
Chapter 3
Collective Periodic Motion Coordination

This chapter introduces a collective periodic motion coordination problem. Coordi-
nated periodic motions play an important role in applications involving multi-agent
networks with repetitive movements such as cooperative patrol, mapping, sampling,
or surveillance. We introduce two types of algorithms. For the first type, we intro-
duce Cartesian coordinate coupling to existing distributed consensus algorithms for
respectively, single-integrator dynamics and double-integrator dynamics, to gener-
ate collective motions, namely, rendezvous, circular patterns, and logarithmic spiral
patterns in the three-dimensional space. It is shown that the interaction graph and
the value of the Euler angle in the case of single-integrator dynamics and the in-
teraction graph, the damping gain, and the value of the Euler angle in the case of
double-integrator dynamics affect the resulting collective motions. We show that
when the nonsymmetric Laplacian matrix has certain properties, the damping gain
is above a certain bound in the case of double-integrator dynamics, and the Euler an-
gle is below, equal, or above a critical value, the agents will eventually rendezvous,
move on circular orbits, or follow logarithmic spiral curves lying on a plane normal
to the Euler axis. For the second type, we introduce coupled second-order linear
harmonic oscillators with local interaction to generate synchronized oscillatory mo-
tions. We analyze convergence conditions under, respectively, directed fixed and
switching interaction graphs. It is shown that the coupled harmonic oscillators can
be synchronized under mild network connectivity conditions. The theoretical result
is also applied to synchronized motion coordination in multi-agent systems as a
proof of concept.

3.1 Cartesian Coordinate Coupling

In this section, we introduce Cartesian coordinate coupling to existing distributed
consensus algorithms for respectively, single-integrator dynamics and double-inte-
grator dynamics, through a rotation matrix in the three-dimensional space, analyze
the convergence properties, and quantitatively characterize the resulting collective
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46 3 Collective Periodic Motion Coordination

motions, namely, convergence to a point, circular patterns with concentric orbits,
and logarithmic spiral curves lying on a plane normal to the Euler axis, under a
general interaction graph. The resulting collective motions are expected to have ap-
plications in rendezvous, persistent surveillance, and coverage control with teams
of heterogeneous agents. It is shown that the interaction graph and the value of the
Euler angle in the case of single-integrator dynamics and the interaction graph, the
damping gain, and the value of the Euler angle in the case of double-integrator dy-
namics affect the resulting collective motions. The analysis relies on algebraic graph
theory, matrix theory, and properties of the Kronecker product.

3.1.1 Single-integrator Dynamics

Consider n agents with single-integrator dynamics given by

ṙi = ui, i = 1, . . . , n, (3.1)

where ri ∈ R
m is the position and ui ∈ R

m is the control input associated with the
ith agent. We introduce a distributed algorithm with Cartesian coordinate coupling
for (3.1) as

ui = −
n∑

j=1

aijC(ri − rj), i = 1, . . . , n, (3.2)

where aij is the (i, j)th entry of the adjacency matrix A ∈ R
n×n associated with

the directed graph G �
= (V , E ) characterizing the interaction among the n agents,

and C ∈ R
m×m denotes a Cartesian coordinate coupling matrix. In this book,

it is assumed that all agents share a common inertial coordinate frame. This as-
sumption will not be explicitly mentioned in later chapters unless it is necessary
for facilitating analysis. In this section, we focus on the case where C is a rotation
matrix while a similar analysis can be extended to the case where C is a general
matrix.

Remark 3.1 Note that the existing consensus algorithm for (3.1) (see e.g., [248,
Chap. 2]) corresponds to the case where C = Im. That is, using the existing con-
sensus algorithm for (3.1), the components of ri (i.e., the Cartesian coordinates of
agent i) are decoupled while using (3.2) the components of ri are coupled.

Using (3.2), (3.1) can be written in a vector form as

ṙ = −(L ⊗ C)r, (3.3)

where r
�
= [rT

1 , . . . , rT
n ]T and L ∈ R

n×n is the nonsymmetric Laplacian matrix
associated with A and hence G. Before moving on, we need the following definition:

Definition 3.1. Let μi, i = 1, . . . , n, be the ith eigenvalue of −L with an associated
right eigenvector wi and an associated left eigenvector νi. Also let arg(μi) = 0 for
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μi = 0 and arg(μi) ∈ (π
2 , 3π

2 ) for all μi �= 0.1 Without loss of generality, suppose
that μi is labeled such that arg(μ1) ≤ arg(μ2) ≤ · · · ≤ arg(μn).2

Theorem 3.2. Suppose that the directed graph G has a directed spanning tree. Let

the control algorithm for (3.1) be given by (3.2), where ri
�
= [xi, yi, zi]T and C is

the 3 × 3 rotation matrix R defined in Lemma 1.20. Let μi, wi, νi, and arg(μi) be

defined in Definition 3.1, p ∈ R
n be defined in Lemma 1.1, and a

�
= [a1, a2, a3]T ,

ςk, and �k be defined in Lemma 1.20.

1. If |θ| < θc
s, where θc

s
�
= 3π

2 − arg(μn), the agents will eventually rendezvous at
the position [pT x(0),pT y(0),pT z(0)], where x, y, and z are, respectively, the
column stack vectors of xi, yi, and zi.

2. If |θ| = θc
s and arg(μn) is the unique maximum phase of μi, all agents will

eventually move on circular orbits with the center [pT x(0),pT y(0),pT z(0)] and

the period 2π
|μn | . The radius of the orbit for agent i is given by 2|wn(i)(

νT
n

νT
n wn

⊗
�T

2
�T

2 ς2
)r(0)|

√
a2
2 + a2

3 sin2( θ
2 ), where wn(i) is the ith component of wn. The rel-

ative radius of the orbits is equal to the relative magnitude of wn(i). The relative
phase of the agents on their orbits is equal to the relative phase of wn(i). The
circular orbits are on a plane normal to the Euler axis a.

3. If arg(μn) is the unique maximum phase of μi and θc
s < |θ| < 3π

2 − arg(μn−1),
all agents will eventually move along logarithmic spiral curves with the center
[pT x(0),pT y(0),pT z(0)], the growing rate |μn| cos(arg(μn)+ |θ|), and the pe-
riod 2π

|μn sin(arg(μn)+|θ|)| . The radius of the logarithmic spiral curve for agent i is
given by

2
∣∣∣∣wn(i)

(
νT

n

νT
n wn

⊗ �T
2

�T
2 ς2

)
r(0)

∣∣∣∣e
[|μn | cos(arg(μn)+|θ|)]t

√
a2
2 + a2

3 sin2

(
θ

2

)
.

The relative radius of the logarithmic spiral curves is equal to the relative mag-
nitude of wn(i). The relative phase of the agents on their curves is equal to the
relative phase of wn(i). The logarithmic spiral curves are on a plane normal to
the Euler axis a.

Proof: It follows from Lemmas 1.20 and 1.21 and Definition 3.1 that the eigenvalues
of −(L ⊗R) are μi, μie

ιθ, and μie
−ιθ with the associated right eigenvectors wi ⊗ς1,

wi ⊗ ς2, and wi ⊗ ς3, respectively, and the associated left eigenvectors νi ⊗ �1,
νi ⊗ �2, and νi ⊗ �3, respectively. That is, the eigenvalues of −(L ⊗ R) correspond
to the eigenvalues of −L rotated by angles 0, θ, and −θ, respectively. Let λ�, � =
1, . . . , 3n, denote the �th eigenvalue of −(L ⊗ R). Without loss of generality, let
λ3i−2 = μi, λ3i−1 = μie

ιθ, and λ3i = μie
−ιθ, i = 1, . . . , n. Because the directed

graph G has a directed spanning tree, it follows from Lemma 1.1 that −L has a

1 Note that according to Lemma 1.1, − L has at least one zero eigenvalue and all its nonzero
eigenvalues have negative real parts.
2 It follows from Lemma 1.1 that μ1 = 0. Without loss of generality, let w1 = 1n and ν1 = p,
where p ∈ Rn is defined in Lemma 1.1.
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simple zero eigenvalue and all other eigenvalues have negative real parts. According
to Definition 3.1, we let μ1 = 0 and Re(μi) < 0, i = 2, . . . , n. According to
Lemma 1.1, we let w1 = 1n and ν1 = p without loss of generality. Because μ1 = 0
and μi �= 0, i = 2, . . . , n, it follows that −(L ⊗R) has exactly three zero eigenvalues
(i.e., λ1 = λ2 = λ3 = 0).

Note that −(L ⊗ R) can be written in the Jordan canonical form as MJM −1,
where the columns of M , denoted by mk, k = 1, . . . , 3n, can be chosen to be the
right eigenvectors or generalized right eigenvectors of −(L ⊗ R) associated with the
eigenvalue λk, the rows of M −1, denoted by pT

k , k = 1, . . . , 3n, can be chosen to be
the left eigenvectors or generalized left eigenvectors of −(L ⊗ R) associated with
the eigenvalue λk such that pT

k mk = 1 and pT
k m� = 0, k �= �, and J is the Jordan

block diagonal matrix with λk being the diagonal entries. Noting that λk = 0,
k = 1, 2, 3, we can choose mk = 1n ⊗ ςk and pk = p ⊗ �k

�T
k ςk

, k = 1, 2, 3. Note

that e−(L ⊗R)t = MeJtM −1. Also note that limt→∞ eJ�t = 0q×q when J� ∈ R
q×q

is a Jordan block corresponding to an eigenvalue with a negative real part.
For the first statement of the theorem, note that μ1 = 0 and Re(μi) < 0,

i = 2, . . . , n. Also note from Definition 3.1 that arg(μi) ∈ [arg(μ2), arg(μn)] ⊂
(π

2 , 3π
2 ), i = 2, . . . , n. Noting that all complex eigenvalues of −L are in conju-

gate pairs, it follows that arg(μ2) = 2π − arg(μn). If |θ| < θc
s, then all arg(μi),

arg(μieιθ), and arg(μie−ιθ) are within (π
2 , 3π

2 ), i = 2, . . . , n, which implies that
Re(λ�) < 0, � = 4, . . . , 3n. Noting that λk = 0, k = 1, 2, 3, it follows that
limt→∞ r(t) = limt→∞ e−(L ⊗R)tr(0) = (

∑3
k=1 mkpT

k )r(0) = (1npT ⊗ I3)r(0).
It thus follows that xi(t) → pT x(0), yi(t) → pT y(0), and zi(t) → pT z(0) as
t → ∞. That is, all agents will eventually rendezvous at [pT x(0),pT y(0),pT z(0)].

For the second statement of the theorem, if θ = θc
s (respectively, θ = −θc

s),
then μn rotated by an angle θ (respectively, −θ) will locate on the imaginary axis,
that is, λ3n−1 = μneιθ = −|μn|ι (respectively, λ3n = μne−ιθ = −|μn|ι), while
μ2 = μn rotated by an angle −θ (respectively, θ) will also locate on the imag-
inary axis, that is, λ6 = μ2e

−ιθ = |μn|ι (respectively, λ5 = μ2e
ιθ = |μn|ι).

Because arg(μn) is the unique maximum phase of μi, λ3n−1 (respectively, λ3n)
and λ6 (respectively, λ5) are the only two nonzero eigenvalues of −(L ⊗ R) on
the imaginary axis and all other nonzero eigenvalues have negative real parts. In
the following, we focus on θ = θc

s since the analysis for θ = −θc
s is similar ex-

cept that the agents will move in reverse directions. Note that λk = 0, k = 1, 2, 3,
and Re(λ�) < 0 for all � �= 1, 2, 3, 3n − 1, 6. Noting that λ3n−1 = −|μn|ι and
λ6 = |μn|ι, we can choose m3n−1 = wn ⊗ ς2, p3n−1 = νn

νT
n wn

⊗ �2
�T

2 ς2
, m6 =

m3n−1, and p6 = p3n−1. Note that r(t) = e−(L ⊗R)tr(0). It follows that ‖r(t) −
(
∑3

k=1 mkpT
k +e−ι|μn |tm3n−1p

T
3n−1 +eι|μn |tm6p

T
6 )r(0)‖ → 0 as t → ∞. Define

c(t)
�
= (e−ι|μn |tm3n−1p

T
3n−1 + eι|μn |tm6p

T
6 )r(0). Let ck(t) be the kth component

of c(t), k = 1, . . . , 3n. It follows that c3(i−1)+�(t) = 2Re(e−ι|μn |twn(i)ς2(�)p
T
3n−1

r(0)), where i = 1, . . . , n, � = 1, 2, 3, and ς2(�) denotes the �th component of ς2.
After some manipulation, it follows that c3(i−1)+�(t) = 2|ς2(�)wn(i)p

T
3n−1r(0)| ×

cos{|μn|t − arg[wn(i)p
T
3n−1r(0)] − arg[ς2(�)]}, i = 1, . . . , n, � = 1, 2, 3.

Therefore, it follows that ‖xi(t) − [pT x(0) + c3i−2(t)]‖ → 0, ‖yi(t) − [pT y(0) +
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c3i−1(t)]‖ → 0, and ‖zi(t) − [pT z(0) + c3i(t)]‖ → 0 as t → ∞. After some ma-
nipulation, it can be verified that ‖[c3i−2(t), c3i−1(t), c3i(t)]T ‖ = 2|wn(i)p

T
3n−1 ×

r(0)|
√

a2
2 + a2

3 sin2( θ
2 ), which is a constant. It thus follows that all agents will even-

tually move on circular orbits with the center [pT x(0),pT y(0),pT z(0)] and the
period 2π

|μn | . The radius of the orbit for agent i is given by 2|wn(i)p
T
3n−1r(0)| ×√

a2
2 + a2

3 sin2( θ
2 ). Note that the relative radius of the orbits is equal to the relative

magnitude of wn(i). In addition, it is straightforward to see that the relative phase of
the agents on their orbits is equal to the relative phase of wn(i)p

T
3n−1r(0), which is

equivalent to the relative phase of wn(i). Note from Lemma 1.20 that the Euler axis a
is orthogonal to both Re(ς2) and Im(ς2), where Re(·) and Im(·) are applied compo-
nentwise. It can thus be verified that a is orthogonal to [c3i−2(t), c3i−1(t), c3i(t)]T ,
which implies that the circular orbits are on a plane normal to a.

For the third statement of the theorem, if arg(μn) is the unique maximum phase
of μi and θc

s < θ < 3π
2 − arg(μn−1) (respectively, arg(μn−1) − 3π

2 < θ <
−θc

s), then μn rotated by an angle θ (respectively, −θ) will have a positive real
part, that is, λ3n−1 = μneιθ = |μn|eι(arg(μn)+θ) (respectively, λ3n = μne−ιθ =
|μn|eι[arg(μn)−θ]), while μ2 = μn rotated by an angle −θ (respectively, θ) will also
have a positive real part, that is, λ6 = μ2e

−ιθ = |μn|e−ι(arg(μn)+θ) (respectively,
λ5 = μ2e

ιθ = |μn|e−ι[arg(μn)−θ]). In addition, λ3n−1 (respectively, λ3n) and λ6

(respectively, λ5) are the only two eigenvalues of −(L ⊗ R) with positive real parts
and all other nonzero eigenvalues have negative real parts. In the following, we focus
on θc

s < θ < 3π
2 − arg(μn−1) since the analysis for arg(μn−1) − 3π

2 < θ < −θc
s

is similar except that all agents will move in reverse directions. Note that λk = 0,
k = 1, 2, 3, Re(λ3n−1) > 0, Re(λ6) > 0, and Re(λk) < 0 otherwise. Similar to

the proof of the second statement, define c(t)
�
= {e|μn |eι(arg(μn)+θ)tm3n−1p

T
3n−1 +

e|μn |e−ι[arg(μn)+θ]tm6p
T
6 }r(0). Let ck(t), k = 1, . . . , 3n, be the kth component of

c(t). Also let 	i = |wn(i)p
T
3n−1r(0)| and ϕi = arg[wn(i)p

T
3n−1r(0)]. It follows

that ‖xi(t) − [pT x(0) + c3i−2(t)]‖ → 0, ‖yi(t) − [pT y(0) + c3i−1(t)]‖ → 0, and
‖zi(t) − [pT z(0) + c3i(t)]‖ → 0 as t → ∞, where

c3(i−1)+�(t) = 2|ς2(�)|	ie
{ |μn | cos[arg(μn)+θ]}t

× cos
({

|μn| sin[arg(μn) + θ]
}
t + ϕi + arg[ς2(�)]

)
,

i = 1, . . . , n, � = 1, 2, 3. Similar to the argument for the second statement, it can be
verified that

∥∥[c3i−2(t), c3i−1(t), c3i(t)
]T∥∥ = 2	ie

{ |μn | cos[arg(μn)+θ]}t
√

a2
2 + a2

3 sin2

(
θ

2

)
,

which is growing with time. It thus follows that all agents will eventually move
along logarithmic spiral curves. The statement then follows directly.

Corollary 3.1. Suppose that the directed graph G has a directed spanning tree. Let

the control algorithm for (3.1) be given by (3.2), where ri
�
= [xi, yi]T and C is the

2 × 2 rotation matrix given by R(θ)
�
=

[ cos(θ) sin(θ)
− sin(θ) cos(θ)

]
.
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1. If |θ| < θc
s, where θc

s
�
= 3π

2 − arg(μn), the agents will eventually rendezvous at
the position [pT x(0),pT y(0)], where x and y are, respectively, the column stack
vectors of xi and yi, and p ∈ R

n is defined in Lemma 1.1.
2. If |θ| = θc

s and arg(μn) is the unique maximum phase of μi, all agents will
eventually move on circular orbits with the center [pT x(0),pT y(0)] and the

period 2π
|μn | . The radius of the orbit for agent i is given by 2|wn(i)(

νT
n

νT
n wn

⊗
[ 12 , − 1

2ι])r(0)|. The relative radius of the orbits is equal to the relative magni-
tude of wn(i). The relative phase of the agents on their orbits is equal to the
relative phase of wn(i).

3. If arg(μn) is the unique maximum phase of μi and θc
s < |θ| < 3π

2 − arg(μn−1),
all agents will eventually move along logarithmic spiral curves with the center
[pT x,pT y], the growing rate |μn| cos[arg(μn) + |θ|], and the period

2π
|μn sin[arg(μn)+|θ|]| . The radius of the logarithmic spiral curve for agent i is given

by

2
∣∣∣∣wn(i)

(
νT

n

νT
n wn

⊗
[
1
2
, − 1

2
ι

])
r(0)

∣∣∣∣e
{ |μn | cos[arg(μn)+|θ|]}t.

The relative radius of the logarithmic spiral curves is equal to the relative mag-
nitude of wn(i). The relative phase of the agents on their curves is equal to the
relative phase of wn(i).

Proof: The eigenvalues of R(θ) are given by eιθ and e−ιθ, with the associated
right eigenvectors [1, ι]T and [1, −ι]T and left eigenvectors [1, −ι]T and [1, ι]T ,
respectively. The rest of the proof follows from that of Theorem 3.2.

Corollary 3.2. Suppose that the directed graph G is a unidirectional ring (i.e., a
cyclic pursuit graph). Also suppose that aij = 1 if (j, i) ∈ E and aij = 0 otherwise.
Let the control algorithm for (3.1) be given by (3.2), where ri and C are given as in
Corollary 3.1.

1. If |θ| < π
n , the agents will eventually rendezvous at the position [pT x(0),pT y(0)],

where x, y, and p are defined in Corollary 3.1.
2. If |θ| = π

n , all agents will eventually move on the same circular orbit with

the center [pT x(0),pT y(0)], the period π
sin( π

n ) , and the radius 2|wn(i)(
νT

n

νT
n wn

⊗
[ 12 , − 1

2ι])r(0)|.3 In addition, all agents will eventually be evenly distributed on
the orbit.

3. If π
n < |θ| < 2π

n , all agents will eventually move along logarithmic spiral
curves with the center [pT x(0),pT y(0)], the growing rate 2 sin(π

n ) sin(|θ| − π
n ),

the period π
sin(π/n) cos(|θ|−π/n) , and the radius 2|wn(i)(

νT
n

νT
n wn

⊗ [ 12 , − 1
2ι])r(0)| ×

e2[sin( π
n ) sin(|θ|− π

n )]t. In addition, the phases of all agents will eventually be evenly
distributed.

Proof: Note that if G is a unidirectional ring and aij = 1 if (j, i) ∈ E and aij = 0
otherwise, then L is a circulant matrix. Also note that a circulant matrix can be

3 In this case, all wn(i), i = 1, . . . , n, have the same magnitude.
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Fig. 3.1 Interaction graph for four agents. An arrow from j to i denotes that agent j is a neighbor
of agent i

diagonalized by a Fourier matrix. The proof then follows Corollary 3.1 directly by
use of the properties of the eigenvalues of a circulant matrix and the properties of
the Fourier matrix.

Remark 3.3 Note that when G is a unidirectional ring (i.e., a cyclic pursuit graph)
but different positive weights are chosen for aij , where (j, i) ∈ E , all agents will
move on orbits with different radii and their phases will not be evenly distributed.

Example 3.1. To illustrate, consider four agents with the directed graph G shown by
Fig. 3.1. Let L associated with G be given by

⎡

⎢⎢⎣

1.5 0 −1.1 −0.4
−1.2 1.2 0 0
−0.1 −0.5 0.6 0

−1 0 0 1

⎤

⎥⎥⎦ . (3.4)

It can be computed that θc
s = 3π

2 − arg(μ4) = 1.2975 rad, where μ4 = −1.6737 −
0.4691ι and arg(μ4) ∈ (π, 3π

2 ). Let R be the rotation matrix corresponding to the
Euler axis a = 1

14 [1, 2, 3]T and the Euler angle θ = θc
s. Figures 3.2, 3.3, and 3.4

show, respectively, the eigenvalues of −L and −(L ⊗ R) when θ = θc
s − 0.1,

θ = θc
s, and θ = θc

s + 0.1. Note that the eigenvalues of −(L ⊗ R) correspond to the
eigenvalues of −L rotated by angles 0, θ, and −θ. Note that in Fig. 3.2, all nonzero
eigenvalues of −(L ⊗ R) are in the open left half plane. In Fig. 3.3, the eigenvalues
of −(L ⊗ R) corresponding to μ4 rotated by an angle θ and μ2 = μ4 rotated by
an angle −θ are located on the imaginary axis while all other nonzero eigenvalues
are located in the open left half plane. In Fig. 3.4, the eigenvalues of −(L ⊗ R)
corresponding to μ4 rotated by an angle θ and μ2 = μ4 rotated by an angle −θ are
located in the open right half plane while all other nonzero eigenvalues are located
in the open left half plane.

3.1.2 Double-integrator Dynamics

Consider n agents with double-integrator dynamics given by

ṙi = vi, v̇i = ui, i = 1, . . . , n, (3.5)
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Fig. 3.2 Eigenvalues of − L and −(L ⊗ R) with θ = θc
s − 0.1. Circles denote the eigenvalues of

− L while x-marks denote the eigenvalues of −(L ⊗ R). The eigenvalues of −(L ⊗ R) correspond
to the eigenvalues of − L rotated by angles 0, θ, and −θ, respectively. In particular, the eigenvalues
obtained by rotating μ4 by angles 0, θ, and −θ are shown by, respectively, the solid line, the dashed
line, and the dashdot line. Because θ < θc

s, all nonzero eigenvalues of −(L ⊗ R) are in the open
left half plane

Fig. 3.3 Eigenvalues of − L and −(L ⊗ R) with θ = θc
s. Circles denote the eigenvalues of − L

while x-marks denote the eigenvalues of −(L ⊗ R). The eigenvalues of −(L ⊗ R) correspond to
the eigenvalues of − L rotated by angles 0, θ, and −θ, respectively. In particular, the eigenvalues
obtained by rotating μ4 by angles 0, θ, and −θ are shown by, respectively, the solid line, the
dashed line, and the dashdot line. Because θ = θc

s, two nonzero eigenvalues of −(L ⊗ R) are on
the imaginary axis
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Fig. 3.4 Eigenvalues of − L and −(L ⊗ R) with θ = θc
s + 0.1. Circles denote the eigenvalues of

− L while x-marks denote the eigenvalues of −(L ⊗ R). The eigenvalues of −(L ⊗ R) correspond
to the eigenvalues of − L rotated by angles 0, θ, and −θ, respectively. In particular, the eigenvalues
obtained by rotating μ4 by angles 0, θ, and −θ are shown by, respectively, the solid line, the dashed
line, and the dashdot line. Because θ > θc

s, two nonzero eigenvalues of −(L ⊗ R) are in the open
right half plane

where ri ∈ R
m and vi ∈ R

m are, respectively, the position and velocity of the ith
agent, and ui ∈ R

m is the control input. We introduce a distributed algorithm with
Cartesian coordinate coupling for (3.5) as

ui = −
n∑

j=1

aijC(ri − rj) − αvi, i = 1, . . . , n, (3.6)

where aij is defined as in (3.2), C ∈ R
m×m denotes a Cartesian coordinate coupling

matrix, and α is a positive constant. In this section, we focus on the case where C
is a rotation matrix while a similar analysis can be extended to the case where C is
a general matrix.

Remark 3.4 Note that the existing consensus algorithm for (3.5) (see, e.g., [248,
Chap. 4]) corresponds to the case where C = Im. That is, using the existing con-
sensus algorithm for (3.5), the components of ri (i.e., the Cartesian coordinates of
agent i) are decoupled while using (3.6) the components of ri are coupled.

Before moving on, we need the following lemma.

Lemma 3.1. Let ξi be the ith eigenvalue of A ∈ R
n×n with, respectively, an

associated right eigenvector qi and an associated left eigenvector si. Also let

B
�
=

[ 0n×n In

A −αIn

]
, where α is a positive scalar. Then the eigenvalues of B are
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given by ζ2i−1 = −α+
√

α2+4ξi

2 with, respectively, the associated right and left

eigenvectors
[ qi

ζ2i−1qi

]
and

[
(ζ2i−1+α)si

si

]
and ζ2i = −α−

√
α2+4ξi

2 , with, respec-
tively, the associated right and left eigenvectors given by

[ qi

ζ2iqi

]
and

[
(ζ2i+α)si

si

]
.

When Re(ξi) < 0, Re(ζ2i−1) < 0 and Re(ζ2i) < 0 if and only if α > |Im(ξi)|√
Re(−ξi)

.

Proof: For the first statement, suppose that ζ is an eigenvalue of B with an associ-
ated right eigenvector

[
f
g

]
, where f, g ∈ C

n. It follows that
[ 0n×n In

A −αIn

][
f
g

]
=

ζ
[

f
g

]
, which implies g = ζf and Af − αg = ζg. It thus follows that Af =

(ζ2 + αζ)f . Noting that Aqi = ξiqi, we let f = qi and ζ2 + αζ = ξi. That
is, each eigenvalue of A, ξi, corresponds to two eigenvalues of B, denoted by

ζ2i−1,2i = −α±
√

α2+4ξi

2 . Because g = ζf , it follows that the right eigenvectors
associated with ζ2i−1 and ζ2i are, respectively,

[ qi

ζ2i−1qi

]
and

[ qi

ζ2iqi

]
. A similar

analysis can be used to find the left eigenvectors of B associated with ζ2i−1 and ζ2i.
For the second statement, note that

√
α2 + 4ξi has a nonnegative real part. Be-

cause ζ2i = −α−
√

α2+4ξi

2 , it follows that Re(ζ2i) < 0 if α > 0. It is left to show the
conditions under which Re(ζ2i−1) < 0. Suppose that α∗

i is the critical value for α
such that ζ2i−1 is on the imaginary axis. Let ζ2i−1 = ηiι, where ηi ∈ R. After some
manipulation, it follows that α∗

i = |Im(ξi)|√
Re(−ξi)

. Note that Re(ξi) < 0. It is straight-

forward to verify that if α > α∗
i (respectively, α < α∗

i ), then ζ2i−1 has a negative
(respectively, positive) real part. Therefore, when Re(ξi) < 0, Re(ζ2i−1) < 0 and
Re(ζ2i) < 0 if and only if α > |Im(ξi)|√

Re(−ξi)
.

Theorem 3.5. Suppose that the directed graph G has a directed spanning tree. Let

the control algorithm for (3.5) be given by (3.6), where ri
�
= [xi, yi, zi]T and vi

�
=

[vxi, vyi, vzi]T . Let μi, wi, νi, and arg(μi) be defined in Definition 3.1, p ∈ R
n be

defined in Lemma 1.1, and a
�
= [a1, a2, a3]T , ςk, and �k be defined in Lemma 1.20.

1. Suppose that C = I3. Then all agents will eventually rendezvous if and only if

α > αc, where αc �
= maxμi �=0

|Im(μi)|√
Re(−μi)

. The rendezvous position is given by

{
pT

[
x(0) +

vx(0)
α

]
,pT

[
y(0) +

vy(0)
α

]
,pT

[
z(0) +

vz(0)
α

]}
, (3.7)

where x, y, z, vx, vy , and vz are, respectively, column stack vectors of xi, yi, zi,
vxi, vyi, and vzi.

2. Suppose that C = R, where R is the 3 × 3 rotation matrix defined in Lemma 1.20,
and α > αc. Given |μi|, i = 2, . . . , n, let ψl

i ∈ (π
2 , π) (respectively, ψu

i ∈
(π, 3π

2 )) be the solution to |μi| sin2(ψi) + α2 cos(ψi) = 0 if arg(μi) ∈ (π
2 , π]

(respectively, arg(μi) ∈ [π, 3π
2 )). If |θ| < θc

d, where θc
d

�
= minarg(μi)∈[π, 3π

2 )[ψu
i −

arg(μi)], then all agents will eventually rendezvous at the position given by (3.7).
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3. Under the assumption of part 2, if |θ| = θc
d and there exists a unique arg(μκ) ∈

[π, 3π
2 ) such that ψu

κ − arg(μκ) = θc
d, then all agents will eventually move on cir-

cular orbits with the center given by (3.7) and the period πα
|μκ sin(ψu

κ)| . The radius

of the orbit for agent i is given by 2|wκ(i)p
T
c [r(0)T , v(0)T ]T |

√
a2
2 + a2

3 sin2( θ
2 ),

where wκ(i) is the ith component of wκ and

pc
�
=

1
(2σc + α)νT

κ wκ�T
2 ς2

[
(σc + α)(νκ ⊗ �2)

νκ ⊗ �2

]
,

where σc
�
= ι

2|μκ | sin(ψu
κ)

α . The relative radius of the orbits is equal to the relative
magnitude of wκ(i). The relative phase of the agents on their orbits is equal to
the relative phase of wκ(i). The circular orbits are on a plane normal to the Euler
axis a.

4. Under the assumption of part 2, if there exists a unique arg(μκ) ∈ [π, 3π
2 ) such

that ψu
κ − arg(μκ) = θc

d and θc
d < |θ| < minarg(μi)∈[π, 3π

2 ), i �=κ[ψu
i − arg(μi)],

then all agents will eventually move along logarithmic spiral curves with the

center given by (3.7), the growing rate Re(σs), where σs
�
= −α+

√
α2+4λs

2 with

λs
�
= μκeι|θ|, and the period 2π

|Im(σs)| . The radius of the logarithmic spiral curve
for agent i is

2|wκ(i)p
T
s [r(0)T , v(0)T ]T eRe(σs)t

√
a2
2 + a2

3 sin2

(
θ

2

)
,

where ps
�
= 1

(2σs+α)νT
κ wκ�T

2 ς2

[
(σs+α)(νκ ⊗�2)

νκ ⊗�2

]
. The relative radius of the log-

arithmic spiral curves is equal to the relative magnitude of wκ(i). The relative
phase of the agents on their curves is equal to the relative phase of wκ(i). The
curves are on a plane normal to the Euler axis a.

Proof: For the first statement, if C = I3, then (3.5) using (3.6) can be written in a
vector form as

[
ṙ
v̇

]
=

⎛

⎜⎜⎜⎝

[
0n×n In

−L −αIn

]

︸ ︷︷ ︸
Ψ

⊗I3

⎞

⎟⎟⎟⎠

[
r
v

]
, (3.8)

where r
�
= [rT

1 , . . . , rT
n ]T and v

�
= [vT

1 , . . . , vT
n ]T . Note from Lemma 3.1 that

each eigenvalue μi of −L corresponds to two eigenvalues of Ψ given by ζ2i−1 =
−α+

√
α2+4μi

2 with the associated right and left eigenvectors given by, respec-

tively,
[ wi

ζ2i−1wi

]
and

[
(ζ2i−1+α)νi

νi

]
and ζ2i = −α−

√
α2+4μi

2 , with the associated
right and left eigenvectors given by, respectively,

[ wi

ζ2iwi

]
and

[
(ζ2i+α)νi

νi

]
where

i = 1, . . . , n. Because the directed graph G has a directed spanning tree, it follows
from Lemma 1.1 that −L has a simple zero eigenvalue and all other eigenvalues
have negative real parts. According to Definition 3.1, we let μ1 = 0 and Re(μi) < 0,
i = 2, . . . , n. According to Lemma 1.1, we let w1 = 1n and ν1 = p without loss of
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generality. It thus follows that ζ1 = 04 with the associated right and left eigenvectors
given by, respectively,

[
1n
0n

]
and

[ αp
p

]
and ζ2 = −α.

We first show that the agents will eventually rendezvous at the position given
by (3.7) if and only if Ψ defined in (3.8) has a simple zero eigenvalue and all other
eigenvalues have negative real parts. For the sufficiency part, similar to the proof of
Theorem 3.2, we write Ψ in the Jordan canonical form as Ψ = MJM −1, where
the columns of M , denoted by mk, k = 1, . . . , 2n, can be chosen to be the right
eigenvectors or generalized right eigenvectors of Ψ associated with the eigenvalue
ζk, the rows of M −1, denoted by pT

k , k = 1, . . . , 2n, can be chosen to be the left
eigenvectors or the generalized left eigenvectors of Ψ associated with eigenvalue ζk

such that pT
k mk = 1 and pT

k m� = 0, k �= �, and J is the Jordan block diagonal
matrix with ζk being the diagonal entries. Noting that ζ1 = 0, we choose m1 =[
1n
0n

]
and p1 =

[ p
1
α p

]
. Note that eΨt = MeJtM −1. Also note that limt→∞ eJ�t =

0q� ×q�
when J� ∈ R

q� ×q� is a Jordan block corresponding to an eigenvalue with a
negative real part. If Ψ has a simple zero eigenvalue and all other eigenvalues have
negative real parts, then limt→∞ eΨt = M(limt→∞ eJt)M −1 =

[
1n
0n

][
pT 1

α pT
]
.

It thus follows that

lim
t→∞

[
r(t)
v(t)

]
= lim

t→∞
(eΨt ⊗ I3)

[
r(0)
v(0)

]
=

[([
1n

0n

] [
pT 1

αpT
])

⊗ I3

] [
r(0)
v(0)

]
,

which implies that xi(t) → pT x(0) + 1
αpT vx(0), yi(t) → pT y(0) + 1

αpT vy(0),
zi(t) → pT z(0) + 1

αpT vz(0), vxi(t) → 0, vyi(t) → 0, and vzi(t) → 0 as t → ∞.
Equivalently, it follows that all agents will eventually rendezvous at the position
given by (3.7). For the necessity part, if the agents eventually rendezvous at the
position given by (3.7), we know that limt→∞ eΨt = M(limt→∞ eJt)M −1 has a
rank one, which implies that limt→∞ eJt has a rank one. Therefore, if the sufficient
condition does not hold, it is easy to see that limt→∞ eJt has a rank larger than one,
which results in a contradiction.

We next show that Ψ has a simple zero eigenvalue and all other eigenvalues
have negative real parts if and only if α > αc. Note that ζ2 < 0 if α > 0 be-
cause ζ2 = −α. Because Re(μi) < 0, i = 2, . . . , n, it follows from Lemma 3.1
that ζ2i−1 and ζ2i, i = 2, . . . , n, have negative real parts if and only if α >

|Im(μi)|√
Re(−μi)

, i = 2, . . . , n. Combining the above arguments shows that Ψ has a sim-

ple zero eigenvalue and all other eigenvalues have negative real parts if and only if
α > αc.

For the second statement, using (3.6), (3.5) can be written in a vector form as

[
ṙ
v̇

]
=

[
03n×3n I3n

−(L ⊗ R) −αI3n

]

︸ ︷︷ ︸
Σ

[
r
v

]
. (3.9)

4 Therefore, Ψ has at least one zero eigenvalue.
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As in the proof of Theorem 3.2, let λ3i−2 = μi, λ3i−1 = μie
ιθ, and λ3i = μie

−ιθ,
i = 1, . . . , n, be the eigenvalues of −(L ⊗ R). Note from Lemma 3.1 that each
λk corresponds to two eigenvalues of Σ, defined in (3.9), given by σ2k−1,2k =

−α±
√

α2+4λk

2 , k = 1, . . . , 3n. Because μ1 = 0, it follows that λ1 = λ2 = λ3 =
0, which in turn implies that σ1 = σ3 = σ5 = 0 and σ2 = σ4 = σ6 = −α.
Because all

√
α2 + 4λk have nonnegative real parts, it follows that all σ2k, k =

1, . . . , 3n, have negative real parts if α > 0. Given α > 0 and χi = |μi|eιarg(χi),
i = 2, . . . , n, ψl

i and ψu
i are the critical values for arg(χi) ∈ [0, 2π) such that

−α+
√

α2+4χi

2 is on the imaginary axis. In particular, if arg(χi) = ψl
i (respectively,

ψu
i ), then

−α+
√

α2+4χi

2 = ι
2|μi | sin(arg(ψl

i)
α (respectively, ι

2|μi | sin(arg(ψu
i )

α ), i =
2, . . . , n. If arg(χi) ∈ (ψl

i, ψ
u
i ) (respectively, arg(χi) ∈ [0, ψl

i) ∪ (ψu
i , 2π)), then

−α+
√

α2+4χi

2 has negative (respectively, positive) real parts. Because α > αc, the

first statement implies that all
−α+

√
α2+4μi

2 , i = 2, . . . , n, have negative real parts,
which in turn implies that arg(μi) ∈ (ψl

i, ψ
u
i ), i = 2, . . . , n. If |θ| < θc

d, then
arg(λ3i−2), arg(λ3i−1), and arg(λ3i) are all within (ψl

i, ψ
u
i ), which implies that

σ6i−5, σ6i−3, and σ6i−1, i = 2, . . . , n, all have negative real parts. Therefore, if
|θ| < θc

d, then Σ has exactly three zero eigenvalues and all other eigenvalues have
negative real parts.

Similar to the proof of Theorem 3.2, we write Σ in the Jordan canonical form
as MJM −1, where the columns of M , denoted by mk, k = 1, . . . , 6n, can be
chosen to be the right eigenvectors or generalized right eigenvectors of Σ asso-
ciated with the eigenvalue σk, the rows of M −1, denoted by pT

k , k = 1, . . . , 6n,
can be chosen to be the left eigenvectors or generalized left eigenvectors of Σ as-
sociated with the eigenvalue σk such that pT

k mk = 1 and pT
k m� = 0, k �= �,

and J is the Jordan block diagonal matrix with σk being the diagonal entries. As
in the proof of Theorem 3.2, the right and left eigenvectors of −(L ⊗ R) asso-
ciated with the eigenvalue λ� = 0 are, respectively, 1n ⊗ ς� and p ⊗ ��, where
� = 1, 2, 3. It in turn follows from Lemma 3.1 that the right and left eigenvec-
tors of Σ associated with σ2�−1 = 0 are, respectively,

[
1n ⊗ς�
03n

]
and

[ αp⊗��
p⊗��

]
,

where � = 1, 2, 3. We can choose m2�−1 =
[
1n ⊗ς�
03n

]
and p2�−1 =

[ p⊗ ��
�T

�
ς�

p⊗ ��
α�T

�
ς�

]
,

where � = 1, 2, 3. Note that pT
2�−1m2�−1 = 1 and pT

2�−1m2k−1 = 0, where
k, � = 1, 2, 3 and k �= �. Noting that σ2�−1 = 0, � = 1, 2, 3, it follows
that limt→∞

[ r(t)
v(t)

]
= (limt→∞ MeJtM −1)

[ r(0)
v(0)

]
= (

∑3
�=1 m2�−1p

T
2�−1)

[ r(0)
v(0)

]
,

which implies that xi(t) → pT x(0) + 1
αpT vx(0), yi(t) → pT y(0) + 1

αpT vy(0),
zi(t) → pT z(0) + 1

αpT vz(0), vxi(t) → 0, vyi(t) → 0, and vzi(t) → 0 as t → ∞.
Equivalently, it follows that all agents will eventually rendezvous at the position
given by (3.7).

For the third statement, if θ = θc
d (respectively, θ = −θc

d) and there exists a
unique arg(μκ) ∈ [π, 3π

2 ) such that ψu
κ − arg(μκ) = θc

d, then λ3κ−1 = μκeιθ =
|μκ|eιψu

κ (respectively, λ3κ = μκe−ιθ = |μκ|eιψu
κ ), which implies that σ6κ−3 =

−α+
√

α2+4λ3κ−1

2 = ι
2|μκ | sin(ψu

κ)
α (respectively, σ6κ−1 = −α+

√
α2+4λ3κ

2 =
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ι
2|μκ | sin(ψu

κ)
α ). Noting that the complex eigenvalues of Σ are in conjugate pairs,

it follows that Σ has an eigenvalue equal to σ6κ−3 = −ι
2|μκ | sin(ψu

κ)
α (respectively,

σ6κ−1 = −ι
2|μκ | sin(ψu

κ)
α ), denoted by σ∗ for simplicity. In this case, Σ has exactly

three zero eigenvalues, two nonzero eigenvalues are on the imaginary axis, and all
other eigenvalues have negative real parts. In the following, we focus on θ = θc

d be-
cause the analysis for θ = −θc

d is similar except that all agents will move in reverse
directions. Note from Lemma 3.1 that the right and left eigenvectors associated with
σ6κ−3 are, respectively,

[ wκ ⊗ς2
σ6κ−3(wκ ⊗ς2)

]
and

[
(σ6κ−3+α)(νκ ⊗�2)

νκ ⊗�2

]
. We can choose

m6κ−3 =
[ wκ ⊗ς2

σ6κ−3(wκ ⊗ς2)

]
and p6κ−3 = 1

(2σ6κ−3+α)νT
κ wκ�T

2 ς2

[
(σ6κ−3+α)(νκ ⊗�2)

νκ ⊗�2

]
.

Note that pT
6κ−3m6κ−3 = 1. Similarly, it follows that m∗ and p∗ correspond to

σ∗ are given by m∗ = m6κ−3 and p∗ = p6κ−3. Therefore, by following a sim-
ilar proof to that of the second statement of Theorem 3.2, we can show that all
agents will eventually move on circular orbits with the center given by (3.7) and
the period πα

|μκ sin(ψu
κ)| . The radius of the orbit for agent i is given by 2|wκ(i)p

T
6κ−3 ×

[rT (0), vT (0)]T |
√

a2
2 + a2

3 sin2( θ
2 ). The relative radius of the orbits is equal to the

relative magnitude of wκ(i). In addition, the relative phase of the agents is equal to
the relative phase of wκ(i). By following a similar proof to that of the second state-
ment of Theorem 3.2, it follows that the circular orbits are on a plane normal to the
Euler axis a.

For the fourth statement, if there exists a unique arg(μκ) ∈ [π, 3π
2 ) such that

ψu
κ − arg(μκ) = θc

d and θc
d < θ < minarg(μi)∈[π, 3π

2 ),i �=κ[ψu
i − arg(μi)] (respec-

tively, − minarg(μi)∈[π, 3π
2 ),i �=κ[ψu

i − arg(μi)] < θ < −θc
d), then λ3κ−1 = μκeιθ

= |μκ|eι[arg(μκ)+θ] (respectively, λ3κ = μκe−ιθ = |μκ|eι[arg(μκ)−θ]), where
arg(μκ) + θ > ψu

κ (respectively, arg(μκ) − θ > ψu
κ), which implies that σ6κ−3 =

−α+
√

α2+4λ3κ−1

2 (respectively, σ6κ−1 = −α+
√

α2+4λ3κ

2 ) has a positive real part.
A similar argument as above shows that Σ has exactly three zero eigenvalues and
two eigenvalues with positive real parts and all other eigenvalues have negative real
parts. By following a similar procedure to the proof of the third statement of Theo-
rem 3.2, we can show that all agents will eventually move along logarithmic spiral
curves with the center given by (3.7), the growing rate Re(σ6κ−3), and the period

2π
|Im(σ6κ−3)| .

Remark 3.6 Unlike the single-integrator case, the critical value θc
d for double-

integrator dynamics depends on both α and L. Note that θc
d < θc

s. When α increases
to infinity, θc

d approaches θc
s. Note that besides the interaction graph and the Euler

angle, α plays an important role in (3.6).

Example 3.2. To illustrate, we consider the same G and L as in Example 3.1. It can
be computed that θc

d = 0.3557 rad. Note that θc
d is smaller than θc

s in Example 3.1.
Let R be the rotation matrix corresponding to the Euler axis a = 1

14 [1, 2, 3]T and the
Euler angle θ = θc

d. Figure 3.5 shows the eigenvalues of −L and −(L ⊗R). Note that
the eigenvalues of −(L ⊗ R) correspond to the eigenvalues of −L rotated by angles
0, θ, and −θ. Figure 3.6 shows the eigenvalues of Σ. Note that each eigenvalue of
−(L ⊗ R), λk, correspond to two eigenvalues of Σ, σ2k−1,2k, where σ2k−1,2k =
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Fig. 3.5 Eigenvalues of − L and −(L ⊗ R) with θ = θc
d. Circles denote the eigenvalues of − L

while x-marks denote the eigenvalues of −(L ⊗ R). The eigenvalues of −(L ⊗ R) correspond to
the eigenvalues of − L rotated by angles 0, θ, and −θ, respectively. In particular, the eigenvalues
obtained by rotating μ4 by angles 0, θ, and −θ are shown by, respectively, the solid line, the dashed
line, and the dashdot line

Fig. 3.6 Eigenvalues of Σ. Squares denote the eigenvalues computed by σ2k−1 =
−α+

√
α2+4λk
2

while diamonds denote the eigenvalues computed by σ2k =
−α−

√
α2+4λk
2

, k = 1, . . . , 12. In
particular, the eigenvalues of Σ correspond to λ10 = μ4, λ11 = μ4eιθ , and λ12 = μ4e−ιθ are
shown by, respectively, the solid line, the dashed line, and the dashdot line. Because θ = θc

d, two
nonzero eigenvalues of Σ are on the imaginary axis
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−α±
√

α2+4λk

2 , k = 1, . . . , 12. Because θ = θc
d, two nonzero eigenvalues of Σ are

located on the imaginary axis as shown in Fig. 3.6.

3.1.3 Simulation

In this subsection, we study collective motions of four agents using, respectively,
(3.2) and (3.6). Suppose that the interaction graph is given by Fig. 3.1 and L is given
by (3.4). Let θc

s, θc
d, and a be given in Examples 3.1 and 3.2. Using (3.6), it can be

computed that αc = 0.3626. We let α = 0.8626. Note that there exists a unique
arg(μ4) ∈ [π, 3π

2 ) such that ψu
4 − arg(μ4) = θc

d (i.e., κ = 4 in Theorem 3.5).
Note that a right eigenvector of −L associated with the eigenvalue μ4 is w4 =
[−0.2847 − 0.2820ι, 0.7213, −0.2501 + 0.1355ι, 0.4809 + 0.0837ι]T . Also note
that p = [0.2502, 0.1911, 0.4587, 0.1001]T .

Figures 3.7, 3.8, and 3.9 show, respectively, the trajectories of the four agents
using (3.2) with θ = θc

s

2 , θ = θc
s, and θc

s + 0.1. Note that all agents eventually

rendezvous when θ = θc
s

2 , move on circular orbits when θ = θc
s, and move along

logarithmic spiral curves when θ = θc
s + 0.1. Also note that when θ = θc

s, the
relative radius of the circular orbits (respectively, the relative phase of the agents)
is equal to the relative magnitude (respectively, phase) of the components of w4. In
addition, the trajectories of all agents are normal to the Euler axis a in all cases.

Figures 3.10, 3.11, 3.12, and 3.13 show, respectively, the trajectories of the four
agents using (3.6) with R = I3, θ = θc

d − 0.2, θ = θc
d, and θ = θc

d + 0.2. Note
that all agents eventually rendezvous at the position given by (3.7) when R = I3 or

Fig. 3.7 Trajectories of the four agents using (3.2) with θ =
θc

s
2

. Circles denote the starting posi-
tions of the agents while the squares denote the snapshots of the agents at 10 s
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Fig. 3.8 Trajectories of the four agents using (3.2) with θ = θc
s. Circles denote the starting posi-

tions of the agents while the squares denote the snapshots of the agents at 30 s

Fig. 3.9 Trajectories of the four agents using (3.2) with θ = θc
s + 0.1. Circles denote the starting

positions of the agents while the squares denote the snapshots of the agents at 10 s

θ = θc
d − 0.2, move on circular orbits when θ = θc

d, and move along logarithmic
spiral curves when θ = θc

d + 0.2. While similar motions to those using (3.2) are
observed, the critical value for the Euler angle, the period of the circular motion,
and the period and the growing rate of the logarithmic spiral motion using (3.6) are
different from those using (3.2) even if the interaction graph and L are chosen to be
the same.
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Fig. 3.10 Trajectories of the four agents using (3.6) with R = I3. Circles denote the starting
positions of the agents while the squares denote the snapshots of the agents at 20 s

Fig. 3.11 Trajectories of the four agents using (3.6) with θ = θc
d − 0.2. Circles denote the starting

positions of the agents while the squares denote the snapshots of the agents at 30 s

3.2 Coupled Harmonic Oscillators

In this section, we study coupled second-order linear harmonic oscillators with lo-
cal interaction to achieve synchronized oscillatory motions. We will analyze con-
vergence conditions under, respectively, directed fixed and switching interaction
graphs.
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Fig. 3.12 Trajectories of the four agents using (3.6) with θ = θc
d. Circles denote the starting

positions of the agents while the squares denote the snapshots of the agents at 30 s

Fig. 3.13 Trajectories of the four agents using (3.6) with θ = θc
d + 0.2. Circles denote the starting

positions of the agents while the squares denote the snapshots of the agents at 10 s

3.2.1 Problem Statement

When two objects of mass m are connected by a damper with the coefficient b and
are each attached to fixed supports by identical springs with the spring constant k,
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they can be represented by

mẍ1 + kx1 + b(ẋ1 − ẋ2) = 0, (3.10a)

mẍ2 + kx2 + b(ẋ2 − ẋ1) = 0, (3.10b)

where xi ∈ R denotes the position of the ith object. Motivated by (3.10), we study
n coupled harmonic oscillators with local interaction of the form

ẍi + α(t)xi +
n∑

j=1

aij(t)(ẋi − ẋj) = 0, i = 1, . . . , n, (3.11)

where xi ∈ R is the position of the ith oscillator, α(t) is a positive gain at time t, and
aij(t) is the (i, j)th entry of the adjacency matrix A(t) associated with the directed

graph G(t)
�
= [V , E (t)] characterizing the interaction among the n oscillators at

time t (i.e., aij(t) > 0 if oscillator i can obtain the velocity of oscillator j at time
t and aij(t) = 0 otherwise). While (3.11) conceptually represents a system where
n virtual masses are connected by virtual dampers, the purpose of this section is
to adopt (3.11) as a distributed algorithm for synchronization of the positions and
velocities of n networked point-mass agents.

Let ri
�
= xi and vi

�
= ẋi. Equation (3.11) can be written as

ṙi = vi,

v̇i = −α(t)ri −
n∑

j=1

aij(t)(vi − vj), i = 1, . . . , n. (3.12)

Let r
�
= [r1, . . . , rn]T and v

�
= [v1, . . . , vn]T . Equation (3.12) can be written in a

vector form as [
ṙ
v̇

]
=

[
0n×n In

−α(t)In −L(t)

]

︸ ︷︷ ︸
Q

[
r
v

]
, (3.13)

where L(t) ∈ R
n×n is the nonsymmetric Laplacian matrix associated with A(t)

and hence G(t) at time t. In the following, we focus on the one-dimensional space
for simplicity of presentation. However, all results hereafter are still valid for any
high-dimensional space by use of the properties of the Kronecker product.

3.2.2 Convergence Under Directed Fixed Interaction

In this subsection, we consider convergence of (3.12) under a directed fixed interac-
tion graph. Here we assume that both α and L in (3.13) are constant. Both leaderless
and leader-following cases will be addressed. We need the following lemmas for our
main result.
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Lemma 3.2. Let μi be the ith eigenvalue of −L. Also let χri ∈ C
n and χ�i ∈

C
n be, respectively, the right and left eigenvectors of −L associated with μi. Then

the eigenvalues of Q, defined in (3.13), are given by λi± = μi ±
√

μ2
i −4α

2 with the
associated right eigenvectors ϕri± = [χT

i , λi±χT
i ]T and left eigenvectors ϕ�i± =

[χT
�i, − λi±

α χT
�i]

T .

Proof: Let λ be an eigenvalue of Q and ϕr = [xT
r , yT

r ]T ∈ C
2n be an associated

right eigenvector. Then we get that
[

0n×n In

−αIn −L

] [
xr

yr

]
= λ

[
xr

yr

]
. (3.14)

It follows from (3.14) that

yr = λxr, (3.15a)

−αxr − Lyr = λyr. (3.15b)

Combining (3.15a) and (3.15b) gives −Lxr = λ2+α
λ xr. Suppose that μ is an eigen-

value of −L with an associated right eigenvector χr. It follows that λ2+α
λ = μ and

xr = χr. Therefore, it follows that λ satisfies

λ2 − μλ + α = 0 (3.16)

and ϕr = [χT
r , λχT

r ]T according to (3.15a). Noting that μi is the ith eigenvalue of
−L with an associated right eigenvector χri, it follows from (3.16) that the eigen-

values of Q are given by λi± = μi ±
√

μ2
i −4α

2 with the associated right eigenvectors
ϕri± = [χT

ri, λi±χT
ri]

T .
Similarly, let ϕ� = [xT

� , yT
� ]T ∈ C

2n be a left eigenvector of Q associated with
the eigenvalue λ. Then we get that

[xT
� , yT

� ]
[

0n×n In

−αIn −L

]
= λ[xT

� , yT
� ]. (3.17)

It follows from (3.17) that

yT
� = − λ

α
xT

� , (3.18a)

xT
� − yT

� L = λyT
� . (3.18b)

Combining (3.18a) and (3.18b) gives that −xT
� L = λ2+α

λ xT
� . A similar argument to

that of the right eigenvectors shows that the left eigenvectors of Q associated with
λi± are ϕ�i± = [χT

�i, − λi±
α χT

�i]
T .

In the leaderless case, we have the following theorem.

Theorem 3.7. Let p ∈ R
n be defined in Lemma 1.1. Let μi, λi±, ϕri±, and ϕ�i± be

defined in Lemma 3.2. Suppose that the directed graph G has a directed spanning
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tree. Using (3.12), |ri(t) − [cos(
√

αt)pT r(0) + 1√
α

sin(
√

αt)pT v(0)]| → 0 and

|vi(t) − [−
√

α sin(
√

αt)pT r(0) + cos(
√

αt)pT v(0)]| → 0 as t → ∞.

Proof: Note that the directed graph G has a directed spanning tree. It follows from
Lemma 1.1 that −L has a simple zero eigenvalue with an associated right eigen-
vector 1n and left eigenvector p that satisfies p ≥ 0, pT L = 0, and pT 1n = 1.
In addition, all other eigenvalues of −L have negative real parts. Without loss of
generality, let μ1 = 0 and then we get that Re(μi) < 0, i = 2, . . . , n. Accordingly,
it follows from Lemma 3.2 that λ1± = ±

√
αι with the associated right and left

eigenvectors given by

ϕr1± =
[
1T

n , ±
√

αι1T
n

]T
, ϕ�1± =

[
pT , ± 1√

αι
pT

]T

. (3.19)

Because Re(μi) < 0, i = 2, . . . , n, it follows that Re(λi−) = Re(μi −
√

μ2
i −4α

2 ) <
0, i = 2, . . . , n. Noting that λi+λi− = α, i = 2, . . . , n, it follows that arg(λi+) =
−arg(λi−). Therefore, it follows that Re(λi+) < 0, i = 2, . . . , n.

Note that Q can be written in the Jordan canonical form as

Q = [w1, . . . , w2n]︸ ︷︷ ︸
P

⎡

⎣
√

αι 0 01×(2n−2)

0 −
√

αι 01×(2n−2)

0(2n−2)×1 0(2n−2)×1 J

⎤

⎦

⎡

⎢⎣
νT
1
...

νT
2n

⎤

⎥⎦

︸ ︷︷ ︸
P −1

, (3.20)

where wi ∈ R
2n, i = 1, . . . , 2n, can be chosen to be the right eigenvectors or

generalized eigenvectors of Q, νi ∈ R
2n, i = 1, . . . , 2n, can be chosen to be the left

eigenvectors or generalized eigenvectors of Q, and J is the Jordan upper diagonal
block matrix corresponding to the eigenvalues λi+ and λi−, i = 2, . . . , n. Because
P −1P = I2n, wi and νi must satisfy that νT

i wi = 1 and νT
i wk = 0, where i �= k.

Accordingly, we let w1 = ϕr1+, w2 = ϕr1−, ν1 = 1
2ϕ�1+, and ν2 = 1

2ϕ�1−, where
ϕr1± and ϕ�± are defined in (3.19).

Let

Φ(t)
�
= e

√
αιt

[
1n√
αι1n

] [
1
2
pT ,

1
2

√
αι

pT

]

+ e−
√

αιt

[
1n

−
√

αι1n

] [
1
2
pT , − 1

2
√

αι
pT

]

=

[
cos(

√
αt)1npT 1√

α
sin(

√
αt)1npT

−
√

α sin(
√

αt)1npT cos(
√

αt)1npT

]
.

Because eQt = PeJtP −1 and limt→∞ eJt = 0(2n−2)×(2n−2), it follows that

limt→∞ ‖eQt − Φ(t)‖ = 0. The solution to (3.13) is given by
[ r(t)

v(t)

]
= eQt

[ r(0)
v(0)

]
.
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Fig. 3.14 Directed fixed graph G. An arrow from j to i denotes that agent j is a neighbor of agent i

Fig. 3.15 Evolution of the oscillator states using (3.12) with α = 1 and G shown in Fig. 3.14

Therefore, it follows that
∣∣∣∣ri(t) −

[
cos

(√
αt

)
pT r(0) +

1√
α

sin
(√

αt
)
pT v(0)

]∣∣∣∣ → 0

and ∣∣vi(t) −
[

−
√

α sin
(√

αt
)
pT r(0) + cos

(√
αt

)
pT v(0)

]∣∣ → 0

as t → ∞.

Example 3.3. To illustrate, we show simulation results involving four coupled har-
monic oscillators using (3.12) under the directed fixed graph G as shown in Fig. 3.14.
Note that G in this case has a directed spanning tree, implying that the condition of
Theorem 3.7 is satisfied. We assume that aij = 1 if (j, i) ∈ E and aij = 0 other-
wise. Figures 3.15 and 3.16 show, respectively, the evolution of the oscillator states
with α = 1 and α = 4. Note that the oscillator states are synchronized for both
α = 1 and α = 4. However, the value of α has an effect on the amplitude and
frequency of the synchronized states.

Under the condition of Theorem 3.7, all ri converge to a common oscillatory
trajectory, so do all vi. That is, the n coupled harmonic oscillators are synchronized.
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Fig. 3.16 Evolution of the oscillator states using (3.12) with α = 4 and G shown in Fig. 3.14

We next consider the case where there exist n followers, labeled as oscillators or
followers 1 to n, and a leader, labeled as oscillator 0 with states r0 and v0. Here the

leader can be virtual or physical. Let G �
= (V , E ) be the directed graph characterizing

the interaction among the n followers. Let G �
= (V , E ) be the directed graph char-

acterizing the interaction among the leader and the followers corresponding to G.
Suppose that r0 and v0 satisfy

ṙ0 = v0, v̇0 = −αr0, (3.21)

where α is a positive gain. In this case, we study the system

ṙi = vi, (3.22)

v̇i = −αri −
n∑

j=0

aij(vi − vj), i = 1, . . . , n,

where aij , i, j = 1, . . . , n is the (i, j)th entry of the adjacency matrix A associated
with G, and ai0 is a positive constant if the leader is a neighbor of oscillator i and
ai0 = 0 otherwise.

Corollary 3.3. Suppose that in G the leader has directed paths to all followers 1
to n. Using (3.22), |ri(t) − r0(t)| → 0 and |vi(t) − v0(t)| → 0 as t → ∞, where

r0(t) = cos
(√

αt
)
r0(0) +

1
α

sin
(√

αt
)
v0(0),

(3.23)
v0(t) = −

√
α sin

(√
αt

)
r0(0) + cos

(√
αt

)
v0(0).
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Proof: It is straightforward to show that the solution to (3.21) is given by (3.23).
Consider a team consisting of n + 1 oscillators (oscillators 0 to n). The proof is a
direct application of that of Theorem 3.7.

We also consider the case where there exist deviations between oscillator states.
In this case, we study the system

ṙi = vi, (3.24)

v̇i = −α(ri − δi) −
n∑

j=0

aij(vi − vj), i = 1, . . . , n,

where δi is a constant, and α and aij , i = 1, . . . , n, j = 0, . . . , n are defined as
in (3.22).

Corollary 3.4. Suppose that in G the leader has directed paths to all followers 1
to n. Using (3.24), |ri(t) − [r0(t) + δi]| → 0 and |vi(t) − v0(t)| → 0 as t → ∞,
where r0(t) and v0(t) are defined in Corollary 3.3.

Proof: Let r̃i
�
= ri − δi. Noting that ˙̃ri = vi, it follows from Corollary 3.3 that

|r̃i(t) − r0(t)| → 0 and |vi(t) − v0(t)| → 0 as t → ∞ with r̃i playing the role of
ri in (3.22).

3.2.3 Convergence Under Directed Switching Interaction

In this subsection, we consider convergence of (3.12) under a directed switching
interaction graph. We consider two cases, namely, (i) the directed graph G(t) is
strongly connected and balanced at each time instant; and (ii) the directed graph
G(t) has a directed spanning tree at each time instant.

Let P denote a set indexing the class of all possible directed graphs Gp, where
p ∈ P , defined on n nodes. The adjacency matrix and the nonsymmetric Laplacian
matrix associated with Gp are denoted by, respectively, Ap and Lp. Note that P is a
finite set by definition. Suppose that (3.12) can be written as

[
ṙ
v̇

]
=

[
0n×n In

−ασ(t)In −Lσ(t)

]

︸ ︷︷ ︸
Qσ(t)

[
r
v

]
, (3.25)

where σ : [0, ∞) → P is a piecewise constant switching signal with switching times
t0, t1, . . . , ασ(t) is a positive gain associated with the directed graph Gσ(t), and Lσ(t)

is the nonsymmetric Laplacian matrix associated with Aσ(t) and hence Gσ(t).

Theorem 3.8. Suppose that σ(t) ∈ Psb, where Psb ⊂ P denotes the set indexing
the class of all possible directed graphs defined on n nodes that are strongly con-
nected and balanced. Also suppose that ασ(t) ≡ αsb, where αsb is a positive scalar.
Using (3.12), |ri(t) − rj(t)| → 0 and |vi(t) − vj(t)| → 0 as t → ∞.
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Proof: 5 Consider the Lyapunov function candidate

V =
1
2
αsbr

T r +
1
2
vT v. (3.26)

Noting that v̇ is discontinuous due to switches of interaction graphs, we have v̇ ∈a.e.

K[−Lσ(t)v]−αsbr, where K[·] is a differential inclusion and a.e. stands for “almost

everywhere”. The set-valued Lie derivative of V is given by L̃F V = αsbv
T r +

vT [−αsbr + φv] = vT φv, where φv is an arbitrary element of K[−Lσ(t)v]. Note
that the directed graph Gσ(t) is strongly connected and balanced. It follows from
Lemma 1.2 that −vT Lσ(t)v ≤ 0, which implies that maxφv ∈K[− Lσ(t)v](vT φv) =
max(K[−vT Lσ(t)v]) = 0. In particular, max(K[−vT Lσ(t)v]) = 0 if and only if
vi = vj , which in turn implies that v̇i = v̇j . Noting that ασ(t) ≡ αsb, it follows
from (3.25) (see also (3.12)) that ri = rj when vi = vj and v̇i = v̇j . It thus follows
from Lemma 1.40 that |ri(t) − rj(t)| → 0 and |vi(t) − vj(t)| → 0 as t → ∞.

Let rij
�
= ri − rj and vij

�
= vi − vj . Also let r̃

�
= [r12, r23, . . . , r(n−1)n]T and

ṽ
�
= [v12, v23, . . . , v(n−1)n]T . Equation (3.25) can be rewritten as

[ ˙̃r
˙̃v

]
=

[
0n−1 In−1

−ασ(t)In−1 −Dσ(t)

]

︸ ︷︷ ︸
Rσ(t)

[
r̃
ṽ

]
, (3.27)

where Dσ(t) ∈ R
(n−1)×(n−1) can be derived from Lσ(t). Before moving on, we

need the following lemma.

Lemma 3.3 ([201, Lemma 2]). Let {Ap : p ∈ P } be a closed bounded set of real
n × n matrices. Suppose that for each p ∈ P , Ap is stable, and let ap and χp

be any finite nonnegative and positive numbers, respectively, for which ‖eApt‖ ≤
eap −χpt, t ≥ 0. Suppose that τ0 is a number satisfying τ0 > supp∈P { ap

χp
}. For any

admissible switching signal σ : [0, ∞) → P with dwell time no smaller than τ0, the
transition matrix of Aσ satisfies that ‖Φ(t, μ)‖ ≤ ea−χ(t−μ), ∀t ≥ μ ≥ 0, where

a
�
= supp∈P {ap} and χ

�
= infp∈P {χp − ap

τ0
}.

Theorem 3.9. Let Pst ⊂ P denote the set indexing the class of all possible directed
graphs defined on n nodes that have a directed spanning tree. The following two
statements hold:

1. The matrix Rp defined in (3.27) is stable for each p ∈ Pst.
2. Let ap ≥ 0 and χp > 0, for which ‖eRpt‖ ≤ eap −χpt, t ≥ 0. Suppose that

σ(t) ∈ Pst. If tk+1 − tk > supp∈Pst
{ ap

χp
}, ∀k = 0, 1, . . . , then using (3.12),

|ri(t) − rj(t)| → 0 and |vi(t) − vj(t)| → 0 as t → ∞.

5 The proof is motivated by that of Theorem 1 in [289], which relies on differential inclusions and
nonsmooth analysis. We only sketch the main steps of the proof.
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Proof: For the first statement, note that Theorem 3.7 implies that for each p ∈ Pst

and all i, j = 1, . . . , n, |ri(t) − rj(t)| → 0 and |vi(t) − vj(t)| → 0 as t → ∞,
which implies that ‖r̃(t)‖ → 0 and ‖ṽ(t)‖ → 0 as t → ∞. It thus follows
from (3.27) that Rp is stable for each p ∈ Pst.

For the second statement, under the condition of the theorem, because Rp is sta-
ble for each p ∈ Pst, it follows from Lemma 3.3 that the switched system (3.27)
is globally exponentially stable if tk+1 − tk > supp∈Pst

{ ap

χp
}, ∀k = 0, 1, . . . .

Equivalently, it follows that under the same condition |ri(t) − rj(t)| → 0 and
|vi(t) − vj(t)| → 0 as t → ∞.

Remark 3.10 Note that Theorem 3.9 imposes a bound on how fast the interaction
graph can switch while Theorem 3.8 does not. Also note that the convergence con-
dition in Theorem 3.9 is only a sufficient condition. When there exists a leader, the
analysis can follow a similar line to that of Theorems 3.8 and 3.9.

Example 3.4. To illustrate, we show simulation results involving four coupled har-
monic oscillators using (3.12) under a directed switching interaction graph. We
first let ασ(t) ≡ 1 and G(t) switches randomly from {G(1), G(2), G(3)} as shown
in Fig. 3.17. We assume that aij = 1 if (j, i) ∈ E and aij = 0 otherwise. Here
we let t0 = 0 s and choose tk randomly from (2k − 2, 2k) s, k = 1, 2, . . . . Note
that G(1)–G(3) shown in Fig. 3.17 are all strongly connected and balanced, implying
that the condition of Theorem 3.8 is satisfied. Figure 3.18 shows the evolution of
the oscillator states in this case. Note that all oscillator states are synchronized. We
then let ασ(t) switch randomly from {α(1), α(2), α(3)}, where

α(1) = 1, α(2) = 4, α(3) = 9 (3.28)

and G(t) switches randomly from { G(1), G(2), G(3)} as shown in Fig. 3.19. Here we
again let t0 = 0 s and choose tk randomly from (2k − 2, 2k) s, k = 1, 2, . . . . Note
that G(1)–G(3) shown in Fig. 3.19 all have a directed spanning tree, implying that
the condition of Theorem 3.9 is satisfied. Figure 3.20 shows the evolution of the
oscillator states in this case. In contrast to the previous case, the oscillator states
do not approach a uniform amplitude and frequency due to switching of α values.
However, all oscillator states are still synchronized.

Fig. 3.17 Directed graphs G(1)–G(3). All G(1)–G(3) are strongly connected and balanced. An ar-
row from j to i denotes that agent j is a neighbor of agent i
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Fig. 3.18 Evolution of the oscillator states using (3.12) when ασ(t) ≡ 1 and G(t) switches from
{G(1), G(2), G(3)} as shown in Fig. 3.17

Fig. 3.19 Directed graphs G(1)–G(3). All of them have a directed spanning tree. An arrow from j
to i denotes that agent j is a neighbor of agent i

3.2.4 Application to Motion Coordination in Multi-agent Systems

In this subsection, we apply (3.24) to motion coordination in multi-agent systems.
Suppose that there are four point-mass agents in the team with dynamics give by

ṗi = qi and q̇i = wi, i = 1, . . . , 4, where pi
�
= [xi, yi]T is the position, qi

�
=

[vxi, vyi]T is the velocity, and wi
�
= [wxi, wyi]T is the acceleration input. Also

suppose that there exists a virtual leader, labeled as agent 0, with the position p0
�
=

[x0, y0]T and the velocity q0
�
= [vx0, vy0]T , and p0 and q0 satisfy

ṗ0 = q0, q̇0 = −αp0, (3.29)

where α is a positive constant. We apply (3.24) to design wxi and wyi, respectively,
as
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Fig. 3.20 Evolution of the oscillator states using (3.12) when ασ(t) switches from (3.28) and G(t)

switches from {G(1), G(2), G(3)} as shown in Fig. 3.19

Table 3.1 Parameters and initial conditions used in the simulation

α = 1

δx1 = 0, δx2 = 4, δx3 = 0, δx4 = 4

δy1 = 0, δy2 = 0, δy3 = −4, δy4 = −4

x0(0) = 1, x1(0) = 1.2, x2(0) = 0.8, x3(0) = 1.4, x4(0) = 0.5

y0(0) = −1, y1(0) = −1.2, y2(0) = −0.8, y3(0) = −0.7, y4(0) = 1.5

vx0(0) = 1, vx1(0) = 0.2, vx2(0) = 0.3, vx3(0) = 0.4, vx4(0) = 0.5

vy0(0) = 1, vy1(0) = 0.4, vy2(0) = 0.6, vy3(0) = 0.8, vy4(0) = 1

wxi = −α(xi − δxi) −
n∑

j=0

aij(vxi − vxj),

wyi = −α(yi − δyi) −
n∑

j=0

aij(vyi − vyj),

where δxi and δyi are constant.
Parameters and initial conditions used in the simulation are shown in Table 3.1.

By solving (3.29), it is straightforward to show that the trajectory of the virtual
leader follows an elliptic orbit.

Figure 3.21 shows the interaction graph for agents 1 to 4 and the virtual leader
(i.e., agent 0). We let aij = 1, i, j = 0, . . . , 4, if (j, i) ∈ E and aij = 0 other-
wise. Figure 3.22 shows the complete trajectories and snapshots of the four agents.
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Fig. 3.21 Interaction graph for the four agents and the virtual leader. An arrow from j to i denotes
that agent j is a neighbor of agent i

Fig. 3.22 Complete trajectories of the four agents. Circles show the snapshot at t = 0 s while
squares show the snapshots at t = 5, 10, 15, 20 s

Note that the four agents are able to synchronize their motions and move on elliptic
orbits.

3.3 Notes

The results in this chapter are based mainly on [241–244]. For further results on col-
lective periodic motion coordination, see [141, 175, 176, 187, 226, 238, 262, 263,
271, 281]. In particular, a cyclic pursuit strategy, where each agent pursues only one
other agent with the interaction graph forming a unidirectional ring, is studied for
agents with single-integrator dynamics in [176, 271] while for mobile agents sub-
ject to nonholonomic constraints in [187]. The cyclic pursuit strategy is generalized
in [226] by letting each agent pursue one other agent along the line of sight rotated
by a common offset angle. It is shown that depending on the common offset angle,
the agents can achieve different symmetric formations, namely, convergence to a
single point, a circle, or a logarithmic spiral pattern in the two-dimensional space.
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The result is further extended in [238] to deal with single- and double-integrator
models in the three-dimensional space. In particular, it is shown that more robust,
locally stable motions on circular orbits can be achieved by making the rotation an-
gle a function of the relative positions of the agents. Symmetric formations are also
studied by adopting models based on the Frenet–Serret equations of motion [141]
or by exploring the connections between phase models of coupled oscillators and
kinematic models of steered particle groups [262, 263]. In addition, a collective ro-
tating formation control problem, where all agents surround a common point with a
desired formation structure, is investigated in [175] for double-integrator agents in
the two-dimensional space. In [281], synchronization of coupled second-order linear
harmonic oscillators is revisited under a dynamic proximity graph. It is shown that
the coupled second-order linear harmonic oscillators can always be synchronized
without imposing any graph connectivity assumption.
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