closed in F
J
s,∞ .

Next we are going to examine the local algebras A
J
∞,t .

Theorem 6.6.16. Let t ∈ R. The algebra A
J
∞,t is isometrically isomorphic to the

subalgebra alg{I,χ+I,P1,W 0(χ+)} of L (Lp(R)), and the isomorphism is given by

ΦJ
∞,t (A) �→ H∞,t(A). (6.28)

Proof. It follows from Lemma 6.6.7, that the operator H∞,t(A) belongs to the alge-

bra alg{I,χ+I,P1,W 0(χ+)} and that this operator depends on the coset ΦJ
∞,t (A) of

the sequence A only. Thus, there is a well-defined homomorphism

A
J
∞,y → alg{I,χ+ I,P1,W

0(χ+)}, ΦJ
∞,t (A) �→ H∞,t(A)

which we denote by H∞,y again. It will follow that this homomorphism is an isome-
try once we have verified the identity

ΦJ
∞,t (A) =ΦJ

∞,t (U−tZτH∞,t(A)Z−1
τ Ut) (6.29)

for all sequences A in A
(

PC(Ṙ),PCp,(Pτ)
)

. This is done as in the proof of Theo-
rem 5.5.3 for the constant generating sequences of A

(

PC(Ṙ),PCp,(Pτ)
)

, and it is
evident for the sequence (Pτ).

The previous theorem can be completed as follows.

Proposition 6.6.17. Let A ∈ A
(

PC(Ṙ),PCp,(Pτ)
)

. Then the coset ΦJ
∞,t (A) is in-

vertible in the local algebra F
J
∞,t if and only if the operator H∞,t(A) is invertible in

L (Lp(R)).

Proof. The proof proceeds as that of Proposition 6.6.14. For t ∈ R, introduce
the algebra D∞,t of all operators A ∈ L (Lp(R)) with the property that the se-
quence (U−tZτAZ−1

τ Ut)τ>0 belongs to the algebra F0. Again one easily checks
that D∞,t is an inverse-closed subalgebra of L (Lp(R)) and that the algebra
alg{I,χ+ I,P1,W 0(χ+)} is contained in D∞,t .

Corollary 6.6.18. The algebra alg{I,χ+I,P1,W 0(χ+)} is inverse-closed in the al-

gebra L (Lp(R)) if and only if the local algebra A
J
∞,t is inverse-closed in F

J
∞,t .
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Our final goal is the local algebra A
J
∞,∞. It is easy to see that this algebra is gener-

ated by the identity element and by the three projectionsΦJ
∞,∞(χ+I),ΦJ

∞,∞(W 0(χ+)),
and ΦJ

∞,∞(Pτ). The following proposition shows that this algebra has a non-trivial
center.

Proposition 6.6.19. The projection ΦJ
∞,∞(χ+I) belongs to the center of A

J
∞,∞.

Proof. One only has to check the relation

ΦJ
∞,∞(W 0(χ+)χ+I) =ΦJ

∞,∞(χ+W 0(χ+)). (6.30)

Choose a continuous and monotonically increasing function χ ′
+ ∈ Cp which takes

the values 0 at −∞ and 1 at +∞. Then, clearly,

ΦJ
∞,∞(χ+I) =ΦJ

∞,∞(χ ′
+I) and ΦJ

∞,∞(W 0(χ+)) =ΦJ
∞,∞(W 0(χ ′

+)).

Since W 0(χ ′
+)χ ′

+I −χ ′
+W 0(χ ′

+) is compact by Proposition 5.3.1 (ii) 3., the equality
(6.30) follows.

Proposition 6.6.19 implies that the local algebra A
J
∞,∞ splits into the direct sum

A
J
∞,∞ = A +

∞,∞+̇A −
∞,∞ (6.31)

where A ±
∞,∞ := ΦJ

∞,∞(χ±I)A J
∞,∞Φ

J
∞,∞(χ±I). The algebras A ±

∞,∞ are unital, and the

cosets ΦJ
∞,∞(χ±I) can be considered as their identity elements. It is evident that the

invertibility of the coset ΦJ
∞,∞(A) in F

J
∞,∞ for A = (Aτ) ∈ A is equivalent to the

invertibility of the two cosets ΦJ
∞,∞(χ±Aτ χ±I) in the algebras A ±

∞,∞, respectively.

(One obtains the same result by localizing the algebra A
J
∞,∞ over its central subal-

gebra described in Proposition 6.6.19; see Exercise 2.2.6.)
Consider the algebra A +

∞,∞. It is another consequence of Proposition 6.6.19 that

this algebra is generated by the two idempotent elements p := ΦJ
∞,∞(Pτ χ+I) and

r :=ΦJ
∞,∞(W 0(χ+)χ+I) and by the identity element e :=ΦJ

∞,∞(χ+I). Thus, the local
algebra A +

∞,∞ is subject to the two projections Theorem 3.1.4. To apply this theorem,
we have to determine the spectrum of the element

X := prp+(e− p)(e− r)(e− p) =ΦJ
∞,∞
(

PτW
0(χ+)Pτ χ+I +QτW

0(χ−)Qτ χ+I
)

in the local algebra A +
∞,∞. The following simple lemma will be useful. Let H de-

note the smallest closed subalgebra of E which contains the sequence (Pτ) and all
constant sequences of homogeneous operators in L (Lp(R)).

Lemma 6.6.20. Let (Bτ) ∈ H . Then (Bτ) is invertible in E if and only if (Bτ)+G
is invertible in E /G if and only if B1 is invertible in L (Lp(R)).

Indeed, Z−1
τ BτZτ = B1 for every τ > 0.
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Let I be the closed interval between 1/p and 1− 1/p and define Lp := ∪α∈IAα
where Aα is defined in (3.44) (see Figure 6.1).

Fig. 6.1 The lens Lp for p = 3 (or p = 3/2). If p = 2 it would be just the straight line between the
points 0 and 1.

Proposition 6.6.21. The spectrum of the element X in each of the algebras F
J
∞,∞,

A
J
∞,∞ and A +

∞,∞ is Lp.

Proof. Our first goal is to prove that the spectrum of X in F
J
∞,∞ is Lp. It is easy to

see that this fact will follow once we have shown that both the spectrum of prp and
the spectrum of (e− p)(e− r)(e− p) coincides with Lp. Since both spectra can be
determined in the same way, we will only demonstrate that the spectrum of prp is
Lp. Let σs,t(A) refer to the spectrum of the coset ΦJ

s,t (A) in F
J
s,t . We claim that

σ∞,∞(Pτ χ+W 0(χ+)χ+Pτ) = Lp. (6.32)

By Lemma 6.6.20, the spectrum of the coset
(

Pτ χ+W 0(χ+)χ+Pτ
)

+G (6.33)

in E /G is equal to the spectrum of the operator

P1χ+W 0(χ+)χ+P1 = χ[0,1]W (χ+)χ[0,1]I

on Lp ([0,1]). The spectrum of this operator is the lentiform domain Lp as we infer
from [120, Chap. 6, Theorem 6.2]. Since F0/G is inverse-closed in E /G by Propo-
sition 6.6.10 (iii), the spectrum of (6.33) is also Lp, which implies that the spectrum

of prp in F
J
∞,∞ is indeed contained in Lp.

For the reverse inclusion, we argue as follows. Let a be a multiplier which is
continuous on R, has the one-sided limits a(−∞) = 0 and a(+∞) = 1, and which
has the circular arc A1/p as its range. Then, evidently,

σ∞,∞(Pτ χ+W 0(χ+)χ+Pτ) = σ∞,∞(Pτ χ+W 0(a)χ+Pτ). (6.34)

From [21, Theorem 9.46] we infer that the finite sections method applies to the
Wiener-Hopf operator W (a−λ ) if and only if λ �∈ Lp. Thus, the spectrum of the
coset (Pτ χ+W 0(a)χ+Pτ)+G is Lp.
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Next we show that the spectrum of (Pτ χ+W 0(a)χ+Pτ)+J is also Lp. Clearly,
this spectrum must be contained in Lp. Now let λ ∈ C be such that

(Pτ χ+W 0(a)χ+Pτ −λ I)+J

is invertible. Thus, there are a sequence (Bτ) ∈ F0 and a sequence (Jτ) ∈ J such
that

(

Pτ χ+W 0(a)χ+Pτ −λ I)
)

Bτ = I + Jτ .

We multiply this equality from the left by Z−1
τ and from the right by Zτ to obtain

(χ[0,1]Z
−1
τ W (a)Zτ χ[0,1] −λ I)(Z−1

τ BτZτ) = I +Z−1
τ JτZτ .

Letting τ go to zero we get
(

χ[0,1]W (χ+)χ[0,1] −λ I
)

B = I

with a certain operator B (see Proposition 5.4.3 (ii)). The invertibility of
χ[0,1]W (χ+)χ[0,1] − λ I from the other side follows analogously. Thus, λ does not
belong to the spectrum of χ[0,1]W (χ+)χ[0,1] on Lp(R), which is Lp.

Abbreviate A := (Pτ χ+W 0(a)χ+Pτ). Since the spectrum if A+J is Lp, Allan’s
local principle implies that

∪s∈R σs,∞(A)
⋃

∪t∈Rσ∞,t(A)
⋃

σ∞,∞(A) = Lp. (6.35)

The local spectra σs,∞(A) and σ∞,t(A) (with finite s, t) can be determined via Propo-
sitions 6.6.14 and 6.6.17. They imply that, in each case, the local spectrum is con-
tained in the circular arc A1/p, which is contained in the boundary of Lp. Hence,
and by (6.35), the interior of Lp must be contained in σ∞,∞(A). But then all of Lp is
contained in that local spectrum, which proves the claim (6.32).

Now the proof of the proposition can be completed as follows. As we have just
seen, the spectrum of X in F

J
∞,∞ is Lp. Since Lp is simply connected in C, the

spectrum of X in the subalgebra A
J
∞,∞ of F

J
∞,∞ also coincides with Lp. Finally,

the finite sum decomposition (6.31) and the fact that X belongs to the summand
A +
∞,∞ in this sum imply that the spectrum of X in A +

∞,∞ also coincides with Lp.
(The formal argument is that if A is an element of an algebra A with identity I
and if P is an idempotent in that algebra such that (I −P)A = A(I −P) = 0, then
A−λ I = PAP−λP−λ (I−P) is invertible in A if and only if PAP−λP is invertible
in PA P and λ �= 0.)

A similar description holds for the algebra A −
∞,∞.

The following proposition summarizes the results obtained for the case (s, t) =
(∞,∞). Define functions ̂P, p̂, r̂ : Lp → C

4×4 by
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̂P : x �→

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

, p̂ : x �→

⎡

⎢

⎢

⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤

⎥

⎥

⎦

and

r̂ : x �→

⎡

⎢

⎢

⎣

x
√

x(1− x) 0 0
√

x(1− x) 1− x 0 0
0 0 x

√

x(1− x)
0 0

√

x(1− x) 1− x

⎤

⎥

⎥

⎦

.

Here
√

x(1− x) stands for any complex number c with c2 = x(1−x). Note that these
4×4 matrices have a 2×2-block diagonal structure, which reflects the decomposing
property of the local algebra at (∞,∞).

Proposition 6.6.22.
(i) The mapping Ψ which sends the local cosets ΦJ

∞,∞(χ+I), ΦJ
∞,∞(Pτ) and

ΦJ
∞,∞(W 0(χ+)) to the functions ̂P, p̂ and r̂ extends to a homomorphism from

the algebra A
J
∞,∞ into the algebra of all bounded, 4× 4 matrix-valued func-

tions on Lp.

(ii) Let A ∈ A
(

PC(Ṙ),PCp,(Pτ)
)

. Then the coset ΦJ
∞,∞(A) is invertible in F

J
∞,∞

if and only if the associated functionΨ(ΦJ
∞,∞) is invertible.

Note that the intersection of each of the intervals ]−∞,0 [ and ]1,∞ [ with the
lens Lp is empty. Hence, the values of the function x �→ x(1− x) on Lp do not meet
the negative real axis ]−∞,0[ . One can therefore choose the square roots

√

x(1− x)
in such a way that r̂ becomes a continuous function on Lp, andΨ becomes a homo-
morphism into C(Lp,C

4×4).

6.6.4 The main result

Having identified all local algebras, we can now state the main result of this section.
Write H∞,∞(A) for the function Ψ(ΦJ

∞,∞). Recall also the definition of the algebra
A := A (PC(Ṙ),PCp,(Pτ)

)

as the smallest closed subalgebra of E which contains
the constant sequences (aI) with a ∈ PC(Ṙ) and (W 0(b)) with b ∈ PCp, the se-
quence (Pτ) and the ideal G .

Theorem 6.6.23. A sequence A ∈ A is stable if and only if the operators W−1(A),
W0(A) and W1(A) and the operators Hs,∞(A) and H∞,t(A) with s, t ∈ R are invert-
ible in L (Lp(R)) and if the matrix function H∞,∞(A) is invertible.

Making Theorem 6.6.23 specific to the case when (Aτ) is a sequence of finite
sections yields the following.



348 6 Algebras of operator sequences

Theorem 6.6.24. Let A be an operator in the smallest subalgebra of L (Lp(R))
which contains the operators aI with a ∈ PC(Ṙ) and W 0(b) with b ∈ PCp. Then the
finite sections method

(PτAPτ +Qτ)uτ = f

applies to the operator A if and only if the operators

χ+W−1(A)χ+I +χ−I, A, and χ−W1(A)χ−I +χ+I

and the operators

Hs,∞(A) and P1H∞,t(A)P1 +Q1 with s, t ∈ R

are invertible in L (Lp(R)), and if the function H∞,∞(PτAPτ +Qτ) is invertible.

Formally, we proved Theorem 6.6.23 for the scalar case. For matrix-valued func-
tions a ∈ [PC(Ṙ)]n×n and b ∈ [PCp]n×n, the proof remains essentially the same. This
covers, for example, systems of singular integral equations and systems of Wiener-
Hopf operators. Obviously, the operators resulting from homomorphisms will then
have matrix coefficients, and it can prove difficult to study the invertibility of these
operators. Note that a non-scalar version of the two projections theorem was stated
in Section 3.5.1.

6.6.5 Some examples

We are going to present two simple examples where Theorem 6.6.24 works. Con-
sider the singular integral operator

A := cW 0(χ+)+dW 0(χ−) (6.36)

with coefficients c, d ∈ PC(Ṙ). Clearly, this operator can be written in the form

c+d
2

I +
c−d

2
SR.

Theorem 6.6.25. The finite sections method (6.2) applies to the singular integral
operator A in (6.36) if and only if the operator A is invertible on Lp(R) and the
operator

P1
(

(c(−∞)χ− + c(+∞)χ+)W 0(χ+)+(d(−∞)χ− +d(+∞)χ+)W 0(χ−)
)

P1

is invertible on Lp([−1, 1]).

Proof. Let A := (PτAPτ + (I − Pτ))τ>0. By Theorem 6.6.24, the sequence A is
stable and, hence, the finite sections method applies to A, if and only if the following
operators are invertible:
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(i) W0(A) = cW 0(χ+)+dW 0(χ−);
(ii) W−1(A) = χ+

(

c(−∞)W 0(χ+)+d(−∞)W 0(χ−)
)

χ+I +χ−I;
(iii) W1(A) = χ−

(

c(+∞)W 0(χ+)+d(+∞)W 0(χ−)
)

χ−I +χ+I;
(iv) Hx,∞(A) = (c(x−)χ− + c(x+)χ+)W 0(χ+)+(d(x−)χ− +d(x+)χ+)W 0(χ−)

for x ∈ R;
(v) H∞,0(A) = Q1 +

P1
(

(c(−∞)χ− + c(+∞)χ+)W 0(χ+)+(d(−∞)χ− +d(+∞)χ+)W 0(χ−)
)

P1;
(vi) H∞,t(A) = P1(c(−∞)χ− + c(+∞)χ+)P1 +Q1 for t > 0;

H∞,t(Aτ) = P1(d(−∞)χ− +d(+∞)χ+)P1 +Q1 for t < 0;

(vii) (H∞,∞(A))(z) =

⎡

⎢

⎢

⎣

c(+∞)z+d(+∞)(1− z) 0 0 0
0 1 0 0
0 0 c(−∞)z+d(−∞)(1− z) 0
0 0 0 1

⎤

⎥

⎥

⎦

for z ∈ Lp.

Thus, the conditions stated in the theorem are necessary: the operators quoted there
are W0(A) and H∞,0(A), respectively. To prove the sufficiency, we have to show that
the invertibility of W0(A) and H∞,0(A) implies the invertibility of all other operators
in (i)–(vii).

Let x ∈ R. Since Hx,∞(A) = Hx,∞(A) by Lemma 6.6.8, the invertibility of A im-
plies that of Hx,∞(A). Further, if H∞,0(A) is invertible then the sequence

B := (Pτ((c(−∞)χ− + c(+∞)χ+)W 0(χ+)

+ (d(−∞)χ− +d(+∞)χ+)W 0(χ−))Pτ +Qτ)

is stable by Lemma 6.6.20. Since W−1(A) = W−1(B) and W1(A) = W1(B) by
Lemmas 6.6.5 and 6.6.6, respectively, then the operators W−1(A) and W1(A) are
invertible.

Similarly, if t ∈ R \ {0}, then H∞,t(A) = H∞,t(B) by Lemma 6.6.7, which ver-
ifies the invertibility of the operators H∞,t(A). Finally, the matrix function (vii) is
invertible if and only if the point 0 does not belong to the lentiform domains

1+
(

c(+∞)
d(+∞)

−1

)

Lp and 1+
(

c(−∞)
d(−∞)

−1

)

Lp.

That the invertibility of W0(A) and H∞,0(A) also implies this condition follows by
employing the invertibility criterion for singular integral operators in [74, Section
9.6, Theorem 6.1].

In the case p = 2, part of the conditions of Theorem 6.6.25 can be nicely formu-
lated in geometric terms.
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Corollary 6.6.26. Let p = 2. The finite sections method (6.2) applies to the singular
integral operator A in (6.36) if and only if the operator A is invertible on L2(R) and

if the point 0 is not contained in the convex hull of the points 1, c(−∞)
d(−∞) and c(+∞)

d(+∞) .

Indeed, this follows from the previous theorem and the invertibility criterion for
singular integral operators since L2 is the interval [0,1].

For a second illustration of Theorem 6.6.24, let A now be the paired operator

A = W 0(a)χ+I +W 0(b)χ−I (6.37)

with a,b ∈ PCp.

Theorem 6.6.27. The finite sections method (6.2) applies to the paired operator
A in (6.37) if and only if the operator A is invertible on Lp(R), the Wiener-Hopf
operators W (b) and W (ã) are invertible on Lp(R+), the operator

P1
(

(a(y−)W 0(χ−)+a(y+)W 0(χ+))χ+I +(b(y−)W 0(χ−)+b(y+)W 0(χ+))χ−I
)

P1

is invertible on Lp([−1,1]) for every y ∈ R, and the point 0 does not belong to the
lentiform domains

a(−∞)+(a(+∞)−a(−∞))Lp and b(+∞)+(b(−∞)−b(+∞))Lp.

Proof. Let again A := (PτAPτ +(I−Pτ))τ>0. Theorem 6.6.24 implies that the finite
sections method for the operator A is stable if and only if the following operators
are invertible:

(i) W0(A) = A;

(ii) W−1(A) = χ+W 0(b)χ+I +χ−I;

(iii) W1(A) = χ−W 0(a)χ−I +χ+I;

(iv) H0,∞(A) =
(

a(−∞)W 0(χ−)+a(+∞)W 0(χ+)
)

χ+I

+
(

b(−∞)W 0(χ−)+b(+∞)W 0(χ+)
)

χ−I;

(v) Hx,∞(A) = a(−∞)W 0(χ−)+a(+∞)W 0(χ+) if x > 0;

Hx,∞(A) = b(−∞)W 0(χ−)+b(+∞)W 0(χ+) if x < 0;

(vi) H∞,y(A) = Q1 +P1((a(y−)W 0(χ−)+a(y+)W 0(χ+))χ+I

+(b(y−)W 0(χ−)+b(y+)W 0(χ+))χ−I)P1 for y ∈ R;

(vii) (H∞,∞(A))(z) =

⎡

⎢

⎢

⎣

a(−∞)(1− z)+a(+∞)z 0 0 0
0 1 0 0
0 0 b(−∞)z+b(+∞)(1− z) 0
0 0 0 1

⎤

⎥

⎥

⎦

,

for z ∈ Lp.

The invertibility of the operators W−1(A) and W1(A) is equivalent to the in-
vertibility of the Wiener-Hopf operators W (b) and W (ã), respectively. Thus, the
conditions of the theorem are necessary. We show that, conversely, the invertibility
of the operator A implies the invertibility of the operators in (iv) and (v). This fact
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follows immediately from Lemma 6.6.8, where it is shown that Hx,∞(A) = Hx,∞(A)
for every x ∈ R.

Corollary 6.6.28. Let p = 2. The finite sections method (6.2) applies to the paired
operator A in (6.37) if and only if the operator A is invertible on L2(R), the Wiener-
Hopf operators W (b) and W (ã) are invertible on L2(R+) and if, for every y ∈ R,

the point 0 is not contained in the convex hull of the points 1, a(y−)
a(y+) and b(y−)

b(y+) .

6.7 Finite sections of multidimensional convolution type
operators

In this section, we will have a look at different versions of the finite section method
for multidimensional convolution type operators in the sense of Section 5.8. The
notation is as in that section. In particular, W 0

a stands for the operator of convolu-
tion by the function a ∈ L1(RN) (see (5.50) for the definition), and we consider all
operators on Lp(RN) with 1 < p < ∞.

For simplicity, we will also assume throughout this section that N = 2. But the
reader will notice that the approach presented in this section will work for N > 2
as well. Let us also agree upon the following notion: If K is a cone with vertex at
the origin and x ∈ R

2, then we call the algebraic sum K + x a cone with vertex at x.
Recall also from Section 5.8 that we do not allow cones to degenerate to a line, but
it will be convenient in this section to consider half planes as cones.

6.7.1 Algebras in the background

Let E be the set of all sequences (An)n∈N of operators in L
(

Lp(R2)
)

such that
sup‖An‖ < ∞. As before, E actually forms a Banach algebra and G , the set of all
sequences in E tending in the norm to zero, is a closed two-sided ideal in E . Due to
Theorem 6.2.2, the stability of a sequence (An) ∈ E is equivalent to the invertibility
of its coset (An)+G in the quotient algebra E /G =: E G .

The algebra E G is in general too large for studying invertibility effectively (e.g.,
by central localization). So, following the general procedure outlined at the begin-
ning of the chapter, we are going to introduce subalgebras which are more suitable
for our purposes. To each function ϕ ∈C(R2), we associate a sequence (ϕnI), given
by the expanded functions ϕn(t) := ϕ(t/n). Clearly, this sequence belongs to E ,
and ‖(ϕnI)‖E = ‖ϕ‖∞. We denote by U the smallest closed subalgebra of E which
contains all sequences (An) ∈ E such that

lim
n→∞

‖AnϕnI −ϕnAn‖ = 0 for every ϕ ∈C(R2).
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Thus, the commutator (An)(ϕnI)− (ϕnI)(An) belongs to G for every ϕ ∈ C(R2).
The following is then easy to check (see Exercise 1.2.14).

Theorem 6.7.1. The algebra U G := U /G is inverse-closed in E G .

Thus, the stability of a sequence (An) ∈U is equivalent to the invertibility of the
coset (An)+G in the algebra U /G =: U G . By its construction, the latter algebra
has a non-trivial center. In particular, the set {(ϕnI)+G : ϕ ∈ C(R2)} is a central
C∗-subalgebra of U G . We shall prove later on that this algebra is isometrically
isomorphic to C(R2) in a natural way. Hence, one can localize the algebra U G over
the space of maximal ideals of C(R2) by Allan’s local principle. As previously seen
at the beginning of Section 5.8, the maximal ideal space R2 can be thought of as the
union of R

2 and an “infinitely distant” sphere (a circle in the case N = 2).
To each x ∈ R2, we associate the maximal ideal Ix := {(ϕnI)+G : ϕ(x) = 0}

of C(R2) and the smallest closed ideal Jx of U G which contains Ix. Let U G
x :=

U G /Jx refer to the associated quotient algebra and Φx : U G → U G /Jx to the
corresponding canonical homomorphism. The following result characterizing the
ideals Jx is an immediate consequence of Proposition 2.2.4.

Proposition 6.7.2. Let x ∈ R2. The coset (An) + G belongs to Jx if and only if,
for every ε > 0, there is a ϕ ∈ C(R2), depending on ε , with compact support and
ϕ(x) = 1 such that, for n large enough, ‖AnϕnI‖ < ε .

6.7.2 The algebra F of the finite sections method

The shape of the finite sections will be prescribed by a compact subset Ω of R
2

which contains the origin and has the following properties:

• for every point x ∈ ∂Ω , there is a cone Kx at x, open neighborhoods U and V of
x, and a C1-diffeomorphism ρ : U →V such that

ρ(x) = x, ρ ′(x) = I, ρ(U ∩Ω) = V ∩Kx;

• if x = 0 ∈ ∂Ω we require moreover that the associated diffeomorphism ρ is the
identity and Ω ⊂ K0.

Note that the cone Kx is uniquely defined for every x ∈ ∂Ω .
For x∈ ∂Ω , let K0

x be the cone {t−x : t ∈Kx}. The finite sections are then defined
by the projection operators χnΩ I, where nΩ denotes the expanded set {nt : t ∈ Ω},
n ∈ N, and χL stands, as usual, for the characteristic function of the set L. The
following is almost obvious, and we omit the proof.

Proposition 6.7.3. The sequence (χnΩ I) converges strongly, as n → ∞,

(i) to the identity operator I if 0 is an inner point of Ω ;
(ii) to χK0

I if 0 ∈ ∂Ω , where K0 is the cone associated with the point 0.
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We will consider the finite sections of operators of the form

B := χKAχKI +(1−χK)I

with A in the algebra

A0 := alg{W 0
a , f I : f ∈C(R2), a ∈ L1(R2)}

with respect to the sequence of projections (χnΩ I). More precisely, we consider the
smallest closed subalgebra F of E which contains all sequences

• (χnΩAχnΩ I +(1−χnΩ ) I) with A in A0,
• (Gn) with (Gn) ∈ G .

The next result implies that F is actually a subalgebra of U .

Proposition 6.7.4. Let a ∈ L1(R2) and ϕ ∈C(R2). Then ‖ϕnW 0
a −W 0

a ϕnI‖→ 0 as
n → ∞.

Proof. By definition, we have

(ϕnW 0
a −W 0

a ϕnI)v =
∫

R2
a(x− t)

(

ϕ
( x

n

)

−ϕ
( t

n

))

v(t)dt,

where v ∈ Lp(R2). Functions in L1(R2) can be approximated by functions with
compact support, so we assume that the support of the function a is contained in the
ball BR(0) of radius R. If |x− t|> R then a(x− t) = 0. For |x− t| ≤ R we would like
to show that, given ε > 0 and n large enough,

∣

∣

∣ϕ
( x

n

)

−ϕ
( t

n

)∣

∣

∣<
ε
‖a‖ .

The idea is to use the uniform continuity of the function ψ = ϕ ◦ ξ , where ξ is
the homeomorphism from B1(0) onto R2 which coincides with ξ on B1(0) (see
Section 5.8), and the inequality

|u− s| ≤
∣

∣

∣

∣

u
1−|u| −

s
1−|s|

∣

∣

∣

∣

for u,s ∈ B1(0), (6.38)

which follows immediately from the inequality

|x− y| ≥
∣

∣

∣

∣

x
1+ |x| −

y
1+ |y|

∣

∣

∣

∣

derived in (5.53) after the change of variables s = x/(1 + |x|) and u = y/(1 + |y|).
From (6.38) we conclude that

|u− s| ≤ |ξ (u)−ξ (s)| for all u,s ∈ B1(0).

Setting u = ξ−1(x/n) and s = ξ−1(t/n) we obtain
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∣

∣

∣ξ−1
( x

n

)

−ξ−1
( t

n

)∣

∣

∣≤
∣

∣

∣

x
n
− t

n

∣

∣

∣≤
R
n

.

The function ψ is uniformly continuous, that is, for each ε > 0 there is a δ > 0 such
that

y,z ∈ B1(0) and |y− z| < δ implies |ψ(y)−ψ(z)| < ε
‖a‖ .

Now choose n0 such that R/n < δ for n ≥ n0. Then

∣

∣

∣ψ
(

ξ−1
( x

n

))

−ψ
(

ξ−1
( t

n

))∣

∣

∣=
∣

∣

∣ϕ
( x

n

)

−ϕ
( t

n

)∣

∣

∣<
ε
‖a‖

for every n ≥ n0. Therefore,

∥

∥(ϕnW 0
a −W 0

a ϕnI)v
∥

∥≤ ε
‖a‖

∥

∥W 0
a v
∥

∥≤ ε‖v‖.

For the next proposition, recall the definition of the shift operator Vk : Lp(R2) →
Lp(R2), (Vkv)(s) := v(s− k). Evidently, Vk is a bijective isometry with inverse V−k.

Proposition 6.7.5. Let f ,ϕ ∈C(R2), a ∈ L1(R2), (Gn) ∈ G and x ∈ R
2. Then

(i) s-limn→∞V−nxW 0
a Vnx = W 0

a ;
(ii) s-limn→∞V−nx fVnx = f (θ∞)I if x �= 0 where θ satisfies eiθ = x/|x|;

(iii) s-limn→∞V−nxϕnVnx = ϕ(x);
(iv) s-limn→∞V−nxGnVnx = 0;
(v) s-limn→∞V−nxχnΩVnx is χK0

x
I, I, or 0 depending on x ∈ ∂Ω , x ∈ intΩ or x ∈

R2\Ω ;
(vi) s-limn→∞V−nxχnKxVnx = χK0

x
I, for x ∈ ∂Ω .

Proof. Assertions (i) and (iv) are obvious, and (ii) is already proved in Proposi-
tion 5.8.5. The proof of (iii) follows easily if one uses

V−nxϕnVnxv = ϕ̆nv with ϕ̆n(t) := ϕ(t/n+ x).

Assertions (v) and (vi) are left to the reader as an exercise.

Corollary 6.7.6. The algebra C := {(ϕnI)+G : ϕ ∈ C(R2)} is isometrically iso-
morphic to C(R2) in the natural way.

Indeed, this can be proved in the same way as Proposition 5.8.7.
By FG we denote the image of F in U G under the canonical homomorphism.

Our main task is to study the invertibility of elements of the form Φx ((An)+G ) in
U G

x , with (An)+G ∈FG . In order to avoid complicated notation, as usual, we shall
use also Φx for the composition Φx ◦ π , where π is the canonical homomorphism
from U onto U G . Accordingly, we write Φx(An) in place of Φx ((An)+G ).
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Proposition 6.7.7. Let x ∈ R2 and f ∈C(R2). Then:

(i) Φx( f I) = f (θ∞)Φx(I) for x �= 0;
(ii) Φx(χnΩ I) = 0 if x ∈ R2 \Ω and Φx(χnΩ I) = I if x ∈ intΩ .

Proof. Regarding (i), first suppose that x ∈ R
2 \ {0} and eiθ = x/|x|. Recall that

f (θ∞) denotes the limit limt→∞ f (teiθ ). Since f ∈C(R2), given ε > 0 there exists a
neighborhood UR,δ (θ∞) of θ∞ as defined in (5.49), such that | f (t)− f (θ∞)| < ε for
every t ∈UR,δ (θ∞).

Let ϕ ∈C(R2) with ϕ(x) = 1 be a function, the support of which is contained in
a ball centered on x not including zero and also contained in UR,δ (θ∞). Then, for n
large enough, supp ϕn ⊂UR,δ (θ∞), whence

‖( f − f (θ∞))ϕnI‖ < ε.

Thus, from Proposition 6.7.2 it follows that

( f − f (θ∞)) I +G ∈ Jx.

The proof for x = θ∞ ∈ R2 \R
2 is similar. If we choose ϕ with support contained

in UR,δ (θ∞) and with ϕ(θ∞) = 1, then supp ϕn ⊂ UR,δ (θ∞) for every n ≥ 1. So,
‖( f − f (θ∞))ϕnI‖ < ε for every n ≥ 1. Assertion (i) is verified, and assertion (ii) is
immediate from Proposition 6.7.2.

For x ∈ ∂Ω these considerations are more complex. We start with introducing a
Banach algebra Dx for each point x ∈ ∂Ω as follows. For x ∈ ∂Ω , let FKx stand
for the set of all bounded sequences (An) of operators An : Im χnKx I → Im χnKx I
and write GKx for the set of all sequences in FKx which tend to zero in the norm.
With respect to pointwise defined operations and the supremum norm, FKx becomes
a Banach algebra and GKx a closed ideal of FKx . If now x ∈ ∂Ω \ {0}, then Dx is
defined as the smallest closed subalgebra of FKx which contains the ideal GKx and all
sequences of the form (χnKx AχnKx I +(1−χnKx)I) with A ∈ alg{W 0

a , I : a ∈ L1(R2)}.
If x ∈ ∂Ω ∩{0}, then let D0 denote the smallest closed subalgebra of FK0 which
contains the ideal GK0 and all sequences of the form (χnK0AχnK0I + (1− χnK0)I)
with A ∈ alg{W 0

a , f I : a ∈ L1(R2), f ∈C(R2)}.
These algebras will play a crucial role in the stability analysis because, as we

shall prove, Φx(FG ) is isometrically isomorphic to Φx(Dx). For this purpose we
have to introduce some intermediate algebras, namely the algebras Ux ⊂ U , which
will be the object of the next section.

6.7.3 The algebra U and the subalgebras Ux

Recall that, to each x∈ ∂Ω , we associated a C1-diffeomorphism ρ : U →V where U
and V are neighborhoods of x, and that in the case 0 ∈ ∂Ω we supposed that ρ ≡ I.
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Thus, if x = 0 and 0 ∈ ∂Ω , then χnΩχnU I = χnK0χnU I, which implies that
Φx (χnΩ I) = Φx

(

χnK0I
)

and that the algebras Φx(FG ) and Φx(DG
x ) coincide. So,

from now on let x be a fixed point in ∂Ω \{0}.
The following operators will help us to describe the local algebras:

Tn : Lp(R2) → Im χnU I ⊂ Lp(R2), (Tnv)(t) =
{

v
(

nρ
(

t
n

))

if t ∈ nU,
0 if t /∈ nU ;

and

T (−1)
n : Lp(R2) → Im χnV I ⊂ Lp(R2),

(

T (−1)
n v

)

(t) =
{

v
(

nρ−1
(

t
n

))

if t ∈ nV,
0 if t /∈ nV.

Proposition 6.7.8. Tn and T (−1)
n are bounded linear operators satisfying

(i) ‖Tn‖ ≤ supt∈V |Jρ−1 (t) | and
∥

∥T (−1)
n

∥

∥ ≤ supt∈U |Jρ (t) |, where J stands for
the Jacobian;

(ii) TnT (−1)
n = χnU I and T (−1)

n Tn = χnV I;

(iii) χnU TnχnV I = Tn and χnV T (−1)
n χnU I = T (−1)

n .

Assertion (ii) says that Tn and T (−1)
n are locally inverse to each other.

Proof. For (i), let g ∈ Lp(R2). Then

‖Tng‖p =
∫

nU
|g(nρ(t/n))|pdt =

∫

nV
|g(s)|p|Jρ−1(s/n)|pds

≤ sup
s∈V

|Jρ−1(s)|p
∫

nV
|g(s)|pds,

whence
‖Tng‖ ≤ sup

s∈V
|Jρ−1(s)|‖g‖Lp .

Analogously, one finds the upper bound for the norm of the operator T (−1)
n . Asser-

tions (ii) and (iii) are immediate.

Proposition 6.7.9. The operator

Hρ : U → U , (An) �→
(

T (−1)
n AnTn

)

has the following properties:

(i) Hρ is a well-defined linear operator;
(ii) if W ⊂U then Hρ (χnW I) = χnρ(W )I;

(iii) the ideal G is invariant under Hρ , i.e., Hρ(G ) ⊂ G ;
(iv) if the coset An +G belongs to Jx, then Hρ(An)+G also belongs to Jx.

Analogous assertions hold for the operator H(−1)
ρ : U → U ,(An) �→

(

TnAnT (−1)
n

)

.
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Proof. To prove the first assertion, let ϕ ∈ C(R2). One has to show that Hρ(An)
commutes with (ϕnI) modulo a sequence tending in the norm to zero, i.e., that there
is a (Gn) ∈ G such that

T (−1)
n AnTnϕn = ϕnT (−1)

n AnTn +Gn. (6.39)

Let ρ̃ and ˜ρ−1 denote the continuous extensions to R2 of ρ and ρ−1, respectively.
Observe first, that due to Proposition 6.7.8 (iii),

TnϕnI = (ϕ ◦ ρ̃)nTn and T (−1)
n ϕn =

(

ϕ ◦˜ρ−1
)

n
T (−1)

n .

Thus,
T (−1)

n AnTnϕnI = T (−1)
n An(ϕ ◦ ρ̃)nTn.

Since there is a sequence (Fn)∈ G such that An(ϕ ◦ ρ̃)n = (ϕ ◦ ρ̃)nAn +Fn, it follows
that

T (−1)
n An(ϕ ◦ ρ̃)nTn = T (−1)

n [(ϕ ◦ ρ̃)nAn +Fn]Tn

=
(

ϕ ◦ ρ̃ ◦˜ρ−1
)

n
T (−1)

n +T (−1)
n FnTn

= ϕnT (−1)
n +T (−1)

n FnTn.

Now set Gn := T (−1)
n FnTn to obtain the equality (6.39).

Regarding assertion (ii), let g be a function in Lp(R2) and W ⊂U . Then

Hρ (χnW )g = T−1
n χnW Tng = T−1

n χnW g
(

nρ
( t

n

))

= χnρ(W )g.

Assertion (iii) is immediate. For Assertion (iv), let (An)+G ∈ Jx. Thus, given
ε > 0, there is a neighborhood W ⊂U of x such that for n large enough

‖AnχnW I‖ < ε.

Since Hρ (An(1−χnU)) = 0, we have that Hρ (An) = Hρ (AnχnU ). By simple com-
putations and (ii) it follows that

Hρ (AnχnW I) = Hρ (AnχnUχnW I) = Hρ (AnχnU)Hρ (χnW I) = Hρ (An)χnρ(W )I.

On the other hand,

‖Hρ (AnχnW I)‖ = ‖T (−1)
n AnχnW Tn‖.

Since ‖Tn‖ and ‖T (−1)
n ‖ are bounded by supt∈V |Jρ−1 (t) | and supt∈U |Jρ (t) |, re-

spectively, we get for n large enough that

‖Hρ (An)χnρ(W )I‖ < Mε
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for some constant M. Since ρ(W ) is a neighborhood of x, it follows that the coset
Hρ (An)χnρ(W )I +G belongs to Jx.

It should be emphasized that the linear operators Hρ and H(−1)
ρ depend on the

point x ∈ ∂Ω\{0}. These operators do not act as homomorphisms, but they gener-
ate quotient homomorphisms in the local algebra U G /Jx. Indeed, due to Proposi-
tion 6.7.9, the map

hρ : U G /Jx → U G /Jx, ((An)+G )+Jx �→ (Hρ(An)+G )+Jx (6.40)

is well defined. Since (1−χnU
I)+G ∈ Jx, Proposition 6.7.8 (ii) leads to

(

Hρ(An)Hρ(Bn)+G
)

+Jx =
(

Hρ(AnχnU
Bn)+G

)

+Jx

=
(

Hρ(AnBn)+G
)

+Jx.

Hence, hρ is a homomorphism and actually an isomorphism, having

h−1
ρ : U G /Jx → U G /Jx, (An +G )+Jx �→

(

H(−1)
ρ (An)+G

)

+Jx

as its inverse.

Proposition 6.7.10. Let x ∈ ∂Ω \{0}. Then

hρ
(

(W 0
a +G )+Jx

)

=
(

W 0
a +G

)

+Jx.

Proof. By Proposition 6.7.9 (iv), we need to show that

Φx

(

(

T (−1)
n χnUW 0

a χnU TnχnV I −χnVW 0
a χnV I

)

+G
)

= 0.

By Proposition 6.7.2 it is enough to prove that, for every ε > 0 there is an open
neighborhood W of x such that ‖Rn‖ < ε for all n, where

Rn := χnW
(

T (−1)
n χnUW 0

a χnU TnχnV −χnVW 0
a χnV

)

χnW I.

Clearly it is sufficient to assume that a is the characteristic function of a rectangle
O = [a1,b1]× [a2,b2] with a1 < b1, a2 < b2. Let C := sup

s∈V
|(Jρ−1)(s)|+1 and ε > 0

be arbitrarily given. Introduce further

H = max
1≤i≤2

|bi −ai|, h = min
1≤i≤2

|bi −ai|,

R = sup
x∈0

‖x‖, δ = min

{

ε
8C(H +h)

,
h
2

}

,
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and choose open, bounded and convex neighborhoods U1,V1 of x such that U1 ⊂U ,
V1 ⊂V and

sup
s∈V1

|(Jρ−1)(s)−1| < ε
2H2 , (6.41)

sup
s∈V1

‖(ρ−1)′(s)− I‖ <
δ
R

, (6.42)

sup
s∈U1

‖ρ ′(s)− I‖ <
δ
R

. (6.43)

Assume further that W = V1 ∩ρ(U1). We shall prove that ‖Rng‖ < ε‖g‖ for every
g ∈ Lp(R2) and all n. By definition, Rng is equal to

∫

nρ−1(W )
a
(

nρ−1(y/n)− s
)

g(nρ(s/n)) ds−
∫

nW
a(y− t)g(t)dt

if y ∈ nW and equal to 0 if y �∈ nW . After substituting s = nρ−1(t/n), the integral
becomes

∫

nW

[

a
(

nρ−1(y/n)−nρ−1(t/n)
)

|Jρ−1(t/n)|−a(y− t)
]

g(t) dt,

and the kernel function rn(y, t) of Rn is given by

rn(y, t) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|(Jρ−1
n (t))|−1 if wn(y, t) ∈ O,y− t ∈ O

|(Jρ−1
n (t))| if wn(y, t) ∈ O,y− t /∈ O
1 if wn(y, t) /∈ O,y− t ∈ O
0 if wn(y, t) �∈ O,y− t /∈ O

if y, t ∈ nW and by rn(y, t) := 0 if y or t does not belong to nW ; here wn(y, t) :=
ρ−1

n (y)−ρ−1
n (t) and ρn(z) := nρ(z/n). Define

O+δ :=
2

∏
i=1

[ai −δ ,bi +δ ], O−δ :=
2

∏
i=1

[ai +δ ,bi −δ ]

and

r(y− t) :=

⎧

⎨

⎩

ε
2H2 if y− t ∈ O−δ
C if y− t ∈ O+δ \O−δ
0 if y− t /∈ O+δ .

Our next aim is to compare the functions rn and r. For this purpose let us mention
that (ρ−1

n )′(z) = (ρ−1)′(z/n) for z ∈ nV . Further, if y, t ∈ nW and wn(y, t) ∈ O then
y− t ∈ O+δ . This can easily be seen as follows: set y1 = ρ−1

n (y), t1 = ρ−1
n (t) and

consider
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‖ρ−1
n (y)−ρ−1

n (t)− (y− t)‖ = ‖y1 − t1 − (ρn(y1)−ρn(t1))‖

= n

∥

∥

∥

∥

y1 − t1
n

−
(

ρ
(y1

n

)

−ρ
( t1

n

))

∥

∥

∥

∥

≤ n sup
y∈U1

‖ρ ′(y)− I‖
∥

∥

∥

∥

y1 − t1
n

∥

∥

∥

∥

≤ δ
R
‖y1 − t‖ ≤ δ

R
·R = δ (by 6.43) .

Analogously, if y, t ∈ nW and y−t ∈O−δ then (6.42) implies that ‖y−t−wn(y, t)‖≤
δ , and this gives wn(y, t) ∈ O.

These considerations give, in conjunction with (6.41),

|rn(y, t)| ≤ r(y− t)

for all y, t ∈ R
2. Denoting the Lebesgue measure defined on R

2 by μ we have

‖Rn‖ ≤ ‖r‖L1 =
ε

2H2 μ(O−δ )+Cμ(O+δ \O−δ )

<
ε

2H2 H2 +4Cδ (H +h)

≤ ε
2

+
ε
2

= ε ,

and the proof is finished.

Let DG
x denote the image of Dx in U G under the canonical homomorphism.

Proposition 6.7.11. The restriction of hρ to Φx(FG ) is an isometric isomorphism
onto Φx(DG

x ).

Proof. As already mentioned, hρ : U G /Jx → U G /Jx is an isomorphism. From
Proposition 6.7.8 (i) we know that

‖hρ‖ ≤
(

sup
s∈V

|Jρ−1(s)|
)(

sup
s∈U

|Jρ(s)|
)

.

Given ε > 0, we may assume without loss of generality that U and V are chosen so
that ‖hρ‖ ≤ (1 + ε)2. Since ε is arbitrary, we have ‖hρ‖ = 1. In the same way one
proves that ‖h−1

ρ ‖ = 1. Hence, hρ is an isometry.

Now we show that hρ maps the generators of Φx(FG ) onto the generators of
Φx(DG

x ), whence the claim follows. From Proposition 6.7.9 (ii) we know that

Hρ(χn(Ω∩U)I) = χn(Kx∩V )I,
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and so hρ (Φx(χnΩ I)) =Φx(χnKx I). The coset Φx( f I) is, for f ∈C(R2), the same as
the constant coset f (θ∞)Φx(I), thus hρ(Φx( f I)) = Φx( f I). These results together
with Proposition 6.7.10 give the assertion.

The last proposition shows that we may study Φx(DG
x ) instead of Φx(FG ). As

previously stated, we are going to introduce algebras Ux for this purpose. Let x∈R
2,

and Ux be the smallest closed subalgebra of U containing the sequences (An) for
which the strong limits

s-limV−nxAnVnx and s-limV−nxA∗
nVnx

exist. It follows from the definition of Ux that the map

Wx : Ux → L
(

Lp(R2)
)

, A �→ s-limV−nxAnVnx,

with A = (An), is a well-defined homomorphism and that ‖Wx‖ = 1. Proposition
6.7.5 implies that the algebras F and Dx are contained in Ux for x ∈ ∂Ω (for x = 0,
Ux equals U ). The same is true for the algebra C defined in Corollary 6.7.6. It is
clear that G is a closed ideal of Ux and that Wx maps G onto zero. Thus one can
define (and denote by the same symbol) the quotient homomorphism

Wx : U G
x → L

(

Lp(R2)
)

, A+G �→ Wx(A).

Proposition 6.7.12. The ideal Jx ⊂ U is a closed ideal of Ux, and Wx(Jx) =
0. Moreover, the local ideal J x

x ⊂ Ux, generated by the maximal ideal Ix of C ,
coincides with Jx.

Proof. By Proposition 2.2.5, each coset A + G which belongs to Jx is of the
form (Bn)(ϕn) + G with (Bn) ∈ U and (ϕn) ∈ Ix. Proposition 6.7.5 (iii) shows
that s-limV−nxϕnVnx = 0 if ϕ(x) = 0. Hence, s-limV−nxBnϕnVnx = 0 and A ∈ Ux.
Now it is clear that Jx is a closed ideal in U G

x and that Wx(Jx) = 0. That Jx

indeed equals J x
x follows from Proposition 6.7.2, which is obviously true also for

the algebra U G
x .

From Proposition 6.7.12 and the properties of strong limits we conclude that the
map

wx : U G
x /Jx → L

(

Lp(R2)
)

, ((An)+G )+Jx �→ s-limV−nxAnVnx

is a well-defined homomorphism with norm ‖wx‖ = 1. Recall that the sequence (I)
belongs to Ux and serves as the unit element. Hence, ((I)+G ) + Jx is the unit
element in U G

x /Jx, and wx takes this element to the identity operator I.
Since Dx ⊂ Ux and J x

x = Jx, it follows that Φx(DG
x ) is isometrically embed-

ded into U G
x /Jx. Define Tx to be the smallest closed subalgebra of L

(

Lp(R2)
)

containing all operators
χK0

x
AχK0

x
I +(1−χK0

x
)I
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with A∈ alg{W 0
a , I}. The following observation is crucial: Since χnKx I =VnxχK0

x
V−nx

for x ∈ ∂Ω \{0}, the equality

χnKx AχnKx I +(1−χnKx)I = Vnx

(

χK0
x
AχK0

x
I +(1−χK0

x
)I
)

V−nx

holds true for all generating elements of Dx and all n ∈ N. Hence, the restriction
of the mapping Wx to Dx is continuous, and it maps the generating elements of Dx

onto the generating elements of Tx. Now observe that every element (An) ∈ Dx can
be written as

(An) = (VnxDV−nx) with D = Wx(An).

Conversely, if D ∈ Tx then (VnxDV−nx) belongs to Dx. It is easy to see that Wx :
Dx → Tx is an isometric isomorphism with inverse

W−1
x : Tx → Dx, D �→ (VnxDV−nx).

Moreover, (An) ∈ Dx is invertible in Ux if and only if Wx(An) is invertible in
L
(

Lp(R2)
)

. Indeed, if (An)∈Dx is invertible in Ux then D := Wx(An) is invertible
in L

(

Lp(R2)
)

since Wx is a homomorphism and Wx(I) = I. Conversely, if D ∈ Tx

is invertible in L
(

Lp(R2)
)

then (VnxD−1V−nx) belongs to Ux and is the inverse to
(An) ∈ Dx in Ux. So the first part of the following proposition is proved.

Proposition 6.7.13. Let the algebras Ux, Dx and Tx be as above. Then

(i) the homomorphism Wx : Dx → Tx, (An) �→ s-limV−nxAnVnx, is an isometric
isomorphism. Moreover, (An) is invertible in Ux if and only if Wx(An) is in-
vertible in L

(

Lp(R2)
)

;
(ii) the homomorphism

wx : Φx(DG ) → Tx, ((An)+G )+Jx �→ s-limV−nxAnVnx

is an isometric isomorphism, and an element a ∈ Φx(DG
x ) is invertible in

Φx(U G
x ) if and only if wx(a) is invertible in L

(

Lp(R2)
)

.

Proof. It remains to prove (ii). The proof is analogous to that of (i). First of all,
wx maps the generators of Φx(DG ) onto the generators of Tx, that is, the image
of Φx(DG ) under wx is dense in Tx. Let π denote the canonical homomorphism
from U onto U G . Define the homomorphism w−1

x : Tx → Φx(DG ) by w−1
x :=

Φx ◦π ◦W−1
x . Then w−1

x is the inverse to wx. That wx is an isometry follows from
‖wx‖ ≤ 1 and ‖w−1

x ‖ ≤ 1. Finally, that a ∈ Φx(DG ) is invertible in U G /Jx if and
only if wx(a) is invertible in L

(

Lp(R2)
)

, follows as the analogous claim in (i).

Note that Φx(FG ) is a subalgebra of U G
x /Jx.

Proposition 6.7.14. Let x ∈ R2. The local algebra Φx(FG ) is isometrically iso-
morphic to a Banach algebra Tx ⊂ L

(

Lp(R2)
)

of operators, namely to:
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(i) Tx = alg
{

χK0
x
AχK0

x
I +(1−χK0

x
)I : A ∈ alg{W 0

a , I : a ∈ L1(R2)}
}

if x ∈ ∂Ω \
{0};

(ii) Tx = alg{W 0
a , I : a ∈ L1(R2)} if x ∈ (intΩ)\{0} and

Tx = A0 := alg{W 0
a , f I : a ∈ L1(R2), f ∈C(R2)} if x = 0 ∈ intΩ ;

(iii) Tx = alg
{

χK0AχK0I +(1−χK0)I : A ∈ A0
}

if x = 0 and 0 ∈ ∂Ω ;

(iv) Tx = CI if x ∈R2 \Ω , where the isomorphism takes (((1−χnΩ )I)+G )+Jx

to I.

Moreover, in cases (i)–(iii), the isometry can be given by

wx : Φx(FG ), ((An)+G )+Jx �→ s-limV−nxAnVnx,

and an element a ∈ Φx(FG ) is invertible in U G
x /Jx if and only if the operator

wx(a) is invertible in L
(

Lp(R2)
)

.

Proof. Assertion (i) is Proposition 6.7.13. For (ii), first let x ∈ (intΩ) \ {0}. By
Proposition 6.7.7,

Φx( f I) = f (θ∞)Φx(I) and Φx(χnΩ I) =Φx(I).

Now consider the homomorphism

wx : Φx(FG ) → L
(

Lp(R2)
)

, ((An)+G )+Jx �→ s-limV−nxAnVnx.

One has

wx
(

Φx( f I)
)

= f (θ∞)I, wx
(

Φx(χnΩ I)
)

= I, wx
(

Φx(W 0
a )
)

= W 0
a .

Hence, wx takes Φx(FG ) to Tx for x ∈ (intΩ) \ {0}. Conversely, if A ∈ Tx, then
(An) := (χnΩAχnΩ I +(1−χnΩ )I) ∈ F and wx(Φx(An)) = A. Therefore, wx is an
isometric isomorphism. If x = 0 ∈ intΩ then the proof is analogous, as it is for (iii).

Finally, if x ∈ R2 \Ω then, by Proposition 6.7.7, Φx((1− χnΩ )I) = Φx(I). Next
we prove that Φx(I) �= 0. Let y ∈ R

2 \Ω and consider the homomorphism

wy : Φy(FG ) → L
(

Lp(R2)
)

, (A+G )+Jy �→ Wy(A).

Since wy (Φy(λ (1−χnΩ )I)) = λ I and Φy(FG ) is generated by Φy(I), we get that
Φy(FG ) ∼= C. Moreover, this argument also shows that Φy(FG ) is independent
of the particular choice of y ∈ R

2 \Ω . From Theorem 2.2.2 (ii) we infer that the
mapping

R2 � x �→Φx(An)

is upper semi-continuous. Using that R
2 is dense in R2 we get thatΦz((1−χnΩ )I) =

Φz(I) �= 0 for all z ∈ R2 \R
2. Hence, Φx(FG ) ∼= C for all x ∈ R2 \R

2 and these



364 6 Algebras of operator sequences

algebras do not depend on x. The quoted invertibility properties follow as in the
proof of Proposition 6.7.13.

Now we have prepared all the ingredients to prove the main theorem of this
section.

Theorem 6.7.15. A sequence A = (An) ∈ F is stable if and only if the operator
Wx(A) := s-limV−nxAnVnx is invertible in L (Lp(R2)) for each x ∈ ∂Ω ∪{0}.

Proof. Let A ∈ F be stable. Due to the inverse-closedness of U G in E G , the
stability of A is equivalent to the invertibility of the coset A +G in U G . We shall
need also that the algebras U G

x are inverse-closed in E G , which can easily be seen as
follows: If (An) is stable, then also (V−nxAnVnx) is stable, that is, there is a constant
C > 0 such that

‖V−nxAnVnxu‖ ≥C‖u‖

for all u∈ Lp(R2). Thus, Ax := s-limV−nxAnVnx has a closed image and trivial kernel.
Repeating these arguments for (A∗

n) we get that Ax is invertible. Now let (Bn) ∈ E
and (Gn), (G′

n) ∈ G be sequences such that

BnAn = I +Gn, AnBn = I +G′
n.

Then V−nxBnVnxV−nxAnVnx = I +V−nxGnVnx and

V−nxBnVnx(Ax +(V−nxAnVnx −Ax))A−1
x = (I +V−nxGnVnx)A−1

x .

Since V−nxAnVnx − Ax and V−nxGnVnx converge strongly to zero, it follows that
V−nxBnVnx converges strongly to A−1

x . Analogously, (A−1
x )∗ = s-limV−nxB∗

nVnx. Us-
ing that U G is inverse-closed in E G , it is thus easily seen that U G

x is inverse-closed
in E G , and (An)+G is invertible in U G

x .
Now from Allan’s local principle (A+G )+Jx is invertible in U G

x /Jx, which
is a subalgebra of U G /Jx by Proposition 6.7.12. Using Proposition 6.7.14 we
obtain also that Wx(A) is invertible in Tx (in particular for x ∈Ω ∪{0}). The “only
if” part is proved.

For the reverse direction suppose that Wx(A) is invertible in L (Lp(R2)) for
every x ∈ ∂Ω ∪ {0}. First, let x ∈ ∂Ω \ {0}. By Proposition 6.7.11 we have
hρΦx(FG ) = Φx(Dx), and Proposition 6.7.13 implies that Φx(Dx) is isometrically
isomorphic to Tx. Moreover, the restriction of wx to Φx(FG ) is an isometric iso-
morphism onto Tx with wx(Φx(A)) = Wx(A). Proposition 6.7.13 (ii) gives that
Φx (VnxWx(A)V−nx) ∈ Φx(DG

x ) is invertible in U G
x /Jx and thus also in U G /Jx.

Using that hρΦx(A) =Φx (VnxWx(A)V−nx) and

h−1
ρ : U G /Jx → U G /Jx

is the inverse of hρ , we get

Φx(A) = h−1
ρ Φx (VnxWx(A)V−nx) .
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Thus, Φx(A) is invertible in U G /Jx. If x = 0, then the assertion follows from
Proposition 6.7.14. Finally we show the invertibility of Φx(A) for all x ∈ R2.

Let x ∈ intΩ \{0}. From Corollary 5.8.13 we conclude that Wx(A) is invertible
in L (Lp(R2)) if W0(A) is so. We are going to prove that if Wy(A)∈Ty is invertible
in L (Lp(R2)) for at least one y ∈ ∂Ω \ {0}, then Φx(A) is invertible for all x ∈
R2 \Ω . We will use that every sequence A ∈ F can be uniquely represented as

(An) = (χnΩBnχnΩ I +λ (1−χnΩ )I) , λ ∈ C

and every A ∈ Ty as
A = χK0

y
BχK0

y
I +μ(1−χK0

y
)I.

Let ψ : Ty → C be the homomorphism that assigns to A the complex number μ .
Because

ψ (Wy(A)) = λ =Φx(A) for all x ∈ R2 \Ω

and λ �= 0, we get the invertibility of ψx(A). Proposition 6.7.14 now shows that for
every x ∈R2 the element (A+G )+Jx is invertible in U G /Jx. It remains to apply
Allan’s local principle to obtain that A+G is invertible in U G .

We will illustrate this theorem by some examples. Take into account Corol-
lary 5.8.13.

Example 6.7.16. Let 0 ∈ ∂Ω (then Ω ⊂ K0 by assumption), and let Ai j be operators
in A0 = alg{W 0

a , f I : f ∈C(R2)}. The sequence

m

∑
i=1

l

∏
j=1

(χnΩAi jχnΩ I +(1−χnΩ ) I)

is stable if and only if the following conditions are satisfied:

(i) ∑m
i=1∏

l
j=1

(

χK0Ai jχK0I +(1−χK0)I
)

is invertible in L (Lp(R2));

(ii) ∑m
i=1∏

l
j=1

(

χK0
x
Wx(Ai j)χK0

x
I +(1−χK0

x
)I
)

is invertible in L (Lp(R2)) for ev-

ery x ∈ ∂Ω \{0}.

�

Example 6.7.17. Let Ω be the disk BR(0), and let A =W 0
a + f I with a ∈ L1(R2) and

f ∈ C(R2). Then the sequence χnΩAχnΩ I +(1− χnΩ )I is stable if and only if A is
invertible in L (Lp(R2)). �
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Example 6.7.18. Let 0 ∈ ∂Ω , ∂Ω be a smooth curve except at zero and Ω ⊂ K0.
Consider A = W 0

a + f I with a and f as in the previous example. Then the sequence
χnΩAχnΩ I +(1−χnΩ )I is stable if and only if

χK0AχK0I +(1−χK0)I

is invertible in L (Lp(R2)). �

Finally we would like to emphasize that U G and C constitute a faithful localiza-
tion pair. Hence, for A = (An) ∈ F ,

‖A+G ‖ = sup
x∈∂Ω∪{0}

‖Wx(A)‖.

If A is stable, then also

‖(A+G )−1‖ = sup
x∈∂Ω∪{0}

‖W−1
x (A)‖.

6.8 Notes and comments

Since Baxter’s pioneering paper [6], the finite sections method for convolution op-
erators has been the subject of numerous investigations by many authors. Gohberg
and Feldman established the first systematic and comprehensive theory of projec-
tion methods for convolution equations. Their monograph [66] is a basic reference
on this topic still. In 1973–4, a new idea appeared in the study of projection meth-
ods for one- and multidimensional convolution operators with continuous symbols,
namely the use of Banach algebra techniques as pointed out by Kozak in [102].
Essentially, Theorem 6.2.2 is due to him and the main meaning of this theorem is
indeed that stability is an invertibility problem.

It is now well understood that Kozak’s local theory does not work in the case
of discontinuous generating functions. In order to settle this case, new ideas were
needed. Section 6.3 presents a general framework which is useful to achieve this
aim. It appeared in a particular case in [181] and was then subsequently extended
(see for instance [21, 81, 82]). Theorem 6.3.8 is here formulated for the first time;
particular cases were used previously.

The material in Section 6.4 is the Wiener-Hopf version of finite sections of
Toeplitz operators with continuous generating functions presented, for instance, in
[20]. Theorem 6.4.6 is due to Gohberg and Feldman [66].

Theorem 6.5.5 was proved by Elschner [49] using factorization methods which
are close to the ideas of Gohberg and Feldman in [66]. Moreover, Elschner studied
a variety of approximation methods for Wiener-Hopf and Mellin integral equations
with continuous generating functions. His investigations are reflected in [151, Chap-
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ter 5] where further historical remarks can be found. Note also the papers [173] and
[174] where spline methods are considered in a C∗-algebra context. A general ab-
stract framework for the study of approximation methods for convolution operators
with continuous generating functions is in [183]. For piecewise continuous func-
tions of isometries in Hilbert spaces, fulfilling some additional natural conditions,
the results are presented in [175].

The results of Section 6.6, as well as the methods of proving them are in the spirit
of [165] where the case p = 2 was considered. For p �= 2, the results of this section
were published in [166]. The proof of Proposition 6.6.21 given above corrects an in-
accuracy in the corresponding proof in that paper. Similar methods were also used in
[99] to study finite sections of convolution operators generated by slowly oscillating
functions.

In Section 6.7 we reproduce and generalize some results from Kozak [102]. We
partly follow [118] where the case p = 2 is considered, and the PhD thesis of Mas-
carenhas [117] in regard to some aspects of the problem for p �= 2. The new aspects,
in comparison with Kozak’s work are the inclusion of the multiplication operators
f I, f ∈C(R2) into the studied algebra, and the thorough use of limit operator tech-
niques. Note that the paper [119] by Maximenko is also devoted to a particular case
of these studies. In particular, he considered ε-pseudospectra and used similar ideas
to the ones that appeared for the first time in [164].

Note that in this chapter we study not only single sequences but analyze Banach
algebras of sequences. This allows us to get further insight into the structure of these
sequences and to get knowledge about the asymptotic behavior of some spectral
quantities such as condition numbers, ε-pseudospectra and so on (see for instance
[20] and [82]).
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12. A. Böttcher, I. Gohberg, Yu.I. Karlovich, N. Krupnik, S. Roch, B. Silbermann, and I.

Spitkovsky. Banach algebras generated by N idempotents and applications. In Singular in-
tegral operators and related topics, volume 90 of Oper. Theory Adv. Appl., pages 19–54.
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153. V.S. Rabinovich. Algebras of singular integral operators on composed contours with nodes
that are logarithmic whirl points. Izv. Ross. Akad. Nauk, Ser. Mat., 60:169–200, 1996. (in
Russian; English translation in Izv. Math. 60(6): 1261–1292, 1996).

154. V.S. Rabinovich. Mellin pseudodifferential operators techniques in the theory of singular in-
tegral operators on some Carleson curves. In Differential and integral operators (Regensburg,
1995), volume 102 of Oper. Theory Adv. Appl., pages 201–218. Birkhäuser, Basel, 1998.
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Preuss. Akad. Wiss., Phys.-Math. Kl, pages 696–706, 1931.
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Aγ : circular arc, 148
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Cen A : center of an algebra A , 4
δ : dimension function, 56
∂SM: Shilov boundary of M, 69
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Λ(E): the operators of local type on E, 95
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Lp(X): Lebesgue spaces, 51
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M0(a): Mellin convolution operator generated

by a, 203

Mp,w: multiplier algebra, 199
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R: field of the real numbers, 3
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T: unit circle in C, 9
trA: trace of the matrix A, 166
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Fredholm operator, 45
function

bounded away from zero, 202
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piecewise continuous on an admissible
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piecewise linear, 259
semi-continuous, 89
upper semi-continuous, 74

functional
multiplicative linear, 41

Gelfand
topology, 65
transform, 65

of an element, 65
generating function, 199

Hankel operator, 207, 244, 261
Hardy space, 244
homomorphism, 5
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quotient, 5
symmetric, 6
unital, 5
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sufficient family of, 63
weakly sufficient family of, 81

ideal, 5
∗-ideal, 6
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left, 4
lifting of an, 322
proper, 5
symmetric, 6
trivial, 5

idempotent, 121
index of a function, 198
involution, 5
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algebraic, 5
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topological, 6

Kozak’s identity, 34
Krull’s lemma, 35

lifting, 322
limes superior, 23, 76
limiting set

partial, 23, 76
local essential norm, 99
local principle

Allan’s, 74
Gohberg-Krupnik, 93

local regularizer, 101
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localizing pair

faithful, 86
locally equivalent, 99
locally Fredholm, 101
Lyapunov arc, 191

M-equivalence, 91
matrix symbol, 112
maximal ideal, 35

space, 65
multilinearization, 107
multiplicative shift, 205

operator
double layer potential, 252
Hankel, 207
homogeneous, 206
homogenization, 213
nilpotent, 25
of local type, 95
of multiplication, 52
shifts, 201, 205
singular integral, 53, 194
Toeplitz, 59
translation invariant, 201
Wiener-Hopf, 261

operators
essentially equivalent, 95

partition of identity, 130
perturbation for invertibility, 37
polynomial

alternating, 106
multilinear, 106
standard, 108

polynomial identity, 106
projection, 122

radical, 35
representation, 38

algebraically irreducible, 39
faithful, 38
left regular, 38
of C∗-algebras, 40
of Banach algebras, 39
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maximizing, 68

Shilov boundary, 69
singular integral operator

abstract, 147
spectral radius, 21
spectrum, 19

joint, 43
thin, 29

Stechkin inequality, 200
subalgebra, 4

unital, 4
subspace

invariant, 39
symbol, 199

map, 173
mapping, 17

system of localizing classes
covering, 92
overlapping, 92

theorem
Banach-Steinhaus, 48
by Kozak, 57
Gelfand’s representation, 65
Tietze-Uryson, 51

Toeplitz operator, 244
topological divisor of zero, 26
transform

Fourier, 198
Mellin, 203

unitization
minimal, 10
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weight
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