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Preface

Population dynamics is the area of science which tries to explain in a simple mecha-
nistic way the time variations of the size and composition of biological populations,
such as those of humans, animals, plants or microorganisms. It is related to, but still
quite distinct from, the more descriptive area of population statistics. One common
point is that they make extensive use of mathematical language.

Population dynamics is at the intersection of various fields: mathematics, social
sciences (demography), biology (population genetics and ecology) and medicine
(epidemiology). As a result it is not often presented as a whole, despite the simi-
larities between the problems met in various applications. A notable exception in
French is the book Mathematical Population Theories1 by Alain Hillion. But it
presents the subject from the point of view of the mathematician, distinguishing
various types of model: discrete-time models (t = 0,1,2...) and continuous-time
models (t is a real number), deterministic models (future states are known exactly if
the present state is known exactly) and stochastic models (where probabilities play
a role). The book then considers logically discrete deterministic models, continuous
deterministic models, discrete stochastic models and continuous stochastic models.

In the present book I have tried to discuss the same subject but from a historical
point of view. Research is explained in its context. Short biographies of scientists
are included. This should make the book easier to read for those less familiar with
mathematics and can usually help in understanding the origin of the problems under
study. But this book is not just about history. It can also serve as an introduction to
mathematical modelling. It seemed important to include the details of most compu-
tations so that the reader can really see the limitations of the models. Technical parts
are emphasized in grey boxes and can be skipped at first reading. The last chapter
focuses on the numerous contemporary problems in population dynamics that one
can try to analyze from a mathematical point of view. For those who would like to
know more, the lists of references at the end of each chapter also include web sites
from which original articles may be downloaded.

1 Presses Universitaires de France, Paris, 1986. For English readers, Quantitative Methods in Bio-
logical and Medical Sciences by H.O. Lancaster (Springer-Verlag, 1994) gives a good historical
overview without the mathematical details.
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It was not possible in a book of this length to give a complete picture of all the
work developed until now or to talk about all the scientists who have contributed
to the subject. The choice made necessarily contains an arbitrary component, par-
ticularly for the most recent decades. I hope nevertheless that the sample chosen is
representative enough, and that people active in the field whose work is not men-
tioned will not be upset.

The ideal audience for this book would include:

• High school and university students wondering what links may exist between the
mathematics courses they have to attend and the world around them, or students
preparing personal work on a theme related to population dynamics.

• Mathematics teachers trying to make their course more attractive. The knowledge
of the four elementary operations is enough to understand most of Chapters 1, 2
and 5. Chapter 3 can serve as an introduction to the applications of logarithms.
This book also covers: recurrence equations in Chapters 1, 3, 8, 11, 14, 21, 23,
24; differential equations in Chapters 4, 6, 12, 13, 16; partial differential equa-
tions in Chapters 20, 25; an integral equation in Chapter 10; and applications of
probability theory in Chapters 2, 7, 8, 9, 15, 16, 17, 18, 19, 22.

• People already familiar with demography, epidemiology, genetics or ecology and
willing to compare their favourite area with others which may involve similar
mathematical models.

• Readers interested in the history of science.

This book is essentially a translation of the French edition published by Cassini
Éditeurs (Paris) in 2008 under the title Histoires de Mathématiques et de Popula-
tions. Some chapters have been reorganized or rewritten. Four figures have been
added. A few misprints have been corrected. The lists of references at the end of
each chapter have been extended and updated. These lists include web sites show-
ing the original works.

A reference followed by a URL means that it can be easily found – at least in
part – by searching on the World Wide Web (e.g. through Google Books).

A number of people have made remarks on various versions of the book, pro-
vided references and pictures or discussed copyright issues: André and Catherine
Bellaı̈che, Bernard Bru, Joe Gani, Geoffrey Grimmett, François Hamel, Nikolai
Nikolski, Carel Pretorius and Niklaus Salzmann. Thanks to all of them. I also thank
my mother for helping with the translation.

Marrakech, August 2010
Nicolas Bacaër
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Chapter 1
The Fibonacci sequence (1202)

Leonardo of Pisa, named Fibonacci long after his death, was born circa 1170 in the
Republic of Pisa when it was at the height of its commercial and military power in
the Mediterranean world. Around 1192, Fibonacci’s father was sent by the Repub-
lic to the harbor of Bejaia, now in Algeria, to head a trading post. His son joined
him shortly after to prepare to be a merchant. Leonardo started to learn the decimal
number system that the Arabs had brought back from India and which is still in use
today in almost the same form: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. While traveling for busi-
ness around the Mediterranean Sea, he compared the different number systems and
studied Arab mathematics. Back in Pisa, he finished writing in 1202 a book in Latin
entitled Liber abaci (Book of Calculation) in which he explained the new number
system and showed how to use it for accounting, weight and currency conversions,
interest rates and many other applications. He also gathered most of the results in
algebra and arithmetic known to the Arabs.

Fibonacci considered in his book what one would today call a problem in pop-
ulation dynamics. But it appeared just as a computational exercise in the middle of
other unrelated subjects: the preceding section in the book is about perfect numbers
that are the sum of their factors, like 28 = 14+7+4+2+1, and the following sec-
tion is a problem about the sharing of money among four people that is equivalent to
a linear system of four equations. Here is a translation from Latin of the population
problem:

A certain man had one pair of rabbits together in a certain enclosed place. One wishes to
know how many are created from the pair in one year when it is the nature of them in a
single month to bear another pair and in the second month those born to bear also.

If there is a pair of newborn rabbits at the beginning of the first month, this pair will
not yet be fertile after one month and there will still be just one pair of rabbits at the
beginning of the second month. This pair of rabbits will give birth to another pair at
the beginning of the third month, so there will be two pairs in total. The initial pair
of rabbits will again give birth to another pair at the beginning of the fourth month.
But the second pair of rabbits will not yet be fertile. There will be just three pairs of
rabbits.

N. Bacaër, A Short History of Mathematical Population Dynamics,
DOI 10.1007/978-0-85729-115-8 1, © Springer-Verlag London Limited 2011
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Using modern notations let Pn be the number of pairs of rabbits at the beginning
of month n. The number of pairs of rabbits Pn+1 in month n + 1 is the sum of the
number Pn of pairs in month n and of the number of newborn pairs in month n+1.
But only the pairs of rabbits that are at least two months old give birth to new pairs
of rabbits in month n+1. These are the pairs that were already there in month n−1
and their number is Pn−1. So

Pn+1 = Pn +Pn−1.

This is a recurrence relation: it gives the population in month n + 1 as a function
of the population in the previous months. Hence Fibonacci could easily build the
following table, where 1+1 = 2, 1+2 = 3, 2+3 = 5, 3+5 = 8, etc.

n 1 2 3 4 5 6 7 8 9 10 11 12 13

Pn 1 1 2 3 5 8 13 21 34 55 89 144 233

In fact, Fibonacci considered as the initial condition the situation in month n = 2.
Since P14 = 144+233 = 377, he finally obtained 377 pairs of rabbits twelve months
after his starting point. He noticed that this sequence of numbers could continue in-
definitely.

After 1202 Fibonacci wrote several other books, such as Practica geometriae
in 1220 and Liber quadratorum (Book of Squares) in 1225. His reputation led to a
meeting with the emperor Frederick II, who appreciated science. In 1240 the Repub-
lic of Pisa awarded Fibonacci a yearly pension. The year of his death is unknown.

During the following centuries, Fibonacci’s rabbit problem was forgotten and had
no influence on the development of mathematical models for population dynamics.
Several scientists met the same sequence of numbers in their studies but did not refer
to Fibonacci or to any population. Several of Kepler’s books contain the remark
that the ratio Pn+1/Pn converges, when n tends to infinity, to the golden number
φ = (1+

√
5)/2. This is a particular case of a property common to most population

models: the tendency to increase geometrically (see Chapters 3 and 21). In 1728
Daniel Bernoulli obtained the exact formula

Pn =
1√
5

[
1+

√
5

2

]n

− 1√
5

[
1−

√
5

2

]n

while studying general recurrent series. The complete works of Fibonacci were pub-
lished in the nineteenth century. From then on, the sequence (Pn) could be found in
books of recreational mathematics under the name of Fibonacci sequence.

It is clear that, in order to model a population of rabbits, the hypotheses leading
to the Fibonacci sequence are far from being realistic: no mortality, no separation
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of sexes etc. Our interest in this sequence in recent decades in biology has come
from the fact that several plants contain structures that involve some of the numbers
Pn, for example, 8 and 13 in pine cones or 34 and 55 in sunflowers. A scientific
journal, The Fibonacci Quarterly, is even entirely dedicated to the properties and
applications of the Fibonacci sequence!

Further reading

1. Bernoulli, D.: Observationes de seriebus. . . Comment. Acad. Sci. Imp. Petro-
politanae 3, 85–100 (1728/1732) Reproduced in: Die Werke von Daniel
Bernoulli, Band 2, Birkhäuser, Basel, 1982, pp. 49–64 books.google.com

2. Sigler, L.E.: Fibonacci’s Liber Abaci. Springer, New York (2002) books.
google.com

3. Vogel, K.: Leonardo Fibonacci. In: Gillespie, C.C. (ed.) Dictionary of Scientific
Biography, vol. 4, pp. 604–613. Scribner, New York (1971)

http://books.google.fr/books?id=jMzA9uRGEdEC&printsec=frontcover&source=gbs_v2_summary_r&cad=0#v=onepage&q=&f=false
http://books.google.fr/books?id=PilhoGJeKBUC&printsec=frontcover&dq=Fibonacci%27s+Liber+Abaci&cd=1#v=onepage&q=&f=false
http://books.google.fr/books?id=PilhoGJeKBUC&printsec=frontcover&dq=Fibonacci%27s+Liber+Abaci&cd=1#v=onepage&q=&f=false


Chapter 2
Halley’s life table (1693)

Edmond Halley was born near London in 1656. His father was a rich soap maker.
Edmond became interested in astronomy at a young age. He started studying at
Queen’s College of Oxford University. When the Greenwich Observatory was in-
augurated in 1675, Halley could already visit Flamsteed, the Astronomer Royal. He
interrupted his studies from 1676 to 1678 to go to the island of Saint Helena and
establish a catalog of the stars that can be seen from the southern hemisphere. At
his return to England he became a fellow of the Royal Society. He published also
the observations he had made on the circulation of winds during his journey to Saint
Helena. In 1684 he visited Newton in Cambridge to discuss the link between Ke-
pler’s laws of planetary motion and the force of attraction exerted by the Sun. He
encouraged Newton to write the famous Mathematical Principles of Natural Philos-
ophy, a book which he finally published at his own expense. He was then working as
clerk of the Royal Society. In 1689 he designed a bell for underwater diving, which
he tested himself.

Fig. 2.1 Edmond Halley
(1656–1742)

N. Bacaër, A Short History of Mathematical Population Dynamics,
DOI 10.1007/978-0-85729-115-8 2, © Springer-Verlag London Limited 2011
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6 2 Halley’s life table (1693)

At about the same time, Caspar Neumann, a theologian living in Breslau, was
collecting data about the number of births and deaths in his city. Breslau belonged
to the Habsburg empire (it is now in Poland and called Wrocław). The data included
the age at which people had died. So it could be used to construct a life table showing
the probability of surviving until any given age.

The first life table had been published in London in 1662 in a book entitled
Natural and Political Observations Made upon the Bills of Mortality. This book is
usually considered as the founding text of both statistics and demography and has a
strange particularity: people still wonder nowadays if it was written by John Graunt,
a London merchant and author indicated on the book cover, or by his friend William
Petty, one of the founders of the Royal Society1. In any case the life table contained
in the book tried to take advantage of the bulletins that had been regularly reporting
the burials and baptisms in London since the beginning of the seventeenth century.
These bulletins were mainly used to inform people on the recurrent epidemics of
plague. This is the reason why they indicated the cause of death and not the age at
which people died. To obtain a life table giving the chance of survival as a function
of age, Graunt or Petty had to guess how different causes of death were related to age
groups. So their life table could be subject to large errors. The book was nevertheless
very successful, with five editions between 1662 and 1676. Several cities in Europe
had started to publish bulletins similar to that of London.

So it was nearly thirty years after this first life table that, following the suggestion
of Leibniz, Neumann sent to Henry Justel, the secretary of the Royal Society, his
demographic data from the city of Breslau for the years 1687–1691. Justel died
shortly after, and Halley got hold of the data, analyzed them and in 1693 published
his conclusions in the Philosophical Transactions of the Royal Society. His article is
called “An estimate of the degrees of the mortality of mankind, drawn from curious
tables of the births and funerals at the city of Breslaw, with an attempt to ascertain
the price of annuities upon lives”.

For the period of five years under study, Halley noticed that the number of births
in Breslau was more or less equal to the number of deaths, so that the total popula-
tion was almost constant. To simplify the analysis, he assumed that the population
was exactly at steady state: the annual number of births (call it P0), the total popu-
lation, the population aged k (Pk) and the annual number of deaths at age k (Dk) are
all constant as time goes by. This emphasizes an additional interesting property of
the data from Breslau, because such a simplification would not have been possible
for a fast growing city such as London, where the statistics were also biased by the
flow of population coming from the countryside.

The data from Breslau had a mean of 1,238 births per year: this is the value that
Halley took for P0. In principle he could also compute from the data the annual mean
Dk of the number of deaths among people aged k for all k ≥ 0. Using the formula

Pk+1 = Pk −Dk , (2.1)

1 For a detailed discussion, see the book by Hervé Le Bras in the references.
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Table 2.1 Halley’s life table showing the population Pk aged k.

Age Number Age Number Age Number

1 1000 29 539 57 272
2 855 30 531 58 262
3 798 31 523 59 252
4 760 32 515 60 242
5 732 33 507 61 232
6 710 34 499 62 222
7 692 35 490 63 212
8 680 36 481 64 202
9 670 37 472 65 192
10 661 38 463 66 182
11 653 39 454 67 172
12 646 40 445 68 162
13 640 41 436 69 152
14 634 42 427 70 142
15 628 43 417 71 131
16 622 44 407 72 120
17 616 45 397 73 109
18 610 46 387 74 98
19 604 47 377 75 88
20 598 48 367 76 78
21 592 49 357 77 68
22 586 50 346 78 58
23 579 51 335 79 50
24 573 52 324 80 41
25 567 53 313 81 34
26 560 54 302 82 28
27 553 55 292 83 23
28 546 56 282 84 20

he could construct Table 2.1 giving Pk. Conversely, one can find the values of Dk that
he used from the formula Dk = Pk −Pk+1: D0 = 238, D1 = 145, D2 = 57, D3 = 38
and so on. In fact, Halley rearranged his results a little, either to get round numbers
(this is the case of D1, which has been slightly changed so that P1 = 1,000) or
to smooth certain irregularities due to the small numbers of deaths at old ages in a
five-year study. Taking the sum of all the numbers Pk in the table, Halley obtained an
estimate of the total population of Breslau close2 to 34,000. In summary this method
had the great advantage of not requiring a general census but only knowledge of the
number of births and deaths and of the age at which people died during a few years.

Halley’s life table served as a reference for various works in the eighteenth
century (see Chapter 4). Indeed, although the values of Pk were specific to the
city of Breslau, one could consider that the ratio Pk+1/Pk was the probability
of surviving until age k + 1 knowing that one had already reached age k. This
probability could reasonably be used for the populations of other European cities

2 For people aged over 84 years, Halley just mentioned that their number was 107.
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of the time. For example, one might expect a one-year-old child to have 661
chances out of 1,000 of reaching age 10 or 598 chances out of 1,000 of reaching
age 20.

Halley also used his life table to compute the price of annuities upon lives. Dur-
ing the sixteenth and seventeenth centuries, several cities and states had sold such
annuities to their citizens to raise money. The buyers received each year until their
death a fixed amount of money, which was equal to a certain percentage of the sum
initially paid, often twice the interest rate of the time, but independently of the age
of the buyer. Of course the institution was risking bankruptcy if too many people
with a very long life expectancy bought these annuities. The problem could not be
correctly addressed without a reliable life table.

In 1671 Johan De Witt, prime minister of Holland, and Johannes Hudde, one
of the mayors of the city of Amsterdam, had already thought about the problem of
computing the price of life annuities. Fearing an invasion of French troops, they
wanted to raise money to strengthen the army. They had data concerning people
who had bought annuities upon lives several decades earlier, in particular the age at
which the annuities had been bought and the age at which people had died. They
had managed to compute the price of annuities more or less correctly, but their
method was later forgotten. Holland was invaded the following year and De Witt
was lynched by the crowd.

Halley considered the problem anew in 1693 with the life table from Breslau and
assuming an interest rate of 6%. The method of computation is simple. Let i be the
interest rate. Let Rk be the price at which a person aged k can buy an annuity of,
say, one pound per year. This person has a probability Pk+n/Pk of being still alive
at age k +n. The pound that the State promises to pay if he reaches this age can be
obtained by placing 1/(1 + i)n pounds of the initial sum at the interest rate i. So if
one makes the simplifying assumption that the initial sum is used only to pay the
annuities, then the price should be

Rk =
1
Pk

(Pk+1

1+ i
+

Pk+2

(1+ i)2 +
Pk+3

(1+ i)3 + · · ·
)

. (2.2)

Halley obtained in this way Table 2.2, which shows the factor Rk by which the
desired annuity has to be multiplied to get the necessary initial sum. A man aged 20
would hence get each year 1/12.78 � 7.8% of the initial sum. But a man aged 50
would get 1/9.21 � 10.9%, because he would have fewer years to live. Notice that
twice the interest rate would correspond to an annuity equal to 12% of the initial
sum, or equivalently to a price equal to 8.33 times the annuity.

The computations are of course quite tedious. Halley could nevertheless use ta-
bles of logarithms to obtain the general term Pk+n/(1 + i)n more quickly. Since he
did not show values for Pk above 84 years, it is not possible to check his calcula-
tions exactly. Finally, Halley’s work did not have any immediate impact: for several
decades, annuities upon lives in England and elsewhere continued to be sold at a
price independent of the age of the buyer and at a price that was much lower than it
could be, for example 7 times the annuity.
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Table 2.2 Multiplying factor giving the price of annuities upon lives.

Age k Price Rk Age k Price Rk Age k Price Rk

1 10.28 25 12.27 50 9.21
5 13.40 30 11.72 55 8.51
10 13.44 35 11.12 60 7.60
15 13.33 40 10.57 65 6.54
20 12.78 45 9.91 70 5.32

The questions derived from life tables interested many scientists during Hal-
ley’s time. The Dutch Christiaan Huygens, author in 1657 of the first booklet dedi-
cated to probability theory, discussed in 1669 in his correspondence with his brother
Graunt’s life table and the calculation of life expectancy3. A few years before bring-
ing Neumann into contact with the Royal Society, Leibniz also wrote about the
calculation of life expectancy in an essay which remained unpublished. In 1709 it
was the turn of Nikolaus I Bernoulli. In 1725 Abraham de Moivre published an en-
tire Treatise on Annuities. He noticed in particular that the price Rk could be easily
computed for old ages since formula (2.2) contained just a few terms. One could
then use the backward recurrence formula

Rk =
Pk+1

Pk

1+Rk+1

1+ i
,

which is easily proved starting from (2.2). Using the value that Halley gives for the
price at age 70, one can hence check4 the other values of Table 2.2.

After this break focusing on demography Halley returned to his main research
subjects. Between 1698 and 1700 he sailed around the Atlantic Ocean to draw a map
of the Earth’s magnetic field. In 1704 he became professor at Oxford University. The
following year he published a book on comets and predicted that the comet of 1682,
which Kepler had observed in 1607, would come back in 1758: it became known
as “Halley’s comet”. He also published a translation of the book by Apollonius of
Perga on conics. In 1720 he replaced Flamsteed as Astronomer Royal. He tried to
solve the problem of determining longitude at sea precisely from observation of the
Moon, a problem of great practical importance for navigation. He died in Greenwich
in 1742 at age 86.

Further reading

1. Fox, M.V.: Scheduling the Heavens: The Story of Edmond Halley. Morgan
Reynolds, Greensboro, North Carolina (2007)

3 The life expectancy at age k is given by formula (2.2) with i = 0.
4 It seems that there are a few errors in the table, in particular for the ages 5 and 15.
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2. Graunt, J.: Natural and Political Observations Mentioned in a Following Index
and Made upon the Bills of Mortality, 3rd edn. London (1665). echo.mpiwg-
berlin.mpg.de

3. Hald, A.: A History of Probability and Statistics and Their Applications before
1750. Wiley, Hoboken, New Jersey (2003). books.google.com

4. Halley, E.: An estimate of the degrees of the mortality of mankind, drawn from
curious tables of the births and funerals at the city of Breslaw; with an attempt
to ascertain the price of annuities upon lives. Phil. Trans. Roy. Soc. London 17,
596–610 (1693). gallica.bnf.fr
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Chapter 3
Euler and the geometric growth of populations
(1748–1761)

Leonhard Euler was born in 1707 in Basel, Switzerland. His father was a Protestant
minister. In 1720 Euler started studying at the university. He also received private
mathematics lessons from Johann Bernoulli, one of the most famous mathemati-
cians of the generation after Leibniz and Newton. He made friends with two of
Johann Bernoulli’s sons: Nikolaus II and Daniel. In 1727 Euler joined Daniel at the
newly created Academy of Sciences in Saint Petersburg. Apart from mathematics
he was also interested in physics and many other scientific and technical subjects.
In 1741 King Frederick II of Prussia invited him to become the director of the math-
ematics section of the Academy of Sciences in Berlin. Euler published a consider-
able number of articles and books on all aspects of mechanics (astronomy, elasticity,
fluids, solids) and mathematics (number theory, algebra, infinite series, elementary
functions, complex numbers, differential and integral calculus, differential and par-
tial differential equations, optimization, geometry) but also on demography. He was
the most prolific mathematician of his time.

Fig. 3.1 Euler (1707–1783)

N. Bacaër, A Short History of Mathematical Population Dynamics,
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In 1748 Euler published a treatise in Latin entitled Introduction to Analysis of the
Infinite. He considered six examples in the chapter on exponentials and logarithms:
one on the mathematical theory of musical scales, another on the repayment of a
loan with interest, and four on population dynamics. In the latter Euler assumed that
the population Pn in year n satisfies

Pn+1 = (1+ x)Pn

for all integer n. The growth rate x is a positive real number. Starting from an initial
condition P0, the population in year n is given by

Pn = (1+ x)n P0 .

This is called geometric or exponential growth. The first example asks:

If the population in a certain region increases annually by one thirtieth and at one time there
were 100,000 inhabitants, we would like to know the population after 100 years.

The answer is P100 = (1+1/30)100×100,000 � 2,654,874. For this example Euler
was inspired by the census of Berlin that took place in 1747 and which yielded
an estimate of 107,224 for the population. His calculation shows that a population
can increase more than tenfold within one century. This is precisely what had been
observed at the time for the city of London.

One should note that computing (1 + 1/30)100 is very easy with a modern
pocket calculator. But in Euler’s time one had to use logarithms to avoid numer-
ous multiplications by hand and get the result rapidly. One computes first the dec-
imal logarithm (in base 10) of P100. The fundamental property of the logarithm
log(ab) = loga+ logb shows that

logP100 = 100 log(31/30)+ log(100,000) = 100(log31− log30)+5 .

Logarithms had been introduced in 1614 by the Scotsman John Napier. His friend
Henry Briggs had published the first table of decimal logarithms in 1617. In 1628 the
Dutch Adriaan Vlacq had completed Briggs’ work by publishing a table containing
decimal logarithms of integers from 1 to 100,000 with ten-digit precision. This is the
kind of table that Euler used to get log30 � 1.477121255, log31 � 1.491361694,
and finally logP100 � 6.4240439. It remains to find the number P100 whose logarithm
is known. Since decimal logarithms of integers from 1 to 100,000 range from 0 to
5, one looks instead for the logarithm of P100/100, which is 4.4240439. One can
check in the table of logarithms that log26,548 � 4.424031809 and log26,549 �
4.424048168. Replacing the logarithmic function by a straight line between 26,548
and 26,549, Euler obtained that

P100

100
� 26,548+

4.4240439−4.424031809
4.424048168−4.424031809

� 26,548.74 .

So P100 � 2,654,874.



3 Euler and the geometric growth of populations (1748–1761) 13

The second example concerning population dynamics in Euler’s book is as fol-
lows:

Since after the Flood all men descended from a population of six, if we suppose that the
population after two hundred years was 1,000,000, we would like to find the annual rate of
growth.

Since 106 = (1+ x)200 ×6, we get with a pocket calculator x = (106/6)1/200 −1 �
0.061963. With tables of logarithms one has to go through log(106) = 200 log(1+
x)+ log6 to get log(1 + x) = (6− log6)/200 � 0.0261092 and 1 + x � 1.061963.
Thus Euler could conclude that the population would increase by x � 1/16 per year.
To understand the origin of this example, one has to remember that contemporary
philosophers were starting to deny the truth of biblical stories. A literal reading
would fix the time of the Flood around 2350 BC with the following survivors: Noah,
his three sons and their wives. The book of Genesis says:

These three were the sons of Noah; and from these the whole earth was peopled.

A population growth rate of 1/16 (or 6.25%) per year after the Flood did not seem
too unrealistic to Euler. Being the son of a Protestant minister and having stayed
religious all his life, he concluded:

For this reason it is quite ridiculous for the incredulous to object that in such a short space
of time the whole earth could not be populated beginning with a single man1.

Euler also noticed that if the growth had continued at the same pace until 400 years
after the Flood, the population would have been (1+x)400×6 = (106/6)2×6� 166
billion:

However, the whole earth would never be able to sustain that population.

This idea would be greatly developed by Malthus half a century later (see Chap-
ter 5).

Euler’s third example asks:

If each century the human population doubles, what is the annual rate of growth?

Since (1 + x)100 = 2, we get with a pocket calculator x = 21/100 − 1 � 0.00695.
With tables of logarithms, 100 log(1 + x) = log2. So log(1 + x) � 0.0030103 and
1 + x � 1.00695. Hence the population grows by x � 1/144 each year. The fourth
and last example asks in the same way:

If the human population increases annually by 1/100, we would like to know how long it
will take for the population to become ten times as large.

1 In the book published by Graunt in 1662 (see Chapter 2), one finds a similar remark:

One couple viz. Adam and Eve, doubling themselves every 64 years of the 5,160 years,
which is the age of the world according to the Scriptures, shall produce far more people,
than are now in it. Wherefore the world is not above 100 thousand years old, as some vainly
imagine, nor above what the Scripture makes it.
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With (1+1/100)n = 10, we find n log(101/100) = 1. So n = 1/(log101−2)� 231
years. This is all that can be found in the Introduction to Analysis of the Infinite from
1748 concerning population dynamics. Euler would come back to this subject more
thoroughly some years later.

In 1760 he published in the proceedings of the Academy of Sciences in Berlin
a work entitled “A general investigation into the mortality and multiplication of the
human species”. This work was a kind of synthesis between his previous analysis
of the geometric growth of populations and earlier studies on life tables (see Chap-
ter 2). Euler considered for example the problem:

Knowing the number of births and burials which happen during the course of one year,
to find the number of all the living and their annual increase, for a given hypothesis of
mortality.

Euler assumed here that the following numbers are known:

• the number of births Bn during year n;
• the number of deaths Dn during year n;
• the proportion qk of newborns that reach2 age k ≥ 1.

Let Pn be the population3 in year n. Euler made two extra implicit assumptions:

• the population increases geometrically: Pn+1 = r Pn (we set r = 1+ x);
• the ratio between births and population is constant: Bn/Pn = m.

These two assumptions imply that the number of births increases geometrically and
at the same rate: Bn+1 = r Bn. Euler then considered the state of the population at
hundred-year interval, say between the years n = 0 and n = 100, assuming that
nobody survives beyond hundred years. To clarify the presentation, call Pk,n (k ≥ 1)
the population alive at the beginning of year n, which was born in the year n− k.
Call P0,n = Bn the number of births during year n. From the definition of the survival
coefficient qk, we have Pk,n = qk P0,n−k = qk Bn−k. So

r100 P0 = P100 = P0,100 +P1,100 + · · ·+P100,100

= B100 +q1 B99 + · · ·+q100 B0

= (r100 + r99 q1 + · · ·+q100)B0.

Dividing this equation by r100 P0, we obtain

1 = m
(

1+
q1

r
+

q2

r2 + · · ·+ q100

r100

)
. (3.1)

This is the equation that is sometimes called “Euler’s equation” in demography.
Counting births and deaths separately, we get

2 More precisely, that are still alive at the beginning of the year of their kth birthday.
3 In fact Pn is the number of people alive during at least part of the year n. This includes the people
alive at the beginning of the year and people born during the year.
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r Pn = Pn+1 = Pn −Dn +Bn+1 = Pn −Dn + r Bn . (3.2)

So the number of deaths also increases geometrically: Dn+1 = r Dn. Moreover,

1
m

=
Pn

Bn
=

Dn/Bn − r
1− r

. (3.3)

Replacing this in equation (3.1), we arrive finally at the equation

Dn/Bn −1
1− r

=
q1

r
+

q2

r2 + · · ·+ q100

r100 , (3.4)

where there is only one unknown left: r. This is what is usually called an implicit
equation because we cannot extract r as a function of the other parameters. But we
can compute the left- and right-hand sides of equation (3.4) for a fixed value of r
and let r vary until the two sides are equal. The value of r thus obtained gives the
growth rate x = r−1 of the population. Notice that from equations (3.1) and (3.3),
we obtain for the population Pn the following expression:

Pn = Bn

(
1+

q1

r
+

q2

r2 + · · ·+ q100

r100

)
.

When the population is stationary (r = 1), this expression is the same as the one
used by Halley to estimate the population of the city of Breslau (see Chapter 2).

Euler also considered the following question:

The hypotheses of mortality and fecundity being given, if one knows the number of all the
living, to find how many there will be at each age.

Since the survival coefficients qk and the fertility coefficient m are known, the
growth rate r can be computed from equation (3.1). During year n, the number of
people born in year n− k is qk Bn−k = qk Bn/rk (with q0 = 1). So the proportion of
the total population that is aged k is

qk/rk

1+q1/r +q2/r2 + · · ·+q100/r100 .

This proportion is constant. Using Lotka’s terminology (see Chapter 10), the popu-
lation is said to be “stable”: the age pyramid keeps the same shape through time.

Euler then reexamined the problem of constructing a life table when the popula-
tion is not stationary but increases geometrically:

Knowing the number of all the living, similarly the number of births with the number of
deaths at each age during the course of one year, to find the law of mortality.

By “law of mortality”, Euler meant the set of survival coefficients qk. The total
population is now assumed to be known through a census, which was not the case
for Halley (see Chapter 2). Equation (3.2) shows that the growth rate is

r =
Pn −Dn

Pn −Bn
.
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Let Dk,n be the number of people who die at age k during year n: these people were
born in the year n− k. So Dk,n = (qk −qk+1)Bn−k. But Bn−k = Bn/rk. The survival
coefficients qk can therefore be computed with the recurrence formula

qk+1 = qk −
rk Dk,n

Bn

for all k ≥ 0, with q0 = 1. This formula multiplied by Bn gives back the formula (2.1)
used by Halley for the stationary case r = 1. Euler insisted nevertheless on the fact
that his method of computing the survival coefficients qk assumes that the population
increases regularly, excluding accidents such as plague epidemics, wars, famines
etc. If the censuses in Euler’s time had recorded the age of the people (as in Sweden),
this assumption would have been unnecessary and the coefficients qk could have
been computed more easily.

Given the survival coefficients qk, Euler also showed how to compute the price
of annuities upon lives. He didn’t mention the works of Halley or de Moivre on this
subject. Euler used an interest rate of 5% and the life table published in 1742 by the
Dutchman Willem Kersseboom.

Euler was not the only scientist interested in demography at the Berlin Academy.
His colleague Johann Peter Süssmilch had published in 1741 a treatise in German
entitled The Divine Order in the Changes of the Human Generation, Through the
Birth, the Deaths and the Procreation of the Same Established, which is considered
nowadays as the first treatise entirely dedicated to demography. Süssmilch had also
written a book On the Rapid Growth of the City of Berlin in 1752.

Fig. 3.2 Süssmilch
(1707–1767)

In 1761 Süssmilch published a second edition of his treatise. In the chapter en-
titled “On the rate of increase and on the doubling time of populations”, he included
an interesting mathematical model that Euler had worked out for him. The model
was similar to that of Fibonacci (see Chapter 1) but for a human population. Starting
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with a couple (one man and one woman) both aged 20 years in the year 0, Euler
assumed that people die at the age of 40 and marry at the age of 20, while each
couple has six children: two children (a boy and a girl) at the age of 22, another two
at the age of 24 and the last two at the age of 26. Counting the years two by two so
that Bi is the number of births during the year 2i, Euler concluded that

Bi = Bi−11 +Bi−12 +Bi−13 (3.5)

for all i ≥ 1. The initial conditions correspond to B−12 = 0, B−11 = 0, B−10 = 2 and
Bi = 0 for −9 ≤ i ≤ 0. Euler could thus compute the number of births, as shown in
the second column of Table 3.1. The number of deaths Di in year 2i is then equal to
the number of births in year 2i− 40: Di = Bi−20 for i ≥ 10 while Di = 0 for i ≤ 9.
As for the number Pi of people alive in year 2i, it is equal to the number of people
alive in year 2i−2, plus the number of births in year 2i, minus the number of deaths
in year 2i: Pi = Pi−1 +Bi −Di. This chapter in Süssmilch’s book ends with a remark
that could have already been made about the Fibonacci sequence:

The great disorder that seems to prevail in Euler’s table does not prevent the number of
births from following a kind of progression that one calls recurrent series [. . . ] Whatever
the initial disorder of these progressions, they turn into a geometric progression if they are
not interrupted and the disorders of the beginning fade little by little and vanish almost
completely.

The book does not say more about the mathematics of this population model. How-
ever, Euler pushed the study much further in a manuscript entitled “On the multipli-
cation of the human race”, which stayed unpublished during his lifetime. Looking
for a solution of equation (3.5) of the form Bi = cri, i.e. of the form of a geometric
progression, he obtained after simplification a polynomial equation of degree 13:

r13 = r2 + r +1 . (3.6)

He looked for a solution close to r = 1 and noticed, using a table of logarithms for
the computation of r13, that

1+ r + r2 − r13 �
{

0.212 if r = 1.09 ,
−0.142 if r = 1.10 .

So equation (3.6) has a root between 1.09 and 1.10. Approximating the function
1+ r + r2 − r13 by a line segment on this interval, Euler obtained

r � 0.142×1.09+0.212×1.10
0.142+0.212

� 1.0960 .

The years being counted two by two, the number of births tends to be multiplied
by

√
r each year. This number doubles every n years if (

√
r)n = 2, i.e. every n =

2 log2/ logr � 15 years. Since asymptotically Bi � cri and since the number Di

of deaths in year 2i is equal to Bi−20, we obtain Di � Bi/r20 with r20 � 6.25. The
number of births is about six times the number of deaths. The number Pi of people
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Table 3.1 Euler’s table.

i Births Deaths Living

0 0 0 2
1 2 0 4
2 2 0 6
3 2 0 8
4 0 0 8
5 0 0 8
6 0 0 8
7 0 0 8
8 0 0 8
9 0 0 8

10 0 2 6
11 0 0 6
12 2 0 8
13 4 0 12
14 6 0 18
15 4 0 22
16 2 0 24
17 0 0 24
18 0 0 24
19 0 0 24
20 0 0 24
21 0 2 22
22 0 2 20
23 2 2 20
24 6 0 26
25 12 0 38
26 14 0 52
27 12 0 64
28 6 0 70
29 2 0 72
30 0 0 72
31 0 0 72
32 0 2 70
33 0 4 66
34 2 6 62
35 8 4 66
36 20 2 84
37 32 0 116
38 38 0 154
39 32 0 186

i Births Deaths Living

40 20 0 206
41 8 0 214
42 2 0 216
43 0 2 214
44 0 6 208
45 2 12 198
46 10 14 194
47 30 12 212
48 60 6 266
49 90 2 354
50 102 0 456
51 90 0 546
52 60 0 606
53 30 0 636
54 10 2 644
55 2 8 638
56 2 20 620
57 12 32 600
58 42 38 604
59 100 32 672
60 180 20 832
61 252 8 1,076
62 282 2 1,356
63 252 0 1,608
64 180 0 1,788
65 100 2 1,886
66 42 10 1,918
67 14 30 1,902
68 16 60 1,858
69 56 90 1,824
70 154 102 1,876
71 322 90 2,108
72 532 60 2,580
73 714 30 3,264
74 786 10 4,040
75 714 2 4,752
76 532 2 5,282
77 322 12 5,592
78 156 42 5,706
79 72 100 5,678

i Births Deaths Living

80 86 180 5,584
81 226 252 5,558
82 532 282 5,808
83 1,008 252 6,564
84 1,568 180 7,952
85 2,032 100 9,884
86 2,214 42 12,056
87 2,032 14 14,074
88 1,568 16 15,626
89 1,010 56 16,580
90 550 154 16,976
91 314 322 16,968
92 384 532 16,820
93 844 714 16,950
94 1,766 786 17,930
95 3,108 714 20,324
96 4,608 532 24,400
97 5,814 322 29,892
98 6,278 156 36,014
99 5,814 72 41,756

100 4,610 86 46,280
101 3,128 226 49,182
102 1,874 532 50,524
103 1,248 1,008 50,764
104 1,542 1,568 50,738
105 2,994 2,032 51,700
106 5,718 2,214 55,204
107 9,482 2,032 62,654
108 13,530 1,568 74,616
109 16,700 1,010 90,306
110 17,906 550 107,662
111 16,702 314 124,050
112 13,552 384 137,218
113 9,612 844 145,986
114 6,250 1,766 150,470
115 4,664 3,108 152,026
116 5,784 4,608 153,202
117 10,254 5,814 157,642
118 18,194 6,278 169,558
119 28,730 5,814 192,474
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alive in year 2i being equal to Bi +Bi−1 + · · ·+Bi−19, we also get that

Pi � Bi

(
1+

1
r

+ · · ·+ 1
r19

)
= Bi

1− r20

r19 − r20 � 9.59Bi .

The total population is about ten times the number of births.

The proof that the sequence (Bi) shown in Table 3.1 does indeed grow asymp-
totically like ri is more complicated. It was known since the work of Abraham
de Moivre on recurrent series that, by introducing the “generating function”

f (x) =
∞

∑
i=0

Bi xi ,

one could express f (x) as a rational function. Euler had explained the method
in his Introduction to Analysis of the Infinite in 1748: the recurrent relation
(3.5) gives indeed

f (x) =
12

∑
i=0

Bix
i +

∞

∑
i=13

(Bi−11 +Bi−12 +Bi−13)xi

= 2x+2x2 +2x3 +2x12 + f (x)(x11 + x12 + x13) .

So

f (x) =
2x+2x2 +2x3 +2x12

1− x11 − x12 − x13 .

Euler knew that such a rational function could be decomposed in the form

f (x) =
a1

1− x
x1

+ · · ·+ a13

1− x
x13

,

the numbers x1, . . . ,x13 being the real or complex roots of the equation 1−
x11 − x12 − x13 = 0. So

f (x) = ∑
i≥0

a1

( x
x1

)i
+ · · ·+a13

( x
x13

)i
.

Since Bi is the coefficient of xi in f (x), Euler obtained that

Bi =
a1

xi
1

+ · · ·+ a13

xi
13

� ak

xi
k

as i → +∞, where xk is the root with the smallest modulus. In other words,
Bi tends to grow geometrically like (1/xk)i. It remained to note that xk is a
root of the equation 1− x11 − x12 − x13 = 0 if and only if r = 1/xk is a root of
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equation (3.6). Certain details of the proof were finally clarified by Gumbel in
1916.

Süssmilch published a third edition of his treatise in 1765 and died in Berlin in
1767. On bad terms with the king of Prussia, Euler returned to Saint Petersburg in
1766. Despite losing his sight, he continued to publish a great number of works with
the help of his sons and colleagues, especially on algebra, integral calculus, optics
and shipbuilding. His Letters on Different Subjects in Natural Philosophy Addressed
to a German Princess, written in Berlin between 1760 and 1762, was published
between 1768 and 1772 and became a bestseller throughout Europe. Euler died in
Saint Petersburg in 1783. His contribution to mathematical demography, especially
his analysis of the “stable” age pyramid in an exponentially growing population,
would be rediscovered only in the twentieth century (see Chapters 10 and 21).
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Chapter 4
Daniel Bernoulli, d’Alembert
and the inoculation of smallpox (1760)

Daniel Bernoulli was born in 1700 in Groningen in the Netherlands. His family
included already two famous mathematicians: his father Johann Bernoulli and his
uncle Jakob Bernoulli. In 1705 Johann moved to Basel in Switzerland where he took
the professorship left vacant by the death of Jakob. Johann did not want his son to
study mathematics. So Daniel turned to medicine, obtaining his doctoral degree in
1721 with a thesis on respiration. He moved to Venice and began focusing on math-
ematics, publishing a book in 1724. Having won a prize from the Paris Academy of
Sciences that same year for an essay “On the perfection of the hourglass on a ship at
sea”, he obtained a professorship at the new Saint Petersburg Academy. During these
years, he worked especially on recurrent series or on the “paradox of Saint Peters-
burg” in probability theory. In 1733 Daniel Bernoulli returned to the University of
Basel, where he taught successively botany, physiology and physics. In 1738 he pub-
lished a book on fluid dynamics that has remained famous in the history of physics.
Around 1753 he became interested at the same time as Euler and d’Alembert in the
problem of vibrating strings, which caused an important mathematical controversy.

Fig. 4.1 Daniel Bernoulli
(1700–1782)

N. Bacaër, A Short History of Mathematical Population Dynamics,
DOI 10.1007/978-0-85729-115-8 4, © Springer-Verlag London Limited 2011
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In 1760 he submitted to the Academy of Sciences in Paris a work entitled An at-
tempt at a new analysis of the mortality caused by smallpox and of the advantages of
inoculation to prevent it. The question was whether inoculation (the voluntary intro-
duction of a small amount of less virulent smallpox in the body to protect it against
later infections) should be encouraged even if it is sometimes a deadly operation.
This technique had been known for a long time in Asia and had been introduced in
1718 in England by Lady Montagu, wife of the British ambassador to the Ottoman
Empire. In France, despite the death of the eldest son of Louis XIV from smallpox
in 1711, inoculation was considered reluctantly. Voltaire, who had survived from
smallpox in 1723 and who had lived several years in exile in England observing the
latest innovations, pleaded for inoculation in his Philosophical Letters in 1734. The
French scientist La Condamine, who had also survived from smallpox, pleaded for
inoculation at the Academy of Sciences in Paris in 1754.

Before dying in Basel in 1759, Maupertuis encouraged Daniel Bernoulli to study
the inoculation problem from a mathematical point of view. More precisely, the chal-
lenge was to find a way of comparing the long-term benefit of inoculation with the
immediate risk of dying. For this purpose, Bernoulli made the following simplifying
assumptions:

• people infected with smallpox for the first time die with a probability p (inde-
pendent of age) and survive with a probability 1− p;

• everybody has a probability q of being infected each year; more precisely, the
probability for one individual to become infected between age x and age x + dx
is qdx, where dx is an infinitesimal time period;

• people surviving from smallpox are protected against new infections for the rest
of their life (they have been immunized).

Let m(x) be the mortality at age x due to causes other than smallpox: the probability
for one individual to die in an infinitesimal time period dx between age x and age
x+dx is m(x)dx. Considering a group of P0 people born the same year, let us call

• S(x) the number of “susceptible” people1 who are still alive at age x without ever
having been infected with smallpox;

• R(x) the number of people who are alive at age x and who have survived from
smallpox;

• P(x) = S(x)+R(x) the total number of people alive at age x.

Birth corresponds to age x = 0. So S(0) = P(0) = P0 and R(0) = 0. Applying the
methods of calculus that had been developed at the end of the seventeenth century
by Newton, Leibniz and later by his father, Daniel Bernoulli noticed that, between
age x and age x + dx (with dx infinitely small), each susceptible individual has a
probability qdx of being infected with smallpox and a probability m(x)dx of dying
from other causes. So the variation of the number of susceptible people is dS =
−Sqdx−Sm(x)dx, leading to the differential equation

1 More exactly, it is the expectation of this number, which can vary continuously and not just by
units of one.
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dS
dx

= −qS−m(x)S . (4.1)

In this equation, dS/dx is called the derivative of the function S(x). During the same
small time interval, the number of people dying from smallpox is pSqdx and the
number of people who survive from smallpox is (1− p)Sqdx. Moreover, there are
also Rm(x)dx people who die from causes other than smallpox. This leads to a
second differential equation:

dR
dx

= q(1− p)S−m(x)R . (4.2)

Adding the two equations, we get

dP
dx

= −pqS−m(x)P . (4.3)

From equations (4.1) and (4.3), Bernoulli could show that the fraction of people
who are still susceptible at age x is

S(x)
P(x)

=
1

(1− p)eqx + p
. (4.4)

To get formula (4.4), Bernoulli eliminated m(x) from the equations (4.1) and
(4.3):

−m(x) = q+
1
S

dS
dx

= pq
S
P

+
1
P

dP
dx

.

It follows after rearrangement that

1
P

dS
dx

− S
P2

dP
dx

= −q
S
P

+ pq
[ S

P

]2
.

We notice that the left-hand-side is the derivative of f (x) = S(x)/P(x), which
is the fraction of susceptible people in the population aged x. So

d f
dx

= −q f + pq f 2. (4.5)

The solution of this type of equation had been known for several decades thanks
to the work of Jakob Bernoulli, Daniel’s uncle. Dividing the equation by f 2 and
setting g(x) = 1/ f (x), we see that dg/dx = qg− pq and that g(0) = 1/ f (0) =
1. Setting h(x) = g(x)− p, we get dh/dx = qh. So h(x) = h(0)eqx = (1− p)eqx.
Finally g(x) = (1− p)eqx + p and f (x) = 1/g(x). Q.E.D.

To apply his theory, Bernoulli used Halley’s life table (see Chapter 2). This table
gives the number of people still alive at the beginning of year x (with x = 1,2. . . )
among a cohort of 1,238 born during year 0. But in the framework of his model,
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Bernoulli needed the number of people P(x) that actually reach age x, which is
slightly different. Because Bernoulli – like most of his contemporaries – did not re-
alize the difference (Halley’s article is not very explicit indeed), he kept the numbers
in Halley’s table except the first number 1,238, which he replaced by 1,300 to get
a realistic mortality during the first year of life. These numbers are shown in the
second column of Table 4.1.

Table 4.1 Halley’s life table and Bernoulli’s computations.

Age Alive Susceptible Immune Smallpox No smallpox
x P(x) S(x) R(x) deaths P∗(x)

0 1300 1300 0 17.2 1300
1 1000 896 104 12.3 1015
2 855 685 170 9.8 879
3 798 571 227 8.2 830
4 760 485 275 7.0 799
5 732 416 316 6.1 777
6 710 359 351 5.2 760
7 692 311 381 4.6 746
8 680 272 408 4.0 738
9 670 238 432 3.5 732
10 661 208 453 3.0 726
11 653 182 471 2.7 720
12 646 160 486 2.3 715
13 640 140 500 2.1 711
14 634 123 511 1.8 707
15 628 108 520 1.6 702
16 622 94 528 1.4 697
17 616 83 533 1.2 692
18 610 72 538 1.1 687
19 604 63 541 0.9 681
20 598 55 543 0.8 676
21 592 49 543 0.7 670
22 586 42 544 0.6 664
23 579 37 542 0.5 656
24 572 32 540 649
...

...
...

...
...

...

Bernoulli chose for the probability of dying from smallpox p = 1/8 = 12.5%,
which is in agreement with the observations of his time. The annual probabil-
ity of catching smallpox q could not be estimated directly. So Bernoulli proba-
bly tried several values for q and finally chose the one such that the number of
deaths due to smallpox after all the computations below is about 1/13 of the total
number of deaths, a proportion which had then been observed in several European
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cities. The choice q = 1/8 per year turned out to give a good fit, as we shall now
see2.

With formula (4.4) and the values of P(x) in the second column of the table,
we can compute the number S(x) of susceptible people aged x: this is the third
column of the table rounded to the nearest integer. The fourth column shows the
number R(x) = P(x)− S(x) of people aged x having survived from smallpox. The
fifth column shows in the row corresponding to age x the number of deaths due to
smallpox between age x and age x+1. In theory this number should be the integral
pq

∫ x+1
x S(t)dt but the formula pq [S(x)+S(x+1)]/2 gives a good approximation,

as sketched in Fig. 4.2: the area of the trapezoid is close to the area under the curve,
i.e. to the integral of the function.

Fig. 4.2 The area of the dashed trapezoid approximates the integral of the function S between x
and x+1.

Bernoulli noticed that the sum of all the numbers in the fifth column gives 98
deaths from smallpox before the age of 24. If we continued the table for older
ages, we would find only three more deaths from smallpox among the 32 people
who are still susceptible at age 24. In summary, starting from 1,300 births, the fate
of 101 people is to die from smallpox. This is almost exactly the expected frac-
tion 1/13.

Bernoulli considered then the situation where smallpox would be inoculated to
everybody at birth and would not cause any deaths. Smallpox would be eradicated
and the question is to estimate the increase in life expectancy. Starting from the same
number of births P0, let us call P∗(x) the number of people aged x when smallpox
has disappeared. Then

dP∗

dx
= −m(x)P∗. (4.6)

Bernoulli could show that

2 The fact that p and q are equal is just a coincidence.
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P∗(x) =
P(x)

1− p+ pe−qx , (4.7)

where P(x) is as above the population aged x when smallpox is present.

Indeed, eliminating as before m(x) between equations (4.6) and (4.3), Bernoulli
obtained after rearrangement

1
P∗

dP
dx

− P
P∗2

dP∗

dx
= −pq

S
P

P
P∗ .

He set h(x) = P(x)/P∗(x). Using formula (4.4), he multiplied numerator and
denominator by e−qx and obtained

1
h

dh
dx

= −pq
e−qx

1− p+ pe−qx ,

which is equivalent to d
dx logh = d

dx log(1− p+ pe−qx), where log stands here
for the natural logarithm and not the decimal logarithm. But h(0) = 1. So
h(x) = 1− p+ pe−qx. Q.E.D.

Notice that the ratio P(x)/P∗(x) tends to 1− p when the age x is high enough.
The sixth column of Table 4.1 shows P∗(x). A way of comparing P(x) and P∗(x) is
to estimate the life expectancy at birth, whose theoretical expression with smallpox
is

1
P0

∫ ∞

0
P(x)dx .

A similar expression with P∗(x) replacing P(x) holds without smallpox. Bernoulli
used the approximate formula [ 1

2 P(0) + P(1) + P(2) + · · · ]/P0, which is the one
given by the method of trapezoids (Fig. 4.2). Continuing the table beyond 24 years
until 84 years (see Table 2.1), he obtained finally a life expectancy E with smallpox
equal to [ 1

2 1300+1000+ · · ·+20]/1300 � 26.57 years, i.e. 26 years and 7 months.
Without smallpox, he obtained a life expectancy E∗ equal to [ 1

2 1300+1015+ · · ·+
23]/1300 � 29.65 years, i.e. 29 years and 8 months. Inoculation at birth would
increase life expectancy by more than three years.

We can note that there is a simpler and faster method than the one used by
Bernoulli to get these formulas. Starting from the differential equation (4.1) for
S(x), we see first that

S(x) = P0 e−qx exp
(
−

∫ x

0
m(y)dy

)
.

Using this expression in equation (4.2) for R(x), we find that
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R(x) = P0 (1− p)(1− e−qx)exp
(
−

∫ x

0
m(y)dy

)
.

Equation (4.6) for P∗(x) shows that

P∗(x) = P0 exp
(
−

∫ x

0
m(y)dy

)
. (4.8)

Formulas (4.4) and (4.7) follow immediately!

Of course, inoculation with a less virulent strain of smallpox is not completely
safe. If p′ is the probability of dying from smallpox just after inoculation (p′ < p),
then the life expectancy would be (1− p′)E∗ if everybody went through inoculation
at birth. This life expectancy remains higher than the “natural” life expectancy E
if p′ < 1−E/E∗ or about 11%. Data concerning p′ was difficult to obtain at the
time. But Bernoulli estimated that the risk p′ was less than 1%. For him there was
no doubt: inoculation had to to be promoted by the State. He concluded:

I simply wish that, in a matter which so closely concerns the wellbeing of the human race,
no decision shall be made without all the knowledge which a little analysis and calculation
can provide.

Bernoulli’s work was presented at the Academy of Sciences in Paris in April
1760. In November, d’Alembert presented a comment entitled On the application
of probability theory to the inoculation of smallpox. The comment was published
shortly after in the second volume of his Opuscules mathématiques with more de-
tailed computations and together with another work entitled Mathematical theory of
inoculation. D’Alembert criticized Bernoulli’s assumptions about the probability of
infection and the probability of dying from smallpox being independent of age. He
suggested a different solution that does not require these assumptions. Call v(x) the
mortality due to smallpox at age x, m(x) the mortality due to other causes and P(x)
the number of people that are still alive. Then

dP
dx

= −v(x)P−m(x)P . (4.9)

Comparing with equation (4.3), we see that in fact v(x) = pqS(x)/P(x). Here we
obtain

P∗(x) = P(x) exp
(∫ x

0
v(y)dy

)
, (4.10)

where P∗(x) stands for the number of people alive at age x when smallpox has
disappeared.

Indeed we can either substitute the function m(x) between equations (4.6) and
(4.9) or use formula (4.8) for P∗(x) and notice that the solution of (4.9) is given
by
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Fig. 4.3 D’Alembert
(1717–1783)

P(x) = P0 exp
(
−

∫ x

0
[v(y)+m(y)]dy

)
.

Formula (4.10) given by d’Alembert does not contradict Bernoulli’s formula
(4.7). It just uses a different type of information v(x), which was not available at
the time because death registers included the cause of death but not the age of the
victim. D’Alembert suggested that one could not really conclude whether inocula-
tion was useful before this type of data became available.

D’Alembert also criticized the usefulness of the life expectancy as a criterion for
decision since it gives the same weight to all the years, whether in a near or distant
future. He noticed that, from the point of view of the individual or of the State, not
all the years have the same “utility”, young and old ages being less valuable than
mean ages. Despite all these criticisms, d’Alembert declared himself in favor of
inoculation.

Because of publication delays, Bernoulli’s work was published only in 1766,
while d’Alembert managed to get his own work published very quickly. Bernoulli
expressed his bitterness in a letter to Euler:

What do you say about the enormous platitudes of the great d’Alembert about probabilities:
as I find myself too frequently unjustly treated in his publications, I have decided already
some time ago to read nothing anymore which comes from his pen. I have taken this decision
on the occasion of a manuscript about inoculation which I sent to the Academy in Paris
eight years ago and which was greatly appreciated because of the novelty of the analysis. It
was, I dare say, like incorporating a new province into the body of mathematics. It seems
that the success of this new analysis caused him pains of the heart. He has criticized it in
a thousand ways all equally ridiculous and after having it well criticized, he pretends to
be the first author of a theory which he did not only hear mentioned. He, however, knew
that my manuscript could only appear after some seven or eight years. He could only have
knowledge about it in his capacity as member of the Academy. In this respect my manuscript
should have stayed sacred until it was made public. Dolus an virtus quis in hoste requirat!3

3 What matters whether by valor or by stratagem we overcome the enemy! Vergil: Aeneid, Book II.
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Despite the works of Bernoulli and d’Alembert, inoculation was not performed
on a large scale in France. King Louis XV died of smallpox in 1774. The medical
doctors of the court did inoculate the rest of the royal family shortly after. The prob-
lem lost its importance when Edward Jenner discovered that inoculating cowpox
to humans (“vaccination”) protected against smallpox and was safe. His work, An
inquiry into the causes and effects of the variolae vaccina, was published in 1798.
Vaccination spread rapidly throughout Europe. Nevertheless the methods developed
for the computation of the increase in life expectancy if one cause of death is re-
moved are still in use today.

In the following decades, data concerning the age at which people died of small-
pox became available. The problem was reconsidered especially by

• Johann Heinrich Lambert, a mathematician from the Berlin Academy, in 1772;
• Emmanuel-Étienne Duvillard, then in charge of population statistics at the Inte-

rior Ministry in Paris, in his Analysis and Tables of the Influence of Smallpox on
the Mortality at each Age (1806);

• Pierre-Simon Laplace in his Analytic Theory of Probability (1812).

Duvillard and Laplace showed for example how to modify formula (4.7) when the
parameters p and q depend on age:

P∗(x) =
P(x)

1−
∫ x

0 p(y)q(y)e−
∫ y

0 q(z)dz dy
.

Here, p(x) is the probability of dying of smallpox if infected at age x and q(x) is the
probability of being infected with smallpox at age x.

After this work on smallpox, Daniel Bernoulli did not consider any other problem
in population dynamics. He died in Basel in 1782. D’Alembert died in Paris a year
later.
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1. d’Alembert, J.: Onzième mémoire, Sur l’application du calcul des probabilités
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Chapter 5
Malthus and the obstacles to geometric growth
(1798)

Thomas Robert Malthus was born in 1766 near London, the sixth of seven children.
His father, a friend and admirer of Jean-Jacques Rousseau, was his first teacher. In
1784 the young Malthus started studying mathematics at Cambridge University. He
obtained his diploma in 1791, became a fellow of Jesus College in 1793 and an
Anglican priest in 1797.

Fig. 5.1 Malthus
(1766–1834)

In 1798 Malthus published anonymously a book entitled An Essay on the Prin-
ciple of Population, as It Affects the Future Improvement of Society, With Remarks
on the Speculations of Mr Godwin, Mr Condorcet and Other Writers. It came as
a reaction against Godwin’s Enquiry Concerning Political Justice (1793) and Con-
dorcet’s Sketch for a Historical Picture of the Progress of the Human Mind (1794).
Despite the horrors that the French Revolution did in the name of progress, the two
authors claimed that the progress of society was inevitable. Malthus did not share
the same optimism. He also argued that the English Poor Laws, which helped poor
families with many children, favored the growth of the population without encour-
aging a similar growth in the production of food. It seemed to him that these laws
did not really relieve the poor; quite the contrary. More generally, population tend-
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ing to grow always faster than the production of food, part of society seemed to be
condemned to misery, hunger or epidemics: these are the scourges that slow down
population growth and that, in Malthus’ opinion, are the principal obstacles to the
progress of society. All the theories promising progress would just be utopian. These
ideas led Malthus to publish his book in 1798. Here is how he summarized his thesis:

[. . . ] the power of population is indefinitely greater than the power in the earth to produce
subsistence for man. Population, when unchecked, increases in a geometrical ratio. Sub-
sistence increases only in an arithmetical ratio. A slight acquaintance with numbers will
shew the immensity of the first power in comparison of the second. By that law of our
nature which makes food necessary to the life of man, the effects of these two unequal pow-
ers must be kept equal. This implies a strong and constantly operating check on population
from the difficulty of subsistence. This difficulty must fall somewhere; and must necessarily
be severely felt by a large portion of mankind.

Malthus’ book was very successful. It contained few data. Malthus noticed, for ex-
ample, that the population of the USA had doubled every twenty five years during
the eighteenth century. He did not really try to translate his theses into mathematical
models but paved the way for later work by Adolphe Quetelet and Pierre-François
Verhulst, who will be the subject of the next chapter.

After the publication of his book, Malthus traveled with friends first to Germany,
Scandinavia and Russia, then to France and Switzerland. Putting together the in-
formation collected during his journeys, he published under his name a very much
enlarged second edition in 1803, with a different subtitle: An Essay on the Principle
of Population, or a View of its Past and Present Effects on Human Happiness, With
an Enquiry Into Our Prospects Respecting the Future Removal or Mitigation of the
Evils Which It Occasions. This new edition discussed in detail the obstacles to pop-
ulation growth in various countries: delayed marriage, abortion, infanticide, famine,
war, epidemics, economic factors. . . . For Malthus, delayed marriage was the best
option to stabilize the population. Four other editions of the book followed in 1806,
1807, 1817 and 1826. In 1805 Malthus became professor of history and political
economy in a new school set up by the West Indies Company for its employees. He
also published An Inquiry into the Nature and Progress of Rent (1815) and Princi-
ples of Political Economy (1820). In 1819 Malthus was elected to the Royal Society.
In 1834 he was one the founding members of the Statistical Society. He died near
Bath that same year.

Malthus’ work had a strong influence on the development of the theory of evo-
lution. Charles Darwin, back from his journey on board the Beagle, read Malthus’
book on population in 1838. Here is what he wrote in the introduction to his famous
book On the Origin of Species by Means of Natural Selection, published in 1859:

In the next chapter the Struggle for Existence amongst all organic beings throughout the
world, which inevitably follows from their high geometrical powers of increase, will be
treated of. This is the doctrine of Malthus, applied to the whole animal and vegetable king-
doms.

Alfred Russel Wallace, who developed the theory of evolution at the same time as
Darwin, also said that his ideas came after reading Malthus’ book.
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In contrast here is the point of view of Karl Marx on the success of Malthus’
book, as can be read in a footnote of his Capital:

If the reader reminds me of Malthus, whose Essay on Population appeared in 1798, I re-
mind him that this work in its first form is nothing more than a schoolboyish, superficial
plagiary of De Foe, Sir James Steuart, Townsend, Franklin, Wallace, etc., and does not con-
tain a single sentence thought out by himself. The great sensation this pamphlet caused,
was due solely to party interest. The French Revolution had found passionate defenders
in the United Kingdom; the principle of population, slowly worked out in the eighteenth
century, and then, in the midst of a great social crisis, proclaimed with drums and trumpets
as the infallible antidote to the teachings of Condorcet, etc., was greeted with jubilance by
the English oligarchy as the great destroyer of all hankerings after human development.
Malthus, hugely astonished at his success, gave himself to stuffing into his book materials
superficially compiled and adding to it new matter not discovered but annexed by him.

Certainly Malthus’ theses were not completely new. For example, the idea that pop-
ulation tends to grow geometrically is often attributed1 to him, even though we saw
in Chapter 3 that this idea was already familiar to Euler half a century earlier. How-
ever, Malthus gave it publicity by linking it in a polemic way to real legislative
problems. Ironically it was in communist China that Malthus’ suggestion to limit
births would find its most striking application (see Chapter 25).
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Chapter 6
Verhulst and the logistic equation (1838)

Pierre-François Verhulst was born in 1804 in Brussels. He obtained a PhD in math-
ematics from the University of Ghent in 1825. He was also interested in politics.
While in Italy to contain his tuberculosis, he pleaded without success in favor of a
constitution for the Papal States. After the revolution of 1830 and the independence
of Belgium, he published a historical essay on an eighteenth century patriot. In 1835
he became professor of mathematics at the newly created Free University in Brus-
sels.

Fig. 6.1 Verhulst
(1804–1849)

That same year 1835, his compatriot Adolphe Quetelet, a statistician and director
of the observatory in Brussels, published A Treatise on Man and the Development of
his Faculties. Quetelet suggested that populations could not grow geometrically over
a long period of time because the obstacles mentioned by Malthus formed a kind of
“resistance”, which he thought (by analogy with mechanics) was proportional to
the square of the speed of population growth. This analogy had no real basis, but it
inspired Verhulst.
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Indeed, Verhulst published in 1838 a Note on the law of population growth. Here
are some extracts:

We know that the famous Malthus showed the principle that the human population tends to
grow in a geometric progression so as to double after a certain period of time, for example
every twenty five years. This proposition is beyond dispute if abstraction is made of the
increasing difficulty to find food [. . . ]

The virtual increase of the population is therefore limited by the size and the fertility of
the country. As a result the population gets closer and closer to a steady state.

Verhulst probably realized that Quetelet’s mechanical analogy was not reasonable
and proposed instead the following (still somewhat arbitrary) differential equation
for the population P(t) at time t:

dP
dt

= r P
(

1− P
K

)
. (6.1)

When the population P(t) is small compared to the parameter K, we get the approx-
imate equation

dP
dt

� r P ,

whose solution is P(t) � P(0)ert , i.e. exponential growth1. The growth rate de-
creases as P(t) gets closer to K. It would even become negative if P(t) could exceed
K. To get the exact expression of the solution of equation (6.1), we can proceed like
Daniel Bernoulli for equation (4.5).

Dividing equation (6.1) by P2 and setting p = 1/P, we get d p/dt =−r p+r/K.
With q = p− 1/K, we get dq/dt = −r q and q(t) = q(0)e−r t = (1/P(0)−
1/K)e−r t . So we can deduce p(t) and P(t).

Finally we get after rearrangement

P(t) =
P(0)ert

1+P(0)(ert −1)/K
. (6.2)

The total population increases progressively from P(0) at time t = 0 to the limit
K, which is reached only when t → +∞ (Fig. 6.2). Without giving the values he
used for the unknown parameters r and K, Verhulst compared his result with data
concerning the population of France between 1817 and 1831, of Belgium between
1815 and 1833, of the county of Essex in England between 1811 and 1831, and of
Russia between 1796 and 1827. The fit turned out to be pretty good.

In 1840 Verhulst became professor at the Royal Military School in Brussels. The
following year he published an Elementary Treatise of Elliptic Functions and was
elected to the Royal Academy of Belgium. In 1845 he continued his population

1 One usually speaks of geometric growth in discrete-time models and of exponential growth in
continuous-time models but is is essentially the same thing.
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Fig. 6.2 The population of Belgium (in millions) and the logistic curve. The data points corre-
spond to the years 1815, 1830 and 1845. The parameter values are those of the article from 1845.

studies with an article entitled “Mathematical enquiries on the law of population
growth”. He first turned back to Malthus’ remark according to which the population
of the USA had doubled every 25 years (Tab. 6.1). If we compute the ratio between

Table 6.1 Official censuses of the population of the USA.

Year Population

1790 3,929,827
1800 5,305,925
1810 7,239,814
1820 9,638,131
1830 12,866,020
1840 17,062,566

the population in year n + 10 to that in year n, we find respectively 1.350, 1.364,
1.331, 1.335 and 1.326, which is fairly constant. The population was hence multi-
plied on average by 1.34 every 10 years and by 1.3425/10 � 2.08 every 25 years.
So it had continued to double every 25 years since Malthus’ essay, almost half a
century earlier. However Verhulst added:

We shall not insist on the hypothesis of geometric progression, given that it can hold only
in very special circumstances; for example, when a fertile territory of almost unlimited size
happens to be inhabited by people with an advanced civilization, as was the case for the first
American colonies.

In his article Verhulst also returned to equation (6.1), which he called “logistic”.
He noticed that the curve P(t) increases with a positive curvature (it is convex) as
long as P(t) < K/2 and then continues to increase towards K but with a negative
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curvature (it is concave) as soon as P(t) > K/2. So the curve has the shape of a
distorted letter S (Fig. 6.2).

Indeed, d2P/dt2 = r (1 − 2P/K)dP/dt. So d2P/dt2 > 0 if P < K/2 and
d2P/dt2 < 0 if P > K/2.

Verhulst also explained how the parameters r and K can be estimated from the
population P(t) in three different but equally spaced years. If P0 is the population
at time t = 0, P1 that at time t = T and P2 that at time t = 2T , then a tedious
computation starting from equation (6.2) shows that

K = P1
P0 P1 +P1 P2 −2P0 P2

P2
1 −P0 P2

, r =
1
T

log
[1/P0 −1/K

1/P1 −1/K

]
.

Using the estimations for the population of Belgium in the years 1815, 1830 and
1845 (respectively 3.627, 4.247 and 4.801 million), he obtained K = 6.584 million
and r = 2.62% per year. He could then use equation (6.2) to predict that the popula-
tion of Belgium would be 4.998 million at the beginning of the year 1851 and 6.064
million at the beginning of the year 1900 (Fig. 6.2). Verhulst did a similar study for
France. He obtained K = 39.685 million and r = 3.2% per year. As the populations
of Belgium and France have in the mean time largely exceeded these values of K,
we see that the logistic equation can be a realistic model only for periods of time of
a few decades, as in Verhulst’s 1838 article, but not for longer periods.

In 1847 appeared a Second enquiry on the law of population growth in which
Verhulst gave up the logistic equation and chose instead a differential equation that
can be written in the form

dP
dt

= r
(

1− P
K

)
.

He thought that this equation would hold when the population P(t) is above a certain
threshold. The solution is

P(t) = K +(P(0)−K)e−rt/K .

Using the same demographic data for Belgium, Verhulst estimated anew the param-
eters r and K. This time he found K = 9.4 million for the maximum population. We
see how much the result can depend on the choice of the model!

Verhulst became president of the Royal Academy of Belgium in 1848, but died
the following year in Brussels, probably of tuberculosis. Despite Verhulst’s hesita-
tion between model equations, the logistic equation was reintroduced independently
several decades later by different people. Robertson used it in 1908 to model the in-
dividual growth of animals, plants, humans and body organs. McKendrick and Ke-
sava Pai used it in 1911 for the growth of populations of microorganisms. Pearl and
Reed used it in 1920 for the growth of the population of the USA, which had started
to slow down. In 1922 Pearl finally noticed the work of Verhulst. From then on, the
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logistic equation inspired many works (see Chapters 13, 20 and 24). The maximum
population K eventually became known as the “carrying capacity”.
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Chapter 7
Bienaymé, Cournot and the extinction of family
names (1845–1847)

Irenée Jules Bienaymé was born in 1796 in Paris. He studied at the École Poly-
technique and made a career in the Ministry of Finances, reaching the high level
of general inspector. Influenced by the book Analytic Theory of Probability writ-
ten by Laplace, Bienaymé also found time to publish articles on many applications
of probability theory, such as demographic and medical statistics (infant mortality,
number of births, life expectancy), probability of errors in justice, insurance theory
and representativeness of voting systems.

Fig. 7.1 Bienaymé
(1796–1878)

In 1845 Bienaymé wrote a short note “On the law of multiplication and the dura-
tion of families”, which was published in the bulletin of the Société Philomatique in
Paris. A number of authors had already written on this subject. In the second edition
of An Essay on the Principle of Population (1803), Malthus included a chapter on
the population of Switzerland and noticed that
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in the town of Berne, from the year 1583 to 1654, the sovereign council had admitted into
the Bourgeoisie 487 families, of which 379 became extinct in the space of two centuries,
and in 1783 only 108 of them remained.

In 1842 Thomas Doubleday claimed more generally that upper-class families from
the nobility or from the bourgeoisie had a greater tendency to disappear than lower-
class families. Similar ideas were put forward in France by Émile Littré in 1844 in a
text of introduction to the positivist philosophy of Auguste Comte and by Benoiston
de Châteauneuf – a friend of Bienaymé – who published in 1845 an essay On the
duration of noble families in France.

It was in this context that Bienaymé tried to explain how it could be that the pop-
ulation of a country tends to grow geometrically while a great number of families
disappear. To attack this problem he considered the simplified case where all men
would have the same probabilities of having 0, 1, 2, 3, . . . sons reaching adulthood.
More precisely, he asked himself what was the probability for a man to have off-
spring carrying his name after n generations. If the mean number of sons is less
than one, it is clear that this probability should tend to zero as n grows to infinity.
Bienaymé noticed that the same conclusion would remain true1 if the mean number
of sons was exactly one, e.g. if there is a probability 1/2 of having no son and a
probability 1/2 of having two sons (Fig. 7.2). But in that case the probability of
having offspring in generation n tends to zero more slowly: in the example it would
still be 5% after 35 generations, i.e. after eleven or twelve centuries if there are three
generations per century2. Bienaymé noticed finally that if the mean number of sons
is greater than one, the extinction of the family line is not sure: its probability can
be computed by solving some algebraic equation.

Fig. 7.2 Artificial example of family tree. The ancestor is at the top of the tree. In each generation,
men have a probability 1/2 of having no son and a probability 1/2 of having two sons.

Bienaymé’s article did not contain more explanation. In 1847 his friend Antoine-
Augustin Cournot, a mathematician and economist, included some details in a book

1 Except if every man has exactly one son.
2 As will shall see below, this probability is equal to 1− x35 with xn+1 = 1

2 + 1
2 x2

n and x0 = 0.
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entitled On the Origin and on the Limits of the Correspondence between Algebra
and Geometry. He presented the problem in the form of a game of chance but ac-
knowledged that it was identical to Bienaymé’s study of the extinction of family
names. If we keep the interpretation in terms of family names, Cournot considered
first the special case where men have at most two sons, p0, p1 and p2 being respec-
tively the probability of having 0, 1 or 2 sons. Of course, p0 + p1 + p2 = 1. Starting
from one ancestor, the probability of extinction after just one generation, call it
x1, is obviously equal to p0.The probability of extinction within two generations is
x2 = p0 + p1 x1 + p2 x2

1: either the family was already extinct in the first generation
(probability p0), or there was just one son in the first generation who had no male
offspring (probability p1 x1), or there were two sons in the first generation and each
of them had no male offspring (probability p2 x2

1). More generally, the probability
of extinction within n generations is xn = p0 + p1 xn−1 + p2 (xn−1)2. Indeed, if there
are for example two sons in the first generation (probability p2), the family will
be extinct n− 1 generations later (i.e. in generation n) with a probability equal to
(xn−1)2. Cournot noticed that xn is an increasing sequence with xn ≤ 1 for all n. So
xn has a limit x∞ ≤ 1, which is a solution of the equation x = p0 + p1 x+ p2 x2. Using
p1 = 1− p0 − p2, this equation is equivalent to 0 = p2(x−1)(x− p0/p2). So there
are two roots: x = 1 and x = p0/p2. Three cases can be distinguished depending on
the average number of sons p1 +2p2, which is also equal to 1− p0 + p2 and which
we shall call R0. If R0 < 1, then p0/p2 > 1. So x = 1 is the only possible value
for the limit x∞. For sure the family name will go extinct. If R0 = 1, both roots are
equal to 1 and the conclusion is the same. If R0 > 1, then Cournot argued that x∞
should be equal to the second root p0/p2, as the extinction probability obviously
has to be 0 in the special case where p0 = 0.

Cournot briefly mentioned the more general case where men can have at most m
sons with probabilities p0, p1,. . . , pm. The conclusion depends in the same way on
the value of R0 = p1 + 2p2 + · · ·+ mpm, the average number of sons, with respect
to 1. The equation for x∞, which is x = p0 + p1 x + · · ·+ pm xm, always has the root
x = 1. It has only one other positive root, which gives the extinction probability x∞
when R0 > 1.

Unfortunately Bienaymé’s article and the few pages in Cournot’s book went com-
pletely unnoticed at the time. The article was only noticed in the 1970s and the book
pages a further twenty years later! Meanwhile the problem and its solution had been
rediscovered by others and the subject developed considerably. We shall return to
that in Chapters 9, 17 and 18.

Bienaymé had to quit his job in the Ministry of Finances following the 1848
revolution. The chair of probability theory at the University of Paris, for which he
was certainly the best candidate, was also given to somebody else. Nevertheless
Bienaymé was able to work again for the Ministry of Finances after 1850, but he
resigned in 1852. Later that year, he was elected to the Academy of Sciences where
he was the specialist in the field of statistics. In 1853 he proved what some modern
textbooks call the “Bienaymé–Tchebychev” inequality. In 1875 he became president
of the newly created Société Mathématique de France. He died in Paris in 1878.
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of the criticality theorem. Int. Stat. Rev. 60, 177–183 (1992)

4. Cournot, A.-A.: De l’origine et des limites de la correspondance entre l’algèbre
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8. Littré, É.: Conservation, révolution et positivisme. Ladrange, Paris (1852).
books.google.com

9. Malthus, T.R.: An Essay on the Principle of Population, 2nd edn. Bensley, Lon-
don (1803). www.archive.org

10. Martin, T.: Antoine Augustin Cournot. In: Heyde, C.C., Seneta, E. (eds.) Statis-
ticians of the Centuries, pp. 152–156. Springer, New York (2001)
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Chapter 8
Mendel and heredity (1865)

Johann Mendel was born in 1822 in Moravia, then part of the Austrian empire and
now part of the Czech Republic. His father was a peasant. With his good results
in high school and his poor health, Mendel preferred to continue studying rather
than work on the family farm. But he could not afford to go to the university. So in
1843 he entered the abbey of Saint Thomas in Brünn (now Brno), where he took the
name of Gregor. He studied theology, but also attended some courses on agricul-
ture. In 1847 he was ordained a priest. He taught in a high school for a few years but
failed the exam for becoming an ordinary professor. Between 1851 and 1853, thanks
to the support of his hierarchy, he was nevertheless able to continue his studies at the
University of Vienna where he attended courses in physics, mathematics and natu-
ral sciences. After that he returned to Brünn and taught physics in a technical school.

Fig. 8.1 Mendel
(1822–1884)

Between 1856 and 1863, Mendel made a series of experiments on a great num-
ber of plants in the garden of his abbey. In 1865 he presented his results at two
meetings of the Natural History Society of Brünn, of which he was a member. His
work, Experiments on Plant Hybridization, was published in German the follow-
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ing year in the proceedings of the Society. Mendel explained how he had come to
study the variations of peas, plants which reproduce naturally by self-fertilization
and whose seeds can take different easily identifiable forms: round or wrinkled,
yellow or green, etc. By crossing a plant coming from a lineage with round seeds
and a plant coming from a lineage with wrinkled seeds, he noticed that he always
obtained hybrids that gave round seeds. He called the character “round seeds” dom-
inant and the character “wrinkled seeds” recessive. He showed in the same way that
the character “yellow seeds” was dominant and that the character “green seeds” was
recessive.

Mendel then noticed that the self-fertilization of plants grown from hybrid seeds
gave in the first generation new seeds which had either the dominant or the recessive
character in apparently random proportions. Moreover, he noticed that by repeating
the experiment many times he obtained on average about three times more seeds
with the dominant character than with the recessive character. For example, he ob-
tained in a first experiment a total of 5,474 round seeds and 1,850 wrinkled seeds,
corresponding to a ratio of 2.96 to 1. A second experiment gave a total of 6,022
yellow seeds and 2,001 green seeds, corresponding to a ratio1 of 3.01 to 1.

Mendel also noticed that among the plants grown from the seeds of the first
generation with the dominant character, those that gave by self-fertilization seeds
with either the dominant or the recessive character were about twice as many as
those that gave seeds with the dominant character only. For example, among the
565 plants grown from round seeds of the first generation, 372 gave both round
and wrinkled seeds whereas 193 gave round seeds only; the ratio is equal to 1.93.
Similarly, among 519 plants grown from yellow seeds of the first generation, 353
gave both yellow and green seeds whereas 166 gave only yellow seeds; the ratio is
equal to 2.13.

To explain these results, Mendel had the brilliant idea of considering the apparent
character of a seed as the result of the association of two hidden factors, each of
these factors being either dominant (written A) or recessive (written a). So there
are three possible combinations: AA, Aa and aa. The seeds with the factors AA or
Aa have the same dominant character A. The seeds with the factors aa have the
recessive character a. Mendel assumed moreover that during fertilization, the pollen
grains and the ovules (the gametes) transmit only one of the two factors, each with
a probability 1/2.

Hence the crossing of pure lineages AA and aa gives hybrids that all have the
factors Aa and the dominant character A. The gametes of the hybrid Aa transmit
the factor A with probability 1/2 and the factor a with the probability 1/2. Self-
fertilization of a plant grown from a hybrid seed Aa therefore gives AA with proba-
bility 1/4, Aa with probability 1/2 and aa with probability 1/4, as shown in Table
8.1.

1 As R. A. Fisher (see Chapter 14) later noticed, the probability of arriving at experimental results
so close to the theoretical value is quite small. Mendel probably “arranged” his data. For example,
in the second experiment concerning n = 6,022+2,001 = 8,023 seeds, the probability for the ratio
to differ from 3 by less than 0.01 is only about 10%.
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Table 8.1 Possible results of the self-fertilization of a hybrid Aa and their probabilities as a
function of the factors transmitted by the male gametes (in lines) and by the female gametes (in
columns).

Factor A a
Probability 1/2 1/2

A AA Aa
1/2 1/4 1/4
a Aa aa

1/2 1/4 1/4

Mendel noticed that the proportions AA : Aa : aa, which were 1 : 2 : 1, could
also be obtained by the formal computation (A + a)2 = AA + 2Aa + aa. Since the
seeds AA and Aa have the apparent character A while only the seeds aa have the
apparent character a, there are indeed three times more seeds with the character A
than with the character a. Moreover, there are on average twice as many seeds Aa
than AA. The self-fertilization of plants grown from the former gives seeds with
either the dominant character (AA or Aa) or the recessive character (aa). As for the
self-fertilization of plants grown from seeds AA, it always gives seeds AA with the
dominant character. All the observations are thus explained.

Mendel also looked at the following generations. Starting from N hybrid seeds
Aa and assuming for simplicity that each plant gives by self-fertilization only four
new seeds, he computed that the mean number of seeds (AA)n, (Aa)n and (aa)n

in generation n would be given by Table 8.2, where for clarity of presentation the
results have been divided by N.

Table 8.2 Successive generations.

n 0 1 2 3 4 5

(AA)n 0 1 6 28 120 496
(Aa)n 1 2 4 8 16 32
(aa)n 0 1 6 28 120 496
total 1 4 16 64 256 1024

These numbers are simply obtained from the formulas

(AA)n+1 = (Aa)n +4(AA)n , (8.1)

(Aa)n+1 = 2(Aa)n , (8.2)

(aa)n+1 = (Aa)n +4(aa)n , (8.3)

which say that AA gives after self-fertilization four seeds AA, that aa gives four
seeds aa and that Aa gives on average one seed AA, two seeds Aa and one seed aa.
Mendel noticed furthermore that
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(AA)n = (aa)n = 2n−1(2n −1) and (Aa)n = 2n.

Indeed, it follows from equation (8.2) and from the initial condition (Aa)0 = 1
that (Aa)n = 2n. Replacing this in equation (8.1), we get that (AA)n+1 =
4(AA)n + 2n. We easily realize that (AA)n = c2n is a particular solution when
c = −1/2. The general solution of the “homogeneous” equation (AA)n+1 =
4(AA)n is (AA)n = C 4n. Finally, adding these two solutions, we see that
(AA)n = C 4n − 2n−1 satisfies the initial condition (AA)0 = 0 if C = 1/2. As
for the sequence (aa)n, it satisfies the same recurrence relation and the same
initial condition as (AA)n. So (aa)n = (AA)n. Q.E.D.

In conclusion, the proportion of hybrids Aa in the total population, which is
2n/4n = 1/2n, is divided by two at each generation by self-fertilization.

Mendel’s work went totally unnoticed during his life. Some years later, Mendel
also tried similar experiments with other plant species, published a few articles on
meteorology and investigated the heredity of bees. After becoming abbot in 1868,
he spent most of his time managing administrative problems. He died in 1884.

It is only in 1900 that Mendel’s work was finally rediscovered independently and
almost simultaneously by Hugo De Vries in Amsterdam, Carl Correns in Tübingen
and Erich von Tschermak in Vienna. This would start a new era in what we now call
genetics.

Further reading

1. Bateson, W.: Mendel’s Principles of Heredity. Cambridge University Press
(1913). www.archive.org
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3–47 (1866). www.esp.org. English translation in Bateson (1913)
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Chapter 9
Galton, Watson and the extinction problem
(1873–1875)

Francis Galton was born in 1822, the same year as Mendel, near Birmingham in
England. He was the youngest of seven children. His father was a rich banker.
Through his mother, he was the cousin of Charles Darwin. Galton started to study
medicine in 1838, first in a hospital in Birmingham and later in London. During the
summer of 1840, he made his first long trip through Europe as far as Istanbul. He
then studied at Trinity College, Cambridge University, for four years. But his father
died in 1844, leaving a significant fortune. Galton gave up the idea of becoming a
medical doctor. He traveled to Egypt, Sudan and Syria. During the next few years
he kept a leisured way of life, spending his time hunting, traveling in balloons and
boats or trying to improve the electric telegraph. In 1850 he set up an expedition of
exploration to South West Africa (now Namibia). On his return to England in 1852,
he was elected to the Royal Geographical Society. There he could follow the news
from the expeditions to Eastern Africa looking for the source of the Nile. He settled
in London and wrote a guide book for travelers which became a best seller. In 1856
he was elected to the Royal Society. He was then interested in meteorology and
invented the word “anticyclone”. After the publication in 1859 by his cousin Dar-
win of The Origin of Species, Galton turned to the study of heredity. He published
Hereditary Genius in 1869, in which he claimed that intellectual faculties could be
transmitted by heredity.

In 1873 Alphonse de Candolle, a Swiss botanist, published a book entitled His-
tory of Science and of Scientists in the Last Two Centuries, which contained also
an essay on “The Respective Influence of Heredity, Variability and Selection on the
Development of the Human Species and on the Probable Future of this Species”.
There he made the following remarks:

Among the precise piece of information and very sane opinions of the Mr Benoiston de
Châteauneuf, Galton and other statisticians, I did not see the important remark they should
have made on the unavoidable extinction of family names. Of course, every name has to go
extinct [. . . ] A mathematician could compute how the decrease of the names or titles would
happen, knowing the probability of having female or male children and the probability of
having no child for any given couple.

N. Bacaër, A Short History of Mathematical Population Dynamics,
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Fig. 9.1 Galton (left) and Watson (right).

It is the same problem that Bienaymé had studied in 1845. But Candolle, who was
not aware of Bienaymé’s work, thought that all families were bound to extinction.
Galton noticed the above paragraph in Candolle’s book. As he also did not know
about Bienaymé’s work, Galton put it as an open problem for the readers of the
Educational Times:

Problem 4001: A large nation, of whom we will only concern ourselves with adult males, N
in number, and who each bear separate surnames colonise a district. Their law of population
is such that, in each generation, a0 per cent of the adult males have no male children who
reach adult life; a1 have one such male child; a2 have two; and so on up to a5 who have five.

Find (1) what proportion of their surnames will have become extinct after r generations;
and (2) how many instances there will be of the surname being held by m persons.

Notice that the second part of the problem had not been addressed by Bienaymé.
Galton did not receive any satisfactory answer from the readers of the journal and
apparently could not find the solution of the problem by himself. So he asked his
friend Henry William Watson, a mathematician, to try to solve it.

Watson was born in London in 1827. His father was an officer in the British
Navy. He first studied at King’s College in London and then turned to mathematics
at Trinity College, Cambridge University, from 1846 till 1850, just a few years after
Galton. He became successively fellow of Trinity College, assistant master at the
City of London School, lecturer in mathematics at King’s College and professor of
mathematics at Harrow School between 1857 and 1865. Fond of alpinism, he was
part of an expedition which reached the top of Mount Rosa in Switzerland in 1855.
He was ordained as a deacon in 1856 and as an Anglican priest two years later. From
1865 until his retirement he was rector of Berkswell with Barton near Coventry, a
position which left enough time for research.

Galton and Watson wrote together an article entitled “On the probability of ex-
tinction of families”, which was published in 1875 in the Journal of the Royal
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Anthropological Institute. Galton presented the problem and Watson explained his
computations and the conclusions he had reached. They assumed that men have at
most q sons, pk being the probability of having k sons (k = 0,1,2, . . . ,q). In other
words, pk = ak/100 if we use Galton’s original notations. So p0 + p1 + · · ·+ pq = 1.
Consider the situation where generation 0 consists of a single man. Generation 1
consists of s men with a probability ps. Using a trick which was well known in his
time and which had been introduced long before by Abraham de Moivre, Watson
considered the generating function

f (x) = p0 + p1 x+ p2 x2 + · · ·+ pq xq (9.1)

associated with the probabilities p0,. . . ,pq. Similarly, let fn(x) be the polynomial
for which the coefficient of xs is the probability of having s males in generation n
starting from one man in generation 0. Then f1(x) = f (x). Watson noticed that

fn(x) = fn−1( f (x)) , (9.2)

a formula which allows to compute fn(x) recursively.

Indeed, set fn(x) = p0,n + p1,n x + p2,n x2 + · · ·+ pqn,n x(qn). Notice that there
are at most qn men in generation n. If in generation n− 1 there are s men
numbered 1 to s, call t1,. . . ,ts the number of their male offspring. In such a
case, there will be t men in generation n with a probability equal to

∑
t1+···+ts=t

pt1 ×·· ·× pts .

When s = 0, it should be understood that this probability is equal to 1 if t = 0
and equal to 0 if t ≥ 1. Therefore

pt,n = ∑
s≥0

ps,n−1 × ∑
t1+···+ts=t

pt1 ×·· ·× pts .

It follows that

fn(x) = ∑
t≥0

pt,n xt = ∑
s≥0

ps,n−1 ∑
t≥0

∑
t1+···+ts=t

(pt1 xt1)×·· ·× (pts xts)

= ∑
s≥0

ps,n−1
[
p0 x0 + p1 x1 + p2 x2 + · · ·

]s

= ∑
s≥0

ps,n−1[ f (x)]s = fn−1( f (x)) .

In particular the probability xn of extinction of the family name within n gen-
erations is equal to p0,n, which is the same as fn(0). As a first example, Watson
took
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f (x) = (1+ x+ x2)/3,

i.e. q = 3 and p0 = p1 = p2 = 1/3. He computed the polynomials fn(x) for n =
1, . . . ,4 using Eq. (9.2). He obtained for instance

f2(x) =
1
3

[
1+

1+ x+ x2

3
+

(1+ x+ x2

3

)2]
=

13+5x+6x2 +2x3 + x4

27

and f2(0) = 13/27 � 0.481. The computation of fn(x) for n ≥ 3 becomes very
tedious, so tedious that Watson already made a mistake for n = 4. Since x5 = f5(0) =
f4( f (0)) can avoid the computation of f5(x), he got the following list of extinction
probabilities xn = fn(0):

x1 � 0.333, x2 � 0.481, x3 � 0.571, x4 � 0.641, x5 � 0.675 .

The correct values are x4 � 0.632 and x5 � 0.677, as can be checked by using the
simple formula xn = f (xn−1) derived by Bienaymé. As we shall see in Chapter 17,
the latter formula can also be derived from Eq. (9.2).

Watson noticed that each man has on average R0 = p1 + 2 p2 + · · ·+ q pq sons
and that R0 = 1 in his first example. So one could think that if the initial number
of male family members was large enough, the family size would remain roughly
constant. Nevertheless Watson claimed that the extinction probability xn converges
towards 1 when n → +∞, though quite slowly. In other words the whole family
will reach extinction as Candolle had suggested. Figure 9.2a, which is not drawn in
the original article, and Bienaymé’s results confirm that this conclusion for the first
example is correct.

Fig. 9.2 Graph of the functions y = f (x) and y = x. The extinction probability xn = f (xn−1)
within n generations is the height of the nth “step of the staircase”. Left: f (x) = (1 + x + x2)/3.
Right: f (x) = (3+ x)5/45.
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As a second example, Watson considered the binomial probability distribution

pk =
(

q
k

)
aq−k bk

(a+b)q , (9.3)

for which the generating function (9.1) is f (x) = (a +bx)q/(a +b)q. He computed
f2(x) and x2 = f2(0). At this point he realized that x2 = f (x1) and that xn = f (xn−1)
for all n. But he thought this formula was true only for the special binomial case
(9.3). Applying it to the case where q = 5, a = 3 and b = 1, he obtained

x1 � 0.237, x2 � 0.347, x3 � 0.410, . . . x9 � 0.527, x10 � 0.533, . . .

Watson realized that xn has to converge to a limit x∞ as n → +∞, which satisfies
x∞ = f (x∞) = (a + bx∞)q/(a + b). He noticed that x = 1 is a solution of this equa-
tion but did not realize that there could be other solutions when R0 > 1. So he
erroneously concluded, misled by Candolle, that there is extinction (x∞ = 1) in ev-
ery case, including the numerical example he had just considered. Fig. 9.2b shows
that this it not case!

Watson noticed that the mean number of sons in this numerical example was big-
ger than 1 (one can show that R0 = qb/(a+b) = 5/4), meaning that the population
tends to increase exponentially. But this did not help him discover his error. He even
conjectured that extinction of the family name was certain for every probability dis-
tribution (pk), i.e. not just for the binomial case. We shall return to this problem in
Chapters 17 and 18.

Galton continued his statistical study of families with a book entitled English
Men of Science, their Nature and Nurture, which focused on the genealogy of fel-
lows of the Royal Society. He also became interested in anthropometry, the measure
of the human body. He took advantage of an international exhibit in 1884 in London
to collect data on a large number of people. His results were published in 1889 in
a book entitled Natural Inheritance, whose appendix reproduced the article writ-
ten in collaboration with Watson. This book also introduced some new statistical
vocabulary such as “percentile” and “quartile” as well as the word “eugenics”, i.e.
the improvement of the human species from the point of view of hereditary char-
acters. After 1888 Galton developed the technique of recognizing fingerprints that
was to be used a few years later by the British police. He also continued to study
the respective role of heredity (nature) and of the environment (nurture) on physi-
cal and intellectual characteristics of twins, on the size of peas grown over several
generations or on the color of mice bred in a laboratory. This led him to the notion
of “correlation coefficient” between two variables. In 1904 the Galton Laboratory
was founded within University College in London. Galton was knighted in 1909 and
died in 1911.

Watson published several books, in particular a treatise on the kinetic theory of
gases in 1876 and a treatise on the mathematical theory of electricity and magnetism
in two volumes (1885 and 1889). He was elected to the Royal Society in 1881 and
died in Brighton in 1903.
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In 1924, in the second volume of his biography of Galton, Karl Pearson summa-
rized the article on the extinction of family names without noticing the error. This
error would finally be noticed in 1930 (see Chapter 18).
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Chapter 10
Lotka and stable population theory (1907–1911)

Alfred James Lotka was born of American parents in 1880 in Lemberg, which was
part of the Austro-Hungarian Empire (now L’viv in Ukraine). He studied first in
France and Germany and in 1901 obtained a bachelor’s degree in physics and chem-
istry from the University of Birmingham in England. He then spent one year in
Leipzig where the role of thermodynamics in chemistry and biology was empha-
sized by Wilhelm Ostwald, who was to receive the Nobel prize in Chemistry in
1909. Lotka settled in New York in 1902 and began to work for the General Chem-
ical Company.

Fig. 10.1 Lotka (1880–1949)

In 1907 and 19111, Lotka took up the study of the dynamics of age-structured
populations without knowing about Euler’s work on the same subject (see Chap-
ter 3). Unlike Euler he assumed that time and age are continuous variables. Let B(t)
be the male birth rate (the number of male births per unit of time) at time t, p(x)
the probability of being still alive at age x and h(x) the fertility at age x: h(x)dx is

1 The second article was written in collaboration with F.R. Sharpe, a mathematician from Cornell
University.
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the probability for a man to have one newborn son between age x and x+dx if dx is
infinitely small. Then ∫ ∞

0
p(x)dx

is the life expectancy at birth. Moreover B(t−x) p(x)dx is the number of males born
between time t − x and t − x + dx, which are still alive at time t. These males have
B(t − x) p(x)h(x)dx sons per unit of time at time t. So the total male birth rate at
time t is

B(t) =
∫ ∞

0
B(t − x) p(x)h(x)dx.

Looking for an exponential solution for this integral equation in the unknown B(t)
of the form B(t) = bert , Lotka obtained by dividing both sides by B(t) the equation

1 =
∫ ∞

0
e−r x p(x)h(x)dx , (10.1)

which is now called “Lotka’s equation” by demographers2. Euler had obtained the
analogous implicit equation (3.1) for the growth rate when time and age are discrete
variables. Lotka noticed that the right-hand side of (10.1) is a decreasing function
of r which tends to +∞ when r →−∞ and which tends to 0 when r →+∞. So there
is a unique value of r, call it r∗, such that equation (10.1) holds. Besides, r∗ > 0 if
and only if

R0 =
∫ ∞

0
p(x)h(x)dx > 1 . (10.2)

The parameter R0 (the notation was introduced by Dublin and Lotka in 1925) is the
expected number of sons that one man may have throughout his life.

Lotka suggested3 that, whatever the initial age structure of the population, the
number of male births per unit of time was indeed such that B(t) ∼ ber∗t when
t → +∞, where b is a constant. The total population is then given by

P(t) =
∫ ∞

0
B(t − x) p(x)dx .

It follows that P(t) also increases or decreases like er∗t when t → +∞: the growth
rate is equal to r∗. Moreover, the population’s age structure, given by B(t −x) p(x)/
P(t), tends to

e−r∗x p(x)∫ ∞
0 e−r∗y p(y)dy

.

This is what Lotka called a “stable population”: the age pyramid keeps the same
shape through time but the total population increases or decreases exponentially.

2 R.A. Fisher arrived independently at the same equation in 1927 and later interpreted the root r∗

as a measure of “Darwinian fitness” in the theory of evolution by natural selection.
3 This was rigorously proven in 1941 by Willy Feller, who was then professor of mathematics at
Brown University in the USA. A probabilistic approach was developed in 1968 by Crump, Mode
and Jagers.
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The conclusion is thus the same as in Euler’s discrete-time model. But Lotka’s study
takes into account the age dependence of fertility. So it is in some sense more gen-
eral than Euler’s.

Lotka continued to work on this topic throughout his life. In 1908–1909 he re-
sumed his studies at Cornell University to get a master’s degree. He worked for
the National Bureau of Standards from 1909 till 1911 and as editor of the journal
Scientific American Supplement from 1911 till 1914. In 1912 he obtained a doctor-
ate from the University of Birmingham by collecting the articles he had published
since 1907 on population dynamics and demography. During the First World War,
he worked again for the General Chemical Company on how to fix nitrogen from
the atmosphere. In 1920 one of his articles on biological oscillations (see Chap-
ter 13) made a deep impression on Raymond Pearl, a professor of biometry at Johns
Hopkins University who had just “rediscovered” the logistic equation (see Chap-
ter 6). Hoping to find a job at the Rockefeller Institute of Medical Research in New
York, Lotka worked on the mathematical models developed by Ross for malaria (see
Chapter 12). Finally he got a two-year scholarship from Johns Hopkins University,
which allowed him to write a book entitled Elements of Physical Biology, published
in 1925. He then became the head of the research department of the Metropolitan
Life Insurance Company in New York. He focused on the mathematical analysis
of demographic questions and published several books in collaboration with a col-
league, the statistician and vice-president of the company Louis Israel Dublin: The
Money Value of a Man (1930), Length of Life (1936) and Twenty Five years of Health
Progress (1937). He was elected president of the Population Association of America
for 1938–1939. Among his various statistical studies, “Lotka’s law” (going back to
1926) states that the number of authors having written n articles in a given scientific
field decreases more or less like 1/n2 as n increases.

Lotka also published a book in French entitled Analytical Theory of Biological
Associations. The first part, which was more philosophical, appeared in 1934. The
second more technical part, published in 1939, summarized all his research on hu-
man demography since 1907. In his book Lotka also presented his contribution to
the problem of extinction of family names. After the publication in 1930 of Stef-
fensen’s first article on the subject (see Chapter 18), he had applied the theory to the
data contained in the 1920 census of the white population of the USA. He noticed
that the observed distribution (pk)k≥0 of the number of sons is well approximated
by a decreasing geometric law for all k ≥ 1:

p0 = a, pk = bck−1 (k ≥ 1),

with a = 0.4825, b = 0.2126 and c = 1− b/(1− a). In this way, ∑k≥0 pk = 1. The
associated generating function is

f (x) = a+b
+∞

∑
k=1

ck−1 xk = a+
bx

1− cx
.
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The two solutions of the equation x = f (x) are x = 1 and x = a/c. The extinction
probability x∞ is the smallest of these two solutions (see Chapter 7). With the nu-
merical values for the USA he found x∞ � 0.819, while the mean number of sons
was R0 = f ′(1) = (1−a)2/b � 1.260. Despite a mean number of children (includ-
ing sons and daughters) close to 2.5, the probability of extinction of the family name
is above 80%.

Lotka was elected president of the American Statistical Association in 1942. He
retired in 1947 and died in 1949 in New Jersey. A new edition of his 1925 book
appeared in 1956 with the slightly different title Elements of Mathematical Biology.
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Chapter 11
The Hardy–Weinberg law (1908)

Godfrey Harold Hardy was born in 1877 in Surrey, England. His parents were teach-
ers. He studied mathematics at Trinity College, Cambridge University, from 1896,
became a fellow of his college in 1900 and a lecturer in mathematics in 1906. After
a first book on The Integration of Functions of a Single Variable (1905), he pub-
lished in 1908 A Course of Pure Mathematics, which was reedited many times and
translated to many foreign languages.

Fig. 11.1 Hardy (1877–1947)

At that time, the rediscovery of Mendel’s work had raised some doubts. Some
biologists wondered why the dominant characters did not become more frequent
from generation to generation. Reginald Punnett, who had written a book entitled
Mendelism in 1905, asked the question to Hardy, with whom he played cricket in
Cambridge. Hardy wrote his solution in an article on “Mendelian proportions in a
mixed population”, which was published in 1908. To simplify the analysis, he imag-
ined the situation of a large population where the choice of the sexual partner would
be random. Moreover he restricted his attention to just two factors (or “alleles”) A
and a, A being dominant and a recessive. For generation n, let pn be the frequency
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of the “genotype” AA, 2qn that of Aa and rn that of aa. Of course, pn +2qn +rn = 1.
Hardy assumed also that none of these genotypes led to an excess of mortality or to
a decrease in fertility when compared to the two other genotypes. The frequencies
in generation n + 1 can be easily computed by noticing that one randomly chosen
individual in generation n transmits allele A with a probability pn + qn: either the
genotype is AA and allele A is transmitted for sure or the genotype is Aa and allele A
is transmitted with 50% chance. Similarly, allele a is transmitted with a probability
qn + rn. One can hence construct Table 11.1 in the same way as Table 8.1.

Table 11.1 Computation of the frequencies of the genotypes in generation n+1 from the frequen-
cies of the alleles of the parents (rows are for the mother, columns for the father).

Allele A a
Frequency pn +qn qn + rn

A AA Aa
pn +qn (pn +qn)2 (pn +qn)(qn + rn)

a Aa aa
qn + rn (pn +qn)(qn + rn) (qn + rn)2

The frequencies of the genotypes AA, Aa and aa in generation n + 1 are respec-
tively pn+1, 2qn+1 and rn+1. So Hardy found that

pn+1 = (pn +qn)2 (11.1)

2qn+1 = 2(pn +qn)(qn + rn) (11.2)

rn+1 = (qn + rn)2 . (11.3)

He then investigated under which conditions the frequencies of the genotypes could
stay constant through the generations being equal to p, 2q and r. Since by definition
p + 2q + r = 1, we see that equations (11.1)-(11.3) all yield the same condition
q2 = pr.

For example, the first equation gives p = (p + q)2 = p2 + 2pq + q2, which is
equivalent to p(1− p−2q) = q2 and finally to pr = q2.

Starting from arbitrary initial conditions (p0,2q0,r0) with p0 + 2q0 + r0 = 1,
Hardy noticed that

q2
1 = (p0 +q0)2(q0 + r0)2 = p1 r1.

The state (p1,2q1,r1) is therefore already an equilibrium. So (pn,2qn,rn) stays
equal to (p1,2q1,r1) for all n ≥ 1. If we set x = p0 + q0 for the frequency of al-
lele A in generation 0, then 1−x = q0 +r0 is the frequency of allele a. Using system
(11.1)–(11.3) once again, we get

pn = x2, 2qn = 2x(1− x), rn = (1− x)2



11 The Hardy–Weinberg law (1908) 61

for all n ≥ 1 (Fig. 11.2).

Fig. 11.2 Graphs of the
functions x2, 2x(1− x) and
(1− x)2 corresponding to the
equilibrium frequencies of the
genotypes AA, Aa and aa.

In conclusion, the above hypotheses lead to the law according to which the fre-
quencies of the genotypes AA, Aa and aa stay unchanged through generations.
Mendel’s theory does not lead to a progressive increase of the frequency of the
dominant character as had first been thought.

Some years later, Fisher would insist on an important corollary of this law: to a
first approximation (i.e. assuming that the model’s hypotheses are realistic), a pop-
ulation keeps a constant genetic variance. This observation solves one of the prob-
lems raised by Darwin’s theory of evolution by natural selection. Indeed, Darwin
thought, like his contemporaries, that at each generation the physiological charac-
teristics of the children were a kind of average of the characteristics of the two par-
ents, each parent contributing one half. This idea had been later thoroughly studied
using statistics by Francis Galton and his successor at the biometry laboratory, Karl
Pearson. If it were true, the variance of these characteristics in a population should
be divided by two at each generation and there would soon be such a homogeneity
that natural selection, supposed to explain evolution, would be impossible. Several
years would nevertheless be necessary for this averaging mechanism to be rejected,
biometricians defending Darwin’s point of view and being reluctant to admit that
Mendel’s laws are unavoidable to understand evolution.

After this work in 1908, Hardy returned to pure mathematics. In his autobiogra-
phy, A Mathematican’s Apology, he even claimed with pride having avoided discov-
eries of any practical use. In 1910 he was elected to the Royal Society. In 1913 he
discovered the Indian prodigy Ramanujan and invited him to work in Cambridge.
After the First World War, he became professor at Oxford University and contin-
ued a fruitful collaboration with his compatriot Littlewood. Between 1931 and 1942
he was again professor in Cambridge. He published many books, often in collabora-
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tion: Orders of Infinity (1910), The General Theory of Dirichlet’s Series with Marcel
Riesz (1915), Inequalities with Littlewood and Pólya (1934), An Introduction to the
Theory of Numbers with E. M. Wright (1938), Ramanujan (1940), Fourier Series
with Rogosinski (1944) and Divergent Series (1949). He died in Cambridge in 1947.

Fig. 11.3 Weinberg (1862–
1937)

Several decades later, people noticed that Hardy’s law for gene frequencies had
also been discovered that same year 1908 by a German medical doctor, Wilhelm
Weinberg. Weinberg was born in Stuttgart in 1862. After studying in Tübingen and
Munich until his doctorate in medicine, he had worked several years in hospitals in
Berlin, Vienna and Frankfurt. He had settled in 1889 in Stuttgart as general practi-
tioner and obstetrician. Despite being very busy with his work, he had found time
to write many articles in German scientific journals. In 1901 he had studied from a
statistical point of view the frequency of twins of the same sex. The 1908 article,
in which he explained the same law as Hardy had found, had been published in a
local scientific journal and had not been noticed. But unlike Hardy, he had contin-
ued this study the following years, discovering for example the generalization to the
case where there are more than two alleles. He had also contributed to the area of
medical statistics. Weinberg died in 1937. After the rediscovery of his 1908 article,
geneticists called the law of stability of genotype frequencies the “Hardy–Weinberg
law”.

Nowadays this law is often used as follows. If a rare recessive allele a has no
influence on survival or fertility and if we know the frequency x2 of the genotype aa
because aa produces a particular phenotype, then we can compute x and estimate
the frequency 2x(1− x) � 2x of the genotype Aa. As an example, if the frequency
of aa is 1/20,000, then we get x � 1/140. So 2x � 1/70 is the frequency of the
genotype Aa. The recessive allele a, which might appear very rare from inspection
of the phenotypes, is in fact not so uncommon.
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Chapter 12
Ross and malaria (1911)

Ronald Ross was born in 1857 in the North of India, where his father was an officer
in the British army. He studied medicine in London but preferred to write poems
and dramas. After working for a year on a ship as surgeon, he managed to enter the
Indian Medical Service in 1881. His medical work in India left him plenty of free
time, during which he wrote literary works and taught himself some mathematics.
On furlough to England in 1888, he obtained a diploma in public health and studied
bacteriology, a new science created a few years earlier by Pasteur and Koch. Back in
India, Ross started to study malaria. During his second furlough in 1894, he met in
London Patrick Manson, a specialist in tropical medicine who showed him under the
microscope what the French military doctor Alphonse Laveran had noticed in 1880:
the blood of patients with malaria contains parasites. Manson suggested that the par-
asites could come from mosquitoes because he had discovered himself in China the
parasite of another tropical disease (filariasis) in these insects. However, he believed
that humans were infected by the parasite when drinking water contaminated by the
mosquitoes. From 1895 till 1898, Ross continued his research in India and tested
Manson’s idea. In 1897 he discovered in the stomach of a certain mosquito species
that he had not studied before (anopheles) some parasites similar to those observed
by Laveran. His superiors having sent him to Calcutta during a season where malaria
cases were rare, he decided to study malaria in cage birds. He found the parasite in
the salivary glands of anopheles mosquitoes and managed to infect experimentally
healthy birds by letting mosquitoes bite them: this proved that malaria is transmit-
ted by mosquito bites and not by ingestion of contaminated water. In 1899 Ross left
the Indian Medical Service to teach at the Liverpool School of Tropical Medicine,
which had been created one year before. He was elected to the Royal Society in
1901 and received in 1902 the Nobel Prize in Physiology or Medicine for his work
on malaria. He traveled to Africa, to Mauritius and in the Mediterranean area to pop-
ularize the fight against mosquitoes. The method was successful in Egypt along the
Suez canal, along the Panama canal under construction, in Cuba and in Malaysia. It
was less successful in some other areas. Ross published a Report on the Prevention
of Malaria in Mauritius in 1908 and The Prevention of Malaria in 1910.
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Fig. 12.1 Ross (1857–1932)

Despite his proof of the role of certain mosquitoes in the transmission of malaria,
Ross met skepticism when he claimed that malaria could be eradicated simply by
reducing the number of mosquitoes. In the second edition of his book on The Pre-
vention of Malaria published in 1911, he tried to build mathematical models of the
transmission of malaria in order to support his claim. One of his models consisted
of a system of two differential equations. Let us introduce the following notations:

• N: total human population in a given area;
• I(t): number of humans infected with malaria at time t;
• n: total mosquito population (assumed constant);
• i(t): number of mosquitoes infected with malaria;
• b: biting frequency of mosquitoes;
• p (respectively p′): transmission probability of malaria from human to mosquito

(respectively from mosquito to human) during one bite;
• a: rate at which humans recover from malaria;
• m: mosquito mortality.

During a small time interval dt, each infected mosquito bites bdt humans, among
which a fraction equal to N−I

N is not yet infected. Taking into account the transmis-
sion probability p′, there are b p′ i N−I

N dt new infected humans. During the same
time interval, the number of humans that recover is aI dt. Hence,

dI
dt

= b p′ i
N − I

N
−aI.

Similarly each noninfected mosquito bites bdt humans, among which a fraction
equal to I/N is already infected. Taking into account the transmission probability
p, there are b p(n− i) I

N dt new infected mosquitoes. Meanwhile, assuming that in-
fection does not influence mortality, the number of mosquitoes that die is midt.
So

di
dt

= b p(n− i)
I
N
−mi .
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Since malaria exists permanently in most infected countries, Ross considered just
the steady states of his system of two equations: the number of infected humans I(t)
and the number of infected mosquitoes i(t) stay constant through time (dI/dt = 0
and di/dt = 0). First there is always the steady state with I = 0 and i = 0, which
corresponds to the absence of malaria. Secondly, Ross looked for a steady state such
that I > 0 and i > 0 and found that

I = N
1−amN/(b2 p p′ n)

1+aN/(b p′ n)
, i = n

1−amN/(b2 p p′ n)
1+m/(b p)

. (12.1)

Dividing the steady state equations by the product I × i, the problem becomes
a linear system of two equations with two unknowns 1/I and 1/i,

b p′

I
− a

i
=

b p′

N
, −m

I
+

b pn
N i

=
b p
N

.

Its solution is easily obtained.

One can notice that I > 0 and i > 0 if the number of mosquitoes is above a critical
threshold:

n > n∗ =
amN
b2 p p′

.

In this case the steady state corresponds to the situation where the disease is en-
demic, i.e. permanently present. Ross concluded that if the number of mosquitoes
n is reduced below the critical threshold n∗, then the only remaining steady state
is I = 0 and i = 0, so malaria should disappear. In particular it is not necessary to
exterminate all the mosquitoes to eradicate malaria. This is precisely the point Ross
wanted to emphasize with his model.

To illustrate his theory, Ross looked for reasonable numerical values for the pa-
rameters of his model. He assumed that

• the mortality of mosquitoes is such that only one third of them are still alive after
ten days; so e−10m = 1

3 and m = (log3)/10 per day;
• half of the people are still infected after three months; so e−90a = 1/2 and a =

(log2)/90 per day;
• one out of eight mosquitoes bites each day; so e−b = 1− 1/8 and b = log(8/7)

per day;
• infected mosquitoes are usually not infectious during the first ten days following

their infection because the parasites have to go through several stages of trans-
formation. Since one third of mosquitoes can survive ten days, Ross assumed
that there are also about one third of all infected mosquitoes that are infectious:
p′ = 1/3;

• p = 1/4.
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Ross could then compute with formula (12.1) the infected fraction I/N in the human
population as a function of the ratio n/N between the mosquito and the human
population. He showed his results in a table that is equivalent to Fig. 12.2.

Fig. 12.2 Fraction I/N of
infected humans as a function
of the ratio n/N between
the mosquito and the human
population.

The shape of the curve shows that the fraction of infected humans is higher than
50% already if the ratio n/N is just slightly above the critical value n∗/N. But this
fraction does not change much when the ratio n/N increases further. This explains
why the correlation between the number of mosquitoes and the presence of malaria
had never been noticed before. Ross noticed, however, that the numerical value of
the threshold n∗/N was very sensitive to small changes in the biting rate b, but
that this did not change the overall shape of the curve in Fig. 12.2. His qualitative
explanation is more important than the quantitative results, which suffer from the
uncertainty surrounding the numerical values of the parameters.

To interpret the critical threshold n∗ discovered by Ross1, consider one infected
human introduced in a human and a mosquito population both free of malaria. This
human stays infected on average during a period of time equal to 1/a. He or she
receives bn/N bites per unit of time so on average bn/(aN) bites in total while
infected. So he or she infects on average b pn/(aN) mosquitoes. Each of these in-
fected mosquitoes lives on average during a period of time equal to 1/m, bites b/m
humans and infects b p′/m humans. In total, after the transmission from the first
infected human to the mosquitoes and from these mosquitoes to other humans, the
mean number of newly infected humans is the product of the previous two results,
i.e.

R0 =
b2 p p′ n
amN

. (12.2)

This R0 is the number of secondary human cases due to one primary human case.
So the infection process which happens continuously in time can also be considered
through successive generations. Malaria can “invade” the population only if R0 > 1.
This condition is precisely equivalent to n > n∗.

1 This interpretation was emphasized only long after Ross’ work.
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In conclusion, Ross pleaded more generally in favour of mathematical modelling
in epidemiology:

As a matter of fact all epidemiology, concerned as it is with the variation of disease from
time to time or from place to place, must be considered mathematically, however many
variables are implicated, if it is to be considered scientifically at all. To say that a disease
depends upon certain factors is not to say much, until we can also form an estimate as to how
largely each factor influences the whole result. And the mathematical method of treatment
is really nothing but the application of careful reasoning to the problems at issue.

Ross was knighted in 1911. He moved to London and became a consultant for
the British army during the First World War. In 1923 he published his autobiogra-
phy, Memoirs With a Full Account of the Great Malaria Problem and its Solution. In
1926 was inaugurated the Ross Institute of Tropical Diseases (now part of the Lon-
don School of Hygiene and Tropical Medicine), of which he became the director.
Ross died in London in 1932.
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Chapter 13
Lotka, Volterra and the predator–prey system
(1920–1926)

In 1920 Lotka published an article entitled “Analytical note on certain rhythmic re-
lations in organic systems”. For some years already, he had been interested in some
chemical reactions that exhibited strange transitory oscillations in laboratory exper-
iments. The purpose of his article was to suggest that a system of two biological
species could even oscillate permanently. The example he considered was that of
a population of herbivores feeding on plants. In analogy with the equations used
in chemical kinetics, let x(t) be the total mass of plants and y(t) the total mass of
herbivores at time t. Lotka used as a model the following system of differential
equations

dx
dt

= ax−bxy , (13.1)

dy
dt

= −cy+d xy , (13.2)

where the parameters a, b, c and d are all positive. Parameter a is the growth rate of
plants when there are no herbivores, while c is the rate of decrease of the population
of herbivores when there are no plants. The terms −bxy and d xy express that the
more animals and plants there are, the higher the mass transfer from plants towards
animals (the transfer includes some loss of mass so d ≤ b). Setting dx/dt = 0 and
dy/dt = 0, Lotka noticed that there are two steady states:

• (x = 0, y = 0), the population of herbivores is extinct and there are no more
plants;

• (x = c/d, y = a/b), herbivores and plants coexist.

He also wrote without proof that if at time t = 0, (x(0),y(0)) is not one of these
two steady states, then the functions x(t) and y(t) oscillate periodically: there is a
number T > 0 such that x(t +T ) = x(t) and y(t +T ) = y(t) for all t > 0 (Fig. 13.1)1.
If for example the plants are very abundant, then the population of herbivores will
increase, causing a decrease in the total mass of plants. When this mass becomes

1 The period T depends on the initial conditions, but Lotka realized this fact only in 1925.
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insufficient to feed the herbivores, some animals die of hunger and the total mass of
plants will start to grow again until it reaches a level equal to its initial value. The
phenomenon will repeat itself.

Fig. 13.1 Oscillations of the
total mass of plants x(t) and
of the total mass of herbivores
y(t) as a function of time.

Lotka studied the model a little further in a second article published in 1920
entitled “Undamped oscillations derived from the law of mass action”. He explained
why the system could oscillate in a periodic way. This follows from the fact that
the point (x(t),y(t)) has to stay on a closed trajectory in the plane with x on the
horizontal axis and y on the vertical axis; more precisely, in the quadrant where
x ≥ 0 and y ≥ 0 (Fig. 13.2).

Indeed, dividing equation (13.1) by equation (13.2), we obtain after some re-
ordering (

−c
x

+d
) dx

dt
=

(a
y
−b

) dy
dt

.

Integration gives

d x(t)− c logx(t) = by(t)− a logy(t)+K ,

where K is a constant which depends only on the initial condition. Hence, the
point (x(t),y(t)) stays on the curve d x−c logx = by−a logy+K, which hap-
pens to be a closed curve (Fig. 13.2).

The trajectory of (x(t),y(t)) turns around the steady state (c/d,a/b) counter-
clockwise as can be easily seen by studying the sign of dx/dt and of dy/dt.
Near the steady state, the system exhibits small oscillations with a period equal
to 2π/

√
ac.
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Fig. 13.2 Diagram with the
total mass of plants x(t) on the
horizontal axis and the total
mass of herbivores y(t) on the
vertical axis. The three closed
curves around the steady state
correspond to different initial
conditions.

Indeed, set x = c
d + x∗ and y = a

b + y∗ where x∗ 
 c
d and y∗ 
 a

b . Then

dx∗

dt
= −by∗

( c
d

+ x∗
)
�−bc

d
y∗ ,

dy∗

dt
= d x∗

(a
b

+ y∗
)
� ad

b
x∗ .

From these two equations, we obtain

d2x∗

dt2 �−acx∗ and
d2y∗

dt2 �−acy∗ .

These equations are the same as for the oscillations of the simple pendulum in
physics. The period is 2π/

√
ac.

Raymond Pearl, who had communicated the first 1920 article to the Proceed-
ings of the National Academy of Sciences, helped Lotka get a two-year scholarship
from Johns Hopkins University to write a book entitled Elements of Physical Biol-
ogy. The book was published in 1925. The section summarizing the 1920 work also
mentioned that systems of two species, one host and one parasite species or one
prey and one predator species, could be described by the same model (13.1)–(13.2).
Unfortunately Lotka’s book did not draw much attention when it was published.
However, the famous mathematician Volterra independently rediscovered that same
model soon after while studying a fishery problem.

Vito Volterra was born in the Jewish ghetto of Ancona in 1860, shortly be-
fore the unification of Italy, when the city still belonged to the Papal States. He
was a single child. His father, a cloth merchant, died when Vito was two years
old and left the family without money. A good student in high school, Volterra
managed to continue studying despite poverty, first at the University of Florence
and later at the Scuola Normale Superiore in Pisa. In 1882 he obtained a doctor-
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ate in physics and the following year became professor of mechanics at the Uni-
versity of Pisa. He joined the University of Turin in 1892 and moved to a chair
of mathematical physics at the University La Sapienza in Rome in 1900. He be-
came senator in 1905. Many of the lectures he gave in Rome or in foreign uni-
versities were published in book form: Three Lessons on Some Recent Progress in
Mathematical Physics (Clark University, 1909), Lessons on Integral and Integro-
differential Equations (Rome, 1910), Lessons on Line Functions (Paris, 1912), The
Theory of Permutable Functions (Princeton, 1912). He served as an officer in the
Italian army during the First World War and led the bureau of war inventions. Af-
ter the war, he participated actively in the foundation of the Italian Mathematical
Union (1922) and of the Italian National Research Council (1923), becoming the
first chairman of the latter. He also became president of the International Com-
mission for the Scientific Study of the Mediterranean Sea (1923) and president
of the Accademia dei Lincei (1924). Another monograph, written in collaboration
with J. Pérès, Lessons on Composition and Permutable Functions, was published in
1924.

Fig. 13.3 Volterra (1860–
1940) receiving a doctorate
honoris causa from the Uni-
versity of Cambridge in 1900.

In 1925, at age 65, Volterra became interested in a study by the zoologist Umberto
D’Ancona, who would later become his son-in-law, on the proportion of cartilagi-
nous fish (such as sharks and rays) landed in the fishery during the years 1905–1923
in three harbours of the Adriatic Sea: Trieste, Fiume2 and Venice. D’Ancona had
noticed that the proportion of these fish had increased during the First World War,
when the fishing effort had been reduced (Table 13.1).

The cartilaginous fish being predators of smaller fish, it seemed that a decrease
in the fishing effort favoured the predator species. Volterra, who did not know about
Lotka’s work, explained this observation by using the same model

2 Now Rijeka in Croatia.
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Table 13.1 Percentage of cartilaginous fish in the fisheries of Trieste, Fiume and Venice before,
during and after the First World War.

Year 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923

Trieste 5.7 8.8 9.5 15.7 14.6 7.6 16.2 15.4 - 19.9 15.8 13.3 10.7 10.2
Fiume - - - - 11.9 21.4 22.1 21.2 36.4 27.3 16.0 15.9 14.8 10.7
Venice 21.8 - - - - - - - - 30.9 25.3 25.9 25.8 26.6

dx
dt

= ax−bxy ,
dy
dt

= −cy+d xy ,

where x(t) stands for the number of prey and y(t) for the number of predators. He
noticed, like Lotka, that this system can oscillate in a periodic way with a period T
which depends on the initial condition (x0,y0). He noticed also that

d
dt

logx = a−by,
d
dt

logy = −c+d x.

Integrating over one period T (so that x(0) = x(T ) and y(0) = y(T )), he obtained

1
T

∫ T

0
y(t)dt =

a
b

,
1
T

∫ T

0
x(t)dt =

c
d

.

So the average over one period of both the number of prey and the number of preda-
tors is independent of the initial conditions. Moreover, if the fishing effort decreases,
the growth rate a of prey increases while the extinction rate c of predators decreases.
Therefore the average of x(t) decreases and the average of y(t) increases: the propor-
tion of predators increases. This is precisely what had been observed for the fishery
statistics from the Adriatic Sea.

Volterra published his article first in Italian in 1926. An English summary ap-
peared a few months later in Nature. Lotka informed Volterra and other scientists of
the priority of his study of predator–prey systems. But his 1920 article and his 1925
book would not always be mentioned. Lotka was then already working for an insur-
ance company, so his work focused on human demography. Volterra continued to
work on variants of the predator–prey system for a decade. He gave a series of lec-
tures in 1928-1929 at the newly created Institut Henri Poincaré in Paris. The notes
of these lectures were published in 1931 under the title Lessons on the Mathemati-
cal Theory of the Struggle for Life. In 1935 Volterra published in collaboration with
Umberto D’Ancona another book on Biological Associations from a Mathematical
Point of View.

Although the predator–prey model seems to explain the fishery data correctly,
the debate concerning the realism of simplified models in ecology was just starting
and is still a subject of scientific dispute. Nowadays, the predator–prey model is also
known as the Lotka– Volterra model and is one the most commonly cited in ecology.
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In 1931 Volterra refused to give allegiance to Mussolini. He lost his professor-
ship at the university in Rome and was excluded from Italian scientific academies,
of which he was one of the most famous members. From then on he remained
mainly outside Italy, travelling through Europe and giving lectures. He published
with J. Pérès the first volume of a General Theory of Functionals (1936) and a book
with B. Hostinský on Infinitesimal Linear Operations (1938). He died in Rome in
1940.
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4. Kingsland, S.E.: Modeling Nature, Episodes in the History of Population Ecol-
ogy, 2nd edn. University of Chicago Press (1995). books.google.com

5. Lotka, A.J.: Analytical note on certain rhythmic relations in organic systems.
Proc. Natl. Acad. Sci. 6, 410–415 (1920). www.pnas.org

6. Lotka, A.J.: Undamped oscillations derived from the law of mass action. J.
Amer. Chem. Soc. 42, 1595–1599 (1920). www.archive.org

7. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins, Baltimore
(1925). www.archive.org

8. Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali
conviventi. Mem. Accad. Lincei 6, 31–113 (1926) Reprinted in: Opere mate-
matiche, vol. 5, Accademia nazionale dei Lincei, Roma (1962)

9. Volterra, V.: Fluctuations in the abundance of a species considered mathemati-
cally. Nature 118, 558–560 (1926). Reprinted in L.A. Real, J.H. Brown (eds.)
Foundations of Ecology, pp. 283–285. University of Chicago Press (1991)
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Mathématique. Hermann, Paris (1935)

12. Whittaker, E.T.: Vito Volterra 1860–1940. Obit. Not. Fellows R. Soc. 3, 690–
729 (1941)

http://books.google.fr/books?id=rzSoM4yP-7gC&printsec=frontcover&source=gbs_v2_summary_r&cad=0#v=onepage&q=&f=false
http://books.google.fr/books?id=fl0gL50heXcC&printsec=frontcover&source=gbs_v2_summary_r&cad=0#v=onepage&q=&f=false
http://books.google.fr/books?id=OYcLJ_UhsKwC&printsec=frontcover&source=gbs_v2_summary_r&cad=0#v=onepage&q=&f=false
http://www.pnas.org/content/6/7/410.full.pdf
http://www.archive.org/details/journalamerican114socigoog
http://www.archive.org/details/elementsofphysic017171mbp


Chapter 14
Fisher and natural selection (1922)

Ronald Aylmer Fisher was born in London in 1890, the last of six children. His
father was an auctioneer, but later declared bankruptcy. Fisher studied mathematics
and physics at Gonville and Caius College of Cambridge University between 1909
and 1913. Genetics was developing quickly at the time. Starting in 1911, Fisher
participated in the meetings of the Eugenics Society initiated by Galton. He started
to focus on statistical problems related to the work of Galton and Mendel. After
finishing his university studies he spent one summer working on a farm in Canada
and then worked for the Mercantile and General Investment Company in the City
of London. Because of his extreme shortsightedness, he could not participate in the
First World War despite having volunteered. He spent these years teaching in high
schools. During his free time, he took care of a farm and continued his research.
He obtained important new results linking correlation coefficients with Mendelian
genetics. In 1919 he started to work as a statistician at the Rothamsted Experimental
Station, which focused on agriculture.

Fig. 14.1 Fisher (1890–1962)
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In 1922 Fisher published an article entitled “On the dominance ratio”. Among
several other important new ideas, this article considered a mathematical model
combining Mendel’s laws and the idea of natural selection emphasized by Darwin
for the theory of evolution. Fisher considered the same situation as Hardy with two
alleles A and a and with the random mating hypothesis. But he assumed that individ-
uals with genotypes AA, Aa and aa have different mortalities before reaching adult-
hood, thus mimicking natural selection. Setting pn, 2qn and rn for the frequencies
of the three genotypes among adult individuals in generation n, there are respec-
tively (pn + qn)2, 2(pn + qn)(qn + rn) and (qn + rn)2 newborns in generation n + 1
having these genotypes. Let u, v and w be the respective survival probabilities from
birth to adulthood. Then the frequencies of the genotypes among adult individuals
in generation n+1 are pn+1, 2qn+1 and rn+1 with

pn+1 =
u(pn +qn)2

dn
(14.1)

qn+1 =
v(pn +qn)(qn + rn)

dn
(14.2)

rn+1 =
w(qn + rn)2

dn
, (14.3)

where we set for convenience

dn = u(pn +qn)2 +2v(pn +qn)(qn + rn)+w(qn + rn)2.

Remembering that pn + 2qn + rn = 1, we see that when u = v = w (i.e. when there
is no natural selection), system (14.1)-(14.3) reduces to the system (11.1)-(11.3)
considered by Hardy.

Let xn = pn +qn be the frequency of allele A among adult individuals in genera-
tion n. Then qn + rn = 1− xn is the frequency of allele a. Adding (14.1) and (14.2),
we get

xn+1 =
ux2

n + vxn(1− xn)
ux2

n +2vxn(1− xn)+w(1− xn)2 .

This equation can be rewritten in the form

xn+1 − xn = xn (1− xn)
(v−w)(1− xn)+(u− v)xn

ux2
n +2vxn(1− xn)+w(1− xn)2 . (14.4)

There are always at least two steady states where the frequency xn stays constant
through generations: x = 0 (the population consists entirely of homozygous aa) and
x = 1 (the population consists entirely of homozygous AA).

Using equation (14.4), one can show that if the homozygous AA has a better
chance of survival than the two other genotypes (u > v and u > w), then allele a will
progressively disappear from the population. This case should not be very common
in nature if we know that both alleles coexist. If, however, the heterozygous Aa has
a selective advantage over the homozygous AA and aa (v > u and v > w), then the
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three genotypes can coexist in the population. This is the most common case and it
can explain the “vigour” of hybrids noticed by farmers.

Indeed, the steady state x = 1 is stable when u > v because xn+1 − xn � (1−
xn)(u− v)/u when xn is close to 1. The population tends to this steady state.
The steady state x = 1 is unstable when u < v, in which case there is a third
steady state

x∗ =
v−w

2v−u−w

with 0 < x∗ < 1. Moreover we can check that this one is stable. The steady state
x∗ corresponds to a mixture between the three genotypes.

Hence combining simply Mendel’s laws and a hypothesis of natural selection
(here, different survival probabilities for the three genotypes), we can explain the
two situations of coexistence or disappearance of genotypes. After Fisher, this
model was also developed by J.B.S. Haldane (see Chapter 17) and by Sewall Wright
(see Chapter 19).

In anticipation of Chapter 20, notice that if A is completely dominant and the
homozygous aa is disadvantaged compared to the two other genotypes, the numbers
u : v : w being in a ratio 1 : 1 : 1− ε , then equation (14.4) becomes

xn+1 − xn =
ε xn (1− xn)2

1− ε(1− xn)2 � ε xn (1− xn)2 (14.5)

for ε 
 1. If the survival of the heterozygous Aa lies halfway between that of the
two homozygous, then the numbers u : v : w are in a ratio 1 : 1− ε/2 : 1− ε and

xn+1 − xn =
ε
2 xn(1− xn)

1− ε(1− xn)
� ε

2
xn(1− xn) (14.6)

when ε 
 1.

At Rothamsted Fisher analysed long-term data concerning crop yields and me-
teorology. But he also made great contributions to statistical methodology. In 1925
he published a book entitled Statistical Methods for Research Workers, which was
highly successful and reprinted many times. He became a fellow of the Royal So-
ciety in 1929. In 1930 Fisher published a book on The Genetical Theory of Natural
Selection, a milestone in the history of population genetics. He became professor
of eugenics at University College in London in 1933, succeeding Karl Pearson at
the Galton Laboratory. In 1943 he moved to a genetics chair at Cambridge Univer-
sity, this time succeeding R.C. Punnett (see Chapter 11). He also published several
books: The Design of Experiments (1935), The Theory of Inbreeding (1949) and
Statistical Methods and Scientific Inference (1956). Knighted in 1952, he settled in
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Australia after retiring in 1959 and died in Adelaide in 1962. We shall return to
another part of his work in Chapter 20.
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Chapter 15
Yule and evolution (1924)

George Udny Yule was born in Scotland in 1871, his father having had a high level
position in the British administration in India. At the age of 16 Yule started to study
at University College in London to become an engineer. In 1892 he changed his
orientation and spent one year doing research in Bonn under the supervision of the
physicist Heinrich Hertz, who had demonstrated the existence of electromagnetic
waves a few years earlier. When Yule returned to England, Karl Pearson offered
him a position of assistant professor in applied mathematics at University College.
Yule, following Pearson, began to focus on statistics. In 1911 he published An In-
troduction to the Theory of Statistics, which was reprinted 14 times. The following
year he moved to Cambridge University. His research work dealt with theoretical
aspects of statistics but also with applications to agriculture and epidemiology. He
became a fellow of the Royal Society in 1922.

Fig. 15.1 Yule (1871–1951)

In 1924 Yule published an article entitled A mathematical theory of evolution
based on the conclusions of Dr. J. C. Willis. Willis was a colleague from the Royal
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Society who had published in 1922 a book entitled Age and Area, A Study in Geo-
graphical Distribution and Origin of Species. He had studied the distribution of
species among different genera in the classification of plants and animals. The data
that he had compiled showed that most genera contained only one species, that
fewer and fewer genera contained higher numbers of species and that there were
still a few genera containing a great number of species. Table 15.1 shows the data
concerning snakes, lizards and two families of beetles (the Chrysomelidae and the
Cerambycinae). The 1,580 species of lizards known at the time had been classified
in 259 genera, 105 genera containing only one species, 44 only two species, 23
only three species, etc., and two genera containing more than one hundred species.
For other families of animals and plants, the distribution of genera according to the
number of species they contain had a very similar shape. Yule suggested that Willis
should try to plot his data in a graph with logarithmic scales. This gave a striking
result (Fig. 15.2): the logarithm of the number Qn of genera containing n species
decreases more or less linearly with log(n). In other words, there are constants α > 0
and β > 0 such that Qn � α n−β : the distribution follows a “power law”. In his 1924
article, Yule looked for a mathematical model of evolution that could explain such
a statistical distribution.

Table 15.1 Data compiled by Willis.

Number Number of genera
of species Chrysomelidae Cerambycinae Snakes Lizards

1 215 469 131 105
2 90 152 35 44
3 38 82 28 23
4 35 61 17 14
5 21 33 16 12
6 16 36 9 7
7 15 18 8 6
8 14 17 8 4
9 5 14 9 5
10 15 11 4 5
11-20 58 74 10 17
21-30 32 21 12 9
31-40 13 15 3 3
41-50 14 8 1 2
51-60 5 4 0 0
61-70 8 3 0 1
71-80 7 0 1 0
81-90 7 1 0 0
91-100 3 1 1 0
101- 16 4 0 2

total 627 1024 293 259
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Fig. 15.2 The number of
genera as a function of
the number of species they
contain, with decimal loga-
rithmic scales. Data for the
Chrysomelidae. To smooth
the fluctuations when n
(the number of species) is
large, genera were counted
for ranges of n-values as in
Tab. 15.1. The average num-
ber of genera for a single
value of n can thus be less
than 1.

For this purpose he imagined first a continuous-time stochastic model1 for the
growth of the number of species within one genus (Fig. 15.3). Starting with only
one species at time t = 0, he assumed that the probability for a species to give birth
by mutation to a new species of the same genus during a “small” time interval dt
(on the time scale of evolution) was equal to r dt with r > 0.

Fig. 15.3 A simulation of the evolution of the number of species within one genus. Species 1
generates species 2 and 3. Species 3 generates species 4.

Let pn(t) be the probability that there are n species at time t (n is an integer but t
is a real number). To compute pn(t +dt), Yule considered several cases:

1 McKendrick (see Chapter 16) had already started to study such models in population dynamics
in a paper published in 1914.
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• if there are n−1 species at time t, each species has a probability r dt of generating
one new species between t and t +dt; in the limit dt → 0, there will be n species
at time t +dt with a probability (n−1)r dt;

• if there are n species at time t, there will be n + 1 species at time t + dt with a
probability nr dt.

Thus pn(t) is given by the following system of differential equations

d p1

dt
= −r p1 , (15.1)

d pn

dt
= (n−1)r pn−1 −nr pn (15.2)

for all n ≥ 2. From the first equation, we get p1(t) = e−r t because p1(0) = 1. It
is possible to show that the solution of the second equation that satisfies the initial
condition pn(0) = 0 is

pn(t) = e−r t (1− e−r t)n−1 (15.3)

for all n ≥ 2 (Fig. 15.4). So at some fixed time t, the distribution of probabilities
(pn(t))n≥1 is “geometric” with a ratio between two consecutive terms equal to 1−
e−r t .

Fig. 15.4 The probability pn(t) that there are n species of the same genus at time t, for 1 ≤ n ≤ 4.

Indeed, we notice first that equation (15.2) is equivalent to

d
dt

[
pn enrt

]
= (n−1)r pn−1 enrt , (15.4)



15 Yule and evolution (1924) 85

from which we can compute successively p2(t), p3(t) . . . . We get p2(t) =
e−r t (1− e−r t), then p3(t) = e−r t (1− e−r t)2, which suggests formula (15.3)
for the general solution. One can finally check that this formula is a solution of
equation (15.4).

Yule also deduced from formula (15.3) that the expected number of species in-
creases exponentially with time:

∞

∑
n=1

n pn(t) = ert .

Indeed, we notice first that for |x| < 1,

∞

∑
n=1

nxn−1 =
d
dx

∞

∑
n=0

xn =
d
dx

( 1
1− x

)
=

1
(1− x)2 .

Then
∞

∑
n=1

n pn(t) = e−r t
∞

∑
n=1

n(1− e−r t)n−1 = ert .

In particular, if T is the doubling time defined by erT = 2, then the probability
distribution (pn(t))n≥1 of the number of species at time t = T is geometric with a
ratio 1/2:

1
2

,
1
4

,
1
8

,
1

16
· · ·

At time t = kT , it is geometric with a ratio 1−1/2k and p1(kT ) = 1/2k.
Yule next considered, in parallel to the growth of the number of species belonging

to the same genus, a similar process due to larger mutations leading to the creation of
new genera. Let sdt be the probability for an existing genus to generate a new genus
during a small time interval dt. As before, assuming that there is only one genus at
time t = 0, the expected number of genera at time t is est . The mean number of
genera created per unit of time at time t is the derivative sest . In the limit2 where
t → +∞, the mean number of genera which at time t have existed between x and
x + dx units of time is then ses(t−x) dx. The probability at time t for a randomly
chosen genus to have existed between x and x+dx units of time is se−sx dx.

If a genus chosen at random at time t has existed between x and x + dx units
of time, the probability that this genus contains n species is, according to formula
(15.3), equal to e−r x (1− e−r x)n−1 for all n ≥ 1. So the probability qn for a genus
randomly chosen at time t to contain n species is

2 Yule considered also the case where t cannot be assumed very large compared to the doubling
time of est . The computations are a little more complicated but the final results are not very differ-
ent.
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qn =
∫ ∞

0
se−sx e−r x (1− e−r x)n−1 dx .

Set u = r/s. An easy computation shows that q1 = 1/(1+u) and that

qn =
1

1+u
u

1+2u
2u

1+3u
· · · (n−1)u

1+nu
(15.5)

for all n ≥ 2.

Indeed, we have (1− e−r x)n−1 = (1− e−r x)n−2 (1− e−r x). So

qn = qn−1 − s
∫ ∞

0
e−(r+s)x (1− e−r x)n−2 e−r x dx .

Integrating by parts, we get

qn = qn−1 −
r + s

(n−1)r
qn and qn =

(n−1)r/s
1+nr/s

qn−1 .

Formula (15.5) shows that the sequence of probabilities (qn)n≥1 is decreasing.
So the maximum is reached for n = 1: most genera contain just one species. This
is precisely what the data had shown. Moreover, the decrease of qn towards 0 when
n tends to infinity is relatively slow because qn/qn−1 → 1. This may explain why
some genera contain a large number of species. More precisely, Yule showed that
logqn decreases linearly with log(n).

Introduce Euler’s Gamma function Γ (z) =
∫ ∞

0 tz−1 e−t dt. Then Γ (n+1) = n! =
n×(n−1)×·· ·×2×1 when n is integer and Γ (z+1) = zΓ (z). So (15.5) takes
the form

qn =
(n−1)!

u(1+ 1
u )(2+ 1

u ) · · ·(n+ 1
u )

=
Γ (n)Γ (1+ 1

u )
u Γ (n+1+ 1

u )
.

But Stirling’s approximation gives logΓ (n) � n logn− n− 1
2 logn + constant.

Similarly, logΓ (n + 1 + 1/u) � n logn− n + ( 1
u + 1

2 ) logn + constant. Finally
logqn �−(1+ 1

u ) logn+ constant.

Consider for example the case of lizards. Parameter u can be estimated from the
proportion q1 = 1/(1 + u) of genera that contain only one species. According to
Table 15.1, we have q1 = 105/259 so u � 1.467. We can then compute the theoret-
ical probability qn and the expected number Qn of genera containing n species by
multiplying qn with the total number of species, which is 259 (Table 15.2). Yule no-
ticed that the agreement between the observations and the computations is relatively
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good3 given the model’s simplicity, which does not take into account for example
the cataclysms that species have crossed through millions of years of evolution.

Table 15.2 Comparison between data and theory in the case of lizards (1,580 species classified in
259 genera).

Number of species Observed number Computed number
per genus of genera of genera

1 105 105.0
2 44 39.2
3 23 21.3
4 14 13.6
5 12 9.6
6 7 7.2
7 6 5.6
8 4 4.5
9 5 3.7
10 5 3.1
11-20 17 16.6
21-30 9 6.9
31-40 3 3.9
41-50 2 2.6
51-60 0 1.9
61-70 1 1.4
71-80 0 1.1
81-90 0 0.9
91-100 0 0.7
101- 2 10.1

total 259 259

After 1931 Yule retired progressively from Cambridge University. He became
interested in the statistical distribution of the length of sentences to identify book
authors. He applied this in particular to the book published by John Graunt (see
Chapter 2) but possibly inspired by William Petty. In 1944 he published a book on
The Statistical Study of Literary Vocabulary. He died in 1951.

Nowadays Yule’s model is still used to analyze “phylogenetic trees” (the ge-
nealogical trees of species). These trees, similar to that in Fig. 15.3, are better known
thanks to the new data coming from molecular biology. But the applications of the
stochastic process defined by equations (15.1)-(15.2) are not limited to the theory
of evolution. This process is a building block of many models in population dy-
namics, from the microscopic level (to model for example colonies of bacteria) to
the macroscopic level (to model the beginning of an epidemic). It is called “pure

3 For the number of genera containing more than 100 species, Yule got a better fit than in Table
15.2 by considering that t was not large compared to the doubling time of est .
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birth process” or “Yule process”. A simple variant includes a probability mdt of
dying during any small time interval dt: the expected population size at time t for
this “birth and death process” is then e(r−m)t . As for the probability distribution
(15.5), it is sometimes called the Yule distribution . Distributions with tails satis-
fying power laws have attracted a lot of attention in various areas of science. The
study of epidemics in random networks with a power law degree distribution is just
one example.
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Chapter 16
McKendrick and Kermack on epidemic
modelling (1926–1927)

Anderson Gray McKendrick was born in 1876 in Edinburgh, the last of five children.
He studied medicine at the University of Glasgow where his father was a professor
of physiology. In 1900 he joined the Indian Medical Service. Before going to India,
he accompanied Ronald Ross on a mission to fight malaria in Sierra Leone. He then
served in the army for 18 months in Sudan. At his arrival in India, he was appointed
as medical doctor in a prison in Bengal where he tried to control dysentery. In 1905
he joined the new Central Institute for Medical Research in Kasauli (in the North
of India). He worked on rabies but also studied mathematics. In 1920, having been
infected by a tropical disease, he returned to Edinburgh and became the superinten-
dent of the Royal College of Physicians Laboratory.

Fig. 16.1 McKendrick
(1876–1943) and Kermack
(1898-1970)

In 1926 McKendrick published an article on the “Applications of mathematics to
medical problems”, which contained several new ideas. He introduced in particu-
lar a continuous-time mathematical model for epidemics that took into account the
stochastic aspect of infection and recovery.
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Consider a population of size N with initially only one infected person. People
can go successively through three states: the susceptible state S, the infected state I
and the recovered state R (Fig. 16.2)1.

Fig. 16.2 Possible states: susceptible (S), infected (I), recovered (R).

Let pi,r(t) be the probability that the population contains at time t exactly i people
in state I and r people in state R, where i and r are integers such that 1 ≤ i+ r ≤ N.
In this case the population is said to be in state (i,r). The number of susceptible
people is s = N − i− r. Following the work of Ross on malaria (see Chapter 12),
McKendrick assumed that, during a small time interval dt, the probability for one
new infection to occur is equal to as i dt (i.e. proportional to both the number of
susceptible people and the number of infected people). The probability for one new
recovery is equal to bi dt. Both a and b are positive parameters. To compute pi,r(t +
dt), several cases should be distinguished:

• the population is in state (i− 1,r) at time t and one new infection moves the
population to state (i,r) between t and t + dt; the probability of this event is
as(i−1)dt with s = N − (i−1)− r;

• the population is in state (i,r) at time t and one new infection moves the popula-
tion to state (i +1,r) between t and t +dt; the probability of this event is as idt
with s = N − i− r;

• the population is in state (i + 1,r − 1) at time t and one new recovery moves
the population to state (i,r) between t and t +dt; the probability of this event is
b(i+1)dt;

• the population is in state (i,r) at time t and one new recovery moves the popu-
lation to state (i− 1,r + 1) between t and t + dt; the probability of this event is
bi dt.

Hence, McKendrick obtained the equations

d pi,r

dt
= a(N − i− r +1)(i−1) pi−1,r −a(N − i− r) i pi,r

+b(i+1) pi+1,r−1 −bi pi,r (16.1)

for 1 ≤ i + r ≤ N. The first term on the right-hand side is missing when i = 0,
whereas the third term is missing when r = 0. The initial conditions are pi,r(0) = 0
for all (i,r) except p1,0(0) = 1.

1 Daniel Bernoulli’s model (see Chapter 4) included the states S and R but not I, the duration of
infection being much shorter than the average life expectancy.



16 McKendrick and Kermack on epidemic modelling (1926–1927) 91

With this model McKendrick managed to compute the probability for the epi-
demic to end with n people having been infected, which is the limit of p0,n(t) when
t →+∞. Indeed there is no need to solve system (16.1). It is enough to notice that as
long as there are i infected people and r recovered people, the probability of a new
infection during a small time interval dt is a(N − i− r) idt and the probability of a
new recovery is bi dt. So the transition probabilities (as they are usually called in
the theory of “Markov chains”) from state (i,r) to state (i+1,r) or state (i−1,r+1)
are respectively

P(i,r)→(i+1,r) =
a(N − i− r)

a(N − i− r)+b
, P(i,r)→(i−1,r+1) =

b
a(N − i− r)+b

,

for all i ≥ 1 (Fig. 16.3).

Fig. 16.3 Diagram showing the possible states of a population with N = 5 (i on the horizontal
axis, r on the vertical axis) and the possible transitions due to infection (horizontal arrows) or to
recovery (other arrows).

Let qi,r be the probability that the population goes through state (i,r) during the
epidemic. Since i = 1 and r = 0 when t = 0, we have q1,0 = 1. The other states are
reached either after an infection or after a recovery:

qi,r = qi−1,r P(i−1,r)→(i,r) +qi+1,r−1 P(i+1,r−1)→(i,r) .
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The first term of the right-hand side is missing when i = 0 or i = 1. The second
term is missing when r = 0. From this formula, we can first compute (qi,0)2≤i≤N ,
then (qi,1)0≤i≤N−1, then (qi,2)0≤i≤N−2 etc. The probability that the epidemic will
finally infect n people is q0,n. In 1926 such computations were quite tedious. So
McKendrick limited himself to examples concerning very small populations, for
example a family. With N = 5 people and b/a = 2, he obtained Table 16.1. The
largest probabilities correspond to the case where only one person in the family is
infected and to the case where the entire family is infected.

Table 16.1 Probability of an epidemic in a family of five to infect n people when b/a = 2.

n 1 2 3 4 5

q0,n 0.33 0.11 0.09 0.13 0.34

The same article from 1926 contains also a new formulation of demographic
problems when time is considered as a continuous variable. For dx infinitely small,
let P(x, t)dx be the population with an age between x and x+dx at time t. Let m(x)
be the mortality at age x. Then P(x+h, t +h)�P(x, t)−m(x)P(x, t)h for h infinitely
small. Introduce the partial derivatives of the function P(x, t):

∂P
∂x

(x, t) = lim
h→0

P(x+h, t)−P(x, t)
h

,
∂P
∂ t

(x, t) = lim
h→0

P(x, t +h)−P(x, t)
h

.

Using that

P(x+h, t +h) � P(t,x)+h
∂P
∂x

(x, t)+h
∂P
∂ t

(x, t) ,

McKendrick obtained the following partial differential equation:

∂P
∂ t

(x, t)+
∂P
∂x

(x, t)+m(x)P(x, t) = 0 .

Such an equation appears naturally in population problems structured by a continu-
ous variable, such as age in demography (see Chapter 25) or time since infection in
epidemiology.

In 1921, William Ogilvy Kermack had been appointed in charge of the chemical
section of the Royal College of Physicians Laboratory in Edinburgh. Kermack was
born in 1898 in a small town in Scotland. He studied at Aberdeen University and
started doing research in the field of organic chemistry in an industrial laboratory
in Oxford. Despite becoming completely blind after an explosion in his Edinburgh
laboratory in 1924, he continued his chemical work with the help of colleagues and
students. Kermack also began to collaborate with McKendrick on the mathematical
modelling of epidemics. Starting in 1927, they published together a series of “Con-
tributions to the mathematical theory of epidemics” where they studied deterministic
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epidemic models. Let N be the population size with N large enough. Assume as in
the 1926 article that people can be either susceptible, infected or recovered. If the
disease is fatal then the third state is in fact death. Let S(t), I(t) and R(t) be the
number of people in each of the three states. The model is (in a simplified form) a
system of three differential equations:

dS
dt

= −aSI, (16.2)

dI
dt

= aSI −bI, (16.3)

dR
dt

= bI. (16.4)

Hence, the number of new infections per unit of time is, as in the 1926 stochastic
model, proportional to both the number of susceptible people and to the number of
infected people. At the beginning of the epidemic, at time t = 0, a certain number
of people are infected: S(0) = N− I0, I(0) = I0 and R(0) = 0, assuming 0 < I0 < N.

Although system (16.2)-(16.4) has no closed solution, several of its properties
can be proved:

• the total population S(t)+ I(t)+R(t) stays constant and equal to N;
• S(t), I(t) and R(t) stay nonnegative (as should be since these are populations);
• when t →+∞, S(t) decreases to a limit S∞ > 0, I(t) tends to 0 and R(t) increases

to a limit R∞ < N;
• moreover the formula

− log
S∞

S(0)
=

a
b
(N −S∞) , (16.5)

gives implicitly S∞ and therefore also the final epidemic size R∞ = N −S∞.

Indeed, we see first that d
dt (S+ I +R) = 0. So S(t)+ I(t)+R(t) = S(0)+ I(0)+

R(0) = N. Equations (16.2) and (16.3) can be rewritten as

d
dt

[
S(t)ea

∫ t
0 I(τ)dτ

]
= 0 ,

d
dt

[
I(t)ebt−a

∫ t
0 S(τ)dτ

]
= 0 .

It follows on one side that S(t) = S(0)e−a
∫ t

0 I(τ)dτ > 0 and on the other side
that I(t) = I(0)ea

∫ t
0 S(τ)dτ−bt > 0. Equations (16.2) and (16.4) then show that

the function S(t) is decreasing and that the function R(t) is increasing (in par-
ticular, R(t) ≥ 0). Since S(t) ≥ 0 and R(t) ≤ N, the functions S(t) and R(t)
do have limits when t → +∞. Since I(t) = N − S(t)− R(t), I(t) also has a
limit when t → +∞, which can only be zero as can be seen by integrating
(16.4). Equation (16.2) also shows that − d

dt [logS] = aI. Integrating between
t = 0 and t = +∞, we find logS(0)− logS∞ = a

∫ ∞
0 I(t)dt. Equation (16.3) can

be rewritten as dI
dt = − dS

dt −bI. Integrating between t = 0 and t = +∞, we get
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−I(0) = S(0)−S∞−b
∫ ∞

0 I(t)dt. Combining the two results, we obtain formula
(16.5), which shows that S∞ > 0.

When the initial number of infected people I0 is small compared with the popu-
lation size N, which is often the case at the start of an epidemic in a city, formula
(16.5) can be rewritten using S∞ = N −R∞ as

− log
(

1− R∞

N

)
� R0

R∞

N
, (16.6)

where by definition

R0 =
aN
b

.

Equation (16.6) has a positive solution only if R0 > 1. So Kermack and McKendrick
arrive at the following conclusion: the epidemic infects a non-negligible fraction
of the population only if R0 > 1. There is a threshold for the population density
N∗ = b/a below which epidemics cannot occur.

When the population size N is just above this threshold (N = N∗+ε), an epidemic
of small amplitude happens. It follows from (16.6) that R∞ � 2ε . So S∞ � N∗ − ε:
the epidemic brings the susceptible population as much below the threshold N∗ as
it was initially above.

Indeed, using the approximation − log(1 − x) � x + x2

2 , equation (16.6) be-
comes

R∞

N
+

1
2

(R∞

N

)2
� R0

R∞

N
.

So R∞ � 2(R0 −1)N = 2 ε
N∗ (N∗ + ε) � 2ε .

As in Ross’ malaria model (Chapter 12), the condition R0 > 1 has a simple
interpretation. Since aN is the number of people that one infected person infects per
unit of time at the beginning of the epidemic and since 1/b is the average infectious
period, R0 = aN/b is the average number of secondary cases due to one infected
person at the beginning of the epidemic.

For fatal diseases, R(t) is the cumulative number of deaths since the beginning
of the epidemic and dR/dt is the number of deaths per unit of time. Kermack and
McKendrick noticed that the graph of the function dR/dt in their mathematical
model does have the bell shape that one expects from an epidemic curve (Fig. 16.4).

To draw dR/dt, they divided (16.2) by (16.4) to obtain dS/dR = −aS/b.
So S(t) = S(0) exp(−aR(t)/b). Replacing this into equation (16.4) and using
S(t)+ I(t)+R(t) = N, they got the equation
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Fig. 16.4 The curve dR/dt as a function of time and the data for the number of deaths per week
during a plague epidemic in Bombay in 1905-1906.

dR
dt

= b
[
N −R−S(0) exp

(
−a

b
R
)]

, (16.7)

which still cannot be solved explicitly. Nevertheless, if a
b R(t) stays small dur-

ing the entire epidemic, the approximation exp(−u) � 1−u+u2/2 gives

dR
dt

� b
[
N −R−S(0)+S(0)

a
b

R−S(0)
a2

2b2 R2
]

. (16.8)

This is a so-called Riccati equation with two constant solutions, one positive
R+ and one negative R−, given by the roots of the second-order polynomial in R
on the right-hand side of (16.8). Let R̃(t) be the exact solution of (16.8) and set
Q(t) = R̃(t)−R+. Then Q(t) satisfies a Bernoulli differential equation similar
to those encountered by Daniel Bernoulli and Verhulst (see (4.5) and (6.1)).
One can thus directly adapt formula (6.2) to get Q(t). An easy but tedious
computation shows that dQ/dt is of the form α/cosh2(β t − γ), where α , β
and γ are constants that depend in a complicated way on the parameters of the
model. As dR/dt � dR̃/dt = dQ/dt, Kermack and McKendrick could choose
(α,β ,γ) to fit their data. Of course modern computers and software can easily
solve numerically the differential equation (16.7) without going through these
approximations.

The curve for dR/dt thus obtained fitted well the data for the number of deaths
per week during the plague epidemic in Bombay between December 1905 and July
1906 (Fig. 16.4).

Kermack and McKendrick also considered the more general model where infec-
tiousness a(x) depends on the time x since infection and where the recovery rate
b(x) also depends on x. The equation giving the final epidemic size (when the initial
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number of infected cases is small) is still (16.6) but with

R0 = N
∫ ∞

0
a(x)e−

∫ x
0 b(y)dy dx. (16.9)

The parameter R0 has the same interpretation as in the previous case: it is the av-
erage number of secondary cases due to one infected person at the beginning of the
epidemic. Notice the similarity between (16.9) and Lotka’s formula (10.2) for R0

in demography: age is replaced by time since infection, survival by the probability
e−

∫ x
0 b(y)dy of being still infected, fertility by the contact rate N a(x).
Kermack and McKendrick developed several other mathematical models of epi-

demics during the 1930s. These are still the building blocks for most of the more
complex models used nowadays in epidemiology. The parameter R0 –whose defi-
nition was generalized by Diekmann, Heesterbeek and Metz in 1990 –still plays a
central role in the model’s analysis.

McKendrick retired in 1941 and died in 1943. Between 1930 and 1933, Kermack
coauthored a few articles on mathematical physics with William McCrea and Ed-
mund Whittaker, both from the mathematics department at the University of Edin-
burgh. During the 1930s and 1940s, Kermack’s team of chemists tried to synthesize
new molecules with antimalarial activity, but with limited success. In 1938 Kermack
coauthored with Philip Eggleton a popular book on elementary biochemistry, The
Stuff We’re Made Of. He was elected fellow of the Royal Society in 1944 and took
the chair of biochemistry at Aberdeen University in 1949. He later served as the
dean of the Faculty of Science. He retired in 1968 and died in 1970.
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Chapter 17
Haldane and mutations (1927)

John Burdon Sanderson Haldane was born in 1892 in Oxford, where his father was
professor of physiology at the university. Haldane studied at Eton College and after
1911 at New College of Oxford University. After focusing on mathematics in his
first year, he turned to humanities. His studies were interrupted by the First World
War, during which he served in France and Iraq. Having been wounded, he was sent
as a military instructor to India. In 1915 he published a first article discussing genetic
experiments on mice he had started before the war. In 1919 he became a fellow of
New College, teaching physiology and studying respiration like his father. In 1923
he joined the biochemistry laboratory of F. G. Hopkins1 at Cambridge University,
where he focused on the kinetics of enzymes. He also published a science fiction
novel, Daedalus or Science and the Future (1923), and an essay entitled Callinicus,
A Defense of Chemical Warfare (1925). Between 1924 and 1934, he wrote a series
of ten articles entitled “A mathematical theory of natural and artificial selection”.

Fig. 17.1 Haldane
(1892–1964)

1 Frederick Gowland Hopkins, who received the Nobel Prize in Physiology or Medicine in 1929
for his work on vitamins.
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In the fifth article of the series, published in 1927, Haldane reconsidered an-
other genetic model that Fisher had studied in 1922, a model focusing on mutations.
Fisher had studied the probability for a mutant gene to invade a population or to dis-
appear. This problem is formally the same as that of Bienaymé, Galton and Watson
concerning the extinction of family names. But Fisher made no reference to these
works, though he may have read the article of Galton and Watson reproduced in the
appendix of Galton’s 1889 book Natural Inheritance. As in Chapter 9, call pk the
probability of a gene being transmitted to k offspring in the first generation (k ≥ 0).
Fisher considered also the generating function

f (x) = p0 + p1 x+ p2 x2 + · · ·+ pk xk + · · · ,

except that he did not fix any upper bound for k: the sum can include an infinite
number of terms. He realized that, starting from one individual with the mutant gene
in generation 0, the probability of this gene being in k individuals is the coefficient
of xk in f1(x) = f (x) for generation 1, in f2(x) = f ( f (x)) for generation 2, in f3(x) =
f ( f ( f (x))) for generation 3 etc. In this way, it becomes clear that the equation

fn(x) = f ( fn−1(x)) (17.1)

holds. This equation is much more practical than the equation fn(x) = fn−1( f (x))
derived by Watson. In particular, it follows from (17.1) that the extinction probabil-
ity within n generations xn = fn(0) satisfies the iteration formula xn = f (xn−1), as
Bienaymé had already noticed.

As an example, Fisher considered the case of a plant with a mutant gene that can
produce N seeds, each seed having a probability q of surviving to produce a new
plant. The probability pk of getting k offspring with the mutant gene is binomial:

pk =
(

N
k

)
qk(1−q)N−k

for all 0 ≤ k ≤ N and pk = 0 for k > N. The generating function is then f (x) =
(1−q+qx)N . Let R0 = N q be the mean number of seeds that survive to produce a
new plant. When N is large and q is small, then

f (x) =
(

1+
R0

N
(x−1)

)N
� eR0(x−1) = e−R0

∞

∑
k=0

(R0x)k

k!
.

The probability distribution (pk) tends to e−R0 (R0)k/k!, which is called a Poisson
distribution. Fisher then computed the extinction probability within n generations,
using x0 = 0, xn � eR0(xn−1−1) and the numerical values N = 80 and q = 1/80. In
this case, R0 = Nq = 1. A tedious computation shows that x100 � 0.98: a mutant
gene with no selective advantage (R0 = 1) disappears very slowly. There is still
a 2% chance for the gene to be present in the population after 100 generations. In
1922 Fisher did not push further the study of this model.
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Continuing Fisher’s work, Haldane first noticed in his 1927 article that, for any
probability distribution (pk) such that p0 > 0, the equation x = f (x) has exactly two
roots in the interval (0,1] when the mean number of offspring carrying the mutant
gene R0 is strictly bigger than 1, i.e. when the mutant gene has a selective advantage.
Moreover, the extinction probability x∞, which is the limit of xn as n → +∞, is the
smallest of the two roots of x = f (x): the gene has a nonzero probability of settling
in the population. Unlike Bienaymé and Cournot, Haldane provided a proof for this
conclusion.

Indeed, f ′(x) ≥ 0 and f ′′(x) ≥ 0 on the interval [0,1]. In other words, the
function f (x) is nondecreasing and convex. The assumptions f (0) = p0 > 0
and f ′(1) = R0 = p1 +2p2 +3p3 + · · · > 1 imply that equation f (x) = x has
exactly two solutions in the interval (0,1]: x = 1 and x∗ such that 0 < x∗ <
1. Haldane then referred to an article by Gabriel Koenigs from 1883, which
showed that if xn = f (xn−1) and xn → x∞, then x∞ = f (x∞) and | f ′(x∞)| ≤ 1.
When f ′(1) > 1, the only possibility is that x∞ = x∗.

For the case of a Poisson distribution with f (x) = eR0(x−1) and R0 just slightly
bigger than 1, the extinction probability x∞ is very close to 1. The equation f (x∞) =
x∞ is then equivalent to

R0(x∞ −1) = logx∞ � (x∞ −1)− (x∞ −1)2

2
.

It follows that 1− x∞ � 2(R0 − 1). Haldane concluded that the probability of the
mutant gene not going extinct is twice its selective advantage R0 − 1. Without cit-
ing Haldane, Fisher took as an example in his 1930 book the case where R0 = 1.01,
which gives a 2% chance of the mutant gene not going extinct.

Haldane became a fellow of the Royal Society in 1932. He left Cambridge to be-
come professor of genetics and later biometry at University College in London. He
was then particularly interested in human genetics: estimation of mutation rates, ge-
netic maps of chromosomes etc. Beside his scientific books (Animal Biology in 1927
with Julian Huxley, Enzymes in 1930 and The Causes of Evolution in 1932, The Bio-
chemistry of Genetics in 1954), he published a large number of articles on science
in the press (for example, on the origin of life) and some essays (The Inequality of
Man in 1932, The Philosophy of a Biologist in 1935, The Marxist Philosophy and
the Sciences in 1938, Heredity and Politics in 1938 and Science Advances in 1947).
After several visits to Spain during the civil war, he tried to convince his own coun-
try to build shelters against air bombing. During the Second World War, he worked
on respiration problems in submarines. A member of the communist party since
1942, he resigned in 1950 because of the official rejection of Mendelian genetics
in the USSR due to the influence of Lysenko. In 1957 he settled in India, where he
continued his research, first at the Indian Statistical Institute in Calcutta and later in
Bhubaneswar. Having become an Indian citizen, he died in 1964.
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Chapter 18
Erlang and Steffensen on the extinction problem
(1929–1933)

Agner Krarup Erlang was born in 1878 in Lønborg, Denmark. His father was a
schoolmaster. Between 1896 and 1901, the young Erlang studied mathematics,
physics and chemistry at the University of Copenhagen. He then taught several years
in high schools while keeping an interest in mathematics, especially probability the-
ory. He met Jensen, chief engineer at the Copenhagen Telephone Company and an
amateur mathematician, who convinced him in 1908 to join the new research labora-
tory of the company. Erlang started to publish articles on the applications of proba-
bility theory to the management of telephone calls. In 1917 he discovered a formula
for waiting times, which was quickly used by telephone companies throughout the
world. His articles, first published in Danish, were then translated in several other
languages.

Fig. 18.1 Erlang
(1878–1929)

In 1929 Erlang became interested in the same problem of extinction that Bien-
aymé, Galton and Watson had studied before him for family names and that Fisher
and Haldane had studied for mutant genes. Like his predecessors, he was not aware
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of all the works that had been published. Calling again pk the probability for one
individual to have k offspring, he noticed that the probability xn of extinction within
n generations satisfies

xn = p0 + p1 xn−1 + p2 x2
n−1 + · · · = f (xn−1)

with x0 = 0. He noticed also that the overall extinction probability x∞, which is the
limit of xn as n → +∞, is a solution of the equation x∞ = f (x∞). He realized that
x = 1 was always a solution and that another solution existed between 0 and 1 when
the average number of offspring R0 = f ′(1) is bigger than 1. But it seems that he
could not figure out which of these two solutions was the right one. Like Galton,
he submitted the problem in 1929 to a Danish mathematics journal, Matematisk
Tidsskrift:

Question 15. When the probability that an individual has k children is pk, where p0 + p1 +
p2 + · · · = 1, find the probability that his family dies out.

Unfortunately, Erlang died that same year 1929 at the age of 51. As a matter of fact,
he died childless1.

A professor of actuarial mathematics at the University of Copenhagen, Johan
Frederik Steffensen, took up Erlang’s question. He published in 1930 his solution in
the same Danish journal: the probability of extinction x∞ is always the smallest root
of the equation x = f (x) in the closed interval [0,1], as Bienaymé and Haldane had
already noticed. Steffensen’s proof is the one to be found in modern textbooks.

Indeed, we saw that the extinction probability x∞ is a solution of x = f (x) in
the closed interval [0,1]. Let x∗ be the smallest such solution. By definition,
x∗ ≤ x∞. Steffensen noticed first that x∗ = f (x∗) ≥ p0 = x1. Assume by induc-
tion that x∗ ≥ xn. Then x∗ = f (x∗) ≥ f (xn) = xn+1 since the function f (x) is
increasing. So x∗ ≥ xn for all n. Taking the limit, x∗ ≥ x∞. So x∞ = x∗. Q.E.D.

Steffensen gave also a more formal explanation as to why x = 1 is the only root
of x = f (x) when the mean number of offspring R0 = f ′(1) is smaller or equal to
1 (Fig. 18.2a) and why there is only one other root different from x = 1 in the case
where R0 > 1 (Fig. 18.2b). Notice that R0 = f ′(1) is the slope of the function f (x)
at x = 1.

He noticed that for any root of x = f (x),

1− x = 1− f (x) = 1− p0 −
+∞

∑
k=1

pk xk =
+∞

∑
k=1

pk(1− xk) .

1 In his memory, the International Telephone Consultative Committee decided in 1946 to call
“erlang” the unit of measure of the intensity of telephone traffic. “Erlang” is also the name given
to a programming language by the company Ericsson.
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Assuming x �= 1 and dividing by 1− x, we get

1 = p1 + p2(1+ x)+ p3(1+ x+ x2)+ · · · . (18.1)

When x increases from 0 to 1, the right-hand side of Eq. (18.1) increases from
1− p0 to R0 = f ′(1). If R0 < 1, then Eq. (18.1) has no solution. If R0 ≥ 1
and if we exlude the trivial case where p1 = 1, then the right-hand side of
Eq. (18.1) is a strictly increasing function of x. Otherwise there would be no
k ≥ 2 such that pk �= 0 and R0 would be equal to p1 < 1. In conclusion, (18.1)
has one and only one solution in the interval [0,1] when R0 ≥ 1.

Fig. 18.2 Graph of the functions y = x and y = f (x) in the example of Chapter 17, f (x) = eR0(x−1),
with R0 = 0.75 < 1 (left) or R0 = 1.5 > 1 (right).

Steffensen, who was also president of the Danish Actuarial Society and of the
Danish Mathematical Society, was invited to the University of London in 1930. His
British colleague W. P. Elderton told him about the work of Galton and Watson. In
1933 Steffensen published a new article in the annals of the Institut Henri Poincaré,
where he had given a conference in 1931. He summarized the results of his article
in Danish and compared them with those of Watson. He also showed that the math-
ematical expectation of the number of offspring in generation n is equal to (R0)n.

Indeed, let pk,n be the probability that there are k offspring in generation n,
starting from one individual in generation 0. In his 1930 article, Steffensen
had noticed like his predecessors that the generating function

fn(x) =
+∞

∑
k=0

pk,n xk



104 18 Erlang and Steffensen on the extinction problem (1929–1933)

relative to generation n satisfies f1(x) = f (x) and

fn(x) = f ( fn−1(x)). (18.2)

Let Mn be the expectation of the number of offspring in generation n. Then

Mn =
+∞

∑
k=1

k pk,n = f ′n(1) .

Deriving formula (18.2), we get f ′n(x) = f ′( fn−1(x)) × f ′n−1(x). So Mn =
f ′n(1) = f ′( fn−1(1))× f ′n−1(1) = f ′(1)× Mn−1 = R0 × Mn−1. Since M1 =
f ′1(1) = f ′(1) = R0, it follows that Mn = (R0)n for all n.

Hence the expected number of offspring increases or decreases geometrically
depending on whether R0 is bigger or smaller than 1. The expected number of
offspring behaves like in the deterministic models of population growth considered
by Euler, Malthus etc. However, even when R0 > 1, there is a nonzero probability
x∞ that the family will go extinct. This possibility does not occur in deterministic
models.

The stochastic process studied by Steffensen and his predecessors is still the basic
element of many more realistic models of population dynamics. We shall mention
one last time this problem in Chapter 20. As for Steffensen, he remained professor
at the University of Copenhagen until 1943 and died in 1961.
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Chapter 19
Wright and random genetic drift (1931)

Sewall Wright was born in Massachusetts in 1889. He did his undergraduate studies
in a small college in Illinois where his father taught economics. After a master’s
degree in biology from the University of Illinois at Urbana and a summer school
at Cold Spring Harbor Laboratory, Wright did a PhD at Harvard University on the
inheritance of coat colour in the guinea pig. Between 1915 and 1925, he continued
to work on inbreeding experiments with guinea pigs at the Animal Husbandry Divi-
sion of the United States Department of Agriculture in Washington. He developed
the “method of path coefficients” to analyze these experiments. He then joined the
department of zoology at the University of Chicago.

Fig. 19.1 Wright
(1889–1988)

Influenced by Fisher’s 1922 article on population genetics (see Chapter 14),
Wright wrote in 1925 a long article entitled Evolution in Mendelian populations,
which was finally published in 1931. He studied in particular a mathematical model
that appeared also implicitly in Fisher’s 1930 book on The Genetical Theory of Nat-
ural Selection. As in the Hardy–Weinberg law, this model considers the case where
there are just two possible alleles A and a for one locus, but the population is not
assumed to be infinitely large. The point is to see if removing this assumption has
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some influence on the genetic composition of the population. So let N be the total
number of individuals, which is assumed to be the same in all generations. Each
individual has two alleles. So there is a total of 2N alleles in the population in each
generation. The model assumes also that mating occurs at random. If there are i al-
leles A and 2N − i alleles a in generation n, then an allele chosen at random among
individuals in generation n + 1 will be A with a probability i

2N and a with a proba-
bility 1− i

2N . The number of A alleles in generation n+1 will therefore be equal to
j with a probability

pi, j =
(

2N
j

)( i
2N

) j(
1− i

2N

)2N− j
, (19.1)

where
(2N

j

)
is the binomial coefficient equal to (2N)!/ j!/(2N − j)!. Let Xn be the

number of A alleles in generation n: it is a random variable (Fig. 19.2). One can

Fig. 19.2 Two simulations
showing the variations of the
number Xn of A alleles during
30 generations if N = 20 and
X0 = 10.

show that the expectation of Xn+1 knowing that Xn = i is equal to i: this is reminis-
cent of the Hardy–Weinberg law, where the frequency of allele A remained constant
through generations.

Indeed, consider the generating function

f (x) =
2N

∑
j=0

pi j x j =
(

1− i
2N

+
ix
2N

)2N
,

The expectation of Xn+1 knowing that Xn = i is then

2N

∑
j=0

j pi, j = f ′(1) = i. (19.2)
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However it is possible in this model that, starting from an initial condition X0 =
i with 0 < i < 2N, the event Xn = 0 occurs by chance after a certain number of
generations. In such a case, all alleles would be of type a and Xn would remain
equal to 0 in all future generations. The same fixation would happen with allele A
if Xn = 2N after a certain number of generations. In summary, when the population
is assumed infinitely large as in the Hardy–Weinberg model, the two alleles cannot
disappear because their frequencies remain constant. When one takes into account
the finite size of populations, as in the Fisher–Wright model, the frequencies of the
two alleles fluctuate and one of the alleles can (and will) disappear.

Starting from X0 = i, one can easily compute the probability Qi for the population
to be fixed in state X = 0. Indeed, Qi has to satisfy the “boundary conditions”

Q0 = 1, Q2N = 0. (19.3)

Moreover,

Qi =
2N

∑
j=0

pi, j Q j , (19.4)

because pi, j Q j is the probability of being fixed in state X = 0 starting from X0 = i
and passing through X1 = j. Since ∑ j pi, j = 1, we see using (19.2) that Qi = 1− i

2N
is the solution of system (19.3)-(19.4). Hence the probability that, starting from i
alleles of type A in a population of size N, the system evolves towards a population
containing only the allele a is equal to 1 − i

2N . Similarly, the probability that it
evolves towards a population containing only the allele A is equal to i

2N .
Wright managed to show that the number of generations that elapse before fixa-

tion in one of the two extreme states is of the order of 2N generations (Fig. 19.3). For
populations of several millions of individuals, this time would be so long that the
frequencies of the alleles could be considered as almost constant, as in the Hardy–
Weinberg law.

Indeed, assume that there are i0 alleles of type A in the population in gen-

eration 0. Let u(n)
i be the probability that there are i alleles of type A in the

population in generation n. Then

u(n+1)
j =

2N

∑
i=0

u(n)
i pi, j

for all j = 0, . . . ,2N. We have already seen that, when n → +∞,

u(n)
0 → 1− i0

2N
, u(n)

2N → i0
2N

, u(n)
i → 0

for all 0 < i < 2N. Wright noticed that if u(n)
i = v for all i = 1, . . . ,2N−1, then
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u(n+1)
j = v

(
2N

j

) 2N−1

∑
i=1

( i
2N

) j(
1− i

2N

)2N− j
(19.5)

for all 1 < j < 2N because p0, j = p2N, j = 0. When N is large enough,

1
2N

2N−1

∑
i=1

( i
2N

) j(
1− i

2N

)2N− j
�

∫ 1

0
x j(1− x)2N− j dx

=
j!(2N − j)!
(2N +1)!

, (19.6)

the value of the integral being obtained by successive integrations by parts.
Combining (19.5) and (19.6), we arrive finally for 0 < j < 2N at

u(n+1)
j � 2N

2N +1
v =

(
1− 1

2N +1

)
u(n)

j .

So the probabilities u(n)
j for all 0 < j < 2N decrease at a rate of about 1/2N

per generation. This rate is very slow if N is large. There is almost no decrease
if, for example, N is of the order of magnitude of millions.

Fig. 19.3 Probability that there are i alleles A in the population (i = 0, . . . ,2N on the horizontal
axis) after 30 generations if N = 20 and X0 = 10.

In 1922 Fisher had already tried to estimate this rate of fixation (1/2N) but had
missed a factor 2. In any case, the two scientists disagreed over the typical size
N of breeding populations. For the theory of evolution, Wright’s work suggested
that random genetic drift in a small population could be a mechanism for the origin
of species. Biologists working on the classification of species had indeed noticed
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that differences between species or subspecies often had no apparent explanation
in terms of natural selection. This idea was strongly opposed during the 1940s and
1950s by Fisher and his colleague E. B. Ford who both thought that random ge-
netic drift was negligible compared to natural selection. They referred in particular
to their study of the fluctuations of gene frequencies in a small isolated popula-
tion of moths (Panaxia dominula) near Oxford, where the three genotypes for a
certain gene (common homozygote, heterozygote and rare homozygote) could be
distinguished by sight. Another famous controversy over the respective influence of
natural selection and of random drift focused on snails of the genus Cepaea. More
realistic models of evolution now combine random drift, selection, mutation, migra-
tion, nonrandom mating etc. The role of random drift was later reemphasized by the
Japanese scientist Motoo Kimura with his “neutral theory of molecular evolution”.
Another outgrowth was the development of coalescent theory (introduced by John
Kingman in 1982), which traces the ancestry of genes backward in time back to the
point where they have a single common ancestor.

Wright became a member of the National Academy of Sciences in 1934. He
worked for many years with Theodosius Dobzhansky on the genetics of natural
populations of flies (Drosophila pseudoobscura) in the Death Valley region. He re-
tired from the University of Chicago in 1955 but continued another five years as a
professor at the University of Wisconsin-Madison. Between 1968 and 1978, he pub-
lished a four-volume treatise summarizing his work on Evolution and the Genetics
of Populations. He received the Balzan Prize in 1984 and died in 1988 at the age
of 98.
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Chapter 20
The diffusion of genes (1937)

In 1937, two articles were published introducing a new approach to the study of spa-
tial heterogeneity in population dynamics. Fisher was the author of the first article,
entitled The wave of advance of advantageous genes, which appeared in the Annals
of Eugenics. He studied the spatial propagation of a favourable gene in a popula-
tion. As a simplification, he considered a space reduced to just one dimension and
called u(x, t) the proportion of the population located at point x at time t that pos-
sesses the favourable gene. So 0 ≤ u(x, t) ≤ 1. To include natural selection, he used
equation (14.6) with a continuous time variable

∂u
∂ t

= au(1−u) ,

where a is a positive parameter. For a given value of x, we recognize Verhulst’s
logistic equation (see Chapter 6) with a solution u(x, t) that tends to 1 as t → +∞.
Furthermore, Fisher assumed that the offspring of an individual located at point x
with the favourable gene do not stay at the same point but disperse randomly in
the neighbourhood of x. By analogy with physics, he argued that one must add a
diffusion term to the equation for u(x, t), leading to the partial differential equation

∂u
∂ t

= au
(
1−u

)
+D

∂ 2u
∂x2 . (20.1)

When the selection coefficient a is zero, this reduces to the diffusion equation in-
troduced by Fourier in his theory of heat and later used by Fick for the diffusion
of physical particles. In 1904, Ronald Ross had started considering random disper-
sal in population dynamics. He was then wondering how the density of mosquitoes
decreases as the distance from a breeding site increases. The problem had come to
the attention of Karl Pearson and Lord Rayleigh. By 1937 the body of scientific
literature on diffusion equations had grown considerably, in particular following
Einstein’s work on Brownian motion.

Fisher showed that there exist solutions of equation (20.1) of the form u(x, t) =
U(x+ vt) satisfying the three conditions

N. Bacaër, A Short History of Mathematical Population Dynamics,
DOI 10.1007/978-0-85729-115-8 20, © Springer-Verlag London Limited 2011

111

http://dx.doi.org/10.1007/978-0-85729-115-8_20


112 20 The diffusion of genes (1937)

0 ≤ u(x, t) ≤ 1, u(x, t) −→
x→−∞

0, u(x, t) −→
x→+∞

1,

provided that v ≥ v∗ where
v∗ = 2

√
aD .

These solutions connect the steady state u = 1 with the favourable gene to the steady
state u = 0 with no such gene. They represent waves propagating at speed v in the
direction of decreasing values of x. Indeed, u(x−vT, t +T ) = u(x, t): the part of the
wave that was in position x at time t moves to position x− vT at time t +T .

Fig. 20.1 Propagation from
left to right of a favourable
gene at the speed v∗. The gene
frequency u(t,x) at t = 0 is a
step function.

Indeed, setting z = x + vt, Fisher noticed that if u(x, t) = U(z), then ∂u
∂ t =

vU ′(z), ∂u
∂x = U ′(z) and ∂ 2u

∂x2 = U ′′(z). If u is a solution of equation (20.1), then

vU ′(z) = aU(z)(1−U(z))+DU ′′(z) . (20.2)

When u is close to 0, i.e., when z → −∞, Fisher expected that U(z) → 0 and
U ′(z) → 0. Calling k the limit of U ′(z)/U(z) when z → −∞, we know from
L’Hôpital’s rule that U ′′(z)/U ′(z) also tends to k. Therefore, U ′′(z)/U(z) =
[U ′′(z)/U ′(z)]× [U ′(z)/U(z)] tends to k2. Dividing equation (20.2) by U(z) and
letting z tend to −∞, we arrive at a second-order equation Dk2 − vk + a = 0.
But k must be a real number. So the discriminant of this equation has to be
nonnegative: v2 − 4aD ≥ 0, or v ≥ 2

√
aD = v∗. Hence, v ≥ v∗ is a necessary

condition for the existence of a wave propagating at the speed v. It is also a
sufficient condition, as explained below.

Fisher noticed that only the wave which propagates exactly at the speed v∗ is
selected for a large class of initial conditions, e.g., for the step function: u(x,0) = 0
for x < 0, u(x,0) = 1 for x ≥ 0. Figure 20.1 shows how this discontinuous initial
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condition becomes progressively a smooth wave propagating in the direction of de-
creasing x at the speed v∗.

That same year 1937, and independently of Fisher’s work, Andrey Nikolaevich
Kolmogorov, Ivan Georgievich Petrovsky and Nikolay Semenovich Piskunov stud-
ied the same problem of propagation of a dominant gene.

Kolmogorov was born in 1903 in Tambov, Russia. During his mathematics stud-
ies at Moscow State University, he did some important work on trigonometric series.
He became a researcher at the Mathematics and Mechanics Institute in 1929 and a
university professor in 1931. He worked on stochastic processes and their link with
differential and partial differential equations. In 1933 he published a treatise laying
the modern foundations of probability theory. His research interests included topol-
ogy, approximation theory, Markov chains, Brownian motion and also applications
to biological problems. In 1935 he published an article on genetics discussing the
results of Hardy, Fisher and Wright. In 1936 he published an article on a general-
ization of the Lotka–Volterra system.

Fig. 20.2 Kolmogorov
(1903–1987) and Petrovsky
(1901–1973)

Petrovsky was born in 1901 in Sevsk. He also studied mathematics at Moscow
State University, where he became a professor in 1933. He worked mainly on the
theory of partial differential equations and on the topology of real algebraic curves,
but also wrote some articles on ordinary differential equations and on the theory
of probability. Piskunov, who was born in 1908, was another former mathematics
student at Moscow State University.

During the 1930s Kolmogorov had contacts with A. S. Serebrovsky, a pioneer of
population genetics in Moscow. It was then becoming increasingly dangerous to de-
fend Mendelian genetics in the USSR because of the rise of Lysenko, an agronomist
who had managed to convince Stalin that Mendelian genetics was mere “bourgeois
pseudoscience”. The Seventh International Congress of Genetics, originally sched-
uled for 1937 in Moscow, was cancelled. Many Soviet geneticists were executed or
sent to labour camps.
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In their 1937 article entitled “A study of the diffusion equation with increase in
the amount of substance and its application to a biological problem”, which was
published in the Bulletin of Moscow State University, Kolmogorov, Petrovsky and
Piskunov nevertheless used a mathematical model based on Mendelian genetics.
Their model was a partial differential equation of the form

∂u
∂ t

= f (u)+D
∂ 2u
∂x2 (20.3)

where u(x, t) is again the frequency of the favourable gene at point x and time t. The
function f (u) is assumed to satisfy several conditions: f (0) = f (1) = 0, f (u) > 0
if 0 < u < 1, f ′(0) > 0 and f ′(u) < f ′(0) if 0 < u ≤ 1. The authors showed a result
that is analogous to that of Fisher but with a more rigorous proof: if the initial
condition is such that 0 ≤ u(x,0) ≤ 1, u(x,0) = 0 for all x < x1 and u(x,0) = 1 for
all x > x2 ≥ x1, then the gene propagates at the speed v∗ = 2

√
f ′(0)D.

Looking for a solution u(x, t) = U(z) where z = x + vt leads to the obvious
generalization of equation (20.2) vU ′(z) = f (U(z)) + DU ′′(z). This second-
order differential equation can be rewritten as a system of first-order differential
equations

dU
dz

= p,
d p
dz

=
v p− f (U)

D
. (20.4)

Recall that U(z) should be such that U(z) → 0 as z → −∞ and U(z) → 1 as
z→+∞. Near the steady state (U = 0, p = 0) of system (20.4), we have f (U)�
f ′(0)U . So (20.4) can be approximated by the linear system

dU
dz

= p,
d p
dz

=
v p− f ′(0)U

D
. (20.5)

Looking for exponential solutions of the form U(z) = U0 ekz and p(z) = p0 ekz

yields the characteristic equation Dk2 − vk + f ′(0) = 0, as in Fisher’s article.
Again k must be real (otherwise u would oscillate and take negative values).
Thus v ≥ 2

√
f ′(0)D = v∗. The two roots for k are then real and positive. If

v > v∗, the two roots are different and the steady state (U = 0, p = 0) is an
unstable node. If v = v∗, the two roots are identical and (U = 0, p = 0) is an
unstable degenerate node as shown in Fig. 20.3. Similarly, system (20.4) near
the steady state (U = 1, p = 0) leads to the linear system

d(U −1)
dz

= p,
d p
dz

=
v p− f ′(1)(U −1)

D

and to the characteristic equation Dk2 − vk + f ′(1) = 0. The discriminant is
v2 − 4D f ′(1) ≥ 0 since f ′(1) ≤ 0. If f ′(1) < 0, there are two real roots of
opposite sign and (U = 1, p = 0) is a saddle point. If f ′(1) = 0, one root is
zero and the other one is positive (see Fig. 20.3). A detailed analysis shows
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in fact that for all v ≥ 2
√

f ′(0)D there is a unique integral curve joining the
two steady states (U = 0, p = 0) and (U = 1, p = 0), as in the special case of
Fig. 20.3.

Kolmogorov, Petrovsky and Piskunov went on to show rigorously that the
partial differential equation (20.3) has a unique solution u(x, t) satisfying the
initial condition, that this solution is such that 0 < u(x, t)≤ 1 for all x and t > 0,
that u(x, t) remains an increasing function of x if it is so at t = 0 and finally that
u(x, t) does converge towards a wave profile propagating at the speed v∗. The
proofs are too long to be summarized here.

Notice that the function f (u) = au(1− u) used by Fisher does satisfy all these
conditions with f ′(0) = a. Inspired by equation (14.5), Kolmogorov, Petrovsky and
Piskunov considered the function f (u) = au(1−u)2, which satisfies the same con-
ditions and gives the same propagation speed.

Fig. 20.3 Diagram (U, p) showing some integral curves of system (20.5) and in particular the
unique curve joining (U = 1, p = 0) to (U = 0, p = 0), which is the one giving the shape of the
propagating wave. Here, f (u) = au(1−u)2, a = 1, D = 1 and v = v∗ = 2.

The articles by Fisher and by Kolmogorov, Petrovsky and Piskunov were the
starting point for the construction of many mathematical models with geographic
diffusion in genetics, ecology and epidemiology. These models are known as
“reaction-diffusion systems”.

As for Kolmogorov, starting in 1938 he also studied the problem of extinction
of family names considered by Bienaymé, Galton, Watson, Fisher, Haldane, Erlang
and Steffensen: he called the stochastic process that is common to all these works
the “branching process”. In 1939 he became member of the USSR Academy of
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Sciences. He later made important contributions to the problem of turbulence in
fluid mechanics (1941), to the theory of dynamical systems linked with celestial
mechanics (1953) and to information theory (starting in 1956). He also contributed
to the writing of an encyclopedia and of high school and university textbooks, helped
establish an experimental high school and edited a popular science magazine. He
received many international prizes (including the Balzan prize in 1963 and the Wolf
prize in 1980) and died in Moscow in 1987.

Petrovsky became the dean of the Mechanics and Mathematics Faculty of Moscow
State University in 1940. He was the rector of the university from 1951 until his
death in 1973. He was a full member of the USSR Academy of Sciences from 1946
and the president of the International Congress of Mathematicians that was held in
Moscow in 1966. He also wrote textbooks on ordinary differential equations, partial
differential equations and integral equations. Piskunov became a professor at a mil-
itary academy. His textbook on differential and integral calculus was used by many
technical universities. He died in 1977.
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Chapter 21
The Leslie matrix (1945)

Patrick Holt Leslie was born in 1900 near Edinburgh in Scotland. He studied at
Christ Church College of Oxford University and obtained in 1921 a bachelor’s de-
gree in physiology. But he could not finish his medical studies because of health
problems. After a few years working as an assistant in bacteriology in the depart-
ment of pathology, he turned to statistics and joined in 1935 the Bureau of Animal
Population, a new research centre set up by Charles Elton. The purpose of this centre
was to study the fluctuations of animal populations through field studies and labora-
tory experiments. Most of the research was done on rodents: analysis of the cycles of
the hare and its predator the lynx using the archives of the Hudson Bay Company in
Canada, follow-up of the territorial expansion of the grey squirrel at the expense of
the red squirrel in England, data collection on voles in the neighbourhood of Oxford
and so on. Leslie applied to the data on voles the methods developed by Lotka for
human demography. During the Second World War, the centre’s research focused
on control methods of rats and mice in silos.

Fig. 21.1 P. H. Leslie
(1900–1972)

In 1945 Leslie published his most famous article in Biometrika, a journal which
had been founded by Galton, Pearson and Weldon in 1901. The article was entitled
On the use of matrices in certain population mathematics. Leslie considered a model
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for the growth of the number of females in an animal population, e.g. a population
of rats (but it could also be humans). The population is divided in K +1 age groups:
Pk,n is the number of females aged k at time n (k = 0,1, . . . ,K; n = 0,1, . . .). Call
fk the fertility at age k or more precisely the number of daughters born per female
between time n and time n + 1. Then K is the maximum age with nonzero fertility
( fK > 0). Call sk the probability for an animal aged k to survive at least until age
k+1. Then the population’s age structure is given by the following set of equations:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P0,n+1 = f0 P0,n + f1 P1,n + · · ·+ fK PK,n

P1,n+1 = s0 P0,n

P2,n+1 = s1 P1,n
...

...
PK,n+1 = sK−1 PK−1,n .

All the numbers fk are nonnegative, while sk satisfies 0 < sk < 1. At the end of the
nineteenth and beginning of the twentieth century, mathematicians had taken the
habit to write such systems of equations in the abbreviated form1

Pn+1 = M Pn , (21.1)

where Pn is the column vector (P0,n, . . . ,PK,n) and M is the square matrix (i.e., the
table of numbers with K +1 rows and K +1 columns)

M =

⎛
⎜⎜⎜⎜⎜⎝

f0 f1 f2 · · · fK

s0 0 0 · · · 0
0 s1 0 · · · 0
...

. . .
. . .

. . .
...

0 . . . 0 sK−1 0

⎞
⎟⎟⎟⎟⎟⎠ .

To understand the behaviour of system (21.1) as a function of time, Leslie looked
for a geometrically increasing or decreasing solution Pn = rn V . The number r and
the vector V must satisfy

MV = rV . (21.2)

In this case, r is called an “eigenvalue” and V an “eigenvector” of the matrix M. In
other words, the problem is to find the age distribution V which at each time step
is multiplied by a constant r. Following Lotka’s terminology, such distributions are
called “stable”. Returning to more usual notations, equation (21.2) can be rewritten
as {

f0 V0 + f1 V1 + · · ·+ fK VK = rV0,
s0 V0 = rV1, s1 V1 = rV2, . . . , sK−1VK−1 = rVK .

If follows from the last K equations that

1 Meaning that Pk,n+1 = Mk,0 P0,n +Mk,1 P1,n + · · ·+Mk,K PK,n for all k.
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V1 =
s0 V0

r
, V2 =

s0 s1 V0

r2 , . . . VK =
s0 s1 · · ·sK−1V0

rK .

Replacing this in the first equation, simplifying by V0 and multiplying by rK , Leslie
obtained the “characteristic equation”

rK+1 = f0 rK + s0 f1 rK−1 + s0 s1 f2 rK−2 + · · ·+ s0 s1 · · ·sK−1 fK . (21.3)

This is a polynomial equation in r of degree K+1. So there are K+1 real or complex
roots r1, . . . ,rK+1. Moreover Leslie noticed (using Descartes’ sign rule for polyno-
mials) that there is just one real positive root. Call it r1.

Leslie suggested also that, under most biologically realistic conditions (which
can be made precise using the theory of Perron and Frobenius for nonnegative
matrices), the eigenvalue r1 is strictly bigger than the modulus of all the other
real or complex eigenvalues (call them r2, . . . , rK+1). Besides, all the roots of
(21.3) are usually different. For each eigenvalue ri, one can find an associated
eigenvector. Let Q be the square matrix of size K + 1 whose K + 1 columns
contain the eigenvectors respectively associated with r1, . . . ,rK+1, then M Q =
QD, where D is the diagonal matrix [r1, . . . ,rK+1]. So M = QDQ−1 and

Pn = Mn P0 = QDn Q−1 P0 .

Notice that Dn is the diagonal matrix [(r1)n, . . . ,(rK+1)n] and that

Dn/rn
1 −→ D = [1,0, . . . ,0]

when n → +∞ because r1 > |ri| for i �= 1. Therefore, Pn/(r1)n converges to-
wards QD Q−1 P0.

Each component of the age-structure vector Pn increases or decreases like (r1)n.
If r1 > 1, then the population increases exponentially. If r1 < 1, then it decreases
exponentially. From equation (21.3), one can easily show that the condition r1 > 1
is true if and only if the parameter R0, defined by

R0 = f0 + s0 f1 + s0 s1 f2 + · · ·+ s0 s1 · · ·sK−1 fK ,

is strictly bigger than 1. Notice that s0 s1 · · ·sk−1 is the probability of surviving until
at least age k. So the parameter R0 is the mean number of daughters born from one
female throughout her life and is analogous to formulas (10.2), (12.2) and (16.9).
The present model is a kind of discrete-time analogue of Lotka’s work (see Chap-
ter 10) and a generalization including age-dependent fertilities of Euler’s work (see
Chapter 3).

Leslie illustrated his method using data published by an American colleague on
the fertility and survival coefficients fk and sk for the brown rat. After a few statisti-
cal operations to complete the data in a reasonable way, he obtained R0 � 26.
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Leslie’s matrix formulation of problems in population dynamics is now used by
many biologists. The computations are greatly simplified by modern computers and
scientific software that can compute eigenvalues and eigenvectors of any matrix.
One can easily compute both the parameter R0 and the growth rate r1.

After the Second World War, Leslie used his method to compute the growth rate
of other animal species: birds, beetles etc. He also worked on stochastic models,
on models of competition between species and on the analysis of capture-recapture
data. He retired in 1967. That same year, Charles Elton having also retired, the
Bureau of Animal Population ceased to exist as an independent research centre and
became part of the Department of Zoology at the University of Oxford. Leslie died
in 1972.

Further reading
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Chapter 22
Percolation and epidemics (1957)

John Michael Hammersley was born in 1920 in Scotland, where his father worked
for an American company exporting steel. He started studying at Emmanuel Col-
lege of Cambridge University, but had to join the army in 1940. He worked at the
improvement of computations for artillery. After finishing his studies in 1948, he
became assistant at Oxford University in the group working on the design and anal-
ysis of experiments. In 1955 he joined the Atomic Energy Research Establishment
in Harwell near Oxford.

Fig. 22.1 Hammersley
(1920–2004)

Simon Ralph Broadbent was born in 1928. He studied engineering in Cam-
bridge, mathematics at Magdalen College in Oxford (where he also wrote poetry)
and started a PhD in statistics at Imperial College in London on “Some tests of de-
parture from uniform dispersion”. During his PhD he got some support from the
British Coal Utilisation Research Association to investigate statistical problems that
could be related to coal production.

In 1954 a symposium on Monte Carlo methods sponsored by the Atomic Energy
Research Establishment was held at the Royal Statistical Society in London. These
methods, initiated during the 1940s by John von Neumann, Stanisław Ulam and
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Nicholas Metropolis at Los Alamos Laboratory, use stochastic computer simula-
tions in order to estimate unknown mathematical quantities. Hammersley presented
at the London symposium a paper that he had prepared in collaboration with Mor-
ton, a colleague from Harwell. The paper was also published in the Journal of the
Royal Statistical Society. During the discussion following the presentation at the
symposium, Broadbent mentioned an interesting problem that might be studied us-
ing some Monte Carlo method: given a regular network of pores in two or three
dimensions such that two neighbouring pores are connected with a probability p,
what proportion of the network would be filled by a gas if it were introduced through
one of these pores? Broadbent was in fact thinking at the design of gas masks for
coal miners and in particular about the size of the pores that was necessary for their
functioning.

Hammersley then started to work with Broadbent on this gas mask problem.
They realized that it was just a prototype of a family of problems that had not yet
been studied: the deterministic propagation of a “fluid” (the meaning depending on
the context) in a random medium. Hammersley called it “percolation”, by analogy
with what happens in a coffee pot. At the Atomic Energy Research Establishment,
Hammersley also had access to some of the most powerful computers of his time to
test Monte Carlo methods on percolation problems.

In 1957 Broadbent and Hammersley finally published the first article on the
mathematical theory of percolation. Among the examples they considered, one was
a model of population dynamics, namely the propagation of an epidemic in an or-
chard. The trees of a very big orchard are assumed to be placed at the nodes of a
square network. Each of the four closest trees of a given infected tree has a proba-
bility p to be also infected. The question is whether a large number of trees will be
infected or if the epidemic will stay localized. This depends of course on the proba-
bility p, which in turn is linked to the distance separating the trees, i.e. the width of
the network mesh.

Broadbent and Hammersley looked at the limiting case where the orchard is infi-
nite and covers the entire plane, with just one infected tree at the beginning. Let f (p)
be the probability that an infinite number of trees become infected from this source.
One expects f (p) to be an increasing function of p with f (0) = 0 and f (1) = 1.
Their main result was that there is a critical probability p∗, 0 < p∗ < 1, such that:

• if p < p∗, then f (p) = 0 so only a finite number of trees are infected;
• if p > p∗, then f (p) > 0 and an infinite number of trees may be infected.

The proof involves a comparison with the number of different “self-avoiding
walks” in the plane starting from the source of infection. These walks go
through a certain number of neighbouring trees (recall that each tree has
four neighbours) without visiting any tree more than once. An n-stepped self-
avoiding walk is a path of infection with a probability pn since the infection can
be transmitted from each visited tree to the next with a probability p. Now let
q( j,n) be the probability that, among all n-stepped self-avoiding walks, there
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are exactly j such walks that are paths of infection. If there is an infinite num-
ber of infected trees, then for all integer n there exists at least one n-stepped
self-avoiding walk that is a path of infection. So

0 ≤ f (p) ≤
∞

∑
j=1

q( j,n) ≤
∞

∑
j=1

j q( j,n)

for all n. But ∑∞
j=1 j q( j,n) is the expected number of n-stepped self-avoiding

walks that are paths of infection. This number is equal to pn s(n), where s(n)
is the total number of n-stepped self-avoiding walks. Hammersley could show
in a companion paper that s(n) grows like eκn as n → +∞, where κ is called
the connective constant. If p < e−κ , then pns(n) tends to 0 as n → +∞ and
f (p) = 0. Thus p∗ ≥ e−κ > 0.

In practice it is therefore better if the trees are not too close to keep p below p∗ in
case of an epidemic. But the closer the trees, the higher the production per hectare.
A compromise has to be found.

As Broadbent and Hammersley noticed, there is a certain similarity between the
existence of a critical probability in percolation processes and the existence of a
threshold in branching processes (see Chapter 7).

One can try to estimate numerically the critical probability p∗. For this purpose,
fix a value for p and approximate the infinite network by a finite square network of
size N×N with N sufficiently large. Assume for example that the tree in the middle
of the network is infected. With a computer, one can choose randomly which trees
can infect other trees. Fig. 22.2 and Fig. 22.3 show the randomly chosen paths of
infection using edges as in a graph. In Fig. 22.2, p is smaller than p∗. In Fig. 22.3,
p is bigger than p∗. One can easily determine which trees can be infected, namely
those that can be reached by a path of edges starting from the infected tree in the
centre. They are marked by small black squares in the figures.

One can then check if the epidemic has reached at least the border of the N ×N
network. If this is so and if N is large enough, one can consider that the number of
infected trees is “almost infinite”. Repeating this kind of simulation many times, one
can find an approximate value of the probability f (p) that the number of infected
trees is infinite (this is the Monte Carlo method). Finally, letting p vary between 0
and 1, one can get an approximation of the threshold p∗, which is the smallest value
such that f (p) > 0 if p > p∗.

The article by Broadbent and Hammersley contained only the proof of the ex-
istence of the threshold p∗. During the following years Hammersley continued to
develop the mathematical theory of percolation, while Broadbent turned to other
subjects. With the development of computers in the 1970s, it became easier to run
the simulations described above (Fig. 22.4). It was then conjectured that p∗ = 1/2.
This result was finally proved in 1980 by Harry Kesten from Cornell University.



124 22 Percolation and epidemics (1957)

Fig. 22.2 Percolation with p = 0.4.

Fig. 22.3 Percolation with p = 0.55.
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Fig. 22.4 Probability f (p)
that infinitely many trees get
infected as a function of p.
The curve is obtained by
running 1,000 simulations on
a 200×200 network.

Between 1959 and 1969 Hammersley worked for the Institute of Economics and
Statistics at Oxford University. He became a fellow of Trinity College. In 1964
he published in collaboration with David Handscomb a book entitled Monte Carlo
Methods. He was elected to the Royal Society in 1976. He retired in 1987 but con-
tinued to visit the Oxford Centre for Industrial and Applied Mathematics. He died
in 2004.

Broadbent got his PhD at Imperial College in 1957. He found a job in an indus-
trial company, the United Glass Bottle Manufacturers. After ten years in industry he
began to work in a news agency, the London Press Exchange, which did scientific
readership studies. The agency was bought in 1969 by Leo Burnett, an American
advertising company. Broadbent worked on how to measure the effectiveness of ad-
vertising and published several books on that subject: Spending Advertising Money
(1975), Advertising Budget (1989), Accountable Advertising (1997) and When to
Advertise (1999). In 1980 he helped start the Advertising Effectiveness Awards. He
spent several years at Leo Burnett’s head office in Chicago as director of brand
economics. He also ran his own consultancy, BrandCon Limited. He died in 2002.
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Chapter 23
Game theory and evolution (1973)

John Maynard Smith was born in London in 1920. His father, who was a surgeon,
died when he was eight. Maynard Smith studied at Eton College and turned to en-
gineering studies at Trinity College, Cambridge University. He was then a member
of the Communist Party of Great Britain. In 1939, when war broke out, he tried to
volunteer for the army but was rejected because of his poor eyesight. He finished
his engineering studies and worked for some years on the design of military air-
craft. Finally he decided to turn to biology, studying genetics at University College
in London with Haldane as a supervisor. He became a lecturer in zoology in 1952.
He left the Communist Party after the 1956 events in Hungary. His first book, enti-
tled The Theory of Evolution, was published in 1958. In 1965 he became professor
of biology at the newly founded University of Sussex. He then published two other
books: Mathematical Ideas in Biology (1968) and On Evolution (1972).

Fig. 23.1 Maynard Smith
(1920–2004)

George R. Price was born in 1922 in the USA. He studied chemistry at the Uni-
versity of Chicago, getting a Ph.D. in 1946 after having worked on the Manhat-
tan Project, building the atomic bomb. In 1950 he became associate researcher in
medicine at the University of Minnesota. He later worked as an independent jour-

N. Bacaër, A Short History of Mathematical Population Dynamics,
DOI 10.1007/978-0-85729-115-8 23, © Springer-Verlag London Limited 2011

127

http://dx.doi.org/10.1007/978-0-85729-115-8_23


128 23 Game theory and evolution (1973)

nalist for various magazines before returning to research at IBM. In 1967, after
having been treated for thyroid cancer, he settled in England and turned to the study
of a completely different subject: evolutionary biology. He worked in London at the
Galton Laboratory of University College from 1968. His first paper in this new area,
“Selection and covariance”, was published with the help of W. D. Hamilton in a
1970 issue of Nature and contained what is now called Price’s equation.

Price also submitted another paper to Nature, this time on animal conflicts. But
it did not have the right format for this journal. So Maynard Smith, who was the
reviewer, suggested preparing a shorter version. Price started to work on something
else while Maynard Smith began to develop Price’s idea on his own. Finally May-
nard Smith and Price published a joint article entitled “The logic of animal conflict”,
which Nature published in 1973. The article made an interesting contribution to
the use of game theory in evolutionary biology. Before that, game theory had been
mainly developed for economics and politics, especially after the 1944 book by John
von Neumann and Oskar Morgenstern entitled Theory of Games and Economic Be-
havior. The starting point of Maynard Smith and Price was the following question:
how is it that in conflicts between animals of the same species, the “weapons” at
their disposal (horns, claws, venom etc.) are rarely used to kill? Following Darwin’s
ideas on the struggle for life, more aggressive animals should win more combats and
have a larger number of offspring, leading to an escalation in the use of “weapons”.
Notice that this was the time of the Cold War so the subject also had a political
flavour.

Maynard Smith and Price imagined a sequence of games in which two animals
can enter in competition for a resource, for example a territory in a favourable habi-
tat. In the simplified presentation that Maynard Smith would use in his 1982 book
Evolution and the Theory of Games, each animal adopts either the “hawk strategy”
or the “dove strategy”. In what follows we talk simply about hawks and doves, but
we mean strategies adopted by animals of the same species. Let V > 0 be the value
of the resource, meaning that if R0 is the normal average number of offspring of an
animal, the winner of the competition has on average R0 +V offspring.

If a hawk meets another hawk, they fight for the resource: the winner gets the
resource of value V , the loser suffers a “cost” C > 0. Each of the two hawks has
a probability equal to 1/2 of winning the competition and the same probability of
losing. The expected payoff from a fight between two hawks is therefore 1

2 (V −
C) for the two competitors. If, however, a hawk meets a dove, then the hawk gets
the resource V , the dove escapes without fighting and the cost is 0. Finally, if two
doves meet, one of them gets the resource V , the other escapes without fighting
and at no cost. Each of the two doves having the same probability 1/2 of winning,
the expected payoff when two doves meet is therefore V/2. The payoffs can be
summarized as in Table 23.1.

More generally, one can imagine fights between individuals that can adopt one of
two strategies, call them 1 and 2, with a matrix of expected payoffs (Gi, j)1≤i, j≤2. In
the example above, hawks follow strategy 1, doves follow strategy 2, G1,1 = 1

2 (V −
C), G1,2 = V , G2,1 = 0 and G2,2 = V/2. In the original article of 1973, Maynard
Smith and Price had in fact already used computer simulations to test more than two
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Table 23.1 Expected payoffs of the hawk–dove game.

A hawk A dove

payoff of a hawk against. . . 1
2 (V −C) V

payoff of a dove against. . . 0 V/2

possible strategies (these were called “hawk”, “mouse”, “bully”, “retaliator” and
“prober-retaliator”).

Imagine now a large population of animals of the same species with a proportion
xn of hawks and a proportion 1− xn of doves in generation n. Hawks in generation
n have an average number of offspring equal to

R1(n) = R0 + xn G1,1 +(1− xn)G1,2 . (23.1)

Similarly, doves have an average number of offspring equal to

R2(n) = R0 + xn G2,1 +(1− xn)G2,2 . (23.2)

The average number of offspring in the entire population is therefore

R(n) = xn R1(n)+(1− xn)R2(n) .

Forgetting about the possible subtleties due to sexual reproduction, we see that the
proportion of hawks in the next generation is

xn+1 = xn R1(n)/R(n) . (23.3)

Hence, xn+1 > xn if R1(n) > R(n) and xn+1 < xn if R1(n) < R(n). There are three
possible steady states: x = 0, x = 1 and

x∗ =
G1,2 −G2,2

G2,1 −G1,1 +G1,2 −G2,2

provided 0 < x∗ < 1. In the hawk–dove game, x∗ = V/C < 1 provided V < C.

Indeed, x = 0 is an obvious steady state of (23.3). If x �= 0 is another
steady state, then R1 = R = xR1 +(1−x)R2. So either x = 1 or R1 = R2.
The latter possibility is equivalent to xG1,1 +(1−x)G1,2 = xG2,1 +(1−
x)G2,2, which gives the steady state x∗.

The steady state x = 1 corresponds to a population with 100% of individuals
following strategy 1. This steady state is stable if it cannot be invaded by a few
individuals following strategy 2. From (23.3), we see that this condition is equivalent
to having R1(n) > R(n) for all xn sufficiently close to 1. Since R(n) = xn R1(n)+(1−
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xn)R2(n), the condition becomes R1(n) > R2(n) for all xn sufficiently close to 1.
Looking at the expressions (23.1)–(23.2) of R1 and R2, we arrive at the conclusion
that x = 1 is stable if and only if one of the two following conditions is satisfied:

• G1,1 > G2,1;
• G1,1 = G2,1 and G1,2 > G2,2.

If so, strategy 1 is said to be an evolutionarily stable strategy (ESS in short). In the
hawk–dove game, the condition G1,2 > G2,2 is always true. So the hawk strategy is
evolutionarily stable if and only if G1,1 ≥ G2,1, i.e. V ≥C.

The steady state x = 0 corresponds to a population with all individuals following
strategy 2. This situation is symmetric to the previous one if we exchange indices 1
and 2. In the hawk–dove game, we have G1,2 = V > G2,2 = V/2 so the steady state
x = 0 is always unstable. Introducing a small number of hawks in a population of
doves would lead to a progressive invasion by the hawks.

Similarly, one can show that the third steady state x∗, provided 0 < x∗ < 1, is
always stable. In the hawk–dove game, x∗ =V/C corresponds to a mixed population
with both hawks and doves.

In conclusion, there are two cases in the hawk–dove game. If V ≥ C, i.e. if the
value of the resource is bigger than the possible cost, then the population tends to a
steady state with hawks but no doves, whatever the initial condition x(0) with 0 <
x(0) < 1. The hawk strategy is then an evolutionarily stable strategy. If, in contrast,
V < C, then the population tends to a mixed steady state with a proportion x∗ of
hawks and a proportion 1− x∗ of doves. So the model does give an explanation
of why individuals with less aggressive behaviours can survive when V < C. The
formula x∗ = V/C shows moreover that the higher the cost C for losers, the smaller
the proportion x∗ of hawks in the population. Hence species with the most dangerous
“weapons” seldom use them for intraspecific fights: they prefer inoffensive ritual
fights, where competing animals try to impress each other but avoid real fights that
could cause injuries.

The original 1973 article by Maynard Smith and Price discussed the concept
of evolutionarily stable strategy and used mainly computer simulations of animal
contests, recording the payoffs of different strategies. The approach using dynami-
cal equations such as (23.3) was developed somewhat later, in particular by Taylor
and Jonker. Since then many authors have applied ideas from game theory to ques-
tions in evolutionary biology or conversely have applied dynamical evolutionary
approaches to more classical problems in game theory. Besides questions concern-
ing animal conflicts, one can cite for example problems of parental investment or
of sex ratio (the ratio between the number of males and females at birth), the latter
having been studied already by Carl Düsing in 1884 and by Ronald Fisher in his
1930 book on The Genetical Theory of Natural Selection. Some other models focus
on the dynamic aspects of the “prisoner’s dilemma” or of the “rock-paper-scissors”
game. It was also realized that the concept of evolutionarily stable strategy is closely
related to the concept of Nash equilibrium in game theory.
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Price, who had been a convinced atheist, had a mystical experience in 1970 and
converted to the Christian faith. He gave up his research in 1974 because he felt that
“the sort of theoretical mathematical genetics [he] was doing wasn’t very relevant
to human problems”. He gave all his belongings to homeless people and committed
suicide a few months later.

Maynard Smith, in contrast, continued this line of thought and was elected to
the Royal Society in 1977. He published many books: Models in Ecology (1974),
The Evolution of Sex (1978), Evolution and the Theory of Games (1982), The Prob-
lems of Biology (1986), Did Darwin Get it Right? (1988) and Evolutionary Genetics
(1989). He also published in collaboration with E. Szathmáry The Major Transitions
in Evolution (1995) and The Origins of Life: From the Birth of Life to the Origin of
Language (1999). He retired in 1985. In 1999 he received the Crafoord prize in
biosciences from the Royal Swedish Academy of Sciences for his “fundamental
contributions to the conceptual development of evolutionary biology”. In 2003 he
published in collaboration with D. Harper Animal Signals. He died in Sussex in
2004.

Further reading

1. Charlesworth, B., Harvey, P.: John Maynard Smith, 6 January 1920–19 April
2004. Biog. Mem. Fellows R. Soc. 51, 253–265 (2005)
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Chapter 24
Chaotic populations (1974)

Robert McCredie May was born in 1936 in Australia. After studying theoretical
physics and receiving a PhD from the University of Sydney in 1959, he spent two
years in the department of applied mathematics at Harvard University. Back in Aus-
tralia, he became professor of theoretical physics. In 1971, while visiting the Insti-
tute for Advanced Study in Princeton, he changed his research subject and started
to focus on animal population dynamics. In 1973 he became professor of zoology
in Princeton. The same year he published a book entitled Stability and Complexity
in Model Ecosystems.

Fig. 24.1 Robert M. May

In 1974 May published in Science an article entitled “Biological populations with
nonoverlapping generations: stable points, stable cycles and chaos”, in which he
showed that very simple mathematical models in population dynamics can behave
in a chaotic way.

To understand the origin of this problem, one has to go back about ten years
in time. In 1963 Edward Lorenz, an American meteorologist working at the Mas-
sachusetts Institute of Technology (M.I.T.), had noticed while making numerical
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simulations on his computer that a simplified model of the atmosphere with only
three differential equations could behave in a very surprising way: a tiny change of
the initial conditions could change completely the final result of a simulation and
therefore also meteorological forecasts. The mathematician Henri Poincaré, after
having worked on the motion of planets in the Solar System, had in fact already
thought about this possibility at the beginning of the twentieth century, long before
the computer age. But at the beginning of the 1970s, only a few researchers were
starting to look at this strange property more closely. At the University of Mary-
land, James Yorke was thinking about the work of Lorenz and introduced the term
“chaos” in this context. The article1 he wrote with his student Tien-Yien Li, entitled
Period three implies chaos, appeared in 1975.

On his side, May was focusing on the model

pn+1 = pn +a pn(1− pn/K), (24.1)

where a and K are positive parameters and pn stands for the size of an animal pop-
ulation in year n. When pn is small compared to the carrying capacity K, the dy-
namics is close to a geometric growth pn+1 � (1+a) pn. The full equation is a kind
of discrete-time analogue of the logistic equation introduced by Verhulst (see Chap-
ter 6). But unlike the latter, May showed that the discrete-time equation can have
a much more surprising behaviour, which is easy to observe with a simple pocket
calculator doing additions and multiplications (Fig. 24.2). Maynard Smith had al-
ready considered equation (24.1) in his 1968 book Mathematical Ideas in Biology.
But despite having tried a few numerical values for a, he had not realized that there
was something special.

Figure 24.2, which is similar to the one in May’s 1974 article, shows that the
population pn converges to a steady state when 0 < a < 2. When 2 < a ≤ 2.449
(the upper bound 2.449 is an approximation), the population pn tends to a cycle of
period 2. When 2.450 ≤ a ≤ 2.544, the population pn tends to a cycle of period 4.
When 2.545 ≤ a ≤ 2.564, pn tends to a cycle of period 8, etc. The intervals of the
parameter a for which pn tends to a cycle of period 2n get smaller as n increases and
never exceed 2.570. When a ≥ 2.570, pn can behave in a “chaotic” way.

In 1976 May wrote a review of the problem, published in Nature, entitled Simple
mathematical models with very complicated dynamics. There he collected not only
his own results but also those of other researchers. First, setting xn = a pn

K (1+a) and
r = 1 + a (so that r > 1), we see that equation (24.1) can be rewritten in the more
simple form

xn+1 = r xn (1− xn) . (24.2)

For this equation to have a meaning in population dynamics, xn should be nonnega-
tive for all n. So we assume that the initial condition x0 satisfies 0 ≤ x0 ≤ 1 and that
r ≤ 4. The latter condition ensures that the right-hand side of (24.2) stays between 0
and 1. Remarkably the chaotic case r = 4 had already been used as a random num-

1 Remarkably a more general result was proved by O. M. Sharkovsky in 1964, but his article
published in a Ukrainian mathematics journal was not well known.
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Fig. 24.2 In all the figures: n is on the horizontal axis, pn on the vertical axis and p0 = K/10. The
lines are obtained by joining the points with coordinates (n, pn). Top left: 0 < a < 2 (steady state).
Top right: 2 < a ≤ 2.449 (period 2 cycle). Bottom left: 2.450 ≤ a ≤ 2.544 (period 4 cycle). Bottom
right: 2.570 ≤ a ≤ 3 (possibly chaos).

ber generator by Stanisław Ulam and John von Neumann as early as 1947. If we
introduce the function

f (x) = r x(1− x),

then equation (24.2) can be rewritten as xn+1 = f (xn) and the steady states are the
solutions of x = f (x). Graphically these are the intersections of the curves y = f (x)
and y = x (Fig. 24.3). Notice that x = 0 is always a steady state. Since r > 1, there
is also another steady state x∗ > 0 such that x∗ = r x∗ (1− x∗), i.e., x∗ = 1−1/r.

Because r > 1, the steady state x = 0 is unstable. Indeed, when xn is close to 0,
we have xn+1 � r xn. So xn tends to move away from 0. As for the steady state x∗, it
is locally stable only for 1 < r < 3.

Indeed, set yn = xn −x∗. Then (24.2) is equivalent to yn+1 = (2− r− r yn)yn. If
xn is close to x∗, then yn is close to 0 and yn+1 � (2− r)yn. But if yn+1 = k yn,
then yn = kn y0 so that yn → 0 when n → ∞ if and only if −1 < k < 1. Here the
steady state x∗ is locally stable if and only if −1 < 2− r < 1, i.e. 1 < r < 3.

When 1 < r < 3, one can show that for all initial conditions 0 < x0 < 1, the
sequence xn really tends to x∗ (Fig. 24.3a). But what happens when 3 < r ≤ 4?
To answer this question, notice first that xn+2 = f (xn+1) = f ( f (xn)). Introduce the
function

f2(x) = f ( f (x)) = r2 x(1− x)
(
1− r x(1− x)

)
and consider the solutions of the equation x = f2(x), which are called fixed points
of the function f2(x). Graphically these are the intersections of the curves y = f2(x)
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Fig. 24.3 The function y = f (x), the straight line y = x, the steady state x∗ and the sequence
defined by xn+1 = f (xn). Top: r = 2.75, the sequence tends to x∗. Bottom: r = 3.4, the steady state
x∗ is unstable and the sequence tends to a cycle of period 2.

and y = x (Fig. 24.4). If x = f (x), then x = f ( f (x)) = f2(x). So x = 0 and x = x∗ are
also fixed points of the function f2(x). But when r > 3, the function f2(x) has two
other fixed points, x− and x+, such that f (x−) = x+ and f (x+) = x−.

Indeed we notice that f ′2(x) = f ′( f (x)) f ′(x) so that f ′2(x
∗) = [ f ′(x∗)]2. But

f ′(x) = r(1− 2x) and x∗ = 1− 1/r. So f ′(x∗) = 2− r and f ′2(x
∗) = (2− r)2.

Hence the slope of the function f2(x) at x = x∗ is such that f ′2(x
∗) > 1 if r > 3.

But since f2(0) = 0, f ′2(0) = r2 > 1 and f2(1) = 0, we see in Fig. 24.4b that
there are necessarily two other solutions x− and x+ of equation x = f2(x), with
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Fig. 24.4 The curves y = f2(x) = f ( f (x)) and y = x and the steady state x∗. Top: r = 2.75. Bottom:
r = 3.4 and the two other solutions x− and x+ of equation x = f2(x).

0 < x− < x∗ and x∗ < x+ < 1. Another way of arriving at the same conclusion
consists in solving equation x = f2(x), which is a polynomial equation of de-
gree 4 with two known roots: x = 0 and x = x∗. The two other solutions x− and
x+ are the roots of the polynomial

x2 − 1+ r
r

x+
1+ r

r2 = 0 . (24.3)

They are real if the discriminant is positive, i.e. if r > 3. Since f2( f (x−)) =
f ( f ( f (x−))) = f ( f2(x−)) = f (x−), the point f (x−) is also a fixed point of
f2(x). But f (x−) �= x− because x− is not a fixed point of f (x). And f (x−) �= x∗,
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otherwise we would have x− = f ( f (x−)) = f (x∗) = x∗. Since f (x−) �= 0, we
conclude that f (x−) = x+. Similarly, f (x+) = x−.

Hence for r > 3, we see that if for example x0 = x−, then x1 = x+, x2 = x−,
x3 = x+, etc. One can also show that for almost every initial condition 0 < x0 < 1,
the sequence xn tends as n → +∞ towards the cycle of period 2 x−,x+,x−,x+, etc.
(Fig. 24.3b and 24.4b). This cycle stays stable as long as r is below the critical value
r1 = 1+

√
6 � 3.449, where f ′2(x−) = −1.

Indeed, we see by using (24.3) that

f ′2(x−) = f ′( f (x−)) f ′(x−) = f ′(x+) f ′(x−)
= r2 (1−2x+)(1−2x−) = r2 (1−2(x+ + x−)+4x+x−)

= r2
(

1−2
1+ r

r
+4

1+ r
r2

)
= −r2 +2r +4 .

So f ′2(x−) = −1 if −r2 +2r +5 = 0 and in particular if r = 1+
√

6.

For r1 < r < r2, a cycle of period 4 becomes stable: four new fixed points of the
function

f4(x) = f2( f2(x)) = f ( f ( f ( f (x))))

appear (Fig. 24.5). For r2 < r < r3, it is a cycle of length 8, etc. The numbers rn

tend to a limit r∞ � 3.570 when n → +∞ . When r∞ < r ≤ 4, the system can even
be chaotic! Figure 24.6 shows the bifurcation diagram2, which gives an idea of the
dynamics’ complexity.

R. M. May concluded by emphasizing that even very simple dynamical systems
could have a very complicated behaviour. This is not specific to equation xn+1 =
r xn (1−xn). The same “period doubling cascade” leading to chaos appears for other
equations with a function f (x) having the shape of a “bump”. This is the case for
example with another equation used in population biology: xn+1 = xn exp(r(1 −
xn)).

This study suggests that one should not be surprised if many data sets concern-
ing population dynamics are difficult to analyze. The model also shows that the
distinction between deterministic and stochastic models is not as clear as previously
thought: even with a simple deterministic model, it can be impossible to make long-
term forecasts if the parameters are in the chaotic regime.

In 1979 May was elected to the Royal Society. From 1988 till 1995, he was
professor at Oxford University and at Imperial College in London. From 1995 till

2 This diagram was obtained by plotting for each given value of r the points with coordinates
(r,x200), (r,x201),. . . ,(r,x220), where xn+1 = f (xn) and x0 = 0.1. If xn tends to a steady state, we
see only one point in the diagram. If xn tends to a cycle of period 2, we see two points etc.
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Fig. 24.5 The curve y = f4(x) when r = 3.5 and the line y = x. Beside x∗, x+ and x−, there are
four other fixed points, which are not easy to distinguish.

Fig. 24.6 Bifurcation diagram of equation (24.2).

2000, he was chief scientific adviser to the British government. In 1996 he received
the Crafoord prize “for his pioneering ecological research concerning theoretical
analysis of the dynamics of populations, communities and ecosystems”. From ecol-
ogy he turned to epidemiology and immunology, publishing two books: Infectious
Diseases of Humans (1991, with Roy Anderson) and Virus Dynamics, The Mathe-
matical Foundations of Immunology and Virology (2000, with Martin Nowak). The
latter book analyzes the interaction between the cells of the immune system and HIV
(the virus causing AIDS) as some kind of predator–prey system (see Chapter 13).
From 2000 till 2005, May was president of the Royal Society. He was knighted in
1996 and became a life peer in 2001.
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Chapter 25
China’s one-child policy (1980)

Song Jian1 was born in 1931 in Rongcheng in the Chinese province of Shandong.
During the 1950s he studied in the Soviet Union at the Bauman Moscow State Tech-
nical University and at the Mathematics and Mechanics Department of Moscow
State University. He then returned to China and became the head of the Office of
Cybernetic Research in the Mathematics Institute of the Chinese Academy of Sci-
ences. He was a specialist of the application of control theory to the guidance of
missiles. He also worked for the Seventh Machine Building Ministry, which was
later renamed Ministry of Aerospace. In 1978 he began to focus on the links be-
tween control theory and demography.

Fig. 25.1 Song Jian

To understand the context of Song Jian’s work on population dynamics, one
should first give an idea of what “control theory” is. It is the study of dynamical
systems whose behaviour depends on some parameters that can be modified as time
goes by in order to optimize a given criterion. This theory had been particularly de-
veloped in connection with space programs in the USA and in the USSR. Indeed,
engineers had to “control” the trajectory of space shuttles in order to bring satellites
to their orbit around the Earth. But applications were not limited to physical or en-

1 Song is the family name. It is always written first in Chinese.
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gineering problems. Birth control policies could also be considered as some kind of
optimal control problem in the mathematical sense.

One should also mention the essay entitled The Limits to Growth: A Report for
the Club of Rome’s Project on the Predicament of Mankind, published in 1972 and
written by a group from the Massachusetts Institute of Technology (M.I.T.). This
study was based on a mathematical model of the world’s economic growth that took
into account natural resources, population size and pollution. The report suggested
that the world’s economy was heading towards a catastrophe by exhaustion of non-
renewable resources, by lack of food for the population or by an excess of pollution.
The voluntary limitation of births was one of the proposed solutions. In summary it
was a kind of modern version of Malthus’ theses. The report received a large echo
in the West during the 1970s.

Since the founding of the People’s Republic in 1949, the Chinese birth rate had
been very high except during the catastrophic “Great Leap Forward”. In the mid-
1970s China was slowly recovering from the Cultural Revolution. Family planning
urged women to delay births, to increase the time between two consecutive births
and to have less children. Deng Xiaoping, who emerged as the new leader after
Mao Zedong’s death in 1976, started the policy of “Four Modernizations” in 1978:
agriculture, industry, science and technology, and national defence. The size and
the growth of the Chinese population were then perceived as important obstacles
to these modernizations. Scientists that had been working until then on military
applications were encouraged to find solutions for this difficult problem.

With this background, Song Jian went in 1978 to Helsinki for a congress of
the International Federation of Automatic Control. He noticed there that some re-
searchers in Europe had been trying to apply control theory to population problems
with the idea that a strict birth control could eventually prevent the catastrophes an-
nounced by the report on The Limits to Growth. Back in China he set up a small
team, including his colleague Yu Jingyuan and the computer expert Li Guangyuan,
to apply this kind of mathematical modelling to data concerning the Chinese pop-
ulation. At that time scientific communication between China and the rest of the
world was scarce. The team redeveloped the equations describing the evolution of
a population’s age structure, in the same way Lotka and McKendrick had done (see
Chapters 10 and 16). Using a continuous-time model, call

• P(x, t) the population aged x at time t;
• m(x) the mortality at age x;
• P0(x) the population’s age structure at time t = 0;
• b(t) the total fertility of women at time t, i.e. the mean number of children a

woman would have during her life if age-specific fertility remained what it is at
time t;

• f the proportion of female births;
• h(x) the probability distribution of the age of the mother when a child is born

(
∫ ∞

0 h(x)dx = 1).

With these notations and hypotheses, the evolution of the age structure can be mod-
elled by the partial differential equation
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∂P
∂ t

(x, t)+
∂P
∂x

(x, t) = −m(x)P(x, t) ,

with the initial condition P(x,0) = P0(x) and the boundary condition

P(0, t) = b(t) f
∫ ∞

0
h(x)P(x, t)dx ,

where b(t) is the parameter to be controlled. If the total fertility of women is constant
and above the critical threshold

b∗ = 1/
[

f
∫ ∞

0
h(x)e−

∫ x
0 m(y)dy dx

]
,

then the population increases exponentially. This criterion is similar to the one ob-
tained by Lotka with formula (10.2). Song Jian’s team considered also the time-
discrete version of the model, which is similar to Leslie’s model (see Chapter 21).
Call Pk,n the population aged k in year n. Introduce similarly mk, bn and hk. Then

Pk+1,n+1 = (1−mk)Pk,n , P0,n+1 = bn f ∑
k≥0

hk Pk,n .

Knowing from sample surveys the mortality mk (Fig. 25.2), the proportion of female
births f � 0.487, the age distribution of mothers hk (Fig. 25.3), the initial condition
Pk,0 which is the population’s age structure in 1978 (Fig. 25.4) and varying the total
fertility b (assumed constant throughout each simulation), Song Jian’s team could
make demographic projections for their country with a time horizon of one hundred
years, from 1980 till 2080 (Fig. 25.5). Given the required thousands of additions
and multiplications (year n varies between 0 and 100 years, age k between 0 and
90 years), a computer was necessary. At the time in China few people had access to
such equipment except those working for the military. Song Jian, a leading expert
in missile guidance, was one of them.

The projections suggested that even if China kept its 1978 fertility of b = 2.3 chil-
dren per women, which is just above the critical threshold estimated to be b∗ = 2.19,
the population would increase from 980 million in 1980 to 2.12 billion in 2080. But
China was already using almost all the land that could serve for agriculture. It even
had a tendency to lose part of this land because of desertification and urbanization.
How to feed such a population if progress in farm yields is not sufficient? It is the
same question Malthus had considered two centuries earlier. With the 1975 fertil-
ity of b = 3.0, the population could even reach 4.26 billion in 2080. With b = 2.0,
the population would reach a maximum of 1.53 billion around the year 2050 before
starting to decrease slightly. With b = 1.5, a maximum of 1.17 billion would be
reached around 2030. With b = 1.0, the maximum would be just 1.05 billion and
would be reached around 2000. Under that assumption, the population would return
to its 1978 level only by 2025.

The most surprising part of this work was its practical consequences, in fact of
unequalled importance in the history of mathematical population dynamics. Indeed
Li Guangyuan showed the results of the team’s simulations in December 1979 dur-
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Fig. 25.2 Mortality (per year) as a function of age in 1978.

Fig. 25.3 Smoothed shape of the fertility (per year) as a function of age in 1978.

ing a symposium on population in Chengdu, Sichuan province2. In January 1980,
Song Jian, Yu Jingyuan and Li Guangyuan published these results in a Chinese eco-
nomics journal, advocating by the way a one-child policy. They also sent their article
– A report on quantitative research on the question of China’s population develop-
ment – to China’s top scientist Qian Xuesen, who forwarded it with recommenda-
tion to the head of the birth planning administration. The results of Song Jian’s team
made a deep impression on most political leaders. These were already convinced
of the necessity of an increased birth control despite what Marx had written (see
Chapter 5) but were still hesitating on the level of control. In February 1980, the

2 Here and below, we summarize Susan Greenhalgh’s detailed account [1,2].
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Fig. 25.4 Age pyramid in 1978. Horizontal axis: age. Vertical axis: population (in millions).

Fig. 25.5 Demographic projections (in billions) following different hypotheses on the mean num-
ber of children per woman. From bottom to top: b = 1.0; 1.5; 2.0; 2.3; 2.5; 3.0.

State Council and the Party’s Central Committee fixed an objective for the Chinese
population of 1.2 billion for the horizon 2000. In March 1980, the results of Song
Jian’s team were published in the People’s Daily. In April, a commission of polit-
ical leaders and population specialists examined the environmental and economic
consequences of population growth and concluded that a one-child policy was nec-
essary to reach the target set by Deng Xiaoping for the per capita income in the year
2000. The policy became official in September of that same year and an open letter
explaining it to the population was published on the first page of the People’s Daily.

By 1983, there will still many unauthorized births. It was decided that a member
of each couple with already two children would be sterilized and that each forbidden
pregnancy would be interrupted. However, starting in 1984, rural couples with just
one daughter were allowed to have a second child. The one-child policy is still in
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force nowadays. Some adaptations have been introduced in recent years: if in a
couple both the man and the woman were single children, then they can have two
children. The repressive measures against couples having more than one child are
harsh: government employees can lose their job, a costly fine has to be paid to get
the administrative papers for the schooling of a second child etc. In summary, it is
hard to find in the history of mathematical modelling another example with such
a strong social impact. Of course the work of Song Jian and his collaborators was
only one of the elements that lead to the choice of the one-child policy. But it seems
to have played an important role.

As in previous chapters, the role of mathematical modelling may be a subject of
concern. Starting from a real life situation, a model is built. It can be analyzed math-
ematically or simulated with a computer. One can then understand how the model
behaves when some parameters vary. However, mathematics does not say if the
model is a faithful picture of real life. Some very important aspects may have been
neglected. Some models also contain an objective function, for example keeping the
Chinese population under 1.2 billion. Mathematics does not say if this objective was
appropriate3.

In 1980 Song Jian was also coauthor of the new edition of the book entitled En-
gineering Cybernetics by Qian Xuesen, the “father” of the Chinese space program.
He then held various high-level political positions: vice-minister and chief scientist-
engineer of the Ministry of Aerospace (1981–1984), member of the Central Com-
mittee of the Chinese Communist Party (1982–2002), chairman of the State Science
and Technology Commission (1985–1998), State Councilor (1986–1998) etc. He
published also two other books that have been translated into English: Population
Control in China (1985, with Tuan Chi-Hsien and Yu Jingyuan) and Population Sys-
tem Control (1988, with Yu Jingyuan). These books develop the theory of optimal
control applied to population dynamics. Song Jian was elected in 1991 to the Chi-
nese Academy of Sciences and in 1994 to the Academy of Engineers, of which he
was president from 1998 till 2002.

Further reading

1. Greenhalgh, S.: Missile science, population science: The origins of China’s one-
child policy. China Q. 182, 253–276 (2005)

2. Greenhalgh, S.: Just One Child, Science and Policy in Deng’s China. University
of California Press (2008)

3. Meadows, D.H., Meadows, D.L., Randers, J., Behrens, W.W.: The Limits to
Growth, A Report for the Club of Rome’s Project on the Predicament of Mankind,
2nd edn. Universe Books, New York (1974)

3 The population in the year 2000 was estimated to be 1.264 billion. The per capita income has
grown approximately from $200 to $1000 between 1980 and 2000. At the same time, the sex ratio
has become extremely biased towards boys, mainly because of sex-selective abortion.
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4. Song, J.: Selected Works of J. Song. Science Press, Beijing (1999)
5. Song, J.: Some developments in mathematical demography and their application

to the People’s Republic of China. Theor. Popul. Biol. 22, 382–391 (1982)
6. Song, J., Yu, J.: Population System Control. Springer, Berlin (1988)



Chapter 26
Some contemporary problems

This chapter gives a brief overview of contemporary research on the mathematical
modelling of population dynamics. The subject being quite large, only a few exam-
ples are given here of studies developed by researchers in France.

In demography a relatively new problem has appeared in the last few decades:
population aging. This problem is a subject of concern not only in France (Fig. 26.1)
but also in many other European countries as well as in Japan. It has important
economic and social consequences: pension systems, immigration policies etc. In
France, mathematical models trying to analyze the aging phenomenon are devel-
oped by the National Institute of Demographic Studies (INED) and by the National
Institute of Statistics and Economic Studies (INSEE). One of the difficulties of de-
mographic projections lies in the fact that birth rates may vary considerably over
time without being foreseeable even one decade in advance. This is particularly
striking if one looks back at the projections made in 1968 for the French popula-
tion in 1985: these projections1 failed to anticipate the decrease in the birth rate
which occurred during the 1970s. It would be interesting to review all the predic-
tions based on mathematical models which turned out to be wrong, especially those
which found an echo in the media. This would counterbalance the impression of
“progress” given by the present book, an impression which may have already ap-
peared suspicious to the reader after reading the chapter on the Chinese one-child
policy2. Concerning the latter subject, a new problem is now of current concern:
how to soften the policy to avoid the rapid aging phenomenon expected in the next
few decades. Again mathematical models contribute to the debate.

In epidemiology, among the new problems that have emerged globally in the last
two decades, the development of the AIDS epidemic is particularly striking. Some
models try to guess the future of the epidemic in more recently infected countries
such as Russia, India or China. It is difficult to predict if the epidemic will slow down
as in Western Europe and North America or if it will reach an important percentage

1 See for instance the article entitled Population (Géographie de la) in the Encyclopaedia Univer-
salis, written in 1968 and reprinted without change in later editions.
2 This policy is often criticized in the West but seems to be relatively well accepted by many
Chinese.
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Fig. 26.1 Age pyramid of the French population on 1 January 2010. Source: www.insee.fr.

of the population as in some sub-Saharan countries. Other emerging diseases such as
Ebola in Africa, West Nile fever in North America, SARS (Severe Acute Respiratory
Syndrome), bird flu, chikungunya or H1N1 influenza have all been scrutinized with
mathematical models, though admittedly with little success.

For SARS, one modelling difficulty was that the epidemic remained relatively
limited within each country but could spread very quickly from country to country
(Hong Kong and China, Singapore, Canada. . . ). The random character of the epi-
demic curves in each new focus could not be neglected. As we saw in Chapters 16
and 22, stochastic models are usually more difficult to handle.

For the chikungunya epidemic that occurred between 2005 and 2006 on Reunion
Island (a French overseas territory in the Indian Ocean), some models were inspired
by that of Ross for malaria (see Chapter 12), the two diseases being transmitted
by mosquitoes. An important aspect to take into account was the influence of sea-
sonality. Indeed the mosquito population decreases during the southern winter, thus
reducing the transmission of the disease. This can be seen in Fig. 26.2, which shows
the number of new cases reported each week by a small network of about thirty
general practitioners covering just a fraction of the island’s population. The net-
work did not detect any new cases during several weeks in September and Octo-
ber 2005, but the transmission of the disease was still continuing. Mathematical
models of the epidemic were developed at the National Health and Medical Re-
search Institute (INSERM) and at the Tropical Research Institute (IRD). Despite
these models, nobody was able to foresee that the epidemic would not die out be-
fore the end of the southern winter of 2005, when it had infected just a few thou-
sand people. Finally, almost one third of the island’s population became infected,
that is about 266,000 people. This shows if still necessary that predicting the fu-
ture of epidemics can be quite difficult and that it is not so easy to distinguish in
the early days of an epidemic if it will be a minor or a major epidemic. A parallel
can be drawn with weather forecasting. This kind of forecasting relies nowadays on
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intensive computer simulations of complicated mathematical models of the ocean
and of the atmosphere. Nevertheless predictions beyond a few days are not reli-
able.

Fig. 26.2 The chikungunya epidemic in the Reunion Island in 2005–2006. Number of new cases
reported per week by a small network of medical doctors as a function of time. The first small peak
was reached in May 2005, the second large peak in February 2006. The numbers in this figure have
to be multiplied by about 67 to get the real size of the epidemic. Source: www.invs.sante.fr.

From a more theoretical point of view, the chikungunya epidemic raised the ques-
tion of how to adapt the notion of basic reproduction number R0 in models that as-
sume that the environment has seasonal (e.g. periodic) fluctuations. The adaptation
is not so straightforward and this raises some concern about how the parameter R0

has been used for other epidemics influenced by seasonality such as the 2009 H1N1
influenza pandemic.

Another problem of increasing concern that modelers have tried to analyze is
that of drug resistance (antibiotics, antimalarial drugs. . . ). Still in epidemiology,
the recurrent question since the time of Daniel Bernoulli and d’Alembert of how
to balance costs and benefits when the injection of a vaccine carries a potential
risk is still subject to controversy and may ever remain so as the sensitivity to risk
changes. Hence, following some suggestions that the vaccine against hepatitis B
might cause severe complications in a very small number of cases, the French min-
istry of Health in 1998 stopped its vaccination campaign in schools even if the risk
appeared negligible compared with that of dying after infection with the hepatitis B
virus.

In ecology the study of the dynamics of fish populations still poses many prob-
lems. Nevertheless it is supposed to serve as a scientific basis for the choice of
fishing quotas and other restrictions. The overfishing of the anchovy in the Bay of
Biscay and of the red tuna in the Mediterranean Sea are just two recent examples.
The estimation of the fish stock being often unreliable, models using such data have
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to be considered with caution. In France this type of study is mainly undertaken by
the Research Institute for the Exploitation of the Sea (IFREMER). Some mathemat-
ical models have also played a role in past decisions of the International Whaling
Commission.

In population genetics, the dispersal of genetically modified organisms is also a
subject of controversy that some researchers have tried to study using “reaction–
diffusion” models inspired by that of Fisher (see Chapter 20). This is the area of the
National Institute for Research in Agronomy (INRA).

On the more theoretical side of research, one can mention:

• the works on partial differential equations such as diffusion equations (see Chap-
ter 20) or age-structured equations (see Chapter 16);

• the works on stochastic models with or without the spatial dimension (see Chap-
ters 16 and 22), including those on random networks modelling the spread of
epidemics and those looking for deterministic approximations.

This type of research is mainly carried out by applied mathematicians. In recent
years, several masters courses in mathematical biology have been introduced in
French universities and other higher education institutions.

Like other scientific fields, the mathematical study of population dynamics is
organized mainly through:

• “learned societies”: Society for Mathematical Biology (since 1973), Société
Francophone de Biologie Théorique (1985), Japanese Society for Mathemati-
cal Biology (1989), European Society for Mathematical and Theoretical Biology
(1991) etc.

• specialized journals: Bulletin of Mathematical Biology (since 1939), Mathemat-
ical Biosciences (1967), Journal of Mathematical Biology (1974), Mathematical
Medicine and Biology (1984), Mathematical Population Studies (1988), Mathe-
matical Biosciences and Engineering (2004) etc.

• book series: Lecture Notes in Biomathematics (edited by Springer, 100 volumes
between 1974 and 1994);

• conferences (Annual Meeting of the Society for Mathematical Biology, Math-
ematical and Computational Population Dynamics, European Conference on
Mathematical and Theoretical Biology etc.).

Reference has been made only to the elements that claim explicitly being at the
interface between mathematics and its applications to population dynamics. But for
each particular area (demography, ecology, population genetics, epidemiology and
so on), one can find similar elements with a variable dose of mathematical mod-
elling.

In conclusion, the interested reader is invited to have a look at the original
articles that are available on the World Wide Web. The addresses are given in
the references at the end of each chapter. As Ronald Fisher once wrote about
Mendel:
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The History of Science has suffered greatly from the use by teachers of second-hand mate-
rial and the consequent obliteration of the circumstances and the intellectual atmosphere in
which the great discoveries of the past were made. A first-hand study is always instructive
and often . . . full of surprises.

Further reading

1. Bacaër, N.: Approximation of the basic reproduction number R0 for vector-
borne diseases with a periodic vector population. Bull. Math. Biol. 69, 1067–
1091 (2007)

2. Bacaër, N., Gomes, M.G.M.: On the final size of epidemics with seasonality.
Bull. Math. Biol. 71, 1954–1966 (2009)

3. Bennett, J.H.: Experiments in Plant Hybridisation. Oliver & Boyd, Edinburgh
(1965)

4. Levin, S.A.: Mathematics and biology, the interface. www.bio.vu.nl
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Hostinský, B. (1884–1951), 76
Hudde, J. (1628–1704), 8
Huxley, J. (1887–1975), 99
Huygens, C. (1629–1695), 9

Indian Medical Service, 65, 89

Jagers, P. (1941–), 56
Jenner, E. (1749–1823), 29
Jensen, J. L. W. V. (1859–1925), 101
Justel, H. (1620–1693), 6

Kepler, J. (1571–1632), 2, 5, 9
Kermack, W. O. (1898–1970), 89, 92, 94–96

Kersseboom, W. (1691–1771), 16
Kesava Pai, M., 38
Kesten, H. (1931–), 123
Kimura, M. (1924–1994), 109
Kingman, J. F. C. (1939–), 109
Koch, R. (1843–1910), 65
Koenigs, G. (1858–1931), 99
Kolmogorov, A. N. (1903–1987), 113–115
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