Chapter 2
TRCYFHLITH
True longitudes of planets
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2.1 Definition of the anomaly and the quadrant
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The wucca subtracted from the planet is the kendra (anomaly). Three rasis constitute a

pada (quadrant). In the odd quadrants, the bahu and koti [are to be found] from the angle
covered and to be covered [respectively]. In the even quadrants it is otherwise.

The procedure for obtaining the madhyama-graha i.e. the mean longitude of
a planet from the Ahargana, was explained in the previous chapter. Two correc-
tions, namely manda-samskara and Sighra-samskara, have to be applied to the
madhyama-graha to obtain the sphuta-graha or the true longitude of the planet. In
these two samskaras, to be described later in this chapter, two angles, namely the
manda-kendra (manda anomaly or mean anomaly) and the $ighra-kendra (Sighra-
anomaly or anomaly of conjunction or solar anomaly) play important roles. In the
above verse, the kendras and their sines and cosines (known as bahus and kotis)
pertaining to both the samskaras are dealt with. For this, two quantities, namely the
ucca and the kendra, are introduced.

Ucca and kendra
The ucca and kendra essentially refer to the apsis and anomaly respectively. These

two terms are generally used with the adjectives manda and $zghra and appear in
the two processes of correction, namely manda-samskara and Sighra-samskara.
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The manda-samskara is a procedure to obtain the correction for the eccentricity
of the planetary orbit. The terms wcca and kendra used in this context refer to the
direction of the mandocca (apogee/aphelion of the planet) and the manda-kendra
respectively.

Similarly, ucca and kendra used in the context of sighra-samskara—the process
by which the geocentric longitudes of the planets are obtained from their heliocen-
tric longitudes>—refer to the directions of the sighrocca and Sighra-kendra respec-
tively. If 6y refers to the longitude of the mean planet, and 6,, that of its mandocca,
then the manda-kendra, 6,,, is defined as

Ok = 60 — Oyy. 2.1

If 6, is the longitude of the manda-sphuta-graha, that is, the mean longitude of
the planet corrected by manda-samskara, and 6 that of the sighrocca, then the
sighra-kendra, Oy, is defined as

Ok = Ops — 0. 2.2)

In the second quarter of the above verse, it is mentioned that three rasis constitute a
pada. Since rasi is a 30° division on the ecliptic, by definition the term pada refers
to a quadrant. In Fig. 2.1a, APB represents a pada. Before explaining the second
half of the verse, it would be useful to introduce the concepts of bahu and kot
which are frequently employed in this and the following chapters.

Bahu and Kotz

In Indian astronomical texts, the terms bahu® and koti are used in association with
either capa or jya. The terms capa and jya literally mean bow and string respec-
tively. In this context, they refer to the arc of a circle and the chord associated with
it. Sometimes instead of the term capa, dhanus is also used to refer to the arc of a
circle.

In Fig. 2.1a, the arc PAL represents the capa and PQOL is the jya associated with
the capa (arc). Though literally the term jya refers to the chord PL, in most situations
PQ, which is half of PL, is referred to as the jya (Rsine) of the arc PA. Since PQ
is only half of PL, it must actually be referred to as the jyardha. However, since
only PQ is involved in planetary computations (as will be clear later), the term jya
itself is used to refer to the semi-chord PQ, for the sake of brevity in the use of
terminology. Hence the terms bahucapa and bahujya or Rsine refer to the arc AP
and the semi-chord PQ in the figure, respectively. The terms koticapa and kotijya

! The significance of this is explained in detail in Appendix F. The equivalent of this correction in
modern astronomy is the equation of centre.

2 For details refer to Sections 2.26-28 and Appendix F.

3 The literal meaning of bahu is hand. Similarly, koti means side. In this context, the term koti
refers to the side which is perpendicular to bahu.
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or Rcosine refer to the arc PB and the segment OQ (perpendicular to the chord PL),
respectively.
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Fig. 2.1a Bahwu and capa.

Relation between the jyas and the sine and cosine function

Let R be the radius of the circle shown in Fig. 2.1a. Now, the quantities which are
designated by the terms bahucapa, bahujya, koticapa and kotijya are listed below:

bahucapa = RO = the length of the arc AP corresponding to the angle
0.

bahujya = Rsin@ = Rx the sine of the angle 6.

koticapa = R(90 — 0) = the length of the arc corresponding to the
angle (90— 0).

kotijya = Rcos @ = Rx the cosine of the angle 6.

In the following, we give the relationship between sine of an angle, 8, and the
jya of the corresponding arc, oo = RO, normally expressed in minutes. In Fig. 2.1a,
let the length of the arc AP be «. Then we have the following relation between the
jyas and the modern sine and cosine functions:

bahujya o = Rsin O
kotijya o¢ = Rcos 6. 2.3)

Normally the circumference of the circle is taken to be 21600 units (the number of
minutes in 360°), so that an angle of 1’ corresponds to an arc length of 1 unit. Hence
the radius R = 2126790 ~ 3437.7468, which is approximately 3438 minutes. In Indian
astronomical and mathematical texts, the radius of the circle R is referred to as the
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trigya. This is because R is the jya corresponding to the arc whose length is equal
to three rasis (5400'). In other words, tri-rasi-jya is shortened to trijya.

Finding the bahu and kotijyas in different quadrants

The sine or cosine of an angle greater than 90° can always be determined in terms
of an angle less than 90°. This is the essence of the second half of the verse wherein
it is stated that:

e if the kendra is in the odd quadrant, i.e. its value lies in the range 0° —90° or
180° —270°, then the bahu and koti are to be determined from the angles already
covered and to be covered in that quadrant, respectively.

e if the kendrais in the even quadrant, i.e. its value lies in the range 90° — 180° or
270° —360°, then the bahu and koti are to be determined from the angles to be
covered and already covered in that quadrant, respectively.

Fig. 2.1» Bahu and koti when the kendrais in different quadrants.

We explain this concept further with the help of Fig. 2.1b. In the following we
use K to denote the kendra. Then,

1. If K is in the first quadrant, i.e. K = AOAl, RsinAOAl = AA,, RcosAOAl =
RsinAOA, = AA,.

2. If K is in the third quadrant, i.e. K = COA,, |[RsinCOA;| = RsinCOC, = CC,
and |[RcosCOA | = RsinCOC, = CC;.
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Hence, in the above cases, the bahu and koti are determined from the angles
covered and to be covered respectively in the odd quadrant.

3. If K is in the second quadrant, i.e. K = BOA,, |RsinBOA | = RsinBOB| = BB,
and |[Rcos BOA | = RsinBOB, = BB;.

4. If K is in the fourth quadrant, |[Rsin DOA ;| = Rsin DOD; = DD, and |[Rcos DOA, | =
RsinDOD, = DD;.

Thus the bahu and the kofi are determined from the angles to be covered and
covered respectively in the even quadrants. Here, only the procedure to find the
magnitudes of the Rsines and Rcosines is given. Their signs (whether they have
to be applied positively or negatively) will be stated separately in each context in
which they are being employed.

The concepts of the manda-kendra and sighra-kendra are explained in Laghu-
vivrti as follows:
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From the mean positions of the planets (madhyama-grahas), obtained using the rule of
three described in Chapter 1, which includes an integral number of revolutions, rasis, etc.
[the fractional part], subtract the integral number of revolutions. From the remaining rasis
etc. [which represents the mean longitude of the planet] when its own mandocca is sub-
tracted, the remainder obtained is said to be the manda-kendra. When the mean Sun,
which is the $ighrocca, is subtracted from the manda corrected longitudes of Mars etc.,
the remainder obtained is the Sighra-kendra.

Note: Here it is specifically mentioned that the szghrocca is the mean Sun for all
the five planets while defining sighra-kendra. The significance of this is explained
later in sections 2.26-28 and also in Appendix F, during the discussion of sighra-
samskara for the inner planets.

The complementarity between the sine and the cosine functions is also succinctly
put forth in the commentary Laghu-vivrti:

FrEgIfaer afssd wifeud: | afgdr afssa aeaT:
The arc of the bahu subtracted from 90° is the arc of the koti. That (arc of the koti) sub-
tracted from 90° is the arc of the bahu.

2.2 SHTIEY IATITHIOrE

2.2 Computation of the Rsines and the arcs

foramarea=ATaT: Tar @ Qv g1
AT gareaadd: fada 1a
ey 939 FAnET faudarg |
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liptabhyastattvanetraptah gata jyah Sesatah punah |

gatagamyantaraghnacca hrtastattvayamaih ksipet || 2 ||

dohkotijye nayedevam jyabhyascapam viparyayat |

By dividing the minutes [of arc] by 225, the number of jyas that have elapsed is obtained.
Multiply the remainder by the difference between the (tabular) Rsine values of the elapsed
and the next, divide by 225 and add the result to the elapsed jya, to obtain the bahu and
koti. From the jyas the arcs can be obtained by the reverse process.

As already explained, in Indian astronomical and mathematical works the cir-
cumference of a circle is taken to be 360° = 21600’. Therefore the length of the
arc corresponding to each quadrant will be 5400’. This length is divided into 24
equal segments, each segment corresponding to 225’. In Fig. 2.2, the points P; (i =
1,2,...,24) represent the end points of the 24 segments represented by the arcs
P,_1P;. The set of jyas, J; = PN;, (i = 1,2,...,24) corresponding to the 24 capas
PyP,, are explicitly stated in many texts such as Aryabhatiya and Suryasiddhanta.*
A method for obtaining more accurate values of these tabulated jyas will be pre-
sented in the next verse.

Let S; represent the length of the 24 segments PyP;, in minutes of arc and J;, the
jya corresponding to it. That is,

S;i = PyP; =i x 225,
and Ji = PNj. (i=1,2,...,24) 2.4

The above verse gives an interpolation formula to find out the jya corresponding to
any length of arc between 0 and 5400 from the set of 24 jyas listed in Table 2.1
(page 64). Suppose S is the length of an arc in minutes that lies between S; and S ;.
That is,

S=S8i+r 0 <r<225, (2.5)

where S; = i x 225. Since the jya corresponding to the nearest arc lengths S; and
Si+1 on either side of S are known, the jya corresponding to S is obtained by the rule
of three. It is given by

X (Jiv1 —Ji)

r
ya S = J;
Jya i+ 295

(2.6)

4 The following verses in Suryasiddhanta (II. 17-22) give the values of the 24 jyas:

araTfargTfergar T IfEia: | @TgTel Tg=2am arorEuior=<a: |
T AT F I EE A T=a:

The 24 jya values in the above verses have been given using the Bhutasarikhya system of repre-
senting numbers (see Appendix A).
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Fig. 2.2 Determination of the jya corresponding to the arc lengths which are multiples of 225’

Illustrative example

Suppose the arc length S = 1947. Find the jya corresponding to it.

The given arc length S = 1947 lies between Sg and Sg, as Sg = 8 x 225 = 1800
and Sg = 2025. Hence, S can be written as § = Sg + 147. The jya corresponding to
arc length § is given by:

147 x (Jg — Jg)

ya S = J;
Jya st 205

For instance, we may use the values of Madhava, quoted in Laghu-vivrti, Jg =
1718'52"24"" and Jo = 1909'54"35"". Then,
147 x (1909'54"35"" — 1718'52""34"")

iy 1947 = 17185224
ya * 225

=1843/41702"".

This is the value of jya (1947) obtained by the first-order interpolation, while the
actual value is 1844/34”09".
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2.3 Tfeasa=a-H
2.3 Computation of the tabular Rsines

faforAmea =1 S TEeraT:F AT 13 |
TSI dal Heh Ardeartafoed: |

3 fgdrawuesan fydrar sar o aegfa: 12 0
Taes-g g Fe g fgarga: |

UST JATA@USAT Tgarasaaral o Il y |
qAE: T qadd TOErEn: FHAE IO
viliptadasakona jya rasyastamsadhanuhkalah || 3 ||
adyajyardhat tato bhakte sardhadevasvibhistatah |

tatastenaiva harena labdham Sodhyam dvitiyatah |

khandat trttyakhandajya dvitiyastadyuto gunah || 5 ||

trttyah syat tatascaivam caturthadyah kramad gunah |

The jya of one-eighth of the arc, corresponding to a rasi (expressed) in minutes, is 10”
short of that (length of the arc in minutes). The quantity obtained by dividing the first
Jyardha by 233 % and subtracting it from the same, is the dvitiyakhandajya. This added
to it (the first jya) is the second jya. The result obtained by dividing that (the second jya)
by the same divisor (233 5) is to be subtracted from the second khandajya. This is the

trtwyakhandajya. This added to the second is the third guna.’ From that, the fourth guna
etc. have to be obtained in order.

As mentioned earlier, some texts like Aryabhatiya and Siuryasiddhanta give the
table of 24 jyas from which the jya of any length of arc can be found, as illustrated
through an example in the previous section. In the verses above, a procedure for
finding more accurate values of the 24 jyas is described.® For this, two new terms,
namely the khandajya (Rsine difference) and the pindajya (whole Rsine) are intro-
duced.

With reference to Fig. 2.2, they are defined as follows:

pindajya = P,N; = J; i=1,2,...,24
khandajya = PiyNiy1 — PN; = A, i=1,2,...,23. 2.7

The term pindajya essentially refers to the whole or the tabulated jya. They are
24 in number, represented by Ji,Jz, ... ,J»4 and are expressed in minutes of arc. The
last pindajya, namely Po4Noq = P40, is referred to as trijya, and its length is equal
to the radius of the circle. The difference between the successive pindajyas are
referred to as the khandajyas. In these verses the first pindajya and the procedure
for generating the successive pindajyas from that are given.

> The term guna has various meanings. In this verse and in verse 5a, it could be assigned the
meaning rope, in which case it is the same as the word jya. But in verses 6, 8 etc. of this chapter it
is used to mean a multiplier (i.e. numerator).

© In fact, the procedure is the same as in Aryabatiya, but for the values of the first jya (which is
taken to be 224'50” instead of 225’) and the divisor (which is taken to be 233% instead of 225").
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The length of the first pindajya is stated to be one-eighth of a rasi expressed in
minutes minus 10 seconds; thus P;N; (in Fig. 2.2) is equal to 224’ 50”. This is also
equal to the first khandajya. Thus we have

jya PoPy = PIN| =J; = 224’ 50" = Ap. (2.8)

This can be understood as follows. In Fig. 2.2,

A 90
POP = | =3.75° = 225' = 0.65949846 radian. (2.9)

The first pindajya is often taken to be 225" in some earlier Indian texts like
Aryabhatiya and Suryasiddhanta based on the approximation,

Rsino ~ Ror = 225'. (2.10)

In contrast to the above approximation, which of course is reasonably good for small
o, the above set of verses present the value of the first pindajya based on a better

approximation,
3

o
sino~ o — . 2.11)
3!
In fact, it is later stated explicitly in the text (see verse 17 of this chapter) that this
is the approximation that has been employed in arriving at the value of 224’ 50" for
the first pindajya. Thus,

PNy =Rsino ~

21600 . o3
21 6

> = 224.8389' & 224'50". (2.12)

In the following, we give the procedure outlined in the text for obtaining the suc-
cessive khandajyas and pindajyas, along with the rationale behind it. The second
khandajya A, is defined as

Ay = —Jy
= R(sin2a —sina), (2.13)

where POP; =2o. Now, sin2a = 2sin o .cos .. Hence,
Ay, =Rsina(2cosa —1). (2.14)
Rewriting the above expression we have,
Ay = Rsinof1 —2(1 —cosar)]. (2.15)
For o0 = 225’, we have

2(1 - cosa) ~ 0.004282153. (2.16)
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This is approximated in the text by

1
| ~0.004282655. 2.17)
233,
Hence
. 1
Ay = Rsina | 1— ok
233,
J
or A2 = J1 — ! 1
233,
J
—A - ! 1
233,
~ 224'50" —57.77"
~ 223'52". (2.18)
The second pindajya is given by
h=L+4
= 224'50" +223'52"
= 448'42". (2.19)
The third khandajya Az is defined as
A3 =J3—Jp =R(sin30 —sin2a). (2.20)

Rewriting the above expression we get

sin(2a + a) — sin20]
sin2acosa + cos2osin @) — sin20]

—

sin20tcos o + (2cos® o — 1) sin o) — sin 2]

R [si
R[
R|
R [2sin20ccos o —sino — sin 2
= R [sin2a —sino — 2sin20(1 — cos at)]

=Ay—Jr2(1 —cosa). (2.21)
We have already noted that

1

2(1 —coso) =~ .
( ) 233)

(2.22)

Hence the third khandajya is given by

J

Ay = Ay —
T 33l
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~ 223'52" —1'55"

=221'57".
Thus the third pindajya becomes
J3 =D+ A3
= 448'42" +-221'57"
= 670'39",

and so on. In general, the ith khandajya is given by

Jiq

A=A — )
T 33l

and the ith pindajya by
Ji=Ji1+ A

59

(2.23)

(2.24)

(2.25)

(2.26)

The iterative relation (2.25) follows from the easily verifiable relation for A;; | given

by

Ait1 = Rsin(i+1)o — Rsinio

= R [sinia —sin(i — 1)oc — 2sinio (1 — cos )],

= A;—2(1 —coso)Rsinia,

(2.27)

and the above approximation (2.22) for 2(1 — cos ). In fact, a recursion relation
amounting to the above is stated a few verses later. The above iterative procedure is

described in Laghu-vivrti as follows:

aar faforamewes faefeam a@-ama AmeeEmgeaTd, ardeartafa:
T afgaTfies Fea, TeTfyaraaT: TUssaaN=R | aaTEAT-
quedl foae fare fgdraauesar @) Tawegs TTAEUsAl ﬁ—cﬁw
favgsar s aar fyarafivssara: qﬁgﬁﬁa s v
QUSSR T A T fgdaevssara: fasra fae

T | e fgarafuossarary g qarafussan J | 7y T Hu-
Y07 TR O FHOT AT |

Then, whatever is obtained in minutes etc. (liptadi) as the result when 225 diminished
by 10 seconds, which is equal to the first Rsine, is divided by 233.5, will be the differ-
ence between the first and second khandajyas. This [result] when subtracted from the first
khandajya will be the second khandajya. The first khandajya added to this will then
be the second pindajya. Then the result obtained by dividing the second pindajya by the
above-mentioned divisor will be the difference between the second and third khandajyas.
Again when this [result] is subtracted from the second khandajya, [the quantity obtained]
will be the third khandajya. The sum of this and the second pindajya will be the third

pindajya. From there on, the fourth Rsine etc. have to be obtained by the method stated
above.
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Laghu-vivrti also prescribes more accurate values of the first Rsine (J/;), as well
as the divisor.

I fafeameras FmEu=rEETE Aforeasgaq) a @ 1=
mmﬁmlm@msﬁqﬁm&%ﬁﬁ
Jed: | M g grEwfgfoaasmear=qed sfa |

Here with the intention of specifying the difference between the Rsine and the arc in terms

of wiliptas only, it was stated to be 10 wviliptas. Actually it is 38 tatparas in excess of

9 wiliptas. It is for this reason, the divisor is also not 233%. But 233 (minutes) and 32

viliptas.
What is stated above is that the first Rsine (J;) should be taken to be 225’
0'9"38" = 224'50"22"". Similarly the divisor should be taken to be 233+ 23 in-
stead of 233! ,- The values of tabular Rsines as calculated with these more accurate
values of J; and the divisor are more or less the same as the tabular Rsines given by
Madhava, as we show below in Table 2.1.

Q.8 TFR=NT SATFAITH
2.4 Another method for obtaining the Rsines

FTaTd T AT Ay =T Jor 49 06 |
Frogawfoang: arasiafufg: |
eGR4l Fl: ﬁrﬂ?ﬂl?mvﬁm e I
mmm%‘grrﬁmg"{ |
m@wmﬁwmwﬂ%ﬁ: Il e
mammﬁ?ﬁwﬁ?ﬁml
TS SaTHaT: faosIromda: 1<
LERCIERCIRT IR W@Wq%—dwm|

vyasardham prathamam nitva tato vanyan gunan nayet || 6 ||
trisaghnacakraliptabhyah vyaso'rthesvagnibhirhrtah |

taddaladyajyayoh krtyoh bhedanmulamupantima || 7 ||

antyopantyantaram dvighnam guno vyasadalam harah |

adyajyayastathapi syat khandajyantaramaditah || 8 ||

tabhyam tu gunaharabhyam dvittyaderapi kramat |
uttarottarakhandajyabhedah pindagunardhatah || 9 ||

evam savayava ji vah samyannitva pathet kramat |

Or else, the gunas [the values of the jyas] may be obtained by first obtaining the vyasardha

(radius). The number of seconds of arc in a circle multiplied by 113 and divided by 355 is
the diameter.”

The square root of the difference between the squares of half of that (diameter) and the
first jya is the penultimate jya. The difference between the last jya and the penultimate

7 Here, a clarifying note regarding the number 355 represented using the Bhitasarnkhya system
may be useful. In the string arthesvagniemployed to refer to this number, the word artha should
not be taken to refer to purusartha, in which case it would be referring to the number 4. On the
other hand, it should be taken to be referring to 5 sense organs—through the derivation “arthyate
anenetyartha.h” (through which things are sought after).
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one multiplied by two is the guna (multiplier) and the radius is the hara (divisor). From
the adyajya [multiplying it with the multiplier and dividing by the divisor], the difference
between the first two khandajyas is obtained. With the same multiplier and divisor, and
multiplying the multiplier by the second pindajya, the third pindajya etc., the difference
between the successive khandajyas are obtained. Having thus obtained the jyas with their
parts (seconds etc.) they may be tabulated in a sequence.

Here a procedure for generating the jya table (table of Rsines) by finding the
differences of the successive khandajyas is described. As will be seen below, this
procedure merely involves the knowledge of the first jya (J1) and trijya. It may be
recalled that the method described in the previous section (verses 4—6a) essentially
made use of the following equations for generating the successive pindajya values
given in Table 2.1.

Jii =Ji+ Ay (0<i<23) (2.28)
Ji

A1 = A — 1<i<23), 2.29

+1 1 233% ( =t = ) ( )

where A; and J; i = 1,2,...,24, refer to the khandajyas and pindajyas respectively.
Since Ay = Jj, is known, all the jyas can be generated using the above equations
recursively. Equation (2.29) can be rewritten as

Ji

A=A =
1 +1 2335

(2.30)

In the above verses (6-9) the recursion relation which is the basis of (2.30) is stated.
Here the value of the last jya (Jo4 = trijya), which is the same as the radius of the
circle, is first stated. Since J; is already known, with these two jyas (the first and the
last), the value of the penultimate jya (J»3) is found. Then the text defines a guna
or multiplier and a hara or divisor, using which a recursion relation is formulated,;
making use of this, all the tabular differences of the khandajyas and hence the values
of the 24 jyas can be obtained. This method is quite instructive and may be described
as follows. It has already been noted that the circumference of the circle is taken to
be 21600. The diameter of this circle is stated to be:

21600 x 113
D= SRR

355 2.31)

So, essentially, ﬁg =3.14159 is taken to be the approximate value of 7. Using (2.3),

and the notation o = 225’ = 3.75°, we have

Va2 — 112 = RV/sin? 240 — sin® o
= \/(Rsin90)2 — (Rsin3.75)2
= R\/l —sinfa

= Rcosa
= Rsin(240 — a) (2400 =90°)
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= Rsin23a
= D3, (2.32)

where R is trijya. Having obtained the penultimate jya from the first and the last
Jyas, the multiplier and divisor are defined. Laghu-vivrt: puts them in very clear
terms as follows:

TEIT: JUTHSATAT: A=AATATE ATATIATaT: Tq=, afgIford Jor:;
AT T |

The difference between the penultimate jya and the ultimate jya, which is equal to the
radius, multiplied by two is the multiplier. The radius is the divisor.

That is,

guna = 2(R— Rsin230q),
hara = R. (2.33)

Now the recursion relation to obtain the sine differences or the khandajyas can be
written as follows:
una ..
Ai— Ay = g _ Rsinio
hara
2(R—Rsin23c)

= R Rsinio. (2.34)

For instance, with i = 1, the above equation becomes
2(R—Rsin23¢)

R
2sin o — 2sin23asin ]

A]-Azz Rsino

R

R[2sina — (cos22a — cos24a))

R[2sina — cos(240 —20t) 4 0]

R[2sino —sin20]. (2.35)

From the definition of khandajya, we have

A=A = (L1 —Jo)—(—T1)
—2J ]y (2.36)

Clearly (2.36) is the same as (2.35). In general,

A=Ay = (Ji—Jic1) — (Jip1 — i)
=2i—Jix1—Ji1
= R [2sinia —sin(i+ 1)o —sin(i — 1) o]. (2.37)

Using cos(90 — 0) =sin 6, cos(90+ 0) = —sin 6, we get
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Ai — Ay = R [2siniot —cos(240 — (i+ 1)) + cos(24a+ (i — 1) )]
= R [2sinia —cos(23 —i)a — cos(23 + i) ]
= R [2sinia — 2sin23 0 sinio]
_ 2(R—Rsin23a)

R Rsinic, (2.38)

which is the recursion relation (2.34) for the khandajyas given in the text.

Commenting on the first line of the tenth verse, evam savayava jivah samyan-
nitva pathet kramat, Sankara Variyar describes the accurate values of the 24
Rsines—which he attributes to Madhava—in the following verses:

I8 TR arETEr feafgdeama: |

U= " 7aH fafg @7 e
FRT4Y T F8 genimTIaTEST
FITERT AT R TOETareg®: 1 2 |

7o fagg Arew Y faweT T

Frqfgan e Wﬂﬁ:ﬁrﬂa’{ 2

T T B T T T

I T frETERT A W@ﬁmnx I
FTATEAT W At e R T

T FUOMHATE AT F @ 3ot |y |

R AT FATGIG: T ARSTAHT: |

FATR AR 4T TSt 3 T 108 o
TR GT=TR] HeTsaT ATaaredr: |
WHEUAfaTg J farersacausHfds T 1w 1 5fa

Here the values of the 24 Rsines are given up to the thirds in the Katapayadi no-
tation. For instance, consider the first Rsine given by ‘$restham nama varisthanam’.
The three words here stand for 22, 50 and 224 respectively. Hence the value of the
first Rsine is: 224’ 50" 22", The values of the other Rsines are deciphered in a sim-
ilar manner. These have been arrived at by considering terms up to 6'! in the series
expansion of sin 8 which was also derived by Madhava:

93 95 97 99 91 1

0—6— _
sin Tt "

Table of jyas

In Table 2.1, we reproduce the values of jyas corresponding to arc lengths which
are multiples of 225', given in Aryabhatiyal Suryasiddhanta, Tantrasangraha and
Laghu-vivrt: (considering more accurate values for the first jya as well as the divi-
sor). The values of jyas enunciated by Madhava are also listed based on the verses
‘$restham nama varisthanam. ..’ cited in Laghu-vivrti. In fact, the modern values
presented in the last column show that the Madhava’s values are accurate up to the
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thirds. In Yuktibhasa it is noted that the jya for any arc can be obtained without
using the tabular values, by using the infinite series expansion for it.

Dhanuor Capa Notation  Value of the jya (in minutes, seconds and thirds)

Symbol Length used Asin From From  Givenby  Modern
used (min) AR/SS TS LV Madhava
S 225 Ji 225 22450 2245021 2245022 2245021
Sy 450 Jo 449 44842 4484258 4484258 4484257
S3 675 J3 671 67039 6704016 6704016 67040 16
Sa 900 J4 890 88944 8874517 8894515 8894515

Ss 1125 Js 1105 110500 110501 41 110501 39 1105 01 38
Se 1350 Je 1315 131532 131534 11 131534 07 1315 34 07
S7 1575 J7 1520 152026 1520 28 41 1520 28 35 1520 28 35
Sg 1800 Jg 1719 1718 49 1718 5232 1718 52 24 1718 52 24
So 2025 Jo 1910 1909 51 1909 54 46 1909 54 35 1909 54 35
Sio 2250  Jio 2093 209242 2092 46 19 2092 46 03 2092 46 03
S 2475 Jit 2267 2266 35 2266 40 10 2266 39 50 2266 39 50
Si2 2700  Jio 2431 243045 2430 51 40 2430 51 15 2430 51 14
Si3 2925 Ji3 2585 2584 32 2585 38 37 2584 38 06 2584 38 05
Sia 3150 Jis 2728 2727 14 2727 21 31 2727 20 52 2727 20 52
Sis 3375 Jis 2859 2858 15 2858 23 42 2858 22 55 2858 22 55
Sie 3600  Jis 2978 297702 2977 11 30 2977 10 34 2977 10 33
Si7 3825 Ji7 3084 3083 03 3083 14 23 3083 13 17 3083 13 16
Sig 4050  Jig 3177 317553 3176 05 07 3176 03 50 3176 03 49
Sio 4275 Jio 3256 325506 3255 19 50 3255 18 22 3255 18 21
S 4500  Jy 3321 332024 332038 11 3320 36 30 3320 36 30
Sa1 4725 Dot 3372 337127 33714324 33714129 3371 4129
S»n 4950  J» 3409 3408 05 3408 22 20 3408 20 11 3408 20 10
523 5175 J23 3431 3430 07 3430 25 35 343023 11 343023 10
Soa 5400  Ju 3438 343727 3437 47 29 3437 44 48 3437 44 48

Table 2.1 Jya values corresponding to arc lengths which are multiples of 225'. Aryabhatiya,
Suryasiddhanta, Tantrasangraha, Laghu-vivrt: (with a more accurate first sine as well as the
divisor) and Madhava’s values.

Q.Y FERLFICAITH

2.5 Obtaining the desired Rsines and Rcosines

FERBIfCHTUl: |HHTTAIRG Il g0 |

A § WrEad I FAEATEE 9 |
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gfa & Fauwr TN UuRaar: o 93 |

EATedTg el S Fepl U BiATHd: 9 |

istadohkotidhanusoh svasamipasamirite || 10 ||

jye dve savayave nyasya kuryadunadhikam dhanuh |
dvighnatalliptikaptaikadaradailasikhindavah || 11 ||

nyasyacchedaya ca mithah tatsamskaravidhitsaya |

chitvaikam prak ksipejjahyat taddhanusyadhikonake || 12 ||

anyasyamatha tam dvighnam tatha syamiti samskrtih |

iti te krtasamskare svagunau dhanusostayoh || 13 ||

tatralpryahkrtim tyaktva padam trijyakrteh parah |

Having noted down the listed/tabulated values (samirita) of the dorjyas (Rsines) and
kotijyas (Rcosines) corresponding to the two points which are on either side of the arc
whose dorjyaand kotijya are desired, find the difference in the arc which may be in excess
of or short of it. [The number] 13751 divided by twice this difference has to be stored [as
divisor D] for dividing. This is done for mutual correction (i.e. for correcting the dorjya
in determining kotijya and vice versa). First divide one of them (the dorjya or kotijya by
D) and add or subtract this from the other (if the dorjya is divided, apply it to the kotijya
and if the kotijya is divided, apply it to the dorjya) depending upon whether the difference
is in excess or short. This result multiplied by two and operated as before (divided by D
and applied to the dorjya or kotijya) forms the process of correction. The correction thus
carried out gives the exact value of the dorjya or the kotijya of the desired arc. Of the two
(dorjya or kotijya) find the square of the jya of the smaller one and subtract it from the
square of the ¢rijya. The square root of the result gives the other (the kotijya or dorjya).

Fig. 2.3 Finding the jya value corresponding to a desired arc.

In Fig. 2.3, AB is the arc whose jya and kotijya are desired to be found. The
length of the arc AB = RO, where R is the ¢rijya and 0 is the angle subtended by
the arc at the centre O, expressed in radians. The jyas corresponding to the known
arc lengths AC and AG are known from the jya table (Table 2.1). The procedure for

8 The reading in both the printed editions is: GEIGIEH ?—ﬁ | This however is grammatically
incorrect. Hence we have provided the right compound form of the word above.
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finding the jya corresponding to the desired arc length AB from either of the two
known jyas is described in the above verses.

It may be noted from the figure that the desired arc length AB = R0 is such that
i < RO < (i+ 1)a, for some integer 0 < i < 24, where o = 225'. Assume that
point B is closer to C than G, i.e. BC < BG. Let BC = R06. The problem is to find
the dorjya and kotijya corresponding to the arc AB, where AB = io + RS 6.

The formulae for the two jyas involve an intermediate quantity (called the
haraka, or divisor (D) by the commentator), which is defined as:

13751

= RS0 (2.39)

The number 13751 appearing in the numerator is essentially four times the radius
R of the circle measured in minutes. In fact it is a good approximation too, as 2 x
21600/ 1 =~ 13750.98708. Hence the above equation can be written as

4R 2

D= rs0 = so°

(2.40)

While the dorjya of an arc increases with the arc length, the kotijya decreases.
Considering this, the text presents the following relations.

dorjya(icc+RE60) = dorjya iOH—lZ) <k0]§ijya io— dorjly)d ia)
= dorjyaio — (dorjydzia)SOZ + (kotijya i) 660
= dorjya io. (1 - 5§2> + (kotijya ict) 86, (2.41)
dorjya (ioo — R6O) = dorjya io — ; (kogfijya o+ dorjgd ia)
= dorjya io — (dorjydzia)SOZ — (kotijya ict) 66
_ dorjydiat (1 _ R‘?z) ~ (kotijya ia) 86,  (2.42)
kotijya (ict+R86) = kotijya ict — ; (dorjya o+ P ijgd ia)
= kotijya iot — (ko;fz'jydzioc)(SGZ — (dorjyaic)66

RS 62

5 ) — (dorjyaia)do, (2.43)

= kotyjya io <1 —

2 kotijya i
kotijya (o — RS8) = kotijyaior+ (dorjya i — " ZJg“”)
P 2
= kotijya iot — (kotijya ic)56 + (dorjya ic) 66

2
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R&6?
= kotijya iot (l — > + (dorjyaio)06. (2.44)

In Laghu-vivrti the procedure for finding the dorjya and kotijya of any arc length
is explained clearly as follows:

TARIT FRRT HFHT FifeaT aT Ul Foae wyHa: fasg &
Eﬁmm?5QF33FHPﬂ‘HaPﬂ e FIfeSATat T T HSTATAT
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By that divisor divide the dorjya or kotijya, whichever is desired to be found, and this may
be added to or subtracted from the other one. That is, if the dorjya is desired to be found,
it may be applied to the kolijya and if the kotijya is to be found it may be applied to the
dorjya, the application being positive or negative depending upon whether the arc R4 0 is
added to or subtracted from [iot].

Then this quantity may be multiplied by two and divided by the same divisor. The result has
to be applied to the desired jya [i.e.,] if the kotijya is to be found it has to be applied to the
kotijya, and if the dorjya is to be found it has to be applied to the dorjya, the application
being positive or negative depending upon whether the arc R66 is added to or subtracted
from [ia]. The dorjya and kotijya thus applied to each other give the correct jya of the
desired arc.

If the arc length it = R86 corresponds to an angle ¢ + 06 (in radians), then
equations (2.41) to (2.44) are equivalent to the following relations:

2
Rsin(¢ +80) = Rsing <1 - 629 ) + (Rcos¢)d0, (2.45)
. . 562
Rsin(¢ —86) = Rsin¢ <l ~-, ) — (Rcos )60, (2.46)
562 .
Rcos(¢ +66) = Rcos¢ <l ~-, ) — (Rsing)d0, (2.47)
562 .
Rcos(¢ —06) = Rcos¢ <1 ~ 5 ) + (Rsin¢)06. (2.48)

It is obvious that (2.45) to (2.48) are approximations of the standard trigonometric
relations

Rsin(¢ +60) = R(sind cos 60 + cos¢sind6), (2.49)
Rsin(¢ —60) = R(sin¢ cos 60 — cos¢sind0), (2.50)
Rcos(¢+066) = R(cos¢cos 66 —sin@sind o), (2.51)
Rcos(¢ —66) = R(cos¢cosd0 +sindsindb), (2.52)

when the approximations, cos 60 = (1 — 532) and sin66 = §06, for small 66 are
used. These also happen to be the first two terms in the Taylor series expansion of
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sin(¢ 4+ 66) and cos(¢ & 86). Sankara Variyar, however, has given an incorrect
generalisation of these to higher orders in his Laghu-vivrti.

If either the dorjya or the kotijya of an arc is known, the other can be determined
using the following relation. Let o be the length of the arc AB (in minutes) as shown
in Fig. 2.4; then,

dorjya o + kotijya* o = R?, (2.53)
which is the same as
sin® 0 +cos? 0 = 1. (2.54)
B
R
o
0
o A

Fig. 2.4 Relation between the dorjya, the kotijya and the trijya.

2.5 FEATATITIIEIITH

2.6 Determining the length of the arc from the corresponding
Rsine

Wwﬁwﬁm%% "

Jyayorasannayorbhedabhaktastatkotiyogatah || 14 ||
chedastena hrta dvighna trijya taddhanurantaram ||

The sum of the cosines divided by the difference of those two sines, which are close to each
other, forms the cheda (divisor). Twice the trijya divided by this is the difference between
the corresponding arcs.

Consider Fig. 2.5a. P and Q are points along the circle whose distance from the
point A are multiples of o = 225, that is AP = io, and AQ = (i + 1), where i is
an integer. The jyas corresponding to the arcs AP and AQ are known from the table.
The idea is to find the arc length (AB in minutes) corresponding to the given jya
(BN). Since the arc length AP is known, to determine AB we just need to find the
length of the arc PB.

Let AOP = 6o, AOB = 0 and POB = 0 — 6o = 06. Then, according to the text
the arc length PB is given by the following approximate formula:
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Fig. 2.5a Determination of the arc length corresponding to a given jya.

2R
PB=RSO~ [ oo (2.55)
(sin@—sin 6y)

The rationale behind the above formula can be understood as follows. When 68 is
small, sin660 ~ 60 and cos 00 ~ 1. Hence, we have

$in@ = sin(6y + 66) ~ sin 6y +cos by 66 (2.56a)
sinfy = sin(6 — 60) ~ sin O —cos 6 56. (2.56b)

The above equations may be rewritten as

sin@ —sin Gy ~ cos Oy 60 (2.56¢)
sin@ —sin6y ~ cos O 606, (2.56d)

from which we have
2(sin @ —sin6y) ~ (cos 6 + cos6y) 606, (2.57)

or,
__ 2(sin® —sin6y)

~ . 2.58
(cos B +cos6p) (2.58)

The above equation is the same as (2.55). We now proceed to explain another
method—one that is most likely to have been employed by Indian astronomers—of
arriving at the above expression for 66 with the help of a geometrical construction
(see Fig. 2.5b). Here J is the midpoint of the arc PB and BN, JK and PM are per-
pendicular to OM. As the arc PB is small, it can be approximated by a straight line
and K can be taken to be the midpoint of NM.

Then it can be easily seen from the figure that

BD = R(sin6 —sin )
R(cos B +cos6p)
5 :

and OK = (2.59)
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Fig. 2.5b Geometrical construction to determine the arc length corresponding to a given jya.

Considering the similar triangles PBD and JOK, we have the relation

PB  BD BD
= PB = . 2.
70 = 0K or JO x OK (2.60)

Using (2.59) in the above, we get

2R
PB = [(cos(-)+cos@o)} ’ (2.61)
(sin@—sin 6y)

which is the same as (2.55) given in the text.
The above verse is explained in Laghu-vivrti as follows.

T Frfafeaarn: fFRrEsiad: a6 (GarEn:) gesal garee-
T TET: SEATATY a1 347 O a4l Sifeeadn: an fafs) aF &
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AT R |

Of the two points whose jya values are listed in the table, find the one which is closer to the
desired jya [whose arc value is to be found]. Then find the difference between these two
jyas (dorjyas), and divide the sum of the kotijyas by this difference. The result is called
the cheda. Divide twice the trijya by this cheda. The result obtained is the difference

between the arcs lying between the desired jya, and the jya closest to it (as found from the
table); that is, it gives the length of the arc corresponding to the difference in the dorjyas.

Q9 FEHATITH
2.7 Finding more accurate values of the desired Rsine

gfa samTTE: FTd IEOr AT |

TR & A qan: gerRataa a1 gy |

ST e ST R anaEaRaea fHsaaT|
TGO HIqT TgT DA FAHITRFA g1l 28
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iti jyacapayoh karyam grahanam madhavoditam |

vidhantaram ca tenoktam tayoh suksmatvamicchatam || 15 ||

Jwe parasparanijetaramaurvikabhyam abhyasyavistrtidalena vibhajyamane |
anyonyayogavirahanugune bhavetam yadva svalambakrtibhedapadikrte dve||16]|
The [above] procedure for obtaining the jya and capa has thus been explained by Madhava.
He has also given another method for those desirous of obtaining accurate values. Multiply
each jya (dorjya of an arc length) by the other jya (of another arc length) and divide them
by the trijya. Their sum or difference becomes (the jya) of the sum or difference of the
arcs. Or else, the square root of the difference of their own squares and that of the lamba
[may be added and subtracted for getting the jya of the sum or difference of the arcs].

The procedures for obtaining the Rsine and the arc described in the previous
verses are attributed to Madhava. Verse 16 essentially gives the sin(A + B) formula.
This formula too is attributed to Madhava and is explained in the commentary as
follows:

AEfEETEE § it ondsd e At ER ST A
ﬁwwmmﬁwawﬁmqﬁmﬁ%w ffe a1 ar===g
ST TR T SISAT TOTAT | U Far: A fae ar
te: &1 | qar faspfaee ) fszmm sfa aren fesem
T AT Faeat 3fa aurafd ) ga Faar: amn fagmm ar w5et qafa

AT GATEN: T qaT: YN SHEe AT TOTFd 39
Wﬁﬂrﬁﬁmﬁnﬁﬂm|mw IHAGEE: gaa: e ewoe
|

.. The dorjyas (Rsines) [of the arcs o and ] whose sum or difference is desired to be
found have to be multiplied mutually with the other jya. That is, the dorjya of one (o) has
to be multiplied by the kotijya of the other (B) and the kotijya of the one () has to be
multiplied by the dorjya of the other (). The sum or difference of these two quantities has
to be found as desired. Then it has to be divided by the trijya. Here by using the suffix,
‘$anac’in the word vibhajyamane [the author] indicates that the addition or subtraction
has to be done before division [by the trijyal. This gives the correct value of the dorjya of
the sum or difference of the two arcs.

Alternatively, after subtracting the square of the lamba/lambana separately from the
squares of the two dorjyas and taking the square root, the two quantities (thus obtained)
become suitable for addition or subtraction. The lamba has to be obtained by multiplying
the two dorjyas and dividing by the trijya.

A

Fig. 2.6a Determination of the jya corresponding to the sum or difference of two arcs.



72 TR TR IUTH True longitudes of planets

o ~

Let o and B be the two arc lengths corresponding to the two angles 6 and ¢ as
shown in Fig. 2.6a. That is, AB = o and AC = [ respectively. Nilakantha gives
the following two formulae for finding the jya of the sum or difference of these arc
lengths.

dorjya o kotigya B =+ kotijya o dorjya B

dorjya (e +B) = (2.62a)

trigya
dorjya (o +B) = \/dorjydza — lamba® + \/dorjydzﬁ — lambad®, (2.62b)

where lamba in the above equation is defined by

dorjya o dorjya B

lamba = o (2.63)
tryya
In terms of the angles 6 and ¢, lamba can be expressed as
Rsin 6 Rsi
lamba=" " . sing. (2.64)

The term lamba generally means a vertical line or a plumb-line. The expression for
the lamba given above can be understood using a geometrical construction. For this
consider two angles 6 and ¢ such that 8 > ¢, as shown in Fig. 2.6b. Find sin 6 and
sin¢@. Draw lines XY and OZ perpendicular to each other as indicated in the figure.
Now we consider a segment of length Rsin ¢ and place it inclined to OZ such that
the segment BN makes an angle 6 with BO.

Then draw a line NC such that OCN = ¢. By construction, BNC = 6 — ¢. Draw
a perpendicular from B which meets the line NC at D. From the triangle NBD,

. BD
sin(6 —¢) = Rsino (2.65a)
Also in the triangle BCD,
sing = BD. (2.65b)
BC
From (2.65a) and (2.65b)
BC =Rsin(6 —¢). (2.65¢)

Now, applying the sine rule to the triangle NBC, we get the following relation

NB BC NC

sing _ sin(0—¢)  sin(180— 6) (2.66)

Since NB = Rsin ¢ (by construction) and BC = Rsin(0 — ¢) (see (2.65¢)), from the
above equation, the third side NC of the triangle must be equal to Rsin(180 — 6).
Thatis NC = Rsin(180— 0) = Rsin 8. Now it can be easily seen that NO in Fig. 2.6
represents the expression for the lamba given above.
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X

Fig. 2.6b Geometrical construction to understand the expression for the lamba given in Chapter
2, verse 16.

Using (2.3), and the above expression for the lamba, (2.62a) and (2.62b) reduce
to the following equations respectively,

RsinO Rcos ¢ + Rcos O Rsin¢@

Rsin(6+¢) = R (2.67a)
R sin(6 £ ¢) = RsinOcos¢ £ RcosOsing, (2.67b)

which are the same as the standard formula used in planar trigonometry,
sin(6 £ ¢) = sin 6 cos ¢ £ cos Osin . (2.68)

AL HATYIANUATIIAH

2.8 Computation of the Rsine value of a small arc

fareamraTEHTEET faendwfaraafsas |
fere=mafag fafs=n Jaq srear Jafa areqaraard | 2y |

Sistacapaghanasasthabhagato vistarardhakrtibhaktavarjitam |

Sistacapamiha $ingint bhavet spastata bhavati calpatavasat || 17 ||

Divide one-sixth of the cube of the remaining arc by the square of the trijya. This quantity
when subtracted from the remaining arc becomes the $irijini (the dorjya corresponding to
the remaining arc). The value is accurate because of the smallness [of the arc].

In the above verse, Nilakantha gives the approximation for the sine of an angle
when it is small. If o = RS0 is the length of a small arc along the circle, corre-
sponding to an angle 80, then the above verse gives the following expression for its
dorjya: \

o

dorjya o = o — (2.69)

6 trijya*
The above expression is equivalent to

(R56)

Rsin60 = R 66 — 6 R2



74 TR TR IUTH True longitudes of planets

(66)°

in60 = 66 —
or sin 6

(2.70)
Thus we find that sin 86 is approximated by the first two terms in the series ex-
pansion for it. This gives fairly accurate results when §0 is small. That (2.70) is
valid and yields accurate results only when the arc is small is clearly emphasised in
Laghu-vivrt: as follows:

U9 FAETRT: ATeqqraaed $ear Jafd |

The accuracy of this operation is due solely to the smallness of the arc.

Q.8 FEAFATH
2.9 Computation of the desired Rsine

FATIFITAt T A gfear =9 |
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anadhikadhanurjyam ca nitvaivam pathitam nyaset |
anadhikadhanuhkotijaya tam samipajam || 18 ||

nihatya pathitam tasyah kotya Sistagunarica tam |

tadyogam vatha vislesam hared vyasadalena tu || 19 ||

istajya bhavati spasta tatphalam syat kaladikam |

nyayenanena kotyasca maurvyah karya susuksmata || 20 ||

Having also obtained the dorjya of the arc which is in excess or deficit [from a multiple of
225 minutes], as described above (in the previous verse), keep it separately.

Multiply the nearest dorjya [obtained from the tabulated Rsines] by the kotijya of the arc
which is in excess or deficit. Also multiply the kotijya by the dorjya of the arc which is in
excess or deficit. The sum or difference of these two has to be divided by the radius (¢rijya).

The desired jya (dorjya) can thus be found accurately. By the same procedure, the kotijya
of any desired arc may be found accurately.

The above verses give the formulae for finding the dorjya and kotijya of an arc
of any desired length. To find this using the procedure given in Indian astronomical
texts, the desired arc length is expressed as a sum of two arcs, say o 4+ d & where o
is an integral multiple of 225 and 0 < da < 225. The formulae given in the above
verses are:

dorjyi (0 + Sot) = dorjya o kotijya o j: kfo,tijyd o dorjya So .71
tryya
kotijya o kotijya d o F dorjya o dorjya da.

kotijya (oo £ 00t) = , (2.72)

trijgya
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which have already been commented upon. Since o is always small (less than
225" or 3.75°), here it is suggested that the approximation (2.70) given in previ-
ous verse—which gives sin o correct to O(Sa®)—may be used for determining
the dorjya do in the above relation. Once the dorjya is known, the corresponding
kotijya may be found from the former using (2.53).
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tryabhyastabahukotibhyam asityapte phale ubhe |

capitam dohphalam karyam svarpam suryasya madhyame || 21 ||
kendrordhvardhe ca purvardhe tatkalarkah sphutah sa ca |
madhyasavanasiddho’tah karyah syadudaye punah || 22 ||

The dorjya and kotijya [of the manda-kendra of the Sun] multiplied by 3 and divided
by 80 form the dohphala and kotiphala. The arc corresponding to the dohphala has to be
applied to the longitude of the mean Sun positively or negatively depending upon whether
the manda-kendra is within the six signs beginning with Tula (Libra) or within the six
signs beginning with Mesa (Aries). The longitude thus obtained is the true longitude. Since
this longitude corresponds to the true longitude at the mean sunrise, it has to be further
corrected for the true sunrise.

These verses present an explicit expression for the manda-phala of the Sun.
Manda-phala is a correction that needs to be applied to the mean longitude of
the planet, called the madhyama/madhyama-graha, to obtain the manda-sphuta-
graha. The significance of the manda-phala, whose equivalent in modern astron-
omy is known as the equation of centre, is explained in Appendix F.

If 6y be the mean longitude of the planet (here the Sun) at the mean sunrise, then
the true longitude 6 of the Sun at the mean sunrise is given by 8 = 6y +=A6. The
correction to the madhyama known as the manda-phala, A6, (referred to as the arc
of the dohphala in verse 21) is given by

3
manda-phala = capa (80 manda—kendmjya) . 2.73)

The term manda-kendrajya in the above expression stands for the Rsine of the
manda-kendra or mean anomaly which refers to the difference between the longi-
tude of the mean planet and the mandocca (apogee). We denote it as 6y — 6,,, where
6y is the longitude of the mean planet and 6, that of the mandocca. Now, the above
equation translates to
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(3.
A6 =sin 20 |sin(6y — 6| | - (2.74)

Here 830 represents the ratio of the radii of the epicycle and the manda-karna-
vrtta, or ‘manda-hypotenuse circle’, whose significance is explained in Appendix
F. When the manda-kendra is within the six signs beginning with Mesa, that is,
0 < (6p—6,) < 180, it is stated that the manda correction has to be applied neg-
atively. On the other hand, when it is within the six signs beginning with Tula, that
is 180° < (6y — 6,,) < 360°, the correction is to be applied positively. Thus, the true
longitude of the Sun is given by

6 =6y—sin"! (830 sin(6 — em)> ) (2.75)
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samskrtayanabhagadeh dorjya karya ravestatah |
caturvim$atibhagajyahatayastrijyaya hrtah || 23 ||
apakramaguno 'rkasya tatkalika iha sphutah |
tattrijyakrtivislesat malam dyujyatha kotika || 24 ||
dorjyapakramakrtyosca bhedanmulamathapi va |
antyadyujyahata dorjya trijyabhaktestakotika || 25 ||
trijyaghnestadyujivapta capitarkabhujasavah |
dohpranaliptikabhedamavinastam tu palayet || 26 ||
visuvadbhahata krantih suryapta ksitimaurvika |
trijyaghnestadyujivapta capita syuscarasavah || 27 ||

The Rsine of the longitude of the Sun (dorjya) corrected for the precession of the equinox
(the samskrtayana) has to be determined. This, when multiplied by Rsin24° and divided
by the trijya, gives the Rsine of the true declination of the Sun (the apakramajya) at that
instant of time. The square root of the difference of the squares of that and the trijya is the
dyujya.

Then the kotika is obtained by finding the square root of the difference between the squares
of the dorjya and the apakramajya. The kotika is also given by the product of the
antyadyujya (Rcos24) and the dorjya divided by the trijya. This (the kotika) is mul-
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tiplied by the ¢rijya and divided by the dyujya. The arc of this is the right ascension of the
Sun (the arkabhujasava). The difference between the longitude and the right ascension in
minutes is to be preserved such that it is not lost.

The equinoctial midday shadow (the visuvadbha) multiplied by the Rsine of the declination
(kranti) and divided by 12 is the ksitimaurvika. This is to be multiplied by the ¢rijya and
divided by the desired dyujya. The arc of that gives the ascensional difference in pranas
(the carasava).

While most of the quantities related to the diurnal motion of the Sun are discussed
in the third chapter, some of those that are related to the determination of the true
longitude of the Sun at true or actual sunrise for a given location are described here.
Before explaining the above verses, it would be convenient to list the quantities
defined here as follows:

Quantity Its physical significance Notation
apakramajya the Rsine of declination of the Sun Rsiné
dyujya the radius of the diurnal circle of the Sun Rcosé
arkabhujasava the right ascension of the Sun o
carasus the ascensional difference Ao

7 diurnal path when
~P the Sun is in the

northern hemisphere

Fig. 2.7 Determination of the declination and right ascension of the Sun on any particular day.

In Indian astronomy texts, it is the nirayana longitude or the longitude measured
from a fixed star which is calculated. Ayanamsa, which is the amount of preces-
sion, has to be added to the nirayana longitude to obtain the sayana or tropical
longitude A. In Fig. 2.7, the celestial sphere is depicted for an observer at latitude
¢, on a day when the Sun’s declination is 0. Let A and a be the Sun’s (tropical)
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longitude and right ascension on that day.® The Rsine of the declination of the Sun,
the apakramagjya, is given by

dorjya x caturvimsatibhagajya

apakramajya = L
tryya
RsinA x Rsin24°
or  Rsing — oA ASImAST (2.76)
R
This is the formula for declination,
sind = sinA sing, 2.77)

which can be easily verified by considering the spherical triangle I'SB in Fig. 2.7
and applying the sine formula. Here € represents obliquity of the ecliptic whose
value is taken to be 24° in most of the Indian astronomy texts. The dyujya is the
radius of the diurnal circle of the Sun, Rcos 8, and it is given as

dyujya = \/ trijya® — apakramajya’
or  Rcosd = \/R?—R%sin® 6. (2.78)

Now a quantity, the kotika, is defined by the following two equivalent expressions:

kotika = VR2sin2 A — R?sin® §
R RsinA
kotika = 1 COSERSIMA (2.79)
R
The second of these follows from the first by substituting the expression for Rsin o
given in (2.77). The arkabhujasava is the right ascension of the Sun and is the arc

I'B, which is given as:
kotika x trijya
arkabhujasava = o = capa( orra ) m]ya) . (2.80)
dyujya

Substituting the expressions for the kotika and the dyujya in the above, we have

Rcose RsinA
o = Rsin™! 2.81
st ( Rcosd ) (2.81)
or R RsinA
Rsing = [ FCOSERSIAL (2.82)
Rcosd

This relation follows from the sine formula applied to the spherical triangle PI'S,
where the spherical angle PI'S = 90 — ¢, the spherical angle I PS=o,arcT'S= A
and arc PS =90 — 6. Then

9 The reader is referred to Appendix C on coordinate systems for details of these quantities.
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sinA _ sin(90—6)  coso

= = 2.83
sina sin(90—¢)  cosg’ (2.83)

which is the same as the above.

As the axis of rotation of the Earth is perpendicular to the equator, the rotation
angle measured along the equator is related to time and can be expressed in pranas.
One prana corresponds to one minute of arc along the equator. Since the right as-
cension is an arc measured along the equator, « is expressed in pranas.

The difference between the longitude of the Sun ® and its right ascension o
figures in the equation of time described in the next set of verses (see also Ap-
pendix C). Hence ot — ®, which is called the pranalipta or pranakalantara'® is to
be stored. This is the correction due to the obliquity of the ecliptic. This is explained
in Laghu-vivrti as follows:

..T7 &eq 9 gEElfesan @ sEwifesar fsaa fage seasaan
frsa &o0 &6 INFAT) a9 FAEHSTHEr qaf=rl T AF ST
Ter ATAT T A= T TR AT ATH | 3 Ep THAE d&4TH: | AT IF
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What is obtained thus is the istakotijya. That has to be multiplied by the ¢rijya and divided
by the istadyujya. The arc of the result obtained has to be found and that is known as
the arkabhujasava. The difference between the arkabhujasava and the Sun’s longitude

measured in minutes is known as the pranakalantara.'! The utility of this will be stated
later (verse 31). Hence it is stated that this has to be preserved such that it is not lost.

The great circle passing through EPW is known as the 6 o’clock circle, as the
hour angle of any object lying on that circle corresponds to six hours. For an equa-
torial observer, whose latitude is zero, the horizon itself is the 6 o’clock circle and
the Sun always rises on it. When the latitude of a place is not zero, the Sun does not
rise on the 6 o’clock circle. In Fig. 2.7,

H, = ZPS, = ZPW + WPS, =90° + A (2.84a)

is the hour angle at sunset. It is greater than 90° when the Sun’s declination is north
and would be less than 90° when the declination is south. From the spherical triangle
PZS;, using the cosine formula it can be shown that

cosH, = —tan@tand
or sinAo = tan¢tand. (2.84b)

H, expressed in minutes is the time interval in pranas between the meridian
transit of the Sun and sunset. When 6 = 0, H, = 90° = 5400 pranas (6 hours). Ao

10 The terms prana and kala here refer to the right ascension and Sun’s longitude expressed in
minutes respectively. Hence the pranakalantarais o — ©.

' It must be noted that Sankara Variyar uses the term pranakalantara instead of
pranaliptika. Nilakantha himself has used the term pranakalantara later in verse 31, where
he discusses the application of the pranakalantara.
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is difference between H; and 6 hours or 5400 pranas, and is termed the carasava
or the ascensional difference. It is clear that it is also the difference between sunrise
and transit of the Sun across the 6 o’clock circle.

Expression for the carasus

For giving the expression for the carasus (ascensional difference), an intermediate
quantity called the ksiti-maurvika (ksitijya, earth-sine) is defined as follows:

' dbha x kranti
ksitimaurvika = visuva l; ran Z. (2.85)
The visuvadbha refers to the equinoctial shadow of a stick of length 12 units. It will
be shown in the next chapter that the equinoctial shadow for an observer at latitude
¢ is 12tan ¢. The term kranti is the same as apakramajya given earlier in (2.76).
The expression for the carasus is given by

ksiti ika X trijya
carasus = capa( 5 zmaurvz. af rzyya) . (2.86)
dyugya
Substituting for ksitimaurvika and dyujya in the above expression we have
. .1 [ Rtan¢ Rsind
Ao = (Rsin) ! 2.87
(rsiny 1 (MO, @87

which is the same as (2.84b). At the equator, where ¢ = 0, Aax = 0. Hence, the
sunrise or sunset is exactly 6 hours before or after meridian transit. Since the carasus
(A) is the interval between the sunrise at a given latitude and that at the equator,
the knowledge of it is essential for finding the exact sunrise and sunset times at the
observer’s location. It is also needed for finding the longitude of planets at sunrise
at any non-zero latitude.
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liptapranantaram bhanoh dohphalam ca carasavah |
svarnasamyena samyojya bhinnena tu viyojayet || 28 ||
bhanumadhyamabhuktighnam cakraliptahrtam phalam |
bhanumadhye tu samskaryam sphutabhuktyahatam sphute|| 29 ||
udaksthe'rke carapranah Sodhyah svam yamyagolake |
vyastamaste tu samskarya na madhyahnardharatrayoh || 30 ||
yugmaujapadayoh svarpam ravau prapakalantaram |

dohphalam purvavat karyam raverebhirdyucarinam || 31 ||
madhyabhuktim sphutam vapi hatva cakrakalahrtam |

svarnam karyam yathoktam tat vyastam vakragatau sphutel|| 32 ||

The pranakalantara, dohphala (equation of centre) and carasus, all in minutes, have
each to be added or subtracted depending upon their signs. This quantity multiplied by the
mean daily motion of the Sun and divided by 21600 has to be applied to the mean Sun, and
the same has to be multiplied by the true daily motion of the Sun and applied to the true
Sun [to get the longitudes of the mean and the true Sun respectively at the true sunrise at
any given location].

When the Sun is to the north (has northern declination), then the carasus have to be applied
negatively and when it is to the south they have to be applied positively [this sign convention
is to be adopted when the longitude is to be determined at sunrise]. The carasus have to
be applied in the reverse order at the sunset. They need not be applied [for determining the
longitude] at midday or midnight.

The pranakalantara has to be applied positively and negatively in the even and odd quad-
rants respectively. The dohphala has to be applied as discussed earlier. With these quanti-
ties (namely pranakalantara, dohphala and carasus), which are related to the Sun, the
mean or true daily motions of the planets are to be multiplied and divided by 21600. These
have to be applied positively or negatively as mentioned earlier [when the planet is in di-
rect motion] and the application has to be done in the reverse order when the planet is in
retrograde motion [to get the mean and true planets at true sunrise].

In the above verses, Nilakantha gives the procedure for obtaining the mean or
true longitudes of the planets at the true sunrise at the observer’s location. The longi-
tudes obtained from the Ahargana give the mean and true positions of the planets at
the mean sunrise, i.e. when the mean Sun is on the 6 o’clock circle, at the observer’s
location. To get the positions of the planets at the true sunrise, i.e. when the true Sun
is on the observer’s horizon, corrections have to be applied.

Of the two corrections that need to be applied, one is due to the fact that at
sunrise the Sun is on the horizon and not on the 6 o’clock circle. The time difference
between the sunrise and the instant when it is on the 6 o’clock circle (the carasus)
has been discussed earlier. Now, when the Sun has a northerly declination, sunrise
is earlier than its transit across the 6 o’clock circle and carasavas have to be applied
negatively. Similarly, when the Sun has a southerly declination, sunrise is after its
transit across the 6 o’clock circle and the carasus have to be applied positively. The
other two corrections are due to the fact that there is a time difference between the
transits of the mean Sun and the true Sun across the meridian or the 6 o’clock circle.
In fact, we shall see below that the expression for the sum of these two corrections
given in the text is the same as the equation of time in modern astronomy (for more
details refer to Appendix C).
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Equation of time

The ‘mean Sun’ is a fictitious body which is moving along the equator uniformly
with the average angular velocity of the true Sun. In other words, the right ascension
of the mean Sun (denoted by R.A.M.S.) increases by 360° in the same time period
as the longitude of the true Sun increases by 360°. As the R.A.M.S. increases uni-
formly, the time interval between the successive transits of the mean Sun across the
meridian or the 6 o’clock circle is constant. This is the mean civil day. All the civil
time measurements are with reference to the mean Sun. The time interval between
the transits of the mean Sun and the true Sun across the meridian or the 6 o’clock
circle is known as the equation of time and is given by

E=HAMS —HA.©®
=RA.©—RAM.S.
=0 — oy, (2.88)

where © stands for the true Sun. It will also be used to refer to the longitude of the
true Sun later. Since the dynamical mean Sun moves along the ecliptic uniformly
with the average angular velocity of the true Sun—and both of them are assumed
to meet each other at the equinox I'—the longitude of the dynamical mean Sun or
the mean longitude of the Sun (/) is the same as the R.A.M.S. Hence the equation
of time will be E = o — [. This can be rewritten as

E=(a—0)+(®—1). (2.89)

The first term in the equation of time is the pranakalantara = o — ©. Now sino =
Coif):glo As 0 < &, |sina| < |sin®|. This implies that o0 < ® when ¢ and © are
in the odd quadrants and ¢ > ® when o and © are in the even quadrants. Hence
the pranakalantara has to be applied positively and negatively in the even and odd
quadrants respectively. The sign of the dohphala (® —I) has already been discussed
earlier. It is negative in the first and second quadrants and positive in the third and

fourth quadrants.

Application of corrections

The three corrections, namely the pranakalantara, dohphala and carasus, have to
be applied to the mean or true longitude of planets at mean sunrise at the equator
(or the 6 o’clock circle) to obtain the mean or true longitude at true sunrise on the
observer’s horizon. The motion of a planet in one prana is equal to its daily motion
divided by 21600. The net correction would be the sum of the three quantities (tak-
ing appropriate signs into account) multiplied by the above ratio. When the planet
is in retrograde motion, the longitude decreases with time. Hence, all the signs dis-
cussed above have to be reversed in such a situation.
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Saikara Variyar in his Yukti-dipika gives a graphic description of what is

meant by cara, and how it is to be used in the determination of the duration
day and night at the observer’s location (having non-zero latitude).
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The rising and setting of the Sun has to be determined with respect to the horizon corre-
sponding to the observer’s own latitude. The length of the arc [of the diurnal circle] lying

between the unmandala (6 o’clock circle) and the ksitija (horizon) is referred to as the
cara.

When the Sun has northern declination it rises earlier and sets later. Hence the duration
of the day increases by twice the cara. Naturally the duration of the night decreases, and
hence day and night have different durations. When the Sun has southern declination it rises
later and sets earlier. Therefore the duration of the day decreases by twice the cara and that
of the night increases. [While this is true for an observer in the northern hemisphere] the
reverse happens in the southern hemisphere.

The carapranas have to be applied negatively and positively when the Sun has northern
and the southern declination respectively. This is true at sunrise and during sunset they have
to be applied in the reverse order. Since the mean Sun moves with uniform velocity, the
duration of the day will always be uniform when measured with respect to the mean Sun.
But the duration will vary when measured with respect to the true Sun.
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In the north (when the declination of the Sun is towards north), the caraprana has to be
added to one-fourth of the ahoratra and in the south it has to be subtracted. This gives the

12.{TS 1977}, p. 154.

of
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half-duration of the day. The half-duration of the night is obtained by applying the cara in
the reverse order. By multiplying these durations by two, the durations of the day and night
are obtained respectively. For the Moon and others, the half-durations [of their own days
and nights] have to be obtained from their own carapranas.

While the time unit, namely a day, can be considered with respect to different
planets, we first consider the Sun and the solar day. By definition, on an average,
one-fourth of an ahoratra or mean solar day or civil day is 6 hours. To this, cor-
rection due to the cara has to be added or subtracted in order to find the ‘actual’
half-duration of the day, i.e. the time interval between sunrise and the meridian tran-
sit of the Sun. Recalling that one hour corresponds to 15°, the half-duration of the
day (in hours) for an observer with latitude ¢ is given by

(Rsin~1)(Rtan ¢ tan §) [in deg]

6
* 15

(2.90)
where the second term is positive or negative depending upon the sign of 9, i.e. de-
pending on whether the Sun is in the northern or southern hemisphere. § is obtained
using the relation

Rsind = RsinesinA. 291)

As pointed out later, it is noted in Laghu-vivrti that A at true sunrise should be
used in the calculation to obtain the first half-duration of the day. Similarly A at true
sunset should be used to obtain the second half-duration of the day. This is explained
in Laghu-vivrti as follows:
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The carapranas obtained from the sayana longitude A of the Sun, when it is in the north-
ern hemisphere (0 < A < 180), converted into nadzs, have to be applied positively to one-
fourth of the duration of the ahoratra, which is 15 ghatikas, the duration of the ahoratra
itself being 60 ghatikas. If the Sun is in the southern hemisphere (180 < A < 360), then the
carapranas, converted into nadis have to be applied negatively to one-fourth of the dura-
tion of the ahoratra. Thus one-fourth of the ahoratra being corrected by the caraprana
gives the half-duration of the day. The half-duration of the night is obtained by carrying
out the reverse process. The half-duration of the night, which was obtained by subtracting
the caraprana in the northern hemisphere, is to be obtained by its addition in the south-
ern hemisphere. The half-durations of the day and night when multiplied by two give the
durations of day and night.

To get the half-durations of the day and night more accurately, a better procedure is
suggested.
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The cara obtained from the sayana Sun at sunrise (instead of mean sunrise at the equator)
has to be applied in the forenoon and the one obtained from the sayana Sun at sunset in the
afternoon. Similarly, the cara obtained from the sayana Sun at the sunset and sunrise have
to be applied for obtaining the duration of the first and second half of the night respectively.

The duration of the day and night obtained thus (rather than those obtained from the earlier
method) would be more accurate.

The pranakalantara correction should also be implemented in finding the duration of the
day. The difference in the pranakalantaras obtained from the sayana Sun at sunrise and
sunset has to be applied to obtain more accurate durations of day and night.

Duration of the day of the planets

The stars are considered to be fixed objects in the sky. The sidereal day is defined
as the time interval between two successive rises of the star across the horizon
and is equal to the time taken by the Earth to complete one revolution around its
axis. A ‘planet-day’ is defined in a similar manner. The time interval between two
successive sunrises is the ‘sun-day’ or a solar day. The time interval between two
successive moonrises is the ‘moon-day’ or lunar day.!3. Similarly the time interval
between two successive rises of any particular planet is defined to be the duration of
that ‘planet-day’.

This concept of the day of planets may be understood with the help of Fig. 2.8.
In Fig. 2.8a, we have depicted a situation where a star X, the Sun S and the Moon M
are all in conjunction and are just about to rise above the horizon. After exactly one
sidereal day (= 23 h 56 m) the star X will be back on the horizon. However, the Sun
and Moon, due to their orbital motion eastwards, will not be back on the horizon.
They would have moved in their respective orbits through distances, given by their
daily motions which are approximately 1° and 13° respectively. This situation is
depicted in Fig. 2.8b where X, S’ and M’ represent the star, the Sun and the Moon
respectively.

It may be noted here that the Moon is shown to be on the ecliptic. Though the
orbit of the Moon is slightly inclined to the ecliptic, since its orbital inclination is
very small (approximately 5°), the angular distance covered by the Moon in its orbit
can be taken to be roughly the angular distance covered by it on the ecliptic. After
one sidereal day the star X will be again on the horizon. Only when the earth rotates
through an angle equal to the difference between the right ascensions of X and S’
will the Sun be on the horizon. This is taken to be the arc XS’ on the ecliptic itself.
(This can only be approximate.) Similarly only when it rotates through an angle X M’
will the Moon be on the horizon (in the same approximation). Hence the duration
of a solar day is given by

13 This definition of lunar day should not be confused with that of a tithi defined earlier.
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X, S, M ;
Star, Sun and Moon/ e

Fig. 2.8a The star X, Sun S and the Moon M at sunrise on a particular day.

Fig. 2.8b The star X, Sun §’ and the Moon M’ exactly after one sidereal day.

Solar day = Sidereal day + Time taken by the earth to
rotate through X S’
= 21600 + X S’ (in minutes of arc)
= 21600 + Sun’s daily motion (in pranas).

In the above expression, the number 21600 represents the number of pranas (=4
seconds) in a sidereal day, and XS’ is expressed in minutes. Similarly the duration
of the lunar day is given by
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Lunar day = Sidereal day + Time taken by the earth to
rotate through XM’
= 21600+ XM’
= 21600 + Moon’s daily motion (in pranas). (2.92)

Similarly a ‘planet day’ can be defined for other planets also.

For finding half of the duration for which a planet is above the horizon, its own
caraprana has to be added to or subtracted from one-fourth of its own ‘planet-day’.
In Laghu-vivrti there is a discussion on this:

THTe: T: & W TG IFaq Separd fAstrermsedgnT: faand
w&aymmlmamﬁsﬂ%ﬂmmﬁmmm
THTOT: | T4 A 5= Reygrdratae 7 wrean) fakn s
femr srfors T, gy ; m@%wwﬁmﬁwﬁ TFearfafa-
I FAATATOIFATET: A0 TFF AT Frea fearea: fwa=a)

For the Moon and others (planets) their own durations of day and night have to be obtained
from the quarter of their true ahoratra corrected for their own carasus. The duration of
their day is [nearly] equal to the sum of the their daily motion in pranas plus the number
of minutes in 360 degrees. Even after applying this, the duration of the day or night of
the Moon [and other planets] would not be correct as it may differ [from the actual value]
by its own dohphala. True; it is only to take this discrepancy into account that the [true]
duration of a lunar day in minutes is obtained from the difference in the true positions of
the Moon [and other planets], at intervals separated by the durations of their days corrected
by caraprana etc., added to the number of minutes in 360 degrees.

Ascensional difference in the case of the Moon and other planets:

It may be recalled that (2.67) gives the expression for finding the caraprana in the
case of the Sun. For the Moon and other planets the procedure to be adopted is stated
in Laghu-vivrti as follows:

Frf=rear faqagrar fafasan
ZTTIET JISTETAT ATfaarege: | 4
For planets other than Sun the procedure for obtaining their own caraprana from the dec-

lination corrected for the latitude of the planet has been shown by [the author] himself in
[his] Chayaganita:

The sine of the declination multiplied by the visuvadbha and divided by twelve is the

ksitijya. This has to be multiplied by the ¢rijya and divided by the dyujya. The arc of this
is the carasava.

In Fig. 2.9, S represents the position of the Sun on the observer’s meridian on
an equinoctial day. Since the motion of the sun takes place along the equator on

14 {CCG 1976}, p. 16.
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Fig. 2.9 Shadow of Sariku on an equinoctial day.

an equinoctial day, the equator itself serves as the diurnal circle. The length of the
shadow of a stick of length 12 units, when the Sun is on the observer’s meridian on
the equinoctial day, is termed the visuvadbha. In the figure, OA represents the stick
of length 12 units, referred to as a sarnku. Since ZS = ¢, the latitude of the observer,
OAB = ¢. Hence,

visuvadbha = 12tan¢@. (2.93)

From (2.85), ksitijya is given by lzmd’émma. Also the ascensional difference
carasava of the planet is given by

carasus = (Rsin) " 'Rtan ¢ tan §, (2.94)

where 6 is the declination of the planet. The declination 6 of a planet with longitude
A and latitude 3 as depicted in Fig. 2.10 is given by

sind = cosesinf +sinecosBsinid
= cosesin ff +cos B sin &, (2.95)

where O is the declination of an object on the ecliptic with the same longitude as
the planet. That is, sin 6 = sinesin A. Thus, in the case of planet having a latitude,
a correction has to be applied to 8¢ to obtain the actual declination §. From the
‘planet-day’ and the carasava of the planet, the time interval between the rising and
setting of the planet which is the duration of the ‘day’ for the planet can be obtained.
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Fig. 2.10 Determination of caraprana for planets.

2.98 TFEFCIHIH
2.14 Obtaining the true Moon
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induccayoh svadesottharavyanitacaradijam|

samskaram madhyame krtva sphutikaryo nisakarah || 35 ||

dohkotijye tu saptaghne asityapte phale ubhe|

capitam dohphalam karyam svamadhye sphutasiddhaye || 36 ||

The mean position of the Moon and its apogee have to be corrected by the caraprana etc.

obtained from the Sun, and then the sphuta-karma (procedure for the true longitude) has
to be carried out.

The dorjya and the kotijya multiplied by 7 and divided by 80 form the dohphala and
kotiphala. The arc of the dohphala has to be applied to the mean position to get the true
position.

The mean positions of the planets obtained from the Ahargana (count of days)
correspond to their mean positions at the mean sunrise for an observer at Ujjayini.
To get their mean positions for other observers, corrections such as desantara, cara
etc. have to be applied (see the previous section as well as Section 1.14). These are
corrections to be carried out to get the mean position of the planet at the true sunrise
at the observer’s location. Verse 35 reemphasizes these corrections.
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To get the true position of the planet at true sunrise, the equation of centre has to
be applied to the mean planet at true sunrise. Verse 36 describes how this correction
has to be implemented in the case of the Moon. The ratio of the mean radius of the
epicycle and the radius of the deferent circle (the trijya) is taken to be 870 for the
Moon. Hence according to the text the true longitude of the Moon, 6, is

. 7 .
0 = 6y —sin~! (80 sin(6y — em)) )

where 6 is the mean longitude of the Moon and 6,, the longitude of the mandocca.
The procedure for obtaining the true longitude of the Moon is explained in the
commentary as follows:

THAGIARNY FEGIOI: ooy AFA T=s AeenFaeEm
FaTon T A AT g T o g g i aohs
AT T TS dF ety Sy R aga
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From the desantara, as well as the three corrections manda-phala etc. related to the Sun
[obtaining the true sunrise time], the mean positions of the Moon and its apogee [at true
sunrise time], are obtained from the Ahargana by the rule of three. Then subtracting the
apogee from the mean longitude, the manda-kendra of the Moon is determined. Depend-
ing upon the quadrant in which the manda-kendra lies, the dorjya and kotijya have to
be found following the procedure that was given for the Sun.

The dorjya and kotijya obtained thus have to be multiplied by 7 and divided by 80 to get
the dohphala and kotiphala respectively. The use of the kotiphala will be stated later.
The arc corresponding to the dohphala is applied to the mean planet either positively or
negatively depending upon the quadrant in which the kendra lies. These corrections applied
to the mean Moon give its true position at the true sunrise at the observer’s location.

.99 TGATEIAT ATITEFTITH
2.15 Finding the arc corresponding to cara etc.
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ekadighnya dasapta ya ghanamalam tato'pi yat || 38 ||

tanmitajyasu yojyah syuh ekadvyadya viliptikah |

caradohphalajivadeh evamalpadhanurnayet || 39 ||

The arc corresponding to a jya may be obtained either by finding the difference between
the jya and the arc as given in the verse [beginning] $istacapaghana etc., and adding that
(difference) to the jya, or from the table of jyas listed earlier.

The square of the ¢rijya is 11818103 (in minutes). Multiply this by 1, 2 etc., divide by 10
and find the cube roots of these results. If the jya (whose arc is to be found) has a measure
equal to these (the above cube roots), then 1, 2, etc. seconds have to be added to them. Thus
the arc of the R sine of small angles involved in the caradohphala may be obtained.

In Fig. 2.11, let PN represent the jya whose corresponding arc length AP is to be
determined. If R is the radius of the circle and AOP = «, then the length of the jya
corresponding to this angle is given by

jya = PN =1 = Rsina. (2.96)

When o is small we know that

o o3
sinoc o=

(Ra)?

s (2.97)

Hence, Rsino ~ Ro, —

Or, the difference (D) between the capa (arc) and its jya (Rsine) is given by

(Rar)?

D~Ro—1=
6R?

(2.98)

Fig. 2.11 Finding the arc length of a given jya when it is very small.

An iterative procedure for obtaining the arc length corresponding to a given jya
is described in the above verses. This procedure is simple and also yields fairly



92 TR TR IUTH True longitudes of planets

o ~

accurate results for small angles. We may explain the procedure outlined here as
follows.

As a first approximation, we take the arc length (which itself is very small) to be
the jya itself, i.e. Ra ~ . Hence from (2.98) the difference between the arc length
and its jya becomes

(2.99)

As a second approximation, we take the arc length to be Ro. = [+ D;. Hence in the
next approximation the difference (D,) between the arc length and its jya becomes

(I+Dy)?
D, = 6R2 (2.100)
As a third approximation, when we take Ra. = [ 4 D,, we have
(I+Dy)?
D; = . 2.101
3 6R? ( )
In general,
(I4+Diy)?
D; = . 2.102
6R2 (2.102)

The above iteration process is continued till D; = D;_1, to a given level of accu-
racy. When this condition is satisfied, we have arrived at the required arc length
corresponding to the given jya, given by

Ro=1+D;. (2.103)

Avisesakarma

The iterative procedure, known as avisesakarma, to be employed is described in
Laghu-vivrti as follows:
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Find the cube of the given jya and divide it by six. This may further be divided by the
square of the trijya. The result is the difference between the jya and capa in minutes. If
it is not divisible [if there is a fraction], then it has to be multiplied by 60 and then divided
by the square of the ¢rijya. The result thus obtained will be the difference between the jya
and the capa in seconds.
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Is it not true that, as per the procedure described in [the verse] Sistacapaghana ...,
we find the difference between the jya and capa from the given (known) capa and not
from the given jya? Yes, it is true. It is only because of this, that an iterative procedure
(avisesakarma) is followed here where the difference between the jya and capa is to be
found from the given jya. It is as follows: The difference between the jya and capa ob-
tained as described earlier must be applied to the given jya and from the cube of that the
[next approximation to the] difference between the jya and capa must be determined. This
again has to be applied to the given jya, and the process has to be repeated till the result
becomes avisista (not different from the earlier). This difference added to the given jya
will be the required capa.

Finding the arc length corresponding to a given jya from a look-up table

Apart from the iterative procedure described above, Nilakantha also gives an inge-
nious way by which one can find out the arc length corresponding to a given jya,
when the jya is small. Here the idea is to make use of a table of jyas and the differ-
ences D/s, in order to obtain the required arc length and thereby avoid the iterative
process. The procedure is as follows:

The difference between the capa and its jya is given by

R3 13
D:Ra—l%(ég =é;. (2.104)

In the above equation all the quantities are expressed in minutes. When the differ-
ence D = 1”, which is one-sixtieth of a minute, we obtain

= . 2.105
6R2 60 ( )

This implies that when D = 1” the corresponding jya is given by

1
1.R*\ 3
11_,< 0 ) . (2.106a)

Similarly when D = 2", the corresponding jya is given by

1
2.R%\3
b‘(m)’ (2.106b)

and so on. In general, when D = i”, the corresponding jya is given by

1
s p2\ 3
h:Cﬁ). (2.107)

Here, I/s correspond to the jyas, when the difference between the jya and the capa
(D) is i". Hence, the lengths of the capas, A;s, corresponding to the jyas, I;, are
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given by
Ai=1li+i. (2.108)

In Table 2.2, the jya values are listed corresponding to the integral values of the
difference between the jya and the arc length, as given in Laghu-vivrti. These are

Difference Given Textual Computed
D = capa—jya value of jya value of capa value of capa
inseconds min sec min sec min  sec

105 43 105 44 105 43.56

—

2 133 11 133 13 133 12.42
3 152 26 152 29 152 29.04
4 167 46 167 50 167 49.80
5 180 43 180 48 180 47.34
6 192 02 192 08 192 07.02
7 202 08 202 15 202 14.82
8 211 20 211 28 211 27.12
9 219 47 219 56 219 55.14
10 227 38 227 48 227  46.80
11 234 58 235 09 235 07.98
12 241 52 242 04 242 03.18
13 248 24 248 37 248 35.88
14 254 36 254 50 254 48.90
15 260 31 260 46 260 44.58
16 266 10 266 26 266 24.78
17 271 36 271 53 271 51.12
18 276 48 277 06 277 04.86
19 281 50 282 09 282 07.20
20 286 40 286 60 286 59.10
21 291 22 291 43 291 41.46
22 295 55 296 17 296 14.94
23 300 18 300 41 300 40.26
24 304 36 304 60 304 58.02

Table 2.2 Look-up table from which the values of arc lengths of small jyas can be directly written
down without performing any iteration, when the difference between the jya and the capa is equal
to integral number of seconds.

the /;s, i = 1...24 in (2.107), which are listed in the second column. The third
column gives the sum of columns 1 and 2. The fourth column gives the values of the
arc length as computed by us using (2.108), which in turn involves the computation
of the cube root of (2.107), for different values of i (i = 1...24). In doing so, we
have also used the exact value of the trijya (in minutes), thatis, R = 21267?0 . Given the
fact that some approximation in the ¢rijya value and the extraction of the cube root
is involved in the computation of arc length, it is remarkable that the value given in
the text differs at the most by 2” from the exactly computed value of the arc length.
The idea behind listing these 24 jya values is to avoid the iterative process outlined
earlier, when the jya value is small.



2.15 Finding the arc corresponding to cara etc. 95

Finding the arc length from the look-up table

The procedure is explained in the commentary as follows:
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Or if the difference between the jya and the arc length is equal to 17, 2", 3” etc. then
construct the table listing the jyas corresponding to these differences. If the jya whose
capa is to be determined happens to be (very close to) one of the values listed in the table,
then add this difference between jya and capa (1”,2", 3" etc.) to the jya to get the required
capa. How should this be implemented?

It is well known that the square of the ¢rijya = 11818103. Multiply this by 1, 2, 3, etc.,
divide by 10, and take the cube roots of the resulting quantities [in minutes etc]. If the jya
whose capa is desired to be found happens to be one of the values [listed in the table], then
it is to be understood that the corresponding difference between the jya and capa is going
to be only 17, 2", 3", etc. The difference between the jya and capa, obtained thus, may thus
be added to the given jya to get the desired capa. This may be done as follows. '

Thus the jyas in seconds and minutes are given in three arya verses. For instance,
the lavanam nindyam and the kapila gopt stand for 105'43” and 133/11”, respec-
tively. Finding the arc lengths from the jyas, when they are small, is quite simple
making use of these values. If the dohphala (whose arc length is to be calculated) is
equal to one of the values listed, beginning with the lavana, then the corresponding
number of seconds have to be added to the jyas to get the corresponding capa.

In the commentary it is also stated that using the table and determining the arc
lengths may not be as accurate as the result obtained by using the iterative procedure:

15 The values of the jyas given in the succeeding verses lavanam . .., are listed in second column
of Table 2.2.
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Though the procedure for obtaining more accurate values of the arc length has already been
stated, for smaller jyas the arc lengths may be obtained by this method (from the look-up
tables). That is why it is stated: The small arc length of the cara-dohphala etc. should be
obtained by this method.

The same idea is conveyed in Yukti-dipika in the following manner:
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It has been stated implicitly (in verse 17 of the text) that the difference between the jya and
capa will be equal to 1’ (one kala), when the cube of the arc length is equal to six multiplied
by square of the trijya. The same will be equal to 1” (one vikala) when the cube of the arc
length is equal to one-tenth of the square of trijya.

Now, the square of the ¢rijya divided by 10 is multiplied by 1,2,3, etc. Then the cube roots
of the results are taken [and stored separately]. These correspond to the arc lengths, when
the difference between the jya and capa is equal to 1”7, 2", 3", etc., respectively. When
differences are subtracted from the arc length we get the jya and when they are added to
the jya we get the arc length. Avisesakarma must be done in order to get accurate results
for the capa from the jya whose values are small.

In fact the accuracy of the tabulated results is of the order of 0.003%. For instance
for a capa of 105'44”, the listed jya value is 105'43”, whereas the exact Rsine value
is 105’43.02". The percentage error is 0.0003%. This is not surprising considering
the fact that for a small o the fractional error in retaining terms only up to o in

5
. -«
sin o 18 51 -
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2.16 Obtaining the manda and sighra hypotenuses
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16 £TS 1977}, p. 158.



2.16 Obtaining the manda and $zghra hypotenuses 97

Having added the kotiphala to the radius (vyasardha) in the first and the fourth quadrants
and having subtracted [the kotiphala] from it (the radius) in the other two [quadrants] let
the square root of the sum of the squares of this and the dohphala be obtained. This is the
karna and in the manda process this has to be further iterated upon, but not in the sighra
(cala).

The method given in the above verse for finding the karna can be explained with
the help of an epicycle model represented in Fig. 2.12a. Here the mean planet P is
assumed to be moving on the deferent circle centred around O, and the true planet
P is located on the epicycle such that PP, is parallel to OU (the direction of the
mandocca). OI represents the direction of Asvini naksatra (Mesadi or first point
of Aries).

In Fig. 2.12a let R and r be the radii of the deferent circle and the epicycle
respectively. OU represents the direction of the mandocca whose longitude is given
by I'OU = 6,,. The longitude of the mean planet Py is given by I'OPy = 6. 6,5
represents the longitude of the manda-sphuta-graha. It is easily seen that

UOPy = PPyN = 6y — 6, (2.109)

where (6y — 6,,) is the manda-kendra. The dohphala and the kotiphala are given
by
dohphala = PN = |rsin(6y — 6,,)] (2.110)

and
kotiphala = PyN = |rcos(8y — 6,)|- (2.111)

Now, the manda-karna K is the distance between the planet and the centre of the
deferent circle. Clearly,

K = OP
= [(0N)2+(PN)2]5
= [(R+rcos(6y — 6,,))* + (rsin(6y — 6,))*] 2, (2.112)

Here, rcos(6y — 6,,) = £|rcos(6y — 6,,)| is positive in the first and fourth quad-
rants and negative in the second and third quadrants. That is why it is stated that
the kotiphala has to be added to the trijya in the first and fourth quadrants and
subtracted from it in the second and third quadrants.

It is also stated that the karna K has to be determined iteratively in the manda-
samskara to obtain the avisesa-karna (iterated hypotenuse). This is because r in
(2.112) is not a constant but is itself proportional to K. That is,

o
=

K 2.113
oK (2.113)

where rq is the radius of the epicycle whose value is specified in the text. The itera-
tive procedure to determine K and r is discussed in the next section. In the $zghra-
samskara, r is fixed for each planet, and no iterative procedure is necessary to find
K.
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epicycle P

deferent
circle

Fig. 2.12a Obtaining the manda-karna in the epicycle model.

In Fig. 2.12a, the longitude of the planet is given by I” OP = 0,, = 0. Then
POPy = 6,, — 0 is the difference between the mean and true planets. Now,

PN = OPsin(POP,) = Ksin(6,, — 6). (2.114)
PN is also given by
PN = PPysin(PByN) = rsin(6y — 6,,). (2.115)

Equating the above two expressions for PN,
Ksin(6,, — 6) = rsin(6y — 6,,)
or sm%—m:;m%—%)

:Qm%—m) (2.116)

Thus the true planet 8 can be obtained from the mean planet 8y from the above
equation. It may be noted that (2.116) does not involve the manda-karna K.

While commenting on these verses, the eccentric and epicyclic models are de-
scribed in Yukti-dipika. First, we give the verses explaining the eccentric model.
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The distance of separation between the planet and the uccasutra is the dorjya measured
with respect to the grahavrtta (the circle in which the planet moves). The kotijya is equal
to the distance of separation between the centre of the grahavrtta and the foot of the
dorjya on the uccasutra.

The distance of separation between the centres of the grahavrtta and the kaksyavrtta is
the antyaphala. The sphutakotika is obtained by adding or subtracting the antyaphala
to or from the kotlijya depending upon whether the foot of the dorjya is outside or in-
side the kaksyavrtta. The square root of the sum of the squares of the two [dorjya and
sphutakotika) is the distance of separation between the centre of kaksyavrtta and the
planet. This has to be understood as the karna measured in terms of the prativrtta.

In Fig. 2.12b, the circle centred around O’ is called the grahavrtta, or prativrtta
or pratimandala (the eccentric circle), and the one centred around O is the kaksya-
vrtta (the deferent circle). OU represents the direction of the mandocca. These
two circles, namely the grahavrtta and the kaksyavrtta, have the same radius and
their centres are displaced along the direction of the mandocca U. The dotted circle
with its centre at the centre of the kaksyavrtta is known as the karnamandala or
karnavrtta (hypotenuse circle). The distance of separation between the centres of
the grahavrtta and the kaksyavrtta is referred to as the antyaphala. If R is the
radius of the grahavrtta and (6y — 6,,) the manda-kendra, then the dorjya and
kotijya are given by

dorjya = PN = |Rsin(6y — 6,,)| (2.117)

and
kotijya= O'N = |Rcos(6p — 0,)|. (2.118)

The sphutakotika is defined by

sphutakotika = ON = kotijya 1, antyaphala
= |Rcos(8y — 6| L - (2.119)

It is stated that the ‘~” sign should be taken when both the edges of the dorjya
(points P and N in Fig. 2.12b) lie within the kaksyavrtta, and ‘+ when at least one
or both the edges of the dorjya lie outside the kaksyavrtta.

Actually, whether the ‘+’ or the ‘~’ sign has to be taken depends on whether P
lies above or below the straight line perpendicular to OU passing through O’, that
is, when (6y — 6,,) is in the first/fourth quadrants or in the second/third quadrants
respectively. If K represents the karna OP, then it is given by

17{TS 1977}, pp. 161-2.
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prativrtta
or
grahavrtta

S~ L kaksyavrtta

Fig. 2.12b Obtaining the manda-karna in the eccentric model.

K = opP
= (PN>+ ON?)2
[dor]ya + sphutakotika ]
1
[(Rsin(6 — 0x))* + (|[Rcos(6p — Om)| £ 7)?]?

1
(Rsin(6o — 6,))* + (Rcos(6y — 6,) + )] > . (2.120)

K can be determined using the above formula, or by using equation (2.112), which
are equivalent. This is explained in the following verses of Yukti-dipika:

mﬁm@saaﬂ%‘c«rﬁqﬁ |
maﬁmwmmm I

T ALFeHHh g F T |
Tq it gt qra: qqmﬁrﬁfﬁwﬁ I

18 {TS 1977}, p. 162.
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The distance of separation between the planet, and the line passing through the centre of the
kaksyavrtta and the centre of the uccanicavrtta (epicycle) which moves on the circum-
ference of the kaksyavrtta, is the dohphala. The distance of separation between the foot
of the perpendicular [of the dorjya] and the centre of the uccanicavrttais the kotiphala.
Depending upon whether the foot of the dohphala lies outside the kaksyavrtta or inside,
the kotiphala has to be added to or subtracted from the trijya. This gives the distance
of separation between the centre of kaksyavrtta and the foot of the dohphala. The square
root of the sum of the square of this (distance of separation) and the square of the dohphala
is the karna. In this way the karna can be obtained in two ways and it has to be iterated in
the case of the manda-samskara.

.20 AfAATFUTHITH
2.17 Obtaining the iterated hypotenuse

a:FIfeFaAge] Foid FBFeames & 189 1

Rt FO: qTEre: 7: Wﬁ[ |

AU PRIATARS TSI I 82 |

dohkotiphalanighnadye karnat trijgyahrte phale || 41 ||

tabhyam karnah punassadhyah bhayah parvaphalahatat|

tattatkarnat tribhajyaptaphalabhyamavisesayet || 42 ||

The dohphala and the kotiphala [initially obtained] are multiplied by the karna [obtained
from them] and divided by trijya. From these resulting phalas, the karna has to be ob-
tained again. Further, the previous phalas must be multiplied by the corresponding karnas

and divided by the trijya, and the process has to be repeated to get the avisesa-karna (the
hypotenuse which does not change on iteration).

It was shown earlier (2.112) that

K = [(R+1rcos(6p — 6,n))* + (rsin(6y — 6))?] 2, (2.121)

Here the radius of the epicycle r itself is proportional to karna K (2.113) and there-
fore needs to be determined along with K iteratively.

Procedure for finding the iterated hypotenuse

We explain the procedure for finding the iterated hypotenuse or avisesa-karna with
the help of Fig. 2.12a. Let R, r be the radii of the deferent circle and the epicycle
respectively. U OP, is the manda-kendra (6y — 6,,). The quantities rsin(6y — 6,,) =
PN and rcos(6y — 6,,) = PyN are referred to as the dohphala and kotiphala respec-
tively. Thus, in the first approximation, r is set equal to ro and the dohphala and
kotiphala are taken to be rgsin(6y — 6,,) and rycos(6y — 6,,) respectively. Let them
be denoted d; and k. The karna OP which represents the distance of the planet
from the centre of the kaksyavrtta is given by

Ki = [(R+k)*+d;] 2, (2.122)
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Here K| is the first approximation to the manda-karna. Then, the dohphala (d>)

and kotiphala (k) are obtained as follows:

K xd Ky xk
dy = 1; 1 ky = 1; I

The second approximation to the manda-karna, K, is given by

1
K> = [(R—i—kz)2 +d§] 2

Then, the dohphala (d3) and kotiphala (k3) are obtained as follows:

K, xd Ky xk
ds = 2; 1 ks = 2; I

The third approximation to the manda-karna, K3, is obtained by

K3=RR+hf+dﬂ5

(2.123)

(2.124)

(2.125)

(2.126)

The above process is carried out until K; ~ K;_1, to the desired accuracy. When this
happens, K; is referred to as the avisesa-karna. This avisesa-karna is to be used in

manda-samskara to obtain the manda-phala.

The rationale behind the iterative process used in obtaining the avisesa-karna is

explained in Yukti-dipika as follows:

AT =TT TENgAF A ETH |
TaRTF gl garaTTaRIeHAd |

hmaﬁ%ﬁmawﬁa I
L= a7 AfrsrTfRe
ﬁﬁﬁw%%mﬁ%wm ﬁ?ﬂﬂgﬁl I
mﬁmwﬁmﬁnﬁﬁmw

The manda-nicocca-vrtta (manda epicycle) is measured in terms of karpavrtta
(hypotenuse circle) because it is said to increase or decrease in accordance with the
karnavrtta. The tabulated value of the circumference of the manda circle is in the mea-
sure of the karnavrtta, when the manda-karna is taken to be the ¢rijya. When the karna
increases and decreases and this value is measured in terms of prativrtta, then the doh and
kotiphala have to be obtained from that karna. It is from them (doh and kotiphala) that
(the measure of manda-nicocca-vrtta) has to be obtained. This interdependence is elimi-
nated by doing an iteration, the avisesakarma. Multiplying the dohphala and kotiphala
by karna and dividing it by the ¢rijya [the new dohphala and kotiphala are determined].
With the ¢rijya and these, once again the karna has to be obtained as explained earlier.

Now,
V&R =n.

19 £TS 1977}, pp. 162-3.

(2.127)
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From Fig. 2.12a and the equivalent of (2.125) it can be seen that for any i,

Ki
\/df—i—kiz = Rl \/df+k% (2.128)
Ki1

= (2.129)

After a few iterations, the successive values of the radius and the karna start con-
verging. That is,

Va2 R~ Jd e

and K| ~K,—K.
Hence ’ 70
= . 2.130
K= R ( )

,,,,,,,,,,,,,,,,,,,,,, kaksya-mandala

Fig. 2.12¢ Variation of the epicycle with the karpa in the manda process and the avisista-
manda-karna.
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In Fig. 2.12¢, Py is the mean planet moving in the kaksyamandala with O as the
centre, and OU is the direction of the mandocca. Draw a circle of radius ry with P,
as centre. Let P; be the point on this circle such that PyP; is in the direction of the
mandocca (parallel to OU). Let O” be a point on the line OU, such that 00" = ry.
Join P{O" and let that line meet the kaksyamandala at Q. Extend OQ and PyP; so
as to meet at P. The true planet is located at P. Then it can be shown that OP = K
and PyP = r are the actual manda-karna and the corresponding (true) radius of the
epicycle as will result by the process of successive iteration.2? Since P,0" is parallel
to PyO, the triangles OPyP and Q0" O are similar and we have

r PP 0'0 ny
= = = . 2.131
K OP (0]0) R ( )

The process of successive iteration to obtain K is essentially the following. In trian-
gle OP, Py, with the angle P PyO = 180° — (69 — 6y,), the first approximation to the
karna (sakrt-karna) Ky = OP; and the mean epicycle radius ry = P; Py are related
by

K, = \/R2+r3+2r0Rcos(eo— On)- (2.132)
In the RHS of (2.132), we replace ry by the next approximation to the radius of the
epicycle
_ g (2.133)
R 1y .

and obtain the next approximation to the karna,

K = \/RZ + 72+ 2rRcos(6) — 6,). (2.134)

and so on. This process is iterated till K; and K;1 become indistinguishable, and
that will be the avisista-karna (iterated hypotenuse) K,?! which is related to the
corresponding epicycle radius r as in (2.133) by

_ g (2.135)
r = R . .

2.9¢ AAATFITTIT FFRT=H

2.18 Another method of obtaining the iterated hypotenuse

frgfteadFa o sifeFaae=gad |
Fs FEETT § G faudagar Haq O 1083 |

20 {MB 1960}, pp. 111-19.

2l The term wisesa means ‘distinction’. Hence, avisesa is ‘without distinction’. Therefore the
term avisista-karna refers to that karna obtained after doing a series of iterations such that the
successive values of the karna do not differ from each other.
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T g el smefafearstaaaso: @ |

gfa ar & qreg: AT TFHed ATIAWE: | 88 |
vistrtidaladohphalakrtiviyutipadam kotiphalavihinayutam|

kendre mrgakarkigate sa khalu viparyayakrto bhavet karnah || 43 ||
tena hrta trigyakrtih ayatnavihito'visesakarnah syat|

iti va karnah sadhyah mande sakrdeva madhavaproktah || 44 ||

The square of the dohphala is subtracted from the square of the ¢rijya and its square root
is taken. The kotiphala is added to or subtracted from this depending upon whether the
kendra (anomaly) is within 6 signs beginning from Karki (Cancer) or Mrga (Capricorn).
This gives the viparyaya-karna. The square of the trijya divided by this viparyaya-
karna is the avisesa-karna (iterated hypotenuse) obtained without any effort [of itera-
tion]. This is another way by which the [avi§esal-karna in the manda process can be
obtained as enunciated by Madhava.

A method to determine the manda-karna without an iterative process is dis-
cussed here. This method is attributed to Madhava of Sangamagrama, the
renowned mathematician and astronomer of the 14th century. A new quantity
called the viparyaya-karna or viparita-karna is introduced for this purpose. This
viparita-karna (‘inverse’ hypotenuse) is nothing but the radius of the kaksyavrtta
when the manda-karna is taken to be the trijya, R.

ucca-nica-vrtta U karnavrtta

S,
~~_ kaksyavrtta

Fig. 2.13a Determination of the viparita-karna when the kendra is in the first quadrant.

The rationale behind the formula given for wviparita-karna is outlined in the
Malayalam text Yuktibhasa, and can be understood with the help of Figs. 2.13a
and b. In these figures Py and P represent the mean and the true planet respectively.
N denotes the foot of the perpendicular drawn from the true planet P to the line
joining the centre of the circle and the mean planet. NP is equal to dohphala. Let
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the radius of the karnavrtta OP be set equal to the trijya R. Then the radius of
the uccanicavrtta PyP is ry, as it is in the measurement of the karnavrtta. In this
measurement, the radius of the kaksyavrtta OPy = R,, the viparita-karna, and is
given by

R, = ON £ PPN

= /B2~ (rosin(8 — 6:))? + rocos(6 — 6,,)]. (2.136)

karnavrtta

ucca-nica-vrtta

Fig. 2.13b Determination of the viparita-karna when the kendra is in the third quadrant.

b}

Here we should take the ‘—’ sign when the manda-kendra is in the first and
fourth quadrants 270 < (6p — 6,,) < 90 and the ‘+’ sign when it is in the second and
third quadrants 90 < (6p — 6,,) < 270. When the radius of the kaksyavrtta is the
trijya R, the value of manda-karnais K, and when the radius of the manda-karna
is R, the radius of the kaksyavrtta is R,. Hence

K R
R R,
R2
K = . 2.137
or R, ( )

Thus the avisista-manda-karna, also referred to as the avisesa-karna, is given by

t ve  — 2
aviSesa-karna = rga . (2.138)
viparyaya-karna

Since ry is a known quantity, for any given value of (6y — 6,,) R, can be determined
from (2.136). Once R, is known, using (2.137) the avisista-manda-karna, K, can
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be found in one step without resorting to the tedious iterative process described in
the previous section for its computation.

The formula for the viparita-karna in (2.136) can also be understood from the
geometrical construction in Fig. 2.12¢. As the triangles OPyP and OT Q are similar,

OT  OPR
00 OP
R2
or OT="_, (2.139)
K

as 0Q = OPy = R. Hence the viparyaya-karna R, = OT. Also,
QTS =UOPy = 6y — 6. (2.140)

Hence, QS = rosin(6y — 6,,) and ST = rycos(6y — 6,,). Now

OT = 0S— ST
= /002 —SQ2— ST
_ \/R2 — 2sin(8p — By) — rocos(6p — B, (2.141)

which is the same as (2.136).

2.9% AfAATFIT HFEFCTHTIH

2.19 Correcting the Sun using the iterated hypotenuse

Frsamdr anfon: Fohae: TEeHSIT |
agT: W@'ﬂ:ﬁ'ﬂmq’%ﬁ TFCH I 8y |

trijyaghno dorgunah karnpabhaktah sphutabhujagunah |
taddhanuh samskrtam svoccam nicam va yuktitah sphutam || 45 ||

The true dorjyais [equal to] the dorjya multiplied by the ¢rijya and divided by the karna.
The arc of this appropriately applied to the ucca or nica gives the true position [of the
planet].

This can be explained from Fig. 2.14a. Let ¢ = POU be the difference (6 — 6,,)
between the manda-sphuta and the ucca. Now

PN = PyNy,
or Ksing = Rsin(6y — 6,,). (2.142a)
Hence

R
Rsin¢ = Rsin(6y — Gm)K,

or ¢ = (Rsin") [Rsin(@o - 9’”)II§] . (2.142b)
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ucca-nica-vrtta

kaksyavrtta

Fig. 2.14a The true position of the planet from the ucca and nica.

Then the true planet (I" OP) is obtained as

roP=T0U+¢
= ucca+@. (2.143)

2.20 ATFET THAATTITH
2.20 Obtaining the mean Sun from the true Sun

FFEEFSATG TFATq WHAAETS faggar: |
Wﬁmawﬁﬂnﬁﬁmwﬁﬁﬁ I 88 |
AT FANMRIT J TRT: T HSTavar aq |
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749 Fd G 7 o 14 ue grafeetfus =g g
AT FATA FICIO ITH @A TR FIfe: |
qﬁﬁwﬁmw&%wﬁqﬁwﬁ Il yo |

arkasphutenanayanam prakuryat svamadhyamasyatra viturigabhanoh |
bhujagunam kotigunam ca krtva mrgadikendre'ntyaphalakhyakotyoh|| 46 ||
bhedah kuliradigate tu yogah tadvargayuktat bhujavargato yat|

padam viparyasakrtah sa karnpah trijyakrtestadvihrtastu karnah || 47 ||
tenahatamuccavihinabhanoh jiwam bhajed vyasadalena labdham |

svocce ksipeccapitamadyapade cakrardhatah Suddhamapi dvitiye|| 48 ||
cakrardhayuktam tu trtiyapade samsodhitam mandalatascaturthe |
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evam krtam suksmataram ht madhyam purvam padam yavadihadhikam
syat|| 49 ||

antyat phalat kotigunam caturtham tvarabhyate yadyadhikatra kotih |
sarvatra viskambhadalam $rutau va vyasardhake syadviparitakarnah|| 50 ||

The mean position of the Sun has to be obtained from the true position [as follows]. Hav-
ing subtracted the longitude of the apogee from the true Sun, the dorjya and kotijya are
obtained. When the manda-kendra lies within the six signs beginning from Mrga, the
difference between the antyaphala and the kotijya has to be taken, and when it is within
the six signs beginning from Karka, their sum has to be taken. The square root of the sum
of the square of this and the square of the dorjya is the viparita-karna. The square of the
trigya divided by this viparita-karna is the karna.

This (karna) is multiplied by the dorjya obtained by subtracting the longitude of the
apogee from the Sun, and divided by the trijya. The arc of the result has to be applied
positively to the longitude of the mandocca when the manda-kendra is in the first quad-
rant. 180 minus the arc, 180 (cakrardha) plus the arc and 360 minus the arc have to be
applied to the mandocca when the manda-kendra lies in the second, third and fourth
quadrants respectively. The mean longitude obtained thus is accurate. In the first quadrant
the kotijya is greater than the antyaphala. [Similarly] the fourth quadrant is said to com-
mence when the kotiphala becomes greater than the antyaphala. Always the karna bears
the same relation to the trijya as the trijya to the viparita-karna (inverse hypotenuse).

Normally the texts present the procedure for determining the true position of
a planet from its mean position. The above set of verses present a procedure for
solving the inverse problem, namely finding the mean Sun from its true position.
We explain this procedure with the help of Fig. 2.14b. Here, the longitudes of the
mean Sun, the true Sun and the ucca (apogee) are given by

6y = T'OPy = PO'P

6 =T OP
and 6,=T0U =I'0'U, (2.144)
respectively. Further,
6 —6,, = NOP
6y — 6, = NO'P = NOP,. (2.145)

Also, the avisista-manda-karna (iterated manda hypotenuse) K = OP and the
vyasardha R = OPy = O'P. The true epicycle radius r = 00'.

The word antyaphala used in the above verse has a special significance whose
relation with the manda-karna may precisely be expressed as follows:

ro R R ’
tyaphala=ro= "r= _r= _.00". 2.146
antyaphala = ry - r % r % ( )
Now,
dorjya = RsinNOP = K sinNOP

~ mR x

R
Ksin(6 — 6,,) = K.PN
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Fig. 2.14b Obtaining the madhyama (mean position) from the sphuta (true position).

kotijya = RcosNOP = K cosNOP

L E

R
= _.Kcos(0—06,)= K.ON. (2.147)

Hence the difference between the kotijya and the antyaphala is given by

kotijya — antyaphala = Rcos(0 — 6,,) —ro
R
= ON — 00’
K )
R
= .ON. 2.148
K ( )
Therefore,
L o R
\/(komya — antyaphala)? + (dorjya)? = K VO'N2 + PN2
R /
= .OP
K
R2

= & (2.149)
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The expression obtained above is the same as the viparita-karna R, appearing
in (2.136). Now, using (2.147) and (2.148), this may be expressed as

R, = \/(RCOS(G — By) —10)2 + R2sin*(6 — 6,). (2.150)

Since the positions of the ucca and the true planet are known, R,, can be determined.

Also, the manda-karna K = Ilgi can be determined from 6 — 6,,. Now

PN = Ksin(0 — 6,,)
= O'Psin(NO'P)
— Rsin(6y— 6,). (2.151)

Hence

madhyama — ucca = 6y — O,

= Rsin™! [R sin(6 — 6,,) I;] ) (2.152)

From this madhyama — ucca is obtained. When this is added to the ucca, the mad-
hyama is obtained. When sphuta — ucca is positive, O'N = kotijya — antyaphala.
In the above, it is Rsin (madhyama — ucca) which is found first in terms of
Rsin(sphuta — ucca). The quadrant in which (madhyama — ucca) lies can be de-
termined without any ambiguity from the geometry.

When it is in the second or third quadrants, Rcos(sphuta — ucca) is negative
and O'N = kotijya+ antyaphala. Of course, in all cases, the formula for R, given
above is valid. Now, when the true planet is to be found from the mean planet, it is
not necessary to calculate the manda-karna K. However in the reverse case, when
the mean planet is to be found from the true planet, it becomes necessary to first
calculate K.

An elaborate explanation for the above verses is to be found in in Yukti-dipika.

ﬁ % f? T i‘ .E‘a\ﬂ:\l
ﬁmaﬁjﬁeﬁ@’fwﬁ—«rmm I
FOTATY Ul TTq W TaAfagy |
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In the karnavrtta the jya of the difference between the longitude of the true planet and
its mandocca corresponds to the dorjya in its own measure. The distance of separation
between the point of intersection (N in the Fig. 2.14b) of the jya with the uccasutra (the
apsis line) and the centre of the karnavrtta (O) corresponds to the kotijya (ON). The
sum or difference of the antyaphala (00') with this kotijya, as the case may be, gives
the distance of separation between the centre of the pratimandala and the foot of the
dorjya (N). The square root of the sum of the squares of this (O’N) and the dorjya (PN)
gives the distance between the centre of pratimandala and the planet. This is the radius
of the pratimandala in the measure of the karnavrtta. The radius of the prativrtta with
respect to its own measure is the ¢rijya. This (trijya) will be the vyasta-karna (inverse-
hypotenuse) in the measure of the karnavrtta. When the vyasta-karna is set equal to the
trigya, then the actual karna will be smaller or larger than that. Thus by the rule of three
the true manda-karna is obtained.

The dorjya obtained by subtracting the mandocca from the true Sun is multiplied by the
manda-karna and divided by the trijya. Or the trijya multiplied by the dorjyais divided
by vyasta-karna. The arc of this is applied positively or negatively to the mandocca to
get the mean Sun. It is to be understood that whatever is the relation between the vyasta-
karna and the trijya, the same relation is valid between the ¢rijya and the manda-karna.
This is the reason why the manda-karna is obtained from the vyasta-karna by the rule
of three.

As the true position of the planet is obtained from the mean position just by finding the
dohphala, the mean position is obtained from the true position by multiplying [the dorjyal
by the manda-karna and dividing by the ¢rijya. Then the dorjya obtained by subtracting
the mandocca from the true Sun is multiplied by the manda-karna and divided by the
trigya. The arc applied to the mandocca of the Sun will give the position of the mean
Sun. Depending upon the quadrant, the same arc has to be applied to the mandocca after
subtracting it from 180°, or adding 180° to it or subtracting it from 360°.

The procedure stated here is a slight variant of the one described earlier. Here,
PN, ON and OO’ are the dorjya, the kotijya and the antyaphala respectively in
the measure of the karpavrtta and are equal to Rsin(6 — 6,,), Rcos(6 — 6,,) and ry
in the same measure. In this measure, the radius of the pratimandala, O'P, is the
vyasta-karna or viparita-karna, R,, given in (2.136). Then the manda-karna, K,
in the measure of the pratimandala (when the radius is R, as usual) is determined

from
K R

R R,

and madhyama — ucca is obtained as earlier.

(2.153)

22 {TS 1977}, pp. 165-6.
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2.21 Another method for getting the mean planet from the true

planet

drar FfFgtear fafamaaraa #9 g |
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arkendvoh sphutato mrduccarahitat dohkotijate phale
nitva karkimrgadito vinimayenaniya karnam sakrt |
trigya dohphalaghatatah $rutihrtam capikrtam tat sphute

kendre mesatuladige dhanamrnam tanmadhyasamsiddhayel|| 51 ||

Subtracting the longitude of their own mandoccas from the true positions of the Sun and
the Moon, obtain their dohphala and kotiphala. Find the sakrt karna (one-step hy-
potenuse) once by interchanging the sign [in the cosine term] depending upon whether the
kendra is within the six signs beginning with Kark: or Mrga. Multiplying the dohphala
and triyjya, and dividing this product by the karna [here referred to as $ruti], the arc of
the result is applied to the true planet to obtain the mean planet. This arc has to be applied
positively and negatively depending upon whether the kendra lies within the six signs be-

ginning with Mesa or Tula respectively.

Now,

bahuphala = rosin(0 — 6,,)
kotiphala = rocos(0 — 6,,).

(2.154)

Taking the one-step karna (sakrtkarna) with the opposite sign in the kotiphala, we

have

karnpa = [(R — rocos(8 — 6,,))* + (rosin(6 — 6,,))?] .

(2.155)

This is the same as the viparita-karna R, given by (2.150). In Fig. 2.14b, draw O'T

perpendicular to OP. Then in triangle O'PT,
O'T = O'Psin(0'PT)
= O'Psin(POPy)
= Rsin(6y — 0).
Also O'T =rsin(6 —6,,).
Equating the above two expressions for O'T,
Rsin(6y — 0) = rsin(6 — 6p)

R
or  Rsin(6)—60) = rysin(6 — GO)R ,

where we have used (2.135) and (2.153). Hence,

(2.156)

(2.157)

(2.158)



114 TR TR IUTH True longitudes of planets

o ~

R
06— 0= (Rsin)_l {rosin(G—GO)R ] . (2.159)
v
Thus the mean planet 6y can be obtained by adding the above difference to the true
planet 6. 8y — 0 is positive when the kendra (anomaly) 6 — 6, is within the six
signs beginning with Mesa, i.e. 0° < 8 — 6,, < 180°, and negative when the kendra
is within the six signs beginning with Tula, i.e. 180° < 6 — 6,, < 360°.

2.22 ARFUTIY THRI=H
2.22 Another method for getting the manda-hypotenuse

HoAd: Teadrd JfErn agst 39 |
TRTATIT TS gar=arar ZIaEFer 1| ¥a |

madhyatah sphutatascoccam ujjhitva tadbhuje ubhe |
grhitvadya tayostrijya hatanyapta srutisphutal| 52 ||

Subtracting the mandocca from the mean and the true positions separately, obtain the two
dorgyas. Of these, the former multiplied by the trijya and divided by the latter gives the
exact value of srutisphuta (avisista-manda-karna).

In Fig. 2.14b, Rsin(6y — 6,,) and Rsin(6 — 6,,) are the dorjyas corresponding to
the manda-kendras of the mean and true planet respectively. It is noted from the
figure that

PN = Ksin(0 — 6,,)
= Rsin(6y — 0,,). (2.160)
Hence,

Rsin(6y — 6,,)
Rsin(0 — 6,,)
trijgya x adya

K =Rx

or Sruti = (2.161)

anya

where adya and anya refer to Rsin(6y — 6,,) and Rsin(6 — 6,,) respectively, and the
avisista-manda-karna is termed the srutisphuta here.

2.23 TEATeh I Ia:

2.23 Instantaneous velocity of a planet

TFAEFG aNSIdEAF TR aTeT T |
T BT FTEa F5frNE a9 & 1 ¥3 |
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afgarer genfes T faraafae g F#Fermes |
TEIEFCaT AT TEHAST T 1| 98

candrabahuphalavargasodhitatrijyakakrtipadena samharet |

tatra kotiphalaliptikahatam kendrabhuktirihayacca labhyatel|| 53 ||
tadvisodhya mrgadike gateh ksipyatamiha tu karkatadike |
tadbhavetsphutatara gatirvidhorasya tatsamayagja raverapi|| 54 ||

Let the product of the kotiphala (in minutes) and the daily motion of the kendra be di-
vided by the square root of the square of the bahuphala of the Moon subtracted from the
square root of the trijya. The quantity thus obtained has to be subtracted from the daily
motion [of the Moon] if [the kendra lies within the six signs] beginning from Makara and
is to be added to the daily motion if [the kendra lies within the six signs] beginning from
Karkataka. This will be a far more accurate (sphutatara) value of the instantaneous ve-
locity (tatsamayaja gati) of the Moon. For the Sun also [the instantaneous velocity can
be obtained similarly].

The bahuphala (or dohphala) and kotiphala are given by

bahuphala = rosin(6y — 6,,)
and kotiphala = rycos(6y — 6y,), (2.162)

where 0y — 0, is the manda-kendra; 6y and 6,, represent the longitude of the Moon
and its mandocca respectively (see Fig. 2.12a). The term kendrabhukti refers to the
daily motion of the kendra given by

A(6)— )

kendrabhukti = At ,

(2.163)
where At refers to the time interval of one day and A(6) — 6,,) represents the dif-
ference in the daily motion of the Moon and its mandocca. As the mean longitude
and mandocca increase uniformly with time,

A

o\, (60— 6), (2.164)

d

6)—6,) =
dt( 0= 6n)
is a constant. It is stated here that a correction term has to be added to the above
kendrabhukti to obtain a more accurate value of the rate of motion of the kendra.
The correction factor is stated to be

kotiphala x kendrabhukti  rocos(8p — em)A(GOA:GM)

=— (2.165)
\/(trijyd2 — bahuphala?) \/R2 — rgsin®(6y — 6,)

Further, it is mentioned that the correction term is to be subtracted from the
kendrabhukti when 6y — 6, is in the first and fourth quadrants (Mrgadi) and it
is to be added when it is in the second and third quadrants (Karkads). This accounts
for the negative sign in the RHS of the above equation (2.165).

Now the manda-kendra of the Moon’s true longitude is given by
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0—06,=(60—A0)—06,,
where the manda correction A0 is given by

AB =sin! (2 sin(6p — Gm)>, (2.166)

as explained earlier. Hence,

0 — 6 —sin! (;g sin(6p — em)) . (2.167)
Therefore,
d o de() d . —1 ({70 . )
dte = u 4@ sin (R sin(6p — 6,)

_ dfy rocos(6y— Om)d(eo[;,em> (2.1680)

AR~ R sin® (6 — 6,)

It may be mentioned here that in the case of all the planets, except the Moon, the
rate of change of the mandocca is extremely small and can be neglected. That is,
4% ~ 0. Then the above equation reduces to

rocos(6y — 6,)

- 1— (2.168b)
dr dr \/R2 —r} sin(6p — 6,)

Note:

1. Itis remarkable that the author in this verse gives the correct form for the deriva-
tive of the inverse sine function. In his Jyotirmimamsa, Nilakantha mentions
that this verse is due to his teacher Damodara.

2. The differentials of the sine and cosine functions were used in Indian astron-
omy at least from the time of Manjulacarya in his Laghu-manasa. Bhaskara I1
clearly makes use of them in his Siddhantasiromani.

3. The significance of this verse lies in the fact that it is for the first time that the
derivative of the arcsine function is being considered here in the context of dis-
cussing the tatkalika-gati or instantaneous rate of motion of the planet.

2.28 TgAfATITH
2.24 Finding naksatra and tith:

fordrgar faamams: gawisaref: ve9q |
=TI Jife | 8T £ TAE | vy |
TO=eA-TSl: & ThFeHaedray: |
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T faamamy: fordrea frsaa 1 s
greaTfaTddoredT: faerat ar aar: Far |
AT ATST: ¥: BT gl AT | Yo |l
faremigmeenta #wonfa garfea: |

faearfor faq ot egmoafad fag: 1ve
fasFmIR Wi FemgTETdEan: |
Hferga wasanar wfegnar 9 aIfs®r: 19g

P

liptikrto nisanathah Satairbhagyostabhih phalam |

asvinyadini bhani syuh sastya hatva gatagate || 55 ||

gatagantavyanadyah syuh sphutabhuktyodayavadheh |

arkahino nisanathah liptikrtya vibhajyate || 56 ||

Sunyasviparvatairlabdhah tithayo ya gatah kramat |

bhuktyantarena nadyah syuh sastya hatva gatagate || 57 ||
tithyardhaharalabdhani karanani babaditah |

virapant site pakse sarupanyasite viduh || 58 ||

viskambhadya ravindvaikyat yogascastasatihrtah |

bhuktiyuktya gataisyabhyam sastighnabhyam ca nadikah || 59 ||

The longitude of the lord of the night (the Moon) in minutes is divided by 800. The quotient
gives the number of naksatras that have elapsed beginning from the Asvini naksatra.
The remainder [which corresponds to the minutes covered by the Moon in the present
naksatra] and the one which has to be covered multiplied by 60 and divided by the daily
motion of the Moon [in minutes] at sunrise gives the nadikas that have elapsed and are
yet to elapse in the present naksatra. The longitude of the Sun subtracted from that of the
Moon, in minutes, is divided by 720’. The quotient gives the number of tithis elapsed. The
remainder and the quantity obtained by subtracting the remainder from 720, multiplied by
60 and divided by the difference in the daily motion of the Sun and the Moon, gives the
number of ghatikas that have elapsed and are yet to elapse in the present tithsi.

The same (difference in longitude between the Sun and the Moon) divided by half the
divisor used in the t¢iths calculation gives the number of karanas elapsed, starting with
bava. In the bright fortnight the karanas are without form and in the dark fortnight with
form. The sum of the longitudes of the Sun and the Moon [in minutes] divided by 800
gives the yogas, starting with the viskambha. The remainder and the quantity obtained by
subtracting the remainder from 800, multiplied by 60 and divided by the sum of the daily
motion of the Sun and the Moon, gives the number of ghatikas that have elapsed and are
yet to elapse in the present yoga.

The ecliptic is divided in to 27 equal parts called naksatras beginning with
Asvini and ending with Rewvati. Hence each maksatra corresponds to 2126700 =
800 minutes, along the ecliptic. The naksatra at any instant refers to the particular
portion of the ecliptic in which the Moon is situated. Clearly, when the longitude of
the Moon in minutes is divided by 800 the quotient gives the number of naksatras
which have elapsed and the remainder corresponds to the minutes covered by the
Moon in the present naksatra. When this is divided by the daily motion of the
Moon in minutes at that time (taken to be the value at sunrise) and multiplied by 60,
the result gives the ghatikas that have elapsed in the present naksatra. Similarly the
ghatikas yet to elapse in the present naksatra can be calculated.

A tithi is the (variable) unit of time during which the difference between the
longitudes of the Moon and the Sun increases by 12° or 720’. Hence there are 30
tithis during a lunar month. Hence, when the difference in longitudes of Moon and
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the Sun in minutes is divided by 720/, the quotient gives the number of tithis elapsed
in that month. The number of ghatikas (nadikas) which have elapsed and are yet to
elapse in the present tithi are calculated in the manner indicated.

A karana is half a tithi by definition and there are 60 karanas in a lunar month.
The number of karanas that have elapsed can be calculated in the same manner as
the number of tithis, except that the divisor is 360’ instead of 720’

There are two types of karanas, namely cala (movable) and sthira (fixed). In
this context these terms are used to mean repeating and non-repeating karanas. Of
the 11 karanas, 7 are repeating and 4 are non-repeating. The 7 cala-karanas (mov-
ing karanas) have 8 cycles, thus forming 56 karanas. The 4 sthira-karanas (fixed
karanas) occur just once each in a lunar month. The moving and fixed karanas
together make up 60 karanas in a lunar month.

The names of the karanas and the pattern in which the cala and sthirakaranas
occur are given in the following verses, quoted in Laghu-vivrti:

JEAG IR GG IFA O g ATaT S |

forarareaTRTT 2 TREd=ISE Farsa: |

wd forerds=ar A fawgy: wfauererd o

The karanasnamed baba, balava, kaulava, taitila, gaja, vanija and vistirepeat them-
selves eight times from the later half of the first ¢ithi, prathama, of the bright fortnight.
Sakunioccurs in the later half of the caturdasvof the dark fortnight, catuspada and naga

in the first and second halves of [the following] amavasya and kimstughnain the first half
of the prathama of the bright fortnight.

Saikara Variyar also quotes the following verses which give the different names
of both moving and fixed karanas. The moving karanas are: simha, vyaghra,
varaha, khara, ibha, pasuand visti. The fixed karanas are: paksi, catuspat, naga
and kimstughna.

T FITIRTRI=aTITe F0 Hee:
fo@r aam ey EeayaE: |
EEICGRIEIRE R ERSEE e G R E

The yogas involve the sum of the longitudes of the Sun and the Moon. There are
27 yogas in a 360° (21600’) cycle, each yoga corresponding to 800’. The number
of yogas that have elapsed and the minutes or ghatikas that have elapsed and are
yet to elapse in the present yoga are calculated in the same manner as in the case of
the tithis, except that the sum of the longitudes of the Sun and Moon and the sum
of their daily motion are involved here. In Laghu-vivrti, the names of the yogas are
listed in the following verses:

TFTHEFCHAN FBT THTCHET:
ﬁmﬁfﬁrmmﬁmmsﬁmmn

23 The incorrect reading m in the printed edition ({TS 1958}, p. 40) has been
modified as above.
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Ffaros: gt T yfa: 96 aua T |

When the longitude of the Sun and the Moon are added the dasradikarakas are seen.
They are: viskambha, priti, ayusman, saubhagya, sobhana, atiganda, sukarma,
dhrti, sula, ganda, vrddhi, dhruva, vyaghata, harsana, vajra, siddhi, vyatipata,
varwan, parigha, Siva, siddha, sadhya, Subha, subhra, brahma, mahendra and
vaidhrti.

2.2y TR TF:

2.25 The scheme of correction for the planets

AT §Y [AH< AW T@ATE AT |
aﬁrrra‘a‘ﬁrm%w’mﬁ?ﬁuﬁﬁ? Il go I

mandam Saighram punarmandam Saighram catvaryanukramat|
kujagurvarkajanam hi karmanyuktani suribhih || 60 ||

The earlier acaryas have stated that manda, $ighra, and again manda and sighra are
the four corrections which have to be applied in sequence to the planets Mars, Jupiter and
Saturn [to obtain the true longitudes of the planets from their mean longitudes].

Though there are essentially only two corrections, namely manda and Sighra
for the actual planets, that is Mercury, Venus, Mars, Jupiter and Saturn, the actual
computation of their longitude involves a four-step procedure in most Indian texts.
Nilakantha, as we shall see below, prescribes this four-step process only in the case
of the exterior planets, Mars, Jupiter and Saturn. The actual procedure prescribed in
Tantrasangraha is described in the next few verses.

2.5 FEHTEFCIHTIH
2.26 The correction for Mars, Jupiter and Saturn

FIfCSATEATI WR/EAT |
gﬁﬁmmmﬁ%ﬁw 1&g |
TaTIrET gty &N A eSar: |
mmmﬁ.muﬁmnaa I
T faaramenTe, orereTd aTEhie s |
aﬁwm&ﬁam ﬁmmaiﬁ &3 I
mﬁmamﬁwaﬁml
ﬁm%wsﬁwsﬁmx ﬁmﬁw I &8 I
e AT o et v 39 |
TG Y9aq 9 TFcFaryd hFEH 18y |
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frsarg FohE aq agTReHT T |

HOH AT  Tpdrdl [ouaad | & |

A=<Id TG Fod FATT FIATAH |

T, gy WRIRTra Juas i o |

FAATR T Fdd TFG WG TFe: T F |
dohkotijyastamamsau khakhabdhyamsonau Saneh phale |
dorjya trijyaptasaptaikyam guno mande kujedyayoh || 61 ||
navagnayo dvyasitisca harau dohkotijivayoh |

prthaksthe madhyame karyam dohphalasya dhanurdalam || 62 ||
ravimadhyam visodhyasmat prthaksthat bahukotike |

anwya bahujiwayah trigyaptam gurumandayoh || 63 ||
sodasabhyo navabhyasca kujasyapi svadorgunat |

trijyaptam dvigunam Sodhyam trisubhyah Sisyate gunah || 64 ||
asitireva tesam hi harastabhyam phale ubhe |

antya purvavat karnpam sakrtkrtvatha dohphalam || 65 ||
trijyaghnam karnpabhaktam yat taddhanurdalameva ca |
madhyame krtamande tu samskrtyato visodhayet || 66 ||
mandoccam tatphalam krtsnam kuryat kevalamadhyame |
tasmat prthakkrtacchaighram pragvadaniya capitam || 67 ||
krtamande tu kartavyam sakalam syat sphutah sa ca |

One-eighth of the dorjya and kotijya (sine and cosine of the manda-kendra), diminished
by one-fortieth of the same, form the dohphala and kotiphala in the case of Saturn. The
dorjya divided by the trijya and added to 7, forms the guna (multiplier) for Mars and
Jupiter. 39 and 82 are the hara (divisor) for Mars and Jupiter respectively. Half of the arc
of the dohphala has to be applied to the mean longitude of the planet (7)) to get the first
corrected longitude (P;).

Subtracting the longitude of the Sun (the sighrocca) from this (P}), the dorjya and kotijya
are obtained. Dividing the dorjya by the trijya and subtracting from 16 and 9, we get
the multipliers for Jupiter and Mars respectively. The same (dorjya) multiplied by 2 and
subtracted from 53 forms the multiplier for Mars.

80 is the divisor for all of them (in the Sighra-samskara). From them (the multiplier
and divisor of all the three planets) after obtaining the dohphala and kotiphala, and the
sakrtkarna (once calculated hypotenuse), half of the dohphala multiplied by the trijya
and divided by the karna is applied to the first corrected longitude (P;). (The longitude thus
obtained is, say, P».) From this (P,), let the mandocca be subtracted and the full manda-
phala be obtained; let that be applied to the original mean planet (P to get say P;). From
that (P3) let Szghra-phalabe obtained as before, and let this be applied fully to the manda-
corrected planet (P3). The longitude obtained thus is the sphuta (the true longitude of the
planet).

A detailed and comprehensive discussion of the planetary model, and the geo-
metrical picture implied by it in the traditional scheme, as well as the modification
introduced by Nilakantha, can be found in Appendix F. Here and in the following
sections we confine our explanation mainly to the computational scheme described
in the verses of the text.

The computation of the manda-sphuta has already been described in the earlier
verses in this chapter. Let 6, 6,,, 6,,; be the mean longitude and the longitudes of
the mandocca and the manda-sphuta respectively. Also let R, r and K be radii of
the deferent circle (t¢rijya), the epicycle and the manda-karna-vrtta respectively. r
is proportional to K and ; = "9 where, ry is the tabulated value of the radius of the
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epicycle. Then 6,,; — 6y is found from

Ksin(6y,s — 6p) = —rsin(6y — 6,,)
or  Rsin(Bs — ) = —Ir(Rsin(Go —6,)

- };JRsin(Oo —8,). (2.169)

Rsin(6y — 6,,) is the dorjya, rosin(6y — 6,,) is the dohphala and 6y ~ 6, is the ‘arc’
of the dophala. In the above verses Zg for Saturn, Mars and Jupiter are specified to
be

- 11 39
Saurn) =  — . = 2.170
g B = ¢ = 200 = 320 (2.170)
7+ |sin(6y — 6,
2 (Mars) — +|Smgg‘) 2l 2.171)
7+ |sin(6p — 6,
and ;g (Jupiter) = + smé 20 ) . (2.172)

Note that ry is not constant for Mars and Jupiter, but varies with the manda-kendra,
6o — 6,,. When 6,,; — 6y, found from the above equation, is added to 8, we obtain the
manda-sphuta-graha (manda-corrected planet) 6,,;. The true geocentric longitude
of the exterior planets is obtained from the manda-sphuta 68,5 as follows.

Fig. 2.15 Obtaining the sphuta-graha (geocentric longitude) from the manda-sphuta-graha
(true heliocentric longitude) in the case of exterior planets .
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In Fig. 2.15 the $ighra-nicocca-vrtta or sighra-vrtta or sighra-circle is a circle
with the bhagolamadhya (the centre of the Earth) as the centre at O. The radius
of this circle is the sigrantyaphala ry. The Sighrocca S, which is the mean Sun, is
located on this circle. The planet P is located on the manda-karna-vrtta of radius
K with S as the centre, such that 6,,, = 'SP is the manda-sphuta-graha. Then
the Sizghra-sphuta (Stghra-corrected planet) is found in the same manner from the
manda-sphuta as the manda-sphuta is found for the mean planet, the madhyama-
graha.

Let 6, be the longitude of the sighrocca. Thatis, O =I" OS. Also from the figure,

Stghrocca Oy = I' SB
manda-sphuta B,y = rsp
Sighra-sphuta @ = T'OP. (2.173)

Therefore
0SC = PSB = 6,,, — 6. (2.174)

Further,

Sighrabhugjaphala OC = rysin(0OSC)

=Ty Sin(ems - 9&)
Sighrakotiphala SC = rycos(0ps — 0y). (2.175)
Hence the sighra-karna (Sighra-hypotenuse)
Ky = OP =\ (K 41,0088y — 6,))2 + 25in* (6 — 6)). (2.176)
It can be easily seen that
OPC=6,,—6. (2.177)
Also from the triangle POC,
OPsinOPC = OC. (2.178)

Now using (2.175) to (2.177) in the above equation we have
Ks‘ Sin(ems - 9) =T Sin(ems - 9&)
R
or Rsin(6,s — 0) = K rssin(6,,s — 0;). (2.179)

)
The arc corresponding to 6,,; — 0 is found from this. Subtracting 6,,; — 6 from the
manda-sphuta 6,5, we obtain the Sighra-sphuta 6. Here 6, is the true longitude
of the planet with respect to S, which is taken to be the mean Sun. Hence 6, is
essentially the true heliocentric longitude of the planet. So the true geocentric lon-
gitude O is obtained from the true heliocentric longitude 8,,; using the above proce-
dure. Now,
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Sighra-kendradorjya = Rsin(6,,s — 6;) (2.180)
stghrabhujaphala, rgsin(6,,; — 65) = s Rsin(6,,, — 6y), (2.181)
g ;jap R

where $ighra-kendradorjya is the Rsine of the sighra-anomaly (anomaly of con-
junction). In the $ighra-samskara, the value of ry is given in the text. Unlike in the
calculation of the manda-sphuta, where the manda-karna K does not appear, here
the Sighra-karna does appear in the computation of the Sighra-sphuta.

The values of '3 for Mars, Jupiter and Saturn are given in the above verses as
follows:

s

53 —2[sin(6; — 65)

R (Mars) 20 , (2.182)
16 — | sin(6ys — 6.

2 (Jupiter) = |Smé . 2 (2.183)
9 — | sin(Bys — 6

2 (Saturn) = |Sm(8 . ol (2.184)

Planet Range of ratio '3 Average value

(modern)
Mars  0.637-0.662 0.656
Jupiter  0.187-0.200 0.192
Saturn ~ 0.100-0.115 0.105

Table 2.3 The range of variation in the ratio of the Earth—Sun to the planet—Sun distances for the
exterior planets.

The range of variation of s as obtained from the above equations along with the
average value of the ratio of the Earth—Sun and planet—Sun distances as per modern
astronomy are listed in Table 2.3. In Fig. 2.15,

Earth-mean Sun distance s (2.185)
planet-mean Sun distance K’ '

where K varies depending upon the manda-sphuta-graha or the true heliocentric
longitude. Taking the mean value of K to be R, the ratio would be ;g, which still
depends upon (6,,; — 6;). Even then, '3 is always close to the average value of the
ratio of the Earth—Sun and planet—Sun distances for each planet according to modern
astronomy.

Aryabhatiya-bhasya and Yuktibhasa discuss the geometrical picture in detail.
However they do not mention that '3 is the ratio of the physical Earth-Sun to
planet—Sun distances. There is an important later work of Nilakantha, namely
Grahasphutanayane viksepavasana, which indeed mentions this explicitly. This
is discussed in detail in Appendix F.

The procedure for obtaining the sighra-sphuta of these three planets, given in the
above verses, is not a straightforward, two step process of (i) obtaining the manda-
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sphuta first from the mean planet and then (ii) obtaining the sighra-sphuta from the
manda-sphuta. Instead, the following four-step procedure is prescribed:

1. Obtain the manda-phala from the mean planet 8y. Apply half of this manda-
phala to By to obtain the first corrected planet P;.

2. Find the $ighra-sphuta taking Py as the manda-sphuta, using (2.179). Here it
is understood that in the calculation of the Sighra-karna, the manda-karna is
replaced by the trijya R, so only the Sighra-kendra (6,; — ;) and the value
of ry (which depends upon the sighra-kendra) figure in the calculation of this
Sighra-sphuta. This is the second corrected planet Ps.

3. Treating P, as the mean planet, the manda-phala is calculated with P, — 6,, as
the anomaly. Apply the full manda-phala to 6y. The resulting quantity is the
third corrected planet P;.

4. Treating Pj as the manda-sphuta, the Sighra-sphuta P is calculated again using
R instead of K in the calculation of the sighra-karna K.

In fact, this four-step procedure to compute the true geocentric longitude is the
standard one prescribed in many Indian texts. Yuktibhasa attempts to provide the
rationale for this, though the arguments given there are not entirely clear. However
the motivation for this procedure is clear enough and is as follows.

Now, the manda correction can be read off from a table, given the mean epicycle
radius and the manda-kendra. But this is not so in the case of the $zghra correction,
for the sighra-phala depends not only on the Sighra-kendra but also on the sighra-
karna, which depends on the manda-karna (the distance SP in Fig. 2.15), which in
turn is dependant on the manda-kendra. Hence, given the radius of the sighra-vrtta,
the sighra-phala cannot be read off from a table as a function of the sighra-kendra
alone, as it depends also on the manda-karna and hence on the manda-kendra.
Yuktibhasa seems to argue that the four-step process is an attempt to stimulate,
to some extent, the effect of the manda-karna in the Sighra-phala. Thus, in steps
two and four above, the Sighra-phala is calculated using the ¢rijya instead of the
avisista-manda-karna.

2.2\ JUFFCIFIIH

2.27 The correction for Mercury
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budhamadhyat svamandoccam tyaktva dohkotijivayoh || 68 ||
sadamsabhyam phalabhyam tu karnah karyo'visesatah |
dohphalam kevalam svarnam kendre jukakriyadige || 69 ||
evam krtam hi tanmadhyam sphutamadhyam budhasya tu |
ravimadhyam tatah Sodhyam dohkotijye tato nayet || 70 ||
dorjya dvighna tribhajyapta sodhyaikatrimsato gunah |
mandakarnahatah so'pi trijyaptah syat sphuto gunah || 71 ||
taddhate bahukotijye khahibhakte phale ubhe |

tabhyam karpam sakrnnitva trijyaghnam dohphalam haret|| 72 ||
karnpenaptasya yaccapam krtsnam tadbhanumadhyame |
kramena praksipejjahyat kendre mesatuladige || 73 ||

evam Sighraphalenaiva samskrtam ravimadhyamam |

budhah syat sa sphutah $ukro’pyevameva sphuto bhavet || 74 ||

From the madhyamagraha of Mercury, subtracting the mandocca, the dorjya and
kotijya are obtained. From one-sixth of these values, the avisista-manda-karnais found
iteratively. The dohphala has to be added to or subtracted from the madhyamagraha,
depending on whether the manda-kendra lies within 6 signs of Mesa or Tula. The value
thus obtained is the manda-sphuta-graha of Mercury (say Py).

Then subtracting the mean Sun (which is the szghrocca) from this (P} ), obtain the dorjya
and kotijya (corresponding to the sighra-kendra). The dorjya multiplied by 2, divided
by trijya and subtracted from 31 forms the multiplier. This multiplier multiplied by the
avisista-manda-karna and divided by the ¢rijya forms the sphutaguna (true multiplier).
The dorjya and kotijya, multiplied by the sphutaguna and divided by 80, form the
dohphala and kotiphala respectively. From these two (the dohphala and kotiphala),
obtain the sighra-karna once (not iteratively) and divide the product of the trijya and
dohphala by this sighra-karna. The arc of this result is fully applied to the mean Sun.
It is either added or subtracted depending upon whether the sighra-kendra lies within 6
signs of Mesa or Tula. The mean Sun corrected by this Szghra-phala gives the true geo-
centric longitude of Mercury. The true geocentric longitude of Venus is obtained in a similar
manner.

Unlike a four-step procedure employed for the exterior planets to obtain the
sphuta-graha (true planet), in the case of interior planets only a two-step procedure
is prescribed. First the manda-sphuta-graha (manda-corrected planet) is obtained
from the madhyama-graha (mean planet) through manda-samskara (manda-
correction), that is, the equation of centre, and then the sphuta-graha is obtained
through the sighra-samskara (Sighra correction).

The manda-sphutagraha of Mercury is obtained from the mean heliocentric
planet following the same procedure as for the exterior planets. Here ;? is speci-
fied as é, where rq is the mean radius of the epicycle. The avisista-manda-karna
K is also calculated as described earlier. The procedure for obtaining the true geo-
centric longitude of Mercury from the manda-sphuta-graha as described in these
verses can be understood from Fig. 2.16 (see also Appendix F).
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Fig. 2.16 Obtaining the sphuta-graha (the geocentric longitude) from the manda-sphuta-

graha (the true heliocentric longitude) in the case of interior planets.

The mean Sun S is located on a circle of radius R with the centre of the Earth as
the centre. Its longitude 8; = I"OS. Draw a circle of radius ry around S. Mercury is
located on this point such that its longitude is the manda-sphuta-graha 6,,; = I'SP
with respect to S. Then 8 = I"OP is the true geocentric longitude of Mercury called

the sphuta-graha or simply the sphuta. Now,

Sighra-kendra = G5 — 6y

=IrS$P—ro0s
=TrSP—rSss
= S'SP.

The radius of the epicycle r; is given by

rs 31 —2[sin6,; — 6 y K
R 80 R’

and the sighra-karna K; is obtained from

K, = OP = /ON? + PN?

= \/(R+ 75C0S(Ops — 05))2 + (rgsin( O — 65))2.

The Sighra correction S'OP = 60 is found from the relation

(2.186)

(2.187)

(2.188)
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OPsin60 = PN
= rysin(6y,s — 6;)
or K;sind0 = rgsin(6,; — 6;)

or Rsin 60 = rgsin(6,,s — 6;) II; , (2.189)
where
dohphala = rgsin(6,,5 — 6;)
= :;Rsin(ems —6y)
— RSin(6s — 00) x | (31— 2| sin(6ps — 0)]) x X | x !
R 80
= dorjya X sphutaguna x 20" (2.190)
Similarly,
kotiphala = rycos(6Ops — 6s)
= kotijya x sphutaguna x (2.191)

80"

Adding the arc 86 obtained thus to the longitude of the mean Sun 6y, we obtain the
true geocentric longitude of Mercury, 8 = 'OP = 6, + §6.

In the earlier Indian texts, as was the case also in the Greco-European tradition
up to Kepler, the equation of centre of the interior planet used to be applied wrongly
to the mean Sun, which was taken as the mean planet in the case of interior planets.
It is in Tantrasangraha that the equation of centre is correctly applied to the mean
heliocentric planet to obtain the true heliocentric planet, for the first time in the
history of astronomy. We have already commented on this major modification that
has been introduced for the interior planets in Tantrasarigraha, wherein the mean
heliocentric planet is taken as the mean planet and the specified revolution number
is noted as its own (svaparyayah), and the mean Sun is taken as the $ighrocca for
all the planets.

Now, ignoring the correction due to the eccentricity, the ratio of the Mercury—Sun
to the Earth—Sun distance may be compared with the ratio 3 given in (2.187):

Mercury—Sun distance 31 —2[sin(6y,s — 65)|

= 2.192
Earth—Sun distance 80 (2.192)

It may be noted that this ratio varies between %g =0.362 and g(l) =0.387, as com-
pared with the average modern value of 0.387. The factor Ilg in i3 in (2.187) takes
into account the eccentricity of the planetary orbit.

Finally it may be mentioned that here, in calculating the true position of Mer-
cury, only a two-step procedure is prescribed. The Sighra-phala, however, depends
on the manda-karna and hence the manda-kendra also. Further, it is the iterated
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manda-karna that is involved in this calculation. A similar procedure is advocated
for obtaining the true position of Venus.

2.2¢ THEFCTHH
2.28 The correction for Venus
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mandakendrabhuja jiwa khajinamsena samyuta |
manavastasya harah syat tadbhakte bahukotike || 75 ||
syatam mandaphale tasya dohphalam ca svamadhyame |
krtva'visesakarnam ca kriyatam Sighrakarma ca || 76 ||
dvighna dorjya tribhajyapta Sodhyasyaikonasastitah |

gunah so'pi sphutikaryah mandakarnena parvavat || 77 ||
gunah sa mandakarnaghnah trijyaptastasya ca sphutah |
asityapte bhujakotr tadghne Sighraphale bhrgoh || 78 ||
dohphalam trijyaya hatva Sighrakarnahrtam bhrgoh |

capitam bhasvato madhye samskuryat sa sphutah sitah || 79 ||

The 240th part of the Rsine of the manda-kendra added to 14 (forms the divisor). The
dorjya and the kotijya divided by this divisor form the dohphala and kotiphala in the
manda-samskara. After adding the arc of the dohphala to the madhyama-graha, let the
avisista-manda-karna be found and $ighra-samskara be carried out as set forth below.

The dorjya (corresponding to the Sighra-kendra) multiplied by two, divided by the trijya,
and subtracted from 59, forms the multiplier. This multiplied by the avisista-manda-
karna and divided by trijya forms the sphutaguna. The dorjya and kotijya multiplied
by the sphutaguna and divided by 80 are the dohphala and kotiphala. The arc of the
dohphala multiplied by the trijya and divided by the sighra-karna should be applied to
the mean Sun. This gives the true longitude of the Venus.

The procedure for calculating the geocentric longitude of Venus is the same as
for that of Mercury. The manda-sphutagraha is calculated taking the ratio of the
epicycle to the deferent?® to be

24 1t is interesting to note that the expression for the denominator given here, namely 14 +
Rl Sm(ﬁ’ofem)‘ , is such that the second term can be as large as the first one.
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40 1
= , . (2.193)
R|sin(6p—6,,)|
R4 70
The $ighra-samskara is identical with that for Mercury, as shown in Fig. 2.16. In
the same way as in (2.192), here we can set

Venus—Sun distance g

Earth-Sun distance = R
59 —2|sin(6ys — 05)] K
= . 2.194
80 “R 2.194)

Ignoring the correction for eccentricity (taking K = R), we find that 3 varies be-

tween 2(7) =.712 and gg =.737, as compared with the average modern value of .723.

2.2% TeTom e
2.29 The daily motion of the planets

HETASEIATg g TRATISaTAd |
AR §Fe: 1 ¢o |
Svastane’dyatanacchuddhe vakrabhogo'vasisyate |
viparitavisesotthacarabhogastayoh sphutah || 80 ||

The longitude of the planet found for tomorrow is subtracted from the longitude of the planet
today. The result [if positive] is the retrograde daily motion of the planet; if otherwise, the
result gives the direct daily motion of the planet.

In this verse, essentially, the definition of direct/retrograde motion is given. By
bhoga is meant daily motion, the angular distance travelled by the planet in one day
as observed by an observer on the surface of the Earth.
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