
Chapter 6v.ya;t�a;a;pa;a;ta;pra;k+.=+Na;m,a
Vyatı̄pāta

6.1 v.ya;t�a;a;pa;a;ta;sa;}Ba;vaH
6.1 The possibility of vyat̄ıpātaA;keR +:ndõ ;ea;h� ;Ra;ya;tea ..Ea;k+:a ya;d;a;nya;a va;DRa;tea kÒ +:ma;a;t,a ÁkÒ +:a;�////�a;nta:$ya;ya;ea;~ta;d;a .sa;a;}yea v.ya;t�a;a;pa;a;ta;ea na ..a;a;nya;Ta;a 1 Á Á 1 Á Á;vEa;Dxa;ta;eaY;ya;na;sa;a;}yea .~ya;a;t,a l+.a;fH .~ya;a;de ;k+:ga;ea;l+.ya;eaH Á

arkendvorh̄ıyate caikā yadānyā vardhate kramāt |
krāntijyayostadā sāmye vyat̄ıpāto na cānyathā || 1 ||
vaidhr. to

′yanasāmye syāt lāt.ah. syādekagolayoh. |
Of [the two objects] the Sun and the Moon, when [the magnitude of the declination of] one
is decreasing and the other is increasing steadily, and when the [magnitudes of] the Rsines
of their declinations become equal, then it is vyat̄ıpāta and not otherwise; [The same is
called] vaidhr. ta if the ayanas are the same and lāt.a when the hemispheres are the same.

Condition for the occurrence of vyat̄ıpāta

Let δs and δm be the declinations of the Sun and the Moon at any given time. Then
the condition to be satisfied for the occurrence of vyat̄ıpāta is given to be

|δs| = |δm|, (6.1)

with the constraint that the variation in the two declinations should be having oppo-
site gradients. That is, if |δs| is increasing, |δm| should be decreasing and vice versa.
Such a situation is schematically depicted in Fig. 6.1.

1 The prose order of this verse is: ya;d;a A;keR +:ndõ ;eaH (ma;Dyea) O;;k+:a kÒ +:a;�////�a;ntaH kÒ +:ma;a;t,a h� ;a;ya;tea A;nya;a ..ava;DRa;tea ta;d;a (kÒ +:a;ntya;eaH) .sa;a;}yea v.ya;t�a;a;pa;a;taH A;nya;Ta;a na ..a Á
357
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Fig. 6.1 Positions of the Sun and the Moon during vyat̄ıpāta.

Occurrence of lāt.a and vaidhr. ta

In the Fig. 6.1, Z represents the zenith, P the north celestial pole, Γ the vernal
equinox and N the ascending node of the Moon’s orbit. The Sun is at S whose
declination |δs| = SF. M1, M2, M3 and M4 correspond to different positions of the
Moon, which lie in four different quadrants, at which

|δm| = M1A = M2B = M3C = M4D = |δs|. (6.2)

Out of these four positions of the Moon—since |δs| is increasing at S—only M2

and M4 correspond to vyat̄ıpāta, as |δM| is decreasing only at these two positions.
Moreover, it may be noted that when the Moon is at M2, the ayanas of the Sun
and the Moon are different but lie in the same hemisphere. Hence it is an instance
of lāt.a-vyat̄ıpāta. On the other hand, when the Moon is at M4, the ayanas of the
Sun and the Moon are the same (both are northerly). Hence this is an example of
vaidhr. ta-vyat̄ıpāta.

The commentary begins with the following avatārikā: 2O;;vMa .=+v�a;a;ndõ ;eaH g{a;h;Na;dõ ;yMa dx ;gga;ea;l+.
a;va;Sa;yMa .~å.pa;�;ta:=M :pra;d;a;ZRa;ta;m,a Á I+.d;a;n�a;Ma Ba;ga;ea;l+.
a;va;Sa;yMa ta;ya;ea;=e +vakÒ +:a;�////�a;nta;sa;a;}ya:ja;�a;na;tMa v.ya;t�a;a;pa;a;tMa :pra;d;ZRa;�a;ya;tua;ma;a;h Á
Thus the two eclipses of the Sun and the Moon, related to the observer-centred celes-
tial sphere (dr. ggola), were clearly demonstrated. Now in order to explain the concept
of vyat̄ıpāta—that arises owing to the equality of declinations of them [the Sun and the
Moon]—related to the geocentric celestial sphere bhagola, [the following] is stated.

2 The word avatārikā refers to succinct introductory remarks.
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6.2 Finding the declination of the Sun and the Moon.sMa;~kx +:ta;a;ya;na;sUa;yeRa;ndõ ;eaH kÒ +:a;�////�a;nta:$yea :pUa;vRa;va;�a;yea;t,a Á Á 2 Á Á

sam. skr. tāyanasūryendvoh. krāntijye pūrvavannayet || 2 ||
From the ayana-corrected longitudes (sāyana longitudes) of the Sun and the Moon, let
the Rsines of their declinations be determined as earlier.

In Fig. 6.2a, Γ is the vernal equinox, S the Sun, M the Moon and N1 its ascending
node. The meridian passing through the Sun meets the equator at G. If λs is the
longitude of the Sun at S, then its declination is given by

Rsinδs = Rsinε sinλs. (6.3)

The secondary to the ecliptic passing through the Moon intersects the ecliptic at I.
If λm and δ ′ are the longitude and declination of this point, then considering the
triangle Γ IJ and applying the sine formula we obtain

Rsinδ ′ = Rsinε sinλm. (6.4)

It is the LHS of (6.3) and (6.4) that are referred to as Rsines of the declination
(krānti-jyā) of the Sun and the Moon in the above verse. Though (6.4) does not
give the actual declination of the Moon, which will be derived in the subsequent
sections, it can be taken as a reasonable approximation when the latitude of the
Moon is small. In fact, as we will see in the next section, the derivation of the actual
expression for the Moon involves the declination of the point I given in (6.4) and
that’s precisely the reason for Nı̄lakan.t.ha’s statement that it may be determined as
earlier.6.3 ..a;ndÒ +~ya I+.�;kÒ +:a;ntya;a;na;ya;nea ;
a;va;Zea;SaH
6.3 Speciality in the determination of the desired declination of

the Moon:pa;a;ta;ea;nea;nd;ea;BRua:ja;a .j�a;a;va;a :pa:=+ma;[ea;pa;ta;a;
a;q+.ta;a Á;
a:�a:$ya;a;Ba;�+:a ;
a;va;Da;eaH [ea;paH ta;tk+:ea;�a;f;ma;
a;pa ..a;a;na;yea;t,a Á Á 3 Á Á:pa:=+ma;a;pa;kÒ +:ma;k+:ea;f�a;a ;
a;va;[ea;pa:$ya;Ma ;�a;na;h;tya ta;tk+:ea;f�a;a ÁI+.�;kÒ +:a;�////�a;ntMa ..a;ea;Bea ;
a:�a:$ya;a;�ea ya;ea;ga;
a;va:=+h;ya;ea;gyea .~taH Á Á 4 Á Á.sa;
a;d;Za;eaH .sMa;yua;�a;ta:=+na;ya;eaH ;
a;va;yua;�a;ta;
a;vRa;
a;d;Za;ea:=+pa;kÒ +:maH .~å.pa;�H Á.~å.pa;�;a;pa;kÒ +:ma;k+:ea;�a;f;dùÅ;aRu :$ya;a ;
a;va;[ea;pa;ma;Nq+.le va;sa;ta;a;m,a Á Á 5 Á ÁI+.tyua;�+:a:�a .~å.Pu +.f;a kÒ +:a;�////�a;ntaH gxa;hùÅ:a;ta;Ma ga;ea;l+.
a;va:�a;mEaH Á
pātonendorbhujā jivā paramaks.epatād. itā |
trijyābhaktā vidhoh. ks.epah. tatkot.imapi cānayet || 3 ||
paramāpakramakot.yā viks.epajyām. nihatya tatkot.yā |
is. t.akrāntim. cobhe trijyāpte yogavirahayogye stah. || 4 ||



360 v.ya;t�a;a;pa;a;ta;pra;k+.=+Na;m,a Vyatı̄pāta
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Fig. 6.2a Finding the declinations of the Sun and the Moon.

sadísoh. sam. yutiranayoh. viyutirvidísorapakramah. spas.t.ah. |
spas.t.āpakramakot.irdyujyā viks.epaman. d. ale vasatām || 5 ||
ityuktātra sphut.ā krāntih. gr. hyatām. golavittamaih. |
The Rsine [of the longitude] of the node subtracted from [the longitude of] the Moon,
multiplied by the maximum deflection [of the Moon’s orbit] and divided by the trijyā,
gives the latitude of the Moon (β ). Let the Rcosine of it also be obtained.

Having multiplied the Rsine of the latitude of the Moon (the viks.epajyā) by the cosine
of the maximum deflection [of the ecliptic from the equator], and having multiplied the
Rcosine of that (the latitude of the Moon) by the [Rsine of the] desired declination [of the
Moon determined earlier], the two [products] divided by the trijyā are readily suited for
addition or subtraction.

If these two are in the same direction then they must be added, and if they are in different
directions then their difference must be found. [Now] the true declination [of the Moon is
obtained]. The Rcosine of the true declination will be the day-radius (dyujyā) for those
residing in the viks.epaman. d. ala. Let the process of the [determination of] true declination
[of the Moon] thus explained be understood by the experts in the spherics.

Considering the triangle PKM in Fig. 6.2b and applying the cosine formula, we
have

cosPM = cosPK cosKM + sinPK sinKM cosPKM. (6.5)

Let λm, β and δm be the longitude, the latitude and the declination of the Moon.
Then

KM = 90−β and PM = 90− δm. (6.6)

P and K being the poles of the equator and the ecliptic, the arc PK = ε . Γ is the pole
of the great circle passing through K and P. Therefore

Γ K̂P = 90 and PK̂M = 90−λm. (6.7)
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Using (6.6) and (6.7) in (6.5) we obtain

sinδm = cosε sinβ + sinε cosβ sinλm. (6.8)

This is the true declination of the Moon with latitude β . The krāntijyā of the Moon
denoted by δ ′, and given by (6.4), is the declination of a point on the ecliptic which
has the same longitude as the Moon (point I in Fig. 6.2a). It can be easily seen that
the RHS of (6.8) reduces to the RHS of (6.4) when β = 0. Now, using (6.4) in (6.8),
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Fig. 6.2b Determination of the true declination of the Moon.

we have
sinδm = cosε sinβ + cosβ sinδ ′. (6.9)

This is the formula for the true declination (spas.t.āpakrama) of the Moon given in
the verses, where it is stated in the form

|Rsinδm| =
Rcosε |Rsinβ |

R
+∼

Rcosβ |Rsinδ ′|
R

. (6.10)

The value of the latitude of the Moon (β ) used in the above equation is found by
using the formula

sinβ = 270× sinλm, (6.11)

where the inclination of the Moon’s orbit with the ecliptic is taken to be 270 minutes.
Further, it may be noted from Fig. 6.2 that, when β and δ ′ are in the same direction,
then the two terms are to be added, and if they are in different directions, that is,
if sinβ and sinδ ′ have opposite signs, then |sinδm| would be the difference of two
positive terms. This is what is mentioned in the first half of verse 5 in the text, and
is indicated by +∼ in (6.10).
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In a passing remark the text also mentions that: ‘The Rcosine of the true decli-
nation will be the day-radius (dyujyā) for those residing in the viks.epaman. d. ala’.
Here, the term viks.epaman. d. ala refers to the declination circle of the Moon whose
radius is given by

dyujyā = Rcosδm =
√

R2 − (Rsinδm)2. (6.12)6.4 I+.nd;eaH :pra;k+:a:=+a;nta:=e +Na kÒ +:a;ntya;a;na;ya;na;m,a
6.4 Determination of the declination of the Moon by another

methodA;Ta;va;a kÒ +:a;�////�a;nta:=+a;nea;ya;a :pa:=+kÒ +:a;ntya;a 3 ;
a;va;Da;ea:=+
a;pa Á Á 6 Á Á:pa:=+ma;[ea;pa;k+:ea;�a;f.Èåî ÁÁ*+M ;Æa:ja;na;Ba;a;ga;gua;NMa h:=e +t,a Á;
a:�a:$ya;ya;a [ea;pa;vxa:�eaY;~ya na;a;Byua;.C" +.ya I+.h;a;pya;tea Á Á 7 Á Á:pa;a;ta;~ya .sa;a;ya;na;~ya;a;Ta d;eaHk+:ea;�a;f:$yea o+.Bea h;tea Á;Æa;[a;�ya;a :pa:=+ma;ya;a ;
a:�a:$ya;a;Ba;�e .~ya;a;ta;Ma ..a ta;tP+.le Á Á 8 Á ÁA;ntya;dùÅ;au :$ya;a;h;tMa ta:�a k+:ea;�a;f:jMa ;
a:�a:$ya;ya;a h:=e +t,a Ána;a;Byua;.C" +.yea ..a ta;t,a .~va;N a mxa;ga;k+:k�+.a;Ra;
a;d :pa;a;ta:ja;m,a Á Á 9 Á Áta;dõâ â ;a;hu ;P+.l+.va;gERa;k�+.a;mUa;lM kÒ +:a;�////�a;ntaH :pa:=+a ;
a;va;Da;eaH Á;
a:�a:$ya;a.Èåî ÁÁ*+M d;eaHP+.lM Ba;�M ta;ya;a ..a;l+.na;ma;a;ya;na;m,a Á Á 10 Á Á.jUa;k+:
a;kÒ +:ya;a;
a;d;gea :pa;a;tea .~va;N a ta;t,a .sa;a;ya;nea ;
a;va;Da;Ea Áta;dõâ â ;a;hu :$ya;a h;ta;a kÒ +:a;ntya;a ta;d;a :pa:=+ma;ya;a .~va;ya;a Á Á 11 Á Á;
a:�a:$ya;a;�a;a;pa;kÒ +:ma:$yea;nd;eaH .~å.Pu +.f;a ta;a;tk+:a;�a;l+.k
 +:a Ba;vea;t,a Á
athavā krāntirāneyā parakrāntyā vidhorapi || 6 ||
paramaks.epakot.ighnam. jinabhāgagun. am. haret |
trijyayā ks.epavr. tte

′sya nābhyucchraya ihāpyate || 7 ||
pātasya sāyanasyātha doh. kot.ijye ubhe hate |
ks.iptyā paramayā trijyābhakte syātām. ca tatphale || 8 ||
antyadyujyāhatam. tatra kot.ijam. trijyayā haret |
nābhyucchraye ca tat svarn. am. mr. gakarkyādi pātajam || 9 ||
tadbāhuphalavargaikyamūlam. krāntih. parā vidhoh. |
trijyāghnam. doh. phalam. bhaktam. tayā calanamāyanam || 10 ||
jūkakriyadige pāte svarn. am. tat sāyane vidhau |
tadbāhujyā hatā krāntyā tadā paramayā svayā || 11 ||
trijyāptāpakramajyendoh. sphut.ā tātkālik̄ı bhavet |

Otherwise the [true] declination of the Moon may be obtained from its maximum declina-
tion. The Rsine of 24 (degrees) multiplied by the Rcosine of maximum inclination is divided
by the trijyā. The quantity obtained is called the nābhyucchraya of the ks.epavr. tta.

The Rsine and the Rcosine of the sāyana longitude of the node, multiplied by the maximum
deflection [of the Moon’s orbit] and divided by the trijyā, will be those phalas [i.e. the

3 In another reading of the text, we find the term .~å.Pu +.f;kÒ +:a;�////�a;nta instead of :pa:=+kÒ +:a;�////�a;nta Á That the latter
is correct gets confirmed from the procedure and formulae given in the text. The commentator

Śan. kara Vāriyar has also adopted the reading :pa:=+kÒ +:a;�////�a;nta Á
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doh. phala and the kot.iphala]. Of them, the kot.iphala is multiplied by the Rcosine of
the maximum declination of the Sun and divided by the trijyā. The result is added to or
subtracted from the nābhyucchraya depending upon whether the [sāyana] longitude of
the node lies within six rāśis beginning with Mr. ga or Karkat.aka. The square root of the
sum of the squares of that and the doh. phala is the maximum declination of the Moon.

The doh. phala multiplied by the trijyā and divided by that [i.e. the quantity obtained above]
is defined as the ayanacalana [of the Moon]. This has to be added to or subtracted from
the sāyana longitude of the Moon depending upon whether the node lies within six rāśis
beginning with Libra (Jūka) or with Aries (Kriyā). The Rsine of that is multiplied by
the maximum declination and divided by the trijyā. The result is the refined (sphut.ā)
instantaneous [value of the] Rsine of the declination of the Moon.

An expression for the declination (δm) of the Moon which is similar to (6.3) is
presented in the above verses. We may write such an expression as

sinδm = sin I sinη , (6.13)

where η = (λm−A); λm and A refer to the longitude and ayanacalana of the Moon.
I represents the maximum declination of the Moon which keeps varying and de-
pends upon the position of the Moon’s ascending node along the ecliptic. It is also
the inclination of the Moon’s orbit with the equator. For instance, when the ascend-
ing node N1 coincides with the vernal equinox, then the inclination of the Moon’s
orbit is

I = δmax = ε + i, (6.14)

which is the same as the maximum declination attained by the Moon. On the other
hand, when the ascending node coincides with the autumnal equinox then the incli-
nation of the Moon’s orbit is

I = δmin = ε − i. (6.15)

Generally the value of the obliquity of the ecliptic, ε is taken to be 24◦ and the
inclination of the Moon’s orbit with the ecliptic, i, to be 4.5◦.

From (6.13) it may be noted that the expression for the Moon’s declination in-
volves obtaining expressions for two intermediate quantities, namely

1. the maximum declination of the Moon in its orbit, which is called the parā-
krānti, denoted by I, and

2. the right ascension of the point of intersection of the Moon’s orbit and the equa-
tor. This is called the ayanacalana and is denoted by A.

The desired true declination of the Moon, denoted by δm, is expressed in terms of
these quantities.

Expression for the parā-krānti and ayanacalana

The expression for the parā-krānti, in turn requires the defining of a few interme-
diate quantities. A term called the nābhyucchraya (x) is defined as
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x =
Rsinε Rcos i

R
, (6.16)

Then the doh. phala (D) and the kot.iphala (K) are defined to be

D =
R|sinλn| Rsin i

R
,

and K =
R|cosλn| Rsin i

R
. (6.17)

We introduce yet another quantity (y), defined by

y = Rcosε ×K

=
Rcosε |cosλn| Rsin i

R
. (6.18)

Using x and y, one more term (z) is defined to be

z = x− y when 90 < λn ≤ 270,

= x + y otherwise.

Essentially, z = x + Rcosε cosλn sin i. (6.19)

Now the parā-krānti, the maximum declination I of the Moon, is given as

Rsin I =
√

z2 + D2

=
√

(Rsin ε cos i+ Rcosε sin icosλn)2 +(Rsinλn sin i)2.

(6.20)

The ayanacalana (A) of the Moon is defined in terms of the maximum declination
through the relation

RsinA =
R×D
Rsin I

. (6.21)

This is also referred to as the viks.epacalana.

Expression for the is.t.akrānti

Having obtained the ayanacalana, it is added to the true longitude of the Moon
when 180◦ ≤ λn ≤ 360◦, and subtracted from it otherwise. The Rsine of the result
is multiplied by the Rsine of the maximum declination and divided by the trijyā to
get the Rsine of the desired declination. That is,

Rsin δm =
Rsin I ×Rsin(λm ±A)

R
= Rsin I sinη , (6.22)
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where η is the angle of separation between the Moon and the point of intersection
of its orbit with the equator, along the orbit of the Moon. In the following we pro-
vide the rationale behind (6.20), (6.21) and (6.22) with the help of Figs 6.3a, 6.3b
and 6.3c.

Derivation of the expression for the parākrānti

While the Yuktibhās. ā derivation of the expression for the parākrānti is given in
Appendix E, here we derive the same using modern spherical trigonometry.
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Fig. 6.3a Determination of the parā-krānti, the greatest declination that can be attained by the
Moon at a given point in time.

In Fig. 6.3a, P is the celestial pole, K the pole of the ecliptic, Γ the vernal equinox
and N the node of the Moon’s orbit. Let I be the inclination of the Moon’s orbit to
the equator. Draw a great circle arc Γ E which is perpendicular to the Moon’s orbit
at E . Considering the triangle Γ EN and applying the sine formula, we have

sinΓ E = sin isinλn. (6.23)

Here λn = Γ K̂N is the sāyana longitude of the node. Similarly, applying the sine
formula to the triangle Γ EQ, we have

sinΓ E = sin I sinΓ Q, (6.24)

Hence
sin I sinΓ Q = sin isin λn, (6.25)

where I is the angle of inclination of the Moon’s orbit with respect to the equator.
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In the figure, C and D are points that are 90◦ away from Γ along the equator
and ecliptic respectively. Let ρ be the arc from C, perpendicular to the Moon’s
orbit. Considering the triangle QAC, which is right-angled at A, and using the sine
formula,

sinρ = sin I sin QC

= cosΓ Qsin I (Γ Q+ QC = 90). (6.26)

Let BD = K̃ be the arc from D, perpendicular to the Moon’s orbit. Considering the
triangle NBD, which is right-angled at B, and using the sine formula,

sin K̃ = sin isinND

= cosλn sin i (Γ N + ND = 90). (6.27)

Let the Moon’s orbit be inclined at an angle ξ to the prime meridian KPYDC. Let
Y D = x. Therefore, YC =Y D+DC = x+ε . Now considering the triangles YBD and
YAC and using the sine formula, we have

sin K̃ = sin xsinξ and sinρ = sin(x + ε)sinξ . (6.28)

Therefore,

sinρ
sin K̃

=
sin(x + ε)

sinx

=
sinxcosε + cosxsinε

sin x

= cosε +
cosx
sinx

sinε. (6.29)

In the above equation, we would like to express cosx
sinx in terms of other known quan-

tities. From now on, all the intermediate steps till (6.35) are worked out for that
purpose. Let NY = χ in the triangle NDY , which is right-angled at D. Using the sine
formula, we have

sinx = sin χ sin i. (6.30)

Let Y Z be perpendicular to the secondary to the ecliptic passing through N. Consid-
ering the triangle NY Z which is right-angled at Z, we have

sinYZ = sin χ cos i. (6.31)

Now NK̂Y = 90−λn. Further,

KY = KP+ PY

= ε +(90− (x + ε))

= 90− x. (6.32)

Considering the triangle KY Z, which is right-angled at Z, we have
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sinY Z = sin KY sin(90−λn)

= sin(90− x)cosλn

= cosxcosλn. (6.33)

From (6.31) and (6.33),
sin χ cos i = cosxcosλn. (6.34)

Replacing sin χ in the above equation using (6.30), we have

cosxcosλn =
cos i
sin i

sin x

or
cosx
sinx

=
cos i

sin icosλn
. (6.35)

Using the above in (6.29), we obtain

sinρ
sin K̃

= cosε +
cos i

sin icosλn
sinε. (6.36)

Further, eliminating sin K̃ using (6.27) in the above equation, we have

sinρ = sin icosλn cosε + cos isinε. (6.37)

From (6.26) and (6.37), we get

sin I cosΓ Q = sin icosλn cosε + cos isin ε. (6.38)

Now squaring and adding (6.25) and (6.38), we obtain

sin2 I = (sinλn sin i)2 +(sin icosλn cosε + cosisin ε)2. (6.39)

Therefore,

sin I =
√

(sinλn sin i)2 +(sin icosλn cosε + cos isinε)2. (6.40)

This is the formula for the inclination of the Moon’s orbit to the equator presented
in the text as given in (6.20), which is also the maximum declination of the Moon
(at any given time). It is known that the nodes of the Moon’s orbit complete one
revolution in about 18.6 years. During that period, it could happen that the Moon’s
orbit lies in between the ecliptic and the equator as indicated in Fig. 6.3b. In such a
situation, the expression for sinρ in (6.28) will have sin(ε −x) instead of sin(x+ε).
The effect of this in the final expression for the parā-krānti (maximum declination)
would be

sin I =
√

(sinλn sin i)2 +(cos isinε − sin icosλn′ cosε)2, (6.41)
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Fig. 6.3b Determination of the parā-krānti, when the Moon’s orbit is situated between the equa-
tor and the ecliptic.

where N′ is the descending node of the Moon’s orbit and λn′ = λn + 180◦. Then it
can easily be seen that the above equation is also the same as (6.20) given in the
text.

Q

M

P

X
ε

Γ
ecliptic

equator I

i

Moon’s o
rbit

N

Fig. 6.3c Determination of the is. t.a-krānti, the actual declination of the Moon at a given point in
time.

In Fig. 6.3c, M represents the Moon and MX is its declination at a given instant.
P is the point where the secondary to the ecliptic passing through M meets the
ecliptic. Considering the triangle MQX , which is right-angled at X , and applying
the sine formula,

sinδm = sinMQ sin I. (6.42)

Now

MQ = MN + NQ

= MN +Γ N + NQ−Γ N
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≈ NP +Γ N − (Γ N −NQ)

= Γ P− (Γ N −NQ)

≈ λm −Γ Q, (6.43)

where λm is the sāyana longitude of the Moon. In arriving at the above equation we
have used two approximations:

1. MN ≈ NP. This is a fairly good approximation since i, the inclination of the
Moon’s orbit is, very small.4

2. The other approximation is that (Γ N −NQ) ≈ Γ Q. This again is reasonable as i
is small.5

Applying the sine formula to the triangle Γ QN, we have

sinΓ Q =
sinλn sin i

sin I
. (6.44)

It may be noted that the above equation is the same as (6.21) presented by Nı̄lakan. t.ha,
once we identify Γ Q with the ayanacalana A. Obviously the term ayanacalana in
this context refers to the right ascension of the point Q.

Again, because i is small, we may write

MQ ≈ λm −Γ Q = λm −A. (6.45)

Substituting for MQ in (6.42) we get

sinδ = sin(λm −A)sin I, (6.46)

which is the same as the expression for the declination (6.22) given in the text.6.5 v.ya;t�a;a;pa;a;ta;~ya .sa;d;sa;;�ÂåÅ +a;vaH
6.5 The occurrence or non-occurrence of vyat̄ıpāta.sMa;~kx +:ta;[ea;pa;.a;l+.na;sa;a;ya;nea;nd;eaH .=+veaH :pa;d;a;t,a Á Á 12 Á ÁA;ea:ja;yua;gma;ta;ya;a Bea;de v.ya;t�a;a;pa;a;ta;ea na ..a;a;nya;Ta;a Á

sam. skr. taks.epacalanasāyanendoh. raveh. padāt || 12 ||
ojayugmatayā bhede vyat̄ıpāto na cānyathā |
Only if the longitude of the Moon, corrected for the change in viks.epa and ayana [as
described earlier], is such that the Sun and the Moon lie in the odd and the even quadrants
[or vice versa] does vyat̄ıpāta occur and not otherwise.

The condition for the possibility of the occurrence of vyat̄ıpāta or otherwise, that
was hinted at in—and hence to be inferred from—verses 1 and 2a of this chapter, is

4 It may be recalled that the inclination is taken to be 270′ = 4.5◦ in Indian astronomy.
5 It needs to be verified numerically how good this approximation is.
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being explicitly stated here. It is said that the Sun and the Moon must be in odd and
even quadrants for the occurrence of vyat̄ıpāta. In other words, the gradients with
respect to the change in declination must have opposite signs during vyat̄ıpāta.

The following verse in Laghu-vivr. ti succinctly puts forth the criteria to be satis-
fied for vyat̄ıpāta to occur:kÒ +:a;�////�a;nta;sa;a;}yea v.ya;t�a;a;pa;a;ta;ea Ba;vea;d, ;Æa;Ba;�a;pa;d;~Ta;ya;eaH Ána;a;Æa;Ba;�a;pa;d;ya;ea:=+kR +:.a;ndÒ +ya;ea;na;Ra;pya;tua;�ya;ya;eaH Á Á

Vyat̄ıpāta occurs only when the declinations [of the Sun and the Moon] are equal and
they are in different quadrants. And not when they are in the same quadrant or when their
declinations are not equal [in magnitude].

We explain this with the help of Fig. 6.4. Here S refers to the Sun and ST its dec-
lination. M1 and M4 represent the Moon when it lies in the I and the IV quadrant
respectively. We have depicted their positions such that

AM1 = ST = BM4. (6.47)

In other words, the magnitude of the declination of the Moon at M1 is same as that
at M4, which is also equal to that of the Sun. When the Moon is at M1 there is no
vyat̄ıpāta, because the declination gradients of the Sun and the Moon have the same
sign. On the other hand, when the Moon is at M4 there will be a vyat̄ıpāta since the
gradients have opposite signs, and it is vaidhr. ta since the Sun and the Moon lie in
different hemispheres.
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Γ

M

M

1

Q

B

A
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4

is in IV quadrant
the Moon when it
meridian through

when it is in the I quadrant

Moon’s orbit

P meridian through the Sun 

equator

Fig. 6.4 Criterion for the occurrence of vyat̄ıpāta.

For the sake of clarity and completeness we present in Table 6.1 all the different
possible cases that could give rise to a vyat̄ıpāta. The term ‘quadrant’, occurring
as the heading of the first column of the table, has been given a special connotation
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that suits the present context. From this, the origins of the quadrants for the Sun
and the Moon are taken to be the (ascending) points of intersection of their own
orbits with the equator. They are referred to as gola-sandhis. In the case of the Sun
it is the same as the vernal equinox, marked as Γ . The gola-sandhi of the Moon is
marked by the point Q (see Fig. 6.4). This point moves at a much faster rate than Γ .
It completes a cycle in about 18.6 years which amounts to about 20◦ per year.

Quadrant Declination Ayana Nature of
Sun Moon Sun Moon Sun Moon Vyat̄ıpāta

I I ↑ ↑ uttara uttara —
I II ↑ ↓ uttara daks. in. a lāt.a
I III ↑ ↑ uttara daks. in. a —
I IV ↑ ↓ uttara uttara vaidhr. ta
II I ↓ ↑ daks.in. a uttara lāt.a
II II ↓ ↓ daks.in. a daks. in. a —
II III ↓ ↑ daks.in. a daks. in. a vaidhr. ta
II IV ↓ ↓ daks.in. a uttara —
III I ↑ ↑ daks.in. a uttara —
III II ↑ ↓ daks.in. a daks. in. a vaidhr. ta
III III ↑ ↑ daks.in. a daks. in. a —
III IV ↑ ↓ daks.in. a uttara lāt.a
IV I ↓ ↑ uttara uttara vaidhr. ta
IV II ↓ ↓ uttara daks. in. a —
IV III ↓ ↑ uttara daks. in. a lāt.a
IV IV ↓ ↓ uttara uttara —

Table 6.1 The different possible cases for the occurrence of vyat̄ıpāta.6.6 v.ya;t�a;a;pa;a;ta;a;Ba;a;va;�a;na;ya;maH
6.6 The criterion for the non-occurrence of vyat̄ıpātaA;keR +:ndõ ;eaH :pa:=+ma;kÒ +:a;ntya;eaH A;�pa;a ;
a:�a:$ya;a;h;ta;a;nya;ya;a Á Á 13 Á ÁBa;�+:a ta;ta;eaY;�a;Da;ke ba;a;h;Ea ma;h;a;kÒ +:a;ntea;nRa tua;�ya;ta;a Áta;�a;a;pMa Ba:�a;ya;a;.C+.ea;DyMa ta;d;a;Q.�a;ea;na;a;ya;na;a;nta;ya;eaH Á Á 14 Á ÁA;nta:=+a;lM ga;tea ta;�/////////�a;sma;n,a kÒ +:a;ntya;eaH .sa;a;}yMa na .ja;a;ya;tea Á

arkendvoh. paramakrāntyoh. alpā trijyāhatānyayā || 13 ||
bhaktā tato ′dhike bāhau mahākrānterna tulyatā |
taccāpam. bhatrayācchodhyam. tadād. hyonāyanāntayoh. || 14 ||
antarālam. gate tasmin krāntyoh. sāmyam. na jāyate |
The lesser of the the maximum declinations of the Sun and the Moon is multiplied by the
trijyā and divided by the other. If the Rsine of the greater is larger than the result, then
there will be no equality.

The arc of that has to be subtracted from 90◦. The result has to be added and subtracted
from the ayanāntas. If ‘that’ lies in between, then the equality of the declinations does not
take place.
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Like many other verses in Tantrasaṅgraha, these have been written in a somewhat
terse form and require a detailed explanation. The condition given here for the non-
occurrence of vyat̄ıpāta may be represented in the form

Rsinλ+ >
Rsinδ−×R

Rsinδ+
, (6.48)

where R represents the trijyā, δ+/δ− is the larger/smaller of the paramakrāntis of
the Sun and the Moon, and λ+ the longitude of the Sun/Moon corresponding to δ+

(measured from the point of intersection of its orbit with the equator). If the above
condition is satisfied then there will be no vyat̄ıpāta. The maximum declination of
the Moon depends upon the situation of the lunar orbit, which in turn is determined
by the location of the Moon’s nodes. It is worth while discussing the variation of the
maximum declination quantitatively before we take up (6.48).

Variation in the maximum declination of the Moon

Let δ ∗
s and δ ∗

m be the maximum declinations of the Sun and the Moon. While the
maximum value of the Sun’s declination is fixed—and is equal to the obliquity of the
ecliptic, ε = 24◦—the maximum declination of the Moon δ ∗

m is a variable quantity.
Its value depends upon the position of the ascending node (Rāhu, denoted by N1) of
the Moon’s orbit with respect to the equinox. The range of its variation is given by

(ε − i) < δ ∗
m < (ε + i), (6.49)

where i is the declination of the Moon’s orbit, which is taken to be 4.5◦ in the text.
When Rāhu coincides with the vernal equinox, then δ ∗

m = (ε + i). On the other hand,
when it coincides with the autumnal equinox, then δ ∗

m = (ε − i). The two limiting
cases are depicted in Figs 6.5a and 6.5b respectively.

As the Moon’s orbit itself has a retrograde motion, around the ecliptic, the node
of the Moon’s orbit completes one revolution in about 18.6 years. Hence the inter-
val between these two limiting cases depicted in Fig. 6.5 is nearly 9.3 years. We
now analyse the two cases from the viewpoint of the occurence of vyat̄ıpāta or
otherwise.

Case i: δ ∗
m ≥ δ ∗

s

When the maximum declination of the Moon is greater than the obliquity of the
ecliptic, then invariably the magnitude of the declination of the Moon becomes
equal to that of the Sun four times during the course of its sidereal period (section
6.1). Of the four instants at which the declinations are equal, only two correspond
to vyat̄ıpāta. These two vyat̄ıpātas, namely lāt.a and vaidhr. ta, necessarily occur
during the course of a sidereal revolution of the Moon.

In Fig. 6.5a, we have depicted the limiting case in which the Moon’s orbit has
the maximum inclination (I = ε + i) to the ecliptic. U and D represent the ayana-
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sandhis6 in the northern and the southern hemispheres respectively. M1 and M2

represent the positions of the Moon, in the uttarāyan. a and daks. in. āyan. a (northern
and southern courses of the Sun), when its declination is equal to that of the obliquity
of the ecliptic. Let tm be the time taken by the Moon to travel from M1 to M2. During
this interval, the declinations of the Sun and the Moon will never become equal and
hence there can be no vyat̄ıpāta. This is because the declination of the Moon during
this period will be greater than that of the Sun. As has been stated in the text:A;nta:=+a;lM ga;tea ta;�/////////�a;sma;n,a kÒ +:a;ntya;eaH .sa;a;}yMa na .ja;a;ya;tea Á

When it (the Moon) is in that interval, the declinations do not become equal.

P

Γ (vernal equinox)

M 1

M2

(autumnal equinox) Γ ’

Moon’s o
rbitecliptic

I
ε

equator

D

U

Fig. 6.5a Moon’s orbit having the maximum inclination, I = ε + i, with the ecliptic.

Case ii: δ ∗
m < δ ∗

s

When the Moon’s orbit lies completely in between the equator and the ecliptic, then,
depending upon the longitude of the Sun, its declination could remain greater than
the maximum declination of the Moon—which is the same as the inclination of the
Moon’s orbit with respect to the equator, denoted by I in Fig. 6.5b—for fairly long
intervals of time. The said interval may extend even up to two to three months of
time when the inclination I has the minimum value. During this period, the declina-
tion of the Moon doesn’t become equal to that of the Sun and hence vyat̄ıpāta does
not occur.

In Fig. 6.5b, S1 corresponds the position of the Sun when its declination is just
equal to δ ∗

m. As the Sun S1 has northern motion, and is approaching the ayanasandhi

6 The point of intersection of the two ayanas, namely the uttarāyan. a and the daks.in. āyana.
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U , its declination will be increasing during the next few days till it reaches the
maximum ε . Having crossed the ayanasandhi, the Sun starts receding away from
it and its declination starts decreasing. When the Sun is at S2, again its declination
will be equal to δ ∗

m. Between S1 and S2, the declination of the Sun remains greater
than δ ∗

m and hence there will be no vyat̄ıpāta.

P

(autumnal equinox) Γ ’

equator

D

U

ecliptic

Moon’s orbit Γ (vernal equinox)

ε I

S 2

MS1

Fig. 6.5b Moon’s orbit having the minimum inclination, I = ε − i, with the ecliptic.

However, the inclination of the Moon’s orbit, which is the same as the maximum
declination attained by the Moon, does not change significantly. The change in the
maximum declination from (ε + i) to the minimum value (ε − i), a difference of
2× 4.5◦ = 9◦, takes place in about 9.3 years. This amounts to hardly one degree
per year or around 5′ per month, whereas the change in the declination of the Sun
is around 480′ per month. Hence, the change in the inclination of the Moon’s orbit
over a few weeks is negligible compared with that of the Sun. In the following, we
make a rough estimate of the duration during which there will be no vyat̄ıpāta.

Minimum period for which vyat̄ıpāta does not occur

In the latter half of the 14th verse and the first half of the 15th verse, the criterion
for the non-occurrence of vyat̄ıpāta is given. From this, the minimum period during
which vyat̄ıpāta does not occur can be estimated. For numerical illustration, we
choose the limiting case where the maximum declination of the Moon attains its
minimum value as shown in Fig. 6.5b. In this case δ ∗

m = 24.0− 4.5 = 19.5. The
longitude of the Sun corresponding to this declination is
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λs = sin−1
(

sin19.5
sin24

)

≈ 55◦. (6.50)

As the longitude of the Sun increases in the odd quadrants, the magnitude of its
declination also increases. Hence, when the longitude7 of the Sun is approximately
in the range

55◦ < λs < 125◦,

or when it is in the range
235◦ < λs < 305◦, (6.51)

the magnitude of its declination will always be greater than the maximum declina-
tion the Moon can attain. Therefore, there will be no vyat̄ıpāta during this period.

Since the rate of motion of the Sun is approximately 1◦ per day, under the limiting
cases the minimum period for which a vyat̄ıpāta does not occur is about 70 days. As
the longitude of the Sun is 0◦ around March 21, this period approximately extends
from the later half of the second week of May to the last week of July, when the
Sun is in the northern hemisphere. When the Sun is in the southern hemisphere,
this period would be from from the later half of November to the end of January
approximately. With this background, we now proceed to explain the criterion given
in the text.

Rationale behind Nilakan. t.ha’s criterion for the non-occurrence of vyat̄ıpāta

The declination of the Sun and its longitude are related through the formula

sinδs = sinε sin λs, (6.52)

where ε is the obliquity of the ecliptic, which is the same as the maximum decli-
nation of the Sun. In otherwords δ ∗

s = ε . The longitude of the Sun λs is measured
from Γ along the ecliptic and is given by Γ S in Fig. 6.6.

The declination of the Moon is given by

sinδm = sin I sinQM = sin I sinη . (6.53)

Here, I is the inclination of the Moon’s orbit with respect to the equator. As in the
case of the Sun, I is the maximum declination of the Moon. That is, δ ∗

m = I. QM = η
is measured along the Moon’s orbit from the point of intersection of the equator and
the Moon’s orbit. We have seen that η ≈ λm −A, where λm is Moon’s longitude,
and A is its ‘ayanacalana’. Dividing (6.52) by (6.53) and rearranging, we have

sinη × sinδs

sinδm
=

sinε
sin I

× sinλs. (6.54)

7 Since declination is involved, the longitudes that we talk about here are all sāyana longitudes.
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Fig. 6.6 Schematic sketch of the Moon’s orbit and the ecliptic, when the maximum inclination of
the Moon’s orbit, I, is greater than ε .

Depending upon the position of the Moon’s ascending node represented by Q in
Fig. 6.6, either ε > I or ε < I. The case ε = I is true only at one instant, and is a
very special case. The other two cases do prevail for an extended period of time.
Now let us consider the case ε < I. Vyat̄ıpāta occurs under these circumstances
when

sinη =
sinε
sin I

× sinλs. (6.55)

As sinλs ≤ 1, this implies that the condition for the occurrence of vyat̄ıpāta is

sin η ≤ sinε
sin I

. (6.56)

Hence there is no vyat̄ıpāta if

sin η >
sinε
sin I

. (6.57)

The above condition is the same as the one given in (6.48) once we identify that
ε = δ−, I = δ+ and η = λ+, as the maximum declination of the Sun is less than that
of the Moon. Similarly, when I < ε , there is no vyat̄ıpāta if

sinλs >
sin I
sinε

. (6.58)

The equivalence of this condition with (6.48) is also clear once we identify that in
this case I = δ−, ε = δ+ and λs = λ+.
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6.7 Determining whether vyat̄ıpāta has occurred or is yet to

occurd;ea:$ya; a .=+veaH :pa:=+kÒ +:a;ntya;a h;tva;a ..a;a;ndùÅò ;a;a ta;ya;a h:=e +t,a Á Á 15 Á Ál+.b.Da;.a;a;pa;sa;mea ..a;ndÒ +ba;a;h;Ea kÒ +:a;�////�a;nta;gua;Na;Ea .sa;ma;Ea Á..a;ndÒ +~ya;Ea:ja;pa;d;~Ta;~ya d;ea;DRa;nua;Sya;�a;Da;ke ta;taH Á Á 16 Á Áv.ya;t�a;a;pa;a;ta;ea ga;ta;ea nyUa;nea Ba;a;v�a;a yua;gma;pa;de Y;nya;Ta;a Áta;
a;d;�;.a;ndÒ +Da;nua;SaH .~va;~va;Bua;�a;�+Èåî ÁÁ*+;ma;nta:=+m,a Á Á 17 Á Ága;�a;ta;ya;ea;ga;&+.tMa .~va;N a d;ea;Sea ga;}yea ga;teaY;
a;pa ..a Á.sUa;yeRa;ndõ ;ea:=+nya;Ta;a :pa;a;tea ta;a;va;tku +:ya;Ra;
a;d;dM mua;hu H Á Á 18 Á Áya;a;va;d;k+:eRa;tTa;Da;nua;Sa;a ta;tk+:a;le +.ndu ;Da;nuaH .sa;ma;m,a Á
dorjyām. raveh. parakrāntyā hatvā cāndryā tayā haret || 15 ||
labdhacāpasame candrabāhau krāntigun. au samau |
candrasyaujapadasthasya dordhanus.yadhike tatah. || 16 ||
vyat̄ıpāto gato nyūne bhāv̄ı yugmapade ′nyathā |
tadis.t.acandradhanus.ah. svasvabhuktighnamantaram || 17 ||
gatiyogahr. tam. svarn. am. dos.e gamye gate ′pi ca |
sūryendvoranyathā pāte tāvatkuryādidam. muhuh. || 18 ||
yāvadarkotthadhanus.ā tatkālendudhanuh. samam |
Having multiplied the sine of the longitude of the Sun by its parakrānti, divide [that] by
the parakrānti of the Moon. If the resulting arc [say x] is equal to the arc corresponding to
the Moon (η), then the Rsine of the declination of the Sun and the moon will be equal.

If the arc corresponding to the Moon, in the odd quadrant, is greater than that (x), then
vyat̄ıpāta has already occurred; if less, then it is yet to occur. It is exactly the reverse
[when the Moon is] in the even quadrant.

The difference of the arc corresponding to that (Rsinx) and that of the [ayana-corrected]
Moon must be multiplied separately by their own [i.e. of the Sun and Moon] daily motions
and divided by the sum of their daily motions. The results must be added to or subtracted
from the Sun and the Moon depending upon whether the dos.a (a vyat̄ıpāta) is yet to occur
or has already occurred. In the case of the node it has to be applied inversely. The process
has to be repeated till the arc obtained from the Sun becomes equal to the Moon’s arc
[found] at that time.

We saw earlier in (6.54) that the ratio of the declinations of the Sun and the Moon
satisfy the relation

sinδs

sinδm
=

sin ε sinλs

sin I sinη
. (6.59)

Using the notation

sinx =
sin ε
sin I

× sinλs and y =
sinδs

sinδm
, (6.60)

(6.59) reduces to,
sinη × y = sinx. (6.61)
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If x = η , the above equation implies that y = 1, that is, δs = δm. This is precisely
the condition given here for the declinations of the Sun and Moon to be equal and is
stated in the following words:l+.b.Da;.a;a;pa;sa;mea ..a;ndÒ +ba;a;h;Ea kÒ +:a;�////�a;nta;gua;Na;Ea .sa;ma;Ea Á

Though the term cāpa in general refers to arc, in the present verse it seems to
have been used to refer to the sine of the arc. In other words, the term labdhacāpa in
the above verse refers to sinx. The term candrabāhu refers to sinη . As mentioned
earlier,

if x = η , it is the middle of vyat̄ıpāta.

The criteria as to whether a vyat̄ıpāta has already occurred, or it is yet to occur are
given by

if x < η , already occured,

and if x > η , yet to occur,

in the odd quadrant. It is the other way round in the even quadrant, as |δm| decreases
with time. Here η is the angular separation of the Moon from the point of intersec-
tion of the Moon’s orbit and the equator. In Fig. 6.7 it is given by QMi = αi (i = 0,1
and 2).

Rationale behind the given criteria

(a) Criterion for vyat̄ıpāta to have occured

Suppose x < η at some time t = t1, then we should have y < 1 in order that (6.61)
is satisfied. Now

y < 1 ⇒ sinδs < sinδm. (6.62)

This situation is represented by the positions of the Sun and the Moon at S1 and
M1 in Fig. 6.7. Since the Moon is in the odd quadrant and the Sun is in the even
quadrant, the magnitude of the declination of the Moon keeps increasing and that of
the Sun keeps decreasing. Since |δs|< |δm| at t = t1, there must be an earlier instant,
t = t0, at which |δs| = |δm|. This is precisely the condition for the occurrence of
vyat̄ıpāta. Thus we see that if x < η and the Moon is in the odd quadrant, then
vyat̄ıpāta has already occurred.

(b) Criterion for vyat̄ıpāta to occur later

If x > η , then from (6.61), y > 1. Now,

y > 1 ⇒ sinδs > sinδm. (6.63)
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Fig. 6.7 Positions of the Sun and the Moon before vyat̄ıpāta, at the instant of vyat̄ıpāta and after
vyat̄ıpāta.

This situation is represented by the positions of the Sun and the Moon at S2 and
M2 in Fig. 6.7. Again, since the Moon is in the odd quadrant and the Sun is in the
even quadrant, the magnitudes of their declinations are increasing and decreasing
respectively. Since at t = t2, |δs| > |δm|, vyat̄ıpāta is yet to occur at t = t0 > t2.

The situation in the even quadrants can be understood similarly. The above cri-
teria are precisely those given in verses 16b and 17a to find out whether vyat̄ıpāta
has already occurred or it is yet to occur. In the succeeding verses 17b and 18, a
procedure is given for finding the time interval (∆ t) between the desired instant and
the instant of vyat̄ıpāta. Having determined this time interval, an iterative proce-
dure for finding the longitudes of the Sun and the Moon at the instant of vyat̄ıpāta
is outlined.

The time interval between the desired instant and the middle of vyat̄ıpāta

Let λs and λm be the longitudes of the Sun and the Moon a given instant t, and let the
angular velocities (gati) of them at that instant be λ̇s and λ̇m. It is seen from (6.60)
that the quantity x is related to the Sun’s longitude and η is related to the Moon’s
longitude. We denote the difference in arcs between x and η by ∆θ . That is,

x−η = ∆θ . (6.64)

The significance of ∆θ is that it refers to the angle by which the sum of the longi-
tudes of the Sun and the Moon must increase for vyat̄ıpāta to occur. It is mentioned
that this has to be divided by the sum of the angular velocities of the Sun and the
Moon. We denote the result in time units by ∆ t, which is given by
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∆ t =
∆θ

λ̇m + λ̇s
(in days)

=
∆θ

λ̇m + λ̇s
×60 (in ghat.ikas). (6.65)

The longitudes of the Sun and the Moon at the middle of vyat̄ıpāta

The changes in the longitudes of the Sun and the Moon during the above time inter-
val ∆ t are obtained by multiplying their daily motions with it. That is

∆λs = λ̇s ×∆ t (6.66)

and ∆λm = λ̇m ×∆ t. (6.67)

If λs and λs0 are the longitudes of the Sun at the desired instant t and the middle of
the vyat̄ıpāta, then

λs0 = λs ∓∆λs. (6.68)

Similarly, if λm and λm0 are the longitudes of the Moon at the desired instant and
the middle of the vyat̄ıpāta, then

λm0 = λm ∓∆λm. (6.69)

Here we take the sign ‘−’ if the vyat̄ıpāta has already occurred and the sign ‘+’ if
it is yet to occur.

Iterative method

In the procedures described in the previous sections, it has been implicitly assumed
that the rates of motion of the Sun and the Moon (λ̇m and λ̇s) are constant, which is
not true. Hence both ∆ t and the longitudes λs0 and λm0 obtained are only approx-
imate. As a corrective measure to this, an iterative procedure for determining the
longitudes of the Sun and the Moon at vyat̄ıpāta is prescribed. The iterative method
to be used here is indicated in verses 18b and 19a.ta;a;va;t,a ku +:ya;Ra;
a;d;dM mua;hu H ya;a;va;d;k+:eRa;tTa;Da;nua;Sa;a ta;tk+:a;le +.ndu ;Da;nuaH .sa;ma;m,a Á

This [process] has to be repeated till the arc of the Moon at that time will be equal to that of
the Sun.

The method indicated above, and further explained in the commentary, may be
explained as follows. As ∆ t given by (6.65) is not exact, we denote it by ∆ t1 to
indicate that it is the first approximation to the actual value. Having determined ∆ t1
we evaluate x and η at time

t1 = t + ∆ t1, (6.70)

and denote their values as x1 and η1. The rates of motion of the Sun and the Moon
are also evaluated at t1 and are denoted by λ̇s1 and λ̇m1. With them, we find ∆ t2
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given by

∆ t2 =
∆θ1

λ̇m1 + λ̇s1
, (6.71)

where ∆θ1 = x1 −η1. The second approximation to the actual instant of vyat̄ıpāta
is t2 and is given by

t2 = t1 + ∆ t2. (6.72)

Again at t2 the values of x and η denoted by x2 and η2 are to be determined. From
their difference ∆θ2, and the rates of motion of the Sun and the Moon, ∆ t3 is found.
The process is repeated and, in general,

∆θi = xi −ηi

∆ ti+1 =
∆θi

λ̇mi + λ̇si

and ti+1 = ti + ∆ ti+1. (6.73)

The iteration is continued till ∆ tr ≈ 0. At this instant (t ′), x = η to the desired ac-
curacy. Hence, the longitude of the Moon that is determined from η in this process,
which in turn is determined by finding x, would be the same as the longitude deter-
mined at t ′ directly. This is what is stated in verse 19a, quoted above. The instant of
vyat̄ıpāta is then given by

t ′ = t + ∆ t1 + ∆ t2 + · · ·+ ∆ tr. (6.74)

Here, it should be noted that ∆ tr can be positive or negative.6.8 v.ya;t�a;a;pa;a;ta;ma;DyaH
6.8 The middle of vyat̄ıpātakÒ +:a;�////�a;nta;sa;a;}yea v.ya;t�a;a;pa;a;ta;ma;Dya;k+:a;lH .sua;d;a:�+:NaH Á Á 19 Á Á

krāntisāmye vyat̄ıpātamadhyakālah. sudārun. ah. || 19 ||
When the declinations [of the Sun and the Moon] are equal, that instant corresponds to the
middle of vyat̄ıpāta, which is quite dreadful.6.9 v.ya;t�a;a;pa;a;ta;pra;a:=+}BaH :pa;yRa;va;sa;a;na:úãÁ*.a

6.9 The beginning and the end of vyat̄ıpātana;va;Ma;Za;pa:úãÁ*.a;kM ta:�va;Ba;a;ga;Ea ;
a;ba;}ba;Ea .~va;Bua;�a;�+:taH Á.sUa;yeRa;ndõ ;ea;
a;bRa;}ba;sa;}å.pa;kR +:d;lM :Sa;��a;a ;�a;na;h;tya ya;t,a Á Á 20 Á Ága;�a;ta;ya;ea;ga;ea:;dÄâx ;tMa ta;�a:;dÄâ v.ya;t�a;a;pa;a;ta;d;lM ;
a;va;du H Áv.ya;t�a;a;pa;a;ta;d;le ta;�/////////�a;sma;n,a na;a;
a;q+.k+:a;d;Ea ;
a;va;Za;ea;�a;Da;tea Á Á 21 Á Á
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a;h ;D�a;a;ma;ta;a Á Á 22 Á Á
navāmśapañcakam. tattvabhāgau bimbau svabhuktitah. |
sūryendvorbimbasamparkadalam. s.as.t.yā nihatya yat || 20 ||
gatiyogoddhr. tam. taddhi vyat̄ıpātadalam. viduh. |
vyat̄ıpātadale tasmin nād. ikādau vísodhite || 21 ||
madhyakālād bhavet tasya prāram. bhasamayah. sphut.ah. |
tadyute madhyakāle ′sya moks.o vācyo hi dh̄ımatā || 22 ||
The daily motion of the Sun multiplied by 5 and divided by 9, and that of the Moon divided
by 25, are the diameters of the discs (bimbas) of the Sun and the Moon. Half the sum of
the discs multiplied by 60 and divided by the sum of their daily motions is considered to be
the half-duration of the vyat̄ıpāta.

By subtracting the half-duration of the vyat̄ıpāta, in nād. ikās etc., from the middle of the
vyat̄ıpāta, the actual beginning moment is obtained. By adding the same to the the middle
of the vyat̄ıpāta, the ending moment has to be stated by the wise ones.

If λ̇s and λ̇m are the daily motions of the Sun and the Moon, expressed in minutes,
then the angular diameters of their discs αs and αm are given as

αs =
λ̇s ×5

9
, αm =

λ̇m

25
. (6.75)

Now the angular diameter of the Sun

αs =
Ds

ds
, (6.76)

where Ds and ds are the Sun’s diameter and its distance from the Earth in yojanas
respectively. The horizontal parallax of the Sun (P), whose value is taken to be one-
fifteenth of daily motion of the Sun, is given by

P =
Re

ds
=

1
15

λ̇s. (6.77)

Using this in (6.76),

αs =
Ds

Re

λ̇s

15
=

2Ds

De

λ̇s

15
, (6.78)

where De = 2Re is the diameter of the Earth. In Chapter 4, the values of Ds and De

are given to be 4410 and 1050.42 yojanas respectively. Therefore

αs =
2×4410

1050.42×15
θ̇s = 0.5598 λ̇s. (6.79)

It is this 0.5598 that is approximated by 5
9 = 0.5556 in the text. Similarly, the angular

diameter of the Moon is given by

αm =
2Dm

De
× λ̇m

15
, (6.80)
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where Dm is the Moon’s diameter in yojanas. As Dm is given to be 315 yojanas,

αm =
2×315

1050.42×15
λ̇m

= 0.04 λ̇m

=
λ̇m

25
. (6.81)

Using the angular diameters, the half-duration of the vyat̄ıpāta is found using the
formula

∆ t =
S×60

λ̇m + λ̇s
, (6.82)

where S is the sum of the semi-diameters of the Sun and the Moon and is given by

S =
ds + dm

2
. (6.83)

Let tb, tm and te be the actual beginning, the middle and the ending moment of the
vyat̄ıpāta. Here tm refers to the instant at which (6.1) is satisfied. Then the beginning
and the ending moments are given by

tb = tm −∆ t and te = tm + ∆ t. (6.84)6.10 ;
a;va;Sk+:}Ba;a;
a;d;ya;ea;ga;a;ntya;a;Da;Ra;na;Ma tya;a:$ya;tva;m,a
6.10 Inauspiciousness of the later half of vis.kambhayoga and

others;
a;va;Sk+:}Ba;a;
a;d;Sua ya;ea;gea;Sua v.ya;t�a;a;pa;a;ta;a;�ë+:ya;eaY;
a;pa yaH Áta;~ya .sa;�a;d;Za;~ya;a;ntya;ma;D a ..a;a;pya;�a;ta;d;a:�+:Na;m,a Á Á 23 Á Á
vis.kambhādis.u yoges.u vyat̄ıpātāhvayo ′pi yah. |
tasya saptadaśasyāntyamardham. cāpyatidārun. am || 23 ||
The later half of the seventeenth yoga commencing with vis.kambha, also known as
vyat̄ıpāta, is extremely inauspicious.

Analogous to the 27 naks.atras, 27 yogas (see Table 6.2) are defined in Indian
astronomy. They correspond to intervals of time during which the sum of the longi-
tudes of the Sun and the Moon increases by 13◦20′. It may be noted from Table 6.2
that the 17th yoga is called vyat̄ıpāta. Perhaps, hereby due to the similarity in name,
this is also considered inauspicious (particularly its later half).

In this context the following verse is quoted in the commentary Laghu-vivr. ti:.sUa;yeRa;ndu ;ya;ea;gea mEa:�a;~ya :pa:=+a;D a .sa;}Ba;vea;dùÅ;a;
a;d Á.sa;a;pRa;ma;~ta;k+:sMa::℄aH .~ya;a;t,a ta;d;a d;ea;Sa;eaY;�a;ta;�a;na;�///�a;nd;taH Á Á
Among the yogas of the Sun and the Moon, the later half of Maitra is called Sārpamastaka
and that period is considered to be highly inauspicious.
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1. vis.kambha 10. gan. d. a 19. parigha
2. pr̄ıti 11. vr. ddhi 20. śiva
3. āyus.mān 12. dhruva 21. siddha
4. saubhāgya 13. vyāghāta 22. sādhya
5. śobhana 14. hars.an. a 23. śubha
6. atigan. d. a 15. vajra 24. śukla
7. sukarma 16. siddhi 25. brāhma
8. dhr. ti 17. vyat̄ıpāta 26. aindra
9. śūla 18. var̄ıyān 27. vaidhr. ti

Table 6.2 The names of the 27 yogas.

Note:

In the above verse, the term maitrasya literally means ‘ belonging to Maitra’. Ac-
cording to the tradition, each naks.atra is associated with a deity. The deity for the
17th naks.atra, namely Anūrādha, is Maitra. Hence the 17th naks.atra is called
Maitra.

While discussing vyat̄ıpāta, Bhāskara I states:.sUa;yeRa;ndu ;ya;ea;gea ..a;kÒ +:a;DeRa v.ya;t�a;a;pa;a;ta;eaY;Ta ;vEa;Dxa;taH Á..a;kÒe ..a mEa:�a;pa;yRa;ntea ;
a;va::℄ea;yaH .sa;a;pRa;ma;~ta;kH Á Á 8

When the sum of the [nirayan. a] longitudes of the Sun and the Moon is half a circle (i.e.
180◦) it is vyat̄ıpāta; when the sum is a full circle (360◦) it is vaidhr. ta. If [the sum] ex-
tends to the end of Maitra (Anūrādha naks.atra) then it is to be known as sārpamastaka
[vyat̄ıpāta].6.11 v.ya;t�a;a;pa;a;ta:�a;ya;a;Na;Ma tya;a:$ya;tva;m,a

6.11 Inauspiciousness of the three vyat̄ıpātasv.ya;t�a;a;pa;a;ta:�a;yMa ;Ga;ea:=M .sa;vRa;k+:mRa;sua ga;
a;hR ;ta;m,a Á.=+:ïîåéa;a;na;d;a;na:ja;pa;(ra;a:;dÄâ ;v.ra;ta;h;ea;ma;a;
a;d;k+:mRa;sua Á:pra;a;pya;tea .sua;ma;h;.C" e +.yaH ta;tk+:a;l+:℄a;a;na;ta;~ta;taH Á Á 24 Á Á
vyat̄ıpātatrayam. ghoram. sarvakarmasu garhitam |
snānadānajapaśrāddhavratahomādikarmasu |
prāpyate sumahacchreyah. tatkālajñānatastatah. || 24 ||
The [period of the] three vyat̄ıpātas (lāt.a, vaidhr. ta and sārpa-mastaka) is [considered
to be] dreadful and is inauspicious for performing all religious rites. But by acquiring the
correct knowledge of these periods and performing certain deeds such as having a holy dip,
performing charitable deeds or sacrificial deeds, doing penance, oath-taking, performing
homa etc. one reaps great benefits.

8 {LB 1974}, (II. 29), p. 39.
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