
Chapter 4
The Gabor Transform and Time–Frequency
Signal Analysis

What is clear and easy to grasp attracts us; complications deter.

David Hilbert

Motivated by ‘quantum mechanics’, in 1946 the physicist Gabor
defined elementary time-frequency atoms as waveforms that
have a minimal spread in a time-frequency plane. To measure
time-frequency ‘information’ content, he proposed decomposing
signals over these elementary atomic waveforms. By showing
that such decompositions are closely related to our sensitivity to
sounds, and that they exhibit important structures in speech and
music recordings, Gabor demonstrated the importance of
localized time-frequency signal processing.

Stéphane Mallat

4.1 Introduction

Signals are, in general, nonstationary. A complete representation of nonstationary
signals requires frequency analysis that is local in time, resulting in the time–
frequency analysis of signals. The Fourier transform analysis has long been
recognized as the great tool for the study of stationary signals and processes where
the properties are statistically invariant over time. However, it cannot be used for
the frequency analysis that is local in time. In recent years, several useful methods
have been developed for the time–frequency signal analysis. They include the Gabor
transform, the Zak transform, and the wavelet transform.

It has already been stated in Sect. 1.2 that decomposition of a signal into a small
number of elementary waveforms that are localized in time and frequency plays
a remarkable role in signal processing. Such a decomposition reveals important
structures in analyzing nonstationary signals such as speech and music. In order to
measure localized frequency components of sounds, Gabor (1946) first introduced
the windowed Fourier transform (or the local time–frequency transform), which
may be called the Gabor transform, and suggested the representation of a signal
in a joint time–frequency domain. Subsequently, the Gabor transform analysis has
effectively been applied in many fields of science and engineering, such as image
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244 4 The Gabor Transform and Time–Frequency Signal Analysis

analysis and image compression, object and pattern recognition, computer vision,
optics, and filter banks. Since medical signal analysis and medical signal processing
play a crucial role in medical diagnostics, the Gabor transform has also been used
for the study of brain functions, ECC signals, and other medical signals.

This chapter deals with classification of signals, joint time–frequency analysis
of signals, and the Gabor transform and its basic properties, including the inversion
formula. Special attention is given to the discrete Gabor transform and the Gabor
representation problem. Included are the Zak transform, its basic properties, and
applications for studying the orthogonality and completeness of the Gabor frames
in the critical case.

4.2 Classification of Signals and the Joint Time–Frequency
Analysis of Signals

Many physical quantities including pressure, sound waves, electric fields, voltage,
electric current, and electromagnetic fields vary with time t . These quantities are
called signals or waveforms. Example of signals include speech signals, optical
signals, acoustic signals, biomedical signals, radar, and sonar. Indeed, signals are
very common in the real world.

In general, there are two kinds of signals: (a) deterministic and (b) random (or
stochastic). A signal is called deterministic if it can be determined explicitly, under
identical conditions, in terms of a mathematical relationship. A deterministic signal
is referred to as periodic or transient if the signal repeats continuously at regular
intervals of time or decays to zero after a finite time interval. Periodic and transient
signals are shown in Figs. 4.1a, b and 4.2.

On the other hand, signals are, in general, random or stochastic in nature in the
sense that they cannot be determined precisely at any given instant of time even
under identical conditions. Obviously, probabilistic and statistical information is
required for a description of random signals. It is necessary to consider a particular
random process that can produce a set of time-histories, known as an ensemble. This
can represent an experiment producing random data, which is repeated n times to
give an ensemble of n separate records (see Fig. 4.3).

The average value at time t over the ensemble x is defined by

˝
x.t/

˛ D lim
n!1

1

n

nX

kD1

xk.t/; (4.2.1)

where x takes any one of a set of values xk , and k D 1; 2; : : : ; n:

The average value of the product of two samples taken at two separate times t1
and t2 is called the autocorrelation function R, for each separate record, defined by

R.£/ D lim
n!1

1

n

nX

kD1

xk.t1/ xk.t2/; (4.2.2)
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Fig. 4.1 (a) Sinusoidal periodic signal; (b) nonsinusoidal periodic signal

Fig. 4.2 Transient signals

where £ D t1 � t2. The process of finding these values is referred to as ensemble
averaging and may be continued over the entire record length to provide statistical
information on the complex set of records.

A signal is called stationary if the values of hx.t/i and R.t/ remain constant for
all possible values of t and R.£/ depends only on the time displacement £ D t1 � t2
(see Fig. 4.4a). In most practical situations, a signal is called stationary if hx.t/i and
R.£/ are constant over the finite record length T .

A signal is called nonstationary if the values of hx.t/i and R.£/ vary with time
(see Fig. 4.4b). However, in many practical situations, the change of time is very
slow, so the signal can be regarded as stationary. Under certain conditions, we regard
a signal as stationary by considering the statistical characteristic of a single long
record. The average value of a signal x.t/ over a time length T is defined by

Nx D lim
T !1

1

T

Z T

0

x.t/ dt; (4.2.3)
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Fig. 4.3 Ensemble of n records

where Nx is used to represent a single time-history average to distinguish it from the
ensemble average hxi.

Similarly, the autocorrelation function over a single time length T is defined by

R.£/ D lim
T !1

1

T

Z T

0

x.t/ x.t C £/ dt: (4.2.4)

Under certain circumstances, the ensemble average can be obtained from
computing the time average so

hxi D Nx (4.2.5)

for all values of time t . Then, this process is called an ergodic random process.
By definition, this must be a stationary process. However, the converse is not
necessarily true, that is, a stationary random process need not be ergodic.

Finally, we can introduce various ensemble averages of x.t/ which take any one
of the values xk.t/; k D 1; 2; : : : ; n at time t in terms of probability Px

�
xk.t/

�
. The

ensemble average of x is then defined by
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Fig. 4.4 (a) Stationary random signal. (b) Nonstationary random signal

hxi D
nX

kD1

Px

�
xk

�
xk: (4.2.6)

We now consider two random variables xi .t/ and xk.s/ which are values of a
random process x at times t and s with the joint probability distribution P t;s

x

�
xi ; xk

�
.

Then, the autocorrelation function, R.t; s/ of the random process x is defined by

R.t; s/ D ˝
x.t/ x.s/

˛ D
X

i;k

P t;s
x

�
xi ; xk

�
xi xk: (4.2.7)

This function provides a great deal of information about the random process and
arises often in signal analysis. For a random stationary process, P

.t;s/
x is a function

of £ D t � s only, so that

R.t; s/ D R.t � s/ D R.£/ (4.2.8)

and hence, R.�£/ D R.£/ and R is an even function.
Signals can be described in a time domain or in a frequency domain by the

traditional method of Fourier transform analysis. The frequency description of
signals is known as the frequency (or spectral) analysis. It was recognized long
ago that a global Fourier transform of a long time signal is of little practical value
in analyzing the frequency spectrum of the signal. From the Fourier spectrum
(or spectral function) Of .¨/ of a signal f .t/, it is always possible to determine which
frequencies were present in the signal. However, there is absolutely no indication as
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Fig. 4.5 ECG signal of a human heart

to when those frequencies existed. So, the Fourier transform analysis cannot provide
any information regarding either a time evolution of spectral characteristics or a
possible localization with respect to the time variable. Transient signals such as a
speech signals or ECG signals (see Fig. 4.5) require the idea of frequency analysis
that is local in time.

In general, the frequency of a signal varies with time, so there is a need for
a joint time–frequency representation of a signal in order to describe fully the
characteristics of the signal. Thus, both the analysis and processing of nonstationary
signals require specific mathematical methods which go beyond the classical Fourier
transform analysis. Gabor (1946) was the first to introduce the joint time–frequency
representation of a signal. Almost simultaneously, Ville (1948) first introduced
the Wigner distribution into time–frequency signal analysis to unfold the signal
in the time–frequency plane in such a way that this development led to a joint
representation in time–frequency atoms.

4.3 Definition and Examples of the Gabor Transform

Gabor (1946) first introduced a time-localization window function ga.t � b/ for
extracting local information from a Fourier transform of a signal, where the
parameter a measures the width of the window, and the parameter b is used to
represent translation of the window to cover the whole time domain. The idea is
to use this window function in order to localize the Fourier transform, then shift
the window to another position, and so on. This remarkable property of the Gabor
transform provides the local aspect of the Fourier transform with time resolution
equal to the size of the window. Thus, the Gabor transform is often called the
windowed Fourier transform. Gabor first introduced

gt;¨.£/ D exp.i¨£/ g.£ � t / D M¨ Tt g.£/; (4.3.1)
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as the window function by first translating in time and then modulating the
function g.t/ D  � 1

4 exp
��2�1t2

�
which is called the canonical coherent state

in quantum physics. The energy associated with the function gt;¨ is localized in the
neighborhood of t in an interval of size ¢t , measured by the standard deviation of
jgj2. Evidently, the Fourier transform of gt;¨.£/ with respect to £ is given by

Ogt;¨.¤/ D Og.¤ � ¨/ exp
˚ � i t.¤ � ¨/

�
: (4.3.2)

Obviously, the energy of Ogt;¨ is concentrated near the frequency ¨ in an interval of
size ¢¨ which measures the frequency dispersion (or bandwidth) of Ogt;¨. In a time–
frequency .t; ¨/ plane, the energy spread of the Gabor atom Ogt;¨ can be represented
by the rectangle with center at

�hti; h¨i� and sides ¢t (along the time axis) and ¢¨

(along the frequency axis). According to the Heisenberg uncertainty principle, the

area of the rectangle is at least
1

2
; that is, ¢t ¢¨ � 1

2
. This area is minimum when

g is a Gaussian function, and the corresponding gt;¨ is called the Gabor function
(or Gabor wavelet).

Definition 4.3.1 (The Continuous Gabor Transform). The continuous Gabor
transform of a function f 2 L2.R/ with respect to a window function g 2 L2.R/ is
denoted by G Œf �.t; ¨/ D Qfg.t; ¨/ and defined by

G Œf �.t; ¨/ D Qfg.t; ¨/ D
Z 1

�1
f .£/ g.£ � t / e�i¨£d£ D ˝

f; gt;¨

˛
; (4.3.3)

where gt;¨.£/ D g.£ � t / exp.i¨£/, so,
��gt;¨

�� D ��g
�� and hence, gt;¨ 2 L2.R/.

Clearly, the Gabor transform Qfg.t; ¨/ of a given signal f depends on both time
t and frequency ¨. For any fixed t; Qfg.t; ¨/ represents the frequency distribution at
time t . Usually, only values of f .£/ for £ � t can be used in computing Qfg.t; ¨/.
In a system of finite memory, there exists a time interval T > 0 such that only
the values f .£/ for £ > t � T can affect the output at time t . Thus, the transform
function Qfg.t; ¨/ depends only on f .£/ for t � T � £ � t . Mathematically, if
gt;¨.£/ vanishes outside Œ�T; 0� such that supp g � Œ�T; 0�, then gt;¨.£/ can be used
to localize the signal in time. For any t 2 R, we can define ft .£/ D g.£ � t /f .£/

so that supp ft � Œt � T; t �. Therefore, ft .£/ can be regarded as a localized version
of f that depends only on the values of f .£/ in t � T � £ � t . If g is continuous,
then the values of ft .£/ with £ � t � T and £ � t are small. This means that the
localization is smooth, and this particular feature plays an important role in signal
processing.

In physical applications, f and g represent signals with finite energy. In quantum
physics, Qfg.t; ¨/ is referred to as the canonical coherent state representation of f .
The term coherent state was first used by Glauber (1964) in quantum optics.
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We next discuss the following consequences of the preceding definition.

1. For a fixed t , the Fourier transform of ft .£/ with respect to £ is given by

Qfg.t; ¨/ D F
˚
ft .£/

� D Oft .¤/; (4.3.4)

where ft .£/ D f .£/ g.£ � t /.
2. If the window g is real and symmetric with g.£/ D g.�£/ and if g is normalized

so that
��g
�� D 1 and

��gt;¨

�� D ��g.£ � t /
�� D 1 for any .t; ¨/ 2 R

2, then the
Gabor transform of f 2 L2.R/ becomes

Qfg.t; ¨/ D ˝
f; gt;¨

˛ D
Z 1

�1
f .£/ g.£ � t / e�i¨£d£: (4.3.5)

This can be interpreted as the short-time Fourier transform because the multipli-
cation by g.£�t / induces localization of the Fourier integral in the neighborhood
of £ D t . Application of the Schwarz inequality (2.6.1) to (4.3.5) gives

ˇ̌
ˇ Qfg.t; ¨/

ˇ̌
ˇ D ˇ̌˝

f; gt;¨

˛ˇ̌ � ��f
����gt;¨

�� D ��f
����g

��:

This shows that the Gabor transform Qfg.t; ¨/ is bounded.
3. The energy density defined by

ˇ̌
ˇ Qfg.t; ¨/

ˇ̌
ˇ
2 D

ˇ̌
ˇ
ˇ

Z 1

�1
f .£/ g.£ � t / e�i¨£d£

ˇ̌
ˇ
ˇ

2

(4.3.6)

measures the energy of a signal in the time–frequency plane in the neighborhood
of the point .t; ¨/.

4. It follows from definition (4.3.3) with a fixed ¨ that

Qfg.t; ¨/ D e�i¨t

Z 1

�1
f .£/ g.£ � t / ei¨.t�£/d£ D e�i¨t

�
f � g¨

�
.t/; (4.3.7)

where g¨.£/ D ei¨£g.£/ and g.�£/ D g.£/. Furthermore, by the Parseval
relation (3.4.34) of the Fourier transform, we find

Qfg.t; ¨/ D ˝
f; gt;¨

˛ D
D Of ; Ogt;¨

E
D ei¨t

Z 1

�1
Of .¤/ Og.¤�¨/ e�i¤t d¤: (4.3.8)

Except for the factor exp.i¨t/, result (4.3.8) is almost identical with (4.3.3),
but the time variable t is replaced by the frequency variable ¨, and the time
window g.£ � t / is replaced by the frequency window Og.¤ � ¨/. The extra
factor exp.i¨t/ in (4.3.8) is associated with the Weyl commutation relations of
the Weyl–Heisenberg group which describe translations in time and frequency.
If the window is well localized in frequency and in time, that is, if Og.¤ � ¨/ is
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small outside a small frequency band in addition to g.£/ being small outside a
small time interval, then (4.3.8) reveals that the Gabor transform gives a local
time–frequency analysis of the signal f in the sense that it provides accurate
information of f simultaneously in both time and frequency domains. However,
all functions, including the window function, satisfy the Heisenberg uncertainty
principle, that is, the joint resolution ¢t ¢¨ of a signal cannot be arbitrarily small

and has always greater than the minimum value
1

2
which is attained only for the

Gaussian window function g.t/ D exp
��at2

�
.

5. For a fixed ¨, the Fourier transform of Qfg.t; ¨/ with respect to t is given by the
following:

F
n Qfg.t; ¨/

o
D OQfg.¤; ¨/ D Of .¤ C ¨/ Og.¤/: (4.3.9)

This follows from the Fourier transform of (4.3.7) with respect to t

F
n Qfg.t; ¨/

o
D F

˚
e�i¨t

�
f � g¨

�
.t/
� D Of .¤ C ¨/ Og.¤/:

6. If g.t/ D exp

�
�1

4
t2

�
, then

Qfg.t; ¨/ D p
2 exp

�
i¨t � ¨2

��
Wf

�
.t C 2i¨/; (4.3.10)

where W represents the Weierstrass transformation of f .x/ defined by

W
�
f .x/

	 D 1

2
p

2

Z 1

�1
f .x/ exp



�1

4
.t � x/2

�
dx: (4.3.11)

7. The time width ¢t around t and the frequency spread ¢¨ around ¨ are indepen-
dent of t and ¨. We have, by definition, and the Gabor window function (4.3.1),

¢2
t D

Z 1

�1
.£�t /2

ˇ̌
gt;¨.£/

ˇ̌2
d£ D

Z 1

�1
.£�t /2

ˇ̌
g.£�t /

ˇ̌2
d£ D

Z 1

�1
£2
ˇ̌
g.£/

ˇ̌2
d£:

Similarly, we obtain, by (4.3.2),

¢2
¨ D 1

2 

Z
1

�1

.¤ � ¨/2
ˇ̌ Ogt;¨.¤/

ˇ̌2
d¤ D 1

2 

Z
1

�1

.¤ � ¨/2
ˇ̌ Og.¤/

ˇ̌2
d¤ D 1

2 

Z
1

�1

¤2
ˇ̌ Og.¤/

ˇ̌2
d¤:

Thus, both ¢t and ¢¨ are independent of t and ¨. The energy spread of gt;¨.£/

can be represented by the Heisenberg rectangle centered at .t; ¨/ with the area
¢t ¢¨ which is independent of t and ¨. This means that the Gabor transform has
the same resolution in the time–frequency plane.
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Example 4.3.1. Obtain the Gabor transform of functions
(a) f .£/ D 1; (b) f .£/ D exp.�i¢£/:

We obtain

(a) Qfg.t; ¨/ D
Z 1

�1
g.£ � t / e�i¨£d£ D e�i¨t Og.¨/:

(b) Qfg.t; ¨/ D
Z 1

�1
e�i£.¨C¢/g.£ � t / d£ D exp

˚ � i t.¢ C ¨/
� Og.¢ C ¨/:

Example 4.3.2. Find the Gabor transform of functions
(a) f .£/ D •.£/; (b) f .£/ D •.£ � t0/:

We have

(a) Qfg.t; ¨/ D
Z 1

�1
•.£/ g.£ � t / e�i¨£d£ D g.�t /:

(b) Qfg.t; ¨/ D
Z 1

�1
•.£ � t0/ g.£ � t / e�i¨£d£ D e�i¨t0g.t0 � t /:

Example 4.3.3. Find the Gabor transform of the function f .£/ D exp
��a2£2

�
with

g.£/ D 1:

We have

Qfg.t; ¨/ D
Z 1

�1
exp

˚��a2£2 C i¨£
��

d£ D Of .¨/ D
p

 

a
exp

�
� ¨2

4a2

�
:

4.4 Basic Properties of Gabor Transforms

Theorem 4.4.1 (Linearity). If the Gabor transforms of two functions f1 and f2

exist with respect to a window function g, then

G
�
af1 C bf2

	
.t; ¨/ D a G

�
f1

	
.t; ¨/ C b G

�
f2

	
.t; ¨/; (4.4.1)

where a and b are two arbitrary constants.

The proof easily follows from the definition of the Gabor transform and is left as
an exercise.

Theorem 4.4.2. If f and g 2 L2.R/, then the following results hold:

.a/ .Translation/ W G �Taf
	
.t; ¨/ D e�i¨a G

�
f
	
.t � a; ¨/; (4.4.2)

.b/ .Modulation/ W G �Maf
	
.t; ¨/ D G

�
f
	
.t; ¨ � a/; (4.4.3)

.c/ .Conjugation/ W G � Nf
	
.t; ¨/ D G

�
f
	
.£; �¨/: (4.4.4)

Proof. (a) We have, by definition,

G
�
Taf

	
.t; ¨/ D G

�
f .£ � a/

	
.t; ¨/ D

Z 1

�1
f .£ � a/ g.£ � t / e�i¨£d£
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D e�i¨a

Z 1

�1
f .x/ g

�
x � t � a

�
e�i¨xdx

D e�i¨a G
�
f
	
.t � a; ¨/:

(b) We have

G
�
Maf

	
.t; ¨/ D G

�
eia£f .£/

	
.t; ¨/

D
Z 1

�1
f .£/ g.£ � t / e�i£.¨�a/d£

D G
�
f
	
.t; ¨ � a/:

(c) It follows from definition (4.3.3) with a real window function g that

G
� Nf
	
.t; ¨/ D

Z 1

�1
f .£/ g.£ � t / e�i¨£d£ D

Z 1

�1
f .£/ g.£ � t / ei¨£d£

D G
�
f
	
.£; �¨/:

Theorem 4.4.3. If two signals f; g 2 L2.R/, then

Z 1

�1

Z 1

�1

ˇ̌
ˇ Qfg.t; ¨/

ˇ̌
ˇ
2

dt d¨ D ��f
��2

2

��g
��2

2
:

Proof. The left-hand side of the above result is equal to

Z 1

�1

Z 1

�1

ˇ
ˇ̌ Qfg.t; ¨/

ˇ
ˇ̌2

dt d¨ D
Z 1

�1

Z 1

�1

ˇ
ˇ̌
ˇ

Z 1

�1
f .£/ g.£ � t / e�i¨£d£

ˇ
ˇ̌
ˇ

2

dt d¨

D
Z 1

�1

Z 1

�1

ˇ̌
ˇ̌
Z 1

�1
ht .£/ e�i¨£d£

ˇ̌
ˇ̌
2

dt d¨; ht .£/ D f .£/ g.£ � t /

D
Z 1

�1
dt

Z 1

�1

ˇ̌
ˇ Oht .¨/

ˇ̌
ˇ
2

d¨

D
Z 1

�1

��� Oht .¨/
���

2

dt

D
Z 1

�1

��ht .£/
��2

dt; by Plancherel’s theorem

D
Z 1

�1
dt

Z 1

�1

ˇ̌
f .£/

ˇ̌2 ˇ̌
g.£ � t /

ˇ̌2
d£
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D
Z 1

�1

ˇ
ˇf .£/

ˇ
ˇ2d£

Z 1

�1

ˇ
ˇg.x/

ˇ
ˇ2 dx D �

�f
�
�2

2

�
�g
�
�2

2
:

This completes the proof.

Theorem 4.4.4 (Parseval’s Formula). If G
�
f
	
.t; ¨/ D Qfg.t; ¨/ and

G
�
h
	
.t; ¨/ D Qhg.t; ¨/, then the Parseval formula for the Gabor transform is

given by

˝ Qf ; Qh˛ D �
�g
�
�2˝

f; h
˛
; (4.4.5)

where

˝ Qf ; Qh˛ D ˝ Qf ; Qh˛
L2.R2/

D
Z 1

�1

Z 1

�1
Qfg.t; ¨/ Qhg.t; ¨/ dt d¨: (4.4.6)

In particular, if
��g
�� D 1, then the Gabor transformation is an isometry from L2.R/

into L2.R2/.

Proof. We first note that, for a fixed t ,

Qfg.t; ¨/ D F
˚
ft .£/

� D F
˚
f .£/gt .£/

�
;

where gt .£/ D g.£ � t /:

Thus, the Parseval formula (3.4.34) for the Fourier transform gives
Z 1

�1
Qf .t; ¨/ Qh.t; ¨/ d¨ D

D
F
˚
fgt

�
;F

˚
hgt

�E

D hfgt ; hgt i D
Z 1

�1
f .£/ g.£ � t / h.£/ g.£ � t / d£

D
Z 1

�1
f .£/ h.£/

ˇ̌
g.£ � t /

ˇ̌2
d£:

Integrating this result with respect to t from �1 to 1 gives

˝ Qf ; Qh˛ D
Z 1

�1

Z 1

�1
Qf .t; ¨/ Qh.t; ¨/ dt d¨

D
Z 1

�1
f .£/ h.£/ d£

Z 1

�1

ˇ̌
g.£ � t /

ˇ̌2
dt

D
Z 1

�1
f .£/ h.£/ d£

Z 1

�1

ˇ̌
g.x/

ˇ̌2
dx .£ � t D x/

D ��g
��2˝

f; h
˛
:

This proves the result.
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If
��g
�� D 1, then (4.4.5) shows isometry from L2.R/ into L2.R2/.

Theorem 4.4.5 (Inversion Theorem). If a function f 2 L2.R/, then

f .£/ D 1

2 

1
��g
��2

Z 1

�1

Z 1

�1
Qfg.t; ¨/ g.£ � t / ei¨£ d¨ dt: (4.4.7)

First Proof. It follows from the continuous Gabor transform (4.3.3) that

Qfg.t; ¨/ D F
˚
f .£/g.£ � t /

�
;

where the Fourier transform with respect to £ is taken.
Application of the inverse Fourier transform to this result gives

f .£/ g.£ � t / D F�1
n Qfg.t; ¨/

o
D 1

2 

Z 1

�1
ei¨£ Qfg.t; ¨/ d¨:

Multiplying this result by g.£ � t / and integrating with respect to t yields

f .£/

Z 1

�1

ˇ̌
g.£ � t /

ˇ̌2
dt D 1

2 

Z 1

�1

Z 1

�1
ei¨£ g.£ � t / Qfg.t; ¨/ d¨ dt:

Or, equivalently,

f .£/
��g
��2 D 1

2 

Z 1

�1

Z 1

�1
ei¨£ g.£ � t / Qfg.t; ¨/ d¨ dt:

This proves the inversion theorem.

Second Proof. We apply the inverse Fourier transform of f .£/ and the Parseval

formula to replace
��g
��2

by
1

2 

�� Og��2
so that

f .£/
��g
��2 D 1

2 

Z 1

�1
ei¨£ Of .¨/ d¨ � 1

2 

�� Og��2

D 1

2 

Z 1

�1
ei¨£ Of .¨/ d¨ � 1

2 

Z 1

�1

ˇ̌ Og.¤/
ˇ̌2

d¤:
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Since the integral is true for any arbitrary ¨, we replace ¨ by ¨ C ¤ to obtain

f .£/
��g
��2 D 1

2 

Z 1

�1
ei£.¨C¤/ Of .¨ C ¤/d¨ � 1

2 

Z 1

�1
Og.¤/ Og.¤/d¤

D 1

2 

Z 1

�1
ei¨£d¨ � 1

2 

Z 1

�1
ei£¤

� Of .¨ C ¤/ Og.¤/
	 Og.¤/ d¤

D 1

2 

Z 1

�1
ei¨£d¨ �



1

2 

Z 1

�1
ei£¤ OQfg.¨ C ¤/ Og.¤/ d¤

�
; by (4.3.9)

D 1

2 

Z 1

�1
ei¨£d¨ �

h Qfg.£; ¨/ � g.£/
i

; by (3.3.23)

D 1

2 

Z 1

�1
ei¨£d¨

Z 1

�1
Qfg.t; ¨/ g.£ � t / dt

D 1

2 

Z 1

�1

Z 1

�1
ei¨£ Qfg.t; ¨/ g.£ � t / dt d¨:

This proves the inversion theorem.

Theorem 4.4.6 (Conservation of Energy). If f 2 L2.R/, then

��f
��2

2
D 1

2 

Z 1

�1

Z 1

�1

ˇ̌
ˇ Qfg.t; ¨/

ˇ̌
ˇ
2

dt d¨; (4.4.8)

where g is a normalized window function
���g

�� D 1
�

:

Proof. Using (4.3.9) dealing with the Fourier transform of Qfg.t; ¨/ with respect to
t , we apply the Plancherel formula to the right-hand side of (4.4.8) to obtain

1

2 

Z 1

�1

Z 1

�1

ˇ̌
ˇ Qfg.t; ¨/

ˇ̌
ˇ
2

dt d¨ D 1

2 

Z 1

�1
d¨

1

2 

Z 1

�1

ˇ̌
ˇF
n Qfg.t; ¨/

oˇ̌
ˇ
2

d¤

D 1

2 

Z 1

�1
d¨

1

2 

Z 1

�1

ˇ
ˇ̌ Of .¨ C ¤/

ˇ
ˇ̌2 j Og.¤/j2 d¤

D 1

2 

Z 1

�1
d¨

1

2 

Z 1

�1

ˇ̌
ˇ Of .¨/

ˇ̌
ˇ
2 j Og.¤/j2 d¤

D 1

2 

Z 1

�1

ˇ
ˇ̌ Of .¨/

ˇ
ˇ̌2

d¨; since
�
� Og�� D 1

2 

Z 1

�1
j Og.¤/j2 d¤ D 1

D
Z 1

�1
jf .£/j2 d£ D �� Of

��2

2
:

This completes the proof.

Physically, the Gabor transformation transforms a signal f of one variable £ to a
function Qf of two variables t and ¨ without changing its total energy.



4.5 Frames and Frame Operators 257

4.5 Frames and Frame Operators

The concept of frames in a Hilbert space was originally introduced by Duffin and
Schaeffer (1952) in the context of nonharmonic Fourier series only 6 years after
Gabor (1946) published his famous work. In signal processing, this concept has
become useful in analyzing the completeness and stability of linear discrete signal
representations. A frame is a set of vectors f¥ngn2� that characterizes any signal f

from its inner products
˚˝

f; ¥n

˛�
n2�

, where � is the index set, which may be finite
or infinite.

Definition 4.5.1 (Basis). A sequence of vectors fxng in a Hilbert space H is called
a basis (Schauder basis) of H if to each x 2 H , there corresponds a unique
sequence of scalars fang1

nD1 such that

x D
1X

nD1

anxn; (4.5.1)

where the convergence is defined by the norm.

Definition 4.5.2 (Orthogonal Basis and Orthonormal Basis). A basis
˚
xn

�1
nD1

of H is called orthogonal if hxn; xmi D 0 for n ¤ m:

An orthogonal basis is called orthonormal if hxn; xni D 1 for all n.
An orthogonal basis

˚
xn

�1
nD1

is complete in the sense that if hx; xni D 0 for all n,
then x D 0 (see Theorem 2.10.4).

Every separable Hilbert space has an orthonormal basis, and for an orthonormal
basis the expansion (4.5.1) has the form

x D
1X

nD1

hx; xnixn; (4.5.2)

with

��x
��2 D

1X

nD1

ˇ̌hx; xniˇ̌2: (4.5.3)

More generally, for any x; y 2 H ,

hx; yi D
1X

nD1

hx; xnihy; xni: (4.5.4)

It can be proved that every basis
˚
xn

�1
nD1

of a Hilbert space H possesses a unique

biorthogonal basis
˚
x�

n

�1
nD1

which implies that

hxm; x�
n i D •m;n;
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and, for every x 2 H , we have

x D
1X

nD1

hx; x�
n ixn D

1X

nD1

hx; xnix�
n :

If hxm; x�
n ixn D 0 for m ¤ n, but hxn; x�

n ixn is not necessarily equal to one,˚
x�

n

�1
nD1

is called a biorthogonal basis of
˚
xn

�1
nD1

. In this case, we have, for any
x 2 H ,

x D
1X

nD1

.an/�1hx; x�
n ixn D

1X

nD1

.an/�1hx; xnix�
n ; (4.5.5)

where an D hx�
n ; xni ¤ 0: It can be shown that an ¤ 0 for all n.

Definition 4.5.3 (Bounded Basis, Unconditional Basis, and Riesz Basis). If˚
xn

�
is a basis in a separable Hilbert space H , then

(i)
˚
xn

�
is called a bounded basis if there exist two nonnegative numbers A and

B such that

A � ��xn

�� � B for all n:

(ii)
˚
xn

�
is called an unconditional basis in a separable Hilbert space H if

X
anxn 2 H implies that

Xˇ̌
an

ˇ̌
xn 2 H:

(iii)
˚
xn

�
is called a Riesz basis if there exist a topological isomorphism T W H !

H and an orthonormal basis
˚
yn

�
of H such that T xn D yn for every n.

Remark. In a Hilbert space, all bounded unconditional bases are equivalent to an
orthonormal basis. In other words, if

˚
xn

�
is a bounded unconditional basis, then

there exists an orthonormal basis
˚
en

�
and a topological isomorphism T W H ! H

such that Ten D yn for all n.

Definition 4.5.4 (Frame). A sequence
˚
xn

�
in a separable Hilbert space H (not

necessarily a basis of H ) is called a frame if there exist two numbers A and B with
0 < A � B < 1 such that

A
��x
��2 �

X

n

ˇ̌˝
x; xn

˛ˇ̌2 � B
��x
��2

: (4.5.6)

The numbers A and B are called the frame bounds. If A D B , the frame is said to
be tight. The frame is called exact if it ceases to be a frame whenever any single
element is deleted from the frame.

Definition 4.5.5 (Frame Operator). To each frame
˚
xn

�
there corresponds an

operator T , called the frame operator, from H into itself defined by

T x D
X

n

˝
x; xn

˛
xn for all x 2 H: (4.5.7)
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Remark. The xn’s are not necessarily linearly independent. Since
X

n

ˇ
ˇ˝x; xn

˛ˇˇ2 is a

series of positive real numbers, it converges absolutely and hence, unconditionally.

The following example shows that tightness and exactness are not related.

Example 4.5.1. If
˚
en

�1
nD1

is an orthonormal basis of H , then

(i) fe1; e1; e2; e2; : : : g is a tight frame with frame bounds A D 2 D B , but it is not
exact.

(ii)
np

2e1; e2; e3; : : :
o

is an exact frame but not tight since the frame bounds are

easily seen as A D 1 and B D 2.

(iii)

�
e1;

e2p
2

;
e2p

2
;

e3p
3

;
e3p

3
;

e3p
3

; : : :



is a tight frame with the frame bound A D

1 but not an orthonormal basis.

(iv)
n
e1;

e2

2
;

e3

3
; : : :

o
is a complete orthogonal sequence but is not a frame.

If fxng is an orthonormal basis of H , then the Parseval formula holds, that is, for
any x 2 H ,

��x
��2 D

X

n

ˇ̌˝
x; xn

˛ˇ̌2
:

It follows from the definition of frame that fxng is a tight frame with frame
bounds A D B D 1.

But the converse is not necessarily true. That is, tight frames are not necessarily
orthonormal. For example, H D C

2 and

e1 D .0; 1/; e2 D
 p

3

2
; �1

2

!

; e3 D
 

�
p

3

2
; �1

2

!

:

For any x D .x1; x2/ 2 H , we have

3X

iD1

ˇ̌˝
x; ei

˛ˇ̌2 D jx2j2 C
ˇ
ˇ̌
ˇ̌

p
3

2
x1 � 1

2
x2

ˇ
ˇ̌
ˇ̌

2

C
ˇ
ˇ̌
ˇ̌�

p
3

2
x1 � 1

2
x2

ˇ
ˇ̌
ˇ̌

2

D jx2j2 C 1

2

�
3
ˇ̌
x1

ˇ̌2 C ˇ̌
x2

ˇ̌2�

D 3

2

�ˇ̌
x1

ˇ̌2 C ˇ̌
x2

ˇ̌2� D 3

2

��x
��2

:

Thus, three vectors .e1; e2; e3/ define a tight frame with the frame bounds A D B D
3

2
but they are not orthonormal since .e1; e2; e3/ are not linearly independent.

Theorem 4.5.1. If a sequence
˚
xn

�
is a tight frame in H with the frame bound

A D 1, and if
��xn

�� D 1 for all n, then
˚
xn

�
is an orthonormal basis of H .
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Proof. It follows from (4.5.6) that

��xm

��2 D
X

n

ˇ̌˝
xm; xn

˛ˇ̌2 D ��xm

��4 C
X

m¤n

ˇ̌˝
xm; xn

˛ˇ̌2
:

Since
��xm

�� D 1, the above equality implies that
˝
xm; xn

˛ D 0 for m ¤ n:

The completeness of
˚
xn

�
is a consequence of the fact that frames are complete.

To check this, suppose x 2 H such that
˝
x; xn

˛ D 0 for all n. Then, the relation

A
��x
��2 �

X

n

ˇ̌˝
x; xn

˛ˇ̌2 D 0

implies that x D 0.

Theorem 4.5.2. Suppose a sequence fxng is a separable Hilbert space H . Then,
the following are equivalent.

(a) The frame operator T x D
X

n

˝
x; xn

˛
xn is a bounded linear operator on it with

AI � T � BI , where I is the identity operator on H .
(b) fxng1

nD1 is a frame with frame bounds A and B .

Proof. If (a) holds, then the relation AI � T � BI is equivalent to

˝
AIx; x

˛ � ˝
T x; x

˛ � ˝
BIx; x

˛
for all x 2 H: (4.5.8)

Since I is an identity operator,
˝
Ix; x

˛ D ��x
��2

: Also,

˝
T x; x

˛ D
*
X

n

˝
x; xn

˛
xn; x

+

D
X

n

˝
x; xn

˛˝
xn; x

˛

D
X

n

˝
x; xn

˛˝
x; xn

˛ D
X

n

ˇ̌˝
x; xn

˛ˇ̌2
:

Evidently, inequality (4.5.8) gives

A
��x
��2 �

X

n

ˇ̌˝
x; xn

˛ˇ̌2 � B
��x
��2

:

This shows that (a) implies (b).
We next prove that (b) implies (a). Suppose (b) holds, that is,

˚
xn

�
is a frame

with frame bounds A and B . Recall that in any Hilbert space H the norm of any
element x 2 H is given by

��x
�� D sup

kykD1

ˇ̌˝
x; y

˛ˇ̌
for y 2 H:
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For a fixed x 2 H , we consider

TN x D
NX

nD�N

˝
x; xn

˛
xn:

For 0 � M � N , we have, by the Schwarz inequality,

���TN x � TM x
���

2 D sup
kykD1

ˇ̌
ˇ
˝
TN x � TM x; y

˛ˇ̌
ˇ
2

D sup
kykD1

ˇ̌
ˇ
ˇ̌
ˇ

X

MC1�jnj�N

˝
x; xn

˛˝
xn; y

˛
ˇ̌
ˇ
ˇ̌
ˇ

2

� sup
kykD1

0

@
X

MC1�jnj�N

ˇ̌˝
x; xn

˛ˇ̌2
1

A

0

@
X

MC1�jnj�N

ˇ̌˝
xn; y

˛ˇ̌2
1

A

� sup
kykD1

0

@
X

MC1�jnj�N

ˇ̌˝
x; xn

˛ˇ̌2
1

AB
��y
��2

; by (4.5.6)

D B sup
kykD1

0

@
X

MC1�jnj�N

ˇ̌˝
x; xn

˛ˇ̌2
1

A ! 0 as M; N ! 1:

Thus,
˚
TN x

�
is a Cauchy sequence in H and hence it is convergent as N ! 1.

Therefore,

lim
N !1 TN x D TX:

Next, we use the preceding argument to obtain

��T x
��2 D sup

kykD1

ˇ̌˝
T x; y

˛ˇ̌2 D sup
kykD1

ˇ̌
ˇ̌
ˇ

*
X

n

˝
x; xn

˛
xn; x

+ˇ̌
ˇ̌
ˇ

2

D sup
kykD1

ˇ̌
ˇ̌
ˇ

X

n

˝
x; xn

˛˝
xn; x

˛
ˇ̌
ˇ̌
ˇ

2

� B

 
X

n

ˇ̌˝
x; xn

˛ˇ̌2
!

� B2
��x
��2

:

This implies that kT k � B , and hence the frame operator T is bounded.
Since

˝
Ix; x

˛ D kxk2, it follows from definition (4.5.6) that

A
˝
Ix; x

˛ � ˝
T x; x

˛ � B
˝
Ix; x

˛
;
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which is equivalent to the relation

AI � T � BI:

This complete the proof.

Theorem 4.5.3. Suppose
˚
xn

�1
nD1

is a frame on a separable Hilbert space with
frame bounds A and B , and T is the corresponding frame operator. Then,

(a) T is invertible and B�1I � T �1 � A�1I . Furthermore, T �1 is a positive
operator and hence it is self-adjoint.

(b)
˚
T �1xn

�
is a frame with frame bounds B�1 and A�1 with A�1 � B�1 > 0,

and it is called the dual frame of
˚
xn

�
.

(c) Every x 2 H can be expressed in the form

x D
X

n

˝
x; T �1xn

˛
xn D

X

n

˝
x; xn

˛
T �1xn: (4.5.9)

The frame
˚
T �1xn

� D ˚ Qxn

�
is called the dual frame of

˚
xn

�
. It is easy to verify

that the dual frame of
˚ Qxn

�
is the original frame

˚
xn

�
. According to formula (4.5.9),

the reconstruction formula for x has the form

x D
X

n

˝
x; Qxn

˛
xn D

X

n

˝
x; xn

˛ Qxn: (4.5.10)

Proof. (a) Since the frame operator T satisfies the relation

AI � T � BI; (4.5.11)

it follows that

�
I � B�1T

� � �
I � B�1AI

� D
�

I � A

B

�
I

and hence

��I � B�1T
�� �

����

�
I � A

B

����� < 1:

Thus, B�1T is invertible and consequently so is T . We next multiply (4.5.11)
by T �1 and use the fact that T �1 commutes with I and T to obtain

B�1I � T � A�1I:

In view of the fact that

˝
T �1x; x

˛ D ˝
T �1x; T .T �1x/

˛ � A
˝
T �1x; T �1x

˛ D A
�
�T �1x

�
�2 � 0;

we conclude that T �1 is a positive operator and hence it is self-adjoint.
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(b) Since T �1 is self-adjoint, we have

X

n

˝
x; T �1xn

˛
T �1xn D T �1

 
X

n

˝
T �1x; xn

˛
xn

!

DT �1
�
T
�
T �1x

��DT �1x:

(4.5.12)

This gives

*
X

n

˝
x; T �1xn

˛
T �1xn; x

+

D ˝
T �1x; x

˛
:

Or,

X

n

˝
x; T �1xn

˛˝
T �1xn; x

˛ D ˝
T �1x; x

˛
:

Hence,

X

n

˝
x; T �1xn

˛˝
x; T �1xn

˛ D ˝
T �1x; x

˛
:

Or,

X

n

ˇ̌˝
x; T �1xn

˛ˇ̌2 D ˝
T �1x; x

˛
:

Using the result from (a), that is, B�1I � T � A�1I; it turns out that

B�1
˝
Ix; x

˛ � ˝
T �1x; x

˛ � A�1
˝
Ix; x

˛

and hence

B�1
�
�x
�
�2 �

X

n

ˇ
ˇ˝x; T �1xn

˛ˇˇ2 � A�1
�
�x
�
�2

: (4.5.13)

This shows that
˚
T �1xn

�
is a frame with frame bounds B�1 and A�1.

(c) We replace x by T �1x in (4.5.7) to derive

x D
X

n

˝
T �1x; xn

˛
xn D

X

n

˝
x; T �1xn

˛
xn:

Similarly, replacing x by T x in (4.5.12) gives

x D
X

n

˝
T x; T �1xn

˛
T �1xn D

X

n

˝
T �1T x; xn

˛
T �1xn D

X

n

˝
x; xn

˛
T �1xn:

This completes the proof.
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Theorem 4.5.4. Suppose
˚
xn

�1
nD1

is a frame on a separable Hilbert space H

with frame bounds A and B . If there exists a sequence of scalars fcng such that
x D

X

n

cnxn, then

X

n

ˇ̌
cn

ˇ̌2 D
X

n

ˇ̌
an

ˇ̌2 C
X

n

ˇ̌
an � cn

ˇ̌2
; (4.5.14)

where an D ˝
x; T �1xn

˛
so that x D

X

n

anxn.

Proof. Note that
˝
xn; T �1x

˛ D ˝
T �1xn; x

˛ D an: Substituting x D
X

n

anxn into

the first term in the inner product
˝
x; T �1x

˛
gives

˝
x; T �1x

˛ D
*
X

n

anxn; T �1x

+

D
X

n

an

˝
xn; T �1x

˛ D
X

n

ˇ̌
an

ˇ̌2
:

Similarly, substituting x D
X

n

cnxn into the first term in
˝
x; T �1x

˛
yields

˝
x; T �1x

˛ D
*
X

n

cnxn; T �1x

+

D
X

n

cn

˝
xn; T �1x

˛ D
X

n

cnan:

Consequently,
X

n

ˇ̌
an

ˇ̌2 D
X

n

cnan: (4.5.15)

Finally, we obtain, by using (4.5.15),

X

n

ˇˇan

ˇˇ2C
X

n

ˇˇan�cn

ˇˇ2 D
X

n

ˇˇan

ˇˇ2C
X

n

�ˇ̌
an

ˇˇ2 � ancn � ancn C ˇˇcn

ˇˇ2
�

D
X

n

ˇˇcn

ˇˇ2:

This completes the proof.

Theorem 4.5.5. A necessary and sufficient condition for a sequence
˚
xn

�
on a

Hilbert space H to be an exact frame is that the sequence
˚
xn

�
be a bounded

unconditional basis of H .

Proof. The condition is necessary.

We assume that
˚
xn

�
is an exact frame with frame bounds A and B . Then, fxng

and
˚
T �1xn

�
are biorthonormal. For a fixed m, we have

A
��T �1xm

��2 �
X

n

ˇ̌˝
T �1xm; xn

˛ˇ̌2 D ˇ̌˝
T �1xm; xm

˛ˇ̌2 � ��T �1xm

��2��xm

��2
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and
��xm

��4 D ˇ̌˝
xm; xm

˛ˇ̌2 �
X

n

ˇ̌˝
xm; xn

˛ˇ̌2 � B
��xm

��2
:

Consequently,

A � ��xm

��2 � B:

Hence, the sequence fxng is bounded in norm, and x 2 H can be represented as

x D
X

n

˝
x; T �1xn

˛
xn:

It remains to show that this representation is unique. If x D
X

n

cnxn, then

˝
x; T �1xm

˛ D
*
X

n

cnxn; T �1xm

+

D
X

n

cn

˝
xn; T �1xm

˛ D cm:

Thus, the sequence
˚
xn

�
is a basis. Since the series converges unconditionally, the

basis is unconditional.
The condition is sufficient.
We assume that

˚
xn

�
is a bounded unconditional basis of H . Then, there exists

an orthonormal basis feng and a topological isomorphism T W H ! H such that
Ten D xn for all n. For x 2 H , we have

X

n

ˇ̌˝
x; xn

˛ˇ̌2 D
X

n

ˇ̌˝
x; Ten

˛ˇ̌2 D
X

n

ˇ̌˝
T

�

x; en

˛ˇ̌2 D ��T
�

x
��2

;

where T
�

is the adjoint of T . But
��
�T

� �1
��
�

�1 �
�x
�
� � �

�T
�

x
�
� � �

�T
�
�
�
�
�x
�
�:

Hence, the sequence
˚
xn

�
is a frame which is obviously an exact frame because

it ceases to be a frame whenever any element is deleted from the sequence. This
completes the proof.

4.6 Discrete Gabor Transforms and the Gabor
Representation Problem

In many applications to physical and engineering problems, it is more important, at
least from a computational viewpoint, to work with discrete transforms rather than
continuous ones. In sampling theory, the sample points are defined by ¤ D m¨0 and
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Fig. 4.6 The Gabor elementary functions gm;n.t/

£ D nt0, where m; n are integers and t0 and ¨0 are positive quantities. The discrete
Gabor functions are defined by

gm;n.t/ D exp.2 m¨0t/ g.t � nt0/ D M2 m¨0 Tnt0 g.t/; (4.6.1)

where g 2 L2.R/ is a fixed function and t0 and ¨0 are the time shift and the
frequency shift parameters, respectively. A typical set of Gabor functions is shown
in Fig. 4.6.

These functions are also called the Weyl–Heisenberg coherent states which arise
from translations and modulations of the Gabor window function (Fig. 4.6). From
a physical point of view, these coherent states are of great interest and have several
important applications in quantum mechanics. Following Gabor’s analysis, various
other functions have been introduced as window functions instead of the Gaussian
function which was originally used by Gabor. In order to expand general functions
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(quantum mechanical states) with respect to states with minimum uncertainty, von
Neumann (1945) introduced a set of coherent states on lattice constants ¨0t0 D h in
the phase space with position and momentum as coordinates where h is the Planck
constant. These states, associated with the Weyl–Heisenberg group, are in fact the
same as used by Gabor. The time–frequency lattice with lattice constants ¨0t0 D 1

is also called the von Neumann lattice.

Definition 4.6.1 (Discrete Gabor Transform). The discrete Gabor transform is
defined by

Qf .m; n/ D
Z 1

�1
f .t/ gm;n.t/dt D ˝

f; gm;n

˛
: (4.6.2)

The double series

1X

m;nD�1
Qf .m; n/ gm;n.t/ D

1X

m;nD�1

˝
f; gm;n

˛
gm;n.t/ (4.6.3)

is called the Gabor series of f .
It is of special interest to find the inverse of the discrete Gabor transform so that

f 2 L2.R/ can be determined by the formula

Qf .mt0; n¨0/ D
Z 1

�1
f .t/ gm;n.t/ dt D ˝

f; gm;n

˛
: (4.6.4)

The set of sample points
˚�

mt0; n¨0

��1
m;nD�1 is called the Gabor lattice. The

answer to the question of finding the inverse is in the affirmative if the set of
functions

˚
gm;n.t/

�
forms an orthonormal basis, or more generally, if the set is a

frame for L2.R/. A system
˚
gm;n.t/

� D ˚
M2 m¨0 Tnt0 g.t/

�
is called a Gabor frame

or Weyl–Heisenberg frame in L2.R/ if there exist two constants A; B > 0 such that

A
��f
��2 �

1X

m;nD�1

ˇ̌˝
f; gm;n

˛ˇ̌2 � B
��f
��2

(4.6.5)

holds for all f 2 L2.R/. For a Gabor frame
˚
gm;n.t/

�
, the analysis operator Tg is

defined by

Tgf D
n˝

f; gm;n

˛o

m;n
; (4.6.6)

and its synthesis operator T
�

g is defined by

T
�

g cm;n D
1X

m;nD�1
cm;n gm;n; (4.6.7)
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where cm;n 2 `2.Z/. Both Tg and T
�

g are bounded linear operators and in fact are
adjoint operators with respect to the inner product h ; i: The Gabor frame operator
Sg is defined by Sg D T

�

g Tg. More explicitly,

Sgf D
1X

m;nD�1

˝
f; gm;n

˛
gm;n: (4.6.8)

If
˚
gm;n

�
constitute a Gabor frame for L2.R/, any function f 2 L2.R/ can be

expressed as

f .t/ D
1X

m;nD�1

˝
f; gm;n

˛
g�

m;n D
1X

m;nD�1

˝
f; g�

m;n

˛
gm;n; (4.6.9)

where
˚
g�

m;n

�
is called the dual frame given by g�

m;n D S�1
g gm;n. Equation (4.6.9)

provides an answer for constructing f from its Gabor transform
˝
f; gm;n

˛
for a given

window function g.
Finding the conditions on t0; ¨0, and g under which the Gabor series of f

determines f or converges to it is known as the Gabor representation problem.
For an appropriate function g, the answer is positive provided that 0 < ¨0t0 < 1.
If 0 < ¨0t0 < 1, the reconstruction is stable and g can have a good time and
frequency localization. This is in contrast with the case when ¨0t0 D 1, where the
construction is unstable and g cannot have a good time and frequency localization.
For the case when ¨0t0 > 1, the reconstruction of f is, in general, impossible no
matter how g is selected.

4.7 The Zak Transform and Time–Frequency
Signal Analysis

Historically, the Zak transform (ZT), known as the Weil-Brezin transform in
harmonic analysis, was introduced by Gelfand (1950) in his famous paper on eigen-
function expansions associated with Schrödinger operators with periodic potentials.
This transform was also known as the Gelfand mapping in the Russian mathematical
literature. However, Zak (1967, 1968) independently rediscovered it as the k � q

transform in solid state physics to study a quantum-mechanical representation of the
motion of electrons in the presence of an electric or magnetic field. Although the
Gelfand–Weil–Brezin–Zak transform seems to be a more appropriate name for this
transform, there is a general consensus among scientists to name it as the Zak
transform since Zak himself first recognized its deep significance and usefulness
in a more general setting. In recent years, the Zak transform has been widely used
in time–frequency signal analysis, in the coherent states representation in quantum
field theory, and also in mathematical analysis of Gabor systems. In particular, the
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Zak transform has also been useful for a study of the Gabor representation problem,
where this transform has successfully been utilized to investigate the orthogonality
and completeness of the Gabor frames in the critical case.

Definition 4.7.1 (The Zak Transform). The Zak transform,
�
Zaf

�
.t; ¨/, of a

function f 2 L2.R/ is defined by the series

�
Zaf

�
.t; ¨/ D p

a

1X

nD�1
f .at C an/ exp.�2 in¨/; (4.7.1)

where a.> 0/ is a fixed parameter and t and ¨ are real.

If f represents a signal, then its Zak transform can be treated as the joint time–
frequency representation of the signal f . It can also be considered as the discrete
Fourier transform of f in which an infinite set of samples in the form f .at C an/

is used for n D 0; ˙1; ˙2; : : : : Without loss of generality, we set a D 1 so that we
can write

�
Z f

�
.t; ¨/ in the explicit form

�
Z f

�
.t; ¨/ D F.t; ¨/ D

1X

nD�1
f .t C n/ exp.�2 in¨/: (4.7.2)

This transform satisfies the periodic relation
�
Z f

�
.t; ¨ C 1/ D �

Z f
�
.t; ¨/; (4.7.3)

and the following quasiperiodic relation

�
Z f

�
.t C 1; ¨/ D exp.2 i¨/

�
Z f

�
.t; ¨/; (4.7.4)

and therefore the Zak transform Z f is completely determined by its values on the
unit square S D Œ0; 1� 	 Œ0; 1�.

It is easy to prove that the Zak transform of f can be expressed in terms of
the Zak transform of its Fourier transform Of .¤/ D F ff .t/g defined by (3.3.19b).
More precisely,

�
Z f

�
.t; ¨/ D exp.2 i¨t/

�
Z Of

�
.¨; �t /: (4.7.5)

To prove this result, we define a function g for fixed t and ¨ by

g.x/ D exp.�2 i¨x/ f .x C t /:

Then, it follows that

Og.¤/ D
Z 1

�1
g.x/ exp.�2 ix¤/ dx

D
Z 1

�1
f .x C t / exp

˚ � 2 ix.¤ C ¨/
�

dx



270 4 The Gabor Transform and Time–Frequency Signal Analysis

D e2 i.¤C¨/t

Z 1

�1
f .u/ exp

˚ � 2 i.¤ C ¨/u
�

du

D exp
˚
2 i.¤ C ¨/t

� Of .¤ C ¨/:

We next use the Poisson summation formula (3.7.7) in the form

1X

nD�1
g.n/ D

1X

nD�1
Og.2 n/:

Or, equivalently,

1X

nD�1
f .t C n/ exp.�2 i¨n/ D exp.2 i¨t/

1X

nD�1
exp

�
2 i .2n /t

	 Of .¨ C 2 n/

D exp.2 i¨t/

1X

mD�1
Of .¨ C m/ exp.2 imt/:

This gives the desired result (4.7.5).
The following results can be easily verified:

�
ZFf

�
.¨; t/ D exp.2 i¨t/

�
Z f

�
.�t; ¨/; (4.7.6)

�
ZF�1f

�
.¨; t/ D exp.2 i¨t/

�
Z f

�
.�t; ¨/: (4.7.7)

If gm;n.t/ D exp.�2 imt/g.t � n/, then

�
Z gm;n

�
.¨; t/ D exp

� � 2 i.mt C n¨/
	�
Z g.¨; t/

�
: (4.7.8)

We next observe that L2.S/ is the set of all square integrable complex-valued
functions F on the unit square S , that is,

Z 1

0

Z 1

0

ˇ̌
F.t; ¨/

ˇ̌2
dt d¨ < 1:

It is easy to check that L2.S/ is a Hilbert space with the inner product

˝
F; G

˛ D
Z 1

0

Z 1

0

F.t; ¨/ G.t; ¨/ dt d¨ (4.7.9)

and the norm

��F
�� D


Z 1

0

Z 1

0

ˇ̌
F.t; ¨/

ˇ̌2
dt d¨

� 1
2

: (4.7.10)
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The set
n
Mm;n D M2 m;2 n.t; ¨/ D exp

�
2 i.mt C n¨/

	o1
m;nD�1 (4.7.11)

forms an orthonormal basis of L2.S/.

Example 4.7.1. If

¥m;nIa.x/ D 1p
a

Tna M2 m=a ¦Œ0;a�.x/; (4.7.12)

where a > 0, then

�
Za¥m;nIa

�
.t; ¨/ D em.t/ en.¨/; (4.7.13)

where ek.t/ D exp.2 ikt/.
We have

¥m;nIa.x/ D 1p
a

exp
h
2 im

�x � na

a

�i
¦Œ0;a�.x � na/

D 1p
a

exp

�
2 imx

a

�
¦Œna;.nC1/a�.x/:

Thus, we obtain

�
Za¥m;nIa

�
.t; ¨/ D

1X

kD�1
exp



2 im

a
.at C ak/

�
¦Œna;naCa�.at C ak/

D
1X

kD�1
em.t/ e�2 ik¨ ¦Œn�k;nC1�k�.t/

D em.t/ en.¨/:

4.8 Basic Properties of Zak Transforms

1. (Linearity). The Zak transform is linear, that is, for any two constants a; b,

�
Z .af C bg/

	
.t; ¨/ D a

�
Z f

�
.t; ¨/ C b

�
Z g

�
.t; ¨/: (4.8.1)

2. (Translation). For any real a and integer m,

�
Z .Taf /

	
.t; ¨/ D �

Z f
�
.t � a; ¨/; (4.8.2)

�
Z .T�mf /

	
.t; ¨/ D exp.2 im¨/

�
Z f

�
.t; ¨/; (4.8.3)
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3. (Modulation).

�
Z .Mbf /

	
.t; ¨/ D eibt

�
Z f

� �
t; ¨ � b

2 

�
; (4.8.4)

�
Z .M2 bf /

	
.t; ¨/ D exp.2 ibt/

�
Z f

�
.t; ¨ � b/: (4.8.5)

4. (Translation and Modulation).

Z
�
M2 mTnf

	
.t; ¨/ D exp

�
2 i.mt � n¨/

	�
Z f

�
.t; ¨/: (4.8.6)

5. (Conjugation).
�
Z Nf

�
.t; ¨/ D �

Z f
�
.t; �¨/: (4.8.7)

6. (Symmetry).

(a) If f is an even function, then
�
Z f

�
.t; ¨/ D �

Z f
�
.�t; �¨/: (4.8.8)

(b) If f is an odd function, then

�
Z f

�
.t; ¨/ D ��Z f

�
.�t; �¨/: (4.8.9)

If f is a real and even function, it follows from (4.8.7) that

�
Z f

�
.t; ¨/ D �

Z f
�
.t; �¨/ D �

Z f
�
.�t; �¨/: (4.8.10)

7. (Inversion). For t; ¨ 2 R,

f .t/ D
Z 1

0

�
Z f

�
.t; ¨/ d¨; (4.8.11)

Of .¨/ D
Z 1

0

exp.�2 i¨t/
�
Z f

�
.t; ¨/ dt; (4.8.12)

f .x/ D
Z 1

0

exp.�2 ixt/
�
Z Of

�
.t; x/ dt: (4.8.13)

8. (Dilation).
0

@Z D 1

a

f

1

A .t; ¨/ D �
Zaf

� �
at;

¨

a

�
: (4.8.14)

9. (Product and Convolution of Zak Transforms).
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Results (4.7.3) and (4.7.4) show that the Zak transform is not periodic in the two
variables t and ¨. The product of two Zak transforms is periodic in t and ¨.

Proof. We consider the product

F.t; ¨/ D �
Z f

�
.t; ¨/

�
Z g

�
.t; ¨/ (4.8.15)

and find from (4.7.4) that

�
Z g

�
.t; ¨/ D exp.�2 i¨/

�
Z g

�
.t; ¨/:

Therefore, it follows that

F.t C 1; ¨/ D �
Z f

�
.t; ¨/

�
Z g

�
.t; ¨/ D F.t; ¨/;

F.t; ¨ C 1/ D �
Z f

�
.t; ¨/

�
Z g

�
.t; ¨/ D F.t; ¨/:

These show that F is periodic in t and ¨. Consequently, it can be expanded in a
Fourier series on a unit square

F.t; ¨/ D
1X

m;nD�1
cm;n exp.2 imt/ exp.2 in¨/; (4.8.16)

where

cm;n D
Z 1

0

Z 1

0

F.t; ¨/ exp.�2 imt/ exp.�2 in¨/ dt d¨:

If we assume that the series involved are uniformly convergent, we can inter-
change the summation and integration to obtain

cm;n D
Z 1

0

Z 1

0

" 1X

rD�1
f .t C r/ exp.�2 ir¨/

#" 1X

sD�1
Ng.t C s/ exp.2 is¨/

#

	 exp
˚ � 2 i.mt C n¨/

�
dt d¨

D
Z 1

0

" 1X

rD�1
f .t C r/

#" 1X

sD�1
Ng.t C s/

#

exp.�2 imt/ dt

	
Z 1

0

exp
˚
2 i¨.s � n � r/

�
d¨

D
Z 1

0

" 1X

rD�1
f .t C r/ Ng.t C n C r/

#

exp.�2 imt/ dt
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D
1X

rD�1

Z rC1

r

f .x/ Ng.x C n/ exp
˚ � 2 im.x � r/

�
dx

D
Z 1

�1
f .x/ Ng.x C n/ exp .�2 imx/ dx

D
D
f .x/; e2 imxg.x C n/

E

D ˝
f; M2 m T�ng

˛
:

Consequently, (4.8.16) becomes

�
Z f

�
.t; ¨/

�
Z g

�
.t; ¨/ D

1X

m;nD�1

˝
f; M2 m T�ng

˛
exp

˚
2 i.mt C n¨/

�
:

(4.8.17)

This completes the proof.

Theorem 4.8.1. Suppose H is a function of two real variables t and s satisfying
the condition

H
�
t C 1; s C 1

� D H
�
t; s
�
; s; t 2 R; (4.8.18)

and

h.t/ D
Z 1

�1
H.t; s/f .s/ ds; (4.8.19)

where the integral is absolutely and uniformly convergent.
Then,

�
Z f

�
.t; ¨/ D

Z 1

0

�
Z f

�
.s; ¨/ ˆ.t; s; ¨/ ds; (4.8.20)

where ˆ is given by

ˆ.t; s; ¨/ D
1X

nD�1
H.t C n; s/ exp.�2 in¨/; 0 � t; s; ¨ � l: (4.8.21)

Proof. It follows from the definition of the Zak transform of h.t/ that

�
Z h

�
.t; ¨/ D

1X

kD�1
h.t C k/ e�2 ik¨ D

1X

kD�1
e�2 ik¨

Z 1

�1
H.t C k; s/f .s/ ds

D
1X

kD�1
e�2 ik¨

1X

mD�1

Z mC1

m

H.t C k; s/f .s/ ds
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D
1X

kD�1
e�2 ik¨

1X

mD�1

Z 1

0

H.t C k; s C m/f .s C m/ ds

D
Z 1

0

2

4
1X

k;mD�1
H.t C k; s C m/ f .s C m/ exp.�2 ik¨/

3

5 ds;

which is, due to (4.8.17)

D
Z 1

0

2

4
1X

k;mD�1
H.t C k � m; s/ f .s C m/ exp.�2 ik¨/

3

5 ds

D
Z 1

0

" 1X

m;nD�1
H.t C n; s/ f .s C m/ exp f�2 i.m C n/¨g

#

ds

D
Z 1

0

�
Z f

�
.s; ¨/ ˆ.t; s; ¨/ds: (4.8.22)

This completes the proof.

In particular, if H.t; s/ D H.t � s/,

ˆ.t; s; ¨/ D
1X

nD�1
H.t � s C n/ exp.�2 in¨/ D �

Z H
�
.t � s; ¨/:

Consequently, Theorem 4.8.1 leads to the following convolution theorem.

Theorem 4.8.2 (Convolution Theorem). If

h.t/ D
Z 1

�1
H.t � s/f .s/ ds D .H � f /.t/;

then (4.8.20) reduces to the form

�
Z h

�
.t; ¨/ D

Z 1

0

�
Z H

�
.t � s/

�
Z f

�
.s; ¨/ ds D Z .H � f /.t; ¨/: (4.8.23)

Example 4.8.1. If H.t/ D
1X

kD�1
ak •.t � k/; then

Z .H � f /.t; ¨/ D A.¨/
�
Z f

�
.t; ¨/; (4.8.24)

where

A.¨/ D
1X

kD�1
ak exp.�2 ik¨/:
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Clearly,

Z .H � f /.t; ¨/ D Z


Z 1

�1
H.t � s/f .s/ ds

�
.t; ¨/

D Z

" 1X

kD�1
ak

Z 1

�1
•.t � s � k/f .s/ ds

#

.t; ¨/

D Z

" 1X

kD�1
ak f .t � k/

#

.t; ¨/

D
1X

kD�1
ak

1X

nD�1
f .t C n � k/ exp.�2 in¨/

D
1X

kD�1
ak

1X

mD�1
f .t C m/ exp

˚ � 2 i¨.m C k/
�

D A.¨/
�
Z f

�
.t; ¨/:

Theorem 4.8.3. The Zak transformation is a unitary mapping from L2.R/ to
L2.S/.

Proof. It follows from the definition of the inner product (4.7.9) in L2.S/ that

˝
Zaf;Zag

˛ D a

Z 1

0

Z 1

0

"
1X

nD�1

f .at C an/ e�2 in¨

#"
1X

mD�1

g.at C am/ e2 im¨

#

dt d¨

D a

Z 1

0

"
1X

nD�1

f .at C an/ g.at C an/

#

dt

D
1X

nD�1

Z .nC1/a

na

f .x/ g.x/ dx

D
Z

1

�1

f .x/ g.x/ dx D ˝
f; g

˛
: (4.8.25)

In particular, if f D g, we obtain from (4.8.25) that

��Zaf
��2 D ��f

��2
: (4.8.26)

This means that the Zak transform is an isometry from L2.R/ to L2.S/.
Further, Example 4.7.1 shows that

˚
¥m;na.x/

�1
m;nD�1 is an orthonormal basis

of L2.R/. Hence, the Zak transform is a one-to-one mapping of an orthonormal
basis of L2.R/ onto an orthonormal basis of L2.S/. This proves the theorem.
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4.9 Applications of Zak Transforms
and the Balian–Low Theorem

It has already been mentioned that the Zak transform plays a major role in the
study of the Gabor representation problem in signal analysis and the coherent states
representation in quantum physics. Furthermore, the Zak transform is particularly
useful in proving the Balian–Low theorem (BLT) which is also a fundamental result
in time–frequency analysis. For a detailed investigation of these problems, we need
the following results.

If t0; ¨0 > 0; g 2 L2.R/, and

gm;n.t/ D gm¨0;nt0 .t/ D M2 m¨0 Tnt0 g.t/ D exp.2 im¨0t/ g.t � nt0/ (4.9.1)

is a Gabor system (or Weyl–Heisenberg system), then it is easy to verify that, if
¨0t0 D 1;

Zt0

�
gm;n.t/

	
.t; ¨/ D exp

˚
2 i.mt � n¨/

��
Zt0g

�
.t; ¨/

D em.t/ e�n.¨/
�
Zt0g

�
.t; ¨/; (4.9.2)

where ek.t/ D exp.2 ikt/.
Furthermore, if

˚
gm;n.t/

�
is a frame in L2.R/, then the frame operator S is

given by

Sf D
1X

m;nD�1

˝
f; gm;n

˛
gm;n; (4.9.3)

where f 2 L2.R/.

Theorem 4.9.1. If t0; ¨0 > 0; g 2 L2.R/, and
˚
gm;n

�1
m;nD�1 is a frame in L2.R/,

then its dual frame
˚
S�1gm;n

�1
m;nD�1 is also generated by one single function,

More precisely,

S�1gm;n D g�
m;n; (4.9.4)

where g� D S�1g.

Proof. For any f 2 L2.R/ and fixed integer k, we have

S
�
Tkt0f

�
.t/ D

1X

m;nD�1

˝
Tkt0f; gm;n

˛
gm;n.t/

D
1X

m;nD�1
exp.�2 im¨0kt0/

˝
f; gm;n�k

˛
gm;n.t/
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D
1X

m;nD�1
exp.�2 im¨0kt0/

˝
f; gm;n

˛
gm;nCk.t/

D
1X

m;nD�1

˝
f; gm;n

˛
exp

˚
2 im¨0.t � kt0/

�
g.t � nt0 � kt0/

D
1X

m;nD�1

˝
f; gm;n

˛
Tkt0

�
exp.2 im¨0t/ g.t � nt0/

	

D Tkt0

�
Sf .t/

�
; (4.9.5)

in which Tkt0 exp.2 im¨0t/ D exp.2 im¨0t/ is used. This shows that S

commutes with Tkt0 .
Similarly, S commutes with modulation operator M2 k¨0 and hence

S
�
M2 k¨0Tst0f

� D M2 k¨0Tst0

�
Sf
�
: (4.9.6)

Consequently,

S�1
�
M2 k¨0Tst0f

� D M2 k¨0Tst0f
�; (4.9.7)

where f � D S�1f . Putting f D g in (4.9.7) gives

S�1
�
gm;n

� D S�1
�
M2 m¨0Tnt0g

� D M2 m¨0Tnt0S
�1g D M2 m¨0Tnt0g

� D g�
m;n:

This completes the proof.

Remark. The elements of the dual frame
˚
g�

m;n

�
are generated by a single function

g�, analogously to gm;n. To compute the dual system, it is necessary to find the
dual atom g� D S�1g and compute all other elements g�

m;n of the dual frame by
modulation and translation.

Some important properties of the Gabor system
˚
gm;n

�
for ¨0t0 D 1 are given

by the following:

Theorem 4.9.2. If t0; ¨0 > 0 such that ¨0t0 D 1 and g 2 L2.R/, then the
following statements are equivalent:

(i) There exist two constants A and B such that

0 < A �
ˇ
ˇ̌�
Zt0 g

�
.t; ¨/

ˇ
ˇ̌2 � B < 1:

(ii) The Gabor system
˚
gm;n.t/ D exp.2 i m¨0t/g.t � nt0/

�1
m;nD�1 is a frame

in L2.R/ with the frame bounds A and B .
(iii) The system

˚
gm;n.t/

�1
m;nD�1 is an exact frame in L2.R/ with the frame bounds

A and B .
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If any of the above statements are satisfied, then there exists a unique
representation of any f 2 L2.R/ in the form

f .t/ D
1X

m;nD�1
am;n gm;n.t/ D

1X

m;nD�1

˝
f; g�

m;n

˛
gm;n.t/; (4.9.8)

where

am;n D ˝
f; g�

m;n

˛ D
Z 1

0

Z 1

0

�
Zt0 f

�
.t; ¨/

�
Zt0 g

�
.t; ¨/

e�m.t/ en.¨/ dt d¨: (4.9.9)

Proof. We first show that (i) implies (ii). Since Theorem 4.8.3 asserts that the Zak
transformation is a unitary mapping from L2.R/ onto L2.S/, it suffices to prove
that

˚�
Zt0 gm;n

�
.t; ¨/

�1
m;nD�1 is a frame in L2.S/. Let h 2 L2.S/. Since

�
Zt0 g

�

is bounded, h
�
Zt0 g

� 2 L2.S/, and hence, it follows from (4.9.2) that

˝
h;Zt0 gm;n

˛ D ˝
h; em.t/ e�n.¨/Zt0 g

˛ D
D
h
�
Zt0 g

�
; em.t/ e�n.¨/

E
: (4.9.10)

Since fem¨0 e�nt0g is an orthonormal basis of L2.S/, the Parseval relation implies
that

1X

m;nD�1

ˇ̌˝
h;Zt0 gm;n

˛ˇ̌2 D
���h
�
Zt0 g

����
2

: (4.9.11)

Combining this equality with the inequalities

A
��h
��2 �

���h
�
Zt0 g

����
2 � B

��h
��2

leads to the result

A
��h
��2 �

1X

m;nD�1

ˇ̌˝
h;Zt0 gm;n

˛ˇ̌2 � B
��h
��2

:

This shows that
�
Zt0 gm;n

�
.t; ¨/ is a frame in L2.S/.

We next show that (ii) implies (i). If (ii) holds, then
˚
em.t/ e�n.¨/

�
Zt0 g

��
is a

frame in L2.S/ with frame bounds A and B . Hence, for any h 2 L2.S/, we must
have

A
��h
��2 �

1X

m;nD�1

ˇ̌˝
h; em.t/ e�n.¨/

�
Zt0 g

�ˇ̌2 � B
��h
��2

: (4.9.12)
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It follows from (4.9.10) and (4.9.11) that

1X

m;nD�1

ˇ̌
ˇ
˝
h; em.t/ e�n.¨/

�
Zt0 g

�ˇ̌
ˇ
2 D

1X

m;nD�1

ˇ̌
ˇ
D
h
�
Zt0 g

�
; em.t/ e�n.¨/

Eˇ̌
ˇ
2

D
��
�h
�
Zt0 g

���
�

2

: (4.9.13)

Combining (4.9.12) and (4.9.13) together gives

A
��h
��2 �

���h
�
Zt0 g

����
2 � B

��h
��2

which implies (i).
Next, we prove that (ii) implies (iii). Suppose (ii) is satisfied. Then˚

em¨0.t/ e�nt0 .¨/
�
Zt0 g

��
represents a frame in L2.S/. But (i) implies

�
Zt0 g

�

is bounded. Hence the mapping F W L2.S/ ! L2.S/ defined by

F.h/ D F
�
Zt0 g

�
; h 2 L2.S/ (4.9.14)

is a topological isomorphism that maps the orthonormal basis fem e�ng onto˚�
Zt0 gm;n

�
.t; ¨/

�
: Thus,

˚�
Zt0 gm;n

�
.t; ¨/

�
is a Riesz basis on L2.S/ and hence

so is
˚
gm;n.t; ¨/

�
in L2.R/. In view of the fact that

˚
gm;n.t; ¨/

�
is a Riesz basis in

L2.R/,
˚
gm;n.t; ¨/

�
is an exact frame for L2.R/.

Finally, that (iii) implies (ii) is obvious. To prove (4.9.9), we first prove that

Zt0

�
Sf
� D �

Zt0 f
� ˇ̌�

Zt0 g
�ˇ̌2

; (4.9.15)

where S is the frame operator associated with the frame
˚
gm;n.x/

�
. Since

fem.t/ e�n.¨/g is an orthonormal basis for L2.S/, it follows from (4.8.24) and
(4.9.2) that

Zt0

�
Sf
� D Zt0

 1X

m;nD�1

˝
f; gm;n

˛
gm;n

!

D �
Zt0g

� 1X

m;nD�1

˝
f; gm;n

˛
em.t/ e�n.¨/

D �
Zt0g

� 1X

m;nD�1

˝
Zt0f;Zt0gm;n

˛
em.t/ e�n.¨/; by (4.8.25)

D �
Zt0g

� 1X

m;nD�1
hZt0f;Zt0g em.t/ e�n.¨/i em.t/ e�n.¨/
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D �
Zt0g

� 1X

m;nD�1

D
Zt0f Zt0g; em.t/ e�n.¨/

E
em.t/ e�n.¨/

D �
Zt0 f

� ˇ̌�
Zt0 g

�ˇ̌2
:

This proves the result (4.9.15).

If we replace f by S�1f in (4.9.15), we obtain

Zt0

�
S�1f

� D
�
Zt0 f

�

ˇ̌
ˇ
�
Zt0 g

�ˇ̌
ˇ
2
; (4.9.16)

which is, by putting f D g,

Zt0g
� D 1

�
Zt0g

� ; g� D S�1g: (4.9.17)

In view of (4.8.25), (4.9.2), (4.9.17), and Theorem 4.9.1, it turns out that

am;n D ˝
f; S�1gm;n

˛ D ˝
f; g�

m;n

˛ D
D
Zt0f;Zt0g

�
m;n

E

D
D
Zt0f; em.t/ e�n.¨/Zt0g

�E

D
*

Zt0f;
em.t/ e�n.¨/
�
Zt0 g

�

+

D
�
Zt0f

Zt0 g
; em.t/ e�n.¨/

�

which gives (4.9.9).
The Gabor representation problem can be stated as follows. Given g 2 L2.R/

and two real numbers t0 and ¨0 different from zero, is it possible to represent any
f 2 L2.R/ in the series form

f .t/ D
1X

m;nD�1
am;n gm;n.t/; (4.9.18)

where gm;n is the Gabor system defined by (4.9.1) and am;n are constants? Under
what conditions is this representation unique?

Evidently, the above representation is possible, if the Gabor system
˚
gm;n

�
forms

an orthonormal basis or a frame in L2.R/, and the uniqueness of the representation
depends on whether the Gabor functions form a complete set in L2.R/. The
Zak transform is used to study this representation problem with two positive real
numbers t0 and ¨0 with ¨0t0 D 1. We also use the result (4.9.2).
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Theorem 4.9.3. If t0 and ¨0 are two positive real numbers with ¨0t0 D 1 and
g 2 L2.R/, then

(i) the Gabor system
˚
gm;n

�
is an orthonormal basis of L2.R/ if and only ifˇ

ˇ�Zt0 g
�ˇˇ D 1 almost everywhere.

(ii) the Gabor system
˚
gm;n

�
is complete in L2.R/ if and only if

ˇ̌�
Zt0 g

�ˇ̌
> 0

almost everywhere.

Proof. (i) It follows from (4.8.25), (4.9.2), and Theorem 4.8.3 that

˝
gk;`; gm;n

˛ D ˝
Zt0gk;`;Zt0gm;n

˛ D
Z 1

0

Z 1

0

ek.t/ e�`.¨/ Nem.t/ Ne�n.¨/
ˇ
ˇ�Zt0 g

�ˇˇ2 dt d¨:

This shows that the set
˚
Zt0gm;n

�
is an orthonormal basis in L2.R/ if and only ifˇ

ˇ�Zt0 g
�ˇˇ D 1 almost everywhere.

An argument similar to above gives

˝
f; gm;n

˛ D ˝
Zt0f;Zt0gm;n

˛ D ˝
Zt0f; em.t/ e�n.¨/Zt0g

˛

D ˝
Zt0f Zt0g; em.t/ e�n.¨/

˛
: (4.9.19)

This implies that
˚
gm;n

�
is complete in L2.R/ if and only if Zt0g ¤ 0 almost

everywhere.
The answer to the Gabor representation problem can be summarized as follows.
The properties of the Gabor system

˚
gm;n

�
are related to the density of the

rectangular lattice ƒ D ˚
nt0; m¨0

� D nZ	mZ in the time–frequency plane. Small
values of t0; ¨0 correspond to a high density for ƒ, whereas large values of t0; ¨0

correspond to low density. Thus, it is natural to classify Gabor systems according to
the following sampling density of the time–frequency lattice.

Case (i) (Oversampling). A Gabor system
˚
gm;n

�
can be a frame where

0 < ¨0t0 < 1. In this case, frames exist with excellent time–frequency localization.
Case (ii) (Critical Sampling). This critical case corresponds to ¨0t0 D 1, and

there is a frame, and orthonormal basis exist, but g has bad localization properties
either in time or in the frequency domain. More precisely, this case leads to
the celebrated result in the time–frequency analysis which is known as the BLT,
originally and independently stated by Balian (1981) and Low (1985) as follows.

Theorem 4.9.4 (Balian–Low). If a Gabor system
˚
gm;n

�
defined by (4.6.1) with

¨0t0 D 1 forms an orthonormal basis in L2.R/, then either
Z 1

�1

ˇ̌
tg.t/

ˇ̌2
dt or

Z 1

�1

ˇ
ˇ¨ Og.¨/

ˇ
ˇ2d¨ must diverge, or equivalently,

Z 1

�1

ˇ̌
tg.t/

ˇ̌2
dt

Z 1

�1

ˇ̌
¨ Og.¨/

ˇ̌2
d¨ D 1: (4.9.20)
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The condition ¨0t0 D 1 associated with the density ƒ D 1 can be interpreted
as a Nyquist phenomenon for the Gabor system. In this critical situation, the time–
frequency shift operators that are used to build a coherent frame commute with each
other.

For an elegant proof of the BLT using the Zak transform, we refer the reader to
Daubechies (1992) or Benedetto and Frazier (1994).

Case (iii) (Undersampling). In this case, ¨0t0 > 1. There is no frame of the form
fgm;ng for any choice of the Gabor window function g. In fact, fgm;ng is incomplete
in the sense that there exist f 2 L2.R/ such that

˝
f; gm;n

˛ D 0 for all m; n but
f ¤ 0.

These three cases can be represented by three distinct regions in the t0�¨0 plane,
where the critical curve ¨0t0 D 1 represents a hyperbola which separates the region
¨0t0 < 1, where an exact frame exists with an excellent time–frequency localization
from the region ¨0t0 > 1 with no frames.

There exist many examples for g so that
˚
gm;n

�
is a frame or even an

orthonormal basis for L2.R/. We give two examples of functions for which the
family

˚
Mm¨0 Tnt0g

�
represents an orthonormal basis.

Example 4.9.1 (Characteristic Function). This function g.t/ D ¦Œ0;1�.t/ is
defined by

g.t/ D
�

1; 0 � t � 1

0; otherwise

Clearly,

Z 1

�1

ˇ̌
¨ Og.¨/

ˇ̌2
d¨ D 1:

Example 4.9.2 (Sine Function). In this case,

g.t/ D sin c.t/ D sin  t

 t
:

Evidently,
Z 1

�1

ˇ̌
t g.t/

ˇ̌2
dt D 1:

Thus, these examples lead to systems with bad localization properties in either
time or frequency. Even if the orthogonality requirement is dropped, we cannot
construct Riesz bases with good time–frequency localization properties for the
critical case ¨0t0 D 1. This constitutes the contents of the BLT which describes
one of the fundamental features of Gabor wavelet analysis.
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4.10 Exercises

1. If g.x/ D 1p
4 a

exp

�
� x2

4a

�
is a Gaussian window, show that

(a)
Z 1

�1
Qfg.t; ¨/dt D Of .¨/; ¨ 2 R

Give a significance of result l(a).
(b) Og.¤/ D exp.�a¤2/:

2. Suppose gt;¨.£/ D g.£ � t / exp.i¨£/ where g is a Gaussian window defined in
Exercise 1, show that

(a) Ogt;¨.¤/ D exp
� � i.¤ � ¨/t � a.¤ � ¨/2

	
:

(b) Qfg.t; ¨/ D 1

2 

˝ Of ; Ogt;¨

˛ D 1

2 
ei¨t NOf Og.t; ¨/:

3. For the Gaussian window defined in Exercise 1, introduce

¢2
t D 1

��g
��

2

�Z 1

�1
£2g2.£/ d£


 1
2

:

Show that the radius of the window function is
p

a and the width of the window
is twice the radius.

4. If e1 D .1; 0/; e2 D
 

�1

2
;

p
3

2

!

; e3 D
 

�1

2
; �

p
3

2

!

represent a set of vectors,

show that, for any vector x D .x1; x2/,

3X

nD1

ˇ̌˝
x; en

˛ˇ̌2 D 3

2

��x
��2

:

Hence, show that fei g is a tight frame and e�
n D 2

3
en:

5. If e1 D .1; 0/; e2 D .0; 1/; e3 D .�1; 0/; e4 D .0; �1/ form a set of vectors,
show that, for any vector xx D .x1; x2/,

4X

nD1

ˇ
ˇ˝x; en

˛ˇˇ2 D 2
�
�x
�
�2

and

x D
4X

kD1

1

2

˝
x; xk

˛
xk:



4.10 Exercises 285

6. If e1 D .1; 0/; e2 D
 

�1

2
;

p
3

2

!

and e3 D
�

�1

2
; �3

2

�
represent a set of vectors

and x D Œx1; x2�T , show that

3X

nD1

ˇ̌˝
x; en

˛ˇ̌2 D 1

2

�
x2

1 C 5x2
2

�
;

and

1

2

�
x2

1 C x2
2

� �
3X

nD1

ˇ̌˝
x; en

˛ˇ̌2 � 5

2

�
x2

1 C x2
2

�
:

7. Show that the set of elements feng in a Hilbert space C
2 forms a tight frame.

8. If g is a continuous function on R and if there exists an © > 0 such that jg.x/j �
A
�
1 C jxj��1�©

; show that

gm;n.x/ D exp.2 imx/g.x � n/

cannot be a frame for L2.R/.

9. Show that the marginals of the Zak transform are given by

Z 1

0

�
Z f

�
.t; ¨/ d¨ D f .t/;

Z 1

0

exp.�2 i¨t/
�
Z f

�
.t; ¨/ dt D Of .¨/:

10. If f .t/ is time-limited to �a � t � a and band-limited to �b � ¨ � b, where

0 � a; b � 1

2
, then the following results hold:

�
Z f

�
.t; ¨/ D f .£/; j£j � 1

2
; ¨ 2 R;

�
Z f

�
.t; ¨/ D exp.2 i¨£/ Of .¨/; j¨j � 1

2
; £ 2 R:

Show that the second of the above results gives the Shannon’s sampling formula

f .t/ D
1X

nD�1

sin 2 b.n � t /

 .n � t /
; t 2 R:
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11. If g D ¦Œ0;1�; gm;n.x/ D exp.2 imx/g.x � n/, where m; n 2 Z is an
orthonormal basis of L2.R/, show that the first integral

Z 1

�1
t
ˇ̌
g.t/

ˇ̌2
dt

in the BLT is finite, whereas the second integral

Z 1

�1
¨
ˇ̌ Og.¨/

ˇ̌2
d¨ D 1:

12. If g.x/ D sin c.x/ D sin  x

 x
; gm;n.x/ D exp.2 imx/ g.x � n/ is an

orthonormal basis of L2.R/, show that the first integral in the BLT

Z 1

�1
t
ˇ̌
g.t/

ˇ̌2
dt D 1;

and the second integral in the BLT is finite.
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