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Abstract It is a well-known fact that the increase in energy demand and the advent
of the deregulated market mean that system stability limits must be considered in
modern power systems reliability analysis. In this chapter, a general analytical
method for the probabilistic evaluation of power system transient stability is dis-
cussed, and some of the basic contributes available in the relevant literature and
previous results of the authors are reviewed. The first part of the chapter is devoted
to a review of the basic methods for defining transient stability probability in terms
of appropriate random variables (RVs) (e.g. system load, fault clearing time and
critical clearing time) and analytical or numerical calculation. It also shows that
ignoring uncertainty in the above parameters may lead to a serious underestimation
of instability probability (IP). A Bayesian statistical inference approach is then
proposed for probabilistic transient stability assessment; in particular, both point
and interval estimation of the transient IP of a given system is discussed. The need
for estimation is based on the observation that the parameters affecting transient
stability probability (e.g. mean value and variances of the above RVs) are not
generally known but have to be estimated. Resorting to ‘‘dynamic’’ Bayes esti-
mation is based upon the availability of well-established system models for the
description of load evolution in time. In the second part, the new aspect of on-line
statistical estimation of transient IP is investigated in order to predict transient
stability based on a typical dynamic linear model for the stochastic evolution of the
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system load. Then, a new Bayesian approach is proposed in order to perform this
estimation: such an approach seems to be very appropriate for on-line dynamic
security assessment, which is illustrated in the last part of this article, based on
recursive Bayes estimation or Kalman filtering. Reported numerical application
confirms that the proposed estimation technique constitutes a very fast and efficient
method for ‘‘tracking’’ the transient stability versus time. In particular, the high
relative efficiency of this method compared with traditional maximum likelihood
estimation is confirmed by means of a large series of numerical simulations per-
formed assuming typical system parameter values. The above results could be very
important in a modern liberalized market in which fast and large variations are
expected to have a significant effect on transient stability probability. Finally, some
results on the robustness of the estimation procedure are also briefly discussed in
order to demonstrate that the methodology efficiency holds irrespective of the basic
probabilistic assumptions made for the system parameter distributions.

List of main symbols and acronyms

BCI Bayesian confidence interval
cdf Cumulative distribution function
CSGDF Complementary standard Gaussian distribution function
CCT Critical clearing time (Tcr or Tx)
CV Coefficient of variation
D Set of observed data used for inference
DLM Dynamic linear model
E[R] Expectation (or ‘‘mean value’’) of the RV R
EV Extreme value distribution
FCT Fault clearing time
F(x) Generic cdf
f(x) Generic pdf
g(x), g(x|D) Prior and posterior pdf of a generic parameter x
G(r, /) Gamma distribution with parameters (r, /)
IID s-Independent and identically distributed (random variables)
IP Instability probability
LCCT Logarithm of the CCT
LF, L(D|b) Likelihood function, conditional to given parameter b
L, L(t) Load (at time t)
ML Maximum likelihood
MSE Mean square error
LN(a,b) Log-Normal distribution with parameters a and b
N(l,r) Normal (Gaussian) distribution with mean l and SD r
pdf Probability density function
RV Random variable
s Standard deviation of measurement errors in the DLM of the

LCCT
S Standard deviation of measurement errors in the DLM of the load
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SD, r Standard deviation
s-independent Statistically independent
SD[Y] Standard deviation of the RV Y
SM Stability margin (i.e. the quantity u defined below), for a given fault
r2 Denotes a variance
Tcr or Tx Critical clearing time
Tcl or Ty Fault clearing time
u (ax - ay)/(bx

2 ? by
2)1/2

vx,vy CV values of the CCT and FCT, respectively
VST Very short time
Var[R],V(R) Variance of the RV R
w Standard deviation of system equation error in the DLM of the

LCCT
W Standard deviation of system equation error in the DLM of the

load
K Peak value of the load L(t), over a given time interval
WGN White Gaussian noise
X Logarithm of the CCT
Y Logarithm of the FCT
ax E[X]
ay E[Y]
bx

2 Var[X]
by

2 Var[Y]
f� Bayes estimate of a generic parameter f
f* ML estimate of a generic parameter f
l Denotes a mean value (expectation)
l̂k Bayes estimate of a ‘‘dynamic’’ parameter l at time k
C(�) Euler–Gamma function
lr Expectation of the generic RV R
U(z) Standard normal cdf
W(z) 1 - U(z) (Complementary standard Gaussian distribution

function)
u(z) Standard normal pdf
R 3 N(a,b) The RV R has a Gaussian distribution N(a, b) (and similarly for

the LN model, etc.)

1 Introduction

Stability assessment has long been recognized as a fundamental requirement in
power system planning, design, operation and control. Transient stability can be
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defined as a property of an assigned power system to remain in a certain equi-
librium point under normal conditions and reach a satisfactory equilibrium point
after large disturbances such as faults, loss of generation, line switching, etc. [1].
Transient stability, therefore, constitutes a key aspect of modern power system
reliability, and this fact is increasingly recognized in the modern power systems
literature [2]. Indeed, some methods based on reliability theory are used in this
chapter to perform an efficient assessment of power system stability. The tradi-
tional approach to transient stability analysis is deterministic, being based on the
‘‘worst case’’ approach. More specifically, transient stability quantitative assess-
ment is generally performed on a three-phase fault on specific system buses as well
as considering the load demand attaining its peak value over a prefixed time
interval.

The application of probabilistic techniques for transient stability analysis was
introduced in a series of articles by Billinton and Kuruganty [3–7], motivated by
the random nature of:

• the system steady-state operating conditions;
• the time of fault occurrence;
• the fault type and location;
• the fault clearing phenomenon.

In fact, the steady-state operating conditions that heavily affect stability
strongly depend on the load, which is a random process due to its intrinsic nature.
This is especially evident in planning studies where the load level is the major
source of uncertainty.

The time to clear the fault (fault clearing time, FCT), a crucial parameter in
stability investigations, is also not known in advance, and so it should also be
regarded as an RV. The probabilistic approach has also been explored in other
significant articles such as [8], based on Monte Carlo simulations and [9], based on
the ‘‘conditional probability’’ approach. An exhaustive account of the topic and the
relevant bibliography can be found in the book by Anders [10, Chap. 12] which
clearly states that: ‘‘stability analysis is basically a probabilistic rather than a
deterministic problem’’.

The analytical computation of the probability distributions of the intermediate
RVs is one of the most challenging aspects due to the complexity of the mathe-
matical models, as also pointed out by Anders [10, p. 577].

In a few articles [11–15], some theoretical results from probability theory and
statistics have been utilized in order to develop an analytical approach to the
transient stability evaluation of electrical power systems by performing critical
considerations on the basic probability distributions. Instability probability (IP)
over a certain period of time, with regard to a given fault, is defined and calculated
by means of both critical clearing time (CCT) distribution and FCT distribution.
This analytical approach, overcoming the drawbacks of Monte Carlo simulations,
is very useful in actual operation since it permits straightforward sensitivity
analysis of IP with regard to system parameters thus highlighting those which
mostly influence the system stability characteristics and providing a quantitative
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tool for performing proper preventive control actions. For similar reasons, the
proposed analytical probabilistic approach is also a powerful tool with regard to
the practical aspect of the estimation of the basic parameters relevant to the
transient stability assessment like IP or other measures of ‘‘stability margin’’ (SM).
This topic—generally neglected, or dealt with in approximate ‘‘sensitivity analy-
ses’’ in the literature—was faced in [16], where an effort was made to tailor a
simple, analytical, transient stability probability estimator which allows the
required characteristics of both efficiency and robustness to be obtained, in the
framework of classical estimation.

In this article, a new Bayesian approach is proposed in order to provide this
estimation: such an approach appears to be the most suitable one for on-line
transient stability assessment. Numerical application performed confirms that the
estimation technique is able to adequately ‘‘track’’ the transient stability in time,
being far more efficient than the classical maximum likelihood (ML) estimation of
the IP. This could be an interesting property in a modern liberalized market in
which fast and large variations are expected to have a significant effect on transient
stability probability.

In the final part of the chapter, some results on the robustness of the estimation
procedure are also briefly discussed in order to illustrate that the methodology
efficiency holds irrespective of the basic probabilistic assumptions effected with
regard to ‘‘a priori’’ distributions of the various system parameters.

In the four Appendices to the chapter:

1. a mathematical study of the IP versus the system parameters is illustrated in
order to establish a proper ‘‘sensitivity analysis’’ of system stability which can
be useful in the design stage.

2. some basic properties of Bayesian estimation, relevant for the problem under
study, are briefly mentioned and some properties already derived by the authors
in previous articles for the interval estimation of the IP are also included.

2 Probabilistic Modelling for Transient Stability Analyses

2.1 Definition and Evaluation of Transient IP

Many state variables of an electrical power system possess an intrinsically sto-
chastic nature and, consequently, a probabilistic description of transient stability
aspects is able to infer interesting deductions also in terms of control actions for
improving system robustness. For instance, the steady-state conditions, fault
conditions and circuit breaker clearing times are not precisely known or predict-
able. The various involved uncertainties should be properly taken into account
using suitable probabilistic models. In a probabilistic frame, both the network
configuration and faults are described as random quantities. According to this
approach, all faults potentially causing instability and all the possible network
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states at the instant of fault (e.g. in terms of the requested loads at load buses) have
to be considered, together with their probability of occurrence. Once the cost of
any consequence brought about by the loss of stability is known, IP assessment
allows the instability risk to be evaluated. A risk value provides a quantitative
measure for undertaking adequate preventive control actions for stability
improvement and avoiding the need for conservative or ‘‘worst-case’’ criteria like
those based on the classical deterministic analyses.

Hence, in order to effectively apply a probabilistic approach, a preliminary
identification of the relevant statistical parameters has to be performed. This is a
crucial step since they are potentially infinite: the choice can be made according to
the required degree of accuracy.

Formally, let a proper probability space (O,P,S) be defined, where O is the
sample space of all possible outcomes, S a sigma Algebra of events and P an
additive probability measure over S. For the purpose of stability investigation, the
sample space O may be defined as the product space O = O1 9 O2, in which O1 is
the set of all possible disturbances which can (potentially) affect system stability,
O2 is the set of all possible ‘‘state vector’’ trajectories after the disturbance. This
requires the definition of a proper ‘‘state vector’’ as a vector whose components are
all the system variables whose values are the basis on which stability assessment is
performed (see also following Eq. 2).

Let the random event I be the event of instability (over a given time horizon
H of power system operation) and let (C1,…, Cm) be a finite set of random events
constituting all the credible—and mutually exclusive—disturbances (‘‘contingen-
cies’’) which can affect the system operation in H and potentially make system
stability worse. Then, the IP in the interval H is provided, according to the total
probability theorem, by:

PðIÞ ¼
Xm

j¼1

PðCjÞPðIjCjÞ ð1Þ

where P(Cj) = probability of occurrence of the disturbance Cj in the time horizon
under consideration; P(I|Cj) = probability of instability once the disturbance Cj

occurred.
The above relation may also still hold, at least as an approximation, when the

disturbances Ck are not mutually exclusive random events, provided that the joint
probability of two (or more) disturbances is negligible1: this typically happens in
very short time (VST) operation which the second part of this chapter focusses on.

In the following, IP strictly denotes a term like P(I|C) where C is the given
fault.

As long as the fault statistics are known from available data of the system under
consideration, the P(Cj) terms can be considered known terms; the P(I|Cj) terms

1 Note that, without this assumption, the above equation is generally wrong, although it appears
without any justification in many papers and books.
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are evaluated as shown in the following so that P(I) is readily obtained from the
above relation.

A quite similar reasoning still applies if the fault location is modelled by an
RV.

Basic RVs are load demand and the FCT. Aiming at the description of the
system stability characteristics as a consequence of a given fault (for instance, a
three-phase short-circuit), IP may be expressed as a function of these RVs.

For an assigned electrical power system, characterized by a state vector x0 at
time t0 in which the fault is supposed to occur, let us denote the stability region of
the post-fault equilibrium point with S. Naturally, x0 is an RV (more precisely, a
random vector), mainly due to the random nature of the load demand which, as
previously mentioned, has a significant effect on the operation state. Let s be the
FCT: denoting by x(t, s; x0) the state vector trajectory at the time t after the fault
clearing, the CCT for transient stability can be defined as follows:

Tcrðx0Þ ¼ sup s [ 0 : xðt; s; x0Þ 2 S; 8t [ t0 þ sf g ð2Þ

This relation clearly shows the dependence of the critical time on the random
initial state x0, thus Tcr is also an RV. As discussed in [11–13], the FCT should also
be regarded as an RV which will be denoted by Tcl.

By keeping in mind that the system maintains its stability conditions if and only
if the FCT is smaller than the CCT, i.e. Tcl \ Tcr, the IP for a given fault can be
expressed as:

q ¼ P Tcl [ Tcrð Þ ð3Þ

Formally, the model in the above relation is quite similar to the ‘‘Stress–
Strength’’ model in reliability theory: indeed, if the failure of a certain device or
system is caused by the occurrence of a ‘‘stress’’ Tcl greater than the ‘‘strength’’ Tcr

of the device or system, than the above probability q represents the unreliability
(failure probability) of the device or system.

Once the probability distributions of Tcl and Tcr are known, q = P(Tcl [ Tcr)
may be easily computed, as is well known in probability theory, as shown below.
In fact, by describing both Tcl and Tcr as continuous non-negative RVs, with joint
probability density function (pdf) f(tcr, tcl), the IP q is expressed as:

q ¼ PðTcr\TclÞ ¼
Ztcl¼1

tcl¼0

dtcl

Ztcr¼tcl

tcr¼0

f ðtcl; tcrÞdtcr ð4aÞ

In practice, the two RV are always considered in the literature as being sta-
tistically independent of each other since they are related to independent phe-
nomena (as discussed in Sect. 2.3): under this assumption, let fcl(t) and fcr(t) be the
marginal pdf of the RVs Tcl and Tcr, respectively, and let Fcl(t) and Fcr(t) be the
correspondent cumulative probability distribution functions (cdf). The above
expression may then be rewritten as follows:
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q ¼
Z1

0

fcrðtÞð1� FclðtÞÞdt ð4bÞ

Alternatively, by conditioning the instability event on the values of the clearing
time Tcl, q can also be equivalently expressed as:

q ¼
Z1

0

fclðtÞFcrðtÞdt ð4cÞ

In order to evaluate the probability q, the following preliminary steps have to be
taken:

• load demand and clearing time randomness have to be properly characterized in
terms of distributions on the basis of realistic assumptions, by also taking the
available data into account;

• the CCT distribution has to be evaluated in terms of the load distribution since
there is a conceptual and analytical relationship between them (this aspect will
be adequately discussed in the following sections);

• finally, the evaluation of the above integral has to be performed: often, this
integration requires the use of numerical computation, but the analytical
approach of this method allows it to be evaluated in a closed form.

This procedure is straightforward for the single-machine case (the so-called
‘‘one-machine infinite bus’’ system), as discussed in [11] since an analytical
expression between Tcr and the load demand, based on the well-known equal area
criterion, can be demonstrated. Besides, in [12], the procedure was also extended
to a multi-machine system by resorting to the so-called ‘‘Extended Equal Area
Criterion’’ [17]. This procedure allows difficulties arising in the evaluation of Tcr

distribution to be overcome since Tcr can be analytically expressed as a function of
the load demand.

2.2 Probabilistic Modelling of the CCT

In this section, the functional expression between the CCT and the load demand L at
the instant of contingency is discussed. Due to the random nature of the load demand
evolution and the unpredictability of the instant of fault, the load active power L has
to be correctly regarded as an RV. This implies that Tcr is also an RV and its
probability distribution may be calculated in terms of the load distribution which is
generally estimated by load forecasting. In a quite general way, the load demand
over time can be efficiently described through a continuous random process, L(t).

With reference to a generic time instant t, the load probability cumulative
distribution function is denoted by FL(l; t) and is defined over the non-negative real
numbers as FL(l; t) = P(L(t) B l), l C 0.
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On the basis of the central limit theorem, it is generally assumed that L(t) can be
described by a Gaussian random process [18]. The functional dependence between
Tcr and L can be described in a compact way as Tcr = g(L) where g(�) is a
continuous non-negative function over the positive real axis. Moreover, it can be
proved that g(�) is a decreasing function of the active power L. Since Tcr is a
function of the RV L and the function g(�) is continuous and non-negative, the
CCT is also represented by a continuous non-negative RV. Once the distribution
function of L is known, in principle, the distribution function of Tcr can be cal-
culated by means of well-known theorems with regard to RV transformations
applied to the analytical relation. Nevertheless, since the function g(�) is not
analytically invertible, a closed-form expression for the probability distribution
function of the variable Tcr cannot be obtained. In these cases, the problem of the
distribution evaluation is often solved using a stochastic Monte Carlo simulation.

However, in [11], an approximate method for the analytical calculation of the
probability distribution function of Tcr has been presented. The first step for the
analytical evaluation is the approximation of the true characteristic g(L) with a
simpler, invertible, analytical function. In particular, a log-linear model has proved
to be very adequate when expressing the above characteristic for any given set of
electrical parameters:

Tcr ¼ b0 expð�b1LÞ ð5aÞ

or:

ln Tcrð Þ ¼ a� b L ða ¼ lnðb0Þ ; b ¼ b1Þ ð5bÞ

The model coefficients (b0, b1) are positive constants (so that: a is real,
b positive), depending on the electrical parameters of the system. They can be
efficiently determined by performing a linear regression of the natural logarithm of
Tcr with regard to the load; i.e. according to the least-square method, a and b are
chosen as the values minimizing the sum of the square deviations:

S2ða; bÞ ¼
Xn

i¼1

ðln Tcr;i � a� bLiÞ2 ð6Þ

the points (Tcr,i, Li; i = 1,…, n) being chosen assuming a proper step in the interval
(L1, Ln) in which they will probably occur. For instance, a l ± 4r interval may be
chosen to represent the load values generated by a Gaussian distribution with mean
l and standard deviation r.

On the basis of the model (see Sect. 2.1), the evaluation of the cdf of Tcr in
terms of the probability distribution function of the load L is straightforward and,
for non-negative values of the CCT, it is expressed by:

FcrðtcrÞ ¼ 1� FL
a� lnðtcrÞ

b

� �
; tcr� 0 ð7Þ

The above cdf is, of course, equal to zero for negative values of the argument.
The above relation is quite general, i.e. independent of any particular assumption
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made about the load distribution. Moreover, it can be seen that the cdf of the load
L(t)—i.e. the function FL(�) which appears in the right-hand side of the previous
equation—is dependent, of course, on time t (even if this not explicitly expressed
in the previous equation); therefore, the expression of the cdf of Tcr also depends
on time, and it is valid for any particular time instant t in which the fault occurs.
The hypothesis of a Gaussian distribution, generally adopted to describe load,
implies a Log-Normal distribution for the CCT and this model will be used as
illustrated in the sequel. It should be stressed, however, that this distribution varies
with time, although this fact may not be apparent at first sight. Indeed, time will
not always be represented explicitly in the relevant equations which are often
referred to at given short time intervals in which the above RV—the load, and thus
the CCT—may be considered constant, and also the corresponding distribution.
However, in the successive interval, this distribution is subject to changes. This
should be quite clear in the framework of dynamic estimation.

2.3 Analytical Evaluation of IP: A General Methodology

As previously stated, the time interval needed for fault clearing (comprehensive of
the time for the fast reclosure of the faulted line) should also be regarded as an RV,
here denoted by Tcl. The arc extinction phenomenon, in fact, is intrinsically not
deterministic; the randomness of Tcl may also be due to imperfect switching which
can depend on the wear conditions of the poles caused by previous faults.
Moreover, the (random) environmental conditions (temperature, humidity) also
influence the clearing time Tcl. The RV Tcl is assumed to be continuous, non-
negative and independent from the time instant of fault occurrence since the above
phenomena can be considered independent of those which cause the fault.
According to the definition of the CCT, it is natural to define the probability of
instability after a contingency occurring at a given time instant t as:

q ¼ PðTcr\TclÞ ¼ P g½LðtÞ�\Tclf g ð8Þ

In (8), the relation Tcr = g[L(t)] between the CCT and the load at (intended as
‘‘immediately before’’) the instant t of the contingency is explicitly presented. In
order to obtain IP over a prefixed time horizon (0, h), the statistics of the random
process of faults should be taken into account. This means that (8) must be inte-
grated with the probability distribution of the number of faults in (0, h) which is
indeed a random process. A Poisson stochastic process [10, 19] may be generally
assumed as valid for this purpose. However, a different and simpler approach is
possible [11]. The stability event over (0, h) may be defined as the property
whereby—in the whole interval–stress Tcl never exceeds strength Tcr, which
depends on time t through function g. Hence, the IP can be defined as the prob-
ability that Tcr is exceeded by Tcl for at least one time instant t in (0, h): this
happens if and only if, as time t varies in (0, h), Tcl exceeds the minimum value of
Tcr attainable in this interval.
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Mathematically speaking, the IP, q, can be expressed as follows:

q ¼ P inf g½LðtÞ�\Tcl; 0\t\hf g ð9Þ

Let the peak load value, K = sup (L(t); 0 \ t \ h), over the interval (0, h) be
introduced: since L(t) is a continuous random process, K is a continuous RV whose
probability distribution function is denoted by FK(k). As previously mentioned, the
function g[L(t)] is continuous and decreasing versus L. Therefore, the ‘‘minimum’’
CCT over (0, h), again denoted by Tcr, can be expressed as follows:

Tcr ¼ inf g½LðtÞ� ¼ g½sup LðtÞ� ¼ gðKÞ ð10Þ

Hence, the IP is expressed by:

PðTcr\TclÞ ¼ P gðKÞ\Tclf g ð11Þ

Hence, by keeping in mind the expression in (7), Tcr can be expressed in terms
of the peak load K, so that its probability distribution function Fcr(tcr) can be
written as follows:

FcrðtcrÞ ¼ 1� FK
a� lnðtcrÞ

b

� �
; tcr� 0 ð12Þ

where the constants a and b depend on the particular system, but are indeed
constant with time (unless system topology changes; this case is excluded here but
can be dealt with the same methodology, once it occurs, by simply computing the
new values of a and b).

The problem can then be easily solved once the peak load and the clearing time
distributions are known. The distribution function and the probability density
function of the clearing time Tcl are denoted by F(t) and f(t), respectively.
Assuming, as reasonable, that the variables Tcl and Tcr are statistically indepen-
dent, the IP in Eq. 11 can then be calculated as in Eqs. 4b or 4c. This approach,
taken from [13], expresses the IP over an arbitrarily large interval—once the pdf of
peak load is known—and is useful if a planning horizon is being studied. It was
presented here for the sake of completeness: the application in this chapter is in
fact devoted to on-line stability assessment for VST applications, related to time
intervals typically lasting 1 h or less, so that in those intervals, the load L may be
considered as a constant, albeit unknown (random) value so that, in practice, it will
be modelled through an RV instead of a stochastic process. However, such a
distinction does not affect the methodology followed in the sequel, since—as
anticipated—the Gaussian distribution which will be used here is widely employed
for describing the load process since it is also common practice to describe the
peak load uncertainty by means of a Gaussian RV whose expected value is the
forecasted peak load. For very large time horizons, the Extreme value (EV) dis-
tribution is also a natural candidate for describing the peak load [20]: this model—
as well as others—can also be handled in practice with no particular problems as
shown in [13], using the same methodology illustrated here.
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3 Analytical IP Evaluation for Gaussian Load
and Log-Normal FCT

3.1 Analytical Expression of IP

In this section, the analytical expression of the statistical parameter q—the IP of
the given system under a given fault occurrence—is discussed on the basis of
reasonable assumptions for the distribution functions of the RVs L (and conse-
quently Tcr) and Tcl. For the sake of notation simplicity, the RVs Tcr and Tcl will
be, respectively, named Tx and Ty.

The load L is then assumed to be a N(lL, rL) RV: then, letting l be a given
possible load value, L is characterized by the following pdf over (-?\ l \ +?):

fLðlÞ ¼
1

rL

ffiffiffiffiffiffi
2p
p exp

�ðl� lLÞ
2

2r2
L

" #

The interval of possible values is (-?\ l \ +?) only theoretically, being
derived from the Gaussian representation. In fact, the probability of negative
values for L should, of course, be equal to zero; in practice, it is known that
P(L \ l) & 0 if l \ l - 3r.

The natural logarithm of Tx is also normally distributed on the basis of the
above-discussed relationship X = ln(Tx) = a - bL. Hence, the distribution of Tx

can be described by a Log-Normal distribution. It can be seen that the authors have
shown [11–13], by means of extended numerical simulations and adequate sta-
tistical tests, that the proposed Log-Normal model for the distribution of the
critical time, when the load is a Gaussian RV, is very adequate.

The Log-Normal pdf with parameters a (scale) and b (shape) is expressed by:

f ðt; a; bÞ ¼ 1ffiffiffiffiffiffi
2p
p

tb
e
�ðln t�aÞ2

2b2 t� 0 ð13Þ

and the density f(t) is zero for t \ 0.
In expression (13) a and b represent the mean value and the standard deviation

of the natural logarithm of the Log-Normal variable, respectively; the mean value
l and the standard deviation r, corresponding to Eq. 13, are:

l ¼ eaþb2

2 ; r ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðb2Þ � 1

q
ð14Þ

In this section, Tx is thus assumed to follow a Log-Normal distribution, with
parameters ax and bx.

From relationships (14), the parameters ax and bx can be obtained from the
statistical parameters lL, rL and the regression coefficients a and b—denoting by
X the natural logarithm of the CCT Tx—are expressed by:

270 E. Chiodo and D. Lauria



ax ¼ E½X� ¼ a� blL;

bx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X�

p
¼ brL

ð15Þ

A proper probabilistic modelling for the clearing time Ty must also be
introduced.

If there is a lack of experimental data, a Gaussian distribution is often assumed.
However, the Gaussian distribution does not appear to be a very adequate and
flexible choice, and the Log-Normal model is used instead, as in [11–13]: the Log-
Normal pdf is indeed very flexible, since it can assume a large variety of shapes
with positive ‘‘skewness index’’ which allows for a typical long ‘‘right tail’’ [21]
whereas the Gaussian model only allows a single shape for the distribution of the
clearing time, i.e. a symmetrical (bell-shaped) distribution around the mean value
which is not likely to occur in real applications. The presence of a right tail in the
Log-Normal density accounts for the possibility of relatively large clearing times
compared with the expected value: thus, the Log-Normal assumption corresponds
to a conservative approach which is appropriate when the exact distribution is
unknown. The Log-Normal assumption for Ty also permits a straightforward
analytical calculation of the IP, without being restrictive, since other distributions
may be adopted with the same methodology as shown in [13], requiring only
elementary numerical methods.

Furthermore, if the b coefficient of the Log-Normal pdf is small enough, the pdf
tends to become symmetrical and may also satisfactorily approximate a Gaussian
model.

In this section, the IP computation is performed under the previously discussed
hypothesis that both the clearing time Ty and the minimum CCT Tx are described
by Log-Normal, independent, RVs. It is, therefore, assumed that Ty has a Log-
Normal distribution with parameters ay and by, with density fTyðtyÞ expressed by
(13). As a particular case, in VST applications the FCT may be considered as a
known constant (as discussed in Sect. 3). With reference to the choice of ay and by,
they can be related to the values of lTy

(mean value of Ty) and rTy (standard

deviation of Ty), on which some information could be known in practice.
Denoting by vy ¼

rTy

lTy
the coefficient of variation (CV) of Ty, the relations

specifying ay and by as functions of lTy
and rTy are the following:

by ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ v2

yÞ
q

; ay ¼ ln lTy
�

b2
y

2
ð16Þ

Different values can be considered for the parameters lTy
and vy, in order to

establish a sensitivity analysis. The IP variability versus the mean FCT lTy
is

particularly interesting since such a mean clearing time is a practical measure of
the reliability level of the protection system.

The determination of the probability q, when Tx and Ty are Log-Normal and
independent of each other, is now considered.

First, the following auxiliary RVs are introduced:
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X ¼ ln Tx; Y ¼ ln Ty ð17aÞ

Z ¼ X � Y ð17bÞ

Under the assumed hypotheses, the probability laws of the above RV X and
Y are, respectively, N(ax, bx) and N(ay, by), where, using from now on the symbol
ax instead of acr, and generally suffixes (x, y) instead of (cr, cl):

ax ¼ E X½ �; ay ¼ E Y½ �; bx ¼ SD X½ �; by ¼ SD Y½ � ð18aÞ

According to the well-known properties of the Gaussian distribution, the var-
iable Z, being the difference between two independent Gaussian RVs, is also
Gaussian with mean value and standard deviation given by:

lZ ¼ E Z½ � ¼ E X½ � � E Y½ � ¼ ax � ay ð18bÞ

rZ ¼ SD Z½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X� þ Var½Y �

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

x þ b2
y

q
ð18cÞ

It is opportune, although obvious, to remark that in practice lz is always
positive (ax [ ay) since the FCT must always be small enough when compared
with the CCT for the system to possess an acceptable level of stability, namely
possess a very small IP value. This—being IP = P(Z \ 0)—can occur only if
E[X] is larger than E[Y]: this intuitive fact will be confirmed by the computations
in the following.

By introducing the standard Gaussian distribution function:

UðxÞ ¼
Zx

�1

1ffiffiffiffiffiffi
2p
p e�

u2
2 du ð19Þ

the IP can be easily computed as:

q ¼ P Tx\Ty

� �
¼ P ln Txð Þ\ ln Ty

� �� �
¼ P X\Yð Þ ¼ P Z\0ð Þ ¼ U �lZ

rZ

	 


¼ 1� U
lZ

rZ

	 


by using the well-known property: U(-x) = 1 - U(x), valid for each real number
x.

Alternatively, the ‘‘Complementary standard Gaussian distribution function’’
(CSGCDF) can be used as we have done here:

W xð Þ ¼ 1� U xð Þ ð20Þ

Since the CSGDF W(x) is a strictly decreasing function of x from the value
Q(-?) = 1 to the value Q(?) = 0, and Q(0) = 0.5 (see Appendix 1 for some
curves), the IP can be expressed by the more compact expression:
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q ¼ WðuÞ ¼
Z1

u

1ffiffiffiffiffiffi
2p
p exp �n2

2

	 

dn ð20aÞ

where

u ¼ ax � ayffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

x þ b2
y

q ¼ EðXÞ � EðYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðXÞ þ VðYÞ

p ð20bÞ

The above quantity u, which plays a key role in the statistical assessment of the
IP, can be defined as the ‘‘SM’’ of the system (under the given fault) since the
larger the value of u, the smaller the IP. Confirmation of the fact that the relation
(ax [ ay) must always be satisfied in practice (although it is not mandatory on
theoretical grounds) is that, unless this happens, the IP is greater than 0.5
(if ax = ay, then u = 0 ? q = 0.5).

3.2 A Numerical Example

As a numerical example, typical values of the mean values of FCT and CCT
(which will be used in the applications in the chapter) are lx = 0.145 s and
ly = 0.10 s, respectively.

It is, therefore, assumed that the CCT and FCT follow two independent LN
distributions with mean values as above; moreover, a common CV value of 0.1 is
assumed for both the CCT and the FCT (i.e. vx = vy = 0.10). The following
values of (ax, ay, bx, by) correspond to these values:

ax ¼ �1:9360; bx ¼ 0:0998; ay ¼ �2:3076; by ¼ 0:0998

having used the relations already stated:

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ v2Þ

p
; a ¼ lnðlÞ � b2

2

It can be seen that ax [ ay, as expected. The above values bx and by in the
example are equal since they depend on the CV value only.

Finally, the SM value is u ¼ ax�ayffiffiffiffiffiffiffiffiffiffi
b2

xþb2
y

p ¼ 2:634 and the IP is then evaluated as

q = W(u) = 0.00423.
For high values of the SM like the one above, it is worth noting that (see

Appendix 1 too) the IP is very sensitive to the variations of system parameters such
as the mean FCT ly, as can also be seen by taking the derivative of q with regard to
ly. For instance, if the mean FCT increases from the above 0.10 to 0.11 s (a 10%
increase), with the same CVs, then the IP increases to 0.0251 (a 493% increase!).
The IP variation compared with both CV variations is also very high. This is just
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an example of some analytical remarks, briefly discussed below, which may be
useful in actual practice.

3.3 Some Final Remarks on IP Sensitivity and Its Estimation

Deferring a more detailed illustration of the IP expression to Appendix 1, this
section concludes by highlighting some basic facts which are easily deduced when
observing the expression of q:

q ¼ W uð Þ ¼ W
ax � ayffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

x þ b2
y

q

0
B@

1
CA ð21Þ

Since W is a decreasing function of its argument, then, as intuitive, q decreases
(and stability improves) as the SM increases, e.g. the mean CCT lx increases, or
the mean FCT ly decreases; for given values of lx and ly, it can be verified, also
analytically (see Appendix 1), that the IP also increases when the CV of the CCT
and/or FCT increases.

In other words, IP increases as the uncertainty about the above times increases:
this consideration has the practical implication that, if uncertainty in load values
(which entails uncertainty in the CCT) and/or in FCT is neglected (i.e. their CV
values are assumed as zero), the IP may be undesirably underestimated.

It can also be seen that q(u) decreases very quickly towards 0—as exemplified
in the above numerical example—especially when the SM u is large enough. This
and other mathematical aspects of the relation between the IP and its parameters
are discussed and also illustrated graphically, with some details in Appendix 1, in
which a sensitivity analysis of the IP is also illustrated.

The great advantage of the proposed analytical approach—compared with
numerical methods or Monte Carlo simulation—consists indeed in the very easy
way that this approach enables us to perform this sensitivity analysis with regard to
system parameters. This is clearly a very desirable property in view of an efficient
system design (i.e. with regard to the protection system: taking decisions on how
to improve performance of the protection system, lowering the mean value of
the FCT, or improving data acquisition in order to reduce its SD or, with regard to
the network topology: trying to devise the opportune actions in order to increase
the mean value of the FCT and similar actions).

It can be seen that the IP value obtained by the above methodology is only a
(statistical) point estimate of the ‘‘true’’ IP since it is obtained from estimated
values of the true parameters ay, ax, by, bx (as far as the CCT parameters are
concerned, they are ‘‘forecasted’’ since they are obtained on the basis of a load
forecast; the FCT parameters are estimated from available field or laboratory data).
The topic of estimation is discussed in a Bayesian framework in the following
sections where ML estimation is also mentioned.
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The problem of IP sensitivity described above and estimation are closely
related. The above results, and those in Appendix 1, show that, in view of the
above high sensitivity of the IP to system parameters, particular attention should
be paid to developing an efficient estimation of the characteristic parameters of the
CCT and FCT.

4 Bayesian Statistical Inference for Transient Stability

4.1 Introduction

Bayesian inference [22–24] is becoming more and more popular as a powerful
tool in all engineering applications including recent applications to power
system analysis. This section and the following one, including the last ones
which focus on numerical applications, are devoted to a novel methodology for
the Bayesian statistical estimation, or briefly ‘‘Bayesian estimation’’ of the IP.
In particular, here we are interested in developing a proper methodology for
making inference about IP, once prior information and experimental data are
available regarding the pdf of the unknown parameters of the IP, q, the tran-
sient IP.

It has been seen that the analytical expression of the IP value requires efficient
statistical estimates of the true parameters ay, ax, by, bx to be evaluated in actual
practice (e.g. the CCT parameters, as pointed out before, depend on the load
parameters, which are not known, but estimated as a consequence of a load
forecast). The extreme IP sensitivity in the region of the values of practical interest
(i.e. those yielding IP values of the order of 1e-3 or less) reinforces the need for
an efficient estimation.

The aim of the inference is to establish both point and interval estimates of the
unknown probability q = Q(u) given that the parameters (ax, bx, ay, by) of the two
LN distributions must be estimated on the basis of the available random samples
(Txk: k = 1,…, n) and (Tyk: k = 1,…, m).

Bayesian inference [22–25] successfully provides a coherent and effective
probabilistic framework for sequentially updating estimates of model parameters
as demonstrated by the ever increasing number of publications addressed to it in
both theoretical and applied fields. Bayes estimation, therefore, appears to be quite
adequate for on-line sequential estimation of model parameters. For well-known
reasons, moreover, it is particularly efficient (compared with traditional classic
estimation, based on ML methods, briefly mentioned in the final part of this
section) when rare events are of interest, as is the case here. This is so true that it is
currently proposed even when there are no data (see, e.g. [26] for a recent
application).

The core of the Bayesian approach is the description of all uncertainties present
in the problem by means of probability, and its philosophical roots lay in the
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subjective meaning of probability [25]. According to such philosophy, the
unknown parameters to be estimated are considered RVs, characterized by given
distributions whose meaning is not a description of their ‘‘variability’’ (parameters
are indeed considered fixed but unknown quantities) but a description of the
observer’s uncertainty about their true values. Let x = (x1, x2,…, xn) be the
n-dimensional vector of the parameters to be estimated. The first step in a Bayes
estimation process is to introduce—in order to express the available knowledge on
the parameters before observing data—a ‘‘prior’’ probability distribution, charac-
terized—in the continuous case here considered—by a joint (n-dimensional) pdf
over the parameter space X:

gðxÞ ¼ g1;2;...nðx1;x2; . . .;xnÞ; x 2 X ð22Þ

This prior pdf is often—but not always—chosen ‘‘subjectively’’, which does not
mean ‘‘arbitrarily’’, but means ‘‘on the basis of the knowledge available to the
analyst’’, also using ‘‘objective’’ pieces of information which in most cases could
not be used in classical (frequentist) statistical estimation [22–25] which does not
admit the existence of a prior pdf.

Then, the data D are observed according to a formal probability model which is
assumed to represent the probabilistic mechanism for some (unknown) value of x
which has generated the observed data D. This model gives rise to the ‘‘likelihood
function’’ (LF), L(D|x), i.e. the conditional probability of the data, given x [ X.
After observing the data D, all the new (updated) available knowledge is contained
in the corresponding posterior distribution of x. This is represented by a posterior
joint probability density, g(x|D), obtained from Bayes’ theorem:

gðxjDÞ ¼ LðD xj ÞgðxÞR R
. . .
R

X
LðD xj ÞgðxÞdx

ð23Þ

where the denominator is the n-fold integral over the whole parameter space X.
Then, if a function s = s(x) of the parameters in x is the subject of estimation,
according to the well-known ‘‘mean square error’’ (MSE) criterion, the best Bayes
estimate ‘‘point’’ estimate—denoted by s�—is given by the posterior mean of s,
given the data D. This may be obtained by well-known rules related to the
expectation of a function of RV [19] by:

s� ¼ E½sjD� ¼
Z Z

. . .

Z

X

sðxÞgðx Dj Þdx ð24Þ

The particular case s (x) = xj—for any given k value, k = 1,2,…, n—yields
the Bayes estimation of any single parameter xj (k = 1,2,…, n).

Alternatively, by denoting the prior pdf of s by h(�), i.e. the pdf induced—by a
proper manipulation of the pdf g(x)—on the space of s values by the transfor-
mation s = s(x), and introducing, analogously, the posterior pdf of s, h(s|D), the
above expectation may be obtained equivalently by the following integral:
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s� ¼ E½sjD� ¼
Z

N

s � hðs Dj Þds ð25Þ

with N being the space of s values. In practice, and also in this application, it is
very difficult, if not impossible, to deduce an analytical expression for the posterior
pdf of s, and the above expectation may be more easily obtained by the integral
over X even if, in most cases, it is evaluated numerically or by means of
simulation.

Unlike classical estimation, which is inherently focussed on the point esti-
mate, here this is only a particular piece of information: indeed, Bayesian
inference aims to express all the available knowledge on the parameters not by a
single value but by means of the complete posterior pdf of s, h(s|D), denoting by
h(�) the pdf induced—by a proper transformation of the pdf g(x)—on the space
of s values by the transformation s = s(x). The point estimate is only a
‘‘synthesis’’ of this pdf. This pdf (which would have no meaning in the classical
inference since it is regarded as an unknown constant, not an RV) is the ‘‘key’’
information provided by Bayes estimation since it allows any probabilistic
statement about the values of s to be expressed. Typically this pdf is used to
form a ‘‘Bayesian confidence interval’’ (BCI) or ‘‘Bayesian credible interval’’ of
the unknown s, defined as:

BCIðs; pÞ ¼ ðs1; s2Þ ð26Þ

so that P(s1 \ s\ s2) = p, where p is a given probability. The BCI is expressed
in terms of the posterior pdf of s as follows:

Pðs1\s\s2jDÞ ¼
Zs2

s1

hðsjDÞds ¼ p; 0\p\1 ð27Þ

In practice, the above relation is generally not sufficient to find the BCI but
further requirements, such as a search for the ‘‘Highest Posterior Density’’ regions
[23], allow the determination of both the unknowns (s1, s2) above.

4.2 A General Methodology for Bayesian Inference
on Transient IP

Let us transpose the above concepts of Bayesian inference to the estimation of the
IP:

q ¼ W uð Þ; u ¼ ax � ayffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

x þ b2
y

q ð28Þ
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with u being the SM whereas W(z) is the CSGCDF W(z) = 1 - U(z):

WðzÞ ¼
Z1

z

1ffiffiffiffiffiffi
2p
p exp �n2

2

	 

dn; z 2 ð�1;þ1Þ ð29Þ

For the purpose of Bayes estimation, in the most general case, all the parameters
shall be considered unknowns. Therefore, in the Bayes approach, the four param-
eters (ax,ay,bx,by) and also the SM u and the same IP, q, are regarded as a realization
of RV which will be denoted by the following capital letters in the sequel:2

ax ! Mx; ay ! My; b2
x ! Vx; b2

y ! Vy ð30Þ

The symbols M and V are also chosen for ‘‘mnemonic’’ reasons since, as
mentioned below, they correspond to mean values and variances, in particular of
the logarithm of the FCT (Tx) and of the logarithm of the CCT (Ty):

Mx ¼ E ln Tx½ �; Vx ¼ Var ln Tx½ �; My ¼ E ln Ty

� �
; Vy ¼ Var ln Ty

� �
ð31Þ

Bayes estimation, therefore, consists of assessing prior distributions to the
above parameters (Mx,My,Vx,Vy), and then evaluating point and interval estimates
of the unknown parameter IP, described by the RV Q, function of the RV U:

Q ¼ W Uð Þ; U ¼ Mx �Myffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vx þ Vy

p ð32Þ

The above relations specify the relation between the basic RV (Mx,My,Vx,Vy)
and the IP Q:

Q ¼ QðMx;My;Vx;VyÞ; with : ðMx;MyÞ 2 <2; Vx;Vy

� �
2 <þ2 ð33Þ

These relations appear to be quite complicated, in particular due to the presence
of the special function W(U), whatever the choice of the prior pdf of the basic RV,
a topic which is dealt with below. The same argument also applies, a fortiori, to the
posterior pdf. In practice, it is impossible to evaluate the pdf of Q—be it prior or
posterior—analytically. It can be, however, handled numerically by resorting to a
reasonable ‘‘Beta approximation’’, for example—introduced in a different study by
Martz et al. [27] and also used by the authors in the above-mentioned (a.m.) article
[16] in the framework of ML estimation. This approximation is illustrated in
Appendix 3 and has been shown to be very adequate, although not being the only
possible approximation, since every pdf over (0, 1) which can be rather smooth
and flexible may be a good candidate (possible alternative choices studied by the

2 From now on we use different symbols for the four parameters—when they are considered as
RV—to avoid confusion with other symbols used in this section (see Sect. 4.4) and in Appendix 2
where the capitals (Ax, Ay, Bx, By) corresponding to (ax, ay, bx, by) denote specific ML estimators
(it is recalled that RV are denoted by capitals).
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authors are also mentioned in Appendix 2). In any case, once the numerical pdf of
Q is obtained, its usefulness in this application seems to consist, first of all, in
establishing a proper ‘‘upper confidence bound’’ for IP, i.e. a qUP value that makes
the probability of the ‘‘desirable’’ event (Q \ qUP) high enough, say 0.95 or 0.99.
Therefore, by denoting this high probability value with g, interest may be focussed
on the determination of a qUP value so that:

P Q\qUPð Þ ¼ g ð34Þ

With a sufficiently large probability value, we are, therefore, assured that the
‘‘true’’ IP, Q, is smaller than an ‘‘upper bound’’ qUP, which is the Bayes coun-
terpart of the confidence level of 100g%.

An important characteristic, perhaps the most important one, of the Bayes
inference methods is the one, already mentioned, of allowing any probabilistic
statement on the values under investigation, here the IP, to be expressed, e.g. in
terms of the above BCIs.

This is the core of ‘‘Bayes inference’’, which is something more than pure
estimation, and this is also the reason behind the heading of this section
(‘‘Bayesian inference’’ rather than ‘‘Bayesian estimation’’). Also, in many practical
cases (e.g. in order to control if some prefixed requirements or standards are met
by system performances), an interval estimate may be more significant than the
point estimate alone.

However, also in view of the analytical or numerical difficulties mentioned
above associated with the establishment of the BCI, in actual practice, there is no
doubt that the typical objective of the Bayes methods is to assess the point estimate
of Q. This is the topic dealt with from now on. This point estimate of Q may be
evaluated after the assessment or evaluation of the:

• prior parameters’ pdf: gmx;my;vx;vy (mx,my,vx,vy), briefly denoted as g(mx,my,vx,vy);
• the LF: L(D|(mx,my,vx,vy), which is given in this case by the conditional joint pdf

of the observed data (FCT values, i.e. the times Txk, and CCT values, i.e. times
Tyk, recorded in the interval of interest for the IP prediction). This joint pdf is
conditional to the parameters (mx,my,vx,vy);

• posterior parameters’ pdf: gMx;My;Vx;Vy (mx,my,vx,vy|D), briefly denoted as
g(mx,my,vx,vy|D), obtained by the prior pdf and the LF by means of the Bayes
theorem as illustrated above.

Finally, the Bayes estimate, denoted by Q�, of the IP Q is given in principle by
the four-dimensional integral:

Q� ¼ E½QjD� ¼
Z Z Z Z

2X

Qðmx;my; vx; vyÞgðmx;my; vx; vy Dj Þdmxdmydvxdvy

ð35Þ
with X the parameter space above specified for the four parameters (mx,my,vx,vy),
Q(mx,my,vx,vy) = W(u) (lowercase letters are used for the single determinations of
the RV being studied), u ¼ mx�myffiffiffiffiffiffiffiffiffi

vxþvy

p , and W the above CSGDF.
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As far as the choice of prior pdf both for the above parameters is concerned, it is
well known that the most simple natural candidates are the so-called ‘‘conjugate
prior pdf’’ [23, 24]: this means adopting Gaussian prior pdf for the mean values Mx

and My and Inverted Gamma prior pdf for the variances Vx and Vy (see Appendix 2).
These are indeed the prior pdf of mean and variances for both the normal and the
Log-Normal sampling distributions [21–24].

The above integral may appear quite cumbersome, yet its evaluation can be
made—at least in some cases—relatively simple, observing that the particular
form of the random IP, Q(U), can be reformulated in terms of the RV:
M = Mx - My, V = Vx ? Vy, S ¼

ffiffiffiffi
V
p

: Hence Q = W(M/S).
If prior and posterior information on the four parameters (Mx,My,Vx,Vy) is recast

into prior and posterior information on the difference M = (Mx - My) and the sum
V = (Vx ? Vy), the above integral, hence, reduces to a double integral (with
respect to the pdf of M and S) which can be solved using methods related to Bayes
estimation of Gaussian probabilities [23, 24].

The above transformation between the pdf of (Mx,My,Vx,Vy) and those of
M and V may be effected by elementary RV transformations, taking advantage of
the assumed s-independence between the CCT and the FCT which logically
implies the s-independence between their mean values and variances. For
instance, adopting conjugate Gaussian prior pdf both for Mx and My, assumed as
s-independent, then the prior pdf for M = (Mx - My) is again Gaussian with
obvious values of the parameters; the same holds, as is well known, for the
posterior pdf. As far as the variances are concerned, the same reasoning does not
apply for the above-mentioned conjugate Inverted Gamma pdf which is typically
adopted as the prior pdf. However, if one is able to express information directly
in terms of the sum of variances V = (Vx ? Vy), by using an Inverted Gamma
pdf for V, the classical results of Bayes estimation for the Gaussian model
(mentioned in Appendix 2) may still be applied. In general, however, if other
prior models are chosen, the above estimation must be carried out numerically.
This poses no particular problem nowadays since specific codes and algorithms
have been devised for such purposes [22–24].

A major simplification occurs in the particular case considered in the appli-
cation of this contribution, i.e. in VST applications in which the FCT may be
considered in practice as a known constant (as discussed in the following
section).

4.3 A Simplified Method for Bayes Estimation of the IP
in the Event of VST Stability Prediction

The general theoretical problem of the Bayes estimation for the IP, discussed
above, will not be pursued here in view of the VST application of this contribution.
In this case, indeed, an event of instability—in a very short interval lasting
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typically 1 h—is very unlikely as confirmed by the typical values of the IP
illustrated in the previous section and observed in actual system practice.
Observing new FCT values is a very rare event.

For practical purposes, the FCT Ty can, therefore, be considered a known
constant instead of an RV. This constant value is the prior estimate of the FCT
before observing data since no inference can be made out of them; i.e. Ty assumes
a deterministic value, ty = t*, estimated from previous experiences.

Alternatively, the FCT may be considered as an RV, with the assumed law
LN(ay,by), whose parameters are characterized by their prior pdf, since it is highly
improbable that new data can change our information about the FCT in a VST
interval (or the data are so rarely acquired that they do not change the prior pdf
much).

The two cases are equivalent, as will be shown later, so that in the sequel
reference will be made to the first one (i.e. a deterministic value, t*, of the FCT Ty

is assumed).
Let t be the FCT and Tx the RV describing the CCT in the given interval under

investigation. Two alternative hypotheses can be assumed for the RV describing
the load: (1) the load has a constant value (i.e. it is unknown, but constant in time)
due to the interval shortness; (2) the load variations with time are considered—
adopting a more rigorous approach—not negligible: then, reference to the peak
load is made in the interval. As previously shown, the two cases are formally
equivalent.

Then, the IP value in that interval is given—by using the usual transformation
from an LN cdf into a Gaussian one:

Q ¼ P Tx\tð Þ ¼ P X\ ln tð Þð½ � ¼ W
ax � lnðtÞ

bx

	 

ð36aÞ

always using

WðzÞ ¼
Z1

z

1ffiffiffiffiffiffi
2p
p exp �n2

2

	 

dn

Obviously, the above relation could also be deduced from the general one:

Q ¼ W
ax � ayffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

x þ b2
y

q

0
B@

1
CA

with ay = ln(t); by = 0 (since Ty is deterministic, as is its logarithm Y, so that its
only assumed value, ln(t), coincides with its mean value whereas its SD by is zero).

The consequent IP expression is, therefore, equal to:
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W
ax � s

bx

	 

; s ¼ ln tð Þ ð36bÞ

which can be handled like that of a Gaussian cdf, as shown in the sequel, in order
to perform a Bayes point estimation of the IP.

In the framework of Bayes estimation, let us assume that the mean value ax of
X = ln(Tx)—being Tx the CCT—is an RV, denoted as M (with analogy with the
previous section) whereas its SD bx = s—as assumed in common practice—is
known.3

Let the prior information about the unknown parameter M be described by a
conjugate prior normal distribution with known parameters (m0, s0), i.e.
M 3 N(m0, s0) so that the prior pdf of M (bear in mind that M, the mean value of
the RV X = ln(Tx) can be negative4):

gðmÞ ¼ 1

s0

ffiffiffiffiffiffi
2p
p exp �ðm� m0Þ2

2s2
0

" #
; m 2 < ð37aÞ

By using results in Appendix 2, the posterior pdf of M, after observing data X,
is again Gaussian:

gðmjXÞ ¼ 1

s1

ffiffiffiffiffiffi
2p
p exp �ðm� m1Þ2

2s2
1

" #
; m 2 < ð37bÞ

with posterior mean and variance given by:

m1 ¼ E½MjX� ¼ s2mþ ns2
0Mn

s2 þ ns2
0

ð38aÞ

s2
1 ¼ Var½MjX� ¼ s2

0s2

ns2
0 þ s2

ð38bÞ

where

Mn ¼ ð1=NÞ
XN

k¼1

Xk; s ¼ b ¼ SD X½ � ð38cÞ

being Xk a generic log-CCT value of the sample X.

3 The case in which the SD should be unknown poses no problems. Indeed it can be dealt with,
implying only a little computational effort, by means of well-known methods like those
mentioned in Appendix 2.
4 In the numerical examples or applications of this chapter, measuring times in seconds as done
here, both X and Y have negative mean values.
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The Bayes point estimate of the IP is, therefore, given by:

Q� ¼
Z1

�1

QðmÞgðmjXÞdm

¼
Z1

�1

W
m� s

s

� � 1

s1

ffiffiffiffiffiffi
2p
p exp �ðm� m1Þ2

2s2
1

 !
dm

ð39Þ

which, after some manipulation, after changing the variable to: z ¼ m�s
s (see [19], in

chapter titled Transmission Expansion Planning: A Methodology to Include Security
Criteria and Uncertainties Using Optimization Techniques), can be shown to be equal to:

Q� ¼ W
m1 � s

s1

	 

¼
Z1

z

1ffiffiffiffiffiffi
2p
p exp �n2

2

	 

dn; z1 ¼

m1 � s
s1

ð40Þ

This estimator will be used in the final numerical application related to VST
stability prediction, in which, on the basis of an adequate dynamic model of the load
(and the CCT), the posterior means and variances will be updated at each time step.

In these applications, typically only one datum of the CCT is observed at each
step (so in the above relations n = 1 will be used)—i.e. at the generic kth step—
the measured or forecasted load value Lk. This ‘‘data’’ scarcity renders the Bayes
estimation more attractive, as discussed above.

Finally, let us briefly examine the second case, mentioned above, with regard to
the knowledge of the pdf of the RV Ty. Let us assume that it is an RV, and not a
constant as above, letting the parameters of the RV Ty, i.e. (ay, by)—denoted as
(a, b) in the sequel—be distributed according to their prior pdf, which remain
unchanged after every interval, since no new FCT value is obtained. Let us
assume, as above, that only the mean of Y, a = ay is unknown with a prior
conjugate Gaussian distribution N(lo, ro). Consequently, the pdf of Y (conditional
to ay = a) and the pdf of a are, respectively:

Yja�Nða; bÞ; a�Nðl0; b0Þ

Then, using the total probability theorem for continuous RV [19] or known
results from Bayesian estimation theory [22–24] (see also Appendix 2), it can be
seen that the marginal pdf is still a Gaussian pdf:

Y �Nðl0; b�Þ; with b� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

0 þ b2
q

:

In the light of this fact, it is not difficult to show that (40) still holds with
properly re-arranged values of the constants (ax, bx).

4.4 A Mention of the Classical Estimation of the IP

Here, only a brief account of classical (ML) estimation of Q is given in order to
compare it with the one adopted here. Some details can be found in [21, 28].
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As stated in Sect. 4.1, let us assume that the following data are available:
X = (X1,.., Xn), where Xk = ln(Txk), k = 1,…, n: i.e. X is a random sample of
n elements constituted by the natural logarithms of a CCT sample, and let
Y = (Y1,.., Ym), where Yk = ln(Tyk), k = 1,…, m: i.e. Y is a random sample of
m elements constituted by the natural logarithms of the FCT sample which can be
obtained from field or laboratory data on the system protection components, with
regard to the assumed kind of fault.

By referring, for easier notation, to estimated quantities with capital letters, the
most widely adopted estimators (Ax, Bx, Ay, By) of the above four parameters—for
the well-known properties of the ML estimation [21, 28]—are given, for the LN
variables under study, by:

Ax ¼
1
n

	 
Xn

k¼1

Xk; Bx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

	 
Xn

k¼1

Xk � Axð Þ2
s

ð41Þ

Ay ¼
1
m

	 
Xm

k¼1

Yk; By ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
m

	 
Xm

k¼1

Yk � Ay

� �2

s
ð42Þ

These estimators indeed maximize, compared with any other function of the
data, the LF L[(X,Y)|(ax, ay, bx, by)].

In practice, these estimators coincide with the sample estimators of the mean
values (Ax and Ay) and standard deviations (Bx and By) of the Normal RV
X = ln(Tx) and Y = ln(Ty), and show some desirable properties such as consis-
tency. Moreover, the log-mean estimators Ax and Ay are also unbiased estimators
of ax and ay, respectively.

Then, the ML estimator Q* of q is given by:

Q� ¼ W
Ax � Ayffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y

q

0

B@

1

CA ð43Þ

In [16], the authors analysed the classical point and interval estimates of
Q based on an estimator of this type whose properties are not easy to assess.

As a final remark, it should be clear that, when prior information are available,
as in most engineering applications and also in this case, the Bayes estimator
definitely performs better then the ML estimators. This is especially evident in on-
line estimation, as will be shown later, since very few data can be collected for
inference. Typically, indeed, no data are available on FCT if the fault does not
occur, and this non-occurrence is of course very likely; only one datum is available
on CCT, based on the forecasted load value for the time interval under
investigation.
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5 Dynamic Bayesian Estimation of Mean CCT and IP for VST
Applications

5.1 Introduction

In this section, devoted to VST system operation, the principle of recursive
Bayesian estimation is applied for a fast and efficient on-line evaluation of the
mean CCT (actually, of its natural logarithms), and thus of the IP, in a dynamic
framework. This evaluation exploits:

1. the above-discussed relation between the CCT and the system load L;
2. the probabilistic knowledge of the time evolution of the load which is generally

available in VST applications.

With regard to point (1), reference is made here for illustrative purposes to a
single-machine system,5 or to a system which is reducible to it. The above dis-
cussed log-linear characteristic is therefore assumed to hold—at any given instant
(for a given network topology)—between the CCT Tx and the load L:

Tx ¼ b0 exp �b1Lð Þ ð44Þ

with model coefficients (b0, b1) which are positive known constants, depending on
the electrical parameters of the system. As mentioned above, they can be deter-
mined by performing a linear regression of the natural logarithms of Tx with
respect to the load. This is accomplished after computing the CCT values off-line,
for the given network and fault, by means of an appropriate system model based on
the classical Lyapunov direct methods for transient stability analysis and sensi-
tivity. Therefore, by denoting—as before—the natural logarithm of Tx by X and the
values of X and L at a given time instant tk by (Xk, Lk), respectively, the following
relation is assumed:

Xk ¼ a� bLk ð45Þ

with

Xk ¼ ln Txkð Þ; a ¼ ln b0ð Þ a 2 <ð Þ; b ¼ b1 b 2 <þð Þ

This linear relation between the logarithm of the CCT (LCCT in the fol-
lowing) and the system load is the basis for dynamic estimation. In particular,
the proposed Bayes recursive estimation uses known results in dynamic esti-
mation—such as the Kalman filter theory—which are well established under the
hypothesis that the series {Xk} to be estimated is a Gaussian time series.

5 The generalization to multi-machine systems, illustrated by the authors in [12], can be
accomplished without difficulties by adopting the ‘‘Extended Equal Area Criterion’’.
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Such hypothesis is true if the load L(t) is a Gaussian process as above assumed
(generalizations to other kinds of load distribution are of course possible
without particular problems).

With regard to point (2), namely, the load evolution in time, an adequate load
evolution model must be chosen like those adopted for VST load forecasting
algorithms.

In particular, we must consider the given time instants t1, t2,…, tk,… of interest
for VST operation (typically, the successive hours of a certain time interval in
which the network topology is assumed as fixed). Then, the following ‘‘dynamic
linear model’’ (DLM) [29], or ‘‘autoregressive model’’ is often satisfactorily
adopted for the stochastic process (Lk, k = 1,2…), which is supposed to generate
the load values at times tk according the ‘‘system equation’’:

Lkþ1 ¼ Lk þ kk k ¼ 0; 1; 2. . .ð Þ ð46aÞ

in which{kk} is a ‘‘White Gaussian Noise’’ (WGN) sequence, i.e. a set of IID
Gaussian RV with mean 0, and known SD, denoted by W. This is formally
expressed as:

kk�WGN 0;Wð Þ ð46bÞ

The sequence is ‘‘initiated’’ by a value L0 (load value at time t = 0) which is
(like all the Lk values) an RV, as appropriate in a Bayes framework, with known
pdf representing our prior information. It is also assumed to be a Gaussian RV
(with known mean lL0

and known SD rL0Þ; statistically independent of any finite
set of the sequence {kk}

L0�N lL0
;rL0

� �
ð46cÞ

The above model tries to capture a reasonable ‘‘Markovian’’ dependence
between the successive random values Lk+1 and Lk in a simple way, suitable for
VST applications. However, it may be extended without excessive difficulty to
cover, e.g. more complex autoregressive model, such as ARIMA processes, or
non-linear models [29].

Generally, the values of the load Lk are not measurable with precision but their
acquisition is subject to forecasting or measurement errors (also taking into
account possible time delays or even missing values in the acquisition process).
The following ‘‘observations equation’’ is typically adopted for the estimation of
the DLM:

Yk ¼ Lk þ mk k ¼ 1; 2. . .ð Þ ð47aÞ

where {mk} is another WGN sequence, with mean 0, and known SD sm, statistically
independent of the sequence {kk} and all the other RVs in the model:

mk�WGN 0; Sð Þ ð47bÞ

The above assumptions assure that both Lk and Yk are Gaussian sequences.
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Analogously to ‘‘Kalman filtering’’ language [29], the basic DLM equations
(46a) and (47a) can be, respectively, regarded, as the ‘‘state equation’’ and the
‘‘measurement equation’’.

In order to define a similar DLM for the LCCT values, and repeating for
convenience equation (45), let us define the sequences:

Xk ¼ a� bLk; Zk ¼ a� bYk; nk ¼ �bkk; gk ¼ �bmk ð48Þ

It is easy to see that these definitions, observing that {nk} and {mk} are still
WGN sequences, allow the definition of a DLM for the sequence of the LCCT
values as follows:

Xkþ1 ¼ Xk þ nk; Zk ¼ Xk þ gk ð49aÞ

where (nk, gk) are, respectively, the system and measurement noise for the DLM of
the LCCT.

The above assumptions for (X0, nk, gk) are formally expressed as follows:

X0�Nðl0; r0Þ; nk �WGNð0;wÞ; gk �WGNð0; sÞ ð49bÞ

The SD w of the model and the SD s of the measures, appearing in the above
relations, are clearly related to the above SD (W,S) of kk and mk by the following,
obvious, linear relations6:

w ¼ bW ; s ¼ bS ð50Þ

Finally, the initial mean and SD of the LCCT sequence Xk, i.e. those of X0 (first
equation of 49b), denoted simply by (l0,r0) are obviously expressed in terms of
the corresponding initial load L0 parameters ðlL0

; rL0Þ in (46c) as follows:

l0 ¼ a� blL0; r0 ¼ brL0 ð51Þ

It is apparent from the second equation (48) and the above hypotheses sum-
marized in (49a) and (49b) that Zk, the observed LCCT Zk, being the sum of two
Gaussian independent RV, Xk and nk, is still a Gaussian RV whose marginal pdf is
easily deducible (it is sufficient to compute its mean value and variance, as shown
below). Moreover, if Xk should be known, the conditional distribution of
Zk—being nk a Gaussian RV with zero mean—would be a Gaussian one with mean
equal to Xk, and known SD w. Formally7:

Zk Xkjð Þ �NðXk;wÞ

Therefore, in the framework adopted here for the estimation process, Xk is the
unknown (unobservable) mean value of the observable Gaussian RV Zk, with

6 Note that if Y = a ± bX, where X and Y are RV and (a,b) constants, then
SD[Y] = |b|SD[X] (the SD is intrinsically non-negative).
7 The notation (R|S) * N(a,b), being R and S two RV, denotes that the conditional distribution
of R, given S, is N(a,b).
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known SD w. In other words, interest here is focused on the estimation of the mean
value of the LCCT, so that results mentioned above (and recalled in Appendix 2)
related to estimation of the unknown mean value of a Gaussian RV may be
adopted. For brevity, the term ‘‘LCCT’’ (both in the acronym form or in the
complete one) will, however, still be used in the sequel instead of the more correct
‘‘mean LCCT’’.

The Xk sequence is ‘‘initiated’’ by a value X0 which, based on prior information
for the load L0, is again assumed to be a Gaussian RV, as above reported, sta-
tistically independent of any finite set of the sequences {nk} and {gk}.

5.2 Estimation Methodology

Once the measurements (z1,z2,…, zk) have been assigned until time instant tk, the
optimal dynamical state estimate X̂k of the ‘‘true’’ state Xk at time tk—according to
the Bayesian approach to estimation—is provided by a posteriori ‘‘MSE’’
minimization:

MSE ¼ E X̂k � Xk

� �2
z1; z2; . . .; zkj

h i
ð52Þ

This can be accomplished, as will be shown, using recursive Bayesian esti-
mation (Appendix 2, see also [28]) which is substantially resumed by the following
recursive relationship.

x̂k ¼ E xk z1; z2; . . .; zkj½ � ¼ �x̂k þ Gk zk � �x̂kð Þ ð53Þ

where �x̂k represents the state estimate at instant tk, before zk knowledge, i.e. the
a priori estimate at stage k, and Gk is a constant which is obtained as shown below
on the basis of the above ‘‘minimum MSE’’ criterion. The above relation is sub-
stantially equivalent to Kalman Filter, but is obtained using the Bayes estimation
process, as discussed in [29]: this method has the advantage over the classic
Kalman Filter derivation of accounting for the random nature of state X and of
allowing the computation of any probabilistic statement about this state. The
constant Gk corresponds to the well-known ‘‘Kalman gain’’ [28].

The following stages to which the Bayes procedure is applied can be defined:
Stage ‘‘0’’, or ‘‘a priori’’ Stage: ‘‘Stage 0’’ means the initial stage before any

observation is available. Therefore, in this stage the only available information is
the a priori characterization for the RV X at time instant t0:

X0�Nðl0; r0Þ ð54Þ

Thus, from a Bayesian point of view with quadratic ‘‘Loss function’’, the initial
optimal estimate is X̂0 ¼ l0:

Stage 1: In this stage and in following stages, according to the Bayes meth-
odology, two kinds of information are available, before and after the
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measurement—which here is the first observation z1—is acquired. The first (prior)
information yields the prior estimation, the latter (posterior) information yields the
posterior estimation.

Before the first measurement z1 is performed, the following a priori estimation
can be given:

X1 ¼ X0 þ n) X1�N �l1;
�r1

� �
ð55Þ

where the prior mean value and variance8 are determined by:

�l1 ¼ E½X1� ¼ E½X0� þ E½n� ¼ X̂0 ¼ l0

�r2
1 ¼ Var½X1� ¼ Var½X0� þ Var½n� ¼ r2

0 þ w2
ð56Þ

Once the measurement z1 is known, the aim is directed towards X1 estimation
conditional to z1. Denoting by z1 the observed realization of the RV Z1. Z1 is still a
Gaussian RV, with conditional mean (given X1) equal to X1, and SD equal to that
of g1, i.e. s. Formally

Z1 ¼ X1 þ g1 ) Z1 X1jð Þ�NðX1; sÞ ð57Þ

and since E[Z1|X1] = X1, it can be deduced that the posterior mean (i.e. the Bayes
estimate) of X1 is:

X̂1 ¼ E X1 z1j½ � ¼ l0 þ
�r2

1

s2 þ �r2
1

ðz1 � l0Þ ¼ l0 þ
r2

1

s2
ðz1 � l0Þ ð58Þ

where

r2
1 ¼

�r2
1s2

�r2
1 þ s2

¼
r2

0 þ w2
� �

s2

r2
0 þ w2 þ s2

ð59Þ

The posterior estimate is used as the prior for the next stage according to
recursive Bayesian estimation, as illustrated in Appendix 2. By applying this
algorithm recursively, the following result at time tk can be obtained.

Generic Stage k: By applying recursive Bayesian estimation, we can immedi-
ately verify (e.g. by induction) that the following relation—clearly appearing as
the general case of (59)—holds at time instant tk:

r2
k ¼

r2
k�1 þ w2

� �
s2

r2
k�1 þ w2 þ s2

ð60Þ

Similarly, the following recursive formulation for the Bayesian estimate at time
tk can be obtained:

X̂k ¼ E Xk z1; z2; . . .; zkj½ � ¼ X̂k�1 þ Gk zk � X̂k�1
� �

ð61Þ

8 A prior estimate of a parameter f is denoted here by �f
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where

Gk ¼
r2

k

s2
¼

r2
k�1 þ w2

� �

r2
k�1 þ w2 þ s2

ð62Þ

As is well known, this estimate exhibits the noticeable property to minimize the
posterior MSE for every time instant tk, expressed by:

MSE ¼ E X̂k � Xk

� �2
z1; z2; . . .; zkj

h i
ð63Þ

Of course, the recursive procedure allows knowledge of the pdf of Xk at each
stage k (needless to say, unlike the ‘‘static’’ Bayes estimation, the posterior pdf of
X changes with time), and also allows Bayes estimation of the IP. This is directly
deduced using results derived in Sect. 4.3: since (61) is the posterior mean of the
LCCT and rk

2 the posterior variance, by re-arranging Eq. 40, the following
recursive Bayesian estimate of the IP at time tk is obtained:

Q̂k ¼ W
X̂k � s

rk

	 

ð64Þ

Confidence intervals, particularly the previously illustrated ‘‘upper confidence
bounds’’ may also be computed for both the LCCT and the IP. In the following
numerical application, for sake of brevity the estimation procedure is illustrated
only for the LCCT sequence, which is a Gaussian one, so that its results are more
easily interpretable. Moreover, the confidence interval assessment is straightfor-
ward for the LCCT sequence whereas for the IP sequence it can be computed by
applying the procedure illustrated in Appendix 3 at each step using the a.m. Beta
approximation, since no analytical result exists. Numerical simulations results
were similar as regards parameter point estimation. A numerical example of the
BCI computation is still reported in Appendix 3, only for the IP, being it
straightforward for the LCCT.

5.3 Concluding Remark

The proposed procedure is based on a relation (CCT–Load) which can be analysed
and computed off-line—for the given network—once for all, so that on-line
estimation shown here does not require the solution of the system model at each
iteration. This allows the time duration of the intervals in which the stability is
assessed to be shortened and is favourable to reliable and efficient security
assessment. A distributed version of the proposed Kalman filtering approach can
be applied in the case of large power systems [30].
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6 Numerical Application of the Bayes Recursive
Dynamic Model

In this section, a simple numerical application—based on typical load and CCT
values and simulated patterns of the load process in time—is presented in order to
illustrate the on-line estimation of the LCCT in VST operation.

The load process is assumed to follow the DLM model, with (k = 1,2…):

Lkþ1 ¼ Lk þ kk and Yk ¼ Lk þ mk ð65Þ

in which

• {kk} is a ‘‘WGN’’ sequence, WGN(0, W);
• {mk} is another WGN sequence, WGN(0, S);

the two sequences are statistically independent of each other and the other RV
in the model.

For simplicity of notation, the SDs in the above WGN sequences (kk, mk) are,
respectively, denoted as (W, S) instead of (rk, rm) as in the previous section. The
lowercase letters (w, s) will be used for the LCCT sequence.

The evolution model of the LCCT corresponding to (65) is, as already deduced:

Xkþ1 ¼ Xk þ nk and Zk ¼ Xk þ gk ð66Þ

with the already discussed basic assumptions

X0�Nðl0; r0Þ; nk �WGNð0;wÞ; gk �WGNð0; sÞ ð67Þ

and with the SD of the WGN sequences (nk, gk), respectively, equal to w = bW,
s = bS.

For the sake of a numerical example, let us assume that the starting value of the
system load, L0, measured in p.u., is a Gaussian RV with mean lL0

¼ 0:8750 p:u:
and SD rL0 ¼ 0:0417 p:u:

These values imply that L0, with probability 0.9973, assumes values in the fol-
lowing interval (0.75–1 p.u.) of amplitude equal to 6rL0 around the mean value lL0

:

Let us also assume that, in the log-linear model X = a - bL, the following
values of the regression coefficients have been computed: a = 1.7242,
b = 4.1774.

Consequently, the mean and SD of X, i.e. the parameters of the LN pdf of the
CCT, are equal to lX0

¼ �1:9310; and rX0 ¼ 0:1741: The mean value corresponds
to a CCT of about 0.145 s, which was used for the numerical examples illustrated
above.

The numerical results, obtained by means of stochastic simulation of the above
sequences, will be expressed in relation to the values of the ‘‘primary’’ SD values
(S, W) of the load model and the initial load variance, V0, i.e. the variance of L0, a
value which is chosen by the analyst in a Bayes methodology, on the basis of her/
his prior information.
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More specifically, the values (0.05 and 0.1) will be used for S and W, and these
values will be swapped with each other in the course of the application to obtain at
least some basic information on the sensitivity of the results in relation to varia-
tions of the model parameters. The initial variance, V0, of the model (i.e. the
variance of X0, a value which is subjectively chosen by the analyst in a Bayes
methodology) will alternatively also assume 2 values, 0 or 1, corresponding to
different degrees of belief in the prior information (very strong in the first case,
slight in the second one). An example of a possible sample path of the load
sequence with these parameters (and V0 = 0), simulated by means of the ‘‘nor-
mrnd’’ function of MATLAB�, is illustrated in Fig. 1 in a time interval covering
500 h of system operation (the corresponding series of the LCCT values will be
shown in Fig. 2, darker curve).

To each load sequence, generated by a DLM corresponds, as discussed above,
an LCCT sequence of Xk values, also constituting a DLM, which are estimated by
the recursive approach by the values Xk�. In Fig. 2, for a sample path of N = 120
time values, the sequence of LCCT values and of its estimated values are shown,
obtained with the same values of W, S, V0 as in Fig. 1.

The efficiency of the estimation method is evaluated using extensive Monte
Carlo simulations [31]. In particular, the model performance has been summarized
for any given set of time instants (t1, t2,…, tN) by the average squared error
(ASE)9:
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Fig. 1 Example of load
pattern {Lk}, generated by a
DLM (65) with parameters:
W = 0.05, S = 0.10, and
initial variance V0 = 0

9 The ASE index should not be confused with the MSE, which was defined in the previous
section: the (theoretical) MSE evaluates the statistical mean square error between fj and fj

0 for
any fixed time tj with respect to the posterior conditional distribution. Instead, the ASE is an
empirical measure (deduced from the sample) which takes into account the precision of
estimation for all the RV fj (j = 1,…, N) of the sequence.
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ASE ¼ 1
N

XN

j¼1

f
�

j � fj

� �2
ð68Þ

in which fj is the quantity to be estimated (in this case, the LCCT Xj at any given
instant tj) and fj

0 is its estimate. In practice, given the length N of a sequence (here
N = 120 is chosen), M simulated sequences have been generated by the same
algorithm and the average of the squared errors values obtained has been reported
as a sample estimate of the ‘‘true’’ squared error. Extensive simulations were based
on a number M = 104 of replications for each simulated trial; only a significant
subset of the relevant results are reported in the following.

The ASE obtained using the traditional ML method has also been evaluated
since the ML estimator at time k is equal—as is well known from estimation
theory for the mean of a normal RV—to the sample mean of the k observed values
Zj (j = 1,…, k) so far. The precision (as measured by the relative bias and the
maximum relative estimation error) of the dynamic Bayes estimator of the LCCT
has also been verified. The basic statistics—estimated at the end of each simulation
case study—which describe the efficiency of the proposed estimates, and which
will be reported below—are:

• ASEB: average squared error of the bayes estimator;
• ASEL: average squared error of the ML estimator;
• ARE = ASEL/ASEB: average relative efficiency of the Bayes estimator com-

pared with the ML estimator.

The ARE ratio, which is in a sense the dynamical counterpart of the classic
‘‘relative efficiency’’ of the Bayes estimator compared with the ML estimator used
for a ‘‘static’’ parameter is indeed a synthetic measure of efficiency of the esti-
mation method. The more the ARE value exceeds unity, the more efficient the
Bayes estimate is when compared with the ML estimate.
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A lot of different combinations of values of the model parameters (W, S, V0)
have been adopted to explore the estimation performances. In the following, the
eight combinations indicated below will be reported for the triplet (W, S, V0):

1. (0.05, 0.10, 0)
2. (0.05, 0.10, 1)
3. (0.10, 0.05, 0)
4. (0.10, 0.05, 1)
5. (0.025, 0.05, 0)
6. (0.025, 0.05, 1)
7. (0.05, 0.025, 0)
8. (0.05, 0.025, 1)

It is recalled that the above quantities are the SD describing uncertainty in the
system load model (i.e. the equations in Lk and Yk from which the ones for the
LCCT are derived). The SD of the LCCT dynamic model, s and w, are larger than
the correspondent load model parameters (W, S) values indicated here since
s = bS and w = bW, and b = 4.1774, as reported above.

It is seen that in the first four cases the values (0.05, 0.10) or (0.05, 0.10) are
used for S and W, and every combination is obtained from the previous one by
changing the value of the initial variance from V0 = 0 to V0 = 1, or by swapping
the values of S and W. For instance, in cases 3 and 4, the values of W and S are
swapped in relation to cases 1 and 2. In cases 1 and 3, V0 = 0 was chosen; in cases
2 and 4, V0 = 1 was chosen.

An analogous method has been used to form the combinations (5)–(8), by using
the values (0.025, 0.05) for (W, S), i.e. half of the values (0.05, 0.10) used in the
first four combinations. It is noticed that the combination of SD values of the first
four combinations may be too high (particularly, because of the value 0.1 for S or
W), especially for VST applications. Indeed some unrealistic value has been
obtained in the course of the simulations for the LCCT (and, thus, for the IP). They
have been reported here only to show that the estimation procedure works quite
well even in these unrealistic cases, in which high SD values could imply high
estimation errors.

Indeed, it is observed that—as typically occurs—the different choices do not
affect the performances of the methodology.

Out of the many numerical simulations which have been performed, the most
significant have been reported in the two tables of this section, Table 1 being
relevant to the first four combinations, Table 2 relevant to the other four
combinations.

For each case, the results of three different simulations (proofs), amongst all the
ones performed, are reported. In particular: proof #1 is—for any given sample
size—the one with the ‘‘worst’’ results (i.e. when the ARE gets the lowest
observed value); proof #3 is the one with the ‘‘best’’ results (i.e. when the ARE
gets the highest observed value); proof #2 gives the average results for the REFF,
thus resulting intermediate between proof #1 and proof #3. So, a total number of
12 proofs is shown in each table. For example, in Table 1, the case 1.1
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(with ARE = 3.4485) precedes case 1.2 (with ARE = 7.2570). The three cases
1.1, 1.2 and 1.3 are all relevant to the same combination of values of (W, S and V0)
i.e. (0.05, 0.10 and 0), the first of the eight combinations above reported.

One of the results in Table 1 (the case 1.2) is also reported in Fig. 2, already
mentioned.

As a general comment to the above results, it is noticed (by looking at the
ASEB values) that the Bayes estimate errors are per se reasonably limited.
Moreover, the relative performance in relation to the ML estimate—as measured
by the ARE index—is always much greater than 1. To evaluate the precision of the
estimates, other significant quantities have also been evaluated such as the average
and maximum relative error of the Bayes estimates, with similar results.

It must also be remarked that, even in the ‘‘worst’’ cases (e.g. cases 1.1, 2.1, etc.
in both tables), the ARE index is always greater than 1. Indeed, the reported results
point out the efficiency of the proposed Bayesian approach, even in the case if
‘‘unrealistic’’ high SD as the ones in Table 1.

Finally, it has been already reported that the SD of the LCCT dynamic model,
s and w, is relatively large in the application here illustrated. This could imply
relatively large estimation errors whereas the reported results show that these
errors are very limited, a fact which strengthens the efficiency of the estimation
procedure.

For the sake of brevity, the procedure for obtaining the BCI is briefly illustrated
in Appendix 3, with reference to the IP estimation.

The above good performances of the Bayes estimates with respect to the ML
ones are consistent (and—to a certain extent—to be expected on theoretical
grounds) with Bayesian statistical theory, as long as the Bayes estimates are
evaluated assuming the ‘‘right’’ a priori distribution of the load, i.e. the one
actually used in performing the simulation of the random samples. So, it is very

Table 1 Some results of the estimation performances with different combination of values of the
(load) model parameters, with (W, S) = (0.05, 0.10) or (0.10, 0.05)

Case Model parameters (W, S, V0) ASEB ASEL ARE

W S V0

1.1 0.05 0.10 0 0.0724 0.2495 3.4483
1.2 0.05 0.10 0 0.0606 0.4399 7.2570
1.3 0.05 0.10 0 0.0748 3.9853 53.269
2.1 0.05 0.10 1 0.0530 0.6227 11.761
2.2 0.05 0.10 1 0.0566 0.7962 14.065
2.3 0.05 0.10 1 0.0639 1.0124 15.840
3.1 0.10 0.05 0 0.0321 1.0379 32.344
3.2 0.10 0.05 0 0.0321 1.1004 34.317
3.3 0.10 0.05 0 0.0378 4.1745 110.44
4.1 0.10 0.05 1 0.0366 2.0879 57.070
4.2 0.10 0.05 1 0.0387 2.3414 60.542
4.3 0.10 0.05 1 0.0412 3.3678 81.825

V0 assumes the values 0 or 1, here and in the following tables
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opportune to assess, as mentioned in the introduction, the robustness of the pro-
posed methodology when the ‘‘a priori’’ hypotheses about such distribution are not
valid. This is the object of the following section.

7 Some Numerical Robustness Analyses

Finally, also a simple ‘‘robustness’’ analysis of the proposed methodology has been
performed: with respect to the initial prior distribution of the load (see Sect. 7.1),
and with respect to the system load random errors prior distribution (see Sect. 7.2).
For the purpose, many simulations (more than those shown here) have been carried
out, assuming different (Extreme value, Log-Normal, Uniform and others) prior
pdf for the initial load value L0 or the system equation errors, instead of the
Gaussian one assumed for the calculations.

7.1 A Numerical Robustness Analysis with Respect to the Initial
Load Value Prior Distribution

First, some results relevant to a robustness analysis with respect to the initial load
value prior distribution are reported. Since such kind of robustness is generally
well established and accepted, for brevity only four cases are presented for each
table, corresponding to the mean values of ASEB, ASEL, and ARE. As in the
previous section, the first table is relevant to the SD values (W, S) = (0.05, 0.10)
or (0.10, 0.05); the second table is relevant to the SD values (W, S) = (0.025, 0.05)
or (0.05, 0.025).

Table 2 Some results related to estimation performances with other different combination of
values of the (load) model parameters with (W, S) = (0.025, 0.05) or (0.05, 0.025)

Case Model parameters (W, S, V0) ASEB ASEL ARE

W S V0

1.1 0.025 0.05 0 0.0182 0.0818 4.4932
1.2 0.025 0.05 0 0.0606 0.4399 6.7520
1.3 0.025 0.05 0 0.0748 3.9853 59.619
2.1 0.025 0.05 1 0.0165 0.1736 9.280
2.2 0.025 0.05 1 0.0530 0.6227 18.167
2.3 0.025 0.05 1 0.0566 0.7962 24.506
3.1 0.05 0.025 0 0.0079 1.0096 127.52
3.2 0.05 0.025 0 0.0122 26.1034 2138.5
3.3 0.05 0.025 0 0.0134 43.40 3236.0
4.1 0.05 0.025 1 0.0090 0.1438 15.936
4.2 0.05 0.025 1 0.0102 0.4296 42.226
4.3 0.05 0.025 1 0.0089 0.9090 102.27
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In tables 3 and 4, some significant results relevant to the Uniform pdf as a prior
pdf for L0 are reported, with satisfying results which were indeed expected since
the well-known robustness properties of the Kalman filter. In previous section, it
was assume that the starting value of the system load, L0, measured in p.u., is a
Gaussian RV with mean lL0

¼ 0:8750 p:u: and SD rL0 ¼ 0:0417 p:u: In the
present case, the values of X0 were generated, in each simulation trial, according to
a Uniform prior pdf on an interval (aL, bL), with the same mean and SD, so that:
aL = 0.8028, bL = 0.9472.

Tables 3 and 4 report some results (the mean values of ASEB and ASEL
obtained in all the simulations, and the correspondent ARE value) related to a
robustness analysis of the proposed methodology with respect to a Uniform prior
pdf for the initial load value L0 instead of the Gaussian one assumed for the
calculations.

The calculations were performed as if the Gaussian model, which is a basic
assumption of the procedure, was the ‘‘true’’ model generating system errors,
whilst in fact the Uniform model was the true one.

The results of this robustness analysis—and more other simulation results with
different prior pdf, not shown here—still confirm the adequacy of the estimation
procedure.

7.2 A Numerical Robustness Analysis with Respect to System
Equation Random Errors Distribution

In addition to the previous ones, a similar robustness analysis has been performed
also with respect to the random errors pdf, assumed this time to be a Uniform or an
EV distribution instead of a Gaussian one, with the same mean and variance (it is
reminded indeed that such parameters are assumed known). Being the pdf referred
to errors distribution, they all have zero mean.

By the term ‘‘Extreme Value’’ model, it is meant the ‘‘Largest Extreme Value’’
model one characterized by the following cdf:

Fðt; v; dÞ ¼ exp � exp �ðt � vÞ=d½ �f g �1\t\þ1ð Þ ð69Þ

with parameters: v real, d positive.

Table 3 Mean values of ASEB and ASEL, and the correspondent ARE values, related to a
robustness analysis with respect to a Uniform prior pdf for the initial load value. Table relevant to
the SD values (W,S)=(0.05,0.10) or (0.10,0.05).

Case Model parameters (W, S, V0) ASEB ASEL ARE

W S V0

1 0.05 0.10 0 0.0689 1.1970 17.380
2 0.05 0.10 1 0.0683 1.0618 15.551
3 0.10 0.05 0 0.0327 2.9910 91.572
4 0.10 0.05 1 0.0382 4.2411 111.01
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As already mentioned at the end of Sect. 2, the EV distribution is another
natural candidate for the probabilistic description of the load, if interest is focussed
on the peak load value [20]. It is indeed the most suitable for large time horizons,
but it has already been shown (see Sect. 2.3) that a rigorous approach should be
referred to peak load values, independently from the time horizons width. How-
ever, in this case, for the purpose of a robustness analysis, the EV model has been
reported principally as an interesting alternative model since its pdf has a very
different shape from the Gaussian one.

Also these results, shown in Tables 5 through 8—where they are reported in the
same format of those in Sect. 6—confirm the estimation robustness. Figure 3 is
referred to a typical case of those in Table 5.

All the above results show that the performances of the Bayes estimates are
always scarcely sensitive to the assumed prior distribution or even to the model

Table 4 Mean values of ASEB and ASEL, and the correspondent ARE values, related to a
robustness analysis with respect to a Uniform prior pdf for the initial load value: (0.025, 0.05) or
(0.05, 0.025)

Case Model parameters (W, S, V0) ASEB ASEL ARE

W S V0

1 0.025 0.05 0 0.0301 0.2962 9.8333
2 0.025 0.05 1 0.0158 0.9587 60.677
3 0.05 0.025 0 0.0082 0.1743 21.179
4 0.05 0.025 1 0.0068 0.8481 124.72

Table 5 Some results related to a robustness analysis of the proposed methodology with respect
to a Uniform error pdf for the system model of load sequence Lk instead of the Gaussian one
assumed for the calculations

Uniform load case Model parameters (W, S, V0) ASEB ASEL ARE

W S V0

1.1 0.05 0.10 0 0.0697 0.3421 4.9078
1.2 0.05 0.10 0 0.0620 0.4757 7.6703
1.3 0.05 0.10 0 0.0671 0.9426 14.038
2.1 0.05 0.10 1 0.0653 0.1392 2.1324
2.2 0.05 0.10 1 0.0849 0.5900 6.9462
2.3 0.05 0.10 1 0.0664 0.7982 12.015
3.1 0.10 0.05 0 0.0386 1.2199 31.592
3.2 0.10 0.05 0 0.0344 3.0792 89.486
3.3 0.10 0.05 0 0.0406 7.2856 179.46
4.1 0.10 0.05 1 0.0312 0.6694 21.475
4.2 0.10 0.05 1 0.0386 1.2199 31.592
4.3 0.10 0.05 1 0.0406 7.2856 179.46

The different combination of values of the model parameters (W, S, V0) are as in the tables of
previous section
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distribution. In practice, the ASEB values are not significantly changed with
respect to the previous cases, and it must be remarked that, even in the ‘‘worst’’
cases, the ‘‘efficiency’’ index, ARE, is always greater than 1. Similar results were
obtained also for different model parameters values—i.e. different values of (W, S,
V0)—and for different random errors pdf. So, the Bayes estimator appears to be
robust with respect to ‘‘wrong’’ prior assumptions.

Table 6 Some results related to a robustness analysis of the proposed methodology with respect
to a Uniform error pdf for the system model

Uniform load case Model parameters (W, S, V0) ASEB ASEL ARE

W S V0

1.1 0.025 0.05 0 0.0149 0.0627 4.2113
1.2 0.025 0.05 0 0.0175 0.1189 6.7963
1.3 0.025 0.05 0 0.0177 0.1952 11.017
2.1 0.025 0.05 1 0.0197 0.1218 6.1739
2.2 0.025 0.05 1 0.0202 0.2244 11.128
2.3 0.025 0.05 1 0.0137 0.5487 40.095
3.1 0.05 0.025 0 0.0089 0.4189 47.058
3.2 0.05 0.025 0 0.0091 0.8031 88.279
3.3 0.05 0.025 0 0.0114 1.1545 100.10
4.1 0.05 0.025 1 0.0109 0.5393 49.414
4.2 0.05 0.025 1 0.0106 2.4593 232.22
4.3 0.05 0.025 1 0.0094 3.4521 366.19

The table is similar to Table 5, with different values of the model parameters (W, S, V0)

Table 7 Some results related to a robustness analysis of the proposed methodology with respect
to an EV error pdf for the system model of load sequence Lk instead of the Gaussian one assumed
for the calculations

EV load case Model parameters (W, S, V0) ASEB ASEL ARE

W S V0

1.1 0.05 0.10 0 0.0655 0.5195 7.9359
1.2 0.05 0.10 0 0.0963 1.0422 10.822
1.3 0.05 0.10 0 0.0810 2.7890 34.220
2.1 0.05 0.10 1 0.0735 0.2974 4.0455
2.2 0.05 0.10 1 0.0852 0.4999 5.8661
2.3 0.05 0.10 1 0.0594 0.3604 6.0696
3.1 0.10 0.05 0 0.0291 0.6494 22.287
3.2 0.10 0.05 0 0.0333 1.9626 58.859
3.3 0.10 0.05 0 0.0380 9.1490 241.01
4.1 0.10 0.05 1 0.0350 0.9561 27.318
4.2 0.10 0.05 1 0.0260 1.3422 51.698
4.3 0.10 0.05 1 0.0388 5.0203 129.38

The different combination of values of the model parameters (W, S, V0) are as in the tables of
previous section
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7.3 A Final Comment

The authors believe that, although deduced under simple hypotheses and/or system
models, the above results—along with those already established in the field of
power system or component reliability studies [32, 33]—could encourage new
advanced applications of Bayesian inference in Power System analysis. Its use is
indeed not yet widespread in stability or security studies, although a Bayesian
classifier has been recently proposed for power system probabilistic security
assessment [34]. Further developments of Bayes applications in the field of Sta-
bility surely require advanced computational tools, which are nowadays increasing
in number and efficiency, as recently illustrated in [35].
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Fig. 3 Curve of LCCT and
its estimates, relevant to a
robustness analysis with
respect to a Uniform error pdf
for the system model of load
sequence Lk, with parameters:
W = 0.05, S = 0.1, V0 = 0
(1st row of Table 5)

Table 8 Some results related to a robustness analysis of the proposed methodology with respect
to an EV error pdf for the system

EV load case Model parameters (W, S, V0) ASEB ASEL ARE

W S V0

1.1 0.025 0.05 0 0.0199 0.1612 8.1102
1.2 0.025 0.05 0 0.0179 0.3679 20.533
1.3 0.025 0.05 0 0.0127 0.5091 40.193
2.1 0.025 0.05 1 0.0159 0.0781 4.9187
2.2 0.025 0.05 1 0.0198 0.1898 9.6012
2.3 0.025 0.05 1 0.0263 0.6546 24.870
3.1 0.05 0.025 0 0.0090 0.3848 42.742
3.2 0.05 0.025 0 0.0097 2.2534 231.80
3.3 0.05 0.025 0 0.0100 2.458 245.70
4.1 0.05 0.025 1 0.0068 0.2267 33.245
4.2 0.05 0.025 1 0.0116 0.9562 82.116
4.3 0.05 0.025 1 0.0110 2.6351 238.72

The table is similar to Table 5, with different values of the model parameters (W, S, V0)
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8 Appendix 1: An Analytical Study of the IP

Under the assumed hypothesis of LN pdf for both the CCT and the FCT, it was
shown that the IP, q = P(CCT \ FCT) = P(Tx \ Ty), can be expressed by:

q ¼ WðuÞ ¼
Z1

u

1ffiffiffiffiffiffi
2p
p exp �n2

2

	 

dn ð70Þ

where u is the ‘‘SM’’:

u ¼ ax � ayffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

x þ b2
y

q ¼ EðXÞ � EðYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðXÞ þ VðYÞ

p ð71Þ

being X = ln(Tx); Y = ln(Ty), and denoting by V(X) and V(Y) their variances.
The function q = q(u) is shown in Fig. 4. Since q(u) decreases very quickly

towards 0, especially when u is large enough, two different curves are shown: one
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Fig. 4 A curve of the IP as a function q = q(u), u being the SM
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(left curve) is relevant to the interval (0 \ u \ 2.5), the other (right curve) relevant
to the interval (2.5 \ u \ 5): the latter is the one which often occurs in practice
since, in this interval, the IP typically assumes realistic small values, less than 6e-

3. To appreciate the quickness with which q(u) decreases, the following values are
given as examples:

• q(2.0) = 2.28e-2;
• q(2.5) = 6.20e-3;
• q(3.0) = 1.30e-3;
• q(5.0) = 2.85e-7

In order to appreciate the variation of the IP as a function of the SM u, the
following well-known asymptotic approximation of the W function which may be
found in many books (e.g. [36]) is given:

WðuÞ 	 1

u
ffiffiffiffiffiffi
2p
p exp �u2

2

	 

¼ /ðuÞ

u
; for u large enough ð72Þ

with /(u) being the standard Gaussian pdf. In practice, the above approximation is
satisfactory for u C 3 (e.g. it yields 0.0015 for u = 3, with a relative error of less
than 0.8%). From the above relation, it is readily shown (as discussed in the
following) that the relative variation of q with u is in practice linear in u for typical
values of u: therefore, the larger—as desired—the SM is, the more abrupt the
variation (decrease) in the IP value. Indeed, a curve of the relative variation in the
IP versus the argument u is shown in Fig. 5. It is apparent that such a function,
which is of course negative (and decreasing), is approximately linear with u,
especially for high u values.

Indeed, the relative variation of the function Q(u) may be analysed using the
derivative of its logarithm since:

dQ

Q
¼ Q0ðuÞ

Q

� �
du ¼ D½ln QðuÞ�du: ð73Þ

For what has been discussed above, the function: K(u) = D[ln(Qu)] tends to
approach the value (-u) if u ? ?. However, K(u) is readily expressed for any
finite value of u by means of available statistical functions, since:

KðuÞ ¼ D½ln WðuÞ� ¼ �/ðuÞ
WðuÞ ð74Þ

So, the availability of the standard Gaussian pdf and cdf (e.g. the functions
‘‘normpdf’’ and ‘‘normcdf’’ in MATLAB) provides an easy computations of K(u)10

and the possibility of drawing graphs such as the one in Fig. 5.

10 In practice, the function K(u) coincides with the ‘‘Hazard Rate function’’ of a standard
Gaussian RV, as defined in Reliability applications (see, e.g. [37], where also the linearity of
h(t) is discussed).
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Moreover, by virtue of the above asymptotic approximation, we get the above-
mentioned linear approximation of K(u), which is also confirmed by Fig. 5:

K uð Þ ! �u; as u! þ1 ð75Þ

The above relationship between the IP and the SM u can be readily expressed
(see also [13]) as a function of the basic statistical parameters of the CCT—or the
ones of the load on which the CCT depends—and the clearing time.

This allows a rapid sensitivity analysis of the IP for these parameters. For
instance, using the already relations between the LN parameters and the mean
value and the CV of the LN distributions given above, the dependence of q on l
and v (the CV value) of both the FCT and CCT is straightforward. The following
curves are obtained assuming, for illustrative purposes only, a common value v of
the CV, i.e. from the expression:

q ¼ W uð Þ; u ¼
ln lx � ln lyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 lnð1þ v2Þ
p ð76Þ

The curves in Fig. 6 describe the variation of q (in %) as a function of the mean
FCT, for a fixed value of the mean CCT, chosen equal to 0.1 s. as in the numerical
examples of the chapter and with 2 different values of the (common) value of the
CV, i.e. v = 0.10 and v = 0.12.

These curves illustrate the high or extreme variability of the IP versus the mean
FCT and also the CV. This last aspect is confirmed by the curve depicted in Fig. 7
which expresses the IP—on a logarithm scale—versus the CV, assuming mean
CCT value = 0.1 s and mean FCT value = 0.145 s. All the above aspects are very
important in view of the estimation process, and this is why they have been
illustrated in detail.
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9 Appendix 2: Bayes Point Estimation for the Gaussian Model

9.1 Known Variance

For the purposes of making inference in the application in this chapter, some
known results [22–24] on Bayes point estimation for the Gaussian model have
been applied. Indeed, the Log-Normal model assumed for both FCT and CCT can
be easily converted in the Gaussian one by means of a logarithmic transformation.
Some results which are specific to the Log-Normal model are given, for example,
in [21].

Let us assume that X = (X1,…, Xn) is a random sample of n elements generated
by a Gaussian model with the same mean l, and SD r; let l be an unknown to be
estimated whereas r is known. Therefore, for each k = 1,…, n, the conditional pdf
of Xk, for a given value of l is a N(l, r) pdf. Formally Xk|l * N(l,r).

Let the prior information about the unknown parameter l be described by a
prior Normal distribution with known parameters (l0, r0), i.e. l * N(l0, r0),11 so
that the prior pdf is:

gðlÞ ¼ 1

r0

ffiffiffiffiffiffi
2p
p exp �ðl� l0Þ2

2r2
0

" #
; l 2 < ð77Þ

The prior parameters (l0, r0) are also denoted ‘‘hyper-parameters’’ and are
assumed to be known. Before observing data, the ‘‘best’’ estimator of l cannot be
that its prior mean: E[l] = l0, with prior variance:

Var½l� ¼ r2
0 þ

r2

n
ð78Þ
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CV=0.10
CV=0.12

Fig. 6 Curves of the IP (in
%) versus mean FCT (in s)
with mean CCT = 0.1 s.
Each curve refers to a given
(common) value of the CV
for FCT and CCT, namely
CV = 0.10 (below) and 0.12
(above)

11 The suffix ‘‘0’’ is typically used to denote prior parameters, e.g. (l0, r0) in this case.
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The LF of the observed sample X = (X1,…, Xn), conditional to l, is expressed
by:

L Xjlð Þ ¼ 2pr2
� ��n

2 e�
P

xi�lð Þ2=2r2 ð79Þ

Then, multiplying the above two functions for applying the Bayes theorem,
after some algebra, the following well-known result is obtained for l�, the Bayes
estimator of l, i.e. the posterior mean:

l� ¼ E½ljX� ¼ r2l0 þ nr2
0Mn

r2 þ nl2
0

¼
r2

n l0 þ r2
0Mn

r2

n þ r2
0

ð80Þ

where Mn is the sample mean (which is equal in this case to the classical ML
estimator of l):

Mn ¼ ð1=NÞ
XN

k¼1

Xk ð81Þ

In the final equation expressing l�, the prior variance (r0
2) and the one of Mn

(r2/n) are clearly indicated. In this form, the above relationship shows the known
property that the Bayesian estimator of l can be, in a suggestive way, expressed as
the weighted mean (a linear convex combination, in fact) of the prior estimator and
the sample mean. The posterior variance is given by:

Var ljX½ � ¼ r2
0r

2

nr2
0 þ r2

¼
r2

n r2
0

r2

n þ r2
0

ð82Þ

9.2 Unknown Variance

Although unknown variance is not considered in the application of this chapter, it
seems opportune to mention it, even if very briefly.
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CV value (common for FCT and CCT)

IP

Fig. 7 Curves of the IP (in
%)—on a logarithm scale—
versus the (supposed
common) value of the CV of
FCT and CCT, assuming a
mean CCT value of 0.1 s and
a mean FCT value of 0.145 s
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Let us first consider known mean, l = m. The conjugate prior pdf for the
variance, here denoted by V, is the so-called ‘‘Inverted Gamma’’ model, charac-
terized by the following pdf, with argument v (a realization, of course positive, of
the RV V) and (positive) parameters r and /:

gðv; r;/Þ ¼ /r

vðrþ1ÞCðrÞ expð�/=vÞ; v [ 0 ð83Þ

in which C(�) is the Euler–Gamma special function. The ‘‘Inverted Gamma’’ pdf is
so denoted since it can be deduced as the pdf of the reciprocal of a Gamma RV. It
is not difficult to deduce that the posterior pdf of V is again an Inverted Gamma
pdf. This result derives from expressing the LF of the observed sample
X = (X1,…, Xn) as above—Eq. 79—but conditioning to V = m:

L Xjvð Þ ¼ 2pvð Þ
�n
2 e�

P
xi�mð Þ2=2v ð84Þ

(here, the mean m is assumed to be a known constant whereas the variance v is the
argument under investigation). By multiplying the above prior pdf and LF, it is
apparent that the posterior pdf of V is again an Inverted Gamma pdf and the
updated values of r and / are obvious.

Then, let us also consider the general case of unknown mean l, i.e. both mean l
and variance V are unknown. Here, the most adopted prior model for l is again
described—conditionally to the variance V—by a Gaussian prior pdf. This prior
model, multiplied by the above Inverted Gamma pdf for V, constitutes the
so-called ‘‘Normal Inverted Gamma’’ prior pdf. This is indeed the conjugate prior
model, as the joint posterior pdf of l and V is again a Normal Inverted Gamma pdf
[23, 24]. A similar model can also be developed in the dynamic framework [29].

10 Appendix 3: A BCI for the IP Using the Beta Distribution

In order to establish a BCI, a numerical procedure derived from a similar one,
proposed in [27] and already proved satisfactory by the authors in [16], is illus-
trated. In [16], it was used in a different context (the one of classical statistic
estimation) whereas here it is revised in the Bayesian framework. As discussed
above, in the Bayesian approach the IP Q is an RV in (0, 1), depending on the four
random parameters (ax,ay,bx,by). The need for a numerical procedure is based on
the fact that an analytical expression of such a pdf is impossible to find. A rea-
sonable choice for its characterization is the approximation of its true pdf with a
suitable distribution such as the Beta which is very flexible for describing RV in
(0, 1) and is capable of producing a large variety of shapes. The Beta is in fact the
most commonly used distribution for describing random probabilities because it is
also a conjugate pdf under a Binomial sampling [22–24, 36]. The analytical
expression of the Beta pdf, as a function of the values q assumed by the RV Q in
(0, 1), is [19, 36, 37]:
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f q; x; nð Þ ¼ Cðxþ nÞq
x�1ð1�qÞn�1

CðxÞCðnÞ ð0\q\1Þ
0 elsewhere

 
ð85Þ

where C(�) is the already introduced Gamma special function, and x and n are
positive shape parameters. Mean value and variance of the Beta distribution are
given by:

lB ¼
x

xþ n
; r2

B ¼ l2
B

n
xðxþ nþ 1Þ

 �
ð86Þ

In order to choose the approximating Beta pdf for Q, an adequate choice of the
two parameters (x, n) must be made, for instance—as proposed in [27]—by
equating the above Beta statistical parameters (lB, rB

2 ) to opportune (as explained
in the following) values of the mean value M and variance V, thus obtaining the
following equations which give the Beta parameters as functions of the mean
M and variance:

x ¼ M
M �M2 � Vð Þ

V
; n ¼ xð1�MÞ

M
ð87Þ

The above mean value M and variance V of the RV Q cannot be of course
obtained from its (unknown) distribution, but an excellent approximation for them
is obtained: the resulting approximate values are, respectively, denoted as (M0, V0).
They are obtained, still following [27], by considering an expansion of
Q = W(U) expressed as a function, say G = G(ax,ay,bx,by), of the four variables
(ax,ay,bx,by) in a Taylor series about the point P0 = (Ax,Ay,Bx,By), being
(Ax,Ay,Bx,By) the a.m. ML estimators (see Sect. 4.4) of the random parameters
(ax,ay,bx,by). In particular, expanding Q in a Taylor series about P0 up to second-
order terms, the following values (M0, V0) are obtained by the well-known ‘‘Delta
method’’ or the ‘‘statistical differentials’’ method [19, 36]:

M0 ¼ UðUÞ � 0:5UðUÞ Ay � Ax

B3

� �
v ð88Þ

V 0 ¼ UðUÞ2 B2
x

nB2
þ

B2
y

mB2
þ 0:5 Ay � Ax

� �2 B4
x

n1B6
þ 0:5 Ay � Ax

� �2 B4
y

m1B6

" #
ð89Þ

being: m1 = m - 1, n1 = n - 1;

U ¼ Ax � Ayffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

x þ B2
y

q : ð90Þ

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
x þ B2

y

� �r
; ð91Þ
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v ¼ B2
x

n
þ

B2
y

m
þ 1

2
Ay � Ax

� �2 B4
x

n1B4
� 1:5

B4
x

n1B2
þ 1

2
Ay � Ax

� �2 B4
y

m1B4
þ 1:5

B4
y

m1B2

" #

U(x) and /(x), respectively, the already introduced standard Normal cdf and pdf.
Indeed, let us denote by FB (q; x, n) the generic Beta cdf of the RV Q,

evaluated in q, with parameters (x, n), i.e.

FBðq; x; nÞ ¼ P Q\qð Þ ð92Þ

This Beta distribution is used for inference on the BCI. For example, the
estimated g-quantile of the above IP is given—still denoting by s0 the value of a
true parameter s estimated by this procedure—by:

Q0 ¼ F�1
B ðg�; x0; n

0Þ ð93Þ

i.e. by the inverse function of the above Beta cdf FB(x; x0, n0) evaluated in g,
namely the solution, q*, of: g = FB(q*; x0, n0). So, any ‘‘upper confidence bound’’
for the IP mentioned in Sect. 4 (see Eq. 34) can be computed easily, since the Beta
quantiles are largely available in most software packages (e.g. using the function
‘‘Betainv’’ of MATLAB). The above equation is equivalent indeed to the
following:

PðQ\Q0gÞ ¼ g ð94Þ

And thus Q’g = FB
-1(g; x0, n0) coincides with the upper confidence bound of

probability (degree of belief) g. Of course, this procedure also allows easy esti-
mation of the whole distribution of Q and establishes any desired confidence
interval for the IP, also a bilateral one.

A simple practical numerical example is given to evaluate the BCI. In this
example the FCT Ty is therefore assumed to be deterministic, with value
ty = 0.1 s, and the LCCT mean ax = E[ln(Ty)] is assumed to follow a prior
Gaussian distribution with a mean value equal to 0.145 s and an SD equal to 1% of
the mean value (i.e. a CV value equal to 0.01). The values (0.10 s, 0.145 s) of the
CCT and of the mean FCT, respectively, are typical values, equal to those used in
the computations already performed in the VST application of the present chapter.
A CV value equal to 0.01 for the mean FCT may be also a reasonable value for
describing uncertainty in such kind of on-line applications.12 The following values
of parameters (ax,ay,bx,by) correspond to the above CCT and FCT values:

12 It should be remarked, however, that—in the Bayesian setting here adopted—the choice of
prior parameters only reflects the information of the analyst, or her/his degree of uncertainty. So,
this choice—at least from a ‘‘philosophical’’ point of view [25]—does not need to be
‘‘reasonable’’, neither it must be necessarily accepted by others. An effort has been made
nonetheless, here as in he whole chapter, to choose ‘‘realistic’’ values from a practical
engineering point of view.
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ay = ln(0.1) = -2.3026, by = 0, bx = 0.0998 whereas ax is an RV with the above
pdf.13

For illustrative purposes, a simulated sample of N = 104 values of M = ax was
generated and the corresponding empirical pdf of the IP has been evaluated and
compared with the approximated theoretical Beta pdf obtained as mentioned above.
The goodness of fit of this Beta pdf to the random sample has been validated
through the Kolmogorov–Smirnov test of hypothesis [28]. For graphical evidence,
this is also confirmed by histograms such as the one in Fig. 8 in which the frequency
histograms of the sampled IP values (measured in per cent) and the corresponding
hypothetical frequency distribution obtained by the a.m. Beta pdf are superim-
posed. Also the ‘‘Q–Q plots’’ [28] confirmed this adequacy, as also shown in [16].

To be more specific, the values M0 and V0 of the above mean and variance
approximations resulted equal, for such an example, to: M0 = 0.0155%;
V0 = (0.0155)2. A value of 0.0155 is therefore obtained for the SD S0 = HV, with
a corresponding CV equal to 0.8326, much higher than the CV = 0.1 of the basic
RV M, thus confirming the already discussed high variability of the IP. This is
confirmed by the values assumed by the 5th and 95th percentiles of the IP sample,
i.e. 0.0032 and 0.0399, respectively, with an increase of 1147% from the former to
the latter.

The Beta pdf corresponding to values of M = M0 and V = V0, which is shown
in Fig. 8, has the following values of the two parameters (x, n), obtained from
(M0, V0) as described above: x = x0 = 1.4047, n = n0 = 89.2197. This compu-
tation closes the procedure of finding a BCI.

For instance, the 0.95 upper confidence bound of the above IP is given by:

Q0:95 ¼ F�1
B ð0:95; x0; n0Þ ¼ 0:041% ð95Þ
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0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

100q (IP values, in %)

f(
q)

Fig. 8 Frequency histograms
of the sampled IP values (in
%) and the corresponding
hypothetical frequency
distribution obtained by the
theoretical approximating
Beta pdf

13 In this example, in which the mean FCT is assumed to be the only RV f the problem, the ICB
could be easily computed by means of the Gaussian cdf, by using known results some known
results on Bayesian inference [23, 24, 32]. However, the presented example is kept simple on
purpose, since it only serves to illustrate a methodology, which we have proven to be valid also in
the general case (in which no analytical solution exists) as far as we know.
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which is very close to the sample value above reported (0.0399), with a relative
difference of less than 3%. So, under this approximation:

P Q\0:041%ð Þ ¼ 0:95 ð96Þ

In other words, we can be confident, with a subjective probability equal to 0.95,
that the IP is less than 0.041%. As apparent, and as already discussed in Sect. 4,
this information has a greater meaning than a simple point estimate, and is con-
sistent with the establishment of possible standards.

Of course, approximately the same values of the statistical parameters of the IP
and of its BCI could be obtained by performing a Monte Carlo simulation instead
of computing a Beta cdf but the procedure should be repeated—in the dynamical
framework here focussed on—at each time step, which is at least tedious if not
time-consuming. A much more important advantage of the Beta approximation
over Monte Carlo simulation is that the former allows an analytical sensitivity
analysis which is cumbersome when done by simulation.

Of course, other pdf approximations can be devised for the above purposes. In
our studies, an LN approximation also seemed to be adequate for describing IP
randomness. However, the Beta pdf has the advantage of being theoretically
limited to the interval (0, 1). Another possible adequate model in this interval is the
‘‘Negative Log-Gamma’’ Distribution; it was introduced in [37] and already dis-
cussed and satisfactorily adopted by the authors in studies on uncertainty char-
acterization in reliability analyses [38], and is worth being studied also in the
present context.

11 Appendix 4: Recursive Application of Bayes Estimation

Recursive Bayes estimation is based on repeated application of the Bayes theorem
which shows the coherence of the updating process and its adequacy for a
‘‘dynamical’’ estimation, i.e. an estimation procedure involving stochastic pro-
cesses. Let us perform a statistical inference for an unknown parameter h, char-
acterized by a prior pdf g(h). Once a set of data D is observed, let the posterior pdf
be g(h|D):

gðhjDÞ ¼ gðhÞLðDjhÞ=PðDÞ ð97Þ

In view of dynamical applications, we can imagine acquiring data D in a two-
stage process so that D consists of two sets of data—denoted by D1 and
D2—observed in succession. Then, by repeatedly using the Bayes theorem and the
‘‘chain rule’’ for joint probabilities, the above posterior pdf for h may be alternatively
obtained by expanding the previous equation in the following ‘‘two stage’’ process:

gðhjD1 \D2Þ ¼ gðhÞLðD1 \D2jhÞ=PðD1 \D2Þ ¼ gðh D1ÞLðD2j jh \D1Þ=P D2jD1ð Þ
¼ g1ðhÞL1ðD2jhÞ=P1 D2ð Þ ð98Þ
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having denoted with the suffix ‘‘1’’ every probability (or pdf) conditional to data
D1, i.e.

g1ðhÞ ¼ gðh D1Þ; L1ðD2j jhÞ ¼ LðD2jh \ D1Þ; P1 D2ð Þ ¼ P D2jD1ð Þ ð99Þ

As can be seen, the posterior pdf g(h|D1 \ D2) can be obtained by applying the
Bayes theorem ‘‘starting’’ with a prior pdf g(h|D1), which is the posterior pdf after
observation of D1, then applying the same conditioning to the LF L(D2|h) and the
probability of data D2. The updating process may be indefinitely continued in this
way through successive stages, transforming every posterior information gained at
the end of stage k into prior information for the next stage:

gðhjD1 \ D2 � � � \ Dkþ1Þ ¼ gðhjD1 \ D2 � � � \ DkÞLðDkþ1jh \ D1 � � � \ DkÞ=C

ð100Þ

where C is the ‘‘constant’’ (with respect to h):

C ¼ LðDkþ1jD1 � � � \ DkÞ ð101Þ
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