
Chapter 8
Sampled-data Setting

This chapter considers distributed multi-agent coordination in a sampled-data set-
ting. We first study a distributed sampled-data coordinated tracking algorithm where
a group of followers with single-integrator dynamics interacting with their neigh-
bors at discrete-time instants intercepts a dynamic leader who is a neighbor of only
a subset of the followers. We propose a PD-like discrete-time algorithm and study
the condition on the interaction graph, the sampling period, and the control gain to
ensure stability under directed fixed interaction and give the quantitative bound of
the tracking errors. We then study convergence of two distributed sampled-data co-
ordination algorithms with respectively, absolute damping and relative damping for
double-integrator dynamics under undirected/directed fixed interaction. We show
necessary and sufficient conditions on the interaction graph, the sampling period,
and the control gain such that coordination is achieved using these two algorithms
by using matrix theory, bilinear transformation, and Cauchy theorem. We finally
study convergence of the two distributed sampled-data coordination algorithms with
respectively, absolute damping and relative damping for double-integrator dynamics
under directed switching interaction. We derive sufficient conditions on the interac-
tion graph, the sampling period, and the control gain to guarantee coordination by
using the property of infinity products of row-stochastic matrices. Simulation results
are presented to show the effectiveness of the theoretical results.

8.1 Sampled-data Coordinated Tracking for Single-integrator
Dynamics

In multi-agent coordination, agents might only be able to interact with their neigh-
bors intermittently rather than continuously due to low bandwidth, unreliable com-
munication channels, limited sensing capabilities, or power and cost constraints.
A multi-agent system with intermittent interaction, where agents with continuous-
time dynamics are controlled based on information from their neighbors updated at
discrete-time instants, can be treated as a sampled-data system consisting of multi-
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ple networked subsystems. We are hence motivated to study distributed multi-agent
coordination in a sampled-data setting. We explicitly consider the effect of sampled-
data control on stability of the agents. In this section, we focus on sampled-data
coordinated tracking for single-integrator dynamics.

8.1.1 Algorithm Design

Suppose that in addition to n followers, labeled as agents or followers 1 to n, with
single-integrator dynamics given by (3.1), there exists a dynamic leader, labeled as
agent 0, whose position is r0(t) ∈ R

m. Here the leader can be physical or virtual.

Let G
�
= (V , E ) be the directed graph characterizing the interaction among the

n followers. Let G
�
= (V , E ) be the directed graph characterizing the interaction

among the leader and the followers corresponding to G .
A proportional-derivative-like (PD-like) continuous-time coordinated tracking

algorithm is proposed for (3.1) in [248, Chap. 3] as

ui(t) =
1

∑n
j=0 aij

n∑

j=1

aij

{
ṙj(t) − γ

[
ri(t) − rj(t)

]}

+
ai0∑n

j=0 aij

{
ṙ0(t) − γ

[
ri(t) − r0(t)

]}
, (8.1)

where aij , i, j = 1, . . . , n, is the (i, j)th entry of the adjacency matrix A ∈ R
n×n

associated with the directed graph G , ai0 > 0, i = 1, . . . , n, if the leader is a
neighbor of follower i and ai0 = 0 otherwise, and γ is a positive gain. The objec-
tive of (8.1) is to guarantee that ri(t) − r0(t) → 0m, i = 1, . . . , n, as t → ∞.
Note that (8.1) requires each follower to obtain instantaneous measurements of its
neighbors’ velocities and the leader’s velocity if the leader is a neighbor of the fol-
lower. This requirement might not be realistic in real applications. We next propose
a PD-like discrete-time coordinated tracking algorithm.

Consider a sampled-data setting where the agents have continuous-time dynam-
ics while the measurements are made at discrete sampling times and the control
inputs are based on zero-order hold as

ui(t) = ui[k], kT ≤ t < (k + 1)T, (8.2)

where k denotes the discrete-time index, T denotes the sampling period, and ui[k]
is the control input at t = kT . By using direct discretization (see Sect. 1.4), the
continuous-time system (3.1) can be discretized as

ri[k + 1] = ri[k] + Tui[k], i = 1, . . . , n, (8.3)

where ri[k] is the position of follower i at t = kT . We propose a PD-like discrete-
time coordinated tracking algorithm as



8.1 Sampled-data Coordinated Tracking for Single-integrator Dynamics 209

ui[k] =
1

∑n
j=0 aij

n∑

j=1

aij

[
rj [k] − rj [k − 1]

T
− γ
(
ri[k] − rj [k]

)
]

+
ai0∑n

j=0 aij

[
r0[k] − r0[k − 1]

T
− γ
(
ri[k] − r0[k]

)
]

, (8.4)

where r0[k] denotes the leader’s position at t = kT , and rj [k]−rj [k−1]
T and

r0[k]−r0[k−1]
T are used to approximate, respectively, ṙj(t) and ṙ0(t) in (8.1) by noting

that rj [k+1] and r0[k+1] cannot be accessed at t = kT . Note that using (8.4), each
follower’s position is updated based on its current position and its neighbors’ cur-
rent and previous positions as well as the leader’s current and previous positions if
the leader is a neighbor of the follower. As a result, (8.4) can be easily implemented
in practice. In the following, we assume that all agents are in a one-dimensional
space (i.e., m = 1) for the simplicity of presentation. However, all results hereafter
are still valid for any high-dimensional space by the introduction of the Kronecker
product.

8.1.2 Convergence Analysis of the Proportional-derivative-like
Discrete-time Coordinated Tracking Algorithm

In this subsection, we analyze the algorithm (8.4). Define the tracking error for

follower i as εi[k]
�
= ri[k] − r0[k]. It follows that the closed-loop system of (8.3)

using (8.4) can be written as

εi[k + 1] = εi[k] +
T

∑n
j=0 aij

n∑

j=1

aij

[
εj [k] − εj [k − 1]

T
− γ
(
εi[k] − εj [k]

)
]

+
Tai0∑n
j=0 aij

(
r0[k] − r0[k − 1]

T
− γεi[k]

)

−
(
r0[k + 1] − r0[k]

)
+

∑n
j=1 aij
∑n

j=0 aij

(
r0[k] − r0[k − 1]

)
,

which can then be written in a vector form as

ε[k + 1] =
[
(1 − Tγ)In + (1 + Tγ)D−1A

]
ε[k] − D−1A ε[k − 1] + Xr[k],

(8.5)

where D
�
= diag{

∑n
j=0 a1j , . . . ,

∑n
j=0 anj }, ε[k]

�
= [ε1[k], . . . , εn[k]]T , A is the

adjacency matrix associated with G , and Xr[k]
�
= (2r0[k]−r0[k −1]−r0[k+1])1n.

By defining Y [k + 1]
�
=
[ ε[k+1]

ε[k]

]
, it follows from (8.5) that
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Y [k + 1] = ÃY [k] + B̃Xr[k], (8.6)

where

Ã
�
=

[
(1 − Tγ)In + (1 + Tγ)D−1A −D−1A

In 0n×n

]

and B̃
�
=
[

In
0n×n

]
. It follows that the solution of (8.6) is

Y [k] = ÃkY [0] +
k∑

i=1

Ãk−iB̃Xr[i − 1]. (8.7)

Note that the eigenvalues of Ã play an important role in determining the value of
Y [k] as k → ∞. In the following, we study the eigenvalues of Ã. Before moving
on, we first study the eigenvalues of D−1A .

Lemma 8.1. Suppose that in G the leader has directed paths to all followers 1 to n.
Then D−1A satisfies ‖(D−1A )n‖ ∞ < 1 and D−1A has all eigenvalues within
the unit circle.1

Proof: For the first statement, note that D−1A is nonnegative and each row sum of
D−1A is less than or equal to one. Therefore, it follows that ‖D−1A‖∞ ≤ 1. Denote
ī1 as the set of followers that are the children of the leader, and īj , j = 2, . . . , κ,
as the set of followers that are the children of the followers in īj−1 but are not in
īr, r = 1, . . . , j − 2. Because the leader has directed paths to all followers 1 to
n, there are at most n edges from the leader to all followers 1 to n, which implies
that κ ≤ n. Let pi and qT

i denote, respectively, the ith column and row of D−1A .
When the leader has directed paths to all followers 1 to n, without loss of generality,
assume that the kth follower is a child of the leader, i.e., ak0 > 0. It follows that
qT
k 1n = 1 − ak0∑n

j=0 akj
< 1. The same property also applies to the other elements

in the set ī1. Similarly, assume that the lth follower (one follower in the set ī2) is a
child of the kth follower (one follower in the set ī1), which implies that alk > 0. It
follows that the sum of the lth row of (D−1A )2 can be written as qT

l

∑n
i=1 pi ≤

qT
l 1n = 1 − alk∑n

j=0 alj
< 1. Meanwhile, the sum of the kth row of (D−1A )2 is

also less than one. A similar analysis shows that each row sum of (D−1A )κ is
less than one when the leader has directed paths to all followers 1 to n. That is,
‖(D−1A)κ‖ ∞ < 1. Because κ ≤ n and ‖D−1A ‖∞ ≤ 1, ‖(D−1A )n‖ ∞ < 1
holds.

For the second statement, note from Lemma 1.25 that ρ[(D−1A)n] ≤
‖(D−1A)n‖ ∞. Because ‖(D−1A)n‖ ∞ < 1, it follows that ρ[(D−1A)n] < 1,
which implies that ρ(D−1A) < 1.

We next study the conditions under which all eigenvalues of Ã are within the unit
circle.

1 Note that in G if the leader has directed paths to all followers, then each follower has at least one
neighbor, that is,

∑n
j=0 aij > 0, i = 1, . . . , n. Therefore, D−1 exists and (8.4) is well defined.
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Lemma 8.2. Suppose that in G the leader has directed paths to all followers 1
to n. Let λi be the ith eigenvalue of D−1A . Then τi > 0 holds, where τi

�
=

2|1−λi |2(2[1−Re(λi)]− |1−λi |2)
|1−λi |4+4[Im(λi)]2

. If the positive scalars T and γ satisfy

Tγ < min
{

1, min
i=1,...,n

τi

}
, (8.8)

then Ã, defined by (8.1.2), has all eigenvalues within the unit circle.

Proof: For the first statement, when the leader has directed paths to all followers
1 to n, it follows from the second statement in Lemma 8.1 that |λi| < 1. It then
follows that |1 − λi|2 > 0 and |1 − λi|2 = 1 − 2Re(λi) + [Re(λi)]2 + [Im(λi)]2 <
2[1 − Re(λi)], which implies that τi > 0.

For the second statement, note that the characteristic polynomial of Ã is given by

det(zI2n − Ã)

= det

([
zIn − [(1 − Tγ)In + (1 + Tγ)D−1A ] D−1A

−In zIn

])

= det
([

zIn − (1 − Tγ)In − (1 + Tγ)D−1A
]
zIn + D−1A

)

= det
([

z2 + (Tγ − 1)z
]
In +
[
1 − (1 + Tγ)z

]
D−1A

)
,

where we have used Lemma 1.22 to obtain the second equality because zIn − [(1 −
Tγ)In +(1+Tγ)D−1A ], D−1A , −In and zIn commute pairwise. Noting that λi

is the ith eigenvalue of D−1A , we can get that det(zIn+D−1A ) =
∏n

i=1(z+λi).
It thus follows that det(zI2n − Ã) =

∏n
i=1{z2 + (Tγ − 1)z + [1 − (1 + Tγ)z]λi}.

Therefore, the roots of det(zI2n − Ã) = 0 satisfy that

z2 +
[
Tγ − 1 − (1 + Tγ)λi

]
z + λi = 0. (8.9)

It can be noted that each eigenvalue of D−1A , λi, corresponds to two eigenvalues
of Ã. Instead of computing the roots of (8.9) directly, we apply the bilinear trans-
formation z = s+1

s−1 to (8.9) to get

Tγ(1 − λi)s2 + 2(1 − λi)s + (2 + Tγ)λi + 2 − Tγ = 0. (8.10)

Because the bilinear transformation is an exact one-to-one mapping from the interior
of the unit circle in the complex z-plane to the open left half of the complex s-plane,
it follows that (8.9) has all roots within the unit circle if and only if (8.10) has all
roots in the open left half plane.

In the following, we study the condition on T and γ under which (8.10) has all
roots in the open left half plane. Letting s1 and s2 denote the roots of (8.10), it
follows from (8.10) that
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s1 + s2 = − 2
Tγ

, (8.11)

s1s2 =
(2 + Tγ)λi + 2 − Tγ

Tγ(1 − λi)
. (8.12)

Noting that (8.11) implies that Im(s1) + Im(s2) = 0, we define s1 = a1 + ιb and
s2 = a2 − ιb. It can be noted that s1 and s2 have negative real parts if and only if
a1a2 > 0 and a1 + a2 < 0. Note that (8.11) implies a1 + a2 = − 2

Tγ < 0 because
Tγ > 0. We next show a sufficient condition on T and γ such that a1a2 > 0 holds.
By substituting the definitions of s1 and s2 into (8.12), we have a1a2 + b2 + ι(a2 −
a1)b = (2+Tγ)λi+2−Tγ

Tγ(1−λi)
, which implies

a1a2 + b2 = − 2 + Tγ

Tγ
+

4[1 − Re(λi)]
Tγ|1 − λi|2 , (8.13)

(a2 − a1)b =
4Im(λi)

Tγ|1 − λi|2 . (8.14)

It follows from (8.14) that b = 4Im(λi)
Tγ(a2−a1)|1−λi |2 . Note that (a2 − a1)2 = (a1 +

a2)2 − 4a1a2 = 4
T 2γ2 − 4a1a2. After some manipulation, (8.13) can be written as

K1(a1a2)2 + K2a1a2 + K3 = 0, (8.15)

where K1
�
= T 2γ2|1−λi|4, K2

�
= −|1−λi|4+(2+Tγ)Tγ|1−λi|4 −4[1−Re(λi)]

Tγ|1−λi|2, and K3
�
= 1

Tγ {4[1−Re(λi)]|1−λi|2 −(2+Tγ)|1−λi|4} −4[Im(λi)]2.
It can be computed that K2

2 − 4K1K3 = { |1 − λi|4 +(2+Tγ)Tγ|1 − λi|4 − 4[1 −
Re(λi)]Tγ|1 − λi|2}2 + 16T 2γ2|1 − λi|4[Im(λi)]2 ≥ 0, which implies that (8.15)
has two real roots. Because |λi| < 1, it is straightforward to show that K1 > 0.
Therefore, a sufficient condition for a1a2 > 0 is that K2 < 0 and K3 > 0. When
0 < Tγ < 1, because |1 − λi|2 < 2[1 − Re(λi)] as shown in the proof of the first
statement, it follows that K2 < −|1 − λi|4 +(2+Tγ)Tγ|1 − λi|4 − 2Tγ|1 − λi|4 =
|1 − λi|4[−1 + (Tγ)2] ≤ 0. Similarly, when 0 < Tγ < τi, it follows that K3 > 0.
Therefore, if the positive scalars γ and T satisfy (8.8), all eigenvalues of Ã are
within the unit circle.

In the following, we apply Lemma 8.2 to derive our main result.

Theorem 8.1. Suppose that the leader’s position r0[k] satisfies that
| r0[k]−r0[k−1]

T | ≤ r̄ (i.e., the changing rate of r0[k] is bounded), and in G the leader
has directed paths to all followers 1 to n. When the positive scalars γ and T sat-
isfy (8.8), using (8.4) for (8.3), the maximum tracking error of the n followers is
ultimately bounded by 2T r̄‖(I2n − Ã)−1‖ ∞.

Proof: It follows from (8.7) that
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∥
∥Y [k]

∥
∥

∞ ≤
∥
∥ÃkY [0]

∥
∥

∞ +

∥
∥
∥
∥
∥

k∑

i=1

Ãk−iB̃Xr[i − 1]

∥
∥
∥
∥
∥

∞

≤ ‖Ãk ‖ ∞
∥
∥Y [0]

∥
∥

∞ + 2T r̄

∥
∥
∥
∥
∥

k−1∑

i=0

Ãi

∥
∥
∥
∥
∥

∞

‖B̃‖ ∞,

where we have used the fact that
∥
∥Xr[i]

∥
∥

∞ =
∥
∥
(
2r0[i] − r0[i − 1] − r0[i + 1]

)
1n

∥
∥

∞ ≤ 2T r̄

for all i because | r0[k]−r0[k−1]
T | ≤ r̄. When the leader has directed paths to all fol-

lowers 1 to n, it follows from Lemma 8.2 that Ã has all eigenvalues within the
unit circle if the positive scalars T and γ satisfy (8.8). Therefore, limk→∞ Ãk =
02n×2n. Also, it follows from Lemma 1.26 that there exists a matrix norm ||| · |||
such that |||Ã||| < 1. It then follows from Lemma 1.28 that (I2n − Ã) is invert-
ible and (I2n − Ã)−1 =

∑∞
i=0 Ãi, which implies that limk→∞ ‖

∑k−1
i=0 Ãi‖ ∞ =

‖(I2n − Ã)−1‖ ∞. Also note that ‖B̃‖ ∞ = 1. Therefore, we have that ‖Y [k]‖ ∞ is
ultimately bounded by 2T r̄‖(I2n − Ã)−1‖ ∞. The theorem then follows directly by
noting that ‖Y [k]‖ ∞ denotes the maximum tracking error of the n followers.

Remark 8.2 From Theorem 8.1, it can be noted that the ultimate bound of the track-
ing errors using the PD-like discrete-time coordinated tracking algorithm (8.4) is
proportional to the sampling period T . As T approaches zero, the tracking errors
will go to zero ultimately when the changing rate of the leader’s position is bounded
and the leader has directed paths to all followers 1 to n.

8.1.3 Comparison Between the Proportional-like and
Proportional-derivative-like Discrete-time Coordinated
Tracking Algorithms

A proportional-like (P-like) continuous-time coordinated tracking algorithm for (3.1)
is given as2

ui(t) = −
n∑

j=1

aij

[
ri(t) − rj(t)

]
− ai0

[
ri(t) − r0(t)

]
, (8.16)

where aij , i = 1, . . . , n, j = 0, . . . , n, are defined as in (8.1). Similar to that in
Sect. 8.1.1, the P-like discrete-time coordinated tracking algorithm for (8.3) is given
as

2 The algorithm is a natural extension of the consensus algorithm (2.2).
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ui[k] = −
n∑

j=1

aij

(
ri[k] − rj [k]

)
− ai0

(
ri[k] − r0[k]

)
. (8.17)

Letting εi and ε be defined as in Sect. 8.1.2, we rewrite the closed-loop system
of (8.3) using (8.17) as

εi[k + 1] = εi[k] − T

n∑

j=1

aij

(
εi[k] − εj [k]

)
− Tai0εi[k] −

(
r0[k + 1] − r0[k]

)
,

which can then be written in a vector form as

ε[k + 1] = Qε[k] −
(
r0[k + 1] − r0[k]

)
1n, (8.18)

where Q
�
= In − TL − Tdiag(a10, . . . , an0) with L being the nonsymmetric

Laplacian matrix associated with A and hence G . Note that Q is nonnegative when
0 < T < mini=1,...,n

1∑n
j=0 aij

.

Lemma 8.3. Suppose that in G the leader has directed paths to all followers 1 to n.
When 0 < T < mini=1,...,n

1∑n
j=0 aij

, Q has all eigenvalues within the unit circle.

Proof: The proof is a direct application of Lemmas 1.18 and 1.6 and is omitted
here.

Theorem 8.3. Suppose that the leader’s position r0[k] satisfies | r0[k]−r0[k−1]
T | ≤ r̄,

and in G the leader has directed paths to all followers 1 to n. When T <
mini=1,...,n

1∑n
j=0 aij

, using (8.17) for (8.3), the maximum tracking error of the n

followers is ultimately bounded by r̄‖[L + diag{a10, . . . , an0}]−1‖ ∞.

Proof: The solution of (8.18) is

ε[k] = Qkε[0] −
k∑

i=1

Qk−i
(
r0[k] − r0[k − 1]

)
1n.

The proof then follows a similar line to that of Theorem 8.1 by noting that ‖ε[k]‖ ∞
denotes the maximum tracking error of the n followers.

Remark 8.4 In contrast to the results in Theorem 8.1, the ultimate bound of the
tracking errors using the P-like discrete-time coordinated tracking algorithm (8.17)
with a dynamic leader is not proportional to the sampling period T . In fact, as shown
in [248, Chap. 3], even when T approaches zero, the tracking errors using (8.17) are
not guaranteed to go to zero ultimately. The comparison between Theorems 8.1
and 8.3 shows the benefit of the PD-like discrete-time coordinated tracking algo-
rithm over the P-like discrete-time consensus algorithm when there exists a dynamic
leader who is a neighbor of only a subset of the followers. As a special case, when
the leader’s position is constant (i.e., r̄ = 0), it follows from Theorems 8.1 and 8.3
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Fig. 8.1 Directed graph G associated with four followers and one leader. An arrow from j to i

denotes that agent j is a neighbor of agent i

that the tracking errors will go to zero ultimately using both the P-like and PD-like
discrete-time coordinated tracking algorithms.3

8.1.4 Simulation

In this subsection, a simulation example is presented to illustrate the PD-like
discrete-time coordinated tracking algorithm (8.4). To show the benefit of the PD-
like discrete-time coordinated tracking algorithm, the related simulation result ob-
tained by applying the P-like discrete-time coordinated tracking algorithm (8.17) is
also presented.

We consider a team consisting of four followers and a leader with the directed
graph G given by Fig. 8.1. It can be noted that the leader has directed paths to all four
followers. We let aij = 1 if agent j is a neighbor of agent i and aij = 0 otherwise.
For both (8.4) and (8.17), we let r1[0] = 3, r2[0] = 1, r3[0] = −1, and r4[0] = −2.
For (8.4), we also let ri[−1] = 0, i = 1, . . . , 4. The dynamic leader’s position is
chosen as r0[k] = sin(kT ) + kT .

Figures 8.2(a) and 8.2(b) show, respectively, the positions ri and the tracking
errors ri − r0 by using (8.4) when T = 0.3 s and γ = 1. From Fig. 8.2(b), it
can be seen that the tracking errors are relatively large. Figures 8.2(c) and 8.2(d)
show, respectively, ri and ri − r0 by using (8.4) when T = 0.1 s and γ = 3. From
Fig. 8.2(d), it can be seen that the tracking errors are very small ultimately. We can
see that the tracking errors will become smaller if the sampling period becomes
smaller. Figures 8.2(e) and 8.2(f) show, respectively, ri and ri − r0 by using (8.4)
when T = 0.25 s and γ = 3. Note that the product Tγ is larger than the positive
upper bound derived in Theorem 8.1. It can be noted that the tracking errors be-
come unbounded in this case. Figures 8.3(a) and 8.3(b) show, respectively, ri and
ri − r0 by using (8.17) when T = 0.1 s and γ = 3. By comparing Figs. 8.3(b)
and 8.2(d), it can be seen that the tracking errors using (8.17) are much larger than
those using (8.4) under the same condition. This shows the benefit of the PD-like
discrete-time coordinated tracking algorithm over the P-like discrete-time coordi-
nated tracking algorithm when there exists a dynamic leader who is a neighbor of
only a subset of the followers.

3 In this case, the coordinated tracking problem boils down to a coordinated regulation problem
because the leader’s position is constant.
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Fig. 8.2 Distributed discrete-time coordinated tracking using the PD-like discrete-time coordi-
nated tracking algorithm (8.4) with different T and γ
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Fig. 8.3 Distributed discrete-time coordinated tracking using the P-like discrete-time coordinated
tracking algorithm (8.17)

8.2 Sampled-data Coordination for Double-integrator Dynamics
Under Fixed Interaction

In this section, we study sampled-data coordination algorithms for double-integrator
dynamics under fixed interaction with, respectively, absolute and relative damping.

8.2.1 Coordination Algorithms with Absolute and Relative
Damping

Given n agents with dynamics given by (3.5), consider a sampled-data setting
with zero-order hold as (8.2). By using direct discretization (see Sect. 1.4), the
continuous-time system (3.5) can be discretized as

ri[k + 1] = ri[k] + Tvi[k] +
T 2

2
ui[k],

vi[k + 1] = vi[k] + Tui[k], i = 1, . . . , n, (8.19)

where ri[k] ∈ R
m and vi[k] ∈ R

m denote, respectively, the position and velocity
of the ith agent at t = kT . Note that (8.19) is the exact discrete-time dynamics
for (3.5) based on zero-order hold in a sampled-data setting.

Define Δij
�
= δi − δj , where δi ∈ R

m is constant. Here Δij denotes the desired
relative position deviation between agent i and agent j. We study the following two
coordination algorithms

ui[k] = −
n∑

j=1

aij [k]
[(

ri[k] − rj [k]
)

− Δij

]
− αvi[k], i = 1, . . . , n, (8.20)
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and

ui[k] = −
n∑

j=1

aij [k]
[(

ri[k] − rj [k] − Δij

)
+ α
(
vi[k] − vj [k]

)]
, i = 1, . . . , n,

(8.21)
where aij [k] is the (i, j)th entry of the adjacency matrix A [k] associated with the

graph G [k]
�
= (V [k], E [k]) characterizing the interaction among the n agents at

t = kT , and α is a position gain. Coordination is achieved for (8.20) if for all ri[0]
and vi[0] and all i, j = 1, . . . , n, ri[k] − rj [k] → Δij and vi[k] → 0m as k → ∞.
Coordination is achieved for (8.21) if for all ri[0] and vi[0] and all i, j = 1, . . . , n,
ri[k] − rj [k] → Δij and vi[k] − vj [k] → 0m as k → ∞.

In the remainder of the chapter, we assume that all agents are in a one-dimensional
space (i.e., m = 1) for simplicity. However, all results hereafter still valid for any
high-dimensional space by use of the properties of the Kronecker product.

8.2.2 Convergence Analysis of the Sampled-data Coordination
Algorithm with Absolute Damping

In this subsection, we analyze the algorithm (8.20) under, respectively, an undirected
fixed interaction graph and a directed fixed interaction graph. We assume that A is
constant. In this case, using (8.20), (8.19) can be written in a vector form as

[
r̃[k + 1]
v[k + 1]

]

=

[
In − T 2

2 L (T − αT 2

2 )In

−TL (1 − αT )In

]

︸ ︷︷ ︸
F

[
r̃[k]
v[k]

]

, (8.22)

where r̃
�
= [r̃1, . . . , r̃n]T with r̃i

�
= ri −δi, v

�
= [v1, . . . , vn]T , and L is the nonsym-

metric Laplacian matrix associated with A and hence G . To analyze (8.22), we first
study the property of F , defined in (8.22). Note that the characteristic polynomial
of F is given by

det(zI2n − F )

= det

([
zIn − (In − T 2

2 L ) −(T − αT 2

2 )In

TL zIn − (1 − αT )In

])

= det
([

zIn −
(

In − T 2

2
L

)]
[
zIn − (1 − αT )In

]

−
{

TL

[

−
(

T − αT 2

2

)

In

]})

= det
[
(
z2 − 2z + αTz + 1 − αT

)
In +

T 2

2
(1 + z)L

]

,

where we have used Lemma 1.22 to obtain the second equality.
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Let μi be the ith eigenvalue of −L , we get that det(zIn +L ) =
∏n

i=1(z − μi).

It thus follows that det(zI2n − F ) =
∏n

i=1(z
2 − 2z + αTz + 1 − αT − T 2

2 (1 +
z)μi). Therefore, the roots of det(zI2n − F ) = 0 (i.e., the eigenvalues of F ) satisfy
that

z2 +
(

αT − 2 − T 2

2
μi

)

z + 1 − αT − T 2

2
μi = 0. (8.23)

Note that each eigenvalue of −L , μi, corresponds to two eigenvalues of F , de-
noted by λ2i−1 and λ2i. Note that L has at least one zero eigenvalue, without
loss of generality, let μ1 = 0. It follows from (8.23) that λ1 = 1 and λ2 =
1 − αT . Therefore, F has at least one eigenvalue equal to one. Let [pT , qT ]T , where
p, q ∈ R

n, be a right eigenvector of F associated with the eigenvalue λ1 = 1. It
follows that [

In − T 2

2 L (T − αT 2

2 )In

−TL (1 − αT )In

] [
p
q

]

=
[
p
q

]

.

After some manipulation, it follows from Lemma 1.1 that we can choose p = 1n

and q = 0n. Similarly, it can be shown that [pT , ( 1
α − T

2 )pT ]T , where p ∈ R
n

is defined in Lemma 1.1, is a left eigenvector of F associated with the eigenvalue
λ1 = 1.

Lemma 8.4. Using (8.20) for (8.19), ri[k] − rj [k] → Δij and vi[k] → 0 if and only
if one is the unique eigenvalue of F , where F is defined in (8.22), with the maximum
modulus. In particular, ri[k] → δi + pT r̃[0] + ( 1

α − T
2 )pT v[0] and vi[k] → 0 as

k → ∞, where p ∈ R
n is defined in Lemma 1.1.

Proof: (Sufficiency) Note that p = [1T
n ,0T

n ]T and q = [pT , ( 1
α − T

2 )pT ]T are, re-
spectively, a right and left eigenvector of F associated with the eigenvalue one. Also
note that pT q = 1. If one is the unique eigenvalue with the maximum modulus, then
it follows from Lemma 1.7 that limk→∞ F k =

[
1n
0n

]
[pT , ( 1

α − T
2 )pT ]. Therefore,

it follows that limk→∞
[ r̃[k]

v[k]

]
= limk→∞ F k

[ r̃[0]
v[0]

]
=
[

r̃[0]+( 1
α − T

2 )pT v[0]
0n

]
.

(Necessity) Note that F can be written in the Jordan canonical form as F =
PJP −1, where J is the Jordan block matrix. If r̃i[k] → pT r̃[0] + ( 1

α − T
2 )pT v[0]

and vi[k] → 0 as k → ∞, it follows that limk→∞ F k =
[1n

0n

]
[pT , ( 1

α − T
2 )pT ],

which has rank one. It thus follows that limk→∞ Jk has rank one, which implies
that all but one eigenvalue of F are within the unit circle. Noting that F has at least
one eigenvalue equal to one, it follows that one is the unique eigenvalue of F with
the maximum modulus.

We first show necessary and sufficient conditions on α and T such that coordi-
nation is achieved using (8.20) under an undirected interaction graph. Note that all
eigenvalues of L are real for undirected graphs because L is symmetric in this
case. Before moving on, we need the following lemma.

Lemma 8.5. The polynomial

z2 + az + b = 0, (8.24)
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where a, b ∈ C, has all roots within the unit circle if and only if all roots of

(1 + a + b)s2 + 2(1 − b)s + b − a + 1 = 0 (8.25)

are in the open left half plane.

Proof: By applying bilinear transformation z = s+1
s−1 , (8.24) can be rewritten as

(s + 1)2 + a(s + 1)(s − 1) + b(s − 1)2 = 0,

which implies (8.25). Note that the bilinear transformation maps the open left half
plane one-to-one onto the interior of the unit circle. The lemma follows directly.

Lemma 8.6. Suppose that the undirected graph G is connected. All eigenvalues
of F , where F is defined in (8.22), are within the unit circle except one eigenvalue
equal to one if and only if the positive α and T are chosen from the set

Sr
�
=
{

(α, T )
∣
∣
∣
∣− T 2

2
min

i
μi < αT < 2

}

.4 (8.26)

Proof: When the undirected graph G is connected, it follows from Lemma 1.1 that
μi < 0, i = 2, . . . , n, by noting that μ1 = 0. Also note that λ1 = 1 and λ2 = 1−αT .

To ensure |λ2| < 1, it is required that 0 < αT < 2. Let a
�
= αT − 2 − T 2

2 μi and

b
�
= 1 − αT − T 2

2 μi. It follows from Lemma 8.5 that for μi < 0, i = 2, . . . , n, the
roots of (8.23) are within the unit circle if and only if all roots of

−T 2μis
2 +
(
T 2μi + 2αT

)
s + 4 − 2αT = 0 (8.27)

are in the open left half plane. Because −T 2μi > 0, i = 2, . . . , n, the roots
of (8.27) are always in the open left half plane if and only if T 2μi + 2αT > 0
and 4 − 2αT > 0, which implies that − T 2

2 μi < αT < 2. Combining the above
arguments proves the lemma.

Theorem 8.5. Suppose that the undirected graph G is connected. Let p ∈ R
n be

defined in Lemma 1.1. Using (8.20) for (8.19), ri[k] − rj [k] → Δij and vi[k] → 0 if
and only if α and T are chosen from Sr, where Sr is defined by (8.26). In particular,
ri[k] → δi + pT r̃[0] + ( 1

α − T
2 )pT v[0] and vi[k] → 0 as k → ∞.

Proof: The statement follows directly from Lemmas 8.4 and 8.6.

Remark 8.6 From Lemma 8.6, we can get that T < 2√
−μi

. From Lemma 1.18, it
follows that |μi| ≤ 2 maxi �ii, where �ii is the ith diagonal entry of L . There-

fore, if T <
√

2
maxi �ii

, then we have that T < 2√
−μi

. Note that maxi �ii =

maxi

∑n
j=1,j �=i aij represents the maximal in-degree of the nodes in the graph G

under the assumption that aii = 0. Therefore, the sufficient bound of the sampling
period is related to the maximal in-degree of the nodes in G .

4 Note that Sr is nonempty.
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We next show necessary and sufficient conditions on α and T such that coordi-
nation is achieved using (8.20) under a directed interaction graph. Because it is not
easy to find the explicit bounds for α and T such that the necessary and sufficient
conditions are satisfied, we also present sufficient conditions that can be used to
compute the explicit bounds for α and T . Note that the eigenvalues of L might be
complex for directed graphs, which makes the analysis more challenging.

Lemma 8.7. Suppose that the directed graph G has a directed spanning tree. There
exist positive α and T such that the following three conditions are satisfied:

1. 0 < αT < 2;
2. When μi < 0, (α, T ) ∈ Sr, where Sr is defined by (8.26);
3. When Re(μi) < 0 and Im(μi) �= 0, α and T satisfy that

(i) If α > |μi |√
−Re(μi)

, then 0 < T < −2αRe(μi)
|μi |2 .

(ii) If |Im(μi)|√
−Re(μi)

≤ α ≤ |μi |√
−Re(μi)

, then 0 < T < min{T i1,
−2αRe(μi)

|μi |2 }, where

T i1
�
=

−2α[Re(μi)]2 − 2 |Im(μi)|
√

[−Re(μi)][α2Re(μi) + |μi|2]
Re(μi)|μi|2 .

(8.28)

(iii) If 0 < α < |Im(μi)|√
−Re(μi)

, then 0 < T < min{T i2,
−2αRe(μi)

|μi |2 }, where

T i2
�
=

−2α[Re(μi)]2 + 2 |Im(μi)|
√

[−Re(μi)][α2Re(μi) + |μi|2]
Re(μi)|μi|2 .

(8.29)

In addition, all eigenvalues of F , where F is defined in (8.22), are within the unit
circle except for one eigenvalue equal to one if and only if the previous three condi-
tions are satisfied.

Proof: For the first statement, when T is sufficiently small, there always exists a
positive α such that Conditions 1, 2, and 3 are satisfied.

For the second statement, because μ1 = 0, it follows that λ1 = 1 and λ2 =
1 − αT . Therefore, λ2 is within the unit circle if and only if Condition 1 is satisfied.
When μi < 0, i �= 1, it follows from a similar line to that in Lemma 8.6 that all
roots of F corresponding to μi are within the unit circle if and only if Condition 2
is satisfied. We next consider the case when Re(μi) < 0 and Im(μi) �= 0, i �= 1.
Letting s1 and s2 be the two roots of (8.27), it follows that Re(s1) + Re(s2) =
1 + 2 α

T
Re(μi)

|μi |2 . Therefore, a necessary condition to guarantee that both s1 and s2

are in the open left half plane is that 1 + 2 α
T

Re(μi)
|μi |2 < 0, i.e., α

T > − |μi |2
2Re(μi)

. To
find the exact bound on T , we assume that one root of (8.27) is on the imaginary
axis. Without loss of generality, let s1 = χι, where χ ∈ R. Substituting s1 = χι
into (8.27) and separating the corresponding real and imaginary parts give that
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T 2Re(μi)χ2 − T 2Im(μi)χ + 4 − 2αT = 0, (8.30)

T 2Im(μi)χ2 +
[
T 2Re(μi) + 2αT

]
χ = 0. (8.31)

It follows from (8.31) that

χ = − TRe(μi) + 2α

T Im(μi)
. (8.32)

Substituting (8.32) into (8.30) gives

Re(μi)[TRe(μi) + 2α]2

[Im(μi)]2
+ T
[
TRe(μi) + 2α

]
+ 4 − 2αT = 0.

After some simplification, we get

Re(μi)|μi|2T 2 + 4α
[
Re(μi)

]2
T + 4α2Re(μi) + 4

[
Im(μi)

]2 = 0. (8.33)

When α > |μi |√
−Re(μi)

, it can be computed that

{
4α
[
Re(μi)

]2}2 − 4Re(μi)|μi|2
(
4α2Re(μi) + 4

[
Im(μi)

]2)

= −16
{
α2
[
Re(μi)

]2[Im(μi)
]2 + Re(μi)|μi|2

[
Im(μi)

]2}

= −16Re(μi)
[
Im(μi)

]2[
α2Re(μi) + |μi|2

]
< 0.

Therefore, there does not exist a positive T such that one root of (8.27) is on the
imaginary axis, which implies that s1 (respectively, s2) is always on the open left
or right half plane. Because Re(s1) + Re(s2) = 1 + 2 α

T
Re(μi)

|μi |2 , when α is suf-
ficiently large, it follows that Re(s1) + Re(s2) < 0. This implies that s1 (re-
spectively, s2) is always on the open left half plane when α > |μi |√

−Re(μi)
. When

|Im(μi)|√
−Re(μi)

≤ α ≤ |μi |√
−Re(μi)

, it follows that 4α2Re(μi) + 4[Im(μi)]2 ≥ 0. Not-

ing that Re(μi)|μi|2 < 0, it follows that there exists a unique positive T i1 such
that (8.33) holds when T = T i1, where T i1 is given by (8.28). Similarly, when
0 < α < |Im(μi)|√

−Re(μi)
, it follows that 4α2Re(μi) + 4[Im(μi)]2 < 0. Noting also that

Re(μi)|μi|2 < 0, it follows that there are two positive solutions with the smaller
one given by T i2 defined by (8.29).

Combining the previous arguments completes the proof.

Theorem 8.7. Suppose that the directed graph G has a directed spanning tree. Let
p ∈ R

n be defined in Lemma 1.1. Using (8.20) for (8.19), ri[k] − rj [k] → Δij and
vi[k] → 0 if and only if α and T are chosen satisfying the conditions in Lemma 8.7.
In particular, ri[k] → δi + pT r̃[0] + ( 1

α − T
2 )pT v[0] and vi[k] → 0 as k → ∞.

Proof: The statement follows directly from Lemmas 8.4 and 8.7.
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From Lemma 8.7, it is not easy to find α and T explicitly such that the conditions
in Lemma 8.7 are satisfied. We next present a sufficient condition that can be used
to determine the bounds for α and T explicitly. Before moving on, we need the
following lemmas and corollary.

Lemma 8.8 ([50, 252]). All zeros of the complex polynomial

P (z) = zn + α1z
n−1 + · · · + αn−1z + αn

satisfy |z| ≤ z0, where z0 is the unique nonnegative solution of the equation

zn − |α1|zn−1 − · · · − |αn−1|z − |αn| = 0.

The bound z0 is attained if αi = −|αi|.
Corollary 8.1. The roots of (8.24) are within the unit circle if |a| + |b| < 1. More-
over, if |a + b| + |a − b| < 1, the roots of (8.24) are still within the unit circle.

Proof: According to Lemma 8.8, the roots of (8.24) are within the unit circle if
the unique nonnegative solution z0 of z2 − |a|z − |b| = 0 satisfies z0 < 1. It is

straightforward to show that z0 = |a|+
√

|a|2+4|b|
2 . Therefore, the roots of (8.24) are

within the unit circle if
|a| +

√
|a|2 + 4|b| < 2. (8.34)

We next discuss the condition under which (8.34) holds. If b = 0, then the statements
of the corollary hold trivially. If |b| �= 0, we have that

(|a| +
√

|a|2 + 4|b|)(−|a| +
√

|a|2 + 4|b|)
−|a| +

√
|a|2 + 4|b|

< 2.

After some computation, it follows that (8.34) is equivalent to |a| + |b| < 1. There-
fore, the first statement of the corollary holds. For the second statement, because
|a| + |b| ≤ |a + b| + |a − b|, if |a + b| + |a − b| < 1, then |a| + |b| < 1, which
implies that the second statement of the corollary also holds.

The following lemma presents a sufficient condition that can be used to find α
and T explicitly.

Lemma 8.9. Suppose that the directed graph G has a directed spanning tree. There
exist positive α and T such that Sc ∩ Sr is nonempty, where

Sc
�
=

⋂

∀Re(μi)<0 and Im(μi) �=0

{(
α, T
)∣
∣
∣
∣1 + T 2μi

∣
∣+ |3 − 2αT | < 1

}
, (8.35)

and

Sr
�
=
⋂

∀μi ≤0

{

(α, T )| − T 2

2
μi < αT < 2

}

. (8.36)

If α and T are chosen from Sc ∩ Sr, then all eigenvalues of F are within the unit
circle except one eigenvalue equal to one.
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Proof: For the first statement, we let αT = 3
2 . When Re(μi) < 0 and Im(μi) �= 0,

|1+T 2μi|+|3−2αT | < 1 implies that |1+T 2μi| < 1 because αT = 3
2 . It thus fol-

lows that 0 < T <

√
−2Re(μi)

|μi | for all Re(μi) < 0 and Im(μi) �= 0. When μi ≤ 0,

− T 2

2 μi < αT < 2 can be simplified as −T 2μi < 3
2 because αT = 3

2 . It thus fol-

lows that 0 < T <
√

3
−μi

for all μi ≤ 0. Let Tc
�
=
⋂

∀Re(μi)<0 and Im(μi) �=0{T |0 <

T <

√
−2Re(μi)

|μi | } and Tr
�
=
⋂

∀μi ≤0{T |0 < T <
√

3
−μi

}.5 It is straightforward

to see that Tc ∩ Tr is nonempty. Recalling that αT = 3
2 , it follows that Sc ∩ Sr is

nonempty as well.
For the second statement, note that if the directed graph G has a directed spanning

tree, then it follows from Lemma 1.1 that Re(μi) < 0, i = 2, . . . , n, by noting that
μ1 = 0. Also note that λ1 = 1 and λ2 = 1 − αT . To ensure that |λ2| < 1, it
is required that 0 < αT < 2. When Re(μi) < 0 and Im(μi) �= 0, it follows
from Corollary 8.1 that the roots of (8.23) are within the unit circle if |1 + T 2μi| +
|3 − 2αT | < 1, where we have used the second statement of Corollary 8.1 by letting
a = αT −2− T 2

2 μi and b = 1− T 2

2 μi −αT . When μi < 0, it follows from the proof

of Lemma 8.6 that the roots of (8.23) are within the unit circle if − T 2

2 μi < αT < 2.
Combining the above arguments proves the second statement.

Remark 8.8 According to Lemmas 8.4 and 8.9, if α and T are chosen from Sc ∩Sr,
where Sc is defined by (8.35) and Sr is defined by (8.36), and the directed graph
G has a directed spanning tree, coordination is achieved ultimately. An easy way to
choose α and T is to let αT = 3

2 . It then follows that T can be chosen from Tc ∩ Tr,
where Tc and Tr are defined in the proof of Lemma 8.9.

8.2.3 Convergence Analysis of the Sampled-data Coordination
Algorithm with Relative Damping

In this subsection, we analyze the algorithm (8.21) under, respectively, an undirected
fixed interaction graph and a directed fixed interaction graph. We assume that A is
constant. In this case, using (8.21), (8.19) can be written in a vector form as

[
r̃[k + 1]
v[k + 1]

]

=

[
In − T 2

2 L TIn − T 2

2 L

−TL In − αTL

]

︸ ︷︷ ︸
G

[
r̃[k]
v[k]

]

, (8.37)

where r̃, v, and L are defined as in (8.22). A similar analysis to that for (8.22)
shows that the roots of det(zI2n − G) = 0 (i.e., the eigenvalues of G) satisfy

5 When μi = 0, T > 0 can be chosen arbitrarily.
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z2 −
(

2 + αTμi +
1
2
T 2μi

)

z + 1 + αTμi − 1
2
T 2μi = 0. (8.38)

Similarly, each eigenvalue of −L , μi, corresponds to two eigenvalues of G, denoted
by ρ2i−1 and ρ2i. Note that L has at least one zero eigenvalue. Without loss of
generality, let μ1 = 0, which implies that ρ1 = ρ2 = 1. Therefore, G has at least
two eigenvalues equal to one.

Lemma 8.10. Using (8.21) for (8.19), ri[k] − rj [k] → Δij and vi[k] − vj [k] → 0 as
k → ∞ if and only if G, where G is defined in (8.37), has exactly two eigenvalues
equal to one and all other eigenvalues have modulus smaller than one. In particular,
ri[k] − δi − (pT r̃[0] + kTpT v[0]) → 0 and vi[k] → pT v[0] as k → ∞, where
p ∈ R

n is defined in Lemma 1.1.

Proof: (Sufficiency) Note from (8.38) that if G has exactly two eigenvalues equal
to one (i.e., ρ1 = ρ2 = 1), then −L has exactly one eigenvalue equal to zero. Let
[pT , qT ]T , where p, q ∈ R

n, be a right eigenvector of G associated with the eigen-
value one. It follows that

[
In − T 2

2 L TIn − T 2

2 L

−TL In − αTL

] [
p
q

]

=
[

p
q

]

.

After some computation, it follows that the eigenvalue one has geometric multi-
plicity equal to one even if it has algebraic multiplicity equal to two. It also fol-
lows from Lemma 1.1 that we can choose p = 1n and q = 0n. In addition,
a generalized right eigenvector associated with the eigenvalue one can be chosen
as [0T

n , 1
T 1T

n ]T . Similarly, it can be shown that [0T
n , TpT

n ]T and [pT ,0T
n ]T are,

respectively, a left eigenvector and generalized left eigenvector associated with
the eigenvalue one. Note that G can be written in the Jordan canonical form as
G = PJP −1, where the columns of P , denoted by pk, k = 1, . . . , 2n, can be
chosen to be the right eigenvectors or generalized right eigenvectors of G, the rows
of P −1, denoted by qT

k , k = 1, . . . , 2n, can be chosen to be the left eigenvectors
or generalized left eigenvectors of G such that pT

k qk = 1 and pT
k q� = 0, k �= �,

and J is the Jordan block diagonal matrix with the eigenvalues of G being the
diagonal entries. Note that ρ1 = ρ2 = 1 and |ρk | < 1, k = 3, . . . , 2n. Also
note that we can choose p1 = [1T

n ,0T
n ]T , p2 = [0T

n , 1
T 1T

n ]T , q1 = [pT ,0T
n ]T ,

and q2 = [0T
n , TpT

n ]T . Because
[ r̃[k]

v[k]

]
= Gk

[ r̃[0]
v[0]

]
= PJkP −1

[ r̃[0]
v[0]

]
and

limk→∞
∥
∥PJkP −1 −

[ 1n 0n

0n
1
T 1n

][
1 k
0 1

][ pT 0T
n

0T
n TpT

]∥
∥ = limk→∞ ‖PJkP −1 −

[ 1npT kT1npT

0n×n 1npT

]
‖ = 0, it follows that |r̃i[k] − pT r̃[0] − kTpT v[0]| → 0 and

vi[k] → pT v[0] as k → ∞.
(Necessity) Note that G has at least two eigenvalues equal to one. If r̃i[k] −

pT r̃[0] − kTpT v[0] → 0 and vi[k] → pT v[0] as k → ∞, it follows that F k has
rank two as k → ∞, which in turn implies that Jk has rank two as k → ∞. It
follows that G has exactly two eigenvalues equal to one and all other eigenvalues
have modulus smaller than one.
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We first show necessary and sufficient conditions on α and T such that coordi-
nation is achieved using (8.21) under an undirected interaction graph.

Lemma 8.11. Suppose that the undirected graph G is connected. All eigenvalues of
G, where G is defined in (8.37), are within the unit circle except two eigenvalues
equal to one if and only if α and T are chosen from the set

Qr
�
=
{

(α, T )
∣
∣
∣
∣
T 2

2
< αT < − 2

mini μi

}

.6 (8.39)

Proof: Because the undirected graph G is connected, it follows from Lemma 1.1
that μi < 0, i = 2, . . . , n, by noting that μ1 = 0. Also note that ρ1 = ρ2 = 1. Let
a = −(2+αTμi + 1

2T 2μi) and b = 1+αTμi − 1
2T 2μi. It follows from Lemma 8.5

that for μi < 0, i = 2, . . . , n, the roots of (8.38) are within the unit circle if and
only if all roots of

−T 2μis
2 +
(
T 2μi − 2αTμi

)
s + 4 + 2αTμi = 0, (8.40)

are in the open left half plane. Because −T 2μi > 0, the roots of (8.40) are always
in the open left half plane if and only if 4 + 2αTμi > 0 and T 2μi − 2αTμi > 0,
which implies that T 2

2 < αT < − 2
μi

, i = 2, . . . , n. Combining the above arguments
proves the lemma.

Theorem 8.9. Suppose that the undirected graph G is connected. Let p ∈ R
n be

defined in Lemma 1.1. Using (8.21), ri[k] − rj [k] → Δij and vi[k] − vj [k] → 0 as
k → ∞ if and only if α and T are chosen from Qr, where Qr is defined by (8.39). In
particular, ri[k] − δi − (pT r̃[0] + kTpT v[0]) → 0 and vi[k] → pT v[0] as k → ∞.

Proof: The statement follows directly from Lemmas 8.10 and 8.11.
We next show necessary and sufficient conditions on α and T such that coordina-

tion is achieved using (8.21) under a directed interaction graph. Note again that the
eigenvalues of L might be complex for directed graphs, which makes the analysis
more challenging.

Lemma 8.12. Suppose that Re(μi) < 0. The roots of (8.38) are within the unit
circle if and only if α

T > 1
2 and Bi < 0, where

Bi
�
=
(

4Re(μi)
|μi|2T 2

+
2α

T

)(

1 − 2α

T

)2

+
16Im(μi)2

|μi|4T 4
. (8.41)

Proof: As in the proof of Lemma 8.11, the roots of (8.38) are within the unit circle
if and only if the roots of (8.40) are in the open left half plane. Letting s1 and s2

denote the roots of (8.40), it follows that

s1 + s2 = 1 − 2
α

T
(8.42)

6 Note that Qr is nonempty.
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and

s1s2 = − 4
μiT 2

− 2
α

T
. (8.43)

Noting that (8.42) implies that Im(s1) + Im(s2) = 0, we define s1 = a1 + ιb and
s2 = a2 − ιb. Note that s1 and s2 have negative real parts if and only if a1 +a2 < 0
and a1a2 > 0. Note from (8.42) that a1 + a2 < 0 is equivalent to α

T > 1
2 . We next

show conditions on α and T such that a1a2 > 0 holds. Substituting the definitions
of s1 and s2 into (8.43) gives a1a2+b2+ι(a2 −a1)b = − 4

μiT 2 −2 α
T , which implies

(a2 − a1)b =
4Im(μi)

|μi|2T 2
, (8.44)

a1a2 + b2 =
−4Re(μi)

|μi|2T 2
− 2

α

T
. (8.45)

It follows from (8.44) that b = 4Im(μi)
|μi |2T 2(a2−a1)

. Consider also the fact that (a2 −
a1)2 = (a2 +a1)2 − 4a1a2 = (1 − 2 α

T )2 − 4a1a2. After some manipulation, (8.45)
can be written as

4(a1a2)2 + Aia1a2 − Bi = 0, (8.46)

where Ai
�
= 4( 4Re(μi)

|μi |2T 2 + 2 α
T ) − (1 − 2 α

T )2 and Bi is defined by (8.41). It follows

that A2
i +16Bi = [4( 4Re(μi)

|μi |2T 2 +2 α
T )+ (1 − 2 α

T )2]2 + 16Im(μi)
2

|μi |4T 4 ≥ 0, which implies
that (8.46) has two real roots. Therefore, the necessary and sufficient conditions

for a1a2 > 0 are Bi < 0 and Ai < 0. Because 16Im(μi)
2

|μi |4T 4 > 0, if Bi < 0 then

4( 4Re(μi)
|μi |2T 2 + 2 α

T ) < 0, which implies Ai < 0 as well. Combining the previous
arguments proves the lemma.

Lemma 8.13. Suppose that the directed graph G has a directed spanning tree. There
exist positive α and T such that Qc is nonempty, where

Qc
�
=

⋂

∀Re(μi)<0

{

(α, T )
∣
∣
∣
∣
1
2

<
α

T
, Bi < 0

}

, (8.47)

where Bi is defined by (8.41). All eigenvalues of G, where G is defined in (8.37),
are within the unit circle except two eigenvalues equal to one if and only if α and T
are chosen from Qc.

Proof: For the first statement, we let α > T > 0, which implies that α
T > 1

2 holds
apparently. Note that α > T implies that (T − 2α)2 > α2. Therefore, a sufficient
condition for Bi < 0 is

αT < − 8Im(μi)2

|μi|4α2
− 2Re(μi)

|μi|2 . (8.48)
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To ensure that there are feasible α > 0 and T > 0 satisfying (8.48), we first need to
ensure that the right side of (8.48) is positive, which requires that α > 2|Im(μi)|

|μi |
√

−Re(μi)

for all Re(μi) < 0. It also follows from (8.48) that T < − 8Im(μi)
2

|μi |4α3 − 2Re(μi)
|μi |2α for

all Re(μi) < 0. Therefore, (8.47) is ensured to be nonempty if α and T are chosen

from, respectively, αc
�
=
⋂

∀Re(μi)<0{α|α > 2|Im(μi)|
|μi |

√
−Re(μi)

} and

Tc
�
=

⋂

∀Re(μi)<0

{

T

∣
∣
∣
∣T < − 8Im(μi)2

|μi|4α3
− 2Re(μi)

|μi|2α and 0 < T < α

}

.

It is straightforward to see that both αc and Tc are nonempty. Combining the above
arguments shows that Qc is nonempty.

For the second statement, note that if the directed graph G has a directed spanning
tree, it follows from Lemma 1.1 that Re(μi) < 0, i = 2, . . . , n, by noting that
μ1 = 0. Also note that ρ1 = 1 and ρ2 = 1. When Re(μi) < 0, it follows from
Lemma 8.12 that the roots of (8.38) are within the unit circle if and only if α

T > 1
2

and Bi < 0. It thus follows that all eigenvalues of G are within the unit circle except
two eigenvalues equal to one if and only if α and T are chosen from Qc.

Remark 8.10 From the proof of the first statement of Lemma 8.13, an easy way to
choose α and T is to let α > T . Then α is chosen from αc and T is chosen from Tc,
where αc and Tc are defined in the proof of Lemma 8.13.

Theorem 8.11. Suppose that the directed graph G has a directed spanning tree.
Using (8.21) for (8.19), ri[k] − rj [k] → Δij and vi[k] − vj [k] → 0 as k → ∞ if
and only if α and T are chosen from Qc, where Qc is defined by (8.47). In particular,
ri[k] − δi − (pT r̃[0] + kTpT v[0]) → 0 and vi[k] → pT v[0] as k → ∞.

Proof: The proof follows directly from Lemmas 8.11 and 8.13.

8.2.4 Simulation

In this section, we present simulation results to validate the theoretical results de-
rived in Sects. 8.2.2 and 8.2.3. We consider a team of four agents with the directed
graph G shown by Fig. 8.4. Note that G has a directed spanning tree. The nonsym-
metric Laplacian matrix associated with G is chosen as

L =

⎡

⎢
⎢
⎣

1 −1 0 0
0 1.5 −1.5 0

−2 0 2 0
−2.5 0 0 2.5

⎤

⎥
⎥
⎦ .

It can be computed that for L , p = [0.4615, 0.3077, 0.2308, 0]T . Here for simplic-
ity, we have chosen δi = 0, i = 1, . . . , 4, which implies that Δij = 0.
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Fig. 8.4 Directed graph G for four agents. An arrow from j to i denotes that agent j is a neighbor
of agent i

Fig. 8.5 Convergence results using (8.20) with α = 4 and T = 0.4 s

Fig. 8.6 Convergence results using (8.20) with α = 1.2 and T = 0.5 s

For the coordination algorithm (8.20), let ri[0] = 0.5i, i = 1, . . . , 4, v1[0] =
−0.1, v2[0] = 0, v3[0] = 0.1, and v4[0] = 0. Figure 8.5 shows the convergence re-
sult using (8.20) with α = 4 and T = 0.4 s. Note that the conditions in Theorem 8.7
are satisfied. It can be seen that coordination is achieved with the final equilibrium
for ri[k] being 0.8835, which is equal to δi + pT r̃[0] + ( 1

α − T
2 )pT v[0] as stated

in Theorem 8.7. Figure 8.6 shows the convergence result using (8.20) with α = 1.2
and T = 0.5 s. Note that coordination is not achieved in this case.
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Fig. 8.7 Convergence results using (8.21) with α = 0.6 and T = 0.02 s

Fig. 8.8 Convergence results using (8.21) with α = 0.6 and T = 0.5 s

For the coordination algorithm (8.21), let ri[0] = i − 1 and vi[0] = 0.2(i − 1),
i = 1, . . . , 4. Figure 8.7 shows the convergence result using (8.21) with α = 0.6 and
T = 0.02 s. Note that the conditions in Theorem 8.13 are satisfied. It can be seen that
coordination is achieved with the final equilibrium for vi[k] being 0.1538, which is
equal to pT v[0] as stated in Theorem 8.13. Figure 8.8 shows the convergence result
using (8.21) with α = 0.6 and T = 0.5 s. Note that coordination is not achieved in
this case.

8.3 Sampled-data Coordination for Double-integrator Dynamics
Under Switching Interaction

In this section, we study (8.20) and (8.21) under directed switching interaction. Note
that there are a finite number of possible directed graphs for n agents. We assume
that for each possible directed graph, there are a finite number of adjacency matrices
associated with the directed graph. Therefore, all nonzero aij [k] in (8.20) and (8.21)
are chosen from a finite set.
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8.3.1 Convergence Analysis of the Sampled-data Coordination
Algorithm with Absolute Damping

In this subsection, we analyze (8.20) under a directed switching interaction graph.
Here A [k] is switching. In this case, using (8.20), (8.19) can be written in a vector
form as [

r̃[k + 1]
v[k + 1]

]

=

[
In − T 2

2 L [k] (T − αT 2

2 )In

−TL [k] (1 − αT )In

]

︸ ︷︷ ︸
Fk

[
r̃[k]
v[k]

]

, (8.49)

where r̃ and v are defined as in (8.22), and L [k] is the nonsymmetric Laplacian
matrix associated with A [k] and hence G [k]. Note that the solution of (8.49) can be
written as [

r̃[k + 1]
v[k + 1]

]

=
[

Bk Ck

Dk Ek

] [
r̃[0]
v[0]

]

, (8.50)

where
[

Bk Ck

Dk Ek

] �
=
∏k

i=0 Fi. Therefore, Bk, Ck, Dk, and Ek satisfy

[
Bk

Dk

]

= Fk

[
Bk−1

Dk−1

]

(8.51)

and [
Ck

Ek

]

= Fk

[
Ck−1

Ek−1

]

. (8.52)

Lemma 8.14. Assume that αT �= 2. Using (8.20) for (8.19), ri[k] − rj [k] → Δij

and vi[k] → 0 as k → ∞ if limk→∞ Bk exists and all rows of limk→∞ Bk are the
same for arbitrary initial conditions.

Proof: When limk→∞ Bk exists and all rows of limk→∞ Bk are the same for arbi-
trary initial conditions, it follows that limk→∞ Ck exists and all rows of limk→∞ Ck

are the same for arbitrary initial conditions as well because (8.51) and (8.52) have
the same structure. It then follows from (8.51) that

Bk =
(

In − T 2

2
L [k]
)

Bk−1 +
(

T − αT 2

2

)

Dk−1. (8.53)

Because L [k]1n = 0n and all rows of limk→∞ Bk−1 are the same, it follows that
limk→∞ L [k]Bk−1 = 0n×n. It thus follows that

lim
k→∞

(

T − αT 2

2

)

Dk−1 = lim
k→∞

(Bk − Bk−1) = 0n×n.

Because αT �= 2, i.e., T − αT 2

2 �= 0, it follows that limk→∞ Dk = 0n×n for arbi-
trary initial conditions. Similarly, it follows that limk→∞ Ek = 0n×n for arbitrary
initial conditions because (8.51) and (8.52) have the same structure. Combining the
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previous arguments with (8.50) shows that r̃i[k] − r̃j [k] → 0 and vi[k] → 0 as
k → ∞, which implies that ri[k] − rj [k] → Δij and vi[k] → 0 as k → ∞.

Note from (8.53) that

Bk−1 =
(

In − T 2

2
L [k − 1]

)

Bk−2 +
(

T − αT 2

2

)

Dk−2. (8.54)

It follows from (8.51) that

Dk−1 = −TL [k − 1]Bk−2 + (1 − αT )Dk−2. (8.55)

Therefore, it follows from (8.53) and (8.54) that

Bk − (1 − αT )Bk−1 =
(

In − T 2

2
L [k]
)

Bk−1

− (1 − αT )
(

In − T 2

2
L [k − 1]

)

Bk−2

+
(

T − αT 2

2

)
[
Dk−1 − (1 − αT )Dk−2

]
. (8.56)

By substituting (8.55) into (8.56), (8.56) can be simplified as

Bk = Φk1Bk−1 + Φk2Bk−2, (8.57)

where

Φk1
�
= (2 − αT )In − T 2

2
L [k] (8.58)

and

Φk2
�
= (αT − 1)In − T 2

2
L [k − 1]. (8.59)

We next study the conditions on G [k], T , and α such that limk→∞ Bk exists and all
rows of limk→∞ Bk are the same for arbitrary initial conditions. Before moving on,
we need the following lemma.

Lemma 8.15. Suppose that a nonnegative matrix A ∈ R
n×n has the same row sum.

Let A
�
=
[

1 1
1 1

]
⊗ A. If the directed graph of A has a directed spanning tree, the

directed graph of A also has a directed spanning tree.

Proof: Note that the eigenvalues of
[

1 1
1 1

]
are λ1 = 0 and λ2 = 2. Let μj be

the jth eigenvalue of A. Because A =
[

1 1
1 1

]
⊗ A, it follows from Lemma 1.21

that the eigenvalues of A are λiμj , i = 1, 2, j = 1, . . . , n. It thus follows that
ρ(A) = 2ρ(A). If the directed graph of A has a directed spanning tree, it follows
from Lemma 1.10 that A has a simple eigenvalue equal to ρ(A), which implies
that A also has a simple eigenvalue equal to ρ(A). Therefore, it follows again from
Lemma 1.10 that the directed graph of A has a directed spanning tree.
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Lemma 8.16. Let Φk1 and Φk2 be defined by, respectively, (8.58) and (8.59). There
exist positive α and T such that both Φk1 and Φk2 are nonnegative matrices with
positive diagonal entries. If the positive α and T are chosen such that both Φk1

and Φk2 are nonnegative with positive diagonal entries, and there exists a positive
integer κ such that for any nonnegative integer k0, the union of G [k] across k ∈
[k0, k0 + κ] has a directed spanning tree, the iteration (8.57) is stable for arbitrary
initial conditions (i.e., limk→∞ Bk exists) and all rows of limk→∞ Bk are the same.

Proof: For the first statement, consider αT = 3
2 . It follows that if T 2 < mini

1
�ii[k] ,

k = 0, 1, . . . , where �ii[k] is the ith diagonal entry of L [k], then both Φk1 and Φk2

are nonnegative matrices with positive diagonal entries.
For the second statement, rewrite (8.57) as

[
Bk

Bk−1

]

=

[
Φk1 Φk2

In 0n×n

]

︸ ︷︷ ︸
Hk

[
Bk−1

Bk−2

]

. (8.60)

Note that Φk11n = 2 − αT , Φk21n = αT − 1, and (Φk1 + Φk2)1n = 1. When the
positive α and T are chosen such that both Φk1 and Φk2 are nonnegative matrices
with positive diagonal entries, it follows that Hk is a row-stochastic matrix. It then
follows that Hk+1Hk =

[ Φ(k+1)1Φk1+Φ(k+1)2 Φ(k+1)1Φk2

Φk1 Φk2

]
is also a row-stochastic

matrix because the product of row-stochastic matrices is also a row-stochastic ma-
trix. In addition, the diagonal entries of Hk+1Hk are positive because both Φk1 and
Φk2 are nonnegative matrices with positive diagonal entries. Similarly, for any pos-
itive integer m and nonnegative integer �0, the matrix product

∏m
i=0 H�0+i is also

a row-stochastic matrix with positive diagonal entries. From Lemma 1.8, we have
that

Hk+1Hk ≥
[

γ1(Φ(k+1)1 + Φk1) + Φ(k+1)2 γ2(Φ(k+1)1 + Φk2)
Φk1 Φk2

]

≥ γ

[
Φ(k+1)1 + Φk1 + Φ(k+1)2 Φ(k+1)1 + Φk2

Φk1 Φk2

]

for some positive γ that is determined by γ1, γ2, Φk1, Φk2, Φ(k+1)1, and Φ(k+1)2,
where γ1 is determined by Φ(k+1)1 and Φk1, and γ2 is determined by Φ(k+1)1 and
Φk2. Note also that the directed graph of Φ(k−1)1 is the same as that of Φk2. We can
thus replace Φk2 with Φ(k−1)1 without changing the directed graph of Hk and vice
versa. Therefore, it follows from the definitions of Φk1 and Φk2 that Hk+1Hk ≥
γ̂
[ Φ(k+1)1+Φk1 Φ(k+1)1+Φ(k−1)1

Φk1 Φ(k−1)1

]
for some positive γ̂ that is determined by Φk1, Φk2,

Φ(k+1)1, Φ(k+1)2, and γ. Similarly,
∏m

i=0 H�0+i satisfies

m∏

i=0

H�0+i ≥ γ̃

[ ∑�0+m
i=�0

Φi1

∑�0+m
i=�0+1 Φi1 + Φ(�0−1)1

∑�0+m−1
i=�0

Φi1

∑�0+m−1
i=�0+1 Φi1 + Φ(�0−1)1

]
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≥ γ̃

[
1 1
1 1

]

⊗
�0+m−1∑

i=�0+1

Φi1 (8.61)

for some positive γ̃.
Because there exists a positive integer κ such that for any nonnegative integer

k0, the union of G [k] across k ∈ [k0, k0 + κ] has a directed spanning tree, it
follows that the directed graph of

∑k0+κ
i=k0

Φi1 also has a directed spanning tree.

Note from (8.61) that
∏κ+2

i=0 Hk0−1+i ≥ γ̃
[

1 1
1 1

]
⊗
∑k0+κ

i=k0
Φi1. It follows from

Lemma 8.15 that
[

1 1
1 1

]
⊗
∑k0+κ

i=k0
Φi1 has a directed spanning tree, which implies that

the directed graph of
∏κ+2

i=0 Hk0−1+i also has a directed spanning tree. Also note
that
∏κ+2

i=0 Hk0−1+i is a row-stochastic matrix with positive diagonal entries. It fol-
lows from Lemma 1.9 that

∏κ+2
i=0 Hk0−1+i is SIA. It then follows from Lemma 1.12

that limk→∞
∏k

i=2 Hi = 12nyT for some column vector y ∈ R
2n. Therefore, it

follows from (8.60) that limk→∞ Bk exists and all rows of limk→∞ Bk are the
same.

Theorem 8.12. Suppose that there exists a positive integer κ such that for any non-
negative integer k0, the union of G [k] across k ∈ [k0, k0 + κ] has a directed span-
ning tree. Let Φk1 and Φk2 be defined by, respectively, (8.58) and (8.59). If the pos-
itive α and T are chosen such that both Φk1 and Φk2 are nonnegative with positive
diagonal entries, ri[k] − rj [k] → Δij and vi[k] → 0 as k → ∞.

Proof: It follows from Lemma 8.16 that limk→∞ Bk exists and all rows of
limk→∞ Bk are the same under the condition of the theorem. Because Φk1 is non-
negative with positive diagonal entries, it follows that αT < 2 (and hence αT �= 2).
It then follows from Lemma 8.14 that ri[k] − rj [k] → Δij and vi[k] → 0 as k → ∞
under the condition of the theorem.

8.3.2 Convergence Analysis of the Sampled-data Coordination
Algorithm with Relative Damping

In this subsection, we analyze (8.21) under a directed switching interaction graph.
Here A [k] is switching. In this case, using (8.21), (8.19) can be written in a vector
form as [

r̃[k + 1]
v[k + 1]

]

=
[

In − T2
2 L [k] TIn − T2

2 L [k]

−TL [k] In −αTL [k]

]

︸ ︷︷ ︸
Gk

[
r̃[k]
v[k]

]

, (8.62)

where r̃ and v are defined as in (8.22), and L [k] is defined as in (8.49). Note that
Gk can be written as
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Gk =

[
(1 − T )In − T 2

2 L [k] TIn − T 2

2 L [k]
√

TIn − TL [k] (1 −
√

T )In − αTL [k]

]

︸ ︷︷ ︸
Rk

+

[
TIn 0n×n

−
√

TIn

√
TIn

]

︸ ︷︷ ︸
S

. (8.63)

In the following, we study the property of the matrix product
∏k

i=0 Gi defined as

k∏

i=0

Gi
�
=

[
G̃k1 G̃k2

G̃k3 G̃k4

]

, (8.64)

where G̃ki ∈ R
n×n, i = 1, . . . , 4.

Lemma 8.17. Suppose that the directed graph G [k], k = 0, 1, . . . , has a directed
spanning tree. There exist positive α and T such that the following two conditions
are satisfied:

1. (1 − T )In − T 2

2 L [k] and (1 −
√

T )In − αTL [k], k = 0, 1, . . . , are nonnegative

matrices with positive diagonal entries, and TIn − T 2

2 L [k] and
√

TIn − TL [k],
k = 0, 1, . . . , are nonnegative matrices.

2. ‖S‖∞ < 1, where S is defined in (8.63).

In addition, if the positive α and T are chosen such that Conditions 1 and 2 are
satisfied, the matrix product

∏k
i=0 Gi has the property that all rows of each G̃ki,

i = 1, . . . , 4, become the same as k → ∞.

Proof: For the first statement, it can be noted that when T is sufficiently small,
Condition 1 is satisfied. Similarly, when 0 < T < 1

4 , it follows that ‖S‖∞ < 1.
Therefore, there exist positive α and T such that Conditions 1 and 2 are satisfied.

For the second statement, it is assumed that α and T are chosen such that Con-
ditions 1 and 2 are satisfied. It can be computed that Rk, k = 0, 1, . . . , are row-
stochastic matrices with positive diagonal entries when Condition 1 is satisfied. Note
that

k∏

i=0

Gi =
k∏

i=0

(Ri + S). (8.65)

It follows from the binomial expansion that
∏k

i=0 Gi =
∑2k+1

j=1 Ĝj , where Ĝj is the
product of k + 1 matrices by choosing either Ri or S in (Ri + S) for i = 0, . . . , k.
As k → ∞, Ĝj takes the following three forms:

Case I. Ĝj is constructed from an infinite number of S and a finite number of Ri.
In this case, it follows that as k → ∞, ‖Ĝj ‖ ∞ ≤ (

∏m
i=0 ‖R�i ‖ ∞)‖S‖∞

∞ =
‖S‖∞

∞ = 0, where we have used the fact that ‖R�i ‖ ∞ = 1 because R�i is a
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row-stochastic matrix and ‖S‖∞ < 1 as shown in Condition 2. Therefore, Ĝj

approaches 02n×2n as k → ∞.
Case II. Ĝj is constructed from an infinite number of S and an infinite number

of Ri. A similar analysis to that in Case I shows that Ĝj approaches 02n×2n as
k → ∞.

Case III. Ĝj is constructed from a finite number of S and an infinite number of Ri.
In this case, as k → ∞, Ĝj can be written as

Ĝj = M
∏

j

R�j

︸ ︷︷ ︸
J

N,

where J is the product of an infinite number of R�j , j = 0, 1, . . . , and both M
and N are products of a finite number of matrices by choosing either Ri, i �= �j ,
or S from (Ri + S).7 It follows from Lemma 8.15 that

[
1 1
1 1

]
⊗ {(1 − T )In −

T 2

2 L [k]} has a directed spanning tree if the directed graph of (1 − T )In −
T 2

2 L [k] has a directed spanning tree. Note that the directed graph of Rk is the

same as that of
[

1 1
1 1

]
⊗ (1 − T )In − T 2

2 L [k] because the directed graphs of all
four matrices in Condition 1 of Lemma 8.17 are the same. Because G [k] has a
directed spanning tree, so does (1 − T )In − T 2

2 L [k], which further implies that
the directed graph of Rk also has a directed spanning tree. Also note that Rk,
k = 0, 1, . . . , are row-stochastic matrices with positive diagonal entries. It then
follows from Lemma 1.9 that R�j is SIA. Therefore, it follows from Lemma 1.12
that all rows of J become the same as k → ∞. By writing

J =
[

J1 J2

J3 J4

]

, (8.66)

where Ji ∈ R
n×n, i = 1, . . . , 4, it follows from the fact that all rows of J be-

come the same as k → ∞ that all rows of Ji, i = 1, . . . , 4, also become the same

as k → ∞. It then follows that RiJ =
[ (1−T )In − T2

2 L [i] TIn − T2
2 L [i]√

TIn −TL [i] (1−
√

T )In −αTL [i]

]
J

approaches
[ (1−T )In TIn√

TIn (1−
√

T )In

]
J as k → ∞, where we have used the fact that

L [i]J� approaches 0n×n, � = 1, . . . , 4, as k → ∞. By separating RiJ into four
n × n submatrices as that of J in (8.66), all rows of each of the four n × n subma-
trices become the same as k → ∞. The same property also applies to the matrix
products JRi, SJ , and JS. A similar analysis shows that the same property also
holds for the matrix product formed by pre-multiplying or post-multiplying J by
a finite number of Ri and/or S. Therefore, by separating Ĝj into four n × n sub-
matrices as those of J in (8.66), it follows that all rows of each of the four n × n
submatrices become the same as k → ∞. Combining the previous arguments
shows that as k → ∞, all rows of G̃ki, i = 1, . . . , 4, become the same.

7 Here M and N are I2n if neither Ri nor S is chosen.
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Theorem 8.13. Suppose that the directed graph G [k], k = 0, 1, . . . , has a directed
spanning tree. Using (8.21) for (8.19), ri[k] − rj [k] → Δij [k] and vi[k] − vj [k] → 0
as k → ∞ when the positive α and T are chosen such that Conditions 1 and 2 in
Lemma 8.17 are satisfied.

Proof: Note that the solution of (8.62) can be written as

[
r̃[k + 1]
v[k + 1]

]

=
k∏

i=0

Gi

[
r̃[0]
v[0]

]

. (8.67)

When the directed graph G [k], k = 0, 1, . . . , has a directed spanning tree, and
Conditions 1 and 2 in Lemma 8.17 are satisfied, it follows that all rows of G̃ki, i =
1, . . . , 4, become the same as k → ∞. It thus follows from (8.64) and (8.67) that
r̃i[k] − r̃j [k] → 0 and vi[k] − vj [k] → 0 as k → ∞, which implies that ri[k] −
rj [k] → Δij and vi[k] − vj [k] → 0 as k → ∞.

Remark 8.14 Note that Theorem 8.12 requires that the interaction graph have a
directed spanning tree jointly to guarantee coordination while Theorem 8.13 re-
quires that the interaction graph have a directed spanning tree at each time interval to
guarantee coordination. The different connectivity requirement for Theorems 8.12
and 8.13 is caused by different damping terms. For the coordination algorithm with
an absolute damping term, when the sampling period and the damping gain are
chosen properly, all agents always have a zero final velocity irrespective of the in-
teraction graph. However, for the coordination algorithm with a relative damping
term, the agents in general do not have a zero final velocity. From this point of view,
it is not surprising to see that the connectivity requirement in Theorem 8.13 corre-
sponding to the relative damping case is more stringent than that in Theorem 8.12
corresponding to the absolute damping case.

Remark 8.15 In Theorem 8.12 (respectively, Theorem 8.13), it is assumed that the
sampling period is uniform. When the sampling periods are non-uniform, we can
always find corresponding damping gains such that the conditions in Theorem 8.12
(respectively, Theorem 8.13) are satisfied. Therefore, similar results can be obtained
in the presence of non-uniform sampling periods if the conditions in Theorem 8.12
(respectively, Theorem 8.13) are satisfied.

8.3.3 Simulation

In this subsection, we present simulation results to illustrate the theoretical results
derived in Sects. 8.3.1 and 8.3.2. For both coordination algorithms (8.20) and (8.21),
we consider a team of four agents. Here for simplicity, we have chosen δi = 0, i =
1, . . . , 4, which implies that Δij = 0.

For (8.20), let ri[0] = 0.5i, i = 1, . . . , 4, v1[0] = −1, v2[0] = 0, v3[0] = 1, and
v4[0] = 0. The directed graph G [k] switches from a set {G(1), G(2), G(3)} as shown
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Fig. 8.9 Directed graphs G(1), G(2), and G(3) and their union. An arrow from j to i denotes that
agent j is a neighbor of agent i

Fig. 8.10 Convergence result using (8.20) when G [k] switches from a set {G(1), G(2), G(3)},
T = 0.2 s, and α = 6

in Fig. 8.9(a)–(c). While G(i), i = 1, 2, 3, does not have a directed spanning tree,
their union as shown in Fig. 8.9(d) has a directed spanning tree. We let aij [k] = 1 if
(j, i) ∈ E [k] and aij [k] = 0 otherwise. We choose T = 0.2 s and α = 6. It can be
computed that the condition in Theorem 8.12 is satisfied. Figures 8.10(a) and 8.10(b)
show, respectively, the positions and velocities of the four agents using (8.20) when
G [k] switches from G(1) to G(2) and then to G(3) every sampling period and the same
process then repeats. It can be seen that coordination is achieved on positions with
a zero final velocity as stated in Theorem 8.12. Note that the velocities of the four
agents demonstrate large oscillations as shown in Fig. 8.10(b) because G [k] does
not have a directed spanning tree at each time sampling period and switches very
fast.

For (8.21), ri[0] and vi[0] are chosen the same as for (8.20). The directed graph
G [k] switches from a set {G(4), G(5), G(6)} as shown in Fig. 8.11. Note that each
directed graph G(i), i = 4, 5, 6, has a directed spanning tree. Here again we let
aij [k] = 1 if (j, i) ∈ E [k] and aij [k] = 0 otherwise. We choose T = 0.1 s and
α = 1. It can be computed that the condition in Theorem 8.13 is satisfied. Fig-
ures 8.12(a) and 8.12(b) show, respectively, the positions and velocities of the four
agents using (8.21) when G [k] switches from G(4) to G(5) and then to G(6) every
sampling period and the same process then repeats. It can be seen that coordination
is achieved on positions with a constant final velocity as stated in Theorem 8.13.
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Fig. 8.11 Directed graphs G(4), G(5), and G(6). An arrow from j to i denotes that agent j is a
neighbor of agent i

Fig. 8.12 Convergence result using (8.21) when G [k] switches from a set {G(4), G(5), G(6)},
T = 0.1 s, and α = 1

Fig. 8.13 Convergence result using (8.21) when G [k] switches from a set {G(1), G(2), G(3)},
T = 0.1 s, and α = 1

We also show an example to illustrate that using (8.21) for (8.19), coordination
is not necessarily achieved even if the interaction graph has a directed spanning tree
jointly, and α and T satisfy Conditions 1 and 2 in Lemma 8.17. The initial posi-
tions and velocities, α, and T are chosen to be the same as those for Figs. 8.12(a)
and 8.12(b). Figures 8.13(a) and 8.13(b) show, respectively, the positions and veloc-
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ities of the four agents using (8.21) when G [k] switches from G(1) to G(2) then to
G(3) every sampling period and the same process then repeats. It can be seen that co-
ordination is not achieved even when the interaction graph has a directed spanning
tree jointly and α and T satisfy Conditions 1 and 2 in Lemma 8.17.

8.4 Notes

The results in this chapter are based mainly on [32, 33, 36, 44, 45, 249]. For further
results on distributed multi-agent coordination in a sampled-data setting, see [99,
101, 116, 196, 328]. In particular, [116] shows conditions on sampled-data coordi-
nation under an undirected interaction graph through average-energy-like Lyapunov
functions. Considering the fact that communication among agents might be unsta-
ble, the authors in [196] further study the case of stochastic undirected interaction.
However, the stability condition derived in [196] is stringent and difficult to deter-
mine. In [99, 101], sampled-data coordination is studied for agents with double-
integrator dynamics in both synchronous and asynchronous cases. In particular, the
conditions are derived by using linear matrix inequalities. In [328], the mean-square
consentability problem is studied for agents with double-integrator dynamics in a
sampled-data setting with a stochastically switching interaction graph.
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