
Chapter 9
Event-Triggered Feedback in Control,
Estimation, and Optimization

Michael Lemmon

Abstract. Networked control systems often send information across the commu-
nication network in a periodic manner. The selected period, however, must assure
adequate system performance over a wide range of operating conditions and this
conservative choice may result in significant over-provisioning of the communi-
cation network. This observation has motivated the use of sporadic transmission
across the network’s feedback channels. Event-triggering represents one way of
generating such sporadic transmissions. In event-triggered feedback, a sensor trans-
mits when some internal measure of the novelty in the sensor information ex-
ceeds a specified threshold. In particular, this means that when the gap between
the current and the more recently transmitted sensor measurements exceeds a state-
dependent threshold, then the information is transmitted across the channel. The
state-dependent thresholds are chosen in a way that preserves commonly used sta-
bility concepts such as input-to-state stability or L2 stability. This approach for
threshold selection therefore provides a systematic way of triggering transmissions
that provides some guarantees on overall control system performance. While early
work in event-triggering focused on control applications, this technique can also be
used in distributed estimation and distributed optimization. This chapter reviews re-
cent progress in the use of state-dependent event-triggering in embedded control,
networked control systems, distributed estimation, and distributed optimization.

9.1 Introduction

Embedded and networked control systems often rely on the periodic sampling and
transmission of data. This periodic data abstraction is advantageous from the de-
sign standpoint. It permits real-time system engineers and control system engineers
to pursue their design objectives in relative isolation from each other. While this

Michael Lemmon
University of Notre Dame, Notre Dame, Indiana, USA
e-mail: lemmon@nd.edu

A. Bemporad, M. Heemels, and M. Johansson: Networked Control Systems, LNCIS 406, pp. 293–358.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

lemmon@nd.edu

294 M. Lemmon

so-called separation-of-concerns has proven advantageous from a designer’s per-
spective, it does not necessarily lead to cost effective implementations of the control
system. By separating the concerns of the control engineer from the real-time sys-
tem engineer, one forces each designer to adopt a conservative viewpoint that may
lead to unnecessary over-provisioning in the system implementation and hence to
higher system costs. When one applies these traditional design principles to ex-
tremely large-scale systems, then the cost of enforcing the periodic data abstraction
may become prohibitive.

As a result of these scaling issues, there has been recent interest in developing
co-design frameworks where the concerns of real-time systems and control systems
engineers are treated in a unified manner. One of the first statements of the co-
design problem was given by Seto et al. [66]. This work presented co-design as
an optimization problem that sought to minimize a traditional quadratic integral
measure of control cost subject to task schedulability constraints. Seto’s problem
was an off-line design approach since the optimization problem was solved prior
to system deployment. Since that time, a number of other co-design approaches
have been suggested. A number of promising methods were listed in a paper by
Arzen et al. [3]. Since that time a number of research scientists have investigated the
methods on this list. These methods include feedback modification of task attributes
[8, 45, 9, 12], anytime controllers [7, 21], and event-triggered sampling [2, 70, 83].

One approach to co-design involves adjusting task attributes through feedback.
An example of this is found in the elastic scheduling method [8] of Buttazzo et al.
This method uses measured task execution times to adaptively adjust task periods.
Lu et al. [45] presented a feedback control approach to real-time scheduling. This
idea was later applied to the scheduling of control tasks by Caccamo et al. [9] and
Cervin et al. [12]. This work clearly demonstrated that feedback control principles
could be used to reduce the sensitivity of real-time systems to uncertainties in con-
trol task period, jitter, and execution time. The reduction in real-time system sensi-
tivity also leads to improved control system performance, since one no longer needs
to design the real-time system for the worst-case variation in jitter and execution
time.

While these early schemes used feedback about the real-time system’s perfor-
mance to adjust task attributes, this feedback was not directly based on the control
system’s measured performance. A more direct link between real-time system and
control system performance will be found in recent work examining anytime con-
trollers and event-triggered sampling. Anytime controllers are control systems that
adjust their structure based on the performance of the real-time system [7, 21]. In
other words, if the real-time system becomes overloaded, then the application will
select a less complex (though stabilizing) controller to execute. In this way, the con-
troller’s performance is directly tied in an intelligent way to the real-time system’s
performance.

Event-triggered controllers, on the other hand, adapt the real-time system’s task
period directly in response to the application’s performance [2] . Under event-
triggering the control task is only executed when the application’s error signal
exceeds a specified threshold. Ostensibly, this error provides a measure of how

9 Event-Triggered Feedback in Control, Estimation, and Optimization 295

valuable the current state is to the overall system’s closed-loop behavior. In this way
the real-time system is only used when it is essential for maintaining the system’s
performance. Since the system state is always changing, this approach generates a
sporadic sequence of controller invocations. In general, the hope is that the aver-
age rate of this sporadic task set will be much lower than the rate of a comparable
periodic task set.

There is experimental evidence to support the assertion that event-triggered feed-
back improves overall control system performance while reducing the real-time sys-
tem’s use of computational resources. Two examples are shown in figure 9.1 which
shows results from [4] and [63, 65].

The left-hand plot in figure 9.1 shows a plot from [4]. This paper considers a
controlled scalar diffusion process of the form,

dx = axdt + udt + dw,

where a is a real constant and w is a standard Brownian motion. The signal u is the
control signal generated by a full-state controller. This control is computed in either
a periodic or event-triggered manner. Under event-triggering, the control is updated
whenever the state magnitude, |x|, exceeds a specified threshold. The performance
of the system is characterized by the steady-state variance of the system state. The
variance of the periodically triggered system is denoted as VR whereas the variance
of the event-triggered system is denoted as VL. The left-hand plot in figure 9.1 plots
the ratio VR/VL as a function of the mean sampling period, T . Note that for all
choices of the system constant, a, this performance ratio is greater than one, thereby
showing that the event-triggered system has better performance than periodically
triggered systems operating at the same mean sampling period.

The right-hand side of figure 9.1 shows another example in which an event-
triggered system demonstrates lower usage of computational resources. This result
is taken from [63, 24] which considers the control of a linear plant under a PID

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

10

8

7

6

5

4

3

2

1

9

V
R

 /
 V

L

Mean Sample Period (T)

a=1

a=0

a=-1

[Astrom 02]

0 2 4 6 8 10−5

0

5
x 10

−3

E
rr

or
 [r

ad
/s

]

0 2 4 6 8 10
−5

0

5
x 10

−3

E
rr

or
 [r

ad
/s

]

0 1 2 3 4 5 6 7 8 9 10
0

5e3

1e4

Time [s]

sa

m
pl

es

Time−driven PID

event−driven PID

Time−driven PID
Event−driven PID

[Sandee 2006]

Fig. 9.1 Experimental results demonstrating that event-triggered feedback reduces a real-
time system’s use of computational resources while providing good overall control system
performance

296 M. Lemmon

controller. This controller is discretized at a specified sampling rate and the result-
ing tracking error is plotted as a function of time in the top plot on the right-hand
side of figure 9.1. The middle plot shows the tracking error for a comparable event-
triggered implementation of the system. In this case the control is recomputed when
the gap between the current system state and the last sampled system state exceeds
a specified threshold, eT ,

gap = |x(t)− x(r j)| ≤ eT = threshold,

where r j denotes the jth consecutive time when the state was sampled. For the sim-
ulation shown in the middle plot, the threshold eT was chosen to match the peak
error of the periodically triggered system. This means that these first two plots are
comparing the behavior of an event-triggered and periodically triggered system hav-
ing similar performance levels. The bottom plot in the figure shows the number of
samples that were generated by the periodically triggered (time-driven) and event-
triggered PID control. As can be seen from this plot, the number of event-triggered
samples is smaller than the time-driven control. Moreover, as the system approaches
its equilibrium point, the number of samples begins to level off, thereby suggesting
that as the information content within the error signal decreases, the controller needs
to be invoked less often.

The left-hand example shown in figure 9.1 suggests an event-triggered system
will perform better than a periodically-triggered systems with similar computational
usage. The right-hand example suggests an event-triggered system will use fewer
computational resources than a periodically triggered system with similar perfor-
mance levels. These results, unfortunately, are only empirical in nature. The objec-
tive of this chapter is to review prior work that provides a more complete analysis of
the relationship between performance and computation in event-triggered feedback
systems.

Event-triggering samples the system state when some measure of the novelty in
the state exceeds a given threshold. This approach to sampling has been around
for quite awhile. Early examples of event-triggered systems may be found in re-
lay [73] and pulse-width modulated feeback [54]. Event-triggered feedback has
been used in reaction jet control of spacecraft. More recent examples have exam-
ined event-triggering in systems using motors [23, 65, 64, 24]. A comparison of
the performance of event-triggered systems against periodically triggered systems
may be found in [26]. Event-triggering has also appeared under a variety of other
names such as interrupt-based feedback [29], Lebesgue sampling [4], asynchronous
sampling [76], self-triggered feedback [75], state-triggered feedback [71], and level
crossing sampling [39].

While event-triggering has been around for quite awhile it has only been in re-
cent years [2] that researchers have made significant advances in understanding the
event-triggering process. Sampled stochastic differential equations have been used
to study event-triggered sampling [4]. This model has also been used to study event-
triggered control [5, 27]. Optimal control and estimation in these event-triggered
stochastic systems was studied in [87] for infinite horizons. The results from [87]

9 Event-Triggered Feedback in Control, Estimation, and Optimization 297

determine event triggers that maximize control/estimator performance subject to a
soft constraint on communication usage. The resulting optimal event-triggers take
the form of static thresholds. These results were extended to finite horizon event-
triggered systems for control [31, 62] and estimation [30, 58, 57, 60]. These finite-
horizon results optimize control/estimator performance subject to hard communi-
cation constraints. For estimation problems, the resulting optimal event-triggers are
time-varying and for control problems, the event-triggers are time-varying functions
of the initial system state.

Much of the aforecited work, however, focused only on scalar systems due to the
computational complexity associated with solving the associated dynamic program-
ming equations. Research scientists have recently been using state-based methods
that can be more easily applied to vector systems. Making use of the emulation
method [50] in sampled-data systems, recent work has identified sufficient sampling
conditions that preserve closed-loop stability concepts such as input-to-state stabil-
ity [70] or L2 stability [83]. A similar state-based approach has also been proposed
in [40]. This recent work again derives state-dependent thresholds for the event-
triggers. While the recent state-based methods do not explicitly constrain commu-
nication usage, experimental studies suggest that state-dependent event-triggers can
be very effective in reducing an embedded system’s usage of computational and
communication resources.

This chapter discusses how event-triggering can be used in a wide range of net-
worked control applications; ranging from control to estimation to optimization. In
all of these application areas, event-triggering appears to greatly reduce the com-
munication and/or computational effort required of the supporting real-time system.
The remainder of this chapter is organized as follows. The chapter first reviews some
mathematical preliminaries in section 9.2. Section 9.3 examines state-based event-
triggering in embedded single processor control systems. The results from this sec-
tion are then extended to networked control systems in section 9.4. The controllers
in sections 9.3-9.4 all use full state feedback. As a first step towards developing
output-feedback controls, section 9.5 examines a recent approach to event-triggered
state estimation. Finally section 9.6 presents a novel application of event-triggering
in distributed optimization of networked systems. Event-triggered control is still an
active research area and a number of promising future research directions are dis-
cussed in section 9.7.

9.2 Mathematical Preliminaries

The event-triggers in this chapter are designed to enforce a variety of stability con-
cepts found in the system science literature. This section reviews those stability
concepts primarily to establish notational conventions that are followed throughout
the rest of this chapter. In particular, this section reviews stability concepts such as
asymptotic stability, input-to-state stability, and L2 stability. Much of this material
may be found in textbooks [32, 74, 37].

298 M. Lemmon

This chapter adopts the following notational conventions. The function x map-
ping elements on the real line, R, onto elements of Euclidean n-space, R

n, is de-
noted as x : R→ R

n. Let x(t) denote the value that this function takes at time t ∈ R

and let ẋ(t) = dx(t)/dt denote the time derivative of x at time t. This function is said
to solve an initial value problem of the form

ẋ(t) = f (x(t)), x(0) = x0 (9.1)

if the above equations are satisfied for almost all t ≥ 0. In equation (9.1), f : R
n→

R
n is a function mapping Euclidean n-space back onto itself. To assure the above

equation has unique solutions, one often requires that f be Lipschitz continuous.
Namely, there exists a positive real constant L such that

‖ f (x)− f (y)‖ ≤ L‖x− y‖

for all x and y in R
n. The vector x(t) ∈ R

n is an element of a normed vector space
where ‖x(t)‖ denotes the usual Euclidean 2-norm. The function x is a member of
a normed linear space. Important norms used for such functions are the supremum
norm, ‖x‖L∞ = esssupt ‖x(t)‖ and the 2-norm ‖x‖L2 =

√∫ ∞
0 ‖x(τ)‖2dτ . Let L2

denote the linear space of all measurable functions with bounded 2-norms. L∞ de-
notes the linear space of all measurable functions with bounded supremum norm.
A function α : R→ R is said to be class K if it is continuous, strictly increasing,
and α(0) = 0. A function β : R×R→ R is said to be of class K L if it is a con-
tinuous function that is class K with respect to the first argument and decreasing
asymptotically to zero with respect to the second argument.

With these notational conventions established one can now define a variety of
stability concepts. One of the best known stability concepts is Lyapunov stability.
This concept applies to homogeneous systems characterized in equation (9.1). Given
such as system, one says that a point x ∈ R

n is an equilibrium point if 0 = f (x); in
other words x represents a fixed point of the system . Without loss of generality, one
can presume the equilibrium point x = 0 lies at the origin.

The concept of Lyapunov stability is a property of the system’s equilibrium point.
In particular one says that the equilibrium point, x = 0, is stable in the sense of
Lyapunov if for all ε > 0 there exists δ > 0 such that for all t ≥ 0

‖x(0)‖< δ ⇒ ‖x(t)‖< ε.

Essentially, this means that the equilibrium point is Lyapunov stable if there always
exists an initial condition that permits us to confine the system state within an arbi-
trarily small neighborhood of the equilibrium point.

A somewhat stronger (and better known) notion of Lyapunov stability is asymp-
totic stability. An equilibrium point is said to be asymptotically stable if the point
is Lyapunov stable and if the state x(t) asymptotically approaches the equilibrium
point as t goes to infinity.

The existence of a Lyapunov function provides a well known sufficient condition
for Lyapunov (asymptotic) stability. Consider a homogeneous system ẋ(t) = f (x(t))

9 Event-Triggered Feedback in Control, Estimation, and Optimization 299

with equilibrium point x = 0. One says a continuously differentiable function
V : R

n→R is a Lyapunov function for the system if V is a positive definite function
and its directional derivative, V̇ = ∂V

∂x f (x), is negative semi-definite. The existence
of a Lyapunov function V is sufficient to show that the equilibrium point is stable
in the sense of Lyapunov. Moreover, if one can strengthen the condition on V̇ to be
negative definite, then this suffices to establish that the equilibrium point is asymp-
totically stable.

While the Lyapunov stability concept has been widely used, it cannot be directly
used to characterize the behavior of inhomogeneous systems whose state trajectories
x : R→ R

n satisfy the initial value problem,

ẋ(t) = f (x(t),w(t)), x(0) = x0. (9.2)

where w : R→ R
m is an external disturbance. In this case f : R

n×R
m→ R

n maps
the current system state, x(t), and an external disturbance, w(t), onto the state’s time
derivative. Because this system is driven by an external disturbance, one cannot
usually identify a single equilibrium point for the system. Without this equilibrium
point, one cannot use Lyapunov stability concepts to study the system’s behavior.
This observation motivates a variety of other stability concepts for such inhomo-
geneous systems. Two such stability concepts are input-to-state stability and L2

stability.
The system in equation (9.2) is input-to-state stable (ISS) if there exists a class

K L function β and a class K function γ such that for any initial condition, x(0) =
x0, the response under any input w ∈L∞ satisfies

‖x(t)‖ ≤ β (‖x0‖,t)+ γ(‖w‖L∞)

for all t ≥ 0. An alternative and equivalent characterization of ISS is that the system
response satisfies

‖x(t)‖ ≤max{β (‖x0‖, t),γ(‖w‖L∞)}

for all t ≥ 0. Both definitions essentially require that the transient and steady state
behaviors of the system are appropriately bounded. This view of the ISS-concept
is illustrated in figure 9.2. The dashed line shows the bound due to the class K L
function β acting on the initial transient portion of the system’s response. The dotted
line shows the bound due to the class K function γ acting on the steady-state portion
of the system’s response. To be ISS, the system’s response must lie below the point-
wise maximum of both of these comparison functions.

Input-to-state stability can also be characterized using Lyapunov-type functions.
In particular, one says that a continuously differentiable function V : R

n → R is
an ISS-Lyapunov function for the system in equation (9.2) if there exist class K
functions α , α , γ , and β such that

α(‖x‖)≤V (x)≤ α(‖x‖)
V̇ (x,w) ≤−γ(‖x‖)+β (‖w‖)

300 M. Lemmon

t (time)

||x(t)||

β(||x0 ||,t)

γ(||w||L∞
)

Fig. 9.2 Input-to-State Stability bounds the response’s transient and steady-state behavior

hold for x ∈ R
n and all w ∈ R

m. The existence of an ISS-Lyapunov function for the
system in equation (9.2) is necessary and sufficient for that system to be ISS.

L2 stability is another useful stability concept for inhomogeneous systems. In
this case one usually thinks of the system as a mapping, G : L2→L2 between two
normed linear spaces, L2. This means that if one is given an input w ∈L2 then the
system’s output function Gw will also be a function in L2. The system G is finite-
gain L2 stable (or just L2 stable) if there exist finite positive real constants γ and β
such that

‖Gw‖L2 ≤ γ‖w‖L2 +β . (9.3)

The right-hand side of the above inequality represents an affine function that over-
bounds the norm of the actual system’s output. In particular, one can think of γ as a
gain and β as an offset or bias. The so-called induced gain of G is then taken as the
greatest lower bound on all of the possible γ’s for which the above inequality holds.
This induced gain is often denoted as ‖G‖ and can be formally defined as

‖G‖= inf
{
γ ∈ R : ‖Gw‖L2 ≤ γ‖w‖L2 +β

}

for all w ∈L2.
The induced gain provides an important way of defining a control system’s per-

formance. Many control synthesis problems can be formulated as so-called regula-
tor problems in which the objective is to minimize the gain from the closed-loop
system’s uncontrolled external input to some output function. By making the in-
duced gain of the closed-loop system sufficiently small, one provides some guaran-
tee on the control system’s performance level. The induced gain therefore becomes
a direct way of characterizing overall control system performance.

When the inhomogeneous system in equation (9.2) has a special affine form then
there is a useful characterization of the L2 induced gain. This characterization will
be used later to design event-triggered systems that enforce the L2 stability concept.
In particular, let’s consider a special form of the inhomogeneous control system in
which the state trajectory satisfies

ẋ(t) = A(x(t))+ B1(x(t))w(t)+ B2(x(t))u(t) (9.4)

z(t) =
[

x(t)
u(t)

]T

9 Event-Triggered Feedback in Control, Estimation, and Optimization 301

where x(0) = x0, w : R→ R
p is an external L2 disturbance and u : R→ R

m is
a control signal that is generated by a controller K : R

n → R
m. The functions A :

R
n→R

n, B1 : R
n→R

n×p and B2 : R
n→R

n×m define how the system state, external
input, and control map into the state’s time derivative. The other signal z : R→R

n+m

represents the system’s output signal. The objective is to find a controller K such that
the induced L2 gain from the external input w to the output z is less than a specified
amount, γ .

The main result characterizing such a controller makes use of the so-called
Hamilton-Jacobi Inequality (HJI). In particular, assume there exist a real constant
γ ≥ 0 and a positive definite continuously differentiable function V : R

n → R that
satisfy the HJI,

∂V
∂x

A(x)+
1
2
∂V
∂x

[
1
γ2 B1(x)BT

1 (x)−B2(x)BT
2 (x)

]
∂V T

∂x
+

1
2

xT x≤ 0 (9.5)

for all x ∈ R
n. If one then selects the control output, u, so that

u = K(x) =−BT
2 (x)

∂V (x)T

∂x
(9.6)

then one can show that the closed-loop system’s L2 gain is less than or equal to γ .
The bound on ‖G‖ can be obtained as follows. The directional derivative of V is

V̇ =
∂V
∂x

A(x(t))+
∂V
∂x

B1(x(t))w(t)+
∂V
∂x

B2(x(t))u(t).

Completing the square on the cross-term ∂V
∂x B1(x)w and using the fact that u =

−BT
2
∂V
∂x

T
, yields

V̇ =
∂V
∂x

A− 1
2

∥
∥
∥
∥
∥
γw− 1

γ
BT

1
∂V
∂x

T
∥
∥
∥
∥
∥

2

+
1

2γ2

∂V
∂x

B1BT
1
∂V
∂x

+
1
2
γ2‖w‖2−‖u‖2.

Making use of the Hamilton-Jacobi inequality, one can bound V̇ as

V̇ ≤ −1
2

∥
∥
∥
∥
∥
γw− 1

γ
BT

1
∂V
∂x

T
∥
∥
∥
∥
∥

2

− 1
2
‖u‖2 +

1
2
γ2‖w‖2− 1

2
‖x‖2

≤ −1
2
(‖u‖2 +‖x‖2− γ2‖w‖2).

Since z =
[

x
u

]
, this implies that

V̇ ≤−1
2
‖z‖2 +

1
2
γ2‖w‖2.

302 M. Lemmon

If one then integrates the above inequality from 0 to infinity, one can readily use the
definition of the L2-norm to see that

‖z‖L2 ≤ γ‖w‖L2 +
√

2V(x(0)).

This inequality is precisely what was seen in equation (9.3) which is sufficient to
imply the closed-loop system is L2 stable with an induced gain less than or equal
to γ . In other words, if one choses the control as stated in equation (9.6), then one
can guarantee that the L2 performance level achieved by the closed-loop system is
less than or equal to γ .

As mentioned at the opening of this section, this chapter derives event-triggers
that preserve input-to-state stability or L2 stability concepts. The preceding defini-
tions and derivations will be used later in deriving these event-triggers. Let’s now
turn to see precisely how such event-triggers would be derived for both embedded
control and networked control systems.

9.3 Event-Triggered Feedback in Embedded Control Systems

This section discusses the design of event-triggering schemes for embedded control
systems. The main idea is to first design a continuous-time controller that guaran-
tees a stability concept such as input-to-state stability or L2 stability. The section
then develops an event-triggering threshold such that the associated sporadically
triggered control system preserves this underlying stability concept. This approach
is sometimes called the emulation-based method [50].

Sampled-Data System Model: Let’s first consider how a sampled-data system
might be configured. Figure (9.3) shows a block diagram for the system under
study. The plant (G) has two types of inputs. There is an external uncontrolled dis-
turbance, w : R→R

q and a control input, u : R→R
m. The plant’s state, x : R→R

n,
satisfies the inhomogeneous differential equation

ẋ(t) = f (x(t),u(t),w(t))

for t ≥ 0 with initial condition x(0) = x0 ∈R
n. The output of the plant is the system

state, x.
Rather than working directly with the continuous-time state, x, the controller

works with a sampled version of the state trajectory. In particular, let’s introduce
a sampler (S) system that is characterized by a monotone increasing sequence of
sampling instants. This sequence of sampling instants is denoted as {r j}∞j=0 where

r j > r j−1 for j = 1,2, . . . ,∞. The time r j ∈ R denotes the jth consecutive sampling
instant. The output of the sampler is therefore a sequence of sampled states, {x̂ j},
in which x̂ j = x(r j). A state-feedback controller, K : R

n→ R
m, maps the sampled

state onto a control vector û j ∈ R
m. The resulting sequence {û j}∞j=0 of controls

is then transformed into a continuous-time signal through a zero-order hold (H)
without any delay. The control signal, u ∈R→R

m, used by the plant is a piecewise

9 Event-Triggered Feedback in Control, Estimation, and Optimization 303

Plant (G)

Sampler (S)Hold (H)

Controller (K)

ûj = K(x̂j)

x(t)

sampling instants, { rj }

xj = x (rj)

u(t)

w(t)

uj

Fig. 9.3 Sampled Data Control System

constant function. In particular, let’s introduce a sequence of functions ũ j : R→R
m

that have support over the time interval [r j,r j+1). The value of ũ j at time t ∈ R is

ũ j(t) =
{

û j for t ∈ [r j,r j+1)
0 otherwise

for j = 0,1, . . . ,∞. With regard to this sequence the controlled input feeding the
plant simply becomes u(t) = ∑∞j=0 ũ j(t).

ISS Event-Triggers: Under the emulation-based approach for developing sampled-
data systems, one assumes that the controller, K, enforces a specified stability con-
cept. In particular, let’s confine our attention to input-to-state stability and let’s con-
sider the continuously sampled closed-loop system,

ẋ(t) = f (x(t),K(x(t)+ e(t)),w(t))

where e : R→ R
n and w : R→ R

m are L∞ input disturbances. Let’s assume that
the controller K leaves this closed-loop system ISS with respect to the two inputs w
and e.

From our earlier discussion in section (9.2), the ISS assumption implies the
existence of an ISS-Lyapunov function V : R

n→ R with class K functions α , α ,
γ , β1 and β2 such that

α(‖x‖) ≤ V (x)≤ α(‖x‖) (9.7)

∂V
∂x

f (x,K(x + e),w)) ≤ −γ(‖x‖)+β1(‖e‖)+β2(‖w‖). (9.8)

The inequalities in equation (9.7) essentially require that V is positive definite. The
inequality in equation (9.8) is a dissipative relation on the ISS-Lyapunov function’s
directional derivative.

Now let’s consider the sampled-data version of this system. The sampler gener-
ates a sequence of sampling instants, {r j}∞j=0. The time r j is referred to as the jth

304 M. Lemmon

σ γ(||x||) = state dependent event-trigger

β
1
(||e

0
||)

r
0

r
1

r
2

r
3 r

4

β
1
(||e

1
||)

β
1
(||e

2
||) β

1
(||e

3
||)

trajectory of gap and threshold

Fig. 9.4 Time history of gap and event threshold

consecutive release time of the system. (This term refers to the fact that in a real-
time computer system, state sampling is implemented through a task that is released
for execution at time r j). The sampled states {x̂ j}∞j=0 form a sequence in which

x̂ j = x(r j). Let’s define the gap function associated with the jth sampling time as a
function e j : [r j,r j+1)→ R

n in which

e j(t) = x̂ j− x(t)

for t ∈ [r j,r j+1) where j = 0,1, . . . ,∞.
The sampled data system’s controller uses x̂ j = e j(t)+ x(t), rather than x(t), so

the sampled-data system’s state must satisfy

ẋ(t) = f (x(t),K(x(t)+ e j(t)),w(t))

for all t ∈ [r j,r j+1) and all j = 0,1, . . . ,∞. Under the ISS assumption, one knows
that

V̇ ≤−γ(‖x(t)‖)+β1(‖e j(t)‖)+β2(‖w(t)‖). (9.9)

Let’s assume the gap can be restricted so that for some σ ∈ (0,1)

β1(‖e j(t)‖)≤ σγ(‖x(t)‖) (9.10)

for all t ≥ 0 and all j = 0,1, . . . ,∞. Inserting equation (9.10) into equation (9.9)
implies

V̇ ≤−(1−σ)γ(‖x(t)‖)+β2(‖w(t)‖).

In light of the characterization of input-to-state stability (Sec. 9.2) and since 0 <σ <
1, it should be apparent that enforcing the constraint on the gap (equation (9.10))
leaves the sampled-data system input-to-state stable with respect to the input w.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 305

The constraint in equation (9.10) can be viewed as a state-dependent threshold
condition. In particular, one knows that at the beginning of the interval [r j,r j+1), that
the gap e j(r j) = 0. After that, one expects the norm of the gap to increase. When
the gap satisfies the inequality β1(‖e j(t)‖) > σγ(‖x(t)‖), then the system state is
again sampled by setting x̂ j = x(t), thereby forcing the gap to zero again. In this
way the condition in equation (9.10) can be viewed as an event-trigger. This event-
trigger would be realized by the sampler, S. In particular, one would require the
sampler to continuously monitor the inequality in equation (9.10). Upon detecting
a violation of the inequality, the sampler would trigger the sampling of the system
state. The resulting time history of the threshold γ(‖x(t)‖) and the gap is shown
below in figure 9.4. As the state asymptotically approaches the origin, the threshold
gets smaller. This state-dependent threshold idea and the above analysis underlying
the ISS event-trigger was first discussed by Tabuada [70].

Let’s look at a simple example to see how well the ISS event-trigger works. Con-
sider a process model (without the external disturbance w) of the form

ẋ(t) = f (x(t))+ u(t)
u(t) = −2 f (x̂ j)

for t ∈ [r j,r j+1). The release times r j are selected as the times when the event-trigger
is violated. The ISS event-trigger is chosen to have the following form,

β1(‖e j(t)‖) = e2
j(t)≤ x2(t) = γ(‖x(t)‖).

The system function f : R→R is chosen so the proposed control leaves the closed-
loop system input-to-state stable. In particular, let’s consider three different types of
system dynamics. The chosen system dynamics have sublinear, linear, and superlin-
ear f functions of the forms,

sublinear linear superlinear
f (x) = sgn(x)

√|x| f (x) = x f (x) = x3

The plots below in figure 9.5 show the system response for the linear and su-
perlinear choices for f . The top graphs plot the gap, β1(‖e(t)‖), and the threshold
γ(‖x(t)‖) as a function of time for both cases. This response is plotted on a loga-
rithmic axis. For both linear and superlinear cases one sees that the gap satisfies the
basic form seen earlier in figure 9.4. The bottom plots show the intersample time,
Tj = r j − r j−1, for both cases. For the linear f , the choice of event-trigger and f
yields a periodic sampling of the system state. The case with the superlinear case
f shows that the intersample time gets longer as the system state approaches the
equilibrium point of the unforced system.

An interesting behavior is seen if f is the sublinear function f (x) = sgn(x)
√|x|.

The gap and intersample time histories for this case are shown in figure 9.6. In
this case, the intersample times get shorter and shorter as the system approaches
its equilibrium point. Asymptotically these time intervals go to zero at a finite time
around 3.5 seconds into the simulation. This type of behavior is sometimes called a

306 M. Lemmon

0 1 2 3 4 5 6 7 8
−20

−10

10

0.5

0.4
0.3

0.2

0.1

β1(e(t))

γ(x(t))

Intersample Period

f(x) = xlinear

Gap and Threshold Trajectory

1 2 4 7 10
time

9 10

8 9653
0.0

0

4 5 6 7 8 9 10

4 7 10

Intersample Period

γ(x(t))

time

f(x) = x
3superlinear

Gap and Threhold Trajectory
0 1 2 3

0 1 2 3 5 6 8 9

−20

−10

10

0.5

0.4
0.3

0.2

0.1

0.0

0

β1(e(t))

Fig. 9.5 Two examples showing gap, threshold, and intersampling time history. (left) linear
function f (x) = x. (right) superlinear function f (x) = x3

0 1 2 3 4 5 6 7 8 9 10
10

−15

10
−5

10
5

1 2 4 7 10
0

0.2
0.4

0.6

0.8

1

Intersample Period

γ(x(t))

β1(e(t))

time

f(x) = sgn(x)
√
|x|sublinear

Gap and Threshold History

985 63

0

10
−10

Fig. 9.6 Gap, threshold, and intersampling time history for a sublinear dynamical system
where f (x) = sgn(x)

√|x|

Zeno behavior. Zeno-sampling is highly undesirable in real-time control for it would
require the computer to eventually sample infinitely fast.

Avoiding Zeno-sampling: To better understand when Zeno-sampling might occur,
let’s try to derive a lower bound on the event-triggered system’s intersample time.
Let’s first assume that the closed-loop system is Lipschitz with respect to the state
x and the gap e. In other words, there exists a positive constant L such that for all x
and e in R

n,

‖ f (x,K(x + e))‖ ≤ L‖x‖+ L‖e‖.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 307

If the jth gap function, e j, violates the event-trigger in equation (9.10) at time r j+1,
then

β1(‖e j(r j+1)‖) > σγ(‖x(r j+1)‖).

Let’s assume there exists a positive constant P such that

P‖e j(r j+1)‖ ≥ γ−1
(

1
σ
β1(‖e j(r j+1)‖)

)
≥ ‖x(r j+1)‖.

It can therefore be concluded that with these constraints, the ratio of the gap and the
system state must be greater than a positive constant 1/P. In other words, the next
sample occurs when

1
P
≤ ‖e j(t)‖
‖x(t)‖ . (9.11)

This condition is a more conservative than the original event-trigger in equation
(9.10). It is useful, however, because it provides an analytically tractable method of
bounding the earliest time when the event-trigger can occur. As long as this earliest
sampling time can be shown to be bounded away from zero, then one can assure
that Zeno-sampling doesn’t occur.

For any j = 0,1, . . . ,∞, the trajectory for ‖e j(t)‖/‖x(t)‖ can be bounded through
the use of differential inequalities. A direct computation of the ratio’s time derivative
shows that

d
dt

‖e j(t)‖
‖x(t)‖ ≤

(
1 +
‖e j(t)‖
‖x(t)‖

)
L‖x(t)‖+ L‖e j(t)‖

‖x(t)‖ = L

(
1 +
‖e j(t)‖
‖x(t)‖

)2

.

This differential inequality is used in the Comparison principle [37] to obtain an
upper bound on the time history of the event quotient ‖e j(t)‖/‖x(t)‖. This bound
takes the form

‖e j(t)‖
‖x(t)‖ ≤

tL
1− tL

for t beween 0 and r j+1− r j where j = 0,1, . . . ,∞.
So one merely needs to see when the right-hand side of the above inequality trig-

gers the event quotient condition in equation (9.11). This occurs if the next release
time r j+1 satisfies

1
P
≤ ‖e j(r j+1)‖
‖x(r j+1)‖ ≤

TjL
1−TjL

where Tj = r j+1−r j is the intersample time interval. Solving the right-hand inequal-
ity for Tj yields a lower bound of the form

308 M. Lemmon

r j+1− r j = Tj ≥ 1
L+ LP

.

Note that this is a lower bound on the intersample time. So as long as the bound
is non-zero one can guarantee that the event-triggered system won’t exhibit Zeno-
sampling. Clearly this bound goes to zero when L is unbounded. In other words,
this occurs when the system function f fails to be Lipschitz. In reviewing the sub-
linear example where Zeno sampling occurs, it is apparent that the sublinear func-
tion sgn(x)

√|x| is not Lipschitz. These results show that ISS event-triggering can
guarantee non-Zeno sampling of the system state whenever f is Lipschitz.

The sampling generated under these conditions is sporadic rather than aperiodic.
Aperiodic sampling simply means that the intersample interval Tj is not a constant.
Being aperiodic, however, doesn’t require that the minimum intersample interval
is positive. Following notational conventions in real-time computing, the term spo-
radic is reserved for systems whose intersample intervals need not be constant and
whose minimum intersample intervals are positive.

L2 Event-Triggers: The prior subsection derived sporadic event-triggers that pre-
serve the input-to-state stability of the original non-sampled control system. This
framework [70] places relatively few assumptions on the nature of the controller. It
only requires that the controller has an ISS-Lyapunov function to ensure input-to-
state stability with regard to both the external disturbance, w, and the state gap, e j.
If one makes some assumptions about the structure of the controller, it is possible
to say a bit more about the robustness of the closed-loop system’s stability con-
cept with regard to non-zero delays, or what is sometimes referred to as jitter in the
real-time systems community.

This subsection derives event-triggers that preserve the L2 stability of the closed-
loop system. In particular, these so-called L2 event triggers guarantee that the
closed-loop system’s induced L2 gain is preserved (up to a user-defined scaling
factor). The so-called L2 event-trigger was first proposed by Lemmon et al. [41]
and then formally analyzed by Wang et al. [83]. Since these L2 event-triggers pre-
serve the original non-sampled system’s closed-loop gain, one can say that these
event-triggers are performance preserving since the L2 gain is a commonly used
measure of a regulator’s performance.

By focusing on the L2 stability concept, one can use the aforecited results relat-
ing the closed-loop system L2 gain to a Hamilton-Jacobi inequality. To use this
relationship, let’s narrow our attention to systems that are affine in the external
disturbance, w, and the control u. In particular, let’s assume that the system state,
x : R→ R

n satisfies the following differential equation

ẋ(t) = A(x(t))+ B1(x(t))w(t)+ B2(x(t))u(t) (9.12)

for t ≥ 0 and initial condition x(0) = x0 ∈ R
n. As before w : R→ R

q is an external
disturbance that is assumed to lie in L2. The control signal, u : R→R

m is assumed
to be a special control of the form

9 Event-Triggered Feedback in Control, Estimation, and Optimization 309

u(t) =−BT
2 (x(t))

[
∂V (x(t))

∂x

]T

= K(x(t))

where V : R
n→R is a continuously-differentiable positive definite function (some-

times called the storage function [37]) that satisfies the Hamilton-Jacobi inequality
(9.5) for some γ > 0. For this particular control, one can show that the L2 gain of

the system from the input w to the output z =
[

x
u

]
is less than or equal to γ . These

results were summarized in the earlier section on mathematical preliminaries.
The event-triggered version of the above system starts by introducing a sequence

of release or sampling times
{

r j
}∞

j=0 where r j ∈R denotes the jth consecutive time
when the system state has been sampled. In this case the control law uses the sam-
pled state instead of the true state so that u(t) becomes

u(t) =−BT
2 (x̂ j)

[
∂V (x̂ j)
∂x

]T

= K(x̂ j)

for t ∈ [r j,r j+1) and j = 0,1, . . . ,∞. In the above equation x̂ j ∈ R
n denotes the jth

consecutive sampled state

x̂ j = x(r j).

As before let’s introduce the gap between the current state x(t) and the previously
sampled state. The jth gap function therefore is

e j(t) = x̂ j− x(t)

for t ∈ [r j,r j+1) and all j = 0,1, . . . ,∞. Assume that the controller K : R
n→ R

m is
Lipschitz with respect to the gap. In other words, there exists a non-negative real
constant L such that

‖K(x)−K(x̂ j)‖= ‖K(x)−K(x + e j)‖ ≤ L‖e j‖. (9.13)

This assumption is satisfied in many applications. In particular, the assumption is
valid when the controller is affine with respect to the gap signal.

Let’s now examine the time rate of change of the storage function V under the
sampled control law. The directional derivative of V is

V̇ =
∂V (x)
∂x

A(x)+
∂V (x)
∂x

B1(x)w+
∂V (x)
∂x

B2(x)K(x̂ j).

Since K(x) =−BT
2
∂V
∂x

T
, one can rewrite V̇ as

V̇ =
∂V
∂x

A(x)+
∂V
∂x

B1(x)w−KT (x)K(x̂ j).

310 M. Lemmon

Completing the square for the cross-term ∂V
∂x B2(x)w yields,

V̇ =
∂V
∂x

A(x)− 1
2

∥
∥∥
∥
∥
γw− 1

γ
∂V
∂x

T
∥
∥∥
∥
∥

2

+
γ2

2
‖w‖2 +

1
2γ2

∥
∥∥
∥
∥

BT
1 (x)

∂V
∂x

T
∥
∥∥
∥
∥

2

−KT (x)K(x̂ j).

Applying the Hamilton-Jacobi inequality bounds V̇ as was done in section 9.2 yields

V̇ ≤ −1
2

∥∥
∥
∥
∥
γw− 1

γ
∂V
∂x

T
∥∥
∥
∥
∥

2

+
γ2

2
‖w‖2− 1

2
‖x‖2−KT (x)K(x̂ j)

≤ −1
2
‖x‖2 +

γ2

2
‖w‖2−KT (x)K(x̂ j). (9.14)

The above cross-term, KT (x)K(x̂ j), in equation (9.14) must still be dealt
with. From the Lipschitz assumption on K in equation (9.13), one rewrites this
cross-term as

KT (x)K(x̂ j) =
1
2

∥
∥K(x)−K(x̂ j)

∥
∥2− 1

2
‖K(x)‖2− 1

2
‖K(x̂ j)‖2

≤ 1
2

L2‖e j‖2− 1
2
‖K(x)‖2− 1

2
‖K(x̂ j)‖2

≤ 1
2

L2‖e j‖2− 1
2
‖K(x̂ j)‖2

where e j = x̂ j − x is the gap. Substituting this bound for KT (x)K(x̂ j) into equa-
tion (9.14) yields the following bound on the directional derivative of the storage
function,

V̇ ≤ −1
2
‖x‖2 +

γ2

2
‖w‖2− 1

2
‖K(x̂ j)‖2 +

1
2

L2‖e j‖2

= −β
2

2
‖x‖2 +

γ2

2
‖w‖2 +

(
−1−β 2

2
‖x‖2− 1

2
‖K(x̂ j)‖2 +

1
2

L2‖e j‖2
)

(9.15)

for some user-defined parameter β ∈ [0,1]. Note that the above inequality will be
a dissipative inequality for V̇ provided one can guarantee that the last three terms
within the parentheses are collectively negative definite. If this is the case, then

V̇ ≤−β
2

2
‖x‖2 +

γ2

2
‖w‖2

for all x and w. As noted in the mathematical preliminaries section, satisfaction of
this inequality is sufficient to establish that the sampled-data system’s induced L2

gain from the input w to the output x is less than or equal to γ/β . Note that the
user-defined parameter β becomes a parameter that controls how close the gain of
the sampled-data system will be to the original gain of the continuously-sampled
system.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 311

inter-sample period

0 1 2 3 4 5 6 7 8 9 10
10

−20

10
−15

10
−10

10
−5

10
0

1 2 4 7 10
0

0.1

0.2

0.3

0.4

0.5

scaled error

event-trigger

inter-sample period

time

Gap and threshold history (L2 disturbance)

3 5 6 8 9

0 1 2 3 4 5 6 7 8 9 10
10

−20

10
−15

10
−10

10
−5

10
0

1 2 4 7 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4

inter-sample period

event-trigger

scaled error

time

Gap and threshold (wideband disurbance)

3 5 6 8 90

Fig. 9.7 Gap, threshold, and intersample time history using an L2 event-trigger. (left) L2
noise case. (right) wideband noise case

In summary, if the last three terms on the right-hand side of equation (9.15) are
negative, then the sampled-data system is L2 stable with a gain less than γ/β . This
inequality is satisfied for all times, t, if one can guarantee

L2‖e j(t)‖2 ≤ (1−β 2)‖x(t)‖2 +‖K(x̂ j)‖2. (9.16)

The left-hand side of this inequality is simply the size of the system gap, e j. The
right-hand side of the inequality is a state-dependent threshold that is very similar
to the ISS event threshold derived earlier. In other words equation (9.16) is an L2

preserving event-trigger. The event-trigger is used in the same way the ISS event-
trigger was used. Namely, the sampler, S, monitors the gap against the threshold on
the right-hand side. When the inequality is violated (or about to be violated), then
the state is sampled and the next release time r j+1 is generated.

Note that the event-trigger depends on the user-defined parameter β . This pa-
rameter controls how close the event-triggered system’s gain will be to γ , the gain
of the original continuous-time system. If β is close to one then the sampled system
achieves the original gain of γ . As β gets smaller, the gain of the system increases,
thereby reducing the event-triggered system’s L2 performance. In other words, the
smallest thresholds and hence the most frequent sampling occurs when β is close
to one. As β gets smaller, the intersampling periods will get longer at the cost of a
higher closed-loop system gain. This is a tradeoff between the system gain and how
frequently the state must be sampled.

The following example illustrates the use of the L2 event trigger on a variation
of the superlinear system examined in figure (9.5). In this case let’s consider the
controlled system characterized by the following equations,

ẋ(t) = x3(t)+ u(t)+ w(t)
u(t) = −α x̂3

j − x̂ j

312 M. Lemmon

for t ∈ [r j,r j+1) and all j = 0,1, . . . ,∞. The sequence of release times {r j}∞j=0 is gen-
erated by the violation of the L2 event-trigger in equation (9.16). Choose a special
type of L2 disturbance of the form,

w(t) = e−2tν(t)

for t ≥ 0 and where ν is white noise process. The left-hand side of figure 9.7 plots the
gap and threshold time histories for this system (top plot) and the intersample time
(bottom plot), Tj, that was generated. As can be seen the sampling period is initially
very small (about 0.1 sec) at the beginning of the simulation when the disturbance
is largest. As the disturbance decays, the sampling period stabilizes to a relatively
long period (0.4 sec) that is four times longer than the initial sampling period.

The right-hand side of figure 9.7 shows the gap, threshold, and intersample time
histories for the same L2 event-triggered system in which the disturbance is no
longer guaranteed to go to zero as our system approaches the equilibrium point. In
this case let the disturbance be

w(t) = (e−2t + 0.1)ν(t)

where ν(t) is again a white noise process. In this case, the disturbance amplitude
does not go to zero as time goes to infinity. In particular, this w(t) is referred to as
a wide band disturbance. The top plot shows the gap and threshold time histories.
The bottom plot shows the resulting intersample times. When the system state is
far from the equilibrium point, the system’s response is similar to the earlier L2

disturbance case. As the system state approaches the equilibrium point, however,
the periodic nature of the intersampling time disappears with sampling times that
can become arbitrarily short. In this case, therefore, event-triggering only yields
aperiodic, rather than sporadic, sampling of the system state.

This type of behavior is common in both the L2 event-triggered and ISS event-
triggered systems. It essentially results because the state-dependent threshold gets
very small as the system state approaches the origin. With such a small threshold,
the introduction of noise into the disturbance makes the system’s sampling-events
trigger much more often. This example therefore shows that state-dependent event-
triggered system may be sensitive to wide-band disturbances. One way to address
this sensitivity is to place a lower bound on the event-triggering threshold of the
form (in the L2 event-trigger case)

L2‖e j(t)‖2 ≤max
{

T ,(1−β 2)‖x(t)‖2 +‖K(x̂ j)‖2} .

Assuming that ‖e j(t)‖ and ‖x(t)‖ have bounded rates of growth, this modified event-
trigger prevents the sampling period from being arbitrarily close to zero and can
therefore assure the sporadic nature of event-triggered sampling.

Impact of Delays: The preceding analysis for the L2 and ISS event-triggers as-
sumed that both the system state and control update are generated at the same time.
In other words, the control signal, based on the system state sampled at time r j, is

9 Event-Triggered Feedback in Control, Estimation, and Optimization 313

applied to the plant at the same time. This means that our prior analysis ignored
delays. Real-life implementations of such systems will always exhibit some delay
due to the amount of time it takes to compute the control signal. It would be highly
desirable to show that the performance of the event-triggered system (as measured
by the closed-loop system’s L2 gain) is preserved under such delays. The following
analysis from [83] shows how robust L2 performance will be under event-triggering
with delays.

Before starting the analysis, let’s discuss the modeling of event-triggered sam-
pling with delays. In particular, one now needs to consider two sequences of times.
The sequence of release times {r j}∞j=0 is defined as before. Release time r j repre-
sents the time when 1) the state was sampled and 2) the control task was released
for execution by the central processing unit (CPU). The other sequence of interest
is the sequence of finishing times, { f j}∞j=0. The time f j ∈ R denotes the time when
the control signal computed by the control task is actually used by the plant. This
time also marks the finish of the control job that had been released at time r j. In
general one make the small delay assumption which states that r j ≤ f j < r j+1 for
all j = 0,1, . . . ,∞. In other words, the sample taken at time r j is used at a time, f j ,
which always occurs before the next invocation of the control task.

Figure 9.8 shows the timing relationships assumed in this analysis. The figure is
a timeline in which the black rectangles indicate when the control task job is being
executed. With regard to this diagram, let’s define two measures of real-time system
performance. The first measure is the task period Tj = r j+1− r j. This is the interval
of time between any two consecutive invocations of the control task. As in the case
of the ISS event-trigger, there is great interest in obtaining lower bounds on Tj,
thereby identifying the smallest sampling period required by the real-time computer.
The other measure of interest is the delay, D j, of the jth job. This is the time between
the finishing time and release time, i.e. D j = f j− r j. The control task deadline D is
a real-time constraint that one might place on these delays. In particular, a real-time
system that is functioning properly will have all delays less than the deadline (D j ≤
D for all j = 0,1, . . . ,∞). The choice of the deadline is an important constraint. In our
case, the deadline is chosen to ensure the L2 performance of the control application.
In particular, this means that our analysis would like to derive upper bounds on
the maximally allowable delay (MAD) that any task can tolerate before losing our
guarantee on L2 performance. This upper bound then becomes the deadline quality-
of-service (QoS) constraint on the real time system.

To obtain tight bounds on the maximally allowable delays (MAD) and intersam-
ple intervals, let’s confine our attention to linear time-invariant control systems of
the form

ẋ(t) = Ax(t)+ w(t)+ Bu(t)
u(t) = −BT Px̂ j = K(x̂ j)

for all t ∈ [f j, f j+1) and j = 0,1, . . . ,∞. A and B are are suitably dimensioned real
matrices. In terms of the earlier system model considered in equation 9.12, we let
B1 = I and B2 = B. This is simply done for notational convenience. The sampled

314 M. Lemmon

job jjob j-1 job j+1

ƒ
j

ƒ
j-1 ƒ

j+1

r
j-1

r
j r

j+1

D
j

T
j

Fig. 9.8 Definition of Timing Relationships used in Studying the Real-time Implementations
of L2 event-triggered control

state, x̂ j = x(r j), is the state that occurs at the jth consecutive release time. Note
that the above equation holds between finishing times, rather than between release
times. This is in accordance with the fact that control signals can only be changed
after the control task’s job has finished executing.

By confining our attention to linear systems one can use a storage function of the
form V (x) = xT Px where P is a real valued n by n matrix. With this choice of V
the Hamilton-Jacobi inequality reduces to an algebraic Riccati inequality where P
is a symmetric positive definite matrix that for some real γ > 0 satisfies the Riccati
inequality

AT P+ PA−P
(
BBT − γ−2I

)
P + I ≤ 0.

With this choice of control, the induced L2 gain of the continuously sampled closed-
loop system is guaranteed to be less than or equal to γ .

The L2 event-trigger is derived in the same way it was for the nonlinear system.
The difference is that now in establishing the dissipative inequality, one makes use
of the algebraic Riccati inequality rather than the Hamilton-Jacobi inequality. The
resulting L2 event-trigger (derived in [83]) is

eT
j (t)Me j(t) < δxT (r j)Nx(r j)

where

M = (1−β 2)I + PBBT P

N =
1
2
(1−β 2)I + PBBT P

and β and δ are user supplied constants between 0 and 1. Note that the earlier L2

triggering threshold was a function of x(t) and x(r j). The preceding threshold for the
LTI case is only a function of x(r j). This means that the above threshold is weaker
than our earlier result (in other words it would cause the system to sample sooner).
This particular form of the L2 threshold was used in [83] because it rendered the
analysis of delays more tractable. With this weaker threshold it was possible to
obtain specific bounds on the acceptable delays and minimum periods that could be

9 Event-Triggered Feedback in Control, Estimation, and Optimization 315

t
r

jr
j-1

r
j+1

z
j-1

(t) z
j
(t)

z
j+1

(t)

T
j

r
j+2

Fig. 9.9 Time history of normalized gap ‖z j(t)‖ when there are no delays (r j = f j)

tolerated by the event-triggered system. As mentioned above, the bounds on delays
are useful because they serve as deadlines for the real-time computer implementing
the event-triggered control system. The bounds on period are useful in verifying
whether the system can exhibit Zeno-sampling.

Let’s first examine the problem of obtaining a lower bound on the sampling pe-
riod under the assumption of no delays. For notational convenience, rewrite the
earlier L2 event-trigger in terms of a normalized gap function,

z j(t) =
√

Me j(t)

so that the triggering inequality takes the form

‖z j(t)‖<
√

xT (r j)Nx(r j) = ρ(x(r j))

where the function ρ : R
n→ R is defined in the above equation. Figure 9.9 shows

the time history of the gap functions when there are no delays; in other words the
controller job’s finishing time equals the release time. As was done in the earlier
analysis regarding sampling periods for ISS event-triggers, let’s examine the nor-
malized gap function’s rate of growth over the interval [r j,r j+1).

The analysis starts by bounding the time derivative of ‖z j(t)‖,
d
dt
‖z j(t)‖ ≤

∥
∥
∥
√

Mė j(t)
∥
∥
∥=

∥
∥
∥
√

M
(
Ax(t)−BBT Px(r j)+ w(t)

)∥∥
∥

≤
∥
∥
∥
√

MAe j(t)
∥
∥
∥+

∥
∥
∥
√

M(A−BBT P)x(r j)
∥
∥
∥+

∥
∥
∥
√

M
∥
∥
∥‖w(t)‖

for t ∈ [r j,r j+1). Let’s assume the disturbance is bounded by the norm of the system
state. In other words, let’s assume there exists a positive real constant W such that
‖w(t)‖ ≤W‖x(t)‖. In this case the preceding upper bound on d

dt ‖z j(t)‖ may be
simplified to the form,

d
dt
‖z j(t)‖ ≤ α‖z j(t)‖+ μ0(x(r j)) (9.17)

where α is a real constant such that

316 M. Lemmon

α =
∥
∥∥
√

MA
√

M−1
∥
∥∥+W

∥
∥∥
√

M
∥
∥∥
∥
∥∥
√

M−1
∥
∥∥

and μ0 : R
n→R is a function such that

μ0(x(r j)) =
∥
∥∥
√

M(A−BBT P)x(r j)
∥
∥∥+W

∥
∥∥
√

M
∥
∥∥‖x(r j)‖.

The differential inequality in equation (9.17) bounds the rate of growth of the
normalized gap function over the interval between two consecutive release times, r j

and r j+1. Since the state is sampled at time r j , the gap is zero at that time. So the
initial condition for the differential inequality is ‖z j(r j)‖= 0. One can therefore use
the Comparison principle to show that for all t ∈ [r j,r j+1) that

‖z j(t)‖ ≤ μ0(x(r j))
α

(
eα(t−r j)−1

)
.

This is an upper bound on the normalized gap between two consecutive release
times. Clearly, the next release r j+1 must occur before the right-hand side of the
above inequality violates the L2 event threshold. In other words, the following in-
equality must hold

μ0(x(r j))
α

(eαTj −1)≥ ρ(x(r j)).

This inequality can be solved for the sampling period Tj = r j+1− r j to obtain

Tj ≥ 1
α

ln

(
1 +α

ρ(x(r j))
μ0(x(r j))

)

when the next release occurs. The above inequality represents a lower bound on the
intersample time intervals generated by L2 event-triggers. It can be shown [83] that
this bound is always bounded away from zero, so as in the ISS event-trigger case
Zeno-sampling does not occur. A major reason for this lies in the requirement that
the external disturbance has a norm that goes to zero as the system state approaches
its equilibrium. This is a particularly strong assumption that can be justified if the
source of the disturbance arises from modeling uncertainty. In general, however, if
this assumption does not hold, then L2 event-triggers can lead to Zeno-sampling as
was seen in figure 9.7. One can avoid these undesirable behaviors by imposing some
additional constraints on the event-triggers. This particular approach was discussed
in more detail in [84].

The usefulness of the prior analysis is limited by the no task delay assumption.
Let’s now examine how this assumption might be relaxed. In the case of delays,
the normalized gap’s evolution changes as shown in figure 9.10. With non-zero de-
lays, the individual gap functions overlap as shown in the figure. This means that
one should partition the time interval [r j, f j+1) into two subintervals [r j, f j) and
[f j, f j+1). Over the first subinterval, the system state evolves according to the dif-
ferential equation

9 Event-Triggered Feedback in Control, Estimation, and Optimization 317

ẋ(t) = Ax(t)−BBT Px(r j−1)+ w(t)

in which the state used in the controller is the state at sample time r j−1. After the
jth control job finishes, the control is updated with the most recent sampled state.
This means that over the time interval [f j, f j+1), the system state evolves according
to the differential equation

ẋ(t) = Ax(t)−BBT Px(r j)+ w(t).

In a manner similar to what was done in the no-delay case, differential inequalities
can be used to bound ‖z j(t)‖ for all t ∈ [r j, f j+1).

The analysis of the non-zero delay case is done by viewing the event threshold
ρ(x(r j)) as a budget that is allocated to the normalized gap. In particular we partition
this budget between the two subintervals [r j, f j) and [f j, f j+1). Let’s require that
over the first subinterval [r j, f j) is constrained so the normalized gap doesn’t get
bigger than ερ(x(r j)) where ε is a user-defined constant between 0 and 1. One can
again use differential inequalities to show that the normalized gap is bounded as

‖z j(t)‖ ≤ μ1(x(r j),x(r j−1))
α

(
eα(t−r j)−1

)
=Φ(x(r j),x(r j−1);t− r j) (9.18)

for all t ∈ [r j, f j) and where the function μ1 : R
n×R

n→ R is defined as

μ1(x(r j),x(r j−1)) =
∥
∥
∥
√

M(Ax(r j)−BBT Px(r j−1))
∥
∥
∥+W‖

√
M‖‖x(r j)‖.

The right-hand side of the above inequality (9.18) represents the solution to the
differential equation

d
dt
‖z j‖= α‖z j(t)‖+ μ1(x(r j),x(r j−1))

where α is a real constant. The solution to this differential equation is characterized
by the function Φ : R

n×R
n×R→ R. This function returns the normalized gap

z j(t) at time t as a function of the system states x(r j) and x(r j−1). The dependence
of Φ on the system state at times r j and r j−1 is a consequence of the fact that the

t
r

jr
j-1

r
j+1

z
j-1

(t) z
j
(t) z

j+1
(t)

D
j

T
j

r
j+2ƒ

j+1
ƒ

j+2
ƒ

jƒ
j-1

Fig. 9.10 Time history of normalized gap ‖z j(t)‖ when there are task delays (r j < f j)

318 M. Lemmon

differential equations governing the evolution of the system state are different over
time intervals [r j, f j) and [f j, f j+1).

Note that the duration of the first subinterval, [r j, f j) is the delay, D j. To ensure
the normalized gap gets no larger than ερ(x(r j)) over this first subinterval, equation
(9.18) implies that

μ1(x(r j),x(r j−1))
α

(
eαDj −1

)≤ ερ(x(r j)).

Solving for D j yields

0≤ D j ≤ 1
α

ln

(
1 + εα

ρ(x(r j))
μ1(x(r j),x(r j−1))

)
.

The above equation represents an upper bound on the delay that ensures the gap at
the end of the first subinterval is less than the allocated budget of ερ(x(r j)).

The analysis is completed by examining the behavior of the gap over the second
subinterval [f j, f j+1). At the beginning of this interval,

‖z j(f j)‖ ≤Φ(x(r j),x(r j−1);D j)≤ ερ(x(r j))≤ ρ(x(r j)). (9.19)

The system state over the interval [f j, f j+1) satisfies the differential equation

ẋ(t) = Ax(t)−BBT Px(r j)+ w(t).

Using an argument similar to that employed in analyzing the gap over the first subin-
terval, one can show that

d
dt
‖z j(t)‖ ≤ α‖z j(t)‖+ μ0(x(r j)).

Solutions to this differential inequality over the interval t ∈ [f j, f j+1] are bounded
above by solutions to the associated differential equality

d
dt
‖z̃ j(t)‖= α‖z̃ j(t)‖+ μ0(x(r j))

with the initial condition z̃ j(f j) = z(f j). This bounding solution, z̃ j(t), is used to
predict when the release time should be selected to ensure the L2 stability of the
event-triggered system.

This result is proven in [83]. In particular, this paper states that the closed-loop
system is L2 stable with a gain less than or equal to γ/β if the task’s (j+1)st release
time is generated by

r j+1 = f j +
1
α

ln

(
1 +α

δρ(x(r j))−Φ(x(r j),x(r j−1);D j)
μ0(x(r j))+αΦ(x(r j),x(r j−1);D j)

)
(9.20)

9 Event-Triggered Feedback in Control, Estimation, and Optimization 319

and the delay D j+1 satisfies

D j+1 ≤ 1
α

(
1 + εα

(1− δ)ρ(x(r j))
αδρ(x(r j))+ μ0(x(r j))

)
. (9.21)

In the above function α is the real constant defined earlier, ρ and μ0 are the class K
functions defined above and Φ bounds a function of the system state as it evolves
over the delay time D j.

Self-Triggered Feedback Control: The results in the prior section do more than
suggest that an event-triggered system’s L2 stability will be robust with respect
to task delays. Equation (9.20) is interesting in that it computes the future release
time given the current release and finishing times. This equation therefore provides
a prediction of the next release time and it suggests that it should be possible to
develop a software implementation of event-triggered systems. This software ver-
sion of event-triggering has sometimes been referred to as self-triggered feedback
control. Such software versions of event-triggering may be preferred in applications
where the cost of adding event-detection hardware is deemed unacceptable.

The concept of self-triggered task models was original presented in [75]. Sim-
ulation results [41] suggested that self-triggering systems exhibit a robustness to
delays that is consistent with what one might exhibit from event-triggered systems.
In these earlier works the computation of the next release time was usually done
in a heavy handed fashion that was not computationally efficient. This has changed
recently with results in [83] which allow a more computationally efficient way of
selecting the next release time. More recently, it has been noted that for homogenous
systems [1], release times enforcing input-to-state stability satisfy certain scaling re-
lationships. These relationships can be used to reduce the computation of the next
release time to a table look-up. Another important aspect of these analytical bounds
on acceptable delay and release times is that they can be used as quality-of-service
constraints for real-time schedulers. Since it now becomes possible to predict when
the next control job should be released, one can use these estimates as the period
and deadline that govern how real-time scheduling services adjust task priorities. In
other words, the aforecited analytical bounds provide a formal way of connecting
real-time scheduling constraints to the application’s (i.e. control system’s) actual
performance.

Event-triggering was proposed [2, 3] as a means to co-design controllers and
schedulers in embedded systems. The analysis of state-dependent event-triggers
[70] formally characterized the stability properties of event-triggering and the later
analyses of intersample intervals and maximally allowable deadlines [83] provided
bounds that could be used in adapting the embedded system’s controller tasks. These
methods raise the possibility of moving away from the traditional hard real-time task
models that have dominated embedded control. While the use of event-triggering
has focused on conserving the embedded system’s computational resources, it is
anticipated that event-triggering may be used to conserve other types of shared re-
sources. Of particular interest are embedded sensor-actuator control systems where
communication resources are highly constrained. The next section examines the ap-
plication of state-dependent event-triggering to such networked control systems.

320 M. Lemmon

9.4 Event-Triggered Feedback in Networked Control Systems

Many of the results for event-triggered control of embedded systems can be ex-
tended to networked control systems. A networked control system or NCS is a set
of controllers that coordinate their actions over a communication network. For NCS,
event-triggering is used to decide when to transmit or broadcast the system state to
a local controller’s neighbors. Using events to trigger communication actually pro-
vides a much stronger motivation for event-triggered control. The reason for this is
that in many cases, the energy or cost associated with the transmission of a bit of in-
formation is much more than the energy associated with using that bit to compute the
control law. Event-triggering, therefore, provides a realistic way of reducing traffic
congestion in communication networks used by NCS. The objective of this section
is to show how the earlier results from event-triggered control of embedded systems
can be extended to networked control systems. The section first discusses the NCS
architecture under study and then it derives event-triggers assuring the NCS is ISS.
As in the case of embedded systems, the NCS implementation introduces a number
of so-called network artifacts that complicate the analysis of the idealized model.
These network artifacts include delays in the transmission of information as well as
dropped information packets. This section studies the impact of such network arti-
facts and demonstrates that event-triggered NCS stability is robust to such network
artifacts in a quantifiable manner.

While there is a great deal of literature [11, 25, 50, 51, 90] examining networked
control systems, there is relatively little work pertaining to event-triggered NCS.
Most of the results in this section are drawn from [81] and [80]. Related work will
be found in [48].

Model of Networked Control System: Let’s first describe a model of a networked
control system or NCS. Consider a distributed NCS consisting of N agents. Fig-
ure 9.11 provides a graphic illustration of an NCS with three agents. Each agent
consists of a physical component and a cyber-component. The physical components
are interconnected as shown by the solid lines in the figure. The cyber-components
are also interconnected through a communication network whose links are shown
by the dashed lines in the figure.

This system may be more formally characterized using graph theoretic notation.
In particular, let N = {1,2, . . . ,N} denote the set of agents. A graph Gp = (N ,Ep)
represents the physical coupling between the agents. N denotes the vertices of the
graph and Ep ⊂N ×N denotes the set of edges in the graph. The edge (i, j) con-
nects node i ∈N to node j ∈N . The edge, therefore, is an ordered pair (i, j) of
nodes. The ordered pair (i, j) is in Ep if the dynamics of agent j’s physical com-
ponent are directly driven by agent i’s local state. The graph Gc = (N ,Ec) models
the interconnections between the cyber-components of the agents. As before N de-
notes the vertices (nodes) of the graph and Ec ⊂N ×N represents the edges of
the graph.

In this section, the graphs for the physical and cyber-interconnections need not
be the same. This requires us to define a number of special neighborhoods in the
graph. In particular,

9 Event-Triggered Feedback in Control, Estimation, and Optimization 321

physical system

physical system

cyber

system

cyber

system

cyber

system

x1

x3

x3

x2

u1

u2

u3

x1

x3

x2

x1

x2

x3

ẋ1(t) = f1(xD1
(t), u1(t), w1(t))

ẋ2(t) = f2(xD2
(t), u2(t), w2(t))

ẋ3(t) = f3(xD3
(t), u3(t), w3(t))

u1(t) = K1(x̂Z1
(t))

u2(t) = K2(x̂Z2
(t))

u3(t) = K3(x̂Z3
(t))

physical system

Fig. 9.11 Model of Event-Triggered Networked Control Systems

• Zi = { j ∈N |(j, i) ∈ Ec} represents those agents whose cyber-components can
send information to agent i’s cyber-component.

• Ui = { j ∈N |(i, j) ∈ Ec} denotes those agents whose cyber-components can re-
ceive information from agent i’s cyber-component.

• Di =
{

j ∈N |(j, i) ∈ Ep
}

represents those agents whose physical components
directly drive the dynamics of agent i’s physical component.

• Si =
{

j ∈N |(i, j) ∈ Ep
}

denotes those agents whose physical components are
directly driven by the physical component of agent i.

For any set Σ ⊂N , let |Σ | denote the number of elements in that set and let Σ =
Σ ∪{i}.

The physical component of agent i is characterized by a local state xi : R→ R
n

where xi satisfies the differential equation

ẋi(t) = fi(xDi
(t),ui(t),wi(t))

xi(t0) = xi0

where xDi
= {x j} j∈Di

are the local states of agent i’s neighbors that are physically

connected to it. The system dynamics are characterized by the function fi : R
n|Di| ×

R
m×R

�→ R
n which is locally Lipschitz and satisfies fi(0,0,0) = 0. ui : R→ R

m

is a control input generated by the cyber-component of the agent and wi : R→ R
�

is an external disturbance. The above characterization assumes all subsystems have
the same local state dimension, n. This is done for notational convenience. The
model and subsequent analysis would also apply to subsystems with local states of
different dimensionalities.

The control ui is generated by agent i’s cyber-component. Since these cyber-
components exchange information over a digital communication network, local
states are transmitted in a discrete manner. In particular, let {ri

j}∞j=1 denote the

322 M. Lemmon

sequence of broadcast release times for the ith agent. So the transmitted state from
agent i is denoted as

x̂i(t) = xi(ri
j)

for t ∈ [ri
j,r

i
j+1) and j = 0,1, . . . ,∞. Agent i’s cyber-component uses the local state

information received from all its neighbors in the set Zi to compute the control ui.
So let Ki : R

n|Zi| → R
m denote the i’th agent’s local controller so that

ui(t) = Ki(x̂Zi
(t)).

Following the same notational conventions as before, x̂Zi
denotes the broadcast

states of all neighbors of agent i whose cyber-components send information directly
to agent i.

ISS Event-Triggered Networked Control: Let’s now derive ISS event-triggers for
the NCS described above. In particular, let ei(t) = x̂i(t)− xi(t) denote the local gap
between agent i’s current state and its last broadcast state. Assume there exist posi-
tive definite function V : R

nN → R, controllers Ki : R
|nZi| → R

m, and class K func-
tions γi, ψi, and βi (for i = 1,2, . . . ,N) such that

V̇ =
N

∑
i=1

∂V
∂xi

fi(xDi
,Ki(xZi

+ eZi
),wi)

≤
N

∑
i=1

(−γi(‖xi‖)+ψi(‖ei‖)+βi(‖wi‖)) (9.22)

where eZi
is the gap of all agent i’s cyber-neighbors. This assumption means that

V is an ISS-Lyapunov function with respect to w when the the gap ei(ri
j) = 0. In

view of our earlier discussion, this is sufficient to imply that the local controllers
Ki leave the original continuously sampled version of the networked control system
input-to-state stable.

So again, one selects a user-defined parameter σi ∈ (0,1) and notes that if the
local state and gap trajectories satisfy the inequality

−σiγi(‖xi(t)‖)+ψi(‖ei(t)‖)≤ 0 (9.23)

for all t ∈ R and all i = 1,2, . . . ,N, then the bound on V̇ becomes

V̇ ≤
N

∑
i=1

(−(1−σi)γi(‖xi‖)+βi(‖wi‖)) .

This is a dissipative inequality that was seen earlier to be sufficient to show that the
event-triggered NCS is ISS with respect to the external input wi.

As before in our study of the embedded event-triggered controllers, the inequality
in equation (9.23) can be used as the basis of a state-dependent threshold test. In

9 Event-Triggered Feedback in Control, Estimation, and Optimization 323

particular, the ith agent would check the validity of the following threshold test on
the gap,

ψi(‖ei(t)‖)≤ σiγi(‖xi(t)‖). (9.24)

At the broadcast time ri
j, the local gap, ei = 0. This gap then grows until ψi(‖ei(t)‖)

exceeds the state dependent threshold γi(‖xi(t)‖). The violation of that threshold
triggers agent i to broadcast its state again. Note that this is a cooperative broad-
cast mechanism in that the violation of the threshold results in an agent sharing its
local state information with its neighbors. In other words, the success of such an
event-triggered broadcast scheme relies on all agent’s agreeing to work in the same
manner.

Note that the ISS event trigger given above is only a local function of the agent’s
state. This is important, for it means each agent is able to trigger its broadcast with-
out relying directly on its neighbors. A key part of the prior analysis is the assump-
tion that there exists an ISS Lyapunov function that is separable in the sense speci-
fied by the bounds in equation (9.22). Such a Lyapunov function may be constructed
by identifying a set of N positive definite functions Vi : R

n → R for i = 1,2, . . . ,N
with class K functions γi, ηi,ψi, and βi such that

∂Vi

∂xi
fi(xDi

,Ki(xZi
+ eZi

),wi) ≤ −γi(‖xi‖)+ ∑
j∈Di∪Zi

η j(‖x j‖)

+ ∑
j∈Zi

ψ j(‖e j‖)+βi(‖wi‖). (9.25)

As a specific example, let’s consider class K functions that are quadratic so γi(‖x‖)
can be expressed as γi‖x‖2 and similarly for the other functions, ηi, ψi, and βi. In
this case, one sees that by choosing V =∑N

i=1 Vi, the following inequality is obtained

V̇ ≤
N

∑
i=1

⎛

⎝−γi‖xi‖2 + ∑
j∈Di∪Zi

η j‖x j‖2 + ∑
j∈Zi

ψ j‖e j‖2 +β 2
i ‖wi‖2

⎞

⎠

=
N

∑
i=1

(−(γi−|Si∪Ui|ηi)‖xi‖2 +ψi|Ui|‖ei‖2 +βi‖wi‖2) .

Note that this matches the conditions in equation (9.22) provided the first term on
the right-hand side is negative definite. This term will be negative definite if

γi−|Si∪Ui|ηi > 0.

This condition places a restriction on the amount of coupling between physically
interconnected physical systems. In particular, it says that if one can appropriately
bound this physical coupling and if there exist candidate ISS-Lyapunov functions
satisfying the bounds in equation (9.25), then it is always possible to construct a

324 M. Lemmon

global V that is an ISS-Lyapunov function for the entire networked system. In this
case, the associated ISS event-trigger is shown to have the form

‖ei(t)‖ ≤ σi

√
γi−|Si∪Di|ηi

|Ui|ψi
‖xi(t)‖=

σi

αi
‖xi(t)‖

which would ensure the L2 stability of the entire system.
The ability to construct V from smaller local candidate ISS-Lyapunov functions

is important, for it allows us to distribute the design of the ISS event-triggers. This
is particularly important in large-scale networked systems where agent subsystems
may be added and modified in an ad hoc manner. Linear networked systems provide
a particularly good example of when one can exploit this distributed strategy for
constructing ISS event-triggers. For linear NCS, the parameters in the triggering
conditions can be computed using linear matrix inequalities [82].

Simulation results for this approach to event-triggered broadcasting are shown
in figure 9.12. This example was taken from [81]. It consists of N carts that are
interconnected through soft springs. The local state of the ith cart is xi =

[
yi ẏi

]T

where yi is the position of the ith cart with respect to the system’s equilibrium point.
Assuming soft spring coupling between the carts, the state equation for the ith cart
can be written as

ẋi(t) =
d
dt

[
yi
ẏi

]
=
[

ẏi(t)
ui(t)+k1

i tanh(yi+1(t)−yi(t))+k2
i tanh(yi−1(t)−yi(t))+wi(t)

]

for all t ∈ R where i = 1,2, . . . ,N. The parameters k1
i and k2

i denote the spring con-
stants for the springs on the right-hand and left-hand side of the ith cart, respectively.
From the cart geometry shown in figure 9.12, one can see that these spring constants
satisfy k1

i = k2
i+1 for i = 1,2, . . . ,N−1. The left-end cart’s spring constant is k2

1 = 0
and the right-end cart’s spring constant in k1

N = 0. The function ui : R→ R denotes
the control applied to the cart by its local controller.

In this example the communication network’s links mirror the physical interac-
tions between the carts so that Zi = Di. The sampled state is denoted as x̂i(t) =
[

ŷi(t) d
dt ŷi(t)

]T
where ŷi(t) = yi(ri

j) and d
dt ŷi(t) = ẏi(ri

j) for all t ∈ [ri
j,r

i
j+1) and

j = 0,1, . . . ,∞. The local control is computed from these sampled measurements as

ui(t) = Kix̂i(t)− k1
i (tanh(ŷi+1(t)− ŷi(t))− k2

i tanh(ŷi−1(t)− ŷi(t)).

In this case, the agents controlling the end cars use the ISS event-trigger
5.9‖ei(t)‖< 0.2‖xi(ri

j)‖ and the interior agents use the event-trigger 10.3‖ei(t)‖<

0.2‖xi(ri
j)‖. The results from this simulation are shown in figure 9.12.

The top plot on the left-hand side of figure 9.12 plots the state trajectories for all
three carts. As can be seen, this event-triggered system is asymptotically stable since
all points asymptotically approach their equilibrium points at zero. The bottom plot
on the left-hand side of figure 9.12 plots the intersample time intervals that were
generated by the proposed event-triggers. As can be seen, these intersample time
intervals vary over time in a regular manner.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 325

u1 u2 u3

y1

y2

y3

0 1 2 3 4 5 6
−0.5

0

0.5

1

0 1 2 3 4 5 6
0

0.02

0.04

Time

Time

lo
ca

l s
ta

te
s

In
te

rs
a

m
p

le
 T

im
e

s

Fig. 9.12 Simulation Example of Event-Triggered Networked Control System consisting of
three coupled carts

Impact of Network Artifacts: The prior analysis for the ISS event-triggers in net-
worked control systems had two important assumptions that now need to be exam-
ined in more detail. The first assumption was that there was no delay between the
transmission and reception of information over the communication network. The
second important assumption was that all neighbors in the set Ui receive and use the
broadcast data in a synchronized manner. Both assumptions are difficult to justify in
real-life wireless sensor-actuator networks. This difficulty is a direct consequence
of the unreliable and time-varying nature of wireless communication. The second
assumption can be dealt with by making use of a broadcast protocol that essentially
synchronizes the transmitted data across all neighbors in Ui. The use of such a pro-
tocol, however, introduces a number of network artifacts such as delays and dropped
messages; both of which have a significant impact on the event-triggered system’s
performance. The objective of this subsection is to establish bounds on acceptable
transmission delays and message dropout rates, thereby showing that the stability of
the event-triggered NCS is robust to such network artifacts.

Let’s first describe the network broadcast protocol used to ensure that the received
broadcasts are synchronized between all neighbors in Ui. Such a broadcast protocol
is illustrated graphically on the left-hand side of figure 9.13. In this case, the shaded
agent represents the ith broadcasting agent at time instant ri

j. This broadcast is made
to the two neighboring agents. Since this is a broadcast, both neighboring agents
receive the same sampled copy of the transmitting agent’s local state. Upon receiv-
ing the ith agent’s message, each agent acknowledges the receipt of that message
through an ACK signal. When the ith agent receives ACKs from all of the neigh-
bors in Ui, it then broadcasts a permission or PERM message to those neighbors.
As soon as all neighbors receive the PERM message they use the previously re-
ceived data in computing their controls. The delay between initial transmission and
the final receipt of the PERM messages represents the delay between sampling and
actuation. As long as this delay is sufficiently small, the overall networked system
should still be stable.

ACKs and PERMs are control packets that are very short in length and can there-
fore be delivered with a high degree of reliability. The data packets, on the other
hand are relatively long and will be more subject to unreliable transmission. Even
if an ACK or PERM message were lost, the impact such lost information has on

326 M. Lemmon

Broadcast at rj
i

First ACK

Second ACK

PERM at fj
i

agent agent agent

agent agent agent

agent agent agent

agent agent agent

Broadcast at rj
i

First NACK

Second ACK

PERM not sent

agent agent agent

agent agent agent

agent agent agent

agent agent agent

Fig. 9.13 Broadcast Protocol in Wireless NCS. (left) step-by-step description of broadcast
protocol. (right) mechanism by which transmitted data is dropped

the overall system’s performance can be detected and used to trigger additional data
broadcasts. So one would expect the system’s overall performance to be robust to
such faults. Just how robust this system is to such faults, however, has yet to be fully
studied.

It is relatively easy to see why the assumption that transmissions are received in-
stantaneously is unreasonable. While the transmitted signal propagates at the speed
of light, it takes time for a message to work its way though an agent’s network stack.
Moreover, it takes time to transmit, receive and acknowledge the ACKs of an agent’s
neighbors. As a result, the analysis cannot assume that messages are transmitted and
received with zero delay.

The right-hand side of figure 9.13 shows another network artifact that can’t be
neglected. Wireless communication is inherently unreliable since there is a finite
probability that a message will not be successfully transported across the channel.
In this case, it is highly likely that a broadcast message may not be received by all
neighbors in Zi. When this occurs, ACK messages will only be sent by a subset of
the agents in Zi. Since the transmitting agent doesn’t receive all of the ACKs it is
expecting, it will not send the PERM message and so the neighboring agents will
not use the information that was previously transmitted to them. In this situation,
the data transmitted by the ith agent is actually dropped. An important question is
whether or not event-triggered system stability is robust to such data dropouts.

Under the proposed broadcast protocol, one must therefore adopt a somewhat
more complex view of the timing relations between message transmission and re-
ception than was presented earlier. Figure 9.14 illustrates the underlying timing re-
lationships assumed in the following analysis. As before, let’s define a sequence
{ri

j}∞j=0 which consists of the time instants when the ith agent releases a message
for broadcast to its neighbors. If this agent receives ACKs from all of its neighbors
then the broadcast is said to be successful. One can therefore introduce a subse-
quence of {ri

j}∞j=0 that consists of all the successful broadcast times. Let {bi
k}∞k=0

denote this sequence of successful broadcasts. If a broadcast is successful, there is
a finite delay associated with informing all neighbors that the broadcast was suc-
cessful (i.e. the time required to execute the broadcast protocol). One can therefore
define a sequence of successful finishing times, { f i

k}∞k=0. The time instant f i
k denotes

the time when the broadcast that was released at time instant bi
k was given permis-

sion for use by all agents in Ui. With regard to these timing relations, the number of

9 Event-Triggered Feedback in Control, Estimation, and Optimization 327

r i
j f i

k r i
j+1 r i

j+2
r i

j+ +1d
i

k
r i

j+ d
i

k
f i

k+1

(=b)i
k (=b)i

k+1

kth transmission k+1st transmissionr
i
j = jth consecutive broadcast time

bi
k = kth successful broadcast time

fik = kth successful finishing time

di
k = number of dropped broadcasts

between kth and k + 1st broadcasts

Fig. 9.14 Timing Relationships under NCS Broadcast Protocol

dropped broadcasts between the kth and (k + 1)st successful broadcasts is denoted
as di

k.
Analyzing the effect that such network artifacts have on the event-triggered sys-

tem’s performance can be done in a manner that is analogous to our earlier anal-
ysis of delays in event-triggered embedded systems. As before, one first considers
a somewhat weaker version of the event-trigger in which the threshold is only a
function of the last sampled state x̂i(t), rather than the current local state xi(t). The
original event-trigger has the form

‖ei(t)‖ ≤ σi

√
γi−|Si∪Bi|ηi

|Ui|ψi
‖xi(t)‖=

σi

αi
‖xi(t)‖.

A sufficient condition that ensures the above inequality is satisfied would be

‖ei(t)‖ ≤ σi

σi +αi
‖x̂i(t)‖= ci‖x̂i(t)‖.

In this weaker condition, the threshold is constant over the interval [f i
j, f i

j+1). As
mentioned above, this event-trigger makes it easier to analyze the impact that delays
and dropouts have on the overall event-triggered system’s performance.

b
i

k f
i

k
r i

j= r i

j+1
r i

j+d
i

k

r i

j+d +1
i

k

b
i

k+1 f
i

k+1

‖ek
i (t)‖ ci‖x̂i(t)‖

δici‖x̂i(t)‖

δ̂ici‖x̂i(t)‖

Fig. 9.15 Gap time history in the presence of network artifacts such as dropouts and delays

328 M. Lemmon

With this simplified event-triggering condition, one analyzes the impact of
dropouts and delays by allocating some portion of the threshold condition to each
network artifact. Figure 9.15 shows the gap ‖ei(t)‖ as a function of time between a
successful broadcast at time bi

k and the finishing time of the next successful broad-
cast f i

k+1. The gap grows over this interval of time and in order to assure the per-
formance of the event-triggered system, one requires that this gap always remains
less than ci‖x̂i(t)‖. The effect of the dropouts on the gap is confined to the first
part of this interval between times bi

k and bi
k+1. The effect of the delay on the gap

is confined to the last part of the interval from bi
k+1 to f i

k+1. This means that one
can separate the impact of dropouts and delays between these two subintervals. One
exploits this separation by requiring that the next successful broadcast at time bi

k+1
occur before the gap gets larger than δici‖x̂i(t)‖ where δi ∈ (0,1) is a user specified
constant. Once δi is selected, this determines how many dropouts the system can
tolerate before violating the condition.

Is it possible to ensure the gap due to dropouts is no larger than than the allocated
gap budget of δici‖x̂i(t)‖? This is done by simply triggering the event early. In
particular, let’s use an actual event-trigger of the form

‖ek
i (t)‖ ≤ δ̂ici‖x̂i(t)‖= δ̂ici‖xi(bi

k)‖

where ek
i (t) = xi(t)− xi(bi

k) for t ∈ [bi
k, f i

k+1), δ̂i ∈ (0,δi) and bi
k is the kth suc-

cessful broadcast. As shown in figure 9.15, the use of such a smaller threshold
will cause the system to trigger early, thereby providing some margin for dropouts
or delays. With this threshold the next release of a transmission occurs when
‖xi(t)− xi(bi

k)‖ = δ̂ici‖xi(bi
k)‖. The transmitting agent, however, does not know if

this transmission was successful, so when it tests for the next released transmission,
it uses the threshold condition

‖xi(t)− xi(ri
j+1)‖ < δ̂ici‖xi(ri

j+1)‖.

Note that in this inequality, the sampled system state that is used is taken at time
ri

j+1 rather than ri
j = bi

k. So if one now looks at the total gap ‖ek
i (t)‖ that occurs for

times after ri
j+1, then one can write this as

‖ek
i (t)‖ = ‖xi(t)− xi(bi

k)‖
≤ ‖xi(t)− xi(ri

j+1)‖+‖xi(ri
j+1)− xi(bi

k)‖.

Each of the two terms can be bounded using the event-triggering conditions to obtain

‖ek
i (t)‖ ≤ δ̂ici‖xi(ri

j+1)‖+ δ̂ici‖xi(bi
k)‖

≤ δ̂ici

(
‖xi(bi

k)‖+ δ̂ici‖xi(bi
k)‖
)

+ δ̂ici‖xi(bi
k)‖

=
(
(1 + δ̂ici)2−1

)
‖xi(bi

k)‖.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 329

The last relationship shows that under event-trigger‖xi(t)−xi(ri
j)‖< δ̂ici‖xi(ri

j)‖,
that the first release ri

j+1 occurs when the gap reaches δ̂ici‖xi(bi
k)‖. If that first re-

lease is unsuccessful, then the second release occurs at ri
j+2 when the gap equals(

(1 + δ̂ici)2−1
)
‖xi(bi

k)‖. In a similar way one can show that if additional releases

are unsuccessful then

‖ek
i (t)‖ ≤

(
(1 + δ̂ici)di

k+1−1
)
‖xi(bi

k)‖

for all t where di
k is the number of consecutive unsuccessful releases (i.e. dropped

transmissions) between times bi
k and bi

k+1. In order to assure the stability of this
system let’s require that the right-hand side of the above inequality be less than
δci‖xi(bi

k)‖ or rather that

(
(1 + δ̂ici)di

k+1−1
)
‖xi(bi

k)‖ ≤ δici‖xi(bi
k)‖.

Solving this inequality for di
k determines an upper bound on the maximum number

of successive dropouts that can be tolerated to assure overall system stability. This
bound is called the maximally allowed number of successive dropouts (MANSD)
and the bound is

di
k ≤MANSD =

⌊
log1+δ̂ici

(1 + δici)
⌋
−1.

This bound represents the maximum number of dropouts that our system can accept.

b
i

k
r i

j= r i

j+1

r i

j+d +1
i

k

b
i

k+1
r i

j+2
r i

j+3

(
(1 + δ̂ici)

2 − 1
)
‖xi(b

i
k)‖

δ̂ici‖xi(b
i
k)‖

(
(1 + δ̂ici)

3 − 1
)
‖xi(b

i
k)‖

(
(1 + δ̂ici)

di

k
+1 − 1

)
‖xi(b

i
k)‖

Fig. 9.16 Gap history in the presence of multiple dropouts

Delays only impact the gap in the subinterval between bi
k+1 and the finishing time

f i
k+1. This case must ensure that the gap does not get larger than the event threshold

ci‖xi(bi
k)‖. Bounding the allowable length of the interval [bi

k+1, f i
k+1) is done by

bounding the gap’s rate of growth of the gap by a constant

d
dt
‖ek

i (t)‖ ≤ pi.

330 M. Lemmon

This assumption is reasonable if the gap can be shown to evolve over compact sets.
Given this rate of growth, pi, the bound on the admissible delay between broadcast
and reception will be

f i
k+1−bi

k+1 ≤
(1− δi)ci

pi
‖xi(bi

k)‖= upper bound on deadline.

This expression represents the admissible deadline by which a network transmission
must be received to assure overall system stability.

This section has shown that state-dependent event-triggering can greatly reduce
the usage of communication resources in networked control systems. A potential
weakness in the existing results is their reliance on state-feedback controllers. How
one might extend these formalisms to output feedback controllers is still an open
question. One way to begin addressing this question is to first examine the use of
event-triggering in state estimation. The following section reviews recent results in
this direction.

9.5 Event-Triggered Estimation

This section examines a simple problem involving the use of event-triggering in
state estimation. In this case, let’s assume that a sensor is observing a discrete-time
process over a finite horizon and computing a local estimate of the process state.
The problem involves determining when this local estimate should be transmitted to
a remote observer so that the remote observer’s mean square estimation error is min-
imized subject to a constraint on the transmission rate between the local sensor and
remote observer. These event-triggers are therefore referred to as MMSE (minimum
mean square error) event-triggers. Problems of this sort are relevant to estimation
over wireless sensor networks [91].

Early work on this problem focused on characterizing the impact that intermit-
tently received observations had on the performance of the estimator [68, 47]. A
solution to the MMSE event-triggering problem was presented by Imer et al. [30]
and by Rabi et al. [59, 61, 57]. Rabi viewed the transmission problem as an optimal
stopping problem [35], whereas Imer made use of dynamic programming concepts.
This approach can also be applied to control systems [31]. An alternative approach
to event-triggered estimation will be found in [67]. This section uses dynamic pro-
gramming to rederive the results from Rabi’s earlier work [59].

It should be noted that MMSE triggers differ in a significant manner from the
earlier stability-based triggers derived in sections 9.3 and 9.4. The prior stability-
based triggers preserved some desired stability concept such as input-to-state or L2

stability. The MMSE event-triggers, however, actually optimize the estimator’s per-
formance subject to a constraint on transmission frequency. Recall that one motiva-
tion for considering event-triggered systems is that experimental evidence suggests
that event-triggering can greatly reduce communication and computational effort
while maintaining overall system performance. None of the prior stability-based
event-triggers, however, actually show why this should be the case. The MMSE

9 Event-Triggered Feedback in Control, Estimation, and Optimization 331

event-triggers suggested in Imer’s and Rabi’s work, however, explicitly optimize
overall estimator system performance subject to a constraint on communication ef-
fort. In this way, MMSE event-triggers may shed more light on why event-triggered
systems appear to be more efficient in their use of limited computational and com-
munication resources.

Remote Estimation Problem: The event-triggering problem considered in [61] as-
sumes that a sensor is observing a scalar linear discrete-time process over a finite
horizon of length M + 1. The process state x : [0,1,2, . . . ,M]→ R satisfies the dif-
ference equation

xk+1 = axk + wk

for k ∈ [0,1, . . . ,M−1] where a is a real constant, w : [0,1, . . . ,M−1]→R is a sam-
ple path for a zero mean white Gaussian noise process with variance Q. The initial
state, x0 ∈R, is chosen from a Gaussian distribution with mean μ0 and varianceΠ0.
The sensor generates a measurement y : [0,1, . . . ,M]→R that is a corrupted version
of the process state. The sensor measurement at time k is

yk = xk + vk

for any integer k between 0 and M where v : [0,1, . . . ,M] → R is a sample path
of a zero mean white Gaussian noise process with variance R that is uncorrelated
with the process noise, w. The process and sensor blocks are shown on the left-hand
side of figure 9.17. In this figure the output of the sensor feeds into a transmission
subsystem that decides when to transmit information to a remote observer.

This transmission subsystem consists of three components; an event detector, a
filter, and a local observer. The event detector decides when to transmit information
to the remote observer. It is assumed that the detector is only allowed to transmit
at B distinct time instants where B is an integer between 0 to M + 1, inclusive.
The particular transmission times form a sequence {τ�}B

�=1 where τ� ∈ [0,1, . . . ,M]

Physical

Process
Sensor

x

Event

Detector

y

Local

Observer

x(τj)

x

Remote

Observer

transmission at

times τj xw

Filter

x

Transmission Subsystem

0 1 r M

a priori gap e
k

= x
k
- x

k

event-trigger, Sk
-

Event Detector triggers the transmission of

the “local filter’s” MMSE estimate at times

τj. The transmission time, τj, is triggered

the first time when the a priori gap |xk - xk|

exceeds a time-varying theshold

-

-

Fig. 9.17 Remote Estimation Problem

332 M. Lemmon

denotes the time when the �th consecutive transmission was made. The decision to
transmit is based on estimates that are generated by the filter and the local observer
shown in figure 9.17.

The filter and local observer shown in figure 9.17 generate state estimates that
the event-detector uses to make its transmission decision. Let Yk = {y0,y1, . . . ,yk}
denote the measurement information available at time k. The filter generates a
state estimate x : [0,1, . . . ,M]→ R that minimizes the mean square estimation er-
ror (MSEE), E

[
(xk− xk)2 |Yk

]
, at each time step conditioned on all of the sensor

information received up to and including time k. These estimates can be computed
using a Kalman filter. For the scalar process under study these filter equations are

xk = E [xk |Yk] = axk−1 + Lk (yk−axk−1)
Pk = E

[
(xk− xk)2 |Yk

]

= a2Pk−1 + Q−L2
k(a

2Pk−1 + Q+ R)

where x0 = Π0
Π0+R y0 + R

Π0+Rμ0, P0 = Π0R
Π0+R and Lk = a2Pk−1+Q

a2Pk−1+Q+R
.

The event detector uses the filter’s state estimate, xk at time k, and another esti-
mate generated by the local observer to decide when to transmit the filtered state xk

to the remote observer. Given a set of transmission times {τ�}B
�=1, let X k denote

the information received at the remote observer by time k. In particular, this infor-

mation set is X k =
{

xτ1 ,xτ2 , . . . ,xτ�(k)

}
where �(k) = max{� : τ� ≤ k}. The remote

observer generates an a posteriori estimate x̂ : [0,1, . . . ,M]→ R of the process state
that minimizes the MSEE, E

[
(xk− x̂k)2 |X k

]
, at time k conditioned on the informa-

tion received at the remote observer up to and including time k. The a priori estimate
at the remote observer, x̂− : [0,1, . . . ,M]→R, minimizes the E

[
(xk− x̂k)2 |X k−1

]
,

the MSEE at time k conditioned on the information received up to and including
time k−1. Due to the scalar nature of the process, these estimates take the form,

x̂−k = E
[
xk |X k−1

]
= ax̂k−1

x̂k = E
[
xk |X k

]
=
{

x̂−k don’t transmit at time step k
xk transmit at time step k

where x̂−0 = μ0.
The event-detection strategy that is used to select the transmission times, τ�, is

based on observing the gap, e−k = xk − x̂−k between the filter’s estimate x and the
remote observer’s a priori estimate, x̂−k . In the following it will be convenient to
adopt the following notational conventions,

êk = xk− x̂k estimation error at step k,
ek = xk− xk filtered state error at step k,
e−k = xk− x̂−k a priori gap at step k,
ek = xk− x̂k a posteriori gap at step k.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 333

Note that even through the gap is a function of the remote observer’s estimate, this
signal will be available to the sensor. The sensor has access to this information
because the sensor has access to all of the information, X k, that it sent to the remote
observer. As a result, the sensor can use another local estimator to construct a copy
of x̂ that can be used locally by the event-detector to compute the gap, e−k . This local
estimator is shown as part of the transmission subsystem shown in figure 9.17.

The event detector’s decision to transmit is triggered when the estimate’s gap, e−k ,
leaves a time-varying trigger set, Sb

k , where k ∈ [0,1, . . . ,M] is the current time and b
is the number of transmissions remaining at step k. In general, the trigger sets can be
cast as threshold conditions on the estimate’s gap. This is shown graphically in the
lower left-hand side of figure 9.17. The event-triggers are marked with the squares.
The actual gap e−k is shown by the solid bullets. Note that the event-triggers are
time-varying and equal zero at the end of the time horizon M. Sampling is triggered
the first time the gap violates the threshold as shown in figure 9.17. For a given
time k, there can be at most min{B,M + 1− k} transmissions remaining. The state
of the event detector at given time r will be a function of the current a priori gap,
e−r , and the number of remaining transmissions, Tr. This a priori information at
the detector is denoted as the ordered pair, I−r = (e−r ,Tr). In a similar way, the a
posteriori information at the detection is denoted as Ir = (er,Tr+1).

Backward Recursion for Value Function: One can use a backward recursion simi-
lar to that found in stochastic dynamic programming [20] to determine the triggering
sets. Towards this end let’s introduce two collections of triggering sets that will be
used later. These collections are,

S b
r (k) =

{
Smax{0,b−k+r}

k , . . . ,Smin{b,M+1−k}
k

}

S b
r =

{
S b

r (r), . . . ,S b
r (M)

}
.

These two sets are shown in figure 9.18 for a problem with horizon M = 4 and
total number of transmissions, B = 3. This figure shows the indices for the time
steps r and the number of remaining transmissions, b. The collection S 2

1 consists
of those indices enclosed within the dotted line. That set is composed of four other
collections; S 2

1 (1), S 2
1 (2), S 2

1 (3), and S 2
1 (4). Each of these subcollections is

shown as a column of indices enclosed within the rectangles in the figure.
Denote the estimation error at the remote observer as êk = xk− x̂k. The problem

to be solved involves picking the event-triggers in collection S B
0 to minimize the

total MSEE at the remote observer. Formally, the problem is stated as follows

minimize: J(S B
0) = E

[
∑M

k=0 ê2
k

]
(9.26)

where the expectation is taken over ê0, . . . , êM . The optimal collection is the set S B∗
0

such that J(S B∗
0)≤ J(S B

0) over all possible S B
0 and the resulting optimal cost is

J∗ = min
S B

0

J(S B
0).

334 M. Lemmon

r
b

0 1 2 3 M=4

0

1

2

B=3

(1)S
2

1

(2)S
2

1

(3)S
2

1

(4)S
2

1

S
2

1

Fig. 9.18 Trigger set collection S 2
1 =

⋃M
k=1 S 2

1 (k) for B = 3 and M = 4

The problem in equation (9.26) can be treated using results from optimal stochas-
tic control. In our case, the control variables are the collection of triggering sets in
S B

0 , rather than some control signal. Since this is a dynamic optimization problem,
it can be treated using stochastic dynamic programming. This requires a value func-
tion that represents the remote observer’s total MSEE assuming one uses the optimal
triggering sets and assuming the initial information set is I−r = (ζ ,b) where ζ is the
current value of random variable e−r and b is the number of remaining transmissions.
In other words, the value function is

V (ζ ,b,r) = min
S b

r

E

[
M

∑
k=r

ê2
k | I−r = (ζ ,b)

]

. (9.27)

This is the minimal expected cost conditioned on the information I−r available to the
event detector at time r. The optimal cost achieved is J∗ = E

[
V (e−0 ,B,0)

]
. As will

be shown below, this value function can be computed using a backward recursion
often found in dynamic programming.

To develop the backward recursion, let’s first consider that the event-detector
starts at some time after the initial time step 0. In particular, consider an initial state,
(ζ ,b,r), at time step r in which the a priori gap, e−r equals ζ assuming there are b
transmissions remaining to be made. Note that e−r is a random variable whereas ζ is
a specific value for this random variable. From this initial condition, the collection
of admissible trigger sets can be described as

S b
r = {Sb

r}∪S b
r (r + 1)∪·· ·∪S b

r (M).

This is seen from figure 9.18. The minimization in equation (9.27) may therefore be
broken apart as

9 Event-Triggered Feedback in Control, Estimation, and Optimization 335

V (ζ ,b,r) = min
Sb

r

{

min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k | I−r = (ζ ,b)

]}

.

For notational convenience we’ll denote the inner minimization shown above as
G(ζ ,b,r). In other words,

G(ζ ,b,r) = min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k | I−r = (ζ ,b)

]

.

The computation of G(ζ ,b,r) may be decomposed into two cases. The first case
is when ζ ∈ Sb

r (i.e. the sensor decides not to transmit) and the other case occurs
when ζ /∈ Sb

r (i.e. the sensor decides to transmit). Let’s outline the computation for
the first case below. In particular, when ζ ∈ Sb

r , one sees that

G(ζ ,b,r) = min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k |e−r = ζ ∈ Sb

r ,Tr = b

]

.

When no transmission takes place, the information in the conditions in the above
equation hold if and only if Ir = (er,Tr+1) = I−r = (e−r ,Tr) = (ζ ,b). G(ζ ,b,r) may
therefore be rewritten as

G(ζ ,b,r) = min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k | Ir = (ζ ,b)

]

.

Since Tr+1 = b means that there are b transmissions remaining at step r+1, one can
conclude that not all of the trigger sets in

⋃M
k=r+1 S b

r (k) will impact the minimiza-
tion. In particular, one can disregard the sets Sp

k where p ranges from 0 to b−1 and
k = r + b− p.

This means that the minimization is really done over the set S b
r+1. Let’s now

compute G(ζ ,b,r) as a function of the value function at V (e−r+1,b,r + 1). In partic-
ular, G(ζ ,b,r) may be written as

G(ζ ,b,r) = min
S b

r+1

E

[
M

∑
k=r

ê2
k | Ir = (ζ ,b)

]

= E
[
ê2

r | Ir = (ζ ,b)
]
+ min

S b
r+1

E

[
M

∑
k=r+1

ê2
k | Ir = (ζ ,b)

]

= Pr + ζ 2 + min
S b

r+1

E

[
M

∑
k=r+1

ê2
k | Ir = (ζ ,b)

]

.

Since the information set sequence {I−k , Ik}M
k=0 is Markov and e−r+1 is independent

from S b
r+1, the remaining minimization may be rewritten as

336 M. Lemmon

G(ζ ,b,r) = Pr + ζ 2 + min
S b

r+1

E

[

E

[
M

∑
k=r+1

ê2
k | I−r+1 =(e−r+1,b), Ir =(ζ ,b)

]

| Ir =(ζ ,b)

]

= Pr + ζ 2 + min
S b

r+1

E

[

E

[
M

∑
r+1

ê2
k | I−r+1 = (e−r+1,b)

]

| Ir = (ζ ,b)

]

= Pr + ζ 2 + E

[

min
S b

r+1

E

[
M

∑
k=r+1

ê2
k | I−r+1 = (e−r+1,b)

]

| Ir = (ζ ,b)

]

= Pr + ζ 2 + E
[
V (e−r+1,b,r + 1) | Ir = (ζ ,b)

]
.

The preceding argument showed that if ζ ∈ Sb
r , then the term

G(ζ ,b,r) = min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k |e−r = ζ ∈ Sb

r ,Tr = b

]

= Pr + ζ 2 + E
[
V (e−r+1,b,r + 1) | Ir = (ζ ,b)

]
.

A similar argument can be used for the case when ζ /∈ Sb
r (i.e. the sensor decides to

transmit). In this case it can be shown that

G(ζ ,b,r) = min
S b

r (r+1),...,S b
r (M)

E

[
M

∑
k=r

ê2
k |e−r = ζ /∈ Sb

r ,Tr = b

]

= Pr + E
[
V (e−r+1,b−1,r + 1) | Ir = (0,b−1)

]
.

Combining both of these results determines the following backward recursion for
the value function,

V (ζ ,b,r) = min
Sb

r

{
VNT (ζ ,b,r)1ζ∈Sb

r
+VT (ζ ,b,r)1ζ /∈Sb

r

}
(9.28)

where 1ζ∈Ω is the indicator function that takes a value of 1 if ζ is in the set Ω and
is zero otherwise. The choice implied in the above equation is between VNT (ζ ,b,r)
and VT (ζ ,b,r) where

VT (ζ ,b,r) = Pr + E
[
V (e−r+1,b−1,r + 1) | Ir = (0,b−1)

]

= optimal cost if there is a transmission at time step r

VNT (ζ ,b,r) = Pr + ζ 2 + E
[
V (e−r+1,b,r + 1) | Ir = (ζ ,b)

]

= optimal cost if there is no transmission at time step r.

Note that VT (ζ ,b,r) is independent of ζ . Because of the properties of the indicator
function, the expression given in equation (9.28) is more naturally seen as a choice
in which the sensor chooses between the smaller of two costs,

V (ζ ,b,r) = min
Sb

r

G(ζ ,b,r) = min{VNT (ζ ,b,r),VT (ζ ,b,r)} .

9 Event-Triggered Feedback in Control, Estimation, and Optimization 337

In other words, we have a recursive expression for the optimal cost from the given
state (ζ ,b,r) and the sensor simply decides to transmit if the cost, VT , is smaller
than not transmitting, VNT .

The computation shown in equation (9.28) is a backward recursion over two sets
of indices: the time steps, r, and the number of remaining transmissions, b. In par-
ticular, the value function at index (b,r) is a function of the value function at indices
(b−1,r + 1) and (b,r + 1). The functional dependencies are shown in figure 9.18.
The arrows in this figure illustrate the functional dependencies implied by equation
(9.28).

The initial conditions for this recursion are the value functions at the indices
shaded in figure 9.18. The initial values for indices (0,r) where r ∈ [B,B+1, . . . ,M]
are

V (ζ ,0,r) =

{
Q(M+1−r)

1−a2 +
(

Pr + ζ 2− Q
1−a2

)
1−a2(M+1−r)

1−a2 if |a| �= 1
Q(M+r)(M+1−r)

2 +
(
Pr + ζ 2− rQ

)
(M + 1− r) if |a|= 1

. (9.29)

These initial conditions are determined by recognizing that V (ζ ,0,r) is the cost
assuming that no transmissions occur between steps r and M. The other set of ini-
tial conditions are marked by the indices in figure 9.18 that are located along the
diagonal. In this case

V (ζ ,b,r) =
M

∑
k=r

Pk (9.30)

for b ranging between 1 and B and r = M + 1−b. This value function is the MSEE
from time step r assuming there is a transmission in each of the remaining time
steps.

The value function V (ζ ,B,0) can be computed by recursively determining the
value function in sets S B

0 (k) for k starting at M and ranging backward to 0. The
collection

S B
0 (k) =

{
Smax{0,B−k}

k , . . . ,Smin{B,M+1−k}
k

}

consists of the indices enclosed by the rectangles in figure (9.18). The value func-
tion in set S B

0 (M) is determined by the initial conditions described above. Using
the order of computation implied by the arrows in figure 9.18, it should be appar-
ent that the value function for all nodes in S B

0 (M− 1) can be computed from the
known values in S B

0 (M). In a similar way, one can see that the value function at
indices in S B

0 (M−2) are computed from the values in S B
0 (M−1). One continues

this computation recursively to obtain the value function in S B
0 (0).

Let’s see what’s involved in computing the value function and the trigger set Sb
k

at index (b,k) which corresponds to time step k with b remaining transmissions.
The trigger set, Sb

k , can be chosen to be the symmetric interval [−θ b
k ,θ b

k] where
θ b

k ∈ R is a real positive number that must be computed. In particular, this leads
to the MSEE event-trigger where a transmission occurs if |e−k | > θ b

k . If (b,k) are

338 M. Lemmon

the initial indices shaded in figure 9.18, then the value function is given by the
initial conditions in equations (9.29)-(9.30). For other indices, the value function,
V (ζ ,b,k), and associated threshold θ b

k must be numerically computed using the
recursion in equation (9.28).

V (ζ ,b,k) is computed numerically at a number of discrete points in the real line.
Recall that V (ζ ,b,k) is determined as a choice between the functions VNT (ζ ,b,k)
and VT (ζ ,b,k). These two functions satisfy

VT (ζ ,b,k) = Pk +VT (ζ ,b−1,k + 1)

+
∫ θb−1

k+1

−θb−1
k+1

(VT (x,b−1,k + 1)−VNT(x,b−1,k + 1)) p(x|0)dx

VNT (ζ ,b,k) = Pk + ζ 2 +VT (ζ ,b,k + 1)

−
∫ θb

k+1

−θb
k+1

(VT (x,b,k + 1)−VNT(x,b,k + 1)) p(x|ζ)dx

where p(x|y) is the probability density of e−k+1 conditioned on ek = y. The value of

the optimal thresholds θ b
k+1 and θ b−1

k+1 are needed to evaluate these two functions.
These thresholds can be computed in a recursive manner.

Given θ b
k+1 and θ b−1

k+1 , the next optimal threshold, θ b
k , can be found using a bi-

section search. In particular, the optimal threshold occurs at ζ ∗ when VT (ζ ∗,b,k) =
VNT (ζ ∗,b,k). So the threshold must satisfy θ b

k = |ζ |∗. Once this threshold is de-
termined through the bisection search, then one can see that for |ζ | > θ b

k the value
function V (ζ ,b,k) = VT (ζ ,b,k) and for |ζ | ≤ θ b

k , the value function must satisfy
V (ζ ,b,k) = VNT (ζ ,b,k). This allows one to readily evaluate V (ζ ,b,k) at a number
of distinct points, ζ , along the real line.

An example of this computation is provided below for the system

xk = 1.2xk−1 + wk

yk = xk + vk. (9.31)

The mean and covariance of the initial state are 1 and 2, respectively. The covariance
of the noise terms, w and v, are both 1. Fix the horizon M = 8 and the total number
of transmissions B = 2. Using the algorithm mentioned above, the value function is
evaluated at various values of ζ . Figure 9.19 shows the resulting value function. The
solid line in the figure is the value function for various values of time k. The right-
hand plot shows V (ζ ,1,k) and the left-hand plot shows V (ζ ,2,k). The threshold
θ b

k is marked by the dots in the figure. Outside of the interval defined by the dots
one finds that V (ζ ,b,k) = VT (ζ ,b,k) and this is a constant because VT (ζ ,b,k) is
independent of ζ . Inside the region, the value function varies as a function of ζ .

To see how well the MSEE event-triggers perform, let’s vary B from 0 to 9 and
repeat the experiment 10,000 times for both the optimal event-trigger and compara-
ble periodic triggering of transmissions. The plot in figure (9.20) shows the MSEE
for the optimal event-triggered and periodically triggered transmissions as a func-
tion of the total number of transmissions, B. The plot shows that the experimentally

9 Event-Triggered Feedback in Control, Estimation, and Optimization 339

5

6
7

0

V(ζ ,2,k)

100

80

60

40

20

0

ζ
-8 -6 -4 -2 8642

k=2

k=3

k=0

k=1

k=4

θ 2

0
θ

1

2
θ 2

2
thresholds

0

6
7

8

V(ζ ,1,k)

100

80

60

40

20

0

ζ
-8 -6 -4 -2 8642

k=4

k=3

k=1

k=2

k=5

θ 1

1θ
2

1θ
3

1
thresholds

Fig. 9.19 Value functions V (ζ ,1,k) and V (ζ ,2,k) for sample system

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

Total Number of Transmitted Samples, B

predicted minimum MSE

MSE for optimal event triggered sampling

MSE for periodic sampling

M
e
a
n
 S

q
u
a
re

 E
rr

o
r,

 M
S

E

Fig. 9.20 MSE for periodic and event-triggered system

observed MSEE equals the MSEE predicted by the value function. The plot also
shows that the optimal event-triggered transmission strategy always generates a
smaller total MSEE than comparable periodically triggered systems.

This section has studied the design of MSEE event-triggers for a simple dis-
tributed estimation problem. This problem was solved in [30, 61, 58] under a va-
riety of assumptions. The main contribution of this section was a direct derivation
of the optimal event-triggers using dynamic programming concepts as well as an
explicit method for computing the optimal event-triggering thresholds. The meth-
ods in this section recover the original results in [59]. The analysis may be general
enough to suggest specific ways of extending the treatment of the scalar system to
state estimation of more general linear vector processes.

This section has focused on the estimation problem, but the framework used here
may also be extended to control problems. For control, one simply takes the out-
put of the remote estimator and connects it back into the plant through a controller.

340 M. Lemmon

Real-life applications that fit into this model are found in wireless sensor-actuator
networks. The associated control problem that seeks to maximize control perfor-
mance subject to a communication usage constraint was solved in [87, 88] for the
infinite horizon case. In general, the event-triggering thresholds solving the infinite
horizon problem are constants. Finite horizon versions of this control problem were
treated by [31] and [62]. In the finite horizon case, the event-triggering thresholds
are time-varying functions of the initial system state. It has proven difficult, how-
ever, to apply this work to vector systems due to the computational complexity asso-
ciated with solving the dynamic programming equations. Recent progress has been
made in resolving the computational complexity issue for infinite horizon prob-
lems through the use of quadratic approximations for the value function [19, 18].
A related approach was used in [42] to address the complexity in the finite-horizon
estimation problem.

9.6 Event-Triggered Approaches to Optimization

This section introduces an event-triggered distributed algorithm that solves network
utility maximization (NUM) problems in large-scale networked systems [79, 78].
Existing distributed algorithms for the NUM problem are gradient-based schemes
that converge to the optimal point provided the communication between subsystems
is sufficiently frequent. Analytic bounds on the communication interval required to
ensure convergence tend to be inversely proportional to certain measures of network
complexity such as network diameter and connectivity. As a result, the total mes-
sage passing complexity in such algorithms can be very great. The event-triggered
algorithm presented in this section appears to reduce the message passing complex-
ity by nearly two-orders of magnitude. Moreover, experimental results indicate that
this complexity may be independent of network diameter and connectivity.

Related Work: Many problems in networked systems can be formulated as opti-
mization problems. This includes estimation [56, 69, 33], source localization [56],
data gathering [15, 14], routing [46], control [77], resource allocation [55, 89] in
sensor networks, resource allocation in wireless communication networks [86, 16],
congestion control in wired communication networks [36, 44], and optimal power
dispatch [38] in electrical power grid. The consensus problem [52] can also be
viewed as a distributed optimization problem where the objective function is the
total state mismatch between neighboring agents. Many of these problems may be
viewed as multi-agent optimization problems that can be solved by a distributed im-
plementation of a subgradient algorithm [49]. In all of these problems, subsystems
communicate with each other in order to collaboratively solve a network optimiza-
tion problem.

Distributed algorithms that solve such network optimization problems include
the center-free distributed algorithms [28], distributed asynchronous gradient-based
algorithms [72] and distributed subgradient methods [49]. These early algorithms
suggest that if the communication between adjacent subsystems is sufficiently fre-
quent, then the state of the network will asymptotically converge to the optimal

9 Event-Triggered Feedback in Control, Estimation, and Optimization 341

point. Later developments in such distributed algorithms may be found in the net-
working community. Most of these later algorithms focus on solving the Network
Utility Maximization (NUM) problem. The NUM problem maximizes a global sep-
arable measure of network system performance subject to linear inequality con-
straints that are directly related to throughput constraints. This problem originates
in congestion control for Internet traffic [36, 44]. The NUM problem, however, has
a general form and many problems in other areas can be recast as a NUM problem
with little or no variation. As a matter of fact, many of the aforementioned problems
can be reformulated as NUM problems.

Among the existing algorithms [36, 44, 85, 53] solving the NUM problem, the
dual-decomposition approach proposed by Low et al. [44] is the most widely used.
Low et al. showed that their dual-decomposition algorithm was convergent for a
step-size that was inversely proportional to two important measures of network
size: the maximum path length L and the maximum number of neighbors S. So
as these two measures get large, the step size required to ensure convergence be-
comes extremely small. Step size, of course, determines the number of computa-
tions required for the algorithm’s convergence. Under dual-decomposition, system
agents exchange information at each iteration, so that step size, γ , also determines
the message passing complexity of the algorithm. Therefore if one uses the stabi-
lizing step size, dual-decomposition algorithms will have a message passing com-
plexity that quickly scales to unreasonable levels as the network diameter, L, or the
neighborhoood size, S, increases. In particular, it was shown in [44] that the dual-
decomposition is convergent if the step size satisfies

0 < γ < γ∗ =
−2max(i,xi)∇

2Ui(xi)

LS
(9.32)

where L is the maximum number of links any user uses, S is the maximum number
of users any link has, and Ui(xi) is the utility user i receives for transmitting at rate
xi. For many networked systems this type of message passing complexity may be
unacceptable. This is particularly true for systems communicating over a wireless
network. In such networked systems, the energy required for communication can be
significantly greater than the energy required to perform computation. As a result, it
would be beneficial if one can somehow separate communication and computation
in these distributed algorithms. This could reduce the message passing complex-
ity of distributed algorithms such as dual-decomposition. This section shows how
event-triggering can be used to realize the separation between communication and
computation in a primal algorithm solving the NUM problem.

NUM Problem: The NUM problem consists of a network of N users and M links.
Let S = {1, . . . ,N} denote the set of users and L = {1, . . . ,M} denote the set of
links. Each user generates a flow with a specified data rate. Each flow may traverse
several links (which together constitute a route) before reaching its destination. The
set of links that are used by user i ∈S will be denoted as Li and the set of users
that are using link j ∈L will be denoted as S j. The NUM problem takes the form

342 M. Lemmon

maximize: U(x) = ∑i∈S Ui(xi)
subject to: Ax≤ c, x≥ 0

(9.33)

where x =
[

x1 · · · xN
]T

and xi ∈ R is user i’s data rate. A ∈ R
M×N is the routing

matrix mapping users onto links and c ∈ R is a vector of link capacities. The jith

component, A ji, is 1 if user i’s flow traverses link j and is zero otherwise. The
jth row of Ax represents the total data rates going through link j. This rate cannot
exceed the link’s capacity c j. The cost function U : R

N → R is the sum of the user
utility functions, Ui : R→R, for i = 1,2, . . . ,N. These utility functions represent the
reward, Ui(xi), (i.e. quality-of-service) that user i receives by transmitting at rate xi.

A specific example of a NUM problem is shown in figure 9.21. This figure shows
a linear network consisting of M = 5 links with N = 3 users. User 1’s route includes
links 1-4, user 2’s route includes links 2-3, and user 3’s route uses link 3-5. Assum-
ing each link has a capacity limit of 1, the throughput constraint therefore becomes,

Ax =

⎡

⎢
⎢
⎢⎢
⎣

1 0 0
1 1 0
1 1 1
1 0 1
0 0 1

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎣
x1

x2

x3

⎤

⎦≤

⎡

⎢
⎢
⎢⎢
⎣

1
1
1
1
1

⎤

⎥
⎥
⎥⎥
⎦

= c.

link 1 link 3link 2 link 4 link 5

User 1

User 2
User 3

Fig. 9.21 Example of NUM Problem

The solution to the NUM problem maximizes the summed utility seen by all users
in the network as a function of the users’ transmission rates. These rates must clearly
be non-negative. Moreover, if Ui(x) = αi log(x) where αi is a positive constant, then
it can be shown [36] that all the user rates in the optimal solution must be positive. In
other words, the optimal solution does not result in certain users from being denied
access to the network, thereby assuring that all users have fair access to network
resources.

Augmented Lagrangian Algorithm: While early algorithms used methods based
on the dual to the problem in equation (9.33), this section examines a primal aug-
mented Lagrangian method. In particular, let’s introduce a slack variable s∈R

M and
replace the link constraints (c j− aT

j x ≥ 0 for all j ∈L) by the following equality
constraint

9 Event-Triggered Feedback in Control, Estimation, and Optimization 343

aT
j x− c j + s j = 0, s j ≥ 0, for all j ∈L .

where s j is called the slack variable for the jth constraint. The augmented cost then
becomes

L(x,s;λ ,w) =− ∑
i∈S

Ui(xi)+ ∑
j∈L

λ j(aT
j x− c j + s j)+

1
2 ∑j∈L

1
wj

(aT
j x− c j + s j)2.

Here a penalty parameter wj is associated with each link constraint and w =
[w1, . . . ,wM] is the vector of penalty parameters. The other variable λ j is an estimate
of the Lagrange multiplier, λ ∗j , associated with link j’s constraint, c j − aT

j x ≥ 0.
A vector formed from these estimates is denoted as λ = [λ1, . . . ,λM]. The vector
aT

j =
[
A j1, · · · ,A jN

]
is the jth row of the routing matrix A.

L(x,s;λ ,w) is a continuous function of x and s for fixed λ and w. The user rate, x∗,
and the slack variable s∗, that minimizes the augmented cost satisfies the following
equation

min
x≥0,s≥0

L(x,s;λ ,w) = min
x≥0

min
s≥0

L(x,s;λ ,w) = min
x≥0

Lp(x;λ ,w) (9.34)

where one defines the augmented Lagragian function associated with the NUM
problem as

Lp(x;λ ,w) =− ∑
i∈S

Ui(xi)+ ∑
j∈L

ψ j(x;λ ,w)

and where

ψ j(x;λ ,w) =

{
− 1

2 wjλ 2
j if c j−aT

j x−wjλ j ≥ 0
λ j(aT

j x− c j)+ 1
2w j

(aT
j x− c j)2 otherwise .

The optimization problem in equation (9.34) is then used as a starting point for
developing a recursive procedure that asymptotically approaches the solution of the
original NUM problem.

The original NUM problem’s solution can be approached arbitrarily closely by
solving an appropriately defined sequence of the optimization problems in equation
(9.34). This sequence of problems involve minimizing Lp(x;λ [k],w[k]) for appro-
priately chosen sequences of penalty parameters, w, and multiplier estimates, λ .
Let x∗[k] denote the approximate minimizer for Lp(x;λ [k],w[k]). It has been shown
[6] that for appropriately chosen sequences {w[k]}∞k=0 and {λ [k]}∞k=0, the sequence
of approximate minimizers, {x∗[k]}∞k=0 converges to the optimal point of the NUM
problem. The appropriate choice for these sequences is that for all j ∈L

• the sequence of penalty parameters, {wj[k]}∞k=0, is monotone decreasing to zero
• and the sequence of Lagrange multiplier estimates, {λ j[k]}∞k=0, is a sequence

where

344 M. Lemmon

λ j[k + 1] = max

{
0,λ j[k]+

1
wj[k]

(
aT

j x∗[k]− c j
)
}

.

A detailed description of how the sequences w[k] and λ [k] are updated in a dis-
tributed manner will be found in [78].

A primal algorithm based on the augmented Lagrangian method was developed
[78] that converges to the exact minimizer of the NUM problem. In many scenarios,
however, it may suffice to obtain an approximate minimizer which can be obtained
by considering the problem of minimizing Lp(x;λ ,w) for a fixed λ and w. In par-
ticular, if λ j = 0 and wj is sufficiently small, the minimizer of Lp(x;λ ,w) will be a
good approximation to the solution of the original NUM problem. In this regard the
basic primal algorithm can be stated as follows

1. Initialization: Select any initial user rate x[0] > 0. Set λ j = 0 and select a suf-
ficiently small wj > 0 for all j ∈L .

2. Recursive Loop: Minimize Lp(x;λ ,w) by letting

x[k + 1] = max

{
0,x[k]− γ ∂Lp

∂x
(x[k];λ ,w)

}
(9.35)

for k = 0,1, . . . ,∞.

The smaller w is the more accurate our approximate solution is. The recursion shown
in step 2 tries to minimize Lp(x;λ ,w) using a gradient following method in which
γ is a sufficiently small step size. The computations shown above can be easily
distributed among users and links.

Event-Triggered NUM Algorithm: Implementing the aforementioned primal al-
gorithm in a distributed manner requires communication between users and links.
An event-triggered implementation of the algorithm assumes that the transmission
of messages between users and links is triggered by some local error signal crossing
a state-dependent threshold. The main problem is to determine a threshold condi-
tion that results in message streams ensuring asymptotic convergence to the NUM
problem’s approximate solution.

The minimizer of the Lagrangian Lp(x;λ ,w) is searched for using the gradient
following recursion in equation (9.35). Assuming that computation is cheap, one
realizes this gradient recursion as a continuous-time system in which

xi(t) = −
∫ t

0

(
∂Lp

∂xi
(x(τ);λ ,w)

)+

xi(τ)
dτ

=
∫ t

0

(
∂Ui(xi(τ))

∂xi
− ∑

j∈Li

μ j(τ)

)+

xi(τ)

dτ (9.36)

for each user i ∈S where

9 Event-Triggered Feedback in Control, Estimation, and Optimization 345

μ j(t) = max

{

0,λ j +
1

wj

(

∑
i∈S j

xi(t)− c j

)}

. (9.37)

The function μ j : R→ R is a scalar characterizing how close the jth link constraint
is to being active. The link constraint is active at time t when μ j(t) = 0. Given a
function f : R→ R, its positive projection is defined as

(f (x))+
x =

{
0 if x = 0 and f (x) < 0

f (x) otherwise
.

The positive projection used above guarantees that the user rate, xi(t), is always
non-negative along the trajectory.

Equation (9.36) is the continuous-time version of the discrete-time update shown
in equation (9.35). Note that in equation (9.36), user i computes its rate based only
on the information from itself and the information of μ j from those links that are
being used by user i. As noted above μ j characterizes how close the j link constraint
is to being active. One may think of μ j as the jth link’s local state. From equation
(9.37), link j only needs to be able to measure the total flow that goes through
itself. Since all of this information is locally available, the update of the user rate in
equation (9.36) can be done in a distributed manner.

In equation (9.36), the link state information is available to the user in a contin-
uous manner. Let’s consider an event-triggered version of equation (9.36). This is
done by allowing the user to only access a sampled version of the link state. In par-
ticular, let’s associate a sequence of sampling instants, {T L

j [�]}∞�=0 with the jth link.

The time T L
j [�] denotes the instant when the jth link samples its link state μ j for the

�th time and transmits that state to users i ∈S j. One can see that at any time t ∈ R,
the sampled link state is a piecewise constant function of time in which

μ̂ j(t) = μ j(T L
j [�])

for all � = 0,1, . . . ,∞ and any t ∈ [T L
j [�],T L

j [�+1]). In this regard, the event-triggered
version of equation (9.36) takes the form

xi(t) =
∫ T

0

(
∂Ui(xi(τ))

∂xi
− ∑

j∈Li

μ̂ j(τ)

)+

xi(τ)

dτ

for all � and any t ∈ [T L
j [�],T L

j [�+ 1]).
Let’s now try to establish conditions on the sampling times {T L

j [�]} that ensure
the gradient update shown in equation (9.35) is convergent. For notational conve-
nience let the time derivative of the user rate, xi(t), be denoted as zi(t). Referring to
zi(t) as the user state, one sees that zi satisfies the equation

zi(t) = ẋi(t) =

(
∂Ui(xi(t))

∂xi
− ∑

j∈Li

μ̂ j(t)

)+

xi(t)

346 M. Lemmon

for all i ∈S . Now we take Lp(x;λ ,w) as a candidate Lyapunov function. The di-
rectional derivative of Lp is

L̇p(x;λ ,w) =
M

∑
i=1

∂Lp

∂xi

dxi

dt
=−

N

∑
i=1

zi

(
∂Ui(xi(t))

∂xi
−

M

∑
j=1

μ jA ji

)

≤ −
N

∑
i=1

⎛

⎝1
2

z2
i −

1
2

(
M

∑
j=1

(μ j− μ̂ j)A ji

)2
⎞

⎠

≤ −1
2

N

∑
i=1

z2
i +

1
2

M

∑
j=1

LS(μ j− μ̂ j)2.

To assure that L̇p is negative definite, one needs to select the sampling times so that

M

∑
j=1

LS(μ j− μ̂ j)2 ≤
N

∑
i=1

z2
i .

This almost looks like one of the state-dependent event-triggers used earlier in sec-
tion 9.4. Unfortunately, this trigger cannot be implemented in a distributed manner.
While the left-hand side is separable over the links, the right-hand side is summed
over the users. So the preceding analysis does not give rise to a distributed event
triggered algorithm.

To develop local event-triggers that can be easily distributed across the network,
let’s consider another sequence of times {T S

i [�]}∞�=0 for each user i ∈S . The time
T S

i [�] is the �th time when user i transmits its user state to all links j ∈Li. One can
therefore see that at any time t ∈ R, the sampled user rate is a piecewise constant
function of time satisfying

ẑi(t) = zi(T S
i [�])

for all � = 0,1, . . . ,∞ and any t ∈ [T S
i [�],T S

i [�+ 1]). One can now use this sampled
user state in our earlier expression for L̇p to show that

L̇(x;λ ,w) ≤−1
2

N

∑
i=1

[
z2

i −ρ ẑ2
i

]− 1
2

M

∑
j=1

[

ρ ∑
i∈S j

1

L
ẑ2

i −LS(μ j− μ̂ j)2

]

for some ρ ∈ (0,1). The derivative, L̇p, is negative definite as long as

0 <
N

∑
i=1

[z2
i −ρ ẑ2

i]

0 <
M

∑
j=1

[

ρ ∑
i∈S j

1

L
ẑ2

i −LS(μ j− μ̂ j)2

]

.

9 Event-Triggered Feedback in Control, Estimation, and Optimization 347

In this case, both inequalities are separable. The first one is separable over the users
and the second one is separable over the links. One can therefore ensure these con-
ditions are satisfied if

z2
i −ρ ẑ2

i > 0 (9.38)

for each i ∈S . This condition can be enforced by requiring that the user transmit zi

at those time instants when the inequality is about to be violated. The other condition
is satisfied if

LS(μ j− μ̂ j)2 < ρ ∑
i∈S j

1

L
ẑ2

i (9.39)

for each j ∈L . This condition can be enforced by requiring that the link transmit
μ j at those time instants when the inequality is about to be violated. The informal
discussion given above therefore establishes that if user/link transmissions are gen-
erated using the event-triggers in equation (9.38) and (9.39), then Lp(x;λ ,w) indeed
becomes a Lyapunov function for this system and one can ensure that this system is
convergent to a neighborhood of the optimal solution of the NUM problem.

Figure 9.22 shows the event-triggered optimization algorithm in graphical from.
This figure uses the system network that was introduced in figure 9.21. In this case
each link in the network has an associated router which monitors the total data flow-
ing through the link (∑i∈S j

xi(t)− c j). Attached to each router is a price agent that
updates the link state μ j and checks the event-trigger in equation (9.39) to determine
whether or not it will transmit its local link state. In a dual manner, each user that
is pumping data into the network has an associated rate agent that updates the user
state zi(t) and checks the trigger in equation (9.38) to determine when to transmit to
the links. One therefore see that the algorithm has both a feedback (link to user) and
feedforward path (user to link) in which the information streams are both sporadic
in nature.

Scaling of Event-Triggered Algorithm: Let’s compare the number of message
exchanges of the event-triggered algorithm against the dual-decomposition algo-
rithm. Simulation results show that event-triggered algorithms reduce the number
of message exchanges by up to two orders of magnitude when compared to dual-
decomposition. Moreover, the event-triggered algorithm’s message passing com-
plexity scales in a way that appears to be independent of network diameter or
connectivity.

Denote s ∈ U [a,b] if s is a random variable uniformly distributed on [a,b].
Given M, N, L and S, the network used for simulation is generated in the fol-
lowing way. One randomly generates a network with M links and N users, where
|S j| ∈ U [1,S] for j ∈ L and |Li| ∈ U [1,L] for i ∈ S . One makes sure that at
least one link has S users, and at least one user uses L links. After the network
is generated, a utility function Ui(xi) = αi logxi is assigned to each user i, where
αi ∈ U [0.8,1.2]. Link j is assigned capacity c j ∈ U [0.8,1.2]. Once the network
is generated, dual-decomposition and the event-triggered augmented Lagrangian

348 M. Lemmon

rate

agent
user

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

link

router
price

agent

rate

agent
user

rate

agent
user

ith user broadcasts its modified state, zi,
at times {TS

i [�]}∞�=0
when

z
2

i (t) − ρẑ
2

i (t) ≤ 0

jth link broadcasts its state, μj , at times
{TL

j [�]}∞�=0 when

LS(μj(t) − μ̂j(t))
2 ≥ ρ

∑

i∈Sj

1

L
ẑ2
i (t)

jth link continuously monitors its local
state

μj(t) =

⎛

⎝λj +
1

wj

⎛

⎝
∑

i∈Sj

xi(t) − cj

⎞

⎠

⎞

⎠

+

ith user continuously monitors its local
modified state

zi(t) =

⎛

⎝∂Ui(xi(t))

∂xi

−
∑

j∈Li

μ̂j(t)

⎞

⎠

+

Fig. 9.22 Diagram of the event-triggered primal algorithm

algorithms are simulated. The optimal rate x∗ and its corresponding utility U∗ are
calculated using a global optimization technique.

Define the error (for all algorithms) as

e(k) =
∣∣
∣
U(x(k))−U∗

U∗
∣∣
∣

where x(k) is the rate at the kth iteration. e(k) is the ‘normalized deviation’ from the
optimal point at the kth iteration. In all algorithms, one counts the number of iter-
ations K for e(k) to decrease to and stay in the neighborhood {e(k)|e(k) ≤ ed}. In
dual-decomposition, message passing from the links to the users occurs at each iter-
ation synchronously. So K is a measure of the total number of message exchanges.
In the event-triggered algorithms, events occur in a totally asynchronous way. So
one adds the total number of triggered events, and divide this number by the link
number M. This provides an equivalent iteration number K for the event-triggered
algorithms, and is a measure of the total number of message exchanges. One should
point out that since these simulations compare a primal algorithm and a dual algo-
rithm, they run at different time scales. Iteration number is then a more appropriate
measure of convergence than time [17, 34].

The default settings for the simulation are as follows: M = 60, N = 150, L =
8, S = 15, and ed = 3%. For all three algorithms, the initial condition is xi(0) ∈
U [0.01,0.05] for all i ∈S . In dual-decomposition, initial price p j = 0 for j ∈L ,
and the step size γ is calculated using equation (9.32). In the event-triggered primal
algorithm, the parameters are ρ = 0.5, λ j = 0, and wj = 0.01 for j ∈L .

9 Event-Triggered Feedback in Control, Estimation, and Optimization 349

We now consider a Monte Carlo simulation where M, N, and L are fixed and S
is varied from 7 to 26. For each S, all algorithms were run 1500 times, and each
time a random network which satisfies the above specification is generated. The
mean mK and standard deviation σK of K are computed for each S. mK is used as
the criterion for comparing the scalability of both algorithms. The left-hand plot in
figure 9.23 plots the iteration number K on a logarithmic scale as a function of S
for all algorithms. The circles represent mK for dual-decomposition and the squares
correspond to the primal algorithm.

dual-decomposition algorithm
event-triggered algorithm

104

6 8 10 12 14 16 18 20 22 24 26

N
u

m
b

e
r

o
f

M
e

ss
a

g
e

s

S = maximum number of users any link has

103

102

101 101

102

103

104

dual-decomposition algorithm
event-triggered algorithm

N
u

m
b

e
r

o
f

M
e

ss
a

g
e

s

2 4 6 8 10 12 14 16 18

L = maximum number of links used by any user

Fig. 9.23 Iteration number K as a function of S and L for all algorithms

For the primal algorithm, when S increases from 7 to 26, mK does not show
noticeable increase. For the primal algorithm, mK varies between 15.1 and 21.1. For
dual-decomposition, mK increases from 0.3856× 103 to 5.0692× 103. Our event-
triggered algorithm is up to two orders of magnitude faster than dual-decomposition.
These results also show that the event triggered message passing complexity scales
in a manner that is independent of S. This is stands in stark contrast to the dual-
decomposition algorithm which scales superlinearly with respect to S.

These algorithms were also simulated as a function of L. In particular, L was
varied from 4 to 18. The right-hand plot in figure 9.23 plots K (on a logarithmic
scale) as a function of L for all algorithms. For the primal algorithm, when L in-
creases from 4 to 18, mK increases slowly. In particular, mK increases from 15.0
to 18.2. For dual-decomposition, mK increases from 0.9866×103 to 3.5001×103.
The event-triggered algorithm again is up to two orders of magnitude faster than the
dual-decomposition.

This section presented a primal event-triggered distributed algorithm for solving
network utility maximization problems based on augmented Lagrangian methods.
Simulation results suggest that event-triggering greatly reduces the message passing
complexity of such distributed optimization algorithms. Optimization of networked
systems therefore represents another important application of event-triggering that
can be applied to a wide range of applications ranging from traffic control to power
dispatch in electrical power grids.

350 M. Lemmon

9.7 Research Issues

No chapter of this nature is complete without a discussion of future research issues.
Event-triggering represents a new paradigm for real-time feedback control, but the
topics covered in this chapter only touch upon what has recently been done. As
is often the case, good preliminary work presents just as many questions as it an-
swers and this is certainly the case for event-triggered research as of the writing of
this chapter. To help motivate the research issues being raised in this section, let’s
consider a real-time implementation of a state-dependent event-triggered control
system.

There are case studies examining the performance of event-driven control based
on static thresholds [64, 63]. There is, however, very little experimental work ex-
amining the implementation of the state-dependent event-triggers introduced in sec-
tions 9.3 and 9.4. Early work in this direction will be found in [10] in which a
self-triggered controller is implemented in a linear analog plant using a real-time
kernel. Another early implementation will be found in [13] where the performance
of different scheduling protocols for event-triggered controllers on a shared network
is investigated. Finally, an experimental study directly comparing the best periodic
controller to an event-triggered controller will be found in [26].

Figure 9.24 shows results from a recent experiment implementing state-
dependent event-triggered feedback-linearizing controllers for the 3 degree-of-
freedom (DOF) helicopter system. The plant is a Quanser c© 3DOF helicopter
controlled by a pentium III PC running the S.H.a.R.K. real-time kernel [22]. In
this case, a feedback-linearizing controller was designed for the system with the
objective of regulating the travel rate, τ̇ , elevation, ε , and pitch ρ of the vehicle.
Event-triggered and periodically triggered implementations of this system were im-
plemented in the S.H.a.R.K. kernel and the results from one of these experiments is
shown on the right-hand side of figure 9.24.

0 10 20 30 40 50 60 70 80 90
Time (sec)

Commanded

Event Triggered

Periodic

x 10
−4

Periodic

Event Triggered

T
ra

v
e
l

R
a
te

 (
ra

d
/s

e
c
) 0.4

0.2

0

-0.4

-0.2

C
P

U
 U

ti
li

z
a
ti

o
n

0

4

2

6

0 10 20 30 40 50 60 70 80 90
Time (sec)

τ

ε

ρ

Fig. 9.24 Real-time Hardware Implementation of State-Dependent Event-Triggered System

9 Event-Triggered Feedback in Control, Estimation, and Optimization 351

The top plot in figure 9.24 shows the travel rate as a function of time. The com-
manded travel rate is shown by the solid dashed line and the other traces show the
response of the event-triggered and periodically triggered controllers. What is im-
portant to note here is that the behavior is nearly identical in both cases. The bottom
plot shows the normalized CPU utilization of the event-triggered and periodically
triggered controllers. What one notices here is that when the vehicle is commanded
to non-zero travel rates, the event-triggered task’s utilization drops considerably.
During those periods, however, when the commanded travel rate is near zero (i.e.
the vehicle is hovering), the CPU utilization increases and actually exceeds the uti-
lization of the periodically triggered controller.

These results actually confirm what the prior analysis in section 9.3 discovered. In
particular, if one looks back at the results from [63] shown in figure (9.1), one sees
that event-triggering indeed reduces the overall CPU utilization relative to compa-
rable performing periodic controllers. For the case in [63, 24], however, a uniform
event-triggering threshold is chosen so that the system demonstrates considerable
chattering when the system is close to its equilibrium point. Under state-dependent
event-triggering, however, this type of chattering in the system response does not ap-
pear. But because the experiment’s input disturbance, w, is wideband sensor noise an
excessive number of events are triggered, just as was shown earlier in figure 9.7 of
section 9.3. What these results suggest is that state-dependent event-triggering can
reduce the jerky behavior seen under the static thresholds used in [63]. The current
theory, however, does not adequately balance that gain against the increased use of
CPU resources.

With the findings from this experiment in hand, one can now identify a num-
ber of important issues that future research into event-triggered feedback must con-
front. Probably the most immediate is that we develop a better understanding of
how to adequately trade-off control system performance against the reduction in
the use of computational or communication resources. In particular, if one exam-
ines the ISS or L2 event-triggering concepts discussed in sections 9.3 and 9.4, one
notes that while the analysis guarantees the preservation of some assumed stability
concept, it says almost nothing about the message passing complexity. To be fair,
these analyses do bound the minimum sampling period of state-dependent event-
triggering. But these bounds are obtained as an afterthought, once the stability-
preserving threshold has been determined. What is really needed is an analysis that
treats both stability-preserving performance and communication (or computational)
resource usage within the same analytical framework. To some extent, this approach
was attempted in the event-triggered estimation scheme considered in section 9.5.
In that case, the design of the event-trigger was posed as a minimization problem in
which the transmission rate between sensor and remote observer was constrained.
But that analysis is still far from being mature enough to be applied to real-life sys-
tems. The analysis constrains its attention to scalar linear systems and it is unclear
how those results might be generalized to vector or nonlinear systems with real-life
uncertainties.

Event-triggering samples the system state over time. The focus on constraining
communication in section 9.5 can be seen as trying to identify fundamental limits

352 M. Lemmon

on the rate at which information should be transmitted over the feedback chan-
nel. Sampling in time, however, is not the only way one can sample a signal. One
may also sample the signal in space, i.e. quantization. This suggests there should
be a close connection between results on minimum quantization feedback control
[43] and event-triggered feedback. In particular, an important issue involves a uni-
fied approach to quantization and sampling in distributed control and estimation
problems. Joint quantization and sampling issues were examined in [39], but a full
understanding of this relationship has yet to be completed.

Another important issue concerns the development of event-triggered output
feedback controllers. The experiment shown in figure 9.24 made use of state-
dependent event-triggers that presume full access to the state. In the experimental
system, however, the sensors only directly measure the travel angle, τ , elevation an-
gle ε , and pitch angle ρ . For the experiment a periodic task was used to estimate
the actual states of the system and then a separate event-triggering task was used
to invoke separate controllers for the travel, elevation, and pitch dynamics of the
vehicle. This implementation, however, is still far from what one would do in prac-
tice. Since most of the computational effort is actually done in the observer task, the
true reduction in CPU utilization is very modest for this experiment. To truly realize
the benefits of event-triggering, one would need an event-triggered output feedback
controller, in which triggering is done solely on the basis of observed sensor mea-
surements, rather than state estimates.

To some extent, the event-triggered estimation methods discussed in section 9.5
provide a first step at developing measurement-based event-triggers. But precisely
how this might be integrated into an output feedback system is unclear. One might,
for instance, implement an event-triggered observer, whose states are then used to
trigger the control action. But this interconnection of an event-triggered estimator
and event-triggered controller has not been studied at all. It is unclear whether one
can invoke some event-triggered separation principle. As soon as issues regarding
observer based control are raised, one must also confront traditional observability
and controllability issues. We are aware of no recent work regarding these deeper
system theoretic properties of event-triggered systems.

Finally, let’s return to the implementation questions raised in the experiment. As
noted above, the task set in this experiment consists of a hybrid combination of spo-
radic event-triggered tasks and periodically triggered tasks that work together to re-
alize state-dependent event-triggered controllers. In realizing such hybrid task sets
there are always implementation issues regarding scheduling and fault-tolerance
that need to be addressed. In particular, it is still unclear how best to schedule this
mixture of sporadic and periodically triggered tasks to ensure the determinism so
often insisted upon in safety-critical applications. One reason for insisting on pe-
riodically driven task sets in control, is that they provide a highly predictable be-
havior. When faults do occur, the impact of those faults can be readily analyzed
due to the highly deterministic nature of the resulting task environment. This type
of deterministic modeling does not seem to be available for the task sets currently
used to support event-triggered feedback and as a result it would be highly unlikely
that anyone would choose event-triggering for safety-critical applications. This need

9 Event-Triggered Feedback in Control, Estimation, and Optimization 353

not be the case, but to establish that event-triggering is suitable for safety-critical
applications one must develop a modeling framework whose predictive abilities
can provide broad assurances about the fault-tolerant properties of event-triggered
systems.

Event-triggered feedback represents an exciting new approach to real-time
networked control systems that has the potential of more efficiently using com-
putational and communication resources while assuring high levels of application
performance. These applications can be found in control, estimation, and optimiza-
tion. While the promise of event-triggering is great, there is still significant work
remaining to be done. A deeper understanding of the relationship between applica-
tion performance and resource usage must be cultivated. In particular, a close ex-
amination must be made of the connection between quantized and event-triggered
feedback. The current frameworks must be extended to event-triggered output con-
trollers. This extension will require a deeper understanding of the fundamental sys-
tem theoretic properties of event-triggered systems, especially as they pertain to the
separation between control and estimation. Finally, we must more critically evaluate
the scheduling and fault-tolerance of real-time implementations of event-triggered
controllers, especially as they pertain to safety-critical applications. Much has al-
ready been done, but a great deal remains to be accomplished if event-triggering
can indeed be used to build safety-critical real-time networked control systems.

Acknowledgements. The author gratefully acknowledges the partial financial support of the
National Science Foundation (NSF-CNS-07-20457 and NSF-ECCS-0925229). This work
grew out of discussions with P. Tabuada (UCLA) , M. Heemels (Eindhoven), A. Cervin
(Lund), P. Marti (Catalunya), M. Johansson (KTH), K. Johansson (KTH), and X. Hu (Notre
Dame) as well as the hard work of graduate students, X. Wang (UIUC), P. Wan, L. Li, and
J. Viramontes-Perez. Finally, the author would like to thank A. Bemporad (Siena) and the
European Union’s WIDE project for supporting the presentation of this work at the Third
WIDE Ph.D. School on Networked Control Systems.

References

1. Anta, A., Tabuada, P.: Self-triggered stabilization of homogeneous control systems. In:
Proceedings of the American Control Conference, Seattle, Washington, USA, June 11-
13, 2008, pp. 4129–4134 (2008)

2. Arzen, K.-E.: A simple event-based PID controller. In: Procedings of the 14th World
Congress of the International Federation of Automatic Control (IFAC), Beijing, P.R.
China (1999)

3. Arzen, K.-E., Cervin, A., Eker, J., Sha, L.: An introduction to control and scheduling co-
design. In: IEEE Conference on Decision and Control, Sydney, NSW, Australia, vol. 5,
pp. 4865–4870 (December 2000)

4. Astrom, K.J., Bernhardsson, B.M.: Comparison of Riemann and Lebesgue sampling for
first order stochastic systems. In: Proceedings of the 41st IEEE Conference on Decision
and Control, Las Vegas, Nevada, USA, December 10-13, vol. 2, pp. 2011–2016 (2002)

354 M. Lemmon

5. Bao, L., Skoglund, M., Johansson, K.H.: Encoder-decoder design for event-triggered
feedback control over bandlimited channels. In: American Control Conference, Min-
neapolis, Minnesota, USA (2006)

6. Bertsekas, D.P.: Nonlinear programming. Athena Scientific, Belmont (1999)
7. Bhattacharya, R., Balas, G.J.: Anytime control algorithm: model reduction approach.

Journal of Guidance, Control and Dynamics 27(5), 767–776 (2004)
8. Buttazzo, G., Lipari, G., Abeni, L.: Elastic task model for adaptive rate control. In: IEEE

Real-Time Systems Symposium (RTSS), pp. 286–295 (1998)
9. Caccamo, M., Buttazzo, G., Sha, L.: Elastic feedback control. In: IEEE Euromicro Con-

ference on Real-Time Systems, ECRTS (2000)
10. Camacho, A., Marti, P., Velasco, M., Bini, E.: Demo abstract: Implementation of self-

triggered controllers. In: Demo Session of 15th IEEE Real-time and Embedded Technol-
ogy and Applications Symposium (RTAS 2009), San Francisco, California, USA (2009)

11. Carnevale, D., Teel, A.R., Nesic, D.: A Lyapunov proof of improved maximum allow-
able transfer interval for networked control systems. IEEE Transactions on Automatic
Control 52, 892–897 (2007)

12. Cervin, A., Eker, J.: Control-scheduling codesign of real-time systems: the control server
approach. Journal of Embedded Computing 1(2), 209–224 (2004)

13. Cervin, A., Henningsson, T.: Scheduling of event-triggered controllers on a shared net-
work. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun,
Mexico (December 2008)

14. Chen, W.P., Hou, J.C., Sha, L., Caccamo, M.: A distributed, energy-aware, utility-based
approach for data transport in wireless sensor networks. In: Proceedings of the IEEE
Milcom (2005)

15. Chen, W.P., Sha, L.: An energy-aware data-centric generic utility based approach in wire-
less sensor networks. In: IPSN, pp. 215–224 (2004)

16. Chiang, M., Bell, J.: Balancing supply and demand of bandwidth in wireless cellular
networks: utility maximization over powers and rates. In: Proc. IEEE INFOCOM, vol. 4,
pp. 2800–2811 (2004)

17. Chiang, M., Low, S.H., Calderbank, A.R., Doyle, J.C.: Layering as optimization de-
composition: A mathematical theory of network architectures. Proceedings of the
IEEE 95(1), 255–312 (2007)

18. Cogill, R.: Event-based control using quadratic approximate value functions. In: IEEE
Conference on Decision and Control, Shanghai, China (2009)

19. Cogill, R., Lall, S., Hespanha, J.P.: A constant factor approximation algorithm for event-
based sampling. In: Proceedings of the American Control Conference, New York City,
USA (July 2007)

20. Fleming, W.H., Rishel, R.W.: Deterministic and stochastic control. Springer, Heidelberg
(1975)

21. Fontanelli, D., Greco, L., Bicchi, A.: Anytime control algorithms for embedded real-time
systems. In: Hybrid Systems: computation and control (2008)

22. Gai, P., Abeni, L., Giorgi, M., Buttazzo, G.: A new kernel approach for modular real-
time systems development. In: Proceedings of the 13th IEEE Euromicro Conference on
Real-Time Systems (2001)

23. Heemels, W.P.M.H., Gorter, R.J.A., van Zijl, A., van den Bosch, P., Weiland, S.: Asyn-
chronous measurement and control: a case study on motor synchronization. Control En-
gineering Practice 7, 1467–1482 (1999)

24. Heemels, W.P.M.H., Sandee, J.H., van den Bosch, P.P.J.: Analysis of event-driven con-
trollers for linear systems. International Journal of Control 81(4), 571–590 (2008)

9 Event-Triggered Feedback in Control, Estimation, and Optimization 355

25. Heemels, W.P.M.H., Teel, A.R., van de Wouw, N., Nesic, D.: Networked control sys-
tems with communication constraints: tradeoffs between sampling intervals, delays and
performance. Submitted to the 2009 European Control Conference, ECC (2009)

26. Henningsson, T., Cervin, A.: Comparison of LTI and event-based control for a moving
cart with quantized position measurements. In: European Control Conference, Budapest,
Hungary (August 2009)

27. Henningsson, T., Johannesson, E., Cervin, A.: Sporadic event-based control of first-order
linear stochastic systems. Automatica 44(11), 2890–2895 (2008)

28. Ho, Y.C., Servi, L., Suri, R.: A class of center-free resource allocation algorithms. In:
Large Scale Systems Theory and Applications: Proceedings of the IFAC Symposium,
Toulouse, France, June 24-26, 1980, p. 475. Franklin Book Co. (1981)

29. Hristu-Varsakelis, D., Kumar, P.R.: Interrupt-based feedback control over shared com-
munication medium. Technical Report TR 2003-34, University of Maryland, ISR (2003)

30. Imer, O.C., Basar, T.: Optimal estimation with limited measurements. In: Proceedings of
the IEEE Conference on Decision and Control, Seville, Spain (2005)

31. Imer, O.C., Basar, T.: To measure or to control: optimal control of LTI systems with
scheduled measurements and controls. In: American Control Conference (2006)

32. Isidori, A.: Nonlinear Control Systems II. Springer, Heidelberg (1999)
33. Johansson, B., Rabi, M., Johansson, M.: A simple peer-to-peer algorithm for distributed

optimization in sensor networks. In: Proceedings of the 46th IEEE Conference on Deci-
sion and Control, pp. 4705–4710 (2007)

34. Johansson, B., Soldati, P., Johansson, M.: Mathematical Decomposition Techniques for
Distributed Cross-Layer Optimization of Data Networks. IEEE Journal on Selected Ar-
eas in Communications 24(8), 1535–1547 (2006)

35. Karatzas, I., Wang, H.: Utility maximization with discretionary stopping. SIAM Journal
on Control and Optimization 39(1), 306–329 (2000)

36. Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks:
shadow prices, proportional fairness and stability. Journal of the Operational Research
Society 49(3), 237–252 (1998)

37. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)
38. Kim, B.H., Baldick, R.: A comparison of distributed optimal power flow algorithms.

IEEE Transactions on Power Systems 15(2), 599–604 (2000)
39. Kofman, I., Braslavsky, J.H.: Level crossing sampling in feedback stabilization under

data-rate constraints. In: IEEE Conference on Decision and Control, San Diego, CA,
USA (2006)

40. Lehmann, D., Lunze, J.: Event-based control: a state-feedback approach. In: Proceedings
of the European Control Conference, Budapest, Hungary, pp. 1716–1721 (2009)

41. Lemmon, M., Chantem, T., Hu, X.S., Zyskowski, M.: On self-triggered full-information
h-infinity controllers. In: Hybrid Systems: computation and control, Pisa, Italy (July
2007)

42. Li, L., Lemmon, M.D.: Optimal event triggered transmission of information in dis-
tributed state estimation problems. In: American Control Conference, Baltimore, MD,
USA (2010)

43. Liberzon, D.: On stabilization of linear systems with limited information. IEEE Trans-
actions on Automatic Control 48, 304–307 (2003)

44. Low, S.H., Lapsley, D.E.: Optimization flow control, I: basic algorithm and convergence.
IEEE/ACM Transactions on Networking (TON) 7(6), 861–874 (1999)

45. Lu, C., Stankovic, J.A., Son, S.H., Tao, G.: Feedback control real-time scheduling:
Framework, modeling and algorithms. Real-time Systems 23(1-2), 85–126 (2002)

356 M. Lemmon

46. Madan, R., Lall, S.: Distributed algorithms for maximum lifetime routing in wireless
sensor networks. In: IEEE GLOBECOM 2004, vol. 2 (2004)

47. Matveev, A., Savkin, A.: The problem of state estimation via asynchronous commu-
nication channels with irregular transmission times. IEEE Transactions on Automatic
Control 48(4), 670–676 (2003)

48. Mazo, M., Tabuada, P.: On event-triggered and self-triggered control over sensor/actu-
ator networks. In: Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico (December 2008)

49. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control 54(1), 48–61 (2009)

50. Nesic, D., Teel, A.R.: Input-output stability properties of networked control systems.
IEEE Transactions on Automatic Control 49(10), 1650–1667 (2004)

51. Nesic, D., Teel, A.R.: Input-to-state stability of networked control systems. Automat-
ica 40(12), 2121–2128 (2004)

52. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

53. Palomar, D.P., Chiang, M.: Alternative Distributed Algorithms for Network Utility
Maximization: Framework and Applications. IEEE Transactions on Automatic Con-
trol 52(12), 2254–2269 (2007)

54. Polak, E.: Stability and graphical analysis of first order of pulse-width modulated sam-
pled data regulator systems. IRE Trans. Automatic Control AC-6(3), 276–282 (1963)

55. Qiu, Y., Marbach, P.: Bandwidth allocation in ad hoc networks: A price-based approach.
In: Proceedings of IEEE INFOCOM 2003, vol. 2, pp. 797–807 (2003)

56. Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: Proceedings
of the third international symposium on Information processing in sensor networks, pp.
20–27 (2004)

57. Rabi, M., Johansson, K.H., Johansson, M.: Optimal stopping for event-triggered sensing
and actuation. In: Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico (December 2008)

58. Rabi, M., Moustakides, G.V., Baras, J.S.: Efficient sampling for keeping track of an
Ornstein-Uhlenbeck process. In: Proceedings of the Mediterranean conference on control
and automation (2006)

59. Rabi, M., Moustakides, G.V., Baras, J.S.: Multiple sampling for estimation on a finite
horizon. In: 45th IEEE Conference on Decision and Control, pp. 1351–1357 (2006)

60. Rabi, M., Moustakides, G.V., Baras, J.S.: Adaptive sampling for linear state estimation.
Submitted to the SIAM journal on Control and Optimization (December 2008)

61. Rabi, M.: Packet based Inference and Control. PhD thesis, University of Maryland (2006)
62. Rabi, M., Baras, J.S.: Level-triggered control of a scalar linear system. In: Proceedings

of the 16th Mediterranean Conference on Control and Automation, Athens, Greece (July
2007)

63. Sandee, J.H.: Event-driven Control in Theory and Practice: tradeoffs in software and
control performance. PhD thesis, Technische Universiteit Eindhoven (2006)

64. Sandee, J.H., Heemels, W.P.M.H., van den Bosch, P.P.J.: Case studies in event-driven
control. In: Hybrid Systems: computation and control, Pisa, Italy (April 2007)

65. Sandee, J.H., Visser, P.M., Heemels, W.P.M.H.: Analysis and experimental validation of
processor load for event-driven controllers. In: IEEE Conference on Control and Appli-
cations (CCA), Munich, Germany, pp. 1879–1884 (2006)

66. Seto, D., Lehoczky, J.P., Sha, L., Shin, K.G.: On task schedulability in real-time control
systems. In: IEEE Real-time Technology and Applications Symposium (RTAS), pp. 13–
21 (1996)

9 Event-Triggered Feedback in Control, Estimation, and Optimization 357

67. Sijs, J., Lasar, M.: On event based state estimation. In: Majumdar, R., Tabuada, P. (eds.)
HSCC 2009. LNCS, vol. 5469, pp. 336–350. Springer, Heidelberg (2009)

68. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.: Kalman
filtering with intermittent observations. IEEE Transactions on Automatic Control 49(9),
1453–1464 (2004)

69. Speranzon, A., Fischione, C., Johansson, K.H.: Distributed and Collaborative Estimation
over Wireless Sensor Networks. In: Proceedings of the IEEE Conference on Decision and
Control, pp. 1025–1030 (2006)

70. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE
Transactions on Automatic Control 52(9), 1680–1685 (2007)

71. Tabuada, P., Wang, X.: Preliminary results on state-triggered scheduling of stabilizing
control tasks. In: IEEE Conference on Decision and Control (2006)

72. Tsitsiklis, J., Bertsekas, D., Athans, M.: Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE Transactions on Automatic Con-
trol 31(9), 803–812 (1986)

73. Tsypkin, Y.Z.: Relay Control Systems. Cambridge University Press, Cambridge (1984)
74. van der Schaft, A.J.: L2-gain and passivity techniques in nonlinear control. Springer,

Heidelberg (2000)
75. Velasco, M., Marti, P., Fuertes, J.M.: The self triggered task model for real-time control

systems. In: Work-in-Progress Session of the 24th IEEE Real-time Systems Symposium
(RTSS 2003), Cancun, Mexico (December 2003)

76. Voulgaris, P.: Control of asynchronous sampled data systems. IEEE Transactions on Au-
tomatic Control 39(7), 1451–1455 (1994)

77. Wan, P., Lemmon, M.: Distributed Flow Control using Embedded Sensor-Actuator Net-
works for the Reduction of Combined Sewer Overflow (CSO) Events. In: Proceedings
of the 46th IEEE Conference on Decision and Control, pp. 1529–1534 (2007)

78. Wan, P., Lemmon, M.D.: Distributed network utility maximization using event-triggered
augmented lagrangian methods. In: Proceedings of the American Control Conference,
St. Louis, MO, USA (June 2009)

79. Wan, P., Lemmon, M.D.: Event-triggered distributed optimization in sensor networks.
In: Information Processing in Sensor Networks (IPSN), San Francisco, California, USA
(April 2009)

80. Wang, X., Lemmon, M.D.: Decentralized event-triggered broadcasts over networked
control systems. In: Hybrid Systems: computation and control, St. Louis, Missouri (April
2008)

81. Wang, X., Lemmon, M.D.: Event-triggered broadcasting across distributed networked
control systems. In: Proceedings of the American Control Conference, Seattle, Washing-
ton, USA (June 2008)

82. Wang, X., Lemmon, M.D.: Event-triggering in distributed networked control systems.
Submitted to the IEEE Transactions on Automatic Control (February 2009)

83. Wang, X., Lemmon, M.D.: Self-triggered feedback control systems with finite-gain l2
stability. IEEE Transactions on Automatic Control 54(3), 452–467 (2009)

84. Wang, X., Lemmon, M.D.: Self-triggered feedback systems with state-independent dis-
turbances. In: Proceedings of the American Control Conference, St. Louis Missouri,
USA (June 2009)

85. Wen, J.T., Arcak, M.: A unifying passivity framework for network flow control. IEEE
Transactions on Automatic Control 49(2), 162–174 (2004)

86. Xiao, L., Johansson, M., Boyd, S.P.: Simultaneous routing and resource allocation via
dual decomposition. IEEE Transactions on Communications 52(7), 1136–1144 (2004)

358 M. Lemmon

87. Xu, Y., Hespanha, J.P.: Optimal communication logics in networked control systems. In:
Proceedings of the IEEE Conference on Decision and Control, Nassau, Bahamas, vol. 4,
pp. 3527–3532 (2004)

88. Xu, Y., Hespanha, J.P.: Communication logic design and analysis for networked control
systems. In: Menini, L., Zaccarian, L., Abdallah, C.T. (eds.) Current Trends in Nonlinear
Systems and Control, Systems and Control: Foundations and Applications, pp. 495–514.
Birkhäuser, Boston (2006)

89. Xue, Y., Li, B., Nahrstedt, K.: Optimal resource allocation in wireless ad hoc networks:
a price-based approach. IEEE Transactions on Mobile Computing 5(4), 347–364 (2006)

90. Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE
Control Systems Magazine 21(1), 84–99 (2001)

91. Zhu, B., Sinopoli, B., Poolla, K., Sastry, S.: Estimation over wireless sensor networks.
In: American Control Conference, pp. 2732–2737 (2007)

	Event-Triggered Feedback in Control, Estimation, and Optimization
	Introduction
	Mathematical Preliminaries
	Event-Triggered Feedback in Embedded Control Systems
	Event-Triggered Feedback in Networked Control Systems
	Event-Triggered Estimation
	Event-Triggered Approaches to Optimization
	Research Issues
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

