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Preface to the Second Edition

A teacher can never truly teach unless he is still learning himself. A lamp can never light
another lamp unless it continues to burn its own flame. The teacher who has come to the end
of this subject, who has no living traffic with his knowledge but merely repeats his lessons
to his students, can only load their minds; he can not quicken them.

Rabindranath Tagore
Nobel Prize Winner for Literature (1913)

The first edition of this book was first published in 2002 under the sole authorship
of Dr. Lokenath Debnath. It was well received and used as a senior undergraduate
and first year graduate level text and reference in the USA and abroad for the
last 12 years. We received various comments and suggestions from many students,
faculty, and researchers around the world. These comments and criticisms have been
very helpful, beneficial, and encouraging. The second edition is the result of these
suggestions and comments.

The selection, arrangement, and presentation of the material in this edition
have carefully been made based on our past and present teaching, research, and
professional experience. In particular, this book has evolved from regularly teach-
ing courses in wavelet transforms, signal analysis, differential equations, applied
mathematics, and advanced engineering mathematics over many years to students
of mathematics and engineering in the USA and abroad. It is essentially designed to
cover advanced mathematical methods for science and engineering students with
heavy emphasis to many different and varied applications. It differs from many
textbooks with similar titles due to major emphasis placed on numerous topics and
systematic development of the underlying theory before making applications and
inclusion of many new and modern topics such as multiresolution analysis and con-
struction of wavelets, extensions of multiresolution analysis, Gabor transforms and
time—frequency signal analysis, the Wigner—Ville distribution, and time—frequency
signal analysis. An attempt has also been made to provide a modern approach to
fractals, turbulence, and Newland’s harmonic wavelets. Some of these new topics
included in this second edition are not found in other texts and research reference
books.
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This extensively revised second edition preserves the basic content, style, and
format of the first edition published in 2002. As with the previous edition, this book
has been revised primarily as a comprehensive text for senior undergraduates and
beginning graduate students and a research reference for professionals in mathe-
matics, science, engineering, and other applied sciences. With basic prerequisites
of calculus and ordinary differential equations, the main goal of the edition is to
develop required analytical knowledge and skills on the part of the reader, rather
than focus on the importance of more abstract formulation with full mathematical
rigor. Indeed, our major emphasis is to provide an accessible working knowledge of
the analytical and computational methods with proofs required in pure and applied
mathematics, physics, and engineering.

Mathematics, science, and engineering students need to gain a sound knowl-
edge of mathematical and computational skills. This book provides these by the
systematic development of underlying theory with varied applications and by
provision of carefully selected fully worked-out examples combined with their
extensions and refinements through additions of a large set of a wide variety of
exercises at the end of each chapter. Numerous standard and challenging topics,
applications, worked-out examples, and exercises are included in this edition so that
they stimulate research interest among senior undergraduates and graduate students.
Another special feature of this book is to include sufficient modern topics which are
vital prerequisites for subsequent advanced courses and research in mathematical,
physical, and engineering sciences.

Readers familiar with the previous edition will notice many minor changes
and numerous major ones in this edition. In general, changes have been made to
modernize the contents and to improve the expositions and clarity of the previous
edition to include additional materials, proofs, and comments as well as many
examples of applications and exercises, and in some cases to entirely rewrite many
sections. There is plenty of material in the book for long course, seminars, or
workshops. Some of the materials need not be covered in a course work, seminars,
or workshops and can be left for the readers to study on their own. This edition
contains a collection of fully worked-out examples and challenging exercises with
detailed answers and hints to many selected exercises. We have also updated
the bibliography and corrected typographical errors. Major changes and additions
include the following:

1. In Chap. 1, a brief historical introduction has been completely revised and
expanded to include many new topics including the fractional Fourier trans-
form, the fractional wavelet transform, the discrete wavelet transform, and
the complex wavelet transform as well as the construction of wavelet bases
in various spaces other than R and several new extensions of the original
multiresolution analysis. In addition, the last two decades have seen tremendous
activity in the development of new mathematical and computational tools based
on multiscale ideas such as steerable wavelets, wedgelets, beamlets, bandlets,
ridgelets, curvelets, contourlets, surfacelets, shearlets, and platelets. This new
historical discussion of the subject has been included to help the reader see the
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directions in which the subject has developed and the new major contributions
to its recent developments.

2. In order to make the book self-contained, Chap.2 on Hilbert spaces and
orthonormal systems with applications, and Chap.3 on the theory of Fourier
transforms and their diverse applications have been presented in great detail.
Two new topics dealing with discrete Fourier transforms (DFT) and fast Fourier
transforms (FFT) have been added to Chap. 3.

3. The Gabor transform and the Wigner—Ville distribution with time—frequency
signal analysis are the major topics of Chaps.4 and 5. Included are the Zak
transform and its basic properties including the Balian—Low theorem and
applications for studying the orthogonality and completeness of Gabor frames
in the critical case. The relationship between the Wigner—Ville distribution
and ambiguity functions is investigated with radar signal analysis. Recent
generalizations of the Wigner—Ville distributions are briefly described.

4. Wavelet transforms and their basic properties are discussed in Chap. 6 in some
detail. The discrete wavelet transforms and orthogonal wavelets are included
in Chap. 6. Chapter 9 deals with Newland’s harmonic wavelets and their basic
properties. Special attention is given to properties of harmonic scaling functions
and Parseval’s formula for harmonic wavelets.

5. In Chap. 7, multiresolution analysis with examples and construction of wavelets
are described in some detail. This chapter includes basic properties of scaling
functions, bases of orthonormal wavelets, and construction of orthonormal
wavelets. Special attention is given to Daubechies’ wavelet and algorithms,
discrete wavelet transforms, and Mallat’s pyramid algorithms. In order to
modernize the content of the book, two new major extensions of the original
multiresolution analysis consisting of p-multiresolution analysis on the positive
half-line and nonuniform multiresolution have been included in this new
Chap. 8.

6. The final chapter deals with a brief discussion of the classical Fourier transform
treatment of turbulence based on the Navier—Stokes equations and the equation
of continuity. This is followed by a new treatment of certain aspects of
turbulence based on fractals, multifractals, and singularities in turbulence.
Included in this chapter is the modern approach to turbulence using the wavelet
transform analyses. Special attention, in some detail, is given to Farge’s and
Meneveau’s wavelet transform analyses of turbulent flows with the adaptive
wavelet method of computation and analysis of turbulence.

7. The book offers a detailed and clear explanation of every concept and method
that is introduced, accompanied by carefully selected worked-out examples
with special emphasis being given to those topics in which students experience
difficulty.

8. A wide variety of modern topics has been selected from areas of wavelet
analysis, signal analysis, ordinary and partial differential equations, turbulence,
multiresolution analysis and construction of wavelets, and Newland’s harmonic
wavelets.
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9. The book is organized with sufficient flexibility in teaching courses or directing
seminars and workshops to enable instructors to select topics and chapters
appropriate to courses of differing lengths, emphases, and levels of difficulty.

10. A wide spectrum of exercises has been carefully chosen and included at
the end of each chapter, so the reader may further develop both analytical
and computational skills in the theory and applications of wavelets, wavelet
transform analysis, and multiresolution analysis and may gain a deeper insight
into those subject.

11. The bibliography has been completely revised and updated. Many new research
papers and standard books have been added to the bibliography to stimulate
new interest in future advanced study and research. The index has also been
completely revised in order to include a wide variety of topics.

12. The book provides information that puts the reader at the forefront of advanced
study and current research.

With many improvements and numerous challenging topics, applications, and
exercises, we hope this edition will continue to be a useful textbook for students
as well as a research reference for professionals in mathematics, science, and
engineering.

It is our pleasure to express our grateful thanks to many friends, colleagues, and
students around the world who offered their suggestions and help at various stages
of the preparation of the book. In spite of the best efforts of everyone involved,
some typographical errors doubtless remain. Finally, we wish to express our thanks
to Mrs. Danielle Walker, Associate Editor, and the staff of Birkhduser-Springer for
their help and cooperation.

Edinburg, TX, USA Lokenath Debnath
Anantnag, Jammu and Kashmir, India Firdous Ahmad Shah



Preface to the First Edition

Overview

Historically, the concept of “ondelettes” or “wavelets” originated from the study
of time—frequency signal analysis, wave propagation, and sampling theory. One
of the main reasons for the discovery of wavelets and wavelet transforms is that
the Fourier transform analysis does not contain the local information of signals.
So the Fourier transform cannot be used for analyzing signals in a joint time
and frequency domain. In 1982, Jean Morlet, in collaboration with a group of
French engineers, first introduced the idea of wavelets as a family of functions
constructed by using translation and dilation of a single function, called the mother
wavelet, for the analysis of nonstationary signals. However, this new concept can
be viewed as the synthesis of various ideas originating from different disciplines
including mathematics (Calderén—Zygmund operators and Littlewood—Paley the-
ory), physics (coherent states in quantum mechanics and the renormalization group),
and engineering (quadratic mirror filters, sideband coding in signal processing, and
pyramidal algorithms in image processing).

Wavelet analysis is an exciting new method for solving difficult problems in
mathematics, physics, and engineering, with modern applications as diverse as wave
propagation, data compression, image processing, pattern recognition, computer
graphics, the detection of aircraft and submarines, and improvement in CAT scans
and other medical image technology. Wavelets allow complex information such as
music, speech, images, and patterns to be decomposed into elementary forms, called
the fundamental building blocks, at different positions and scales and subsequently
reconstructed with high precision. With ever greater demand for mathematical tools
to provide both theory and applications for science and engineering, the utility and
interest of wavelet analysis seem more clearly established than ever. Keeping these
things in mind, our main goal in this modest book has been to provide both a
systematic exposition of the basic ideas and results of wavelet transforms and some
applications in time—frequency signal analysis and turbulence.

ix
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Audience and Organization

This book is appropriate for a one-semester course in wavelet transforms with
applications. There are two basic prerequisites for this course: Fourier transforms
and Hilbert spaces and orthonormal systems. The book is also intended to serve as
a ready reference for the reader interested in advanced study and research in various
areas of mathematics, physics, and engineering to which wavelet analysis can be
applied with advantage. While teaching courses on integral transforms and wavelet
transforms, the author has had difficulty choosing textbooks to accompany lectures
on wavelet transforms at the senior undergraduate and/or graduate levels. Parts of
this book have also been used to accompany lectures on special topics in wavelet
transform analysis at US and Indian universities. I believe that wavelet transforms
can be best approached through a sound knowledge of Fourier transforms and some
elementary ideas of Hilbert spaces and orthonormal systems. In order to make
the book self-contained, Chaps. 2 and 3 deal with Hilbert spaces and orthonormal
systems and Fourier transforms with examples of applications. It is not essential for
the reader to know everything about these topics, but limited knowledge of at least
some of them would be sufficient. There is plenty of material in this book for a one-
semester graduate-level course for mathematics, science, and engineering students.
Many examples of applications to problems in time—frequency signal analysis and
turbulence are included.

The first chapter gives a brief historical introduction and basic ideas of Fourier
series and Fourier transforms, Gabor transforms, and the Wigner—Ville distribution
with time—frequency signal analysis, wavelet transforms, wavelet bases, and mul-
tiresolution analysis. Some applications of wavelet transforms are also mentioned.

Chapter 2 deals with Hilbert spaces and orthonormal systems. Special attention
is given to the theory of linear operators on Hilbert spaces, with some emphasis on
different kinds of operators and their basic properties. The fundamental ideas and
results are discussed, with special attention given to orthonormal systems, linear
functionals, and the Riesz representation theorem. The third chapter is devoted to the
theory of Fourier transforms and their applications to signal processing, differential
and integral equations, and mathematical statistics. Several important results includ-
ing the approximate identity theorem, convolution theorem, various summability
kernels, general Parseval relation, and Plancherel’ s theorem are discussed in
some detail. Included are Poisson’s summation formula, Gibbs’ phenomenon, the
Shannon sampling theorem, and Heisenberg’s uncertainty principle.

Chapter 4 is concerned with classification of signals, joint time—frequency
analysis of signals, and the Gabor transform and its basic properties, including the
inversion formula. Special attention is given to frames and frame operators,
the discrete Gabor transform, and the Gabor representation problem. Included are
the Zak transform, its basic properties, including the Balian—Low theorem, and
applications for studying the orthogonality and completeness of Gabor frames in
the critical case.
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The Wigner—Ville distribution and time—frequency signal analysis are the main
topics of Chap.5. The basic structures and properties of the Wigner—Ville distri-
bution and the ambiguity function are discussed in some detail. Special attention
is paid to fairly exact mathematical treatment with examples and applications in
the time—frequency signal analysis. The relationship between the Wigner—Ville
distribution and ambiguity functions is examined with radar signal analysis. Recent
generalizations of the Wigner—Ville distribution are briefly described.

Chapter 6 is devoted to wavelets and wavelet transforms with examples. The
basic ideas and properties of wavelet transforms are discussed with special emphasis
given to the use of different wavelets for resolution and synthesis of signals. This is
followed by the definition and properties of discrete wavelet transforms.

In Chap. 7, the idea of multiresolution analysis with examples and construction
of wavelets is described in some detail. This chapter includes properties of scaling
functions and orthonormal wavelet bases and construction of orthonormal wavelets.
Also included are treatments of Daubechies’ wavelet and algorithms, discrete
wavelet transforms, and Mallat’s pyramid algorithm.

Chapter 8 deals with Newland’s harmonic wavelets and their basic properties.
Special attention is given to properties of harmonic scaling functions, wavelet
expansions, and Parseval’s formula for harmonic wavelets.

The final chapter is devoted to a brief discussion of the Fourier transform
analysis and the wavelet transform analysis of turbulence based on the Navier—
Stokes equations and the equation of continuity. Included are fractals, multifractals,
and singularities in turbulence. This is followed by Farge’s and Meneveau’s wavelet
transform analyses of turbulence in some detail. Special attention is given to the
adaptive wavelet method for computation and analysis of turbulent flows.

Salient Features

The book contains a large number of worked examples, examples of applications,
and exercises which are either directly associated with applications or phrased in
terms of mathematical, physical, and engineering contexts in which theory arises.
It is hoped that they will serve as useful self-tests for understanding of the theory
and mastery of wavelets, wavelet transforms, and other related topics covered in
this book. A wide variety of examples, applications, and exercises should provide
something of interest for everyone. The exercises truly complement the text and
range from elementary to the challenging.

This book is designed as a new source for modern topics dealing with wavelets,
wavelet transforms, Gabor transforms, the Wigner—Ville distribution, multiresolu-
tion analysis, and harmonic wavelets and their applications for future development
of this important and useful subject. Its main features are listed below:
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1. A detailed and clear explanation of every concept and method which is intro-
duced, accompanied by carefully selected worked examples, with special empha-
sis being given to those topics in which students experience difficulty.

2. Special emphasis is given to the joint time—frequency signal analysis and the
ambiguity functions for the mathematical analysis of sonar and radar systems.

3. Sufficient flexibility in the book’s organization so as to enable instructors to
select chapters appropriate to courses of different lengths, emphases, and levels
of difficulty.

4. A wide spectrum of exercises has been carefully chosen and included at the end
of each chapter so that the reader may develop both manipulative skills in the
theory and applications of wavelet analysis and a deeper insight into this most
modern subject. Answers and hints for selected exercises are provided at the end
of the book for additional help to students.

5. The book provides important information that puts the reader at the forefront of
current research. An updated Bibliography is included to stimulate new interest
in future study and research.

Acknowledgments
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Chapter 1
Brief Historical Introduction

If you wish to foresee the future of mathematics our proper
course is to study the history and present condition of the
science.

Henri Poincaré

1.1 Fourier Series and Fourier Transforms

Historically, Joseph Fourier (1770-1830) first introduced the remarkable idea of
expansion of a function in terms of trigonometric series without giving any attention
to rigorous mathematical analysis. The integral formulas for the coefficients of the
Fourier expansion were already known to Leonardo Euler (1707-1783) and others.
In fact, Fourier developed his new idea for finding the solution of heat (or Fourier)
equation in terms of Fourier series so that the Fourier series can be used as a practical
tool for determining the Fourier series solution of partial differential equations under
prescribed boundary conditions. Thus, the Fourier series of a function f(x) defined
on the interval (—¢, £) is given by

[ = > c exp(in x), (1.1.1)

£ 12
n=—00

where the Fourier coefficients are

1 (¢ in x
cn = ﬁ/_( f(t) exp (— 7 ) (1.1.2)

In order to obtain a representation for a non-periodic function defined for all real
x, it seems desirable to take limit as £ — oo that leads to the formulation of the
famous Fourier integral theorem:

1 oo .
f(x) = 2—/ e””xdu)/ e fr)dt. (1.1.3)
—00 —00
© Springer Science+Business Media New York 2015 1
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2 1 Brief Historical Introduction

Mathematically, this is a continuous version of the completeness property of Fourier
series. Physically, this form (1.1.3) can be resolved into an infinite number of

harmonic components with continuously varying frequency (Zﬁ) and amplitude,

ZL /oo e I f(1)dt, (1.1.4)

whereas the ordinary Fourier series represents a resolution of a given function into
an infinite but discrete set of harmonic components. The most significant method
of solving partial differential equations in closed form, which arose from the work
of P.S. Laplace (1749-1827), was the Fourier integral. The idea is due to Fourier,
A.L. Cauchy (1789-1857), and S.D. Poisson (1781-1840). It seems impossible to
assign priority for this major discovery, because all three presented papers to the
Academy of Sciences of Paris simultaneously. They also replaced the Fourier series
representation of a solution of partial differential equations of mathematical physics
by an integral representation and thereby initiated the study of Fourier integrals. At
any rate, the Fourier series and Fourier integrals, and their applications were the
major topics of Fourier’s famous treatise entitled Théore Analytique de la Chaleur
(The Analytic Theory of Heat) published in 1822.

In spite of the success and impact of Fourier series solutions of partial differential
equations, one of the major efforts, from a mathematical point of view, was to study
the problem of convergence of Fourier series. In his seminal paper of 1829, P.G.L.
Dirichlet (1805-1859) proved a fundamental theorem of pointwise convergence of
Fourier series for a large class of functions. His work has served as the basis for
all subsequent developments of the theory of Fourier series which was profoundly
a difficult subject. G.FE.B. Riemann (1826-1866) studied under Dirichlet in Berlin
and acquired an interest in Fourier series. In 1854, he proved necessary and
sufficient conditions which would give convergence of a Fourier series of a function.
Once Riemann declared that Fourier was the first who understood the nature of
trigonometric series in an exact and complete manner. Later on, it was recognized
that the Fourier series of a continuous function may diverge on an arbitrary set
of measure zero. In 1926, A.N. Kolmogorov proved that there exists a Lebesgue
integrable function whose Fourier series diverges everywhere. The fundamental
question of convergence of Fourier series was resolved by L. Carleson in 1966 who
proved that the Fourier series of a continuous function converges almost everywhere.

In view of the abundant development and manifold applications of the Fourier
series and integrals, the fundamental problem of series expansion of an arbitrary
function in terms of a given set of functions has inspired a great deal of modern
mathematics.

The Fourier transform originated from the Fourier integral theorem that was
stated in the Fourier treatise entitled La Théore Analytique de la Chaleur, and
its deep significance has subsequently been recognized by mathematicians and
physicists. It is generally believed that the theory of Fourier series and Fourier
transforms is one of the most remarkable discoveries in mathematical sciences
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and has widespread applications in mathematics, physics, and engineering. Both
Fourier series and Fourier transforms are related in many important ways. Many
applications, including the analysis of stationary signals and real-time signal
processing, make an effective use of the Fourier transform in time and frequency
domains. The Fourier transform of a signal or function f(¢) is defined by

o0

FU0) = f(0) = / exp(—ion) f(1)dt = (f.e'""). (1.15)

—00

where f (w) is a function of frequency w and (f,e'®’) is the inner product in a
Hilbert space. Thus, the transform of a signal decomposes it into a sine wave of
different frequencies and phases, and it is often called the Fourier spectrum.

The remarkable success of the Fourier transform analysis is due to the fact that,
under certain conditions, the signal f(¢) can be reconstructed by the Fourier inverse
formula

o0

exp(iot) f(w) dw = <f,e_i°”>.

(1.1.6)

Thus, the Fourier transform theory has been very useful for analyzing harmonic
signals or signals for which there is no need for local information.

On the other hand, Fourier transform analysis has also been very useful in
many other areas, including quantum mechanics, wave motion, and turbulence.
In these areas, the Fourier transform f (k) of a function f(x) is defined in the
space and wavenumber domains, where x represents the space variable and k is
the wavenumber. One of the important features is that the trigonometric kernel
exp(—ikx) in the Fourier transform oscillates indefinitely, and hence, the localized
information contained in the signal f(x) in the x-space is widely distributed among
f (k) in the Fourier transform space. Although f (k) does not lose any information
of the signal f(x), it spreads out in the k-space. If there are computational or
observational errors involved in the signal f(x), it is almost impossible to study
its properties from those of f (k).

In spite of some remarkable success, Fourier transform analysis seems to be
inadequate for studying above physical problems for at least two reasons. First, the
Fourier transform of a signal does not contain any local information in the sense that
it does not reflect the change of wavenumber with space or of frequency with time.
Second, the Fourier transform method enables us to investigate problems either in
time (space) domain or the frequency (wavenumber) domain, but not simultaneously
in both domains. These are probably the major weaknesses of the Fourier transform
analysis. It is often necessary to define a single transform of time and frequency
(or space and wavenumber) that can be used to describe the energy density of a
signal simultaneously in both time and frequency domains. Such a signal transform
would give complete time and frequency (or space and wavenumber) information
of a signal.

f0 =77 fo)} = 5- / -
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1.2 Gabor Transforms

In quantum mechanics, the Heisenberg uncertainty principle states that the position
and momentum of a particle described by a wave function | € L*(R) cannot be
simultaneously and arbitrarily small. Motivated by this principle in 1946, Dennis
Gabor (1900-1979), a Hungarian-British physicist and engineer who won the 1971
Nobel Prize in physics for his great investigation and development of holography,
first recognized the great importance of localized time and frequency concentrations
in signal processing. He then introduced the windowed Fourier transform to measure
localized frequency components of sound waves. According to the Heisenberg
uncertainty principle, the energy spread of a signal and its Fourier transform cannot
be simultaneously and arbitrarily small. Gabor first identified a signal with a family
of waveforms which are well concentrated in time and in frequency. He called these
elementary waveforms as the time—frequency atoms that have a minimal spread in
a time—frequency plane.

In fact, Gabor formulated a fundamental method for decomposition of signals in
terms of elementary signals (or atomic waveforms). His pioneering approach has
now become one of the standard models for time—frequency signal analysis.

In order to incorporate both time and frequency localization properties in one
single transform function, Gabor first introduced the windowed Fourier transform
(or the Gabor transform) by using a Gaussian distribution function as a window
function. His major idea was to use a time-localization window function g, (¢t — b)
for extracting local information from the Fourier transform of a signal, where the
parameter a measures the width of the window, and the parameter b is used to
translate the window in order to cover the whole time domain. The idea is to use this
window function in order to localize the Fourier transform, then shift the window
to another position, and so on. This remarkable property of the Gabor transform
provides the local aspect of the Fourier transform with time resolution equal to the
size of the window. In fact, Gabor (1946) used g, ,(t) = g(t — t)exp(iwt) as
the window function by translating and modulating a function g, where g(t) =

3 exp ( — 27'?), which is the so-called canonical coherent states in quantum
physics. The Gabor transform (windowed Fourier transform) of f with respect to
g, denoted by f, (¢, w), is defined as

Gt w) = fult.0) = /_ g - dt = (figa).  (121)

where f, g € L?(R) with the inner product { f, g). In practical applications, f* and
g represent signals with finite energy. In quantum mechanics, fy(f, w) is referred
to as the canonical coherent state representation of f. The term “coherent states”
was first used by Glauber (1964) in quantum optics. The inversion formula for the
Gabor transform is given by
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. 11 [ [ ) .y
7 [fg(z,w)] = f(v) = Z—W/_OO /_Oo felt.0)g(x—1) e dt dw.
(1.2.2)

In terms of the sampling points defined by ¢ = m#, and ® = nwo, where m and
n are integers and wo and 7 are positive quantities, the discrete Gabor functions
are defined by g, ., (¢) = g(t — mty) exp(—inwot). These functions are called the
Weyl-Heisenberg coherent states, which arise from translations and modulations
of the Gabor window function. From a physical point of view, these coherent
states are of special interest. They have led to several important applications
in quantum mechanics. Subsequently, various other functions have been used as
window functions instead of the Gaussian function that was originally introduced
by Gabor. The discrete Gabor transform is defined by

f(m,n) = /_ f(t) g_m,n(t) dt = (fv gm,n>~ (1.2.3)

o0
The double series Z f(m,n) gmn(t) is called the Gabor series of f(t).
mn=—0o0
In many applications, it is more convenient, at least from a numerical point of
view, to deal with discrete transforms rather than continuous ones. The discrete
Gabor transform is defined by

Fmto, neo) = % /_ £ gma(0) dt = %(f, Zma). (12.4)

If the functions {g,, » (¢)} form an orthonormal basis or, more generally, if they form
a frame on L2(R), then f € L?(R) can be reconstructed by the formula

oo

JO =" (S gmn) &), (12.5)

mn=—0o0

where { & (t)} is the dual frame of {g,, ,(¢)}. The discrete Gabor transform deals
with a discrete set of coefficients which allows efficient numerical computation of
those coefficients. However, Malvar (1990a,b) recognized some serious algorithmic
difficulties in the Gabor wavelet analysis. He resolved these difficulties by introduc-
ing new wavelets which are now known as the Malvar wavelets and fall within the
general framework of the window Fourier analysis. From an algorithmic point of
view, the Malvar wavelets are much more effective and superior to Gabor wavelets
and other wavelets.
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1.3 The Wigner—Ville Distribution and Time-Frequency
Signal Analysis

In a remarkable paper, Wigner (1932), the 1963 Nobel Prize Winner in Physics, first
introduced a new function W, (x, p) of two independent variables from the wave
function { in the context of quantum mechanics defined by

Wy (x, p) = %/_00 i\ (x + %I) i (x - %t) exp (%) dt, (1.3.1)

where 1\ satisfies the one-dimensional Schrodinger equation, the variables x and p
represent the quantum-mechanical position and momentum respectively, and & =
2 h is the Planck constant. The Wigner function Wy, (x, p) has many remarkable
properties which include the space and momentum marginal integrals

1 o0 1 oo ~ 2
2—/_00 Wy (x, p)dp = |xp(x)’2, 2—/_00 Wy(x, p)dx = )‘JI(P)‘ .
(1.3.2a,b)

These integrals represent the usual position and momentum energy densities.
Moreover, the integral of the Wigner function over the whole (x, p) space is
N % )
i ar= [ fweofax.
—00

1 o0 o0 1 o0
—/ / W“x,p)dxdpz—/
2 —oo0 J—o0 2 —o0
(1.3.3)

This can be interpreted as the total energy over the whole position-momentum plane
(x, p).

As is well known, the Fourier transform analysis is a very effective tool for
studying stationary (time-independent) signals (or waveforms). However, signals
(or waveforms) are, in general, nonstationary. Such signals or waveforms cannot
be analyzed completely by the Fourier analysis. Therefore, a complete analysis
of non-stationary signals (or waveforms) requires both time—frequency (or space-
wavenumber) representations of signals. In 1948, Ville proposed the Wigner
distribution of a function or signal f(¢) in the form

Wit o) = /_Z f (Z + %) f_(t — %) e v, (1.3.4)

for analysis of the time—frequency structures of nonstationary signals, where yaea)
is the complex conjugate of f(z). Subsequently, this time—frequency representa-
tion (1.3.4) of a signal f is known as the WignerVille distribution (WVD) which
is one of the fundamental methods that have been developed over the years for the
time—frequency signal analysis. An extensive study of this distribution was made
by Claasen and Mecklenbriuker (1980) in the context of the time—frequency signal
analysis. Besides other linear time—frequency representations, such as the short-time
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Fourier transform or the Gabor transform, and the WVD plays a central role in the
field of bilinear/quadratic time—frequency representations. In view of its remarkable
mathematical structures and properties, the WVD is now well recognized as an
effective method for the time—frequency (or space wavenumber) analysis of non-
stationary signals (or waveforms), and nonstationary random processes. In recent
years, this distribution has served as a useful analysis tool in many fields as diverse
as quantum mechanics, optics, acoustics, communications, biomedical engineering,
signal processing, and image processing. It has also been used as a method for
analyzing seismic data, and the phase distortion involved in a wide variety of
audio engineering problems. In addition, it has been suggested as a method for
investigating many important topics including instantaneous frequency estimation,
spectral analysis of non-stationary random signals, detection and classification
of signals, algorithms for computer implementation, speech signals, and pattern
recognition.

In sonar and radar systems, a real signal is transmitted and its echo is processed
in order to find out the position and velocity of a target. In many situations, the
received signal is different from the original one only by a time translation and
the Doppler frequency shift. In the context of the mathematical analysis of radar
information, Woodward (1953) reformulated the theory of the WVD. He introduced
anew function A 7 (¢, w) of two independent variables ¢, o from a radar signal f in

the form
Ar(t,w) = / f (‘E + %) f (‘C — %) e v (1.3.5)

This function is now known as the Woodward ambiguity function and plays a
central role in radar signal analysis and radar design. The ambiguity function has
been widely used for describing the correlation between a radar signal and its
Doppler-shifted and time-translated version. It was also shown that the ambiguity
function exhibits the measurement between ambiguity and target resolution, and
for this reason it is also known as the radar ambiguity function. In analogy with the
Heisenberg uncertainty principle in quantum mechanics, Woodward also formulated
a radar uncertainty principle, which says that the range and velocity (range rate)
cannot be measured exactly and simultaneously. With the activity surrounding the
radar uncertainty principle, the representation theory of the Heisenberg group and
ambiguity functions as special functions on the Heisenberg group led to a series of
many important results. Subsequently, considerable attention has been given to the
study of radar ambiguity functions in harmonic analysis and group theory by several
authors, including Wilcox (1960), Schempp (1984), and Auslander and Tolimieri
(1985).

From theoretical and application points of view, the WVD plays a central role and
has several important and remarkable structures and properties. First, it provides
a high-resolution representation in time and in frequency for some nonstationary
signals. Second, it has the special property of satisfying the time and frequency
marginals in terms of the instantaneous power in time and energy spectrum in
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frequency. Third, the first conditional moment of frequency at a given time is the
derivative of the phase of the signal at that time. The derivative of the phase divided
by 2 gives the instantaneous frequency which is uniquely related to the signal.
Moreover, the second conditional moment of frequency of a signal does not have any
physical interpretation. In spite of these remarkable features, its energy distribution
is not nonnegative and it often possesses severe cross-terms, or interference terms
between different time—frequency regions, leading to undesirable properties.

In order to overcome some of the inherent weaknesses of the WVD, there has
been considerable recent interest in more general time—frequency distributions as a
mathematical method for time—frequency signal analysis. Often, the WVD has been
modified by smoothing in one or two dimensions, or by other signal processing. In
1966, Cohen introduced a general class of bilinear shift-invariant, quadratic time—
frequency distributions in the form

Cr(t,v) =/_Z/_Z/_Zexp[—2 i(vt+ st —rs)]

xg(s, 1) f (r + %) f (r — %) e "“"dudrds, (1.3.6)

where the given kernel g(s,t) generates different distributions which include
windowed Wigner—Ville, Choi—Williams, spectrogram, Rihaczek, Born—-Jordan, and
Page distributions. In modern time—frequency signal analysis, several alternative
forms of the Cohen distribution seem to be convenient and useful. A function u is
introduced in terms of the given kernel g (s, t) by

u(r,t) = /OO g(s,v)exp(2 isr)ds (1.3.7)

so that the Cohen distribution takes the general form

e = [ JLwemtr 43 7= Pewcn wmavar

The general Cohen distribution can also be written in terms of an ambiguity
function as

Cr(t,v) = /00 /00 A(s,t)exp[—2 i(st +vi)]dsdr, (1.3.9)

where A(s, T) is the general ambiguity function of f and g defined by

A(s,1) = g(s,1) /_Z f (r + %) f(r — ;) exp(2 irs)dr. (1.3.10)

As a natural generalization of the WVD, another family of bilinear time—
frequency representations was introduced by Rihaczek in 1968. This is called the
generalized Wigner-Ville (GWYV) distribution or more appropriately, the Wigner—
Ville—Rihaczek (WVR) distribution which is defined for two signals f and g by
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.O;lg(f,u)) = /_: f (l + (% —OL) ‘c) g (l — (% _|_0L) ‘c) ey,
(1.3.11)

where a is a real constant parameter. In particular, when o = 0, (1.3.11) reduces to
the WVD, and when o = 27!, (1.3.11) represents the Wigner—Rihaczek distribution
in the form

Ré;g(t,w) = f(t)/_ gt —ve Nt = f(t) e g(w). (1.3.12)

The main feature of these distributions is their time- and frequency-shift invari-
ance. However, for some problems where the scaling of signals is important,
it is necessary to consider distributions which are invariant to translations and
compressions of time, that is, ¢ — at + b (affine transformations). Bertrand
and Bertrand (1992) obtained another general class of distributions which are
called affine time—frequency distributions because they are invariant to affine
transformations. Furthermore, extended forms of the various affine distributions are
also introduced to obtain representations of complex signals on the whole time—
frequency plane. The use of the real signal in these forms shows the effect of
producing symmetry of the result obtained with the analytic signal. In any case, the
construction based on the affine group, which is basic in signal analysis, ensures that
no spurious interference will ever occur between positive and negative frequencies.
Special attention has also been given to the computational aspects of broadband
functionals containing stretched forms of the signal such as affine distributions,
wavelet coefficients, and broadband ambiguity functions. Different methods based
on group theory have also been developed to derive explicit representations of joint
time—frequency distributions adapted to the analysis of wideband signals.

Although signal analysis originated more than 50 years ago, there has been
major development of the time—frequency distributions approach in the basic idea
of the method to develop a joint function of time and frequency, known as a
time—frequency distribution, that can describe the energy density of a signal simulta-
neously in both time and frequency domains. In principle, the joint time—frequency
distributions characterize phenomena in the two-dimensional time—frequency plane.
Basically, there are two kinds of time—frequency representations. One is the
quadratic method describing the time—frequency distributions, and the other is the
linear approach including the Gabor transform and the wavelet transform. Thus,
the field of time—frequency analysis has evolved into a widely recognized applied
discipline of signal processing over the last two decades. Based on studies of its
mathematical structures and properties by many authors including De Bruijn (1967,
1973), Claasen and Mecklenbrduker (1980), Boashash (1992), Mecklenbrauker
and Hlawatsch (1997), the WVD and its various generalizations with applications
were brought to the attention of larger mathematical, scientific, and engineering
communities. By any assessment, the WVD has served as the fundamental basis for
all subsequent classical and modern developments of time—frequency signal analysis
and signal processing.
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1.4 Wavelet Transforms

Historically, the concept of “ondelettes” or “wavelets” started to appear more
frequently only in the early 1980s. This new concept can be viewed as a synthe-
sis of various ideas originating from different disciplines including mathematics
(Calderén—Zygmund operators and Littlewood—Paley theory), physics (the coherent
states formalism in quantum mechanics and the renormalization group), and
engineering (quadratic mirror filters (QMF), sideband coding in signal processing,
and pyramidal algorithms in image processing). In 1982, Jean Morlet, a French
geophysical engineer, discovered the idea of the wavelet transform, providing a new
mathematical tool for seismic wave analysis. In Morlet’s analysis, signals consist
of different features in time and frequency, but their high-frequency components
would have a shorter time duration than their low-frequency components. In order to
achieve good time resolution for the high-frequency transients and good frequency
resolution for the low-frequency components, Morlet et al. (1982a,b) first introduced
the idea of wavelets as a family of functions constructed from translations and
dilations of a single function called the “mother wavelet” (). They are defined by

" (r)=#¢(
a,b \/m

where a is called a scaling parameter which measures the degree of compression
or scale, and b a translation parameter which determines the time location of the
wavelet. If |a| < 1, the wavelet (1.4.1) is the compressed version (smaller support in
time-domain) of the mother wavelet and corresponds mainly to higher frequencies.
On the other hand, when |a| > 1, y,;(¢) has a larger time-width than {(¢) and
corresponds to lower frequencies. Thus, wavelets have time-widths adapted to their
frequencies. This is the main reason for the success of the Morlet wavelets in signal
processing and time—frequency signal analysis. It may be noted that the resolution
of wavelets at different scales varies in the time and frequency domains as governed
by the Heisenberg uncertainty principle. At large scale, the solution is coarse in
the time domain and fine in the frequency domain. As the scale a decreases, the
resolution in the time domain becomes finer while that in the frequency domain
becomes coarser.

Morlet first developed a new time—frequency signal analysis using what he called
“wavelets of constant shape” in order to contrast them with the analyzing functions
in the short-time Fourier transform which do not have a constant shape. It was Alex
Grossmann, a French theoretical physicist, who quickly recognized the importance
of the Morlet wavelet transforms which are somewhat similar to the formalism for
coherent states in quantum mechanics, and developed an exact inversion formula for
this wavelet transform. Unlike the Weyl-Heisenberg coherent states, these coherent
states arise from translations and dilations of a single function. They are often called
affine coherent states because they are associated with an affine group (or “ax + b”

t—>b
a

), a,beR, a#0, (1.4.1)
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group). From a group-theoretic point of view, the wavelets {, ,(x) are in fact the
result of the action of the operators U(a, b) on the function s so that

[U(a, b)y](x) = \/%xv(x;b). (14.2)

These operators are all unitary on the Hilbert space L?(R) and constitute a
representation of the “ax + b” group:

Ua,b) U(c,d) = U(ac,b + ad). (1.4.3)

This group representation is irreducible, that is, for any nonzero f € L*(R), there
exists no nontrivial g orthogonal to all the U(a, b) f. In other words, U(a, b) f
span the entire space. The coherent states for the affine (ax + b)-group, which
are now known as wavelets, were first formulated by Aslaksen and Klauder (1968,
1969) in the context of more general representations of groups. The success of
Morlet’s numerical algorithms prompted Grossmann to make a more extensive study
of the Morlet wavelet transform which led to the recognition that wavelets \, 5 (¢)
correspond to a square integrable representation of the affine group. Grossmann was
concerned with the wavelet transform of f € L?(R) defined by

o —b
Wy [f1(a.b) = (fVas) = ﬁ/_ f(t)\lf([T)dt, (1.4.4)

where s, 5 (¢) plays the same role as the kernel exp(i w?) in the Fourier transform.
Like the Fourier transformation, the continuous wavelet transformation % is linear.
However, unlike the Fourier transform, the continuous wavelet transform is not
a single transform, but any transform obtained in this way. The inverse wavelet
transform can be defined so that f can be reconstructed by means of the formula

[0 =¢;' / / Wy [f1(a,b)Vap(t)(a*da) db, (1.4.5)
—00 J—00
provided Cy, satisfies the so-called admissibility condition
. 2
w [(w)|
Cy=2 / do < oo, (1.4.6)
—oo o]

where lij(())) is the Fourier transform of the mother wavelet {r(¢). Grossmann’s
ingenious work also revealed that certain algorithms that decompose a signal on the
whole family of scales, can be utilized as an efficient tool for multiscale analysis. In
practical applications involving fast numerical algorithms, the continuous wavelet
can be computed at discrete grid points. To do this, a general wavelet {s can be
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defined by replacing a with afj (ap # 0, 1), b with nboag (by # 0), where m and n
are integers, and making

W (1) = ag " (ag™t — nby). (1.4.7)

The discrete wavelet transform (DWT) of f is defined as the doubly indexed
sequence

Fonm = # 1Y) =(fpa) = [ FOFpa0dr. 148)
where ,,, , (¢) is given by (1.4.7). The double series
S Fmn) Y. (1.4.9)

is called the wavelet series of f, and the functions {q;m,,, (t)} are called the discrete
wavelets, or simply wavelets. However, there is no guarantee that the original
function f can be reconstructed from its discrete wavelet coefficients in general.
The reconstruction of f is still possible if the discrete lattice has a very fine mesh.
For very coarse meshes, the coefficients may not contain sufficient information for
determination of f from these coefficients. However, for certain values of the lattice
parameter (m, n), a numerically stable reconstruction formula can be obtained. This
leads to the concept of a “frame” rather than bases. The notion of the frame was
introduced by Duffin and Schaeffer (1952) for the study of a class of nonharmonic
Fourier series to which Paley and Wiener made fundamental contributions. They
discussed related problems of nonuniform sampling for band-limited functions.

In general, the function f belonging to the Hilbert space, L?(R) (see Debnath
and Mikusinski 1999), can be completely determined by its DWT (wavelet coef-
ficients) if the wavelets form a complete system in L?(R). In other words, if the
wavelets form an orthonormal basis or a frame of L2(R), then they are complete.

And f can be reconstructed from its DWT { f (m,n) = (f, l!jm,,,)} by means of the
formula

oo

SO =" (V) U (). (1.4.10)

mn=—0o0

provided the wavelets form an orthonormal basis.
On the other hand, the function f can be determined by the formula

o

S =Y (£ Uma) Umn (), (14.11)

mn=—0o0

provided the wavelets form a frame and {lIfmn (x)} is the dual frame.
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For some very special choices of { and ag, by, the {s,,, ,, constitute an orthonormal
basis for Lz(R). In fact, if a9 = 2 and by = 1, then there exists a function | with
good time—frequency localization properties such that

Y (X) = 2724 (27" x —n) (1.4.12)

form an orthonormal basis for L2?(R). These {q;m,,,(x)} are known as the
Littlewood—Paley wavelets. This gives the following representation of f

o

F =D (f ) Uma(x), (14.13)

mn=—0o0

which has a good space-frequency localization. The classic example of a wavelet {r
for which the s,,, , defined by (1.4.12) constitute an orthonormal basis for L?(R) is
the Haar wavelet

1
1, 0<x<-—

) =19 %§x<1 (1.4.14)

0, otherwise

Historically, the first orthonormal wavelet basis is the Haar basis, which was
discovered long before the wavelet was introduced. It may be observed that the
Haar wavelet {r does not have good time—frequency localization and that its Fourier
transform \.Alf(k) decays like |k|™' as k — oo. The joint venture of Morlet and
Grossmann led to a detailed mathematical study of the wavelet transforms and
their applications. It became clear from their work that, analogous to the Fourier
expansion of functions, the wavelet transform analysis provides a new method for
decomposing a function (or a signal).

In 1985, Yves Meyer, a French pure mathematician, recognized the deep con-
nection between the Calderén formula in harmonic analysis and the new algorithm
discovered by Grossmann and Morlet (1984). He also constructed an orthonormal
basis, for the Hilbert space L?(R), of wavelets 15, , defined by (1.4.12) based on
the mother wavelet ¢ with compact support and C°° Fourier transform 11; This
basis turned out to be an unconditional basis for all L? spaces (1 < p < 00),
Sobolev spaces, and other spaces. Furthermore, in a Hilbert space, a normalized
basis turns out to be an unconditional basis if and only if it is also a frame. Such
a basis is called the Riesz basis. However, if {{,} is an orthonormal basis, then

en = (1+ nz)_% (nr; + ) is an example of a basis of normalized vectors
that is not a Riesz basis. Using the knowledge of the Calderén—Zygmund operators
and the Littlewood—Paley theory, in 1985-1986 Meyer (1990) successfully gave a
mathematical foundation of the wavelet theory. The Meyer basis has become a more
powerful tool than the Haar basis.
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Even though the mother wavelet in the Meyer basis decays faster than any
inverse polynomials, the constants involved are very large so that it is not very
well localized. Lemarié and Meyer (1986) extended the Meyer orthonormal basis
to more than one dimension. One of the new orthonormal wavelet bases for L*(R)
with localization properties in both time and frequency was first constructed by
Stromberg in 1982. His wavelets are in C”, where n is arbitrary but finite and decays
exponentially. He also proved that the orthonormal wavelet basis defined by (1.4.12)
is, in fact, an unconditional basis for the Hardy space .7 '(R) which consists of real-
valued functions u(x) if and only if u(x) and its Hilbert transform i(k) belong to
L'(R). In fact, 5#' (R) is the real version of the holomorphic Hardy space .7#' (R)
whose elements are u(x) + iv(x), where u(x) and v(x) are real-valued functions. A
function f(z), where z = x + iy, belongs to the Hardy space H”(R),0 < p < oo,
if it is holomorphic in the upper half (y > 0) of the complex plane and if

|71, = sup [/ |f(z)|”dx}p < 0. (14.15)
y>0 LJ—c0

If this condition is satisfied, the upper bound, taken over y > 0, is also the
limit as y — 0. Moreover, f(z) converges to a function f(x) as y — 04, where
convergence is in the sense of the L”-norm. The space H? (R) can thus be identified
with a closed subspace of L”(R). The Hardy space H?(R) plays a major role in
signal processing. The real part of an analytic signal F(z) = f(¢) +ig(t), t € R,
represents a real signal f(¢) with finite energy given by

=] o] (1416)

If F has finite energy, then F € H*(R).

The fractional Fourier transform (FRFT) is a generalization of the ordinary
Fourier transform with an order parameter o and is identical to the ordinary Fourier
transform when this order o is equal to ¢ = /2. However, this transform has
one major drawback due to using global kernel i.e., it only provides such FRFT
spectral content with no indication about the time localization of the FRFT spectral
components. Therefore, the analysis of non-stationary signals whose FRFT spectral
characteristics change with time requires joint signal representations in both time
and FRFT domains, rather than just a FRFT domain representation. The first
modification to the FRFT to allow analysis of aforementioned non-stationary signals
came as the short-time FRFT (STFRFT). But the short coming of this transform is
that its time and fractional-domain resolutions cannot simultaneously be arbitrarily
high. As a generalization of the wavelet transform, Mendlovic et al. (1997) first
introduced the fractional wavelet transform (FRWT) as a way to deal with optical
signals. The FRWT with an order a of any function f(¢) € L*(R) is defined as
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Note that when o = /2, the FRWT reduces to the classical wavelet transform. The
idea behind this transform is deriving the fractional spectrum of the signal by using
the FRFT and performing the wavelet transform of the fractional spectrum. Besides
being a generalization of the wavelet transform, the FRWT can be interpreted as a
rotation of the time—frequency plane and has been proved to relate to other time-
varying signal analysis tools, which make it as a unified time—frequency transform.
In recent years, this transform has been paid a considerable amount of attention,
resulting in many applications in the areas of optics, quantum mechanics, pattern
recognition and signal processing.

The inverse FRWT can be defined so that f can be reconstructed by the formula

dadb
a2

1 o
10=5"¢ [ #1018 s (1.4.19)

provided Cy satisfies the admissibility condition (1.4.6).

A comprehensive overview of FRFT and FRWTs can also be found in Almeida
(1994), Mendlovic et al. (1997), Ozaktas et al. (2000) and Sejdié et al. (2011).

Although the DWT has established an impressive reputation as a tool for
mathematical analysis and signal processing, it suffers from three major disadvan-
tages: shift sensitivity, poor directionality, and lack of phase information. These
disadvantages severely restrict its scope for certain signal and image processing
applications, for example, edge detection, image registration/segmentation, motion
estimation. Significant progress in the development of directional wavelets has
been made in recent years. There are certain applications for which the optimal
representation can be achieved through more redundant extensions of standard
DWT such as wavelet packet transform (WPT) and stationary wavelet transform
(SWT). All these forms of DWTs result in real valued transform coefficients with
two or more limitations. There is an alternate way of reducing these limitations
with a limited redundant representation in complex domain. In fact, the initial
motivation behind the earlier development of complex-valued wavelet transform
(CWT) was the third limitation that is the “absence of phase information”. Complex
wavelets transforms use complex-valued filtering (analytic filter) that decomposes
the real/complex signals into real and imaginary parts in transform domain (see
Lawton 1993). The real and imaginary coefficients are used to compute amplitude
and phase information, just the type of information needed to accurately describe
the energy localization of wavelet functions. As such complex wavelet transform is
one way to improve directional selectivity and only requires O(N) computational
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cost. However, the complex wavelet transform has not been widely used in the past,
since it is difficult to design complex wavelets with perfect reconstruction properties
and good filter characteristics (see Fernandes 2002; Gao et al. 2002; Neumann and
Steidl 2005).

Another popular technique is the dual-tree complex wavelet transform (DTCWT)
proposed by Kingsbury (1999, 2001), which added perfect reconstruction to
the other attractive properties of complex wavelets, including approximate shift
invariance, six directional selectivities, limited redundancy and efficient O(N)
computation. On the other hand, Selesnick (2001) proposed dual-density DTCWT
(DDTCWT), an alternative filter design methods for DTCWT almost equivalent
to Kingsbury’s transform such that in the limit, the scaling and wavelet functions
form Hilbert transform pairs. This type of transform is designed with simple
methods to obtain filter coefficients. Although the dual-tree DWT based complex
wavelet transform reduce all three disadvantages of standard DWT, the redundancy
(though limited) of the transform is a major drawback for applications like image
compression and image restoration. To overcome this disadvantage, Spaendonck
et al. (2000) proposed a non-redundant complex wavelet transform (NRCWT)
based on projections with no-redundancy for both real and complex-valued signals.

The last two decades have seen tremendous activity in the development of new
mathematical and computational tools based on multiscale ideas such as steer-
able wavelets, wedgelets, beamlets, bandlets, ridgelets, curvelets, contourlets, sur-
facelets, shearlets, and platelets. These geometric wavelets or directional wavelets
are uniformly called X-lets. The main advantage of these new wavelets lies in
the fact that they possess all the advantages of classical wavelets, that is space
localization and scalability, but additionally the geometrical wavelet transforms
have strong directional character. They allow to catch changes of a signal in different
directions. So we have one more parameter next to space and scalability, that is
direction.

The steerable wavelets can be seen as early directional wavelets introduced by
Freeman and Adelson (1991). The steerable wavelets were built based on directional
derivative operators (the second derivative of a Gaussian). They provide translation
invariant and rotation invariant representations of the position and the orientation
of considered image structures. Since, wavelets have been very successful in
applications such as denoising and compact approximations of images containing
zero dimensional or point singularities. Wavelets do not isolate the smoothness
along edges that occurs in images, and they are thus more appropriate for the
reconstruction of sharp point singularities than lines or edges. So there was a need
to create the theory, which could remedy the problem of representation of edges
present in images in efficient way. Such theory was first described by Donoho
(2000). He developed an overcomplete collection of atoms which are dyadically
organized indicator functions with a variety of locations, scales, and orientations,
and named them wedgelets. They were used to represent the class of smooth images
with discontinuities along smooth curves in a very efficient and sparse way.
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There were several other research groups working with the same goal, namely
a better analysis and an optimal representation of directional features of signals in
higher dimensions. To overcome the weakness of wavelets in higher dimensions,
Candés and Donoho (1999a,b) pioneered a new system of representations named
ridgelets that deal effectively with line singularities in two dimensions. Ridgelets
are different from wavelets in a sense that ridgelets exhibit very high directional
sensitivity and are highly anisotropic.

Fora,b € R,a > 0 and each © € [0,2 ), the bivariate ridgelet ;40 : R >R
is defined as

1

—= ¥
Ja
where Vs is the smooth function with sufficient decay and satisfying the admissibility
condition (1.4.6). Therefore, to a certain degree, the ridgelet is a novel version
of wavelet function with additional orientation information. Given an integrable
bivariate function f(x, y), the continuous ridgelet transform (CRT) of f(x,y) is
defined as

Yapo(x) = (1.4.20)

a

(xcos@ +ysin9—b)

R(a,b,0) = /\Jfa,b,ef(X, y)dxdy. (1.4.21)

The ridgelet transform is also called as anisotropic geometric wavelet transform.
The ridgelet transform can be represented in term of the Radon transform, which is
defined as

RA(2,9) =/f(x,y)S(xcos@+ysin9—t)dxdy, teR,0€]0, )
(1.4.22)

where § is the Dirac distribution. So the ridgelet transform is precisely the appli-
cation of one-dimensional wavelet transform to the slices of the Radon transform
where the angular variable 0 is constant and ¢ is varying. Therefore, the basic idea
of the ridgelet transform is to map a line singularity into a point singularity using
the Radon transform. Then, the wavelet transform can be used to effectively handle
the point singularity in the Radon domain. Thus, the ridgelet transform allows the
representation of edges and other singularities along lines in a more efficient way,
in terms of compactness of the representation, than the traditional transformations
for a given accuracy of reconstruction.

Unfortunately, the ridgelet transform is only applicable to objects with global
straight line singularities, which are rarely observed in real applications. For
example, in image processing, edges are typically curved rather than straight
and ridgelets alone cannot yield efficient representations. To overcome inherent
limitations of this transform, Candés and Donoho (2003a) developed a new
multiscale transform called curvelet transform, which was designed to represent
edges and other singularities along curves much more efficiently than traditional
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transforms. The basic idea is here to partitioning the curves into collection of
ridge fragments and then handle each fragment using the ridgelet transform. The
curvelets are defined not only at various scales and locations but also at various
orientations. Also, their supports are highly anisotropic and become increasingly
elongated at finer scales. Due to those two key features, namely directionality and
anisotropy, curvelets are essentially as good as an adaptive representation system
from the point of view of the ability to sparsely approximate images with edges.
Later on, a considerably simpler second generation curvelet transform based on
a frequency partition technique was proposed by the same authors (Candés and
Donoho 2003a,b). The second generation curvelet transform has been shown to be a
very efficient tool for many different applications in image processing, seismic data
exploration, fluid mechanics, and solving partial differential equations. Recently, a
variant of the second generation curvelet transform was proposed by Demanet and
Ying (2007a,b) to handle image boundaries by mirror extension.

Do and Vetterli (2003, 2005) proposed a contourlet transform, which provides a
flexible multiresolution, local and directional expansion for images. They designed
it to satisfy the anisotropy scaling relation for curves, and thus offers a fast and struc-
tured curvelet-like decomposition sampled signals. Therefore, the key difference
between contourlets and curvelets is that the contourlet transform is directly defined
on digital friendly discrete rectangular grids. Unfortunately, contourlet functions
have less clear directional features than curvelets leading to artifacts in denoising
and compression. Recently, Lu and Do (2007) have introduced surfacelets as the
3D extensions of the 2D contourlets which are obtained by a higher dimensional
directional filter bank and a multiscale pyramid. They can be used efficiently to
capture and represent surface-like singularities in multidimensional volumetric data
involving biomedical imaging, seismic imaging, video processing and computer
vision.

The shearlets, introduced by Kutyniok and their collaborators (2009), provide an
alternative approach to the curvelets and exhibit some very distinctive features. One
of the distinctive features of shearlets is the use of shearing to control directional
selectivity, in contrast to rotation used by curvelets. Secondly, unlike the curvelets,
the shearlets form an affine system. That is, they are generated by dilating and
translating one single generating function where the dilation matrix is the product
of a parabolic scaling matrix and a shear matrix. In particular, the shearlets can
be regarded as coherent states arising from a unitary representation of a particular
locally compact group, called the shearlet group. This allows one to employ the
theory of uncertainty principles to study the accuracy of the shearlet parameters (see
Dahlke et al. 2008). Another consequence of the group structure of the shearlets
is that they are associated with a generalized multiresolution analysis, and this is
particularly useful in both their theoretical and numerical applications (see Kutyniok
and Labate 2009; Guo et al. 2006).

For more information about the history of wavelets, the reader is referred to
Debnath (1998c¢).
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1.5 Wavelet Bases and Multiresolution Analysis

In the late 1986, Meyer and Mallat recognized that construction of different wavelet
bases can be realized by the so-called multiresolution analysis. This is essentially
a framework in which functions f € L?*(R?) be treated as a limit of successive
approximations f = mli_)moo P, f, where the different P, f for m € Z correspond

to smoothed versions of f with a smoothing-out action radius of the order 2.
The wavelet coefficients ( f, U, ,) for a fixed m then correspond to the difference
between the two successive approximations P,_; f and P, f. In the late 1980s,
efforts for construction of orthonormal wavelet bases continued rapidly. Battle
(1987) and Lemarié (1988, 1989) independently constructed spline orthonormal
wavelet bases with exponential decay properties. At the same time, Tchamitchan
(1987) gave a first example of biorthogonal wavelet bases. These different orthonor-
mal wavelet bases have been found to be very useful in applications to signal
processing, image processing, computer vision, and quantum field theory.

The construction of a “painless” nonorthogonal wavelet expansion by
Daubechies et al. (1986) can be considered one of the major achievements in
wavelet analysis. During 1985-1986, further work of Meyer and Lemarié on the first
construction of a smooth orthonormal wavelet basis on R and then on R” marked
the beginning of their famous contributions to the wavelet theory. Many experts
realized the importance of the existence of an orthonormal basis with good time—
frequency localization. Particularly, Stéphane Mallat recognized that some QMF
play an important role in the construction of orthogonal wavelet bases generalizing
the classic Haar system. Lemarié and Meyer (1986) and Mallat (1988, 1989a,b)
discovered that orthonormal wavelet bases of compactly supported wavelets
could be constructed systematically from a general formalism. Their collaboration
culminated with a major discovery by Mallat (1989a,b) of a new formalism, the so-
called multiresolution analysis. The concept of multiresolution analysis provided
a major role in Mallat’s algorithm for the decomposition and reconstruction of
an image in his work. The fundamental idea of multiresolution analysis is to
represent a function as a limit of successive approximations, each of which is
a “smoother” version of the original function. The successive approximations
correspond to different resolutions, which leads to the name multiresolution analysis
as a formal approach to constructing orthogonal wavelet bases using a definite
set of rules and procedures. It also provides the existence of so-called scaling
functions and scaling filters which are then used for construction of wavelets and
fast numerical algorithms. In applications, it is an effective mathematical framework
for hierarchical decomposition of a signal or an image into components of different
scales represented by a sequence of function spaces on R. Indeed, Mallat developed
a very effective numerical algorithm for multiresolution analysis using wavelets.
It was also Mallat who constructed the wavelet decomposition and reconstruction
algorithms using the multiresolution analysis. This brilliant work of Mallat has been
the major source of many recent new developments in wavelet theory. According to
Daubechies (1992), “... The history of the formulation of multiresolution analysis
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is a beautiful example of applications stimulating theoretical development.” While
reviewing two books on wavelets in 1993, Meyer made the following statement
on wavelets: “Wavelets are without doubt an exciting and intuitive concept. The
concept brings with it a new way of thinking, which is absolutely essential and was
entirely missing in previously existing algorithms.”

Each multiresolution analysis determines a scaling function ¢, that is, a resolu-
tion of the so-called dilation equation in the form

o0

d(x) = Z cand(2x —n), (1.5.1)

n=—0oo

where ¢ € L%(R). The coefficients {c,} are square-summable real or complex
numbers. This scaling function then determines a wavelet

V) = Y (1)en d2x —n), (1.5.2)

n=—oo

such that the collection {Umn},, ez With Uma(x) = Zm/zllf(Z’”x — n) forms
an orthonormal basis for L?(R) after suitable normalization of {s. This wavelet
orthonormal basis is so formed by dilating and translating a single L*(R) function,
and therefore, the properties of the basis elements are completely determined by
the corresponding properties of wavelet. Thus, the dilation equations play a central
role in the construction and resulting properties of multiresolution analysis and
wavelet orthonormal basis for L2(R). This connection is the major reason for the
recent rapid development of the study of such equations and their solutions. There
are also significant applications of dilation equations to other areas, most notably
interpolating subdivision schemes.

Wavelet orthonormal bases are important for many reasons including the major
reason that it is possible to find {s which have good localization in both time
and frequency. It is found that all wavelets arising from finite-coefficient dilation
equations are smooth and compactly supported. Such wavelets are necessarily well
localized in the time domain and have good decay in their Fourier transforms. Also,
it is possible to characterize the exact degree of smoothness of these wavelets
which means that we can determine the total number of continuous derivatives
and possible Holder exponent of continuity of the last derivative. Daubechies and
Lagarias (1992) proved that compact support for wavelets is incompatible with
infinite differentiability.

In order to ensure compact support for the wavelet {r, we assume that the number
of nonzero coefficients ¢, in (1.5.1) is finite. By translating the scaling function ¢
if necessary, we assume that the dilation equation has only finite number of terms,
that is, it has the form
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N
o(x) = Z chnd(2x — n). (1.5.3)

n=0
That is, we assume ¢, = 0, forn < 0 or n > N. We seek square-integrable,

compactly supported solutions of Eq. (1.5.3). Such scaling functions are necessarily
integrable. It can be shown that compactly supported, integrable solutions of (1.5.3)
are unique up to a multiplicative constant. If ¢ is such a compactly supported scaling
function, then the associated wavelet s is obtained from ¢ by a finite series. Thus,
the smoothness of {r is completely determined by the corresponding smoothness of
the scaling function ¢. Daubechies (1988b) first constructed compactly supported,
smooth wavelet which is one of her remarkable contributions to the theory of
wavelets.

Without any restrictions on the coefficients ¢, cy, ..., ¢y, it is possible to deter-
mine smooth, compactly supported scaling functions from the dilation equations
without regard to their applicability to multiresolution analysis. There are several
different methods for constructing such solutions which include Cascade Algorithm
method, Fourier transform method, and dyadic interpolation method. These methods
are also applicable to dilation equations with integer scale factors other than two,
and to some higher dimensional dilation equations.

Inspired by the work of Meyer and stimulated by the exciting developments
in wavelets, Daubechies (1988a,b, 1990) made a new remarkable contribution to
wavelet theory and its applications. The combined influence of Mallat’s work and
Burt and Adelson (1983a, 1983b) pyramid algorithm used in image analysis led
to her major construction of an orthonormal wavelet basis of compact support.
Her 1988b paper, dealing with the construction of the first orthonormal basis
of continuous, compactly supported wavelets for L?(R) with some degree of
smoothness, produced a tremendous positive impact on the study of wavelets and
their diverse applications. Her discovery of an orthonormal basis for L?(R) of the
form 2"/2\5, (2"t —n), m,n € Z, with the support of s, in the interval [0, 27 + 1],
created a lot of excitement in the study of wavelets. If r = 0, Daubechies’ result
reduces to the Haar system. This work explained the significant connection between
the continuous wavelet on R and the discrete wavelets on Z and Zy, where the latter
have become extremely useful for digital signal analysis. Although the concept of
frame was introduced by others, Daubechies et al. (1986) successfully computed
numerical estimates for the frame bounds for a wide variety of wavelets. In spite
of the tremendous success, it is not easy to construct wavelets that are symmetric,
orthogonal and compactly supported. In order to handle this problem, Cohen
et al. (1992) investigated biorthogonal wavelets in some detail. They have shown
that these wavelets have analytic representations with compact support. The dual
wavelets do not have analytic representations, but they do have compact support.

In 1990s, another class of wavelets, semiorthogonal wavelets, have received
some attention. These represent a class of wavelets which are orthogonal at different
scales and, for wavelets with nonoverlapping support, at the same scale. Chui and
Wang (1991, 1992) and Micchelli (1991) independently studied semiorthogonal
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wavelets. The former authors constructed B-spline wavelets using linear splines.
Then, they used the B-spline wavelets without orthogonalization to construct the
semiorthogonal B-spline wavelets. On the other hand, Battle (1987) orthogonalized
the B-spline and used these scaling functions to construct orthogonal wavelets.
Thus, the difference between Chui and Wang’s and Battle’s constructions lies in
the orthogonal property of the scaling function.

One of the major difficulties with compactly supported orthonormal wavelets is
that they lack symmetry. This means that the processing filters are non-symmetric
and do not possess a linear phase property. Lacking this property results in severe
undesirable phase distortion in signal processing. On the other hand, the semi-
orthogonal wavelets are symmetric but suffer from the draw-back that their duals
do not have compact support. This is also undesirable since truncation of the filter
coefficients is necessary for real-time processing. Cohen et al. (1992) introduced
the biorthogonal multiresolution analysis in order to produce linear phased finite
impulse response filters adapted to the fast wavelet transform. Since for the
wavelet transform, linear phase corresponds to a symmetric scaling function, while
finite impulse response corresponds to a compactly supported scaling function;
Daubechies (1988b) proved that the Haar function ¢ = ¥ [,1] is the only orthonormal
compactly supported scaling function to be symmetric, so that the orthonormality
has to be dropped if linear phase is to be used. Similar results were obtained
independently by Vetterli and Herley (1992), they presented a treatment from the
“filter design” point of view.

It is well known that the classical orthonormal wavelet bases have poor frequency
localization. For example, if the wavelet 1 is band limited, then the measure of the
supp of (%) is 2/ -times that of supp III To overcome this disadvantage, Coifman
et al. (1990) constructed univariate orthogonal wavelet packets. Wavelet packets are
particular linear combinations or superpositions of wavelets. They are organized
naturally into collections, and each collection is an orthogonal basis for L?(R).
Well-known Daubechies orthogonal wavelets are a special case of wavelet packets.
Wavelet packets form bases which retain many of the orthogonality, smoothness
and localization properties of their parent wavelets, but offer more flexibility than
wavelets in representing different types of signals. Wavelet packets, owing to their
good properties, have been widely applied to signal processing, coding theory,
image compression, fractal theory and solving integral equations, and so on.

The standard construction is to start from a multiresolution analysis and generate
the library using the associated quadrature mirror filters. Let ¢(x) and {(x)
be the scaling function and the wavelet function associated with a multiresolu-
tion analysis {Vj}j ¢z Let W; be the corresponding wavelet subspaces: W; =

spﬁ{x!jjk 1k e Z}, where \r; ; are defined as in (1.4.12). Using the low-pass and
high-pass filters associated with the multiresolution analysis, the space W; can be
split into two orthogonal subspaces, each of them can further be split into two
parts. Repeating this process j times, W; is decomposed into 2/ subspaces each
generated by integer translates of a single function. If we apply this to each W;, then
the resulting basis of L?(R) which will consist of integer translates of a countable
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number of functions, will give a better frequency localization. This basis is called
the wavelet packet basis. To describe this more formally, we introduce a parameter
n to denote the frequency. Set wy = ¢ and define recursively

w2, (x) = th 0,2x — k), wyti(x) = ng w, (2x — k), (1.5.4)
kez kez

where {/i }, <7, and {gx } <, are the low-pass filter and high-pass filter corresponding
to ¢(x) and {(x), respectively.

Chui and Li (1993a) generalized the concept of orthogonal wavelet packets
to the case of non-orthogonal wavelet packets so that they can be applied to
the spline wavelets and so on. The introduction of biorthogonal wavelet packets
attributes to Cohen and Daubechies (1993). They have also shown that all the
wavelet packets, constructed in this way, are not led to Riesz bases for L?(R). Shen
(1995) generalized the notion of univariate orthogonal wavelet packets to the case of
multivariate wavelet packets for the dilation factor p = 2, however this construction
does not work for p > 2. Long and Chen (1997) have reported the non-separable
version of wavelet packets on RY and generalized the unstability result of non-
orthogonal wavelet packets of Cohen—Daubechies to higher dimensional cases. On
the other hand, Quak and Weyrich (1997a,b) investigated special type of periodic
wavelet packets based on trigonometric polynomial interpolants and studied their
decomposition and reconstruction algorithms on closed intervals. The construction
of wavelet and wavelet packets related to a class of dilation matrices by the method
of unitary extension of a matrix was given by Lian (2004). In his recent paper,
Shah (2009) has constructed p-wavelet packets on the positive half-line R using
the classical splitting trick of wavelets whereas Shah and Debnath (2011b) have
constructed the corresponding p-wavelet frame packets on R™ using the Walsh—
Fourier transform.

Multiwavelets are a natural extension and generalization of traditional wavelets.
They have received considerable attention from the wavelet research communities
both in the theory as well as in applications. They can be seen as vector valued
wavelets that satisfy conditions in which matrices are involved, rather than scalars,
as in the wavelet case. Multiwavelets can own symmetry, orthogonality, short
support, and high order vanishing moments. However, traditional wavelets cannot
possess all these properties at the same time. Multiwavelet system provides perfect
reconstruction while preserving length, good performance at boundaries (via linear-
phase symmetry), and high order of approximation. In addition, there are more
informations of low and high frequency with multiwavelet decomposition than
with the traditional wavelets. Multiwavelets have several advantages in comparison
with scalar wavelets in image processing and denoising, such as short support,
orthogonality, symmetry, and vanishing moments, which are known to be important
in image processing and denoising.
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The first construction of polynomial multiwavlets was given by Alpert (1993)
who used them as a basis for representation of certain operators. Later, Geronimo
et al. (1994) constructed two functions f(¢) and g(¢) whose translations and dila-
tions form an orthonormal basis for L?(IR). The importance for these two functions
is that they are continuous, well time-localized (or short support), and of certain
symmetry. By imposing the Hermite interpolating conditions, Chui and Li (1996)
constructed symmetric antisymmetric orthonormal multiwavelets with particular
emphasis on the maximum order of polynomial reproduction and gave examples
for length-3 and length-4 multiwavelets. Tham et al. (1998) introduced another
class of symmetric-antisymmetric orthonormal multiwavelets which possess a new
property called good multifilter properties and demonstrated that they can be useful
for image compression. On the other hand, Kessler (2000) has given the general
construction of compactly supported orthogonal multiwavelets associated with a
class of continuous, orthogonal, compactly supported scaling functions that contain
piecewise linear on a uniform triangulation of R2.

Xia and Suter (1996) introduced vector-valued multiresolution analysis and
orthogonal vector-valued wavelets. They showed that vector-valued wavelets are
a class of generalized multiwavelets and multiwavelets can be generated from
the component functions in vector-valued wavelets. Slavakis and Yamada (2001),
generalized this concept to biorthogonal matrix-valued wavelets setting. Vector-
valued wavelets and multiwavelets are different in the following sense. Vector-
valued wavelets can be used to decorrelate a vector-valued signal not only in the
time domain but also between components for a fixed time where as multiwavelets
focuses only on the decorrelation of signals in time domain. Moreover, prefiltering is
usually required for discrete multiwavelet transform but not necessary for discrete
vector-valued wavelet transforms. Bacchelli et al. (2002) studied the existence of
orthogonal multiple vector-valued wavelets using the subdivision operators where
as Fowler and Li (2002) implemented the biorthogonal multiple vector-valued
wavelet transforms by virtue of biorthogonal multiwavelets and employed them
to study fluid flows in oceanography and aerodynamics. Chen and Cheng (2007)
presented the construction of a class of compactly supported orthogonal vector-
valued wavelets and investigated the properties of vector-valued wavelet packets.
The concept of vector-valued wavelet packets was subsequently generalized to
vector-valued multivariate wavelet packets by Chen et al. (2009). In the same year,
Xiao-Feng et al. (2009) gave the construction and characterization of all vector-
valued multivariate wavelet packets associated with dilation matrix by means of
time—frequency analysis, matrix theory, and operator theory.

Wavelet theory has been studied extensively in both theory and applications
during the last two decades. This theory has become a promising tool in signal
processing, fractals and image processing, and so on, because of their ability to offer
good properties like symmetry, certain regularity, continuity, and short support. It is
well known that the standard orthogonal wavelets are not suitable for the analysis
of high-frequency signals with relatively narrow bandwidth. To overcome this
shortcoming, M -band orthonormal wavelets were created as a direct generalization
of the 2-band wavelets. The motivation for a larger M(M > 2) comes from the
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fact that, unlike the standard wavelet decomposition which results in a logarithmic
frequency resolution, the M -band decomposition generates a mixture of logarithmic
and linear frequency resolution and hence generates a more flexible tiling of the
time—frequency plane than that resulting from 2-band wavelet. The other significant
difference between 2-band wavelets and M -band wavelets in construction lies in
the aspect that the wavelet vectors are not uniquely determined by the scaling vector
and the orthonormal bases do not consist of dilated and shifted functions through
a single wavelet, but consist of ones by using M — 1 wavelets. It is this point that
brings more freedoms for optimal wavelet bases.

A function ¢ € L*(R) is called an M -band scaling function if a sequence of
closed spaces

V; =span{M’/?¢ (M/x —k) ke Z}, M=>2jeZ, (1.5.5)

holds the property V; C V;11, j € Z, and constitutes a multiresolution analysis for
L*(R).

Let W;, j € Z be the direct complementary subspaces of V; in V(. Assume
that there exist a set of M — 1 functions {{rj, {2, ..., Ya—1} in L?(R) such that
their translates and dilations form a Riesz basis of W}, i.e.,

W, :spm{Mf/zw (Mix—k).£=12,....M—1ke Z}, jez.
(1.5.6)

Then, the functions {{yrj, U2, ..., Iy—1} are called M-band wavelets. For more
about M -band wavelets and their applications to signal and image processing, we
refer to the monograph Sun et al. (2001).

Multiresolution analysis is considered as the heart of wavelet theory. In recent
years, there has been a considerable interest in the problem of constructing
wavelet bases on various spaces other than R, such as abstract Hilbert spaces,
locally compact Abelian groups, Cantor dyadic groups, Vilenkin groups, local
fields of positive characteristic, p-adic fields, Hyrer-groups, Lie groups, and zero-
dimensional groups. In the p-adic setting, the situation is as follows. In 2002,
Kozyrev found a compactly supported p-adic wavelet basis for L?(Q,) which is
an analog of the Haar basis. These wavelets are of the form

L= (P 0T - )R(p e —al,). xeQ, (ST

where j = 1,...,p— 1,y € Z,a € Q,/Z, which is an analogy of the real Haar
basis, where (¢) is the characteristic function of the segment [0, 1] C R, Z, is
the ring of p-adic integers, the function x(x) is an additive character of the field
of p-adic numbers. The above system is generated by dilations and translations
of the wavelet functions (p_ljx) Q(|x|p),x €Q,,j=1,...,p— 1. Itappears
that these wavelets are eigen functions of some p-adic pseudo differential operators.
This property of wavelets may be used to solve p-adic pseudo-differential equations.
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Recently, R.L. Benedetto and J.J. Benedetto (2004) developed a wavelet theory
for local fields and related groups. They did not develop the MRA approach, their
method is based on the theory of wavelet sets. Moreover, they had doubts that
an MRA-theory could be developed because discrete subgroups do not exist in
Q,. Since local fields are essentially of two types: zero and positive characteristic.
Examples of local fields of characteristic zero include the p-adic field Q, where as
local fields of positive characteristic are the Cantor dyadic group and the Vilenkin
p-groups. Even though the structures and metrics of local fields of zero and
positive characteristics are similar, but their wavelet and multiresolution analysis
theory are quite different. Khrennikov et al. (2009) introduced the notion of p-adic
multiresolution analysis on p-adic field Q, and constructed a number of scaling
functions generating an MRA of L?*(Q,). Later on, Albeverio et al. (2010) proved
that all these scaling functions lead to the same Haar MRA and that there exist no
other orthogonal test scaling functions generating an MRA of L*(Q),) except those
described by Khrennikov et al. (2009).

The concept of multiresolution analysis on a local field K of positive char-
acteristic was introduced by Jiang et al. (2004). They pointed out a method for
constructing orthogonal wavelets on local field K with a constant generating
sequence. Subsequently, the tight wavelet frames on local fields were constructed
by Li and Jiang (2008). They have established necessary condition and sufficient
conditions for tight wavelet frame on local fields of positive characteristics in
frequency domain. Behera and Jahan (2012a,b) have constructed wavelet packets
and wavelet frame packets on local field K of positive characteristic and show how
to construct an orthonormal basis from a Riesz basis. Further, they have given the
characterization of scaling functions associated with given multiresolution analysis
of positive characteristic on local field K. Recently, Shah and Debnath (2013)
have constructed tight wavelet frames on local field K of positive characteristic
by following the procedure of Daubechies et al. (2003) via extension principles.
They also provide a sufficient condition for finite number of functions to form a
tight wavelet frame and established general principle for constructing tight wavelet
frames on local fields.

1.6 Applications of Wavelet Transforms

Both Weierstrass and Riemann constructed famous examples of everywhere con-
tinuous and nowhere differentiable functions. So the history of such functions is
very old. More recently, Holschneider (1988) and Holschneider and Tchamitchian
(1991) have successfully used wavelet analysis to prove non-differentiability of both
Weierstrass’ and Riemann’s functions.

On the other hand, Beylkin et al. (1991) and Beylkin (1992) have successfully
applied multiresolution analysis generated by a completely orthogonal scaling
function to study a wide variety of integral operators on L?(R) by a matrix in
a wavelet basis. This work culminated with the remarkable discovery of new
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algorithms in numerical analysis. Consequently, some significant progress has
been made in boundary element methods, finite element methods, and numerical
solutions of partial differential equations using wavelets. As a natural extension of
the wavelet analysis, Coifman et al. (1989, 1992a,b) in collaboration with Meyer
and Wickerhauser discovered wavelet packets to design efficient schemes for the
representation and compression of acoustic signals and images. Coifman et al.
(1989, 1992a,b) also introduced the local sine and cosine transforms and studied
their properties. This led them to the construction of a library of orthogonal bases
by extending the method of multiresolution decomposition and using the QMF.
Coifman et al. (1989) gave elementary proofs of the > boundedness of the Cauchy
integral on Lipschitz curves. Recently, there have also been significant applications
of wavelet analysis to a variety of problems in diverse fields including mathematics,
physics, medicine, computer science, and engineering.

In recent years, there have been many developments and new applications
of wavelet analysis for describing complex algebraic functions and analyzing
empirical continuous data obtained from many kinds of signals at different scales
of resolution. The most widespread application of the wavelet transform so far has
been for data compression. This is associated with the fact that the discrete Fourier
transform is closely related to subband decomposition. We close this historical
introduction by citing some of these applications which include addressing problems
in signal processing, computer vision, seismology, turbulence, computer graphics,
image processing, structure of galaxies in the universe, digital communication,
pattern recognition, approximation theory, quantum optics, biomedical engineering,
sampling theory, matrix theory, operator theory, differential equations, numerical
analysis, statistics and multiscale segmentation of well logs, natural scenes, and
mammalian visual systems. Wavelets allow complex information such as music,
speech, images, and patterns to be decomposed into elementary forms, called simple
building blocks, at different positions and scales. These building blocks represent
a family of wavelets that are generated from a single function called “mother
wavelet” by translation and dilation operations. The information is subsequently
reconstructed with high precision. In order to describe the present state of wavelet
research, Meyer (1993a) wrote as follows:

Today the boundaries between mathematics and signal and image processing have faded,
and mathematics has benefitted from the rediscovery of wavelets by experts from other
disciplines. The detour through signal and image processing was the most direct path
leading from the Haar basis to Daubechies’s wavelets.



Chapter 2
Hilbert Spaces and Orthonormal Systems

The organic unity of mathematics is inherent in the nature of
this science, for mathematics is the foundation of all exact
knowledge of natural phenomena.

David Hilbert

Hilbert spaces constitute at present the most important
examples of Banach spaces, not only because they are the most
natural and closest generalization in the realm of “infinite
dimensions”, of our classical Euclidean geometry, but chiefly
for the fact they have been, up to now, the most useful spaces in
the applications to functional analysis.

Jean Dieudonné

2.1 Introduction

Historically, the theory of Hilbert spaces originated from David Hilbert’s
(1862-1943) work on quadratic forms in infinitely many variables with their
applications to integral equations. During the period of 1904-1910, Hilbert
published a series of six papers, subsequently collected in his classical book
Grundziige einer allemeinen Theorie der linearen integralgleichungen published
in 1912. It contains many general ideas including Hilbert spaces (¢*> and L?),
the compact operators, and orthogonality, and had a tremendous influence on
mathematical analysis and its applications. After many years, John von Neumann
(1903-1957) first formulated an axiomatic approach to Hilbert space and developed
the modern theory of operators on Hilbert spaces. His remarkable contribution
to this area has provided the mathematical foundation of quantum mechanics.
Von Neumann’s work has also provided an almost definite physical interpretation
of quantum mechanics in terms of abstract relations in an infinite dimensional
Hilbert spaces. It was shown that observables of a physical system can be
represented by linear symmetric operators in a Hilbert space, and the eigenvalues
and eigenfunctions of the particular operator that represents energy are energy levels
of an electron in an atom and corresponding stationary states of the system. The
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differences in two eigenvalues represent the frequencies of the emitted quantum of
light and thus define the radiation spectrum of the substance.

The theory of Hilbert spaces plays an important role in the development of
wavelet transform analysis. Although a full understanding of the theory of Hilbert
spaces is not necessary in later chapters, some familiarity with the basic ideas and
results is essential.

One of the nice features of normed spaces is that their geometry is very
much similar to the familiar two- and three-dimensional Euclidean geometry. Inner
product spaces and Hilbert spaces are even nicer because their geometry is even
closer to Euclidean geometry. In fact, the geometry of Hilbert spaces is more or less
a generalization of Euclidean geometry to infinite dimensional spaces. The main
reason for this simplicity is that the concept of orthogonality can be introduced in
any inner product space so that the familiar Pythagorean formula holds. Thus, the
structure of Hilbert spaces is more simple and beautiful, and hence, a large number
of problems in mathematics, science, and engineering can be successfully treated
with geometric methods in Hilbert spaces.

This chapter deals with normed spaces, the L? spaces, generalized functions
(distributions), inner product spaces (also called pre-Hilbert spaces), and Hilbert
spaces. The fundamental ideas and results are discussed with special attention
given to orthonormal systems, linear functionals, and the Riesz representation
theorem. The generalized functions and the above spaces are illustrated by various
examples. Separable Hilbert spaces are discussed in Sect.2.14. Linear operators
on a Hilbert space are widely used to represent physical quantities in applied
mathematics and physics. In signal processing and wavelet analysis, almost all
algorithms are essentially based on linear operators. The most important operators
include differential, integral, and matrix operators. In Sect. 2.15, special attention is
given to different kinds of operators and their basic properties. The eigenvalues and
eigenvectors are discussed in Sect. 2.16. Included are several spectral theorems for
self-adjoint compact operators and other related results.

2.2 Normed Spaces

The reader is presumed to have a working knowledge of the real number system and
its basic properties. The set of natural numbers (positive integers) is denoted by N,
and the set of integers (positive, negative, and zero) is denoted by Z, and the set of
rational numbers by Q. We use R and C to denote the set of real numbers and the
set of complex numbers respectively. Elements of R and C are called scalars. Both
R and C form a scalar field.

We also assume that the reader is familiar with the concept of a linear space
or vector space which is an example of mathematical systems that have algebraic
structure only. The important examples of linear spaces in mathematics have the
real or complex numbers as the scalar field. The simplest example of a real vector
space is the set R of real numbers. Similarly, the set C of complex numbers is a
vector space over the complex numbers.
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The concept of norm in a vector space is an abstract generalization of the length
of a vector in R3. Tt is defined axiomatically, that is, any real-valued function
satisfying certain conditions is called a norm.

Definition 2.2.1 (Norm). A real-valued function ||x|| defined on a vector space X,
where x € X, is called a norm on X if the following conditions hold:

(@) |lx|| = 0if and only if x = 0,
(b) |lax]| = |a]||x|| foreverya € Rand x € X,
© llx+yl<lxll + |yl forallx,y € X.

Condition (c) is usually called the triangle inequality. Since
0 =0l = llx — x| < lx| + | = x|l = 2[lx]I.

it follows that ||x|| > O for every x € X.

Definition 2.2.2 (Normed Space). A normed space is a vector space X with a
given norm.

So, a normed space is a pair (X, II. ||), where X is a vector space and ||.|| is a norm
defined on X. Of course, it is possible to define different norms on the same vector
space.

Example 2.2.1. (a) R is areal normed space with the norm defined by the absolute

values, ||x| = |x|.

(b) C becomes a complex normed space with the norm defined by the modulus,
llzll = Izl

Example 2.2.2. (a) RN = {(x1,x2,...,xy) © x1,%2,...,xy € R} is a vector

space with a norm defined by

x| = 3+ 24+ 53, @.2.1)
where x = (x1,X2,...,xy) € R¥. This norm is often called the Euclidean
norm.
() CV = {(z1.22.....28) : Z1.22.....2v € C} is a vector space with a norm
defined by
Iz = Viai? + 2P + - + v 2, (222)
where z = (z1,22.....2n) € CV.

Example 2.2.3. The sequence space £”(1 < p < o0) is the set of all sequences
o0

x = {x,}°2, of real (complex) numbers such that Z |xu|” < oo and equipped

n=1
with the norm
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i, = (5 \xnv)”p. .

This space is a normed space.

Example 2.2.4. The vector space C ([a, b]) of continuous functions on the interval
[a, b] is a normed space with a norm defined by

£ = (/b |f(x)\2dx)l/2, 2.2.4)

or, with a norm defined by

[7]= sw |00 (2.2.5)

Remark. Every normed space (X , ||||) is a metric space (X, d), where the norm
induces a metric d defined by

d(x,y) = Hx —y“.

But the converse is not necessarily true. In other words, a metric space (X, d) is not
necessarily a normed space. This is because of the fact that the metric is not induced
by a norm, as seen from the following example.

Example 2.2.5. We denote by s the set of all sequences of real numbers with the
metric

= |xn — ynl
d(x,y) = . 226
(x.7) ; T CE P— (2.2.6)

This is a metric space, but the metric is not generated by a norm, so the space is not
a normed space.

Definition 2.2.3 (Banach Space). A normed space X is called complete if every
Cauchy sequence in X converges to an element of X. A complete normed space is
called a Banach space.

Example 2.2.6. The normed spaces RV and CV with the usual norm as given in
Examples 2.2.2(a) and (b) are Banach spaces.

Example 2.2.7. The space of continuous functions C ([a, b]) with the norm
defined (2.2.4) is not a complete normed space. Thus, it is not a Banach space.

Example 2.2.8. The sequence space £ as given in Example 2.2.3 is a Banach space
for p > 1.
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Example 2.2.9. The set of all bounded real-valued functions M ([a, b]) on the
closed interval [a, b] with the norm (2.2.5) is a complete normed (Banach) space.

This is left for the reader as an exercise.
The following are some important subspaces of M ([a, b]):

(a) C ([a, b]) is the space of continuous functions on the closed interval [a, b],
(b) D ([a, b]) is the space of differentiable functions on [a, b],

(c) P ([a, b]) is the space of polynomials on [a, b],

(d) R([a, b]) is the space of Riemann integrable functions on [a, b].

Each of these spaces are normed spaces with the norm (2.2.5).

Example 2.2.10. The space of continuously differentiable functions C’ =
C’([a, b]) with the norm

|71 = max | ()] + max | f'(x)] 22.7)

is a complete normed space.

It is easy to check that this space is complete.

2.3 The L? Spaces

If p > 1 is any real number, the vector space of all complex-valued Lebesgue
integrable functions f defined on R is denoted by L?(R) with a norm

00 1/p
11, = U_ |f(x)\”dx] < o0. 23.1)

The number | f ||p is called the L?-norm. This function space L?(R) is a Banach
space. Since we do not require any knowledge of the Banach space for an
understanding of wavelets in this introductory book, the reader needs to know some
elementary properties of the L”-norms.

The L? spaces forthecases p = 1, p = 2,0 < p < l,and 1 < p < o0
are different in structure, importance, and technique, and these spaces play a very
special role in many mathematical investigations.

In particular, L' (R) is the space of all Lebesgue integrable functions defined on
R with the L'-norm given by

|f] = /_Oo | f(x)| dx < oo, (23.2)
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Definition 2.3.1 (Convergence in Norm). A sequence of functions fi, f3,...,
€ L'(R) is said to converge to a function f € L'(R) in norm if
an—fH1 — 0asn — oo.

So, the convergence in norm is denoted by f, — f in. This is the usual

convergence in a normed space.
o0

Usually, the symbol / f(x)dx or / f(x) dx is used to represent the integral

—00 R
over the entire real line. In applications, we often need to integrate functions over
bounded intervals on R. This concept can easily be defined using the integral

/R f(x)dx.

Definition 2.3.2 (Integral Over an Interval). The integral of a function f over
an interval [a, b] is denoted by

/ab f(x)dx

and defined by

b
/ 709 X () dx, 23.3)

where ¥ [4.5] denotes the characteristic function of [a, b] defined by

234
0, otherwise ( )

17 S S b’
Xfa.b)(X) = { 4=% }

and f Y4 is the product of two functions.

b
In other words, / f(x)dx is the integral of the function equal to f on [a, b]

a
and zero otherwise.

b
Theorem 2.3.1. If f € L'(R), then the integral / f(x)dx exists for every
interval [a, b]. ‘

The proof is left to the reader as an exercise.
The converse of this theorem is not necessarily true. For example, for the constant

function f = 1, the integral / f(x) dx exists for every —oo < a < x < b < 00,

although f ¢ L'(R). This suggests the following definition.
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Definition 2.3.3 (Locally Integrable Functions). A function f defined on R is
called locally integrable if, for every —oco < a < x < b < oo, the integral

b
/ f(x) dx exists.

Although this definition requires integrability of f over every bounded interval, it
is sufficient to check that the integral f(x) dx exists for every positive integer .

The proof of this simple fact is left as an exercise.
Note that Theorem 2.3.1 implies that L' (R) is a subspace of the space of locally
integrable functions.

Theorem 2.3.2. The locally integrable functions form a vector space. The absolute
value of a locally integrable function is locally integrable. The product of a locally
integrable function and a bounded locally integrable function is a locally integrable
function.

For a proof of this theorem, the reader is referred to Debnath and Mikusinski
(1999).

Theorem 2.3.3. If f is a locally integrable function such that if | f'| < g for some
g € L'(R), then f € L'(R).

Proof. Let f, = f Yjup forn =1,2,3,.... Then, the sequence of functions { f,, }
converges to f everywhere and | f| < g for every n = 1,2,.... Thus, by the
Lebesgue dominated convergence theorem, f € L' (R).

The function space L*(R) is the space of all complex-valued Lebesgue integrable
functions defined on R with the L? — norm defined by

[ele) 1/2
|1, = U_ |f(x)\2dX} < o0. (23.5)

Elements of L2(R) will be called square integrable functions. Many functions in

physics and engineering, such as wave amplitude in classical or quantum mechanics,

are square integrable, and the class of L? functions is of fundamental importance.
The space L>[a, b] is the space of square integrable functions over [a, b] such

b
that / | £(x)|*dx exists, Thus, the function x~3 € L2[a, b] but x™3 ¢ L?[a, b].
a

Remark. The fact that a function belongs to L? for one particular value of p does
not imply that it will belong to L” for some other value of p.

Example 2.3.1. The function |x|~2¢~* € L!(R), but it does not belong to L2(R).
On the other hand, (1 + |x|)™" € L?(R), but it does not belong to L!(R).

Example 2.3.2. Functions x"e ™! and (1 + xz)_1 € L'(R) for any integer n.
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We add a comment here on the integrability and the local integrability. The
condition of integrability is more stringent than local integrability. For example, the

. _1 -1 .
functions equal almost everywhere to |x|~2 and (1 + xz) , respectively, are both

locally integrable, but only the latter one belongs to L'(R) because |x|_% decays
very slowly as |x| — oo. The additional constraint imposed by integrability over
that imposed by local integrability is associated with the nature of the function as
|x| — oo. However, a function f € L'(R) does not necessarily decay to zero at
infinity. For example, for the function f whose graph consists of an infinite set of
rectangular pulses with centers at x = +1,+2,...,%n,..., the pulse at x = *n
with height n and width n~3, we obtain that f € L'(R), but it does not tend to zero
as |x| — oo.

We make another comment on functions in L? spaces. If a function f belongs
to L?(a, b) for some value of p > 1, then it also belongs to L% (a, b) for all g such
that 1 < ¢ < p. In other words, raising a function to some power p > 1 makes the
infinite singularities get “worse” as p is increased. On the other hand, if a function
is bounded in R and belongs to L? for some p > 1, then it does belong to L9 for all
q > p.Inother words, raising a bounded function to some power p makes its nature
at infinity get “better” as far as integrability is concerned. For example, the function
fx) = (1 + |x|)_1 € L'(R) and is also bounded on IR, and also square integrable.
However, if the condition of boundedness is relaxed, this result does not hold, even
if the function is still locally bounded, that is, it is bounded on every finite interval
on R.

Definition 2.3.4 (Convolution). The convolution of two functions f,g € L'(R)
is defined by

(f *8)(x) = /_ Fx =) g dy (23.6)

which exists for all x € R or at least almost everywhere. Then, it defines a function
which is called the convolution of f and g and is denoted by f * g.

We next discuss some basic properties of the convolution.

Theorem 2.3.4. If f.g € L'(R), then the function f(x — y) g(y) is integrable for
almost all x € R. Furthermore, the convolution

(f *g)(x) = /_ Flx—y) gy dy 23.7)

is an integrable function and (f * g) € L'(R) and the following inequality holds:

I/ *&li <171 lel- (238)

Proof. We refer to Debnath and Mikusinski (1999) for the proof of the first part of
the theorem, that is, (f * g) € L' (R).
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To prove inequality (2.3.8), we proceed as follows:
o0 o0 o0
|7 osl, = [ wslax= [ [~ ra-nemaax
<[ 1w nllewrayax
—00 J—00
= / / |f(x — y)Hg(y)|dy dx, by Fubini’s Theorem
—o0 J—o00

= /_Z |/ (x = y)|dx /_Z |g(n] dy

= /: |f(x)|dx/_c: g dy = | 1]l

Thus, the proof is complete.

Theorem 2.3.5. If f. g € L'(R), then the convolution is commutative, that is,
(f *g)(x) = (g% f)(x). (2.3.9)

The proof follows easily by the change of variables.
Theorem 2.3.6. If f.g,h € L'(R), then the following properties hold:

(a)
(fxg)xh=fx(gxh) (associative), (2.3.10)
(b)

(f+g) xh=f*xh+gxh (distributive). (2.3.11)

We use Fubini’s theorem to prove that the convolution is associative. We have

(/5 sh=(gx /) hto) = [/ g(x—z—y)f(y)dy}h(z)dz

—0o0 —0o0

- /_ /_ FO) g(x—2— y)h(@) dzdy
= f x (g *h)(x).

The proof of part (b) is left to the reader as an exercise.

Remarks. The properties of convolution just described above shows that the L' (R)
is a commutative Banach algebra under ordinary addition, multiplication defined
by convolution, and ||.||; as norm. This Banach algebra is also referred to as the
L'-algebra on R.
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Theorem 2.3.7. If f is an integrable function and g is a bounded locally integrable

function, then the convolution f * g is a continuous function.

Proof. First, note that since |f(x —-y) g(y)| < M|f(x — y)| for some constant
o0

M and every x, the integral / f(x —y)g(y)dy is defined at every x € R by
Theorem 2.3.3. Next, we show_t?at f = g is a continuous function.

For any x, h € R, we have

(f % )(x + 1) — (f % 9))| = U_ FGeth—y) g dy —/_ Fx =) 8 dy‘

_ ]/_w [f(x+h—y)—f(x—y)]g(y)dy‘

IA

/ | f =) — G —0)]|gO)]dy

IA

M[_ 1£0+h—y)— £O— y)dy.

which tends to zero as h — 0 since
o0
iim [~ 0= )= fenldy =0,
h—0 —00

Thus, the proof is complete.

2.4 Generalized Functions with Examples

The Dirac delta function 3(x) is the best known of a class of entities called general-
ized functions. The generalized functions are the natural mathematical quantities
which are used to describe many abstract notions which occur in the physical
sciences. The impulsive force, the point mass, the point charge, the point dipole,
and the frequency response of a harmonic oscillator in a nondissipating medium are
all aptly represented by generalized functions. The generalized functions play an
important role in the Fourier transform analysis, and they can resolve the inherent
difficulties that occur in classical mathematical analysis. For example, every locally
integrable function (and indeed every generalized function) can be considered as the
integral of some generalized function and thus becomes infinitely differentiable in
the new sense. Many sequences of functions which do not converge in the ordinary
sense to a limit function can be found to converge to a generalized function. Thus,
in many ways the idea of generalized functions not only simplifies the rules of
mathematical analysis but also becomes very useful in the physical sciences.

In order to give a sound mathematical formulation of quantum mechanics, Dirac
in 1920 introduced the delta function §(x) having the following properties:
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= x
-2
Fig. 2.1 The sequence of functions {8,(x)} forn =1,2,3...
3x)=0, x#0
o . 2.4.1
/ d(x)dx =1 ( )
)

These properties cannot be satisfied by any ordinary function in classical mathe-
matics. Hence, the delta function is not really a function in the classical sense.
However, it can be regarded as the limit of a sequence of ordinary functions. A good
example of such a sequence 8, (x) is a sequence of Gaussian functions given by

8 (x) = \/Z exp (—nx?). (2.4.2)

Clearly, §,(x) — 0 asn — oo for any x # 0 and §,(x) — oo asn — —o0, as
shown in Fig.2.1. Also, foralln = 1,2,3,...,

/_OO Sp(x)dx =1

o0
and
lim 8,(x)dx = / lim §,(x)dx = / d(x)dx = 1. (2.4.3)
n—oo J_ oo N0 00

Thus, the Dirac delta function can be regarded as the limit of sequence 8, (x) of
ordinary functions, and we write

§(x) = lim 3,(x) = linéo\/z exp (—nx?). (2.4.4)
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This approach of defining new entities, such as §(x), which do not exist as
ordinary functions becomes meaningful mathematically and useful from a physical
point of view.

Another alternative definition is based on the idea that if a function f is
continuous at x = a, then §(x) is defined by its fundamental property

/_00 f(x)3(x —a)dx = f(a). 2.4.5)

Or, equivalently,

/_ f(x)3(x)dx = f(0). (2.4.6)

This is a rather more formal approach pioneered by Laurent Schwartz in the late
1940s. Thus, the concept of the delta function is clear and simple in modern
mathematics. It has become very useful in science and engineering. Physically, the
delta function represents a point mass, that is, a particle of unit mass is located at
the origin. This means that a point particle can be regarded as the limit of a sequence
of continuous mass distribution. The Dirac delta function is also interpreted as a
probability measure in terms of the formula (2.4.5).

Definition 2.4.1 (Support of a Function). The support of a function f : R — C
is {x : f(x) # 0} and denoted by supp(f). A function has bounded support if
there are two real numbers a, b such that supp( /) C (a, b). By a compact support,
we mean a closed and bounded support.

Definition 2.4.2 (Smooth or Infinitely Differentiable Function). A function f :
R — C is called smooth or infinitely differentiable if its derivatives of all orders
exist and are continuous.

A function f : R — C is said to be n-times continuously differentiable if its first
n derivatives exist and are continuous.

Definition 2.4.3 (Test Functions). A fest function is an infinitely differentiable
function on R whose support is compact. The space of all test functions is denoted
by Z(R) or simply by 2. The graph of a “typical” test function is shown in Fig. 2.2.

Since smooth (infinitely differentiable) functions are continuous and the support
of a continuous function is always closed, test functions can be equivalently defined
as follows: ¢ is a test function if it is a smooth function vanishing outside a
bounded set.

Example 2.4.1. A function ¢ defined by

exp [(x2 — az)_l] , for |x| < a,

0, otherwise

d(x) = { (2.4.7)

is a test function with support (—a, a).
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o(x)

VANV

4 .

Fig. 2.2 A typical test function

Using this test function, we can easily generate a number of examples. The
following are test functions:

d(ax + b), a,b are constants and a # 0,

f(x) d(x), f is an arbitrary smooth function,

™ (x), n is a positive integer.

Definition 2.4.4 (Convergence of Test Functions). Suppose {¢,} is a sequence
of test functions and ¢ is another test function. We say that the sequence {¢,}

2
converges to ¢ in &, denoted by ¢, — ¢, if the following two conditions are
satisfied:

@ ¢1,¢2,...,n,... and ¢ vanish outside some bounded interval [a, b] C R,
(b) for each k, ¢,,(x) — ¢(x) as n — oo uniformly for some x € [a, b], where
) (x) denotes the kth derivative of ¢.

Definition 2.4.5 (Generalized Function or Distribution). A continuous linear
functional F on Z is called a generalized function or distribution. In other words, a
mapping F : 2 — C is called a generalized function or distribution if

(@) F(ap + b)) =aF(d) + bF() foreverya,b, € Cand d,y € Z(R),
(b) F(¢,) — F(¢) (in C) whenever ¢, — ¢ in 2.

The space of all generalized functions is denoted by 2’ (R) or simply by 2'. Tt is
convenient to write (F, ¢) instead of F(¢).

Distributions generalize the concept of a function. Formally, a function on R is
not a distribution because its domain is not 2. However, every locally integrable
function f on R can be identified with a distribution F' defined by

(F.¢) = [R £() 6() dx. (248)

The distribution F is said to be generated by the function f.
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Definition 2.4.6 (Regular and Singular Distributions). A distribution F € 2’ is
called a regular distribution if there exists a locally integrable function f such that

(F.¢) = /R £) 60 dx (24.9)

for every ¢ € 2. A distribution that is not regular is called a singular distribution.

The fact that (2.4.9) defines a distribution is because of the following results.
First, the product f¢ is integrable because it vanishes outside a compact support
[a, b]. In other words,

) b
(F.¢) = /_ F() b(x) dx = [ £ o) dx

exists. Hence, F is a linear functional on Z. Also,

b
I(F. ) — (F.0)] = / [0 () — 6(0)] f(x)dlx

IA

b

[ 1m0 = 4|0l

“ b

max‘q)n(x)—cb(x)‘/ |f(x)‘dx—>0 asn — oo,

IA

because ¢, — ¢ uniformly. Hence,
(F,¢n) = (F,¢) asn — oo.

This means that F is a continuous linear functional, that is, F' is a distribution.
Thus, the class of generalized functions contains elements which corresponds to
ordinary functions as well as singular distributions. We now give an interpretation

of (F, ¢).
The integral / f(x)d(x)dx in (2.4.9) can be interpreted, at least for some test

function ¢, as thﬂé average value of f with respect to probability whose density
function is ¢. Thus, (F,$) can be regarded as an average value of F and of
distributions as entities that have average values in neighborhoods of every point.
However, in general, distributions may not have values at points. This interpretation
is very natural from a physical point of view. In fact, when a quantity is measured,
the result is not the exact value at a single point.

Example 2.4.2. If Q is an open set in R, then the functional F' defined by

(F,¢) = /Q b(x) dx (2.4.10)
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is a distribution. Note that it is a regular distribution since

(F.¢) = /_ $() Yo () dx, 24.11)

where Y q is the characteristic function of the set 2.

In particular, if 2 = (0, 0c0), we obtain a distribution

(H,d) :/0 ¢(x) dx (2.4.12)

which is called the Heaviside function. The symbol H is used to denote this
distribution as well as the characteristic function of 2 = (0, c0).

Example 2.4.3 (Dirac Distribution). One of the most important examples of gener-
alized functions is the so-called Dirac delta function or, more precisely, the Dirac
distribution. It is denoted by § and defined by

@6, 9) = /_ d(x)8(x) dx = ¢(0). (2.4.13)

The linearity of 8 is obvious. To prove the continuity, note that ¢, — ¢ in &
implies that ¢, — ¢ uniformly on R and hence ¢, (x) — ¢(x) for every x € R.
This implies that the Dirac delta function is a singular distribution.

Example 2.4.4.
(@)
(B(x —a), ) = (8(x), d(x +a)) = d(a). (2.4.14)
(b)
(8(ax). ) = %' $(0). (2.4.15)
We have
(S(x —a), ({)) = /_ 3(x —a) dp(x)dx

- /_ 300 6y +a)dy = b(a).

o0

This is called the shifting property of the delta function.

Similarly,

Ban.0) = [ s@nomar= [~ 5000 (2) 2L = o).

—00 —

oo
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Hence, for a # 0,

d(ax) = ﬁ ¢(0). (2.4.16)

The success of the theory of distributions is essentially due to the fact that
most concepts of ordinary calculus can be defined for distributions. While adopting
definitions and rules for distributions, we expect that new definitions and rules will
agree with classical ones when applied to regular distributions. When looking for an
extension of some operation A, which is defined for ordinary functions, we consider
regular distributions defined by (2.4.9). Since we expect AF to be the same as Af,
it is natural to define

(AF, ) = AAf(xm(x) dx.

If there exists a continuous operation A* which maps & into & such that

[arwomax = [ 1 aoe ax.
then it makes sense to introduce, for an arbitrary distribution F,
(AF, ) = (F, A ).

If this idea is used to give a natural definition of a derivative of a distribution, it
suffices to observe

P ad
/R {gf(x)} b(x)dx = —/Rf(x)a ¢(x) dx.

Definition 2.4.7 (Derivatives of a Distribution). The derivative of a distribution
F is a distribution F’ defined by

dF \ do
(E’ 4,) __ (F E) _ (2.4.17)

This result follows by integrating by parts. In fact, we find

dF ® dF oo o0 ’ ’
(F0) = [ G ords = [Fe00)% = [~ Fowdx = ~(F.4/(w),

—00 —00

where the first term vanishes because ¢ vanishes at infinity.
More generally,

(F(k), ¢) — (_1)k (F, ¢(k))’ (2.4.18)

where F®)(x) is the kth derivative of distribution F.



2.4 Generalized Functions with Examples

45

Thus, the extension of the idea of a function to that of a distribution has a major
success in the sense that every distribution has derivatives of all orders which are

again distributions.
Example 2.4.5 (Derivative of the Heaviside Function).
()
H'(x) = §(x).
We have

(2.4.19)

/ H'(x) 6(x) dx = [H)$)] / H() ¢/(x) dx

—/ ¢'(x) dx = $(0) = (8, ), since ¢ vanishes at infinity.
0

This proves the result.
(b) (Derivatives of the Dirac Delta Function).

6" ¢) = =6, ¢") = =9'(0),
(8", ¢) = (=1)"$"(0).
We have

(2.4.20)
(2.4.21)

®.¢) = / 8'(x) ¢(x) dx = [3(x)d(x)] 7, / 8(x) ¢'(x) dx = —4'(0),

since ¢ vanishes at infinity.

Result (2.4.21) follows from a similar argument.

Example 2.4.6. If h is a smooth function and F is a distribution, then the derivative

of the product (hF) is given by
(hF) = hF' + h'F.
We have, for any ¢ € 2,
((FY.0) = —(hF.¢')

—(F. h¢')

—(F. (hoy = H'9)
= (F'.h¢) + (F.h'¢)
= (hF'.¢) + (h'F. )
= (hF' +1'F.¢).

This proves the result.

(2.4.22)
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Example 2.4.7. The function |x| is locally integrable and differentiable for all
x # 0 but certainly not differentiable at x = 0. The generalized derivative can
be calculated as follows.

For any test function ¢, we have

(I=[-¢)

—(IxI. ¢)

_/00 |x|c{)/(x)dx:/0 xd)’(x)dx—/oooxd)’(x)dx

—0o0 —0o0

which is, integrating by parts and using the fact that ¢ vanishes at infinity,

0 0o
= —/ d(x)dx + / d(x) dx. (2.4.23)
oo o

Thus, we can write (2.4.23) in the form

(I

o0
’,¢) = / sgn (x)d(x) dx = (sgn, ) foral p € 2.
—00
Therefore,
|x|" = sgn (x), (2.4.24)
where sgn (x) is called the sign function, defined by

1, x>0,

sgn(x) = lx<o (2.4.25)
Obviously,
H(x) = % (1 +sgnx). (2.4.26)
Or, equivalently,
sgnx = 2H(x) — 1. (2.4.27)
Thus,
d /
o (sgnx) = 2H'(x) = 28(x). (2.4.28)

Definition 2.4.8 (Antiderivative of a Distribution). If F is a distribution on R and
F € 9'(R), a distribution G on R is called an antiderivative of F if G’ = F.
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Theorem 2.4.1. Every distribution has an antiderivative.

Proof. Suppose ¢g € Z(R) is a fixed test function such that

/ h do(x)dx = 1. (2.4.29)

Then, for every test function ¢pg € Z(R), there exists a test function ¢; € Z(R)
such that ¢ = Ko + ¢1, where

K:/oocl)(x)dx and /ooc{)l(x)dx:O.

Suppose F € 2’'(R). We define a functional G on Z(R) by
(G.¢) = (G. Ko + 1) = CK — (F. V),

where C is a constant and { is a test defined by

Y(x) = /_ i) dr.

Then, G is a distribution and G’ = F.

We close this section by adding an example of application to partial differential
equations.
Consider a partial differential operator L of order m in N variables

L= > A,D" (2.4.30)

la|<m
where & = (ap,02,...,0ay) is a multi-index, the o,’s are nonnegative integers,
la| =ar + a2+ -+ an, Ay = Agan.ay (X1.X2,...,Xy) are functions on RN

(possibly constant), and
B g 9 ay a|01|
D= — R = - 2.4.31
(8x1 ) (BXN) axy .oy ( )
Equations of the form

LG =3 (2.4.32)

are of particular interest. Suppose G is a distribution which satisfies (2.4.32). Then,
for any distribution f with compact support, the convolution ( f * G) is a solution
of the partial differential equation

Lu=f. (2.4.33)
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We have

L(f*G)=Y_ AyD*(f *G)

la|<m

= ) Aq(f * D"G)

a|<m

=fx| ) ADG|=fxLG

a|<m
=f*x8=7

This explains the importance of the equation Lu = §, at least in the context of the
existence of solutions of partial differential equations.

2.5 Definition and Examples of an Inner Product Space

Definition 2.5.1 (Inner Product Space). A (real or complex) inner product space
is a (real or complex) vector space X with an inner product defined in X as a

mapping
(,.): XxX—>C

such that, for any x,y,z € X and o, € C (a set of complex numbers), the
following conditions are satisfied:

(a) (x,y) = (y,x) (the bar denotes the complex conjugate),

(b) {ox +By.z) = a(x.z) +B(y.2),
(¢) {x,x) >0, and (x, x) = 0 implies x = 0.

Clearly, an inner product space is a vector space with an inner product specified.
Often, an inner product space is called a pre-Hilbert space or a unitary space.

According to the above definition, the inner product of two vectors is a complex
number. The reader should be aware that other symbols are sometimes used to
denote the inner product: (x, y) or (x/y). Instead of z, the symbol z* is also used
for the complex conjugate. In this book, we will use (x, y) and z.

By (a), (x, x) = (x, x) which means that (x, x) is a real number for every x € X.
It follows from (b) that

(x,ay + PBz) = (ay + Pz, x) = o (y.x) + B (z.x) = a(x,y) + P (x.2).

In particular,

{ox,y) =a{x,y) and (x,ay)=ax,y).
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Hence, if a = 0,
(0,y) = (x,0) = 0.

The algebraic properties (a) and (b) are generally the same as those governing
the scalar product in ordinary vector algebra with which the reader should be
familiar. The only property that is not obvious is that in a complex space the inner
product is not linear but conjugate linear with respect to the second factor; that is,

(x,ay) = a(x,y).

Example 2.5.1. The simplest but important example of an inner product space is
the space of complex numbers C. The inner product in C is defined by (x, y) = xy.

Example 2.5.2. The space CV of ordered N-tuples x = (xi,...,xy) of complex
numbers, with the inner product defined by

N
(x.y) =) Xk Tk x=(xr.....xn). ¥ = 0N).
k=1

is an inner product space.

Example 2.5.3. The space £> of all infinite sequences of complex numbers {x; }
o0

such that Z |x¢|? < oo with the inner product defined by
k=1

o

(x7y>:Zxk)7ks where x=(x1,x2,)C3,...), y:(ylsy25y3v--')ﬂ
k=1

is an infinite dimensional inner product space. As we will see later, this space is one
of the most important examples of an inner product space.

Example 2.5.4. Consider the space of infinite sequences {x, } of complex numbers
such that only a finite number of terms are nonzero. This is an inner product space
with the inner product defined as in Example 2.5.3.

Example 2.5.5. The space %([a, b]) of all continuous complex-valued functions on
the interval [a, b] with the inner product

b
(f.8) = / f(x) g(x)dx 2.5.1)

is an inner product space.

Example 2.5.6 (The Space of Square Integrable Functions). The function space
Lz([a,b]) of all complex-valued Lebesgue square integrable functions on the
interval [a, b] with the inner product defined by (2.5.1) is an inner product space.
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Similarly, the function space L2(R) is also an inner product space with the inner
product defined by

b —
(fg) = / F(0) 3@ dx, (25.2)
where f, g € L>(R).
Since
1
fe=5|(r+9"-(/-2)].
and

el = 5 (1717 + lef").

it follows that f, g € L'(R).
Furthermore,

£+l = |7+ 20 2] + gl

Integrating this inequality over R shows that (f + g) € L*(R).
It can be shown that L?(R) is a complete normed space with the norm induced
by (2.5.2), that is,

71, = {/R If(X)izdx} %. 2.5.3)

This is exactly the L?-norm defined by (2.3.1). Both spaces L*([a, b]) and L*(R)
are of special importance in theory and applications.

Example 2.5.7. Suppose D is a compact set in R* and X = C?(D) is the space of
complex-valued functions that have continuous second partial derivatives in D. If
u € D, we assume

Vi = (ﬂ du ou ) (2.5.4)

x;” 0xy dx3

We define the inner product by the integral

du I du v du v
= b — — o — f — - — 2.5.
(M’V) /D [MV+ 8x1 8x1 + 8x2 8x2 + 8X3 8X3:| dx’ ( > 5)

where x = (x1, X2, X3).
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Clearly, this is linear in u and also (u,v) = (v,u) and (u,v) > 0. Furthermore,

if (u,u) = 0, then / lul*dx = 0. Since u is continuous, this means that u = 0.
D

Hence, (2.5.5) defines an inner product in the space X. Obviously, the norm is

given by

| = (/D (luf® + |val?) dx)%, (2.5.6)

where

2 2 2

ou

ou
8x3

8x1

ou
3)62

(2.5.7)

[Vul?

2.6 Norm in an Inner Product Space

An inner product space is a vector space with an inner product. It turns out that
every inner product space is also a normed space with the norm defined by

||x|| =/ {x,x).

First notice that the norm is well defined because (x, x) is always a nonnegative
(real) number. Condition (c) of Definition 2.5.1 implies that ||x|| = 0 if and only if
x = 0. Moreover,

] = Vo) = ik = ]

It thus remains to prove the triangle inequality. This is not as simple as the first two
conditions. We first prove the so-called Schwarz’s inequality, which will be used in
the proof of the triangle inequality.

Theorem 2.6.1 (Schwarz’s Inequality). For any two elements x and y of an inner
product space, we have

x| =[x v] 2.6.1)
The equality |(x, y)| = Hx || Hy || holds if and only if x and y are linearly dependent.

Proof. If y = 0, then (2.6.1) is satisfied because both sides are equal to zero.
Assume then y # 0. By (c) in Definition 2.5.1, we have

0<(x+ay,x+oay)=(x,x)+axy)+a(yx)+]a(yy). (2.6.2)
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Now, put o = —(x, ¥)/(y, y}) in (2.6.2) and then multiply by (y, y) to obtain

0=<{x,x){y.y)— \(Jw)\z-

This gives Schwarz’s inequality.

If x and y are linearly dependent, then y = ax for some o € C. Hence,

x| = )| = fail] (e, )| = Jal x| |x ]| =[x ] ax] = <] ]]-
Now, let x and y be vectors such that |(x, y)| = ||x H || y H Or, equivalently,
(. )y, x) = (x. x)(y. ). (2.6.3)

We next show that (y, y)x — (x, y)y = 0, which shows that x and y are linearly
dependent. Indeed, by (2.6.3), we have

((y, y)Ix —={x, )y, (v, y)x — (x, y)y>

=(y. y)*(x.x) = (. y)(y. x)(x, ) — (x. ) (y. ¥}y, x)
+{x, y){y. x)}(y,y) =0.

Thus, the proof is complete.

Corollary 2.6.1 (Triangle Inequality). For any two elements x and y of an inner
product space X, we have

[+ =[x+ ] (2.6.4)
Proof. When o = 1, equality (2.6.2) can be written as
|x+ 27 = (x + y.x +¥) = (x,x) + 2Re (x, ) + (3, )
< (xx) +2(x )+ (. 9)
< |xIP+ 2 x|y + |»]° by Schwarz’s inequality)
< (<l + 1y’ (2.6.5)

where Re z denotes the real part of z € C. This proves the triangle inequality.

Definition 2.6.1 (Norm in an Inner Product Space). By the norm in an inner
product space X, we mean the functional defined by

||x|| = {x,x). (2.6.6)
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We have proved that every inner product space is a normed space. It is only
natural to ask whether every normed space is an inner product space. More precisely,
is it possible to define in a normed space (X , ||.||) with an inner product (., .) such

that ||x|| = /(x,x) for every x € X? In general, the answer is negative. In the
following theorem, we prove a property of the norm in an inner product space that
is a necessary and sufficient condition for a normed space to be an inner product
space.

The next theorem is usually called the parallelogram law because of its remark-
able geometric interpretation, which reveals that the sum of the squares of the
diagonals of a parallelogram is the sum of the squares of the sides. This characterizes
the norm in a Hilbert space.

Theorem 2.6.2 (Parallelogram Law). For any two elements x and y of an inner
product space X, we have

Hx+y||2+||X—Y||2=2(||XHZ+ ||y||2). (2.6.7)
Proof. We have
|x+ 27 = (x +y.x +¥) = (nx) + () + (rx) + (7.0
and hence,
e+ = x]” + o) + o2 + ) (2.6.8)

Now, replace y by —y to obtain

Jx =y 1" =[x = e 0) = o) + 2] (2.6.9)

By adding (2.6.8) and (2.6.9), we obtain the parallelogram law (2.6.7).

One of the most important consequences of having the inner product is the
possibility of defining orthogonality of vectors. This makes the theory of Hilbert
spaces so much different from the general theory of Banach spaces.

Definition 2.6.2 (Orthogonal Vectors). Two vectors x and y in an inner product
space are called orthogonal (denoted by x L y)if (x,y) = 0.

Theorem 2.6.3 (Pythagorean Formula). For any pair of orthogonal vectors x
and 'y, we have

lx+ )7 = [x)* + |»]* (2.6.10)

Proof. If x L y,then (x, y) = 0 and thus the equality (2.6.10) follows immediately
from (2.6.8).
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In the definition of the inner product space, we assume that X is a complex vector
space. However, it is possible to define a real inner product space. Then condition
(b) in Definition 2.5.1 becomes (x, y) = (y,x). All of the above theorems hold
in the real inner product space. If in Examples 2.5.1-2.5.6, the word complex is
replaced by real and C by R, we obtain a number of examples of real inner product
spaces. A finite-dimensional real inner product space is called a Euclidean space.

If x = (x1,X2,...,xy) and y = (y1, y2,..., yn) are vectors in RV, then the

N

inner product (x, y) = Z X Yk can be defined equivalently by
k=1

(xy) = |x][ |y cos®.

where 0 is the angle between vectors x and y. In this case, Schwarz’s inequality
becomes

[ ] _
ElEE.

|cose‘ =

2.7 Definition and Examples of Hilbert Spaces

Definition 2.7.1 (Hilbert Space). A complete inner product space is called a
Hilbert space.

By the completeness of an inner product space X, we mean the completeness of
X as a normed space. Now, we discuss completeness of the inner product spaces
and also give some new examples of inner product spaces and Hilbert spaces.

Example 2.7.1. Since the space C is complete, it is a Hilbert space.

Example 2.7.2. Clearly, both RY and CV are Hilbert spaces.

In RY, the inner product is defined by (x, y) Z Xk Vk-

In CV, the inner product is defined by (x, y) Z Xk Vk-

In both cases, the norm is defined by

bl = v = (s )

Since these spaces are complete, they are Hilbert spaces.



2.7 Definition and Examples of Hilbert Spaces 55

Example 2.7.3. The sequence space [? defined in Example 2.5.3 is a Hilbert space.

Example 2.7.4. The space X described in Example 2.5.4 is an inner product space
which is not a Hilbert space because it is not complete. The sequence

11 1
X, =(1,=,=,...,—,0,0,...
23 n

is a Cauchy sequence because

. . n 1 2
Wln11_1)100 Hxn — Xm || = n’ylnll_{loo L Z:H ﬁ:| =0 form <n.
=m

11
However, the sequence does not converge in X because its limit (1, 33 ) is

not in X. However, this sequence {x, } converges in /2.

Example 2.7.5. The space defined in Example 2.5.5 is another example of an
incomplete inner product space. In fact, we consider the following sequence of
functions in €'([0, 1]) (see Fig. 2.3):

1
1 if 0<x<-.
2
1-2 if Loyx<(Ll 4]
=J1-2n{x—= - <x —+ =),
Ja(x) > =%=15,73
11
0 f(—+2)<x=<1
! (2n+2)_x_

Af(%)

—

1
2

Fig. 2.3 Sequence of functions f,(x)
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Evidently, the { f,,} are continuous. Moreover,

1

1/2
an_fmnf(;'f'%) —-0 asm,n — o0.

Thus, { fn} is a Cauchy sequence. It is easy to check that this sequence converges to
the limit function

1 if 0
fx) = 1
2

=X =

’

—_— N =

0 if <x =<

The limit function is not continuous and hence is not an element of %”([O, 1])
Consequently, %([O 1]) is not a Hilbert space.

Example 2.7.6. The function space LZ([a, b]) is a Hilbert space. Since LZ([a, b])
is a normed space, it suffices to prove it is complete. Let { fn} be a Cauchy sequence
in LZ([a, b]), that is,

b
/ |fm—fn|2dx—>0 as m,n — 0o.

Schwarz’s inequality implies that as m,n — oo

/ab{fm—fn{dxs \//abdx\//ab{fm—f,,|2dx=«/m\/mdx_>o_

Thus, { f,} is a Cauchy sequence in L' ([a, b]) and hence converges to a function f
in L' ([a, b]), that is,

b
/|f—f,,|dx—>0 asn — oo.

By Riesz’s theorem, there exists a subsequence { fpn} convergent to f almost
everywhere. Clearly, given an ¢ > 0, we have

/ o o

for sufficiently large m and n. Hence, by letting n — oo, we obtain

2
dx <¢

b
[ 1~ P <
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by Fatou’s lemma (see Theorem 2.8.5 in Debnath and Mikusinski 1999, p. 60). This
proves that /€ L?([a, b]). Moreover

/ublf—ﬁ|2dx§/ab|f—fpn

for sufficiently large n. This shows that the sequence { fn} converges to f in
Lz([a, b]) Thus, the completeness is proved.

b
2dx+/ | fon = ful dx < 2

Example 2.7.7. Consider the space %6,(R) of all complex-valued continuous func-
tions that vanish outside some finite interval. This is an inner product space with the
inner product

(fig) = /_ £() 3@ dx.

Note that there is no problem with the existence of the integral because the
product f(x) g(x) vanishes outside a bounded interval.
We now show that %,(R) is not complete. We define

fulx) = §““‘ 0 /(L4 Ix]) il < n,

if |x| > n.

Clearly, f,, € 6o(R) for every n € N. For n > m, we have

- o
=l = [ o= fucofar =2 [ e e

m

This shows that { fn} is a Cauchy sequence. On the other hand, it follows directly
from the definition of f, that

sin x

A0 0 = ey

which does not belong to %, (R).

Example 2.7.8. We denote by Lz*p([a, b]) the space of all complex-valued square
integrable functions on [a, b] with a weight function p which is positive almost
everywhere, that is, f € Lz*‘)([a,b]) if

b
/ |f(x)|2p(x) dx < o0.

This is a Hilbert space with the inner product

b R
(f.g) = [ £ 300 p(x) dx. @7.1)
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Example 2.7.9 (Sobolev Space). Let €2 be an open set in RY. Denote by
H™(Q),m = 1,2,..., the space of all complex-valued functions f € €"(R2)
such that D* f € L?(Q) for all |a| < m, where

ool £

Dif = ,
S axyoxy? ... oxyY

la] =a;+---+ay, and ay,....,ay >0.

For example, if N = 2,a = (2, 1), we have
3 f

D*f = ———.
/ 8x128x2

For f € ¥ (L2), we thus have

J

fgr every multi-index a = (o, a2, ..., ay) such that |a| < m. The inner product in
H'(R2) is defined by

olel £

o (%) N
Oxy'0xy7 ... 0xy

< o0

(f.g) =/ Y D*f Dug. (2.7.2)

2 Ja|<m

In particular, if @ C R2, then the inner product in H2(2) is given by

(f; g) = /Q (fg + f:V g’f + fy gy + fxx gxx + fyy gyy + fxy g_xy) (273)

Or, if @ = (a,b) C R, the inner product in I:I’"(a, b) is

b m n dT
(fg)= / S dvs (2.7.4)

— dx"  dx"

The function space H™ () is an inner product space, but it is not a Hilbert space
because it is not complete. The completion of H™(S2), denoted by H™ (), is a
Hilbert space. The function space H™ (£2) can be defined directly if D in the above
is understood as the distributional derivative. This approach is often used in more
advanced textbooks and treatises.

The space H™(S2) is a particular case of a general class of spaces denoted by
W,"(£2) and introduced by S.L. Sobolev. We have H™ (€2) = W,"(£2). Because of
the applications to partial differential equations, space H™(£2) is one of the most
important examples of Hilbert spaces.
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2.8 Strong and Weak Convergences

Since every inner product space is a normed space, it is equipped with a conver-
gence, and the convergence is defined by the norm, This convergence is called the
strong convergence. Moreover, the norm induces a topology in the space. Thus, a
normed space is, in a natural way, a metric space and hence a topological space.

Definition 2.8.1 (Strong Convergence). A sequence {x,} of vectors in an inner
product space X is called strongly convergent to a vector x in X if

|xn = x| — 0 as n — oo.
The word “strong” is added in order to distinguish “strong convergence” from “weak
convergence.”
Definition 2.8.2 (Weak Convergence). A sequence {x,} of vectors in an inner
product space X is called weakly convergent to a vector x in X if

(Xu,y) = (x,y)  asn — oo, foreveryy € X.

The condition in the above definition can also be stated as (x, — x,y) — 0 as
n — oo, forevery y € X.
It is convenient to reserve the notation “x,—x” for the strong convergence and

w
use “x, — x” to denote weak convergence.

Theorem 2.8.1. A strongly convergent sequence is weakly convergent (to the same

. . . . . w
limit), that is, x,—Xx implies x, — X.

Proof. Suppose that the sequence {x, } converges strongly to x. This means
|xn = x| — 0 as n — oo.
By Schwarz’s inequality, we have
|(x,,—x,y)‘§Hx,,—xH||yH—>0 asn — oo,
and thus,
(xp —x,9) >0 asn — oo, foreveryy € X.

This proves the theorem.

For any fixed y in an inner product space X, the mapping (.,y) : X — Cisa
linear functional on X . Theorem 2.8.1 states that such a functional is continuous for
every y € X. Obviously, the mapping (x,.) : X — C is also continuous.
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In general, the converse of Theorem 2.8.1 is not true. A suitable example will be
given in Sect. 2.9. On the other hand, we have the following theorem.

Theorem 2.8.2. If x, — x and [xa]| = || x|, then x, — x.

Proof. By the definition of weak convergence, we have
(xn,y) = (x,y) asn — oo, forall y.
Hence,
2
(xp,x) = (x,x) = ||xH .
Now,

Hx,, —x”2 = (xp — X, X5 — X)
= (Xn, Xn) — (X0, x) — {x, x) + {x,x)

= ool = 2Re (on. ) + [ > [ =2)x|* + |x[]* =0 asn— o0

The sequence {x,} is thus strongly convergent to x.

Theorem 2.8.3. Suppose that the sequence {x,} converges weakly to x in a Hilbert
space H. If, in addition,

, (2.8.1)

<l = tim [

then {x,} converges strongly to x in H.
Proof. We assume that (x,, y) — (x, y) and hence, (y, x,) — (y, x). We have the
result
2 2 2
||x — Xp H = (X=X, X —X,) = Hx” + Hx,, H — {x, x,) — (xp, x). (2.8.2)

In view of the assumption (2.8.1), result (2.8.2) gives

Tim = = 5P+ |x]* = ] = | <] =o.

This proves the theorem.

We next state an important theorem (without proof) that describes an important
property of weakly convergent sequences.

Theorem 2.8.4. Weakly convergent sequences are bounded, that is, if {x,} is a
weakly convergent sequence, then there exists a number M such that ||x,, || < M for
alln e N.
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2.9 Orthogonal and Orthonormal Systems

By a basis of a vector space X, we mean a linearly independent family 2 of vectors
m

from X such that any vector x € X can be written as x = Z AnX,, wWhere
n=1

X, € A and \,’s are scalars. In inner product spaces, orthonormal bases are of

m
much greater importance. Instead of finite combinations Z An Xy, infinite sums are
n=1
allowed, and the condition of linear independence is replaced by orthogonality. One

of the immediate advantages of these changes is that in all important examples it
is possible to describe orthonormal bases. For example, Lz([a, b]) has countable
orthonormal bases consisting of simple functions (see Example 2.9.2), whereas
every basis of LZ([a, b]) is uncountable and we can only prove that such a basis
exists without being able to describe its elements. In this section and the next, we
give all necessary definitions and discuss basic properties of orthonormal bases.

Definition 2.9.1 (Orthogonal and Orthonormal Systems). Let X be an inner
product space. A family S of nonzero vectors in X is called an orthogonal system
if x L y for any two distinct elements of S. If, in addition, ||x|| = 1 forall x € S,
S is called an orthonormal system.

Every orthogonal set of nonzero vectors can be normalized. If S is an orthogonal
system, then the family

Slzgi:xes}

[

is an orthonormal system. Both systems are equivalent in the sense that they span
the same subspace of X.

Note that if x is orthogonal to each of yi, ..., y,, then x is orthogonal to every
linear combination of vectors yi, ..., y,. In fact, we have

(x,y) = <x, Z)\kyk> = Zxk(x,yk) =0.
k=1 k=1

Theorem 2.9.1. Orthogonal systems are linearly independent.

n
Proof. Let S be an orthogonal system. Suppose that Zockxk = 0, for some

k=1
Xiy..., X, € Sanday,...,ua, € C. Then,

n n n
o=<Zakxk,zakxk>=Z|ak\2uxk||2.
k=1 k=1 k=1

This means that ay = 0 for each k € N. Thus, x1, ..., x, are linearly independent.
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Definition 2.9.2 (Orthonormal Sequence). A finite or infinite sequence of vectors
which forms an orthonormal system is called an orthonormal sequence.

The condition of orthogonality of a sequence {xn} can be expressed in terms of
the Kronecker delta symbol:

0 if ,
(Xms Xn) = Sun = ) ff””é” (2.9.1)
ITrm=n.

Example 2.9.1. For e, = (0,...,0,1,0,...) with 1 in the nth position, the set
S = {ej, ey, ...} is an orthonormal system in the sequence space /2.

Example 2.9.2 (Trigonometric Functions). The sequence ¢,(x) = e™/~2 ,
n =0,+1,42,... is an orthonormal system in L?([— , ]). Indeed, for m # n,
we have

(om0 =5 [ gy = €T
R T N 2 i(m—n) o

On the other hand,

(q)nv ¢n> = ZL/ ei(n—n)xdx =1.

Thus, (¢, dn) = 8y for every pair of integers m and n.

For the real Hilbert space LZ([— , ]), we can use the real and imaginary parts
of the sequence {¢,} and find that functions

1
—— cosnx, —— sinnx, (m=0,1,2,...)
V2o V2o
form an orthonormal sequence.

Example 2.9.3. The Legendre polynomials defined by

Po(x) = 1, (2.9.2a)

1 d"

Pux) = 21! dxn

(x> —1)", n=1273,..., (2.9.2b)

form an orthogonal system in the space Lz([—l, 1]). It is convenient to write
(x2 = 1)" = pa(x) so that

1 1 1
/ P,(x)x"dx = / P (x) x™ dx. (2.9.3)
—1 an’l' —1
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We evaluate this integral for m < n by recursion. First, we note that
k
p(x) =0

forx =+landk =0,1,2,...,(n — 1). Hence, by integrating (2.9.3) by parts, we
obtain

1 1
/1 pfl")(x) x"dx = —m/l pff’_l)(x) x"Vdx.
Repeated application of this operation ultimately leads to
1 1
m!(—l)m/ P (x) dx = mi(—1)" [p},"—m—”(x)] =0 (m<n).
_l -
Consequently,
1
/ P,(x)x"dx =0 form < n. (2.9.4)
—1
Since P, is a polynomial of degree m, it follows that

1
(P, Pp) = / P,(x)Pu(x)dx =0 forn # m. (2.9.5)
—1

This proves the orthogonality of the Legendre polynomials. To obtain an
orthonormal system from the Legendre polynomials, we have to evaluate the norm

of P, in L>([-1,1]):
1
20 =/ [ (Putoyas.

By repeated integration by parts, we first obtain

1 1
/(1—x2)”dx=/ 1=x)"(1+x)"dx
- -1

1

1

. n 1 n+l1 _

_n+1/_1(1 )" A +x)"Tdx = ...

_on(n—1)...21 ! -

T+ D +2).. 2 /_1 (1+x)™ dx
(}1')2 22n+1
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A similar procedure gives
1 5 1
/1 {p"(x)}" dx = 0—/1 P V() prt(x)dx = ...
1
=" [ o pE 0 dx
-1
1
= (2n)!/ (1—-x)"1 + x)"dx, (2.9.7)
-1

where we have used the fact that the 2nth derivative of p,(x) = ()c2 - 1)" is the
same as the derivative of the term of exponent 2n. The 2nth derivatives of all the
other terms of the sum are zero. From (2.9.2), (2.9.6), and (2.9.7), we obtain

1 2 ~2n+1
/ 1 (n)?2 2 298)

2
P d = 2 ! = .
1 {Pa()} (27n1)? @m) @n)'@n+1) 2n+1
. 1 .

Thus, the polynomials {/n + 3 P,(x) form an orthonormal system in the space
LZ([—l, 1]).

Example 2.9.4. We denote by H, the Hermite polynomials of degree n, that is,

2 dl‘l 2

H,(x) = (D" —e™". (2.9.9)
dx"

The functions ¢, (x) = e ~/>H,(x) form an orthogonal system in L>(R). The
inner product

(b, dm) = (_1)n+m/ exz d e 2d—e_xzdx

oo dxm dxm

can be evaluated by integrating by parts, which gives

— 00

2 d”" 2 dm! 2
n e m—1 e

dx dx oo

o0 n m—1
—/ d |:e"‘2 d e—xz} d—e_""zdx, (2.9.10)

oo dx dx" dxm—1

(_1)n+m<¢nv dm) = I:e

and hence, all terms under the differential sign contain the factor e™*

any k € N, we have

2 .
. Since, for

2
x‘e ™ —0 as x — 0o,
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the first term in (2.9.10) vanishes. Therefore, repeated integration by parts gives the
result

(Dn.dm) =0 asn #m. (2.9.11)

To obtain an orthonormal system, we evaluate the norm:

= o0 n 2
fouk? = [ e oy = [ e o o T

(o]

Integrating by parts n times yields

2 n o —x2 | x2 d" —x2 2
Hc{),,” =(-1) /_ooe [e dx"e i|dx.

Since H,(x) is a polynomial of degree n, direct differentiation gives

2 d"

ex We_xz = (—2x)n +
and
d" 2 d” 2 d"
x 2| _ o) Uy
T [e dx”e :| dx”{( 2x)" + } (=D)"2" n.
Consequently,
2 n * —Yz n
[on]” =2 n!/ e dx =2"nly". (29.12)
—0o0
Thus, the functions
1 _a2
Un(x) = —=—===¢" 2 Hu(x)

form an orthonormal system in the Hilbert space L*(R).

In the preceding examples, the original sequence of functions is orthogonal but
not orthonormal. Although the calculations involved might be complicated, it is
always possible to normalize the functions and obtain an orthonormal sequence.
It turns out that the same is possible if the original sequence of functions (or, in
general, a sequence of vectors in an inner product space) is linearly independent,
not necessarily orthogonal. The method of transforming such a sequence into an
orthonormal sequence is called the Gram—Schmidt orthonormalization process. The
process can be described as follows.
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Given a sequence {y, } of linearly independent vectors in an inner product space,
define sequences {w, } and {x,} inductively by

wi
w1 = Y1, X1 = m,
k—1
Wi
Wk:yk_Z(Yksxn>-xn7 xk:H, fork =1,2,...
n=1 Wk

The sequence {w, } is orthogonal. Indeed,

(wa, i) = <YZ - (J’2,x1)xl,)’1> = (y2, y1) — (y2, x1){x1, »1)

(y2, y1) (¥1, y1) —

= {y2, 1) — B
3]
Assume now that wy, ..., wy_ are orthogonal. Then, for any m < k,

k—1

D 5k W) (W W)

=1

(Wks W) = (Vi W) — = >
[
(ks Wi ) (Wis Wi )
= (3o W) — Pl
[ |

Therefore, vectors wy, ..., wy are orthogonal. It follows, by induction, that the
sequence {w,} is orthogonal and thus, {x,} is orthonormal. It is easy to check
that any linear combination of vectors x, ..., X, is also a linear combination of
Vi,..., s and vice versa. In other words, span{xi,...,x,} = span{yj,..., Vn}

forevery n € N.

2.10 Properties of Orthonormal Systems

In Sect. 2.6, we proved that the Pythagorean formula holds for any pair of orthogonal
vectors in an inner product space X. It turns out that it can be generalized to any
finite number of orthogonal vectors.

Theorem 2.10.1 (Pythagorean Formula). If xy,..., x, are orthogonal vectors in
an inner product space X, then

= Xn: x| (2.10.1)

n
D%
k=1
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Proof. If x; L x,, then Hx1 + X7 ||2 = Hx1 ||2+ sz ||2 by (2.6.10). Thus, the theorem
is true for n = 2. Assume now that the (2.10.1) holds for n — 1, that is,

n—1 2 n—1

2
2w =2l
k=1 k=1

n—1
Setx = Zxk and y = x,. Since x L y, we have
k=1

szc =[x+ 2 = [+ Iy = é el + | = k; el

This proves the theorem.

Theorem 2.10.2 (Bessel’s Equality and Inequality). Ler xi,...,x, be an
orthonormal set of vectors in an inner product space X. Then, for every x € X, we
have

= x|’ - Z\ X, X) (2.10.2)

n
x—E X, X)X
k=1

and

n

S ) [P < | x]) (2.10.3)

k=1

Proof. In view of the Pythagorean formula (2.10.1), we have

2 n n
=2 o ]* = 3 Jeu
k=1 k=1

for any arbitrary complex numbers o, . . ., o,. Hence,
n 2 n n
X — Zakxk = <x - Zakxk,x - Zakxk>
k=1 k=1 k=1
n n n
= Jof = Yo} - (St} + Sl
k=1 k=1 k=1
n n n
= Hx||2 - Z@(x,xk) - Zock(x,xk) + Zock(x_k
k=1 k=1 k=1

=27 =D [ [P+ D o)~ (2104
k=1 k=1
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In particular, if oy = (x, xx), this result yields (2.10.2). From (2.10.2), it follows
that

2

3

0 < [x]* = 3| (e )
k=1

which gives (2.10.3). Thus, the proof is complete.

Remarks. 1. Note that expression (2.10.4) is minimized by taking ox = (x, xx).
n

This choice of a;’s minimizes

X — Zakxk and thus provides the best

k=1
approximation of x by a linear combination of vectors xi, ..., X,.

2. If {x,} is an orthonormal sequence of vectors in an inner product space X, then,
from (2.10.2), by letting n — oo, we obtain

o0
Z | (x, x) |2 < Hx”2 (2.10.5)
k=1
o0
This shows that the series Z | (x, xr) |2 converges for every x € X. In other words,
k=1

the sequence {(x xk)} is an element of /2. We can say that an orthonormal sequence
in X induces a mapping from X into /2. The expansion

o
X ~ Z(x, Xp)Xn (2.10.6)
n=1
is called a generalized Fourier series of x. The scalars o, = (x,x,) are called

the generalized Fourier coefficients of x with respect to the orthonormal sequence
{x,}. It may be observed that this set of coefficients gives the best approximation.
In general, we do not know whether the series in (2.10.6) is convergent. However,
as the next theorem shows, the completeness of the space ensures the convergence.

Theorem 2.10.3. Let {x,} be an orthonormal sequence in a Hilbert space H and
o0

let {a,} be a sequence of complex numbers. Then, the series Z o, X, converges if

n=1

o0
and only th |0L,, iz < 00 and in that case

n=1

2 o0
=3 (2.10.7)
n=1

[e%e)
E Oy Xy
n=1
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Proof. For every m > k > 0, we have

2

S| =Y Jew> by @.10.1). (2.10.8)
n=k n=k
o0 o
If Z ‘oc,,|2 < oo, then the sequence s, = Zanx,, is a Cauchy sequence
n=1 n=1

o0
by (2.10.8). This implies convergence of the series Zanxn because of the
n=1
completeness of H.
o0
Conversely, if the series Zanxn converges, then the same formula (2.10.8)

n=1

o0
L 2
implies the convergence of E |0Ln| because the sequence of numbers o,, =

n=1
m

2. .
E |ocn‘ is a Cauchy sequence in R.

n=1
To obtain (2.10.7), it is enough to take k = 1 and let m — oo in (2.10.8) .
The above theorem and (2.10.5) imply that in a Hilbert space H the series

ok

(x, xn)x, converges for every x € H. However, it may happen that it converges

n=1
an element different from x.

to

1
Example 2.10.1. Let H = L*([— . ]), and let x,(1) = e sinnt for
n = 1,2,.... The sequence {xn} is an orthonormal set in H. On the other hand,

for x(¢) = cost, we have

oo oo

Z(x,xn)xn(t) = Z [%/_ cost sinnt dt:| Sijft

n=1 n=1

o0
=ZO-sinnt = 0 # cost.
n=1

It {xn} is an orthonormal sequence in an inner product space X, then, for every
x € X, we have

i ’ (%, x2) ’2 < 00,

n=1

and consequently,

lim (x, x,) = 0.
n—o0
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Therefore, orthonormal sequences are weakly convergent to zero. On the other hand,
since ||x,, H = 1 for all n € N, orthonormal sequences are not strongly convergent.

Definition 2.10.1 (Complete Orthonormal Sequence). An orthonormal
sequence {xn} in an inner product space X is said to be complete if, for every
x € X, we have

X = Z(x,xn) X (2.10.9)
n=1

It is important to remember that since the right-hand side of (2.10.9) is an infinite
series, the equality means

n

x—Z(x,xk)xk

k=1

lim
n—>00

:0,

where ||| is the norm in X. For example, if X = L*([— ., ]) and {/,} is an
orthonormal sequence in X, then by

ED VAN
n=1

weE mean

2
dt =0,  where oy :/ F(@t) fe () dt.

g&/Pm—Zwﬁm
- k=1

o0
This, in general, does not imply pointwise convergence: f(x) = Z oy fn (X).
n=1

Definition 2.10.2 (Orthonormal Basis). An orthonormal system S in an inner
product space X is called an orthonormal basis if every x € X has a unique
representation

(9]
X = E Op Xp,
n=1

where o, € C and x,,’s are distinct elements of S'.

Remarks. 1. Note that a complete orthonormal sequence {xn} in an inner product
space X is an orthonormal basis in X. It suffices to show the uniqueness.
Indeed, if

o0 o0
X = E o, X, and x = E Bn Xn,
n=1 n=1
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then

2 oo
= Z |0‘n_6n|2

n=1

Z (otn — Bn) Xu

n=1

o0 o0 2
E 0(;,)6,,—5 ann -

n=1 n=1

0= x| =

by Theorem 2.10.3. This means that o, = B, for all n € N. This proves the
uniqueness.
2. If {x,,} is a complete orthonormal sequence in an inner product space X, then
the set

n
span{xy, x,...} = {Zakxk:n eNap,...,0 €C
k=1

is dense in X.

The following two theorems give important characterizations of complete
orthonormal sequences in Hilbert spaces.

Theorem 2.10.4. An orthonormal sequence {xn} in a Hilbert space H is complete
if and only if (x, x,) = 0 for alln € N implies x = 0.

Proof. Suppose {x,,} is a complete orthonormal sequence in H . Then, every x € H
has the representation

o0
Exx,,

Thus, if (x,x,) = 0 forevery n € N, then x = 0.

Conversely, suppose (x, x,) = 0 for every n € N implies x = 0. Let x be an
element of H. We define

o
Exx,,

The sum y exists in H by (2.10.5) and Theorem 2.10.3. Since, for everyn € N,

o0
(x =y, xu) = (x. x0) —<Z(x,xk)xk,xn>
k=1
o0
= (x,xy,) Z X, X ) Xk, Xp)
k=1

= (X, xp) — (x,x0) =

we have x — y = 0 and hence,

o0
Exx,,
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Theorem 2.10.5 (Parseval’s Formula). An orthonormal sequence {xn} in a
Hilbert space H is complete if and only if

|x| Z| X, X) (2.10.10)

foreveryx € H.

Proof. Letx € H.By (2.10.2), for every n € N, we have
X — Z X, xk
k=1

If {x,, } is a complete sequence, then the expression on the left-hand side in (2.10.11)
converges to zero as n — o0o. Hence,

. [anZ—Z |<x,xk>|2] .
k=1

Therefore, (2.10.10) holds.

= [« —Z\ xoxe) | (2.10.11)

Conversely, if (2.10.10) holds, then the expression on the right-hand side
of (2.10.11) converges to zero as n — oo and thus,

2
n
n11>rrolo X — Z(x,xk)xk = 0.
k=1
This proves that {x, } is a complete sequence.
Example 2.10.2. The orthonormal system
bu(X) = ——, n=0,%1,%2,...,

NI

given in Example 2.9.2, is complete in the space Lz([— , ]). The proof of
completeness is not simple. It will be discussed in Sect.2.11.

A simple change of scale allows us to represent a function f* € L?([0, a]) in the
form

(X) Z B eZn 1x/a

n=—oo

where

= l/ f@)e™" "edr.
aJo
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Example 2.10.3. The sequence of functions
1 cosx sinx cos2x sin2x
\/2—5 \/— ’ \/— ’ \/— ) \/_ PR

is a complete orthonormal system in L?([— , ]). The orthogonality follows from
the following identities by simple integration:

2 cosnx cosmx = cos(n + m)x + cos(n —m)x,
2sinnx sinmx = cos(n —m)x — cos(n + m)x,

2 cosnx sinmx = sin(n + m)x — sin(n — m)x.

Since

/cosznxdxzf sifmxdx =

the sequence is also orthonormal. The completeness follows from the completeness
of the sequence in Example 2.10.2 in view of the following identities:

=1 and e'"" = (cosnx + isinnx).

Example 2.10.4. Each of the following two sequences of functions is a complete
orthonormal system in the space L*([— , ]):

1 12 12 5 12 3
——, 1/ — COS X,/ — cos2x,/— cos3x,...,
Ve
2 . 2 . 2 .
— sinx, 4/ — sin2x, 4/ — sin3x,....

Example 2.10.5 (Rademacher Functions and Walsh Functions). Rademacher func-
tions R(m, x) can be introduced in many different ways. We will use the definition
based on the sine function,

R(m,x) = sgn(sin(Z’” x)), m=0,1,2,...,x €[0,1],
where sgn denotes the signum function defined by

1 if x>0,
sgn(x) =3 0 if x=0,
-1 if x<0O.
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Rademacher functions form an orthonormal system in 1.2 ([O 1]) Obviously,

1
/ |R(m,x)|2dx =1 for all m.
0

To show that for m # n, we have

/l R(m,x) R(n,x)dx = 0.
0

b
First, notice that / R(m, x) dx = 0 whenever 2" (b —a) is an even number. Thus,

a
form > n > 0, we have

1 1
/ R(m,x)R(n,x)dx = / R(m,x)R(n,x)dx
0 0

» ok
= Z/z R(m,x)R(n, x) dx
=175

2" k.
2k —1 "
ZZSgn(R(n’ 2 ))/;R(m’x)dxzo
k=1

o7

because all of the integrals vanish.

The sequence of Rademacher functions is not complete. Indeed, consider the
function

1
0 if 0<x< -,
4
1 3
X) = 1 if - <x<-—,
S(x) if J=x=g
0 if 3< <1
if - <x .
1 =<

Then
1

1
/R(O,x)f(x)dx:l and /R(m,x)f(x)dx:O form > 1,
0 2 0

1
but f(x) # ER(O,x).
Rademacher functions can be used to construct Walsh functions, which
form a complete orthonormal system. Walsh (1923) functions are denoted by

W(m,x),m =0,1,2,.... Form = 0, we set W(0, x) = 1. For other values of m,
we first represent m as a binary number, that is,

n
m= ZZk_lak =a;+2'ar +2%a3 + -+ 2" a,,
k=1
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w(O0, ]
( x)o ]
w(l, x) » ]

( x)() |
W(z.x) (_.) | | |8 1
wis.) S,
WiSix) 11— R = e’

P | F——1 —;
w(6, x) g1 i 1 | )

Fig. 2.4 Walsh functions W(n, x)

where ay,a,,...,a, = 0or 1. Then, we define

n

W(m,x) =[] (Rk.x)* = (R(1.x)" (R2.x))" ... (R(n.x))""

k=1

where (R (m, x))0 = 1. For instance, since 53 is written as 110101 in binary form,
we have

W(53,x) = R(1,x) R(3,x) R(5, x) R(6, x).
Clearly, we have
R(n,x)=w(2"',x), neN

Several Walsh functions are shown in Fig. 2.4.

2.11 Trigonometric Fourier Series

In this section, we prove that the sequence

inx

du(x) = \/2—7

n=0=%x1,%£2,...,
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is a complete orthonormal sequence in Lz([— , ]) The orthogonality has been
established in Example 2.9.2. The proof of completeness is much more complicated.
For the purpose of this proof, it is convenient to identify elements of the space
L! ([— , ]) with 2 -periodic locally integrable functions on R due to the fact that

[fmmzﬁzfmmzﬁfmﬁMt

forany f € L'([~ , ])andanyx € R.
Let f € L'([- ., ])and

n

fi= Y (frdbe. n=0,1.2,....

k=—n
Then
"1 . : "1 ‘
L@ =Y — [ f@e™die™ = > — [ f)erMdr.
k;nz /_ k;nz /_
We next show that, for every f € L' ([— , ]), we have
fim ottt A
n—o00 n+1
inthe L'([— . ]) norm. We first observe that
Bl £ A0 2t 50 (1LY (1o
k=—n
$ 1 ( |k| ) —ikt ikx
= —(1-— f@)edte
k;n 2 /
_ 1 _ K ik
= / f(t)( - ( +1)e )dt.
2.11.1)

Lemma 2.11.1. Foreveryn € N and x € R, we have
, (m+ x

n sin
k . 1
E : 1— | | elkx — 2
n+1 n-+1 .2 X

k=—n sin 0
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Proof. We have
) 1 1

1 1 . .
sin g = E(l —cosx) = ~ e+ 5~ Ze”‘.

Then, direct calculation gives

[ U A N k| \ i
— o 1_ IKX
(46 t373c kz_:n nt+1)€

1 1 _. 1 1 ;
— __ ,—iln+1x -~ jiln+D)x
( 4 HE ) '

This proves the lemma.

Lemma 2.11.2. The sequence of functions

n k 4
K= 3 (1_n|+|l)elk,

k=-n

is a Fejér summability kernel.

Proof. Since/ e =2 ifk =0 and/ e’ = 0 for any other integer k, we

R |k| ikt g,
/_Kn(t)dt—k;n(l—n+l)/_ efdr =2 .

From Lemma 2.11.1, it follows that K,, > 0 and hence

obtain

/_ |K,,(t)|dt=/_ K,(t)dt =2 .

t 8
Finally, let § € (0, ).Fort € (8,2 —§), we have sin 3 > sin 3 and therefore

., (n+1)x
sin® ————

1 2 1
K@) = < < .
. 8
nl sin’ 2 (n + 1)sin® 3

Thus,

2 =8
/ K, ()i < -
8 (n + 1)sin? >

For a fixed §, the right-hand side tends to 0 as n — oo. This proves the lemma.
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Theorem 2.11.1. If f € Lz([— , ]) and |(f, d),,)| = 0 for all integers n, then
f=0ae

Proof. If
‘/fMKmsz

for all integers n, then

ho= Y - [ roerema—o

k=—n
Consequently,
Sox) + i) -+ ful) 1 . k| ik(x—1) _
o =3 [-ﬂQQZLO ;:06 )m_a

On the other hand, since f and all the functions elkx

! 3 K1Y ikcemr
2_/_ f@(k:_n(l‘m)e“ ))‘“
! : K1Y ik
-5/ f(x‘f)<kzz_n(l—m)ek)df

and hence, by Theorem 3.8.1 (see Debnath and Mikusinski 1999) and
Lemma 2.11.2,

are 2 -periodic, we have

.+ i+t Su
m

1 =
in the L! ([— , ]) norm. Therefore, f = 0 a.e.
Theorem 2.11.2. The sequence of functions
bu(X) = ——, n=0,%1,%2,...,

V2
is complete.

Proof. If [ € Lz([— , ]), then f € Ll([— , ]) Thus, by Theorem 2.11.1 if
(f, dn) = O for all integers n, then f = 0 a.e., thatis, f =0in f € LZ([— , ])
This proves completeness of the sequence by Theorem 2.10.4.
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Theorem 2.11.2 implies that, for every f € Lz([— , ]), we have

(o]

f=Y dudu (2.11.2)

n=—0oo

where

«/2; and aan%/_ f(t)e "dt.

In this case, Parseval’s formula yields

Hf}|2=/_ Solde= 3 Jul

n=—oo

dn(x) =

The series (2.11.2) is called the Fourier series of f, and the numbers an are called
the Fourier coefficients of f. It is important to point out that, in general, (2.11.2)
does not imply pointwise convergence. The problem of pointwise convergence of
Fourier series is much more difficult. In 1966, Carleson proved that Fourier series
of functions in L>([— , ]) converge almost everywhere.

2.12 Orthogonal Complements and the Projection Theorem

By a subspace of a Hilbert space H, we mean a vector subspace of H. A subspace
of a Hilbert space is an inner product space. If we additionally assume that S is a
closed subspace of H, then S is a Hilbert space itself because a closed subspace of
a complete normed space is complete.

Definition 2.12.1 (Orthogonal Complement). Let S be a nonempty subset of a
Hilbert space H. An element x € H is said to be orthogonal to S, denoted by
x L §,if (x,y) = O0forevery y € S. The set of all elements of H orthogonal to
S, denoted by S L is called the orthogonal complement of S. In symbols,

St={xeH:x LS}

The orthogonal complement of S+ is denoted by S+ = (S J-)l )

Remarks. If x 1 y for every y € H, then x = 0. Thus H+ = {0}. Similarly,
{O}J‘ = H. Two subsets A and B of a Hilbert space are said to be orthogonal if
x L yforevery x € Aand y € B. This is denoted by A L B. Note thatif A L B,
then A N B = {0} or @.
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Theorem 2.12.1 (Orthogonal Complement). For any subset of S of a Hilbert
space H, the set S* is a closed subspace of H.

Proof. Ifa,p € Cand x,y € S+ then
{ax +By.z) = afx,2) +B(y.2) =0
for every z € S. Thus, S+ is a vector subspace of H. We next prove that S+ is

closed.

Let {x,} € S* and x, — x for some x € H. From the continuity of the inner
product, we find

(st> :<hm xnsy>: hm (xan> :O,
n—o00 n—o0

for every y € S. This shows that x € S+, and thus, S+ is closed.

The above theorem implies that S+ is a Hilbert space for any subset S of H.
Note that S does not have to be a vector space. Since S L S+, we have S N S+ =
{0 orSNS+t=0.

Definition 2.12.2 (Convex Sets). A set .S in a vector space is called convex if, for
any x,y € Sanda € (0,1), we haveax + (1 —a)y € S.

Note that a vector subspace is a convex set.
The following theorem concerning the minimization of the norm is of fundamen-
tal importance in approximation theory.

Theorem 2.12.2 (The Closest Point Property). Let S be a closed convex subset
of a Hilbert space H. For every point x € H, there exists a unique point'y € S
such that

|x=»| = inf fx =2 2.12.1)

Proof. Let { yn} be a sequence in S such that

| =yul = infx -2
Denote d = inf ||x — z||. Since 1 (ym + yu) € S, we have
ZE€S 2

>d, forallm,n € N.

1
X_E(ym+yn)
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Moreover, by the parallelogram law (2.6.7),

2

2
||ym_y/1H2 =4 +Hym_yn||z_4

1 1
X_E(ym+y/1) x—z(ym+yn)

2

1
= ”(x —ym) + (x _y/t)Hz + H(x —Ym) — (x _y/t)Hz —4|x— E(ym + )

= 2(Jx =l + = l) =4 = 3 Om + )
Since

2(||x — Vm ||2 + ||x — Vu Hz) — 4d?, asm,n — oo,
and

2
> d?,

1
X_E(Ym‘i‘Yn)

it follows that ||y — yn H2 — 0as m,n — oo. Thus, {y,} is a Cauchy sequence.
Since H is complete and S is closed, lim, 0 ¥, = ¥ exists and y € S. It follows
from the continuity of the norm that

|x—y| = Hx— lim y,| = lim |x—y.| =4d.
n—00 n—00

We have proved that there exists a pointin S satisfying (2.12.1). It remains to prove
the uniqueness. Suppose there is another point y; in S satisfying (2.12.1). Then,

1
since 3 (y + y1) € S, we have

2
||y—y1||2:4d2—4Hx—y—;yl

This can only be true if y = y;.

Remark. Theorem 2.12.2 gives an existence and uniqueness result which is crucial
for optimization problems. However, it does not tell us how to find that optimal
point. The characterization of the optimal point in the case of a real Hilbert space
stated in the following theorem is often useful in such problems.

Theorem 2.12.3. Let S be a closed convex subset of a real Hilbert space H,y € S,
and let x € H. Then, the following conditions are equivalent:

@ = 5] = int | —.
(b) (x—y,z—y)<0 forallz € S.
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Proof. Letz € S. Since S is convex, Az + (1 —\)y € S forevery A € (0, 1). Then,
by (a), we have

[e =yl =lx=de=@ =2y = =0 =2z=n].

Since H is areal Hilbert space, we get
[e=y* =l =yl =2 tv =y 2= p) + e ="

Consequently,

(x—y.z—y)| < % lz— |

Thus, (b) follows by letting A — 0. .
Conversely, if x € H and y € S satisfy (b), then, for every z € S, we have

e =y = lx—2* =2(x = y. 2= y) = |z = ¥|* =0.

Thus, x and y satisfy (a).

If H = R? and S is a closed convex subset of R?, then condition (b) has an
important geometric meaning: the angle between the line through x and y and the
line through z and y is always obtuse, as shown in Fig.2.5.

Theorem 2.12.4 (Orthogonal Projection). If S is a closed subspace of a Hilbert
space H, then every element x € H has a unique decomposition in the form x =
y +z wherey € S and z € St

Proof. If x € S, then the obvious decomposition is x = x + 0. Suppose now that
x # S.Let y be the unique point of § satisfying |x — y| = inf |x —w]. as in
we

Theorem 2.12.2. We show that x = y + (x — y) is the desired decomposition.
Ifwe Sand A € C, then y + Aw € S and

e =37 = e =y = 2w]” = =y |* = 220w = ) - 122 ]
Hence,
2% (w, x — y) + P w]’ = 0.
If A > 0, then dividing by A and letting A — 0 gives

H{w,x —y) <0. (2.12.2)
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X

Fig. 2.5 Angle between two lines

Similarly, replacing A by —i M(A > 0), dividing by A, and letting A — 0 yields
F(w,x —y) <0. (2.12.3)

Since y € S implies —y € S, inequalities (2.12.2) and (2.12.3) hold also with —w
instead of w. Therefore, (w, x — y) = 0 for every w € S, which means x — y € S+

To prove the uniqueness, note thatif x = y; +z;, y; € S, and z; € S+, then
y—y1 € Sandz—z; € S*. Since y—y; = 71—z, we musthave y—y; = z;—z = 0.

Remarks. 1. According to Theorem 2.12.4, every element of H can be uniquely
represented as the sum of an element of S and an element of S*. This can be
stated symbolically as

H=S®S (2.12.4)

We say that H is the direct sum of S and S+. Equality (2.12.4) is called an
orthogonal decomposition of H. Note that the union of a basis of S and a basis
of S+ is a basis of H.

2. Theorem 2.12.2 allows us to define a mapping Ps(x) = y, where y is as
in (2.12.1). The mapping P; is called the orthogonal projection onto S.

Example 2.12.1. Let H = R2. Figure 2.6 exhibits the geometric meaning of the
orthogonal decomposition in R2. Here, x € R?, x = y + 2z, y € S,andz € S*.
Note that if s¢ is a unit vector in S, then y = (x, s¢)5o.

Example 2.12.2. If H = R?, given a plane P, any vector x can be projected onto
the plane P. Figure 2.7 illustrates this example.

Theorem 2.12.5. If S is a closed subspace of a Hilbert space H, then S*+ = §.

Proof. If x € S, then for every z € S+ we have (x,z) = 0, which means x € Sii
Thus, S ¢ S++. To prove that S+l < S consider an x € S++. Since S is closed,
x =y +zforsomey € S andz € S*. In view of the inclusion S C S++, we
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Fig. 2.6 Orthogonal decomposition in R?

P

Fig. 2.7 Orthogonal projection into a plane

have y € S+ and thus, z = x — y € S+ because S+ is a vector subspace.
But z € S+, so we must have z = 0, which means x = y € S. This shows that
S+L  S. This completes the proof.

2.13 Linear Functionals and the Riesz
Representation Theorem

In Sect. 2.7, we have remarked that for any fixed vector x( in an inner product space
X, the formula f(x) = (x,xo) defines a bounded linear functional on X. It turns
out that if X is a Hilbert space, then every bounded linear functional is of this form.
Before proving this result, known as the Riesz representation theorem, we discuss
some examples and prove a lemma.

Example 2.13.1. Let H = LZ((a,b)),—oo < a < b < oo. Define a linear
functional f on H by the formula

b
f(x) =/ x(t)dt.
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If xo denotes the constant function 1 on (a, b), then clearly f(x) = (x,xo) and
thus, f is a bounded functional.

Example 2.13.2. Let H = L*(a,b) and let t, be a fixed point in (a, b). Let f be
a functional on H defined by f(x) = x(t). This functional is linear, but it is not
bounded.

Example 2.13.3. Let H = C" and let ny € {1,2,...,n}. Define f by the

F((x1, 000 X)) = X
We have

f((xl, Ce ,)Cn)) = (()Cl, Ce ,xn)s eno)?

where e, is the vector which has 1 on the ny-th place and zeros in the remaining
places. Thus, f is a bounded linear functional.

Lemma 2.13.1. Let f be a bounded linear functional on an inner product space X .
Then, dim A[(f)* < 1.

Proof. If f = 0, then A((f) = X and dim A(f)L = 0 < 1. It remains to show
that dim A((f)* = 1 when f is not zero. Continuity of f implies that A((f) is
a closed subspace of X and thus A'(f)* is not empty. Let x1,x, € N(f)* be
nonzero vectors. Since f(x;) # 0and f(x;) # 0, there exists a scalar a # 0 such
that f(x;) + af(x2) = 0or f(x; + axy) = 0. Thus, x; + axy € A(f). On the
other hand, since A((f) is a vector space and x;,x; € A(f)*, we must have
X1 +ax, € N(f)L. This is only possible if x; + ax, = 0 which shows that x; and
X, are linearly dependent because @ # 0.

Theorem 2.13.1 (The Riesz Representation Theorem). Let f be a bounded
linear functional on a Hilbert space H. There exists exactly one xo € H such
that f(x) = (x, xo) for all x € H. Moreover, we have Hf” = on ”

Proof. If f(x) = 0 forall x € H, then xo = 0 has the desired properties. Assume
now that f is a nonzero functional. Then, dim A( f)* = 1, by Lemma 2.13.1. Let
70 be a unit vector in AL( f )J-. Then, for every x € H, we have

x = x —{x,20)20 + {x,20)20-
Since (x,20)z0 € AL(f)*, we must have x — (x, z0)zo € N(f), which means that
f(x = {x.20)20) = 0.

Consequently,

f(x) = f({x,20)20) = (x,20) f(20) = {x, f(20)20)-

Therefore, if we put

Xo = f(z0)z0,

then f(x) = (x,x) forallx € H.
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Suppose now that there is another point x; such that f(x) = (x,x;) for all
x € H.Then (x,xo— x1) = 0 forall x € H and thus (xo — x1, xo — x1) = 0. This
is only possible if xo = x;.

Finally, we have

171 = sup 70] = s [t 0] = sup (Jsfa]) = o]

[x]l=1 |x||=1
and
[xo]* = txo. x0) = | £Go)| < [ £ [
Therefore,
171 = lxol]-
The collection H’ of all bounded linear functionals on a Hilbert space H is a
Banach space. The Riesz representation theorem states that H' = H or, more

precisely, that H’ and H are isomorphic. The element x, corresponding to a
functional f is sometimes called the representer of f.

Note that the functional f defined by f(x) = (x, xo), where x¢ # 0 is a fixed
element of a complex Hilbert space H, is not linear. Indeed, we have f(ax+By) =
af(x) + Bf(»y). Such functionals are often called anti-linear or conjugate-linear.

2.14 Separable Hilbert Spaces

Definition 2.14.1 (Separable Hilbert Space). A Hilbert space is called separable
if it contains a complete orthonormal sequence. Finite-dimensional Hilbert spaces
are considered separable.

Example 2.14.1. The Hilbert space Lz([— , ]) is separable. Example 2.10.2
shows a complete orthonormal sequence in Lz([— , ])

Example 2.14.2. The sequence space [ is separable.

Example 2.14.3 (Nonseparable Hilbert Space). Let H be the space of all complex-
valued functions defined on R which vanish everywhere except a countable number
of points in R and such that

2
Z | f (x)| < 00.
fx)#0
The inner product in H can be defined as
(fe)= > flx)g.
Sx)g(x)#0

This space is not separable because, for any sequence of functions f, € H, there
are nonzero functions f such that (f, f,) = O foralln € N.
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Recall that a set S in a Banach space X is called dense in X if every element of
X can be approximated by a sequence of elements of S. More precisely, for every
x € X, there exist x, € S such that |x —x,| — 0asn — oo.

Theorem 2.14.1. Every separable Hilbert space contains a countable dense subset.

Proof. Let {x,} be a complete orthonormal sequence in a Hilbert space H . The set
S ={(o1 +iP)x1 + -+ (@ 4+ iBu)xn a1, ..., Br,.... By € Qn € N}

is obviously countable. Since, for every x € H,

n

Z(x,xk)xk —X

k=1

—0 asn — 0o,

the set S is dense in H .

The statement in the preceding theorem is often used as a definition of
separability.

Theorem 2.14.2. Every orthogonal set in a separable Hilbert space is countable.

Proof. Let S be an orthogonal set in a separable Hilbert space H, and let S; be the
set of normalized vectors from S, that is, S; = {x/| x| : x € S}. For any distinct
x,y € §1, we have

Jx=y[* = tr—y.x =)
= (x,x)—(x,y)—(y,x)+(y,y)
=1-0-0+41 (by the orthogonality)
=2.

This means that the distance between any two distinct elements of S is V2.

Now, consider the collection of (1/+/2)-neighborhoods about every element of
Sj. Clearly, no two of these neighborhoods can have a common point. Since every
dense subset of H must have at least one point in every neighborhood and H has a
countable dense subset, S; must be countable. Thus, S is countable.

Definition 2.14.2 (Hilbert Space Isomorphism). A Hilbert space H; is said to be
isomorphic to a Hilbert space H, if there exists a one-to-one linear mapping 7" from
H, onto H; such that

(T, T() = (x,y) (2.14.1)

for every x,y € H,. Such a mapping T is called a Hilbert space isomorphism of
H, onto H>.
Note that (2.14.1) implies HT” = 1 because ||T(x) || = ||xH for every x € Hj.
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Theorem 2.14.3. Let H be a separable Hilbert space.

(a) If H is infinite-dimensional, then it is isomorphic to the space [?;
(b) If H has dimension N, then it is isomorphic to the space CV .

Proof. Let {x,} be a complete orthonormal sequence in H. If H is infinite
dimensional, then {x,} is an infinite sequence. Let x be an element of H. Define
T(x) = {a,}, where o, = (x,x,),n = 1,2,.... By Theorem 2.10.3, T is a
one-to-one mapping from H onto 2. It is clearly a linear mapping. Moreover for
oy = (x,x;)and B, = (¥, x,),x,y € H,n € N, we have

(T(x).T»)) = ((@.ar,...), Br.B1....))

o

= ZOLnB_n = Z(x,xn)(y,xn)
n=1

n=1
o0
<x ) (¥, Xn )xn>
n=1
The proof of (b) is left as an exercise.
It is easy to check that isomorphism of Hilbert spaces is an equivalence relation.
Since any infinite dimensional separable Hilbert space is isomorphic to the
space /2, it follows that any two such spaces are isomorphic. The same is true for real
Hilbert spaces; any real infinite dimensional separable Hilbert space is isomorphic
to the real space /2. In some sense, there is only one real and one complex infinite
dimensional separable Hilbert space.

= (x,y).

= Z(-xs (ysxn>xn> =
n=1

Thus, T is an isomorphism from H onto /.

2.15 Linear Operators on Hilbert Spaces

The concept of an operator (or transformation) on a Hilbert space is a natural
generalization of the idea of a function of a real variable. Indeed, it is fundamental
in mathematics, science, and engineering. Linear operators on a Hilbert space are
widely used to represent physical quantities, and hence, they are more important
and useful. The most important operators include differential, integral, and matrix
operators. In signal processing and wavelet analysis, almost all algorithms are
mainly based on linear operators.

Definition 2.15.1 (Linear Operator). An operator 7' of a vector space X into
another vector space Y, where X and Y have the same scalar field, is called a linear
operator if

T(axl + bxz) =aTx +bTx; (2.15.1)

for all scalars a, b and for all x1, x, € X.

Otherwise, it is called a nonlinear operator.
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Example 2.15.1 (Integral Operator). One of the most important operators is the
integral operator T defined by

b
Tx(s) = / K(s, 1) x(t) dt (2.15.2)

where a and b are finite or infinite. The function K is called the kernel of the
operator.

Example 2.15.2 (Differential Operator). Another important operator is called the
differential operator

df(x)
dx

(Df)(x) = f(x) (2.15.3)

defined on the space of all differentiable functions on some interval [a,b] C R,
which is a linear subspace of L2 ([a, b])

Example 2.15.3 (Matrix Operator). Consider an operator 7 on C", and let
{e1,ea,...,e,} be the standard base in C”, that is, e; = (1,0,0,...,0),e; =
0,1,0,...,0),...,e, = (0,0,...,1).

We define

ajj = (Tej,e;) foralli,j € {1,2,...,n}.

n
Then, for x = Zaj ej € C", we have

j=1
Tx=Y a;Te; (2.15.4)
=1
and hence
n n
(Tx,e,-)zZaj (Tej,e,-) =Zaijaj. (2.15.5)
ji=1 j=0

Thus, every operator T on the space C” is defined by an n x n matrix.

Conversely, for every n x n matrix (a,-j), formula (2.15.5) defines an operator
on C". We thus have a one-to-one correspondence between operators on an
n-dimensional vector space and 7 X n matrices.

Definition 2.15.2 (Bounded Operator). An operator 7 : X — X is called
bounded if there exists a number K such that

HTxH < KHx” for every x € X.
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The norm of an operator 7 is defined as the least of all such number K or,
equivalently, by

Il = o |71,

It follows from this definition that
|7x] < 7 ]x].

If the operator 7 is defined by the matrix (a;;) in Example 2.15.3, then

(2.15.6)

This means that every operator on C”, and thus also every operator on any finite
dimensional Hilbert space is bounded.

The differential operator defined in Example 2.15.2 is unbounded. Consider the
sequence of functions f,(x) =sinnx,n =1,2,3,... definedon [— , ]. Then,

||f,,H={/_ sinznxdx}zzf

and

1

1D, | = {/_ (n cosnx)zdx} e

Thus,
IDf|| =0l fu] > 00 asn— .

Definition 2.15.3 (Continuous Operator). A linear operator T : X — Y,
where X and Y are normed spaces, is continuous at a point xo € X, if, for any
sequence {x,,} of elements in X convergent to x, the sequence {T(xn)} converges
to T'(xo). In other words, T is continuous at xg if ||xn — Xp H — 0 implies || T(x,)—
T (x0) || — 0. If T is continuous at every point x € X, we simply say that T is
continuous in X .

Theorem 2.15.1. A linear operator is continuous if and only if it is bounded.

The proof is fairly simple (see Debnath and Mikusinski 1999, p. 22) and omitted
here.
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Two operators 7' and S on a vector space X are said to be equal, T = S, if
Tx = Sx forevery x € X. The set of all operators forms a vector space with the
addition and multiplication by a scalar defined by

(T+S)x =Tx+ Sx,
(aT)x =aTx.
The product T'S of operators T and S is defined by
(TS)(x) =T(Sx).

In general, TS # ST. Operators T and S for which TS = ST are called
commuting operators.

Example 2.15.4. Consider the space of differentiable functions on R and the
operators

Tf(x)=xf(x) and D = i
dx

It is easy to check that TD # DT.

The square of an operator T is defined as 72x = T(T x). Using the principle of
induction, we can define any power of T' by

T"x =T (T" 'x).
Theorem 2.15.2. The product T'S of bounded operators T and S is bounded and

I7s] <I71]s]-

Proof. Suppose T and S are two bounded operators on a normed space X; | T || =

k1 and ||S|| = k5. Then,
HTSxH fleSx” §k1k2Hx|| for every x € X.

This proves the theorem.

Theorem 2.15.3. A bounded operator on a separable infinite dimensional Hilbert
space can be represented by an infinite matrix.

Proof. Suppose T is a bounded operator on a Hilbert space H and {en} is a
complete orthonormal sequence in H. For i, j € N, define

ajj = (TEj,€i>.
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For any x € H, we have

n
Tx=T nlgrc}o;(x,ej)ej
j=

n

:nlggoT Z:l(x,ej)ej , by continuity of T
=

n

= lim Z(x,ej)Tej , by linearity of T

n—o00

j=1
o0
= Z(x,ej)Tej.
j=1
Now,
o0 o0 o
(Tx,e;)) = <Z(x,ej)Tej,ei> = Z(Tej,e,-)(x,ej) = Za,'j (x,e;).
j=1 j=1 j=1

This shows that T is represented by the matrix (ai j).

Suppose T is a bounded operator on a Hilbert space H . For every fixed xo € H,
the functional f defined on H by

Jf(x) = (Tx, xo)

is a bounded linear functional on H. Thus, by the Riesz representation theorem,
there exists a unique yo € H such that f(x) = (x,y0) forall x € H. Or,
equivalently, (Tx, xo) = (x, yo) for all x € H.If we denote by 7" the operator
which to every xo € H assigns that unique yy, then we have

(Tx,y) = (X,T*y) forall x,y € H.

Definition 2.15.4 (Adjoint Operator). If 7 is a bounded linear operator on a
Hilbert space H, the operator T" : H — H defined by

(Tx,y)=(x,T"y) forallx,y e H
is called the adjoint operator of T .

The following are immediate consequences of the preceding definition.
(T+S) =7"+8", (aT) =ar",

(Y =1, 1"=1. (1S) =58"T",

for arbitrary operators 7" and S, [ is the identity operator and for any scalar a.
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Theorem 2.15.4. The adjoint operator T" of a bounded operator T is bounded.
Moreover,

[Tl =771 ana |77 =|T["

Proof. The reader is referred to Debnath and Mikusinski (1999, p. 151).
In general, T # T" . For example, suppose H = C?, and suppose T is defined by

T(z1,22) = (0,z1).
Then,

(T(x1.x2), 1. y2)) =x172 and  ((x1,x2), T(y1, y2)) = x2 J1.

However, operators for which 7' = T" are of special interest.

Definition 2.15.5 (Self-adjoint Operator). If 7 = T, that is, (Tx,y) =
(x,Ty) forall x,y € H,then T is called self-adjoint (or Hermitian).

Example 2.15.5. Suppose H = C" and that {e;, e, ..., ey} is a standard orthonor-
mal base in H. Suppose T is an operator represented by the matrix (ai j), where

ajj = (Te;,e;) (see Example 2.15.3). Then, the adjoint operator T" is represented
by the matrix by; = (T"e i, ex). Consequently,

bij = (ej. Tex) = (Tex.ej) = ajk.
Therefore, the operator T is self-adjoint if and only if a;; = a;;. A matrix that

satisfies this condition is often called Hermitian.

Example 2.15.6. Suppose H is a separable, infinite-dimensional Hilbert space, and
suppose {e, } is a complete orthonormal sequence in H. If T is a bounded operator
on H represented by an infinite matrix (ai j), the operator T is self-adjoint if and
only if a;; = aj; foralli, j € N.

Example 2.15.7. Suppose T is a Fredholm operator on Lz([a, b]) defined
by (2.15.2), where the kernel K is defined on [a, b] X [a, b] such that

b b ,
//|K(s,t)| dsdt < oo.

This condition is satisfied if K is continuous. We have

b b
(Tx,y):/ / K(s,t) x(t) y(s) ds dt

b b
=/ / K(s,t) x(t) y(s)ds dt
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b b
:/ x(t)/ K(s,t) y(s)ds dt

b
_ <x/ Ko y0) dt>.

This shows that

* b—
(T x)(s) =/ K(s,t)x(t)dt.

Thus, the Fredholm operator is self-adjoint if its kernel satisfies the equality
K(s,t) = K(t,s).

Example 2.15.8. The operator T on LZ([a,b]) defined by (Tx)(t) = tx(¢) is
self-adjoint.
We have

b L b
(Tx,y) =/ tx@)y(@t)dt = / x(@)ty(@t)dt = (x,Ty).

Example 2.15.9. The operator T defined on L*(R) defined by (7'x) (1) = e lx (1)
is bounded and self-adjoint.
The fact that T is self-adjoint follows from

(Tx,y) = /_00 e Mx@) y(0)dt = /_OO x()e Ml y(t)dt = (x,Ty).

The proof of boundedness is left as an exercise.

Theorem 2.15.5. If T is a bounded operator on a Hilbert space H, the operators
A=T+T" and B = T"T are self-adjoint.

Proof. Forall x,y € H, we have
(Ax,y) = ((T n T*)x,y> - (x, (T + T*)*y> - (x, (T + T*)y> = (x, Ay)
and

(Bx,y) = (T* Tx,y> =(Tx,Ty) = <x, T*Ty> = (x, By).

Theorem 2.15.6. The product of two self-adjoint operators is self-adjoint if and
only if they commute.
Proof. Suppose T and S are two self-adjoint operators. Then,

(TSx,y) =(Sx,Ty) = (x,STy)
Thus, if TS = ST, then T'S is self-adjoint.
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Conversely, if T'S is self-adjoint, then the above implies 7S = (T'S ) =ST.

Example 2.15.10. Consider the differential operator D in the space of all differen-
tiable functions on R vanishing at infinity. Then,

(Dx,y) = / —x(t) y(t)dt = /_x(t) — (@) dt

=/_ x(0)- (——y()) { = (x.—Dy).

Thus, —D is the adjoint of the operator D.

d
Example 2.15.11. Consider the operator T = i n in the space of all differentiable

functions on R vanishing at infinity.
We have

o0 d - o0
<Tx,y>=/_ iExm-y(z)dr:—i[_ X0 @ dr

o0

&0 d
= /_oox(t) . (i Ey(t)) dt = (x,Ty).

Therefore, T is a self-adjoint operator.

Theorem 2.15.7. For every bounded operator T on a Hilbert space H, there exist
unique self-adjoint operators A and B suchthatT = A+ iB and T" = A—iB.

Proof. Suppose T is a bounded operator on H. Define
1 * 1 *

Evidently, A and B are self-adjointand T = A + i B. Moreover, forany x,y € H,
we have

(Tx,y) = ((A +iB)x, y) = (Ax, y) + i(Bx, y)
= (x, Ay) + i(x, By) = (x, (A- iB)y).

Hence, T = A—iB.
The proof of uniqueness is left as an exercise.

In particular, if T is self-adjoint, then T = A and B = 0. This implies that
self-adjoint operators are like real numbers in C.

We next discuss projection operators and their properties.

According to the projection Theorem 2.12.4, if S is a closed subspace of a Hilbert
space H, then for every x € H, there exists a unique element y € S such that
x = y +zand z € S*. Thus, every closed subspace induces an operator on H
which assigns to x that unique y.
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Definition 2.15.6 (Anti-Hermitian Operator). An operator A is called anti-
Hermitianif A = —A".
The operator in Example 2.15.10 is anti-Hermitian.

Definition 2.15.7 (Inverse Operator). Let T be an operator defined on a vector
subspace of X. An operator S defined on R(T) is called the inverse of T if
TSx = xforallx € R(T)and ST x = x forall x € D(T). An operator which has
an inverse is called invertible. The inverse of T will be denoted by 7.

If an operator has an inverse, then it is unique. Indeed, suppose S| and S, are
inverses of 7. Then

Si=811=8TS=15=5.
Note also that
D(T™")=R(T) and R(T')=D(T).

First, we recall some simple algebraic properties of invertible operators.

Theorem 2.15.8. (a) The inverse of a linear operator is a linear operator.

(b) An operator T is invertible if and only if Tx = 0 implies x = 0.

(c) If an operator T is invertible and vectors x1, ..., x, are linearly independent,
then T'xy, ..., Tx, are linearly independent.

(d) If operators T and S are invertible, then the operator T'S is invertible and we
have (TS)™! = S~

Proof. (a) Forany x,y € R(T) and o, p € C, we have

T Wax+By) =T N aTT 'x+BTT 'y)
=T ' Tl 'x+pT7'y)=aT 'x +BT"y.

(b) If T is invertible and Tx = 0,then x = T~'Tx = T~'0 = 0. Assume now
that Tx = 0 implies x = 0. If Tx; = Tx,, then T(x; — x) = 0 and thus
x; — x = 0. Consequently, x; — x, = O. which proves that T is invertible.

(¢) Suppose a;Tx; + -+ + a,Tx, = 0. Then, T(ot;x; + -+ + a,x,) = O,

and since T is invertible, ajx; + --- 4+ a,x, = 0. Linear independence of
X{,..., X%, impliesa; = -+ = o, = 0. Thus, vectors T'xy, ..., T x, are linearly
independent.

(d) In view of (b). if T(Sx) = 0, then Sx = 0 since T is invertible. If Sx = 0,
then x = 0, since S is invertible. Thus, T'S is invertible by (b). Moreover,

(ST'TIN(TS)=8S(TT'T)S=S"'S =1

Similarly, (7S)(S~'7~") = I. This proves that (TS)_1 =S-IT1
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It follows from part (c) in the preceding theorem that if X is a finite dimensional
vector space and T is a linear invertible operator on X, then R(T) = X.
As the following example shows, in infinite dimensional vector spaces this is not
necessarily true.

Example 2.15.12. Let X = [2. Define an operator 7 on X by
T(Xl,XQ,...) = (0,)61,)62,...).

Clearly. this is a linear invertible operator on /2> whose range is a proper subspace
of I2.

The next example shows that the inverse of a bounded operator is not necessarily
bounded.

Example 2.15.13. Let X = 2. Define an operator T on X by

T(xl’x2"”)=(xla%,%,...,);—n, )
Since
o | |2 >
HT(Xl,xz,..-)” = Z n"2 < len|2: H(xl,xz,...) ,
n=1 n=1

T is a bounded operator. 7 is also invertible:
T_l(xl,xz, . ) = (x1,2x2,3x3, e X, . )

However, T~! is not bounded. In fact, consider the sequence {e, } of elements of / 2
where {e,} is the sequence whose nth term is 1 and all the remaining terms are 0.
Then, H e, H = 1and || T e, H = n. Therefore, T~ is unbounded.

If X is finite dimensional, then the inverse of any invertible operator on X is
bounded because every operator on a finite dimensional space is bounded.

Theorem 2.15.9. Let T be a bounded operator on a Hilbert space H such that
R(T) = H. If T has a bounded inverse, then the adjoint T is invertible and

()" = ()"
Proof. Tt suffices to show that

* ® *

(T T"x=T"(T"") x=x (2.15.7)

for every x € H.Indeed, for any y € H, we have

(3. () T x) = (7710, T7x) = (TT 7y %) = (3.%)
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and

Thus,
(3. () T7x) = (3. 77 (17) %) = (y.x) forall y € H. (2.15.8)

This implies (2.15.7).

Corollary 2.15.1. If a bounded self-adjoint operator T has bounded inverse T,
then T~ is self-adjoint.

Proof (T71) = (T")"' =71,

Definition 2.15.8 (Isometric Operator). A bounded operator T on a Hilbert
space H is called an isometric operator if | T x|| = || x| forall x € H.

Example 2.15.14. Let {e,} ,n € N, be a complete orthonormal sequence in a
Hilbert space H. There exists a unique operator 7' such that Te, = e, for all

o o
n € N. In fact, if x = Z o, e,, then Tx = Zanen+1. Clearly, T is linear and

n=1 n=1
o0
H Tx“2 = Z iocn |2 = ||x“ Therefore, T is an isometric operator. The operator T

n=1
is called a one-sided shift operator.

Theorem 2.15.10. A bounded operator T defined on a Hilbert space H is isometric
ifand only if T"T = I on H.

Proof. If T is isometric, then for every x € H we have || Tx Hz =|x ||2 and hence,
(T"Tx,x) = (Tx,Tx) = (x,x)  forallx e H.
This implies that 7° 7 = I. Similarly, if 7° 7 = I, then

|Tx| = \/(Tx,Tx) = \/(T*Tx,x) = \/(x,x) = ||x|.

Note that isometric operators “preserve inner product™ (Tx,Ty) = (x,y).
In particular, x L y if and only if Tx L Ty. The operator in Example 2.15.12
is an isometric operator.

Definition 2.15.9 (Unitary Operator). A bounded operator 7" on a Hilbert space
H is called a unitary operatorif T"T =TT =1 onH.

In the above definition it is essential that the domain and the range of T be the
entire space H.
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Theorem 2.15.11. An operator T is unitary if and only if it is invertible and
T =T".

Proof. Assume that T is an invertible operator on a Hilbert space H such that
T~ =T . Then, T°T = T7'T = I and TT" = TT~' = I. Therefore, T
is a unitary operator. The proof of the converse is similar.

Theorem 2.15.12. Suppose T is a unitary operator. Then

(a) T is isometric,
(b) T~ and T" are unitary.

Proof. (a) follows from Theorem 2.15.10. To prove (b), note that

(T =7"T' =TT = I
Similarly, 7='(T~")" = 1, and thus, 7" is unitary. Since 7~ = T~', by
Theorem 2.15.11, T" is also unitary.

Example 2.15.15. Let H be the Hilbert space of all sequences of complex numbers
o0

x ={...,X_1, X0, X[, ...} such that ||xH = Z |x,,‘2 < oo. The inner product is

n=—0oo

defined by
o0
> X
n=—oo

Define an operator 7 by T'(x,) = (x,—1). T is a unitary operator and hence, T is
invertible and

This implies that 7~ = T,

Example 2.15.16. Let H = L?([0, 1]). Define an operator T on H by (Tx)(1) =
x (1 — t). This operator is a one-to-one mapping of H onto H. Moreover, we have
T=T" =T""Thus, Tisa unitary operator.

Definition 2.15.10 (Positive Operator). An operator T is called positive if it is
self-adjoint and (T'x,x) > O forall x € H.

Example 2.15.17. Let ¢ be a nonnegative continuous function on [a,b]. The
multiplication operator T on L*([a, b]) defined by Tx = ¢x is positive. In fact
for any x € L*([a, b]), we have

b _ b
(Tx,x)z/ d)(t)x(t)x(t)dtz/ o(1)|x (1) dr > .
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Example 2.15.18. Let K be a positive continuous function defined on [, b] X [, b].
The integral operator 7" on Lz([a, b]) defined by

b
(Tx)(s)z/ K(s,t) x(t)dt

is positive. Indeed, we have

b b b b
(Tx,x)z/ / K(s,t)x(t)%dtds=/ / K(s,t)\x(t)|2dtds20

forall x € L*([a, b]).

Theorem 2.15.13. For any bounded operator A on a Hilbert space H, the
operators A" Aand AA™ are positive.

Proof. Forany x € H, we have
(A" Ax, x) = (Ax, Ax) = |Ax|* = 0
and
(44" x,x) = (4"x,4"x) = | 4x|* = 0.

Theorem 2.15.14. If A is an invertible positive operator on a Hilbert space H,
then its inverse A~ is positive.

Proof. If y € D(A™"), then y = Ax for some x € H, and then
(A7'y, y) = (47" Ax, Ax) = (x, Ax) > 0.

To indicate that A is a positive operator, we write A > 0. If the difference A — B
of two self-adjoint operators is a positive operator, thatis, A — B > 0, then we write
A > B. Consequently,

A > B if and only if (Ax,x) > (Bx,x) forall x € H.

This relation has the following natural properties:

IfA>BandC > D,thenA+ C > B + D;
IfA>0anda > 0(a € R), then a4 > 0;
IfA>Band B> C,then A > C.

Proofs are left as exercises.

Theorem 2.15.15. If T is a self-adjoint operator on H and || T|| <1, thenT <1I.
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Proof. If |T|| < 1, then
(Te.x) =< | T = (. x) = (1.2)

forallx € H.

Definition 2.15.11 (Orthogonal Projection Operator). If S is a closed subspace
of a Hilbert space H, the operator P on H defined by

Px=y ifx=y+z yeS and zeSt, (2.15.9)

is called the orthogonal projection operator onto S, or simply, the projection
operator onto S. The vector y is called the projection of x onto S.

Since the decomposition x = y 4 z is unique, it follows that projection operators
are linear. The Pythagorean formula implies that

[Px]® =1y = 1P = Dl =< "

This shows that projection operators are bounded and H Px H < 1. The zero operator
is a projection operator onto the zero subspace. If P is a nonzero projection operator,
then H Px || = 1 because, for every x € S, we have Px = x. The identity operation
1 is the projection operator onto the whole space H .

Moreover, it follows from (2.15.9) that

(Px,x— Px)=0 for every x € H.

Example 2.15.19. If S is a closed subspace of a Hilbert space H and {e,} is a
complete orthonormal system in S, then the projection operator P onto S can be
defined by

Px = Z(x,e,,)e .
n=1
In particular, if the dimension of S is unity and u € S, ||u|| = 1, then Px =

(x, u)u.

Example 2.15.20. Suppose that H = LZ([— , ]) Every x € H can be
represented as x = y + z, where y is an even function and z is an odd function. The
operator defined by Px = y is the projection operator onto the subspace of all even
functions. This operator can also be defined as in Example 2.15.19:

o0

Px = (x,¢n)dn,

n=0

1 1
where g = —— and ¢,(t) = — cosnt, n=1,2,3,....
V2 Ng
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Example 2.15.21. Let H = Lz([— , ]) and P be an operator defined by

0 t<0
Px)yt)y=3" -
(P2)@®) x(t),t>0
Then, P is the projection operator onto the space of all functions that vanish for
t<0.

Definition 2.15.12 (Idempotent Operator). An operator 7 is called idempotent
ifT?=T.
Every projection operator is idempotent. In fact, if P is the projection operator

onto a subspace S, then P is the identity operator on S. Since Px € S for every
x € H, it follows that P> = P(Px) forall x € H.

Example 2.15.22. Consider the operator T on C? defined by T'(x, y) = {(x — y,0).
Obviously, T is idempotent. On the other hand, since

(T()C, y)v ()C, y) - T()C, y)) = XY— |J’|Zs

T (x, y) need not be orthogonal to (x, y) — T'(x, y) and thus 7 is not a projection.

Definition 2.15.13 (Compact Operator). An operator 7 on a Hilbert space H is
called a compact operator (or completely continuous operator) if, for every bounded
sequence {xn} in H, the sequence {Txn} contains a convergent subsequence.

Compact operators constitute an important class of bounded operators. The
concept originated from the theory of integral equations of the second kind.
Compact operators also provide a natural generalization of operators with finite-
dimensional range.

Example 2.15.23. Every operator on a finite dimensional Hilbert space is compact.
Indeed, if T is an operator on CNV, then it is bounded. Therefore, if {xn} is a bounded
sequence, then {Tx,,} is a bounded sequence in CV. By the Bolzano—Weierstrass
theorem, {Txn} contains a convergent subsequence.

Theorem 2.15.16. Compact operators are bounded.

Proof. 1f an operator T is not bounded, then there exists a sequence {xn} such that
Hx,, H = 1, foralln € N, and H T x, H — 00. Then, {Tx,,} does not contain a
convergent subsequence, which means that 7" is not compact.

Not every bounded operator is compact.

Example 2.15.24. The identity operator / on an infinite dimensional Hilbert space
H is not compact, although it is bounded. In fact. consider an orthonormal sequence
{e,} in H. Then, the sequence /e, = e, does not contain a convergent subsequence.

Example 2.15.25. Let y and z be fixed elements of a Hilbert space H . Define
Tx = (x, y)z.



2.15 Linear Operators on Hilbert Spaces 103

Let {xn} be a bounded sequence, that is,
Since

xn” < M forsome M > Oandalln € N.

(e )l < [l ] < M)y

’

the sequence {(x,, )} contains a convergent subsequence {(x,,, y)}. Denote the
limit of that subsequence by a. Then,

Txp, =(xp,.y)z—>az asn — oo.

Therefore, T is a compact operator.

Example 2.15.26. Important examples of compact operators are integral operators
T on LZ([a, b]) defined by

b
(Tx)(s)z/ K(s,t)x(t)dt,

where a and b are finite and K is continuous.

Example 2.15.27. Let S be a finite-dimensional subspace of a Hilbert space H . The
projection operator Py is a compact operator.

Theorem 2.15.17. Let A be a compact operator on a Hilbert space H, and let B
be a bounded operator on H. Then, AB and BA are compact.

Proof. Let {x,} be a bounded sequence in H. Since B is bounded, the sequence
{Bx,} is bounded. Next, since A is compact, the sequence {ABx,} contains a
convergent subsequence, which means that the operator A B is compact. Similarly,
since A is compact, the sequence { Ax, } contains a convergent subsequence {Ax P }
Now, since B is bounded (and thus continuous), the sequence {BAx pn} converges.
Therefore, the operator BA is compact.

The operator defined in Example 2.15.27 is a special case of a finite-dimensional
operator.

Definition 2.15.14 (Finite-Dimensional Operator). An operator is called finite-
dimensional if its range is of finite dimension.

Theorem 2.15.18. Finite-dimensional bounded operators are compact.

Proof. Let A be a finite-dimensional bounded operator and let {z;,...,z} be an
orthonormal basis of the range of A. Define

T,x = (A)C, Zn)Zn
forn =1,...,k. Since

Tn.x = (Ax,Zn>Zn = (xa A*Zl‘l)zna
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the operators 7,, are compact, as proved in Example 2.15.25. Since

k
A=>"T,.
n=1

A is compact because the collection of all compact operators on a Hilbert space H
is a vector space.

Theorem 2.15.19. If T, T, ... are compact operators on a Hilbert space H and
H T,.—T || — 0 asn — oo for some operator T on H, then T is compact.

Proof. Let {xn} be a bounded sequence in H. Since 7 is compact, there exists a
subsequence {xl,n} of {x,,} such that {Tlxl,n} is convergent. Similarly, the sequence
{szl,n} contains a convergent subsequence {szz,n}- In general, for k > 2, let
{xk,n} be a subsequence of {Xk—1,n} such that {Tkxk,n} is convergent. Consider
the sequence {x,,,,,}. Since it is a subsequence of {xn}, we can put x,, = X,
where { p,,} is an increasing sequence of positive integers. Obviously, the sequence
{Tkx pn} converges for every k € N. We will show that the sequence {Tx],n} also
converges.

Let ¢ > 0. Since H T, — T|| — 0, there exists k € N such that || T, — TH < ﬁ,
where M is a constant such that Hx,, H < M for all n € N. Next, let k; € N be such
that

|| Tk‘x]’n - Tk‘x]’m

=

e
3

forall n,m > k;. Then,

A
=
=

Ry

+ “ Tkxpn - Tk‘x]’m

+ “ Tkxpm - T‘x]’m

“ T'xpn - T‘x]’m - Tkxp,,

<8+8+8
— — — =g
-3 3 3

for sufficiently large n and m. Thus, {Tx Pn} is a Cauchy sequence in H . Complete-
ness of H implies that {Tx],n} is convergent.

Corollary 2.15.2. The limit of a convergent sequence of finite-dimensional opera-
tors is a compact operator.

Proof. Finite-dimensional operators are compact.
Theorem 2.15.20. The adjoint of a compact operator is compact.

Proof. Let T be a compact operator on a Hilbert space H, and let {xn} be a
bounded sequence in H, that is, Hxn H < M for some M for all n € N. Define
yp =T xy,n =1,2,....Since T" is bounded, the sequence {yn} is bounded. It
thus contains a subsequence {yx, } such that the sequence {7y, } converges in H.
Now, for any m,n € N, we have
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2 . . 2
e[ = s -7
= (1" (v = 0,). " (35, = 31,))
= (TT* (Xt — Xk, ) (X0, — xk,,)>

< H TT" (XK — Xk,)

(R

< 2M|Tyy, — Ty,

— 0, asm,n — oo.

Therefore, { Yk,,} is a Cauchy sequence in H, which implies that { ykn} converges.
This proves that T" isa compact operator.

In the next theorem, we characterize compactness of operators in terms of weakly
convergent sequences. Recall that we write “x, — x” to denote strong convergence

w
and “x, — x” to denote weak convergence.

Theorem 2.15.21. An operator T on a Hilbert space H is compact if and only if
Xn = x implies Tx, — Tx.

Proof. For a proof of this theorem, the reader is referred to Debnath and Mikusinski
(1999).

Corollary 2.15.3. If T is a compact operator on a Hilbert space H and {x,} is an
orthonormal sequence in H, then lim,o T x,, = 0.

Proof. Orthonormal sequences are weakly convergent to 0.

It follows from the above theorem that the inverse of a compact operator on an
infinite-dimensional Hilbert space, if it exists, is unbounded.

It has already been noted that compactness of operators is a stronger condition
than boundedness. For operators, boundedness is equivalent to continuity. Bounded
operators are exactly those operators that map strongly convergent sequences into
strongly convergent sequences. Theorem 2.15.21 states that compact operators on a
Hilbert space can be characterized as those operators which map weakly convergent
sequences into strongly convergent sequences. From this point of view, compactness
of operators is a stronger type of continuity. For this reason, compact operators are
sometimes called completely continuous operators. The above condition has been
used by F. Riesz as the definition of compact operators. Hilbert used still another
(equivalent) definition of compact operators: an operator 7 defined on a Hilbert
space H is compact x, — x weakly and y, — y weakly implies (Txn, y,,) —
(Tx. y) strongly.
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2.16 Eigenvalues and Eigenvectors of an Operator

This section deals with concepts of eigenvalues and eigenvectors which play a
central role in the theory of operators.

Definition 2.16.1 (Eigenvalue). Let 7" be an operator on a complex vector space
X. A complex number A is called an eigenvalue of T if there is a nonzero vector
u € X such that

Tu = . (2.16.1)

Every vector u satisfying (2.16.1) is called an eigenvector of T corresponding to the
eigenvalue \. If X is a function space, eigenvectors are often called eigenfunctions.

Example 2.16.1. Let S be a linear subspace of an inner product space X, and T be
the projection on S. The only eigenvalues of 7" are 0 and 1. Indeed, if, for some
A€ Cand0 # u € X, we have Tu = Au, then

M= Nu,

because 72 = T. Therefore, A = 0 or A = 1. The eigenvectors corresponding to 0
are the vectors of X which are orthogonal to S. The eigenvectors corresponding to
1 are all elements of S.

It is important to note that every eigenvector corresponds to exactly one
eigenvalue, but there are always infinitely many eigenvectors corresponding to an
eigenvalue. Indeed, every multiple of an eigenvector is an eigenvector. Moreover,
several linearly independent vectors may correspond to the same eigenvalue. We
have the following simple theorem.

Theorem 2.16.1. The collection of all eigenvectors corresponding to one particu-
lar eigenvalue of an operator is a vector space.

The easy proof is left as an exercise.

Definition 2.16.2 (Eigenvalue Space). The set of all eigenvectors corresponding
to one particular eigenvalue )\ is called the eigenvalue space of L. The dimension
of that space is called the multiplicity of A. An eigenvalue of multiplicity one is
called simple or nondegenerate. In such a case, the number of linearly independent
eigenvectors is also called the degree of degeneracy.

Example 2.16.2. Consider the integral operator 7 : Lz([O,Z ]) — Lz([O,Z ])
defined by

2
(Tu)(t) = /0 cos(t — y)u(y) dy. (2.16.2)
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We will show that T has exactly one nonzero eigenvalue A = , and its
eigenfunctions are

u(t) = acost + bsint

with arbitrary a and b.

The eigenvalue equation is

2
(Tu)(t) = /0 cos(t — y)u(y)dy = hu(t).

2 2
cost/ u(y)cosydy + sint/ u(y)siny dy = hu(t). (2.16.3)
0 0

This means that, for A # 0, u is a linear combination of cosine and sine functions,
that is,

u(t) =acost + bsint, (2.16.4)
where a, b € C. Substituting this into (2.16.3), we obtain
a=MAa and b =M\b. (2.16.5)

Hence, A = , which means that 7 has exactly one nonzero eigenvalue and its
eigenfunctions are given by (2.16.4). This is a two-dimensional eigenspace, so the
multiplicity of the eigenvalue is 2.

Equation (2.16.3) reveals that A = 0 is also an eigenvalue of 7. The correspond-
ing eigenfunctions are all the functions orthogonal to cos? and sin¢. Therefore,
A = 0is an eigenvalue of infinite multiplicity.

Note that if A is not an eigenvalue of 7', then the operator 7' — A/ is invertible, and
conversely. If space X is finite dimensional and X is not an eigenvalue of 7', then the
operator (T - )_1 is bounded because all operators on a finite-dimensional space
are bounded. The situation for infinite dimensional spaces is more complicated.

Definitions 2.16.3 (Resolvent, Spectrum). Let 7" be an operator on a normed
space X. The operator

7= (T —\)"

is called the resolvent of T'. The values A for which 7, is defined on the whole space
X and is bounded are called regular points of T. The set of all A’s which are not
regular is called the spectrum of T'.
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Every eigenvalue belongs to the spectrum. The following example shows that the
spectrum may contain points that are not eigenvalues. In fact, a non empty spectrum
may contain no eigenvalues at all.

Example 2.16.3. Let X be the space C([a,b]) of continuous functions on the
interval [a, b]. For a fixed u € C ([a, b]), consider the operator 7" defined by

(Tx)(1) = ult) x(0).

Since

—1 X (t)
(T =N) x(1) = ") —
the spectrum of 7' consists of all A’s such that A — u(¢#) = 0 for some ¢ € [a, D].
This means that the spectrum of 7 is exactly the range of u. If u(¢) = c is a constant
function, then A = c is an eigenvalue of 7. On the other hand, if u is a strictly
increasing function, then 7" has no eigenvalues. The spectrum of 7" in such a case is
the interval [u(a), u(b)].

The problem of finding eigenvalues and eigenvectors is called the eigenvalue
problem. One of the main sources of eigenvalue problems in mechanics is the
theory of oscillating systems. The state of a given system at a given time ¢/ may
be represented by an element u(¢) € H, where H is an appropriate Hilbert space of
functions. The equation of motion in classical mechanics is

d?u

“a =Tu (2.16.6)

where T is an operator in H . If the system oscillates, the time dependence of u is
sinusoidal, so that u(t) = vsin w¢, where v is a fixed element of H. If T is linear,
then (2.16.6) becomes

Tv= (-’ (2.16.7)

This means that —w? is an eigenvalue of 7. Physically, the eigenvalues of 7" corre-
spond to possible frequencies of oscillations. In atomic systems, the frequencies of
oscillations are visible as bright lines in the spectrum of light they emit. Thus, the
name spectrum arises from physical considerations.

The following theorems describe properties of eigenvalues and eigenvectors for
some special classes of operators. Our main interest is in self-adjoint, unitary, and
compact operators.

Theorem 2.16.2. Let T be an invertible operator on a vector space X, and let A
be an operator on X. The operators A and TAT ! have the same eigenvalues.
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Proof. Let \ be an eigenvalue of A. This means that there exists a nonzero vector u
such that Au = Au. Since T is invertible, Tu # 0 and

TAT Y (Tu) = TAu = T (\u) = \Tu.

Thus, X is an eigenvalue of TAT .

Assume now that A is an eigenvalue of TAT ', that is, TAT ~'u = \u for some
nonzero vector u = Tv. Since AT 'u = AT "'w and T~'u # 0, hence, \ is an
eigenvalue of A.

Theorem 2.16.3. All eigenvalues of a self-adjoint operator on a Hilbert space
are real.

Proof. Let ) be an eigenvalue of a self-adjoint operator 7', and let u be a nonzero
eigenvector of A. Then,

Muou) = O u) = (Tu,u) = (u, Tu) = (u, u) = AMu, u).

Since (u, u) > 0, we conclude A = A.

Theorem 2.16.4. All cigenvalues of a positive operator are nonnegative. All
eigenvalues of a strictly positive operator are positive.

Proof. Let T be a positive operator, and let 7x = Ax for some x # 0. Since T is
self-adjoint, we have

0<(Tx,x)={x,x)=x|x|”. (2.16.8)

Thus, A > 0. The proof of the second part of the theorem is obtained by replacing
<by <in (2.16.8).

Theorem 2.16.5. All eigenvalues of a unitary operator on a Hilbert space are
complex numbers of modulus 1.

Proof. Let \ be an eigenvalue of a unitary operator 7', and let u be an eigenvector
of A, u # 0. Then,

(Tu, Tu) = (e, ) = |2 Jue] .
On the other hand,
(Tu, Tu) = (u, T" Tu) = (u,u) = HuH2

Thus, |\ = 1.

Theorem 2.16.6. Eigenvectors corresponding to distinct eigenvalues of a self-
adjoint or unitary operator on a Hilbert space are orthogonal.
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Proof. Let T be a self-adjoint operator, and let u; and u, be eigenvectors
corresponding to distinct eigenvalues A; and X\, that is, Tu; = M\u; and
Tu; = huy, M # Ay By Theorem 2.16.3. A and A, are real. Then

M (ur, ) = (Tuy, up) = (uy, Tua) = (ur, htaa) = Aoy, uz) = Ay (uy, uz),
and hence,
()\.1 —_ )\.2)(1/11, M2) = 0

Since A # Ay, we have (u;, up) = 0, that is, u; and u, are orthogonal.

Suppose now that 7" is a unitary operator on a Hilbert space H. Then, TT" =
T*_T = I and ||[Tu| = |jul| for all u € H. First, note that A; # X, implies
MAz # 1. Indeed, if A\jA; = 1, then

do = Mhaka = M M|’ =
because |>\2| = 1 by Theorem 2.16.5. Now,
)\.1&.2(111,1/[2) = ()\11/[1, quz) = (Tul, Tuz) = (Ml, T* Tuz) = (Ml,u2>.

Since Ajhs # 1, we get (u1,up) = 0. This proves that the eigenvectors u; and u,
are orthogonal.

Theorem 2.16.7. For every eigenvalue \ of a bounded operator T, we have
M = IT.

Proof. Let u be a nonzero eigenvector corresponding to A. Since Tu = Au, we have

3

[ = (7w

and thus,
Ml = 7w < | 7]«
This implies that |A| < | T'||.

If the eigenvalues are considered as points in the complex plane, the preceding
result implies that all the eigenvalues of a bounded operator 7 lie inside the circle
of radius || T ||

Corollary 2.16.1. All eigenvalues of a bounded, self-adjoint operator T satisfy the
inequality

|A] < sup [(Tx.x)|. (2.16.9)

llxll<1

The proof follows immediately from Theorem 2.16.5, proved by Debnath and
Mikusinski (1999).
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Theorem 2.16.8. If T is a nonzero, compact, self-adjoint operator on a Hilbert
space H, then it has an eigenvalue \ equal to either H T || or — || T H

Proof. Let {u,} be a sequence of elements of H such that ||u,, H =1, foralln € N,
and

|Tun| - |T|| asn — oc. (2.16.10)
Then

2
HTZM" — | Tu, qu,, = (Tzun — || Tun ||2un, T?uy — || Tu, H2Mn>

= 72 " = 2| T | {200 ) + | T | ]|
=72 )" = | T ]*
< |71 = 7w

= | Tw]* (171 = | Ta]*)
Since || Tu, || converges to H T H, we obtain

H Tzu,, — HTM,, ||2u,, -0 asn — oo. (2.16.11)

The operator 72, being the product of two compact operators, is also compact.
Hence, there exists a subsequence {u pn} of {un} such that {Tzu pn} converges. Since
H T || # 0, the limit can be written in the form || T“v, v # 0. Then, for every n € N,
we have

NPy =17 Pus, | < [T = 205, | + | 7200, = | Tup, [P |

+ |1 7up Pup, = T |
Thus, by (2.16.10) and (2.16.11), we have
Ty =1T ] >0 asn— oo
Or,
Tl 0=up)|—0  asn— oo

This means that the sequence {u Pn} converges to v and therefore

T2 = | T
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The above equation can be written as

(r~|7)0) (7 + |7]1)v =0
Ifw= (T + HT”I) v # 0, then (T — ||THI) w = 0, and thus ||TH is an eigenvalue
of T. On the other hand, if w = 0, then —|| 7| is an eigenvalue of T'.

Corollary 2.16.2. If T is a nonzero compact, self-adjoint operator on a Hilbert
space H, then there is a vector w such that |w|| = 1 and

(Tw,w)| = sup [{Tx, x)|

lxll<1

Proof. Letw, HWH = 1, be an eigenvector corresponding to an eigenvalue A such
that || = || T||. Then

(Twl] = (b = [l = 2] = 7] = sup (7.

lxll=<

by Theorem 4.4.5, proved by Debnath and Mikusinski (1999).

Theorem 2.16.8 guarantees the existence of at least one nonzero eigenvalue but
no more in general. The corollary gives a useful method for finding that eigenvalue
by maximizing certain quadratic expressions.

Theorem 2.16.9. The set of distinct nonzero eigenvalues {\,} of a self-adjoint
compact operator is either finite or limy oo Ay = 0.

Proof. Suppose T is a self-adjoint, compact operator that has infinitely many
distinct eigenvalues A,,n € N. Let u, be an eigenvector corresponding to A,
such that ||u,, || = 1. By Theorem 2.16.6, {un} is an orthonormal sequence. Since
orthonormal sequences are weakly convergent to 0, Theorem 2.15.14 implies

0= lim |Tu,|* = lim (Tu,, Tu,)
n—o0 n—>o0

2

= 1im (A sy, Ay ) = lim 32w, | = lim 22
n—>oo

n—00 n—00

Example 2.16.4. We determine the eigenvalues and eigenfunctions of the operator
T on L*([0,2 ]) defined by

2
(Tu)(x) =/O k(x —t)u(t)dt,

where k is a periodic function with period 2 and square integrable on [0,2 ].

As a trial solution, we take
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Uy (x) — einx

and note that

2 X
(T“")(x) = / k(x —1) e””u(t) dt = ei"x/ k(S) ™ ds.
0 x—=2
Thus,
Tu, = Myuy, ne,

where
2 .
M =/ k(s)e'™ ds.
0

The set of functions {u,,n € Z} is a complete orthogonal system in L*([0,2 ]).
Note that T is self-adjoint if k(x) = k(—x) for all x, but the sequence of
eigenfunctions is complete even if 7 is not self-adjoint.

Theorem 2.16.10. Let {P,,} be a sequence of pairwise orthogonal projection
operators on a Hilbert space H, and let {)\,,} be a sequence of numbers such that
M — 0asn — oo. Then,

o
(a) Z An Py converges in B(H, H) and thus, defines a bounded operator;

n=1

o
(b) For eachn € N, \, is an eigenvalue of the operator T = Z M Py, and the
n=1
only other possible eigenvalue of T is 0.

(c) Ifall \,,’s are real, then T is self-adjoint.
(d) If all projections P, are finite-dimensional, then T is compact.

For a proof of this theorem, the reader is referred to Debnath and Mikusinski (1999).

Definition 2.16.3 (Approximate Eigenvalue). Let 7" be an operator on a Hilbert
space H. A scalar \ is called an approximate eigenvalue of T if there exists a
sequence of vectors {xn} such that ||xn H = 1foralln € N and || Tx, — Axy, H -0
asn — oQ.

Obviously, every eigenvalue is an approximate eigenvalue.

Example 2.16.5. Let {e,} be a complete orthonormal sequence in a Hilbert space
H . Let )\, be a strictly decreasing sequence of scalars convergent to some A. Define
an operator 7' on H by

o0
Tx = Z M, en) en.

n=1
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It is easy to see that every A, is an eigenvalue of T, but A is not. On the other hand,
HTe,, — )»en” = ||)»ne,, - )\enH = “O‘" — )\)enH = \)»n — )»\ —0 asn — oo.

Thus, A is an approximate eigenvalue of 7. Note that the same is true if we just
assume that A, — A and ), # Aforalln € N.

For further properties of approximate eigenvalues, see the exercises at the end of
this chapter.

The rest of this section is concerned with several theorems involving spectral
decomposition.

Let H be a finite-dimensional Hilbert space, say H = CV. It is known from
linear algebra that eigenvectors of a self-adjoint operator on H form an orthogonal
basis of H. The following theorems generalize this result to infinite-dimensional
spaces.

Theorem 2.16.11 (Hilbert-Schmidt Theorem). For every self-adjoint, compact
operator T on an infinite-dimensional Hilbert space H, there exists an orthonormal
system of eigenvectors {u,,} corresponding to nonzero eigenvalues {)\,,} such that
every element x € H has a unique representation in the form

o0
x = Zoc,,un +v, (2.16.12)
n=1

where an o, € C and v satisfies the equation Tv = 0. If T has infinitely many
distinct eigenvalues M, Ay, . .., then N, — 0 asn — oo.

For a proof of this theorem, the reader is referred to Debnath and Mikusinski
(1999).

Theorem 2.16.12 (Spectral Theorem for Self-adjoint, Compact Operators).
Let T be a self-adjoint, compact operator on an infinite-dimensional Hilbert space
H. Then, there exists in H a complete orthonormal system (an orthonormal basis)
{v1,va, ...} consisting of eigenvectors of T. Moreover, for every x € H,

Tx = Z)\n(x,vn)vn, (2.16.13)

where )\, is the eigenvalue corresponding to v,.

Proof. Most of this theorem is already contained in Theorem 2.16.11. To obtain a
complete orthonormal system {vi,v,, ...}, we must add an arbitrary orthonormal
basis of S+ to the system {u;,us, ...} (defined in the proof of Theorem 2.16.11).
All of the eigenvalues corresponding to those vectors from S+ are all equal to zero.
Equality (2.16.13) follows from the continuity of 7.
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Theorem 2.16.13. For any two commuting, self-adjoint, compact operators A and
B on a Hilbert space H, there exists a complete orthonormal system of common
eigenvectors.

Proof. Let A be an eigenvalue of A4, and let X be the corresponding eigenspace. For
any x € X, we have

ABx = BAx = B(Ax) = ABx.

This means that Bx is an eigenvector of A corresponding to A, provided Bx # 0.
In any case, Bx € X and hence B maps X into itself. Since B is a self-adjoint,
compact operator, by Theorem 2.16.12, X has an orthonormal basis consisting of
eigenvalues of B, but these vectors are also eigenvectors of A because they belong
to X. If we repeat the same procedure with every eigenspace of A, then the union
of all of these eigenvectors will be an orthonormal basis of H .

Theorem 2.16.14. Let T be a self-adjoint, compact operator on a Hilbert space
H with a complete orthonormal system of eigenvectors {vi, v, ...} corresponding
to eigenvalues {\1,\y,...}. Let P, be the projection operator onto the one-
dimensional space spanned by v,. Then, for all x € H,

o0
x=) Px, (2.16.14)
and

T=> P (2.16.15)

Proof. From the spectral theorem 2.16.12, we have
o0
X= ) (x.va) v (2.16.16)
n=1

For every k € N, the projection operator P; onto the one-dimensional subspace Si
spanned by vy is given by

Prx = (x,v) vi.

Now, (2.16.16) can be written as

o0
X = E P,x,
n=1

and thus, by Theorem 2.16.2,

Tx—ZX X, V) vy = ZXP)C.
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Hence, forall x € H,
o0
Tx = (Z )»,,Pn) X
n=1

o0

This proves (2.16.15) since convergence of Z A\n P, is guaranteed by Theorem
n=1

2.16.10.

Theorem 2.16.15 is another version of the spectral theorem. This version is
important in the sense that it can be extended to noncompact operators. It is also
useful because it leads to an elegant expression for powers and more general
functions of an operator.

Theorem 2.16.15. If eigenvectors uy,us,... of a self-adjoint operator T on a
Hilbert space H form a complete orthonormal system in H and all eigenvalues
are positive (or nonnegative), then T is strictly positive (or positive).

Proof. Suppose uj,u,, ... is a complete orthonormal system of eigenvalues of T
corresponding to real eigenvalues Aj, A2, . ... Then, any nonzero vector u € H can
o0
be represented as u = Z o, Uy, and we have
n=1
o0 o
(Tu u <Tu Za,,u,,> = Za_n(Tu,u,,) = Z(x—,,(u, Tu,,)
n=1 n=1
o0 o0
:Za_u)\un ZXanuun=ZXa_nan
n=1 n=1
o0
= an ian|2 > 07
n=1

if all eigenvalues are nonnegative. If all A,,’s are positive, then the last inequality
becomes strict.

2.17 Exercises

1. Show that on any inner product space X

(@) (x,ay +Bz) = afx.y)+ ﬁ(x,z) forall a,p € C,
®) 2[x. ) + 0] =[x+ ] = x—»|*
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2. Prove that the space Co(R) of all complex-valued continuous functions that
vanish outside some finite interval is an inner product space with the inner product

el = [ reratia,

3. (a) Show that the space C'([a,b]) of all continuously differentiable complex-
valued functions on [a, b] is not an inner product space with the inner product

b [
(fg)= / f(x) g’ (x) dx.

(b) If f € C'([a,b]) with f(a) = 0, show that C'([a,b]) is an inner product
space with the inner product defined in (a).

4. (a) Show that the space C ([a,b]) of real or complex-valued functions is a

normed space with the norm H f H = max ‘ f (x)|.
a<x<b

(b) Show that the space C ([a,b]) is a complete metric space with the metric
induced by the norm in (a), that is,

d(f.e)=|f—¢g| =a1§f§b|f(X)—g(X)|-

5. Prove that the space CO1 (R) of all continuously differentiable complex-valued
continuous functions that vanish outside some finite interval is an inner product
space with the inner product

(fg)= /_oo f'(x) g'(x) dx.

6. Prove that the norm in an inner product space is strictly convex, that is, if x # y
and |[x|| = || = 1. then |x + y| <2.

7. (a) Show that the space C ([— , ]) of continuous functions with the norm
defined by (2.2.4) is an incomplete normed space.
(b) In the Banach space L*([— , ]),

oo

1.
fx) = HZ::IE sinnx,
where f(x) = —7 in (— ,0) and f(x) = ) in (0, ). Show that f is not

continuous in C ([— , ]), but the series convergesin L>([— , ]).
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8. Show that, in any inner product space X,
[ =yl + 1y =z = > =
ifandonlyif y = ox + (1 —a)zforsome ain0 < o < 1.
9. (a) Prove that the polarization identity
1
()= (ol = e =y i i) =i = iv|)

holds in any complex inner product space.
(b) In any real inner product space, show that

()= (b + P = =>I).

10. Prove that, for any x in a Hilbert space, Hx“ = sup |(x y)|
yll=1

11. Show that Lz([a,b]) is the only inner product space among the spaces
L? ([a,b]).

12. Show that the Apollonius identity in an inner product space is

1 +y|?
Jo= 5l + =1 = 5 I =5+ 2 o= 2]
13. Prove that any finite-dimensional inner product space is a Hilbert space.

14. Let X = {f € C!([a.b]) : f(a) =0} and

b —_—
(fg)= / f/(x) g’ (x)dx.

Is X a Hilbert space?
15. Is the space C, (R) with the inner product

(fg) = /_ S WF

a Hilbert space?

16. Let X be an incomplete inner product space. Let H be the completion of X . Is
it possible to extend the inner product from X onto H such that H would become a
Hilbert space?
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17. Suppose x, — x and y, — y as n — oo in a Hilbert space, and o, — a in C.
Prove that

@ xp+yn—>x+y,
d) a,x, — ax,

©) {xn, yyl) ( Y>s
@) fn ]| = [ x]-

w . . .
18. Suppose x, % xand yn — y asn — oo in a Hilbert space, and o, — o in C.
Prove or give a counter example:

(a) xn+yni>x+y,
(b) a,x, — ax,

(©) (Xn, yu) = (x.¥),
@) fxa] = =]
(e) If x, = y, foralln € N, then x = y.

19. Show that, in a finite-dimensional Hilbert space, weak convergence implies
strong convergence.

20. Is it always possible to find a norm on an inner product space X which would
define the weak convergence in X ?

o0
21. Iqun = u, show that

n=1

for any x in an inner product space X .

22. Let{xi,...,x,} be afinite orthonormal set in a Hilbert space H . Prove that for
any x € H the vector

n

X — Z(x,xk)xk

k=1

is orthogonal to x; foreveryk = 1,...,n.

23. In the pre-Hilbert space 4’([— . ]), show that the following sequences of
functions are orthogonal

(a) xx(t) =sinkt, k=1,2,3,..
(b) y,(t) = cosnt, =0,1,2,..
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24. Show that the application of the Gram—Schmidt process to the sequence of
functions

fO(t) =1, fl(t) =1, f2(t) = tzv LR f;l(t) =1",
(as elements of LZ([—I, 1])) yields the Legendre polynomials.

25. Show that the application of the Gram—Schmidt process to the sequence of
functions

foty = e fi(t) = 1e™ 2, fo(1) = 1272 fult) = 12

(as elements of L?(R)) yields the orthonormal system discussed in
Example 2.9.4.

26. Apply the Gram—Schmidt process to the sequence of functions

fO(t) = lv fl(t) =1, f2(t) = tzv""f;l(t) = tn7

defined on R with the inner product

(fg)= /_oo () g(t) exp(—t?) dt.

Compare the result with Example 2.9.4.

27. Apply the Gram—Schmidt process to the sequence of functions

fO(t) = lv fl(t) =1, f2(t) = tzv""f;l(t) = tn7

defined on [0, co) with the inner product

o0
re)= [ roz@e a
The resulting polynomials are called the Laguerre polynomials.
28. Let T, be the Chebyshev polynomial of degree n, that is,
To(x) =1, T,(x) = 2" cos(n arcos x).

Show that the functions

V2o

form an orthonormal system in L2[(—1, 1)] with respect to the inner product

bn(x) =

T, (x), n=0,1,2,...,

/ J_ F() 30 dx.
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29. Prove that for any polynomial
pu(x) = X" + a1 X" + - + ay,

we have

’

[Illlaﬁ ‘pn(-x)‘ > [Tflﬁ ‘Tn(-x)

where T, denotes the Chebyshev polynomial of degree 7.

30. Show that the complex functions

du(z) = \/Zz"_l, n=12,3,...,

form an orthonormal system in the space of continuous complex functions defined
in the unit disk D = {z eC:|z|l < 1} with respect to the inner product

(fe)= /D f(2)2@ dz.

31. Prove that the complex functions

1 1
W) =—7""", n=1,2,3,...
(0 V2

form an orthonormal system in the space of continuous complex functions defined
on the unit circle C = {z eC: |zl = 1} with respect to the inner product

(fe)= /C f(2)2@ dz.

32. With respect to the inner product

1 [
re)= | 0 ET w0,

where o(x) = (1 — x)*(1 + x)? and o, > —1, show that the Jacobi polynomials

n

—1)" — ) a n
PO = S 10 [ (140" (-]

form an orthogonal system.
33. Show that the Gegenbauer polynomials

n

Gl = (=) oy
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1 . .
where y > 3 form an orthonormal system with respect to the inner product

! S 1_
()= [ f00gto (1= %),

Note that Gegenbauer polynomials are a special case of Jacobi polynomials if

1
a:B:y—E.

34. If x and x; (k = 1,...,n) belong to a real Hilbert space, show that

=Yl + 303 g, ).

k=1 k=11=1

n
X — Zakxk
k=1

Also show that this expression is minimum when Aa = b where a =
(al, . ,an),b = ((x,xl), e, (x,xn)), and the matrix 4 = (ak/) is defined
by axr = (xk, x1).

35. If {a,} is an orthonormal sequence in a Hilbert space H and {a, } is a sequence
in the space /2, show that there exists x € H such that

(roan) = and | {on} | = |x

’

where || {a,} H denotes the norm in the sequence space /2.

36. If o, and B, (n = 1,2,3,...) are generalized Fourier coefficients of vectors
x and y with respect to a complete orthonormal sequence in a Hilbert space, show
that

(x, y) = Zock Bx.
k=1

37. If {x,} is an orthonormal sequence in a Hilbert space H such that the only
element orthogonal to all the x,’s is the null element, show that the sequence {x,}
is complete.

38. Let {x,} be an orthonormal sequence in a Hilbert space H. Show that {x,} is
complete if and only if cl(span {x1,x2,...} ) = H.In other words, {x,} is complete
if and only if every element of H can be approximated by a sequence of finite
combinations of x,,’s.

39. Show that the sequence of functions

—x/2

(X)) = S Lo(x), n=0,1,2,...,

n!
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where L, is the Laguerre polynomial of degree n, that is,

n

d
Ly(x) ="
() =e" -2

(v'e™).
form a complete orthonormal system in L2(0, c0).
40. Let

inx

V2
andlet f € L'([— . ]). Define

bu(x) = n=0%1,£2,...,

n

) = D" (fidu)br.  forn=01.2.....

k=—n

Show that

So) + A+ -+ fux) _ Z": (1_ |k

n+ 1 n+1)(ﬁ¢k>¢k(x)-

k=—n
41. Show that the sequence of functions
1  cosx sinx cos2x sin2x
\/2—5 \/— ’ \/— ’ \/— ) \/_ PR

is a complete orthonormal sequence in L> ([— , ])

42. Show that the following sequence of functions is a complete orthonormal
system in L2([0, ]):

1 12 [2 5 12 3
——, 4/ — COSX, 4/ — CcOS2x, 1/ — COS3X,....
NG

43. Show that the following sequence of functions is a complete orthonormal
system in LZ([O, ])

2 . 2 . 2 .
— sinx, 4/ — sin2x, 4/ — sin3x,....

44. Show that the sequence of functions defined by

1 in x
L (x) = ex ( ) n=0,=+x1,+£2,...
J&3) V2a P\

is a complete orthonormal system in LZ([—a, a]).



124 2 Hilbert Spaces and Orthonormal Systems

45. Show that the sequence of functions

1 1 cos (n x) 1 sin(n x)
V24 JJa a /) Ja a /T
is a complete orthonormal system in L*([—a, a]).

46. Show that each of the following sequences of functions is a complete orthonor-
mal system in L?([0. a]):

1 \/Ecos( x) 2cos 2 x \/jcos(n x)
Ja' Va a’ Va a )77 Va a /T

2 . X 2 . (2 x) 2 . /n x
—sm(—), —sin|—),..., —sm(—),....
a a a a a a

47. Let X be the Banach space R? with the norm H (x, y)” = max {|x[, |y|}. Show
that X does not have the closest-point property.

48. Let S be a closed subspace of a Hilbert space H and let {e,} be a complete
orthonormal sequence in S. For an arbitrary x € H, there exists y € S such that
[x—»| = inf |x —z||. Define y in terms of {e, }.

ZE

49. If S is a closed subspace of a Hilbert space H,then H = S @ S+. Is this true
in every inner product space?

50. Show that the functional in Example 2.13.2 is unbounded.

51. The Riesz representation theorem states that for every bounded linear func-
tional f € H’ on a Hilbert space H, there exists a representer x ; € H such that
f(x) = (x,xy) forall x € H.Let T : H' — H be the mapping that assigns x s
to f. Prove the following properties of 7'

(a) T is onto,
® T(f+)=T()+T(),
(©) T(af)=aT(f),

@ |TH|=|r

where f,g € H anda € C.

3

52. Let f be abounded linear functional on a closed subspace X of a Hilbert space
H . Show that there exists a bounded linear functional g on H such that H f H = H g ||
and f(x) = g(x) whenever x € X.

53. Show that the space /? is separable.

54. (a) Show that the sequence of Gaussian functions on R defined by
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fa(x) = I exp(—n’x?), n=1,23,...

Y

converges to the Dirac delta distribution §(x).
(b) Show that the sequence of functions on R defined by

sinnx
fulx) = , n=12,...
X

converges to the Dirac delta distribution.
55. Show that the sequence of functions on R defined by
1
0, forx < ——,
2n |
X) = yfor — — < x < —,
Julx) . 7ot 2n_x_2n
0, forx > —
2n

converges to the Dirac delta distribution.

56. If f is a locally integrable function on R", show that the functional F on 2
defined by

(o) =[ 1o

is a distribution.
57. If f,(x) = sinnx, show that f, — 0 in the distributional sense.
58. Find the nth distributional derivative of f(x) = |x|.

59. Verify which functions belong to L'(R) and which do not belong to L'(R).
Find their L'(R) norms when they exist.

@ f00)=(a?+x)", ) f(x) =x(a>+x2)7",
_JL o k=1 .
© so={n @ S =",

60. Let {e,} be a complete orthonormal sequence in a Hilbert space H, and let {\, }
be a sequence of scalars.

(a) Show that there exists a unique operator 7 on H such that Te, = A,e,,.
(b) Show that T is bounded if and only if the sequence {)\,} is bounded.
(¢) For a bounded sequence {\,}, find the norm of 7.

61. Let T : R? — R? be defined by T(x,y) = (x + 2y,3x + 2y). Find the
eigenvalues and eigenvectors of 7.
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62. Let T : R? — R? be defined by T'(x,y) = (x + 3y,2x + y). Show that
T" #T.

63. Let T : R® — R? be given by T'(x, y,z) = (3x —z,2y, —x + 3z). Show that
T is self-adjoint.
64. Compute the adjoint of each of the following operators:

(a) A:R3 - R3, A(x,v,2) = (=y +z,—x + 2z, x + 2y),
(b) B:R? - R?, B(x,y,2) =(x+y—2z—x+2y +2z,x +2y + 32),

d d
© C: PR~ P[R).,  C{p(x)}=x— p(x)———(xpx)),
dx dx
where P,(R) is the space of all polynomials on R of degree less than or equal to 2.

65. If A is a self-adjoint operator and B is a bounded operator, show that B AB is
self-adjoint.

66. Prove that the representation 7 = A + i B in Theorem 2.15.7 is unique.
67. fA"A+ B"B =0, show that A = B = 0.

68. If T is self-adjoint and 7" # 0, show that T" #0foralln € N.

69. Let T be a self-adjoint operator. Show that

@ |Tx+ix]" = |7x|" + x|,

(b) the operator U = (T — iI)(T + iI)™" is unitary. (U is called the Cayley
transform of T.)

70. Show that the limit of a convergent sequence of self-adjoint operators is a self-
adjoint operator.

71. If T is a bounded operator on H with one-dimensional range, show that there
exists vectors y,z € H such that Tx = (x,z)y for all x € H. Hence, show that

(@) T x = (x,y)zforallx € H,
(b) T? = AT, where X is a scalar,
© 7] = |»]l-

(d) T" =T ifand only if y = az for some real scalar a.

’

72. Let T be a bounded self-adjoint operator on a Hilbert space H such that
HT” < 1. Prove that (x, Tx) > (1 — ||T|)||x||* for all x € H.

73. If A is a positive operator and B is a bounded operator, show that B AB is
positive.

74. If A and B are positive operators and A + B = 0, show that A = B = 0.

75. Show that, for any self-adjoint operator A, there exists positive operators S and
T suchthat A =S —T and ST = 0.

76. If P is self-adjoint and P? is a projection operator, is P a projection operator?
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77. Let T be a multiplication operator on L?([a, b]). Find necessary and sufficient
conditions for T to be a projection.

78. Show that P is a projection if and only if P = P"P.
79. If P, Q,and P + Q are projections, show that PQ = 0.
80. Show that every projection P is positive and0 < P < I.

81. Show that, for projections P and Q, the operator P + Q — P Q is a projection
if and only if PQ = QP.

82. Show that the projection onto a closed subspace X of a Hilbert space H is a
compact operator if and only if X is finite dimensional.

83. Show that the operator T : [?> — [? defined by T'(x,) = (27"x,) is compact.

84. Prove that the collection of all eigenvectors corresponding to one particular
eigenvalue of an operator is a vector space.

85. Show that the space of all eigenvectors corresponding to one particular
eigenvalue of a compact operator is finite dimensional.

86. Show that a self-adjoint operator 7" is compact if and only if there exists a
sequence of finite-dimensional operators strongly convergent to 7.

87. Show that eigenvalues of a symmetric operator are real and eigenvectors
corresponding to different eigenvalues are orthogonal.

88. Give an example of a self-adjoint operator that has no eigenvalues.

89. Show that a nonzero vector x is an eigenvector of an operator 7 if and only if
[(Tx. )| = | 7x] ] x].

90. Show that if the eigenvectors of a self-adjoint operator 7" form a complete
orthogonal system and all eigenvalues are nonnegative (or positive), then T is
positive (or strictly positive).

91. If ) is an approximate eigenvalue of an operator 7', show that M < H T H

92. Show that if 7' has an approximate eigenvalue X such that |x| = | T, then
o ({7, = 7]
x[[<1

93. If A is an approximate eigenvalue of 7', show that A + | is an approximate
eigenvalue of 7" 4+ w7 and A is an approximate eigenvalue of u 7.

94. For every approximate eigenvalue A of an isometric operator, show that we
have |A| = 1.

95. Show that every approximate eigenvalue of a self-adjoint operator is real.



Chapter 3
Fourier Transforms and Their Applications

The profound study of nature is the most fertile source of
mathematical discoveries.

Joseph Fourier

Fourier was motivated by the study of heat diffusion, which is
governed by a linear differential equation. However, the Fourier
transform diagonalizes all linear time-invariant operators,
which are building blocks of signal processing. It is therefore
not only the starting point of our exploration but the basis of all
further developments.

Stéphane Mallat

3.1 Introduction

This chapter deals with Fourier transforms in L'(R) and in L?*(R) and their
basic properties. Special attention is given to the convolution theorem and summa-
bility kernels including Cesdro, Fejér, and Gaussian kernels. Several important
results including the approximate identity theorem, general Parseval’s relation, and
Plancherel theorem are proved. Discrete Fourier transform (DFT) and fast Fourier
transform (FFT) are also discussed briefly for the purpose of comparing them with
the continuous and discrete wavelet transforms. This is followed by the Poisson
summation formula, Gibbs’ phenomenon, the Shannon sampling theorem, and
Heisenberg’s uncertainty principle. Many examples of applications of the Fourier
transforms to mathematical statistics, signal processing, ordinary differential equa-
tions, partial differential equations, and integral equations are discussed. Included
are some examples of applications of multiple Fourier transforms to important
partial differential equations and Green’s functions.

Before we discuss Fourier transforms, we define the translation, modulation, and
dilation operators respectively, by

T,f(x) = f(x —a) (Translation),
M, f(x) = e'" f(x) (Modulation),
© Springer Science+Business Media New York 2015 129
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1 X I
Do f(x) = 7= f (—) (Dilation),
c ¢

where a,b,c € Rand ¢ # 0.
In particular, D_, is called the parity operator, P sothat Pf(x) = D_; f(x) =

S(=x).
The operators T,, M,, D, preserve the L2-norm defined by (2.3.5), that is,

171, = 17ar ] = 1Maf] = | Daf]-

Each of these operators is a unitary operator from L?(R) onto itself. The
following results can easily be verified:

Ta My, f(x) = exp{ib(x —a)} f(x —a),
My T, f(x) =exp(ibx) f(x —a),

DcTaf(x)=\/%f(x:“),

DS = = ().

c

My D, f(x) = laﬂfﬁf@)

D. My f(x) = \/1|T| exp(iéx)f(f).

Using the inner product (2.5.2) on L?(R), the following results can also be
verified:

(£ Tg) = (T-af 8).
(f Myg) = (M_, [, g),
(/. Deg) = (D1 f.5).

3.2 Fourier Transforms in L!(R)

Suppose f is a Lebesgue integrable function on R. Since exp(—i w?) is continuous
and bounded, the product exp(—i w?) f(¢) is locally integrable for any w € R. Also,
\ exp(—iwt)| < 1 for all w and 7 on R. Consider the integral
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(fe') = /:: f(t)e 'dt, oeR. (3.2.1)

Clearly,

‘/_Z e I f(t)dt

< /_oo |f)]dt = | f], < oo. (3.2.2)

This means that the integral in (3.2.1) exists for all ® € R. Thus, we give the
following definition.

Definition 3.2.1 (The Fourier Transform in L' (R)). Let f € L'(R). The Fourier
transform of f(z) is denoted by f(w) and defined by

(o]

Flo) = 7 {(1)) = [ eI f (1) dt. (3.2.3)

o0

Physically, the Fourier integral (3.2.3) measures oscillations of f at the fre-
quency o and f(w) is called the frequency spectrum of a signal or waveform f ().
It seems equally justified to refer to f(¢) as the waveform in the time domain and

f (w) as the waveform in the frequency domain. Such terminology describes the
duality and the equivalence of waveform representations.

In some books, the Fourier transform is defined with the factor in integral

(3.2.3). Another modification is the definition without the minus sign in the kernel
exp(—iwt). In electrical engineering, usually ¢ and w represent the time and the
frequency respectively. In quantum physics and fluid mechanics, it is convenient to
use the space variable x, the wavenumber k instead of ¢ and w respectively. All of
these changes do not alter the theory of Fourier transforms at all. We shall use freely
both symbols f (w) and F { f(¢)} in this book.

; 2,2 v o’
Example 3.2.1. (a) f(w) = 35{ exp(—a“t )} = —exp v fora > 0.
a a
We have, by definition,

3] 0o ; 2 2
f(co) = /_ exp [—(i(»t + a2t2)] dt = /_ exp [—az (t + %) - 37i| dt

(,02 [e9) ) 0 \/_ (,02
=exp (—m) /_oo exp(—a’y?)dy = i Rl B (3.2.4)
. . . o . i
in which the change of variable y = | + — ] is used. Even though | —
2a? 2a?

is a complex number, the above result is correct. The change of variable can be
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Fig. 3.2 Graphs of f(t) = exp(—alt|) and f(w)

justified by the method of complex analysis. The graphs of f(¢) and f (w) are
drawn in Fig. 3.1.

1
In particular, when a’ = = and a = 1, we obtain the following results

(e (),

(3.2.5)
()
2 w?
Flexp (—1?)} = exp (_T)
(3.2.6)
Example 3.2.2. F{exp (—alt|)} = (azi——awz) a > 0. (Fig. 3.2).
We have
Flexp(—alt])} = / exp (—alt| —iwt)dt
—00
O . o0 .
— / e(a—zw)t dt +/ e—(a+1u))t dt
—0o0 0
_ ! ! 2a (3.2.7)

a—iw  a+tio (@ + 0?)’
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A % (0) % (@)
1 21
1
: I
] ]
I ) 2 I
=t = T i~ alh
= 0 T -3n-2n-m o n 2m3m
T T 1T T T 7T

Fig. 3.3 Graphs of x.(t) and X (w)

£(r) flo)
I/ﬂ: n/a

¥
-
v
e

-a 0 a -a 0 a

Fig. 3.4 Graphs of f(t) and f(w)

Example 3.2.3 (Characteristic Function). This function is defined by

Y1) = { (3.2.8)

1, —t1<t<nt
0, otherwise

In science and engineering, this function is often called a rectangular pulse or
gate function (Fig. 3.3). Its Fourier transform is

Xe(w) = Flx(0)} = (%) sin(w). (3.2.9)
We have

Yo(w) = /OO Y<(t) exp(—iw?t) dt = /T exp(—iwt)dt = (%) sin(wT).

-1

Note that x(¢) € L'(R), but its Fourier transform ¥ () ¢ L' (R) (Fig.3.3).

Example 3.2.4. ﬁ{f(t)} =7 {(a2 + tz)_l} =— exp(—a|w|), a> 0.
a
This can easily be verified and hence is left to the reader (Fig. 3.4).
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A (r) A (0)
1
} > ! . > (1)
-T 0 T -6n —4m -2n 0 27 4m 6m
T T T T T T

Fig. 3.5 Graphs of A,(z) and At(oo)

Example 3.2.5 (Triangular Pulse). This function is defined by (Fig. 3.5)

t
14—, —1<1t <0,

T
Ay =91-L 0<s <, (3.2.10)
T

0, [t] >

It can easily be verified that

., (0T
. sin (7)
2
Note that A’(r) exists except at t = —1,0, 1, and it represents a piecewise
constant function
! t
A= gt -Tsi=<m (3.2.12)

0, [t] >t

Or, equivalently,

1
A1) = =
T

T T
A% (t + 5) — A% (t — 5) ; exceptfort = —1,0, t.

Thus, A’(t) € L'(R), and its Fourier transform is given by
F{AL(1)) = ) gin? (‘”—) . (3.2.13)
k ® 2

Remarks. 1. It is important to point out that several elementary functions, such
as the constant function c, sin we?, and cos wy?, do not belong to LI(R) and
hence they do not have Fourier transforms. However, when these functions are
multiplied by the characteristic function ¥ (¢), the resulting functions belong to
L'(R) and have Fourier transforms (see Sect. 3.16 Exercises).
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2. In general, the Fourier transform f (w) is a complex function of a real variable .
From a physical point of view, the polar representation of the Fourier transform
is often convenient. The Fourier transform f(w) can be expressed in the polar
form

F(®) = R(o) + iX(0) = A(w) exp{id(w)} . (3.2.14)
where A(w) = ‘ f (u))‘ is called the amplitude spectrum of the signal f(¢), and
0(w) = arg { f (w)} is called the phase spectrum of f(t).

The nature of A(w) can be explained by using Example 3.2.3 which shows

2
A(®w) = |¥<(w)| < —. This means that the amplitude spectrum is very low at high
®

2
frequencies when tis very large, A(w) = — sin(wt) is very high at low frequencies.
®

3.3 Basic Properties of Fourier Transforms

Theorem 3.3.1 (Linearity). If f(¢),g(t) € L'(R) and o, are any two complex
constants, then

Flaf()+pg)} =aF{f(1)} +BF{g(1)}. (3.3.1)

The proof follows readily from Definition 2.3.1 and is left as an exercise.

Theorem 3.3.2. If f(t) € L'(R), then the following results hold:
(a) (Shifting)

F{Tf ()} = M f (), (332)
(b) (Scaling)
F {Dﬁf(t)} = D, f(w), (3.3.3)
(¢) (Conjugation)
F {Tf(z)} — f(w), (3.3.4)

(d) (Modulation)

FAIMf()y = T, f (w). (3.3.5)
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Re{w (1)} v (@)

w
\}0\/ b 0 w,

Fig. 3.6 Graphs of f(t) and f(w)

Proof(a). It follows from Definition 3.2.1 that

FLS O} = Fa-a) = [ u—aydr = [ et 0 dx = My flo.

in which a change of variable t —a = x was used.
The proofs of (b)—(d) follow easily from definition (3.2.3) and are left as
exercises.

1
Example 3.3.1 (Modulated Gaussian Function). If f(t) = exp (iwot 3 tz),
then

f(u)) = exp % —% (0 — wo)z} . 3.3.6)

This easily follows from Example 3.2.1 combined with the shifting property
(3.3.2). The graphs of Re{ f(¢)} and f (w) are shown in Fig. 3.6.
Theorem 3.3.3 (Continuity). If f(t) € L'(R), then f (w) is continuous on R.

Proof. For any w, h € R, we have

Lﬁw+h%f@ﬂ={[:e”wwﬁm—nfMdz

5/_ e — 1| | £(1)|dt.

(3.3.7)
Since

—iht __ . —iht __ —
e 1| f@)| <2|f@)| and %1_1}1})’(3 =0
forall 1 € R, we conclude that as 7 — 0

f@+h = f@|-o.
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which is independent of w by the Lebesgue dominated convergence theorem (see
Debnath and Mikusinski 1999). This proves that f(w) is continuous in R. Since
(3.3.7) is independent of w, f (w) is, in fact, uniformly continuous on R.

Theorem 3.3.4 (Derivatives of Fourier Transforms). If both f(t) and tf(t)
d -

belong to L' (R), then o [ (o) exists and is given by
®

d - N o
— fw) = ) F{tf0)}. (3.3.8)
Proof. We have
d ~ R . o) ) —iht __
% :hli_%%[f(w—i—h)—f(w)] :%E})[/_we—twtf(t) (eh—l)dti|.

3.3.9)
Note that

Also,

i e—iht -1 .
m{\——— | = —11I.
h—0 h

Thus, result (3.3.9) becomes

af _ [

do |-

—iht __
eI Jim (Tl) di
= (—i)/_ tf(@t)ye ' dt = (—i) F{tf (1)}

This proves the theorem.

Corollary 3.3.1 (The nth Derivative of f (). If f € L'(R) such that t" f(t) is
integrable for finite n € N, then the nth derivative of f (w) exists and is given by

dnf
dw"

= (—i)"F{" f(1)}. (3.3.10)
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Proof. This corollary follows from Theorem 3.3.4 combined with the mathematical
induction principle. In particular, putting ® = 0 in (3.3.10) gives

d'f@ ] o
[ do’ } 0—(—1) /_oot fO)yde = (=i)"my, (3.3.11)

where m, represents the nth moment of f(¢). Thus, the moments my,m,,
ms, ..., m, can be calculated from (3.3.11).

Theorem 3.3.5 (The Riemann-Lebesgue Lemma). If f € L'(R), then

lim ‘f(u))‘ —o. (3.3.12)

|w|—o00

Proof. Since ™" = —exp {—iu) (Z + —)}, we have
®

ﬂM=—[:wM4wQ+5»ﬂﬁm=—[mef0—aym
s
o3[ [T
e e
Cleary
Jim [f] <3 m [ |0 -7 (-] a=0

This completes the proof.

Observe that the space Cy(R) of all continuous functions on R which decay at
infinity, that is, f(#) — 0 as |t| — oo, is a normed space with respect to the norm
defined by

[ 71 = sup| £ @)]- (3.3.13)

It follows from above theorems that the Fourier transform is a continuous linear
operator from L!(R) into Co(R).
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Theorem 3.3.6. (a) If f(¢) is a continuously differentiable function, | }im f@) =
t|—>00
0 and both f, f' € L'(R), then

FLO) = i0 F{f(0)} = (i) f (). (3.3.14)
(b) If f(t) is continuously n-times differentiable, f, f',..., f™ € L'(R) and

lim fO@) =0 forr=1,2,....n—1,

[t|—>o00

then

FAfD0) = (o) ZLf@)) = (i0)" f (). (3.3.15)
Proof. We have, by definition,
Firwi= [ _emrwan

which is, integrating by parts,

= [ fO] + (i) /_ O £(1) di
= (i) f ().

This proves part (a) of the theorem.

A repeated application of (3.3.10) to higher-order derivatives gives result
(3.3.15).

We next calculate the Fourier transform of partial derivatives. If u(x,t) is
p

. . . . u
continuously n times differentiable and — — 0 as |[x| — oo for r =

ax
1
1,2,3,...,(n — 1), then the Fourier transform of T with respect to x is
x
d"u ) o
F Y am( = T fue, 1)} = ()" iulle, ). (3.3.16)
X

It also follows from the definition (3.2.3) that

ou du 0%u d?i 0"u d"u
Fl—t=—, F!—t=—-—,....,.F = . 3.3.17
{ 31} dt { 312} dt? % arn } din ( )
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Definition 3.3.1 (Inverse Fourier Transform). If f € L!(R) and its Fourier
transform f € L!(R), then the inverse Fourier transform of f () is defined by

o

f(1) =7 {f(w)} - Zi/ ¢ f () do (3.3.182)

—0o0

foralmostevery t € R. If f is continuous, then (3.3.18) holds for every 7. In general,
f can be reconstructed from f at each point ¢t € R, where f is continuous.

Using the polar form (3.2.14) of the Fourier spectrum f (w), the function
(or signal) f'(¢) can be expressed as

f) = 2L /oo A(w)exp [i {of + 6(w)} |do, (3.3.18b)

oo

where A(w) is the amplitude spectrum and 6(w) is the phase spectrum of the signal
f(¢). This integral shows that the signal f(¢) is represented as a superposition of the
infinite number of sinusoidal oscillations of infinitesimal amplitude A(w)d w and of
phase 6(w).

Physically, (3.3.18) implies that any signal f(z) can be regarded as a super-
position of an infinite number of sinusoidal oscillations with different frequencies
® =2 vso that

(1) = /_oo F) e My, (3.3.192)

Equation (3.3.18a) or (3.3.19b) is called the spectral resolution of the signal f, and
f is called the spectral density represented by

f) = /_oo e 2 M f(t) dt. (3.3.19b)

o0

Thus, the symmetrical form (3.3.19ab) is often used as the alternative definition
of the Fourier transform pair. This symmetry does not have a simple physical
explanation in signal analysis. There seems to be no a priori reason for the
symmetrical form of the waveform in the time domain and in the frequency domain.
Mathematically, the symmetry seems to be associated with the fact that R is self-
dual as a locally compact Abelian group. Physically, (3.3.19a) can be considered as
the synthesis of a signal (or waveform) f from its individual components, whereas
(3.3.19b) represents the resolution of the signal (or the waveform) into frequency
components.

The convolution of two functions f, g € L'(R) is defined by

(f*xg)) = /_ ft—vg)dr. (3.3.20)
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We next prove the convolution theorem of the Fourier transform.

Theorem 3.3.7 (Convolution Theorem). If f.g € L' (R), then
F{(f *2)0O} = F{AO}F{g0)} = f(w) §(w).
Or, equivalently,
(fx)0 = 77 {f @ &)

Or

| ra=ve@an= 5 [ e i g do.
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(3.3.21)

(3.3.22)

(3.3.23)

Proof. Since f * g € L'(R), we apply the definition of the Fourier transform to

obtain
3“{(f*g)(t)}=[ "“”dz/ -0 g de

:/ g('t)/ it £ — vy di dt

= /_oo g(‘t)d't/_oo e fwydu, (1 —t=u)

= f(w) g(w),
in which Fubini’s theorem was utilized.

Corollary 3.3.2. If f.g,h € L' (R) such that

h(x) = /_00 g(w) e dow,

(o]

then

(fxh)(x) = /_ g(®) f(0) e dw.

Proof. We have

(f*h)(x):/_ h(x —1)f(t)dt

_ /_ Z [ /_ Z 2(0) ei("_’)‘*’dw} f@)de

- /_ ¢(0) /() ¢ do.

(3.3.24)
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Example 3.2.3 shows that if f € L'(R), it does not necessarily imply that its
Fourier transform £ also belongs to L'(R), so that the Fourier integral

/ - Flw) e dw (3.3.25)

may not exist as a Lebesgue integral. However, we can introduce a function
K, () in the integrand and formulate general conditions on K (w) and its Fourier
transform so that the following result holds:

A
lim / F@) K (0) e dw = f(t) (3.3.26)
A—00 _\

for almost every ¢. This kernel K) (w) is called a convergent factor or a summability
kernel on R which can formally be defined as follows.

Definition 3.3.2 (Summability Kernel). A summability kernel on R is a family
{K X A > O} of continuous functions with the following properties:

@) / Ky(x)dx =1 for all A > 0,
R
(ii) / ‘Kx(x) dx‘ <M for all A > 0 and for a constant M,
R
(iii) lim / | K. (x)|dx =0 forall § > 0.
A—00 |x|>8

A simple construction of a summability on R is as follows. Suppose F is a
continuous Lebesgue integrable function so that

/RF(x)dxz 1.

Then, we set
K)(x) = AF(\x), forall A > 0andx € R. (3.3.27)

Evidently, it follows that

AK)\(x)dx:/l;)\F(Xx)dx:/RF(x)dx:1,

/\Kx(x)dx| =/ |F(x)|dx = | F|,.
- R

and for § > 0
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/ \K;\(x)|dx=/ |F(x)|dx —0 ask— oo.
[x|>8 |x|>8

Obviously, the family {Kx(x), A > 0} defined by (3.3.27) is a summability kernel
on R.

Example 3.3.2 (The Fejér Kernel). We may take (see Example 3.2.5) Ay (x) = 1—
i
kernel. Its Fourier transform represents a family

%’ < 1and Ay(x) = 0 for m > 1. This function is called the Cesdro

Ay(®) = Fu(0) = MF (o), (3.3.28)

where

sin’ (%)

F(x) = I (3.3.29)
(3)
is called the Fejér Kernel on R.
Example 3.3.3 (The Gaussian Kernel). The family of functions
G(x) =AG(Ax), A>0, (3.3.30)
where
Gx) = —= exp(—) (3.3.31)
x) = —=exp(—x~), 3.
Ve
is called the Gaussian kernel on R.
2
Example 3.2.1 shows that Gy (w) = exp (—%) .
Lemma 3.3.1. For the Fejér kernel defined by (3.3.29), we have
Mt
w(3) ooy,
ht)=AF(M)=h— = / (1 — T) e 'do. (3.3.32)
-\

(z)
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Proof. Tt follows that

y 0 A
o]\ o / o\ o / o\ o
1= = 1 — 11— =L i 1= i
/_)\( )\ e''dw N . edw + | . edw
M ® - » o\
_ _ = —iwt _ = it
_/0 (1 }\)e dw+/0 (1 )\)e dw

S 2 A
= 2/ cos(wt)dw — — / w cos(wt) dw
0 A Jo

. A
9 s (7)
)\ 2(1 —COS)»I) = )\.T = F)\(t)
3)

The idea of a summability kernel helps establish the so-called approximate
identity theorem.

Theorem 3.3.8 (Approximate Identity Theorem). If f € L'(R) and
{Ky,\ > 0} € L'(R) is a summability kernel, then

This completes the proof of the lemma.

Jim [[(f * K3) = £ =0. (3.3.332)
Or, equivalently,
x11)11;0[(f * Kx)(t)] = f(t). (3.3.33b)

Proof. We have, by definition of the convolution (3.3.20),
(f * Kn)(1) = /_Z St —w) Ky (u) du,
so that
[(f * K) () = ()] = ’/OO {r@ —u)Kx(u)du—f(t)}‘

V St —u) = f(O)} Kn(w) du| .

by Definition 3.3.4(i),

< f_ K )| | £t =) — @)

Given ¢ > 0, we can choose 8 > 0 such thatif 0 < |u| < §, then |f(t —u)— f(t)| <
%, where || K, || L = M . Consequently,
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(KO = 0] = [ 17+ Kot = ro)]ar
E/dt/ |Kn@)|| f(t —u) = f(1)| du
R —00

=/_Z|K;\(u)i0f(u)du,
where
0w = [ |7 =~ ro)]ar = c.
Thus,

I(f * K)(0) — )] < /

ul

|Kx(u)|0f(u)du+/ \K;\(u)icf(u)du
<8 |u|>8

§8+C/ \Kx(u)|du=8,
|u|>8

since the integral on the right-hand side tends to zero for § > 0 by Definition 3.3.3
(iii). This completes the proof.

Corollary 3.3.3. If f € L'(R) and F,(t) is the Fejér kernel for \. > 0, then

. o * |O~)| ; imtd _
)\linolo [(Fx f)®)] = xlinc}o/_k (1 — T) fwedw = f(1). (3.3.34)

Proof. By Lemma 3.3.1, we have

iz
F() = /—x (1 - %l) e dw.

Then, by Corollary 3.3.2,

(Fo* f)@0) = /—Xx (1 - l—?j') f(@) e dw.

Taking the limit as A — oo and using result (3.3.33a) completes the proof.

Corollary 3.3.4 (Uniqueness). If f € L'(R) such that f(») = 0, forall » € R,
then f = 0 almost everywhere.
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Proof. Tt follows from (3.3.34) that

f@) = hm/ ( ——)f(oo)e"”’dw—o

almost everywhere. This completes the proof.

We now ask a question. Does there exist a function g € L'(R) such that

fxg=1 (3.3.35)

where f € L'(R)?
If (3.3.35) is valid, then the convolution theorem 3.3.7 will give

f(@) () = f(),
so that
g(w) =1. (3.3.36)

This contradicts the Riemann-Lebesgue lemma and g ¢ L'(R). Therefore, the
answer to the above question is negative. However, an approximation of the
convolution identity (3.3.33) seems to be very useful in the theory of Fourier
transforms. For example, we introduce a sequence {g,(¢)} € L'(R) of ordinary
functions such that

gn(w)—>1 as n—>oo forallweR. (3.3.37)

We normalize g, by setting g,(0) = 1. Or, equivalently,

/oo gn()dt = 1. (3.3.38)

—0o0

A good example of such a sequence g, (¢) is a sequence of Gaussian functions
given by

gn(t) = \/Z exp(—nt?), n =1,2,3,.... (3.3.39)

This sequence of functions was drawn in Fig. 2.1 (see Chap.2) forn = 1,2,3,....
Its Fourier transform is given by

2
&n(®) = exp (—(:—n) . (3.3.40)

Clearly, g, (w) satisfies the conditions (3.3.37).
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Even though the Dirac delta function § ¢ L!(R), formally (2.4.1) represents
f * 8 = f which means that § plays the role of an identity element in L!(R) space
under the convolution operation. Also,

f(@)8(w) = f(w),
so that
8(w) = Z{8(1)) = 1, (3.3.41)

and, by Definition 3.3.1 of the inverse Fourier transform,
1 .
3() = —/ e dw. (3.3.42)
2 Jw

This is an integral representation of the Dirac delta function extensively utilized in
quantum mechanics.

Finally, results (3.3.41) and (3.3.42) can be used to carry out the following formal
calculation to derive the inversion formula for the Fourier transform. Hence,

) = [ FC)8( - x) dx

o0

= / N [zi / exp [iw(t—x)]dw} dx

= zi /_Z et [/_Z f(x)eiox dx:| do
_ Zi/_:efwff(w)dw.

A

Theorem 3.3.9 (General Modulation). If 7 {f(¢)} = f(w) and F {g(t)} =
2(w), where f and g belong to L' (R), then

1 /-
Flf0 g0} =5 (F*2) @ (33.43)
Or; equivalently,
0 1 0 A
/_ e f() g(t)dt = 2—/_ f(x) g(w—x)dx. (3.3.44)

This can be regarded as the convolution theorem with respect to the frequency
variable.
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Proof. Using the inverse Fourier transform, we can rewrite the left-hand side of
(3.3.43) as

FL0)s0)) = / £ (1) g(1) dt

e g (t)dt / ™ f(x)dx

—0o0

f(x)dx /00 e 1O (1) dt

This completes the proof.

In particular, if, result (3.3.43) reduces to the modulation property (3.3.5).

The definition of the Fourier transform shows that a sufficient condition for f'(¢)
to have a Fourier transform is that f(¢) is absolutely integrable in —oco < ¢ < oo.
This existence condition is too strong for many practical applications. Many simple
functions, such as a constant function, sin wz and t” H(¢), do not have Fourier
transforms, even though they occur frequently in applications. The above definition
of the Fourier transform has been extended for a more general class of functions to
include the above and other functions. We simply state the fact that there is a sense,
useful in practical applications, in which the above stated functions and many others
do have Fourier transforms. The following are examples of such functions and their
Fourier transforms (Fig. 3.7).

Fia -1} = (2. (3.345)
)
where H () is the Heaviside unit step function.

F{8(t —a)} = exp(—iaw). (3.3.46)

 £.(0) p Im{, (o)}

\0 = -a 0|\ a i
_________ o

Fig. 3.7 Graphs of f,(t) and f, (w)
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We have
F{H( —a)} = [i + 8((»)} . (3.3.47)

Example 3.3.4. Use the definition to show that

F e H(t)} = ((;21—1:;2)) a>0. (3.3.48)

We have, by definition,

o0
4 1
Fle " MH(t :/ —1 jw)}dt = .
{e (0} i exp{—1t(a+iw)} P
Example 3.3.5. Apply the definition to prove that
F0) = 2 (3.3.49)
(@ + 0?)

where f,(t) = e H(t) — e* H(—t). Hence, find the Fourier transform of sgn(z).
We have, by definition,

0 9]
exp {(a —io)t}dt + / exp{— (a +io)t}ds

—00 0

o 1 o

T atin) @—iw) (@ +od)

Fihw) = |

In the limit as @ — 0, f,(¢) — sgn(?), and hence,

F {sgn()} = (i) (3.3.50)

iw

3.4 TFourier Transforms in L2(R)

In this section, we discuss the extension of the Fourier transform onto L2(R). It turns
out that if f € L*(R), then the Fourier transform f of f is also in LZ(R) and

=

5 where

1

|71, = %/_oo |f(t)|2dt} gy (3.4.1)
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The factor +/2 involved in the above result can be avoided by defining the
Fourier transform as

Fflo) = —iol £(1) dt. (3.4.2)

1 o0
— e
V2 /—oo
We denote the norm in L?(R) by ||.||> and this norm is defined by

1
o0 2 2
|1, = {/ 0] dt} : (3.4.3)
—00

where f € L*(R).

Theorem 3.4.1. Suppose [ is a continuous function on R vanishing outside a
bounded interval. Then, f € L*(R) and

171, = H sz. (3.4.4)
Proof. We assume that f vanishes outside the interval [— , ]. We use the Parseval
formula for the orthonormal sequence of functions on [— , |,
bn (1) ! exp(int) 0,+1,£2
= xp(int), n=0,%x1,%+2,...,
n \/2— p
to obtain
2 > 1 00 2 o 2
= — eI () dt| = ‘n)
17| ;w‘ — /_oo sl =3 |fo

Since this result also holds for g(¢) = e™*' f(¢) instead of f(¢), and H f ||i = Hg ;,

ten | /2= 3 Foen|

n=—oo

Integrating this result with respect to x from O to 1 gives

1= 3 [ osofar= 3 [T ofan o=n+n

[l o=

If f does not vanish outside [— , ], then we take a positive number a for which
the function g(¢) = f(at) vanishes outside [— , ]. Then,



3.4 Fourier Transforms in L?(R) 151

Thus, it turns out that

7(&) ao= [ o] o= 7]

1
a

I71;=alel; =a [

o0
—00

This completes the proof.

The space of all continuous functions on R with compact support is dense in
L?*(R). Theorem 3.4.1 shows that the Fourier transform is a continuous mapping
from that space into L?(R). Since the mapping is linear, it has a unique extension
to a linear mapping from L?(R) into itself. This extension will be called the Fourier
transform on L?(R).

Definition 3.4.1 (Fourier Transform in L?>(R)). If f € L?*(R) and {¢,} is a
sequence of continuous functions with compact support convergent to f in L?(R),
that is, H f—dn || — 0 as n — o0, then the Fourier transform of f is defined by

~

£ = lim ¢y, (3.4.5)

n—o0

where the limit is taken with respect to the norm in L?(R).

Theorem 3.4.1 ensures that the limit exists and is independent of a particular
sequence approximating f. It is important to note that the convergence in L?(R)
does not imply pointwise convergence, and therefore the Fourier transform of a
square integrable function is not defined at a point, unlike the Fourier transform of
an integrable function. We can assert that the Fourier transform f of f € L>(R) is
defined almost everywhere on R and f € L%(R). For this reason, we cannot say
that, if £ € L'(R) N L?(R), the Fourier transform defined by (3.2.3) and the one
defined by (3.4.5) are equal. To be more precise, we should state that the transform
defined by (3.2.3) belongs to the equivalence class of square integrable functions
defined by (3.4.5). In spite of this difference, we shall use the same symbol to
denote both transforms.

An immediate consequence of Definition 3.3.2 and Theorem 3.4.1 leads to the
following theorem.

Theorem 3.4.2 (Parseval’s Relation). If f € L*(R), then

171, = Hsz (3.4.6)

In physical problems, the quantity anz is a measure of energy, and HfH
2

represents the power spectrum of a signal f. More precisely, the total energy of
a signal (or waveform) is defined by
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E=|f| = /_ _fofar (3.4.7)

Theorem 3.4.3. If f € L*(R), then

n

f@»:gﬁ;i%: e~ £(1) dt, (3.4.8)

where the convergence is with respect to the L?>-norm.

Proof. Forn =1,2,3,..., we define

f(@), for|t| <n

Jalt) = { 0. for|t] > 1. (3.4.9)
Clearly, | f — fu, = 0 and hence, f— £ e 0asn — oo.
Theorem 3.4.4. If f,g € L*(R), then
(r8)= [ roemda= [ joswa=(fg. G40

Proof. We define both f,(¢) and g, (¢) by (3.4.9) forn = 1,2,3,.... Since

fult) = \/%/:: e £ (x) dx,

we obtain

/_Z Sn0) (@) dit = «/;2_ /_Z ) /_: ) i

The function exp(—ixt) g,(t) fu(x) is integrable over R?, and hence the Fubini
Theorem can be used to rewrite the above integral in the form

/_Z Fu®gn(0) dt = \/% /_: Sn) /_: s drds

- /_ Jin() 0 (x) dx.

— 0, letting n — oo with the continuity of

Since Hg — g H2 — 0 and ||£’ —&n ||2

the inner product yields
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o0 R o0
| hwaod= [ noaod.
—00 —00
Similarly, letting m — oo gives the desired result (3.4.10).

Definition 3.4.2 (Autocorrelation Function). The autocorrelation function of a
signal f € L*(R) is defined by

F(1) = /_oo ft+1) f(r)dr. (3.4.11)

In view of the Schwarz inequality, the integrand in (3.4.11) belongs to L' (R), so
F(¢) is finite for each ¢ € R. The normalized autocorrelation function is defined by

/oof(t—i—t)mdt R

y() = — = Fo)

o0 — (3.4.12)
[fmmwr

The Fourier transform of F () is

Fo) = f(w)‘z. (3.4.13)

This can be verified as follows:
Fo = [ fa+oTmadr
— [ re-0FEndn c=-u

:/_ fe—wygwdu, (gw) = f(—u)
= f(0) % g(1)
=7 /(@ &)

1 ® A it
=7?[mﬂ@ﬂmedw

1 oo _ ) R
=7?[_ﬂ@fww%m,ﬂm=ﬂ@bwwm

— {‘f(w))z} .

This leads to result (3.4.13).
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Lemma3.4.1. If f € L2(R) and g = f, then f = §.

Proof. In view of Theorems 3.4.2 and 3.4.4 and the assumption g = f , we find

2

(ré)=(7.8)=(7.1)=|7] = 1712

Also, we have

(£8)=(/.7)=17s15
Finally, by Parseval’s relation,

A

f

= el =[] =111

g
Using (3.4.14)—(3.4.16) gives the following

=

This proves the result f = 3.

Example 3.4.1 (The Haar Function). The Haar function is defined by

1
1, forO§t<§,

— 1
0= —l,for§§t<1,

0, otherwise

Evidently,

o = [ e = [ [ear— [ e

| o .
= (1 e e_"”)
LW

(3.4.14)

(3.4.15)

(3.4.16)

2 . _ _ =
= =8 =@ =1rE-{ra)-(ra+ 2l =0

(3.4.17)

(3.4.18)
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Y

t
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Fig. 3.8 The graphs of f(t) and f((o)

The graphs of f(¢) and f (w) are shown in Fig. 3.8.

Example 3.4.2 (The Second Derivative of the Gaussian Function). 1If
2 1,
ft)y=(1—-1*)exp -5 (3.4.19)
then
A 2 [
f(w) = o”exp —3 o). (3.4.20)

We have

o= -1 ()] | ()

= —(iw)’Z {exp (—% tz)} = w’exp (—% (»2) .

Both f(¢) and f(w) are plotted in Fig. 3.9.
Example 3.4.3 (The Shannon Function). The Shannon function f(¢) is defined by

f@) = Lt (sin2 ¢t —sin t) = (%) sin (é) cos (%) . (3.4.21)

Its Fourier transform f (w) is given by

1, for <w| <2,
0, otherwise

flo) = { (3.4.22)
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S (1) 1‘ f)

Fig. 3.9 Graphs of f(t) and i'(u))

f(0) . fw)
I | I I
I I I I
I I | I
I I I I
I I I I
p I | | I ©
0 -2n - 0 n 2n

Fig. 3.10 Graphs of f(t) and f(w)

Both the Shannon function f(¢) and its Fourier transform f (w) are shown in
Fig.3.10.

Example 3.4.4 (Fourier Transform of Hermite Functions). The Hermite functions
are given by

2

hin(x) = %exp (—%) H,(x), (3.4.23)

where H,(x) is the Hermite polynomial of degree n defined by

H,(x) = (—1)" exp(x?) (dd—x)n exp(—x2). (3.4.24)
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Then,
(@) = (=) hp(), (3.4.25)

where the Fourier transform is defined by (3.4.2).

We have
2
ho(x) = exp (—%) ,

then, by (3.2.5),

2

};O(w) = exp (—%) = ho(w).

Differentiating (3.4.23) with respect to x gives

1 x2
00 = —xh, 0+ oo (~3) i)
n! 2

= —xh,(x) + %exp (—X;) =" |:2x exp(x?) (;—X)n exp (—X;)

d n+1
+exp(x?) (E) exp(—xz)]

D(=1 n+1 d n+1
% -exp(x?) ($) {exp(—x?)}

= xh,(x) — (n 4+ Dh,4+1(x). (3.4.26)

= —xh,(x) + 2xh,(x) —

Using (3.3.9) and the fact that

d -~
T f(@) = (=) &), where g(1) = 1(1),
w

the Fourier transform of result (3.4.26) is

(1) (@) = 7 () = (1 1) (o),
w

so that

ﬁwmmz—m+nﬁwmwr4£ﬁam]
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If result (3.4.21) is true for n, then, for n 4+ 1, we obtain

(@) =~ [V b 0)+ VR )]
= (—i)"*! [_ T j_ 5 {—owh,(w) + h;(w)}}

= (=)" ht1 (o).

Thus, result (3.4.25) is true for all n.
Theorem 3.4.5. If f € L*(R), then

O (Fxf)0) = /_ $(x) £ (x) dx.
(i) lim (Fexf)0) = 100,

where

|x

* I ; ixt
(Fo* f)@) = /—x (1 - T) f(x)e™ dt,
and
b(x) = Ax(x)e™.

Proof. We have, by (3.3.30),

d(w) = / An(x)exp{ix(w —t)}dx = F)(w—1).

Then,

(o]

(B N0 = [ Fte=2 £ dx

—00

_ /oo Fulx — 1) f(x) dx

o0

- /_ $(x) £(x) dx

= /_oo b(x) f(x)dx, by (3.4.10).

(3.4.27)

(3.4.28)

(3.4.29)

(3.4.30)
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An argument similar to that of the Approximate Identity Theorem 3.3.8 gives (ii).

Theorem 3.4.6 (Inversion of Fourier Transforms in L2(R)). If f € L*(R), then
1 N
f)y=lim — [ & f(w)dw, (3.4.31)
n—o00 2 n

where the convergence is with respect to the L*(R)-norm.

Proof. If f € L(R), and g = £, then, by Lemma 3.4.1,

_ 1 (7
J@) =g(@) = lim 7 e g(w)do
= lim — et g(w)dw
n—>o0

—n
n

1 R,
lim 7 e g(w)dw

n—00 —n

1 no. A
lim — | ' f(w)do.

n—o0 2

—n

Corollary 3.4.1. If f € L'(R) N L2(R), then the following formula

ft) = %/n e f(w)dw (3.4.32)

holds almost everywhere in R.

The formula (3.4.31) is called the inverse Fourier transform. If we use the factor
(1 /2 ) in the definition of the Fourier transform, then the Fourier transform and
its inverse are symmetrical in form, that is,

1 o0

Weal2 e f(w)do.

1
ol
(3.4.33a,b)

Theorem 3.4.7 (General Parseval’s Relation). If f,g € L*(R), then

fw) = e fydr,  f(1) =

<ﬁg>=f_oo f(0) g(t) dt =/_oo f(@) 2@ do=(f.8). (3.4.34)

where the symmetrical form (3.4.33a,b) of the Fourier transform and its inverse is
used.
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Proof. 1t follows from (3.4.4) that

17 +eli=]7+2].-

Or, equivalently,

/_Z|f+g|2dt=/_:)f+§)2dw,

oo

[CUrairpa=[" (7+8)(F+8)do

o0 —0o0

Simplifying both sides gives

/_Z|f|2dt+/oo (fg+gf)dz+/:|g|2dz

o0 12 o0 n = o0
=/ i dw+/ (fg+gf)dw+/ 18> do.
—00 —0o0 —0o0
Applying (3.4.4) to the above identity leads to
/ (fgr+gf')dt=/ (f§+grf)dw. (3.4.35)
—00 —0o0

Since g is an arbitrary element of L2(R), we can replace g, ¢ by ig,i g respectively,
in (3.4.35) to obtain

o0 o _ o0 n =

| U@ +aofla = [ [F (@) + 62 f ]do.
(e 9) (e 9)

—i/ fgdt—i—i/ gfdt:—i/ f§dw+i/ 2 fdo,
—00 —00 —00 _

(o]

which is, multiplying by 7,
o0 o0 _ o n_ o =
/ fgdz—/ gfdt:/ fgfdw—/ g fdo. (3.4.36)
—00 —00 —0Q —0Q
Adding (3.4.35) and (3.4.36) gives

/_f(z)mdzzf_ £ (@) 3@ do.
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This completes the proof.
Note 1. If g = f in the above result, we retrieve result (3.4.4).

Note 2. A formal calculation easily establishes the result (3.4.34) as follows. The
right-hand side of (3.4.34) is

< YOS — L OO —iot A7,
/_ F@Fwdo = —— /_ e Fo)dods

= /_:f(t)\/%_/_ze"‘”’g(w)dwdf
=/_: f(@t)g()dr.

Note 3. If the Fourier transform pair is defined by (3.2.1) and (3.3.18), then the
general Parseval formula (3.3.4) reads

(£.8) = 5-1/.8) (3437)

The following theorem summarizes the major results of this section. It is known as
the Plancherel theorem.

Theorem 3.4.8 (Plancherel’s Theorem). For every f € L?*(R), there exists f €
L?(R) such that

. 1 2 ; _L OO —iot
(i) If felL (R)ﬂLn(R), then f(w) = \/2_/_006 f@)de.
(ii) "f(w)—\/%/_ne_i“”f(t)dt 2—>0asn—>oo,and

1 B A
0= [ i do
(i) {f.8)=(f. &)
) [ f1,=|7],-
(v) The mapping f — f is a Hilbert space isomorphism of L*(R) onto L*>(R).

—0asn — o0.
2

Proof. All parts of this theorem have been proved except the fact that the Fourier
transform is “onto”. If f € L?(R), then we define

S

h=f and g =

Then, by Lemma 3.4.1, we get
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and hence,
f=8

This ensures that every square integrable function is the Fourier transform of a
square integrable function.

Theorem 3.4.9. The Fourier transform is a unitary operator on L*(R).

Proof. We first observe that

PSSR S R SR SR R - e ury
o) = - /_ R = ﬂ_/ e g(1) di = T {g(0)} (@).

—00

Using Theorem 3.4.4, we obtain

(7 (f0)}.g) = / F (@) 3@ do = 12 /_ f() §(0) do

B %/—m f(@) F g0} (@) do = (f,.Fg).

This proves that .#~! = .Z*, and hence the Fourier transform operator is unitary.

Theorem 3.4.10 (Duality). If f(0) = Z{f(t)}, then

F { f(w)} = f(~w). (3.4.38)

Proof. We have, by definition (3.4.33a),

7{f )} = e f(w)do

i

1 ©
= F[_ e_’(”tf(t) dt

= f(—w), by the inversion formula (3.4.33b).

Or, equivalently,

7o) = o) = fo).
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Similarly,
Fw =7 {fw)= o= [ e fewd
= \/%/_ e’ f(o)do, (® = —0)
= %/_ e f(r) dt
= f(~w).
Finally, it turns out that
f7w) = F{f o) = f(). (3:439)

Corollary 3.4.2 (Eigenvalues and Eigenfunctions of the Fourier Transform).
The eigenvalues of the operator F are . = 1,i,—1,—i.

Proof. Consider the eigenvalue problem

Ff=\f
Wehave f = Mf. f =Af = 2f f = 22f = A3 £ It follows from (3.4.39)
that

A Ann

f=f =\t
Consequently, \* = 1 giving the four eigenvalues &1, +i of .%.

It has already been shown in Example 3.4.4 that
F (X)) = (=0)" ha(x).

Clearly, the Hermite functions £, (x) defined by (3.4.23) are the eigenvalues of the
operator .% .

Example 3.4.5. Using the duality theorem 3.4.10, show that

F { —} = — isgn(w), (3.4.40)

(3.4.41)

e MU B E

a? + 12 ie el o <0,
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4 f() 4 lm{f(m)}

: - > (1
-a 0 a -a 0 a

2a

Fig. 3.11 Graphs of f(t) = t(a® + t?)~! and f((.))

The graphs of f(¢) and f(u)) given in (3.4.41) are shown in Fig.3.11. Finally, we
find

Ft"sgn(t)f = ()" a" F{sgn(t)} = (—i)" a’ (_i) = (—iyH! 2n!

dw" do" \ i @t
(3.4.42)
2
FAlt]y = F{tsgn(t)} = ——. (3.4.43)

2

3.5 Discrete Fourier Transforms

The Fourier transform deals generally with continuous functions, i.e., functions
which are defined at all values of the time 7. However, for many applications, we
require functions which are discrete in nature rather than continuous. In modern
digital media audio, still images or video—continuous signals are sampled at
discrete time intervals before being processed. Fourier analysis decomposes the
sampled signal into its fundamental periodic constituents sines and cosines, or more
conveniently, complex exponentials. The crucial fact, upon which all modern signal
processing is based is that the sampled complex exponentials form an orthogonal
basis. To meet the needs both the automated and experimental computations, the
DFT has been introduced.

To motivate the idea behind the DFT we take two approaches, one from the
approximation point of view and other one from discrete point of view.

Consider the function f* with Fourier transform

flw) = /_ f(e) e dr. (3.5.1)

For some functions f, it is not always possible to evaluate the Fourier transform
(3.5.1) and for such functions, one needs to truncate the range of integration to an
interval [a, b] and approximate the integral for f by a finite sum as
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N—1
f(u)) = Z f(tk) e—iml‘kh.
k=0
Now, for sufficiently largea < O and b > 0

/“b ft)e ' dt

is a good approximation to f . Therefore, in order to approximate this integral, we
sample the signal f at a finite number of sample points, say

lh=a<th<tbh<--<ty—1=b, a<0,b>0.
For simplicity the sample points are equally spaced and so

te =a+kh, k=0,1,2,...,N

where h =

—a . .. . . L
, indicates the sample rate. In signal processing applications,

t represents time instead of space and #; are the times at which we sample the
signal f. This sample rate can be very high, e.g., every 10-20ms in current speech
recognition systems.

Thus, the approximation g of f is given by

N—1
gw) =Y f(u)e%n
k=0
N—1

— e—imu Z f(tk) e_im(b_a)k/Nh.

k=0

We now take the time duration [a, b] into account by focusing attention on the points

n A
(frequencies), w, = At where n is an integer. Then, the approximation g of f

at these points becomes

N—1
g((i)n) — e—ium,, Z f(tk) e—ian /NI’Z
k=0

By neglecting the term e *““# /1 in the R.H.S. of above expression and focus attention
on the N -periodic function f : Z — C, we obtain

=

fn fte)e ™  Nn, nez

I
i

=
L

f () w, (3.5.2)

~
Il
=)
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where w = e? /N Equation (3.5.2) is known as DFT.

From a discrete perspective, one is dealing with the values of f at only a finite
number of points {0, 1,2,...,N— 1}. Consider f as defined on the cyclic group of
integers modulo the positive integer N

Iy = z (Z modulo N)

(V)

where (N) = {kN 1k e Z} and f : Zy — C. This function f can be viewed as
the N -periodic function defined on Z by taking

f(k+nN)=ftk), VneZ k=01,...,N—1.

But Zy is finite. Therefore, any function defined on it is integrable. Thus, L' (Zy) =
L*(Zy) = Cy is the collection of all functions f : Zy — C. One gets the DFT
for f : Zy — Cas

N—1

fn) = Zf(k)e_iz"k N nely.

k=0

This formula for the DFT is analogous to the formula for the nth Fourier coefficient
with the sum over k taking the place of the integral over .
In matrix notation, the above discussion can be summarized by the following.
Here we replace Zy by the cyclic group of Nth root of unity. Therefore, f and
its DFT f can be viewed as vectors.

£(0) ) £ ()
f= and f =
F(N=1) fv =1
with
1 1 1 1
1 e 12 i/N e 22 /N . o~(N=1)2 /N
1 e 22 i/N e~222 i/N . p—2(N=D2 i/N

Wy

1 e~ (N=D2 i/N ,=2(N=1)2 i/N _  ,~(N=1%2 i/N

Then, clearly f = Wy f. Here, Wy is also called the Nth order DFT matrix.
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Example 3.5.1. Let f : Z4 — C be defined by
fm)y=1, Vn=0,12,3.
Then,

111 1\ /1
1—i—1 i ||
1-11 =1

= e

1 i -1 —i 1
Here some properties are analogous to the corresponding properties for the Fourier
transform given in Theorem 3.4.1.
Theorem 3.5.1. The following properties hold for the DFT:
(a) Time shifi: f(n — j) = f(n) e I/,
g A A
(b) Frequency shift: (f(n) e? ’f”/N) =f(n—j),
2 R R
(c) Modulation: (f(n) cos ]\’/U ) =3 [f(n -+ fln+ j)] .

Proof. Let g(n) = f(n — j). Then, by using the fact that f is N -periodic, we
obtain

N—1
gn) =Y glkye ™ WV
k=0

N—1
Zf(k_j)e—Zn ik/N
k=0

N—1—j
Z f(m) e—2n i(m+j)/N

m=—j
—1 N—1—j
— —2n i(m+j)/N —2n i(m+j)/N
Sf(m)e + f(m)e
m=—j m=0
N-1 N—=1—-j
— f(m)e_z" i(m+j)/N + Z F(m) o 2n im+j)/N
m=N—j m=0

N—1
( f(m) e—Zn im/N) e—Zn ij/N _ f(n) e—Zn ij/N'
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Hence
fn—j)y=fmye VN nez.

(b) Letg(n) = f(n)e 2" /N Then

N—1
gy =) glkye ™ "N
k=0

N—1

= f(k) e2 ijk/N e—Zn ik/N
k=0
N—1 A

=3 fly e HIY = f— ),
k=0

Hence
(roye )" = fu = ).
(¢)  Since
f(n)cos 2]\;11 = % [f(n) e N 4 f(n)e™? ijn/N:I

the desired result is obtained by using part (b).

Our next task is to compute the inverse of the DFT. We have already computed
the inverse Fourier transform, since Theorem 3.4.6 tells how to recover the function
f from its Fourier transform. The inverse DFT is analogous and it allows us to
recover the original discrete signal f from its DFT f .

Theorem 3.5.2 (Inversion Formula). Let f : Zy — C be such that

N—1

fy=>" flkye? *n/V = Zf(k)w

k=0

where w = €2 /N Then

N—

N—
fl) == Zf()e2 /N = Z fleywt. (35.3)
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Proof. In order to establish the result (3.5.3) we must show that

= liftn = j
(n=j)k — = 3.5.4
2 {0ﬁn¢j (3-54)
Since w = e? /N wkn .=k = wk('=J) Therefore, in order to sum this expression
overk =0,1,2,..., N — 1, we use the following elementary observation that
N if x =1
T+x+x2++x¥ =013V
ifx #1

Set x = w"~/ and note that x¥ = 1 because w" = 1. Also, we note that "~/ # 1
unlessn = j forO0 <n,j < 1. Thus

N—1

; lifn =j
(n—j)k _ J
2w %Oifn;éj

Hence
N— 1 N—1 .
Z (k) €2 ikn/N _ N f(k) Wkn
k=0 k=0
1 N—-1 (N—1
~ LSS s |
k=0 \ j=0
1 N—1 N—1
=N SU) W(n_j)k)
Jj=0 k=0

Therefore, by using (3.5.4), we get

f(k) & W = fl) N = fn).

||P1|2

3.6 Fast Fourier Transforms

Although the ability of the DFT to provide information about the frequency compo-
nents of a signal is extremely valuable, the huge computational effort involved meant
that until the 1960s it was a rarely used in practical applications. Two important
advances have changed the situation completely. The first was the development
of the digital computer with its ability to perform numerical calculations rapidly
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and accurately. The second was the discovery by Cooley and Tukey of a numerical
algorithm which allows the DFT to be evaluated with a significant reduction in the
amount of calculations required. This algorithm, called the FFT, allows the DFT of
a sampled signal to be obtained rapidly and efficiently.

Actually the idea of this algorithm goes back to Carl-Friedrich Gauss
(1777-1855) in 1805, but this early work was forgotten because it lacked the
tool to make it practical: the digital computer. Cooley and Tukey are honored
because they discovered the FFT at the right time, the beginning of the computer
revolution. The publication of the FFT algorithm by Cooley and Tukey in 1965,
was the turning point in digital signal processing and in certain areas of numerical
analysis. Nowadays, the FFT is used in many areas, from the identification of a
characteristic mechanical vibration frequencies to image enhancement. Standard
routines are available to perform the FFT by computer in programming languages
such as Pascal, Fortan, and C, and many spreadsheet and other software packages
for the analysis of numerical data allow the FFT of a set of data values to be
determined readily.

The DFT of an N times sampled signal requires a total of N> multiplications and
N(N —1) additions. The FFT algorithm for N = 2* reduces the N> multiplications
to something proportional to N log, N. If the calculations are handmade, then N is
necessarily small and this is not that significant but in case N is large, the number of
operations is drastically reduced. For example, an average JPEG image may contain
600 x 400 pixels. Thus, the DFT would take 57,600,000,000 multiplications. The
FFT on the other hand would only take approximately 2,144,721 multiplications.

Another example, music is typically sampled at a rate of 44,000 samples/sec for
CDs. Thus, a three minute song would contain N = (44,000) x 180 = 7,920,000
samples. Here then, the DFT would take 63,000,000,000,000 multiplications versus
90,751,593 for the FFT. This result is a significant difference in computing time.
To see this difference in computing time it has been stated that can be computed
on a good computer to one billion digits in under an hour using the FFT. On the
same computer, to compute to a billion digits with DFT, it would take nearly ten
thousand years. We obviously have something to gain.

How do we go about achieving this reduction in computing time? Where do we
start? The idea is to look at even entries and odd separately, we can then piece them
back together. This, seemingly simple, idea will allow certain multiplications that
are normally repeated to only be done once.

Let N € Nwith N evenand wy = e 2 /N If N = 2M, M € N, then

2 -2 i2/N

Wl =e ~2 i/(N/2) _ =2 i/M _

=¢e Wy .
Suppose f € £*(Zy) = Cy, definea,b € €*(Zy) = Cy = Cy2 by
alk) = fk)  fork=0.1.2.....M —1,

bk)= fQk+1) fork=0,1,2,....,M —1.



3.6 Fast Fourier Transforms 171

Here a is the vector of the even entries of f and b is the vector of the odd entries.
Thus

fk) = (a(0),b(0),a(1),b(1),...,a(M — 1), b(M —1)).

Then, breaking the definition of the DFT of f into even and its odd parts, we obtain

N—1
fy =" flkye MIN
P

N—1
=Y flywy
k=0
M—1 M—1
=Y fROWE + Y f@k + 1w
k=0 k=0
M—1 M—1
=" atk) (W3)"™ +wi 3 bik) (wh)™
k=0 k=0
M—1 M—1
= > ak)wif +wy Y blk)wif
k=0 k=0

= a(n) +w" b(n)
where a(n) and a(n) are the M -points, DFTs of a and b, respectively. But
WEM _ (6—2 i/N)—M — Q2 IM/N _ i
Therefore, if 0 <n < M — 1, then
f(n) = an) +w b(n). (3.6.1)
Moreover,if M <n < N — 1, then
fm)y=am—m)+wi™ b — M)
=a(n) +wyM - Wi, b(n)
=a(n) —w), b(n). (3.6.2)
Example 3.6.1. Let

fy=[10i2-i10i]" €?(Zs) = Cs.
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Then, the even a and odd b, parts of f are

1 0
i 2 )
a=1|_ 1| b= : € (*(Zy) = Cy,
0 i
with
11 1 1
B R A B
R [ S [ Q|
1 i —1—i
Therefore
11 1 1 1 1
o |11 T N
Sl =1 1 =1 =i [1-2i
1i —1—i]Lo i
and
11 1 177T0 341
~ 1 —i—1 i 2 —2—i
b= =
1—-1 1 —1]||1 —1—i
1 i —1—i]Li 2i
Thus
a0y +b0) ] 4+l
ﬁ(1)+€_2 i/Sb(l) 2—2\/.5+l
aR) +e*18hp(Q2) -t
f— @(3).,.@—6 i/8b(3) _ ﬁ—i—z(l—\/z)
a(0) — b(0) —2—i
a(l) —e 2 18p(1) 2+2/2 41
a@)—e* 8h(2) 2—3i
a3 —e S B8h3) | | -v2Z+i (1 + —ﬁ)

Let us now look at the number of multiplications that it takes to compute f (n)
in this way when f € Cy = 62(ZN) and N = 2M. Computing a and b each
2

N N N
takes M2 = - multiplications. In addition, for each entry of b, we need b(n) w),.
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This gives an additional M = N/2 multiplications. Thus, if m(N) denotes the
number of multiplications required to compute an N-point DFT using the FFT
algorithm, then our total is

m(N) =2M?*+ M = 2m(N/2) + (N/2). (3.6.3)

Here we have essentially cut the half time. This is good but not great half of
the ten thousand years in a previous example is still a long time. The order of
magnitude really has not changed. How can we get a more significant change? The
big improvementis going to come when N = 2", n € N. Now, with this assumption
N = 2", the M defined above will a}so be even. Thus, we can use the same method
recursively, when computing @ and b. Therefore, we have the following theorem in
this regard.

Theorem 3.6.1. If N = 2" for some n € N, then
m(N) = (N/2)log, N. (3.6.4)

Proof. We prove the theorem by using the method of induction on n. Let n = 2.
Then, m(2%) = m(4) = 4 and hence the result holds for n = 2. Assume that the
result holds forn = k — 1. Then

m(2F) =2.-m(257") + 24!
=202k — 1)) + 2!
=2 ((k—1)+1)

=2k = (ﬁ) (log, 2%)
= =3 2,27).

This proves that the result holds for n = k also. Thus, by induction the result must
hold for any n € N.

3.7 Poisson’s Summation Formula

Although the theory of Fourier series is a very important subject, a detailed study
is beyond the scope of this book. Without rigorous analysis, we establish a simple
relation between Fourier transforms of functions in L' (R) and the Fourier series of
related periodic functions in L'(0,2 ) of period 2 .
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If £(t) € L'(0,2 ) and f(¢) is a periodic function with period 2 , then the
Fourier series of f is defined by

Y™ (0=t1<2), (3.7.1)
n=—00

where the Fourier coefficients ¢, is given by

2
Cp = i/ ft)e " dt. (3.7.2)
2 Jo

Theorem 3.7.1. If f(t) € L'(R), then the series

> fe+2n) (3.7.3)

n=—0o0

converges absolutely for almost all t in (0,2 ) and its sum F(t) € L'(0,2 ) with
F(t+2 )=F(t)fort eR
If a, denotes the Fourier coefficient of F, then

f).

— 1 /2 F(l) —intdt_ 1 /OO f(t) _imdl_ 1
a,,—z A e —2 . e —2

Proof. We have

oo 2 N 2
> /0 | f(t +2n )|dt=]\lli_r>noon;N/0 | f(t +2n )|dt

n=-—00
' N 2(n+1)
=Jm X [

2 (N+1)
= lim |f(x)|dx

N—oo J_» N

/_00 |f(x)‘dx < o0.

It follows from Lebesgue’s theorem on monotone convergence that

2 00 2
/ Do fa+2n )de= )" / |f(t +2n )| dt < co.
0 0

n=—0o0 n=—0oo
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o0
Hence, the series Z f(t+2n ) convergesabsolutely for almostall ¢. If Fy (¢) =

n=—oo

N
> f+2n ). lim Fy(1) = F(1). where F € L'(0,2 Yand F(t +2 ) =
—00
n=—N

F(1).
Furthermore,
2 2 [e’e
HF||1=/0 IF(t)Idtzfo n;oof(t+2n )| di

2 00

5/0 | f+2n )|de
0 | g -

= > /O | f(t +2n )|dt=/_oo|f(x)|dx=||f||l_

n=—oo

We consider the Fourier series of F' given by

e .
F(@) = Z am e

m=—00

where the Fourier coefficient a,, is

12 : 1 [? 4
—imt — : —imt
7 /0 F(t)e dt 7 /0 |:N11_1)1;o Fy (Z)i| e dt

am

- .
lim — t+2n e M dt
[ e

N—o0 2
n=—N

1 42
lim — > / f@+2n ye ™ dt
n=—N 0

N—o0 2

1 N 2(n+1) '
— 3 . —imx
_ngnooz Z /2n fx)e dx
n=—N
2(N+1)

: o —imx
ngnoo > Jon fx)e dx

fm).

1 o0 : 1
2—/_00 f(x)e " dx = >
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Hence, if the Fourier series of F(¢) converges to F(¢), then, for¢ € R,

(o]

Yo fe+2n )=F@)= ) zif(m)e""f. (3.7.4)

n=-—00 m=—00
In particular, when ¢t = 0, (3.7.4) becomes

S fen =3 f. (3.7.5)
2

n=—0o0 n=-—

This is the so-called Poisson summation formula.

To obtain a more general result, we assume a is a given positive constant and

2 2
write g(t) = f(at) forall ¢. Then, f (a . —M) =g (_u) and
a a

fn) = /_:e_i”’f(t)dt =/_Ze_i"tf (a-z—l) dt
:/_Ze"'”’g (é) dt

o0 .
= a/ g(x) e ' “M* dx = ag(an).

o0

Thus, (3.7.5) becomes

D¢ (%) = zi > gan). (3.7.6)

Putting b = — in (3.7.6) gives
o0 o0
Y gmy=b"" > &2 b7'n). (3.7.7)
n=—0o n=—0oo

This reduces to (3.7.5) when b = 2 .
We can apply the Poisson summation formula to derive the following important
identities:

00 00 2

3 exp(— xn?) = %; exp (—T") (3.7.8)

n=—0o0 —00

3 ﬁ - (5) coth( a), (3.7.9)
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- 1
Z ([—}——)2 = COSCCZZ. (3710)
n

n=—0o0

To prove (3.7.8), we choose the Gaussian kernel
Gr(t) =AG(M), G(t) = exp(—17).

Hence,
~ (,02
G = -— .
X(w) \/_ exp ( 4)\2 )
Replacing f(¢) by G).(¢) in (3.7.4) gives

Iy Z exp [—xz(t +2n )2] = # Z exp (int— 4n_;) .

n=—0o0 n=—0o0

1
Ifweputt =0andlet A = 3 \/Z, the above result reduces to

v i exp(— xn?) = i exp(—%).

n=—0o0 n=—0o0

This proves the identity (3.7.8) which is important in number theory and in the
theory of elliptic functions. The function

V()= > exp(— xn?) (3.7.11)

n=-—00
is called the Jacobi theta Junction. In terms of ¥ (x), the identity (3.7.8) becomes

vV V(x)y =7 (%) ) (3.7.12)

To show (3.7.9), we let f(1) = (1* + xz)_1 so that f (o) = (—) exp(—x|wl).
X
Consequently, formula (3.7.5) becomes

o o

1 1
Z @n? 2412 = Enz exp(—x|n|)

n=—0oo =—00
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or
Z (nz——llwaz) > Z exp(=2 aln|), (x=2 a)
== [; exp(—=2 an) + ;exp@ an)]

which is, by setting r = exp(—2 a),
o0 o0
1 r 1
— n - —
_a|:nz=:1r +nz=:1r”:| a(l—r+1—r)

= _(1+r) = — coth( a).
a

al\l—r

Thus, we have from (3.7.9),

o0

Z 1 ( ) (1 +e7? ")
21, \g4 e
= (n* +a?) a’\1—e
Or,
io: 1 1 ( ) l14+e2¢
. 1(112+012) a? a/\l—e2a
This gives

> 1 l+e24 1
;(n2+a2) - (ﬁ) [(1—6_2 “)__a}
:_2[(1—1—63:;‘)_2] 2 a=x)
X 1—e X

_ _2 |:x(1 +e™) —2(1— e_x)i|

x?2 (1—e™)
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In the limit as @ — 0 (or x — 0), we find the well-known result

i : :
= —. (3.7.13)
2
—n 6

3.8 The Shannon Sampling Theorem and Gibbs’
Phenomenon

An analog signal f(¢) is a continuous function of time ¢ defined in —oo < ¢ < o0,
with the exception of perhaps a countable number of jump discontinuities. Almost
all analog signals f(¢) of interest in engineering have finite energy. By this we mean
that f € L*(—00, 00). The norm of f defined by

171 = U_Z If(t)lzdtT (3.8.1)

represents the square root of the total energy content of the signal f(¢). The
spectrum of a signal f(z) is represented by its Fourier transform f(w), where w
is called the frequency. The frequency is measured by v = — in terms of Hertz.

A signal f(¢) is called band-limited if its Fourier transform has a compact
support, that is,

f(®) =0, o> o (3.8.2)

for some wy > 0. If wg is the smallest value for which (3.8.2) holds, then it is called
the bandwidth of the signal. Even if an analog signal f(¢) is not band-limited, we
can reduce it to a band-limited signal by what is called an ideal low-pass filtering.
To reduce f(¢) to a band-limited signal f,,(¢) with bandwidth less than or equal to
wg, we consider

p ) S for || < wo.
fwo(w)—{o for || > wg (3.8.3)

and we find the low-pass filter function f,(t) by the inverse Fourier transform

o0 (O}

fao®) = 5 [ fuwrdw= 5= [ e o) do.

(o¢) 2 —wo
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Fig. 3.12 Shannon’s functions

In particular, if

1 for |w| < wo

, 3.84
0 for |w| > wo ( )

fmo(w) = {

then f:no (w) is called the gate function, and its associated signal f,,,(¢) is given by

1 [® . sin wot
fuoo ) = — / e dow = >, (3.8.5)
2 Jow t
This function is called the Shannon sampling function. When wy =, f (¢) is

called the Shannon scaling function. Both f,,(¢) and f,,(w) are shown in Fig. 3.12.

In engineering, a linear analog filtering process is defined by the time-domain
convolution. If ¢(t) is the filter function, then the input—output relation of this filter
is given by

g(0) = (b £)1) = /_ () f(t — ) d. (38.6)

In the frequency domain, the filtering process is the Fourier transform of (3.8.6)
and is represented by pointwise multiplication as

£(0) = $(0) f (), (3.8.7)

where (13((1)) is the transfer function of the filter.
Consider the limit as wy — oo of the Fourier integral

o oo )
N ‘ ‘ ;
1= lim fu,(0) = lim e Joo(t)dt = lim e St ol dt

wo—>00 wo—>00 —00 wo—>00 —00 t

o0 . i t o0 .
/ e lim (Smwo )dt:/ e " 8(1) ds.
— 00 ®p—>00 t — 00
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Clearly, the delta function can be thought of as the limit of the sequence of signal
functions f,,(¢). More explicitly,

sin wot

3() = lim

wo—>00

The band-limited signal f,,(¢) has the representation

Joo (1) =

5 - f(w) e do = —/ F(w) fu,o(u)) e do, (3.8.8)

which gives, by the convolution theorem,

° sin wg(t —

fmo(t)Z/_O f( fmo(t—t)dr=/_ o f(r) d. (3.8.9)

This gives the sampling integral representation of a band-limited signal f,,(?).
Thus, fu,0 (t) can be interpreted as the weighted average of f(t) with the Fourier
sin wo(t — 1)
kerne] —
(-1
We now examine the so-called Gibbs’ jump phenomenon which deals with the
limiting behavior of f,,(¢) at a point of discontinuity of f(¢). This phenomenon
reveals the intrinsic overshoot near a jump discontinuity of a function associated
with the Fourier series. More precisely, the partial sums of the Fourier series
overshoot the function near the discontinuity, and the overshoot continues no matter
how many terms are taken in the partial sum. However, the Gibbs’ phenomenon
does not occur if the partial sums are replaced by the Cesaro means, that is, the
average of the partial sums.
In order to demonstrate the Gibbs’ phenomenon, we rewrite (3.8.8) in the form

as weight.

in wo(f — 1)

funt) = [ SIS e = (f #8) ), (3.8.10)

where
sin wot
T

8o (1) = (3.8.11)

Clearly, at every point of continuity of f(¢), we have

inwo(t — 1)

miiinoo Joo@) = lim (f % 84,)(1) = mgiinoo /_OO /@ = (t—1)

wo—>00

_ sin wo(t — 1)
= [ ot BT

:/ FO8(t—vdt= f(1). (3.8.12)
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We now consider the limiting behavior of f,,(¢) at the point of discontinuity
t = ty. To simplify the calculation, we set o = 0 so that we can write f(¢) as a sum
of a suitable step function in the form

f@) = fo(t) + [ f(0+) — f(0-)]|H). (3.8.13)

Replacing f(¢) by the right-hand side of (3.8.13) in Eq. (3.8.9) yields

sinwg(t — 1) sin wo(t — 1)
foo®) = [ 0 D e [0+ - 0] [ iy D
= fe(6) + [f(04) = f(0-) ] Huy (1), (3.8.14)
where
[ sinwo(t —1) . [P sinwo(t —1)
H,, @) = /_oo H(7) —(t -9 dt = /0 —(t -9 dt
= /mo sinxx dx (putting wo(t — 1) = x)
0 wot . oo wot .
:(/ +/ )(smx)dx:(/ +/ )(smx)d
—00 0 X 0 0 X
| S
=3 + — si(wot), (3.8.15)
and the function si (¢) is defined by
P
5i (1) :/ MY g, (3.8.16)
0 X

Note that

1 sin x
Hoy|\—|==-+ dx > 1,
wo 2 0 X
1 sin x
Hy | —— - — dx <O.
wo 2 0 X
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H, (1)

B e

£ .

—27T —m g T 271

M| -

y, a, w, @,

Fig. 3.13 Graph of H,,(?)

1 - . .
Clearly, for a fixed wg, — si(wot) attains its maximum at 1 = — in (0, 00) and
o

minimum at ¢ = ——, since for larger ¢ the integrand oscillates with decreasing
Wo
1
amplitudes. The function H,,(¢) is shown in Fig.3.13 since H,,(0) = 3 and

Je(0) = f(0-) and
S (0) = e (0) + 5 [f(0+)—f(0 )] = [f(0+)—f(0—)]-

Thus, the graph of H,,,(f) shows that as w increases, the time scale changes, and
the ripples remain the same. In the limit wy — oo, the convergence of H,,(¢) =
(H * Smo)(l) to H(t) exhibits the intrinsic overshoot leading to the classical Gibbs’
phenomenon.

Next, we consider the Fourier series expansion of the Fourier transform fmo ()
of a band-limited signal f,,(¢) on the interval —wy < ® < ®p in terms of the

orthogonal set of functions [exp (— n w)i| in the form
o

fwo((‘)): Z aneXP( in (»0) (3.8.17)

n=—oo

where the Fourier coefficients a, are given by

1 @o 1 n
a, = — fwo (w) exp do = fu,o — ).
2 J_w Wo o

Thus, the Fourier series expansion (3.8.17) reduces to the form

f;,o(w):zL Z ( )exp( ”;0‘”). (3.8.18)
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Multiplying (3.8.18) by '’ and integrating over (—wj, o) leads to the reconstruc-
tion of the signal f,, () in the form

[

fw()(t) = 0 fwo((l)) e do

—wo

1 @0 > n in o
_ o — _ d
2 oo |:nzz_:oo S 0 (OJO ) exp ( @0 )] w

> 2 () Lonlim (= 55)J o

n=—oo

00 sin wg (t — n_)
> foo ("—) B/ (3.8.19)
o

a n
o

This formula is referred to as the Shannon sampling theorem. It represents an

expansion of a band-limited signal f,,,(¢) in terms of its discrete values f,, (—)
Wo

This is very important in practice because most systems receive discrete samples as
an input.

Example 3.8.1 (Synthesis and Resolution of a Signal (or Waveform) and Physical
Interpretation of Convolution). In science and engineering, a time-dependent
electric, optical or electromagnetic pulse is usually called a signal (or waveform).
Such a signal f(¢) can be regarded as a superposition of plane waves of all real
frequencies, and so it can be represented by the inverse Fourier transform

f1) =7 {f(w)} - zi /OO ¢ f(w)do, (3.8.20)

—00

where f (w) is the Fourier spectrum of the signal f(¢) given by

flw) = /OO e ' f(t)dt. (3.8.21)

—00

This represents the resolution of the signal (or waveform) into its angular frequency
(w = 2 v) components, and (3.8.20) gives a synthesis of the signal (or the
waveform) from its individual components.

A continuous linear system is a device which transforms a signal f(¢) € L?(R)
linearly. It has an associated impulse response ¢(t) such that the output of the system
g(t) is defined by the convolution
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gt) = o@) x f(t) = /_ (-1 f(vde (3.8.22)

Often, f(¢) and g(¢) are referred to as input and output signals, respectively. In
science and engineering, filters, sensors, and amplifiers are common examples of
linear systems.

Physically, the output of a system is represented by the integral superposition
of an input modified by the system impulse function ¢. Indeed, (3.8.22) is a fairly
general mathematical representation of an output (effect) in terms of an input (cause)
modified by the system impulse. According to the principle of causality, every effect
has a cause. This principle is imposed by requiring

ot —1v) =0 fort > t. (3.8.23)

Consequently, (3.8.22) gives

gt) = /_ f) o —1)dr. (3.8.24)

In order to determine the significance of ¢(¢), we use the Dirac delta function as
the input so that f(t) = 8(¢) and

gt) = / 3(v) ot — 1) dt = () H(t). (3.8.25)

This recognized ¢(¢) as the output corresponding to a unit input at 1 = 0, and the
Fourier transform of ¢(¢) is given by

b(w) = / ” o) e ' dt, (3.8.26)
0
where

¢() =0 fort < 0.

In general, the output can be best described by taking the Fourier transform of
(3.8.22) so that

8(0) = f(0) §(w), (3.8.27)

where (f)(oo) is called the transfer function of the system. Thus, the output can be
calculated from (3.8.27) by the Fourier inversion formula

g(t) = zi /_ F(w) d(w) e dw. (3.8.28)
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Obviously, the transfer function $(w) is a characteristic of a linear system.
A linear system is a filter if it passes signals of certain frequencies and attenuates
others. If the transfer function

dw)y=0  for |w|> wo, (3.8.29)

then ¢ is called a low-pass filter.
On the other hand, if the transfer function

d(w) =0 for |w| < wi, (3.8.30)

then ¢ is a high-pass filter. A bandpass filter possesses a band wy < |o| < w;.
It is often convenient to express the system transfer function ¢(w) in the complex
form

d(w) = A(w) exp[ —i0(w)]. (3.8.31)

where A(w) is called the amplitude and 6(w) is called the phase of the transfer
function.

Obviously, the system impulse response ¢(¢) is given by the inverse Fourier
transform

@) = Zi/_ A(w)exp[i {(of —0(w))}] do. (3.8.32)

For a unit step function as the input f(¢) = H(¢), we have
o N 1
f@)=H()={ 8w)+-~].

and the associated output g(¢) is then given by

5 = 5- /_ B(0) A () ¢ do

_ ZL /_oo ( 8(w) + i) A(w) expi {(of —0(@))}]do

%A(o) + zi /_OO A((D“’) expli for —6(0) - 5| dw.  (3.833)

We next give another characterization of a filter in terms of the amplitude of the
transfer function.

A filter is called distortionless if its output g(¢) to an arbitrary input f(¢) has the
same form as the input, that is,
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gt) = Ao f(t — o). (3.8.34)

Evidently,

§(0) = Age ™ f () = d(w) f(w),
where
b(w) = Age ™0

represents the transfer function of the distortionless filter. It has a constant amplitude
Ao and a linear phase shift é(w) = wiy.

However, in general, the amplitude A(w) of a transfer function is not constant,
and the phase 6(w) is not a linear function.

A filter with a constant amplitude, |0(w)| = Ao is called an all-pass filter. It
follows from Parseval’s formula given by Theorem 3.4.2 that the energy of the
output of such a filter is proportional to the energy of its input.

A filter whose amplitude is constant for |w| < wo and zero for |®| > wy is called
an ideal low-pass filter. More explicitly, the amplitude is given by

A(w) = Ao H (w0 — |00]) = Ao T (®), (3.8.35)
where ¥ o, (@) is a rectangular pulse. So, the transfer function of the low-pass filter is
() = Ao Ky (@) exp(—i wio). (3.8.36)
Finally, the ideal high-pass filter is characterized by its amplitude given by
A(w) = Ao H (|o] — ) = Ag Ty (®), (3.8.37)
where Ay is a constant. Its transfer function is given by
B(w) = Ao[1 — Fwy ()] exp(—i wio). (3.8.38)

Example 3.8.2 (Bandwidth and Bandwidth Equation). The Fourier spectrum of a
signal (or waveform) gives an indication of the frequencies that exist during the
total duration of the signal (or waveform). From the knowledge of the frequencies
that are present, we can calculate the average frequency and the spread about that
average. In particular, if the signal is represented by f(¢), we can define its Fourier
spectrum by

f) = /_ 2 i (1) dt. (3.8.39)

(o]
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A2
Using ‘ f (v)‘ for the density in frequency, the average frequency is denoted by
(v} and defined by

s )
(v) = / v ‘f(v)‘ dv. (3.8.40)
—00
The bandwidth is then the root mean square (RMS) deviation at about the average,
that is,

B = /oo (v— () ‘f(v)‘zdv. (3.8.41)

—0o0

Expressing the signal in terms of its amplitude and phase

£(t) = a(t) exp {i0()}, (3.8.42)

the instantaneous frequency, v; (¢) is the frequency at a particular time defined by
1 /
vi(t) = 5 0'(1). (3.8.43)

Substituting (3.8.39) and (3.8.42) into (3.8.40) gives

(v) = zi /_oo 0'(t)a*(t)dt = /OO vi(t)a*(t) dt. (3.8.44)

—00

This formula states that the average frequency is the average value of the instanta-
neous frequency weighted by the absolute square of the amplitude of the signal.

We next derive the bandwidth equation in terms of the amplitude and phase of
the signal in the form

oo ’ 2 o] 2
ooty 28] 0 [ [ v
(3.8.45)

A straightforward but lengthy way to derive it is to substitute (3.8.42) into (3.8.41)
and simplify. However, we give an elegant derivation of (3.8.45) by representing the
frequency by the operator

1 d

—- — .
VT 0 dr

We calculate the average by sandwiching the operator in between the complex
conjugate of the signal and the signal. Thus,
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(v)—/oov)f(v))zdv—/oo ol 2] reyar
Y Y 2 i dt
= L/ a(){ —id (t) +a(t)¥'(1)} dt
2 J

_L oo_l. i 2 L OO 2 /
=3 /_oo zz[dta(t)}dmrz /_ooa(z)e(t)dt (3.8.46)

%/w 0'(¢) a*(t) dt, (3.8.47)

provided the first integral in (3.8.46) vanishes if a(t) — 0 as It |[¢| — oco.
It follows from the definition (3.8.41) of the bandwidth that

B? = /_00 (v— (v))2 ‘f(v)‘zdv

o0

a’(t)dt

Y 1 d@) 1, 3
‘/_mﬂa(z>+z_em v

[ee] / 2 e :
1 / [a (t):| az(t)dt+/ |:2L9’(t)—(v>i| az(l)dl.

42 ) a0 o

This completes the derivation.

Physically, the second term in Eq. (3.8.45) gives averages of all of the deviations
of the instantaneous frequency from the average frequency. In electrical engineering
literature, the spread of frequency about the instantaneous frequency, which is
defined as an average of the frequencies that exist at a particular time, is called
instantaneous bandwidth, given by

/ 2
o2, = ! [a (Z)}. (3.8.48)

2 ) La@)
In the case of a chirp with a Gaussian envelope
1

f@) = (3)Z exp [—% at? + % ipt? 42 ivoti| , (3.8.49)
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where its Fourier spectrum is given by

N | 1 2
f) =(a)? (oc——lB) exp[—2 2(v—vp)*/(a—iP)]. (3.8.50)
The energy density spectrum of the signal is
% da 2(v —p)?

Finally, the average frequency (v) and the bandwidth square are respectively
given by

2
(vy=vy and B*= 1 (oc + %) ) (3.8.52a,b)

A large bandwidth can be achieved in two very qualitatively different ways.
The amplitude modulation can be made large by taking o large, and the frequency
modulation can be made small by letting § — 0. It is possible to make the frequency
modulation large by making f large and o very small. These two extreme situations
are physically very different even though they produce the same bandwidth.

3.9 Heisenberg’s Uncertainty Principle

Heisenberg first formulated the uncertainty principle between the position and
momentum in quantum mechanics. This principle has an important interpretation
as an uncertainty of both the position and momentum of a particle described by a
wave function » € L2(R). In other words, it is impossible to determine the position
and momentum of a particle exactly and simultaneously.

In signal processing, time and frequency concentrations of energy of a signal
f are also governed by the Heisenberg uncertainty principle. The average or
expectation values of time 7 and frequency w, are respectively defined by

(1) = (| f@ofde. (w) =
||f||2/

where the energy of a signal f is well localized in time, and its Fourier transform
f has an energy concentrated in a small frequency domain.
The variances around these average values are given respectively by

o % /oo (t—(t))zif(f)izdt’ () = % /°° (w_<w))2 ’f(w)’zdog.
— o0 2 | f o

171

A

2/_00 w\f(w))zdw, (3.9.1a,0)

2

2
(3.9.2a,b)
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Theorem 3.9.1 (Heisenberg’s Inequality). If f(¢),tf(¢), and ® f (w) belong to
L*(R) and /t | f(t)| — O as |t| = oo, then

2 2
0; Oy =

: (3.9.3)

F-

where o, is defined as a measure of time duration of a signal f, and o, is a measure
of frequency dispersion (or bandwidth) of its Fourier transform f .

Equality in (3.9.3) holds only if f(t) is a Gaussian signal given by f(t) =
C exp(—bt?),b > 0.

Proof. If the average time and frequency localization of a signal f are (¢) and (w),
then the average time and frequency location of exp ( —i (w)t) f (t + (t)) is zero.
Hence, it is sufficient to prove the theorem around the zero mean values, that is,
(t) = (w) = 0.

Since ||f||2 = HfHZ, we have
4 9 o L[> 2 oA )P
| fly0r 08 = 2_/_ |t/ (1)] dt/_ ‘wf(w)‘ dw.
Using iw f (0) = {f'(¢)} and Parseval’s formula

17l = 5 i)

)
we obtain
[ 150202 =/ \tf(t)\zdt/_ £/ @) do

2

> /oo {tf(t)m} dt| , by Schwarz’s inequality
00 1 - 2
= | [T s lroT@s Toso) a
_ 1 © d 2 d 2 _ 1 27%° o 2d 2
—Z[/_wr(wﬂ) r} —Z{[tlf(t)l - i r}
1
=L

in which v/z f(t) — 0 as || — oo was used to eliminate the integrated term.
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This completes the proof of inequality (3.9.3).
If we assume f”/(¢) is proportional to ¢ f (¢), that is, f/(t) = at f(t), where a is a
constant of proportionality, this leads to the Gaussian signal

f(@t) = Cexp(—bt?), (3.9.4)

. . . a
where C is a constant of integration and b = - > 0.

Remarks. 1. In a time—frequency analysis of signals, the measure of the resolution
of a signal f in the time or frequency domain is given by o, and o,. Then,
the joint resolution is given by the product (o;)(0,) which is governed by the
Heisenberg uncertainty principle. In other words, the product (o;)(0,) cannot

1
be arbitrarily small and is always greater than the minimum value 3 which is

attained only for the Gaussian signal.

2. In many applications in science and engineering, signals with a high concentra-
tion of energy in the time and frequency domains are of special interest. The
uncertainty principle can also be interpreted as a measure of this concentration
of the second moment of f2(¢) and its energy spectrum f 2(w).

3.10 Applications of Fourier Transforms in Mathematical
Statistics

In probability theory and mathematical statistics, the characteristic function of a
random variable is defined by the Fourier transform or by the Fourier-Stieltjes
transform of the distribution function of a random variable. Many important results
in probability theory and mathematical statistics can be obtained, and their proofs
can be simplified with rigor by using the methods of characteristic functions. Thus,
the Fourier transforms play an important role in probability theory and statistics.

Definition 3.10.1 (Distribution Function). The distribution function F(x) of a
random variable X is defined as the probability, that is, F(x) = P(X < x) for
every real number x.

It is immediately evident from this definition that the distribution function
satisfies the following properties:

(i) F(x) is a nondecreasing function, that is, F(x;) < F(x) if x; < x3.
(i) F(x) is continuous only from the left at a point x, that is, F(x — 0) = F(x),
but F(x + 0) # F(x).
(iii) F(—00) = 0 and F(4+00) = 1.

If X is a continuous variable and if there exists a nonnegative function f(x) such
that for every real x relation
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F(x) = /_X f(x)dx, (3.10.1)

holds, where F(x) is the distribution function of the random variable X, then the
function f(x) is called the probability density or simply the density function of the
random variable X .

It is immediately obvious that every density function f(x) satisfies the following
properties:

(1)
F(400) = /00 f(x)dx =1 (3.10.2a)

(i1) For every real a and b, where a < b,
b
Pz<X <b)=F0b)—F(a) = / f(x)dx. (3.10.2b)

(iii) If f(x) is continuous at some point x, then F'(x) = f(x).

It is noted that every real function f(x) which is nonnegative, integrable over the
whole real line, and satisfies (3.10.2a, b) is the probability density function of a
continuous random variable X. On the other hand, the function F(x) defined by
(3.10.1) satisfies all properties of a distribution function.

Definition 3.10.2 (Characteristic Function). If X is a continuous random vari-
able with the density function f(x), then the characteristic function ¢(#) of the
random variable X or the distribution function F(x) is defined by the formula

&) = E[exp(itX)] = /_oo f(x)exp(itx) dx, (3.10.3)

where E[g(X)] is called the expected value of the random variable g(X).

In problems of mathematical statistics, it is convenient to define the Fourier
transform of f(x) and its inverse in a slightly different way by

oo

y{f(x)} =¢() = / exp(itx) f(x) dx, (3.10.4)

oo

FHo)} = f(x) = 2i / exp(—itx) (1) dt. (3.10.5)

Evidently, the characteristic function of F(x) is the Fourier transform of the density
function f(x). The Fourier transform of the distribution function follows from the
fact that
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F{F'(0)} = F{f()} = (1) (3.10.6)

or, equivalently,

F{F(x)} =it7'$(t).

The composition of two distribution functions F)(x) and F,(x) is defined by

o0

Fo) = A0 s B = [ R- 0 F)d. (3.10.7)

—00

Thus, the Fourier transform of (3.10.7) gives

it () = .F {/_ Fi(x —y)Fz’(y)dy}

(o]

= Z{R ) F{F @)} =it7'01(0ha(t),  F(x) = fo(x),

whence an important result follows:

o) = d1(1) d2(2), (3.10.8)

where ¢1(¢) and ¢, (¢) are the characteristic functions of the distribution functions
Fi(x) and F,(x), respectively.
The nth moment of a random variable X is defined by

o0

m, = E [X"] =/ X"f(x)dx, n=123,..., (3.10.9)

provided this integral exists. The first moment m; (or simply m) is called the
expectation of X and has the form

m=E[X]= /oo xf(x)dx. (3.10.10)

Thus, the moment of any order n is calculated by evaluating the integral (3.10.9).
However, the evaluation of the integral is, in general, a difficult task. This difficulty
can be resolved with the help of the characteristic function defined by (3.10.4).
Differentiating (3.10.4) n times and putting ¢ = 0 gives a fairly simple formula,

— /°° X F(x) dx = (—i)"$"(0), (3.10.11)

wheren =1,2,3,....
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When n = 1, the expectation of a random variable X becomes

o0

m = E(X) = / xf(x)dx = (—i)$'(0). (3.10.12)

Thus, the simple formula (3.10.11) involving the derivatives of the characteristic
function provides for the existence and the computation of the moment of any
arbitrary order.

Similarly, the variance o? of a random variable is given in terms of the
characteristic function as

02=/oo(x—m)2f(x)dx=m2—m%

= {00} — " (0). (3.10.13)

Example 3.10.1. Find the moments of the normal distribution defined by the density
function

f(x) =

N2
M} . (3.10.14)

1
exp —
o2 P % 202
The characteristic function of the normal distribution is the Fourier transform of
f(x) and is given by

(b(t) — M} dx.

itx ex _
P { 202

1 o0
—_— e
0\/2_ /—oo
We substitute x —m = y and use Example 3.2.1 to obtain

” o ) .
o) = % /_oo e’y exp{—zy?z} dy = exp (itm -3 t202)
(3.10.15)
Thus,

my = (i) $'(0) = m,
ma = —¢"(0) = (m? + 0?).
ms = m(m2 + 302).

Finally, the variance of the normal distribution is

0% =my —mi. (3.10.16)
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The preceding discussion reveals that characteristic functions are very useful for
investigation of certain problems in mathematical statistics. We close this section
by discussing some more properties of characteristic functions.

Theorem 3.10.1 (Addition Theorem). The characteristic function of the sum of
a finite number of independent random variables is equal to the product of their
characteristic functions.

Proof. Suppose X, X»,..., X, are n independent random variables and Z =
X1 + X5 + --- + X,,. Further, suppose ¢1(2), d2(¢), ..., d,(2), and ¢(¢) are the
characteristic functions of X1, X, ..., X, and Z, respectively.

Then we have
6() = E[exp(i12)] = E[ exp it (X1 + X2 + -+ X}
which is, by the independence of the random variables,

= E (") E (") ... E (e'*")
= ¢1(2) d2(2) - .. b (2). (3.10.17)

This proves the addition theorem.

Example 3.10.2. Find the expected value and the standard deviation of the sum of
n independent normal random variables.

Suppose X, X»,..., X, are n independent random variables with the normal
distributions N(m,,o,), where r = 1,2,...,n. The respective characteristic
functions of these normal distributions are

1
&r (1) = exp [itm, -3 zzof} ., r=1,2,3,....n. (3.10.18)

Because of the independence of X, X»,..., X,,, the random variable Z = X +
X, 4 - -+ + X, has the characteristic function

@) = ¢1(1) d2(1) ... (1)

1
=exp[it(ml +m2+---+mn)—§(of+o§+---+o§)t2]
(3.10.19)

This represents the characteristic function of the normal distribution

N(m1+mz+m+mn,\/012+022+'~+03).
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Thus, the expected value of Z is (m; + my + --- 4+ m,,) and its standard deviation
1

is (of + 03 +---+07)>.

Theorem 3.10.2 (The Central Limit Theorem). If f is a nonnegative function

which belongs to L' (R),

/oof(x)dle, /ooxf(x)dxzo, and /ooxzf(x)dle,

- (3.10.20)
and f" = (f = f x---x f) is the n-times convolution of f with itself, then

b/n b 2
lim "(x)dx :/ ex (——) dx, (3.10.21
LY S (x) . Pl—3 )
where —o0 < a < b < o00.

Proof. Consider the characteristic function Y 4 5] (x) defined by

l,for a<x<b
Xiab)(%) = % 0, otherwise (3.10.22)
Consequently, we obtain
0 b byn
| v eman@ds = [ v ds = [ o
—00 a a

and

¥2 b 2
x/_/ exp( )X[ab](x)dx = \/%/ exp (—%) dx.

It is sufficient to prove that

oo b x?
nll)ngo B \/ﬁfn(x\/ﬁ)x[a.b](x)dx :/ \/Z_exp (—?) dx.

Or, equivalently, it is sufficient to prove that

n —
di [ e o) dx = F/
where h(x) belongs to Schwartz’s space of infinitely differentiable and rapidly
decreasing functions.
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We now use the Fourier inversion formula to express
/ ﬁf"(xf)h(x)dx_/ i f"(x [ / h(w)e™ de}d
—00

-2 [l el
3 o[ e
= Zi/: };(w)% ( )} (3.10.23)

) is the Fourier transform of f(¢) at the point (i)

where f (i NG

n
Clearly,

()

and hence, for every fixed nonzero ® € R, we have

(5= e ()
imx o°x

00 2.2
- /_oo%““ N } (1 +8,(x)) f(x) dx, (3.10.25)

where §,, is bounded and tends to zero as n — o0.
In view of condition (3.10.20), result (3.10.25) leads to

<(I£])' =1 foroeR, f(0)=1, (3.10.24)

f(%) (1—;32){1—}-0(1)} as 1 — oo. (3.10.26)
Consequently,
(W - oy o’
(N bS] ~(5) oo
(3.10.27)

in which the standard result

lim (1 - f) ="
n—00 n

is used.



3.11 Applications of Fourier Transforms to Ordinary Differential Equations 199

Finally, the use of (3.10.23) and (3.10.25) combined with the Lebesgue domi-
nated convergence theorem leads us to obtain the final result

Ji [ s s = - [ i [ 7 ()} o

1 0o (1)2
—/ h(w)exp| —— | dw, by (3.10.6)
2 Jeso 2

1 [ x2
—/ h(x)~2 exp|——] dx by (3.4.28).
2 Joxo 2

This completes the proof.
Note. This theorem is perhaps the most significant result in mathematical statistics.
Finally, we state another version of the central limit theorem without proof.

Theorem 3.10.3 (The Lévy—Cramér Theorem). Suppose {X,} is a sequence
of random variables, F,(x) and &,(t) are, respectively, the distribution and
characteristic functions of X, . Then, the sequence {F,, (x)} is convergent to a
distribution function F(x) if and only if the sequence {({)n (Z)} is convergent at every
point t on the real line to a function ¢(t) continuous in some neighborhood of
the origin. The limit function ¢(t) is then the characteristic function of the limit
distribution function F(x), and the convergence ¢, (t) — &(t) is uniform in every
finite interval on the t-axis.

All of the ideas developed in this section can be generalized for the multidimen-
sional distribution functions by the use of multiple Fourier transforms. We refer
interested readers to Lukacs (1960).

3.11 Applications of Fourier Transforms to Ordinary
Differential Equations

We consider the nth order linear nonhomogeneous ordinary differential equations
with constant coefficients

Ly(x) = f(x), (3.11.1)
where L is the nth order differential operator given by

L=a,D"+a,_ D" ' +---+aD + ay, (3.11.2)

d . . )
where a,,a,—1,...,a1, ap are constants, D = —, and f(x) is a given function.

dx
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Application of the Fourier transform to both sides of (3.11.1) gives

[an(Th)" + @y (k)" + -+ ar(ik) + ag] §(k) = f(k),

where 7 {y(x)} = y(k) and Z { f(x)} = f (k).
Or, equivalently,

P(ik) §(k) = f (k).

where
P(z) = Za,.z’.
r=0
Thus,
Lo Yk)y A
$h) = 2 = f W), (3.11.3)
where
sy =
1% = 5o

Applying the convolution theorem 3.3.7 to (3.11.3) gives the formal solution

) = /_ FE)q(x — ) dE, (G.114)

provided ¢(x) = Z~1{g(k)} is known explicitly.

In order to give a physical interpretation of the solution (3.11.4), we consider the
differential equation with a suddenly applied impulse function f(x) = 8(x) in the
form

L{G(x)} = 8(x). (3.11.5)

The solution of this equation can be written from the inversion of (3.11.3) in the
form

G(x) = FHqk)} = q(x). (3.11.6)

Thus, the solution (3.11.4) takes the form

) = /_ F(€) G(x —E) dE. (3.1L7)
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Clearly, G(x) behaves like a Green’s function, that is, it is the response to a unit
impulse. In any physical system, f(x) usually represents the input function, while
y(x) is referred to as the output obtained by the superposition principle. The Fourier
transform of G(x) is ¢(k) which is called the admittance. In order to find the
response to a given input, we determine the Fourier transform of the input function,
multiply the result by the admittance, and then apply the inverse Fourier transform to
the product so obtained. We illustrate these ideas by solving some simple problems.

Example 3.11.1. Find the solution of the ordinary differential equation

d*u 5
_W_Fa,,t:f(x), —00 < X <00 (3.11.8)

by the Fourier transform method.
Application of the Fourier transform to (3.11.8) gives

A

J (k)

i) = 5

This can readily be inverted by the convolution theorem 3.3.7 to obtain

u(x) = /_ F©) g(x — ) dE, (3.11.9)

1 1
where g(x) = ! { m} =2 exp(—a|x|) by Example 3.3.2. Thus, the
exact solution is

u(x) = % /_oo fE) e tlge, (3.11.10)

Example 3.11.2. Solve the following ordinary differential equation

2u"(t) + tu' (¢) + u(r) = 0. (3.11.11)
We apply the Fourier transform of u(¢) and result (3.3.9) to this equation to find
2w’ +i i[ﬁ W@y ]+a=o0.
dw

Or

Thus,
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The solution of this equation is

i(w) = Cexp (- 0?),

where C is a constant of integration. The inverse Fourier transform gives the
solution

2
u(t) = Dexp (—tz) , (3.11.12)

where D is a constant.

Example 3.11.3 (The Bernoulli-Euler Beam Equation). We consider the vertical
deflection #(x) of an infinite beam on an elastic foundation under the action of a
prescribed vertical load W (x). The deflection u(x) satisfies the ordinary differential
equation

4

d
ETSY 4w vu=w(x), —oo<x <oo, (3.11.13)
dx*

where E ] is the flexural rigidity and k is the foundation modulus of the beam. We
find the solution assuming that W(x) has a compact support and that u, u’, u”, u”” all
tend to zero as |x| — oo.
We first rewrite (3.11.13) as
d4
It +a'u = w(x), (3.11.14)

where a* = «/E I and w(x) = W(x)/EI. Using the Fourier transform to (3.11.14)
gives

. w(k)

= e

The inverse Fourier transform gives the solution

1 © wk) 4
= — "Xdk
u(x) > | k4+a4e

= [k [ ea

/_ w(€) G(x,£) dE, (3.11.15)




3.12  Solutions of Integral Equations 203

where

1 [ pik(x—F) 1 [ cosk(x —§)
[ — dk == — > dk. 1.1
6= [ k== [ S (G.11.16)

This integral can be evaluated by the theorem of residues or by using the table of
Fourier integrals. We simply state the result

G(x,§) = %exp (—%Ix—%l) sin [MX—J_EE)+ Z] (3.11.17)

In particular, we find the explicit solution due to a concentrated load of unit strength
acting at some point xo; that is, w(x) = 8(x — xo). Then, the solution for this case
becomes

u(x) =/ 8(& — x0) G(x,8) d& = G(x, x¢). (3.11.18)

Thus, the kernel G(x,§&) involved in the solution (3.11.15) has the physical
significance of being the deflection as a function of x due to a unit point load
acting at €. Thus, the deflection due to a point load of strength w(§)d§& at €
is w(E)d& - G(x, &) and hence (3.11.15) represents the superposition of all such
incremental deflections.

The reader is referred to a more general dynamic problem of an infinite
Bernoulli-Euler beam with damping and elastic foundation that has been solved
by Stadler and Shreeves (1970) and also by Sheehan and Debnath (1972). These
authors used the joint Fourier and Laplace transform method to determine the steady
state and the transient solutions of the beam problem.

3.12 Solutions of Integral Equations

The method of Fourier transforms can be used to solve simple integral equations of
the convolution type. We illustrate the method by examples.
We first solve the Fredholm integral equation with convolution kernel in the form

/oo f@)gx—1t)dt + A f(x) = u(x), (3.12.1)

where g(x) and u(x) are given functions and A is a known parameter.
Application of the Fourier transform defined by (3.2.3) to (3.12.1) gives

f)g k) + 1 f (k) = (k).
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Or
~ (k)
k)= ———. 3.12.2
f® = (3.12.2)
The inverse Fourier transform leads to a formal solution
1 00 lft(k) eikx
X) = — —dk. 3.12.3
ro=5 | 555 (3.12.3)

1
In particular, if g(x) = — so that
b

g(k) = — isgnk,
then the solution becomes
1 o ft(k) eikx
= — —dk. 3.12.4
J) 2 /_oo (A— isgnk) ( )

1 1
If A= 1and g(x) = (H) so that g(k) = m, solution (3.12.3) reduces to
i

the form

_ u(k)e’kx
=5 [ a0

= —/ T (x)}.F {e " dk

=u'(x)xe "
o0
= / u'(x) exp(§ — x) dE. (3.12.5)
—00
Example 3.12.1. Find the solution of the integral equation
o 1
- df = ——. 3.12.6
| re-oreds= (3.126)
Application of the Fourier transform gives
e—alkl
[ fky =
Or
f = — { 1 lkl} (3.12.7)
= ——expy—=a . 2.
V2a P12
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The inverse Fourier transform gives the solution

flx) = ZL \/lz_a/_oo exp (ikx—%a|k|) dk

e (G |

_1[4a:|:1\/%

(o]

exp (- (5 — v)} ak|

T2 Vaal@xXtad)] T (@it ad)
Example 3.12.2. Solve the integral equation
o0
f@)dt 1
= . 3.12.8
/_oo (x—1)2+4+a> (x*2+b? ( )
Applying the Fourier transform to both sides of (3.12.8), we obtain
~ 1 eIkl
k) F = .
S { x2 +a? } 2b
Or,
~ e_alk‘ e_blk‘
k) - = .
S &) 2a 2b
Thus,
° a
fk) = (E)exp{— Ik|(b —a)}. (3.12.9)

The inverse Fourier transform leads to the final solution

f(x) = 2“—})/_ exp[ikx — k| (b — a)|dk

a o0

=5 [/()ooexp[—k{(b—a)—{—ix}]dk—l—/o CXP[—k{(b—a)—ix}]dk]

_a 1 1
- ﬁ[(b—a)+ix + (b—a)—ix]

a (b—a)
- (_b) b—al+x2 (3.12.10)

Example 3.12.3. Solve the integral equation

f(x)+ 4/_oo e~ 1y dr = g(x). (3.12.11)

(o]
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Application of the Fourier transform gives

A A 2a .
S (k) +4f(k)'m = g(k).
fA(k)—M 3 (k) (3.12.12)
T2tk t+8a S o

The inverse Fourier transform gives the solution

1 [ (@+kHgk) .,
= — —— " dk. 121
f) 2 /_oo 1 k2+8a ¢ d @ 3)

2
In particular, if a = 1 and g(x) = e~ ™l so that g(k) = T then the solution
(3.12.13) becomes
1 oo eikx
=— ——dk. 3.12.14
o=+ g (3.12.14)

For x > 0, we use a semicircular closed contour in the lower half of the complex
plane to evaluate (3.12.14). It turns out that

f(x) = %e‘“. (3.12.15)

Similarly, for x < 0, a semicircular closed contour in the upper half of the complex
plane is used to evaluate (3.12.14) so that

1
f(x) = §e3X, x <0. (3.12.16)

Thus, the final solution is

fx) = % exp(—3|x]). (3.12.17)

3.13 Solutions of Partial Differential Equations

In this section, we present several examples of applications of Fourier transforms to
partial differential equations.

Example 3.13.1 (Dirichlet’s Problem in the Half Plane). 'We consider the solution
of the Laplace equation in the half plane
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Uy +uyy =0 —oo<x<oo, y=0, (3.13.1)

with the boundary conditions
u(x,0) = f(x), —00 < X < 00, (3.13.2)
u(x,y) —>0 as |x| > o0, y — oo. (3.13.3)

We apply the Fourier transform with respect to x to the system (3.13.1)—(3.13.3)
to obtain

a .
d—yz—k i=0 (3.13.4)
a(k,0) = f(k), and i(k,y) >0  asy — oo. (3.13.5a,b)

Thus, the solution of this transformed system is

ik, y) = f (k) exp(—|kl|y). (3.13.6)

Application of Theorem 3.3.7 gives the solution

u(x.y) = /_ F©) g(x — ) dE, (3.13.7)
where
PR TR . y
g(x) = 7 l{e ‘k'y} =~ (3.13.8)

Consequently, solution (3.13.7) becomes

y/°° f(§)dg

This is the well-known Poisson integral formula in the half plane. It is noted that

lim L V)= lim — ——— | dE= 8(x — &) dE,
tim ute)= [ e | im 2 e [ @t o
(3.13.10)
in which Cauchy’s definition of the delta function is used, that is,
.Y 1
3(x —&) = lim (3.13.11)

R
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This may be recognized as a solution of the Laplace equation for a dipole source at
(x.y) = (§.,0).
In particular, when

f(x) =Ty H(a—I|x]), (3.13.12)

the solution (3.13.9) reduces to the integral form

(x.y) yTo [ dg
u(x, =
g e 8P )2
= E |:tan_1 (x +a) — tan”! (x —a)}
y y
T 2

The curves in the upper half plane, for which the steady state temperature is
constant, are known as isothermal curves. In this case, these curves represent a
family of circular arcs

24+ yP—ay =d’ (3.13.14)

with centers on the y-axis and fixed end points on the x-axis at x = *a, as shown
in Fig. 3.14.
Another special case deals with

f(x) =8(x). (3.13.15)
The solution for this case follows from (3.13.9) and is given by

u(x,t):X/OO 8ds  _y _ 1 (3.13.16)

o (X—E2 422 (X242

Further, we can readily deduce the solution of the Neumann problem in the half
plane from the solution of the Dirichlet problem.

Example 3.13.2 (Neumann’s Problem in the Half Plane). Find a solution of the
Laplace equation

Uy +uyy =0 —oco<x<oo, y>0, (3.13.17)
with the Neumann boundary condition

uy(x,0) = f(x), —oo<x <oo. (3.13.18)
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b ¥

Fig. 3.14 Isothermal curves representing a family of circular arcs

This condition specifies the normal derivative on the boundary and physically
describes the fluid flow or heat flux at the boundary.

We define a new function v(x, y) = u,(x, y) so that

u(x,y) = /y v(x,n)dn, (3.13.19)

where an arbitrary constant can be added to the right-hand side. Clearly, the function
v satisfies the Laplace equation

*v v Pu,  Fu, 0

_— — = 5 — & XX =0
0x2 + dy? 0x2 dy? dy (thor + 1t3y)
with the boundary condition

v(x,0) = uy(x,0) = f(x), for —oo<x < oo.

Thus, v(x, y) satisfies the Laplace equation with the Dirichlet condition on the
boundary. Obviously, the solution is given by (3.13.9), that is,

vr.y) == /_OO %. (3.13.20)

Then, the solution u#(x, y) can be obtained from (3.13.19) in the form

u(x,y) :/ v(x,n)dn = / / (x {(;)den
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S R A

7 /_oo f(&) log[(x —§)* + y*] dt, (3.13.21)

where an arbitrary constant can be added to this solution. In other words, the solution
of any Neumann problem is uniquely determined up to an arbitrary constant.

Example 3.13.3 (The Cauchy Problem for the Diffusion Equation). We consider
the initial value problem for a one-dimensional diffusion equation with no sources
or sinks involved

Uy = KlUyy, —00<Xx<o00, >0, (3.13.22)
where « is a diffusivity constant with the initial condition

u(x,0) = f(x), —o0<x<o0. (3.13.23)

We solve this problem using the Fourier transform in the space variable x defined
by (3.2.3). Application of this transform to (3.13.22)—(3.13.23) gives

i = —kk*i, t>0, (3.13.24)
ik,0) = £ (k). (3.13.25)
The solution of the transformed system is
ik, 1) = f(k)exp (k). (3.13.26)
The inverse Fourier transform gives the solution

u(x,t) = %/_00 f(k) exp [(ikx - Kkzl)]dk

which is, by convolution theorem 3.3.7,

= /_OO ) gx —&)dt. (3.13.27)

where

ag—1J —«xk? x?
gx) =7 {e }= —xp| ) by (3.2.4).
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Thus, solution (3.13.27) becomes

0o _£)2
u(x, 1) = ﬁ/_ f(E)exp[—(x4KtE) }di. (3.13.28)

The integrand involved in the solution consists of the initial value f(x) and the
Green’s function (or fundamental solution) G (x — &, t) of the diffusion equation for
the infinite interval:

G(x —&,1) = (3.13.29)

1 (x—%)’
Nrw] exp |:— e :| .

Therefore, in terms of G(x — &, 1), solution (3.13.28) can be written as
0 A
ue) = [ 7®6-gndg, (3.13.30)
—00

so, in the limit as # — 0+, this formally becomes

o0
u(x,0) = f(x) = / f€) lim G(x —§,1)dE.
—00 =04+
The limit of G(x — &, 1), as t — 04, represents the Dirac delta function

2
exp|:—(x E)}. (3.13.31)

§(x —&) = lim v

1—0+ 2./ Kkt

It is important to point out that the integrand in (3.13.30) consists of the initial
temperature distribution f(x) and the Green’s function G (x—§, t), which represents
the temperature response along the rod at time ¢ due to an initial unit impulse
of heat at x = §&. The physical meaning of the solution (3.13.30) is that the
initial temperature distribution f(x) is decomposed into a spectrum of impulses of
magnitude f(€) at each point x = & to form the resulting temperature f(§) G(x —
g,1). According to the principle of superposition, the resulting temperature is
integrated to find the solution (3.13.30).

We make the change of variable

-x _ . _ dt
we o T

to express solution (3.13.28) in the form

u(x,t) = % /Oo f (x + wm) exp (—¢?) dt. (3.13.32)
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The integral solution (3.13.32) or (3.13.28) is called the Poisson integral represen-
tation of the temperature distribution. This integral is convergent for all time ¢ > 0,
and the integrals obtained from (3.13.32) by differentiation under the integral sign
with respect to x and ¢ are uniformly convergent in the neighborhood of the point
(x, t). Hence, the solution u(x, t) and its derivatives of all orders exist for ¢ > 0.

Finally, we consider two special cases:

(a) f(x) =8(x), and (b) f(x) = To H(x), where T} is a constant.

For case (a), the solution (3.13.28) reduces to

_ 1 *® (x —£)?
u(x,t) = Newrrd 8(§) exp [—T} dg
/e exp (__4Kl) . (3.13.33)

This is usually called the Green’s function or the fundamental solution of the
diffusion equation and is drawn in Fig. 3.15 for different values of T = 2+/kz.

At any time ¢, the solution u(x,?) is Gaussian. The peak height of u(x,?)
decreases inversely with J/xt, whereas the width of the solution (x ~ \/U)
increases with +/kz. In fact, the initially sharply peaked profile is gradually
smoothed out as # — oo under the action of diffusion. These are remarkable features
for diffusion phenomena.

For case (b), the initial condition is discontinuous. In this case, the solution is

u(x,t) =

/ Xp|: (x—§)2i| £, (3.13.34)

t

2J_

Tu(.\',f)

Fig. 3.15 The temperature distribution u(x, )
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Fig. 3.16 The temperature distribution due to discontinuous initial data for different values of

1=24kt =0,1,2,5
Introducing the change of variable n = ;x, we can express solution (3.13.34) in
24/t
the form
To [ To
u(x,t) = — e " dn——erfc( )
\/_ —x/2+/kt 2K

—E[Herf( Y )] (3.13.35)
) 2kt )| o

This shows that, at 1 = 0, the solution coincides with the initial data u(x,0) =
1
To. The graph of T u(x,t) against x is shown in Fig.3.16. As ¢ increases, the

0
discontinuity is gradually smoothed out, whereas the width of the transition zone
increases as /kf.

Example 3.13.4 (The Inhomogeneous Cauchy Problem for the Wave Equation).
We use the joint Laplace and Fourier transform method to solve the inhomogeneous
Cauchy problem

wy —Cuee =q(x,t), xeR, >0, (3.13.36)
u(x,0) = f(x), wu;(x,0)=g(x) forallx € R, (3.13.37)

where g (x, t) is a given function representing a source term.

We define the joint Laplace and Fourier transform of u(x, t) by

a(k,s) = L[F {u(x, 1)} ] J_/ e *dx /OOO e Mu(x,1)dt.
(3.13.38)
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Application of the joint transform leads to the solution of the transformed
problem in the form

. F(k) + &(k) + g (k,
Ak.s) = 324 )(;i(c)z;)q( ) (3.13.39)

The inverse Laplace transform of (3.13.39) gives

k _
< i(k. s)

~ r 1 A . 1 —1
u(k,t) = f(k)cos(ckt) + 7 g(k)sin(ckt) + e Z {m -4

= f(k) cos(ckt) + g sin(ckt) + L /t sinck(t —v)q(k,v)dr.
ck ck Jo

(3.13.40)
The inverse Fourier transform leads to the solution

[eS) oo A
u(x,t) — %/ (eickt + e—icki)eikx‘f(k) dk + %/ (eickl _e—ickr) eikx . g(k) dk

—oo o ick
1 1 [ ® gk.v) ¢ o ;
L d ’ ick(t—1) __ ,—ick(t—v)] ,ikx dk.
Ty /0 T/_oo L ¢ Je
We next use the following results

fw =7 fof = o [ et fuwan

and
. [ T
e =7 aw) = 3 [ etaarak

to obtain the final form of the solution

1 1 x—+ct
u(x,t) = =| f(x + ct x —ct — g
wn=3lfaren+fe-enl+o- [ g@a

x—ct

1 t 1 oo x+c(t—1) )
+ — dt—/ é(k,r)dt/ et
2c 0 2 —0o0 X

—c(t—1)

1 1 x—+ct 1 t x+c(t—1)
= z[f(x +ct)+ fx—cn)] + 2—/ g(®)de + —/ dt/ q(€. 1) dE.
C Jx—ct 2¢ 0 x—c(t—1)
(3.13.41)
In the case of the homogeneous Cauchy problem, g(x,¢) = O, the solution

reduces to the famous d’ Alembert solution
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1 1 x+ct
u(x,t) = E[f(x —ct)+ f(x + ct)] + % /_ t g(v)dr. (3.13.42)

It can be verified by direct substitution that u(x, ¢) satisfies the homogeneous
wave equation, provided f is twice differentiable and g is differentiable. Further,
the d’Alembert solution (3.13.42) can be used to show that this problem is well

1
posed. The solution (3.13.42) consists of terms involving 3 f(x £ ct) and the

term involving the integral of g. Both terms combined together suggest that the
value of the solution at position x and time ¢ depends only on the initial values of
f(x) at points x £ ct and the value of the integral of g between these points. The
interval (x — ct,x + ct) is called the domain of dependence of (x,t). The terms
involving f(x % ct) in (3.13.42) show that equal waves are propagated along the
characteristics with constant velocity c.

In particular, if g(x) = 0, the solution is represented by the first two terms in
(3.13.42), that is,

u(x,t) = %[f(x —ct)+ f(x + ct)]. (3.13.43)

Physically, this solution shows that the initial data are split into two equal waves
similar in shape to the initial displacement but of half the amplitude. These waves
propagate in the opposite direction with the same constant speed ¢ as shown in
Fig.3.17.

To investigate the physical significance of the d’ Alembert solution (3.13.42), it
is convenient to rewrite the solution in the form

1 1 x—ct 1 1 x+ct
u(x,t)zzf(x—ct)—z/o g(t)dt+§f(x+ct)+5/0 g(v)dr,
(3.13.44)
= O(x —ct) + Y(x + ct), (3.13.45)
u=f(x)
|
Eﬂ,ﬁc:} %f{x-ﬁ)
C +— i —_—
/\ J\ > X

0

Fig. 3.17 Splitting of initial data into equal waves
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u A

u=®(x) u=0(x-ct) u=d(x-2cr)

X x+ct x+2ct

Fig. 3.18 Graphical representation of solution

where, in terms of the characteristic variables £ = x — ¢t and 1 = x + ct,

1 1[5 1 1
o) =5 /O 5 [ sodn v =3 rm+o [ i
.13.46a,

Physically, ®(x — ct) represents a progressive wave propagating in the positive
x-direction with constant speed ¢ without change of shape, as shown in Fig. 3.18.
Similarly, W(x + ct) also represents a progressive wave traveling in the negative
x-direction with the same speed without change of shape.

In particular, if f(x) = exp ( - xz) and g(x) = 0, then the d’ Alembert solution
(3.13.42) reduces to

u(x,t) = %[exp {—(x—ct)’} +exp{—(x+ ct)z}]. (3.13.47)

This shows that the initial wave profile breaks up into two identical traveling waves
of half the amplitude moving in opposite directions with speed c.

On the other hand, if f(x) = 0 and g(x) = 8(x), the d’ Alembert solution
(3.13.42) becomes

x+ct x+ct
wxn = [ s@as=5- [ Hea

2¢ Jx—et

= L[H(x + ct) — H(x — ct)]

2¢
L [1, x| <ct

=—| 3.13.48
2c |:O, |x|>ct>0:| ( )
1

= — H(*? - x?). (3.13.49)

2c



3.13 Solutions of Partial Differential Equations 217

Example 3.13.5 (The Linearized Korteweg—de Vries Equation). The linearized
Korteweg—de Vries (KdV) equation for the free surface elevation n(x,?) in an
inviscid water of constant depth / is

2

h
n,+cnx+%nxm=0, —co<x<oo, t>0, (3.13.50)

where ¢ = /gh is the shallow water speed.
We solve Eq. (3.13.50) with the initial condition

n(x,0) = f(x), —o0o<x < o0. (3.13.51)

Application of the Fourier transform .% {n(x,?)} = 1 (k,t) to the KdV system
gives the solution for 1(k, ¢) in the form

n k2 2
f(k,1) = f(k)exp [ikct (Th — 1)} .
The inverse transform gives
1 [ . cth?
n(x,t) = 2—/ f(k)exp |:ik {(x—ct) + (T) kz}:|dk. (3.13.52)

In particular, if f(x) = 8(x), then (3.13.52) reduces to the Airy integral

1 [ cth*\ 4
n(x,t) = — cos | k(x —ct) + wa k’|dk (3.13.53)
0
which is, in terms of the Airy function,
cth? -3 cth? -3

where the Airy function Ai(z) is defined by

1 o0 1
Ai(g) = _/ cos (kz + §k3) dk. (3.13.55)
0
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3.14 Applications of Multiple Fourier Transforms
to Partial Differential Equations

The theory of the Fourier transform in L'(R") is somewhat similar to the one-
dimensional case. Moreover, the extension to L?(R") is also possible and it has
similar properties, including the inversion formula and the Plancherel theorem. In
this section, we simply include some examples of applications of multiple Fourier
transforms to partial differential equations.

Definition 3.14.1. Under the assumptions on f(x) € L'(R") similar to those made
for the one dimensional case, the multiple Fourier transform of f(x), where x =
(x1,x2,...,x,) is the n-dimensional vector, is defined by

F{fx)} = F(k) = (2—1)’1/2/_00/_00 exp{—i(k-x)} f(x)dx, (3.14.1)

where kK = (ki,k3,...,ky,) is the n-dimensional transform vector and k - x =
(k1x1 4+ kaxy + - -+ + kyx,,). The inverse Fourier transform is similarly defined by

~ 1 o0 o0 ~
(3.14.2)

In particular, the double Fourier transform is defined by

N 1 o0 o0 )
FU@} = Fet =5 [ [ ewi-iten) e dxay.
o (3.14.3)
wherer = (x, y) and k = (k, {).
The inverse Fourier transform is given by

F {f(k,ﬁ)} = f(x,y) = ZL/_OO /_ooexp{i(k-r)}f(k,ﬁ)dkdﬁ.
(3.14.4)

Similarly, the three-dimensional Fourier transform and its inverse are defined by
the integrals

N 1 o0 o o )
FUeyay = fotm = oo [ [ e titen s
dxdydz, (3.14.5)

and

A 1 oo (&) oo ~
s el = sy =g [ [ [ ewitent fem
dkdldm. (3.14.6)
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The operational properties of these multiple Fourier transforms are similar to
those of the one-dimensional case. In particular, results (3.3.16) and (3.3.17) relating
the Fourier transforms of partial derivatives to the Fourier transforms of given
functions are also valid for the higher dimensional case. In higher dimensions, they
are applied to the transforms of partial derivatives of f(x) under the assumptions
that f(x, x2,...,x,) and its partial derivatives vanish at infinity.

We illustrate the multiple Fourier transform method by the following examples
of applications.

Example 3.14.1 (The Dirichlet Problem for the Three-Dimensional Laplace Equa-
tion in the Half-Space). The boundary-value problem for u(x, y,z) satisfies the
following equation and boundary conditions:

ViU =ty +ttyy +u, =0, —00<x,y<oo, z>0, (3.14.7)

u(x,y,0) = f(x,y), —oo<x,y<oo (3.14.8)

u(x,y,2) >0, asr=+x2+y2+272 - oo. (3.14.9)

We apply the double Fourier transform defined by (3.14.3) to the system
(3.14.7)—(3.14.9) which reduces to

P
d_ZZ_K u=90 forz>0,

ik, €,0) = f(k,10).

Thus, the solution of this transformed problem is

A ~

ik, 0,2) = f(k, 0)exp(—|k|z) = f(k,€) sk, 0), (3.14.10)

where k = (k, ) and g(k, £) = exp(—|x|z), so that

g0e2) = 7 {exp(-Id} = 7 y2Z+ gl (3.14.11)

Applying the convolution theorem to (3.14.10), we obtain the formal solution

1 oo oo
weya =5 [ [ rems-sy-nadsan

_2 [ f(E.m)dEdn
2 /—“/—w [(c—92+(y—m2+ 2] G
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Example 3.14.2 (The Two-Dimensional Diffusion Equation). We solve the two-
dimensional diffusion equation

U = KVzu, —o0 <X, y<oo, t>0, (3.14.13)
with the initial conditions

u(x,y,0) = f(x,y), —oco<x,y < oo, (3.14.14)

u(x,y,t) >0, asr = +/x2+ y2 — oo, (3.14.15)

where K is the diffusivity constant.

The double Fourier transform of u(x, y, t), defined by (3.14.3), is used to reduce
the system (3.14.13)—(3.14.14) into the form

dii 5y
— =—«“"Ku, t>0,
dt "

ik, €,0) = f(k,10).

The solution of this differential system is

ik, 0,1) = f(k,0)exp (—tK«?) = f(k,0) gk, 0), (3.14.16)
where g(k,£) = exp (—IKKZ) ,
and hence,
glx,y) = 9—1{exp (—zKK2)} L exp _E4y (3.14.17)
' 2Kt 4Kt | o

Finally, using the convolution theorem to (3.14.16) gives the formal solution

1 0o o0 _ )2 _ M2
e = e [ [ e[ <EEEEL DI agan,
(3.14.18)

Or, equivalently,

1 (e} 00 r_r/z ,
u(x,y,t) = 1 Kt/ / f(r’)exp{—| 4Kt| } dr', (3.14.19)
—00 J —O0

where 1’ = (€, 7).
We make the change of variable (r' —r) = /4Kt R to reduce (3.14.19) into the
form
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u(x,y,t) = ﬁ/_m /_oo f<r+ «/4KZR) exp (—R?) dR.  (3.14.20)

Similarly, the formal solution of the initial-value problem for the three-dimensional
diffusion equation

up = K (g + uyy + 1), —00<x,y,z<00, t>0 (3.14.21)
u(x,y,z,0) = f(x,y,z, —00<x,y,z<00 (3.14.22)
is given by
r2
o) = s [ [ [ r€n e~ ) deanat
(3.14.23)

where 12 = (x - 2)2 + (y - n)z + (z - C)z. Or, equivalently,

r—r'|?
u(x,y,z,t) = a Kt)z/z// /f exp{ 1K }d%dnd@
(3.14.24)
wherer = (x,y,z) anfr’ = (§,7,0).

Making the change of variable r’ — r = +/4K1 R, solution (3.14.24) reduces to

// /f r+MR)exp( R?) dR.
(3.14.25)

u(x, y,z,t) = 3/24Kt

This is known as the Fourier solution.
Example 3.14.3 (The Cauchy Problem for the Two-Dimensional Wave Equation).
The initial value problem for the wave equation in two dimensions is governed by
Uy = cz(uxx +uyy), —00<x,y<oo, t>0 (3.14.26)

with the initial data

u(x,y,00 =0, u(x,y,0) = f(x,y), —00<x,y <o0, (3.14.27a,b)
where c is a constant. We assume that u(x, y, z) and its first partial derivatives vanish
at infinity.

We apply the two-dimensional Fourier transform defined by (3.14.3) to the
system (3.14.26)—(3.14.27a,b), which becomes

d?i
Ll im0, = LE
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dit

ik, £,0) = 0, (E)tﬂ = f(k.0).

The solution of this transformed system is

A in(ckt
Ak l.1) = Fk.e) D (3.14.28)
cK
The inverse Fourier transform gives the formal solution
1 e . sin(ckt) 2
u(x,y,t) = ;/ /exp(lk-r) Tf(k)dk (3.14.29)
= .1 / / ALY [exp{il{(ﬂ—i-ct)}—exp{il{(u—ct)”dk
4i ¢ JoooJ—co K K K
(3.14.30)

The form of this solution reveals some interesting features of the wave equation.

k-
The exponential terms exp % ik (ct + _r)} involved in the integral solution
K

(3.14.30) represent plane wave solutions of the wave equation (3.14.26). Thus,
the solutions remain constant on the planes k - r = constant that move parallel to
themselves with velocity c. Evidently, solution (3.14.30) represents a superposition
of the plane wave solutions traveling in all possible directions.

Similarly, the solution of the Cauchy problem for the three-dimensional wave
equation

Uy = Uy + Uyy +Uty), —00<X,y,7<00, >0 (3.14.31)

u(x,y,2,0) =0, u(x,y,2,0) = f(x,y,2), —00<x,y,z<00,

(3.14.32a,b)
is given by
1 oo f(k) (k-r . (k-r
00 = gy | [ 5 (oo (5 ) oo (5 o) o
(3.14.33)

wherer = (x, y,z) and k = (k, £, m).
In particular, when f(x,y,2) = 8(x)8(y)8(z), so that f(k) = (2 )~*2,
solution (3.14.33) becomes

u(r, 1) = (2;)3//_(:/ Sini” exp i (k1)) dk. (3.14.34)

c
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In terms of the spherical polar coordinates (k, 0, ¢), where the polar axis (the
z-axis) is taken along the r direction with k - r = kr cos 0, we write (3.14.34) in the
form

1 2 0o .
u(r,t) = —/ d¢/ dG/ exp(ikr cos0) sineid k2 sinf di
2 )rJ 0 0 cK
1 o0
= ZT/ sin(ckt) sin(kr) dx
cr Jo
1 . .
— 53 / [em(ct—r) _em(ct+r)]dl<'
cr J_oo
Or,
u(r,t) = [8(ct —r) —8(ct +r)]. (3.14.35)

4 cr

Fort > 0,ct + r > 0, so that 8(ct 4+ r) = 0 and hence the solution is

u(r, 1) = 4#” S(ct —r) = s(r - f) . (3.14.36)

4 rc? c

3.15 Construction of Green’s Functions by the Fourier
Transform Method

Many physical problems are described by second-order nonhomogeneous dif-
ferential equations with homogeneous boundary conditions or by second order
homogeneous equations with nonhomogeneous boundary conditions. Such prob-
lems can be solved by a powerful method based on a device known as Green’s
functions.

We consider a nonhomogeneous partial differential equation of the form

Lyu(x) = f(x), (3.15.1)

where x = (x,y,z) is a vector in three (or higher) dimensions, Ly is a linear
partial differential operator in three or more independent variables with constant
coefficients, and u(x) and f(x) are functions of three or more independent variables.
The Green’s function G(x, §) of this problem satisfies the equation

LyG(x,§) = 8(x — £) (3.15.2)

and represents the effect at the point x of the Dirac delta function source at the point

§=(E.n.0).
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Multiplying (3.15.2) by f(¢) and integrating over the volume V' of the & space,
sothat dV = d& dnd{, we obtain

/LXG(X,E)f(E)dE = / S(x—§) f(§)dE = f(x). (3.15.3)
|4 |4

Interchanging the order of the operator Ly and integral sign in (3.15.3) gives

Ly [ [ G(x,E)f(E)dE} - /). (3.15.4)
%4

A simple comparison of (3.15.4) with (3.15.1) leads to solution of (3.15.1) in the
form

u(x) = /V G(x.£) f(&) dE. (3.15.5)

Clearly, (3.15.5) is valid for any finite number of components of x. Accordingly, the
Green’s function method can be applied, in general, to any linear, constant coeffi-
cient, inhomogeneous partial differential equations in any number of independent
variables.

Another way to approach the problem is by looking for the inverse operator
L' If it is possible to find L', then the solution of (3.15.1) can be obtained as
u(x) = L! ( f (x)). It turns out that, in many important cases, it is possible, and the
inverse operator can be expressed as an integral operator of the form

w0 = L7 (f®)) = /V G(x.§) f(§) dE. (3.15.6)

The kernel G(x, £€) is called the Green’s function which is, in fact, the characteristic
of the operator Ly for any finite number of independent variables.

The main goal of this section is to develop a general method of Green’s functions
for several examples of applications.

Example 3.15.1 (Green’s Function for the One-Dimensional Diffusion Equation).
We consider the inhomogeneous one-dimensional diffusion equation

U — Ky = f(x)8(t), xeR, t>0, (3.15.7)
with the initial and boundary conditions

u(x,00=0 forxeR and u(x,t) >0 for|x| — oo. (3.15.8a,b)
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We take the Laplace transform with respect to ¢ and the Fourier transform with
respect to x to (3.15.7)—(3.15.8a,b), so that

u(k,s) = G {r (22), (3.15.9)
wk,t) >0 as k| > oc. (3.15.10)
The inverse Laplace transform of (3.15.9) gives
ik, 1) = f(k)exp (—xk?t) = f (k) g(k), (3.15.11)
where ¢ (k) = exp (—xk?t) and hence (3.2.4) gives
—1 2 1 x?
g(x) = F 7 {exp (—xk’1)} = ﬂexp (_4_|<t) . (3.15.12)

Application of the inverse Fourier transform combined with Convolution
Theorem 3.3.7 gives

u(x.1) = % /_ e 0 0 dk = % [ RCITEOTE

R =9 [ :
— = [ e -C et [~ ro 6o ae,
(3.15.13)
where the Green’s function G(x, ; £) is given by
ey ] (x —8)?
G(x,t;€) = mexp |:— T :| (3.15.14)

Evidently, G(x,t) = G(x,t;0) is an even function of x, and at any time ¢, the
spatial distribution of G (x, ¢) is Gaussian. The amplitude (or peak height) of G(x, 1)
decreases inversely with /k7, whereas the width of the peak increases with /kz.
The evolution of G(x,t) = u(x,t) has already been plotted against x for different
values of T = 2./t in Fig.3.15.

Example 3.15.2 (Green’s Function for the Two-Dimensional Diffusion Equation).
We consider the two-dimensional diffusion equation

u, — KV2u = f(x,y)8(), —c0<x,y<oo, t>0 (3.15.15)
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with the initial and boundary conditions
u(x,y,0) =0, forall (x,y)eR? (3.15.16)
u(x,y,t) >0, as r=+/x2+ y?— oo, (3.15.17)

where K is the diffusivity constant.

Application of the Laplace transform and the double Fourier transform (3.14.3)
to the preceding differential system gives

- [k 0
, , 3.15.18
i) = e (3.15.18)
where k = (k, {).
The inverse Laplace transform of (3.15.18) gives
i(c, £) = f(k, €)exp (K1) = f(k,€) (k. 0), (3.15.19)
where (k. £) = exp (— K«?*t), so that
g(x,y) = ﬂ_l{exp (—chzt)} = Lexp @ty (3.15.20)
' 2Kt 4Kt |’ o

Finally, the convolution theorem of the Fourier transform gives the formal solution

00 oo _£)2 —n)2
et = [ [ e | <SSO gy
(3.15.21)
=/_ /_ f(E)G(r,k)dE, (3.15.22)
where r = (x, y) and £ = (£, 1), and the Green’s function G(r, §) is given by
_ Ir—§°
G(r,§) = @ K0 exp |:— 1K i| . (3.15.23)

Similarly, we can construct the Green’s function for the three-dimensional diffusion
equation

u, — KV2u = £(r)8(r), —0 <X, y,z<00, t>0 (3.15.24)
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with the initial and boundary data
u(r,0) =0, for —oo<x,y,z <00, (3.15.25)
u(r,t) >0, as r = \/m — 00, (3.15.26)
wherer = (x, y, 7).

Application of the Laplace transform of u(r, ) with respect to ¢ and the three-
dimensional Fourier transform (3.14.5) with respect to x, y, z gives the solution

_ 1 o) 00 o0 |1‘—E|2

_ /_Z /_Z /_: £(E) G(r.§) dE. (3.15.28)

where § = (£, 1, (), and the Green’s function is given by

1 _el?
G &) = ey &P [—lr“é' } (3.15.29)

In fact, the same method of construction can be used to find the Green’s function
for the n-dimensional diffusion equation

— KV2u= f(r)8(), reR", >0 (3.15.30)

u(r,0) =0, forall reR", (3.15.31)
1

u(r,t) >0 as r=(x]+x3+-+x2)° = o0, (3.15.32)

where r = (x1, x2,...,x,) and Vﬁ is the n-dimensional Laplacian given by

02 02 02

Vie — 4+ — 44 —. 3.15.33

" ox? * ax32 e dx2 ( )

The solution of this problem is given by

u(r,t) = a Kt)”/z/ f(&)G(r, &) dE, (3.15.34)
where § = (£1,&2,...,&,) and the n-dimensional Green’s function G(r,§) is
given by

G(r,&) = exp [—Ir_ Elz} (3.15.35)
’ (4 Kryn/2 4Kt |’ o
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Example 3.15.3 (The Three-Dimensional Poisson Equation). The solution of the
Poisson equation

—Vu= f(r), (3.15.36)
wherer = (x, y, z), is given by
o0
un = [ [~ [ewp swae. (3.15.37)
—00
where the Green’s function G(r, §) of the operator, —V?, is given by
G(r,§) = ! ! (3.15.38)
T - o
To obtain the fundamental solution, we have to solve the equation
—V’G(r,g) =8(x —£)8(y —m)8(z—0), r#§. (3.15.39)

Application of the three-dimensional Fourier transform defined by (3.14.5) to
Eq. (3.15.39) gives

. 1
K2G(k §) = Wexp(—ik- £), (3.15.40)

where G (k, ) = Z{G(r,£)} andk = (k,£,m).
The inverse Fourier transform gives the formal solution

! * dk
G(r.§) = BE //_oo/exp{ik.(I-_E)}F
1 % dk
BETIBE //_OO/GXP(fk'R)Fv (3.15.41)
where R = r —§.

We evaluate this integral using the spherical polar coordinates in the k-space with
the axis along the R-axis. In terms of spherical polar coordinates (k, 6, ¢), so that
k-R = kRcos6, where R = |r — &|. Thus, solution (3.15.41) becomes

1 2 00 ) ) dx
G(r,i)ZW/O d({)/o d@/o exp(lKRcose)Kzsme'F

1 /OOZSin(KR)d L 1 (3.15.42)
22 R T F R4 pr—g o

provided that R > 0.
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In electrodynamics, the fundamental solution (3.15.42) has a well-known inter-
pretation. Physically, it represents the potential at point r generated by the unit
point-charge distribution at point §. This is what can be expected because §(r — &)
is the charge density corresponding to a unit point charge at §.

The solution of (3.15.36) is then given by

u(r) = //_Z/G(r,g)f(g)dg = %//_: J;lfg_)gf (3.15.43)

The integrand in (3.15.43) consists of the given charge distribution f(r) atr = §
and the Green’s function G(r, §). Physically, G(r, &) f(§) represents the resulting
potentials due to elementary point charges, and the total potential due to a given
charge distribution f(r) is then obtained by the integral superposition of the
resulting potentials. This is called the principle of superposition.

Example 3.15.4 (The Two-Dimensional Helmholtz Equation). Find the fundamen-
tal solution of the two-dimensional Helmholtz equation

— V3G +a?G =8(x —£)8(y —m), —o0 <X,y < o0. (3.15.44)

It is convenient to change variables x —§ = x*, y—n = y*. Consequently, dropping
the asterisks, Eq. (3.15.44) reduces to the form

Gyx + Gyy —a?G = —8(x) 8(y). (3.15.45)

Application of the double Fourier transform é(k) = 7 {G(x, y)} defined by
(3.14.3) to Eq. (3.15.45) gives the solution

1

A 1
Gk)y=— ————, 3.15.46
®) 2 (k*+a?) ( )
where k = (k, £) and k? = k2 + (2.
The inverse Fourier transform (3.14.4) yields the solution

1 o0 o0
G(x,y) = —/ / exp(ik - x)(k*> + o) 'dk dL. (3.15.47)

4 2 —00 J —0O0

In terms of polar coordinates (x, y) = r(cos9,sin0), (k,£) = p(cos ¢, sin ), the
integral solution (3.15.47) becomes

1 o d 2
G(x,y) = F/o (sz—i-—‘;z) ; exp{irpcos(d)—@)}dq),
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which is, replacing the second integral by 2 Jy(rp),

— _/ pJo(rp)dp (3.15.48)

K2+ 02)

In terms of the original coordinates, the fundamental solution of Eq.(3.15.44) is
given by

1 [ 1
6w =5 [ oo ol =92+ 0w [dn. G549
0
Accordingly, the solution of the inhomogeneous equation

(VP +o®)u=—f(x.y) (3.15.50)

is given by

u(x. y) = /_ / G(r.8) f(6) dE, (3.15.51)

where G(r, §) is given by (3.15.49).

Since the integral solution (3.15.48) does not exist for « = 0, the Green’s
function for the two-dimensional Poisson equation (3.15.44) cannot be derived from
(3.15.48). Instead, we differentiate (3.15.48) with respect to r to obtain

G _ _/°° o> J§(rp) dp
ar (P2 +a2) °

which is, fora = 0,

G

— 1 oo / —
5—2—/0 Jo(rp)dp = :

Integrating this result gives the Green’s function
1
G(r,0) = —— logr.
2
In terms of the original coordinates, the Green’s function becomes
1 2
G(r.§) = —— log[(x —§)* + (y —n)°]. (3.15.52)

This is the Green’s function for the two-dimensional Poisson equation V2 =
— f(x, y). Thus, the solution of the Poisson equation is
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u(x.y) = /_ / G(r.§) f(&) dt. (3.15.53)

where G(r, §) is given by (3.15.52).

Example 3.15.5 (Green’s function for the Three-Dimensional Helmholtz Equation).
We consider the three-dimensional wave equation

— [une — V2] = g(r. ), (3.15.54)

where q(r, t) is a source. If g (r, t) = g(r) exp(—i wt) represents a source oscillating
with a single frequency w, then, as expected, at least after an initial transient period,
the entire motion reduces to a wave motion with the same frequency w so that we can
write u(r, t) = u(r) exp(—i wt). Consequently, the wave equation (3.15.54) reduces
to the three-dimensional Helmholtz equation

— (V2 + k) u(r) = f(r), (3.15.55)

where k = (9) and f(r) = ¢2q(r). The function u(r) satisfies this equation
¢
in some domain D C R with boundary dD, and it also satisfies some prescribed

boundary conditions. We also assume that u(r) satisfies the Sommerfeld radiation
condition which simply states that the solution behaves like outgoing waves
generated by the source. In the limitas w — O or k — 0 and f(r) can be interpreted
as a heat source, Eq. (3.15.55) results into a three-dimensional Poisson equation. The
solution u(r) would represent the steady temperature distribution in region D due
to the heat source f(r). However, in general, u(r) can be interpreted as a function
of physical interest.

We construct a Green’s function G (r, £) for Eq. (3.15.55) so that G(r, §) satisfies
the equation

— (V2 + k) G = 8(x) 8(») 8(2). (3.15.56)

Using the spherical polar coordinates, the three-dimensional Laplacian can be
expressed in terms of radial coordinate r only so that (3.15.56) assumes the form

10 (,06 2 8(r)
N m g\ ) FEG = 15.57
[rzar(r 8r)+ G:| 12 0<r <oo, (3.15.57)

with the radiation condition

1_i>m r(G, +ikG) = 0. (3.15.58)
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For r > 0, the Green’s function G satisfies the homogeneous equation

19 (,0G
— — 2= k*G = 0. 3.15.59
r2 or (r ar ) + ( )
Or, equivalently,
32
ﬁ(rG) +k2(rG) = 0. (3.15.60)
.

This equation admits a solution of the form

rG(r) = Ae'*" 4+ Be " (3.15.61)
or
eikr e—ikr
G(r)=A +B , (3.15.62)
r r

where A and B are arbitrary constants. In order to satisfy the radiation condition,
we must set A = 0, and hence the solution (3.15.62) becomes

—ikr
G(r)=B (3.15.63)
To determine B, we use the spherical surface S, of radius ¢, so that
G B _. 1
lim —dS = —lim — e ik (— + ik) ds =1, (3.15.64)
e—0 J g, ar e=0Jg T r
. 1 .
from which we find B = T as ¢ — 0. Consequently, the Green’s function takes
the form
e—ikr
G(r)= . (3.15.65)
4 r

Physically, this represents outgoing spherical waves radiating away from the source
at the origin. With a point source at a point §, the Green’s function is represented by

G(r.§) = W, (3.15.66)

where r and § are position vectors in R>.
Finally, when k = 0, this result reduces exactly to the Green’s function for the
three-dimensional Poisson equation.
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Example 3.15.6 (One-Dimensional Inhomogeneous Wave Equation). We first con-
sider the one-dimensional inhomogeneous wave equation

1
- [uxx - uf,i| =gq(x,t), xeR, >0, (3.15.67)
c

with the initial and boundary conditions

u(x,0) =0, wu(x,0)=0 for xeR, (3.15.68a,b)

u(x,t) >0 as |x| — oo. (3.15.69)
The Green’s function G(x, t) for this problem satisfies the equation
1
— [G” - G,,} = 8(x) 8(¢) (3.15.70)
c

and the same initial and boundary conditions (3.15.68a,b)—(3.15.69) satisfied by
G(x,1).

We apply the joint Laplace transform with respect to ¢ and the Fourier transform
(3.2.3) with respect to x to Eq. (3.15.70) so that

A 2\ !
6(k,s)=(k2+z—2) , (3.15.71)

where k and s represent the Fourier and Laplace transform variables respectively.
The inverse Fourier transform of (3.15.71) gives

2N —1
2, 5 - < _s
(k + c2) } = = exp( - |x|). (3.15.72)

Finally, the inverse Laplace transform yields the Green’s function with a source
at the origin

G(x,s)=7""!

G(x,1) = %f“ Hexp (—% |x|)} - %H (z - M) , (3.15.73)

Cc

where H () is the Heaviside unit step function.
With a point source at (£, t), the Green’s function takes the form

G(x,1:6,1) = %H(t—t— Ixc—él)' (3.15.74)
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This function is also called the Riemann function for the wave equation. The result
(3.15.74) shows that G = 0 unless the point (x, ¢) lies within the characteristic
cone defined by the inequality c(t — t) > |x —&|.

The solution of Eq. (3.15.67) is

u(x,r)zf_ ds/ Gx. 16,1 q(. 1) dr

-/ ds/ ( El)q(E,t)dt (3.15.75)

which is, since H = 1 forx — c(t — 1) < & < x + ¢(¢t — 1) and zero outside,

/ dr[;;:;)q@,r)dz:g//])q@r)drds,

(3.15.76)

where D is the triangular domain (characteristic triangle) made up of two points
(x F ct,0) on the x-axis and vertex (x, t) off the x-axis in the (x, #)-plane.

Thus, the solution of the general Cauchy problem described in Example 3.13.4
can be obtained by adding (3.15.75) to the d’ Alembert solution (3.13.42). and hence
it reduces to (3.13.41).

Example 3.15.7 (Green’s Function for the Three-Dimensional Inhomogeneous
Wave Equation). The three-dimensional inhomogeneous wave equation is given by

1
|:V2u -2 u,,:| f(r,t), —oco<x,y,z<o00, t>0, (3.15.77)

where r = (x, y, z), and the Laplacian is given by

02 02 02
Vie 4 3.15.78
0x2 + 9y2 + 072 ( )

The initial and boundary conditions are
u(r,0) =0, u(r,t) =0, (3.15.79a,b)

u(r,t) -0 as r— oo. (3.15.80)
The Green’s function G(x, t) for this problem satisfies the equation

1
- [VZG - G,,:| =8(x)8(y)8(2)8(t), —o0o<x,y,z<00, >0,
(3.15.81)
with the same initial and boundary data (3.15.79a,b)—(3.15.80).
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Application of the joint Laplace and Fourier transform (3.14.5) gives

c? 1

G(k,s) = (2 )32 (52 +cu?)’

k = (k,¢,m). (3.15.82)

The joint inverse transform yields the integral solution

G(x.1) = (20—)3//:/ SIn(et) o ep(ik - x) dk. (3.15.83)

K

In terms of the spherical polar coordinates with the polar axis along the vector
X, so that k- x = kr cos®, r = |x| and dk = k’>d« sin0d0 d ¢, integral (3.15.83)
assumes the form

2 o0
G(x,t) = ¢ 3/ d({)/ KSin(CKZ)dK/ exp(ikr cos 0) sin 0 d0
(2 ) 0 0 0
(3.15.84)
C oo . i c oo ‘ ‘
=I5 /(; (emr _e—zK’) sin(ckt)dk = _S_Zr/(; (eucr _e—lKr)

(eimct _e—icm‘)dK
¢ Rl . o ‘
= g2 [/ {elK(Ct—r)+e—lK(C'l—l')}dK_/ {em(ct+r)+e_m(ct+r)}dKi|
r 0 o

c Sl Sl
— > [/ elK(ct—r)dK _ / em(ct+r)dKi|
8 °r|J)-w —00

= 82—2i[8(ct —r)—38(ct + r)]. (3.15.85)

Fort > 0,ct + r > 0 and hence 8(ct + r) = 0. Thus,

1 r
Glx.1) = ;3 (t - E> (3.15.86)

1
in which the formula §(ax) = — 8(x) is used.

If the source is located at (§,1,(,t) = (&, 1), the desired Green’s function is
given by

e R

(3.15.87)

It should be noted that the Green’s function (3.15.86) for the hyperbolic equation
is a generalized function, whereas in the other examples of Green’s functions, it was
always a piecewise analytic function. In general, the Green’s function for an elliptic
function is always analytic, whereas the Green’s function for a hyperbolic equation
is a generalized function.
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3.16 Exercises

1. Find the Fourier transforms of each of the following functions:

(@) f(t) =texp(—alt]).,a > 0, (b) f(t) = texp(—at?),a > 0,
1—1|x|, |x] <1,

(© f(1) = ¢ exp(—e"). @ fuy=1] 17

0, x| >1,"°
(e) f(t) =1*exp (—% 12) , (f) f(r) = exp(—at® + bt),
(@ f()=38"(), (h)  f(@) = e]*,
. sin? at .
i) f(1) = PYER (G)  f(t) = x(?) cos wot,
&) f@) = % Ty 1 (@), ) f@t) = exp(iat),

where J, (7) is the Bessel function.

2. Use the Fourier transform with respect to x to show that
2\ .

(a) 3‘\{H(cf — |x|)} = (E) sin(ckt),

(b) F{8(x —ct)} + 8(x + ct) = 2cos(ckt),

where k is the Fourier transform variable.

3. If p(r) = / (t—§)f(t—&) f'(§) d&, show that

AP

N =

p(o) =—
4. If f(¢) has a finite discontinuity at a point ¢ = a, prove that

FAL (0} = (0) f(0) = e[ fla,
where [f], = f(a + 0) — f(a — 0). Generalize this result for Z { f " (t)}.
5. Prove the following results:
(a) y{(az—ﬂ)‘%ﬂ(a - |z|)} — Jo(ak), a>o0,
(b) F{pn(t) H(1 - [t])} = \/2 (=), 11 (®).
6. Use result (3.3.11) to find

x2

(a) F {x” exp (—7)} and (b) F{x"exp(—ax?)}.
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7. Ifh(t) = f(t) * g(¢), show that

(@) hit —10) = £t — o) % g(1) = / Fe—10) gt —v) dx.

t t t -
o laln () =7 (%) <2 (%)
a a a
8. Prove the following results for the convolution of the Fourier transform:

(a) Sc(f) * fx) = fx), (b) 8(x)* fx) = f'(x),
(© E{f()f) xg()} = f/(x) * g(x) = f(x) * g'(x).

9. IfG(x,1) =

1 x2
exp | ——— |, show that
V4 «t p( 4Kl)
G(x,t) x G(x,t) = G(x,2t).

10. Show that

Fleow (@)} = 7o (<177)) = (o) esw (-,

1 1 1

where ) = pe) + )

11. If f € L'(R) and F € L'(R) is defined by
t o0

F(t) = / f(x)dx = / S X(—oon)(x)dx for teR,
—0Q —00

show that

flw)=(iw) " f(w) forall 0.

12. Prove that the Gaussian kernel G, (¢) is a summability kernel. Examine the
nature of Gy (¢) and G) (w) as A — oc.

13. Show that, for the Gaussian kernel G,

[od) 2 n )
@ G0 1) = [ " exp (5 ) Fr o,
() lim (G x f)(1) = f(0).
14. If the Poisson kernel P, (x) = AP (x), P(x) = ! (1 + xz)_l, show that

@ Piw) =exp(=|7]).
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) (Px )0 = [ exp(=[2]) F@) expion do.
© Jim (P x f)0) = /().

15. Find the normalized autocorrelation function y(¢) for functions

0, t <0,
@ f)=41-t,0<t<1,
0, t>1

(b) f(1) =e ™ H(r).
16. In terms of Fejér kernel F) (x), the Vallée—Poussin kernel is defined by

Vi(x) = 2F5.(x) — F(x).

Show that
L, lo| <X,
5 _ [
Vilw)=172- - A< |of <2,
0, |w] > 2\

17. If A(¢) is a triangular function defined by (3.2.10), show that

@ Aj(w) = Fi(w).
(b) E{Ax(t)} = Ay(w) = F.(w), where F)(x) is a Fejér kernel.

18. For the Fejér kernel F, (¢) defined by

‘ k
Fu)= ) (1 - n|+|1)t",

k=-n

show that
n|

> N
(a) Z f(t+2n ):ngnoozL Z (I_N——i-l) Foye,

n=—oo

(b) Fn(eit): n+ 1 7
2

19. Verify the equality of the uncertainty principle for the Gaussian function

f(t) = exp(—at?).
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20. Find the system impulse function of the Gaussian filter
b(w) = Agexp (— aw’ —iwty).

21. Find the transfer function of the cosine filter whose amplitude is defined by

nTw
a + bcos , o] < w,
o

0, |w] > wo

A(w) =

22. Use the Fourier transform method to solve the following ordinary differential
equations for x € R:

(@) y"(x) +xy'(x) + y(x) =0,

() »"(x) + xy'(x) + xy(x) =0,

(©) y"(x) +2ay'(x) + o?y(x) = f(x).
(d) y'(x) = y(x) = =21 (x),

where f(x) = 0 for x < —a and for x > a,and f(x) and its derivatives vanish as
|x] = oo.

23. Let f be a continuous non-negative function defined on [— , ] such that
supp f € [~ +¢& —e¢], forsome0 < & < ,and/ f(x)dx = 2 . Let

g bea?2 -periodic extension of f onto the entire line R. Define
kn(x) =ng(nx) for n=1,2,....

Show that {k, (x)} is a summability kernel.

24. If f () =% { exp(—tz)}, show that f (w) satisfies the differential equation

2ifA(w)+wa(w) =0.
dw
Hence, show that
. 2
f@ =V exp (—‘”T) .

25. Show that (a) the Fourier transform of the Dirac comb

D)= Y 81—nT)

n=—oo
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is
o0

D(w) = Z exp(—inwT).

n=—0o0

(b) Derive the Poisson summation formula for the Dirac comb

i exp(—inwt) = (2?) i 8((» — ZTr) .

n=-—00 r=—00

26. Prove that
1 . 2
7 Ca— i = () exp | L LaH i)
F {exp|[—(a —ib)t ]}_(a—ib) exp[ @10 |
27. Show that the two-dimensional convolution
her) = (F <9 = [ @28
—00

has the Fourier transform given by

h(w) = /(@) §(w).
where £ = (§,1),r = (x,y) and ® = (w, 0).
28. For the two-dimensional Fourier transform, prove the following results:

(a) / fr)gr)dr = — / f(w)g(w)do (Poisson’s formula),
(b) / |f(r)\ dr = —/ ‘f((o)‘ dw  (Plancherel’s formula),

wherer = (x, y) and ® = (w,0).

29. (a) If f,g.h € L>(R) and f(x,y) = g(x)h(y), show that

f(0,0) = §(w) h(o)

where ¢ and h are the one-dimensional Fourier transforms of g and h
respectively.

(b) Apply the result in Exercise 29(a) to calculate the Fourier transform of the two-
dimensional characteristic function

I,|x| <a and |y|<a
0, otherwise

fx.y) =
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30. If F is the autocorrelation function of f € L?(R), show that

(@ [F@)| < ||f“§ forall 7 € R,
(b) F is uniformly continuous on R.

31. Solve the Bernoulli—Euler beam equation

d*u

El
dx?

+ ku = W(x), —00 < X < 00,

where E[ is the flexural rigidity, k is the foundation modulus of the beam, W(x)
has a compact support, and u, u’, u”, v’ all tend to zero as |x| — oo.

32. Use the Fourier transform to solve the following ordinary differential
equations

d
@ F() +20y(0) + 0’y(0) = f(1), @)= d_f
() y"(x) + xy'(x) + xy(x) = 0.

33. Solve the following equations for a function f
o0
(a) / exp(—atz)f(x —t)dt =exp(—bx?), a,b>0,
—0o0

(b) /_ (= 1) £ (1) dt = ().

34. Solve the inhomogeneous diffusion problem
U — Ky = q(x,1), xeR, t>0,
u(x,0) = f(x) forall x €R.
35. (a) Find the Green’s function for the one-dimensional Klein—Gordon equation
u,,—czuxx—i-dzu:p(x,t), xeR, t>0,

with the initial and boundary conditions
u(x,0) =0 = u(x,0) forall x e R,
u(x,t) >0 as |x| > o0, t>0,
where ¢ and d are constants and p(x,t) is a given function.
(b) Derive the Green’s function for both two-dimensional and three-dimensional
Klein—Gordon equations.

36. Solve the biharmonic equation
Uir + Uyxxx = 0, X € R, > 0,
u(x,0) = f(x) and wu/(x,0) =0 for x € R.
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37. Find the solution of the telegraph equation
Uip — iy +2au;, =0, xeR, >0,
M(X,O) = O, Mt(xvo) = g(x),
where ¢ and a are constants.

38. Solve the initial value problem for the dissipative wave equation
Uy — CCupy +o;, =0, xeR, >0,
u(x,0) = f(x), wu;(x,0)=g(x), for x eR,
where o > 0 is the dissipation parameter.

39. Solve the Cauchy problem

U = Kliyy, X€ER, >0,
u(x,0) = exp(—ax?), u—>0 as |x|— oo.
40. Find the Green’s function G(x, ¢) which satisfies the differential system
Gy —c*V2G +d*G =8(x)8(y)8(2) 8(r), xeR3, >0,
G(x,t) =0 = G/(x,t) forallx € R3,
G(x,t) >0 as [|x|]— oo,
9? 2 9?
h =(x,y,2), dd tants, and V> = — + — + —.
where x = (x, y, z), ¢ and d are constants, an 2 + 52 T a2
41. For a signal f with the Gaussian amplitude modulation and a cubic phase
modulation
1

i 1 1
f(@) = (2)4 exp (—5 at? + giyﬁ +2 ivot) ,

show that the average frequency and the bandwidth square are

1 2
(V)Z(gy—a—i-w) and Bzzﬁ(a—i—%).

42. For a signal with the Gaussian amplitude modulation and a sinusoidal modu-
lated frequency

i 1
f(@) = (2)4 exp (_E at? + imsin?2 Vit + 2 ivot) ,

find the average frequency and the bandwidth of the signal.



Chapter 4
The Gabor Transform and Time-Frequency
Signal Analysis

What is clear and easy to grasp attracts us; complications deter.

David Hilbert

Motivated by ‘quantum mechanics’, in 1946 the physicist Gabor
defined elementary time-frequency atoms as waveforms that
have a minimal spread in a time-frequency plane. To measure
time-frequency ‘information’ content, he proposed decomposing
signals over these elementary atomic waveforms. By showing
that such decompositions are closely related to our sensitivity to
sounds, and that they exhibit important structures in speech and
music recordings, Gabor demonstrated the importance of
localized time-frequency signal processing.

Stéphane Mallat

4.1 Introduction

Signals are, in general, nonstationary. A complete representation of nonstationary
signals requires frequency analysis that is local in time, resulting in the time—
frequency analysis of signals. The Fourier transform analysis has long been
recognized as the great tool for the study of stationary signals and processes where
the properties are statistically invariant over time. However, it cannot be used for
the frequency analysis that is local in time. In recent years, several useful methods
have been developed for the time—frequency signal analysis. They include the Gabor
transform, the Zak transform, and the wavelet transform.

It has already been stated in Sect. 1.2 that decomposition of a signal into a small
number of elementary waveforms that are localized in time and frequency plays
a remarkable role in signal processing. Such a decomposition reveals important
structures in analyzing nonstationary signals such as speech and music. In order to
measure localized frequency components of sounds, Gabor (1946) first introduced
the windowed Fourier transform (or the local time—frequency transform), which
may be called the Gabor transform, and suggested the representation of a signal
in a joint time—frequency domain. Subsequently, the Gabor transform analysis has
effectively been applied in many fields of science and engineering, such as image
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analysis and image compression, object and pattern recognition, computer vision,
optics, and filter banks. Since medical signal analysis and medical signal processing
play a crucial role in medical diagnostics, the Gabor transform has also been used
for the study of brain functions, ECC signals, and other medical signals.

This chapter deals with classification of signals, joint time—frequency analysis
of signals, and the Gabor transform and its basic properties, including the inversion
formula. Special attention is given to the discrete Gabor transform and the Gabor
representation problem. Included are the Zak transform, its basic properties, and
applications for studying the orthogonality and completeness of the Gabor frames
in the critical case.

4.2 Classification of Signals and the Joint Time-Frequency
Analysis of Signals

Many physical quantities including pressure, sound waves, electric fields, voltage,
electric current, and electromagnetic fields vary with time 7. These quantities are
called signals or waveforms. Example of signals include speech signals, optical
signals, acoustic signals, biomedical signals, radar, and sonar. Indeed, signals are
very common in the real world.

In general, there are two kinds of signals: (a) deterministic and (b) random (or
stochastic). A signal is called deterministic if it can be determined explicitly, under
identical conditions, in terms of a mathematical relationship. A deterministic signal
is referred to as periodic or transient if the signal repeats continuously at regular
intervals of time or decays to zero after a finite time interval. Periodic and transient
signals are shown in Figs.4.1a, b and 4.2.

On the other hand, signals are, in general, random or stochastic in nature in the
sense that they cannot be determined precisely at any given instant of time even
under identical conditions. Obviously, probabilistic and statistical information is
required for a description of random signals. It is necessary to consider a particular
random process that can produce a set of time-histories, known as an ensemble. This
can represent an experiment producing random data, which is repeated n times to
give an ensemble of n separate records (see Fig. 4.3).

The average value at time ¢ over the ensemble x is defined by

1S
(r(@®) = lim — ; X (). “.2.1)
where x takes any one of a set of values x4, and k = 1,2,...,n.

The average value of the product of two samples taken at two separate times ?,
and 1, is called the autocorrelation function R, for each separate record, defined by

1 n
R() = lim — 3 xi(11) xi(12). 4.22)
k=1
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Fig. 4.1 (a) Sinusoidal periodic signal; (b) nonsinusoidal periodic signal
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Fig. 4.2 Transient signals

where © = #; — t,. The process of finding these values is referred to as ensemble
averaging and may be continued over the entire record length to provide statistical
information on the complex set of records.

A signal is called stationary if the values of (x(¢)) and R(¢) remain constant for
all possible values of ¢ and R(t) depends only on the time displacement t = #; — t,
(see Fig. 4.4a). In most practical situations, a signal is called stationary if (x(¢)) and
R(<) are constant over the finite record length 7T'.

A signal is called nonstationary if the values of (x(¢)) and R(t) vary with time
(see Fig.4.4b). However, in many practical situations, the change of time is very
slow, so the signal can be regarded as stationary. Under certain conditions, we regard
a signal as stationary by considering the statistical characteristic of a single long
record. The average value of a signal x(¢) over a time length T is defined by

1 (7
X = lim —/ x(t) dt, 4.2.3)
T Jo

T—o00
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Fig. 4.3 Ensemble of n records

where X is used to represent a single time-history average to distinguish it from the
ensemble average (x).
Similarly, the autocorrelation function over a single time length 7 is defined by

T
R(x) = lim_ % /0 x(t) x(t + ) dt. (4.2.4)

Under certain circumstances, the ensemble average can be obtained from
computing the time average so

(x) = ¥ (4.2.5)

for all values of time 7. Then, this process is called an ergodic random process.
By definition, this must be a stationary process. However, the converse is not
necessarily true, that is, a stationary random process need not be ergodic.

Finally, we can introduce various ensemble averages of x (¢) which take any one
of the values xy (r),k = 1,2,...,n attime ¢ in terms of probability Py (x4 (¢)). The
ensemble average of x is then defined by
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a x(7)
!
0
R 2 x(1)
e
0

Fig. 4.4 (a) Stationary random signal. (b) Nonstationary random signal

(x) = > Pr(xi)xx. (4.2.6)
k=1

We now consider two random variables x;(¢) and x; (s) which are values of a
random process x at times ¢ and s with the joint probability distribution P[-* (x,- , xk).
Then, the autocorrelation function, R(t, s) of the random process x is defined by

R(t,s) = {x(1) x(s)) = Z P (xi, xic) Xi Xk 4.2.7)
ik
This function provides a great deal of information about the random process and

arises often in signal analysis. For a random stationary process, Pf’s) is a function
of T =t — s only, so that

R(t,s) = R(t —s) = R(v) 4.2.8)

and hence, R(—t) = R(t) and R is an even function.

Signals can be described in a time domain or in a frequency domain by the
traditional method of Fourier transform analysis. The frequency description of
signals is known as the frequency (or spectral) analysis. It was recognized long
ago that a global Fourier transform of a long time signal is of little practical value
in analyzing the frequency spectrum of the signal. From the Fourier spectrum
(or spectral function) f (w) of asignal f(¢), itis always possible to determine which
frequencies were present in the signal. However, there is absolutely no indication as
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Fig. 4.5 ECG signal of a human heart

to when those frequencies existed. So, the Fourier transform analysis cannot provide
any information regarding either a time evolution of spectral characteristics or a
possible localization with respect to the time variable. Transient signals such as a
speech signals or ECG signals (see Fig. 4.5) require the idea of frequency analysis
that is local in time.

In general, the frequency of a signal varies with time, so there is a need for
a joint time—frequency representation of a signal in order to describe fully the
characteristics of the signal. Thus, both the analysis and processing of nonstationary
signals require specific mathematical methods which go beyond the classical Fourier
transform analysis. Gabor (1946) was the first to introduce the joint time—frequency
representation of a signal. Almost simultaneously, Ville (1948) first introduced
the Wigner distribution into time—frequency signal analysis to unfold the signal
in the time—frequency plane in such a way that this development led to a joint
representation in time—frequency atoms.

4.3 Definition and Examples of the Gabor Transform

Gabor (1946) first introduced a time-localization window function g, (¢t — b) for
extracting local information from a Fourier transform of a signal, where the
parameter @ measures the width of the window, and the parameter b is used to
represent translation of the window to cover the whole time domain. The idea is
to use this window function in order to localize the Fourier transform, then shift
the window to another position, and so on. This remarkable property of the Gabor
transform provides the local aspect of the Fourier transform with time resolution
equal to the size of the window. Thus, the Gabor transform is often called the
windowed Fourier transform. Gabor first introduced

gro(t) =expliot) g(t—1) = M, T, g(v), “4.3.1)
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as the window function by first translating in time and then modulating the
function g(¢) = -3 exp (—2_112) which is called the canonical coherent state
in quantum physics. The energy associated with the function g, is localized in the
neighborhood of ¢ in an interval of size o;, measured by the standard deviation of
|¢|%. Evidently, the Fourier transform of g, ,,(t) with respect to T is given by

81o(V) = g(v— w)exp { —it(v— w)}. (4.3.2)

Obviously, the energy of g, is concentrated near the frequency w in an interval of
size o,, which measures the frequency dispersion (or bandwidth) of &, ,. In a time—
frequency (¢, w) plane, the energy spread of the Gabor atom g, can be represented
by the rectangle with center at ((l), (u))) and sides o; (along the time axis) and o,
(along the frequency axis). According to the Heisenberg uncertainty principle, the

area of the rectangle is at least 5; that is, 0, 0, > —. This area is minimum when

g is a Gaussian function, and the corresponding g;, is called the Gabor function
(or Gabor wavelet).

Definition 4.3.1 (The Continuous Gabor Transform). The continuous Gabor
transform of a function f* € L?(R) with respect to a window function g € L?*(R) is
denoted by ¢4 f](¢, w) = f,(t, ) and defined by

%[f](z,m:ﬂ(r,w):/_ f@g—nedr=fga) (433

where g, ,(t) = g(t —t) exp(i wT), so, H gto || = ||gH and hence, g;, € L*(R).

Clearly, the Gabor transform fg(t, w) of a given signal f depends on both time
t and frequency w. For any fixed 7, fg(t, w) represents the frequency distribution at
time ¢. Usually, only values of f(t) for T < ¢ can be used in computing fg(t, ).
In a system of finite memory, there exists a time interval 77 > 0 such that only
the values f(t) for t > ¢ — T can affect the output at time ¢. Thus, the transform
function fg(t, w) depends only on f(t) fort — T < t < t. Mathematically, if
gr. () vanishes outside [T, 0] such that supp g C [T, 0], then g; ,(t) can be used
to localize the signal in time. For any ¢t € R, we can define f;(t) = g(t — 1) f(7)
so that supp f; C [t — T, t]. Therefore, f;(t) can be regarded as a localized version
of f that depends only on the values of f(t)inz — T < t <t.If g is continuous,
then the values of f;(t) with t &~ ¢t — T and © & ¢ are small. This means that the
localization is smooth, and this particular feature plays an important role in signal
processing.

In physical applications, f and g represent signals with finite energy. In quantum
physics, fg(t, w) is referred to as the canonical coherent state representation of f.
The term coherent state was first used by Glauber (1964) in quantum optics.
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We next discuss the following consequences of the preceding definition.

1. For a fixed ¢, the Fourier transform of f;(t) with respect to t is given by
fet,0) = Z{fi(0)} = fi(v), (4.3.4)
where f;(t) = f(t) g(t —1).

2. If the window g is real and symmetric with g(t) = g(—7) and if g is normalized
so that ||gH = 1 and Hg,,w || = Hg(t —1) || = 1 for any (¢, ) € R?, then the
Gabor transform of f € L?(R) becomes

f;,(t, w) = (f, gf,w) = /_ f(0)g(t—t)e " dr. 4.3.5)

This can be interpreted as the short-time Fourier transform because the multipli-
cation by g(t—t) induces localization of the Fourier integral in the neighborhood
of t = t. Application of the Schwarz inequality (2.6.1) to (4.3.5) gives

e | = |{fgall < [ 71180l = [ 7]]e]-

This shows that the Gabor transform f~g(t, w) is bounded.
3. The energy density defined by

’fg(t, oo)’2 = '/_Z f(t)gt—1)e*"dt ’ 4.3.6)

measures the energy of a signal in the time—frequency plane in the neighborhood
of the point (¢, ).
4. Tt follows from definition (4.3.3) with a fixed w that

fe(t, ) = e /_ fgr—1)eVdr=e7"(f xg,)t). (4.3.7)

where g,(1) = e/““g(t) and g(—1) = g(1). Furthermore, by the Parseval
relation (3.4.34) of the Fourier transform, we find

Gt = (£8.0) = (£ ) = e [ Fgo-oe ™. @38

Except for the factor exp(iwt), result (4.3.8) is almost identical with (4.3.3),
but the time variable ¢ is replaced by the frequency variable w, and the time
window g(t — t) is replaced by the frequency window g(v — w). The extra
factor exp(i w?) in (4.3.8) is associated with the Weyl commutation relations of
the Weyl-Heisenberg group which describe translations in time and frequency.
If the window is well localized in frequency and in time, that is, if Z(v — w) is
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small outside a small frequency band in addition to g(t) being small outside a
small time interval, then (4.3.8) reveals that the Gabor transform gives a local
time—frequency analysis of the signal f in the sense that it provides accurate
information of f simultaneously in both time and frequency domains. However,
all functions, including the window function, satisfy the Heisenberg uncertainty
principle, that is, the joint resolution o;0,, of a signal cannot be arbitrarily small

. | .
and has always greater than the minimum value — which is attained only for the

Gaussian window function g(7) = exp (—at?).

5. For a fixed w, the Fourier transform of f;(t, w) with respect to ¢ is given by the
following:

F {fg(t,w)} = fo(v.0) = f(U+ ) (V). (4.3.9)

This follows from the Fourier transform of (4.3.7) with respect to ¢

F{feto)f = Z{e (f x 8,) O} = f (v + @) &(0).
6. If g(t) = exp (—;‘12), then
felt, 0) = V2 exp (iot — o) (Wf)(t + 2i0), (4.3.10)
where W represents the Weierstrass transformation of f(x) defined by
W[f(x)] = 217 /_ Z f(x)exp [—%(z —x)2:| dx. (4.3.11)

7. The time width o, around ¢ and the frequency spread o, around o are indepen-
dent of # and w. We have, by definition, and the Gabor window function (4.3.1),

* 2 o 2 o 2
o’ =/ (t—1)?|gro(V)| dt =/ (t—1)*|g(x—1)|"d =/ ?|g(v)|d
Similarly, we obtain, by (4.3.2),

2 L[ 2|4 2 [ e 2|50 |12 [ R YPORNT:
oy = 2—/ (v—w) ‘g,,w(u)| dv = 2—/ (v—w) |g(u)| dv = 2—/ v ‘g(v)‘ dv.
—0c0 —o0 —oo

Thus, both o, and o,, are independent of ¢ and w. The energy spread of g; ,(t)
can be represented by the Heisenberg rectangle centered at (¢, w) with the area
0,0, Which is independent of # and w. This means that the Gabor transform has
the same resolution in the time—frequency plane.



252 4 The Gabor Transform and Time—Frequency Signal Analysis

Example 4.3.1. Obtain the Gabor transform of functions

(@ f(v)=1, (b) f(1) = exp(—io).
We obtain
~ S . .

@ fito) = [ gle-near= e g)

(b) fg(l, w) = / e MOt et — 1) dt = exp {—it(oc+ w)}g(o + w).
—oo

Example 4.3.2. Find the Gabor transform of functions

(@ f(v) =300, (b) f(v) =8(x—10).

We have

@ ft.o) = [ 80gt-ne =g,
—0o0

©) it = [ 8-t gle—nedu = e g~ ).

Example 4.3.3. Find the Gabor transform of the function f(t) = exp (—aztz) with

g(x)=1.

We have

oo

4a?

futor = [

—00

exp {—(a* + iot)}dt = f(w) = % exp (— o’ ) .

4.4 Basic Properties of Gabor Transforms

Theorem 4.4.1 (Linearity). If the Gabor transforms of two functions fi and f,
exist with respect to a window function g, then

Glafi + bfo](t.w) = a9 fi](t, 0) + L[ /2], ®). 4.4.1)

where a and b are two arbitrary constants.

The proof easily follows from the definition of the Gabor transform and is left as
an exercise.

Theorem 4.4.2. If f and g € L*(R), then the following results hold:

(a) (Translation) : %[Taf](t, w) = e ¥4 %[f](t —a,w), 4.4.2)
(b) (Modulation) : %[Muf](t, w) = %[f](t, w—a), (4.4.3)
(¢) (Conjugation) : 4[ f](t,w) =G f](x, —w). (4.4.4)

Proof. (a) We have, by definition,

GT.flt.0) =9 f(x—a)]t.w) = /_ fr—a)g(t—1) e i*dv
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= o / ” o g(x —7=a)e " dx
= o g_[o;](t —a, ).
(b) We have
G M, f(t,w) =G["" f(D)](t. »)
= [ r@ea-netea
=9[f](t.0 — a).

(c) It follows from definition (4.3.3) with a real window function g that

g[f](t,(ﬂ):/ mg(‘t_t)e_imtd‘tzf_ f(-[)g(-c_t)eimtd.t

=9 f]x.—w).

Theorem 4.4.3. If two signals f,g € L*(R), then
o0 o0 - 2 2 2
| [ o arao =1l

Proof. The left-hand side of the above result is equal to

00 oo | 2 00 00 00 ) 2
/ / ‘fg(t,w)‘ dtdw:/ / V (1) g(x—1) e %] di dw
—00 J —0O0 —00 J —O0 —00
:/ / ‘/ hi(t) e “%d
—00 J—00 |/ —00
o0 o0
Ry
-
= / ||h,(t)H2dt, by Plancherel’s theorem
—00

=/_ dt/_ | fO g0 dx

2
dtdo, hi(t) = f(v)g(t—1)

A 2
ht(oo)‘ dw

~ 2
hi (o) H dt
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= [ _lr@Pax [ leePax = |72l

This completes the proof.

Theorem 4.4.4 (Parseval’s Formula). If ¥[f](t,0) = fo(t,0) and
9 [h](l,w) = };g(t,w), then the Parseval formula for the Gabor transform is
given by

(f. 1) = el (1:0) (44.5)
where
(foh) =] )y = / / Fo(t,0) g(t. ) dt do. (4.4.6)
—00 J —00
In particular, if H g || = 1, then the Gabor transformation is an isometry from L*(R)
into L*(R?).

Proof. We first note that, for a fixed ¢,
felt.w) = Z{ (0} = F{f(Dg (D)}

where g;(t) = g(t —1).
Thus, the Parseval formula (3.4.34) for the Fourier transform gives

[ Fewiewdo= (s s
= Yshe) = [ S@gG-niogE—nds
- [ i@ lec-of ax
Integrating this result with respect to 7 from —oo to co gives
(f,ﬁ):/_:/_:f(t,w)Z(t,w)dtdw
- [ rwhwar [ Je-of ar

=/_OO f(T)E(t)dt/_oo |g(x)|2dx (t—t=x)
= |l&[*(£.1)

This proves the result.
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It ||g|| = 1, then (4.4.5) shows isometry from L?(R) into L2(R?).
Theorem 4.4.5 (Inversion Theorem). If a function f € L*(R), then

1
&I

First Proof. It follows from the continuous Gabor transform (4.3.3) that

f(r) = zi /_ Z /_ : fet,w) g(t—1) e dwdt. (4.4.7)

fet.0) = F{f(Dg(t—1)},

where the Fourier transform with respect to t is taken.
Application of the inverse Fourier transform to this result gives
~ 1 [ ..
f@ge-n=7"fww) =3 [ oo

—0o0

Multiplying this result by g(t — ¢) and integrating with respect to ¢ yields

oo 1 o0 ol B
f(©) /_oo lg(x—n)|'dt = 2—/_00 /_ooe’mg(t—t)fg(t,w)dwdt.

Or, equivalently,

1

OIS 2—/_00 /_ooefwfg(r—z)]@(t,w)dwdz.

This proves the inversion theorem.

Second Proof. We apply the inverse Fourier transform of f(t) and the Parseval

formula to replace ||g HZ by ZL Hg H2 so that

f@ el

1 [ . 4 1.
2_/_ooezwt f((n)du) i 2_||gH2

1 © 1 ©
2_/_ooezmt flw)do - 2_/_00 ig(U)|2dU.
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Since the integral is true for any arbitrary , we replace @ by @ + v to obtain

oo

1 o A 1 R R
2—/ et f(w+v)dow 2—/ g)g(v)dv

—00

@l

L[ 1 [ ,r»
= 2_/_ooelmtdw,2_/_0061‘[1)[](((”+U)§_(U)]§(U)dv

1 [ . L[ 2
/ e %o - |: / elwfg((l) + U)g(U) dui| s by 4.3.9)
2 Jow 2 )

ZL /00 edw - [f;,(t, ) * g(t)] , by (3.3.23)

%/ ei“"du)/ fg(t,w)g(t—t)dt

%/ / ei“‘];g(t,w)g(t—t)dt dw.

This proves the inversion theorem.

Theorem 4.4.6 (Conservation of Energy). If f € L>(R), then

2 1 o0 o0 ~ 2
=5 [ [ |l dao @49
where g is a normalized window function (”g“ = 1) .

Proof. Using (4.3.9) dealing with the Fourier transform of f;,(t, ) with respect to
t, we apply the Plancherel formula to the right-hand side of (4.4.8) to obtain

%/_:/_Z’ji,(t,w)’zdtdwz %/_:dwzi/_(:’f{ﬂ(f’w)}’zdl)

Lt [ o ot

o R O R

1 o0 N 2 . . 1 o0 . 2
2—/ ‘f(w)‘ dw, since ||g|| = —/ lg(v)|"dv =1

2

/_ f@Pde= | £

This completes the proof.

Physically, the Gabor transformation transforms a signal f* of one variable t to a
function f of two variables ¢ and w without changing its total energy.
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4.5 Frames and Frame Operators

The concept of frames in a Hilbert space was originally introduced by Duffin and
Schaeffer (1952) in the context of nonharmonic Fourier series only 6 years after
Gabor (1946) published his famous work. In signal processing, this concept has
become useful in analyzing the completeness and stability of linear discrete signal
representations. A frame is a set of vectors {¢, },cr that characterizes any signal f
from its inner products {( /i ¢n)} where T is the index set, which may be finite
or infinite.

ner?

Definition 4.5.1 (Basis). A sequence of vectors {x,} in a Hilbert space H is called
a basis (Schauder basis) of H if to each x € H, there corresponds a unique
sequence of scalars {a, }o—, such that

o0
X = Za,,x,,, 4.5.1)

where the convergence is defined by the norm.

Definition 4.5.2 (Orthogonal Basis and Orthonormal Basis). A basis {xn}:il
of H is called orthogonal if (x,, x,;) = 0 forn # m.

An orthogonal basis is called orthonormal if (x,, x,) = 1 for all n.

An orthogonal basis {xn} _, is complete in the sense thatif (x, x,) = 0 forall n,
then x = 0 (see Theorem 2.10.4).

Every separable Hilbert space has an orthonormal basis, and for an orthonormal
basis the expansion (4.5.1) has the form

o0

Z X, X)X, 4.5.2)
with
|x|| Z\ X, xp) | 4.5.3)
More generally, for any x,y € H,

o0
= Z(x,xn)(y,xn). (4.5.4)

n=1

It can be proved that every basis {xn} , of a Hilbert space H possesses a unique
biorthogonal basis {xn }n=1 which 1mphes that

(xm,x:) = 8m,m
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and, for every x € H, we have

[e%e) [e%e)
=St = e
n=1 n=1

If (X, x;)x, = 0 form # n, but (x,,x *)xn is not necessarily equal to one,
{xx}°2 | is called a biorthogonal basis of {x,} - . In this case, we have, for any
xXeH,
o0
X = Z(E,,)_l(x, Z(an) (x, x,)x (45.5)
n=1

where a, = (x, x,) # 0. It can be shown that a,, # 0 for all n.

Definition 4.5.3 (Bounded Basis, Unconditional Basis, and Riesz Basis). If
{x,} is a basis in a separable Hilbert space H , then

@) {xn} is called a bounded basis if there exist two nonnegative numbers A and
B such that

A< Hx,, H <B forall n.

(ii) {x,,} is called an unconditional basis in a separable Hilbert space H if

> ayx, € H impliesthat Y |ay|x, € H.

(iii) {x,,} is called a Riesz basis if there exist a topological isomorphism 7" : H —
H and an orthonormal basis { yn} of H such that Tx, = y, for every n.

Remark. In a Hilbert space, all bounded unconditional bases are equivalent to an
orthonormal basis. In other words, if {x,,} is a bounded unconditional basis, then
there exists an orthonormal basis {en} and a topological isomorphism 7" : H — H
such that Te,, = y, for all n.

Definition 4.5.4 (Frame). A sequence {x,,} in a separable Hilbert space H (not
necessarily a basis of H) is called a frame if there exist two numbers A and B with
0 < A < B < oo such that

Al = 3l v < B 56

The numbers A and B are called the frame bounds. If A = B, the frame is said to
be tight. The frame is called exact if it ceases to be a frame whenever any single
element is deleted from the frame.

Definition 4.5.5 (Frame Operator). To each frame {xn} there corresponds an
operator T, called the frame operator, from H into itself defined by

Tx =Y (x.X))x, forallxe H. 4.5.7)

n
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Remark. The x,’s are not necessarily linearly independent. Since Z \(x, x,,)|2 isa

n
series of positive real numbers, it converges absolutely and hence, unconditionally.
The following example shows that tightness and exactness are not related.

Example 4.5.1. If {en}oo is an orthonormal basis of H, then

n=1

(i) {e1,e1,ez,es,...}1s atight frame with frame bounds A = 2 = B, but it is not
exact.

(i) {ﬂel, e, e3,... } is an exact frame but not tight since the frame bounds are
easily seenas A =l and B = 2.

(ii) {el, %, %, %, %, %, . } is a tight frame with the frame bound A =
1 but not an orthonormal basis.
. € €3
@iv) {el, 3
If {x,} is an orthonormal basis of H, then the Parseval formula holds, that is, for
anyx € H,

.. } is a complete orthogonal sequence but is not a frame.

P =3l )l

It follows from the definition of frame that {x,} is a tight frame with frame
bounds A = B = 1.

But the converse is not necessarily true. That is, tight frames are not necessarily
orthonormal. For example, H = C? and

er=(0.1),es = (?—%) ,e3 = (—?—%) .

For any x = (x1,x2) € H, we have

3

3 lfxee) = 1l +

i=1

V3 1

3 YT an

1
S XI5

2 2 +

1
X2 + 3 (3|x1|2 + |xz|2)

> (bl + 1) = 3 I+l

Thus, three vectors (e, e, e3) define a tight frame with the frame bounds A = B =

3 . . .
3 but they are not orthonormal since (e, 2, e3) are not linearly independent.

Theorem 4.5.1. If a sequence {x,,} is a tight frame in H with the frame bound
A=1,andif ||x,, || = 1 for all n, then {x,,} is an orthonormal basis of H.
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Proof. 1t follows from (4.5.6) that

Jon Zixm,xn "= ol + 3 o)l

m#n

Since ||xm || = 1, the above equality implies that
(xXm, xn) =0 form # n.

The completeness of {x,,} is a consequence of the fact that frames are complete.
To check this, suppose x € H such that (x, x,,) = 0 for all n. Then, the relation

Alx[? =Y |frox)F =0

implies that x = 0.

Theorem 4.5.2. Suppose a sequence {x,} is a separable Hilbert space H. Then,
the following are equivalent.

(a) The frame operator Tx = Z (x, X )x,, is a bounded linear operator on it with

Al <T < BI, where I is t};le identity operator on H.
(b) {xu}o>, is a frame with frame bounds A and B.

Proof. 1f (a) holds, then the relation A < T < BI is equivalent to

(AIx x) (Tx x) (le x) forall x € H. 4.5.8)

Since / is an identity operator, (/x, x) = Hx ||2 Also,

(Tx,x) = <Z(x xn)x,,,x> = Z(x x,,)(x,,,x)
—Zxx,,xx,, Z\xxn

Evidently, inequality (4.5.8) gives
Alxl® = 32 fw)* < BIx].

This shows that (a) implies (b).

We next prove that (b) implies (a). Suppose (b) holds, that is, {x,,} is a frame
with frame bounds A and B. Recall that in any Hilbert space H the norm of any
element x € H is given by

||| = ”?”121 |(x. )| fory € H.
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For a fixed x € H, we consider

N

Tyx = Z (x, X0 )X

n=—N
For 0 < M < N, we have, by the Schwarz inequality,
2 2
H Thx — TMxH = sup ‘(TNx —Tux, y)‘

Iyli=1
2

= sup
lyll=1

(. ). )
M+1<|n|<N

sup > |(x’xn)|2( > |(x"’y)|2)

=
lIyll=1 M+1<|n|<N M4+1<|n|<N
< sup Z |(x,xn)‘2 BHy 2 by (4.5.6)
IYI=1\ a1 41<|n|<n
= B sup Z |(x,xn)|2 —-0 asM,N — oco.
=1\ M+1<pnl<n

Thus, {TNx} is a Cauchy sequence in H and hence it is convergentas N — oo.
Therefore,

lim Tyx =TX.
N—o00

Next, we use the preceding argument to obtain

2

[7x)" = sup [(Tx.y) = sup
Iyl=1 Iyl=1

2 (e x)

<5 (Z<>) < Bl

This implies that | T|| < B, and hence the frame operator T is bounded.
Since (Ix, x) = | x||?, it follows from definition (4.5.6) that

<Z<x,x,,>x,,,x>

n

= sup
lyll=1

A(lIx,x) <(Tx,x) < B(Ix,x),



262 4 The Gabor Transform and Time—Frequency Signal Analysis

which is equivalent to the relation
Al <T < BI.

This complete the proof.
Theorem 4.5.3. Suppose {xn}:ozl is a frame on a separable Hilbert space with
frame bounds A and B, and T is the corresponding frame operator. Then,

(a) T is invertible and B~'I < T7' < A7'I. Furthermore, T~ is a positive
operator and hence it is self-adjoint.

(b) {T_lx,,} is a frame with frame bounds B~ 'and A" with A=' > B! > 0,
and it is called the dual frame of {xn}.

(c) Every x € H can be expressed in the form

X = Z(x, T %, )x, = Z(x,x,,)T_lxn. (4.5.9)

n n

The frame {T_lx,,} = {56,,} is called the dual frame of {x,,}. It is easy to verify
that the dual frame of{fc,,} is the original frame {xn } According to formula (4.5.9),
the reconstruction formula for x has the form

X = Z(x,fc,,)x,, = Z(x,xn)fcn. (4.5.10)
Proof. (a) Since the frame operator T satisfies the relation
Al <T < BI, (4.5.11)
it follows that

U—B*Tygu—B*Anz(j—%)l

(-3)

Thus, B~!'T is invertible and consequently so is 7. We next multiply (4.5.11)
by 7! and use the fact that 7' commutes with / and T to obtain

and hence

|1 —B7'T| < <1

Bl <T <471

In view of the fact that
(T7 %, x) = (T, T(T™0)) = A(T™'x, T7'x) = A|T7'x|* > 0,

we conclude that 7~! is a positive operator and hence it is self-adjoint.



4.5 Frames and Frame Operators 263

(b) Since T~ !'is self-adjoint, we have

n n

Z(x, T'%)T %, =T7" (Z(T_lx,x,,)xn) =T_1(T(T_1x)) =T"'x.

(4.5.12)
This gives
<Z(x, T_lxn)T_lx,,,x> = (T_lx,x).
Or,
Z (x, T_lxn)(T_lxn,x) = (T_lx,x).
Hence,
Z (x, T_lx,,)(x, T_lxn) = (T_lx, x).
Or,
Z |(x, T_l)c,,)|2 = (T_lx,x).
Using the result from (a), thatis, B~'/ < T < A~'I, it turns out that
B_l(lx,x) < (T_lx,x) < A_l(lx,x)
and hence
B x|? = D [ T = A7 x| (4.5.13)
n

This shows that {7'x, } is a frame with frame bounds B~' and A™".
(c) We replace x by T~'x in (4.5.7) to derive

X = Z(T_lx,xn)xn = Z(x, T_lx,,)xn.

n n

Similarly, replacing x by T'x in (4.5.12) gives
X = Z(Tx, T7'%,)T ', = Z(T‘lTx,xn)T_lxn = Z(x,x,,)T_lxn.
n n n

This completes the proof.
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Theorem 4.5.4. Suppose {-xn}:o:l is a frame on a separable Hilbert space H
with frame bounds A and B. If there exists a sequence of scalars {c,} such that

X = E CnXn, then
n

, (4.5.14)

Z\cn|2 = Z\an|2+2|an —Cp 2
n n n
where a, = (x, T_lxn) so that x = Za,,x,,.

Proof. Note that (x,, T~'x) = (T'x,,x) = @,. Substituting x = Za,,xn into
n
the first term in the inner product (x, T_lx) gives

(x,T7'x) = <Zanxn,T x> Zan(x,,,T_lx) = Z |an|2.
n n

Similarly, substituting x = Z ¢, X, into the first term in (x, T_lx) yields

n

x T x <chxn,T x> ch xn,T x chan
Consequently,
S a = cutin. 4.5.15)

Finally, we obtain, by using (4.5.15),
Z‘an|2+2|an_cn|2 = Z‘an|2+2(|an|2_ancn ancn + |Cn ) Z‘Qz .

This completes the proof.

Theorem 4.5.5. A necessary and sufficient condition for a sequence {xn} on a
Hilbert space H to be an exact frame is that the sequence {xn} be a bounded
unconditional basis of H.

Proof. The condition is necessary.

We assume that {xn} is an exact frame with frame bounds A and B. Then, {x,}
and {T~'x, } are biorthonormal. For a fixed m, we have

AT = 3 T ) = 1) < 7P
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and

ol = o 2} < 3 o < B[
Consequently,
A<l < B.

Hence, the sequence {x, } is bounded in norm, and x € H can be represented as

X = Z(x, T_lx,,)x,,.

n

It remains to show that this representation is unique. If x = Z cnXp, then

n

(x, T7"x,) = <Z CnXn, T‘lxm> = ch(xn, T 'x0) = cm.
n

n

Thus, the sequence {xn} is a basis. Since the series converges unconditionally, the
basis is unconditional.

The condition is sufficient.

We assume that {xn} is a bounded unconditional basis of H. Then, there exists
an orthonormal basis {e,} and a topological isomorphism 7" : H — H such that
Te, = x, for all n. For x € H, we have

Dol = Dol Tea) [ = DT x ) = |77

where T is the adjoint of T'. But
x—1 -1 * *
I R e P TR R

Hence, the sequence {xn} is a frame which is obviously an exact frame because
it ceases to be a frame whenever any element is deleted from the sequence. This
completes the proof.

4.6 Discrete Gabor Transforms and the Gabor
Representation Problem

In many applications to physical and engineering problems, it is more important, at
least from a computational viewpoint, to work with discrete transforms rather than
continuous ones. In sampling theory, the sample points are defined by v = mw, and
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Fig. 4.6 The Gabor elementary functions g, ,(¢)

T = nty, where m, n are integers and 7, and wy are positive quantities. The discrete
Gabor functions are defined by

Sma(t) = exp(2 mwot) g(t —nty) = Ma ey Tnsy (1), 4.6.1)

where g € L*(R) is a fixed function and fy and o, are the time shift and the
frequency shift parameters, respectively. A typical set of Gabor functions is shown
in Fig. 4.6.

These functions are also called the Weyl-Heisenberg coherent states which arise
from translations and modulations of the Gabor window function (Fig. 4.6). From
a physical point of view, these coherent states are of great interest and have several
important applications in quantum mechanics. Following Gabor’s analysis, various
other functions have been introduced as window functions instead of the Gaussian
function which was originally used by Gabor. In order to expand general functions
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(quantum mechanical states) with respect to states with minimum uncertainty, von
Neumann (1945) introduced a set of coherent states on lattice constants wgfy = / in
the phase space with position and momentum as coordinates where % is the Planck
constant. These states, associated with the Weyl-Heisenberg group, are in fact the
same as used by Gabor. The time—frequency lattice with lattice constants wofy = 1
is also called the von Neumann lattice.

Definition 4.6.1 (Discrete Gabor Transform). The discrete Gabor transform is
defined by

Fonm = [ 08,,0dt = (£ g0 462)
The double series
Z f(m7n) gma(t) = Z (fv gm,n>gm,n(t) (4.6.3)

is called the Gabor series of f.
It is of special interest to find the inverse of the discrete Gabor transform so that
f € L?(R) can be determined by the formula

F(mty, nwy) = /_ F@) gua@)dt = (£, Z0)- (4.6.4)

The set of sample points {(m to,nwo)}:in=_oo is called the Gabor lattice. The
answer to the question of finding the inverse is in the affirmative if the set of
functions {gm,,, (t)} forms an orthonormal basis, or more generally, if the set is a
frame for L2(R). A system {gm,n (t)} = {Mz maoo Into g(t)} is called a Gabor frame

or Weyl-Heisenberg frame in L?(R) if there exist two constants A, B > 0 such that

oo

AlfIP< X [fogma < BISS 4.6.5)

mn=—0oo

holds for all f € L*(R). For a Gabor frame {g,, (1)}, the analysis operator Ty is
defined by

Ty f = {(ﬁ gm,n)}m’ns (4.6.6)

and its synthesis operator Tg* is defined by

o

T; Cmpn = Z Cmn &mns 4.6.7)

m,n=—00
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where ¢,,, € {*(Z). Both T, and T; are bounded linear operators and in fact are
adjoint operators with respect to the inner product (, }. The Gabor frame operator
S, is defined by S, = T; T,. More explicitly,

o0

Sef =Y (f &nan)&ma- 4.6.8)

mn=—0o0

If {gm,n} constitute a Gabor frame for L2(R), any function f € L?*(R) can be
expressed as

o o

FO= > (fagma)gnn= D (f&nn)gmn (4.6.9)

mn=—0o0 mn=—0o0

where {g ,} is called the dual frame given by g , = S; ' g ». Equation (4.6.9)
provides an answer for constructing f from its Gabor transform ( 5 gm,,,) for a given
window function g.

Finding the conditions on %y, g, and g under which the Gabor series of f
determines f or converges to it is known as the Gabor representation problem.
For an appropriate function g, the answer is positive provided that 0 < wo?p < 1.
If 0 < wptyp < 1, the reconstruction is stable and g can have a good time and
frequency localization. This is in contrast with the case when wo#y = 1, where the
construction is unstable and g cannot have a good time and frequency localization.
For the case when wofy > 1, the reconstruction of f is, in general, impossible no
matter how g is selected.

4.7 The Zak Transform and Time-Frequency
Signal Analysis

Historically, the Zak transform (ZT), known as the Weil-Brezin transform in
harmonic analysis, was introduced by Gelfand (1950) in his famous paper on eigen-
function expansions associated with Schrodinger operators with periodic potentials.
This transform was also known as the Gelfand mapping in the Russian mathematical
literature. However, Zak (1967, 1968) independently rediscovered it as the k — ¢
transform in solid state physics to study a quantum-mechanical representation of the
motion of electrons in the presence of an electric or magnetic field. Although the
Gelfand—Weil-Brezin—Zak transform seems to be a more appropriate name for this
transform, there is a general consensus among scientists to name it as the Zak
transform since Zak himself first recognized its deep significance and usefulness
in a more general setting. In recent years, the Zak transform has been widely used
in time—frequency signal analysis, in the coherent states representation in quantum
field theory, and also in mathematical analysis of Gabor systems. In particular, the
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Zak transform has also been useful for a study of the Gabor representation problem,
where this transform has successfully been utilized to investigate the orthogonality
and completeness of the Gabor frames in the critical case.

Definition 4.7.1 (The Zak Transform). The Zak transform, (2 f)(f,®), of a
function f € L?(R) is defined by the series

(Zef)(t.w)=a Y  flat+an)exp(-2 inw). (4.7.1)

n=—00
where a(> 0) is a fixed parameter and ¢ and o are real.

If f represents a signal, then its Zak transform can be treated as the joint time—
frequency representation of the signal f. It can also be considered as the discrete
Fourier transform of f in which an infinite set of samples in the form f(at + an)
isused forn = 0, £1,£2,.... Without loss of generality, we set a = 1 so that we
can write (2 f)(t, w) in the explicit form

(Zf)t.0)=Ft.w)= > f(t+n)exp(=2 inw). (4.7.2)

n=—0o0

This transform satisfies the periodic relation
(Zf)t.o+ ) =(Zf)t w), (4.7.3)

and the following quasiperiodic relation
(Z 1)+ 1) =exp2 i0)(Z [ o), 4.7.4)

and therefore the Zak transform 2 f is completely determined by its values on the
unit square S = [0, 1] x [0, 1].

It is easy to prove that the Zak transform of f can be expressed in terms of
the Zak transform of its Fourier transform f (v) = F {f(t)} defined by (3.3.19D).
More precisely,

(Zf)(t, ) = exp2 iot)(Z [ )(w,—1). (4.7.5)
To prove this result, we define a function g for fixed 7 and w by
g(x) =exp(=2 iwx) f(x +1).

Then, it follows that

g(v) = /oo g(x) exp(=2 ixv)dx

—0o0

:/OO flx+1)exp{—2 ix(v+w)}dx
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— o2 i(U+w)t/oo f(u) exp{—z i(U—i—m)u}du
= exp {2 i(U+u))t}f(U+<n).

We next use the Poisson summation formula (3.7.7) in the form
o0 o0
Yo gy = > 2@ n).
n=-—00 n=-—00
Or, equivalently,

Z f(t +n)exp(—2 iwn) =exp(2 iwt) Z exp[Z i(2n )t]f(u)+2 n)

n=—oo n=—oo

=exp(2 iwt) Z f(u)+m)exp(2 imt).

m=—0Q

This gives the desired result (4.7.5).
The following results can be easily verified:

(Z7 f)(w.1) = exp2 i0t)(Z f)(~t. ), (4.7.6)
(277" f)(w.1) =exp(2 i0t)(Z f)(~t, w). 4.7.7)

If gna(t) =exp(—2 imt)g(t —n), then
(Zgman)(w.1) =exp[ =2 i(mt + nw)][(Zg(w.1)). (4.7.8)

We next observe that L2(S) is the set of all square integrable complex-valued
functions F on the unit square S, that is,

1 1
/ / |F(t,w)|*dt dw < oo.
0 0

It is easy to check that L2(S) is a Hilbert space with the inner product

1 1
(F.G)= / / F(t,w)G(t,w)dt dw 4.7.9)
0 0

and the norm

1

1 1 2
||FH:[ /0 /0 ‘F(t,w)‘zdtdw} . (4.7.10)
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The set
o
{Mm,n =My 2 at.0) = exp[2 i(mt +nu))]} “.7.11)
mmn=—o0
forms an orthonormal basis of L2(S).
Example 4.7.1. 1f
1
(I)m,n;a(x) = % Tha M, m/a X[O,a](-x)v (4.7.12)
where a > 0, then
(Q’;c{)m,n;a)(t, ) = ey (1) ep(w), (4.7.13)
where ex (t) = exp(2 ikt).
We have
1 _
Gm.nsa(X) = Ja exp [2 im (x na)] Xo.a)(x —na)
1 . (2 imx) )
= —— €X X).
\/C_l p a Xna.(n+1)a]

Thus, we obtain

(%d)m,n;a)(t’w) = Z exp |:2 i (at + ak):| X[na,nu+a](at + ak)

k=—o00 a
o
= > en® e O K poknt1-n(0)
k=—00
= em(t) en(w).

4.8 Basic Properties of Zak Transforms

1. (Linearity). The Zak transform is linear, that is, for any two constants a, b,
[Z(af +bg)|(t.w) =a(Z f)(t,0) +b(ZLg)(t, ). (4.8.1)
2. (Translation). For any real a and integer m,
[Z(T )] 0) = (L) —a.w), (4.8.2)

[QP(T_mf)](Z, w) = exp(2 imw)(a@pf)(t, ), (4.8.3)
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3. (Modulation).
) b
[Z(My )]t 0) = e (2 f) (t, o - 2—) , 4.84)

[2(M, 4 /)](t, ) = exp(2 ib1)(Z f)(t, 0 —b). (4.8.5)
4. (Translation and Modulation).
P [My T, f(t,0) = exp[2 i(mt —new)|(Z )1, w). (4.8.6)
5. (Conjugation).

(Zf)t,w) = (Z 1)t —o). (4.8.7)
6. (Symmetry).

(a) If f is an even function, then

(fo)(t, w) = (.fépf)(—t, —w). (4.8.8)
(b) If f is an odd function, then

(fo)(t, w) = —(.fépf)(—t, —w). 4.8.9)

If f is areal and even function, it follows from (4.8.7) that

(pr)(t,w) = (.,@pf)(t,—w) = (fff)(—t,—w). (4.8.10)
7. (Inversion).Fort,®w € R,
1
1) :/0 (fff)(t,w)du), (4.8.11)
) 1
f(w):/ exp(—2 iowt)(Z f)(t, w)dt, (4.8.12)
0
1 A~
f(x) :/ exp(—2 ixt)(fff)(t,x)dt. (4.8.13)
0
8. (Dilation).
®
(QPle) (t.w) = (Z.f) (az, ;). (4.8.14)
a

9. (Product and Convolution of Zak Transforms).
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Results (4.7.3) and (4.7.4) show that the Zak transform is not periodic in the two
variables ¢ and w. The product of two Zak transforms is periodic in ¢ and w.

Proof. We consider the product

F(t,0) = (Zf)(t,0)(Zg)(t, ) (4.8.15)

and find from (4.7.4) that

(Zg)(t.w) = exp(—2 iw)(Zg)(t. w).

Therefore, it follows that

Fit+10)=(Zf)t.w)(Zg)(t o) = F(, ),

Fit,w+1)=(Zf)t, 0)(Zg)t.w) = F(t, ).

These show that F is periodic in ¢ and w. Consequently, it can be expanded in a
Fourier series on a unit square

o0

F(t,w) = Z Ccmnexp(2 imt) exp(2 inw), (4.8.16)

mn=—0oo

where

1 el
Cmn :/ / F(t,w)exp(—2 imt) exp(—2 inw)dtdw.
0 Jo

If we assume that the series involved are uniformly convergent, we can inter-
change the summation and integration to obtain

Cmp = /01/01 |: Z f(t +r)exp(—2 irw)_ |: Z gt + s)exp(2 isw):|

r=—00 §=—00

xexp{—2 i(mt +nw)}dido

1 00 00 7
:/ |:Z f(t+r):| |: Z g(t +s)|exp(—=2 imt)dt
0

r=-—00 s=—00

1
x/ exp{2 io(s—n—r)}do
0

r=—00

:/I[Z f(f+r)é_’(t+n+r):|exp(—2 imt)dt
0
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e r+1
= Z f(x)§(x+n)exp{—2 im(x—r)}dx

:/OO fx)g(x +n)exp(—2 imx) dx

= (fe0.e? g +m)

= (f’ M T—ng)‘

Consequently, (4.8.16) becomes

o0

(Zf) ) (Zg)t.w)= Y (fiMynTug)exp{2 i(mi+nw)}.

m,n=—00

(4.8.17)
This completes the proof.

Theorem 4.8.1. Suppose H is a function of two real variables t and s satisfying
the condition

H(t+1,s+1)=H(ts), steR, (4.8.18)
and
o0
h(t) = / H(t,s) f(s)ds, (4.8.19)
—o00
where the integral is absolutely and uniformly convergent.
Then,
1
(Zf)t. o) = / (Z f)(s,0) ®(t,5, 0) ds, (4.8.20)
0
where © is given by
o0
d(t,s5,0) = Z H(t +n,s) exp(—2 inw), 0<t,s, o<l (4.8.21)
n=—o0

Proof. Tt follows from the definition of the Zak transform of /4 (¢) that

(Zh)(t.0) = Y ht+kye? ™= " ¢ /oo H(t + k,s) f(s) ds

k=—0o0 k=—00

00 ) 00 m+1
= Z e 2 ko Z / H( +k,s)f(s)ds

k=—00 m=—o0 ¥ M
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o] o] 1
= Y ek 3" / H(t + k,s +m) f(s +m)ds
k=—o00 m=—o00 0

1 o0
=/ Z H(t +k,s +m) f(s +m) exp(—2 ikw) | ds,
0

_k,m=—oo _

which is, due to (4.8.17)

:/l Z H(t+k—m,s) f(s +m)exp(=2 ikw) |ds
0

_k,m=—oo

:/l Z H(t +n,s) f(s +m) exp{—2 i(m+n)w}:| ds
0

| mn=—00

1
=/ (Z f)(s, 0) D(t, 5, w)ds. (4.8.22)
0

This completes the proof.
In particular, if H(t,s) = H(t — ),

O(t,5,0) = Z H(t —s+n) exp(—=2 inw) = (ZH)( —s,0).

n=—00
Consequently, Theorem 4.8.1 leads to the following convolution theorem.

Theorem 4.8.2 (Convolution Theorem). If
o0
b0y = [ HE=976)ds = x )0
then (4.8.20) reduces to the form

1
(Zh)(t, w) = / (ZH)t—5)(Zf)(s.w)ds = Z(H % f)(t,w). (4.823)
0

Example 4.8.1. If H(t) = Y a; 8(t — k). then
k=—00
Z(H * f)(t,0) = A(@)(Zf)t, o), (4.8.24)

where

A@)= Y arexp(=2 ikw).

k=—o00
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Clearly,
ZHx* f)t,w)=Z -/oo H(t —s)f(s)ds} (t,w)

=2y ak/_ZS(t—s—k)f(s)ds:| (t, )

| k=—00

2| Y afa —k)} (t, )

| k=—00

= Z ax Z ft+n—k)exp(—2 inw)

k=—00 n=—0oo

Z a Z f+m)exp{—2 io(m+k)}

k=—00 m=—00

= A(oo)(ﬁff)(t, ).

Theorem 4.8.3. The Zak transformation is a unitary mapping from L*(R) to
L?(S).

Proof. It follows from the definition of the inner product (4.7.9) in L2(S) that

(Q’},f,ﬁig)=a/1/1|: Z flat +an)e™? i"“’i||: Z glat + am)é? i’”‘”}dtdu)
o Jo

n=—oQ m=—0o0

= a/l [ Z flat +an)g(at +an)i| dt
0

n=—00

Sl (n+1)a
3 f £ T dx

n=—o0 v "4

[ rwzwax =) (45.25)
-0
In particular, if f = g, we obtain from (4.8.25) that

BV (4.8.26)

This means that the Zak transform is an isometry from L?(R) to L2(S).
Further, Example 4.7.1 shows that {d)m,nu(x)}oo oo is an orthonormal basis

of L?(R). Hence, the Zak transform is a one-to-one mapping of an orthonormal
basis of L?(R) onto an orthonormal basis of L?(S). This proves the theorem.

mun=—
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4.9 Applications of Zak Transforms
and the Balian-Low Theorem

It has already been mentioned that the Zak transform plays a major role in the
study of the Gabor representation problem in signal analysis and the coherent states
representation in quantum physics. Furthermore, the Zak transform is particularly
useful in proving the Balian—Low theorem (BLT) which is also a fundamental result
in time—frequency analysis. For a detailed investigation of these problems, we need
the following results.

If to, wo > 0, g € L2(R), and

Emn(t) = &maonty(t) = M2 mey Tary §(t) = exp(2 imwot) g(t — nio) (4.9.1)

is a Gabor system (or Weyl-Heisenberg system), then it is easy to verify that, if
woly = 1,

Z[gma (O]t 0) = exp{2 i(mt —nw)}(Z,8) (. o)
= en(t) e—p(0)(Z,8) (1, ), (4.9.2)
where ex (t) = exp(2 ikt).

Furthermore, if {gm,n (t)} is a frame in L?(R), then the frame operator S is
given by

(o]

Sf="Y_ (f&nn)gmn: (4.9.3)
mn=—0oo
where f € L?(R).
Theorem 4.9.1. If 1y, wy > 0, g € L*(R), and {gm.»}

then its dual frame {S_lgm,n}oo
More precisely,

0o . . 2
oo IS a frame in L~ (R),

man=—oo 18 also generated by one single function,

S gmn = g1 (4.9.4)

where g* = S71g.
Proof. Forany f € L*(R) and fixed integer k, we have

(o]

S(Tkl‘of)(t) = Z (kaOf’ gm’”>gm’”(t)

mn=—0o0

[e.]

= Z exp(—2 imwokto)(f,gm,n—k)gm,n(f)

mn=—0o0
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o0

= > exp(=2 imwok1o)(f. gmn)gmati (1)
mn=—oo
o0
= Y (fgma)exp{2 imwo(t —kto)}g(t —nty — kto)
mn=—oo
o0
= Z (f gm,,,)Tkto[exp(Z imwot) g(t —nto)]
mn=—0oo
= Tio (S(). (4.9.5)
in which Ty, exp(2 imwot) = exp(2 imwot) is used. This shows that S

commutes with Ty, .
Similarly, S commutes with modulation operator M, i, and hence

S(My kg Tsty f) = M2 kay Tty (SS)- (4.9.6)
Consequently,
STH M2 koo Tty f) = M2 koyTorg £ 4.9.7)
where f* = §~! f. Putting f = g in (4.9.7) gives
S (gma) = ST (M2 mayTno8) = Mo minTureS™'8 = Mo may T8 = gy

This completes the proof.

Remark. The elements of the dual frame { g;’n} are generated by a single function
g%, analogously to g,,,. To compute the dual system, it is necessary to find the
dual atom g* = S~'g and compute all other elements gm.n of the dual frame by
modulation and translation.

Some important properties of the Gabor system {gm,n} for wgty = 1 are given
by the following:

Theorem 4.9.2. If ty, wg > 0 such that ooty = 1 and g € L*(R), then the
following statements are equivalent:

(i) There exist two constants A and B such that
2
0<A< ‘(fé’}og)(t,w)‘ < B < o0.

(ii) The Gabor system {gm,n(t) = exp(2 i mwot)g(t — nto)}
in L>(R) with the frame bounds A and B.

(iii) The system {gm,n (t)}oo is an exact frame in L*(R) with the frame bounds
Aand B.

o0 .
is a frame
mn=—o0

mn=—0o0
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If any of the above statements are satisfied, then there exists a unique
representation of any f € L?(R) in the form

SO="Y" anagna®= > (fgn,)emal®), (4.9.8)
where
(2 f) (1. o)
Amn = fgmn / / _m(t) en(w)dt dw. 4.9.9)
l‘o g (Z

Proof. We first show that (i) implies (ii). Since Theorem 4.8.3 asserts that the Zak
transformation is a umtary mapping from L2(R) onto L2(S), it suffices to prove
that {(Z7, gma)(t, w)}m o is aframe in L*(S). Let h € L*(S). Since (Z, g)

is bounded, A (fé’}o g) e L?(S), and hence, it follows from (4.9.2) that

(. Zi ) = (. en(t) e (@) 2, g) = (1 (22, 8).en () en(@)).  (49.10)

Since {€mw, €—nr, } is an orthonormal basis of L2(S), the Parseval relation implies
that

i \(h. 25, g’ = Hh%HZ. 4.9.11)

mn=—

Combining this equality with the inequalities
Al < [0 (29| < Bl

leads to the result

o

Alal* = 32 |t Zogmall” = Bl

mn=—0o0

This shows that (2], gm.x)(t, ®) is a frame in L*(S).

We next show that (i) implies (i). If (ii) holds, then {e,(r) e—, (u))( 0 g)}isa
frame in L?(S) with frame bounds 4 and B. Hence, for any 1 € L?(S), we must
have

o0

Alp> = Y |(hen(®) e—a(@)(Z, 8)|” < B 1| (4.9.12)

m,n=—00
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It follows from (4.9.10) and (4.9.11) that

oo

> e en@@ o = 3 |18 ent o)

mn=—0o0 mn=—0oo

- Hh@”z. (4.9.13)

Combining (4.9.12) and (4.9.13) together gives
— 2
Al < [n Z o) < 81l

which implies (i).

Next, we prove that (ii) implies (iii). Suppose (ii) is satisfied. Then
{€mao (1) e—niy(0)(Z, g)} represents a frame in L?(S). But (i) implies (25, g)
is bounded. Hence the mapping F : L?(S) — L?(S) defined by

F(h) = F(Z,g). h e LX(S) (4.9.14)

is a topological isomorphism that maps the orthonormal basis {e, e_,} onto
{(5}’}0 gm,n)(t, u))} . Thus, {(2’}0 gm,,,)(t, u))} is a Riesz basis on L*(S) and hence
SO is {gm,n (¢, 03)} in L2(R). In view of the fact that {gm,n (¢, 03)} is a Riesz basis in
L*(R), {gm,,, (z, u))} is an exact frame for L*(R).

Finally, that (iii) implies (ii) is obvious. To prove (4.9.9), we first prove that

2

Zy(Sf) = (Z /) |(Z ) (4.9.15)

where S is the frame operator associated with the frame {gm,n (x)}. Since
{en(t) e—_,(w)} is an orthonormal basis for L2(S), it follows from (4.8.24) and
(4.9.2) that

"%O(Sf) = Z ( i (fs gm,n)gm,n)

mn=—0oo

[e.]

= (zOg) Z (f’ gm,n)em(t) e—n(w)

mn=—0o0

o0

=(208) D (Zuf Zigma)en(t) en(w), by (4.8.25)

mn=—0o0

o0

=(Z08) D (Zif Zigem(t) e—n(w)) enlt) ey (w)

mn=—0o0
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o0

= (Z8) Y (%S Zug en(®) eon(©)) ent) e-n()

mn=—0o0

= (2N (Z0)

This proves the result (4.9.15).
If we replace f by S™! f in (4.9.15), we obtain

%,
Z,(S7'f) = M (4.9.16)
(Z.9)|
which is, by putting f = g,
1
% g" = gt =S5 (4.9.17)

(fﬁog) ’
In view of (4.8.25), (4.9.2), (4.9.17), and Theorem 4.9.1, it turns out that
Amn = (ﬁ S_lgm.,n) = (ﬁ g;,n) = (zofv ff}og;,n>

= (ff;ofs en(t) e—y ((”)-%og*>

em(t)e_n<w)> _ <ff;0f
(Zy g)

= <ff;0ﬁ sem(t) e—n(o\))>

which gives (4.9.9).

The Gabor representation problem can be stated as follows. Given g € L*(R)
and two real numbers #y and w, different from zero, is it possible to represent any
f € L%(R) in the series form

f(t) = Z Am.n gm,n(t)v (4.9.18)

mn=—0oo

where g, , is the Gabor system defined by (4.9.1) and a4, , are constants? Under
what conditions is this representation unique?

Evidently, the above representation is possible, if the Gabor system { gm,n} forms
an orthonormal basis or a frame in L?(R), and the uniqueness of the representation
depends on whether the Gabor functions form a complete set in L?(R). The
Zak transform is used to study this representation problem with two positive real
numbers ¢y and wg with wofy = 1. We also use the result (4.9.2).
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Theorem 4.9.3. If ty and wy are two positive real numbers with woty = 1 and
g € L?(R), then

(i) the Gabor system {gm,n} is an orthonormal basis of L*>(R) if and only if
|(Q’}0 g)‘ = 1 almost everywhere.

(ii) the Gabor system {gm,,,} is complete in L>(R) if and only if ‘(Q’}O g)| >0
almost everywhere.

Proof. (i) It follows from (4.8.25), (4.9.2), and Theorem 4.8.3 that

1 1
(gk,ﬁa gm,n) - (‘%ng,Ea fftogm,n) = / / €k (t) €—¢ ((D) ém (t) é—n ((D) |(%0 g)|2 dt dw.
0 0

This shows that the set {Q’}O gm,n} is an orthonormal basis in Lz(R) if and only if
\(f»’f}o g)| = 1 almost everywhere.
An argument similar to above gives

(fs gm,n) = (%ofv %ogm,n> = (%ofv em(t) ey ((”)%og>
= (‘%Of %v em(t) e—p (w)> (4.9.19)

This implies that {g,,} is complete in L*(R) if and only if Z{,g¢ # 0 almost
everywhere.

The answer to the Gabor representation problem can be summarized as follows.

The properties of the Gabor system {gm,n} are related to the density of the
rectangular lattice A = {n to, mwo} = nZxmZ in the time—frequency plane. Small
values of 7, wg correspond to a high density for A, whereas large values of #y, wg
correspond to low density. Thus, it is natural to classify Gabor systems according to
the following sampling density of the time—frequency lattice.

Case (i) (Oversampling). A Gabor system {gm,,,} can be a frame where
0 < woty < 1. In this case, frames exist with excellent time—frequency localization.

Case (ii) (Critical Sampling). This critical case corresponds to wofy = 1, and
there is a frame, and orthonormal basis exist, but g has bad localization properties
either in time or in the frequency domain. More precisely, this case leads to
the celebrated result in the time—frequency analysis which is known as the BLT,
originally and independently stated by Balian (1981) and Low (1985) as follows.

Theorem 4.9.4 (Balian-Low). If a Gabor system {gn..} defined by (4.6.1) with
o

woty = 1 forms an orthonormal basis in L*>(R), then either / itg(t)izdt or
—0o0

o
/ |w§ (w) |2dw must diverge, or equivalently,
—0o0

/_Oo ltg ()| d /_OO |wg(w)|dw = oo (4.9.20)
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The condition woty = 1 associated with the density A = 1 can be interpreted
as a Nyquist phenomenon for the Gabor system. In this critical situation, the time—
frequency shift operators that are used to build a coherent frame commute with each
other.

For an elegant proof of the BLT using the Zak transform, we refer the reader to
Daubechies (1992) or Benedetto and Frazier (1994).

Case (iii) (Undersampling). In this case, wofy > 1. There is no frame of the form
{gm .} for any choice of the Gabor window function g. In fact, {g,, ,} is incomplete
in the sense that there exist f € L2(R) such that (ﬁ gm,n) = 0 for all m,n but
f#0.

These three cases can be represented by three distinct regions in the 7y — wg plane,
where the critical curve woty = 1 represents a hyperbola which separates the region
wpto < 1, where an exact frame exists with an excellent time—frequency localization
from the region wo#y > 1 with no frames.

There exist many examples for g so that { gm,n} is a frame or even an
orthonormal basis for L?(R). We give two examples of functions for which the
family {Minw, Thiog} represents an orthonormal basis.

Example 4.9.1 (Characteristic Function). This function g(t) = xjo1(f) is
defined by
I, 0<tr<1
) = .
g(0) % 0, otherwise

Clearly,

o 2
/ |w§(w)| dw = oo.

Example 4.9.2 (Sine Function). In this case,

in ¢
g(t) =sinc(t) = s1nt .

o0
Evidently,/ \t g(t)\zdt = 00.
(o 9)

Thus, these examples lead to systems with bad localization properties in either
time or frequency. Even if the orthogonality requirement is dropped, we cannot
construct Riesz bases with good time—frequency localization properties for the
critical case wofy = 1. This constitutes the contents of the BLT which describes
one of the fundamental features of Gabor wavelet analysis.
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4.10 Exercises

2
X . . .
—) is a Gaussian window, show that

1
—mexp(—4a
(a)/_ felt,w)dt = f(w), weR

1. Ifg(x) =

Give a significance of result 1(a).
(b) &(v) = exp(—av?).

2. Suppose g;.»(t) = g(t —t) exp(iwt) where g is a Gaussian window defined in
Exercise 1, show that

(@) &ro(v) =exp[—i(v—w)—a(v—ow)?]
O Jolt.0) = 5 Bl = 5 ¢ F3(t.0).

3. For the Gaussian window defined in Exercise 1, introduce

o’ = ﬁ {/OO ‘ngz(‘t)d‘t} 5.
2 —00

Show that the radius of the window function is 1/a and the width of the window
is twice the radius.

1 43 1 3
4. Ife; = (1,0),e; = <_§’ %_) ,e3 = <_§’_§) represent a set of vectors,

show that, for any vector x = (x, x2),

3

> licenll =3 Il

n=1

2
Hence, show that {e;} is a tight frame and e;; = 3 en-

5. If e, = (1,0),e, = (0,1),e3 = (—1,0),e4 = (0,—1) form a set of vectors,
show that, for any vector xx = (x1, X»),

> el =2 ]

and
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1 3 3
6. Ife; = (1,0),e; = (—5 %) and e; = (—— —5) represent a set of vectors

and x = [x, x2]”, show that

and

n=1

7. Show that the set of elements {e, } in a Hilbert space C? forms a tight frame.

8. If g is a continuous function on R and if there exists an € > 0 such that |g(x)| <
Al + |x|)_l_€, show that

gma(x) =exp(2 imx)g(x —n)

cannot be a frame for L2(R).

9. Show that the marginals of the Zak transform are given by
1
[ @newdo=ro.
0

/1 exp(=2 io0)(Zf)(t, 0)dt = f(w).
0

10. If f(¢) is time-limited to —a < ¢ < q and band-limited to —b < w < b, where

0<a,b< > then the following results hold:

1
(Zf)t.w)= f(v), |t =< 3 ©ER,

(Zf)(t,0) = exp2 iwD) f(0), |o|< % T1eR.

Show that the second of the above results gives the Shannon’s sampling formula

o0 . b _
fo=Y —sz(n ﬁ’t) D ier

n=—0oo
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I1. If g = Xp1], @ma(x) = exp(2 imx)g(x — n), where m,n € Z is an
orthonormal basis of L?(IR), show that the first integral

/_ t\g(r)|2dt

in the BLT is finite, whereas the second integral

/00 ® ‘gA(w)|2dw = o0.
—0o0

sin x

12. If g(x) = sinc(x) = , &ma(x) = exp(2 imx)g(x — n) is an
orthonormal basis of L?(IR), show that the first integral in the BLT

/oo t\g(t)|2dt = 00,

and the second integral in the BLT is finite.



Chapter 5
The Wigner-Ville Distribution
and Time-Frequency Signal Analysis

As long as a branch of knowledge offers an abundance of
problems, it is full of vitality.

David Hilbert

Besides linear time-frequency representations like the short-time
Fourier transform, the Gabor transform, and the wavelet
transform, an important contribution to this development has
undoubtedly been the Wigner distribution (WD) which holds an
exceptional position within the field of bilinear/quadratic
time-frequency representations.

W. Mecklenbriuker and F. Hlawatsch

5.1 Introduction

Although time—frequency analysis of signals had its origin almost 50 years ago,
there has been major development of the time—frequency distributions approach
in the last two decades. The basic idea of the method is to develop a joint
function of time and frequency, known as a time—frequency distribution, that
can describe the energy density of a signal simultaneously in both time and
frequency. In principle, the time—frequency distributions characterize phenomena
in a two-dimensional time—frequency plane. Basically, there are two kinds of time—
frequency representations. One is the quadratic method covering the time—frequency
distributions, and the other is the linear approach including the Gabor transform, the
Zak transform, and the wavelet transform analysis. So, the time—frequency signal
analysis deals with time—frequency representations of signals and with problems
related to their definition, estimation, and interpretation, and it has evolved into
a widely recognized applied discipline of signal processing. From theoretical and
application points of view, the Wigner—Ville distribution (WVD) or the Wigner—
Ville transform (WVT) plays a major role in the time—frequency signal analysis
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for the following reasons. First, it provides a high-resolution representation in both
time and frequency for non-stationary signals. Second, it has the special properties
of satisfying the time and frequency marginals in terms of the instantaneous power
in time and energy spectrum in frequency and the total energy of the signal in
the time and frequency plane. Third, the first conditional moment of frequency
at a given time is the derivative of the phase of the signal at that time. Fourth,
the theory of the WVD was reformulated in the context of sonar and radar signal
analysis, and a new function, the so-called Woodward ambiguity function, was
introduced by Woodward in 1953 for the mathematical analysis of sonar and
radar systems. In analogy with the Heisenberg uncertainty principle in quantum
mechanics, Woodward introduced the radar uncertainty principle which says that
the range and velocity of a target cannot be measured precisely and simultaneously.

This chapter is devoted to the WVD (or the WVT) and the ambiguity function
and their basic structures and properties. Special attention is given to fairly exact
mathematical treatment with examples and applications to the time—frequency
signal analysis in general and the radar signal analysis in particular. The relationship
between the WVD and the ambiguity function is discussed. A comparison of
some of the major properties of these transformations is made. In the end, recent
generalizations of the WVD are briefly discussed.

5.2 Definition and Examples of the WVD

Definition 5.2.1 (The Cross WVD). If f.g € L*(R), the cross WVD of f and g
is defined by

oo

Wielt, ) = /_oo 7+ %)g(z - %) e g, (5.2.1)

Introducing a change of variable 7 + % = Xx gives an equivalent definition of
Wye(t, ®) in the form
o0
Wire(t, ) = 2exp(2i wt) / f(x) g2t — x) exp(—2iwx)dx (5.2.2)
—00
= 2exp(iwt) fu (21, 2), (5.2.3)
where h(x) = g(—x).

It follows from definition (5.2.1) that the cross WVD is the Fourier transform of
the function

=1+ 3)e(-3)
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with respect to 1. Hence, Wyg(f,w) is a complex-valued function in the
time—frequency plane. In other words,

Wye(t,0) = F {h (1)} = hy(). (5.2.4)

On the other hand, the Fourier transform of the cross WVD with respect to w is
given by

o0

Wig(t.0) = / e W (1. w) dow

—00

=/ e_””"dw/ hi(v)e """ dr

o0 o0 .
:/ h,(t)dt/ e 1ot g

=2 /00 hi(t)8(t+o0)dt=2 hi(—0)

o\ _ o
=2 f(1=3)2(t+3). (525)
Or, equivalently,
. o\ _ o
Wiglt.—0) =2 f(r+ 5) 7(i- 5) . (5.2.6)
Definition 5.2.2 (The Auto WVD). If f = g in (5.2.1)-(5.2.3), then
Wy r(t, w) = Wr(t, o) is called the auto WVD and defined by
OO T r T —ioT
Wit o) = /_oof (Z + E) f (Z — §> e dt (5.2.7)
Sy -
= Zexp(2iwt)/ f(x) f(2t — x) exp(—2iwx) dx (5.2.8)
—00
= 2exp(2iot) f3(2t,2w), (5.2.9)

where h(x) = f(—x).

Obviously, results (5.2.4)—(5.2.6) hold for the auto WVD.
Furthermore, the WVD of a real signal is an even function of the frequency. More
precisely,

oo

We(t, w) = /_oof(t + %)f(t—%) e %1, (1=-x)

[ ) e

—0o0

= Wi(t.—w). (5.2.10)
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Often both the cross WVD and the auto WVD are usually referred to simply as
the WVD or WVT.
The formula (5.2.5) can also be written as

%/_Ze‘i“°Wﬁg(f’w)d@=f(t_%)g(t"_%)’

which is, by putting, 7 + g =t and?t — g =1,

1 *© : Hh+1n
2—/ eTitimo W, ( 5 ,w) do = f () g (). (5.2.11)
—0o0

Putting t; = O and t, = ¢ in (5.2.11) gives a representation of f(¢) in terms of
W, in the form
o0

fozo =5 [

—00

. t
e Wy, (E, w) do, (5.2.12)

provided g(0) # 0. This is the inversion formula for the WVD.
In particular, if we substitute t; = #, = ¢ in (5.2.11), we find the inversion
formula

zi /_oo Wi (tw)do = f(1)Z(1). (5.2.13)

and when f = g, we obtain the marginal integral over all time

1 o
2—/ Wy (1, 0)do = | f@)|. (5.2.14)

This implies that the integral of the WVD over the frequency at any time ¢ is equal
to the time energy density (instantaneous power) of a signal f.
Integrating (5.2.13) with respect to time gives

1 oo roo 00
2 /_oo /_oo Wig (t.0) dtdo = /_oo fOg@)dr = (f.g). (5.2.15)

Similarly, integrating (5.2.14) with respect to time ¢ yields the total energy over
the whole time—frequency plane (¢, w),

1 oo oo oo
2—/ / Wi (1, 0) dtdu)z/ |f)dr = | ] (5.2.16)
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We can also define the WVD of the Fourier spectrum f and g by

W;a(w,1) = %/_Zf(w+ %)E(w—%) e dt
= %/_: f(x)e iox dx/_i?(w—%) exp[it(t—%)] dt
(5.2.17)

=2exp(2iwt) /00 f(x)e 2% g - 1 /00 g(uyexpliu(x —20)] du,

T P
(o3

= 2exp(2iwt) /oo f(x) g2t — x) exp(—2iwx) dx
=Wy (t, o). (5.2.18)

Thus, (5.2.17) can be used as another equivalent definition of the WVD due
to symmetry between time and frequency, as expressed by the important relation
(5.2.5).

It also follows from (5.2.17) and (5.2.18) that the Fourier transform of W, (¢, w)
with respect to 7 is

g _ 7 Nl T
/_ooe Wie (1) dt = f (w+ Z)g(w 2). (5.2.19)
Putting T = 01in (5.2.19) gives
o0 A p—
/ Wie (t,0)dt = f (0) g (w). (5.2.20)

When f = g, this leads to the marginal integral over all time ¢ giving the signal
frequency energy density, that is, the energy density spectrum (or spectral energy
density),

/_: Wy (t, o) dt = ‘f(w))z. (5.2.21)

Integrating (5.2.20) with respect to frequency o yields

/_/_Wf;g(t,w)dtdw:/_ f (@) (do=(f35) (5.2.22)
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Thus, we obtain the total energy of the signal f over the whole (¢, w) plane as

[ wewddo= [~ do= |7 622

Thus, we obtain a fundamental theorem from the above analysis in the form:

Theorem 5.2.1 (Time and Frequency Energy Densities, and the Total Energy).

If f € L*(R), then the WVD satisfies the time and frequency marginal integrals
(5.2.14) and (5.2.21) respectively, and the integral of the WVD over the entire time—
frequency plane yields the total energy of the signal, that is,

1 %) e’} 1 oS} A 2 0o
[ [ wneoddo = [ |f@fdo= [
oo /o - - (5.2.24)

Physically, the WVD can be interpreted as the time—frequency energy distribution.

Finally, it may be noted from (5.2.1) that

Wﬁg(t,O)Z/ f(f+§)§(t—§)d122/ f(x)g (2t —x)dx.
- - (5.2.25)
W00 =2 [ fwgendr=2[ fwiend=2 w00,

- o (5.2.26)

In particular, if f = g and f(—x) = f(x), then (5.2.26) becomes
W;(0,0) =2 / - |f)|*dx =2 W} ,(0.0). (5.2.27)

Moreover, it follows from (5.2.17) that
1 RN T = T

W} 40.0) = 2_/_oof (w+ E)g(m— E)azx

— 52 [ rwEen e
= 2i W (0, ). (5.2.28)

Application of Schwarz’s inequality (see Debnath and Mikusinski 1999) gives
2 © T T 2
el <[ [ |7 (+ )l (=)o
) ™ |2 0o | _ ™ |2
5/_00‘f(t+§)‘ dt/_oo‘f(t—z)‘ dt
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:4/_ \f(x)|2dx/_ | f o) [Pdx
=4[ G115 = 41715

Clearly, for all  and w,

)Wf(z,w))z <2|f|2= 2/_ | £(0) [ dx = W;(0,0).

Example 5.2.1. Find the WVT of a Gaussian signal

_1 12
= 2 4 E—
fx)=( o) exp( 202).
We have, by definition (5.2.7),

Wet, o) = /_Zf(t + %)f(l—%) exp(—iwt)dt

1 t2 o] ) .CZ
= 0\/_exp (—;) /_ooexp [— (lwt—}— 152

= 2exp [— (;—22 + wzoz)} = f@[’ \f(w)\z.

In particular, when ¢ = 1, then (5.2.32) becomes

Wr(t, o) =2exp[ — (1> + 0?) ].

293

(5.2.29)

(5.2.30)

(5.2.31)

(5.2.32)

(5.2.33)

This shows that the WVD of a Gaussian signal is also Gaussian in both time ¢ and

frequency w.

Example 5.2.2. Find the WVT of a harmonic signal (or the so-called plane wave)

f(t) = Aexp(iwot),

(5.2.34)

where the constant frequency wy is the derivative of the phase of the signal, that is,

d
Wy = E(wol).

We have, by definition,

© T

f (t + %) f(t — —) exp(—iwt)dt

Wit.0) = 44 | :

—0o0

—0o0

1 [ esp s (14 3) = (= )} e iciomra

= |A)? /OO exp [it(wg — w)]dt =2 [A]*8(w — wo).

—0o0

(5.2.35)
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Physically, this means that only one frequency w = o manifests itself, that is,
what is expected as the local frequency of a plane wave.

Example 5.2.3. Find the WVD of a quadratic-phase signal (or chirp)

f(t) = Aexp (% iaﬂ) , (5.2.36)

where the instantaneous frequency of a time-varying signal is defined as the deriva-

d (1
tive of the phase of that signal, that is, w ¢ (f) = P arg f(t) = 7 (5 atz) = at

which is a linear function in time ¢.

We have
Wit o) = A/I/_oo f (l + %) f(l — %) exp (—iwt)dt
= |A? /_: exp [% % (Z + %)2 - (l - %)Zﬂexp(—iwt)dt
=|A /_oo exp[it(at —w)|dt =2 |A]*8(w — at). (5.2.37)

The quadratic-phase signal f(¢) represents, at least for small time ¢ (that is, in
the paraxial approximation), a spherical wave whose curvature is equal to a. The
WYVD of this signal shows that, at any time #, only one frequency @ = at manifests
itself. This corresponds to a ray picture of a spherical wave.

Example 5.2.4. Find the WVD of a point source at # = t; described by the impulse
signal

S(@) =38t —10). (5.2.38)
Its WVD is given by
b T 1 .
Wf(t’(")):/ S(I_Z‘O_i__)g([_to__) e—l(;\)‘[d_c
: o0 2 2
o0 .
= 2/ §(x+1—1)8(x —1t+19) e ¥ dx
—00
= 2e M) §[2(1 — 1) ]
= ¢ T8 (1 — 1g). (5.2.39)
At a particular time ¢ = t; all frequencies are present, and there is no contribution

at other points. This is exactly what is expected as the local frequency spectrum of
a point source.
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Example 5.2.5. 1f f(t) = g(t) exp (% tz), show that

We(t, w) = We(t, o —at) = We(t, w) * 8(w — at), (5.2.40)
where * is the convolution with respect to frequency .

We have, by definition,
We(t, o) = /-oo f (t + E) f(t - E) exp (—iot)dt
S —o0 2/ 2

O O I e O R e I At
= [+ 3)e (-3 ewl-inw-anlas
= We(t,m —at).

Example 5.2.6. If f(t) = A1e'®" and g(t) = Ae'®?, represent two plane waves,
then

Wie(t,w) =2 AyAzexpi(w) — wo)t]8 (w - (5.2.41)

W] + wy
7 .
We have, by definition,

oo

Wie(t, w) = A4, /_oo exp [iwl (t + %) ) (t — %)] et

o0
= A, 4, ei(“"_mZ)’/ exp [—it (u) _ot wz):| dt
- 2

=2 Alffzexp [i((x)l — (x)z)l] 8 ((1) — al —; (1)2) .
Example 5.2.7. If f(t) = ¥|-(t), then
2\ .
We(t,w) = (—) sin {2(»(T - |t|)}. (5.2.42)
: )

The solution is left as an exercise.
Example 5.2.8. Show that the WVD of a smooth-phase signal
f(t) =exp [iy(t)] (5.2.43)

is given by

Wit.o)~2 8 (u) - ‘;—‘;) , (5.2.44)

where y(t) is a smooth function of time.
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oo

It follows from the definition (5.2.1) that
. T . T —iwT
Wf(t,oo)=/_ooexp[zy(t+§)—ly(t—§)]e dt
o . dv)}
= exp|—it|lw——])|dx
/_oo p[ ( dr
dy
=28 -——).
(“’ dr)

d
This shows that, at a particular time ¢, only one frequency ® = d_Z manifests
itself.

Example 5.2.9. Find the WVDs for Gaussian signals

()
_1 12
f)y={( o%) ‘exp (iwot - F) .o > 0; (5.2.45)
(b)
1
f@) = ( 0% 4exp [i wot — 2%20 - lo)2i| . (5.2.46)

(a) It follows readily from the definition that
£2
Wr(t, w) = 2exp [— { — + o (w— wo)z} i| . (5.2.47)
o]
(b) Itis easy to check that
1
We(t, w) = 2exp [— % — (1 —1)* + 0’ (0 — wo)zﬂ ) (5.2.48)
: o]

This shows that the WVD of a Gaussian signal is also Gaussian in both time ¢
and frequency w with center at (¢, o).

Example 5.2.10. For a Gaussian beam f(¢), which is a Gaussian signal multiplied
by a quadratic-phase signal, that is,

-1 1. 2
f@)y=( o) ‘exp (5 iat® — ;) : (5.2.49)

The WVD of the Gaussian beam is given by
12
We(t, ®) = 2exp [— { — + 0’ (0— aZ)ZH ) (5.2.50)
‘ o

This also follows from the definition (5.2.7) or from Example 5.2.5.
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5.3 Basic Properties of the WVD

(a) (Nonlinearity). The WVD is nonlinear. This means that the WVD of the sum of
two signals is not simply the sum of the WVDs of the signals. It readily follows
from the definition that

Wit pgi+e(t,®) = Wp o (1, 0) + Wy o, (1, @) + W, g, (1, 0) + W, o, (1, @).
(5.3.1)

In particular,

War g (t, ) = al> Wi (t, 0) +ab Wy (t, ) +ab Wy r(t, 0) +|b|> W, (t, w),
(5.3.2)
where a and b are two constants, and

Wiie(t,o) = Wr(t,w) + W,(t, ) + 2Re Wyg(t, w). (5.3.3)
To prove (5.3.2), we write

o0

Was b (1 0) = /_oo {af (r+ %) +bg (1 + %)]
7= 3) s 3) |

= |a|> Wy(t,w) + ab Wy (t, ) + ab Wy ¢ (t, w) + |b]> W, (t, o).
(b)

(Translation). Wr, 11,6t ) = Wie(t —a, ). 5.34)

In particular,
Wr, r(t,0) = Wr(t —a, w). (5.3.5)

This means that the time shift of signals corresponds to a time shift of the WVD.
Proof. We have, by definition,

[e.]

WTa.ﬁTag(t’O‘)) :/

—00

f (t —a+ %)g(z —a—%)e""”‘dt
= Wf;g(l —a,w).

()

(Complex Conjugation). W ot ) = Wy (2, ®). (5.3.6)
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From this hermiticity property of the WVD, it follows that the auto WVD is a
real-valued even function for complex signals and continuous in both variables
t and w, which can be represented graphically as a surface over the time—
frequency plane.

We have, by definition,

W et w) = /_00 f_<t + %)g (t — %) et

o
oo X 3 —imx _
:/_oog(t+5)f<t_§) dx gf(tOJ)
(d) (Modulation).
Wiy Mg (. @) = Wi (t, 0 —b), (5.3.7)
ibt b
Wiy 1.6 (1, ) = e Wy, (t, o — 5) , (5.3.8)
—ibt b
Wim,e(t, o) =e Wy (t, (O 5) . (5.3.9)
In particular,
W, r(t,0) = Wr(t, w —b). (5.3.10)

We have, by definition,

Wi, fmye (1, @) = /_oo exp {ib (t + %)} S (t + %)
exp{~ib (1= 3)} & (t = 3) e7""dx
:/_ ( ) (—%) [—it(w—b)]dt
= Wyg(t, = D).

Similarly, we obtain (5.3.8) and (5.3.9).
(e) (Translation and Modulation).

Wiy, tMy Tog (8, @) = Wromy rrompg (8, @) = Weg(t —a, 0 —b).  (5.3.11)

This follows from the joint application of (5.3.4) and (5.3.7).

In particular,

Wayr, £ (t, 0) = Wrop, r(t, 0) = Wye(t —a, o —b). (5.3.12)
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Proof. Setu(t) = MyT, f = e'” f(t —a), v(t) = MT,g = ¢!” g(t —a). Thus,

W, (t, 0) = /00 u (Z + %) v (t — %) e dy

—0o0

o0
— ib(1+%) _ I\ b= 5 _ T —iwr
/_ooe 2f(t a+2)e 2g(t a 2)e dt
= Wﬁg(t —a,w—0>b).

This completes the proof.

(f) The WVD of the convolution of two signals is the convolution in time of
their corresponding WVDs, More precisely, for any two signals f and g, the
following result holds:

o
Wirsg(t, w) = / Wi(u, w) We(t —u, w)du, (5.3.13)
—0o0

where (f * g)(¢) is the convolution of f and g.
Proof. We have, by definition,

Wrecttor = [~ (o) (14 ) o (1~ 5) e a

:/_Z[/_Zf(x)g(t—i—%—x)dx}
[/_Z Fe(i--y) dy} oty

which is, by putting, x :u—i-g, y =M—§, t=p+gq,

; q\ - q
/ [/ / f(”—a)g(f—”z)g(f—”‘z)df’d‘f}
xexp[—i(p + q)w]du
o0
= / Wiu, ) We(t —u, ®) du.
This completes the proof.

(g) (General Modulation). The WVD of the modulated signal f(z)m(¢) is the
convolution of Wy (¢, w) and W, (¢, ») in the frequency variable, that is,

1 o0
Win(t, o) = 7 / Wit u) Wy(t, 0 —u)du. (5.3.14)
—00
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Proof. We have

Wiatr= [ (43 m (e 3) 7 (- 3)m (- 5) e
=21+
[ 3)m(5) s
S [l

)=
|

e—i(u)—u)y dy:|

1 o0
N /_oo Wie(t,u) Wy (t, 0 —u) du.

(h) (The Pseudo WVD (PWVD).) We consider a family of signals f; and g,
defined by

SO =f@Owrr—1). &) =g®)we(t—1),
where w s and wg are called the window functions.

For a fixed ¢, we can evaluate the WVD of f; and g;, so that, by (5.3.14),

1 o
Wi oo (T, @) = 2—/ Wie(t,u) Wi, w, (t — 1, 0 —u) du, (5.3.15)
—00

where ¢ represents the position of the window as it moves along the time axis.
Obviously, (5.3.15) is a family of the WVD, and a particular member of this family
is obtained by putting T = ¢ so that

1 o0
Wi oo(t,o) = 2—/ Wie(t,u) Ww, w, (0,0 —u) du. (5.3.16)
—00
We next define a PWVD of f and g by (5.3.16) and write

PWye(t, ) = [Wﬁ,gt(va)] : (5.3.17)

=t

This is similar to the WVD, but, in general, is not a WVD. Even though the notation
does not indicate explicit dependence on the window functions, the PWVD of two
functions actually depends on the window functions. It follows from (5.3.16) that

1
PWﬁg(l‘, (x)) = 2— Wf;g(l‘, (x)) * WWf,Wg(l‘, (x)), (5.3.18)
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where the convolution is taken with respect to the frequency variable .
In particular,

1 1 o
PWe(t,w) = > Wit ) x Wy, (I, w) = 2—/_ W(t,u) Wi, (¢, w — u) du.
(5.3.19)

This can be interpreted that the PWVD of a signal is a smoothed version of the
original WVD with respect to the frequency variable.

1 t
(i) (Dilation).If D f(t) = —— (-) ,c # 0, then
Vel ™ \¢

t
WD,f;DL.g(Zv (D) = Wf;g (Z, C(x)) . (5.3.20)
In particular,

t
Wp, r(t,0) = Wy (;,cw) . (5.3.21)

Proof. We have, by definition,

1 [ t T\_(t =t it
Wb, fp.g(t, ) = |7/ f (Z + Z)g (Z - Z) e dt
—00
e t X X :
— - N L _ 2 —l(cm)xd
/_oof(c-+2)g(c 2)e *
t
=Wl -, .
(fre)

(G) (Multiplication). If M f(¢t) = tf(¢), then
2t Wrg(t, w) = Warre(t, 0) + Wipe(t, o). (5.3.22)

Proof. We have, by definition,

oo

2t Wyg(t, ®) =/_ (t+%+t—§)f(t+§)§(t—%) et dr

o0

(k) (Differentiation).

Wpre(t, o) + Wyipe(t, o) = 2io0 Wy, (t, o). (5.3.23)
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In particular,

WDf;f(l‘, ) + Wf,Df(lv w) =2iw Wf(l, ). (5.3.24)

Proof. We apply the Fourier transform of the left-hand side of (5.3.24) with respect
to ¢ to obtain

{Wng(t ®) {Wng(t "3)}

j+
1o 3) 7o+ (0 3)
(o) (o i(o-3). wsas

=2iwf (w—i— %)E(m—%)
=2i0F {We(t,0)} = F{2io Wi(t, w)}.

Application of the inverse Fourier transform completes the proof of (5.3.23).

(D (Time and Frequency Moments).

zL/oo /oo 1" Wig(t, 0)dtdo = /oo " f(t) g(r)dt, (5.3.25)

/ / o" Wyel(t, w)dtdw—/ ) f(u))g(w)dw (5.3.26)

In particular,

i/ / " Wf(t,w)dtdw:/ " f())dt, (5.3.27)
2 —00 J—00 i —0oo

o0 o0 o0
/ / w”Wf(t,oo)dtdw=/ "

Proof. We have, by definition,

L/oo /oo 1" Wee(t,0)dt do

2 Jooo oo

zi/_w/_oot”dtdw/_oof(ﬂrz)g( —;)ei“‘dt
/_oot"dz/_wf(z+§)g‘(z—§)8(r)dt

- [ £ (1) (1) dr.

2
dw. (5.3.28)




5.3 Basic Properties of the WVD 303

Similarly, from (5.2.20), we obtain

/_:/_:‘*’n Wie(t,w)dtdw = /_:Ojnf(o\))§(o\))dw‘

Theorem 5.3.1 (Moyal’s Formulas). If fi, g1, /> and g» belong to L>*(R), then
the following Moyal’s formulas hold:

1 oo o0 _ R
2_/ / Wit @) Wt 0)dtdo = (fl, fz)(gl, gz), (5.3.29)

(5.3.30)

1 0 o0
[ [ Wit aido = L Plel

—/ / Wit,0)We(t,w)dtdo = (f,g)f.g) = [(£e). (533D

Proof. It is clear from (5.2.6) that, for fixed ¢, the Fourier transform of Wr, (¢, w)
with respect to w is

Wigto)=2 f(r- %) g+ %) . (5.3.32)

Thus, it follows from the Parseval formula for the Fourier transform that
1 © _
2_ / Wfl .81 (1, ®) szsgz (1, w)dw
—00

(2 )2/ Wfl «(t.0) szgz(t o)do

[e.]

:/_ fi (t—i)gl (z+ ) A (Z_E) 2 (t+2)d0, by (5.3.32).

o

Integrating both sides with respect to # over R gives

1o [ _
2_/ / Wihoat, o) Wg o (t o) dodt

N I Y G G A R R

o o
which is, putting t = ¢ — > and ¢+ 5=



304 5 The Wigner—Ville Distribution and Time—Frequency Signal Analysis

= /_ £i1(x) fo(x) dx /_ g1(»)&2(y) dy

= (/1. Aler. &)

This completes the proof of (5.3.29).
In particular, if /1 = f, = f andg) = g2 = g, then (5.3.29) reduces to (5.3.30).

However, we give another proof of (5.3.31) as follows:
We use the definition (5.2.1) to replace W, (z, w) and W, (¢, w) on the left-hand

side of (5.3.31) so that
1 o o0 _
—/ / Wet,w) We(t,w)dt dw
2 —00 J—00

e I O O BRI G A G I )

xexp|i(s —r)o]|drdsdtdw

which is, by replacing the w-integral with the delta function,

:/_:/_:/_Zf<t+%)f(z—%)g(z—}—%)g(t—%) 8(s —r) dr ds dt
[ DDl Dl F)ara

which is, due to change of variables ¢ + g =xandt — 3 =y,

_ /_ £(0) 3x) dx /_ F0)EW) dy

T 2
=(felf el =I{fell -
Theorem 5.3.2 (Convolution with Respect to Both Variables). If two signals f
and g belong to L*(R), then

(Wf * Wg)(a,b) = /_00 /_OO Wi, w)Wela—t,b—w)dtdw

=2 [(T.Mph, f))> =2 |Asm(a,b)|, (5.3.33)

where h(x) = g(—x) and Ay, is the cross ambiguity function defined in Sect. 5.5

by (5.5.1). If g is even, then

Wy We)(a,b) =2 |[(TuMpg, )’ =2 |Ase(a.b)[*. (5.3.34)
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Proof. Tt readily follows from the convolution theorem of the Fourier transform that
o 1 o R N .
/ Wi(t,w) We(a —t,b —w)dw = 7 / Wi(t,0) We(a —t,0)e'” do
—0o0 —0o0

which is, by (5.3.32),

=2 /OOf(t—%)f(t+%)g(a—t—%)g‘(u—t—%)exp(ibo)dc

—00

which is, due to the change of variables ¢ + % = X,

=4 / F)f (2t —x)g(a—x)g(a+x—2t)exp[2ib(x —1)] dx.
—0o0
Integrating this result with respect to ¢ yields
00 o0 0o _
/ / Wi(t, w) We(a—t,b—o) dw dt =4 / f(x)g(a—x)exp(ibx)dx
o0
x/ fQ@t—x)g(a+x-—2t)
exp(—2ibt) dt
which is, by substitution of 2¢ — x = u,
0o )
=2 / f(x)g(a—x)exp(ibx)dx / f (w) g (@ —u) exp(—ibu) du.

This leads to (5.3.33) and hence to (5.3.34).

5.4 The WVD of Analytic Signals and Band-Limited Signals

Gabor first used the Hilbert transform to define a complex signal f(¢) of time ¢ by
f(0) = u@) +iv(r) = u(t) +i(Hu) (). (5.4.1)
where v(¢) is the Hilbert transform of u(¢) defined by

* u(x)dx

(Hu)(1) = l/_oo oD (5.4.2)
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and the integral is treated as the Cauchy principle value. This signal f(¢) is called
an analytic signal or the analytic part of the signal u(t). The imaginary part of f(¢)
is called the quadrature function of u(t). In electrical systems, the output, v() =
(H u)(t), for a given input u(¢) is known as the quadrature filter. Obviously, the
quadrature filter of sin w? is cos w¢ and that of X, ,(t) is ~'4n \(b —t)(a— t)_1|
(see Debnath 1995).

For an analytic signal in the form

() =a@)exp{ib@)},

the instantaneous frequency (IF), f;(¢) is defined by

d
fi(t)y = ZLE 0(2). (5.4.3)

The complex spectrum f (w) of f(¢) can be expressed in the form
f(w) = a(w) ¥, (5.4.4)

where a(t) and a(w) are positive functions.
Another quantity of interest in the time—frequency analysis of a signal is the
group delay (GD) of a signal defined by

T (w) = —zij—w O(w). (54.5)
In many applications, the group delay is used to characterize the time—frequency
law of a signal. Therefore, it is natural to relate the two quantities IF and GD.
In order to achieve this, the Fourier transform of the signal is used. For signals
of the form f(z) = a(¢)exp{i0(¢)} with a large BT product, where B is a finite
bandwidth and T is a finite duration of a signal, and a monotonic instantaneous
frequency law, the Fourier transform can be approximated by the stationary phase
approximation method (see Myint and Debnath 1987) as follows:

Fal(r) eie(’)} = /

o0

a(t)exp [i{6(1) — wt}]dt

2 : ]
~ { W} a(o) exp |:l {6(0) —wo £ Z}:| (5.4.6)

where o is a stationary point given by the roots of the equation

d
00 =o.
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For signals for large BT, the IF and GD are approximately inverses of each other,
that is,

fit) =

. 54.7
(@) (5.4.7)

Ville utilized the same definition (5.2.7) for an analytic signal f(¢) and then
introduced the instantaneous frequency f; (¢) by

fi(t) = /_00 oW(t,w)dow + /_00 W(t,w)dw. (5.4.8)

Before we compute the WVD of analytic signals, it should be noted that the
analytic signal is almost universally used in the time—frequency signal analysis.
Using the analytic form eliminates cross-terms between positive and negative
frequency components of the signal. However, for certain low-frequency signals,
there may be undue smoothing of the low-frequency time components of the time—
frequency representation due to the frequency domain window implied by using the
analytic signals. In that case, the original real signal should be more appropriate.

The Fourier spectrum of the analytic signal f is given by

A 2u(w), ® >0
Ff(@) =1a0), ©=0 (5.4.9)
0, o <0

For band limited signal f, f(u)) = 0 for |®| > wp. Then, it follows from (5.2.18)
that

Wye(t,w) =0 for|w| > wpandall z.
This result is also true for an analytic signal f and hence,
Wrt,w)=0 forw<0

The relation between W, (f, w) and W,(t, ®) can be determined by using (5.2.18)
and (5.3.6). It follows from definition (5.2.17) that
1 ® 2 T R T itt
W);(oo,t)_z—/ f(w+§)f(w—§)e dt

—00

which is, by (5.4.9),

2 20 _ )
=—/ ﬁ(w+%)ﬁ(w—%)e’”dt, ® > 0.
2w
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It is also clear from the definition (5.2.17) that the Fourier transform of W 7 (w,1)

with respect to ¢ is f ((» + %) ]E (w - %) In view of this result, (5.2.18) takes the

form

2 20 00 )
Wi, 1) = —/ e’”dt/ e "™ Wi(w, x) dx

—2w —00
2 00 20 )
= —/ W;t(w,x)dx/ Ul
—00 —2w
4 (oo in?2
= —/ Wi(w,1 —£) Smswg dg, ©> 0. (5.4.10)

Similarly, we obtain

sin 2w§

§

Thus, (5.4.11) shows that the WVD of an analytic signal f exists only for positive
frequencies, and it has no contributions for any negative frequency.

Finally, we calculate the WVD of band-limited functions. If f(¢) and g(¢) are
signals band limited to [—wo, wo], that is, their Fourier transforms f (w) and g(w)
vanish for |w| > w¢. Consequently, their WVD is also band-limited in w, that is,

Wit ) = 4 H(w)/oo Wit — &, o) dE. (5.4.11)

Wj;’ﬁ(oo, t)=0 for || > wo. (5.4.12)
Using (5.2.18), it turns out that
Wie(t,0) =0 for |w| > wg and all ¢. (5.4.13)

Under these conditions, the Shannon sampling formula (3.8.19) asserts that

sin wo(t —t,)

fO =Y fl)

oo wo(t —t,)
and
. > sin wo(t — t)
g(=t) = m;oo g(—tm) m,

s
whent; = —,s = norm.
o

0
We multiply the above two series together and use the fact that the sequence

sin (t—n)) ™
=

n=—oo
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is orthonormal in (—00, 00) so that Wy, (0, 0) in (5.2.25) can be expressed as
o0
Wie0.0) =2 [ 700 g(-xdx
—00

2 ad _
_ (w—o) PIRGLEE! (5.4.14)

This confirms that the WVD of two band-limited signals can be expressed in terms

n
of their samples taken at 7, = —.
o

5.5 Definitions and Examples of the Woodward
Ambiguity Functions

During the 1950s, the theory of the WVD was reformulated in the context of sonar
and radar signal analysis, where the echo from a transmitted signal is used to find the
position and velocity of a target. A new function, the so-called ambiguity function,
was introduced by Woodward (1953) for the mathematical analysis of sonar and
radar signals.

Definition 5.5.1 (The Cross Ambiguity Function). The cross ambiguity function
of two signals f, g € L*(R) is denoted by A /4(7, ») and defined by

Aypg(t, w) = /oo f (r + %) g (r - %) e %t (5.5.1)

In radar technology, the ambiguity function is interpreted as a time—frequency
correlation of signals f and g.

However, if f,g € L'(R), then A 7,(, w) exists for all z, » € R. For a fixed o,
we set

t t
F(t,t)=f (‘C + E) g (‘E — E) exp (—i wT).
Then, it follows from the translation invariant property of the Lebesgue measure that
| _lageolar s [~ [ |FeoPasi < | £ el <o
—0o0 —00 J—00

On the other hand, the existence of (5.5.1) follows from the Schwarz inequality.

t
Putting t + 5= x, definition (5.5.1) is equivalent to
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Afe(t, ®) =exp (% iwt) /_00 f(x)§(x —t)e " dx (5.5.2)

= exp (% iwt) f;;,(t, ). (5.5.3)

Result (5.5.3) shows that the cross ambiguity function is related to the Gabor
transform of the function f with respect to the window function g.

In the context of radar technology, the cross ambiguity function of two radar
signals reflected by a moving target plays an important role, where ¢ denotes the
time delay and w is the Doppler frequency shift.

The definition (5.5.1) also reveals that A 4 (¢, w) is the Fourier transform of the

quCtiOH
k T) = —t g - —Z 5 5 4

with respect to the variable t, that is,
Apg(t, ®) = ki(w). (5.5.5)

It also follows from the definition (5.5.1) that

A4e(1.0) =/_Zf(T+%)§(t—%)dt, (r_% =x)
= /_ S(x+1)g(x)dx = Ryg(1), (5.5.6)

where R 1, () is called the cross-correlation function of f and g. In particular, if
f =g, then Rs(t) = As(t,0) is the autocorrelation function of f defined already
by (3.4.9).

Definition 5.5.2 (Autoambiguity Function). If f = g in (5.5.1), then
Arr(t,w) = Ay(t, w) is called the autoambiguity function of f defined by

Ar(t,w) = /00 f (‘E + %) Vi (‘C — %) e %, (5.5.7)
= L h 3 —lexg 5.5.8
—exp(zlwt)/_oof(x)f(x—t)e X. (5.5.8)

Both cross ambiguity and autoambiguity functions are simply referred to as
ambiguity functions.
It is easy to see that the cross WVD is closely related to the cross ambiguity

t
function. Making a change of variable t 4 5= x in (5.2.1) gives
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Wi (t, ) = 2exp(2iwt) /00 f(x) g2t — x) exp(—2iwx) dx
= 2Af;h (2t,2w), (5.5.9)
where h(x) = g(—x).

On the other hand, the Fourier transform of Ay, (f, w) with respect to w is
given by

o0
Ayg(t.0) :/ e A s, (1 0)dw

=/ e '’ doo/ ki(v)e"'Td

= / ki(v)d / eI to) g
—0Q —0o0

=2 k/(—o)

r\ _ t
_y y (_0 N E) g (_0 - E) _ (5.5.10)

Or, equivalently,

t

~ t _
Afe(t,—0) =2 f (0 + E) g (o — 5) : (5.5.11)

The double Fourier transform of A ¢ (¢, w) with respect to ¢ and w gives
N o0 o0
A(t,0) :/ / exp[ —i(tt + wo)]|A(r,w) di do
—00 J—00

00 . 0 .
=/ e_’”dt/ e A(t, w)dw

OO J 3 J —itt
=2 /_oof(—0+§)f(—0—§)e dt
=2 Wy(—0.7). (5.5.12)

Or, equivalently,

2L /00 /°° exp[ —i(t1— wo)|A(r,0)dtdo = Wy(w,1). (5.5.13)
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Similarly, the double Fourier transform of W (¢, w) with respect to ¢ and w is
N o0 o0
Wf(t,0)=/ / exp[ —i(tt + wo) |Ws(t,w)dt dw
—00 J —00

=2 /_oof(t—g)f(t+%)e‘”’dt

o0

=2 A;(—0, 7). (5.5.14)

Or, equivalently,

2L /oo /oo exp [ —i(tt— wG)]Wf(t, o)dtdo = Ayr(w,t). (5.5.15)

t t
Substituting 57 0 =t and — (5 + 0) = 1, in (5.5.10) gives the inversion

formula
1 [ 1, _
2—/ exp El(tl +h)w | Asg(th —h,0)do = f(t) g(t2). (5.5.16)
—00
In particular, if f; = 1, = ¢, we find
1 [ .
2—/ €A (0,0)dw = f(1r) g(1t), (5.5.17)
—00
and if f = g, then
I [ 2
7 A0, 0)dw = | f(D)". (5.5.18)
—0o0

Integrating (5.5.17) and (5.5.18) with respect to ¢ yields the following results:

1 [ [ NS
2—/_00 /_Oo e A;,(0,0)dwdt = /_Oo f()g@)dt = (1. g). (5.5.19)

5L[;m[wdmAfm&dem:i[wyﬂﬁfdt:Hfm. (5.5.20)

Putting #; = ¢ and t, = 01in (5.5.16) gives f(¢) in terms of A 1, (¢, w) in the form

o

g0 =5 |

—0o0

1
exp (Eiwt) Arq(t, w)dw, (5.5.21)

provided g(0) # 0. Result (5.5.21) is also called an inversion formula.
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We can also define the ambiguity function of the Fourier spectrum f and g by

* 2 I\ = f —iwt
Af’g(t’w):/_ocf(t—i_z)g(t_z)e dt
* < t\ _; *° . t
:/ g(t——)e ”‘”dt/ f(x)exp%—z (‘C+—
. 2 . 2
o0 itx oo _ t f
= / f(x) e_de/ g (‘C — E) et g
—00 —00

(5.5.22)

) o} ax

= exp (—% iwt) /oo f(x)§(x + w)e ¥ dx, (t _% _ u)

= Af;g(—(x), Z).
Or, equivalently,
2 W\ = w itt
Apet,0) = Ap (0, —1) = f(t+—)g(t——)e dr.

In particular,

oo

Aﬁg(o,(ﬂ):/ f('t—%)g:(‘t-l-%)d‘t.

—00

It follows from (5.5.24) that

ZL/_:Af;g(t,w)ei"dt:f(t—;)g:'(t—i-;).

Putting T — % =t and T+ % = 1, in (5.5.26) gives

%/_OOAﬁg(t,ll — 1) exp [%i(ll +lz)t:| dt = f(ll)g:(lz).

In particular, if ; = t, = x, we obtain

1 [ ; 2o
2_/_00 Asg(t,0)e™dt = f(x)g(x),

1 . © A
> /_ Ape(t,0)e™dt dx = /_oof(x)g'(x) dx = (f.8).

[.1.
LI ooAf;g(z,o)e"’”dtabc: wf(x)f(X)dxz £l
I B 1,

(5.5.23)

(5.5.24)

(5.5.25)

(5.5.26)

(5.5.27)

(5.5.28)

(5.5.29)

(5.5.30)
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Example 5.5.1. For a Gaussian signal, f(#) = A exp (—atz) ,a > 0; the ambiguity

function is
at> o?
A = |A]>,/— -+ =—1]1. 5.31
s =14 e |- (G + 15| 5.531)

It follows from definition (5.5.7) that

_ oo N\ 2 N
Af(t,w) = AA/ exp | —a (‘C + —) —a (t_ _) e 9% J ¢
‘ —c0 2 2

1 o )
= |A|?exp (—5 atz) / exp(—2at?) e '“%dt

—00
= |A|2\/;exp [— (g + (;—;):| .
Example 5.5.2. For a quadratic-phase signal, f(z) = Aexp (% i atz) , the ambi-
guity function is
At ) = A2 8(w —a). (5.5.32)

We have, by definition (5.5.7),

2 [ L.
Ar(t,w) = |A| / exp Eza
—00

2 2
t t .
('E + 5) — (‘C — 5) § :| e ''dt
2 o0
= |A‘ / exp[—it(w —at)]dt
—00
2
= |A‘ -2 8(w—at).
Example 5.5.3. If f(t) = Y (~r,1)(t) is the characteristic function, then
2\ . 1
Af(l, W) = 5 sin|{ o7 — E |t|w X[_quzT](t). (5.5.33)

It follows from definition (5.5.8) that

Ar(t,w) = exp (% iwt) /oo F(x) flx —1)e % dx

T
= exp (% iwt) / f(x —1)e % dx.
-T
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Ift > 0, then

1. r »
Ay(t, w) = exp (5 lwl) /T X(~T+e.740(x) e " dx

1 r )
exp (E iwt) X[0.277(t) / e "Ydx
~T+t

(%) sin (wT — %t) Xp0.277(1)-

1 T+t
Ar(t,®) = exp (5 iwt) X[—2T.,0](f)/ exp (—iwx) dx
-T

2\ . wf
= (—) sin ((DT + —) X270 (F)-
® 2

Ay(t.0) = (2)sin (o7 = S 1) xioaran (0,

Similarly, if # < 0, then

Thus,

Example 5.5.4. For a harmonic signal (or a plane wave) f(t) = Aexp(iat), the
ambiguity function is

Ar(t,w) =2 |A]*8(w —a). (5.5.34)
We have, by definition.
Ar(t, o) = A/I/ exp [ —it(w— a)] dt
—0o0
= |A]?2 8(w—a).

Example 5.5.5. 1If f(t) = g(t) exp (% tz), then

Ap(t, w) = Aq(t, w —at). (5.5.35)

We have, by definition,

Ar(t,w) = /_oog(T+%)g‘(t—%)exp[—it(w—at)]dt

= Aq(t, w —at).
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5.6 Basic Properties of Ambiguity Functions

(a) (Nonlinearity). For any four signals fi, f», g1 and g5,

Af1+fzqg1+g2(t’ w) = Afl,gl (1, 0) + Aflqu(t’ w) + Afz,gl (1, 0) + Afzqu(ts ®).
(5.6.1)

In particular,

Aupipg(t,0) = |aPAp(t,w) +ab Ape(t,w) +ab Ag f(t, ) + |b* A4 (t, w),
(5.6.2)

where a and b are two constants and
Apiet,w) = Ap(t,w) + Ag(t, w) +2Re A, (f, w). (5.6.3)

To prove (5.6.2), we write

b t t
Aaptig(t, 0) = / [af (t + —) +bg (t + —)}
oo 2 2
i 7 A Y] =iony
afl > gl 7 e T
=|aPAs(t,0) +ab Asg(t,0) +ab Ag s (t,0) + |b|* A, (1, ®).
(b) (Translation).
Az, et 0) = e_i‘”“Af;g(t, ). (5.6.4)
In particular,
Az, p(t, o) = e " A s (t, w). (5.6.5)

(c) (Complex Conjugation).

Afg(t,w) = Ag f(—1,—w). (5.6.6)

(d) (Modulation).
Aty fiyg (1 w) = e A gy (1, @), (5.6.7)
Am, f(t, ®) = exp (% ibt) Apg(t, ®), (5.6.8)

1
Afpm,o(t, w) = exp (_E ibt) Ape(t, o). (5.6.9)
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In particular,

Amyr(t.0) = e Af (1, ). (5.6.10)

In general, a more general modulation property holds:

o0

1
Apr(t, w) = 2—/ Ap(t,u) An(t, w —u)du, (5.6.11)
—o00
where M f(¢t) = f(t)m(t) which represents a signal modified by m(z).

1 t
(e) (Dilation). If D f(t) = — f (—) , ¢ # 0, then
Vel = \¢

t
Ap, fp.g(t,w) = Ayg (;,wc) . (5.6.12)

In particular,

t
Ap s(t.w) = Ay (;,wc). (5.6.13)

Proof. We have, by definition,

L T ry_(t t i
Ap. fp.¢(1, ®) = m/ f (Z + Z)g (Z — Z)e. iot g
—00
:/oof )C+L g X—L e—i(mc)xdx
—00 2¢c 2¢
t
= Af;g (Z,(DC).

(f) (Translation and Modulation).

1
Ar, My o (t, ®) = AmyT, £ (t, ®) = €Xp [i (5 bt+ab—aw):| A, q(t, 0=b).
(5.6.14)

AT,y 7,0, (. ©) = Ay, 1,70 (1, ) = exp[i (bt — wa) |A 4 (1, ).
(5.6.15)
(g) (Convolution).

oo

As(u, 0) Ag(t —u, ) du. (5.6.16)

Afsg(t,m) = /
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(h) (Differentiation).
Ap;g(t,0) + App, (1. 0) =i Az (t, w). (5.6.17)
In particular,
Ap, r(t,0)+ Asp,(t,®) =iw Ay(t, ®). (5.6.18)

(i) (Coordinate Transformations). Let SL(2,R) represent the group of all 2 x 2
real matrices S of determinant one acting on R by

(au+bv)
Su = ,
cu+dv

where S = (ab), ad —bc =1andu = (u)
cd v

We define the matrices P, O, and R by

- v O
ro=(37") em=(10) rm={,1
Y

1
In particular, when b = ¢ = 0, thena = 7= yand S = R(y).
We then calculate

s [(Row)'| = 4, (V”’ ?)

:exp(%iuv)/_:f(x)f(x—yu)exp(—igx) dx
— l > ; _ —ivy g4
=y exp| iu /_oof(vy)f(vy yu)e y

=7y exp (% iuv) / g(x)g(x —u)e " dx

—0o0

=7y As(u,v), (5.6.19)

where the superscript T stands for the transpose of the matrix and g(x) = f(yx).
In general,

Ay [(Su)T] = Ay (au+bv,cu+dv).
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T
Af [(P(a)u) ] =As (u—av,v).

Ay [(Q(ﬁ)u)T] = Ay (u,v—Bu).
We evaluate (5.6.21) by using (5.5.23) so that

A (u—ov,v) = AJ;(—v,u—ocv)
= exp |:l§ (avz_uv)i| / F(w) f:(w—}—v) exp [—iw(u—av) ]| dw.

2

We define g(w) = ¢ f (w) exp
Ag (—v,u) = A}; (—v,u — av). Thus, we find by (5.5.23) that

with |c¢| = 1. It is easy to check that

A (u—av,v) = Ag(u,v), (5.6.20)

where g is the inverse Fourier transform of g.

1
If we define g(¢) = exp (E i Btz) f (1), it follows from direct calculation that
Ap (u,v—Bu) = Ag(u,v). (5.6.21)

Theorem 5.6.1 (Parseval’s Formulas). If f1, g1, f>, and g» belong to L*(R), then

1 o0 oo B
2_/ / Aflsgl (t, OJ) Afz,gz(t, (,0) dtdw = (fh fZ)(gl,gz). (5622)
In particular,
1 00 oo
[ stoao = 1Ll 625
zi/oo /oo Ap(t, ) A1, 0)dt do = |(f.8)]. (5.6.24)

Proof. We know from (5.5.10) that the Fourier transform of A4 14 (¢, w) with respect
to w is

Aggto)=2 f (—o + %) g (—0 — 5) . (5.6.25)

It follows from the Parseval relation (3.4.34) for the Fourier transform that

1 [ _
2_/ Apg(t,w)Ap o (1, 0) dw
—00
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1 oo A
= 2 )2 / Afg(t.0) Ap g (t.0)do
—o0

Lo i el

Integrating both sides with respect to ¢ gives

1 0o oo _
2—/ / Afg(t,w) Afg(t,0)dt dw
—o0 J—00
_/00/00f_+£f_+£___£ —o-L)ara
—_00_00.102.202g102g202 Y
S .t t
which is, by putting 3~ 0 = xand — (5 + cH—) =y,

oo

g1(») &0 dy = (fi. fo)(g1. &2).

- /_Z fio) ooy dx [

Hence, (5.6.23) and (5.6.24) follow readily from (5.6.22). Combining (5.3.30)
and (5.6.22) gives the following result:

1 0o oo 2 1 o oo 5 ] )
2 /_oo /_oo Wy dido = 5 f_oo f_oo 4700 drdo = | 7]5 = 4%0.0).
(5.6.26)

This equation is known as the radar uncertainty principle for the following reason.
Since, for any ¢ and w,

o 2
Anseof < | [ ‘f (++3)2 (e é)‘ ]

< /_ ()2 / 1)y

=/ lsl
= A7(0,0) A,(0,0) by definition (5.5.1).

In particular,
|45 (t. )" < 42(0.0). (5.6.27)

This implies that the ambiguity surface can nowhere be higher than at the origin. In

other words, the graph of the function |A 7(t, o) \2 cannot be concentrated arbitrarily
close to the origin for any function f.
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In the context of radar signal analysis, Woodward (1953) pointed out the physical
significance of the radar uncertainty principle in the sense that there are limits
on resolution performance in range and velocity (or range rate) of a radar signal.
In analogy with the Heisenberg uncertainty principle in quantum mechanics, the
radar uncertainty principle states that resolution can be high either in range or
velocity but not in both parameters at the same time. In other words, the range and
velocity of a target cannot be determined exactly and simultaneously.

In order to establish an important inequality involving the second partial
derivatives of A s at the origin, for any signal f(¢), the quantities

/_Oolef(x)\zdx, o = ;zf_zyz\f(y)\zdy,

2

1
(02
ClfIP

N
(o]

(5.6.28a,b)

are used as a measure of the signal duration in both the time and frequency domains.
From the Heisenberg inequality (3.9.3), we have

1
0’02 > T (5.6.29)
It follows from (5.5.1) and (5.5.27) that
82Af(0, 0) * 2 82Af(0,0) RPN 2
_T:/_mx if(x)| dx, T w2 =/_ooy ‘f(J’)‘ dy.
(5.6.30a, b)
It turns out from (5.6.25)—(5.6.27) that
1
3’4£(0,0) 9*4,(0,0)7> _ 1 2
- . - > — . 5.6.31
e il (5:63D)

We close this section by including the relationship between the Zak transform
and the ambiguity function. We use the product formula for the Zak transform in
the form

o0
Zr(t, u))?g(t,w) = Z Am.n €XP [2 i(mt + nw)], 0<t,w<l,
mn=—oo
(5.6.32)
where

amn = (fi My nT-,8) /_oo f(t) gt + n)exp(—=2 imt). (5.6.33)
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It is convenient to define A 7, (¢, ®) = A 7o(—,2 ) so that we can write

/f.f:g(l,w) - /_°° ¥ (t — %) Z (t + %) o2 0T e

o0
=e ' / f(x)g(x+1)e? "“Vdx.
—00
Consequently,
o = (=1)"" Ao (. m), (5.6.34)

and it turns out from (5.6.32) that

\fff'(fsw)\z: Z (—l)m"/ff(n,m)exp[Z i(mt +nw)],
1Zto)f = Y ()M Aq prexp[—2 i(pt +qo)].

pgq=—00

Integrating the product of these last two series over the unit square (0 < ¢ <
1,0 <w < 1) gives

oo

Z /if(n,m)zg(n,m).

mn=—0o0

1 1
/ / |25t )|’ Ze(t, )| dt do =
0 Jo

On the other hand, result (5.6.32) combined with the Parseval formula for the
Fourier series leads to the result

1 prl 0 00 -
/0/0|zf(z,w)|2|£;(t,w)|2dtdw= 3o = Y ‘/If,g(n,m)‘z.

mn=—0o0 mn=—0oo

Evidently, the following interesting relation is obtained from the above result

/T/m,mﬁg(n,m)=/01/01

o0

i ‘j‘f;g(n,m)r: Z

mn=—oo mn=—oo

X/ (1, 0) %t )| dt do.

(5.6.35)

5.7 The Ambiguity Transformation and Its Properties

The cross ambiguity function A ¢ (¢, w) is closely related to a bilinear transforma-
tion Z : L>(R) x L*(R) — L?(R?) defined by

B(f.g) = Bre(t,o) = /_ f(x)g(x —t)e " *dx (5.7.1)
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1
= exp (_5 iwt) Arg(t, w), (5.7.2)

where f,g € L*(R). The function %, (t, ) is often called the cross ambiguity
function and has the following properties:

(a)

Bro(t,w) = e B (~w,1). (5.7.3)
(b) (Complex Conjugation).

Bro(t,0) = e Bpro(—t,—w). (5.7.4)

(c) (Inversion Formula).
1 [ )
5 / Bra(x —t,w)e'™dow = f(x)g(t). (5.7.5)

—00

Proof. To prove (5.7.3), we use (5.7.2) and (5.5.23) so that
1
PBrq(t,®) = exp (_E iwt) Arq(t, w)
1
= exp(—iwt) exp (5 iwt) Af,gr(‘”’ —t) by (5.5.23)

1
= exp(—iwt) exp (E iwt) A};’g,(—u), 1)
= exp(—iwt) %f',g(_‘”v 1).

Taking the complex conjugate of (5.7.2) gives
B re(t, ®) = exp (% iwt) Ape(t, w)
= exp (% iu)t) Ag r(—t,—w) by (5.5.6)
=" By 1(—t,—w), by (5.7.2).
To prove the inversion formula, we use (5.7.1) which implies that %, (t, ») is

the Fourier transform of f(x) g(x — ¢) for fixed ¢. Clearly, the inverse Fourier
transform gives

Zi/—oo %f;g(t,w)eiwx do = f(x)g(x —1).
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Replacing ¢ by x — ¢ gives (5.7.5).
(d) (Parseval’s Formula). If fi, f>, g1 and g, belong to L?(RR), then

oo [ _
2—/_ /_ Bpot,0) B g (t.w)ydido = (f1, £)g1. &) (5.7.6)

This formula follows from the Parseval formula (5.6.22).

We nextput g = f in (5.7.5) with interchanging x and ¢ and set

H(x,t) = 2L /_00 Bt —x,w) e do = f() f(x). (5.7.7)

We consider the mapping U : % (t, w) — H(t, x) defined by (5.7.7). It is easy
to check that

] = V2 | = V2 |71 578)
where the norm is defined in the usual way by
|7 | = / / |H(z, x)|*d1 dx. (5.7.9)

Furthermore, it is also easy to verify that H satisfies the following functional
equation

H(,t) >0, (5.7.10)
H(t,x) = H(x,1), (5.7.11)
H(t,y)H(y,x) = H(y,y) H(, x). (5.7.12)

It is clear from definition (5.7.1) that the cross ambiguity transformation % is a
bilinear transformation from L?(R) x L*(R) — L?(RR?) given by

B(f.8) = Byt w).

We state the following theorems due to Auslander and Tolimieri (1985) without
proof.

Theorem 5.7.1. The cross ambiguity transformation 9 is continuous, and the
image of % spans a dense subspace of L*(R?).

Theorem 5.7.2. The set of ambiguity functions B (t, ) for all f € L*(R) is a
closed subset of L*(R?).

Theorem 5.7.3. %/, is a continuous bounded function which attains its maximum
(f, g) at the origin.
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Theorem 5.7.4. If f and g belong to L*(R), By and B, are their corresponding
ambiguity functions, then %8 y + B, is an ambiguity function if and only if f = ag,
where a is a constant.

The reader is referred to Auslander and Tolimieri (1985) for a complete discus-
sion of proofs of the above theorems. Furthermore, we closely follow Auslander and
Tolimieri (1985) without many technical details to show that ambiguity functions
represent well-known elements in the theory of unitary representations of the
Heisenberg group.

A unitary operation on L?(R) is a linear mapping U of L?(R) that satisfies the
following

(Uf.Ug) = (/. g) (5.7.13)

for all f and g that belong to L?(R). The set of all unitary operators U on L?(R)
forms a group under composition which will be denoted by %. As defined in
Sect.3.1, T, and M} for a,b € R are unitary operators of L?(R) which play
an important role in the theory of the ambiguity functions. Also, T, and M), are
noncommuting operators, and this fact is the mathematical basis for the Heisenberg
group in quantum mechanics and is an expression of the Heisenberg uncertainty
principle.
We now consider two mappings 7 and M from R to % and set

T =TR), A =MR)
so that .7 and .# are called the translation (or shiff) and multiplication (or
modulation) operators. Obviously, both .7 and .# are subgroups of %. We next

introduce the Heisenberg group N consisting of all points X = (x,x2,x) € R3.
The multiplication law in the group N is given by the formula

1
Xoy = (xl +yLX2+ Y2, x+y+ 3 (x2)1 —xlyz)) . (5.7.14)

It is easy to check that N is a group having center X consisting of all points (0, 0, x),
where x € R.
We now define D : N — % by setting

Dy = C (™) M(x)) T(x2), (5.7.15)

where C(\) = A, A € C,|\| = 1 and [ is the identity operator on L?(R), and
AMx)=x+ 3 X1X2.

Or, equivalently,

(Dy f)(t) = C (™) exp [ixi(t + x2)] f(t — x2). (5.7.16)
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Then, D : N — % is a group homomorphism built in a non-Abelian fashion
from the group homomorphisms 7" and M . The ambiguity function A s can then be
represented in terms of the group homomorphism D, as shown in the next theorem.

Theorem 5.7.5. For x € N and f € L*(R),
Ay (x2,x1) = e™(f. Dy f). (5.7.17)
Proof. Since
(D f)(@) = e exp[ixi(t — x2)] f(t = x2).

we can find

tron)= o) dr

w -
= e_’x(")/ f@)exp[ —ixi(t —x2)] f(t —x2)dt
— e—i)»(x)eixlxz / f(l‘)f_(l _ x2) e—ixltdt
—00
1
= exp (Eixlxz —ix) RBr(x2,x1), by (5.7.1)
= e_"fo(xz,xl), by (5.7.2).

This completes the proof.

The obvious significance of the result (5.7.17) is that ambiguity functions
represent well-defined elements in the theory of unitary representations of the
Heisenberg group.

5.8 Discrete WVDs

The cross WVD of two discrete time signals f(n) and g(n) is defined by
o0
Wie(n.0) =2 Y f(n+m)g(n—m)exp(—2imb). (5.8.1)
m=—00

Thus, Wy.(n,0) is a function of the discrete variable n and the continuous vari-
able 6. Moreover, for all n and 0,

Wie(n, 04 )= Wre(n,0). (5.8.2)

This means that the Wy, (n, 0) is a periodic function of 6 with period
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Clearly,

= Za[2f (0 +m) g(n —m)], (5.8.3)

where .7, is the discrete Fourier transformation defined by

Falfm)) = f(6) = Z f(n)e . (5.8.4)

n=—0o0

The inverse transformation, ﬁd_l is defined by

fn) = {f(e) / £ ®)edo. (5.8.5)
The inner products for the signals and their Fourier spectra are defined by
g)l= Y fm)gwm. (5.8.6)
(F.8)= 5 [ F®1d®)a0. (587)
The auto WVD of a discrete signal is then given by
Wr(n.0) =2 Y f(n+m) f(n—m)exp(~2im). (5.8.8)

Or, equivalently,

Wy (n,g) = Z 2f(n +m) f(n—m)exp(—2im0)

m=—0Q

=Zy2f(n+m) f(n—m)}. (5.8.9)

Both Wy4(n,6) and Wy (n,0) are usually referred to as the discrete WVD (DWVD).
In order to obtain a relation similar to (5.2.18), we define the DWVD for the
Fourier spectra f(0) and g(0) by

W; ,(0.n) = ! / FO+a) g0 —a) expina) da, (5.8.10)
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so that

Wf”’g,(e,n) = Wf;g(l’l,e). (5.8.11)
We next discuss the basic properties of DWVDs.
(a) (Nonlinearity). The DWVD is a nonlinear transformation. More precisely,

Waribg(n,0) = |al> Wy(n,0)+|b|> Wy(n,0)+ab Wyg(n,0)+ab W, ;(n,0),
(5.8.12)

where a and b are two constants.
More generally, we can prove

Wihte fote(n,0) = Wy o (n,0) + Wy 0, (n,0) + Wy, 0, (n,6) + W, o, (n,0).
(5.8.13)

These results can easily be proved from the definition.
(b) (Inversion). It follows from (5.8.2) that

2f(n+m)gn—m)=F;" {Wﬁg (n g)} - Zi/_ Wie (n, g) NPTy

This can be expressed in the form

_ 1 /2 n+n .
f(nl)g(n2)=2— 3 ZWf,g( l Z,Q)GXP[l(nl—nz)e]dev
(5.8.14)
1
wheren; =n+m,n; =n—m, and E(nl + ny) is an integer.
In particular, when n; = n, = n, we obtain from (5.8.14)
_ 12
g =5- [ Wi o0 ae. (5.8.15)
2 1 /2
\f(n)\ = —/ Wy(n,0)de. (5.8.16)
2 -2 ’
They may be referred to as the inversion formulas.
Summing (5.8.15) over n gives
[e¢) ) 1 [e¢) /2
NOHOEE DY / / Wye(n,0)do = (f.g). (5.8.17)
n=-—00 n=—o00?" /2
[od) _ 1 9] /2 )
PNONOESSDY S0 de=(f =1 6818
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In view of (5.8.10), (5.8.11), and the periodic property of Wy, (n, ) with respect

to 0, we obtain

%W_ﬁg(n,e) = Zi/_ f(@ +a) g6 —a) exp(2ina) da,

1 1 1 R - '
5 Wrg(1.0) = - Wyg(n. 0+ )=2—/ fO+ +@)&O+ —a)expina)da.

Adding these two results gives

Wﬁg(n,e)zzi/ exp(zina)[f(e+a)§(e—a)+f(e+ + )20+ —ot)]d(x.

This implies that

o

Y exp(=2ino) Wie(n.0) = fO+w) 2O —a)+ fO+ +a)gO@+ —a).

n=—00
Putting 6 + o = 01, 6 —a = 0, gives

o

> exp{(62—0))in} Wy, (n

n=—oo

01+ 6,

whence, by substituting 6; = 6, = 0
° ~ - A —_ ~ -
D Wi, 0) = f©®)20)+ SO+ g0+ )=2/(0)20).
In particular, when f = g,
e A2 . 2
> wmo) = 7O +|fo+ )]
n=-—00
Finally, integrating (5.8.19) with respect to 6 gives
| A 1 Aok 5
5—//ZZ:WﬁMﬁﬁm=§—/ f® 2@ d0=(7.8).
- .= -
This is identical with (5.8.17).
(c) (Conjugation).
Wie(n,0) = Wy r(n,0).

Wy (n,0) = Wy (n,6).
Wi(n,0) = Wi(n,—6).

):f(91)§(92)+f(91+ )8B2+ )

(5.8.19)

(5.8.20)

(5.8.21)

(5.8.22)

(5.8.23)
(5.8.24)
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(d) (Translation or Time Shift).
Wr, 116, 0) = Wye(n — k. 9), (5.8.25)
where Ty f(n) = f(n — k).
(e) (Modulation).
Wi, mog(,0) = Wyg(n, 6 —a), (5.8.26)

where (M, f)(n) = exp(ina) f(n).
(f) (Inner Product).

W;e(0,0) = 2(f.Re g). (5.8.27)

(2) (Multiplication). If (M f)(n) = nf(n), then
2n Wig(n,0) = Wagg(n,0) + Wrng(n, ), (5.8.28)
exp(2i0) Wro(n,0) = Wr_, r1,4(n,0). (5.8.29)

(h) (Moyal’s Formula).

(o]

/2 o _ -
X W W00 = (i el + M Al e

T (5.8.30)
where (M f)(n) =e'" f(n).

5.9 Cohen’s Class of Time-Frequency Distributions

Cohen (1966) has provided a simple method to generate all possible time—frequency
distributions. This is known as Cohen’s general class of distributions of a signal f
defined by

Cr(t,m) = /_oo /_oo /_oo exp[i(vu—vt—‘t(x))]k(v,t)f(u+ %r)f(u— %t) dvdud-r,
5.9.1)

where k (v, 1) is called the kernel of the distribution. Different kernels give different
time—frequency distributions for the same signal.

For a time—frequency distribution Cr(f, ) of a signal f (real or complex) to
be interpreted as a joint energy density, it must at least satisfy the following two
fundamental properties of nonnegativity and correct marginals for all times and
frequencies:
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Cr(t,0) >0, (5.9.2)

2

/_ Cf(t"”)df=‘f(03) /_ Cf(z,w)dw=|f(z)|2. (5.9.3a,b)

A2
The quantities \ f@ \2 and ‘ f (03)‘ are the energy densities of time and frequency,

or marginals which are usually interpreted as the instantaneous power and the
energy density spectrum, respectively. Cohen and Posch (1985) referred to joint
density functions of time and frequency, C (¢, w) that satisfy the above properties
as proper time—frequency distributions (TFDs). They have shown that there are an
infinite number of TFDs satisfying (5.9.2) and (5.9.3a,b), and it is necessary to
consider time-dependent kernels to determine positive TFDs with correct marginals.
Therefore, the fundamental question is how to select the kernel of the Cohen—Posch
class.
In terms of the Fourier spectrum, Cohen’s general class is

Cilt,0) = /_00 /_oo /_oo exp[i(vu—vt—‘t(n)]k(v,t)f(u+ %r) f(u—%t) dvdud-,
5.9.4)

as may be verified by expressing the signal in terms of the Fourier spectrum and
putting (5.9.1).

It is important to note that the kernel k does not appear in the signal. Thus, we
can define the Fourier transform of the kernel by

R(t, 1) = /00 k(v,v)e " dv, (5.9.5)

so that Cohen’s general class (5.9.1) can be written as

Cr(t,w) =/OO /oo R(t—u,t)f(u+%t)f(u—%t)e_”‘”dudt.
e (5.9.6)

Zhao et al. (1990) introduced a special kernel lg(t, T) to define a new time—
frequency distribution that has many remarkable properties. This distribution is
now known as the Zhao—Atlas—Marks distribution which significantly enhances the
time and frequency resolution and eliminates all undesirable cross terms. The kernel
lg(t, 1) involved in the original work of Zhao et al. (1990) is given by

k(t,v) = g(v) H (|| —alt)), (5.9.7)

where H (x) is the Heaviside unit step function, g(t) is arbitrary and to be specified
and the parameter a is assumed to be greater than or equal to 2 so that the finite
time support condition is satisfied. The kernel k(v, T) can be obtained by inversion
so that
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(%)
k(v,7) = g(1) - —V“ (5.9.8)

Consequently, the Zhao—Atlas—Marks (ZAM) distribution is given by

Cf‘(l, w) = /;oo g(v) e—iw‘dt/_oo f (u + %‘c) ]; (I,t — %‘C) du. (5.9.9)

In their original work, Zhao et al. (1990) used g(t) = 1 and @ = 2. The ZAM
distribution has been applied to speech signals with remarkable results. For the ZAM
distribution to satisfy the condition of finite time support, it is necessary that the
nonzero support region of Ig(t, 1) lie inside the cone-shaped region defined by

| _, _hl

Oy ={ 2 ~ 2 (5.9.10)
0, otherwise

The infinite-time versions of the Wigner—Ville kernel, lg(t,'c) = §8(1), the
Margenau and Hill (1961) kernel, which is the real part of the Kirkwood
(1933) and Rihaczek (1968) time—frequency distribution, kernel Ig(t, ) =
% [8 (t + %) +38 (t — %)], and the Born—Jordan—Cohen kernel (see Cohen 1995),
k (t,7) = |t| 7 (2), all satisfy the time and frequency marginals.

It was stated earlier that the WVD satisfies the marginals but it is not always
positive, whereas the spectrogram is manifestly positive, but does not satisfy the
marginals. Recently, Loughlin et al. (1994) developed a new general method of
construction of positive distributions satisfying marginals of time and frequency.
They used the cross-entropy minimization principle to construct TFDs that are
members of the Cohen—Posch class. Several examples of these TFDs, including
chirps, tones, resonators, speech, and acoustic records of rotating machinery, are
given in Loughlin et al. (1994).

On the other hand, if we write

o0 o0
Cr(t,w) = / / Mi(v,v) exp[—i(vt —l—tw)]dvdt, (5.9.11)
—00 J —00
where M (v, 1) is called the generalized ambiguity function defined by
Miv,v)=k(v,1)As(v,7)

=k(,1) /_oo exp(ivu) f (u + %r) f (u — % ‘C) du. (5.9.12)
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In his book, Cohen (1995) listed several kernels and their corresponding distri-
butions, and we list a few of these distributions. If k(v, t) = 1, then (5.9.1) reduces
to the WVD.

2.2

If k(v,T) = exp (—V—), (5.9.1) gives the Choi and Williams (1989) distribu-
o]

tion in the form

Cr(t,w) \/_/ / “lexp[—o{(u—1)*/P} —itww] f (u+ lt)

2
— 1
f (u— Et) dudr. (5.9.13)
If the kernel
© 1 — 1 .
k(v,t):/ h u—}—Et h M_EI e "Mdu, (5.9.14)

then (5.9.1) reduces to the spectrogram

o) 2
Cr(t,o) = '/_ et () h(t—t)dt (5.9.15)

o0

Finally, if the kernel k(v,t) = exp (l; ) (5.9.1) becomes the Rihaczek

distribution. In fact, the generalized Rihaczek distribution of two signals f and g is
defined by

© 1 1 .
Gt 0) = /_oof {t + (5 —oc) ‘C} g {t — (5 +0L) ‘C} e ''d,
(5.9.16)
where o is a real constant.

If a =0, (5.9.16) reduces to the cross WVD (5.2.1).
1
Ifa= 2’ (5.9.16) gives the cross Rihaczek distribution Rz, (¢, w) defined by

Rig(t.0) = 72, (1, —0) = € (1) §(0). (5.9.17)

5.10 Exercises

1. Find the WVT of the following signals:

2
@ f(t)—T (—%), (b)) = H),
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i 2
(©) f(1) = (%) exp (—0—12 + % iwotz) ,
@ f) = (%) exp [~ 56 1 + it ].

o

2. Find the ambiguity function of the following signals:

1 2
@ 10 = ex (—;) ,

2
b) f@t) = % exp (—% + iatz).

3. If f(¢) is even, show that

w
’ 2 .

4. If f(r) = Z{u(x)} = (t) and g(1) = F{v(x)} = ¥(¢), show that
(@) Wig(t,w) = W3(—w,1),
(b) Wr(t, w) = Wy(—w,1).

NS

1
Af(l,u)) = EWf(

5. Use Exercise 4 to prove the following result:

1, |t <a

, then
0,|t| >a

(@) If f() = xa() =

Wit w) = %sin (2(a — [t|0)} xa0).
(b) If g(t) = F {h(x)} = };(t) = % sinat, then
Wit @) = Wi-o.0) = (3 ) sin 200~ | = 0l xa(-o)

= (%) sin {2(a — |o|)1} Xa ().

6. Use the integral representation of the Dirac delta function to prove the following
marginal integrals:

@ 5 [ Witwrdo= 1020,

o) 5 /_ Wit ) di = f () ().
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2
’

© 5 [ Witwdo=|50

@ 5 [ wiewa=|jwl.

7. If f(t) = exp(iwot) g(t), show that W, (f, w) = We(t, ® — wo).

8. Find the WVT of f(¢) = exp(iwot) H(T — |t|), where H (x) is the Heaviside
unit step function.

9. Find the WVT of a sinusoidal signal f(¢) = A cos(wot + 6).

10. If £, g € L*(R) and B, (t,») = 0, prove that f = 0 almost everywhere or
g = 0 almost everywhere.

11. If € L*(R), show that the set of ambiguity functions A s is a closed subset
of L2(R?).

12. If f.g € L%(R), show that i(t,x) = f(t) §(x —t) is in L>(R?) and ||h||§ =
BN
13. If sequences f, — f and g, — g in L*(R), then (. g.) — (/. g)-

14. Show that %(e‘tz, e_(’f_“)2> is continuous for a € R.

15. Show, by direct computation, that B + B,y = A <\/1 + |a|? f).

I, |n| < N

, show that
0, |n| >N

16. If f(n) = %

2 sin|20 (N =+ 2)] <N
Ws(n,0) = { sin@ o )
0, |n| > N

17. Find the discrete WVT of a chirp signal
Lo
f(n) = A exp Ean .
18. If f and g modulate the carrier signals m ; and m,, respectively, show that the

discrete WVT is

/2

1
Winan 0= 5= | Wig(n,0) W, (1,6~ @) do
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19. Prove the following relations for the discrete WVT:

1 [ /2

B Wie(n,0)d0 = f(n) g(n),
-2

12
2—/_ /2 (Zn:W.ﬁg(”se)) o =(/.g).

20. (a) Write the definition of Cohen’s general class of distributions of signals f
and g with k(v, 1) as kernel function.
(b) Show that C (¢, ) is a nonlinear transformation, that is,

Cufpg(t,®) = |a|? Cr(t,w) + |b|> Co(t, w) + ab Crg(t, w) +ab Cy s (t, w).

(c) Forallreal and f € L?(R), prove the following results:

/ Cr(t.o)do = | f(0)]. /_Z Crt.w)dt = ‘f

/ / Cylt, w)drdw—/_:\f(z)fdz: I 715

21. Prove Moyal’s relation for Cohen’s class of distributions in the form

o) o0 S 2
[ [ ctwtendd=|[" foma =

22, If Yn(x) = 282727 (n!)"2 exp(— x?) H, (V2 x) is Hermite function,
where H,(x) is a Hermite polynomial of degree n = 0,1,2,3..., show that the

WVT of the signal Vs, (f) is given by
p

2 2 ple? 2 12 pPo?
Woute.) =217 exp | = (2 ) | a2 (2 + 52 ) |

where L, (x) is the Laguerre polynomial of degreen = 0,1,2,....



Chapter 6
The Wavelet Transforms
and Their Basic Properties

Wavelets are without doubt an exciting and intuitive concept.
The concept brings with it a new way of thinking, which is
absolutely essential and was entirely missing in previously
existing algorithms.

Today the boundaries between mathematics and signal and
image processing have faded, and mathematics has benefitted
from the rediscovery of wavelets by experts from other
disciplines. The detour through signal and image processing
was the most direct path leading from the Haar basis to
Daubechies’s wavelets.

Yves Meyer

6.1 Introduction

Morlet et al. (1982a,b) modified the Gabor wavelets to study the layering of
sediments in a geophysical problem of oil exploration. He recognized certain
difficulties of the Gabor wavelets in the sense that the Gabor analyzing function
2r.0(1) = g(1 — t) €' oscillates more rapidly as the frequency o tends to infinity.
This leads to significant numerical instability in the computation of the coefficients
(f, gw.s)- On the other hand, g, oscillates very slowly at low frequencies. These
difficulties led to a problem of finding a suitable reconstruction formula. In order
to resolve these difficulties, Morlet first made an attempt to use analytic signals
f(@t) = a(t)exp {i q)(t)} and then introduced the wavelet { defined by its Fourier
transform

flf(u)) =2 o exp (—% wz) , o>0. (6.1.1)

This wavelet corresponds to an analytic signal related to the second derivative (1 —

1 1
1?) exp (—5 12) of the Gaussian function exp (_E 12). Thus, the Morlet wavelet
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turned out to be the modulated Gaussian function. InAfact, Morlet’s ingenious idea
was to filter the signal f(¢) with the aid of the filters {r(a” w), m € Z so that

f@) — fu@) = /_ ft—va " {(a"1)d. (6.1.2)

R 2
Morlet’s analysis showed that the quantity Z ‘\lf(a - u))‘ remained constant for

JASYA
sufficiently small a. It also led to stable and fast reconstruction algorithms of f from

fm even when @ = 2. Moreover, Morlet suggested sufficiently small mesh sizes so
that they allow a good reconstruction algorithm of analytic signals with coefficients

Con = fn(n2") = <f(z),2—’"q;(2—'"r . n)>. (6.1.3)

Thus, Morlet’s remarkable analysis led to the discovery of the wavelet transform
which seems to be an efficient and effective time—frequency representation algo-
rithm. The major difference between the Morlet wavelet representation and the
Gabor wavelet is that the former has a more and more acute spatial resolution as
the frequency gets higher and higher.

Based on the idea of wavelets as a family of functions constructed from
translation and dilation of a single function s, called the mother wavelet (or affine
coherent states), we define wavelets by

wa,b(t)=i (ﬂ) a,beR, a#0, (6.1.4)

|a| a

where a is called a scaling parameter which measures the degree of compression
or scale, and b is a translation parameter which determines the time location of the
wavelet. Clearly, wavelets {r, 5 (t) generated by the mother wavelet | are somewhat
similar to the Gabor wavelets g;,(t) which can be considered as musical notes
that oscillate at the frequency w inside the envelope defined by |g(t - t)| as a
function of t. If |a| < 1, the wavelet (6.1.4) is the compressed version (smaller
support in time-domain) of the mother wavelet and corresponds mainly to higher
frequencies. Thus, wavelets have time-widths adapted to their frequencies. This is
the main reason for the success of the Morlet wavelets in signal processing and time—
frequency signal analysis. It may be noted that the resolution of wavelets at different
scales varies in the time and frequency domains as governed by the Heisenberg
uncertainty principle. At large scale, the solution is coarse in the time domain and
fine in the frequency domain. On the other hand, as the scale a decreases, the
resolution in the time domain decreases (the time resolution becomes finer), while
that in the frequency domain increases (the frequency resolution becomes coarser).

We sketch a typical mother wavelet with a compact support [—7, T'] in Fig. 6.1a.
Different values of the parameter b represent the time localization center, and each
P, 5(2) is localized around the center t = b. As scale parameter a varies, wavelet
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a A w(r) b 4,0 c v,

_T\/O \/ T " O\H[ - |

Fig. 6.1 (a) Typical mother wavelet. (b) Compressed and translated wavelet ¥, (t) with
0 < |a] € 1,b > 0. (c) Magnified and translated wavelet ¥, , (t) with |a| > 1,b > 0

Pq.5(t) covers different frequency ranges. Small values of |a|(0 < |a| < 1) result
in very narrow windows and correspond to high frequencies or very fine scales Vs, 5
as shown in Fig. 6.1b, whereas very large values of |a| (|a| > 1) result in very wide
windows and correspond to small frequencies or very coarse scales s, 5 as shown
in Fig. 6.1c. The wavelet transform (6.2.4) gives a time—frequency description of a
signal f. Different shapes of the wavelets are plotted in Fig. 6.1b, c.

It follows from the preceding discussion that a typical mother wavelet physically
appears as a local oscillation (or wave) in which most of the energy is localized to
a narrow region in the physical space. It will be shown in Sect. 6.2 that the time
resolution o; and the frequency resolution o,, proportional to the scale @ and a™!,
respectively, and o, 6,, > 27!. When a decreases or increases, the frequency support
of the wavelet atom is shifted toward higher or lower frequencies, respectively.
Therefore, at higher frequencies, the time resolution becomes finer (better) and
the frequency resolution becomes coarser (worse). On the other hand, the time
resolution becomes coarser but the frequency resolution becomes finer at lower
frequencies.

Morlet first called his functions “wavelets of constant shape” in order to contrast
them with the analyzing functions in the short-time Fourier transform which do not
have a constant shape. From a group-theoretic point of view, the wavelets {s, ; (x)
are in fact the result of the action of the operators U(a, b) on the function {r so that

[U(a,b)llf](x) = \/%w(xa_b). (6.1.5)

These operators are all unitary on the Hilbert space L?(R) and constitute a
representation of the “ax + b” group

U(a,b) U(c,d) = U(ac,b + ad), (6.1.6)

U1,0) = 1Id, (6.1.7)
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U@, by ' =U (—,——). (6.1.8)

This group representation is irreducible, that is, for any nonzero f € L?(R), there
exists no nontrivial g orthogonal to all the U(a,b) f. In other words, U(a, b) f
span the entire space. The multiplication of operators defines the product of pairs
(a,b),(c,d) € R/{0} x R that is; (a,b) o (¢,d) = (ac,b + ad). Like the
operators U(a, b), the pairs (a,b) together with the operation o form a group.
The coherent states associated with the (ax + b)-group, which are now known as
wavelets, were first formulated by Aslaksen and Klauder (1968, 1969). The success
of Morlet’s numerical algorithms prompted Grossman to make a more extensive
study of the Morlet wavelet transform which led to the recognition that wavelets
P45 (¢) correspond to a square integrable representation of the affine group.

This chapter is devoted to wavelets and wavelet transforms with examples. The
basic ideas and properties of wavelet transforms are discussed with special attention
given to the use of different wavelets for resolution and synthesis of signals.
This is followed by the definition and properties of discrete wavelet transforms.
It is important and useful to consider discrete versions of the continuous wavelet
transform due to the fact that, in many applications, especially in signal and image
processing, data are represented by a finite number of values.

6.2 Continuous Wavelet Transforms and Examples

An integral transform is an operator 7' on a space of functions for some X which is
defined by

(Tf) () = / K(x.y) f(x) dx.

The properties of the transform depend on the function K which is called the
kernel of the transform. For example, in the case of the Fourier transform, we have
K(x,y) = e, Note that y can be interpreted as a scaling factor. We take the
exponential function ¢(x) = e'* and then generate a family of functions by taking
scaled copies of ¢, that is, ¢po(x) = e 7%~ for all a a € R. The continuous wavelet
transform is similar to the Fourier transform in the sense that it is based on a single
function {r and that this function is scaled. But, unlike the Fourier transform, we
also shift the function, thus generating a two-parameter family of functions V, 5 (¢)
defined by (6.1.4).

We next give formal definitions of a wavelet and a continuous wavelet transform
of a function.

Definition 6.2.1 (Wavelet). A wavelet is a function { € L?(R) which satisfies the
condition
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o0
Cy = / do < o, 6.2.1)
o o]

where ﬁ,r(w) is the Fourier transform of ().

If { € L>(R), then s, 5(t) € L*(R) for all a, b. For

[ @)]* = |a|™ /_: “" (%)

The Fourier transform of s, 5 (¢) is given by

? o 2 2
dt =/_ W) dx = v (6.2.2)

o0

A _1 . t—>b Lo

Vap(w) = |a| 2 / eIy (—) dt = |a]?e™ " J(aw). (6.2.3)
oo a

Definition 6.2.2 (Continuous Wavelet Transform). If { € L2(R), and s, 5 (¢) is

given by (6.1.4), then the integral transformation %, defined on L?*(R) by

W[ 1@ b) = (fias) = / £ San @) dt (6.2.4)

is called a continuous wavelet transform of f(t). This definition allows us to make
the following comments.

First, the kernel \r, 5 (¢) in (6.2.4) plays the same role as the kernel exp(—i w?) in
the Fourier transform. However, unlike the Fourier transformation, the continuous
wavelet transform is not a single transform but any transform obtained in this way.
Like the Fourier transformation, the continuous wavelet transformation is linear.
Second, as a function of b for a fixed scaling parameter a, V/q,[ f ](a, b) represents
the detailed information contained in the signal f(¢) at the scale a. In fact, this
interpretation motivated Morlet et al. (1982a,b) to introduce the translated and
scaled versions of a single function for the analysis of seismic waves.

Using the Parseval relation of the Fourier transform, it also follows from (6.2.4)
that

Wyl f(a.b) = (fibas) = 2L (f’irub>

This means that

FUL@n] = [l db = Vial (o) Faw),
(6.2.5)
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Example 6.2.1 (The Haar Wavelet). The Haar wavelet (Haar 1910) is one of the
classic examples. It is defined by

1
1, O§t<§
v =931 1o, (6.2.6)
’2_

0, otherwise

The Haar wavelet has compact support. It is obvious that

/_Z W(t)dt =0, /_Z () |Pdr = 1.

This wavelet is very well localized in the time domain, but it is not continuous. Its
Fourier transform {r(w) is calculated as follows:

1 1
(o) = / Ceivdr — / R
0 Fy

= (IE) (Ze—%‘“ —1- e_i‘”)

ol—

S ol

o (W
. sin —
= iexp (—%) M (6.2.7)

and

N 2

o ()] o o4

/ do = 16/ loo| 3 ‘sin—) do < oo. (6.2.8)
oo o] —00 4

Both {(¢) and ﬁj(u)) are plotted in Fig. 6.2. These figures indicate that the Haar
wavelet has good time localization but poor frequency localization. The function

‘flf(u))‘ is even, attains its maximum at the frequency wo ~ 4.662 , and decays

slowly as w™!' as @ — oo, which means that it does not have compact support

in the frequency domain. Indeed, the discontinuity of { causes a slow decay of {r
as w — oo. Its discontinuous nature is a serious weakness in many applications.



6.2 Continuous Wavelet Transforms and Examples 343

(w)

®
0 4m 8m 161

v (1)
A
1
1
ol 0.5
-1t

Fig. 6.2 The Haar wavelet and its Fourier transform

However, the Haar wavelet is one of the most fundamental examples that illustrate
major features of the general wavelet theory.

Theorem 6.2.1. If s is a wavelet and ¢ is a bounded integrable function, then the
convolution function \ x ¢ is a wavelet.

Proof. Since

[ leswlar= [~ ‘/_:xv(x—um(u)du

2
dx

IA

[ Wx—u)\w(u)\du)zdx
/: (/: e = | |o] o] du)zdx
< /_Z (/_Z [ (x — u)i2|¢(u)|du/_: H’(“)idu) dx

/_Z |¢(”)|d”/_z /_Z [ — )| ()| dx du

00 2 poo
(/_ |¢(u)|du)/_ [W(x)]* dx < oo,

IA
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b (w *9) (1)

-

B | -
!

r

Lol Lol

Fig. 6.3 The wavelet (¥ * ¢)(t)

we have {r * ¢ € L?(R). Moreover,

N N 2
o |7y o) o [ i) d(@)|
/_w—|w*| "‘”Z/_oo'—\w\ ©
=/°°_1Tf(w)‘2 (f)(oo)zdw
o]
</oo Q/(w)) dw sup b 2<o<>.
=)l

Thus, the convolution function \r * ¢ is a wavelet.

Example 6.2.2. This example illustrates how to generate other wavelets by using
Theorem 6.2.1. For example, if we take the Haar wavelet and convolute it with the
following function

0,1 <0,
d(r)=11,0<r<1, (6.2.9)
0,1>1

we obtain a simple wavelet, as shown in Fig. 6.3.

Example 6.2.3. The convolution of the Haar wavelet with ¢(t) = exp (—t?)
generates a smooth wavelet, as shown in Fig. 6.4.

In order for the wavelets to be useful analyzing functions, the mother wavelet
must have certain properties. One such property is defined by the condition (6.1.4)
which guarantees the existence of the inversion formula for the continuous wavelet
transform. Condition (6.1.4) is usually referred to as the admissibility condition
for the mother wavelet. If ¢ € L'(R), then its Fourier transform 11; is contin-
uous. Since \p is continuous, Cy, can be finite only if \L/(O) = 0 or, equivalently,
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b (¢ *¢) (1)

Fig. 6.4 The wavelet (¥ * ¢)(t)

o
/ Y(¢)dt = 0. This means that { must be an oscillatory function with zero
—0o0

N 2
mean. Condition (6.2.1) also imposes a restriction on the rate of decay of ‘xlf(u))‘

and is required in finding the inverse of the continuous wavelet transform.

In addition to the admissibility condition, there are other properties that may be
useful in particular applications. For example, we may want to require that \y be
n times continuously differentiable or infinitely differentiable. If the Haar wavelet
is convoluted (n + 1) times with the function ¢ given in Example 6.2.2, then the
resulting function { % ¢ * --- * ¢ is an n times differentiable wavelet. The function
in Fig. 6.4 is an infinitely differentiable wavelet. The so-called Mexican hat wavelet
is another example of an infinitely differentiable (or smooth) wavelet.

Example 6.2.4 (The Mexican Hat Wavelet). The Mexican hat wavelet is defined by
the second derivative of a Gaussian function as

t? d? —t?
Y(t) = (1 —1%)exp (—5) = -5 P (7) = Y10(2), (6.2.10)

2
() = Pro(w) = V2 o’exp (—%) . (6.2.11)

In contrast to the Haar wavelet, the Mexican hat wavelet is a C °°-function. It has two
vanishing moments. The Mexican hat wavelet {r; ¢(¢) and its Fourier transform are
shown in Fig. 6.5a, b. This wavelet has excellent localization in time and frequency
domains and clearly satisfies the admissibility condition.
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a Wl.o(r)
-3 J3
1 1 .
B o)
[ ] 1 w
-y2 0 2

Fig. 6.5 (a) The Mexican hat wavelet ¥ o(t) and (b) its Fourier transform 1]}1‘0((;)).

Two other wavelets, xp% - and Ver from the mother wavelet (6.2.10) can
be obtained. These three wavelets, {rj o(?), q;% (), and ¥ 1 3(1), are shown in
Fig. 6.6(i), (ii), and (iii), respectively.

Example 6.2.5 (The Morlet Wavelet). The Morlet wavelet is defined by

2
P(t) = exp (iwot — %) , (6.2.12)
U(w) =2 exp [—%(w - w0)2:| . (6.2.13)

The Morlet wavelet and its Fourier transform are plotted in Fig. 6.7.

Another desirable property of wavelets is the so-called localization property. We
want { to be well localized in both time and frequency. In other words, \ and its
derivatives must decay very rapidly. For frequency localization, ﬁj(u)) must decay
sufficiently rapidly as w — oo and ﬁj(w) should be flat in the neighborhood of
® = 0. The flatness at ® = 0 is associated with the number of vanishing moments
of . The kth moment of \ is defined by

m = /oo K W(t) dt. (6.2.14)

A wavelet is said to have n vanishing moments if

/ *Y@)dt =0 for k=0,1,....,n. (6.2.15)

(o]
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A Wu(")

Ik (i) IR

2 —

-6 -4 ~2 0

Fig. 6.6 Three wavelets ¥y 4(t), ¥ %,—2(t) and Y %'ﬁ(t)

Rey ()} V()

Fig. 6.7 The Morlet wavelet and its Fourier transform

Or, equivalently,

d* (o
LY@ _ o for k=0.1.....m. (6.2.16)
dwk
w=0
Wavelets with a larger number of vanishing moments result in more flatness when
frequency w is small.
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The smoothness and localization properties of wavelet | combined with the
admissibility condition (6.2.1) suggest that

(1) Wavelets are bandpass filters; that is, the frequency response decays sufficiently
rapidly as @ — oo and is zero as w — 0.

(i) P(z) is the impulse response of the filter which again decays very rapidly as
t increases, and it is an oscillatory function with mean zero. Usually, wavelets
are assumed to be absolutely square integrable functions, that is, { € L?(R).

2
. . 2 A .
In quantum mechanics, quantities such as |1!j(t)| and ‘1!;(03)‘ are interpreted as

the probability density functions in the time and frequency domains respectively,
with mean values defined by

&;(w)‘z do.  (62.17ab)

(t):/_ t\q;(t)|2dt and (OJ):ZL/O )

The time resolution (or the time spread) and the frequency resolution (or the
[frequency spread) associated with a mother wavelet {r around the mean values are
defined by

o2 = /oo (1 — ()’ [w()] dt, (6.2.18)

e

- L /0 (0= (@) )| do. (62.19)

Thus, for any { € L*(R), the time and frequency resolutions of the mother

. . o . 1
wavelet are governed by the Heisenberg uncertainty principle, that is, o; 6, > —.

It is easy to verify that the time—frequency resolution of a wavelet {, ;, depends
on the time—frequency spread of the mother wavelet. We define the energy spread
of Y, around b by

Ol up = /; (t —b)2‘¢a,b(l)|2dl, t—b=x)

= az/ xzixlf(x)|2dx = azotz, (6.2.20)

where o7 is defined by (6.2.18) around the zero mean. Clearly, the wavelets have
good time resolution for small values of a which correspond to high frequencies or
small scales. Scale can be defined as the inverse of frequency.

On the other hand, the Fourier transform ﬁfa,b (w) of Y, p(2) is given by (6.2.3),

1 N 1
so its mean value is — (w). The energy spread of s, , (w) around — {w) is defined by
a a
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o=y [ (o= )

1 * 1 2| A 2 b,
_2_/0 (= (@) [bo| dx = o (62.21)

Fus()| do. @w=2)

This reveals that wavelets have good frequency resolution for large values of the
scale a.

Thus, the time—frequency resolution of wavelets 1, ; is independent of the time
location but depends only on the scale a. The energy spread of the wavelet 5

1
corresponds to a Heisenberg time—frequency rectangle at | b, — (u))) of sides a o,
a

along the time axis and — o,, along the frequency axis. The area of a the rectangle is

a
equal to o; o, for all scales and is governed by the Heisenberg uncertainty principle,

that is, 07 4.5 Ow.ap = (aci)(@ '0,) = 0; 0 > —.
We close this section by introducing a scaled version of a mother wavelet in the
form

Yalt) = la] ™ (2) , (62.22)

1
where p is a fixed but arbitrary nonnegative parameter. In particular, when p = —

the translated version of {, (¢) defined by (6.2.22) reduces to wavelets (6.1.4).
Clearly, if {r(w) is the Fourier transform of {(¢), then the Fourier transform of
the dilated version of {s(¢) is given by

% " (g)} =D, /() = Va flaw).  (6223)

where a > 0. Thus, a contraction in one domain is accompanied by a magnification
in the other but in a non-uniform manner over the time—frequency plane. A typical
wavelet and its dilations are sketched in Fig. 6.8a—c together with the corresponding
Fourier transforms.

If p = 11in (6.2.22), the integral

y{Daqj(z)} - f{

/_Z Pat) dit = /_: (v dx

does not depend on the scaling parameter a. On the other hand, the choice of p = 0
is found to be convenient for the study of orthonormal bases of wavelets. However,
the specific value of p is completely irrelevant to the general theory of wavelets, so
appropriate choices are used in the literature.
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Fig. 6.8 Typical wavelet and its dilations with the corresponding Fourier transforms for (a)a = 1,
(b)0 <a K 1,and (¢) @ > 1 in the time—frequency domains

For an arbitrary p > 0, the time localization of signals is obtained by the
translated versions of s, (¢). If {(¢) is supported on an interval of length £ near
t = 0, then wavelets can be defined by the translated and scaled versions of the
mother wavelet {r as

b = (e =) = o] u (7). (6224)

a

Obviously, this is supported on an interval of length |a| £ near ¢ = b.
If we assume that {y € L?(R), then the square of the norm of Vs, ; is

ool =l 7o (52

2
dt = |a| 7|y (6.2.25)
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6.3 Basic Properties of Wavelet Transforms

The following theorem gives several properties of continuous wavelet transforms.
Theorem 6.3.1. If U and ¢ are wavelets and f, g are functions which belong to
L?(R), then

(i) (Linearity)
Wy(of +Bg)(a,b) = a(#y f)(a.b) + B(#yg)(a.b), 6.3.1)

where o and B are any two scalars.
(ii) (Translation)

(7 (T f))a,b) = (#4y f)(a.b—c), (6.3.2)

where T, is the translation operator defined by T, f(t) = f(t — ¢).
(iii) (Dilation)

1

(#0e)) @b =

(4 f) (3 9), c>0, (6.3.3)

s
c C

1 t
where D, is a dilation operator defined by D. f(t) = — f (—) , ¢>0.
¢ ¢
(iv) (Symmetry)

(4 f)a.b) = (#rV) (é—g) a #0. (6.3.4)
(v) (Parity)
(#pyPf)(a,b) = (¥4 f)(a,—b), (6.3.5)

where P is the parity operator defined by Pf(t) = f(—t).
(vi) (Antilinearity)

(Zav+po.S )@ b)(a.b) = (W [)(a.b) +B (¥ f)a.b),  (6.3.6)

Sfor any scalars o, .

(vii)

(#1.4.f)@.b) = (¥ f)(a,b + ca), 63.7)
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(viii)

1
N
Proofs of the above properties are straightforward and are left as exercises.

Theorem 6.3.2 (Parseval’s Formula for Wavelet Transforms). If € L%*(R)
and (Wq,f)(a, b) is the wavelet transform of f defined by (6.2.4), then, for any
functions f,g € L*(R), we obtain

(W f)a,b) = (#4 f)(ac,b), ¢ >0. (6.3.8)

[ 7N, ,.dbd
[ ] (mr) @b (Fig)an) 5% = clr.e). (6.39)
where
N 2
o Mm)) d 6.3.10

Proof. By Parseval’s relation (3.4.37) for the Fourier transforms, we have

(Har) @) = [~ r@lart (ﬂ) i
= (/. Vas)
= o (F )

2L /00 f(w) |a|% e'be ﬁf(aw) do by (6.2.3). (6.3.11)

Similarly,
T . [®— 1 [(t—b
(r)atr = [~ w@lary (50 ar
= zi /w% la|? e {i(ao) do. (6.3.12)

Substituting (6.3.11) and (6.3.12) in the left-hand side of (6.3.9) gives

/_Z /_Z (#.1)@.b) (#45) @) dl;;za

o0 o0 dbd oo oo R — — N
S S e F@Fe Taw) b eplibe = o)} dodo.

@
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which is, by interchanging the order of integration,

o 4 o oo | — ) -
:_/ a/ / f(w)g(c)w(am)w(ac)dmdcif exp {ib( — o)) db

oo lal -

o0 da
- / / £(@)30) aw) H(a0) 8o — w) do do

-+ = /_Oo @) [iaw)| do

which is, again interchanging the order of integration and putting a ® = x,

—%/_Zf(w)E(w)dw-/_w -

= Gy 5 (@, 4@)

Theorem 6.3.3 (Inversion Formula). If f € L?(R), then f can be reconstructed
by the formula

dbda

flty = 2 / [ Wi ) @.5) b (0 63.13)

where the equality holds almost everywhere.

Proof. For any g € L?(R), we have, from Theorem 6.3.2,
Cylf.8) = (%ﬁ %g>

[ (s () . 5

/ / il ) @.b) / () @) di

_ Wi f )(@.5) Was (1) zamdr
[ L] 0n)

</ / 7y f )@, b)wab(t)dbd“ > (6.3.14)

Since g is an arbitrary element of L?(R), the inversion formula (6.3.13) follows.

If f = gin (6.3.9), then

/_Z /_: )(%f)(“’b))z dijb =G| 1)’ =¢y /_: |f@)|*di.  (6.3.15)

db da
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This shows that, except for the factor Cy, the wavelet transform is an isometry from
L*(R) to L?(R?).

6.4 The Discrete Wavelet Transforms

It has been stated in the last section that the continuous wavelet transform (6.2.4)
is a two-parameter representation of a function. In many applications, especially
in signal processing, data are represented by a finite number of values, so it is
important and often useful to consider discrete versions of the continuous wavelet
transform (6.2.4). From a mathematical point of view, a continuous representation
of a function of two continuous parameters a, b in (6.2.4) can be converted into a
discrete one by assuming that a and b take only integral values. It turns out that it is
better to discretize it in a different way. First, we fix two positive constants ag and
by and define

Y (x) = ag "> W(ag"x — nby). (6.4.1)

where both m and n € Z. Then, for f € L?*(R), we calculate the discrete
wavelet coefficients ( f, U;.,). The fundamental question is whether it is possible
to determine f completely by its wavelet coefficients or discrete wavelet transform
which is defined by

(Yo = fotinad = [ 1O T p00

= ao_% /_OO f@)W(ag™"t —nbo) dt, (6.4.2)

where both f and \{ are continuous, Yo o(t) = y(¢). It is noted that the discrete
wavelet transform (6.4.2) can also be obtained directly from the corresponding
continuous version by discretizing the parameters a = aj' and b = nboaj (m,n
are integers). The discrete wavelet transform represents a function by a countable
set of wavelet coefficients, which correspond to points on a two dimensional grid
or lattice of discrete points in the scale-time domain indexed by m and n. If the set
{Um.n (1)} defined by (6.4.1) is complete in L?(R) for some choice of , a, and b,
then the set is called an affine wavelet. Then, we can express any f(t) € L?(R) as
the superposition

oo

FO =Y (S Uma) U 0). (6.4.3)

mn=—0oo

Such complete sets are called frames. They are not yet a basis. Frames do not satisfy
the Parseval theorem for the Fourier series, and the expansion in terms of frames is
not unique. In fact, it can be shown that
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m=log,a
3 "
B 2 " 0
0 " | 0 » " 0
+ — ————t—t—t——> |

5-4-3-2-10123456738

Fig. 6.9 Dyadic sampling grid for the discrete wavelet transform

oo

Al = 30 () < BlS

mn=—0o0

2
’

(6.4.4)

where A and B are constants. The set {q;m,,, (t)} constitutes a frame if {r(¢) satisfies
the admissibility conditionand 0 < A < B < oo.

For computational efficiency, ap = 2 and by = 1 are commonly used so that
results lead to a binary dilation of 27" and a dyadic translation of n 2™.

Therefore, a practical sampling lattice is @ = 2" and b = n 2" in (6.4.1) so that

U (1) = 272427 —n). (6.4.5)

With this octave time scale and dyadic translation, the sampled values of (a,b) =
(2™, n2™) are shown in Fig. 6.9, which represents the dyadic sampling grid diagram
for the discrete wavelet transform. Each node corresponds to a wavelet basis
function s, , (¢) with scale 27" and time shift n 27",

The answer to the preceding question is positive if the wavelets form a complete
system in L?(R). The problem is whether there exists another function g € L?(R)
such that

(fiUmn) = (g Vmn) forall m.nelZ

implies f = g.

In practice, we expect much more than that: we want ( f, U, ) and (g, U ) to
be “close” if f and g are “close.” This will be guaranteed if there exists a B > 0
independent of f such that

[e.]

ST [ < B ] (6.4.6)

mn=—0oo
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Similarly, we want f and g to be “close” if ( f, V) and (g, .} are “close.” This
is important because we want to be sure that when we neglect some small terms in
the representation of f in terms of (f, {,.,), the reconstructed function will not
differ much from f. The representation will have this property if there exists an
A > 0 independent of f, such that

o0

Al = X [ (6.4.7)

mn=—0oo

These two requirements are best studied in terms of the so-called frames.

Definition 6.4.1 (Frames). A sequence {¢1,¢. ...} inaHilbert space H is called
a frame if these exist A, B > 0 such that

AL < i (ol < Bl (648)

for all f € H. The constants A and B are called frame bounds. If A = B, then the
frame is called tight.

o0
If {¢,} is an orthonormal basis, then it is a tight frame since Z |(f. &u) |2 =
n=1
1 3 1 3
“fH2 for all f € H. The vectors (1,0), <_§ %—) , (_5’ —%) form a tight

frame in C? which is not a basis.

As pointed out above, we want the family of functions s, , to form a frame in
L?(R). Obviously, the double indexing of the functions is irrelevant. The following
theorem gives fairly general sufficient conditions for a sequence {dfm,,, } to constitute
a frame in L%(R).

Theorem 6.4.1. If s and ay are such that

(i)
— |4 2
15|i013|f5a0m;oo )'J’(af)" w)‘ > 0,
(ii)
sup 3 )‘1’(618’ w)‘z > 0,

1<|wl<ao p=—c0
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and

(iii)

—(1+¢)

sup ‘fp(a(’)" w)‘ ‘x[f(aa"w—i-x)‘ <C(1+|x])

for some € > 0 and some constant C, then there exists b such that \,, , form a

frame in L>(R) for any by € (0, b).
Proof. Suppose f € L*(R). Then,

oo

S [t =

‘ 2
m,n=—00 m,n=—00

/ Fx)ag™? V(ag™x —nbo) dx

2
= ‘/ f(w)ay /2 0@l o) P(all o) e d | = P

mn=—0o0

by the general Parseval relation (see Theorem 4.11.13 of Debnath and Mikusinski
1999), basic properties of the Fourier transform (see Theorem 4.11.5 of Debnath

and Mikusinski 1999), and the fact that we sum over all integers. Since, for any
o0

s > 0, the integral / g(t) dt can be written as

—0o0

Z / gt +1s)dt,

|=—00

2
by taking s = ——, we obtain

r

=i%/

m=—0Q

Z/ 2 05 f(w + 15) P(a (@ + 1s))dw

|=—00

g2 ino/s ( Z f(w+ls)m) dw

I=—00

2

Z f(o+19) V(@ +15)| d

[=—00

w=0

by Parseval’s formula for trigonometric Fourier series.
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Since

2

Z Flo+1s) wlr(ao’”(w + 1s))

|=—00

= ( > f(w+ls)®(ag"(w+1s))) ( > f(w—l—ks)@(ag’(w—}-ks)))

|=—00 k=—00
and
° . _
F) = Y f(o+ks){(ag(o+ks)
k=—o00
is a periodic function with a period of s, we have

/ ( > flo+1s)P(ay( +ls))) F(w)dw

I=—00

f(u)) U(af o) F(w) do

Z/ f(@)V(ao) f(o+ks)b(af (o +ks)) do

Consequently,

Z / F () fo+ks) Wars) U(al (o + ks)) do

m,k=—00

2—0 _w}f(u»f _i @ do

2

+ / F() P+ ks) D@gs) (o + ks) do

m,k=—00

k;ﬁO

To find a bound on the second summation, we apply the Schwarz inequality:

( ) Z / f (o) f(o+ks) Wags) U(al (o + ks)) do
m,k=—00

k%0
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1

< (i—o) m’k;f:_oo (/_Z )f(w))z Hf(ao’"w)‘ )@(aom(w + ks))‘ dw)z

k#0

1

x (/_Z ‘fA(erks)}2 ‘@(agﬂw)} “;(a(’)”(u)—i-k.?))} dw)z - R

Then, by first changing the variables in the second factor and using Holder’s
inequality (see Theorem 1.2.1 of Debnath and Mikusinski 1999), we have

e=(3) £ ([l sl e o+ ko))

k0

([ o [t [bagon| an)’
< (?)_0) kioo (/_Z ‘f(w)lzmioo ’cf)(aomw)’ ‘ﬁi(ag(w +ks))‘ d(n)z

k#0

1

X (/_o; ‘f(u))’z i ‘ﬁi(ao’"(w—ks))‘ ‘fl;(ao’”m)‘ dw)z —s.

If we denote

B(&) = sup _Z ‘l!f ag'o Hllfaow+2)‘
then

5= ()11 32 [plasm) - ago)]

k=—00

k#0

e Z )]

k0

Consequently, if we denote

(%) { w3 [ierof - 3 [b (%)"‘(‘%)]m}

k;éO
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and

SOOI ESCEESUCSTE N

k#0
we conclude

(o]

Al = 30 el < Bl

n,m=—00

Since B(£) < C (1 + [£))"""9, we find

LB LR R
<2y (1 + %) (o

k#0
00 5 e\ —(+0
ZC/ (1+—) dt
0 bo

IA

: Cbhy oo
Since ([ — ) —> 0as by — O and inf ‘xp(a w)) > 0, there exists b
€

I=lol=ao

such that A > 0 for any by € (0, l;). Moreover, since  sup ‘w(ao w)}
1<|w|<ao p=—co
00, we also have B < oo for all by € (0, 5). Thus, ., constitute a frame for all
such by. This completes the proof.
The major problem of this section is reconstruction of f from (f, V,,) and
representation of f in terms of s, , For a complete orthonormal system {¢n} both
questions are answered by the equality

Z . Gmn) bn- (6.4.9)

However, since we do not have orthogonality, the problem is more complete for
frames.
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Definition 6.4.2 (Frame Operator). Let {$1,¢,....} be a frame in a Hilbert
space H. The operator F from H into /? defined by

F{fy={{f o)}

is called a frame operator.

Lemma 6.4.1. Let F be a frame operator. Then, F is a linear, invertible, and
bounded operator. Its inverse F~' is also a bounded operator.

The proof is easy and left as an exercise.
Consider the adjoint operator F* of a frame operator F associated with frame
{¢n}. For any {c,} € [?, we have

o0 o0
(F*(cn). [) = () Ff) =Y caldn. f) = <Z Cnn. f> :
n=1 n=1
Thus, the adjoint operator of a frame operator has the form

“(ea) =D cu bn- (6.4.10)

Since
Solfenl = |F £ =(FF £ 1)
n=1

we note that the condition (6.4.4) can be expressed as
Al < F*F < BI,

where the inequality < is to be understood in the sense defined in Sect. 4.6 (see
Debnath and Mikusinski 1999).

Theorem 6.4.2. Let {(1)1, b2, b3, ... } be frame bounds A and B and let F be the
associated frame operator. Define

1

on = (F*F) " ¢u.
A . 1 1
Then, {d),,} is a frame with bounds B and T

Proof. By Corollary 4.5.1 as stated by Debnath and Mikusinski (1999), we have
_ _ *
(F*F) - ((F*F) l) . Consequently,

(£:6) = (£ FF) o) = ((F*F) " £.60)
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and then

S = S[{(e )
(F*F)_lfHZ

= (F(F*F)" f.F(F*F)

= ()" 1),

Now, since Al < F*F < BI, Theorem 4.6.5 proved by Debnath and Mikusinski
(1999) implies

1

/)

which leads to the inequality

S Zi = 11

This proves the theorem. The sequence {¢, } is called the dual frame.

Lemma 6.4.2. Let F be the frame operator associated with the frame
{¢1,¢2,¢3,...} and F be the frame operator associated with the dual frame

{4;174;2,({;3,...}. Then,
F*F=1=F*F.
Proof. Since

F(EF) ™ f = {{(FF) ™ )} = {6} = F 1 64.11)

we have

and

~ -1

F*F = F*F(F*F)" =L

Now, we are ready to state and prove the main theorem, which answers the
question of reconstructability of f from the sequence {( f d),,)}.
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Theorem 6.4.3. Let {d)l, b2, O3, ... } constitute a frame in a Hilbert space H, and
let {cf)l, $2, b3, .. } be the dual frame. Then, for any f € H,

Z 1> &n)n (6.4.12)

and

o0

F =Y {fén)on. (6.4.13)

n=1

Proof. Let f be the frame operator associated with {¢n} and let F be the frame

operator associated with the dual frame {c{;n} Since [ = F*F ,forany f € H, we
have

[ =F*Ff = F*{{f ¢u)} E:f%

by (6.4.10). The proof of the other equality is similar.

Using the definition of mother wavelet (6.1.4), we can introduce a family W of
vectors i, » € L? by

= {Wasl(a. by € B[} (6.4.14)

We can then define a frame operator 7 which transforms a time signal f € L?
into a function 7'f so that

Tf(a.b) = (fVap) = #[fl(a.b). (6.4.15)

Thus, the wavelet transform can be interpreted as the frame operator 7' correspond-
ing to the family W. In view of the measure d | defined in the (@, b) plane by

1
dw = dp(a,b) = PR da db. (6.4.16)
a

we interpret the integral in (6.3.9) as the inner product in a Hilbert space H =
L?*(R?, d ) so that (6.3.9) can be expressed in terms of the norm as

|7 £ = co| 7] (6.4.17)
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forall f € L? and Cy is defined by (6.3.10). Thus, (6.4.17) can be interpreted in
terms of frame. The family W represents a tight frame for any mother wavelet with
frame constant Cy,.

6.5 Orthonormal Wavelets

Since the discovery of wavelets, orthonormal wavelets with good time—frequency
localization are found to play an important role in wavelet theory and have a great
variety of applications. In general, the theory of wavelets begins with a single
function { € L2(R), and a family of functions Vs, , is generated from this single
function \{ by the operation of binary dilations (that is, dilation by 2™) and dyadic
translation of n2™" so that

Ymal(x) = Zm/lef(Z’"(x — ;—m)) m,n €7

=22 (2"x — n), (6.5.1)

where the factor 2”/? is introduced to ensure orthonormality.
A situation of interest in applications is to deal with an orthonormal family

{Un.n}, that is,

wmwmzf Wi () Yt (¥) X = Syt B 65.2)

where m,n, k., £ € Z.
To show how the inner products behave in this formalism, we prove the following
lemma.

Lemma 6.5.1. If{ and ¢ € L*(R), then

(Wmes dme) = (ke dne), (6.5.3)
forallm,n,k, L €Z
Proof. we have
(wkwﬁzf (2" — k) p(2"x — €) dx

which is, by letting 2" x = 2"¢,

= /oo 22"t — k) ¢(2"t — £) dt

o0

= (\-'fn,kv ¢n,€>-



6.5 Orthonormal Wavelets 365

Moreover,

[l = 1wl

Definition 6.5.1 (Orthonormal Wavelet). A wavelet v € L?*(R) is called
orthonormal if the family of functions s, , generated from { by (6.5.1) is
orthonormal.

As in the classical Fourier series, the wavelet series for a function f € L?(R)
based on a given orthonormal wavelet { is given by

(o]

f) =" CmaYma(), (6.5.4)

mn=—0oo

where the wavelet coefficients ¢,, , are given by

Cmp = (f; l!jm,n> (655)

and the double wavelet series (6.5.4) converges to the function f in the L?-norm.

The simplest example of an orthonormal wavelet is the classic Haar
wavelet (6.2.6). To prove this fact, we note that the norm of s defined by (6.2.6) is
one and the same for {,,, , defined by (6.5.1). We have

(Wi W) = /oo 22 (2" x — n) 242 (26 x — £) dx

—0o0

which is, by the change of variables 2" x —n =1t,
o0
= ok/2 2—’"/2/ YO W2 +n) —£) dt. (6.5.6)
—0o0
For m = k, this result gives

(W W) = / WO+ 1 — 0 di =805t = Su, 65.7)

where Y(1) #0in0<7r<1landy(t —€—n)#0inl—n<t<1+£—n,and
these intervals are disjoint from each other unless n = .

We now consider the case m # k. In view of symmetry, it suffices to consider
the case m > k. Putting r = m — k > 0 in (6.5.6), we can complete the proof by
showing that, for k # m,

(W, Ui s) = 2772 / YO (2"t +5)dt =0, (6.5.8)

where s =2"'n—{ € Z.
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In view of the definition of the Haar wavelet {r, we must prove that the integral
in (6.5.8) vanishes for k # m. In other words, it suffices to show

1

3 1
/ (2t +5) dt—/ W(2't +5)dr =0,
0 2

Invoking a simple change of variables, 2"t + s = x, we find

a b
/ P(x)dx —/ Y(x)dx =0, (6.5.9)

wherea = s +2 " 'andb =5 + 2"

A simple argument reveals that [s, a] contains the support [0,1] of {r so that the
first integral in (6.5.9) is identically zero. Similarly, the second integral is also zero.
This completes the proof that the Haar wavelet s is orthonormal.

Example 6.5.1 (Discrete Haar Wavelet). The discrete Haar wavelet is defined by

Y (1) = 2724 (27"1 — )
I, 2"n <t <2"p42m!
=91 —1,2"n + 2" <t < 2"p 427, (6.5.10)
0, otherwise

where s is the Haar wavelet defined by (6.2.6).

Since {4 (¢)} is an orthonormal set, any function /" € L*(R) can be expanded
in the wavelet series in the form

[e.]

fO =" {f Vma) Yma. 6.5.11)

mn=—0oo

where the coefficients ( f, U.,) satisfy (6.4.4) with A = B = 1. To prove this, we
assume

1
a,0<t< -

JOERM 1<t<1 (6.5.12)
'35 =

0, otherwise
Evidently. it follows that

(fiUma) =0, form <0 orn#0,
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and
1
(fiWo0) = 5 (@=b), (6.5.13)
s b
(filrio) = - (2 + 5) : (6.5.14)
1
(fil0) = 3 (% —) (6.5.15)
_m [ a b
(fiUmo) =2 (5 + 5) . (6.5.16)
Consequently.

1 1
—(a—b), 0<t<-=

 Wim0) Woo(t) = (6.5.17)
(f ) 21 2

—yla—-b). 5 =t<l,

and form > 1,

(s Umo) Umo(r) = 27" (g + é) ., 0<r<1. (6.5.18)

Finally, it turns out that

1 1 N 1
%0 Sla=bh+@+by 2™ 0=t<s
Zfl!jmo l["mO(t)— "= 1
m=0 ——(a—b)+ (a—}—b)ZZ_’” L
2
(6.5.19)
Since Z 27" =1, result (6.5.19) reduces to
m=0
1
s a,0<t<—
Y (fbmo)mo®) =1 2 (6.5.20)
m=0 b, E <t<l1

which confirms (6.5.12).
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Moreover, it follows from (6.5.13) and (6.5.16) that

Z fllfmoi —|(f‘~lf00| +Z\f¢mo
m=0

m=1

Il
= I/~
SRS
|
| S
N—
NS
_l’_
A~/
SRS
_l’_
| S
N——
N

(@>+b%) = | fX)dr. (6.5.21)

This verifies (6.4.4).

Example 6.5.2 (The Discrete Shannon Wavelet). The Shannon function {y whose
Fourier transform satisfies

U(w) = 1 (o), (6.5.22)

where [ = [-2 ,— JU[ ,2 ], is called the Shannon wavelet. Thus, this wavelet
P (¢) can directly be obtained from the inverse Fourier transform of {r(w) so that

1 S N
W =5 /_ ¢ () dw

o
1 - 2
= —[/ e’“’tdw—i—/ e'“”dwi|
2 /=

. t
sin | —
1 ( ) 3¢
= —(sin2 r—sin 1) = _\2/ cos [ — ). (6.5.23)
t ot 2
2
This function {r is orthonormal to its translates by integers. This follows from
Parseval’s relation

1,4 A
(W), Wt —m)) = 5= (V. e

- /_ Z () " Jw) do

1 [ .
= 2—/_2 e"dw = 8,.

It can easily be verified that the wavelet basis is now given by

1
U (1) = 272 (z—mz —n— E) , m,neZ,
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v() v(o)

/\nr\;[

AV VAV,
=3-2-1\ (0 1 2°3

v
e

-Zﬁ --rr 0 n 2n

Fig. 6.10 The Shannon wavelet and its Fourier transform

1
where s (Z —n— 5) , n € Z is an orthonormal basis for wy and s, ,(¢), n € Z

is a basis for functions supported on the interval
[_2—7!-‘1‘1 , _2—m ] U [2—m , 2—m+l ] .

Since m may be an arbitrarily large integer, we have a basis for L?(R) functions.
Both y(¢) and \L(w) are shown in Fig. 6.10.

It may be observed that the Shannon wavelet is not well localized (noncompact)
in the time domain and decays as fast as t~!, and hence, it has poor time localization.
However, its Fourier transform is band-limited (compact support) and hence has
good frequency localization. These features exhibit a striking contrast with the Haar
wavelet.

With the dyadic sampling lattice a = 2" and b = 2"n, the discrete Shannon
wavelet is given by

sin {—(2_’”t - n)}
2

5(2_”% — n)

Umalt) =272

cos { 37(2_'”1 - n)} . (6.5.24)

Its Fourier transform is

2M2 exp (—iwn2™), 27" < |w| < 27"

6.5.25
0, otherwise ( )

lT"m,n (w) = {
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Evidently, ﬁfm,n (w) and {'}kj (w) do not overlap for m # k. Hence, by the Parseval
relation (3.4.37), it turns out that, for m # k,

({pm,n, @M> - 0. (6.5.26)

1
(llfm,nv llfk,l) = 2_

For m = k, we have
(Ilfm,m llfk.[) = 2L (qu,n, qjk,l>
1 *© N 2
=2 /_oo exp{—iw2™(n—0)} )11;(2_'”(»)‘ do

= 2L / exp { —io(n— 6)} do = 8,y. (6.5.27)

This shows that {15, ,(¢)} is an orthonormal set.

6.6 Exercises

1. Discuss the scaled and translated versions of the mother wavelet {(t) =
texp (—1?).

2. Show that the Fourier transform of the normalized Mexican hat wavelet

2 . t? . t?
—“ Vexp | ——
i34 a? P 2a?
2.2

\1/((1)) — \/§a5/2 1/4 (1)2 exp (_az(") ) )

3. Show that the continuous wavelet transform can be expressed as a convolution,
that is,

() =

is

Wyl f 1@, b) = (f *ba) (D),

where

1 — t
Vo (1) = Ja v (—6—1) -

What is the physical significance of the convolution?
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4. If f is a homogeneous function of degree n, show that

(%f)(xa, Ab) = N3 (%f)(a,b).

1 43 1 3

5. Prove that the vectors (1,0), | —=, £ ==, —£ form a tight frame
272 2 2

in C.

6. If {¢,} is a tight frame in a Hilbert space H with frame bound A, show that

Alfg) = {f ¢u)dn.g)
n=1

forall f,g € H.

7. If {$,} is a tight frame in a Hilbert space H with frame bound 1, show that {¢, }
is an orthonormal basis in H.

8. Show that

/ *®sin x sin (2x —n) 1 n
. dx = —sin ( ) .
oo X (2x —n) 2 n 2

9. Show that the Fourier transform of one-cycle of the sine function

Sf(t) = sint, le] <
is

];((,0) = ﬁ sin - .

10. For the Shannon wavelet

() =

@)

o )_{ ., <ol <2

0, otherwise

show that its Fourier transform is

11. Show that the Fourier transform of the wavetrain
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11 12
f@) = \/T 5 exp ~502 cos wot

is
f(og) = %[exp{ - 0—22(00—000)2} +exp{ - %2(03+w0)2}:|.

Explain the physical features of f ().

12. Show that the Fourier transform of

1 iwot
f@) = \/T Xa(t) e

is
Flw) = \/Z sin [a(w — wo)]'
(0 — o)

Explain the features of f ().
13. If

1, b§t<b+z
t—>b a
i = —Lb+§§z<b+a

0, otherwise

where a > 0, show that

Al = = /hbﬂ [0 £ (+5) ] a.

14. Suppose | and Vr, are two wavelets and the integral

% i1 () Yo () ;

w=C < 0.
oo |(1)| Y12

If #,,[f1(a,b) and #y,[ f](a, b) denote wavelet transforms, show that

<W¢1 /. W¢zg> = Ctl!z\llz(f’ g)’

where f, g € L*(R).
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15. The Meyer wavelet 1 is defined by its Fourier transform

Lo (o) Do) 2 < <
——exp| — |sind{ —v| —|o| — , — <|o| < —
. NoamaaWw 2 "\2 3 3
V(w) = ) ,
! exp [ 2 cos 3 o] —1 4 <|oo|<8
L i (1) 8
72 0P\ 2 '\2 3 0=

where v is a C¥ or C* function satisfying

0if x<0
1if x>1

o = |
and the property
v(ix) +v(l—x) =1.

Show that (1) = 27™/2{s(27"¢ — n) constitutes an orthonormal basis.



Chapter 7
Multiresolution Analysis and Construction
of Wavelets

Multiresolution analysis provides a natural framework for the
understanding of wavelet bases, and for the construction of new
examples. The history of the formulation of multiresolution
analysis is a beautiful example of applications stimulating
theoretical development.

Ingrid Daubechies

7.1 Introduction

The concept of multiresolution is intuitively related to the study of signals or images
at different levels of resolution—almost like a pyramid. The resolution of a signal
is a qualitative description associated with its frequency content. For a low-pass
signal, the lower its frequency content (the narrower the bandwidth), the coarser is
its resolution. In signal processing, a low-pass and subsampled version of a signal is
usually a good coarse approximation for many real world signals. Multiresolution is
especially evident in image processing and computer vision, where coarse versions
of an image are often used as a first approximation in computational algorithms.

In 1986, Stéphane Mallat and Yves Meyer first formulated the idea of mul-
tiresolution analysis (MRA) in the context of wavelet analysis. This is a new
and remarkable idea which deals with a general formalism for construction of an
orthogonal basis of wavelets. Indeed, MRA is central to all constructions of wavelet
bases. Mallat’s brilliant work (1989a,b,c) has been the major source of many new
developments in wavelet analysis and its wide variety of applications.

Mathematically, the fundamental idea of MRA is to represent a function (or
signal) f as a limit of successive approximations, each of which is a finer version
of the function f. These successive approximations correspond to different levels
of resolutions. Thus, MRA is a formal approach to constructing orthogonal wavelet
bases using a definite set of rules and procedures. The key feature of this analysis
is to describe mathematically the process of studying signals or images at different
scales. The basic principle of the MRA deals with the decomposition of the whole
function space into individual subspaces V,, C V, 4 so that the space V, 4 consists
of all rescaled functions in V,. This essentially means a decomposition of each
function (or signal) into components of different scales (or frequencies) so that an

© Springer Science+Business Media New York 2015 375
L. Debnath, F.A. Shah, Wavelet Transforms and Their Applications,
DOI 10.1007/978-0-8176-8418-1_7
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individual component of the original function f occurs in each subspace. These
components can describe finer and finer versions of the original function f. For
example, a function is resolved at scales At = 20 2= ..,27". In audio signals,
these scales are basically octaves which represent higher and higher frequency
components. For images and, indeed, for all signals, the simultaneous existence
of a multiscale may also be referred to as multiresolution. From the point of view
of practical application, MRA is really an effective mathematical framework for
hierarchical decomposition of an image (or signal) into components of different
scales (or frequencies).

In general, frames have many of the properties of bases, but they lack a very
important property of orthogonality. If the condition of orthogonality

(¢k,4,¢m,n) =0 forall (k,{) # (m,n) (7.1.1)

is satisfied, the reconstruction of the function f from ( f, ¢,, ) is much simpler and,
for any f € L?(R), we have the following representation

f= 2 (£ bma)bomn (7.1.2)
where
dma(x) =27"2¢(27"x —n) (7.1.3)

is an orthonormal basis of V.

This chapter deals with the idea of MRA with examples. Special attention is
given to properties of scaling functions and orthonormal wavelet bases. This is
followed by a method of constructing orthonormal bases of wavelets from MRA.
Special attention is also given to the Daubechies wavelets with compact support and
the Daubechies algorithm. Included are discrete wavelet transforms (DWTs) and
Mallat’s pyramid algorithm.

7.2 Definition of MRA and Examples

Definition 7.2.1 (Multiresolution Analysis). A MRA consists of a sequence {Vm :
m € Z} of embedded closed subspaces of L2(R) that satisfy the following
conditions:

G - CVLaCV i CVoCVCVaC - CVy C Vg1,

o0 o0
i) | J Vwisdensein L*(R), thatis, | ] Vi, = L*(R),

m=—00 m=—00
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(iii) ﬂ Vi = {0},

@iv) f(x) € V, if and only if f(2x) € V)4, forall m € Z,
(v) there exists a function ¢ € Vg such that {¢po, = ¢(x —n).,n € Z} is an
orthonormal basis for 1, that is,

AP = [ reofax = S fbolf  forall £ e Vo

n=—0o0

The function ¢ is called the scaling function or father wavelet. If {Vm} is a
multiresolution of L?(R) and if Vj is the closed subspace generated by the integer
translates of a single function ¢, then we say that ¢ generates the MRA.

Sometimes, condition (v) is relaxed by assuming that {q)(x —n), n € Z} is
a Riesz basis for Vj, that is, for every f € 1}, there exists a unique sequence
{c,,}zo:_oo € £*(Z) such that

(o]

f0 =Y co—n

n=—0o0o

with convergence in L?(R) and there exist two positive constants A and B
independent of f € 1} such that

4 Z el < 717 < B Z jea’

n=—0o0 n=—0o0

’

where 0 < A < B < o0. In this case, we have a MRA with a Riesz basis.

Note that condition (v) implies that {¢(x — n), n € Z} is a Riesz basis for V;
withA = B = 1.

Since ¢o,(x) € Vp for all n € Z. Further, if n € Z, it follows from (iv) that

dmn(x) =2"2$(2"x —n), m e Z (7.2.1)

is an orthonormal basis for V.
Consequences of Definition 7.2.1.

1. A repeated application of condition (iv) implies that f € V,, if and only if
f(2Fx) € Vyyi for all m,k € Z. In other words, f € V,, if and only if
f(@2™x) € Vyforallm € Z.

This shows that functions in V,, are obtained from those in Vj through a
scaling 27™. If the scale m = 0 is associated with V}, then the scale 27 is
associated with V,,, Thus, subspaces V,, are just scaled versions of the central
space Vj which is invariant under translation by integers, that is, 7, Vo = V} for
alln € Z.
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2. It follows from Definition 7.2.1 that a MRA is completely determined by the
scaling function ¢, but not conversely. For a given ¢ € V;, we first define

oo oo

W= )= > cidon= Y. cadlx—n):{cs} (@) .

n=—0o0 n=—0o0

Condition (iv) implies that V) has an orthonormal basis {(bo,n} = {d)(x - n)}.

o0
Then, V; consists of all functions f(x) = Z cnd(x — n) with finite energy
~ n=-—00
2 2 - .
|| fH = Z |cn| < 00. Similarly, the space V,, has the orthonormal basis

n=—o0
bm.n given by (7.2.1) so that f,,(x) is given by

oo

S =" Con G (x) (7.2.2)

n=—oo

with the finite energy

= 3 Jeml <o

n=—0oo

Thus, f,, represents a typical function in the space V},,. It builds in self-invariance
and scale invariance through the basis {d)m,,,}.

3. Conditions (ii) and (iii) can be expressed in terms of the orthogonal projections
P,, onto V,, , thatis, forall f € L?(R),

lim P,f =0 and lim P,f = f (7.2.3a,b)
m—>—+00

m—>—0Q

The projection P, f can be considered as an approximation of f at the scale
27" Therefore, the successive approximations of a given function f are defined
as the orthogonal projections P,, onto the space V},:

oo

Puf = > (f bmn)bmn: (1.2.4)

n=—oo

where ¢, ,(x) given by (7.2.1) is an orthonormal basis for V.

4. Since Vy C V1, the scaling function ¢ that leads to a basis for V} is also V/;. Since
¢ € Vi and ¢y, (x) = +/2(2x — n) is an orthonormal basis for V;, ¢ can be
expressed in the form
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o0

) = Y i da(x) =v2 D crd(2x —n), (7.2.5)

n=—0o0 n=—0oo

where

en = (¢, $14) and Z |C,1|2 =1.

n=—0oo

Equation (7.2.5) is called the dilation equation. It involves both x and 2x and is
often referred to as the two-scale equation or refinement equation because it displays
®(x) in the refined space V. The space V; has the finer scale 27! and it contains
¢(x) which has scale 1.

All of the preceding facts reveal that MRA can be described at least three ways
so that we can specify

(a) the subspaces V,,,
(b) the scaling function ¢,
(c) the coefficient ¢, in the dilation equation (7.2.5).

The real importance of a MRA lies in the simple fact that it enables us to construct
an orthonormal basis for L?(R). In order to prove this statement, we first assume that
{Vu}is a MRA. Since V,,, C V,,, 11, we define W, as the orthogonal complement of
Vin in V,, 41 for every m € Z, so that we have

Vm-‘rl = Vu @ W

= (Voer D Worr ) D Wi

= 'V'O'@WO@Wl@---@Wm
@ (’é Wm) (7.2.6)

and V,, L W, forn # m.
o0

Since U V,, is dense in L?(R), we may take the limit as m — oo to obtain

m=—00

Vo @ (é Wm> = L*(R).
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Similarly, we may go in the other direction to write

Vo=V @W.,
= (Vo2 D Woo) W,

Vo @ W @ W,

We may again take the limit as m — oo. Since ﬂ Vi = {0}, it follows that

meZ
V_ = {0}. Consequently, it turns out that

P wn=L'®). (7.2.7)

We include here a pictorial representation of V; = V, @ W, in Fig.7.1.

Finally, the difference between the two successive approximations P, f and
P, 41 f is given by the orthogonal projection Q,, f of f onto the orthogonal
complement W), of V,,, in V;,, 4 so that

me = Pm+1f_me‘

It follows from conditions (i)—(v) in Definition 7.2.1 that the spaces W,, are also
scaled versions of W, and, for f € L*(R),

feW, ifandonlyif f(Q2™x)e W, forallm €Z, (7.2.8)
and they are translation-invariant for the discrete translations n € Z , that is,

feW, ifandonlyif f(x—n)e W,

A |UI|

m

vix+2) [ylx+1)| wlx) |w(x-1)

0(x+2) | o(x+1) o(x)[ o(x-1) | 0(x-2)

-2 3 -1 1 o0 1 1 2

a2 . oo 3
2

3
2 2 2 2 2

Fig. 7.1 Pictorial representation of Vi = Vo D W,
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and they are mutually orthogonal spaces generating all of L?(R),

W, LWy form # k,

meZ

Moreover, there exists a function {r € W such that s, (x) = ¥(x —n) constitutes
an orthonormal basis for W,. It follows from (7.2.8) that

Yma(X) = 222" x —n), forneZ (7.2.10)

constitute an orthonormal basis for W,,. Thus, the family {,, ,(x) represents an
orthonormal basis of wavelets for L?(RR). Each s, ,(x) is represented by the point

1
(p,s), where p = (n + 5) 2™ and s = 2™, (m,n € Z) in the position-scale

plane, as shown in Fig. 7.2. Since scale is the inverse of the frequency, small scales
2™ (or high frequencies 27") are near the position axis.

Example 7.2.1 (Characteristic Function). We assume that ¢ = Y [o,1] is the charac-
teristic function of the interval [0, 1]. Define spaces V,, by

o0

Z ck b ek} € C(D)y

k=—00

Vi =

where
S (x) =272 (27" x — n).

The spaces V), satisfy all the conditions of Definition 7.2.1, and so, {Vm} is a MRA.

v Vi V1o Vi,

. 1 . " .

"UO.-" wl-! I'FI -1 wou w(’-l wl}.‘

. . . . .
-1

Woe Voas Vaa Voaa Voo Vool Vao Vo Vo Voa Voo Vo

B ||
|

t2
3 | LA

Fig. 7.2 Dyadic grid representation
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Example 7.2.2 (Piecewise Constant Function). Consider the space V), of all func-
tions in L2(IR) which are constant on intervals [2_’”n, 27"™(n + 1)], where n € Z.
Obviously, Vi, C V41 because any function that is constant on intervals of length
27 is automatically constant on intervals of half that length. The space 1} contains

all functions f(x) in L?(R) that are constant on n < x < n + 1 . The function

. . n n—+1
f(2x) in V7 is then constanton — < x <

. Intervals of length 27" are usually

referred to as dyadic intervals. A sample function in spaces V), is shown in Fig. 7.3.

Clearly, the piecewise constant function space V,, satisfies the conditions (i)—(iv)
of a MRA. It is easy to guess a scaling function ¢ in V which is orthogonal to its
translates. The simplest choice for ¢ is the characteristic function so that ¢(x) =
X[0.11(x). Therefore, any function f* € V; can be expressed in terms of the scaling
function ¢ as

(o]

f)= Y endlx—n).

n=—oo

Thus, the condition (v) is satisfied by the characteristic function ¥ [o,1] as the scaling
function. As we shall see later, this MRA is related to the classic Haar wavelet.

A
feV, fev%
1 1 1 1 L I,__.‘- 1 1 | 1 1 ‘-
o 1 2 3 4 5 6 6 1 2 3 4 3
-~
feV
T :.‘r
011
2

Fig. 7.3 Piecewise constant functions in V_;, V) and V;
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7.3 Properties of Scaling Functions and Orthonormal
Wavelet Bases

Theorem 7.3.1. For any function & € L2*(R), the following conditions are
equivalent.

(a) The system {¢0,n =¢(x—n), ne Z} is orthonormal.

O . 2
(b) Z ‘¢(w+2k )‘ = 1 almost everywhere (a.e.).

k=—00

Proof. Obviously, the Fourier transform of ¢¢,(x) = d(x —n) is

on = exp(—inw) h(w).
In view of the general Parseval relation (3.4.37) for the Fourier transform, we have
(0.0 dom) = (dio,o, $om—n)
3 (d)o,o, ¢0,m—n>
1 [ n 2
— / exp{ —i(m—n)o}. ‘d)(w)‘ dw
2 J

e8]

2 (k+1) .
Z /Zk exp{—i(m—n)w}‘(l)(w)rdw

k=—

ZL/OZ exp{—i(m—n)w}kioo’&)(w—i-Z k)‘zdw.

|
_

~l

Thus, it follows from the completeness of { exp(—inw),n € Z} in L2(0,2 ) that

(¢O,n ) ¢O,m) = 8n,m

if and only if

o0
R 2
Z ‘c{)(w +2 k)‘ =1 almost everywhere.

k=—00

Theorem 7.3.2. For any two functions ¢, » € L*(R), the sets of functions {d)o,n =
o(x —n),n € Z} and {llf()m =Y(x—m),me Z} are biorthogonal, that is,

(¢0,n, \lfo,m) =0, foralln,m € Z,
if and only if

0 —
Z (T)(OJ +2 k)Y(w+2 k)=0 almost everywhere.

k=—o00
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Proof. We apply arguments similar to those stated in the proof of Theorem 7.3.1 to
obtain

(¢O,na l!IO,m> = (d)0,0a l!IO,m—n>
N N
=5 <¢0,o, llio,m—n>

1o LT
= 2—/_00 exp {i (n —m)o} d(w) P(w)dw

1 & 2kt -
- z_kzz_oo /2 . {i(n —m)o} d(0) U(w) do
- zi /02 exp {i (n — m)o) Lioo&)(w +2 k) d(o+2 k)] Jo.
Thus,
($ons Wom) =0 forall n and m
if and only if

0 —
Z (13(03 +2 k) flf(w +2 k)=0 almost everywhere.

k=—00

We next proceed to the construction of a mother wavelet by introducing an
important generating function 7i1(w) € L2[0,2 ] in the following lemma.

Lemma 7.3.1. The Fourier transform of the scaling function ¢ satisfies the follow-
ing conditions:

i ‘&)(u) +2 k)‘2 =1 almost everywhere, (7.3.1)
k=—00
b(w) = (;) b (%) : (1.3.2)
where
m(w) = % n;oo cn exp(—inw) (7.3.3)

isa2 - periodic function and satisfies the so-called orthogonality condition

@)’ + [+ )P =1 ae. (7.3.4)
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Remark. The Fourier transform (13 of the scaling function ¢ satisfies the functional
equation (7.3.2). The function m is called the generating function of the MRA.
This function is often called the discrete Fourier transform of the sequence {c,}.
In signal processing, 1 (w) is called the transfer function of a discrete filter with
impulse response {c, } or the low-pass filter associated with the scaling function ¢.

Proof. Condition (7.3.1) follows from Theorem 7.3.1.
To establish (7.3.2), we first note that ¢ € V; and

bra(x) = V2 $(2x —n)

is an orthonormal basis for V). Thus, the scaling function ¢ has the following
representation

O() =2 > cid(2x —n). (7.3.5)

n=—0oo

o0
where ¢, = (¢, ¢1,,) and Z icn|2 < 00.
n=-—00
The Fourier transform of (7.3.5) gives

d(w) = % i Co eXp (—%) é (%) — i (%) é (%) . (1.3.6)

n=—0o0

This proves the functional equation (7.3.2).

To verify the orthogonality condition (7.3.4), we substitute (7.3.2) in (7.3.1) so
that condition (7.3.1) becomes

| = i ‘&(wu k))2
k=—00
(G ) o5+ )]

o0
This is true for any o and hence, replacing w by 2w gives

1= Y Jh+k ) )&)(w—i—k ))2. (1.3.7)

k=—00

We now split the above infinite sum over k into even and odd integers and use the
2 -periodic property of the function 772 to obtain
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1= Y lie+2 bl [bo+2 k)(2+ > o+ @k+ 1 ) b0+ @+ 1) )(2

k=—o00 k=—0o0

= Y Jaf ‘(T)(m-l-Z k)‘2+ 3 o + )!2‘$(m+ + 2k )(2
k=—o0

k=—0o0

= @)’ + |+ I

by (7.3.1) used in its original form and w replaced by (o + ). This leads to the
desired condition (7.3.4).

Remark. Since ‘&)(O)) =150, m(0) =1 and m( ) = 0. This implies that /7 can
be considered as a low-pass filter because the transfer function passes the frequen-
cies near w = 0 and cuts off the frequencies near w =

Lemma 7.3.2. The function qB can be represented by the infinite product

(w) = ]o_o[m(w) (7.3.8)

2k
k=1

Proof. A simple iteration of (7.3.2) gives

o= (2) () = (D) [ 6(2)]

which is, by the (k — 1)th iteration,

k
LD A [
=117 (5) ¢ () (739
Since (13(0) = 1 and cf)(w) is continuous, we obtain
A A
i b(3) =60 =1

The limit of (7.3.9) as k — oo gives (7.3.8).
We next prove the following major technical lemma.

Lemma 7.3.3. The Fourier transform of any function f € Wy can be expressed in
the form
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A N o) . /o N
F =iwen(2) i (5 )a(3). (7.3.10)
where V(w) isa?2 -periodic function and the factor exp (%) mn (g + ) $ (;)

is independent of f.

Proof. Since f € W, it follows from V; = V, @ W, that f € V] and is orthogonal
to Vp. Thus, it follows from V; = Vy & W, that f € V; and is orthogonal to V.
Thus, the function f can be expressed in the form

oo

f@ = > awda)=v2 Y cd@x—n), (7.3.11)

n=—oo n=—0oo

where ¢, = (f, G1.a).
We use an argument similar to that in Lemma 7.3.1 to obtain the result

f=55 3 aea(-50)6(3) =i (5)8(5).  aam

where the function 7 f* is given by

% > cnexp(—inw). (7.3.13)

g (w) =

Evidently, 711 y is a 2 -periodic function which belongs to L*(0,2 ). Since f LV,
we have

/00 f(w)g(w) exp(inw)dw =0

and hence,
0o o R —
/ { Y fe+2 bdw+2 ke do =0. (7.3.14)
TP | k=—00
Consequently,
Y Ffe+2 Bdw+2 k=0 (1.3.15)
k=—00

We now substitute (7.3.12) and (7.3.2) into (7.3.15) to obtain
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o

o= £ w3+ DA (G o)

k=—00

which is, by splitting the sum into even and odd integers k and then using the 2 -
periodic property of the function 71,

0= Y i (L2 )7 (L2 1) 5 (22 #)f

k=—00

+ i n%f(%+ 42 k)%(%+ 42 k)‘qB(%Jr +2 k)‘2
k=—o00

= (5)7(5) X

b(G+2 1))

NN CERICE DY

2

3

qB(%Jr +2 k)

which is, due to orthonormality of the system {¢o(x)} and (7.3.1),
~ W\ %= /® N (O] — /®
={mf(5)m(§)+mf(§+ )m(5+ )}1 (7.3.16)
Finally, replacing w by 2w in (7.3.16) gives
i p(w) i(w) + (0 + Yo+ ) =0 ae. (7.3.17)
Or, equivalently,

' i) o+ )|,

—ip(+ ) (o)
This can be interpreted as the linear dependence of two vectors
(m (@), = (o + )) and (%(w + ), mT(w)).
Hence, there exists a function X such that

() = Mo) (o + ) ae. (7.3.18)
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Since both m and nA1f are 2 -periodic functions, so is " Further, substitut-
ing (7.3.18) into (7.3.17) gives

Mo)+ Mo+ )=0 ae. (7.3.19)
Thus, there exists a 2 -periodic function v defined by
Mo) = exp(io) P2w). (7.3.20)

Finally, a simple combination of (7.3.12), (7.3.18), and (7.3.20) gives the desired
representation (7.3.10). This completes the proof of Lemma 7.3.3.

Now, we return to the main problem of constructing a mother wavelet {r(x).
Suppose that there is a function { such that {xpo,n ‘n e Z} is a basis for the space
Wy. Then, every function f € W has a series representation

f) = > hboa= Y hab(x—n), (7.3.21)
where
Z |h,,|2 < 00.

Application of the Fourier transform to (7.3.21) gives
~ i . A~
/(o) = ( > e"”w) P() = h(®) P(o). (7.3.22)
n=—00

where the function 7 is

};(w): Z hy exp(—inw), (7.3.23)

n=—0oo

and it is a square integrable and 2 -periodic function in [0,2 ]. When (7.3.22) is
compared with (7.3.10), we see that {/(w) should be

J(w) = exp (%) w (% n ) b (%) (7.3.24)
e (%) é (;) : (7.3.25)
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where the function 72; is given by
() = exp(iw) Ao + ). (7.3.26)
Thus, the function 7711 (w) is called the filter conjugate to 71(w) and hence, mi1 and

m are called conjugate quadratic filters in signal processing.
Finally, substituting (7.3.3) into (7.3.24) gives

@(w)zexp(%")- % > aewlin(z+ )}o(3)

n=—0o0

:% Z E,,exp|:in +i(n+1)§i|q;<%)

n=—0o0

which is, by putting n = —(k + 1)

= % > E(=Dfexp (—’]{Tw) ¢(§) (7.3.27)

Invoking the inverse Fourier transform to (7.3.27) with k replaced by n gives the
mother wavelet

Y =v2 Y (=) e,mih2x —n) (7.3.28)
=v2 )" dyo2x —n). (7.3.29)

where the coefficients d,, are given by
d, = (-1)"te_,_. (7.3.30)

Thus, the representation (7.3.29) of a mother wavelet { has the same structure as
that of the father wavelet ¢ given by (7.3.5).

Remarks. 1. The mother wavelet {r associated with a given MRA is not unique
because

dy = (=1)""" Coy_i1oa (7.3.31)

defines the same mother wavelet (7.3.28) with suitably selected N € Z. This
wavelet with coefficients d,, given by (7.3.31) has the Fourier transform
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J(w) =expl N = 1)2 %(9 n ) $(9) . (7.3.32)
2 2 2
The nonuniqueness property of {r allows us to define another form of s, instead
of (7.3.28), by
o0
V() =v2 Y dyd(2x—n). (7.3.33)
n=—oo
where a slightly modified d,, is

dy = (=1)" 1. (7.3.34)

In practice, any one of the preceding formulas for d,, can be used to find a mother
wavelet.
2. The orthogonality condition (7.3.4) together with (7.3.2) and (7.3.24) implies

)&(w))z + )fb(w)r = ¢ (%) ‘2. (7.3.35)

Or, equivalently,
A~ 2 A 2 N 2
‘q)(z%)‘ +‘1!}(2m03)‘ — ‘q)(zm—lw)‘ . (7.3.36)

Summing both sides of (7.3.36) from m = 1 to oo leads to the result
R 2 . 2
)¢(w)‘ = )11;(2’”(»)‘ . (7.3.37)
m=1

3. If ¢ has a compact support, the series (7.3.29) for the mother wavelet s
terminates and consequently, {r is represented by a finite linear combination of
translated versions of ¢(2x).

Finally, all of the above results lead to the main theorem of this section.

Theorem 7.3.3. If {V,,, ne Z} is a MRA with the scaling function §, then there is
a mother wavelet \y given by

V) =v2 > (D" d2x —n), (7.3.38)

n=—0oo

where the coefficients c, are given by
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=, 1) = ﬁ/_ o (x) p(2x —n) dx. (7.3.39)

That is, the system {‘-'fm,n (x):m,n € Z} is an orthonormal basis of L*(R).

Proof. First, we have to verify that {{,, ,(x) : m,n € Z} is an orthonormal set.
Indeed, we have

/_:q;(x—k)mdx — zi/_m exp[ — iw(k — )] ‘\L(w)‘zdw
=—/ exp —iw(k— 6) Z ‘1!}(00+2 k)‘ dow
k=
i (3 + &+ )\ZH(?” )|

which is, by splitting the sum into even and odd integers k,

i )q}(w +2 k))2
k=—o00

(o]

m(§+(zk+1) )‘Z‘fp(gwc )‘2

m(%+(2k+2) ))Z)III(%-F(ZIC-‘F 1) ))2

(3 + \Z\¢ 32 )|

3 cﬁ( +Qk+1) )‘

i (; n ))2 —1 by (73.4)

Thus, we find
/ Y — k) PO — D dx = 8.
—00

This shows that {{,, : m.,n € Z} is an orthonormal system. In view of
Lemma 7.3.2 and our discussion preceding this theorem, to prove that it is a basis, it
suffices to show that function ¥ in (7.3.20) is square integrable over [0,2 ]. In fact,
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/02 () Pdw = 2/0 )X(w)‘zdw

:2/0 )X(w)‘2{|n%(w+ )+

n%(w)‘z} dow, by(7.3.4)

2/02 ‘i(w)‘2|m(w+ )dw

2

= / RO by (7.3.18)
0

=2 Yl a={fow)

=2 |/ <o

This completes the proof.

Example 7.3.1 (The Shannon Wavelet). We consider the Fourier transform (f) of a
scaling function ¢ defined by

~

d(w) = x- , 1(®)
so that

1 ; i
d(x) = 2—/ e dp = 2 L

X

This is also known as the Shannon sampling function, Both ¢(x) and (f)(oo) have
been introduced in Chap.3 (see Fig.3.12 with wy = ). Clearly, the Shannon
scaling function does not have finite support. However, its Fourier transform has
a finite support (band-limited) in the frequency domain and has good frequency
localization, Evidently, the system

sin (x —k)

kel
a—k = €

dok(x) = d(x —k) =
is orthonormal because

(o boe) = ((130,10 @o,z)

1

7
1 [ =

— 5 [ @ h@ do

1 o0
= 2—/ exp{—i(k —O)w}dw = 8.



394 7 Multiresolution Analysis and Construction of Wavelets

In general, we define, for m = 0,

Z Ck —Sin(x(x_;)k) : Z |ck|2 < oo§ .

k=—00 k=—00

and, for otherm # 0, m € Z,

Vi =

2mx — k)

o0 /2 . _ o0
Z . 2M/2gin - (2" x k): Z |ck|2<oo}.

k=—o00 k=—o00

It is easy to check that all conditions of Definition 7.2.1 are satisfied. We next
find out the coefficients c; defined by

¢k = (b, b1a) = «/5/_00 sin x(x) sin @y—k)

2x —k)
1
?, k=0
2 k
—kSln(T),k#O

Consequently, we can use the formula (7.3.38) to find the Shannon mother wavelet

Y = Y ()" e 9@x—n)

1 sin 2x+1) 2 (-1 n \ sin (2x —n)
R — + _ i ——
> )

/2 @2x+1)

)n—l
n+1) B (7 (2x —n)

Obviously, the system {{,, : m,n € Z} is an orthonormal basis in L*(R). It is
known as the Shannon system.

Theorem 7.3.4. If ¢ is a scaling function for a MRA and m(w) is the associated
low-pass filter; then a function s € W, is an orthonormal wavelet for L*>(R) if and

only if

Ji(w) = exp (%) ) (% n ) ¢(%) (7.3.40)

for some 2 -periodic function v such that |\7(03)i =1.

Proof. 1t is enough to prove that all orthonormal wavelets v € W, can be
represented by (7.3.40). For any \v € W), by Lemma 7.3.4, there must be a 2 -
periodic function v such that
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J(w) = exp (%) o(w)%(g n ) ¢(§) .

If s is an orthonormal wavelet, then the orthonormality of {(x — k),k € Z}
leads to

=y ‘ﬁ;(w+z k)‘2
k=—00
= [p@)|* Y-

k=—00

a(Ge o+ NG+ ol

which is, splitting the sum into even and odd integers k,
o0

= [p(w)’| { >
k

a(Grae + ) [b(5+2 )

00
+ 2
k=—o00

Ao a0 2
m(5+(2k+1) + )} ‘¢(E+(2k+l) )‘ }
which is, by (7.3.1) and the 2 -periodic property of 71,

a(3) o (4l

by (7.3.4).

~ ol

SO

If the scaling function ¢ of an MRA is not an orthonormal basis of 1 but rather
is a Riesz basis, we can use the following orthonormalization process to generate an
orthonormal basis.

Theorem 7.3.5 (Orthonormalization Process). If ¢ € L*(R) and if {$p(x —
n),n € Z} is a Riesz basis, that is, there exists two constants A, B > 0 such that

. 2
0<d< Y )¢(m+2 k)‘ < B < oo, (7.3.41)
k=—00
then {J)(x —n),n € Z} is an orthonormal basis of Vi with
d()

S

(w) = (7.3.42)

where the function d is
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d)= Y [dw+2 B (7.3.43)

k=—00

Proof. Tt follows from inequality (7.3.41) that ¢ € L*(R). It also follows
from (7.3.42) that

e’} A 2
3 )¢(w +2 k)) —1.
k=—00
We consider a 2 -periodic function g defined by
1

VP (o)

so that g can be expanded as a Fourier series

g(w) =

g@) = > grexp(—ikw).

k=—00

The inverse Fourier transform gives g in terms of the Dirac delta function of the
form

gy =Y &d@—k.

k=—00

Applying the convolution theorem to (7.3.42) gives

Bx) = d(x) * g(x) = /_ o(r — 1) g(1) di

[ o0 ¥ ase-ka

k=—o00
00

Y gk dx—k).

k=—00

This shows that {¢(x —n),n € Z} belongs to V. Thus, the function ¢ satisfies
condition (b) of Theorem 7.3.1. Therefore, {&)(x —n),n € Z} is an orthonormal set.

It is easy to show that the span of {J)(x —n),n € Z} = TV, is the same as
the span of {d)(x —n),n € Z} = V,. Hence, the MRA is preserved under this
orthonormalization process.
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We describe another approach to constructing a MRA which begins with a
function ¢ € L?(R) that satisfies the following relations

o) = Y ad@x—n). Y el <o (7.3.44)
and
0<a< Y }qB(w 2 k)‘2 < B < oo, (7.3.45)

k=—00

where A and B are constants.

We define V} as the closed span of {c{)(x —n),n € Z} and V), as the span of
{Gma(x), n € Z}. It follows from relation (7.3.45) that {V,,} satisfies property (i)
of the MRA. In order to ensure that properties (ii) and (iii) of the MRA are satisfied,
we further assume that $(w) is continuous and bounded with (13(0) # 0.

If ‘(f)(oo)’ < C(1 + |o|)™> "=, where € > 0, then

b= 3 Jbw+2 bf

k=—00

is continuous.

This ensures that the orthonormalization process can be used. Therefore, we
assume

- b(w) . &(
b(w) = \/% and m(%)z (‘%) (7.3.46a,b)

S

Using (7.3.2) in (7.3.46b) gives

) (9) - &)( ) 2 7 (9) (7.3.47)

We now recall (7.3.24) to obtain Il:f(OJ) as

$(w) = exp (%) 7 (% + ) é (%) : (7.3.48)

which is, by (7.3.46a) and (7.3.47),
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A

w 2 A NN
o) [2G+ )] [der2)0(3)
= exp (7) — — —® (7.3.49)
b (3) b3+ )
We introduce a complex function P defined by
1 o0
P@ =5 ) . zeC (7.3.50)

n=—o0o
where z = exp(—iw) and |z| = 1.
o0
We assume that Z \cn| < oo so that the series defining P converges

n=-—00
absolutely and uniformly on the unit circle in C. Thus, P is continuous on the unit

circle, |z] = 1.

1 :
Since P(z) = 3 Z cp e = m(w), it follows that

n=—oo

(o + )=% D e e =% > c(=2" = P(=2). (1351)

n=——o0 n=—00
Consequently, the orthogonality condition (7.3.4) is equivalent to

P+ |P(-2) =1. (7.3.52)
Lemma 7.3.4. Suppose ¢ is a function in L*(R) which satisfies the two-scale

relation

oo oo

)= Y ad@x—n) with || < o0. (7.3.53)

n=—oo n=—0oo

(i) If the function P defined by (7.3.50) satisfies (7.3.52) for all z on the unit circle,
|lz| = 1, and if $(0) # O, then P(1) = 1 and P(—1) = 0.
(ii) If P(—1) = 0O, then ¢(n) = 0 for all nonzero integers n.

Proof. We know that the relation

d(w) = i (%) ¢(§) =P (e%) § (%) (7.3.54)

holds for all ® € R. Putting ® = 0 leads to P(1) = 1. It follows from Eq. (7.3.52)
with z = 1 that P(—1) = 0.
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The proof of part (ii) is left to the reader as an exercise.

We close this section by describing some properties of the coefficients of the
scaling function. The coefficients ¢, determine all the properties of the scaling
function ¢ and the wavelet function . In fact, Mallat’s multiresolution algorithm
uses the ¢, to calculate the wavelet transform without explicit knowledge of .
Furthermore, both ¢ and { can be reconstructed from the ¢, and this in fact is
central to Daubechies’ wavelet analysis.

Lemma 7.3.5. If ¢, are coefficients of the scaling function defined by (7.3.5),
then

() Y =2 (ii) Y (="es =0,

n=—0oo n=—0oo

o0 1 o0
(iii) Y e = il > s,

n=—oo n=—0oo

(v) > (=D)'n"c,=0 form=0,1.2.....(p—1).

n=—0o0

Proof. 1t follows from (7.3.2) and (7.3.3) that &)(0) = 0 and m(0) = 1. Putting
o = 01in (7.3.3) gives (i).

Since m(0) = 1, (7.3.4) implies that () = 0 which gives (ii).

Then, (iii) is a simple consequence of (i) and (ii).

To prove (iv), we recall (7.3.8) and (7.3.3) so that

1= ()5 (%)

and

Clearly,
6@ ) =m( )i (3).

According to Strang’s (1989) accuracy condition, (13((1)) must have zeros of the

highest possible order when w =2 ,4 ,6 ,.... Thus,
A . L O\ . /O
b2 ) = i )m(E)m<?)

and the first factor m(w) will be zero of order p at @ = if
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d™ m(w)
—:0 f :0,1,2,..- _17
T orm (p—1
which gives
o
Z ca(=in)"e™™ =0 form=0,1,2,...(p—1).
n=—00

Or, equivalently,

o0
Z (-D)'"n"c, =0, form=0,1,2,...(p—1).

n=—0oo

From the fact that the scaling function ¢(x) is orthonormal to itself in any
translated position, we can show that

o0
Yo oad=1 (7.3.55)

n=—oo

This can be seen by using ¢(x) from (7.3.5) to obtain

/oo $*(x)dx = ZZZcmcn /OO d(2x —m) ¢(2x —n) dx

where the integral on the right-hand side vanishes due to orthonormality unless
m = n, giving

/OO $*(x)dx =2 i cﬁ/oo »>(2x —n) dx

n=—00
= 2 L[,
=2 .= t)dt
g v
whence follows (7.3.55).
Finally, we prove
> ek chran = Bon. (7.3.56)
k

We use the scaling function ¢ defined by (7.3.5) and the corresponding wavelet
given by (7.3.29) with (7.3.31), that is,
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Y) = V2 Y ()" e b(2x —n)

n=—00o
which is, by substituting 2N — 1 —n = k,
o0
=v2 Y (=D pQx +k —2N +1). (7.3.57)
n=—00

We use the fact that mother wavelet {s(x) is orthonormal to its own translate
P (x — n) so that

o
/ Px) Y(x —n)dx = 8o, . (7.3.58)
—00
Substituting (7.3.57) to the left-hand side of (7.3.58) gives
| weve-mas

o0
=2) Y (=Dftme cm/ ®Q2x +k —2N + 1)$Q2x +m — 2N + 1 —2n) dx,
k m —oo

where the integral on the right-hand side is zero unless k = m — 2n so that
o0 1 o0

[ v v max =2 Y0 e, 5 [ oo
—0o0 k —00

This means that

ch Ck4+2n =0 foralln # 0.
k

7.4 Construction of Orthonormal Wavelets

We now use the properties of scaling functions and filters for constructing orthonor-
mal wavelets.

Example 7.4.1 (The Haar Wavelet). Example 7.2.2 shows that spaces of piecewise
constant functions constitute a MRA with the scaling function ¢ = ¥ [o,1). Moreover,
¢ satisfies the dilation equation

O() =v2 > e d(2x —n), (7.4.1)

n=—0oo
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where the coefficients ¢, are given by

o0
en = ﬁ/ d(x) ¢(2x — n) dx. (7.4.2)
—00
Evaluating this integral with ¢ = ¥ o,1) gives ¢, as follows:
1
co =1 =% and ¢, =0for n#0,1.

Consequently, the dilation equation becomes

b(x) = ¢(2x) + ¢(2x — 1). (7.4.3)

This means that ¢p(x) is a linear combination of the even and odd translates of
¢(2x) and satisfies a very simple two-scale relation (7.4.3), as shown in Fig. 7.4.
In view of (7.3.34), we obtain

1

dy=c1=— and dy = —cy=———.

0 1 > 1 0 NG

Thus, the Haar mother wavelet is obtained from (7.3.33) as a simple two-scale
relation

P(x) = ¢(2x) — d2x — 1) (7.4.4)
= X[o,.s](x) - X[.S,l](x)
+1,0<x < %
= 1 (7.4.5)

-1, - <x<1
2

0, otherwise

This two-scale relation (7.4.4) of \{r is represented in Fig. 7.5.

0(x) to(2x) 0(2x-1)
Y L S
| | | |
I = | + I I
| | I
0 s o s T "0 o 1T

Fig. 7.4 Two-scale relation of ¢(x) = ¢(2x) + ¢(2x — 1)
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F 3
i (x) 1 o(2x)
I I — 1
| |
| = | *
| |
L
0 l :—)*x 0 I_ > X 0 : :=)v_r
2| | 2 1
|
-1 — -1+ I.__!
-0(2x-1)

Fig. 7.5 Two-scale relation of ¥ (x) = ¢ (2x) — d(2x—1)

Alternatively, the Haar wavelet can be obtained from the Fourier transform of the
scaling function ¢ = ¥ [o,1] so that

b(®) = K1 (®) = exp (_l7

N[O\ A O
— W (5) - (5) , (7.4.6)
where the associated filter 772(w) and its complex conjugate are given by
N [w o) 1 i
M(w) = exp (—7) cos (5) = 5(1 +e7'?), (7.4.7)
—= [w o) 1 o
m(w) = exp (7) cos (5) = 5(1 + ). (7.4.8)

Thus, the Haar wavelet can be obtained form (7.3.24) or (7.3.40) and is given by
A N io\—/® A O
Y(w) = V(w) exp (7) m (5 + ) ¢ (5)

= V(w) - exp (%) . % (1 —eiTm) &)(%)

where P(w) = —i exp(—iw) is chosen to find the exact result (7.4.4). Using this
value for ¥(w), we obtain
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{p( ) 1&)((») 1e iw $(w)

w)==-¢({=)—=-exp|—— —
2%\2) 7 2P (7 2

so that the inverse Fourier transform gives the exact result (7.4.4) as

Yx) = ¢(2x) — o(2x — 1).

On the other hand, using (7.3.24) also gives the Haar wavelet as
o W\ —=/® A LD
i =e () (2 + ) (3)

- (50)]
exp (@) : % (1 —e%”’)- 2 (7.4.9)

Cosin2 (2
= {iexp (—Q)M {— exp(—im)}. (7.4.10)

This corresponds to the same Fourier transform (6.2.7) of the Haar wavelet (7.4.5)
except for the factor — exp(—i w). This means that this factor induces a translation of
the Haar wavelet to the left by one unit. Thus, we have chosen V() = —exp(—iw)
in (7.3.40) to find the same value (7.4.5) for the classic Haar wavelet.

Example 7.4.2 (Cardinal B-splines and Spline Wavelets). The cardinal B-splines
(basis splines) consist of functions in C"~!(R) with equally spaced integer knots
that coincide with polynomials of degree 7 on the intervals [27"k, w™™ (k + 1)].
These B-splines of order n with compact support generate a linear space V; in
L*(R). This leads to a MRA {V,,,m € Z} by defining f(x) € V,, if and only
if f(2x) € Vit1.

The cardinal B-splines B, (x) of order n are defined by the following convolution
product

Bi(x) = xp.1(x), (7.4.11)
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B,(x) = Bi(x) * By(x) %x---% Bj(x) = Bi(x) * B,—1(x), (n>2), (74.12)
where n factors are involved in the convolution product. Obviously,

00 1 X
B,,(x) Z/ B,—1(x—1) Bl(t) dt = / B,—1(x —1) dt Z/ B,—1(2) dt.
e ‘ (7413

Using the formula (7.4.13), we can obtain the explicit representation of splines
B,(x), B3(x), and B4(x) as follows:

By(x) = / : Bl di = / Xl Xou (1) dt.

Evidently, it turns out that
B;(x) =0 for x <0.

X
Bz(x)=/ dt=x for 0<n<1, (x—-1<0).
0
1
By(x) = dt=2—x for 0<n<2, (—<x-1<1<x).
x—1
By(x)=0 for 2<x, (1<x-—1).
Or, equivalently,
Ba(x) = x xj.1(x) + 2 — ) xp.2(x). (7.4.14)
Similarly, we find

Bs;(x) = /il B>(x)dx.

More explicitly,
B3(x) =0 for x <0.
X x2
B3(x):/ tdt:; for 0<x<1, (x—1<0=<x<I1).
0
1 x
B3(x):/ tdt—l—/ 2—1t)dt for 1<x<2, (0<x—-1<1<x<2
x—1 1

1
25(6x—2x2—3) for 1<x<2.

2
1
B3(x):/ 1(2—t)dt:§(x—3)2 for 2<x<3, (I<x—-1<2<x<23)
e

B3(x)=0 for x>3, (2<x-1).
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Or, equivalently,

x? 1 1
Bi(x) = - Xoat+ 3 (6x —2x% = 3) X[ + 3 (x =3 X3 (7.4.15)

Finally, we have

By(x) = /_1 Bi(t)dt.

By(x) =0 for x—1<-1<x<0.

X l 1
B4(x)=/ (—tz)dt=—x3 for —1<x—1<0<xc<1.
0 2 6

1 x
B4(x)=/ (%tz)dz—i—/l (—%—}—3[—12)(1[ for 1<x<2(0<x—1<1<x<2)

x—1

2 1
=——2x+2x2—§x3 for 1 <x<2.

2 x
3 1
B4(x)=/ (——+3z—12)d1+—/(3—1)2d1 for 1<x—1<2<x<3

x—1 2 2 )2

1
zz(x3—2x2+20x—13) for 2<x<3.

Or, equivalently,

1 1 1
Bi(x) = I3 x3 X[o.1] + 3 (2—6x +6x? —x3) X2+ 3 (x3 —2x24+20x — 13) 2.3
(7.4.16)

In order to obtain the two-scale relation for the B-splines of order n, we apply
the Fourier transform of (7.4.11) so that

)
A iw) S5 i Q)
Bi(w) = exp (—7) (gi) = exp (—7) sinc (5) , (7.4.17a)
2
1 . L
= _—(1 —e_"”) = / e dt, (7.4.17b)
1 0

where the sine function, sinc(x) is defined by

sin x
sinc(x) =4 5 ¥ 7#0 (7.4.18)
1, x=0
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We can also express (7.4.17a) in terms of z = exp (—%) as

~ 1 ~
Bi(w) = 5(1+2) B, (;) . (7.4.19)

Application of the convolution theorem of the Fourier transform to (7.4.12) gives

By(w) = {z% (w)}" — Bi(@)Byr (o), (7.4.20)
Y B CE A e
— M, (%) B, (%) (7.4.22)

where the associated filter M, is given by

i (2)-

1 n
= Z:: ( ) exp( %) , (7.4.23)

which is, by definition of M, (%) ,

Z Cnk exp( ’kz(”) (7.4.24)

k— oo
Obviously, the coefficients ¢, ; are given by

£<n),0§k§n

Cnk = 2n \k

0, otherwise

(7.4.25)

Therefore, the spline function in the time domain is

Bu(x) = V2 cun d(2x —k) = Zzl ( )B (2x — k). (7.4.26)
k=0

This may be referred to as the two-scale relation for the B-splines of order n.
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In view of (7.4.17a), it follows that

n

, (7.4.27)

én(w)‘ = ‘sinc (%)

where sinc(x) is defined by (7.4.18). Thus, for each n > 1, B, (w) is a first order
Butterworth filter which satisfies the following conditions

o d |, d? | -
Bn(O)‘ —1, [— By(@) ] —0, and [— ‘an(w)” £0.
dw w=0 de w=0
(7.4.28)
The graphical representation of B, (x) and their filter characteristics B, (w)‘ are
shown in Figs. 7.6 and 7.7.
It is evident from (7.4.27) that
R ,  sin® (9 + k) sin*" (9)
Bu(w+2 k)‘ = 2 = 2 (7.4.29)

G+0" G

We replace w by 2w in (7.4.29) and then sum the result over all integers k to
obtain

oo oo

. 2 1
B,2w+2 k)| =sin™ o —. (7.4.30)
k=2—:oo ‘ k;oo (('0 + k)2
It is well known in complex analysis that
i ;—cotw (7.4.31)
k=—00 @+ k) ’ h
4+ B(x)
1 B,(x)
| B, ()
l B, (x)
|
|
> X
0 1 2 3 4

Fig. 7.6 Cardinal B-spline functions
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IB(0)|

| Lﬁ,{mﬂ lf?,(mﬂ

w >
0 0

Fig. 7.7 Fourier transforms of cardinal B-spline functions

which leads to the following result after differentiating (2n — 1) times

e 1 1 dZn—l

Z (04 k) - _(Zn —1)! do2—1 (cotw). (7.4.32)

k=—o00

Substituting this result in (7.4.30) yields

>

k=—00

sin?(w) d*!
@2n—1)! do¥!

N 2
B,Qw+2 k)| =

(cot w). (7.4.33)

These results are used to find the Franklin wavelets and the Battle-Lemarié
wavelets.
When n = 1, (7.4.32) gives another useful identity

k;oo (0+2 k2~ 3 cosec” (5) (7.4.34)
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Summing (7.4.29) over all integers k and using (7.4.34) leads to

‘Bl(w—i-z k)‘ = 4sin? ( ) —1. (7.4.35)

Z (w+2 k)

k=—00

This shows that the first order B-spline Bj(x) defined by (7.4.11) is a scaling
function that generates the classic Haar wavelet.

Example 7.4.3 (The Franklin Wavelet). The Franklin wavelet is generated by the
second order (n = 2) splines.

Differentiating (7.4.34) (2n — 2) times gives the result

(o]

1 1 a2 5 (O
_ Ay 7.4,
2 @+2 b2 4@n— 1)l de¥2 [Cosec (2)} (7.4.36)

k=—00

When n = 2, (7.4.36) yields the identity

- 1 1 2 .
k;oo (w+2 k) ( w)4'{1_551n2 (%)} (7.4.37)

2sin —
2

For n = 2, we sum (7.4.29) over all integers k so that

Z ‘Bz(w—l-Z k)‘ —1651n( ) Z m

k=—00
2
- Zen2 20, (7.4.38)
3 2
Or, equivalently,
_1 2 ')
2 .5 ) 2 N 2
|:%1—§sm 5} } k;oo)Bz(erz k)) — 1. (7.4.39)

Thus, the condition of orthonormality (7.4.33) ensures that the scaling function
¢ has the Fourier transform

sin — -3
d(w) = 2 (1—zsin29) . (7.4.40)
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Thus, the filter associated with this scaling function ¢ is obtained from (7.3.2) so
that

2

2 ,m
X b2w) sin I —3sin"=
m(w) = — = —® 5
d(w) 2sin £} 1— 3 sin? o
® 1— z sin’ °r
= cos? (—) % . (7.4.41)
2 1 - 3 sin” @

Finally, the Fourier transform of the orthonormal wavelet { is obtained
from (7.3.24) so that

T (20) = it (0) d(@) = e i(w + ) d(w) (7.4.42)
2 o) 3 w\ 2
1 — Zsin® — sin® — 2 -1
_ o 300 2 2 {1__511122}
- 2 ., [ 3
1-— § sin” ® B
1
2 2
‘ sin* (9) 1—Zco2 2
— i® 2 3 4 . (7.4.43)

w\2 2 2
(—) 1——sin22 1——sin22
2 3 2 3 4

This is known as the Franklin wavelet generated by the second order spline function
By(x). The scaling function ¢ for the Franklin wavelet, the magnitude of its

, the Franklin wavelet {, and the magnitude of its Fourier

Fourier transform, )dA)(w)

transform ‘@(m)) are shown in Figs. 7.8 and 7.9.

Example 7.4.4 (The Battle—Lemarié Wavelet). The Fourier transform $(w) associ-
ated with the nth order spline function B, (x) is

’ 1.29 ' ° 1 bl

1

po— . — » (1)

-5-4-3-2N 0 V234 5  —6n-4n-2n 0 2 4n 6n

___ -]

Fig. 7.8 (a) Scaling function of the Franklin wavelet ¢. (b) The Fourier transform |$|
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a AV b i

—— —— > ()

-1
>
5 -4 -3 -2\]':}}'1 2 34 ~12n-8t—4n 0 4m 8n 12¢m
1

Fig. 7.9 (a) The Franklin wavelet ¥ . (b) The Fourier transform N}l

N B, (»
b(w) = (@) T (7.4.44)
o0 . 2 2
{ 3 | Butw + 2k ))}
k=—o00
where B, () is given by (7.4.20) and
o 2n
‘é (0 + 2k )‘2 - M (7.4.45)
" o + 2k ’
2
and
o 5) 2 B 2" sin <E)
> |Bu(w+2k ) = —=r, (7.4.46)
k=—o00 V Son ((’3)
with
. > 1
Son(w) = e 7.4.47
() k;w(wﬂk o (7.4.47)
Consequently, (7.4.44) can be expressed in the form
(%)
b(w) = 2 (7.4.48)

OLRY/ Son () ’

where ¢ = 1 when 7 is odd or ¢ = 0 when 7 is even, and §2n (w) can be computed
by using the formula (7.4.36).

In particular, when n = 4, corresponding to the cubic spline of order four, (f)(oo)
is calculated from (7.4.48) by inserting
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a o(x)

05+

Fig. 7.10 (a) The Battle-Lemarié scaling function. (b) The Battle-Lemarié wavelet

. > 1 Ni(@) + Na(w)
Ss(w) = = , (7.4.49)
8 k;oo (@+2k )% o (25in %)8
where
N (®) = 5 4 30 cos? (%) + 30 (sin % cos %)2 , (7.4.50)
and
Nz(w) =70 cos* (%) + 2 sin* (%) cos’ (%) + % sin® (%) . (7.4.51)

Finally, the Fourier transform of the Battle-Lemarié wavelet { can be found
by using the same formulas stated in Example 7.4.2. The Battle-Lemarié scaling
function ¢ and the Battle-Lemarié wavelet \r are displayed in Fig.7.10a, b.

The rest of this section is devoted to the construction of one of the compactly
supported orthonormal wavelets first discovered by Daubechies (1988a,b). We
suppose that the scaling function ¢ satisfies the two-scale relation
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1
o(x) = ch ¢(2x —n) = co d(2x) + c; d(2x —n) (7.4.52)

n=0

for almost all x € R. We want {d)(x —n):n € Z} to be an orthonormal set, and
thus, we impose the necessary condition on the function P

PO+ |P(-2))" =1, (z€C.ldl =1).

We also assume (13(0) = 1. Then, P(1) = 1 and P(—1) = 0 by Lemma 7.3.4.
Thus, P contains (1 + z) as a factor. Since P is a linear polynomial, we construct
P with the form

(1+2)
2

This form ensures that P(—1) = 0. The relation P(1) = 1 holds if and only if
S(1) = 1. Indeed, the assumption on P is a particular case of a general procedure
where we assume the form

P2 = S(2). (7.4.53)

N
P@) = (1 JZFZ) S@). (7.4.54)

where N is a positive integer to be selected appropriately.
Writing

P@ =5 1+ + pi2)
and using P(1) = 1 gives
po+pr=1 (7.4.55)
The result
PO+ P =1 (7.4.56)

leads to another equation for py and p;
1 . 2 . 2
1= 1 |(po— p1) +i(po+ pD)|” +|(po— p1) —i(po+ p1)|

= ps + pi- (7.4.57)

Solving (7.4.55) and (7.4.57) gives either py = 1, p; = 0 or vice versa. However,
the values pp = 1 and p; = 0 yield

P(z) = %(1 + 2).
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Equating this value of P with its definition (7.3.51) leadsto ¢ = 1 and ¢; = 1.
Thus, the scaling function (7.4.52) becomes

b(x) = ¢(2x) + ¢(2x — 1).

This corresponds to the Haar wavelet.
With N = 2, we obtain, from (7.4.54),

2 2
P(z) = (1 ;Z) S(z) = (%) (po + p12), (7.4.58)

where po and p; are determined from P (1) = 1 and (7.4.56). It turns out that
po+pi=1, (7.4.59)
Py +pi=2. (7.4.60)

Solving these two equations yields either

1 1
or vice versa. Consequently, it turns out that
1
P(z) = Z[Po + 2po + p)z+ (po + 2p1)2 + pi2’]. (7.4.61)

Equating result (7.4.61) with
(= 1
— R , 2 3
P(2) = §n§:0 ez = E(Co +c1z+ 07 + 637

gives the values for the coefficients

c0=3(1+~/§),c1=i(3+\/§),c2= (3—«/5),6‘3: (1—\/3).

(7.4.62)

Bl —

1
4
Consequently, the scaling function becomes

o(x) =%(1+«/§)¢(2x)+%(3+x/§)¢(2x—1)+%(3—@)(1)(2)6—2)

I
+5(1-v3)oex-3). (7.4.63)
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Or equivalently,
O(x) = cod(2x)+(1—c3) d2x—1)+(1—co) dp(2x—2)+c3$(2x—=3). (7.4.64)

In the preceding calculation, the factor +/2 is dropped in the formula (7.3.53)
for the scaling function ¢ and hence, we have to drop the factor +/2 in the wavelet
formula (7.3.33) so that {s(x) takes the form

U(x) = dodp(2x) +di1 d62x — 1) +d—1 d(2x + 1) + d—2 6(2x +2),  (7.4.65)

where d, = (—1)" ¢;—, isused to find dy = ¢1,d; = —co,d—1 = —c3,d—5 = cs.
Consequently, the final form of {r(x) becomes

llf(x)=%(1—\/§) ¢(2x+2)—%(3—\/§) ¢(2x+1)+i(3+\/§) 6(2x)

- % (1++3) ox - 1. (7.4.66)
This is called the Daubechies wavelet. Daubechies (1992) has shown that in this
family of examples the size of the support of ¢, is determined by the desired
regularity. It turns out that this is a general feature and that a linear relationship
between these two quantities support width and regularity, is the best. Daubechies
(1992) also proved the following theorem.

N
Theorem 7.4.1. If ¢ € C™, support ¢ C [0, N], and $(x) = ch ¢(2x — n),

n=0
then N > m + 2.

For proof of this theorem, the reader is referred to Daubechies (1992).

7.5 Daubechies’ Wavelets and Algorithms

Daubechies (1988a,b, 1992) first developed the theory and construction of orthonor-
mal wavelets with compact support. Wavelets with compact support have many
interesting properties. They can be constructed to have a given number of derivatives
and to have a given number of vanishing moments.

We assume that the scaling function ¢ satisfies the dilation equation

O() =2 > cid(2x —n), (7.5.1)

n=—0oo

o0
where ¢, = (¢,¢1,,,) and Z icn|2 < 0.

n=—oo
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If the scaling function ¢ has compact support, then only a finite number of ¢,
have nonzero values. The associated generating function 7z,

% Z cp exp(—iwn) (7.5.2)

is a trigonometric polynomial and it satisfies the identity (7.3.4) with special values
m(0) = 1 and m( ) = 0. If coefficients ¢, are real, then the corresponding scaling
function as well as the mother wavelet \{r will also be real-valued. The mother

m(w) =

wavelet s corresponding to ¢ is given by the formula (7.3.24) with ‘&)(0)‘ = 1.

The Fourier transform ﬁ,r(u)) of order N is N -times continuously differentiable and
it satisfies the moment condition (6.2.16), that is,

$®0)=0 for k=0,1,...,m. (7.5.3)
It follows that ¢ € C™ implies that 771 has a zero at ® =  of order (m + 1). In
other words,
1 —ipy mt+1 R
g (@) = (+Te) (). (7.5.4)

where L is a trigonometric polynomial.
In addition to the orthogonality condition (7.3.4), we assume

—io\ N
o (0) = (HTe) L(w), (1.5.5)

where L (o) is 2 -periodic and L. € C¥~!. Evidently,

—io\ N io\ N
|rh0(w)|2=rho(oo)rf10(—w)=(1+2e ) (1+2e ) L)L (~w)

N 2
L), (7.5.6)

" 2
where ‘L(m)} is a polynomial in cos w , that is,

)i(w))z — O(cos ).

. . wy . . . . . w
Since cosw = 1 — 2sin? (5), it is convenient to introduce x = sin? (5) SO
that (7.5.6) reduces to the form

()] = (cos2 ;)N 0(1—2x) = (1—x)" P(), (1.5.7)

where P(x) is a polynomial in x.
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‘We next use the fact that

cos’ (w—;— ) = sin’ (%) =X

and

L+ )| = 0(-cosw) = 0@~ 1)
=0(1-2(1-x)) = P(1—x) (7.5.8)
to express the identity (7.3.4) in terms of x so that (7.3.4) becomes
A=x)"Px)+xNP(1—x)=1. (7.5.9)

Since (1 —x)" and xV are two polynomials of degree N which are relatively prime,
then, by Bezout’s theorem (see Daubechies 1992), there exists a unique polynomial
Py of degree < N — 1 such that (7.5.9) holds. An explicit solution for Py (x) is
given by

N—1
Py(x)=Y_ (N +kk - 1)x", (7.5.10)
k=0

which is positive for 0 < x < 1 so that Py (x) is at least a possible candidate

R 2
for ‘L(w)‘ . There also exist higher degree polynomial solutions Py (x) of (7.5.9)
which can be written as

N—1
Py(x) =) (N +kk B 1)xk +xVR (x - %) (7.5.11)

k=0
where R is an odd polynomial.

R 2
Since Py (x) is a possible candidate for ‘L(w)‘ and

P(@)l(~0) = )1:2(0)))2 — O(cosw) = O(1 —2x) = Py (x), (7.5.12)

the next problem is how to find out L (w). This can be done by the following lemma:

Lemma 7.5.1 (Riesz Spectral Factorization). If

n
/i((o) = Zak cos® , (7.5.13)
k=0
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where a; € R and a,, # 0, and zf/f(oo) > 0 for real w with /I(O) = 0, then there
exists a trigonometric polynomial

L(w) =) bre ™ (7.5.14)
k=0

with real coefficients by with i,(O) = 1 such that
. . . 2
) = L)L o) = |L©) (7.5.15)

is identically satisfied for w.

We refer to Daubechies (1992) for a proof of the Riesz lemma 7.5.1. We also
point out that the factorization of A (w) given in (7.5.15) is not unique.

For a given N, if we select P = Py , then A (w) becomes a polynomial of degree
N —1incosw and i(w) is a polynomial of degree (N — 1) in exp(—i w). Therefore,
the generating function #1(w) given by (7.5.5) is of degree (2N — 1) in exp(—i w).
The interval [0, 2N — 1] becomes the support of the corresponding scaling function
~¢. The mother wavelet yr obtained from y ¢ is called the Daubechies wavelet.

Example 7.5.1 (The Haar Wavelet). For N = 1, it follows fromA(7.5.10) that
Pi(x) = 1, and this in turn leads to the fact that Q(cosw) = 1,L(w) = 1 so
that the generating function is

o(w) = = (1+e7'%). (7.5.16)

N =

This corresponds to the generating function (7.4.7) for the Haar wavelet

Example 7.5.2 (The Daubechies Wavelet). For N = 2, it follows from (7.5.10)
that

1
Py(x) = Z(kzl)xk =1+2x

k=0

and hence (7.5.12) gives
N 2
‘Lz(w)‘ =P(x)=P, (sin2 %) =1 +2sin2§ = (2 —cosw).

Using (7.5.14) in Lemma 7.5.1, we obtain that i(u)) is a polynomial of degree
N —-1=1and

Lw)L(~w) =2 — % (ei“’ + e_i‘”) .
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It follows from (7.5.14) that
(bo + b1e™®) (bo + b1e'®) =2 — % (e +e™). (7.5.17)
Equating the coefficients in this identity gives
b3 +b =1 and 2boh; = —1. (7.5.18)

These equations admit solutions as

bo = % (1 + f3) and b = % (1 — «/5). (7.5.19)

Consequently, the generating function (7.5.5) takes the form
foN 2
R I4e™® —i
mo(w) = (T) (bo + bye lm)

- l[(l + ﬁ) + (3+~/§) el 4 (3 - ﬁ) e7Me 4 (1 - ﬁ) e_3i‘*’:|

8
(7.5.20)
with 171(0) = 1.
Comparing coefficients of (7.5.20) with (7.3.3) gives ¢, as

1 1
C0:4—\/§<1+\/§), 1 :4—ﬁ(3+\/§)

) ) (7.5.21)
6’2:4—\/§<3—\/§), C3:4—\/§<1—\/§)

Consequently, the Daubechies scaling function ,¢(x) takes the form, dropping
the subscript,

o(x) = V2 [co 0(2x) + c1 H(2x — 1) + 2 d(2x —2) + €3 b(2x — 3)]. (7.5.22)

Using (7.3.31) with N = 2, we obtain the Daubechies wavelet »\{/(x), dropping
the subscript,

() = V2 [dyd(2x) + dy 6(2x — 1) + d §(2x —2) + dy p(2x — 3)]

- V2 [ — 3 0(2X) + 2 G(2x — 1) — 1 H(2x —2) + co b(2x — 3)],
(7.5.23)
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where the coefficients in (7.5.23) are the same as for the scaling function ¢(x), but
in reverse order and with alternate terms having their signs changed from plus to
minus.

On the other hand, the use of (7.3.29) with (7.3.34) also gives the Daubechies
wavelet 2 {r(x) in the form

2U(x) = ﬁ[—co b(2x—1)+c; ¢(2x)—c2¢(2x+1)+63¢(2x+2)]. (7.5.24)

The wavelet has the same coefficients as { given in (7.5.23) except that the
wavelet is reversed in sign and runs from x = —1 to 2 instead of starting from
x = 0. It is often referred to as the Daubechies D4 wavelet since it is generated by
four coefficients.

However, in general, ¢’s (some positive and some negative) in (7.5.22) are
numerical constants. Except for a very simple case, it is not easy to solve (7.5.22)
directly to find the scaling function ¢(x). The simplest approach is to set up an
iterative algorithm in which each new approximation ¢, (x) is computed from the
previous approximation ¢,,—;(x) by the scheme

Om(6) = V2[co bmo1(2%) + €1 dmm1 23 = 1) + €2 b1 (26 = D)+ €3 bt 2 = 3) .
(7.5.25)

This iteration process can be continued until ¢,,(x) becomes indistinguishable
from ¢,,—1(x). This iterative algorithm is briefly described below starting from the
characteristic function

1,0<x<1

7.5.26
0, otherwise ( )

Xpo.1(x) =

After one iteration the characteristic function over 0 < x < 1 assumes the
shape of a staircase function over the interval 0 < x < 2. In order to describe
the algorithm, we select the set of four coefficients cy, ¢y, ¢z, c3 given in (7.5.21),

1
deleting the factor 75 in each coefficient so that it produces the Daubechies scaling

function ¢(x) given by (7.5.22) and the orthonormal Daubechies wavelet {/(x) (or
D4 wavelet) given by (7.5.23) without the factor V2.

We represent the characteristic function by the ordinate 1 at x = 0. The first
iteration generates a new set of four ordinates ¢y, ¢y, ¢2, ¢3 at x = 0.0,0.5,1.0, 1.5.
The second iteration with ordinate ¢y at x = O produces a new set of another
four ordinates c%, coci,c1ca,c1c3 at x = 0.00,0.25,0.75, and so on. After
completing the second iteration process, there are ten new ordinates Cé, coCl,CoC1+
c1co, Cocztcl, cieateaco,cicsteac, €3+c3co, Cac3te3cl 3,03
at x = 0.25,0.50,0.75,1.00,...,2.25. This iteration process can be described by
the matrix scheme
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co
ci
¢y ¢
3 (g Co
¢y Co c
Lel=1| .. o, [11= M), (1.5.27)
¢a Co 3
c3
(&)
3

where M, represents the matrix of the order (2"+! 4+ 2" —2) x (2" +2"7! —2)
in which each column has a submatrix of the coefficients c, ¢y, ¢2, c3 located two
places below the submatrix to its left.

We also use the same matrix scheme for developing the Daubechies wavelet
»U(x) from ,¢(x) which is given by (7.5.22) without the factor +/2. For sim-
plicity, we assume that only one iteration process gives the final ,¢(x), so this
can be described by four ordinates c, ¢, c3,¢3 at x = 0.0,0.50,1.0,1.50. In
view of (7.5.23), these four ordinates produce ten new ordinates spaced 0.25
apart. The term —c3$(2x) in (7.5.23) gives —c3 ¢y, —C3 €1, —C3C2. — cg; the term
¢ (2x — 1) gives ¢y ¢p, ¢z ¢4, c%, ¢ ¢3 shifted two places to the right and so on
for the other terms, so that the new ten ordinates for the wavelet are given by
—C3 ¢, —C3 €1, —C3 C2+C2 Co, —C3 +C2 €1, €3 —C1 €, €2 C3—CF, —C1 C2+CF, —C1 c3+
Co €1, Co C2, Co 3. These ordinates are generated by the matrix scheme

e —
0 —c3
¢ 0 —c3
0 ¢ 0 —c; Co
—;1 0 ¢ O c1
[, V] 0~ 0 o |le [1]. (7.5.28)
cgo 0 —c; O c3
co 0 —
¢ O
- o
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Or, alternatively, by the matrix scheme

€o
C1
Cy Cp
C3 C1 —C3
Cy Cp (6
V] = e e [1]. (7.5.29)
Cy Co Co
C3 Cq
2
L S

Making reference to Newland (1993b), it can be verified that 3ys(x) can be
described by the matrix scheme

[,¥] = MM, [1], (7.5.30)

where the matrix M3 is of order 22 x 10 with ten submatrices [cy ¢1 ¢ C3]T, each
organized two places below its left-hand neighboring matrix.

The matrix scheme (7.5.30) is used to generate wavelets in the inverse DWT.
All subsequent steps of the iteration use the matrices M, consisting of submatrices
[co ¢1 ¢z c3]" staggered vertically two places each. After eight steps leading to 766
ordinates as before, the resulting wavelet is very close to that in Fig.7.11a.

In order to analyze or synthesize a part of a signal by wavelets, Daubechies
(1992) considered the scaling function ¢ defined by (7.5.22) as a building block
so that

¢(x) =0 whenx <0Qorx > 3. (7.5.31)

Daubechies (1992) proved that the scaling function ¢ does not admit any simple
algebraic relation in terms of elementary or special functions. She also demonstrated
that ¢ satisfies several algebraic relations that play a major role in computational
analysis.
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2w (x)

b 20(x)

05

-05 1 Il 1 1 Il x

0 0.5 1 1.5 2 2.5 3

Fig. 7.11 (a) The Daubechies wavelet ¥ (x). (b) The Daubechies scaling function »¢(x)
. X . .
Replacing x by o) in (7.5.22) gives

3
& (;) -2 kzz;)ckd)(x — k) (75.32)

which can be found exactly if ¢(x), dp(x — 1), d(x — 2), d(x — 3) are all known.
Suppose that we can find $(0), ¢(1), $(3). It is known that ¢(—1), $(4), etc. are all
zero. Then, by using (7.5.32), we can calculate

o(3) (2) -+ (5)
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Again, by using (7.5.32) and these new values, we can calculate
o 1 o 3 o 5 o 7 o 9 o 11
4)° 4)° 4)° 4)° 4)° 4 )’
and so on.

In order to carry out this recursive process, we set initial values

1 1
6 =0 o =3 (1+v3). 4@ =3 (1-+3). +@) =0.
(7.5.33)
For example, for x = 1, we obtain from (7.5.32) that

¢ (%) = \/E [CO ¢(1) + ¢y (b(o) + d)(—]) + 5 ¢(_2)]

which is, by (7.5.21) and (7.5.31),

2
- 2c0¢(1)=@=i(2+«/§).

5

3
Similarly, we can calculate ¢ (E) , ¢ (E) so that

b(x) =

FNp-

and ¢(x > 3) = 0.

1
A similar calculation gives the values of ¢ at multiples of 7 as given below:

5 7 9
A&

s43v3 9453 2(1+v3) 2(1-v3) 9-5v3

o) = —7¢ 16 16 6 16

The Daubechies wavelet {r(x) is given by (7.5.24). In view of (7.5.31), it turns
out that ¢(x) = 0if 2x + 2 < O or 2x — 1 > 3, thatis, Y(x) = 0 forx < —1
or x > 2. Hence, \{r can be computed from (7.5.24) with (7.5.21) and (7.5.33). For
example,
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W(O0) = V2 [e30(2) = e26(1) + €1 6(0) = o §(=1)]

oo (2)(52)- (7))

_ ] (1—J§).

2

Consequently, (x) atx = —1, —=

3
,0, 1, - is given as follows:
2 2

Womo 4 10-). A

Both Daubechies’ scaling function ¢ and Daubechies’ wavelet \ for N = 2 are
shown in Fig. 7.11a, b, respectively.

In view of its fractal shape, the Daubechies wavelet ,{s(x) given in Fig.7.11a
has received tremendous attention so that it can serve as a basis for signal analysis.
According to Strang’s (1989) analysis, a wavelet expansion based on the D4 wavelet
represents a linear function f(x) = ax exactly, where a is a constant. Six wavelet
coefficients are needed to represent f(x) = ax +bx? , where a and b are constants.
In general, more wavelet coefficients are necessary to represent a polynomial
with terms like x”. Figure 7.12a, b exhibits wavelets with N = 3,5,7, and 10
coefficients. The range of these wavelets is always (2N — 1) unit intervals so that
more wavelet coefficients generate longer wavelets. As N increases, wavelets lose
their irregular shape and become increasingly smooth with a Gaussian harmonic
waveform. For N = 10, the frequency of the waveform is not constant and some
minor irregularities still persist on the right. Each of the wavelets in Fig.7.12a, b
represents the basis for a family of wavelets of different levels and different locations
along the x-axis. The only difference is that a wavelet with 2N coefficients occupies
(2N — 1) unit intervals with the exception of the Haar wavelet which occupies
one interval. Wavelets at each level overlap one another and the amount of overlap
depends on the number of wavelet coefficients involved.

The recursive method just described above yields the values of the building block
¢(x) and the wavelet {(x) only at integral multiples of positive or negative powers
of 2. These values are sufficient for equally spaced samples from a signal. Due to
the importance of such powers of 2, the idea of a dyadic number and related notation
and terminology seem to be useful in wavelet algorithms.

Definition 7.5.1 (Dyadic Number). A number m is called a dyadic number if and
only if it is an integral multiple of an integral power of 2.

We denote the set of all dyadic numbers by D and the set of all integral multiples
by D, for n € N. A dyadic number has a finite binary expansion, and a dyadic
number in D, has a binary expansion with at most n binary digits past the binary
point.
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a yr (x) N=3

A y(x) N=5

o

4 wix) N=7

b3

—2 : . :
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Ly (x) N =10
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0
_2 A | - I - 'l . -
0 19
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Fig. 7.12 (a) Wavelets for N = 3,5 drawn using the Daubechies algorithm. (b) Wavelets for

N = 7,10 drawn using the Daubechies algorithm
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Definition 7.5.2. The set of all linear combinations of 1 and +/3 with dyadic
coefficients p,q € D is denoted by D [«/5] so that

D[«/g] = {p+q«/§:p,qu}.
For every integer n, we consider combinations with coefficients in D, so that
D, [«/5] = {p+q«/§:p,qun}.

We define the conjugate m of m by

(p+av3)=(p-4v3).

The set D [ﬁ] is an integer ring under ordinary addition and multiplication. In
terms of two quantities

1 _ 1
a=1@+¢3 mda_Z@—JQ, (7.5.34)
the scaling function ;¢ can be written as
2N—1
20() =vV2 ) d2x—k). (N=2) (7.5.35a)
k=0
=ad2x)+ (1 —-a)d@2x—1)+ (1 +a)d(2x —2) +a d(2x — 3).
(7.5.35b)
If0 <m < 2N — 1, (7.5.35) can be rewritten as
2N—1
O(m) = V2 ) comi b(k). (7.5.36)
k=0
This system of equations can be written in the matrix form
(0) a 0 0 0 [0
o(1) l—-al—a a 0 o(1) 53
= . 7.5.37
o(2) 0 a l—al—a||é$(?2) ( )

$(3) 0 0 0 a ¢(3)
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This system (7.5.37) has exactly one solution,
60) =0, &) =2a, &2)=2a, ¢3)=0. (7.5.38)

We set ¢p(k) = 0 for all remaining values of k € Z. Then, ¢ can recursively be
calculated for all of D by (7.5.35b).

Finally, we conclude this section by including the Daubechies scaling function
3¢ (x) and the Daubechies wavelet 31/(x) for N = 3. In this case, (7.5.10) gives

P(x) = P3(x) = 1 + 3x + 6x2, (7.5.39)
where
x =sin’ 2 = 1 (e +2—¢'") and
2 4
X2 — E (e—Zim + 4+ eZim _4e—im _4eim + 2) .

Consequently, (7.5.12) gives the result

< 2 3 .09 . 19 19 . 3 .
L(w)) =3 e e — 1 e+ iy e+ 3 e, (7.5.40)
In this case,
A(w) = by +bye™™ + bye >, (7.5.41)

so that

~ 2 . . . .
‘L(m)‘ = A@)A(—0) = (bo + bre™™® + bye™2¢) (by + brel® + bye?®)

= (b5 + b7 +b3) + e (bo b1 + by br) + € (bo by + by by) + bo bre™ + by bpe 2.
(7.5.42)

Equating the coefficients in (7.5.40) and (7.5.42) gives

1 9
b3 + b} + b3 = 79 bibo+baby==7. brbo = g (7.5.43)

.2
In view of the fact that ‘L(O)) = 1 and P(0) = 1, the Riesz lemma 7.5.1 ensures

that there are real solutions (b, by, by) that satisfy the additional requirement
by + by + b, = 1. Eliminating b; from this equation and the second equation
in (7.5.43) gives

9
bl—bi—7 =0
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so that

b, (1 + J_) (7.5.44)

NI'—‘

Consequently,

bo + by = % (1 T JE) . (7.5.45)

The plus and the minus signs in these equations result in complex roots for by and
b, . This means that the real root for b; corresponds to the minus sign in (7.5.44)
so that

by = (1 - JTO) . (7.5.46)

l\JI>—‘

Obviously,
bo+b2=% (1+\/F)) and byb, = —
lead to the fact that by and b, satisfy
x—§(1+«/_)x+§=0 (7.5.47)
Thus,
(bo, by) = [(1 + ~/_) ++/5+ zx/_o} (7.5.48)
Consequently, A(w) is explicitly known, and hence 71 (w) becomes
m(w) = %[bo + (3by + b1)e ™' + (3by + 3by + by)e 2
+ (by 4 3b1 + 3by)e ™3 + (b + 3by)e e + bze_Si“’:|, (7.5.49)

which is equal to (7.3.3). Equating the coefficients of (7.3.3) and (7.5.49) gives all
SiX ci’s as

c0=£b0 “3/2_[(1+~/_)+\/5+2~/_0}
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¢ :£(3bo+b1)—f[(5+f)+3 5+2\/E},
622\/?5(3b0+3b1+b2)— [( ) 5+2\/Ei|7
C3:%§(bo+3b1+3b2)— [( ) «/E}

S

J

042?(b1+3b2)—\/2_[(5+x/_)—3 542 1},

cs=£b2 */_[(H\/_) 5+ 2410 |,

[\S)

8 32

I_I

Evidently, the Daubechies scaling function 3¢(x) and the Daubechies wavelet 3{r(x)
(or simply D6 wavelet) can be rewritten as

5
30() = V2 ) d@2x —k). (7.5.50)
k=0
5
W) = V2 ) di d(2x — k). (75.51)
k=0

where ¢ and dj are explicitly known. Figure 7.13a, b exhibits the scaling function
3$(x) and the wavelet 3{(x).

With a given even number of wavelet coefficients ¢y, k = 0,1,...,2N — 1, we
can define the scaling function ¢ by

2N—1
O(x) =2 Y e d(2x —k) (7.5.52)
k=0
and the corresponding wavelet by
2N—1
V() =v2 Y (Df e ¢@x +k —2N + 1), (7.5.53)
k=0

where the coefficients ¢ satisfy the following conditions

2N—1 2N—1

> =2, > (=Df k"o =0, (7.5.54a,b)
k=0 k=0
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"
0 : i > x
b
1 5u(x)
1+
0 T T T = > x
1 2 3 4 5

Fig. 7.13 (a) The Daubechies scaling function 3¢ (x) for N = 3. (b) The Daubechies wavelet
3¥(x) for N =3

wherem =0,1,2,...,N —1and

2N—1
D ckciyam =0, m#0. (7.5.55)
k=0

wherem =0,1,2,...,N — 1 and

2N—1
=1 (7.5.56)
k=0

When N = 1, two coefficients, ¢y and ¢y, satisfy the following equations:
co+c = «/5, co—c1 =0, c§+012=1

which admit solutions

Co=C1 =

Sl



7.6 Discrete Wavelet Transforms and Mallat’s Pyramid Algorithm 433

They give the classic Haar scaling function and the Haar wavelet.
When N = 2, four coefficients ¢y, ¢y, 2, c3 satisty the following equations:

Co+Cl+C’2+C3:\/§, co—ci+cr—c3=0,
2 2 2 2
cocr+crec3 =0, coptept+cey+c5 = 1.

These give solutions

Co=$(l+«/§), = 4\/_(34-\/_)

c2:4_1ﬁ(3_¢§), c3:$(1_¢§).

These coefficients constitute the Daubechies scaling function (7.5.22) and the
Daubechies D4 wavelet (7.5.23) or (7.5.24).

7.6 Discrete Wavelet Transforms and Mallat’s Pyramid
Algorithm

In harmonic analysis, a signal is decomposed into harmonic functions of different
frequencies, whereas in wavelet analysis a signal is decomposed into wavelets
of different scales (or levels) along the x-axis. Any arbitrary signal f(x) can be
decomposed into wavelet components at different scales as

f(x) = Z Z Cnic W (2"x —K). (7.6.1)

Mm=—00 k=—00

where ¢, ; are wavelet coefficients.

Itis well known that the Haar wavelet is the simplest orthonormal wavelet defined
in Example 6.2.1. This wavelet is a member of a family of similar-shaped wavelets
of different horizontal scales, each located at a different position of the x-axis.
Obviously, there are two half-length wavelets represented by {(2x) and ¢(2x — 1)
and four quarter-length wavelets represented by {(4x), ¥(4x — 1), ¥(4x —2), and
Y(4x — 3), as shown in Fig. 7.14a—c.

The position and scale of each wavelet can be obtained from its argument. For
instance, {/(2x — 1) is the same as {7(2x) except that it is compressed into half the
horizontal length and starts at x = 27! instead of at x = 0. The level of the wavelet
is determined by how many wavelets fit into the unit interval 0 < x < 1. At level
0, there is 2° = 1 wavelet (the Haar wavelet) in each unit interval, as shown in
Fig.7.14a. At level 1, there are 2! = 2 wavelets in the unit interval (see Fig. 7.14b).
At level 2, there are 22 = 4 wavelets in the unit interval, as shown in Fig.7.14c, and

1
so on. On the other hand, at level —1, thereis 27! = 3 a wavelet in the unit interval

1
and at level —2 there is 272 = 1 of a wavelet in the unit interval, and so on.
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a .
W (x)
1
> X
0 1/2 1
-1
b
A W (2x)
1
1/4
0 w(2x—1)
1
- 12
373 y > x
-1
(o]
0 v (4x)
)
s y{dx—1)
-1
w(dx—2)

W (4x —3)

Fig. 7.14 (a—c) The Haar wavelet at levels m = 0, 1,2

It is shown in Fig. 7.15 that, for all levels less than zero (m < 0 or m < —1),
the contribution is constant over each unit interval. Evidently, the sum of the
contributions from all of these levels is also constant. It is known that the scaling
function ¢(x) for the Haar wavelet is also constant so that ¢(x) = 1 for0 < x < 1.
Consequently, the representation (7.6.1) becomes
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Level
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Fig. 7.15 (a—c) The Haar wavelet at levels m = 0, 1,2

-1 [e9) [od) 9]
f@ =Y Y ek V(@ x—k)+ Y Y e W(2"x—k)

m=—00 k=—00 m=0 k=—o00
o0 o0 o0
= Y 0=+ Y D cmkW(2"x —k). (7.6.2)
k=—00 m=0 m=—00

Under very general conditions on f and 1, the wavelet series (7.6.1) and (7.6.2)
converge so that they represent a practical basis for signal analysis.

In order to develop a DWT analysis, it is convenient to define f(x) in the unit
interval 0 < x < 1. If time 7 is an independent variable for a signal over duration
T,thenx = (t/T) and 0 < x < 1 where x is a dimensionless variable. We assume
that f(x), 0 < x < 1, is one period of a periodic signal so that the signal is exactly
repeated in adjacent unit intervals to yield

F(x)=)Y_ f(x—k). (7.6.3)
k

where f(x) is zero outside the interval 0 < x < 1.
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We consider the Daubechies wavelet D4, (x), which occupies three unit
intervals 0 < x < 3. In the unit interval 0 < x < 1, f(x) will have contributions
from the first third of {(x), the middle third of {s(x + 1), and the last third of
P(x + 2). When any wavelet that begins in the interval 0 < x < 1 runs off the
end x = 1, it may be assumed to be wrapped around the interval several times if
there are many coefficients, so that the wavelet extends over many intervals. With
this assumption, the wavelet representation (7.6.2) of f(x) in 0 < x < 1 can be
expressed as

V(4x)
B Y(2x) Y(4x —1)
) = ao (x) + a1 U(x) + [a a3] [w(zx N [a4 as ag a7] W(dx—2)
Y(dx—3)
4t am g U(2"x —k) + e (7.6.4)
where the coefficients ap, a,, as,... represent the amplitudes of each of the

wavelets after wrapping to one cycle of the periodic function (7.6.3)in 0 < x < 1.
Due to the wrapping process, the scaling function ¢(x) always becomes a constant.
The second term at a;{r(x) is a wavelet of scale zero, the third and fourth terms
aP(x) and aszy(2x — 1) are wavelets of scale one, and the second is translated
Ax = 27! with respect to the first. The next four terms represent wavelets of scale
two and so on for wavelets of increasingly higher scale. The higher the scale, the
finer the detail; so there are more coefficients involved. At scale m, there are 2™
wavelets, each spaced Ax = 27 apart along the x-axis.
In view of orthonormal properties, the coefficients can be obtained from

/ Y(2"x —k) f(x)dx = apmyi / 2 (2"x — k) dx
= 2Lkazm+k / P2 (x) dx
and

amyp =28 / FU(2"x — k) dx (7.6.5)

because / P2(x)dx = 1.

In view of the fact that

/Z $>(x)dx =1,

it follows that the coefficient ay is given by
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ag = /f(x) d(x) dx. (7.6.6)

Usually, the limits of integration in the orthogonality conditions are from —oo
to 400, but the integrand in each case is only nonzero for the finite length of the
shortest wavelet or scaling function involved. The limits of integration on (7.6.5)
and (7.6.6) may extend over several intervals, provided the wavelets and scaling
functions are not wrapped. Since f(x) is one cycle of a periodic function, which
repeats itself in adjacent intervals, all contributions to the integrals from outside the
unit interval (0 < x < 1) are included by integrating from x = 0to x = 1 for the
wrapped functions. Consequently, results (7.6.5) and (7.6.6) can be expressed as

1
amyp = 2" / F)W(2"x —k)dx (7.6.7)
0

and

1
ap = /0 f(x) d(x)dx, (7.6.8)

where ¢(x) and (2" x — k) involved in (7.6.7) and (7.6.8) are wrapped around the
unit interval (0 < x < 1) as many times as needed to ensure that their whole length
is included in (0 < x < 1).

The DWT is an algorithm for computing (7.6.7) and (7.6.8) when a signal f(x)
is sampled at equally spaced intervals over 0 < x < 1. We assume that f(x)
is a periodic signal with period one and that the scaling and wavelet functions
wrap around the interval 0 < x < 1. The integrals (7.6.7) and (7.6.8) can be
computed to the desired accuracy by using ¢(x) and ¥(2"x — k). However, a
special feature of the DWT algorithm is that (7.6.7) and (7.6.8) can be computed
without generating ¢(x) and {(2"x — k) explicitly. The DWT algorithm was first
introduced by Mallat (1989b) and hence is known as Mallat’s pyramid algorithm
(or Mallat’s tree algorithm). For a detailed information on this algorithm, the reader
is also referred to Newland (1993a,b).

7.7 Exercises

1. Show that the two-scale equation associated with the linear spline function

1—t],0< |t < 1

Bi(t) =
1@) 0, otherwise
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is
1 1
Bl(l‘) = E 31(21 + 1) + 31(21) + 5 B (2t — 1)

Hence, show that

i ‘(f)(u)+2 k))2 = 1—§sin2§.

k=—00

2. Use the Fourier transform formula (7.4.43) for lij((ﬂ) of the Franklin wavelet {r
to show that s satisfies the following properties:

@ §0) = [ wwar=o.
o [ rvwar=o
(c) V¥ is symmetric with respect to t = —3

3. From an expression (7.4.41) for the filter, show that

(2 + 3 cos o + cos® )
(1 + 2 cos? u))

m(w) =

and hence deduce

2 —cosw + cos? w
1+2cos?2w

$2w) = exp(—in) [ ] $(w).

4. Using result (7.4.20), prove that

Hence, derive the following:

@ By = 5.3 (Z) exp{—”‘T‘”} 5.(3)-

k=0
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5. Obtain a solution of (7.5.22) for the following cases:

1
(a) 6’026’12715, ¢ =c3=0,
® co=c=——, c1=—, ¢3=0,
0 =02 W 1 NG 3

(C) C():\/E, 0120220320.
6. If the generating function is defined by (7.3.3), then show that

@ Y a=v2

n=o;oo -~ |
(b) Con = Contl = —=.
T 2 =

7. Using the Strang (1989) accuracy condition that (f)(oo) must have zeros of n when
w=2 ,4 ,6 ,...,show that

o
DKM =0, m=0.1.2,....(n = ).

k=—00
8. Show that
o0
@ Y =1
k=—00

(b) Z ck ck+am = 0, m # 0, where ¢, are coefficients of the scaling function
defined by (7.3.5).
(c) Derive the result in (b) from the result in Exercise 5.

9. Given six wavelet coefficients ¢y (N = 6), write down six equations from
(7.5.50a,b)—(7.5.52). Show that these six equations generate the Daubechies scaling
function (7.5.50) and the Daubechies D6 wavelet (7.5.51).

10. Using the properties of m and /71, prove that

@ b =[F(@) ()i [ (@) e (3 )]

(b)
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N 1 . . iy _3diw 3(1) .
11. Ifm(w)=§(1+e ) (1 —e™ 4 ¢72%) = e~ 72" cos > , show that it

satisfies the condition (7.3.4) and m1(0) = 1. Hence, derive the following results

sin 3w
31’03) 2

(a) d(w) = exp (—T SN
(%)
b > )dA)(w +2 k)‘2 = % (3 +4cosw + 2cos2w),
k

—,0<x<3
3

’

©) ¢(x) = {

0, otherwise

o0 1 3 1 n+3
@ ¢ = /_ () S —m) dx = 5/0 d(x —n)dx = 5/ $(x) dx.

12. Show that, for any x € [0, 1],
(a)

Y dx—k)=1 and (b) Y (c+k)o(x—k) =ux.

k=—00 k=—00

where ¢ = % (3—\@).
Hence, using (a) and (b), show that
© 20(x)+d(x+1)=x+2—c,
(d o(x+1)+2¢(x +2) =c—nx,
) d(x)—d(x +2) =x+c+ (vV3-2).

13. Use (7.3.31) and (7.4.64) to show that

W(x) = —co ¢(2x) + (I —co) $(2x — 1) = (1 — ¢3) $(2x —2) + o $(2x — 3).
14. Using (7.4.64), prove that {(x) defined in Exercise 13 satisfies the following
properties:

(@) suppyi(x) C [0, 3],

<b>/_ Y)Y —kydx = 0K 70

LLk=0"
(C)/ Y(x —k)Y(x)dx =0 forall k € Z.



Chapter 8
Extensions of Multiresolution Analysis

The wavelets arrive in succession, and each wavelet eventually
dies out. The wavelets all have the same basic form and shape,
but the strength or impetus of each wavelet is random and
uncorrelated with the strength of the other wavelets. Despite the
fore-ordained death of any individual wavelet, the time-series
does not die. The reason is that a new wavelet is born each day
to take the place of the one that does die on any given day, the
time-series is composed of many living wavelets, all of a
different age, some young, others old.

Ender A. Robinson

8.1 Introduction

Multiresolution analysis (MRA) is considered as the heart of wavelet theory.
The concept of MRA provides an elegant tool for the construction of wavelets.
An MRA is an increasing family of closed subspaces {V; : j € Z} of L*(R) such
that ;e V; = {0}, U ez V; is dense in L*(R) and which satisfies f € V; if
and only if f(2) € V4. Furthermore, there exists an element ¢ € V; such that
the collection of integer translates of function ¢, {¢(- — k) : k € Z} represents a
complete orthonormal system for Vj. The function ¢ is called the scaling function
or the father wavelet. This classic concept of MRA has been extended in various
ways in recent years. These concepts are generalized to L2(R?), to lattices different
from Z“, allowing the subspaces of MRA to be generated by Riesz basis instead
of orthonormal basis, admitting a finite number of scaling functions, replacing the
dilation factor 2 by an integer M > 2 or by an expansive matrix A € GL;(R)
as long as A C AZ?. From the last decade, this elegant tool for the construction
of wavelet bases have been extensively studied by several authors on the various
spaces, namely, abstract Hilbert spaces, locally compact Abelian groups, Cantor
dyadic groups, Vilenkin groups, local fields of positive characteristic, p-adic fields,
Hyrer-groups, Lie groups, zero-dimensional groups. Notice that the technique is
similar to that in the real case of R while the mathematical treatment needs ones
conscientiousness.

© Springer Science+Business Media New York 2015 441
L. Debnath, F.A. Shah, Wavelet Transforms and Their Applications,
DOI 10.1007/978-0-8176-8418-1_8
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On the other hand, several new extensions of the original MRA also came into
existence such as Periodic MRA, Non-stationary MRA, Generalized MRA, Frame
MRA, Adaptive MRA, Projective MRA, irregular MRA, Vector-valued MRA,
Nonuniform MRA (NUMRA), p-MRA on R and the list goes on.

This chapter is devoted to study the last two extensions of the classical theory
of MRA listed above. In Sect. 8.2, we introduce p-MRA on a positive half-line and
describe a method for constructing compactly supported orthogonal p-wavelets on
R7 related to the generalized Walsh functions. For all integers p,n > 2, we study
necessary and sufficient conditions under which the solutions of the correspond-
ing scaling equations with p”-numerical coefficients generate MRA in L*(R™).
Further, we discuss conditions under which a compactly supported solution of the
refinement equation in L?(R™) is stable and has a linearly independent system of
integer shifts. In the end, we present several examples illustrating these results. In
Sect. 8.3, we introduce nonuniform MRA, based on the spectral pairs, in which the
translation set acting on the scaling function associated with MRA to generate the
core subspace ¥V} is no more a group, but is the union of Z and a translate of Z.

8.2 p-MRA on a Half-Line R*

We start this section with certain results on Walsh—Fourier analysis. We present
a brief review of generalized Walsh functions, Walsh—Fourier transforms and its
various properties.

As usual, let RT = [0, +00), ZT = {0,1,2,...} and N = Z* — {0}. Denote by
[x] the integer part of x. Let p be a fixed natural number greater than 1. For x € R
and any positive integer j, we set

x; =[p/x](modp),  x_; =[p'~/x](mod p), (8.2.1)

where x;,x_; € {0,1,..., p—1}. It is clear that for each x € R*, there exist
k =k(x)inNsuchthatx_; =0V j > k.
Consider on R the addition defined as follows:

x@y=Y 4p T+ tp,

Jj<0 j>0

with{; = x; + y;j(mod p), j € Z\ {0}, where{; € {0,1,...,p—1}and x;, y;
are calculated by (8.2.1). As usual, we write z = x © y if 7@ y = x, where &
denotes subtraction modulo p in RY.

Note that for p = 2 and j € N, we define the numbers x;,x_; € {0,1} as
follows:

xj = [2/ x](mod 2), x—j = 2"/ x](mod 2), (8.2.2)
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where [] denotes the integral part of x € R*. x; and x_; are the digits of the binary
expansion

x=Y x; 2707 4y x0 (8.2.3)

Jj<0 j>0
Therefore, for fixed x, y € RY, we set

xEBy = Z|Xj —yj|2_j_1 +Z|)Cj —yj|2_j,
Jj <0 j>0

where x;, y; are definedin (8.2.2). By definition x©y = x®y (because xdx = 0).
The binary operation & identifies Rt with the group G, (dyadic group with
addition modulo two) and is useful in the study of dyadic Hardy classes and image
processing (see Farkov et al. 2011; Farkov and Rodionov 2012).
For x € [0, 1), let ro(x) is given by

ro(x) = 1, ifxel0,1/p)
ST ifxe[tpT @+ DpTY), L=12,....p—1,
where €, = exp(2 i/p). The extension of the function ry to R is given by the

equality ro(x + 1) = ro(x), x € R*. Then, the generalized Walsh functions
{wm (x):me Z+} are defined by

wo(x) =1 and wy(x) = (ro(p/ x))"

=

Jj=0

where m = Zl;zoujpf, ;€ {0,1,....,p—1}, px # 0. They have many
properties similar to those of the Haar functions and trigonometric series, and form
a complete orthogonal system. Further, by a Walsh polynomial we shall mean a
finite linear combination of Walsh functions.

Forx,y € R+, let

2 i
X(-xs y) = exXp 7 Z(‘xjy_] + x_]yj) s (824)
j=1

where x;, y; are given by (8.2.1).
We observe that

X(x,%)=x(%,m)=wm(%), VY xel0,p"), mneZt,
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and

X(x @y, 2) = x(x,2) x(y,2), x(x©y,2) = x(x,2) x(»y.2),

where x,y,z € RT and x @ y is p-adic irrational. It is well known that systems
{x(a, )}z, and {x(-,@)}5=, are orthonormal bases in L?[0,1] (see Golubov et al.
1991).

The Walsh—Fourier transform of a function f € L'(R*)N L*(R") is defined by

Flw) = A X FO)X(x, w) dx, (8.2.5)

where ¥ (x,®) is given by (8.2.4). The Walsh-Fourier operator .# : L'(R*) N
L*(RT) - L’(RY), Z f = f, extends uniquely to the whole space L?(R™). The
properties of the Walsh—Fourier transform are quite similar to those of the classic
Fourier transform (see Golubov et al. 1991; Schipp et al. 1990). In particular, if
f € L2 (R"), then f € L>(R*) and

|

L2®F) = Hf||L2(R+)‘

Let {w} denotes the fractional part of . For any ¢ € L>(R*) and k € Z*, we have
- R 2
[ ewsaenar= [ |oo| iw e do
R+ R+

=gﬁmwwﬂwmww

:/01 > )&(Me)r & @) do. (8.2.6)

tezt

Therefore, a necessary and sufficient condition for a system {¢(- ek):ke Z+} to
be orthonormal in LZ(R¥) is

> )43(@ + E))z =1 ae. 8.2.7)

tezt
By p-adic interval I C R of range n, we mean intervals of the form

I=If=[kp™.(k+1)p™"), keZ'. (8.2.8)
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The p-adic topology is generated by the collection of p-adic intervals and each p-
adic interval is both open and closed under the p-adic topology (see Golubov et al.
1991). The family {[0, p™/) : j € Z} forms a fundamental system of the p-adic
topology on R,

Let E,(R™) be the space of p-adic entire functions of order 7, that is, the set of
all functions which are constant on all p-adic intervals of range n. Thus, for every
f € E,(RT), we have

S =" f(p (). x eRY (8.2.9)

kez+

Clearly, each Walsh function of order p"~! belong to %, (R™). The set E(R™) of
p-adic entire functions on R is the union of all the spaces E,(R"), i.e.,

ER") = | J £ ®R").

n=1

It is clear that E(R™) is dense in L”(RT) for 1 < p < oo and each function in
E(RT) is of compact support.

An analog of the following proposition for p-adic entire functions on the positive
half-line R was proved in Golubov et al. (1991) (Sect. 6.2).

Proposition 8.2.1. The following properties hold:

(i) If f € L'R¥) N E,(RY), then supp f C [0, p"),
(ii) If f € L"(R™") and supp f C [0, p"), then f € E,(RT).

Similar to R, wavelets can be constructed from a MRA on a positive half-line
R*. For p > 2, we define a MRA on R as follows:

Definition 8.2.1. A p-MRA of L?>(R") is a sequence {V] 1j € Z} of closed
subspaces of L?(R™) satisfying the following properties:

@ V; CV;y forall j €Z;
(i) U, ezV; is dense in L*(RT);
(i) NjezV; = 10}
(iv) feV;ifandonlyif f(p.) € V4 forall j € Z;
(v) there is a function ¢ in Vj such that the system {d)(- ek): ke Z+} forms an
orthonormal basis for V.

The function ¢ occurring in axiom (v) is called a scaling function. One also says
that an p-MRA is generated by its scaling function ¢ (or ¢ generates the p-MRA).
It follows immediately from axioms (iv) and (v) that

V; :=span {0, (x) = p/?o(p/x ©k) ke Zt}, jeL (8.2.10)
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According to the standard scheme (see Chap. 7) for construction of MRA-based
wavelets, for each j, we define a space W; (wavelet space) as the orthogonal
complement of V; in Vi, ie., Viy1 =V, @ W;, j € Z, where W; L V;, j € Z.
It is not difficult to see that

f()eW; ifandonlyif f(p.)eW;y1, jeZ (8.2.11)

Moreover, they are mutually orthogonal, and we have the following orthogonal
decompositions:

LRY=Pw, =ve|Pw]|. (8.2.12)
J€L j=0

As in the case of R", we expect the existence of p — 1 number of functions
{1!;1, Yo, ..., q;p_l} to form a set of basic wavelets. In view of (8.2.11) and (8.2.12),
it is clear that if {1[;1, U, .. .,\lf,,_l} is a set of function such that the system
{1!;4(- Ok):1<t<p-1ke Z+} forms an orthonormal basis for W, then
{p"*Y(p/x©k): 1<l <p—1,j €Zk € Z*} forms an orthonormal basis
for L2(R™).

The main goal of this section is to establish necessary and sufficient conditions
under which the solutions of scaling equations of the form

p'—1

¢(xX) =p ) agd(px © a). (8.2.13)
a=0

generate a MRA in L?(R™). For wavelets on the real line R, the corresponding
conditions were described in Daubechies’ book (1990) in Sect. 6.3.
The generalized Walsh polynomial 11 of the form

p'—1
mo(w) = Y agwa(w). (8.2.14)
=0

is called the mask or solution of the refinement equation (8.2.13). It is clear that m,
is a p-adic step function as the Walsh functions w, are constant on p-adic intervals
I3, for 0 < a,s < p". Moreover, if by = mq(sp™) are the values of mg on p-adic
intervals, i.e.,

p'—1

by =mo(sp™) = Y_ agwa(sp™). 0<s<p"—1 (8.2.15)
a=0

Then, the coefficients a,, 0 < a < p"—1 of Eq.(8.2.13) can be computed by means
of the direct Vilenkin—Chrestenson transforms as



8.2 p-MRA on a Half-Line RT 447

p'—1

ay=p7" Y bowa(sp™). 0<a<p'—1 (8.2.16)
s=0

and conversely. Thus, the choice of the values of the mask (8.2.14) on p-adic
intervals simultaneously defines the coefficients of Eq.(8.2.13) which is satisfied
by the corresponding function ¢.

Theorem 8.2.1. If ¢ € L>(R™) is a compactly supported solution of Eq. (8.2.13)
such that $(0) = 1. Then

-l
Z ay =1 and suppd C [0, p"']. (8.2.17)

a=0

This solution is unique, is given by the formula

o0
N )
d(w) = ]_[ mo (F) (8.2.18)
j=
and possesses the following properties:

(i) &)(k) = 0 for all k € N (the modified Strang-Fix condition);
(ii) Z d(x ® k) = 1 for almost all x € RT.

kezt
Proof. The Walsh—Fourier transform of (8.2.13) yields

d(@) = mo (p~'w) d (p~' ). (8.2.19)

Observe that wy (0) = (13(0) = 1. Hence, substituting ® = 0in (8.2.13) and (8.2.14),
we obtain my(0) = 1, therefore Zé):_ol ay = 1. Further, let s be the greatest integer
such that ¢ does not vanish on a positive-measure subset of the interval [s — 1,s),
ie.,

wi{x €s—1,5): ¢(x) # 0} >0,

where |1 is the Lebesgue measure on R, Assume that s > p"~!' + 1 and consider
an arbitrary p-adic irrational x € [s — 1, 5) of the form

k k
x=[x]+{xp=>x p/ T+ xp (8.2.20)
j=1 j=1

where {x} > 0,x_x # 0,k > n. Forany a € {0,1,..., p" — 1}, the element
y® = px & a is of the form
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k+1

(u)_zy(u)p] 1+Zy(u) —/

where yﬁxk)_ | = X— # 0and, among the digits y;a) , J = 0, there are some nonzero
ones. Therefore,

pxea>p" foraexecls—1,s). (8.2.21)

If s < p”, then inequality (8.2.21) implies ¢(px © a) = O fora.e. x € [s — 1,5).
But, in that case, by (8.2.13), we have ¢(x) = O for a.e. x € [s — 1,5), which
contradicts the choice of s. Therefore, s > p” + 1. Using this inequality, for any
a€{0,1,..., p" — 1} from (8.2.20), we obtain

pxea>ps—1D)—p"—1)=2(s—1)—(s —2) =s.

Hence, just as above, it follows that ¢(x) = 0 for a.e. x € [s — 1,s). Therefore,
s < p" 'andsuppd C [0, p"'].

We now claim that the Walsh—Fourier transform (13 satisfies (8.2.18). Since ¢ is
compactly supported and belongs LZ(R+) then it also belongs to L! (R+) Slnce
suppp C [0, p"7"), it follows that b € E,_1(R"). From the condition ¢(0) =
we see that d)(oo) = 1 forall € [0, p!™"). On the other hand, mo(w) = 1 for all
o € [0, p'™"). Hence, for any natural number £, we can write

{+n 00
Be) = (" "w)l‘[mo("j) - ]‘[mo(%), w e, ph,
p') A\

J=1

which completes the proof of (8.2.18) and of the uniqueness of ¢.
We observe that for each k € N, we have

j—1

¢(k) = b (k) [Tmo(p°k) = & (p’k) = 0

s=0

as j — oo (because ¢ € L'(RT) and mo(p*k) = 1 by the equality m,(0) = 1 and
the periodicity of mg). This means that ¢p(k) = O forall k € N.
By Poisson’s summation formula, we obtain

Yoo @k) = Y dlkywi(x).

kezZ+ kezZ+

where the equality holds almost everywhere in Lebesgue measure. Since bk) =
80k, it follows that
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Z d(x®k)=1 forae x e RT.
kezt

The proof of the theorem is now complete.

Assume that Eq. (8.2.13) has a compactly supported L?-solution ¢ satisfying the
condition ¢(0) = 1 and the system {¢(x © k) : k € Z*} is orthonormalin L*(R™),
then

p—1
mp(0) =1 and Z\mo(w@ﬁ/p) |2= 1 forall w € [0, 1/ p).
= (8.2.22)

Therefore, Egs. (8.2.18) and (8.2.22) implies that the equalities

bo=1, |bjP+1bjsp—ilP+ -+ 1bjsppypal* =1,  0=<j<p''—1,
(8.2.23)

are necessary (but not sufficient; see Example 8.2.4) for the system {$(x & k) :
k € Z+} to be orthonormal in L?(RT). Under what additional conditions does the
function ¢ generate a p-MRA in L>(R™")? The answer to this question is given
below in Theorem 8.2.2.

Before we state Theorem 8.2.2, we start here with some definitions:

Definition 8.2.2. A function f : Rt — C is said to be W-continuous at a point
x € R* if for every ¢ > 0, there exists § > 0 such that | f(x ® y) — f(x)| < ¢
for 0 < y < §. Therefore, for each 0 < j, k < p”, the Walsh function w; (x) is
piecewise constant and hence W -continuous. Thus w; (x) = 1 forx € [, ,? .

Definition 8.2.3. A subset E C R is said to be W-compact if it is compact in
the p-adic topology. It is easy to see that the union of a finite family of p-adic
intervals is W-compact. Moreover, a W-compact set E is said to be congruent to
[0, 1) moduloR™ if its Lebesgue measure is 1 and, for each x € [0, 1), there is an
elementk € Z* suchthatx @ k € E.

Definition 8.2.4. If m is mask of the refinable equation (8.2.13). Then, m, is said
to satisfy the modified Cohen condition if, there exists a W-compact subset E of
R such that

(i) E is congruent to [0, 1) modulo Z* and containing a neighborhood of the zero
element,
(i1) the following inequality holds:

jnellgutrelg \mo(p w)| > 0. (8.2.24)
In view of the condition my(0) = 1 and the compactness of the set E,
there exists a number jo such that mo(p~/w) = 1 for all j > jo,w € E.

Therefore, inequality (8.3.24) holds if the polynomial m does not vanish on the
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sets E/p, ..., E/p~/0. Note that we can always choose j, < p", because the mask
my is periodic and totally defined by the values (8.2.15).
For an arbitrary set B C [0, 1), we set

L
TI,B:U{——F—:(DEB}.
=lep

Definition 8.2.5. A set B is said to be blocked (for the mask my ) if it can be
expressed as the union of p-adic intervals of range n — 1, does not contain the
interval [0, p~"*1), and possesses the property 7, B C B U Null m, where Null m
is the set of all zeros of the mask mg on [0, 1). It is clear that each mask can have
only a finite number of blocked sets.

Definition 8.2.6. A function f € L?(R™") is said to be stable if there exist positive
constants ¢y and ¢, such that

1/2 1/2

al Yo Jal| =|Dasrceb|zal Y |al

kezt kezt kezt

for each sequence {a; } € £. In other words, a function f is stable in L?(R™") if the
functions f(- © k), k € Z*, form a Riesz system in L?(R™). Further, we say that a
function f : RT™ — C has a periodic zero at a point x € R if f(x & k) = 0 for
allk e Z7T.

The following proposition is proved in Farkov (2005a,b).

Proposition 8.2.2. For a compactly supported function f € L>(R™) the following
statements are equivalent:

(i) the function f is stable in L>(R™);
(ii) the system {f(x 6k): ke Z+} is linearly independent in L*(R™);
(iii) the Walsh—Fourier transform of the function f has no periodic zeros.

Besides, it has been established that the compactly supported L?-solution ¢ of
Eq. (8.2.13) satisfying the condition ¢(0) = 1 is not stable if and only if the mask
of (8.2.13) has a blocked set. The following assertion is also valid.

Theorem 8.2.2. Suppose that Eq.(8.2.13) possesses a compactly supported L>-
solution ¢ such that its mask my satisfies conditions (8.2.23) and $(0) = 1. Then
the following three assertions are equivalent:

(i) the function ¢ generates a p-MRA in L*>(RT);
(ii) the mask my satisfies the modified Cohen condition;
(iii) the mask mo has no blocked sets.

We split the proof of Theorem 8.2.2 into several lemmas.



8.2 p-MRA on a Half-Line RT 451

Lemma 8.2.1. Suppose that the mask m of refinement equation (8.2.13) satisfies
the equalities of (8.2.22). Then, the equation has a solution ¢ € L>*(RT) and
moreover, |||z < 1.

Proof. We define a function ¢(w) by equality (8.2.18) and prove that it belongs to
L?(R™). In this case its inverse Walsh—Fourier transform ¢ also belongs to L>(R™)
and obviously satisfies (8.2.13). We have

=TT 7o)l

Since |mg(w)| < 1 forall ® € R, it follows that for each s € N,

, weRT.

2 il )
<[ |mo(r~ o)’

J=1

Consequently,

/ ‘({)(w)‘ dw</ H’mo P~ w’ dw—ZS/li_hmo pw| do.
(8.2.25)

The function |no(w)|? is 1-periodic and piecewise constant with step p ™, therefore
it is a Walsh polynomial of order p" — 1:

p'—1

‘mo(w)‘z = Z CaWo (), (8.2.26)

where the coefficients ¢, may be expressed via a,. Now, we substitute (8.2.26)
into the second equality of (8.2.22) and observe that if o is multiply to p, then

é:é we(£/p) = p, and this sum is equal to O for the rest a. As a result, we obtain
co = 1/p and ¢, = 0 for nonzero o, which are multiply to p. Hence,

p'—1p—1

|m0(0>)\2 = — + Z Zcpu+l Wpot+l(0~))

a=0 (=1
This gives

a(s)
[TImo (P 0))” = p" + 3 bpwp(@). o(s) <sp"'(p—1),
| 2
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where each coefficient bg equals to the product of some coefficients cpq1¢, £ =
1,....p—1.
Since

1
/ wg(w)dw =0, forallp eN,
0

it follows that
1 s—1 ) )
/ITWM#@!=pT
0 2

Substituting this into (8.2.25), we deduce

/pl
0

Passing to the limit as { — +o0o0 and using the Parseval’s relation, we arrive at
lléll2 < 1. The proof of the lemma is complete.

Lemma 8.2.2. Let {Vj}jEZ be the family of subspaces defined by (8.2.10) with
given ¢ € L*(RY). If {d)( ek): ke Z+} is an orthonormal basis in V, then
ﬂjez V; ={0}.

Proof. Let P; be the orthogonal projection of L?(R™) onto V; given by the formula

~ 2
¢(w)) do < 1.

Pif = Z (fojx)bjk. [ e L*RY). (8.2.27)

kezt

Suppose that f € ) jez Vj- Given an ¢ > 0 and a continuous function g which is
compactly supported in some interval [0, R], R > 0 and satisfies || f — g|» < e.
Then we have

If=Pigl, < |Pi(f -9, <] f—¢gl,<e
so that
|1, = Pigl, +e

Using the fact that the collection {p//>¢(p/x © k) : k € Z"} is an orthonormal
bases for V;, we have
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||P,-g||§ => (Prg. bl
kezt 5
=p ) / g(x) ¢(p/x © k) dx
kezt
< p/|g|’R Z/ 6(px © k)| dx,

kezt

where || g||co denotes the supremum norm of g. If j is chosen small enough so that
R p/ < 1, then

I2igls = gl [ loofas
= lel2 /R+ 15, ()] (x)|dx. (8.2.28)

where Sg; = Ugez+ {y ©k 1y € [0, Rp/)} and 1, ; denotes the characteristic
function of Sg ;.

It can be easily checked that

lim 1g,,(x) =0 forallx ¢ Z*.
] —>—00

Thus, from Eq. (8.2.28) by using the dominated convergence theorem, we get

lim | Prel, =

]—)00

Therefore, we conclude that || f|, < ¢ and since ¢ is arbitrary, f = 0 and thus
N j€z Vi =1{0}.

Lemma 8.2.3. Let {Vj}jEZ be the family of subspaces defined by (8.2.10) with
given & € L2(R7T). If {¢(- 6k): ke Z+} is an orthonormal basis in Vy and

assume that &)(m) is bounded for all w and continuous near » = 0 with |$(0)| =1,
thenJ ez Vi = L*(R™).

1
Proof. Let f € (UjeZ V]) and ¢ > 0. We choose g € L'(RT) N E(R") such
that | f — g||l» < &. Forevery j € Z*, we see from (8.2.27) that

[Pl =(PifPif)={fPif)=0

and

|Pigly = [Pi(f =), < [ f — g, <. (8.2.29)
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Fix a number j € N such that suppg C [0, p/) and p~7 w € [0, p™" ) for
all € supp g. Since the system {p~//?x (p~/k,.) : k € Z"} is orthonormal and
complete in L2[0, p/], we see that the function h(w) = g(w) (f) (p_f u)) satisfies

o
p / h)[do = 3" |am)], (8.2.30)
0 kez+
where
L -
o) =y [ hw) 3 Tk w) do.
0
Since
/R+ d(p/x 0 k) X wydx = p/ o (p ) X (p k. ),
we get
. v -
P Pletis) =07 [ h@) G TR w) do,
Thus, in view of (8.2.30), we obtain
5 5 L N2
26l = 3 leosal = [ [e@d (o) do. G230
kez* 0
As mo(w) = 1 on the p-adic intervals I? and p~/w € [0, p™*!) for all

w € supp g, it follows from (8.2.18) that (f) (p‘f u)) = 1 for all w € supp g. Since
supp g C [0, p/), we see from (8.2.29) and (8.2.31) that

e> | Pigl, = 11> = llgll2.

Consequently,

I£1l, <&+ ]gll, < 2.

Since ¢ is arbitrary, therefore f = 0. Thus (U jez V])J_ = {0} and hence the
lemma is proved.

Next, we find the analogue of Cohen’s condition for p-MRA on positive half-line
which gives necessary and sufficient condition for the orthonormality of the system

{d(x © k) }pez+-
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Lemma 8.2.4. Let my be a Walsh polynomial of the form (8.2.14) such that

p—1
mo©) =1 and Y |my(w@®/p)|°=1 foralloeR",
£=0

and let ¢ € L*(RY) be the function defined by the formula (8.2.18). Then the
following are equivalent:

(i) The mask my satisfies the modified Cohen condition;
(ii) The system {(1)( 6k): ke Z+} is orthonormal in L*>(R™).

Proof. We will start by proving (i) implies (ii). For every positive integer k, we
define

k
Nk (w) = l_[ my (p—u;) 1g (p%) , weRt

j=1

Since 0 € int(E) and mo(w) = 1 on the p-adic intervals I°. Thus, it follows
from (8.2.18) that

Jim ni(0) = d(w), oeRT. (8.2.32)

By our assumption (ii) and the condition m((0) = 1, there exists a number jj such
that

mo(i)zl for j > jo, w € E.
p]

Thus

Jo
b(w) = l—[mO(l%) weE.

J=1

Since my ( p/ u)) # 0 on E, therefore there is a constant ¢; > 0 such that
)
my p_]

$(@)| 2 1£(0). ©eR.

>c; >0 forjeN wekFE,

and so

—Jo
¢
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Therefore

k

[Nk (w)| = l_[

Jj=1

m(57)
1 (3)

<]

j=1

(2)
()

which by (8.2.18) yields

fork e N, w e RT. (8.2.33)

Ink(w)| < ¢

For each k € N, we define
40 = [ @l i@oido, tezt.
R

Setting £x = {w € Rt : p*w € E} and{ = p~* w, we have

TGl

= [ T o (o7 o) P X PPy . (8.2.34)

j=1

Ar(0) = X, w)dw

Ek

Using the assumption E = [0, 1)(mod Z*), we get

e (527)

and, in view of (8.2.22), we have

2 k—1 ' S
[T 1m0 (0" w) [ X (€ PFTw) do,
j=1

1p-1

A(t) = pF! /

1 k=2
a0 = [ [T v 10) X P Tw) do.

Hence, by (8.2.34),
Ar(f) = Ar—1(0).

When k = 1, we similarly have
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1 1
A(0) = p/ Imo(e) X pw) dw =/ X o) dw = Soy.
0 0
Therefore
Ac(0) =80y, keNLeZ™. (8.2.35)

In particular, for all k € N,

40 = [ @l do=1.

Using (8.2.32) and Fatou’s lemma, we obtain

/R+ )&)(m)‘zdw <1.

Using Lebesgues’ dominated convergence theorem, we see from (8.2.32), (8.2.33)
and (8.2.35) that

N 2
[ b 1@wido = tin 4@ =50
R+ k—>o00
Therefore,
/ o(x)d(x e ldx =8py, L€ 7.
Rt

By the Plancherel formula, it follows that the system {¢(-©k):k € Zt} is
orthonormal in L?(RY).

The converse part of this result follows on similar lines to that of Theorem 6.3.1
in Daubechies (1990).

We shall now deduce conditions for refinement equation (8.2.13) to have a stable
solution. The next lemma gives a relation between stability and blocked sets.

Lemma 8.2.5. Suppose that ¢ is a compactly supported L?-solution of (8.2.13)
such that $(0) = 1. The function ¢ is not stable if and only if the mask mg of the
refinement equation (8.2.13) has a blocked set.

Proof. Applying Theorem 8.2.1 and Proposition 8.2.1, we obtain
suppd C [0, p"") and ¢ € E,_ 1 (RT).

Assume that the function ¢ is not stable, then by Proposition 8.2.2(iii), there exists
an interval /;_, = I such that all points of the interval / are the periodic zeros of

the Walsh—Fourier transform $ Therefore, the set



458 8 Extensions of Multiresolution Analysis

B = {we [0,1): d(w+k) =0 forallk €Z+}

S ,0<s<prl—1
Since (f)(O) = 1, it follows that B does not contain If_l. Besides, if ® € B, then, by
formula (8.2.19), we have

kY - k
m0(9+_)¢(9+—)20 forall k € Z*
p p

can be expressed as the union of some of the intervals 7*

and, therefore, the elements w/p +£/p,£ =0,1,..., p — 1, belong to either B or
Null my. Thus, if ¢ is not stable, then the set B is a blocked set for m.

Conversely, suppose that the mask mo has a blocked set B. Let us show
that, in this case, each element from B is a periodic zero for $ (and hence, by
Proposition 8.2.2, the function ¢ is not stable).

Suppose, there exist an element w € B such that (o +k) # 0, foreachk € Z7.
We choose a natural number j for which p~/ (w+k) € [0, p'™),k € Z*, and then,
foreachr € {0,1,..., j}, we set

ur=[p(@+K)]., v={p"(0+k)}.
Further, foreach r € {0,1,...,j — 1}, wetake £, € {0, 1,..., p — 1} such that
Ur+1 + vy = (P_l + p_lgr) + 5

wheres, € ZT andu,/p =4, /p + s,.
Therefore, v,+1 = p~' (v, + £,). It is readily seen that if v, € B, then v, 1| €
T, B. Besides, the equalities

J J
b(w+k) = (p77 (o +k)) l_[mo (P (0 +k)) = b(v)) l_[mo(Vr)

r=1 r=1

imply that all v, # Null my. Thus, if v, € B, thenv, | € B. Sincevy = w € B, this
implies that all v; € B. This contradicts the fact thatv; = p~/ (o + k) € [0, p'™)
and B N[0, p'™) = @. This contradiction completes the proof of Lemma 8.2.5.

We now find out when solutions of refinement equation (8.2.13) generate
p-MRA in L?(R™). We start with conditions for the integer translates of the solution
of Eq. (8.2.13) to form an orthonormal basis of their linear span.

Lemma 8.2.6. Suppose that ¢ is a compactly supported L*-solution of (8.2.13)
such that $(0) = 1. The system {d)( 6k): ke Z+} is orthonormal in L*(R™) if
and only if the mask mg of (8.2.13) has no blocked sets and satisfies the condition
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p—1
S imoweet/p)['=1  forallw eR*. (8.2.36)
=0

Proof. If the system {¢(-©k):k € Z"} is orthonormal in L*(R™), then in
view of (8.2.7) and (8.2.19), condition (8.2.36) holds, while Lemma 8.2.5 and
Proposition 8.2.2 implies that there are no blocked sets.

Conversely, suppose that the mask m1( has no blocked sets and condition (8.2.36)
holds. We set

F) =Y ‘(f)(oo ek)‘z. (8.2.37)

kezt

Obviously, the function F is non-negative and 1-periodic function. By condi-
tion (8.2.7), it suffices to verify that F'(w) = 1. Let

§ = inf{F(w): wel0,).

It follows from Theorem 8.2.1 and Proposition 8.2.1 that the function F (just as
J)) is constant on the intervals I;_,,0 < s < p”_1 — 1. If F vanishes on one of
these intervals, then the function (1) has a periodic zero, and hence ¢ is not stable. By
Proposition 8.2.2 and Lemma 8.2.5, this contradicts the assumption that the mask
mo has no blocked sets. Hence the number § is positive. Besides, taking into account
the modified Strang-Fix condition (see Theorem 8.2.1), we obtain F(0) = 1. Thus,
0<8<1.

Note that Egs. (8.2.19) and (8.2.37) imply the relation

o L\ o /L
my (— © —)‘ F (— e —) . (8.2.38)
p D p D

Now suppose that M5 = {F(w) =8 :w € [0,1)}. If 0 < § < 1, then (8.2.36)
and (8.2.38) imply that, for any w € M;, the elements p~'w © p~ 14, L =
0,1,..., p — 1, belong to either Ms or Null m(. This means that the set Mj is a
blocked set, which contradicts the assumption. Thus, F(w) > 1 for all w € [0, 1).
Combining this with the equalities

we find by Lemma 8.2.1 that

p—1

Flw) =)

=0

k+1

b do= [ o) do= o]’

1
/ Fw)ydw = 1.
0



460 8 Extensions of Multiresolution Analysis

Applying the inequality F(w) > 1 again and using the fact that the function F is
constant on each I} _|,0 < s < p"~! — 1, we find that F(w) = 1. This proves the
Lemma 8.2.6 completely.

Proof of the Theorem 8.2.2. Suppose that the mask m satisfies any of condition
(i1) or (iii). Then it follows from Lemma 8.2.4 and Lemma 8.2.6 that the system
{¢(- © k) : k € ZT} is orthonormal in L*(R™). We define the subspaces V;, j €
Z, by formula (8.2.10). The embedding’s V; C V;4; are a consequence of the
fact that ¢ satisfies (8.2.13) while condition (iv) of the Definition 8.2.1 p-MRA is
given by the orthonormality of the system {d)(- ek): ke Z+}. The remaining two
conditions (ii) and (iii) follows from the results of Lemma 8.2.2 and Lemma 8.2.3.
Thus, the implications (ii))=-(i) and (iii))=(i) are valid. The inverse implications
follow directly from Lemma 8.2.4 and Lemma 8.2.6. O

Theorems 8.2.1 and 8.2.2 imply the following procedure for constructing
orthogonal p-wavelets in L?(RT):

1. Choose numbers by, 0 < s < p" — 1 for which conditions (8.2.23) hold.

2. Using formula (8.2.16), calculate the coefficients a,,0 < a < p" — 1 and verify
that the mask m defined by (8.2.14) has no blocked sets.

3. Find

p'—1
me(w) = Y alwe(w), 1<L<p-—1,
a=0

such that the matrix {mg (w+k/p) }f ;1:0 is unitary.
4. Determine i, ..., \,—1 using the formula
p'—l1
V() =p Y agd(pxoa)., 1<t<p-L. (8.2.39)
a=0

Let us present some examples of functions ¢ satisfying Eq. (8.2.13) and generat-
ing an p-MRA in L*>(R™). Recall that 1 denotes the characteristic function of the
set E C RY.

Example 8.2.1. Ifap =a; =---=a, | = 1/pandallag = 0 fora > p, then the
solution of Eq. (8.2.13) is the function ¢ = l[o.pn—l ) in particular, forn = 1,(8.2.13)
satisfies the Haar function given by ¢ = 1jo ).

Example 8.2.2. Suppose that p = n = 2 and
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where |a|?> + |b|> = 1. Then the function ¢ satisfies the equation

3
O(x) =pY_ ard(2x © k)

k=0
with coefficients ai’s given by (8.2.16) as

_1+a+b _1+a—b l—a-»> _1—a+b

aog=—F—", ay = —————, ar = , az =
4 4

4 4

For a # 0, the modified Cohen condition holds on the set £ = [0, 1) and the
corresponding solution ¢ generates a MRA in L?(R™T). In particular, for a = 1
and a = —1 the Haar function: ¢(x) = 1 1)(x) and the displaced Haar function:
¢(x) = 1jp,1)(x © 1) are obtained.

Further, if 0 < |a| < 1, then ¢ generates MRA in L?>(R™) and possesses the
following self-similarity property:

I 4+a—b
THa=P L ey, 0<x<l,

and is represented by a lacunary Walsh series:

o(x) = %1[0,1) (;) 1+ aji:;)bjwzjﬂ_l (;) , x eRt.

Also, in case a = 0, the function ¢ is defined by the formula ¢(x) =

(1/2)1j.1y(x/2), and the system {¢(-©k):k € ZT} is lincarly dependent
(because ¢p(x © 1) = $p(x)).

Example 8.2.3. Suppose that p = 3,n = 2, and
bop=1,bi=a, bp=0, b3=0, ba=b, bs =P, b6 =0, by =c, bg =,
where
lal? + 16 + [c” = laf* + B + [y|* = L.

By (8.2.16), the coefficients of Eq.(8.2.13) in the case under consideration can be
calculated by the formulas
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ao:é(l+a+b+c+a+5+\/),

a1=é(l+a+oc+(b+6)8§+(c+y)e3),
a2=é(l+a+oc+(b+5)83+(c+y)8§)’
a3:é(1+(a+b+c)s§+(oc+ﬁ+y)83),
a4=é(l+c+B+(a+v)8§+(b+0°)83)’
as:é(l+b+y+(a+5)8§+(c+°‘)83)’
a6:é(l+(a+b+c)83+(0‘+B+V)8§)*
a7=%(1+b+y+(a+5)83+(c+°°)8§)’
ag:é(l+c+B+(a+v)83+(b+0°)8§)’

where €3 = exp(2 i/3). For the corresponding mask m, the blocked sets are:
(1 2

1. Bi=|-,=-) fora=c=0,

|33

[2
2. B, = 5,1) fora =p =0,

3. By = _%,1) fora = a = 0.
Suppos_e that
y(1,0) =a, y(2,0) =a, y(1,1) =b, vy2,1) =8, y(1,2) =c, y(2,2) =,
andv; € {1,2}, then we set

de = y(v0,0) for £ = vy;
dg = y(v1,0)y(vo,v1) forl = vy + 3vy;

k

dp =y (k. 0)y(Vi—1.v6) ... y(vo.v1)  for €=y v;3/ k > 2.
j=0
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The solution of Eq. (8.2.13) can be expressed (see Farkov 2005a,b) as the series

o(x) = %1[0,1) (g) (1 + ) dew (g)) . x eR*. (8.2.40)
14

Taking into account the expressions for the blocked sets given above and using
Theorem 8.2.2, we find that the function (8.2.40) generates a MRA in L*(R") in
the following three cases:

l.a#0,a #0;
2.a=0,0a#0,c #0;
3.a=0,a #0,p#0.

Example 8.2.4. Suppose that, for some numbers b;,0 < s < p" — 1, rela-
tions (8.2.23) hold. Applying formulas (8.2.16), we find the coefficients of the mask
my as defined by (8.2.14) taking the values b, on the intervals /;),0 < s < p"—1.1f,
additionally, it is known that b; # Ofor j € {1,2,..., p"~! — 1}, then Eq.(8.2.13)
with the obtained coefficients a, has a solution generating an p-MRA in L?(R™)
(the modified Cohen condition holds for £ = [0, 1)).

8.3 Nonuniform MRA

The previous concepts of MRA are developed on regular lattices, that is the trans-
lation set is always a group. Recently, Gabardo and Nashed (1998a,b) considered
a generalization of Mallat’s celebrated theory of MRA based on spectral pairs, in
which the translation set acting on the scaling function associated with the MRA to
generate the subspace 1} is no longer a group, but is the union of Z and a translate
of Z. More precisely, this set is of the form A = {0,r/N} + 2Z, where N > 1is
aninteger, 1 <r <2N —1,r is an odd integer relatively prime to N. They call this
a NUMRA.

In this theory, the translation set A is chosen so that for some measurable set
A C R with 0 < |A| < oo, (4, A) forms a spectral pair, i.e., the collection
{A_l/ze2 im'kXA(‘D)}XeA forms an orthonormal basis for L?(A), where ¥ 4(o)
is the characteristic function of A. The notion of spectral pairs was introduced
by Fuglede (1974). The following proposition is proved in Gabardo and Nashed
(1998a,b).

Proposition 8.3.1. Letr A = {0,a} + 27, where 0 < a < 2 and let A be a
measurable subset of R with 0 < |A| < oo. Then (A, A) is a spectral pair if and
only if there exist an integer N > 1 and an odd integer r, with 1 <r <2N — 1 and
r and N relatively prime, such thata = r/N, and
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=
'_

8j/2% Y 8un % Ya =1, (8.3.1)
0 ne€z

~.
I

where * denotes the usual convolution product of Schwartz distributions and 8. is
the Dirac measure at c.

Following is the definition of nonuniform MRA associated with the translation
set A on R introduced by Gabardo and Nashed (1998a,b).

Definition 8.3.1. Let N be aninteger, N > 1,and A = {0,r/N} + 2Z, where r is
an odd integer relatively prime to N with 1 <r < 2N —1. A sequence {V] 1J € Z}
of closed subspaces of L?(R) will be called a NUMRA associated with A if the
following conditions are satisfied:

i) V; C Vg forall j €Z;
(i) U,ezV; is dense in L*(R) and NjezVi = {0}
(iii) f(x) € V; if and only if f(2Nx) € V1, forall j € Z;
(iv) There exists a function ¢ in Vj, called the scaling function, such that the
collection {¢p(x — X) : A € A} is a complete orthonormal system for V.

It is worth noticing that, when N = 1, one recovers from the definition above
the standard definition of a one-dimensional MRA with dilation factor equal to 2.
When, N > 1, the dilation factor of 2N ensures that 2NA C 2Z C A. However,
the existence of associated wavelets with the dilation 2N and translation set A is no
longer guaranteed as is the case in the standard setting.

For every j € Z, define W; to be the orthogonal complement of V; in V; 4.
Then we have

Vii=V;@W; and W LW, ifk #{. (8.3.2)

It follows that for j > J,

j=J—1

Vi=Vie @ Wi (8.3.3)
k=0

where all these subspaces are orthogonal. By virtue of condition (ii) in the
Definition 8.3.1, this implies

L’®) =PWw,. (8.3.4)

jez

a decomposition of L?(R) into mutually orthogonal subspaces.
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Observe that the dilation factor in the NUMRA is 2/N. As in the standard case,
one expects the existence of 2N — 1 number of functions so that their translation
by elements of A and dilations by the integral powers of 2N form an orthonormal
basis for L>(R).

A set of functions {{ri,V,..., Poy—1} in L2(R) is said to be a set of
basic wavelets associated with the NUMRA {V;} if the family of functions
{Ue(-—=N): 1 <€ <2N —1,\ € A} forms an orthonormal basis for Wj.

In the following, our task is to find a set of wavelet functions {{rj, Py, ..., Yoy—1}
in Wy such that {(2N)//?y((2N)/x —X) : 1 <€ <2N — 1, A € A} constitutes
an orthonormal basis of W;. By means of NUMRA, this task can be reduce
to find Y € Wy such that {{re(x —X) : 1 <€ <2N — 1,1 € A} constitutes an
orthonormal basis of .

Let ¢ be a scaling function of the given NUMRA. Since ¢ € V, C V1, and the
{®1.2},ca is an orthonormal basis in V;, we have

0() =Y ardra(¥) = an2N)2p(2N)x — 1), (8.3.5)
AEA AEA
with
b= (0.00) = [ 4@ dx wd YlaP <o (636)
R AEA

Equation (8.3.5) can be written in frequency domain as
¢ 2N w) = mo(w) h(w), (8.3.7)

where mo(w) = Y, o, ane™ ¢, is called the symbol of ¢(x).

We denote Vp = ¢, the scaling function, and consider 2N — 1 functions {r;, 1 <
£ <2N — 1, in W} as possible candidates for wavelets. Since (1/2N )y (x/2N) €
V_1 C Vb, it follows from property (iv) of Definition 8.3.1 that for each £, 0 < £ <

2N — 1, there exists a sequence {af\ PN A} with D7, o |af\|2 < oo such that
1 X ¢
STTAL (ﬁ) =Yl plx = ). (8.3.8)
AEA
Taking Fourier transform, we get

Ve 2N ) = me(0) d(w), (8.3.9)

where

my(w) =Y ajye”> 7. (8.3.10)
rEA
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The functions my,0 < £ < 2N — 1, are locally L? functions. In view of the specific
form of A, we observe that

me(w) = mp(w) + e "N miw), 0<L<2N -1, (8.3.11)

where m| and m? are locally L?, 1/2-periodic functions.

We are now in a position to establish the completeness of the system
{We(x — M)} <p<on—12ea in V1 and in fact, we will find two equivalent conditions
to the orthonormality of the system by means of the periodic functions 71 as defined
in (8.3.11).

Lemma 8.3.1. Ler ¢ be a scaling function of the given NUMRA as in Defini-
tion 8.3.1. Suppose that there exist 2N — 1 functions Vg, 1 <€ <2N —1, in V such
that the family of functions {\re(x — A)}o<g<an—1.1en fOTmMSs an orthonormal system
in Vy. Then the system is complete in V;.

Proof. By the orthonormality of {, € L*(R),0 < £ < 2N —1, we have in the time
domain

(W&—Mw%PﬂD=AWQ—MW@—®M=&ﬁm

where A,0 € A and k,£ € {0,1,2,...,2N — 1}. Equivalently, in the frequency
domain, we have

Sk.edro = / U () Yo () €72 1900 g,
R

Taking A = 2m,0 = 2n where m,n € Z, we have

Bk.8mn = / Ui (@) e (w) €72 1020mm gy
R

_ / e—4 iw(m—n)Z{'}k(w_FNj)mdw.
[0,N)

jez
Let

hice(@) =Y (o + Nj) el + Nj).

JEZ
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Then, we have

S 0 = / e IO () do
[0.N)

2N—1
— —4 iw(m—n) h £ dw,
/[;),1/2)6 I;) ki ((D+ 2) o)
and
2N—1
Z ]’lk,( ((x) + g) = 281{,1{. (8.3.12)
p=0

Also on taking A = % + 2m and 6 = 2n, where m,n € 7Z, we have
0= / 6‘_4 iw(m—n)e—Z iu)~r/N11rk(0\)) qu(w) do
R
:/ o4 iolm=—n) ,=2 iwr/N Z{l}k(w"f_ N]){l}{(w“f‘ Nj)dw
[0,N)

JEZ

— / e—4 iw(m—n) e—Z ioyr/Nhkj(w) do
[0.N)

2N—1
— / e—4 io(m—n) €_2 iowr/N Z e ipr/N hk,[ ((,0 + E) do.
[0.1/2) =0 2
Thus, we conclude that
IN—1
Z af hye (w + g) =0, where @ = e~ /N, (8.3.13)
p=0

Now we will express the conditions (8.3.12) and (8.3.13) in terms of m, as follows:
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i) = S0 (28 () b (28 (0+5))
=X (o 2)berg)mefora)oors)

=S (s ) (o) oo 4)
o(0+3)

(o+3)
#(o+3)

2

= [mh@ mi@) + mi @mi@)| 3

jez

+ m/l((()\)) m%(o\))ZeZ i(o+j/2)r/N
jez

2

2
+ mk(w) m[(o\))ze_z i(w+j/2)r/N
JEZ

Therefore,

2N—1
e @Nw) = [mf(@)ml(@) + m} (@)m(w)] X hoo( )

IN—1
+ mk(w)mé(w)e2 for/N Z o fhoo(

j=0

[\)\. N\-
\—/ v
1 1

2N—1
+ | mH(w)ym?(w) e /N > afhoo(
j=0

=2 [mk(oo)ml(oo) + mk(w)mlZ (w)]
By using the last identity and Eqgs. (8.3.12) and (8.3.13), we obtain

St o ) o o ] -

p=0
(8.3.14)
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and

2N—1 - -
£ £ £ Z)|=o.
I;“ [ (‘”+4N) ( +4N)+ ( +4N) ( +4N)}
(8.3.15)
forO0 <k,£ <2N — 1, wherea = e~ /N,

Both of these conditions together are equivalent to the orthonormal-
ity of the system {yy(x —A):0<{<2N —1,Ae A}. The completeness
of this system in V), is equivalent to the completeness of the system
{sxVe((x/2N) =2 :0 <€ <2N —1,A€ A} in V. For a given arbitrary
function f € V,, by assumption, there exist a unique function m(w) of the
form Y, bre™2 ™, where 3, |ba]?> < oo such that f(w) = m(w) d(w).
Therefore, in order to prove the claim, it is enough to show that the system of
functions

P={e" V' my(w) xa(w):0<L<2N —1,L€ A}

is complete in L2(A), where A C R with 0 < |A| < oo. Since the collection
{ez foh y A(w)}x cn 18 an orthonormal basis for L?(A), therefore there exist locally
L? functions g; and g, such that

g(w) = [g1(@) + 2 "V gy(w)] Y a(w).

Assuming that g is orthogonal to all functions in P, we then have for any A € A
and? € {0,1,...,2N — 1}, that

0= /Ae_4 INOM o () g(w) dw
- / et iNok [m{(w)@ Lm0+ N/2)g(o + N/z)] dw
[0.1/2)

_ / e N [l () g1(w) + M) B2(0) | do. (8.3.16)
[0.1/2)
Taking A = 2m, where m € 7Z and defining
we(w) = my(w) g1(0) +mi(w) g2(w), 0<€<2N -1,
we obtain

0

/ e—2 iw(4N)ng((x)) dw
[0.1/2)

2N—1

—2 iw(4N)m w ( / ) d
E el o+ — .
/[0,1/4N>
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Since this equality holds for all m € Z, therefore

2N—1

3w (w n L) —0 forae (8.3.17)
Fr 4N

Similarly, on taking A = 2m + r/N, where m € Z, we obtain

0= / €_2 iw(4N)m e—2 i2rmwl(w) do
[0.1/2)

2N—1 .

_ —2 i0(dN)m ,—2 i2re j ( J )

= e e E o/ we o+ dw.
/[0,1/41\/) = 4N

Hence, we deduce that

2N—1

Z ocjwz (u) + ﬁ) =0 fora.e. w,

Jj=0

which proves our claim.

If Yo, Y1, ..., Uoy—1 € V) are as in Lemma 8.3.1, one can obtain from them an
orthonormal basis for L?(R) by following the standard procedure for construction
of wavelets from a given MRA (see Chap.7). It can be easily checked that for
every j € Z, the collection {(2N)//?Y((2N)/x =) : 0 <€ <2N — 1,k € A}
is a complete orthonormal system for V. Therefore, it follows immediately
from (8.3.4) that the collection {(2N)//*Y((2N)/x —X):1 <€ <2N —1,
A € A} forms a complete orthonormal system for L2(R).

The following theorem proves the necessary and sufficient condition for the
existence of associated set of wavelets to NUMRA.

Theorem 8.3.1. Consider a NUMRA with associated parameters N and r as in
Definition 8.3.1, such that the corresponding space Vy has an orthonormal system
of the form {d(x — \) : A € A}, where A = {0,r/ N} + 27Z and ¢ satisfies the two
scale relation
b 2N w) = mo(w) d(w), (8.3.18)
where my is of the form
mo(w) = my(w) + e N m2(w), (8.3.19)

for some locally L? functions m(l) and m(z). Define My as

Mo(@) = [m(@)|* + |m3()]*. (8.3.20)
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Then a necessary and sufficient condition for the existence of associated wavelets
V1, ..., Uon— is that My satisfies the identity

M, (w + %) = My(w). (8.3.21)

Proof. The orthonormality of the collection of functions {d(x —A): Ak € A}
which satisfies (8.3.18), implies the following identities as shown in the proof
of Lemma 8.3.1

2N—1

]; U (o _>) + | (o + %)ﬂ =1, (8.3.22)
and
2N—1 1 ) ,
;:(:)ou’ Umo w+— ‘ +‘mo w+m)‘ :| =0, (8.3.23)

where o = e~ /N Similarly, if {{re},—; 2n—1 1s a set of wavelets associated with
the given NUMRA then it satisfies the relation (8.3.9) and the orthonormality of the
collection {U¢},—¢ 1. on—1 in V1 is equivalent to the identities

2N—1

;) |:m,1( (w+ %)m% (u)+ %) + m? (03+ %)m%(w+ %)} = 8k,
(8.3.24)
and
~ PN P PN (oa 2
;)oc[ (w+m)m[(w+m)+ ( +m) ( +m)i|=0,
(8.3.25)

forO0 <k,{ <2N —1.
If ! = p
o € [0,1/4N]is fixed and a¢(p) = m, (w—i— 4N) be(p) = m; (w—}- 4N)

are vectors in C2V for p=0,1,...,2N — 1, where 0 < £ < 2N — 1, then the
solvability of system of Eqgs. (8.3.24) and (8.3.25) is equivalent to

(p+N)\ _ )4 _
MO(@JFT —Mo(u)+m), ®e[0,1/4N], p=0,1,...,2N—1,

which is equivalent to (8.3.21). For the proof of this result, the reader is refer to
Gabardo and Nashed (1998a,b).
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‘We note here that the function M, in the above theorem can also be written in
terms of the filter m as

[Imo (@ + ) + Imo(e)’]

Moy(w) = 5

When N = 1, we have r = 1 and o = —1 so that Egs. (8.3.22) and (8.3.23)
reduces to My(w) = 1/2, or the more familiar quadrature mirror filter condition
from wavelet analysis |mg (0 + 1/2)|2 + |m0(<;3)|2 = 1, and, in particular, M
is automatically 1/4-periodic. When N = 2, we must have r = 1 or 3, so
that « = =i. In that case, the 1/4-periodicity of M, follows again automatically
from (8.3.22) and (8.3.23). When N > 3, we note that the conditions (8.3.22)
and (8.3.23) do not imply the 1/4-periodicity of the function M, (see Gabardo and
Nashed 1998a,b).

Example 8.3.1 (Haar NUMRA). 1f we take r = 1, then A = {0,1/N} + 2Z and
choosing ¢ = ¥ 4, , where

N—1 . .
_{j[en, eien
U5

we have

N—1

¢ = Xio/n) * D ajyw-
j=0

We now define V; as the closed linear span of {¢p(x — M)}y, i€, Vo =
span {¢p(x —A) : L € A} and V;, for each integer j, by the relation f(x) € V;
if and only if / (x/(2N)’) € V;. Then, the condition (i) of the Definition 8.3.1 is
verified by fact that

N—1

1 1
N ¢ (%) = X2 * 57 ;841

= (80 + 8i/n) * & * = Z 4 (8.3.26)

Equation (8.3.25) can be written in the frequency domain as

H(2N ) = mo(w) d(w), (8.3.27)
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where
— 1 -2 io/N = —8 iwk
mo(w)—ﬁ(l—i—e )[;e :|
Furthermore, we have
! ‘
my(w) = mi(w) = N Z e 8 ok, (8.3.28)
k=0

Here, both the functions m(l) and m% are 1/4-periodic and so is M. Therefore,
Theorem 8.3.1 can be applied to show the existence of the associated wavelets.
Hence, when N = 1,¢ = xp1 and mi(w) = mi(w) = 1/2, then the
corresponding wavelet {s; is given by the identity

-2 iw _

)

11 (2w) = 2

Or, equivalently

Y1 = —Y.1/2) + X[/2.1)-

which is the classical Haar wavelet. For N = 2, the periodic function m(l) and m%
are given by

et i cos(4 )
my(w) = mi(w) =
and thus My(w) = cos’(4 iw) /2. In this case, the associated wavelets can easily
be computed using the relation {r;(4w) = my(w) ¢p(w), £ = 1,2, 3. Therefore, we
have

V1 = Xj0,1/2) — X[1.3/2)

P2 = —X[=8/8,~7/8) T X[=7/8,—6/8) — X[=6/8,—5/8) T X[=5/8,—4/8)
—X[o.1/8) + X[1/8.2/8) — X[2/8.3/8) T X[3/8.4/8)s

Y3 = —X[=8/8,~7/8) T X[=7/8,—6/8) — X[=6/8,—5/8) T X[=5/8,—4/8)
+X[0.1/8) — X[1/8.2/8) + X[2/8.3/8) — X[3/5.4/8)-



Chapter 9
Newland’s Harmonic Wavelets

Wavelets are without doubt an exciting and intuitive concept.
The concept brings with it a new way of thinking, which is
absolutely essential and was entirely missing in previously
existing algorithms.

Yves Meyer

9.1 Introduction

So far, all wavelets have been constructed from dilation equations with real
coefficients. However, many wavelets cannot always be expressed in functional
form. As the number of coefficients in the dilation equation increases, wavelets get
increasingly longer and the Fourier transforms of wavelets become more tightly
confined to an octave band of frequencies. It turns out that the spectrum of a
wavelet with n coefficients becomes more boxlike as n increases. This fact led
Newland (1993a,b) to introduce a new harmonic wavelet {s(x) whose spectrum
is exactly like a box, so that the magnitude of its Fourier transform @(m) is zero
except for an octave band of frequencies. Furthermore, he generalized the concept
of the harmonic wavelet to describe a family of mixed wavelets with the simple
mathematical structure. It is also shown that this family provides a complete set of
orthonormal basis functions for signal analysis.

This chapter is devoted to Newland’s harmonic wavelets and their basic
properties.

9.2 Harmonic Wavelets

Newland (1993a) introduced a real even function s, (#) whose Fourier transform is
defined by

1
—for -4 <w<-2, and 2 <w<4

Je(w) = 1 4 , 9.2.1)

0, otherwise

© Springer Science+Business Media New York 2015 475
L. Debnath, F.A. Shah, Wavelet Transforms and Their Applications,
DOI 10.1007/978-0-8176-8418-1_9
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where the Fourier transform is defined by
A 1 [>® ,
fw)=— / f(e)e " dt. 9.2.2)
2 Jw
The inverse Fourier transform of ﬂ,re (w) gives
RN 1
Yo(t) = / Ye(w) exp(iwt) do = ﬂ(sin4 t—sin2 1). (9.2.3)
—00

On the other hand, the Fourier transform ﬁjo (w) of a real odd function Yo(?) is
defined by

— f —4 <w<-=2
2 or <w

Yo(w) = 4’_ for 2 <w<4 (9.2.4)
0, otherwise

Then, the inverse Fourier transform gives

Yo(t) = /OO Vo(w) exp(iot) do = %(cos2 1 —cosd 1). (9.2.5)

The harmonic wavelet {s(¢) is then defined by combining (9.2.3) and (9.2.5) in
the form

(1) = We(t) + io(r)

= ﬁ[exp@ it) —exp(2 ir)]. (9.2.6)

Clearly, the Fourier transform of {s(¢) is given by

U(®) = Ye(®) + i fo(w) 9.2.7)

so that, from (9.2.1) and (9.2.4), we obtain the Fourier transform of the harmonic
wavelet y(7)

1
—,2 <w<4

U(w) = 9.2.8)

0, otherwise
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0.8
0.6| Re fy (1)}
0.4
0.2

=02
-04
-0.6
-08

0.6 Im{y (1)}
0.4
0.2

0
-02
-04
~0.6
-0.8
-1 > !

-8 -6 -4 -2 0 2 4 6 8

Fig. 9.1 (a) Real part of y(¢); and (b) imaginary part of {s(¢)

For the general harmonic wavelet {s(¢) at level m and translated in k steps of size
27™ we define

1  wk
2—2—'"exp(—&),2 M <w<d 2"

2m

(w) = , (9.2.9)

0, otherwise

where m and k are integers.
The real and imaginary parts of {s(¢) are shown in Fig.9.1a, b.
The inverse Fourier transform of (9.2.9) gives

exp{4 i(2"1—k)} —exp{2 i(2"t —k)}

bt —k) = 2 (2"t —k) ’

(9.2.10)

where m is a nonnegative integer and k is an integer.
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The level of the wavelet is determined by the value of m so that, at the level
(m = 0), the Fourier transform (9.2.9) of the wavelet occupies bandwidth2 to4 |,
as shown in (9.2.8). At level m = —1 with bandwidth 0 to 2 , we define

1 —iwk
Jwy={72 ¢ 0=w=<2 9.2.11)

0, otherwise

so that the inverse Fourier transform gives the so-called harmonic scaling function

ot —k) = xp {z ig :];))} - (9.2.12)

Evidently, the choice of the harmonic wavelet and the scaling function seem to
be appropriate in the sense that they form an orthogonal set. If {r(w) is the Fourier
transform of {(¢), then the Fourier transform of g(¢) = I!I(th - k) is

g(w) =2""exp (—lz%k) P (w277). (9.2.13)

Clearly, the Fourier transforms of successive levels of harmonic wavelets decrease
in proportion to their increasing bandwidth, as shown in Fig.9.2. For o < 0, they
are always zero.

Ay ()]
/ m=-1
1/2n
L~ m=0
/ m=1
1/4n
m=2
/ 118 m=3 =4
J f16n J
n4n 8n 16n 2n 0}

Fig. 9.2 Fourier transforms of harmonic wavelets at levels m = 0, 1, 2,3, 4
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In order to prove orthogonality of wavelets and scaling functions, we need the
general Parseval relation (3.4.37) in the form

/_f(z)Mdtzzf_ F(w)g(w)dw, (9.2.14)

where f, g € L>(R) and the factor 2 is present due to definition (9.2.2).
We also need another similar result of the form

/_f(t)g(t)dtzZ/_ () 8(—0) do, (9.2.15)

where £, g € L*(R).
This result follows from the following formal calculation:

/_ f(t)g()dt =/_ dt/_ f(u)l)dun/_ g(wz)dwzexp{i(u)1+w2)t}

> / Flon) do, / #(0) 8(01 + w2) dos

—0o0

o0 ~
2 [ Fn g do
—00
00 A
=2 [ jeicw do. ©=o.
—00
Theorem 9.2.1 (Orthogonality of Harmonic Wavelets). The family of harmonic

wavelets 11;(2’"1 — k) forms an orthogonal set.

Proof. To prove this theorem, it suffices to show orthogonality conditions:

/ Y(@)¥(2"t —k)dt =0  forallm,k, (9.2.16)
—0o0
/ V(@) (2"t —k)dt =0 form # 0. (9.2.17)
—0o0
We put g(¢) = \lf(Z’”t — k) so that its Fourier transform is

A
§(w) =2 exp (_%) ¥ (2" w) (9.2.18)
and then apply (9.2.15) to obtain

/_ V() g(t)dt =2 /_ () g(—w) dw. (9.2.19)
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If ¥(¢) and g(¢) are two harmonic wavelets, they have the one-sided Fourier
transforms as shown in Fig.9.2, so that the product {/(w) &(—w) must always
vanish. Thus, the right-hand side of (9.2.19) is always zero for all k and m, that is,

/ Y@ Y(2"t —k)dr =0  forallm, k. (9.2.20)

To prove (9.2.17), we apply (9.2.14) so that

/_ q;(r)mdz:z/_ () 2(0) do. (9.2.21)

Clearly, wavelets of different levels are always orthogonal to each other because
their Fourier transforms occupy different frequency bands so that the product
(w) g (o) is zero for m # 0.

On the other hand, at the same level (m = 0), we have

g(w) = exp(—i wk) Y(w). (9.2.22)

Substituting this result in (9.2.21) and the value of ﬁj(u)) from (9.2.8) gives

oo 4
/ V)Vt —k)dt = i/ exp(iwk)do = 0, (9.2.23)
oo 2 )

provided exp(4 ik) = exp(2 ik),k # 0. This gives exp(2 ik) = 1 for k # 0.
Thus, all wavelets translated by any number of unit intervals are orthogonal to each
other. Although (9.2.23) is true for m = 0, the same result (9.2.23) is also true for
other levels except that the unit interval is now that for the wavelet level concerned.
For instance, for level m, the unit interval is 27" and translation is equal to any
multiple of 27. The upshot of this analysis is that the set of wavelets defined
by (9.2.10) forms an orthogonal set. Wavelets of different levels (different values
of m) are always orthogonal, and wavelets at the same level are orthogonal if one is
translated with respect to the other by a unit interval (different values of k).
In view of (9.2.20), it can be shown that

o
/ (2"t — k)dt = 0. (9.2.24)
—0o0
Theorem 9.2.2 (Normalization).

/_oo ’w(zmz —k) ‘zdt =2, (9.2.25)

(o]
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Proof. Tt follows from (9.2.21) that

/_ VO V@) dt =2 /_ J(0) (o) do. (9.2.26)
Using (9.2.18) in (9.2.26) gives
/oo (2"t —k)U(2"t —k)dt =2 2—2'"/ T2 "0) § 2"0) do.

o
(9.2.27)
It follows from (9.2.8) that

A 1
1!;(2_’”(»):2— for 2 27" <w<4 2"

so that (9.2.27) becomes

oo 2 4 2" 1
/_ W@t —k)| dr =2 2—2'"/ Gy do=2""

00 2 2m

This implies the property of normality.

9.3 Properties of Harmonic Scaling Functions

We follow the harmonic wavelet terminology due to Newland (1993a) to discuss
properties of harmonic scaling functions. Newland (1993a) first introduced the even
Fourier transform

1

A —, =2 < 2

be(w) =1 4 Sos 9.3.1)
0, otherwise

to define an even scaling function

sin2 x

e(x) = (9.3.2)
Similarly, the odd Fourier transform given by
i
—, =2 <<
. 4 .
do(w) =4 T 0<wm<?2 (9.3.3)
4 b —_—

0, otherwise
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gives an odd scaling function

(1 —cos2 x)

do(x) = . 9.3.4)

All of these results allow us to define a complex scaling function ¢(x) by
b(x) = Pe(x) + ido(x) 9:3.5)

so that

d(x) = {exp(2 ix—1)}. (9.3.6)

2 ix
Its Fourier transform (13((1)) is given by
,0<w<?2

dlw)y=412 9.3.7)
0, otherwise

The real and imaginary parts of the harmonic scaling function (9.3.6) are shown
in Fig.9.3a, b.

Theorem 9.3.1 (Orthogonality of Scaling Functions). The scaling functions
¢(x) and (x — k) are orthogonal for all integers k except k = 0.

Proof. We substitute Fourier transforms (o) and Z {¢(x—k)} = exp(—i wk)d(w)
in (9.2.15) to obtain

/_OO o) d(x —k)dx =2 /_oo (f)(oo) (f)(—w) exp(iwk)dw = 0. (9.3.8)

The right-hand side is always zero for all k because (f)(oo) is the one-sided Fourier
transform given by (9.3.7).

On the other hand, we substitute ¢(w) and .% {d)(x — k)} = exp(—iwk)d(w)
in (9.2.14) to obtain

/_ () B — k) dx =2 /_ $(0) $() expliok) dw
2
= %/0 exp(iwk) dw, by (9.3.7)

=3 1ik [exp(2 ik)— 1] =0 fork # 0. (9.3.9)

This shows that ¢(x) and ¢(x — k) are orthogonal for all integers k except k = 0.
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0.6| Re {o(x)}

0.6 | Im{o(x)}

& > X
4 -6 -4 -2 0 2 4 6 8

Fig. 9.3 (a) Real part of the scaling function ¢; and (b) imaginary part of the scaling function ¢

It can also be shown that

/oo U(2"x —k)d(x —n)dx =0 for all m, k,n(m > 0), (9.3.10)
/ W(2"x —k)d(x —n)dx =0  forallm,k,n(m > 0). (9.3.11)

Theorem 9.3.2 (Normalization).

/_oo 0(x — k) dx = 1. (9.3.12)
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Proof. We have the identity (9.2.14) so that

/_ood’( k) b(x — k) x—2/ $(w) $() do.

(o]

Thus,

oo 2, S _
/_oo!¢(x—k); dx—Z/O Q—)zdw—l by (9.3.7).

This completes the proof.

9.4 Wavelet Expansions and Parseval’s Formula

An arbitrary (real or complex) function f(x) can be expanded in terms of complex

harmonic wavelets in the form

f(x) = Z Z [ s W (2% = K) + s W (2"~ k),

m=—00 k=—00

where the complex coefficients a,, x and a,, ; are defined by

e = 2" / Y (R — k) dx,

ami = 2" /oo Fx)V(2"x —k)dx.

(9.4.1)

(9.4.2)

(9.4.3)

In terms of these coefficients, the contribution of a single complex wavelet to the

function f(x) is given by

am g U(2"x = k) + dmi W(2"x — k).

Adding all these terms gives the expansion (9.4.1).
We next give a formal proof of the Parseval formula

[Tlrfas= 3 % 2 (ol +lansl).

m=—00 k=—00

(9.4.4)

(9.4.5)
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Multiplying (9.4.1) by £ (x) and then integrating the result from —oo to co term
by term gives

INCICEE % [ans [ T s -k ax

m=—00 k=—00
+ Ak / F)U(2"x —k) dx} . (9.4.6)

We use (9.4.2) and (9.4.3) to replace the integrals on the right-hand side of (9.4.6)
by @, x and d,, ; so that (9.4.6) becomes

INCCE S5 2 (Jansl + fansl?).

m=—00 k=—00

It may be noted that, for real functions f(x),dmx = dami so that the
expansion (9.4.1) can be simplified,

Another interesting proof of the Parseval formula (9.4.5) is given by Newland
(1993a) without making any assumption of the wavelet expansion (9.4.1).

We next define complex coefficients in terms of the scaling function in the form

apr = /_ F(x)d(x —k)dx, (9.4.7)

gk = /_ F(x) d(x —k) dx. (9.4.8)

In view of the orthogonality and normalization properties of xp(2mx — k) and
c{)(x - k), it can be shown that any arbitrary function f(x) can be expanded in the
form

o0

F@) = 3 fagr o(x = k) +aox b(x — k)|

k=—o00

+Z Z (s W (2% =) + s D27 — K. 9.4.9)

m=0k=—00

Newland (1993a) proved that this expansion (9.4.9) is equivalent to (9.4.1).

9.5 Concluding Remarks

Newland (1993b) generalized the concept of the harmonic wavelet to describe a
family of mixed wavelets with the simple mathematical structure
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exp(2 inx)—exp(2 irx)

Yra(x) = T . 9.5.1)

It is proved that this family provides a complete set of orthogonal basis functions
for signal analysis. When real numbers r, n are appropriately chosen, these mixed
wavelets whose frequency content increases according to the musical scale can
be created. These musical wavelets provide greater frequency discrimination than
is possible with harmonic wavelets whose frequency band is always an octave.
A major advantage for all harmonic wavelets is that they can be computed by
an effective parallel algorithm rather than by the series algorithm needed for the
dilation wavelet transform.

9.6 Exercises

1. Prove the following results (Newland 1993a):

o0
(a) / 1|j(2’"t —k) 1[;(2"t — 6) dt =0 forallm,k,n,€(m,n > 0).
(b) / U2t —k) (2"t =€) dt =0 forallm,k,n,£(m,n > 0).
(©) When m = n and k = £, the above result 1(b) becomes

/_Oo [W(2"t —k) [ de =27,

o0

(d)/ d(x —m)d(x —n)dx =0 forallm,n,m # n.

(e) / (2"x —k) ¢(x —€)dx =0 forallm,k,£(m > 0).
) / (2"x —k) ¢(x —€)dx =0 forallm,k, £ (m > 0).
2. Show that (Newland 1993a)

(@ apr =2 / f(u)) g(w) exp(iwk) dw.

b) Y apkd(x—k) =

k=—o00

2 3 / doy / (1) Be1) bw2) explion) exp (o1 — )k }dws

k=—o00" "

= / f(0) exp(iwx) do.
0
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3. Prove that (Newland 1993a)
@) amp =2 /oo f(u)) E(oﬂ_’”) exp(iwk2™) dw.
() dpp =2 / - F (=) P(02™) exp(—i wk2 ™) dw.

4. Show that the wavelet expansion (9.4.1) is equivalent to that of (9.4.9).

5. Prove Parseval’s formula (9.4.5) without making any assumption of the wavelet
expansion (9.4.1).

6. If the Fourier transform of a wavelet {s, , (x) is

1
. — 2 r<w<2mn
Yra(®) =192 (n—r) )

0, otherwise

show that

exp(2 inx)—exp(2 irx)
2 i(n—r)x '

Prn (x) =

7. Introducing translation of the wavelet by s = k(n — r)~!, generalize the result
of Exercise 6 in the form

exp{2 in(x —s)} —exp{2 ir(x —s)}

Wra(x =) = 2 i(n—r)(x—s) ’
where
exp(—iws)
N — 2 r<w<2n
Yrp(@)=49 2 (n—r)
0, otherwise

If r = 2™ and n = 2™*!, show that the wavelet s, ,(x) reduces to that given
by (9.2.10).

8. Prove the following results for s, ,(x) in Exercise 7 with s; = k;(n —r)~! and
s2 = ka(n — r)_l:

(a) / W = 1) Yrn(x —52)dx = 0 for any ky and k.
(b) /Oo Yra(x —s) U, (x —s2)dx =0 fork; # ko,
©) /Oo [Wrn(x —s)[Pdx = —r)"" fors =k(n—r)".



Chapter 10
Wavelet Transform Analysis of Turbulence

The phenomenon of turbulence was discovered physically and is
still largely unexplored by mathematical techniques. At the same
time, it is noteworthy that the physical experimentation which
leads to these and similar discoveries is a quite peculiar form of
experimentation; it is very different from what is characteristic
in other parts of physics. Indeed, to a great extent,
experimentation in fluid dynamics is carried out under
conditions where the underlying physical principles are not in
doubt, where the quantities to be observed are completely
determined by known equations. The purpose of the experiment
is not to verify a proposed theory but to replace a computation
from an unquestioned theory by direct measurements. Thus wind
tunnels are, for example, used at present, at least in part, as
computing devices of the so-called analog type (or; to use a less
widely used, but more suggestive, expression proposed by
Wiener and Caldwell: of the measurement type) to integrate the
nonlinear partial differential equations of fluid dynamics.

John von Neumann

The use of the wavelet transform for the study of turbulence
owes absolutely nothing to chance or fashion but comes from a
necessity stemming from the current development of our ideas
about turbulence. If, under influence of the statistical approach,
we had lost the need to study things in physical space, the
advent of supercomputers and the associated means of
visualization have revealed a zoology specific to turbulent flows,
namely, the existence of coherent structures and their
elementary interactions, none of which are accounted for by the
statistical theory.

Marie Farge

10.1 Introduction

Considerable progress has been made over the last three decades in our under-
standing of turbulence through new developments of theory, experiment, and
computation. More and more evidence has been accumulated for the physical
description of turbulent motions in both two and three dimensions. Consequently,
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turbulence is now characterized by a remarkable degree of order even though
turbulence is usually defined as disordered fluid flows. In spite of tremendous
progress, there are still a number of open questions and unsolved problems.
These include coherent structures and intermittency effects, singularities of the
Navier-Stokes equations, non-Gaussian statistics of turbulent flows, perturbations
to the small scale produced by nonisotropic, non-Gaussian, and inhomogeneous
large-scale motions, and measurements and computations of small-scale turbulence.
No complete theory is yet available for the problem of how the eddy structure of
turbulence evolves both under the action of mean distortion and even during the
mutual random interaction of eddies of different sizes or scales.

Most of the progress has been based on the Navier—Stokes equations combined
with the Fourier transform analysis. However, there are certain major difficulties
associated with the Navier—Stokes equations. First, in three dimensions, there
are no general results for the Navier—Stokes equations on existence of solutions,
uniqueness, regularity, and continuous dependence on the initial conditions. How-
ever, such results exist for the two-dimensional Navier—Stokes equations. Second,
there are indications that solutions of three dimensional Navier—Stokes equations
can be singular at certain places and at certain times in the flow. Third, another
difficulty arises from the strong nonlinear convective term in the equation. This
nonlinearity leads to an infinite number of equations for all possible moments of
the velocity field. This system of equations is very complicated in the sense that
any subsystem is always nonclosed because it contains more unknowns than the
number of equations in a given subsystem. For example, the dynamical equation for
second-order moments involves third-order moments, that for third-order moments
involves fourth-order moments, and so on. This is the so-called closure problem
in the statistical theory of turbulence. This is perhaps the major difficulty of
the turbulence theory. For any physical system with strong interaction, such as
turbulent flows, it is not easy to guess what kind of closure is consistent with
the Navier—Stokes equations. Various closure models for turbulence, including the
quasi-normal model (see Monin and Yaglom 1975) have been suggested. They
are hardly consistent with physical analysis, experimental measurements, and, more
recently, with direct numerical simulations (DNSs) of turbulence. Fourth, in the
limit as v — 0 (R — 00), the nature of the Navier-Stokes equations changes
because the nonlinear convective term dominates over the linear viscous term.
Therefore, for fully developed turbulence, as R — oo, the second-order viscous
term vanishes. Consequently, the second-order Navier—Stokes equations reduce to
the first-order Euler equations. Thus, a slightly viscous fluid flow can lead to a
singular perturbation of the inviscid fluid motions. Mathematically, the Navier—
Stokes equations lead to a singular perturbation problem. Another major difficulty
in modeling the structure and dynamics of turbulence is the wide range of length
and time scales over which variations occur. However, in recent years, a broad
class of self-similar dynamical processes has been developed as a possible means of
characterizing turbulent flows.

Traditionally, the Fourier transform approach to turbulence has been successful
due to the fact that the Fourier transform breaks up a function (or signal) into
different sine waves of different amplitudes and wavenumbers (or frequencies).
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In fact, the classical theory of turbulent flows was developed in the Fourier transform
space by introducing the Fourier energy spectrum FE (k) of a function f(x) in
the form

E(k) = ‘f(k)‘z. (10.1.1)

However, £ (k) does not give any local information on turbulence. Since f (k) is a
complex function of a real wavenumber k, it can be expressed in the form

fey =7 )| exp{i0k)}. (10.1.2)

The phase spectrum é(k) is totally lost in the Fourier transform analysis of turbulent
flows, and only the modulus of f (k) is utilized. This is possibly another major
weakness of the Fourier energy spectrum analysis of turbulence since it cannot take
into consideration any organization of the turbulent field. Also, the rate of energy
dissipation is distributed very intermittently in both space and time. This is usually
modeled by the breakdown of eddies, and the flux of energy is assumed to flow from
larger to smaller eddies so that the turbulence is generated to small scales, where it
is dissipated by viscosity. Evidently, there is a need for introducing a flux of kinetic
energy which also depends on position. For a real description of real turbulence,
there is a need for a representation that decomposes the flow field into contributions
of different length scales, different positions, and different directions.

The idea of a hierarchy of vortices is usually employed in the study of turbulence.
Combined with the theory of scales, a model of turbulence as a vortex system of
different sizes with random amplitude functions leads to the statistical description of
turbulence. Kolmogorov (1941a,b) used this approach to derive his famous spectral
law for isotropic and homogeneous turbulence. In this idea of a hierarchy of vortices,
the velocity field can be represented in terms of Fourier integral transforms. This
representation seems to be unsatisfactory for the following reason. Each Fourier
component in the decomposition of the velocity vector potential corresponds to a
coherent vortex structure over the entire space. But the strong nonlinear interaction
of the spatial temporal modes in turbulence results in the effect that periodic
solutions representing coherent vortex systems are not typical structural components
of the turbulent motion. The processes involving energy transfer, deformation, and
vortex decomposition are described by the local conditions of the turbulent flow.

Therefore, the Fourier transform analysis does not have the ability to provide
a local description of turbulent flows. In fact, the scale, position, and direction
involved in the flow field are completely lost in this analysis. Moreover, the Fourier
transform cannot describe the multifractal structure of fully developed turbulence.
The new method of wavelet transform analysis may enable representation of
quantities that depend on scale, position, and direction, and hence it has the ability
to give local information about the turbulent flows.
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In a series of papers, Farge and her associates (Farge 1992; Farge et al. 1992,
1990a; Farge and Holschneider 1989, 1990; Farge et al. 1990b, 1996, 1999a,b;
Farge and Rabreau 1988, 1989) introduced new concepts and ideas to develop a
new and modern approach to turbulence based on the wavelet transform analysis.
They showed that the wavelet transform can be used to define local energy density,
local energy spectrum, and local intermittency, to determine singularities, and to
find extrema of derivatives at different positions and scales. These studies reveal that
both wavelet and fractal analyses seem to be very useful and effective mathematical
tools for investigating the self-similarity, coherent structures, intermittency, and
local nature of the dynamics and other features of turbulent flows. Meneveau (1991,
1993) initiated wavelet transform analysis for the study of time-dependent three-
dimensional computations of the velocity field in a turbulent flow. He also provided
the first direct evidence that energy flows from small to large scales in some regions
of turbulence. This is a remarkable new phenomenon that cannot be studied by using
Fourier transform analysis.

This chapter is devoted to a brief discussion of Fourier transform analysis and
the wavelet transform analysis of turbulence based on the Navier—Stokes equations.
Included are fractals, multifractals, and singularities in turbulence. This is followed
by Farge’s and Meneveau’s wavelet transform analyses of turbulence in some detail.
Special attention is given to the adaptive wavelet method for computation and
analysis of turbulent flows. Many references related to applications of the wavelet
transform in turbulence are cited in the bibliography.

10.2 Fourier Transforms in Turbulence
and the Navier-Stokes Equations

It is well known that a Fourier transform decomposes a function or a signal f(x)
into different sine waves of different amplitudes and wavelengths. In general, the
Fourier transform of a signal f(x) can be expressed as

foy =700 exp fibao)} (102.1)

where f (k) and é(k) are called the amplitude spectrum and the phase spectrum,
respectively.

The energy (or power) spectrum of a signal is defined by
2

E(k) = ) £k (10.2.2)

so that the total energy of the signal f(x) is given by

E= /_oo E(k)dk = /_OO ‘f(k))zdk. (10.2.3)

o0
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Clearly, it follows from (10.2.2) and (10.2.3) that the energy spectrum and the total
energy depend only on the amplitude and are completely independent of the phase
é(k). In other words, the Fourier transform does not provide any local or structural
information on the signal. In spite of this major weakness, the Fourier transform
has been useful to analyze stationary stochastic signals. In particular, the Fourier
transform is fairly successful in the theory of a homogeneous turbulent velocity field
confined within a box of volume @>. In the case of three-dimensional turbulence, the
Fourier transform of the velocity field u(x) has three components, each of the form
(j =123,

. 1 [e’¢) al2 '
ij(k) = W/_m /_u/2 u;j(x)exp(ik - x)dx, (10.2.4)

where it (k) can be expressed in terms of amplitude and phase by

ij(k) =

it; (k)| exp {i6; (k)}. (10.2.5)

Since u;(x) and u; (k) are random functions, it is necessary to define statistical
quantities, of which the most important are the energy spectrum tensor ®;; (k) and
cross correlation between components. Application of Fourier transforms shows that

AR 1IN A~ AN 1
(k)i (k) = G a’ @;; (k) (10.2.6)
and
AR AN A~ 1N 1 /
i (K) i (K) = ayn ®;; (k) 8(k — K'), (10.2.7)

where the bar represents an average over space and the asterisk denotes the complex
conjugate. One of the most important properties of the turbulent flow is the
correlation tensor of a homogeneous (stationary space x) stochastic velocity field
defined by

Rij(r,x,t) = uj(x) uj(x+r), (10.2.8)
where r is the distance between simultaneous velocity fluctuations. Evidently

—pR;(O0.x,1) = —puu; = v; (10.2.9)

is called the Reynolds stress tensor.
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The energy spectrum tensor in turbulence is defined as the Fourier transform of
the covariance tensor R;; (r, X, t) by
1 o0
Dk -x,1) = —3/ exp(—ik-r) R;;(r,x,t) dr, (10.2.10)
(2 ) /2 —00
so that the inverse Fourier transform is given by
o

1
Rij(r,x,t) = W/ exp(ik - r)®;; (k,x, 1) dk, (10.2.11)
—00

where the integration is over all wavenumber k-space. A spectrum tensor 1s;;
function of the single scale variable k = |k| can be obtained by averaging over
all directions of the vector argument Kk so that

Uy (k) = / @, (k) dS (k). (10.2.12)

where this integration is taken in k-space over a sphere of radius k of which dS (k)
is an element. The energy (power) spectrum is then defined by

1
1 —
so that the total energy £ = 3 ”1‘2 is the integral of E(k, ) over all k£ from 0 to oo,
that is,
1= 1 *°
5 u; = 5 ®;;(k)d(k) = E(k,t)d(k). (10.2.14)
0

Thus. it follows from (10.2.8) and (10.2.12) that

1 1
E(k,1) = W\I"ii(k) = W/q)ii(k) ds(k)
1
— W/ | ()| dS (k). (10.2.15)

The turbulent energy spectrum E(k, ¢) represents the distribution of contributions

1= . N .
to 3 u? with respect to wavenumber (or scale) regardless of direction, and this is one

of the most important characteristics of any turbulent (or three-dimensional wave)
field. Thus. the study of the energy spectrum E(k,?) is the central problem in the
dynamics of turbulence. However, the information carried by the phase function
0; (k) disappears completely in the definition of the energy spectrum.
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One of the most common approaches to the study of turbulence is to use
the Navier—Stokes equations together with the continuity equation in the Fourier
transform space. In tensor notation, the Navier—Stokes equations for an unsteady
motion of an incompressible viscous fluid of constant density p and kinematic
viscosity v and the continuity equation are

au,' au,- 3
St = _a_i W + F, (10.2.16)
au,-
— =0, (10.2.17)
axi
where u; = u;(x,t) is the velocity field, p is the normal pressure divided by p,

it is often called the kinematic pressure, and F; are the external body forces. The
continuity equation (10.2.17) is kinematic in nature and is unaffected by the energy
dissipation process in the fluid due to viscosity.

It is important to point out that the use of the Navier—Stokes equations is perhaps
justified for the study of turbulence because the Mach number of incompressible
turbulent flows is relatively small.

Using the continuity equation (10.2.17), the Navier—Stokes equation (10.2.16) in
the absence of the external field of forces (F; = 0) can be written as

Ou; 0 ap
o (W uy) = —— +vVu . 10.2.18
o0 o, L) = Ty, TV (102.18)
Taking the divergence of this equation and using (10.2.17) gives the Poisson
equation

(i )

Vip=——""T0.
P ox; 0x,,

(10.2.19)

Eliminating the pressure from the Navier—Stokes equations, we obtain

i 1
Wi 2y, = L Pijm (V) () ), (10.2.20)
ot 2
where
9 9
Pijm(V) = —P;j (V) + — Pim (V) (10.2.21)
axm an

d ad 0
V=—”-—,— ), 10.2.22
(8x1 3)62 8x3) ( )
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and
Pi(V)=38j — = —— (10.2.23)
The Fourier transform of the Navier—Stokes equations is

(% + vkz) Ift,-(k, t) = —ikaij(k) / uj((I) (K — Q)d3q, (10.2.24)

where u; (K, t) is the Fourier transform of u; (x;, t), and

ki k;

Py (k) = 8 — ~5"

(10.2.25)

The velocity u;(x,t) is represented as a linear combination of plane waves, each
corresponding to a characteristic size O(k; ') in some direction i. However, the
information related to position in physical space is completely hidden, which is a
major drawback when dealing with the space of intermittency of turbulent flow.
It has been recognized that turbulence has a set of localized structures, often called
coherent structures, even at a very high Reynolds number R = (U{/v) or at a
very low viscosity. In many practical applications in aeronautics and meteorology,
R varies in between 10° and 10'2. These coherent structures are organized spatial
features, which repeatedly occur and undergo a characteristic temporal life cycle.
There are many examples of such structures which play a central role in the time
and space intermittency of turbulence. The classical model of turbulence is based
on ensemble time or space average, but this idea is of no use for the description of
coherent structure. On the other hand, the Navier—Stokes equations in physical space
provide no explicit information about scales of motion. This information is often
useful for modeling and physical insight into turbulent flows. This difficulty requires
a representation that decomposes the flow field into contributions of different
positions as well as different scales.

One of the most important features of a turbulent flow is the transfer of kinetic
energy from large to small scales of motion due to the nonlinear (convective) term,
which acts as the source of energy transfer. Denoting the nonlinear transfer of energy
to wavenumbers of magnitude k by T (k, t), the three-dimensional energy spectrum
E(k,t) for isotropic turbulence satisfies the evolution equation

%_f = T(k,t) — 2vk*E (k. 1), (10.2.26)

where T (k, t) is formally defined in terms of triple products of fluctuating velocity
and thus embodies the closure problem due to the nonlinear term in the Navier—
Stokes equations. Equation (10.2.26) is made up of contributions of the inertial,
nonlinear, and viscous terms of the Navier—Stokes equations. It follows from the
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continuity equation (10.2.17) that the pressure term does not make any contribution
to (10.2.26). This implies that the net effect of the pressure field is to conserve the
total energy in the wavenumber space. Only the nonlinear term in the Navier—Stokes
equations is responsible for the net energy transfer from large to smaller eddies or
scales—a mechanism by which large eddies decay. The total spectral flux of energy
through wavenumber k to all smaller scales is given by

00 k
(k,1) :/ Tk t)dk' = —/ Tk t)dk, (10.2.27)
k 0
so that
/ Tk t)dk' =0, (10.2.28)
0

which also follows from the conservation of energy by the nonlinear term
in (10.2.16). Consequently, the evolution equation (10.2.26) leads to

a (1___ a [
: (Eu,. ui) -2 /0 Ek.t)dk = —(0). (10.2.29)

and it follows from (10.2.26) that

e(t) = 2\// K?E(k,t)dk. (10.2.30)
0

This clearly represents the overall rate of energy dissipation and exhibits that small-
scale (or high wavenumbers) components are dissipated more rapidly by viscosity
than large-scale (or low wavenumbers) components.

Based on the usual arguments of equilibrium and stationarity, it is easy to
conclude that the ensemble average of the flux must equal to the overall rate of
energy dissipation, so that( (k, t))em = ¢(t) in the inertial range 1 < k' < £,
where ¢ is the integral scale and n is the Kolmogorov microscale. Physically,
the mechanism of energy transfer is described by simplified assumptions such as
the successive breaking down of eddies or as the generation of small scales by
the stretching and folding of vortices. Over the scales of motion of size k!, there
is a net flux of kinetic energy to smaller scales that is equal to the time average of

(k,t). However, (k,t) doesnot depend on position because the Fourier transform
is used in the preceding analysis. This means that information related to position in
physical space is completely absent in the theory of Kolmogorov (1941a,b), which
neglects the phenomenon of intermittency.

It is also well known that the rate of dissipation E(x,t) is distributed very
intermittently—a feature which increases with the Reynolds number and its
moments also increase with the Reynolds number according to power-laws in
the inertial range (see Kolmogorov 1962). This allows a self-consistent statistical
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and geometrical representation of ¢ in terms of multifractals (Benzi et al. 1984;
Frisch and Parisi 1985). The power-law behavior of spatial moments of the energy
dissipation can be modeled naturally within the framework of the breakdown of
eddies with an additional assumption that the flux of energy to smaller scales
shows spatial fluctuations. As the scales of motion become smaller, these spatial
fluctuations accumulate and can then lead to very intermittent distributions of the
energy dissipation. This clearly suggests that there is a need for defining a flux of
kinetic energy instead of (10.2.27) which incorporates information on positions.
In spite of these weaknesses of the Fourier analysis of turbulence, the upshot of
the preceding description is that pressure and nonlinear inertial terms separately
conserve the total energy of turbulence, whereas the linear viscous term dissipates
the energy. Based on the assumption of self-similarity, Kolmogorov (1941a,b)
and Oboukhov (1941) formulated a general statistical theory of turbulence, which is
known as the universal equilibrium theory. This formulation represents a significant
step in the development of the statistical theory of turbulence.

In order to study the energy spectrum function E(k,t), Kolmogorov classified
the spectrum into three major ranges, which are assumed to be independent. These
ranges are called the large eddies (k/ < 1), the energy containing eddies (k/ ~ 1),
and the small eddies (k/ > 1), where [ is the characteristic length scale of the
energy-containing eddies or the differential length scale of the mean flow as a
whole. For instance, the spectrum function E(k,¢) attains its maximum value at
k; = [7'. The basic assumption of the Kolmogorov theory is that at a very high
Reynolds number, the turbulent flow at the very small scales (large wavenumbers)
is approximately similar to a state of statistical equilibrium and hence, this part
of the spectrum is called the equilibrium or quasi-equilibrium range. Further, the
motion of the small eddies is assumed to be statistically independent of that in
the energy-containing range. The energy-containing scales of the motion may be
inhomogeneous and anisotropic, but this feature is lost in the cascade so that at
much smaller scales the motion is locally homogeneous and isotropic. Hence,
the statistical properties of the turbulent motion in the equilibrium range must be
completely determined by the physical parameters that are relevant to the dynamics
of this part of the spectrum only. The motion associated with the equilibrium range
(kI > 1) is uniquely determined only by two physical parameters, ¢ and v. The
consequence of this assumption is that the small-scale statistical characteristics of
the velocity fluctuations in different turbulent flows with high Reynolds numbers can
differ only by the length scales, which depend on € and v. According to the theory of
Kolmogorov, the turbulent motion in the equilibrium range is dissipated by viscosity
at the rate € so that E (k) is a function of €, v, and k. The net energy supply from
the small wavenumbers is transferred by the nonlinear inertial interactions to larger
and larger wavenumbers until the viscous dissipation becomes significant. Clearly,
the Reynolds number must be very large for the existence of a statistical range of
equilibrium. A necessary condition for this is k; < k;, where k is the location of
the wavenumber at which the viscous dissipation first becomes dominant. In other
words, the viscous dissipation takes place predominantly at the upper part of the
equilibrium range, that is, at large wavenumbers k > k; > k;. Thus, for R > 1,
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there exist two independent and widely separated regions k ~ k;, (energy source)
and near k ~ k, (energy sink), which are connected through a continuous set of
wavenumbers k such that k; < k < ky. In other words, the Kolmogorov inertial
range lies between the largest scale /(™! = k;), where the energy is supplied by
external forces, and the smallest scales d(d ~' = k,), where the energy is dissipated
by viscosity. This confirms the existence of an intermediate part of the energy
spectrum, the so-called inertial range (k; < k < k), where (a) the local energy
transfer is significant, (b) the properties of the statistical ensemble are independent
of all features of energy input except its rate, and (c) the viscous dissipation is
insignificant. In this case, the nonlinear convection is quite significant, and the
energy spectrum is therefore independent of viscosity v so that £ (k) depends only
on ¢ and k. In a state of statistical equilibrium, the rate of energy input and the rate of
energy dissipation. On a simple dimensional ground, the wavenumber spectrum of
kinetic energy or the energy spectrum function in the inertial range takes the form

k
E(k) = Cc e**k1F (k—) : (10.2.31)
d

provided k > k;, and where Cy, is a nondimensional universal parameter, called the

1/4 . e
Kolmogorov constant, ky = (8 / v3) /* is the characteristic dissipation wavenumber
and F(x) is a universal dimensionless function. In homogeneous turbulence £ ~

I\3/4
u see Batchelor , so that k; = “ k;. Clearly, k; > k; is an
(/1) (see Batchelor 1967) hat k
v

/
essential requirement so that the Reynolds number R = i must be large. As R
v

increases (or v decreases), the viscous dissipation would become predominant for
larger and larger wavenumbers. According to Kolmogorov’s hypothesis, for suffi-
ciently large R there exists a significant range of wavenumbers with k; < k < kg,
then, in this inertial range, both energy content and energy dissipation are negligible
and the spectral energy flux ¢(k) = ¢ is independent of wavenumbers k. The

k
molecular viscosity v then becomes insignificant, F (k_) in (10.2.31) becomes
d

k

asymptotically constant for k < kg, and then F (k_) ~ 1. Consequently, the
d

energy spectrum in the inertial range reduces to the form

E(k) = Cr k™3, (10.2.32)

This is called the Kolmogorov—Oboukhov energy spectrum in isotropic and homo-
geneous turbulence and received strong experimental support by Grant et al. (1962)

in the early 1960s and later with a value of C; ~ 1.44 4 0.06. Several experimental

. . 5 7
observations suggested that the spectrum power lies somewhere between 3 and T
Even though the experimental accuracy is not very high, most experiments in
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. . 5
oceanic and atmospheric turbulence strongly support the —— spectrum law. Very

recently, Métais and Lesieur (1992) proposed the structure—function model of
turbulence with the spectral eddy viscosity based upon a kinetic energy spectrum in
space. Their analysis gives the best agreement with the Kolmogorov k /3 spectrum
law and the Kolmogorov constant C ~ 1.40.

Soon after Kolmogorov’s pioneering work, considerable progress was made on
a detailed study of different physical mechanisms of energy transfer of turbulence.
Several authors including Heisenberg (1948a,b), Lin (1948), Chandrasekhar (1949,
1956), Batchelor (1967) , and Sen (1951, 1958), have investigated these problems.
Of these physical energy transfer mechanisms, Heisenberg’s eddy viscosity transfer
was found to be more satisfactory at that time. Based on the assumption that the
role of small eddies in the nonlinear transfer process is very much similar to that of
molecules in viscous dissipation mechanisms, Heisenberg suggested that these small
eddies act as an effective viscosity produced by the motions of the small eddies and
the mean-square vorticity associated with the large eddies. He used this assumption
to formulate the energy balance equation in the form

k k
i/ Ek,t)dt = —2 (v+ ”—")/ KCE(k, 1) dk, (10.2.33)
ot 0 P 0

where 1y is the eddy viscosity defined by Heisenberg in the form

© (Ek,t))'?
Nk = PK (k, 1) dk, (10.2.34)
k k3

where k is a numerical constant.

Thus, the main problem of turbulence is to determine the spectrum function
E(k,t) satisfying the integro-differential equation (10.2.33) for all subsequent time
when E(k,t) is given at ¢ = 0. For details of the problems, the reader is referred to
Debnath (1978, 1998a,b).

10.3 Fractals, Multifractals, and Singularities
in Turbulence

Mandelbrot (1982) first introduced the idea of a fractal as a self-similar geometric
figure that consists of an identical motif repeating itself in an ever decreasing scale.
This can be illustrated by the famous triadic Koch curve (see Fig. 10.1), which can be
constructed geometrically by successive iterations. The construction begins with a
line segment of unit length (L(l) = 1), called the initiator. Divide it into three equal
line segments. Then, replace the middle segment by an equilateral triangle without
a base. This completes the first step (n = 1) of the construction, giving a curve
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Fig. 10.1 The triadic Koch curve

4

3
This new shape of the curve is called the generator. The second step (n = 2) is
obtained by replacing each line segment by a scaled-down version of the generator.

Thus, the second-generation curve consists of N = 42 line segments, each of length
2

1\? 4
L = (5) , with the total length of the curve L({) = (5) . Continuing this

1 1
of four line segments, each of length £ = 3’ and the total length is L (5) =

iteration process successfully leads to the triadic Koch curve of total length L (£) =
n

3) where £ = 37", as shown in Fig. 10.1. The name triadic is justified because

individual line segments at each step decrease in length by a factor of 3. Obviously,
the Koch curve at the end of many iterations (n — oco) would have a wide range of
scales. At any stage of the iteration process, the curve possesses several important
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features. First, when a part of it is expanded by a factor of 3", it looks similar (except
for reorientation) to that obtained in n previous steps. Second, self-similarity is built
into the construction process. Third, there is no way to draw a tangent at each corner
leading to a tangentless (or nondifferentiable) curve. Finally, this leads to the idea
that self-similar fractals are invariant to dilation.

In terms of the box-counting algorithm in fractal geometry. the minimum N () =

1
4 boxes of size (5) are needed to cover the line in the Koch curve in Fig. 10.1b.

1\2
Similarly. at least N(£) = 42 boxes of size { = (3) are required to cover the
1 n

line in Fig. 10.1c. In general, a minimum of N({) = 4" boxes of size £ = 3

are needed to cover the Koch curve obtained at the nth step. On the other hand, the
4 n
total length L(37") = (5) at the nth iteration is obtained at a finer resolution of

37". As the resolution increases microscopically (n — ©0), the length of the Koch
curve also increases without limit. This shows a striking contrast to an ordinary
curve whose length remains the same for all resolutions. The intrinsic parameter
that measures this property is called the fractal Hausdorff dimension D, which is
defined by

log {
D — lim log N({) I {

=0, N e o 1\ °’
g\t g\t

where L(£) = {N(£) = £'~P for small number .
For the triadic Koch curve, N(£) = 4" and £ = 37", so that its fractal dimension
is given by

L(E)}
(10.3.1)

D = log4 ~ 1.2628 > 1 (10.3.2)
log3

and is noninteger and greater than one. The reason for this conclusion is due to
the convolutedness of the Koch curve, which becomes more and more convoluted
as the resolution becomes finer and finer. When the curve is highly convoluted, it
effectively covers a two-dimensional area, that is, the one-dimensional curve fills up
a space of dimension two. In general, a fractal surface has a dimension greater than
two, and its dimension could become as large as three for a very highly convoluted
surface, so that it can essentially cover a three-dimensional volume. This leads to
a general result that the fractal Hausdorff dimension of a set is a measure of its
space-filling ability.

Other famous examples include computer simulation of a diffusion-limited
aggregation process, electrical discharges on insulators, which obey laws similar
to diffusion-limited aggregation, and the resulting spark patterns. Computer sim-
ulations of such scale-invariant processes in three dimensions give a Hausdorff
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dimension between two and three. One of the most remarkable three-dimensional
highly branching lightnings has the Hausdorff dimension D ~ 2.4 or greater.

Mandelbrot (1982) also gave a more formal definition of a fractal as a set with
Hausdorff dimension strictly greater than its topological dimension. This is similar
to the Euclidean dimension of ordinary objects, but the fractal dimension D is
noninteger and represents the basic measure of the space-filling ability of a fractal
set. The topological dimension E = 1 for lines; for planes and surfaces, £ = 2;
and for spheres and other finite volumes, £ = 3. In general, D > E, Mandelbrot
also conjectured that fractals and the fractal Hausdorff dimension could be used
effectively to model many phenomena in the real world.

While he was studying fractal geometry, Mandelbrot (1974) first recognized that
the Kolmogorov statistical equilibrium theory of isotropic and homogeneous turbu-
lence is essentially based on some basic assumptions, which include the hierarchy
of self-similar eddies (or scales) of different orders and the energy cascade from
larger and smaller eddies. This observation led him to believe that the structure
of turbulence may be either locally or globally self-similar fractals. The problem
of intermittency has also stimulated tremendous interest in the study of kinematics
of turbulence using fractals and fractal dimensions (see Mandelbrot 1974, 1975).
It is believed that the slow decay described by the Kolmogorov k~>/3 law indicates
a physical situation in which vortex sheets are infinitely convoluted. Mandelbrot
recognized that these surfaces are so convoluted in the limit as v — 0 as to occupy a
space of fractal Hausdorff dimension between two and three. Then, he first proposed
fractal analysis of turbulent flows and predicted that multiplicative cascade models,
when continued indefinitely, lead to the dissipation of energy, which is confined
to a set of non integer Hausdorff dimension. His fractal approach to turbulence
received much attention after the introduction of a simple f-model by Frisch et al.
(1978). They studied the f-model with special emphasis on its dynamical and
fractal aspects. In addition, they explained both the geometrical and the physical
significance of the fractal model of turbulent flows.

Experimental results of Anselmet et al. (1984) neither supported the B-model of
Frisch nor the log-normal model of Kolmogorov. This meant that there was no uni-
form fractal model that could fully describe the complex structure of turbulent flows.
Then, Frisch and Parisi (1985) have shown that intermittent distributions can be
explained in terms of singularities of varying strength; all are located on interwoven
sets of different fractal dimensions, and hence, Frisch and Parisi introduced the name
multifractals. At the same time, Halsey et al. (1986) introduced f (o) for the fractal
dimensions of sets of singularities characterizing multifractals. In their multifractal
model of turbulence, they used the scale-invariance property, which is one of the
remarkable symmetries of the Euler equations. In the meantime, the fractal facets of
turbulence received considerable attention from Sreenivasan and Meneveau (1986)
and Vassilicos (1992, 1993). Their analysis revealed some complicated geometric
features of turbulent flows. They showed that several features of turbulence could
be described approximately by fractals and that their fractal dimensions could
be measured. Unfortunately, these studies can hardly prove that turbulence can
be described fully by fractals. Indeed, these models now constitute a problem in
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themselves in the sense that properties of turbulent flows can be used to find the
value of fractal dimension D. Thus, fractal models of turbulence have not yet been
fully successful.

Due to several difficulties with fractal models of turbulence, multifractal models
with a continuous spectrum of fractal dimension D(/) have been developed by
several authors, including Meneveau and Sreenivasan (1987a,b) (p-model) and
Benzi et al. (1984) (random B-model). These models produced scale exponents
which are in agreement with experimental results with a single free parameter.
However, it is important to point out that both the multifractal model and log-normal
models lack true dynamical motivation. Recently, Frisch and Vergassola (1991)
developed another multifractal model which enables them to predict a new form
of universality for the energy spectrum E (k) in the dissipation range. This model
involves a universal function D(h), called fractal dimension, which cannot be given
by phenomenological theory. This new form of universal law has received good
experimental support from Gagne and Castaing (1991), but it is not consistent with
Kolmogorov’s similarity hypothesis. They have analyzed a wide range of turbulence
data with Reynolds numbers from 103 to 107.

Finally, we close this section by adding some comments on the possible devel-
opment of singularities in turbulence. Mandelbrot (1975) has remarked that “the
turbulent solutions of the basic equations involve singularities or ‘near singularities’
(approximate singularities valid down to local viscous length scales where the
flow is regular) of an entirely new kind.” He also stated that “the singularities
of the solutions of the Navier-Stokes equations can only be fractals.” In his
authoritative review, Sreenivasan (1991) described the major influence of the fractal
and multifractal formalisms in understanding certain aspects of turbulence, but
he pointed out some inherent problems in these formalisms with the following
comment, “However, the outlook for certain other aspects is not so optimistic, unless
magical inspiration or breakthrough in analytical tools occur.”

During the last decade, some progress has been made in the understanding of the
implications of self-similar energy spectra of turbulence. It was shown by Thomson
et al. (1879) in their study of oscillations that when the Fourier power spectrum of a
function f(x) has a self-similar form

E(k) ~ k™27, (10.3.3)

where p is an integer, then there exists a discontinuity in the (p — 1) order derivative
of f(x). For example, the energy spectrum of a single shock f(x) = sgnx is
E(k) ~ k7% as k — oo. However, the energy spectrum such as E(k) ~ k=27,
where p is not an integer, implies the existence of singularities that are more severe
than mere discontinuities in the flow field. The singularity could be localized at one

. . smx . .
or a few points of the function such as f(x) = —— (accumulating function) or
X

could be global in the sense that f(x) is singular at all or almost all x, as in the
case of the Weierstrass function (see Falconer 1990). These two very different types
of functions may have identical self-similar energy spectra of the form (10.2.3)
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but always have different phase spectra. They also have a fractal (or K-fractal
according to Vassilicos and Hunt’s (1991) ideas) property in common; both are
characterized by nontrivial Kolmogorov dimensions Dg > 1, D;( > 0, where Dg
is the Kolmogorov dimension of the entire function and D% is the Kolmogorov
dimension of the intersection of a function with the x-axis, that is, the zero crossings.
However, when the above two functions have the same energy spectrum similarity
exponent p, they do not have the same values of Dg and D}(. Moreover, their
structure is also different in the Hausdorff sense, and the Hausdorff dimensions
Dy and D}{ for the accumulating function are trivial in the sense that Dy = 1
and D}{ = 0, whereas those of the Weierstrass function are nontrivial, Dy > 1
and D}, > 0. It has been conjectured by Mandelbrot (1982) that Dy = Dg
for H-fractals. Some of the major quantities involved in the statistical approach
to turbulent flows are correlations and spectra. Self-similar cascades are usually
associated with the power spectrum of the form

T(p) ~ k7. (10.3.4)

For example, p = 5/3 corresponds to the Kolmogorov spectrum for small-scale
turbulence, p = 1 characterizes the convective-inertial subrange, and p = 5/3
also corresponds to the Batchelor spectrum of a passive scalar in the inertial
subrange. The question is whether the self-similarity leading to such spectra is
local or global. Both local spectra are of the form (10.3.4) at large wavenumbers
k, where p may not take integral values and p is related to the Kolmogorov
dimension Dg of the interface, so that this relation can be used to derive the
value of Dk in turbulence, which is in agreement with experimental findings.
For a locally self-similar interface, the exponent p = 2 — D%, where D is the
Kolmogorov dimension of the interface with a linear cut, whereas for a globally
self-similar interface, p = 2 + E — Dy, where E is the topological dimension
and Dy is the Hausdorff dimension of the interface. Finally, it has been indicated
by Vassilicos (1993) that the value of Dx may be a more accurate measure of
spectra of locally self-similar interfaces than the direct measurement of the spectrum
itself. Also, the value of Dx may be a more accurate criterion of high Reynolds
number turbulence than the existence of self-similar spectra of the form (10.3.4). In
the case of the Kolmogorov spectrum, E(k) ~ k=>/3(p = 5/6), which implies
that the small-scale turbulence at a very high Reynolds number contains near-
singularities that are either simple or nonisolated. Recent experimental findings and
DNSs of turbulence have shown that the small scales of turbulent flows contain long
and slender vortex tubes. Some of the vortex tubes may carry near-singularities,
provided these vortex tubes are Lundgren vortices, which are asymptotic solutions
of the Navier—Stokes equations in the limit as time ¢ — oco. However, it has not yet
been confirmed whether the picture of the small scales of turbulence where vortex
tubes dominate the finest scales survives in the limit as R — oco.

Indeed, several theoretical works and experimental observations revealed that
turbulence possesses some singularities in the velocity field or vorticity field.
Sarker’s (1985) analytical treatment confirmed that finite-time cusp singularities
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always exist for essentially any arbitrary set of initial data and are shown to be
generic. Newer experimental methods (Hunt and Vassilicos 1991) also provide
evidence of spiraling streamlines and streaklines within eddies. and thin layers
of large vorticity grouped together (Schwarz 1990); both of these features are
associated with accumulation points in the velocity field. It also follows from
solutions of the Navier—Stokes equations (Vincent and Meneguzzi 1991 and She
et al. 1991) that very large deviations exist in isolated eddies with complicated
internal structure. These studies identify regions of intense vorticity so that stream-
lines form spirals. The Kolmogorov inertial energy spectrum k—/3 also implies
that there must be singularities in the derivatives of the velocity field on scales
where the rate of energy dissipation is locally very large. It has been suggested
by Moffatt (1984) that the accumulation points of discontinuities associated with
spiral structures could give rise to fractional power laws k27 with 1 < 2p < 2.
The question also arises whether the self-similarity leading to the Kolmogorov
spectrum is local or global. Moffatt’s analysis (see Vassilicos 1992) revealed that
spiral singularities are responsible for noninteger power of self-similar spectra k7.
It is also now known that locally self-similar structures have a self-similar high
wavenumber spectrum with a noninteger power 2 p. Thus, the general conclusion is
that functions with the Kolmogorov spectrum have some kinds of singularities and
accumulation points, unless they are fractal functions with singularities everywhere,
since they are everywhere continuous but nowhere differentiable. Thus, the upshot
of this discussion is that the statistical structure of the small-scale turbulent flows
is determined by local regions where the velocity and any other associated scalar
functions have very large derivatives or have rapid variations in their magnitude
or that of their derivatives. These are regions surrounding points that are singular.
It remains an open question whether the nature of this singularity is due to random
fluctuations of the turbulent motions resulting from their chaotic dynamics or to the
presence of localized singular structures originating from an internal organization
of the turbulent flows.

10.4 Farge’s Wavelet Transform Analysis of Turbulence

It has already been indicated that the dynamics of turbulent flows depends not only
on different length scales but on different positions and directions. Consequently,
physical quantities such as energy, vorticity, enstrophy, and pressure become
highly intermittent. The Fourier transform cannot give the local description of
turbulent flows, but the wavelet transform analysis has the ability to provide a wide
variety of local information of the physical quantities associated with turbulence.
Therefore, the wavelet transform is adopted to define the space-scale energy
density by

E(,x) = % )f(z,x)‘z, (10.4.1)

where f (€, x) is the wavelet transform of a given function (or signal) f(x).
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It is helpful to introduce a local energy spectrum E (£, xo) in the neighborhood
of x¢ (see Farge 1992) by

o0

Eo(l,x0) = %/ E,x) x (x;xo)dx, (10.4.2)

where the function ¥ is considered as a filter around xy. In particular, if ¥ is a Dirac
delta function, then the local wavelet energy spectrum becomes

~ 1 ~ 2
E(t.xo) = 5 ‘f(ﬁ,xo)‘ . (10.4.3)

The local energy density can be defined by

~ R e dl
E(x) =C,, E, x) 7 (10.4.4)
0
On the other hand, the global wavelet spectrum is given by
~ 0 ~
EW) = / E({,x)dx. (10.4.5)
—0o0

N )
This can be expressed in terms of the Fourier energy spectrum E (k) = ) f (k)‘ o)
that

E) = /_:E(k) ‘flr(ﬁk)‘zdk, (10.4.6)

where ﬁj(@k) is the Fourier transform of the analyzing wavelet {. Thus, the global
wavelet energy spectrum corresponds to the Fourier energy spectrum smoothed by
the wavelet spectrum at each scale.

Another significant feature of turbulence is the so-called intermittency phe-
nomenon. Farge et al. (1992) used the wavelet transform to define the local
intermittency as the ratio of the local energy density and the space averaged energy
density in the form

e

<<‘f(€,x)‘2>> = /_Z ‘f(ﬁ,x)‘zdx. (10.4.8)

1€, x0) = (10.4.7)

where
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If I(£,x9) = 1 for all £ and xo, then there is no intermittency, that is, the flow
has the same energy spectrum everywhere, which then corresponds to the Fourier
energy spectrum. According to Farge et al. (1990a), if 1(¢,xo) = 10, the point
at xo contributes ten times more than average to the Fourier energy spectrum at
scale £. This shows a striking contrast with the Fourier transform analysis, which
can describe a signal in terms of wavenumbers only but cannot give any local
information. Several authors, including Farge and Rabreau (1988), Farge (1992),
and Meneveau (1991) have employed wavelets to study homogeneous turbulent
flows in different configurations. They showed that during the flow evolution,
beginning from a random vorticity distribution with a k= energy spectrum, the
small scales of the vorticity become increasingly localized in physical space. Their
analysis also revealed that the energy in the two-dimensional turbulence is highly
intermittent which may be due to a condensation of the vorticity field into vortex like
coherent structures. They have also found that the smallest scales of the vorticity are
confined within vortex cores. According to Farge and Holschneider (1989, 1990),
there exist quasisingular coherent structures in two-dimensional turbulent flows.
These kinds of structures are produced by the condensation of vorticity around the
quasisingularities already present in the initial data. Using the wavelet transform
analysis, Meneveau (1991) first measured the local energy spectra and then carried
out DNSs of turbulent shear flows. His study reveals that the mean spatial values
of the turbulent shear flow agree with their corresponding results in Fourier space,
but their spatial variations at each scale are found to be very large, showing non-
Gaussian statistics. Moreover, the local energy flux associated with very small
scales exhibits large spatial intermittency. Meneveau’s computational analysis of the
spatial fluctuations of 7' (k, ¢) shows that the average value of T (k, t) is positive for
all small scales and negative for large scales, indicating the transfer of energy from
large scales to small scales so that energy is eventually dissipated by viscosity. This
finding agrees with the classical cascade model of three-dimensional turbulence.
However, there is a striking new phenomenon that the energy cascade is reversed in
the sense that energy transfer takes place from small to large scales in many places
in the flow field. Perrier et al. (1995) confirmed that the mean wavelet spectrum
E (k) is given by

E(k) = / E(x,k)dx. (10.4.9)
0

This result gives the correct Fourier exponent for a power-law of the Fourier
energy spectrum E(k) = Ck~?, provided the associated wavelet has at least
n > 27'(p — 1) vanishing moments. This condition is in agreement with that for
determining cusp singularities. Based on a recent wavelet analysis of a numerically
calculated two-dimensional homogeneous turbulent flow, Benzi and Vergassola
(1991) confirmed the existence of coherent structures with negative exponents.
Thus, their study reveals that the wavelet transform analysis has the ability not only
to give a more precise local description but also detect and characterize singularities
of turbulent flows. On the other hand, Argoul et al. (1988, 1990) and Everson et al.
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(1990) have done considerable research on turbulent flows using wavelet analysis.
They showed that the wavelet analysis has the ability to reveal Cantor-like fractal
structure of the Richardson cascade of turbulent eddies.

10.5 Adaptive Wavelet Method for Analysis
of Turbulent Flows

Several authors, including Farge (1992) and Schneider and Farge (1997), first
introduced the adaptive wavelet method for the study of fully developed turbulence
in an incompressible viscous flow at a very high Reynolds number. In a fully
developed turbulence, the nonlinear convective term in the Navier—Stokes equations
becomes very large by several orders of magnitude than the linear viscous term.
The Reynolds number R = (U L/ v) represents the ratio of the nonlinear convective
term and the viscous term. In other words, R is proportional to the ratio of the large
excited scales and the small scales where the linear viscous term is responsible for
dissipating any instabilities.

Unpredictability is a key feature of turbulent flows, that is, each flow realization is
different even though statistics are reproducible as long as the flow configuration and
the associated parameters remain the same. Many observations show that in each
flow realization localized coherent vortices whose motions are chaotic are generated
by their mutual interactions. The statistical analysis of isotropic and homogeneous
turbulence is based on L?-norm ensemble averages and hence is hardly sensitive to
the presence of coherent vortices which have a very weak contribution to the L?-
norm. However, coherent vortices, are fundamental components of turbulent flows
and therefore, must be taken into account in both statistical and numerical models.

Leonard (1974) developed a classical model, called the Large Eddy Simulation
(LES), to compute fully developed turbulent flows. In this model, separation is intro-
duced by means of linear filtering between large-scale active modes and small-scale
passive modes. This means that the flow evolution is calculated deterministically up
to cutoff scale while the influence of the subgrid scales onto the resolved scales is
statistically modeled. Consequently, vortices in strong nonlinear interaction tend
to smooth out, and any instabilities at subgrid scales are neglected. Thus, LES
models have problems of backscatter, that is, transfer of energy from subgrid scales
to resolved scales due to nonlinear instability. The LES model takes into account
backscatter, but only in a locally averaged manner. Further progress in the hierarchy
of turbulent models is made by using Reynolds Averaged Navier—Stokes (RANS)
equations, where the time averaged mean flow is calculated and fluctuations are
modeled, in this case, only steady state solutions are predicted.

During the last decade, wavelet analysis has been introduced to model, analyze,
and compute fully developed turbulent flows. According to Schneider and Farge
(2000), wavelet analysis has the ability to disentangle coherent vortices from
incoherent background flow in turbulent flows. These components are inherently



510 10 Wavelet Transform Analysis of Turbulence

multiscale in nature and have different statistics with different correlations. Indeed,
the coherent vortices lead to the non-Gaussian distribution and long-range cor-
relations, whereas the incoherent background flow is inherently characterized by
the Gaussian statistics and short-range correlations. This information suggests a
new way of splitting the turbulent flow into active coherent vortex modes and
passive incoherent modes. The former modes are computed by using wavelet
analysis, whereas the latter modes are statistically modeled as a Gaussian random
process. This new and modem approach is called the Coherent Vortex Simulation
(CVS) and was developed by Farge et al. (1999a,b). This approach is significantly
different from the classical LES which is essentially based on a linear filtering
process between large and small scales without any distinction between Gaussian
and non-Gaussian processes. The CVS takes advantage of a nonlinear filtering
process defined in a wavelet space between Gaussian and non-Gaussian modes
with different scaling laws but without any scale separation. The major advantage
of the CVS treatment compared to the LES is to reduce the number of computed
active modes for a given Reynolds number and control the Gaussian distribution of
the passive degrees of freedom to be statistically modeled.

Turbulent flows are characterized by a fundamental quantity, called the vorticity
vector, ® = V x u. Physically, the vorticity field is a measure of the local rotation
rate of the flow, its angular velocity.

Eliminating the pressure term from (10.2.16) by taking the curl of (10.2.16) leads
to the equation for the vorticity field in the form

aa—‘;’ =(0-V)u—(u-V)w + v + V xF. (10.5.1)

This is well known as the convection—diffusion equation of the vorticity. The
left-hand side of this equation represents the rate of change of vorticity, whereas the
first two terms on the right-hand side describe the rate of change of vorticity due to
stretching and twisting of vortex lines. In fact, the term ((;) . V)u is responsible for
the vortex-stretching mechanism (vortex tubes are stretched by velocity gradients)
which leads to the production of vorticity. The third term on the right-hand side
of (10.5.1) represents the diffusion of vorticity by molecular viscosity. In the case
of two-dimensional flow, ((;) . V)u = 0, so the vorticity equation (10.5.1) without
any external force can be given by

aa—(;) + (u-V)o =vWo (10.5.2)

so that only convection and conduction occur. This equation combined with the
equation of continuity,

V.u=0, (10.5.3)

constitutes a closed system which is studied by periodic boundary conditions.
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In terms of a stream function s, the continuity equation (10.5.3) gives

u= 5 and v = —a, (10.5.4a,b)

so that the vorticity w = (v — u,) satisfies the Poisson equation for the stream
function { as

V2 = . (10.5.5)
The total kinetic energy is defined by

E@t) = %// w’(x,1)dx, (10.5.6)
D

and the total enstrophy is defined by

Z(t) = %/f > (x,1) dx. (10.5.7)
D

We make reference to Frisch (1995) to express the enstrophy and the dissipation
of energy as

dzZ dE

— =—-2vP, — =-2Z, (10.5.8a,b)
dt

where the palinstrophy P is given by

P(t) = %// Vol|® dx. (10.5.9)
D

The energy and enstrophy spectra are written in terms of the Fourier transform

1 .
E() =5 oo Jamf (10.5.10)
k—1<|kl<e+1
1 N
Z() =3 > lamP. (10.5.11)

—3 <|k|=k

where k = (k,£). The quantities E(k) and Z(k) measure the amount of energy
or enstrophy in the band of wavenumbers between k and k + dk. The spectral
distribution of energy and enstrophy are related to the expression k?E (k) = Z(k).
During the last two decades, several versions of the DNS have been suggested to
describe the dynamics of turbulent flows. Using DNS, the evolution of all scales of
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turbulence can only be computed for moderate Reynolds numbers with the help of
supercomputers. Due to severe limitations of DNS, Frohlich and Schneider (1997)
have recently developed a new method, called the adaptive wavelet method, for
simulation of two- and three-dimensional turbulent flows at a very high Reynolds
number. This new approach seems to be useful for simulating turbulence because the
inherent structures involved in turbulence are localized coherent vortices evolving in
multiscale nonlinear dynamics. Frohlich and Schneider used wavelet basis functions
that are localized in both physical and spectral spaces, and hence the approach
is a reasonable compromise between grid-point methods and spectral methods.
Thus, the space and space-adaptivity of the wavelet basis seem to be effective.
The fact that the basis is adapted to the solution and follows the time evolution
of coherent vortices corresponds to a combination of both Eulerian and Lagrangian
methods. Subsequently, Schneider and Farge (2000) discussed several applications
of the adaptive wavelet method to typical turbulent flows with computational
results for temporally growing mixing layers, homogeneous turbulent flows, and
for decaying and wavelet forced turbulence. They used the adaptive wavelet method
for computing and analyzing two-dimensional turbulent flows. At the same time,
they discussed some perspectives for computing and analyzing three-dimensional
turbulent flows with new results. They also have shown that the adaptive wavelet
approach provides highly accurate results at high Reynolds numbers with many
fewer active modes than the classical pseudospectral method, which puts a limit
on the Reynolds numbers because it does not utilize the vortical structure of high
Reynolds number flows. The reader is referred to all papers cited above for more
detailed information on the adaptive wavelet method for computing and analyzing
turbulent flows.

10.6 Meneveau’s Wavelet Analysis of Turbulence

In this section, we closely follow Meneveau’s (1991) analysis of turbulence in
the orthonormal wavelet representation based on the wavelet transformed Navier—
Stokes equations. We first introduce the three-dimensional wavelet transform of a
function f(x) defined by

gl TP (E-x 3
w(rx) =Wy = A 1 Gl FAOTR 2 (10.6.1)

where (x) = Ilf(|X|) is the isotropic wavelet satisfying the admissibility condition

cq,:/ k| ~! }q}(k)‘zd»*k. (10.6.2)
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The inversion formula is given by

f(x) = \/_/ dr/ r32 ( g) w(r, s)—g. (10.6.3)

The invariance of energy of the system can be stated as
o0
/ {f(x)} d X = / dr/ {w(r, x) (10.6.4)
—00

As in the one-dimensional case, the wavelet transform w(r,x) can also be
obtained from the Fourier transform f (k) of f(x) so that

1
@ >3¢—

This can also be inverted to obtain the inversion formula

w(r,x) =

r? / U™ (rk) f (k) ¢! &% @k (10.6.5)

00 [} 3
fx) = J%_ /0 dr / P2 E(rK) exp (—ik - X)w(r, x)%. (10.6.6)
i —o0

In view of the translational property, the wavelet transform commutes with
differentiation in the space variables so that

V- Wiyf] = Wen[V - f] (10.6.7)
and
VWiy[f] = W[ V] (10.6.8)

We now define w; (r,x) as the wavelet transform of the fluctuating part of the
divergence-free velocity field u; (x). In vector notation, these quantities are denoted
by w(r, x) and u(x), which depend on time ¢, but for notational clarity, we simply
omit the time dependence. It follows from (10.6.7) that w(r, x) is divergence-free.

We apply (10.6.5) to the Fourier-transformed Navier—Stokes equations (10.2.24),
where the velocities on the right-hand side have been replaced by the inverse
transform of w; (7, X), so that the evolution equation for w; (r, X) is

ad 1
——sz) wi(r,x) = —/ dr’/ dr”//
(8Z (2 C\]})3/2 r ! x Jx’

dSX/dSX//
/ / 4 " - 4 / "
Wj(r,X)Wk(r ,X)Iijk(r,x,r,r , X, X -1 4

pr4pnd ’

(10.6.9)
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where
Lix(r,x;r', r" X', xX") = (i) (rr’r”):”/2 /k/kkP,-j K) U*(rk) ¥ (r'q)
q

x Y {r"(k — @)} exp[i {k-(x—x") + ¢ - (x' —x)}]d*kd’q.
(10.6.10)

We multiply (10.6.9) by w; (r, x) and then add over the components / to obtain
the local energy equation

3 3 BW,' 8wj
P e(r,x) =t(r,x) —e(r,x) + va I:w,- (E + 3_36,):| , (10.6.11)
where
1< 2
e(r,x) = 3 Z [wi (r, x)] (10.6.12)

i=1

represents the local density of kinetic energy at scale r and

t(r,x) :/dr’/dr”//Wi(r,X)Wj("/,X/)Wk("sX”)

d3xld3xu
- " / "

X I,‘jk(l’,X,r X, X —r/4r”4 s (10613)

is the local transfer of kinetic energy at scale r at position x. This term shows

interactions among triads of scales (r, 7, r”) as well as interactions among triads

of positions (x,x’,x”). The term ¢(r, x) describes the dissipation of energy at scale

size r and is given by

(rox) = v [ Qv O (10.6.14)
rX)=v—m_ | —+ —=|. .6.
¢ vaxj an axi

In view of the Parseval formula (6.3.9), the local transfer conserves energy so
that

d3
/dr/t(r,x) X (10.6.15)
r X r

The total flux of kinetic energy through scale r at position x is defined by
integrating the rate of change in the local energy due to nonlinear interactions over
all scales larger than r so that

oo /
(%) = —/ 1(r', x) d%, (10.6.16)
r r
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where the negative sign shows a decrease in energy of the large scales associated
with a positive flux. This total flux term is somewhat similar to (10.2.27) in
the wavelet representation.

All the preceding results are not very useful in turbulence theory, but they
illustrate the fact that there are complicated interactions of the wavelet trans-
form w; (r, x) involved at different scales and different positions. These nonlocal
and interscale interactions are essentially described by the complicated quantity
Liji (r,x; 1’ r” X', x"). This quantity arises from the fact that, in general, the triads
are not closed as they are in the Fourier representation, that is, there is no detailed
energy conservation in the wavelet representation. However, it is almost impossible
to make further progress on this wavelet formulation without making appropriate
assumptions and approximations of ;.

On the other hand, if the velocity field is known, quantities including
e(r,x),t(r,x), and (r,x) can be computed by taking the wavelet transform of
the Navier—Stokes equation combined with expressing the nonlinear terms in terms
of the original velocity field. Meneveau (1991) described the discrete formulation
of the evolution equation for the local kinetic energy density e™[i] at scale r,,
and position y = 2" (hyiy, hai. h3i3) where i = (i1, 12, i3) denotes the position of
a rectangular grid with uniform mesh sizes hi, h,, h3. He obtained the evolution
equation for the local kinetic energy density e™[i] given by

%e(’”)[i] = 1™Ti] — v, (10.6.17)

where t"[i] is the nonlinear term representing the local transfer of kinetic energy
at scales r,, at position i, and v™[i] is the viscous term representing dissipation
and viscous transport of kinetic energy. Equation (10.6.17) is somewhat similar
to (10.2.27), but it depends on the position as well.

We write the expressions for "[i] as

3.7 (m.q)
du; 10

(m)rs1 _ (m.q)ys i 4 -
t 1——2 E U i+ - — i, 10.6.18
[] i=1q=1W’ []{MJ ax] + paxi} [] ( )
where the pressure involved in this equation is obtained by solving the Poisson
equation, and me,q) [i] is the wavelet coefficient of the i th component of the velocity

field.
The term ¢ " [i] does conserve energy on the whole so that

M
DY i =o. (10.6.19)
m=11iy,ip,i3

which follows from the zero value of the volume integral of (u -Vu+V p) for
homogeneous turbulence, and from the condition of orthonormality of the wavelets.
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The viscous term is given by
v =0 Y S WO -V . (10.6.20)

Finally, the flux of the kinetic energy term "[i] in a spatial region of size r,, and
position [i] can be calculated by summing the density transfer of all larger scales at
that position so that

M
(M) = — 3 " 23 0 [pmny) (10.6.21)

n=m

We next characterize the local kinetic energy at every scale in turbulence.
In Fourier transform analysis, the quantity E (k) represents the power-spectral den-
sity in a band dk of wavenumbers. However, the spatial information is completely
lost due to the nonlocal nature of the Fourier modes. If u(x) is a one-dimensional
finite energy function with mean zero and it(k) is its Fourier transform, the total
energy is given by

/oo W(x)dx = Zi /oo a(k) i (k) dk = /Oo E(k)dk, (10.6.22)
—0o0 —00 0

where E (k) represents the energy spectrum, and the wavenumber k is related to the
distance r so thatr =2 k.

In wavelet analysis, the total energy can be written in terms of the wavelet
energies in the form

/oo W (x)dx = /oo E,(k)dk, (10.6.23)
—00 0

where E,, (r, x) is the continuous wavelet transform of u(x) and
E, (k)= — — / r(k) x) (10.6.24)

This represents the energy density at wavenumbers k. This spectrum function is
similar to the Fourier spectrum E (k) but is not the same at each k because of the
finite bandwidth involved in the wavelet transform.

For more detailed information on energy transfer and flux in the wavelet
representation and the intermittent nature of the energy, the reader is referred to
Meneveau (1991).
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2.7 Exercises

N =

(b) Use (2.6.8) and (2.6.9).

If f vanishes in some bounded interval and f’ = 0, then ' = 0.

Use the parallelogram law.

Use Schwarz’s inequality to show that ||x +y H = Hx || + ||y H if and only if x
and y are linearly independent.

13. Every finite dimensional normed space is complete.
14. No. Use the result that C ([a, b]) is incomplete with respect to the norm
1
b 2
= ([ 19Tas)
15. No. Compare with Exercise 14.
16. Yes. Use continuity of the inner product.
18. For (c) and (d), use an orthonormal sequence.
20. No.
o0
35. x = Z (anan).
n=1
47. Use an example of the set S = {(x, 0):xe R} and the point xo = (0, 1).
o0
48. y = Z(x,en)en.
n=1
50. Consider an example x,(f) = n exp [—né(t — to)z] .
52. Define g as the composition of the orthogonal projection onto F with f.
© Springer Science+Business Media New York 2015 517
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53. The sequence (1,0,0,...),(0,1,0,0,...),(0,0,1,0,0,...),... is a complete
orthonormal system in the space 2.

59. (@) f € L*(R), (b) f ¢ L*(R),
© f e LXR)ifr><1land | £], = (,ZTFI)

3.16 Exercises

1. (b) Hint: f(t) = —611 %[exp (—at?)].

I. (¢) Hint: e' =u, f(og) = I'(1 — w), where I'(x) is the Gamma function.

o’ ibo b?
1. () \/;eXp(_E_E-FE)'
L (g (o)
L () 2r(a)cos (% ) || .
1. (i) Hint: Use (3.2.11) and then Duality Theorem 3.4.10. Draw a figure for

f(t) and
f(©) = Aay(w).
1. (j) Hint: Use (3.3.5) combined with Example 3.2.3.

A _sin(w — o)t | sin(w + o)t
A e B CE T

Draw the graphs of f(z) and f ().
1. k) (=i)"v2 Py(w)xi(w), P,(x) is the Legendre polynomial of degree n.
.M 2 8w—a).
11. Hint: F'(t) = f (t) for almost all # € R, and then take the Fourier transform.
1
15 @ v = (1-3 1+ 5 |z|3) (1=1t). ) () = exp(-alr]).

17. Hint:  F(w) = xF(xw) = M (w) = Ay(w).
18.  (b) Hint: Use the Dirichlet kernel

2k+1_1 )
Di(2) = ZZ —ZkZZ =z (Z——l) Putz = ¢’ #1

n=—k

so that



Answers and Hints for Selected Exercises 519

4 exp{i(Zk—i—l)%} sin{(2k+l)%} sin{(2k+l)%}
Dy (") =< it ' (1 - (1
exp| = sin | = sin | =
(5) (5) (5)

1 n
Use F, = — D .
se Fy(2) n—i—l]; k(2

t |- t t
-2 _ N v
2F,(z) sin i E_OZSm 7 sin(2k + 1) 7

n

1
Z [coskt —cos(k + 1)t]
n+1 =

:n_li_l[l—cos(n—}-l)t]: (nil)sinzi(ngl)t}.

19. Hint:

F{20)) = F {exp (—2u?)} = \/% exp (—;)—:) .

T L0} = (0 s flw) = [ ﬁexp(_;"_:)]

OO 2 2 1
t —2at7) dt = —7 /=
/_oo exp( * ) 403/2 2

/OO 2fAz(w)afoo——/oooozexp( )dw— V2 a.
oo o 20

032/_ 2 f2(t)dt + / fP@yde = \/;43/2 \/:

2 2
ol = = a. Hence,o ——:>0,0m—
w 2 t w 4 2

o

PRY)
20, ¢(z)—2rexp{—(’ 4;0) }

21. $(w) |:a + b cos ( )i| exp(—i wot) K wy ().
o
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22. Hint: For (a) and (b), use results (3.3.9) and (3.3.11)

1 [ fk)et dk
L.

© ¥ =2 | o =kt 2iak)

@ y)=e /_ ¢ F(§) dE + o / 5 f(6) dE.

X

26. Hint: Construct a differential equation similar to that in Exercise 23.
» 4
29. (b) f(w,0)= (—) sin(aw) sin(ao).
w0

31. u(x) = /OO w(€) G(E, x) d&, where w(x) = W(x)/EI, and

1 [ cosk(x—E)dk
G(E,x)=—/0 —kEM? . a*=x/EL

34. u(x,t)=/_ f@)G(x,z;s,O)dz+/odr/_ 4(6.7) G(x.1:£.7) dE,

1 (-
V& k(=7 eXp[ 4|<(t—t)]

_1 at?
39. u(x,t) = (4at +1) 2 exp a1
a

where G(x,t;€,1)dE =

40. G(x,1) = ﬁ/// exp {i(k - %0} 22 gk, where o = (e + ).

o

1
42. (v) = mvy exp (_4_1 vf,,) + v,

and

4.10 Exercises

o0

1. Since / g(t—1t)dt = 1, the result follows. The result implies that the set of

the Gabo?otransforms of f with the Gaussian window decomposes the Fourier
transform of f exactly.

2. (b) Hint. fo(t,w) = (f.g.0) and use the Parseval identity of the Fourier
transform.

3. Derive 0> = \/a.
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10.

11.

12.

o0
Use / exp( — axz) dx = \/; and then differentiate with respect to a to

(o¢]
find
2 2 1 /
J— d —_— —_
/_ X exp( ax) x—a P

Replace a by (2a)™" in the above result to derive

1

lsl,=® o7
1
1
o> = (8 a)i%— v (2a)3/2} —Va
4 a 2
. For a tight frame, A = B.

: S T N PV 3

2 2 2
’;‘(x,en)‘ —|)C2| + TX1+E)C2 + 7)61 E)Cz _EHXH

Put t = 0 in the second result, multiply the resulting expression by

exp(2 iwt), and integrate the identity over w € [—b,b]. The right-hand
side is equal to f(¢z) by the Fourier inversion theorem, and the left-hand side
follows from the definition of the Zak transform combined with integrating the
exponential.

Since

A 2 . )
wz‘X[oyl](w)‘ = 4 sin’ <E) ,

the second integral is infinite.

n(3)
@

N [0
Xp.1(w) = exp (—7)

e

5.10 Exercises

1.

2 2,2
(@ Wrt,o) =2 exp [—2 (% +2° )}

4
2 2
() Wpr(t,w) =2exp [— % 20—5 + ;— (0 — wOZ)ZH .
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10.
13.

17.

18.
22.
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d w =2 2 ) O 2
(d) r(t, ) = eXP[_{E(f—fO) +2—(u)—030) }:|

Wi(t, 0) = 2(w — u)o)_l sin {2(03 — wo)(T — |t|)}H(T —|t]).
Hint: Use Example 5.2.6 and result (5.3.3).

Wiltw) = 5 |A|2[8(oa — w0) + 8( + wp) + 28(w) cos {2(wot + e)}].

Hint: See Auslander and Tolimieri (1985).

Hint: Use f, g — fg = fa 81 — fu & + fn & — fg and then apply Schwarz’s
inequality.

Wy(n.0) =|AP? > 80 —an—k ).

k=—00
Hint: f,(n) = f(n)my(n), gn(n) = g(n) mg(n).
Po(x) is a Gaussian signal and (f) is also a Gaussian signal as in Exercise

1(d) with ztp = 0 and wy = 0.

6.6 Exercises

11.

12.

13.

15.

. Physically, the convolution determines the wavelet transforms with dilated

bandpass filters.

. | 4 ) .
Write cos wgt = 3 (e"”"f + ewof ) and calculate the Fourier transform. f ()

has a maximum at w = =wg, and then maximum values become more and
more pronounced as ¢ increases.

f () has a maximum at the frequency @ = wo. Due to the jump discontinuity
of f(¢) attime t = =a, }f(u))‘ decays slowly as |®| — oo. In fact, f(u)) ¢
L'(R).

b+4 b4a
(Wwf)(a,b)=%[/b+ f(@)dt — b;; f(t)dt:|.Putt=x+%inthe
b+a

integral f(t)dt to get the answer.
b4

Check only H i || = 1 and that Vs, , make up a tight frame with frame constant
1 (see Daubechies 1992, p. 117).
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7.7 Exercises

1 0
(T)((D) = /(; (1 —t) e_iwt dt =+ /;1(1 +t) e—iu)t dt

. w2
Sin —

1 1
=/ (1—t)e""”’dt+/ (1—1t)e'“ dt =
0 0

w
2
i ‘cﬁ(w+2 k))zz 16 sin’ (%)ki m

k=—00 =—00

2
- (1 — 5 sin? %) by (7.4.38).

ds

2. Hint: (a) follows from 11;(0) = 0 and (b) follows from (d_) =0.
®
w=0

(c) follows from ﬁj(w) = exp (%) f(og) and

P(—t—1) = %/_: f(u))exp[—iw(t + 1)]d03

! / ” f(w) o (i+1)]a
= — exp | —i = .
> ) w)exp | —iw > ®
Also, (7.4.43) implies that f (w) is even and hence,
1 [ 2 . 1.
\b(—t—l)zz—/ f(w)exp lwt+§lw)dw
1 [ .
— 5 [ e do =y,
2 Jo

5. ¢(x)=1, 0<x<l1.
Y (x) is the Haar wavelet.

(b) d(x) = Ba(x). 1
P(x) = x, 0§x<§; P(x) =2 —3x,
© ¢(x) =38(x), Y(x)=8(x).

<x<l.

523
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6. (a) It follows from (7.3.5) that

/ocd)(x)dxzx/i Z c’n/ooq)(Zx—n)dx, 2x—n=1).

n=—oo

1 o0

(b) Usem( )= — (=DFer = 0.
ﬁk=—oo

7. 62 ) = m( )m <5) m <§) ... and then m(w) has a zero of order n at
d™m
o= if i (w) =0whenw = form =0,1,2,...(n — 1). This gives
wm
the result.

8. (a) Hint: Write

O(xX) = V2Y e d@x—k),  ¢(x) = V2 e d2x—m)
k m

/oo ¢*()dx =2 )" ek /oo 6(2x — k) d(2x — m) dx
—00 k om —00

which is zero when k # m. But, when k = m
o0 o0
/ > (x)dx = E c} / &*(¢) dt which gives the result.
—00 k —00

(b) Corresponding to the scaling function ¢ defined by (7.3.5), the wavelet may
be written as

P =Y (=D e 0Q@x +k— N + 1),
k
Use the orthogonality condition

(W(x), Y(x —m)) = /_oo Y(x) Y(x —m) dx = 0 for all m except m = 0.

Substitute Jr(x) in this integral so that

[ vev—max = XS0 [ o@r k- N+
—o0 s —o0

x ¢2x +s—N+1—-2m)dx
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The right-hand integral is zero unless k = s — 2m so that
o0 o0
| @ ue—mydx = S0 e, [ eenar
—00 k —0o0

This is always zero, except m = 0. This gives the result.
(c) When m = 0, we have

> (=Dfer =0

k
so that
| 2 2
Z Cr = Z ¢y = — and (Z ck) +<Z Ck) = 1.
k=even k=odd ﬁ k=even k=odd
N—1 N—1N/2—1
Multiplying gives Z c,% +2 Z Z Ck Ck+2m = 1.
k=0 k=0 m=1
This gives the result by 8(a).
9.
Co+Cl+eC3+cq+c5= \/5
co—cC1+cr—c3+ce—cs =0
—c1+2cy—3c3+4c4 —5¢5 =0
—c1 +4c; —9¢3 + 16¢4 —25¢5 =0
coCr + cic3 + cacq + e3¢5 =0
cocs +c1c5 =0
d+ci+d i+l =1
11. Hint.
(@)
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(b)

1

9

sin(2¢ + ¢)
sint

sin 3¢ )
( sint ) E>
( ) —l(1+ZCOS(,0)2

1
9
1
3 (3+4cosmw + 2cos2w).

This means that condition (b) in Theorem 7.3.1 is not satisfied. (c) follows
from (a).

12. From (a) and (b), $(x) =0, x <Oorx > 3.

(X)) +o(x+1D+d(x+2)=1,
codxX)+(c—Dd(x—1)+(c=2)d(x —2) = x.

Eliminating ¢p(x + 2), ¢(x), and ¢(x + 1) gives (a), (b), and (c) respectively.

9.6 Exercises

2. (a) Replace f(x) and ¢(x — k) by their Fourier inversion formulas in (9.4.7) and
then apply

/00 exp {i((nl - wz)x} dx =2 (o) — wy).

(o]
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2. (b) Replace a4 by 2(a) and ¢p(x — k) by its Fourier inversion formula to obtain

[e.]

Z apr d(x —k) =2 Z / f(u)l) d(m/ g(u)l) &)(u)z) exp(i wyx)

k=—00 k=—00

x exp {i (0] — w2)k}dws.

Use the Poisson summation formula

oo oo

% Z exp(—ixk /t)= Z 8(x —2m¢)
k=—00 m=—00
with x = w, — w; and £ =  so that
Z exp {i(w1 - wz)k} =2 Z 8((1)2 —w—2 m)
k=—o00 m=—00

The product E(m 1) &)(mz) is zero unless w; and w; both lie in [0,2 ], which is
the case when m = 0. Then, ®; = w; and (I)(u)l) (f)(u)z) = (2 )72 give the last
integral formula.

3. Use the inverse Fourier transform

o

Y(2"x —k)=27" / Y(027") exp (i wk2™") exp(—i wx) dw

—0o0

in (9.4.2) and then apply

/00 exp {i(w1 — wz)x} dx =2 8(w; — wy)

(o]

to obtain 3(a).
4. (9.4.1) and (9.4.9) are identical, provided

oo -1 0o
Yo apr b=k = > > auiv@"x —k).
k=—00 m=—00 k=—00
Use 2(b) and show that

-1 [e8)
YD amkW(2"x—k)

m=—00 k=—o00
—1 00 00 o R R
-y Yoo / do, / Flon) B(@127) (w27
m=—o0 k=—00 -0 -0

x exp(i wx) exp {i (w1 — w2)k27" }d w,.
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Use Poisson’s summation formula

oo

o
Z exp{i(ml—wz)k2_m}:2 2" Z 8((»2—(»1—2 r2m)

k=—00 r=—00

and the fact that {r(w;27") (227" is zero unless m = 0 in the above sum
and it is equal to (2 ). Consequently,

-1

Z Z Am k Ilf(zm-x - k)

m=—o0 k=—00

—1 m—1
= Z /22 ’ f(u))e"‘”xdu):/oz f(w)ei“’xdw.

m
m=—00 2

5. Use results in 3(a) and 3(b) in |am,k‘2 = A i am) and |€1m,k|2 = dmk czlm,k.
These lead to double integrals. Then, sum over k and m, which involves

[e.]

Z exp {i(wz — wl)kZ_’"}

k=—00

and its complex conjugate. Then, use the Poisson summation formula

% 3 exp{—le }: 3 8 —2r0)
k=—00

r=—00

with x = w, — w; and £ = 2™ to obtain
o0 o0
Z exp {i((nl — wz)k2_’"} =2 2" Z S(wy — w1 —2 r2™).
k=—00 r=-—00
Consequently,

> Y =@ Y [ @ fe)ber™) bez ) do

m=—00 k=—00 m=—00" "

= [0 F(0) f(w) do
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and hence

33 (el o) =2 [ () o+ e ) o

=2 /_ f(w)f(w)dw:/ £ () Pdx.
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