
Chapter 1

Introduction

1.1 Basic System Elements

Queues (or waiting lines) help facilities or businesses provide service in an
orderly fashion. Forming a queue being a social phenomenon, it is beneficial
to the society if it can be managed so that both the unit that waits and the one
that serves get the most benefit. For instance, there was a time when in airline
terminals passengers formed separate queues in front of check-in counters. But
now we see invariably only one line feeding into several counters. This is the
result of the realization that a single line policy serves better for the passengers
as well as the airline management. Such a conclusion has come from analyzing
the mode by which a queue is formed and the service is provided. The analysis
is based on building a mathematical model representing the process of arrival of
passengers who join the queue, the rules by which they are allowed into service,
and the time it takes to serve the passengers. Queueing theory embodies the
full gamut of such models covering all perceivable systems which incorporate
characteristics of a queue.

We identify the unit demanding service, whether it is human or otherwise, as
customer. The unit providing service is known as the server. This terminology
of customers and servers is used in a generic sense regardless of the nature of
the physical context. Some examples are given below:

(a) In communication systems, voice or data traffic queue up for lines for trans-
mission. A simple example is the telephone exchange.

(b) In a manufacturing system with several work stations, units completing
work in one station wait for access to the next.

(c) Vehicles requiring service wait for their turn in a garage.

(d) Patients arrive at a doctor’s clinic for treatment.
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Numerous examples of this type are of everyday occurrence. While analyzing
them we can identify some basic elements of the systems.

Input Process If the occurrence of arrivals and the offer of service are strictly
according to schedule, a queue can be avoided. But in practice this does not
happen. In most cases, the arrivals are the product of external factors. There-
fore, the best one can do is to describe the input process in terms of random
variables that represent either the number arriving during a time interval or the
time interval between successive arrivals. If customers arrive in groups, their
size can be a random variable as well.

Service Mechanism The uncertainties involved in the service mechanism are
the number of servers, the number of customers getting served at any time, and
the duration and mode of service. Networks of queues consist of more than
one server arranged in series and/or parallel. Random variables are used to
represent service times, and the number of servers, when appropriate. If service
is provided for customers in groups, their size can also be a random variable.

System Capacity The number of customers that can wait at a time in a queue-
ing system is a significant factor for consideration. If the waiting room is large,
one can assume that for all practical purposes, it is infinite. But our everyday
experience with the telephone systems tells us that the size of the buffer that
accommodates our call while waiting to get a free line is important as well.

Queue Discipline All other factors regarding the rules of conduct of the queue
can be pooled under this heading. One of these is the rule followed by the
server in accepting customers for service. In this context, the rules such as
“first-come, first-served” (FCFS), “last-come, first-served” (LCFS), and “ran-
dom selection for service” (RS) are self-explanatory. Others such as “round
robin” and “shortest processing time” may need some elaboration, which is
provided in later chapters. In many situations, customers in some classes get
priority for service over others. There are many other queue disciplines which
have been introduced for the efficient operation of computers and communica-
tion systems. Also, there are other factors of customer behavior such as balking,
reneging, and jockeying, that require consideration as well.

The identification of these elements provides a taxonomy for symbolically
representing queueing systems with a variety of system elements. The basic
representation widely used in queueing theory is due to D. G. Kendall (1953)
and made up of symbols representing three elements: input, service, and number
of servers. For instance, using M for Poisson or exponential, D for deterministic
(constant), Ek for the Erlang distribution with scale parameter k, and G for
general (also GI, for general independent) we write:
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M/G/1: Poisson arrivals, general service, single server
Ek/M/1: Erlangian arrival, exponential service, single server
M/D/s: Poisson arrival, constant service, s servers.

These symbolic representations are modified when other factors are involved.

1.2 Problems in a Queueing System

The ultimate objective of the analysis of queueing systems is to understand the
behavior of their underlying processes so that informed and intelligent decisions
can be made in their management. Three types of problems can be identified
in this process.

Behavioral Problems The study of behavioral problems of queueing systems is
intended to understand how they behave under various conditions. The bulk
of the results in queueing theory is based on research on behavioral problems.
Mathematical models for the probability relationships among the various ele-
ments of the underlying process are used in the analysis. To make the ideas
concrete let us define a few terms that are defined formally later. A collection
or a sequence of random variables that are indexed by a parameter such as
time is known as a stochastic process; e.g., an hourly record of the number of
accidents occurring in a city. In the context of a queueing system, the num-
ber of customers with time as the parameter is a stochastic process. Let Q(t)
be the number of customers in the system at time t. This number is the dif-
ference between the number of arrivals and departures during (0, t). Let A(t)
and D(t), respectively, be these numbers. A simple relationship would then
be Q(t) = A(t) − D(t). In order to manage the system efficiently, one has to
understand how the process Q(t) behaves over time. Since the process Q(t) is
dependent on A(t) and D(t), both of which are also stochastic processes, their
properties and dependence characteristics between the two should also be under-
stood. All these are idealized models to varied degrees of realism. As done in
many other branches of science, they are studied analytically with the hope that
the information obtained from such study will be useful in the decision-making
process.

In addition to the number of customers in the system, which we call the queue
length, the time a new arrival has to wait till its service begins (waiting time) and
the length of time the server is continuously busy (busy period) or continuously
idle (idle period) are major characteristics of interest. It should be noted that the
queue length and the waiting time are stochastic processes and the busy period
is a random variable. Distribution characteristics of the stochastic processes and
random variables are needed to understand their behavior. Since time is a factor,
the analysis has to make a distinction between the time-dependent, also known
as transient, and the limiting, also known as the long-term, behavior. Under
certain conditions a stochastic process may settle down to what is commonly
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called a steady state or a state of equilibrium, in which its distribution properties
are independent of time.

Statistical Problems Under statistical problems we include the analysis of empir-
ical data in order to identify the correct mathematical model, and validation
methods to determine whether the proposed model is appropriate. Chronologi-
cally, the statistical study precedes the behavioral study as could be seen from
the early papers by A. K. Erlang (as reported in Brockmeyer et al. (1960))
and others. For an insight into the selection of the correct mathematical model,
which could be used to derive its properties, a statistical study is fundamental.

In the course of modeling we make several assumptions regarding the basic
elements of the model. Naturally, there should be a mechanism by which these
assumptions could be verified. Starting with testing the goodness of fit for the
arrival and service distributions, one would need to estimate the parameters
of the model and/or test hypotheses concerning the parameters or behavior of
the system. Other important questions where statistical procedures play a part
are in the determination of the inherent dependencies among elements, and
dependence of the system on time.

Decision Problems Under this heading we include all problems that are inher-
ent in the operation of queueing systems. Some such problems are statistical
in nature. Others are related to the design, control, and the measurement of
effectiveness of the systems.

1.3 A Historical Perspective

The history of queueing theory goes back more than 100 years. Johannsen’s
“Waiting Times and Number of Calls” (an article published in 1907 and reprinted
in Post Office Electrical Engineers Journal, London, October, 1910) seems to be
the first paper on the subject. But the method used in this paper was not math-
ematically exact and therefore, from the point of view of exact treatment, the
paper that has historic importance is A. K. Erlang’s, “The Theory of Probabil-
ities and Telephone Conversations” (Nyt tidsskrift for Matematik, B, 20 (1909),
p. 33). In this paper he lays the foundation for the place of Poisson (and hence,
exponential) distribution in queueing theory. His papers written in the next 20
years contain some of the most important concepts and techniques; the notion
of statistical equilibrium and the method of writing down state balance equa-
tions are two such examples. Special mention should be made of his paper “On
the Rational Determination of the Number of Circuits” (see Brockmeyer et al.
(1960)), in which an optimization problem in queueing theory was tackled for
the first time.

It should be noted that in Erlang’s work, as well as the work done by others
in the twenties and thirties, the motivation has been the practical problem of
congestion. See for instance, Molina (1927) and Fry (1928). During the next two
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decades, several theoreticians became interested in these problems and devel-
oped general models which could be used in more complex situations. Some of
the authors with important contributions are Crommelin, Feller, Jensen, Khint-
chine, Kolmogorov, Palm, and Pollaczek. A detailed account of the investiga-
tions made by these authors may be found in books by Syski (1960) and Saaty
(1961). Kolmogorov’s and Feller’s study of purely discontinuous processes laid
the foundation for the theory of Markov processes as it developed in later years.

Noting the inadequacy of the equilibrium theory in many queue situations,
Pollaczek (1934) began investigations of the behavior of the system during a
finite time interval. Since then and throughout his career, he did consider-
able work in the analytical behavioral study of queueing systems; see Pollaczek
(1965). The trend toward the analytical study of the basic stochastic pro-
cesses of the system continued, and queueing theory proved to be a fertile field
for researchers who wanted to do fundamental research on stochastic processes
involving mathematical models.

A concept that plays a significant role in the analysis of stochastic systems
is statistical equilibrium. This is a state of the stochastic process which signifies
that its behavior is independent of time and the initial state. Suppose we define

Pij(s, t) = P [Q(t) = j|Q(s) = i] s < t

as the transition probability of the process {Q(t), t ≥ 0}, which is a statement
of the probability distribution of the state of the process at time t, conditional
on its state at time s, s < t. The statement that the process attains statistical
equilibrium implies that

lim
t→∞

Pij(s, t) = pj

which does not depend on time t and the initial state i.
Even though Erlang did not explicity state his results in these terms, he used

this basic concept in his results. To this day a large majority of queueing theory
results used in practice are those derived under the assumption of statistical
equilibrium. Nevertheless, to understand the underlying processes fully, a time-
dependent analysis is essential. But the processes involved are not simple and
for such an analysis sophisticated mathematical procedures become necessary.
Thus, the growth of queueing theory can be traced on two parallel tracks:

(i) Using existing mathematical techniques or developing new ones for the anal-
ysis of the underlying processes

(ii) Incorporating various system characteristics to make the model closely rep-
resent the real-world phenomenon

Queueing theory as an identifiable body of literature was essentially defined
by the foundational research of the 1950s and 1960s. For a complete bibliography
of research in this period, see Syski (1960), Saaty (1961, 1966), and Bhat (1969).
Here we mention only a few papers and books that, in the opinion of this author,
have made a profound impact in the direction of research in queueing theory.
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The queue M/M/1 (Poisson arrival, exponential service, single server) is
one of the earliest systems to be analyzed. Under statistical equilibrium, the
state balance equations are simple and the limiting distribution of the queue
size is obtained by recursive arguments. But for a time-dependent solution,
more advanced mathematical techniques become necessary. The first such solu-
tion was given by Bailey (1954) using generating functions for the differential
equations governing the underlying process, while Lederman and Reuter (1956)
used spectral theory in their solution. Laplace transforms were used later for
the same problem, and their use together with generating functions has been
one of the standard and popular procedures in the anlaysis of queueing systems
ever since.

A probabilistic approach to the analysis was initiated by Kendall (1951,
1953) when he demonstrated that imbedded Markov chains can be identified
in the queue length process in systems M/G/1 and GI/M/s. Lindley (1952)
derived integral equations for waiting time distributions defined at imbedded
Markov points in the general queue GI/G/1. These investigations led to the
use of renewal theory in queueing systems analysis in the 1960s. Identification of
the imbedded Markov chains also facilitated the use of combinatorial methods
by considering the queue length at Markov points as a random walk. See Prabhu
and Bhat (1963) and Takàcs (1967).

Mathematical modeling of a random phenomenon is a process of approxi-
mation. A probabilistic model brings it a little bit closer to reality; nevertheless
it cannot completely represent the real-world phenomenon because of involved
uncertainties. Therefore, it is a matter of convenience where one can draw the
line between the simplicity of the model and the closeness of the representation.
In the 1960s several authors initiated studies on the role of approximations in
the analysis of queueing systems. Because of the need for useable results in
applications, various types of approximations have appeared in the literature.
For an extensive bibliography, see Bhat et al. (1979). To mention a few, one
approach to approximation is the analysis under heavy traffic (when the traffic
intensity, the ratio of the rates of input to output, approaches 1) and investiga-
tions under this topic were initiated by Kingman (for an extensive bibliography,
see Kingman (1965)) with the objective of deriving a simpler expression for the
final result. The heavy traffic assumption also led to diffusion approximation
as well as weak convergence results by researchers such as Iglehart (see Iglehart
and Whitt (1970a, b)). Also see Whitt (2000) with an extensive bibliography.
Gaver’s analysis (1968) of the virtual waiting time of an M/G/1 queue is one
of the initial efforts using diffusion approximation for a queueing system. Fluid
approximation, as suggested by Newell (1968, 1971) considers the arrival and
departure processes in the system as a fluid flowing in and out of a reservoir,
and their properties are derived using applied mathematical techniques. For a
recent survey of some fluid models see Kulkarni (1997).

By the end of 1960s most of the basic queueing systems that could be con-
sidered as reasonable models of real-world phenomena had been analyzed and
the papers coming out dealt with only minor variations of the systems without
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contributing much to methodology. There were even statements made to the
effect that queueing theory was at the last stages of its life. But such predictions
were made without knowing what advances in computer technology would mean
to queueing theory. Advances inspired or assisted by computer technology have
come in two dimensions: methodology and applications. Given below are some
of the prominent topics explored in such advances. Since in applied probabil-
ity, methodology, and applications contribute to the growth of the subject in a
symbiotic manner they are listed below without being categorized.

(i) The Matrix-Analytic Method

Starting with the introduction of phase type probability distributions,
Marcel Neuts (1975) has developed an analysis technique that extends
and modifies the earlier transform method to multivariables and makes it
amenable for an algorithmic solution. See Neuts (1978, 1981), Sengupta
(1989), and Ramaswami (1990, 2001). The use of phase type distributions
in the representation of system elements and the matrix-analytic method
in their analysis has significantly expanded the scope of queueing systems
for which useable results can be derived. See, Chapter 8 for details.

(ii) Transform Inversion

The traditional method of analysis of queueing systems depends on invert-
ing generating functions and/or Laplace transforms to derive useable results.
The complexities of transform inversion has spurred more research on it
and beginning with Abate and Dubner (1968), Dubner and Abate (1968),
and Abate et al. (1968) many papers have been published on the subject.
For a comprehensive survey of the state of the art of the Fourier series
method of inversion see Abate and Whitt (1992).

In the inversion of Laplace transforms and probability generating func-
tions, finding roots of characteristic equations is a key step. The cele-
brated Rouché’s theorem only establishes the existence of the roots, not
their magnitude. Pioneering and painstaking work in adapting various
root finding algorithms for use in inverting transforms and generating
functions is due to Professor M. L. Chaudhry (1992). Starting from the
1970s, along with his associates, he has put together a significant amount
of research on various queueing systems of interest (see, Chaudhry and
Templeton (1983)). For instance Chaudhry et al. (1992) provides a good
illustration.

(iii) Queueing Networks

The first article on queueing networks is by J. Jackson (1957). Mathemat-
ical foundations for the analysis of queueing networks are due to Whittle
(1967, 1968) and Kingman (1969), who treated them in the terminology
of population processes. Complex queueing network problems have been
investigated extensively since the beginning of the 1970s.
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Two key concepts that advanced investigations into the properties of
queueing networks are: the Poisson nature of the departure process from
an M/M/s type queue (Burke 1956) and the local balance in state tran-
sitions (Whittle 1967, 1968). The M → M property, as the Poisson
property has been called in computer network lierature, is a necessary
condition for the limiting distribution to be in the product form. Going
beyond the simple Jackson network, Baskett et al. (1975) show that the
product from solutions are valid for networks more general than those
with simple M/M/s type nodes, such as, with state-dependent service;
heterogeneous service times; Coxian service time distributions; processor
sharing discipline; and last-come, first-served discipline.

Since the publication of Baskett et al., a large body of literature has grown
in the performance modeling of queueing networks. Courtois (1977),
Kelley (1979), Sauer and Chandy (1981), Lavenberg (1983), Disney and
Kiessler (1987), Malloy (1989), Perros (1994), Gelenbe and Pujolle (1999)
and Giambene (2005) are some of the significant books that have come
out on this subject.

(iv) Computer and Communication Systems

The need to analyze traffic processes in the rapidly growing computer
and communication industry is the primary reason for the resurgence of
queueing theory after the 1960s. Research on queueing networks (see
references cited earlier) and books such as Coffman and Denning (1973)
and Kleinrock (1975, 1976) laid the foundation for a vigorous growth in
the application of queueing theory in computer and communication system
operation.

In tracking this growth, we may cite the following survey type articles from
the journal Queueing Systems: Denning and Buzen (1978) on the oper-
ational analysis of queueing network models; Coffman and Hoffri (1986),
describing important computer devices and the queueing models used in
analyzing their performance; Yashkov (1987) on analytical time-sharing
models, complementary to McKinney (1969) on the same topic; three
special issues of the journal edited by Mitra and Mitrani (1991), Doshi
and Yao (1995), and Konstantopolous (1998); and a paper by Mitra et al.
(1991) on communication systems. Research on queueing applications can
also be found in various computer journals. Several books have appeared
and continue to appear on the subject as well. Some of the more recent
developments are discussed in Chapter 13.

(v) Manufactruring Systems

The machine interference problem analyzed by Palm (1947) and Benson
and Cox (1951, 1952) was the first problem in manufacturing systems
in which queueing theory methodology was used. The classical Jackson
network (1957) originated out of the manufacturing setting since a job-
shop is a network of machines. (Also, see Jackson (1963)). Simulation
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studies reported in Conway et al. (1967) provide excellent examples of
the incorporation of queueing models with job-shop scheduling. Since the
1970s, with the advent of new processes in manufacturing incorporating
computers at various stages, the application of queueing theory results as
well as the development of new techniques have occurred at a phenomenal
rate. Three articles in Buzacott and Shanthikumar (1992) and the book
Buzacott and Shanthikumar (1993) bring together most of the important
developments in the application of queueing theory in manufacturing sys-
tems up to that time.

As described by Buzacott and Shanthikumar (1993) the “product-to-order”
and “product-to-stock” models make direct use of queueing theory results.
With demand as a customer and the manufacturing process as a server,
the first model is a direct application of queueing models, while the second
incorporates production–inventory system concepts, with the production
system substituting for multiple or infinite number of servers. Other appli-
cations include job flow lines as tandem queues, and job-shops and flexible
manufacturing systems as queueing networks. Some of the more recent
applications are discussed in Chapter 12. For recent articles on the appli-
cations of queueing theory in manufacturing system modeling readers may
also refer to various journals such asManagement Science, European Jour-
nal of Operational Research, IIE Transactions, Computers and Industrial
Engineering, and journals on production and manufacturing research.

(vi) Specialized Models

Specialized queueing models of the 1950s and 1960s have found broader
applicability in the context of computer and communication systems.
We mention below three such models that have attracted considerable
attention.

Polling Models These models represent systems in which one or more
servers provide service to several queues in a cyclical manner (Koenigs-
berg (1958)). Based on variations on the system structure and queue
discipline a large number of models emerge. For research on polling mod-
els see a special issue of Queueing Systems edited by Boxma and Takagi
(1992), as well as Takagi (1997) and Hirayama et al. (2004), all of which
provide excellent bibliography on the subject.

Vacation Models Queueing systems with service breaks are not uncom-
mon. Machine breakdowns, service disruption due to maintenance oper-
ations, cyclic server queues, and scheduled job streams are some of the
examples. A key feature of the results is the ability to decompose them into
results corresponding to systems without vacations and results depending
on the distributions related to the vacation sequence. For bibliographies
on this topic, see Doshi (1986) and Alfa (2003).



10 CHAPTER 1. INTRODUCTION

Retrial Queues In finite capacity systems, customers, denied entry to the
system, trying to enter again, is quite common. Since they have already
tried to get service once, they belong to a different population of customers
than the original one. Problems related to this phenomenon have been
extensively explored in the literature. The following papers and more
recent ones appearing in journals provide bibliographies for further study:
Yang and Templeton (1987), Falin (1990), and Kulkarni and Liang (1997).

(vii) Statistical Inference

In any theory of stochastic modeling statistical problems naturally arise
in the applications of the models. Identification of the appropraite model,
estimation of parameters from empirical data, and drawing inferences
regarding future operations involve statistical procedures. These were rec-
ognized even in earlier investigations in the studies by Erlang; see Brock-
meyer et al. (1960), Molina (1927), and Fry (1928).

Since elements contributing to the underlying processes in queueing sys-
tems can be modeled as random variables and their distributions, it is
reasonable to assume that inference problems in queueing are not any dif-
ferent from such problems in statistics in general. However, often in real-
world systems, sampling plans appropriate for data collection to estimate
parameters of the constituent elements, may not be possible to implement.
Consequently, modifications of the standard statistical procedures become
necessary.

The first theoretical treatment of the estimation problem was given by
Clarke (1957) who derived maximum likelihood estimates of arrival and
service rates in an M/M/1 queueing system. Billingsley’s (1961) treat-
ment of inference in Markov processes in general and Wolff’s (1965) deriva-
tion of likelihood ratio tests and maximum likelihood estimates for queues
that can be modeled as birth and death processes are other significant
advances that have occurred in this area. Also see Cox (1965) for a com-
prehensive survey of statistical problems as related to queues. Cox also
provides a broad guideline for inference investigations in non-Markovian
queues.

The first paper on estimating parameters in a non-Markovian system is
by Goyal and Harris (1972), who used the transition probabilities of the
imbedded Markov chain to set up the likelihood function. Since then,
significant progress has occurred in adapting statistical procedures to var-
ious systems. Some of the examples are: Basawa and Prabhu (1981, 1988)
and Acharya (1999) considered the problem of estimation of parameters
in the queue GI/G/ 1; Rao et al. (1984) used a sequential probability
ratio technique for the control of parameters in M/Ek/1 and Ek/M/1;
Armero (1994) and Armero and Conesa (2000) used Bayesian techniques
for inference in Markovian queues; Thiruvaiyaru et al. (1991) and Thiru-
vaiyaru and Basawa (1994) extended the maximum likelihood estimation
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to include Jackson networks; Pitts (1994) considered the queue as a func-
tional that maps the service and inter-arrival time distribution functions
on to the stationary waiting time distribution function to determine its
confidence bound. For a comprehensive survey of inference problems in
queues see Bhat et al. (1997). More recent investigations are by Bhat
and Basawa (2002) who use queue length as well as waiting time data in
estimating parameters in queueing systems. A recent paper (Basawa et
al. 2008) uses waiting time or system sojourn time, adjusted for idle times
when necessary, to estimate parameters of inter-arrival and service times
in GI/G/ 1 queues.

(viii) Design and Control

The study of real systems is motivated by the objectives of improving
their design, control and effectiveness. Until the 1960s when operations
researchers trained in mathematical optimization techniques got interested
in queueing problems, operational problems were being handled using pri-
marily behavioral results. It should be noted that Erlang’s interest in
the subject was for building better telephone systems for the company for
which he was working. His paper “On the rational determination of the
number of circuits” (Brockmeyer et al. (1960)) deals with the determina-
tion of the optimum number of channels so as to reduce the probability of
loss in the system.

Until computers made them obsolete, graphs and tables, prepared using
analytical results of measures of effectiveness, assisted the designers of
communication systems such as telephones. Other examples are the papers
by Bailey (1952) which looked into the appointment system in hospitals,
and Edie (1956) that analyzed the traffic delays at tollbooths. From
the perspective of applications of queueing results to realistic problems
Morse’s (1958) book has been held in high regard. This is because he pre-
sented the theoretical results available at that time in a manner appeal-
ing to the applied researchers and gave procedures for improving system
design.

Hillier’s (1963) paper on economic models for industrial waiting line prob-
lems is, perhaps, the first paper to introduce standard optimization tech-
niques to queueing problems. While Hillier considered an M/M/ 1 queue,
Heyman (1968) derived an optimal policy for turning the server on and
off in an M/G/ 1 queue, depending on the state of the system.

Since then, operations researchers trained in mathematical optimization
techniques have explored their use in much greater complexity to a large
number of queueing systems. For an excellent overview, a valuable refer-
ence is a special issue of the journal Queueing Systems edited by Stidham
(1995), which includes several review-type articles on special topics. Also
see Bäuerle (2002) who considers an optimal control problem in a queueing
network.
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(ix) Other Topics

Even though there were a few papers on discrete time queues before the
1970s, since then, these systems have taken a larger significance because
of the discreteness of time, however short the interval maybe, in computer
and communication systems. It is not hard to imagine that a large portion
of the results for discrete time queues are in fact derived in the same way
as for continuous time queues with obvious modifications in methodology.

There have also been theoretical advances in stochastic processes with the
introduction of modified processes such as Markov modulated processes,
marked point processes and batch Markovian processes. These processes
are used to represent various patterns such as burstiness and heterogeneity
in traffic.

In the preceding paragraphs, we have outlined the growth of queueing
theory identifying major developments and directions. For details of any
of the facets, readers are referred to the articles and books cited above.
Also see Prabhu (1987) who gives a bibliography of books and survey
papers in various categories and subtopics, Adan et al. (2001) who give
a broad treatment of queues with multiple waiting lines, and Dshalalow
(1997) who considers systems with state-dependent parameters. The last
two articles also provide extensive bibliographies. It is hoped that with
the help of these references and modern Internet tools, applied researchers
will be able to build on the systems covered in this text so as to establish
an appropriate model to represent the system of their interest.

1.4 Modeling Exercises

These exercises are given as an introduction to modeling a random phenomenon
as a queueing system. In addition to answering the questions posed in the
exercises, the reader is required only to identify (i) model elements, (ii) system
structure, and (iii) the assumptions one has to make in setting up the model.

1. A city bus company wants to establish a schedule for its bus fleet. In
order to do this in a scientific manner, the company entrusts this job to
an operations research specialist with sufficient data processing support.
Describe the queueing systems involved in this process and the types of data
that need to be collected in order to come up with the schedule. Identify
the measures of performance for the bus system and the factors that affect
these measures when the system is in operation.

2. A newly established business would like to decide on the number of tele-
phone lines it has to install in a cost-effective manner. Identify the elements
of the underlying process of the telephone answering system and indicate
the specific data that need to be collected to establish the parameters of
the system. Also identify the performance measures of interest.
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3. In a manufacturing system, a product undergoes several stages (e.g., an
automobile assembly line) and within each stage there may be several sub-
stages, including testing of components. How can such a system be modeled
as a queueing system (including queueing systems for stages and substages)
in order to improve the performance of the manufacturing process?

4. An airline offers three types of check-in service for the passengers: (1) First
class and business class check-in, (2) regular check-in, and (3) self check-
in. Describe the structure of the queueing system that can represent the
check-in system and identify the data elements that need to be known to
measure its performance. Also indicate the complexities that may result in
improving the system by incorporating flexibilities in the system operation.

5. Several terminals used for data entry to a computer share a communication
line. Terminals use the line on a first-come, first-served basis and wait in a
queue when the line is busy.

Describe the elements of this queueing system and identify the assumptions
that need to be made to analyze system characteristics. (Allen (1990)).

6. In store-and-forward communication networks messages for transmission
are stored in buffers of fixed size. Each message may use one or more buffers.
The message is transmitted through several identical channels. Knowing the
characteristics of the arrival process, transmission rate, and the message
length, we are interested in the storage requirements of a network node.

Describe the general characteristics of the approach in order to estimate
the long run storage requirements for this type of a system.

7. In a warehouse, items are stacked in such a way that the most recently
stacked item gets removed first. In order to use a queueing model to deter-
mine the amount of time the item is stored in the warehouse, describe the
elements of such a system and say how we may characterize the time interval
of interest.

8. In order to reduce the waiting time of short jobs, a round-robin (RR) service
discipline is used. Under an RR queue discipline, each job gets a fixed
amount of service, known as a quantum, when it is admitted to the central
processing unit (CPU). If the service requirement of the job is more than
the quantum, it is sent back to the end of the queue of waiting jobs. This
process continues until the CPU can provide the required number of quanta
of service to the job.

Describe how the total service time of the job can be characterized in order
to determine the mean amount of time the job spends in the system. (This
is known as the mean response time.) (See Coffman and Kleinrock (1968)
and Coffman and Denning (1973)).
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9. A uniprogramming computer system consists of a CPU and a disk drive.
After one pass at the CPU a job may need the services of the disk I/O with a
certain probability, say p, and the job is complete with the probability 1−p.
There are three independent phases to disk service time: (1) seek time; (2)
latency time; and (3) transfer time, each with a specified distribution. After
disk service the job goes back to CPU for completing the execution. (Note
that a uniprogramming system cannot start another job until the service
on the one in the system is complete.)

We are interested in determining the average response time (waiting time
+ service time). What type of a model is appropriate for this problem? If a
queueing model is appropriate, describe the elements of the system (Trivedi
(2002)).

10. In a drum storage unit a shortest-latency-time-first (SLTF) file drum is used
to read or write records on files while the drum is rotating. Once a decision
is made to process a particular record, the time spent waiting for the record
to come under the read/write heads which are fixed is called the latency.
The records are not constrained to be of any particular strength. Also, no
restrictions are placed on the starting position of the records. Assume that
the circumference of the drum is the unit of length and the drum rotates
at a constant angular velocity, with period τ (Fuller (1980)).

Suppose a queueing model is to be used to analyze the performance of the
drum-storage unit described above. Describe the elements of such a system
and the characteristics to be considered for its performance evaluation.
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