Chapter 10
Wavelet Transform Analysis of Turbulence

The phenomenon of turbulence was discovered physically and is
still largely unexplored by mathematical techniques. At the same
time, it is noteworthy that the physical experimentation which
leads to these and similar discoveries is a quite peculiar form of
experimentation; it is very different from what is characteristic
in other parts of physics. Indeed, to a great extent,
experimentation in fluid dynamics is carried out under
conditions where the underlying physical principles are not in
doubt, where the quantities to be observed are completely
determined by known equations. The purpose of the experiment
is not to verify a proposed theory but to replace a computation
from an unquestioned theory by direct measurements. Thus wind
tunnels are, for example, used at present, at least in part, as
computing devices of the so-called analog type (or, to use a less
widely used, but more suggestive, expression proposed by
Wiener and Caldwell: of the measurement type) to integrate the
nonlinear partial differential equations of fluid dynamics.

John von Neumann

The use of the wavelet transform for the study of turbulence
owes absolutely nothing to chance or fashion but comes from a
necessity stemming from the current development of our ideas
about turbulence. If, under influence of the statistical approach,
we had lost the need to study things in physical space, the
advent of supercomputers and the associated means of
visualization have revealed a zoology specific to turbulent flows,
namely, the existence of coherent structures and their
elementary interactions, none of which are accounted for by the
statistical theory.

Marie Farge

10.1 Introduction

Considerable progress has been made over the last three decades in our under-
standing of turbulence through new developments of theory, experiment, and
computation. More and more evidence has been accumulated for the physical
description of turbulent motions in both two and three dimensions. Consequently,
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turbulence is now characterized by a remarkable degree of order even though
turbulence is usually defined as disordered fluid flows. In spite of tremendous
progress, there are still a number of open questions and unsolved problems.
These include coherent structures and intermittency effects, singularities of the
Navier—Stokes equations, non-Gaussian statistics of turbulent flows, perturbations
to the small scale produced by nonisotropic, non-Gaussian, and inhomogeneous
large-scale motions, and measurements and computations of small-scale turbulence.
No complete theory is yet available for the problem of how the eddy structure of
turbulence evolves both under the action of mean distortion and even during the
mutual random interaction of eddies of different sizes or scales.

Most of the progress has been based on the Navier—Stokes equations combined
with the Fourier transform analysis. However, there are certain major difficulties
associated with the Navier—Stokes equations. First, in three dimensions, there
are no general results for the Navier—Stokes equations on existence of solutions,
uniqueness, regularity, and continuous dependence on the initial conditions. How-
ever, such results exist for the two-dimensional Navier—Stokes equations. Second,
there are indications that solutions of three dimensional Navier—Stokes equations
can be singular at certain places and at certain times in the flow. Third, another
difficulty arises from the strong nonlinear convective term in the equation. This
nonlinearity leads to an infinite number of equations for all possible moments of
the velocity field. This system of equations is very complicated in the sense that
any subsystem is always nonclosed because it contains more unknowns than the
number of equations in a given subsystem. For example, the dynamical equation for
second-order moments involves third-order moments, that for third-order moments
involves fourth-order moments, and so on. This is the so-called closure problem
in the statistical theory of turbulence. This is perhaps the major difficulty of
the turbulence theory. For any physical system with strong interaction, such as
turbulent flows, it is not easy to guess what kind of closure is consistent with
the Navier—Stokes equations. Various closure models for turbulence, including the
quasi-normal model (see Monin and Yaglom 1975) have been suggested. They
are hardly consistent with physical analysis, experimental measurements, and, more
recently, with direct numerical simulations (DNSs) of turbulence. Fourth, in the
limit as v — 0 (R — o0), the nature of the Navier—Stokes equations changes
because the nonlinear convective term dominates over the linear viscous term.
Therefore, for fully developed turbulence, as R — oo, the second-order viscous
term vanishes. Consequently, the second-order Navier—Stokes equations reduce to
the first-order Euler equations. Thus, a slightly viscous fluid flow can lead to a
singular perturbation of the inviscid fluid motions. Mathematically, the Navier—
Stokes equations lead to a singular perturbation problem. Another major difficulty
in modeling the structure and dynamics of turbulence is the wide range of length
and time scales over which variations occur. However, in recent years, a broad
class of self-similar dynamical processes has been developed as a possible means of
characterizing turbulent flows.

Traditionally, the Fourier transform approach to turbulence has been successful
due to the fact that the Fourier transform breaks up a function (or signal) into
different sine waves of different amplitudes and wavenumbers (or frequencies).
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In fact, the classical theory of turbulent flows was developed in the Fourier transform
space by introducing the Fourier energy spectrum E(k) of a function f(x) in
the form

E(k) = (f(k)r. (10.1.1)

However, E (k) does not give any local information on turbulence. Since f (k)is a
complex function of a real wavenumber k, it can be expressed in the form

ey = | 7| exp {i6(K)}. (10.1.2)

The phase spectrum é(k) is totally lost in the Fourier transform analysis of turbulent
flows, and only the modulus of f (k) is utilized. This is possibly another major
weakness of the Fourier energy spectrum analysis of turbulence since it cannot take
into consideration any organization of the turbulent field. Also, the rate of energy
dissipation is distributed very intermittently in both space and time. This is usually
modeled by the breakdown of eddies, and the flux of energy is assumed to flow from
larger to smaller eddies so that the turbulence is generated to small scales, where it
is dissipated by viscosity. Evidently, there is a need for introducing a flux of kinetic
energy which also depends on position. For a real description of real turbulence,
there is a need for a representation that decomposes the flow field into contributions
of different length scales, different positions, and different directions.

The idea of a hierarchy of vortices is usually employed in the study of turbulence.
Combined with the theory of scales, a model of turbulence as a vortex system of
different sizes with random amplitude functions leads to the statistical description of
turbulence. Kolmogorov (1941a,b) used this approach to derive his famous spectral
law for isotropic and homogeneous turbulence. In this idea of a hierarchy of vortices,
the velocity field can be represented in terms of Fourier integral transforms. This
representation seems to be unsatisfactory for the following reason. Each Fourier
component in the decomposition of the velocity vector potential corresponds to a
coherent vortex structure over the entire space. But the strong nonlinear interaction
of the spatial temporal modes in turbulence results in the effect that periodic
solutions representing coherent vortex systems are not typical structural components
of the turbulent motion. The processes involving energy transfer, deformation, and
vortex decomposition are described by the local conditions of the turbulent flow.

Therefore, the Fourier transform analysis does not have the ability to provide
a local description of turbulent flows. In fact, the scale, position, and direction
involved in the flow field are completely lost in this analysis. Moreover, the Fourier
transform cannot describe the multifractal structure of fully developed turbulence.
The new method of wavelet transform analysis may enable representation of
quantities that depend on scale, position, and direction, and hence it has the ability
to give local information about the turbulent flows.
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In a series of papers, Farge and her associates (Farge 1992; Farge et al. 1992,
1990a; Farge and Holschneider 1989, 1990; Farge et al. 1990b, 1996, 1999a,b;
Farge and Rabreau 1988, 1989) introduced new concepts and ideas to develop a
new and modern approach to turbulence based on the wavelet transform analysis.
They showed that the wavelet transform can be used to define local energy density,
local energy spectrum, and local intermittency, to determine singularities, and to
find extrema of derivatives at different positions and scales. These studies reveal that
both wavelet and fractal analyses seem to be very useful and effective mathematical
tools for investigating the self-similarity, coherent structures, intermittency, and
local nature of the dynamics and other features of turbulent flows. Meneveau (1991,
1993) initiated wavelet transform analysis for the study of time-dependent three-
dimensional computations of the velocity field in a turbulent flow. He also provided
the first direct evidence that energy flows from small to large scales in some regions
of turbulence. This is a remarkable new phenomenon that cannot be studied by using
Fourier transform analysis.

This chapter is devoted to a brief discussion of Fourier transform analysis and
the wavelet transform analysis of turbulence based on the Navier—Stokes equations.
Included are fractals, multifractals, and singularities in turbulence. This is followed
by Farge’s and Meneveau’s wavelet transform analyses of turbulence in some detail.
Special attention is given to the adaptive wavelet method for computation and
analysis of turbulent flows. Many references related to applications of the wavelet
transform in turbulence are cited in the bibliography.

10.2 Fourier Transforms in Turbulence
and the Navier-Stokes Equations

It is well known that a Fourier transform decomposes a function or a signal f(x)
into different sine waves of different amplitudes and wavelengths. In general, the
Fourier transform of a signal f(x) can be expressed as

fey =7 0)] exp fibee)} (102.1)

where f (k) and é(k) are called the amplitude spectrum and the phase spectrum,
respectively.

The energy (or power) spectrum of a signal is defined by
2

E(k) = ) 1) (10.2.2)

so that the total energy of the signal f(x) is given by

E= /oo E(k)dk = [_Oo ‘f(k)‘zdk. (10.2.3)

—00
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Clearly, it follows from (10.2.2) and (10.2.3) that the energy spectrum and the total
energy depend only on the amplitude and are completely independent of the phase
é(k). In other words, the Fourier transform does not provide any local or structural
information on the signal. In spite of this major weakness, the Fourier transform
has been useful to analyze stationary stochastic signals. In particular, the Fourier
transform is fairly successful in the theory of a homogeneous turbulent velocity field
confined within a box of volume a3. In the case of three-dimensional turbulence, the
Fourier transform of the velocity field u(x) has three components, each of the form
(j =12.3),

. 1 oo al? .
ij(k) = W/;oo /_a/2 u;(x)exp(ik - x)dx, (10.2.4)

where it (k) can be expressed in terms of amplitude and phase by

ij(k) =

it; (k)| exp {i6; (k) }. (10.2.5)

Since u;(x) and u; (k) are random functions, it is necessary to define statistical
quantities, of which the most important are the energy spectrum tensor ®;; (k) and
cross correlation between components. Application of Fourier transforms shows that

AR 1N A~ 1N 1
(k)i (k) = G a’ ®;; (k) (10.2.6)
and
E A A A~ 1 ’
1K) iy () = @y @ (k) 8(k — K), (10.2.7)

where the bar represents an average over space and the asterisk denotes the complex
conjugate. One of the most important properties of the turbulent flow is the
correlation tensor of a homogeneous (stationary space Xx) stochastic velocity field
defined by

Rij(r,x,t) = u;(X)u;(x + 1), (10.2.8)
where r is the distance between simultaneous velocity fluctuations. Evidently

—pR;j(0,x,1) = —puju; = v (10.2.9)

is called the Reynolds stress tensor.
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The energy spectrum tensor in turbulence is defined as the Fourier transform of
the covariance tensor R;; (r, X, t) by

oo

1
@ (k-x,1) = W/ exp(—ik - ) R;; (r.x, 1) dr, (10.2.10)
—00

so that the inverse Fourier transform is given by

oo

1
Rij(r,x,t) = W/ exp(ik-r)®;; (k,x, 1) dK, (10.2.11)
—0o0

where the integration is over all wavenumber k-space. A spectrum tensor 1;;
function of the single scale variable k = |k| can be obtained by averaging over
all directions of the vector argument k so that

Wy (k) = / ®,; (k) dS(k), (102.12)

where this integration is taken in K-space over a sphere of radius k of which dS (k)
is an element. The energy (power) spectrum is then defined by

1
Ek,t) = PRLE W, (k) (10.2.13)

so that the total energy £ = 3 u? is the integral of E(k,t) over all k from 0 to oo,

1
that is,
1—- 1

S = Efcb,-,-(k)d(k) =f0 E(k.t)d (k). (10.2.14)

Thus. it follows from (10.2.8) and (10.2.12) that

1
E(k,t) = W‘I’fi(k) = W/q)ii(k) dS(k)

The turbulent energy spectrum E(k,¢) represents the distribution of contributions

i (K)|* dS (k). (10.2.15)

- . N .
to 3 u? with respect to wavenumber (or scale) regardless of direction, and this is one

of the most important characteristics of any turbulent (or three-dimensional wave)
field. Thus. the study of the energy spectrum E(k, ) is the central problem in the
dynamics of turbulence. However, the information carried by the phase function
0; (k) disappears completely in the definition of the energy spectrum.
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One of the most common approaches to the study of turbulence is to use
the Navier—Stokes equations together with the continuity equation in the Fourier
transform space. In tensor notation, the Navier—Stokes equations for an unsteady
motion of an incompressible viscous fluid of constant density p and kinematic
viscosity v and the continuity equation are

du; u; ap
a—;+um$ =—8—)Ci+vV2ui+E, (10.2.16)
31/!,'
— =0, (10.2.17)
Bxi
where u; = u;(x,t) is the velocity field, p is the normal pressure divided by p,

it is often called the kinematic pressure, and F; are the external body forces. The
continuity equation (10.2.17) is kinematic in nature and is unaffected by the energy
dissipation process in the fluid due to viscosity.

It is important to point out that the use of the Navier—Stokes equations is perhaps
justified for the study of turbulence because the Mach number of incompressible
turbulent flows is relatively small.

Using the continuity equation (10.2.17), the Navier—Stokes equation (10.2.16) in
the absence of the external field of forces (F; = 0) can be written as

Ju; ad ap
o — () = —— Vu; . 10.2.1
o + ox (u; uy) o, + vVeu (10.2.18)

Taking the divergence of this equation and using (10.2.17) gives the Poisson
equation

9% (u; )

Vip=— )
P ax; 0x,,

(10.2.19)

Eliminating the pressure from the Navier—Stokes equations, we obtain

ou; 1
S Wi = —= Pijm (V) (1 up), (10.2.20)
ot 2
where
0 0
Pijm(V) = —P;; (V) + 7—Pin (V), (10.2.21)
8xm axj

g d 0
V=|l——,—. 10.2.22
(8x1 8x2 8)(73) ( )
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and
P (V)=38 ! > (10.2.23)
ij — Oij V2 BXi an. L.
The Fourier transform of the Navier—Stokes equations is
ad 2\ ~ ; 3
3 + vk ik, t) = =ik Pij(K) | uj(qQu.(k—q)dq, (10.2.24)
where ; (K, t) is the Fourier transform of u; (x;, ), and
kik;
Pij(k) = §; — k2] (10.2.25)

The velocity u; (x,t) is represented as a linear combination of plane waves, each
corresponding to a characteristic size O(k;') in some direction i. However, the
information related to position in physical space is completely hidden, which is a
major drawback when dealing with the space of intermittency of turbulent flow.
It has been recognized that turbulence has a set of localized structures, often called
coherent structures, even at a very high Reynolds number R = (U{/v) or at a
very low viscosity. In many practical applications in aeronautics and meteorology,
R varies in between 10° and 10'2. These coherent structures are organized spatial
features, which repeatedly occur and undergo a characteristic temporal life cycle.
There are many examples of such structures which play a central role in the time
and space intermittency of turbulence. The classical model of turbulence is based
on ensemble time or space average, but this idea is of no use for the description of
coherent structure. On the other hand, the Navier—Stokes equations in physical space
provide no explicit information about scales of motion. This information is often
useful for modeling and physical insight into turbulent flows. This difficulty requires
a representation that decomposes the flow field into contributions of different
positions as well as different scales.

One of the most important features of a turbulent flow is the transfer of kinetic
energy from large to small scales of motion due to the nonlinear (convective) term,
which acts as the source of energy transfer. Denoting the nonlinear transfer of energy
to wavenumbers of magnitude k by T (k, t), the three-dimensional energy spectrum
E(k,t) for isotropic turbulence satisfies the evolution equation

%—f = T(k,t) —2vk*E (k. 1), (10.2.26)

where T (k, t) is formally defined in terms of triple products of fluctuating velocity
and thus embodies the closure problem due to the nonlinear term in the Navier—
Stokes equations. Equation (10.2.26) is made up of contributions of the inertial,
nonlinear, and viscous terms of the Navier—Stokes equations. It follows from the
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continuity equation (10.2.17) that the pressure term does not make any contribution
to (10.2.26). This implies that the net effect of the pressure field is to conserve the
total energy in the wavenumber space. Only the nonlinear term in the Navier—Stokes
equations is responsible for the net energy transfer from large to smaller eddies or
scales—a mechanism by which large eddies decay. The total spectral flux of energy
through wavenumber k to all smaller scales is given by

0o k
(k,1) =/ Tk t)dk' = —/ Tk  t)dk, (10.2.27)
k 0
so that
/ Tk, t)dk' =0, (10.2.28)
0

which also follows from the conservation of energy by the nonlinear term
in (10.2.16). Consequently, the evolution equation (10.2.26) leads to

A N
= (5 E u,.) = 5/0 E(k,t)dk = —e(1), (10.2.29)

and it follows from (10.2.26) that
o0
e(t) = 2v/ K*E(k,t)dk. (10.2.30)
0

This clearly represents the overall rate of energy dissipation and exhibits that small-
scale (or high wavenumbers) components are dissipated more rapidly by viscosity
than large-scale (or low wavenumbers) components.

Based on the usual arguments of equilibrium and stationarity, it is easy to
conclude that the ensemble average of the flux must equal to the overall rate of
energy dissipation, so that ( (k, t))em = &(¢) in the inertial range n < k™! < £,
where £ is the integral scale and n is the Kolmogorov microscale. Physically,
the mechanism of energy transfer is described by simplified assumptions such as
the successive breaking down of eddies or as the generation of small scales by
the stretching and folding of vortices. Over the scales of motion of size k!, there
is a net flux of kinetic energy to smaller scales that is equal to the time average of

(k,t). However, (k,t) does notdepend on position because the Fourier transform
is used in the preceding analysis. This means that information related to position in
physical space is completely absent in the theory of Kolmogorov (1941a,b), which
neglects the phenomenon of intermittency.

It is also well known that the rate of dissipation E(x,t) is distributed very
intermittently—a feature which increases with the Reynolds number and its
moments also increase with the Reynolds number according to power-laws in
the inertial range (see Kolmogorov 1962). This allows a self-consistent statistical
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and geometrical representation of € in terms of multifractals (Benzi et al. 1984;
Frisch and Parisi 1985). The power-law behavior of spatial moments of the energy
dissipation can be modeled naturally within the framework of the breakdown of
eddies with an additional assumption that the flux of energy to smaller scales
shows spatial fluctuations. As the scales of motion become smaller, these spatial
fluctuations accumulate and can then lead to very intermittent distributions of the
energy dissipation. This clearly suggests that there is a need for defining a flux of
kinetic energy instead of (10.2.27) which incorporates information on positions.
In spite of these weaknesses of the Fourier analysis of turbulence, the upshot of
the preceding description is that pressure and nonlinear inertial terms separately
conserve the total energy of turbulence, whereas the linear viscous term dissipates
the energy. Based on the assumption of self-similarity, Kolmogorov (1941a,b)
and Oboukhov (1941) formulated a general statistical theory of turbulence, which is
known as the universal equilibrium theory. This formulation represents a significant
step in the development of the statistical theory of turbulence.

In order to study the energy spectrum function E(k,t), Kolmogorov classified
the spectrum into three major ranges, which are assumed to be independent. These
ranges are called the large eddies (k/ < 1), the energy containing eddies (k/ ~ 1),
and the small eddies (k/ > 1), where [ is the characteristic length scale of the
energy-containing eddies or the differential length scale of the mean flow as a
whole. For instance, the spectrum function E(k,t) attains its maximum value at
k; = I7!. The basic assumption of the Kolmogorov theory is that at a very high
Reynolds number, the turbulent flow at the very small scales (large wavenumbers)
is approximately similar to a state of statistical equilibrium and hence, this part
of the spectrum is called the equilibrium or quasi-equilibrium range. Further, the
motion of the small eddies is assumed to be statistically independent of that in
the energy-containing range. The energy-containing scales of the motion may be
inhomogeneous and anisotropic, but this feature is lost in the cascade so that at
much smaller scales the motion is locally homogeneous and isotropic. Hence,
the statistical properties of the turbulent motion in the equilibrium range must be
completely determined by the physical parameters that are relevant to the dynamics
of this part of the spectrum only. The motion associated with the equilibrium range
(kI > 1) is uniquely determined only by two physical parameters, ¢ and v. The
consequence of this assumption is that the small-scale statistical characteristics of
the velocity fluctuations in different turbulent flows with high Reynolds numbers can
differ only by the length scales, which depend on € and v. According to the theory of
Kolmogorov, the turbulent motion in the equilibrium range is dissipated by viscosity
at the rate € so that E (k) is a function of €, v, and k. The net energy supply from
the small wavenumbers is transferred by the nonlinear inertial interactions to larger
and larger wavenumbers until the viscous dissipation becomes significant. Clearly,
the Reynolds number must be very large for the existence of a statistical range of
equilibrium. A necessary condition for this is k; < k;, where k is the location of
the wavenumber at which the viscous dissipation first becomes dominant. In other
words, the viscous dissipation takes place predominantly at the upper part of the
equilibrium range, that is, at large wavenumbers k > k; > k;. Thus, for R > 1,
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there exist two independent and widely separated regions k ~ k;, (energy source)
and near k ~ k; (energy sink), which are connected through a continuous set of
wavenumbers k such that k; < k < ky. In other words, the Kolmogorov inertial
range lies between the largest scale /(™! = k;), where the energy is supplied by
external forces, and the smallest scales d(d ™' = k), where the energy is dissipated
by viscosity. This confirms the existence of an intermediate part of the energy
spectrum, the so-called inertial range (k; < k < kg), where (a) the local energy
transfer is significant, (b) the properties of the statistical ensemble are independent
of all features of energy input except its rate, and (c) the viscous dissipation is
insignificant. In this case, the nonlinear convection is quite significant, and the
energy spectrum is therefore independent of viscosity v so that £ (k) depends only
on ¢ and k. In a state of statistical equilibrium, the rate of energy input and the rate of
energy dissipation. On a simple dimensional ground, the wavenumber spectrum of
kinetic energy or the energy spectrum function in the inertial range takes the form

E(k) = Cr ek F (kﬁ) , (10.2.31)
d

provided k > k;, and where Cy, is a nondimensional universal parameter, called the

1/4 . o
Kolmogorov constant, k; = (8 / v3) /* is the characteristic dissipation wavenumber
and F(x) is a universal dimensionless function. In homogeneous turbulence & ~

1\3/4
(u®/1) (see Batchelor 1967), so that k; = (u_) k;. Clearly, k; > k; is an
%

/
essential requirement so that the Reynolds number R = “ must be large. As R
v

increases (or v decreases), the viscous dissipation would become predominant for
larger and larger wavenumbers. According to Kolmogorov’s hypothesis, for suffi-
ciently large R there exists a significant range of wavenumbers with k; < k < kg,
then, in this inertial range, both energy content and energy dissipation are negligible
and the spectral energy flux ¢(k) = ¢ is independent of wavenumbers k. The

k
molecular viscosity v then becomes insignificant, F (k_) in (10.2.31) becomes
d
k
asymptotically constant for k <« kg, and then F (k_) ~ 1. Consequently, the

d
energy spectrum in the inertial range reduces to the form

E(k) = Cy e**k 3. (10.2.32)

This is called the Kolmogorov—Oboukhov energy spectrum in isotropic and homo-
geneous turbulence and received strong experimental support by Grant et al. (1962)
in the early 1960s and later with a value of C; ~ 1.44 £ 0.06. Several experimental
5 7
observations suggested that the spectrum power lies somewhere between 3 and T

Even though the experimental accuracy is not very high, most experiments in
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5
oceanic and atmospheric turbulence strongly support the —— spectrum law. Very

recently, Métais and Lesieur (1992) proposed the structure—function model of
turbulence with the spectral eddy viscosity based upon a kinetic energy spectrum in
space. Their analysis gives the best agreement with the Kolmogorov k /3 spectrum
law and the Kolmogorov constant Cy ~ 1.40.

Soon after Kolmogorov’s pioneering work, considerable progress was made on
a detailed study of different physical mechanisms of energy transfer of turbulence.
Several authors including Heisenberg (1948a,b), Lin (1948), Chandrasekhar (1949,
1956), Batchelor (1967) , and Sen (1951, 1958), have investigated these problems.
Of these physical energy transfer mechanisms, Heisenberg’s eddy viscosity transfer
was found to be more satisfactory at that time. Based on the assumption that the
role of small eddies in the nonlinear transfer process is very much similar to that of
molecules in viscous dissipation mechanisms, Heisenberg suggested that these small
eddies act as an effective viscosity produced by the motions of the small eddies and
the mean-square vorticity associated with the large eddies. He used this assumption
to formulate the energy balance equation in the form

k k
3/ E(k,t)dt = —2 (v+ “—")/ KE(k, ) dk, (10.2.33)
at Jo p /) Jo

where 1 is the eddy viscosity defined by Heisenberg in the form

© (Ek, 1)) ">
Nk = pK COV gk, (10.2.34)
k k3

where k is a numerical constant.

Thus, the main problem of turbulence is to determine the spectrum function
E(k, 1) satisfying the integro-differential equation (10.2.33) for all subsequent time
when E(k,t) is given at t = 0. For details of the problems, the reader is referred to
Debnath (1978, 1998a,b).

10.3 Fractals, Multifractals, and Singularities
in Turbulence

Mandelbrot (1982) first introduced the idea of a fractal as a self-similar geometric
figure that consists of an identical motif repeating itself in an ever decreasing scale.
This can be illustrated by the famous triadic Koch curve (see Fig. 10.1), which can be
constructed geometrically by successive iterations. The construction begins with a
line segment of unit length (L(l) = 1), called the initiator. Divide it into three equal
line segments. Then, replace the middle segment by an equilateral triangle without
a base. This completes the first step (n = 1) of the construction, giving a curve
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by n=1
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Fig. 10.1 The triadic Koch curve

1 1 4
of four line segments, each of length £ = 3’ and the total length is L (5) =3

This new shape of the curve is called the generator. The second step (n = 2) is
obtained by replacing each line segment by a scaled-down version of the generator.

Thus, the second-generation curve consists of N = 47 line segments, each of length
2

1\’ 4
L = (5) , with the total length of the curve L({) = (5) . Continuing this
iteration process successfully leads to the triadic Koch curve of total length L (£) =
n
(§ , where £ = 37", as shown in Fig. 10.1. The name triadic is justified because

individual line segments at each step decrease in length by a factor of 3. Obviously,
the Koch curve at the end of many iterations (n — oo) would have a wide range of
scales. At any stage of the iteration process, the curve possesses several important
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features. First, when a part of it is expanded by a factor of 3”, it looks similar (except
for reorientation) to that obtained in n previous steps. Second, self-similarity is built
into the construction process. Third, there is no way to draw a tangent at each corner
leading to a tangentless (or nondifferentiable) curve. Finally, this leads to the idea
that self-similar fractals are invariant to dilation.

In terms of the box-counting algorithm in fractal geometry. the minimum N (£) =

1
4 boxes of size (5) are needed to cover the line in the Koch curve in Fig. 10.1b.

1\2

Similarly. at least N(£) = 4% boxes of size { = (5) are required to cover the
1 n

line in Fig. 10.1c. In general, a minimum of N({) = 4" boxes of size { = 3

are needed to cover the Koch curve obtained at the nth step. On the other hand, the
4 n
total length L(37") = (5) at the nth iteration is obtained at a finer resolution of

37". As the resolution increases microscopically (n — 00), the length of the Koch
curve also increases without limit. This shows a striking contrast to an ordinary
curve whose length remains the same for all resolutions. The intrinsic parameter
that measures this property is called the fractal Hausdorff dimension D, which is
defined by

L) }

log{—
log N(£
D — tim 8NO _ ¢

/5—>010 1\ >0 o 1 ’
E\Y g\

where L(£) = {N(£) = £~ for small number £.
For the triadic Koch curve, N(£) = 4" and £ = 37", so that its fractal dimension
is given by

(10.3.1)

log4

D=—"=12628>1 (10.3.2)
log 3

and is noninteger and greater than one. The reason for this conclusion is due to
the convolutedness of the Koch curve, which becomes more and more convoluted
as the resolution becomes finer and finer. When the curve is highly convoluted, it
effectively covers a two-dimensional area, that is, the one-dimensional curve fills up
a space of dimension two. In general, a fractal surface has a dimension greater than
two, and its dimension could become as large as three for a very highly convoluted
surface, so that it can essentially cover a three-dimensional volume. This leads to
a general result that the fractal Hausdorff dimension of a set is a measure of its
space-filling ability.

Other famous examples include computer simulation of a diffusion-limited
aggregation process, electrical discharges on insulators, which obey laws similar
to diffusion-limited aggregation, and the resulting spark patterns. Computer sim-
ulations of such scale-invariant processes in three dimensions give a Hausdorff
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dimension between two and three. One of the most remarkable three-dimensional
highly branching lightnings has the Hausdorff dimension D & 2.4 or greater.

Mandelbrot (1982) also gave a more formal definition of a fractal as a set with
Hausdorff dimension strictly greater than its topological dimension. This is similar
to the Euclidean dimension of ordinary objects, but the fractal dimension D is
noninteger and represents the basic measure of the space-filling ability of a fractal
set. The topological dimension £ = 1 for lines; for planes and surfaces, £ = 2;
and for spheres and other finite volumes, £ = 3. In general, D > E, Mandelbrot
also conjectured that fractals and the fractal Hausdorff dimension could be used
effectively to model many phenomena in the real world.

While he was studying fractal geometry, Mandelbrot (1974) first recognized that
the Kolmogorov statistical equilibrium theory of isotropic and homogeneous turbu-
lence is essentially based on some basic assumptions, which include the hierarchy
of self-similar eddies (or scales) of different orders and the energy cascade from
larger and smaller eddies. This observation led him to believe that the structure
of turbulence may be either locally or globally self-similar fractals. The problem
of intermittency has also stimulated tremendous interest in the study of kinematics
of turbulence using fractals and fractal dimensions (see Mandelbrot 1974, 1975).
It is believed that the slow decay described by the Kolmogorov k~>/3 law indicates
a physical situation in which vortex sheets are infinitely convoluted. Mandelbrot
recognized that these surfaces are so convoluted in the limit as v — 0 as to occupy a
space of fractal Hausdorff dimension between two and three. Then, he first proposed
fractal analysis of turbulent flows and predicted that multiplicative cascade models,
when continued indefinitely, lead to the dissipation of energy, which is confined
to a set of non integer Hausdorff dimension. His fractal approach to turbulence
received much attention after the introduction of a simple f-model by Frisch et al.
(1978). They studied the f-model with special emphasis on its dynamical and
fractal aspects. In addition, they explained both the geometrical and the physical
significance of the fractal model of turbulent flows.

Experimental results of Anselmet et al. (1984) neither supported the f-model of
Frisch nor the log-normal model of Kolmogorov. This meant that there was no uni-
form fractal model that could fully describe the complex structure of turbulent flows.
Then, Frisch and Parisi (1985) have shown that intermittent distributions can be
explained in terms of singularities of varying strength; all are located on interwoven
sets of different fractal dimensions, and hence, Frisch and Parisi introduced the name
multifractals. At the same time, Halsey et al. (1986) introduced f (o) for the fractal
dimensions of sets of singularities characterizing multifractals. In their multifractal
model of turbulence, they used the scale-invariance property, which is one of the
remarkable symmetries of the Euler equations. In the meantime, the fractal facets of
turbulence received considerable attention from Sreenivasan and Meneveau (1986)
and Vassilicos (1992, 1993). Their analysis revealed some complicated geometric
features of turbulent flows. They showed that several features of turbulence could
be described approximately by fractals and that their fractal dimensions could
be measured. Unfortunately, these studies can hardly prove that turbulence can
be described fully by fractals. Indeed, these models now constitute a problem in
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themselves in the sense that properties of turbulent flows can be used to find the
value of fractal dimension D. Thus, fractal models of turbulence have not yet been
fully successful.

Due to several difficulties with fractal models of turbulence, multifractal models
with a continuous spectrum of fractal dimension D(h) have been developed by
several authors, including Meneveau and Sreenivasan (1987a,b) (p-model) and
Benzi et al. (1984) (random B-model). These models produced scale exponents
which are in agreement with experimental results with a single free parameter.
However, it is important to point out that both the multifractal model and log-normal
models lack true dynamical motivation. Recently, Frisch and Vergassola (1991)
developed another multifractal model which enables them to predict a new form
of universality for the energy spectrum E (k) in the dissipation range. This model
involves a universal function D(h), called fractal dimension, which cannot be given
by phenomenological theory. This new form of universal law has received good
experimental support from Gagne and Castaing (1991), but it is not consistent with
Kolmogorov’s similarity hypothesis. They have analyzed a wide range of turbulence
data with Reynolds numbers from 10* to 107.

Finally, we close this section by adding some comments on the possible devel-
opment of singularities in turbulence. Mandelbrot (1975) has remarked that “the
turbulent solutions of the basic equations involve singularities or ‘near singularities’
(approximate singularities valid down to local viscous length scales where the
flow is regular) of an entirely new kind.” He also stated that “the singularities
of the solutions of the Navier-Stokes equations can only be fractals.” In his
authoritative review, Sreenivasan (1991) described the major influence of the fractal
and multifractal formalisms in understanding certain aspects of turbulence, but
he pointed out some inherent problems in these formalisms with the following
comment, “However, the outlook for certain other aspects is not so optimistic, unless
magical inspiration or breakthrough in analytical tools occur.”

During the last decade, some progress has been made in the understanding of the
implications of self-similar energy spectra of turbulence. It was shown by Thomson
et al. (1879) in their study of oscillations that when the Fourier power spectrum of a
function f(x) has a self-similar form

E(k) ~ k2P, (10.3.3)

where p is an integer, then there exists a discontinuity in the (p — 1) order derivative
of f(x). For example, the energy spectrum of a single shock f(x) = sgnx is
E(k) ~ k=% as k — oo. However, the energy spectrum such as E(k) ~ k=27,
where p is not an integer, implies the existence of singularities that are more severe
than mere discontinuities in the flow field. The singularity could be localized at one

. . s x . .
or a few points of the function such as f(x) = —— (accumulating function) or

could be global in the sense that f(x) is singular at all or almost all x, as in the
case of the Weierstrass function (see Falconer 1990). These two very different types
of functions may have identical self-similar energy spectra of the form (10.2.3)
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but always have different phase spectra. They also have a fractal (or K-fractal
according to Vassilicos and Hunt’s (1991) ideas) property in common; both are
characterized by nontrivial Kolmogorov dimensions Dg > 1, D% > 0, where Dg
is the Kolmogorov dimension of the entire function and D is the Kolmogorov
dimension of the intersection of a function with the x-axis, that is, the zero crossings.
However, when the above two functions have the same energy spectrum similarity
exponent p, they do not have the same values of Dk and D/K. Moreover, their
structure is also different in the Hausdorff sense, and the Hausdorff dimensions
Dy and D}, for the accumulating function are trivial in the sense that Dy = 1
and D}{ = 0, whereas those of the Weierstrass function are nontrivial, Dy > 1
and D}, > 0. It has been conjectured by Mandelbrot (1982) that Dy = Dg
for H-fractals. Some of the major quantities involved in the statistical approach
to turbulent flows are correlations and spectra. Self-similar cascades are usually
associated with the power spectrum of the form

T'(p) ~ k7. (10.3.4)

For example, p = 5/3 corresponds to the Kolmogorov spectrum for small-scale
turbulence, p = 1 characterizes the convective-inertial subrange, and p = 5/3
also corresponds to the Batchelor spectrum of a passive scalar in the inertial
subrange. The question is whether the self-similarity leading to such spectra is
local or global. Both local spectra are of the form (10.3.4) at large wavenumbers
k, where p may not take integral values and p is related to the Kolmogorov
dimension Dk of the interface, so that this relation can be used to derive the
value of Dg in turbulence, which is in agreement with experimental findings.
For a locally self-similar interface, the exponent p = 2 — D%, where D is the
Kolmogorov dimension of the interface with a linear cut, whereas for a globally
self-similar interface, p = 2 + E — Dy, where E is the topological dimension
and Dy is the Hausdorff dimension of the interface. Finally, it has been indicated
by Vassilicos (1993) that the value of Dg may be a more accurate measure of
spectra of locally self-similar interfaces than the direct measurement of the spectrum
itself. Also, the value of Dx may be a more accurate criterion of high Reynolds
number turbulence than the existence of self-similar spectra of the form (10.3.4). In
the case of the Kolmogorov spectrum, E(k) ~ k~>/3(p = 5/6), which implies
that the small-scale turbulence at a very high Reynolds number contains near-
singularities that are either simple or nonisolated. Recent experimental findings and
DNSs of turbulence have shown that the small scales of turbulent flows contain long
and slender vortex tubes. Some of the vortex tubes may carry near-singularities,
provided these vortex tubes are Lundgren vortices, which are asymptotic solutions
of the Navier—Stokes equations in the limit as time ¢ — co. However, it has not yet
been confirmed whether the picture of the small scales of turbulence where vortex
tubes dominate the finest scales survives in the limit as R — oo.

Indeed, several theoretical works and experimental observations revealed that
turbulence possesses some singularities in the velocity field or vorticity field.
Sarker’s (1985) analytical treatment confirmed that finite-time cusp singularities
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always exist for essentially any arbitrary set of initial data and are shown to be
generic. Newer experimental methods (Hunt and Vassilicos 1991) also provide
evidence of spiraling streamlines and streaklines within eddies. and thin layers
of large vorticity grouped together (Schwarz 1990); both of these features are
associated with accumulation points in the velocity field. It also follows from
solutions of the Navier—Stokes equations (Vincent and Meneguzzi 1991 and She
et al. 1991) that very large deviations exist in isolated eddies with complicated
internal structure. These studies identify regions of intense vorticity so that stream-
lines form spirals. The Kolmogorov inertial energy spectrum k /3 also implies
that there must be singularities in the derivatives of the velocity field on scales
where the rate of energy dissipation is locally very large. It has been suggested
by Moffatt (1984) that the accumulation points of discontinuities associated with
spiral structures could give rise to fractional power laws k27 with 1 < 2p < 2.
The question also arises whether the self-similarity leading to the Kolmogorov
spectrum is local or global. Moffatt’s analysis (see Vassilicos 1992) revealed that
spiral singularities are responsible for noninteger power of self-similar spectra k7.
It is also now known that locally self-similar structures have a self-similar high
wavenumber spectrum with a noninteger power 2 p. Thus, the general conclusion is
that functions with the Kolmogorov spectrum have some kinds of singularities and
accumulation points, unless they are fractal functions with singularities everywhere,
since they are everywhere continuous but nowhere differentiable. Thus, the upshot
of this discussion is that the statistical structure of the small-scale turbulent flows
is determined by local regions where the velocity and any other associated scalar
functions have very large derivatives or have rapid variations in their magnitude
or that of their derivatives. These are regions surrounding points that are singular.
It remains an open question whether the nature of this singularity is due to random
fluctuations of the turbulent motions resulting from their chaotic dynamics or to the
presence of localized singular structures originating from an internal organization
of the turbulent flows.

10.4 Farge’s Wavelet Transform Analysis of Turbulence

It has already been indicated that the dynamics of turbulent flows depends not only
on different length scales but on different positions and directions. Consequently,
physical quantities such as energy, vorticity, enstrophy, and pressure become
highly intermittent. The Fourier transform cannot give the local description of
turbulent flows, but the wavelet transform analysis has the ability to provide a wide
variety of local information of the physical quantities associated with turbulence.
Therefore, the wavelet transform is adopted to define the space-scale energy
density by

~ 1 -~ 2
Et.x) = ‘f(ﬁ,x)‘ : (10.4.1)

where f (€, x) is the wavelet transform of a given function (or signal) f(x).
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It is helpful to introduce a local energy spectrum E (£, x¢) in the neighborhood
of x (see Farge 1992) by

E(l, x0) = %/ E(C,x) x (x_exo)dx, (10.4.2)

—00

where the function ¥ is considered as a filter around x. In particular, if ¥ is a Dirac
delta function, then the local wavelet energy spectrum becomes

Et,xo) = % )f(ﬁ,xo)r. (10.4.3)
The local energy density can be defined by
E(x)=C' Aoo E(L,x) %. (10.4.4)
On the other hand, the global wavelet spectrum is given by

E() = /Oo E,x)dx. (10.4.5)

R )
This can be expressed in terms of the Fourier energy spectrum E (k) = ) f (k)‘ o)
that

() = [ : Ek) )J;(ek)(zdk, (10.4.6)

where 11;(6/() is the Fourier transform of the analyzing wavelet \{r. Thus, the global
wavelet energy spectrum corresponds to the Fourier energy spectrum smoothed by
the wavelet spectrum at each scale.

Another significant feature of turbulence is the so-called intermittency phe-
nomenon. Farge et al. (1992) used the wavelet transform to define the local
intermittency as the ratio of the local energy density and the space averaged energy
density in the form

|Ft x|

<<‘f~(z’x))2>> = /_Z (f(K,X)’zdx. (10.4.8)

1, x0) = (10.4.7)

where



508 10 Wavelet Transform Analysis of Turbulence

If I(£,xp) = 1 for all £ and x,, then there is no intermittency, that is, the flow
has the same energy spectrum everywhere, which then corresponds to the Fourier
energy spectrum. According to Farge et al. (1990a), if I(£, xo) = 10, the point
at xo contributes ten times more than average to the Fourier energy spectrum at
scale £. This shows a striking contrast with the Fourier transform analysis, which
can describe a signal in terms of wavenumbers only but cannot give any local
information. Several authors, including Farge and Rabreau (1988), Farge (1992),
and Meneveau (1991) have employed wavelets to study homogeneous turbulent
flows in different configurations. They showed that during the flow evolution,
beginning from a random vorticity distribution with a k= energy spectrum, the
small scales of the vorticity become increasingly localized in physical space. Their
analysis also revealed that the energy in the two-dimensional turbulence is highly
intermittent which may be due to a condensation of the vorticity field into vortex like
coherent structures. They have also found that the smallest scales of the vorticity are
confined within vortex cores. According to Farge and Holschneider (1989, 1990),
there exist quasisingular coherent structures in two-dimensional turbulent flows.
These kinds of structures are produced by the condensation of vorticity around the
quasisingularities already present in the initial data. Using the wavelet transform
analysis, Meneveau (1991) first measured the local energy spectra and then carried
out DNSs of turbulent shear flows. His study reveals that the mean spatial values
of the turbulent shear flow agree with their corresponding results in Fourier space,
but their spatial variations at each scale are found to be very large, showing non-
Gaussian statistics. Moreover, the local energy flux associated with very small
scales exhibits large spatial intermittency. Meneveau’s computational analysis of the
spatial fluctuations of T'(k, t) shows that the average value of T'(k, t) is positive for
all small scales and negative for large scales, indicating the transfer of energy from
large scales to small scales so that energy is eventually dissipated by viscosity. This
finding agrees with the classical cascade model of three-dimensional turbulence.
However, there is a striking new phenomenon that the energy cascade is reversed in
the sense that energy transfer takes place from small to large scales in many places
in the flow field. Perrier et al. (1995) confirmed that the mean wavelet spectrum
E (k) is given by

E(k) = /Oo E(x,k)dx. (10.4.9)
0

This result gives the correct Fourier exponent for a power-law of the Fourier
energy spectrum E(k) = Ck™P, provided the associated wavelet has at least
n > 27'(p — 1) vanishing moments. This condition is in agreement with that for
determining cusp singularities. Based on a recent wavelet analysis of a numerically
calculated two-dimensional homogeneous turbulent flow, Benzi and Vergassola
(1991) confirmed the existence of coherent structures with negative exponents.
Thus, their study reveals that the wavelet transform analysis has the ability not only
to give a more precise local description but also detect and characterize singularities
of turbulent flows. On the other hand, Argoul et al. (1988, 1990) and Everson et al.
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(1990) have done considerable research on turbulent flows using wavelet analysis.
They showed that the wavelet analysis has the ability to reveal Cantor-like fractal
structure of the Richardson cascade of turbulent eddies.

10.5 Adaptive Wavelet Method for Analysis
of Turbulent Flows

Several authors, including Farge (1992) and Schneider and Farge (1997), first
introduced the adaptive wavelet method for the study of fully developed turbulence
in an incompressible viscous flow at a very high Reynolds number. In a fully
developed turbulence, the nonlinear convective term in the Navier—Stokes equations
becomes very large by several orders of magnitude than the linear viscous term.
The Reynolds number R = (U L/ v) represents the ratio of the nonlinear convective
term and the viscous term. In other words, R is proportional to the ratio of the large
excited scales and the small scales where the linear viscous term is responsible for
dissipating any instabilities.

Unpredictability is a key feature of turbulent flows, that is, each flow realization is
different even though statistics are reproducible as long as the flow configuration and
the associated parameters remain the same. Many observations show that in each
flow realization localized coherent vortices whose motions are chaotic are generated
by their mutual interactions. The statistical analysis of isotropic and homogeneous
turbulence is based on L2-norm ensemble averages and hence is hardly sensitive to
the presence of coherent vortices which have a very weak contribution to the L2-
norm. However, coherent vortices, are fundamental components of turbulent flows
and therefore, must be taken into account in both statistical and numerical models.

Leonard (1974) developed a classical model, called the Large Eddy Simulation
(LES), to compute fully developed turbulent flows. In this model, separation is intro-
duced by means of linear filtering between large-scale active modes and small-scale
passive modes. This means that the flow evolution is calculated deterministically up
to cutoff scale while the influence of the subgrid scales onto the resolved scales is
statistically modeled. Consequently, vortices in strong nonlinear interaction tend
to smooth out, and any instabilities at subgrid scales are neglected. Thus, LES
models have problems of backscatter, that is, transfer of energy from subgrid scales
to resolved scales due to nonlinear instability. The LES model takes into account
backscatter, but only in a locally averaged manner. Further progress in the hierarchy
of turbulent models is made by using Reynolds Averaged Navier—Stokes (RANS)
equations, where the time averaged mean flow is calculated and fluctuations are
modeled, in this case, only steady state solutions are predicted.

During the last decade, wavelet analysis has been introduced to model, analyze,
and compute fully developed turbulent flows. According to Schneider and Farge
(2000), wavelet analysis has the ability to disentangle coherent vortices from
incoherent background flow in turbulent flows. These components are inherently
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multiscale in nature and have different statistics with different correlations. Indeed,
the coherent vortices lead to the non-Gaussian distribution and long-range cor-
relations, whereas the incoherent background flow is inherently characterized by
the Gaussian statistics and short-range correlations. This information suggests a
new way of splitting the turbulent flow into active coherent vortex modes and
passive incoherent modes. The former modes are computed by using wavelet
analysis, whereas the latter modes are statistically modeled as a Gaussian random
process. This new and modem approach is called the Coherent Vortex Simulation
(CVS) and was developed by Farge et al. (1999a,b). This approach is significantly
different from the classical LES which is essentially based on a linear filtering
process between large and small scales without any distinction between Gaussian
and non-Gaussian processes. The CVS takes advantage of a nonlinear filtering
process defined in a wavelet space between Gaussian and non-Gaussian modes
with different scaling laws but without any scale separation. The major advantage
of the CVS treatment compared to the LES is to reduce the number of computed
active modes for a given Reynolds number and control the Gaussian distribution of
the passive degrees of freedom to be statistically modeled.

Turbulent flows are characterized by a fundamental quantity, called the vorticity
vector, ® = V x u. Physically, the vorticity field is a measure of the local rotation
rate of the flow, its angular velocity.

Eliminating the pressure term from (10.2.16) by taking the curl of (10.2.16) leads
to the equation for the vorticity field in the form

88—(;) = (w-V)u—(u-V)o +vV?® + V xF. (10.5.1)

This is well known as the convection—diffusion equation of the vorticity. The
left-hand side of this equation represents the rate of change of vorticity, whereas the
first two terms on the right-hand side describe the rate of change of vorticity due to
stretching and twisting of vortex lines. In fact, the term (oo . V)u is responsible for
the vortex-stretching mechanism (vortex tubes are stretched by velocity gradients)
which leads to the production of vorticity. The third term on the right-hand side
of (10.5.1) represents the diffusion of vorticity by molecular viscosity. In the case
of two-dimensional flow, (w . V)u = 0, so the vorticity equation (10.5.1) without
any external force can be given by

aa—(;) +(u-V)o = W e (10.5.2)

so that only convection and conduction occur. This equation combined with the
equation of continuity,

V.u=0, (10.5.3)

constitutes a closed system which is studied by periodic boundary conditions.
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In terms of a stream function s, the continuity equation (10.5.3) gives
(10.5.4a,b)

so that the vorticity w = (v — u,) satisfies the Poisson equation for the stream
function { as

V2 = . (10.5.5)

The total kinetic energy is defined by

E(t) = %// w’(x,1)dx, (10.5.6)
D

and the total enstrophy is defined by

Z(@t) = %// w?(x,t)dx. (10.5.7)
D

We make reference to Frisch (1995) to express the enstrophy and the dissipation
of energy as

Z _ ,p YE_ 57 (10.5.8a,b)
T vP, T vZ, .5.8a,

where the palinstrophy P is given by

P(t) = %// [Vol|® dx. (10.5.9)
D

The energy and enstrophy spectra are written in terms of the Fourier transform

1 .
E() =5 3o jam) (10.5.10)
k—i<|kl<e+1
1 .
Zw) =3 > lam)P. (10.5.11)

k—1 <[kl

where k = (k,{). The quantities E (k) and Z(k) measure the amount of energy
or enstrophy in the band of wavenumbers between k and k + dk. The spectral
distribution of energy and enstrophy are related to the expression k% E (k) = Z (k).
During the last two decades, several versions of the DNS have been suggested to
describe the dynamics of turbulent flows. Using DNS, the evolution of all scales of
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turbulence can only be computed for moderate Reynolds numbers with the help of
supercomputers. Due to severe limitations of DNS, Frohlich and Schneider (1997)
have recently developed a new method, called the adaptive wavelet method, for
simulation of two- and three-dimensional turbulent flows at a very high Reynolds
number. This new approach seems to be useful for simulating turbulence because the
inherent structures involved in turbulence are localized coherent vortices evolving in
multiscale nonlinear dynamics. Frohlich and Schneider used wavelet basis functions
that are localized in both physical and spectral spaces, and hence the approach
is a reasonable compromise between grid-point methods and spectral methods.
Thus, the space and space-adaptivity of the wavelet basis seem to be effective.
The fact that the basis is adapted to the solution and follows the time evolution
of coherent vortices corresponds to a combination of both Eulerian and Lagrangian
methods. Subsequently, Schneider and Farge (2000) discussed several applications
of the adaptive wavelet method to typical turbulent flows with computational
results for temporally growing mixing layers, homogeneous turbulent flows, and
for decaying and wavelet forced turbulence. They used the adaptive wavelet method
for computing and analyzing two-dimensional turbulent flows. At the same time,
they discussed some perspectives for computing and analyzing three-dimensional
turbulent flows with new results. They also have shown that the adaptive wavelet
approach provides highly accurate results at high Reynolds numbers with many
fewer active modes than the classical pseudospectral method, which puts a limit
on the Reynolds numbers because it does not utilize the vortical structure of high
Reynolds number flows. The reader is referred to all papers cited above for more
detailed information on the adaptive wavelet method for computing and analyzing
turbulent flows.

10.6 Meneveau’s Wavelet Analysis of Turbulence

In this section, we closely follow Meneveau’s (1991) analysis of turbulence in
the orthonormal wavelet representation based on the wavelet transformed Navier—
Stokes equations. We first introduce the three-dimensional wavelet transform of a
function f(x) defined by

I A A ;
v =il =T [ (5 ) e (10.6.1)

where J(x) = xl,r(|x|) is the isotropic wavelet satisfying the admissibility condition

Cy = /oo k|™! ‘ﬁ;(k)‘zﬁk. (10.6.2)
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The inversion formula is given by

fx) = \/_/ dr/ r32 ( E) w(r, g)—g. (10.6.3)

The invariance of energy of the system can be stated as

/_00 {f(x)}2d3x = C‘El /000 dr /_00 {w(r, x)}2 dr_34x. (10.6.4)

As in the one-dimensional case, the wavelet transform w(r, x) can also be
obtained from the Fourier transform f (k) of f(x) so that

1
e >3¢_

This can also be inverted to obtain the inversion formula

w(r,x) =

r¥? / U™ (rk) £ (k) e d°k. (10.6.5)

0 os) 3
f(k) = \/%[0 dr/ r3/? é(rk) exp (—ik - x)w(r, x) %. (10.6.6)
v —00

In view of the translational property, the wavelet transform commutes with
differentiation in the space variables so that

V- Wiy[t] = Won [V 1] (10.6.7)
and
VWix[f] = Wen [ V1] (10.6.8)

We now define w; (r,x) as the wavelet transform of the fluctuating part of the
divergence-free velocity field u; (x). In vector notation, these quantities are denoted
by w(r, x) and u(x), which depend on time ¢, but for notational clarity, we simply
omit the time dependence. It follows from (10.6.7) that w(r, x) is divergence-free.

We apply (10.6.5) to the Fourier-transformed Navier—Stokes equations (10.2.24),
where the velocities on the right-hand side have been replaced by the inverse
transform of w; (7, X), so that the evolution equation for w; (r, X) is

i 1
——sz)wi(r,x) = —/ dr’[ dr”//
(at (2 C¢)3/2 r ! x Jx

d3x/d3x//
Wj (r/s X/) Wk(r//vx//)[ijk (rs X r/a r//v X/v X//) - 1 1

P14 pnd ’

(10.6.9)
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where
Lix(r,x:r',r" X', X") = (i) (rr’r")3/2 / /kkP[/. K) U (rk) U(r'q)
kJq

x Y {r"(k—q@)}exp[i {k-(x—x") +¢-(x' —x)}]d’kdq.
(10.6.10)

We multiply (10.6.9) by w; (r, x) and then add over the components / to obtain
the local energy equation

0 0 ow;  ow;
Ee(r, x) = t(r,x) —e(r,x) + ij [Wf (E + W)} s (10.6.11)
where
1< 2
e(r,x) = 3 Z [w,- (r, x)] (10.6.12)

i=1

represents the local density of kinetic energy at scale r and

(%) = / ar / dr" /[ wi (%) w; (', X) wi (1, X')

d3X/d3X”

x Lk (r,x;r',r” x' x") . (10.6.13)

rtr
is the local transfer of kinetic energy at scale r at position x. This term shows
interactions among triads of scales (r,7’,r”) as well as interactions among triads
of positions (x,x’, x”). The term &(r, x) describes the dissipation of energy at scale
size r and is given by

erx) = vV [aﬁ + aﬁ} . (10.6.14)
an 8Xj Bxi

In view of the Parseval formula (6.3.9), the local transfer conserves energy so
that

d3
[dr/t(r, x) =X =0 (10.6.15)
r X r

The total flux of kinetic energy through scale r at position x is defined by
integrating the rate of change in the local energy due to nonlinear interactions over
all scales larger than r so that

o0 d /
(r,x) = —/ (%) o (10.6.16)
r r
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where the negative sign shows a decrease in energy of the large scales associated
with a positive flux. This total flux term is somewhat similar to (10.2.27) in
the wavelet representation.

All the preceding results are not very useful in turbulence theory, but they
illustrate the fact that there are complicated interactions of the wavelet trans-
form w; (r, x) involved at different scales and different positions. These nonlocal
and interscale interactions are essentially described by the complicated quantity
Liji(r,x; 1’ r” X', x"). This quantity arises from the fact that, in general, the triads
are not closed as they are in the Fourier representation, that is, there is no detailed
energy conservation in the wavelet representation. However, it is almost impossible
to make further progress on this wavelet formulation without making appropriate
assumptions and approximations of ;.

On the other hand, if the velocity field is known, quantities including
e(r,x),t(r,x), and (r,x) can be computed by taking the wavelet transform of
the Navier—Stokes equation combined with expressing the nonlinear terms in terms
of the original velocity field. Meneveau (1991) described the discrete formulation
of the evolution equation for the local kinetic energy density e™[i] at scale 7,
and position y = 2" (hyiy, hai. h3i3) where i = (i1, 12, i3) denotes the position of
a rectangular grid with uniform mesh sizes i, h,, h;. He obtained the evolution
equation for the local kinetic energy density e"[i] given by

%e('")[i] = t™1i] — vO[i], (10.6.17)

where ¢(™[i] is the nonlinear term representing the local transfer of kinetic energy
at scales r,, at position i, and v™[i] is the viscous term representing dissipation
and viscous transport of kinetic energy. Equation (10.6.17) is somewhat similar
to (10.2.27), but it depends on the position as well.

We write the expressions for ¢ ™[] as

3 ! (m.q) ou; 1 Bp (m.q)
(m)rs1 _ m,q) s i .
t 1——2 E ; i P— 4 - — i, 10.6.18
. i=1q=1Wl []%u/ 8xj+98xi} i ( )
where the pressure involved in this equation is obtained by solving the Poisson

equation, and w}m’q) [i] is the wavelet coefficient of the i th component of the velocity
field.
The term ¢ [i] does conserve energy on the whole so that

M

> i =o. (10.6.19)

m=11iy,i2,i3

which follows from the zero value of the volume integral of (u -Vu+V p) for
homogeneous turbulence, and from the condition of orthonormality of the wavelets.
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The viscous term is given by

3 7
V] =0 Y S WO -V . (10.6.20)

i=1g=1

Finally, the flux of the kinetic energy term "[i] in a spatial region of size r,, and
position [i] can be calculated by summing the density transfer of all larger scales at
that position so that

M
(] = =y 23 0 ) (10.6.21)

n=m

We next characterize the local kinetic energy at every scale in turbulence.
In Fourier transform analysis, the quantity E (k) represents the power-spectral den-
sity in a band dk of wavenumbers. However, the spatial information is completely
lost due to the nonlocal nature of the Fourier modes. If u(x) is a one-dimensional
finite energy function with mean zero and i(k) is its Fourier transform, the total
energy is given by

/oo W (x) dx = Zl /Oo a(k) i (k) dk = /m E(k)dk, (10.6.22)
—0o0 —0o0 0

where E (k) represents the energy spectrum, and the wavenumber k is related to the
distance r sothatr =2 k.

In wavelet analysis, the total energy can be written in terms of the wavelet
energies in the form

/OO w(x)dx = /oo E,(k)dk, (10.6.23)
—00 0

where E,, (r, x) is the continuous wavelet transform of u(x) and
E, (k) = — — / *(r(k), x) (10.6.24)

This represents the energy density at wavenumbers k. This spectrum function is
similar to the Fourier spectrum E (k) but is not the same at each k because of the
finite bandwidth involved in the wavelet transform.

For more detailed information on energy transfer and flux in the wavelet
representation and the intermittent nature of the energy, the reader is referred to
Meneveau (1991).
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