
Chapter 9
Optimality Aspect

This chapter considers the optimality aspect in distributed multi-agent coordina-
tion. We study optimal linear coordination algorithms for multi-agent systems
with single-integrator dynamics in both continuous-time and discrete-time set-
tings from a linear quadratic regulator perspective. We propose two global cost
functions, namely, interaction-free and interaction-related cost functions. With the
interaction-free cost function, we derive the optimal state feedback gain matrix in
both continuous-time and discrete-time settings. It is shown that the optimal gain
matrix is a nonsymmetric Laplacian matrix corresponding to a complete directed
graph. In addition, we show that any symmetric Laplacian matrix is inverse optimal
with respect to a properly chosen cost function. With the interaction-related cost
function, we derive the optimal scaling factor for a prespecified symmetric Lapla-
cian matrix associated with an undirected interaction graph in both continuous-time
and discrete-time settings. Illustrative examples are given as a proof of concept.

9.1 Problem Statement

Among various studies of distributed linear coordination algorithms, it is natural to
ask these questions: Is there an optimal linear coordination algorithm under a given
cost function? How to find the optimal linear coordination algorithm? The purpose
of this chapter is to study the optimal linear coordination algorithms for agents with
single-integrator dynamics from a linear quadratic regulator (LQR) perspective. In-
stead of studying locally optimal algorithms, we focus on globally optimal algo-
rithms.

The contributions of this chapter are threefold. First, we mathematically prove
the conditions under which the square root of a nonsymmetric Laplacian matrix
is still a nonsymmetric Laplacian matrix. Second, we explicitly derive the optimal
state feedback gain matrix under a given global cost function from an LQR per-
spective and show that the optimal state feedback gain matrix is a nonsymmetric
Laplacian matrix corresponding to a complete directed graph. Third, we derive the
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optimal scaling factor for a prespecified symmetric Laplacian matrix associated with
an undirected interaction graph. Although it might be intuitively true that a global
optimization problem in the context of multi-agent coordination normally requires
that each agent have full knowledge of all other agents, it is nontrivial to verify this
fact from a theoretical perspective. In particular, for the linear coordination algo-
rithms, it is not clear why the optimal state feedback gain matrix derived from the
standard LQR solution is a nonsymmetric Laplacian matrix and why the nonsym-
metric Laplacian matrix corresponds to a complete directed graph. In other words,
our focus here is not to repeat the standard LQR procedure but to provide a theoreti-
cal explanation. We first propose two global cost functions, namely, interaction-free
and interaction-related cost functions, in both continuous-time and discrete-time set-
tings. With the interaction-free cost function, we derive the optimal state feedback
gain matrix in both continuous-time and discrete-time settings. It is shown that the
optimal state feedback gain matrix is a nonsymmetric Laplacian matrix correspond-
ing to a complete directed graph. In addition, we show that any symmetric Laplacian
matrix is inverse optimal with respect to a properly chosen cost function. With the
interaction-related cost function, we derive the optimal scaling factor for a prespec-
ified symmetric Laplacian matrix associated with an undirected interaction graph in
both continuous-time and discrete-time settings.

In the continuous-time setting, consider n agents with single-integrator dynam-
ics given by (3.1). In the discrete-time setting, consider n agents with discretized
dynamics of (3.1) given by (8.3). Define Δij = δi − δj , where δi ∈ R

m is constant.
Here Δij denotes the desired relative position deviation between agents i and j.
In the continuous-time setting, coordination is achieved for the n agents if for all
ri(0) and i, j = 1, . . . , n, ri(t) − rj(t) → Δij as t → ∞. In the discrete-time
setting, coordination is achieved for the n agents if for all ri[0] and i, j = 1, . . . , n,
ri[k] − rj [k] → Δij as k → ∞. In the remainder of the chapter, we assume that
the agents are in a one-dimensional space for simplicity. However, all results here-
after are still valid for any high-dimensional space by use of the properties of the
Kronecker product.

In the continuous-time setting, similar to the cost function used in optimal control
problems for systems with linear differential equations, we propose the following
two coordination cost functions for (3.1) as

Jfc =
∫ ∞

0

{
n∑

i=1

i−1∑
j=1

cij

[
ri(t) − rj(t) − Δij

]2 +
n∑

i=1

ϑi

[
ui(t)

]2}
dt, (9.1)

where cij ≥ 0 and ϑi > 0, and

Jrc =
∫ ∞

0

{
n∑

i=1

i−1∑
j=1

aij

[
ri(t) − rj(t) − Δij

]2 +
n∑

i=1

[
ui(t)

]2}
dt, (9.2)

where aij is the (i, j)th entry of the adjacency matrix A associated with the graph

G
�
= (V , E ) characterizing the interaction among the n agents. In (9.1), both
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cij ≥ 0 and ϑi > 0 can be chosen freely. Therefore, Jfc is called the interaction-free
cost function. In contrast, (9.2) depends on the adjacency matrix A and hence the
graph G . Therefore, Jrc is called the interaction-related cost function. The motiva-
tion behind (9.1) and (9.2) is to weigh both the coordination errors ri(t)−rj(t)−Δij

and the control effort ui. The corresponding optimization problems can be written
as

min
ui(t)

Jfc, subject to (3.1) (9.3)

min
β

Jrc, subject to (3.1) and ui(t) = −
n∑

j=1

βaij

[
ri(t) − rj(t) − Δij

]
. (9.4)

In the discrete-time setting, we propose the following interaction-free and inte-
raction-related cost functions for (8.3) as

Jfd =
∞∑

k=0

n∑
i=1

i−1∑
j=1

cij

{
ri[k] − rj [k] − Δij

}2 +
∞∑

k=0

n∑
i=1

ϑi

(
ui[k]

)2
, (9.5)

where cij ≥ 0 and ϑi > 0, and

Jrd =
∞∑

k=0

n∑
i=1

i−1∑
j=1

aij

{
ri[k] − rj [k] − Δij

}2 +
∞∑

k=0

n∑
i=1

(
ui[k]

)2
, (9.6)

where aij is defined as in (9.4). The corresponding optimization problems can be
written as

min
ui[k]

Jfd subject to (8.3) (9.7)

min
β

Jrd subject to (8.3) and ui[k] = −
n∑

j=1

βaij

(
ri[k] − rj [k] − Δij

)
. (9.8)

9.2 Optimal Linear Coordination Algorithms in a Continuous-
time Setting from a Linear Quadratic Regulator
Perspective

In this section, we derive the optimal linear coordination algorithms in a continuous-
time setting from an LQR perspective. We first derive the optimal state feedback
gain matrix using the continuous-time interaction-free cost function (9.1). The opti-
mal gain matrix is later shown to be a nonsymmetric Laplacian matrix correspond-
ing to a complete directed graph. We then find the optimal scaling factor for a
prespecified symmetric Laplacian matrix associated with an undirected interaction



244 9 Optimality Aspect

graph using the continuous-time interaction-related cost function (9.2). Finally, il-
lustrative examples are provided.

9.2.1 Optimal State Feedback Gain Matrix Using
the Interaction-free Cost Function

Note that (9.3) can be written as

min
u(t)

∫ ∞

0

[
r̃T (t)Qr̃(t) + uT (t)Θu(t)

]
dt

︸ ︷︷ ︸
Jfc

(9.9)

subject to: ṙ(t) = u(t), (9.10)

where r̃(t)
�
= [r̃1(t), . . . , r̃n(t)]T with r̃i(t)

�
= ri(t)−δi, r(t)

�
= [r1(t), . . . , rn(t)]T ,

u(t)
�
= [u1(t), . . . , un(t)]T , Q ∈ R

n×n is symmetric with the (i, j)th entry and
hence the (j, i)th entry given by −cij for i > j and the (i, i)th entry given by∑i−1

j=1 cij +
∑n

j=i+1 cji, and Θ ∈ R
n×n is the positive-definite diagonal matrix

with ϑi being the ith diagonal entry. It can be noted that Q is a symmetric Laplacian
matrix. Therefore, Q is symmetric positive semidefinite. Before moving on, we need
the following notations and lemmas.

According to Lemma 1.14, if the characteristic polynomial of an M-matrix B ∈
R

n×n has at most a simple zero root, then B has exactly one M-matrix as its square
root. In this case, we use

√
B hereafter to represent the unique M-matrix that is the

square root of B.

Lemma 9.1. Let Q and Θ be defined in (9.9). Suppose that Q has a simple zero
eigenvalue. Then Θ−1Q is a nonsymmetric Laplacian matrix (and hence an M-
matrix) with a simple zero eigenvalue and

√
Θ−1Q is a nonsymmetric Laplacian

matrix with a simple zero eigenvalue.

Proof: We first note that Θ−1Q is a nonsymmetric Laplacian matrix because
Q is a symmetric Laplacian matrix, Θ is a positive-definite diagonal matrix, and
Θ−1Q1n = Θ−10n = 0n. It thus follows from Lemma 1.15 that Θ−1Q is also
an M-matrix. Because Q is a symmetric Laplacian matrix with a simple zero eigen-
value, it follows from Lemma 1.1 that the undirected graph associated with Q is
connected, which implies that the directed graph associated with Θ−1Q is strongly
connected. It thus follows from Lemma 1.1 that the nonsymmetric Laplacian ma-
trix Θ−1Q also has a simple zero eigenvalue. Therefore,

√
Θ−1Q is the unique

M-matrix that is the square root of Θ−1Q. We next show that
√

Θ−1Q has a sim-
ple zero eigenvalue with an associated eigenvector 1n. Let the ith eigenvalue of√

Θ−1Q be λi with an associated eigenvector νi. It follows that the ith eigenvalue
of Θ−1Q is λ2

i with an associated eigenvector νi. Because Θ−1Q has a simple zero
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eigenvalue with an associated eigenvector 1n, it follows that
√

Θ−1Q has a sim-
ple zero eigenvalue with an associated eigenvector 1n. Therefore, it follows from
Lemma 1.15 that

√
Θ−1Q is a nonsymmetric Laplacian matrix. Combining the

above arguments completes the proof.
We next show that the nonsymmetric Laplacian matrix

√
Θ−1Q corresponds to

a complete directed graph.

Lemma 9.2. Let Q and Θ be defined in (9.9). Suppose that Q has a simple zero
eigenvalue. Then the nonsymmetric Laplacian matrix

√
Θ−1Q corresponds to a

complete directed graph.

Proof: Note from Lemma 9.1 that
√

Θ−1Q is a nonsymmetric Laplacian matrix
with a simple zero eigenvalue. We show that each entry of

√
Θ−1Q is nonzero,

which implies that
√

Θ−1Q corresponds to a complete directed graph. Before mov-

ing on, we let qij denote the (i, j)th entry of Q. We also define W
�
=

√
Θ−1Q and

denote wij , wi,:, and w:,i as, respectively, the (i, j)th entry, the ith row, and the ith
column of W .

First, we will show that wij �= 0 if qij �= 0. We show this statement by contradic-
tion. Assume that wij = 0. Because Θ−1Q = W 2, it follows that qij

ϑi
= wi,:w:,j .

When i = j, it follows from wii = 0 that wi,: = 0T
n because W is a nonsymmetric

Laplacian matrix, which then implies that qij

ϑi
= wi,:w:,j = 0. This contradicts the

assumption that qij �= 0. Because W is a nonsymmetric Laplacian matrix, it follows
that wik ≤ 0, ∀i �= k. When i �= j, because it is assumed that wij = 0, it follows
that qij

ϑi
= wi,:w:,j =

∑n
k=1,k �=i,k �=j wikwkj ≥ 0. Because Q is a symmetric Lapla-

cian matrix, it follows that qij ≤ 0, ∀i �= j. Therefore, qij

ϑi
≥ 0, ∀i �= j, implies that

qij = 0, which also contradicts the assumption that qij �= 0.
Second, we will show that wij �= 0 even if qij = 0. We also show this statement

by contradiction. Assume that wij = 0. To ensure that qij = 0, it follows from
qij

ϑi
= wi,:w:,j =

∑n
k=1,k �=i,k �=j wikwkj that wikwkj = 0, ∀k �= i, ∀k �= j, k =

1, . . . , n. Denote k̂1 as the node set such that wim �= 0 for each m ∈ k̂1. Then we
have wmj = 0 for each m ∈ k̂1 because wikwkj = 0. Similarly, denote k̄1 as the
node set such that wmj �= 0 for each m ∈ k̄1. Then we have wim = 0 for each
m ∈ k̄1 because wikwkj = 0. From the discussion in the previous paragraph, when
wmj = 0, we have qmj = 0, which implies that wmpwpj = 0, ∀p �= m, ∀p �=
j, p = 1, . . . , n. By following a similar analysis, we can consequently define k̂i and
k̄i, i = 2, . . . , κ, where k̂i ∩ k̂j = ∅, k̄i ∩ k̄j = ∅, ∀j < i. Because both Q and
W have a simple zero eigenvalue, it follows from Lemma 1.1 that the undirected
graph associated with Q is connected and the directed graph associated with W
has a directed spanning tree. It thus follows that κ ≤ n. Therefore, each entry of
w:,j is equal to zero by following the previous analysis for at most n times. This
implies that qij = 0, ∀i �= j, because qij

ϑi
= wi,:w:,j . Considering the fact that Q

is a symmetric Laplacian matrix, it follows that qii = 0, which also contradicts the
fact that the undirected graph associated with Q is connected.

The main result for the optimal control problem (9.9) is given in the following
theorem.
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Theorem 9.1. In the optimal control problem (9.9), suppose that Q has a simple
zero eigenvalue. The optimal coordination algorithm is

u(t) = −
√

Θ−1Qr̃(t). (9.11)

The matrix
√

Θ−1Q is a nonsymmetric Laplacian matrix with a simple zero eigen-
value corresponding to a complete directed graph. Using (9.11) for (9.10), coordi-
nation is achieved.

Proof: Note that ṙ = u(t) is equivalent to ˙̃r = u(t). Consider the following standard
LQR problem

min
u(t)

Jfc subject to: ˙̃r(t) = Ar̃(t) + Bu(t), (9.12)

where Jfc is given in (9.9), A = 0n×n, and B = In. It can be noted that (A, B)
is controllable, which implies that there exists a unique positive-semidefinite matrix
P ∈ R

n×n satisfying the continuous-time algebraic Riccati equation

AT P + PA − PBΘ−1BT P + Q = 0n×n. (9.13)

It follows from (9.13) that PΘ−1P = Q by noting that A = 0n×n and B = In,
which implies that Θ−1PΘ−1P = Θ−1Q. It then follows from Lemma 9.1 that
Θ−1P =

√
Θ−1Q is also a nonsymmetric Laplacian matrix with a simple zero

eigenvalue when Q has a simple zero eigenvalue. Therefore, the optimal control
is u(t) = −Θ−1BT P r̃(t) = −

√
Θ−1Qr̃(t). It also follows from Lemma 9.2 that√

Θ−1Q corresponds to a complete directed graph. Note that using (9.11) for (9.10),
the closed-loop system becomes ˙̃r(t) = ṙ(t) = −

√
Θ−1Qr̃(t). Because

√
Θ−1Q

is a nonsymmetric Laplacian matrix with a simple zero eigenvalue, it follows from
Lemma 1.3 that r̃i(t)−r̃j(t) → 0 as t → ∞, which implies that ri(t)−rj(t) → Δij

as t → ∞.

Remark 9.2 Note that Q is a symmetric Laplacian matrix. It follows from Lem-
ma 1.1 that the assumption that Q has a simple zero eigenvalue is equivalent to the
assumption that the undirected graph corresponding to Q is connected.

Remark 9.3 In fact, the assumption that the symmetric Laplacian matrix Q has
a simple zero eigenvalue is also necessary to ensure coordination. If otherwise,
the undirected graph corresponding to Q is not connected. It thus follows that∑n

i=1

∑i−1
j=1 cij [ri(t) − rj(t) − Δij ]2 in (9.1) can be written as a sum of at least two

independent terms, where each term involves an independent subset of the agents.
As a result, the optimal control problem (9.3) and hence (9.9) can be decoupled into
at least two independent optimal control problems. By solving the independent opti-
mal control problems, coordination is only guaranteed for each independent subset
of the agents but not for all agents.

Remark 9.4 From Theorem 9.1, it can be noted that the graph corresponding to√
Θ−1Q is in general different from that corresponding to Q. Note that

√
Θ−1Q
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is not necessarily symmetric in general. When Θ is a diagonal matrix with identical
diagonal entries (i.e., Θ = cIn, where c > 0),

√
Θ−1Q is symmetric.

We next show that any symmetric Laplacian matrix L with a simple zero eigen-
value is inverse optimal with respect to some given cost function.

Theorem 9.5. Any symmetric Laplacian matrix L ∈ R
n×n with a simple zero

eigenvalue is the optimal state feedback gain matrix under the cost function J =∫ ∞
0

[r̃T (t)L 2r̃(t) + uT (t)u(t)] dt.

Proof: By letting Q = L 2 and Θ = In, it follows directly from the proof of
Theorem 9.1 that L is the optimal state feedback gain matrix.

9.2.2 Optimal Scaling Factor Using the Interaction-related Cost
Function

Suppose that the graph G is undirected. With the interaction-related cost func-
tion (9.2), the optimal control problem (9.4) can be written as

min
β

∫ ∞

0

[
r̃T (t)L r̃(t) + uT (t)u(t)

]
dt

︸ ︷︷ ︸
Jrc

subject to: ṙ(t) = u(t), u(t) = −βL r̃(t),

(9.14)

where L is the prespecified symmetric Laplacian matrix associated with the adja-
cency matrix A and hence the undirected graph G , and β is the scaling factor.

Theorem 9.6. In the optimal control problem (9.14), suppose that L has
a simple zero eigenvalue. Then the optimal β, denoted by βopt, is√

r̃T (0)r̃(0)− 1
n [1T

n r̃(0)]T [1T
n r̃(0)]

r̃T (0)L r̃(0)
.1

Proof: Note that u(t) = −βL r̃(t). It follows that ˙̃r(t) = ṙ(t) = −βL r̃(t). It
thus follows that r̃(t) = e−βL tr̃(0) and hence u(t) = −βL e−βL tr̃(0). The cost
function Jrc can then be written as

Jrc =
∫ ∞

0

r̃T (0)
[
e−βL tL e−βL t + β2e−βL tL 2e−βL t

]
r̃(0) dt.

Taking the derivative of Jrc with respect to β gives

dJrc

dβ
=

∫ ∞

0

r̃T (0)
[

− 2L te−βL tL e−βL t + 2βe−βL tL 2e−βL t

− 2β2L te−βL tL 2e−βL t
]
r̃(0) dt.

1 Note that coordination is obviously achieved when β = βopt.
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Setting dJrc

dβ = 0 gives

β2r̃T (0)
[∫ ∞

0

L te−βL tL 2e−βL t dt

]
r̃(0)

− βr̃T (0)
[∫ ∞

0

e−βL tL 2e−βL t dt

]
r̃(0)

+ r̃T (0)
[∫ ∞

0

L te−βL tL e−βL t dt

]
r̃(0) = 0, (9.15)

where we have used the fact that L and e−βL t commute. Because L is symmetric,
L can be diagonalized as

L = M

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

0 0 · · · λn

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Λ

MT , (9.16)

where M is an orthogonal matrix, and λi is the ith eigenvalue of L . Note that L
has a simple zero eigenvalue. Without loss of generality, we let λ1 = 0 and hence
λi > 0, i = 2, . . . , n (see Lemma 1.1). Note that the columns of M can be chosen
as the normalized right eigenvectors of L . Also note that 1n is a right eigenvector
of L associated with the zero eigenvalue. Therefore, we let the first column of M
be 1n√

n
. Note that

∫ ∞

0

L te−βL tL 2e−βL t dt

=
∫ ∞

0

M

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 e−2βλ2tλ3

2t · · · 0
...

...
. . .

0 0 · · · e−2βλntλ3
nt

⎤
⎥⎥⎥⎦ MT dt

=
1

4β2
M

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 λ2 · · · 0
...

...
. . .

0 0 · · · λn

⎤
⎥⎥⎥⎦ MT (9.17)

=
1

4β2
L . (9.18)

Similarly, it follows that
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∫ ∞

0

e−βL tL 2e−βL t dt (9.19)

=
∫ ∞

0

M

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 e−2βλ2tλ2

2 · · · 0
...

...
. . .

0 0 · · · e−2βλntλ2
n

⎤
⎥⎥⎥⎦ MT dt (9.20)

= − 1
2β

M

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 λ2e

−2βλ2t| ∞
0 · · · 0

...
...

. . .
0 0 · · · λne−2βλnt| ∞

0

⎤
⎥⎥⎥⎦ MT

=
1
2β

M

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 λ2 · · · 0
...

...
. . .

0 0 · · · λn

⎤
⎥⎥⎥⎦ MT =

1
2β

L (9.21)

and
∫ ∞

0

L te−βL tL e−βL t dt

=
∫ ∞

0

M

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 e−2βλ2tλ2

2t · · · 0
...

...
. . .

0 0 · · · e−2βλntλ2
nt

⎤
⎥⎥⎥⎦ MT dt

= − 1
2β

M

×

⎡
⎢⎣

0 0 · · · 0
0 λ2te−2βλ2t | ∞

0 −
∫ ∞
0 e−2βλ2tλ2dt · · · 0

...
...

. . .
0 0 · · · λnte−2βλnt | ∞

0 −
∫ ∞
0 e−2βλntλndt

⎤
⎥⎦ MT

= − 1
4β2

M

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 e−2βλ2t| ∞

0 · · · 0
...

...
. . .

0 0 · · · e−2βλnt| ∞
0

⎤
⎥⎥⎥⎦ MT

= − 1
4β2

M

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 1 · · · 0
...

...
. . .

0 0 · · · 1

⎤
⎥⎥⎥⎦ MT =

In − 1
n1n1T

n

4β2
, (9.22)
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where we have used the fact that the first column of M is 1n√
n

. By substitut-
ing (9.18), (9.21), and (9.22) into (9.15), it follows that the optimal β is βopt.

Remark 9.7 In Theorem 9.6, we consider a simple case when all agents have the
same coupling gain and find the optimal coupling gain explicitly. It is also possible
to consider the case when the coupling gains for each agent are different. However,
it is, in general, hard to find the optimal coupling gains explicitly. Instead, numerical
solutions can be obtained accordingly.

9.2.3 Illustrative Examples

In this subsection, we provide two illustrative examples about the optimal state feed-
back gain matrix and the optimal scaling factor derived in, respectively, Sect. 9.2.1
and Sect. 9.2.2.

In (9.9), we simply choose

Q =

⎡
⎢⎢⎣

2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1

⎤
⎥⎥⎦ and Θ =

⎡
⎢⎢⎣

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎤
⎥⎥⎦ .

It then follows from Theorem 9.1 that the optimal state feedback gain matrix is given
by

√
Θ−1Q =

⎡
⎢⎢⎣

1.3134 −0.5459 −0.5964 −0.1711
−0.2730 0.8491 −0.4206 −0.1556
−0.1988 −0.2804 0.8218 −0.3426
−0.0428 −0.0778 −0.2570 0.3775

⎤
⎥⎥⎦ .

Note that the optimal gain matrix is a nonsymmetric Laplacian matrix corresponding
to a complete directed graph. Also note that the graph associated with Q is different
from that associated with

√
Θ−1Q.

In (9.14), we simply choose

L =

⎡
⎢⎢⎣

2 −1 −1 0
−1 2 1 0
−1 −1 3 −1
0 0 −1 1

⎤
⎥⎥⎦

and the initial state r̃(0) = [1, 2, 3, 4]T . Figure 9.1 shows how the cost function Jrc

evolves as the scaling factor β increases. From Theorem 9.6, it can be computed
that the optimal scaling factor is βopt = 0.845, which is consistent with the result
shown in Fig. 9.1.
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Fig. 9.1 Evolution of the cost function Jrc as a function of β

9.3 Optimal Linear Coordination Algorithms in a Discrete-time
Setting from a Linear Quadratic Regulator Perspective

In this section, we study the optimal linear coordination algorithms in a discrete-
time setting from an LQR perspective. As shown later, the analysis in the discrete-
time case is more challenging than that in the continuous-time case. We will first
derive the optimal state feedback gain matrix using the discrete-time interaction-
free cost function (9.5). The optimal gain matrix is later shown to be a nonsym-
metric Laplacian matrix corresponding to a completed directed graph. We then find
the optimal scaling factor for a prespecified symmetric Laplacian matrix associated
with an undirected interaction graph using the discrete-time interaction-related cost
function (9.6). Finally, illustrative examples are provided.

9.3.1 Optimal State Feedback Gain Matrix Using
the Interaction-free Cost Function

Note that (9.7) can be written as

min
u[k]

∞∑
k=0

(
r̃T [k]Qr̃[k] + uT [k]Θu[k]

)
︸ ︷︷ ︸

Jfd

(9.23)

subject to: r[k + 1] = r[k] + Tu[k], (9.24)
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where r̃[k]
�
= [r̃1[k], . . . , r̃n[k]]T with r̃i[k]

�
= ri[k] − δi, r[k]

�
= [r1[k], . . . , rn[k]]T ,

u[k]
�
= [u1[k], . . . , un[k]]T , and Q and Θ are defined as in (9.9). Before moving on,

we need the following lemmas.

Lemma 9.3. Let P1 ∈ R
n×n be a row-stochastic matrix with positive diagonal

entries satisfying that P1 has a simple eigenvalue equal to one and all other eigen-
values are within the unit circle. Let P2 ∈ R

n×n be a nonnegative matrix satisfying
that ρ(P2) < 1. Denote

Xi+1,j =
1
2
[
Pj + (Xi,j)2

]
, X0,j = 0n×n, (9.25)

for j = 1, 2. Then limi→∞ Xi,j , j = 1, 2, exists. Denote X�
j

�
= limi→∞ Xi,j , j =

1, 2. If P1 and P2 commute, the following statements hold:

1. X�
j and Pk commute for j, k = 1, 2;

2. X�
1 and X�

2 commute.

Proof: It follows from Lemma 1.7 and Definition 1.1 that P1 is semiconvergent.
Also it follows from Lemma 1.27 and Definition 1.1 that P2 is also semiconvergent.
It then follows from Property (c) in Lemma 1.13 that (9.25) is convergent. That
is, limi→∞ Xi,j , j = 1, 2, exists. We next show that Statements 1 and 2 hold by
induction. It can be computed from (9.25) that X1,1 = 1

2P1 and X1,2 = 1
2P2.

Therefore, it is easy to verify that Pk and X1,j commute for j, k = 1, 2. Similarly,
X1,1 and X1,2 also commute. Assume that Pk and X�,j commute for j, k = 1, 2
and X�,1 and X�,2 commute. It can be computed from (9.25) that X�+1,j = 1

2 [Pj +
(X�,j)2] for j = 1, 2. It can also be easily verified that X�+1,j and Pk commute for
j, k = 1, 2. In addition, we also have that

X�+1,1X�+1,2 =
1
4
[
P1 + (X�,1)2

][
P2 + (X�,2)2

]

=
1
4
[
P1P2 + (X�,1)2P2 + P1(X�,2)2 + (X�,1)2(X�,2)2

]

=
1
4
[
P2P1 + P2(X�,1)2 + (X�,2)2P1 + (X�,2)2(X�,1)2

]
= X�+1,2X�+1,1,

where we have used the assumption that Pk and X�,j commute for j, k = 1, 2 and
X�,1 and X�,2 commute to derive the final result. Therefore, X�+1,1 and X�+1,2

also commute. By induction, Pk and limi→∞ Xi,j commute for j, k = 1, 2 and
limi→∞ Xi,1 and limi→∞ Xi,2 commute. Because X�

j = limi→∞ Xi,j , j = 1, 2,
the lemma holds clearly.

Lemma 9.4 ([152]). Let A ∈ R
n×n and B ∈ R

n×n. If AB = BA, then ρ(A+B) ≤
ρ(A) + ρ(B).
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Lemma 9.5. Let G ∈ R
n×n be a nonsymmetric Laplacian matrix with a simple zero

eigenvalue. Suppose that γ ≥ 0. Then
√

G + γIn

√
G is a nonsymmetric Laplacian

matrix with a simple zero eigenvalue.2

Proof: When γ = 0, the proof is trivial. When γ > 0, the proof follows tow steps:

Step 1. The off-diagonal entries of
√

G + γIn

√
G are nonpositive. Because G =

[gij ] is a nonsymmetric Laplacian matrix, G can be written as G = s(In − P ),
where s > 2 maxi gii, and P is a row-stochastic matrix with positive diagonal
entries. Because G has a simple zero eigenvalue, it follows that P has a sim-
ple eigenvalue equal to one and all other eigenvalues are within the unit circle.
Therefore, it follows from Lemma 1.7 and Definition 1.1 that P is semicon-
vergent. It follows from Property (c) in Lemma 1.13 that the iteration (1.3) is
convergent. According to part (a) in Lemma 1.13,

√
G =

√
s(In − X�), where

X� = limi→∞ Xi with α = 1 in (1.3). Similarly, G + γIn can be written as
G + γIn = (s + γ)(In − s

s+γ P ), where s > 2 maxi gii. By following a similar

analysis to that of G, it follows that
√

G + γIn =
√

s + γ(In − X̂�), where
X̂� = limi→∞ Xi with P replaced with s

s+γ P and α = 1 in (1.3). With P
and s

s+γ P playing the role of, respectively, P1 and P2 in Lemma 9.3, it follows

from parts (a) and (c) in Lemma 1.13 and Lemma 9.3 that X� and X̂� commute
because P and s

s+γ P commute. Then we have

1√
s(s + γ)

√
G + γIn

√
G

= (In − X� − X̂� + X�X̂�)

= In − 1
2
[
P + (X�)2

]
− 1

2

[
s

s + γ
P + (X̂�)2

]
+ X�X̂� (9.26)

= In − 1
2

[
P +

s

s + γ
P + (X� − X̂�)2

]
, (9.27)

where we have used the fact that X� = 1
2 [P + (X�)2] and X̂� = 1

2 [ s
s+γ P +

(X̂�)2] as shown in part (c) of Lemma 1.13 to derive (9.26) and the fact that X�

and X̂� commute to derive (9.27).
From (9.27), a sufficient condition to show that the off-diagonal entries of√

G + γIn

√
G are nonpositive is to show that X� − X̂� is nonnegative be-

cause P is a row-stochastic matrix. We next show that this condition can be
satisfied. It follows from part (a) of Lemma 1.13 that I − P = (In − X�)2 and
I − s

s+γ P = (In − X̂�)2 when α = 1. Therefore, we have

2 Note that G + γIn, γ ≥ 0, is an M-matrix with at most one zero eigenvalue. Note also that G is
an M-matrix with a simple zero eigenvalue. Therefore,

√
G + γIn and

√
G are well defined.
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γ

s + γ
P = (In − X̂�)2 − (In − X�)2

= 2(X� − X̂�) − (X� − X̂�)(X� + X̂�)

= (X� − X̂�)(2In − X� − X̂�). (9.28)

We next show that 2In − X� − X̂� is a nonsingular M-matrix and then use
Lemma 1.17 to show that X� − X̂� is nonnegative. Because G+γIn is a nonsin-
gular M-matrix from Definition 1.2, it follows from Lemma 1.16 that

√
G + γIn

is also a nonsingular M-matrix. Because
√

G + γIn =
√

s + γ(In − X̂�), it
follows that ρ(X̂�) < 1 according to Definition 1.2. Similarly, it follows from
Lemma 1.14 that

√
G is an M-matrix. Because

√
G =

√
s(In − X�), it follows

that ρ(X�) ≤ 1 according to Definition 1.2. Because X̂� and X� commute, it
then follows from Lemma 9.4 that ρ(X̂� + X�) ≤ ρ(X̂�) + ρ(X�) < 2. There-
fore, 2In − X� − X̂� is a nonsingular M-matrix according to Definition 1.2. Be-
cause 2In −X� −X̂� is a nonsingular M-matrix, it follows from Lemma 1.17 that
(2In − X� − X̂�)−1 is nonnegative, which implies that X� − X̂� is nonnegative
because X� −X̂� = γ

s+γ P (2In −X� −X̂�)−1 and P is a row-stochastic matrix.

Therefore, it follows from (9.27) that the off-diagonal entries of
√

G + γIn

√
G

are nonpositive.
Step 2.

√
G + γIn

√
G is a nonsymmetric Laplacian matrix with a simple zero

eigenvalue. Similar to the analysis in Lemma 9.1, it follows that
√

G has a sim-
ple zero eigenvalue with a corresponding eigenvector 1n. Then

√
G + γIn

√
G

also has a simple zero eigenvalue with a corresponding eigenvector 1n because√
G + γIn is a nonsingular M-matrix as shown in Step 1. Combining with Step 1

indicates that
√

G + γIn

√
G is a nonsymmetric Laplacian matrix with a simple

zero eigenvalue.

Lemma 9.6. Let G ∈ R
n×n be a nonsymmetric Laplacian matrix with a simple zero

eigenvalue. Suppose that γ > 0. Then
√

G + γIn

√
G − G is also a nonsymmetric

Laplacian matrix with a simple zero eigenvalue.

Proof: It follows from Step 1 in the proof of Lemma 9.5 that
√

G =
√

s(In − X�),√
G + γIn =

√
s + γ(In − X̂�), and X� and X̂� commute. It follows that

√
G and

√
G + γIn also commute. It can be computed that P

�
=

√
G + γIn

√
G + G is the

solution of the following matrix equation

P 2 − 2PG − γG = 0n×n, (9.29)

where we have used the fact that
√

G + γIn

√
G and G commute because

√
G + γIn

and
√

G commute and G=
√

G
√

G. From Lemma 9.5, we know that
√

G + γIn

√
G

is a nonsymmetric Laplacian matrix, which implies that P is also a nonsymmetric
Laplacian matrix. Therefore, γIn +2P is a nonsingular M-matrix according to Def-
inition 1.2. From (9.29), we can get that
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G = (γIn + 2P )−1P
2

=
1
2
(γIn + 2P )−1(γIn + 2P − γIn)P

=
1
2
[
In − γ(γIn + 2P )−1

]
P ,

which implies that

1
2
γ(γIn + 2P )−1P =

1
2
P − G =

1
2
(√

G + γIn

√
G − G

)
. (9.30)

Note also that

γ(γIn + 2P )−1P =
1
2
γ
[
In − γ(γIn + 2P )−1

]
. (9.31)

Combining (9.30) and (9.31) gives that
√

G + γIn

√
G − G = γ

[
In − γ(γIn + 2P )−1

]
. (9.32)

Because γIn + 2P is a nonsingular M-matrix, it follows from Lemma 1.17 that
(γIn+2P )−1 is nonnegative. It then follows from (9.32) that the off-diagonal entries
of

√
G + γIn

√
G − G are nonpositive.

Because the off-diagonal entries of
√

G + γIn

√
G − G are nonpositive, to

show that
√

G + γIn

√
G − G is a nonsymmetric Laplacian matrix with a sim-

ple zero eigenvalue, it is sufficient to show that
√

G + γIn

√
G − G has a sim-

ple zero eigenvalue with an associated eigenvector 1n. Letting μ be an eigenvalue
of G with an associated eigenvector ν, it can be computed that (G + γIn)ν =
(μ+γ)ν, which implies that the corresponding eigenvalue of

√
G + γIn is given by√

μ + γ with an associated eigenvector ν. Therefore, the corresponding eigenvalue
of

√
G + γIn

√
G − G is given by

√
μ + γ

√
μ − μ with an associated eigenvec-

tor ν. Noting that the nonsymmetric Laplacian matrix G has a simple zero eigen-
value, it follows that

√
G + γIn

√
G − G also has a simple zero eigenvalue because√

μ + γ
√

μ − μ �= 0 if μ �= 0. Note also that (
√

G + γIn

√
G − G)1n = 0n because√

G1n = 0n and G1n = 0n. Therefore,
√

G + γIn

√
G − G is a nonsymmetric

Laplacian matrix with a simple zero eigenvalue.

Lemma 9.7. Let B = [bij ] ∈ R
n×n be a nonsingular M-matrix. If each off-diagonal

entry of B is not equal to zero (and hence negative), B−1 is positive.

Proof: From Definition 1.2, B = αIn − C. By choosing α > maxi bii, it follows
that C is positive. Because B is a nonsingular M-matrix, it follows from Defini-
tion 1.2 that ρ(C) < α and hence ρ(C

α ) < 1. Note that B−1 = α−1(In − C
α )−1. It

follows from Lemmas 1.28 and 1.26 that (In − C
α )−1 =

∑∞
i=0(

C
α )i. Because C is

positive, it follows directly that B−1 is positive.

Lemma 9.8. Let Q and Θ be defined in (9.23). Suppose that Q has a simple zero

eigenvalue. Suppose that γ > 0. Then W
�
=

√
Θ−1Q + γIn

√
Θ−1Q − Θ−1Q is

a nonsymmetric Laplacian matrix with a simple zero eigenvalue corresponding to a
complete directed graph.
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Proof: Note that Q has a simple zero eigenvalue. It follows from Lemmas 9.1
and 9.6 that W is a nonsymmetric Laplacian matrix with a simple zero eigenvalue.
We study how W evolves when γ increases. Taking the derivative of Θ−1Q + γIn

with respect to γ gives

d(Θ−1Q + γIn)
dγ

= In. (9.33)

Note that Θ−1Q + γIn, where γ > 0, is a nonsingular M-matrix. It follows from
Lemma 1.16 that

√
Θ−1Q + γIn is also a nonsingular M-matrix. We also have

d(
√

Θ−1Q + γIn)2

dγ
= 2

√
Θ−1Q + γIn

d
√

Θ−1Q + γIn

dγ
. (9.34)

Therefore, it follows from (9.33) and (9.34) that
d

√
Θ−1Q+γIn

dγ = 1
2 ×

(
√

Θ−1Q + γIn)−1. It then follows that

d
√

Θ−1Q + γIn

√
Θ−1Q

dγ

=
d
√

Θ−1Q + γIn

dγ

√
Θ−1Q

=
1
2
(√

Θ−1Q + γIn

)−1√
Θ−1Q

=
1
2
In − 1

2
(√

Θ−1Q + γIn

)−1(√
Θ−1Q + γIn −

√
Θ−1Q

)

=
1
2
In − γ

2
(√

Θ−1Q + γIn

)−1(√
Θ−1Q + γIn +

√
Θ−1Q

)−1
. (9.35)

By following a similar analysis to that of Lemma 9.2, we can show that each entry
of

√
Θ−1Q + γIn is not equal to zero. It follows from Lemma 9.7 that each en-

try of (
√

Θ−1Q + γIn)−1 is positive. Similarly, each entry of (
√

Θ−1Q + γIn +√
Θ−1Q)−1 is also positive. It then follows from (9.35) that each off-diagonal entry

of
d

√
Θ−1Q+γIn

√
Θ−1Q

dγ is negative, which implies that the off-diagonal entries of
W will decrease when γ increases. Noting that W = 0n×n when γ = 0, it follows
that all off-diagonal entries of W are less than zero for all γ > 0. W corresponds to
a complete directed graph.

The main result for the optimal control problem (9.23) is given in the following
theorem.

Theorem 9.8. In the optimal control problem (9.23), suppose that Q has a simple
zero eigenvalue. The optimal coordination algorithm is

u[k] = −Kr̃[k], (9.36)
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where K
�
= T [

√
Θ−1Q+4In/T 2

√
Θ−1Q−Θ−1Q]

2 . The matrix K is a nonsymmetric
Laplacian matrix with a simple zero eigenvalue corresponding to a complete di-
rected graph. Using (9.36) for (9.24), coordination is achieved.

Proof: Note that r[k + 1] = r[k] + Tu[k] is equivalent to r̃[k + 1] = r̃[k] + Tu[k].
Consider the following LQR problem

min
u[k]

Jfd subject to: r̃[k + 1] = Ar̃[k] + Bu[k],

where Jfd is defined in (9.23), A = In, and B = TIn. It can be noted that (A, B)
is controllable, which implies that there exists a unique positive-semidefinite matrix
P ∈ R

n×n satisfying the discrete-time algebraic Riccati equation

P = Q + AT
[
P − PB

(
Θ + BT PB

)−1
BT P

]
A. (9.37)

Noting that A = In and B = TIn, we can simplify (9.37) as

Q = T 2P
(
Θ + T 2P

)−1
P. (9.38)

By multiplying Θ−1 on both sides of (9.38), after some manipulation, we can get
that

Θ−1Q = T 2Θ−1P
(
In + T 2Θ−1P

)−1
Θ−1P. (9.39)

Note that
(
In + T 2Θ−1P

)−1
T 2Θ−1P = In −

(
In + T 2Θ−1P

)−1
. (9.40)

By substituting (9.40) into (9.39), after some manipulation, we can get that

Θ−1Q = Θ−1P
[
In −

(
In + T 2Θ−1P

)−1]
, (9.41)

which can be simplified as

(
Θ−1P

)2 − Θ−1Q
(
Θ−1P

)
− 1

T 2
Θ−1Q = 0n×n. (9.42)

It can be computed that (9.42) holds when Θ−1P = Θ−1Q+
√

Θ−1Q+4In/T 2
√

Θ−1Q

2 .
The optimal control strategy is given by u[k] = −F r̃[k], where

F =
(
In + T 2Θ−1P

)−1
TΘ−1P = T

(
Θ−1P − Θ−1Q

)
= K,

where we have used (9.41) to derive the third equality. It follows from Lemma 9.8
that K is a nonsymmetric Laplacian matrix that corresponds to a complete directed
graph.

We next show that coordination is achieved using (9.36) for (9.24) (i.e., ri[k] −
rj [k] → Δij or equivalently r̃i[k] − r̃j [k] → 0 as k → ∞). Note that K is a
nonsymmetric Laplacian matrix with a simple zero eigenvalue and In − TK has
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nonnegative off-diagonal entries and all row sums equal to one. According to Lem-
mas 1.1 and 1.11, coordination is achieved if In − TK has positive diagonal entries.
With T 2

4 Θ−1Q playing the role of G and γ = 1, it follows from a similar argu-

ment to that in the beginning of the proof of Lemma 9.6 that
√

T 2

4 Θ−1Q + In and√
T 2

4 Θ−1Q commute. After some manipulation, we have

In − TK =
(√

T 2

4
Θ−1Q + In −

√
T 2

4
Θ−1Q

)2

.

By following a similar proof to that of Lemma 9.8, we have that
√

T 2

4 Θ−1Q + In −√
T 2

4 Θ−1Q is an M-matrix with each entry not equal to zero. Combining with Def-
inition 1.2 shows that all diagonal entries of In − TK are positive. Therefore, coor-
dination is achieved when using (9.36) for (9.24).

Remark 9.9 From Theorem 9.8, it is easy to verify that when T approaches zero,
the optimal state feedback gain matrix is the same as that in the continuous-time
case in Theorem 9.1. In addition, the matrix K is not necessarily symmetric. When
Θ is a diagonal matrix with identical diagonal entries (i.e., Θ = cIn, where c > 0),
K is symmetric.

Remark 9.10 In Theorem 9.1 (correspondingly, Theorem 9.8), a standard LQR
problem is solved. The solution can be solved using the standard Matlab com-
mand. However, it is not clear why the optimal state feedback gain matrix derived
from the standard LQR perspective is a nonsymmetric Laplacian matrix correspond-
ing to a complete directed graph. The contribution of Sect. 9.2.1 (correspondingly,
Sect. 9.3.1) is that we mathematically prove the conditions under which the square
root of a nonsymmetric Laplacian matrix is still a nonsymmetric Laplacian matrix,
explicitly derive the optimal state feedback gain matrix under a given global cost
function, and show that the gain matrix is a nonsymmetric Laplacian matrix cor-
responding to a complete directed graph. Although it might be intuitively true that
a global optimization problem in the context of multi-agent coordination normally
requires that each agent have full knowledge of all other agents, it is nontrivial to
theoretically prove this fact. We have provided a theoretical explanation.

Similar to the discussion in Sect. 9.2, we next show that any symmetric Laplacian
matrix L with a simple zero eigenvalue is inverse optimal with respect to some
given cost function.

Theorem 9.11. Any symmetric Laplacian matrix L = [ij ] ∈ R
n×n with a simple

zero eigenvalue is the optimal state feedback gain matrix under the cost function

J =
∑∞

k=0(r̃[k]Qr̃[k] + u[k]u[k]), where Q
�
= (In − TL )−1L 2 and 0 < T <

1
2 mini

1
�ii

.

Proof: When 0 < T < 1
2 mini

1
�ii

, it follows from Lemma 1.18 that ρ(TL ) < 1.
It then follows from Lemmas 1.26 and 1.28 that In − TL is invertible and (In −
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TL )−1 =
∑∞

i=0(TL )i. Because L is symmetric positive semidefinite with a
simple zero eigenvalue, it then follows that Q is symmetric positive semidefinite
with a simple zero eigenvalue by noting that Q = (In − TL )−1L 2. Also note that
(In − TL )Q = L 2, i.e., Q = TL Q + L 2, which implies that

(2L + TQ)2 = 4L 2 + 4TL Q + (TQ)2 = 4
(
L 2 + TL Q

)
+ (TQ)2

= 4Q + (TQ)2. (9.43)

By taking the square root of both sides of (9.43) and some simplification, we can

get
T (

√
Q+4In/T 2

√
Q−Q)

2 = L . Applying Theorem 9.8 finishes the proof.

9.3.2 Optimal Scaling Factor Using the Interaction-related Cost
Function

Suppose that the graph G is undirected. With the interaction-related cost func-
tion (9.6), the optimal control problem (9.8) can be written as:

min
β

∞∑
k=0

(
r̃T [k]L r̃[k] + uT [k]u[k]

)
︸ ︷︷ ︸

Jrd

subject to: r[k + 1] = r[k] + Tu[k], u[k] = −βL r̃[k],

(9.44)

where L is the prespecified symmetric Laplacian matrix associated with the adja-
cency matrix A and hence the undirected graph G , and β is the scaling factor.

Theorem 9.12. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L . In the
optimal control problem (9.44), suppose that L has a simple zero eigenvalue. Then

the optimal β, denoted by βopt, satisfies
−T+

√
T 2+ 4

λn

2 ≤ βopt ≤
−T+

√
T 2+ 4

λ2

2 .3

Proof: Note that u[k] = βL r̃[k]. It follows that r̃[k +1] = r̃[k] − βTL r̃[k]. It fol-
lows that r̃[k] = (In − βTL )k r̃[0] and hence u[k] = −βL (In − βTL )kr̃[0].
Therefore, Jfd can be written as Jfd =

∑∞
k=0 r̃T [0][(In − βTL )kL (In −

βTL )k + β2(In − βTL )kL 2(In − βTL )k]r̃[0]. By rewriting L in a diagonal
form as shown in (9.16), Jrd can be further written as

Jrd =
∞∑

k=0

r̃T [0]M
[
(In − βTΛ)kΛ(In − βTΛ)k

+ β2(In − βTΛ)kΛ2(In − βTΛ)k
]
MT r̃[0].

3 Note that there always exists a positive β such that coordination is achieved. In this case, Jr is
finite. Therefore, when β = βopt coordination is always guaranteed because otherwise Jr will go
to infinity, which will then result in a contradiction.
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Because L has a simple zero eigenvalue, it follows that λi > 0, i = 2, . . . , n. After
some manipulation, we have that

Jrd = r̃T [0]M

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
0

1
T

2β+T

1+β2λ2
−T

· · · 0

...
...

. . .
...

0 0 · · ·
1
T

2β+T

1+β2λn
−T

⎤
⎥⎥⎥⎥⎥⎥⎦

MT r̃[0]

=
n∑

i=2

1
T

2β+T
1+β2λi

− T
y2

i ,

where yi is the ith component of MT r̃[0]. For i = 2, . . . , n, taking the derivative of
2β+T

1+β2λi
− T with respect to β and setting the derivative to zero gives

2(1 + β2λi) − 2βλi(2β + T )
(1 + β2λi)2

= 0.

It can be computed that β =
−T+

√
T 2+ 4

λi

2 . Note that for β <
−T+

√
T 2+ 4

λn

2 ,

Jrd will decrease when β increases because
1
T

2β+T

1+β2λi
−T

increases when β increases,

i = 2, . . . , n. Similarly, for β >
−T+

√
T 2+ 4

λ2

2 , Jrd will increase when β increases

because
1
T

2β+T

1+β2λi
−T

decreases when β increases, i = 2, . . . , n. Combining the previ-

ous arguments shows that
−T+

√
T 2+ 4

λn

2 ≤ βopt ≤
−T+

√
T 2+ 4

λ2

2 .

Remark 9.13 The problem stated in Theorem 9.12 is essentially a polynomial opti-
mization problem. Numerical optimization methods [162] can be used to solve this
problem.

9.3.3 Illustrative Examples

In this subsection, we provide two illustrative examples about the optimal state feed-
back gain matrix and the optimal scaling factor derived in, respectively, Sect. 9.3.1
and Sect. 9.3.2.

In (9.23), let Q and Θ be chosen as in Sect. 9.2.3 and the sampling period T =
0.1 s. It then follows from Theorem 9.8 that the optimal state feedback gain matrix
is ⎡

⎢⎢⎣
1.2173 −0.498 −0.5484 −0.1709

−0.249 0.8007 −0.3963 −0.1554
−0.1828 −0.2642 0.7734 −0.3264
−0.0427 −0.0777 −0.2448 0.3653

⎤
⎥⎥⎦ .



9.4 Notes 261

Fig. 9.2 Evolution of the cost function Jrd as a function of β

Note that the optimal gain matrix is a nonsymmetric Laplacian matrix corresponding
to a complete directed graph.

In (9.44), let L and the initial state r̃[0] be chosen as in Sect. 9.2.3. Figure 9.2
shows how the cost function Jrd evolves as the scaling factor β increases. From
Theorem 9.12, it can be computed that the optimal scaling factor satisfies 0.45 ≤
βopt ≤ 0.95, which is consistent with the result shown in Fig. 9.2.

9.4 Notes

The results in this chapter are based mainly on [31, 35]. For further results on the op-
timality aspect in distributed multi-agent coordination, see [19, 72, 148, 259, 308].
In particular, in [19], a locally optimal nonlinear consensus algorithm is proposed by
imposing individual objectives. In [72], an optimal interaction graph, a de Bruijn’s
graph, is proposed in the average consensus problem. In [259], a semi-decentralized
optimal control strategy is designed by minimizing the individual cost functions. In
addition, cooperative game theory is employed to ensure cooperation in the presence
of a team cost function. In [148], an iterative algorithm is proposed to maximize the
second smallest eigenvalue of a symmetric Laplacian matrix to optimize the control
system performance. In [308], the fastest converging linear iteration is studied by
using semidefinite programming.
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