
Chapter 7
Multiresolution Analysis and Construction
of Wavelets

Multiresolution analysis provides a natural framework for the
understanding of wavelet bases, and for the construction of new
examples. The history of the formulation of multiresolution
analysis is a beautiful example of applications stimulating
theoretical development.

Ingrid Daubechies

7.1 Introduction

The concept of multiresolution is intuitively related to the study of signals or images
at different levels of resolution—almost like a pyramid. The resolution of a signal
is a qualitative description associated with its frequency content. For a low-pass
signal, the lower its frequency content (the narrower the bandwidth), the coarser is
its resolution. In signal processing, a low-pass and subsampled version of a signal is
usually a good coarse approximation for many real world signals. Multiresolution is
especially evident in image processing and computer vision, where coarse versions
of an image are often used as a first approximation in computational algorithms.

In 1986, Stéphane Mallat and Yves Meyer first formulated the idea of mul-
tiresolution analysis (MRA) in the context of wavelet analysis. This is a new
and remarkable idea which deals with a general formalism for construction of an
orthogonal basis of wavelets. Indeed, MRA is central to all constructions of wavelet
bases. Mallat’s brilliant work (1989a,b,c) has been the major source of many new
developments in wavelet analysis and its wide variety of applications.

Mathematically, the fundamental idea of MRA is to represent a function (or
signal) f as a limit of successive approximations, each of which is a finer version
of the function f . These successive approximations correspond to different levels
of resolutions. Thus, MRA is a formal approach to constructing orthogonal wavelet
bases using a definite set of rules and procedures. The key feature of this analysis
is to describe mathematically the process of studying signals or images at different
scales. The basic principle of the MRA deals with the decomposition of the whole
function space into individual subspaces Vn � VnC1 so that the space VnC1 consists
of all rescaled functions in Vn. This essentially means a decomposition of each
function (or signal) into components of different scales (or frequencies) so that an
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376 7 Multiresolution Analysis and Construction of Wavelets

individual component of the original function f occurs in each subspace. These
components can describe finer and finer versions of the original function f . For
example, a function is resolved at scales 4t D 20; 2�1; : : : ; 2�n. In audio signals,
these scales are basically octaves which represent higher and higher frequency
components. For images and, indeed, for all signals, the simultaneous existence
of a multiscale may also be referred to as multiresolution. From the point of view
of practical application, MRA is really an effective mathematical framework for
hierarchical decomposition of an image (or signal) into components of different
scales (or frequencies).

In general, frames have many of the properties of bases, but they lack a very
important property of orthogonality. If the condition of orthogonality

˝
¥k;`; ¥m;n

˛ D 0 for all .k; `/ ¤ .m; n/ (7.1.1)

is satisfied, the reconstruction of the function f from hf; ¥m;ni is much simpler and,
for any f 2 L2.R/, we have the following representation

f D
1X

m;nD�1

˝
f; ¥m;n

˛
¥m;n; (7.1.2)

where

¥m;n.x/ D 2�m=2¥
�
2�mx � n

�
(7.1.3)

is an orthonormal basis of Vm:

This chapter deals with the idea of MRA with examples. Special attention is
given to properties of scaling functions and orthonormal wavelet bases. This is
followed by a method of constructing orthonormal bases of wavelets from MRA.
Special attention is also given to the Daubechies wavelets with compact support and
the Daubechies algorithm. Included are discrete wavelet transforms (DWTs) and
Mallat’s pyramid algorithm.

7.2 Definition of MRA and Examples

Definition 7.2.1 (Multiresolution Analysis). A MRA consists of a sequence
˚
Vm W

m 2 Z
�

of embedded closed subspaces of L2.R/ that satisfy the following
conditions:

(i) � � � � V�2 � V�1 � V0 � V1 � V2 � � � � � Vm � VmC1 � � � ;

(ii)
1[

mD�1
Vm is dense in L2.R/, that is,

1[

mD�1
Vm D L2.R/,
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(iii)
1\

mD�1
Vm D f0g,

(iv) f .x/ 2 Vm if and only if f .2x/ 2 VmC1 for all m 2 Z;

(v) there exists a function ¥ 2 V0 such that
˚
¥0;n D ¥.x � n/; n 2 Z

�
is an

orthonormal basis for V0, that is,

��f
��2 D

Z 1

�1

ˇ̌
f .x/

ˇ̌2
dx D

1X

nD�1

ˇ̌˝
f; ¥0;n

˛ˇ̌2
for all f 2 V0:

The function ¥ is called the scaling function or father wavelet. If
˚
Vm

�
is a

multiresolution of L2.R/ and if V0 is the closed subspace generated by the integer
translates of a single function ¥, then we say that ¥ generates the MRA.

Sometimes, condition (v) is relaxed by assuming that
˚
¥.x � n/; n 2 Z

�
is

a Riesz basis for V0; that is, for every f 2 V0, there exists a unique sequence˚
cn

�1
nD�1 2 `2.Z/ such that

f .x/ D
1X

nD�1
cn ¥.x � n/

with convergence in L2.R/ and there exist two positive constants A and B

independent of f 2 V0 such that

A

1X

nD�1

ˇ̌
cn

ˇ̌2 � ��f
��2 � B

1X

nD�1

ˇ̌
cn

ˇ̌2
;

where 0 < A < B < 1. In this case, we have a MRA with a Riesz basis.
Note that condition (v) implies that

˚
¥.x � n/; n 2 Z

�
is a Riesz basis for V0

with A D B D 1.
Since ¥0;n.x/ 2 V0 for all n 2 Z. Further, if n 2 Z, it follows from (iv) that

¥m;n.x/ D 2m=2¥
�
2mx � n

�
; m 2 Z (7.2.1)

is an orthonormal basis for Vm.

Consequences of Definition 7.2.1.

1. A repeated application of condition (iv) implies that f 2 Vm if and only if
f .2kx/ 2 VmCk for all m; k 2 Z. In other words, f 2 Vm if and only if
f .2�mx/ 2 V0 for all m 2 Z.

This shows that functions in Vm are obtained from those in V0 through a
scaling 2�m. If the scale m D 0 is associated with V0, then the scale 2�m is
associated with Vm, Thus, subspaces Vm are just scaled versions of the central
space V0 which is invariant under translation by integers, that is, Tn V0 D V0 for
all n 2 Z.
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2. It follows from Definition 7.2.1 that a MRA is completely determined by the
scaling function ¥, but not conversely. For a given ¥ 2 V0, we first define

V0 D
(

f .x/ D
1X

nD�1
cn ¥0;n D

1X

nD�1
cn ¥.x � n/ W fcng 2 `2.Z/

)

:

Condition (iv) implies that V0 has an orthonormal basis
˚
¥0;n

� D ˚
¥.x � n/

�
.

Then, V0 consists of all functions f .x/ D
1X

nD�1
cn¥.x � n/ with finite energy

��f
��2 D

1X

nD�1

ˇ̌
cn

ˇ̌2
< 1. Similarly, the space Vm has the orthonormal basis

¥m;n given by (7.2.1) so that fm.x/ is given by

fm.x/ D
1X

nD�1
cmn ¥m;n.x/ (7.2.2)

with the finite energy

��fm

��2 D
1X

nD�1

ˇ̌
cmn

ˇ̌2
< 1:

Thus, fm represents a typical function in the space Vm: It builds in self-invariance
and scale invariance through the basis

˚
¥m;n

�
.

3. Conditions (ii) and (iii) can be expressed in terms of the orthogonal projections
Pm onto Vm , that is, for all f 2 L2.R/,

lim
m!�1 Pmf D 0 and lim

m!C1 Pmf D f: (7.2.3a,b)

The projection Pmf can be considered as an approximation of f at the scale
2�m. Therefore, the successive approximations of a given function f are defined
as the orthogonal projections Pm onto the space Vm:

Pmf D
1X

nD�1

˝
f; ¥m;n

˛
¥m;n; (7.2.4)

where ¥m;n.x/ given by (7.2.1) is an orthonormal basis for Vm.
4. Since V0 � V1, the scaling function ¥ that leads to a basis for V0 is also V1. Since

¥ 2 V1 and ¥1;n.x/ D p
2 ¥.2x � n/ is an orthonormal basis for V1, ¥ can be

expressed in the form
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¥.x/ D
1X

nD�1
cn ¥1;n.x/ D p

2

1X

nD�1
cn ¥

�
2x � n

�
; (7.2.5)

where

cn D ˝
¥; ¥1;n

˛
and

1X

nD�1

ˇ̌
cn

ˇ̌2 D 1:

Equation (7.2.5) is called the dilation equation. It involves both x and 2x and is
often referred to as the two-scale equation or refinement equation because it displays
¥.x/ in the refined space V1. The space V1 has the finer scale 2�1 and it contains
¥.x/ which has scale 1.

All of the preceding facts reveal that MRA can be described at least three ways
so that we can specify

(a) the subspaces Vm,
(b) the scaling function ¥,
(c) the coefficient cn in the dilation equation (7.2.5).

The real importance of a MRA lies in the simple fact that it enables us to construct
an orthonormal basis for L2.R/. In order to prove this statement, we first assume that
fVmg is a MRA. Since Vm � VmC1, we define Wm as the orthogonal complement of
Vm in VmC1 for every m 2 Z, so that we have

VmC1 D Vm

M
Wm

D
�
Vm�1

M
Wm�1

�M
Wm

D : : :

D V0

M
W0

M
W1

M
� � �
M

Wm

D V0

M
 

mM

mD0

Wm

!

(7.2.6)

and Vn ? Wm for n ¤ m.

Since
1[

mD�1
Vm is dense in L2.R/, we may take the limit as m ! 1 to obtain

V0

M
 1M

mD0

Wm

!

D L2.R/:
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Similarly, we may go in the other direction to write

V0 D V�1

L
W�1

D �
V�2

L
W�2

�L
W�1

D : : :

D V�m

L
W�m

L � � �LW�1:

We may again take the limit as m ! 1. Since
\

m2Z
Vm D f0g, it follows that

V�m D f0g. Consequently, it turns out that

1M

mD�1
Wm D L2.R/: (7.2.7)

We include here a pictorial representation of V1 D V0

L
W0 in Fig. 7.1.

Finally, the difference between the two successive approximations Pmf and
PmC1f is given by the orthogonal projection Qmf of f onto the orthogonal
complement Wm of Vm in VmC1 so that

Qmf D PmC1f � Pmf:

It follows from conditions (i)–(v) in Definition 7.2.1 that the spaces Wm are also
scaled versions of W0 and, for f 2 L2.R/,

f 2 Wm if and only if f .2�mx/ 2 W0 for all m 2 Z; (7.2.8)

and they are translation-invariant for the discrete translations n 2 Z , that is,

f 2 W0 if and only if f .x � n/ 2 W0;

Fig. 7.1 Pictorial representation of V1 D V0
L

W0
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and they are mutually orthogonal spaces generating all of L2.R/,

Wm ? Wk for m ¤ k;M

m2Z
Wm D L2.R/

9
=

;
: (7.2.9a,b)

Moreover, there exists a function § 2 W0 such that §0;n.x/ D §.x � n/ constitutes
an orthonormal basis for W0. It follows from (7.2.8) that

§m;n.x/ D 2m=2§.2mx � n/; for n 2 Z (7.2.10)

constitute an orthonormal basis for Wm. Thus, the family §m;n.x/ represents an
orthonormal basis of wavelets for L2.R/. Each §m;n.x/ is represented by the point

.p; s/, where p D
�

n C 1

2

	
2m and s D 2m; .m; n 2 Z/ in the position-scale

plane, as shown in Fig. 7.2. Since scale is the inverse of the frequency, small scales
2m (or high frequencies 2�m) are near the position axis.

Example 7.2.1 (Characteristic Function). We assume that ¥ D ¦Œ0;1� is the charac-
teristic function of the interval Œ0; 1�. Define spaces Vm by

Vm D
( 1X

kD�1
ck ¥m;k W fckg 2 `2.Z/

)

;

where

¥m;n.x/ D 2�m=2 ¥.2�mx � n/:

The spaces Vm satisfy all the conditions of Definition 7.2.1, and so,
˚
Vm

�
is a MRA.

Fig. 7.2 Dyadic grid representation
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Example 7.2.2 (Piecewise Constant Function). Consider the space Vm of all func-
tions in L2.R/ which are constant on intervals



2�mn; 2�m.n C 1/

�
, where n 2 Z.

Obviously, Vm � VmC1 because any function that is constant on intervals of length
2�m is automatically constant on intervals of half that length. The space V0 contains
all functions f .x/ in L2.R/ that are constant on n � x < n C 1 . The function

f .2x/ in V1 is then constant on
n

2
� x <

n C 1

2
. Intervals of length 2�m are usually

referred to as dyadic intervals. A sample function in spaces Vm is shown in Fig. 7.3.
Clearly, the piecewise constant function space Vm satisfies the conditions (i)–(iv)

of a MRA. It is easy to guess a scaling function ¥ in V0 which is orthogonal to its
translates. The simplest choice for ¥ is the characteristic function so that ¥.x/ D
¦Œ0;1�.x/. Therefore, any function f 2 V0 can be expressed in terms of the scaling
function ¥ as

f .x/ D
1X

nD�1
cn ¥.x � n/:

Thus, the condition (v) is satisfied by the characteristic function ¦Œ0;1� as the scaling
function. As we shall see later, this MRA is related to the classic Haar wavelet.

Fig. 7.3 Piecewise constant functions in V
�1; V0 and V1
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7.3 Properties of Scaling Functions and Orthonormal
Wavelet Bases

Theorem 7.3.1. For any function ¥ 2 L2.R/, the following conditions are
equivalent.

(a) The system
˚
¥0;n � ¥.x � n/; n 2 Z

�
is orthonormal.

(b)
1X

kD�1

ˇ̌
ˇ O¥.¨ C 2k /

ˇ̌
ˇ
2 D 1 almost everywhere (a.e.).

Proof. Obviously, the Fourier transform of ¥0;n.x/ D ¥.x � n/ is

O¥0;n D exp.�in¨/ O¥.¨/:

In view of the general Parseval relation (3.4.37) for the Fourier transform, we have

˝
¥0;n; ¥0;m

˛ D ˝
¥0;0; ¥0;m�n

˛

D 1

2 

D O¥0;0; O¥0;m�n

E

D 1

2 

Z 1

�1
exp

˚ � i.m � n/¨
�
:
ˇ̌
ˇ O¥.¨/

ˇ̌
ˇ
2

d¨

D 1

2 

1X

kD�1

Z 2 .kC1/

2 k

exp
˚ � i.m � n/¨

� ˇ̌
ˇ O¥.¨/

ˇ̌
ˇ
2

d¨

D 1

2 

Z 2 

0

exp
˚ � i.m � n/¨

� 1X

kD�1

ˇ̌
ˇ O¥.¨ C 2 k/

ˇ̌
ˇ
2

d¨:

Thus, it follows from the completeness of
˚

exp.�in¨/; n 2 Z
�

in L2.0; 2 / that

˝
¥0;n; ¥0;m

˛ D •n;m

if and only if

1X

kD�1

ˇ̌
ˇ O¥.¨ C 2 k/

ˇ̌
ˇ
2 D 1 almost everywhere:

Theorem 7.3.2. For any two functions ¥; § 2 L2.R/, the sets of functions
˚
¥0;n �

¥.x � n/; n 2 Z
�

and
˚
§0;m � §.x � m/; m 2 Z

�
are biorthogonal, that is,

˝
¥0;n; §0;m

˛ D 0; for all n; m 2 Z;

if and only if
1X

kD�1
O¥.¨ C 2 k/ O§.¨ C 2 k/ D 0 almost everywhere:
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Proof. We apply arguments similar to those stated in the proof of Theorem 7.3.1 to
obtain

˝
¥0;n; §0;m

˛ D ˝
¥0;0; §0;m�n

˛

D 1

2 

D O¥0;0; O§0;m�n

E

D 1

2 

Z 1

�1
exp

˚
i.n � m/¨

� O¥.¨/ O§.¨ /d¨

D 1

2 

1X

kD�1

Z 2 .kC1/

2 k

exp
˚
i.n � m/¨

� O¥.¨/ O§.¨/ d¨

D 1

2 

Z 2 

0

exp
˚
i.n � m/¨

�
" 1X

kD�1
O¥.¨ C 2 k/ O§.¨ C 2 k/

#

d¨:

Thus,

h¥0;n; §0;mi D 0 for all n and m

if and only if

1X

kD�1
O¥.¨ C 2 k/ O§.¨ C 2 k/ D 0 almost everywhere:

We next proceed to the construction of a mother wavelet by introducing an
important generating function Om.¨/ 2 L2Œ0; 2 � in the following lemma.

Lemma 7.3.1. The Fourier transform of the scaling function ¥ satisfies the follow-
ing conditions:

1X

kD�1

ˇ̌
ˇ O¥.¨ C 2 k/

ˇ̌
ˇ
2 D 1 almost everywhere; (7.3.1)

O¥.¨/ D Om
�¨

2

� O¥
�¨

2

�
; (7.3.2)

where

Om.¨/ D 1p
2

1X

nD�1
cn exp.�in¨/ (7.3.3)

is a 2  - periodic function and satisfies the so-called orthogonality condition

ˇ̌ Om.¨/
ˇ̌2 C ˇ̌ Om.¨ C  /

ˇ̌2 D 1 a.e: (7.3.4)
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Remark. The Fourier transform O¥ of the scaling function ¥ satisfies the functional
equation (7.3.2). The function Om is called the generating function of the MRA.
This function is often called the discrete Fourier transform of the sequence fcng.
In signal processing, Om.¨/ is called the transfer function of a discrete filter with
impulse response fcng or the low-pass filter associated with the scaling function ¥.

Proof. Condition (7.3.1) follows from Theorem 7.3.1.
To establish (7.3.2), we first note that ¥ 2 V1 and

¥1;n.x/ D p
2 ¥.2x � n/

is an orthonormal basis for V1. Thus, the scaling function ¥ has the following
representation

¥.x/ D p
2

1X

nD�1
cn ¥.2x � n/; (7.3.5)

where cn D h¥; ¥1;ni and
1X

nD�1

ˇ̌
cn

ˇ̌2
< 1:

The Fourier transform of (7.3.5) gives

O¥.¨/ D 1p
2

1X

nD�1
cn exp

�
� i¨n

2

	
O¥
�¨

2

�
D Om

�¨

2

� O¥
�¨

2

�
: (7.3.6)

This proves the functional equation (7.3.2).

To verify the orthogonality condition (7.3.4), we substitute (7.3.2) in (7.3.1) so
that condition (7.3.1) becomes

1 D
1X

kD�1

ˇ̌
ˇ O¥.¨ C 2 k/

ˇ̌
ˇ
2

D
1X

kD�1

ˇ̌
ˇ Om
�¨

2
C k 

�ˇ̌
ˇ
2 ˇ̌
ˇ O¥
�¨

2
C k 

�ˇ̌
ˇ
2

:

This is true for any ¨ and hence, replacing ¨ by 2¨ gives

1 D
1X

kD�1

ˇ̌ Om.¨ C k /
ˇ̌2 ˇ̌
ˇ O¥.¨ C k /

ˇ̌
ˇ
2

: (7.3.7)

We now split the above infinite sum over k into even and odd integers and use the
2 -periodic property of the function Om to obtain
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1 D
1X

kD�1

ˇ̌ Om.¨ C 2 k/
ˇ̌2 ˇˇ̌ O¥.¨ C 2 k/

ˇ
ˇ̌2 C

1X

kD�1

ˇ̌ Om�¨ C .2k C 1/ 
�ˇ̌2 ˇˇ̌ O¥�¨ C .2k C 1/ 

�ˇˇ̌2

D
1X

kD�1

ˇ
ˇ Om.¨/

ˇ
ˇ2
ˇ̌
ˇ O¥.¨ C 2 k/

ˇ̌
ˇ
2 C

1X

kD�1

ˇ
ˇ Om.¨ C  /

ˇ
ˇ2
ˇ̌
ˇ O¥.¨ C   C 2k /

ˇ̌
ˇ
2

D ˇ̌ Om.¨/
ˇ̌2 C ˇ̌ Om.¨ C  /

ˇ̌2

by (7.3.1) used in its original form and ¨ replaced by .¨ C  /. This leads to the
desired condition (7.3.4).

Remark. Since
ˇ̌
ˇ O¥.0/

ˇ̌
ˇ D 1 ¤ 0; Om.0/ D 1 and Om. / D 0. This implies that Om can

be considered as a low-pass filter because the transfer function passes the frequen-
cies near ¨ D 0 and cuts off the frequencies near ¨ D  .

Lemma 7.3.2. The function O¥ can be represented by the infinite product

O¥.¨/ D
1Y

kD1

Om
� ¨

2k

�
: (7.3.8)

Proof. A simple iteration of (7.3.2) gives

O¥.¨/ D Om
�¨

2

� O¥
�¨

2

�
D Om

�¨

2

� �
Om
�¨

4

� O¥
�¨

4

� 

which is, by the .k � 1/th iteration,

D Om
�¨

2

�
Om
�¨

4

�
: : : Om

� ¨

2k

�
� O¥
� ¨

2k

�

D
kY

kD1

Om
� ¨

2k

� O¥
� ¨

2k

�
: (7.3.9)

Since O¥.0/ D 1 and O¥.¨/ is continuous, we obtain

lim
k!1

O¥
� ¨

2k

�
D O¥.0/ D 1:

The limit of (7.3.9) as k ! 1 gives (7.3.8).

We next prove the following major technical lemma.

Lemma 7.3.3. The Fourier transform of any function f 2 W0 can be expressed in
the form
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Of .¨/ D Ov.¨/ exp

�
i¨

2

	
Om
�¨

2
C  

� O¥
�¨

2

�
; (7.3.10)

where Ov.¨/ is a 2 -periodic function and the factor exp

�
i¨

2

	
Om
�¨

2
C  

� O¥
�¨

2

�

is independent of f:

Proof. Since f 2 W0, it follows from V1 D V0 ˚ W0 that f 2 V1 and is orthogonal
to V0. Thus, it follows from V1 D V0 ˚ W0 that f 2 V0 and is orthogonal to V0.
Thus, the function f can be expressed in the form

f .x/ D
1X

nD�1
cn ¥1;n.x/ D p

2

1X

nD�1
cn ¥.2x � n/; (7.3.11)

where cn D hf; ¥1;ni:
We use an argument similar to that in Lemma 7.3.1 to obtain the result

Of .¨/ D 1p
2

1X

nD�1
cn exp

�
� in¨

2

	
O¥
�¨

2

�
D Omf

�¨

2

� O¥
�¨

2

�
; (7.3.12)

where the function Omf is given by

Omf .¨/ D 1p
2

1X

nD�1
cn exp.�in¨/: (7.3.13)

Evidently, Omf is a 2 -periodic function which belongs to L2.0; 2 /. Since f ?V0,
we have

Z 1

�1
Of .¨/ O¥.¨/ exp.in¨/ d¨ D 0

and hence,

Z 1

�1

( 1X

kD�1
Of .¨ C 2 k/ O¥.¨ C 2 k/

)

ein¨d¨ D 0: (7.3.14)

Consequently,

1X

kD�1
Of .¨ C 2 k/ O¥.¨ C 2 k/ D 0: (7.3.15)

We now substitute (7.3.12) and (7.3.2) into (7.3.15) to obtain
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0 D
1X

kD�1
Omf

�¨

2
C  k

�
Om
�¨

2
C  k

� ˇ̌
ˇ O¥
�¨

2
C  k

�ˇ̌
ˇ
2

;

which is, by splitting the sum into even and odd integers k and then using the 2 -
periodic property of the function Om,

0 D
1X

kD�1
Omf

�¨

2
C 2 k

�
Om
�¨

2
C 2 k

� ˇ̌
ˇ O¥
�¨

2
C 2 k

�ˇ̌
ˇ
2

C
1X

kD�1
Omf

�¨

2
C   C 2 k

�
Om
�¨

2
C   C 2 k

� ˇˇ̌ O¥
�¨

2
C   C 2 k

�ˇˇ̌2

D Omf

�¨

2

�
Om
�¨

2

� 1X

kD�1

ˇ̌
ˇ O¥
�¨

2
C 2 k

�ˇ̌
ˇ
2

C Omf

�¨

2
C  

�
Om
�¨

2
C  

� 1X

kD�1

ˇ̌
ˇ O¥
�¨

2
C   C 2 k

�ˇ̌
ˇ
2

;

which is, due to orthonormality of the system
˚
¥0;k.x/

�
and (7.3.1),

D
n

Omf

�¨

2

�
Om
�¨

2

�
C Omf

�¨

2
C  

�
Om
�¨

2
C  

�o
� 1: (7.3.16)

Finally, replacing ¨ by 2¨ in (7.3.16) gives

Omf .¨/ Om.¨/ C Omf .¨ C  / Om.¨ C  / D 0 a.e: (7.3.17)

Or, equivalently,

ˇ
ˇ̌
ˇ

Omf .¨/ Om.¨ C  /

� Omf .¨ C  / Om.¨/

ˇ
ˇ̌
ˇ D 0:

This can be interpreted as the linear dependence of two vectors

�
Omf .¨/; � Omf .¨ C  /

�
and

�
Om.¨ C  /; Om.¨/

�
:

Hence, there exists a function Oœ such that

Omf .¨/ D Oœ.¨/ Om.¨ C  / a.e: (7.3.18)
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Since both Om and Omf are 2 -periodic functions, so is Oœ. Further, substitut-
ing (7.3.18) into (7.3.17) gives

Oœ.¨/ C Oœ.¨ C  / D 0 a.e: (7.3.19)

Thus, there exists a 2 -periodic function Ov defined by

Oœ.¨/ D exp.i¨/ Ov.2¨/: (7.3.20)

Finally, a simple combination of (7.3.12), (7.3.18), and (7.3.20) gives the desired
representation (7.3.10). This completes the proof of Lemma 7.3.3.

Now, we return to the main problem of constructing a mother wavelet §.x/.
Suppose that there is a function § such that

˚
§0;n W n 2 Z

�
is a basis for the space

W0. Then, every function f 2 W0 has a series representation

f .x/ D
1X

nD�1
hn §0;n D

1X

nD�1
hn §.x � n/; (7.3.21)

where

1X

nD�1

ˇ
ˇhn

ˇ
ˇ2 < 1:

Application of the Fourier transform to (7.3.21) gives

Of .¨/ D
 1X

nD�1
hn e�in¨

!
O§.¨/ D Oh.¨/ O§.¨/; (7.3.22)

where the function Oh is

Oh.¨/ D
1X

nD�1
hn exp.�in¨/; (7.3.23)

and it is a square integrable and 2 -periodic function in Œ0; 2 �. When (7.3.22) is
compared with (7.3.10), we see that O§.¨/ should be

O§.¨/ D exp

�
i¨

2

	
Om
�¨

2
C  

� O¥
�¨

2

�
(7.3.24)

D Om1

�¨

2

� O¥
�¨

2

�
; (7.3.25)
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where the function Om1 is given by

Om1.¨/ D exp.i¨/ Om.¨ C  /: (7.3.26)

Thus, the function Om1.¨/ is called the filter conjugate to Om.¨/ and hence, Om and
Om1 are called conjugate quadratic filters in signal processing.

Finally, substituting (7.3.3) into (7.3.24) gives

O§.¨/ D exp

�
i¨

2

	
� 1p

2

1X

nD�1
cn exp

n
in
�¨

2
C  

�o O¥
�¨

2

�

D 1p
2

1X

nD�1
cn exp

�
in  C i.n C 1/

¨

2


O¥
�¨

2

�

which is, by putting n D �.k C 1/

D 1p
2

1X

nD�1
c�k�1.�1/k exp

�
� ik¨

2

	
� O¥
�¨

2

�
: (7.3.27)

Invoking the inverse Fourier transform to (7.3.27) with k replaced by n gives the
mother wavelet

§.x/ D p
2

1X

nD�1
.�1/n�1 c�n�1¥.2x � n/ (7.3.28)

D p
2

1X

nD�1
dn ¥.2x � n/; (7.3.29)

where the coefficients dn are given by

dn D .�1/n�1 c�n�1: (7.3.30)

Thus, the representation (7.3.29) of a mother wavelet § has the same structure as
that of the father wavelet ¥ given by (7.3.5).

Remarks. 1. The mother wavelet § associated with a given MRA is not unique
because

dn D .�1/n�1 c2N �1�n (7.3.31)

defines the same mother wavelet (7.3.28) with suitably selected N 2 Z. This
wavelet with coefficients dn given by (7.3.31) has the Fourier transform
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O§.¨/ D exp

�
.2N � 1/

i¨

2

�
Om
�¨

2
C  

� O¥
�¨

2

�
: (7.3.32)

The nonuniqueness property of § allows us to define another form of §, instead
of (7.3.28), by

§.x/ D p
2

1X

nD�1
dn ¥.2x � n/; (7.3.33)

where a slightly modified dn is

dn D .�1/n c1�n: (7.3.34)

In practice, any one of the preceding formulas for dn can be used to find a mother
wavelet.

2. The orthogonality condition (7.3.4) together with (7.3.2) and (7.3.24) implies

ˇ̌
ˇ O¥.¨/

ˇ̌
ˇ
2 C

ˇ̌
ˇ O§.¨/

ˇ̌
ˇ
2 D

ˇ̌
ˇ O¥
�¨

2

�ˇ̌
ˇ
2

: (7.3.35)

Or, equivalently,

ˇ̌
ˇ O¥.2m¨/

ˇ̌
ˇ
2 C

ˇ̌
ˇ O§.2m¨/

ˇ̌
ˇ
2 D

ˇ̌
ˇ O¥.2m�1¨/

ˇ̌
ˇ
2

: (7.3.36)

Summing both sides of (7.3.36) from m D 1 to 1 leads to the result

ˇ̌
ˇ O¥.¨/

ˇ̌
ˇ
2 D

1X

mD1

ˇ̌
ˇ O§.2m¨/

ˇ̌
ˇ
2

: (7.3.37)

3. If ¥ has a compact support, the series (7.3.29) for the mother wavelet §

terminates and consequently, § is represented by a finite linear combination of
translated versions of ¥.2x/.

Finally, all of the above results lead to the main theorem of this section.

Theorem 7.3.3. If
˚
Vn; n 2 Z

�
is a MRA with the scaling function ¥, then there is

a mother wavelet § given by

§.x/ D p
2

1X

nD�1
.�1/n�1 c�n�1 ¥.2x � n/; (7.3.38)

where the coefficients cn are given by
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cn D h¥; ¥1;ni D p
2

Z 1

�1
¥.x/ ¥.2x � n/ dx: (7.3.39)

That is, the system
˚
§m;n.x/ W m; n 2 Z

�
is an orthonormal basis of L2.R/.

Proof. First, we have to verify that f§m;n.x/ W m; n 2 Zg is an orthonormal set.
Indeed, we have

Z 1

�1
§.x � k/ §.x � `/ dx D 1

2 

Z 1

�1
exp


 � i¨.k � `/
� ˇ̌
ˇ O§.¨/

ˇ̌
ˇ
2

d¨

D 1

2 

Z 2 

0

exp

�i¨.k�`/

� 1X

kD�1

ˇ̌
ˇ O§.¨C2 k/

ˇ̌
ˇ
2

d¨

1X

kD�1

ˇ̌
ˇ O§.¨ C 2 k/

ˇ̌
ˇ
2 D

1X

kD�1

ˇ̌
ˇ Om
�¨

2
C .k C 1/ 

�ˇ̌
ˇ
2 ˇ̌
ˇ O¥
�¨

2
C k 

�ˇ̌
ˇ
2

which is, by splitting the sum into even and odd integers k,

D
1X

kD�1

ˇ̌
ˇ Om
�¨

2
C .2k C 1/ 

�ˇ̌
ˇ
2 ˇ̌
ˇ O§
�¨

2
C k 

�ˇ̌
ˇ
2

C
1X

kD�1

ˇ̌
ˇ Om
�¨

2
C .2k C 2/ 

�ˇ̌
ˇ
2 ˇ̌
ˇ O§
�¨

2
C .2k C 1/ 

�ˇ̌
ˇ
2

D
ˇ̌
ˇ Om
�¨

2
C  

�ˇ̌
ˇ
2

1X

kD�1

ˇ̌
ˇ O¥
�¨

2
C 2k 

�ˇ̌
ˇ
2

C
ˇ
ˇ̌ Om
�¨

2

�ˇˇ̌2
1X

kD�1

ˇ
ˇ̌ O¥
�¨

2
C .2k C 1/ 

�ˇˇ̌2

D
ˇ̌
ˇ Om
�¨

2

�ˇ̌
ˇ
2 C

ˇ̌
ˇ Om
�¨

2
C  

�ˇ̌
ˇ
2 D 1 by (7.3.4):

Thus, we find

Z 1

�1
§.x � k/ §.x � `/ dx D •k;l :

This shows that
˚
§m;n W m; n 2 Z

�
is an orthonormal system. In view of

Lemma 7.3.2 and our discussion preceding this theorem, to prove that it is a basis, it
suffices to show that function Ov in (7.3.20) is square integrable over Œ0; 2 �: In fact,
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Z 2 

0

ˇ̌Ov.¨/
ˇ̌2

d¨ D 2

Z  

0

ˇ̌
ˇ Oœ.¨/

ˇ̌
ˇ
2

d¨

D 2

Z  

0

ˇ̌
ˇ Oœ.¨/

ˇ̌
ˇ
2 nˇ̌ Om.¨ C  /

ˇ̌2 C ˇ̌ Om.¨/
ˇ̌2o

d¨; by (7.3.4)

D 2

Z 2 

0

ˇ
ˇ̌ Oœ.¨/

ˇ
ˇ̌2 ˇ̌ Om.¨ C  /

ˇ̌2
d¨

D 2

Z 2 

0

ˇ̌ Omf .¨/
ˇ̌2

d¨; by (7.3.18)

D 2 

1X

nD�1

ˇ̌
cn

ˇ̌2
; cn D ˝

f; ¥1;n

˛

D 2 
��f
��2

< 1:

This completes the proof.

Example 7.3.1 (The Shannon Wavelet). We consider the Fourier transform O¥ of a
scaling function ¥ defined by

O¥.¨/ D ¦Œ� ; �.¨/

so that

¥.x/ D 1

2 

Z  

� 

ei¨xd¨ D sin  x

 x
:

This is also known as the Shannon sampling function, Both ¥.x/ and O¥.¨/ have
been introduced in Chap. 3 (see Fig. 3.12 with ¨0 D  ). Clearly, the Shannon
scaling function does not have finite support. However, its Fourier transform has
a finite support (band-limited) in the frequency domain and has good frequency
localization, Evidently, the system

¥0;k.x/ D ¥.x � k/ D sin  .x � k/

 .x � k/
; k 2 Z

is orthonormal because

˝
¥0;k; ¥0;`

˛ D 1

2 

˝ O¥0;k; O¥0;`

˛

D 1

2 

Z 1

�1
O¥0;k.¨/ O¥0;`.¨/ d¨

D 1

2 

Z 1

�1
exp

˚ � i.k � `/¨
�

d¨ D •k;`:
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In general, we define, for m D 0,

V0 D
( 1X

kD�1
ck

sin  .x � k/

 .x � k/
W

1X

kD�1

ˇ
ˇck

ˇ
ˇ2 < 1

)

;

and, for other m ¤ 0, m 2 Z,

Vm D
( 1X

kD�1
ck

2m=2 sin  .2mx � k/

 .2mx � k/
W

1X

kD�1

ˇ̌
ck

ˇ̌2
< 1

)

:

It is easy to check that all conditions of Definition 7.2.1 are satisfied. We next
find out the coefficients ck defined by

ck D ˝
¥; ¥1;n

˛ D p
2

Z 1

�1
sin  .x/

 x
� sin  .2x � k/

 .2x � k/
dx

D

8
ˆ̂<

ˆ̂
:

1p
2

; k D 0
p

2

 k
sin

�
 k

2

	
; k ¤ 0

Consequently, we can use the formula (7.3.38) to find the Shannon mother wavelet

§.x/ D
1X

nD�1
.�1/n�1c�n�1 ¥.2x � n/

D 1p
2

sin  .2x C 1/

 .2x C 1/
C

p
2

 

X

n¤�1

.�1/n�1

.n C 1/
cos

�n 

2

� sin  .2x � n/

 .2x � n/
:

Obviously, the system
˚
§m;n W m; n 2 Z

�
is an orthonormal basis in L2.R/. It is

known as the Shannon system.

Theorem 7.3.4. If ¥ is a scaling function for a MRA and Om.¨/ is the associated
low-pass filter, then a function § 2 W0 is an orthonormal wavelet for L2.R/ if and
only if

O§.¨/ D exp

�
i¨

2

	
Ov.¨/ Om

�¨

2
C  

� O¥
�¨

2

�
(7.3.40)

for some 2 -periodic function Ov such that
ˇ
ˇOv.¨/

ˇ
ˇ D 1:

Proof. It is enough to prove that all orthonormal wavelets § 2 W0 can be
represented by (7.3.40). For any § 2 W0, by Lemma 7.3.4, there must be a 2 -
periodic function Ov such that
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O§.¨/ D exp

�
i¨

2

	
Ov.¨/ Om

�¨

2
C  

� O¥
�¨

2

�
:

If § is an orthonormal wavelet, then the orthonormality of
˚
§.x � k/; k 2 Z

�

leads to

1 D
1X

kD�1

ˇ
ˇ̌ O§ .¨ C 2 k/

ˇ
ˇ̌2

D ˇ̌Ov.¨/
ˇ̌2

1X

kD�1

ˇ̌
ˇ Om
�¨

2
C k  C  

�ˇ̌
ˇ
2 ˇ̌
ˇ O¥
�¨

2
C  k

�ˇ̌
ˇ
2

which is, splitting the sum into even and odd integers k,

D ˇ̌Ov.¨/2
ˇ̌
( 1X

kD�1

ˇ̌
ˇ Om
�¨

2
C 2k  C  

�ˇ̌
ˇ
2 ˇ̌
ˇ O¥
�¨

2
C 2k 

�ˇ̌
ˇ
2

C
1X

kD�1

ˇ̌
ˇ Om
�¨

2
C .2k C 1/  C  

�ˇ̌
ˇ
ˇ̌
ˇ O¥
�¨

2
C .2k C 1/ 

�ˇ̌
ˇ
2

)

which is, by (7.3.1) and the 2 -periodic property of Om,

D ˇ
ˇOv.¨/

ˇ
ˇ2
�ˇ
ˇ̌ Om
�¨

2

�ˇˇ̌2 C
ˇ
ˇ̌ Om
�¨

2
C  

�ˇˇ̌2
�

D ˇ̌Ov.¨/
ˇ̌2

; by (7.3.4):

If the scaling function ¥ of an MRA is not an orthonormal basis of V0 but rather
is a Riesz basis, we can use the following orthonormalization process to generate an
orthonormal basis.

Theorem 7.3.5 (Orthonormalization Process). If ¥ 2 L2.R/ and if
˚
¥.x �

n/; n 2 Z
�

is a Riesz basis, that is, there exists two constants A; B > 0 such that

0 < A �
1X

kD�1

ˇ̌
ˇ O¥.¨ C 2 k/

ˇ̌
ˇ
2 � B < 1; (7.3.41)

then
˚ Q¥.x � n/; n 2 Z

�
is an orthonormal basis of V0 with

QO¥.¨/ D
O¥.¨/
q

Ô .¨/

; (7.3.42)

where the function Ô is
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Ô .¨/ D
1X

kD�1

ˇ̌
¥.¨ C 2 k/

ˇ̌2
: (7.3.43)

Proof. It follows from inequality (7.3.41) that Q¥ 2 L2.R/. It also follows
from (7.3.42) that

1X

kD�1

ˇ̌
ˇ OQ¥.¨ C 2 k/

ˇ̌
ˇ
2 D 1:

We consider a 2 -periodic function Og defined by

Og.¨/ D 1
q

Ô .¨/

so that Og can be expanded as a Fourier series

Og.¨/ D
1X

kD�1
gk exp.�ik¨/:

The inverse Fourier transform gives g in terms of the Dirac delta function of the
form

g.t/ D
1X

kD�1
gk •.t � k/:

Applying the convolution theorem to (7.3.42) gives

Q¥.x/ D ¥.x/ � g.x/ D
Z 1

�1
¥.x � t / g.t/ dt

D
Z 1

�1
¥.x � t /

1X

kD�1
gk •.t � k/ dt

D
1X

kD�1
gk ¥.x � k/:

This shows that
˚
¥.x � n/; n 2 Z

�
belongs to V0. Thus, the function Q¥ satisfies

condition (b) of Theorem 7.3.1. Therefore,
˚ Q¥.x �n/; n 2 Z

�
is an orthonormal set.

It is easy to show that the span of
˚ Q¥.x � n/; n 2 Z

� D QV0 is the same as
the span of

˚
¥.x � n/; n 2 Z

� D V0: Hence, the MRA is preserved under this
orthonormalization process.
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We describe another approach to constructing a MRA which begins with a
function ¥ 2 L2.R/ that satisfies the following relations

¥.x/ D
1X

nD�1
cn¥.2x � n/;

1X

nD�1

ˇ̌
cn

ˇ̌2
< 1; (7.3.44)

and

0 < A �
1X

kD�1

ˇ
ˇ̌ O¥.¨ C 2 k/

ˇ
ˇ̌2 � B < 1; (7.3.45)

where A and B are constants.
We define V0 as the closed span of

˚
¥.x � n/; n 2 Z

�
and Vm as the span of˚

¥m;n.x/; n 2 Z
�
. It follows from relation (7.3.45) that

˚
Vm

�
satisfies property (i)

of the MRA. In order to ensure that properties (ii) and (iii) of the MRA are satisfied,
we further assume that O¥.¨/ is continuous and bounded with O¥.0/ ¤ 0:

If
ˇ̌
ˇ O¥.¨/

ˇ̌
ˇ � C.1 C j¨j/�2�1�–, where – > 0, then

O¥.¨/ D
1X

kD�1

ˇ̌
ˇ O¥.¨ C 2 k/

ˇ̌
ˇ
2

is continuous.
This ensures that the orthonormalization process can be used. Therefore, we

assume

OQ¥.¨/ D
O¥.¨/
p

ˆ.¨/
and OQm

�¨

2

�
D

OQ¥.¨/

OQ¥
�¨

2

� : (7.3.46a,b)

Using (7.3.2) in (7.3.46b) gives

OQm
�¨

2

�
D

8
<̂

:̂

Ô �¨

2

�

Ô .¨/

9
>=

>;

1
2

Om
�¨

2

�
: (7.3.47)

We now recall (7.3.24) to obtain OQ§.¨/ as

OQ§.¨/ D exp

�
i¨

2

	
OQm
�¨

2
C  

� OQ¥
�¨

2

�
; (7.3.48)

which is, by (7.3.46a) and (7.3.47),
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D exp

�
i¨

2

	
8
<̂

:̂

Ô �¨

2
C  

�

Ô .¨/ Ô �¨

2

�

9
>=

>;

1
2
8
<̂

:̂

O¥.¨ C 2 / O¥
�¨

2

�

O¥
�¨

2
C  

�

9
>=

>;
: (7.3.49)

We introduce a complex function P defined by

P.z/ D 1

2

1X

nD�1
cnzn; z 2 C; (7.3.50)

where z D exp.�i¨/ and jzj D 1:

We assume that
1X

nD�1

ˇ̌
cn

ˇ̌
< 1 so that the series defining P converges

absolutely and uniformly on the unit circle in C. Thus, P is continuous on the unit
circle, jzj D 1:

Since P.z/ D 1

2

1X

nD�1
cn e�in¨ D Om.¨/; it follows that

Om.¨ C  / D 1

2

1X

nD�1
cne�in¨ � e�in  D 1

2

1X

nD�1
cn.�z/n D P.�z/: (7.3.51)

Consequently, the orthogonality condition (7.3.4) is equivalent to

ˇ̌
P.z/

ˇ̌2 C ˇ̌
P.�z/

ˇ̌2 D 1: (7.3.52)

Lemma 7.3.4. Suppose ¥ is a function in L2.R/ which satisfies the two-scale
relation

¥.x/ D
1X

nD�1
cn ¥.2x � n/ with

1X

nD�1

ˇ
ˇcn

ˇ
ˇ < 1: (7.3.53)

(i) If the function P defined by (7.3.50) satisfies (7.3.52) for all z on the unit circle,
jzj D 1, and if O¥.0/ ¤ 0, then P.1/ D 1 and P.�1/ D 0.

(ii) If P.�1/ D 0, then O¥.n/ D 0 for all nonzero integers n.

Proof. We know that the relation

O¥.¨/ D Om
�¨

2

� O¥
�¨

2

�
D P

�
e

�i¨n
2

� O¥
�¨

2

�
(7.3.54)

holds for all ¨ 2 R. Putting ¨ D 0 leads to P.1/ D 1: It follows from Eq. (7.3.52)
with z D 1 that P.�1/ D 0.
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The proof of part (ii) is left to the reader as an exercise.
We close this section by describing some properties of the coefficients of the

scaling function. The coefficients cn determine all the properties of the scaling
function ¥ and the wavelet function §. In fact, Mallat’s multiresolution algorithm
uses the cn to calculate the wavelet transform without explicit knowledge of §.
Furthermore, both ¥ and § can be reconstructed from the cn and this in fact is
central to Daubechies’ wavelet analysis.

Lemma 7.3.5. If cn are coefficients of the scaling function defined by (7.3.5),
then

(i)
1X

nD�1
cn D p

2; (ii)
1X

nD�1
.�1/ncn D 0;

(iii)
1X

nD�1
c2n D 1p

2
D

1X

nD�1
c2nC1;

(iv)
1X

nD�1
.�1/n nm cn D 0 for m D 0; 1; 2; : : : ; .p � 1/:

Proof. It follows from (7.3.2) and (7.3.3) that O¥.0/ D 0 and Om.0/ D 1. Putting
¨ D 0 in (7.3.3) gives (i).

Since Om.0/ D 1, (7.3.4) implies that Om. / D 0 which gives (ii).
Then, (iii) is a simple consequence of (i) and (ii).
To prove (iv), we recall (7.3.8) and (7.3.3) so that

O¥.¨/ D Om
�¨

2

�
Om
� ¨

22

�
: : :

and

Om
� ¨

2k

�
D 1p

2

1X

nD�1
cn exp

�
� in¨

2k

	
:

Clearly,

O¥.2 / D Om. / Om
�¨

2

�
:

According to Strang’s (1989) accuracy condition, O¥.¨/ must have zeros of the
highest possible order when ¨ D 2 ; 4 ; 6 ; : : : : Thus,

O¥.2 / D Om. / Om
�¨

2

�
Om
� ¨

22

�
: : : ;

and the first factor Om.¨/ will be zero of order p at ¨ D   if
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d m Om.¨/

d¨m
D 0 for m D 0; 1; 2; : : : .p � 1/;

which gives

1X

nD�1
cn.�in/m e�in  D 0 for m D 0; 1; 2; : : : .p � 1/:

Or, equivalently,

1X

nD�1
.�1/n nmcn D 0; for m D 0; 1; 2; : : : .p � 1/:

From the fact that the scaling function ¥.x/ is orthonormal to itself in any
translated position, we can show that

1X

nD�1
c2

n D 1: (7.3.55)

This can be seen by using ¥.x/ from (7.3.5) to obtain

Z 1

�1
¥2.x/ dx D 2

X

m

X

n

cmcn

Z 1

�1
¥.2x � m/ ¥.2x � n/ dx

where the integral on the right-hand side vanishes due to orthonormality unless
m D n, giving

Z 1

�1
¥2.x/ dx D 2

1X

nD�1
c2

n

Z 1

�1
¥2.2x � n/ dx

D 2

1X

nD�1
c2

n � 1

2

Z 1

�1
¥2.t/ dt

whence follows (7.3.55).
Finally, we prove

X

k

ck ckC2n D •0;n: (7.3.56)

We use the scaling function ¥ defined by (7.3.5) and the corresponding wavelet
given by (7.3.29) with (7.3.31), that is,
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§.x/ D p
2

1X

nD�1
.�1/n�1c2N �1�n ¥.2x � n/

which is, by substituting 2N � 1 � n D k,

D p
2

1X

nD�1
.�1/kck ¥.2x C k � 2N C 1/: (7.3.57)

We use the fact that mother wavelet §.x/ is orthonormal to its own translate
§.x � n/ so that

Z 1

�1
§.x/ §.x � n/ dx D •0;n: (7.3.58)

Substituting (7.3.57) to the left-hand side of (7.3.58) gives

Z
1

�1

§.x/ §.x � n/ dx

D 2
X

k

X

m

.�1/kCmck cm

Z
1

�1

¥.2x C k � 2N C 1/ ¥.2x C m � 2N C 1 � 2n/ dx;

where the integral on the right-hand side is zero unless k D m � 2n so that

Z 1

�1
§.x/ §.x � n/ dx D 2

X

k

.�1/2.kCn/ck ckC2n � 1

2

Z 1

�1
¥2.t/ dt:

This means that

X

k

ck ckC2n D 0 for all n ¤ 0:

7.4 Construction of Orthonormal Wavelets

We now use the properties of scaling functions and filters for constructing orthonor-
mal wavelets.

Example 7.4.1 (The Haar Wavelet). Example 7.2.2 shows that spaces of piecewise
constant functions constitute a MRA with the scaling function ¥ D ¦Œ0;1/. Moreover,
¥ satisfies the dilation equation

¥.x/ D p
2

1X

nD�1
cn ¥.2x � n/; (7.4.1)
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where the coefficients cn are given by

cn D p
2

Z 1

�1
¥.x/ ¥.2x � n/ dx: (7.4.2)

Evaluating this integral with ¥ D ¦Œ0;1/ gives cn as follows:

c0 D c1 D 1p
2

and cn D 0 for n ¤ 0; 1:

Consequently, the dilation equation becomes

¥.x/ D ¥.2x/ C ¥.2x � 1/: (7.4.3)

This means that ¥.x/ is a linear combination of the even and odd translates of
¥.2x/ and satisfies a very simple two-scale relation (7.4.3), as shown in Fig. 7.4.

In view of (7.3.34), we obtain

d0 D c1 D 1p
2

and d1 D �c0 D � 1p
2

:

Thus, the Haar mother wavelet is obtained from (7.3.33) as a simple two-scale
relation

§.x/ D ¥.2x/ � ¥.2x � 1/ (7.4.4)

D ¦Œ0;:5�.x/ � ¦Œ:5;1�.x/

D

8
ˆ̂̂
<

ˆ̂̂
:

C1; 0 � x <
1

2

�1;
1

2
� x < 1

0; otherwise

(7.4.5)

This two-scale relation (7.4.4) of § is represented in Fig. 7.5.

Fig. 7.4 Two-scale relation of ¥.x/ D ¥.2x/ C ¥.2x � 1/
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Fig. 7.5 Two-scale relation of §.x/ D ¥.2x/ � ¥.2x � 1/

Alternatively, the Haar wavelet can be obtained from the Fourier transform of the
scaling function ¥ D ¦Œ0;1� so that

O¥.¨/ D O¦Œ0;1�.¨/ D exp

�
� i¨

2

	 sin
�¨

2

�

�¨

2

�

D exp

�
� i¨

4

	
cos

�¨

4

�
: exp

�
� i¨

4

	 sin
�¨

4

�

�¨

4

�

D Om
�¨

2

�
� O¥
�¨

2

�
; (7.4.6)

where the associated filter Om.¨/ and its complex conjugate are given by

Om.¨/ D exp

�
� i¨

2

	
cos

�¨

2

�
D 1

2

�
1 C e�i¨

�
; (7.4.7)

Om.¨/ D exp

�
i¨

2

	
cos

�¨

2

�
D 1

2

�
1 C ei¨

�
: (7.4.8)

Thus, the Haar wavelet can be obtained form (7.3.24) or (7.3.40) and is given by

O§.¨/ D Ov.¨/ exp

�
i¨

2

	
Om
�¨

2
C  

� O¥
�¨

2

�

D Ov.¨/ � exp

�
i¨

2

	
� 1

2

�
1 � e

i¨
2

�
� O¥
�¨

2

�

where Ov.¨/ D �i exp.�i¨/ is chosen to find the exact result (7.4.4). Using this
value for Ov.¨/, we obtain
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O§.¨/ D 1

2
O¥
�¨

2

�
� 1

2
exp

�
� i¨

2

	
O¥
�¨

2

�

so that the inverse Fourier transform gives the exact result (7.4.4) as

§.x/ D ¥.2x/ � ¥.2x � 1/:

On the other hand, using (7.3.24) also gives the Haar wavelet as

O§.¨/ D exp

�
i¨

2

	
Om
�¨

2
C  

� O¥
�¨

2

�

D exp

�
i¨

2

	
� 1

2

�
1 � e

i¨
2

�
�

�
1 � exp

��i¨

2

	�

�
i¨

2

	 (7.4.9)

D i

¨

�
1 � e

i¨
2

�2

D i

¨

�
e

i¨
4 � e� i¨

4 � e
i¨
4 � e

i¨
4

�2

D �i exp

�
i¨

2

	
�

2

6
4

sin2
�¨

4

�

�¨

4

�

3

7
5

D

8
<̂

:̂
i exp

�
� i¨

2

	 sin2
�¨

4

�

�¨

4

�

9
>=

>;

˚ � exp.�i¨/
�
: (7.4.10)

This corresponds to the same Fourier transform (6.2.7) of the Haar wavelet (7.4.5)
except for the factor � exp.�i¨/. This means that this factor induces a translation of
the Haar wavelet to the left by one unit. Thus, we have chosen Ov.¨/ D � exp.�i¨/

in (7.3.40) to find the same value (7.4.5) for the classic Haar wavelet.

Example 7.4.2 (Cardinal B-splines and Spline Wavelets). The cardinal B-splines
(basis splines) consist of functions in C n�1.R/ with equally spaced integer knots
that coincide with polynomials of degree n on the intervals



2�mk; w�m.k C 1/

�
.

These B-splines of order n with compact support generate a linear space V0 in
L2.R/. This leads to a MRA

˚
Vm; m 2 Z

�
by defining f .x/ 2 Vm if and only

if f .2x/ 2 VmC1.

The cardinal B-splines Bn.x/ of order n are defined by the following convolution
product

B1.x/ D ¦Œ0;1�.x/; (7.4.11)
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Bn.x/ D B1.x/ � B1.x/ � � � � � B1.x/ D B1.x/ � Bn�1.x/; .n � 2/; (7.4.12)

where n factors are involved in the convolution product. Obviously,

Bn.x/ D
Z 1

�1
Bn�1.x � t / B1.t/ dt D

Z 1

0

Bn�1.x � t / dt D
Z x

x�1

Bn�1.t/ dt:

(7.4.13)

Using the formula (7.4.13), we can obtain the explicit representation of splines
B2.x/; B3.x/; and B4.x/ as follows:

B2.x/ D
Z x

x�1

B1.t/ dt D
Z x

x�1

¦Œ0;1�.t/ dt:

Evidently, it turns out that

B2.x/ D 0 for x � 0:

B2.x/ D
Z x

0

dt D x for 0 � n � 1; .x � 1 � 0/:

B2.x/ D
Z 1

x�1

dt D 2 � x for 0 � n � 2; .� � x � 1 � 1 � x/:

B2.x/ D 0 for 2 � x; .1 � x � 1/:

Or, equivalently,

B2.x/ D x ¦Œ0;1�.x/ C .2 � x/¦Œ1;2�.x/: (7.4.14)

Similarly, we find

B3.x/ D
Z x

x�1

B2.x/ dx:

More explicitly,

B3.x/ D 0 for x � 0:

B3.x/ D
Z x

0
t dt D x2

2
for 0 � x � 1; .x � 1 � 0 � x � 1/:

B3.x/ D
Z 1

x�1
t dt C

Z x

1
.2 � t / dt for 1 � x � 2; .0 � x � 1 � 1 � x � 2/

D 1

2
.6x � 2x2 � 3/ for 1 � x � 2:

B3.x/ D
Z 2

x�1
.2 � t / dt D 1

2
.x � 3/2 for 2 � x � 3; .1 � x � 1 � 2 � x � 3/

B3.x/ D 0 for x � 3; .2 � x � 1/:
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Or, equivalently,

B3.x/ D x2

2
¦Œ0;1� C 1

2
.6x � 2x2 � 3/ ¦Œ1;2� C 1

2
.x � 3/2 ¦Œ2;3�: (7.4.15)

Finally, we have

B4.x/ D
Z x

x�1
B3.t/ dt:

B4.x/ D 0 for x � 1 � �1 � x � 0:

B4.x/ D
Z x

0

�
1

2
t2

	
dt D 1

6
x3 for � 1 � x � 1 � 0 � x < 1:

B4.x/ D
Z 1

x�1

�
1

2
t2

	
dt C

Z x

1

�
� 3

2
C 3t � t 2

	
dt for 1 � x � 2; . 0 � x � 1 � 1 � x � 2/

D 2

3
� 2x C 2x2 � 1

2
x3 for 1 � x � 2:

B4.x/ D
Z 2

x�1

�
� 3

2
C 3t � t 2

	
dt C 1

2

Z x

2
.3 � t /2dt for 1 � x � 1 � 2 � x � 3

D 1

2
.x3 � 2x2 C 20x � 13/ for 2 � x � 3:

Or, equivalently,

B4.x/ D 1

6
x3 ¦Œ0;1� C 1

3
.2�6x C6x2 �x3/ ¦Œ1;2� C 1

2
.x3 �2x2 C20x �13/ ¦Œ2;3�:

(7.4.16)

In order to obtain the two-scale relation for the B-splines of order n, we apply
the Fourier transform of (7.4.11) so that

OB1.¨/ D exp

�
� i¨

2

	 sin
�¨

2

�

�¨

2

� D exp

�
� i¨

2

	
sinc

�¨

2

�
; (7.4.17a)

D 1

i¨

�
1 � e�i¨

� D
Z 1

0

e�i¨t dt; (7.4.17b)

where the sine function, sinc.x/ is defined by

sinc.x/ D
8
<

:

sin x

x
; x ¤ 0

1; x D 0
(7.4.18)
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We can also express (7.4.17a) in terms of z D exp

�
� i¨

2

	
as

OB1.¨/ D 1

2
.1 C z/ OB1

�¨

2

�
: (7.4.19)

Application of the convolution theorem of the Fourier transform to (7.4.12) gives

OBn.¨/ D
n OB1.¨/

on D OB1.¨/ OBn�1.¨/; (7.4.20)

D
�

1 C z

2

	n n OB1

�¨

2

�on D
�

1 C z

2

	n

OBn

�¨

2

�
; (7.4.21)

D OMn

�¨

2

� OBn

�¨

2

�
; (7.4.22)

where the associated filter OMn is given by

OMn

�¨

2

�
D
�

1 C z

2

	n

D 1

2n

�
1 C e� i¨

2

�n D e� i¨n
2

�
cos

¨

2

�n

D 1

2n

nX

kD0

 
n

k

!

exp

�
� in¨

2

	
; (7.4.23)

which is, by definition of OMn

�¨

2

�
;

D 1p
2

1X

kD�1
cn;k exp

�
� ik¨

2

	
: (7.4.24)

Obviously, the coefficients cn;k are given by

cn;k D

8
<̂

:̂

p
2

2n

 
n

k

!

; 0 � k � n

0; otherwise

(7.4.25)

Therefore, the spline function in the time domain is

Bn.x/ D p
2

1X

kD0

cn;k ¥.2x � k/ D
nX

kD0

21�n

 
n

k

!

Bn.2x � k/: (7.4.26)

This may be referred to as the two-scale relation for the B-splines of order n.
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In view of (7.4.17a), it follows that

ˇ̌
ˇ OBn.¨/

ˇ̌
ˇ D

ˇ̌
ˇsinc

�¨

2

�ˇ̌
ˇ
n

; (7.4.27)

where sinc.x/ is defined by (7.4.18). Thus, for each n � 1; OBn.¨/ is a first order
Butterworth filter which satisfies the following conditions

ˇ̌
ˇ OBn.0/

ˇ̌
ˇ D 1;

�
d

d¨

ˇ̌
ˇ OBn.¨/

ˇ̌
ˇ


¨D0

D 0; and

�
d 2

d¨2

ˇ̌
ˇ OB2

n.¨/
ˇ̌
ˇ


¨D0

¤ 0:

(7.4.28)

The graphical representation of Bn.x/ and their filter characteristics
ˇ̌
ˇ OBn.¨/

ˇ̌
ˇ are

shown in Figs. 7.6 and 7.7.
It is evident from (7.4.27) that

ˇ̌
ˇ OBn.¨ C 2 k/

ˇ̌
ˇ
2 D

sin2n
�¨

2
C  k

�

�¨

2
C  k

�2n
D

sin2n
�¨

2

�

�¨

2
C  k

�2n
: (7.4.29)

We replace ¨ by 2¨ in (7.4.29) and then sum the result over all integers k to
obtain

1X

kD�1

ˇ̌
ˇ OBn.2¨ C 2 k/

ˇ̌
ˇ
2 D sin2n ¨

1X

kD�1

1

.¨ C  k/2n
: (7.4.30)

It is well known in complex analysis that

1X

kD�1

1

.¨ C  k/
D cot ¨; (7.4.31)

Fig. 7.6 Cardinal B-spline functions
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Fig. 7.7 Fourier transforms of cardinal B-spline functions

which leads to the following result after differentiating .2n � 1/ times

1X

kD�1

1

.¨ C  k/2n
D � 1

.2n � 1/Š

d 2n�1

d¨2n�1
.cot ¨/: (7.4.32)

Substituting this result in (7.4.30) yields

1X

kD�1

ˇ̌
ˇ OBn.2¨ C 2 k/

ˇ̌
ˇ
2 D � sin2n.¨/

.2n � 1/Š

d 2n�1

d¨2n�1
.cot ¨/: (7.4.33)

These results are used to find the Franklin wavelets and the Battle–Lemarié
wavelets.

When n D 1, (7.4.32) gives another useful identity

1X

kD�1

1

.¨ C 2 k/2
D 1

4
cosec2

�¨

2

�
: (7.4.34)
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Summing (7.4.29) over all integers k and using (7.4.34) leads to

1X

kD�1

ˇ̌
ˇ OB1.¨ C 2 k/

ˇ̌
ˇ
2 D 4 sin2

�¨

2

� 1X

kD�1

1

.¨ C 2 k/2
D 1: (7.4.35)

This shows that the first order B-spline B1.x/ defined by (7.4.11) is a scaling
function that generates the classic Haar wavelet.

Example 7.4.3 (The Franklin Wavelet). The Franklin wavelet is generated by the
second order .n D 2/ splines.

Differentiating (7.4.34) .2n � 2/ times gives the result

1X

kD�1

1

.¨ C 2 k/2n
D 1

4.2n � 1/Š

d 2n�2

d¨2n�2

�
cosec2

�¨

2

� 
: (7.4.36)

When n D 2, (7.4.36) yields the identity

1X

kD�1

1

.¨ C 2 k/4
D 1
�
2 sin

¨

2

�4
�
�

1 � 2

3
sin2

�¨

2

��
: (7.4.37)

For n D 2, we sum (7.4.29) over all integers k so that

1X

kD�1

ˇ̌
ˇ OB2.¨ C 2 k/

ˇ̌
ˇ
2 D 16 sin4

�¨

2

� 1X

kD�1

1

.¨ C 2 k/4

D
�

1 � 2

3
sin2 ¨

2

�
: (7.4.38)

Or, equivalently,

"�
1 � 2

3
sin2 ¨

2

�� 1
2

#2 1X

kD�1

ˇ̌
ˇ OB2.¨ C 2 k/

ˇ̌
ˇ
2 D 1: (7.4.39)

Thus, the condition of orthonormality (7.4.33) ensures that the scaling function
¥ has the Fourier transform

O¥.¨/ D

0

B
@

sin
¨

2
¨

2

1

C
A

2
�

1 � 2

3
sin2 ¨

2

	� 1
2

: (7.4.40)
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Thus, the filter associated with this scaling function ¥ is obtained from (7.3.2) so
that

Om.¨/ D
O¥.2¨/

O¥.¨/
D

0

B
@

sin ¨

2 sin
¨

2

1

C
A

22

6
4

1 � 2

3
sin2 ¨

2

1 � 2

3
sin2 ¨

3

7
5

1
2

D cos2
�¨

2

�
2

6
4

1 � 2

3
sin2 ¨

2

1 � 2

3
sin2 ¨

3

7
5

1
2

: (7.4.41)

Finally, the Fourier transform of the orthonormal wavelet § is obtained
from (7.3.24) so that

O§.2¨/ D Om1.¨/ O¥.¨/ D ei¨ Om.¨ C  / O¥.¨/ (7.4.42)

D ei¨

2

6
4

1 � 2

3
sin2 ¨

2

1 � 2

3
sin2 ¨

3

7
5

1
2
0

B
@

sin2 ¨

2
¨

2

1

C
A

2
�

1 � 2

3
sin2 ¨

2

�� 1
2

D ei¨
sin4

�¨

2

�

�¨

2

�2

2

66
4

1 � 2

3
cos2

¨

4�
1 � 2

3
sin2 ¨

2

	�
1 � 2

3
sin2 ¨

4

	

3

77
5

1
2

: (7.4.43)

This is known as the Franklin wavelet generated by the second order spline function
B2.x/. The scaling function ¥ for the Franklin wavelet, the magnitude of its

Fourier transform,
ˇ̌
ˇ O¥.¨/

ˇ̌
ˇ, the Franklin wavelet §, and the magnitude of its Fourier

transform
ˇ
ˇ̌ O§.¨/

ˇ
ˇ̌ are shown in Figs. 7.8 and 7.9.

Example 7.4.4 (The Battle–Lemarié Wavelet). The Fourier transform O¥.¨/ associ-
ated with the nth order spline function Bn.x/ is

Fig. 7.8 (a) Scaling function of the Franklin wavelet ¥. (b) The Fourier transform j O¥j
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Fig. 7.9 (a) The Franklin wavelet § . (b) The Fourier transform j O§j

O¥.¨/ D
OBn.¨/

( 1X

kD�1

ˇ
ˇ̌ OBn.¨ C 2k /

ˇ
ˇ̌2
) 1

2

; (7.4.44)

where OBn.¨/ is given by (7.4.20) and

ˇ̌
ˇ OBn.¨ C 2k /

ˇ̌
ˇ
2 D

8
ˆ̂
<

ˆ̂:

sin
�¨

2
C k 

�

�
¨ C 2k 

2

	

9
>>=

>>;

2n

; (7.4.45)

and

( 1X

kD�1

ˇ̌
ˇ OBn.¨ C 2k /

ˇ̌
ˇ
2

) 1
2

D
2n sinn

�¨

2

�

q
OS2n.¨/

; (7.4.46)

with

OS2n.¨/ D
1X

kD�1

1

.¨ C 2k /2n
: (7.4.47)

Consequently, (7.4.44) can be expressed in the form

O¥.¨/ D

�
� i©¨

2

	

¨n

q
OS2n.¨/

; (7.4.48)

where © D 1 when n is odd or © D 0 when n is even, and OS2n.¨/ can be computed
by using the formula (7.4.36).

In particular, when n D 4, corresponding to the cubic spline of order four, O¥.¨/

is calculated from (7.4.48) by inserting
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Fig. 7.10 (a) The Battle–Lemarié scaling function. (b) The Battle–Lemarié wavelet

OS8.¨/ D
1X

kD�1

1

.¨ C 2k /8
D

ON1.¨/ C ON2.¨/

.105/
�
2 sin

¨

2

�8
; (7.4.49)

where

ON1.¨/ D 5 C 30 cos2
�¨

2

�
C 30

�
sin

¨

2
cos

¨

2

�2

; (7.4.50)

and

ON2.¨/ D 70 cos4
�¨

2

�
C 2 sin4

�¨

2

�
cos2

�¨

4

�
C 2

3
sin6

�¨

2

�
: (7.4.51)

Finally, the Fourier transform of the Battle–Lemarié wavelet § can be found
by using the same formulas stated in Example 7.4.2. The Battle–Lemarié scaling
function ¥ and the Battle–Lemarié wavelet § are displayed in Fig. 7.10a, b.

The rest of this section is devoted to the construction of one of the compactly
supported orthonormal wavelets first discovered by Daubechies (1988a,b). We
suppose that the scaling function ¥ satisfies the two-scale relation
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¥.x/ D
1X

nD0

cn ¥.2x � n/ D c0 ¥.2x/ C c1 ¥.2x � n/ (7.4.52)

for almost all x 2 R. We want
˚
¥.x � n/ W n 2 Z

�
to be an orthonormal set, and

thus, we impose the necessary condition on the function P

ˇ̌
P.z/

ˇ̌2 C ˇ̌
P.�z/

ˇ̌2 D 1;
�
z 2 C; jzj D 1

�
:

We also assume O¥.0/ D 1. Then, P.1/ D 1 and P.�1/ D 0 by Lemma 7.3.4.
Thus, P contains .1 C z/ as a factor. Since P is a linear polynomial, we construct
P with the form

P.z/ D .1 C z/

2
S.z/: (7.4.53)

This form ensures that P.�1/ D 0. The relation P.1/ D 1 holds if and only if
S.1/ D 1. Indeed, the assumption on P is a particular case of a general procedure
where we assume the form

P.z/ D
�

1 C z

2

	N

S.z/; (7.4.54)

where N is a positive integer to be selected appropriately.
Writing

P.z/ D 1

2
.1 C z/.p0 C p1z/

and using P.1/ D 1 gives

p0 C p1 D 1: (7.4.55)

The result
ˇ̌
P.i/

ˇ̌2 C ˇ̌
P.�i/

ˇ̌2 D 1 (7.4.56)

leads to another equation for p0 and p1

1 D 1

4

ˇ̌
.p0 � p1/ C i.p0 C p1/

ˇ̌2 C ˇ̌
.p0 � p1/ � i.p0 C p1/

ˇ̌2

D p2
0 C p2

1: (7.4.57)

Solving (7.4.55) and (7.4.57) gives either p0 D 1; p1 D 0 or vice versa. However,
the values p0 D 1 and p1 D 0 yield

P.z/ D 1

2
.1 C z/:
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Equating this value of P with its definition (7.3.51) leads to c0 D 1 and c1 D 1.
Thus, the scaling function (7.4.52) becomes

¥.x/ D ¥.2x/ C ¥.2x � 1/:

This corresponds to the Haar wavelet.
With N D 2, we obtain, from (7.4.54),

P.z/ D
�

1 C z

2

	2

S.z/ D
�

1 C z

2

	2

.p0 C p1z/; (7.4.58)

where p0 and p1 are determined from P.1/ D 1 and (7.4.56). It turns out that

p0 C p1 D 1; (7.4.59)

p2
0 C p2

1 D 2: (7.4.60)

Solving these two equations yields either

p0 D 1

2

�
1 C p

3
�

and p1 D 1

2

�
1 � p

3
�

or vice versa. Consequently, it turns out that

P.z/ D 1

4



p0 C .2p0 C p1/z C .p0 C 2p1/z2 C p1z3

�
: (7.4.61)

Equating result (7.4.61) with

P.z/ D 1

2

3X

nD0

cn zn D 1

2

�
c0 C c1z C c2z2 C c3z3

�

gives the values for the coefficients

c0 D 1

4

�
1 C p

3
�

; c1 D 1

4

�
3 C p

3
�

; c2 D 1

4

�
3 � p

3
�

; c3 D 1

4

�
1 � p

3
�

:

(7.4.62)

Consequently, the scaling function becomes

¥.x/ D1

4

�
1 C p

3
�

¥.2x/ C 1

4

�
3 C p

3
�

¥ .2x � 1/ C 1

4

�
3 � p

3
�

¥ .2x � 2/

C 1

4

�
1 � p

3
�

¥ .2x � 3/ : (7.4.63)
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Or equivalently,

¥.x/ D c0 ¥.2x/C.1�c3/ ¥.2x�1/C.1�c0/ ¥.2x�2/Cc3 ¥.2x�3/: (7.4.64)

In the preceding calculation, the factor
p

2 is dropped in the formula (7.3.53)
for the scaling function ¥ and hence, we have to drop the factor

p
2 in the wavelet

formula (7.3.33) so that §.x/ takes the form

§.x/ D d0 ¥.2x/ C d1 ¥.2x � 1/ C d�1 ¥.2x C 1/ C d�2 ¥.2x C 2/; (7.4.65)

where dn D .�1/n c1�n is used to find d0 D c1; d1 D �c0; d�1 D �c2; d�2 D c3.
Consequently, the final form of §.x/ becomes

§.x/ D 1

4

�
1 � p

3
�

¥.2x C 2/ � 1

4

�
3 � p

3
�

¥ .2x C 1/ C 1

4

�
3 C p

3
�

¥.2x/

� 1

4

�
1 C p

3
�

¥.2x � 1/: (7.4.66)

This is called the Daubechies wavelet. Daubechies (1992) has shown that in this
family of examples the size of the support of ¥; § is determined by the desired
regularity. It turns out that this is a general feature and that a linear relationship
between these two quantities support width and regularity, is the best. Daubechies
(1992) also proved the following theorem.

Theorem 7.4.1. If ¥ 2 C m, support ¥ � Œ0; N �, and ¥.x/ D
NX

nD0

cn ¥.2x � n/,

then N � m C 2.

For proof of this theorem, the reader is referred to Daubechies (1992).

7.5 Daubechies’ Wavelets and Algorithms

Daubechies (1988a,b, 1992) first developed the theory and construction of orthonor-
mal wavelets with compact support. Wavelets with compact support have many
interesting properties. They can be constructed to have a given number of derivatives
and to have a given number of vanishing moments.

We assume that the scaling function ¥ satisfies the dilation equation

¥.x/ D p
2

1X

nD�1
cn ¥.2x � n/; (7.5.1)

where cn D ˝
¥; ¥1;n

˛
and

1X

nD�1

ˇ̌
cn

ˇ̌2
< 1:
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If the scaling function ¥ has compact support, then only a finite number of cn

have nonzero values. The associated generating function Om,

Om.¨/ D 1p
2

1X

nD�1
cn exp.�i¨n/ (7.5.2)

is a trigonometric polynomial and it satisfies the identity (7.3.4) with special values
Om.0/ D 1 and Om. / D 0. If coefficients cn are real, then the corresponding scaling

function as well as the mother wavelet § will also be real-valued. The mother

wavelet § corresponding to ¥ is given by the formula (7.3.24) with
ˇ
ˇ̌ O¥.0/

ˇ
ˇ̌ D 1.

The Fourier transform O§.¨/ of order N is N -times continuously differentiable and
it satisfies the moment condition (6.2.16), that is,

O§.k/.0/ D 0 for k D 0; 1; : : : ; m: (7.5.3)

It follows that § 2 C m implies that Om0 has a zero at ¨ D   of order .m C 1/. In
other words,

Om0 .¨/ D
�

1 C e�i¨

2

	mC1

OL.¨/; (7.5.4)

where OL is a trigonometric polynomial.
In addition to the orthogonality condition (7.3.4), we assume

Om0 .¨/ D
�

1 C e�i¨

2

	N

OL.¨/; (7.5.5)

where OL.¨/ is 2 -periodic and OL 2 C N �1. Evidently,

ˇ̌ Om0.¨/
ˇ̌2 D Om0.¨/ Om0.�¨/ D

�
1 C e�i¨

2

	N �
1 C ei¨

2

	N

OL.¨/ OL.�¨/

D
�

cos2 ¨

2

�N ˇ̌
ˇ OL.¨/

ˇ̌
ˇ
2

; (7.5.6)

where
ˇ
ˇ̌ OL.¨/

ˇ
ˇ̌2 is a polynomial in cos ¨ , that is,

ˇ̌
ˇ OL.¨/

ˇ̌
ˇ
2 D Q.cos ¨/:

Since cos ¨ D 1 � 2 sin2
�¨

2

�
, it is convenient to introduce x D sin2

�¨

2

�
so

that (7.5.6) reduces to the form

ˇ̌ Om0.¨/
ˇ̌2 D

�
cos2 ¨

2

�N

Q.1 � 2x/ D .1 � x/N P.x/; (7.5.7)

where P.x/ is a polynomial in x.
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We next use the fact that

cos2

�
¨ C  

2

	
D sin2

�¨

2

�
D x

and

ˇ̌
ˇ OL.¨ C  /

ˇ̌
ˇ
2 D Q.� cos ¨/ D Q.2x � 1/

D Q
�
1 � 2.1 � x/

� D P.1 � x/ (7.5.8)

to express the identity (7.3.4) in terms of x so that (7.3.4) becomes

.1 � x/N P.x/ C xN P.1 � x/ D 1: (7.5.9)

Since .1�x/N and xN are two polynomials of degree N which are relatively prime,
then, by Bezout’s theorem (see Daubechies 1992), there exists a unique polynomial
PN of degree � N � 1 such that (7.5.9) holds. An explicit solution for PN .x/ is
given by

PN .x/ D
N �1X

kD0

 
N C k � 1

k

!

xk; (7.5.10)

which is positive for 0 < x < 1 so that PN .x/ is at least a possible candidate

for
ˇ̌
ˇ OL.¨/

ˇ̌
ˇ
2

. There also exist higher degree polynomial solutions PN .x/ of (7.5.9)

which can be written as

PN .x/ D
N �1X

kD0

 
N C k � 1

k

!

xk C xN R

�
x � 1

2

	
; (7.5.11)

where R is an odd polynomial.

Since PN .x/ is a possible candidate for
ˇ̌
ˇ OL.¨/

ˇ̌
ˇ
2

and

OL.¨/ OL.�¨/ D
ˇ̌
ˇ OL2.¨/

ˇ̌
ˇ
2 D Q.cos ¨/ D Q.1 � 2x/ D PN .x/; (7.5.12)

the next problem is how to find out OL.¨/. This can be done by the following lemma:

Lemma 7.5.1 (Riesz Spectral Factorization). If

OA.¨/ D
nX

kD0

ak cosk ¨; (7.5.13)
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where ak 2 R and an ¤ 0, and if OA.¨/ � 0 for real ¨ with OA.0/ D 0, then there
exists a trigonometric polynomial

OL.¨/ D
nX

kD0

bk e�ik¨ (7.5.14)

with real coefficients bk with OL.0/ D 1 such that

OA.¨/ D OL.¨/ OL.�¨/ D
ˇ̌
ˇ OL.¨/

ˇ̌
ˇ
2

(7.5.15)

is identically satisfied for ¨.

We refer to Daubechies (1992) for a proof of the Riesz lemma 7.5.1. We also
point out that the factorization of OA.¨/ given in (7.5.15) is not unique.

For a given N , if we select P D PN , then OA.¨/ becomes a polynomial of degree
N �1 in cos ¨ and OL.¨/ is a polynomial of degree .N �1/ in exp.�i¨/. Therefore,
the generating function Om0.¨/ given by (7.5.5) is of degree .2N � 1/ in exp.�i¨/.
The interval Œ0; 2N � 1� becomes the support of the corresponding scaling function
N ¥. The mother wavelet N § obtained from N ¥ is called the Daubechies wavelet.

Example 7.5.1 (The Haar Wavelet). For N D 1, it follows from (7.5.10) that
P1.x/ � 1, and this in turn leads to the fact that Q.cos ¨/ D 1; OL.¨/ D 1 so
that the generating function is

Om0.¨/ D 1

2

�
1 C e�i¨

�
: (7.5.16)

This corresponds to the generating function (7.4.7) for the Haar wavelet

Example 7.5.2 (The Daubechies Wavelet). For N D 2, it follows from (7.5.10)
that

P2.x/ D
1X

kD0

 
k C 1

k

!

xk D 1 C 2x

and hence (7.5.12) gives

ˇ̌
ˇ OL2.¨/

ˇ̌
ˇ
2 D P2.x/ D P2

�
sin2 ¨

2

�
D 1 C 2 sin2 ¨

2
D .2 � cos ¨/:

Using (7.5.14) in Lemma 7.5.1, we obtain that OL.¨/ is a polynomial of degree
N � 1 D 1 and

OL.¨/ OL.�¨/ D 2 � 1

2

�
ei¨ C e�i¨

�
:
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It follows from (7.5.14) that

�
b0 C b1e�i¨

� �
b0 C b1ei¨

� D 2 � 1

2

�
ei¨ C e�i¨

�
: (7.5.17)

Equating the coefficients in this identity gives

b2
0 C b2

1 D 1 and 2b0b1 D �1: (7.5.18)

These equations admit solutions as

b0 D 1

2

�
1 C p

3
�

and b1 D 1

2

�
1 � p

3
�

: (7.5.19)

Consequently, the generating function (7.5.5) takes the form

Om0.¨/ D
�

1 C e�i¨

2

	2 �
b0 C b1e�i¨

�

D 1

8

� �
1 C p

3
�

C
�
3Cp

3
�

e�i¨ C
�
3 � p

3
�

e�2i¨ C
�
1 � p

3
�

e�3i¨



(7.5.20)

with Om0.0/ D 1:

Comparing coefficients of (7.5.20) with (7.3.3) gives cn as

c0 D 1

4
p

2

�
1 C p

3
�

; c1 D 1

4
p

2

�
3 C p

3
�

c2 D 1

4
p

2

�
3 � p

3
�

; c3 D 1

4
p

2

�
1 � p

3
�

9
>>=

>>;
: (7.5.21)

Consequently, the Daubechies scaling function 2¥.x/ takes the form, dropping
the subscript,

¥.x/ D p
2
h
c0 ¥.2x/ C c1 ¥.2x � 1/ C c2 ¥.2x � 2/ C c3 ¥.2x � 3/

i
: (7.5.22)

Using (7.3.31) with N D 2, we obtain the Daubechies wavelet 2§.x/, dropping
the subscript,

§.x/ D p
2
h
d0 ¥.2x/ C d1 ¥.2x � 1/ C d2 ¥.2x � 2/ C d3 ¥.2x � 3/

i

D p
2
h

� c3 ¥.2x/ C c2 ¥.2x � 1/ � c1 ¥.2x � 2/ C c0 ¥.2x � 3/
i
;

(7.5.23)
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where the coefficients in (7.5.23) are the same as for the scaling function ¥.x/, but
in reverse order and with alternate terms having their signs changed from plus to
minus.

On the other hand, the use of (7.3.29) with (7.3.34) also gives the Daubechies
wavelet 2§.x/ in the form

2§.x/ D p
2
h
�c0 ¥.2x�1/Cc1 ¥.2x/�c2 ¥.2xC1/Cc3 ¥.2xC2/

i
: (7.5.24)

The wavelet has the same coefficients as § given in (7.5.23) except that the
wavelet is reversed in sign and runs from x D �1 to 2 instead of starting from
x D 0. It is often referred to as the Daubechies D4 wavelet since it is generated by
four coefficients.

However, in general, c’s (some positive and some negative) in (7.5.22) are
numerical constants. Except for a very simple case, it is not easy to solve (7.5.22)
directly to find the scaling function ¥.x/. The simplest approach is to set up an
iterative algorithm in which each new approximation ¥m.x/ is computed from the
previous approximation ¥m�1.x/ by the scheme

¥m.x/ D p
2
h
c0 ¥m�1.2x/ C c1 ¥m�1.2x � 1/ C c2 ¥m�1.2x � 2/ C c3 ¥m�1.2x � 3/

i
:

(7.5.25)

This iteration process can be continued until ¥m.x/ becomes indistinguishable
from ¥m�1.x/. This iterative algorithm is briefly described below starting from the
characteristic function

¦Œ0;1�.x/ D
�

1; 0 � x < 1

0; otherwise
(7.5.26)

After one iteration the characteristic function over 0 � x < 1 assumes the
shape of a staircase function over the interval 0 � x < 2. In order to describe
the algorithm, we select the set of four coefficients c0; c1; c2; c3 given in (7.5.21),

deleting the factor
1p
2

in each coefficient so that it produces the Daubechies scaling

function ¥.x/ given by (7.5.22) and the orthonormal Daubechies wavelet §.x/ (or
D4 wavelet) given by (7.5.23) without the factor

p
2.

We represent the characteristic function by the ordinate 1 at x D 0. The first
iteration generates a new set of four ordinates c0; c1; c2; c3 at x D 0:0; 0:5; 1:0; 1:5.
The second iteration with ordinate c0 at x D 0 produces a new set of another
four ordinates c2

0 ; c0 c1; c1 c2; c1 c3 at x D 0:00; 0:25; 0:75; and so on. After
completing the second iteration process, there are ten new ordinates c2

0 ; c0 c1; c0 c1C
c1 c0; c0 c3Cc2

1 ; c1 c2Cc2 c0; c1 c3Cc2 c1; c2
2 Cc3 c0; c2 c3Cc3 c1 c3 c2; c2

3

at x D 0:25; 0:50; 0:75; 1:00; : : : ; 2:25: This iteration process can be described by
the matrix scheme
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2
¥
� D

2

6
666666
666666
66666
66
4

c0

c1

c2 c0

c3 c1

c2 c0

c3 c1

c2 c0

c3 c1

c2

c3

3

7
777777
777777
77777
77
5

2

6666
4

c0

c1

c2

c3

3

7777
5

Œ1� D M2M1Œ1�; (7.5.27)

where Mn represents the matrix of the order
�
2nC1 C 2n � 2

� 	 �
2n C 2n�1 � 2

�

in which each column has a submatrix of the coefficients c0; c1; c2; c3 located two
places below the submatrix to its left.

We also use the same matrix scheme for developing the Daubechies wavelet
2§.x/ from 2¥.x/ which is given by (7.5.22) without the factor

p
2. For sim-

plicity, we assume that only one iteration process gives the final 2¥.x/, so this
can be described by four ordinates c0; c1; c2; c3 at x D 0:0; 0:50; 1:0; 1:50: In
view of (7.5.23), these four ordinates produce ten new ordinates spaced 0:25

apart. The term �c3¥.2x/ in (7.5.23) gives �c3 c0; �c3 c1; �c3 c2: � c2
3 ; the term

c2 ¥.2x � 1/ gives c2 c0; c2 c1; c2
2 ; c2 c3 shifted two places to the right and so on

for the other terms, so that the new ten ordinates for the wavelet are given by
�c3 c0; �c3 c1; �c3 c2Cc2 c0; �c2

3 Cc2 c1; c2
2 �c1 c0; c2 c3�c2

1 ; �c1 c2Cc2
0 ; �c1 c3C

c0 c1; c0 c2; c0 c3: These ordinates are generated by the matrix scheme



2
§
� D

2

6
666666
66666
666666
66
4

�c3

0 �c3

c2 0 �c3

0 c2 0 �c3

�c1 0 c2 0

0 �c1 0 c2

c0 0 �c1 0

c0 0 �c1

c0 0

c0

3

7
777777
77777
777777
77
5

2

6666
4

c0

c1

c2

c3

3

7777
5

Œ1�: (7.5.28)
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Or, alternatively, by the matrix scheme



2
§
� D

2

6666
666666
66666
66666
4

c0

c1

c2 c0

c3 c1

c2 c0

c3 c1

c2 c0

c3 c1

c2

c3

3

7777
777777
77777
77777
5

2

66
66
4

�c3

c2

�c1

c0

3

77
77
5

Œ1�: (7.5.29)

Making reference to Newland (1993b), it can be verified that 3§.x/ can be
described by the matrix scheme



3
§
� D M3M2

2

6666
4

�c3

c2

�c1

c0

3

7777
5

Œ1�; (7.5.30)

where the matrix M3 is of order 22 	 10 with ten submatrices Œc0 c1 c2 c3�T , each
organized two places below its left-hand neighboring matrix.

The matrix scheme (7.5.30) is used to generate wavelets in the inverse DWT.
All subsequent steps of the iteration use the matrices Mr consisting of submatrices
Œc0 c1 c2 c3�T staggered vertically two places each. After eight steps leading to 766
ordinates as before, the resulting wavelet is very close to that in Fig. 7.11a.

In order to analyze or synthesize a part of a signal by wavelets, Daubechies
(1992) considered the scaling function ¥ defined by (7.5.22) as a building block
so that

¥.x/ D 0 when x � 0 or x � 3: (7.5.31)

Daubechies (1992) proved that the scaling function ¥ does not admit any simple
algebraic relation in terms of elementary or special functions. She also demonstrated
that ¥ satisfies several algebraic relations that play a major role in computational
analysis.



424 7 Multiresolution Analysis and Construction of Wavelets

Fig. 7.11 (a) The Daubechies wavelet 2§.x/. (b) The Daubechies scaling function 2¥.x/

Replacing x by
x

2
in (7.5.22) gives

¥
�x

2

�
D p

2

3X

kD0

ck¥.x � k/ (7.5.32)

which can be found exactly if ¥.x/; ¥.x � 1/; ¥.x � 2/; ¥.x � 3/ are all known.
Suppose that we can find ¥.0/; ¥.1/; ¥.3/. It is known that ¥.�1/; ¥.4/, etc. are all
zero. Then, by using (7.5.32), we can calculate

¥

�
1

2

	
; ¥

�
3

2

	
; ¥

�
5

2

	
:
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Again, by using (7.5.32) and these new values, we can calculate

¥

�
1

4

	
; ¥

�
3

4

	
; ¥

�
5

4

	
; ¥

�
7

4

	
; ¥

�
9

4

	
; ¥

�
11

4

	
;

and so on.
In order to carry out this recursive process, we set initial values

¥.0/ D 0; ¥.1/ D 1

2

�
1 C p

3
�

; ¥.2/ D 1

2

�
1 � p

3
�

; ¥.3/ D 0:

(7.5.33)
For example, for x D 1, we obtain from (7.5.32) that

¥

�
1

2

	
D p

2
h
c0 ¥.1/ C c1 ¥.0/ C c2 ¥.�1/ C c3 ¥.�2/

i

which is, by (7.5.21) and (7.5.31),

D p
2 c0 ¥.1/ D

�
1 C p

3
�2

8
D 1

4

�
2 C p

3
�

:

Similarly, we can calculate ¥

�
3

2

	
; ¥

�
5

2

	
so that

x D 1

2
;

3

2
;

5

2
;

¥.x/ D 1

4

�
2 C p

3
�

; 0;
1

4

�
2 � p

3
�

;

and ¥.x � 3/ D 0:

A similar calculation gives the values of ¥ at multiples of
1

4
as given below:

x D 1

4
;

3

4
;

5

4
;

7

4
;

9

4
;

¥.x/ D 5 C 3
p

3

16
;

9 C 5
p

3

16
;

2
�
1 C p

3
�

16
;

2
�
1 � p

3
�

16
;

9 � 5
p

3

16
:

The Daubechies wavelet §.x/ is given by (7.5.24). In view of (7.5.31), it turns
out that §.x/ D 0 if 2x C 2 � 0 or 2x � 1 � 3, that is, §.x/ D 0 for x � �1
or x � 2. Hence, § can be computed from (7.5.24) with (7.5.21) and (7.5.33). For
example,
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§.0/ D p
2
h
c3 ¥.2/ � c2 ¥.1/ C c1 ¥.0/ � c0 ¥.�1/

i

D p
2
h
c3 ¥.2/ � c3 ¥.1/

i
D
 

1 � p
3

4

! 
1 � p

3

2

!

�
 

3 � p
3

4

! 
1 C p

3

2

!

D 1

2

�
1 � p

3
�

:

Consequently, §.x/ at x D �1; �1

2
; 0; 1;

3

2
is given as follows:

x D �1; �1

2
; 0; 1;

3

2
;

§.x/ D 0; �1

4
;

1

2

�
1 � p

3
�

; �1

2

�
1 C p

3
�

; �1

4
:

Both Daubechies’ scaling function ¥ and Daubechies’ wavelet § for N D 2 are
shown in Fig. 7.11a, b, respectively.

In view of its fractal shape, the Daubechies wavelet 2§.x/ given in Fig. 7.11a
has received tremendous attention so that it can serve as a basis for signal analysis.
According to Strang’s (1989) analysis, a wavelet expansion based on the D4 wavelet
represents a linear function f .x/ D ax exactly, where a is a constant. Six wavelet
coefficients are needed to represent f .x/ D ax Cbx2 , where a and b are constants.
In general, more wavelet coefficients are necessary to represent a polynomial
with terms like xn. Figure 7.12a, b exhibits wavelets with N D 3; 5; 7; and 10

coefficients. The range of these wavelets is always .2N � 1/ unit intervals so that
more wavelet coefficients generate longer wavelets. As N increases, wavelets lose
their irregular shape and become increasingly smooth with a Gaussian harmonic
waveform. For N D 10; the frequency of the waveform is not constant and some
minor irregularities still persist on the right. Each of the wavelets in Fig. 7.12a, b
represents the basis for a family of wavelets of different levels and different locations
along the x-axis. The only difference is that a wavelet with 2N coefficients occupies
.2N � 1/ unit intervals with the exception of the Haar wavelet which occupies
one interval. Wavelets at each level overlap one another and the amount of overlap
depends on the number of wavelet coefficients involved.

The recursive method just described above yields the values of the building block
¥.x/ and the wavelet §.x/ only at integral multiples of positive or negative powers
of 2. These values are sufficient for equally spaced samples from a signal. Due to
the importance of such powers of 2, the idea of a dyadic number and related notation
and terminology seem to be useful in wavelet algorithms.

Definition 7.5.1 (Dyadic Number). A number m is called a dyadic number if and
only if it is an integral multiple of an integral power of 2.

We denote the set of all dyadic numbers by D and the set of all integral multiples
by Dn for n 2 N. A dyadic number has a finite binary expansion, and a dyadic
number in Dn has a binary expansion with at most n binary digits past the binary
point.
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Fig. 7.12 (a) Wavelets for N D 3; 5 drawn using the Daubechies algorithm. (b) Wavelets for
N D 7; 10 drawn using the Daubechies algorithm
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Definition 7.5.2. The set of all linear combinations of 1 and
p

3 with dyadic

coefficients p; q 2 D is denoted by D

hp
3
i

so that

D

hp
3
i

D
n
p C q

p
3 W p; q 2 D

o
:

For every integer n, we consider combinations with coefficients in Dn so that

Dn

hp
3
i

D
n
p C q

p
3 W p; q 2 Dn

o
:

We define the conjugate m of m by

�
p C q

p
3
�

D
�
p � q

p
3
�

:

The set D
hp

3
i

is an integer ring under ordinary addition and multiplication. In

terms of two quantities

a D 1

4

�
1 C p

3
�

and a D 1

4

�
1 � p

3
�

; (7.5.34)

the scaling function 2¥ can be written as

2¥.x/ D p
2

2N �1X

kD0

ck ¥.2x � k/; .N D 2/ (7.5.35a)

D a ¥.2x/ C .1 � a/ ¥.2x � 1/ C .1 C a/ ¥.2x � 2/ C a ¥.2x � 3/:

(7.5.35b)

If 0 � m � 2N � 1, (7.5.35) can be rewritten as

¥.m/ D p
2

2N �1X

kD0

c2m�k ¥.k/: (7.5.36)

This system of equations can be written in the matrix form

2

6666
4

¥.0/

¥.1/

¥.2/

¥.3/

3

7777
5

D

2

6666
4

a 0 0 0

1 � a 1 � a a 0

0 a 1 � a 1 � a

0 0 0 a

3

7777
5

2

6666
4

¥.0/

¥.1/

¥.2/

¥.3/

3

7777
5

: (7.5.37)
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This system (7.5.37) has exactly one solution,

¥.0/ D 0; ¥.1/ D 2a; ¥.2/ D 2a; ¥.3/ D 0: (7.5.38)

We set ¥.k/ D 0 for all remaining values of k 2 Z: Then, ¥ can recursively be
calculated for all of D by (7.5.35b).

Finally, we conclude this section by including the Daubechies scaling function
3¥.x/ and the Daubechies wavelet 3§.x/ for N D 3. In this case, (7.5.10) gives

P.x/ D P3.x/ D 1 C 3x C 6x2; (7.5.39)

where

x D sin2 ¨

2
D 1

4

��e�i¨ C 2 � ei¨
�

and

x2 D 1

16

�
e�2i¨ C 4 C e2i¨ � 4e�i¨ � 4ei¨ C 2

�
:

Consequently, (7.5.12) gives the result

ˇ̌
ˇ OL.¨/

ˇ̌
ˇ
2 D 3

8
e�2i¨ � 9

4
e�i¨ C 19

4
� 19

4
ei¨ C 3

8
e2i¨: (7.5.40)

In this case,

A.¨/ D b0 C b1 e�i¨ C b2 e�2i¨; (7.5.41)

so that

ˇ̌
ˇ OL.¨/

ˇ̌
ˇ
2 D A.¨/A.�¨/ D �

b0 C b1e�i¨ C b2e�2i¨
� �

b0 C b1ei¨ C b2e2i¨
�

D �
b2

0 C b2
1 C b2

2

�C e�i¨ .b0 b1 C b2 b1/ C ei¨ .b0 b1 C b1 b2/ C b0 b2e2i¨ C b0 b2e�2i¨:

(7.5.42)

Equating the coefficients in (7.5.40) and (7.5.42) gives

b2
0 C b2

1 C b2
2 D 19

4
; b1 b0 C b2 b1 D �9

4
; b2 b0 D 3

8
: (7.5.43)

In view of the fact that
ˇ̌
ˇ OL.0/

ˇ̌
ˇ
2 D 1 and P.0/ D 1, the Riesz lemma 7.5.1 ensures

that there are real solutions .b0; b1; b2/ that satisfy the additional requirement
b0 C b1 C b2 D 1: Eliminating b1 from this equation and the second equation
in (7.5.43) gives

b2
1 � b1 � 9

4
D 0
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so that

b1 D 1

2

�
1 ˙ p

10
�

: (7.5.44)

Consequently,

b0 C b2 D 1

2

�
1 
 p

10
�

: (7.5.45)

The plus and the minus signs in these equations result in complex roots for b0 and
b2 . This means that the real root for b1 corresponds to the minus sign in (7.5.44)
so that

b1 D 1

2

�
1 � p

10
�

: (7.5.46)

Obviously,

b0 C b2 D 1

2

�
1 C p

10
�

and b0 b2 D 3

8

lead to the fact that b0 and b2 satisfy

x2 � 1

2

�
1 C p

10
�

x C 3

8
D 0: (7.5.47)

Thus,

.b0; b2/ D 1

4

��
1 C p

10
�

˙
q

5 C 2
p

10


: (7.5.48)

Consequently, A.¨/ is explicitly known, and hence Om.¨/ becomes

Om.¨/ D 1

8

�
b0 C .3b0 C b1/e�i¨ C .3b0 C 3b1 C b2/e�2i¨

C .b0 C 3b1 C 3b2/e�3i¨ C .b1 C 3b2/e�4i¨ C b2e�5i¨


; (7.5.49)

which is equal to (7.3.3). Equating the coefficients of (7.3.3) and (7.5.49) gives all
six ck’s as

c0 D
p

2

8
b0 D

p
2

32

� �
1 C p

10
�

C
q

5 C 2
p

10


;
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c1 D
p

2

8
.3 b0 C b1/ D

p
2

32

� �
5 C p

10
�

C 3

q
5 C 2

p
10


;

c2 D
p

2

8
.3 b0 C 3 b1 C b2/ D

p
2

32

� �
5 � p

10
�

C
q

5 C 2
p

10


;

c3 D
p

2

8
.b0 C 3 b1 C 3 b2/ D

p
2

32

� �
5 � p

10
�

�
q

5 C 2
p

10


;

c4 D
p

2

8
.b1 C 3 b2/ D

p
2

32

� �
5 C p

10
�

� 3

q
5 C 2

p
10


;

c5 D
p

2

8
b2 D

p
2

32

� �
1 C p

10
�

�
q

5 C 2
p

10


;

Evidently, the Daubechies scaling function 3¥.x/ and the Daubechies wavelet 3§.x/

(or simply D6 wavelet) can be rewritten as

3¥.x/ D p
2

5X

kD0

ck ¥.2x � k/: (7.5.50)

3§.x/ D p
2

5X

kD0

dk ¥.2x � k/: (7.5.51)

where ck and dk are explicitly known. Figure 7.13a, b exhibits the scaling function
3¥.x/ and the wavelet 3§.x/.

With a given even number of wavelet coefficients ck; k D 0; 1; : : : ; 2N � 1, we
can define the scaling function ¥ by

¥.x/ D p
2

2N �1X

kD0

ck ¥.2x � k/ (7.5.52)

and the corresponding wavelet by

§.x/ D p
2

2N �1X

kD0

.�1/k ck ¥.2x C k � 2N C 1/; (7.5.53)

where the coefficients ck satisfy the following conditions

2N �1X

kD0

ck D p
2;

2N �1X

kD0

.�1/k km ck D 0; (7.5.54a,b)
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Fig. 7.13 (a) The Daubechies scaling function 3¥.x/ for N D 3. (b) The Daubechies wavelet
3§.x/ for N D 3

where m D 0; 1; 2; : : : ; N � 1 and

2N �1X

kD0

ck ckC2m D 0; m ¤ 0; (7.5.55)

where m D 0; 1; 2; : : : ; N � 1 and

2N �1X

kD0

c2
k D 1: (7.5.56)

When N D 1, two coefficients, c0 and c1, satisfy the following equations:

c0 C c1 D p
2; c0 � c1 D 0; c2

0 C c2
1 D 1

which admit solutions

c0 D c1 D 1p
2

:
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They give the classic Haar scaling function and the Haar wavelet.
When N D 2 , four coefficients c0; c1; c2; c3 satisfy the following equations:

c0 C c1 C c2 C c3 D p
2; c0 � c1 C c2 � c3 D 0;

c0 c2 C c1 c3 D 0; c2
0 C c2

1 C c2
2 C c2

3 D 1:

These give solutions

c0 D 1

4
p

2

�
1 C p

3
�

; c1 D 1

4
p

2

�
3 C p

3
�

;

c2 D 1

4
p

2

�
3 � p

3
�

; c3 D 1

4
p

2

�
1 � p

3
�

:

These coefficients constitute the Daubechies scaling function (7.5.22) and the
Daubechies D4 wavelet (7.5.23) or (7.5.24).

7.6 Discrete Wavelet Transforms and Mallat’s Pyramid
Algorithm

In harmonic analysis, a signal is decomposed into harmonic functions of different
frequencies, whereas in wavelet analysis a signal is decomposed into wavelets
of different scales (or levels) along the x-axis. Any arbitrary signal f .x/ can be
decomposed into wavelet components at different scales as

f .x/ D
1X

mD�1

1X

kD�1
cm;k § .2mx � k/ ; (7.6.1)

where cm;k are wavelet coefficients.
It is well known that the Haar wavelet is the simplest orthonormal wavelet defined

in Example 6.2.1. This wavelet is a member of a family of similar-shaped wavelets
of different horizontal scales, each located at a different position of the x-axis.
Obviously, there are two half-length wavelets represented by §.2x/ and §.2x � 1/

and four quarter-length wavelets represented by §.4x/; §.4x � 1/; §.4x � 2/, and
§.4x � 3/, as shown in Fig. 7.14a–c.

The position and scale of each wavelet can be obtained from its argument. For
instance, §.2x � 1/ is the same as §.2x/ except that it is compressed into half the
horizontal length and starts at x D 2�1 instead of at x D 0. The level of the wavelet
is determined by how many wavelets fit into the unit interval 0 � x < 1: At level
0, there is 20 D 1 wavelet (the Haar wavelet) in each unit interval, as shown in
Fig. 7.14a. At level 1, there are 21 D 2 wavelets in the unit interval (see Fig. 7.14b).
At level 2, there are 22 D 4 wavelets in the unit interval, as shown in Fig. 7.14c, and

so on. On the other hand, at level �1, there is 2�1 D 1

2
a wavelet in the unit interval

and at level �2 there is 2�2 D 1

4
of a wavelet in the unit interval, and so on.
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Fig. 7.14 (a–c) The Haar wavelet at levels m D 0; 1; 2

It is shown in Fig. 7.15 that, for all levels less than zero .m < 0 or m � �1/,
the contribution is constant over each unit interval. Evidently, the sum of the
contributions from all of these levels is also constant. It is known that the scaling
function ¥.x/ for the Haar wavelet is also constant so that ¥.x/ D 1 for 0 � x < 1:

Consequently, the representation (7.6.1) becomes
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Fig. 7.15 (a–c) The Haar wavelet at levels m D 0; 1; 2

f .x/ D
�1X

mD�1

1X

kD�1
cm;k §

�
2mx � k

�C
1X

mD0

1X

kD�1
cm;k §

�
2mx � k

�

D
1X

kD�1
c¥;k ¥.x � k/ C

1X

mD0

1X

mD�1
cm;k §

�
2mx � k

�
: (7.6.2)

Under very general conditions on f and §, the wavelet series (7.6.1) and (7.6.2)
converge so that they represent a practical basis for signal analysis.

In order to develop a DWT analysis, it is convenient to define f .x/ in the unit
interval 0 � x < 1. If time t is an independent variable for a signal over duration
T , then x D .t=T / and 0 � x < 1 where x is a dimensionless variable. We assume
that f .x/; 0 � x < 1, is one period of a periodic signal so that the signal is exactly
repeated in adjacent unit intervals to yield

F.x/ D
X

k

f .x � k/; (7.6.3)

where f .x/ is zero outside the interval 0 � x < 1.
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We consider the Daubechies wavelet D4; §.x/, which occupies three unit
intervals 0 � x < 3. In the unit interval 0 � x < 1; f .x/ will have contributions
from the first third of §.x/, the middle third of §.x C 1/, and the last third of
§.x C 2/. When any wavelet that begins in the interval 0 � x < 1 runs off the
end x D 1, it may be assumed to be wrapped around the interval several times if
there are many coefficients, so that the wavelet extends over many intervals. With
this assumption, the wavelet representation (7.6.2) of f .x/ in 0 � x < 1 can be
expressed as

f .x/ D a0 ¥.x/ C a1 §.x/ C 

a2 a3

�
"

§.2x/

§.2x � 1/

#

C 

a4 a5 a6 a7

�

2

666
6
4

§.4x/

§.4x � 1/

§.4x � 2/

§.4x � 3/

3

777
7
5

C � � � C a2mCk §
�
2mx � k

�C � � � ; (7.6.4)

where the coefficients a1; a2; a3; : : : represent the amplitudes of each of the
wavelets after wrapping to one cycle of the periodic function (7.6.3) in 0 � x < 1.
Due to the wrapping process, the scaling function ¥.x/ always becomes a constant.
The second term at a1§.x/ is a wavelet of scale zero, the third and fourth terms
a2§.x/ and a3§.2x � 1/ are wavelets of scale one, and the second is translated
4x D 2�1 with respect to the first. The next four terms represent wavelets of scale
two and so on for wavelets of increasingly higher scale. The higher the scale, the
finer the detail; so there are more coefficients involved. At scale m, there are 2m

wavelets, each spaced 4x D 2�m apart along the x-axis.
In view of orthonormal properties, the coefficients can be obtained from

Z
§
�
2mx � k

�
f .x/ dx D a2mCk

Z
§2
�
2mx � k

�
dx

D 1

2k
a2mCk

Z
§2.x/ dx

and

a2mCk D 2k

Z
f .x/§

�
2mx � k

�
dx (7.6.5)

because
Z

§2.x/ dx D 1:

In view of the fact that
Z 1

�1
¥2.x/ dx D 1;

it follows that the coefficient a0 is given by
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a0 D
Z

f .x/ ¥.x/ dx: (7.6.6)

Usually, the limits of integration in the orthogonality conditions are from �1
to C1, but the integrand in each case is only nonzero for the finite length of the
shortest wavelet or scaling function involved. The limits of integration on (7.6.5)
and (7.6.6) may extend over several intervals, provided the wavelets and scaling
functions are not wrapped. Since f .x/ is one cycle of a periodic function, which
repeats itself in adjacent intervals, all contributions to the integrals from outside the
unit interval .0 � x < 1/ are included by integrating from x D 0 to x D 1 for the
wrapped functions. Consequently, results (7.6.5) and (7.6.6) can be expressed as

a2mCk D 2m

Z 1

0

f .x/ §
�
2mx � k

�
dx (7.6.7)

and

a0 D
Z 1

0

f .x/ ¥.x/ dx; (7.6.8)

where ¥.x/ and §.2mx � k/ involved in (7.6.7) and (7.6.8) are wrapped around the
unit interval .0 � x < 1/ as many times as needed to ensure that their whole length
is included in .0 � x < 1/.

The DWT is an algorithm for computing (7.6.7) and (7.6.8) when a signal f .x/

is sampled at equally spaced intervals over 0 � x < 1. We assume that f .x/

is a periodic signal with period one and that the scaling and wavelet functions
wrap around the interval 0 � x < 1. The integrals (7.6.7) and (7.6.8) can be
computed to the desired accuracy by using ¥.x/ and §.2mx � k/. However, a
special feature of the DWT algorithm is that (7.6.7) and (7.6.8) can be computed
without generating ¥.x/ and §.2mx � k/ explicitly. The DWT algorithm was first
introduced by Mallat (1989b) and hence is known as Mallat’s pyramid algorithm
(or Mallat’s tree algorithm). For a detailed information on this algorithm, the reader
is also referred to Newland (1993a,b).

7.7 Exercises

1. Show that the two-scale equation associated with the linear spline function

B1.t/ D
�

1 � jt j; 0 < jt j < 1

0; otherwise
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is

B1.t/ D 1

2
B1.2t C 1/ C B1.2t/ C 1

2
B1.2t � 1/:

Hence, show that

1X

kD�1

ˇ̌
ˇ O¥.¨ C 2 k/

ˇ̌
ˇ
2 D 1 � 2

3
sin2 ¨

2
:

2. Use the Fourier transform formula (7.4.43) for O§.¨/ of the Franklin wavelet §

to show that § satisfies the following properties:

(a) O§.0/ D
Z 1

�1
§.t/ dt D 0;

(b)
Z 1

�1
t §.t/ dt D 0;

(c) § is symmetric with respect to t D �1

2
:

3. From an expression (7.4.41) for the filter, show that

Om.¨/ D
�
2 C 3 cos ¨ C cos2 ¨

�

�
1 C 2 cos2 ¨

�

and hence deduce

O§.2¨/ D exp.�i¨/

�
2 � cos ¨ C cos2 ¨

1 C 2 cos2 ¨


O¥.¨/:

4. Using result (7.4.20), prove that

OBn.¨/

OBn

�¨

2

� D
 

1 C e� i¨
2

2

!n

:

Hence, derive the following:

(a) OBn.¨/ D 1

2n

nX

kD0

 
n

k

!

exp

�
� ik¨

2

�
OBn

�¨

2

�
;

(b) Bn.t/ D 1

2n�1

nX

kD0

 
n

k

!

Bn.2t � k/:
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5. Obtain a solution of (7.5.22) for the following cases:

(a) c0 D c1 D 1p
2

; c2 D c3 D 0;

(b) c0 D c2 D 1

2
p

2
; c1 D 1p

2
; c3 D 0;

(c) c0 D p
2; c1 D c2 D c3 D 0:

6. If the generating function is defined by (7.3.3), then show that

(a)
1X

nD�1
cn D p

2;

(b)
1X

nD�1
c2n D

1X

nD�1
c2nC1 D 1p

2
:

7. Using the Strang (1989) accuracy condition that O¥.¨/ must have zeros of n when
¨ D 2 ; 4 ; 6 ; : : : , show that

1X

kD�1
.�1/k km ck D 0; m D 0; 1; 2; : : : ; .n � 1/:

8. Show that

(a)
1X

kD�1
c2

k D 1;

(b)
X

ck ckC2m D 0; m ¤ 0; where ck are coefficients of the scaling function
defined by (7.3.5).

(c) Derive the result in (b) from the result in Exercise 5.

9. Given six wavelet coefficients ck .N D 6/, write down six equations from
(7.5.50a,b)–(7.5.52). Show that these six equations generate the Daubechies scaling
function (7.5.50) and the Daubechies D6 wavelet (7.5.51).

10. Using the properties of m and Om1 prove that

(a) O¥
�¨

2

�
D
�

Om
�¨

2

�
C Om

�¨

2
C  

�  O¥.¨/ C
�

Om1

�¨

2

�
C Om1

�¨

2
C  

�  O§.¨/

(b)

exp

�
� i¨

2

	
O¥
�¨

2

�
D
�

exp

�
� i¨

2

	
Om
�¨

2

�
� exp

�
� i¨

2

	
Om
�¨

2
C  

�  O¥.¨/

C
�

exp

�
� i¨

2

	
Om1

�¨

2

�
� exp

�
� i¨

2

	
Om
�¨

2
C  

�  O§.¨/:
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11. If Om.¨/ D 1

2

�
1 C e�i¨

� �
1 � e�i¨ C e�2i¨

� D e� 3i¨
2 cos

�
3¨

2

	
; show that it

satisfies the condition (7.3.4) and Om.0/ D 1. Hence, derive the following results

(a) O¥.¨/ D exp

�
�3i¨

2

	 sin

�
3¨

2

	

�
3¨

2

	 ;

(b)
1X

kD�1

ˇ̌
ˇ O¥.¨ C 2 k/

ˇ̌
ˇ
2 D 1

9

�
3 C 4 cos ¨ C 2 cos 2¨

�
;

(c) ¥.x/ D
8
<

:

1

3
; 0 � x � 3

0; otherwise
;

(d) cn D
Z 1

�1
¥.x/ ¥.x � n/ dx D 1

3

Z 3

0

¥.x � n/ dx D 1

3

Z nC3

n

¥.x/ dx:

12. Show that, for any x 2 Œ0; 1�,

(a)

1X

kD�1
¥.x � k/ D 1 and (b)

1X

kD�1
.c C k/ ¥.x � k/ D x;

where c D 1

2

�
3 � p

3
�

:

Hence, using (a) and (b), show that
(c) 2¥.x/ C ¥.x C 1/ D x C 2 � c;

(d) ¥.x C 1/ C 2¥.x C 2/ D c � x;

(e) ¥.x/ � ¥.x C 2/ D x C c C �p
3 � 2

�
:

13. Use (7.3.31) and (7.4.64) to show that

§.x/ D �c0 ¥.2x/ C .1 � c0/ ¥.2x � 1/ � .1 � c3/ ¥.2x � 2/ C c0 ¥.2x � 3/:

14. Using (7.4.64), prove that §.x/ defined in Exercise 13 satisfies the following
properties:

(a) supp §.x/ � Œ0; 3�;

(b)
Z 1

�1
§.x/ §.x � k/ dx D

�
0; k ¤ 0

1; k D 0
;

(c)
Z 1

�1
§.x � k/ §.x/ dx D 0 for all k 2 Z:
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