
Chapter 2.~å.Pu +.f;pra;k+.=+Na;m,a
True longitudes of planets

2.1 :ke +:ndÒ +l+.[a;NMa :pa;d;l+.[a;NMa ..a
2.1 Definition of the anomaly and the quadrant.~va;ea;�a;ea;na;ea ;
a;va;h;gaH :ke +:ndÒ M ta:�a .=+a;a;Za:�a;yMa :pa;d;m,a ÁA;ea:jea :pa;de ga;tEa;Sya;a;Bya;Ma ba;a;hu ;k+:ea;f� ;a .sa;meaY;nya;Ta;a Á Á 1 Á Á

svoccono vihagah. kendram. tatra rāśitrayam. padam |
oje pade gatais.yābhyām. bāhukot.̄ı same ′nyathā || 1 ||
The ucca subtracted from the planet is the kendra (anomaly). Three rāśis constitute a
pada (quadrant). In the odd quadrants, the bāhu and kot.i [are to be found] from the angle
covered and to be covered [respectively]. In the even quadrants it is otherwise.

The procedure for obtaining the madhyama-graha i.e. the mean longitude of
a planet from the Ahargan. a, was explained in the previous chapter. Two correc-
tions, namely manda-sam. skāra and ś̄ıghra-sam. skāra, have to be applied to the
madhyama-graha to obtain the sphut.a-graha or the true longitude of the planet. In
these two sam. skāras, to be described later in this chapter, two angles, namely the
manda-kendra (manda anomaly or mean anomaly) and the ś̄ıghra-kendra (ś̄ıghra-
anomaly or anomaly of conjunction or solar anomaly) play important roles. In the
above verse, the kendras and their sines and cosines (known as bāhus and kot.is)
pertaining to both the sam. skāras are dealt with. For this, two quantities, namely the
ucca and the kendra, are introduced.

Ucca and kendra

The ucca and kendra essentially refer to the apsis and anomaly respectively. These
two terms are generally used with the adjectives manda and ś̄ıghra and appear in
the two processes of correction, namely manda-sam. skāra and ś̄ıghra-sam. skāra.
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The manda-sam. skāra1 is a procedure to obtain the correction for the eccentricity
of the planetary orbit. The terms ucca and kendra used in this context refer to the
direction of the mandocca (apogee/aphelion of the planet) and the manda-kendra
respectively.

Similarly, ucca and kendra used in the context of ś̄ıghra-sam. skāra—the process
by which the geocentric longitudes of the planets are obtained from their heliocen-
tric longitudes2—refer to the directions of the ś̄ıghrocca and ś̄ıghra-kendra respec-
tively. If θ0 refers to the longitude of the mean planet, and θm that of its mandocca,
then the manda-kendra, θmk, is defined as

θmk = θ0 −θm. (2.1)

If θms is the longitude of the manda-sphut.a-graha, that is, the mean longitude of
the planet corrected by manda-sam. skāra, and θs that of the ś̄ıghrocca, then the
ś̄ıghra-kendra, θsk, is defined as

θsk = θms −θs. (2.2)

In the second quarter of the above verse, it is mentioned that three rāśis constitute a
pada. Since rāśi is a 30◦ division on the ecliptic, by definition the term pada refers
to a quadrant. In Fig. 2.1a, APB represents a pada. Before explaining the second
half of the verse, it would be useful to introduce the concepts of bāhu and kot.i,
which are frequently employed in this and the following chapters.

Bāhu and Kot.i

In Indian astronomical texts, the terms bāhu3 and kot.i are used in association with
either cāpa or jyā. The terms cāpa and jyā literally mean bow and string respec-
tively. In this context, they refer to the arc of a circle and the chord associated with
it. Sometimes instead of the term cāpa, dhanus is also used to refer to the arc of a
circle.

In Fig. 2.1a, the arc PAL represents the cāpa and PQL is the jyā associated with
the cāpa (arc). Though literally the term jyā refers to the chord PL, in most situations
PQ, which is half of PL, is referred to as the jyā (Rsine) of the arc PA. Since PQ
is only half of PL, it must actually be referred to as the jyārdha. However, since
only PQ is involved in planetary computations (as will be clear later), the term jyā
itself is used to refer to the semi-chord PQ, for the sake of brevity in the use of
terminology. Hence the terms bāhucāpa and bāhujyā or Rsine refer to the arc AP
and the semi-chord PQ in the figure, respectively. The terms kot.icāpa and kot.ijyā

1 The significance of this is explained in detail in Appendix F. The equivalent of this correction in
modern astronomy is the equation of centre.
2 For details refer to Sections 2.26–28 and Appendix F.
3 The literal meaning of bāhu is hand. Similarly, kot.i means side. In this context, the term kot.i
refers to the side which is perpendicular to bāhu.
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or Rcosine refer to the arc PB and the segment OQ (perpendicular to the chord PL),
respectively.
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Fig. 2.1a Bāhu and cāpa.

Relation between the jyās and the sine and cosine function

Let R be the radius of the circle shown in Fig. 2.1a. Now, the quantities which are
designated by the terms bāhucāpa, bāhujyā, kot.icāpa and kot.ijyā are listed below:

bāhucāpa = Rθ = the length of the arc AP corresponding to the angle
θ .

bāhujyā = Rsinθ = R× the sine of the angle θ .
kot.icāpa = R(90− θ ) = the length of the arc corresponding to the

angle (90−θ ).
kot.ijyā = Rcosθ = R× the cosine of the angle θ .

In the following, we give the relationship between sine of an angle, θ , and the
jyā of the corresponding arc, α = Rθ , normally expressed in minutes. In Fig. 2.1a,
let the length of the arc AP be α . Then we have the following relation between the
jyās and the modern sine and cosine functions:

bāhujyā α = Rsinθ
kot.ijyā α = Rcosθ . (2.3)

Normally the circumference of the circle is taken to be 21600 units (the number of
minutes in 360◦), so that an angle of 1′ corresponds to an arc length of 1 unit. Hence
the radius R = 21600

2π ≈ 3437.7468, which is approximately 3438 minutes. In Indian
astronomical and mathematical texts, the radius of the circle R is referred to as the
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trijyā. This is because R is the jyā corresponding to the arc whose length is equal
to three rāśis (5400′). In other words, tri-rāśi-jyā is shortened to trijyā.

Finding the bāhu and kot.ijyās in different quadrants

The sine or cosine of an angle greater than 90◦ can always be determined in terms
of an angle less than 90◦. This is the essence of the second half of the verse wherein
it is stated that:

• if the kendra is in the odd quadrant, i.e. its value lies in the range 0◦− 90◦ or
180◦−270◦, then the bāhu and kot.i are to be determined from the angles already
covered and to be covered in that quadrant, respectively.

• if the kendra is in the even quadrant, i.e. its value lies in the range 90◦−180◦ or
270◦− 360◦, then the bāhu and kot.i are to be determined from the angles to be
covered and already covered in that quadrant, respectively.
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Fig. 2.1b Bāhu and kot.i when the kendra is in different quadrants.

We explain this concept further with the help of Fig. 2.1b. In the following we
use K to denote the kendra. Then,

1. If K is in the first quadrant, i.e. K = AÔA1, RsinAÔA1 = AA1, RcosAÔA1 =
RsinAÔA2 = AA2.

2. If K is in the third quadrant, i.e. K = CÔA1, |RsinCÔA1| = RsinCÔC1 = CC1

and |RcosCÔA1| = RsinCÔC2 = CC2.
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Hence, in the above cases, the bāhu and kot.i are determined from the angles
covered and to be covered respectively in the odd quadrant.

3. If K is in the second quadrant, i.e. K = BÔA1, |RsinBÔA1|= RsinBÔB1 = BB1,
and |RcosBÔA1| = RsinBÔB2 = BB2.

4. If K is in the fourth quadrant, |RsinDÔA1|= RsinDÔD1 = DD1 and |RcosDÔA1|=
RsinDÔD2 = DD2.

Thus the bāhu and the kot.i are determined from the angles to be covered and
covered respectively in the even quadrants. Here, only the procedure to find the
magnitudes of the Rsines and Rcosines is given. Their signs (whether they have
to be applied positively or negatively) will be stated separately in each context in
which they are being employed.

The concepts of the manda-kendra and ś̄ıghra-kendra are explained in Laghu-
vivr. ti as follows:ta:�a :pra;Ta;ma;a;Dya;a;ya;ea;�+:pra;k+:a:=e +Na :�Ea:=+a;a;Za;k+:a;n�a;a;ta;a Ba;ga;Na;a;
a;d;k+:a yea g{a;h;ma;Dya;ma;aH .tea;Bya;eaBa;ga;Na;a;na;pa;a;~ya ;a;Za;�e ;Bya;ea .=+a;Zya;a;
a;d;Bya;ea Ba;a;ga;a;tma;k+:mua;pa;
a;d;�M .~vMa .~vMa ma;nd;ea;�Ma ;
a;va;Za;ea;Dyaya;�/////�a;.C+.Sya;tea, ta;
a;d;h ma;nd;ke +:ndÒ +Æa;ma;tya;Æa;Ba;D�a;a;ya;tea Á ya;d;a :pua;naH ma;nd;P+.le +.na .~å.Pu +.f� ;a;kx +:ta;a;t,aku +.ja;a;d� ;a;na;Ma ma;Dya;ma;a;t,a Z�a;a;Gra;ea;�a;BUa;tMa .=+
a;va;ma;Dya;mMa ;
a;va;Za;ea;Dya;tea, ta;d;a ta:�a A;va;a;Za;�M Z�a;a;Gra;ke +:ndÒ MBa;va;�a;ta Á

From the mean positions of the planets (madhyama-grahas), obtained using the rule of
three described in Chapter 1, which includes an integral number of revolutions, rāśis, etc.
[the fractional part], subtract the integral number of revolutions. From the remaining rāśis
etc. [which represents the mean longitude of the planet] when its own mandocca is sub-
tracted, the remainder obtained is said to be the manda-kendra. When the mean Sun,
which is the ś̄ıghrocca, is subtracted from the manda corrected longitudes of Mars etc.,
the remainder obtained is the ś̄ıghra-kendra.

Note: Here it is specifically mentioned that the ś̄ıghrocca is the mean Sun for all
the five planets while defining ś̄ıghra-kendra. The significance of this is explained
later in sections 2.26–28 and also in Appendix F, during the discussion of ś̄ıghra-
sam. skāra for the inner planets.

The complementarity between the sine and the cosine functions is also succinctly
put forth in the commentary Laghu-vivr. ti:ba;a;hu ;Da;nua;
a;vRa;h� ;a;nMa .=+a;a;Za:�a;yMa k+:ea;�a;f;Da;nuaH Á ta;
a;dõ ;h� ;a;nMa .=+a;a;Za:�a;yMa ba;a;hu ;Da;nuaH Á Á

The arc of the bāhu subtracted from 90◦ is the arc of the kot.i. That (arc of the kot.i) sub-
tracted from 90◦ is the arc of the bāhu.2.2 .$ya;a;g{a;h;NMa ..a;a;p�a;a;k+.=+Na:úãÁ*.a

2.2 Computation of the Rsines and the arcs;�a;l+.�a;a;Bya;~ta:�va;nea:�a;a;�a;aH ga;ta;a .$ya;aH Zea;Sa;taH :pua;naH Ága;ta;ga;}ya;a;nta:=:Èåî ÁÁ*+;a;�a &+.ta;a;~ta:�va;ya;mEaH ;Æa;[a;pea;t,a Á Á 2 Á Ád;eaHk+:ea;�a;f:$yea na;yea;de ;vMa .$ya;a;Bya;(ãÉa;a;pMa ;
a;va;pa;yRa;ya;a;t,a Á
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liptābhyastattvanetrāptāh. gatā jyāh. śes.atah. punah. |
gatagamyāntaraghnācca hr. tāstattvayamaih. ks. ipet || 2 ||
doh. kot.ijye nayedevam. jyābhyaścāpam. viparyayāt |
By dividing the minutes [of arc] by 225, the number of jyās that have elapsed is obtained.
Multiply the remainder by the difference between the (tabular) Rsine values of the elapsed
and the next, divide by 225 and add the result to the elapsed jyā, to obtain the bāhu and
kot.i. From the jyās the arcs can be obtained by the reverse process.

As already explained, in Indian astronomical and mathematical works the cir-
cumference of a circle is taken to be 360◦ = 21600′. Therefore the length of the
arc corresponding to each quadrant will be 5400′. This length is divided into 24
equal segments, each segment corresponding to 225′. In Fig. 2.2, the points Pi (i =
1,2, . . . ,24) represent the end points of the 24 segments represented by the arcs
Pi−1Pi. The set of jyās, Ji = PiNi, (i = 1,2, . . . ,24) corresponding to the 24 cāpas
P0Pi, are explicitly stated in many texts such as Āryabhat. ı̄ya and Sūryasiddhānta.4

A method for obtaining more accurate values of these tabulated jyās will be pre-
sented in the next verse.

Let Si represent the length of the 24 segments P0Pi, in minutes of arc and Ji, the
jyā corresponding to it. That is,

Si = P0Pi = i×225,

and Ji = PiNi. (i = 1,2, . . . ,24) (2.4)

The above verse gives an interpolation formula to find out the jyā corresponding to
any length of arc between 0 and 5400′ from the set of 24 jyās listed in Table 2.1
(page 64). Suppose S is the length of an arc in minutes that lies between Si and Si+1.
That is,

S = Si + r, O ≤ r < 225, (2.5)

where Si = i× 225. Since the jyā corresponding to the nearest arc lengths Si and
Si+1 on either side of S are known, the jyā corresponding to S is obtained by the rule
of three. It is given by

jyā S = Ji +
r× (Ji+1 − Ji)

225
. (2.6)

4 The following verses in Sūryasiddhānta (II. 17–22) give the values of the 24 jyās:ta:�va;a;��a:(õ;a;na;ea;ñÍö�ÅÅ*:+.a;�///�a;b.Da;kx +:ta;a .�+.pa;BUa;Æa;ma;Da:=;�Ra;vaH Á Ka;a;ñÍö�ÅÅ*:+.a;�;Ea :pa:úãÁ*.a;ZUa;nyea;Za;a ba;a;Na:�+.pa;gua;Nea;nd;vaH Á ÁZUa;nya;l+.ea;.a;na;pa:úãÁ*.aE ;k+:a;�//////�a;ZC+.dÒ ;�+.pa;mua;n�a;a;nd;vaH Á ;
a;va;ya;�a;ndÒ +a;�a;ta;Dxa;ta;ya;ea gua;Na:=+nDra;a;}ba:=+a;��a:(õ;a;naH Á Ámua;�a;na;Sa;q:�a;ma;nea:�a;a;a;Na ..a;ndÒ +a;�a;çÉîå+;a;kx +:ta;d;~åò:a;k+:aH Á :pa:úãÁ*.a;a;�;
a;va;Sa;ya;a;[�a;a;a;Na ku +.úêÁÁ*+:=+a;��a:(õ;a;na;ga;a;��a:(õ;a;naH Á Á.=+nDra;pa:úãÁ*.a;a;�;k+:ya;ma;aH va;~va;dùÅò ;a;ñÍö�ÅÅ*:+.ya;ma;a;~ta;Ta;a Á kx +:ta;a;�;ZUa;nya:$va;l+.na;aH na;a;ga;a;
a;dÒ +Za;a;Za;va;�îå+:yaH Á Á:Sa;f, :pa:úãÁ*.a;l+.ea;.a;na;gua;Na;aH ..a;ndÒ +nea:�a;a;�a;çÉîå+;a;va;�îå+:yaH Á ya;ma;a;
a;dÒ +va;
a;�îå+.$va;l+.na;aH .=+nDra;ZUa;nya;a;NRa;va;a;çÉîå+;a;yaH Á Á.�+.pa;a;�a;çÉîå+;a;sa;a;ga:=+gua;Na;aH va;~va;�a;çÉîå+;a;kx +:ta;va;�îå+:yaH Á :pra;ea;Ja�a;ea;tkÒ +:mea;Na v.ya;a;sa;a;Da;Ra;t,a
. o+.tkÒ +:ma:$ya;a;DRa;
a;pa;Nq+.k+:aH Á Á

The 24 jyā values in the above verses have been given using the Bhūtasaṅkhyā system of repre-
senting numbers (see Appendix A).
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Fig. 2.2 Determination of the jyā corresponding to the arc lengths which are multiples of 225′.

Illustrative example

Suppose the arc length S = 1947. Find the jyā corresponding to it.
The given arc length S = 1947 lies between S8 and S9, as S8 = 8× 225 = 1800

and S9 = 2025. Hence, S can be written as S = S8 + 147. The jyā corresponding to
arc length S is given by:

jyā S = J8 +
147× (J9− J8)

225
.

For instance, we may use the values of Mādhava, quoted in Laghu-vivr. ti, J8 =
1718′52′′24′′′ and J9 = 1909′54′′35′′′. Then,

jyā 1947 = 1718′52′′24′′′ +
147× (1909′54′′35′′′−1718′52′′34′′′)

225
= 1843′41′′02′′′.

This is the value of jyā (1947) obtained by the first-order interpolation, while the
actual value is 1844′34′′09′′′.
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a;F+.ta:$ya;a;na;ya;na;m,a
2.3 Computation of the tabular Rsines;
a;va;�a;l+.�a;a;d;Za;k+:ea;na;a .$ya;a .=+a;Zya;�;Ma;Za;Da;nuaHk+:l+.aH Á Á 3 Á ÁA;a;dùÅ;a:$ya;a;Da;Ra;t,a ta;ta;ea Ba;�e .sa;a;DRa;de ;va;a;��a:(õ;a;Æa;Ba;~ta;taH Átya;�e ;
a;dõ ;t�a;a;ya;Ka;Nq+$ya;a ;
a;dõ ;t�a;a;ya;a .$ya;a ..a ta;dùÅ;au ;�a;taH Á Á 4 Á Áta;ta;~tea;nEa;va h;a:=e +Na l+.b.DMa Za;ea;DyMa ;
a;dõ ;t�a;a;ya;taH ÁKa;Nq+.a;t,a txa;t�a;a;ya;Ka;Nq+$ya;a ;
a;dõ ;t�a;a;ya;~ta;dùÅ;au ;ta;ea gua;NaH Á Á 5 Á Átxa;t�a;a;yaH .~ya;a;t,a ta;ta;(ãÉEa;vMa ..a;tua;Ta;Ra;dùÅ;a;aH kÒ +:ma;a;d, gua;Na;aH Á

viliptādaśakonā jyā rāśyas.t.ām. śadhanuh.kalāh. || 3 ||
ādyajyārdhāt tato bhakte sārdhadevāśvibhistatah. |
tyakte dvit̄ıyakhan. d. ajyā dvit̄ıyā jyā ca tadyutih. || 4 ||
tatastenaiva hāren. a labdham. śodhyam. dvit̄ıyatah. |
khan. d. āt tr. t̄ıyakhan. d. ajyā dvit̄ıyastadyuto gun. ah. || 5 ||
tr. t̄ıyah. syāt tataścaivam. caturthādyāh. kramād gun. āh. |
The jyā of one-eighth of the arc, corresponding to a rāśi (expressed) in minutes, is 10′′

short of that (length of the arc in minutes). The quantity obtained by dividing the first
jyārdha by 233 1

2 , and subtracting it from the same, is the dvit̄ıyakhan. d. ajyā. This added
to it (the first jyā) is the second jyā. The result obtained by dividing that (the second jyā)
by the same divisor (233 1

2 ) is to be subtracted from the second khan. d. ajyā. This is the
tr. t̄ıyakhan. d. ajyā. This added to the second is the third gun. a.5 From that, the fourth gun. a
etc. have to be obtained in order.

As mentioned earlier, some texts like Āryabhat. ı̄ya and Sūryasiddhānta give the
table of 24 jyās from which the jyā of any length of arc can be found, as illustrated
through an example in the previous section. In the verses above, a procedure for
finding more accurate values of the 24 jyās is described.6 For this, two new terms,
namely the khan. d. ajyā (Rsine difference) and the pin. d. ajyā (whole Rsine) are intro-
duced.

With reference to Fig. 2.2, they are defined as follows:

pin. d. ajyā = PiNi = Ji i = 1,2, . . . ,24,

khan. d. ajyā = Pi+1Ni+1 −PiNi = ∆i i = 1,2, . . . ,23. (2.7)

The term pin. d. ajyā essentially refers to the whole or the tabulated jyā. They are
24 in number, represented by J1,J2, . . . ,J24 and are expressed in minutes of arc. The
last pin. d. ajyā, namely P24N24 = P24O, is referred to as trijyā, and its length is equal
to the radius of the circle. The difference between the successive pin. d. ajyās are
referred to as the khan. d. ajyās. In these verses the first pin. d. ajyā and the procedure
for generating the successive pin. d. ajyās from that are given.

5 The term gun. a has various meanings. In this verse and in verse 5a, it could be assigned the
meaning rope, in which case it is the same as the word jyā. But in verses 6, 8 etc. of this chapter it
is used to mean a multiplier (i.e. numerator).
6 In fact, the procedure is the same as in Āryabat.ı̄ya, but for the values of the first jyā (which is
taken to be 224′50′′ instead of 225′) and the divisor (which is taken to be 233 1

2 instead of 225′).
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The length of the first pin. d. ajyā is stated to be one-eighth of a rāśi expressed in
minutes minus 10 seconds; thus P1N1 (in Fig. 2.2) is equal to 224′ 50′′. This is also
equal to the first khan. d. ajyā. Thus we have

jyā P0P1 = P1N1 = J1 = 224′ 50′′ = ∆1. (2.8)

This can be understood as follows. In Fig. 2.2,

P0ÔP1 =
90
24

= 3.75◦ = 225′ = 0.65949846 radian. (2.9)

The first pin. d. ajyā is often taken to be 225′ in some earlier Indian texts like
Āryabhat. ı̄ya and Sūryasiddhānta based on the approximation,

Rsinα ≈ Rα = 225′. (2.10)

In contrast to the above approximation, which of course is reasonably good for small
α , the above set of verses present the value of the first pin. d. ajyā based on a better
approximation,

sinα ≈ α − α3

3!
. (2.11)

In fact, it is later stated explicitly in the text (see verse 17 of this chapter) that this
is the approximation that has been employed in arriving at the value of 224′ 50′′ for
the first pin. d. ajyā. Thus,

P1N1 = Rsinα ≈ 21600
2π

(
α − α3

6

)
= 224.8389′ ≈ 224′50′′. (2.12)

In the following, we give the procedure outlined in the text for obtaining the suc-
cessive khan. d. ajyās and pin. d. ajyās, along with the rationale behind it. The second
khan. d. ajyā ∆2 is defined as

∆2 = J2 − J1

= R(sin2α − sinα), (2.13)

where PÔP2 = 2α . Now, sin2α = 2sinα cosα . Hence,

∆2 = Rsinα(2cosα −1). (2.14)

Rewriting the above expression we have,

∆2 = Rsinα[1−2(1− cosα)]. (2.15)

For α = 225′, we have

2(1− cosα) ≈ 0.004282153. (2.16)
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This is approximated in the text by

1

233 1
2

≈ 0.004282655. (2.17)

Hence

∆2 = Rsinα

(
1− 1

233 1
2

)
,

or ∆2 = J1 −
J1

233 1
2

= ∆1 −
J1

233 1
2

≈ 224′50′′−57.77′′

≈ 223′52′′. (2.18)

The second pin. d. ajyā is given by

J2 = J1 + ∆2

= 224′50′′ + 223′52′′

= 448′42′′. (2.19)

The third khan. d. ajyā ∆3 is defined as

∆3 = J3 − J2 = R(sin3α − sin2α). (2.20)

Rewriting the above expression we get

∆3 = R [sin(2α + α)− sin2α]

= R [(sin 2α cosα + cos2α sinα)− sin2α]

= R [(sin 2α cosα +(2cos2 α −1)sinα)− sin2α]

= R [2sin2α cosα − sinα − sin2α]

= R [sin2α − sinα −2sin2α(1− cosα)]

= ∆2 − J2 2(1− cosα). (2.21)

We have already noted that

2(1− cosα) ≈ 1

233 1
2

. (2.22)

Hence the third khan. d. ajyā is given by

∆3 = ∆2 −
J2

233 1
2
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≈ 223′52′′−1′55′′

= 221′57′′. (2.23)

Thus the third pin. d. ajyā becomes

J3 = J2 + ∆3

= 448′42′′ + 221′57′′

= 670′39′′, (2.24)

and so on. In general, the ith khan. d. ajyā is given by

∆i = ∆i−1 −
Ji−1

233 1
2

, (2.25)

and the ith pin. d. ajyā by
Ji = Ji−1 + ∆i. (2.26)

The iterative relation (2.25) follows from the easily verifiable relation for ∆i+1 given
by

∆i+1 = Rsin(i+ 1)α −Rsin iα
= R [sin iα − sin(i−1)α −2sin iα(1− cosα)],

= ∆i −2(1− cosα)Rsin iα, (2.27)

and the above approximation (2.22) for 2(1− cosα). In fact, a recursion relation
amounting to the above is stated a few verses later. The above iterative procedure is
described in Laghu-vivr. ti as follows:ta;ta;ea ;
a;va;�a;l+.�a;a;d;Za;ke +:na ;
a;va:=+
a;h;ta;a;t,a ta:�va;nea:�a;a;t,a A;a;dùÅ;a:$ya;a;DRa;tua;�ya;a;t,a, .sa;a;DRa;de ;va;a;��a:(õ;a;Æa;BaH;
a;va;Ba:$ya ya;
a;�+:�a;a;
a;d;P+.lM l+.Bya;tea, ta;d;a;dùÅ;a;
a;dõ ;t�a;a;ya;ya;eaH Ka;Nq+$ya;ya;ea:=+nta:=M .~ya;a;t,a Á ta;d;a;dùÅ;a:$ya;a-Ka;Nq+.ta;ea ;
a;va;Za;ea;Dya ;a;Za;�M ;
a;dõ ;t�a;a;ya;Ka;Nq+$ya;a .~ya;a;t,a Á ta;ta;~ta;dùÅ;au ;�+:a :pra;Ta;ma;Ka;Nq+$ya;a ;
a;dõ ;t�a;a;ya-;
a;pa;Nq+$ya;a .~ya;a;t,a Á ta;ta;ea ;
a;dõ ;t�a;a;ya;
a;pa;Nq+$ya;a;taH :pUa;vRa;h;a:=e +NEa;va ;
a;va;Ba;�M :P+.lM ;
a;dõ ;t�a;a;ya;txa;t�a;a;ya;ya;eaHKa;Nq+$ya;ya;ea:=+nta:=M .~ya;a;t,a Á ta;taH :pua;naH ;
a;dõ ;t�a;a;ya;Ka;Nq+$ya;a;taH ;
a;va;Za;ea;Dya ;a;Za;�M txa;t�a;a;ya;Ka;Nq+$ya;a.~ya;a;t,a Á ta;~ya;aH ;
a;dõ ;t�a;a;ya;
a;pa;Nq+$ya;a;ya;a;(ãÉa ya;ea;gaH txa;t�a;a;ya;
a;pa;Nq+$ya;a .~ya;a;t,a Á A;Ta ta;ta;ea;pyua;�+:pra;k+:a-:=e +Na ..a;tua;Ta;Ra;dùÅ;a;aH gua;Na;aH kÒ +:mea;Na .sa;a;Dya;aH Á

Then, whatever is obtained in minutes etc. (liptādi) as the result when 225 diminished
by 10 seconds, which is equal to the first Rsine, is divided by 233.5, will be the differ-
ence between the first and second khan. d. ajyās. This [result] when subtracted from the first
khan. d. ajyā will be the second khan. d. ajyā. The first khan. d. ajyā added to this will then
be the second pin. d. ajyā. Then the result obtained by dividing the second pin. d. ajyā by the
above-mentioned divisor will be the difference between the second and third khan. d. ajyās.
Again when this [result] is subtracted from the second khan. d. ajyā, [the quantity obtained]
will be the third khan. d. ajyā. The sum of this and the second pin. d. ajyā will be the third
pin. d. ajyā. From there on, the fourth Rsine etc. have to be obtained by the method stated
above.
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Laghu-vivr. ti also prescribes more accurate values of the first Rsine (J1), as well
as the divisor.A:�a ;
a;va;�a;l+.�a;a:�+.pa;mea;va .$ya;a;.a;a;pa;a;nta:=+ma;Æa;Ba;prea;tya ;
a;va;�a;l+.�a;a;d;Za;k+:mua;�+:m,a Á va;~tua;taH :pua;naHA;�;
a:�Ma;Za;t,a ta;tpa:=+a;�a;Da;kM ;
a;va;�a;l+.�a;a;na;va;k+:mea;vEa;ta;t,a Á A;ta O;;va Ba;a;ga;h;a:=+eaY;
a;pa na ta:�a .sa;a;DRa;de ;va;a;��a:(õ;a-tua;�yaH Á A;
a;pa tua dõ ;a;
a:�Ma;Za;
a;dõ ;�a;l+.�a;a;�a;Da;k+:de ;va;a;��a:(õ;a;tua;�ya I+.�a;ta Á

Here with the intention of specifying the difference between the Rsine and the arc in terms
of viliptās only, it was stated to be 10 viliptās. Actually it is 38 tatparās in excess of
9 viliptās. It is for this reason, the divisor is also not 233 1

2 . But 233 (minutes) and 32
viliptās.

What is stated above is that the first Rsine (J1) should be taken to be 225′ −
0′9′′38′′′ = 224′50′′22′′′. Similarly the divisor should be taken to be 233 + 32

60 in-
stead of 233 1

2 . The values of tabular Rsines as calculated with these more accurate
values of J1 and the divisor are more or less the same as the tabular Rsines given by
Mādhava, as we show below in Table 2.1.2.4 :pra;k+:a:=+a;nta:=e +Na .$ya;a;na;ya;na;m,a
2.4 Another method for obtaining the Rsinesv.ya;a;sa;a;D a :pra;Ta;mMa n�a;a;tva;a ta;ta;ea va;a;nya;a;n,a gua;Na;a;n,a na;yea;t,a Á Á 6 Á Á��a;a;Za.Èåî ÁÁ*+;.a;kÒ +:�a;l+.�a;a;ByaH v.ya;a;sa;eaY;TeRa;Sva;�a;çÉîå+;a;Æa;Ba;&R +.taH Áta;�+l+.a;dùÅ;a:$ya;ya;eaH kx +:tya;eaH Bea;d;a;n}å.Ua;l+.mua;pa;a;�////�a;nta;ma;a Á Á 7 Á ÁA;ntya;ea;pa;a;ntya;a;nta:=M ;
a;dõ .Èåî ÁÁ*+M gua;Na;ea v.ya;a;sa;d;lM h:=H ÁA;a;dùÅ;a:$ya;a;ya;a;~ta;Ta;a;
a;pa .~ya;a;t,a Ka;Nq+$ya;a;nta:=+ma;a;
a;d;taH Á Á 8 Á Áta;a;Bya;Ma tua gua;Na;h;a:=+a;Bya;Ma ;
a;dõ ;t�a;a;ya;a;de :=+
a;pa kÒ +:ma;a;t,a Áo+�a:=+ea:�a:=+Ka;Nq+$ya;a;Bea;d;aH ;
a;pa;Nq+.gua;Na;a;DRa;taH Á Á 9 Á ÁO;;vMa .sa;a;va;ya;va;a .j�a;a;va;aH .sa;}ya;ñÍîå Å*:� +.a;tva;a :pa;Fe +.t,a kÒ +:ma;a;t,a Á

vyāsārdham. prathamam. n̄ıtvā tato vānyān gun. ān nayet || 6 ||
tr̄ı́saghnacakraliptābhyah. vyāso ′rthes.vagnibhirhr. tah. |
taddalādyajyayoh. kr. tyoh. bhedānmūlamupāntimā || 7 ||
antyopāntyāntaram. dvighnam. gun. o vyāsadalam. harah. |
ādyajyāyāstathāpi syāt khan. d. ajyāntaramāditah. || 8 ||
tābhyām. tu gun. ahārābhyām. dvit̄ıyāderapi kramāt |
uttarottarakhan. d. ajyābhedāh. pin. d. agun. ārdhatah. || 9 ||
evam. sāvayavā j̄ı vāh. samyaṅn̄ıtvā pat.het kramāt |
Or else, the gun. ās [the values of the jyās] may be obtained by first obtaining the vyāsārdha
(radius). The number of seconds of arc in a circle multiplied by 113 and divided by 355 is
the diameter.7

The square root of the difference between the squares of half of that (diameter) and the
first jyā is the penultimate jyā. The difference between the last jyā and the penultimate

7 Here, a clarifying note regarding the number 355 represented using the Bhūtasaṅkhyā system
may be useful. In the string arthes.vagni employed to refer to this number, the word artha should
not be taken to refer to purus.ārtha, in which case it would be referring to the number 4. On the
other hand, it should be taken to be referring to 5 sense organs—through the derivation “arthyate
anenetyartha.h” (through which things are sought after).
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one multiplied by two is the gun. a (multiplier) and the radius is the hāra (divisor). From
the ādyajyā [multiplying it with the multiplier and dividing by the divisor], the difference
between the first two khan. d. ajyās is obtained. With the same multiplier and divisor, and
multiplying the multiplier by the second pin. d. ajyā, the third pin. d. ajyā etc., the difference
between the successive khan. d. ajyās are obtained. Having thus obtained the jyās with their
parts (seconds etc.) they may be tabulated in a sequence.

Here a procedure for generating the jyā table (table of Rsines) by finding the
differences of the successive khan. d. ajyās is described. As will be seen below, this
procedure merely involves the knowledge of the first jyā (J1) and trijyā. It may be
recalled that the method described in the previous section (verses 4–6a) essentially
made use of the following equations for generating the successive pin. d. ajyā values
given in Table 2.1.

Ji+1 = Ji + ∆i+1 (0 ≤ i ≤ 23) (2.28)

∆i+1 = ∆i −
Ji

233 1
2

(1 ≤ i ≤ 23), (2.29)

where ∆i and Ji i = 1,2, . . . ,24, refer to the khan. d. ajyās and pin. d. ajyās respectively.
Since ∆1 = J1, is known, all the jyās can be generated using the above equations
recursively. Equation (2.29) can be rewritten as

∆i −∆i+1 =
Ji

233 1
2

. (2.30)

In the above verses (6–9) the recursion relation which is the basis of (2.30) is stated.
Here the value of the last jyā (J24 = trijyā), which is the same as the radius of the
circle, is first stated. Since J1 is already known, with these two jyās (the first and the
last), the value of the penultimate jyā (J23) is found. Then the text defines a gun. a
or multiplier and a hāra or divisor, using which a recursion relation is formulated;
making use of this, all the tabular differences of the khan. d. ajyās and hence the values
of the 24 jyās can be obtained. This method is quite instructive and may be described
as follows. It has already been noted that the circumference of the circle is taken to
be 21600. The diameter of this circle is stated to be:

D =
21600×113

355
. (2.31)

So, essentially, 355
113 = 3.14159 is taken to be the approximate value of π . Using (2.3),

and the notation α = 225′ = 3.75◦, we have
√

J24
2 − J1

2 = R
√

sin2 24α − sin2 α

=
√

(Rsin90)2 − (Rsin3.75)2

= R
√

1− sin2 α
= Rcosα
= Rsin(24α −α) (24α = 90◦)
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= Rsin23α
= J23, (2.32)

where R is trijyā. Having obtained the penultimate jyā from the first and the last
jyās, the multiplier and divisor are defined. Laghu-vivr. ti puts them in very clear
terms as follows:ta;~ya;aH o+.pa;a;�////�a;nta;ma:$ya;a;ya;aH A;ntya:$ya;a;ya;a;(ãÉa v.ya;a;sa;a;DRa;tua;�ya;a;ya;aH ya;d;nta:=M , ta;	a;�ë +gua;a;Na;tMa gua;NaH;v.ya;a;sa;a;DRa;tua;�ya;ea h;a:=H Á

The difference between the penultimate jyā and the ultimate jyā, which is equal to the
radius, multiplied by two is the multiplier. The radius is the divisor.

That is,

gun. a = 2(R−Rsin23α),

hāra = R. (2.33)

Now the recursion relation to obtain the sine differences or the khan. d. ajyās can be
written as follows:

∆i −∆i+1 =
gun. a

hāra
Rsin i α

=
2(R−Rsin23α)

R
Rsin i α. (2.34)

For instance, with i = 1, the above equation becomes

∆1 −∆2 =
2(R−Rsin23α)

R
Rsinα

= R[2sinα −2sin23α sinα]

= R[2sinα − (cos22α − cos24α)]

= R[2sinα − cos(24α −2α)+ 0]

= R[2sinα − sin2α]. (2.35)

From the definition of khan. d. ajyā, we have

∆1 −∆2 = (J1 − J0)− (J2 − J1)

= 2J1 − J2. (2.36)

Clearly (2.36) is the same as (2.35). In general,

∆i −∆i+1 = (Ji − Ji−1)− (Ji+1 − Ji)

= 2Ji − Ji+1 − Ji−1

= R [2sin iα − sin(i+ 1)α − sin(i−1)α]. (2.37)

Using cos(90−θ ) = sinθ , cos(90 + θ ) = −sinθ , we get
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∆i −∆i+1 = R [2sin iα − cos(24α − (i+ 1)α)+ cos(24α +(i−1)α)]

= R [2sin iα − cos(23− i)α − cos(23 + i)α]

= R [2sin iα −2sin23α sin iα]

=
2(R−Rsin23α)

R
Rsin iα, (2.38)

which is the recursion relation (2.34) for the khan. d. ajyās given in the text.
Commenting on the first line of the tenth verse, evam. sāvayavā j̄ıvāh. samyaṅ-

n̄ıtvā pat.het kramāt, Śaṅkara Vāriyar describes the accurate values of the 24
Rsines—which he attributes to Mādhava—in the following verses:(rea;�M na;a;ma va;�a:=+�+a;na;Ma ;
a;h;ma;a;
a;dÒ +veRa;d;Ba;a;va;naH Áta;pa;na;ea Ba;a;nua;sUa;�+.:℄a;ea ma;Dya;mMa ;
a;va;�a:;dÄâ d;ea;h;na;m,a Á Á 1 Á Á;�a;Da;ga;a:$ya;ea na;a;Za;nMa k+:�M C+.�a;Ba;ea;ga;a;Za;ya;a;�////�a;}ba;k+:a Ámxa;ga;a;h;a:=+ea na:=e +Za;eaY;yMa v�a;a:=+ea .=+Na:ja;ya;ea;tsua;kH Á Á 2 Á ÁmUa;lM ;
a;va;Zua:;dÄâ M na;a;l+.~ya ga;a;nea;Sua ;
a;va:=+l+.a na:=+aH ÁA;Zua;�a:;dÄâ ;gua;�a;a ..a;ea:=+(r�a;aH Za;ñÍö�ÅÅ*:u +.k+:Na;eRa na;gea:(õ;a:=H Á Á 3 Á Áta;nua:ja;ea ga;BRa:ja;ea ;Æa;ma:�Ma (r�a;a;ma;a;na:�a .sua;K�a;a .sa;Kea ÁZa;Z�a;a .=+a:�a;Ea ;
a;h;ma;a;h;a:=+ea :vea;ga::℄aH :pa;�a;Ta ;Æa;sa;nDua:=H Á Á 4 Á ÁC+.a;ya;a;l+.ya;ea ga:ja;ea n�a;a;l+.ea ;�a;na;mRa;l+.ea na;a;�/////�a;~ta .sa;tku +:le Á.=+a:�a;Ea d;pRa;Na;ma;Bra;a;ñÍç ÅÅ*:M na;a;ga;~tua;ñÍç ÅÅ*:+.na;Ka;ea va;l� +.a Á Á 5 Á Á;D�a;a:=+ea yua;va;a k+:Ta;a;l+.ea;lH :pUa:$ya;ea na;a:=� +a:ja;nEa;BRa;gaH Ák+:nya;a;ga;a:=e na;a;ga;va;�� +:a :de ;va;ea ;
a;va:(õ;a;~Ta;l� +.a Bxa;guaH Á Á 6 Á Áta;tpa:=+a;
a;d;k+:l+.a;nta;a;~tua ma;h;a:$ya;a ma;a;Da;va;ea;
a;d;ta;aH Á.~va;~va;pUa;vRa;
a;va;Zua:;dÄâ e tua ;a;Za;�;a;~ta;tKa;Nq+.ma;Ea;
a;vRa;k+:aH Á Á 7 Á Á I+.�a;ta Á Á

Here the values of the 24 Rsines are given up to the thirds in the Kat.apayādi no-
tation. For instance, consider the first Rsine given by ‘śres.t.ham. nāma varis. t.hānām. ’.
The three words here stand for 22, 50 and 224 respectively. Hence the value of the
first Rsine is: 224′ 50′′ 22′′′. The values of the other Rsines are deciphered in a sim-
ilar manner. These have been arrived at by considering terms up to θ 11 in the series
expansion of sinθ which was also derived by Mādhava:

sinθ = θ − θ 3

3!
+

θ 5

5!
− θ 7

7!
+

θ 9

9!
− θ 11

11!
+ . . . .

Table of jyās

In Table 2.1, we reproduce the values of jyās corresponding to arc lengths which
are multiples of 225′, given in Āryabhat. ı̄ya/Sūryasiddhānta, Tantrasaṅgraha and
Laghu-vivr. ti (considering more accurate values for the first jyā as well as the divi-
sor). The values of jyās enunciated by Mādhava are also listed based on the verses
‘śres.t.ham. nāma varis. t.hānām. . . . ’ cited in Laghu-vivr. ti. In fact, the modern values
presented in the last column show that the Mādhava’s values are accurate up to the
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thirds. In Yuktibhās. ā it is noted that the jyā for any arc can be obtained without
using the tabular values, by using the infinite series expansion for it.

Dhanu or Cāpa Notation Value of the jyā (in minutes, seconds and thirds)
Symbol Length used As in From From Given by Modern

used (min) AR/SS TS LV Mādhava

S1 225 J1 225 224 50 224 50 21 224 50 22 224 50 21
S2 450 J2 449 448 42 448 42 58 448 42 58 448 42 57
S3 675 J3 671 670 39 670 40 16 670 40 16 670 40 16
S4 900 J4 890 889 44 887 45 17 889 45 15 889 45 15
S5 1125 J5 1105 1105 00 1105 01 41 1105 01 39 1105 01 38
S6 1350 J6 1315 1315 32 1315 34 11 1315 34 07 1315 34 07
S7 1575 J7 1520 1520 26 1520 28 41 1520 28 35 1520 28 35
S8 1800 J8 1719 1718 49 1718 52 32 1718 52 24 1718 52 24
S9 2025 J9 1910 1909 51 1909 54 46 1909 54 35 1909 54 35
S10 2250 J10 2093 2092 42 2092 46 19 2092 46 03 2092 46 03
S11 2475 J11 2267 2266 35 2266 40 10 2266 39 50 2266 39 50
S12 2700 J12 2431 2430 45 2430 51 40 2430 51 15 2430 51 14
S13 2925 J13 2585 2584 32 2585 38 37 2584 38 06 2584 38 05
S14 3150 J14 2728 2727 14 2727 21 31 2727 20 52 2727 20 52
S15 3375 J15 2859 2858 15 2858 23 42 2858 22 55 2858 22 55
S16 3600 J16 2978 2977 02 2977 11 30 2977 10 34 2977 10 33
S17 3825 J17 3084 3083 03 3083 14 23 3083 13 17 3083 13 16
S18 4050 J18 3177 3175 53 3176 05 07 3176 03 50 3176 03 49
S19 4275 J19 3256 3255 06 3255 19 50 3255 18 22 3255 18 21
S20 4500 J20 3321 3320 24 3320 38 11 3320 36 30 3320 36 30
S21 4725 J21 3372 3371 27 3371 43 24 3371 41 29 3371 41 29
S22 4950 J22 3409 3408 05 3408 22 20 3408 20 11 3408 20 10
S23 5175 J23 3431 3430 07 3430 25 35 3430 23 11 3430 23 10
S24 5400 J24 3438 3437 27 3437 47 29 3437 44 48 3437 44 48

Table 2.1 Jyā values corresponding to arc lengths which are multiples of 225′. Āryabhat.ı̄ya,
Sūryasiddhānta, Tantrasaṅgraha, Laghu-vivr. ti (with a more accurate first sine as well as the
divisor) and Mādhava’s values.2.5 I+.�;d;eaHk+:ea;�a;f:$ya;a;na;ya;na;m,a
2.5 Obtaining the desired Rsines and RcosinesI+.�;d;eaHk+:ea;�a;f;Da;nua;Sa;eaH .~va;sa;m�a;a;pa;sa;m�a;a;�a:=+tea Á Á 10 Á Á.$yea :dõe .sa;a;va;ya;vea nya;~ya ku +:ya;Ra;dU ;na;a;�a;Da;kM ;Da;nuaH Á;
a;dõ .Èåî ÁÁ*+;ta;
a;�+:�a;�a;k+:a;�Ea;k+:Za:=+ZEa;l+.a;Za;K�a;a;nd;vaH Á Á 11 Á Ánya;~ya;a;.Ce +.d;a;ya ..a ;Æa;ma;TaH ta;tsMa;~k+:a:=+
a;va;�a;Da;tsa;ya;a Á;�a;C+.tvEa;k+:Ma :pra;a;k, ;Æa;[a;pea:êêÁ*.a;hùÅ:a;a;t,a ta:;dÄâ ;nua;Sya;�a;Da;k+:ea;na;ke Á Á 12 Á ÁA;nya;~ya;a;ma;Ta ta;Ma ;
a;dõ .Èåî ÁÁ*+;Ma ta;Ta;a .~ya;a;Æa;ma;�a;ta .sMa;~kx +:�a;taH Á



2.5 Obtaining the desired Rsines and Rcosines 65I+.�a;ta .tea kx +:ta;sMa;~k+:a:=e .~va;gua;Na;Ea ;Da;nua;Sa;ea;~ta;ya;eaH Á Á 13 Á Áta:�a;a;�p�a;a;yaHkx +:�a;tMa 8 tya;�+:a :pa;dM ;
a:�a:$ya;a;kx +:teaH :pa:=H Á
is. t.adoh. kot.idhanus.oh. svasamı̄pasamı̄rite || 10 ||
jye dve sāvayave nyasya kuryādūnādhikam. dhanuh. |
dvighnatalliptikāptaikaśaraśailaśikh̄ındavah. || 11 ||
nyasyācchedāya ca mithah. tatsam. skāravidhitsayā |
chitvaikām. prāk ks. ipejjahyāt taddhanus.yadhikonake || 12 ||
anyasyāmatha tām. dvighnām. tathā syāmiti sam. skr. tih. |
iti te kr. tasam. skāre svagun. au dhanus.ostayoh. || 13 ||
tatrālp̄ıyah. kr. tim. tyaktvā padam. trijyākr. teh. parah. |
Having noted down the listed/tabulated values (samı̄rita) of the dorjyās (Rsines) and
kot.ijyās (Rcosines) corresponding to the two points which are on either side of the arc
whose dorjyā and kot.ijyā are desired, find the difference in the arc which may be in excess
of or short of it. [The number] 13751 divided by twice this difference has to be stored [as
divisor D] for dividing. This is done for mutual correction (i.e. for correcting the dorjyā
in determining kot.ijyā and vice versa). First divide one of them (the dorjyā or kot.ijyā by
D) and add or subtract this from the other (if the dorjyā is divided, apply it to the kot.ijyā
and if the kot.ijyā is divided, apply it to the dorjyā) depending upon whether the difference
is in excess or short. This result multiplied by two and operated as before (divided by D
and applied to the dorjyā or kot.ijyā) forms the process of correction. The correction thus
carried out gives the exact value of the dorjyā or the kot.ijyā of the desired arc. Of the two
(dorjyā or kot.ijyā) find the square of the jyā of the smaller one and subtract it from the
square of the trijyā. The square root of the result gives the other (the kot.ijyā or dorjyā).

O E

R

θ

δθ

φ
A

C
B

G

Fig. 2.3 Finding the jyā value corresponding to a desired arc.

In Fig. 2.3, AB is the arc whose jyā and kotijyā are desired to be found. The
length of the arc AB = Rθ , where R is the trijyā and θ is the angle subtended by
the arc at the centre O, expressed in radians. The jyās corresponding to the known
arc lengths AC and AG are known from the jyā table (Table 2.1). The procedure for

8 The reading in both the printed editions is: ta:�a;a;�p�a;a;yaH kx +:�a;tMa Á This however is grammatically
incorrect. Hence we have provided the right compound form of the word above.
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finding the jyā corresponding to the desired arc length AB from either of the two
known jyās is described in the above verses.

It may be noted from the figure that the desired arc length AB = Rθ is such that
iα ≤ Rθ ≤ (i + 1)α , for some integer 0 < i < 24, where α = 225′. Assume that
point B is closer to C than G, i.e. BC < BG. Let BC = Rδθ . The problem is to find
the dorjyā and kot.ijyā corresponding to the arc AB, where AB = iα + Rδθ .

The formulae for the two jyās involve an intermediate quantity (called the
hāraka, or divisor (D) by the commentator), which is defined as:

D =
13751
2R δθ

. (2.39)

The number 13751 appearing in the numerator is essentially four times the radius
R of the circle measured in minutes. In fact it is a good approximation too, as 2×
21600/π ≈ 13750.98708. Hence the above equation can be written as

D =
4R

2R δθ
=

2
δθ

. (2.40)

While the dorjyā of an arc increases with the arc length, the kot.ijyā decreases.
Considering this, the text presents the following relations.

dorjyā(iα + Rδθ ) = dorjyā iα +
2
D

(
kot.ijyā iα − dorjyā iα

D

)

= dorjyā iα − (dorjyā iα)δθ 2

2
+(kot.ijyā iα)δθ

= dorjyā iα
(

1− δθ 2

2

)
+(kot.ijyā iα)δθ , (2.41)

dorjyā (iα −Rδθ ) = dorjyā iα − 2
D

(
kot.ijyā iα +

dorjyā iα
D

)

= dorjyā iα − (dorjyā iα)δθ 2

2
− (kot.ijyā iα)δθ

= dorjyā iα
(

1− Rδθ 2

2

)
− (kot.ijyā iα)δθ , (2.42)

kot.ijyā (iα + Rδθ ) = kot.ijyā iα − 2
D

(
dorjyā iα +

kot.ijyā iα
D

)

= kot.ijyā iα − (kot.ijyā iα)δθ 2

2
− (dorjyā iα)δθ

= kot.ijyā iα
(

1− Rδθ 2

2

)
− (dorjyā iα)δθ , (2.43)

kot.ijyā (iα −Rδθ ) = kot.ijyā iα +
2
D

(
dorjyā iα − kot.ijyā iα

D

)

= kot.ijyā iα − (kot.ijyā iα)δθ 2

2
+(dorjyā iα)δθ



2.5 Obtaining the desired Rsines and Rcosines 67

= kot.ijyā iα
(

1− Rδθ 2

2

)
+(dorjyā iα)δθ . (2.44)

In Laghu-vivr. ti the procedure for finding the dorjyā and kot.ijyā of any arc length
is explained clearly as follows:ta;ta;~tea;na h;a:=+ke +:Na Bua:ja;a:$ya;Ma k+:ea;�a;f:$ya;Ma va;a O;;k+:Ma k+:tRua;Æa;ma;�;Ma :pra;Ta;ma;taH ;
a;va;Ba:$ya l+.b.DMak+:l+.a;
a;d;kM :P+.lM A;nya;~ya;Ma, Bua:ja;a;ya;aH .sa;a;Dya;tvea k+:ea;�a;f:$ya;a;ya;Ma ta;~ya;aH .sa;a;Dya;tvea Bua:ja;a:$ya;a;ya;Ma..a .sa;a;Dyea;ta:=;$ya;a;ya;Ma ta;tsa;}ba;�////�a;nDa;na;ea ;Da;nua;SaH �+:na;a;�a;Da;k+:tva;va;Za;a;t,a �+.NMa ;Da;nMa va;a ku +:ya;Ra;t,a ÁA;TEa;vMa kx +:ta;Ma ta;Ma ;
a;dõ ;gua;a;Na;ta;Ma kx +:tva;a :pUa;va;eRa;�e +:nEa;va h;a:=+ke +:Na ;
a;va;Ba:$ya l+.b.DMa ya;t,a :P+.lMta;tpua;na:=+nya;~ya;Ma .sa;a;Dya:$ya;a;ya;a;mea;va tMa ;Da;nua;SaH �+:na;a;�a;Da;k+:va;Za;a;dx ;NMa ;Da;nMa va;a ku +:ya;Ra;t,a Á O;;vMakx +:ta;a Bua:ja;a:$ya;a k+:ea;�a;f:$ya;a ..a :pa:=+~å.pa:=+l+.b.Da;P+.l+.sMa;~kx +:tea .~å.Pu +.fe Ba;va;taH Á

By that divisor divide the dorjyā or kot.ijyā, whichever is desired to be found, and this may
be added to or subtracted from the other one. That is, if the dorjyā is desired to be found,
it may be applied to the kot.ijyā and if the kot.ijyā is to be found it may be applied to the
dorjyā, the application being positive or negative depending upon whether the arc Rδ θ is
added to or subtracted from [iα].

Then this quantity may be multiplied by two and divided by the same divisor. The result has
to be applied to the desired jyā [i.e.,] if the kot.ijyā is to be found it has to be applied to the
kot.ijyā, and if the dorjyā is to be found it has to be applied to the dorjyā, the application
being positive or negative depending upon whether the arc Rδ θ is added to or subtracted
from [iα]. The dorjyā and kot.ijyā thus applied to each other give the correct jyā of the
desired arc.

If the arc length iα ± Rδθ corresponds to an angle φ ± δθ (in radians), then
equations (2.41) to (2.44) are equivalent to the following relations:

Rsin(φ + δθ ) = Rsinφ
(

1− δθ 2

2

)
+(Rcosφ)δθ , (2.45)

Rsin(φ − δθ ) = Rsinφ
(

1− δθ 2

2

)
− (Rcosφ)δθ , (2.46)

Rcos(φ + δθ ) = Rcosφ
(

1− δθ 2

2

)
− (Rsinφ)δθ , (2.47)

Rcos(φ − δθ ) = Rcosφ
(

1− δθ 2

2

)
+(Rsinφ)δθ . (2.48)

It is obvious that (2.45) to (2.48) are approximations of the standard trigonometric
relations

Rsin(φ + δθ ) = R(sinφ cosδθ + cosφ sinδθ ), (2.49)

Rsin(φ − δθ ) = R(sinφ cosδθ − cosφ sinδθ ), (2.50)

Rcos(φ + δθ ) = R(cosφ cosδθ − sinφ sinδθ ), (2.51)

Rcos(φ − δθ ) = R(cosφ cosδθ + sinφ sinδθ ), (2.52)

when the approximations, cosδθ =
(

1− δθ 2

2

)
and sinδθ = δθ , for small δθ are

used. These also happen to be the first two terms in the Taylor series expansion of
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sin(φ ± δθ ) and cos(φ ± δθ ). Śaṅkara Vāriyar, however, has given an incorrect
generalisation of these to higher orders in his Laghu-vivr. ti.

If either the dorjyā or the kot.ijyā of an arc is known, the other can be determined
using the following relation. Let α be the length of the arc AB (in minutes) as shown
in Fig. 2.4; then,

dorjyā2α + kot.ijyā
2α = R2, (2.53)

which is the same as
sin2 θ + cos2 θ = 1. (2.54)

α

A

B

O

R

θ

Fig. 2.4 Relation between the dorjyā, the kot.ijyā and the trijyā.2.6 I+.�:$ya;a;ya;a;(ãÉa;a;p�a;a;k+.=+Na;m,a
2.6 Determining the length of the arc from the corresponding

Rsine.$ya;ya;ea:=+a;sa;�a;ya;ea;BeRa;d;Ba;�+:~ta;tk+:ea;�a;f;ya;ea;ga;taH Á Á 14 Á ÁCe +.d;~tea;na &+.ta;a ;
a;dõ .Èåî ÁÁ*+;a ;
a:�a:$ya;a ta:;dÄâ ;nua:=+nta:=+m,a Á Á
jyayorāsannayorbhedabhaktastatkot.iyogatah. || 14 ||
chedastena hr. tā dvighnā trijyā taddhanurantaram ||
The sum of the cosines divided by the difference of those two sines, which are close to each
other, forms the cheda (divisor). Twice the trijyā divided by this is the difference between
the corresponding arcs.

Consider Fig. 2.5a. P and Q are points along the circle whose distance from the
point A are multiples of α = 225′, that is AP = iα , and AQ = (i + 1)α , where i is
an integer. The jyās corresponding to the arcs AP and AQ are known from the table.
The idea is to find the arc length (AB in minutes) corresponding to the given jyā
(BN). Since the arc length AP is known, to determine AB we just need to find the
length of the arc PB.

Let AÔP = θ0, AÔB = θ and PÔB = θ − θ0 = δθ . Then, according to the text
the arc length PB is given by the following approximate formula:
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N

R

A

Q

θθ0

δθ

B
P

O

Fig. 2.5a Determination of the arc length corresponding to a given jyā.

PB = R δθ ≈ 2R[
(cosθ+cosθ0)
(sinθ−sinθ0)

] . (2.55)

The rationale behind the above formula can be understood as follows. When δθ is
small, sin δθ ≈ δθ and cosδθ ≈ 1. Hence, we have

sinθ = sin(θ0 + δθ )≈ sinθ0 + cosθ0 δθ (2.56a)

sinθ0 = sin(θ − δθ ) ≈ sinθ − cosθ δθ . (2.56b)

The above equations may be rewritten as

sinθ − sinθ0 ≈ cosθ0 δθ (2.56c)

sinθ − sinθ0 ≈ cosθ δθ , (2.56d)

from which we have

2(sinθ − sinθ0) ≈ (cosθ + cosθ0) δθ , (2.57)

or,

δθ ≈ 2(sinθ − sinθ0)

(cosθ + cosθ0)
. (2.58)

The above equation is the same as (2.55). We now proceed to explain another
method—one that is most likely to have been employed by Indian astronomers—of
arriving at the above expression for δθ with the help of a geometrical construction
(see Fig. 2.5b). Here J is the midpoint of the arc PB and BN, JK and PM are per-
pendicular to OM. As the arc PB is small, it can be approximated by a straight line
and K can be taken to be the midpoint of NM.

Then it can be easily seen from the figure that

BD = R(sinθ − sinθ0)

and OK =
R(cosθ + cosθ0)

2
. (2.59)
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P

O

θ 0

J
B

θ

δθ

R

MKN

D

Fig. 2.5b Geometrical construction to determine the arc length corresponding to a given jyā.

Considering the similar triangles PBD and JOK, we have the relation

PB
JO

=
BD
OK

or PB = JO× BD
OK

. (2.60)

Using (2.59) in the above, we get

PB =
2R[

(cosθ+cosθ0)
(sinθ−sinθ0)

] , (2.61)

which is the same as (2.55) given in the text.
The above verse is explained in Laghu-vivr. ti as follows.ta:�a ..a;a;pa;sa;�////�a;nDa;pa;
a;F+.ta;ya;eaH ;�a;na:=+nta:=+ya;ea:j�a;Ra;va;ya;eaH ya;~ya;aH (.j�a;a;va;a;ya;aH) I+.�:$ya;Ma :pra;tya;a;sa;�a-ta:=+tvMa ta;~ya;aH I+.�:$ya;a;ya;a;(ãÉa ya;ea Bea;dH .tea;na ta;ya;eaH k+:ea;�a;f:$ya;ya;eaH ya;ea;gMa ;
a;va;Ba:jea;t,a Á ta:�a l+.b.DaHCe +.d;ea na;a;ma Á ta;ta;~tea;na Ce +.de ;na ;
a;dõ ;gua;a;Na;ta;Ma ;
a:�a:$ya;Ma ;
a;va;Ba:jea;t,a Á ta:�a l+.b.DMa I+.�:$ya;a-ta;d;a;sa;�a-..a;a;pa;sa;�////�a;nDa:$ya;ya;ea;DRa;nua;Sa;eaH A;nta:=+m,a; I+.�:$ya;a-ta;d;a;sa;�a-..a;a;pa;sa;�////�a;nDa:$ya;ya;ea:=+nta:=+ea;tTa;~ya .$ya;a-Ba;a;ga;~ya ;Da;nua;�a:=+tya;TRaH Á
Of the two points whose jyā values are listed in the table, find the one which is closer to the
desired jyā [whose arc value is to be found]. Then find the difference between these two
jyās (dorjyās), and divide the sum of the kot.ijyās by this difference. The result is called
the cheda. Divide twice the trijyā by this cheda. The result obtained is the difference
between the arcs lying between the desired jyā, and the jyā closest to it (as found from the
table); that is, it gives the length of the arc corresponding to the difference in the dorjyās.2.7 .sUa;[ma:$ya;a;na;ya;na;m,a

2.7 Finding more accurate values of the desired RsineI+.�a;ta .$ya;a;.a;a;pa;ya;eaH k+:a;y a g{a;h;NMa ma;a;Da;va;ea;
a;d;ta;m,a Á;
a;va;Da;a;nta:=M ..a .tea;na;ea;�M ta;ya;eaH .sUa;[ma;tva;Æa;ma;.C+.ta;a;m,a Á Á 15 Á Á.j�a;a;vea :pa:=+~å.pa:=+�a;na:jea;ta:=+ma;Ea;
a;vRa;k+:a;Bya;Ma A;Bya;~ya;
a;va;~txa;�a;ta;d;le +.na ;
a;va;Ba:$ya;ma;a;nea ÁA;nya;ea;nya;ya;ea;ga;
a;va:=+h;a;nua;gua;Nea Ba;vea;ta;Ma ya;dõ ;a .~va;l+.}ba;kx +:�a;ta;Bea;d;pa;d� ;a;kx +:tea :dõe Á Á 16 Á Á
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iti jyācāpayoh. kāryam. grahan. am. mādhavoditam |
vidhāntaram. ca tenoktam. tayoh. sūks.matvamicchatām || 15 ||
j̄ıve parasparanijetaramaurvikābhyām. abhyasyavistr. tidalena vibhajyamāne |
anyonyayogavirahānugun.e bhavetām. yadvā svalambakr. tibhedapad̄ıkr. te dve ||16 ||
The [above] procedure for obtaining the jyā and cāpa has thus been explained by Mādhava.
He has also given another method for those desirous of obtaining accurate values. Multiply
each jyā (dorjyā of an arc length) by the other jyā (of another arc length) and divide them
by the trijyā. Their sum or difference becomes (the jyā) of the sum or difference of the
arcs. Or else, the square root of the difference of their own squares and that of the lamba
[may be added and subtracted for getting the jyā of the sum or difference of the arcs].

The procedures for obtaining the Rsine and the arc described in the previous
verses are attributed to Mādhava. Verse 16 essentially gives the sin(A+B) formula.
This formula too is attributed to Mādhava and is explained in the commentary as
follows:. . . ya;ea;ga;
a;va;ya;ea;ga;ya;ea;gyea :dõe A;
a;pa A;DRa:$yea :pa:=+~å.pa:=+~ya ;�a;na:jea;ta:=;$ya;a;Bya;Ma .~va;Bua:ja;a:$ya;Ma A;nya;~ya;aHk+:ea;f�a;a A;nya;Bua:ja;a:$ya;Ma .~va;k+:ea;f�a;a ..a gua;Na;yea;t,a Á ya;
a;d .~va;yMa k+:ea;�a;f:$ya;a, ta;
a;hR ta;Ma A;nya;~yaBua:ja;a:$ya;ya;a A;nya;k+:ea;�a;f:$ya;Ma ..a .~va;Bua:ja;ya;a gua;Na;yea;t,a Á O;;vMa kx +:ta;ya;eaH dõ ;ya;ea;ya;eRa;ga;ea ;
a;va;ya;ea;ga;ea va;aA;B�a;a;�H k+:a;yRaH Á ta;ta;ea ;
a;va;~txa;�a;ta;d;le +.na ;
a;va;Ba:jea;t,a Á ;
a;va;Ba:$ya;ma;a;nea I+.�a;ta Za;a;na;.a;a ;
a;va;Ba:ja;na;a;t,a:pra;a;gea;va ya;ea;ga;
a;va;ya;ea;ga;Ea k+:tRa;v.ya;Ea I+.�a;ta d;ZRa;ya;�a;ta Á O;;vMa kx +:ta;ya;eaH ya;ea;ga;ea ;
a;va;ya;ea;ga;ea va;a .~å.Pu +.f;ea Ba;va;�a;ta ÁA;Ta;va;a dõ ;ya;ea;vRa;gRa;taH :pxa;Ta;gea;k+:~yEa;va ta;ya;eaH .sa;a;Da;a:=+Na;~ya l+.}ba;~ya va;gRa;ma;pa;n�a;a;ya mUa;l� +.a;kx +:tea o+.Beaya;ea;ga;
a;va:=+h;a;nua;gua;Nea Ba;vea;ta;a;m,a Á l+.}ba;a;na;ya;nMa :pua;naH o+.Ba;ya;ea:j�a;Ra;va;ya;eaH .sMa;va;gRa;taH ;
a:�a:$ya;ya;a h:=+Nea;nak+:tRa;v.ya;m,a Á

. . . The dorjyās (Rsines) [of the arcs α and β ] whose sum or difference is desired to be
found have to be multiplied mutually with the other jyā. That is, the dorjyā of one (α) has
to be multiplied by the kot.ijyā of the other (β ) and the kot.ijyā of the one (α) has to be
multiplied by the dorjyā of the other (β ). The sum or difference of these two quantities has
to be found as desired. Then it has to be divided by the trijyā. Here by using the suffix,
‘́sānac’ in the word vibhajyamane [the author] indicates that the addition or subtraction
has to be done before division [by the trijyā]. This gives the correct value of the dorjyā of
the sum or difference of the two arcs.

Alternatively, after subtracting the square of the lamba/lambana separately from the
squares of the two dorjyās and taking the square root, the two quantities (thus obtained)
become suitable for addition or subtraction. The lamba has to be obtained by multiplying
the two dorjyās and dividing by the trijyā.

AO

R

ϕ θ

C

B

Fig. 2.6a Determination of the jyā corresponding to the sum or difference of two arcs.
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Let α and β be the two arc lengths corresponding to the two angles θ and φ as
shown in Fig. 2.6a. That is, AB = α and AC = β respectively. Nı̄lakan. t.ha gives
the following two formulae for finding the jyā of the sum or difference of these arc
lengths.

dorjyā (α ±β ) =
dorjyā α kot.ijyā β ± kot.ijyā α dorjyā β

trijyā
(2.62a)

dorjyā (α ±β ) =

√
dorjyā2α − lamba2 ±

√
dorjyā2β − lamba2, (2.62b)

where lamba in the above equation is defined by

lamba =
dorjyā α dorjyā β

trijyā
. (2.63)

In terms of the angles θ and φ , lamba can be expressed as

lamba =
Rsinθ Rsin φ

R
. (2.64)

The term lamba generally means a vertical line or a plumb-line. The expression for
the lamba given above can be understood using a geometrical construction. For this
consider two angles θ and φ such that θ > φ , as shown in Fig. 2.6b. Find sinθ and
sinφ . Draw lines XY and OZ perpendicular to each other as indicated in the figure.
Now we consider a segment of length Rsinφ and place it inclined to OZ such that
the segment BN makes an angle θ with BO.

Then draw a line NC such that OĈN = φ . By construction, BN̂C = θ −φ . Draw
a perpendicular from B which meets the line NC at D. From the triangle NBD,

sin(θ −φ) =
BD

Rsinφ
(2.65a)

Also in the triangle BCD,

sinφ =
BD
BC

. (2.65b)

From (2.65a) and (2.65b)
BC = Rsin(θ −φ). (2.65c)

Now, applying the sine rule to the triangle NBC, we get the following relation

NB
sinφ

=
BC

sin(θ −φ)
=

NC
sin(180−θ )

(2.66)

Since NB = Rsinφ (by construction) and BC = Rsin(θ −φ) (see (2.65c)), from the
above equation, the third side NC of the triangle must be equal to Rsin(180− θ ).
That is NC = Rsin(180−θ )= Rsinθ . Now it can be easily seen that NO in Fig. 2.6b
represents the expression for the lamba given above.
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Rsin ϕ

ϕ θ

C O

N

Z

XY

D

B

Fig. 2.6b Geometrical construction to understand the expression for the lamba given in Chapter
2, verse 16.

Using (2.3), and the above expression for the lamba, (2.62a) and (2.62b) reduce
to the following equations respectively,

R sin(θ ±φ) =
Rsinθ Rcosφ ±Rcosθ Rsinφ

R
(2.67a)

R sin(θ ±φ) = Rsinθ cosφ ±Rcosθ sinφ , (2.67b)

which are the same as the standard formula used in planar trigonometry,

sin(θ ±φ) = sinθ cosφ ± cosθ sinφ . (2.68)2.8 A;�pa;.a;a;pa:$ya;a;na;ya;na;m,a
2.8 Computation of the Rsine value of a small arc;a;Za;�;.a;a;pa;Ga;na;Sa;�+Ba;a;ga;ta;ea ;
a;va;~ta:=+a;DRa;kx +:�a;ta;Ba;�+:va;Æa:jRa;ta;m,a Á;a;Za;�;.a;a;pa;Æa;ma;h ;a;Za;�a:úêÁÁ*+;n�a;a Ba;vea;t,a .~å.pa;�;ta;a Ba;va;�a;ta ..a;a;�pa;ta;a;va;Za;a;t,a Á Á 17 Á Á

śis. t.acāpaghanas.as.t.habhāgato vistarārdhakr. tibhaktavarjitam |
śis. t.acāpamiha śiñjin̄ı bhavet spas.t.atā bhavati cālpatāvaśāt || 17 ||
Divide one-sixth of the cube of the remaining arc by the square of the trijyā. This quantity
when subtracted from the remaining arc becomes the śiñjin̄ı (the dorjyā corresponding to
the remaining arc). The value is accurate because of the smallness [of the arc].

In the above verse, Nı̄lakan. t.ha gives the approximation for the sine of an angle
when it is small. If α = Rδθ is the length of a small arc along the circle, corre-
sponding to an angle δθ , then the above verse gives the following expression for its
dorjyā:

dorjyā α = α − α3

6 trijyā2 . (2.69)

The above expression is equivalent to

Rsinδθ = R δθ − (R δθ )3

6 R2
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or sinδθ = δθ − (δθ )3

6
. (2.70)

Thus we find that sinδθ is approximated by the first two terms in the series ex-
pansion for it. This gives fairly accurate results when δθ is small. That (2.70) is
valid and yields accurate results only when the arc is small is clearly emphasised in
Laghu-vivr. ti as follows:O;;vMa kx +:ta;a;ya;a;~ta;~ya;aH ..a;a;pa;a;�pa;ta;a;va;Za;a;de ;va .~å.pa;�;ta;a Ba;va;�a;ta Á

The accuracy of this operation is due solely to the smallness of the arc.2.9 I+.�:$ya;a;na;ya;na;m,a
2.9 Computation of the desired Rsine�+:na;a;�a;Da;k+:Da;nua:$ya; a ..a n�a;a;tvEa;vMa :pa;
a;F+.ta;Ma nya;sea;t,a Á�+:na;a;�a;Da;k+:Da;nuaHk+:ea;�a;f:j�a;a;va;ya;a ta;Ma .sa;m�a;a;pa:ja;a;m,a Á Á 18 Á Á;�a;na;h;tya :pa;
a;F+.ta;Ma ta;~ya;aH k+:ea;f�a;a ;a;Za;�;gua;Na;a:úãÁ*.a ta;m,a Áta;dùÅ;a;ea;gMa va;a;Ta ;
a;va:(ìÉÅ;e +SMa h:=e +d, v.ya;a;sa;d;le +.na tua Á Á 19 Á ÁI+.�:$ya;a Ba;va;�a;ta .~å.pa;�;a ta;tP+.lM .~ya;a;t,a k+:l+.a;
a;d;k+:m,a Ánya;a;yea;na;a;nea;na k+:ea;f�a;a;(ãÉa ma;Ea;v.ya;RaH k+:a;ya;Ra .sua;sUa;[ma;ta;a Á Á 20 Á Á

ūnādhikadhanurjyām. ca n̄ıtvaivam. pat.hitām. nyaset |
ūnādhikadhanuh.kot.ij̄ıvayā tām. samı̄pajām || 18 ||
nihatya pat.hitām. tasyāh. kot.yā śis. t.agun. añca tam |
tadyogam. vātha vísles.am. hared vyāsadalena tu || 19 ||
is. t.ajyā bhavati spas.t.ā tatphalam. syāt kalādikam |
nyāyenānena kot.yāśca maurvyāh. kāryā susūks.matā || 20 ||
Having also obtained the dorjyā of the arc which is in excess or deficit [from a multiple of
225 minutes], as described above (in the previous verse), keep it separately.

Multiply the nearest dorjyā [obtained from the tabulated Rsines] by the kot.ijyā of the arc
which is in excess or deficit. Also multiply the kot.ijyā by the dorjyā of the arc which is in
excess or deficit. The sum or difference of these two has to be divided by the radius (trijyā).

The desired jyā (dorjyā) can thus be found accurately. By the same procedure, the kot.ijyā
of any desired arc may be found accurately.

The above verses give the formulae for finding the dorjyā and kot.ijyā of an arc
of any desired length. To find this using the procedure given in Indian astronomical
texts, the desired arc length is expressed as a sum of two arcs, say α + δα where α
is an integral multiple of 225 and 0 < δα < 225. The formulae given in the above
verses are:

dorjyā (α ± δα) =
dorjyā α kot.ijyā δα ± kot.ijyā α dorjyā δα

trijyā
(2.71)

kot.ijyā (α ± δα) =
kot.ijyā α kot.ijyā δα ∓dorjyā α dorjyā δα

trijyā
, (2.72)
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which have already been commented upon. Since δα is always small (less than
225′ or 3.75◦), here it is suggested that the approximation (2.70) given in previ-
ous verse—which gives sinδα correct to O(δα3)—may be used for determining
the dorjyā δα in the above relation. Once the dorjyā is known, the corresponding
kot.ijyā may be found from the former using (2.53).2.10 .=+
a;va;~å.Pu +.fH
2.10 True longitude of the Sun�ya;Bya;~ta;ba;a;hu ;k+:ea;�a;f;Bya;Ma A;Z�a;a;tya;a;�ea :P+.le o+.Bea Á..a;a;
a;pa;tMa d;eaHP+.lM k+:a;y a .~va;N a .sUa;yRa;~ya ma;Dya;mea Á Á 21 Á Á:ke +:ndÒ +ea;Dva;Ra;DeRa ..a :pUa;va;Ra;DeRa ta;tk+:a;l+.a;kR H .~å.Pu +.fH .sa ..a Áma;Dya;sa;a;va;na;Æa;sa:;dÄâ ;eaY;taH k+:a;yRaH .~ya;a;du ;d;yea :pua;naH Á Á 22 Á Á

tryabhyastabāhukot.ibhyām. aś̄ıtyāpte phale ubhe |
cāpitam. doh. phalam. kāryam. svarn. am. sūryasya madhyame || 21 ||
kendrordhvārdhe ca pūrvārdhe tatkālārkah. sphut.ah. sa ca |
madhyasāvanasiddho ′tah. kāryah. syādudaye punah. || 22 ||
The dorjyā and kot.ijyā [of the manda-kendra of the Sun] multiplied by 3 and divided
by 80 form the doh. phala and kot.iphala. The arc corresponding to the doh. phala has to be
applied to the longitude of the mean Sun positively or negatively depending upon whether
the manda-kendra is within the six signs beginning with Tulā (Libra) or within the six
signs beginning with Mes.a (Aries). The longitude thus obtained is the true longitude. Since
this longitude corresponds to the true longitude at the mean sunrise, it has to be further
corrected for the true sunrise.

These verses present an explicit expression for the manda-phala of the Sun.
Manda-phala is a correction that needs to be applied to the mean longitude of
the planet, called the madhyama/madhyama-graha, to obtain the manda-sphut.a-
graha. The significance of the manda-phala, whose equivalent in modern astron-
omy is known as the equation of centre, is explained in Appendix F.

If θ0 be the mean longitude of the planet (here the Sun) at the mean sunrise, then
the true longitude θ of the Sun at the mean sunrise is given by θ = θ0 ±∆θ . The
correction to the madhyama known as the manda-phala, ∆θ , (referred to as the arc
of the doh. phala in verse 21) is given by

manda-phala = cāpa

(
3

80
manda-kendrajyā

)
. (2.73)

The term manda-kendrajyā in the above expression stands for the Rsine of the
manda-kendra or mean anomaly which refers to the difference between the longi-
tude of the mean planet and the mandocca (apogee). We denote it as θ0 −θm, where
θ0 is the longitude of the mean planet and θm that of the mandocca. Now, the above
equation translates to
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∆θ = sin−1
(

3
80

|sin(θ0 −θm)|
)

. (2.74)

Here 3
80 represents the ratio of the radii of the epicycle and the manda-karn. a-

vr. tta, or ‘manda-hypotenuse circle’, whose significance is explained in Appendix
F. When the manda-kendra is within the six signs beginning with Mes.a, that is,
0 ≤ (θ0 −θm) ≤ 180◦, it is stated that the manda correction has to be applied neg-
atively. On the other hand, when it is within the six signs beginning with Tulā, that
is 180◦ ≤ (θ0 −θm) ≤ 360◦, the correction is to be applied positively. Thus, the true
longitude of the Sun is given by

θ = θ0 − sin−1
(

3
80

sin(θ0 −θm)

)
. (2.75)2.11 ..a:=+pra;a;Na;aH

2.11 Prān. ās of the ascensional difference.sMa;~kx +:ta;a;ya;na;Ba;a;ga;a;de H d;ea:$ya;Ra k+:a;ya;Ra .=+vea;~ta;taH Á..a;tua;
a;v a;Za;�a;ta;Ba;a;ga:$ya;a;h;ta;a;ya;a;�///�a;~:�a:$ya;ya;a &+.taH Á Á 23 Á ÁA;pa;kÒ +:ma;gua;Na;eaY;kR +:~ya ta;a;tk+:a;�a;l+.k I+.h .~å.Pu +.fH Áta;a:�áâ+;�a:$ya;a;kx +:�a;ta;
a;va:(ìÉÅ;e +Sa;a;t,a mUa;lM dùÅ;au :$ya;a;Ta k+:ea;�a;f;k+:a Á Á 24 Á Ád;ea:$ya;Ra;pa;kÒ +:ma;kx +:tya;ea;(ãÉa Bea;d;a;n}å.Ua;l+.ma;Ta;a;
a;pa va;a ÁA;ntya;dùÅ;au :$ya;a;h;ta;a d;ea:$ya;Ra ;
a:�a:$ya;a;Ba;�e +:�;k+:ea;�a;f;k+:a Á Á 25 Á Á;
a:�a:$ya;a.Èåî ÁÁ*+e ;�;dùÅ;au :j�a;a;va;a;�a;a ..a;a;
a;pa;ta;a;kR +:Bua:ja;a;sa;vaH Ád;eaH pra;a;Na;�a;l+.�a;�a;k+:a;Bea;d;ma;
a;va;na;�M tua :pa;a;l+.yea;t,a Á Á 26 Á Á;
a;va;Sua;va;;�ÂåÅ +a;h;ta;a kÒ +:a;�////�a;ntaH .sUa;ya;Ra;�a;a ;Æa;[a;�a;ta;ma;Ea;
a;vRa;k+:a Á;
a:�a:$ya;a.Èåî ÁÁ*+e ;�;dùÅ;au :j�a;a;va;a;�a;a ..a;a;
a;pa;ta;a .~yua;(ãÉa:=+a;sa;vaH Á Á 27 Á Á
sam. skr. tāyanabhāgādeh. dorjyā kāryā ravestatah. |
caturvim. śatibhāgajyāhatāyāstrijyayā hr. tah. || 23 ||
apakramagun. o

′rkasya tātkālika iha sphut.ah. |
tattrijyākr. tivísles. āt mūlam. dyujyātha kot.ikā || 24 ||
dorjyāpakramakr. tyośca bhedānmūlamathāpi vā |
antyadyujyāhatā dorjyā trijyābhaktes.t.akot.ikā || 25 ||
trijyāghnes.t.adyuj̄ıvāptā cāpitārkabhujāsavah. |
doh. prān. aliptikābhedamavinas.t.am. tu pālayet || 26 ||
vis.uvadbhāhatā krāntih. sūryāptā ks. itimaurvikā |
trijyāghnes.t.adyuj̄ıvāptā cāpitā syuścarāsavah. || 27 ||
The Rsine of the longitude of the Sun (dorjyā) corrected for the precession of the equinox
(the sam. skr. tāyana) has to be determined. This, when multiplied by Rsin24◦ and divided
by the trijyā, gives the Rsine of the true declination of the Sun (the apakramajyā) at that
instant of time. The square root of the difference of the squares of that and the trijyā is the
dyujyā.

Then the kot.ikā is obtained by finding the square root of the difference between the squares
of the dorjyā and the apakramajyā. The kot.ikā is also given by the product of the
antyadyujyā (Rcos24) and the dorjyā divided by the trijyā. This (the kot.ikā) is mul-
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tiplied by the trijyā and divided by the dyujyā. The arc of this is the right ascension of the
Sun (the arkabhujāsava). The difference between the longitude and the right ascension in
minutes is to be preserved such that it is not lost.

The equinoctial midday shadow (the vis.uvadbhā) multiplied by the Rsine of the declination
(krānti) and divided by 12 is the ks. itimaurvikā. This is to be multiplied by the trijyā and
divided by the desired dyujyā. The arc of that gives the ascensional difference in prān. as
(the carāsava).

While most of the quantities related to the diurnal motion of the Sun are discussed
in the third chapter, some of those that are related to the determination of the true
longitude of the Sun at true or actual sunrise for a given location are described here.
Before explaining the above verses, it would be convenient to list the quantities
defined here as follows:

Quantity Its physical significance Notation
apakramajyā the Rsine of declination of the Sun Rsinδ
dyujyā the radius of the diurnal circle of the Sun Rcosδ
arkabhujāsava the right ascension of the Sun α
carāsus the ascensional difference ∆α
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Fig. 2.7 Determination of the declination and right ascension of the Sun on any particular day.

In Indian astronomy texts, it is the nirayan. a longitude or the longitude measured
from a fixed star which is calculated. Ayanām. śa, which is the amount of preces-
sion, has to be added to the nirayan. a longitude to obtain the sāyana or tropical
longitude λ . In Fig. 2.7, the celestial sphere is depicted for an observer at latitude
φ , on a day when the Sun’s declination is δ . Let λ and α be the Sun’s (tropical)
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longitude and right ascension on that day.9 The Rsine of the declination of the Sun,
the apakramajyā, is given by

apakramajyā =
dorjyā× caturvim. śatibhāgajyā

trijyā

or Rsinδ =
Rsinλ ×Rsin24◦

R
. (2.76)

This is the formula for declination,

sinδ = sinλ sinε, (2.77)

which can be easily verified by considering the spherical triangle Γ SB in Fig. 2.7
and applying the sine formula. Here ε represents obliquity of the ecliptic whose
value is taken to be 24◦ in most of the Indian astronomy texts. The dyujyā is the
radius of the diurnal circle of the Sun, Rcosδ , and it is given as

dyujyā =

√
trijyā2 −apakramajyā2

or Rcosδ =
√

R2 −R2 sin2 δ . (2.78)

Now a quantity, the kot.ikā, is defined by the following two equivalent expressions:

kot.ikā =
√

R2 sin2 λ −R2 sin2 δ

kot.ikā =
Rcosε Rsinλ

R
. (2.79)

The second of these follows from the first by substituting the expression for Rsinδ
given in (2.77). The arkabhujāsava is the right ascension of the Sun and is the arc
Γ B, which is given as:

arkabhujāsava = α = cāpa

(
kot.ikā× trijyā

dyujyā

)
. (2.80)

Substituting the expressions for the kot.ikā and the dyujyā in the above, we have

α = Rsin−1
(

Rcosε Rsin λ
Rcosδ

)
(2.81)

or

Rsinα =

(
Rcosε Rsinλ

Rcosδ

)
. (2.82)

This relation follows from the sine formula applied to the spherical triangle PΓ S,
where the spherical angle PΓ̂ S = 90− ε , the spherical angle Γ P̂S = α , arc Γ S = λ
and arc PS = 90− δ . Then

9 The reader is referred to Appendix C on coordinate systems for details of these quantities.
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sinλ
sinα

=
sin(90− δ )

sin(90− ε)
=

cosδ
cosε

, (2.83)

which is the same as the above.
As the axis of rotation of the Earth is perpendicular to the equator, the rotation

angle measured along the equator is related to time and can be expressed in prān. as.
One prān. a corresponds to one minute of arc along the equator. Since the right as-
cension is an arc measured along the equator, α is expressed in prān. as.

The difference between the longitude of the Sun ⊙ and its right ascension α
figures in the equation of time described in the next set of verses (see also Ap-
pendix C). Hence α −⊙, which is called the prān. aliptā or prān. akalāntara10 is to
be stored. This is the correction due to the obliquity of the ecliptic. This is explained
in Laghu-vivr. ti as follows:

. . . ta:�a l+.b.Da;a .sEa;va I+.�;k+:ea;�a;f:$ya;a Á ta;Ma I+.�;k+:ea;�a;f:$ya;Ma ;
a:�a:$ya;ya;a ;�a;na;h;tya I+.�;dùÅ;au :$ya;ya;a;
a;va;Ba:$ya l+.b.DMa :P+.lM ..a;a;p�a;a;ku +:ya;Ra;t,a Á ta;�a A;kR +:Bua:ja;a;sa;va;ea Ba;va;�////�a;nta Á .tea;Sa;Ma A;kR +:Bua:ja;a;sUa;na;Mata;tk+:l+.a;na;Ma ..a ya;d;nta:=M ta;t,a :pra;a;Na;k+:l+.a;nta:=M na;a;ma Á ta;
a;dõ ;�a;na;ya;ea;ga;mua:�a:=;�a va;[ya;a;maH Á A;ta o+.�MA;
a;va;na;�M tua :pa;a;l+.yea;t,a I+.�a;ta Á Á
What is obtained thus is the is. t.akot.ijyā. That has to be multiplied by the trijyā and divided
by the is. t.adyujyā. The arc of the result obtained has to be found and that is known as
the arkabhujāsava. The difference between the arkabhujāsava and the Sun’s longitude
measured in minutes is known as the prān. akalāntara.11 The utility of this will be stated
later (verse 31). Hence it is stated that this has to be preserved such that it is not lost.

The great circle passing through EPW is known as the 6 o’clock circle, as the
hour angle of any object lying on that circle corresponds to six hours. For an equa-
torial observer, whose latitude is zero, the horizon itself is the 6 o’clock circle and
the Sun always rises on it. When the latitude of a place is not zero, the Sun does not
rise on the 6 o’clock circle. In Fig. 2.7,

Ht = ZP̂St = ZP̂W +WP̂St = 90◦ + ∆α (2.84a)

is the hour angle at sunset. It is greater than 90◦ when the Sun’s declination is north
and would be less than 90◦ when the declination is south. From the spherical triangle
PZSt , using the cosine formula it can be shown that

cosHt = − tanφ tanδ
or sin∆α = tanφ tanδ . (2.84b)

Ht expressed in minutes is the time interval in prān. ās between the meridian
transit of the Sun and sunset. When δ = 0, Ht = 90◦ = 5400 prān. as (6 hours). ∆α

10 The terms prān. a and kalā here refer to the right ascension and Sun’s longitude expressed in
minutes respectively. Hence the prān. akalāntara is α −⊙.
11 It must be noted that Śaṅkara Vāriyar uses the term prān. akalāntara instead of
prān. aliptikā. Nı̄lakan. t.ha himself has used the term prān. akalāntara later in verse 31, where
he discusses the application of the prān. akalāntara.
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is difference between Ht and 6 hours or 5400 prān. as, and is termed the carāsava
or the ascensional difference. It is clear that it is also the difference between sunrise
and transit of the Sun across the 6 o’clock circle.

Expression for the carāsus

For giving the expression for the carāsus (ascensional difference), an intermediate
quantity called the ks. iti-maurvikā (ks. itijyā, earth-sine) is defined as follows:

ks. itimaurvikā =
vis.uvadbhā× krānti

12
. (2.85)

The vis.uvadbhā refers to the equinoctial shadow of a stick of length 12 units. It will
be shown in the next chapter that the equinoctial shadow for an observer at latitude
φ is 12 tanφ . The term krānti is the same as apakramajyā given earlier in (2.76).
The expression for the carāsus is given by

carāsus = cāpa

(
ks. itimaurvikā× trijyā

dyujyā

)
. (2.86)

Substituting for ks. itimaurvikā and dyujyā in the above expression we have

∆α = (Rsin)−1
(

R tanφ Rsinδ
Rcosδ

)
, (2.87)

which is the same as (2.84b). At the equator, where φ = 0, ∆α = 0. Hence, the
sunrise or sunset is exactly 6 hours before or after meridian transit. Since the carāsus
(∆α) is the interval between the sunrise at a given latitude and that at the equator,
the knowledge of it is essential for finding the exact sunrise and sunset times at the
observer’s location. It is also needed for finding the longitude of planets at sunrise
at any non-zero latitude.2.12 .~va;de ;Za;sUa;ya;eRa;d;ya;k+:a;le g{a;h;aH
2.12 Longitude of the planets at sunrise at the observer’s location;�a;l+.�a;a;pra;a;Na;a;nta:=M Ba;a;na;eaH d;eaHP+.lM ..a ..a:=+a;sa;vaH Á.~va;NRa;sa;a;}yea;na .sMa;ya;ea:$ya;a ;Æa;Ba;�ea;na tua ;
a;va;ya;ea:ja;yea;t,a Á Á 28 Á ÁBa;a;nua;ma;Dya;ma;Bua;�a;�+Èåî ÁÁ*+M ..a;kÒ +:�a;l+.�a;a;&+.tMa :P+.l+.m,a ÁBa;a;nua;ma;Dyea tua .sMa;~k+:a;y a .~å.Pu +.f;Bua;��+.a;a;h;tMa .~å.Pu +.fe Á Á 29 Á Áo+.d;#~TeaY;keR ..a:=+pra;a;Na;aH Za;ea;Dya;aH .~vMa ya;a;}ya;ga;ea;l+.ke Áv.ya;~ta;ma;~tea tua .sMa;~k+:a;ya;Ra na ma;Dya;a;�îå+:a;DRa:=+a:�a;ya;eaH Á Á 30 Á Áyua;gma;Ea:ja;pa;d;ya;eaH .~va;N a .=+va;Ea :pra;a;Na;k+:l+.a;nta:=+m,a Ád;eaHP+.lM :pUa;vRa;va;t,a k+:a;y a .=+vea;=e +Æa;Ba;dùÅ;aRu ;.a;a;�a:=+Na;a;m,a Á Á 31 Á Á
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a;pa h;tva;a ..a;kÒ +:k+:l+.a;&+.ta;m,a Á.~va;N a k+:a;y a ya;Ta;ea;�M ta;t,a v.ya;~tMa va;kÒ +:ga;ta;Ea .~å.Pu +.fe Á Á 32 Á Á
liptāprān. āntaram. bhānoh. doh. phalam. ca carāsavah. |
svarn. asāmyena sam. yojyā bhinnena tu viyojayet || 28 ||
bhānumadhyamabhuktighnam. cakraliptāhr. tam. phalam |
bhānumadhye tu sam. skāryam. sphut.abhuktyāhatam. sphut.e || 29 ||
udaksthe ′rke caraprān. āh. śodhyāh. svam. yāmyagolake |
vyastamaste tu sam. skāryā na madhyāhnārdharātrayoh. || 30 ||
yugmaujapadayoh. svarn. am. ravau prān. akalāntaram |
doh. phalam. pūrvavat kāryam. raverebhirdyucārin. ām || 31 ||
madhyabhuktim. sphut.ām. vāpi hatvā cakrakalāhr. tam |
svarn. am. kāryam. yathoktam. tat vyastam. vakragatau sphut.e || 32 ||
The prān. akalāntara, doh. phala (equation of centre) and carāsus, all in minutes, have
each to be added or subtracted depending upon their signs. This quantity multiplied by the
mean daily motion of the Sun and divided by 21600 has to be applied to the mean Sun, and
the same has to be multiplied by the true daily motion of the Sun and applied to the true
Sun [to get the longitudes of the mean and the true Sun respectively at the true sunrise at
any given location].

When the Sun is to the north (has northern declination), then the carāsus have to be applied
negatively and when it is to the south they have to be applied positively [this sign convention
is to be adopted when the longitude is to be determined at sunrise]. The carāsus have to
be applied in the reverse order at the sunset. They need not be applied [for determining the
longitude] at midday or midnight.

The prān. akalāntara has to be applied positively and negatively in the even and odd quad-
rants respectively. The doh. phala has to be applied as discussed earlier. With these quanti-
ties (namely prān. akalāntara, doh. phala and carāsus), which are related to the Sun, the
mean or true daily motions of the planets are to be multiplied and divided by 21600. These
have to be applied positively or negatively as mentioned earlier [when the planet is in di-
rect motion] and the application has to be done in the reverse order when the planet is in
retrograde motion [to get the mean and true planets at true sunrise].

In the above verses, Nı̄lakan.t.ha gives the procedure for obtaining the mean or
true longitudes of the planets at the true sunrise at the observer’s location. The longi-
tudes obtained from the Ahargan. a give the mean and true positions of the planets at
the mean sunrise, i.e. when the mean Sun is on the 6 o’clock circle, at the observer’s
location. To get the positions of the planets at the true sunrise, i.e. when the true Sun
is on the observer’s horizon, corrections have to be applied.

Of the two corrections that need to be applied, one is due to the fact that at
sunrise the Sun is on the horizon and not on the 6 o’clock circle. The time difference
between the sunrise and the instant when it is on the 6 o’clock circle (the carāsus)
has been discussed earlier. Now, when the Sun has a northerly declination, sunrise
is earlier than its transit across the 6 o’clock circle and carāsavas have to be applied
negatively. Similarly, when the Sun has a southerly declination, sunrise is after its
transit across the 6 o’clock circle and the carāsus have to be applied positively. The
other two corrections are due to the fact that there is a time difference between the
transits of the mean Sun and the true Sun across the meridian or the 6 o’clock circle.
In fact, we shall see below that the expression for the sum of these two corrections
given in the text is the same as the equation of time in modern astronomy (for more
details refer to Appendix C).
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Equation of time

The ‘mean Sun’ is a fictitious body which is moving along the equator uniformly
with the average angular velocity of the true Sun. In other words, the right ascension
of the mean Sun (denoted by R.A.M.S.) increases by 360◦ in the same time period
as the longitude of the true Sun increases by 360◦. As the R.A.M.S. increases uni-
formly, the time interval between the successive transits of the mean Sun across the
meridian or the 6 o’clock circle is constant. This is the mean civil day. All the civil
time measurements are with reference to the mean Sun. The time interval between
the transits of the mean Sun and the true Sun across the meridian or the 6 o’clock
circle is known as the equation of time and is given by

E = H.A.M.S.−H.A.⊙
= R.A.⊙−R.A.M.S.

= α −αM.S, (2.88)

where ⊙ stands for the true Sun. It will also be used to refer to the longitude of the
true Sun later. Since the dynamical mean Sun moves along the ecliptic uniformly
with the average angular velocity of the true Sun—and both of them are assumed
to meet each other at the equinox Γ —the longitude of the dynamical mean Sun or
the mean longitude of the Sun (l) is the same as the R.A.M.S. Hence the equation
of time will be E = α − l. This can be rewritten as

E = (α −⊙)+ (⊙− l). (2.89)

The first term in the equation of time is the prān. akalāntara = α −⊙. Now sinα =
cosε sin⊙

cosδ . As δ < ε , |sinα| < |sin⊙|. This implies that α < ⊙ when α and ⊙ are
in the odd quadrants and α > ⊙ when α and ⊙ are in the even quadrants. Hence
the prān. akalāntara has to be applied positively and negatively in the even and odd
quadrants respectively. The sign of the doh. phala (⊙− l) has already been discussed
earlier. It is negative in the first and second quadrants and positive in the third and
fourth quadrants.

Application of corrections

The three corrections, namely the prān. akalāntara, doh. phala and carāsus, have to
be applied to the mean or true longitude of planets at mean sunrise at the equator
(or the 6 o’clock circle) to obtain the mean or true longitude at true sunrise on the
observer’s horizon. The motion of a planet in one prān. a is equal to its daily motion
divided by 21600. The net correction would be the sum of the three quantities (tak-
ing appropriate signs into account) multiplied by the above ratio. When the planet
is in retrograde motion, the longitude decreases with time. Hence, all the signs dis-
cussed above have to be reversed in such a situation.
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Śaṅkara Vāriyar in his Yukti-d̄ıpikā gives a graphic description of what is
meant by cara, and how it is to be used in the determination of the duration of
day and night at the observer’s location (having non-zero latitude)..~va;a;[ea .~va;Æa;[a;�a;ta:jea :℄ea;ya;a;vua;d;ya;a;~ta;ma;ya;Ea .=+veaH Áo+.n}å.a;Nq+.l+.Æa;[a;�a;ta:ja;ya;eaH A;nta:=+a;l+.Da;nua;(ãÉa:=+m,a Á Á.sa;Ea;}yea :pUa;vRa;mua;de ;tya;kR H :pa;(ãÉa;a:�ea;na;a;~ta;mea;�a;ta ..a ÁA;ta;(ãÉa:=e +Na ;
a;dõ .Èåî ÁÁ*+e ;na ;
a;d;nMa ta:�a tua va;DRa;tea Á Á[�a;a;ya;tea ..a ;�a;na;Za;a ya;sma;a;t,a ;Æa;ma;Ta;ea;Æa;Ba;�ea ;
a;d;na;[a;yea Áya;a;}yea :pa;(ãÉa;a;du ;de ;tya;kR H .tea;na :pra;a;ga;~ta;mea;�a;ta ..a Á ÁA;ta;(ãÉa:=e +Na ;
a;dõ .Èåî ÁÁ*+e ;na ta:�a tua [�a;a;ya;tea ;
a;d;na;m,a Áva;DRa;tea ..a ;�a;na;Za;a ya;sma;a;t,a v.ya;~ta;tvMa ga;ea;l+.ya;ea;Æa;mRa;TaH Á Á..a:=+pra;a;Na;ga;�a;taH .~va;N a ya;a;}ya;ea;d;gga;ea;l+.ya;ea;~ta;taH Áo+.d;yeaY;~ta;ma;yea v.ya;~tMa g{a;he .=+v.yua;d;ya;a;va;Da;Ea Á Áma;Dya;a;kR +:pra;Æa;ma;tMa tua;�ya:�+.pa;mea;va .sa;d;a ;
a;d;na;m,a Átua;�ya;tva;a;t,a ta;�ç Å +tea;Æa;BRa;�Ma .~å.Pu +.f;a;kR +:pra;Æa;ma;tMa ;
a;d;na;m,a Á Á 12

The rising and setting of the Sun has to be determined with respect to the horizon corre-
sponding to the observer’s own latitude. The length of the arc [of the diurnal circle] lying
between the unman. dala (6 o’clock circle) and the ks. itija (horizon) is referred to as the
cara.

When the Sun has northern declination it rises earlier and sets later. Hence the duration
of the day increases by twice the cara. Naturally the duration of the night decreases, and
hence day and night have different durations. When the Sun has southern declination it rises
later and sets earlier. Therefore the duration of the day decreases by twice the cara and that
of the night increases. [While this is true for an observer in the northern hemisphere] the
reverse happens in the southern hemisphere.

The caraprān. as have to be applied negatively and positively when the Sun has northern
and the southern declination respectively. This is true at sunrise and during sunset they have
to be applied in the reverse order. Since the mean Sun moves with uniform velocity, the
duration of the day will always be uniform when measured with respect to the mean Sun.
But the duration will vary when measured with respect to the true Sun.2.13 ;
a;d;na;[a;pa;ya;ea;ma;Ra;na;m,a

2.13 Durations of the day and the nightA;h;ea:=+a:�a;.a;tua;Ba;Ra;gea ..a:=+pra;a;Na;a;n,a ;Æa;[a;pea;du ;d;k, Á Á 33 Á Áya;a;}yea Za;ea;Dya;a ;
a;d;na;a;D a ta;t,a .=+a:�ya;D a v.ya;tya;ya;a;;�ÂåÅ +vea;t,a Á;
a;d;na;[a;pea ;
a;dõ ;�a;na.Èåî ÁÁ*+e .tea ..a;ndÒ +a;de H .~vEa;(ãÉa:=+a;sua;Æa;BaH Á Á 34 Á Á
ahorātracaturbhāge caraprān. ān ks. ipedudak || 33 ||
yāmye śodhyā dinārdham. tat rātryardham. vyatyayādbhavet |
dinaks.ape dvinighne te candrādeh. svaíscarāsubhih. || 34 ||
In the north (when the declination of the Sun is towards north), the caraprān. ā has to be
added to one-fourth of the ahorātra and in the south it has to be subtracted. This gives the

12 {TS 1977}, p. 154.
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half-duration of the day. The half-duration of the night is obtained by applying the cara in
the reverse order. By multiplying these durations by two, the durations of the day and night
are obtained respectively. For the Moon and others, the half-durations [of their own days
and nights] have to be obtained from their own caraprān. as.

While the time unit, namely a day, can be considered with respect to different
planets, we first consider the Sun and the solar day. By definition, on an average,
one-fourth of an ahorātra or mean solar day or civil day is 6 hours. To this, cor-
rection due to the cara has to be added or subtracted in order to find the ‘actual’
half-duration of the day, i.e. the time interval between sunrise and the meridian tran-
sit of the Sun. Recalling that one hour corresponds to 15◦, the half-duration of the
day (in hours) for an observer with latitude φ is given by

6 +
(Rsin−1)(R tanφ tanδ ) [in deg]

15
, (2.90)

where the second term is positive or negative depending upon the sign of δ , i.e. de-
pending on whether the Sun is in the northern or southern hemisphere. δ is obtained
using the relation

Rsinδ = Rsinε sinλ . (2.91)

As pointed out later, it is noted in Laghu-vivr. ti that λ at true sunrise should be
used in the calculation to obtain the first half-duration of the day. Similarly λ at true
sunset should be used to obtain the second half-duration of the day. This is explained
in Laghu-vivr. ti as follows:A;h;ea:=+a:�a;~ya :Sa;
a;�;Ga;�a;f;k+:a;tma;k+:~ya ya;(ãÉa;tua;Ba;Ra;gaH :pa:úãÁ*.a;d;Za;Ga;�a;f;k+:a:�+.paH ta;�/////////�a;sma;n,ata;a;tk+:a;�a;l+.k+:a;t,a .sa;a;ya;na;a;k+:Ra;d;a;n�a;a;ta;a;n,a ..a:=+pra;a;Na;a;n,a na;a;q� +.a;kx +:tya ;Æa;[a;pea;t,a ya;dùÅ;au ;d;gga;ea;l+.ga;taH.sa;a;ya;na;~å.Pu +.f;a;kR H Á ya;a;}ya;ga;ea;l+.ga;tea :pua;na;~ta;�/////////�a;sma;n,a ta;ta;eaY;h;ea:=+a:�a;.a;tua;Ba;Ra;ga;a;d, ;
a;va;Za;ea;Da;yea;t,a Á O;;vMakx +:ta;eaY;h;ea:=+a:�a;.a;tua;Ba;Ra;gaH ta;�/////////�a;sma;n,a ;
a;d;nea ;
a;d;na;a;D a Ba;va;�a;ta Á .=+a:�ya;D a :pua;naH ta;ta;ea v.ya;tya;ya;a;d,Ba;va;�a;ta Á o+.d;gga;ea;le ..a:=+pra;a;Na;
a;va:=+
a;h;taH A;h;ea:=+a:�a;.a;tua;Ba;Ra;gaH .=+a:�ya;D a, ya;a;}ya;ga;ea;le tua ta;tsa;
a;h;taHI+.�a;ta Á O;;vMa kx +:tMa ;
a;d;na;a;D a .=+a:�ya;D a ..a ;
a;dõ ;gua;a;Na;tMa kx +:t=+:ïîåéMa ;
a;d;na;ma;a;nMa [a;pa;a;ma;a;nMa ..a Ba;va;�a;ta Á

The caraprān. as obtained from the sāyana longitude λ of the Sun, when it is in the north-
ern hemisphere (0 < λ < 180), converted into nād. ı̄s, have to be applied positively to one-
fourth of the duration of the ahorātra, which is 15 ghat.ikās, the duration of the ahorātra
itself being 60 ghat.ikās. If the Sun is in the southern hemisphere (180 < λ < 360), then the
caraprān. as, converted into nād. ı̄s have to be applied negatively to one-fourth of the dura-
tion of the ahorātra. Thus one-fourth of the ahorātra being corrected by the caraprān. a
gives the half-duration of the day. The half-duration of the night is obtained by carrying
out the reverse process. The half-duration of the night, which was obtained by subtracting
the caraprān. a in the northern hemisphere, is to be obtained by its addition in the south-
ern hemisphere. The half-durations of the day and night when multiplied by two give the
durations of day and night.

To get the half-durations of the day and night more accurately, a better procedure is
suggested.A:�a :pua;naH A;Ea;d;�a;ya;k+:a;t,a .sa;a;ya;na;a;k+:Ra;t,a A;a;n�a;a;ta;mea;va ..a:=M ;
a;d;na;pUa;va;Ra;DeRa k+:a;yRa;m,a; A;a;~ta;Æa;ma;k+:a-d;a;n�a;a;tMa ..a A;pa:=+a;DeRa Á .=+a;
a:�a;pUa;va;Ra;DeRaY;
a;pa A;a;~ta;Æa;ma;k+:a;d;a;n�a;a;tMa; A;pa:=+a;DeRaY;
a;pa A;Ea;d;�a;ya;k+:a;d;a;n�a;a;ta-
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a;d;na;a;DRa;ya;eaH [a;pa;a;DRa;ya;ea;(ãÉa ya;ea;gaH ;
a;d;na;[a;pa;ya;eaH .~å.Pu +.f;ta:=M ma;a;na;Æa;ma;�a;ta ÁA;Ta :pra;a;Na;k+:l+.a;nta:=+ma;
a;pa ;
a;d;na;ma;a;na;a;T a k+:tRa;v.ya;m,a Á .tea;na ;
a;d;na:=+a:�ya;eaH o+.Ba;ya;taH .sa;a;ya;na;a;kR +:taHya;t,a :pra;a;Na;k+:l+.a;nta:=+
a;dõ ;ta;ya;ma;a;n�a;a;tMa ta;ya;ea;
a;vRa;va:=+ma;
a;pa ;
a;d;na;[a;pa;a;ma;a;na;ya;eaH k+:tRa;v.ya;mea;va, yea;na;
a;d;na;[a;pa;ya;ea;ma;Ra;nea .~å.Pu +.f;ta;mea .~ya;a;ta;a;Æa;ma;�a;ta Á
The cara obtained from the sāyana Sun at sunrise (instead of mean sunrise at the equator)
has to be applied in the forenoon and the one obtained from the sāyana Sun at sunset in the
afternoon. Similarly, the cara obtained from the sāyana Sun at the sunset and sunrise have
to be applied for obtaining the duration of the first and second half of the night respectively.
The duration of the day and night obtained thus (rather than those obtained from the earlier
method) would be more accurate.

The prān. akalāntara correction should also be implemented in finding the duration of the
day. The difference in the prān. akalāntaras obtained from the sāyana Sun at sunrise and
sunset has to be applied to obtain more accurate durations of day and night.

Duration of the day of the planets

The stars are considered to be fixed objects in the sky. The sidereal day is defined
as the time interval between two successive rises of the star across the horizon
and is equal to the time taken by the Earth to complete one revolution around its
axis. A ‘planet-day’ is defined in a similar manner. The time interval between two
successive sunrises is the ‘sun-day’ or a solar day. The time interval between two
successive moonrises is the ‘moon-day’ or lunar day.13. Similarly the time interval
between two successive rises of any particular planet is defined to be the duration of
that ‘planet-day’.

This concept of the day of planets may be understood with the help of Fig. 2.8.
In Fig. 2.8a, we have depicted a situation where a star X , the Sun S and the Moon M
are all in conjunction and are just about to rise above the horizon. After exactly one
sidereal day (≈ 23 h 56 m) the star X will be back on the horizon. However, the Sun
and Moon, due to their orbital motion eastwards, will not be back on the horizon.
They would have moved in their respective orbits through distances, given by their
daily motions which are approximately 1◦ and 13◦ respectively. This situation is
depicted in Fig. 2.8b where X , S′ and M′ represent the star, the Sun and the Moon
respectively.

It may be noted here that the Moon is shown to be on the ecliptic. Though the
orbit of the Moon is slightly inclined to the ecliptic, since its orbital inclination is
very small (approximately 5◦), the angular distance covered by the Moon in its orbit
can be taken to be roughly the angular distance covered by it on the ecliptic. After
one sidereal day the star X will be again on the horizon. Only when the earth rotates
through an angle equal to the difference between the right ascensions of X and S′

will the Sun be on the horizon. This is taken to be the arc XS′ on the ecliptic itself.
(This can only be approximate.) Similarly only when it rotates through an angle XM′

will the Moon be on the horizon (in the same approximation). Hence the duration
of a solar day is given by

13 This definition of lunar day should not be confused with that of a tithi defined earlier.
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Fig. 2.8a The star X , Sun S and the Moon M at sunrise on a particular day.
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Fig. 2.8b The star X , Sun S′ and the Moon M′ exactly after one sidereal day.

Solar day = Sidereal day + Time taken by the earth to

rotate through XS′

= 21600 + XS′ (in minutes of arc)

= 21600 + Sun’s daily motion (in prān. as).

In the above expression, the number 21600 represents the number of prān. as (≈4
seconds) in a sidereal day, and XS′ is expressed in minutes. Similarly the duration
of the lunar day is given by
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Lunar day = Sidereal day + Time taken by the earth to

rotate through XM′

= 21600 + XM′

= 21600 + Moon’s daily motion (in prān. as). (2.92)

Similarly a ‘planet day’ can be defined for other planets also.
For finding half of the duration for which a planet is above the horizon, its own

caraprān. a has to be added to or subtracted from one-fourth of its own ‘planet-day’.
In Laghu-vivr. ti there is a discussion on this:..a;ndÒ +a;de H :pua;naH .~vEaH .~vEaH ..a:=+a;sua;Æa;BaH o+.�+:va;t,a .sMa;~kx +:ta;a;t,a ;�a;na:ja;a;h;ea:=+a:�a;.a;tua;Ba;Ra;ga;taH ;
a;d;na;a;D a.=+a:�ya;D a ..a A;va;ga;nta;v.ya;m,a Á A;h;ea:=+a:�a;(ãÉa ta;~ya ;�a;na:ja;
a;d;na;~å.Pu +.f;Ba;ea;ga;pra;a;Na;a;�a;Da;k+:.a;kÒ +:k+:l+.a;tua;�ya-:pra;ma;a;NaH Á na;nvea;vMa kx +:ta;~ya;a;
a;pa I+.nd;eaH ;
a;d;na;[a;pa;ya;ea;ma;Ra;na;~ya na .~å.Pu +.f;tva;m,a Á ;�a;na:ja;d;eaHP+.l+.k+:l+.a-;
a;d;na;a A;�a;Da;k+:ea;na;tva;sMa;Ba;va;a;t,a, .sa;tya;m,a ; A;ta O;;va ;
a;h ta:�a .~va;
a;d;na;a;nta;�a:=+ta;ya;eaH .~å.Pu +.f;ya;ea;
a;vRa;�a;Da-va;t,a kx +:ta;~va;.a:=+pra;a;Na;k+:l+.a;nta:=+ya;eaH A;nta:=e +Na ..a;kÒ +:k+:l+.a .sa;
a;h;tea;na ;
a;d;na;a;sa;vaH ;
a;kÒ +:ya;ntea Á

For the Moon and others (planets) their own durations of day and night have to be obtained
from the quarter of their true ahorātra corrected for their own carāsus. The duration of
their day is [nearly] equal to the sum of the their daily motion in prān. as plus the number
of minutes in 360 degrees. Even after applying this, the duration of the day or night of
the Moon [and other planets] would not be correct as it may differ [from the actual value]
by its own doh. phala. True; it is only to take this discrepancy into account that the [true]
duration of a lunar day in minutes is obtained from the difference in the true positions of
the Moon [and other planets], at intervals separated by the durations of their days corrected
by caraprān. a etc., added to the number of minutes in 360 degrees.

Ascensional difference in the case of the Moon and other planets:

It may be recalled that (2.67) gives the expression for finding the caraprān. a in the
case of the Sun. For the Moon and other planets the procedure to be adopted is stated
in Laghu-vivr. ti as follows:.~va;.a:=+pra;a;Na;a;na;ya;na;ma;
a;pa A;mua;nEa;va I+.�;kÒ +:a;ntya;a ;
a;va;[ea;pa;sMa;~kx +:ta;ya;a C+.a;ya;a;ga;a;Na;tea :pra;d;a;ZRa;ta;m,a-kÒ +:a;�////�a;nta:$ya;a ;
a;va;Sua;va;;�ÂåÅ +a.Èåî ÁÁ*+;a ;Æa;[a;�a;ta:$ya;a dõ ;a;d;Za;ea:;dÄâx ;ta;a Áv.ya;a;sa;a;DRa.Èåî ÁÁ*+;a dùÅ;au :j�a;a;va;a;�a;a ..a;a;
a;pa;ta;a;~yua;~.a:=+a;sa;vaH Á Á 14

For planets other than Sun the procedure for obtaining their own caraprān. a from the dec-
lination corrected for the latitude of the planet has been shown by [the author] himself in
[his] Chāyāgan. ita:

The sine of the declination multiplied by the vis.uvadbhā and divided by twelve is the
ks.itijyā. This has to be multiplied by the trijyā and divided by the dyujyā. The arc of this
is the carāsava.

In Fig. 2.9, S represents the position of the Sun on the observer’s meridian on
an equinoctial day. Since the motion of the sun takes place along the equator on

14 {CCG 1976}, p. 16.
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Fig. 2.9 Shadow of śaṅku on an equinoctial day.

an equinoctial day, the equator itself serves as the diurnal circle. The length of the
shadow of a stick of length 12 units, when the Sun is on the observer’s meridian on
the equinoctial day, is termed the vis.uvadbhā. In the figure, OA represents the stick
of length 12 units, referred to as a śaṅku. Since ZS = φ , the latitude of the observer,
OÂB = φ . Hence,

vis.uvadbhā = 12tanφ . (2.93)

From (2.85), ks. itijyā is given by 12 tanφ×R sinδ
12 . Also the ascensional difference

carāsava of the planet is given by

carāsus = (Rsin)−1R tanφ tanδ , (2.94)

where δ is the declination of the planet. The declination δ of a planet with longitude
λ and latitude β as depicted in Fig. 2.10 is given by

sin δ = cosε sinβ + sinε cosβ sinλ
= cosε sinβ + cosβ sinδE , (2.95)

where δE is the declination of an object on the ecliptic with the same longitude as
the planet. That is, sinδE = sinε sinλ . Thus, in the case of planet having a latitude,
a correction has to be applied to δE to obtain the actual declination δ . From the
‘planet-day’ and the carāsava of the planet, the time interval between the rising and
setting of the planet which is the duration of the ‘day’ for the planet can be obtained.
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Fig. 2.10 Determination of caraprān. a for planets.2.14 ..a;ndÒ +~å.Pu +.f� ;a;k+.=+Na;m,a
2.14 Obtaining the true MoonI+.ndU ;�a;ya;eaH .~va;de ;Za;ea;tTa:=+v.ya;a;n�a;a;ta;.a:=+a;
a;d:ja;m,a Á.sMa;~k+:a:=M ma;Dya;mea kx +:tva;a .~å.Pu +.f� ;a;k+:a;ya;eRa ;�a;na;Za;a;k+.=H Á Á 35 Á Ád;eaHk+:ea;�a;f:$yea tua .sa;�a.Èåî ÁÁ*+e A;Z�a;a;tya;a;�ea :P+.le o+.Bea Á..a;a;
a;pa;tMa d;eaHP+.lM k+:a;y a .~va;ma;Dyea .~å.Pu +.f;Æa;sa:;dÄâ ;yea Á Á 36 Á Á

indūccayoh. svadeśottharavyān̄ıtacarādijam |
sam. skāram. madhyame kr. tvā sphut.̄ıkāryo nísākarah. || 35 ||
doh. kot.ijye tu saptaghne aś̄ıtyāpte phale ubhe |
cāpitam. doh. phalam. kāryam. svamadhye sphut.asiddhaye || 36 ||
The mean position of the Moon and its apogee have to be corrected by the caraprān. a etc.
obtained from the Sun, and then the sphut.a-karma (procedure for the true longitude) has
to be carried out.

The dorjyā and the kot.ijyā multiplied by 7 and divided by 80 form the doh. phala and
kot.iphala. The arc of the doh. phala has to be applied to the mean position to get the true
position.

The mean positions of the planets obtained from the Ahargan. a (count of days)
correspond to their mean positions at the mean sunrise for an observer at Ujjayin̄ı.
To get their mean positions for other observers, corrections such as deśāntara, cara
etc. have to be applied (see the previous section as well as Section 1.14). These are
corrections to be carried out to get the mean position of the planet at the true sunrise
at the observer’s location. Verse 35 reemphasizes these corrections.
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To get the true position of the planet at true sunrise, the equation of centre has to
be applied to the mean planet at true sunrise. Verse 36 describes how this correction
has to be implemented in the case of the Moon. The ratio of the mean radius of the
epicycle and the radius of the deferent circle (the trijyā) is taken to be 7

80 for the
Moon. Hence according to the text the true longitude of the Moon, θ , is

θ = θ0 − sin−1
(

7
80

sin(θ0 −θm)

)
,

where θ0 is the mean longitude of the Moon and θm the longitude of the mandocca.
The procedure for obtaining the true longitude of the Moon is explained in the

commentary as follows:..a;ndÒ +ta;du ;�a;ya;ea:=+
a;pa I+.�;dùÅ;au ;ga;Na;taH :�Ea:=+a;a;Za;k+:Æa;sa:;dÄâ e ma;Dya;mea :de ;Za;a;nta:=+~ya .=+
a;va;d;eaHP+.l+.a;d� ;a;na;Ma�a;ya;a;Na;Ma ..a ga;�a;tMa ;
a;va;�a;Da;va;t,a kx +:tva;a ..a;ndÒ +~ya ma;Dya;taH ta;n}å.a;nd;ea;�Ma ;
a;va;Za;ea;Dya ;a;Za;�e ta;tke +:ndÒ eBa;ga;Na;pUa;va;eRa;Dva;Ra;DRa;ga;ta;tvMa ..a A;va;Da;a;yRa d;eaHk+:ea;f�a;ea:�+:Ba;ya;ea:=+
a;pa .j�a;a;vea .=+
a;va;ke +:ndÒ +ea;�+:va;�ç Åx +�ÎÉ É� +:a;ya;a;t,a Áta;Ta;a gxa;h� ;a;tea d;eaHk+:ea;�a;f:$yea o+.Bea A;
a;pa .sa;�a;Æa;Ba;�a;nRa;h;tya A;Z�a;a;tya;a ;
a;va;Ba:$ya l+.b.Dea d;eaHk+:ea;�a;f;P+.le.~ya;a;ta;a;m,a Á ta:�a k+:ea;�a;f;P+.l+.~ya o+.pa;ya;ea;gMa va;[ya;a;maH Á d;eaHP+.lM :pua;na;(ãÉa;a;p�a;a;kx +:tya ta;n}å.a;Dya;mea.~va;ke +:ndÒ +Ba;ga;Na;pUa;va;eRa;Dva;Ra;DRa;ga;ta;tva;va;Za;a;t,a �+.NMa ;Da;nMa va;a ku +:ya;Ra;t,a Á O;;vMa kx +:ta;(ãÉa;ndÒ +ma;Dya;maH.~va;de ;Za;~å.Pu +.f;a;k+:eRa;d;ya;a;va;�a;Da;kH .~å.Pu +.f;ea Ba;va;�a;ta Á
From the deśāntara, as well as the three corrections manda-phala etc. related to the Sun
[obtaining the true sunrise time], the mean positions of the Moon and its apogee [at true
sunrise time], are obtained from the Ahargan. a by the rule of three. Then subtracting the
apogee from the mean longitude, the manda-kendra of the Moon is determined. Depend-
ing upon the quadrant in which the manda-kendra lies, the dorjyā and kot.ijyā have to
be found following the procedure that was given for the Sun.

The dorjyā and kot.ijyā obtained thus have to be multiplied by 7 and divided by 80 to get
the doh. phala and kot.iphala respectively. The use of the kot.iphala will be stated later.
The arc corresponding to the doh. phala is applied to the mean planet either positively or
negatively depending upon the quadrant in which the kendra lies. These corrections applied
to the mean Moon give its true position at the true sunrise at the observer’s location.2.15 ..a:=;$ya;a;d� ;a;na;Ma ..a;a;p�a;a;k+.=+Na;m,a

2.15 Finding the arc corresponding to cara etc..$ya;a;.a;a;pa;a;nta:=+ma;a;n�a;a;ya ;a;Za;�;.a;a;pa;Ga;na;a;
a;d;na;a Áyua;�+:a .$ya;a;ya;Ma ;Da;nuaH k+:a;y a :pa;
a;F+.ta:$ya;a;Æa;Ba;=e +va va;a Á Á 37 Á Á;
a:�a;Ka:�+.pa;a;�;BUa;na;a;ga:�+:dÒ E H ;
a:�a:$ya;a;kx +:�a;taH .sa;ma;a ÁO;;k+:a;
a;d.Èåî ÁÁ*+�a;a d;Za;a;�a;a ya;a ;Ga;na;mUa;lM ta;ta;eaY;
a;pa ya;t,a Á Á 38 Á Áta;�///////�a;n}å.a;ta:$ya;a;sua ya;ea:$ya;aH .~yuaH O;;k+:dõùÅ;a;a;dùÅ;a;a ;
a;va;�a;l+.�a;�a;k+:aH Á..a:=+d;eaHP+.l+j�a;a;va;a;de H O;;va;ma;�pa;Da;nua;nRa;yea;t,a Á Á 39 Á Á
jyācāpāntaramān̄ıya śis. t.acāpaghanādinā |
yuktvā jyāyām. dhanuh. kāryam. pat.hitajyābhireva vā || 37 ||
trikharūpās.t.abhūnāgarudraih. trijyākr. tih. samā |
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ekādighnyā daśāptā yā ghanamūlam. tato ′pi yat || 38 ||
tanmitajyāsu yojyāh. syuh. ekadvyādyā viliptikāh. |
caradoh.phalaj̄ıvādeh. evamalpadhanurnayet || 39 ||
The arc corresponding to a jyā may be obtained either by finding the difference between
the jyā and the arc as given in the verse [beginning] śis. t.acāpaghana etc., and adding that
(difference) to the jyā, or from the table of jyās listed earlier.

The square of the trijyā is 11818103 (in minutes). Multiply this by 1, 2 etc., divide by 10
and find the cube roots of these results. If the jyā (whose arc is to be found) has a measure
equal to these (the above cube roots), then 1, 2, etc. seconds have to be added to them. Thus
the arc of the R sine of small angles involved in the caradoh. phala may be obtained.

In Fig. 2.11, let PN represent the jyā whose corresponding arc length AP is to be
determined. If R is the radius of the circle and AÔP = α , then the length of the jyā
corresponding to this angle is given by

jyā = PN = l = Rsinα. (2.96)

When α is small we know that

sinα ≈ α − α3

3!
.

Hence, Rsinα ≈ Rα − (Rα)3

6R2 . (2.97)

Or, the difference (D) between the cāpa (arc) and its jyā (Rsine) is given by

D ≈ Rα − l =
(Rα)3

6R2 . (2.98)

O
A

B

N

P

α

Fig. 2.11 Finding the arc length of a given jyā when it is very small.

An iterative procedure for obtaining the arc length corresponding to a given jyā
is described in the above verses. This procedure is simple and also yields fairly
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accurate results for small angles. We may explain the procedure outlined here as
follows.

As a first approximation, we take the arc length (which itself is very small) to be
the jyā itself, i.e. Rα ≈ l. Hence from (2.98) the difference between the arc length
and its jyā becomes

D1 =
l3

6R2 . (2.99)

As a second approximation, we take the arc length to be Rα = l + D1. Hence in the
next approximation the difference (D2) between the arc length and its jyā becomes

D2 =
(l + D1)

3

6R2 . (2.100)

As a third approximation, when we take Rα = l + D2, we have

D3 =
(l + D2)

3

6R2 . (2.101)

In general,

Di =
(l + Di−1)

3

6R2 . (2.102)

The above iteration process is continued till Di = Di−1, to a given level of accu-
racy. When this condition is satisfied, we have arrived at the required arc length
corresponding to the given jyā, given by

Rα = l + Di. (2.103)

Aviśes.akarma

The iterative procedure, known as avíses.akarma, to be employed is described in
Laghu-vivr. ti as follows:..a;a;p�a;a;�a;.a;k
 +:a;
a;SRa;ta;Ma .$ya;Ma k+:a;t=+:ïîåéyeRa;na ;Ga;n�a;a;kx +:tya :Sa;
a:ñÂ ÅÅå*.+:
a;vRa;Ba:$ya l+.b.DMa :pua;naH ;
a:�a:$ya;a;kx +:tya;a..a ;
a;va;Ba:jea;t,a Á ta:�a l+.b.DMa ;�a;l+.�a;a;
a;d;kM .$ya;a;.a;a;pa;a;nta:=+m,a Á A;h;a;yRa;tvea :pua;naH :Sa;��a;a ;�a;na;h;tya;
a:�a:$ya;a;kx +:tya;a ;
a;va;Ba:jea;t,a Á ta:�a l+.b.DMa ;
a;va;�a;l+.�a;a;
a;d;kM .$ya;a;.a;a;pa;nta:=+Æa;ma;�a;ta Ána;nva:�a ;a;Za;�;.a;a;pa;Ga;nea;tya;a;
a;d;na;a I+.�;.a;a;pa;taH ta:êêÁ*.a�a;a;.a;a;pa;a;nta:=M ;
a;kÒ +:ya;tea Á na :pua;naH I+.�:$ya;a;taHta;�a;a;pa;a;nta:=+m,a Á .sa;tya;m,a ; A;ta O;;va A:�a A;
a;va;Zea;Sa;k+:mRa ;
a;kÒ +:ya;tea Á ta;dùÅ;a;Ta;a - o+.�+:va;d;a;n�a;a;ta;m,aI+.�:$ya;a;.a;a;pa;a;nta:=+m,a I+.�:$ya;a;ya;Ma :pra;Æa;[a;pya :pua;na:=+
a;pa ta:.�ÈÅ +na;taH :pUa;vRa;va;d;a;n�a;a;tMa .$ya;a;.a;a;pa;a;nta:=Mmua;hu :=+a;dùÅ;a:$ya;a;ya;a;mea;va :pra;Æa;[a;pea;t,a ya;a;va;d;
a;va;Zea;SaH Á A;
a;va;a;Za;�e ;na .$ya;a;.a;a;pa;a;nta:=e +Na yua;�+:a I+.�:$ya;a..a;a;p�a;a;kx +:ta;a .~ya;a;
a;d;�a;ta Á

Find the cube of the given jyā and divide it by six. This may further be divided by the
square of the trijyā. The result is the difference between the jyā and cāpa in minutes. If
it is not divisible [if there is a fraction], then it has to be multiplied by 60 and then divided
by the square of the trijyā. The result thus obtained will be the difference between the jyā
and the cāpa in seconds.
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Is it not true that, as per the procedure described in [the verse] śis. t.acāpaghana . . . ,
we find the difference between the jyā and cāpa from the given (known) cāpa and not
from the given jyā? Yes, it is true. It is only because of this, that an iterative procedure
(avíses.akarma) is followed here where the difference between the jyā and cāpa is to be
found from the given jyā. It is as follows: The difference between the jyā and cāpa ob-
tained as described earlier must be applied to the given jyā and from the cube of that the
[next approximation to the] difference between the jyā and cāpa must be determined. This
again has to be applied to the given jyā, and the process has to be repeated till the result
becomes avísis. t.a (not different from the earlier). This difference added to the given jyā
will be the required cāpa.

Finding the arc length corresponding to a given jyā from a look-up table

Apart from the iterative procedure described above, Nı̄lakan.t.ha also gives an inge-
nious way by which one can find out the arc length corresponding to a given jyā,
when the jyā is small. Here the idea is to make use of a table of jyās and the differ-
ences D′

is, in order to obtain the required arc length and thereby avoid the iterative
process. The procedure is as follows:

The difference between the cāpa and its jyā is given by

D = Rα − l ≈ (Rα)3

6R2 =
(l)3

6R2 . (2.104)

In the above equation all the quantities are expressed in minutes. When the differ-
ence D = 1′′, which is one-sixtieth of a minute, we obtain

(l)3

6R2 =
1

60
. (2.105)

This implies that when D = 1′′ the corresponding jyā is given by

l1 =

(
1.R2

10

) 1
3

. (2.106a)

Similarly when D = 2′′, the corresponding jyā is given by

l2 =

(
2.R2

10

) 1
3

, (2.106b)

and so on. In general, when D = i′′, the corresponding jyā is given by

li =

(
i.R2

10

) 1
3

. (2.107)

Here, l′is correspond to the jyās, when the difference between the jyā and the cāpa
(D) is i′′. Hence, the lengths of the cāpas, Ais, corresponding to the jyās, li, are
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given by
Ai = li + i. (2.108)

In Table 2.2, the jyā values are listed corresponding to the integral values of the
difference between the jyā and the arc length, as given in Laghu-vivr. ti. These are

Difference Given Textual Computed
D = cāpa–jyā value of jyā value of cāpa value of cāpa

in seconds min sec min sec min sec
1 105 43 105 44 105 43.56
2 133 11 133 13 133 12.42
3 152 26 152 29 152 29.04
4 167 46 167 50 167 49.80
5 180 43 180 48 180 47.34
6 192 02 192 08 192 07.02
7 202 08 202 15 202 14.82
8 211 20 211 28 211 27.12
9 219 47 219 56 219 55.14
10 227 38 227 48 227 46.80
11 234 58 235 09 235 07.98
12 241 52 242 04 242 03.18
13 248 24 248 37 248 35.88
14 254 36 254 50 254 48.90
15 260 31 260 46 260 44.58
16 266 10 266 26 266 24.78
17 271 36 271 53 271 51.12
18 276 48 277 06 277 04.86
19 281 50 282 09 282 07.20
20 286 40 286 60 286 59.10
21 291 22 291 43 291 41.46
22 295 55 296 17 296 14.94
23 300 18 300 41 300 40.26
24 304 36 304 60 304 58.02

Table 2.2 Look-up table from which the values of arc lengths of small jyās can be directly written
down without performing any iteration, when the difference between the jyā and the cāpa is equal
to integral number of seconds.

the lis, i = 1 . . .24 in (2.107), which are listed in the second column. The third
column gives the sum of columns 1 and 2. The fourth column gives the values of the
arc length as computed by us using (2.108), which in turn involves the computation
of the cube root of (2.107), for different values of i (i = 1 . . .24). In doing so, we
have also used the exact value of the trijyā (in minutes), that is, R = 21600

2π . Given the
fact that some approximation in the trijyā value and the extraction of the cube root
is involved in the computation of arc length, it is remarkable that the value given in
the text differs at the most by 2′′ from the exactly computed value of the arc length.
The idea behind listing these 24 jyā values is to avoid the iterative process outlined
earlier, when the jyā value is small.
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Finding the arc length from the look-up table

The procedure is explained in the commentary as follows:A;Ta;va;a O;;k+:dõùÅ;a;a;
a;d;
a;va;�a;l+.�a;a:�+.pMa ya:êêÁ*.a�a;a;.a;a;pa;a;nta:=M ta;
a;dõ ;Da;a;�a;ya;n�a;aH ba;�ë� +:aH .j�a;a;va;aH :pa;
a;F+.tva;ata:�ua;�ya;a;sua A;B�a;a;�:$ya;a;sua O;;k+:dõùÅ;a;a;
a;d ;
a;va;�a;l+.�a;a:�+.pMa .$ya;a;.a;a;pa;a;nta:=M I+.�:$ya;a;ya;Ma :pra;Æa;[a;pya ta;�a;a;pMak+:tRa;v.ya;Æa;ma;�a;ta Á ta;t,a k+:Ta;Æa;ma;�a;ta ..ea;t,a -ta:�a ;
a:�a:$ya;a;ya;aH kx +:�a;taH ;
a:�a;Ka:�+.pa;a;�;BUa;na;a;ga:�+:dÒ E +~tua;�ya;sa;*ñÍËÉ ùÁ+;a;a :pra;Æa;sa:;dÄâ ;a Á ta:�a ;
a:�a:$ya;a;kx +:teaHO;;k+:dõùÅ;a;a;
a;d;�a;na;h;ta;a;ya;aH d;Za;Æa;Ba;
a;vRa;Ba:$ya l+.b.Da;a;t,a :P+.l+.a;t,a ;Ga;na;mUa;l+.ma;a;na;yea;t,a Á ta:�a:�ua;�ya;a;suaI+.�:$ya;a;sua kÒ +:ma;a;de ;k+:dõùÅ;a;a;
a;d;
a;va;�a;l+.�a;�a;k+:aH .$ya;a;.a;a;pa;a;nta:=+tvea;na g{a;a;hùÅ:a;a I+.�a;ta Á ta;Ta;a;n�a;a;ta:$ya;a;.a;a;pa;a-nta:=+m,a I+.�:$ya;a;ya;Ma :pra;Æa;[a;pya ..a;a;p�a;a;k+.=+NMa k+:a;yRa;Æa;ma;�a;ta Á ta;dùÅ;a;Ta;a -l+.va;NMa ;�a;na;ndùÅ;aM k+:
a;pa;l+.a ga;ea;p�a;a ..a:=;=+a;Za;ya;~ta;va;a;�a;TRa;ta;ya;a Ál+.Gua;na;ea;	a;�+�;ea .=+a::℄aH :pra;L+:ya;ea ;Da;a;}îå:a;Ma ;
a:�a;nea:�a na:=+k+:pua:=+m,a Á Á.sa;va;DUa;f� ;a;ndÒ +ea .ja;l+.sUa:=+dÒ � +a;
a;h;ma;va;a;n,a gua:�+:�///�a;~:�a;Za;ñÍö�ÅÅ*:u +.va:=H Áva:=+d;ea va:j"�a;a ;�a;ta;l+.BUa;meRa:�H k+:a;le +.na ta:�a nxa;pa;�a;ta;.a:=H Á Á;�a;ta;l+.kM .sa;a;ndÒ M ;Da;a;va;�a;ta;sa;�a:=+t,a na mea ku +.úêÁÁ*+:=+ea ;�a;na;vxa:�a:ja:=H Á(rea;�+k+:L+.�a;ma;ma;a;Za;a;Da;a:��a;a ;DUa;pa;eaY;çÉîå+;a� ;a;na;a;}bua;�a;ta;l+.va;na;gaH Á ÁO;;va;ma;a;ya;Ra:�a;yea;Na;ea;�+:a ma;Ea;
a;vRa;k+:a;
a;va;k+:l+.a;d;yaH Á..a;a;p�a;a;k+.=+Na;mea;ta;a;Æa;BaH .sua;k+.=M d;eaHP+.le Y;�pa;ke Á Ál+.va;Na;a;
a;d;Sua .j�a;a;va;a;sua ya;ya;a tua;�yMa Bua:ja;a;P+.l+.m,a Áta;tsa;*ñÍËÉ ùÁ+;a;a ;
a;va;k+:l+.a [ea;pya;aH ta:�a ..a;a;pa;pra;Æa;sa:;dÄâ ;yea Á Á I+.�a;ta Á Á
Or if the difference between the jyā and the arc length is equal to 1′′, 2′′, 3′′ etc. then
construct the table listing the jyās corresponding to these differences. If the jyā whose
cāpa is to be determined happens to be (very close to) one of the values listed in the table,
then add this difference between jyā and cāpa (1′′ , 2′′, 3′′ etc.) to the jyā to get the required
cāpa. How should this be implemented?

It is well known that the square of the trijyā = 11818103. Multiply this by 1, 2, 3, etc.,
divide by 10, and take the cube roots of the resulting quantities [in minutes etc]. If the jyā
whose cāpa is desired to be found happens to be one of the values [listed in the table], then
it is to be understood that the corresponding difference between the jyā and cāpa is going
to be only 1′′, 2′′, 3′′, etc. The difference between the jyā and cāpa, obtained thus, may thus
be added to the given jyā to get the desired cāpa. This may be done as follows.15

Thus the jyās in seconds and minutes are given in three āryā verses. For instance,
the lavan. am. nindyam and the kapilā gop̄ı stand for 105′43′′ and 133′11′′, respec-
tively. Finding the arc lengths from the jyās, when they are small, is quite simple
making use of these values. If the doh. phala (whose arc length is to be calculated) is
equal to one of the values listed, beginning with the lavan. a, then the corresponding
number of seconds have to be added to the jyās to get the corresponding cāpa.

In the commentary it is also stated that using the table and determining the arc
lengths may not be as accurate as the result obtained by using the iterative procedure:

15 The values of the jyās given in the succeeding verses lavan. am. . . . , are listed in second column
of Table 2.2.
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a;pa .sua;sUa;[ma;.a;a;p�a;a;k+.=+Na;ea;pa;a;yaH :pUa;vRa;mea;va :pra;d;a;ZRa;taH ta;Ta;a;
a;pa A;�p�a;a;ya;~ya;aH .j�a;a;va;a;ya;aH..a;a;p�a;a;k+.=+Na;mea;vMa k+:tRa;v.ya;m,a, I+.�a;ta I+.h;a;
a;pa :pra;d;a;ZRa;ta;m,a Á A;ta o+.�+:m,a - ..a:=+d;eaHP+.l+j�a;a;va;a;de HO;;va;ma;�pa;Da;nua;nRa;yea;t,a - I+.�a;ta Á
Though the procedure for obtaining more accurate values of the arc length has already been
stated, for smaller jyās the arc lengths may be obtained by this method (from the look-up
tables). That is why it is stated: The small arc length of the cara-doh. phala etc. should be
obtained by this method.

The same idea is conveyed in Yukti-d̄ıpikā in the following manner:o+.�M ..a;a;pa;Ga;nea :Sa:ñÈÅÅ*+:
a:�a:$ya;a;va;geRa k+:l+.a;sa;ma;m,a Á Ád;Za;Ma;Zea ta;tkx +:teaH ..a;a;pa:$ya;a;nta:=M ;
a;va;k+:l+.a;sa;ma;m,a ÁO;;k+:a;
a;d.Èåî ÁÁ*+;a:�a;ta;�///�a;~:�a:$ya;a;va;gRa;ta;ea d;Za;Æa;Ba;&R +.ta;a;t,a Á Á;Ga;na;mUa;lM tua ya;�+:b.DMa ta:�ua;�yea ;Da;nua;
a;Sa ;�//////�a;~Ta;tea ÁO;;k+:dõùÅ;a;a;dùÅ;a;a ;
a;va;�a;l+.�a;aH .~yuaH ..a;a;pa:$ya;a;
a;va;va:=+ea;;�ÂåÅ +va;aH Á Áta;dU ;nMa ..a;a;pa;ma;DRa:$ya;a ta;dùÅ;au ;ta;a .$ya;a ..a ta:;dÄâ ;nuaH Ák+:a;ya;eRaY;
a;va;Zea;Sa;(ãÉa;a;pa;a;�a;Ea ..a;a;pa;a;�pa;tvea dx ;QM ..a ta;t,a Á Á 16

It has been stated implicitly (in verse 17 of the text) that the difference between the jyā and
cāpa will be equal to 1′ (one kalā), when the cube of the arc length is equal to six multiplied
by square of the trijyā. The same will be equal to 1′′ (one vikalā) when the cube of the arc
length is equal to one-tenth of the square of trijyā.

Now, the square of the trijyā divided by 10 is multiplied by 1,2,3, etc. Then the cube roots
of the results are taken [and stored separately]. These correspond to the arc lengths, when
the difference between the jyā and cāpa is equal to 1′′ , 2′′, 3′′, etc., respectively. When
differences are subtracted from the arc length we get the jyā and when they are added to
the jyā we get the arc length. Avíses.akarma must be done in order to get accurate results
for the cāpa from the jyā whose values are small.

In fact the accuracy of the tabulated results is of the order of 0.003%. For instance
for a cāpa of 105′44′′, the listed jyā value is 105′43′′, whereas the exact Rsine value
is 105′43.02′′. The percentage error is 0.0003%. This is not surprising considering
the fact that for a small α the fractional error in retaining terms only up to α3 in
sinα is α5

5! .2.16 ma;nd;Z�a;a;Gra;k+:Na;Ra;na;ya;na;m,a
2.16 Obtaining the manda and ś̄ıghra hypotenusesA;a;dùÅ;ae :pa;de ..a;tua;TeRa ..a v.ya;a;sa;a;DeRa k+:ea;�a;f:jMa :P+.l+.m,a Áyua;�+:a tya;�+:a;nya;ya;eaH ta;�+eaHP+.l+.va;gERa;k�+.a:jMa :pa;d;m,a Á Á 40 Á Ák+:NRaH .~ya;a;d;
a;va;Zea;Sa;eaY;~ya k+:a;ya;eRa ma;nde ..a;le na tua Á

ādye pade caturthe ca vyāsārdhe kot.ijam. phalam |
yuktvā tyaktvānyayoh. taddoh. phalavargaikyajam. padam || 40 ||
karn. ah. syādavíses.o

′sya kāryo mande cale na tu |

16 {TS 1977}, p. 158.
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Having added the kot.iphala to the radius (vyāsārdha) in the first and the fourth quadrants
and having subtracted [the kot.iphala] from it (the radius) in the other two [quadrants] let
the square root of the sum of the squares of this and the doh. phala be obtained. This is the
karn. a and in the manda process this has to be further iterated upon, but not in the ś̄ıghra
(cala).

The method given in the above verse for finding the karn. a can be explained with
the help of an epicycle model represented in Fig. 2.12a. Here the mean planet P0 is
assumed to be moving on the deferent circle centred around O, and the true planet
P is located on the epicycle such that PP0 is parallel to OU (the direction of the
mandocca). OΓ represents the direction of Aśvini naks.atra (Mes. ādi or first point
of Aries).

In Fig. 2.12a let R and r be the radii of the deferent circle and the epicycle
respectively. OU represents the direction of the mandocca whose longitude is given
by Γ ÔU = θm. The longitude of the mean planet P0 is given by Γ ÔP0 = θ0. θms

represents the longitude of the manda-sphut.a-graha. It is easily seen that

UÔP0 = PP̂0N = θ0 −θm, (2.109)

where (θ0 − θm) is the manda-kendra. The doh. phala and the kot.iphala are given
by

doh. phala = PN = |r sin(θ0 −θm)| (2.110)

and
kot.iphala = P0N = |r cos(θ0 −θm)|. (2.111)

Now, the manda-karn. a K is the distance between the planet and the centre of the
deferent circle. Clearly,

K = OP

=
[
(ON)2 +(PN)2] 1

2

=
[
(R + r cos(θ0 −θm))2 +(r sin(θ0 −θm))2] 1

2 . (2.112)

Here, r cos(θ0 − θm) = ±|r cos(θ0 − θm)| is positive in the first and fourth quad-
rants and negative in the second and third quadrants. That is why it is stated that
the kot.iphala has to be added to the trijyā in the first and fourth quadrants and
subtracted from it in the second and third quadrants.

It is also stated that the karn. a K has to be determined iteratively in the manda-
sam. skāra to obtain the avíses.a-karn. a (iterated hypotenuse). This is because r in
(2.112) is not a constant but is itself proportional to K. That is,

r =
r0

R
K, (2.113)

where r0 is the radius of the epicycle whose value is specified in the text. The itera-
tive procedure to determine K and r is discussed in the next section. In the ś̄ıghra-
sam. skāra, r is fixed for each planet, and no iterative procedure is necessary to find
K.
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Fig. 2.12a Obtaining the manda-karn. a in the epicycle model.

In Fig. 2.12a, the longitude of the planet is given by Γ ÔP = θms = θ . Then
PÔP0 = θm −θ is the difference between the mean and true planets. Now,

PN = OPsin(PÔP0) = K sin(θm −θ ). (2.114)

PN is also given by

PN = PP0 sin(PP̂0N) = r sin(θ0 −θm). (2.115)

Equating the above two expressions for PN,

K sin(θm −θ ) = r sin(θ0 −θm)

or sin(θm −θ ) =
r
K

sin(θ0 −θm)

=
r0

R
sin(θ0 −θm). (2.116)

Thus the true planet θ can be obtained from the mean planet θ0 from the above
equation. It may be noted that (2.116) does not involve the manda-karn. a K.

While commenting on these verses, the eccentric and epicyclic models are de-
scribed in Yukti-d̄ıpikā. First, we give the verses explaining the eccentric model.



2.16 Obtaining the manda and ś̄ıghra hypotenuses 99g{a;h;ea;�a;sUa:�a;a;nta:=+a;lM g{a;h;vxa:�a;ga;tMa Bua:ja;a Ák+:ea;�a;f;~ta;tke +:ndÒ +ta;ea d;ea:$ya;Ra;mUa;l+.a;nta;a :pa;�a:=+k+:�pya;tea Á Á:ke +:ndÒ +a;nta:=M ..a;a;ntya;P+.lM .~ya;a;t,a k+:[ya;a;g{a;h;vxa:�a;ya;eaH Ád;ea:$ya;Ra;mUa;le tua k+:[ya;a;ta;ea ba;
a;h:=+nta;gRa;tea kÒ +:ma;a;t,a Á Ák+:ea;f�a;ntya;P+.l+.ya;ea;ya;eRa;ga;Bea;d;a;Bya;Ma .~å.Pu +.f;k+:ea;�a;f;k+:a Áta;ya;ea;vRa;gRa;yua;tea;mRUa;lM k+:[ya;a;ke +:ndÒ +g{a;h;a;nta:=+m,a Á Ák+:NRaH .sa O;;va ;
a;va::℄ea;yaH :pra;�a;ta;vxa:�a;k+:l+.a;Æa;ma;taH Á 17

The distance of separation between the planet and the uccasūtra is the dorjyā measured
with respect to the grahavr. tta (the circle in which the planet moves). The kot.ijyā is equal
to the distance of separation between the centre of the grahavr. tta and the foot of the
dorjyā on the uccasūtra.

The distance of separation between the centres of the grahavr. tta and the kaks.yāvr. tta is
the antyaphala. The sphut.akot.ikā is obtained by adding or subtracting the antyaphala
to or from the kot.ijyā depending upon whether the foot of the dorjyā is outside or in-
side the kaks.yāvr. tta. The square root of the sum of the squares of the two [dorjyā and
sphut.akot.ikā] is the distance of separation between the centre of kaks.yāvr. tta and the
planet. This has to be understood as the karn. a measured in terms of the prativr. tta.

In Fig. 2.12b, the circle centred around O′ is called the grahavr. tta, or prativr. tta
or pratiman. d. ala (the eccentric circle), and the one centred around O is the kaks.yā-
vr. tta (the deferent circle). OU represents the direction of the mandocca. These
two circles, namely the grahavr. tta and the kaks.yavr. tta, have the same radius and
their centres are displaced along the direction of the mandocca U . The dotted circle
with its centre at the centre of the kaks.yāvr. tta is known as the karn. aman. d. ala or
karn. avrtta (hypotenuse circle). The distance of separation between the centres of
the grahavr. tta and the kaks.yāvr. tta is referred to as the antyaphala. If R is the
radius of the grahavr. tta and (θ0 − θm) the manda-kendra, then the dorjyā and
kot.ijyā are given by

dorjyā = PN = |Rsin(θ0 −θm)| (2.117)

and
kot.ijyā = O′N = |Rcos(θ0 −θm)|. (2.118)

The sphut.akot.ikā is defined by

sphut.akot.ikā = ON = kot.ijyā
+∼ antyaphala

= |Rcos(θ0 −θm)| +∼ r. (2.119)

It is stated that the ‘∼’ sign should be taken when both the edges of the dorjyā
(points P and N in Fig. 2.12b) lie within the kaks.yāvr. tta, and ‘+’ when at least one
or both the edges of the dorjyā lie outside the kaks.yāvr. tta.

Actually, whether the ‘+’ or the ‘∼’ sign has to be taken depends on whether P
lies above or below the straight line perpendicular to OU passing through O′, that
is, when (θ0 − θm) is in the first/fourth quadrants or in the second/third quadrants
respectively. If K represents the karn. a OP, then it is given by

17 {TS 1977}, pp. 161–2.
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Fig. 2.12b Obtaining the manda-karn. a in the eccentric model.

K = OP

= (PN2 + ON2)
1
2

=
[
dorjyā2 + sphut.akot.ikā

2] 1
2

=
[
(Rsin(θ0 −θm))2 +(|Rcos(θ0 −θm)| +∼ r)2] 1

2

=
[
(Rsin(θ0 −θm))2 +(Rcos(θ0 −θm)+ r)2] 1

2 . (2.120)

K can be determined using the above formula, or by using equation (2.112), which
are equivalent. This is explained in the following verses of Yukti-d̄ıpikā:k+:[ya;a;vxa:�a;~ya ta;�ea;Æa;ma;~Ta;ea;�a;n�a;a;.a;~ya ..a dõ ;ya;eaH Á:ke +:ndÒ +dõ ;ya;a;va;Bea;d� ;a ya;ea ma;a;gRa;~ta;sma;a;d, g{a;h;a;nta:=+m,a Á Ád;eaHP+.lM ya:�ua ta;n}å.Ua;l+.a;nta:=M n�a;a;.a;ea;�a;ke +:ndÒ +taH Ák+:ea;f� ;a;P+.lM ta;dùÅ;au ;ta;ea;na;a ;
a:�a:$ya;a k+:[ya;a;K.ya;vxa;a:�a;taH Á ÁkÒ +:ma;a;d, d;eaHP+.l+.mUa;le tua ba;
a;h:=+nta;gRa;tea .sa;�a;ta Á.sa;a tua d;eaHP+.l+.mUa;l+.~ya k+:[ya;a;ke +:ndÒ +~ya ..a;a;nta:=+m,a Á Áta;tkx +:ta;Ea d;eaHP+.l+.kx +:�a;tMa yua;�+:a k+:NRaH :pa;d� ;a;kx +:taH ÁO;;vMa k+:Na;eRa ;
a;dõ ;Da;a .sa;a;DyaH .sa tua ma;a;nd;ea ;
a;va;a;Za;Sya;tea Á Á 18

18 {TS 1977}, p. 162.
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The distance of separation between the planet, and the line passing through the centre of the
kaks.yāvr. tta and the centre of the uccan̄ıcavr. tta (epicycle) which moves on the circum-
ference of the kaks.yāvr. tta, is the doh. phala. The distance of separation between the foot
of the perpendicular [of the dorjyā] and the centre of the uccan̄ıcavr. tta is the kot.iphala.
Depending upon whether the foot of the doh. phala lies outside the kaks.yāvr. tta or inside,
the kot.iphala has to be added to or subtracted from the trijyā. This gives the distance
of separation between the centre of kaks.yāvr. tta and the foot of the doh. phala. The square
root of the sum of the square of this (distance of separation) and the square of the doh. phala
is the karn. a. In this way the karn. a can be obtained in two ways and it has to be iterated in
the case of the manda-sam. skāra.2.17 A;
a;va;Zea;Sa;k+:Na;Ra;na;ya;na;m,a

2.17 Obtaining the iterated hypotenused;eaHk+:ea;�a;f;P+.l+.�a;na.Èåî ÁÁ*+;a;dùÅ;ae k+:Na;Ra;t,a ;
a:�a:$ya;a;&+.tea :P+.le Á Á 41 Á Áta;a;Bya;Ma k+:NRaH :pua;na;ssa;a;DyaH BUa;yaH :pUa;vRa;P+.l+.a;h;ta;a;t,a Áta:�a;tk+:Na;Ra;t,a ;
a:�a;Ba:$ya;a;�a;P+.l+.a;Bya;a;ma;
a;va;Zea;Sa;yea;t,a Á Á 42 Á Á
doh. kot.iphalanighnādye karn. āt trijyāhr. te phale || 41 ||
tābhyām. karn. ah. punassādhyah. bhūyah. pūrvaphalāhatāt |
tattatkarn. āt tribhajyāptaphalābhyāmavíses.ayet || 42 ||
The doh. phala and the kot.iphala [initially obtained] are multiplied by the karn. a [obtained
from them] and divided by trijyā. From these resulting phalas, the karn. a has to be ob-
tained again. Further, the previous phalas must be multiplied by the corresponding karn. as
and divided by the trijyā, and the process has to be repeated to get the avíses.a-karn. a (the
hypotenuse which does not change on iteration).

It was shown earlier (2.112) that

K =
[
(R + r cos(θ0 −θm))2 +(r sin(θ0 −θm))2] 1

2 . (2.121)

Here the radius of the epicycle r itself is proportional to karn. a K (2.113) and there-
fore needs to be determined along with K iteratively.

Procedure for finding the iterated hypotenuse

We explain the procedure for finding the iterated hypotenuse or avíses.a-karn. a with
the help of Fig. 2.12a. Let R, r be the radii of the deferent circle and the epicycle
respectively. UÔP0 is the manda-kendra (θ0 −θm). The quantities r sin(θ0 −θm) =
PN and r cos(θ0 −θm) = P0N are referred to as the doh. phala and kot.iphala respec-
tively. Thus, in the first approximation, r is set equal to r0 and the doh. phala and
kot.iphala are taken to be r0 sin(θ0 −θm) and r0 cos(θ0 −θm) respectively. Let them
be denoted d1 and k1. The karn. a OP which represents the distance of the planet
from the centre of the kaks.yāvr. tta is given by

K1 =
[
(R + k1)

2 + d2
1

] 1
2 . (2.122)
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Here K1 is the first approximation to the manda-karn. a. Then, the doh. phala (d2)
and kot.iphala (k2) are obtained as follows:

d2 =
K1 ×d1

R
k2 =

K1 × k1

R
. (2.123)

The second approximation to the manda-karn. a, K2, is given by

K2 =
[
(R + k2)

2 + d2
2

] 1
2 . (2.124)

Then, the doh. phala (d3) and kot.iphala (k3) are obtained as follows:

d3 =
K2 ×d1

R
k3 =

K2 × k1

R
. (2.125)

The third approximation to the manda-karn. a, K3, is obtained by

K3 =
[
(R + k3)

2 + d2
3

] 1
2 . (2.126)

The above process is carried out until Ki ≈ Ki−1, to the desired accuracy. When this
happens, Ki is referred to as the avíses.a-karn. a. This avíses.a-karn. a is to be used in
manda-sam. skāra to obtain the manda-phala.

The rationale behind the iterative process used in obtaining the avíses.a-karn. a is
explained in Yukti-d̄ıpikā as follows:ma;a;ndM n�a;a;.a;ea;�a;vxa:�Ma ta;tk+:NRa;vxa:�a;k+:l+.a;Æa;ma;ta;m,a Áya;ta;~ta;tk+:NRa;vxa;�a:;dÄâ ;[a;ya;a;nua;sa;a:=� +a;d;mua;.ya;tea Á Áma;nd;k+:NeRa .~va;�a;l+.�a;a;Æa;BaH :pra;Æa;ma;tea ;
a:�a:$ya;ya;a .sa;mea Á:pa;
a;F+.taH :pa;�a:=+�a;Da;ma;Ra;ndH k+:NRa;vxa:�a;k+:l+.a;Æa;ma;taH Á Á�+:na;a;�a;Da;ke ta;taH k+:NeRa :pra;�a;ta;vxa:�a;k+:l+.a;Æa;ma;tea Á.tea;na k+:NeRa;na d;eaHk+:ea;�a;f;P+.le ta;a;Bya;Ma tua ta;�a;yea;t,a Á ÁA;nya;ea;nya;a;(ra;ya;ta;a ..Ea;Sa;Ma A;
a;va;Zea;Sa;a;a;�a:=+~ya;tea Áta:�a;tk+:Na;Ra;dùÅ;a;d;eaHk+:ea;�a;f;Ga;a;ta;a;Bya;Ma ;
a:�a:$ya;ya;a;&+.tea Á Áta;a;Bya;Ma ;
a:�a;Ba:$ya;ya;a ..a;a;
a;pa :pra;a;gva;t,a k+:N a mua;hu ;nRa;yea;t,a Á 19

The manda-n̄ıcocca-vr. tta (manda epicycle) is measured in terms of karn. avr. tta
(hypotenuse circle) because it is said to increase or decrease in accordance with the
karn. avr. tta. The tabulated value of the circumference of the manda circle is in the mea-
sure of the karn. avr. tta, when the manda-karn. a is taken to be the trijyā. When the karn. a
increases and decreases and this value is measured in terms of prativr. tta, then the doh. and
kot.iphala have to be obtained from that karn. a. It is from them (doh. and kot.iphala) that
(the measure of manda-n̄ıcocca-vr. tta) has to be obtained. This interdependence is elimi-
nated by doing an iteration, the avíses.akarma. Multiplying the doh. phala and kot.iphala
by karn. a and dividing it by the trijyā [the new doh. phala and kot.iphala are determined].
With the trijyā and these, once again the karn. a has to be obtained as explained earlier.

Now, √
d2

1 + k2
1 = r0. (2.127)

19 {TS 1977}, pp. 162–3.
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From Fig. 2.12a and the equivalent of (2.125) it can be seen that for any i,

√
d2

i + k2
i =

Ki−1

R

√
d2

1 + k2
1 (2.128)

=
Ki−1

R
r0. (2.129)

After a few iterations, the successive values of the radius and the karn. a start con-
verging. That is,

√
d2

i−1 + k2
i−1 ≈

√
d2

i + k2
i → r

and Ki−1 ≈ Ki → K.

Hence r
K

=
r0

R
. (2.130)
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Fig. 2.12c Variation of the epicycle with the karn. a in the manda process and the avísis. t.a-
manda-karn. a.
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In Fig. 2.12c, P0 is the mean planet moving in the kaks.yāman. d. ala with O as the
centre, and OU is the direction of the mandocca. Draw a circle of radius r0 with P0

as centre. Let P1 be the point on this circle such that P0P1 is in the direction of the
mandocca (parallel to OU). Let O′′ be a point on the line OU , such that OO′′ = r0.
Join P1O′′ and let that line meet the kaks.yāman. d. ala at Q. Extend OQ and P0P1 so
as to meet at P. The true planet is located at P. Then it can be shown that OP = K
and P0P = r are the actual manda-karn. a and the corresponding (true) radius of the
epicycle as will result by the process of successive iteration.20 Since P1O′′ is parallel
to P0O, the triangles OP0P and QO′′O are similar and we have

r
K

=
P0P
OP

=
O′′O
QO

=
r0

R
. (2.131)

The process of successive iteration to obtain K is essentially the following. In trian-
gle OP1P0, with the angle P1P̂0O = 180◦− (θ0 −θm), the first approximation to the
karn. a (sakr. t-karn. a) K1 = OP1 and the mean epicycle radius r0 = P1P0 are related
by

K1 =
√

R2 + r2
0 + 2r0Rcos(θ0 −θm). (2.132)

In the RHS of (2.132), we replace r0 by the next approximation to the radius of the
epicycle

r1 =
r0

R
K1, (2.133)

and obtain the next approximation to the karn. a,

K2 =
√

R2 + r2
1 + 2r1Rcos(θ0 −θm), (2.134)

and so on. This process is iterated till Ki and Ki+1 become indistinguishable, and
that will be the avísis. t.a-karn. a (iterated hypotenuse) K,21 which is related to the
corresponding epicycle radius r as in (2.133) by

r =
r0

R
K. (2.135)2.18 A;
a;va;Zea;Sa;k+:Na;Ra;na;ya;nea :pra;k+:a:=+a;nta:=+m,a

2.18 Another method of obtaining the iterated hypotenuse;
a;va;~txa;�a;ta;d;l+.d;eaHP+.l+.kx +:�a;ta;
a;va;yua;�a;ta;pa;dM k+:ea;�a;f;P+.l+.
a;va;h� ;a;na;yua;ta;m,a Á:ke +:ndÒ e mxa;ga;k+:
a;kR +:ga;tea .sa Ka;lu ;
a;va;pa;yRa;ya;kx +:ta;ea Ba;vea;t,a k+:NRaH Á Á 43 Á Á
20 {MB 1960}, pp. 111–19.
21 The term víses.a means ‘distinction’. Hence, avíses.a is ‘without distinction’. Therefore the
term avísis. t.a-karn. a refers to that karn. a obtained after doing a series of iterations such that the
successive values of the karn. a do not differ from each other.
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a:�a:$ya;a;kx +:�a;taH A;ya;�a;
a;va;
a;h;ta;eaY;
a;va;Zea;Sa;k+:NRaH .~ya;a;t,a ÁI+.�a;ta va;a k+:NRaH .sa;a;DyaH ma;a;nde .sa;kx +:de ;va ma;a;Da;va;pra;ea;�H Á Á 44 Á Á
vistr. tidaladoh. phalakr. tiviyutipadam. kot.iphalavih̄ınayutam |
kendre mr. gakarkigate sa khalu viparyayakr. to bhavet karn. ah. || 43 ||
tena hr. tā trijyākr. tih. ayatnavihito ′víses.akarn. ah. syāt |
iti vā karn. ah. sādhyah. mānde sakr. deva mādhavaproktah. || 44 ||

The square of the doh. phala is subtracted from the square of the trijyā and its square root
is taken. The kot.iphala is added to or subtracted from this depending upon whether the
kendra (anomaly) is within 6 signs beginning from Karki (Cancer) or Mr. ga (Capricorn).
This gives the viparyaya-karn. a. The square of the trijyā divided by this viparyaya-
karn. a is the avíses.a-karn. a (iterated hypotenuse) obtained without any effort [of itera-
tion]. This is another way by which the [avíses.a]-karn. a in the manda process can be
obtained as enunciated by Mādhava.

A method to determine the manda-karn. a without an iterative process is dis-
cussed here. This method is attributed to Mādhava of Saṅgamagrāma, the
renowned mathematician and astronomer of the 14th century. A new quantity
called the viparyaya-karn. a or vipar̄ıta-karn. a is introduced for this purpose. This
vipar̄ıta-karn. a (‘inverse’ hypotenuse) is nothing but the radius of the kaks.yāvr. tta
when the manda-karn. a is taken to be the trijyā, R.

P

P

U

N

 0

O

Γ

kaks.yāvr. tta

ucca-n̄ıca-vr.tta karn. avr. tta

Fig. 2.13a Determination of the vipar̄ıta-karn. a when the kendra is in the first quadrant.

The rationale behind the formula given for vipar̄ıta-karn. a is outlined in the
Malayalam text Yuktibhās. ā, and can be understood with the help of Figs. 2.13a
and b. In these figures P0 and P represent the mean and the true planet respectively.
N denotes the foot of the perpendicular drawn from the true planet P to the line
joining the centre of the circle and the mean planet. NP is equal to doh. phala. Let
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the radius of the karn. avr. tta OP be set equal to the trijyā R. Then the radius of
the uccan̄ıcavr. tta P0P is r0, as it is in the measurement of the karn. avr. tta. In this
measurement, the radius of the kaks.yāvr. tta OP0 = Rv, the vipar̄ıta-karn. a, and is
given by

Rv = ON ±P0N

=
√

R2 − (r0 sin(θ0 −θm))2 ±|r0 cos(θ0 −θm)|. (2.136)

O

P 0

Γ

P

U

N

kaks.yāvr. tta

karn. avr. tta

ucca-n̄ıca-vr.tta

Fig. 2.13b Determination of the vipar̄ıta-karn. a when the kendra is in the third quadrant.

Here we should take the ‘−’ sign when the manda-kendra is in the first and
fourth quadrants 270≤ (θ0−θm) < 90 and the ‘+’ sign when it is in the second and
third quadrants 90 ≤ (θ0 − θm) < 270. When the radius of the kaks.yāvr. tta is the
trijyā R, the value of manda-karn. a is K, and when the radius of the manda-karn. a
is R, the radius of the kaks.yāvr. tta is Rv. Hence

K
R

=
R
Rv

or K =
R2

Rv
. (2.137)

Thus the avísis. t.a-manda-karn. a, also referred to as the avíses.a-karn. a, is given by

avíses.a-karn. a =
trijyā 2

viparyaya-karn. a
. (2.138)

Since r0 is a known quantity, for any given value of (θ0 −θm) Rv can be determined
from (2.136). Once Rv is known, using (2.137) the avísis. t.a-manda-karn. a, K, can
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be found in one step without resorting to the tedious iterative process described in
the previous section for its computation.

The formula for the vipar̄ıta-karn. a in (2.136) can also be understood from the
geometrical construction in Fig. 2.12c. As the triangles OP0P and OTQ are similar,

OT
OQ

=
OP0

OP

or OT =
R2

K
, (2.139)

as OQ = OP0 = R. Hence the viparyaya-karn. a Rv = OT . Also,

QT̂S = UÔP0 = θ0 −θm. (2.140)

Hence, QS = r0 sin(θ0 −θm) and ST = r0 cos(θ0 −θm). Now

OT = OS−ST

=
√

OQ2 −SQ2 −ST

=
√

R2 − r2
0 sin2(θ0 −θm)− r0 cos(θ0 −θm), (2.141)

which is the same as (2.136).2.19 A;
a;va;Zea;Sa;k+:NeRa;na A;kR +:~å.Pu +.f� ;a;k+.=+Na;m,a
2.19 Correcting the Sun using the iterated hypotenuse;
a:�a:$ya;a.Èåî ÁÁ*+;ea d;ea;gRua;NaH k+:NRa;Ba;�H .~å.Pu +.f;Bua:ja;a;gua;NaH Áta:;dÄâ ;nuaH .sMa;~kx +:tMa .~va;ea;�Ma n�a;a;.Ma va;a yua;�a;�+:taH .~å.Pu +.f;m,a Á Á 45 Á Á

trijyāghno dorgun. ah. karn. abhaktah. sphut.abhujāgun. ah. |
taddhanuh. sam. skr. tam. svoccam. n̄ıcam. vā yuktitah. sphut.am || 45 ||
The true dorjyā is [equal to] the dorjyā multiplied by the trijyā and divided by the karn. a.
The arc of this appropriately applied to the ucca or n̄ıca gives the true position [of the
planet].

This can be explained from Fig. 2.14a. Let φ = PÔU be the difference (θ −θm)
between the manda-sphut.a and the ucca. Now

PN = P0N0,

or K sinφ = Rsin(θ0 −θm). (2.142a)

Hence

Rsinφ = Rsin(θ0 −θm)
R
K

,

or φ = (Rsin−1)

[
Rsin(θ0 −θm)

R
K

]
. (2.142b)
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Fig. 2.14a The true position of the planet from the ucca and n̄ıca.

Then the true planet (Γ ÔP) is obtained as

Γ ÔP = Γ ÔU + φ
= ucca+ φ . (2.143)2.20 .=+
a;va;~å.Pu +.f;a;t,a ta;n}å.a;Dya;ma;a;na;ya;na;m,a

2.20 Obtaining the mean Sun from the true SunA;kR +:~å.Pu +.fe ;na;a;na;ya;nMa :pra;ku +:ya;Ra;t,a .~va;ma;Dya;ma;~ya;a:�a ;
a;va;tua;ñÍç ÅÅ*:+.Ba;a;na;eaH ÁBua:ja;a;gua;NMa k+:ea;�a;f;gua;NMa ..a kx +:tva;a mxa;ga;a;
a;d;ke +:ndÒ e Y;ntya;P+.l+.a;K.ya;k+:ea;f�a;eaH Á Á 46 Á ÁBea;dH ku +:l� +.a:=+a;
a;d;ga;tea tua ya;ea;gaH ta;dõ ;gRa;yua;�+:a;t,a Bua:ja;va;gRa;ta;ea ya;t,a Á:pa;dM ;
a;va;pa;ya;Ra;sa;kx +:taH .sa k+:NRaH ;
a:�a:$ya;a;kx +:tea;~ta;
a;dõ ;&+.ta;~tua k+:NRaH Á Á 47 Á Á.tea;na;a;h;ta;a;mua;�a;
a;va;h� ;a;na;Ba;a;na;eaH .j�a;a;va;Ma Ba:jea;d, v.ya;a;sa;d;le +.na l+.b.Da;m,a Á.~va;ea;�ea ;Æa;[a;pea;�a;a;
a;pa;ta;ma;a;dùÅ;a;pa;a;de ..a;kÒ +:a;DRa;taH Zua:;dÄâ ;ma;
a;pa ;
a;dõ ;t�a;a;yea Á Á 48 Á Á..a;kÒ +:a;DRa;yua;�M tua txa;t�a;a;ya;pa;a;de .sMa;Za;ea;�a;Da;tMa ma;Nq+.l+.ta;(ãÉa;tua;TeRa ÁO;;vMa kx +:tMa .sUa;[ma;ta:=M ;
a;h ma;DyMa :pUa;v a :pa;dM ya;a;va;
a;d;h;a;�a;Da;kM .~ya;a;t,a Á Á 49 Á ÁA;ntya;a;t,a :P+.l+.a;t,a k+:ea;�a;f;gua;NMa ..a;tua;T a tva;a:=+Bya;tea ya;dùÅ;a;�a;Da;k+:a:�a k+:ea;�a;fH Á.sa;vRa:�a ;
a;va;Sk+:}Ba;d;lM (rua;ta;Ea va;a v.ya;a;sa;a;DRa;ke .~ya;a;
a;dõ ;pa:=� +a;ta;k+:NRaH Á Á 50 Á Á
arkasphut.enānayanam. prakuryāt svamadhyamasyātra vituṅgabhānoh. |
bhujāgun. am. kot.igun. am. ca kr. tvā mr. gādikendre ′ntyaphalākhyakot.yoh. || 46 ||
bhedah. kul̄ırādigate tu yogah. tadvargayuktāt bhujavargato yat |
padam. viparyāsakr. tah. sa karn. ah. trijyākr. testadvihr. tastu karn. ah. || 47 ||
tenāhatāmuccavih̄ınabhānoh. j̄ıvām. bhajed vyāsadalena labdham |
svocce ks. ipeccāpitamādyapāde cakrārdhatah. śuddhamapi dvit̄ıye || 48 ||
cakrārdhayuktam. tu tr. t̄ıyapāde sam. śodhitam. man. d. alataścaturthe |
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evam. kr. tam. sūks.mataram. hi madhyam. pūrvam. padam. yāvadihādhikam.
syāt || 49 ||
antyāt phalāt kot.igun. am. caturtham. tvārabhyate yadyadhikātra kot.ih. |
sarvatra vis.kambhadalam. śrutau vā vyāsārdhake syādvipar̄ıtakarn. ah. || 50 ||
The mean position of the Sun has to be obtained from the true position [as follows]. Hav-
ing subtracted the longitude of the apogee from the true Sun, the dorjyā and kot.ijyā are
obtained. When the manda-kendra lies within the six signs beginning from Mr. ga, the
difference between the antyaphala and the kot.ijyā has to be taken, and when it is within
the six signs beginning from Karka, their sum has to be taken. The square root of the sum
of the square of this and the square of the dorjyā is the vipar̄ıta-karn. a. The square of the
trijyā divided by this vipar̄ıta-karn. a is the karn. a.

This (karn. a) is multiplied by the dorjyā obtained by subtracting the longitude of the
apogee from the Sun, and divided by the trijyā. The arc of the result has to be applied
positively to the longitude of the mandocca when the manda-kendra is in the first quad-
rant. 180 minus the arc, 180 (cakrārdha) plus the arc and 360 minus the arc have to be
applied to the mandocca when the manda-kendra lies in the second, third and fourth
quadrants respectively. The mean longitude obtained thus is accurate. In the first quadrant
the kot.ijyā is greater than the antyaphala. [Similarly] the fourth quadrant is said to com-
mence when the kot.iphala becomes greater than the antyaphala. Always the karn. a bears
the same relation to the trijyā as the trijyā to the vipar̄ıta-karn. a (inverse hypotenuse).

Normally the texts present the procedure for determining the true position of
a planet from its mean position. The above set of verses present a procedure for
solving the inverse problem, namely finding the mean Sun from its true position.
We explain this procedure with the help of Fig. 2.14b. Here, the longitudes of the
mean Sun, the true Sun and the ucca (apogee) are given by

θ0 = Γ ÔP0 = PÔ′P

θ = Γ ÔP

and θm = Γ ÔU = Γ Ô′U, (2.144)

respectively. Further,

θ −θm = NÔP

θ0 −θm = NÔ′P = NÔP0. (2.145)

Also, the avísis. t.a-manda-karn. a (iterated manda hypotenuse) K = OP and the
vyāsārdha R = OP0 = O′P. The true epicycle radius r = OO′.

The word antyaphala used in the above verse has a special significance whose
relation with the manda-karn. a may precisely be expressed as follows:

antyaphala = r0 =
r0

r
.r =

R
K

.r =
R
K

.OO′. (2.146)

Now,

dorjyā = RsinNÔP =
R
K

.K sinNÔP

=
R
K

.K sin(θ −θm) =
R
K

.PN
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Fig. 2.14b Obtaining the madhyama (mean position) from the sphut.a (true position).

kot.ijyā = RcosNÔP =
R
K

.K cosNÔP

=
R
K

.K cos(θ −θm) =
R
K

.ON. (2.147)

Hence the difference between the kot.ijyā and the antyaphala is given by

kot.ijyā − antyaphala = Rcos(θ −θm)− r0

=
R
K

(ON −OO′)

=
R
K

.O′N. (2.148)

Therefore,
√

(kot.ijyā − antyaphala)2 +(dorjyā)2 =
R
K

√
O′N2 + PN2

=
R
K

.O′P

=
R2

K
. (2.149)
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The expression obtained above is the same as the vipar̄ıta-karn. a Rv appearing
in (2.136). Now, using (2.147) and (2.148), this may be expressed as

Rv =

√
(Rcos(θ −θm)− r0)2 + R2 sin2(θ −θm). (2.150)

Since the positions of the ucca and the true planet are known, Rv can be determined.
Also, the manda-karn. a K = R2

Rv
can be determined from θ −θm. Now

PN = K sin(θ −θm)

= O′Psin(NÔ′P)

= Rsin(θ0 −θm). (2.151)

Hence

madhyama−ucca = θ0 −θm

= Rsin−1
[

Rsin(θ −θm)
K
R

]
. (2.152)

From this madhyama−ucca is obtained. When this is added to the ucca, the mad-
hyama is obtained. When sphut.a−ucca is positive, O′N = kot.ijyā − antyaphala.
In the above, it is Rsin (madhyama − ucca) which is found first in terms of
Rsin(sphut.a− ucca). The quadrant in which (madhyama−ucca) lies can be de-
termined without any ambiguity from the geometry.

When it is in the second or third quadrants, Rcos(sphut.a− ucca) is negative
and O′N = kot.ijyā+ antyaphala. Of course, in all cases, the formula for Rv given
above is valid. Now, when the true planet is to be found from the mean planet, it is
not necessary to calculate the manda-karn. a K. However in the reverse case, when
the mean planet is to be found from the true planet, it becomes necessary to first
calculate K.

An elaborate explanation for the above verses is to be found in in Yukti-d̄ıpikā.k+:NRa;vxa:�ea .~å.Pu +.f;ea;�a;a;nta:=+a;l+$ya;a .~va;k+:l+.a;Æa;ma;ta;a Áta;du ;�a;sUa:�a;sMa;pa;a;ta;a;t,a k+:ea;�a;f;~ta;tke +:ndÒ +ga;a;Æa;ma;n�a;a Á Áta;d;ntya;P+.l+.ya;ea;ya;eRa;ga;ea ;
a;va:(ìÉÅ;e +Sa;ea va;a ya;Ta;ea;�a;.a;ta;m,a Á:pra;�a;ta;ma;Nq+.l+.ke +:ndÒ +~ya d;ea:$ya;Ra;mUa;l+.~ya ..a;a;nta:=+m,a Á Áta;�+ea;vRa;gRa;yua;tea;mRUa;lM :pra;�a;ta;ma;Nq+.l+.ke +:ndÒ +taH Ág{a;h;a;va;�a;Da;v.ya;a;sa;d;lM k+:NRa;vxa:�a;k+:l+.a;Æa;ma;ta;m,a Á Áv.ya;a;sa;a;D a :pra;�a;ta;vxa:�a;~ya ;
a:�a:$yEa;va .~va;k+:l+.a;Æa;ma;ta;a Áta;de ;va v.ya;~ta;k+:NRaH .~ya;a;t,a k+:NRa;vxa:�a;k+:l+.a;Æa;ma;ta;m,a Á Á;
a:�a:$ya;a;tua;�yea v.ya;~ta;k+:NeRa k+:Na;eRa nyUa;na;a;�a;Da;k+:~ta;taH Áta;ta;~:�Ea:=+a;a;Za;ke +:na;a:�a ma;nd;k+:NRaH .~å.Pu +.f;ea Ba;vea;t,a Á Áo+.�a;ea;na;~å.Pu +.f;ta;ea d;ea:$ya; a ma;nd;k+:NRa;h;ta;Ma h:=e +t,a Á;
a:�a:$ya;ya;a ta;�ç Åu +Na;Ma d;ea:$ya; a v.ya;~ta;k+:NeRa;na va;a h:=e +t,a Á Ál+.b.Da;.a;a;pMa ;Da;na;N a .~ya;a;t,a .~va;ea;�ea ma;Dya;ma;Æa;sa:;dÄâ ;yea Á
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a:�a:j�a;a;va;ya;eaH Á Áta;a;dx ;Za;ea ;�a;na;ya;ma;ea :vea;dùÅ;aH ;
a:�a:j�a;a;va;a;ma;nd;k+:NRa;ya;eaH Ák+:NRa;~:�Ea:=+a;a;Za;ke +:na;a;taH v.ya;~ta;k+:Na;Ra;
a;dõ ;D�a;a;ya;tea Á Áma;Dya;ma;a;t,a .~å.Pu +.f;sMa;Æa;sa;�a:;dÄâ H d;eaHP+.l+.a;dùÅ;a;
a;d :ke +:va;l+.a;t,a Áma;Dya;Æa;sa;�a:;dÄâ H .~å.Pu +.f;a;t,a ta;sma;a;t,a k+:NRa.Èåî ÁÁ*+;a;t,a ;
a:�a:$ya;ya;a &+.ta;a;t,a Á ÁA;Ta .~å.Pu +.f;ea;�a;a;nta:=+d;ea;gRua;NMa (rua;�a;ta;h;tMa h:=e +t,a Á;
a:�a:$ya;ya;a l+.b.Da;.a;a;pea;na kx +:tea .~va;ea;�ea .~va;ma;Dya;maH Á Áta;de ;va ..a;a;
a;pa;tMa .~va;ea;�ea ..a;kÒ +:a;D a .tea;na va;Æa:jRa;ta;m,a Á..a;kÒ +:a;DRa;yua;�M ..a;kÒ +:a;�a tya;�M :pa;d;va;Za;a;t,a ;Æa;[a;pea;t,a Á Á 22

In the karn. avr. tta the jyā of the difference between the longitude of the true planet and
its mandocca corresponds to the dorjyā in its own measure. The distance of separation
between the point of intersection (N in the Fig. 2.14b) of the jyā with the uccasūtra (the
apsis line) and the centre of the karn. avr. tta (O) corresponds to the kot.ijyā (ON). The
sum or difference of the antyaphala (OO′) with this kot.ijyā, as the case may be, gives
the distance of separation between the centre of the pratiman. d. ala and the foot of the
dorjyā (N). The square root of the sum of the squares of this (O′N) and the dorjyā (PN)
gives the distance between the centre of pratiman. d. ala and the planet. This is the radius
of the pratiman. dala in the measure of the karn. avr. tta. The radius of the prativr. tta with
respect to its own measure is the trijyā. This (trijyā) will be the vyasta-karn. a (inverse-
hypotenuse) in the measure of the karn. avr. tta. When the vyasta-karn. a is set equal to the
trijyā, then the actual karn. a will be smaller or larger than that. Thus by the rule of three
the true manda-karn. a is obtained.

The dorjyā obtained by subtracting the mandocca from the true Sun is multiplied by the
manda-karn. a and divided by the trijyā. Or the trijyā multiplied by the dorjyā is divided
by vyasta-karn. a. The arc of this is applied positively or negatively to the mandocca to
get the mean Sun. It is to be understood that whatever is the relation between the vyasta-
karn. a and the trijyā, the same relation is valid between the trijyā and the manda-karn. a.
This is the reason why the manda-karn. a is obtained from the vyasta-karn. a by the rule
of three.

As the true position of the planet is obtained from the mean position just by finding the
doh. phala, the mean position is obtained from the true position by multiplying [the dorjyā]
by the manda-karn. a and dividing by the trijyā. Then the dorjyā obtained by subtracting
the mandocca from the true Sun is multiplied by the manda-karn. a and divided by the
trijyā. The arc applied to the mandocca of the Sun will give the position of the mean
Sun. Depending upon the quadrant, the same arc has to be applied to the mandocca after
subtracting it from 180◦, or adding 180◦ to it or subtracting it from 360◦.

The procedure stated here is a slight variant of the one described earlier. Here,
PN, ON and OO′ are the dorjyā, the kot.ijyā and the antyaphala respectively in
the measure of the karn. avr. tta and are equal to Rsin(θ −θm), Rcos(θ −θm) and r0

in the same measure. In this measure, the radius of the pratiman. d. ala, O′P, is the
vyasta-karn. a or viparita-karn. a, Rv, given in (2.136). Then the manda-karn. a, K,
in the measure of the pratiman. d. ala (when the radius is R, as usual) is determined
from

K
R

=
R
Rv

, (2.153)

and madhyama − ucca is obtained as earlier.

22 {TS 1977}, pp. 165–6.
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2.21 Another method for getting the mean planet from the true

planetA;keR +:ndõ ;eaH .~å.Pu +.f;ta;ea mxa;dU ;�a:=+
a;h;ta;a;t,a d;eaHk+:ea;�a;f:ja;a;tea :P+.len�a;a;tva;a k+:
a;kR +:mxa;ga;a;
a;d;ta;ea ;
a;va;�a;na;ma;yea;na;a;n�a;a;ya k+:N a .sa;kx +:t,a Á;
a:�a:$ya;a d;eaHP+.l+.Ga;a;ta;taH (rua;�a;ta;&+.tMa ..a;a;p�a;a;kx +:tMa ta;t,a .~å.Pu +.fe:ke +:ndÒ e mea;Sa;tua;l+.a;
a;d;gea ;Da;na;mxa;NMa ta;n}å.a;Dya;sMa;Æa;sa:;dÄâ ;yea Á Á 51 Á Á
arkendvoh. sphut.ato mr. dūccarahitāt doh. kot.ijāte phale
n̄ıtvā karkimr. gādito vinimayenān̄ıya karn. am. sakr. t |
trijyā doh. phalaghātatah. śrutihr. tam. cāp̄ıkr. tam. tat sphut.e
kendre mes.atulādige dhanamr. n. am. tanmadhyasam. siddhaye || 51 ||
Subtracting the longitude of their own mandoccas from the true positions of the Sun and
the Moon, obtain their doh. phala and kot.iphala. Find the sakr. t karn. a (one-step hy-
potenuse) once by interchanging the sign [in the cosine term] depending upon whether the
kendra is within the six signs beginning with Karki or Mr. ga. Multiplying the doh. phala
and trijyā, and dividing this product by the karn. a [here referred to as śruti], the arc of
the result is applied to the true planet to obtain the mean planet. This arc has to be applied
positively and negatively depending upon whether the kendra lies within the six signs be-
ginning with Mes.a or Tulā respectively.

Now,

bāhuphala = r0 sin(θ −θm)

kot.iphala = r0 cos(θ −θm). (2.154)

Taking the one-step karn. a (sakr. tkarn. a) with the opposite sign in the kot.iphala, we
have

karn. a = [(R− r0 cos(θ −θm))2 +(r0 sin(θ −θm))2]
1
2 . (2.155)

This is the same as the vipar̄ıta-karn. a Rv given by (2.150). In Fig. 2.14b, draw O′T
perpendicular to OP. Then in triangle O′PT ,

O′T = O′Psin(O′P̂T )

= O′Psin(PÔP0)

= Rsin(θ0 −θ ). (2.156)

Also O′T = r sin(θ −θm). (2.157)

Equating the above two expressions for O′T ,

Rsin(θ0 −θ ) = r sin(θ −θ0)

or Rsin(θ0 −θ ) = r0 sin(θ −θ0)
R
Rv

, (2.158)

where we have used (2.135) and (2.153). Hence,
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θ0 −θ = (Rsin)−1
[

r0 sin(θ −θ0)
R
Rv

]
. (2.159)

Thus the mean planet θ0 can be obtained by adding the above difference to the true
planet θ . θ0 − θ is positive when the kendra (anomaly) θ − θm is within the six
signs beginning with Mes.a, i.e. 0◦ ≤ θ −θm ≤ 180◦, and negative when the kendra
is within the six signs beginning with Tulā, i.e. 180◦ ≤ θ −θm ≤ 360◦.2.22 ma;nd;k+:Na;Ra;na;ya;nea :pra;k+:a:=+a;nta:=+m,a
2.22 Another method for getting the manda-hypotenusema;Dya;taH .~å.Pu +.f;ta;(ãÉa;ea;�Ma o+.�////////////�a;jJa;tva;a ta;;�ÂåÅu ;jea o+.Bea Ágxa;h� ;a;tva;a;dùÅ;a;a ta;ya;ea;�///�a;~:�a:$ya;a h;ta;a;nya;a;�a;a (rua;�a;ta;~å.Pu +.f;a Á Á 52 Á Á

madhyatah. sphut.ataścoccam. ujjhitvā tadbhuje ubhe |
gr. h̄ıtvādyā tayostrijyā hatānyāptā śrutisphut.ā || 52 ||
Subtracting the mandocca from the mean and the true positions separately, obtain the two
dorjyās. Of these, the former multiplied by the trijyā and divided by the latter gives the
exact value of śrutisphutā (avísis. t.a-manda-karn. a).

In Fig. 2.14b, Rsin(θ0 −θm) and Rsin(θ −θm) are the dorjyās corresponding to
the manda-kendras of the mean and true planet respectively. It is noted from the
figure that

PN = K sin(θ −θm)

= Rsin(θ0 −θm). (2.160)

Hence,

K = R× Rsin(θ0 −θm)

Rsin(θ −θm)

or śruti =
trijyā× ādyā

anyā
. (2.161)

where ādyā and anyā refer to Rsin(θ0−θm) and Rsin(θ −θm) respectively, and the
avísis. t.a-manda-karn. a is termed the śrutisphut.ā here.2.23 g{a;h;ta;a;tk+:a;�a;l+.k+:ga;�a;taH
2.23 Instantaneous velocity of a planet..a;ndÒ +ba;a;hu ;P+.l+.va;gRa;Za;ea;�a;Da;ta;
a:�a:$ya;k+:a;kx +:�a;ta;pa;de ;na .sMa;h:=e +t,a Áta:�a k+:ea;�a;f;P+.l+.�a;l+.�a;�a;k+:a;h;ta;Ma :ke +:ndÒ +Bua;�a;�+:�a:=+h ya;�a l+.Bya;tea Á Á 53 Á Á
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a;dõ ;Za;ea;Dya mxa;ga;a;
a;d;ke ga;teaH ;Æa;[a;pya;ta;a;Æa;ma;h tua k+:kR +:f;a;
a;d;ke Áta;;�ÂåÅ +vea;t~å.Pu +.f;ta:=+a ga;�a;ta;
a;vRa;Da;ea:=+~ya ta;tsa;ma;ya:ja;a .=+vea:=+
a;pa Á Á 54 Á Á
candrabāhuphalavargaśodhitatrijyakākr. tipadena sam. haret |
tatra kot.iphalaliptikāhatām. kendrabhuktirihayacca labhyate || 53 ||
tadvísodhya mr. gādike gateh. ks. ipyatāmiha tu karkat.ādike |
tadbhavetsphut.atarā gatirvidhorasya tatsamayajā raverapi || 54 ||
Let the product of the kot.iphala (in minutes) and the daily motion of the kendra be di-
vided by the square root of the square of the bāhuphala of the Moon subtracted from the
square root of the trijyā. The quantity thus obtained has to be subtracted from the daily
motion [of the Moon] if [the kendra lies within the six signs] beginning from Makara and
is to be added to the daily motion if [the kendra lies within the six signs] beginning from
Karkat.aka. This will be a far more accurate (sphut.atarā) value of the instantaneous ve-
locity (tatsamayajā gati) of the Moon. For the Sun also [the instantaneous velocity can
be obtained similarly].

The bāhuphala (or doh. phala) and kot.iphala are given by

bāhuphala = r0 sin(θ0 −θm)

and kot.iphala = r0 cos(θ0 −θm), (2.162)

where θ0 −θm is the manda-kendra; θ0 and θm represent the longitude of the Moon
and its mandocca respectively (see Fig. 2.12a). The term kendrabhukti refers to the
daily motion of the kendra given by

kendrabhukti =
∆(θ0 −θm)

∆ t
, (2.163)

where ∆ t refers to the time interval of one day and ∆(θ0 − θm) represents the dif-
ference in the daily motion of the Moon and its mandocca. As the mean longitude
and mandocca increase uniformly with time,

d
dt

(θ0 −θm) =
∆
∆ t

(θ0 −θm), (2.164)

is a constant. It is stated here that a correction term has to be added to the above
kendrabhukti to obtain a more accurate value of the rate of motion of the kendra.
The correction factor is stated to be

kot.iphala× kendrabhukti√
(trijyā2 − bāhuphala2)

= − r0 cos(θ0 −θm)∆ (θ0−θm)
∆ t√

R2 − r2
0 sin2(θ0 −θm)

. (2.165)

Further, it is mentioned that the correction term is to be subtracted from the
kendrabhukti when θ0 − θm is in the first and fourth quadrants (Mr. gādi) and it
is to be added when it is in the second and third quadrants (Karkādi). This accounts
for the negative sign in the RHS of the above equation (2.165).

Now the manda-kendra of the Moon’s true longitude is given by
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θ −θm = (θ0 −∆θ )−θm,

where the manda correction ∆θ is given by

∆θ = sin−1
( r0

R
sin(θ0 −θm)

)
, (2.166)

as explained earlier. Hence,

θ = θ0 − sin−1
( r0

R
sin(θ0 −θm)

)
. (2.167)

Therefore,

d
dt

θ =
dθ0

dt
− d

dt
sin−1

(r0

R
sin(θ0 −θm)

)

=
dθ0

dt
− r0 cos(θ0 −θm) d(θ0−θm)

dt√
R2 − r2

0 sin2(θ0 −θm)
. (2.168a)

It may be mentioned here that in the case of all the planets, except the Moon, the
rate of change of the mandocca is extremely small and can be neglected. That is,
dθm
dt ≈ 0. Then the above equation reduces to

d
dt

θ =
dθ0

dt


1− r0 cos(θ0 −θm)√

R2 − r2
0 sin2(θ0 −θm)


 . (2.168b)

Note:

1. It is remarkable that the author in this verse gives the correct form for the deriva-
tive of the inverse sine function. In his Jyotirmı̄mām. sa, Nı̄lakan. t.ha mentions
that this verse is due to his teacher Dāmodara.

2. The differentials of the sine and cosine functions were used in Indian astron-
omy at least from the time of Mañjulācārya in his Laghu-mānasā. Bhāskara II
clearly makes use of them in his Siddhāntaśiroman. i.

3. The significance of this verse lies in the fact that it is for the first time that the
derivative of the arcsine function is being considered here in the context of dis-
cussing the tātkālika-gati or instantaneous rate of motion of the planet.2.24 na;[a:�a;�a;ta;Tya;a;na;ya;na;m,a

2.24 Finding naks.atra and tithi;�a;l+.��a;a;kx +:ta;ea ;�a;na;Za;a;na;a;TaH Za;tEa;Ba;Ra:$ya;ea;�;Æa;BaH :P+.l+.m,a ÁA;��a:(õ;a;nya;a;d� ;a;�a;na Ba;a;�a;na .~yuaH :Sa;��a;a h;tva;a ga;ta;a;ga;tea Á Á 55 Á Ága;ta;ga;nta;v.ya;na;a;q:�aH .~yuaH .~å.Pu +.f;Bua;��+.a;ea;d;ya;a;va;DeaH Á



2.24 Finding naks.atra and tithi 117A;kR +:h� ;a;na;ea ;�a;na;Za;a;na;a;TaH ;�a;l+.��a;a;kx +:tya ;
a;va;Ba:$ya;tea Á Á 56 Á ÁZUa;nya;a;��a:(õ;a;pa;vRa;tEa;lR +.b.Da;aH ;�a;ta;Ta;ya;ea ya;a ga;ta;aH kÒ +:ma;a;t,a ÁBua;��+.a;nta:=e +Na na;a;q:�aH .~yuaH :Sa;��a;a h;tva;a ga;ta;a;ga;tea Á Á 57 Á Á;�a;ta;Tya;DRa;h;a:=+l+.b.Da;a;�a;na k+.=+Na;a;�a;na ba;ba;a;
a;d;taH Á;
a;va:�+.pa;a;a;Na ;Æa;sa;tea :pa;[ea .sa:�+.pa;a;Nya;Æa;sa;tea ;
a;va;du H Á Á 58 Á Á;
a;va;Sk+:}Ba;a;dùÅ;a;a .=+v�a;a;ndõE ;k�+.a;a;t,a ya;ea;ga;a;(ãÉa;a;�;Za;t�a;a;&+.ta;aH ÁBua;�a;�+:yua;��+.a;a ga;tEa;Sya;a;Bya;Ma :Sa;
a;�.Èåî ÁÁ*+;a;Bya;Ma ..a na;a;
a;q+.k+:aH Á Á 59 Á Á
lipt̄ıkr. to nísānāthah. śatairbhājyos.t.abhih. phalam |
aśvinyād̄ıni bhāni syuh. s.as.t.yā hatvā gatāgate || 55 ||
gatagantavyanād.yah. syuh. sphut.abhuktyodayāvadheh. |
arkah̄ıno nísānāthah. lipt̄ıkr. tya vibhajyate || 56 ||
śūnyāśviparvatairlabdhāh. tithayo yā gatāh. kramāt |
bhuktyantaren. a nād. yah. syuh. s.as.t.yā hatvā gatāgate || 57 ||
tithyardhahāralabdhāni karan. āni babāditah. |
virūpān. i site paks.e sarūpān. yasite viduh. || 58 ||
vis.kambhādyā rav̄ındvaikyāt yogāścās.t.aśat̄ıhr. tāh. |
bhuktiyuktyā gatais.yābhyām. s.as.t.ighnābhyām. ca nād. ikāh. || 59 ||
The longitude of the lord of the night (the Moon) in minutes is divided by 800. The quotient
gives the number of naks.atras that have elapsed beginning from the Aśvini naks.atra.
The remainder [which corresponds to the minutes covered by the Moon in the present
naks.atra] and the one which has to be covered multiplied by 60 and divided by the daily
motion of the Moon [in minutes] at sunrise gives the nād. ikās that have elapsed and are
yet to elapse in the present naks.atra. The longitude of the Sun subtracted from that of the
Moon, in minutes, is divided by 720′ . The quotient gives the number of tithis elapsed. The
remainder and the quantity obtained by subtracting the remainder from 720′, multiplied by
60 and divided by the difference in the daily motion of the Sun and the Moon, gives the
number of ghat.ikās that have elapsed and are yet to elapse in the present tithi.

The same (difference in longitude between the Sun and the Moon) divided by half the
divisor used in the tithi calculation gives the number of karan. as elapsed, starting with
bava. In the bright fortnight the karan. as are without form and in the dark fortnight with
form. The sum of the longitudes of the Sun and the Moon [in minutes] divided by 800
gives the yogas, starting with the vis.kambha. The remainder and the quantity obtained by
subtracting the remainder from 800, multiplied by 60 and divided by the sum of the daily
motion of the Sun and the Moon, gives the number of ghat.ikās that have elapsed and are
yet to elapse in the present yoga.

The ecliptic is divided in to 27 equal parts called naks.atras beginning with
Aśvin̄ı and ending with Revat̄ı. Hence each naks.atra corresponds to 21600

27 =
800 minutes, along the ecliptic. The naks.atra at any instant refers to the particular
portion of the ecliptic in which the Moon is situated. Clearly, when the longitude of
the Moon in minutes is divided by 800 the quotient gives the number of naks.atras
which have elapsed and the remainder corresponds to the minutes covered by the
Moon in the present naks.atra. When this is divided by the daily motion of the
Moon in minutes at that time (taken to be the value at sunrise) and multiplied by 60,
the result gives the ghat.ikas that have elapsed in the present naks.atra. Similarly the
ghat.ikās yet to elapse in the present naks.atra can be calculated.

A tithi is the (variable) unit of time during which the difference between the
longitudes of the Moon and the Sun increases by 12◦ or 720′. Hence there are 30
tithis during a lunar month. Hence, when the difference in longitudes of Moon and
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the Sun in minutes is divided by 720′, the quotient gives the number of tithis elapsed
in that month. The number of ghat.ikās (nād. ikās) which have elapsed and are yet to
elapse in the present tithi are calculated in the manner indicated.

A karan. a is half a tithi by definition and there are 60 karan. as in a lunar month.
The number of karan. as that have elapsed can be calculated in the same manner as
the number of tithis, except that the divisor is 360′ instead of 720′.

There are two types of karan. as, namely cala (movable) and sthira (fixed). In
this context these terms are used to mean repeating and non-repeating karan. as. Of
the 11 karan. as, 7 are repeating and 4 are non-repeating. The 7 cala-karan. as (mov-
ing karan. as) have 8 cycles, thus forming 56 karan. as. The 4 sthira-karan. as (fixed
karan. as) occur just once each in a lunar month. The moving and fixed karan. as
together make up 60 karan. as in a lunar month.

The names of the karan. as and the pattern in which the cala and sthirakaran. as
occur are given in the following verses, quoted in Laghu-vivr. ti:ba;ba;ba;a;l+.va;k+:Ea;l+.va;tEa;�a;ta;l+.ga:ja;va;a;Na:ja;a;K.ya;
a;va;
a;�;na;a;ma;a;�a;na Á;Æa;sa;ta;pa;[a;~ya;a;pa:=+a;Da;Ra;t,a 23 :pa;�a:=+va;tRa;nteaY;� kx +:tva;eaY;taH Á Ákx +:SNa;.a;tua;dR ;Zya;ntea Za;ku +:�a;naH :pa;vRa;a;Na ..a;tua;Spa;dH Á:pra;Ta;mea ;�a;ta;Tya;DeRaY;ntyea na;a;gaH ;
a;kM +:~tua.Èåî ÁÁ*+H :pra;�a;ta;pa;d;a;dùÅ;a;DeRa Á Á

The karan. as named baba, bālava, kaulava, taitila, gaja, van. ija and vis. t.i repeat them-
selves eight times from the later half of the first tithi, prathama, of the bright fortnight.
Śakuni occurs in the later half of the caturdaś̄ı of the dark fortnight, catus.pada and nāga
in the first and second halves of [the following] amavāsya and kim. stughna in the first half
of the prathamā of the bright fortnight.

Śaṅkara Vāriyar also quotes the following verses which give the different names
of both moving and fixed karan. as. The moving karan. as are: sim. ha, vyāghra,
varāha, khara, ibha, paśu and vis.t.i. The fixed karan. as are: paks. ı̄, catus.pāt, nāga
and kim. stughna.ta;Ta;a Zua;ë�ÅÉì*:+:pra;�a;ta;pa;d;a;dùÅ;a;ntya;a;Da;Ra;t,a k+.=+Na;a;�a;na mua;hu ;mRua;hu H Á;Æa;sMa;h;ea v.ya;a;Gra;ea va:=+a;h;(ãÉa Ka:=e +Ba;pa;Zua;
a;va;�;yaH Á Á:pa;[�a;a ..a;tua;Spa;a;�a;a;ga;(ãÉa ;
a;kM +:~tua.Èåî ÁÁ*+;(ãÉa;a;nta;taH ;�//////�a;~Ta:=+aH Á

The yogas involve the sum of the longitudes of the Sun and the Moon. There are
27 yogās in a 360◦ (21600’) cycle, each yoga corresponding to 800′. The number
of yogās that have elapsed and the minutes or ghatikās that have elapsed and are
yet to elapse in the present yoga are calculated in the same manner as in the case of
the tithis, except that the sum of the longitudes of the Sun and Moon and the sum
of their daily motion are involved here. In Laghu-vivr. ti, the names of the yogas are
listed in the following verses:..a;ndÒ +a;kR +:~å.Pu +.f;sMa;ya;ea;gea dx ;�;a d;~åò:a;a;
a;d;k+:a:=+k+:aH Á;
a;va;Sk+:}BaH :pr�a;a;�a;ta:=+a;yua;Sma;a;n,a .sa;Ea;Ba;a;gyaH Za;ea;Ba;na;~ta;Ta;a Á Á
23 The incorrect reading ;Æa;sa;ta;pa;[a;tya;pa:=+a;Da;Ra;t,a in the printed edition ({TS 1958}, p. 40) has been
modified as above.



2.26 The correction for Mars, Jupiter and Saturn 119A;�a;ta;ga;NqH .sua;k+:ma;Ra ..a ;Dxa;�a;taH ZUa;lM ta;TEa;va ..a Ága;Nq+.ea vxa;�a:;dÄâ ;DrRua;va;(ãÉEa;va v.ya;a;Ga;a;ta;ea h;SRa;Na;~ta;Ta;a Á Áva:j"a;�/////////�a;ssa;�a:;dÄâ ;v.yRa;t�a;a;pa;a;ta;ea va:=� +a;ya;a;n,a :pa;�a:=+GaH ;a;Za;vaH Á;Æa;sa:;dÄâ H .sa;a;DyaH Zua;BaH Zua;BraH b.ra;a;Ǒ;ea ma;a;he ;ndÒ +vEa;Dxa;ta;Ea Á Á
When the longitude of the Sun and the Moon are added the dasrādikārakās are seen.
They are: vis.kambha, pr̄ıti, ayus.mān, saubhāgya, śobhana, atigan. d. a, sukarmā,
dhr. ti, śūla, gan. d. a, vr. ddhi, dhruva, vyāghāta, hars.an. a, vajra, siddhi, vyat̄ıpāta,
var̄ıyān, parigha, śiva, siddha, sādhya, śubha, śubhra, brāhma, māhendra and
vaidhr. ti.2.25 g{a;h;sMa;~k+:a:=+pra;k+:a:=H

2.25 The scheme of correction for the planetsma;a;ndM ZEa;GrMa :pua;na;ma;Ra;ndM ZEa;GrMa ..a;tva;a;yRa;nua;kÒ +:ma;a;t,a Áku +.ja;gua;vRa;kR +.ja;a;na;Ma ;
a;h k+:ma;Ra;Nyua;�+:a;�a;na .sUa;�a:=+Æa;BaH Á Á 60 Á Á
māndam. śaighram. punarmāndam. śaighram. catvāryanukramāt |
kujagurvarkajānām. hi karmān. yuktāni sūribhih. || 60 ||
The earlier ācaryās have stated that manda, ś̄ıghra, and again manda and ś̄ıghra are
the four corrections which have to be applied in sequence to the planets Mars, Jupiter and
Saturn [to obtain the true longitudes of the planets from their mean longitudes].

Though there are essentially only two corrections, namely manda and ś̄ıghra
for the actual planets, that is Mercury, Venus, Mars, Jupiter and Saturn, the actual
computation of their longitude involves a four-step procedure in most Indian texts.
Nı̄lakan. t.ha, as we shall see below, prescribes this four-step process only in the case
of the exterior planets, Mars, Jupiter and Saturn. The actual procedure prescribed in
Tantrasaṅgraha is described in the next few verses.2.26 ku +.ja;gua:�+:ma;nd;~å.Pu +.f� ;a;k+.=+Na;m,a
2.26 The correction for Mars, Jupiter and Saturnd;eaHk+:ea;�a;f:$ya;a;�;ma;Ma;Za;Ea .~va;Ka;a;b.DyMa;Za;ea;na;Ea Za;neaH :P+.le Ád;ea:$ya;Ra ;
a:�a:$ya;a;�a;sa;�Ea;k�+.aM gua;Na;ea ma;a;nde ku +.jea;q:�a;ya;eaH Á Á 61 Á Ána;va;a;çÉîå+;a;ya;ea dõùÅ;a;Z�a;a;�a;ta;(ãÉa h;a:=+Ea d;eaHk+:ea;�a;f:j�a;a;va;ya;eaH Á:pxa;Ta;#~Tea ma;Dya;mea k+:a;y a d;eaHP+.l+.~ya ;Da;nua;dR ;l+.m,a Á Á 62 Á Á.=+
a;va;ma;DyMa ;
a;va;Za;ea;Dya;a;sma;a;t,a :pxa;Ta;#~Ta;a;t,a ba;a;hu ;k+:ea;�a;f;ke ÁA;a;n�a;a;ya ba;a;hu :j�a;a;va;a;ya;aH ;
a:�a:$ya;a;�Ma gua:�+:ma;nd;ya;eaH Á Á 63 Á Á:Sa;ea;q+.Za;Bya;ea na;va;Bya;(ãÉa ku +.ja;~ya;a;
a;pa .~va;d;ea;gRua;Na;a;t,a Á;
a:�a:$ya;a;�Ma ;
a;dõ ;gua;NMa Za;ea;DyMa ��a;a;Sua;ByaH ;a;Za;Sya;tea gua;NaH Á Á 64 Á ÁA;Z�a;a;�a;ta;=e +va .tea;Sa;Ma ;
a;h h;a:=+~ta;a;Bya;Ma :P+.le o+.Bea ÁA;a;n�a;a;ya :pUa;vRa;va;t,a k+:N a .sa;kx +:tkx +:tva;a;Ta d;eaHP+.l+.m,a Á Á 65 Á Á
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a:�a:$ya;a.Èåî ÁÁ*+M k+:NRa;Ba;�M ya;t,a ta:;dÄâ ;nua;dR ;l+.mea;va ..a Áma;Dya;mea kx +:ta;ma;a;nde tua .sMa;~kx +:tya;a;ta;ea ;
a;va;Za;ea;Da;yea;t,a Á Á 66 Á Áma;nd;ea;�Ma ta;tP+.lM kx +:t=+:ïîåéMa ku +:ya;Ra;t,a :ke +:va;l+.ma;Dya;mea Áta;sma;a;t,a :pxa;Ta;ë�Åë�Á*:x +:ta;a;.CE +.GrMa :pra;a;gva;d;a;n�a;a;ya ..a;a;
a;pa;ta;m,a Á Á 67 Á Ákx +:ta;ma;a;nde tua k+:tRa;v.yMa .sa;k+:lM .~ya;a;t,a .~å.Pu +.fH .sa ..a Á
doh. kot.ijyās.t.amām. śau khakhābdhyam. śonau śaneh. phale |
dorjyā trijyāptasaptaikyam. gun. o mānde kujed. yayoh. || 61 ||
navāgnayo dvyaś̄ıtísca hārau doh. kot.ij̄ıvayoh. |
pr. thaksthe madhyame kāryam. doh. phalasya dhanurdalam || 62 ||
ravimadhyam. vísodhyāsmāt pr. thaksthāt bāhukot.ike |
ān̄ıya bāhuj̄ıvāyāh. trijyāptam. gurumandayoh. || 63 ||
s.od. aśabhyo navabhyaśca kujasyāpi svadorgun. āt |
trijyāptam. dvigun. am. śodhyam. tr̄ıs.ubhyah. śis.yate gun. ah. || 64 ||
aś̄ıtireva tes. ām. hi hārastābhyām. phale ubhe |
ān̄ıya pūrvavat karn. am. sakr. tkr. tvātha doh. phalam || 65 ||
trijyāghnam. karn. abhaktam. yat taddhanurdalameva ca |
madhyame kr. tamānde tu sam. skr. tyāto vísodhayet || 66 ||
mandoccam. tatphalam. kr. tsnam. kuryāt kevalamadhyame |
tasmāt pr. thakkr. tācchaighram. prāgvadān̄ıya cāpitam || 67 ||
kr. tamānde tu kartavyam. sakalam. syāt sphut.ah. sa ca |
One-eighth of the dorjyā and kot.ijyā (sine and cosine of the manda-kendra), diminished
by one-fortieth of the same, form the doh. phala and kot.iphala in the case of Saturn. The
dorjyā divided by the trijyā and added to 7, forms the gun. a (multiplier) for Mars and
Jupiter. 39 and 82 are the hāra (divisor) for Mars and Jupiter respectively. Half of the arc
of the doh. phala has to be applied to the mean longitude of the planet (P0) to get the first
corrected longitude (P1).

Subtracting the longitude of the Sun (the ś̄ıghrocca) from this (P1), the dorjyā and kot.ijyā
are obtained. Dividing the dorjyā by the trijyā and subtracting from 16 and 9, we get
the multipliers for Jupiter and Mars respectively. The same (dorjyā) multiplied by 2 and
subtracted from 53 forms the multiplier for Mars.

80 is the divisor for all of them (in the ś̄ıghra-sam. skāra). From them (the multiplier
and divisor of all the three planets) after obtaining the doh. phala and kot.iphala, and the
sakr. tkarn. a (once calculated hypotenuse), half of the doh. phala multiplied by the trijyā
and divided by the karn. a is applied to the first corrected longitude (P1). (The longitude thus
obtained is, say, P2.) From this (P2), let the mandocca be subtracted and the full manda-
phala be obtained; let that be applied to the original mean planet (P0 to get say P3). From
that (P3) let ś̄ıghra-phala be obtained as before, and let this be applied fully to the manda-
corrected planet (P3). The longitude obtained thus is the sphut.a (the true longitude of the
planet).

A detailed and comprehensive discussion of the planetary model, and the geo-
metrical picture implied by it in the traditional scheme, as well as the modification
introduced by Nı̄lakan. t.ha, can be found in Appendix F. Here and in the following
sections we confine our explanation mainly to the computational scheme described
in the verses of the text.

The computation of the manda-sphut.a has already been described in the earlier
verses in this chapter. Let θ0, θm, θms be the mean longitude and the longitudes of
the mandocca and the manda-sphut.a respectively. Also let R, r and K be radii of
the deferent circle (trijyā), the epicycle and the manda-karn. a-vr. tta respectively. r
is proportional to K and r

K = r0
R where, r0 is the tabulated value of the radius of the
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epicycle. Then θms −θ0 is found from

K sin(θms −θ0) = −r sin(θ0 −θm)

or Rsin(θms −θ0) = − r
K

Rsin(θ0 −θm)

= − r0

R
Rsin(θ0 −θm). (2.169)

Rsin(θ0−θm) is the dorjyā, r0 sin(θ0−θm) is the doh. phala and θ0 ∼ θms is the ‘arc’
of the dophala. In the above verses r0

R for Saturn, Mars and Jupiter are specified to
be

r0

R
(Saturn) =

1
8
− 1

320
=

39
320

(2.170)

r0

R
(Mars) =

7 + |sin(θ0 −θm)|
39

(2.171)

and
r0

R
(Jupiter) =

7 + |sin(θ0 −θm)|
82

. (2.172)

Note that r0 is not constant for Mars and Jupiter, but varies with the manda-kendra,
θ0−θm. When θms−θ0, found from the above equation, is added to θ0, we obtain the
manda-sphut.a-graha (manda-corrected planet) θms. The true geocentric longitude
of the exterior planets is obtained from the manda-sphut.a θms as follows.

B

T

O

S

K

Ks

P

rs

C

Γ

Γ

Fig. 2.15 Obtaining the sphut.a-graha (geocentric longitude) from the manda-sphut.a-graha
(true heliocentric longitude) in the case of exterior planets .
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In Fig. 2.15 the ś̄ıghra-n̄ıcocca-vr. tta or ś̄ıghra-vr. tta or ś̄ıghra-circle is a circle
with the bhagolamadhya (the centre of the Earth) as the centre at O. The radius
of this circle is the ś̄ıgrāntyaphala rs. The ś̄ıghrocca S, which is the mean Sun, is
located on this circle. The planet P is located on the manda-karn. a-vr. tta of radius
K with S as the centre, such that θms = Γ ŜP is the manda-sphut.a-graha. Then
the ś̄ıghra-sphut.a (ś̄ıghra-corrected planet) is found in the same manner from the
manda-sphut.a as the manda-sphut.a is found for the mean planet, the madhyama-
graha.

Let θs be the longitude of the ś̄ıghrocca. That is, θs = Γ ÔS. Also from the figure,

ś̄ıghrocca θs = Γ ŜB

manda-sphut.a θms = Γ ŜP

ś̄ıghra-sphut.a θ = Γ ÔP. (2.173)

Therefore
OŜC = PŜB = θms −θs. (2.174)

Further,

ś̄ıghrābhujaphala OC = rs sin(OŜC)

= rs sin(θms −θs)

ś̄ıghrakot. iphala SC = rs cos(θms −θs). (2.175)

Hence the ś̄ıghra-karn. a (ś̄ıghra-hypotenuse)

Ks = OP =

√
(K + rs cos(θms −θs))2 + r2

s sin2(θms −θs). (2.176)

It can be easily seen that
OP̂C = θms −θ . (2.177)

Also from the triangle POC,

OPsinOP̂C = OC. (2.178)

Now using (2.175) to (2.177) in the above equation we have

Ks sin(θms −θ ) = rs sin(θms −θs)

or Rsin(θms −θ ) =
R
Ks

rs sin(θms −θs). (2.179)

The arc corresponding to θms − θ is found from this. Subtracting θms − θ from the
manda-sphut.a θms, we obtain the ś̄ıghra-sphut.a θ . Here θms is the true longitude
of the planet with respect to S, which is taken to be the mean Sun. Hence θms is
essentially the true heliocentric longitude of the planet. So the true geocentric lon-
gitude θ is obtained from the true heliocentric longitude θms using the above proce-
dure. Now,
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ś̄ıghra-kendradorjyā = Rsin(θms −θs) (2.180)

s̄ıghrabhujāphala, rs sin(θms −θs) =
rs

R
Rsin(θms −θs), (2.181)

where ś̄ıghra-kendradorjyā is the Rsine of the ś̄ıghra-anomaly (anomaly of con-
junction). In the ś̄ıghra-sam. skāra, the value of rs is given in the text. Unlike in the
calculation of the manda-sphut.a, where the manda-karn. a K does not appear, here
the ś̄ıghra-karn. a does appear in the computation of the ś̄ıghra-sphut.a.

The values of rs
R for Mars, Jupiter and Saturn are given in the above verses as

follows:

rs

R
(Mars) =

53−2|sin(θms −θs)|
80

, (2.182)

rs

R
(Jupiter) =

16−|sin(θms −θs)|
80

, (2.183)

rs

R
(Saturn) =

9−|sin(θms −θs)|
80

. (2.184)

Planet Range of ratio rs
R Average value

(modern)
Mars 0.637–0.662 0.656

Jupiter 0.187–0.200 0.192
Saturn 0.100–0.115 0.105

Table 2.3 The range of variation in the ratio of the Earth–Sun to the planet–Sun distances for the
exterior planets.

The range of variation of rs
R as obtained from the above equations along with the

average value of the ratio of the Earth–Sun and planet–Sun distances as per modern
astronomy are listed in Table 2.3. In Fig. 2.15,

Earth–mean Sun distance
planet–mean Sun distance

=
rs

K
, (2.185)

where K varies depending upon the manda-sphut.a-graha or the true heliocentric
longitude. Taking the mean value of K to be R, the ratio would be rs

R , which still
depends upon (θms − θs). Even then, rs

R is always close to the average value of the
ratio of the Earth–Sun and planet–Sun distances for each planet according to modern
astronomy.

Āryabhat. ı̄ya-bhās. ya and Yuktibhās. ā discuss the geometrical picture in detail.
However they do not mention that rs

R is the ratio of the physical Earth–Sun to
planet–Sun distances. There is an important later work of Nı̄lakan. t.ha, namely
Grahasphut.ānayane viks.epavāsanā, which indeed mentions this explicitly. This
is discussed in detail in Appendix F.

The procedure for obtaining the ś̄ıghra-sphut.a of these three planets, given in the
above verses, is not a straightforward, two step process of (i) obtaining the manda-
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sphut.a first from the mean planet and then (ii) obtaining the ś̄ıghra-sphut.a from the
manda-sphut.a. Instead, the following four-step procedure is prescribed:

1. Obtain the manda-phala from the mean planet θ0. Apply half of this manda-
phala to θ0 to obtain the first corrected planet P1.

2. Find the ś̄ıghra-sphut.a taking P1 as the manda-sphut.a, using (2.179). Here it
is understood that in the calculation of the ś̄ıghra-karn. a, the manda-karn. a is
replaced by the trijyā R, so only the ś̄ıghra-kendra (θms − θs) and the value
of rs (which depends upon the ś̄ıghra-kendra) figure in the calculation of this
ś̄ıghra-sphut.a. This is the second corrected planet P2.

3. Treating P2 as the mean planet, the manda-phala is calculated with P2 − θm as
the anomaly. Apply the full manda-phala to θ0. The resulting quantity is the
third corrected planet P3.

4. Treating P3 as the manda-sphut.a, the ś̄ıghra-sphut.a P is calculated again using
R instead of K in the calculation of the ś̄ıghra-karn. a Ks.

In fact, this four-step procedure to compute the true geocentric longitude is the
standard one prescribed in many Indian texts. Yuktibhās. ā attempts to provide the
rationale for this, though the arguments given there are not entirely clear. However
the motivation for this procedure is clear enough and is as follows.

Now, the manda correction can be read off from a table, given the mean epicycle
radius and the manda-kendra. But this is not so in the case of the ś̄ıghra correction,
for the ś̄ıghra-phala depends not only on the ś̄ıghra-kendra but also on the ś̄ıghra-
karn. a, which depends on the manda-karn. a (the distance SP in Fig. 2.15), which in
turn is dependant on the manda-kendra. Hence, given the radius of the ś̄ıghra-vr. tta,
the ś̄ıghra-phala cannot be read off from a table as a function of the ś̄ıghra-kendra
alone, as it depends also on the manda-karn. a and hence on the manda-kendra.
Yuktibhās. ā seems to argue that the four-step process is an attempt to stimulate,
to some extent, the effect of the manda-karn. a in the ś̄ıghra-phala. Thus, in steps
two and four above, the ś̄ıghra-phala is calculated using the trijyā instead of the
avis. is. t.a-manda-karn. a.2.27 bua;Da;~å.Pu +.f� ;a;k+.=+Na;m,a
2.27 The correction for Mercurybua;Da;ma;Dya;a;t,a .~va;ma;nd;ea;�Ma tya;�+:a d;eaHk+:ea;�a;f:j�a;a;va;ya;eaH Á Á 68 Á Á:Sa;qM +.Za;a;Bya;Ma :P+.l+.a;Bya;Ma tua k+:NRaH k+:a;ya;eRaY;
a;va;Zea;Sa;taH Ád;eaHP+.lM :ke +:va;lM .~va;N a :ke +:ndÒ e .jUa;k+:
a;kÒ +:ya;a;
a;d;gea Á Á 69 Á ÁO;;vMa kx +:tMa ;
a;h ta;n}å.a;DyMa .~å.Pu +.f;ma;DyMa bua;Da;~ya tua Á.=+
a;va;ma;DyMa ta;taH Za;ea;DyMa d;eaHk+:ea;�a;f:$yea ta;ta;ea na;yea;t,a Á Á 70 Á Ád;ea:$ya;Ra ;
a;dõ .Èåî ÁÁ*+;a ;
a:�a;Ba:$ya;a;�a;a Za;ea;DyEa;k+:
a:�Ma;Za;ta;ea gua;NaH Áma;nd;k+:NRa;h;taH .sa;eaY;
a;pa ;
a:�a:$ya;a;�aH .~ya;a;t,a .~å.Pu +.f;ea gua;NaH Á Á 71 Á Áta:;dÄâ ;tea ba;a;hu ;k+:ea;�a;f:$yea Ka;a;
a;h;Ba;�e :P+.le o+.Bea Á
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a:�a:$ya;a.Èåî ÁÁ*+M d;eaHP+.lM h:=e +t,a Á Á 72 Á Ák+:NeRa;na;a;�a;~ya ya;�a;a;pMa kx +:t=+:ïîåéMa ta;;�ÂåÅ +a;nua;ma;Dya;mea ÁkÒ +:mea;Na :pra;Æa;[a;pea:êêÁ*.a;hùÅ:a;a;t,a :ke +:ndÒ e mea;Sa;tua;l+.a;
a;d;gea Á Á 73 Á ÁO;;vMa Z�a;a;Gra;P+.le +.nEa;va .sMa;~kx +:tMa .=+
a;va;ma;Dya;ma;m,a Ábua;DaH .~ya;a;t,a .sa .~å.Pu +.fH Zua;kÒ +:eaY;pyea;va;mea;va .~å.Pu +.f;ea Ba;vea;t,a Á Á 74 Á Á
budhamadhyāt svamandoccam. tyaktvā doh. kot.ij̄ıvayoh. || 68 ||
s.ad. am. śābhyām. phalābhyām. tu karn. ah. kāryo ′víses.atah. |
doh. phalam. kevalam. svarn. am. kendre jūkakriyādige || 69 ||
evam. kr. tam. hi tanmadhyam. sphut.amadhyam. budhasya tu |
ravimadhyam. tatah. śodhyam. doh. kot.ijye tato nayet || 70 ||
dorjyā dvighnā tribhajyāptā śodhyaikatrim. śato gun. ah. |
mandakarn. ahatah. so ′pi trijyāptah. syāt sphut.o gun. ah. || 71 ||
taddhate bāhukot.ijye khāhibhakte phale ubhe |
tābhyām. karn. am. sakr. nn̄ıtvā trijyāghnam. doh. phalam. haret || 72 ||
karn. enāptasya yaccāpam. kr. tsnam. tadbhānumadhyame |
kramen. a praks. ipejjahyāt kendre mes.atulādige || 73 ||
evam. ś̄ıghraphalenaiva sam. skr. tam. ravimadhyamam |
budhah. syāt sa sphut.ah. śukro ′pyevameva sphut.o bhavet || 74 ||

From the madhyamagraha of Mercury, subtracting the mandocca, the dorjyā and
kot.ijyā are obtained. From one-sixth of these values, the avis. is. t.a-manda-karn. a is found
iteratively. The doh. phala has to be added to or subtracted from the madhyamagraha,
depending on whether the manda-kendra lies within 6 signs of Mes.a or Tulā. The value
thus obtained is the manda-sphut.a-graha of Mercury (say P1).

Then subtracting the mean Sun (which is the ś̄ıghrocca) from this (P1), obtain the dorjyā
and kot.ijyā (corresponding to the ś̄ıghra-kendra). The dorjyā multiplied by 2, divided
by trijyā and subtracted from 31 forms the multiplier. This multiplier multiplied by the
avis.is. t.a-manda-karn. a and divided by the trijyā forms the sphut.agun. a (true multiplier).

The dorjyā and kot.ijyā, multiplied by the sphut.agun. a and divided by 80, form the
doh. phala and kot.iphala respectively. From these two (the doh. phala and kot.iphala),
obtain the ś̄ıghra-karn. a once (not iteratively) and divide the product of the trijyā and
doh. phala by this ś̄ıghra-karn. a. The arc of this result is fully applied to the mean Sun.
It is either added or subtracted depending upon whether the ś̄ıghra-kendra lies within 6
signs of Mes.a or Tulā. The mean Sun corrected by this ś̄ıghra-phala gives the true geo-
centric longitude of Mercury. The true geocentric longitude of Venus is obtained in a similar
manner.

Unlike a four-step procedure employed for the exterior planets to obtain the
sphut.a-graha (true planet), in the case of interior planets only a two-step procedure
is prescribed. First the manda-sphut.a-graha (manda-corrected planet) is obtained
from the madhyama-graha (mean planet) through manda-sam. skāra (manda-
correction), that is, the equation of centre, and then the sphut.a-graha is obtained
through the ś̄ıghra-sam. skāra (ś̄ıghra correction).

The manda-sphut.agraha of Mercury is obtained from the mean heliocentric
planet following the same procedure as for the exterior planets. Here r0

R is speci-
fied as 1

6 , where r0 is the mean radius of the epicycle. The avísis. t.a-manda-karn. a
K is also calculated as described earlier. The procedure for obtaining the true geo-
centric longitude of Mercury from the manda-sphut.a-graha as described in these
verses can be understood from Fig. 2.16 (see also Appendix F).
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Fig. 2.16 Obtaining the sphut.a-graha (the geocentric longitude) from the manda-sphut.a-
graha (the true heliocentric longitude) in the case of interior planets.

The mean Sun S is located on a circle of radius R with the centre of the Earth as
the centre. Its longitude θs = Γ ÔS. Draw a circle of radius rs around S. Mercury is
located on this point such that its longitude is the manda-sphut.a-graha θms = Γ ŜP
with respect to S. Then θ = Γ ÔP is the true geocentric longitude of Mercury called
the sphut.a-graha or simply the sphut.a. Now,

ś̄ıghra-kendra = θms −θs

= Γ ŜP−Γ ÔS

= Γ ŜP−Γ ŜS′

= S′ŜP. (2.186)

The radius of the epicycle rs is given by

rs

R
=

31−2|sinθms −θs|
80

× K
R

, (2.187)

and the ś̄ıghra-karn. a Ks is obtained from

Ks = OP =
√

ON2 + PN2

=
√

(R + rs cos(θms −θs))2 +(rs sin(θms −θs))2. (2.188)

The ś̄ıghra correction S′OP = δθ is found from the relation
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OPsinδθ = PN

= rs sin(θms −θs)

or Ks sinδθ = rs sin(θms −θs)

or Rsinδθ = rs sin(θms −θs)
R
Ks

, (2.189)

where

doh. phala = rs sin(θms −θs)

=
rs

R
Rsin(θms −θs)

= Rsin(θms −θs)×
[
(31−2|sin(θms −θs)|)×

K
R

]
× 1

80

= dorjya× sphut.agun. a×
1

80
. (2.190)

Similarly,

kot.iphala = rs cos(θms −θs)

= kot.ijyā× sphut.agun. a×
1
80

. (2.191)

Adding the arc δθ obtained thus to the longitude of the mean Sun θs, we obtain the
true geocentric longitude of Mercury, θ = Γ ÔP = θs + δθ .

In the earlier Indian texts, as was the case also in the Greco-European tradition
up to Kepler, the equation of centre of the interior planet used to be applied wrongly
to the mean Sun, which was taken as the mean planet in the case of interior planets.
It is in Tantrasaṅgraha that the equation of centre is correctly applied to the mean
heliocentric planet to obtain the true heliocentric planet, for the first time in the
history of astronomy. We have already commented on this major modification that
has been introduced for the interior planets in Tantrasaṅgraha, wherein the mean
heliocentric planet is taken as the mean planet and the specified revolution number
is noted as its own (svaparyayāh. ), and the mean Sun is taken as the ś̄ıghrocca for
all the planets.

Now, ignoring the correction due to the eccentricity, the ratio of the Mercury–Sun
to the Earth–Sun distance may be compared with the ratio rs

R given in (2.187):

Mercury–Sun distance
Earth–Sun distance

=
31−2|sin(θms −θs)|

80
. (2.192)

It may be noted that this ratio varies between 29
80 = 0.362 and 31

80 = 0.387, as com-
pared with the average modern value of 0.387. The factor K

R in rs
R in (2.187) takes

into account the eccentricity of the planetary orbit.
Finally it may be mentioned that here, in calculating the true position of Mer-

cury, only a two-step procedure is prescribed. The ś̄ıghra-phala, however, depends
on the manda-karn. a and hence the manda-kendra also. Further, it is the iterated
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manda-karn. a that is involved in this calculation. A similar procedure is advocated
for obtaining the true position of Venus.2.28 Zua;kÒ +:~å.Pu +.f� ;a;k+.=+Na;m,a
2.28 The correction for Venusma;nd;ke +:ndÒ +Bua:ja;a .j�a;a;va;a Ka;Æa:ja;na;Ma;Zea;na .sMa;yua;ta;a Áma;na;va;~ta;~ya h;a:=H .~ya;a;t,a ta;;�ÂåÅ +�e ba;a;hu ;k+:ea;�a;f;ke Á Á 75 Á Á.~ya;a;ta;Ma ma;nd;P+.le ta;~ya d;eaHP+.lM ..a .~va;ma;Dya;mea Ákx +:tva;aY;
a;va;Zea;Sa;k+:N a ..a ;
a;kÒ +:ya;ta;Ma Z�a;a;Gra;k+:mRa ..a Á Á 76 Á Á;
a;dõ .Èåî ÁÁ*+;a d;ea:$ya;Ra ;
a:�a;Ba:$ya;a;�a;a Za;ea;Dya;a;~yEa;k+:ea;na;Sa;
a;�;taH Água;NaH .sa;eaY;
a;pa .~å.Pu +.f� ;a;k+:a;yRaH ma;nd;k+:NeRa;na :pUa;vRa;va;t,a Á Á 77 Á Água;NaH .sa ma;nd;k+:NRa.Èåî ÁÁ*+H ;
a:�a:$ya;a;�a;~ta;~ya ..a .~å.Pu +.fH ÁA;Z�a;a;tya;a;�ea Bua:ja;a;k+:ea;f� ;a ta:.�ÈÅ, ;nea Z�a;a;Gra;P+.le Bxa;ga;eaH Á Á 78 Á Ád;eaHP+.lM ;
a:�a:$ya;ya;a h;tva;a Z�a;a;Gra;k+:NRa;&+.tMa Bxa;ga;eaH Á..a;a;
a;pa;tMa Ba;a;~va;ta;ea ma;Dyea .sMa;~ku +:ya;Ra;t,a .sa .~å.Pu +.fH ;Æa;sa;taH Á Á 79 Á Á

mandakendrabhujā j̄ıvā khajinām. śena sam. yutā |
manavastasya hārah. syāt tadbhakte bāhukot.ike || 75 ||
syātām. mandaphale tasya doh. phalam. ca svamadhyame |
kr. tvā

′víses.akarn. am. ca kriyatām. ś̄ıghrakarma ca || 76 ||
dvighnā dorjyā tribhajyāptā śodhyāsyaikonas.as.t.itah. |
gun. ah. so ′pi sphut.̄ıkāryah. mandakarn. ena pūrvavat || 77 ||
gun. ah. sa mandakarn. aghnah. trijyāptastasya ca sphut.ah. |
aś̄ıtyāpte bhujākot.̄ı tadghne ś̄ıghraphale bhr. goh. || 78 ||
doh. phalam. trijyayā hatvā ś̄ıghrakarn. ahr. tam. bhr. goh. |
cāpitam. bhāsvato madhye sam. skuryāt sa sphut.ah. sitah. || 79 ||

The 240th part of the Rsine of the manda-kendra added to 14 (forms the divisor). The
dorjyā and the kot.ijyā divided by this divisor form the doh. phala and kot.iphala in the
manda-sam. skāra. After adding the arc of the doh. phala to the madhyama-graha, let the
avis.is. t.a-manda-karn. a be found and ś̄ıghra-sam. skāra be carried out as set forth below.

The dorjyā (corresponding to the ś̄ıghra-kendra) multiplied by two, divided by the trijyā,
and subtracted from 59, forms the multiplier. This multiplied by the avis. is. t.a-manda-
karn. a and divided by trijyā forms the sphut.agun. a. The dorjyā and kot.ijyā multiplied
by the sphut.agun. a and divided by 80 are the doh. phala and kot.iphala. The arc of the
doh. phala multiplied by the trijyā and divided by the ś̄ıghra-karn. a should be applied to
the mean Sun. This gives the true longitude of the Venus.

The procedure for calculating the geocentric longitude of Venus is the same as
for that of Mercury. The manda-sphut.agraha is calculated taking the ratio of the
epicycle to the deferent24 to be

24 It is interesting to note that the expression for the denominator given here, namely 14 +
R| sin(θ0−θm)|

240 , is such that the second term can be as large as the first one.



2.29 The daily motion of the planets 129

r0

R
=

1

14 + R|sin(θ0−θm)|
240

. (2.193)

The ś̄ıghra-sam. skāra is identical with that for Mercury, as shown in Fig. 2.16. In
the same way as in (2.192), here we can set

Venus–Sun distance
Earth–Sun distance

=
rs

R

=
59−2|sin(θms −θs)|

80
× K

R
. (2.194)

Ignoring the correction for eccentricity (taking K = R), we find that rs
R varies be-

tween 57
80 = .712 and 59

80 = .737, as compared with the average modern value of .723.2.29 g{a;h;a;Na;Ma ;
a;d;na;Bua;�a;�H
2.29 The daily motion of the planets(õ;a;~ta;neaY;dùÅ;a;ta;na;a;.Cu +;dÄâ e va;kÒ +:Ba;ea;ga;eaY;va;a;Za;Sya;tea Á;
a;va;pa:=� +a;ta;
a;va;Zea;Sa;ea;tTa;.a;a:=+Ba;ea;ga;~ta;ya;eaH .~å.Pu +.fH Á Á 80 Á Á

śvastane ′dyatanācchuddhe vakrabhogo ′vaśis.yate |
vipar̄ıtavíses.otthacārabhogastayoh. sphut.ah. || 80 ||
The longitude of the planet found for tomorrow is subtracted from the longitude of the planet
today. The result [if positive] is the retrograde daily motion of the planet; if otherwise, the
result gives the direct daily motion of the planet.

In this verse, essentially, the definition of direct/retrograde motion is given. By
bhoga is meant daily motion, the angular distance travelled by the planet in one day
as observed by an observer on the surface of the Earth.


	Chapter 2 True longitudes of planets  
	2.1 Definition of the anomaly and the quadrant
	2.2 Computation of the Rsines and the arcs
	2.3 Computation of the tabular Rsines  
	2.4 Another method for obtaining the Rsines
	2.5 Obtaining the desired Rsines and Rcosines
	2.6 Determining the length of the arc from the corresponding Rsine
	2.7 Finding more accurate values of the desired Rsine
	2.8 Computation of the Rsine value of a small arc
	2.9 Computation of the desired Rsine 
	2.10 True longitude of the Sun 
	2.11 Pranas of the ascensional difference 
	2.12 Longitude of the planets at sunrise at the observer’s location 
	2.13 Durations of the day and the night
	2.14 Obtaining the true Moon 
	2.15 Finding the arc corresponding to cara etc.
	2.16 Obtaining the manda and sıghra hypotenuses
	2.17 Obtaining the iterated hypotenuse
	2.18 Another method of obtaining the iterated hypotenuse
	2.19 Correcting the Sun using the iterated hypotenuse
	2.20 Obtaining the mean Sun from the true Sun
	2.21 Another method for getting the mean planet from the true planet
	2.22 Another method for getting the manda-hypotenuse
	2.23 Instantaneous velocity of a planet
	2.24 Finding naksatra and tithi
	2.25 The scheme of correction for the planets
	2.26 The correction for Mars, Jupiter and Saturn
	2.27 The correction for Mercury
	2.28 The correction for venus 
	2.29 The daily motion of the planets




