Chapter 8
Extensions of Multiresolution Analysis

The wavelets arrive in succession, and each wavelet eventually
dies out. The wavelets all have the same basic form and shape,
but the strength or impetus of each wavelet is random and
uncorrelated with the strength of the other wavelets. Despite the
fore-ordained death of any individual wavelet, the time-series
does not die. The reason is that a new wavelet is born each day
to take the place of the one that does die on any given day, the
time-series is composed of many living wavelets, all of a
different age, some young, others old.

Ender A. Robinson

8.1 Introduction

Multiresolution analysis (MRA) is considered as the heart of wavelet theory.
The concept of MRA provides an elegant tool for the construction of wavelets.
An MRA is an increasing family of closed subspaces {V; : j € Z} of L*(R) such
that ();cz Vi = {0}, Uz V; is dense in L*(R) and which satisfies f € V; if
and only if f(2) € V4. Furthermore, there exists an element ¢ € V, such that
the collection of integer translates of function ¢, {¢(- — k) : k € Z} represents a
complete orthonormal system for V. The function ¢ is called the scaling function
or the father wavelet. This classic concept of MRA has been extended in various
ways in recent years. These concepts are generalized to L?(IR?), to lattices different
from Z4, allowing the subspaces of MRA to be generated by Riesz basis instead
of orthonormal basis, admitting a finite number of scaling functions, replacing the
dilation factor 2 by an integer M > 2 or by an expansive matrix A € GL;(R)
as long as A C AZ? . From the last decade, this elegant tool for the construction
of wavelet bases have been extensively studied by several authors on the various
spaces, namely, abstract Hilbert spaces, locally compact Abelian groups, Cantor
dyadic groups, Vilenkin groups, local fields of positive characteristic, p-adic fields,
Hyrer-groups, Lie groups, zero-dimensional groups. Notice that the technique is
similar to that in the real case of R while the mathematical treatment needs ones
conscientiousness.
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On the other hand, several new extensions of the original MRA also came into
existence such as Periodic MRA, Non-stationary MRA, Generalized MRA, Frame
MRA, Adaptive MRA, Projective MRA, irregular MRA, Vector-valued MRA,
Nonuniform MRA (NUMRA), p-MRA on R7* and the list goes on.

This chapter is devoted to study the last two extensions of the classical theory
of MRA listed above. In Sect. 8.2, we introduce p-MRA on a positive half-line and
describe a method for constructing compactly supported orthogonal p-wavelets on
R7 related to the generalized Walsh functions. For all integers p,n > 2, we study
necessary and sufficient conditions under which the solutions of the correspond-
ing scaling equations with p”-numerical coefficients generate MRA in L?*(R™).
Further, we discuss conditions under which a compactly supported solution of the
refinement equation in L?(R™) is stable and has a linearly independent system of
integer shifts. In the end, we present several examples illustrating these results. In
Sect. 8.3, we introduce nonuniform MRA, based on the spectral pairs, in which the
translation set acting on the scaling function associated with MRA to generate the
core subspace V} is no more a group, but is the union of Z and a translate of Z.

8.2 p-MRA on a Half-Line R*

We start this section with certain results on Walsh—Fourier analysis. We present
a brief review of generalized Walsh functions, Walsh—Fourier transforms and its
various properties.

Asusual, let Rt = [0, +00), Z* = {0,1,2,...}and N = Z* — {0}. Denote by
[x] the integer part of x. Let p be a fixed natural number greater than 1. For x € R™
and any positive integer j, we set

x; = [p’x](mod p), x—j = [p"7/ x](mod p), (8.2.1)

where x;,x_; € {0,1,..., p—1}. It is clear that for each x € RT, there exist
k =k(x)inNsuchthatx_; =0V j > k.
Consider on R the addition defined as follows:

xX@®y= ZQjP_j_l +Z§jl’_j’

j<0 j>0

with{; = x; + y;(mod p), j € Z\ {0}, where {; € {0,1,...,p—1}and x;, y;
are calculated by (8.2.1). As usual, we write z = x © y if z® y = x, where ©
denotes subtraction modulo p in R*.

Note that for p = 2 and j € N, we define the numbers x;,x_; € {0,1} as
follows:

x; = [2/x](mod2),  x_; = [2'7/x](mod?2), (8.2.2)



8.2 p-MRA on a Half-Line Rt 443

where [-] denotes the integral part of x € R, x ; and x_; are the digits of the binary
expansion

x=) x; 2707 4y xa (8.2.3)

Jj<0 j>0
Therefore, for fixed x, y € RT, we set

x@y =) =yl ) g -y,

j<0 j>0

where x;, y; are defined in (8.2.2). By definition x©y = x®y (because xdx = 0).
The binary operation @ identifies Rt with the group G, (dyadic group with
addition modulo two) and is useful in the study of dyadic Hardy classes and image
processing (see Farkov et al. 2011; Farkov and Rodionov 2012).
For x € [0, 1), let ro(x) is given by

ro(x) = 1, ifxel0,1/p)
PV ifxe[tpT W+ DpTY, L=12....p—1,
where ¢, = exp(2 i/p). The extension of the function ry to R is given by the

equality ro(x + 1) = ro(x), x € RY. Then, the generalized Walsh functions
{wm(x) : m € Z*} are defined by

k

wolx) =1 and  wiu(x) = [] (ro(p/ )"

Jj=0

where m = Zﬁzoujpj, pi € {0,1,....,p—1}, we # 0. They have many
properties similar to those of the Haar functions and trigonometric series, and form
a complete orthogonal system. Further, by a Walsh polynomial we shall mean a
finite linear combination of Walsh functions.

Forx,y € R+, let

2 i
x(x,y) =exp s Y Gy x| (8.2.4)
j=1

where x;, y; are given by (8.2.1).
We observe that

x(x’%)zx(%’m)zwm(%)’ Vxelo,p"), mneZt,
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and

X(x @y, 2) = x(x,2) x(v,2), x(x©y,2)=xx,2x0.2,

where x,y,z € RT and x @ y is p-adic irrational. It is well known that systems
{x(a, )12, and {x(-, @)}, are orthonormal bases in L>[0,1] (see Golubov et al.
1991).

The Walsh—Fourier transform of a function f € L'(R*)N L?(R™) is defined by

Flo) = /R SO @ 8.2.5)

where ¥ (x,®) is given by (8.2.4). The Walsh-Fourier operator .# : L'(R*) N
L2(RT) — L2(RY), Z f = f, extends uniquely to the whole space L2(R™). The
properties of the Walsh—Fourier transform are quite similar to those of the classic
Fourier transform (see Golubov et al. 1991; Schipp et al. 1990). In particular, if
f € LA[R"), then f € L>(R") and

|

L&) = ||f||L2(]R+)'

Let {w} denotes the fractional part of ». For any ¢ € L?>(R*) and k € Z*, we have

[ owsaenan= [ o] Eoido
Rt R+
- g /{

2/01 3 ‘(T)(u)—l—ﬁ)‘z 1k o) do. (8.2.6)

tezt

+1 5
o) X & fop do

Therefore, a necessary and sufficient condition for a system {d)(- ©k): ke Z+} to
be orthonormal in L2(RY) is

3 (&;(w + E)‘z =1 ae. (8.2.7)

ezt

By p-adic interval I C R* of range n, we mean intervals of the form

I=1If=[kp™.(k+1)p™"), keZ'. (8.2.8)
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The p-adic topology is generated by the collection of p-adic intervals and each p-
adic interval is both open and closed under the p-adic topology (see Golubov et al.
1991). The family {[0, p~/) : j € Z} forms a fundamental system of the p-adic
topology on R,

Let E,(R™) be the space of p-adic entire functions of order 7, that is, the set of
all functions which are constant on all p-adic intervals of range n. Thus, for every
f € E,(RT), we have

f&) =3 fp o). x eRY. (8.2.9)

kezt

Clearly, each Walsh function of order p"~! belong to %, (R™). The set E(R™) of
p-adic entire functions on R™ is the union of all the spaces E,(R™), i.e.,

ERT) = | .®R").

n=1

It is clear that E(R™) is dense in L”(RT) for 1 < p < oo and each function in
E(R™T) is of compact support.

An analog of the following proposition for p-adic entire functions on the positive
half-line R™ was proved in Golubov et al. (1991) (Sect. 6.2).

Proposition 8.2.1. The following properties hold:

(i) If f € L'®RY) N E,(RT), then supp f < [0, p").
(ii) If f € L'(R™") and supp f C [0, p"), then f € E,(RT).

Similar to R, wavelets can be constructed from a MRA on a positive half-line
R*. For p > 2, we define a MRA on R as follows:

Definition 8.2.1. A p-MRA of L*(R") is a sequence {V; : j € Z} of closed
subspaces of L2(R™) satisfying the following properties:

@ V; CViy forall j € Z;
(i) U;ez V) is dense in L*(R*);
(i) jezV; = {0}
(iv) f e V;ifandonlyif f(p.) € V;4 forall j € Z;
(v) there is a function ¢ in Vj such that the system {cl)(- 6k): ke Z+} forms an
orthonormal basis for V.

The function ¢ occurring in axiom (v) is called a scaling function. One also says
that an p-MRA is generated by its scaling function ¢ (or ¢ generates the p-MRA).
It follows immediately from axioms (iv) and (v) that

V; :=span{o,«(x) = p/?o(p/x k) :k e ZT}, jeL. (8.2.10)
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According to the standard scheme (see Chap. 7) for construction of MRA-based
wavelets, for each j, we define a space W; (wavelet space) as the orthogonal
complement of V; in V4, ie., Vi1 =V, ®W;, j € Z, where W; L V;, j € Z.
It is not difficult to see that

f()eW; ifandonlyif f(p)eW;y, jeZ (8.2.11)

Moreover, they are mutually orthogonal, and we have the following orthogonal
decompositions:

LRYHY=PWw,=ne|EPW,|. (8.2.12)
JEZL j>0

As in the case of R", we expect the existence of p — 1 number of functions
{W1. Y2, ..., Yp—1} to form a set of basic wavelets. In view of (8.2.11) and (8.2.12),
it is clear that if {{ry,P2,.... -} is a set of function such that the system
{1];@(- Ok):1<f<p-1,ke Z+} forms an orthonormal basis for W, then
{p/V(p’x©k): 1<l <p—1,j €Zk € Z*} forms an orthonormal basis
for LZ(R™).

The main goal of this section is to establish necessary and sufficient conditions
under which the solutions of scaling equations of the form

p—1

¢(xX)=p Y a,d(px ©a). (8.2.13)

a=0

generate a MRA in L?(R™). For wavelets on the real line R, the corresponding
conditions were described in Daubechies’ book (1990) in Sect. 6.3.
The generalized Walsh polynomial m of the form

-1
mo(w) = Z Ay Wo (). (8.2.14)
=0

is called the mask or solution of the refinement equation (8.2.13). It is clear that m,
is a p-adic step function as the Walsh functions w, are constant on p-adic intervals
I3, for 0 < a,s < p". Moreover, if b, = mo(sp™") are the values of mo on p-adic
intervals, i.e.,

p—1

by=mo(sp™) = Y _ agwa(sp™). 0<s<p"—1 (8.2.15)
a=0

Then, the coefficients a,, 0 < a < p"—1 of Eq. (8.2.13) can be computed by means
of the direct Vilenkin—Chrestenson transforms as
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pi—1

ay=p" Y bowa(sp™). 0<a<p'—1, (8.2.16)
s=0

and conversely. Thus, the choice of the values of the mask (8.2.14) on p-adic
intervals simultaneously defines the coefficients of Eq.(8.2.13) which is satisfied
by the corresponding function ¢.

Theorem 8.2.1. If ¢ € L>(R™) is a compactly supported solution of Eq. (8.2.13)
such that $(0) = 1. Then

pl‘l_l
Y ay=1 and supp$ C[0.p""]. (8.2.17)

a=0
This solution is unique, is given by the formula
o0
b(w) = ]_[1 mo (p%) (8.2.18)
j=

and possesses the following properties:

(i) (1A>(k) = 0 for all k € N (the modified Strang-Fix condition);
(ii) Z o(x ® k) = 1 for almost all x € RT.

kezt
Proof. The Walsh—Fourier transform of (8.2.13) yields

o) =mo (p~'w) b (p7'w). (8.2.19)

Observe that wy (0) = &)(O) = 1. Hence, substituting ® = 0in (8.2.13) and (8.2.14),
we obtain m((0) = 1, therefore 25251 a, = 1. Further, let s be the greatest integer
such that ¢ does not vanish on a positive-measure subset of the interval [s — 1, ),
ie.,

wi{x € [s—1,5): ¢(x) # 0} >0,

where 1 is the Lebesgue measure on R*. Assume that s > p"~! + 1 and consider
an arbitrary p-adic irrational x € [s — 1, 5) of the form

k k
x=[xl+{b=> x,p T+ xp (8.2.20)
j=1 j=1

where {x} > 0,x_ # 0,k > n. Forany a € {0,1,..., p" — 1}, the element
y©®@ = px © a is of the form
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k+1

(a)_zy(a)pj I+Zy(01) —j

where yﬁxk)_l = x_; # 0and, among the digits y}u), Jj = 0, there are some nonzero
ones. Therefore,

px©a>p" foraexel[s—1,s5). (8.2.21)

If s < p”", then inequality (8.2.21) implies ¢(px © a) = 0 fora.e. x € [s — 1, 5).
But, in that case, by (8.2.13), we have ¢(x) = O for a.e. x € [s — 1,5), which
contradicts the choice of s. Therefore, s > p” + 1. Using this inequality, for any
a€{0,1,..., p" — 1} from (8.2.20), we obtain

pxOa>ps—1)—(p"—1)=2(s—1)— (s —2) =s.

Hence, just as above, it follows that ¢(x) = O for a.e. x € [s — 1, ). Therefore,
s < p" landsuppd C [0, p"7'].

We now claim that the Walsh—Fourier transform cT) satisfies (8.2.18). Since ¢ is
compactly supported and belongs L>(R™), then it also belongs to L'(R™). Since
supp ¢ C [0, p"71), it follows that d € £, (R™). From the condition ¢(0) = 1,

we see that cl)(w) = 1 for all w € [0, p'™). On the other hand, my(w) = 1 for all
o € [0, p'™). Hence, for any natural number ¢, we can write

{+n 00
d(w) = <]>( ) Hmo (%) = l_[mo (p%)’ w € [0, pb),
j=1

Jj=1

which completes the proof of (8.2.18) and of the uniqueness of ¢.
We observe that for each k € N, we have

j—1
dk) = o (k) [T mo (k) = & (p’k) -0

s=0

as j — oo (because ¢ € L'(RT) and mo(p*k) = 1 by the equality m,(0) = 1 and
the periodicity of mg). This means that ¢p(k) = 0 for all k € N.
By Poisson’s summation formula, we obtain

Dodrdk) = Y dlkywi(x).

kezZ+ kezZ+

where the equality holds almost everywhere in Lebesgue measure. Since (T)(k) =
80k, it follows that
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Z d(x®k)=1 forae x e RT.
kez+

The proof of the theorem is now complete.

Assume that Eq. (8.2.13) has a compactly supported L?-solution ¢ satisfying the
condition $(0) = 1 and the system {$p(x © k) : k € Z*} is orthonormal in L*(R™),
then

p—1
mp(0) =1 and Z\mo(m@ﬁ/p) |2= 1 for all w € [0,1/p).
= (8.2.22)

Therefore, Egs. (8.2.18) and (8.2.22) implies that the equalities

b()= 1, |bj|2+|bj+pn—l|2+“'+|bj+(p_1)pn—]|2: 1, 05‘] fpn_l—l,
(8.2.23)

are necessary (but not sufficient; see Example 8.2.4) for the system {$(x © k) :
k € Z*} to be orthonormal in L?(R™). Under what additional conditions does the
function ¢ generate a p-MRA in L*(R*)? The answer to this question is given
below in Theorem 8.2.2.

Before we state Theorem 8.2.2, we start here with some definitions:

Definition 8.2.2. A function f : R™ — C is said to be W-continuous at a point
x € RT if for every ¢ > 0, there exists § > 0 such that | f(x ® y) — f(x)] < ¢
for 0 < y < §. Therefore, for each 0 < j, k < p”", the Walsh function w; (x) is
piecewise constant and hence W -continuous. Thus w; (x) = 1 for x € [ o

Definition 8.2.3. A subset E C R is said to be W-compact if it is compact in
the p-adic topology. It is easy to see that the union of a finite family of p-adic
intervals is W-compact. Moreover, a W-compact set E is said to be congruent to
[0, 1) modulo R if its Lebesgue measure is 1 and, for each x € [0, 1), there is an
element k € Z* suchthat x @ k € E.

Definition 8.2.4. If m is mask of the refinable equation (8.2.13). Then, m is said
to satisfy the modified Cohen condition if, there exists a W-compact subset E of
R such that

(i) E is congruent to [0, 1) modulo Z* and containing a neighborhood of the zero
element,
(ii) the following inequality holds:

. . _]
jlrelgul)relg |m0(p u))| > 0. (8.2.24)
In view of the condition my(0) = 1 and the compactness of the set E,
there exists a number jy such that mo(p_foo) = 1foral j > jo,o € E.

Therefore, inequality (8.3.24) holds if the polynomial m( does not vanish on the
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sets E/p, ..., E/p~/°. Note that we can always choose jo < p", because the mask
my is periodic and totally defined by the values (8.2.15).
For an arbitrary set B C [0, 1), we set

e e
T,,B:U{—+—:we3}.
e p

Definition 8.2.5. A set B is said to be blocked (for the mask m, ) if it can be
expressed as the union of p-adic intervals of range n — 1, does not contain the
interval [0, p~" 1), and possesses the property 7, B C B U Null m, where Null m,
is the set of all zeros of the mask mg on [0, 1). It is clear that each mask can have
only a finite number of blocked sets.

Definition 8.2.6. A function f € L?>(R™) is said to be stable if there exist positive
constants c¢; and ¢, such that

1/2 1/2

al Yo lal| =|DX asrcen|<al Y |al

kezt kezt kezt

for each sequence {a;} € £. In other words, a function f is stable in L?(R™") if the
functions f(- © k),k € Z*, form a Riesz system in L?(R™). Further, we say that a
function f : R™ — C has a periodic zero at a point x € R* if f(x @ k) = 0 for
allk € ZT.

The following proposition is proved in Farkov (2005a,b).

Proposition 8.2.2. For a compactly supported function f € L*(RY) the following
statements are equivalent:

(i) the function f is stable in L>(R™);
(ii) the system {f(x ek): ke Z+} is linearly independent in L*(R™T);
(iii) the Walsh—Fourier transform of the function f has no periodic zeros.

Besides, it has been established that the compactly supported L2-solution ¢ of
Eq. (8.2.13) satisfying the condition ¢$(0) = 1 is not stable if and only if the mask
of (8.2.13) has a blocked set. The following assertion is also valid.

Theorem 8.2.2. Suppose that Eq.(8.2.13) possesses a compactly supported L
solution ¢ such that its mask my satisfies conditions (8.2.23) and $(0) = 1. Then
the following three assertions are equivalent:

(i) the function ¢ generates a p-MRA in L*>(RT);
(ii) the mask mg satisfies the modified Cohen condition;
(iii) the mask mq has no blocked sets.

We split the proof of Theorem 8.2.2 into several lemmas.
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Lemma 8.2.1. Suppose that the mask m of refinement equation (8.2.13) satisfies
the equalities of (8.2.22). Then, the equation has a solution ¢ € L>*(RT) and
moreover, || o]z < 1.

Proof. We define a function (T)(w) by equality (8.2.18) and prove that it belongs to
L?(R1). In this case its inverse Walsh—Fourier transform ¢ also belongs to L2(R™)
and obviously satisfies (8.2.13). We have

= [T (o)

Since |mo(w)| < 1 for all ® € R™, it follows that for each s € N,

2§li[|mo(p_fw)|2, o e RT.

Jj=1

Consequently,

/ ‘cb(oo)‘ doo</ H{mo /w{dw—2s/lsl_i|m0pm|du)
(8.2.25)

The function |mq(w)|? is 1-periodic and piecewise constant with step p~", therefore
it is a Walsh polynomial of order p” — 1:

p"—l

}mo(oo)|2 = Z CaWo (W), (8.2.26)
a=0

where the coefficients ¢, may be expressed via a,. Now, we substitute (8.2.26)
into the second equality of (8.2.22) and observe that if o is multiply to p, then

ﬁ:é we(€/p) = p, and this sum is equal to O for the rest a. As a result, we obtain
¢o = 1/p and ¢, = 0 for nonzero a, which are multiply to p. Hence,

p'—1p—1

|mo(03)|2 =— + Z Zcpot-Hf Wpate ().

a=0 (=1
This gives

- a(s)
l_[ |mo (Il’j<*>)|2 =p "+ st wp(®), o(s) <sp"'(p—1),
= =1
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where each coefficient by equals to the product of some coefficients ¢,pq4¢, £ =

1,....,p—1.
Since

1
/w5(w)dm=0, forall p € N,
0

it follows that

[ Tt =

j=

Substituting this into (8.2.25), we deduce

/pé
0

Passing to the limit as £ — 400 and using the Parseval’s relation, we arrive at
llbll2 < 1. The proof of the lemma is complete.

Lemma 8.2.2. Let {Vf}jez be the family of subspaces defined by (8.2.10) with
given ¢ € L>(RT). If {d)( Ok): ke Z+} is an orthonormal basis in V;, then
N J€Z V; ={0}.

Proof. Let P; be the orthogonal projection of L?(R™) onto V; given by the formula

~ 2
c{)(w)‘ do < 1.

Pif = (fioju)bju. f€LXRY). (8.2.27)

kezt

Suppose that f € () jez Vj- Given an ¢ > 0 and a continuous function g which is
compactly supported in some interval [0, R], R > 0 and satisfies || f — g|» < e.
Then we have

If=Pigl, < |Pi(f -9, <] f—¢gl,<¢
so that
[ £, = Pigl, +=

Using the fact that the collection {p//>¢(p/x © k) : k € Z*} is an orthonormal
bases for V;, we have
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|Pigl; = Z+ (Pig. o)
=p ) / g(x) o( pfxek)dx2
<P’”gH R Z/ pjxek)|2dx,

kezt

where ||g]loo denotes the supremum norm of g. If j is chosen small enough so that
Rp/ <1, then

I2seli < lell | lowlax
SR.j
= el /R L sw ()| d(x) [P, (8.2.28)

where Sg; = Upez+ {y ©k:yelo, Rpj)} and 15, ; denotes the characteristic
function of Sg ;.

It can be easily checked that

lim 15, ,(x) =0 forallx ¢ AN
] —=>—00

Thus, from Eq. (8.2.28) by using the dominated convergence theorem, we get

im |7;g], =

j—)OO

Therefore, we conclude that || f|l, < ¢ and since ¢ is arbitrary, f = 0 and thus
ﬂjeZ Vi ={0}.

Lemma 8.2.3. Let {V/}jez be the family of subspaces defined by (8.2.10) with
given & € L2(RT). If {c]>(- 6k): ke Z+} is an orthonormal basis in V and

assume that (T)(oo) is bounded for all w and continuous near » = 0 with |(I)(O)| =1,
thenJ ez Vi = L*(R™).

i
Proof. Let f € (UjeZ Vj> and € > 0. We choose g € L'(R*) N E(RY) such
that | f — g||l» < &. For every j € Z™, we see from (8.2.27) that

|Pif]s=(Pif P f)=(fPif)=0

and

|Pigl, = [P:(f =), < [/ — g, <. (8229)
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Fix a number j € N such that suppg C [0, p/) and p~7w € [0, p~"*) for
all ® € supp §. Since the system {p~//?x (p~’k,.) : k € ZT} is orthonormal and
complete in L2[0, p/], we see that the function 7 () = &(w) ¢ (p_j u)) satisfies

e
lf’/ ()" do =" e[, (8.2.30)
0 kez*
where
A »’
ck(h) = p‘f”[ h(w) x (p~7k, ®)dw.
0
Since
/R+ o(p'x & k) (.0 dx = p~/é (p~ ) X (P ),

we get

pi

r g d) = 07 | b)) (pk ) do.

Thus, in view of (8.2.30), we obtain

» N . 2
76l = 3 eosall = [ [e@d (o) do. w230
kez+ 0
As mo(w) = 1 on the p-adic intervals 10 and p~/w € [0, p™"*!) for all

® € supp g, it follows from (8.2.18) that &) (pff' w) = 1 for all w € supp g. Since
supp & C [0, p/), we see from (8.2.29) and (8.2.31) that

e> |Pigl, =12l = lgll.

Consequently,

|71, < e+ N, <2

Since ¢ is arbitrary, therefore f = 0. Thus (U jez Vj)l = {0} and hence the
lemma is proved.

Next, we find the analogue of Cohen’s condition for p-MRA on positive half-line
which gives necessary and sufficient condition for the orthonormality of the system

{d(x © k) }pez+-
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Lemma 8.2.4. Let my be a Walsh polynomial of the form (8.2.14) such that

p—1
mo(0) = 1 and Z|mo(w@e/p)|2=1 forall w € RT,
£=0

and let & € L*(RY) be the function defined by the formula (8.2.18). Then the
following are equivalent:

(i) The mask m satisfies the modified Cohen condition;
(ii) The system {(I)( ok): ke Z+} is orthonormal in L>(R™).

Proof. We will start by proving (i) implies (ii). For every positive integer k, we
define

k
Ni(w) = l_[mo (1%) 1 (%) , weRt

j=1 P
Since 0 € int(E) and mo(w) = 1 on the p-adic intervals 7°. Thus, it follows
from (8.2.18) that
Jim ni(0) = d(w), weRT. (8.2.32)
— 00

By our assumption (ii) and the condition my(0) = 1, there exists a number jj such
that

mo(i)zl for j > jo, w € E.
pJ

Thus

Jo
&><w>=1‘[mo(§), we.

Jj=1

Since my ( p_j w) # 0 on E, therefore there is a constant ¢; > 0 such that
o)
my p_f

&(w)j > 1x(w). ®€RY,

>c; >0 forjeN wekE,

and so

—Jo
¢
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Therefore
il ) )
N (w)| = my (—) 1 (—)
i | 11:11 p./ p]
. o o
ol RG]
! jljl p/ p/
which by (8.2.18) yields
()| < e 43((»)) . fork €N, o € R*. (8.2.33)

For each k € N, we define
Ar(0) = /+ e (@)X 0) do, ezt
R
Setting £ = {oo eRY: pFwe E} and { = p~*w, we have
®
mo p_/
k—1

= 7" [ o) T o (07 ) 20 ) . (8:2.34)

J=1

k 2
X, w)dw
1

A (D) :/Ekjl—[

Using the assumption E = [0, 1)(mod Z™), we get

w S
mo (—EB—)
p p

and, in view of (8.2.22), we have

2 k—1 ' -
1_[ Imo (p/ ' w)|” x (£, p~w) dw,

7=l

1 p—1

Au(O) = pH! /0 ;

1 k=2
40 = 9! [T o (070) P 2@ 9 T) o
0 i

Hence, by (8.2.34),
Ar(£) = A1 (£).

When k = 1, we similarly have
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1 1
A(0) = p/ Imo(e) [ X pw) doo =/ X o) dow = 8oy
0 0
Therefore
Ac(0) =80y, keNLeZ™ . (8.2.35)

In particular, for all k € N,

40 = [ @[ do=1.

Using (8.2.32) and Fatou’s lemma, we obtain

/R+ (é(w)(zdwg 1.

Using Lebesgues’ dominated convergence theorem, we see from (8.2.32), (8.2.33)
and (8.2.35) that

NN P
/ ‘c])(oo)) Koy do = lim Ap(0) = 8o
R+ k—o00
Therefore,
/ dx)d(x & ldx =8y, LeZt.
Rt

By the Plancherel formula, it follows that the system {¢(-©k):k € ZT} is
orthonormal in L2(R™).

The converse part of this result follows on similar lines to that of Theorem 6.3.1
in Daubechies (1990).

We shall now deduce conditions for refinement equation (8.2.13) to have a stable
solution. The next lemma gives a relation between stability and blocked sets.

Lemma 8.2.5. Suppose that ¢ is a compactly supported L2-solution of (8.2.13)
such that $(0) = 1. The function ¢ is not stable if and only if the mask mg of the
refinement equation (8.2.13) has a blocked set.

Proof. Applying Theorem 8.2.1 and Proposition 8.2.1, we obtain

suppd C [0,p""") and ¢ € L, (R™).

Assume that the function ¢ is not stable, then by Proposition 8.2.2(iii), there exists
an interval /;_, = I such that all points of the interval I are the periodic zeros of

the Walsh—Fourier transform cT) Therefore, the set
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B = {(oe [0,1): (w+ k) =0 forankez+}

can be expressed as the union of some of the intervals /;_,,0 < s < p”_1 — 1.
Since cf)(O) = 1, it follows that B does not contain I_,. Besides, if » € B, then, by
formula (8.2.19), we have

kY -+ k
m0(9+_)¢(2+—)=0 forallk € Z*
p p

and, therefore, the elements w/p + £/p,£ = 0,1,..., p — 1, belong to either B or
Null my. Thus, if ¢ is not stable, then the set B is a blocked set for m.

Conversely, suppose that the mask mo has a blocked set B. Let us show
that, in this case, each element from B is a periodic zero for (13 (and hence, by
Proposition 8.2.2, the function ¢ is not stable).

Suppose, there exist an element w € B such that &)(w—i—k) £ 0,foreachk € Z+.
We choose a natural number j for which p~/ (w+4k) € [0, p'™),k € Z™T, and then,
foreachr € {0, 1,..., j}, we set

u = [p(w+k)], ve={p " (w+k)}.
Further, foreach r € {0,1,...,j — 1}, we take £, € {0, 1,..., p — 1} such that
uppr +ve = (p +p7') + 50

where s, € ZT andu,/p =L, /p + 5.
Therefore, v,+1 = p~'(v, + £,). It is readily seen that if v, € B, then v, ;| €
T, B. Besides, the equalities

J J
d@+k) = (p~/ (0 +k))[[mo(p™/ (@ + k) = ;) [ [ o)
r=1

r=1

imply that all v, # Nullmy. Thus, if v, € B,thenv,; € B. Since vy = w € B, this
implies that all v; € B. This contradicts the fact thatv; = p™/ (o + k) € [0, p'™)
and B N[0, p!™") = @. This contradiction completes the proof of Lemma 8.2.5.

We now find out when solutions of refinement equation (8.2.13) generate
p-MRA in L?(R™). We start with conditions for the integer translates of the solution
of Eq. (8.2.13) to form an orthonormal basis of their linear span.

Lemma 8.2.6. Suppose that ¢ is a compactly supported L2-solution of (8.2.13)
such that $(0) = 1. The system {d)(- k) ke Z+} is orthonormal in L>*(R™) if
and only if the mask mg of (8.2.13) has no blocked sets and satisfies the condition
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p—1
Y |mw@t/p)|' =1 foralloeR*. (8.2.36)
=0

Proof. 1f the system {¢(-©k):k € Z*} is orthonormal in L*(RY), then in
view of (8.2.7) and (8.2.19), condition (8.2.36) holds, while Lemma 8.2.5 and
Proposition 8.2.2 implies that there are no blocked sets.

Conversely, suppose that the mask m1 has no blocked sets and condition (8.2.36)
holds. We set

F@ﬁ:Z:@mekﬁ. (8.2.37)

kezt

Obviously, the function F is non-negative and 1-periodic function. By condi-
tion (8.2.7), it suffices to verify that F'(w) = 1. Let

§ = inf{F(w): o el0,1).

It follows from Theorem 8.2.1 and Proposition 8.2.1 that the function F (just as
$) is constant on the intervals /) _,,0 < s < p”‘1 — 1. If F vanishes on one of
these intervals, then the function J) has a periodic zero, and hence ¢ is not stable. By
Proposition 8.2.2 and Lemma 8.2.5, this contradicts the assumption that the mask
my has no blocked sets. Hence the number § is positive. Besides, taking into account
the modified Strang-Fix condition (see Theorem 8.2.1), we obtain F(0) = 1. Thus,
0<8<1l.

Note that Eqs. (8.2.19) and (8.2.37) imply the relation

2
(Geo)l 7 (3e7)
m(—e =) F[2e=). (8.2.38)
PP PP

Now suppose that My = {F(w) =8:w € [0,1)}. If 0 < § < 1, then (8.2.36)
and (8.2.38) imply that, for any o € Ms, the elements p~'w & p~'4, £ =
0,1,..., p — 1, belong to either Ms or Nullm . This means that the set Ms is a
blocked set, which contradicts the assumption. Thus, F(w) > 1 for all ® € [0, 1).
Combining this with the equalities

we find by Lemma 8.2.1 that

p—1

F(u)):Z

£=0

k+1

b do= [ fp) do= o]

[1F(w)dw= 1.
0
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Applying the inequality F(w) > 1 again and using the fact that the function F is
constant on each I;_,,0 < s < p"~!' — 1, we find that F(w) = 1. This proves the
Lemma 8.2.6 completely.

Proof of the Theorem 8.2.2. Suppose that the mask m, satisfies any of condition
(i1) or (iii). Then it follows from Lemma 8.2.4 and Lemma 8.2.6 that the system
{¢(- © k) : k € ZT} is orthonormal in L*(R™). We define the subspaces V;, j €
Z, by formula (8.2.10). The embedding’s V; C V;4; are a consequence of the
fact that ¢ satisfies (8.2.13) while condition (iv) of the Definition 8.2.1 p-MRA is
given by the orthonormality of the system {cl)(- 6k): ke Z+}. The remaining two
conditions (ii) and (iii) follows from the results of Lemma 8.2.2 and Lemma 8.2.3.
Thus, the implications (ii))=-(i) and (iii))=(i) are valid. The inverse implications
follow directly from Lemma 8.2.4 and Lemma 8.2.6. O

Theorems 8.2.1 and 8.2.2 imply the following procedure for constructing
orthogonal p-wavelets in L2(RT):

1. Choose numbers by, 0 < s < p" — 1 for which conditions (8.2.23) hold.

2. Using formula (8.2.16), calculate the coefficients a,,0 < a < p" — 1 and verify
that the mask m defined by (8.2.14) has no blocked sets.

3. Find

pr=l
me(w) = Y awa(w), 1<L<p-—1,
a=0

such that the matrix {mg (w+k/p) }5;1:0 is unitary.
4. Determine sy, . .., ,—1 using the formula
pi=l
V() =p Y a,0(px©a). 1=t=p-1 (8.2.39)
a=0

Let us present some examples of functions ¢ satisfying Eq. (8.2.13) and generat-
ing an p-MRA in L*>(R*). Recall that 1 denotes the characteristic function of the
set E C RT.

Example 8.2.1. Ifag =a=---=a,—1 = 1/pandallag = 0fora > p, then the
solution of Eq. (8.2.13) is the function ¢ = 1}y ,»—1; in particular, for n = 1,(8.2.13)
satisfies the Haar function given by ¢ = 1o ).

Example 8.2.2. Suppose that p = n = 2 and
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where |a|? 4+ |b|?> = 1. Then the function ¢ satisfies the equation

3
O(x) = p Y ard(2x © k)

k=0
with coefficients a;’s given by (8.2.16) as

l+a+b l+a-> l—a—-»b l—a+b
ap=——"7—", a=——"7—, d=—-—", Q3= —"H——.

4 4 4 4
For a # 0, the modified Cohen condition holds on the set £ = [0, 1) and the
corresponding solution ¢ generates a MRA in L*(R™). In particular, for a = 1
and a = —1 the Haar function: ¢(x) = 1j9,1)(x) and the displaced Haar function:

$(x) = 1p,1)(x © 1) are obtained.

Further, if 0 < |a| < 1, then ¢ generates MRA in L?*(R*) and possesses the
following self-similarity property:

THa=b o peor). 0<x<1,
d(x) =14 _
1 ‘;”—bcb(zx), 1<x<2,

and is represented by a lacunary Walsh series:

o) = 2101 () 1+a§bfwz,.+l_l (2)). rer

Also, in case a = 0, the function ¢ is defined by the formula ¢(x) =

(1/2)1j01y(x/2), and the system {¢(-©k):k € ZT} is linearly dependent
(because ¢(x © 1) = $p(x)).

Example 8.2.3. Suppose that p = 3,n = 2, and
bop=1, bi=a, bp=0a,bs=0,bsy=b, bs =P, b6 =0, by =c, bg =,
where
jal> + 161 + [e? = lal? + B + Iy = 1.

By (8.2.16), the coefficients of Eq.(8.2.13) in the case under consideration can be
calculated by the formulas
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a0=$(1+a+b+c+a+5+\’),

al=é(l+a+oc+(b+B)8§+(c+y)£3),
a2=é(l+a+0c+(b+5)83+(c+Y)8§)’
a3:é(1+(a+b+0)8§+(oc+ﬁ+v)€3)»
a4=é(1+c+B+(a+v)8§+(b+0¢)€3)v
a5=é(1+b+v+(a+5)8§+(5+0‘)53)’
a6:é(1+(a+b+c)83+(0(+ﬁ+y)€§)’
ar= 5 (L+b 47+ @+ e + (¢ +a)ed),
a8=é(1+c+5+(a+y)83+(b+oc)£§),

where ¢3 = exp(2 i/3). For the corresponding mask m, the blocked sets are:
1 2
1. Bi=|=-,=-) fora=c=0,
133
[2
2. B, = 5,1 fora =p =0,

3. B3 = %,1) fora =a = 0.
Suppos-e that
y(1,0) =a, v(2,0) =a, y(1,1) =b, vy2,1) =8, y(1,2) =c, y(2,2) =,
and v; € {1,2}, then we set

d¢ = y(vg,0) for £ = vy;
d¢ = y(v1,0)y(vo.vi) forl = vy + 3vy;

k

d¢ =y, 0)y(vk—1,vk) ...y (v, v1) forl = Zvj3j, k> 2.
j=0
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The solution of Eq. (8.2.13) can be expressed (see Farkov 2005a,b) as the series

o(x) = %1[0,1) (%) (1 + 3 dowe (g)) ., xeR*, (8.2.40)
12

Taking into account the expressions for the blocked sets given above and using
Theorem 8.2.2, we find that the function (8.2.40) generates a MRA in L>(R™) in
the following three cases:

1. a #0,a #0;
2.a=0,aa#0,c #0;
3.a=0,a#0,B#0.

Example 8.2.4. Suppose that, for some numbers b;,0 < s < p" — 1, rela-
tions (8.2.23) hold. Applying formulas (8.2.16), we find the coefficients of the mask
my as defined by (8.2.14) taking the values b, on the intervals 1,0 < s < p"—1.1f,
additionally, it is known that b; # Ofor j € {1,2,..., p"~' — 1}, then Eq. (8.2.13)
with the obtained coefficients a, has a solution generating an p-MRA in L?(R™)

(the modified Cohen condition holds for £ = [0, 1)).

8.3 Nonuniform MRA

The previous concepts of MRA are developed on regular lattices, that is the trans-
lation set is always a group. Recently, Gabardo and Nashed (1998a,b) considered
a generalization of Mallat’s celebrated theory of MRA based on spectral pairs, in
which the translation set acting on the scaling function associated with the MRA to
generate the subspace 1} is no longer a group, but is the union of Z and a translate
of Z. More precisely, this set is of the form A = {0,r/N} + 2Z, where N > 1 is
aninteger, | <r <2N —1,r is an odd integer relatively prime to N. They call this
a NUMRA.

In this theory, the translation set A is chosen so that for some measurable set
A C R with 0 < |A| < o0, (A,A) forms a spectral pair, i.e., the collection
{A_1/262 "‘”'XXA(Q))}XGA forms an orthonormal basis for L?(A), where y 4(o)
is the characteristic function of A. The notion of spectral pairs was introduced
by Fuglede (1974). The following proposition is proved in Gabardo and Nashed
(1998a,b).

Proposition 8.3.1. Let A = {0,a} + 27, where 0 < a < 2 and let A be a
measurable subset of R with 0 < |A| < oo. Then (A, A) is a spectral pair if and
only if there exist an integer N > 1 and an odd integer r, with 1 <r <2N — 1 and
r and N relatively prime, such thata = r/N, and
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N—1
D 8%y Sy xya=1 (8.3.1)
=0

nez

where * denotes the usual convolution product of Schwartz distributions and 8. is
the Dirac measure at c.

Following is the definition of nonuniform MRA associated with the translation
set A on R introduced by Gabardo and Nashed (1998a,b).

Definition 8.3.1. Let N be aninteger, N > 1,and A = {0,r/N} + 2Z, where r is
an odd integer relatively prime to N with 1 <r < 2N —1. A sequence {VJ 1j € Z}
of closed subspaces of L2(R) will be called a NUMRA associated with A if the
following conditions are satisfied:

(i) V; CVjyy forall j € Z;
(i) U;ezV; is densein L*(R) and (), V; = {0};
(iii) f(x) € V;ifandonlyif f(2Nx) € V4, forall j € Z;
(iv) There exists a function ¢ in Vj, called the scaling function, such that the
collection {¢p(x — X) : A € A} is a complete orthonormal system for V.

It is worth noticing that, when N = 1, one recovers from the definition above
the standard definition of a one-dimensional MRA with dilation factor equal to 2.
When, N > 1, the dilation factor of 2N ensures that 2NA C 27Z C A. However,
the existence of associated wavelets with the dilation 2N and translation set A is no
longer guaranteed as is the case in the standard setting.

For every j € Z, define W; to be the orthogonal complement of V; in V; .
Then we have

Vip=V,®@W, and Wi LW, ifk #¢. (8.3.2)

It follows that for j > J,

j—J—1

Vi=Vie @ Wi (8.3.3)
k=0

where all these subspaces are orthogonal. By virtue of condition (ii) in the
Definition 8.3.1, this implies

L’®) =PWw,. (8.3.4)

jez

a decomposition of L?(IR) into mutually orthogonal subspaces.
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Observe that the dilation factor in the NUMRA is 2N . As in the standard case,
one expects the existence of 2N — 1 number of functions so that their translation
by elements of A and dilations by the integral powers of 2N form an orthonormal
basis for L2(R).

A set of functions {Ur,V1,..., Poy—1} in L*(R) is said to be a set of
basic wavelets associated with the NUMRA {V;} if the family of functions
{Ue(-—N): 1 <€ <2N —1,\ € A} forms an orthonormal basis for Wj.

In the following, our task is to find a set of wavelet functions {{r;, Uy, ..., Yoy—1}
in Wy such that {(2N)7/?{y((2N)/x —\) : 1 <€ <2N — 1, A € A} constitutes
an orthonormal basis of W;. By means of NUMRA, this task can be reduce
to find Yy € Wy such that {{rg(x —X) : 1 <€ <2N — 1, A € A} constitutes an
orthonormal basis of .

Let ¢ be a scaling function of the given NUMRA. Since ¢ € V) C V1, and the
{®12}ca 1s an orthonormal basis in V;, we have

o) =Y ardia(x) =Y an2N)'2H(2N)x — 1), (8.3.5)
rEA AEA
with
b= (0.00) = [ G dx wd YlaP <o, (636
R AeA

Equation (8.3.5) can be written in frequency domain as
d 2N w) = mo(w) d(w), (8.3.7)

where mo(w) = >y cp are™> iho s called the symbol of ¢(x).

We denote {1y = ¢, the scaling function, and consider 2N — 1 functions {yr;, 1 <
£ <2N — 1, in W} as possible candidates for wavelets. Since (1/2N )y (x/2N) €
V_y C V,, it follows from property (iv) of Definition 8.3.1 that for each £, 0 < £ <

2N — 1, there exists a sequence {a} : A € A} with )", x |a§|2 < oo such that
1 X ¢
— — ) = —\). 8.3.8
v (57) 3 e o= (8.338)

Taking Fourier transform, we get
Ve 2N w) = my(w) d(w), (83.9)
where

my(w) =Y aj e (8.3.10)
AEA
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The functions m,, 0 < £ < 2N — 1, are locally L? functions. In view of the specific
form of A, we observe that

my(w) = mp(0) + e "N miw), 0<L<2N -1, (8.3.11)

where m% and m% are locally L2, 1/2-periodic functions.

We are now in a position to establish the completeness of the system
{We(x — M)} 1<p<on—1.2ea 10 V1 and in fact, we will find two equivalent conditions
to the orthonormality of the system by means of the periodic functions m; as defined
in (8.3.11).

Lemma 8.3.1. Ler ¢ be a scaling function of the given NUMRA as in Defini-
tion 8.3.1. Suppose that there exist 2N — 1 functions g, 1 <€ < 2N —1, in V; such
that the family of functions {ye(x — M) }o<p<an—1 ren fOrms an orthonormal system
in Vy. Then the system is complete in Vi.

Proof. By the orthonormality of 1\, € L*(R),0 < £ < 2N —1, we have in the time
domain

(W (x = 2. e — o) = /R (& = ) e —0) dx = 8B,

where A,0 € A and k,¢ € {0,1,2,...,2N — 1}. Equivalently, in the frequency
domain, we have

Sr8ho = [ (o) Ful@)e? 0,
R

Taking A = 2m, 0 = 2n where m,n € Z, we have

8k18m,n = / ﬁfk(('o) {ife((l)) €_2 iu)Z(m—n)d(D
R

= [ S o+ N o+ N o
[0,N)

jez
Let

hice(@) =Y k(o + Nj) e + Nj).

JEZ
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Then, we have

Sk,lgmﬂ = / 374 iw(min)hk.f(w) do
[0.N)

2N—1
:/ —4 iow(m—n) Z h ( E) d
€ kelo+ ,
[0,1/2) =0 2
and
2N—1
> e (03 + %) = 28 ¢. (8.3.12)
p=0

Also on taking A = % + 2m and 0 = 2n, where m,n € 7Z, we have

0= / 6_4 io(m—n) 6_2 iu)~r/N{I}k(w) l’!\fz((x)) do
R

:/ 6_4 io(m—n) 6_2 iwr/N Z{l}k((’) + N]){I}Z(w'i_ Nj)d(D
[0.N) I/

— / 674 iw(m—n) 6‘72 iw-r/Nhk,[((,O) do
[0.N)

IN—1
— / e—4 io(m—n) 8_2 iwr/N Z e~ ipr/N hk.é ((,0 + £> do.
[0.1/2) s 2
Thus, we conclude that
2IN—1
Z af hyy <oo + g) =0, where o = e~ /N, (8.3.13)
p=0

Now we will express the conditions (8.3.12) and (8.3.13) in terms of my as follows:
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hee@Nw) = > i (2N (w + %)) e (2N (u) + 15))

jez

g e il Yoo DD

o Bl )

JEZ

S\ |2
(j)(u)—f-%

zp(w
$(w+%)

= [mk(w) m[((x)) + mk(u))m ((1))] Z

JEZ

+ m]l{(u)) m%(u)) 262 i(w+j/2)r/N
jez

j 2
3

2

+ mi((l)) m%(w)2872 i(w+j/2)r/N
JEZ

Therefore,

2N—1
It @N ) = [mi@mf(@) + m @mo)] Z hoo( )

IN-1 .
+ l’nk(w)mg(oo)e2 for/N Z o jhoo( é)

j=0

IN—1
+ mk(co)m[(w)e_2 for/N Z oc/hoo(

j=0

\—/
1 1

=2 [mk(w)me(w) + mk(co)m[(w)]
By using the last identity and Eqgs. (8.3.12) and (8.3.13), we obtain

2N—1

X k(o gf)mt (o i) ot (o ) i (o )| =3

p=0
(8.3.14)
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and

2N—1 - -
ot )G ) i o ) ) -
;)0‘ [ (“)+4N oty treetgy)miletiy) | =0
(8.3.15)
for0 <k,£ <2N — 1, wherea = e~ /N,

Both of these conditions together are equivalent to the orthonormal-
ity of the system {Yy(x —A):0<{<2N —1,A€ A}. The completeness
of this system in V; is equivalent to the completeness of the system
{ﬁ\bg((x/ZN) —A):0<{l<2N-1,1€ A} in Vy. For a given arbitrary
function f € V,, by assumption, there exist a unique function m(w) of the
form Y, ., bre™2 2, where Y, 4 [ba|2 < oo such that () = m(w) d(w).
Therefore, in order to prove the claim, it is enough to show that the system of
functions

P={e* N my(w) xa(w) : 0 <L <2N — 1, L € A}

is complete in L?(A), where A C R with 0 < |A| < oo. Since the collection
{62 foh y A(w)}x <, 1s an orthonormal basis for L?(A), therefore there exist locally
L? functions g, and g, such that

g(w) = [g1(@) + e "N gy(w)] xa(w).

Assuming that g is orthogonal to all functions in P, we then have for any A € A
and € {0,1,...,2N — 1}, that

0= /Ae—4 in)\mZ(w)mdw
= /[0]/2)6—4 iNoh [me(w)ermg(m + N/z)m] do

_ /[0 1/2)3_4 o ik () €1() + o) B2(0) | do. (8.3.16)
Taking A = 2m, where m € Z and defining
we(w) = my(w) g1(w) +mj(w) g2(). 0= <2N -1,
we obtain

0

/ 6_2 iu)(4N)mW£(w) do
[0.1/2)

2N—1

—2 iw(@dN)m w ( / ) d
E el o+ — w.
/[0,1/4N>
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Since this equality holds for all m € Z, therefore

2N—1

3w (oo + L) =0 forae. w (8.3.17)
Fo AN

Similarly, on taking A = 2m + r/ N, where m € Z, we obtain

0= / 6_2 iw(4N)m e—2 i2rwa(w) dow
[0.1/2)

2N—1 .

_ -2 i0@N)m ,—2 i2ro j J )

= e e a/welw+ —=— ] do.
/[0,1/41\/) ;} ( 4N

Hence, we deduce that

2N—1 ]
J ~_ ) =0 forae. o,
;)oc we(w+4N) ora.e.

which proves our claim.

If Vo, U, ..., Uony—1 € V] are as in Lemma 8.3.1, one can obtain from them an
orthonormal basis for L2(R) by following the standard procedure for construction
of wavelets from a given MRA (see Chap.7). It can be easily checked that for
every j € Z, the collection {(ZN)j/zlpg((2N)jx — )\) 0<{<2N-—-1,\A€ A}
is a complete orthonormal system for V;. Therefore, it follows immediately
from (8.3.4) that the collection {(2N)j/21hg((2N)jx - )\) 1 <€ <2N —1,
L € A} forms a complete orthonormal system for L2(RR).

The following theorem proves the necessary and sufficient condition for the
existence of associated set of wavelets to NUMRA.

Theorem 8.3.1. Consider a NUMRA with associated parameters N and r as in
Definition 8.3.1, such that the corresponding space Vy has an orthonormal system
of the form {d(x — \) : A € A}, where A = {0,r/ N} + 27Z and ¢ satisfies the two
scale relation
d 2N w) = mo(®) b(w), (8.3.18)
where my is of the form
mo(w) = m(l)(u)) +e7? im’/Nm(Z)(w), (8.3.19)

for some locally L? functions m(l) and m%. Define My as

Mo(@) = [m(@)|* + |m3()]*. (8.3.20)
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Then a necessary and sufficient condition for the existence of associated wavelets
V1, ..., Uan—1 is that My satisfies the identity

M, (oo + i) = My(w). (8.3.21)

Proof. The orthonormality of the collection of functions {d(x —A): Ak € A}
which satisfies (8.3.18), implies the following identities as shown in the proof
of Lemma 8.3.1

Ng U (‘0 + —)) + (mo (w + %)ﬂ =1, (8.3.22)

and
2N—1 5
Z P 1 £ e —
a Umo o+ ‘ + |3 (0 + )| } =0, (8.3.23)
P 4N

where a = e~ /N Similarly, if {re},_; ,y_, is a set of wavelets associated with

.....

the given NUMRA then it satisfies the relation (8.3.9) and the orthonormality of the
collection {Yr¢},—¢ 1. oy in V1 is equivalent to the identities

.....

p=0

(8.3.24)
and

(8.3.25)

forO <k, <2N —1.

If o € [0, 1/4N] is fixed and a¢(p) = m) (u) + 4N) by(p) = m; (u) + 4N>

are vectors in C2V for p=0,1,...,2N — 1, where 0 < £ < 2N — 1, then the
solvability of system of Eqgs. (8.3.24) and (8.3.25) is equivalent to

+N
Mo(m—i-%) =M0<w+%), we[0,1/4N], p=0,1,...,2N—1,

which is equivalent to (8.3.21). For the proof of this result, the reader is refer to
Gabardo and Nashed (1998a,b).
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We note here that the function M, in the above theorem can also be written in
terms of the filter m as

[Ima (o + 5)|" + mo(w)l’]

My(w) = 5

When N = 1, we have r = 1 and o = —1 so that Egs. (8.3.22) and (8.3.23)
reduces to My(w) = 1/2, or the more familiar quadrature mirror filter condition
from wavelet analysis |mg (o + 1/2)[* + |mo(w)|> = 1, and, in particular, M,
is automatically 1/4-periodic. When N = 2, we must have r = 1 or 3, so
that « = =i. In that case, the 1/4-periodicity of M, follows again automatically
from (8.3.22) and (8.3.23). When N > 3, we note that the conditions (8.3.22)
and (8.3.23) do not imply the 1/4-periodicity of the function My (see Gabardo and
Nashed 1998a,b).

Example 8.3.1 (Haar NUMRA). 1f we take r = 1, then A = {0,1/N} + 2Z and
choosing ¢ = ¥4, , where

N—1 . .
B CNCRa
—Hiw’ N )

we have

N—1

& = Xpo.a/w) * D 8ajn-
j=0

We now define V, as the closed linear span of {d(x —N)}cp, 1€, Vo =
span {¢p(x —A) : A € A} and V;, for each integer j, by the relation f(x) € V;
if and only if f (x/(2N)’) € V;. Then, the condition (i) of the Definition 8.3.1 is
verified by fact that

N—1

1 1
IN 0 (%) = K02 * 5 ;} 84;

= (Bo+8in) 0% Z 4. (8.3.26)

Equation (8.3.25) can be written in the frequency domain as

SN ) = mo(w) d(w), (8.3.27)
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where
_ 1 -2 io/N — -8 iwk
mo(u))—ﬁ(l—i—e )|:kz_;)e :|
Furthermore, we have
| V-l A
mh(w) = mi(w) = o kX(:) o8 ik, (8.3.28)

Here, both the functions m(l) and m% are 1/4-periodic and so is My. Therefore,
Theorem 8.3.1 can be applied to show the existence of the associated wavelets.
Hence, when N = 1,¢ = xpo1 and mj(w) = mi(w) = 1/2, then the
corresponding wavelet {; is given by the identity

-2 iw

B10o) = L b,

Or, equivalently

Vi = —Xp.1/2) + X[/2.1-

which is the classical Haar wavelet. For N = 2, the periodic function m(l) and mg
are given by

et cos(4 )
mh() = mie) = 02
and thus My(w) = cos*(4 iw) /2. In this case, the associated wavelets can easily
be computed using the relation r;(4w) = my(w) ¢p(w), £ = 1,2, 3. Therefore, we
have

Y1 = X[0.1/2) — X[1.3/2)>

Y2 = —X[-8/8.-7/8) T X[~7/8,—6/8) — X[—6/8.—5/8) T X[—5/8,—4/8)
—X[o.1/8) T X[1/8.2/8) — X[2/8.3/8) T X[3/8.4/8)

U3 = —X[-8/8-7/8) + X[=7/8.~6/8) = XI=6/8.~5/8) T X[-5/8.—4/8)
+X10.1/8) — X[1/8.2/8) T X[2/8,3/8) — X[3/5.4/8)-
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