
Chapter 2
Hilbert Spaces and Orthonormal Systems

The organic unity of mathematics is inherent in the nature of
this science, for mathematics is the foundation of all exact
knowledge of natural phenomena.

David Hilbert

Hilbert spaces constitute at present the most important
examples of Banach spaces, not only because they are the most
natural and closest generalization in the realm of “infinite
dimensions”, of our classical Euclidean geometry, but chiefly
for the fact they have been, up to now, the most useful spaces in
the applications to functional analysis.

Jean Dieudonné

2.1 Introduction

Historically, the theory of Hilbert spaces originated from David Hilbert’s
(1862–1943) work on quadratic forms in infinitely many variables with their
applications to integral equations. During the period of 1904–1910, Hilbert
published a series of six papers, subsequently collected in his classical book
Grundzüge einer allemeinen Theorie der linearen integralgleichungen published
in 1912. It contains many general ideas including Hilbert spaces (`2 and L2),
the compact operators, and orthogonality, and had a tremendous influence on
mathematical analysis and its applications. After many years, John von Neumann
(1903–1957) first formulated an axiomatic approach to Hilbert space and developed
the modern theory of operators on Hilbert spaces. His remarkable contribution
to this area has provided the mathematical foundation of quantum mechanics.
Von Neumann’s work has also provided an almost definite physical interpretation
of quantum mechanics in terms of abstract relations in an infinite dimensional
Hilbert spaces. It was shown that observables of a physical system can be
represented by linear symmetric operators in a Hilbert space, and the eigenvalues
and eigenfunctions of the particular operator that represents energy are energy levels
of an electron in an atom and corresponding stationary states of the system. The
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30 2 Hilbert Spaces and Orthonormal Systems

differences in two eigenvalues represent the frequencies of the emitted quantum of
light and thus define the radiation spectrum of the substance.

The theory of Hilbert spaces plays an important role in the development of
wavelet transform analysis. Although a full understanding of the theory of Hilbert
spaces is not necessary in later chapters, some familiarity with the basic ideas and
results is essential.

One of the nice features of normed spaces is that their geometry is very
much similar to the familiar two- and three-dimensional Euclidean geometry. Inner
product spaces and Hilbert spaces are even nicer because their geometry is even
closer to Euclidean geometry. In fact, the geometry of Hilbert spaces is more or less
a generalization of Euclidean geometry to infinite dimensional spaces. The main
reason for this simplicity is that the concept of orthogonality can be introduced in
any inner product space so that the familiar Pythagorean formula holds. Thus, the
structure of Hilbert spaces is more simple and beautiful, and hence, a large number
of problems in mathematics, science, and engineering can be successfully treated
with geometric methods in Hilbert spaces.

This chapter deals with normed spaces, the Lp spaces, generalized functions
(distributions), inner product spaces (also called pre-Hilbert spaces), and Hilbert
spaces. The fundamental ideas and results are discussed with special attention
given to orthonormal systems, linear functionals, and the Riesz representation
theorem. The generalized functions and the above spaces are illustrated by various
examples. Separable Hilbert spaces are discussed in Sect. 2.14. Linear operators
on a Hilbert space are widely used to represent physical quantities in applied
mathematics and physics. In signal processing and wavelet analysis, almost all
algorithms are essentially based on linear operators. The most important operators
include differential, integral, and matrix operators. In Sect. 2.15, special attention is
given to different kinds of operators and their basic properties. The eigenvalues and
eigenvectors are discussed in Sect. 2.16. Included are several spectral theorems for
self-adjoint compact operators and other related results.

2.2 Normed Spaces

The reader is presumed to have a working knowledge of the real number system and
its basic properties. The set of natural numbers (positive integers) is denoted by N,
and the set of integers (positive, negative, and zero) is denoted by Z, and the set of
rational numbers by Q. We use R and C to denote the set of real numbers and the
set of complex numbers respectively. Elements of R and C are called scalars. Both
R and C form a scalar field.

We also assume that the reader is familiar with the concept of a linear space
or vector space which is an example of mathematical systems that have algebraic
structure only. The important examples of linear spaces in mathematics have the
real or complex numbers as the scalar field. The simplest example of a real vector
space is the set R of real numbers. Similarly, the set C of complex numbers is a
vector space over the complex numbers.
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The concept of norm in a vector space is an abstract generalization of the length
of a vector in R

3. It is defined axiomatically, that is, any real-valued function
satisfying certain conditions is called a norm.

Definition 2.2.1 (Norm). A real-valued function kxk defined on a vector space X ,
where x 2 X , is called a norm on X if the following conditions hold:

(a) kxk D 0 if and only if x D 0,
(b) kaxk D jajkxk for every a 2 R and x 2 X ,
(c) kx C yk � kxk C kyk for all x; y 2 X .

Condition (c) is usually called the triangle inequality. Since

0 D k0k D kx � xk � kxk C k � xk D 2kxk;

it follows that kxk � 0 for every x 2 X .

Definition 2.2.2 (Normed Space). A normed space is a vector space X with a
given norm.

So, a normed space is a pair
�
X; k:k�, where X is a vector space and k:k is a norm

defined on X . Of course, it is possible to define different norms on the same vector
space.

Example 2.2.1. (a) R is a real normed space with the norm defined by the absolute
values, kxk D jxj.

(b) C becomes a complex normed space with the norm defined by the modulus,
kzk D jzj.

Example 2.2.2. (a) R
N D ˚

.x1; x2; : : : ; xN / W x1; x2; : : : ; xN 2 R
�

is a vector
space with a norm defined by

�
�x
�
� D

q�
x2

1 C x2
2 C � � � C x2

N

�
; (2.2.1)

where x D .x1; x2; : : : ; xN / 2 R
N . This norm is often called the Euclidean

norm.
(b) C

N D ˚
.z1; z2; : : : ; zN / W z1; z2; : : : ; zN 2 C

�
is a vector space with a norm

defined by

�
�z
�
� D

p
jz1j2 C jz2j2 C � � � C jzN j2 ; (2.2.2)

where z D .z1; z2; : : : ; zN / 2 C
N .

Example 2.2.3. The sequence space `p.1 � p < 1/ is the set of all sequences

x D fxng1
nD1 of real (complex) numbers such that

1X

nD1

ˇ̌
xn

ˇ̌p
< 1 and equipped

with the norm
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�
�x
�
�

p
D
 1X

nD1

ˇ
ˇxn

ˇ
ˇp
!1=p

: (2.2.3)

This space is a normed space.

Example 2.2.4. The vector space C
�
Œa; b�

�
of continuous functions on the interval

Œa; b� is a normed space with a norm defined by

�
�f
�
� D

 Z b

a

ˇ
ˇf .x/

ˇ
ˇ2dx

!1=2

; (2.2.4)

or, with a norm defined by

�
�f
�
� D sup

a�x�b

ˇ
ˇf .x/

ˇ
ˇ: (2.2.5)

Remark. Every normed space
�
X; k:k� is a metric space .X; d/, where the norm

induces a metric d defined by

d.x; y/ D �
�x � y

�
�:

But the converse is not necessarily true. In other words, a metric space .X; d/ is not
necessarily a normed space. This is because of the fact that the metric is not induced
by a norm, as seen from the following example.

Example 2.2.5. We denote by s the set of all sequences of real numbers with the
metric

d.x; y/ D
1X

nD1

jxn � ynj
2n
�
1 C jxn � ynj� : (2.2.6)

This is a metric space, but the metric is not generated by a norm, so the space is not
a normed space.

Definition 2.2.3 (Banach Space). A normed space X is called complete if every
Cauchy sequence in X converges to an element of X . A complete normed space is
called a Banach space.

Example 2.2.6. The normed spaces R
N and C

N with the usual norm as given in
Examples 2.2.2(a) and (b) are Banach spaces.

Example 2.2.7. The space of continuous functions C
�
Œa; b�

�
with the norm

defined (2.2.4) is not a complete normed space. Thus, it is not a Banach space.

Example 2.2.8. The sequence space `p as given in Example 2.2.3 is a Banach space
for p � 1.
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Example 2.2.9. The set of all bounded real-valued functions M
�
Œa; b�

�
on the

closed interval Œa; b� with the norm (2.2.5) is a complete normed (Banach) space.

This is left for the reader as an exercise.
The following are some important subspaces of M

�
Œa; b�

�
:

(a) C
�
Œa; b�

�
is the space of continuous functions on the closed interval Œa; b�,

(b) D
�
Œa; b�

�
is the space of differentiable functions on Œa; b�,

(c) P
�
Œa; b�

�
is the space of polynomials on Œa; b�,

(d) R
�
Œa; b�

�
is the space of Riemann integrable functions on Œa; b�.

Each of these spaces are normed spaces with the norm (2.2.5).

Example 2.2.10. The space of continuously differentiable functions C 0 D
C 0.Œa; b�/ with the norm

�
�f
�
� D max

a�x�b

ˇ
ˇf .x/

ˇ
ˇC max

a�x�b

ˇ
ˇf 0.x/

ˇ
ˇ (2.2.7)

is a complete normed space.

It is easy to check that this space is complete.

2.3 The Lp Spaces

If p � 1 is any real number, the vector space of all complex-valued Lebesgue
integrable functions f defined on R is denoted by Lp.R/ with a norm

�
�f
�
�

p
D
�Z 1

�1

ˇ
ˇf .x/

ˇ
ˇpdx

�1=p

< 1: (2.3.1)

The number
��f
��

p
is called the Lp-norm. This function space Lp.R/ is a Banach

space. Since we do not require any knowledge of the Banach space for an
understanding of wavelets in this introductory book, the reader needs to know some
elementary properties of the Lp-norms.

The Lp spaces for the cases p D 1; p D 2; 0 < p < 1; and 1 < p < 1
are different in structure, importance, and technique, and these spaces play a very
special role in many mathematical investigations.

In particular, L1.R/ is the space of all Lebesgue integrable functions defined on
R with the L1-norm given by

�
�f
�
� D

Z 1

�1

ˇ
ˇf .x/

ˇ
ˇ dx < 1: (2.3.2)
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Definition 2.3.1 (Convergence in Norm). A sequence of functions f1; f2; : : : ;

fn � � � 2 L1.R/ is said to converge to a function f 2 L1.R/ in norm if��fn � f
��

1
! 0 as n ! 1.

So, the convergence in norm is denoted by fn ! f i.n. This is the usual
convergence in a normed space.

Usually, the symbol
Z 1

�1
f .x/ dx or

Z

R

f .x/ dx is used to represent the integral

over the entire real line. In applications, we often need to integrate functions over
bounded intervals on R. This concept can easily be defined using the integralZ

R

f .x/ dx.

Definition 2.3.2 (Integral Over an Interval). The integral of a function f over
an interval Œa; b� is denoted by

Z b

a

f .x/ dx

and defined by

Z b

a

f .x/ ¦Œa;b�.x/ dx; (2.3.3)

where ¦Œa;b� denotes the characteristic function of Œa; b� defined by

¦Œa;b�.x/ D
�

1; a � x � b;

0; otherwise

	
(2.3.4)

and f ¦Œa;b� is the product of two functions.

In other words,
Z b

a

f .x/ dx is the integral of the function equal to f on Œa; b�

and zero otherwise.

Theorem 2.3.1. If f 2 L1.R/, then the integral
Z b

a

f .x/ dx exists for every

interval Œa; b�.

The proof is left to the reader as an exercise.
The converse of this theorem is not necessarily true. For example, for the constant

function f D 1, the integral
Z b

a

f .x/ dx exists for every �1 < a < x < b < 1,

although f … L1.R/. This suggests the following definition.
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Definition 2.3.3 (Locally Integrable Functions). A function f defined on R is
called locally integrable if, for every �1 < a < x < b < 1, the integralZ b

a

f .x/ dx exists.

Although this definition requires integrability of f over every bounded interval, it

is sufficient to check that the integral
Z n

�n

f .x/ dx exists for every positive integer n.

The proof of this simple fact is left as an exercise.
Note that Theorem 2.3.1 implies that L1.R/ is a subspace of the space of locally

integrable functions.

Theorem 2.3.2. The locally integrable functions form a vector space. The absolute
value of a locally integrable function is locally integrable. The product of a locally
integrable function and a bounded locally integrable function is a locally integrable
function.

For a proof of this theorem, the reader is referred to Debnath and Mikusinski
(1999).

Theorem 2.3.3. If f is a locally integrable function such that if jf j � g for some
g 2 L1.R/, then f 2 L1.R/.

Proof. Let fn D f ¦Œa;b� for n D 1; 2; 3; : : : : Then, the sequence of functions ffng
converges to f everywhere and jf j � g for every n D 1; 2; : : : : Thus, by the
Lebesgue dominated convergence theorem, f 2 L1.R/.

The function space L2.R/ is the space of all complex-valued Lebesgue integrable
functions defined on R with the L2 � norm defined by

�
�f
�
�

2
D
�Z 1

�1

ˇ
ˇf .x/

ˇ
ˇ2dx

�1=2

< 1: (2.3.5)

Elements of L2.R/ will be called square integrable functions. Many functions in
physics and engineering, such as wave amplitude in classical or quantum mechanics,
are square integrable, and the class of L2 functions is of fundamental importance.

The space L2Œa; b� is the space of square integrable functions over Œa; b� such

that
Z b

a

ˇ
ˇf .x/

ˇ
ˇ2dx exists, Thus, the function x� 1

3 2 L2Œa; b� but x� 2
3 … L2Œa; b�.

Remark. The fact that a function belongs to Lp for one particular value of p does
not imply that it will belong to Lp for some other value of p.

Example 2.3.1. The function jxj� 1
2 e�jxj 2 L1.R/, but it does not belong to L2.R/.

On the other hand, .1 C jxj/�1 2 L2.R/, but it does not belong to L1.R/.

Example 2.3.2. Functions xne�jxj and
�
1 C x2

��1 2 L1.R/ for any integer n.
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We add a comment here on the integrability and the local integrability. The
condition of integrability is more stringent than local integrability. For example, the
functions equal almost everywhere to jxj� 1

2 and
�
1 C x2

��1
, respectively, are both

locally integrable, but only the latter one belongs to L1.R/ because jxj� 1
2 decays

very slowly as jxj ! 1. The additional constraint imposed by integrability over
that imposed by local integrability is associated with the nature of the function as
jxj ! 1. However, a function f 2 L1.R/ does not necessarily decay to zero at
infinity. For example, for the function f whose graph consists of an infinite set of
rectangular pulses with centers at x D ˙1; ˙2; : : : ; ˙n; : : : ; the pulse at x D ˙n

with height n and width n�3, we obtain that f 2 L1.R/, but it does not tend to zero
as jxj ! 1.

We make another comment on functions in Lp spaces. If a function f belongs
to Lp.a; b/ for some value of p � 1; then it also belongs to Lq.a; b/ for all q such
that 1 � q � p. In other words, raising a function to some power p > 1 makes the
infinite singularities get “worse” as p is increased. On the other hand, if a function
is bounded in R and belongs to Lp for some p � 1; then it does belong to Lq for all
q � p. In other words, raising a bounded function to some power p makes its nature
at infinity get “better” as far as integrability is concerned. For example, the function
f .x/ D �

1 C jxj��1 2 L1.R/ and is also bounded on R, and also square integrable.
However, if the condition of boundedness is relaxed, this result does not hold, even
if the function is still locally bounded, that is, it is bounded on every finite interval
on R.

Definition 2.3.4 (Convolution). The convolution of two functions f; g 2 L1.R/

is defined by

�
f � g

�
.x/ D

Z 1

�1
f .x � y/ g.y/ dy (2.3.6)

which exists for all x 2 R or at least almost everywhere. Then, it defines a function
which is called the convolution of f and g and is denoted by f � g.

We next discuss some basic properties of the convolution.

Theorem 2.3.4. If f; g 2 L1.R/, then the function f .x � y/ g.y/ is integrable for
almost all x 2 R. Furthermore, the convolution

�
f � g

�
.x/ D

Z 1

�1
f .x � y/ g.y/ dy (2.3.7)

is an integrable function and .f � g/ 2 L1.R/ and the following inequality holds:

��f � g
��

1
� ��f

��
1

��g
��

1
: (2.3.8)

Proof. We refer to Debnath and Mikusinski (1999) for the proof of the first part of
the theorem, that is, .f � g/ 2 L1.R/.
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To prove inequality (2.3.8), we proceed as follows:

�
�f � g

�
�

1
D
Z 1

�1

ˇ
ˇf � g

ˇ
ˇ dx D

Z 1

�1

ˇ
ˇ
ˇ̌
Z 1

�1
f .x � y/ g.y/ dy

ˇ
ˇ
ˇ̌dx

�
Z 1

�1

Z 1

�1

ˇ
ˇf .x � y/

ˇ
ˇ
ˇ
ˇg.y/ dy

ˇ
ˇ dx

D
Z 1

�1

Z 1

�1

ˇ
ˇf .x � y/

ˇ
ˇ
ˇ
ˇg.y/

ˇ
ˇdy dx; by Fubini’s Theorem

D
Z 1

�1

ˇ
ˇf .x � y/

ˇ
ˇdx

Z 1

�1

ˇ
ˇg.y/

ˇ
ˇ dy

D
Z 1

�1

ˇ̌
f .x/

ˇ̌
dx

Z 1

�1

ˇ̌
g.y/

ˇ̌
dy D ��f

��
1

��g
��

1
:

Thus, the proof is complete.

Theorem 2.3.5. If f; g 2 L1.R/, then the convolution is commutative, that is,
�
f � g

�
.x/ D �

g � f
�
.x/: (2.3.9)

The proof follows easily by the change of variables.

Theorem 2.3.6. If f; g; h 2 L1.R/, then the following properties hold:

(a)

.f � g/ � h D f � .g � h/ (associative); (2.3.10)

(b)

.f C g/ � h D f � h C g � h (distributive): (2.3.11)

We use Fubini’s theorem to prove that the convolution is associative. We have

�
f � g

� � h D .g � f / � h.x/ D
Z 1

�1

�Z 1

�1
g.x � z � y/f .y/ dy

�
h.z/ d z

D
Z 1

�1

Z 1

�1
f .y/ g.x � z � y/h.z/ d z dy

D f � �g � h
�
.x/:

The proof of part (b) is left to the reader as an exercise.

Remarks. The properties of convolution just described above shows that the L1.R/

is a commutative Banach algebra under ordinary addition, multiplication defined
by convolution, and k:k1 as norm. This Banach algebra is also referred to as the
L1-algebra on R.
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Theorem 2.3.7. If f is an integrable function and g is a bounded locally integrable
function, then the convolution f � g is a continuous function.

Proof. First, note that since
ˇ
ˇf .x � y/ g.y/

ˇ
ˇ � M

ˇ
ˇf .x � y/

ˇ
ˇ for some constant

M and every x, the integral
Z 1

�1
f .x � y/ g.y/ dy is defined at every x 2 R by

Theorem 2.3.3. Next, we show that f � g is a continuous function.

For any x; h 2 R, we have

ˇ̌
.f � g/.x C h/ � .f � g/.x/

ˇ̌ D
ˇ
ˇ̌
ˇ

Z 1

�1
f .x C h � y/ g.y/ dy �

Z 1

�1
f .x � y/ g.y/ dy

ˇ
ˇ̌
ˇ

D
ˇ
ˇ̌
ˇ

Z 1

�1


f .x C h � y/ � f .x � y/

�
g.y/ dy

ˇ
ˇ̌
ˇ

�
Z 1

�1
ˇ
ˇf .x C h � y/ � f .x � y/

ˇ
ˇ
ˇ
ˇg.y/

ˇ
ˇdy

� M

Z 1

�1
ˇ
ˇf .0 C h � y/ � f .0 � y/

ˇ
ˇdy;

which tends to zero as h ! 0 since

lim
h!0

Z 1

�1

ˇ̌
f .h � y/ � f .�y/

ˇ̌
dy D 0:

Thus, the proof is complete.

2.4 Generalized Functions with Examples

The Dirac delta function •.x/ is the best known of a class of entities called general-
ized functions. The generalized functions are the natural mathematical quantities
which are used to describe many abstract notions which occur in the physical
sciences. The impulsive force, the point mass, the point charge, the point dipole,
and the frequency response of a harmonic oscillator in a nondissipating medium are
all aptly represented by generalized functions. The generalized functions play an
important role in the Fourier transform analysis, and they can resolve the inherent
difficulties that occur in classical mathematical analysis. For example, every locally
integrable function (and indeed every generalized function) can be considered as the
integral of some generalized function and thus becomes infinitely differentiable in
the new sense. Many sequences of functions which do not converge in the ordinary
sense to a limit function can be found to converge to a generalized function. Thus,
in many ways the idea of generalized functions not only simplifies the rules of
mathematical analysis but also becomes very useful in the physical sciences.

In order to give a sound mathematical formulation of quantum mechanics, Dirac
in 1920 introduced the delta function •.x/ having the following properties:
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Fig. 2.1 The sequence of functions f•n.x/g for n D 1; 2; 3 : : :

•.x/ D 0; x 6D 0Z 1

�1
•.x/ dx D 1

9
=

;
: (2.4.1)

These properties cannot be satisfied by any ordinary function in classical mathe-
matics. Hence, the delta function is not really a function in the classical sense.
However, it can be regarded as the limit of a sequence of ordinary functions. A good
example of such a sequence •n.x/ is a sequence of Gaussian functions given by

•n.x/ D
r

n

 
exp

��nx2
�

: (2.4.2)

Clearly, •n.x/ ! 0 as n ! 1 for any x 6D 0 and •n.x/ ! 1 as n ! �1, as
shown in Fig. 2.1. Also, for all n D 1; 2; 3; : : : ;

Z 1

�1
•n.x/ dx D 1

and

lim
n!1

Z 1

�1
•n.x/ dx D

Z 1

�1
lim

n!1 •n.x/ dx D
Z 1

�1
•.x/ dx D 1: (2.4.3)

Thus, the Dirac delta function can be regarded as the limit of sequence •n.x/ of
ordinary functions, and we write

•.x/ D lim
n!1 •n.x/ D lim

n!1

r
n

 
exp

��nx2
�

: (2.4.4)
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This approach of defining new entities, such as •.x/, which do not exist as
ordinary functions becomes meaningful mathematically and useful from a physical
point of view.

Another alternative definition is based on the idea that if a function f is
continuous at x D a, then •.x/ is defined by its fundamental property

Z 1

�1
f .x/ •.x � a/ dx D f .a/: (2.4.5)

Or, equivalently,
Z 1

�1
f .x/ •.x/ dx D f .0/: (2.4.6)

This is a rather more formal approach pioneered by Laurent Schwartz in the late
1940s. Thus, the concept of the delta function is clear and simple in modern
mathematics. It has become very useful in science and engineering. Physically, the
delta function represents a point mass, that is, a particle of unit mass is located at
the origin. This means that a point particle can be regarded as the limit of a sequence
of continuous mass distribution. The Dirac delta function is also interpreted as a
probability measure in terms of the formula (2.4.5).

Definition 2.4.1 (Support of a Function). The support of a function f W R ! C

is
˚
x W f .x/ 6D 0

�
and denoted by supp.f /. A function has bounded support if

there are two real numbers a; b such that supp.f / � .a; b/. By a compact support,
we mean a closed and bounded support.

Definition 2.4.2 (Smooth or Infinitely Differentiable Function). A function f W
R ! C is called smooth or infinitely differentiable if its derivatives of all orders
exist and are continuous.

A function f W R ! C is said to be n-times continuously differentiable if its first
n derivatives exist and are continuous.

Definition 2.4.3 (Test Functions). A test function is an infinitely differentiable
function on R whose support is compact. The space of all test functions is denoted
by D.R/ or simply by D . The graph of a “typical” test function is shown in Fig. 2.2.

Since smooth (infinitely differentiable) functions are continuous and the support
of a continuous function is always closed, test functions can be equivalently defined
as follows: ¥ is a test function if it is a smooth function vanishing outside a
bounded set.

Example 2.4.1. A function ¥ defined by

¥.x/ D
(

exp
h�

x2 � a2
��1
i

; for jxj < a;

0; otherwise
(2.4.7)

is a test function with support .�a; a/.
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Fig. 2.2 A typical test function

Using this test function, we can easily generate a number of examples. The
following are test functions:

¥.ax C b/; a; b are constants and a ¤ 0;

f .x/ ¥.x/; f is an arbitrary smooth function,
¥.n/.x/; n is a positive integer.

Definition 2.4.4 (Convergence of Test Functions). Suppose f¥ng is a sequence
of test functions and ¥ is another test function. We say that the sequence f¥ng
converges to ¥ in D , denoted by ¥n

D! ¥, if the following two conditions are
satisfied:

(a) ¥1; ¥2; : : : ; ¥n; : : : and ¥ vanish outside some bounded interval Œa; b� � R,
(b) for each k; ¥n.x/ ! ¥.x/ as n ! 1 uniformly for some x 2 Œa; b�; where

¥.k/.x/ denotes the kth derivative of ¥.

Definition 2.4.5 (Generalized Function or Distribution). A continuous linear
functional F on D is called a generalized function or distribution. In other words, a
mapping F W D ! C is called a generalized function or distribution if

(a) F.a¥ C b§/ D aF.¥/ C bF.§/ for every a; b; 2 C and ¥; § 2 D.R/,
(b) F.¥n/ ! F.¥/ ( in C) whenever ¥n ! ¥ in D .

The space of all generalized functions is denoted by D 0.R/ or simply by D 0. It is
convenient to write .F; ¥/ instead of F.¥/.

Distributions generalize the concept of a function. Formally, a function on R is
not a distribution because its domain is not D . However, every locally integrable
function f on R can be identified with a distribution F defined by

.F; ¥/ D
Z

R

f .x/ ¥.x/ dx: (2.4.8)

The distribution F is said to be generated by the function f .
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Definition 2.4.6 (Regular and Singular Distributions). A distribution F 2 D 0 is
called a regular distribution if there exists a locally integrable function f such that

.F; ¥/ D
Z

R

f .x/ ¥.x/ dx (2.4.9)

for every ¥ 2 D . A distribution that is not regular is called a singular distribution.

The fact that (2.4.9) defines a distribution is because of the following results.
First, the product f ¥ is integrable because it vanishes outside a compact support

Œa; b�. In other words,

.F; ¥/ D
Z 1

�1
f .x/ ¥.x/ dx D

Z b

a

f .x/ ¥.x/ dx

exists. Hence, F is a linear functional on D . Also,

ˇ
ˇ.F; ¥n/ � .F; ¥/

ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ

Z b

a



¥n.x/ � ¥.x/

�
f .x/dx

ˇ
ˇ
ˇ
ˇ
ˇ

�
Z b

a

ˇ
ˇ¥n.x/ � ¥.x/

ˇ
ˇ
ˇ
ˇf .x/

ˇ
ˇdx

� max
ˇ
ˇ¥n.x/ � ¥.x/

ˇ
ˇ
Z b

a

ˇ
ˇf .x/

ˇ
ˇdx ! 0 as n ! 1;

because ¥n ! ¥ uniformly. Hence,

.F; ¥n/ ! .F; ¥/ as n ! 1:

This means that F is a continuous linear functional, that is, F is a distribution.
Thus, the class of generalized functions contains elements which corresponds to

ordinary functions as well as singular distributions. We now give an interpretation
of .F; ¥/.

The integral
Z

R

f .x/¥.x/ dx in (2.4.9) can be interpreted, at least for some test

function ¥, as the average value of f with respect to probability whose density
function is ¥. Thus, .F; ¥/ can be regarded as an average value of F and of
distributions as entities that have average values in neighborhoods of every point.
However, in general, distributions may not have values at points. This interpretation
is very natural from a physical point of view. In fact, when a quantity is measured,
the result is not the exact value at a single point.

Example 2.4.2. If � is an open set in R, then the functional F defined by

.F; ¥/ D
Z

�

¥.x/ dx (2.4.10)
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is a distribution. Note that it is a regular distribution since

.F; ¥/ D
Z 1

�1
¥.x/ ¦�.x/ dx; (2.4.11)

where ¦� is the characteristic function of the set �.

In particular, if � D .0; 1/, we obtain a distribution

.H; ¥/ D
Z 1

0

¥.x/ dx (2.4.12)

which is called the Heaviside function. The symbol H is used to denote this
distribution as well as the characteristic function of � D .0; 1/.

Example 2.4.3 (Dirac Distribution). One of the most important examples of gener-
alized functions is the so-called Dirac delta function or, more precisely, the Dirac
distribution. It is denoted by • and defined by

.•; ¥/ D
Z 1

�1
¥.x/•.x/ dx D ¥.0/: (2.4.13)

The linearity of • is obvious. To prove the continuity, note that ¥n ! ¥ in D
implies that ¥n ! ¥ uniformly on R and hence ¥n.x/ ! ¥.x/ for every x 2 R.
This implies that the Dirac delta function is a singular distribution.

Example 2.4.4.

(a)

�
•.x � a/; ¥

� D �
•.x/; ¥.x C a/

� D ¥.a/: (2.4.14)

(b)

�
•.ax/; ¥

� D 1

jaj ¥.0/: (2.4.15)

We have

�
•.x � a/; ¥

� D
Z 1

�1
•.x � a/ ¥.x/ dx

D
Z 1

�1
•.y/ ¥.y C a/ dy D ¥.a/:

This is called the shifting property of the delta function.

Similarly,

�
•.ax/; ¥

� D
Z 1

�1
•.ax/ ¥.x/ dx D

Z 1

�1
•.y/ ¥

�y

a


 dy

a
D 1

a
¥.0/:



44 2 Hilbert Spaces and Orthonormal Systems

Hence, for a 6D 0,

•.ax/ D 1

jaj ¥.0/: (2.4.16)

The success of the theory of distributions is essentially due to the fact that
most concepts of ordinary calculus can be defined for distributions. While adopting
definitions and rules for distributions, we expect that new definitions and rules will
agree with classical ones when applied to regular distributions. When looking for an
extension of some operation A, which is defined for ordinary functions, we consider
regular distributions defined by (2.4.9). Since we expect AF to be the same as Af ,
it is natural to define

.AF; ¥/ D
Z

R

Af .x/ ¥.x/ dx:

If there exists a continuous operation A� which maps D into D such that
Z

Af .x/ ¥.x/ dx D
Z

f .x/ A�¥.x/ dx;

then it makes sense to introduce, for an arbitrary distribution F ,

.AF; ¥/ D .F; A�¥/:

If this idea is used to give a natural definition of a derivative of a distribution, it
suffices to observe

Z

R

�
@

@x
f .x/

	
¥.x/ dx D �

Z

R

f .x/
@

@x
¥.x/ dx:

Definition 2.4.7 (Derivatives of a Distribution). The derivative of a distribution
F is a distribution F 0 defined by

�
dF

dx
; ¥

�
D �

�
F;

d¥

dx

�
: (2.4.17)

This result follows by integrating by parts. In fact, we find

�
dF

dx
; ¥

�
D
Z 1

�1
dF

dx
¥.x/ dx D 


F.x/¥.x/
�1
�1 �

Z 1

�1
F.x/¥0.x/ dx D ��F; ¥0.x/

�
;

where the first term vanishes because ¥ vanishes at infinity.
More generally,

�
F .k/; ¥

� D .�1/k
�
F; ¥.k/

�
; (2.4.18)

where F .k/.x/ is the kth derivative of distribution F .



2.4 Generalized Functions with Examples 45

Thus, the extension of the idea of a function to that of a distribution has a major
success in the sense that every distribution has derivatives of all orders which are
again distributions.

Example 2.4.5 (Derivative of the Heaviside Function).
(a)

H 0.x/ D •.x/: (2.4.19)

We have

�
H 0; ¥

� D
Z 1

0

H 0.x/ ¥.x/ dx D 

H.x/¥.x/

�1
0

�
Z 1

0

H.x/ ¥0.x/ dx

D �
Z 1

0

¥0.x/ dx D ¥.0/ D .•; ¥/; since ¥ vanishes at infinity.

This proves the result.
(b) (Derivatives of the Dirac Delta Function).

.•0; ¥/ D �.•; ¥0/ D �¥0.0/; (2.4.20)
�
•.n/; ¥

� D .�1/n¥.n/.0/: (2.4.21)

We have

.•0; ¥/ D
Z 1

�1
•0.x/ ¥.x/ dx D 


•.x/¥.x/
�1

�1�
Z 1

�1
•.x/ ¥0.x/ dx D �¥0.0/;

since ¥ vanishes at infinity.

Result (2.4.21) follows from a similar argument.

Example 2.4.6. If h is a smooth function and F is a distribution, then the derivative
of the product .hF / is given by

.hF /0 D hF 0 C h0F: (2.4.22)

We have, for any ¥ 2 D ,
�
.hF /0; ¥



D ��hF; ¥0�

D ��F; h¥0�

D �
�
F; .h¥/0 � h0¥




D �
F 0; h¥

�C �
F; h0¥

�

D �
hF 0; ¥

�C �
h0F; ¥

�

D �
hF 0 C h0F; ¥

�
:

This proves the result.
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Example 2.4.7. The function jxj is locally integrable and differentiable for all
x ¤ 0 but certainly not differentiable at x D 0. The generalized derivative can
be calculated as follows.

For any test function ¥, we have

�ˇ̌
x
ˇ̌0

; ¥



D ��jxj; ¥0�

D �
Z 1

�1
jxj ¥0.x/ dx D

Z 0

�1
x ¥0.x/ dx �

Z 1

0

x ¥0.x/ dx

which is, integrating by parts and using the fact that ¥ vanishes at infinity,

D �
Z 0

�1
¥.x/ dx C

Z 1

0

¥.x/ dx: (2.4.23)

Thus, we can write (2.4.23) in the form

�ˇ
ˇx
ˇ
ˇ0; ¥



D
Z 1

�1
sgn .x/¥.x/ dx D .sgn; ¥/ for al ¥ 2 D :

Therefore,

ˇ̌
x
ˇ̌0 D sgn .x/; (2.4.24)

where sgn .x/ is called the sign function, defined by

sgn .x/ D
�

1; x > 0;

�1; x < 0;
(2.4.25)

Obviously,

H.x/ D 1

2
.1 C sgn x/ : (2.4.26)

Or, equivalently,

sgn x D 2H.x/ � 1: (2.4.27)

Thus,

d

dx
.sgn x/ D 2H 0.x/ D 2 •.x/: (2.4.28)

Definition 2.4.8 (Antiderivative of a Distribution). If F is a distribution onR and
F 2 D 0.R/, a distribution G on R is called an antiderivative of F if G0 D F:
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Theorem 2.4.1. Every distribution has an antiderivative.

Proof. Suppose ¥0 2 D.R/ is a fixed test function such that

Z 1

�1
¥0.x/ dx D 1: (2.4.29)

Then, for every test function ¥0 2 D.R/, there exists a test function ¥1 2 D.R/

such that ¥ D K¥0 C ¥1, where

K D
Z 1

�1
¥.x/ dx and

Z 1

�1
¥1.x/ dx D 0:

Suppose F 2 D 0.R/. We define a functional G on D.R/ by
�
G; ¥

� D �
G; K¥0 C ¥1

� D CK � �
F; §

�
;

where C is a constant and § is a test defined by

§.x/ D
Z x

�1
¥1.t/ dt:

Then, G is a distribution and G0 D F:

We close this section by adding an example of application to partial differential
equations.

Consider a partial differential operator L of order m in N variables

L D
X

j’j�m

A’D’; (2.4.30)

where ’ D .’1; ’2; : : : ; ’N / is a multi-index, the ’n’s are nonnegative integers,
j’j D ’1 C ’2 C � � � C ’N ; A’ D A’1;’2;:::;’N .x1; x2; : : : ; xN / are functions on R

N

(possibly constant), and

D’ D
�

@

@x1

�’1

: : :

�
@

@xN

�’N

D @j’j

@x
’1

1 : : : @x
’N

N

: (2.4.31)

Equations of the form

LG D • (2.4.32)

are of particular interest. Suppose G is a distribution which satisfies (2.4.32). Then,
for any distribution f with compact support, the convolution .f � G/ is a solution
of the partial differential equation

Lu D f: (2.4.33)
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We have

L.f � G/ D
X

j’j�m

A’D’
�
f � G

�

D
X

j’j�m

A’

�
f � D’G

�

D f �
0

@
X

j’j�m

A’D’G

1

A D f � LG

D f � • D f:

This explains the importance of the equation Lu D •, at least in the context of the
existence of solutions of partial differential equations.

2.5 Definition and Examples of an Inner Product Space

Definition 2.5.1 (Inner Product Space). A (real or complex) inner product space
is a (real or complex) vector space X with an inner product defined in X as a
mapping

h:; :i W X � X ! C

such that, for any x; y; z 2 X and ’; “ 2 C (a set of complex numbers), the
following conditions are satisfied:

(a) hx; yi D hy; xi (the bar denotes the complex conjugate),
(b) h’x C “y; zi D ’ hx; zi C “ hy; zi,
(c) hx; xi � 0; and hx; xi D 0 implies x D 0.

Clearly, an inner product space is a vector space with an inner product specified.
Often, an inner product space is called a pre-Hilbert space or a unitary space.

According to the above definition, the inner product of two vectors is a complex
number. The reader should be aware that other symbols are sometimes used to
denote the inner product: .x; y/ or hx=yi. Instead of Nz, the symbol z� is also used
for the complex conjugate. In this book, we will use hx; yi and Nz.

By (a), hx; xi D hx; xi which means that hx; xi is a real number for every x 2 X .
It follows from (b) that

hx; ’y C “zi D h’y C “z; xi D ’ hy; xi C “ hz; xi D N’ hx; yi C N“ hx; zi:
In particular,

h’x; yi D ’ hx; yi and hx; ’yi D N’ hx; yi:
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Hence, if ’ D 0;

h0; yi D hx; 0i D 0:

The algebraic properties (a) and (b) are generally the same as those governing
the scalar product in ordinary vector algebra with which the reader should be
familiar. The only property that is not obvious is that in a complex space the inner
product is not linear but conjugate linear with respect to the second factor; that is,
hx; ’yi D N’ hx; yi:
Example 2.5.1. The simplest but important example of an inner product space is
the space of complex numbersC. The inner product in C is defined by hx; yi D x Ny:

Example 2.5.2. The space C
N of ordered N -tuples x D .x1; : : : ; xN / of complex

numbers, with the inner product defined by

hx; yi D
NX

kD1

xk Nyk; x D .x1; : : : ; xN / ; y D .y1; : : : ; yN / ;

is an inner product space.

Example 2.5.3. The space `2 of all infinite sequences of complex numbers fxkg
such that

1X

kD1

jxkj2 < 1 with the inner product defined by

hx; yi D
1X

kD1

xk Nyk; where x D .x1; x2; x3; : : : / ; y D .y1; y2; y3; : : : / ;

is an infinite dimensional inner product space. As we will see later, this space is one
of the most important examples of an inner product space.

Example 2.5.4. Consider the space of infinite sequences fxng of complex numbers
such that only a finite number of terms are nonzero. This is an inner product space
with the inner product defined as in Example 2.5.3.

Example 2.5.5. The space C
�
Œa; b�

�
of all continuous complex-valued functions on

the interval Œa; b� with the inner product

hf; gi D
Z b

a

f .x/ g.x/ dx (2.5.1)

is an inner product space.

Example 2.5.6 (The Space of Square Integrable Functions). The function space
L2
�
Œa; b�

�
of all complex-valued Lebesgue square integrable functions on the

interval Œa; b� with the inner product defined by (2.5.1) is an inner product space.
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Similarly, the function space L2.R/ is also an inner product space with the inner
product defined by

hf; gi D
Z b

a

f .x/ g.x/ dx; (2.5.2)

where f; g 2 L2.R/.
Since

fg D 1

4

h�
f C g

�2 � �
f � g

�2i
;

and

ˇ
ˇfg

ˇ
ˇ � 1

2

�ˇ
ˇf
ˇ
ˇ2 C ˇ

ˇg
ˇ
ˇ2



;

it follows that f; g 2 L1.R/.
Furthermore,

ˇ
ˇf C g

ˇ
ˇ2 � ˇ

ˇf
ˇ
ˇ2 C 2

ˇ
ˇfg

ˇ
ˇC ˇ

ˇg
ˇ
ˇ2:

Integrating this inequality over R shows that .f C g/ 2 L2.R/.
It can be shown that L2.R/ is a complete normed space with the norm induced

by (2.5.2), that is,

�
�f
�
�

2
D
�Z

R

ˇ
ˇf .x/

ˇ
ˇ2dx

	 1
2

: (2.5.3)

This is exactly the L2-norm defined by (2.3.1). Both spaces L2
�
Œa; b�

�
and L2.R/

are of special importance in theory and applications.

Example 2.5.7. Suppose D is a compact set in R
3 and X D C 2.D/ is the space of

complex-valued functions that have continuous second partial derivatives in D. If
u 2 D, we assume

ru D
�

@u

@x1

;
@u

@x2

;
@u

@x3

�
: (2.5.4)

We define the inner product by the integral

hu; vi D
Z

D

�
uNv C @u

@x1

� @Nv
@x1

C @u

@x2

� @Nv
@x2

C @u

@x3

� @Nv
@x3

�
dx; (2.5.5)

where x D .x1; x2; x3/:
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Clearly, this is linear in u and also hu; vi D hv; ui and hu; vi � 0. Furthermore,

if hu; ui D 0, then
Z

D

juj2dx D 0: Since u is continuous, this means that u D 0:

Hence, (2.5.5) defines an inner product in the space X . Obviously, the norm is
given by

�
�u
�
� D

�Z

D

�ˇ
ˇu
ˇ
ˇ2 C ˇ

ˇru
ˇ
ˇ2



dx

� 1
2

; (2.5.6)

where

ˇ
ˇru

ˇ
ˇ2 D

ˇ
ˇ
ˇ̌ @u

@x1

ˇ
ˇ
ˇ̌
2

C
ˇ
ˇ
ˇ̌ @u

@x2

ˇ
ˇ
ˇ̌
2

C
ˇ
ˇ
ˇ̌ @u

@x3

ˇ
ˇ
ˇ̌
2

: (2.5.7)

2.6 Norm in an Inner Product Space

An inner product space is a vector space with an inner product. It turns out that
every inner product space is also a normed space with the norm defined by

�
�x
�
� D

p
hx; xi:

First notice that the norm is well defined because hx; xi is always a nonnegative
(real) number. Condition (c) of Definition 2.5.1 implies that kxk D 0 if and only if
x D 0. Moreover,

�
�œx

�
� D

p
hœx; œxi D

q
œ Nœhx; xi D ˇ

ˇœ
ˇ
ˇ
�
�x
�
�:

It thus remains to prove the triangle inequality. This is not as simple as the first two
conditions. We first prove the so-called Schwarz’s inequality, which will be used in
the proof of the triangle inequality.

Theorem 2.6.1 (Schwarz’s Inequality). For any two elements x and y of an inner
product space, we have

ˇ̌hx; yiˇ̌ � ��x
����y

��: (2.6.1)

The equality
ˇ̌hx; yiˇ̌ D ��x

����y
�� holds if and only if x and y are linearly dependent.

Proof. If y D 0, then (2.6.1) is satisfied because both sides are equal to zero.
Assume then y ¤ 0. By (c) in Definition 2.5.1, we have

0 � hx C ’y; x C ’yi D hx; xi C N’ hx; yi C ’ hy; xi C j’j2hy; yi: (2.6.2)
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Now, put ’ D �hx; yi=hy; yi in (2.6.2) and then multiply by hy; yi to obtain

0 � hx; xihy; yi � ˇ
ˇhx; yiˇˇ2:

This gives Schwarz’s inequality.

If x and y are linearly dependent, then y D ’x for some ’ 2 C. Hence,

ˇ̌hx; yiˇ̌ D ˇ̌hx; ’xiˇ̌ D jN’jˇ̌hx; xiˇ̌ D j’j��x
����x

�� D ��x
����’x

�� D ��x
����y

��:

Now, let x and y be vectors such that
ˇ
ˇhx; yiˇˇ D �

�x
�
�
�
�y
�
�. Or, equivalently,

hx; yihy; xi D hx; xihy; yi: (2.6.3)

We next show that hy; yix � hx; yiy D 0, which shows that x and y are linearly
dependent. Indeed, by (2.6.3), we have

D
hy; yix � hx; yiy; hy; yix � hx; yiy

E

Dhy; yi2hx; xi � hy; yihy; xihx; yi � hx; yihy; yihy; xi
Chx; yihy; xihy; yi D 0:

Thus, the proof is complete.

Corollary 2.6.1 (Triangle Inequality). For any two elements x and y of an inner
product space X , we have

�
�x C y

�
� � �

�x
�
�C �

�y
�
�: (2.6.4)

Proof. When ’ D 1, equality (2.6.2) can be written as

�
�x C y

�
�2 D hx C y; x C yi D hx; xi C 2 Re hx; yi C hy; yi

� hx; xi C 2
ˇ
ˇhx; yiˇˇC hy; yi

� �
�x
�
�2 C 2

�
�x
�
�
�
�y
�
�C �

�y
�
�2

(by Schwarz’s inequality)

� ���x
�
�C �

�y
�
��2 ; (2.6.5)

where Re z denotes the real part of z 2 C. This proves the triangle inequality.

Definition 2.6.1 (Norm in an Inner Product Space). By the norm in an inner
product space X , we mean the functional defined by

��x
�� D

p
hx; xi: (2.6.6)
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We have proved that every inner product space is a normed space. It is only
natural to ask whether every normed space is an inner product space. More precisely,
is it possible to define in a normed space

�
X; k:k� with an inner product h:; :i such

that kxk D phx; xi for every x 2 X? In general, the answer is negative. In the
following theorem, we prove a property of the norm in an inner product space that
is a necessary and sufficient condition for a normed space to be an inner product
space.

The next theorem is usually called the parallelogram law because of its remark-
able geometric interpretation, which reveals that the sum of the squares of the
diagonals of a parallelogram is the sum of the squares of the sides. This characterizes
the norm in a Hilbert space.

Theorem 2.6.2 (Parallelogram Law). For any two elements x and y of an inner
product space X , we have

�
�x C y

�
�2 C �

�x � y
�
�2 D 2

��
�x
�
�2 C �

�y
�
�2



: (2.6.7)

Proof. We have

�
�x C y

�
�2 D hx C y; x C yi D hx; xi C hx; yi C hy; xi C hy; yi

and hence,

�
�x C y

�
�2 D �

�x
�
�2 C hx; yi C hy; xi C �

�y
�
�2

: (2.6.8)

Now, replace y by �y to obtain

�
�x � y

�
�2 D �

�x
�
�2 � hx; yi � hy; xi C �

�y
�
�2

: (2.6.9)

By adding (2.6.8) and (2.6.9), we obtain the parallelogram law (2.6.7).

One of the most important consequences of having the inner product is the
possibility of defining orthogonality of vectors. This makes the theory of Hilbert
spaces so much different from the general theory of Banach spaces.

Definition 2.6.2 (Orthogonal Vectors). Two vectors x and y in an inner product
space are called orthogonal (denoted by x ? y) if hx; yi D 0.

Theorem 2.6.3 (Pythagorean Formula). For any pair of orthogonal vectors x

and y, we have

�
�x C y

�
�2 D �

�x
�
�2 C �

�y
�
�2

: (2.6.10)

Proof. If x ? y, then hx; yi D 0 and thus the equality (2.6.10) follows immediately
from (2.6.8).
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In the definition of the inner product space, we assume that X is a complex vector
space. However, it is possible to define a real inner product space. Then condition
(b) in Definition 2.5.1 becomes hx; yi D hy; xi. All of the above theorems hold
in the real inner product space. If in Examples 2.5.1–2.5.6, the word complex is
replaced by real and C by R, we obtain a number of examples of real inner product
spaces. A finite-dimensional real inner product space is called a Euclidean space.

If x D .x1; x2; : : : ; xN / and y D .y1; y2; : : : ; yN / are vectors in R
N , then the

inner product hx; yi D
NX

kD1

xk yk can be defined equivalently by

hx; yi D �
�x
�
�
�
�y
�
� cos ™;

where ™ is the angle between vectors x and y. In this case, Schwarz’s inequality
becomes

ˇ
ˇ cos ™

ˇ
ˇ D

ˇ̌hx; yiˇ̌
�
�x
�
�
�
�y
�
� � 1:

2.7 Definition and Examples of Hilbert Spaces

Definition 2.7.1 (Hilbert Space). A complete inner product space is called a
Hilbert space.

By the completeness of an inner product space X , we mean the completeness of
X as a normed space. Now, we discuss completeness of the inner product spaces
and also give some new examples of inner product spaces and Hilbert spaces.

Example 2.7.1. Since the space C is complete, it is a Hilbert space.

Example 2.7.2. Clearly, both R
N and C

N are Hilbert spaces.

In R
N , the inner product is defined by hx; yi D

NX

kD1

xk yk:

In C
N , the inner product is defined by hx; yi D

NX

kD1

xk Nyk:

In both cases, the norm is defined by

�
�x
�
� D

p
hx; xi D

 
NX

kD1

ˇ
ˇxk

ˇ
ˇ2
! 1

2

Since these spaces are complete, they are Hilbert spaces.
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Example 2.7.3. The sequence space l2 defined in Example 2.5.3 is a Hilbert space.

Example 2.7.4. The space X described in Example 2.5.4 is an inner product space
which is not a Hilbert space because it is not complete. The sequence

xn D
�

1;
1

2
;

1

3
; : : : ;

1

n
; 0; 0; : : :

�

is a Cauchy sequence because

lim
n;m!1

�
�xn � xm

�
� D lim

n;m!1

"
nX

kDmC1

1

k2

# 1
2

D 0 for m < n:

However, the sequence does not converge in X because its limit

�
1;

1

2
;

1

3
; : : :

�
is

not in X . However, this sequence fxng converges in l2.

Example 2.7.5. The space defined in Example 2.5.5 is another example of an
incomplete inner product space. In fact, we consider the following sequence of
functions in C .Œ0; 1�/ (see Fig. 2.3):

fn.x/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1 if 0 � x � 1

2
;

1 � 2n

�
x � 1

2

�
if

1

2
� x �

�
1

2n
C 1

2

�
;

0 if

�
1

2n
C 1

2

�
� x � 1:

Fig. 2.3 Sequence of functions fn.x/
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Evidently, the
˚
fn

�
are continuous. Moreover,

�
�fn � fm

�
� �

�
1

n
C 1

m

�1=2

! 0 as m; n ! 1:

Thus,
˚
fn

�
is a Cauchy sequence. It is easy to check that this sequence converges to

the limit function

f .x/ D

8
<̂

:̂

1 if 0 � x � 1

2
;

0 if
1

2
< x � 1:

The limit function is not continuous and hence is not an element of C
�
Œ0; 1�

�
.

Consequently, C
�
Œ0; 1�

�
is not a Hilbert space.

Example 2.7.6. The function space L2
�
Œa; b�

�
is a Hilbert space. Since L2

�
Œa; b�

�

is a normed space, it suffices to prove it is complete. Let
˚
fn

�
be a Cauchy sequence

in L2
�
Œa; b�

�
, that is,

Z b

a

ˇ̌
fm � fn

ˇ̌2
dx ! 0 as m; n ! 1:

Schwarz’s inequality implies that as m; n ! 1
Z b

a

ˇ̌
fm�fn

ˇ̌
dx �

sZ b

a

dx

sZ b

a

ˇ̌
fm � fn

ˇ̌2
dx D

p
b � a

sZ b

a

ˇ̌
fm � fn

ˇ̌2
dx ! 0:

Thus,
˚
fn

�
is a Cauchy sequence in L1

�
Œa; b�

�
and hence converges to a function f

in L1
�
Œa; b�

�
, that is,

Z b

a

ˇ
ˇf � fn

ˇ
ˇdx ! 0 as n ! 1:

By Riesz’s theorem, there exists a subsequence
˚
fpn

�
convergent to f almost

everywhere. Clearly, given an © > 0; we have

Z b

a

ˇ
ˇfpm � fpn

ˇ
ˇ2dx < ©

for sufficiently large m and n. Hence, by letting n ! 1, we obtain

Z b

a

ˇ̌
fpm � f

ˇ̌2
dx � ©
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by Fatou’s lemma (see Theorem 2.8.5 in Debnath and Mikusinski 1999, p. 60). This
proves that f 2 L2

�
Œa; b�

�
. Moreover

Z b

a

ˇ
ˇf � fn

ˇ
ˇ2dx �

Z b

a

ˇ
ˇf � fpn

ˇ
ˇ2dx C

Z b

a

ˇ
ˇfpn � fn

ˇ
ˇ2dx < 2©

for sufficiently large n. This shows that the sequence
˚
fn

�
converges to f in

L2
�
Œa; b�

�
. Thus, the completeness is proved.

Example 2.7.7. Consider the space C0.R/ of all complex-valued continuous func-
tions that vanish outside some finite interval. This is an inner product space with the
inner product

hf; gi D
Z 1

�1
f .x/ g.x/ dx:

Note that there is no problem with the existence of the integral because the
product f .x/ g.x/ vanishes outside a bounded interval.

We now show that C0.R/ is not complete. We define

fn.x/ D
(

.sin  x/ =
�
1 C jxj� if jxj � n;

0 if jxj > n:

Clearly, fn 2 C0.R/ for every n 2 N. For n > m, we have

�
�fn �fm

�
�2 D

Z 1

�1

ˇ
ˇfn.x/�fm.x/

ˇ
ˇ2dx � 2

Z n

m

dx
�
1 C ˇ

ˇx
ˇ
ˇ2

 ! 0 as m ! 1:

This shows that
˚
fn

�
is a Cauchy sequence. On the other hand, it follows directly

from the definition of fn that

lim
n!1 fn.x/ D sin  x

�
1 C jxj� ;

which does not belong to C0.R/.

Example 2.7.8. We denote by L2;¡
�
Œa; b�

�
the space of all complex-valued square

integrable functions on Œa; b� with a weight function ¡ which is positive almost
everywhere, that is, f 2 L2;¡

�
Œa; b�

�
if

Z b

a

ˇ
ˇf .x/

ˇ
ˇ2¡.x/ dx < 1:

This is a Hilbert space with the inner product

hf; gi D
Z b

a

f .x/ g.x/ ¡.x/ dx: (2.7.1)
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Example 2.7.9 (Sobolev Space). Let � be an open set in R
N . Denote by

QH m.�/; m D 1; 2; : : : ; the space of all complex-valued functions f 2 Cm.�/

such that D’f 2 L2.�/ for all j’j � m, where

D’f D @j’jf
@x

’1

1 @x
’2

2 : : : @x
’N

N

; j’j D ’1 C � � � C ’N ; and ’1; : : : :; ’N � 0:

For example, if N D 2; ’ D .2; 1/, we have

D’f D @3f

@x2
1@x2

:

For f 2 Cm.�/, we thus have

Z

�

ˇ
ˇ
ˇ
ˇ
ˇ

@j’jf
@x

’1

1 @x
’2

2 : : : @x
’N

N

ˇ
ˇ
ˇ
ˇ
ˇ

< 1

for every multi-index ’ D .’1; ’2; : : : ; ’N / such that j’j � m. The inner product in
QH m.�/ is defined by

hf; gi D
Z

�

X

j’j�m

D’f D’g: (2.7.2)

In particular, if � � R
2, then the inner product in QH 2.�/ is given by

˝
f; g

˛ D
Z

�

�
f Ng C fx Ngx C fy Ngy C fxx Ngxx C fyy Ngyy C fxy Ngxy

�
: (2.7.3)

Or, if � D .a; b/ � R, the inner product in QH m.a; b/ is

˝
f; g

˛ D
Z b

a

mX

nD1

d nf

dxn
� d ng

dxn
: (2.7.4)

The function space QH m.�/ is an inner product space, but it is not a Hilbert space
because it is not complete. The completion of QH m.�/, denoted by H m.�/, is a
Hilbert space. The function space H m.�/ can be defined directly if D’ in the above
is understood as the distributional derivative. This approach is often used in more
advanced textbooks and treatises.

The space H m.�/ is a particular case of a general class of spaces denoted by
W m

p .�/ and introduced by S.L. Sobolev. We have H m.�/ D W m
2 .�/. Because of

the applications to partial differential equations, space H m.�/ is one of the most
important examples of Hilbert spaces.
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2.8 Strong and Weak Convergences

Since every inner product space is a normed space, it is equipped with a conver-
gence, and the convergence is defined by the norm, This convergence is called the
strong convergence. Moreover, the norm induces a topology in the space. Thus, a
normed space is, in a natural way, a metric space and hence a topological space.

Definition 2.8.1 (Strong Convergence). A sequence fxng of vectors in an inner
product space X is called strongly convergent to a vector x in X if

�
�xn � x

�
� ! 0 as n ! 1:

The word “strong” is added in order to distinguish “strong convergence” from “weak
convergence.”

Definition 2.8.2 (Weak Convergence). A sequence fxng of vectors in an inner
product space X is called weakly convergent to a vector x in X if

hxn; yi ! hx; yi as n ! 1; for every y 2 X:

The condition in the above definition can also be stated as hxn � x; yi ! 0 as
n ! 1, for every y 2 X .

It is convenient to reserve the notation “xn!x” for the strong convergence and

use “xn

w! x” to denote weak convergence.

Theorem 2.8.1. A strongly convergent sequence is weakly convergent (to the same

limit), that is, xn!x implies xn

w! x.

Proof. Suppose that the sequence fxng converges strongly to x. This means

�
�xn � x

�
� ! 0 as n ! 1:

By Schwarz’s inequality, we have

ˇ
ˇhxn � x; yiˇˇ � �

�xn � x
�
�
�
�y
�
� ! 0 as n ! 1;

and thus,

hxn � x; yi ! 0 as n ! 1; for every y 2 X:

This proves the theorem.

For any fixed y in an inner product space X , the mapping h: ; yi W X ! C is a
linear functional on X . Theorem 2.8.1 states that such a functional is continuous for
every y 2 X . Obviously, the mapping hx; :i W X ! C is also continuous.



60 2 Hilbert Spaces and Orthonormal Systems

In general, the converse of Theorem 2.8.1 is not true. A suitable example will be
given in Sect. 2.9. On the other hand, we have the following theorem.

Theorem 2.8.2. If xn

w�! x and
��xn

�� ! ��x
��, then xn ! x.

Proof. By the definition of weak convergence, we have

hxn; yi ! hx; yi as n ! 1; for all y:

Hence,

hxn; xi ! hx; xi D �
�x
�
�2

:

Now,

��xn � x
��2 D hxn � x; xn � xi

D hxn; xni � hxn; xi � hx; xni C hx; xi
D �
�xn

�
�2 � 2 Re hxn; xi C �

�x
�
�2 ! �

�x
�
�2 � 2

�
�x
�
�2 C �

�x
�
�2 D 0 as n ! 1:

The sequence fxng is thus strongly convergent to x.

Theorem 2.8.3. Suppose that the sequence fxng converges weakly to x in a Hilbert
space H . If, in addition,

�
�x
�
� D lim

n!1
�
�xn

�
�; (2.8.1)

then fxng converges strongly to x in H .

Proof. We assume that hxn; yi ! hx; yi and hence, hy; xni ! hy; xi: We have the
result

�
�x � xn

�
�2 D hx � xn; x � xni D �

�x
�
�2 C �

�xn

�
�2 � hx; xni � hxn; xi: (2.8.2)

In view of the assumption (2.8.1), result (2.8.2) gives

lim
n!1

�
�x � xn

�
�2 D �

�x
�
�2 C �

�x
�
�2 � �

�x
�
�2 � �

�x
�
�2 D 0:

This proves the theorem.

We next state an important theorem (without proof) that describes an important
property of weakly convergent sequences.

Theorem 2.8.4. Weakly convergent sequences are bounded, that is, if fxng is a
weakly convergent sequence, then there exists a number M such that

�
�xn

�
� � M for

all n 2 N.
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2.9 Orthogonal and Orthonormal Systems

By a basis of a vector space X , we mean a linearly independent family B of vectors

from X such that any vector x 2 X can be written as x D
mX

nD1

œnxn; where

xn 2 B and œn’s are scalars. In inner product spaces, orthonormal bases are of

much greater importance. Instead of finite combinations
mX

nD1

œnxn; infinite sums are

allowed, and the condition of linear independence is replaced by orthogonality. One
of the immediate advantages of these changes is that in all important examples it
is possible to describe orthonormal bases. For example, L2

�
Œa; b�

�
has countable

orthonormal bases consisting of simple functions (see Example 2.9.2), whereas
every basis of L2

�
Œa; b�

�
is uncountable and we can only prove that such a basis

exists without being able to describe its elements. In this section and the next, we
give all necessary definitions and discuss basic properties of orthonormal bases.

Definition 2.9.1 (Orthogonal and Orthonormal Systems). Let X be an inner
product space. A family S of nonzero vectors in X is called an orthogonal system
if x ? y for any two distinct elements of S . If, in addition, kxk D 1 for all x 2 S;

S is called an orthonormal system.

Every orthogonal set of nonzero vectors can be normalized. If S is an orthogonal
system, then the family

S1 D
(

x
�
�x
�
� W x 2 S

)

is an orthonormal system. Both systems are equivalent in the sense that they span
the same subspace of X .

Note that if x is orthogonal to each of y1; : : : ; yn, then x is orthogonal to every
linear combination of vectors y1; : : : ; yn. In fact, we have

hx; yi D
*

x;

nX

kD1

œkyk

+

D
nX

kD1

Nœkhx; yki D 0:

Theorem 2.9.1. Orthogonal systems are linearly independent.

Proof. Let S be an orthogonal system. Suppose that
nX

kD1

’kxk D 0; for some

x1; : : : ; xn 2 S and ’1; : : : ; ’n 2 C: Then,

0 D
*

nX

kD1

’kxk;

nX

kD1

’kxk

+

D
nX

kD1

ˇ
ˇ’k

ˇ
ˇ2
�
�xk

�
�2

:

This means that ’k D 0 for each k 2 N. Thus, x1; : : : ; xn are linearly independent.
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Definition 2.9.2 (Orthonormal Sequence). A finite or infinite sequence of vectors
which forms an orthonormal system is called an orthonormal sequence.

The condition of orthogonality of a sequence
˚
xn

�
can be expressed in terms of

the Kronecker delta symbol:

hxm; xni D •mn D
(

0 if m ¤ n;

1 if m D n:
(2.9.1)

Example 2.9.1. For en D .0; : : : ; 0; 1; 0; : : : / with 1 in the nth position, the set
S D fe1; e2; : : : g is an orthonormal system in the sequence space l2.

Example 2.9.2 (Trigonometric Functions). The sequence ¥n.x/ D einx=
p

2 ;

n D 0; ˙1; ˙2; : : : is an orthonormal system in L2
�
Œ� ;  �

�
: Indeed, for m ¤ n,

we have

h¥m; ¥ni D 1

2 

Z  

� 

ei.m�n/xdx D e i.m�n/ � e� i.m�n/

2 i.m � n/
D 0:

On the other hand,

h¥n; ¥ni D 1

2 

Z  

� 

ei.n�n/xdx D 1:

Thus, h¥m; ¥ni D •mn for every pair of integers m and n.

For the real Hilbert space L2
�
Œ� ;  �

�
, we can use the real and imaginary parts

of the sequence f¥ng and find that functions

1p
2 

cos nx;
1p
2 

sin nx; .n D 0; 1; 2; : : : /

form an orthonormal sequence.

Example 2.9.3. The Legendre polynomials defined by

P0.x/ D 1; (2.9.2a)

Pn.x/ D 1

2nnŠ

d n

dxn

�
x2 � 1

�n
; n D 1; 2; 3; : : : ; (2.9.2b)

form an orthogonal system in the space L2
�
Œ�1; 1�

�
: It is convenient to write�

x2 � 1
�n D pn.x/ so that

Z 1

�1

Pn.x/ xm dx D 1

2nnŠ

Z 1

�1

p.n/
n .x/ xm dx: (2.9.3)
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We evaluate this integral for m < n by recursion. First, we note that

p.k/
n .x/ D 0

for x D ˙1 and k D 0; 1; 2; : : : ; .n � 1/. Hence, by integrating (2.9.3) by parts, we
obtain

Z 1

�1

p.n/
n .x/ xm dx D �m

Z 1

�1

p.n�1/
n .x/ xm�1 dx:

Repeated application of this operation ultimately leads to

mŠ.�1/m

Z 1

�1

p.n�m/
n .x/ dx D mŠ.�1/m

h
p.n�m�1/

n .x/
i1

�1
D 0 .m < n/:

Consequently,

Z 1

�1

Pn.x/ xm dx D 0 for m < n: (2.9.4)

Since Pm is a polynomial of degree m, it follows that

hPn; Pmi D
Z 1

�1

Pn.x/Pm.x/ dx D 0 for n ¤ m: (2.9.5)

This proves the orthogonality of the Legendre polynomials. To obtain an
orthonormal system from the Legendre polynomials, we have to evaluate the norm
of Pn in L2

�
Œ�1; 1�

�
:

�
�Pn

�
� D

sZ 1

�1

�
Pn.x/

�2
dx:

By repeated integration by parts, we first obtain

Z 1

�1

�
1 � x2

�n
dx D

Z 1

�1

.1 � x/n .1 C x/n dx

D n

n C 1

Z 1

�1

.1 � x/n�1 .1 C x/nC1 dx D : : :

D n.n � 1/: : :2:1

.n C 1/.n C 2/: : :2n

Z 1

�1

.1 C x/2n dx

D .nŠ/2 22nC1

.2n/Š.2n C 1/
: (2.9.6)
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A similar procedure gives

Z 1

�1

˚
p.n/

n .x/
�2

dx D 0 �
Z 1

�1

p.n�1/
n .x/ p.nC1/

n .x/ dx D : : :

D .�1/n

Z 1

�1

pn.x/ p.2n/
n .x/ dx

D .2n/Š

Z 1

�1

.1 � x/n .1 C x/n dx; (2.9.7)

where we have used the fact that the 2nth derivative of pn.x/ D �
x2 � 1

�n
is the

same as the derivative of the term of exponent 2n. The 2nth derivatives of all the
other terms of the sum are zero. From (2.9.2), (2.9.6), and (2.9.7), we obtain

Z 1

�1

˚
Pn.x/

�2
dx D 1

.2nnŠ/2
.2n/Š

.nŠ/2 22nC1

.2n/Š.2n C 1/
D 2

2n C 1
: (2.9.8)

Thus, the polynomials

r

n C 1

2
Pn.x/ form an orthonormal system in the space

L2
�
Œ�1; 1�

�
.

Example 2.9.4. We denote by Hn the Hermite polynomials of degree n, that is,

Hn.x/ D .�1/nex2 d n

dxn
e�x2

: (2.9.9)

The functions ¥n.x/ D e�x2=2Hn.x/ form an orthogonal system in L2.R/. The
inner product

h¥n; ¥mi D .�1/nCm

Z 1

�1
ex2 d n

dxn
e�x2 d m

dxm
e�x2

dx

can be evaluated by integrating by parts, which gives

.�1/nCmh¥n; ¥mi D
�
ex2 d n

dxn
e�x2 d m�1

dxm�1
e�x2

�1

�1

�
Z 1

�1
d

dx

�
ex2 d n

dxn
e�x2

�
d m�1

dxm�1
e�x2

dx; (2.9.10)

and hence, all terms under the differential sign contain the factor e�x2
. Since, for

any k 2 N, we have

xke�x2 ! 0 as x ! 1;
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the first term in (2.9.10) vanishes. Therefore, repeated integration by parts gives the
result

h¥n; ¥mi D 0 as n ¤ m: (2.9.11)

To obtain an orthonormal system, we evaluate the norm:

�
�¥n

�
�2 D

Z 1

�1
e�x2�

Hn.x/
�2

dx D
Z 1

�1
e�x2

�
ex2 d n

dxn
e�x2

�2

dx:

Integrating by parts n times yields

�
�¥n

�
�2 D .�1/n

Z 1

�1
e�x2

�
ex2 d n

dxn
e�x2

�2

dx:

Since Hn.x/ is a polynomial of degree n, direct differentiation gives

ex2 d n

dxn
e�x2 D .�2x/n C � � �

and

d n

dxn

�
ex2 d n

dxn
e�x2

�
D d n

dxn

n
.�2x/n C � � �

o
D .�1/n2n nŠ:

Consequently,

��¥n

��2 D 2n nŠ

Z 1

�1
e�x2

dx D 2n nŠ
p

 : (2.9.12)

Thus, the functions

§n.x/ D 1
p

2n nŠ
p

 
e� x2

2 Hn.x/

form an orthonormal system in the Hilbert space L2.R/.

In the preceding examples, the original sequence of functions is orthogonal but
not orthonormal. Although the calculations involved might be complicated, it is
always possible to normalize the functions and obtain an orthonormal sequence.
It turns out that the same is possible if the original sequence of functions (or, in
general, a sequence of vectors in an inner product space) is linearly independent,
not necessarily orthogonal. The method of transforming such a sequence into an
orthonormal sequence is called the Gram–Schmidt orthonormalization process. The
process can be described as follows.
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Given a sequence fyng of linearly independent vectors in an inner product space,
define sequences fwng and fxng inductively by

w1 D y1; x1 D w1

kw1k ;

wk D yk �
k�1X

nD1

hyk; xnixn; xk D wk

kwkk ; for k D 1; 2; : : :

The sequence fwng is orthogonal. Indeed,

hw2; w1i D
D
y2 � hy2; x1ix1; y1

E
D hy2; y1i � hy2; x1ihx1; y1i

D hy2; y1i � hy2; y1ihy1; y1i
�
�y1

�
�2

D 0:

Assume now that w1; : : : ; wk�1 are orthogonal. Then, for any m < k;

hwk; wmi D hyk; wmi �

k�1X

nD1

hyk; wnihwn; wmi
�
�wm

�
�2

D hyk; wmi � hyk; wmihwm; wmi
�
�wm

�
�2

D 0:

Therefore, vectors w1; : : : ; wk are orthogonal. It follows, by induction, that the
sequence fwng is orthogonal and thus, fxng is orthonormal. It is easy to check
that any linear combination of vectors x1; : : : ; xn is also a linear combination of
y1; : : : ; yn and vice versa. In other words, span fx1; : : : ; xng D span fy1; : : : ; yng
for every n 2 N.

2.10 Properties of Orthonormal Systems

In Sect. 2.6, we proved that the Pythagorean formula holds for any pair of orthogonal
vectors in an inner product space X . It turns out that it can be generalized to any
finite number of orthogonal vectors.

Theorem 2.10.1 (Pythagorean Formula). If x1; : : :; xn are orthogonal vectors in
an inner product space X , then

�
��
�
�

nX

kD1

xk

�
��
�
�

2

D
nX

kD1

��xk

��2
: (2.10.1)
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Proof. If x1 ? x2, then
��x1 Cx2

��2 D ��x1

��2 C��x2

��2
by (2.6.10). Thus, the theorem

is true for n D 2. Assume now that the (2.10.1) holds for n � 1, that is,
��
�
�
�

n�1X

kD1

xk

��
�
�
�

2

D
n�1X

kD1

�
�xk

�
�2

:

Set x D
n�1X

kD1

xk and y D xn. Since x ? y, we have

�
�
��
�

nX

kD1

xk

�
�
��
�

2

D ��x C y
��2 D ��x

��2 C ��y
��2 D

n�1X

kD1

��xk

��2 C ��xn

��2 D
nX

kD1

��xk

��2
:

This proves the theorem.

Theorem 2.10.2 (Bessel’s Equality and Inequality). Let x1; : : :; xn be an
orthonormal set of vectors in an inner product space X . Then, for every x 2 X , we
have

��
�
�
�
x �

nX

kD1

hx; xkixk

��
�
�
�

2

D �
�x
�
�2 �

nX

kD1

ˇ
ˇhx; xkiˇˇ2 (2.10.2)

and
nX

kD1

ˇ
ˇhx; xkiˇˇ2 � �

�x
�
�2

: (2.10.3)

Proof. In view of the Pythagorean formula (2.10.1), we have
�
�
��
�

nX

kD1

’kxk

�
�
��
�

2

D
nX

kD1

��’kxk

��2 D
nX

kD1

ˇ̌
’k

ˇ̌2

for any arbitrary complex numbers ’1; : : : ; ’n. Hence,
�
��
�
�
x �

nX

kD1

’kxk

�
��
�
�

2

D
*

x �
nX

kD1

’kxk; x �
nX

kD1

’kxk

+

D �
�x
�
�2 �

*

x;

nX

kD1

’kxk

+

�
*

nX

kD1

’kxk; x

+

C
nX

kD1

ˇ
ˇ’k

ˇ
ˇ2
�
�xk

�
�2

D �
�x
�
�2 �

nX

kD1

’k hx; xki �
nX

kD1

’khx; xki C
nX

kD1

’k’k

D �
�x
�
�2 �

nX

kD1

ˇ
ˇ hx; xki ˇˇ2 C

nX

kD1

ˇ
ˇ hx; xki � ’k

ˇ
ˇ2: (2.10.4)
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In particular, if ’k D hx; xki, this result yields (2.10.2). From (2.10.2), it follows
that

0 � �
�x
�
�2 �

nX

kD1

ˇ
ˇ hx; xki ˇˇ2;

which gives (2.10.3). Thus, the proof is complete.

Remarks. 1. Note that expression (2.10.4) is minimized by taking ’k D hx; xki.

This choice of ’k’s minimizes

�
�
�
�
�
x �

nX

kD1

’kxk

�
�
�
�
�

and thus provides the best

approximation of x by a linear combination of vectors x1; : : : ; xn.
2. If fxng is an orthonormal sequence of vectors in an inner product space X , then,

from (2.10.2), by letting n ! 1, we obtain

1X

kD1

ˇ
ˇ hx; xki ˇˇ2 � �

�x
�
�2

: (2.10.5)

This shows that the series
1X

kD1

ˇ
ˇ hx; xki ˇˇ2 converges for every x 2 X . In other words,

the sequence
˚hx; xki� is an element of l2. We can say that an orthonormal sequence

in X induces a mapping from X into l2. The expansion

x 	
1X

nD1

hx; xnixn (2.10.6)

is called a generalized Fourier series of x. The scalars ’n D hx; xni are called
the generalized Fourier coefficients of x with respect to the orthonormal sequence
fxng. It may be observed that this set of coefficients gives the best approximation.
In general, we do not know whether the series in (2.10.6) is convergent. However,
as the next theorem shows, the completeness of the space ensures the convergence.

Theorem 2.10.3. Let fxng be an orthonormal sequence in a Hilbert space H and

let f’ng be a sequence of complex numbers. Then, the series
1X

nD1

’nxn converges if

and only if
1X

nD1

ˇ
ˇ’n

ˇ
ˇ2 < 1 and in that case

�
�
��
�

1X

nD1

’nxn

�
�
��
�

2

D
1X

nD1

ˇ
ˇ’n

ˇ
ˇ2: (2.10.7)
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Proof. For every m > k > 0, we have
�
�
��
�

mX

nDk

’nxn

�
�
��
�

2

D
mX

nDk

ˇ̌
’n

ˇ̌2
by (2.10.1). (2.10.8)

If
1X

nD1

ˇ
ˇ’n

ˇ
ˇ2 < 1, then the sequence sm D

1X

nD1

’nxn is a Cauchy sequence

by (2.10.8). This implies convergence of the series
1X

nD1

’nxn because of the

completeness of H .

Conversely, if the series
1X

nD1

’nxn converges, then the same formula (2.10.8)

implies the convergence of
1X

nD1

ˇ
ˇ’n

ˇ
ˇ2 because the sequence of numbers ¢m D

mX

nD1

ˇ
ˇ’n

ˇ
ˇ2 is a Cauchy sequence in R.

To obtain (2.10.7), it is enough to take k D 1 and let m ! 1 in (2.10.8) .
The above theorem and (2.10.5) imply that in a Hilbert space H the series

1X

nD1

hx; xnixn converges for every x 2 H . However, it may happen that it converges

to an element different from x.

Example 2.10.1. Let H D L2
�
Œ� ;  �

�
, and let xn.t/ D 1p

 
sin nt for

n D 1; 2; : : : . The sequence
˚
xn

�
is an orthonormal set in H . On the other hand,

for x.t/ D cos t , we have

1X

nD1

hx; xni xn.t/ D
1X

nD1

�
1p
 

Z  

� 

cos t sin nt dt

�
sin ntp

 

D
1X

nD1

0 � sin nt D 0 ¤ cos t:

If
˚
xn

�
is an orthonormal sequence in an inner product space X , then, for every

x 2 X , we have

1X

nD1

ˇ̌ hx; xni ˇ̌2 < 1;

and consequently,

lim
n!1hx; xni D 0:
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Therefore, orthonormal sequences are weakly convergent to zero. On the other hand,
since

�
�xn

�
� D 1 for all n 2 N, orthonormal sequences are not strongly convergent.

Definition 2.10.1 (Complete Orthonormal Sequence). An orthonormal
sequence

˚
xn

�
in an inner product space X is said to be complete if, for every

x 2 X , we have

x D
1X

nD1

hx; xni xn (2.10.9)

It is important to remember that since the right-hand side of (2.10.9) is an infinite
series, the equality means

lim
n!1

�
�
�
��
x �

nX

kD1

hx; xki xk

�
�
�
��

D 0;

where k:k is the norm in X . For example, if X D L2
�
Œ� ;  �

�
and

˚
fn

�
is an

orthonormal sequence in X , then by

f D
1X

nD1

hf; fnifn

we mean

lim
n!1

Z  

� 

ˇ
ˇ
ˇ
ˇ
ˇ
f .t/ �

nX

kD1

’k fk.t/

ˇ
ˇ
ˇ
ˇ
ˇ

2

dt D 0; where ’k D
Z  

� 

f .t/ fk.t/ dt:

This, in general, does not imply pointwise convergence: f .x/ D
1X

nD1

’nfn.x/:

Definition 2.10.2 (Orthonormal Basis). An orthonormal system S in an inner
product space X is called an orthonormal basis if every x 2 X has a unique
representation

x D
1X

nD1

’n xn;

where ’n 2 C and xn’s are distinct elements of S .

Remarks. 1. Note that a complete orthonormal sequence
˚
xn

�
in an inner product

space X is an orthonormal basis in X . It suffices to show the uniqueness.
Indeed, if

x D
1X

nD1

’n xn and x D
1X

nD1

“n xn;
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then

0 D �
�x �x

�
�2 D

����
�

1X

nD1

’n xn �
1X

nD1

“n xn

����
�

2

D
����
�

1X

nD1

.’n � “n/ xn

����
�

2

D
1X

nD1

ˇ
ˇ’n �“n

ˇ
ˇ2

by Theorem 2.10.3. This means that ’n D “n for all n 2 N: This proves the
uniqueness.

2. If
˚
xn

�
is a complete orthonormal sequence in an inner product space X , then

the set

span
˚
x1; x2; : : :

� D
(

nX

kD1

’k xk W n 2 N; ’1; : : : ; ’k 2 C

)

is dense in X .

The following two theorems give important characterizations of complete
orthonormal sequences in Hilbert spaces.

Theorem 2.10.4. An orthonormal sequence
˚
xn

�
in a Hilbert space H is complete

if and only if hx; xni D 0 for all n 2 N implies x D 0.

Proof. Suppose
˚
xn

�
is a complete orthonormal sequence in H . Then, every x 2 H

has the representation

x D
1X

nD1

hx; xni xn:

Thus, if hx; xni D 0 for every n 2 N, then x D 0.

Conversely, suppose hx; xni D 0 for every n 2 N implies x D 0. Let x be an
element of H . We define

y D
1X

nD1

hx; xni xn:

The sum y exists in H by (2.10.5) and Theorem 2.10.3. Since, for every n 2 N,

hx � y; xni D hx; xni �
* 1X

kD1

hx; xki xk; xn

+

D hx; xni �
1X

kD1

hx; xki hxk; xni
D hx; xni � hx; xni D 0;

we have x � y D 0 and hence,

x D
1X

nD1

hx; xnixn:
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Theorem 2.10.5 (Parseval’s Formula). An orthonormal sequence
˚
xn

�
in a

Hilbert space H is complete if and only if

�
�x
�
�2 D

1X

nD1

ˇ
ˇhx; xniˇˇ2 (2.10.10)

for every x 2 H .

Proof. Let x 2 H . By (2.10.2), for every n 2 N, we have
�
�
�
�
�
x �

nX

kD1

hx; xkixk

�
�
�
�
�

2

D �
�x
�
�2 �

nX

kD1

ˇ
ˇhx; xkiˇˇ2: (2.10.11)

If
˚
xn

�
is a complete sequence, then the expression on the left-hand side in (2.10.11)

converges to zero as n ! 1. Hence,

lim
n!1

"
�
�x
�
�2 �

nX

kD1

ˇ
ˇhx; xkiˇˇ2

#

D 0:

Therefore, (2.10.10) holds.

Conversely, if (2.10.10) holds, then the expression on the right-hand side
of (2.10.11) converges to zero as n ! 1 and thus,

lim
n!1

�
��
�
�
x �

nX

kD1

hx; xkixk

�
��
�
�

2

D 0:

This proves that
˚
xn

�
is a complete sequence.

Example 2.10.2. The orthonormal system

¥n.x/ D einx

p
2 

; n D 0; ˙1; ˙2; : : : ;

given in Example 2.9.2, is complete in the space L2
�
Œ� ;  �

�
. The proof of

completeness is not simple. It will be discussed in Sect. 2.11.

A simple change of scale allows us to represent a function f 2 L2
�
Œ0; a�

�
in the

form

f .x/ D
1X

nD�1
“n e2n ix=a;

where

“n D 1

a

Z a

0

f .t/ e�2n it=adt:
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Example 2.10.3. The sequence of functions

1p
2 

;
cos xp

 
;

sin xp
 

;
cos 2xp

 
;

sin 2xp
 

; : : :

is a complete orthonormal system in L2
�
Œ� ;  �

�
. The orthogonality follows from

the following identities by simple integration:

2 cos nx cos mx D cos.n C m/x C cos.n � m/x;

2 sin nx sin mx D cos.n � m/x � cos.n C m/x;

2 cos nx sin mx D sin.n C m/x � sin.n � m/x:

Since
Z  

� 

cos2 nx dx D
Z  

� 

sin2 mx dx D  ;

the sequence is also orthonormal. The completeness follows from the completeness
of the sequence in Example 2.10.2 in view of the following identities:

e0 D 1 and einx D .cos nx C i sin nx/:

Example 2.10.4. Each of the following two sequences of functions is a complete
orthonormal system in the space L2

�
Œ� ;  �

�
:

1p
 

;

r
2

 
cos x;

r
2

 
cos 2x;

r
2

 
cos 3x; : : : ;

r
2

 
sin x;

r
2

 
sin 2x;

r
2

 
sin 3x; : : : :

Example 2.10.5 (Rademacher Functions and Walsh Functions). Rademacher func-
tions R.m; x/ can be introduced in many different ways. We will use the definition
based on the sine function,

R.m; x/ D sgn
�

sin.2m x/
�
; m D 0; 1; 2; : : : ; x 2 Œ0; 1�;

where sgn denotes the signum function defined by

sgn.x/ D

8
ˆ̂
<

ˆ̂:

1 if x > 0;

0 if x D 0;

�1 if x < 0:
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Rademacher functions form an orthonormal system in L2
�
Œ0; 1�

�
. Obviously,

Z 1

0

ˇ
ˇR.m; x/

ˇ
ˇ2dx D 1 for all m:

To show that for m ¤ n; we have
Z 1

0

R.m; x/ R.n; x/ dx D 0:

First, notice that
Z b

a

R.m; x/ dx D 0 whenever 2m.b �a/ is an even number. Thus,

for m > n � 0, we have
Z 1

0

R.m; x/ R.n; x/ dx D
Z 1

0

R.m; x/R.n; x/ dx

D
2nX

kD1

Z k
2n

k�1
2n

R.m; x/R.n; x/ dx

D
2nX

kD1

sgn

�
R

�
n;

2k � 1

2

��Z k
2n

k�1
2n

R.m; x/ dx D 0

because all of the integrals vanish.
The sequence of Rademacher functions is not complete. Indeed, consider the

function

f .x/ D

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

0 if 0 � x <
1

4
;

1 if
1

4
� x � 3

4
;

0 if
3

4
< x � 1:

Then
Z 1

0

R.0; x/f .x/ dx D 1

2
and

Z 1

0

R.m; x/f .x/ dx D 0 for m � 1;

but f .x/ ¤ 1

2
R.0; x/.

Rademacher functions can be used to construct Walsh functions, which
form a complete orthonormal system. Walsh (1923) functions are denoted by
W.m; x/; m D 0; 1; 2; : : : : For m D 0, we set W.0; x/ D 1. For other values of m,
we first represent m as a binary number, that is,

m D
nX

kD1

2k�1ak D a1 C 21a2 C 22a3 C � � � C 2n�1an;
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Fig. 2.4 Walsh functions W.n; x/

where a1; a2; : : : ; an D 0 or 1. Then, we define

W.m; x/ D
nY

kD1

�
R.k; x/

�ak D �
R.1; x/

�a1
�
R.2; x/

�a2
: : :
�
R.n; x/

�an
;

where
�
R.m; x/

�0 
 1: For instance, since 53 is written as 110101 in binary form,
we have

W.53; x/ D R.1; x/ R.3; x/ R.5; x/ R.6; x/:

Clearly, we have

R.n; x/ D W
�
2n�1; x

�
; n 2 N:

Several Walsh functions are shown in Fig. 2.4.

2.11 Trigonometric Fourier Series

In this section, we prove that the sequence

¥n.x/ D einx

p
2 

; n D 0; ˙1; ˙2; : : : ;
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is a complete orthonormal sequence in L2
�
Œ� ;  �

�
. The orthogonality has been

established in Example 2.9.2. The proof of completeness is much more complicated.
For the purpose of this proof, it is convenient to identify elements of the space
L1
�
Œ� ;  �

�
with 2 -periodic locally integrable functions on R due to the fact that

Z  

� 

f .t/ dt D
Z  �x

� �x

f .t/ dt D
Z  

� 

f .t � x/ dt

for any f 2 L1
�
Œ� ;  �

�
and any x 2 R.

Let f 2 L1
�
Œ� ;  �

�
and

fn D
nX

kD�n

hf; ¥ki¥k; n D 0; 1; 2; : : : :

Then

fn.x/ D
nX

kD�n

1

2 

Z  

� 

f .t/ e�ikt dt eikx D
nX

kD�n

1

2 

Z  

� 

f .t/ eik.x�t /dt:

We next show that, for every f 2 L1
�
Œ� ;  �

�
, we have

lim
n!1

f0 C f1 C � � � C fn

n C 1
D f

in the L1
�
Œ� ;  �

�
norm. We first observe that

f0.x/ C f1.x/ C � � � C fn.x/

n C 1
D

nX

kD�n

�
1 � jkj

n C 1

�
hf; ¥ki¥k.x/

D
nX

kD�n

1

2 

�
1 � jkj

n C 1

�Z  

� 

f .t/ e�ikt dt eikx

D 1

2 

Z  

� 

f .t/

 
nX

kD�n

�
1 � jkj

n C 1

�
eik.x�t /

!

dt:

(2.11.1)

Lemma 2.11.1. For every n 2 N and x 2 R, we have

nX

kD�n

�
1 � jkj

n C 1

�
eikx D 1

n C 1

sin2 .n C 1/x

2

sin2 x

2

:
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Proof. We have

sin2 x

2
D 1

2
.1 � cos x/ D �1

4
e�ix C 1

2
� 1

4
eix:

Then, direct calculation gives

�
�1

4
e�ix C 1

2
� 1

4
eix

� nX

kD�n

�
1 � jkj

n C 1

�
eikx

D 1

n C 1

�
�1

4
e�i.nC1/x C 1

2
� 1

4
ei.nC1/x

�
:

This proves the lemma.

Lemma 2.11.2. The sequence of functions

Kn.t/ D
nX

kD�n

�
1 � jkj

n C 1

�
eikt

is a Fejér summability kernel.

Proof. Since
Z  

� 

eikt D 2  if k D 0 and
Z  

� 

eikt D 0 for any other integer k, we

obtain
Z  

� 

Kn.t/dt D
nX

kD�n

�
1 � jkj

n C 1

�Z  

� 

eiktdt D 2 :

From Lemma 2.11.1, it follows that Kn � 0 and hence
Z  

� 

ˇ̌
Kn.t/

ˇ̌
dt D

Z  

� 

Kn.t/dt D 2 :

Finally, let • 2 .0;  /. For t 2 .•; 2  � •/, we have sin
t

2
� sin

•

2
and therefore

Kn.t/ D 1

n C 1

sin2 .n C 1/x

2

sin2 x

2

� 1

.n C 1/ sin2 •

2

:

Thus,
Z 2 �•

•

Kn.t/dt � 2 

.n C 1/ sin2 •

2

:

For a fixed •, the right-hand side tends to 0 as n ! 1. This proves the lemma.
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Theorem 2.11.1. If f 2 L2
�
Œ� ;  �

�
and

ˇ
ˇhf; ¥niˇˇ D 0 for all integers n, then

f D 0 a.e.

Proof. If

Z  

� 

f .t/ e�int dt D 0

for all integers n, then

fn.x/ D
nX

kD�n

1

2 

Z  

� 

f .t/ eik.x�t / dt D 0:

Consequently,

f0.x/ C f1.x/ C � � � C fn.x/

n C 1
D 1

2 

Z  

� 

f .t/

 
nX

kD�n

�
1 � jkj

n C 1

�
eik.x�t /

!

dt D 0:

On the other hand, since f and all the functions eikx are 2 -periodic, we have

1

2 

Z  

� 

f .t/

 
nX

kD�n

�
1 � jkj

n C 1

�
eik.x�t /

!

dt

D 1

2 

Z  

� 

f .x � t/

 
nX

kD�n

�
1 � jkj

n C 1

�
eikt

!

dt

and hence, by Theorem 3.8.1 (see Debnath and Mikusinski 1999) and
Lemma 2.11.2,

lim
n!1

f0 C f1 C � � � C fn

n C 1
D f

in the L1
�
Œ� ;  �

�
norm. Therefore, f D 0 a.e.

Theorem 2.11.2. The sequence of functions

¥n.x/ D einx

p
2 

; n D 0; ˙1; ˙2; : : : ;

is complete.

Proof. If f 2 L2
�
Œ� ;  �

�
, then f 2 L1

�
Œ� ;  �

�
. Thus, by Theorem 2.11.1 if

hf; ¥ni D 0 for all integers n, then f D 0 a.e., that is, f D 0 in f 2 L2
�
Œ� ;  �

�
:

This proves completeness of the sequence by Theorem 2.10.4.
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Theorem 2.11.2 implies that, for every f 2 L2
�
Œ� ;  �

�
, we have

f D
1X

nD�1
’n ¥n; (2.11.2)

where

¥n.x/ D einx

p
2 

and ’n D 1p
2 

Z  

� 

f .t/ e�int dt:

In this case, Parseval’s formula yields

�
�f
�
�2 D

Z  

� 

ˇ
ˇf .x/

ˇ
ˇ2dx D

1X

nD�1

ˇ
ˇ’n

ˇ
ˇ2:

The series (2.11.2) is called the Fourier series of f , and the numbers an are called
the Fourier coefficients of f . It is important to point out that, in general, (2.11.2)
does not imply pointwise convergence. The problem of pointwise convergence of
Fourier series is much more difficult. In 1966, Carleson proved that Fourier series
of functions in L2.Œ� ;  �/ converge almost everywhere.

2.12 Orthogonal Complements and the Projection Theorem

By a subspace of a Hilbert space H , we mean a vector subspace of H . A subspace
of a Hilbert space is an inner product space. If we additionally assume that S is a
closed subspace of H , then S is a Hilbert space itself because a closed subspace of
a complete normed space is complete.

Definition 2.12.1 (Orthogonal Complement). Let S be a nonempty subset of a
Hilbert space H . An element x 2 H is said to be orthogonal to S , denoted by
x ? S , if hx; yi D 0 for every y 2 S . The set of all elements of H orthogonal to
S , denoted by S?, is called the orthogonal complement of S . In symbols,

S? D ˚
x 2 H W x ? S

�
:

The orthogonal complement of S? is denoted by S?? D �
S?�? :

Remarks. If x ? y for every y 2 H , then x D 0. Thus H ? D f0g. Similarly,
f0g? D H . Two subsets A and B of a Hilbert space are said to be orthogonal if
x ? y for every x 2 A and y 2 B . This is denoted by A ? B . Note that if A ? B ,
then A \ B D f0g or ;:
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Theorem 2.12.1 (Orthogonal Complement). For any subset of S of a Hilbert
space H , the set S? is a closed subspace of H .

Proof. If ’; “ 2 C and x; y 2 S?, then

h’x C “y; zi D ’hx; zi C “hy; zi D 0

for every z 2 S . Thus, S? is a vector subspace of H . We next prove that S? is
closed.

Let fxng 2 S? and xn ! x for some x 2 H . From the continuity of the inner
product, we find

hx; yi D
D

lim
n!1 xn; y

E
D lim

n!1hxn; yi D 0;

for every y 2 S . This shows that x 2 S?, and thus, S? is closed.
The above theorem implies that S? is a Hilbert space for any subset S of H .

Note that S does not have to be a vector space. Since S ? S?, we have S \ S? D
f0g or S \ S? D ;:

Definition 2.12.2 (Convex Sets). A set S in a vector space is called convex if, for
any x; y 2 S and ’ 2 .0; 1/, we have ’x C .1 � ’/y 2 S:

Note that a vector subspace is a convex set.
The following theorem concerning the minimization of the norm is of fundamen-

tal importance in approximation theory.

Theorem 2.12.2 (The Closest Point Property). Let S be a closed convex subset
of a Hilbert space H . For every point x 2 H , there exists a unique point y 2 S

such that

�
�x � y

�
� D inf

z2S

�
�x � z

�
�: (2.12.1)

Proof. Let
˚
yn

�
be a sequence in S such that

�
�x � yn

�
� D inf

z2S

�
�x � z

�
�:

Denote d D inf
z2S

kx � zk. Since
1

2
.ym C yn/ 2 S , we have

�
�
�
�x � 1

2
.ym C yn/

�
�
�
� � d; for all m; n 2 N:
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Moreover, by the parallelogram law (2.6.7),

��ym � yn

��2 D 4

�
���x � 1

2
.ym C yn/

�
���

2

C ��ym � yn

��2 � 4

�
���x � 1

2
.ym C yn/

�
���

2

D �
�.x � ym/ C .x � yn/

�
�2 C �

�.x � ym/ � .x � yn/
�
�2 � 4

��
��x � 1

2
.ym C yn/

��
��

2

D 2
���x � ym

��2 C ��x � yn

��2



� 4

�
���x � 1

2
.ym C yn/

�
���

2

:

Since

2
��
�x � ym

�
�2 C �

�x � yn

�
�2



! 4d 2; as m; n ! 1;

and

�
��
�x � 1

2
.ym C yn/

�
��
�

2

� d 2;

it follows that
�
�ym � yn

�
�2 ! 0 as m; n ! 1: Thus, fyng is a Cauchy sequence.

Since H is complete and S is closed, limn!1 yn D y exists and y 2 S . It follows
from the continuity of the norm that

�
�x � y

�
� D

�
�
�x � lim

n!1 yn

�
�
� D lim

n!1
�
�x � yn

�
� D d:

We have proved that there exists a point in S satisfying (2.12.1). It remains to prove
the uniqueness. Suppose there is another point y1 in S satisfying (2.12.1). Then,

since
1

2
.y C y1/ 2 S , we have

�
�y � y1

�
�2 D 4d 2 � 4

�
�
�
�x � y C y1

2

�
�
�
�

2

� 0:

This can only be true if y D y1.

Remark. Theorem 2.12.2 gives an existence and uniqueness result which is crucial
for optimization problems. However, it does not tell us how to find that optimal
point. The characterization of the optimal point in the case of a real Hilbert space
stated in the following theorem is often useful in such problems.

Theorem 2.12.3. Let S be a closed convex subset of a real Hilbert space H; y 2 S;

and let x 2 H . Then, the following conditions are equivalent:

(a)
�
�x � y

�
� D inf

z2S

�
�x � z

�
�;

(b) hx � y; z � yi � 0 for all z 2 S:
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Proof. Let z 2 S . Since S is convex, œz C .1 � œ/y 2 S for every œ 2 .0; 1/. Then,
by (a), we have

�
�x � y

�
� � �

�x � œz � .1 � œ/y
�
� D �

�.x � y/ � œ.z � y/
�
�:

Since H is a real Hilbert space, we get

�
�x � y

�
�2 � �

�x � y
�
�2 � 2œ hx � y; z � yi C œ2

�
�z � y

�
�2

:

Consequently,

ˇ̌hx � y; z � yiˇ̌ � œ

2

��z � y
��2

:

Thus, (b) follows by letting œ ! 0: .
Conversely, if x 2 H and y 2 S satisfy (b), then, for every z 2 S , we have

�
�x � y

�
�2 � �

�x � z
�
�2 D 2hx � y; z � yi � �

�z � y
�
�2 � 0:

Thus, x and y satisfy (a).

If H D R
2 and S is a closed convex subset of R2, then condition (b) has an

important geometric meaning: the angle between the line through x and y and the
line through z and y is always obtuse, as shown in Fig. 2.5.

Theorem 2.12.4 (Orthogonal Projection). If S is a closed subspace of a Hilbert
space H , then every element x 2 H has a unique decomposition in the form x D
y C z, where y 2 S and z 2 S?.

Proof. If x 2 S , then the obvious decomposition is x D x C 0. Suppose now that
x ¤ S . Let y be the unique point of S satisfying

��x � y
�� D inf

w2S

��x � w
��; as in

Theorem 2.12.2. We show that x D y C .x � y/ is the desired decomposition.

If w 2 S and œ 2 C, then y C œw 2 S and

�
�x � y

�
�2 � �

�x � y � œw
�
�2 D �

�x � y
�
�2 � 2Rœ

ˇ
ˇhw; x � yiˇˇ2 C jœj2��w

�
�2

:

Hence,

�2Rœhw; x � yi C jœj2��w
�
�2 � 0:

If œ > 0, then dividing by œ and letting œ ! 0 gives

Rhw; x � yi � 0: (2.12.2)
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Fig. 2.5 Angle between two lines

Similarly, replacing œ by �iœ.œ > 0/, dividing by œ, and letting œ ! 0 yields

I hw; x � yi � 0: (2.12.3)

Since y 2 S implies �y 2 S , inequalities (2.12.2) and (2.12.3) hold also with �w
instead of w. Therefore, hw; x � yi D 0 for every w 2 S , which means x � y 2 S?

To prove the uniqueness, note that if x D y1 C z1; y1 2 S; and z1 2 S?, then
y�y1 2 S and z�z1 2 S?. Since y�y1 D z1�z, we must have y�y1 D z1�z D 0:

Remarks. 1. According to Theorem 2.12.4, every element of H can be uniquely
represented as the sum of an element of S and an element of S?. This can be
stated symbolically as

H D S ˚ S?: (2.12.4)

We say that H is the direct sum of S and S?. Equality (2.12.4) is called an
orthogonal decomposition of H . Note that the union of a basis of S and a basis
of S? is a basis of H .

2. Theorem 2.12.2 allows us to define a mapping Ps.x/ D y, where y is as
in (2.12.1). The mapping Ps is called the orthogonal projection onto S .

Example 2.12.1. Let H D R
2. Figure 2.6 exhibits the geometric meaning of the

orthogonal decomposition in R
2. Here, x 2 R

2; x D y C z; y 2 S; and z 2 S?.
Note that if s0 is a unit vector in S , then y D hx; s0is0.

Example 2.12.2. If H D R
3, given a plane P , any vector x can be projected onto

the plane P . Figure 2.7 illustrates this example.

Theorem 2.12.5. If S is a closed subspace of a Hilbert space H , then S?? D S:

Proof. If x 2 S , then for every z 2 S? we have hx; zi D 0, which means x 2 S??.
Thus, S � S??. To prove that S?? � S consider an x 2 S??. Since S is closed,
x D y C z for some y 2 S and z 2 S?. In view of the inclusion S � S??, we
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Fig. 2.6 Orthogonal decomposition in R
2

Fig. 2.7 Orthogonal projection into a plane

have y 2 S?? and thus, z D x � y 2 S?? because S?? is a vector subspace.
But z 2 S?, so we must have z D 0; which means x D y 2 S: This shows that
S?? � S . This completes the proof.

2.13 Linear Functionals and the Riesz
Representation Theorem

In Sect. 2.7, we have remarked that for any fixed vector x0 in an inner product space
X , the formula f .x/ D hx; x0i defines a bounded linear functional on X . It turns
out that if X is a Hilbert space, then every bounded linear functional is of this form.
Before proving this result, known as the Riesz representation theorem, we discuss
some examples and prove a lemma.

Example 2.13.1. Let H D L2
�
.a; b/

�
; �1 < a < b < 1. Define a linear

functional f on H by the formula

f .x/ D
Z b

a

x.t/ dt:
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If x0 denotes the constant function 1 on .a; b/, then clearly f .x/ D hx; x0i and
thus, f is a bounded functional.

Example 2.13.2. Let H D L2.a; b/ and let t0 be a fixed point in .a; b/. Let f be
a functional on H defined by f .x/ D x.t0/: This functional is linear, but it is not
bounded.

Example 2.13.3. Let H D C
n and let n0 2 f1; 2; : : : ; ng. Define f by the

f
�
.x1; : : : ; xn/

� D xn0 :

We have

f
�
.x1; : : : ; xn/

� D ˝
.x1; : : : ; xn/; en0

˛
;

where en0 is the vector which has 1 on the n0-th place and zeros in the remaining
places. Thus, f is a bounded linear functional.

Lemma 2.13.1. Let f be a bounded linear functional on an inner product space X .
Then, dim N .f /? � 1:

Proof. If f D 0, then N .f / D X and dim N .f /? D 0 � 1: It remains to show
that dim N .f /? D 1 when f is not zero. Continuity of f implies that N .f / is
a closed subspace of X and thus N .f /? is not empty. Let x1; x2 2 N .f /? be
nonzero vectors. Since f .x1/ ¤ 0 and f .x2/ ¤ 0, there exists a scalar a ¤ 0 such
that f .x1/ C af .x2/ D 0 or f .x1 C ax2/ D 0. Thus, x1 C ax2 2 N .f /. On the
other hand, since N .f /? is a vector space and x1; x2 2 N .f /?, we must have
x1 C ax2 2 N .f /?. This is only possible if x1 C ax2 D 0 which shows that x1 and
x2 are linearly dependent because a ¤ 0.

Theorem 2.13.1 (The Riesz Representation Theorem). Let f be a bounded
linear functional on a Hilbert space H . There exists exactly one x0 2 H such
that f .x/ D hx; x0i for all x 2 H . Moreover, we have

�
�f
�
� D �

�x0

�
�:

Proof. If f .x/ D 0 for all x 2 H , then x0 D 0 has the desired properties. Assume
now that f is a nonzero functional. Then, dim N .f /? D 1; by Lemma 2.13.1. Let
z0 be a unit vector in N .f /?. Then, for every x 2 H , we have

x D x � hx; z0iz0 C hx; z0iz0:

Since hx; z0iz0 2 N .f /?, we must have x � hx; z0iz0 2 N .f /, which means that

f
�
x � hx; z0iz0

� D 0:

Consequently,

f .x/ D f
�hx; z0iz0

� D hx; z0if .z0/ D ˝
x; f .z0/z0

˛
:

Therefore, if we put

x0 D f .z0/z0;

then f .x/ D hx; x0i for all x 2 H .
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Suppose now that there is another point x1 such that f .x/ D hx; x1i for all
x 2 H . Then hx; x0 � x1i D 0 for all x 2 H and thus hx0 � x1; x0 � x1i D 0: This
is only possible if x0 D x1:

Finally, we have
�
�f
�
� D sup

kxkD1

ˇ
ˇf .x/

ˇ
ˇ D sup

kxkD1

ˇ
ˇhx; x0iˇˇ � sup

kxkD1

���x
�
�
�
�x0

�
�� D �

�x0

�
�

and
�
�x0

�
�2 D hx0; x0i D ˇ

ˇf .x0/
ˇ
ˇ � �

�f
�
�
�
�x0

�
�:

Therefore,
�
�f
�
� D �

�x0

�
�:

The collection H 0 of all bounded linear functionals on a Hilbert space H is a
Banach space. The Riesz representation theorem states that H 0 D H or, more
precisely, that H 0 and H are isomorphic. The element x0 corresponding to a
functional f is sometimes called the representer of f .

Note that the functional f defined by f .x/ D hx; x0i, where x0 ¤ 0 is a fixed
element of a complex Hilbert space H , is not linear. Indeed, we have f .’xC“y/ D
N’f .x/ C N“f .y/: Such functionals are often called anti-linear or conjugate-linear.

2.14 Separable Hilbert Spaces

Definition 2.14.1 (Separable Hilbert Space). A Hilbert space is called separable
if it contains a complete orthonormal sequence. Finite-dimensional Hilbert spaces
are considered separable.

Example 2.14.1. The Hilbert space L2
�
Œ� ;  �

�
is separable. Example 2.10.2

shows a complete orthonormal sequence in L2
�
Œ� ;  �

�
.

Example 2.14.2. The sequence space l2 is separable.

Example 2.14.3 (Nonseparable Hilbert Space). Let H be the space of all complex-
valued functions defined on R which vanish everywhere except a countable number
of points in R and such that

X

f .x/¤0

ˇ
ˇf .x/

ˇ
ˇ2 < 1:

The inner product in H can be defined as

hf; gi D
X

f .x/g.x/¤0

f .x/ g.x/:

This space is not separable because, for any sequence of functions fn 2 H , there
are nonzero functions f such that hf; fni D 0 for all n 2 N:
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Recall that a set S in a Banach space X is called dense in X if every element of
X can be approximated by a sequence of elements of S . More precisely, for every
x 2 X , there exist xn 2 S such that

�
�x � xn

�
� ! 0 as n ! 1.

Theorem 2.14.1. Every separable Hilbert space contains a countable dense subset.

Proof. Let fxng be a complete orthonormal sequence in a Hilbert space H . The set

S D ˚
.’1 C i“1/x1 C � � � C .’n C i“n/xn W ’1; : : : ; ’nI “1; : : : ; “n 2 Q; n 2 N

�

is obviously countable. Since, for every x 2 H;

�
��
�
�

nX

kD1

hx; xkixk � x

�
��
�
�

! 0 as n ! 1;

the set S is dense in H .

The statement in the preceding theorem is often used as a definition of
separability.

Theorem 2.14.2. Every orthogonal set in a separable Hilbert space is countable.

Proof. Let S be an orthogonal set in a separable Hilbert space H , and let S1 be the
set of normalized vectors from S , that is, S1 D fx=kxk W x 2 Sg. For any distinct
x; y 2 S1, we have

�
�x � y

�
�2 D hx � y; x � yi

D hx; xi � hx; yi � hy; xi C hy; yi
D 1 � 0 � 0 C 1 (by the orthogonality)
D 2:

This means that the distance between any two distinct elements of S1 is
p

2.

Now, consider the collection of .1=
p

2/-neighborhoods about every element of
S1. Clearly, no two of these neighborhoods can have a common point. Since every
dense subset of H must have at least one point in every neighborhood and H has a
countable dense subset, S1 must be countable. Thus, S is countable.

Definition 2.14.2 (Hilbert Space Isomorphism). A Hilbert space H1 is said to be
isomorphic to a Hilbert space H2 if there exists a one-to-one linear mapping T from
H1 onto H2 such that

˝
T .x/; T .y/

˛ D hx; yi (2.14.1)

for every x; y 2 H1. Such a mapping T is called a Hilbert space isomorphism of
H1 onto H2:

Note that (2.14.1) implies
�
�T
�
� D 1 because

�
�T .x/

�
� D �

�x
�
� for every x 2 H1.
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Theorem 2.14.3. Let H be a separable Hilbert space.

(a) If H is infinite-dimensional, then it is isomorphic to the space l2I
(b) If H has dimension N , then it is isomorphic to the space CN :

Proof. Let fxng be a complete orthonormal sequence in H . If H is infinite
dimensional, then fxng is an infinite sequence. Let x be an element of H: Define
T .x/ D f’ng, where ’n D hx; xni; n D 1; 2; : : : : By Theorem 2.10.3, T is a
one-to-one mapping from H onto l2. It is clearly a linear mapping. Moreover for
’n D hx; xni and “n D hy; xni; x; y 2 H; n 2 N; we have

˝
T .x/; T .y/

˛ D ˝
.’1; ’1; : : : /; .“1; “1; : : : /

˛

D
1X

nD1

’n “n D
1X

nD1

hx; xnihy; xni

D
1X

nD1

˝
x; hy; xnixn

˛ D
ˇ̌
ˇ
ˇ
ˇ

*

x;

1X

nD1

hy; xnixn

+ˇ̌
ˇ
ˇ
ˇ

D hx; yi:

Thus, T is an isomorphism from H onto l2.

The proof of (b) is left as an exercise.
It is easy to check that isomorphism of Hilbert spaces is an equivalence relation.
Since any infinite dimensional separable Hilbert space is isomorphic to the

space l2, it follows that any two such spaces are isomorphic. The same is true for real
Hilbert spaces; any real infinite dimensional separable Hilbert space is isomorphic
to the real space l2. In some sense, there is only one real and one complex infinite
dimensional separable Hilbert space.

2.15 Linear Operators on Hilbert Spaces

The concept of an operator (or transformation) on a Hilbert space is a natural
generalization of the idea of a function of a real variable. Indeed, it is fundamental
in mathematics, science, and engineering. Linear operators on a Hilbert space are
widely used to represent physical quantities, and hence, they are more important
and useful. The most important operators include differential, integral, and matrix
operators. In signal processing and wavelet analysis, almost all algorithms are
mainly based on linear operators.

Definition 2.15.1 (Linear Operator). An operator T of a vector space X into
another vector space Y , where X and Y have the same scalar field, is called a linear
operator if

T
�
ax1 C bx2

� D a T x1 C b T x2 (2.15.1)

for all scalars a; b and for all x1; x2 2 X:

Otherwise, it is called a nonlinear operator.



2.15 Linear Operators on Hilbert Spaces 89

Example 2.15.1 (Integral Operator). One of the most important operators is the
integral operator T defined by

T x.s/ D
Z b

a

K.s; t/ x.t/ dt (2.15.2)

where a and b are finite or infinite. The function K is called the kernel of the
operator.

Example 2.15.2 (Differential Operator). Another important operator is called the
differential operator

�
Df

�
.x/ D df .x/

dx
D f 0.x/ (2.15.3)

defined on the space of all differentiable functions on some interval Œa; b� � R,
which is a linear subspace of L2

�
Œa; b�

�
.

Example 2.15.3 (Matrix Operator). Consider an operator T on C
n, and let

fe1; e2; : : : ; eng be the standard base in C
n, that is, e1 D .1; 0; 0; : : : ; 0/; e2 D

.0; 1; 0; : : : ; 0/; : : : ; en D .0; 0; : : : ; 1/.
We define

aij D hTej ; ei i for all i; j 2 f1; 2; : : : ; ng :

Then, for x D
nX

j D1

aj ej 2 C
n; we have

T x D
nX

j D1

aj Tej (2.15.4)

and hence

hT x; ei i D
nX

j D1

aj hTej ; ei i D
nX

j D0

aij aj : (2.15.5)

Thus, every operator T on the space C
n is defined by an n � n matrix.

Conversely, for every n � n matrix
�
aij

�
, formula (2.15.5) defines an operator

on C
n. We thus have a one-to-one correspondence between operators on an

n-dimensional vector space and n � n matrices.

Definition 2.15.2 (Bounded Operator). An operator T W X ! X is called
bounded if there exists a number K such that

�
�T x

�
� � K

�
�x
�
� for every x 2 X:
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The norm of an operator T is defined as the least of all such number K or,
equivalently, by

�
�T
�
� D sup

kxkD1

�
�T
�
�:

It follows from this definition that

�
�T x

�
� � �

�T
�
�
�
�x
�
�:

If the operator T is defined by the matrix
�
aij

�
in Example 2.15.3, then

�
�T
�
� �

vuu
t

nX

iD1

nX

j D1

ˇ
ˇaij

ˇ
ˇ2: (2.15.6)

This means that every operator on C
n, and thus also every operator on any finite

dimensional Hilbert space is bounded.
The differential operator defined in Example 2.15.2 is unbounded. Consider the

sequence of functions fn.x/ D sin nx; n D 1; 2; 3; : : : defined on Œ� ;  �. Then,

�
�fn

�
� D

�Z  

� 

sin2 nx dx

	 1
2

D p
 

and

�
�Dfn

�
� D

�Z  

� 

.n cos nx/2dx

	 1
2

D n
p

 :

Thus,

�
�Dfn

�
� D n

�
�fn

�
� ! 1 as n ! 1:

Definition 2.15.3 (Continuous Operator). A linear operator T W X ! Y ,
where X and Y are normed spaces, is continuous at a point x0 2 X , if, for any
sequence

˚
xn

�
of elements in X convergent to x0, the sequence

˚
T .xn/

�
converges

to T .x0/. In other words, T is continuous at x0 if
��xn � x0

�� ! 0 implies
��T .xn/�

T .x0/
�� ! 0. If T is continuous at every point x 2 X , we simply say that T is

continuous in X .

Theorem 2.15.1. A linear operator is continuous if and only if it is bounded.

The proof is fairly simple (see Debnath and Mikusinski 1999, p. 22) and omitted
here.
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Two operators T and S on a vector space X are said to be equal, T D S , if
T x D Sx for every x 2 X . The set of all operators forms a vector space with the
addition and multiplication by a scalar defined by

.T C S/x D T x C Sx;

.’T /x D ’T x:

The product TS of operators T and S is defined by

.TS/.x/ D T .Sx/:

In general, TS ¤ ST . Operators T and S for which TS D ST are called
commuting operators.

Example 2.15.4. Consider the space of differentiable functions on R and the
operators

Tf .x/ D xf .x/ and D D d

dx
:

It is easy to check that TD ¤ DT:

The square of an operator T is defined as T 2x D T .T x/. Using the principle of
induction, we can define any power of T by

T nx D T
�
T n�1x

�
:

Theorem 2.15.2. The product TS of bounded operators T and S is bounded and

�
�TS

�
� � �

�T
�
�
�
�S
�
�:

Proof. Suppose T and S are two bounded operators on a normed space X I ��T
�
� D

k1 and
�
�S
�
� D k2. Then,

��TSx
�� � k1

��Sx
�� � k1k2

��x
�� for every x 2 X:

This proves the theorem.

Theorem 2.15.3. A bounded operator on a separable infinite dimensional Hilbert
space can be represented by an infinite matrix.

Proof. Suppose T is a bounded operator on a Hilbert space H and
˚
en

�
is a

complete orthonormal sequence in H . For i; j 2 N; define

aij D hTej ; ei i:
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For any x 2 H , we have

T x D T

0

@ lim
n!1

nX

j D1

hx; ej iej

1

A

D lim
n!1 T

0

@
nX

j D1

hx; ej iej

1

A ; by continuity of T

D lim
n!1

0

@
nX

j D1

hx; ej iTej

1

A ; by linearity of T

D
1X

j D1

hx; ej iTej :

Now,

hT x; ei i D
* 1X

j D1

hx; ej iTej ; ei

+

D
1X

j D1

hTej ; ei ihx; ej i D
1X

j D1

aij hx; ej i:

This shows that T is represented by the matrix
�
aij

�
.

Suppose T is a bounded operator on a Hilbert space H . For every fixed x0 2 H ,
the functional f defined on H by

f .x/ D hT x; x0i
is a bounded linear functional on H . Thus, by the Riesz representation theorem,
there exists a unique y0 2 H such that f .x/ D hx; y0i for all x 2 H . Or,
equivalently, hT x; x0i D hx; y0i for all x 2 H . If we denote by T

�

the operator
which to every x0 2 H assigns that unique y0, then we have

hT x; yi D hx; T
�

yi for all x; y 2 H:

Definition 2.15.4 (Adjoint Operator). If T is a bounded linear operator on a
Hilbert space H , the operator T

� W H ! H defined by
˝
T x; y

˛ D ˝
x; T

�

y
˛

for all x; y 2 H

is called the adjoint operator of T .

The following are immediate consequences of the preceding definition.

�
T C S

�� D T
� C S

�

;
�
’T
�� D ’ T

�

;

�
T

�
�� D T; I

� D I;
�
TS
�� D S

�

T
�

;

for arbitrary operators T and S; I is the identity operator and for any scalar ’.
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Theorem 2.15.4. The adjoint operator T
�

of a bounded operator T is bounded.
Moreover,

��T
�� D ��T

�
�� and

��T T
�
�� D ��T

��2
:

Proof. The reader is referred to Debnath and Mikusinski (1999, p. 151).
In general, T ¤ T

�

. For example, suppose H D C
2, and suppose T is defined by

T .z1; z2/ D h0; z1i:
Then,

˝
T .x1; x2/; .y1; y2/

˛ D x1 Ny2 and
˝
.x1; x2/; T .y1; y2/

˛ D x2 Ny1:

However, operators for which T D T
�

are of special interest.

Definition 2.15.5 (Self-adjoint Operator). If T D T
�

, that is, hT x; yi D
hx; Tyi for all x; y 2 H , then T is called self-adjoint (or Hermitian).

Example 2.15.5. Suppose H D C
n and that fe1; e2; : : : ; eng is a standard orthonor-

mal base in H . Suppose T is an operator represented by the matrix
�
aij

�
, where

aij D hTej ; eii (see Example 2.15.3). Then, the adjoint operator T
�

is represented
by the matrix bkj D hT �

ej ; eki. Consequently,

bkj D hej ; Teki D hTek; ej i D ajk:

Therefore, the operator T is self-adjoint if and only if aij D aj i . A matrix that
satisfies this condition is often called Hermitian.

Example 2.15.6. Suppose H is a separable, infinite-dimensional Hilbert space, and
suppose feng is a complete orthonormal sequence in H . If T is a bounded operator
on H represented by an infinite matrix

�
aij

�
, the operator T is self-adjoint if and

only if aij D aj i for all i; j 2 N:

Example 2.15.7. Suppose T is a Fredholm operator on L2
�
Œa; b�

�
defined

by (2.15.2), where the kernel K is defined on Œa; b� � Œa; b� such that

Z b

a

Z b

a

ˇ
ˇK.s; t/

ˇ
ˇ2ds dt < 1:

This condition is satisfied if K is continuous. We have

hT x; yi D
Z b

a

Z b

a

K.s; t/ x.t/ y.s/ ds dt

D
Z b

a

Z b

a

K.s; t/ x.t/ y.s/ ds dt
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D
Z b

a

x.t/

Z b

a

K.s; t/ y.s/ ds dt

D
*

x;

Z b

a

K.s; t/ y.t/ dt

+

:

This shows that

�
T

�

x
�
.s/ D

Z b

a

K.s; t/ x.t/ dt:

Thus, the Fredholm operator is self-adjoint if its kernel satisfies the equality
K.s; t/ D K.t; s/.

Example 2.15.8. The operator T on L2
�
Œa; b�

�
defined by

�
T x
�
.t/ D tx.t/ is

self-adjoint.
We have

hT x; yi D
Z b

a

t x.t/ y.t/ dt D
Z b

a

x.t/ t y.t/ dt D hx; Tyi:

Example 2.15.9. The operator T defined on L2.R/ defined by
�
T x
�
.t/ D e�jt jx.t/

is bounded and self-adjoint.
The fact that T is self-adjoint follows from

hT x; yi D
Z 1

�1
e�jt jx.t/ y.t/ dt D

Z 1

�1
x.t/ e�jt j y.t/ dt D hx; Tyi:

The proof of boundedness is left as an exercise.

Theorem 2.15.5. If T is a bounded operator on a Hilbert space H , the operators
A D T C T

�

and B D T
�

T are self-adjoint.

Proof. For all x; y 2 H , we have

hAx; yi D
D�

T C T
�
�
x; y

E
D
D
x;
�
T C T

�
��

y
E

D
D
x;
�
T C T

�
�
y
E

D hx; Ayi
and

hBx; yi D
D
T

�

T x; y
E

D hT x; Tyi D
D
x; T

�

Ty
E

D hx; Byi:

Theorem 2.15.6. The product of two self-adjoint operators is self-adjoint if and
only if they commute.

Proof. Suppose T and S are two self-adjoint operators. Then,

hTSx; yi D hSx; Tyi D hx; STyi
Thus, if TS D ST , then TS is self-adjoint.
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Conversely, if TS is self-adjoint, then the above implies TS D .TS/
� D ST:

Example 2.15.10. Consider the differential operator D in the space of all differen-
tiable functions on R vanishing at infinity. Then,

hDx; yi D
Z 1

�1
d

dt
x.t/ � y.t/ dt D �

Z 1

�1
x.t/ � d

dt
y.t/ dt

D
Z 1

�1
x.t/ �

�
� d

dt
y.t/

�
dt D hx; �Dyi:

Thus, �D is the adjoint of the operator D:

Example 2.15.11. Consider the operator T D i
d

dt
in the space of all differentiable

functions on R vanishing at infinity.
We have

hT x; yi D
Z 1

�1
i

d

dt
x.t/ � y.t/ dt D �i

Z 1

�1
x.t/ � d

dt
y.t/ dt

D
Z 1

�1
x.t/ �

�
i

d

dt
y.t/

�
dt D hx; Tyi:

Therefore, T is a self-adjoint operator.

Theorem 2.15.7. For every bounded operator T on a Hilbert space H , there exist
unique self-adjoint operators A and B such that T D A C iB and T

� D A � iB:

Proof. Suppose T is a bounded operator on H . Define

A D 1

2

�
T C T

�
�

and B D 1

2

�
T � T

�
�
:

Evidently, A and B are self-adjoint and T D A C iB . Moreover, for any x; y 2 H ,
we have

hT x; yi D ˝
.A C iB/x; y

˛ D ˝
Ax; y

˛C i
˝
Bx; y

˛

D ˝
x; Ay

˛C i
˝
x; By

˛ D ˝
x; .A � iB/y

˛
:

Hence, T
� D A � iB .

The proof of uniqueness is left as an exercise.

In particular, if T is self-adjoint, then T D A and B D 0. This implies that
self-adjoint operators are like real numbers in C:

We next discuss projection operators and their properties.
According to the projection Theorem 2.12.4, if S is a closed subspace of a Hilbert

space H , then for every x 2 H , there exists a unique element y 2 S such that
x D y C z and z 2 S?. Thus, every closed subspace induces an operator on H

which assigns to x that unique y.
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Definition 2.15.6 (Anti-Hermitian Operator). An operator A is called anti-
Hermitian if A D �A

�

.
The operator in Example 2.15.10 is anti-Hermitian.

Definition 2.15.7 (Inverse Operator). Let T be an operator defined on a vector
subspace of X . An operator S defined on R.T / is called the inverse of T if
TSx D x for all x 2 R.T / and ST x D x for all x 2 D.T /. An operator which has
an inverse is called invertible. The inverse of T will be denoted by T �1.

If an operator has an inverse, then it is unique. Indeed, suppose S1 and S2 are
inverses of T . Then

S1 D S1I D S1TS2 D IS2 D S2:

Note also that

D
�
T �1

� D R.T / and R
�
T �1

� D D.T /:

First, we recall some simple algebraic properties of invertible operators.

Theorem 2.15.8. (a) The inverse of a linear operator is a linear operator.
(b) An operator T is invertible if and only if T x D 0 implies x D 0.
(c) If an operator T is invertible and vectors x1; : : : ; xn are linearly independent,

then T x1; : : : ; T xn are linearly independent.
(d) If operators T and S are invertible, then the operator TS is invertible and we

have .TS/�1 D S�1T �1:

Proof. (a) For any x; y 2 R.T / and ’; “ 2 C, we have

T �1.’x C “y/ D T �1
�
’ T T �1x C “ T T �1y

�

D T �1T
�
’ T �1x C “ T �1y

� D ’ T �1x C “ T �1y:

(b) If T is invertible and T x D 0, then x D T �1T x D T �10 D 0: Assume now
that T x D 0 implies x D 0. If T x1 D T x2; then T .x1 � x2/ D 0 and thus
x1 � x2 D 0. Consequently, x1 � x2 D O . which proves that T is invertible.

(c) Suppose ’1T x1 C � � � C ’nT xn D 0: Then, T
�
’1x1 C � � � C ’nxn

� D 0,
and since T is invertible, ’1x1 C � � � C ’nxn D 0. Linear independence of
x1; : : : ; xn implies ’1 D � � � D ’n D 0. Thus, vectors T x1; : : : ; T xn are linearly
independent.

(d) In view of (b). if T .Sx/ D 0, then Sx D 0 since T is invertible. If Sx D 0;

then x D 0, since S is invertible. Thus, TS is invertible by (b). Moreover,

�
S�1T �1

��
TS
� D S�1

�
T �1T

�
S D S�1S D I:

Similarly,
�
TS
��

S�1T �1
� D I . This proves that

�
TS
��1 D S�1T �1:
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It follows from part (c) in the preceding theorem that if X is a finite dimensional
vector space and T is a linear invertible operator on X , then R.T / D X .
As the following example shows, in infinite dimensional vector spaces this is not
necessarily true.

Example 2.15.12. Let X D l2. Define an operator T on X by

T
�
x1; x2; : : :

� D �
0; x1; x2; : : :

�
:

Clearly. this is a linear invertible operator on l2 whose range is a proper subspace
of l2.

The next example shows that the inverse of a bounded operator is not necessarily
bounded.

Example 2.15.13. Let X D l2. Define an operator T on X by

T
�
x1; x2; : : :

� D
�
x1;

x2

2
;

x3

3
; : : : ;

xn

n
; : : :



:

Since

�
�T
�
x1; x2; : : :

��� D
vu
u
t

1X

nD1

jxnj2
n2

�
vu
u
t

1X

nD1

jxnj2 D �
��x1; x2; : : :

���;

T is a bounded operator. T is also invertible:

T �1
�
x1; x2; : : :

� D �
x1; 2x2; 3x3; : : : ; nxn; : : :

�
:

However, T �1 is not bounded. In fact, consider the sequence feng of elements of l2,
where feng is the sequence whose nth term is 1 and all the remaining terms are 0.
Then,

��en

�� D 1 and
��T �1en

�� D n. Therefore, T �1 is unbounded.
If X is finite dimensional, then the inverse of any invertible operator on X is

bounded because every operator on a finite dimensional space is bounded.

Theorem 2.15.9. Let T be a bounded operator on a Hilbert space H such that
R.T / D H . If T has a bounded inverse, then the adjoint T

�

is invertible and
�
T

�
��1 D �

T �1
��

:

Proof. It suffices to show that

�
T �1

��

T
�

x D T
��

T �1
��

x D x (2.15.7)

for every x 2 H . Indeed, for any y 2 H , we have

D
y;
�
T �1

��

T
�

x
E

D ˝
T �1y; T

�

x
˛ D ˝

T T �1y; x
˛ D ˝

y; x
˛
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and
D
y; T

��
T �1

��

x
E

D
D
Ty;

�
T �1

��

x
E

D ˝
T �1Ty; x

˛ D ˝
y; x

˛
:

Thus,

D
y;
�
T �1

��

T
�

x
E

D
D
y; T

�
�
T �1

��

x
E

D ˝
y; x

˛
for all y 2 H: (2.15.8)

This implies (2.15.7).

Corollary 2.15.1. If a bounded self-adjoint operator T has bounded inverse T �1,
then T �1 is self-adjoint.

Proof.
�
T �1

�� D �
T

�
��1 D T �1:

Definition 2.15.8 (Isometric Operator). A bounded operator T on a Hilbert
space H is called an isometric operator if kT xk D kxk for all x 2 H:

Example 2.15.14. Let feng ; n 2 N, be a complete orthonormal sequence in a
Hilbert space H . There exists a unique operator T such that Ten D enC1 for all

n 2 N. In fact, if x D
1X

nD1

’nen; then T x D
1X

nD1

’nenC1. Clearly, T is linear and

�
�T x

�
�2 D

1X

nD1

ˇ
ˇ’n

ˇ
ˇ2 D �

�x
�
�: Therefore, T is an isometric operator. The operator T

is called a one-sided shift operator.

Theorem 2.15.10. A bounded operator T defined on a Hilbert space H is isometric
if and only if T

�

T D I on H .

Proof. If T is isometric, then for every x 2 H we have
��T x

��2 D ��x
��2

and hence,

˝
T

�

T x; x
˛ D ˝

T x; T x
˛ D ˝

x; x
˛

for all x 2 H:

This implies that T
�

T D I . Similarly, if T
�

T D I , then

�
�T x

�
� D

q˝
T x; T x

˛ D
q˝

T
�

T x; x
˛ D

q˝
x; x

˛ D �
�x
�
�:

Note that isometric operators “preserve inner product”: hT x; Tyi D hx; yi.
In particular, x ? y if and only if T x ? Ty. The operator in Example 2.15.12
is an isometric operator.

Definition 2.15.9 (Unitary Operator). A bounded operator T on a Hilbert space
H is called a unitary operator if T

�

T D T T
� D I on H .

In the above definition it is essential that the domain and the range of T be the
entire space H .
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Theorem 2.15.11. An operator T is unitary if and only if it is invertible and
T �1 D T

�

.

Proof. Assume that T is an invertible operator on a Hilbert space H such that
T �1 D T

�

. Then, T
�

T D T �1T D I and T T
� D T T �1 D I . Therefore, T

is a unitary operator. The proof of the converse is similar.

Theorem 2.15.12. Suppose T is a unitary operator. Then

(a) T is isometric,
(b) T �1 and T

�

are unitary.

Proof. (a) follows from Theorem 2.15.10. To prove (b), note that
�
T �1

��
T �1 D T

��

T �1 D T T �1 D I:

Similarly, T �1
�
T �1

�� D I , and thus, T �1 is unitary. Since T
� D T �1, by

Theorem 2.15.11, T
�

is also unitary.

Example 2.15.15. Let H be the Hilbert space of all sequences of complex numbers

x D f: : : ; x�1; x0; x1; : : : g such that
�
�x
�
� D

1X

nD�1

ˇ
ˇxn

ˇ
ˇ2 < 1: The inner product is

defined by

hx; yi D
1X

nD�1
xn yn:

Define an operator T by T .xn/ D .xn�1/. T is a unitary operator and hence, T is
invertible and

˝
T x; y

˛ D
1X

nD�1
xn�1 yn D

1X

nD�1
xn ynC1 D ˝

x; T �1y
˛
:

This implies that T
� D T �1.

Example 2.15.16. Let H D L2
�
Œ0; 1�

�
. Define an operator T on H by

�
T x
�
.t/ D

x.1 � t/. This operator is a one-to-one mapping of H onto H . Moreover, we have
T D T

� D T �1. Thus, T is a unitary operator.

Definition 2.15.10 (Positive Operator). An operator T is called positive if it is
self-adjoint and hT x; xi � 0 for all x 2 H .

Example 2.15.17. Let ¥ be a nonnegative continuous function on Œa; b�. The
multiplication operator T on L2.Œa; b�/ defined by T x D ¥x is positive. In fact
for any x 2 L2

�
Œa; b�

�
, we have

hT x; xi D
Z b

a

¥.t/ x.t/ x.t/ dt D
Z b

a

¥.t/
ˇ
ˇx.t/

ˇ
ˇ2dt � 0:
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Example 2.15.18. Let K be a positive continuous function defined on Œa; b�� Œa; b�.
The integral operator T on L2

�
Œa; b�

�
defined by

�
T x
�
.s/ D

Z b

a

K.s; t/ x.t/ dt

is positive. Indeed, we have

hT x; xi D
Z b

a

Z b

a

K.s; t/ x.t/ x.t/ dt ds D
Z b

a

Z b

a

K.s; t/
ˇ
ˇx.t/

ˇ
ˇ2dt ds � 0

for all x 2 L2
�
Œa; b�

�
.

Theorem 2.15.13. For any bounded operator A on a Hilbert space H , the
operators A

�

A and AA
�

are positive.

Proof. For any x 2 H , we have

˝
A

�

Ax; x
˛ D ˝

Ax; Ax
˛ D �

�Ax
�
�2 � 0

and

˝
AA

�

x; x
˛ D ˝

A
�

x; A
�

x
˛ D ��Ax

��2 � 0:

Theorem 2.15.14. If A is an invertible positive operator on a Hilbert space H ,
then its inverse A�1 is positive.

Proof. If y 2 D
�
A�1

�
, then y D Ax for some x 2 H , and then

˝
A�1y; y

˛ D ˝
A�1Ax; Ax

˛ D ˝
x; Ax

˛ � 0:

To indicate that A is a positive operator, we write A � 0. If the difference A � B

of two self-adjoint operators is a positive operator, that is, A � B � 0, then we write
A � B . Consequently,

A � B if and only if
˝
Ax; x

˛ � ˝
Bx; x

˛
for all x 2 H:

This relation has the following natural properties:

If A � B and C � D, then A C C � B C D;
If A � 0 and ’ � 0.’ 2 R/, then ’A � 0;
If A � B and B � C , then A � C .

Proofs are left as exercises.

Theorem 2.15.15. If T is a self-adjoint operator on H and
��T
�� � 1, then T � I:
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Proof. If
�
�T
�
� � 1, then

˝
T x; x

˛ � �
�T
�
�
�
�x
�
�2 � ˝

x; x
˛ D ˝

Ix; x
˛

for all x 2 H .

Definition 2.15.11 (Orthogonal Projection Operator). If S is a closed subspace
of a Hilbert space H , the operator P on H defined by

P x D y if x D y C z; y 2 S and z 2 S?; (2.15.9)

is called the orthogonal projection operator onto S , or simply, the projection
operator onto S . The vector y is called the projection of x onto S .

Since the decomposition x D y Cz is unique, it follows that projection operators
are linear. The Pythagorean formula implies that

��P x
��2 D ��y

��2 D ��x
��2 � ��z

��2 � ��x
��2

:

This shows that projection operators are bounded and
�
�P x

�
� � 1. The zero operator

is a projection operator onto the zero subspace. If P is a nonzero projection operator,
then

�
�P x

�
� D 1 because, for every x 2 S , we have P x D x. The identity operation

I is the projection operator onto the whole space H .
Moreover, it follows from (2.15.9) that

˝
P x; x � P x

˛ D 0 for every x 2 H:

Example 2.15.19. If S is a closed subspace of a Hilbert space H and feng is a
complete orthonormal system in S , then the projection operator P onto S can be
defined by

P x D
1X

nD1

hx; enien:

In particular, if the dimension of S is unity and u 2 S; kuk D 1; then P x D
hx; uiu:

Example 2.15.20. Suppose that H D L2
�
Œ� ;  �

�
. Every x 2 H can be

represented as x D y C z, where y is an even function and z is an odd function. The
operator defined by P x D y is the projection operator onto the subspace of all even
functions. This operator can also be defined as in Example 2.15.19:

P x D
1X

nD0

hx; ¥ni¥n;

where ¥0 D 1p
2 

and ¥n.t/ D 1p
 

cos nt; n D 1; 2; 3; : : : .
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Example 2.15.21. Let H D L2
�
Œ� ;  �

�
and P be an operator defined by

.P x/.t/ D
�

0; t � 0

x.t/; t > 0

Then, P is the projection operator onto the space of all functions that vanish for
t � 0.

Definition 2.15.12 (Idempotent Operator). An operator T is called idempotent
if T 2 D T .

Every projection operator is idempotent. In fact, if P is the projection operator
onto a subspace S , then P is the identity operator on S . Since P x 2 S for every
x 2 H , it follows that P 2 D P.P x/ for all x 2 H .

Example 2.15.22. Consider the operator T on C
2 defined by T .x; y/ D hx � y; 0i.

Obviously, T is idempotent. On the other hand, since

˝
T .x; y/; .x; y/ � T .x; y/

˛ D xy � jyj2;

T .x; y/ need not be orthogonal to .x; y/ � T .x; y/ and thus T is not a projection.

Definition 2.15.13 (Compact Operator). An operator T on a Hilbert space H is
called a compact operator (or completely continuous operator) if, for every bounded
sequence

˚
xn

�
in H , the sequence

˚
T xn

�
contains a convergent subsequence.

Compact operators constitute an important class of bounded operators. The
concept originated from the theory of integral equations of the second kind.
Compact operators also provide a natural generalization of operators with finite-
dimensional range.

Example 2.15.23. Every operator on a finite dimensional Hilbert space is compact.
Indeed, if T is an operator on C

N , then it is bounded. Therefore, if
˚
xn

�
is a bounded

sequence, then
˚
T xn

�
is a bounded sequence in C

N . By the Bolzano–Weierstrass
theorem,

˚
T xn

�
contains a convergent subsequence.

Theorem 2.15.16. Compact operators are bounded.

Proof. If an operator T is not bounded, then there exists a sequence
˚
xn

�
such that�

�xn

�
� D 1, for all n 2 N, and

�
�T xn

�
� ! 1. Then,

˚
T xn

�
does not contain a

convergent subsequence, which means that T is not compact.

Not every bounded operator is compact.

Example 2.15.24. The identity operator I on an infinite dimensional Hilbert space
H is not compact, although it is bounded. In fact. consider an orthonormal sequence
feng in H . Then, the sequence Ien D en does not contain a convergent subsequence.

Example 2.15.25. Let y and z be fixed elements of a Hilbert space H . Define

T x D ˝
x; y

˛
z:
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Let
˚
xn

�
be a bounded sequence, that is,

�
�xn

�
� � M for some M > 0 and all n 2 N.

Since

ˇ̌˝
xn; y

˛ˇ̌ � ��xn

����y
�� � M

��y
��;

the sequence
˚hxn; yi� contains a convergent subsequence

˚hxpn; yi�. Denote the
limit of that subsequence by ’. Then,

T xpn D ˝
xpn ; y

˛
z ! ’z as n ! 1:

Therefore, T is a compact operator.

Example 2.15.26. Important examples of compact operators are integral operators
T on L2

�
Œa; b�

�
defined by

�
T x
�
.s/ D

Z b

a

K.s; t/ x.t/ dt;

where a and b are finite and K is continuous.

Example 2.15.27. Let S be a finite-dimensional subspace of a Hilbert space H . The
projection operator Ps is a compact operator.

Theorem 2.15.17. Let A be a compact operator on a Hilbert space H , and let B

be a bounded operator on H . Then, AB and BA are compact.

Proof. Let fxng be a bounded sequence in H . Since B is bounded, the sequence
fBxng is bounded. Next, since A is compact, the sequence fABxng contains a
convergent subsequence, which means that the operator AB is compact. Similarly,
since A is compact, the sequence fAxng contains a convergent subsequence

˚
Axpn

�
.

Now, since B is bounded (and thus continuous), the sequence
˚
BAxpn

�
converges.

Therefore, the operator BA is compact.

The operator defined in Example 2.15.27 is a special case of a finite-dimensional
operator.

Definition 2.15.14 (Finite-Dimensional Operator). An operator is called finite-
dimensional if its range is of finite dimension.

Theorem 2.15.18. Finite-dimensional bounded operators are compact.

Proof. Let A be a finite-dimensional bounded operator and let fz1; : : : ; zkg be an
orthonormal basis of the range of A. Define

Tnx D ˝
Ax; zn

˛
zn

for n D 1; : : : ; k. Since

Tnx D ˝
Ax; zn

˛
zn D ˝

x; A
�

zn

˛
zn;
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the operators Tn are compact, as proved in Example 2.15.25. Since

A D
kX

nD1

Tn;

A is compact because the collection of all compact operators on a Hilbert space H

is a vector space.

Theorem 2.15.19. If T1; T2; : : : are compact operators on a Hilbert space H and�
�Tn � T

�
� ! 0 as n ! 1 for some operator T on H , then T is compact.

Proof. Let
˚
xn

�
be a bounded sequence in H . Since T1 is compact, there exists a

subsequence
˚
x1;n

�
of
˚
xn

�
such that

˚
T1x1;n

�
is convergent. Similarly, the sequence˚

T2x1;n

�
contains a convergent subsequence

˚
T2x2;n

�
. In general, for k � 2, let˚

xk;n

�
be a subsequence of

˚
xk�1;n

�
such that

˚
Tkxk;n

�
is convergent. Consider

the sequence
˚
xn;n

�
. Since it is a subsequence of

˚
xn

�
, we can put xpn D xn;n

where
˚
pn

�
is an increasing sequence of positive integers. Obviously, the sequence˚

Tkxpn

�
converges for every k 2 N. We will show that the sequence

˚
T xpn

�
also

converges.

Let © > 0. Since
��Tn � T

�� ! 0, there exists k 2 N such that
��Tk � T

�� � ©

3M
,

where M is a constant such that
��xn

�� � M for all n 2 N. Next, let k1 2 N be such
that

�
�Tkxpn � Tkxpm

�
� � ©

3

for all n; m > k1. Then,

�
�T xpn � T xpm

�
� � �

�T xpn � Tkxpn

�
�C �

�Tkxpn � Tkxpm

�
�C �

�Tkxpm � T xpm

�
�

� ©

3
C ©

3
C ©

3
D ©

for sufficiently large n and m. Thus,
˚
T xpn

�
is a Cauchy sequence in H . Complete-

ness of H implies that
˚
T xpn

�
is convergent.

Corollary 2.15.2. The limit of a convergent sequence of finite-dimensional opera-
tors is a compact operator.

Proof. Finite-dimensional operators are compact.

Theorem 2.15.20. The adjoint of a compact operator is compact.

Proof. Let T be a compact operator on a Hilbert space H , and let
˚
xn

�
be a

bounded sequence in H , that is,
�
�xn

�
� � M for some M for all n 2 N. Define

yn D T
�

xn; n D 1; 2; : : : : Since T
�

is bounded, the sequence
˚
yn

�
is bounded. It

thus contains a subsequence
˚
ykn

�
such that the sequence

˚
Tykn

�
converges in H .

Now, for any m; n 2 N, we have
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��
�ykm � ykn

��
�

2 D
��
�T

�

xkm � T
�

xkn

��
�

2

D
D
T

��
xkm � xkn

�
; T

��
xkm � xkn

�E

D
D
T T

��
xkm � xkn

�
;
�
xkm � xkn

�E

�
�
�
�T T

�
�
xkm � xkn

���
�
�
�
�xkm � xkn

�
�
�

� 2M
�
�
�Tykm � Tykn

�
�
� ! 0; as m; n ! 1:

Therefore,
˚
ykn

�
is a Cauchy sequence in H , which implies that

˚
ykn

�
converges.

This proves that T
�

is a compact operator.

In the next theorem, we characterize compactness of operators in terms of weakly
convergent sequences. Recall that we write “xn ! x” to denote strong convergence

and “xn

w�! x” to denote weak convergence.

Theorem 2.15.21. An operator T on a Hilbert space H is compact if and only if

xn

w�! x implies T xn ! T x.

Proof. For a proof of this theorem, the reader is referred to Debnath and Mikusinski
(1999).

Corollary 2.15.3. If T is a compact operator on a Hilbert space H and fxng is an
orthonormal sequence in H , then limn!1 T xn D 0:

Proof. Orthonormal sequences are weakly convergent to 0.

It follows from the above theorem that the inverse of a compact operator on an
infinite-dimensional Hilbert space, if it exists, is unbounded.

It has already been noted that compactness of operators is a stronger condition
than boundedness. For operators, boundedness is equivalent to continuity. Bounded
operators are exactly those operators that map strongly convergent sequences into
strongly convergent sequences. Theorem 2.15.21 states that compact operators on a
Hilbert space can be characterized as those operators which map weakly convergent
sequences into strongly convergent sequences. From this point of view, compactness
of operators is a stronger type of continuity. For this reason, compact operators are
sometimes called completely continuous operators. The above condition has been
used by F. Riesz as the definition of compact operators. Hilbert used still another
(equivalent) definition of compact operators: an operator T defined on a Hilbert
space H is compact xn ! x weakly and yn ! y weakly implies

˝
T xn; yn

˛ !˝
T x; y

˛
strongly.
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2.16 Eigenvalues and Eigenvectors of an Operator

This section deals with concepts of eigenvalues and eigenvectors which play a
central role in the theory of operators.

Definition 2.16.1 (Eigenvalue). Let T be an operator on a complex vector space
X . A complex number A is called an eigenvalue of T if there is a nonzero vector
u 2 X such that

T u D œu: (2.16.1)

Every vector u satisfying (2.16.1) is called an eigenvector of T corresponding to the
eigenvalue œ. If X is a function space, eigenvectors are often called eigenfunctions.

Example 2.16.1. Let S be a linear subspace of an inner product space X , and T be
the projection on S . The only eigenvalues of T are 0 and 1. Indeed, if, for some
œ 2 C and 0 ¤ u 2 X , we have T u D œu, then

œu D œ2u;

because T 2 D T . Therefore, œ D 0 or œ D 1. The eigenvectors corresponding to 0

are the vectors of Xwhich are orthogonal to S . The eigenvectors corresponding to
1 are all elements of S .

It is important to note that every eigenvector corresponds to exactly one
eigenvalue, but there are always infinitely many eigenvectors corresponding to an
eigenvalue. Indeed, every multiple of an eigenvector is an eigenvector. Moreover,
several linearly independent vectors may correspond to the same eigenvalue. We
have the following simple theorem.

Theorem 2.16.1. The collection of all eigenvectors corresponding to one particu-
lar eigenvalue of an operator is a vector space.

The easy proof is left as an exercise.

Definition 2.16.2 (Eigenvalue Space). The set of all eigenvectors corresponding
to one particular eigenvalue œ is called the eigenvalue space of œ. The dimension
of that space is called the multiplicity of œ. An eigenvalue of multiplicity one is
called simple or nondegenerate. In such a case, the number of linearly independent
eigenvectors is also called the degree of degeneracy.

Example 2.16.2. Consider the integral operator T W L2
�
Œ0; 2 �

� ! L2
�
Œ0; 2 �

�

defined by

�
T u
�
.t/ D

Z 2 

0

cos.t � y/ u.y/ dy: (2.16.2)
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We will show that T has exactly one nonzero eigenvalue œ D  , and its
eigenfunctions are

u.t/ D a cos t C b sin t

with arbitrary a and b.

The eigenvalue equation is

�
T u
�
.t/ D

Z 2 

0

cos.t � y/ u.y/ dy D œ u.t/:

Or,

cos t

Z 2 

0

u.y/ cos y dy C sin t

Z 2 

0

u.y/ sin y dy D œ u.t/: (2.16.3)

This means that, for œ ¤ 0; u is a linear combination of cosine and sine functions,
that is,

u.t/ D a cos t C b sin t; (2.16.4)

where a; b 2 C. Substituting this into (2.16.3), we obtain

 a D œ a and  b D œ b: (2.16.5)

Hence, œ D  , which means that T has exactly one nonzero eigenvalue and its
eigenfunctions are given by (2.16.4). This is a two-dimensional eigenspace, so the
multiplicity of the eigenvalue is 2.

Equation (2.16.3) reveals that œ D 0 is also an eigenvalue of T . The correspond-
ing eigenfunctions are all the functions orthogonal to cos t and sin t . Therefore,
œ D 0 is an eigenvalue of infinite multiplicity.

Note that if œ is not an eigenvalue of T , then the operator T �œI is invertible, and
conversely. If space X is finite dimensional and œ is not an eigenvalue of T , then the
operator

�
T � œI

��1
is bounded because all operators on a finite-dimensional space

are bounded. The situation for infinite dimensional spaces is more complicated.

Definitions 2.16.3 (Resolvent, Spectrum). Let T be an operator on a normed
space X . The operator

Tœ D �
T � œI

��1

is called the resolvent of T . The values œ for which Tœ is defined on the whole space
X and is bounded are called regular points of T . The set of all œ’s which are not
regular is called the spectrum of T .
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Every eigenvalue belongs to the spectrum. The following example shows that the
spectrum may contain points that are not eigenvalues. In fact, a non empty spectrum
may contain no eigenvalues at all.

Example 2.16.3. Let X be the space C
�
Œa; b�

�
of continuous functions on the

interval Œa; b�. For a fixed u 2 C
�
Œa; b�

�
, consider the operator T defined by

�
T x
�
.t/ D u.t/ x.t/:

Since

�
T � œI

��1
x.t/ D x.t/

u.t/ � œ
;

the spectrum of T consists of all œ’s such that œ � u.t/ D 0 for some t 2 Œa; b�.
This means that the spectrum of T is exactly the range of u. If u.t/ D c is a constant
function, then œ D c is an eigenvalue of T . On the other hand, if u is a strictly
increasing function, then T has no eigenvalues. The spectrum of T in such a case is
the interval



u.a/; u.b/

�
.

The problem of finding eigenvalues and eigenvectors is called the eigenvalue
problem. One of the main sources of eigenvalue problems in mechanics is the
theory of oscillating systems. The state of a given system at a given time t may
be represented by an element u.t/ 2 H , where H is an appropriate Hilbert space of
functions. The equation of motion in classical mechanics is

d 2u

dt2
D T u; (2.16.6)

where T is an operator in H . If the system oscillates, the time dependence of u is
sinusoidal, so that u.t/ D v sin ¨t , where v is a fixed element of H . If T is linear,
then (2.16.6) becomes

T v D � � ¨2
�

v: (2.16.7)

This means that �¨2 is an eigenvalue of T . Physically, the eigenvalues of T corre-
spond to possible frequencies of oscillations. In atomic systems, the frequencies of
oscillations are visible as bright lines in the spectrum of light they emit. Thus, the
name spectrum arises from physical considerations.

The following theorems describe properties of eigenvalues and eigenvectors for
some special classes of operators. Our main interest is in self-adjoint, unitary, and
compact operators.

Theorem 2.16.2. Let T be an invertible operator on a vector space X , and let A

be an operator on X . The operators A and TAT �1 have the same eigenvalues.
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Proof. Let œ be an eigenvalue of A. This means that there exists a nonzero vector u
such that Au D œu. Since T is invertible, T u ¤ 0 and

TAT �1.T u/ D TAu D T .œu/ D œT u:

Thus, œ is an eigenvalue of TAT �1.

Assume now that œ is an eigenvalue of TAT �1, that is, TAT �1u D œu for some
nonzero vector u D T v. Since AT �1u D œT �1u and T �1u ¤ 0, hence, œ is an
eigenvalue of A.

Theorem 2.16.3. All eigenvalues of a self-adjoint operator on a Hilbert space
are real.

Proof. Let œ be an eigenvalue of a self-adjoint operator T , and let u be a nonzero
eigenvector of œ. Then,

œhu; ui D hœu; ui D hT u; ui D hu; T ui D hu; œui D Nœhu; ui:

Since hu; ui > 0, we conclude œ D Nœ.

Theorem 2.16.4. All eigenvalues of a positive operator are nonnegative. All
eigenvalues of a strictly positive operator are positive.

Proof. Let T be a positive operator, and let T x D œx for some x ¤ 0. Since T is
self-adjoint, we have

0 � hT x; xi D œ hx; xi D œ
��x
��2

: (2.16.8)

Thus, œ � 0. The proof of the second part of the theorem is obtained by replacing
� by < in (2.16.8).

Theorem 2.16.5. All eigenvalues of a unitary operator on a Hilbert space are
complex numbers of modulus 1.

Proof. Let œ be an eigenvalue of a unitary operator T , and let u be an eigenvector
of œ; u ¤ 0. Then,

hT u; T ui D hœu; œui D jœj2��u
�
�2

:

On the other hand,

˝
T u; T u

˛ D ˝
u; T

�

T u
˛ D hu; ui D �

�u
�
�2

:

Thus, jœj D 1.

Theorem 2.16.6. Eigenvectors corresponding to distinct eigenvalues of a self-
adjoint or unitary operator on a Hilbert space are orthogonal.
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Proof. Let T be a self-adjoint operator, and let u1 and u2 be eigenvectors
corresponding to distinct eigenvalues œ1 and œ2, that is, T u1 D œ1u1 and
T u2 D œ2u2; œ1 ¤ œ2. By Theorem 2.16.3. œ1 and œ2 are real. Then

œ1hu1; u2i D hT u1; u2i D hu1; T u2i D hu1; œ2u2i D Nœ2hu1; u2i D œ2hu1; u2i;
and hence,

.œ1 � œ2/hu1; u2i D 0:

Since œ1 ¤ œ2, we have hu1; u2i D 0, that is, u1 and u2 are orthogonal.

Suppose now that T is a unitary operator on a Hilbert space H . Then, T T
� D

T
�

T D I and kT uk D kuk for all u 2 H . First, note that œ1 ¤ œ2 implies
œ1

Nœ2 ¤ 1. Indeed, if œ1
Nœ2 D 1, then

œ2 D œ1
Nœ2œ2 D œ1

ˇ
ˇœ2

ˇ
ˇ2 D œ1;

because
ˇ
ˇœ2

ˇ
ˇ D 1 by Theorem 2.16.5. Now,

œ1
Nœ2hu1; u2i D hœ1u1; œ2u2i D hT u1; T u2i D hu1; T

�

T u2i D hu1; u2i:
Since œ1

Nœ2 ¤ 1, we get hu1; u2i D 0. This proves that the eigenvectors u1 and u2

are orthogonal.

Theorem 2.16.7. For every eigenvalue œ of a bounded operator T , we have
jœj � kT k.

Proof. Let u be a nonzero eigenvector corresponding to œ. Since T u D œu, we have
�
�œu

�
� D �

�T u
�
�;

and thus,

jœj �� u
�
� D �

�T u
�
� � �

�T
�
�
�
�u
�
�:

This implies that
ˇ
ˇœ
ˇ
ˇ � �

�T
�
�.

If the eigenvalues are considered as points in the complex plane, the preceding
result implies that all the eigenvalues of a bounded operator T lie inside the circle
of radius

�
�T
�
�.

Corollary 2.16.1. All eigenvalues of a bounded, self-adjoint operator T satisfy the
inequality

ˇ
ˇœ
ˇ
ˇ � sup

kxk�1

ˇ
ˇhT x; xiˇˇ: (2.16.9)

The proof follows immediately from Theorem 2.16.5, proved by Debnath and
Mikusinski (1999).
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Theorem 2.16.8. If T is a nonzero, compact, self-adjoint operator on a Hilbert
space H , then it has an eigenvalue œ equal to either

�
�T
�
� or ���T

�
�.

Proof. Let
˚
un

�
be a sequence of elements of H such that

�
�un

�
� D 1, for all n 2 N,

and

�
�T un

�
� ! �

�T
�
� as n ! 1: (2.16.10)

Then

��
�T 2un � ��T un

��2
un

��
�

2 D
D
T 2un � ��T un

��2
un; T 2un � ��T un

��2
un

E

D �
�T 2un

�
�2 � 2

�
�T un

�
�2 ˝

T 2un; un

˛C �
�T un

�
�4��un

�
�2

D ��T 2un

��2 � ��T un

��4

� �
�T
�
�2��T un

�
�2 � �

�T un

�
�4

D �
�T un

�
�2
��
�T
�
�2 � �

�T un

�
�2



:

Since
�
�T un

�
� converges to

�
�T
�
�, we obtain

�
�
�T 2un � �

�T un

�
�2

un

�
�
� ! 0 as n ! 1: (2.16.11)

The operator T 2, being the product of two compact operators, is also compact.
Hence, there exists a subsequence

˚
upn

�
of
˚
un

�
such that

˚
T 2upn

�
converges. Since�

�T
�
� ¤ 0, the limit can be written in the form

�
�T
�
�v; v ¤ 0. Then, for every n 2 N,

we have
�
��
��T
��2

v � ��T
��2

upn

�
�� �

�
��
��T
��2

v � T 2upn

�
��C

�
��T 2upn � ��T upn

��2
upn

�
��

C
�
�
�
�
�T upn

�
�2

upn � �
�T
�
�2

upn

�
�
� :

Thus, by (2.16.10) and (2.16.11), we have
�
��
��T
��2

v � ��T
��2

upn

�
�� ! 0 as n ! 1:

Or,
�
�
�
�
�T
�
�2 �

v � upn

���
� ! 0 as n ! 1:

This means that the sequence
˚
upn

�
converges to v and therefore

T 2v D �
�T
�
�2

v:
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The above equation can be written as
�
T � �

�T
�
�I
� �

T C �
�T
�
�I
�

v D 0:

If w D �
T C �

�T
�
�I
�

v ¤ 0, then
�
T � �

�T
�
�I
�

w D 0, and thus
�
�T
�
� is an eigenvalue

of T . On the other hand, if w D 0, then ���T
�� is an eigenvalue of T .

Corollary 2.16.2. If T is a nonzero compact, self-adjoint operator on a Hilbert
space H , then there is a vector w such that kwk D 1 and

ˇ
ˇhT w; wiˇˇ D sup

kxk�1

ˇ
ˇhT x; xiˇˇ:

Proof. Let w;
�
�w
�
� D 1, be an eigenvector corresponding to an eigenvalue œ such

that jœj D kT k. Then

ˇ
ˇhT w; wiˇˇ D ˇ

ˇhœw; wiˇˇ D ˇ
ˇœ
ˇ
ˇ
�
�w
�
�2 D ˇ

ˇœ
ˇ
ˇ D �

�T
�
� D sup

kxk�1

ˇ
ˇhT x; xiˇˇ

by Theorem 4.4.5, proved by Debnath and Mikusinski (1999).

Theorem 2.16.8 guarantees the existence of at least one nonzero eigenvalue but
no more in general. The corollary gives a useful method for finding that eigenvalue
by maximizing certain quadratic expressions.

Theorem 2.16.9. The set of distinct nonzero eigenvalues fœng of a self-adjoint
compact operator is either finite or limn!1 œn D 0:

Proof. Suppose T is a self-adjoint, compact operator that has infinitely many
distinct eigenvalues œn; n 2 N. Let un be an eigenvector corresponding to œn

such that
�
�un

�
� D 1. By Theorem 2.16.6,

˚
un

�
is an orthonormal sequence. Since

orthonormal sequences are weakly convergent to 0, Theorem 2.15.14 implies

0 D lim
n!1

�
�T un

�
�2 D lim

n!1
˝
T un; T un

˛

D lim
n!1

˝
œn un; œn un

˛ D lim
n!1 œ2

n

�
�un

�
�2 D lim

n!1 œ2
n:

Example 2.16.4. We determine the eigenvalues and eigenfunctions of the operator
T on L2

�
Œ0; 2 �

�
defined by

�
T u
�
.x/ D

Z 2 

0

k.x � t/ u.t/ dt;

where k is a periodic function with period 2  and square integrable on Œ0; 2 �.

As a trial solution, we take
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un.x/ D einx

and note that

�
T un

�
.x/ D

Z 2 

0

k.x � t/ eintu.t/ dt D einx

Z x

x�2 

k.s/ eins ds:

Thus,

T un D œn un; n 2 Z;

where

œn D
Z 2 

0

k.s/ eins ds:

The set of functions
˚
un; n 2 Z

�
is a complete orthogonal system in L2

�
Œ0; 2 �

�
.

Note that T is self-adjoint if k.x/ D k.�x/ for all x, but the sequence of
eigenfunctions is complete even if T is not self-adjoint.

Theorem 2.16.10. Let
˚
Pn

�
be a sequence of pairwise orthogonal projection

operators on a Hilbert space H , and let
˚
œn

�
be a sequence of numbers such that

œn ! 0 as n ! 1. Then,

(a)
1X

nD1

œnPn converges in B.H; H/ and thus, defines a bounded operator;

(b) For each n 2 N; œn is an eigenvalue of the operator T D
1X

nD1

œnPn, and the

only other possible eigenvalue of T is 0.
(c) If all œn’s are real, then T is self-adjoint.
(d) If all projections Pn are finite-dimensional, then T is compact.

For a proof of this theorem, the reader is referred to Debnath and Mikusinski (1999).

Definition 2.16.3 (Approximate Eigenvalue). Let T be an operator on a Hilbert
space H . A scalar œ is called an approximate eigenvalue of T if there exists a
sequence of vectors

˚
xn

�
such that

�
�xn

�
� D 1 for all n 2 N and

�
�T xn � œxn

�
� ! 0

as n ! 1:

Obviously, every eigenvalue is an approximate eigenvalue.

Example 2.16.5. Let feng be a complete orthonormal sequence in a Hilbert space
H . Let œn be a strictly decreasing sequence of scalars convergent to some œ. Define
an operator T on H by

T x D
1X

nD1

œn

˝
x; en

˛
en:
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It is easy to see that every œn is an eigenvalue of T , but œ is not. On the other hand,

�
�Ten � œen

�
� D �

�œnen � œen

�
� D �

�.œn � œ/en

�
� D ˇ

ˇœn � œ
ˇ
ˇ ! 0 as n ! 1:

Thus, œ is an approximate eigenvalue of T . Note that the same is true if we just
assume that œn ! œ and œn ¤ œ for all n 2 N:

For further properties of approximate eigenvalues, see the exercises at the end of
this chapter.

The rest of this section is concerned with several theorems involving spectral
decomposition.

Let H be a finite-dimensional Hilbert space, say H D C
N . It is known from

linear algebra that eigenvectors of a self-adjoint operator on H form an orthogonal
basis of H . The following theorems generalize this result to infinite-dimensional
spaces.

Theorem 2.16.11 (Hilbert–Schmidt Theorem). For every self-adjoint, compact
operator T on an infinite-dimensional Hilbert space H , there exists an orthonormal
system of eigenvectors

˚
un

�
corresponding to nonzero eigenvalues

˚
œn

�
such that

every element x 2 H has a unique representation in the form

x D
1X

nD1

’nun C v; (2.16.12)

where an ’n 2 C and v satisfies the equation T v D 0. If T has infinitely many
distinct eigenvalues œ1; œ2; : : :, then œn ! 0 as n ! 1:

For a proof of this theorem, the reader is referred to Debnath and Mikusinski
(1999).

Theorem 2.16.12 (Spectral Theorem for Self-adjoint, Compact Operators).
Let T be a self-adjoint, compact operator on an infinite-dimensional Hilbert space
H . Then, there exists in H a complete orthonormal system (an orthonormal basis)
fv1; v2; : : :g consisting of eigenvectors of T . Moreover, for every x 2 H ,

T x D
1X

nD1

œnhx; vni vn; (2.16.13)

where œn is the eigenvalue corresponding to vn.

Proof. Most of this theorem is already contained in Theorem 2.16.11. To obtain a
complete orthonormal system fv1; v2; : : :g, we must add an arbitrary orthonormal
basis of S? to the system fu1; u2; : : :g (defined in the proof of Theorem 2.16.11).
All of the eigenvalues corresponding to those vectors from S? are all equal to zero.
Equality (2.16.13) follows from the continuity of T .
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Theorem 2.16.13. For any two commuting, self-adjoint, compact operators A and
B on a Hilbert space H , there exists a complete orthonormal system of common
eigenvectors.

Proof. Let œ be an eigenvalue of A, and let X be the corresponding eigenspace. For
any x 2 X , we have

ABx D BAx D B.œx/ D œBx:

This means that Bx is an eigenvector of A corresponding to œ, provided Bx ¤ 0.
In any case, Bx 2 X and hence B maps X into itself. Since B is a self-adjoint,
compact operator, by Theorem 2.16.12, X has an orthonormal basis consisting of
eigenvalues of B , but these vectors are also eigenvectors of A because they belong
to X . If we repeat the same procedure with every eigenspace of A, then the union
of all of these eigenvectors will be an orthonormal basis of H .

Theorem 2.16.14. Let T be a self-adjoint, compact operator on a Hilbert space
H with a complete orthonormal system of eigenvectors fv1; v2; : : :g corresponding
to eigenvalues fœ1; œ2; : : :g. Let Pn be the projection operator onto the one-
dimensional space spanned by vn. Then, for all x 2 H ,

x D
1X

nD1

Pnx; (2.16.14)

and

T D
1X

nD1

œnPn: (2.16.15)

Proof. From the spectral theorem 2.16.12, we have

x D
1X

nD1

hx; vni vn: (2.16.16)

For every k 2 N, the projection operator Pk onto the one-dimensional subspace Sk

spanned by vk is given by

Pkx D hx; vki vk:

Now, (2.16.16) can be written as

x D
1X

nD1

Pnx;

and thus, by Theorem 2.16.2,

T x D
1X

nD1

œnhx; vni vn D
1X

nD1

œnPnx:
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Hence, for all x 2 H ,

T x D
 1X

nD1

œnPn

!

x:

This proves (2.16.15) since convergence of
1X

nD1

œnPn is guaranteed by Theorem

2.16.10.

Theorem 2.16.15 is another version of the spectral theorem. This version is
important in the sense that it can be extended to noncompact operators. It is also
useful because it leads to an elegant expression for powers and more general
functions of an operator.

Theorem 2.16.15. If eigenvectors u1; u2; : : : of a self-adjoint operator T on a
Hilbert space H form a complete orthonormal system in H and all eigenvalues
are positive (or nonnegative), then T is strictly positive (or positive).

Proof. Suppose u1; u2; : : : is a complete orthonormal system of eigenvalues of T

corresponding to real eigenvalues œ1; œ2; : : : . Then, any nonzero vector u 2 H can

be represented as u D
1X

nD1

’nun, and we have

˝
T u; u

˛ D
*

T u;

1X

nD1

’nun

+

D
1X

nD1

’n

˝
T u; un

˛ D
1X

nD1

’n

˝
u; T un

˛

D
1X

nD1

’n

˝
u; œnun

˛ D
1X

nD1

œn ’n

˝
u; un

˛ D
1X

nD1

œn ’n ’n

D
1X

nD1

œn

ˇ
ˇ’n

ˇ
ˇ2 � 0;

if all eigenvalues are nonnegative. If all œn’s are positive, then the last inequality
becomes strict.

2.17 Exercises

1. Show that on any inner product space X

(a)
˝
x; ’y C “z

˛ D N’˝x; y
˛C N“˝x; z

˛
for all ’; “ 2 C;

(b) 2

hx; yi C hy; xi� D ��x C y

��2 � ��x � y
��2

:
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2. Prove that the space C0.R/ of all complex-valued continuous functions that
vanish outside some finite interval is an inner product space with the inner product

˝
f; g

˛ D
Z 1

�1
f .x/ g.x/ dx:

3. (a) Show that the space C 1
�
Œa; b�

�
of all continuously differentiable complex-

valued functions on Œa; b� is not an inner product space with the inner product

˝
f; g

˛ D
Z b

a

f 0.x/ g0.x/ dx:

(b) If f 2 C 1
�
Œa; b�

�
with f .a/ D 0, show that C 1

�
Œa; b�

�
is an inner product

space with the inner product defined in (a).

4. (a) Show that the space C
�
Œa; b�

�
of real or complex-valued functions is a

normed space with the norm
�
�f
�
� D max

a�x�b

ˇ
ˇf .x/

ˇ
ˇ.

(b) Show that the space C
�
Œa; b�

�
is a complete metric space with the metric

induced by the norm in (a), that is,

d.f; g/ D �
�f � g

�
� D max

a�x�b

ˇ
ˇf .x/ � g.x/

ˇ
ˇ:

5. Prove that the space C 1
0 .R/ of all continuously differentiable complex-valued

continuous functions that vanish outside some finite interval is an inner product
space with the inner product

˝
f; g

˛ D
Z 1

�1
f 0.x/ g0.x/ dx:

6. Prove that the norm in an inner product space is strictly convex, that is, if x ¤ y

and
��x
�� D ��y

�� D 1, then
��x C y

�� � 2:

7. (a) Show that the space C
�
Œ� ;  �

�
of continuous functions with the norm

defined by (2.2.4) is an incomplete normed space.
(b) In the Banach space L2

�
Œ� ;  �

�
,

f .x/ D
1X

nD1

1

n
sin nx;

where f .x/ D � 

4
in .� ; 0/ and f .x/ D  

4
in .0;  /. Show that f is not

continuous in C
�
Œ� ;  �

�
, but the series converges in L2.Œ� ;  �/.
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8. Show that, in any inner product space X ,

�
�x � y

�
�C �

�y � z
�
� D �

�x � z
�
�

if and only if y D ’x C .1 � ’/z for some ’ in 0 � ’ � 1.

9. (a) Prove that the polarization identity

˝
x; y

˛ D 1

4

��
�x C y

�
�2 � �

�x � y
�
�2 C i

�
�x C iy

�
�2 � i

�
�x � iy

�
�2



holds in any complex inner product space.
(b) In any real inner product space, show that

˝
x; y

˛ D 1

4

���x C y
��2 � ��x � y

��2



:

10. Prove that, for any x in a Hilbert space,
�
�x
�
� D sup

kykD1

ˇ
ˇ˝x; y

˛ˇˇ

11. Show that L2
�
Œa; b�

�
is the only inner product space among the spaces

Lp
�
Œa; b�

�
.

12. Show that the Apollonius identity in an inner product space is

�
�z � x

�
�2 C �

�z � y
�
�2 D 1

2

�
�x � y

�
�2 C 2

�
�
�
�z � x C y

2

�
�
�
�

2

:

13. Prove that any finite-dimensional inner product space is a Hilbert space.

14. Let X D ˚
f 2 C 1

�
Œa; b�

� W f .a/ D 0
�

and

˝
f; g

˛ D
Z b

a

f 0.x/ g0.x/ dx:

Is X a Hilbert space?

15. Is the space C 1
0 .R/ with the inner product

˝
f; g

˛ D
Z 1

�1
f 0.x/ g0.x/ dx

a Hilbert space?

16. Let X be an incomplete inner product space. Let H be the completion of X . Is
it possible to extend the inner product from X onto H such that H would become a
Hilbert space?
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17. Suppose xn ! x and yn ! y as n ! 1 in a Hilbert space, and ’n ! ’ in C.
Prove that

(a) xn C yn ! x C y;

(b) ’nxn ! ’x;

(c)
˝
xn; yn

˛ ! ˝
x; y

˛
;

(d)
�
�xn

�
� ! �

�x
�
�:

18. Suppose xn

w�! x and yn

w�! y as n ! 1 in a Hilbert space, and ’n ! ’ in C.
Prove or give a counter example:

(a) xn C yn

w�! x C y;

(b) ’nxn

w�! ’x;

(c)
˝
xn; yn

˛ ! ˝
x; y

˛
;

(d)
�
�xn

�
� ! �

�x
�
�;

(e) If xn D yn for all n 2 N, then x D y.

19. Show that, in a finite-dimensional Hilbert space, weak convergence implies
strong convergence.

20. Is it always possible to find a norm on an inner product space X which would
define the weak convergence in X‹

21. If
1X

nD1

un D u; show that

1X

nD1

˝
un; x

˛ D ˝
u; x

˛

for any x in an inner product space X .

22. Let fx1; : : : ; xng be a finite orthonormal set in a Hilbert space H . Prove that for
any x 2 H the vector

x �
nX

kD1

˝
x; xk

˛
xk

is orthogonal to xk for every k D 1; : : : ; n.

23. In the pre-Hilbert space C
�
Œ� ;  �

�
, show that the following sequences of

functions are orthogonal

(a) xk.t/ D sin kt; k D 1; 2; 3; : : : ;

(b) yn.t/ D cos nt; n D 0; 1; 2; : : : :
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24. Show that the application of the Gram–Schmidt process to the sequence of
functions

f0.t/ D 1; f1.t/ D t; f2.t/ D t2; : : : ; fn.t/ D tn; : : :

(as elements of L2
�
Œ�1; 1�

�
) yields the Legendre polynomials.

25. Show that the application of the Gram–Schmidt process to the sequence of
functions

f0.t/ D e�t 2=2; f1.t/ D te�t 2=2; f2.t/ D t2e�t 2=2; : : : ; fn.t/ D tne�t 2=2; : : :

(as elements of L2.R/) yields the orthonormal system discussed in
Example 2.9.4.

26. Apply the Gram–Schmidt process to the sequence of functions

f0.t/ D 1; f1.t/ D t; f2.t/ D t2; : : : ; fn.t/ D tn; : : :

defined on R with the inner product

˝
f; g

˛ D
Z 1

�1
f .t/ g.t/ exp.�t2/ dt:

Compare the result with Example 2.9.4.

27. Apply the Gram–Schmidt process to the sequence of functions

f0.t/ D 1; f1.t/ D t; f2.t/ D t2; : : : ; fn.t/ D tn; : : :

defined on Œ0; 1/ with the inner product

˝
f; g

˛ D
Z 1

0

f .t/ g.t/ e�t dt:

The resulting polynomials are called the Laguerre polynomials.

28. Let Tn be the Chebyshev polynomial of degree n, that is,

T0.x/ D 1; Tn.x/ D 21�n cos.n arcos x/:

Show that the functions

¥n.x/ D 2n

p
2 

Tn.x/; n D 0; 1; 2; : : : ;

form an orthonormal system in L2Œ.�1; 1/� with respect to the inner product

˝
f; g

˛ D
Z 1

�1

1p
1 � x2

f .x/ g.x/ dx:
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29. Prove that for any polynomial

pn.x/ D xn C an�1x
n�1 C � � � C a0;

we have

max
Œ�1;1�

ˇ
ˇpn.x/

ˇ
ˇ � max

Œ�1;1�

ˇ
ˇTn.x/

ˇ
ˇ;

where Tn denotes the Chebyshev polynomial of degree n.

30. Show that the complex functions

¥n.z/ D
r

n

 
zn�1; n D 1; 2; 3; : : : ;

form an orthonormal system in the space of continuous complex functions defined
in the unit disk D D ˚

z 2 C W kzk � 1
�

with respect to the inner product

˝
f; g

˛ D
Z

D

f .z/ g.z/ d z:

31. Prove that the complex functions

§n.z/ D 1p
2 

zn�1; n D 1; 2; 3; : : :

form an orthonormal system in the space of continuous complex functions defined
on the unit circle C D ˚

z 2 C W kzk D 1
�

with respect to the inner product

˝
f; g

˛ D
Z

C

f .z/ g.z/ d z:

32. With respect to the inner product

˝
f; g

˛ D
Z 1

�1

f .x/ g.x/ ¨.x/dx;

where ¨.x/ D .1 � x/’.1 C x/“ and ’; “ > �1, show that the Jacobi polynomials

P .’“/
n .x/ D .�1/n

nŠ2n

�
1 � x

��’�
1 C x

��“ d n

dxn

h�
1 � x

�’�
1 C x

�“�
1 � x2

�ni

form an orthogonal system.

33. Show that the Gegenbauer polynomials

C ”
n .x/ D .�1/n

nŠ2n

�
1 � x2

� 1
2 �” d n

dxn

�
1 � x2

�nC”� 1
2
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where ” >
1

2
form an orthonormal system with respect to the inner product

˝
f; g

˛ D
Z 1

�1

f .x/ g.x/
�
1 � x2

� 1
2 �”

dx:

Note that Gegenbauer polynomials are a special case of Jacobi polynomials if

’ D “ D ” � 1

2
.

34. If x and xk .k D 1; : : :; n/ belong to a real Hilbert space, show that

�
�
��
�
x �

nX

kD1

akxk

�
�
��
�

2

D ��x
��2 �

nX

kD1

ak

˝
x; xk

˛C
nX

kD1

nX

lD1

akal

˝
xk; xl

˛
:

Also show that this expression is minimum when Aa D b where a D�
a1; : : : ; an

�
; b D �hx; x1i; : : : ; hx; xni�, and the matrix A D �

akl

�
is defined

by akl D hxk; xl i:
35. If fang is an orthonormal sequence in a Hilbert space H and f’ng is a sequence
in the space l2, show that there exists x 2 H such that

˝
x; an

˛ D ’n and
�
� f’ng �� D �

�x
�
�;

where
�
� f’ng �� denotes the norm in the sequence space l2.

36. If ’n and “n .n D 1; 2; 3; : : : / are generalized Fourier coefficients of vectors
x and y with respect to a complete orthonormal sequence in a Hilbert space, show
that

˝
x; y

˛ D
1X

kD1

’k “k:

37. If fxng is an orthonormal sequence in a Hilbert space H such that the only
element orthogonal to all the xn’s is the null element, show that the sequence fxng
is complete.

38. Let fxng be an orthonormal sequence in a Hilbert space H . Show that fxng is
complete if and only if cl

�
span fx1; x2; : : : g � D H . In other words, fxng is complete

if and only if every element of H can be approximated by a sequence of finite
combinations of xn’s.

39. Show that the sequence of functions

¥n.x/ D e�x=2

nŠ
Ln.x/; n D 0; 1; 2; : : : ;
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where Ln is the Laguerre polynomial of degree n, that is,

Ln.x/ D ex d n

dxn

�
xne�x

�
;

form a complete orthonormal system in L2.0; 1/.

40. Let

¥n.x/ D einx

p
2 

; n D 0; ˙1; ˙2; : : :;

and let f 2 L1
�
Œ� ;  �

�
. Define

fn.x/ D
nX

kD�n

˝
f; ¥k

˛
¥k; for n D 0; 1; 2; : : : :

Show that

f0.x/ C f1.x/ C � � � C fn.x/

n C 1
D

nX

kD�n

�
1 � jkj

n C 1

� ˝
f; ¥k

˛
¥k.x/:

41. Show that the sequence of functions

1p
2 

;
cos xp

 
;

sin xp
 

;
cos 2xp

 
;

sin 2xp
 

; : : :

is a complete orthonormal sequence in L2
�
Œ� ;  �

�
.

42. Show that the following sequence of functions is a complete orthonormal
system in L2.Œ0;  �/:

1p
 

;

r
2

 
cos x;

r
2

 
cos 2x;

r
2

 
cos 3x; : : : :

43. Show that the following sequence of functions is a complete orthonormal
system in L2

�
Œ0;  �

�
:

r
2

 
sin x;

r
2

 
sin 2x;

r
2

 
sin 3x; : : : :

44. Show that the sequence of functions defined by

fn.x/ D 1p
2a

exp

�
in x

a

�
; n D 0; ˙1; ˙2; : : :

is a complete orthonormal system in L2
�
Œ�a; a�

�
.
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45. Show that the sequence of functions

1p
2a

;
1p
a

cos
�n x

a



;

1p
a

sin
�n x

a



; : : :

is a complete orthonormal system in L2
�
Œ�a; a�

�
.

46. Show that each of the following sequences of functions is a complete orthonor-
mal system in L2

�
Œ0; a�

�
:

1p
a

;

r
2

a
cos

� x

a



;

r
2

a
cos

�
2 x

a

�
; : : : ;

r
2

a
cos

�n x

a



; : : :

r
2

a
sin
� x

a



;

r
2

a
sin

�
2 x

a

�
; : : : ;

r
2

a
sin
�n x

a



; : : : :

47. Let X be the Banach space R2 with the norm
�
�˝x; y

˛�� D max fjxj; jyjg : Show
that X does not have the closest-point property.

48. Let S be a closed subspace of a Hilbert space H and let feng be a complete
orthonormal sequence in S . For an arbitrary x 2 H , there exists y 2 S such that�
�x � y

�
� D inf

z2S

�
�x � z

�
�: Define y in terms of feng.

49. If S is a closed subspace of a Hilbert space H , then H D S ˚ S?. Is this true
in every inner product space?

50. Show that the functional in Example 2.13.2 is unbounded.

51. The Riesz representation theorem states that for every bounded linear func-
tional f 2 H 0 on a Hilbert space H , there exists a representer xf 2 H such that
f .x/ D hx; xf i for all x 2 H . Let T W H 0 ! H be the mapping that assigns xf

to f . Prove the following properties of T :

(a) T is onto,
(b) T .f C g/ D T .f / C T .g/,
(c) T .’f / D N’ T .f /,
(d)

�
�T .f /

�
� D �

�f
�
�;

where f; g 2 H 0 and ’ 2 C.

52. Let f be a bounded linear functional on a closed subspace X of a Hilbert space
H . Show that there exists a bounded linear functional g on H such that

�
�f
�
� D �

�g
�
�

and f .x/ D g.x/ whenever x 2 X .

53. Show that the space l2 is separable.

54. (a) Show that the sequence of Gaussian functions on R defined by
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fn.x/ D np
 

exp.�n2x2/; n D 1; 2; 3; : : :

converges to the Dirac delta distribution •.x/.
(b) Show that the sequence of functions on R defined by

fn.x/ D sin nx

 x
; n D 1; 2; : : :

converges to the Dirac delta distribution.

55. Show that the sequence of functions on R defined by

fn.x/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; for x < � 1

2n
;

n; for � 1

2n
� x � 1

2n
;

0; for x >
1

2n

converges to the Dirac delta distribution.

56. If f is a locally integrable function on R
N , show that the functional F on D

defined by

hF; ¥i D
Z

RN

f ¥

is a distribution.

57. If fn.x/ D sin nx, show that fn ! 0 in the distributional sense.

58. Find the nth distributional derivative of f .x/ D jxj.
59. Verify which functions belong to L1.R/ and which do not belong to L1.R/.
Find their L1.R/ norms when they exist.

(a) f .x/ D �
a2 C x2

��1
; (b) f .x/ D x

�
a2 C x2

��1
;

(c) f .x/ D
�

1; jxj � 1;

jxj�r ; jxj > 1

	
; (d) f .x/ D x�1:

60. Let feng be a complete orthonormal sequence in a Hilbert space H , and let fœng
be a sequence of scalars.

(a) Show that there exists a unique operator T on H such that Ten D œnen:

(b) Show that T is bounded if and only if the sequence fœng is bounded.
(c) For a bounded sequence fœng, find the norm of T .

61. Let T W R
2 ! R

2 be defined by T .x; y/ D .x C 2y; 3x C 2y/. Find the
eigenvalues and eigenvectors of T .
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62. Let T W R
2 ! R

2 be defined by T .x; y/ D .x C 3y; 2x C y/. Show that
T

� ¤ T:

63. Let T W R3 ! R
3 be given by T .x; y; z/ D .3x � z; 2y; �x C 3z/. Show that

T is self-adjoint.

64. Compute the adjoint of each of the following operators:

(a) A W R3 ! R
3; A.x; y; z/ D .�y C z; �x C 2z; x C 2y/;

(b) B W R3 ! R
3; B.x; y; z/ D .x C y � z; �x C 2y C 2z; x C 2y C 3z/;

(c) C W P2.R/ ! P2.R/; C fp.x/g D x
d

dx
p.x/ � d

dx

�
xp.x/

�
;

where P2.R/ is the space of all polynomials on R of degree less than or equal to 2.

65. If A is a self-adjoint operator and B is a bounded operator, show that B
�

AB is
self-adjoint.

66. Prove that the representation T D A C iB in Theorem 2.15.7 is unique.

67. If A
�

A C B
�

B D 0; show that A D B D 0.

68. If T is self-adjoint and T ¤ 0, show that T
� ¤ 0 for all n 2 N.

69. Let T be a self-adjoint operator. Show that

(a)
�
�T x C ix

�
�2 D �

�T x
�
�2 C �

�x
�
�2

;

(b) the operator U D .T � iI /.T C iI /�1 is unitary. (U is called the Cayley
transform of T .)

70. Show that the limit of a convergent sequence of self-adjoint operators is a self-
adjoint operator.

71. If T is a bounded operator on H with one-dimensional range, show that there
exists vectors y; z 2 H such that T x D hx; ziy for all x 2 H . Hence, show that

(a) T
�

x D hx; yiz for all x 2 H ,
(b) T 2 D œT , where œ is a scalar,
(c)

�
�T
�
� D �

�y
�
�
�
�z
�
�;

(d) T
� D T if and only if y D ’z for some real scalar ’.

72. Let T be a bounded self-adjoint operator on a Hilbert space H such that�
�T
�
� � 1. Prove that hx; T xi � .1 � kT k/kxk2 for all x 2 H:

73. If A is a positive operator and B is a bounded operator, show that B
�

AB is
positive.

74. If A and B are positive operators and A C B D 0, show that A D B D 0.

75. Show that, for any self-adjoint operator A, there exists positive operators S and
T such that A D S � T and ST D 0.

76. If P is self-adjoint and P 2 is a projection operator, is P a projection operator?
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77. Let T be a multiplication operator on L2.Œa; b�/. Find necessary and sufficient
conditions for T to be a projection.

78. Show that P is a projection if and only if P D P
�

P .

79. If P; Q, and P C Q are projections, show that PQ D 0.

80. Show that every projection P is positive and 0 � P � I .

81. Show that, for projections P and Q, the operator P C Q � PQ is a projection
if and only if PQ D QP .

82. Show that the projection onto a closed subspace X of a Hilbert space H is a
compact operator if and only if X is finite dimensional.

83. Show that the operator T W l2 ! l2 defined by T .xn/ D .2�nxn/ is compact.

84. Prove that the collection of all eigenvectors corresponding to one particular
eigenvalue of an operator is a vector space.

85. Show that the space of all eigenvectors corresponding to one particular
eigenvalue of a compact operator is finite dimensional.

86. Show that a self-adjoint operator T is compact if and only if there exists a
sequence of finite-dimensional operators strongly convergent to T .

87. Show that eigenvalues of a symmetric operator are real and eigenvectors
corresponding to different eigenvalues are orthogonal.

88. Give an example of a self-adjoint operator that has no eigenvalues.

89. Show that a nonzero vector x is an eigenvector of an operator T if and only ifˇ
ˇhT x; xiˇˇ D �

�T x
�
�
�
�x
�
�:

90. Show that if the eigenvectors of a self-adjoint operator T form a complete
orthogonal system and all eigenvalues are nonnegative (or positive), then T is
positive (or strictly positive).

91. If œ is an approximate eigenvalue of an operator T , show that
ˇ
ˇœ
ˇ
ˇ � �

�T
�
�:

92. Show that if T has an approximate eigenvalue œ such that
ˇ
ˇœ
ˇ
ˇ D �

�T
�
�, then

sup
kxk�1

ˇ
ˇhT x; xiˇˇ D �

�T
�
�:

93. If œ is an approximate eigenvalue of T , show that œ C � is an approximate
eigenvalue of T C �I and œ� is an approximate eigenvalue of �T .

94. For every approximate eigenvalue œ of an isometric operator, show that we
have jœj D 1.

95. Show that every approximate eigenvalue of a self-adjoint operator is real.
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