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G(r, /) Gamma distribution with parameters (r, /)
H( ) Cumulative hrf
hrf Hazard rate function
HRM Hyperbolic reliability model
HV High voltage
IDHR First increasing, then decreasing hazard rate
IG Inverse Gaussian (distribution)
IHR Increasing hazard rate
IID Independent and identically distributed (random variables)
IPM Inverse power model
IRA Indirect reliability assessment
IW Inverse Weibull (distribution)
LL Log-logistic (distribution)
LN Lognormal (distribution)
LT Lifetime
MRL Mean residual life
MV Medium voltage
N(a, b) Normal (Gaussian) random variable with mean a and standard

deviation b
pdf Probability density function
r(s) Mean residual life function at age s
RF Reliability function
R(t) Reliability function at mission time t
R(t|s) Conditional reliability function at mission time t, after age s
RV Random variable
SD, r Standard deviation
s-independent Statistically independent
SP Stochastic process
SS Stress-strength
Var, r2 Variance
W(t) Wear process at time t acting on a device
W(a, b) Weibull model with RF: R(x) = exp(-axb)
W0(a, b) Alternative form of Weibull model, with RF:

R(x) = exp[-(x/a)b]
d(�) Dirac delta function
X, X(t) Stress (RV or SP)
Y, Y(t) Strength (RV or SP)
C( ) Euler–Gamma function
C(,) Incomplete gamma function
l Mean value (expectation)
U(z) Standard normal cdf
u(z) Standard normal pdf
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1 Introduction

1.1 A Premise

In this introduction, particularly from Sect. 1.3 on, reference will be made to some
mathematical probability theory which is thought to be useful for the methodo-
logical development of the sequel. Since only some particular aspects are high-
lighted here, it is assumed the reader being acquainted with the analytical
definitions and basic properties in the theory of random variables and stochastic
processes, with particular reference to the reliability function and related functions,
such as the hazard rate function, the mean residual life (MRL) function, the
conditional reliability function (CRF), which will be briefly recalled below.
Suggested books in reliability theory are,1 e.g., [3, 6, 10, 11, 16, 21, 30, 83, 88, 97,
103, 113, 123, 124, 146, 151, 152], for the above basics and also further details. It
must be highlighted that the literature in this field is huge and fast growing in the
large number of applicative fields, so only some of the most representative papers
or books will be cited in the chapter. Some of the references are not mentioned in
the text.

The need to develop new methodologies for reliability estimation of techno-
logical products is becoming increasingly important in every field of engineering.
This is due to the combination of two main reasons: one is the fast extension of
liberalization (which is discussed below with reference to the power systems); the
other is the ever-increasing level of technological innovation, which brings about
higher and higher reliability values for components, thus implying scarcity of
failure data. Also, as pointed out in [68], the tendency to very short product-
development times and tightened budgets imply that reliability tests must be
conducted with severe time constraints, so that frequently no failures occur during
such tests. These aspects are widely recognized in literature in almost all tech-
nological fields, from electrical [107] to marine [22] engineering. Therefore, the
opportunity arises to adopt models and methodologies allowing the most efficient
reliability estimation, based not only on the experimental data, but also on tech-
nological and physical information usually available to the engineer or analyst, as
highlighted in some recent literature [42, 75, 76, 81, 158]. This information is
related to wear and stresses acting on the device, e.g., overvoltages or short-
circuits in the case of electrical components—and/or its typical models of aging, as
expressed mathematically, e.g., by the time behavior of its hazard rate function: as
a trivial example of the latter aspect, one may consider that most electronic
components are scarcely affected by aging, being their failure largely ‘‘acciden-
tal’’, so that a constant hazard rate function could be reasonably expected.

1 The references at the end of the chapter are listed alphabetically, due to the length of the
Bibliography, for an easier search by the reader. They are referred to in the chapter by their
number.
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This leads to the widespread adoption of an Exponential reliability model in such
field, even in the absence of many data to support it on a statistical basis.

These two aspects (physical evolution of wear and mathematical models of
aging) are of course closely related with each other, but in a way that may
sometimes appear divergent from—if not contrary to—‘‘intuition’’. For instance,
this chapter points out that many lifetime distributions deduced by wear models
evolving as a random increasing function of time (such as the Gaussian processes
leading to the Inverse Gaussian or the Birnbaum–Saunders distribution) are
characterized by a decreasing hazard rate for large values of service times; instead,
an increasing hazard rate function with time could be expected on purely intuitive
grounds (as erroneously reported in some books). This is a property which is
seldom discussed in the relevant literature, but it has found experimental evidence,
e.g., in the field of electrical insulation [93, 148], and has been debated theoreti-
cally [93, 146]. Nevertheless, it is still misunderstood in some recent texts. This
fact is not surprising, since many examples are found in probability theory that
lead to results appearing, at first sight, illogical or paradoxical even to academics,
sometimes2 nonetheless, it highlights the need to acquire further insight into aging
properties, wear mechanisms and the relations between them.

The use of ‘‘prior’’3 technological and physical information leads—as discussed
throughout the chapter—to the so-called ‘‘indirect reliability assessment’’ (IRA).
Such approach is so denoted in that it infers lifetime characteristics from the
properties of the stochastic process (SP) describing the wear affecting the device,
rather than using statistical fitting, which may result poor due to the limited
number of data.

Such methodology based upon ‘‘prior information’’ may be perhaps paralleled
to Bayesian estimation methodology in reliability, which—after a first popular
systematic treatise in [113]—is fast developing [146, 147]. This is just an aspect of
what is happening in all the fields related to inference, and caused Press in a recent
important book affirm that ‘‘many believe that a paradigm shift has been taking
place in the way scientific inference is carried out, away from what is sometimes
referred to as classical, or frequentist, statistical inference… (toward Bayesian
inference)’’ [135].

In a different setting, indeed, the Bayesian approach—as well known
[14, 57, 113, 132, 135, 138, 146, 147]—typically uses prior information for
assigning prior distributions to unknown parameters. Often, indeed, such kind
of prior information is deduced by technological information, so that Bayesian
estimation has found many applications in recent reliability studies, also for its
proved big efficiency—with respect to ‘‘classical’’ statistical inference, which is

2 A significant citation from C.S. Pierce comes to mind: ‘‘Probability is the only branch of
mathematics in which good mathematicians frequently get results which are entirely wrong’’.;
3 Here, the term ‘‘prior’’ means, loosely, something not closely related to observed data, but
coming from pieces of information ‘‘outside the data’’, in analogy with Bayesian estimation
terminology.
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mainly based upon data [139]—when only very few experimental data are
accessible. Of course—apart from the different framework (probabilistic mod-
eling for IRA, statistical inference for Bayesian estimation) a basic difference
between the two approaches lies in the so-called (and often criticized) ‘‘sub-
jectivity’’ of Bayesian statistics, which is indeed a key aspect of such meth-
odology, often taken to its extreme limits from its more influential adherents,
such as the big names of De Finetti [61] and Lindley [108]. The information
which constitutes the foundation of IRA is instead generally to be considered as
‘‘objective’’. This is of course not the place to discuss epistemological prob-
lems, as if there exists a clear cut difference between ‘‘subjectivity’’ and
‘‘objectivity’’ (which is questionable in our opinion), but it has to be remarked
that a branch of Bayesian statistics is recently making some effort toward
so-called objectivity, as can be deduced even from the title of [135]: ‘‘Sub-
jective and objective Bayesian statistics’’.

We agree with [30] when stating that, although the subjective meaning of
probability is considered unorthodox in many empirical fields, ‘‘it is useful in
reliability studies since quantification of the degree of belief is essential in using
all available information when experimental data are scarce’’ (p. 232).

The above interpretations and discussions may be of not so much interest in
view of practical engineering applications: indeed, in many applied engineering
studies, Bayesian estimation is adopted for ‘‘ad hoc’’ reasons, without the
necessity of adhering to its philosophy (even if this ‘‘non-adherence’’ may be
questionable on theoretical grounds). As clearly reported in [71]—which is a key
paper for the application of technological information to prior assessment (for
the Weibull parameters, in that case)—‘‘…when only very few (e.g., 3–5)
experimental data are accessible… the controversy about whether to use Bayes
or classical methods is surmounted since classical estimators, like maximum
likelihood, give estimates that often appear unlikely on the basis of technical
knowledge of the engineers.’’

Concerning IRA in itself, although its roots can be traced back in time to the
classic book of Miner [128] or to [82], such studies were mainly theoretical, and
continued to be such in the 1970s, as can be seen in papers such as the fundamental
[77], which—although revealing itself as a seminal paper in the future—appeared
indeed in a purely mathematical review (‘‘Annals of Probability’’), not typically
read by many engineers. The first engineering applications came from the mid-
1980s on, with fundamental papers such as [59, 60, 62, 70]. In particular, the
original work of Erto in this field will be referenced to in the chapter, since it spans
the last two decades (from the above-cited [70] to the very recent [75]) in
researches leading to new physical motivations—and finding new properties—for
various reliability models, such as the rarely adopted Inverse Weibull of the above
papers or the new Hyperbolic Model [76]. By the way, none of these two models,
which can be both derived by postulating a wear process, has an increasing hazard
rate function h(t) (the Inverse Weibull has a first increasing, then decreasing hrf;
the Hyperbolic Model has a decreasing hrf), in accordance with what above dis-
cussed. It may not be a chance that, as above hinted at, the same author used an
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analogous technological approach in various applications of Bayesian inference to
reliability, e.g., [69, 71, 72, 73].

Finally, among the vast bibliography it is obvious to quote [68], which
apparently introduced the term ‘‘IRA’’. Recently, such methodology has reached
high levels of mathematical sophistication by the use of advanced properties of SP
(see, e.g., [81, 105, 153, 154], or some contributions in a recent book edited by
Erto [74]). These approaches have even brought about new studies in theoretical
mathematics and other related fields ([47], see also Sect. 3.3.12).

In the specific field of electrical engineering applications, apart quoting the
same references as above, the advanced state of the art in the field of electrical
insulation has to be highlighted, as witnessed, say, by [119] and in more recent
times by [127]. Many more specific contributions in this field will be referred to in
the appropriate Sect. 4.

In this respect, the present chapter is primarily devoted to reliability assessment
of modern power system components, using some of the methods proposed by the
authors of this chapter in previous papers [37, 39, 40, 42]. Indeed, the present
chapter takes its origin from a previous paper published in 2008 by the same
authors [42]. In addition, more models are here discussed, some of which recently
developed, such as the ‘‘hyperbolic reliability model’’ (HRM) [76]; also some
brand-new results about known models, e.g., the Inverse Weibull model [75], are
hinted at. Moreover, in the chapter it is shown how popular reliability models, like
Gamma, Weibull, etc., can be obtained in a straightforward way, that turns out to
be particularly useful for engineering applications.

It is remarked that the present chapter is only devoted to reliability modeling of
single components. So, the problem of reliability evaluation of the power system
as a whole is deliberately not dealt with: excellent books such as, e.g., the ones by
Billinton and Allan [16, 17] and Billinton et al. [18] are available on the subject,
not to mention seminal paper such as [19]. In some cases, some of the results of the
present chapter may be used perhaps to discuss the adequacy, when analyzing the
whole power system, of the use of the Exponential model for any single compo-
nent, a model widely—if not uniquely—adopted, for evident reasons of simplicity.

1.2 Outline of the Chapter

As discussed in [42] and mentioned above, the new deregulated market of elec-
trical energy and the restrictions imposed by economic constraints to production
times and preventive maintenance programs have stressed the need for a careful
reliability analysis of electrical components. This emphasizes, on one hand, the
problem of an economically optimized design of components in view of the stress
levels that are expected in-service and, on the other hand, the issue of a careful
conditional reliability or quantiles (percentiles) evaluation, in view of optimizing
maintenance procedures. However, as previously mentioned, the deregulation also
involves a greater uncertainty or lack of data in system operation and management,

64 E. Chiodo and G. Mazzanti



due to both the use of highly reliable components (characterized by a considerable
level of technological innovation, and, consequently, by a high degree of reliability
and large costs) and the expected very fast variability of network configurations.
This makes the development of timely and economically adequate maintenance
procedures more difficult.

In this framework, the aging failures of system components are a major concern
and a driving factor in system planning of many utilities. Indeed, more and more
system components are approaching their end-of-life stage, hence aging failures
should definitely be included in power system reliability evaluation in order to
avoid a severe underestimation of the system risk, as shown in [107], where ad hoc
methods to incorporate aging failures in power system reliability evaluation are
presented.

For all these reasons, the choice, selection, or estimation of adequate proba-
bilistic models for the assessment of the residual (or ‘‘conditional’’) reliability of
electrical components is the first, and often the most critical part, of any statistical
investigation devoted to system reliability analysis.

The ‘‘classical’’ models for component reliability estimation are based on direct
statistical fitting of component failure data coming from the field. This is generally
accomplished in two stages:

• first, a model is selected on the basis of ‘‘goodness of fit’’ statistical tests, such as
Kolmogorov–Smirnov test, Chi-square test, etc. [139];

• then, its parameters are estimated by well known methods such as the ‘‘Maxi-
mum likelihood’’ (ML) one. This so-called ‘‘direct reliability assessment’’
(DRA) is commonly used at the maintenance stage of devices that are already
in-service. Nevertheless, such fitting may result poor due to the limited number
of data for modern components, as previously mentioned.

From this respect, a help could come from the knowledge acquired over the
years about the physical processes that are responsible for the degradation of
materials that compose the aging electrical devices. In particular, since insula-
tion is often the weakest part of an electrical device—particularly in medium
voltage (MV) and high voltage (HV) systems—phenomenological and physical
aging and life models of electrical insulation (that can be found in the vast
scientific literature about this subject) can be used for achieving a so-called IRA
[68]. IRA can be an effective tool for reliability evaluation of a large series of
components, such as transformers, cables, motors, capacitors, etc.; it may be
noteworthy that such approach is rooted on classic studies on the physics of
failure, as the ones of Dasgupta and Pecht [60], conceived outside the electrical
engineering field.

This is the perspective from which the problem of the selection of adequate
probabilistic models for reliability assessment of power system components is
analyzed in this chapter.

First, in Sect. 2, the most adopted reliability models in the literature about
electrical components are synthetically reviewed and the classical DRA, i.e.,
reliability assessment via statistical fitting directly from in-service failure data of
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components, is illustrated, that is commonly used at the maintenance stage of
components already at work. The properties of these models, as well as their
practical consequences, are discussed, thereby arguing that direct fitting of
failure data may result poor or uncertain due to the above discussed limitations.
Thus, the selection—or the correct identification—of a suitable probabilistic
model for power system component reliability in the field of high-reliability
devices and large mission times should be better supported by probabilistic
information that leads to reasonable modeling, as those coming from the study of
the phenomenology and the physics of aging in the already-mentioned example
of MV and HV components. The opportunity of using such kind of information
for these components, pointed out in recent literature [37, 38, 59, 68], moves the
treatment from ‘‘direct’’ to ‘‘indirect’’ reliability estimation. For this purpose, in
Sect. 3, the main stochastic models for IRA are discussed, denoted as ‘‘stochastic
wear models’’—which include the ‘‘Degradation’’, ‘‘Stress-Strength’’ and
‘‘Shocks’’ failure models—showing how they can originate particular reliability
models, thereby giving further support to the adoption of a given model (e.g., the
Weibull one), beyond the simple DRA, which can be not only unsatisfactory, but
even misleading.

Following the same approach with reference to electrical devices, in Sect. 4,
reference models developed over the years for the estimation of insulation time-to-
failure (life) and aging are illustrated, that are based mainly on experimental
results coming from laboratory tests carried out on specimens. When inserted in a
proper probabilistic framework, they give rise to ‘‘physical reliability models’’,
that are usually employed for a preliminary characterization and comparison of the
various materials candidate for the realization of the insulation of electrical
components, as well as for the design of the insulating systems of such compo-
nents. However, they can provide useful guidelines also for reliability estimation
from in-service failure data and this closes the ‘‘loop’’ between direct and indirect
reliability estimation of electrical components.

Up to this point, the discussion has a prevailing methodological aspect, refer-
ring to a vast bibliography for the numerical applications to electrical devices.
Then, in the final Sect. 5—in order to better highlight the possible pitfalls brought
about by DRA from an applicative and numerical point of view—it is shown, by
means of numerical and graphical examples referred to typical insulation data—
that seemingly similar models can possess very different lifetime percentiles,
CRFs and hazard rate functions. Thus, the power system engineer must be aware
of the ‘‘mathematical’’ consequences of the selected models, particularly in view
of their aging properties. As already stated in the introduction, availability of
repairable components is not considered here, only for space limitations. It is dealt
with in many of the books referred above, and is thoroughly discussed in [4].
However, it is obvious that the assessment of a reliability model for a unit con-
sidered as a non-repairable unit is also the crucial starting point for its availability
assessment when it is instead repairable. Moreover, anyone of the reliability
features here discussed with reference to lifetimes have a natural correspondent for
the RV ‘‘times to repair’’.
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1.3 Reliability Function and Other Measures of Aging:
Hazard Rate Function, CRF, MRL Function

Starting from the above considerations, the chapter tackles the overall problem of
the assessment of the reliability function (RF) of a given component, considered as
a non-repairable unit. It is assumed that the reader is familiar with the basic
concepts of probability and statistics, such as properties of the cumulative distri-
bution function, probability density function (pdf), and other relevant concepts and
definitions, such as the moments and the quantiles of a random variable (RV), and
also of the basic facts of estimation theory [7, 25, 134, 139, 141].

Denoting by T the non-negative RV ‘‘time to failure’’, or ‘‘lifetime’’ (LT), of the
component and by F(t) its cumulative distribution function (cdf), the RF is defined
as follows:

R tð Þ ¼ P T [ tð Þ ¼ 1� F tð Þ ð1Þ

being P(A) the probability of the generic random event A. The above RF is
sometimes denoted also as ‘‘survival function’’ in literature.

The RV T is taken as continuous and distributed according to a pdf f(t) such
that:

f tð Þ ¼ dF=dt ¼ �dR=dt ð2Þ

and

R tð Þ ¼
Z1

t

f ðuÞdu: ð3Þ

It is remarked that the RF R(t) and the cdf F(t) are relevant to a time interval,
and not to the end point t of the interval, as the notation seems to imply: e.g.,
R(t) is the probability that the device operates successfully in the whole interval (0,
t).

The expectation of the LT, denoted as MTTF (mean time to failure) can be
obtained, provided that the integral exists, by:

E T½ � ¼
Zþ1

0

RðtÞdt: ð4Þ

Basic facts about aging that are sometimes misunderstood (as discussed) are
presented here, without claiming to be exhaustive (again, the reader should consult
[4, 16, 21, 30, 146], and other fundamental works mentioned above).

Reliability theory is, from a purely mathematical point of view, a sort of applied
probability theory devoted to the study of positive RV. However, it possesses some
peculiar functions and parameters which are defined ad hoc to describe RV
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representing times (in particular LT, but not only), and which do not have, in
practice, counterparts in other branches of probability theory.

The most popular and the most used (and sometimes even abused and misused,
as we shall see) to describe the aging of the devices is the hazard rate function
(hrf). Differently from the RF and the cdf, which are, as remarked above, relevant
to a time interval, the hrf h(s) is relevant to the instant s C 0, to be intended as the
‘‘age’’ of the device; it represents, in a sense, the ‘‘instantaneous failure rate’’ at a
given point in time. Formally, if the LT, T, possesses a pfd f(t)—as will be tacitly
assumed throughout the chapter—the hrf is defined, at any time t C 0 for which
R(t) = 0, as:

hðtÞ ¼ f ðtÞ
RðtÞ ¼ �

d
dt

log ðRðtÞÞ½ �: ð5Þ

The ‘‘physical’’ meaning of hazard rate function h(t), as well as the origin of its
name, lies in the following property, which is easily seen to be equivalent to the
above definition:

hðxÞ ¼ lim
Dx!0þ

P x\T � xþ Dxð Þj T [ xð Þf g
Dx

¼ lim
Dx!0þ

F xþ Dxð Þ � FðxÞ
Dx � RðxÞ : ð6Þ

So, as Dx ? 0+, the product h(x)Dx equals the conditional probability that the
failure occurs in the interval (x, x ? Dx), given that the device has survived until
age x; i.e., such product may be interpreted as the instantaneous failure (condi-
tional) probability for a device of age x.

From the above definitions, and the obvious condition R(0+) = 1, it is possible
to deduce the following integral relation which allows to express the interval RF,
R(t), in terms of the instantaneous hrf:

RðtÞ ¼ exp �
Z t

0

hðnÞdn

0
@

1
A; t [ 0: ð7Þ

Therefore, any reliability model is fully specified once either its pdf, or its RF or
its hrf is given, as each pair of these three quantities is directly deducible from the
remaining: e.g., starting from h(t), whose parametric form can be sometimes
derived from its physical meaning, the RF is obtained from (7). Then, the pdf can
be attained from the following relationship:

f tð Þ ¼ h tð ÞR tð Þ: ð8Þ

Further, also the cdf, MTTF, etc., are easily obtainable, e.g., this is the most
direct way to introduce the Weibull model (by far the most adopted in applied
reliability studies) characterized by the following hrf, RF, pdf as functions of time
x [ 0, with positive parameters (a, b):
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h xð Þ ¼ abxb�1 ð9aÞ

R xð Þ ¼ exp �axb
� �

ð9bÞ

f xð Þ ¼ abxb�1 exp �axb
� �

: ð9cÞ

In the sequel, the above model will be denoted by the symbol W(a, b); it covers
the popular Exponential model when b = 1. As well known and discussed in any
textbook on the discipline, the behavior of the hrf in time may provide insight as to
what is causing the failures. Indeed, a decreasing hrf suggests ‘‘infant mortality’’ or
‘‘wear-in’’, i.e., defective items fail early because of frailty, production defects,
etc., and the overall hrf decreases over time as they fall out of the population. A
constant hrf rate (which is peculiar of the Exponential model alone) suggests that
the device fails, irrespectively of its age, because of random ‘‘accidents’’. An
increasing hrf rate suggests that the device is subject to ‘‘wear-out’’, so that it is
more and more likely to fail as time goes on. Experimentally, these three kinds of
behavior (decreasing, constant and then increasing hrf) are, for many (but not all)
products, observed to occur in succession during the whole product life, describing
the so-called ‘‘bathtub curve’’ of the hrf. This is a very popular curve which is
widely discussed in any book on the matter (see [146]), and in some detailed
analytical papers, such as the article by Glaser [84].

In order to better understand the meaning of the above possible behaviors of
the hrf, and considering that the hrf is not a probability (and neither a con-
ditional probability),4 it is perhaps preferable to introduce the ‘‘conditional
reliability function’’ (CRF), which is a function of two-time variables defined
as follows5:

R tjsð Þ ¼ P T [ sþ tjT [ sf g ¼ Rðt þ sÞ
RðsÞ ðt; s� 0Þ: ð10Þ

The above CRF, denoted as the CRF for a mission time t of a device of age s,
equals the conditional probability that, the device having survived until age s, it
will survive at least until time (s ? t), i.e., its age will be increased at least of
t time units after age s. This is why it could be also denoted as ‘‘residual
reliability function’’.6 It is obvious that the above CRF, with respect to the time
argument t, must behave as a RF, e.g., it must satisfy (at any age s): R(0+|s) = 1,

4 It should be clear, by the way, that the hrf must be positive, but not necessarily less than 1: it
can even diverge, as happens for models possessing a pdf which vanishes at some finite point in
time, as the Uniform model. It has little to do with a pdf, too: e.g., its integral over the whole
interval (0, ?) must be ?, since R(?) = 0, etc.
5 The notation R(t|s) is purely symbolic, being used for suggesting the conditional aspect of the
RF, and should not be confused with the conditional probability P(A|B), the main difference
being that (r, s) are deterministic numbers, while (A, B) are random events.
6 This latter would probably be a better name: here we use the term ‘‘conditional’’ instead of
residual since it is more adopted in literature.
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R(?|s) = 0, and be decreasing with t. Its behavior with age s might appear less
obvious. For instance, one could naively expect that, since age should weaken
every object (an indubitable fact), R(t|s) is a decreasing function of s. However,
it is not always so; indeed, such reasoning would ignore the fact that the CRF is
a conditional probability, and that such conditioning may significantly change
our information: e.g., sometimes, knowing that a device has survived until age
s may render us more confident in its ‘‘future’’ survival than we could be without
that information, so that the device appears to ‘‘strengthen’’ with age, and the
CRF may increase with s. For instance, the CRF R(t|s) increases with s—which
is closely related, as remarked, to a decreasing hrf—during the abovementioned
‘‘infant mortality’’ period in the early life of a product, or in ‘‘accelerated life
tests’’ (ALT), or when the LT is generated from mixtures ([10], p. 55; such
property is also recalled here at the end of Sect. 3). The idiomatic expression
‘‘the device appears to strengthen with age’’ should be interpreted cautiously, in
terms of ‘‘change of information’’ rather than effective strengthening of the
object, a fact which of course seldom occurs in practice.7 The statement, if not
correctly interpreted (with due emphasis on the word ‘‘appears’’), may seem to
conflict with the obvious property that the RF must always decrease with time.
This concept will be discussed again later.

In many cases, devices weaken (again, in a ‘‘conditional’’ way) with age: this is
generally thought to be typical, e.g., of mechanical devices subjected to increasing
wear as they work, and in practice for all devices (also electronic ones)—if they
should be left to operate indefinitely—when their age is large enough. However,
some already hinted at examples of aging related to wear (as will be also discussed
in Sect. 2) should render us careful also with this observation. There is no doubt,
instead, for what concerns the human beings and living organisms: their hrf
h(s) increases and their CFR R(t|s) decreases with age s. Soon it will be recalled
that the two properties are indeed equivalent.

Another measure of aging is the MRL. It appears to be very useful, although not
so popular (strangely, since it has a clearer physical meaning than the hrf). The
MRL, r(s), is a function of time (age) s representing the expected residual lifetime
of a device that has reached age s. So, it is a ‘‘conditional expectation’’, i.e., the
mean value of the ‘‘residual’’ LT at age s—namely, the difference (T - s)—
conditional to the event (T [ s). So, r(s) is defined as:

r sð Þ ¼ E T � sð ÞjT [ s½ � ð11Þ

and it is computable in terms of the CRF as follows:

7 When discussing aging and hrf and CRF properties, in the authoritative [10] it is observed that
‘‘certain materials increase in strength as they are work-hardened’’ (p. 55). This may be true, but
it is unlikely that it holds for very long time intervals: wear-out should ultimately prevail for any
device, corresponding to a CRF R(t|s) decreasing with s, for s large enough. Anyway, it is
possible that in practice the device is maintained or retired before wearing-out, so that the
ultimate, decreasing part of the CRF is not observed.
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rðsÞ ¼
Z1

0

RðtjsÞdt ¼
Z1

0

Rðt þ sÞ
RðsÞ dt: ð12Þ

It appears that r(s) is increasing, constant or decreasing with age s in the same
way as the CRF. Also, it can be easily shown that r(s) uniquely specifies the
reliability model, in that RF, pdf and hrf can be uniquely expressed in terms of
r(s) [30].

1.4 On the Relation Between Hazard Rate and CRF

Previously, some discussions on the physical meaning of the hrf behavior in time,
deriving from the observation of the ‘‘bathtub curve’’, have been intuitively
explained in terms of the CRF, R(t|s), which possesses an easier interpretation
being a probability (differently from the hrf). The CRF behavior versus age s is
indeed univocally related to the hrf behavior. Using the above relations between
the RF and the hrf, it is not difficult to show, for any LT distribution for which the
hrf is defined, the validity of the following equivalences (see, e.g., [10, 30]), whose
statements are assumed to hold for each value of s [ 0, and for any given mission
time t, which is to be intended as a constant in the right-hand side of the
equivalences:

1. hrf h(s) increasing with s () CRF R(t|s) decreasing with s (at any given
time t).

2. hrf h(s) decreasing with s () CRF R(t|s) increasing with s (‘‘’’).
3. hrf h(s) constant with s () CRF R(t|s) constant with s (‘‘’’).

As well known, property (c) uniquely characterizes the Exponential model,
and assesses its being ‘‘memoryless’’. Property (a) explains why the hrf increases
for devices subjected to wear; property (b) explains why the hrf decreases for
devices subjected to ‘‘infant mortality’’ (or for devices strengthening with age).
From the above properties, the abovementioned bathtub curve, as well as any hrf
behavior, can be easily interpreted in terms of CRF properties, an approach
which, surprisingly, is seldom found in the relevant applied literature: in most
cases the CRF is not even mentioned, or finds much less space than the hrf when
introducing the study of aging. For brevity, it is instead reasonable, having
interpreted the hrf behavior with the help of the CRF, to use then the hrf
h(t) alone. Indeed, it is a function of a single time variable (just as the MRL), it
is more easy to be represented graphically, and various procedures for its sta-
tistical estimation have been devised. So, also here in the sequel, only the hrf
expression, if available, will be reported when discussing the various models.
Nonetheless, a look at the CRF curves of the various models—as done in Sect. 5
(see Figs. 6, 7)—could be very helpful for a better understanding of their aging
properties.
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For the abovementioned properties of the MRL: in case (a) the MRL r(s) is
decreasing with s; in case (c) the MRL r(s) is constant with s (so, it is equal to the
MTTF; again, such independence from s uniquely characterizes the Exponential
model); in case (b) the MRL r(s) is increasing with s. The converse implications
are not trivial, and require further assumptions [30].

At this point, it is useful, as done in most books, to operate a classification of
reliability models in terms of aging, based upon hrf or CRF properties. First, we
notice that we used above the symbol s to denote ‘‘age’’ (a past time), the symbol
t to denote a mission time (a future time), so that the symbol s has the same
meaning in the hrf h(s) and in the CFR R(t|s); although using the same symbol t to
denote time in h(t), R(t) and R(t|s) (as done in most books) would not be an error,
nevertheless it may easily induce the reader into confusion for what concerns the
relation among these quantities. As long as only the mathematical properties of the
hrf are of interest, in Sect. 2 and in the sequel, we shall use h(t) as it is customary
in literature.

1.5 A Classification of Reliability Models: IHR, IDR, IDHR
Models

A reliability model (or, for brevity, the LT described by such model) is defined as:

• ‘‘increasing hazard rate model’’ (IHR), if its hrf h(s) is an increasing function of
s [ 0 (over the whole domain of the hrf, generally 0 \ s \?); example:
Weibull W(a, b) with b [ 1.

• ‘‘decreasing hazard rate model’’ (DHR), if its hrf h(s) is a decreasing function of
s [ 0 (idem); example: Weibull W(a, b) with b \ 1.

• ‘‘increasing, then decreasing hazard rate model’’ (IDHR), if its hrf h(s) firstly
increases with s [ 0, from s = 0 to a given point s*, then it decreases with s;
examples: Lognormal and Inverse Weibull models.

The above models are recalled in more detail in Sect. 2. In case of IDHR
models, also the denominations: ‘‘unimodal hrf’’, or ‘‘reverse bathtub-shaped hrf’’
are used. As reported in [93], and also illustrated for some of the basic models here
presented, the LT is often represented by such models for the situations where the
failure is mainly caused by fatigue.

In view of the above-recalled relations between hrf and CRF, the above clas-
sification may be equivalently formulated in terms of the CRF and some authors
(e.g., [10, 30]) prefer this latter formulation, because it is more general, as it does
not require the existence of a pdf (such mathematical details are omitted in this
chapter, as all models here considered possess a pdf).

There are a lot of more possible classifications, e.g., in terms of ‘‘Average
hazard rate’’, MRL, etc. [10, 30]. We only emphasize here that, as above remarked,
a IHR (DHR) model is characterized by a decreasing (increasing) MRL function of
time.

72 E. Chiodo and G. Mazzanti



Of course, those reported in the above classification are not the only possible
behaviors of the hrf, but they are the most useful for the description of aging for
the simple analytical models which will be considered from Sect. 2 onwards; these
are indeed ‘‘models’’, so that they must not be expected to express the true hrf of
the device for its whole life, but only to represent a reasonable approximation to it,
for the actual time interval during which the device operates. As an example, it
should be clear that the Exponential model cannot be truly valid in real world: it is
only an ideal model, in a sense it is ‘‘the most ideal’’ of all models, since no
device can be completely memoryless : as remarked above, wear-out—from a
certain point in time—must occur for every device. But, if wear appears very late
with respect to the time interval (say, 20 years) for which the device is used
(before its withdrawal, e.g., for technological innovation), so that the hrf can be
considered roughly constant in that interval, the Exponential model can provide,
also in view of its simplicity, a good approximation to the ‘‘true’’, unknown,
model.

One of the hrf behaviors not considered in the above classification is the famous
‘‘bathtub curve’’, which is, in fact, an experimental curve, that matches none of the
models here considered in Sects. 2 and 3; it is in fact seldom found in operating
devices, if they are, as generally happens, subjected to ‘‘burn-in’’. Moreover, it has
been already pointed out that in practice there is no need of a model which
describes the device reliability for all its ‘‘theoretical’’ life. Finally, models with
bathtub-shaped hrf can be built analytically, but are either rather complex or
difficult to estimate. For instance, two models capable of representing such
behavior, reported in [103, p. 47] and practically almost never used, are reported—
as functions of age x [ 0—here:

hðxÞ ¼ a
xþ b

þ cx; a; b; c [ 0 ð13Þ

hðxÞ ¼ bxðb�1Þ

ab
exp

x

a

� �b
� �

; a; b [ 0: ð14Þ

1.6 Final Remarks: Some Popular Misconceptions in Applied
Reliability Studies

A few final remarks on some common misconceptions, or ‘‘pitfalls’’, related to
erroneous interpretations of the hrf are deemed to be useful here, since often also
authoritative bibliography seems to ‘‘slip’’ on this concept. Two of such pitfalls are
discussed here, which are both related in a sense to the existence of models with a
decreasing hrf, which, as opportunely pointed out in [146, p. 69], appears to be a
subtle concept, perhaps only fully understandable (we agree with Singpurwalla)
from a subjective (or even ‘‘psychological’’) probabilistic reasoning, even if also a
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sound ‘‘objective’’ explanation is available [141]. A recent paper on some common
misconceptions about the modeling of repairable components (a problem not dealt
here), with reference to power system applications, is [160]. In this paper, some
basic points already in raised in the fundamental book [4] are summarized and
further discussed.

1.6.1 The Pitfall of the ‘‘Average Hazard Rate’’ for Two-state (or Multi-State)
Reliability Models

Let a device be potentially subjected, in a given time interval, to (only) one of two
operating conditions, say ‘‘normal condition’’ (NC) or ‘‘adverse condition’’ (AC),
depending on chance. This may be the case of a overhead transmission or distri-
bution line subjected to normal or adverse weather conditions.8 Let each of the two
conditions correspond to a different value of an assumed-as-constant hazard rate,
and let:

v ¼ hazard rate value in NC; a ¼ hazard rate value in AC; ð15aÞ

p ¼ probability of NC; q ¼ 1� p ¼ probability of AC: ð15bÞ

A value a[ m is of course expected (often, the ratio a/m can be very high in
practice, e.g., 50, for overhead lines), hence this relationship will be assumed to
hold. Of course, any situation of a ‘‘binary’’ hrf can be dealt with in such a way, by
calling ‘‘normal condition’’ (‘‘adverse condition’’) the one with the lower (higher)
hazard rate value.

Under these hypotheses, the following ‘‘average value’’ assignment of the hrf
(still assumed to be constant) to the device is often found (especially in power
system studies, a recent example being [90]):

h ¼ pvþ qa; ð16Þ

i.e., a weighted average of the two values m and a. So, the RF model would
become:

R tð Þ ¼ exp �htð Þ: ð17Þ

The above hrf is denoted here as the ‘‘average hazard rate’’. Equation 16 seems
to be very reasonable, since the random events ‘‘NC’’ and ‘‘AC’’ are incompatible
and exhaustive, and it is indeed used also by some utilities. It is in fact wrong, as
well as (17), if the problem is dealt with by the basic tools of elementary proba-
bility. Although it may seem paradoxical, the true result is that the overall HR is a

8 The extension of the following reasoning to three-state or multi-state models is straightforward
(e.g., a three-state model occurs in power distribution studies when also ‘‘extremely adverse’’
weather conditions, or similar, are considered [156].
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decreasing function of time, of which the value h in (16) is only the initial value [it
can be shown that (16) may be—but only in some cases—a good approximation
for the hrf for very short time intervals, but the problem is that it is always
presented as a true value].

The point is that the total probability theorem [which is evidently the basis of
(15)] cannot be applied to the hrf, which is not a probability! (see also the fol-
lowing Sect. 1.6.2). It can be instead be applied, e.g., to the RF R(t) = P(T [ t), so
that its value is not given by (16), but by:

R tð Þ ¼ p � expð�mtÞ þ q � expð�atÞ; ð18Þ

which is quite different.9 By derivation of the above RF with respect to time t,
using (5), it is easy to get the right expression of the hrf, which is readily shown to
be not a constant at all. Indeed, the hrf is a decreasing function of time. In Sect.
3.3.11 (devoted to ‘‘mixture models’’) also this apparent paradox will be discussed,
namely that—even though the individual hrf are constant over time—the ‘‘overall’’
model has a decreasing hrf. The paradox can be fully justified by subjective or
Bayesian reasoning, and some very interesting papers or books, such as [10, 136,
146], discuss it. Here, we only observe, as in [141], that—if one should not know
the true condition under which the device operates—the larger the observed
lifetime t of the device, the more likely it is that the item is subjected to NC (rather
than to AC), i.e., the conditions corresponding to a lower hazard rate value. Thus,
the older the device, the less likely it is to fail, so that the above ‘‘mixture’’ of
constant hazard rates gives rise to a DHR model. A brilliant way to show this, as in
[141], is using Bayes’ theorem for obtaining the following conditional probability,
for any given time t:

P NCjT [ tð Þ ¼ P NCð Þ \ T [ tð Þ½ �=P T [ tð Þ
¼ p � expð�mtÞ= p � expð�mtÞ þ q � expð�atÞ½ �; ð19Þ

which is indeed, assuming a[ m, increasing in t [maybe the easiest way to show
this is considering the reciprocal of (19), which is clearly decreasing in t]. Of
course, P(AC|T [ t), the conditional probability of the complementary event, is—
for the same reason—decreasing in t.

It should be remarked that using (16) means using an overestimation of the hrf,
this implying an underestimation of system performances.

From a practical point of view, such discussion shows that the development of
time-varying models for the hrf is highly opportune, as those proposed by Wang
and Billinton in [156] for incorporating the effects of weather conditions and
restoration resources in reliability evaluation of distribution systems.

For the purpose of the present chapter, however, the main point to be high-
lighted above is not the right expression or behavior of the hrf, but the mistake one

9 Mistaking (18) for (17) is in practice equivalent to mistaking—as to the computation of the
expectation of a function / of a RV X– the expectation E[/(X)] with /(E[X]), which is a trivial
error, if / is not a linear function.
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can make by treating the hrf as it were a probability. The same can be pointed out
as far as the following topic is concerned.

1.6.2 Does a DHR Model Imply a ‘‘Strengthening’’ of the Device?

From one of the above relations, here reported again:

RðtÞ ¼ exp �
Z t

0

hðnÞdn

0
@

1
A; t [ 0; ð20Þ

it should be clear that a DHR model in no way implies a ‘‘strengthening’’ of the
device under study, as already discussed above. The RF R(t) always decreases with
time, and this is assured by its very definition, or—looking at the above integral
relation between RF and hrf—by the hrf being positive, with no regard to its
behavior in time. So, it should be remarked that phrases like ‘‘the reliability of a
DHR system improves with age’’, which are sometimes reported also in books, are
at least ambiguous: in the function R(t) only one time-argument appears, which
cannot be arbitrarily deemed to be a ‘‘mission time’’ or an ‘‘age’’ as one likes. The
truth is that R(t) decreases with t, so it can never improve with ‘‘age’’ t. For what
above discussed, a right way—maybe the only way—to express the peculiarity of
a DHR model is that, for such model: ‘‘the conditional reliability R(t|s) of a DHR
system improves with age s, for any given mission time t’’. This ‘‘conditional’’
aspect (which is present also in the hrf itself) is sometimes forgotten, e.g., when it
is stated, as in some books, that ‘‘the hrf expresses the probability that the device
fails after reaching age t’’. It has to be noticed that, for approaching such meaning,
the hrf—which, by the way, has a dimension of (1/time)—should be at least
multiplied by a time interval Dt, and even so it cannot be claimed to be a prob-
ability (for instance, no-one can assure that this product is less than 1, also in view
of the fact that the hrf can be infinite). Nor the hrf can be resembled to a pdf: as
recalled in a note, its integral over the whole interval (0, ?) must be ?, not 1 as a
pdf.

Returning to DHR models (which are the ones—but not the only ones—capable
of possessing an infinite hrf, as we shall see in a few lines) one could also think
that a DHR (or a constant hrf) model is characterized by a RF having a slower
decreasing attitude in time, with respect to a IHR model and assuming as fixed
some parameters (e.g., MTTF and/or median), so that it is ‘‘better’’ than a IHR
model in some way. Even if it can seem trivial, it may be not useless to remark that
this is generally false, or it may be true only for some large enough mission times.
Still from the above relation, one can only deduce that, for what concerns the
comparison of 2 hrf, if h1(x) [ h2(x) in a whole interval (0 \ x \ c), then—for the
corresponding RF—R1(t) \ R2(t) for every t in (0 \ t \ c). So, it should come as
no surprise that a IHR model as a Weibull one with b [ 1, e.g., h(x) = ax (a [ 0),
is largely ‘‘better’’ than a constant hrf model, since for the first we have h(0) = 0
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and a smaller hrf values in a whole interval containing the time origin. In other
words, a memoryless model is by no means a ‘‘good’’ or desirable model in the
early age of the device, since ‘‘chance failures’’ are of course no better than no (or
‘‘very unlikely’’) failures. Even more pronounced, of course, would be a com-
parison between the above IHR model and a DHR model such as a Weibull one
with b \ 1 [e.g., h(x) = a/Hx (a [ 0)], to which an infinite value of the hazard
rate and a rapidly decreasing RF corresponds in early times. The IHR model
h(x) = ax is much better in this early period (which may also be the most crucial
in terms of warranties), and possibly also better on the whole (depending, e.g., on
the time interval for which the device will be used in practice).

2 ‘‘Direct’’ Reliability Assessment: A Review
of Reliability Models

2.1 A Premise on Reliability Models, with Hints
at Electrical Applications

A significant set of reliability models, which should cover almost all kinds of
practical applications, are briefly reviewed in the present section, in alphabetical
order.

For the purpose of the present approach, the way by which these (or other)
models can be deduced from wear processes is important. This aspect is omitted
here, but is tackled in the next section, so that a few of these models will be met
again there.

As defined above, DRA concerns reliability analysis of components on the basis
of failure data coming from devices in-service. Performing a DRA requires that the
most adequate probability distribution for the reliability analysis (to be chosen
from a family of commonly employed distributions for such components) is
selected on the basis of data fitting, previous experience, literature or expert
judgment, or better on the basis of a combination of all these aspects. Such
distribution should both exhibit a good fitting to the data (proven by a proper
statistical fitting test) and possess a relatively simple form, with no more than two
or three parameters to be estimated from data. Only two-parameter models will be
considered here, since they are by far the most adopted, together with the single
parameter Exponential model, this latter being so popular that it is here considered
only as a particular case of other models, namely the Gamma, Weibull and the less
known HRM. The most adopted reliability models—in particular, for electrical
components—are by far the Gamma, Normal, Lognormal (LN), and Weibull
models. However, also some other LT distributions are worth being considered,
such as the Inverse Gaussian (IG) distribution, the Inverse Weibull (IW) distri-
bution, the Birnbaum–Saunders (BS) distribution, the Log-logistic (LL) distribu-
tion, and more. They have found recently some significant application for
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electrical components reliability, so they are briefly reviewed here, too. A par-
ticular and very significant case is that of the Weibull model: it is by far the most
adopted in the field of electrical insulation, as illustrated with some detail in Sects.
3 and 4. Such model, together with some related ‘‘physical law’’ of aging—e.g.,
the Inverse power model (IPM)—has kept proving over the years one the most
adequate for the statistical fitting of insulation lifetime data, and the fact that it
possesses some physical background or motivation is a very desirable property in
the present discussion.

Neither the statistical fitting nor the parameter estimation is addressed in this
chapter. Relevant references well cover these topics: exhaustive treatises on the
subject, in its most general form, are popular books such as [25, 96, 98, 149].
Books specifically devoted to (classical) statistical estimations for LT models are,
e.g., [55, 97, 103, 124, 130]. For what concerns Bayesian inference, the key
reference is [113], but the approach is also significantly present in many other
books, e.g., in [30, 124, 146, 152]. Moreover, the reader should be aware that most
of the references on the presented models (appearing in the reference list reported
at the end of this chapter) often present also estimation methods for the model
parameters. Only a final small hint at estimation, very interesting for our purposes:
it is well worth highlighting that the use of Weibull model for insulation appli-
cations has stimulated many peculiar estimation methods, both in classic [52] and
Bayesian statistics [39]. An excursus on basic reliability models and their key
features (excluding deduction from wear models) follows from the next Sect. 2.2
to the end of present Sect. 2. For all the models here presented, the possible
derivations from wear processes are reviewed in Sect. 3. Further details on the
mathematical features here briefly reviewed can be found in the books cited at the
beginning of this chapter, and in the numerous references at the end of this chapter;
in particular, aside from the monographic books on the single models (e.g., [34] on
the Inverse Gaussian distribution, or [53] on the Lognormal distribution), very
detailed accounts on all the models are present in the authoritative volumes of [96],
while a brief but complete review is reported in [124], where also many graphs,
here omitted for the sake of brevity, are reported illustrating the cdf, pdf, hrf, etc.,
of the various models.

2.2 Birnbaum–Saunders Model

The Birnbaum–Saunders (BS) model was introduced by Birnbaum and Saunders in
1969 [20], in relation to fatigue-affected lifetimes. It has the following cdf and pdf
for t [ 0:

Fðt; a; bÞ ¼ U
1
a

t

b

� 	1
2

� b
t

� 	1
2

" #( )
ð21Þ
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f ðt; a; bÞ ¼ 1
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: ð22Þ

The parameter (a, b) are positive. The hrf has no simpler form than the ratio:

hðtÞ ¼ f ðtÞ=ð1� FðtÞÞ: ð23Þ

It is defined for all t [ 0 (as happens for all models here considered, unless
otherwise stated).

In a recent paper [102], it has been shown analytically that the hrf of the BS
distribution is always an IDHR—or ‘‘unimodal hrf’’—model for all values of the
shape parameters, and the change point of the hrf can be determined as a solution
of a non-linear equation. These authors have provided an approximation to this
change point, and also proposed different methods for estimating the change point.
After this change point, the hrf approaches a positive limit as t ? ?, similar to
the IG model, whose resemblance with the BS model is illustrated also later. Mean
and variance of the BS model are:

l ¼ b 0:5a2 þ 1
� �

ð24Þ

r2 ¼ b2a2 5=4ð Þa2 þ 1
� �

: ð25Þ

2.3 Gamma Model

The Gamma G(r, /) model is one of the most popular in applied probability, and is
characterized by the following pdf:

f ðt; r;/Þ ¼ /rtðr�1Þ

CðrÞ expð�/tÞ; t [ 0 ð26Þ

were C(x) is the Euler–Gamma special function, / and r are positive constants
representing the shape and scale parameters, respectively. The cdf is expressed
through the incomplete Gamma function C(x, y):

Fðt; r;/Þ ¼ C r;/ð Þ=C rð Þ: ð27Þ

In its simplest formulation, denoted as ‘‘Erlang model’’, the Gamma model
describes a positive RV obtained by the sum of r Exponential independent and
identically distributed RV with parameter (hrf) /.

For what concerns the hrf, which is not expressible analytically, it can be shown
[103] that, if r [ 1 (the most frequent case), the Gamma model implies a hrf
which, starting from zero in t = 0, increases with time, approaching the positive
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limit / as t ? ?. If r \ 1, the hrf diverges as t ? 0+, then decreases with time,
approaching the same limit / as t ? ?.

Mean and variance of the Gamma model are:

l ¼ r=/ ð28Þ

r2 ¼ r=/2: ð29Þ

A limit case is the Exponential one, obtained when r = 1, which has the
constant hrf h(t) = /.

A hint at transformed Gamma RV, i.e., ‘‘Inverse Gamma’’ and ‘‘Generalized
Gamma’’ RV, is given in this section.

2.4 Gaussian Model

The Gaussian or Normal model plays a fundamental role in statistical analyses
because many distributions are well approximated, in view of the CLT, by the
Normal probability distribution. The Normal pdf has the following expression:

f ðt; l; rÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p exp � 1

2r2
t � lð Þ2

� �
; ð30Þ

where �1\t\1; �1\l\1; r [ 0. As can be seen, the Normal pdf is
characterized by two parameters, l (the mean of the pdf, a real number) and r (the
SD). Its main properties (bell-shaped form, symmetric around the mean l) are well
known.

The Normal pdf and cfd can be conveniently expressed as a function of the
standard Normal pdf, u(z), and cdf, U(z), that correspond to a Normal RV with
zero mean and unit variance, which are thus defined as follows:

UðzÞ ¼
Zz

�1

1ffiffiffiffiffiffi
2p
p exp �u2

2

� 	
du; /ðzÞ ¼ dUðzÞ=dz ð31Þ

so that pdf and cdf of the Gaussian model are:

f ðt; l; rÞ ¼ uððt � lÞ=rÞ
r

; Fðt; l; rÞ ¼ U t � lð Þ=rð Þ: ð32Þ

It can be shown that the hrf h(t) is an increasing function of time, roughly
increasing linearly as t diverges. The model is not theoretically adequate, of
course, for lifetimes, being defined also for t \ 0. However, it is sometimes
adopted, provided that the probability of attaining negative values is negligible
(this happens in practice if l[ 3r). However, principally due to its scarce
flexibility, discussed elsewhere in the chapter, it is almost never a good
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candidate as a reliability model, while it is sometimes used for ‘‘repair times’’ in
availability studies, but not so frequently as the LN and Gamma models.

2.5 Gumbel Model

The Gumbel model here illustrated can be obtained—like the Weibull one, but
under different hypotheses—as the minimum of a large (ideally infinite) set of RV,
so that its pdf is also denoted as the ‘‘smallest extreme value’’ pdf, or also ‘‘type 1-
extreme value’’ pdf [28, 80, 131]. The Gumbel model has the following cdf:

Fðt; v; dÞ ¼ 1� exp �exp t � vð Þ=d½ �f g ð�1\t\þ1Þ: ð33Þ

The two parameters (v, d) are, respectively, real and positive. It can be seen
that, theoretically, the argument of the cdf may be negative, as in the Gaussian
case. By an adequate choice of v and d, the probability of negative values may
be rendered practically zero. However, also a truncated form of the Gumbel pdf
exists, restricted to positive argument values, denoted as ‘‘Gompertz model’’
[103]), which is also used in LT applications. The mean and SD of the model
are

l ¼ v� c d ð34Þ

r ¼ p=
ffiffiffi
6
p� �

d ð35Þ

being c the Euler constant (0.5772…). The RF and pdf are easily evaluated from
the above cdf, and the hrf is an increasing exponential function of time:

hðt; v; dÞ ¼ ð1=dÞexp t � vð Þ=d½ � ð�1\t\þ1Þ: ð36Þ

This model is widely used—especially in its truncated form—for devices lar-
gely affected by wear with increasing age (such as mechanical products, and also
human beings).

Apart from lifetimes, the Gumbel model finds—for intuitive reasons—appli-
cation also as a model for RV representing material ‘‘strength’’. Indeed, it has been
used since decades as a possible alternative to the (more adopted) Weibull model,
for characterizing electrical strength of insulators [87].

Also a ‘‘largest extreme value’’—or ‘‘double exponential’’—model exists. It is
used for characterizing the maximum of a large set of RV, and has the following
cdf:

Fðt; v; dÞ ¼ exp �exp �ðt � vÞ=d½ �f gð�1\t\þ1Þ: ð37Þ

It is very popular in engineering applications but it is seldom used for lifetimes
[131, p. 40].
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2.6 HRM Distribution

A new reliability model, the so-called HRM was introduced by Erto and Palumbo
in 2005 [76], who showed that many failure mechanisms can produce mortality
laws of Hyperbolic type: the ‘‘Deterioration’’, ‘‘Stress-Strength’’, and ‘‘Shocks’’
failure models are some of the above models which can lead to a HRM, as shown
in the following section. The same authors illustrated also some applicative
examples, with a noteworthy electrical application. Actually, the model was not
completely unknown before, e.g., Lawless [103] briefly mentions it as a ‘‘gen-
eralized Pareto model’’. However, its properties were not fully analyzed, nor it
appears to have ever been applied, before 2005.

For the purpose of the present section, a decreasing hazard rate function,
approaching a value greater than zero, is the distinctive characteristic of the model.
The HRM indeed takes its name from the hyperbolic form of its hrf, which is quite
peculiar in the wide range of all the existing models, and can be expressed as
follows (76):

h tð Þ ¼ r þ a

t þ 1
; a [ 0; r [ 0; ð38Þ

which is strictly decreasing from the early maximum value (a ? r), to the
asymptotic minimum r, with a being the limit decrement. So, as to the hrf prop-
erties, this model shows some analogies with the LN and IW ones, except that
the maximum of the hrf is attained at t = 0 (while, in the LN and IW models, the
maximum of the hrf is attained at some mission time t [ 0). From Eq. 1, the
cumulative hrf, RF, cdf, and pdf are easily derived as:

H tð Þ ¼
Z t

0

h tð Þdt ¼ r t þ a ln t þ 1ð Þ; ð39Þ

R tð Þ ¼ e�H tð Þ ¼ exp �rtð Þ
t þ 1ð Þa ; ð40Þ

F tð Þ ¼ 1� R tð Þ ¼ 1� exp �rtð Þ
t þ 1ð Þa ; ð41Þ

f tð Þ ¼ h tð ÞR tð Þ ¼ r þ a

t þ 1

� �
exp �rtð Þ

t þ 1ð Þa
� �

: ð42Þ

It is apparent from (38) that, for t increasing infinitely, the Hyperbolic
Model reduces to the Exponential model with constant hrf: h(t) = r (and, so,
MTTF = 1/r).

Erto and Palumbo [76] deduce all the non-trivial statistical properties (mean,
variance, etc.) of the HRM by means of the Moment generating function UT{�} of
the RV T (lifetime), i.e.:
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UT xf g ¼ E exp xTð Þ½ �

¼
Z1

0

exp xtð Þ r þ a

t þ 1

� 	
exp �rtð Þ

t þ 1ð Þa dt: ð43Þ

Denoting by C (�,�) the incomplete Gamma function, after some manipulations
the following expressions for the mean E[T] and variance Var[T] are obtained:

E T½ � ¼ U0T 0ð Þ ¼ 1
r

raexp rð ÞC �aþ 1; rð Þ½ �; ð44Þ

Var T½ � ¼ E T2
� �

� E2 T½ �

¼ 1
r2

2raexp rð ÞC �aþ 1; rð Þ � 2araexp rð Þf

� C �aþ 1; rð Þ þ 2r 1� raexp rð ÞC �aþ 1; rð Þ½ �

�
�
raexp

�
r
�
C
�
�aþ 1; r

��2
; ð45Þ

where

E T2
� �

¼ U00T 0ð Þ

¼ 1
r2

2raexp rð ÞC �aþ 1; rð Þ � 2araexp rð Þf

� C �aþ 1; rð Þ þ 2r 1� raexp rð ÞC �aþ 1; rð Þ½ �g: ð46Þ

Interesting properties concerning the MRL are also illustrated in [76]; e.g., it is
proven to be an increasing function of time, toward the maximum asymptotic
value 1/r (and this is in agreement with known theoretical relations between hrf
and MRL).

2.7 Inverse Gaussian Distribution

The Inverse Gaussian (IG) distribution [34], although not very popular in the field
of power systems, has found many applications in theoretical reliability literature
for those situations in which the LT distribution is greatly affected by early failures
due to the so-called ‘‘infant mortality’’. The Inverse Gaussian model belongs to the
IDHR family and is very similar to the LN distribution. In practice, they are in
most cases undistinguishable on the basis of field data, so that it is important to
understand the kind of aging process which may give rise to the IG or the LN
distribution.

The IG distribution has been introduced as the first passage time of a Wiener
process [34], as will be recalled in the next section. Its pdf is given by:
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f ðt; l; kÞ ¼
ffiffiffiffiffiffiffiffiffi
k

2pt3

r
exp � k

2l2t
ðt � lÞ2

� �
ð47Þ

being t, l, k[ 0. Using the above recalled Gaussian cdf U(x), the RF and hrf are
given by the following expressions:

Rðt; l; kÞ ¼ U

ffiffiffiffiffiffiffiffiffiffi
k
t

� 	s
1� t

l

� 	" #
� exp

2k
l

� �
U �

ffiffiffi
k
t

r
1þ t

l

� 	" #
ð48Þ

hðt; l; kÞ ¼

ffiffiffiffiffiffi
k

2pt3

q
exp �kðt�lÞ2

2l2t

h i

U
ffiffi
k
t

q
1� t

l

� �h i
� exp 2k

l

h i
U �

ffiffi
k
t

q
1þ t

l

� �h i: ð49Þ

Although not easily, it can be seen that the hrf first increases, reaching its
maximum at a time t* which is not analytically expressible, then approaches the
positive limit k=ð2l2Þ as t ? ?. This is a small difference with respect to the LN
and LL reliability models, whose hrf goes to zero as t diverges, and a similarity
with the BS model, which is indeed resembles very closely the IG model, also in
its derivation (see Sect. 3).

Mean and variance are:

E T½ � ¼ l ð50Þ

r2 ¼ l3=/: ð51Þ

2.8 Inverse Weibull Distribution

The Inverse Weibull (IW) model was deduced—although often named in a
different way, i.e., Frechet model—as a model for the asymptotic distribution
of the maximum value from a succession of independent RV [28]. Subse-
quently, it was proposed with the present name when it was obtained as the
distribution of the inverse (reciprocal) of a Weibull RV. Most of its properties,
in particular those of its hrf, were first deduced by Erto [70], and are being
developed in a forthcoming paper [75]. In [70], also the identification of the
IW model within a ‘‘Stress-Strength’’ (SS) model has been illustrated (see Sect.
3 for details).

The pdf of a IW RV, with parameters r and b is:

f ðt; a; bÞ ¼ abðatÞ�ðbþ1Þ
exp �ðatÞ�b
h i

; ð52Þ

where t C 0, a, b[ 0.
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The reliability function and the hazard rate function are:

Rðt; a; bÞ ¼ 1� exp �ðatÞ�b
h i

ð53Þ

hðt; a;bÞ ¼
abðatÞ�ðbþ1Þ

exp �ðatÞ�b
h i

1� exp �ðatÞ�b
h i : ð54Þ

Also such function is of the ‘‘IDHR’’ family; the peak value of the hazard rate
of a IW model is obtained at a mission time value belonging to an interval

whose extreme points are: Tm ¼ ½b=ðbþ 1Þ�1=b=a (the mode of the IW distri-

bution) and Tn ¼ b1=b=a; the hrf is infinitesimal when t ? ?. The mean (which
exists only if b[ 1) and the variance (which exists only if b[ 2) are, setting
h = 1/a:

E X½ � ¼ l ¼ hCð1� 1=bÞ ¼ hCð1 þ 1=bÞ ð55Þ

Var X½ � ¼ h2Cð1� 2=bÞ � l2: ð56Þ

2.9 Log-Logistic (LL) Distribution

The log-logistic (LL) distribution was adopted by the authors in insulation reli-
ability studies [37, 40]. A recent application of the LL model in ALT is shown in
[148], which also refers to [37, 39] for insulation reliability applications. This
model is named after the fact that it characterizes a RV: X = exp(T), where T has a
logistic distribution, whose cdf is:

Fðt; a; bÞ ¼ 1

1þ exp � t�að Þ
b

h i ð57Þ

with: �1\a\1; b[ 0; �1\t\1:
Thus, since the variable T = log(X) is a logistic RV, then X is a so-called log-

logistic RV, which is characterized by the following cdf and pdf, in which the
parameters k[ 0 and b [ 0 are functions of (a, b) above:

FðxÞ ¼ kxð Þb

1þ kxð Þb
h i; x [ 0 ð58Þ

f ðxÞ ¼ bkbtb�1

1þ ktð Þb
h i2: ð59Þ

It is often convenient to use, instead of the scale parameter k, the parameter
c = 1/k, which is the median of X, so that:
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FðxÞ ¼ ðx=cÞb

1þ x=cð Þb
h i; x [ 0: ð60Þ

It is indeed apparent that F(c) = 0.5, no matter the value of b. Although the LL
model received some attention in survival data analysis since 1983 in a paper by
Bennett [13], it is neither frequently used nor well-known in literature—apart from
the popular Cox and Oakes’ monograph [51]. In [37], the authors also discuss the
similarity between the LL and the Weibull model, apart their hrf. In the LL model,
the hazard rate function h(x) is:

hðxÞ¼ bkbxb�1

1þ kxð Þ½ �b
; ð61Þ

which is always decreasing with x if b B 1; first increasing, then decreasing with
time if b [ 1. In particular, in the latter case h(x) starts from h(0) = 0, then
reaches its maximum at x* = (1/k)(b - 1)1/b, then h(x) goes to zero as
x diverges.

It must be pointed out that also another, more popular model features these
properties of the hrf function, i.e., the Lognormal (LN) model. In fact, the LL
distribution—as also discussed in the above references [37, 40, 51]—shares
many properties with the LN distribution. The LL model is simpler analytically
than the LN one, but appears to be more difficult to estimate, while methods—
particularly the Maximum Likelihood (ML) one—for assessing the LN model
are well established. The mean value (which only exists if b [ 1) and the
standard deviation SD (which—as the variance—only exists when b [ 2) are
given by:

EðXÞ ¼ cp
bsin cpð Þ½ �; X½ � ¼ E X½ �CV X½ �; ð62Þ

where CV is the coefficient of variation, that in this case has the following
expression if b [ 2:

CV½X� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb=pÞtanðp=bÞ � 1½ �

p
: ð63Þ

It can be shown (see [51] for some graphical illustration) that the Skewness
coefficient of the LL model is positive and always larger than the corresponding
Weibull one, possessing the same CV value. Thus, the LL model possesses gen-
erally larger ‘‘tails’’ than the Weibull one with the same central parameters and this
may lead to underestimate the upper quantiles of the lifetime if a Weibull model is
fitted to data generated in fact from a LL model (this can happen, as shown in
[37]).

Such distribution may take its origin from a ‘‘Gamma mixture’’ of a Weibull
RV, as will be shown in Sect. 3.
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2.10 Lognormal Distribution

The Lognormal (LN) model [53] has become more and more popular in last years,
also in reliability applications. The LN pdf with parameters (n, d) and argument t is
given by:

f ðt; n; dÞ ¼ 1

dt
ffiffiffiffiffiffi
2p
p exp � 1

2d2 lnðtÞ � nð Þ2
� �

; ð64Þ

where 0� t\1; �1\n\1; d[ 0, being n ¼ E½lnðTÞ� and d2 ¼ Var½lnðTÞ�:
Denoting, as above, by U(z) and u(z) the standard Normal pdf and cdf,

respectively, the LN RF and hrf are as follows, respectively:

Rðt; n; dÞ ¼ 1� U
lnðtÞ � n

d

� 	
ð65Þ

hðt; n; dÞ ¼
u lnt�n

d

� �
td� tdU lnt�n

d

� �: ð66Þ

The behavior of the hrf is not easy to analyze, and was sometimes mistaken in
literature, so that specific papers were devoted to it (e.g., [150]). However, it is a
IDHR model: the hrf at first increases from zero, then decreases toward zero [53].
Differently from the LL model, the ‘‘change point’’ of the hrf cannot be evaluated
analytically (as in the BS model).

The mean and the SD are given by:

l ¼ expðn þ d2=2Þ ð67Þ

r ¼ l expðd2Þ � 1
� 1

2: ð68Þ

2.11 Weibull Distribution (Featuring also the Exponential Model)

The Weibull model (in particular, the two-parameter Weibull model) is quite
popular, probably the most popular model in reliability applications—since its
birth, in 1939, for application in mechanical engineering (e.g., fatigue life of steel).
Its popularity is due to two basic features: (1) its flexibility (e.g., the Gamma,
Normal and the Lognormal models can be satisfactorily approximated, under
many respects, by a suitable Weibull pdf; the hrf may be increasing, decreasing or
constant); (2) the fact that the Weibull belongs (as it was proved in 1945 by
Gnedenko) to the family of extreme-values distributions, being able to represent
the failure mechanisms of ‘‘chain-like’’ systems that fail when the weakest link is
broken [28].
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The Weibull model, in the form denoted as W(a, b), being a and b positive
parameters, has the following hrf, RF, pdf:

h xð Þ ¼ abxb�1 exp �axb
� �

ð69Þ

R xð Þ ¼ exp �axb
� �

ð70Þ

f xð Þ ¼ abxb�1 exp �axb
� �

: ð71Þ

Also an alternative parameterization, denoted as W0(h, b), is often used, in
which:

h ¼ 1=aj; j ¼ 1=b; b ¼ b ð72Þ

so that the RF is expressed by:

R xð Þ ¼ exp � x=hð Þb
h i

: ð73Þ

This latter formulation is the most adopted for expressing the mean and the
variance:

E X½ � ¼ hC 1þ 1=bð Þ ð74Þ

Var X½ � ¼ h2 Cð1þ 2=bÞ � l2: ð75Þ

As well known, the Exponential model is a particular case of the Weibull one.
Physical motivations for both of them will be discussed later.

Finally, the following relationship holds between Weibull and abovementioned
Gumbel model:

Y ¼ log Xð Þ ð76Þ

in which Y is a Gumbel RV and X a Weibull RV. This relationship is often useful
for parameter estimation.

2.12 Caveats About Using ‘‘Popular’’ Reliability Models

We close this section by noting that often only some simple analytical and/or
statistical considerations about probabilistic distributions are needed to select a
proper reliability model, or at least to exclude some of them from subsequent
analyses.

For instance, the use, and sometimes the abuse, of the ‘‘classical’’ Gaussian and
Weibull models is typical in power systems literature. For instance, in [107] these
two models are employed in order to represent HV cables LT data, with mean of
45 years and SD of 15 years. For such case-study, the Gaussian and Weibull
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models imply both RF and hrf which are very similar, and also extreme percentiles
can be shown to be fairly close (see also Sect. 5).

However, the adoption of a Gaussian model is at least questionable for no less
than three, very simple, reasons which are—rather surprisingly—often neglected
in literature:

1. A Gaussian random variable may always assume (even if with small proba-
bility, provided that the mean value is larger than three times the standard
deviation) negative values, and this fact makes such model theoretically not
suitable to describe LT values.

2. The Gaussian model is not flexible (its pdf can have only one shape, the well
known so-called ‘‘bell-shaped’’ one).

3. The Gaussian model has always a monotone hrf; it is indeed a IHR model,
regardless of the parameter values (this is another aspect of the lack of flexi-
bility of the model).

On the contrary, the choice of the Weibull model has some good theoretical
reasons supporting it for application to a LT distribution, e.g., the ‘‘Extreme
Value’’ theory, while also the Weibull model has a monotonic hrf; in particular, as
well known, such model belongs to one of the three families: IHR (if b[ 1), DHR
(if b\ 1), or constant hrf (b = 1). This kind of property may result unsatisfactory
for the purpose of describing the component reliability over large LT intervals, as
nowadays requested within the ‘‘life extension’’ programs of deregulated electric
market.

In authors’ opinion, such kind of motivations shows clearly that it is very useful
to identify the reliability model on the basis of both theoretical and ‘‘physical’’
reasons. The next section, about the so-called ‘‘physical reliability models’’,
illustrates the most adopted kind of physical motivations behind the identification
of a reliability model. Experience in power systems operation shows indeed that, in
many cases, failures are associated with ‘‘stresses’’, e.g., rated voltage and tem-
perature (that are steady) as well as overvoltages, fault currents, temperature and
mechanical stresses, etc. (that can occur randomly during component lifetime).
Fortunately, probabilistic aging and life models about endurance (‘‘strength’’) of
electrical components to stresses, are available, often from ‘‘accelerated tests’’. By
this way, it is possible to take advantage of available data on the physical processes
of stress and/or strength, according to what has been called an ‘‘indirect’’
assessment of item’s reliability—as discussed in [42].

A hint at ‘‘Inverse Gamma’’ and ‘‘Generalized Gamma’’ models
Since they are referred to in Sect. 3, and sometimes (not often) used in liter-

ature, only some hints at two kinds of ‘‘transformed’’ Gamma RV, i.e., the
‘‘Inverse Gamma’’ and ‘‘Generalized Gamma’’ models [96, 103] are given here.
Their pdf are not difficult to express by means of the well known rule of trans-
formations [134] and the reader may consult the references for more details.

Let X be a Gamma G(r, /) RV, then:

Y ¼ 1=X ð77Þ
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is a so-called ‘‘Inverse Gamma’’ RV. Now, letting k be a positive parameter, the
RV T defined as

T ¼ Xk ð78Þ

has a ‘‘Generalized Gamma’’ pdf.
The Inverse Gamma model has the following pdf, with argument y:

f ðy; r;/Þ ¼ /r

yðrþ1ÞCðrÞ expð�/=yÞ; y [ 0: ð79Þ

The Generalized Gamma model has the following pdf, with argument t:

f ðt; r;/Þ ¼ b/rtðrb�1Þ

CðrÞ expð�/tbÞ; t [ 0; ð80Þ

in which b = 1/k. Such model may be very useful in some applications, for
instance in selecting a proper model from data, since it implies the Gamma
(obviously, for k = 1) and the Weibull (for r = 1) as particular cases; moreover,
also the LN model is well approximated if r is large enough.

3 Identification of Probabilistic Life Models from Stochastic
Process of Wear

3.1 Outline of the Section: Inferring Probabilistic Life Models
From the Stochastic Process of Wear

This section and the successive ones are devoted to the IRA, i.e., to the lifetime
model assessment deduced or inferred from the knowledge of the probabilistic
laws of the stochastic processes of degradation and stresses which unavoidably
affect any device. Often, also the device ‘‘strength’’, i.e., the maximum stress
amplitude that the device is able to withstand before failing, is a RV or, in
general, a SP, due to the unavoidable randomness intrinsic in its aging, because
of uncontrollable variations from item to item in the manufacturing processes, to
randomness of environmental conditions, etc. (these aspects will be dealt with
more detail in relation to specific applications of the next section). The com-
bination of stress and strength is generically denoted under the name of ‘‘wear’’
in the following. The distinction between ‘‘continuous’’ and ‘‘discontinuous’’
wear or failure processes, although it may be useful sometimes (the ‘‘stress’’ or
‘‘shock’’ processes should be framed into the latter, according to some publi-
cations), is not maintained here, also because it is very difficult to define and
distinguish clearly the two kinds of processes, which, in fact, are superimposed
in practice. As already discussed, by means of the probabilistic knowledge of
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wear the model assessment can be performed by means of lifetime data analysis,
as in DRA. DRA should be, of course, always performed, but it cannot be at all
discriminatory among several ‘‘similar’’ models (e.g., the LN and the Gamma
one) when only a few data (say, less than 20) are available, as often occur in
practice. Needless to say, the IRA alone cannot be claimed to be the solution to
the problem of model assessment as well, a problem that is always very critical
within the reliability analysis of modern technology products, for which no
definitive solution can be easily found.

Indeed, it must be highlighted that IRA requires that the wear process be known
by prior information and/or be somewhat measurable, directly or indirectly (e.g.,
by measuring its effects on lifetime reduction of similar devices).

This is not always the case in practical applications, of course, so that, in
general, an adequate and feasible lifetime model assessment should be better
performed by a reasonable combination of both direct and IRA. Often this will not
bring to definite conclusions, but sometimes even the exclusion of some models in
favor of a restricted choice can be a useful result: this happens, for example, when
the allowable models are in practice very similar (as often happens, e.g., for the
LN and the IG one: see the final example of Sect. 5), so that ‘‘mistaking’’ one for
the other does not bring about remarkable errors (never forgetting the obvious
principle that the ‘‘only true’’ model does not exist).

However, the above possible limitations of IRA might be overcome for what
concerns the application of the chapter—illustrated in the following sections—
which are devoted mainly to electrical components (and, in particular, to elec-
trical insulation): indeed in this field the above requirement of the ‘‘measur-
ability’’ of stress and wear is mostly satisfied, also with the help of extensive
experimental surveys conducted by means of ALT. After many decades of
experience, such tests allowed to validate well-established models that relate
lifetime and applied stress (voltage, temperature, etc.), such as the popular IPM
[35, 51, 97]. In the next Sect. 3.2, general Stress-Strength (SS) models [99] are
reviewed. While describing such models, some reliability distributions (as those
already reviewed in previous Sect. 2) are directly obtained. Then, in Sect. 3.3, a
complete list of all the models of Sect. 2 together with their possible generative
mechanisms based upon degradation is illustrated: the list is by no means meant
to be exhaustive, but it only serves as a reference and for illustrating a meth-
odology. Some of the ‘‘dynamic’’ models here reported have been deduced
following the same approach as in a recent book by Singpurwalla [146]. Recent
accounts of SS and fatigue damage models, particularly devoted to mechanical
engineering applications (which were the origin of such models) can be found in
[22, 29, 158]. In [90], a generalized Stress-Strength model is considered with
reference to stochastic loading and strength aging degradation in a more general
way with respect to those dealt with here.

For the sake of brevity and simplicity, only a hint is made here at more complex
wear models such as those based on the advanced theory of SP, such as Wiener
diffusion processes [157], Gamma processes [1, 22, 45, 145, 153–155], Markov
and semi-Markov models of deterioration [44, 46]: most of such models were
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derived in the framework of Structural Reliability, and are still seldom adopted for
electrical devices. Advanced models for comparing DRA and IRA are exposed
with emphasis to the statistical estimation point of view in [110, 111], which
assume a measurable degradation process, also taking into account the measure-
ment error: it is shown that IRA is, under the assumed degradation model, more
efficient for estimating extreme quantiles of the LT distribution. In the same field,
a new formulation of degradation modeling with random coefficients models has
been recently proposed by [81], using the so-called Bernstein distribution in a
sensor-based prognostics framework, with the purpose of predicting residual life
distributions.

3.2 Stress-Strength Models

A classical family of models for ‘‘physical’’ reliability evaluation alternative to
probabilistic life models is made of the so-called probabilistic ‘‘Stress-Strength’’
(SS) models, based on the characterization of the stochastic process describing the
wear caused by random stresses [94, 99].

3.2.1 Static and ‘‘Quasi Static’’ Stress-Strength Models

Let us denote by X and Y the two random variables (RV):

• X: the ‘‘Stress’’.
• Y: the ‘‘Strength’’.

For instance, in the application to components insulation (see following sec-
tion), the random variable X (‘‘Stress’’) is the peak value of stress (voltage surge);
the RV Y (‘‘Strength’’) is the insulation electric strength. It is apparent that both
Strength and Stress are, in general, affected by randomness.

Then, in its simplest, ‘‘static’’ form, the SS model is based on the following
expression of the reliability function (RF), i.e.:

R ¼ P X\Yð Þ: ð81Þ

The model is ‘‘static’’ in that the mission time t does not explicitly appear and
only RV (X and Y) are used instead of SP, as would be more appropriate (see Sect.
3.2.3). This means that Strength and Stress are assumed as constant, although
random, in the time interval to which the RF is referred. So, the pdf of X and Y are
assumed as time-independent, or the mission time pre-determined; the more
realistic ‘‘dynamic’’ version of SS models is discussed later.

Denoting with f(y) (F(y)) the pdf (cdf) of Y, and with g(x) (G(x)) the pdf (cdf) of
X, the RF of the device is given—under the reasonable hypothesis that the RV
X and Y are statistically independent—by:
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R ¼
Z1

0

gðxÞP X\Y jX ¼ xð Þdx ¼
Z1

0

gðxÞ 1� FðxÞð Þdx: ð82Þ

In the above equations, time does not appear (at least in explicit form). Various
models derived from (82) are illustrated in the above and related references. The
analytical solution of (82) exists in a few cases, among which the ‘‘Weibull case’’
for X and Y is illustrated as an example here below.

3.2.2 Example: A Weibull Stress-Strength Model Leading to a Log-Logistic
Distribution

We use here as ‘‘quasi static SS model’’, i.e., a simple dynamic generalization of a
static SS model, obtained by letting some parameter vary with time. Let X and Y be
two Weibull RV with equal shape parameter b, and with scale parameters h for the
Strength X, and a for the Stress Y, i.e., let the cdf of X and Y be given, respectively,
by:

G xð Þ ¼ 1� exp � x=hð Þb
h i

; F yð Þ ¼ 1� exp � y=að Þb
h i

: ð83aÞ

As for time dependence, it is reasonable to consider- as proposed in [37]—the
following ‘‘Inverse power’’ characterization of the Strength scale parameter a with
time t, in which k and m are positive constants:

a ¼ aðtÞ ¼ k=tm: ð83bÞ

Indeed, since the expectation of Y is proportional to a—it is recalled that
l ¼ aC 1þ 1=bð Þ—relationship (83b) implies that Y decreases with time t as a
power function of t, a popular model in LT analyses, which will be met throughout
the chapter. Then, after easy computations shown in [37, 41], the following log-
logistic (LL) model [51, 96] is obtained:

R tð Þ ¼ 1
.

1þ ktð Þb
h i

; ð84Þ

where b ¼ mb; k ¼ ðh=kÞ1=m:
The LL model belongs to the IDHR or (less frequently) to the DHR family of

reliability models, depending on the value of the shape parameter b. Indeed, its
hazard rate function h(t) has the following expression:

hðtÞ ¼ bkbtb�1
.

1þ ktð Þb
h i

; ð85Þ

which is always decreasing with time if b B 1; first increasing, then decreasing
with time if b [ 1 (such properties were already discussed in more detail in Sect.
2.8, after Eq. 61).
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In fact, the LL distribution—as also discussed in the above references—shares
many properties, such as being IDHR, with the LN distribution. Although
appearing against intuition, the IDHR (or DHR) property has been sometimes
observed, as already recalled, for some electrical components, and has often been
motivated in theoretical reliability literature in relation with random heterogeneity
of materials or subjective probabilistic reasoning [10, 79, 109, 146].

3.2.3 Dynamic ‘‘Stress-Strength’’ Models

The static model is, of course, of limited application, for at least two reasons
implying a time variation of the pdf of stress and/or strength:

1. The stress X is always best described by a stochastic process in time [134, 151],
X(t), since many random variables (fault time occurrence, duration, amplitude,
location, etc.), most of which are time-dependent, are involved in its definition.

2. The strength Y(t) is generally decreasing in time due to aging effects. Being a
SP, the fact that Y(t) is decreasing in time must be defined on a probabilistic
basis, as discussed below.

For a typical example of item (1), one can imagine the stress process as con-
stituted by a succession of random ‘‘shocks’’ events which occur at random times:
T1, T2, …, Tn. This is denoted as a ‘‘Shock type’’ stress, which is the most common
one in the case of electrical systems (examples: overvoltages, short circuit
currents).

However, although quite common, the above ‘‘Shock type’’ stress process is not
the most general, as there always exists, in practice, an ‘‘ordinary’’ stress which is
continuous in time (i.e., caused by weather conditions, or also by nominal voltage,
etc.), upon which the Shock type Stress is ‘‘superimposed’’. A general view of
dynamic Stress-Strength Models allowing for the description of Stress or Strength
processes by means of continuous SP is given in the following.

Let us define the following stochastic processes:

• X(t) = ‘‘Stress’’ Process.
• Y(t) = ‘‘Strength’’ Process.

Then the RF over the interval (0, t) is given by:

R tð Þ ¼ P X sð Þ\Y sð Þ; 8 s in 0; tð Þ½ �: ð86Þ

Accordingly, the LT of the component—i.e., the RV here denoted by T—is
given by the first time instant at which the Strength is greater than the Stress:

T ¼ inf t : t [ 0; X tð Þ[ Y tð Þf g: ð87Þ

Some simple examples of Stress and Strength processes are illustrated below.
For instance, being of course the Strength process Y(t) closely related to the aging
of the device (possibly due also to the wear cumulated up to time t because of all
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previous shocks), it may be considered as a continuous process which is generally
decreasing in time, in a stochastic sense; i.e., denoting by (a, b) generic time
instants:

a\b! P Y að Þ[ y½ �[ P Y bð Þ[ y½ �; 8 y [ 0: ð88Þ

Equivalently, by introducing the cdf of Y(t):

Fðy; tÞ ¼ P YðtÞ\yÞ½ �; y [ 0; t [ 0: ð89Þ

Equation 88 may be written as follows:

a\b! Fðy; aÞ\Fðy; bÞ; 8 y [ 0: ð90aÞ

Sometimes, the milder condition may be imposed that Y(t) is decreasing in the
mean value sense, i.e.:

a\b! E YðaÞ½ �\E YðbÞ½ �: ð90bÞ

It is easy to show that (90a) implies (90b), but the converse is not generally true
except in some cases, as in the following example Sect. 3.2.4.

A stronger condition of decreasing Stress may be the a.s. (almost sure, i.e., with
probability = 1) one, i.e.:

a\b! Y að Þ[ Y bð Þ; a:s: ð90cÞ

Of course, this implies both (90a) and (90b).

3.2.4 Example: A Weibull Strength Model with IPM Time Variation

Based on already recalled extreme-value theory, the strength Y of a material can be
characterized by a Weibull distribution. Moreover, let us assume that the time
dependence of strength is contained in the scale parameter a, so that the time-
dependent cdf of the Stress is expressed by:

Fðy; tÞ ¼ 1� exp � y

aðtÞ

� 	b
" #

; y [ 0; t [ 0: ð91Þ

Moreover, let a = a(t) be decreasing in time, e.g.: a(t) = k/tm, as in the IPM
model. In this case, it is easy to see that both (90a) and (90b), hold; the first is
immediate, the second comes from the mean value expression:

E Y tð Þ½ � ¼ aðtÞC 1þ 1=bgr;ð Þ: ð92Þ

In the above Weibull example, the ‘‘a.s. decreasing Y’’ property is not assured.
Similar properties—‘‘mutatis mutandis’’—may be adopted for the Stress pro-

cess X(t) which may be considered as a continuous process, generally increasing
(in a stochastic sense) in time.
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3.2.5 Dynamic Stress-Strength Models with ‘‘Shock Type’’ Stress: A Cumu-
lative-Damage Model

As previously pointed out, stresses are often caused by repeated ‘‘shocks’’ (this is
indeed the case of overvoltages, fault currents, etc.), whose succession consti-
tutes a typical example of a stochastic process. Their effect may be cumulated or
not, depending on the kind of component (e.g., in the case of an insulation, this
may also depend on whether it is self-healing or not). So, let us consider a stress
process as constituted by a succession of random ‘‘shocks’’ events which occur
at random times: T1, T2, …, Tn,… This SP, denoted as a ‘‘Shock type’’ stress,
can be considered as a ‘‘point process’’ [134, 151] of random variables Zj (j = 1,
…, n,…) occurring at the random instants Tj (k = 1, …, n, …): i.e., the RV Zj

represents the stress amplitude associated with the shock event occurring at time
Tj. In practice, the stress ‘‘process’’, viewed as a continuous function of time t,
W(t), is always zero except for ‘‘spikes’’ (of negligible duration) with amplitude
Zk at times Tk. Moreover, also the number of events occurring in a given interval
(0, t) is random. So, let us denote by N(t) the following stochastic process:
N(t) = number of stresses occurring in the interval (0, t).

Due to the fact that the stresses (overvoltages) are purely accidental, a rea-
sonable hypothesis is that the process N(t) can be described by a (homogeneous)
Poisson process [43, 134, 140], so that its probability distribution is expressed by:

pðk; tÞ � P NðtÞ ¼ k½ � ¼ ð/tÞk

k!
expð�/tÞ k ¼ 0; 1; . . .;1; ð93Þ

where / is the mean frequency of occurrence of the event (i.e., the mean number
of shocks per unit time). The above Poisson model has always found many
applications for describing the fault process in the case of power systems [3, 5],
and here—for brevity—it will be the only one considered. Extension of SS theory
to non-homogeneous Poisson processes is dealt with, e.g., in [89]. Let us suppose,
as a typical case which finds many applications in literature (see, e.g., [2] for an
application to HV circuit breakers), a ‘‘cumulative wear process’’ and denoting by
ZK the stress amplitude at time TK, the total wear acting at the end of the interval
(0, t) on the component is given by the SP:

W tð Þ ¼
XN tð Þ

k¼0

Zk; if NðtÞ[ 0 ð94aÞ

W tð Þ ¼ 0; if NðtÞ ¼ 0: ð94bÞ

Of course, ZK is generally a RV, since its value cannot be predicted. So, the
wear process W(t) is characterized as a ‘‘Compound Poisson process’’ [134].

Let us suppose, for the moment, that the strength Y is not a RV, but it is a
constant y (time-independent). Since W(t) is an (almost surely) increasing function
of time—provided that the RV ZK are non-negative, as reasonable—and the fault
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occurs as soon as the total wear W(t) is greater than the strength y, the device
reliability function is, in term of the wear cdf:

R tð Þ ¼ P W tð Þ\yð Þ ¼ Fw y; tð Þ; t [ 0: ð95Þ

The probability distribution—and so the RF of (95)—of the process W(t) of
(93), (94) may be deduced as follows [134, 140], assuming as reasonable that
N(t) and the ZK are s-independent: let Qn be the whole damage conditioned to the
occurrence of a deterministic number, n, of stresses:

Qn ¼
Xn

k¼1

Zk: ð96Þ

Denoting by FQnðwÞ the cdf of Qn, the cdf of W(t), i.e., the probability of the
event W(t) \ w, is given—according to the total probability theorem—by:

FW w; tð Þ ¼ e�/t þ
X1
n¼1

FQnðwÞp n; tð Þ: ð97Þ

It is remarked that the above function depends both on wear magnitude, w, and
on the time instant t. Both w and t are positive. Only in some cases, the pdf of
W(t) can be expressed in analytical way (if not in a closed form), and this happens
only if it is assumed that the RV Zk are identically distributed and independent of
the process N(t); for example, if the ZK RV are exponential, then W(t) has a Bessel
distribution. However, if the variables Zk are independent, W(t) is a stochastic
process with independent increments; as t increases—according the Central Limit
Theorem—it approaches a Gaussian process [134]; the process mean and variance
can be obtained as follows, assuming—as above said—that the ZK RV are inde-
pendent, with equal mean and variance:

E ZK½ � ¼ lz; 8k V ZK½ � ¼ r2
z ; 8k: ð98Þ

Then, it is easy to show that the mean value of W(t) at time t is equal to:

E W tð Þ½ � ¼ lz/t ð99Þ

and the variance and the auto-covariance function CW [134] of the process W(t) are
given—denoting by (t, t1, t2) generic time instants—by, respectively:

Var W tð Þ½ � ¼ l2
z þ r2

z

� �
/t ð100Þ

CW t1; t2ð Þ ¼ u l2
z þ r2

z

� �
min t1; t2ð Þ: ð101Þ

For the purpose of the RF evaluation, the fact that W(t) approaches—according
to the Central Limit Theorem—a Gaussian process implies that the LT distribution
may be represented, at least approximately, by a ‘‘Birnbaum–Saunders’’ distri-
bution for the time to failure T, as will be highlighted in Sect. 3.3. Such model, as
recalled, is again IDHR. A more complete discussion of aging properties, for such
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cumulative models deriving from shocks, can be found in the classical book [10],
characterized by a superb level of mathematics.

The extension of (95) to the case when the strength Y is a RV, with (time-
independent) pdf g(y), is straightforward, still using the total probability theorem:

RðtÞ ¼ PðWðtÞ\YÞ ¼
Z1

o

Fwðy; tÞgðyÞdy: ð102Þ

In this case, the LT distribution is—under the above hypotheses—again IDHR,
being so the time-dependent integrand of (102).

3.2.6 Dynamic Stress-Strength Models with ‘‘Shock type’’ Stress: A me-
moryless Dynamic Stress-Strength Model

With reference to the general expression (81) of the RF over the interval (0, t), let
us assume that:

• X(t) is a SP which can be described as a ‘‘Shock type’’ stress.
• The shocks occurring at the time instants Tj.

The device fails only because of the occurrence of a stress, i.e., at the time
t = Tj when stress amplitude is greater than Strength Y(t) = Y(Tj); of course, such
failure time is a RV.

It is observed that, in order that the device does not fail in the whole interval
(0, t), then every Stress within the given interval must be smaller than the
relevant Strength, i.e., (Xj \ Yj) must be verified for every index j = 1, …, N(t),
where Xk = X(Tk), and Yk = X(Tk), Tk being the RV ‘‘time of k-th stress
occurrence’’.

The RF can be obtained first by conditioning on the event En = [N(t) = n]:

R tjEnð Þ ¼ P X1\Y1ð Þ \ X2\ Y2ð Þ \ � � � \ Xn\ Ynð ÞjEn½ �: ð103Þ

Note that R(t|En) is indicated as Rn in what follows.
Then, once the functions Rn have been computed, the RF R(t) can be obtained

applying the total probability theorem as a function of the Rns and of the distri-
bution of the point process N(t):

RðtÞ ¼
X1
n¼0

Rn tð Þp n; tð Þ; t [ 0; ð104Þ

where p(n, t) = P[N(t) = n]. In the following, the above introduced Poisson law
will be used, but the methodology is not dependent on such assumption.

In the model here hypothesized, both stress and stress are time-independent. In
this case, assuming also that the RV Xj (j = 1,…n,…) and Yj (j = 1,…n,…) are
statistically independent of each other and of N(t), then:
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Rn ¼ R tjEnð Þ ¼ P X1\ Y1ð Þ \ X2\ Y2ð Þ \ � � � \ Xn\ Ynð ÞjEnÞ½ � ¼
Yn

k¼1

P Xk\Ykð Þ:

ð105Þ

So letting
Qn

k¼1 P Xk\Ykð Þ ¼ rn; the RF is given by:

RðtÞ ¼
X1
n¼0

rn tð Þp n; tð Þ; t [ 0: ð106Þ

A simple case where the RF is analytically computable is when:

• the Xj are IID with common cdf GðxÞ ¼ FXðxÞ ¼ PðXj\xÞ; 8j ¼ 1; 2; . . .n; . . .
(independent of time) and pdf g(x);

• the Yj are IID with common cdf FðyÞ ¼ FyðyÞ ¼ PðYj\yÞ; 8j ¼ 1; 2; . . .n; . . .;
(independent of time), and pdf f(y);

Then:

rn ¼ rn; ð107Þ

where using the same approach as in (82), and denoting by X a generic one of the
Xj RV (and the same for Y and Yj):

r ¼ PðX\YÞ ¼
Z1

0

gðxÞ 1� FðxÞð Þdx: ð108Þ

Under the above hypotheses, the wear process can be defined as a ‘‘memory-
less’’ one, since wear at age t does not depend on previously occurred shocks. It is
possible that such model applies to self-healing insulating materials.

According to (106), by resorting to well known properties of series expansion
of the exponential function appearing in the assumed Poisson law p(n, t), the result
is straightforward:

R tð Þ ¼ exp �/t 1� rð Þ½ � ¼ expð�/qtÞ ð109Þ

having defined q as the elementary failure probability q = 1 -

r = P(X [ Y) = probability that the generic stress Xj is greater than the generic
strength Yj.

In the case that the Stress is a constant, y, then:

q ¼ 1� FXðyÞ ! RðtÞ ¼ exp �/t 1� FXðyÞð Þ½ �: ð110Þ

The above RF is clearly an Exponential one, i.e., it may be expressed as:

RðtÞ ¼ expð�ktÞ ð111Þ

with parameter k(hazard rate) = /q = (mean stress occurrence) 9 (elementary
failure probability).
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As an example, a particular case of interest is that in which the generic Strength
Xj has—as already used above—a Weibull cdf:

FX xð Þ ¼ 1� exp �axb
� �

; for x [ 0 ð112Þ

in this case, the RF of (110) has the following expression:

R tð Þ ¼ exp �ð/tÞexp �ayb
� �� �

ð113Þ

or alternatively, by setting s = 1/a1/b:

R tð Þ ¼ exp �ð/tÞexp �ðy=sÞb
� �h i

: ð114Þ

The above RF may be expressed as a function of the mean value m of the
Strength X, given by m ¼ E½X� ¼ sCð1þ 1=bÞ:

DRA and IRA are compared for this model, also in view of estimation, in [38].
In conclusion, it is highlighted that the illustrated SS model is, in this case,

characterized by a constant hazard rate. This fact—together with the IDHR
property of many models previously examined (LN, IG, IW, LL)—may appear at a
first sight conflicting with intuition, again, since one could expect that the presence
of stresses, whose number surely increases with time, implies an increasing hazard
rate. This confirms that a careful analysis of the hypotheses which yield the reli-
ability model may lead to non-trivial conclusions, difficult to be anticipated by
pure intuition. By the way, by means of the above SS model a further (and seldom
reported in literature) justification for the LT being an Exponential random vari-
able is obtained, which is to be added to those leading to the Weibull or the
Gamma model with shape parameter 1, examined in the following.

3.3 Identification of Main Probabilistic Lifetime Models by IRA

In this section, the same list of reliability models of Sect. 2 is considered, with
their generative mechanisms from wear processes. It is recalled that the identifi-
cation of the Exponential and the log-logistic model have been already deduced
previously (Sect. 3.2), so that they will be considered again here with different
motivations; also the Birnbaum–Saunders distribution has been hinted at before
(see the comment following Eq. 101).

3.3.1 Birnbaum–Saunders Model

The BS model [62, 63, 96]—sometimes denoted as ‘‘fatigue life’’ model—was
originally derived on the basis of a ‘‘discrete’’ stress process, accounting for
accumulating cracks on a material, which can cause its failure when a given
‘‘critical dimension’’, y, is overcome. Let the material be subjected to repeated
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cycles of a common stress, the single stress amplitudes being s-independent
Gaussian RV; so, using an approach similar to that used in Sect. 3.2.5, assuming a
‘‘cumulative wear process’’, and denoting by ZK the stress amplitude at k-th cycle,
the total stress after n cycles is of course

Wn ¼
Xn

k¼0

Zk; n ¼ 1; 2; . . .;1: ð115Þ

Then, the original BS model was obtained by observing that the ‘‘discrete’’
failure time N (i.e., the number of cycles after which the failure occurs) has the
following cdf (defined for discrete values of n in the set of natural numbers):

P N� nð Þ ¼ P Wn [ yð Þ ð116Þ

(it can be easily deduced, e.g., that the random events: (N [ n) and (Wn \ y) are
equivalent; then, considering the complementary events, the above relation is
obtained).

Assuming that the ZK RV are IID Gaussian RV, with N(a, b) distribution (a [ 0
for obvious reasons), or that they are in a high number so that the central limit
theorem holds, then Wn is a N(an, bHn) RV, so that:

P N� nð Þ ¼ 1� P Wn� yð Þ ¼ 1� U y� anð Þ
�

b
ffiffiffi
n
p� �

¼ U an� yð Þ
�

b
ffiffiffi
n
p� �

;

ð117Þ

where the known property of the standard Normal cdf: U(–x) = 1 - U(x) has been
used. It is remarked that the symbol n above denotes the ‘‘time’’ argument of the
cdf. Now, in the original deduction of the model, discrete time n was ‘‘trans-
formed’’ into continuous time t (this is somewhat incorrect, but can be roughly
justified by letting the cracks occurring at a constant rate r in time, so that n = rt),
then the following cdf can be easily obtained—with an understandable meaning of
the positive constants (a, b):

FTðt; a; bÞ ¼ U
1
a

t

b

� 	1
2

� b
t

� 	1
2

" #( )
ð118Þ

which is indeed a BS cdf.
The limits of the above derivation of the BS model were highlighted, e.g., by

[15], where it is correctly observed that a Gaussian RV can assume—even if with
small probability, by an adequate choice of the relevant constants—values less
than 0: so, the above stress model does not guarantee that Wn is an increasing
function of time n (indeed, a ‘‘negative-amplitude’’ crack can occur every now and
then), thereby resulting in a non-realistic model for accumulated stress. In [15], the
authors, by comparing the BS with the similar IG model (to be dealt with after-
wards), find the IG model superior in that it is free of the above limitations and
directly formulated in continuous time.
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However, as also reported in [96], Desmond [62] derived a more general form
of the BS model relaxing the hypothesis of Gaussian crack amplitude and of s-
independence. He showed that the BS pdf can be obtained by a mixture of two
appropriate IG pdf, too.

However, the BS model remains less attractive and less adopted than the IG
one, mainly because well-established estimation methods for the IG exist, while
only some ‘‘ad hoc’’ methods are available for the BS model.

3.3.2 Gamma Model (featuring also the Exponential model)

The Gamma G(r, /) pdf is given by:

f ðt; r;/Þ ¼ /rtðr�1Þ

CðrÞ expð�/tÞ; t [ 0: ð119Þ

Two main methods of deducing the Gamma model from wear processes are
presented here below at points (a) and (b), followed by the particular Expo-
nential model at point (c). Two (minor) transformed forms generated by the
model, denoted ‘‘Inverse Gamma model’’ and ‘‘Generalized Inverse Gamma
model’’, are only hinted at for brevity afterwards, when dealing with the LN
model.

1. It is well known [96] that a Gamma RV G(r, /), if r is a positive integer, can be
obtained as the sum of r Exponential statistically independent and identically
distributed RV with parameter /, which is also the value of their common,
constant, hrf. Although this motivation for its use appears to be rarely adopted
(apart from the particular case of an ‘‘Exponential unit’’ with r - 1 stand-by
redundant identical units), it can be advocated when the LT of the devices
passes through a series of s-independent ‘‘stages’’, each one lasting a time
interval which is distributed according the same Exponential RV. This may be
the case, e.g., when the device, starting from an initial ‘‘good’’ state, reaches the
failed state after a few ‘‘partial failure’’ states. In practice, however, it is dif-
ficult to imagine a situation in which all the stages have the same pdf (thus the
same value of parameter /) and are s-independent. On the other hand, if the s-
independence subsists, and the single-stage RV are Exponential RV with dif-
ferent values of the parameter /, the pdf of their sum has a closed form
expression [96], which can be approximated in many cases by a Gamma pdf,
even when the number of stages, r, is unknown (as realistic). In the general case
of unknown single pdf, with r high enough (say, r [ 5), the CLT may be a valid
reason for approximating the LT by a Gaussian RV. Indeed, it is true that the
Gamma model G(r, /) is closely approximated by the Gaussian one for r high
enough.

2. Although the following motivation appears to be rarely, if ever, highlighted in
literature (maybe for its triviality), the Gamma model may also be deduced by
means of a ‘‘cumulative wear process’’, i.e., the SP denoted as W(t) in Eq. 94a, 94b,
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as briefly accounted in the following. Let us suppose that the stress amplitudes
ZK at time TK—appearing in (94a)—are not RV, but possess the same constant
(deterministic) value. With no loss of generality—by choosing a proper stress
amplitude unit—it may be supposed that ZK = 1 for each k. Thus, the SP
W(t) simply equals the Poisson process N(t). Then, assuming—as in (95)—that
the strength Y has also a constant value y [ 0, the device reliability function is
given—from (95), using the Poisson distribution of (93), and denoting by r the
largest integer value smaller than y—by:

RðtÞ ¼ P NðtÞ\yð Þ ¼
Xr

k¼0

ð/tÞk

k!
expð�/tÞ: ð120Þ

This is a well known formulation—denoted as ‘‘Erlang’’—of the Gamma RF
[96]. It is easy to see indeed that also in this case, the time to failure is the sum
of r Exponential independent and identically distributed RV with parameter
(hrf) /, where / and r are positive constants representing the shape and scale
parameters, respectively.
In view of relaxing some of the hypotheses leading to the above model, it is
interesting to remark that the Gamma model has proven to be a satisfactory
approximation to the true model even in the case of random stress (ZK): this has
been shown numerically, in some cases, in [2], but cannot be, at present,
claimed to be always true.

3. (Exponential model) The above points also apply to the Exponential RV, when
the particular case r = 1 is considered. Moreover, at least two additional
deductions of the Exponential model, which appear more fundamental, must be
considered. The first is the classic one of the ‘‘memoryless’’ property, already
recalled, by which such model is the only one allowable for devices whose
failure is only due to accidents, with no regard to age. Indeed, the Exponential
model is the only one possessing a constant hrf, and so a CRF R(t|s) indepen-
dent from age s. The second deduction has been obtained as a consequence of
the particular Dynamic Stress-Strength Models with ‘‘Shock type’’ Stress of
Sect. 3.2.6. Moreover, the Exponential model can be obtained as a particular
case of the Weibull model with shape parameter 1, which will be considered
afterwards.

3.3.3 Gaussian Model

Despite its high popularity, it is difficult to justify the adoption of the Gaussian
model as a lifetime model, first of all because it is not restricted to positive values.
In addition, such model can be theoretically obtained only—by virtue of the CLT—
when the LT can be expressed as the sum of many s-independent RV. This is why
the peculiar cases already illustrated for the Gamma model G(r, /)—with r high
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enough—can be often approximated also by the Gaussian one, but actually there are
only drawbacks in doing so, for theoretical and practical (statistical) reasons already
presented, i.e., the non-positivity, the inadequacy in representing skewed pdf
(which are by far the most part of LT pdf occurring in the real world), and, in
general, the scarce flexibility of the model, also with reference to the hrf (which can
assume only a roughly linear form in time). It is also to be remarked that other, more
flexible models—such as the Gamma G(r, /), the LN [LN(a, b)], and the Weibull
W(a, b)—can also closely approximate symmetrical pdf, by an opportune choice of
their shape parameter values (the first if r [ 10, the second if b ? 0, the third if
b & 3.6). The CLT motivations can support the use of the Gaussian model as a
repair time model in availability studies that are outside the scope of this chapter.
Obviously, the Gaussian model fully maintains its well-established supremacy—
also in reliability applications—for what concerns inference studies (e.g., for
obtaining the distribution of statistical estimators, confidence intervals, etc.).

3.3.4 Gumbel Model

It is recalled that the Gumbel model is the ‘‘smallest extreme value’’ model, and
this constitutes also a clear motivation for its use, even if it might be in many cases
better advocated for systems rather than for components. From a statistical mod-
eling point of view, the fact that the hrf can have only one shape (the increasing
exponential one) is a limit of the model; at the same time, this may make it useful
for devices largely affected by wear with increasing age (such as mechanical
products; for the same reasons, also human being LT are often characterized by
this or similar models).

Instead of LT values, a physical reason for adopting the Gumbel model can be
found in the case of strength values. This may be the case when dealing with
dielectric strength of electrical insulation; indeed, the value of breakdown voltage
of a large-size insulation system may be considered as the minimum between the
values of breakdown voltage of smaller elements. Very significant applications in
this field, also comparing the Weibull and the Gumbel models (that can be used
both as a smallest extreme value model) are in [66, 87], the first also containing
physical properties which can justify the models.

3.3.5 ‘‘Hyperbolic Reliability Model’’

The HRM is characterized by the hrf:

h tð Þ ¼ r þ a

t þ 1
; a [ 0; r [ 0: ð121Þ

Erto and Palumbo [76] showed that the HRM identification can be performed
observing al least three mechanisms of failure leading to this law of mortality,
which they shown to be: (1) a ‘‘Deterioration’’ mechanism of failure; (2) a ‘‘Stress-
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Strength’’ mechanism of failure; (3) a ‘‘Shocks’’ mechanism of failure. For sake of
brevity, referring to the above paper for the first and second, only the third
mechanism is illustrated here. Let a device be subjected to a random succession of
shocks, which can potentially cause system failure; let the shocks occur following,
as discussed previously, a Poisson law:

Pr Ns ¼ nsf g ¼ dtð Þns

ns!
exp �dtð Þ; d[ 0: ð122Þ

Now, if the survival probability for each shock depends on the run time (but not
on the number of previously suffered shocks) following the law:

Sv tð Þ ¼ q� s
t þ 1

; 0\q\1; s[ 0; ð123Þ

then the probability of failure in a time interval Dt is:

Fðt þ DtÞ � FðtÞ ¼ RðtÞ
X1
i¼1

ðdDtÞ
i!

i
(

� expð�dDtÞ 1� Si
vðtÞ

� �� ð124Þ

from which

hðtÞ ¼ lim
Dt!0

Fðt þ DtÞ � FðtÞ
RðtÞDt

¼ d 1� Sv tð Þ½ �; ð125Þ

and substituting Sv(t) with its time-dependent function

hðtÞ ¼ d 1� qð Þ þ d s
t þ 1

: ð126Þ

Renaming the two products

d 1� qð Þ ¼ r; ds ¼ a; ð127Þ

the hrf in Eq. 121 is obtained.
As previously hinted at, an electrical application—relevant to the times-to-

breakdown of an insulating fluid, working at constant voltage equal to 32 kV—
was successfully illustrated by means of the HRM in [76].

3.3.6 Inverse Gaussian Model

Also, the IG model can be obtained from a ‘‘Stress-Strength’’ (SS) model arising
from a Wiener Stress process and a deterministic Strength. Indeed, as hinted at
previously, the IG distribution [34] has been introduced as the first passage time of
a Wiener process [134], i.e., a Gaussian Stochastic Process with independent
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increments. Let us hypothesize that the SP W(t) describing wear is a Wiener
process with ‘‘drift’’ l[ 0 and ‘‘diffusion constant’’ v [ 0. Then, W(t) satisfies the
differential equation:

�dW=dt ¼ lþ G tð Þ; ð128Þ

where l is a positive constant and G(t) is a Gaussian SP with the following mean
and covariance functions [134]:

E G tð Þ½ � ¼ 0; Cov G tð ÞG t � sð Þ½ � ¼ vd sð Þ ðv [ 0Þ: ð129Þ

If the wear process is defined by a stress characterized by the above Wiener
process and a deterministic strength b, the associated LT RV is defined by the first
instant, T, in which the SP W(t) crosses the barrier b, i.e.:

T ¼ inf t : t [ 0; W tð Þ ¼ bf g: ð130Þ

As shown in [34], the pdf of T—by a proper choice of the parameters l and k
(both having the dimensions of time), and letting, with no loss of generality,
b = 1—is given by:

f ðt; l; kÞ ¼
ffiffiffiffiffiffiffiffiffi
k

2pt3

r
exp � k

2l2t
ðt � lÞ2

� �
; t; l; k[ 0 ð131Þ

i.e., the above-mentioned IG pdf as in Sect. 2.
It has been already recalled in Sect. 2 that the IG and the BS models

are very similar, and this may be also justified by the above similar deriva-
tions from Gaussian wear processes; it is again highlighted that they are both
IDHR.

3.3.7 Inverse Weibull Model

The reliability function of the IW model is:

Rðt; a; bÞ ¼ 1� exp �ðatÞ�b
h i

: ð132Þ

Apart from deriving the abovementioned peculiar properties of aging of this
IDHR model, Erto [70] also showed that it can be originated by reasonable Stress-
Strength models and deduced at least two possible ‘‘physical’’ derivation of the IW
model, shown in the following.

1. (Stress is a Weibull RV and strength is a deterministic function of time) Let the
distribution of the RV stress, X—assumed as time-independent—be a RV
distributed according a Weibull W0(u, v) law, thereby having cdf:

FX xð Þ ¼ P X� xð Þ ¼ 1� exp � x=u½ �vf g b [ 0ð Þ: ð133Þ
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Let the strength y(t) be a deterministic decreasing function of time, described by
a process with an ‘‘inverse power’’ aging law as:

y ¼ y tð Þ ¼ k=th; h; k [ 0 ð134Þ

(a lowercase letter is used for strength y since it is not a RV here; h and k are
deterministic constants, even if unknown in practice); since X has the above W0(u,
v) cdf, the RF at time t is:

R tð Þ ¼ P y tð Þ[ X½ � ¼ FX y tð Þ½ � ¼ 1� exp � k
�

uth
� �� �v� 

¼ 1� exp � 1=ðatÞ½ �b
n o

: ð135Þ

This is indeed an IW model with parameters r and b both positive, assuming
b = hv and r = (u/k)1/h.

2. Strength is a deterministic constant, Stress is a Weibull SP, increasing in time)
In the same framework as above, let the strength y be a deterministic constant,
and let the stress X = X(t) be a random function (SP) of time, with Weibull
W(a, b) cdf—FX(x, t)—and time-dependent scale parameter a = a(t):

FX x; tð Þ ¼ P X tð Þ� x½ � ¼ 1� exp � x=a tð Þ½ �b
n o

b [ 0ð Þ: ð136Þ

Let us suppose that a(t) is an increasing power function of time:

a tð Þ ¼ ktm k;m [ 0ð Þ: ð137Þ

This second hypothesis implies, as reasonable, that the mean value of stress
increases with time, since, under the Weibull model:

E X tð Þ½ � ¼ aðtÞC 1þ 1=bð Þ ¼ ktmC 1þ 1=bð Þ ð138Þ

with b constant. Thus, the reliability function at time t is:

R tð Þ ¼ P X tð Þ� y½ � ¼ 1� exp � y=a tð Þ½ �b
n o

¼ 1� exp � y=ktm½ �b
n o

¼ 1� exp � 1=ðatÞ½ �b
n o

ð139Þ

in which the positive constants, a and b, have a clear meaning as functions of (b, k,
m, y). Again, T is an IW RV.

A final remark. Since all the above deductions appear to be coherent with the
known, measurable, properties of stress and strength of electrical insulation, in our
opinion they should stimulate new applications of this seldom adopted model. It
should also be remarked that they can lead to further justification of the already
recalled IDHR property observed sometimes, also in data obtained by ALT, for
such materials [93, 148].
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3.3.8 Log-Logistic (LL) Model (with a Hint at Burr Model)

Two methods of generating the LL model are hinted at here. Indeed, the LL model
has been already been deduced—as in [37]—in Sect. 3.2.2 in the framework of a
‘‘quasi static’’ Weibull Stress-Strength model. Moreover, it will be shown in the
last part of this section that it can be motivated by a mixture model deriving from a
Weibull W(A, b) RV, with random scale A. So, the model is characterized by a
conditional RF:

R tjAð Þ ¼ exp �Atb
� �

ð140Þ

with random scale parameter, A, distributed according an Exponential distribution.
As it will be shown when dealing with mixtures (Sect. 3.3.11), if A is an Expo-
nential RV with mean s, then, applying the total probability theorem, the uncon-
ditional RF R(t) deduced by the conditional RF above has indeed the following
expression, which is clearly seen to be coincident with a LL RF:

RðtÞ ¼ 1
1þ stb

: ð141Þ

Such model can be considered also as a particular case of the ‘‘Burr’’ model
(Sect. 3.3.11), and is still IDHR or DHR. Finally, it is observed that the LL model
appears to be very similar to the IW model, for which indeed an analogous
‘‘Stress-Strength model’’ motivation has been presented just above. More evident,
sometimes impressive, is the analogy with the LN model (including the IDHR
property with hrf decreasing toward zero). This analogy arises from the strong
similarity between the Gaussian and the Logistic model which give rise to the LN
and LL model, respectively, through the exponential function y = exp(x). In [37],
a very good approximation of the LL model was obtained, which worked satis-
factorily for the RF, the pdf and the hrf (while it is well known that it is very
difficult to approximate all these functions at the same time). This was also shown
by many graphs reported in the abovementioned paper, but should be tested with a
wider range of parameter values. The above approximation is obtained by the
simple method of equating the first and second moment of the logarithms of the LL
and LN RV, which of course uniquely determine the parameter values of the two
models (it is not practical to equate the simple moments of the two models, since
the LL does not possess the first moment if b \ 1, the second moment if b \ 2).

In some applications, when both models fitted well data, the LL has been
sometimes preferred to the LN for its simpler analytical expression (this is evident
especially for the hrf); on the other hand, the LN has no restriction on the
parameters for what concerns the existence of its moments, and possesses more
desirable properties from the parameter estimation point of view. Indeed, ML and
moment estimates are well established and readily available in the LN model,
while their deduction is cumbersome for the LL model; for the latter, even the
moment estimates can be problematic in view of the above restrictions on the
theoretical moments.
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3.3.9 Lognormal Model (with Some Reference to the ‘‘Inverse Gamma’’
and ‘‘Inverse Generalized Gamma’’ Model)

Many ways for deducing the LN model on theoretical grounds from wear pro-
cesses have been illustrated in literature, while—on the ‘‘practical’’ side—many
applied papers have shown its great capacity to fit experimental data from very
different fields (e.g., speaking of duration data, from the time to first marriage of a
person, to the microelectronics lifetime model). In fact, reliability theory is one of
the few fields in which the use of the LN model largely surmounts that of the
Gaussian model (from which the LN one was derived). Often, the LN model is
derived as a proper model for wear itself rather than for lifetimes (as also briefly
shown below). Its applications to LT distributions (as witnessed by [53]) are
however numerous, due especially to its flexibility: the Lognormal pdf is indeed
capable of assuming a large variety of shapes with positive skewness index, which
allows for typical large ‘‘right tails’’. In particular, Cox and Oakes [51] show that,
among the most popular models, the LN possesses one of the most high ‘‘skewness
coefficient’’ values for a given coefficient of variation (CV) value. Furthermore,
two properties that appear to be scarcely recalled improve its flexibility: (a) as
already hinted at, if the b (shape) coefficient of the LN(a, b) model is small enough
(in practice, b\ 0.3) the LN pdf tends to become symmetrical and may satis-
factorily approximate even a Gaussian model with the same mean [this fact can be
proved analytically, using the series expansion of y = exp(x) for x ? 0]; (b) the
CV, m, can assume a wide range of values: in particular—if b = 0.8325—the value
m = 1 is obtained, as for the Exponential model, to which the LN appears in this
case to be very similar, and often indistinguishable from it (this may explain also
its abovementioned applicability to microelectronics).

Also the ‘‘decreasing hazard rate’’ property of the Lognormal distribution for
large values of time is a desirable property, for instance in ALT and insulation
applications. The hrf properties of the LN (which is, it is recalled, a IDHR model),
its high variability and the presence of large right tails are perhaps the main
reasons for its being the most applied for repair times, as shown in power systems
literature [24, 159]. The above properties all account for the possibility of rela-
tively large times compared to their expected values: thus, the LN assumption may
also be justified by a ‘‘conservative’’ approach which seems very appropriate for
repair times (and, in general, for ‘‘waiting times’’) when the exact distribution is
unknown; such kind of properties, however, are still more evident for the less
known and less adopted LL model, which has indeed a higher ‘‘skewness coef-
ficient’’ value for a given CV value, as shown in [51].

All the above reasons and the rapidly growing literature on the model have
validated the authoritative forecast of two scholars such as Johnson and Kotz, who
in 1970 already stated that ‘‘it is quite likely that the LN distribution will be one of
the most widely applied in practical statistical work in the near future’’, as reported
in the preface to [53].

Only two significant models which may give origin to the LN model for LT are
presented here; by the way, they also can give rise—under different hypotheses—
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to the so-called ‘‘Inverse Gamma’’ and ‘‘Inverse Generalized Gamma’’ models, as
shown at the end of this section. A LN model for wear can also be the origin of a
BS model for the corresponding lifetime distribution, as shown in the end of the
present section.

Linear function Stress Process leading to the Lognormal model. In many cases,
it may be reasonable to express, or approximate over some time interval, Stress (or
Strength) by means of linear (random) functions of time (see [40, p. 103] for the
physical deduction of such models, with some examples beyond those here pre-
sented, as that of ‘‘alpha’’ pdf, including the effect of temperature as a stress
parameter in the Arrhenius model).

A linear Stress process may be written as:

X tð Þ ¼ Bt ð142Þ

being B, in the general case, a RV, with B [ 0 almost surely (a.s.), so that the
Stress is a.s. increasing in time (for this reason a Gaussian model, e.g., for the RV
B is not opportune).

As a simple example of a SS model with linear Stress process and a LN
Strength, let us consider the Strength model of last equation with B Lognormal-
distributed, and let Y also be Lognormal-distributed, and B and Y be independent.
Then, of course, the LT T is such that:

BT ¼ Y ! T ¼ Y=B: ð143Þ

Then, since the ratio of two independent LN RV is also a LN RV (this is indeed
the same property as that the difference of two independent Gaussian random
variables is also Gaussian), T is a LN RV, with parameters which can be obtained
very simply.

If the RV Y is deterministic (i.e.: Y = y, constant), then T is again a LN RV.
Power Function Stress Process leading to the Lognormal Model. Quite similar

results are obtained if stress X(t) is a ‘‘power function’’ of time such as:

X tð Þ ¼ Btc : ð144Þ

Let again B a Lognormal-distributed RV: also in this case, with a LN
strength Y, then the LT is again LN. This can be seen very easily recalling that,
if T is a LN RV, then also Th is a LN RV, whatsoever the real value of the
exponent h.

A hint at ‘‘Inverse Gamma’’ and ‘‘Inverse Generalized Gamma’’ Model. The
chance is taken here of giving at least a brief mention of two models, which are
defined in reliability or survival literature (e.g., in [103]), but are very seldom used.
A little diversion from the LN model will be allowed here, only because the two
models both appear similar to the LN one, also their deduction being similar. With
reference to the linear Stress process of point (1): X(t) = Bt with fixed strength y,
let us suppose that B is not LN, but Gamma-distributed (another reasonable
hypothesis, since this is an adequate model for positive quantities, and also flex-
ible). Then the LT, which is expressed as above:
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T ¼ y=B ð145Þ

is a so-called ‘‘Inverse Gamma’’ RV, already described in Sect. 2) and used until
now mainly as prior pdf in Bayesian estimation, e.g., for the MTTF parameter in
the Exponential model [113]. It is curious to notice that, if B is a G(r, ) Gamma RV
with r = 0.5, then T follows a particular form of the Inverse Gaussian model.

Finally, let us assume that the stress X(t) is a ‘‘power function’’ of time of the
kind:

X tð Þ ¼ Btc ð146Þ

and that B is again a Gamma RV. Under such hypotheses—with fixed strength y—
the LT is given by:

T ¼ y=Bð Þd ð147Þ

with d = 1/c, and Bd has a ‘‘Generalized Gamma’’ pdf (already described in
Sect. 2). Then T has a so-called ‘‘Inverse Generalized Gamma’’ pdf, which seems
to be never used before as a LT pdf. It was used by the authors as a prior pdf in
Bayesian estimation for some insulation reliability applications [39], and was also
used in relation with heterogeneity studies in statistics with applications to
economy (e.g., for the durations of unemployment spells).

3.3.10 Weibull Model (Also Featuring the IPM)

It is not difficult to deduce the Weibull model from wear process considerations,
also using its property of being a particular Extreme Value Distribution for
Minima. Here, the following simple derivation is proposed, in the framework of
Stress-Strength models, using the EV property not for LT itself, but for dielectric
Strength (as in [35]). By the way, the same procedure, as it will be seen, may yield
a theoretical justification for the well-known IPM, often used especially in ALT on
insulation, as discussed in [42, 131]; it is one of the most popular models—among
the many proposed since the seminal paper (devoted to survival analysis) by Cox
[50]—taking into account the effect of ‘‘covariates’’ (here, the stress, intended as
the applied voltage) on the lifetimes.

Let the Strength of the object (e.g., the breakdown voltage for insulation) be a
RV Y, and z be the applied constant (in time) stress (e.g., the applied voltage peak
value).

The random nature of device strength at time t is to be addressed to the lack of
homogeneity of the device material. In order to emphasize this fact in probabilistic
terms, let us suppose that the device can be considered (as reasonable for large-size
insulation) as a system constituted of a number n of homogeneous elemental
components. Denoting as Yi the strength of the ith elemental component (i = 1,
…, n), the strength Y of the device can be then expressed as a function of the RVs
Yi as it follows (omitting for the moment any relevant time dependence):
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Y ¼ min Y1; Y2; . . .; Ynð Þ ! P Y [ zð Þ ¼ P Y1 [ z; Y2 [ z; . . .; Yn [ zð Þ: ð148Þ

Such relationship holds in every fixed time instant t, and implies that the device
strength is determined by the strength of its ‘‘weakest link’’, or rather of the least
strong elemental component. In what follows, it is supposed that the RVs Yi are
statistically independent; in general, however, they will not be identically dis-
tributed. Of course, for such model to be realistic, number n has to be high (ideally,
infinite): this allows to get, under very general conditions, a probabilistic char-
acterization of Y resorting to the asymptotic theory of the extreme values [28].
Under general hypotheses, the limit cdf of Y is of the Weibull type, and it can be
expressed in the form:

FYðrÞ ¼ 1� expð�m � rkÞ; r� 0; m [ 0; k [ 0: ð149Þ

Parameters m and k are real and positive, and depend on the parameters of the
component distributions. Thus, in practice they must be estimated experimentally,
since in general the Yi RVs are not observable. For instance, relationship (149) is
verified if the component cdf are of the Gamma, Exponential, Beta, Weibull,
Pareto, etc., type, that is for most of the distributions that have a pdf ‘‘limited to the
left’’. Since a strength-type RV is intrinsically non-negative (as is in fact the case
of dielectric strength), and typically it has a domain (a, ?), the cdf of the Yi RVs
are of such type, too.

Let us now consider the time dependence of the distribution of the process Yt.
Such dependence will be clearly expressed by the time variation of the parameters
m (scale parameter) and/or k (shape parameter) with time. The expectation of the
above Weibull model, W(m, k), for the RV Y is expressed as:

l ¼ Hc � Cð1þ cÞ; where: H � 1=m; c � 1=k ð150Þ

and C(x) is the Euler-Gamma function.
From (150) it is not difficult to deduce that the mean l is a decreasing

function of m, while it is not a monotonous function of k. Since it has been
assumed previously that the strength is decreasing with time, its average value
will be decreasing with time as well. The simplest way for accounting of this
behavior—on the basis of what previously said about the l versus m relation-
ship—is to assume that the scale parameter m is an increasing function of time.
Moreover, if (149) has to match the properties of a cumulative distribution
function, it can be immediately noticed that the strength Yt has to be infinite in
t = 0 and zero in t = ?. This gives rise to the following conditions on the time
function m(t):

mð0Þ ¼ 0; mð1Þ ¼ 1: ð151Þ

Such conditions are satisfied by the following simple model:

m ¼ mðtÞ ¼ m0tb; m0 [ 0; b [ 0; ð152Þ

112 E. Chiodo and G. Mazzanti



where m0 and b are proper constants to be determined. If such model holds, the
time behavior of the mean value of strength in time is expressed by a function of
the type:

l ¼ lðtÞ ¼ l0=tp; l0 [ 0; p [ 0 ð153Þ

[in particular, l0 = (1 ? c)/(m0)c; p = bc].
By introducing (152) into (149), the distribution function of process Yt (for

r [ 0 and t [ 0) is obtained:

FYðr; tÞ � PðYt � rÞ ¼ 1� exp � m0tbrk
� �� �

ð154Þ

being m0, b, k [ 0.
Therefore—being z the constant stress applied to the device, the reliability

function of the device is obtained, using the above relations:

Rðt; zÞ ¼ PðYt [ zÞ ¼ 1� FYðz; tÞ ¼ exp � m0tbzk
� �� �

: ð155Þ

Equation 155 shows that the reliability function of the device is of the Weibull
type; in particular, the RV T follows a Weibull distribution with shape parameter
b [defined according to (152)] and scale parameter dependent on stress z, namely:
T * W(a, b), being:

a ¼ a zð Þ ¼ m0zk; ð156Þ

where b, m0, k are constants [0.
Parameter z is known for hypothesis (constant stress, e.g., applied voltage),

whereas constants b, m0 and k must be evaluated from available experimental data.
The above method leads to the same results if it is assumed that also the

(deterministic) stress z varies with time, if this happens by means of a ‘‘power
function’’ such as:

zðtÞ ¼ z0tq: ð157Þ

The statistical relationship between LT and stress z, expressed by (156) and
popular in experimental applications, is the above-mentioned IPM. This denomi-
nation comes from the fact that, according to such model, the mean lifetime varies
as a (positive) power of the inverse of stress; the same holds also for the per-
centiles of T. Indeed:

E½T � ¼ ð1=aÞC � Cð1þ cÞ ¼ a=zh ð158Þ

being

c � 1=b [ 0; a ¼ ð1=m0Þc Cð1þ cÞ[ 0; h ¼ c k [ 0: ð159Þ

An analogous relationship holds for the LT percentiles. Since h [ 0, the above
relationships clearly highlight the decrease of the expected duration with the
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increase of stress z, as well as relationship (155) points out the reduction of the
probability of survival as z increases.

Finally, it must be underlined that the IPM here introduced constitutes a
particular ‘‘proportional hazard model’’, as well as an ‘‘accelerated time model’’
[51], both widely applied in LT analysis, and validated by numerous statistical
tests.

3.3.11 A Hint at Other Models: Mixture Models, Featuring Burr and Ll
Models

It is obvious that the LT models are potentially infinite, as the possible ways of
constructing them by means of opportune wear models; e.g., even a very simple
wear model such as W(t) = A ? Bt, by choosing among the infinite couples of RV
A and B, and allowing for possible randomness of strength, can give rise to an
enormous variety of RF.

However, it should kept in mind that the problem of finding the ‘‘true’’ model is
insoluble and probably not very interesting from a practical point of view, as long
as the resulting models may often not be very different from already established
models, with the possible drawback of being characterized by too many parame-
ters to be useful for real applications, in view of the need to estimate those
parameters from few data.

So, also for reasons of space, only a peculiar family of models deduced from the
combination of two models is here sketched., i.e., the ‘‘Mixture models’’, based
upon a random hazard rate.

A large variety of models can be deduced indeed by allowing some parameter
of the LT pdf vary randomly among items, accounting for heterogeneity of
material or production process, or random variability of environment in which the
items operate. Theoretical studies on random hazard rate functions may be found
in [85, 143, 146]. A popular model was introduced, among others, by [109], i.e., a
model characterized by a ‘‘Proportional Hazard Model’’ [51] with random factor
Z accounting for the above randomness, so that for a given value of the RV Z, the
random hrf is written as:

h tjZð Þ ¼ Zhb tð Þ; ð160Þ

in which h(t|Z) denotes a ‘‘conditional’’ hrf, given the positive random factor Z,
and hb(t) is the ‘‘baseline’’, deterministic hrf. In particular, an analytical model is
proposed by [109], based on a conditional Weibull hazard rate with shape
parameter b:

h tjZð Þ ¼ Zbtb�1; t [ 0; b [ 0ð Þ: ð161Þ

For the random scale parameter characterization, positive RV such as the
Lognormal, Gamma and Inverse Gaussian distributions may be considered with
reasonable motivations [35, 36]. It is easy to show that, if Z has pdf g(z), the
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(unconditional) reliability function is given by the so-called [10] ‘‘mixture’’ of the
RF according to the pdf g(z):

RðtÞ ¼
Z1

0

exp �ztb
� �

gðzÞdz ð162Þ

which is the Laplace Transform of the g(z), evaluated in s = tb. Differentiation of
the log of R(t) leads to the unconditional hrf. In the mixture models denoted as
‘‘Weibull-Gamma’’ (meaning that Z has a Gamma distribution) and ‘‘Weibull-
Inverse Gaussian’’ (meaning that Z has an Inverse Gaussian distribution) analytical
results exist [36]. In particular, let us assume that Z is Gamma-distributed, with
pdf:

gðz; r; sÞ ¼ zr�1

srCðrÞexp � z

s

h i
z [ 0: ð163Þ

Then, it is easy to show, applying above relations, that the unconditional reli-
ability function and hazard rate are, respectively, given by:

RðtÞ ¼ 1
ð1þ stbÞr ð164Þ

hðtÞ ¼ rsbtb�1

1þ stbð Þ: ð165Þ

The above RF and hrf belong to a particular form of the so-called ‘‘Burr model’’
[96], already hinted at in Sect. 3.3.8. It is noticeable that such model coincides
with the already illustrated Log-logistic one when r = 1, as anticipated in Sect.
3.3.8.

It is, thus, remarked that in this chapter two peculiar (and completely different)
ways have been shown for deducing a LL model from a Weibull model: the first
was the SS model of Sect. 3.2 (example 3.2.2), this second is the one of mixture
models.

As already discussed, the LL hazard rate function h(t) possesses the following
properties:

• if b B 1, h(t) is decreasing in t, with limit value 0 (DHR model);
• if b [ 1, h(t) first increases—starting from h(0) = 0—then decreases toward 0

(IDHR model).

The particular case b = 1 (Exponential-Gamma mixture model) is also denoted
as ‘‘Lomax’’ or ‘‘Pareto of the second kind’’ [96, 109].

Noticeably, the above case b = 1 shows also a paradox discussed in literature
[10, 35, 79, 125, 136, 142], even if often neglected. It was already met, for the
discrete case, in Sect. 1.6. The (apparent) paradox is that the random variability of
the environment (Z factor) gives rise to a decreasing hrf (DHR), even though the
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individual hrf is constant over time. The paradox can be fully justified by sub-
jective probability reasoning [10, 136, 146]; it has also been explained in [125]
with new motivations.

Still more remarkable, perhaps, is the fact that, if b [ 1, the individual hrf are
increasing (IHR model), while the overall (unconditional) hrf is decreasing for
large t (IDHR model).

The above result also shows that DHR models remain, instead, DHR even after
any mixture, and also this fact is a general property [10].

The above and many more properties of mixtures of LT have been thoroughly
analyzed also in Mathematical Demography [86]. Recently, Singpurwalla (see
[146], chapter 7) provided new insight in the study of life distributions derived
from the characterization of the hrf as a stochastic process, motivated by the
randomness of the dynamic variability of environment.

For completeness, it must be added (even if it is well beyond the topics of the
present contribution) that the study of lifetimes influenced by a common random
environment provided further methods to explore the statistical dependence
between lifetimes of different components of a system [48, 54, 109]. This is a
crucial topic which arises naturally in reliability analysis of electrical power
systems, since—for obvious ‘‘physical’’ reasons—the components of such systems
can seldom be considered as really s-independent.

Finally, returning to the main point, it is noticeable that the LL model may be
obtained by a completely different approach from those presented previously.

3.3.12 A Remark on Non-Reliability Applications

Finally, it is noteworthy to remark—not only from an academic point of view—
that all the above-mentioned studies on wear process, diffusion processes,
Brownian motion, barrier crossings, etc., which were originated by motivations
coming from reliability theory, have stimulated new important studies in the
theory of stochastic processes, as witnessed by a recent paper by Cinlar [47],
which adds significantly to all his previously cited papers and books. Interesting
relations between reliability and biology (bio-mathematics) may be found, e.g.,
in the study of Ricciardi [137] on diffusion processes, which was referred to by
Ebrahimi [68] in his key paper on IRA. Ebrahimi used indeed a Lognormal ‘‘Ito
diffusion processes’’, typical of biology, as the basis for his methodology. Other
noticeable applications in Economy are discussed in [101, 146] among the
others.

Law of proportionate effect giving origin to the BS or LN model. A well-
known physical model for wear—first analyzed in mechanical engineering in
relation to fatigue crack growth process [53, 59]—considers a stress process acting
on a device at discrete times Tk, producing a succession of ‘‘cracks’’ on the
material, which can ultimately yield its failure when the crack size exceeds the
device strength. It is assumed a reasonable multiplicative effect—according to a
model denoted as ‘‘law of proportionate effect’’—on the component, such that the
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‘‘crack size’’ after the (k ? 1)th stress, Wk+1, is proportional to the previous crack
size Wk, according to the relation:

Wkþ1 ¼ Wk 1þ Zkð Þ; k ¼ 0; 1; . . . ð166Þ

being Zk a succession of non-negative, independent RV. It is easy to show that, as
time (thus index k) diverges, the succession of RV Wk converges to a LN RV,
according to the Central Limit Theorem applied to the logarithms of Wk. For
instance, assuming for simplicity (but these hypotheses can be relaxed) that the RV
Yk = log(1 ? Zk) are independent and identically distributed (IID) random vari-
ables with common mean l and common standard deviation r, then the RV
Lk = log(Wk/W0) is—if k is large enough—approximately Gaussian, and its mean
and variance are, respectively, kl and kr2.

So, if the device strength, y, is deterministic, and the failure occurs as soon as
the wear process overcomes y, it is easy to see—by introducing the log of both
wear and strength—that a BS model is obtained for the LT [103, 112]. A similar
model holds if strength is a LN RV (s-independent from stress).

If the failure, under this model, is not due to the ‘‘strength overcrossing’’, but
other hypotheses can be assumed for failure mechanism (as in [30], p. 33), then the
LT may be instead described itself by a LN model.

4 Probabilistic Life Models for Electrical Insulation

4.1 Basic aspects and main models for electrical insulation
reliability

As previously pointed out, the time-to-failure (life)10 of an insulation, or of a
component of which the insulation is a part, is a RV. Thus, it is always associated
with the relevant failure probability, namely the probability of failing under the
action of applied stresses, or, conversely, with the corresponding reliability,
namely the probability of withstanding the applied stresses and surviving. In fact,
aging and failure processes are regulated by stochastic laws, as demonstrated by
the fact that identical specimens manufactured with the same material, subjected to
the same levels of stresses, exhibit different failure times, because of the intrinsic
inhomogeneities of the materials, the uncertainties in the manufacturing processes,
the imperfect control of the test conditions and so on [127, 144].

In the particular case of electrical breakdown of solid insulation subjected to
applied voltage, a huge series of experimental tests have been conducted through

10 The term ‘‘life’’ is used throughout the present Sect. 4 for indicating the generic percentile of
the distribution of times-to-failure of an insulation, according to a very common practice in
electrical insulation literature since the very early times till now (see, e.g., [58, 65, 118, 127,
144]).
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many decades. The results of such tests, combined with sound mathematical
reasons related to the ‘‘Extreme Value’’ theory (which became more and more
popular since the fifties until our days), and the advances in physical knowledge of
the mechanisms of wear and stresses acting on insulation, have shown that the
probability distribution that has turned out to be the best for reproducing the
relationship between failure probability and life is the above-described Weibull
distribution [129, 130]. This model, indeed, seems to realize the already-men-
tioned desirable combination of DRA and IRA, in a process which is of course
dynamic and which, by means of modern literature [41, 87], is gaining further
contributions and investigations.

Under the Weibull distribution, the cumulative failure probability (cdf), F,
versus time t, is expressed—using for convenience the W0(a, b) parametric form—
as follows:

FðtÞ ¼ PðT � tÞ ¼ 1� exp � t=að Þb;
h i

ð167Þ

where a is the scale parameter and b is the shape parameter of the distribution: b is
linked to the dispersion of the times-to-breakdown, while a coincides with the
breakdown time at 63.2% failure probability, i.e., with the 63.2th percentile of
breakdown times. It must be highlighted that both parameters are function of the
stresses applied to the insulation, though the dependence of b is usually weaker
and is neglected in practice [119, 127]. Hence, by indicating with S1, S2, …, SN the
values of the N stresses applied to the insulation (assumed as constant with time) a
can be written as a = a(S1, S2, …, SN). As a consequence, equation (167) can be
rewritten as follows:

Fðt; S1; S2; . . .; SNÞ ¼ 1� exp � t

a S1; S2; . . .; SNð Þ

� �b
( )

: ð168Þ

From (168), by virtue of the meaning of a, and denoting by tF the 100 Fth
percentile of time-to-breakdown, the so-called ‘‘probabilistic life model’’ of the
considered insulating system can be derived, namely a relationship between life,
stress levels and failure probability (or, conversely, reliability) [126]. In order to
do that, Eq. 168 should be expressed in terms of tF:

tFðS1; S2; . . .; SNÞ ¼ �lnð1� FÞ½ �1=baðS1; S2; . . .; SNÞ ð169Þ

that is the expression of the probabilistic life model implicit in terms of the
stresses. It can be noticed that it enables the derivation, for any value of stresses S1,
S2, …, SN, of the relevant 100 Fth percentile of breakdown time, tF(S1, S2, …, SN).

Note that, for its statistical significance, the scale parameter a = a(S1, S2, …,
SN) of the Weibull distribution is commonly chosen as the reference percentile of
the distribution of failure times coming from breakdown tests on electrical insu-
lation. Any other failure time percentile can thus be derived from a = a(S1, S2, …,
SN) and b resorting to Eq. 169.
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Probabilistic life models are the fundamental tool for carrying out a reli-
ability analysis on the basis of laboratory test results only, before the compo-
nent is put in-service. Indeed, under the hypothesis that stress levels are
constant and fixed, probabilistic life models enable the estimation of key reli-
ability parameters and functions, such as the Mean Time To Failure (MTTF),
the hazard function and the reliability function of the insulation, thus of the
electrical device of which the insulation is the weakest part (and ultimately of
the power system which the device belongs to). In fact, from Eq. 168, the
reliability function at mission time t can be evaluated trivially via the following
RF R(t; S1, S2, …, SN):

Rðt; S1; S2; . . .; SNÞ ¼ 1� Fðt; S1; S2; . . .; SNÞ

¼ exp � t

aðS1; S2; . . .; SNÞ

� �b
( )

:
ð170Þ

Thus, failure rate at the same time t can be estimated via the following hazard
function:

h t; S1; S2; . . .; SNð Þ ¼ b
a S1; S2; . . .; SNð Þ

t

a S1; S2; . . .; SNð Þ

� �b�1

¼ btb�1

a S1; S2; . . .; SNð Þ½ �b
:

ð171Þ

Actually, in Eqs. 168–171 the functional dependence of the relevant reliability
model versus applied stresses is not fully assessed, until the functional dependence
of a on S1, S2, …, SN is not fully assessed; this is needed for the estimation of
reliability and related quantities. Such functional dependence can be explained
provided that the life model holding for the considered insulation (or component)
has been singled out.

4.2 Insulation life models

Life modeling of electrical insulation has the goal of determining the most
appropriate mathematical relationship (model) between the time-to-failure (life) of
a given insulation and the levels of the various stresses applied to such insulation
[119, 127, 144]. Therefore, referring to the 63.2% failure probability a life model
in its most general form can be expressed as follows:

aðS1; S2; . . .; SNÞ ¼ f ðS1; S2; . . .; SN ; p1; p2; . . .; pMÞ; ð172Þ

where p1, p2, …, pM are the model parameters and f (S1, S2, …, SN; p1, p2, …, pM)
is a proper mathematical function of model parameters and applied stresses.
Moreover, the functional dependence of the model on applied stresses and model
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parameters is generally such that relationship (172) can be recast trivially in the
following form:

aðS1; S2; . . .; SNÞ ¼ f S1;0; S2;0; . . .; SN;0; p1; p2; . . .; pM

� �

� f S1; S2; . . .; SN ; p1; p2; . . .; pMð Þ
f S1;0; S2;0; . . .; SN;0; p1; p2; . . .; pM

� �
¼ a0f 0 S1; S2; . . .; SN ; p2; . . .; pMð Þ

ð173Þ

where a0 = a(S1,0, S2,0, …, SN,0) = p1 is the 63.2th failure time percentile at
reference values of stresses S1,0, S2,0, …, SN,0 and is sometimes referred to as
‘‘scale parameter’’ of the life model [118]; f 0(S1, S2, …, SN; p2, …, pM) = f (S1,
S2, …, SN; p1, p2, …, pM)/f(S1,0, S2,0, …, SN,0; p1, p2, …, pM) is a dimensionless
function that encompasses the whole dependence of the model on applied
stresses.

Although the 63.2th percentile is usually chosen as the reference one of the
failure-time distribution obtained from breakdown tests on electrical insulation
(see Sect. 4.1), other life percentiles than the 63.2th could be considered (see
Eq. 169) and this would affect the value of a0 in (173) [119, 127, 144].

As it can be argued from (172) to (173), a life model valid for a certain
insulation provides life estimates for that insulation (or for the component which
the insulation belongs to) at selected levels of the applied stresses, on condition
that the values of the model parameters are known.

Insulation life models are commonly used first of all for characterizing and
comparing the endurance properties of various materials candidate for the reali-
zation of the insulation of electrical components. For a given insulating material,
the life model parameters are usually derived via laboratory tests performed on
small-size specimens, thereby achieving considerable time and cost savings with
respect to tests on full-size insulation systems.

Secondly, since insulation is often the weakest part of an electrical device (as
highlighted in Sect. 4.1) insulation life models can be employed also for inferring
the service life of power components. However, this requires an extrapolation of
test results and relevant model parameter values to the full-size insulation system
of the considered power component; this introduces a degree of uncertainty in life
estimation of the power component itself.

The extrapolation can be performed, e.g., via the statistical ‘‘enlargement law’’
[114–116, 129]. This law provides the relationship between full-size insulation
life, tD (at design values of applied stresses, S1,D, S2,D, …, SN,D, and failure
probability, PD) and test-size insulation life, a(S1,D, S2,D, …, SN,D) (at the same
values of S1,D, S2,D, …, SN,D, but at failure probability 63.2%, that is usually the
reference probability for test result processing, as pointed out above), namely:

tD ¼ aðS1;D; S2;D; . . .; SN;DÞ lnð1� PDÞ=D½ �1=b; ð174Þ

where D is the so-called enlargement factor. As an example, when dealing with
power cables, for test minicables of length lT, conductor radius rT, outer insulation
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radius RT, and power cables of length lD, conductor radius rD, outer insulation
radius RD, D can be written as [129]:

D ¼ lD=lTð Þ rD=rTð Þ2 1� rD=RDð ÞbE�2
h i.

1� rT=RTð ÞbE�2
h i

ð175Þ

where bE is the shape parameter of the Weibull probability distribution of
dielectric strength for both mini cables and full-size cables (bE is not affected by
the scaling process) [129].

On the basis of the enlargement law (174), Eq. 173 can be rewritten as follows:

tD ¼ a0f 0 S1;D; S2;D; . . .; SN;D; p2; . . .; pM

� �
� lnð1� PDÞ=D½ �1=b: ð176Þ

During the last three decades, the understanding of aging mechanisms for
insulating materials subjected to different types of service stresses has grown
continuously, leading to significant achievements. Such achievements go from the
development of ‘‘phenomenological’’ life models—able to fit failure time data for
various stresses (singly or simultaneously applied) and useful for deriving
parameters for material evaluation (see e.g., [78, 144])—to ‘‘physical’’ models—
that describe different physical–chemical mechanisms responsible for insulation
degradation under different types and/or ranges of applied stress (see e.g., [23, 64,
65]). All this information provides a considerable help at the design stage of a full-
size insulation, thus of an electrical component on the whole.

The introduction of normative references in IEC and IEEE publications (see
e.g., [91, 92]) regarding thermal, electrical, mechanical, environmental and mul-
tiple stresses support the maturity and the progresses obtained on this topic. Most
of the newly acquired knowledge is associated with the diffusion of polymeric
insulation and the requirement of increasing design stresses, in order to reach more
compact devices and reduce costs without affecting insulation system reliability,
as required by the deregulated electricity market (see above).

In the following part of this section, a few fundamental life models available in
the literature and employed for time-to-failure estimation of insulating materials
and systems are presented. Focus is made, for the sake of brevity, on electrical and
thermal stress, these being the stresses which mostly age and cause failure of the
insulation of electrical devices. When such models are inserted in the probabilistic
framework outlined at Sect. 4.1, reliability can be evaluated first of all in aprio-
ristic terms with respect to real operating conditions of insulating materials and
systems—that usually include time-varying stresses—i.e., on the basis of ‘‘rated’’
or ‘‘design’’ stress levels that are assumed as constant. This kind of indirect reli-
ability evaluation, illustrated in what follows of this section, provides however a
fundamental indication for the design of the insulating systems of power com-
ponents such as cables, capacitors, transformers and motors.

On the other hand, since power devices in their actual service conditions are
mostly—if not ever—subjected to time-varying stress levels, the need for a
‘‘closer-to-real-world’’ reliability evaluation for power components arises. For this
reason, some recent theoretical developments for IRA under time-varying
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stresses—relevant to daily load cycles and based on the ‘‘good-old’’ cumulative-
damage law of Miner [128]—are illustrated in Sect. 4.3.

4.2.1 Life Modeling Under Electro-Thermal Stress

The problem of insulation life modeling under the combination of electrical and
thermal stress (i.e., when both voltage and temperature are applied), referred to as
electro-thermal stress, was solved by combining two single stress-life models that
hold, respectively, when only either temperature or voltage is applied [78, 144]. It
is therefore convenient to review briefly these single stress-life models.

When only a constant temperature (thermal stress) is applied to insulation,
electrical breakdown does not occur, of course. Thus, failure is said to take place
conventionally when a selected diagnostic property, that has to be monotonous in
time and correlated to thermal degradation (e.g., dielectric strength, yield
strength, weight, density, etc.), reaches a proper end point, i.e., a fixed limit
beyond which the insulation is no more able to perform satisfactorily [92, 144].
The first studies of insulation aging regarded mainly endurance to thermal stress.
A fundamental approach was Dakin’s theory, dating back to 1948 [58],
according to which temperature speeds up the rate of thermally activated deg-
radation reactions (e.g., oxidation, cross-linking, etc.), thereby accelerating the
chemical aging of insulation. As a consequence, it can be shown that the log-
arithm of the time-to-end point, i.e., ‘‘thermal life’’, is inversely proportional to
absolute temperature, H [92], and that the 63.2th percentile of thermal life, a(H)
can be expressed as [127, 144]:

aðHÞ ¼ a0exp �B 1=H0 � 1=Hð Þ½ �; ð177Þ

where H0 is a reference value of absolute temperature, a0 is the 63.2th percentile
of thermal life at such reference temperature, B = DW/kB is a constant typical of
the material, DW being the activation energy of the main thermal degradation
reaction involved and kB = 1.38 9 10-23 J/K the Boltzmann constant. Equa-
tion 177 is referred to as the Arrhenius model.

For the Arrhenius model it is common practice to choose as the reference
temperature a value higher than the operating temperature of the insulation, e.g.,
the value that corresponds to a mean life of 20,000 h (such value in �C is
referred to as the ‘‘Temperature Index’’, TI) [92]. By this way, a0 is known and
fixed a priori, and the Arrhenius model is characterized by two parameters,
namely H0 and B. The model is usually represented in the so-called Arrhenius
graph, having coordinates log(life) versus –1/H, thereby giving rise to a straight
line of slope B, that enables the extrapolation from test to service temperatures.
In particular, B is very important: an insulation that exhibits a higher value of
B (for the same value of a0 and H0, being H0 higher than the service temper-
ature) features a longer life at temperatures lower than H0, i.e., down to the
service temperature of the insulation. Thus, the higher is B, the better is the
insulation [127, 144] (see Fig. 1a).
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International Standards have been established for evaluating thermal endurance
capabilities of insulating materials via indices such as the above-mentioned TI and
the HIC (Halving Interval in Celsius, the temperature difference giving rise to
halving of life, starting from the temperature of TI) [92].

When a fast-increasing voltage is applied to an insulation system, electrical
breakdown (i.e., the discharge of the whole insulation thickness) takes place as the
applied voltage exceeds a value typical of the considered insulation, the break-
down voltage; the relevant electric field is referred to as dielectric strength and
depends on several quantities [127, 144].

When a constant (in the rms sense) voltage only is applied to an insulation
system, the so-called IPM and Exponential model (EM) are mostly used for
expressing the relationship between applied voltage and time to breakdown
(electrical life). According to the IPM and the EM, the 63.2th percentile of
electrical life, a(E), can be expressed, respectively, as follows:

aðEÞ ¼ a0 E=E0ð Þ�n IPMð Þ ð178Þ

aðEÞ ¼ a0expð�hðE � E0ÞÞ EMð Þ ð179Þ

where E is the magnitude of electric field, also referred to as ‘‘electrical stress’’
(proportional to the applied voltage via trivial geometrical factors), E0 is the value
of electric field under which the aging produced by the electrical stress (i.e., the
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log(life) versus –1/H
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graph). b Inverse Power
Model in log(E) versus
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electrical aging) is negligible, a0 is the value of the 63.2th percentile of time-to-
breakdown corresponding to E0 (i.e., a(E = E0) = a0).

Equations 178 and 179 provide straight lines in log–log and semi-log coordi-
nate systems, respectively, with slopes -1/n and -1/h, if—as usual—E is in
ordinate and L in abscissa. Coefficient n (or h) is called Voltage Endurance
Coefficient (VEC). The VEC is a fundamental parameter for insulation charac-
terization and design (together with dielectric strength): indeed, for the same
values of initial dielectric strength ES0, an insulation that exhibits a higher value of
n features a longer life for electric field values below ES0. Hence, the larger the
VEC, the better the insulation endurance, i.e., its ability to endure electrical stress
(see Fig. 1b).

The IPM and the EM have essentially an empirical background, because most
of the ALT data can be fitted by straight lines in log–log or semilog plots (the
linearization of the stress-life relationship is needed to extract coefficients for
material characterization, as well as to derive design field estimation through
extrapolation from the results of ALT, carried out at stresses considerably larger
than the service one). However, both models can acquire a theoretical background;
in particular, the IPM was associated with a statistical approach based on the
Weibull distribution (as illustrated in Sect. 3.3.10 above) and was applied to power
cable insulation [130, 144].

By combining the Arrhenius thermal model (Eq. 177) and the IPM (Eq. 178),
the following ‘‘electro-thermal life model’’ was obtained [144]:

aðE;HÞ ¼ a0 E=E0ð Þ� n0�bcTð Þ
exp �BcTð Þ; ð180Þ

where a(E, H) is the 63.2th percentile of electro-thermal life, cT is the so-called
‘‘conventional thermal stress’’, defined as cT = 1/H0 - 1/H. Model (180), that
features four parameters (i.e., B and n0 for thermal and electrical endurance,
respectively, b for the extent of stress synergism, a0 as the scale parameter) was
fitted satisfactorily to several sets of data, relevant to different materials [119, 127,
144].

From the above considerations—and by comparing Eqs. 172, 173 with 180—it
can be concluded that, in the presence of electrical and thermal stresses only, a(S1,
S2, …, SN) reduces to a(E, H), that can be expressed through Eq. 180. Hence, by
inserting Eq. 180 into Eq. 169 one gets the following probabilistic electro-thermal
life model:

tFðE;HÞ ¼ �lnð1� FÞ½ �1=ba0 E=E0ð Þ� n0�b cTð Þ
exp �BcTð Þ ð181Þ

while from Eqs. 168, 170, 171, respectively, one obtains the relevant cumulative
failure probability, hazard and reliability functions:

Fðt; E;HÞ ¼ 1� exp � t

a0 E=E0ð Þ� n0�b cTð Þ
exp �BcTð Þ

" #b
8<
:

9=
; ð182Þ
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hðt; E;HÞ ¼ btb�1

aðE; TÞ½ �b
¼ btb�1

a0 E=E0ð Þ� n0�b cTð Þ
exp �BcTð Þ

h ib ð183Þ

Rðt; E;HÞ ¼ exp � t

a0 E=E0ð Þ� n0�b cTð Þ
exp �BcTð Þ

" #b
8<
:

9=
;: ð184Þ

Equation 184 represents a ‘‘physical reliability model’’ that can be used for
reliability estimation in the case of a typical solid insulation for MV and HV
subjected to electrical and thermal stress. It can be argued that it is a Weibull
reliability function, thus it is characterized by the relevant mathematical properties
illustrated at previous section.

4.2.2 Life Modeling in Distorted Regime

The electro-thermal life model of Eq. 180 holds for constant temperature and
either dc electrical field or sinusoidal field at industrial (or moderately higher)
frequency [119, 127, 144]. However, the ever-increasing diffusion of power
electronics and non-linear loads in power systems involves a consequent increase
in the level of harmonic distortion (both in current and in voltage). Current dis-
tortion gives rise to an increase in Joule losses in conducting parts, thereby raising
insulation temperature and accelerating thermal degradation. Voltage distortion
may increase the peak and/or the rms voltage and the rate of voltage rise with
respect to sinusoidal conditions; this can accelerate also the electrical aging of
components under distorted voltage [120, 121, 122]. Experimental tests and the-
oretical studies, carried out on different insulation systems subjected to various
distorted current and voltage waveforms, showed that insulation life under dis-
torted regime can be reduced with respect to life at rated sinusoidal voltage and
temperature mainly due to the temperature increase produced by harmonic currents
in conductors and electrical stress increase due to distorted voltage waveform [32,
122]. The parameters that weigh the severity of the distorted voltage waveform
with respect to the nominal sinusoidal voltage are the peak factor, Kp, the rms
factor, Krms, and the shape factor, Kf, defined as [32]:

Kp ¼ Vp=V1p;n ð185Þ

Krms ¼ V=V1;n ð186Þ

Kf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XH

h¼1

h2 Vh=V1;n

� �2

vuut ; ð187Þ

where Vp and V1p,n are peak values of distorted voltage and of rated sinusoidal
voltage, respectively, V and V1,n are rms values of distorted voltage and of rated
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sinusoidal voltage, Vh is rms value of the h-order harmonic and H is the maximum
order of harmonics occurring in the system. In the nominal sinusoidal regime,
Kp = Krms = Kf = 1, while in distorted regime Kp, Krms and Kf can exceed unity,
thereby causing an acceleration of electrical degradation.

It was shown in [32, 122] that the following electro-thermal life model holds
under distorted regime:

aNSðES;HSÞ ¼ aSðES;HSÞexpð�BDcTarmÞK�np
p K

�nf

f K�nr
rms ; ð188Þ

where aNS(ES, HS) is the 63.2th percentile of insulation life in a distorted regime
characterized by a rated sinusoidal rms electric field ES and a rated temperature
HS, aS(ES, HS) is the 63.2th percentile of insulation life in rated sinusoidal con-
ditions, np, nf and nr are exponents that account for the aging acceleration effect of
factors Kp, Kf and Krms, respectively, B is the above constant introduced when
dealing with the Arrhenius model and DcTarm is a quantity depending on the
temperature rise due to harmonics, DHarm, defined as:

DcTarm ¼ 1=HS � 1=ðHS þ DHarmÞ ð189Þ

being H = HS ? DHarm insulation temperature in distorted regime. By means of
(188), life in distorted regime can be related directly to life in nominal sinusoidal
conditions, pointing out the (possible) life reduction caused by current and voltage
harmonics.

Therefore, by assuming that the insulation system works in non-sinusoidal
regime and that the life model of Eq. 188 holds, then a(S1, S2, …, SN) reduces to
aNS(ES, HS), that can be expressed through Eq. 188. Hence, by inserting Eq. 188
into 169 one gets the following probabilistic electro-thermal life model for dis-
torted regime (in the presence of a rated fundamental sinusoidal component of
electric field having rms value ES and of a rated temperature HS):

tF;NSðES;HSÞ ¼ �lnð1� FÞ½ �1=baSðES;HSÞexpð�BDcTarmÞK�np
p K

�nf

f K�nr
rms : ð190Þ

By substituting Eq. 188 into Eqs. 168, 170, 171, respectively, one obtains also
the relevant cumulative failure probability, hazard and reliability functions,
respectively:

Fðt; ES;HSÞ

¼ 1� exp � t

aSðES;HSÞexpð�BDcTarmÞK�np
p K

�nf

f K�nr
rms

" #b
8<
:

9=
;

ð191Þ

Rðt; ES;HSÞ

¼ exp � t

aSðES;HSÞexpð�BDcTarmÞK�np
p K

�nf

f K�nr
rms

" #b
8<
:

9=
;

ð192Þ
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hðt; ES;HSÞ ¼
b

aNSðES;HSÞ
t

aNSðES;HSÞ

� �b�1

¼ btb�1

aSðES;HSÞexpð�BDcTarmÞK�np
p K

�nf

f K�nr
rms

h ib:
ð193Þ

Equation 192 represents a ‘‘physical reliability model’’ that can be used for
reliability estimation in the case of a typical solid insulation subjected to distorted
voltage. It can be argued that the reliability function follows again the Weibull
distribution, as in the sinusoidal case, given that b is constant with applied stresses,
as pointed out when dealing with Eq. 167.

In [121], the trend of failure rate versus aging time for a MV power cable
feeding a traction system with AC/DC 12-pulse converters, subjected to harmonic
voltages characteristic of the converters (i.e., essentially the 11th and 13th) at the
limits stated by Standard EN 50160, is reported. It is shown that, although the level
of voltage distortion complies with standard limits, nevertheless the reliability of
the cable can be severely affected by voltage harmonics. On the other hand, this
effect can be more than counterbalanced by a temperature significantly lower than
rated temperature, as it is mostly the case for components of the supply system of
electrical traction systems subjected to voltage and current harmonics.

4.3 Life Modeling Under Time-Varying Stress: The Case of Load
Cycles

Power components in their real service conditions are mostly—if not ever—sub-
jected to time-varying stresses. This involves the need for a ‘‘closer-to-real-world’’
reliability evaluation for power components, i.e., a reliability evaluation that
accounts for the time variation of operating stress. Generally speaking, this
problem is quite cumbersome.

However, it can be argued that a big deal of electrical devices—e.g., all the
components of power transmission and distribution grids—exhibit every day more
or less the same rms current and voltage values at the same hours, at least during
working days of a given period of the year, under typical operating conditions of
the users [118]. Thus, apart from the statistical fluctuations due to the random
time-varying nature of the supplied loads and the deterministic fluctuations
associated with the weekly and/or seasonal characteristics of the loads, such
components are subjected to daily load cycles. Moreover, applied rms voltage is
approximately constant with time—apart a generalized voltage increase when load
decreases and vice versa; such variations, however, under normal operating con-
ditions are within ±10% of rated voltage of components/systems. Thus, time
varying stresses are mostly associated with current variations in the form of daily
current/load cycles.
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As a consequence, component life (i.e., the generic 100 Fth percentile of time-
to-failure, tF, see footnote at Sect. 4.1) can be divided approximately into K equal
intervals. These intervals have all the same duration, tcycle = 1 day, and the same
relationship between rms load current, I, and cycling time, t [ [0, tcycle]. Then, tF
can be expressed as a simple function of K, referred to as the number of ‘‘cycles-
to-failure’’, namely:

tF ¼ K tcycle: ð194Þ

Daily load cycles can be thought of as a sequence of N equally lasting current
steps of height Ii (rms current value) and duration Dti = tcycle /N (i = 1, …, N), as
that sketched in Fig. 2 for N = 6 (a simplification of a typical load cycle of HVAC
cables). Let us refer to such cycles as ‘‘stepwise-constant’’ daily cycles. Stepwise-
constant daily cycles can reproduce satisfactorily every daily load cycle, on the
condition that a sufficiently high number of steps N is taken. Thus, only daily load
cycles of the stepwise-constant kind will be treated here.

Assuming as above that the weakest part of a power device is its insulation, the
predominant stresses acting on insulation in-service commonly arise from the
electric field associated with voltage (electric stress) and the temperature associ-
ated with Joule losses in conducting elements plus dielectric losses in the insu-
lation (thermal stress). Therefore, in general, the maximum stresses applied to a
power device are maximum temperature and electric field in the insulation. In this
framework, the life of a power device subjected to load cycles is assumed here to
end when its insulation fails because of the degradation caused by the maximum
stresses, that act all over its life as a consequence of a fixed stepwise-constant daily
load cycle.

As argued above, applied voltage is approximately constant with time. Hence,
maximum electric field can be hypothesized as steady and equal to its design
value, En. On the contrary, maximum temperature varies during each ith interval
Dti of the load cycle, due to the relevant variation of rms current. The temperature
rate-of-change depends on the difference between power losses in the present
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step—proportional to Ii
2—and in the previous step—proportional to Ii-1

2 —as well
as on heat storage and exchange properties of the layers that constitute the insu-
lation and its outer environment. The combination of these effects gives rise to a
thermal transient during which temperature varies starting from an initial value Ti,0

(the temperature at the beginning of Dti) and tending toward a steady value, Ti,?

(the regime temperature corresponding to a constant rms current Ii). The transient
temperature within each Dti can be derived by means of an ad hoc transient
thermal model (see, e.g., [117, 118] for power cables).

Every step Dti of the cycle can be then split into infinitesimal intervals, which
range from a generic time t to a subsequent time t ? dt. Thus, each infinitesimal
interval corresponds to one single value of transient temperature, Ti(t). Hence, the
fraction of life lost by component insulation during a given dt within Dti, denoted
as dLF, can be written as follows:

dLF ¼ dLF En; Ti tð Þ½ � ¼ dt

tF En; Ti tð Þ½ �; ð195Þ

where tF[En, Ti(t)] is insulation life at constant values of maximum electric field
and temperature, En and Ti(t), respectively. tF[En, Ti(t)] must be evaluated via an
electro-thermal life model valid for the insulation of the examined component
[117, 118], e.g., Eq. 180 for an insulation subjected to temperature plus sinusoidal
voltage.

According to Miner’s cumulative-damage theory [128], the sum of all life
fractions lost (referred to as ‘‘loss-of-life fractions’’ from now on) should yield 1 at
failure. Therefore, cable life can be estimated by applying (195) to every infini-
tesimal interval dt of each step Dti of the cycle and setting the sum of all the
relevant loss-of-life fractions at failure—in fact an integral—equal to 1. Thus, by
defining the loss-of-life fraction relevant to the ith step of the cycle, LFi, as:

LFi ¼
ZDti

0

dLF En; Ti tð Þ½ � ¼
ZDti

0

dt

tF En; Ti tð Þ½ � ð196Þ

a relationship that contains tF, i.e., cable life under the considered stepwise-con-
stant load cycle, and K, i.e., the number of cycles-to-failure (see 194) is achieved,
namely [128]:

ZL

0

dLF ¼ K
XN

i¼1

ZDtj

0

dLF En; Ti tð Þ½ �

8><
>:

9>=
>; ¼ K

XN

i¼1

LFi ¼ 1: ð197Þ

Now, K can be attained simply from (197):

K ¼
XN

i¼1

LFi

" #�1

ð198Þ
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and life tF can be inferred directly from (194), (198), by computing the various life
fractions LFi (i = 1, …, N) via (196). As this latter equation shows, such com-
putation is easy for stepwise-constant daily load cycles, provided that a life model
valid for cable insulation is available (see Sect. 4.2.1) and time functions Ti(t) can
be calculated [117, 118].

Percent life variation (possibly extension) of the power component under load
cycling, i.e., the percent variation of the generic 100 Fth percentile of component
time-to-failure under load cycling with respect to rated 100 Fth percentile of time-
to-failure at rated voltage and temperature, tF,n, can be evaluated by means of the
following quantity:

DtF;100 ¼ 100 tF � tF;n

� ��
tF;n: ð199Þ

The definition of DtF,100 accounts for the sign of the difference between esti-
mated life and rated life. Indeed, such difference is[0 in the case of life extension,
\0 in the case of life reduction with respect to rated life.

Note that DtF,100 of (199) is based on tF, which is derived through (198) by
considering thermal transients and electric stress plus electro-thermal synergism.

5 Model Selection in View of Aging Properties: A Numerical
Illustration

In order that the whole previous discussion does not appear to be purely academic,
it seems opportune to illustrate in this final section the advantages which can be
brought about by IRA, or else the drawbacks of a mere DRA, by means of practical
numerical examples relevant to real life data.

We start from observing that, for an adequate selection of the reliability model,
one must be aware that two or more models may often be—or appear to be—
similar. This is often the case, e.g., for the LN and Weibull models, as discussed in
literature [49, 51, 67, 104], especially as long as one is interested in the estimates
of ‘‘central’’ moments or percentiles (e.g., the median value). However, the same is
not true for lower LT percentiles, or hazard rate functions (hrf), which are of main
practical interest for characterizing the aging properties of the device [103, 124].
Here, some results are presented that were partly illustrated also by the authors of
this chapter in [42]. Let us consider for example (as indicated in Table 1) the

Table 1 Values of theoretical 1st, 5th and 50th percentiles, in years, under five different
reliability models with the same mean (45 years) and SD (15 years)

Model Normal Weibull Gamma Lognormal Inverse Gaussian

Percentile T0.01 (years) 10.10 12.65 17.54 20.06 20.05
Percentile T0.05 (years) 20.33 20.61 23.48 25.03 25.05
Median = T0.5 (years) 45.00 44.92 43.34 42.69 42.65
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theoretical value of the 1st and the 5th LT percentile T0.01 and T0.05—together with
the median T0.50—for five different reliability models having the same mean
(45 years) and SD (15 years), chosen as the typical values reported in [106] for
electrical insulation components. Here, it is denoted by Tp a LT value such that:
F(Tp) = p, being F(t) = 1 - R(t) the cdf of the LT, T. So, for instance, the per-
centile t* = T0.01 is the life span such that only 1% of the devices fails before t*.

It can be seen, looking at the values in the rows of Table 1, that very strong
differences are obtained for the above percentiles, especially between the above
discussed LN (and also IG) and Weibull models, or LN and Normal models. The
differences are larger (up to 100%!) for lower percentiles, while they are rea-
sonably small for the median values, as anticipated.

Moreover, very different behaviors of the hrf are obtained, as shown in Fig. 3
for three of the above models (i.e., Gamma, LN and Weibull). Such differences
become noticeable particularly after mission times near to the MTTF value
(45 years), namely an age that is being approached by many power system
components currently in-service.

On the contrary (as noticed in Sect. 2.2) the Gaussian and Weibull models with
same mean and SD possess generally extreme percentiles values which are very
similar, and the same is true for both RF and hrf. However, they share also the
drawbacks discussed in the same Sect. 2.12, among which we mention here again
the lack of flexibility with respect to the hrf behavior description.

Also, the LN and IG models are very similar, but this will be discussed later.
On the other hand, due to the popularity of the Weibull model it is interesting to

remark two undesirable consequences of the ‘‘wrong’’ assumption of a Weibull
model, when in fact a LN model is true:

1. The wrong assumption may cause unnecessary maintenance actions. Indeed, it
is known that typical age maintenance programs are opportune if and only if the
hrf is increasing in time [9, 83]: on the contrary, often the LN model (which is
IDHR) is mistaken for a IHR Weibull one.

2. The wrong assumption implies an improper under-estimation of the RF in the
lower tail, as confirmed by the above results on the 1st LT percentile T0.01
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(in particular, the Weibull model provides for such parameter an estimate
which is about one half of the ‘‘true’’ value). Of course, this under-estimation
may bring about unnecessary costs in view of maintenance actions.

As previously pointed out, such results—which are here discussed only in the
framework of probabilistic models—imply, in view of the statistical assessment of
a reliability model that, in practice, two or more different models may be often
undistinguishable, but in the presence of many data. Indeed, as well known from
statistical theory, many data are needed to efficiently estimate extreme percentiles,
but these are of course rarely available in this field, so that the model identification
is an unavoidable, difficult and very critical first step in any reliability analysis. In
view of data scarcity, the most useful way to perform such step is (when feasible,
as often happens in engineering applications) to use technological and probabilistic
information about wear and aging which unavoidably affect every power system
component.

On the other hand, fortunately some of the above models are very similar to
each other under many respects, especially—among those here considered—the
LN model and the IG model, as shown in Figs. 4 and 5, respectively, for the pdf
and hrf functions corresponding to the same values of mean (45 years) and SD
(15 years) as above. This happens also, often (but not always), as far as the LN and
LL models are concerned, as discussed in previous sections and in [37], too.

This kind of property may be exploited when the exact distribution is unknown,
but—as sometimes happens in the field of electrical insulation (see Sect. 2)—the
researcher knows that the aging mechanism gives rise to a decreasing hazard rate
for large mission times. For instance, often the LN distribution is used in such
cases because its parameters can be statistically estimated more easily with respect
to other models possessing similar characteristics [51].

While, above, differences in the hrf curves for some models were illustrated
(see Fig. 3), it is to be remarked that the differences in the CRF curves may be
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even more pronounced. This is shown, e.g., in next Figs. 6 and 7 showing the CRF
R(t|s) versus t, relevant, respectively, to an age of s = 5 and s = 35 years, for the
Weibull, normal, Log-logistic, Lognormal, Inverse Gaussian distributions with
same mean (45 years) and standard deviation (15 years), in order to appreciate the
differences that exist among the different models.

It seems that such comparison is very interesting, also because the CRF is
seldom reported, although possessing, in the authors’ opinion, a deeper ‘‘physical’’
meaning than the hrf (see Sect. 1.4). Its importance in view of proper maintenance
actions is understandable, and this is a key point in the necessity of an adequate
reliability model selection.

In the above discussion—as in the whole chapter—the problem of finding
statistical estimates of the relevant quantities (here, the percentiles and the hrf) has
not been addressed. In practice, the discussed differences between ‘‘similar’’
models may be even emphasized when the data are scarce, as pointed out and
illustrated in [104]. In these kind of analyses, characterized by lack of data and
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prior technological information, the authors believe that the Bayesian estimation
methodology [113, 146, 147] can be the most adequate tool, as discussed and
shown in [12, 39, 72, 73] with reference to electrical device reliability analyses.
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