
Chapter III

Monomial Resolutions

Abstract. In this chapter we discuss free resolutions of monomial
ideals; we call them monomial resolutions. The problem to describe
the minimal free resolution of a monomial ideal (over a polynomial
ring) was posed by Kaplansky in the early 1960’s. Despite the helpful
combinatorial structure of monomial ideals, the problem turned out
to be hard. The structure of a minimal free monomial resolution can
be quite complex. There exists a minimal free monomial resolution
which cannot be encoded in the structure of any CW-complex. In fact,
even the minimal free resolutions of ideals generated by quadratic
monomials are so complicated that it is beyond reach to obtain a
description of them; we do not even know how to express the regularity
of such ideals. In this situation, the guideline is to introduce new
ideas and constructions which either have strong applications or/and
are beautiful. Most proofs about monomial resolutions are easy. The
key point is not to provide complicated proofs, but to introduce new
beautiful ideas.

54 Examples and Notation

We will use the notation and terminology introduced in Section 26,
and the tools from Section 36. Throughout the chapter M stands for
a monomial ideal in S minimally generated by monomials m1, . . . ,mr .
We denote by LM the set of the least common multiples of subsets of
{m1, . . . ,mr}. By convention, 1 ∈ LM considered as the lcm of the
empty set. Note that M is homogeneous with respect to the standard
grading on S and with respect to the multigrading in 26.1.
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Chapter III MONOMIAL RESOLUTIONS

In the Running Example we will illustrate several definitions and
constructions. The running example uses the ideal

Y = (x2, xy, y3)

in the ring C = k[x, y].

Running Example 54.1. Consider the ideal Y = (x2, xy, y3) in the
ring C = k[x, y]. Computer computation shows that the minimal free
resolution of C/Y is

FY : 0 −→ C2

⎛

⎝
−y 0
x −y2

0 x

⎞

⎠

−−−−−−−−−−−−−−→ C3 (x2 xy y3 )
−−−−−−−−−−−−−−−−−−−−→ C

−→ C/Y −→ 0 .

We consider the basis of the free modules in FY in which the above
maps are given. Denote by h the basis element of C in homolog-
ical degree 0, by f1, f2, f3 the basis elements of C3 in homologi-
cal degree 1, and by g1, g2 the basis elements of C2 in homologi-
cal degree 2. Since h has multidegree 1 and the differential is sup-
posed to be homogeneous, it follows that f1, f2, f3 have multidegrees
x2, xy, y3 respectively. Thus, in homological degree 1 we have the free
module C(x2) ⊕ C(xy) ⊕ C(y3). Furthermore, d(g1) = −yf1 + xf2
has multidegree x2y, hence g1 has multidegree x2y. Similarly, since
d(g2) = −y2f2 + xf3 has multidegree xy3, we conclude that g2 has
multidegree xy3. Thus, in homological degree 2 we have the free mod-
ule C(x2y)⊕ C(xy3). So the resolution can be written

0→ C(x2y)⊕ C(xy3)

⎛

⎝
−y 0
x −y2

0 x

⎞

⎠

−−−−−−−−−−−→ C(x2)⊕C(xy)⊕ C(y3)

(x2 xy y3)
−−−−−−−−−−−→ C .

The non-zero multigraded Betti numbers are

b1,y3(C/Y ) = b1,xy(C/Y ) = b1,x2(C/Y ) = 1

b2,x2y(C/Y ) = b2,xy3(C/Y ) = 1 .
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54 Examples and Notation

We will also write the component (FY )x2y2 of FY in multidegree
x2y2. It is the exact sequence of k-vector spaces

0→ C(x2y)x2y2 ⊕ C(xy3)x2y2 → C(x2)x2y2 ⊕ C(xy)x2y2 ⊕ C(y3)x2y2

→ Cx2y2 → (C/Y )x2y2 → 0 .

Note that C(x2y)x2y2 is the 1-dimensional k-vector space with ba-
sis yg1, so we can write it as k{yg1}. Similarly, C(xy3)x2y3 = 0,
C(x2)x2y2 = k{y2f1}, C(xy)x2y2 = k{xyf2}, C(y3)x2y3 = 0, Cx2y2 =
k{x2y2}. Furthermore, note that (C/Y )x2y2 = 0 because x2y2 ∈ Y .
Therefore, (FY )x2y2 is the exact sequence of k-vector spaces

0→ k {yg1} → k {y2f1} ⊕ k {xyf2} → k {x2y2} → 0 → 0 .

By Corollary 26.9 the entries in the matrices of the differentials
in the minimal free resolution FM of S/M are scalar multiples of
monomials. After computing a few examples, one might get the feeling
that the coefficients appearing in the differential matrices are only
0, ±1. Unfortunately, this is not the case, as shown by the next
example.

Example 54.2. [Reiner-Welker] Assume char(k) = 0. Consider the
monomial ideal

T = (x1x4x5x6, x2x4x5x6, x3x4x5x6, x2x4x5x7, x3x4x5x7,

x1x3x5x7, x1x2x4x7, x1x4x6x7, x1x5x6x7,

x3x4x6x7, x2x5x6x7, x2x3x6x7, x1x2x3x7 ) .

in A = k[x1, . . . , x7]. Computer computation shows that the minimal
free resolution of A/T is

0 → A → A10 → A21 → A13 → A → A/T → 0
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Chapter III MONOMIAL RESOLUTIONS

and the matrix of the last differential d4 is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2x7

2x1

−x4

x5

x1

2x3

−2x2

x2

x3

x6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(in some fixed

basis). The last matrix contains coefficients±2. It is shown in [Reiner-
Welker] that A/T does not have a minimal multigraded free resolution
with coefficients only 0, ±1 of the monomials in the differential ma-
trices.

Another indication that a monomial resolution could be compli-
cated is that it might not be independent of the characteristic of k;
see Example 12.4.

55 Homogenization and dehomogenization

We will explore the idea to encode the structure of a monomial res-
olution in a complex of vector spaces. The encoding consists of the
homogenization and dehomogenization described below. We will dis-
cuss the concept of a frame, which is a complex of vector spaces with
a fixed basis. By Theorem 55.7 the minimal free resolution of any
monomial ideal is encoded in any of its frames. The material in this
section is from [Peeva-Velasco], which was motivated by several prior
constructions on monomial resolutions.

Construction 55.1. A frame (or an r-frame) U is a complex of
finite k-vector spaces with differential ∂ and a fixed basis that satisfies
the following conditions:

(1) Ui = 0 for i < 0 and i� 0,

(2) U0 = k,

(3) U1 = kr,

(4) ∂(wj) = 1 for each basis vector wj in U1 = kr.
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55 Homogenization and dehomogenization

AnM-complex G is a multigraded complex of finitely generated
free multigraded S-modules with differential d and a fixed multiho-
mogeneous basis with multidegrees in LM that satisfies the following
conditions:
(1) Gi = 0 for i < 0 and i� 0,
(2) G0 = S,
(3) G1 = S(m1)⊕ . . . ⊕ S(mr),
(4) d(wj) = mj for each basis element wj of G1.

We need a correspondence between complexes of vector spaces
and complexes of free S-modules. Such a correspondence is given
by the homogenization and dehomegenization constructions described
below.

Construction 55.2. Let U be an r-frame. We will construct an
M -complex G of free S-modules with differential d and call it the
M-homogenization of U. The construction is by induction on ho-
mological degree. Recall that mdeg stands for multidegree.

Set

G0 = S and G1 = S(m1)⊕ . . . ⊕ S(mr) .

Let v̄1, . . . , v̄p and ū1, . . . , ūq be the given bases of Ui and Ui−1 re-
spectively. Let u1, . . . , uq be the basis of Gi−1 = Sq chosen on the
previous step of the induction. Introduce v1, . . . , vp that will be a
basis of Gi = Sp. If

∂(v̄j) =
∑

1≤s≤q
αsj ūs

with coefficients αsj ∈ k , then set

mdeg(vj) = lcm
(
mdeg(us)

∣
∣
∣αsj 
= 0

)
, note that lcm(∅) = 1

Gi = ⊕1≤j≤p S(mdeg(vj))

d(vj) =
∑

1≤s≤q
αsj

mdeg(vj)
mdeg(us)

us .
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Chapter III MONOMIAL RESOLUTIONS

Clearly, Coker(d1) = S/M . Note that the differential d is multihomo-
geneous by construction. Lemma 55.4 shows that G is a complex. We
say that the complex G is obtained from U by M-homogenization.

Running Example 55.3. Consider the 3-frame

0 −→ k

⎛

⎝
1
1
1

⎞

⎠

−−−−−→ k3

⎛

⎝
−1 0 1
1 −1 0
0 1 −1

⎞

⎠

−−−−−−−−−−−−−−−−−−−−→ k3 ( 1 1 1 )
−−−−−−−−−−−→ k .

The Y -homogenization of this frame is

G : 0→ C(x2y3)

⎛

⎝
y2

x
1

⎞

⎠

−−−−−→C(x2y)⊕ C(xy3)⊕ C(x2y3)
⎛

⎝
−y 0 y3

x −y2 0
0 x −x2

⎞

⎠

−−−−−−−−−−−−−−−−−−−−→ C(x2)⊕ C(xy)⊕ C(y3)
(x2 xy y3 )
−−−−−−−−−−−−−−−−−→C .

Lemma 55.4. G in Construction 55.2 is a complex.

Proof. Let v̄1, . . . , v̄p, and ū1, . . . , ūq, and w̄1, . . . , w̄t be the given bases
of Ui, Ui−1, and Ui−2 respectively. Let v1, . . . , vp, and u1, . . . , uq ,
and w1, . . . , wt be the corresponding bases of Gi, Gi−1, and Gi−2

respectively. Fix a 1 ≤ j ≤ p. Since U is a complex, we have that

0 = ∂2(v̄j) = ∂(
∑

1≤s≤q
αsj ūs) =

∑

1≤s≤q
αsj

( ∑

1≤l≤t
βlsw̄l

)

=
∑

1≤l≤t

( ∑

1≤s≤q
αsjβls

)

w̄l

with αsj , βls ∈ k. Hence
∑

1≤s≤q αsjβls = 0 for each 1 ≤ l ≤ t.

210



55 Homogenization and dehomogenization

Furthermore, in G we have

d2(vj) = d

( ∑

1≤s≤q
αsj

mdeg(vj)
mdeg(us)

us

)

=
∑

1≤s≤q
αsj

mdeg(vj)
mdeg(us)

( ∑

1≤l≤t
βls

mdeg(us)
mdeg(wl)

wl

)

=
∑

1≤l≤t

( ∑

1≤s≤q
αsjβls

mdeg(vj)
mdeg(us)

mdeg(us)
mdeg(wl)

)

wl

=
∑

1≤l≤t

( ∑

1≤s≤q
αsjβls

)
mdeg(vj)
mdeg(wl)

wl

= 0 .

Note that G in Construction 55.2 may not be exact even if the
frame U is exact.

Construction 55.5. Let G be an M -complex. The complex

U = G⊗ S/(x1 − 1, . . . , xn − 1)

is called the frame of G or the dehomogenization of G. We also say
that the complex U is obtained from G by dehomogenization. Note
that U is a finite complex of finite k-vector spaces with fixed basis and
its differential matrices are obtained by setting x1 = 1, . . . , xn = 1 in
the differential matrices of G.

Exercise 55.6. If G is the M -homogenization of a frame U, then U
is the frame of G.

A fruitful approach for constructing minimal monomial resolu-
tions is based on the fact that the minimal free resolution of any
monomial ideal can be encoded in any of its frames; this was proved
in [Peeva-Velasco, Theorem 4.14]:

Theorem 55.7. The M -homogenization of any frame of the minimal
multigraded free resolution F of S/M is F.
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Chapter III MONOMIAL RESOLUTIONS

This raises the following problem.

Open-Ended Problem 55.8. (folklore) Find sources of frames that
yield minimal free resolutions of monomial ideals.

We will discuss some sources of frames later. In the rest of the
section we provide a helpful criterion.

Construction 55.9. Let G be an M -complex, and let m ∈ M be a
monomial. Denote by G(≤m) the subcomplex of G that is generated
by the multihomogeneous basis elements of multidegrees dividing m.

Running Example 55.10. We continue the running example. Let
m = x2y2. We have that

G(≤ x2y2) : 0→ C(x2y)

(
−y
x

)

−−−−−−−−→ C(x2)⊕ C(xy)
(x2 xy )
−−−−−−−−−−−→ C .

Proposition 55.11. Let m ∈M be a monomial. Set

m′ = lcm(mi |mi divides m) .

Then G(≤m) = G(≤m′).

Proof. By Construction 55.1, all the basis elements of G have multi-
degrees in LM .

Theorem 55.12.Let G be an M -complex and m ∈M be a monomial.
The component of G of multidegree m is isomorphic to the frame of
the complex G(≤ m).

Proof. Note that Gm has basis of the form
{ m

mdeg(g)
g
∣
∣
∣ g is in the fixed basis of G, and mdeg(g) divides m

}
.

Therefore the component of G of multidegree m is isomorphic to the
frame of the complex G(≤ m).

The following criterion for exactness is very useful.

Theorem 55.13. An M -complex G is a free multigraded resolution
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56 Subresolutions

of S/M if and only if for all monomials 1 
= m ∈ LM the frame of the
complex G(≤ m) is exact.

Proof. Note that G0/d(G1) = S/M .
Since the complex G is multigraded, it suffices to check exactness

in each multidegree, similarly to 3.7. As (Gi)m = 0 for i > 0 and
m /∈M , it suffices to check exactness in each multidegree m ∈M . By
Theorem 55.12, it suffices to check exactness of the frames G(≤ m)
for all monomials m ∈M .

Fix a monomial m ∈ M . Set m′ = lcm(mi |mi divides m) and
apply Proposition 55.11. Hence, G(≤ m) = G(≤ m′). Therefore, it
suffices to consider only the multidegrees in LM .

56 Subresolutions

We will present a first application of the approach in the previous
section: we will show that the minimal free resolution of S/M con-
tains as subcomplexes the minimal free resolutions of certain smaller
monomial ideals.

Proposition 56.1. (Gasharov-Hibi-Peeva, Miller) Let u ∈ M be a
monomial, and consider the monomial ideal (M≤u) generated by the
monomials {mi |mi divides u}. Fix a multihomogeneous basis of a
multigraded free resolution FM of S/M .
(1) The subcomplex FM (≤ u) is a multigraded free resolution of

S/(M≤u).
(2) If FM is a minimal multigraded free resolution of S/M , then

FM (≤ u) is independent of the choice of basis.
(3) If FM is a minimal multigraded free resolution of S/M , then the

resolution FM (≤ u) is minimal as well.

Proof. Set v = lcm(mi |mi divides u) and apply Proposition 55.11.
Hence, FM (≤ u) = FM (≤ v). Clearly, (M≤u) = (M≤v). Therefore,
we can replace u by v.

By Theorem 55.13, we see that we have to show that for every
monomial 1 
= m ∈ L(M≤v) the frame of the complex

(
FM (≤ v)

)
(≤ m)

is exact. The frame of
(
FM (≤ v)

)
(≤ m) is equal to the frame of
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Chapter III MONOMIAL RESOLUTIONS

FM (≤ w), where w is the maximal monomial that divides both v and
m, and is in the set LM . Since FM is exact, by Theorem 55.13 it
follows that the frame of FM (≤ w) is exact. We proved (1).

(2) Note that the multidegrees of the basis elements in FM are
determined by the multigraded Betti numbers. Therefore, they are
independent of the choice of basis.

(3) holds by construction.

Theorem 56.2 is a useful particular case of the above result.

Theorem 56.2. Let FM be the minimal free multigraded resolution
of S/M . Denote by N the ideal generated by the squarefree minimal
monomial generators of M . The minimal free multigraded resolution
of S/N is FM (≤ x1 . . . xn) = FM (≤ u), where u is the product of the
variables that appear in the minimal monomial generators of the ideal
N .

Example 56.3. We illustrate Theorem 56.2. Let A = k[x, y, z],
T = (x2, xy, xz, y3), and u = xyz. Then (T≤xyz) = (xy, xz). The
minimal multigraded free resolution of A/T is

FT : 0 → A

⎛

⎜
⎝

z
x
−y
0

⎞

⎟
⎠

−−−−−−−→ A4

⎛

⎜
⎝

y 0 z 0
−x z 0 y2

0 −y −x 0
0 0 0 −x

⎞

⎟
⎠

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A4

(x2 xy xz y3)−−−−−−−−−−−−−−−−−→ A .

The minimal multigraded free resolution of A/(xy, xz) is the subcom-
plex

(FT )(≤ xyz) : 0 → A

(
z
−y

)

−−−−−−−→ A2 (xy xz)−−−−−−−−→ A .

As an application of Theorem 56.2, we will consider resolutions
of squarefree Borel ideals. In the rest of this section, we will use the
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56 Subresolutions

notation from Section 28.

Studying ideals in an exterior algebra has led to the study of
squarefree Borel ideals. Their properties are similar to those of Borel
ideals.

A squarefree monomial idealN is squarefree Borel if it satisfies
the squarefree Borel property: whenever the conditions
◦ i < j

◦ g is a monomial such that gxj ∈ N
◦ gxi is squarefree,

are satisfied, we have gxi ∈ N as well.

Exercise 56.4. A monomial ideal N is squarefree Borel if and only
if whenever the conditions
◦ i < j

◦ g is such that gxj is a minimal monomial generator of N
◦ gxi is squarefree,

are satisfied, we have gxi ∈ N as well.

Example 56.5. The ideal (wxy,wxz,wyz) is squarefree Borel in
k[w,x, y, z].

The interest in studying such special monomial ideals comes from
the following result in [Aramova-Herzog-Hibi 2, Theorem 1.7].

Theorem 56.6. The generic initial ideal of a graded ideal in an
exterior algebra is squarefree Borel.

Conjecture 56.7. (Aramova-Herzog-Hibi) Let T ′ be a squarefree
ideal in an exterior algebra on variables x1, . . . , xn. Let B′ be its
generic initial ideal. Consider the monomial ideals T and B in S

generated by the squarefree monomial generators of T ′ and B′ respec-
tively. For all i ≥ 0, we have

bSi (S/T ) ≤ bSi (S/B) .
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Chapter III MONOMIAL RESOLUTIONS

Note that by Theorem 51.4, the ideals B and T have the same
Hilbert function.

Construction 56.8. Let N be squarefree Borel, and M be the small-
est Borel ideal containing N . Consider the basis elements of the
Eliahou-Kervaire resolution EM of S/M that have squarefree mul-
tidegrees. In the notation of 28.6, these basis elements are

{1} ∪
{

(mi; j1, . . . , jp)
∣
∣
∣ 1 ≤ j1 < . . . < jp < max(mi) 1 ≤ i ≤ r,

mixj1 . . . xjp is squarefree
}
.

Let ẼN be the complex that is the essential subcomplex of EM with
basis the above elements (recall the definition of an essential sub-

complex in Definition 3.5). We call ẼN the squarefree Eliahou-

Kervaire resolution of S/N because of the next theorem, which fol-
lows immediately from Theorem 56.2 applied to the Eliahou-Kervaire
resolution.

Theorem 56.9. (Aramova-Herzog) Let N be squarefree Borel. Then

ẼN is the minimal free resolution of S/N .

Example 56.10. We will describe the squarefree Eliahou-Kervaire
minimal free resolution of the squarefree Borel ideal

(x1x2, x1x3, x2x3)

in A = k[x1, x2, x3]. The smallest Borel ideal, that contains it, is

(x2
1, x1x2, x1x3, x

2
2, x2x3) .

The basis of the squarefree Eliahou-Kervaire resolution is

1 in homological degree 0

(x1x2; ∅), (x1x3; ∅), (x2x3; ∅) in homological degree 1

(x1x3; 2), (x2x3; 1) in homological degree 2 .
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56 Subresolutions

The resolution is

0→ A(x1x2x3)2

⎛

⎝
x3 x3

−x2 0
0 −x1

⎞

⎠

−−−−−−−−−−−→ A(x1x2)⊕A(x1x3)⊕ A(x2x3)

(x1x2 x1x3 x2x3)−−−−−−−−−−−−−−−−−−−−→ A .

Corollary 56.11. Let N be a squarefree Borel ideal in S minimally
generated by monomials m1, . . . ,mr. Use the notation in Section 28.
Then

codim(N) = max{min(mi) | 1 ≤ i ≤ r }

reg(N) = highest degree of a minimal generator of N

pd(N) = max{max(mi)− deg(mi) | 1 ≤ i ≤ r }

bSp,p+q(N) =
∑

deg(mi)=q

(
max(mi)− deg(mi)

p

)

bSp (N) =
r∑

i=1

(
max(mi)− deg(mi)

p

)

.

Proof. First, we will prove the formula for the codimension by induc-
tion on the number of variables. The proof is from [Herzog-Srinivasan,
Proposition 4.1]. Set

q = max{min(mi) | 1 ≤ i ≤ r } .

It follows that (x1, . . . , xq) ⊇ N . Hence, codim(N) ≤ q.
We will show that codim(N) ≥ q. Write N = x1N

′′⊕N ′, where
N ′ and N ′′ are squarefree Borel ideals in the ring T = k[x2, . . . , xn].
If N ′ = 0, then codim(N) = 1. In the rest of the proof we assume
that N ′ 
= 0.

By induction hypothesis,

codim(N ′) = max{min(m′
i) | 1 ≤ i ≤ r′ } − 1 ,
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Chapter III MONOMIAL RESOLUTIONS

where m′
1, . . . ,m

′
r′ are the minimal monomial generators of N ′. The

monomials m′
1, . . . ,m

′
r′ are the minimal monomial generators of N

not divisible by x1. Hence,

q = max{min(mi) | 1 ≤ i ≤ r } = max{min(m′
i) | 1 ≤ i ≤ r′ } .

Thus, codim(N ′) = q − 1.

If v ∈ N ′ is a squarefree monomial, then w =
x1 v

xmin(v)
∈ x1N

′′

and
v

xmin(v)
∈ N ′′. Clearly, min

( v

xmin(v)

)
> min(v). By induction

hypothesis, it follows that

codim(N ′′) > codim(N ′) = q − 1 .

Hence, the squarefree Borel ideal N ′ +N ′′ has codim(N ′ +N ′′) ≥ q.
Let P = (xi1 , . . . , xip) be a minimal prime containing N ; we

assume that i1 < . . . < ip. We will show that p ≥ q. If i1 = 1, then
(xi2 , . . . , xip) contains N ′, so p − 1 ≥ codim(N ′) = q − 1. If i1 
= 1,
then P is a prime ideal containing the ideal N ′ +N ′′ of codimension
≥ q, so p ≥ q.

Denote by nsupp(u) = {j |xj divides u} the numerical support
of a monomial u. In order to prove the remaining formulas, note that
the minimal free resolution of N has basis

{
(mi; j1, . . . , jp)

∣
∣
∣ 1 ≤ j1 < . . . < jp < max(mi),

1 ≤ i ≤ r, mixj1 . . . xjp is squarefree
}

in homological degree p. For a fixed mi, note that each js can take
values in {1, . . . ,max(mi)} \ nsupp(mi). Note that for the squarefree
monomial mi we have |nsupp(mi)| = deg(mi). Therefore, for a fixed

mi, there are
(
max(mi)−deg(mi)

p

)
choices for the sequence j1, . . . , jp.

57 Simplicial and cellular resolutions

We will explore the following idea: we will obtain frames from a stan-
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57 Simplicial and cellular resolutions

dard construction in topology – homology of (simplicial) chain com-
plexes.

Throughout this section Δ is a simplicial complex on vertices
{m1, . . . ,mr}. Recall 36.1. Denote by C̃(Δ, k) the augmented ori-
ented simplicial chain complex of Δ over k; it is used in topology to
compute the simplicial homology of Δ. This complex is

C̃(Δ; k) = ⊕τ∈Δ keτ ,

where eτ denotes the basis element corresponding to the face τ in
homological degree |τ | − 1, and the differential ∂ acts as

∂(eτ ) =
∑

τ ′ is a facet of τ

[τ, τ ′] eτ ′ ,

where [τ, τ ′] is the incidence (orientation) function: [τ, τ ′] = (−1)i if
τ \ τ ′ is the (i + 1)’st element in the sequence of the vertices of τ
written in increasing order.

Definition 57.1. [Bayer-Peeva-Sturmfels] We use the notation above.

After shifting C̃(Δ; k) in homological degree, we get that C̃(Δ; k)[−1]

is a frame. Denote by FΔ the M -homogenization of C̃(Δ; k)[−1] (see
Construction 55.2). We say that FΔ is supported on Δ, or that Δ
supports FΔ. The complex FΔ is a simplicial resolution if it is
exact. Simplicial resolutions are interesting because they are usually
nicely combinatorially structured. They were introduced in [Bayer-
Peeva-Sturmfels].

For each vertexmi of Δ, we set thatmi has multidegree mdeg(mi)
= mi. We define that a face τ has multidegree

mdeg(τ) = lcm(mi |mi ∈ τ) .

By convention, mdeg(∅) = 1.
We think of Δ as a simplicial complex with labeled faces: each

face is labeled by its multidegree.

Theorem 57.2. [Bayer-Peeva-Sturmfels] For each face τ of dimension
i the complex FΔ has the generator eτ in homological degree i+ 1.
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(1) We have mdeg(eτ ) = mdeg(τ).
(2) The differential in FΔ is

∂(eτ ) =
∑

τ ′ is a facet of τ

[τ, τ ′]
mdeg(τ)
mdeg(τ ′)

eτ ′

=
∑

τ ′ is a facet of τ

[τ, τ ′]
lcm(mi|mi ∈ τ)
lcm(mi|mi ∈ τ ′)

eτ ′ .

Proof. (2) follows from (1) and the fact that the differential is multi-
homogeneous. We will prove (1) by induction on homological degree.
Clearly, mdeg(emi

) = mi holds for each vertex mi of Δ. Since

∂(eτ ) =
∑

τ ′ is a facet of τ

[τ, τ ′] e′τ ,

it follows by Construction 55.2 that

mdeg(eτ) = lcm(mdeg(eτ ′) | τ ′ is a facet of τ )

= lcm(mdeg(τ ′) | τ ′ is a facet of τ )

= lcm
(
lcm(mi|mi ∈ τ ′)

∣
∣ τ ′ is a facet of τ

)

= lcm(mi|mi ∈ τ) = mdeg(τ) .

Running Example 57.3. Consider the triangle Δ with vertices x2,

xy, y3. We label each edge by the least common multiple of its ver-
tices, so we get labels x2y, xy3, x2y3 on the edges. We label the tri-
angle by the least common multiple x2y3 of its vertices. See Figure 8
below.

The following is an augmented oriented chain complex of the
triangle:

0 −→ k

⎛

⎝
1
1
1

⎞

⎠

−−−−−→ k3

⎛

⎝
−1 0 1
1 −1 0
0 1 −1

⎞

⎠

−−−−−−−−−−−−−−−−−−−−→ k3 ( 1 1 1 )
−−−−−−−−−−−→ k .
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Figure 8.

The corresponding Y -homogenized complex TY is

TY : 0 −→ A

⎛

⎝
y2

x
1

⎞

⎠

−−−−−→ A3

⎛

⎝
−y 0 y3

x −y2 0
0 x −x2

⎞

⎠

−−−−−−−−−−−−−−−−−−−−→ A3 (x2 xy y3 )
−−−−−−−−−−−−−−−−−−−−→ A .

We see that TY = FY ⊕
(
0→ A→ A→ 0

)
, so it is exact. Thus, TY

is a simplicial resolution, which is non-minimal.
The minimal free resolution FY is also simplicial and corresponds

to the simplicial complex with vertices labeled by x2, xy, y3 and with
two edges {x2, xy} and {xy, y3}.

We have

FY : 0 −→ A2

⎛

⎝
−y 0
x −y2

0 x

⎞

⎠

−−−−−−−−−−−−−−−−−−−−→ A3 (x2 xy y3 )
−−−−−−−−−−−−−−−−−−−−→ A .

For each multidegree m, define the following two subcomplexes
of Δ:

Δ≤m = {τ ∈ Δ |mdeg(τ) divides m}
Δ<m = {τ ∈ Δ |mdeg(τ) strictly divides m}.
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Running Example 57.4. See Figure 8 above. The subcomplex

Δ≤x2y = {τ ∈ Δ |mdeg(τ) divides x2y}

is the edge {x2, xy}. The subcomplex

Δ<x2y3 = {τ ∈ Δ |mdeg(τ) strictly divides x2y3}

consists of the two edges {x2, xy} and {xy, y3}.

Proposition 57.5. [Bayer-Peeva-Sturmfels] The complex FΔ is a free
resolution of S/M if and only if for all multidegrees 1 
= m ∈ LM the
complex Δ≤m is acyclic over k. Note that for m /∈ M , the complex
Δ≤m is empty.

Proof. This follows from Theorem 55.13 because if m ∈ LM then the
frame of FΔ(≤ m) is C̃(Δ≤m; k)[−1] by 57.1.

Theorem 57.6. [Bayer-Sturmfels] Let FΔ be a resolution of S/M .
For i ≥ 1 and multidegree m 
= 1 we have

bSi,m(S/M) =
{

dim H̃i−2(Δ<m; k) if Δ≤m 
= ∅
0 if Δ≤m = ∅.

Proof. We will compute Tori(S/M, k)m using FΔ. Note that (FΔ)m
has basis { m

mdeg(eτ)
eτ

∣
∣
∣ τ ∈ Δ≤m

}
.

Hence, (FΔ)m ⊗ k has basis

{ eτ |mdeg(τ) = m } .

The complex (FΔ)m⊗ k of k-vector spaces is isomorphic to the chain

complex C̃(Δ≤m,Δ<m; k), which computes the reduced relative sim-
plicial homology with coefficients in k of the pair (Δ≤m,Δ<m). We
get

Tori(S/M, k)m = H̃i−1(Δ≤m,Δ<m; k).

If Δ≤m = ∅, then Δ<m = ∅ and H̃i−1(Δ≤m,Δ<m; k) = 0.
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57 Simplicial and cellular resolutions

If Δ≤m 
= ∅, then Δ≤m is acyclic by Proposition 57.5. Therefore,
the long exact sequence

. . .→ H̃i−1(Δ≤m; k) → H̃i−1(Δ≤m,Δ<m; k)

→ H̃i−2(Δ<m; k) → H̃i−2(Δ≤m; k) → . . .

implies the isomorphism H̃i−1(Δ≤m,Δ<m; k) & H̃i−2(Δ<m; k).

Example 57.7. Consider T = (ab, ac, ae, bc) in A = k[a, b, c, e]. The
simplicial complex Θ<abce is shown in Figure 9. We have bA3,abce(A/T )
= 1.

Figure 9.

Proposition 57.8. Let FΔ be a resolution of S/M , and let u ∈ M
be a monomial. Consider the monomial ideal (M≤u) generated by the
monomials {mi | 1 ≤ i ≤ r, mi divides u}. The complex FΔ≤u

is a
resolution of S/(M≤u).

Proof. This follows from Theorem 56.1 since FΔ≤u
= FΔ(≤ u).

Theorem 57.9. [Bayer-Peeva-Sturmfels] Denote by Θ the simplex
with r vertices m1, . . . ,mr.
(1) Taylor’s resolution 26.5 is supported on Θ.
(2) For i ≥ 1, the Betti numbers of S/M are

bSi,m(S/M) =
{

dim H̃i−2(Θ<m; k) if m divides lcm(m1, . . . ,mr)
0 otherwise.

Proof. Apply Theorem 57.6 to Taylor’s resolution.
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Example 57.10. Example 54.2 provides an example of a monomial
ideal with a non-simplicial minimal free resolution since the coeffi-
cients of the monomials in the differential matrices cannot be chosen
in { 0,±1 }.

Cellular resolutions are a natural generalization of simplicial res-
olutions. They were introduced and studied in [Bayer-Sturmfels].
Let X be a finite regular cell complex on vertices m1, . . . ,mr. It is
equipped with a (non-unique) incidence function, cf. [Bruns-Herzog,

Lemma 6.2.1]. The augmented oriented chain complex C̃(X, ; k) is
used in topology to compute the reduced homology of X. This com-
plex is C̃(X; k) = ⊕τ∈Xk eτ , where the basis element eτ is placed in
homological degree dim(τ), and the differential ∂ acts as

∂(eτ ) =
∑

τ ′ is a facet of τ

[τ, τ ′] eτ ′ ,

where [τ, τ ′] is the incidence function. Clearly, C̃(X; k)[−1] is a frame.

Denote by FX the M -homogenization of C̃(X; k)[−1]. We say that
FX is supported on X, or that X supports FX . The complex FX
is a cellular resolution if it is exact.

Example 54.2 provides an example of a monomial ideal with a
non-cellular minimal free resolution.

A finite regular cell complex is a polyhedral cell complex if
each closed cell is homeomorphic to a convex polytope on the vertices
contained in the cell. If X is a polyhedral cell complex, then FX is a
polyhedral resolution.

It is natural to consider CW-cellular resolutions that are sup-
ported by CW-complexes. This is a significant generalization; the
structure of CW-cellular resolutions is more complex than that of
cellular resolutions. For example, it is no longer true that the co-
efficients appearing in the differential matrices are only 0, ±1. CW-
cellular resolutions are introduced and studied in [Batzies-Welker] and
[Jöllenbeck-Welker]. But even this generalization is not sufficient to
cover all minimal monomial resolutions: in [Velasco] it is shown that
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there exists a monomial ideal whose minimal free resolution does not
admit any CW-cellular structure.

58 The lcm-lattice

We will discuss the lcm-lattice, which was introduced in [Gasharov-
Peeva-Welker 2] and plays a key role in the study of monomial res-
olutions. The idea to use the lcm-lattice was inspired by the role of
the intersection lattice in computing cohomology of subspace arrange-
ments.

A lattice is a poset P for which every pair of elements has a
join (least upper bound) and a meet (greatest lower bound). If P
has a bottom element 0̂, then the elements in P covering 0̂ are called
atoms.

Lemma 58.1. Let P be a finite poset with bottom element 0̂. If every
pair of elements has a join, then P is a lattice.

Proof. Let x and y be two elements in P . The set

T = { z ∈ P | z ≤ x, z ≤ y }

is finite and non-empty. The meet of x and y is the join of all elements
in T .

Construction 58.2. [Gasharov-Peeva-Welker 2] We denote by LM
the lattice with elements the least common multiples of subsets of
m1, . . . ,mr ordered by divisibility. The atoms in LM are m1, . . . ,mr .
The top element is mM = lcm(m1, . . . ,mr). The bottom element is 1
regarded as the lcm of the empty set. The least common multiple of
elements in LM is their join. By Lemma 58.1, LM is a lattice. We call
LM the lcm-lattice of M . For m ∈ LM we denote by (1,m)LM

the
open interval in LM below m; it consists of all non-unit monomials in
LM that strictly divide m.

Running Example 58.3. The lcm-lattice of (x2, xy, y3) is given in
Figure 10.
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Figure 10.

Exercise 58.4. If Mpol is the polarization of M , then LM ∼= LMpol
.

One might wonder what lattices appear as lcm-lattices. The
answer to this question was given by Phan in his Ph.D. thesis.

Construction 58.5. [Phan] Let L be a finite atomic lattice (atomic
means that each non-bottom element is a joint of atoms). An element
in L is meet-irreducible if it is not the meet of two elements in L,
and it is not the top or bottom element in L. Suppose that L has n
meet-irreducible elements. Label them by x1, . . . , xn. Now, label an
element c ∈ L by the monomial

mon(c) =
x1 . . . xn∏

xi≥c xi
.

Let NL be the monomial ideal generated by the labels of the atoms
in L. This monomial ideal is called the L-ideal.

Theorem 58.6. [Phan] Let L be a finite atomic lattice. There exists
a monomial ideal whose lcm-lattice is L.

Proof. We use the notation in Construction 58.5. We will show that
the L-ideal NL has lcm-lattice L.
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We will show that the monomial mon(c) is the least common
multiple of the labels of the atoms below c. Let p1, . . . , pq be the
atoms below c. If xi does not divide mon(c), then xi ≥ c ; so xi ≥ pj
for each 1 ≤ j ≤ q; hence mon(pj) divides mon(c) for each j.

On the other hand, if xi divides mon(c), then xi 
≥ c; so there
exists an atom pj such that xi 
≥ pj ; hence, xi divides some mon(pj).

Denote by L′ the lcm-lattice of NL. Let ψ : L → L′ be the
map that maps an element c ∈ L to mon(c) ∈ L′. The map is order-
preserving and surjective. We will show that it is injective. Let c, c′ ∈
L be such that mon(c) = mon(c′). Therefore, the set Mc of meet-
irreducible elements over c coincides with the the set Mc′ of meet-
irreducible elements over c′. Note that c is the meet of the elements
in Mc, and c′ is the meet of the elements in Mc′ . Hence, c = c′.

Example 58.7. Consider the lattice in Figure 11. The meet-irreduci-
ble elements are labeled by variables.

Figure 11.

In Figure 12 we show the same lattice but labeled as the lcm-
lattice of the ideal constructed in the proof of the theorem above.
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Figure 12.

Theorem 58.8 is the main result in this section.

Theorem 58.8. [Gasharov-Peeva-Welker 2] For i ≥ 1 we have

bSi,m(S/M) =
{

dim H̃i−2

(
(1,m)LM

; k
)

if 1 
= m ∈ LM
0 if m /∈ LM .

Note that H̃i−2

(
(1,m)LM

; k
)

means H̃i−2

(
O
(
(1,m)LM

)
; k
)
; re-

call that O
(
(1,m)LM

) is the order complex of (1,m)LM
(see Sec-

tion 36).

Proof. By 57.9 we have that bSi,m(S/M) = 0 if m /∈ LM .
Let Θ be the simplex with r vertices labeled by m1, . . . ,mr. Fix

a monomial m ∈ LM , m 
= 1. The formula for the Betti numbers in
Theorem 57.9 is bSi,m(S/M) = dim H̃i−2

(
Θ<m; k

)
for i ≥ 1 .

Recall 36.14. The set C of the minimal monomial generators of
M that divide m forms a crosscut of the poset (1,m)LM

. Its crosscut
complex has faces the subsets of C whose lcm is in (1,m)LM

, that is
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the lcm strictly divides m. So the crosscut complex coincides with
the complex Θ<m. By Theorem 36.16 the crosscut complex Θ<m is
homotopic to the order complex of (1,m)LM

.

Running Example 58.9. See Figure 10. Consider the open interval
(1, x2y3) in the lcm-lattice of Y . Its order complex O(1, x2y3) has 5
vertices x2, xy, y3, x2y, xy3 and 4 edges. It is contractible, so we
get that bCi,x2y3(A/Y ) vanish for all i. Now, consider the open interval

(1, x2y). Its order complex O(1, x2y) has 2 vertices and no edge.
Hence bC2,x2y(C/Y ) = 1.

Forgetting about the multigrading in the Theorem 58.8 we obtain
the following result.

Corollary 58.10. For i ≥ 1 we have

bSi (S/M) =
∑

m∈LM
m�=1

dim H̃i−2

(
(1,m)LM

; k
)
.

This formula is an analogue of the Goresky-MacPherson Formula,
which expresses the dimensions of the cohomology groups of the com-
plement of a subspace arrangement in terms of the dimensions of the
homology groups of the lower intervals in the intersection lattice.

Next, we will show that in order to compute the Betti numbers
one can use the lcm-lattice built on any set of monomial generators
of the ideal M .

Proposition 58.11. [Gasharov-Peeva-Welker 2] Let L′ be the lat-
tice of the least common multiples of subsets of a set of monomials
generating M . For i ≥ 1 we have

bSi,m′(S/M) =
{

dim H̃i−2

(
(1,m′)L′ ; k

)
if m′ ∈ L′

0 if m′ /∈ L′.

Proof. If m′ ∈ L′ \ LM , then the order complex of (1,m′)L′ is a cone
over lcm{mi|mi divides m′}. Hence,

dim H̃i−2

(
(1,m′)L′ ; k

)
= 0 = bSi,m′(S/M) .
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Consider the map

f : L′ → LM ⊆ L′

m′ �→ lcm{mi|mi divides m′} .

This map is order-preserving and it is a closure operator (see 36.6).
By Theorem 36.6 it follows that (1,m′)L′ and (1, f(m′))LM

are ho-
motopic. If m′ ∈ LM , then f(m′) = m′ and

dim H̃i−2

(
(1,m′)L′ ; k

)
= dim H̃i−2

(
(1,m′)LM

; k
)

= bSi,m′(S/M) .

Running Example 58.12. The lcm-lattice of Y is given in Fig-
ure 10. We can also use the lcm-lattice in Figure 13 consisting of the
lcm’s of the monomials x2, xy, y3, x2y2, xy5.

Figure 13.

59 The Scarf complex

We will show that generically the minimal free resolutions of monomial
ideals are simplicial. For this purpose we will use the Scarf complex,
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59 The Scarf complex

introduced in [Bayer-Peeva-Sturmfels]. This complex is always con-
tained in the minimal free resolution of a monomial ideal. We will
discuss the ideals for which the Scarf complex provides the minimal
free resolution; such ideals are called Scarf ideals. Unless otherwise
stated, the material in this section is from [Bayer-Peeva-Sturmfels].

Construction 59.1. Recall that mτ stands for lcm(mi|mi ∈ τ). The
Scarf complex of M is the simplicial complex

ΩM =
{
τ ⊆ {m1, . . . ,mr} | mτ 
= mσ for all σ ⊆ {m1, . . . ,mr}

other than τ
}
.

In [Bayer-Peeva-Sturmfels] it is shown that ΩM equals a simplicial
complex introduced by Scarf in the context of mathematical eco-
nomics. Denote by FΩM

the M -homogenization of the augmented
oriented simplicial chain complex of ΩM (see 57.1).

The multidegree of a vertex mi in ΩM is the monomial mi. The
multidegree of a face τ ∈ ΩM is mdeg(τ) = lcm(mi |mi is a vertex of
τ ). By Theorem 57.2, the multidegree of the basis element eτ in FΩM

is mdeg(τ). The multidegrees of the faces of ΩM are called Scarf

multidegrees.

Theorem 59.2. If mdeg(τ) is a Scarf multidegree, then

bSi,mdeg(τ)(S/M) =
{

1 if i = dim(τ) + 1
0 otherwise.

Proof. Suppose mdeg(τ) 
= 1. The closed interval [1,mdeg(τ)] in LM
is the face lattice of the simplex τ . Hence, the open interval (1,deg(τ))
is homotopic to the boundary of the simplex τ . Therefore,

bSi,mdeg(τ)(S/M) = H̃i−2((1,mdeg(τ)); k) =
{

1 if i− 2 = dim(τ)− 1
0 otherwise.

Running Example 59.3. The Scarf complex ΩY of Y has the three
vertices x2, xy, y3 and the two edges {x2, xy}, {xy, y3}.

Proposition 59.4. The complex FΩM
is an essential subcomplex of
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the minimal free resolution FM of S/M , that is, there exists a basis
of FΩM

that is part of a basis of FM .

Proof. Consider Taylor’s resolution TM .
By Theorem 59.2, it follows that for each multidegree m, that

divides a Scarf multidegree, we have that FM , TM , and FΩM
have

the same number (0 or 1) of basis elements in multidegree m.
Taylor’s resolution is possibly non-minimal, so TM

∼= FM ⊕ P,
where P is a sum of trivial complexes of the form 0 → S(u) →
S(u) → 0. It follows that such a multidegree u cannot divide a Scarf
multidegree. Therefore,

(
TM

)
≤m

∼=
(
FM
)
≤m for each multidegree

m, that divides a Scarf multidegree.
By the construction of Taylor’s resolution, we have that FΩM

is
an essential subcomplex of TM . Hence, FΩM

is an essential subcom-
plex of the minimal free resolution FM .

We call M a Scarf ideal if FΩM
is the minimal free resolution

of S/M , and we say that FΩM
is its Scarf resolution. The defini-

tion of ΩM immediately implies the following properties of the Scarf
resolution.

Corollary 59.5. Let M be a Scarf ideal.
(1) The number of j-faces of the Scarf complex ΩM equals the Betti

number bSj+1(S/M).

(2) FΩM
is multigraded and in each multidegree the Betti number is

either 0 or 1.

Theorem 59.6. An ideal M is Scarf if and only if all non-zero Betti
numbers of S/M are in Scarf multidegrees.

Proof. Suppose that all non-zero Betti numbers of S/M are in Scarf
multidegrees. If FM is strictly larger than FΩM

, then there exists a
face τ ∈ ΩM such that FM has at least two basis elements in multide-
gree mdeg(τ). This contradicts Theorem 59.2.

Theorem 59.7. [Peeva-Velasco]
(1) A simplicial complex with r vertices is the Scarf complex of a
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monomial ideal if and only if it is not the boundary of the simplex
with r vertices.

(2) A finite simplicial complex Ω supports a Scarf resolution if and
only if Ω is acyclic.

In the proof we use the following construction.

Construction 59.8. (Mermin) Let Ω 
= ∅ be a finite simplicial com-
plex. For each face τ of Ω we introduce a variable xτ , and then we
set B = k[xτ | τ ∈ Ω, τ 
= ∅ ]. We will construct a monomial ideal in
this polynomial ring. Set z to be the product of all the variables.

Set the multidegree of a vertex v of Ω to be

mdeg(v) =
∏

v/∈τ∈Ω

xτ .

Denote by Θ the simplex on the vertices of Ω. It follows that a face
σ ∈ Θ has multidegree

mdeg(σ) = lcm(mdeg(v) | v ∈ σ) =
∏

σ �⊆τ∈Ω

xτ .

If σ /∈ Ω then mdeg(σ) = z. Every two faces in Ω have distinct
multidegrees.

Denote by JΩ the ideal generated by the multidegrees of the
vertices. We say that JΩ is the nearly Scarf ideal of Ω. It is easy
to see that the lcm-lattice LJΩ consists of the top element z and the
face poset of Ω.

Proof. Let Ω be a finite simplicial complex. Both (1) and (2) hold if Ω
is either a point or ∅. We will assume that Ω has at least two vertices.

(1) The complex Ω is the Scarf complex of the monomial ideal
JΩ, constructed in Construction 59.8, if and only if Ω is a simplex or
Ω has at least two non-faces. This happens if and only if Ω is not the
boundary of the simplex Θ.

(2) If Ω supports a Scarf resolution, then it is acyclic by The-
orem 55.13 applied to the multidegree m that is the lcm of all the
minimal monomial generators of the ideal.
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Suppose that the simplicial complex Ω is acyclic. We will show
that the ideal JΩ, constructed in Construction 59.8, is a Scarf ideal
with Scarf complex Ω. The lcm of its minimal monomial generators
is z.

We want to apply Theorem 59.6. Thus, we have to show that
bSi,z(S/JΩ) = 0 for every i. Compute these Betti numbers using The-
orem 58.8. The lcm-lattice of JΩ consists of the Scarf multidegrees
(including the bottom element 1) and the top element z. The inter-
val [1, z) is the face poset of Ω. The order complex of (1, z) is the
barycentric subdivision of Ω by 36.8, and is homotopic to Ω by 36.9,
so it is acyclic. Therefore, the simplicial complex Ω supports the Scarf
resolution of JΩ.

Theorem 59.9 provides a wide class of ideals which are Scarf
ideals and which have the advantage of being defined by a simple
combinatorial property; note that the ideals are defined by a generic
condition on the exponents of the minimal monomial generators.

Theorem 59.9. Suppose that no variable xi appears at the same non
zero exponent in two distinct minimal monomial generators of M .
Then M is a Scarf ideal.

Proof. For τ ⊆ {m1, . . . ,mr}, set mτ = mdeg(τ) = lcm(mi | i ∈ τ).
Consider a multidegree mτ with τ 
∈ ΩM . By Theorem 59.6 we have
to show that all Betti numbers in multidegree mτ vanish. We com-
pute the Betti numbers of S/M using the Koszul complex K that
is the minimal free resolution of k over S. We use the notation in
Construction 26.4. The component of K in multidegree mτ has basis

{
mτ

xj1 . . . xji
ej1 ∧ · · · ∧ eji

∣
∣
∣
∣xjp divides mτ for 1 ≤ p ≤ i,

1 ≤ j1 < . . . < ji ≤ n

}

.

Fix an element f =
mτ

xj1 . . . xji
ej1 ∧ · · · ∧ eji in this basis. Choosing τ

minimal with respect to inclusion, we may assume mτ = mτ∪ms
for

234



60 Rootings and Lyubeznik’s resolution

some ms ∈ {m1, . . . ,mr}\τ . We have that ms divides mτ . On the
other hand, by assumption the monomials ms and mτ have different
non-zero exponents in each variable. Hence, the monomial ms divides

mτ∏
{i |xi divides mτ} xi

. Therefore, the image of f in (S/M ⊗ Ki)mτ

vanishes. We conclude that (S/M ⊗ Ki)mτ
= 0. Thus, the Scarf

complex is exact and FΩM
is a fee resolution of S/M .

If σ ∈ ΩM and mi ∈ σ, then by the definition of the Scarf com-
plex it follows that mdeg(σ \mi) strictly divides mdeg(σ). Therefore,
d(FΩM

) ⊆ (x1, . . . , xn)FΩM
. Thus, the resolution is minimal.

60 Rootings and Lyubeznik’s resolution

We will construct a simplicial resolution which is smaller than Taylor’s
resolution. The material in this section is from [Novik].

A rooting map on the lcm-lattice LM is a map

h : LM \ {1} → {m1, . . . ,mr}

such that the following two conditions are satisfied:
(1) for every monomial m, we have that h(m) divides m.
(2) if m,m′ ∈ LM \{1} are such that h(m) divides m′ and m′ divides

m, then h(m) = h(m′).
For every nonempty set B ⊆ {m1, . . . ,mr} we define

h(B) = h(lcm(mi|mi ∈ B)) .

We say that B is unbroken if h(B) ∈ B. A set B is rooted if all
nonempty subsets of B are unbroken. The collection of all rooted sets
is the rooted complex of h, and is denoted RCh. It is a subcomplex
of the simplex Θ on vertices m1, . . . ,mr.

Exercise 60.1. If h is a rooting map on LM , then RCh is a simplicial
complex.

Theorem 60.2. If h is a rooting map on LM , then the rooted complex
RCh supports a simplicial free resolution of S/M .
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Proof. We will apply Proposition 57.5.
Let m ∈ LM \ {1}. We will prove that the simplicial complex

(RCh)≤m is a cone with apex h(m).
Let τ ∈ (RCh)≤m be a face. We will show that either it contains

the vertex h(m) or τ ∪ h(m) ∈ (RCh)≤m. Suppose that h(m) /∈ τ .
We will prove that every subset σ of τ ∪ h(m) is unbroken. Note
that σ either is a subset of τ and so is unbroken, or it contains h(m).
Suppose the latter case holds. Set m′ = lcm(mi|mi ∈ σ). Then h(m)
divides m′ since h(m) ∈ σ. As τ ∈ (RCh)≤m and h(m) divides m, it
follows that m′ = lcm(mi|mi ∈ σ) divides m. By the definition of a
rooting map it follows that h(σ) = h(m′) = h(m). Since h(m) ∈ σ,
we conclude that σ is unbroken. Therefore, τ ∪h(m) is rooted. Thus,
τ ∪ h(m) ∈ (RCh)≤m.

Since (RCh)≤m is a cone, it is acyclic. The theorem follows by
Proposition 57.5.

For a set τ ⊆ {m1, . . . ,mr}, set min(τ) = min{i |mi ∈ τ) and
recall that mdeg(τ) = lcm(mi|mi ∈ τ).

Exercise 60.3. Define a map

h : LM \ {1} −→ {m1, . . . ,mr}

m �→ min{i |mi divides m) .

(1) The map h is a rooting map.
(2) A set τ ⊆ {m1, . . . ,mr} is unbroken if and only if mq does not

divide mdeg(τ) for every q < min(τ).

The following result is an immediate corollary of Theorem 60.2
and Exercise 60.3.

Theorem 60.4.Let h be the rooting map constructed in Exercise 60.3.
The rooted complex RCh supports a simplicial free resolution of S/M
denoted LM . It is the essential subcomplex of Taylor’s resolution such
that the free module in homological degree j in LM has basis
{
eτ
∣
∣mq does not divide mdeg(σ) for all σ ⊆ τ and q < min(σ)

}
.

This simplicial free resolution of S/M is called the Lyubeznik
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resolution. It was introduced in [Lyubeznik] and proved in a different
way.

Running Example 60.5. Order the minimal monomial generators
of Y by m1 = xy,m2 = y3,m3 = x2. Consider the rooting map de-
fined in Exercise 60.3. The edge {x2, y3} is not unbroken, so this edge
and the triangle {x2, y3, xy} are not rooted. Therefore, the rooted
complex has facets the edges {x2, xy} and {xy, y3}. Thus, the rooted
complex supports the minimal free resolution of C/Y . It is strictly
smaller than Taylor’s resolution.

61 Betti numbers via simplicial complexes

The Betti numbers of S/M can be computed using various simplicial
complexes. It is helpful to have formulas based on different simplicial
complexes since different complexes are useful in different situations.

Construction 61.1. Let Γ(m) be the simplicial complex on vertices
x1, . . . , xn and with faces

{
τ ⊆ {x1, . . . , xn}

∣
∣
∣

m
∏
xi∈τ xi

∈M
}
.

Sometimes, it is more convenient to denote the vertices of Γ(m) by
{1, . . . , n} and then the faces are

{
τ ⊆ {1, . . . , n}

∣
∣
∣

m
∏
i∈τ xi

∈M
}
.

Let Θ be the simplex with r vertices m1, . . . ,mr. Also, let LM
be the lcm-lattice of M , and O(1,m) be the order complex of the open
interval (1,m) in the lcm-lattice LM .

Running Example 61.2. Let m = x2y3. The complex Θ<x2y3

has three vertices x2, xy, y3 and the two edges {x2, xy}, {xy, y3}. The
complex Γ(m) has two vertices x, y and the edge {x, y}. The com-
plex O(1,m) has 5 vertices x2, xy, y3, x2y, xy3 and 4 edges {x2, x2y},
{xy, x2y}, {xy, xy3}, {y3, xy3}. See Figure 14.
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Figure 14.

Theorem 61.3. [Bayer-Sturmfels], [Bruns-Herzog 2], [Gasharov-
Peeva-Welker 2] The simplicial complexes Θ<m, Γ(m), and O(1,m)
are homotopy equivalent. For i ≥ 0 and any monomial m 
= 1, we
have

bSi,m(M) = dim H̃i−1

(
Θ<m; k

)

= dim H̃i−1

(
Γ(m); k

)

= dim H̃i−1

(
O(1,m); k

)
.

Proof. The proof of Theorem 58.8 shows that O(1,m) and Θ<m are
homotopy equivalent. We will show that Θ<m and Γ(m) are homotopy
equivalent. We are going to use the Nerve Theorem 36.11. For each

238



62 The Stanley-Reisner correspondence

1 ≤ i ≤ n, consider the simplicial complex Λxi
⊆ Θ with faces

{
{mj1 , . . . ,mjq}

∣
∣
∣mjp divides

m

xi
for 1 ≤ p ≤ q

}
.

Each Λxi
is a simplex. The simplices Λx1 , . . . ,Λxn

cover Θ<m. We
have

∩xi∈A Λxi
=
{
{mj1 , . . . ,mjq}

∣
∣
∣mjp divides

m
∏
xi∈A xi

for 1 ≤ p ≤ q
}

so if an intersection is non-empty then it is a simplex, so contractible.
The nerve of this cover is Γ(m). Hence Γ(m) and Θ<m are homotopy
equivalent by the Nerve Theorem 36.11.

The formula for the Betti numbers follows from Theorem 57.9.
Here is another proof following [Bruns-Herzog 2, 1.1]. Apply

Construction 26.4 and use its notation. Denote by T the augmented
oriented simplicial chain complex computing the reduced homology of
the simplicial complex Γ(m). Then

(M ⊗Ki)m −→ Ti−1

m

xj1 . . . xji
ej1 ∧ · · · ∧ eji �→ the face with vertices xj1 , . . . , xji

is an isomorphism of complexes. Hence, bSi,m(M) = dim H̃i−1

(
Γ(m); k

)

as desired.

62 The Stanley-Reisner correspondence

The first peak in the study of monomial resolutions was in the 1970’s.
The Stanley-Reisner theory was introduced by Hochster [Hochster]
and Reisner [Reisner], and had applications in combinatorics, cf. [Stan-
ley]. The main idea in the Stanley-Reisner theory is to use simpli-
cial complexes in order to compute the Betti numbers of a squarefree
monomial ideal. Polarization (see Section 21) can be used to reduce
to the squarefree case, that is, to reduce the study of resolutions of
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monomial ideals to the study of resolutions of squarefree monomial
ideals.

In this section we consider squarefree monomial ideals.
The support of a squarefree monomial m is the set

supp(m) = {xi |xi divides m}

For τ ⊆ {x1, . . . , xn}, set

xτ =
∏

i∈τ
xi .

Recall the definition of the Stanley-Reisner ideal (see Section 51).
Let Δ be a simplicial complex with vertices x1, . . . , xn. The Stanley-
Reisner ideal in S of Δ is

IΔ = (xi1 . . . xip | {xi1 , . . . , xip} /∈ Δ) .

The Stanley-Reisner ring of Δ is S/IΔ.

Note that any squarefree monomial ideal is the Stanley-Reisner
ideal for some simplicial complex. In [Bruns-Gubeladze] it is proved
that if two Stanley-Reisner rings are isomorphic as k-algebras, then
their simplicial complexes are isomorphic.

The following basic equality is proved in Theorem 51.5.

Theorem 62.1. dim(S/IΔ) = dim(Δ) + 1.

Construction 62.2. The Alexander dual complex of Δ is

Δ∨ =
{
{x1, . . . , xn} \ τ

∣
∣
∣ τ /∈ Δ

}
.

Exercise 62.3. Δ∨∨ = Δ.

The Stanley-Reisner ideal of the Alexander dual complex is

IΔ∨ =
({ x1 · · ·xn

xτ

∣
∣
∣ τ ∈ Δ

})

=
({

monomial m | gcd(m,m′) 
= 1 for each monomial m′ ∈ IΔ
})

.
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62 The Stanley-Reisner correspondence

Exercise 62.4. The facets of Δ correspond bijectively to the minimal
monomial generators of IΔ∨ .

The key idea in this section is that the algebraic properties of
the minimal free resolution of IΔ are closely related to the topological
and combinatorial properties of Δ∨.

Figure 15.

Running Example 62.5. Polarizing Y we obtain the squarefree
ideal (xa, xy, ybc). It is the Stanley-Reisner ideal of the simplicial
complex Δ on vertices x, y, a, b, c and with facets the triangles {x, c, b},
{a, y, c}, {a, b, y}, {a, b, c}. The facets of the Alexander dual complex
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Δ∨ are the supports of the monomials
xyabc

xa
= ybc,

xyabc

xy
= abc, and

xyabc

ybc
= xa, so they are {y, b, c}, {a, b, c}, and {x, a}. See Figure 15

above.

Theorem 62.6 is presented without a proof, and is a useful tool
from Algebraic Topology; cf. [Bayer-Charalambous-Popescu, 2.1].

Alexander Duality Theorem 62.6.

dim H̃n−i−2(Δ; k) = dim H̃i−1(Δ∨; k) = dim H̃i−1(Δ∨; k) .

For a subset τ of {1, . . . , n}, let Δτ be the restriction of Δ on
τ , that is the maximal subcomplex of Δ on vertices τ . Note that
(Δτ )∨ = (Δ∨)τ , and denote it Δ∨

τ .

Theorem 62.7. Let τ be a subset of {1, . . . , n}.
(1) Recall Construction 61.1 defining Γ(xτ ) to be the simplicial com-

plex with faces
{

σ ⊆ τ

∣
∣
∣
∣
xτ
xσ
∈ IΔ
}

. We have

Γ(xτ ) = Δ∨
τ

and

bSi,xτ
(IΔ) = dim H̃i−1

(
Δ∨
τ ; k
)
.

(2) We have

bSi,xτ
(IΔ) = dim H̃|τ |−i−2(Δτ ; k) .

Proof. First, we prove (1). The simplicial complex Γ(xτ ) has faces

{

σ ⊆ τ

∣
∣
∣
∣
xτ
xσ
∈ IΔ
}

= {σ ⊆ τ |σ ∈ Δ∨
τ } .

Therefore, Γ(xτ ) = Δ∨
τ . From Theorem 61.3 it follows that

bSi,xτ
(IΔ) = dim H̃i−1

(
Γ(xτ ); k

)
= dim H̃i−1

(
Δ∨
τ ; k
)
.
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Now, we prove (2). By (1) and the Alexander Duality Theo-
rem 62.6, we get

bSi,xτ
(IΔ) = dim H̃i−1

(
Δ∨
τ ; k
)

= dim H̃|τ |−i−2

(
Δτ ; k
)
.

Theorem 62.8. [Terai], [Bayer-Charalambous-Popescu]

pd(S/IΔ∨) = reg(IΔ) .

Proof.

reg(IΔ) = max{ j | bSi,i+j(IΔ) 
= 0 }

= max{ j | bSi,xτ
(IΔ) 
= 0 and |τ | = i+ j }

= max{ j | H̃|τ |−i−2

(
Δτ ; k
)

= 0 and |τ | = i+ j } by 62.7(2)

= max{ j | H̃j−2

(
Δτ ; k
)

= 0 }

= max{ j | bSj−1,xτ
(IΔ∨) 
= 0 } by Theorem 62.7(1)

= pd(IΔ∨) + 1 = pd(S/IΔ∨) .

Corollary 62.9. (Eagon-Reiner) The ideal IΔ has a linear minimal
free resolution if and only if S/IΔ∨ is Cohen-Macaulay.

Proof. By 62.1, dim(S/IΔ∨) = dim(Δ∨) + 1. Suppose that S/IΔ∨ is
Cohen-Macaulay. Then,

reg(IΔ) = pd(S/IΔ∨) = n− depth(S/IΔ∨) = n− dim(S/IΔ∨)

= n− dim(Δ∨)− 1

= the minimal degree of a minimal monomial generator of IΔ .

Hence, IΔ has a linear minimal free resolution.
Suppose that IΔ has a linear minimal free resolution. Then

n−depth(S/IΔ∨) = pd(S/IΔ∨) = reg(IΔ)

= the minimal degree of a minimal monomial generator of IΔ

= n− dim(Δ∨)− 1

= n− dim(S/IΔ∨) .
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Hence, depth(S/IΔ∨) = dim(S/IΔ∨). Thus, the Stanley-Reisner ring
S/IΔ∨ is Cohen-Macaulay.

Corollary 62.10. [Stanley] If S/IΔ∨ is Cohen-Macaulay, then the
complex Δ∨ is pure (that is, all maximal faces of Δ∨ have the same
dimension).

Proof. This follows from the first part of the proof of Corollary 62.9.
Since reg(IΔ) is equal to the minimal degree of a minimal monomial
generator of IΔ, it follows that all minimal monomial generators of
IΔ have the same degree.

For σ ⊆ τ ∈ Δ we define the closed interval

[σ, τ ] = {μ |σ ⊆ μ ⊆ τ} .

A partition of Δ, is a disjoint union

Δ =
⊔

1≤i≤s
[σi, τi] ,

where τ1, . . . , τs are the facets of Δ. Thus, the closed intervals [σi, τi]
are disjoint and cover Δ. We say that Δ is partitionable if it has a
partition.

Figure 16.

Example 62.11. Consider the simplicial complex Δ in Figure 16
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above. Let τ1, τ2, τ3 be the three facets. Then Δ has the partition

Δ = [∅, τ1] ' [α, τ2] ' [β, τ3] ,

where α and β are the vertices labeled in Figure 16.
A simplicial complex Δ is Cohen-Macaulay if its Stanley-

Reisner ring is Cohen-Macaulay. An open conjecture, central in com-
binatorics, cf. [Stanley, Stanley 2], states that a Cohen-Macaulay
simplicial complex is partitionable. By Corollary 62.9, we have the
following equivalent conjecture.

Conjecture 62.12. [Stanley], [Stanley 2, Problem 6] If IΔ∨ has a
linear resolution, then Δ is partitionable.

Exercise 62.13. If IΔ∨ is squarefree Borel and has a linear resolution,
then Δ is partitionable.

In the next theorem we show how Alexander duality is related to
the lcm-lattice. The proper part of a lattice P , with bottom element
0̂ and top element 1̂, is P \ {0̂, 1̂}.

Theorem 62.14. [Gasharov-Peeva-Welker 2] Let LΔ∨ be the lattice
of all non-empty intersections of the facets of Δ∨ ordered by reverse
inclusion, and enlarged by an additional bottom element 0̂ and an
additional top element 1̂. The lattices LIΔ and LΔ∨ are isomorphic.
Furthermore, Δ∨ is homotopy equivalent to the order complex of the
proper part of LIΔ .

Proof. Let τ1, . . . , τp be the facets of Δ∨. For any ∅ 
= A ⊆ {1, . . . , p}
we consider the bijective correspondence

⋂

i∈A
τi ←→ x1 . . . xn⋂

i∈A supp(xτi
)

= lcm
(
x1 . . . xn

xτi

∣
∣
∣
∣ i ∈ A

)

.

The lattices LΔ∨ and LIΔ are isomorphic via the above correspon-
dence.

In particular, for the minimal monomial generators of IΔ we have

τi ∈ Δ∨ ←→ x1 . . . xn
xτi

∈ IΔ.
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By Corollary 36.13 and Corollary 36.9 it follows that Δ∨ is ho-
motopy equivalent to the order complex of the proper part of LIΔ .

Recall by 36.17 that for τ ∈ Δ, the link of τ is

linkΔ(τ) = {σ ∈ Δ|σ ∪ τ ∈ Δ, σ ∩ τ = ∅} .

Theorem 62.15. [Hochster] Consider an open interval (1,m) in
the lcm-lattice LIΔ . Let τ = {x1, . . . , xn} \ supp(m) be the comple-
ment of supp(m). The order complex O(1,m) is homotopic to the link
linkΔ∨(τ). In particular,

dim H̃j(O(1,m); k) = dim H̃j(linkΔ∨(τ); k) for all j .

For i ≥ 0, we have that

bSi,m(IΔ) = dim H̃i−1(linkΔ∨(τ); k) .

The above formula for the Betti numbers is called the Hochster

formula.

Proof. As shown in the proof of Theorem 62.14, the open interval
(1,m) is isomorphic to the open interval (0̂, τ) in the lattice LΔ∨

of all non-empty intersections of the facets of Δ∨ ordered by reverse
inclusion. By Corollary 36.13, the order complex of (0̂, τ) is homotopic
to the order complex of (τ, 1̂) in the face lattice W of Δ∨ (since W is
ordered by inclusion, while LΔ∨ is ordered by reverse inclusion). Each
element μ in the poset (τ, 1̂) can be written as μ = σμ ∪ τ ∈ Δ so
that σμ ∩ τ = ∅. We get an isomorphism between (τ, 1̂) and the face
poset F (linkΔ(τ)) which maps μ to σμ. Therefore, the order complex
of (τ, 1̂) is homotopic to the simplicial complex linkΔ(τ). The formula
for the Betti numbers follows from Theorem 61.3:

bSi,m(IΔ) = dim H̃i−1(O(1,m); k) = dim H̃i−1(linkΔ∨(τ); k) .

Example 62.16. Consider N = (ac, ah, be, ce) in A = k[a, b, c, e, h].
Its Stanley-Reisner simplicial complex Δ and the Alexander dual com-
plex Δ∨ are shown in Figure 17. Note that the non-faces are not
shaded, so {c, e, h} is not a face in Δ∨.
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Figure 17.
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The complexes Θ<aceh, Γ(aceh),O(1, aceh), and linkΔ∨({aceh}c)
are shown in Figure 17 as well. By Theorem 61.3 and Theorem 62.15,
the multigraded Betti numbers bAi,aceh(N) can be computed using any
of these simplicial complexes. We have that all the Betti numbers in
multidegree aceh vanish.

Corollary 62.17. [Reisner] S/IΔ is Cohen-Macaulay if and only if for

each face τ ∈ Δ we have H̃i(linkΔ(τ); k) = 0 for i 
= dim(linkΔ(τ)).

Proof. By Corollary 62.9, S/IΔ is Cohen-Macaulay if and only if the
ideal IΔ∨ has a linear minimal free resolution, if and only if for every
monomial m we have that bSi,m(IΔ∨) = 0 for deg(m) 
= p + i, where
p is the minimal degree of a minimal monomial generator of IΔ∨ .
By Theorem 62.15, this is equivalent to H̃i(linkΔ(τ); k) = 0 for i 
=
dim(linkΔ(τ)), where τ = {x1, . . . , xn} \ supp(m).

Define a Betti number bi,m to be i-extremal if bi,m′ = 0 for all
monomials m′ strictly divisible by m. The following result is proved
in [Bayer-Charalambous-Popescu].

Theorem 62.18. If bSi,m(IΔ∨) is i-extremal, then

bSi,m(IΔ∨) ≥ bSdeg(m)−i−1,m(IΔ).

Proposition 62.19. Denote by mingens(IΔ∨) the set of minimal
monomial generators of IΔ∨ . The irredundant primary decomposition
of IΔ is

IΔ =
⋂

xj1 ···xjs∈mingens (IΔ∨ )

(xj1 , . . . , xjs) .

Proof. The ideal IΔ is radical, so it equals the intersection of its min-
imal prime divisors.The associated primes of S/IΔ are its minimal
prime divisors. An ideal P is an associated prime of S/IΔ exactly
when

P =
{

(xi1 , . . . , xir ) | {x1, . . . , xn} \ {xi1 , . . . , xir} is a facet of Δ
}
.
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63 Quadratic monomial ideals

One might expect that the simplest minimal free monomial resolu-
tions are those of the ideals generated by quadratic monomials, and
that it might be nearly an exercise to describe them. However, these
resolutions are so complicated that it is beyond reach to obtain a de-
scription of them; we do not even know how to express the regularity.
In this section we will apply the mapping cone construction to deter-
mine which quadratic monomial ideals have 2-linear free resolutions.

It is easy to encode a set of squarefree quadratic monomials in
a graph. Throughout the section, we consider a simple (that is, with
no loops and no multiple edges) graph G on vertices x1, . . . , xn. The
edge ideal IG is

IG =
(
xixj |xixj is an edge in G

)
.

Exercise 63.1. The polarization of any quadratic monomial ideal is
an edge ideal.

Thus, studying the minimal free resolutions of quadratic mono-
mial ideals is equivalent to studying the minimal free resolutions of
edge ideals. The following problems are open.

Problems 63.2. (folklore)
(1) Express reg(IG) in terms of properties of the graph G.
(2) Find upper (and lower) bounds on reg(IG) in terms of properties

of the graph G.
(3) Find upper (and lower) bounds on the Betti numbers of IG in

terms of properties of the graph G.

For the next theorem we need a few definitions about graphs.
The complement graph Gc of G is the graph on the same set of
vertices, and with edges

{xixj |xixj is not an edge in G} .

We say that a simple graph T contains a q-cycle (xi1 . . . xiq ) if xiqxi1 ∈
T and xijxij+1 ∈ T for all 1 ≤ j ≤ q − 1. A chord in the cycle is an
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edge between two non-consecutive vertices. A cycle is called minimal

(or induced) if it has no chords. A cycle with three vertices is called
a triangle.

Theorem 63.3. [Fröberg] The following properties are equivalent.
(1) IG has a 2-linear minimal free resolution.
(2) reg(S/IG) = 1.
(3) Every minimal cycle in Gc is a triangle.

Proof. (1) and (2) are equivalent.
We will show that (3) implies (2). Dirac’s Theorem, cf. [Herzog-

Hibi-Zheng] and [Horwitz], states that if every minimal cycle in Gc is a
triangle then there exists an order of the vertices so that the following
property holds: if xixj ∈ G and xp is a vertex with i, j < p, then
either xixp, or xjxp, or both are edges in G.

For p ≥ 1, denote by Gp the induced subgraph of G on the
vertices x1, . . . , xp. Our proof is by induction on the number of vertices
p.

Let p ≥ 2. Set

J = (xpxq | 1 ≤ q < p, xpxq ∈ G) .

Consider the short exact sequence

(∗) 0 → J/(IGp−1∩J) → S/IGp−1 → S/(IGp−1+J) = S/IGp
→ 0 .

We will show that IGp−1 ∩ J = xpIGp−1 . Consider a monomial
xpxqxixj such that xpxq ∈ J and xixj ∈ Gp−1. Since i, j < p, by
Dirac’s order of the variables, we have that either xixp, or xjxp, or
both are edges in Gp. Therefore, xpxixj ∈ IGp−1 ∩ J . It follows that
the ideal IGp−1 ∩ J is generated by the monomials {xpxixj |xixj ∈
Gp−1 }. Hence,

IGp−1 ∩ J = xpIGp−1

J = xp(xq | 1 ≤ q < p, xpxq ∈ G) .

The minimal free resolution of the ideal (xq | 1 ≤ q < p, xpxq ∈ G) is
given by a Koszul complex. Therefore, we get

reg(IGp−1 ∩ J) = 1 + reg(IGp−1) = 3

reg(J) = 1 + reg(xq | 1 ≤ q < p, xpxq ∈ G) = 2 .
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Now, Corollary 18.6 applied to the short exact sequence

0 → IGp−1 ∩ J → J → J/(IGp−1 ∩ J) → 0

implies that reg
(
J/(IGp−1 ∩ J)

)
= 2. By induction hypothesis, we

have reg(S/IGp−1) = 1. Therefore, Corollary 18.6 applied to the short
exact sequence (∗) implies that reg(S/IGp

) = 1.
(1) implies (3) by the next exercise.

Exercise 63.4. If Gc contains a minimal cycle (xi1 . . . xiq ) with
q > 3, then bSq−2,xi1 ...xiq

(S/IG) 
= 0.

64 Infinite free monomial resolutions

Infinite free resolutions related to monomial ideals have been studied
much less than finite ones. So far, the three main results in that
area are Theorem 35.6 on the rate, Backelin’s Theorem 64.2 on the
rationality of the Poincaré series, and Berglund’s Theorem 64.4 on
computing the Betti numbers by simplicial complexes.

In this section, we study the multigraded minimal free resolution
G of k over the quotient ring S/M . It is infinite (unlessM is generated
by variables) and starts with

. . .→ (S/M)n
(x1 x2 . . . xn )
−−−−−−−−−−−−−−−−−−−−−−→S/M → k→ 0 .

Theorem 64.1. The entries in the matrices of the differentials in G
are scalar multiples of monomials.

Proof. Since G is multigraded we have that each entry f in the matri-
ces of the differentials in G is homogeneous. Let m be the multidegree
of f . Since Rm is one dimensional, it follows that f is a scalar multiple
of the unique monomial in multidegree m.

Problems of rationality of Poincaré and Hilbert series were stated
by several mathematicians: by Serre and Kaplansky for local noethe-
rian rings, by Kostrikin and Shafarevich for nilpotent algebras, by
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Govorov for associative graded algebras, by Serre and Moore for simply-
connected complexes. It is of interest to find explicit formulas in some
cases and to establish rational relations between various Poincaré and
Hilbert series. The Serre-Kaplansky problem, “Is the total Poincaré
series of a finitely generated commutative local Noetherian ring ra-
tional?”, was one of the central questions in Commutative Algebra
for many years. An example of irrational Poincaré series was first
constructed in [Anick]. In contrast, the following result is proved in
[Backelin].

Theorem 64.2. The multigraded Poincaré series of k over S/M can
be written as

PS/Mk (t, x1, . . . , xn) =
(1 + tx1) · · · (1 + txn)
1 + F (t, x1, . . . , xn)

,

where the denominator 1+F (t, x1, . . . , xn) is a polynomial. The degree
of the polynomial F (t, x1, . . . , xn) in t is bounded above by the degree
of the monomial lcm(m1, . . . ,mr). The monomials in x1, . . . , xn ap-
pearing in F (t, x1, . . . , xn) (that is, the monomial coefficients of the
powers of t) divide lcm(m1, . . . ,mr).

Open-Ended Problem 64.3. (folklore) Understand the denomina-
tor 1 + F (t,x) .

Based on a substantial amount of computational evidence Char-
alambous and Reeves conjectured the form of the terms of the poly-

nomial denominator 1 + F (t,x) of the Poincaré series PS/Ik (t). Their
conjecture is proved by Berglund, who provides a beautiful construc-
tion on how to compute the denominator using simplicial complexes
as described in Theorem 64.4. For the formulation of that theorem,
we need some terminology. Let G be the graph on vertices m1, . . . ,mr

and with edges {mimj | gcd(mi,mj) 
= 1 }; we call it the gcd-graph

of the ideal M . If M is a nonempty subset of {m1, . . . ,mr}, then we
denote by GM the induced subgraph of G on the vertices in M. Let
cM be the number of connected components of GM, and denote by
GM(1), . . . , GM(cM) the connected components; we say that M is
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connected if GM is. Set mM = lcm(mi |mi ∈M}. We say that M
is saturated if for every mi and every connected subset N ⊆ M we
have that mi divides mN implies mi ∈M.

Theorem 64.4. [Berglund] Suppose that M is generated by mono-
mials of degree ≥ 2. For a subset M of {m1, . . . ,mr} define the
simplicial complex ΔM to have vertices the elements in M and faces

{K ⊆M|mK 
= mM or GK ∩GM(i) is disconnected for some i } .

(1) The multigraded Poincarè series PS/Mk (t, u1, . . . , un) of k over
S/M is

∏n
i=1 (1 + tui)

1 +
∑

saturated M⊆{m1,...,mr}
(
mM(−t)cM+2

∑
i H̃i(ΔM; k) ti

) .

The Poincarè series PS/Mk (t) of k over S/M is

(1 + t)n

1 +
∑

saturated M⊆{m1,...,mr}
∑
i (−1)cMH̃i(ΔM; k) tcM+2+i

.

(2) Let P be the poset of saturated subsets of {m1, . . . ,mr} ordered
by inclusion. If M is a saturated subset of {m1, . . . ,mr}, then

H̃∗(ΔM; k) = H̃∗( (∅,M)P ; k) ,

where (∅,M)P is the open interval below M in P.

Using simplicial complexes in order to compute the Betti num-
bers of finite monomial minimal free resolutions has a long and fruit-
ful tradition. Very little is known about infinite resolutions. Theo-
rem 64.4 shows that the Poincarè series of k over S/M can be com-
puted using simplicial complexes.

Corollary 64.5. (Avramov) Let M and M ′ be monomial ideals in the
polynomial rings S and S′ respectively. If there exists an isomorphism
of the lcm-lattices of M and M ′ which induces an isomorphism of the

gcd-graphs, then PS/Mk (t) and PS
′/M ′

k (t) have the same denominator
(when written as in Theorem 64.2).

Open-Ended Problem 64.6. (folklore) Obtain information on the
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real roots of the polynomial denominator 1 + F (t, (1, . . . , 1)) of the

Poincaré series PS/Mk (t).

The following construction provides the minimal free resolution
of k over S/M explicitly in the case when M is a Borel ideal.

Construction 64.7. [Peeva] Let M be a Borel monomial ideal. The
minimal free resolution of k over S/M can be described as follows.

Let K be the Koszul complex that resolves k over S. Consider K
as the exterior algebra on basis e1, e2, . . . , en with differential d(ei) =
xi. Denote by Ep+2 the k-space with basis
{

(mi; j1, . . . , jp) | 1 ≤ j1 < . . . < jp < max(mi), 1 ≤ i ≤ r

}

.

Set E = E2 ⊕ E3 ⊕ . . . ⊕ En+1. Define G = S/M⊗K⊗T (E), where

T (E) = k ⊕ E ⊕ (E ⊗ E ) ⊕ . . .

is the tensor algebra of E. A basis element in G has the form

t⊗ (z1; i1, . . . , ip1)⊗ (z2; l1, . . . , lp2)⊗ . . . ⊗ (zs; j1, . . . , jps
) ,

where t ∈ S/M ⊗K and z1, . . . , zs are among the minimal monomial
generators of M . Define a differential ∂ on the basis elements in G as
follows:

∂
(
t⊗ (z1; i1, . . . , ip1)⊗ (z2; l1, . . . , lp2)⊗ . . . ⊗ (zs; j1, . . . , jps

)
)

= d(t)⊗ (z1; i1, . . . , ip1)⊗ (z2; l1, . . . , lp2)⊗ . . . ⊗ (zs; j1, . . . , jps
)

+ (−1)deg(t) t
z1

xmax(z1)

ei1 ∧ . . . ∧ eip1
∧ emax(z1) ⊗ (z2; l1, . . . , lp2)⊗

. . . ⊗ (zs; j1, . . . , jps
) ,

where d(t) is the differential in S/M ⊗K if t /∈ S/M ⊗K0, and we set
d(t) = 0 in case t ∈ S/M ⊗K0. Extend the differential by linearity.
It is proved in [Peeva] that G is the minimal free resolution of k over
S/M . The Poincaré series of the resolution is

PS/Mk (t) =
(1 + t)n

1− t2
∑

1≤i≤r(1 + t)max(mi)−1
.
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