
Chapter 10
Time Delay

This chapter considers time delays in distributed multi-agent coordination. The time
delays are inevitable in networked systems. Time-domain and frequency-domain ap-
proaches are used to study leaderless and leader-following coordination algorithms
with communication and input delays under a directed interaction graph. We con-
sider both the single-integrator and double-integrator dynamics and present stabil-
ity or boundedness conditions. Several interesting phenomena are analyzed and ex-
plained. Simulation results are presented to support the theoretical results.

10.1 Problem Statement

Time delays are inevitable in networked systems due to the finite speed of infor-
mation transmission and processing. The time delays are usually classified as input
delays and communication delays. The input delays can be caused by information
processing while the communication delays can be caused by information propa-
gation from one agent to another. In multi-agent coordination, it is meaningful to
study leaderless and leader-following coordination problems where there exist time
delays. In the leaderless case, the objective is that a team of agents achieves de-
sired relative positions with local interaction. Similar to Chap. 6, we use the term
coordinated regulation to refer to the case where a group of followers intercepts a
stationary leader with a constant position with local interaction. Similar to Chap. 4,
we use the term coordinated tracking to refer to the case where a group of followers
intercepts a dynamic leader with a varying position. Note that coordinated regula-
tion can be viewed as a special case of coordinated tracking. In both coordinated
regulation and coordinated tracking, the leader can be physical or virtual.

This chapter studies both leaderless and leader-following coordination algo-
rithms with communication and input delays for, respectively, single-integrator dy-
namics and double-integrator dynamics under a directed interaction graph. We an-
alyze stability or boundedness conditions by using time-domain and frequency-
domain approaches. The contributions of the current chapter are fourfold. First, we
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assume that the interaction graph is directed and has a directed spanning tree, which
is more general than the assumption that the interaction graph is undirected and con-
nected or the interaction graph is directed and is strongly connected and balanced.
Second, both communication and input delays are considered in the cases of leader-
less coordination, coordinated regulation when the leader’s position is constant, and
coordinated tracking with full access to the leader’s velocity for single-integrator dy-
namics while in the cases of leaderless coordination, coordinated tracking when the
leader’s velocity is constant, and coordinated tracking with full access to the leader’s
acceleration for double-integrator dynamics, which guarantees the completeness of
the algorithms. Third, we show that for single-integrator dynamics the communica-
tion delay will not influence the stability of the system in the case of coordinated
tracking with partial access to the leader’s velocity. Fourth, as a byproduct, we find
that when there exists the communication delay, the final group velocity is always
dampened to zero using the leaderless coordination algorithm for double-integrator
dynamics rather than a possibly nonzero constant as in the standard leaderless coor-
dination algorithm for double-integrator dynamics in the absence of delays.

10.2 Coordination for Single-integrator Dynamics with
Communication and Input Delays Under Directed Fixed
Interaction

In this section, we consider the case where the agents are modeled by single-
integrator dynamics given by (3.1). We assume that the agents are in a one-dimen-
sional space for simplicity. However, all results hereafter all still valid for any high-
dimensional space by use of the properties of the Kronecker product.

10.2.1 Leaderless Coordination

Define Δij
�
= δi − δj , where δi is constant. Here Δij denotes the desired relative

position deviation between agents i and j. Consider the following leaderless coor-
dination algorithm with both communication and input delays for (3.1) as

ui(t) = − 1
∑n

j=1 aij

n∑

j=1

aij

[
ri(t − τ1) − rj(t − τ1 − τ2) − Δij

]
, i = 1, . . . , n,

(10.1)

where τ1 and τ2 are, respectively, the input and communication delays, and aij ,
i, j = 1, . . . , n, is the (i, j)th entry of the adjacency matrix A associated with the

directed graph G
�
= (V , E ) characterizing the interaction among the n agents. Let

L be the nonsymmetric Laplacian matrix associated with A and hence G . Here
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we assume that every agent has a neighbor, which implies that
∑n

j=1 aij > 0, i =
1, . . . , n. The objective of (10.1) is to achieve coordination, that is, ri(t) − rj(t) →
Δij as t → ∞ when there exist both communication and input delays.

Using (10.1), (3.1) can be written in a vector form as

˙̆r(t) = −r̆(t − τ1) + Ar̆(t − τ1 − τ2), (10.2)

where r̆
�
= [r̆1, . . . , r̆n]T with r̆i

�
= ri − δi and A

�
= [âij ] ∈ R

n×n is defined

as âij
�
= aij/

∑n
j=1 aij , i, j = 1, . . . , n. Let L

�
= [�̂ij ] ∈ R

n×n be defined as

L
�
= In − A. Compared with A (respectively, L ), A (respectively, L) can be

viewed as another adjacency matrix (respectively, nonsymmetric Laplacian matrix)
associated with G by choosing a different weight for each edge (j, i) ∈ E . That is,
the original weight aij for the edge (j, i) is replaced with a new weight aij∑n

j=1 aij
.

When G has a directed spanning tree and each agent has a neighbor, it follows
from Lemma 1.1 that L has a simple zero eigenvalue and all other eigenvalues have
positive real parts. We have the following singular vector decomposition given as

W −1LW =

[
L̃ 0n−1

0T
n−1 0

]

. (10.3)

Here without loss of generality, we choose the last column of W to be 1n by noting
that 1n is a right eigenvector of L associated with the zero eigenvalue. Therefore,
the last row of W −1 is pT , where p ∈ R

n is defined in Lemma 1.1 with L playing
the role of L . It follows that when G has a directed spanning tree and each agent
has a neighbor, all eigenvalues of L̃ have positive real parts.

Define r̃
�
= W −1r̆. Denote r̃1:n−1,: as the first n − 1 rows of r̃ and r̃n,: as the

last row of r̃. Note that A = In − L. It follows from (10.3) that W −1AW =
[ In−1−L̃ 0n−1

0T
n−1 1

]
. Define

Ã
�
= In−1 − L̃. (10.4)

By multiplying W −1 on both sides of (10.2), it follows that (10.2) can be rewritten
as

[ ˙̃r1:n−1,:(t)
˙̃rn,:(t)

]

= −
[

r̃1:n−1,:(t − τ1)
r̃n,:(t − τ1)

]

+

[
Ã 0n−1

0T
n−1 1

] [
r̃1:n−1,:(t − τ1 − τ2)

r̃n,:(t − τ1 − τ2)

]

. (10.5)

Equation (10.5) can be decoupled into the following two equations:

˙̃r1:n−1,:(t) = −r̃1:n−1,:(t − τ1) + Ãr̃1:n−1,:(t − τ1 − τ2), (10.6a)
˙̃rn,:(t) = −r̃n,:(t − τ1) + r̃n,:(t − τ1 − τ2). (10.6b)
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Theorem 10.1. Suppose that the directed fixed graph G has a directed spanning
tree and every agent has a neighbor. There exist positive τ1 and τ2 such that for
τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], the following three conditions1 are satisfied:

(i) 2τ1 + τ2 < 1.
(ii) 1 − 1−e−sτ1

s + λi(Ã) 1−e−s(τ1+τ2)

s �= 0, for all s ∈ C
+.

(iii) The matrix

Qfc
�
= − L̃T Pfc − PfcL̃ + τ1Sfc + (τ1 + τ2)Hfc + τ1L̃

T PfcS
−1
fc PfcL̃

+ (τ1 + τ2)L̃T PfcÃH−1
fc ÃT PfcL̃ (10.7)

is symmetric negative definite, where Pfc ∈ R
(n−1)×(n−1) is a symmetric

positive-definite matrix chosen properly such that −L̃T Pfc − PfcL̃ is symmet-
ric negative definite, and Sfc ∈ R

(n−1)×(n−1) and Hfc ∈ R
(n−1)×(n−1) are

arbitrary symmetric positive-definite matrices.

In addition, if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], using (10.1) for (3.1), for all ri(0)
and all i, j = 1, . . . , n, ri(t) − rj(t) → Δij as t → ∞. In particular, ri(t) →
pT r̆(0)
1+τ2

+ δi, i = 1, . . . , n, as t → ∞, where p ∈ R
n is defined after (10.3).

Proof: For the first statement, it is straightforward to see that there exist positive τ1

and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2] Conditions (i) and (ii) are satisfied.
For Condition (iii), because G has a directed spanning tree and each agent has a
neighbor, all eigenvalues of L̃ have positive real parts. Therefore, there always exists

a symmetric positive-definite matrix Pfc ∈ R
(n−1)×(n−1) such that −L̃T Pfc −

PfcL̃ is symmetric negative definite. It follows from (10.7) that when τ1 = τ2 = 0,
Qfc = −L̃T Pfc − PfcL̃. Due to the continuity of Qfc with respect to τ1 and τ2,
there must exist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], Qfc is
symmetric negative definite.

For the second statement, we show that if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], (10.6a)
is asymptotically stable at the origin while (10.6b) is stable. It follows from Lem-
ma 1.44 that the stability of the following system

d

dt

[

r̃1:n−1,:(t) −
∫ 0

−τ1

r̃1:n−1,:(t + θ) dθ + Ã

∫ 0

−τ1−τ2

r̃1:n−1,:(t + θ) dθ

]

= −L̃r̃1:n−1,:(t) (10.8)

implies the stability of (10.6a) under Condition (ii) of the theorem. Consider the
Lyapunov function candidate

1 Note that here the three conditions are used to obtain the upper bounds τ1 and τ2 for allowable
delays.
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V
[
(r̃1:n−1,:)t

]
=χT Pfcχ +

∫ 0

−τ1

∫ t

t+θ

r̃T
1:n−1,:(ξ)Sfcr̃1:n−1,:(ξ) dξ dθ

+
∫ 0

−τ1−τ2

∫ t

t+θ

r̃T
1:n−1,:(ξ)Hfcr̃1:n−1,:(ξ) dξ dθ,

where χ
�
= r̃1:n−1,:(t) −

∫ 0

−τ1
r̃1:n−1,:(t + θ) dθ + Ã

∫ 0

−τ1−τ2
r̃1:n−1,:(t + θ) dθ.

Taking the derivative of V along (10.8) gives

V̇
[
(r̃1:n−1,:)t

]
≤ r̃T

1:n−1,:(t)Qfcr̃1:n−1,:(t),

where we have used Lemma 1.23 to derive the inequality. Note that
α1‖D [(r̃1:n−1,:)t]‖ ≤ V [(r̃1:n−1,:)t] ≤ α2‖(r̃1:n−1,:)t‖c, where

D
[
(r̃1:n−1,:)t

] �
= r̃1:n−1,:(t)−

∫ 0

−τ1

r̃1:n−1,:(t+θ) dθ+Ã

∫ 0

−τ1−τ2

r̃1:n−1,:(t+θ) dθ,

‖(r̃1:n−1,:)t‖c
�
= supθ∈[−τ1−τ2,0] ‖r̃1:n−1,:(t + θ)‖, α1 = λmin(Pfc), and α2 =

λmax(Pfc)+ τ1λmax(Sfc)+(τ1 + τ2)λmax(Hfc). Also note that Qfc is symmetric
negative definite under Condition (iii) of the theorem. It follows from Lemma 1.41
that (10.8) is asymptotically stable at the origin. Therefore, if Conditions (ii)
and (iii) of the theorem are satisfied, (10.6a) is asymptotically stable at the ori-
gin.

For (10.6b), we apply the Nyquist stability criterion to find its stability condition.
After Laplace transformation, (10.6b) can be written as

sr̃n,:(s) − r̃n,:(0) = −e−τ1sr̃n,:(s) + e−(τ1+τ2)sr̃n,:(s),

which implies that r̃n,:(s) = r̃n,:(0)

s+e−τ1s −e−(τ1+τ2)s . Therefore, the stability of (10.3b)
is determined by the distribution of the roots of

s = −e−τ1s + e−(τ1+τ2)s. (10.9)

Note that s = 0 is a root of (10.9). To study the other roots, define f(s)
�
=

[e−τ1s − e−(τ1+τ2)s]/s. According to the Nyquist stability criterion, if the trajectory
of f(ιω), ∀ω ∈ (−∞, ∞), does not enclose the point (−1, 0), then the other roots of
(10.9) are stable. One sufficient condition is that Re[f(ιω)] > −1, ∀ω ∈ (−∞, ∞).
Note that Re[f(ιω)] = sin[(τ1+τ2)ω]

ω − sin(τ1ω)
ω ≥ −(τ1 + τ2) − τ1 = −(2τ1 + τ2).

Therefore, it follows that (10.6b) is marginally stable at the origin under Condi-
tion (i) of the theorem.

Note that limt→∞ r̃1:n−1,:(t) = 0n−1. Also note that

lim
t→∞

r̃n,:(t) = lim
s→0

sr̃n,:(s) =
sr̃n,:(0)

s + e−τ1s − e−(τ1+τ2)s
=

r̃n,:(0)
1 + τ2

.
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Because r̆ = Wr̃ and the last column of W is 1n, it follows that limt→∞ r̆(t) =
limt→∞ Wr̃(t) = limt→∞ 1nr̃n,:(t) = 1nr̃n,:(0)

1+τ2
, which implies that r̆i(t) −

r̆j(t) → 0 as t → ∞, that is, ri(t) − rj(t) → Δij as t → ∞. Because the
last row of W −1 is p, it follows that r̃n,:(0) = pT r̆(0). Therefore, it follows that

ri(t) → pT r̆(0)
1+τ2

+ δi as t → ∞.

Remark 10.2 Note that the additional dynamics caused by the model transforma-
tion from (10.6a) to (10.8) can be characterized by the solutions of the following
complex equation [210]

det
[

In−1 − In−1
1 − e−sτ1

s
+ Ã

1 − e−s(τ1+τ2)

s

]

= 0, s ∈ C.

Thus, if τ1 + (τ1 + τ2)‖Ã‖ < 1, there are no additional eigenvalues induced by
the model transformation from (10.6a) to (10.8), which implies that the condition
τ1 + (τ1 + τ2)‖Ã‖ < 1 can be used to replace Condition (ii) in Theorem 10.1.

Remark 10.3 If we let Sfc = Hfc = In−1 in (10.7), Condition (iii) in Theo-
rem 10.1 can be written as

τ1 + τ2 <
λmin(L̃T Pfc + PfcL̃)

2 + ‖L̃T Pfc‖2 + ‖L̃T PfcÃ‖2
.

10.2.2 Coordinated Regulation when the Leader’s Position is
Constant

In this subsection, we assume that in addition to n followers, labeled as agents or
followers 1 to n, there exists a leader, labeled as agent 0, with position r0. We as-

sume that r0 is constant. Let G
�
= (V , E ) be the directed graph characterizing the

interaction among the n followers. Let G
�
= (V , E ) be the directed graph character-

izing the interaction among the leader and the followers corresponding to G .
Consider the following coordinated regulation algorithm with both communi-

cation and input delays for the n followers with single-integrator dynamics given
by (3.1) as

ui(t) = − 1
∑n

j=0 aij

n∑

j=0

aij

[
ri(t − τ1) − rj(t − τ1 − τ2)

]
, i = 1, . . . , n,

(10.10)

where τ1 and τ2 are, respectively, the input and communication delays, aij , i, j =
1, . . . , n, is the (i, j)th entry of the adjacency matrix A associated with G , and
ai0 > 0 if the leader is a neighbor of agent i and ai0 = 0 otherwise. Note that in G
if the leader has directed paths to all followers 1 to n, it follows that

∑n
j=0 aij > 0,
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i = 1, . . . , n. The objective of (10.10) is to guarantee coordinated regulation, i.e.,
ri(t) → r0 as t → ∞.

Define r̄i
�
= ri − r0 and r̄

�
= [r̄1, . . . , r̄n]T . Define A

�
= [āij ] ∈ R

n×n as

āij
�
= aij/

∑n
j=0 aij . Using (10.10), (3.1) can be written in a vector form as

˙̄r(t) = −r̄(t − τ1) + Ar̄(t − τ1 − τ2), (10.11)

where we have used the fact that r0 is constant. Before moving on, we need the
following lemma regarding (In − A).

Lemma 10.1. All eigenvalues of In − A have positive real parts if in G the leader
has directed paths to all followers 1 to n.

Proof: The lemma follows from Lemma 8.1 by noting that all eigenvalues of A are
within the unit circle if the leader has directed paths to all followers.

Theorem 10.4. Suppose that in G the leader has directed paths to all followers 1
to n. There exist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], the
following two conditions are satisfied:

(i) 1 − 1−e−sτ1

s + λi(A) 1−e−s(τ1+τ2)

s �= 0, ∀s ∈ C
+.

(ii) The matrix

Qfr
�
=(A − In)T Pfr + Pfr(A − In) + τ1Sfr + (τ1 + τ2)Hfr

+ τ1

[
(A − In)T PfrS

−1
fr Pfr(A − In)

]

+ (τ1 + τ2)
[
(A − In)T PfrAH−1

fr A
T
Pfr(A − In)

]

is symmetric negative definite, where Pfr ∈ R
n×n is a symmetric positive-

definite matrix chosen properly such that (A − In)T Pfr + Pfr(A − In) is
symmetric negative definite, and Sfr ∈ R

n×n and Hfr ∈ R
n×n are arbitrary

symmetric positive-definite matrices.

In addition, if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], using (10.10) for (3.1), for all ri(0), i =
1, . . . , n, ri(t) → r0 as t → ∞.

Proof: For the first statement, it is straightforward to see that there exist positive τ1

and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], Condition (i) is satisfied. Because
in G the leader has directed paths to all followers, it follows from Lemma 10.1
that all eigenvalues of In − A have positive real parts. A similar analysis to that in
Theorem 10.1 shows that there exist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and
τ2 ∈ [0, τ2], Condition (ii) is satisfied.

For the second statement, it follows from Lemma 1.44 that the stability of the
following system

d

dt

[

r̄(t) −
∫ 0

−τ1

r̄(t + θ) dθ + A

∫ 0

−τ1−τ2

r̄(t + θ) dθ

]

= (A − In)r̄(t) (10.12)
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implies the stability of (10.11) under Condition (i) of the theorem. Consider the
Lyapunov function candidate

V (r̄t) = χT Pfrχ +
∫ 0

−τ1

∫ t

t+θ

r̄T (ξ)Sfr r̄(ξ) dξ dθ

+
∫ 0

−τ1−τ2

∫ t

t+θ

r̄T (ξ)Hfr r̄(ξ) dξ dθ,

where χ
�
= r̄(t) −

∫ 0

−τ1
r̄(t + θ) dθ + A

∫ 0

−τ1−τ2
r̄(t + θ) dθ. Taking the derivative

of V along (10.12) gives

V̇ (r̄t) ≤ r̄T (t)Qfr r̄(t),

where we have used Lemma 1.23 to derive the inequality. Thus, a similar analysis
to that in the proof of Theorem 10.1 shows that if the two conditions of the theorem
are satisfied, (10.11) is asymptotically stable at the origin.

Remark 10.5 Although the approaches used in the leaderless coordination case and
the coordinated regulation case are similar, the control objectives are different. In
the leaderless coordination case, the final positions of each agent are determined by
the interaction graph and the time delays rather than being prespecified. However,
in the coordinated regulation case, there exists a leader that prespecifies the final
position, and the control objective is to guarantee that the final positions of all fol-
lowers approach the position of the leader. Also the result in the case of coordinated
regulation can be generalized to general weights while in the case of leaderless co-
ordination special weights are required (i.e.,

∑n
j=1 âij = 1). In addition, note that

Remarks 10.2 and 10.3 are still valid in the coordinated regulation case.

10.2.3 Coordinated Tracking with Full Access to the Leader’s
Velocity

In this subsection, we consider the case where the leader’s position r0 is varying.
We assume that |ṙ0| < δv and |r̈0| < δa, where δv and δa are positive constants. We
also assume that all followers have access to ṙ0.

Consider the coordinated tracking algorithm with both communication and input
delays for the n followers with single-integrator dynamics given by (3.1) as

ui(t) = ṙ0(t − τ1 − τ2)

− 1
∑n

j=0 aij

n∑

j=0

aij

[
ri(t − τ1) − rj(t − τ1 − τ2)

]
, i = 1, . . . , n,

(10.13)

where τ1 and τ2 are, respectively, the input and communication delays, and aij ,
i = 1, . . . , n, j = 0, . . . , n, is defined as in (10.10). Using (10.13), (3.1) can be
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written in a vector form as

˙̄r = −r̄(t − τ1) + Ar̄(t − τ1 − τ2) + Rft, (10.14)

where r̄ and A are defined as in Sect. 10.2.2, and Rft
�
= 1n[ṙ0(t − τ1 − τ2) −

ṙ0(t) + r0(t − τ1 − τ2) − r0(t − τ1)]. By using (1.10), it follows that Rft =
−1n

∫ 0

−τ1−τ2
r̈0(t + θ) dθ − 1n

∫ −τ1

−τ1−τ2
ṙ0(t + θ) dθ.

Theorem 10.6. Suppose that in G the leader has directed paths to all followers 1
to n. There exist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2],

Qft
�
=(A − In)T Pfr + Pfr(A − In) + τ1

(
Pfr + PfrAP −1

fr A
T
Pfr + 2qfPfr

)

+ (τ1 + τ2)
(
PfrAP −1

fr A
T
Pfr + PfrA

2
P −1

fr

(
A

T )2
Pfr + 2qfPfr

)

is symmetric negative definite, where Pfr is defined in Theorem 10.4 and qf is an
arbitrary real number satisfying qf > 1. In addition, if τ1 ∈ [0, τ1] and τ2 ∈
[0, τ2], using (10.13) for (3.1), for all ri(0) and all i = 1, . . . , n, |ri(t) − r0(t)| is
uniformly ultimately bounded. In particular, the ultimate bound for ‖r̄(t)‖ is given

by λmax(Pfr)af

λmin(Pfr)κf λmin(−Qft)
, where af

�
= 2[(τ1 + τ2)δa + τ2δv][‖Pfr ‖ + τ1‖Pfr ‖ +

(τ1 + τ2)‖PfrA‖], and κf is an arbitrary real number satisfying 0 < κf < 1.

Proof: The proof of the first statement is similar to that in Theorem 10.4 and is
hence omitted here. For the second statement, using (1.10), we transform (10.14) to
the following system

d

dt
r̄(t) = (A − In)r̄(t) +

∫ 0

−τ1

˙̄r(t + θ) dθ − A

∫ 0

−τ1−τ2

˙̄r(t + θ) dθ + Rft

= (A − In)r̄(t) +
∫ 0

−τ1

[
Ar̄(t − τ1 − τ2 + θ) − r̄(t − τ1 + θ)

]
dθ

+
∫ 0

−τ1

Rft(t + θ) dθ

+ A

∫ 0

−τ1−τ2

[
r̄(t − τ1 + θ) − Ar̄(t − τ1 − τ2 + θ)

]
dθ

− A

∫ 0

−τ1−τ2

Rft(t + θ) dθ + Rft

= (A − In)r̄(t) −
∫ −τ1

−2τ1

r̄(t + θ) dθ + A

∫ −τ1−τ2

−2τ1−τ2

r̄(t + θ) dθ

+
∫ 0

−τ1

Rft(t + θ) dθ + A

∫ −τ1

−2τ1−τ2

r̄(t + θ) dθ

− A
2
∫ −τ1−τ2

−2τ1−2τ2

r̄(t + θ) dθ − A

∫ 0

−τ1−τ2

Rft(t + θ) dθ + Rft.

(10.15)
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Consider the Lyapunov function candidate V (r̄) = r̄T (t)Pfr r̄(t). Taking the
derivative of V (r̄) along (10.15) gives

V̇ (r̄) ≤ r̄T (t)
[
(A − In)T Pfr + Pfr(A − In)

]
r̄(t) + τ1r̄

T (t)PfrP
−1
fr Pfr r̄(t)

+
∫ −τ1

−2τ1

r̄T (t + θ)Pfr r̄(t + θ) dθ + τ1r̄
T (t)PfrAP −1

fr A
T
Pfr r̄(t)

+
∫ −τ1−τ2

−2τ1−τ2

r̄T (t + θ)Pfr r̄(t + θ) dθ

+ 2 ‖r̄‖ ‖Pfr ‖
[
τ1(τ1 + τ2)δa + τ1τ2δv

]

+ (τ1 + τ2)r̄T PfrAP −1
fr A

T
Pfr r̄ +

∫ −τ1

−2τ1−τ2

r̄T (t + θ)Pfr r̄(t + θ) dθ

+ (τ1 + τ2)r̄T Pfr(A)2P −1
fr

(
A

T )2
Pfr r̄

+
∫ −τ1−τ2

−2τ1−2τ2

r̄T (t + θ)Pfr r̄(t + θ) dθ

+ 2‖r̄‖‖PfrA‖
[
(τ1 + τ2)(τ1 + τ2)δa + (τ1 + τ2)τ2δv

]

+ 2‖r̄‖‖Pfr ‖
[
(τ1 + τ2)δa + τ2δv

]
,

where we have used Lemma 1.23 and the facts that |ṙ0| < δv and |r̈0| < δa to
derive the inequality. Take p(s) = qfs. If V [r̄(t + θ)] < p{V [r̄(t)]} = qfV [r̄(t)]
for −2τ1 − 2τ2 ≤ θ ≤ 0, we have

V̇ (r̄) ≤ r̄T (t)
[
(A − In)T Pfr + Pfr(A − In)

]
r̄(t) + τ1r̄

T (t)(Pfr + qfPfr)r̄(t)

+ τ1r̄
T (t)

(
PfrAP −1

fr A
T
Pfr + qfPfr

)
r̄(t)

+ (τ1 + τ2)r̄T (t)
(
PfrAP −1

fr A
T
Pfr + qfPfr

)
r̄(t)

+ (τ1 + τ2)r̄T (t)
(
PfrA

2
P −1

fr

(
A

T )2
Pfr + qfPfr

)
r̄(t)

+ 2
∥
∥r̄(t)

∥
∥‖Pfr ‖

[
τ1(τ1 + τ2)δa + τ1τ2δv

]

+ 2
∥
∥r̄(t)

∥
∥‖PfrA‖

[
(τ1 + τ2)(τ1 + τ2)δa + (τ1 + τ2)τ2δv

]

+ 2
∥
∥r̄(t)

∥
∥‖Pfr ‖

[
(τ1 + τ2)δa + τ2δv

]

≤ r̄(t)T (t)Qftr̄(t)(t) + af

∥
∥r̄(t)

∥
∥.

If τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], we have that λmin(−Qft) > 0. Given 0 < κf < 1,
if ‖r̄(t)‖ ≥ af

κf λmin(−Qft)
, we can obtain that

V̇ (r̄) ≤ −(1 − κf )λmin(−Qft)
∥
∥r̄(t)

∥
∥2 − κfλmin(−Qft)

∥
∥r̄(t)

∥
∥2 + af

∥
∥r̄(t)

∥
∥

≤ −(1 − κf )λmin(−Qft)
∥
∥r̄(t)

∥
∥2

.

Therefore, it follows from Lemma 1.42 that ‖r̄(t)‖ is uniformly ultimately bounded,
which implies that |ri(t) − r0(t)| is uniformly ultimately bounded. Moreover, it can
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be computed that the ultimate bound for ‖r̄(t)‖ is given by λmax(Pfr)af

λmin(Pfr)κf λmin(−Qft)

by following a similar analysis to that in [145, pp. 172–174].

Remark 10.7 Note that if τ1 = τ2 = 0, then limt→∞ ‖r̄(t)‖ = 0. Also note when
τ1 and τ2 are larger, the ultimate bound will also be larger. 
�

10.2.4 Coordinated Tracking with Partial Access to the Leader’s
Velocity

In this subsection, we assume that the leader’s varying position r0 and velocity ṙ0

are available to only a subset of all followers. We assume that |r0| and |ṙ0| are
bounded. We also assume that there exists only the communication delay.

Consider the following coordinated tracking algorithm with the communication
delay for the n followers with single-integrator dynamics given by (3.1) as

ui(t) =
1

∑n
j=0 aij

n∑

j=0

aij

{
ṙj(t − τ2) −

[
ri(t) − rj(t − τ2)

]}
, i = 1, . . . , n,

(10.16)

where τ2 is the communication delay and aij , i = 1, . . . , n, j = 0, . . . , n, is defined
as in (10.10). Using (10.16), (3.1) can be written in a vector form as

˙̄r(t) = A ˙̄r(t − τ2) − r̄(t) + Ar̄(t − τ2) + Rfft, (10.17)

where r̄ and A are defined as in Sect. 10.2.2, and Rfft
�
= [ṙ0(t − τ2) − ṙ0(t)]1n −

[r0(t) − r0(t − τ2)]1n.

Theorem 10.8. Suppose that in G the leader has directed paths to all followers 1
to n. Using (10.16) for (3.1), for all ri(0) and all i = 1, . . . , n, |ri(t) − r0(t)| is
uniformly ultimately bounded no matter how large the communication delay is.

Proof: First, it follows from Lemma 8.1 that ρ(A) < 1, which means that the
neutral operator D r̄t = r̄(t) − Ar̄(t − τ2) is stable. Consider a Lyapunov function
candidate V (r̄) = r̄T (t)r̄(t). Taking the derivative of V (r̄) along (10.17) gives

V̇ (D r̄t) = (D r̄t)T
[

−r̄(t) + Ar̄(t − τ2) + Rfft

]

= −(D r̄t)T (D r̄t) + (D r̄t)Rfft .

In then follows that

V̇ (D r̄t) ≤ − ‖D r̄t‖
(

‖D r̄t‖ − ‖Rfft ‖
)
.

If ‖D r̄t‖ > ‖Rfft ‖, we have V̇ (D r̄t) < 0. Therefore, it follows from Lemma 1.43
that ‖r̄(t)‖ is uniformly ultimately bounded, which implies that |ri(t) − r0(t)| is
ultimately bounded.
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Remark 10.9 From Theorem 10.8, it can be noted that the communication delay
does not jeopardize the stability of the closed-loop tracking error system (10.17)
in the case of coordinated tracking with partial access to the leader’s velocity for
single-integrator dynamics. However, with the increase of the communication delay,
the tracking errors will increase as well.

Remark 10.10 In real applications, the derivatives of the neighbors’ positions
ṙj(t − τ2) can be calculated by using numerical differentiation. For example,
ṙj(t − τ2) can be approximated by [rj(kT − τ2) − rj(kT − T − τ2)]/T, where
k is the discrete-time index and T is the sampling period.

10.3 Coordination for Double-integrator Dynamics with
Communication and Input Delays Under Directed Fixed
Interaction

In this section, we consider the case where the agents are modeled by double-
integrator dynamics given by (3.5). We again assume that the agents are in a one-
dimensional space for simplicity. However, all results hereafter are still valid for any
high-dimensional space by use of the properties of the Kronecker product.

10.3.1 Leaderless Coordination

Consider the following leaderless coordination algorithm with both communication
and input delays for (3.5) as

ui(t) = − 1
∑n

j=1 aij

n∑

j=1

aij

[
ri(t − τ1) − rj(t − τ1 − τ2) − Δij

]

− γc∑n
j=1 aij

n∑

j=1

aij

[
vi(t − τ1) − vj(t − τ1 − τ2)

]
, i = 1, . . . , n,

(10.18)

where τ1 and τ2 are, respectively, the input and communication delays, aij , i, j =
1, . . . , n, is defined as in (10.1), Δij is defined as in Sect. 10.2.1, and γc is a posi-
tive gain. Here we also assume that every agent has a neighbor, which implies that∑n

j=1 aij > 0, i = 1, . . . , n. The objective of (10.18) is to achieve coordination,
that is, ri(t) − rj(t) → Δij and vi(t) − vj(t) → 0 as t → ∞ when there exist both
communication and input delays.

Using (10.18), (3.5) can be written in a vector form as
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˙̆r(t) = v(t), (10.19a)

v̇(t) = −r̆(t − τ1) + Ar̆(t − τ1 − τ2) − γcv(t − τ1)
+ γcAv(t − τ1 − τ2), (10.19b)

where r̆
�
= [r̆1, . . . , r̆n]T with r̆i

�
= ri − δi, v

�
= [v1, . . . , vn]T , and A is defined as

in (10.2). Define r̃
�
= W −1r̆ and ṽ

�
= W −1v, where W is defined as in (10.3). De-

note r̃1:n−1,: and ṽ1:n−1,: as the first n − 1 rows of, respectively, r̃ and ṽ. Denote r̃n,:

and ṽn,: as the last row of, respectively, r̃ and ṽ. By multiplying W −1 on both sides
of (10.19) and after some manipulation, we obtain the following three equations

˙̃z(t) = A0z̃(t) + A1z̃(t − τ1) + A2z̃(t − τ1 − τ2), (10.20a)
˙̃rn,:(t) = ṽn,:(t), (10.20b)
˙̃vn,:(t) = −r̃n,:(t − τ1) + r̃n,:(t − τ1 − τ2) − γcṽn,:(t − τ1)

+ γcṽn,:(t − τ1 − τ2), (10.20c)

where

z̃
�
=

[
r̃T
1:n−1,:, ṽ

T
1:n−1,:

]T
, A0

�
=

[
0(n−1)×(n−1) In−1

0(n−1)×(n−1) 0(n−1)×(n−1)

]

,

A1
�
=

[
0(n−1)×(n−1) 0(n−1)×(n−1)

−In−1 −γcIn−1

]

,

A2
�
=

[
0(n−1)×(n−1) 0(n−1)×(n−1)

Ã γcÃ

]

,

and Ã is defined as in (10.4).

Theorem 10.11. Suppose that the directed fixed graph G has a directed spanning

tree, every agent has a neighbor, and γc > γc
�
= maxμi �=0

|Im(μi)|√
Re(μi)|μi |

, where μi is

the ith eigenvalue of L defined after (10.2). There exist positive τ1 and τ2 such that
for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], the following three conditions are satisfied:

(i) γc(2τ1 + τ2) + (2τ1+τ2)τ2
2 < 1.

(ii) 1 + λi(A1) 1−e−sτ1

s + λi(A2) 1−e−s(τ1+τ2)

s �= 0, for all s ∈ C
+.

(iii) The matrix

Qsc
�
= (A0 + A1 + A2)T Psc + Psc(A0 + A1 + A2) + τ1Ssc + (τ1 + τ2)Hsc

+ τ1

[
(A0 + A1 + A2)T PscA1S

−1
sc AT

1 Psc(A0 + A1 + A2)
]

+ (τ1 + τ2)
[
(A0 + A1 + A2)T PscA2H

−1
sc AT

2 Psc(A0 + A1 + A2)
]

is symmetric negative definite, where Psc ∈ R
(2n−2)×(2n−2) is a symmetric

positive-definite matrix chosen properly such that (A0 + A1 + A2)T Psc +
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Psc(A0 + A1 + A2) is symmetric negative definite, and Ssc ∈ R
(2n−2)×(2n−2)

and Hsc ∈ R
(2n−2)×(2n−2) are arbitrary symmetric positive-definite matrices.

In addition, if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], using (10.18) for (3.5), for all ri(0)
and vi(0) and all i, j = 1, . . . , n, ri(t) − rj(t) → Δij and vi(t) − vj(t) → 0 as

t → ∞. In particular, ri(t) → pT v(0)
τ2

+ δi and vi(t) → 0, i = 1, . . . , n, as t → ∞,

where p ∈ R
n is defined after (10.3).

Proof: For the first statement, it is straightforward to see that there exist positive τ1

and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], Conditions (i) and (ii) are satisfied.
For Condition (iii), because G has a directed spanning tree and each agent has a
neighbor, all eigenvalues of L̃ have positive real parts. Also note that L̃ = In−1 − Ã.
It follows that

A0 + A1 + A2 =

[
0(n−1)×(n−1) In−1

−L̃ −γcL̃

]

.

Because all eigenvalues of L̃ are also the n − 1 nonzero eigenvalues of L and
γc > γc, it follows from Lemma 7.4 that all eigenvalues of A0 + A1 + A2 have
negative real parts. Thus there always exists a symmetric positive-definite matrix
Psc to guarantee that (A0 + A1 + A2)T Psc + Psc(A0 + A1 + A2) is symmetric
negative definite. A similar analysis to that in Theorem 10.1 shows that there ex-
ist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], Condition (iii) is
satisfied.

For the second statement, we show that if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], (10.20a)
is asymptotically stable while (10.20b) is stable. It follows from Lemma 1.44 that
the stability of the following system

d

dt

[

z̃(t) + A1

∫ 0

−τ1

z̃(t + θ) dθ + A2

∫ 0

−τ1−τ2

z̃(t + θ) dθ

]

= (A0 + A1 + A2)z̃(t) (10.21)

implies the stability of (10.20a) if Condition (ii) in the theorem is satisfied. Then,
consider the Lyapunov function candidate

V (z̃t) =χT Pscχ

+
∫ 0

−τ1

∫ t

t+θ

z̃(ξ)T Sscz̃(ξ) dξ dθ +
∫ 0

−τ1−τ2

∫ t

t+θ

z̃(ξ)T Hscz̃(ξ) dξ dθ,

where χ
�
= z̃(t)+A1

∫ 0

−τ1
z̃(t+θ) dθ+A2

∫ 0

−τ1−τ2
z̃(t+θ) dθ. Taking the derivative

of V (z̃t) along (10.21) gives

V̇ (z̃t) ≤ z̃(t)T Qscz̃(t).

A similar analysis to that in the proof of Theorem 10.1 shows that if Condi-
tions (ii) and (iii) are satisfied, (10.20a) is asymptotically stable at the origin. For
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(10.20b) and (10.20c), we apply the Nyquist stability criterion to find the stabil-
ity condition. Applying Laplace transform to (10.20b) and (10.20c), we obtain
that r̃n,:(s) = sr̃n,:(0)+ṽn,:(0)

s2+(γcs+1)[e−τ1s−e−(τ1+τ2)s
]
. Therefore, the stability of (10.20b)

and (10.20c) is determined by the distribution of the roots

s2 + (γcs + 1)
[
e−τ1s−e−(τ1+τ2)s]

= 0. (10.22)

Note that (10.22) has two zero roots. To study the other roots, define g(s)
�
=

(γcs + 1) × [e−τ1s − e−(τ1+τ2)s]/s2. By using the Nyquist stability criterion, it fol-
lows that the roots of (10.22) are stable if Re[g(ιω)] > −1, ∀ω ∈ (−∞, ∞). Be-
cause

Re
[
g(ιω)

]
=

−γc sin(τ1ω) + γc sin[(τ1 + τ2)ω]
ω

+
− cos(τ1ω) + cos[(τ1 + τ2)ω]

ω2

=
−γc sin(τ1ω) + γc sin[(τ1 + τ2)ω]

ω
−

2 sin[ (2τ1+τ2)
2 ω] sin( τ2

2 ω)
ω2

≥ − γcτ1 − γc(τ1 + τ2) − (2τ1 + τ2)τ2

2
,

it follows that (10.20b) and (10.20c) are marginally stable under Condition (i) of the
theorem. Note that the asymptotical stability of (10.20a) implies that limt→∞ z̃(t) =
02n−2. Also by using the final value theorem, it follows that limt→∞ r̃n,:(t) =
ṽn,:(0)

τ2
. After similar manipulation to that in Theorem 10.1, it follows that ri(t) →

pT v(0)
τ2

+ δi and vi(t) → 0 (and hence ri(t) − rj(t) → Δij and vi(t) − vj(t) → 0)
as t → ∞.

Remark 10.12 Due to the existence of the communication delay, using (10.18) for
(3.5), the final velocity is dampened to zero instead of a possible nonzero constant
as compared with the standard consensus algorithm for double-integrator dynam-
ics [248, Chap. 4]. Also note that if there exists only the input delay, the final ve-
locity is a possibly nonzero constant, which is consistent with the results using the
standard consensus algorithm for double-integrator dynamics in [248, Chap. 4].

Remark 10.13 Note that compared with the case for single-integrator dynamics in
Sect. 10.2.1, the case for double-integrator dynamics requires more stringent condi-
tions to guarantee coordination.

10.3.2 Coordinated Tracking when the Leader’s Velocity is
Constant

In this subsection, we assume that in addition to n followers, labeled as agents or
followers 1 to n, there exists a leader, labeled as agent 0, with position r0 and ve-
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locity v0. Here we assume that v0 is constant. Let G
�
= (V , E ) and G

�
= (V , E ) be

defined as in Sect. 10.2.2.
Consider the following coordinated tracking algorithm with both communication

and input delays for the n followers with double-integrator dynamics given by (3.5)
as

ui(t) = − 1
∑n

j=0 aij

n∑

j=0

aij

[
ri(t − τ1) − rj(t − τ1 − τ2)

]

− γr∑n
j=0 aij

n∑

j=0

aij

[
vi(t − τ1) − vj(t − τ1 − τ2)

]
, i = 1, . . . , n,

(10.23)

where τ1 and τ2 are, respectively, the input and communication delays, aij , i =
1, . . . , n, j = 0, . . . , n, is defined as in (10.10), and γr is a positive gain. Note
that in G if the leader has directed paths to all followers 1 to n, it follows that∑n

j=0 aij > 0, i = 1, . . . , n.
Using (10.23), (3.5) can be written in a vector form as

χ̇(t) = A0χ(t) + A1χ(t − τ1) + A2χ(t − τ1 − τ2) + Rsr, (10.24)

where r̄
�
= [r1−r0, . . . , rn −r0]T , v̄

�
= [v1−v0, . . . , vn −v0]T , χ

�
= [r̄T , v̄T ]T , A0

�
=

[ 0n×n In

0n×n 0n×n

]
, A1

�
=

[ 0n×n 0n×n

−In −γrIn

]
, A2

�
=

[ 0n×n 0n×n

A γrA

]
, and Rsr

�
=

[
0n

−τ2v01n

]
.

Note that here A is defined before (10.11) and we have used the fact that v0 is

constant. By letting ζ
�
= (A0 + A1 + A2)−1Rsr and χ̂

�
= χ − ζ, we can transform

(10.24) as

˙̂χ = A0χ̂(t) + A1χ̂(t − τ1) + A2χ̂(t − τ1 − τ2). (10.25)

Theorem 10.14. Suppose that in G the leader has directed paths to all followers 1 to

n and γr > γr
�
= maxi

|Im(μi)|√
Re(μi)|μi |

, where μi is the ith eigenvalue of In − A. There

exist positive τ1 and τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], the following two
conditions are satisfied:

(i) 1 + λi(A1) 1−e−sτ1

s + λi(A2) 1−e−s(τ1+τ2)

s �= 0, for all s ∈ C
+.

(ii) The matrix

Qsr
�
= (A0 + A1 + A2)T Psr + Psr(A0 + A1 + A2) + τ1Ssr + (τ1 + τ2)Hsr

+ τ1

[
(A0 + A1 + A2)T PsrA1S

−1
sr A

T

1 Psr(A0 + A1 + A2)
]

+ (τ1 + τ2)
[
(A0 + A1 + A2)T PsrA2H

−1
sr A

T

2 Psr(A0 + A1 + A2)
]

is symmetric negative definite, where Psr ∈ R
2n×2n is a symmetric positive-

definite matrix chosen properly such that (A0 + A1 + A2)T Psr + Psr(A0 +
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A1 + A2) is symmetric negative definite, and Ssr ∈ R
2n×2n and Hsr ∈ R

2n×2n

are arbitrary symmetric positive-definite matrices.

In addition, if τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], using (10.23) for (3.5), r̄(t) → τ2v0(In −
A)−11n and v̄(t) → 0n as t → ∞.

Proof: For the first statement, it is straightforward to show that Condition (i) is sat-
isfied. For Condition (ii), note that A0+A1+A2 =

[ 0n×n In

−(In −A) −γr(In −A)

]
. Because

in G the leader has directed paths to all followers, it follows from Lemma 10.1 that
all eigenvalues of In − A have positive real parts. Because γr > γr, it thus follows
from Lemma 7.4 that all eigenvalues of A0 +A1 +A2 have negative real parts. The
rest of the proof is similar to that in Theorem 10.1.

For the second statement, it follows from Lemma 1.44 that the stability of the
following system

d

dt

[

χ̂(t) + A1

∫ 0

−τ1

χ̂(t + θ) dθ + A2

∫ 0

−τ1−τ2

χ̂(t + θ) dθ

]

= (A0 + A1 + A2)χ̂(t) (10.26)

implies the stability of (10.25) under Condition (i) of the theorem. Then, consider a
Lyapunov function candidate

V (χ̂t) =ϕT Psrϕ +
∫ 0

−τ1

∫ t

t+θ

χ̂T (ξ)Ssrχ̂(ξ) dξ dθ

+
∫ 0

−τ1−τ2

∫ t

t+θ

χ̂T (ξ)Hsrχ̂(ξ) dξ dθ,

where ϕ
�
= χ̂(t)+A1

∫ 0

−τ1
χ̂(t+θ) dθ+A2

∫ 0

−τ1−τ2
χ̂(t+θ) dθ. Taking the deriva-

tive of V (χ̂t) along (10.26) gives

V̇ (χ̂t) ≤ χ̂T (t)Qsrχ̂(t),

where we have used Lemma 1.23 to derive the inequality. A similar analysis to
that in the proof of Theorem 10.1 shows that (10.25) is asymptotically stable at the
origin, which implies that χ̂(t) → 02n as t → ∞. Note that ζ = [τ2v0[(In −
A)−11n]T ,0T

n ]T by computation and χ = χ̂ + ζ. It follows that r̄(t) → τ2v0(In −
A)−11n and v̄(t) → 0n as t → ∞.

Corollary 10.1. Suppose that the conditions in Theorem 10.14 hold. If v0 = 0, then
ri(t) → r0 and vi(t) → 0 as t → ∞.

Remark 10.15 Note that different from the results in the case for single-integrator
dynamics in Sect. 10.2.2, the tracking errors of the followers ri(t) − r0(t) might
not approach zero but approach possibly different constants in the case of double-
integrator dynamics.
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10.3.3 Coordinated Tracking with Full Access to the Leader’s
Acceleration

In this subsection, we consider the case where the leader’s position r0 and velocity
v0 are varying. We assume that all followers have access to v̇0. We also assume that
|v0| < δv , |v̇0| < δa, and |v̈0| < δȧ, where δv, δa and δȧ are positive constants.

Consider the following coordinated tracking algorithm with both communication
and input delays for the n followers with double-integrator dynamics given by (3.5)
as

ui(t) = v̇0(t − τ1 − τ2) − 1
∑n

j=0 aij

n∑

j=0

aij

{[
ri(t − τ1) − rj(t − τ1 − τ2)

]

+ γt

[
vi(t − τ1) − vj(t − τ1 − τ2)

]}
, i = 1, . . . , n, (10.27)

where τ1 and τ2 are, respectively, the input and communication delays, aij , i =
1, . . . , n, j = 0, . . . , n, is defined as in (10.10), and γt is a positive gain. Using
(10.27), (3.5) can be written in a vector form as

χ̇(t) = A0χ(t) + A1χ(t − τ1) + A2χ(t − τ1 − τ2) + Rst, (10.28)

where χ is defined as in (10.24), A0, A1, and A2 are defined as in (10.24) with γr

replaced with γt, Rst
�
=

[
0n

R1

]
, and R1

�
= 1n[v̇0(t − τ1 − τ2) − v̇0(t) + r0(t − τ1 −

τ2)−r0(t−τ1)+γtv0(t−τ1 −τ2)−v0(t−τ1)]. By using (1.10), it follows that R1 =
−1n

∫ 0

−τ1−τ2
v̈0(t + θ) dθ − 1n

∫ −τ1

−τ1−τ2
v0(t + θ) dθ − γt1n

∫ −τ1

−τ1−τ2
v̇0(t + θ) dθ.

Theorem 10.16. Suppose that in G the leader has directed paths to all followers 1
to n and γt > γr, where γr is defined in Theorem 10.14. There exist positive τ1 and
τ2 such that for τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2],

Qst
�
= (A0 + A1 + A2)T Psr + Psr(A0 + A1 + A2)

+ τ1

(
PsrA1A0P

−1
sr A

T

0 A
T

1 Psr + Psr(A1)2P −1
sr

(
A

T

1

)2
Psr

+ PsrA1A2P
−1
sr A

T

2 A
T

1 Psr + 3qsPsr

)

+ (τ1 + τ2)
(
PsrA2A0P

−1
sr A

T

0 A
T

2 Psr + PsrA2A1P
−1
sr A

T

1 A
T

2 Psr

+ Psr

(
A2

)2
P −1

sr

(
A

T

2

)2
Psr + 3qsPsr

)

is symmetric negative definite, where Psr is defined in Theorem 10.14 and qs is
an arbitrary real number satisfying qs > 1. In addition, if τ1 ∈ [0, τ1] and
τ2 ∈ [0, τ2], using (10.27) for (3.5), for all ri(0) and vi(0) and all i = 1, . . . , n,
|ri(t) − r0(t)| and |vi(t) − v0(t)| are uniformly ultimately bounded. In particu-

lar, the ultimate bound for ‖χ(t)‖ is given by λmax(Psr)as

λmin(Psr)κsλmin(−Qst)
, where as

�
=

2[‖Psr‖ + ‖PsrA1‖τ1 + ‖PsrA2‖(τ1 + τ2)][(τ1 + τ2)δȧ + τ2δv + γtτ2δa], and κs is
an arbitrary real number satisfying 0 < κs < 1.
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Proof: The proof for the first statement is similar to that in Theorem 10.14 and is
hence omitted here. For the second statement, using (1.10), we transform (10.28) to
the following system

d

dt
χ(t) = (A0 + A1 + A2)χ(t) − A1

∫ 0

−τ1

χ̇(t + θ) dθ

− A2

∫ 0

−τ1−τ2

χ̇(t + θ) dθ + Rst

= (A0 + A1 + A2)χ(t)

− A1

∫ 0

−τ1

[
A0χ(t + θ)

+ A1χ(t − τ1 + θ) + A2χ(t − τ1 − τ2 + θ)
]
dθ

− A2

∫ 0

−τ1−τ2

[
A0χ(t + θ) + A1χ(t − τ1 + θ)

+ A2χ(t − τ1 − τ2 + θ)
]
dθ

− A1

∫ 0

−τ1

Rst(t + θ) dθ − A2

∫ 0

−τ1−τ2

Rst(t + θ) dθ + Rst

= (A0 + A1 + A2)χ(t) − A1A0

∫ 0

−τ1

χ(t + θ) dθ − A
2

1

∫ −τ1

−2τ1

χ(t + θ) dθ

− A1A2

∫ −τ1−τ2

−2τ1−τ2

χ(t + θ) dθ − A2A0

∫ 0

−τ1−τ2

χ(t + θ) dθ

− A2A1

∫ −τ1

−2τ1−τ2

χ(t + θ) dθ − A
2

2

∫ −τ1−τ2

−2τ1−2τ2

χ(t + θ) dθ

− A1

∫ 0

−τ1

Rst(t + θ) dθ − A2

∫ 0

−τ1−τ2

Rst(t + θ) dθ + Rst.

Consider the Lyapunov function candidate V (χ) = χT (t)Psrχ(t). Taking the
derivative of V (χ) along (10.28) gives

V̇ (χ) ≤ χT
[
(A0 + A1 + A2)T Psr + Psr(A0 + A1 + A2)

]
χ

+ τ1χ
T PsrA1A0P

−1
sr A

T

0 A
T

1 Psrχ

+
∫ 0

−τ1

χT (t + θ)Psrχ(t + θ) dθ + τ1χ
T Psr(A1)2P −1

sr

(
A

T

1

)2
Psrχ

+
∫ −τ1

−2τ1

χT (t + θ)Psrχ(t + θ) dθ + τ1χ
T PsrA1A2P

−1
sr A

T

2 A
T

1 Psrχ

+
∫ −τ1−τ2

−2τ1−τ2

χT (t + θ)Psrχ(t + θ) dθ

+ (τ1 + τ2)χT PsrA2A0P
−1
sr A

T

0 A
T

2 Psrχ
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+
∫ 0

−τ1−τ2

χT (t + θ)Psrχ(t + θ) dθ

+ (τ1 + τ2)χT PsrA2A1P
−1
sr A

T

1 A
T

2 Psrχ

+
∫ −τ1

−2τ1−τ2

χT (t + θ)Psrχ(t + θ) dθ

+ (τ1 + τ2)χT P (A2)2P −1
sr

(
A

T

2

)2
Psrχ

+
∫ −τ1−τ2

−2τ1−2τ2

χT (t + θ)Psrχ(t + θ) dθ

+ 2‖χ‖ ‖Psr‖
[
(τ1 + τ2)δȧ + τ2δv + γtτ2δa

]

+ 2‖χ‖ ‖PsrA1‖τ1

[
(τ1 + τ2)δȧ + τ2δv + γtτ2δa

]

+ 2‖χ‖ ‖PsrA2‖(τ1 + τ2)
[
(τ1 + τ2)δȧ + τ2δv + γtτ2δa

]
,

where we have used Lemma 1.23 and the facts that |v0| < δv , |v̇0| < δa, and
|v̈0| < δȧ to derive the inequality. Take p(s) = qss. If V [χ(t + θ)] < p{V [χ(t)]} =
qsV [χ(t)] for −2τ1 − 2τ2 ≤ θ ≤ 0, by following a similar analysis to that in the
proof of Theorem 10.6, we have

V̇ (χ) ≤ χT (t)Qstχ(t) + as

∥
∥χ(t)

∥
∥.

If τ1 ∈ [0, τ1] and τ2 ∈ [0, τ2], we have that λmin(−Qst) > 0. Given 0 < κs < 1, if
‖χ(t)‖ ≥ as

κsλmin(−Qst)
, we can obtain

V̇ (χ) ≤ −(1 − κs)λmin(−Qst)
∥
∥χ(t)

∥
∥2 − κsλmin(−Qst)

∥
∥χ(t)

∥
∥2 + as

∥
∥χ(t)

∥
∥

≤ −(1 − κs)λmin(−Qst)
∥
∥χ(t)

∥
∥2

.

Therefore, it follows from Lemma 1.42 that ‖χ(t)‖ is uniformly ultimately boun-
ded, which implies that |ri(t) − r0(t)| and |vi(t) − v0(t)| are uniformly ultimately
bounded. Moreover, it can be computed that the ultimate bound for ‖χ(t)‖ is given
by λmax(Psr)as

λmin(Psr)κsλmin(−Qst)
by following a similar analysis to that in [145, pp. 172–

174].

10.3.4 Coordinated Tracking with Partial Access to the Leader’s
Acceleration

In this subsection, we assume the leader’s varying position r0, velocity v0, and ac-
celeration v̇0 are available to only a subset of all followers. We assume that |r0|,
|v0|, and |v̇0| are bounded. We also assume that there exists only the communica-
tion delay.
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Consider the following coordinated tracking algorithm for the n followers with
double-integrator dynamics given by (3.5) as

ui(t) =
1

∑n
j=0 aij

n∑

j=0

aij

{
v̇j(t − τ2) −

[
ri(t) − rj(t − τ2)

]

− γft

[
vi(t) − vj(t − τ2)

]}
, i = 1, . . . , n, (10.29)

where τ2 is the communication delay, aij , i = 1, . . . , n, j = 0, . . . , n, is defined as
in (10.10), and γft is a positive gain. Using (10.29), (3.5) can be written in a vector
form as

χ̇(t) = Df χ̇(t − τ2) + Af0χ + Af1χ(t − τ2) + Rsft, (10.30)

where χ is defined as in (10.24), Df
�
=

[ 0n×n 0n×n

0n×n A

]
, Af0

�
=

[ 0n×n In

−In −γftIn

]
,

Af1
�
=

[ 0n×n 0n×n

A γftA

]
, Rsft

�
=

[
0n

R2

]
, and R2

�
= [v̇0(t − τ2) − v̇0(t)]1n − [r0(t) −

r0(t−τ2)]1n −γft[v0(t)−v0(t−τ2)]1n. Note that here A is defined before (10.11).

Theorem 10.17. Suppose that in G the leader has directed paths to all followers 1
to n, and γft > γr, where γr is defined in Theorem 10.14. Using (10.29) for (3.5),
for all ri(0) and vi(0) and all i = 1, . . . , n, |ri(t) − r0(t)| and |vi(t) − v0(t)| are
uniformly ultimately bounded if

λ > 2qsf

√
λmax(Psr)
λmin(Psr)

∥
∥Psr(Af0Df + Af1)

∥
∥ + 2‖PsrAf1‖, (10.31)

where λ
�
= λmin[−(Af0 + Af1)T Psr − Psr(Af0 + Af1)],2 Psr ∈ R

2n×2n is a
symmetric positive-definite matrix chosen properly such that (Af0 + Af1)T Psr +
Psr(Af0 + Af1) is symmetric negative definite, and qsf is an arbitrary real number
satisfying qsf > 1.

Proof: First, it follows from Lemma 8.1 that ρ(A) < 1, which implies that
ρ(Df ) < 1. Therefore, the neutral operator Dχt = χ − Dfχ(t − τ2) is stable. Con-
sider a Lyapunov function candidate V (χ) = χT (t)Psrχ(t). Taking the derivative
of V (χ) along (10.30) gives

V̇ (Dχt) = 2(Dχt)
T Psr

[
Af0χ + Af1χ(t − τ2) + Rsft

]

= 2(Dχt)
T Psr

[
Af0(Dχt) + Af0Dfχ(t − τ2) + Af1χ(t − τ2) + Rsft

]

2 Note that Af0 + Af1 =
[ 0n×n In

−(In −A) −γft(In −A)

]
. Similar to the proof of the first statement

in Theorem 10.14, it follows that all eigenvalues of Af0 + Af1 have negative real parts under the
condition of the theorem.
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= (Dχt)
T
[
(Af0 + Af1)T Psr + Psr(Af0 + Af1)

]
(Dχt)

+ 2(Dχt)
T Psr(Af0Df + Af1)χ(t − τ2)

− 2(Dχt)
T PsrAf1(Dχt) + 2(Dχt)

T PsrRsft.

Let p(s) = q2
sfs. If V [χ(θ)] < p[V (Dχt)] for t − τ2 ≤ ξ ≤ t, it is equivalent

that χT (θ)Psrχ(θ) < q2
sf(Dχt)T Psr(Dχt) for t − τ2 ≤ θ ≤ t. Therefore, we have

‖χ(t − τ2)‖ < qsf

√
λmax(Psr)
λmin(Psr)

‖Dχt‖. Thus, it follows that

V̇ (Dχt) ≤ − λ ‖Dχt‖2 + 2qsf

√
λmax(Psr)
λmin(Psr)

∥
∥Psr(Af0Df + Af1)

∥
∥‖Dχt‖2

+ 2‖PsrAf1‖ ‖Dχt‖2 + 2‖PsrRsft‖‖Dχt‖.

Therefore, if (10.31) holds, it follows from Lemma 1.43 that ‖χ(t)‖ is uniformly
ultimately bounded, which implies that |ri(t) − r0(t)| and |vi(t) − v0(t)| are uni-
formly ultimately bounded.

Remark 10.18 Note that different from the case for single-integrator dynamics
where the tracking errors are bounded no matter how large the communication de-
lay is, a certain delay independent condition (10.31) has to be satisfied beforehand
to ensure the tracking errors are uniformly ultimate bounded in the case of double-
integrator dynamics.

10.4 Simulation

In this section, we present simulation results to validate the theoretical results in
Sects. 10.2 and 10.3. For the leaderless coordination problem, we consider a team
of six agents with the adjacency matrix A chosen as

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 5 0 2.5 0 2.5
8 0 1 0 1 0
0 2 0 2 3 3
1 0 1 0 8 0
0 1.2 0 1.8 0 7
5 1 0 2 2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For the leader-following coordination problem, we consider a team consisting of six
followers and one leader. The adjacency matrix A associated with the six followers
is defined as
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Fig. 10.1 Agents’ positions using (10.1)

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 1 0 0
8 0 1 0 1 0
0 3 0 0 0 3
1 0 0 0 1 0
0 1.2 0 1.8 0 7
5 1 0 0 4 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We also let a10 = 1, a30 = 4, a40 = 8, and ai0 = 0 otherwise.
For single-integrator dynamics, we choose r(0) = [−1, 5, 7, 4, 6, 3]T , where r

is a column stack vector of all ri, i = 1, . . . , 6. For (10.1), we let Δij = 0 for
simplicity. For (10.10), we let r0 = 3.5. For (10.13), we let r0(t) = 3.5 − 4 cos( t

4 ).
For all (10.1), (10.10), and (10.13), the input delay and the communication delay
are chosen as, respectively, τ1 = 0.1 s and τ2 = 0.2 s. For (10.16), we let r0(t) =
3.5 − 4 cos( t

4 ) and the communication delay be τ2 = 0.2 s.
Figures 10.1, 10.2, 10.3, and 10.4 show the positions of the agents using, respec-

tively, (10.1), (10.10), (10.13), and (10.16). It can be seen from Figs. 10.1 and 10.2
that the agents achieve, respectively, leaderless coordination and coordinated regu-
lation. In the case of coordinated tracking, Figs. 10.3 and 10.4 show that the tracking
errors are uniformly ultimately bounded due to the existence of the delays and the
fact that the leader is dynamic.

For double-integrator dynamics, we choose r(0) = [−0.4, 0.5, 0.7, 0.4, 1.2, 0.3]T

and v(0) = [−0.1, 0.2, 0.7, 0.4, −0.1, 0.3]T . For (10.18), we let Δij = 0 for sim-
plicity. For (10.23), we consider two subcases. In one subcase, we let r0 = −0.2
and v0 = 0. In the other subcase, we let r0(t) = −0.2 + 0.1t and v0 = 0.1. For
(10.27), we let r0(t) = −0.2 + 0.3t − 1.6 sin( t

4 ) and v0(t) = 0.3 − 0.4 cos( t
4 ). For

all (10.18), (10.23), and (10.27), we choose τ1 = 0.3 s and τ2 = 0.1 s. For (10.29),
we let r0(t) = −0.2 + 0.3t − 1.6 sin( t

4 ), v0(t) = 0.3 − 0.4 cos( t
4 ), and τ2 = 0.1 s.
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Fig. 10.2 Agents’ positions using (10.10)

Fig. 10.3 Agents’ positions using (10.13)

Figure 10.5 the positions and velocities of the agents using (10.18). It is inter-
esting to notice that unlike the result using the standard consensus algorithm with
relative damping for double-integrator dynamics [248, Chap. 4], the final velocities
of the agents are always dampened to zero rather than a possibly nonzero constant.
Figures 10.6 and 10.7 show the positions and velocities using (10.23) with, respec-
tively, v0 = 0 and v0 = 0.1. It is worth noticing that when v0 is a nonzero con-
stant (respectively, zero), the tracking errors ri(t) − r0(t) approach constant values
(respectively, zero). Figures 10.8 and 10.9 show the positions and velocities us-
ing, respectively, (10.27) and (10.29). The tracking errors are uniformly ultimately
bounded due to the existence of the delays and the fact that the leader is dynamic.
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Fig. 10.4 Agents’ positions using (10.16)

Fig. 10.5 Agents’ positions using (10.18)

10.5 Notes

The results in this chapter are based mainly on [190, 191]. For further results on
distributed multi-agent coordination with time delays, see [126, 174, 192, 199, 206,
214, 228, 264, 283, 285, 290, 291, 316, 322, 323]. A frequency-domain approach
is used in [214] to find the stability conditions for a leaderless coordination algo-
rithm with input delays. A time-domain approach based on Lyapunov–Krasovaskii
theorem is adopted in [174] to obtain the stability conditions for a similar leader-
less coordination algorithm with uniform input delays under a strongly connected
and balanced interaction graph. Besides leaderless coordination algorithms, leader-
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Fig. 10.6 Agents’ positions using (10.23) with v0 = 0

Fig. 10.7 Agents’ positions using (10.23) with v0 = 0.1

following coordination algorithms with input delays are also studied. By combining
the results in [174] and [120], the authors in [228] propose a first-order coordinated
tracking algorithm with input delays, where an estimator is used to estimate the
leader’s velocity. In [174, 214, 228], the interaction graph is assumed to be either
undirected or strongly connected and balanced. The extension to the case where
the interaction graph has a directed spanning tree and the input delays are non-
uniform is provided in [291], where a frequency-domain approach is adopted to
find conditions to achieve leaderless coordination. Except for input delays, the in-
fluence of communication delays on coordination algorithms is also studied. It is
shown in [199] shows that communication delays will not jeopardize the stability
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Fig. 10.8 Agents’ positions using (10.27)

Fig. 10.9 Agents’ positions using (10.29)

of a first-order leaderless coordination algorithm under a directed interaction graph.
A similar algorithm is discussed in [264], where the effect of the initial conditions
is highlighted. A second-order coordinated regulation algorithm with non-uniform
communication delays is studied in [206], where a damping term is used to regu-
late the velocities of all agents to zero and the interaction graph is assumed to be
undirected. The case with both communication and input delays is studied in [290],
where a first-order leaderless coordination algorithm is studied in a discrete-time
setting by a frequency-domain approach.
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