
Chapter 6
The Wavelet Transforms
and Their Basic Properties

Wavelets are without doubt an exciting and intuitive concept.
The concept brings with it a new way of thinking, which is
absolutely essential and was entirely missing in previously
existing algorithms.

Today the boundaries between mathematics and signal and
image processing have faded, and mathematics has benefitted
from the rediscovery of wavelets by experts from other
disciplines. The detour through signal and image processing
was the most direct path leading from the Haar basis to
Daubechies’s wavelets.

Yves Meyer

6.1 Introduction

Morlet et al. (1982a,b) modified the Gabor wavelets to study the layering of
sediments in a geophysical problem of oil exploration. He recognized certain
difficulties of the Gabor wavelets in the sense that the Gabor analyzing function
gt;¨.£/ D g.£ � t / ei¨£ oscillates more rapidly as the frequency ¨ tends to infinity.
This leads to significant numerical instability in the computation of the coefficients
hf; g¨;t i. On the other hand, g¨;t oscillates very slowly at low frequencies. These
difficulties led to a problem of finding a suitable reconstruction formula. In order
to resolve these difficulties, Morlet first made an attempt to use analytic signals
f .t/ D a.t/ exp

˚
i¥.t/

�
and then introduced the wavelet § defined by its Fourier

transform

O§.¨/ D p
2  ¨2 exp

�
�1

2
¨2

�
; ¨ > 0: (6.1.1)

This wavelet corresponds to an analytic signal related to the second derivative .1 �
t 2/ exp

�
�1

2
t2

�
of the Gaussian function exp

�
�1

2
t2

�
. Thus, the Morlet wavelet
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338 6 The Wavelet Transforms and Their Basic Properties

turned out to be the modulated Gaussian function. In fact, Morlet’s ingenious idea
was to filter the signal f .t/ with the aid of the filters O§.am¨/; m 2 Z so that

f .t/ �! fm.t/ D
Z 1

�1
f .t � £/ a�m O§.a�m£/ d£: (6.1.2)

Morlet’s analysis showed that the quantity
X

m2Z

ˇ̌
ˇ O§.a�m¨/

ˇ̌
ˇ
2

remained constant for

sufficiently small a. It also led to stable and fast reconstruction algorithms of f from
fm even when a D 2. Moreover, Morlet suggested sufficiently small mesh sizes so
that they allow a good reconstruction algorithm of analytic signals with coefficients

cmn D fm

�
n2m

� D
D
f .t/; 2�m§ .2�mt � n/

E
: (6.1.3)

Thus, Morlet’s remarkable analysis led to the discovery of the wavelet transform
which seems to be an efficient and effective time–frequency representation algo-
rithm. The major difference between the Morlet wavelet representation and the
Gabor wavelet is that the former has a more and more acute spatial resolution as
the frequency gets higher and higher.

Based on the idea of wavelets as a family of functions constructed from
translation and dilation of a single function §, called the mother wavelet (or affine
coherent states), we define wavelets by

§a;b.t/ D 1
pjaj §

�
t � b

a

�
; a; b 2 R; a ¤ 0; (6.1.4)

where a is called a scaling parameter which measures the degree of compression
or scale, and b is a translation parameter which determines the time location of the
wavelet. Clearly, wavelets §a;b.t/ generated by the mother wavelet § are somewhat
similar to the Gabor wavelets gt;¨.£/ which can be considered as musical notes
that oscillate at the frequency ¨ inside the envelope defined by

ˇ
ˇg.£ � t /

ˇ
ˇ as a

function of £. If jaj < 1, the wavelet (6.1.4) is the compressed version (smaller
support in time-domain) of the mother wavelet and corresponds mainly to higher
frequencies. Thus, wavelets have time-widths adapted to their frequencies. This is
the main reason for the success of the Morlet wavelets in signal processing and time–
frequency signal analysis. It may be noted that the resolution of wavelets at different
scales varies in the time and frequency domains as governed by the Heisenberg
uncertainty principle. At large scale, the solution is coarse in the time domain and
fine in the frequency domain. On the other hand, as the scale a decreases, the
resolution in the time domain decreases (the time resolution becomes finer), while
that in the frequency domain increases (the frequency resolution becomes coarser).

We sketch a typical mother wavelet with a compact support Œ�T; T � in Fig. 6.1a.
Different values of the parameter b represent the time localization center, and each
§a;b.t/ is localized around the center t D b. As scale parameter a varies, wavelet
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Fig. 6.1 (a) Typical mother wavelet. (b) Compressed and translated wavelet §a;b.t/ with
0 < jaj � 1; b > 0. (c) Magnified and translated wavelet §a;b.t/ with jaj � 1; b > 0

§a;b.t/ covers different frequency ranges. Small values of jaj.0 < jaj � 1/ result
in very narrow windows and correspond to high frequencies or very fine scales §a;b

as shown in Fig. 6.1b, whereas very large values of jaj �jaj � 1
�

result in very wide
windows and correspond to small frequencies or very coarse scales §a;b as shown
in Fig. 6.1c. The wavelet transform (6.2.4) gives a time–frequency description of a
signal f . Different shapes of the wavelets are plotted in Fig. 6.1b, c.

It follows from the preceding discussion that a typical mother wavelet physically
appears as a local oscillation (or wave) in which most of the energy is localized to
a narrow region in the physical space. It will be shown in Sect. 6.2 that the time
resolution ¢t and the frequency resolution ¢¨ proportional to the scale a and a�1,
respectively, and ¢t ¢¨ � 2�1. When a decreases or increases, the frequency support
of the wavelet atom is shifted toward higher or lower frequencies, respectively.
Therefore, at higher frequencies, the time resolution becomes finer (better) and
the frequency resolution becomes coarser (worse). On the other hand, the time
resolution becomes coarser but the frequency resolution becomes finer at lower
frequencies.

Morlet first called his functions “wavelets of constant shape” in order to contrast
them with the analyzing functions in the short-time Fourier transform which do not
have a constant shape. From a group-theoretic point of view, the wavelets §a;b.x/

are in fact the result of the action of the operators U.a; b/ on the function § so that

h
U.a; b/ §

i
.x/ D 1

pjaj §

�
x � b

a

�
: (6.1.5)

These operators are all unitary on the Hilbert space L2.R/ and constitute a
representation of the “ax C b” group

U.a; b/ U.c; d/ D U.ac; b C ad/; (6.1.6)

U.1; 0/ D Id; (6.1.7)
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U.a; b/�1 D U

�
1

a
; �b

a

�
: (6.1.8)

This group representation is irreducible, that is, for any nonzero f 2 L2.R/, there
exists no nontrivial g orthogonal to all the U.a; b/f . In other words, U.a; b/f

span the entire space. The multiplication of operators defines the product of pairs
.a; b/; .c; d/ 2 R= f0g � R that is; .a; b/ ı .c; d/ D .ac; b C ad/. Like the
operators U.a; b/, the pairs .a; b/ together with the operation ı form a group.
The coherent states associated with the .ax C b/-group, which are now known as
wavelets, were first formulated by Aslaksen and Klauder (1968, 1969). The success
of Morlet’s numerical algorithms prompted Grossman to make a more extensive
study of the Morlet wavelet transform which led to the recognition that wavelets
§a;b.t/ correspond to a square integrable representation of the affine group.

This chapter is devoted to wavelets and wavelet transforms with examples. The
basic ideas and properties of wavelet transforms are discussed with special attention
given to the use of different wavelets for resolution and synthesis of signals.
This is followed by the definition and properties of discrete wavelet transforms.
It is important and useful to consider discrete versions of the continuous wavelet
transform due to the fact that, in many applications, especially in signal and image
processing, data are represented by a finite number of values.

6.2 Continuous Wavelet Transforms and Examples

An integral transform is an operator T on a space of functions for some X which is
defined by

�
Tf
�
.y/ D

Z

x

K.x; y/ f .x/ dx:

The properties of the transform depend on the function K which is called the
kernel of the transform. For example, in the case of the Fourier transform, we have
K.x; y/ D e�ixy . Note that y can be interpreted as a scaling factor. We take the
exponential function ¥.x/ D eix and then generate a family of functions by taking
scaled copies of ¥, that is, ¥’.x/ D e�iax for all a ’ 2 R. The continuous wavelet
transform is similar to the Fourier transform in the sense that it is based on a single
function § and that this function is scaled. But, unlike the Fourier transform, we
also shift the function, thus generating a two-parameter family of functions §a;b.t/

defined by (6.1.4).
We next give formal definitions of a wavelet and a continuous wavelet transform

of a function.

Definition 6.2.1 (Wavelet). A wavelet is a function § 2 L2.R/ which satisfies the
condition
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C§ �
Z 1

�1

ˇ
ˇ̌ O§.¨/

ˇ
ˇ̌2

j¨j d¨ < 1; (6.2.1)

where O§.¨/ is the Fourier transform of §.t/.

If § 2 L2.R/, then §a;b.t/ 2 L2.R/ for all a; b. For

��§a;b.t/
��2 D ˇ̌

a
ˇ̌�1

Z 1

�1

ˇ̌
ˇ
ˇ§
�

t � b

a

�ˇ̌
ˇ
ˇ

2

dt D
Z 1

�1

ˇ̌
§.x/

ˇ̌2
dx D ��§

��2
: (6.2.2)

The Fourier transform of §a;b.t/ is given by

O§a;b.¨/ D ˇ̌
a
ˇ̌� 1

2

Z 1

�1
e�i¨t §

�
t � b

a

�
dt D ˇ̌

a
ˇ̌ 1

2 e�ib¨ O§.a¨/: (6.2.3)

Definition 6.2.2 (Continuous Wavelet Transform). If § 2 L2.R/, and §a;b.t/ is
given by (6.1.4), then the integral transformation W§ defined on L2.R/ by

W§

�
f
	
.a; b/ D ˝

f; §a;b

˛ D
Z 1

�1
f .t/ §a;b.t/ dt (6.2.4)

is called a continuous wavelet transform of f .t/. This definition allows us to make
the following comments.

First, the kernel §a;b.t/ in (6.2.4) plays the same role as the kernel exp.�i¨t/ in
the Fourier transform. However, unlike the Fourier transformation, the continuous
wavelet transform is not a single transform but any transform obtained in this way.
Like the Fourier transformation, the continuous wavelet transformation is linear.
Second, as a function of b for a fixed scaling parameter a; W§

�
f
	
.a; b/ represents

the detailed information contained in the signal f .t/ at the scale a. In fact, this
interpretation motivated Morlet et al. (1982a,b) to introduce the translated and
scaled versions of a single function for the analysis of seismic waves.

Using the Parseval relation of the Fourier transform, it also follows from (6.2.4)
that

W§

�
f
	
.a; b/ D ˝

f; §a;b

˛ D 1

2 

D Of ; O§a;b

E

D 1

2 

Z 1

�1


p
jaj Of .¨/ O§.a¨/

�
eib¨d¨; by (6.2.3):

This means that

F
n
W§

�
f
	
.a; b/

o
D
Z 1

�1
e�ib¨ W§

�
f
	
.a; b/ db D

p
jaj Of .¨/ O§.a¨/:

(6.2.5)
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Example 6.2.1 (The Haar Wavelet). The Haar wavelet (Haar 1910) is one of the
classic examples. It is defined by

§.t/ D

8
ˆ̂̂
<

ˆ̂̂
:

1; 0 � t <
1

2

�1;
1

2
� t < 1

0; otherwise

(6.2.6)

The Haar wavelet has compact support. It is obvious that

Z 1

�1
§.t/ dt D 0;

Z 1

�1

ˇ
ˇ§.t/

ˇ
ˇ2dt D 1:

This wavelet is very well localized in the time domain, but it is not continuous. Its
Fourier transform O§.¨/ is calculated as follows:

O§.¨/ D
Z 1

2

0

e�i¨t dt �
Z 1

1
2

e�i¨t dt

D 1

.�i¨/


�
e�i¨t

	 1
2

0
� �

e�i¨t
	1

1
2

�

D
�

i

¨

��
2e� i¨

2 � 1 � e�i¨



D
sin2 ¨

4�¨

4


 exp

�
i

2
.  � ¨/

�

D i exp

�
� i¨

2

� sin2
�¨

4




�¨

4


 (6.2.7)

and

Z 1

�1

ˇ̌
ˇ O§.¨/

ˇ̌
ˇ
2

j¨j d¨ D 16

Z 1

�1
j¨j�3

ˇ
ˇ̌sin

¨

4

ˇ
ˇ̌4

d¨ < 1: (6.2.8)

Both §.t/ and O§.¨/ are plotted in Fig. 6.2. These figures indicate that the Haar
wavelet has good time localization but poor frequency localization. The functionˇ̌
ˇ O§.¨/

ˇ̌
ˇ is even, attains its maximum at the frequency ¨0 	 4:662 , and decays

slowly as ¨�1 as ¨ ! 1, which means that it does not have compact support
in the frequency domain. Indeed, the discontinuity of § causes a slow decay of O§
as ¨ ! 1. Its discontinuous nature is a serious weakness in many applications.
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Fig. 6.2 The Haar wavelet and its Fourier transform

However, the Haar wavelet is one of the most fundamental examples that illustrate
major features of the general wavelet theory.

Theorem 6.2.1. If § is a wavelet and ¥ is a bounded integrable function, then the
convolution function § 
 ¥ is a wavelet.

Proof. Since

Z 1

�1

ˇ̌
§ 
 ¥.x/

ˇ̌2
dx D

Z 1

�1

ˇ̌
ˇ̌
Z 1

�1
§.x � u/ ¥.u/ du

ˇ̌
ˇ̌
2

dx

�
Z 1

�1

�Z 1

�1

ˇ̌
§.x � u/

ˇ̌ˇ̌
¥.u/

ˇ̌
du

�2

dx

D
Z 1

�1

�Z 1

�1

ˇ̌
§.x � u/

ˇ̌ˇ̌
¥.u/

ˇ̌ 1
2
ˇ̌
¥.u/

ˇ̌ 1
2 du

�2

dx

�
Z 1

�1

�Z 1

�1

ˇ̌
§.x � u/

ˇ̌2 ˇ̌
¥.u/

ˇ̌
du
Z 1

�1

ˇ̌
¥.u/

ˇ̌
du

�
dx

�
Z 1

�1

ˇ̌
¥.u/

ˇ̌
du
Z 1

�1

Z 1

�1

ˇ̌
§.x � u/

ˇ̌2 ˇ̌
¥.u/

ˇ̌
dx du

D
�Z 1

�1

ˇ̌
¥.u/

ˇ̌
du

�2 Z 1

�1

ˇ̌
§.x/

ˇ̌2
dx < 1;
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Fig. 6.3 The wavelet .§ � ¥/.t/

we have § 
 ¥ 2 L2.R/. Moreover,

Z 1

�1

ˇ̌
F
˚
§ 
 ¥

�ˇ̌2
ˇ̌
¨
ˇ̌ d¨ D

Z 1

�1

ˇ̌
ˇ O§.¨/ O¥.¨/

ˇ̌
ˇ
2

ˇ̌
¨
ˇ̌ d¨

D
Z 1

�1

ˇ̌
ˇ O§.¨/

ˇ̌
ˇ
2

ˇ̌
¨
ˇ̌

ˇ
ˇ̌ O¥.¨/

ˇ
ˇ̌2

d¨

�
Z 1

�1

ˇ̌
ˇ O§.¨/

ˇ̌
ˇ
2

ˇ̌
¨
ˇ̌ d¨ sup

ˇ̌
ˇ O¥.¨/

ˇ̌
ˇ
2

< 1:

Thus, the convolution function § 
 ¥ is a wavelet.

Example 6.2.2. This example illustrates how to generate other wavelets by using
Theorem 6.2.1. For example, if we take the Haar wavelet and convolute it with the
following function

¥.t/ D
8
<

:

0; t < 0;

1; 0 � t � 1

0; t � 1

; (6.2.9)

we obtain a simple wavelet, as shown in Fig. 6.3.

Example 6.2.3. The convolution of the Haar wavelet with ¥.t/ D exp
��t 2

�

generates a smooth wavelet, as shown in Fig. 6.4.

In order for the wavelets to be useful analyzing functions, the mother wavelet
must have certain properties. One such property is defined by the condition (6.1.4)
which guarantees the existence of the inversion formula for the continuous wavelet
transform. Condition (6.1.4) is usually referred to as the admissibility condition
for the mother wavelet. If § 2 L1.R/, then its Fourier transform O§ is contin-
uous. Since O§ is continuous, C§ can be finite only if O§.0/ D 0 or, equivalently,
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Fig. 6.4 The wavelet .§ � ¥/.t/

Z 1

�1
§.t/ dt D 0. This means that § must be an oscillatory function with zero

mean. Condition (6.2.1) also imposes a restriction on the rate of decay of
ˇ̌
ˇ O§.¨/

ˇ̌
ˇ
2

and is required in finding the inverse of the continuous wavelet transform.
In addition to the admissibility condition, there are other properties that may be

useful in particular applications. For example, we may want to require that § be
n times continuously differentiable or infinitely differentiable. If the Haar wavelet
is convoluted .n C 1/ times with the function ¥ given in Example 6.2.2, then the
resulting function § 
 ¥ 
 � � � 
 ¥ is an n times differentiable wavelet. The function
in Fig. 6.4 is an infinitely differentiable wavelet. The so-called Mexican hat wavelet
is another example of an infinitely differentiable (or smooth) wavelet.

Example 6.2.4 (The Mexican Hat Wavelet). The Mexican hat wavelet is defined by
the second derivative of a Gaussian function as

§.t/ D �
1 � t 2

�
exp

�
� t 2

2

�
D � d 2

dt2
exp

��t 2

2

�
D §1;0.t/; (6.2.10)

O§.¨/ D O§1;0.¨/ D p
2  ¨2 exp

�
�¨2

2

�
: (6.2.11)

In contrast to the Haar wavelet, the Mexican hat wavelet is a C 1-function. It has two
vanishing moments. The Mexican hat wavelet §1;0.t/ and its Fourier transform are
shown in Fig. 6.5a, b. This wavelet has excellent localization in time and frequency
domains and clearly satisfies the admissibility condition.
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Fig. 6.5 (a) The Mexican hat wavelet §1:0.t/ and (b) its Fourier transform O§1:0.¨/.

Two other wavelets, § 3
2 ;�2 and § 1

4 ;
p

2, from the mother wavelet (6.2.10) can
be obtained. These three wavelets, §1;0.t/; § 3

2 ;�2.t/, and § 1
4 ;

p
2.t/, are shown in

Fig. 6.6(i), (ii), and (iii), respectively.

Example 6.2.5 (The Morlet Wavelet). The Morlet wavelet is defined by

§.t/ D exp

�
i¨0t � t 2

2

�
; (6.2.12)

O§.¨/ D p
2  exp

�
�1

2

�
¨ � ¨0

�2
�

: (6.2.13)

The Morlet wavelet and its Fourier transform are plotted in Fig. 6.7.

Another desirable property of wavelets is the so-called localization property. We
want § to be well localized in both time and frequency. In other words, § and its
derivatives must decay very rapidly. For frequency localization, O§.¨/ must decay
sufficiently rapidly as ¨ ! 1 and O§.¨/ should be flat in the neighborhood of
¨ D 0. The flatness at ¨ D 0 is associated with the number of vanishing moments
of §. The kth moment of § is defined by

mk D
Z 1

�1
t k §.t/ dt: (6.2.14)

A wavelet is said to have n vanishing moments if

Z 1

�1
t k §.t/ dt D 0 for k D 0; 1; : : : ; n: (6.2.15)
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Fig. 6.6 Three wavelets §1;0.t/;§ 3
2 ;�2.t/ and § 1

4 ;
p

2.t/

Fig. 6.7 The Morlet wavelet and its Fourier transform

Or, equivalently,

"
d k O§.¨/

d¨k

#

¨D0

D 0 for k D 0; 1; : : : ; n: (6.2.16)

Wavelets with a larger number of vanishing moments result in more flatness when
frequency ¨ is small.
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The smoothness and localization properties of wavelet § combined with the
admissibility condition (6.2.1) suggest that

(i) Wavelets are bandpass filters; that is, the frequency response decays sufficiently
rapidly as ¨ ! 1 and is zero as ¨ ! 0.

(ii) §.t/ is the impulse response of the filter which again decays very rapidly as
t increases, and it is an oscillatory function with mean zero. Usually, wavelets
are assumed to be absolutely square integrable functions, that is, § 2 L2.R/.

In quantum mechanics, quantities such as
ˇ̌
§.t/

ˇ̌2
and

ˇ̌
ˇ O§.¨/

ˇ̌
ˇ
2

are interpreted as

the probability density functions in the time and frequency domains respectively,
with mean values defined by

hti D
Z 1

�1
t
ˇ̌
§.t/

ˇ̌2
dt and h¨i D 1

2 

Z 1

0

¨
ˇ
ˇ̌ O§.¨/

ˇ
ˇ̌2

d¨: (6.2.17a,b)

The time resolution (or the time spread) and the frequency resolution (or the
frequency spread) associated with a mother wavelet § around the mean values are
defined by

¢2
t D

Z 1

�1
�
t � hti�2 ˇ̌§.t/

ˇ̌2
dt; (6.2.18)

¢2
¨ D 1

2 

Z 1

0

�
¨ � h¨i�2

ˇ̌
ˇ O§.¨/

ˇ̌
ˇ
2

d¨: (6.2.19)

Thus, for any § 2 L2.R/, the time and frequency resolutions of the mother

wavelet are governed by the Heisenberg uncertainty principle, that is, ¢t ¢¨ � 1

2
:

It is easy to verify that the time–frequency resolution of a wavelet §a;b depends
on the time–frequency spread of the mother wavelet. We define the energy spread
of §a;b around b by

¢2
t;a;b D

Z 1

�1
.t � b/2

ˇ̌
§a;b.t/

ˇ̌2
dt; .t � b D x/

D a2

Z 1

�1
x2
ˇ̌
§.x/

ˇ̌2
dx D a2¢2

t ; (6.2.20)

where ¢2
t is defined by (6.2.18) around the zero mean. Clearly, the wavelets have

good time resolution for small values of a which correspond to high frequencies or
small scales. Scale can be defined as the inverse of frequency.

On the other hand, the Fourier transform O§a;b.¨/ of §a;b.t/ is given by (6.2.3),

so its mean value is
1

a
h¨i. The energy spread of O§a;b.¨/ around

1

a
h¨i is defined by
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¢2
¨;a;b D 1

2 

Z 1

0

�
¨ � 1

a
h¨i

�2 ˇ̌
ˇ O§a;b.¨/

ˇ̌
ˇ
2

d¨; .a¨ D x/

D 1

2 

Z 1

0

1

a2

�
x � h¨i�2

ˇ̌
ˇ O§.x/

ˇ̌
ˇ
2

dx D 1

a2
¢2

¨: (6.2.21)

This reveals that wavelets have good frequency resolution for large values of the
scale a.

Thus, the time–frequency resolution of wavelets §a;b is independent of the time
location but depends only on the scale a. The energy spread of the wavelet §a;b

corresponds to a Heisenberg time–frequency rectangle at

�
b;

1

a
h¨i

�
of sides a ¢t

along the time axis and
1

a
¢¨ along the frequency axis. The area of a the rectangle is

equal to ¢t ¢¨ for all scales and is governed by the Heisenberg uncertainty principle,

that is, ¢t;a;b ¢¨;a;b D .a¢1/.a�1¢¨/ D ¢t ¢¨ � 1

2
:

We close this section by introducing a scaled version of a mother wavelet in the
form

§a.t/ D jaj�p §

�
t

a

�
; (6.2.22)

where p is a fixed but arbitrary nonnegative parameter. In particular, when p D 1

2
the translated version of §a.t/ defined by (6.2.22) reduces to wavelets (6.1.4).

Clearly, if O§.¨/ is the Fourier transform of §.t/, then the Fourier transform of
the dilated version of §.t/ is given by

F
n
Da§.t/

o
D F



1p
a

§

�
t

a

��
D D 1

a

Of .¨/ D p
a Of .a¨/; (6.2.23)

where a > 0. Thus, a contraction in one domain is accompanied by a magnification
in the other but in a non-uniform manner over the time–frequency plane. A typical
wavelet and its dilations are sketched in Fig. 6.8a–c together with the corresponding
Fourier transforms.

If p D 1 in (6.2.22), the integral

Z 1

�1
§a.t/ dt D

Z 1

�1
§.x/ dx

does not depend on the scaling parameter a. On the other hand, the choice of p D 0

is found to be convenient for the study of orthonormal bases of wavelets. However,
the specific value of p is completely irrelevant to the general theory of wavelets, so
appropriate choices are used in the literature.
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Fig. 6.8 Typical wavelet and its dilations with the corresponding Fourier transforms for (a) a D 1,
(b) 0 < a � 1, and (c) a � 1 in the time–frequency domains

For an arbitrary p � 0, the time localization of signals is obtained by the
translated versions of §a.t/. If §.t/ is supported on an interval of length ` near
t D 0, then wavelets can be defined by the translated and scaled versions of the
mother wavelet § as

§a;b.t/ D §a.t � b/ D ˇ̌
a
ˇ̌�p

§

�
t � b

a

�
: (6.2.24)

Obviously, this is supported on an interval of length jaj ` near t D b.
If we assume that § 2 L2.R/, then the square of the norm of §a;b is

��§a;b

��2 D ˇ̌
a
ˇ̌�2p

Z 1

�1

ˇ̌
ˇ
ˇ§
�

t � b

a

�ˇ̌
ˇ
ˇ

2

dt D ˇ̌
a
ˇ̌1�2p��§

��2
: (6.2.25)
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6.3 Basic Properties of Wavelet Transforms

The following theorem gives several properties of continuous wavelet transforms.

Theorem 6.3.1. If § and ¥ are wavelets and f , g are functions which belong to
L2.R/, then

(i) (Linearity)

W§

�
’f C “g

�
.a; b/ D ’

�
W§f

�
.a; b/ C “

�
W§g

�
.a; b/; (6.3.1)

where ’ and “ are any two scalars.
(ii) (Translation)

�
W§.Tcf /

�
.a; b/ D �

W§f
�
.a; b � c/; (6.3.2)

where Tc is the translation operator defined by Tcf .t/ D f .t � c/:

(iii) (Dilation)

�
W§.Dcf /



.a; b/ D 1p

c

�
W§f

� �a

c
;

b

c

�
; c > 0; (6.3.3)

where Dc is a dilation operator defined by Dcf .t/ D 1

c
f

�
t

c

�
; c > 0:

(iv) (Symmetry)

�
W§f

�
.a; b/ D �

Wf §
� �1

a
; �b

a

�
; a ¤ 0: (6.3.4)

(v) (Parity)

�
WP §Pf

�
.a; b/ D �

W§f
�
.a; �b/; (6.3.5)

where P is the parity operator defined by Pf .t/ D f .�t /:

(vi) (Antilinearity)

�
W’§C“¥f

�
.a; b/.a; b/ D ’

�
W§f

�
.a; b/ C “

�
W¥f

�
.a; b/; (6.3.6)

for any scalars ’; “.
(vii)

�
WTc§f

�
.a; b/ D �

W§f
�
.a; b C ca/; (6.3.7)
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(viii)

�
WDc§f

�
.a; b/ D 1p

c

�
W§f

�
.ac; b/; c > 0: (6.3.8)

Proofs of the above properties are straightforward and are left as exercises.

Theorem 6.3.2 (Parseval’s Formula for Wavelet Transforms). If § 2 L2.R/

and
�
W§f

�
.a; b/ is the wavelet transform of f defined by (6.2.4), then, for any

functions f; g 2 L2.R/, we obtain

Z 1

�1

Z 1

�1

�
W§f



.a; b/

�
W§g



.a; b/

db da

a2
D C§

˝
f; g

˛
; (6.3.9)

where

C§ D
Z 1

�1

ˇ̌
ˇ O§.¨/

ˇ̌
ˇ
2

ˇ̌
¨
ˇ̌ d¨ < 1: (6.3.10)

Proof. By Parseval’s relation (3.4.37) for the Fourier transforms, we have

�
W§f



.a; b/ D

Z 1

�1
f .t/ jaj� 1

2 §

�
t � b

a

�
dt

D ˝
f; §a;b

˛

D 1

2 

D Of ; O§a;b

E

D 1

2 

Z 1

�1
Of .¨/ jaj 1

2 eib¨ O§.a¨/ d¨ by (6.2.3): (6.3.11)

Similarly,

�
W§g



.a; b/ D

Z 1

�1
g.t/ jaj� 1

2 §

�
t � b

a

�
dt

D 1

2 

Z 1

�1
Og.¢/ jaj 1

2 e�ib¢ O§.a¢/ d¢: (6.3.12)

Substituting (6.3.11) and (6.3.12) in the left-hand side of (6.3.9) gives
Z

1

�1

Z
1

�1

�
W§f



.a; b/

�
W§g



.a; b/

db da

a2

D 1

.2 /2

Z
1

�1

Z
1

�1

db da

a2

Z
1

�1

Z
1

�1

jaj Of .¨/ Og.¢/ O§.a¨/ O§.a¢/ exp
˚
ib.¨ � ¢/

�
d¨ d¢;
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which is, by interchanging the order of integration,

D 1

2 

Z 1

�1
da

jaj
Z 1

�1

Z 1

�1
Of .¨/ Og.¢/ O§.a¨/ O§.a¢/ d¨ d¢

1

2 

Z 1

�1
exp

˚
ib.¨ � ¢/

�
db

D 1

2 

Z 1

�1
da

jaj
Z 1

�1

Z 1

�1
Of .¨/ Og.¢/ O§.a¨/ O§.a¢/ •.¢ � ¨/ d¨ d¢

D 1

2 

Z 1

�1
da

jaj
Z 1

�1
Of .¨/ Og.¨/

ˇ
ˇ
ˇ O§.a¨/

ˇ
ˇ
ˇ
2

d¨

which is, again interchanging the order of integration and putting a ¨ D x;

D 1

2 

Z 1

�1
Of .¨/ Og.¨/ d¨ �

Z 1

�1

ˇ̌
ˇ O§.x/

ˇ̌
ˇ
2

jxj dx

D C§ � 1

2 

D Of .¨/; Og.¨/
E
:

Theorem 6.3.3 (Inversion Formula). If f 2 L2.R/, then f can be reconstructed
by the formula

f .t/ D 1

C§

Z 1

�1

Z 1

�1

�
W§f



.a; b/ §a;b.t/

db da

a2
; (6.3.13)

where the equality holds almost everywhere.

Proof. For any g 2 L2.R/, we have, from Theorem 6.3.2,

C§

˝
f; g

˛ D
D
W§f;W§g

E

D
Z 1

�1

Z 1

�1

�
W§f



.a; b/

�
W§g



.a; b/

db da

a2

D
Z 1

�1

Z 1

�1

�
W§f



.a; b/

Z 1

�1
g.t/ §a;b.t/ dt

db da

a2

D
Z 1

�1

Z 1

�1

Z 1

�1

�
W§f



.a; b/ §a;b.t/

db da

a2
g.t/ dt

D
�Z 1

�1

Z 1

�1

�
W§f



.a; b/ §a;b.t/

db da

a2
; g

�
: (6.3.14)

Since g is an arbitrary element of L2.R/, the inversion formula (6.3.13) follows.

If f D g in (6.3.9), then
Z 1

�1

Z 1

�1

ˇ
ˇ̌�
W§f



.a; b/

ˇ
ˇ̌2 da db

a2
D C§

��f
��2 D C§

Z 1

�1

ˇ̌
f .t/

ˇ̌2
dt: (6.3.15)
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This shows that, except for the factor C§, the wavelet transform is an isometry from
L2.R/ to L2.R2/.

6.4 The Discrete Wavelet Transforms

It has been stated in the last section that the continuous wavelet transform (6.2.4)
is a two-parameter representation of a function. In many applications, especially
in signal processing, data are represented by a finite number of values, so it is
important and often useful to consider discrete versions of the continuous wavelet
transform (6.2.4). From a mathematical point of view, a continuous representation
of a function of two continuous parameters a; b in (6.2.4) can be converted into a
discrete one by assuming that a and b take only integral values. It turns out that it is
better to discretize it in a different way. First, we fix two positive constants a0 and
b0 and define

§m;n.x/ D a
�m=2
0 §.a�m

0 x � nb0/; (6.4.1)

where both m and n 2 Z. Then, for f 2 L2.R/, we calculate the discrete
wavelet coefficients hf; §m;ni. The fundamental question is whether it is possible
to determine f completely by its wavelet coefficients or discrete wavelet transform
which is defined by

�
W§f



.m; n/ D ˝

f; §m;n

˛ D
Z 1

�1
f .t/ §m;n.t/ dt

D a
� m

2

0

Z 1

�1
f .t/ §.a�m

0 t � nb0/ dt; (6.4.2)

where both f and § are continuous, §0;0.t/ D §.t/. It is noted that the discrete
wavelet transform (6.4.2) can also be obtained directly from the corresponding
continuous version by discretizing the parameters a D am

0 and b D nb0am
0 (m; n

are integers). The discrete wavelet transform represents a function by a countable
set of wavelet coefficients, which correspond to points on a two dimensional grid
or lattice of discrete points in the scale-time domain indexed by m and n. If the set˚
§m;n.t/

�
defined by (6.4.1) is complete in L2.R/ for some choice of §; a; and b,

then the set is called an affine wavelet. Then, we can express any f .t/ 2 L2.R/ as
the superposition

f .t/ D
1X

m;nD�1

˝
f; §m;n

˛
§m;n.t/: (6.4.3)

Such complete sets are called frames. They are not yet a basis. Frames do not satisfy
the Parseval theorem for the Fourier series, and the expansion in terms of frames is
not unique. In fact, it can be shown that
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Fig. 6.9 Dyadic sampling grid for the discrete wavelet transform

A
��f
��2 �

1X

m;nD�1

ˇ̌�
f; §m;n

�ˇ̌2 � B
��f
��2

; (6.4.4)

where A and B are constants. The set
˚
§m;n.t/

�
constitutes a frame if §.t/ satisfies

the admissibility condition and 0 < A < B < 1.
For computational efficiency, a0 D 2 and b0 D 1 are commonly used so that

results lead to a binary dilation of 2�m and a dyadic translation of n 2m.
Therefore, a practical sampling lattice is a D 2m and b D n 2m in (6.4.1) so that

§m;n.t/ D 2� m
2 §.2�mt � n/: (6.4.5)

With this octave time scale and dyadic translation, the sampled values of .a; b/ D
.2m; n2m/ are shown in Fig. 6.9, which represents the dyadic sampling grid diagram
for the discrete wavelet transform. Each node corresponds to a wavelet basis
function §m;n.t/ with scale 2�m and time shift n 2�m.

The answer to the preceding question is positive if the wavelets form a complete
system in L2.R/. The problem is whether there exists another function g 2 L2.R/

such that

˝
f; §m;n

˛ D ˝
g; §m;n

˛
for all m; n 2 Z

implies f D g.
In practice, we expect much more than that: we want hf; §m;ni and hg; §m;ni to

be “close” if f and g are “close.” This will be guaranteed if there exists a B > 0

independent of f such that

1X

m;nD�1

ˇ̌hf; §m;niˇ̌2 � B
��f
��2

: (6.4.6)
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Similarly, we want f and g to be “close” if hf; §m;ni and hg; §m;ni are “close.” This
is important because we want to be sure that when we neglect some small terms in
the representation of f in terms of hf; §m;ni, the reconstructed function will not
differ much from f . The representation will have this property if there exists an
A > 0 independent of f , such that

A
��f
��2 �

1X

m;nD�1

ˇ̌hf; §m;niˇ̌2: (6.4.7)

These two requirements are best studied in terms of the so-called frames.

Definition 6.4.1 (Frames). A sequence
˚
¥1; ¥2; : : :

�
in a Hilbert space H is called

a frame if these exist A; B > 0 such that

A
��f
��2 �

1X

nD1

ˇ̌˝
f; ¥n

˛ˇ̌2 � B
��f
��2

(6.4.8)

for all f 2 H . The constants A and B are called frame bounds. If A D B , then the
frame is called tight.

If
˚
¥n

�
is an orthonormal basis, then it is a tight frame since

1X

nD1

ˇ̌hf; ¥niˇ̌2 D

�
�f
�
�2

for all f 2 H . The vectors .1; 0/;

 

�1

2
;

p
3

2

!

;

 

�1

2
; �

p
3

2

!

form a tight

frame in C
2 which is not a basis.

As pointed out above, we want the family of functions §m;n to form a frame in
L2.R/. Obviously, the double indexing of the functions is irrelevant. The following
theorem gives fairly general sufficient conditions for a sequence

˚
§m;n

�
to constitute

a frame in L2.R/.

Theorem 6.4.1. If § and a0 are such that

(i)

inf
1�j¨j�a0

1X

mD�1

ˇ̌
ˇ O§ �am

0 ¨
�ˇ̌
ˇ
2

> 0;

(ii)

sup
1�j¨j�a0

1X

mD�1

ˇ̌
ˇ O§ �am

0 ¨
�ˇ̌
ˇ
2 � 0;
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and
(iii)

sup
¨2R

1X

mD�1

ˇ̌
ˇ O§ �am

0 ¨
�ˇ̌
ˇ
ˇ̌
ˇ O§ �am

0 ¨ C x
�ˇ̌
ˇ � C

�
1 C ˇ

ˇx
ˇ
ˇ��.1C©/

for some © > 0 and some constant C , then there exists Qb such that §m;n form a
frame in L2.R/ for any b0 2 .0; Qb/.

Proof. Suppose f 2 L2.R/. Then,

1X

m;nD�1

ˇ̌hf; §m;niˇ̌2 D
1X

m;nD�1

ˇ̌
ˇ
ˇ

Z 1

�1
f .x/ a

�m=2
0 §.a�m

0 x � nb0/ dx

ˇ̌
ˇ
ˇ

2

D
1X

m;nD�1

ˇ̌
ˇ̌
Z 1

�1
Of .¨/ a

m=2
0

O§.am
0 ¨/ eib0am

0 n¨d¨

ˇ̌
ˇ̌
2

D P

by the general Parseval relation (see Theorem 4.11.13 of Debnath and Mikusinski
1999), basic properties of the Fourier transform (see Theorem 4.11.5 of Debnath
and Mikusinski 1999), and the fact that we sum over all integers. Since, for any

s > 0, the integral
Z 1

�1
g.t/ dt can be written as

1X

lD�1

Z s

0

g.t C ls/ dt;

by taking s D 2 

b0am
0

, we obtain

P D
1X

m;nD�1
am

0

ˇ̌
ˇ
ˇ̌

1X

lD�1

Z s

0

e2 in¨=s Of .¨ C ls/ O§�am
0 .¨ C ls/

�
d¨

ˇ̌
ˇ
ˇ̌

2

D
1X

m;nD�1
am

0

ˇ̌
ˇ̌
ˇ

Z s

0

e2 in¨=s

 1X

lD�1
Of .¨ C ls/ O§�am

0 .¨ C ls/
�
!

d¨

ˇ̌
ˇ̌
ˇ

2

D
1X

mD�1
am

0 s

Z s

0

ˇ
ˇ̌
ˇ̌

1X

lD�1
Of .¨ C ls/ O§�am

0 .¨ C ls/
�
ˇ
ˇ̌
ˇ̌

2

d¨ D Q

by Parseval’s formula for trigonometric Fourier series.
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Since

ˇ
ˇ̌
ˇ̌

1X

lD�1
Of .¨ C ls/ O§�am

0 .¨ C ls/
�
ˇ
ˇ̌
ˇ̌

2

D
 1X

lD�1
Of .¨ C ls/ O§�am

0 .¨ C ls/
�
! 1X

kD�1
Of .¨ C ks/ O§�am

0 .¨ C ks/
�
!

and

F.¨/ D
1X

kD�1
Of .¨ C ks/ O§�am

0 .¨ C ks/
�

is a periodic function with a period of s, we have

Z s

0

 1X

lD�1
Of .¨ C ls/ O§�am

0 .¨ C ls/
�
!

F.¨/ d¨

D
Z 1

�1
Of .¨/ O§�am

0 ¨
�
F.¨/ d¨

D
1X

kD�1

Z 1

�1
Of .¨/ O§�am

0 ¨
� Of .¨ C ks/ O§�am

0 .¨ C ks/
�

d¨:

Consequently,

Q D 2 

b0

1X

m;kD�1

Z 1

�1
Of .¨/ Of .¨ C ks/ O§.am

0 s/ O§�am
0 .¨ C ks/

�
d¨

D 2 

b0

Z 1

�1

ˇ̌
ˇ Of .¨/

ˇ̌
ˇ
2

1X

mD�1

ˇ̌
ˇ O§.am

0 ¨/
ˇ̌
ˇ
2

d¨

C 2 

b0

1X

m;kD�1
k¤0

Z 1

�1
Of .¨/ Of .¨ C ks/ O§.am

0 s/ O§�am
0 .¨ C ks/

�
d¨:

To find a bound on the second summation, we apply the Schwarz inequality:

ˇ̌
ˇ̌
ˇ̌
ˇ̌

�
2 

b0

� 1X

m;kD�1
k¤0

Z 1

�1
Of .¨/ Of .¨ C ks/ O§.am

0 s/ O§�am
0 .¨ C ks/

�
d¨

ˇ̌
ˇ̌
ˇ̌
ˇ̌
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�
�

2 

b0

� 1X

m;kD�1
k¤0

�Z 1

�1

ˇ̌
ˇ Of .¨/

ˇ̌
ˇ
2 ˇ̌
ˇ O§.am

0 ¨/
ˇ̌
ˇ
ˇ̌
ˇ O§�am

0 .¨ C ks/
�ˇ̌
ˇ d¨

� 1
2

�
�Z 1

�1

ˇ̌
ˇ Of .¨ C ks/

ˇ̌
ˇ
2 ˇ̌
ˇ O§.am

0 ¨/
ˇ̌
ˇ
ˇ̌
ˇ O§�am

0 .¨ C ks/
�ˇ̌
ˇ d¨

� 1
2

D R:

Then, by first changing the variables in the second factor and using Hölder’s
inequality (see Theorem 1.2.1 of Debnath and Mikusinski 1999), we have

R D
�

2 

b0

� 1X

m;kD�1
k¤0

�Z 1

�1

ˇ
ˇ
ˇ Of .¨/

ˇ
ˇ
ˇ
2 ˇˇ
ˇ O§ �am

0 ¨
�ˇˇ
ˇ
ˇ
ˇ
ˇ O§�am

0 .¨ C ks/
�ˇˇ
ˇ d¨

� 1
2

�
�Z 1

�1

ˇ
ˇ̌ Of .¨/

ˇ
ˇ̌2
ˇ
ˇ̌ O§�am

0 .¨ � ks/
�ˇˇ̌
ˇ
ˇ̌ O§.am

0 ¨/
ˇ
ˇ̌

d¨

� 1
2

�
�

2 

b0

� 1X

kD�1
k¤0

 Z 1

�1

ˇ̌
ˇ Of .¨/

ˇ̌
ˇ
2

1X

mD�1

ˇ̌
ˇ O¥ �am

0 ¨
�ˇ̌
ˇ
ˇ̌
ˇ O§�am

0 .¨ C ks/
�ˇ̌
ˇ d¨

! 1
2

�
 Z 1

�1

ˇ
ˇ
ˇ Of .¨/

ˇ
ˇ
ˇ
2

1X

mD�1

ˇ
ˇ
ˇ O§�am

0 .¨ � ks/
�ˇˇ
ˇ
ˇ
ˇ
ˇ O§.am

0 ¨/
ˇ
ˇ
ˇ d¨

! 1
2

D S:

If we denote

“.Ÿ/ D sup
¨2R

1X

mD�1

ˇ̌
ˇ O§�am

0 ¨
�ˇ̌
ˇ
ˇ̌
ˇ O§�am

0 ¨ C Ÿ
�ˇ̌
ˇ ;

then

S D
�

2 

b0

���f
��2

1X

kD�1
k¤0

h
“
�
am

0 ks
�

“
� � am

0 ks
�i 1

2

D
�

2 

b0

���f
��2

1X

kD�1
k¤0

�
“

�
2 k

b0

�
“

�
�2 k

b0

�� 1
2

:

Consequently, if we denote

A D
�

2 

b0

�(

sup
¨2R

1X

mD�1

ˇ̌
ˇ O§.am

0 ¨/
ˇ̌
ˇ
2 �

1X

kD�1
k¤0

�
“

�
2 k

b0

�
“

�
�2 k

b0

��1=2
)
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and

B D
�

2 

b0

�(

inf
¨2R

1X

mD�1

ˇ̌
ˇ O§.am

0 ¨/
ˇ̌
ˇ
2 C

1X

kD�1
k¤0

�
“

�
2 k

b0

�
“

�
�2 k

b0

��1=2
)

;

we conclude

A
��f
��2 �

1X

n;mD�1

ˇ̌˝
f; ¥n

˛ˇ̌2 � B
��f
��2

:

Since “.Ÿ/ � C .1 C jŸj/�.1C©/, we find

1X

kD�1
k¤0

�
“

�
2 k

b0

�
“

�
�2 k

b0

��1=2

D 2

1X

kD1

�
“

�
2 k

b0

�
“

�
�2 k

b0

��1=2

� 2C

1X

kD1

�
1 C 2 k

b0

��.1C–/

� 2C

Z 1

0

�
1 C 2 k

b0

��.1C–/

dt

D Cb0

 –
:

Since

�
Cb0

 –

�
! 0 as b0 ! 0 and inf

1�j¨j�a0

1X

mD�1

ˇ̌
ˇ O§.am

o ¨/
ˇ̌
ˇ
2

> 0; there exists Qb

such that A > 0 for any b0 2 .0; Qb/. Moreover, since sup
1�j¨j�a0

1X

mD�1

ˇ̌
ˇ O§.am

o ¨/
ˇ̌
ˇ
2

<

1; we also have B < 1 for all b0 2 .0; Qb/. Thus, §m;n constitute a frame for all
such b0. This completes the proof.

The major problem of this section is reconstruction of f from hf; §m;ni and
representation of f in terms of §m;n For a complete orthonormal system

˚
¥n

�
both

questions are answered by the equality

f D
1X

nD1

hf; ¥m;ni ¥n: (6.4.9)

However, since we do not have orthogonality, the problem is more complete for
frames.
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Definition 6.4.2 (Frame Operator). Let
˚
¥1; ¥2; : : :

�
be a frame in a Hilbert

space H . The operator F from H into l2 defined by

F
˚
f
� D ˚hf; ¥ni�

is called a frame operator.

Lemma 6.4.1. Let F be a frame operator. Then, F is a linear, invertible, and
bounded operator. Its inverse F �1 is also a bounded operator.

The proof is easy and left as an exercise.
Consider the adjoint operator F � of a frame operator F associated with frame˚

¥n

�
. For any fcng 2 l2, we have

˝
F �.cn/; f

˛ D ˝
.cn/; Ff

˛ D
1X

nD1

cn

˝
¥n; f

˛ D
* 1X

nD1

cn¥n; f

+

:

Thus, the adjoint operator of a frame operator has the form

F ��cn

� D
1X

nD1

cn ¥n: (6.4.10)

Since

1X

nD1

ˇ̌hf; ¥niˇ̌2 D ��F f
��2 D ˝

F �F f; f
˛
;

we note that the condition (6.4.4) can be expressed as

AI � F �F � BI;

where the inequality � is to be understood in the sense defined in Sect. 4.6 (see
Debnath and Mikusinski 1999).

Theorem 6.4.2. Let
˚
¥1; ¥2; ¥3; : : :

�
be frame bounds A and B and let F be the

associated frame operator. Define

Q¥n D �
F � F

��1
¥n:

Then,
˚ O¥n

�
is a frame with bounds

1

B
and

1

A
.

Proof. By Corollary 4.5.1 as stated by Debnath and Mikusinski (1999), we have
�
F �F

��1 D
��

F �F
��1

�

: Consequently,

D
f; Q¥n

E
D
D
f;
�
F �F

��1
¥n

E
D
D�

F �F
��1

f; ¥n

E



362 6 The Wavelet Transforms and Their Basic Properties

and then

1X

nD1

ˇ̌˝
f;
˚ Q¥n

�˛ˇ̌2 D
1X

nD1

ˇ̌
ˇ
D�

F �F
��1

f; ¥n

Eˇ̌
ˇ
2

D
�
��F
�
F �F

��1
f
�
��

2

D
D
F
�
F �F

��1
f; F

�
F �F

��1
f
E

D
D�

F �F
��1

f; f
E
:

Now, since AI � F �F � BI; Theorem 4.6.5 proved by Debnath and Mikusinski
(1999) implies

1

B
I � �

F �F
��1 � 1

A
I;

which leads to the inequality

1

B

��f
��2 �

1X

nD1

ˇ̌˝
f;
˚ Q¥n

�˛ˇ̌2 � 1

A

��f
��2

:

This proves the theorem. The sequence
˚ Q¥n

�
is called the dual frame.

Lemma 6.4.2. Let F be the frame operator associated with the frame˚
¥1; ¥2; ¥3; : : :

�
and QF be the frame operator associated with the dual frame˚ Q¥1; Q¥2; Q¥3; : : :

�
: Then,

QF � F D I D F � QF :

Proof. Since

F
�
F �F

��1
f D

nD�
F �F

��1
f; ¥n

Eo
D ˚˝

f; Q¥n

˛� D QF f; (6.4.11)

we have

QF �F D
�
F
�
F �F

��1

�

F D �
F �F

��1
F �F D I

and

F � QF D F �F
�
F �F

��1 D I:

Now, we are ready to state and prove the main theorem, which answers the
question of reconstructability of f from the sequence

˚hf; ¥ni�.
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Theorem 6.4.3. Let
˚
¥1; ¥2; ¥3; : : :

�
constitute a frame in a Hilbert space H , and

let
˚ Q¥1; Q¥2; Q¥3; : : :

�
be the dual frame. Then, for any f 2 H ,

f D
1X

nD1

˝
f; ¥n

˛ Q¥n (6.4.12)

and

f D
1X

nD1

˝
f; Q¥n

˛
¥n: (6.4.13)

Proof. Let f be the frame operator associated with
˚
¥n

�
and let QF be the frame

operator associated with the dual frame
˚ Q¥n

�
. Since I D QF �F , for any f 2 H , we

have

f D QF �Ff D QF � ˚˝f; ¥n

˛� D
1X

nD1

˝
f; ¥n

˛ Q¥n

by (6.4.10). The proof of the other equality is similar.

Using the definition of mother wavelet (6.1.4), we can introduce a family ‰ of
vectors §a;b 2 L2 by

‰ D
n
§a;b

ˇ̌ha; bi 2 R
2
ˇ̌o

: (6.4.14)

We can then define a frame operator T which transforms a time signal f 2 L2

into a function Tf so that

Tf .a; b/ D ˝
f; §a;b

˛ D W Œf �.a; b/: (6.4.15)

Thus, the wavelet transform can be interpreted as the frame operator T correspond-
ing to the family ‰. In view of the measure d� defined in the .a; b/ plane by

d� D d�.a; b/ D 1
ˇ̌
a
ˇ̌2 da db; (6.4.16)

we interpret the integral in (6.3.9) as the inner product in a Hilbert space H D
L2.R2; d�/ so that (6.3.9) can be expressed in terms of the norm as

��W f
��2 D C§

��f
��2

(6.4.17)
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for all f 2 L2 and C§ is defined by (6.3.10). Thus, (6.4.17) can be interpreted in
terms of frame. The family ‰ represents a tight frame for any mother wavelet with
frame constant C§.

6.5 Orthonormal Wavelets

Since the discovery of wavelets, orthonormal wavelets with good time–frequency
localization are found to play an important role in wavelet theory and have a great
variety of applications. In general, the theory of wavelets begins with a single
function § 2 L2.R/, and a family of functions §m;n is generated from this single
function § by the operation of binary dilations (that is, dilation by 2m) and dyadic
translation of n2�m so that

§m;n.x/ D 2m=2§

 

2m
�
x � n

2m


!

; m; n 2 Z

D 2m=2§.2mx � n/; (6.5.1)

where the factor 2m=2 is introduced to ensure orthonormality.
A situation of interest in applications is to deal with an orthonormal family˚

§m;n

�
, that is,

˝
§m;n; §k;`

˛ D
Z 1

�1
§m;n.x/ §k;`.x/ dx D •m;k •n;`; (6.5.2)

where m; n; k; ` 2 Z.
To show how the inner products behave in this formalism, we prove the following

lemma.

Lemma 6.5.1. If § and ¥ 2 L2.R/, then
˝
§m;k; ¥m;`

˛ D ˝
§n;k; ¥n;`

˛
; (6.5.3)

for all m; n; k; ` 2 Z

Proof. we have

˝
§m;k; ¥m;`

˛ D
Z 1

�1
2m§

�
2mx � k

�
¥
�
2mx � `

�
dx

which is, by letting 2mx D 2nt ,

D
Z 1

�1
2n§

�
2nt � k

�
¥
�
2nt � `

�
dt

D ˝
§n;k; ¥n;`

˛
:
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Moreover,

��§m;n

�� D ��§
��:

Definition 6.5.1 (Orthonormal Wavelet). A wavelet § 2 L2.R/ is called
orthonormal if the family of functions §m;n generated from § by (6.5.1) is
orthonormal.

As in the classical Fourier series, the wavelet series for a function f 2 L2.R/

based on a given orthonormal wavelet § is given by

f .x/ D
1X

m;nD�1
cm;n §m;n.x/; (6.5.4)

where the wavelet coefficients cm;n are given by

cm;n D ˝
f; §m;n

˛
(6.5.5)

and the double wavelet series (6.5.4) converges to the function f in the L2-norm.
The simplest example of an orthonormal wavelet is the classic Haar

wavelet (6.2.6). To prove this fact, we note that the norm of § defined by (6.2.6) is
one and the same for §m;n defined by (6.5.1). We have

˝
§m;n; §k;`

˛ D
Z 1

�1
2m=2 §

�
2mx � n

�
2k=2 §

�
2kx � `

�
dx

which is, by the change of variables 2mx � n D t ,

D 2k=2 2�m=2

Z 1

�1
§.t/ §

�
2k�m.t C n/ � `

�
dt: (6.5.6)

For m D k, this result gives

˝
§m;n; §m;`

˛ D
Z 1

�1
§.t/ §.t C n � `/ dt D •0;n�` D •n;`; (6.5.7)

where §.t/ ¤ 0 in 0 � t � 1 and §.t � ` � n/ ¤ 0 in ` � n � t < 1 C ` � n, and
these intervals are disjoint from each other unless n D `.

We now consider the case m ¤ k. In view of symmetry, it suffices to consider
the case m > k: Putting r D m � k > 0 in (6.5.6), we can complete the proof by
showing that, for k ¤ m,

˝
§m;n; §k;l

˛ D 2r=2

Z 1

�1
§.t/ §

�
2r t C s

�
dt D 0; (6.5.8)

where s D 2rn � ` 2 Z.
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In view of the definition of the Haar wavelet §, we must prove that the integral
in (6.5.8) vanishes for k ¤ m. In other words, it suffices to show

Z 1
2

0

§
�
2r t C s

�
dt �

Z 1

1
2

§
�
2r t C s

�
dt D 0:

Invoking a simple change of variables, 2r t C s D x, we find

Z a

s

§.x/ dx �
Z b

a

§.x/ dx D 0; (6.5.9)

where a D s C 2r�1 and b D s C 2r .
A simple argument reveals that Œs; a� contains the support [0,1] of § so that the

first integral in (6.5.9) is identically zero. Similarly, the second integral is also zero.
This completes the proof that the Haar wavelet § is orthonormal.

Example 6.5.1 (Discrete Haar Wavelet). The discrete Haar wavelet is defined by

§m;n.t/ D 2�m=2§
�
2�mt � n

�

D
8
<

:

1; 2mn � t < 2mn C 2m�1

�1; 2mn C 2m�1 � t < 2mn C 2m

0; otherwise
; (6.5.10)

where § is the Haar wavelet defined by (6.2.6).

Since
˚
§m;n.t/

�
is an orthonormal set, any function f 2 L2.R/ can be expanded

in the wavelet series in the form

f .t/ D
1X

m;nD�1

˝
f; §m;n

˛
§m;n; (6.5.11)

where the coefficients hf; §m;ni satisfy (6.4.4) with A D B D 1. To prove this, we
assume

f .t/ D

8
ˆ̂̂
<

ˆ̂̂
:

a; 0 � t <
1

2

b;
1

2
� t < 1

0; otherwise

(6.5.12)

Evidently. it follows that

˝
f; §m;n

˛ D 0; for m < 0 or n ¤ 0;
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and

˝
f; §0;0

˛ D 1

2
.a � b/; (6.5.13)

˝
f; §1;0

˛ D 1p
2

�
a

2
C b

2

�
; (6.5.14)

˝
f; §2;0

˛ D 1

2

�
a

2
C b

2

�
; (6.5.15)

: : :

˝
f; §m;0

˛ D 2� m
2

�
a

2
C b

2

�
: (6.5.16)

Consequently.

˝
f; §m;0

˛
§0;0.t/ D

8
<̂

:̂

1

2
.a � b/; 0 � t <

1

2

�1

2
.a � b/;

1

2
� t < 1;

(6.5.17)

and for m � 1;

˝
f; §m;0

˛
§m;0.t/ D 2�m

�
a

b
C b

2

�
; 0 � t � 1: (6.5.18)

Finally, it turns out that

1X

mD0

˝
f; §m;0

˛
§m;0.t/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1

2
.a � b/ C 1

2
.a C b/

1X

mD1

2�m; 0 � t <
1

2

�1

2
.a � b/ C 1

2
.a C b/

1X

mD1

2�m;
1

2
� t < 1:

(6.5.19)

Since
1X

mD0

2�m D 1, result (6.5.19) reduces to

1X

mD0

˝
f; §m;0

˛
§m;0.t/ D

8
<̂

:̂

a; 0 � t <
1

2

b;
1

2
� t < 1

(6.5.20)

which confirms (6.5.12).
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Moreover, it follows from (6.5.13) and (6.5.16) that

1X

mD0

ˇ̌˝
f; §m;0

˛ˇ̌2 D ˇ̌˝
f; §0;0

˛ˇ̌2 C
1X

mD1

ˇ̌˝
f; §m;0

˛ˇ̌2

D
�

a

2
� b

2

�2

C
�

a

2
C b

2

�2

D 1

2

�
a2 C b2

� D
Z 1

0

f 2.t/ dt: (6.5.21)

This verifies (6.4.4).

Example 6.5.2 (The Discrete Shannon Wavelet). The Shannon function § whose
Fourier transform satisfies

O§.¨/ D O¦I .¨/; (6.5.22)

where I D Œ�2 ; � � [ Œ ; 2 �, is called the Shannon wavelet. Thus, this wavelet
§.t/ can directly be obtained from the inverse Fourier transform of O§.¨/ so that

§.t/ D 1

2 

Z 1

�1
ei¨t O§.¨/ d¨

D 1

2 

�Z � 

�2 

ei¨t d¨ C
Z 2 

 

ei¨t d¨

�

D 1

 t

�
sin 2 t � sin  t

� D
sin

�
 t

2

�

�
 t

2

� cos

�
3 t

2

�
: (6.5.23)

This function § is orthonormal to its translates by integers. This follows from
Parseval’s relation

˝
§.t/; §.t � n/

˛ D 1

2 

˝ O§; e�in¨ O§˛

D 1

2 

Z 1

�1
O§.¨/ ein¨ O§.¨/ d¨

D 1

2 

Z 2 

�2 

ein¨d¨ D •0;n:

It can easily be verified that the wavelet basis is now given by

§m;n.t/ D 2�m=2§

�
2�mt � n � 1

2

�
; m; n 2 Z;
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Fig. 6.10 The Shannon wavelet and its Fourier transform

where §

�
t � n � 1

2

�
; n 2 Z is an orthonormal basis for ¨0 and §m;n.t/; n 2 Z

is a basis for functions supported on the interval

��2�nC1 ; �2�m 
	 [ �

2�m ; 2�mC1 
	

:

Since m may be an arbitrarily large integer, we have a basis for L2.R/ functions.
Both §.t/ and O§.¨/ are shown in Fig. 6.10.

It may be observed that the Shannon wavelet is not well localized (noncompact)
in the time domain and decays as fast as t�1, and hence, it has poor time localization.
However, its Fourier transform is band-limited (compact support) and hence has
good frequency localization. These features exhibit a striking contrast with the Haar
wavelet.

With the dyadic sampling lattice a D 2m and b D 2mn, the discrete Shannon
wavelet is given by

§m;n.t/ D 2� m
2

sin
n 

2

�
2�mt � n

�o

 

2

�
2�mt � n

� cos



3 

2

�
2�mt � n

��
: (6.5.24)

Its Fourier transform is

O§m;n.¨/ D



2m=2 exp .�i¨n2m/ ; 2�m  < j¨j < 2�mC1: 

0; otherwise
(6.5.25)
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Evidently, O§m;n.¨/ and O§k;`.¨/ do not overlap for m ¤ k. Hence, by the Parseval
relation (3.4.37), it turns out that, for m ¤ k,

˝
§m;n; §k;`

˛ D 1

2 

D O§m;n; O§k;`

E
D 0: (6.5.26)

For m D k, we have

˝
§m;n; §k;`

˛ D 1

2 

D O§m;n; O§k;`

E

D 1

2 
2�m

Z 1

�1
exp

˚ � i¨2�m.n � `/
� ˇˇ̌ O§.2�m¨/

ˇ
ˇ̌2

d¨

D 1

2 

Z 1

�1
exp

˚ � i¢.n � `/
�

d¢ D •n;`: (6.5.27)

This shows that f§m;n.t/g is an orthonormal set.

6.6 Exercises

1. Discuss the scaled and translated versions of the mother wavelet §.t/ D
t exp

��t 2
�
.

2. Show that the Fourier transform of the normalized Mexican hat wavelet

§.t/ D 2

 
1
4

p
3a

�
1 � t 2

a2

�
exp

�
� t 2

2a2

�

is

O§.¨/ D
r

8

3
a5=2  1=4 ¨2 exp

�
�a2¨2

2

�
:

3. Show that the continuous wavelet transform can be expressed as a convolution,
that is,

W§Œf �.a; b/ D �
f 
 §a

�
.b/;

where

§a.t/ D 1p
a

§

�
� t

a

�
:

What is the physical significance of the convolution?
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4. If f is a homogeneous function of degree n, show that

�
W§f



.œa; œb/ D œnC 1

2

�
W§f



.a; b/:

5. Prove that the vectors .1; 0/ ;

 

�1

2
;

p
3

2

!

;

 

�1

2
; �

p
3

2

!

form a tight frame

in C:

6. If f¥ng is a tight frame in a Hilbert space H with frame bound A, show that

A
˝
f; g

˛ D
1X

nD1

˝
f; ¥n

˛˝
¥n; g

˛

for all f; g 2 H .

7. If f¥ng is a tight frame in a Hilbert space H with frame bound 1, show that f¥ng
is an orthonormal basis in H .

8. Show that
Z 1

�1
sin  x

 x
� sin  .2x � n/

 .2x � n/
dx D 1

2 n
sin
�n 

2



:

9. Show that the Fourier transform of one-cycle of the sine function

f .t/ D sin t; jt j <  I

is

Of .¨/ D 2i

.¨2 � 1/
sin  ¨:

10. For the Shannon wavelet

§.t/ D
sin

�
 t

2

�

�
 t

2

� cos

�
3 t

2

�
;

show that its Fourier transform is

O§.¨/ D



1;   < j¨j < 2 

0; otherwise

11. Show that the Fourier transform of the wavetrain
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f .t/ D 1p
2 

1

¢
exp

�
� t 2

2¢2

�
cos ¨0t

is

Of .¨/ D 1

2

�
exp



� ¢2

2
.¨ � ¨0/2

�
C exp



� ¢2

2
.¨ C ¨0/2

��
:

Explain the physical features of Of .¨/.

12. Show that the Fourier transform of

f .t/ D 1p
2 

¦a.t/ ei¨0t

is

Of .¨/ D
r

2

 

sin
�
a.¨ � ¨0/

	

.¨ � ¨0/
:

Explain the features of Of .¨/.

13. If

§

�
t � b

a

�
D

8
ˆ̂<

ˆ̂:

1; b � t < b C a

2
�1; b C a

2
� t < b C a

0; otherwise

where a > 0, show that

W§Œf �.a; b/ D 1p
a

Z bC a
2

b

�
f .t/ � f

�
t C a

2


 �
dt:

14. Suppose §1 and §2 are two wavelets and the integral

Z 1

�1

O§1.¨/ O§2.¨/

j¨j d¨ D C§1§2 < 1:

If W§1Œf �.a; b/ and W§2Œf �.a; b/ denote wavelet transforms, show that

D
W§1f;W§2g

E
D C§2§2

˝
f; g

˛
;

where f; g 2 L2.R/:
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15. The Meyer wavelet § is defined by its Fourier transform

O§.¨/ D

8
ˆ̂̂
<

ˆ̂̂
:

1p
2 

exp

�
i¨

2

�
sin



 

2
v

�
3

2 
j¨j � 1

��
;

2 

3
� j¨j � 4 

3

1p
2 

exp

�
i¨

2

�
cos



 

2
v

�
3

2 
j¨j � 1

��
;

4 

3
� j¨j � 8 

3

;

where v is a C k or C 1 function satisfying

v.x/ D



0 if x � 0

1 if x � 1

and the property

v.x/ C v.1 � x/ D 1:

Show that §m;n.t/ D 2�m=2§
�
2�mt � n

�
constitutes an orthonormal basis.
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