
Multifractal Tubes

Lars Olsen

Abstract Tube formulas refer to study of volumes of r neighbourhoods of sets.
For sets satisfying some (possible very weak) convexity conditions, this has a long
history going back to Steiner in the early Nineteenth century. However, within
the past 20 years, Lapidus has initiated and pioneered a systematic study of tube
formulas for fractal sets. Following this line of investigation, it is natural to ask as
to what extent it is possible to develop a theory of multifractal tubes. In this survey
we will explain one approach to this problem based on Olsen (Multifractal tubes,
Preprint, 2011). In particular, we will propose a general framework for studying tube
formulas of multifractals and, as an example, we give a complete description of the
asymptotic behaviour of the multifractal tube formulas for self-similar measures
satisfying the Open Set Condition.

1 Fractal Tubes

Let E be a subset of R
d and r > 0. We now write B(E,r) for the open r

neighbourhood of E , i.e.

B(E,r) =
{

x ∈ R
d
∣∣∣dist(x,E)< r

}
.

Intuitively we will think of the set B(E,r) as consisting of the E surrounded by
a “tube” of width r. Our main interest is to compute the volume of the “tube” of
width r surrounding E or equivalently computing the volume of the set B(E,r) and
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subtract the volume of E . To make this formal, we define the Minkowski volume
Vr(E) of E by

Vr(E) =
1
rd L d(B(E,r)) ;

here and below L d denotes the Lebesgue measure in R
d and the normalizing factor

1
rd is included to make the subsequent results simpler—we note that different authors
use different normalizing factors. Tube formulas refer to formulas for computing the
Minkowski volume Vr(E) as a function of the width r of the “tube” surrounding E .
In particular, one is typically interested in the following two types of results:

1. Asymptotic behaviour: finding a formula for the asymptotic behaviour of Vr(E)
as r ↘ 0.

2. Explicit formulas: finding an explicit formulas for Vr(E) valid for all small r.

For convex sets E , this problem has a rich and fascinating history starting with
the work of Steiner in the early Nineteenth century. This theory reached its mature
form in the 1960s where Federer [13, 14] unified the tube formulas of Steiner for
convex bodies and of Weyl for smooth submanifolds, as described in [2, 21, 50],
and extended these results to sets of positive reach. Federer’s tube formula has since
been extended in various directions by a number of researchers in integral geometry
and geometric measure theory, including [18, 19, 47–49, 52, 53] and most recently
(and most generally) in [25]. The books [21, 35, 48] contain extensive endnotes
with further information and many other references. While the above references
investigate tube formulas for sets that satisfy some (possibly very weak) convexity
conditions, very recently there has been significant interest in developing a theory
of tube formulas for fractal sets and a number of exciting works have appeared.
Indeed, in the early 1990s, Lapidus introduced the notion of “complex dimensions”
and has during the past 20 years very successfully pioneered the use of “complex
dimension” to obtain explicit tube formulas for certain classes of fractal sets; this
exiting theory is described in detail in Lapidus and van Frankenhuysen’s intriguing
books [29, 30]. In a parallel development and building on earlier work by Lalley
[26–28] and Gatzouras [20] (see also [11]), Winter [51] has initiated the systematic
study of curvatures of fractal sets and applied this theory to study the asymptotic
behaviour of the Minkowski volume Vr(E) of fractal sets E using methods from
renewal theory.

The Minkowski volume Vr(E) is closely related to various notions from Fractal
Geometry. Indeed, using the Minkowski volume Vr(E), we define the lower and
upper Minkowski dimension of E by

dimM(E) = liminfr↘0
logVr(E)
− logr ,

dimM(E) = limsupr↘0
logVr(E)
− logr .

The link with Fractal Geometry is now explained as follows. Namely, box
dimensions play an important role in Fractal Geometry and it is not difficult to see
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that the lower Minkowski dimension equals the lower box dimension and that the
upper Minkowski dimension equals the upper box dimension; for the definition of
the box dimensions the reader is referred to Falconer’s textbook [10].

It is clearly also of interest to analyse the behaviour of the Minkowski volume
Vr(E) itself as r ↘ 0. Indeed, if, for example, a1, . . . ,ad ,b1, . . . ,bd are real numbers
with ai ≤ bi for all i, and U denotes the rectangle [a1,b1]×·· ·× [ad ,bd ] in R

d , then
it is clear that 1

r−d Vr(U)→ (b1 − a1) · · · (bd − ad) = L d(U). This suggests that if t

is a real number, then the limit limr↘0
1

r−t Vr(E) (if it exists) may be interpreted as
the t-dimensional volume of E . Motivated by this, for a real number t, we therefore
define the lower and upper t-dimensional Minkowski content of E by

Mt(E) = liminfr↘0
1

r−t Vr(E) ,

M
t
(E) = limsupr↘0

1
r−t Vr(E) .

If Mt(E) = M
t
(E), i.e. if the limit limr↘0

1
r−t Vr(E) exists, then we say the E is t

Minkowski measurable, and we will denote the common value of Mt(E) and M
t
(E)

by Mt(E), i.e. we will write

Mt(E) = Mt(E) = M
t
(E) .

Of course, a set E may not be Minkowski measurable, i.e. the limit limr↘0
1

r−t Vr(E)
may not exist. In this case it is natural to study the limiting behaviour of “averages”
of 1

r−t Vr(E). We therefore define the lower and upper average t-dimensional
Minkowski content of E by

Mt
ave(E) = liminfr↘0

1
− logr

∫ 1
r

1
s−t Vs(E) ds

s ,

M
t
ave(E) = liminfr↘0

1
− logr

∫ 1
r

1
s−t Vs(E) ds

s .

If Mt
ave(E) = M

t
ave(E), i.e. if the limit limr↘0

1
− logr

∫ 1
r

1
s−t Vs(E) ds

s exists, then we
say the E is t average Minkowski measurable, and we will denote the common
value of Mt

ave(E) and M
t
ave(E) by Mt

ave(E), i.e. we will write

Mt
ave(E) = Mt

ave(E) = M
t
ave(E) .

While the Minkowski dimensions in many cases can be computed rigorously
relatively easy, it is a notoriously difficult problem to compute the Minkowski
content. In fact, it is only within the past 15 years that the Minkowski content of
non-trivial examples has been computed. Indeed, using techniques from complex
analysis, Lapidus and collaborators [29, 30] have computed the Minkowski content
of certain self-similar subsets of the real line, and using ideas from the theory of
Mercerian theorems, Falconer [11] has obtained similar results.
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It is our intention to extend the notion of Minkowski volume Vr(E) to multi-
fractals and investigate the asymptotic behaviour of the corresponding multifractal
Minkowski volume as r ↘ 0 for self-similar multifractals. In order to motivate our
definitions we will now explain what the term “multifractal analysis” covers.

2 Multifractals

2.1 Multifractal Spectra

Distributions with widely varying intensity occur often in the physical sciences,
for example, the spatial–temporal distribution of rainfall, the spatial distribution
of oil and gas in the underground, the distribution of galaxies in the universe, the
dissipation of energy in a highly turbulent fluid flow and the occupation measure on
strange attractors. Such distributions are called multifractals and have recently been
the focus of much attention in the physics literature.

Figure 1 shows a typical multifractal, i.e. a measure with widely varying intensity.
Dark regions have high concentration of mass and light regions have low concen-
tration of mass. For a Borel measure μ on a R

d and a positive number α , let us
consider the set Δμ(α) of those points x in R

d for which the measure μ(B(x,r)) of
the ball B(x,r) with centre x and radius r behaves like rα for small r, i.e. the set

Fig. 1 A typical multifractal, i.e. a measure with widely varying intensity. Dark regions have high
concentration of mass and light regions have low concentration of mass
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Δμ(α) =

{
x ∈ supp μ

∣∣∣∣ lim
r↘0

log μ(B(x,r))
logr

= α
}
,

where supp μ denotes the support of the measure. If the intensity of the measure μ
varies very widely, it may happen that the sets Δμ(α) display a fractal-like character
for a range of values of α . If this is the case, then the measure is called a multifractal
measure or simply a multifractal, and it is natural to study the sizes of the sets
Δμ(α) as α varies. There are two approaches to this. We may consider the measure
μ(Δμ(α)) of the sets Δμ(α) as α varies. This approach was adopted by Cutler in
a series of papers [5–7] and leads to a “decomposition” of the measure into its α-
dimensional components. However, typically the sets Δμ(α) have zero μ measure
except for a few exceptional values of α . Hence, the measure μ(Δμ(α)) does in
general not allow us to distinguish between the sets Δμ(α). The other approach is
to find the (fractal) dimension of Δμ(α). In most examples of interest the set Δμ(α)
is dense in the support of μ for all values of α for which Δμ(α) is non-empty, and
thus

dimBΔμ(α) = dimBΔμ(α) = dimB supp μ

and
dimBΔμ(α) = dimBΔμ(α) = dimB supp μ

for all values of α for which Δμ(α) �= ∅, where dimB and dimB denote the lower
and upper box dimension, respectively. Box dimensions are thus in general of little
use in discriminating between the size of the sets Δμ(α). It is therefore more natural
to study the Hausdorff dimension,

fμ(α) = dimΔμ(α) , (1)

of the sets Δμ(α) as a function of α where dim denotes the Hausdorff dimension.
The function in Eq. (1) and similar functions are generically known as “the
multifractal spectrum of μ”, “the singularity spectrum of μ” or “the spectrum of
scaling indices”, and one of the main problems in multifractal analysis is to study
these and related functions. The function fμ(α) was first explicitly defined by the
physicists Halsey et al. in 1986 in their seminal paper [22]. The concepts underlying
the above mentioned multifractal decompositions go back to two early papers by
Mandelbrot [32,33] from 1972 and 1974, respectively. Mandelbrot [32,33] suggests
that the bulk of intermittent dissipation of energy in a highly turbulent fluid flow
occurs over a set of fractal dimension. The ideas introduced in [32, 33] were taken
up by Frisch and Parisi [17] in 1985 and finally by Halsey et al. [22] in 1986. Of
course, for many measures, the limit limr↘0

log μ(B(x,r))
logr may fail to exist for all or

many x, in which case we need to work with lower or upper limits as r tends to 0
and (perhaps) replace “= α” in the definition of Δμ(α) with “≤ α” or “≥ α”.
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2.2 Renyi Dimensions

Based on a remarkable insight together with a clever heuristic argument Halsey et al.
[22] suggest that the multifractal spectrum fμ(α) can be computed in the following
way—known as the so-called “Multifractal Formalism” in the physics literature.
The “Multifractal Formalism” involves the so-called Renyi dimensions which we
will now define. Let μ be a Borel measure on R

d . For q ∈ R and r > 0, we define
the qth moment Iq

μ,r(E) of a subset E of Rd with respect to μ at scale r by

Iq
μ,r(E) =

∫

E

μ(B(x,r))q−1 dμ(x). (2)

Next, the lower and upper Renyi dimensions of E with respect to μ are defined by

dimq
R,μ(E) = liminfr↘0

log Iq
μ ,r(E)

− logr , (3)

dim
q
R,μ(E) = limsupr↘0

log Iq
μ ,r(E)

− logr . (4)

In particular, the Renyi dimensions of the support of μ play an important role in
the statement of the “Multifractal Formalism”. For this reason it is useful to denote
these dimensions by separate notation, and we therefore define the lower and upper
Renyi spectra τμ(q),τ μ(q) : R→ [−∞,∞] of μ by

τμ(q) = dimq
R,μ(supp μ) = liminf

r↘0

log Iq
μ,r(supp μ)
− logr

,

τμ(q) = dim
q
R,μ(supp μ) = limsup

r↘0

log Iq
μ,r(supp μ)
− logr

.

2.3 The Multifractal Formalism

We can now state the “Multifractal Formalism”. Loosely speaking the “Multifractal
Formalism” says the the multifractal spectrum fμ and the Renyi dimensions carry
the same information. More precisely, the multifractal spectrum equals the Legendre
transform of the Renyi dimensions. Before stating this formally, we remind the
reader that if ϕ : R → R is a real-valued function, then the Legendre transform
ϕ∗ : R→ [−∞,∞] of ϕ is defined by

ϕ∗(x) = inf
y
(xy+ϕ(y)) .
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The Multifractal Formalism: A Physics Folklore Theorem. The multifractal
spectrum fμ of μ equals the Legendre transforms,s τ∗μ and τ∗

μ , of the Renyi
dimensions, i.e.

fμ(α) = τ∗
μ(α) = τ∗μ(α)

for all α ≥ 0.

The “Multifractal Formalism” is a truly remarkable result: it states that the
locally defined multifractal spectrum fμ can be computed in terms of the Legendre
transforms of the globally defined moment scaling functions τ∗μ and τ∗

μ . There is
apriori no reason to expect that the Legendre transforms of the moment scaling
functions τ∗

μ and τ∗μ should provide any information about the fractal dimension of
the set of points x such that μ(B(x,r))≈ rα for r ≈ 0. In some sense the “Multifractal
Formalism” is a genuine mystery.

During the past 20 years there has been an enormous interest in verifying the
Multifractal Formalism and computing the multifractal spectra of measures in the
mathematical literature. In the mid-1990s Cawley and Mauldin [3] and Arbeiter
and Patzschke [1] verified the Multifractal Formalism for self-similar measures
satisfying the open set condition (OSC), and within the last 10 years the multifractal
spectra of various classes of measures in Euclidean space Rd exhibiting some degree
of self-similarity have been computed rigorously, cf. the textbooks [12, 42] and the
references therein.

3 Multifractal Tubes

3.1 Multifractal Tubes

Motivated by Lapidus and van Frankenhuysen investigations [29, 30] of tube
formulas for fractal sets, it is natural to develop a theory of multifractal tube
formulas for multifractal measures. In this section we will present a framework
attempting to do this. As an example, we will also give a complete description of
the asymptotic behaviour of the multifractal tube formulas for self-similar measures
satisfying the Open Set Condition.

Multifractal tube formulas are defined as follows. First note that if r > 0 and E is
a subset of Rd , then the Minkowski volume Vr(E) is given by

Vr(E) =
1
rd L d(B(E,r)) =

1
rd

∫

B(E,r)

dL d(x) ,
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where we have rewritten the Lebesgue measure L d(B(E,r)) of B(E,r) as the
integral

∫
B(E,r) dL d(x). Motivated by the Renyi dimensions (i.e. Eqs. (2) and (4))

and the above expression for Vr(E), we now define the multifractal Minkowski
volume as follows. Namely, let r > 0 and E be a subset of Rd . For real number q
and a Borel measure μ on R

d , we now define the multifractal q Minkowski volume
V q

μ,r(E) of E with respect to the measure μ by

V q
μ,r(E) =

1
rd

∫

B(E,r)

μ(B(x,r))q dL d(x) .

Note, that if q = 0, then the q multifractal Minkowski volume V q
μ,r(E) reduces to the

usual Minkowski volume, i.e.

V 0
μ,r(E) =Vr(E) .

The importance of the Renyi dimensions in multifractal analysis together with the
formal resemblance between the multifractal Minkowski volume V q

μ,r(E) and the
moments Iq

μ,r(E) used in the definition the Renyi dimensions may be seen as a
justification for calling the quantity V q

μ,r(E) for the multifractal Minkowski volume;
a further justification for this terminology will be proved below.

Using the multifractal Minkowski volume we can define multifractal Minkowski
dimensions. For real number q and a Borel measure μ on R

d , we define the lower
and upper multifractal q Minkowski dimension of E , by

dimq
M,μ(E) = liminfr↘0

logV q
μ ,r(E)

− logr ,

dim
q
M,μ(E) = limsupr↘0

logV q
μ ,r(E)

− logr .

Again we note the close similarity between the multifractal Minkowski dimensions
and the Renyi dimensions. Indeed, the next proposition shows that this similarity is
not merely a formal resemblance. In fact, for q ≥ 0, the multifractal Minkowski
dimensions and the Renyi dimensions coincide. This clearly provides further
justification for calling the quantity V q

μ,r(E) for the multifractal Minkowski volume.

Proposition 1 ([38]). Let μ be a Borel measure on R
d and E ⊆ R

d. If q ≥ 0, then

dimq
M,μ(E) = dimq

R,μ(E) ,

dim
q
M,μ(E) = dim

q
R,μ(E) .

In particular, if q ≥ 0, then

dimq
M,μ(supp μ) = τμ(q) ,



Multifractal Tubes 169

dim
q
M,μ(supp μ) = τμ(q) .

Proof. This follows easily from the definitions. �
Having defined multifractal Minkowski dimensions, we also define multifractal

Minkowski content and average multifractal Minkowski content. For real numbers
q and t, we define the lower and upper (q, t)-dimensional multifractal Minkowski
content of E with respect to μ by

Mq,t
μ (E) = liminfr↘0

1
r−t V q

μ,r(E) ,

M
q,t
μ (E) = limsupr↘0

1
r−t V q

μ,r(E) .

If Mq,t
μ (E) = M

q,t
μ (E), i.e. if the limit limr↘0

1
r−t V q

μ,r(E) exists, then we say the E is
(q, t) multifractal Minkowski measurable with respect to μ , and we will denote the
common value of Mq,t

μ (E) and M
q,t
μ (E) by Mq,t

μ (E), i.e. we will write

Mq,t
μ (E) = Mq,t

μ (E) = M
q,t
μ (E) .

Of course, sets may not be multifractal Minkowski measurable, and it is therefore
useful to introduce a suitable averaging procedure when computing the multifractal
Minkowski content. Motivated by this we define the lower and upper (q, t)-
dimensional average multifractal Minkowski content of E with respect to μ by

Mq,t
μ,ave(E) = liminfr↘0

1
− logr

∫ 1
r

1
s−t V q

μ,s(E)
ds
s ,

M
q,t
μ,ave(E) = liminfr↘0

1
− logr

∫ 1
r

1
s−t V q

μ,s(E)
ds
s .

If Mq,t
μ,ave(E) = M

q,t
μ,ave(E), i.e. if the limit limr↘0

1
− logr

∫ 1
r

1
s−t V q

μ,s(E)
ds
s exists, then

we say the E is (q, t) average multifractal Minkowski measurable with respect to μ ,
and we will denote the common value of Mq,t

μ,ave(E) and M
q,t
μ,ave(E) by Mq,t

μ,ave(E),
i.e. we will write

Mq,t
μ,ave(E) = Mq,t

μ,ave(E) = M
q,t
μ,ave(E) .

3.2 Multifractal Tubes of Self-similar Measures

As an example, we will now compute the multifractal Minkowski content of
self-similar measures. We first recall the definition of self-similar measures. Let
Si : Rd → R

d for i = 1, . . . ,N be contracting similarities and let (p1, . . . , pN) be a
probability vector. We denote the Lipschitz constant of Si by ri ∈ (0,1). Let K and
μ be the self-similar set associated with the list (S1, . . . ,SN) and the self-similar
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measure associated with the list (S1, . . . ,SN , p1, . . . , pN), i.e. K is the unique non-
empty compact subset of Rd such that

K =
⋃

i

Si(K) , (5)

and μ the unique Borel probability measure on R
d such that

μ = ∑
i

piμ ◦ S−1
i , (6)

cf. [24]. We note that it is well-known that supp μ = K.
We will frequently assume that the list (S1, . . . ,SN) satisfies certain “disjointness”

conditions, viz the OSC or the strong separation condition (SSC) defined below.

The Open Set Condition: There exists an open non-empty and bounded subset
U of Rd with ∪iSiU ⊆U and SiU ∩S jU =∅ for all i, j with i �= j.

The Strong Separation Condition: There exists an open non-empty and bounded
subset U of Rd with ∪iSiU ⊆U and SiU ∩S jU =∅ for all i, j with i �= j.

Multifractal analysis of self-similar measures has attracted an enormous interest
during the past 20 years. For example, using methods from ergodic theory, Peres and
Solomyak [43] have recently shown that for any self-similar measure μ , the Renyi

dimensions always exist, i.e. the limit limr↘0
log Iq

μ ,r(K)

− logr always exists regardless of
whether or not the OSC is satisfied provided q≥ 0. If in addition the OSC is satisfied,

an explicit expression for the two limits τμ(q) = liminfr↘0
log Iq

μ ,r(K)

− logr and τμ(q) =

limsupr↘0
log Iq

μ ,r(K)

− logr can be obtained. Indeed, Arbeiter and Patzschke [1] and Cawley
and Mauldin [3] proved that if the OSC is satisfied, then

τ μ(q) = liminf
r↘0

log Iq
r (K)

− logr

= β (q) ,

τ μ(q) = limsup
r↘0

log Iq
r (K)

− logr

= β (q) , (7)

for q ∈ R, where β (q) is defined by

∑
i

pq
i rβ (q)

i = 1 . (8)

Arbeiter and Patzschke [1] and Cawley and Mauldin [3] also verified the Multifrac-
tal Formalism for self-similar measures satisfying the OSC. Namely, in [1, 3], it is
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proved that if μ is a self-similar measure satisfying the OSC, then

fμ(α) = β ∗(α)

for all α ≥ 0; recall, that the definition of the Legendre transform ϕ∗ of a real-
valued function ϕ :R→R is given in Sect. 2.3. We continue this line of investigation
by computing the multifractal Minkowski dimensions and multifractal Minkowski
content of self-similar measures satisfying various separation conditions. Firstly, we
note that the multifractal Minkowski dimensions coincide with β (q). This is not a
deep fact and is included mainly for completeness.

Theorem 1 ([38]). Let K and μ be given by Eqs. (5) and (6). Fix q ∈R and assume
that Condition (i) or Condition (ii) below is satisfied.

(i) The OSC is satisfied and 0 ≤ q.
(ii) The SSC is satisfied.

Then we have
dimq

M,μ(K) = dim
q
M,μ(K) = β (q)

for all q ∈ R.

Proof. As noted above, this is not a deep fact and follows from the definitions using
standard arguments similar to those in [1] or Falconer’s textbook [12]. �
Next, we give a complete description of the asymptotic behaviour of the multifractal
tube formulas for self-similar measures satisfying the Open Set Condition. In
particular, we prove that if the set {logr−1

1 , . . . , logr−1
N } is not contained in a discrete

additive subgroup of R, then K is (q,β (q)) multifractal Minkowski measurable with
respect to μ , and if the set {logr−1

1 , . . . , logr−1
N } is contained in a discrete additive

subgroup of R, then K is (q,β (q)) average multifractal Minkowski measurable with
respect to μ . This is the content of Theorem 2. The proof of Theorem 2 is based on
Renewal Theory and will be discussed after the statement of the theorem.

Theorem 2 ([38]). Let K and μ be given by Eqs. (5) and (6). Fix q ∈R and assume
that Condition (i) or Condition (ii) below is satisfied.

(i) The OSC is satisfied and 0 ≤ q.
(ii) The SSC is satisfied.

Define λq : (0,∞)→ R by

λq(r) =V q
μ,r(K)−∑

i

pq
i 1(0,ri](r)V q

μ,r−1
i r

(K).

Then we have the following:

1. If the set {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup
of R, then
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1

r−β (q) V q
μ,r(K) = cq + εq(r),

where cq ∈ R is the constant given by

cq =
1

−∑i pq
i rβ (q)

i logri

∫ 1

0
rβ (q)λq(r)

dr
r

and εq(r) → 0 as r ↘ 0. In addition, K is (q,β (q)) multifractal Minkowski
measurable with respect to μ:

Mq,β (q)
μ (K) = 1

−∑i pq
i r

β(q)
i logri

∫ 1
0 rβ (q)λq(r) dr

r .

2. If the set {logr−1
1 , . . . , logr−1

N } is contained in a discrete additive subgroup of R
and 〈logr−1

1 , . . . , logr−1
N 〉= uZ with u > 0, then

1

r−β (q) V q
μ,r(K) = πq(r)+ εq(r),

where πq : (0,∞)→R is the multiplicatively periodic function with period equal
to eu, i.e.

πq(e
ur) = πq(r)

for all r ∈ (0,∞), given by

πq(r) =
1

−∑i pq
i rβ (q)

i logri
∑

n∈Z,renu≤1

(reun)β (q)λq(re
un)u

and εq(r) → 0 as r ↘ 0. In addition, K is (q,β (q)) average multifractal
Minkowski measurable with respect to μ with

Mq,β (q)
μ,ave (K) = 1

−∑i pq
i r

β(q)
i logri

∫ 1
0 rβ (q)λq(r) dr

r .

It is instructive to consider the special case q = 0. Indeed, since the multifractal
Minkowski volume for q = 0 equals the usual Minkowski volume and since the
(q, t)-dimensional multifractal Minkowski content for q = 0 equals the usual t-
dimensional Minkowski content, the following corollary providing formulas for
the asymptotic behaviour of the Minkowski volume of self-similar sets follows
immediately from Theorem 2 by putting q = 0. This result was first obtained by
Gatzouras [20] and later by Winter [51].

Corollary 1 ([20]). Let K be given by Eqs. (5) and (6). Assume that the OSC is
satisfied. Let t denote the common value of the box dimensions and the Hausdorff
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dimension of K, i.e. t is the unique number such that ∑i rt
i = 1 (see [12] or [24]).

Define λ : (0,∞)→R by

λ (r) =Vr(K)−∑
i

1(0,ri](r)Vr−1
i r(K).

Then we have:

1. If the set {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup
of R, then

1
r−t Vr(K) = c+ ε(r),

where c ∈ R is the constant given by

c =
1

−∑i rt
i logri

∫ 1

0
rβ (q)λ (r)

dr
r

and ε(r)→ 0 as r ↘ 0. In addition, K is t Minkowski measurable with

Mt (K) = 1
−∑i rt

i log ri

∫ 1
0 rtλ (r) dr

r .

2. If the set {logr−1
1 , . . . , logr−1

N } is contained in a discrete additive subgroup of R
and 〈logr−1

1 , . . . , logr−1
N 〉= uZ with u > 0, then

1
r−t Vr(K) = π(r)+ ε(r),

where π : (0,∞)→ R is the multiplicatively periodic function with period equal
to eu, i.e.

π(eur) = π(r)

for all r ∈ (0,∞), given by

π(r) =
1

−∑i rt
i logri

∑
n∈Z,renu≤1

(reun)t λ (reun)u

and ε(r)→ 0 as r ↘ 0. In addition, K is t average Minkowski measurable with

Mt
ave(K) = 1

−∑i rt
i logri

∫ 1
0 rtλ (r) dr

r .

Proof. Since β (0) = dimB(K) = dimB(K) = dim(K) = t (see [12] or [24]) and
V 0

μ,r(K) =Vr(K), this follows from Theorem 2 by putting q = 0. �
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3.3 How Does One Prove Theorem 2 on the Asymptotic
Behaviour of Multifractal Tubes of Self-similar Measures?

How does one prove Theorem 2? The proof is based on Renewal Theory and, in
particular, on a very recent renewal theorem by Levitin and Vassiliev [31]. Below
we state Levitin and Vassiliev’s Renewal Theorem.

Theorem 3 (Levitin and Vassiliev’s Renewal Theorem [31]). Let t1, . . . , tN > 0
and p1, . . . , pN > 0 with ∑i pi = 1. Define the probability measure P by

P = ∑
i

piδti .

Let λ ,Λ : R→R be real-valued functions satisfying the following conditions:

1. The function λ is piecewise continuous.
2. There are constants c,k > 0 such that

|λ (t)| ≤ ce−k|t|

for all t ∈R.
3. We have

Λ(t)→ 0 as t →−∞.

4. We have
Λ(t) =

∫
Λ(t − s)dP(s)+λ (t)

for all t ∈R.

Then the following holds:

1. The non-arithmetic case: If {t1, . . . , tN} is not contained in a discrete additive
subgroup of R, then

Λ(t) = c+ ε(t)

for all t ∈R where

c =
1∫

sdP(s)

∫
λ (s)ds

and ε(t)→ 0 as t → ∞. In addition,

1
T

∫ T

0
Λ(t)dt → c =

1∫
sdP(s)

∫
λ (s)ds as T → ∞. (9)

2. The arithmetic case: If {t1, . . . , tN} is contained in a discrete additive subgroup
of R and 〈t1, . . . , tN〉= uZ with u > 0, then

Λ(t) = π(t)+ ε(t)
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for all t ∈R where π : R→R is the periodic function with period equal to u, i.e.

π(t + u) = π(t)

for all t ∈R, given by

π(t) =
1∫

sdP(s)
u ∑

n∈Z
λ (t + nu)

and ε(t)→ 0 as t → ∞. In addition

1
T

∫ T

0
Λ(t)dt → c =

1∫
sdP(s)

∫
λ (s)ds as T → ∞. (10)

Proof. All statements, except Eqs. (9) and (10), follow [31]. Below we prove
Eqs. (9) and (10). Indeed, Eq. (9) follows immediately and Eq. (10) is proved as
follows. Namely, since π is periodic with period equal to u, we conclude that

1
T

∫ T

0
Λ(t)dt =

1
T

∫ T

0
π(t)dt +

1
T

∫ T

0
ε(t)dt

→ 1
u

∫ u

0
π(t)dt

=
1∫

t dP(t)

∫ u

0
∑
n∈Z

λ (t + nu)dt . (11)

Next, observe that since |λ (t)| ≤ ce−k|t| for all t ∈ R and
∫

ce−k|t| dt < ∞, it follows
from two applications of Lebesgue’s Dominated Convergence Theorem and the fact
that π is periodic with period equal to u that

∫ u

0
∑
n∈Z

λ (t + nu)dt = ∑
n∈Z

∫ u

0
λ (t + nu)dt

= ∑
n∈Z

∫ (n+1)u

nu
λ (t)dt

= ∑
n∈Z

∫
1[nu,(n+1)u)(t)λ (t)dt

=

∫
∑
n∈Z

1[nu,(n+1)u)(t)λ (t)dt

=
∫

λ (t)dt . (12)
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Finally, combining Eqs. (11) and (12) shows that

1
T

∫ T

0
Λ(t)dt → 1∫

t dP(t)

∫
λ (t)dt .

This completes the proof. �
The key difference between Levitin and Vassiliev’s Renewal Theorem and the
classical renewal theorem from Feller’s books [15, 16] is the conclusion in the
arithmetic case. While the assumptions in the classical renewal theorem are weaker,
the conclusion in the arithmetic case is also weaker. More precisely, in the arithmetic
case, Levitin and Vassiliev’s Renewal Theorem says that the error-term ε(t) tends
to 0 as t tends to infinity, i.e.

lim
t→∞

ε(t) = 0 ,

whereas the classical renewal theorem only allows us to conclude that the error-term
ε(t) tends to 0 as t tends to infinity through “steps” of length u, i.e.

lim
n ∈ N
n → ∞

ε(nu+ s) = 0

for all s ∈ R.
Using Levitin and Vassiliev’s Renewal Theorem (Theorem 3) we can now prove

Theorem 2. Below is a sketch of the proof.

Sketch of Proof of Theorem 2

In order to prove Theorem 2, we will apply Levitin and Vassiliev’s Renewal
Theorem to the probability measure P = Pq and the functions λ = λ 0

q and Λ = Λ 0
q

defined below. First recall that λq : (0,∞)→R is defined by

λq(r) =V q
μ,r(K)−∑i pq

i 1(0,ri](r)V q

μ,r−1
i r

(K) ,

and define Λq : (0,∞)→R by

Λq(r) =V q
μ,r(K) .

We can now define the functions λ 0
q ,Λ 0

q : R→R. Namely, define λ 0
q : R→R by

λ 0
q (t) = 1[0,∞)(t)e−tβ (q)λq(e

−t) ,

and define Λ 0
q : R→ R by

Λ 0
q (t) = 1[0,∞)(t)e−tβ (q)Λq(e

−t) .
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Finally, define the probability measure Pq by

Pq = ∑
i

pq
i rβ (q)

i δlogr−1
i
.

The crux of the matter now is to show that the probability measure P = Pq and the
functions λ = λ 0

q and Λ = Λ 0
q satisfy conditions (1)–(4) in Levitin and Vassiliev’s

Renewal Theorem.

Condition (1) is satisfied. This is not difficult to show. Indeed, it follows by
applying results from [34] that the function f : (0,∞) → R defined by f (r) =∫

B(K,r) μ(B(x,r))q dL d(x) is continuous. This clearly implies that condition (1) is
satisfied.

Condition (2) is satisfied. This is the difficult part of the proof and requires a
number of very delicate estimates. In particular, the proof of condition (2) is based
on the three key estimates below. The proofs of Key Estimate 2 and Key Estimate
3 are both highly technical and require a number very delicate estimates. Below we
state the three key estimates. However, we will not prove the estimates. Instead the
reader is referred to [38]. Before we can state the key estimates we need to introduce
some notation. For i �= j and r > 0, let

Qq
i, j(r) =

1
rd

∫

B(SiK,r)∩B(S jK,r)

μ(B(x,r))q dL d(x) .

Let Σ = {1, . . . ,N} and write

Σm = {1, . . . ,N}m ,

Σ∗ =
⋃
m

Σm ,

i.e. Σm is the family of all strings i = i1 . . . im of length m with i j ∈ {1, . . . ,N}, and
Σ∗ is the family of all finite strings i = i1 . . . im with i j ∈ {1, . . . ,N}. For i ∈ Σm, we
write |i|=m for the length of i and for a positive integer n with n≤m, we write i|n=
i1 . . . in for the truncation of i to the nth place. Also, for i= i1 . . . im, j = j1 . . . jn ∈ Σ∗,
let ij = i1 . . . im j1 . . . jn denote the concatenation of i and j. Next, if i = i1 . . . im ∈ Σ∗,
we will write

Si = Si1 ◦ · · · ◦ Sim ,

ri = ri1 · · ·rim ,

pi = pi1 · · · pim . (13)

Also for brevity, put rmin = mini=1,...,N ri and rmax = maxi=1,...,N ri.
For i,h ∈ Σ∗, we write i ≺ h if and only if i is a substring of h, i.e. if and

only if there are strings s, t ∈ Σ∗ such that h = sit. If (S1, . . . ,Sn) satisfies the OSC,
then it follows from a result by Schief [46] that there exists an open, bounded and
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non-empty subset U of Rd with ∪iSiU ⊆ U , SiU ∩ S jU = ∅ for all i, j with i �= j,
and U ∩K �=∅. In particular, since U ∩K �=∅, we can choose l ∈ Σ∗ such that

SlK ⊆U , (14)

and the compactness of SlK now implies that d0 = dist(SlK,Rd \U)> 0. For brevity
write D0 = dK. Choose a positive integer M such that 1

rM−1
max

≥ 2 D0
d0

, and put a =

1
D0

rmin
rM+1
max

and b = 1
D0

1
rM+1
min

. Finally, define Zq : (0,∞)→R by

Zq(r) = ∑
h∈Σ∗,|h|≥|l|,ar≤rh≤br,l�≺h

pq
h .

The three key estimates are now:

Key Estimate 1. |λq(r)| ≤ ∑i�= j Qq
i, j(r) for all 0 < r < rmin.

Key Estimate 2. There is a constant c > 0 such that

∑
i�= j

Qq
i, j(r)≤

⎧
⎪⎨
⎪⎩

cZq( 1
2 r) for q < 0 and all r > 0,

cZq(2r) for 0 ≤ q and all r > 0.

Key Estimate 3. There are constants k > 0 and γ(q) ∈ R with γ(q) < β (q) such
that

Zq(r) ≤ k r−γ(q) for all r > 0.

Combining the three key estimates we can now prove that condition (2) is satisfied.
Indeed, choose t0 > 0 such that e−t < rmin for t ≥ t0. For t ≥ t0, we now have

|λ 0
q (t)| = 1[0,∞)(t)e−tβ (q) |λq(e

−t)|
(15)

≤ e−tβ (q) ∑
i�= j

Qq
i, j(e

−t) [by Key Estimate 1]

(16)

≤
{

e−tβ (q)cZq( 1
2 e−t) for q < 0,

e−tβ (q)cZq(2e−t) for 0 ≤ q
[by Key Estimate 2]

(17)

≤
{

e−tβ (q) ck ( 1
2 e−t)−γ(q) for q < 0,

e−tβ (q) ck (2e−t)−γ(q) for 0 ≤ q
[by Key Estimate 3] (18)

(19)

= c0 e−(β (q)−γ(q))t, (20)

where c0 = ck max(( 1
2 )

−γ(q),2−γ(q)).
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Next, since λ 0
q is piecewise continuous (by condition (1)), we conclude that λ 0

q
is bounded on the compact interval [0, t0], and we therefore deduce that there is a
constant M0 such that |λ 0

q (t)| ≤M0 for all t ∈ [0, t0]. It follows from this and Eq. (20)
that

|λ 0
q (t)| ≤ max

(
M0

e−(β(q)−γ(q))t0
, c0

)
e−(β (q)−γ(q))t (21)

for all t ≥ 0.
Inequality Eq. (21) and the fact that λ 0

q (t) = 0 for all t < 0 now prove that
condition (2) is satisfied.

Condition (3) is satisfied. This follows trivially from the fact that Λ0
q (t) = 0 for

all t < 0.

Condition (4) is satisfied. Indeed, it follows immediately from the definitions of
λ 0

q , Λ 0
q and Pq that

Λ 0
q (t) = 1[0,∞)(t)e−tβ (q)Λq(e

−t)

= 1[0,∞)(t)e−tβ (q)

(
∑

i
pq

i 1(0,ri](e
−t)V q

μ,r−1
i e−t (K) + λq(e

−t)

)

= ∑
i

pq
i e−tβ (q)1(0,ri](e

−t)1[0,∞)(t)V q
μ,r−1

i e−t (K) + λ 0
q (t)

= ∑
i

pq
i rβ (q)

i 1[0,∞)(t− logr−1
i )1[0,∞)(t)e−β (q)(t− logr−1

i )V q

μ,e−(t−logr−1
i )

(K)+λ 0
q (t)

= ∑
i

pq
i rβ (q)

i 1[0,∞)(t − logr−1
i )e−β (q)(t−logr−1

i )V q

μ,e−(t−logr−1
i )

(K) + λ 0
q (t)

= ∑
i

pq
i rβ (q)

i Λ 0
q (t − logr−1

i ) + λ 0
q (t)

=

∫
Λ 0

q (t − s)dPq(s) + λ 0
q (t)

for all t ∈ R. This proves that condition (4) is satisfied.
Since conditions (1)–(4) are satisfied, Levitin and Vassiliev’s Renewal Theorem

can now be applied to the probability measure P = Pq and the functions λ = λ 0
q and

Λ = Λ 0
q . We divide the proof into two cases.

Case 1. If {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup of
R. If {logr−1

1 , . . . , logr−1
N } is not contained in a discrete additive subgroup of R,

then Levitin and Vassiliev’s Renewal Theorem implies that

Λ 0
q (t) = cq + ε0

q (t),
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where cq ∈R is the constant given by

cq =
1∫

sdPq(s)

∫
λ 0

q (s)ds

=
1

−∑i pq
i rβ (q)

i logri

∫ ∞

0
e−sβ (q)λq(e

−s)ds

=
1

−∑i pq
i rβ (q)

i logri

∫ 1

0
rβ (q)λq(r)

dr
r

and

ε0
q (t)→ 0 as t → ∞.

In particular, we have

rβ (q)V q
μ,r(K) = Λ 0

q (log 1
r ) = cq + εq(r), (22)

where εq(r) = ε0
q (log 1

r )→ 0 as r ↘ 0.

Finally, it follows from Eq. (22) that

rβ (q)V q
μ,r(K)→ cq as r ↘ 0.

This completes the proof of Theorem 2 in Case 1.

Case 2. If {logr−1
1 , . . . , logr−1

N } is contained in a discrete additive subgroup of
R. If {logr−1

1 , . . . , logr−1
N } is contained in a discrete additive subgroup of R and

〈t1, . . . , tN〉= uZ with u > 0, then Levitin and Vassiliev’s Renewal Theorem implies
that

Λ 0
q (t) = π0

q (r)+ ε0
q (t),

where π0
q : R→R is the function given by

π0
q (t) =

1∫
sdPq(s)

u ∑
n∈Z

λ 0
q (t + nu)

=
1

−∑i pq
i rβ (q)

i logri

u ∑
n∈Z

λ 0
q (t + nu)

and

ε0
q (t)→ 0 as t → ∞.

Moreover, we have

π0
q (t + u) = π0

q (t)
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for all t ∈ R, i.e. π0
q is additively periodic with period equal to u. In particular, we

have

rβ (q)V q
μ,r(K) = Λ 0

q (log 1
r ) = πq(r)+ εq(r),

where πq : R→ R is the function given by

πq(r) = π0
q (log 1

r )

=
1

−∑i pq
i rβ (q)

i logri

u ∑
n∈Z

λ 0
q (log 1

r + nu)

=
1

−∑i pq
i rβ (q)

i logri

u ∑
n∈Z

1[0,∞)(log 1
r + nu)e−β (q)(log 1

r +nu)λq(e
−(log 1

r +nu))

=
1

−∑i pq
i rβ (q)

i logri

u ∑
n∈Z,renu≤1

(renu)β (q)λq(re
nu)

and εq(r) = ε0
q (log 1

r )→ 0 as r ↘ 0. Moreover, since π0
q is additively periodic with

period equal to u, we have

πq(e
ur) = π0

q (log 1
eur ) = π0

q (log 1
r − u) = π0

q (log 1
r ) = πq(r)

for all r > 0, i.e. πq is multiplicatively periodic with period equal to eu.

Finally it follows from Levitin and Vassiliev’s Renewal Theorem that

1
T

∫ T

0
Λ 0

q (t)dt → cq as T → ∞.

However, since

1
T

∫ T

0
Λ 0

q (t)dt =
1
T

∫ T

0
e−tβ (q)V q

μ,e−t (K)dt

=
1

− loge−T

∫ 1

e−T
sβ (q)V q

μ,s(K)
ds
s
,

we now conclude that

1
− logr

∫ 1

r
sβ (q)V q

μ,s(K)
ds
s
→ cq as r ↘ 0.

This completes the proof of Theorem 2 in Case 2. �
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4 Multifractal Tube Measures

4.1 Multifractal Tube Measures

The statement in Theorem 2 is a global one: it provides information about the
limiting behaviour of the suitably normalized multifractal Minkowski volume

1

r−β (q) V q
μ,r(K)

of the entire support K of μ as r ↘ 0. However, it is equally natural to ask for
local versions of Theorem 2 describing the limiting behaviour of the normalized
multifractal Minkowski volume

1

r−β (q) V q
μ,r(E)

of (well-behaved) subsets E of the support of μ as r ↘ 0. In order to address this
question, we now introduce multifractal tube measures. A further motivation for
introducing multifractal tube measures comes from convex geometry and will be
discussed below.

The multifractal tube measures are defined as follows. Fix a Borel measure μ
on R

d and r > 0. For a real number q, we define the multifractal Minkowski tube
measure I q

μ,r by

I q
μ,r(E) =

1
rd

∫

E∩B(suppμ,r)

μ(B(x,r))q dL d(x)

for Borel subsets E of R
d . Of course, the measures I q

μ,r will, in general, not
converge weakly as r ↘ 0 (indeed, this is clear since Theorem 2 shows that, in
general, I q

μ,r(R
d) =V q

μ,r(K) does not converge as r ↘ 0). Hence in order to ensure
weak convergence of I q

μ,r as r ↘ 0 it is necessary to normalize the measures I q
μ,r.

There are two natural ways to normalized. Firstly we can normalize by volume.
More precisely, we define the volume normalized multifractal tube measure V q

μ,r by

V q
μ,r =

1
I q

μ,r(Rd)
I q

μ,r .

Secondly, we can normalize by scaling. More precisely, we defined the lower and
upper scaling normalized multifractal tube measures S q

μ,r and S
q
μ,r by

S q
μ,r =

1

r
−dim

q
M,μ (suppμ)

I q
μ,r ,

S
q
μ,r = 1

r
−dimq

M,μ (supp μ)
I q

μ,r .
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It is instructive to consider the particular case q = 0. To discuss this case we first
make the following definition. Namely, if U is a closed subset of Rd and r > 0, the
parallel volume measure VU,r of U is defined by

VU,r(E) =
L d(E ∩B(U,r))

L d(B(U,r))
,

see, for example, the texts [21,35,48]. We now note that if q = 0 and μ is any Borel
measure with supp μ = U , then the volume normalized multifractal tube measure
V q

μ,r simplifies to

V 0
μ,r(E) =

L d(E ∩B(supp μ ,r))
L d(B(supp μ ,r))

=
L d(E ∩B(U,r))

L d(B(U,r))

= VU,r(E) . (23)

This observation provides a further motivation for introducing multifractal tube
measures. Namely, the measure V 0

μ,r(E) = VU,r(E) is closely related to the notion
of curvature measures in convex geometry. Curvature measures were introduced in
the 1950s and are now recognized as a very powerful tool for analysing geometric
properties of convex sets; see [21, 35, 48]. Indeed, if U is a closed convex subset
of R

d with non-empty interior and l = 0,1,2, . . . ,d, then it is possible to define
the lth order curvature measure Vl

U associated with U . Each curvature measure Vl
U

is defined as the weak limit Vl
U = limr↘0 V

l
U,r of a certain family (Vl

U,r )r>0 of
measures. While we will not provide the reader with the definition of the measures
Vl

U,r for a general integer l = 0,1,2, . . . ,d (instead the interested reader can find the
definition in previously mentioned texts [21, 35, 48]), we do note that if l = d, then
Vd

U,r = VU,r. In particular, the d-th order curvature measure Vd
U is defined by

Vd
U = lim

r↘0
Vd

U,r

= lim
r↘0

VU,r ,

where lim denotes the limit with respect to the weak topology. This and the fact that
V 0

μ,r = VU,r show that the weak limit

lim
r↘0

V q
μ,r

(if it exists) may be viewed as a dth order multifractal curvature measure and the
study of multifractal tube measures can therefore be seen as a first attempt to create
a theory of multifractal curvatures.
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It is, of course, also possible to define versions of the parallel volume measure
analogous to S q

μ,r and S q
μ,r. Indeed, if U is a closed subset of Rd and r > 0, we

define the lower and upper scaling parallel volume measures SU,r and SU,r of U by

SU,r(E) =
1

r−dimM(U)+d L d(E ∩B(U,r)) ,

SU,r(E) = 1

r−dimM(U)+d
L d(E ∩B(U,r)) ;

recall that dimM and dimM denote the lower and upper Minkowski dimension,
respectively. As above, we note that if q = 0 and μ is any probability measure with
supp μ =U , then the scaling normalized multifractal tube measures S q

μ,r and S q
μ,r

simplify to

S 0
μ,r(E) = SU,r(E) , (24)

S
0
μ,r(E) = SU,r(E) . (25)

4.2 Multifractal Tube Measures of Self-similar Measures

For self-similar measures μ satisfying the OSC, we will now investigate the
existence of the weak limits of the multifractal tube measures V q

μ,r, S q
μ,r and S

q
μ,r

as r ↘ 0. In fact, in many cases, these limits exist and equal (the suitably) normalized
multifractal Hausdorff measure restricted to the support of μ .

We start by recalling the definition of the multifractal Hausdorff measure. In an
attempt to develop a general theoretical framework for studying the multifractal
structure of Borel measures, Olsen [36], Pesin [41] and Peyrière [44] introduced
a family of measures {H q,t

μ | q, t ∈ R} based on certain generalizations of the
Hausdorff measure. The measures H q,t

μ have subsequently been investigated further
by a large number of authors, including [4, 8, 9, 23, 37, 39, 40, 45]. Let E ⊆ R

d and
δ > 0. A countable family B = (B(xi,ri))i of closed balls in R

d is called a centred
δ -covering of E if E ⊆ ∪i B(xi,ri), xi ∈ E and 0 < ri < δ for all i. For E ⊆ R

d ,
q, t ∈R and δ > 0 write

H
q,t
μ,δ (E) = inf

{
∑

i

μ(B(xi,ri))
q(2ri)

t

∣∣∣∣∣(B(xi,ri))i is a centred δ -covering of E

}
,

H
q,t
μ (E) = sup

δ>0
H

q,t
μ,δ (E) ,

H q,t
μ (E) = sup

F⊆E
H

q,t
μ (F) .
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It follows from [36] that H q,t
μ is a measure on the family of Borel subsets of Rd . The

measure H q,t
μ is, of course, a multifractal generalization of the centred Hausdorff

measure. In fact, it is easily seen that if t ≥ 0, then 2−tH 0,t
μ ≤ H t ≤ H 0,t

μ where
H t denotes the t-dimensional Hausdorff measure. It is also easily seen that the
measure H q,t

μ in the usual way assign a dimension to each subset E of R
d (cf.

[36]): there exists a unique number dimq
μ(E) ∈ [−∞,∞] such that

H q,t
μ (E) =

{
∞ for t < dimq

μ(E)

0 for dimq
μ(E)< t

.

The number dimq
μ(E) is an obvious multifractal analogue of the Hausdorff

dimension dim(E) of E . In fact, it follows immediately from the definitions that
dim(E) = dim0

μ(E). One of the main importances of the multifractal Hausdorff

measure H q,t
μ is its connection with the multifractal spectrum of μ . Indeed, if we

define the dimension function bμ : R→ [−∞,∞] by

bμ(q) = dimq
μ(supp μ) ,

then it follows from [36] that the multifractal spectrum fμ of μ (cf. Eq. (1)) is
bounded above by the Legendre transform b∗μ of bμ , i.e.

fμ(α) ≤ b∗μ(α)

for all α ≥ 0, cf. [36]; recall, that the definition of the Legendre transform ϕ∗
of a real-valued function ϕ : R → R is given in Sect. 2.3. This inequality may
be viewed as a rigorous version of the “Multifractal Formalism”. Furthermore,
for many natural families of measure we have fμ(α) = b∗μ(α) for all α ≥ 0, cf.
[4, 8, 9, 36, 37].

We can now explicitly identify the weak limits of the multifractal tube measures
V q

μ,r, S q
μ,r and S

q
μ,r as r ↘ 0 for self-similar measures μ . The first result shows

that the weak limit of V q
μ,r (as r ↘ 0) always exists and equals the normalized

multifractal Hausdorff measure.

Theorem 4 ([38]). Let K and μ be given by Eqs. (5) and (6). Fix q ∈R and assume
that Condition (i) or Condition (ii) below is satisfied.

(i) The OSC is satisfied and 0 ≤ q.
(ii) The SSC is satisfied.

Then we have

V q
μ,r → 1

H
q,β (q)

μ (K)
H

q,β (q)
μ K weakly.
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Next, we study the limiting behaviour of S q
μ,r and S

q
μ,r as r ↘ 0 for self-similar

measures μ . Contrary to Theorem 4, the weak limits of S q
μ,r and S

q
μ,r as r ↘ 0 may

not exist. Indeed, if the set {logr−1
1 , . . . , logr−1

N } is contained in a discrete additive
subgroup of R, then the weak limits of S q

μ,r and S
q
μ,r as r ↘ 0 do not necessarily

exist; however, the weak limits of certain averages of S q
μ,r and S

q
μ,r exist and equal

a multiple of the normalized multifractal Hausdorff measure. On the other hand, if
the set {logr−1

1 , . . . , logr−1
N } is not contained in a discrete additive subgroup of R,

then the weak limits of S q
μ,r and S

q
μ,r as r ↘ 0 always exist and, as above, they

equal a multiple of the normalized multifractal Hausdorff measure.

Theorem 5 ([38]). Let K and μ be given by Eqs. (5) and (6). Fix q ∈R and assume
that Condition (i) or Condition (ii) below is satisfied.

(i) The OSC is satisfied and 0 ≤ q.
(ii) The SSC is satisfied.

Then the following holds:

(1) We have

S q
μ,r = S

q
μ,r =

1

r−β (q) I q
μ,r .

Write S q
μ,r for the common value of S q

μ,r and S
q
μ,r, i.e. write

S q
μ,r =

1

r−β (q) I q
μ,r .

Also, write

S q
μ,r,ave =

1
− logr

∫ 1

r

1

s−β (q) I q
μ,s

ds
s
.

(2) If the set {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup
of R, then

S q
μ,r → Mq,β (q)

μ (K) 1

H
q,β(q)

μ (K)
H

q,β (q)
μ K weakly,

S q
μ,r,ave → Mq,β (q)

μ,ave (K) 1

H
q,β(q)

μ (K)
H

q,β (q)
μ K weakly;

recall that K is (q,β (q)) multifractal Minkowski measurable with respect to μ
and (q,β (q)) average multifractal Minkowski measurable with respect to μ by

Theorem 2 and the multifractal Minkowski content Mq,β (q)
μ (K) and the average

multifractal Minkowski content Mq,β (q)
μ,ave (K) are therefore well defined.
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(3) If the set {logr−1
1 , . . . , logr−1

N } is contained in a discrete additive subgroup of
R, then

S q
μ,r,ave → Mq,β (q)

μ,ave (K) 1

H
q,β(q)

μ (K)
H

q,β (q)
μ K weakly;

recall that K is (q,β (q)) average multifractal Minkowski measurable with
respect to μ by Theorem 2 and the average multifractal Minkowski content

Mq,β (q)
μ,ave (K) is therefore well defined.

As with Theorem 2, it is instructive to consider the special case q = 0. Indeed, we
note (cf. Eq. (23)) that

V 0
μ,r(E) =

L d(E ∩B(K,r))
L d(B(K,r))

= VK,r(E),

i.e. V 0
μ,r equals the normalized parallel body measure VK,r. Also, writing t for the

common value of the box dimensions and Hausdorff dimension of K, we note [see
Eq. (25)] that

S 0
μ,r(E) = S

0
μ,r(E) =

1
r−t+d L d(E ∩B(K,r))

= SK,r(E) = SK,r(E) ,

i.e. S 0
μ,r and S

0
μ,r equal the scaling parallel body measures SK,r and SK,r. The

following corollaries therefore follow immediately from Theorem 2, Theorems 1
and 2 by putting q = 0. These results were first obtained by Winter in his doctoral
dissertation [51].

Corollary 2 ([51]). Let K be given by Eq. (5). Assume that the OSC is satisfied. Let
t denote the common value of the box dimensions and the Hausdorff dimension of
K, i.e. t is the unique number such that ∑i rt

i = 1. For r > 0, the normalized parallel
body measure VK,r is given by

VK,r(E) =
1

L d(B(K,r))
L d(E ∩B(K,r)) .

Then we have

VK,r → 1
H t(K)

H t K weakly.

Proof. Since V 0
μ,r = VK,r, this follows from Theorem 4 by putting q = 0. �
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Corollary 3 ([51]). Let K be given by Eq. (5). Assume that the OSC is satisfied. Let
t denote for the common value of the box dimensions and the Hausdorff dimension
of K, i.e. t is the unique number such that ∑i rt

i = 1.

(1) We have

SK,r(E) = SK,r(E) =
1

r−t+d
L d(E ∩B(K,r)) .

Write SK,r for the common value of SK,r and SK,r, i.e. write

SK,r(E) =
1

r−t+d L d(E ∩B(K,r)) .

Also, write

SK,r,ave(E) =
1

− logr

∫ 1

r

1
s−t+d L d(E ∩B(K,s))

ds
s
.

(2) If the set {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup
of R, then

SK,r → Mt (K) 1
H t (K) H t K weakly,

SK,r,ave → Mt
ave(K) 1

H t (K)
H t K weakly;

recall that K is t Minkowski measurable and t average Minkowski measurable
by Corollary 1 and the Minkowski content Mt (K) and the average Minkowski
content Mt

ave(K) are therefore well defined.
(3) If the set {logr−1

1 , . . . , logr−1
N } is contained in a discrete additive subgroup of

R then

SK,r,ave → Mt
ave(K) 1

H t (K) H t K weakly;

recall that K is t average Minkowski measurable by Corollary 1 and the average
multifractal Minkowski content Mt

ave(K) is therefore well defined.

Proof. Since S 0
μ,r = S

0
μ,r = SK,r, this follows from Theorem 5 by putting

q = 0. �
In Sect. 4.1 it was suggested that one motivation for introducing the multifractal

tube measures V q
μ,r is that the limiting behaviour of V q

μ,r may be viewed as providing
a local version of Theorem 2. Namely, Theorem 2 describes the limiting behaviour
of 1

r−β(q)V
q
μ,r(K) as r ↘ 0, whereas Theorem 4 provides information about the the

limiting behaviour of 1
r−β(q)V

q
μ,r(E) as r ↘ 0 for “well-behaved” subsets E of K.

The viewpoint is made precise in the next corollary. Below we use the following
notation, namely, if X is a metric space and E ⊆ X , then we will denote the the
boundary of E in X by ∂E .
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Corollary 4. Let K and μ be given by Eqs. (5) and (6). Fix q ∈ R and assume that
Condition (i) or Condition (ii) below is satisfied.

(i) The OSC is satisfied and 0 ≤ q.
(ii) The SSC is satisfied.

Let E ⊆ R
d be a Borel set with:

1. H
q,β (q)

μ (E ∩K)> 0

2. H
q,β (q)

μ (∂E ∩K) = 0
3. E ∩B(K,r) = B(E ∩K,r) for r small enough

(Observe that, for example, the set E = R
d satisfies the above conditions, and if

K = L∪M with dist(L,M) > 0 and H
q,β (q)

μ (L) > 0 and 0 < δ < dist(L,M), then
the set E = B(L,δ ) satisfies the above conditions.)

Then we have the following:

1. If the set {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup
of R, then E ∩K is (q,β (q)) multifractal Minkowski measurable with respect to
μ with

Mq,β (q)
μ (E ∩K) = Mq,β (q)

μ (K)
H

q,β (q)
μ (E ∩K)

H
q,β (q)

μ (K)
;

recall that K is (q,β (q)) average multifractal Minkowski measurable with

respect to μ by Theorem 2 and the multifractal Minkowski content Mq,β (q)
μ (K)

is therefore well defined.
2. If the set {logr−1

1 , . . . , logr−1
N } is contained in a discrete additive subgroup of R,

then E ∩K is (q,β (q)) average multifractal Minkowski measurable with respect
to μ with

Mq,β (q)
μ,ave (E ∩K) = Mq,β (q)

μ,ave (K)
H

q,β (q)
μ (E ∩K)

H
q,β (q)

μ (K)
;

recall that K is (q,β (q)) average multifractal Minkowski measurable with
respect to μ by Theorem 2 and the average multifractal Minkowski content

Mq,β (q)
μ,ave (K) is therefore well defined.

Proof. This follows immediately from Theorem 5 since the condition E ∩B(K,r) =
B(E ∩K,r) implies that

I q
μ,r(E) =

1
rd

∫

E∩B(K,r)
μ(B(x,r))q dL d(x) =

1
rd

∫

B(E∩K,r)
μ(B(x,r))q dL d(x)

= V q
μ,r(E ∩K). �

Note that Corollary 4 is a genuine extension of Theorem 2: namely, if we let E = K
in Corollary 4, then Corollary 4 simplifies to Theorem 2.
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