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Preface

This volume is a collection of 13 peer-reviewed chapters consisting of exposi-
tory/survey chapters and research articles on fractals. Many of these chapters were
presented at the second edition of the international conference “Fractals and Related
Fields,” held on Porquerolles Island, France, in June 2011. The success of this
event proved the dynamism of the mathematical activity in the numerous branches
connected to fractal geometry.

The selected chapters cover the following topics:

• Geometric measure theory

• Ergodic theory, dynamical systems

• Harmonic analysis

• Multifractal analysis

• Number theory

• Probability theory

The three surveys are written by famous experts in their respective fields. The
other chapters are either original contributions or accessible expositions of very
recent developments, also written by leaders in their respective domains.

This book naturally follows the previous one, “Recent Development in Fractals
and Related Fields” which was published after the first conference, “Fractals and
Related Fields.” It is intended for researchers and graduate students wishing to
discover new trends in fractal geometry.

Villetaneuse, France Julien Barral
Créteil Cedex, France Stéphane Seuret
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The Rauzy Gasket

Pierre Arnoux and Štěpán Starosta

Abstract We define the Rauzy gasket as a subset of the standard two-dimensional
simplex associated with letter frequencies of ternary episturmian words. We prove
that the Rauzy gasket is homeomorphic to the usual Sierpiński gasket (by a two-
dimensional generalization of the Minkowski ? function) and to the Apollonian
gasket (by a map which is smooth on the boundary of the simplex). We prove that
it is also homothetic to the invariant set of the fully subtractive algorithm, hence of
measure 0.

1 Introduction

Strict episturmian ternary words, also called Arnoux–Rauzy words, are a natural
generalization of Sturmian words (see Sect. 2 for the definitions). Each such word
is uniquely ergodic, and in particular, its letters have a well-defined frequency; one
can prove that these frequencies completely define the minimal symbolic system
associated with such a word.

These dynamical systems are associated with a particular family of interval
exchange transformations (see [1]). It is known that some of these systems (in
particular those defined by a substitution) can be represented by a toral rotation,
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Fig. 1 The Rauzy gasket

and in particular, they have pure discrete spectrum (see [13]); on the other hand,
it is known that some examples of Arnoux–Rauzy words are not balanced (see
[3]); hence they cannot be represented by a toral rotation. It would be interesting
to understand what is the general behavior; a preliminary step would be to find a
“good” measure on the parameter set of the family of episturmian systems.

Arnoux–Rauzy words admit a natural renormalization process, which acts on
the frequencies; this renormalization can be considered as a kind of generalized
continued fraction; indeed, the equivalent renormalization on Sturmian words is a
symbolic version of the classical additive continued fraction. It is then natural to
look for an invariant measure (a Gauss measure) for the renormalization.

In this chapter, we define the Rauzy gasket as the set of admissible vectors
of letter frequencies for episturmian ternary words; it is a compact subset of the
two-dimensional simplex (see Fig. 1). The Rauzy gasket parametrizes the set of
episturmian systems, and there is a generalized continued fraction algorithm acting
on it. We would like to find a Gauss measure for this algorithm; however, since this
set is fractal, one would first need to compute its Hausdorff dimension and Hausdorff
measure.

We are far from reaching this goal, and some preliminary investigations are
given in this chapter. We prove that the Rauzy gasket is homeomorphic to the usual
Sierpiński gasket by a map which is a generalization of the Minkowski ? function;
this map is not differentiable, and not absolutely continuous, so the Hausdorff
dimensions of both sets have no reason to be the same. We also prove that the Rauzy
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gasket is homeomorphic to the Apollonian gasket by a quite regular map, since it is
smooth on the boundary of the complementary triangles, although it is not a diffeo-
morphism on the rational points. We then show that the same set occurs in a classical
two-dimensional continued fraction algorithm, the fully subtractive algorithm. We
deduce from the proof of [11] that the Rauzy gasket has zero Lebesgue measure.

In Sect. 2, we give the necessary definitions for episturmian words and explain
the origin of the problem. In Sect. 3, we define the Rauzy gasket and the related
continued fraction. In Sect. 4, we prove that the Rauzy gasket is homeomorphic to
the classical Sierpiński gasket by a generalization of the Minkowski ? function. In
Sect. 5, we prove that it is homeomorphic to the Apollonian gasket. In Sect. 6, we
show that the continued fraction associated with the Rauzy gasket is conjugate by
a linear change of coordinates to the induction of the fully subtractive algorithm on
the central part of the simplex, and we deduce that its Lebesgue measure is 0. In the
last section, we give a few remarks and open questions.

2 Preliminaries

2.1 Background: Complexity and Sturmian Words

Let A denote an alphabet, a finite set of letters. A finite (infinite) sequence of letters
is called a finite (infinite) word. We say that a finite word w = w0w1 . . .wn, where
wi ∈ A , is a factor of a word v = v0v1 . . . (finite or infinite) if there exists an index
k such that w0w1 . . .wn = vkvk+1 . . .vk+n. Furthermore, such an index k is called an
occurrence of w in v. By |v|w we denote the number of occurrences of w in v.

The language of an infinite word u is the set of factors of u. We say that this
language is closed under reversal if, for any factor w = w0w1 . . .wn of u, its reverse
word wnwn−1 . . .w0 is also a factor of u.

The shift map on A ∞ associates to any infinite word u the word v defined for
all i by vi = ui+1. The dynamical system associated with a word u is the closure of
its orbit by the shift; it is also the set of words whose language is contained in the
language of u. Hence it is completely determined by this language.

Let u = u0u1 . . . be an infinite word over A and w be a factor of u. Let fu(w)

denote the limit limn→+∞
|u0u1...un−1|w

n , if it exists. Such a number is then called the
frequency of the factor w in u.

The factor complexity of u, denoted C (n), is the mapping which associates to an
integer n the number of factors of u of length n. As usual, the empty word is counted
as a factor and we have C (0) = 1 and C (1) = #A .

A factor w of u is said to be left (right) special, if there exist two distinct letters
a and b such that aw and bw (wa and wb) are factors of u.

It is well-known that the complexity of a non eventually periodic word is strictly
increasing; hence such a word has complexity C (n) ≥ n+ 1. Aperiodic words of
minimal complexity are of particular interest.
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Definition 1. An infinite word is called a Sturmian word if it is of minimal
complexity C (n) = n+ 1.

Let �x� (resp. �x�) denote the floor function, i.e., the largest integer n ≤ x (resp.
the ceiling function, that is the smallest integer n ≥ x).

Definition 2. An infinite word u is a rotation word if there exist α,β ∈ [0,1] such
that for all n, un = �(n+ 1)α+β�−�nα+β� or for all n, un = �(n+ 1)α+β�−
�nα + β� (the difference between �x� and �x� is irrelevant unless nα + β takes
integer values for some n).

One can prove that a rotation word is periodic if and only if α is rational, that the
Sturmian words are the aperiodic rotation words, and that the closure in {0,1}N, for
the product topology, of the set of Sturmian words is the set of rotation words.

Since, in a Sturmian word, there are three different factors of length 2, and words
10 and 01 must occur in a not eventually constant sequence, one of the words 00 or
11 does not occur. Hence, in a Sturmian word, one of the letters is isolated. Sturmian
words admit a renormalization process by erasing the letter following the isolated
letter, which gives a new Sturmian word; it is a symbolic counterpart of the classical
continued fraction algorithm acting on the angle of the corresponding rotation. We
will look more closely at this renormalization process in Sect. 4.1.

2.2 Arnoux–Rauzy Words and Episturmian Words: Definition

It is natural to look for good generalizations of Sturmian words, and one such family
is the set of strict episturmian words:

Definition 3. Strict episturmian words on three letters, also called ternary Arnoux–
Rauzy (AR for short) words, are infinite words of complexity C (n) = 2n+ 1 such
that for each n there is only one left special factor and one right special factor of
length n.

Since C (1) = 3, they are words on three letters; they were first described in [14]
and were further studied in [1], where a geometric representation was introduced.
AR words code a specific family of six-interval exchange transformations.

One inconvenience of this definition is that the set of AR words is not closed
in A ∞ for the natural topology; this is already the case for Sturmian words, whose
closure contains periodic rotation words. It is then natural to consider the closure;
the language of any AR word, like the language of a Sturmian word, is closed under
reversal, and this leads to the definition of a wider family of infinite words known
as episturmian words (see [4, 6, 7] for a survey) defined on an arbitrary alphabet.

Definition 4. Episturmian words are the infinite words having their language closed
under reversal and at most one left special factor of each length.
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It is an easy consequence of the definition that the set of episturmian words is
closed in A ∞. Some episturmian words, those who can be extended on the left in
several ways, are of particular interest.

Definition 5. An aperiodic episturmian word is standard (or characteristic) if each
of its prefix is a left special factor.

Remark 1. Since every prefix of a left special factor is a left special factor, the
definition implies that every aperiodic episturmian word has the same set of factors
as a unique standard episturmian word. In other words, the subshift generated by an
aperiodic episturmian word contains a unique standard word, which can be used as
canonical representative of the system.

If an episturmian word is periodic, a factor longer than the period cannot be
special, so the definition does not apply. In that case, we will say by abuse of
language that a periodic episturmian word is standard if any prefix is a special
left factor whenever there exists a special left factor of the same length. One can
prove that the finite subshift generated by a periodic nonconstant episturmian word
contains exactly two standard words with this definition.

By a result of Boshernitzan [2], episturmian words are uniquely ergodic;
hence the frequencies of factors in episturmian words exist and are positive. On
frequencies of AR words see more in [16].

The next section gives a classification of ternary episturmian words.

2.3 Ternary AR Words: Renormalization

In what follows we will consider the alphabet to be fixed A = {1,2,3}. For all
i ∈ A , we define the morphism σi on the free monoid A ∗ by

σi( j) = i j if j �= i and σi(i) = i.

We denote by S the set {σ1,σ2,σ3}. The following is a restatement of claims
in [14].

Proposition 1. Let u be an AR word and σ a morphism from S . Then σ(u) is an
AR word.

This leads to the following claim using our notation.

Corollary 1. Let u be an AR word and i ∈ A . Then for all letter j ∈ A we have

fσi(u)( j) =
fu( j)

2− fu(i)
for i �= j and fσi(u)(i) =

1
2− fu(i)

.
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What is less obvious is that, conversely, any standard AR word can be renormal-
ized by using one of the morphisms in S . This is the content of the next proposition,
which is again a restatement of claims in [14] in our terms.

Proposition 2. Let v be a standard AR word; then there exist an index i ∈ A and a
standard AR word u such that v = σi(u).

Furthermore, we have

fu( j) =
fv( j)
fv(i)

for i �= j and fu(i) =
2 fv(i)− 1

fv(i)
.

Let (ζ1,ζ2,ζ3) denote the vector of frequencies of letters of the AR word v.
(Clearly, ζ1 + ζ2 + ζ3 = 1.) It follows from [1] that ζ1 and ζ2 are rationally inde-
pendent irrational numbers. Furthermore, it follows from the previous proposition
that one of the frequencies is always strictly greater than the sum of the two others,
i.e., one letter is always dominating the word. Moreover, the dominating letter is
separating (see [4], Lemma 4), i.e., all factors of v of length 2 contain at least one
occurrence of the separating letter. The renormalization procedure is very simple:
to obtain the renormalized word, it suffices to erase the letter following each non-
separating letter. In other words, the index i from the last proposition is clearly
the separating letter of v and u is the renormalized word. Moreover, the previous
proposition ensures that, for a standard AR word, this procedure can be infinitely
iterated.

In this way, one can associate to any AR subshift an infinite sequence of
morphisms in S ; this sequence can be seen as a symbolic version of a generalized
continued fraction expansion on the set of frequencies, as we show in the next
section. This sequence is also the S -adic expansion of the subshift (see [5]).

This construction has been extended to episturmian words; the following theorem
summarizes results in [6, 7].

Theorem 1. Let u be a standard episturmian word; then, one can find a standard
episturmian word v and a morphism σi ∈ S such that u = σi(v). Furthermore, the
morphism σi is uniquely defined by the frequencies of the letters of u, unless u is
periodic of period 2.

It follows immediately that, to any episturmian system, one can associate by
iterating this construction a sequence σin of morphisms (the word (in)n∈N is called
the directive word); three cases are possible:

1. Every letter in A occurs infinitely often in (in); then the word u is an AR word
and (in) is uniquely defined.

2. One letter occurs a finite number of times in (in); then the word u is the image by
a morphism (finite composition of elements of S ) of a Sturmian word and (in) is
uniquely defined.

3. The word (in) is eventually constant; then the word u is periodic, and if the word
(in) is not constant, there are two such possible words, one ending in i j∞ and the
other in ji∞.
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The basic element of the proof is that the morphism σi is determined by the
largest frequency ζi. Since this largest frequency satisfies ζi ≥ ζ j +ζk, it is uniquely
defined, unless we have ζk = 0 and ζi = ζ j, which corresponds, up to a permutation
of indices, to the frequencies (1/2,1/2,0) and a periodic word of period 2, and to
the directive words 12∞ and 21∞, depending on whether we choose to erase letter 1
or 2. It is easy to check that this phenomenon occurs during the renormalization of
a word if and only if the vector of frequencies is rational.

Remark 2. This phenomenon already occurs for rotation words; in that case, it
is linked to the fact that an irrational number has only one continued fraction
expansion, but a rational number has two finite continued fraction expansions.

3 The Rauzy Gasket

We are interested in the set of all possible vectors of letter frequencies (ζ1,ζ2,ζ3)
of episturmian words. For convenience, we will speak of the set of frequencies. We
can now define the Rauzy gasket and show some of its properties.

Definition 6. The Rauzy gasket, denoted by R, is the set of frequencies of epistur-
mian words.

We will also be interested in the following subsets of the Rauzy gasket:

Definition 7. We denote by Raper the set of frequencies of aperiodic episturmian
words and by RAR the set of frequencies of AR words.

Lemma 1. We have RAR ⊂ Raper ⊂ R = RAR.

Proof. The only nontrivial fact is that R ⊂ RAR. But every episturmian word can
be approached arbitrarily close by an AR word: it suffices to take a long prefix of
the directive word of the word and to compose it with the directive word (123)∞ to
get an AR word. Hence the frequency vector of the given episturmian word can be
approximated as closely as we want by the frequency vector of an AR word. 
�

The elements of Raper are exactly the irrational elements of R. Indeed, the
frequencies completely characterize an episturmian system. If the word is periodic,
its frequencies are rational. On the other hand, if the frequencies are rational, the
height of the frequency vector (defined as the sum of coefficients of the smallest
collinear integer vector) is strictly decreasing under renormalization, unless the two
smallest coordinates are 0; this implies that, starting from any rational frequency,
a finite number of renormalizations changes the word to a constant word, so an
episturmian word with rational frequencies is periodic.

One can prove that the elements of Raper which are not in RAR are irrational
vectors which satisfy one rational relation, since they are the images of a Sturmian
word, with only two letters, by a morphism. One could conjecture that the elements
of RAR are completely irrational, but we do not know a proof of this.
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D1

D3

D2

D̊T

Fig. 2 The standard simplex Δ partitioned into four subsets Δ1,Δ2,Δ3, and Δ̊T

3.1 The Rauzy Gasket as an Iterated Function System

Let Δ denote the convex span of {e1,e2,e3}, i.e.,

Δ :=
{
(x1,x2,x3) ∈ R

3
≥0

∣
∣∑xi = 1

}
.

Let Δ̊T denote the open set of triplets that satisfy the triangular inequalities xi <
x j + xk; it is the interior of the convex span of the centers of the sides of Δ :

Δ̊T :=

{

(x1,x2,x3) ∈ Δ
∣
∣
∣∣
∣
∀ j,x j <∑

i�= j

xi

}

.

Furthermore, let us denote for all j

Δ j :=

{

(x1,x2,x3) ∈ Δ
∣
∣∣
∣
∣

x j ≥∑
i�= j

xi

}

.

One has Δ̊T = Δ \⋃Δi; see Fig. 2.
We consider the linear mapping F̃ defined on the set of strictly positive

vectors which do not satisfy the triangle inequality by subtracting the two smaller
coordinates form the larger one as follows:
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F̃ : (x1,x2,x3) �→
⎧
⎨

⎩

(x1 − x2 − x3,x2,x3) if x1 ≥ x2 + x3,

(x1,x2 − x1 − x3,x3) if x2 ≥ x1 + x3,

(x1,x2,x3 − x1 − x2) if x3 ≥ x1 + x2,

Note that the definition is not consistent on the set of vectors of the form
(x,x,0), (x,0,x), or (0,x,x); we make an arbitrary choice in these three cases,
which correspond to periodic words of period 2. As we have seen above, the
renormalization operation is not well defined for these words.

This linear map, acting on the positive cone, gives rise to a projective map acting
on Δ \ Δ̊T ; it will be denoted by F : Δ \ Δ̊T �→ Δ .

If v is any standard episturmian word and u is the corresponding renormalized
word, one can now rewrite the formula from Proposition 2:

( fu(1), fu(2), fu(3)) = F ( fv(1), fv(2), fv(3)) .

The map F̃ is 3-to-1, and the inversion F̃−1 has three branches, denoted f̃i, for
i ∈ A . These branches define projective maps fi : Δ → Δi. These maps correspond
to linear maps given by matrices Mi, defined as:

M1 =

⎛

⎝
1 1 1
0 1 0
0 0 1

⎞

⎠ , M2 =

⎛

⎝
1 0 0
1 1 1
0 0 1

⎞

⎠ , M3 =

⎛

⎝
1 0 0
0 1 0
1 1 1

⎞

⎠ .

We will use these inverse branches to find the set where F can be iterated
infinitely many times; remark that fi(Δ) = Δi and f j(Δ) = Δ j, i �= j are disjoint
except for one point.

It follows from Propositions 1, 2 that R satisfies

R = ∪i∈A fi(R)

so that R is the solution of an iterated function system. The function fi being
projective defined by positive matrix is contracting on the standard simplex;
however, ei, the ith vector of the standard basis of R3, is an indifferent fixed point
for fi, so this iterated function system is only weakly contracting, and a little care
must be taken to apply the theorem of Hutchinson to prove unicity of the solution
of this equation.

We define the family of maps fi, j,n by fi, j,n = f n
i f j, for i, j ∈ A , i �= j, and

n ∈ N
+.

Lemma 2. There exists a constant c < 1 such that the maps fi, j,n are strict
contractions with contraction ratio less than c.

Proof. Since the fi, defined by positive matrices on the positive simplex, are weak
contractions, it is enough to prove it for n = 1. Direct computation of the Jacobian
matrix of f1 f2 shows that, on the simplex, it is everywhere contracting by a
contraction factor at least 2

3 . The result follows by symmetry for all fi f j . 
�
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Hence, the set of all the maps fi, j,n forms an infinite strictly contracting iterated
function system; we can apply a modified version of Hutchinson’s theorem. Let
H(Δ) denote the set of all nonempty compact subsets of Δ , equipped with Hausdorff
metric. Define Φ : H(Δ) �→ H(Δ) as

Φ(X) =
⋃

i, j∈A ,i�= j,n∈N+

fi, j,n(X).

It is clear from the above lemma that Φ is a strict contraction on H(Δ); hence
it has a unique fixed point, which is R. Indeed, the analysis of the previous section
showed that any nonconstant episturmian word v, having a nonconstant directive
word, can be renormalized as v = σn

i σ j(u); restated in terms of frequency, this
means that the Rauzy gasket satisfies:

R = {e1,e2,e3}∪
⋃

i, j,n

fi, j,nR

from which it follows immediately that Φ(R) = R.
We can now prove the main result of this section:

Theorem 2. The Rauzy gasket R is the unique nonempty compact subset of the
standard simplex which satisfies the equation:

R = ∪i∈A fi(R).

Proof. The only thing to prove is the uniqueness. Let X be another solution; from
X =∪i∈A fi(X), we obtain that fi, j,n(X)⊂X ; henceΦ(X)⊂X . Let x be any element
of X ; by definition of X , we can find a sequence xn in X , with x0 = x, and an infinite
word (in)n∈N, such that xn = fin(xn+1). If the word is not constant, x is in some
fi, j,n(X). If it is constant, x is in ∩n∈N f n

i (X); hence x = ei. Hence X = {e1,e2,e3}∪(∪i, j∈A ,i�= j,n∈N+ fi, j,nX
)⊂Φ(X), so Φ(X) = X and X = R. 
�

We note the following proposition, which might be useful to compute the
Hausdorff dimension of R:

Proposition 3. The family { fi, j,n} satisfies the open set condition; that is, there is
an open set U such that all the fi, j,n(U) are disjoint and contained in U.

Proof. Let Δ̊ be the interior of Δ . It is clear that fi, j,n(Δ̊ ) ⊂ Δ̊ ; the explicit
coordinates are easily computed, and the corresponding triangles are disjoint.
Figure 3 shows the disposition of the triangles f1,2,n(Δ̊ ). 
�

3.2 Symbolic Dynamics for the Rauzy Gasket

The map F gives us a symbolic word associated with the elements of R, unique
except for the rational points. The easiest proof relies on the following lemma:
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(0,0,1)

(0,1,0)(1,0,0)

Fig. 3 The triangles f1,2,n(Δ̊ )

Lemma 3. Let (in) be any infinite word in A ∞. The set ∩n∈N fi0 fi1 . . . fin(Δ)
contains exactly one point.

Proof. Remark first that f n
1 (Δ) is the triangle with vertices f n

1 (e1) = (1,0,0),
f n
1 (e2) = ( n

n+1 ,
1

n+1 ,0), f n
1 (e3) = ( n

n+1 ,0,
1

n+1), whose diameter tends to 0; the
intersection of these triangles is the point (1,0,0). Similarly f n

j (Δ) converges
to {e j}.

Hence, if the word (in) is eventually constant, i.e., for all n > N we have
in = j for some j ∈ A , the limit of the corresponding set is reduced to the point
fi0 fi1 . . . fiN (e j).

If the word is not eventually constant, it can be decomposed in a unique way as
a product of fi, j,n; hence the diameter of the images goes to zero, so the intersection
of this sequence of decreasing compact sets is reduced to a point. 
�
Definition 8. The symbolic coding for the Rauzy gasket is the map, πF : A ∞→ R,
which associates to any infinite word (in) the unique point defined by the previous
lemma.

This map is one-to-one, except on eventually constant words, corresponding to
rational points, where it is 2-to-one. In the previous setting, the reciprocal map is
easy to describe. Let ν be the coding map: ∪i∈A Δi → A defined by ν(x) = i if
x ∈ Δi (this map is ill-defined on the three middle points, elements of Δi∩Δ j, i �= j);
the coding word of x is the word (ν(Fn(x))n∈N. It is well defined on the irrational
points, and one could easily and tediously give the descriptions of the two coding
words for the rational points.

Remark that πF is obviously continuous; it is true, but less obvious, that the
reciprocal map is continuous where it is well defined.
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Fig. 4 (a) The set K1. (b) The set K2. (c) The set K3

Remark 3. To get an explicit approximation of R, a first possibility is to start with
V0 = {e1,e2,e3} and to build an increasing sequence. Define Ψ(X) = ∪i∈A fi(X)
and consider the recurrent sequence given by Vn+1 =Ψ(Vn); the union of Vn for all
n is the set of rational points of R, and its closure is the Hausdorff limit R of the
sequence Vn.

One can of course obtain a decreasing sequence by removing triangles. Denote
K0 = Δ and Kn =Ψn(K0). We get a decreasing sequence which converges to R.
Figure 4 shows K1, K2, and K3.

Each set Kn can bee seen as a union of 3n triangles. The set Vn as defined above
is the set of the vertices of those triangles.

One easily shows that the sets Raper and RAR are (noncompact) solutions to the
equationΨ(X) =X ; they also satisfy the equation X =∪i, j,n fi, j,n(X) (without taking
the closure here). One can also show that, if Δ̊ is the interior of Δ , we have RAR =
∩nΨn(Δ̊ ).

4 Relation with the Sierpiński Gasket and a Generalization
of the Question Mark Function

The above properties, in particular the approximation by the sets Kn and the three
types of points in R corresponding to periodic, non-strict episturmian, and AR
words, are reminiscent of the topology of the Sierpiński gasket. We will show that
this set is in fact homeomorphic to the Sierpiński gasket; we first recall basic facts
about the Minkowski question mark function.

4.1 The Minkowski Question Mark Function

Dynamical systems generated by rotation words are completely determined by the
frequency x of the letter 0. As we recalled in Sect. 2.1, such a system can be
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Fig. 5 The additive continued fraction map

renormalized by erasing any occurrence of the most frequent letter following the
other letter; a simple computation shows that the frequency of 0 in the new system
is φ(x), where φ is defined as

φ : [0,1]→ [0,1] : x �→
{

x
1−x if x < 1

2 ,

2− 1
x if x ≥ 1

2 .

This map, represented in Fig. 5, is an exotic version of the usual additive
continued fraction map; it has two indifferent fixed repelling points in 0 and 1, and it
is ill-defined in 1

2 (as we will see, the choice of the value 0 or 1 for φ( 1
2 ) is irrelevant;

we have chosen here φ( 1
2 ) = 0).

By using the coding function ν defined by ν(x) = 0 if x < 1
2 and ν(x) = 1 if

x ≥ 1
2 , we can associate to any x ∈ [0,1] a coding word νφ (x) = (ν(φn(x)))n∈N. This

defines a map νφ : [0,1] → {0,1}N, which is one-to-one, and avoids only words
which are eventually constant of value 1.

It is easy to prove that this map is increasing for the usual lexicographic order on
{0,1}N, and that there is a reciprocal function which is increasing and one-to-one
except on the set of eventually constant words.

One can do exactly the same thing with the function γ : [0,1]→ [0,1] : x �→ 2x
mod 1 and define a coding map νγ : [0,1] → {0,1}N : x �→ (ν(ψn(x)))n∈N. This
is the usual binary expansion of real numbers, which is also increasing and whose
reverse map is defined, for any binary sequence (εn)n∈N, by ν−1

γ (ε) = ∑∞n=0
εn

2n+1 .

Definition 9. The question mark function ? of Minkowski is defined by ?: [0,1]→
[0,1] x �→?(x) = ν−1

γ
(
νφ (x)

)
.
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Fig. 6 The Minkowski ? function, also known as the slippery devil’s staircase

The graph of this function is given in Fig. 6. The following properties of the
function ? are easy to prove:

• The function ? is an increasing homeomorphism from [0,1] to itself.
• It takes all rational numbers to dyadic numbers.
• It takes all quadratic numbers to rational numbers.
• It conjugates φ and γ: φ =?◦ γ◦?−1.
• It has derivative 0 in 0 and in all rational numbers.

One can also prove that it is not absolutely continuous. Another way to define ?
is to send the Farey set of order n to the set of all dyadic rationals between 0
and 1 such that their denominator in completely reduced form equals 2k for some
0 ≤ k ≤ n, preserving the order, and to show that this extends by continuity to an
homeomorphism of [0,1] to itself.

4.2 The Sierpiński Gasket

We consider the iterated function system {g1,g2,g3}, where gi is defined on Δ by

gi
(
x1,x2,x3

)
= (x1,x2,x3)+ei

2 .
The gi are strict contractions with factor 1

2 , so the operator H(Δ)→ H(Δ) given
by X �→ ⋃

i∈A gi(X) has a unique fixed point, which is called the Sierpiński gasket;
see Fig. 7. It will be denoted by S.

Let G be the map defined on ∪i∈A Δi by G(x1,x2,x3) = 2(x1,x2,x3)− ei if
(x1,x2,x3) ∈ Δi; it is 3-to-1, and its reciprocal branches are the contracting maps
gi. The Sierpiński gasket is the set on which G can be iterated infinitely, and
by the dynamical system of the Sierpiński gasket we understand the dynamical
system (S,G).
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Fig. 7 The Sierpiński gasket

4.3 A Generalization of the Minkowski Question Mark
Function

We can define a coding for the Sierpiński gasket, as for the Rauzy gasket, by
νG(x) = (ν(Gn(x))n∈N. It is easy to prove that this coding is well defined, except for
points with dyadic coordinates, where there are two possible codings, and that the
map is continuous except for these points with dyadic coordinates; the reverse map
πG associates to any symbolic sequence (in) of elements of A the unique point in
∩n∈Ngi0gi1 . . .gin(Δ). It is continuous.

We can now define a generalization of the Minkowski question mark function.

Proposition 4. The mapΘ = πG ◦νF : R → S is well defined and continuous.

Proof. The map is clearly well defined, except for rational points, which may have
two codings. A direct study shows that the point ( 1

2 ,
1
2 ,0) admits the codings 21∞

and 12∞ and that these two codings have the same image (again ( 1
2 ,

1
2 ,0) ) by πG,

so the image does not depend on the choice of the coding and is well defined. This
property easily extends to all rational points.

Continuity is clear for the irrational points, since νF is continuous in these points.
A local study shows that symbolic coding of points close to ( 1

2 ,
1
2 ,0) must have a

long prefix common with one of the two possible codings for this point; hence their
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images by Θ are close, which proves the continuity at this point. A similar proof
works for any rational point. 
�
Proposition 5. The dynamical systems (S,G) and (R,F) are conjugate byΘ .

Proof. This is an immediate consequence of the fact that πF and πG conjugate,
respectively, except for a countable set, (S,G) and (R,F) to the shift on A ∞. 
�
Proposition 6. The restriction ofΘ to the segment of the boundary of Δ joining e1

and e2 is the Minkowski ? function.

Proof. It suffices to remark that the restriction of F to this segment is exactly the
function φ and the restriction of G is the function γ , so the conjugacy must be the
question mark function. 
�
Remark 4. Another higher dimensional generalization of the question mark func-
tion has been described in [12].

5 The Apollonian Gasket

The Apollonian gasket A can be described as follows: consider three pairwise
tangent circles, which define a curvilinear triangle in the complex plane. Remove
from this triangle the unique disk which is tangent to the three circles; we obtain
three smaller triangles, each delimited by three pairwise tangent circles, and we can
iterate the procedure. The limit set is the Apollonian gasket.

Although it might seem to depend on the initial configuration of circles, there is
only one Apollonian gasket up to conjugacy by a Möbius transformation. Indeed,
the triangle of tangency points completely determines the centers of the three
circles, which are on the tangents to the circumscribed circle at the tangency points;
but the group of Möbius transformations acts transitively on the set of triangles;
since Möbius transformations preserve circles, this action extends to the family of
Apollonian gaskets.

It will be convenient to take as tangency points 0,1, and 1+i
2 , so the circles are

the circles C1,C2 with radius 1
2 and respective centers 1+ i

2 and i
2 and the horizontal

axis, which is the generalized circle C3 with infinite radius (see Fig. 8). We will call
A the subset of C defined by this gasket.

The tangent circle to these three circles in the bounded region is the circle
C of center 1

2 + i
8 and radius 1

8 . Note that C,Cj ,Ck also define a new version
of the Apollonian gasket, which we will denote by Ai. We can find a Möbius
transformation hi which preserves Cj and Ck and sends Ci to C.

We denote by hi the corresponding matrix in SL(2,C ). Computation shows that

h1 =

(
1 0
1 1

)
, h2 =

(
0 1
−1 2

)
, h3 =

(
i 1

2i 2− i

)
.
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Fig. 8 The Apollonian gasket

Since the map hi sends A to Ai, the Apollonian gasket satisfies A = ∪i∈A hiA; it is
the solution of a conformal parabolic IFS. It has been thoroughly investigated (see
for example [9,10,15]). Its exact Hausdorff dimension is not known, but it has been
proved that its Hausdorff measure is finite.

By taking the inverse of the hi, one can define a map H : A → A which is 3-to-1
and a coding map νH . Exactly as in the previous section, one can prove the following
proposition:

Proposition 7. There exists a homeomorphism R → A which conjugates the
dynamical system (R,F) to (A,H).

This map is certainly not a diffeomorphism, since it takes an equilateral triangle
to a curvilinear triangle with angles 0; for the same reason, it cannot be a
diffeomorphism in any rational point of the Rauzy gasket. It is however more regular
than the conjugacy defined in the previous section.

Proposition 8. The restriction of the conjugacy to the lower boundary of the Rauzy
gasket in the identity.

Proof. We already remarked in the proof of Proposition 6 that the restriction of
F to this lower boundary was the function φ defined by φ(x) = x

1−x if x < 1
2 and

φ(x) = 2− 1
x if x ≥ 1

2 ; but the formulas above show that the restriction of H to the
segment [0,1] is given by the same formula, hence the result. 
�

It follows immediately that the restriction of the map to the boundary of any
triangle in the complement of the Rauzy gasket is smooth; that is, the restriction to
the irrational points of the complement of RAR is smooth.
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6 Relation with the Fully Subtractive Algorithm

6.1 The Fully Subtractive Algorithm

The fully subtractive algorithm has been treated for instance in [8,11]. We first recall
its definition and some results.

The fully subtractive algorithm is defined on the positive cone R
3
≥0; it subtracts

the smallest number from the two others, i.e., it is given by the map S : R3
≥0 �→ R

3
≥0

defined by

S̃ : (x1,x2,x3) �→
⎧
⎨

⎩

(x1,x2 − x1,x3 − x1) if x1 ≤ x2,x1 ≤ x3,

(x1 − x2,x2,x3 − x2) if x2 ≤ x1,x2 ≤ x3,

(x1 − x3,x2 − x3,x3) if x3 ≤ x1,x3 ≤ x2,

Note that the definition is again not completely consistent; for the set of vectors
having two coordinates equal to each other we make an arbitrary choice. Since the
algorithm is clearly equivariant under permutations of coordinates, the algorithm is
often defined on the quotient space given by x1 ≤ x2 ≤ x3, with a reordering of the
image vector; this removes the problem, but makes the geometry less clear.

By considering the action of S̃ on projective space, we can define a map S : Δ →
Δ , with barycentric coordinates. If one coordinate is 0, the point is fixed. Thus, the
set of fixed points of S is the boundary of Δ . The map S is 3-to-1; its restriction to
the set Γi defined by xi ≤ inf(x j,xk) is a homeomorphism from Γi to Δ .

Computation shows that the segment xi =
1
2 is invariant by S. Indeed, if z < y< 1

2
and y + z = 1

2 , we have S̃( 1
2 ,y,z) = ( 1

2 − z,y − z,z), so that after renormalization
S( 1

2 ,y,z) = ( 1
2 ,

y−z
1−2z ,

z
1−2z). It follows that the restriction of S to Δi preserves this

triangle.
The restriction of S to the segment ( 1

2 ,
1
2 − z,z) is conjugate by ( 1

2 ,
1
2 − z,z) �→ 2z

to the map φ of Sect. 4.1. The points ( 1
2 ,

1
2 − z,z), with z ∈ Q of this segment, are

sent by a power of S first to ( 1
2 ,

1
4 ,

1
4) and then, after an arbitrary choice (since S

is ill-defined in this point) to one of the endpoints ( 1
2 ,

1
2 ,0) or ( 1

2 ,0,
1
2) which are

fixed by S. The other points have their orbit contained in the interior of the segment.
By linearity, the map S sends the segment joining the fixed point ei to a point P on
xi =

1
2 to the segment joining ei to S(P). Hence the orbit of any point in the interior

of Δi either ends in a finite number of steps on the boundary (if it is on the segment
joining ei to a rational point) or tends to the vertex ei, since computation shows that
in that case the coordinate xi tends to a limit which can only be 1; this last set has
obviously full measure in Δi.

Hence there are three attractors of the system (Δ ,S)—the vertices of the standard
simplex. Figure 9 shows the action of S on Γ3, with the preimages by S of the
four triangles ΔT and Δi, for i ∈ A . Figure 10 shows the three basins of attraction,
distinguished by different colors.
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Fig. 9 The action of S on Γ3

Fig. 10 Basins of attraction of the dynamical system (Δ ,S). (More precisely, the set S−8(Δi)
is depicted for all i and colored by a different color)

6.2 The Fully Subtractive Algorithm as an Extension
of the Rauzy Gasket

The map F associated with the Rauzy gasket was not defined on the central
triangle; we will now extend it on all of Δ , by enlarging the set of definition
to include points with negative coordinates. Let Δ ′ denote the convex span of
{(−1,1,1),(1,−1,1),(1,1,−1)}, and let Δ ′

i = {(x1,x2,x3) ∈ Δ ′ | xi ≥ x j,xk}. Note
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that, with the notations of Sect. 3, Δ ′
i contains Δi; we extend F to a map F ′ on Δ ′

by extending to Δ ′
i the formula on Δi. It is the projective map associated with the

piecewise linear map F̃ ′:

F̃ ′ : (x1,x2,x3) �→
⎧
⎨

⎩

(x1 − x2 − x3,x2,x3) if x1 ≥ x2,x1 ≥ x3,

(x1,x2 − x1 − x3,x3) if x2 ≥ x1,x2 ≥ x3,

(x1,x2,x3 − x1 − x2) if x3 ≥ x1,x3 ≥ x2.

Proposition 9. (Δ ′,F ′) is conjugate to (Δ ,S).

Proof. It is enough to prove it for the piecewise linear maps F̃ ′ and S̃. Let P be the
matrix that sends the canonical basis to the vertices of Δ ′; let A (resp. B) be the
matrix of F̃ ′ on the cone on Δ ′

1 (resp. the matrix of S̃ on the cone on Γ1). We have

P̃ =

⎛

⎝
−1 1 1
1 −1 1
1 1 −1

⎞

⎠ , A =

⎛

⎝
1 −1 −1
0 1 0
0 0 1

⎞

⎠ , B =

⎛

⎝
1 0 0
−1 1 0
−1 0 1

⎞

⎠ .

Computation shows that P(Γi) = Δ ′
i and that B = P−1AP. 
�

In Fig. 10, the Rauzy gasket appears as the complement of the three basins of
attraction; the dynamical system of the Rauzy gasket is the chaotic part of the fully
subtractive algorithm.

6.3 Two Properties of the Rauzy Gasket

It is known that the fully subtractive algorithm is, in continued fraction terms, not
convergent: for almost every point, the symbolic dynamics does not define the point.
More precisely, we have the following:

Theorem 3 ([8, 11], Theorem 1). For almost all x ∈ R
3
≥0 we have

lim
j→+∞

S̃ j(x) �= (0,0,0).

We can restate the theorem in terms of the projective map on the simplex:

Corollary 2. Almost any point of Δ tends to one of the three vertices under the
action of S.

Since the map P sends the Rauzy gasket to the complement of the attraction
basins, we obtain the following:

Corollary 3. The set R has zero Lebesgue measure.
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Remark 5. We could give a direct proof of this corollary along the line of the proof
of [11]. We consider the restriction of F ′ on Δ , and we want to prove that, almost
surely, it cannot be iterated infinitely inside Δ . Since F ′(Δ̊T ) is disjoint from Δ , it
suffices to consider the restriction to one of the Δi, say Δ1. The main problem is
the indifferent fixed point in e1; to avoid this, we define, for any x ∈ Δ1, the integer
nx which is the smallest integer such that F ′nx(x) is not in Δ1, and we consider the
map x → F ′nx(x). One computes explicitly the continuity domain of this map and
its reciprocal branches; one then shows that the branches are uniformly contracting
and that the Jacobian has a bounded distortion property. We can then consider the
cylinders defined by the symbolic dynamics associated with this map and prove that
the proportion of any cylinder which goes to ΔT and leaves the simplex under the
next iteration is bounded from below, which implies the corollary.

Proposition 10. For all y∈ P−1R, δ > 0 and i ∈A , there exists yi ∈ Δ̊ , |y−yi|< δ
such that

lim
j→+∞

S j(yi) = ei.

In other words, any uncolored point in Δ̊ in Fig. 10 has all three colors in any of its
neighborhood.

Proof. Let us first denote Ai the basin of attraction to the attractor ei:

Ai =

{
x ∈ Δ̊

∣
∣
∣
∣ lim

j→+∞
S j(x) = ei

}
.

Using Remark 3 one can see that R = lim j→+∞(Vj) where Vj is the set of
antecedents of order j by F of the three vertices. Thus it suffices to show that for all
j that every point x ∈ P−1(Vj) lies on all three boundaries of the sets Ai for all i. The
proof is by induction on j.

The point P−1e1 = (0, 1
2 ,

1
2) is on the boundary of Δ2 and Δ3; it is also the limit

of the points
(

1
2n+1 ,

n
2n+1 ,

n
2n+1

)
which are preimages of e1 under S; hence P−1V0

lies on the boundary of the sets Ai.
Suppose it is true for j < N. We apply S−1 to both sides of the equa-

tion P−1(VN−1) ⊂ ⋂
i∈A Ai. On the left-hand side we have S−1P−1(VN−1) =

P−1F ′−1(VN−1) = P−1(VN). And on the right-hand side we have S−1⋂
i∈A Ai =⋂

i∈A Ai.

�

7 Final Remarks

We have restricted ourselves to ternary Arnoux–Rauzy words. However, the defini-
tion of episturmian words immediately extends to any finite alphabet, with the same
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renormalization procedure related to the fully subtractive algorithm, and we can
define a Rauzy gasket in dimension d. Since the result for the fully subtractive
algorithm in [8] is valid for any dimension, we can use it to prove that the Rauzy
gasket in dimension d has Lebesgue measure 0.

The Rauzy gasket can be seen as a generalized Julia set for the dynamical system
associated to the subtractive algorithm, and it shares some properties of a Julia set.
One would like to know more about the Hausdorff dimension of R and the invariant
measure of the underlying dynamical system; a first step should be to understand
better the conjugacy with the Apollonian gasket: can we extend the regularity
found on the boundary? Does it preserve Hausdorff dimension and measure? This
would not completely solve the problem, since the Hausdorff dimension of the
Apollonian gasket is not exactly known, but it is known (see [9, 15]) that its
Hausdorff measure is finite.

It is a curious fact that the map S is dual (in the linear algebra sense) of F ; this
can be used to give a natural extension of the dynamical system of the Rauzy gasket
as the skew product:

F : R×P−1R → R×P−1R (x,y) �→ ( f−1
i (x), t fi(y)) if x ∈ Δi,

where fi is branch of F−1 such that fi(Δ) = Δi. This remark might be useful to study
the invariant measures for F .
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15. Sullivan, D.: Entropy, Hausdorff measure old and new, and limit sets of geometrically finite

Kleinian groups. Acta Math. 153, 259–277 (1984)
16. Wozny, N., Zamboni, L.Q.: Frequencies of factors in Arnoux-Rauzy sequences. Acta Arith. 96,

261–278 (2001)



On the Hausdorff Dimension of Graphs
of Prevalent Continuous Functions
on Compact Sets

Frédéric Bayart and Yanick Heurteaux

Abstract Let K be a compact set in R
d with positive Hausdorff dimension. Using a

fractional Brownian motion, we prove that in a prevalent set of continuous functions
on K, the Hausdorff dimension of the graph is equal to dimH (K)+ 1. This is the
largest possible value. This result generalizes a previous work due to J.M. Fraser
and J.T. Hyde which was exposed in the conference Fractals and Related Fields II.
The case of α-Hölderian functions is also discussed.

1 Introduction

Let d ≥ 1 and let K be a compact subset in R
d . Denote by C (K) the set of continuous

functions on K with real values. This is a Banach space when equipped with the
supremum norm, ‖ f‖∞ = supx∈K | f (x)|. The graph of a function f ∈ C (K) is the set

Γ K
f = {(x, f (x)) ; x ∈ K} ⊂ R

d+1.

It is often difficult to obtain the exact value of the Hausdorff dimension of the graph
Γ K

f of a given continuous function f . For example, a famous conjecture says that
the Hausdorff dimension of the graph of the Weierstrass function

f (x) =
+∞

∑
k=0

2−kα cos(2kx),
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UMR 6620, F-63177 Aubiere Cedex, France
e-mail: Frederic.Bayart@math.univ-bpclermont.fr; Yanick.Heurteaux@math.univ-bpclermont.fr

J. Barral and S. Seuret (eds.), Further Developments in Fractals and Related Fields,
Trends in Mathematics, DOI 10.1007/978-0-8176-8400-6 2,
© Springer Science+Business Media New York 2013

25

Yanick.Heurteaux@math.univ-bpclermont.fr


26 F. Bayart and Y. Heurteaux

where 0 < α < 1, satisfies

dimH

(
Γ [0,2π ]

f

)
= 2−α.

This is the natural expected value, but, to our knowledge, this conjecture is not yet
solved.

If we add some randomness, the problem becomes much easier and Hunt proved
in [12] that the Hausdorff dimension of the graph of the random Weierstrass function

f (x) =
+∞

∑
k=0

2−kα cos(2kx+θk)

where (θk)k≥0 is a sequence of independent uniform random variables is almost
surely equal to the expected value 2−α .

In the same spirit we can hope to have a generic answer to the following question:

“What is the Hausdorff dimension of the graph of a continuous function?”

Curiously, the answer to this question depends on the type of genericity we
consider. If genericity is relative to the Baire category theorem, Mauldin and
Williams proved at the end of the 1980s the following result:

Theorem 1 ([14]). For quasi-all functions f ∈ C ([0,1]), we have

dimH

(
Γ [0,1]

f

)
= 1.

This theorem was recently generalized to the case of a metric compact set K. In
that situation, the Hausdorff dimension of the graph of quasi-all functions f ∈C (K)
is equal to dimH (K) (see [1]).

This statement on the Hausdorff dimension of the graph is very surprising
because it seems to say that a generic continuous function is quite regular. Indeed
it is convenient to think that there is a deep correlation between strong irregularity
properties of a function and large values of the Hausdorff dimension of its graph.

This curious result seems to indicate that genericity in the sense of the Baire
category theorem is not “the good notion of genericity” for this question. In fact,
when genericity is related to the notion of prevalence (see Sect. 2 for a precise
definition), Fraser and Hyde recently obtained the following result.

Theorem 2 ([7]). Let d ∈ N
∗. The set

{
f ∈ C ([0,1]d) ; dimH

(
Γ [0,1]d

f

)
= d+ 1

}

is a prevalent subset of C ([0,1]d).
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This result says that the Hausdorff dimension of the graph of a generic continuous
function is as large as possible and is much more in accordance with the idea that a
generic continuous function is strongly irregular.

The main tool in the proof of Theorem 2 is the construction of a fat Cantor set
in the interval [0,1] and a stochastic process on [0,1] whose graph has almost surely
Hausdorff dimension 2. This construction is difficult to generalize to a compact set
K �= [0,1]. Nevertheless, there are in the literature stochastic processes whose almost
sure Hausdorff dimension of their graph is well known. The most famous example
is the fractional Brownian motion. Using such a process, we are able to prove the
following generalization of Theorem 2.

Theorem 3. Let d ≥ 1 and let K ⊂ R
d be a compact set such that dimH (K) > 0.

The set
{

f ∈ C (K) ; dimH

(
Γ K

f

)
= dimH (K)+ 1

}

is a prevalent subset of C (K).

In this chapter, we have decided to focus to the notion of Hausdorff dimension of
graphs. Nevertheless, we can mention that there are also many papers that deal with
the generic value of the dimension of graphs when the notion of dimension is for
example the lower box dimension (see [6,10,13,17]) or the packing dimension (see
[11, 15]).

The chapter is devoted to the proof of Theorem 3 and is organized as follows.
In Sect. 2 we recall the basic facts on prevalence. In particular we explain how to
use a stochastic process in order to prove prevalence in functional vector spaces. In
Sect. 3, we prove an auxiliary result on fractional Brownian motion which will be
the key of the main theorem. We finish the proof of Theorem 3 in Sect. 4. Finally, in
a last section, we deal with the case of α-Hölderian functions.

2 Prevalence

Prevalence is a notion of genericity which generalizes to infinite-dimensional vector
spaces, the notion of “almost everywhere with respect to Lebesgue measure.” This
notion has been introduced by Christensen in [3] and has been widely studied since
then. In fractal and multifractal analysis, some properties which are true on a dense
Gδ -set are also prevalent (see for instance [8, 9] or [2]), whereas some are not (see
for instance [9] or [16]).

Definition 1. Let E be a complete metric vector space. A Borel set A ⊂ E is called
Haar-null if there exists a compactly supported probability measure μ such that, for
any x∈E , μ(x+A)= 0. If this property holds, the measure μ is said to be transverse
to A.

A subset of E is called Haar-null if it is contained in a Haar-null Borel set. The
complement of a Haar-null set is called a prevalent set.
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The following results enumerate important properties of prevalence and show
that this notion supplies a natural generalization of “almost every” in infinite-
dimensional spaces:

• If A is Haar-null, then x+A is Haar-null for every x ∈ E .
• If dim(E)< +∞, A is Haar-null if and only if it is negligible with respect to the

Lebesgue measure.
• Prevalent sets are dense.
• The intersection of a countable collection of prevalent sets is prevalent.
• If dim(E) = +∞, compacts subsets of E are Haar-null.

In the context of a functional vector space E , a usual way to prove that a set A ⊂
E is prevalent is to use a stochastic process. More precisely, suppose that W is a
stochastic process defined on a probability space (Ω ,F ,P) with values in E and
satisfies.

∀ f ∈ E, f +W ∈ A almost surely.

Replacing f by − f , we get that the law μ of the stochastic process W is such that

∀ f ∈ E, μ( f +A) = 1.

In general, the measure μ is not compactly supported. Nevertheless, if we suppose
that the vector space E is also a Polish space (that is if we add the hypothesis that E
is separable), then we can find a compact set Q ⊂ E such that μ(Q)> 0. It follows
that the compactly supported probability measure ν = (μ(Q))−1μ|Q is transverse
to E \A.

3 On the Graph of a Perturbed Fractional Brownian Motion

In this section, we prove an auxiliary result which will be the key of the proof of
Theorem 3. For the definition and the main properties of the fractional Brownian
motion, we refer to [5, Chap. 16].

Theorem 4. Let K be a compact set in R
d such that dimH (K)> 0 and α ∈ (0,1).

Define the stochastic process in R
d

W (x) =W 1(x1)+ · · ·+Wd(xd) (1)

where W 1, . . . ,W d are independent fractional Brownian motions starting from 0
with Hurst parameter equal to α . Then, for any function f ∈ C (K),

dimH

(
Γ K

f+W

)≥ min

(
dimH (K)

α
, dimH (K)+ 1−α

)
almost surely.



On the Hausdorff Dimension of Graphs 29

Let us remark that the conclusion of Theorem 4 is sharp. More precisely, suppose
that f = 0 and let ε > 0. It is well known that the fractional Brownian motion is
almost surely uniformly (α− ε)-Hölderian. It follows that the stochastic process W
is also uniformly (α − ε)-Hölderian on K. It is then straightforward that the graph
Γ K

W satisfies

dimH

(
Γ K

W

)≤ dimH (K)+ 1− (α− ε) a.s..

On the other hand, the function

Φ : x ∈ K �−→ (x,W (x)) ∈ R
d+1

is almost surely (α− ε)-Hölderian. It follows that

dimH

(
Γ K

W

)≤ dimH (K)

α− ε a.s..

The proof of Theorem 4 is based on the following lemma.

Lemma 1. Let s > 0, α ∈ (0,1) and W be the process defined as in Eq. (1). There
exists a constant C :=C(s) > 0 such that for any λ ∈ R, for any x,y ∈ R

d,

E

[
1

(‖x− y‖2+(λ +W(x)−W(y))2)s/2

]
≤
{

C‖x− y‖1−s−α provided s > 1
C‖x− y‖−αs provided s < 1.

Proof. Observe that W (x)−W(y) is a centered gaussian variable with variance

σ2 = h2α
1 + · · ·+ h2α

d

where h = (h1, . . . ,hd) = x− y. Hölder’s inequality yields

‖h‖2α ≤ σ2 ≤ d1−α‖h‖2α .

Now,

E

[
1

(‖x− y‖2+(λ +W(x)−W (y))2)s/2

]
=
∫

e−u2/(2σ2)

(‖h‖2 +(λ + u)2)s/2

du

σ
√

2π
.

Suppose that s > 1. We get

E

[
1

(‖x− y‖2+(λ +W(x)−W (y))2)s/2

]
≤
∫

du

(‖h‖2 +(λ + u)2)s/2σ
√

2π

=

∫ ‖h‖dv

(‖h‖2 +(‖h‖v)2)s/2σ
√

2π
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≤ ‖h‖1−s−α 1√
2π

∫
dv

(1+ v2)s/2

:= C‖x− y‖1−s−α.

In the case when 0 < s < 1, we write

E

[
1

(‖x− y‖2+(λ +W (x)−W(y))2)s/2

]
≤
∫

e−v2/2

(λ +σv)s

dv√
2π

≤ ‖h‖−αs
∫

e−v2/2

(γ+ v)s

dv√
2π

where γ = λσ−1. On the other hand,

∫
e−v2/2 dv
(γ+ v)s =

∫
e−(v−γ)2/2 dv

vs ≤
∫ 1

−1

dv
vs +

∫

R\[−1,1]

e−(v−γ)2/2 dv
vs

≤
∫ 1

−1

dv
vs +

∫

R

e−x2/2 dx

which is a constant C independent of γ and α . 
�
We are now able to finish the proof of Theorem 4. We use the potential theoretic

approach (for more details on the potential theoretic approach of the calculus of the
Hausdorff dimension, we can refer to [5, Chap. 4]). Suppose first that dimH (K)>α
and let δ be a real number such that

α < δ < dimH (K).

There exists a probability measure m on K whose δ -energy Iδ (m), defined by

Iδ (m) =

∫ ∫

K×K

dm(x)dm(y)

‖x− y‖δ

is finite. Conversely, to prove that the Hausdorff dimension of the graph Γ K
f+Wω is at

least dimH (K)+1−α , it suffices to find, for any s < dimH (K)+1−α , a measure
mω on Γ K

f+Wω with finite s-energy.
Let (Ω ,F ,P) be the probability space where the fractional Brownian motions

W 1, . . . ,W d are defined. For any ω ∈ Ω , define mω as the image of the measure m
on the graph Γ K

f+Wω via the natural projection

x ∈ K �−→ (x, f (x)+Wω (x)).

Set s = δ + 1−α which is greater than 1. The s-energy of mω is equal to
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Is(mω ) =
∫ ∫

ΓK
f+Wω×ΓK

f+Wω

dmω(X)dmω(Y )
‖X −Y‖s

=

∫ ∫

K×K

dm(x)dm(y)
(
‖x− y‖2+

(
f (x)+Wω(x)− ( f (y)+Wω(y))

)2
)s/2

.

Fubini’s theorem and Lemma 1 ensure that

E [Is(mω)] =
∫ ∫

K×K
E

⎡

⎢
⎣

1
(
‖x−y‖2 +

(
( f (x)− f (y))+(W (x)−W (y))

)2
)s/2

⎤

⎥
⎦dm(x)dm(y)

≤ C
∫ ∫

K×K
‖x−y‖1−s−αdm(x)dm(y)

= CIδ (m)

< +∞.

We deduce that for P-almost all ω ∈ Ω , the energy Is(mω ) is finite. Since s can be
chosen arbitrary close to dimH (K)+ 1−α , we get

dimH

(
Γ K

f+Wω

)≥ dimH (K)+ 1−α almost surely.

In the case where dimH (K)≤ α , we proceed exactly the same way, except that
we take any δ < dimH (K) and we set s = δ

α which is smaller than 1. We then get

dimH

(
Γ K

f+W

)≥ dimH (K)

α
almost surely.

4 Proof of Theorem 3

We can now prove Theorem 3. Let K be a compact set in R
d satisfying dimH (K)>0.

Remark first that for any function f ∈ C (K), the graph Γ K
f is included in K ×R. It

follows that
dimH

(
Γ K

f

)≤ dimH (K ×R) = dimH (K)+ 1.

Define
G =

{
f ∈ C (K); dimH

(
Γ K

f

)
= dimH (K)+ 1

}
.

Theorem 4 says that for any α such that 0 < α < min(1,dimH (K)), the set Gα of

all continuous functions f ∈ C (K) satisfying dimH

(
Γ K

f

)
≥ dimH (K)+ 1−α is

prevalent in C (K). Finally, we can write

G =
⋂

n≥0

Gαn
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where (αn)n≥0 is a sequence decreasing to 0 and we obtain that G is prevalent in
C (K).

Remark 1. It is an easy consequence of Ascoli’s theorem that the law of the process
W is compactly supported in C (K) (remember that W is almost surely (α − ε)-
Hölderian). Then, we do not need to use that C (K) is a Polish space to obtain
Theorem 3.

Remark 2. Let K = [0,1] and f ∈C ([0,1]). Theorem 3 implies that the set G
⋂
( f +

G) is prevalent. We can then write

f = f1 − f2 with dimH

(
Γ [0,1]

f1

)
= 2 and dimH

(
Γ [0,1]

f2

)
= 2

where f1 and f2 are continuous functions.
On the other hand, it was recalled in Theorem 1 that the set

G̃ =
{

f ∈ C ([0,1]) ; dimH

(
Γ [0,1]

f

)
= 1

}

contains a dense Gδ -set of C ([0,1]). It follows that any continuous function f ∈
C ([0,1]) can be written

f = f1 − f2 with dimH

(
Γ [0,1]

f1

)
= 1 and dimH

(
Γ [0,1]

f2

)
= 1

where f1 and f2 are continuous functions.
We can then ask the following question: given a real number β ∈ (1,2) can we

write an arbitrary continuous function f ∈ C ([0,1]) in the following way:

f = f1 − f2 with dimH

(
Γ [0,1]

f1

)
= β and dimH

(
Γ [0,1]

f2

)
= β

where f1 and f2 are continuous functions?
We do not know the answer to this question.

5 The Case of α-Hölderian Functions

Let 0 < α < 1 and let C α(K) be the set of α-Hölderian functions in K endowed
with the standard norm

‖ f‖α = sup
x∈K

| f (x)|+ sup
(x,y)∈K2

| f (x)− f (y)|
‖x− y‖α .

It is well known that the Hausdorff dimension of the graph Γ K
f of a function f ∈

C α(K) satisfies
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dimH

(
Γ K

f

)≤ min

(
dimH (K)

α
, dimH (K)+ 1−α

)
(2)

(see, e.g., the remark following the statement of Theorem 4). It is then natural to ask
if inequality (2) is an equality in a prevalent set of C α(K). This is indeed the case
as said in the following result.

Theorem 5. Let d ≥ 1, 0<α < 1 and K ⊂R
d be a compact set with strictly positive

Hausdorff dimension. The set

{
f ∈ C α(K) ; dimH

(
Γ K

f

)
= min

(
dimH (K)

α
, dimH (K)+ 1−α

)}

is a prevalent subset of C α(K).

This result generalizes to arbitrary compact subsets of positive dimension in R
d a

previous work of Clausel and Nicolay (see [4, Theorem 2]).

Proof. Let α < α ′ < 1 and let W be the stochastic process defined in Theorem 4
with Hurst parameter α ′ instead of α . The stochastic process W|K takes values in
C α(K). Moreover, if α < α ′′ < α ′, the injection

f ∈ C α ′′
(K) �−→ f ∈ C α(K)

is compact. It follows that the law of the stochastic process W|K is compactly
supported in C α(K) (W is α ′′-Hölderian). Then, Theorem 4 ensures that the set

{
f ∈ C α(K) ; dimH

(
Γ K

f

)≥ min

(
dimH (K)

α ′ , dimH (K)+ 1−α ′
)}

is prevalent in C α(K). Using a sequence (αn)n≥0 decreasing to α , we get the
conclusion of Theorem 5. 
�
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Hausdorff Dimension and Diophantine
Approximation

Yann Bugeaud

Abstract In this survey chapter, we explain how the theory of Hausdorff dimension
and Hausdorff measure is used to answer certain questions in Diophantine ap-
proximation. The final section is devoted to a discussion around the Diophantine
properties of the points lying in the middle third Cantor set.

1 Introduction

The main goal of this survey chapter is to point out how the theory of Hausdorff
dimension and Hausdorff measure can be used to solve various questions in
Diophantine approximation. We also point out several open problems, which
hopefully will motivate further research.

Throughout this text we denote by dim the Hausdorff dimension.
Let ξ be an irrational real number. By the theory of continued fractions (or by

Dirichlet’s Schubfachprinzip), there exist infinitely many rational numbers p/q such
that

|ξ − p/q|< q−2.

For any given ε > 0, a covering argument (easy half of the Borel–Cantelli lemma)
shows that, for almost all real numbers ξ (throughout Sects. 1 and 2, “almost
all” always refers to the Lebesgue measure), there are only finitely many rational
numbers p/q such that

|ξ − p/q|< q−2−ε . (1)

Y. Bugeaud (�)
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However, for certain irrational real numbers ξ , inequality (1) has infinitely many
solutions.

Definition 1. The irrationality exponent of an irrational real number ξ , denoted by
μ(ξ ), is the supremum of the real numbers μ such that

|ξ − p/q|< q−μ

has infinitely many solutions in rational numbers p/q.

By means of the theory of continued fractions, for every real number μ ≥ 2,
it is easy to construct real numbers ξ such that μ(ξ ) = μ ; see, e.g., [17] or [12].
Moreover, Jarnı́k [16] proved in 1929 that

dim{ξ ∈ [0,1] : μ(ξ )≥ μ}= 2
μ
, (2)

a result established independently by Besicovitch [8] a few years later. In 1931
Jarnı́k [17] refined his result from [16] by using generalized Hausdorff measures.
Although this is not explicitly written in [17], he showed that

dim{ξ ∈ [0,1] : μ(ξ ) = μ}= 2
μ
. (3)

The irrationality exponent μ introduced in Definition 1 is an example of an
exponent of approximation, that is, of a function defined on the set of real irrational
numbers by means of consideration from Diophantine approximation.

Definition 2. The spectrum of an exponent of approximation is the set of values
taken by this exponent.

For an exponent of approximation w, there are two natural questions:

* (Q1) To determine the spectrum of w
* (Q2) For a real number w0, to determine the Hausdorff dimension of the set at

level w0, that is, of the set of real numbers ξ such that w(ξ ) = w0

In the case of the irrationality exponent, we have seen above that both questions
have been answered. We introduce in Sect. 2 three (classical) families of exponents
of approximation and discuss both questions for these exponents. We will see that,
in certain cases, to answer (Q2) is the only known way to solve the apparently
simpler (Q1).

Section 3 is devoted to a survey of recent results on Diophantine approximation
of elements of the middle third Cantor set.
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2 Three Families of Exponents of Approximation

We define two families of exponents of approximation which generalize the
irrationality exponent. A third family of exponents gives certain information on the
expansions of real numbers to integer bases. Further classical families of exponents
are discussed in [13].

For n ≥ 1, the accuracy with which real numbers are approximated by algebraic
numbers of degree at most n is measured by means of the exponents w∗

n, introduced
in 1939 by Koksma [19]. Recall that the height H(P) of an integer polynomial P(X)
is the maximum of the moduli of its coefficients, and the height H(α) of an algebraic
number α is the height of its minimal polynomial over Z.

Definition 3. Let n ≥ 1 be an integer and let ξ be an irrational real number. We
denote by w∗

n(ξ ) the supremum of the real numbers w∗ for which the inequality

|ξ −α| ≤ H(α)−w∗−1 (4)

is satisfied for infinitely many algebraic numbers α of degree at most n.

Clearly, every irrational real number ξ satisfies

μ(ξ ) = w∗
1(ξ )+ 1.

This shows that the exponents w∗
n with n≥ 2 extend in a natural way the irrationality

exponent μ .
The introduction of the exponent −1 in Eq. (4) is explained on p.48 of [10]. The

reader is directed to this monograph for known results on the exponents w∗
n. We

only mention here that w∗
n(ξ ) = min{n,d − 1} for every real algebraic number ξ

of degree d ≥ 2 and that almost all real numbers ξ satisfy w∗
n(ξ ) = n for n ≥ 1.

Wirsing [25] proved that w∗
n(ξ ) ≥ (n+ 1)/2 for every transcendental real number

ξ and every n ≥ 1. With the exception of a result of Davenport and Schmidt [14],
showing that w∗

2(ξ ) ≥ 2 for every real number ξ not of degree at most 2, there has
been no significant improvement of Wirsing’s statement during the last fifty years.

Problem 1. Are there an integer n ≥ 3 and a transcendental real number ξ such
that w∗

n(ξ )< n ?
Other natural exponents of approximation, which also extend the irrationality

exponent μ , take into account the accuracy with which the first integral powers
of a given real number are simultaneously approximated by rational numbers with
the same denominator. Throughout this text, ‖.‖ denotes the distance to the nearest
integer.

Definition 4. Let n ≥ 1 be an integer and let ξ be an irrational real number. We
denote by λn(ξ ) the supremum of the real numbers λ for which the inequality
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max
1≤m≤n

‖qξm‖ ≤ q−λ

has infinitely many solutions q in Z≥1.

We have λn(ξ ) = max{1/n,1/(d−1)} for n ≥ 1 for every real algebraic number
ξ of degree d ≥ 2. Furthermore, λn(ξ )≥ 1/n for every irrational real number ξ and
every n ≥ 1; see [12] for further results.

We end this list of definitions with the exponents vb which were introduced in
[1]. They provide information on the lengths of blocks of digits 0 (or of digits b−1)
occurring in the expansion of ξ to base b.

Definition 5. Let ξ be an irrational real number. Let b be an integer with b ≥ 2. We
denote by vb(ξ ) the supremum of the real numbers v for which the inequality

||bnξ ||< (bn)−v

has infinitely many solutions n in Z≥1.

Let b ≥ 2 be an integer. Clearly, we have

w∗
1(ξ )≥ vb(ξ ), μ(ξ )≥ vb(ξ )+ 1, (5)

for all irrational real numbers ξ . These inequalities are rarely sharp since almost all
real numbers ξ satisfy vb(ξ ) = 0.

For every b ≥ 2 and for every v with 0 < v <+∞ the real number

ξb,v := ∑
j≥1

b−�(v+1) j�, (6)

where �.� denotes the integer part, satisfies vb(ξb,v) = v. Since

vb

(

∑
j≥1

b− j2
)
= 0 and vb

(

∑
j≥1

b− j!
)
=+∞,

this shows that the spectrum of vb is equal to [0,+∞]. Thus, we have given the
answer to (Q1) for the exponent vb.

Now, we explain how to show that, for every real number v > 0, we have

dim{ξ ∈ [0,1] : vb(ξ )≥ v}= dim{ξ ∈ [0,1] : vb(ξ ) = v}= 1
v+ 1

. (7)

To bound this Hausdorff dimension from above by 1/(v + 1) is an immediate
application of a covering argument (easy half of the Hausdorff–Cantelli lemma). To
prove that this dimension is at least equal to 1/(v+1) is much more interesting. We
construct inductively a large Cantor-type set contained in {ξ ∈ [0,1] : vb(ξ ) ≥ v}.
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Let (nk)k≥1 be a rapidly increasing sequence of integers with n1 = 1 and n2 > 2/v.
Set E1 = [0,1]. For p = 1, . . . ,bn2 − 1, set

E2,p = [p/bn2 − 1/b(v+1)n2, p/bn2 + 1/b(v+1)n2]

and put E2 = E2,1 ∪ . . . ∪ E2,bn2−1. Assume that, for some k ≥ 2, the set Ek has
been constructed and is equal to a finite union of intervals Ek,1, . . . ,Ek,tk of length
2b−(v+1)nk and centered at rational numbers of denominator bnk . Let Ek,p be such an
interval. Let denote by Ek+1,p the set of intervals of the form

[a/bnk+1 − 1/b(v+1)nk+1,a/bnk+1 + 1/b(v+1)nk+1],

with a an integer, which are contained in Ek,p. There are at least

mk+1 := bnk+1(2b−(v+1)nk)− 2

such intervals and the distance between any two distinct such intervals always
exceeds

εk+1 := b−nk+1/2.

Putting Ek+1 = Ek+1,1 ∪ . . .∪Ek+1,tk , we have completed the inductive step of the
construction. Set

K :=
⋂

k≥1

Ek.

By construction, every element ξ in K satisfies vb(ξ ) ≥ v. The mass distribution
principle (as stated, e.g., on p. 59 of [15] or on p. 97 of [10]) shows that

dimK ≥ liminf
k→+∞

log(m1 . . .mk)

− log(mk+1εk+1)
.

In our situation, if the sequence (nk)k≥1 grows sufficiently rapidly, we deduce that

dim{ξ ∈ [0,1] : vb(ξ )≥ v} ≥ 1
v+ 1

.

To get the same lower bound for the smaller set

dim{ξ ∈ [0,1] : vb(ξ ) = v}

we need to use refined Hausdorff measures, but there is no additional difficulty.
In the above proof, we have used that, if I is an interval of positive length |I|

contained in [0,1], then, for n large enough in terms of |I|, there are around bn|I|
rational points of the form a/bn in I, and these points are regularly spaced.

The same strategy was used by Jarnı́k to establish Eqs. (2) and (3). He proved that
the set of rational numbers p/q in [0,1] is evenly distributed in the following sense:
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For I as above, if Q is large enough in terms of |I|, then there are � Q2 rational
numbers p/q in I with Q � q � Q and such that the distance between any two of
them is � Q−2 (here and below, the constants implicit in � and � are numerical
constants). This is proved on p.99 of [10]; see also on p. 142 of [15] for a weaker
result, however sufficient to derive Eqs. (2) and (3).

To formalize the properties of distribution needed to apply the method described
above, Baker and Schmidt [2] have introduced the notion of regular systems; see
Sect. 5.4 of [10]. Several authors prefer to use ubiquitous systems [6], which give
more flexibility.

For n ≥ 1, explicit examples of real numbers have been constructed in [12] in
order to show that the spectrum of w∗

n includes the interval [2n− 1,+∞). However,
the next question remains open.

Problem 2. Let n ≥ 2 be an integer. To construct explicitly a real number w with
n < w < 2n− 1 and a real number ξ such that w∗

n(ξ ) = w.
Apparently, there is no suitable multidimensional generalization of the theory of

continued fraction which can be used to solve (at least partially) Problem 2.
At present, for n ≥ 2, the only known way to show that the spectrum of w∗

n
includes the interval [n,+∞) is by means of the next theorem, proved in 1970 by
Baker and Schmidt [2].

Theorem 1. Let n ≥ 1 be an integer. For every real number w∗ ≥ n, we have

dim{ξ ∈ [0,1] : w∗
n(ξ ) = w∗}= n+ 1

w∗+ 1
. (8)

We check that Eqs. (3) and (8) for n = 1 coincide. Baker and Schmidt used the
same strategy as explained above. The difficult point is to prove that algebraic
numbers of bounded degree are evenly distributed. Note that, since an algebraic
number of degree n and height H is a root of an integer polynomial of degree
n and with all coefficients bounded in absolute value by H, their number does
not exceed (2H + 1)n+1. With I as above, it is proved in [2] that, if H is large
enough in terms of |I|, then there are � Hn+1|I| algebraic numbers α of degree
n in I with H(α) � H(logH)c(n) and such that the difference between any two
of them if � H−n−1. Here, c(n) is a constant depending only on n. A deep result
of Beresnevich [4] from 1999 shows that the above statement remains true with
c(n) = 0.

Thus, we have seen that (Q1) and (Q2) are answered for the exponents of
approximation vb and w∗

n. The situation is different and much more complicated
for the exponents λn.

For n ≥ 1, Bugeaud [12] constructed explicit examples of real numbers in order
to show that the spectrum of λn includes the interval [1,+∞). However, the next
question remains open.

Problem 3. Let n ≥ 2 be an integer. To construct explicitly a real number λ with
1/n < λ < 1 and a transcendental real number ξ such that λn(ξ ) = λ .
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At present, the only known way to show that the spectrum of λ2 is the whole
interval [1/2,+∞) is the proof by Beresnevich, Dickinson, Vaughan and Velani [7,
23] that, for every λ in [1/2,1], we have

dim{ξ ∈ [0,1] : λ2(ξ ) = λ}= 2−λ
1+λ

.

The Jarnı́k–Besicovitch theorem (2) was recently extended by Budarina et al. [9]
as follows (see also [12] for an alternative proof).

Theorem 2. Let n ≥ 2 be an integer. Let λ ≥ n−1 be a real number. Then, we have

dim{ξ ∈ [0,1] : λn(ξ ) = λ}= 2
n(1+λ )

.

The assumption λ ≥ n− 1 in Theorem 2 is quite restrictive when n ≥ 3 but is
optimal for n = 2.

We end this section with two open questions.

Problem 4. Let n ≥ 3 be an integer. To determine the spectrum of λn.

Problem 5. Let n ≥ 3 be an integer. Let λ be a real number with 1/n < λ < n− 1.
To determine

dim{ξ ∈ [0,1] : λn(ξ ) = λ}.
Partial results towards the resolution of the difficult Problems 4 and 10 have been

given by Beresnevich [5]. He proved that, for an integer n and a real number λ
satisfying 1/n ≤ λ < 3/(2n− 1), we have

dim{ξ ∈ [0,1] : λn(ξ )≥ λ} ≥ n+ 1
λ + 1

− (n− 1). (9)

He conjectured that equality holds in Eq. (9).

3 Approximation to Points in the Middle Third Cantor Set

Throughout this section, we denote by K the middle third Cantor set. Certain results
stated below are valid for more general Cantor-type sets, however. We recall that the
Hausdorff dimension of K satisfies

dimK =
log2
log3

.

The first significant result on Diophantine approximation to elements of K was
proved in 2001 by Weiss [24]. He showed that the irrationality exponent of almost
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all ξ in K (in this section, almost all refers to the standard measure supported by K)
is equal to 2.

For v > 0, the real number ξ3,v defined in Eq. (6) satisfies

v3(ξ3,v) = v, and thus μ(ξ3,v)≥ v+ 1,

by Eq. (5) or by noticing that

∣
∣∣
∣ξ3,v −

J

∑
j=1

3−�(v+1) j�
∣
∣∣
∣< 2 ·3−�(v+1)J+1� ≤ 6 · (3−�(v+1)J�)v+1,

for every sufficiently large integer J. At first sight, for v ≥ 1, it could seem that ξ3,v

satisfies
μ(ξ3,v) = v3(ξ3,v)+ 1 = v+ 1. (10)

This is, however, not clear since there may exist very good rational approximants
to ξ3,v which are not obtained by truncation of the infinite sum giving ξ3,v, that

is, which are not of the form ∑J
j=1 3−�(v+1) j� for some J ≥ 1. However, if v is

sufficiently large — precisely, if v ≥ (
√

5+ 1)/2 — a simple argument based on
triangle inequalities (see, e.g., Sect. 8 of [21]) implies Eq. (10).

In fact, it appears that Eq. (10) holds for every v ≥ 1, as proved in [11] by
means of the following observation: the continued fraction expansion of a suitable
rational translate of −ξ3,v can be constructed explicitly. The next result is extracted
from [11].

Theorem 3. Let μ ≥ 2 be a real number. The middle third Cantor set contains
uncountably many elements ξ with μ(ξ ) = μ .

Theorem 3 answers (Q1) for the restriction to K of the irrationality exponent,
but (Q2) remains open. In order to attack the latter question, the authors of [21]
investigated the analogous problem for the exponent v3. They proved the following
statement.

Theorem 4. For any positive real number v we have

dim{ξ ∈ K : v3(ξ ) = v} =
log2
log3

× 1
v+ 1

= (dimK)× dim{ξ ∈ [0,1] : v3(ξ ) = v}.

Things are more easier with the exponent v3 than with the irrationality expo-
nent μ . Indeed, if for some v > 1 and ξ in K we have

|ξ − p/3n|< (3n)−v,

for some rational number p/3n, then p/3n must lie in K.
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We display an immediate consequence of Eqs. (3), (7), and Theorem 4.

Corollary 1. For any real number μ > 2, we have

dim{ξ ∈ K : μ(ξ )≥ μ} ≥ 1
2
× (dimK)× dim{ξ ∈ [0,1] : μ(ξ ) = μ}. (11)

Apparently, the methods used in [21] do not allow us to replace the ≥ sign by
the = sign in the left-hand side of Eq. (11). They, however, give the following slight
refinement of Eq. (11):

dim{ξ ∈ K : μ ≤ μ(ξ )≤ 2μ} ≥ 1
2
× (dimK)× dim{ξ ∈ [0,1] : μ(ξ ) = μ}.

Regarding the upper bound, Pollington and Velani [22] (see also [20]) used a simple
covering argument to establish that

dim{ξ ∈ K : μ(ξ )≥ μ} ≤ (dimK)× dim{ξ ∈ [0,1] : μ(ξ )≥ μ},

for every μ ≥ 2.
Let μ > 2 be a real number. The authors of [21] speculate at the end of their

paper that we have

dim{ξ ∈ K : μ(ξ )≥ μ}= (dimK)× dim{ξ ∈ [0,1] : μ(ξ )≥ μ}.

Problem 6. Let μ > 2 be a real number. To determine

dim{ξ ∈ K : μ(ξ ) = μ}.

A related question involving rational approximation and asymptotic frequencies
of digits in a fixed integer base has been investigated in [3].

Very few is known on the expansions of a given irrational real number to two
multiplicatively independent bases. The study of the set of values taken by the
exponent v2 at the points in K would give some information on the binary expansions
of the elements of K.

A straightforward adaptation of the arguments of Weiss [24] and Kristensen [20]
allows us to prove the next result.

Theorem 5. For any positive real number v we have

dim{ξ ∈ K : v2(ξ )≥ v} ≤ (dimK)× dim{ξ ∈ [0,1] : v2(ξ )≥ v}. (12)
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However, it does not seem to be easy to give a non-trivial lower bound for the
left-hand side of Eq. (12).

Problem 7. Let v be a positive real number. To determine

dim{ξ ∈ K : v2(ξ ) = v}.

Weiss’ result mentioned at the beginning of this section has been extended in
Proposition 7.10 from [18] to the exponents w∗

n.

Theorem 6. Almost all points ξ in the middle third Cantor set satisfy

w∗
n(ξ ) = n, for every n ≥ 1

and
λn(ξ ) = 1/n, for every n ≥ 1.

The last part of Theorem 6 follows by combining Proposition 7.10 from [18] with
a classical transference principle. We omit the details.

We conclude this text by a last open problem; see Sect. 6 of [12] for a small
contribution towards its resolution.

Problem 8. Let n ≥ 1 be an integer and w ≥ n and λ ≥ 1/n be real numbers. To
determine the Hausdorff dimension of the sets

{ξ ∈ K : w∗
n(ξ ) = w}

and
{ξ ∈ K : λn(ξ ) = λ}.

For n ≥ 2, to determine the spectra of the restriction to K of w∗
n and of λn.
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Singular Integrals on Self-similar Subsets
of Metric Groups

Vasilis Chousionis and Pertti Mattila

Abstract In this chapter we study singular integrals on small (i.e., measure zero
and lower than full dimensional) subsets of metric groups. The main examples of
the groups we have in mind are Euclidean spaces and Heisenberg groups. We shall
pay particular attention to the behaviour of singular integral operators on self-similar
subsets.

1 Introduction

The general question we are interested in here is as follows: how is the L2-
boundedness of singular integral operators related to geometric properties of the
underlying sets and measures? A little more precisely, in some space, say d-
dimensional space in terms of Hausdorff dimension, we study singular integral
operators on s-dimensional subsets with s < d. The spaces we are mainly interested
in, are Euclidean spaces and Heisenberg groups, but we shall say something also in
more general metric groups. Such questions in Euclidean spaces have been studied
systematically for more than 20 years; the book [9] of David and Semmes is a
good source for background information. This survey focuses mostly to our recent
progress in Heisenberg groups in [5, 6]. The general setting is the following:

We assume that (G,d) is a complete separable metric group with the following
properties:
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1. The left translations τq : G → G,

τq(x) = q · x,x ∈ G,

are isometries for all q ∈ G.
2. There exist dilations δr : G → G,r > 0, which are continuous group homomor-

phisms for which:

(a) δ1 = identity
(b) d(δr(x),δr(y)) = rd(x,y) for x,y ∈ G,r > 0
(c) δrs = δr ◦ δs

It follows that for all r > 0, δr is a group isomorphism with δ−1
r = δ 1

r
.

Euclidean spaces, Heisenberg groups and the more general Carnot groups are the
main examples of such groups.

Let μ be a finite Borel measure on G and let K : G×G \ {(x,y) : x = y} → R
be a Borel measurable kernel which is bounded away from the diagonal, that is K
is bounded in {(x,y) : d(x,y) > δ} for all δ > 0. The truncated singular integral
operators associated to μ and K are defined for f ∈ L1(μ) and ε > 0 as

Tε( f )(y) =
∫

G\B(x,ε)
K(x,y) f (y)dμy,

and the maximal singular integral operator is defined as usual:

T ∗
K ( f )(x) = sup

ε>0
|Tε( f )(x)|.

For a vector-valued kernel K = (K1, . . . ,Kl) we define

T ∗
K ( f )(x) = max

1≤ j≤l
{T ∗

Kj
( f )(x)}.

Then T ∗
K bounded in L2(μ) means that

∫
T ∗

K ( f )2dμ ≤C
∫

| f |2dμ for all f ∈ L2(μ).

We are particularly interested in the following class of kernels.

Definition 1. For s > 0 the s-homogeneous kernels are of the form,

KΩ (x,y) =
Ω(x−1 · y)

d(x,y)s , x,y ∈ G\ {(x,y) : x = y},

whereΩ : G → R is a continuous and homogeneous function of degree zero, that is,

Ω(δr(x)) =Ω(x) for allx ∈ G,r > 0.
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We shall discuss results saying that such maximal singular integral operators are
often unbounded on fractal type sets. We shall mostly restrict to s-dimensional
Ahlfors–David regular, briefly s-regular, and Borel measures μ , which means that
for some positive and finite constant C,

rs/C ≤ μ(B(x,r))≤Crs for allx ∈ sptμ ,0 < r < d(sptμ).

Here B(x,r) is the closed ball with centre x and radius r, and d(E) denotes the
diameter of E . A closed set E is called s-regular if the s-dimensional Hausdorff
measure H s�E restricted to E is s-regular.

First we shall review briefly some of the Euclidean results. Recent surveys are
[15, 24].

2 The One-Dimensional Case

We start with the following result from [16] for one-dimensional sets. It character-
izes geometrically the 1-regular measures on which the singular integral operator
related to the one-dimensional Riesz kernel

R1(x) = x/|x|2,x ∈ Rn

is bounded in L2(μ). Note that in the complex plane this kernel is essentially the
Cauchy kernel 1/z = z̄/|z|2.

Theorem 1. Let μ be a 1-regular measure in Rn. The following two conditions are
equivalent:

1. T ∗
R1

is bounded in L2(μ).
2. sptμ ⊂ Γ where Γ is a curve with H 1(Γ ∩B(x,r)) ≤Cr for all x ∈ Rn and for

all r > 0.

The key for the proof was the following identity found by Melnikov in [18] for
z1,z2,z3 ∈ C:

c(z1,z2,z3)
2 =∑

σ

1

(zσ(1)− zσ(3))(zσ(2)− zσ(3))
, (1)

where σ runs through all six permutations of 1,2 and 3, and c(z1,z2,z3) is
the reciprocal of the radius of the circle passing through z1,z2 and z3. It is called
the Menger curvature of this triple. It vanishes exactly when the three points lie
on the same line. In general it measures how far they are from being collinear.
Melnikov and Verdera used this identity to give a new proof for the boundedness
of the Cauchy singular integral operator on Lipschitz graphs in [19]. Integrating the
above identity with respect to all three variables and using Fubini’s theorem, one can
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prove Theorem 1 by proving that the conditions (1) and (2) are both equivalent to

∫

B

∫

B

∫

B
c(x,y,z)2dμxdμydμz ≤Cd(B)

for all balls B ⊂ Rn and for all r > 0.
The identity (1) connects the sum over permutations, which is a kind of

symmetrization over the three variables, to a nice geometric object. But already the
fact that this sum is non-negative is unexpected and useful. The proof of the identity
is an exercise.

In the plane, Theorem 1 remains valid if the kernel R1 is replaced by any of
its coordinate parts x1/|x| or x2/|x|,x = (x1,x2) ∈ R2, because the symmetrization
method described earlier works in this case as well. Recently, in [4], Theorem 1 was
extended to all kernels kn(x) = x2n−1

1 /|x|2n, n ∈ N. It should be noted that the proof
in [4] also depends on some good symmetrization properties of the kernels kn.

Based on earlier work of many people Theorem 1 gives the following corollary:

Corollary 1. Let E be a compact 1-regular subset of the complex plane. The
following three conditions are equivalent:

1. E is removable for bounded analytic functions.
2. E is removable for Lipschitz harmonic functions.
3. E is purely unrectifiable.

Here the pure unrectifiablity of E means that E meets every rectifiable curve in
zero length. The removability of E for bounded analytic functions means that if
E is contained in an open set U , any bounded analytic function in U \ E can be
extended analytically to U . The removability for Lipschitz harmonic functions is
analogous, but since Lipschitz functions on U \ E can be uniquely extended as
Lipschitz functions, (2) means that any Lipschitz function in U which is harmonic
in U \E is harmonic in U .

David showed later in [7] that instead of AD-regularity it is enough to assume
that E has finite one-dimensional Hausdorff measure. Still later Tolsa gave in [23]
a characterization of removability for all compact subsets of the complex plane
in terms of Menger curvature. A consequence of this is that (1) and (2) in the
above corollary are equivalent for any compact set E . An amusing feature is that
nobody knows how to prove this without going through the Menger curvature
characterization. For a survey, see [24] or [20]. Tolsa’s result is

Theorem 2. Let E be a compact subset of the complex plane. The following three
conditions are equivalent:

1. E is not removable for bounded analytic functions.
2. E is not removable for Lipschitz harmonic functions.
3. There is a finite Borel measure μ supported in E such that μ(E) > 0, μ(B) ≤

d(B) for all discs B and

∫ ∫ ∫
c(x,y,z)2dμxdμydμz < ∞.
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3 The Higher-Dimensional Case

The higher dimensional analogues of the above results are unknown. Let Rm be the
vector-valued m-dimensional Riesz kernel:

Rm(x) = x/|x|m+1,x ∈ Rn.

Let μ be an m-regular measure and E an m-regular set in Rn. The natural questions
are when m is an integer, is it true that:

(a) T ∗
Rm

is bounded in L2(μ) if and only if sptμ is uniformly rectifiable?
(b) When m = n− 1, E is removable for Lipschitz harmonic functions if and only

if E is purely unrectifiable?

The reason that the Riesz kernel |x|−nx appears in connection of removable sets of
Lipschitz harmonic functions is that it is essentially the gradient of the fundamental
solution of the Laplacian.

The m-dimensional pure unrectifiability can be defined, for example, as the
property that the set intersects every m-dimensional C1 surface in a set of zero
m-dimensional measure. The uniform rectifiability is a quantitative concept of
rectifiability due to David and Semmes; see [9]. For one-dimensional sets it means
exactly the condition (ii) of Theorem 1. It is known that the “if” part in (a) and
the “only if” part in (b) are true. Some partial results for the converse can be
found in [12, 14, 17]; they are discussed also in the book [13]. The main problem
for the converse is to prove that boundedness such as in (a) implies some sort of
rectifiability. One characterization of the rectifiability of E is approximation of E
with m-dimensional planes almost everywhere at all small scales. The partial results
referred to above are in the spirit that the boundedness implies such approximation
almost everywhere at some, but maybe not all, small scales. Such partial results hold
also in Heisenberg groups and we shall below formulate them more precisely there.

One can also consider the Riesz kernels when m is not an integer. Vihtilä showed
in [26] that then T ∗

Rm
is never bounded in L2(μ) for m-regular measures μ .

4 Self-similar Sets and Singular Integrals

We shall now return to the general setting of Introduction. Let S =
{S1, . . . ,SN},N ≥ 2, be an iterated function system (IFS) of similarities of the
form

Si = τqi ◦ δri (2)

where qi ∈ G,ri ∈ (0,1) and i = 1, . . . ,N. The self-similar set C with respect to S
is the unique non-empty compact set such that
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C =
N⋃

i=1

Si(C).

If this system satisfies the strong separation condition, that is, the sets Si(C) are
pairwise disjoint for i= 1, . . . ,N, it follows by a general metric space result of Schief
in [21] (which holds also under the open set condition) that

0 < H s(C)< ∞ for
N

∑
i=1

rs
i = 1,

and the Hausdorff measure H s�C is d-regular.
The following result was proved in [6]:

Theorem 3. Let S = {S1, . . . ,SN} be an IFS in G satisfying the strong separation
condition, let C be the corresponding s-dimensional self-similar set, and let KΩ be
an s-homogeneous kernel. If there exists a fixed point x for some
Si1 ◦ · · · ◦ Sik ; Si1 ◦ · · · ◦ Sik(x) = x, such that

∫

C\Si1
◦···◦Sik

(C)
KΩ (x,y)dH sy �= 0,

then the maximal operator T ∗
KΩ

is unbounded in L2(H s�C); moreover,
‖T ∗

KΩ
(1)‖L∞(H s�C) = ∞.

Remark 1. Since such fixed points are dense in C, we have infinitely many points
in a dense set and it suffices to check the condition at any one of them. Even when
the ambient space is Euclidean, Theorem 3 provides new information about the
behaviour of general homogeneous singular integrals on self-similar sets. For any
kernel KΩ (x) =

Ω(x/|x|)
|x|s ,x ∈ R

n \ {0},s ∈ (0,n), where Ω is continuous, one can
easily find Sierpiński-type s-dimensional self-similar sets Cs for which one can
check using Theorem 3 that the corresponding operator T ∗

KΩ
is unbounded. For

example, it follows that the operator associated to the kernel z3/|z|4,z ∈ C \ {0},
is unbounded on many simple one-dimensional self-similar sets. In the case of the
Sierpiński gasket this is immediate while in the case of the 1/4-Cantor set it requires
more computational work and it was checked after compiling a computer program.
In [11], Huovinen considered such kernels in the plane and he proved that the a.e.
existence of principal values of operators associated to any kernel z2n−1

|z|2n , for n ≥ 1
implies rectifiability.

5 Self-similar Sets in Heisenberg Groups

For an introduction to Heisenberg groups and some of the facts mentioned below,
see, for example, [2] or [1]. Below we state the basic facts needed in this survey.
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The Heisenberg group H
n, identified with R2n+1, is a non-abelian group where

the group operation is given by

p ·q = (p1 + q1, . . . , p2n + q2n, p2n+1 + q2n+1+A(p,q)),

where

A(p,q) =−2
n

∑
i=1

(piqi+n − pi+nqi).

We will denote points p ∈ H
n by p = (p′, p2n+1), p′ ∈ R2n, p2n+1 ∈ R. For any q ∈

H
n and r > 0, let again τq : Hn →H

n be the left translation

τq(p) = q · p,

and define the dilation δr : Hn →H
n by

δr(p) = (rp1, . . . ,rp2n,r
2 p2n+1).

A natural metric d on H
n is defined by

d(p,q) = ‖p−1 ·q‖

where

‖p‖= (‖(p1, . . . , p2n)‖4
R2n + p2

2n+1)
1
4 .

The metric is left invariant, that is, d(q · p1,q · p2) = d(p1, p2), and the dilations
satisfy d(δr(p1),δr(p2)) = rd(p1, p2). All the conditions of the general setting of
Introduction are satisfied.

A subgroup G of Hn is called homogeneous if it is closed and invariant under
the dilations; δr(G) = G for all r > 0. Every homogeneous subgroup G is a linear
subspace of R2n+1. We call G a k-subgroup if its linear dimension is k. The
homogeneous subgroups fall into two categories, vertical and horizontal: the vertical
homogeneous k-subgroups are the linear subspaces of R2n+1 of the form V ×T
where V is a (k − 1)-dimensional linear subspace of Rn and T is the t-, that is,
p2n+1-axis. Their Hausdorff dimension is k + 1. The horizontal homogeneous k-
subgroups are those k-dimensional linear subspaces of R2n on which A vanishes
identically. Their Hausdorff dimension is k. The Haar measure on a k-subgroup is
just the k-dimensional Lebesgue measure on it. We denote the set of these measures
by H (n,k).

In this section we consider certain families of self-similar sets in H
n and we

discuss their relations with Riesz-type transforms.
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Definition 2. Let Q = [0,1]2n ⊂ R2n and r ∈ (0, 1
2). Let z j ∈ R2n, j = 1, . . . ,22n, be

distinct points such that z j,i ∈ {0,1− r} for all j = 1, . . . ,22n and i = 1, . . . ,2n. We
consider the following 22n+2 similitudes depending on the parameter r:

S j = τ(z j ,0)δr, for j = 1, . . . ,22n,

S j = τ(z� j�
22n

, 1
4 )
δr, for j = 22n + 1, . . . ,2 ·22n,

S j = τ(z� j�
2·22n

, 1
2 )
δr, for j = 2 ·22n+ 1, . . . ,3 ·22n,

S j = τ(z� j�
3·22n

, 3
4 )
δr, for j = 3 ·22n+ 1, . . . ,22n+2,

where � j�m := j mod m and 1 ≤ � j�m ≤ m.

Theorem 4. Let r ∈ (0, 1
2) and Sr = {S1, . . . ,S22n+2} where the S′js are the

similitudes of Definition 2. Let Kr be the self-similar set defined by

Kr =
22n+2
⋃

j=1

S j(Kr).

Then the sets S j(Kr) are disjoint for j = 1, . . . ,22n+2, and

0 < H s(Kr)< ∞ with s =
(2n+ 2) log(2)

log( 1
r )

.

We give a sketch of the proof. It is similar to the one given by Strichartz in [22] in
the case r = 1/2. He obtains then a fractal tiling of Hn. It is enough to find some set
R ⊃ K such that for all j = 1, . . . ,22n+2:

1. S j(R)⊂ R.
2. The sets S j(R) are disjoint.

This is established by finding a continuous function ϕ : Q → R such that the set

R = {q ∈H
n : q′ ∈ Q and ϕ(q′)≤ q2n+1 ≤ ϕ(q′)+ 1}

satisfies (1) and (2).
This will follow immediately if we find some continuous ϕ : Q → R which

satisfies for all j = 1, . . . ,22n,

τ(z j ,0)δr(R) = {q ∈H
n : q′ ∈ Q j and ϕ(q′)≤ q2n+1 ≤ ϕ(q′)+ r2}, (3)

where Q j = τ(z j ,0)(δr(Q)). Since
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τ(z j ,0)δr(R) = {p ∈H
n : p′ ∈ Q j and r2ϕ(

p′ − z j

r
)− 2

n

∑
i=1

(z j,i pi+n − z j,i+n pi)

≤ p2n+1 ≤ r2ϕ(
p′ − z j

r
)− 2

n

∑
i=1

(z j,i pi+n − z j,i+n pi)+ r2},

proving Eq. (3) amounts to showing that

ϕ(w) = r2ϕ(
w− z j

r
)− 2

n

∑
i=1

(z j,iwi+n − z j,i+nwi) for w ∈ Q j, j = 1, . . . ,22n. (4)

Such a function ϕ is found with an application of the Banach fixed point theorem to
a contraction T satisfying

T ( f )(w) = r2 f (
w− z j

r
)− 2

n

∑
i=1

(z j,iwi+n − z j,i+nwi) for w ∈ Q j.

6 Riesz-Type Kernels in Heisenberg Groups

Definition 3. The s-Riesz kernels in H
n, s ∈ (0,2n+ 2), are defined as

Rs(p) = (Rs,1(p), . . . ,Rs,2n+1(p))

where
Rs,i(p) =

pi

‖p‖s+1 for i = 1, . . . ,2n

and
Rs,2n+1(p) =

p2n+1

‖p‖s+2 .

Notice that these kernels are antisymmetric,

Rs(p−1) = (Rs(p))−1,

and s-homogeneous,

Rs(δr(p)) =
1
rs Rs(p).

Let μ be a finite Borel measure in H
n. The image f#μ under a map f : Hn →H

n

is the measure on H
n defined by

f#μ(A) = μ
(

f−1(A)
)

for all A ⊂H
n.

For a ∈H
n and r > 0, Ta,r : Hn →H

n is defined for all p ∈H
n by

Ta,r(p) = δ1/r(a
−1 · p).
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Definition 4. We say that ν is a tangent measure of μ at a ∈ H
n if ν is a Radon

measure on H
n with ν(Hn)> 0 and there are positive numbers ci and ri, i = 1,2, . . . ,

such that ri → 0 and
ciTa,ri#μ → ν weakly as i → ∞.

We denote by Tan(μ ,a) the set of all tangent measures of μ at a.

The numbers ci are normalization constants which are needed to keep ν non-
trivial and locally finite. Often one can use ci = μ(B(a,ri))

−1.
The following result was proved in [5] (recall that H (n,k) denotes the set of the

Haar measures of the k-subgroups):

Theorem 5. Let s ∈ (0,2n+ 2) and let μ be an s-regular measure in H
n. If T ∗

Rs
is

bounded in L2(μ), then

1. s is an integer in [1,2n+ 1]
2. For μ-a.e. a ∈ H

n, the set of tangent measures of μ at a, Tan(μ ,a), contains
measures in H (n,s)

One can show that the s-dimensional self-similar sets of Theorem 4 do not have
tangent measures in H (n,s); they are too spread at all scales for that. This leads to

Corollary 2. The maximal operators T ∗
Rs

are unbounded in L2(H s�C) for the s-
dimensional self-similar sets of Theorem 4.

Theorem 5 corresponds to what is known in Rn for s-regular sets and Riesz
kernels in this respect (in other respects much more is known by results of Tolsa,
Volberg and others; see, e.g., [10,25]). The disadvantage here is that the kernels are
not natural in the same way as Riesz kernels in Rn; they do not seem to relate to any
function classes. Analogues of harmonic functions lead to other kernels which we
look at now.

7 Δh-Removability and Singular Integrals

The Lie algebra of left invariant vector fields in H
n is generated by

Xi := ∂i + 2xi+n∂2n+1, Yi := ∂i+n − 2xi∂2n+1, T := ∂2n+1,

for i = 1, . . . ,n. In fact, these vector fields generate the whole group and metric
structure of Hn.

If f is a real function defined on an open set of Hn its h-gradient is given by

∇h f = (X1 f , . . . ,Xn f ,Y1 f , . . . ,Yn f ).

The h-divergence of a function φ = (φ1, . . . ,φ2n) : Hn → R2n is defined as
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divhφ =
n

∑
i=1

(Xiφi +Yiφi+n).

The sub-Laplacian in H
n is given by

Δh =
n

∑
i=1

(X2
i +Y2

i )

or equivalently
Δh = divh∇h.

Definition 5. Let U ⊂ H
n be an open set. A real-valued function f on U is called

Δh-harmonic, or simply harmonic, on U if Δh f = 0 on U .

We shall consider removable sets for Lipschitz solutions of the sub-Laplacian:

Definition 6. A compact set C ⊂ H
n will be called removable, or Δh-removable

for Lipschitz Δh-harmonic functions, if for every open set U with C ⊂U and every
Lipschitz function f : U → R,

Δh f = 0 in U \C implies Δh f = 0 in U.

Fundamental solutions for sub-Laplacians in homogeneous Carnot groups are
defined in accordance with the classical Euclidean setting. In particular, in the case
of the sub-Laplacian in H

n:

Definition 7 (Fundamental solutions). A function Γ : R2n+1 \ {0} → R is a
fundamental solution for Δh if:

1. Γ ∈C∞(R2n+1 \ {0})
2. Γ ∈ L1

loc(R
2n+1) and lim‖p‖→∞Γ (p)→ 0

3. For all ϕ ∈C∞0 (R
2n+1)

∫

R2n+1
Γ (p)Δhϕ(p)dp =−ϕ(0).

It also follows easily that for every p ∈H
n,

Γ ∗Δhϕ(p) =−ϕ(p) for allϕ ∈C∞0 (R
2n+1). (5)

Convolutions are defined as usual by

f ∗ g(p) =
∫

f (q−1 · p)g(q)dq

for f ,g ∈ L1 and p ∈H
n.
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The fundamental solution Γ of Δh is given by

Γ (p) =Cd‖p‖2−d for p ∈H
n \ {0}

where d = 2n+ 2 is the Hausdorff dimension of Hn.
Let K = ∇hΓ , then K = (K1, . . . ,K2n) : Hn → R2n where

Ki(p) = cd
pi|p′|2 + pi+n p2n+1

‖p‖d+2 and Ki+n(p) = cd
pi+n|p′|2 − pip2n+1

‖p‖d+2 , (6)

for i = 1, . . . ,n, p ∈ H
n \ {0} and cd = (2− d)Cd . We will also use the following

notation:

Ωi(p) = cd
(pi|p′|2+pi+n p2n+1)

‖p‖3 and Ωi+n(p) = cd
(pi+n|p′|2−pi p2n+1)

‖p‖3 , (7)

for i = 1, . . . ,n and p ∈H
n \ {0}. Hence,

Ki(p) =
Ωi(p)
‖p‖d−1 and K(p) =

Ω(p)
‖p‖d−1 , (8)

for i = 1, . . . ,2n,Ω = (Ω1, . . . ,Ω2n) and p ∈ H
n \ {0}. The functions Ωi are homo-

geneous and hence, recalling Definition 1, the kernels Ki are (d −1)-homogeneous.
The following proposition asserts that K is a standard kernel.

Proposition 1. For all i = 1, . . . ,2n:

1. |Ki(p)|� ‖p‖1−d for p ∈H
n \ {0}

2. |∇hKi(p)|� ‖p‖−d for p ∈H
n \ {0}

3. |Ki(p−1 ·q1)−Ki(p−1 ·q2)|� max

{
d(q1,q2)

d(p,q1)d
,

d(q1,q2)

d(p,q2)d

}
for q1,q2 �= p ∈H

n

The following theorem, which makes use of Proposition 1, was proved in [6]. With
d replaced by n, it is also valid for Lipschitz harmonic functions in R

n, as it was
shown in [17].

Theorem 6. Let C be a compact subset of Hn.

1. If H d−1(C) = 0, C is removable.
2. If dimC > d− 1, C is not removable.

8 Δh-Removable Self-similar Cantor Sets in H
n

In this section we consider a modified class of the self-similar Cantor sets C in
H

n which were introduced in Sect. 3. Notice that there is one piece S0(Cr,N) of Cr,N
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below, which is well separated from the others. This is in order to make the condition
of Theorem 3 easily checkable. It is very probable that also the more symmetric self-
similar sets of Sect. 3 would satisfy that condition, but the calculation would become
much more complicated.

Let Q = [0,1]2n ⊂ R2n,r > 0,N ∈ 2N, be such that r < 1
N < 1

2 . Let z j ∈ R2n, j =
1, . . . ,N2n, be distinct points such that z j,i ∈ { l

N : l = 0,1, . . . ,N − 1} for all j =
1, . . . ,N2n and i = 1, . . . ,2n.

The similarities Sr,N = {S0, . . . ,S 1
2 N2n+2}, depending on the parameters r and N,

are defined as follows:

S0 = δr,

S j = τ(z� j�
N2n

, 1
2+

i
N2 )

◦ δr, for i = 0, . . . ,
N2

2
− 1 and j = iN2n + 1, . . . ,(i+1)N2n,

where � j�m := j mod m.
Let Cr,N be the self-similar set defined by

Cr,N =

1
2 N2n+2
⋃

j=0

S j(Cr,N).

Then

0 < H s(Cr,N)< ∞ with s =
log( 1

2 N2n+2 + 1)

log( 1
r )

.

Denote by Cd−1 the set Crd−1,N0 for which

0 < H 2n+1(Crd−1,N0)< ∞.

Theorem 7. The Cantor set Cd−1 satisfies 0<H d−1(Cd−1)<∞ and is removable.

The proof of Theorem 7 can be found in [6] and to prove it one verifies the
condition of the general Theorem 3.

9 Concluding Comments

As discussed above, the question for what kind of 1-regular measures the singular
integral operators based on the one-dimensional Riesz kernel are L2-bounded is
solved. So are the corresponding removability questions, both even much more
generally than for regular measures and sets. For other integral dimensional Riesz
kernels in Rn and Riesz-type kernels in H

n we have partial results for general
regular measures and sets. For other kernels, such as the gradient of the fundamental
solution of the sub-Laplacian, we only know results for some special self-similar
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sets. A natural direction would be to proceed further with self-similar sets, studying
more systematically their properties and defining conditions in relation with kernels
and L2-boundedness. The L2-boundedness on some particular self-similar sets for
kernels adapted to them was shown in [8], by David, and in [3].

Acknowledgements P.M and V.C were supported by the Academy of Finland.

References

1. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for
Their Sub-Laplacians. Springer Monographs in Mathematics, Berlin (2007)

2. Capogna, L., Danielli, D., Pauls, S.D., Tyson, J.T.: An Introduction to the Heisenberg Group
and the Sub-Riemannian Isoperimetric Problem. Birkhäuser, Basel (2007)
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Multivariate Davenport Series

Arnaud Durand and Stéphane Jaffard

Abstract We consider series of the form ∑an{n · x}, where n ∈ Zd and {x} is the
sawtooth function. They are the natural multivariate extension of Davenport series.
Their global (Sobolev) and pointwise regularity are studied and their multifractal
properties are derived. Finally, we list some open problems which concern the study
of these series.

1 Introduction

Let � ·� denote integer part and let {·} be the centered sawtooth function defined by

{x}=
{

x−�x�− 1
2 if x /∈ Z,

0 else.
(1)

The purpose of this chapter is to investigate regularity properties of the multivariate
functions which are defined by

∀x ∈ Rd f (x) = ∑
n∈Zd∗

an{n · x}, (2)
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where n · x denotes the standard inner product between the vectors n and x, and
(an)n∈Zd∗ is a real-valued sequence indexed by the set Zd∗ = Zd \ {0}. With a
slight abuse, the vectors n for which an is nonvanishing will be referred to as the
frequencies of the series.

In the one-variable case, examples of such functions can be traced back to
the Habilitationsschrift of Riemann, see [40, 43]; they were later considered by
Hecke [28], and also Hardy, who studied the series

Hβ (x) =
∞

∑
n=1

{nx}
nβ

. (3)

It seems however that the general one-dimensional case was first considered only
in 1937 by Davenport in [19, 20]. The first of these papers starts with the following
remarkable identity, which establishes in all generality the connection with Fourier
series:

∞

∑
n=1

an{nx}=
∞

∑
m=1

cm sin(2πmx) with cm =− 1
πm ∑n∈N

n|m

nan. (4)

One of the fascinating aspects of these expansions is that their study lies at the
crossroad between several areas of mathematics. They appear naturally in several
problems related with analytic number theory; this actually was the motivation of
Davenport for studying them, see also the recent studies by de la Bretèche and
Tenenbaum (such as [17] for instance). They were later considered in connection
with harmonic analysis, see, e.g., [35] and references therein where a function
space point of view is developed, and it is shown in which sense an arbitrary one-
periodic odd function can be expanded on this system. Convergence properties of
these series at particular points are related with the Diophantine approximation
properties of these points, see [17, 35]. Recently, Brémont studied the L2 and
almost-sure convergence of these series, see [15]. The multifractal analysis of
these functions shows connections between their pointwise regularity properties and
geometric measure theory, see [35] and also [47] for an extension of Davenport
series with translated phases. Note also that examples of Davenport series valued
in R2 were proposed by H. Lebesgue as space-filling functions; this study was
developed in [38, 39], where the connections between Davenport series and space-
filling functions are examined.

In this chapter, we shall investigate the multivariate case, which has not been
considered up to now. Our main motivation is that multivariate Davenport series are
natural examples of multifractal fields. The recent increase of interest in such fields
is motivated by the relevance of multifractal analysis techniques in image classifica-
tion, see [1,2]. Indeed, the validation of 2D multifractal analysis algorithms requires
the introduction and the mathematical study of collections of multifractal fields of
various kinds. However, very few multivariate multifractal models have been studied
up to now (see however the Ph.D. thesis of Oppenheim [41] for an early analysis
of a multifractal function of several variables where Diophantine approximation
properties are involved and [4] for fields generated by random wavelet series). Other
cases of random fields which have recently been studied are Lévy fields, which are
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a natural extension of Lévy processes to the multivariate setting; their multifractal
analysis has recently been performed by the authors, see [24]. The scarcity of
existing results is partly due to the fact that the derivation of the multifractal
properties of multivariate functions lies on variants of ubiquity methods which can
prove much more involved in the multidimensional setting. Therefore, extending
the collection of available multivariate models, and elucidating their multifractal
properties, is an important issue. An additional motivation of this chapter is to draw
a comparison between the multifractal behavior of Davenport series and Lévy fields.
Indeed, they are both constructed as superpositions of piecewise linear functions
which display jumps along hyperplanes; the main difference being that the locations
of these hyperplanes are random in the case of Lévy fields, whereas they are
determined by arithmetic conditions in the case of Davenport series. We shall see
that the multifractal properties of Davenport series bear similarities with those of
Lévy fields so that they can be seen as a kind of deterministic counterpart of these
fields.

The chapter is organized as follows. In Sect. 2, we establish the relationships
between the Davenport and Fourier coefficients of Davenport series, in the normally
convergent case. We shall see that this relationship extends to more general, and
actually distributional, settings in Sect. 8. The main purpose of this chapter is
the study of pointwise regularity properties of Davenport series. The key step
consists in analyzing the locations and magnitudes of the jumps of Davenport
series. Preliminary results concerning this study are collected in Sects. 3 and 4.
In Sect. 5, an upper bound of the Hölder exponent is derived and, as a consequence,
cases where this exponent vanishes everywhere are worked out. A difficult question
(which is far from being closed, even in the one-variable case) is to understand
when this upper bound is sharp; the purpose of Sect. 6 is to show that this is the case
when the frequencies of the Davenport series are sufficiently sparse. Implications for
multifractal analysis are stated in Sect. 7. In Sect. 8, we shall consider convergence
properties of Davenport series in the Sobolev spaces Hs for s ∈ R, especially when
the sequence of coefficients does not belong to �1; this study will also be the
occasion to draw bridges with arithmetic functions in several variables, a topic
which has been barely scratched until now (see however [16, 25] and references
therein). Concluding remarks and open problems are collected in Sect. 9. Finally, the
proofs of the main results are completed in Sects. 10 and 11. This is the occasion for
us to exhibit deep connections with the theory of sets of large intersection and with
the Duffin–Schaeffer and Catlin conjectures in the metric theory of Diophantine
approximation, see Sect. 11.2.

2 Relationships Between Davenport and Fourier Series

We start by establishing some conventions. First, note that functions such as Eq. (2)
are necessarily odd and Zd-periodic. Since {−x} = −{x}, it follows that the
system supplied by the {n · x}, for n ∈ Zd , is redundant. The choice made for
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one-dimensional Davenport series is to use only these functions for n ≥ 1, as,
e.g., in Eq. (4) above. We shall make a different choice in dimension d ≥ 2, which
will preserve the symmetry of the decomposition. Specifically, we shall keep both
functions {n · x} and {−n · x}, and, without loss of generality, we shall assume that
the sequence (an)n∈Zd of Davenport coefficients is an odd sequence indexed by Zd ,
which implies uniqueness of the decomposition.

The function spaces that we shall consider are composed of Zd-periodic odd
functions, and the sequence spaces that we shall consider are composed of odd
sequences. Therefore, we shall use the following conventions concerning spaces:
With a slight abuse of notations, �p will denote the space of odd sequences which
belong to �p(Zd), L2 is the space of odd locally square-integrable functions which
are Zd-periodic, and, more generally, if E is a space of functions defined on Rd , we
shall also denote by E the space of odd functions that belong locally to E and are
Zd-periodic.

Another convention concerns divisibility in several dimensions. Let n,m ∈ Zd∗ .
If m = ln for some l ∈ Z∗, we say that l and n are divisors of m. The fact that
the term “divisor” applies without distinction to elements of Zd∗ and of Z∗ will not
create confusions because the context will always be clear. If l = ±1 are the only
integer divisors of m, we say that m is irreducible; this means that its components
are coprime. Throughout the chapter, N denotes the set of positive integers.

Finally, the support of a sequence a = (an)n∈Zd is

supp(a) = {n ∈ Zd |an �= 0}.
Let us now investigate the relationship between Davenport and Fourier series.

To this end, let us assume that the series (2) converges normally, that is, that the
sequence (an)n∈Zd belongs to �1 (convergence properties in different functional
settings will be investigated in Sect. 8). Then, f belongs to L∞, hence to L2 and
the Fourier series expansion of f converges in L2. Since f is odd, it may be written
in the form

f (x) = ∑
m∈Zd

cm sin(2πm · x) with cm =

∫

[0,1)d
f (x)sin(2πm · x)dx.

Here, we adopt the same convention for Fourier series as for Davenport series, that
is, we assume that the expansion is taken on all frequencies of Zd , but that the
sequence (cm)m∈Zd is odd. Since Eq. (2) is normally convergent,

cm = ∑
n∈Zd∗

an

∫

[0,1)d
{n · x}sin(2πm · x)dx

for all m ∈ Zd∗ . A straightforward computation shows that the above integral is equal
to zero except if n is a divisor of m, in which case there exists an integer l ∈ Z∗ such
that ln = m, and the integral is equal to −1/(2π l). As a consequence, the Fourier
coefficients of f are given by
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cm =− 1
2π ∑

(l,n)∈Z∗×Zd∗
ln=m

an

l
. (5)

Note that without making any assumption on the summability of the sequence
(an)n∈Zd , the above formula still enables us to define a sequence (cm)m∈Zd . This
detour via Fourier series will allow us to study the convergence of the series (2)
even when (an)n∈Zd does not belong to �1, see Sect. 8. Indeed, we shall see that,
in many functional settings, when the associated Fourier series converges, then the
partial sums of the series ∑n an{n · x} converge to the same limit.

3 Discontinuities of Davenport Series

Let us consider a bounded function g : Rd → R. By definition, the magnitude of the
jump of g at any fixed point x0 ∈ Rd is

Δg(x0) = limsup
x→x0

g(x)− liminf
x→x0

g(x)

(which may possibly vanish, in which case g is continuous at x0). The magnitude
of the jumps can also be expressed by means of local oscillations. To be specific,
let us recall that the oscillation of the function g on a bounded subset Ω of Rd is
defined by

Oscg(Ω) = sup
x∈Ω

g(x)− inf
x∈Ω

g(x).

Letting B(x,r) denote the open ball with center x and radius r, it is easy to see that
the magnitude of the jump of the function g at the point x0 satisfies

Δg(x0) = lim
r→0

Oscg(B(x0,r)).

We shall now determine the set of points at which the Davenport series f defined
by Eq. (2) has a discontinuity, and we shall study the magnitude of the corresponding
jump. We assume in what follows that the sequence (an)n∈Zd belongs to �1.

Given a vector with integer coordinates q ∈ Zd∗ and an integer p ∈ Z, let Hp,q

denote the hyperplane

Hp,q = {x ∈ Rd | p = q · x}. (6)

It is clear that multiplying p and the components of q by a common integer
value leaves the hyperplane unchanged. In order to ensure the uniqueness of the
representation, it is sufficient to assume that p and the components of q are coprime
and that q belongs to the subset Zd

+ of Zd∗ formed by the vectors whose first
nonvanishing coordinate is positive. In fact, one easily checks that any hyperplane
Hp,q may be indexed in a unique manner by a pair (p,q) that belongs to

Hd =
{
(p,q) ∈ Z×Zd

+ | gcd(p,q) = 1
}
,
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where gcd(p,q) is the greatest common divisor of the integer p and the components
of the vector q. Furthermore, let {·}� denote the restriction of the sawtooth function
{·} to the open interval (−1/2,1/2). Then, {·}� is continuous everywhere except
at the origin: {x}� makes a jump of size −1 when x crosses zero in the upward
direction. In addition, {x} is the sum of {x− p}� over all the integers p ∈ Z. Along
with the fact that the sequence (an)n∈Zd and the function {·}� are both odd, this
enables us to rewrite the definition (2) of the Davenport series f in the form

f (x) = ∑
(p,q)∈Hd

fp,q(x) with fp,q(x) = 2
∞

∑
l=1

alq{l(q · x− p)}�,

where all the series converge normally. This decomposition enlightens the fact that
f is the superposition of a family of functions that are continuous everywhere except
maybe on a specific hyperplane of the above kind. To be precise, each function fp,q

is continuous everywhere except maybe on the hyperplane Hp,q, and the fact that
(p,q) belongs to Hd implies that these hyperplanes are distinct. Moreover, when
a point x crosses Hp,q, the real points l(q · x− p), for l ≥ 1, all cross zero, so that
fp,q(x) makes a jump of magnitude |Aq|, where

Aq = 2
∞

∑
l=1

alq. (7)

Note that, in the case where the latter sum vanishes, the function fp,q is actually
continuous on the whole space, including the hyperplane Hp,q.

The analysis of the discontinuities of the Davenport series f begins with a first
remark: As the series (2) is normally convergent, its sum f is a function in L∞ so that
the potential discontinuities must have finite magnitude. We shall now show that the
set of points at which f is not continuous is exactly

⋃

(p,q)∈Hd
Aq �=0

Hp,q. (8)

First, note that if a point x0 does not belong to the latter set, then the above
decomposition entails that f is a sum of uniformly convergent series of functions
that are continuous at x0, thereby being continuous at x0 as well. Conversely, if
a point x0 belongs to a hyperplane Hp,q indexed by a pair (p,q) ∈ Hd for which
Aq does not vanish, and to no other hyperplane of that form (which is the case of
Lebesgue-almost every point of Hp,q), then f has a discontinuity at x0 of magnitude
|Aq|, that is,

Δ f (x0) = |Aq|> 0.

More generally, suppose that x0 belongs to a (possibly infinite) collection of
hyperplanes Hpi,qi indexed by pairs (pi,qi) ∈ Hd for which Aqi do not vanish.
The previous case shows that, for any specific value of i, the function f has a
discontinuity of magnitude exactly |Aqi | on a dense set of points of Hpi,qi . Therefore,
one can pick a point yi arbitrarily close to x0 at which f has a discontinuity of
magnitude exactly |Aqi |. It follows that

Δ f (x0)≥ max
i

|Aqi |> 0,
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so that f exhibits a discontinuity at x0.
Given that |Aq| is the magnitude of the jump of the Davenport series f at

Lebesgue-almost every point of the hyperplane Hp,q, we shall call with a slight
abuse |Aq| the magnitude of the jump of f on Hp,q.

We see here a sharp contrast with Fourier series: The series (2) will usually
exhibit discontinuities no matter how fast the coefficients an decay. The following
proposition shows that even more is true: The zero function is the only continuous
Davenport series.

Proposition 1. Let f be a Davenport series with coefficients given by a sequence
a = (an)n∈Zd in �1. If f is a continuous function, then

∀n ∈ Zd an = 0.

Proof. The continuity of f implies that Aq = 0 for all vectors q ∈ Zd . Given an
irreducible vector q, let bq

l = alq for any integer l ≥ 1. Then, the sequence (bq
l )l≥1 is

in �1(N) and satisfies

∀l ≥ 1
∞

∑
k=1

bq
kl = 0.

Haar proved that these conditions imply that bq
l = 0 for all l ≥ 1, see [42, Chap. 1,

no. 129]. This argument holds in all directions q, so the result follows. 
�
We refer to the next section for more general results that explain how to recover

the coefficients an from the values Aq.

4 The Jump Operator

In order to study the regularity properties of normally convergent Davenport series,
it is useful to consider the linear operator J which maps the sequence of Davenport
coefficients to the sequence of jumps and which is defined by

∀(an)n∈Zd ∈ �1 J
(
(an)n∈Zd

)
= (Aq)q∈Zd ∈ �∞, (9)

where the coefficients Aq are given by Eq. (7). The key results concerning this
mapping follow from those obtained in [35] in the one-dimensional case; this is
due to a remarkable decomposition that we now present.

Let I d denote the subset of Zd∗ formed by the irreducible vectors and let
Vm denote the vector space of odd sequences (an)n∈Zd that are supported by the
multiples of such a vector m ∈ I d , that is, such that

supp
(
(an)n∈Zd

)⊆ Zm.
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Any odd sequence indexed by Zd may be decomposed as a sum of sequences bm

such that bm ∈Vm. However, as the vector subspaces Vm and V−m coincide, in order
to ensure the uniqueness of the decomposition, we shall privilege the irreducible
vectors whose first nonvanishing coordinate is positive. The set of those vectors is
therefore I d

+ =I d ∩Zd
+. As a consequence, we obtain the following unconditional

Schauder decomposition:

�1 =
⊕

m∈I d
+

(
Vm ∩ �1) , (10)

meaning that any sequence in �1 may be written in a unique manner as the sum in the
�1 sense of an unconditionally summable family indexed by m ∈ I d

+ of sequences
in Vm∩�1. Moreover, the operator J maps the subspace Vm∩�1 to Vm∩�∞. It follows
that, in order to study J, it suffices to analyze its restriction Jm to the subspace
Vm ∩ �1, for any fixed vector m ∈ I d

+ .
On top of that, let Sm denote the operator of subsampling with step m, which is

defined by
Sm((an)n∈Zd ) = (alm)l≥1

for any odd sequence (an)n∈Zd . As we consider odd sequences only, it is clear that
the restriction of Sm to Vm is one-to-one. In fact, we even see that Sm maps Vm ∩ �p

onto �p(N).
In the one-dimensional case, as already mentioned above and illustrated

by Eq. (4), one assumes that the sequence of Davenport coefficients is supported on
N, instead of supposing that they form an odd sequence indexed by Z. Thus, the
operator J has a simpler counterpart which has already been considered in [35]; this
is the jump operator J defined by

J ((bn)n≥1) =

(
∞

∑
l=1

blq

)

q≥1

∈ �∞(N), (11)

for any sequence (bn)n≥1 ∈ �1(N). The following straightforward lemma shows that
all the mappings Jm essentially reduce to J .

Lemma 1. Let us consider a vector m ∈ I d
+ . Then, for any sequence a = (an)n∈Zd

in Vm ∩ �1,
Sm(Jm(a)) = 2J (Sm(a)).

Therefore, the following diagram is commutative:

Vm ∩ �1
Jm

��

Sm∼
��

Vm ∩ �∞

Sm∼
��

�1(N)
2J

�� �∞(N)
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It follows from Lemma 1 that the mapping J can be inverted on each subspace
Vm∩�1 by means of an inversion formula for the one-dimensional jump operator J .
This formula has been obtained in [35] and is recalled in the statement of
Proposition 2 below. It makes use of the Möbius function μ , which is defined on
the positive integers by μ(n) = 0 if n is not square-free, and by μ(n) = (−1)k if n is
square-free and admits exactly k prime divisors. The inversion formula holds on the
subspace T(N) of �1(N) that is formed by the sequences (bn)n≥1 for which the series
∑n τ(n)|bn| converges, where τ(n) denotes the number of divisors of n; this merely
means that the restriction of J to that subspace is one-to-one. It is well-known
that the sequence τ(n) grows slower than any positive power of n, in the sense that
τ(n) = o(nε) as n goes to infinity, for all ε > 0. This is a plain consequence of the
fact that

limsup
n→∞

loglogn
logn

logτ(n) = log2, (12)

see, e.g., [3, Theorem 13.12]. This implies in particular that, for any real γ larger
than one, T(N) contains the space F γ (N) of all the sequences b= (bn)n≥1 such that

|b|F γ (N) = sup
n≥1

nγ |bn|< ∞.

Thus, the restriction of J to each F γ (N) is one-to-one. The next result even shows
that J is a bicontinuous automorphism of F γ (N). We refer to [35] for its proof.

Proposition 2. The operator J induces a one-to-one mapping from T(N) into
�1(N). More specifically, for any sequence B = (Bq)q≥1 in the image set J (T(N)),
the equation

B = J (b)

admits exactly one solution b = (bn)n≥1 in T(N), namely, the sequence defined by

∀n ≥ 1 bn =
∞

∑
l=1

μ(l)Bln. (13)

Moreover, for any real γ > 1, the operator J induces a bicontinuous automorphism
of the space F γ (N) whose inverse is given by Eq. (13).

Thanks to Lemma 1, Proposition 2 naturally extends to the multivariate setting.
In fact, we now establish that the higher-dimensional jump operator J induces a
bicontinuous automorphism on the space F γ defined as follows.

Definition 1. The space F γ is the vector space composed of the odd sequences
a = (an)n∈Zd satisfying

|a|F γ = sup
n∈Zd∗

|n|γ |an|< ∞.

If γ is larger than the dimension d of the ambient space, it is clear that F γ may
be seen as a vector subspace of �1, so that the operator J is well defined on F γ .
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In the opposite case, F γ is not necessarily included in �1. However, if γ > 1, the
formula (9) still has a meaning, because all the series (7) converge, which enables
us to define the operator J on F γ as well. This may also be seen as a consequence
of Lemma 1, along with the fact that Sm(F γ ) is contained in �1(N).

Proposition 3. For any γ > 1, the jump operator J is a bicontinuous automorphism
of F γ , and its inverse is given by

∀A = (Aq)q∈Zd ∈ F γ J−1(A) =

(
1
2

∞

∑
l=1

μ(l)Aln

)

n∈Zd

. (14)

Proof. Given γ > 1, let a = (an)n∈Zd be a sequence in F γ , and let A = (Aq)q∈Zd

denote its image under J, that is, A = J(a). Then, for each vector q ∈ Zd∗ ,

|Aq| ≤ 2
∞

∑
l=1

|alq| ≤ 2
∞

∑
l=1

|a|F γ

|lq|γ ≤ 2ζ (γ)
|q|γ |a|F γ ,

where ζ is the Riemann zeta function. Therefore, J is continuous on F γ with
operator norm at most 2ζ (γ).

In order to study the invertibility of the operator J on F γ , let us begin by
observing that, in a way similar to Eq. (10), the latter space may be decomposed as
the direct sum over m ∈ I d

+ of the subspaces Vm ∩F γ . Moreover, the subsampling
operator Sm induces a one-to-one mapping from Vm ∩F γ , which is included in
Vm ∩ �1, onto F γ (N). Then, letting πm denote the projection onto Vm, we deduce
from Lemma 1 and Proposition 2 that the following diagram is commutative:

F γ
J

��

πm��
��

F γ

πm��
��

Vm ∩F γ
Jm

��

Sm∼
��

Vm ∩F γ

Sm∼
��

F γ (N)
2J

∼
�� F γ (N)

This implies the invertibility of the operator J on the space F γ . In order to obtain
an explicit formula for its inverse J−1, let us make use of the diagram to infer that
the equation A = J(a) implies

Sm(πm(a)) =
1
2
J −1(Sm(πm(A)))
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for all m ∈ I d
+ , where J −1 denotes the inverse of the one-dimensional jump

operator J on F γ (N). By means of Eq. (13), we deduce that

Sm(a) =

(
1
2

∞

∑
l=1

μ(l)Alkm

)

k≥1

and Eq. (14) follows. Finally, the method that we used above in order to show the
continuity of the operator J also applies to its inverse because the Möbius function
is at most one in absolute value; proceeding in this way, we deduce that J−1 is
continuous with operator norm at most ζ (γ)/2. 
�

We shall show in Sect. 6 below that the statement of Proposition 3 may be
extended to the case where 0 < γ ≤ 1, up to replacing F γ by a subspace formed
by sequences whose support satisfies an additional sparsity assumption.

5 Pointwise Hölder Regularity

The section contains general results on the pointwise regularity of multivariate
functions with a dense set of discontinuities, a class in which the typical Davenport
series fall. We begin by recalling the appropriate definitions.

Definition 2. Let f : Rd → R be a locally bounded function, x0 ∈ Rd and α ≥ 0.
The function f belongs to Cα(x0) if there exist C > 0 and a polynomial Px0 of degree
less than α such that for all x in a neighborhood of x0,

| f (x)−Px0(x)| ≤C |x− x0|α . (15)

The Hölder exponent of f at x0 is then defined by

h f (x0) = sup{α ≥ 0 | f ∈Cα(x0)}.

Note that h f takes values in [0,∞]. The following lemma yields an upper bound on
the pointwise Hölder exponent of functions that have a dense set of discontinuities
and will be applied to Davenport series in the following. It is a direct extension to
the multivariate setting of Lemma 1 in [33].

Lemma 2. Let f : Rd → R be a locally bounded function and let x0 ∈ Rd. Then,

h f (x0)≤ liminf
s→x0

logΔ f (s)

log |s− x0| . (16)
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Proof. We may obviously assume that h f (x0) is positive, in which case f is
continuous at x0. Then, given a positive real α less than h f (x0), there exists δ ,C > 0
and a polynomial Px0 such that Eq. (15) holds for any x in the open ball B(x0,δ ).

Now, let s be a discontinuity point of f , which thus necessarily differs from x0.
The magnitudeΔ f (s) of the jump of f at s is positive, as well as ε = Δ f (s)/6. Owing
to the definition of Δ f (s) and the continuity of the polynomial Px0 , there exist two
points x1 and x2 such that

| f (x1)− f (x2)| ≥ Δ f (s)− ε and |Px0(x1)−Px0(x2)| ≤ ε.

These two points may be chosen arbitrarily close to s, for instance within range
|s− x0|/2 from that point. Therefore, at least one of them, denoted by x(s), satisfies

|x(s)− s| ≤ |s− x0|
2

and | f (x(s))−Px0(x(s))| ≥
Δ f (s)

3
. (17)

Let L denote the right-hand side of Eq. (16), which we may obviously assume to
be finite. Thus, there exists a sequence (sn)n≥1 of discontinuity points of f which
realizes the lower limit L; the points sn necessarily differ from x0 but they converge
to that point. For each integer n ≥ 1, the above procedure yields a point x(sn) for
which Eq. (17) holds. The resulting sequence (x(sn))n≥1 thus satisfies

limsup
n→∞

log | f (x(sn))−Px0(x(sn))|
log |x(sn)− x0| ≤ L.

In the meantime, Eq. (15) implies that

liminf
n→∞

log | f (x(sn))−Px0(x(sn))|
log |x(sn)− x0| ≥ α.

We deduce that α ≤ L, and the result follows from the fact that α may be chosen
arbitrarily close to the Hölder exponent h f (x0). 
�

Let us apply Lemma 2 to multivariate Davenport series. For each vector q in Zd∗ ,
let Pq denote the set of all integers p ∈ Z such that gcd(p,q) = 1. We remark that
a vector q is irreducible, that is, belongs to I d , if and only if Pq contains zero.
Moreover, the set Hd which indexes the hyperplanes Hp,q in a unique manner is
actually formed by the pairs (p,q) such that p ∈Pq and q ∈ Zd

+. Now, given a point
x0 ∈ Rd , let δP

q (x0) denote the distance between x0 and the hyperplanes Hp,q with
p ∈ Pq, that is,

δP
q (x0) = dist

⎛

⎝x0,
⋃

p∈Pq

Hp,q

⎞

⎠=
1
|q| inf

p∈Pq
|q · x0 − p|, (18)
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where |q| is the Euclidean norm of the vector q. It is obvious that δP−q(x0) coincides
with δP

q (x0), so there is no loss of information in assuming, whenever necessary,
that q is in Zd

+. Also, it is easy to see that the set Pq is invariant under the
translations of the form p �→ p+ k · q with k ∈ Zd , which makes it clear that the
function δP

q is Zd-periodic.
The analysis of the discontinuities of Davenport series that we led in Sect. 3

above ensures that every hyperplane Hp,q indexed by (p,q) ∈ Hd contains a dense
set of points at which the Davenport series has a discontinuity of magnitude
|Aq|, with the proviso that the sum Aq defined by Eq. (7) does not vanish. These
observations then yield the following corollary to Lemma 2.

Corollary 1. Let f be a Davenport series with a = (an)n∈Zd ∈ �1. Then,

∀x0 ∈ Rd h f (x0)≤ liminf
q→∞

q∈supp(A)

log |Aq|
logδP

q (x0)
,

where the sequence A = (Aq)q∈Zd of jump sizes is the image of the sequence a under
the jump operator J defined by Eq. (9).

In the above statement, we adopt the usual convention according to which the
lower limit is infinite if the index set supp(A) is finite, in which case the bound
is trivial. We now illustrate Corollary 1 by pointing out a class of Davenport
series whose Hölder exponent vanishes everywhere, as a direct consequence of
the previous upper bound. These series are characterized by the fact that the
magnitude |Aq| of the jumps does not become too small as q goes to infinity along a
subsequence satisfying particular arithmetical properties.

In order to specify these properties, let us begin by observing that δP
q (x0) may

sometimes be bounded above by 1/|q| infinitely often, up to a logarithmic factor;
also, in view of the statement of Corollary 1, we may restrict our attention to the
vectors q for which Aq does not vanish. The situation described above then occurs
precisely when the support of the sequence A of jump sizes is regular in the sense of
the next definition, which makes use of the function κ defined as follows: For every
point x0 ∈ Rd and every infinite subset Q of Zd ,

κ(x0,Q) = limsup
q→∞
q∈Q

log

(
inf

p∈Pq
|q · x0 − p|

)

log |q| .

Note that, as a consequence of the periodicity of the function δP
q , the function

κ( · ,Q) is Zd-periodic.

Definition 3. 1. An infinite subset Q of Zd is said to be regular if the following
condition holds:

∀x0 ∈ Rd κ(x0,Q)< 1.
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2. A Davenport series with coefficients given by a sequence a ∈ �1 is regular if
supp(J(a)) is a regular subset of Zd .

It is clear that any infinite subset of a regular set is also regular. Moreover,
the fact that a set Q is regular roughly means that the sets Pq, for q ∈ Q, do not
have exceptionally long gaps. In order to elaborate on this remark, let us focus on
the one-dimensional case and give some heuristic arguments. In that situation, the
sets Pq are qZ-periodic, so that it suffices to analyze their gaps in the interval
{1, . . . ,q−1}, which clearly amounts to examining the difference between two
consecutive numbers prime to q. There are φ(q) such numbers, where φ denotes
Euler’s totient function. Hence, in the absence of exceptionally long gaps, the
intervals between two consecutive numbers prime to q would have length of the
order of q/φ(q). Thus, the infimum arising in the definition of κ(x0,Q) would grow
at a comparable rate, up to constants, and κ(x0,Q) would actually vanish. This is
due to the fact that q/φ(q) = O(loglogq) as q → ∞; indeed, it is known that

liminf
q→∞

φ(q)
q

log logq = e−γ ,

where γ denotes the Euler–Mascheroni constant, see, e.g., [3, Theorem 13.14]. In
general, though, there may exist exceptional gaps of length much larger or smaller
than q/φ(q) between the numbers prime to q, so the above arguments are not always
applicable. The literature seems rather scarce on that difficult topic, apart from a
series of papers by Hooley [29–31].

In some cases, the previous heuristic arguments can be turned into a rigorous
proof. For instance, let us suppose that Q is the set lN = {lk, k ≥ 1} of integer
powers of a given prime number l ≥ 2. For any k ≥ 1, the set Plk is formed by the
nonmultiples of l, thereby having gaps of length one only. Hence, the infimum of
|lkx0 − p| over p ∈ Plk is at most two, so that κ(x0, lN) = 0. A one-dimensional
Davenport series whose coefficients a = (an)n≥1 are supported in lN will be termed
as l-adic. The sequence A = J(a) of jump sizes is then also supported in lN. As a
result, any l-adic Davenport series is regular.

Note however that in slightly more complicated examples, the above infimum
may not easily be bounded by a constant, because the sets Pq may be chosen in such
a way that they have longer gaps than above. As an illustration, still in dimension
one, assume that Q is the set of all primorials of prime numbers, that is, the set of all
integers qk = p1 · · · pk for k ≥ 1, where pi is the ith prime number. Then, Pqk is the
sequence of integers prime that are not a multiple of any of the primes p1, . . . , pk. It
follows that Pqk has gaps of size at least pk+1 −1, which tends to infinity as k →∞.

We now introduce a definition that bears on the asymptotic behavior of the
sequence indexed by Zd ; we shall apply it in what follows to the sequence formed
by the jump magnitudes |Aq|.
Definition 4. Let b = (bq)q∈Zd be a real-valued sequence and let Q be an infinite

subset of Zd . We say that the sequence b has slow decay on Q if
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liminf
q→∞
q∈Q

− log |bq|
log |q| = 0.

Note that this condition is more and more restrictive as the subset Q becomes
smaller; to be precise, any sequence with slow decay on a given set has slow decay
on all its supersets. In addition, the above definition is in stark contradiction with
that of the sets F γ that we introduced in Sect. 4 and on which the jump operator J is
a bicontinuous automorphism. In fact, it is easy to see that the sequences belonging
to the sets F γ , for γ > 0, do not have slow decay on Zd .

Combining the previous two definitions, and calling upon Corollary 1, we readily
deduce the following result.

Corollary 2. Let (an)n∈Zd be a sequence in �1, and let A = (Aq)q∈Zd be its image
under the jump operator J. Let us assume that A has slow decay on a regular subset
of Zd . Then,

∀x0 ∈ Rd h f (x0) = 0.

A typical situation encompassed by the above setting is that of a regular
Davenport series for which the sequence A of jump magnitudes has slow decay.
In dimension one, this is the case of the Davenport series of the form

fl,α (x) =
∞

∑
k=1

{lkx}
kα

,

where l is a prime number and α is larger than one. Indeed, fl,α being an l-adic
Davenport series, it is regular. Furthermore, let b = (bn)n≥1 denote the sequence
of its coefficients, namely, bn is equal to k−α0 if n = lk0 for some integer k0 ≥ 1,
and vanishes otherwise. Then, one easily checks that the sequence of jump sizes
B = J (b) admits the same expression except that we have to replace k−α0 by the
sum ∑k≥k0

k−α in the first case. It follows that B has slow decay, and the previous
result ensures that h fl,α (x0) vanishes everywhere.

6 Sparse Davenport Series

Recall that Corollary 1 above provides an upper bound on the Hölder exponent
of a general Davenport series. In this section, we shall show that, under further
assumptions, this bound gives the correct value of the Hölder exponent, which
will ultimately enable us to perform the multifractal analysis of the corresponding
series, see Sect. 7. Our main assumption implies that there cannot be too many
nonvanishing terms in the Davenport expansions and boils down to a sparsity
condition on the support of the sequence of Davenport coefficients. Note that, in
one variable, the only case where one can determine the spectrum of singularities
of Davenport series without additional assumptions on the coefficients is precisely
the case where one assumes that the frequencies satisfy a lacunarity assumption,
see [39].
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6.1 Sparse Sets and Link with Lacunary and Hadamard
Sequences

Formally, we define the notion of sparse set in the following manner. Recall that
B(0,R) denotes the open ball of Rd with center zero and radius R. In addition, we
let # stand for cardinality.

Definition 5. Let Q be a nonempty subset of Rd . The set Q is said to be sparse if

lim
R→∞

log#(Q∩B(0,R))
logR

= 0.

In what follows, we say that an Rd-valued sequence λ = (λn)n≥1 is sparse if the
set of its values, namely, {λn, n ≥ 1}, is sparse in the sense of the above definition.
If there is no redundancy in the sequence, that is, if it is injective, then the sparsity
condition suggests that its terms do not accumulate excessively but rather escape to
infinity quite fast. Indeed, if λ is sparse and injective, it is possible to rearrange its
terms so as to assume that the sequence (|λn|)n≥1 is nondecreasing. Then, one easily
checks that the latter sequence grows faster than any power function at infinity,
specifically,

lim
n→∞

log |λn|
logn

= ∞.

A notable case where the sparsity condition holds is given by the sequences
(λn)n≥1 that are both separated, meaning that

∃C > 0 ∀n,m ≥ 1 n �= m =⇒ |λn −λm| ≥C,

and lacunary, in the sense that

∃C′ > 0 ∀n,m ≥ 1 n �= m =⇒ |λn −λm| ≥C′(|λn|+ |λm|);
these two notions are standard in the study of nonharmonic Fourier series, see for
instance [37, 46]. Indeed, let us assume that the two above conditions hold, and let
N j(λ ) collect the indices of the terms of the sequence within distance between 2 j−1

and 2 j from the origin, that is,

N j(λ ) = {n ≥ 1 |2 j−1 ≤ |λn|< 2 j},
where j ≥ 1. The lacunarity assumption entails that the open balls B(λn,C′|λn|), for
n ≥ 1, are disjoint. Therefore, the balls B(λn,C′2 j−1) indexed by n ∈ N j(λ ) do not
intersect either. Meanwhile, all these balls are included in the open ball centered at
the origin with radius (1+C′/2)2 j. Comparing the volume of these balls, we infer
that #N j(λ ) is bounded above by (1+ 2/C′)d . In addition, the set

N0(λ ) = {n ≥ 1 | |λn|< 1}
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is necessarily finite; in fact, as a result of the separateness condition, the balls
B(λn,C/2), for N0(λ ), are disjoint and included in the open ball centered at
zero with radius 1+C/2, and the same volume comparison argument implies that
#N0(λ ) is at most (1+ 2/C)d. As a consequence, the sequence λ is sparse.

The above approach also enables us to write the sparse set {λn, n ≥ 1} as a

finite union of sets of the form {λ (k)
n , n ≥ 1}, where each sequence (λ (k)

n )n≥1 is
a Hadamard sequence, which means that it is separated and satisfies

∃C′′ > 1 ∀n ≥ 1
|λ (k)

n+1|
|λ (k)

n |
≥C′′.

Each of these sequences is obtained first by considering the even values of j and
retaining only one term of the initial sequence λ among those indexed by N j(λ )
and then by handling the odd values of j. Note that a Hadamard sequence is clearly
lacunary, and therefore sparse, but the converse need not hold. In addition, a finite
union of Hadamard sequences need not be lacunary.

6.2 Decay of Sequences with Sparse Support and Behavior
of the Jump Operator

Recall that the spaces F γ play an important role in the analysis of the jump
operator J; in fact, we proved in Sect. 4 that the jump operator J is a bicontinuous
automorphism of the spaces F γ , for γ > 1. We shall now obtain an analogous result
in the case where 0 < γ ≤ 1, up to a sparsity assumption. To be precise, the set F γ

will be replaced by the subspace F
γ
S formed by the sequences with sparse support,

namely,
F
γ
S = S ∩F γ ,

where S denotes the vector space of all odd sequences a = (an)n∈Zd for which the
support supp(a) is a sparse subset of Zd .

Before studying the behavior of the jump operator on the spaces F
γ
S , let us

point out that they may be used to characterize the decay of a sequence a ∈ S .
Specifically, we measure the rate of decay of such a sequence by considering

γa = liminf
n→∞

n∈supp(a)

− log |an|
log |n| . (19)

In particular, a sequence a ∈ S has slow decay on its support in the sense of
Definition 4 if and only if γa vanishes. One then easily checks that

γa = sup{γ > 0 |a ∈ F
γ
S }.
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It will also be useful to remark that, due to the sparsity of the support, γa may as
well be seen as a critical exponent for the convergence of a series. Indeed, the fact
that a is in S implies that

γa = sup

{

γ > 0

∣
∣
∣∣
∣ ∑

n∈Zd

|n| |an|1/γ < ∞
}

= inf

{

γ > 0

∣
∣
∣∣
∣ ∑

n∈Zd

|n| |an|1/γ = ∞
}

. (20)

As we shall show below, the exponent γa will play a crucial role in the study of
the multifractal properties of the Davenport series with coefficients given by a, see
Corollary 3 below as well as the results of Sect. 7.

Let us now describe the action of J on the spaces F γ
S . The next result may be

seen as a partial extension of Proposition 3 to the case where γ is no more restricted
to be larger than one. However, it is weaker because it does not discuss invertibility
properties and the target set of the jump operator J is the intersection

F γ,− =
⋂

ε>0

F γ−ε (21)

instead of the mere space F γ . Note that F γ,− is endowed with the natural Fréchet
topology inherited from the norms on the spaces F γ−ε .

Proposition 4. For any γ > 0, the jump operator J induces a continuous mapping
in the following way:

F γ
S

J
�� F γ,−

Proof. Given γ > 0, let a = (an)n∈Zd be a sequence in F γ
S , and let A = (Aq)q∈Zd

denote its image under J, that is, A = J(a). Then, for each vector q ∈ Zd∗ ,

|Aq| ≤ 2
∞

∑
l=1

|alq| ≤ 2|a|F γ

∞

∑
l=1

1{lq∈supp(a)}
|lq|γ .

In order to give an upper bound on the last sum, we split the index set into dyadic
intervals. For each integer j ≥ 0, we have

2 j+1−1

∑
l=2 j

1{lq∈supp(a)}
|lq|γ ≤ 2−γ j

|q|γ #(supp(a)∩B(0, |q|2 j+1)).

The support of the sequence a is sparse; thus, for all ε > 0, its intersection with the
open ball centered at the origin with radius |q|2 j+1 has cardinality at most Cε |q|ε2ε j

for some real Cε > 0 that depends on neither q nor j. We deduce that

|A|F γ−ε = sup
q∈Zd

|q|γ−ε |Aq| ≤ 2|a|F γCε
∞

∑
j=0

2(ε−γ) j =
2Cε

1− 2ε−γ
|a|F γ ,
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with the proviso that ε < γ . The result follows. 
�
Note that, even when a sequence a has sparse support, the support of the

associated sequence J(a) of jump sizes need not be sparse; this is why the target set
in the above statement involves F γ−ε , but not F

γ−ε
S . Moreover, the jump operator

on F γ
S entails a slight loss in the speed of decay in the sense that the target set is

not exactly F γ , as in Proposition 3, but rather F γ,−. Still, a simple adaptation of
the above proof shows that J(a) actually belongs to F γ when a is a sequence in F γ

for which supp(a) is composed by the values of a separated and lacunary sequence,
which is stronger than assuming that a is in S .

6.3 Pointwise Regularity of Sparse Davenport Series

Now that the notion of sequence with sparse support has been defined, we are in
position to introduce the notion of sparse Davenport series.

Definition 6. A Davenport series with coefficients given by a sequence a ∈ �1 is
sparse if the support supp(a) is a sparse set, that is, a ∈ S ∩ �1.

In order to recover the regularity of the Davenport series f at every point, we
shall assume, in addition to the sparsity of the support, that there is no cancellation
in the sums (7) defining the jump operator, in the sense that Aq is at least of the order
of magnitude of its largest term. To be specific, for any sequence a = (an)n∈Zd in �1,
we may consider the even sequence a = (aq)q∈Zd in �∞(Zd) given by

∀q ∈ Zd aq = sup
l≥1

|alq|.

This enables us to define in the following manner a sublinear operator M on �1,
which we refer to as the maximal operator:

∀(an)n∈Zd ∈ �1 M((an)n∈Zd ) = (aq)q∈Zd .

The jump operator and the maximal operator both act on the sequences a=(an)n∈Zd

in �1, and the asymptotic behavior of these actions may be compared by means of

θa = limsup
q→∞

q∈supp(a)

log |Aq|
log |aq| ,

where A and a denote the sequences J(a) and M(a), respectively. Incidentally, it is
useful to remark that

supp(a)∪ supp(A)⊆ supp(a) , (22)
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and that supp(A) and supp(a) coincide asymptotically whenever θa is finite, in
the sense that they differ by a finite number of points only. The aforementioned
assumption may now be expressed by means of the following definition.

Definition 7. A Davenport series with coefficients given by a sequence a ∈ �1 is
asymptotically jump canceling if θa > 1.

More precisely, assuming that there is no cancellation in the sums defining the
jumps sizes Aq amounts to supposing that θa is bounded above by one, that is,
that the Davenport series is not jump canceling. The next result shows that, in
that situation, the upper bound given by Corollary 1 becomes an equality and may
actually be replaced by an expression that is easier to handle. Specifically, the jump
sizes Aq arising in the bound may be replaced by the Davenport coefficients an

themselves, and the distance δP
q (x0) may be replaced by

δn(x0) = dist

(

x0,
⋃

k∈Z

Hk,n

)

=
1
|n| inf

k∈Z
|n · x0 − k|, (23)

which means that we may discard the rather complicated coprimeness condition
arising in Eq. (18) and discussed in Sect. 5.

Recall that the Hölder exponent vanishes wherever the Davenport series is not
continuous, that is, on the set defined by Eq. (8). This set is a union of hyperplanes
which may be written in the form DJ(a), where for any odd sequence b = (bq)q∈Zd ,

Db =
⋃

(p,q)∈Hd
q∈supp(b)

Hp,q. (24)

We may therefore restrict our attention to the points at which the series is
continuous, that is, outside the set DJ(a). Actually, our approach only enables us
to recover the Hölder exponent of the Davenport series outside the set DM(a), which
may be larger than DJ(a) in view of Eq. (22). Yet, this slight restriction will not
prevent us from performing the multifractal analysis of the Davenport series that
are not jump canceling, because the two sets then differ by a finite number of
hyperplanes only. In the next statement, as before, A = (Aq)q∈Zd denotes the image
of a under the jump operator J.

Theorem 1. Let f be a Davenport series with coefficients given by a sequence
a∈ �1. Let us assume that the series is sparse and not asymptotically jump canceling,
that is,

a ∈ S and θa ≤ 1.

Then, the Hölder exponent of f at any fixed point x0 ∈ Rd satisfies

h f (x0)≤ liminf
q→∞

q∈supp(A)

log |Aq|
logδP

q (x0)
≤ liminf

n→∞
n∈supp(a)

log |an|
logδn(x0)

. (25)
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Moreover, if x0 does not belong to DM(a), the above quantities coincide and the
Hölder exponent may be computed using either of the following two formulae:

h f (x0) = liminf
q→∞

q∈supp(A)

log |Aq|
logδP

q (x0)
and h f (x0) = liminf

n→∞
n∈supp(a)

log |an|
logδn(x0)

.

The proof of Theorem 1 is postponed to Sect. 10 for the sake of clarity. In the
course of the proof, we obtain a uniform bound on the Hölder exponent, which may
be seen as a consequence of Theorem 1, and which we state now as a separate result
for future reference.

Corollary 3. Let f be a Davenport series with coefficients given by a sequence
a = (an)n∈Zd in �1. If the series is sparse and not asymptotically jump canceling,
then

∀x0 ∈ Rd h f (x0)≤ γa,
where γa is defined by Eq. (19). In particular, the Hölder exponent of f vanishes
everywhere when the sequence a has slow decay.

7 Implications for Multifractal Analysis

The preceding results will allow us to perform the multifractal analysis of some
multivariate Davenport series with coefficients a∈ �1. From now on, we assume that
the series is sparse and not asymptotically jump canceling. We begin by describing
the size properties of the iso-Hölder sets, which are formed of the points where f
has Hölder exponent equal to a given h, specifically,

E f (h) = {x ∈ Rd |h f (x) = h}, (26)

for h ∈ [0,∞]. To be precise, we compute the local spectrum of singularities of the
series f , that is, the mapping

d f (h,W ) = dimH(E f (h)∩W ), (27)

where W is a nonempty open subset of Rd . In the previous formula, dimH denotes
Hausdorff dimension, whose definition is recalled in Sect. 11.2. The spectrum is
actually governed by the parameter γa which controls the decay of the sequence a
and is defined by Eq. (19).

In view of Corollary 3, the Davenport series f has Hölder exponent at most
γa everywhere. Thus, all the iso-Hölder sets E f (h), for h > γa, are empty. As a
consequence, the spectrum of singularities is supported on [0,γa], and we may
restrict our attention to that interval in what follows. In addition, if γa vanishes,
that is, when the sequence a has slow decay, then the Hölder exponent of f vanishes
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everywhere, so that all the iso-Hölder sets are empty, except E f (0) which is equal to
the whole space Rd . That situation being trivial, we may assume from now on that
γa is positive.

The analysis below does not cover the case where γa is infinite. Note that this
case includes that in which the sequence a has finite support. In that situation, the
Davenport series is a finite sum of piecewise linear functions, thereby being smooth
except on a locally finite union of hyperplanes where its Hölder exponent vanishes.
If γa is infinite and the support of a has infinite cardinality, the arguments below only
imply that the Hölder exponent of the Davenport series is infinite Lebesgue-almost
everywhere in Rd and that the iso-Hölder sets associated with finite values of the
exponent all have Hausdorff dimension at most d − 1. It seems plausible, though,
that the dimension is exactly d− 1. In what follows, we shall therefore assume that
γa is finite.

The local spectrum of singularities of f on the interval [0,γa] is then given by the
following statement.

Theorem 2. Let f be a Davenport series with coefficients given by a sequence
a∈ �1. Let us assume that the series is sparse and not asymptotically jump canceling
and that 0 < γa <∞. Then, for any real h ∈ [0,γa] and any nonempty open subset W
of Rd,

d f (h,W ) = d − 1+
h
γa
.

Note that the spectrum of singularities does not depend on the particular region
W that is considered, and moreover it is nondegenerate, in the sense that its support
is not reduced to a single point. Consequently, following the terminology of [36],
the Davenport series falls in the category of homogeneous multifractal functions.

We get comparable results for the singularity sets, which are composed by the
points where the Davenport series f is continuous and has Hölder exponent at most
a given h, that is,

E ′
f (h) = {x ∈ Rd \DJ(a) |h f (x)≤ h},

where DJ(a) is the set of discontinuities of f , given by Eq. (8) and written using the
notation (24). In addition, we prove that the singularity sets belong to the category of
sets with large intersection introduced by Falconer [26]. This remarkable property
essentially asserts that the sets are so omnipresent and large in a measure theoretic
sense that their size properties are not altered by taking countable intersections.
As a matter of fact, the intersection of countably many sets with large intersection
with Hausdorff dimension at least a given real s still has dimension at least s; this
is in stark contradiction with the fact that the codimension of the intersection of
two subsets is usually expected to be the sum of their codimension, as is the case
for affine subspaces. Formally, the class of sets with large intersection are defined
in [26] in the following manner. Recall that a Gδ -set is a set that may be expressed
as a countable intersection of open sets.

Definition 8. For any s ∈ (0,d], the class G s of sets with large intersection with
dimension at least s is defined as the collection of all Gδ -subsets E of Rd such that
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dimH

⋂

n≥1

ςn(E)≥ s

for any sequence (ςn)n≥1 of similarity transformations of Rd .

The class G s is closed under countable intersections and bi-Lipschitz transforma-
tions and is the maximal class of Gδ -sets with Hausdorff dimension at least s that
satisfies those properties, see [26, Theorem A] for a precise statement. Moreover,
every set of the class G s has packing dimension equal to d in every nonempty open
set, see [26, Theorem D]. In what follows, packing dimension is denoted by dimP;
we refer for example to [27] for a definition of this notion.

Restricting to Gδ -sets will be quite a constraint for us here, so instead of
considering the classes G s themselves, we shall work with the extended classes G

s

defined by the following condition: For all E ⊆ Rd ,

E ∈ G
s ⇐⇒ ∃E ′ ∈ G s E ′ ⊆ E.

It is clear that the class G
s

contains G s and, in view of [26, Theorem C(b)], that
the Gδ -sets that belong to G

s
actually belong to the original class G s. Moreover,

the extended class G
s

naturally inherits from G s its remarkable properties: G
s

is
composed of sets with Hausdorff dimension at least s and packing dimension equal
to d and is closed under countable intersections and bi-Lipschitz transformations.

The next result describes the size and large intersection properties of the
singularity sets of the Davenport series f .

Theorem 3. Let f be a Davenport series with coefficients given by a sequence a =
(an)n∈Zd in �1. Let us assume that the series is sparse and not asymptotically jump
canceling and that 0 < γa < ∞. Then, for any real h ∈ (0,γa],

E ′
f (h) ∈ G

d−1+h/γa

and, moreover, for any nonempty open subset W of Rd,

dimH(E
′
f (h)∩W) = d− 1+

h
γa

and dimP(E
′
f (h)∩W) = d.

We refer to Sect. 11 for the proof of the two above theorems.

8 Convergence and Global Regularity of Davenport Series

We will now give a few results concerning the convergence of Davenport series,
when the sequence of coefficients does not belong to �1. In that case, the sum
does not necessarily belong to L∞, so that Hölder pointwise regularity may not
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be a relevant notion anymore. We will mainly consider convergence in Sobolev
spaces, with both positive and negative indices, which allows us to consider
simultaneously convergence in spaces of functions or, more generally, distributions.
Specific additional motivations for this section are supplied in Sect. 9, where we
show that the determination of global Sobolev regularity exponents is a preliminary
step to either the determination of Lq regularity (which is needed for the study of
p-exponents, see Sect. 9.4) or the verification of the multifractal formalism (see the
beginning of Sect. 9).

8.1 Preliminaries on Multivariate Arithmetic Functions

An arithmetic function is traditionally a mapping defined on N and valued in R
or sometimes in C. The usual multivariate extension deals with functions that are
defined on Nd , see [16, 25]. In this chapter, we consider a slightly different setting,
with multivariate arithmetic functions defined on Zd∗ .

A first simple example is supplied by the natural extension to Zd∗ of the divisor
function already mentioned in Sect. 4; this extension is still denoted by τ for
simplicity. To be specific, for any m ∈ Zd∗ , we define τ(m) as the number of
decompositions

m = ln with l ∈ N and n ∈ Zd
∗ . (28)

It is clear that τ(m) coincides with τ(gcd(m)), where gcd(m) denotes the greatest
common divisor of the components of the vector m. With the help of Eq. (12), this
implies that τ(m) = o(|m|ε) as m goes to infinity, for any fixed ε > 0. In what
follows, we shall write indistinctly l|m and n|m when Eq. (28) holds; with a slight
abuse, we shall also write l = m/n.

We will also make use of the extensions to the multivariate setting of other
arithmetic functions, specifically, the sums of zth powers of the divisors. Given
z ∈ C, recall that the one-dimensional arithmetic function σz is defined by

σz(m) =∑
n|m

nz,

where the sum bears on the positive divisors of the integer m. In the multivariate
case, we have to draw a difference between integer and vector divisors. Therefore,
we define two functions of the vectors m ∈ Zd∗ by

σz(m) = ∑
n∈Zd∗
n|m

|n|z and σ̃z(m) = ∑
l∈N
l|m

lz.

It is clear that these two functions coincide on N and that σ0(m) = σ̃0(m) = τ(m)
for all m ∈ Zd∗ . Moreover, for any z ∈ C, one easily checks that σ̃z(m) = σz(gcd(m))
and σz(m) = |m|zσ̃−z(m) = |m|zσ−z(gcd(m)). Given that σz(l) = lzσ−z(l) for any
integer l ∈ N, we deduce that
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∀m ∈ Zd
∗ σz(m) =

( |m|
gcd(m)

)z

σz(gcd(m)). (29)

Finally, recall that the Dirichlet convolution of two arithmetic functions A and B
defined on N is the arithmetic function A∗B given by

∀m ∈ N A∗B(m) = ∑
(l,n)∈N×N

ln=m

A(n)B(l).

Similarly, the convolution of a multivariate arithmetic functions A defined on Zd∗ and
a one-dimensional arithmetic function B defined on N is the multivariate arithmetic
function given by

∀m ∈ Zd
∗ A∗B(m) = ∑

(l,n)∈N×Zd∗
ln=m

A(n)B(l).

8.2 Davenport Expansions Versus Fourier Expansions

Let us now go back to Davenport series. Without any assumption on the sequence
a= (an)n∈Zd of Davenport coefficients, the right-hand side of Eq. (5) can be inverted
using the multivariate Möbius inversion formula, which is an easy extension of the
one-dimensional case and calls upon the Möbius function μ already used in Sect. 4.
However, we start by proving it for the sake of completeness.

Lemma 3. Let f be a multivariate arithmetic function defined on Zd∗ and let g be
the multivariate arithmetic function given by

∀m ∈ Zd
∗ g(m) = ∑

n∈Zd∗
n|m

f (n).

Then, the function f can be recovered from g by f = g ∗ μ , that is,

∀m ∈ Zd
∗ f (m) = ∑

n∈Zd∗
n|m

g(n)μ
(m

n

)
.

Proof. For any vector m ∈ Zd∗ , we have

∑
n∈Zd∗
n|m

g(n)μ
(m

n

)
= ∑

n∈Zd∗
n|m

μ
(m

n

)
∑

k∈Zd∗
k|n

f (k) = ∑
k∈Zd∗
k|m

f (k) ∑
n∈Zd∗
k|n|m

μ
(m

n

)
.
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Let us observe that the integer vectors n ∈ Zd∗ satisfying k|n|m are merely of the
form n = kl, where l ranges over the divisors of the positive integer m/k. Thus, the
last sum satisfies

∑
n∈Zd∗
k|n|m

μ
(m

n

)
= ∑

l|(m/k)

μ
(

m/k
l

)
= ∑

l|(m/k)

μ(l) = 1{k=m}.

The last equality follows from the well-known fact that the sum of the Möbius
function over all positive divisors of a given natural number n vanishes except if
n = 1, where the sum is equal to one. The result follows. 
�

The next proposition results from applying to Eq. (5) the above inversion formula
and will be useful in the determination of the Sobolev regularity of Davenport series.
It shows how to recover the Davenport coefficients of a series from the knowledge
of its Fourier coefficients.

Proposition 5. Let f be a Davenport series with coefficients given by a sequence
a = (an)n∈Zd in �1, and let (cm)m∈Zd denote the sequence of its Fourier coefficients.
Then,

∀n ∈ Zd
∗ an =−π ∑

m∈Zd∗
m|n

m
n
μ
( n

m

)
cm.

Proof. A straightforward consequence of Eq. (5) is that for all m ∈ Zd∗ ,

−πcmm = ∑
n∈Zd∗
n|m

ann.

The result now follows from applying Lemma 3 to the arithmetic functions f (n) =
ann and g(m) =−πcmm. Note that these functions take values in Rd and not merely
in R. However, Lemma 3 obviously extends to this case. 
�

8.3 Regularity of the Sum of a Davenport Series

Without any assumption on the odd sequence a = (an)n∈Zd of Davenport coeffi-
cients, we may define an odd sequence (cm)m∈Zd with the help of Eq. (5). This
detour via Fourier series will allow us to study the convergence of the Davenport
series ∑n an{n · x}, even when a is no longer assumed to belong to �1. Indeed,
we shall see that, in many functional settings, when the associated Fourier series
∑m cm sin(2πm ·x) converges, then the partial sums of the Davenport series converge
to the same limit.

In order to be more precise, let us begin by recalling that the spaces F γ,− are
defined in terms of the sequence spaces F γ by means of Eq. (21). Moreover, let Fγ
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denote the space of distributions whose Fourier coefficients belong to F γ and by
Fγ,− the space of distributions whose Fourier coefficients belong to F γ,−.

In addition, for any odd sequence a= (an)n∈Zd , we denote by f N the partial sums
of the corresponding Davenport series, that is,

f N(x) = ∑
n∈Zd
|n|≤N

an{n · x}.

The next result discusses the convergence properties of the sequence ( f N)N≥1 in the
spaces Fγ and Fγ,−. A noteworthy consequence lies in the fact that the Davenport
series ∑n an{n · x} converges in the sense of distributions when the coefficients an

do not increase faster than any polynomial.

Proposition 6. Let γ ∈ R, and let a ∈ F γ :

• If γ < 0, then the sequence ( f N)N≥1 converges in Fγ,− to a distribution f which
belongs to Fγ .

• If 0 ≤ γ ≤ 2, then the sequence ( f N)N≥1 is convergent in Fmin{1,γ},−.
• If γ > 2, then the sequence ( f N)N≥1 converges in F1,− to a distribution f which

belongs to F1.

Proof. It follows from Eq. (5) that the Fourier coefficients of the partial sum f N are
given by

cN
m =− 1

2π ∑
(l,n)∈Z∗×Zd∗
ln=m, |n|≤N

an

l
.

The condition |n| ≤ N is necessarily satisfied as soon as N is greater than or equal
to |m|, so that each sequence (cN

m)N≥1 is ultimately constant equal to

cm =− 1
2π ∑

(l,n)∈Z∗×Zd∗
ln=m

an

l
.

Moreover, given that the sequence a belongs to the space F γ , it is easy to check
that for all N ≥ 1 and m ∈ Zd∗ ,

|cN
m| ≤

|a|F γ

π |m| σ1−γ(m),

which implies in particular that for all m ∈ Zd∗ ,

|cm| ≤ |a|F γ

π |m| σ1−γ(m). (30)

The following estimates on the one-variable arithmetic functions σz(m) for z ∈ R
may be found in [45]:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z <−1 =⇒ σz(m) = O(1),

−1 ≤ z < 0 =⇒ ∀ε > 0 σz(m) = O(mε),

0 ≤ z ≤ 1 =⇒ ∀ε > 0 σz(m) = O(mz+ε),

z > 1 =⇒ σz(m) = O(mz).

Thanks to Eq. (29), we easily deduce the following estimates on the corresponding
multivariate functions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z <−1 =⇒ σz(m) = O(1),

−1 ≤ z < 0 =⇒ ∀ε > 0 σz(m) = O(|m|ε ),
0 ≤ z ≤ 1 =⇒ ∀ε > 0 σz(m) = O(|m|z+ε),

z > 1 =⇒ σz(m) = O(|m|z).

(31)

It now follows from Eq. (31) that the |cN
m| satisfy the estimates of Proposition 6

uniformly in N, and their limits |cm| satisfy the same estimates.
Convergence in the corresponding function spaces follows immediately by

applying the same approach to the differences cN
m−cm, starting from the observation

that for any fixed ε > 0,

|cN
m − cm| ≤ |a|F γ

π |m|Nε σ1−γ+ε(m)

for all N ≥ 1 and m ∈ Zd∗ . 
�
Our purpose is now to determine in which Sobolev spaces the Davenport series

with coefficients in the space F γ do converge. Let us recall that the Sobolev space
Hs is characterized by the following condition on the Fourier coefficients: A Zd-
periodic odd distribution f belongs to Hs if the sequence (cm)m∈Zd of its Fourier
coefficients satisfies

| f |2Hs = ∑
m∈Zd∗

|cm|2|m|2s < ∞.

Note that, if s< 0, this defines a space of distributions. In order to state sharp results,
we shall also need the following slight modifications of Hs. Specifically, let Hs

δ be
the space of all Zd-periodic odd distributions f whose Fourier coefficients satisfy

| f |2Hs
δ
= ∑

m∈Zd∗

|cm|2 |m|2s

(1+ log|m|)δ < ∞,

and let Hs
δ ,+ and Hs,− be the spaces defined, respectively, by

Hs
δ ,+ =

⋂

ε>0

Hs
δ+ε and Hs,− =

⋂

ε>0

Hs−ε .
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Before proceeding, let us begin by observing that the Fourier coefficient indexed
by m = (m1, . . . ,md) ∈ Zd∗ of the function which maps x = (x1, · · · ,xd) to {x1}
is equal to 1{m2=...=md=0}/m1. Therefore, this function fails to belong H1/2 but

belongs to H1/2
1,+ . It follows that, no matter how large γ is picked, we cannot expect

substantially better results than convergence in H1/2
1,+ . In addition, note that if s is

less than 1/2, then

|{n · x}|Hs =
|n|s
2π

(2ζ (2(1− s)))1/2 .

Thus, for any odd sequence a = (an)n∈Zd , the Davenport series f defined by Eq. (2)
has norm | f |Hs bounded above by ∑n |an| |n|s, up to a multiplicative constant. As a
consequence,

∀s < 1/2 ∑
n∈Zd∗

|an| |n|s < ∞ =⇒ f ∈ Hs.

We will now see how this straightforward result can be improved under the
assumption that a belongs to the space F γ . We restrict our attention to the situation
where d ≥ 2, the one-dimensional case being thoroughly studied in [35].

Proposition 7. Let us assume that d ≥ 2. Let γ ∈ R, and let a = (an)n∈Zd be a
sequence in F γ . Then, the sequence ( f N)N≥1 converges in the space

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hγ−d/2
1,+ if γ ≤ 0,

Hγ−d/2,− if 0 < γ ≤ 1,

H(1+γ−d)/2,− if 1 < γ ≤ 2,

H(1+γ−d)/2
1,+ if 2 < γ < d and d ≥ 3,

H1/2
2,+ if γ = d ≥ 3,

H1/2
1,+ if γ > d.

(32)

Proof. It follows from Proposition 6 that the sequence ( f N)N≥1 converges to a
distribution f . Moreover, the Fourier coefficients of f may be bounded with the
help of Eq. (30), so that

| f |2Hs
δ
≤ |a|2F γ

π2 ∑
m∈Zd∗

|m|2(s−1)

(1+ log |m|)δ σ1−γ(m)2. (33)

In order to estimate the above sum, let us split the index set as a union of dyadic
domains. Specifically, the above sum is equal to the sum over all integers j ≥ 0 of
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∑
m∈Zd

2 j≤|m|<2 j+1

|m|2(s−1)

(1+ log|m|)δ σ1−γ(m)2 ≤ 22(s−1)( j+1)

(1+ j)δ
mγ (2 j+1)sγ(2 j+1). (34)

In the previous bound, mγ and sγ are defined, respectively, by

mγ(x) = sup
m∈Zd∗
|m|<x

σ1−γ(m) and sγ(x) = ∑
m∈Zd∗
|m|<x

σ1−γ(m),

for any real x > 0. The estimates Eq. (31) readily imply the following bounds on mγ :

mγ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O(x1−γ) if γ < 0,

O(x1−γ+ε) for all ε > 0 if 0 ≤ γ ≤ 1,

O(xε ) for all ε > 0 if 1 < γ ≤ 2,

O(1) if γ > 2.

Let us now deal with sγ . For all x > 0, we have

sγ(x) = ∑
m∈Zd∗
|m|<x

∑
n∈Zd∗
n|m

|n|1−γ ≤ ∑
n∈Zd∗
|n|<x

x
|n| |n|

1−γ = x ∑
n∈Zd∗
|n|<x

|n|−γ ,

which readily implies that

sγ(x) =

⎧
⎪⎨

⎪⎩

O(xd+1−γ) if γ < d,

O(x logx) if γ = d,

O(x) if γ > d.

Combining the above bounds, we deduce that the sum in Eq. (34) is bounded
above, up to a multiplicative constant, by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(d+2(s−γ)) j/ jδ if γ < 0,

2(d+2(s−γ)+ε) j for all ε > 0 if 0 ≤ γ ≤ 1,

2(d+2s−1−γ+ε) j for all ε > 0 if 1 < γ ≤ 2,

2(d+2s−1−γ) j/ jδ if 2 < γ < d and d ≥ 3,

2(2s−1) j/ jδ−1 if γ = d ≥ 3,

2(2s−1) j/ jδ if γ > d.

These estimates are now sufficient to deduce that the limiting distribution f belongs
to the spaces given by Eq. (32).
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On top of that, convergence in the corresponding spaces follows immediately by
applying the same approach to the differences f N − f . As a matter of fact, for any
fixed η > 0, their Fourier coefficients satisfy

|cN
m − cm| ≤ |a|F γ

π |m|
(

1+ log|m|
1+ logN

)η/2

σ1−γ(m)

for all N ≥ 1 and m ∈ Zd∗ , which implies that Eq. (33) also holds when replacing
| f |2Hs

δ
by (1+ logN)η | f N − f |2Hs

δ+η
. 
�

9 Concluding Remarks and Open Problems

The study of the local regularity of Davenport series remains a largely open field of
investigations, with many interesting questions at the crossroad of number theory,
harmonic analysis and functional analysis; our purpose in this section is to list
a few of them that we believe of particular interest. A first one consists in the
verification of the multifractal formalism. We shall not describe this question here,
because its final and most precise formulation (in terms of wavelet leaders) requires
the introduction of wavelet methods that go beyond the scope of this chapter; we
refer to [36] for a mathematical presentation concerning these issues and to [1]
for a recent overview on the applications side. The verification of the multifractal
formalism is a completely open problem for series of compensated pure jump
functions, whether they be Davenport series (in one or several variables) or Lévy
processes and fields. Let us just mention that Sect. 8 can be seen as a preliminary
step in this direction; indeed, a part of this verification involves the determination of
the Sobolev spaces that contain the function f under consideration.

9.1 Optimality of Lemma 2

The only cases where we have been able to determine the exact pointwise Hölder
regularity of the sum of a Davenport series are when the bound given by Lemma 2 is
optimal. This is not accidental and actually, in all cases of jump functions for which
the Hölder exponent has been determined, it turns out that this bound is optimal:
This is the case for Lévy processes without Brownian component and their extension
to the multivariate setting [23, 24, 34], for the few cases of Markov processes with
nonstationary increments whose multifractal analysis has been performed [10] and
for the other cases of Davenport series which can be worked out [35, 38, 39]. We
shall however give below a simple example of Davenport series where this is not
the case.
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We shall restrict the discussion to the one-dimensional setting, which is easier to
consider and is sufficient to explain why Lemma 2 is not always sharp, even in the
setting of Davenport series. Of course, in all generality, Eq. (16) is clearly not always
sharp, as shown by the case in which f is a continuous function, where the bound
thus obtained is trivial. A natural class of functions for which one might expect
optimality is supplied by compensated pure jump functions, that is, the functions f
whose derivative f ′ in a distributional sense is of the form

∞

∑
n=1

(anδxn + cn) . (35)

In typical examples, the jump locations xn form a dense subset of the ambient
space. However, even in the case where f is a compensated pure jump function,
the bound Eq. (16) need not be optimal, as shown by the following example of one-
dimensional Davenport series:

fβ (x) =−ζ (β ){x}+
∞

∑
n=1

{nx}
nβ

, (36)

where β > 3/2. Indeed, the function fβ is continuous at zero and jumps at every
nonvanishing rational p/q written in its irreducible form and the corresponding
jump has magnitude Δ fβ (p/q) equal to ζ (β )/qβ . Thus, the bound Eq. (16) on its
Hölder exponent at zero is realized by rational numbers of the form 1/q, specifically,

h fβ (0)≤ liminf
q→∞

logΔ fβ (1/q)

log(1/q)
= β .

We shall prove the following result which shows that this bound is not optimal.

Proposition 8. Let β be a real number larger than 3/2 that is not an integer greater
than or equal to 3. Then, the value of the Hölder exponent of fβ at zero is given by

h fβ (0) = β − 1.

Proof. Given that the function fβ is odd, it is sufficient to study the increment
fβ (x)− fβ (0) for positive values of x only. If x ∈ (0,1) and n < 1/x, we have
{nx}= nx− 1/2. Letting � ·� denote the ceiling function, we deduce that

fβ (x)− fβ (0) = −ζ (β )
(

x− 1
2

)
+

�1/x�−1

∑
n=1

nx− 1/2

nβ
+

∞

∑
n=�1/x�

{nx}
nβ

= −ζ (β )x+ x
�1/x�−1

∑
n=1

1

nβ−1
+

∞

∑
n=�1/x�

{nx}+ 1/2

nβ
.
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Let us first assume that β < 2. While the first term is merely linear, it is easy to
see that the second term is equivalent to xβ−1/(2−β ) as x goes to zero. Concerning
the third term, its absolute value may be bounded by the sum of 1/nβ over n ≥
�1/x�, which is equivalent to xβ−1/(β − 1). Given that β > 3/2, the difference
| fβ (x)− fβ (0)| is thus of the order of xβ−1, and the result follows.

In the case where β = 2, the second term in the above decomposition is equivalent
to x log(1/x), and the upper bound on the third term is equivalent to x, so the result
follows as well.

Finally, let us consider the case in which β > 2. The upper bound on the third
term above is again equivalent to xβ−1/(β − 1). Moreover, the second term may be
rewritten as

x
�1/x�−1

∑
n=1

1

nβ−1
= ζ (β − 1)x− x

∞

∑
n=�1/x�

1

nβ−1
,

and the second term of the latter expression is equivalent to xβ−1/(β−2). The result
now follows because β is not an integer. 
�

This example opens the possibility of studying the pointwise regularity of
Davenport series for which the bound supplied by Lemma 2 is not optimal. Beyond
the study of particular functions at particular points, natural general open questions
are the following. Under simple assumptions on the Davenport coefficients, can
one show that the bound is optimal at a given point? Everywhere? Outside a set of
dimension zero? Or almost everywhere? Similar questions can also be raised in the
more general setting of compensated pure jump functions.

9.2 Hecke’s Functions

In dimension one, special attention has been paid to the study of very specific
Davenport series, namely, Hecke’s functions Hβ , which depend on a parameter
β ∈ C and are defined by Eq. (3). Note that they can actually turn out to be
distributions when the real part ℜβ is sufficiently small.

These functions have a rich history. They were first considered as functions
of the complex variable β ; the real number x being merely a parameter. Hecke
studied their analytic continuation, and his study was later extended by Hardy; these
results showed that the range of analytic continuation depends on the Diophantine
approximation properties of the parameter x. As a function of the real variable x,
the spectrum of singularities was completely determined only in the case where
ℜβ ≥ 2, which leaves open the case where 1<ℜβ < 2, see [35] and Eq. (37) below.
Note that the counterexample supplied in Sect. 9.1 is closely related with Hecke’s
functions, and we refer to Sect. 9.3 below for further connections. One could also
consider multivariate extensions of these functions, specifically, the functions

x �→ ∑
n∈Zd∗

εn
{n · x}
|n|β ,

where (εn)n∈Zd∗ is an odd sequence taking the values ±1.
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9.3 Spectrum of Singularities of Compensated Pure
Jumps Functions

We now go back to the general setting supplied by the compensated pure jump func-
tions. The examples of such functions whose multifractal properties are known may
be separated into two large classes. The first class corresponds to the case where the
jump locations xn appearing in Eq. (35) are somehow homogeneously distributed;
this is the case for many examples of Davenport series [35,38,39] or Lévy fields and
processes [23,24,34]. The second class is composed of functions for which the jump
locations xn form a strongly inhomogeneous sequence; such examples have been
investigated by Barral and Seuret and include Lévy subordinators in multifractal
time [8] or heterogeneous sums of Dirac masses [5, 6, 9]. In the heterogeneous
case, the obtained spectra strongly differ from those which have been exhibited
in this chapter. Indeed, they are usually composed of two parts: a linear one (for
sufficiently small values of the Hölder exponent h) followed by a strictly concave
one. Note however that spectra of a different kind have been obtained in [10]; for
some Markov processes which differ from Lévy processes, one meets spectra that
are a superposition of linear functions with different slopes.

In the homogeneous case, the spectra that have been met up to now are linear.
However, this is not a general rule, even in the particular case of one-variable
Davenport series. Let us consider for instance the function fβ defined by Eq. (36)
and suppose that β is a noninteger real number larger than two. The local spectrum
of singularities of the corresponding Hecke function Hβ defined by Eq. (3) is then
supported by the interval [0,β/2] and satisfies

∀h ∈ [0,β/2] ∀W �= /0 open dHβ (h,W ) =
2h
β

; (37)

this follows readily from the approach employed in [35] in order to compute the
global spectrum of Hβ , which corresponds to the case where W is equal to the
whole real line. As shown by Proposition 8, subtracting the term ζ (β ){x} to Hecke’s
function Hβ (x) shifts the value of the Hölder exponent at the integers from zero to
β−1. As a consequence, the local spectrum of singularities of the resulting function
fβ is now supported in the set [0,β/2]∪{β − 1}. Moreover, the function fβ still
satisfies Eq. (37) but, rather than being empty, its iso-Hölder set E fβ (β −1) is equal
to Z. Therefore, for any open subset W of R that contains an integer,

d fβ (β − 1,W) = 0.

In particular, the local spectrum of fβ depends on the particular region that is
considered. Thus, unlike the corresponding Hecke function Hβ , the function fβ
is not a homogeneous multifractal function. Furthermore, unlike that of Hβ , the
global spectrum of singularities of fβ is not a linear function. More specifically,
the graph of this spectrum is the union of a segment and an isolated point. The
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multifractal properties of fβ may be put in comparison with those of Riemann’s
function ∑n sin(πn2x)/n2 whose global spectrum of singularities has exactly the
same shape and which is a homogeneous multifractal function, see [32].

This example raises several questions. Is there a simple condition on the
coefficients of a Davenport series which ensures that its spectrum is linear? What is
the general form of the spectrum of a Davenport series? Similar questions can also
be asked in the more general setting of compensated pure jumps functions. Note that
some results on these problems have been obtained by J. Barral and S. Seuret in the
slightly different setting supplied by the large deviation spectrum, see [7].

9.4 p-Exponent

Hölder pointwise regularity is defined only for locally bounded functions, which
explains why we always made the assumption that the sequence of Davenport
coefficients belongs to �1 when studying Hölder regularity. However, Proposition 7
shows that, even when the sequence of Davenport coefficients does not belong to �1,
and therefore convergence in L∞ is no more guaranteed, one can obtain convergence
in L2 (this corresponds to the Sobolev space Hs considered in Sect. 8 in the case
where s is zero) and also for larger values of p; indeed when s is positive, the
Sobolev embeddings imply that if f belongs to Hs, then it also belongs to Lp for
all p smaller than the critical value p0 defined by the condition

1
p0

=
1
2
− s

d
.

Note also that the specific case of L2 convergence of one-variable Davenport series
has already been considered, see [15, 35].

In such situations, one can still perform a pointwise analysis of regularity, by
using a definition of pointwise smoothness which is weaker than Hölder regularity
and is compatible with functions that are not locally bounded: It is the notion
of T p

α (x0) regularity, which was introduced by Calderón and Zygmund in 1961,
see [18]. The next definition is an adaptation of Definition 2 to that setting.

Definition 9. Let f be a tempered distribution on Rd , let p ∈ [1,∞), let α >−d/p
and let x0 ∈ Rd . The distribution f belongs to T p

α (x0) if it coincides with an Lp

function in the open ball B(x0,R) for some real R > 0, and if there exist a real C > 0
and a polynomial Px0 of degree less than α such that for all r ∈ (0,R],

(
1
rd

∫

B(x0,r)
| f (x)−Px0(x)|p dx

)1/p

≤Crα .

The p-exponent of f at x0 is then defined as

hp
f (x0) = sup{α >−d/p | f ∈ T p

α (x0)}.
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Note that the Hölder exponent corresponds to the case where p = ∞, and the
condition on the degree of Px0 implies its uniqueness. This definition is a natural
substitute for pointwise Hölder regularity when functions in Lp

loc are considered. In
particular, the p-exponent can take values down to −d/p, thereby allowing to take
into account behaviors which are locally of the form 1/|x− x0|α for α < d/p.

Furthermore, similarly to Eqs. (26) and (27), we may define the analogs of the
iso-Hölder sets and the local spectrum of singularities by

E p
f (h) = {x ∈ Rd |hp

f (x) = h} and d p
f (h,W ) = dimH(E

p
f (h)∩W ),

the latter quantity being referred to as the local p-spectrum of the distribution f .
Both in the univariate and the multivariate case, the subject of determining the p-

exponents and the p-spectrum of a Davenport series with coefficients not belonging
to �1 is completely open.

9.5 Directional Regularity

The notion of Hölder pointwise regularity given in Definition 2 does not take
into account directional regularity but yields the worst possible regularity in all
directions. Therefore, all the results obtained in this chapter do not take into account
possible directional irregularity phenomena.

We now briefly discuss the notion of directional regularity. Let f be a locally
bounded function defined on Rd . In order to take into account directional behaviors,
it is natural to define the Hölder regularity at x0 in a direction u ∈ Rd \ {0} as the
Hölder regularity at zero of the univariate function t �→ f (x0 + tu). This definition
has several drawbacks which stem from the fact that the latter function is defined as
the trace of f on a line, which is a set of measure zero, see [37] for a detailed
discussion. Let us now give the definition of anisotropic smoothness which is
currently used, see, e.g., [11, 37].

Definition 10. Let f be a real-valued function defined on Rd and bounded in a
neighborhood of a point x0 ∈ Rd . Let e = (e1, . . . ,ed) be an orthonormal basis of
Rd and let α = (α1, . . . ,αd) be a d-tuple of nonnegative real numbers such that
α1 ≥ . . . ≥ αd . The function f belongs to Cα(x0,e) if there exist a real C > 0 and a
polynomial Px0 such that for all x in a neighborhood of x0,

| f (x)−Px0(x)| ≤C
d

∑
i=1

|(x− x0) · ei|αi .

Since, by construction, Davenport series display jumps along hyperplanes,
thereby being extremely anisotropic by nature, a natural question is to determine
their pointwise anisotropic regularity; the same remark is also relevant for Lévy
fields, which present the same type of anisotropy, see [24]. These two examples
would certainly be natural candidates to test possible definitions of anisotropic
spectra of singularities.
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Finally, note that an extension of pointwise smoothness combining anisotropy
and the T p

α (x0) condition is proposed in [37]. This notion could be relevant in
order to perform the study of the anisotropy of multivariate Davenport series with
coefficients not belonging to �1.

10 Proof of Theorem 1

Let us begin by comparing the two lower limits appearing in the statement of the
theorem. First, given that θa is bounded above by one, we have

liminf
q→∞

q∈supp(A)

log |Aq|
logδP

q (x0)
≤ liminf

q→∞
q∈supp(a)

log |aq|
logδP

q (x0)
,

where A = J(a) and a = M(a). In addition, replacing δP
q (x0) by δq(x0) in the right-

hand side does not change the value of the lower limit. Indeed, for any point q in
the support of the sequence a, the distance δq(x0) is reached on a hyperplane of the
form Hp,q with p ∈ Z, so that

δq(x0) =
|q · x0− p|

|q| =
|q′ · x0 − p′|

|q′| ≥ δP
q′ (x0).

Here, p′ = p/r and q′ = q/r, where r denotes the greatest common divisor of the
integer p and the components of the vector q, so that p′ ∈ Pq′ . Since the multiples
of q are also multiples of q′, the supremum over all integers l ≥ 1 of |alq| is at most
that of |alq′ |. As a consequence, for all q∈ supp(a) large enough, there exists a point
q′|q such that

logaq′

logδP
q′ (x0)

≤ logaq

logδq(x0)
≤ logaq

logδP
q (x0)

,

so the lower limit featuring δP
q (x0) in the denominator coincides with that featuring

δq(x0). Furthermore, |aq| is obviously bounded above by aq, so that

logaq

logδq(x0)
≤ log |aq|

logδq(x0)
.

The above discussion, combined with Corollary 1, finally leads to Eq. (25). In
particular, since δn(x0) is bounded above by 1/|n| regardless of the value of x0,
we deduce the next uniform bound on the Hölder exponent:

h f (x0)≤ γa,

where γa is defined by Eq. (19). The remainder of the theorem then follows when
the sequence of Davenport coefficients has slow decay, that is, when γa vanishes.

In order to finish the proof of the theorem, we thus may assume that γa is positive.
It remains for us to establish that
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h f (x0)≥ liminf
n→∞

n∈supp(a)

log |an|
logδn(x0)

(38)

for any point x0 that does not belong to the set DM(a). Let us consider an integer

j0 ≥ 0 and a point x ∈ Rd such that 2−( j0+1) ≤ |x− x0|< 2− j0 . Since the sequence
a is in �1, we may define

Σx0,x(Z) = ∑
n∈Z

an ({n · x}−{n · x0})

for any subset Z of Zd . Since the Davenport series converges normally, it is clear
that its increment between x0 and x may be written in the form

f (x)− f (x0) = Σx0,x(Z
d).

Therefore, it suffices to handle the series Σx0,x(Z) for Z ranging over a collection of
sets that form a partition of Zd .

To be specific, let us begin by giving an upper bound on |Σx0,x(C j ∩Zd)|, where
C j is the domain defined by

C j =
{

x ∈ Rd |2 j ≤ |x|< 2 j+1
}
,

for any integer j ≥ 0. For every fixed γ ∈ (0,γa), there exists a constant Cγ > 0
such that |an| ≤Cγ |n|−γ for all n ∈ Zd . For the sake of simplicity, we merely write
|an| � |n|−γ in such a situation, thereby making use of the Vinogradov symbol.
Accordingly,

∣∣
∣Σx0,x(C j ∩Zd)

∣∣
∣≤ ∑

n∈C j∩Zd

|an| � ∑
n∈C j∩Zd

|n|−γ1{n∈supp(a)}.

Furthermore, for every fixed ε > 0, we deduce from the sparsity assumption bearing
on the sequence a that #(supp(a)∩C j)� 2ε j. As a consequence,

∑
n∈C j∩Zd

|n|−γ1{n∈supp(a)} ≤ 2−γ j#(supp(a)∩C j)� 2(−γ+ε) j.

The union over all integers j ≥ j0 is equal to the complement in Rd of the open ball
centered at the origin with radius 2 j0 . Thus, summing over all these values of j, we
obtain ∣

∣
∣Σx0,x(Z

d \B(0,2 j0))
∣
∣
∣� 2(−γ+ε) j0 � |x− x0|γ−ε .

Now, let Nx0,x denote the set of all points n ∈ Zd for which there exists an
integer k ∈ Z satisfying either n ·x0 ≤ k < n ·x or n ·x ≤ k < n ·x0, meaning that the
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hyperplane Hk,n separates the points x0 and x, and let N c
x0,x denote its complement

in Zd . For each n ∈ N c
x0,x, it is clear that n ·x0 and n ·x have the same integer part so

that
Σx0,x(N

c
x0,x ∩B(0,2 j0)) = (x− x0) · ∑

n∈N c
x0,x

|n|<2 j0

ann. (39)

If γa is smaller than or equal to one, the modulus of the sum in Eq. (39) may be
bounded above by the sum over j ∈ {0, . . . , j0 − 1} of

∑
n∈C j∩Zd

|ann| � ∑
n∈C j∩Zd

|n|1−γ1{n∈supp(a)} � 2(1−γ) j#(supp(a)∩C j)� 2(1−γ+ε) j,

(40)
which entails that

∣
∣Σx0,x(N

c
x0,x ∩B(0,2 j0))

∣
∣� |x− x0|2(1−γ+ε) j0 ≤ |x− x0|γ−ε .

In the opposite case where γa is larger than one, we assume that 1 < γ < γa and
rewrite Eq. (39) as a difference of two terms in the following form:

Σx0,x(N
c

x0,x ∩B(0,2 j0)) = (x− x0) · ∑
n∈N c

x0,x

ann− (x− x0) · ∑
n∈N c

x0,x

|n|≥2 j0

ann.

The first series is normally convergent because, in view of Eq. (40), we have

∑
n∈N c

x0,x

|ann| ≤
∞

∑
j=0
∑

n∈C j∩Zd

|ann| �
∞

∑
j=0

2(1−γ+ε) j < ∞.

In order to handle the second term, we make use of Eq. (40) again; this implies that

∑
n∈N c

x0,x

|n|≥2 j0

|ann| ≤
∞

∑
j= j0

∑
n∈C j∩Zd

|ann| �
∞

∑
j= j0

2(1−γ+ε) j � |x− x0|−1+γ−ε . (41)

We finally deduce that
∣
∣
∣
∣
∣∣
Σx0,x(N

c
x0,x ∩B(0,2 j0))− (x− x0) · ∑

n∈N c
x0,x

ann

∣
∣
∣
∣
∣∣
� |x− x0|γ−ε .

It remains for us to consider the behavior of Σx0,x on the set Nx0,x∩B(0,2 j0). Let
α denote the lower limit in the right-hand side of Eq. (38), which we may assume
to be positive, and let α ′ ∈ (0,α). By definition of α , we have δn(x0)≥ |an|1/α ′

for
n ∈ Zd sufficiently far from the origin. In addition, an necessarily vanishes when
the distance δn(x0) is zero. As a matter of fact, in that situation, x0 belongs to a
hyperplane Hk,n with k ∈ Z. This hyperplane is represented by a unique pair (p,q)∈
Hd , and then p and q divide k and n, respectively. However, x0 does not belong to
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DM(a), so the index q cannot belong to the support of the sequence M(a) = a, which
entails that |an| ≤ aq = 0. The upshot is that there exists a real Cα ′ > 0 such that
δn(x0) ≥ Cα ′ |an|1/α ′

for all n ∈ Zd , which we write |an| � δn(x0)
α ′

still using the
Vinogradov symbol. As a consequence,

∣
∣Σx0,x(Nx0,x ∩B(0,2 j0))

∣
∣≤ ∑

n∈Nx0,x

|n|<2 j0

|an| � ∑
n∈Nx0,x

|n|<2 j0

δn(x0)
α ′
1{n∈supp(a)}.

Moreover, when n belongs to Nx0,x, we have |n · x0 − k| ≤ |n · (x− x0)| for some
integer k ∈ Z, so that δn(x0) is bounded above by |x− x0|. Hence,

∑
n∈Nx0 ,x

|n|<2 j0

δn(x0)
α ′
1{n∈supp(a)} ≤ |x− x0|α ′

#(supp(a)∩B(0,2 j0))� |x− x0|α ′
2ε j0 ,

where the last bound follows from the sparsity assumption bearing on the sequence
a. We deduce that

∣
∣Σx0,x(Nx0,x ∩B(0,2 j0))

∣
∣� |x− x0|α ′−ε .

The above approach also enables us to write that

∑
n∈Nx0,x

|n|<2 j0

|ann| � |x− x0|α ′ ∑
n∈Nx0,x

|n|<2 j0

|n|1{n∈supp(a)} � |x− x0|α ′ j0−1

∑
j=0

2 j#(supp(a)∩C j),

where the last sum is bounded by 2(1+ε) j0 up to a constant, in view of the sparsity
of the sequence a. In addition, when 1 < γ < γa, the bound given by Eq. (41) still
holds when N c

x0,x is replaced by Nx0,x. It follows that

∣
∣∣
∣
∣
∣
∑

n∈Nx0,x

ann

∣
∣∣
∣
∣
∣
� |x− x0|−1+γ−ε + |x− x0|−1+α ′−ε ,

which readily implies that
∣
∣
∣
∣∣
∣
Σx0,x(Nx0,x ∩B(0,2 j0))− (x− x0) · ∑

n∈Nx0,x

ann

∣
∣
∣
∣∣
∣
� |x− x0|γ−ε + |x− x0|α ′−ε .

Combining all the previously obtained bounds, we finally get

| f (x)− f (x0)| � |x− x0|γ−ε + |x− x0|α ′−ε
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when γa is smaller than or equal to one, and

∣∣
∣
∣
∣
f (x)− f (x0)− (x− x0) · ∑

n∈Zd

ann

∣∣
∣
∣
∣
� |x− x0|γ−ε + |x− x0|α ′−ε

when γa is larger than one. In both cases, it appears that the Hölder exponent at x0

of the Davenport series f is at least the minimum between γ − ε and α ′ − ε . The
bound Eq. (38) finally follows from letting ε go to zero, γ to γa and α ′ to α .

11 Proof of Theorems 2 and 3

Throughout the section, f denotes a Davenport series with coefficients given by
a sequence a = (an)n∈Zd∗ in �1. We assume that the series is sparse and not
asymptotically jump canceling and that γa is both positive and finite.

11.1 Locations of the Singularities

The first step to the proof of Theorems 2 and 3 consists in observing that the iso-
Hölder sets and the singularity sets of the Davenport series f may be expressed in
terms of the sets La(α) of all points that are at a distance less than |an|1/α from
a hyperplane Hk,n defined as in Eq. (6) for infinitely many points n in the support
of the sequence a. Put another way, a point x belongs to La(α) if and only if the
distance δn(x) defined by Eq. (23) is less than |an|1/α infinitely often. To be more
specific, for any real α > 0, the set La(α) is defined by

La(α) =
{

x ∈ Rd
∣∣ |n · x− k|< |n| |an|1/α for i.m. (k,n) ∈ Z×Zd}, (42)

where i.m. stands for “infinitely many”. It is easy and useful to remark that the
mapping α �→ La(α) is nondecreasing.

The connection between the iso-Hölder and singularity sets and the sets La(α)
is now given by the next result. It is a direct consequence of Theorem 1, along with
the discussion made in Sect. 3 above according to which the Davenport series f is
discontinuous on DJ(a), thus having Hölder exponent zero thereon. In its statement,
M(a) denotes the image of the sequence a under the action of the maximal operator.

Lemma 4. Let h ∈ [0,γa]. Then,

E f (h)\DJ(a) ⊆ E ′
f (h)⊆

(
DM(a) \DJ(a)

)∪
⋂

α>h

La(α). (43)

Moreover, E f (0)⊇ DJ(a) and for the positive values of h,
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E ′
f (h)⊇ La(h)\DJ(a) and E f (h)⊇ E ′

f (h)\
⋃

α<h

La(α). (44)

Lemma 4 suggests that the proof of Theorems 2 and 3 will follow from a detailed
understanding of the size and large intersection properties of the sets La(α). This is
the purpose of the next subsection, but let us just point out here that

⋂

α>γa
La(α) = Rd . (45)

Indeed, it is plain that δn(x) ≤ 1/|n| for every n ∈ Zd∗ and every point x ∈ Rd , and
that |an|1/α |n| ≥ 1 infinitely often, when α > γa. We may thus restrict our attention
to the case where α ≤ γa in the study of the size and large intersection properties of
La(α).

11.2 Size and Large Intersection Properties of the Sets La(α),
Connection with the Duffin–Schaeffer and Catlin
Conjectures

We shall investigate the size properties of the sets La(α) by estimating their
Hausdorff measures for specific gauge functions. We call a gauge function any
continuous nondecreasing function g which is defined on [0,ε] for some ε > 0 and
vanishes at zero. The Hausdorff measure associated with such a gauge function is
then defined by

H g(E) = lim
δ↓0

↑ H g
δ (E) with H g

δ (E) = inf
E⊆⋃i Ui
|Ui|<δ

∞

∑
i=1

g(|Ui|),

for any subset E of Rd . Here, the infimum is taken over all sequences (Ui)i≥1 of
subsets of Rd satisfying E ⊆⋃

iUi and |Ui|< δ for all i, where | · | denotes diameter.
It is well-known that H g is a Borel measure on Rd , see, e.g., [44]. Moreover,
the Hausdorff measure associated with the gauge function r �→ rs is called the s-
dimensional Hausdorff measure and is denoted by H s; recall that such measures
enable one to define the Hausdorff dimension of a nonempty set E ⊆ Rd by

dimH E = sup{s ∈ (0,d) |H s(E) = ∞}= inf{s ∈ (0,d) |H s(E) = 0},

see Falconer’s book [27] for instance.
Theorems 2 and 3 state that the iso-Hölder and the singularity sets of the

Davenport series f all have Hausdorff dimension between d − 1 and d. Therefore,
on our way to the proof of these results, we may restrict our attention to the gauge
functions of the form r �→ rd−1+s, with 0 ≤ s ≤ 1, as well as slight corrections
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thereof. These corrections are obtained by replacing rs in the previous expression
by more general functions, specifically, the continuous nondecreasing functions ϕ
defined on [0,ε] for some ε > 0 which vanish at zero, for which r �→ ϕ(r)/r is
nonincreasing and positive, and for which the limit

sϕ = lim
r→0

logϕ(r)
logr

exists (this limit is then between zero and one). The collection of all such functions
is denoted by Φ , and clearly contains the functions r �→ rs, for 0 ≤ s ≤ 1. For any
ϕ ∈Φ , it is now plain that the function r �→ rd−1ϕ(r) is a gauge; the corresponding
Hausdorff measure is denoted by H d−1,ϕ , and the value that it assigns to the set
La(α) is discussed in the next statement.

Lemma 5. For any real α > 0 and any function ϕ ∈Φ ,

∑
n∈Zd

|n|ϕ(|an|1/α)< ∞ =⇒ H d−1,ϕ(La(α)) = 0.

Proof. Let ρn = |an|1/α for any n ∈ Zd , and let us consider two real numbers A > 1
and δ ∈ (0,1]. Let us assume that the series appearing in the statement of the lemma
converges. So, there necessarily exists an integer η0 ≥ 1 such that 4ρn < δ for all
n ∈ Zd with |n| ≥ η0. Then, for any η1 ≥ η0,

La(α)∩B(0,A− 1)⊆
⋃

n∈supp(a)
|n|≥η1

⋃

k∈Z
|k|<A|n|

{
x ∈ B(0,A)

∣
∣dist(x,Hk,n)< ρn

}
.

Moreover, each set in the union above may be covered by (2�2A
√

d/ρn�)d−1 open
balls with radius 2ρn. Therefore,

H
r �→rd−1ϕ(r)
δ (La(α)∩B(0,A− 1)) ≤ ∑

n∈supp(a)
|n|≥η1

2A|n|
(

4A
√

d
ρn

)d−1

(4ρn)
d−1ϕ(4ρn)

≤ 8A(16A
√

d)d−1 ∑
n∈Zd
|n|≥η1

|n|ϕ(|an|1/α).

Letting η1 →∞ and δ → 0, we deduce that H d−1,ϕ(La(α)∩B(0,A−1)) = 0. This
holds for all integers A ≥ 1, so the result follows. 
�

In particular, letting ϕ be the identity function in the statement of Lemma 5 and
letting L d be the Lebesgue measure in Rd , we deduce that

∑
n∈Zd

|n| |an|1/α < ∞ =⇒ L d(La(α)) = 0. (46)
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Owing to the alternate expression (20) of γa, it is easy to see that the above series
converges once α is less than γa. Owing to Lemma 4 and the fact that DM(a) is
a countable union of hyperplanes, we deduce that the iso-Hölder sets E f (h) and
the singularity sets E ′

f (h) have Lebesgue measure zero when h < γa. Together with
Corollary 3, this implies that the sets E f (γa) and E ′

f (γa) both have full Lebesgue

measure. Therefore, h f (x0) = γa for L d-almost every x0 ∈ Rd .
To proceed with the proof of Theorems 2 and 3, we shall need a kind of converse

to Lemma 5, which ensures that La(α) has a positive Hausdorff measure for specific
gauge functions. The study of the size properties of various classical sets arising
in the metric theory of Diophantine approximation suggests that such a converse
should look like the following:

∑
n∈Zd

|n|ϕ(|an|1/α) = ∞ =⇒ ∀W open H d−1,ϕ(La(α)∩W ) = H d−1,ϕ(W ),

(47)
see for instance [14, 21] and references therein. Given that La(α) is of the form

Kd(ψ) =
{

x ∈ Rd
∣
∣ |n · x− k|< ψ(n) for i.m. (k,n) ∈ Z×Zd},

where ψ : Zd → [0,∞) is a multivariate approximating function, and thanks to the
mass transference principle of [12] and the slicing technique of [13], this would
follow from the next general statement: The set Kd(ψ) has full Lebesgue measure
in Rd if the series ∑nψ(n) diverges. However, such a statement is known to be false
and we refer to Sect. 5 in [14] for a counterexample. The expected result is actually
given by a generalization of the Catlin conjecture to the case of dual approximation,
which has been formulated by Beresnevich, Bernik, Dodson and Velani [14], and
consists in replacing the previous series by

∑
q∈Zd∗

φd(q)max
t≥1

ψ(tq)
t|q|∞ ,

where | · |∞ denotes the supremum norm and φd(q) is the number of positive integers
less than or equal to |q|∞ which are coprime with the components of q. We refer
to [14] for a motivation of this conjecture and for its relationship with the dual
form of the famous Duffin–Schaeffer conjecture. The upshot is that it seems rather
difficult to provide a converse to Lemma 5 in the form (47).

As shown by the statement of Theorems 2 and 3, we ultimately describe the size
of the iso-Hölder and singularity sets in terms of Hausdorff dimension, rather than
using general Hausdorff measures. Thus, we do not need to call upon such precise
results as those mentioned just above. In fact, we only need to prove that appropriate
modifications of the set

La(γa) =
{

x ∈ Rd
∣
∣ |n · x− k|< |n| |an|1/γa for i.m. (k,n) ∈ Z×Zd},
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obtained by letting α = γa in Eq. (42), have full Lebesgue measure in Rd . Note
that the set La(α) has full Lebesgue measure in Rd when α > γa due to Eq. (45),
and has Lebesgue measure zero when α < γa by virtue of Lemma 5. The study
of its Lebesgue measure for the critical value α = γa is more delicate. Indeed, if
true, Eq. (47) would imply that La(γa) has full Lebesgue measure when the series
∑n |n| |an|1/γa diverges. However, the coefficients of the Davenport f series may
be chosen in such a way that the series converges, e.g., when the nonvanishing
coefficients are given by |aλm | = (m2|λm|)−γ for some positive real γ and some
sparse injective sequence (λm)m≥1, in which case La(γa) has Lebesgue measure
zero, by Lemma 5. This means that we shall have to slightly reshape this set in
order to ensure that we work with a set with full Lebesgue measure. Actually, as
shown by the next lemma, a slight modification of La(γa) enables one to recover the
whole space. This modification is written in the form

L(ϕ,i)
a (γa) =

{
x ∈ Rd

∣∣ |n · x− k|< |n|ϕ(|an|1/γa) for i.m. (k,n) ∈ Z×Ni
}
,

where ϕ and i are appropriately chosen in Φ and {1, . . . ,d}, respectively. Here, Ni

denotes the set of all points n = (n1, . . . ,nd) in Zd such that |n|∞ = |ni|; note that
the sets Ni obviously form a covering of Zd . Whereas the function ϕ is crucial in
order to enlarge the set La(γa) and then to recover the whole space, the index i,
which is used to retain only some specific frequencies among the support of a, is
introduced merely for technical reasons appearing in the proof of Lemma 7 below.
In the following, Φ� denotes the collection of all functions ϕ ∈ Φ with sϕ = 1 for

which at least one of the sets L(ϕ,1)
a (γa), . . . ,L

(ϕ,d)
a (γa) has full Lebesgue measure in

Rd . The next lemma shows that Φ� is nonempty.

Lemma 6. There exist an index i� and a function ϕ� with sϕ� = 1 such that

|n|ϕ�(|an|1/γa)≥ 1 for i.m. n ∈ Ni� .

In particular, the set L(ϕ�,i�)
a (γa) is equal to the whole space Rd, and ϕ� is in Φ�.

Proof. Let (λm)m≥1 denote an enumeration of the support of the sequence a. Given
that the Davenport series is sparse, the sequence (λm)m≥1 is sparse and injective,
and, up to rearranging its terms, we may assume that the sequence (|λm|)m≥1 is
nondecreasing. Then, let ρm = |aλm |1/γa and um = 1/|λm| for any integer m ≥ 1. The
case in which the sequence (um/ρm)m≥1 does not diverge to infinity is elementary.
Indeed, in that situation, there exists a constant C > 0 such that um ≤Cρm for all m
belonging to some infinite subset M of N. Then, the function defined by ϕ�(r) =Cr
clearly satisfies the required properties, and it suffices to choose i� in such a way that
Ni� contains infinitely many points λm with m ∈ M .

We may therefore suppose from now on that (um/ρm)m≥1 diverges to infinity.
The definition (19) of γa, combined with the observation that Zd is covered by the
sets Ni, ensures the existence of an index i� such that
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limsup
m→∞
λm∈Ni�

logum

logρm
= 1.

In addition, both um and ρm tend to zero as m → ∞. Thus, we may find a sequence
of indices (mk)k≥1 in N along which all the following properties hold: The sequence
(umk/ρmk)k≥1 diverges to infinity monotonically; logumk/ logρmk tends to one as k
goes to infinity; for all k ≥ 1,

⎧
⎨

⎩

λm ∈ Ni� ,

ρmk+1 ≤ (ρmk )
k,

umk+1 ≤ (umk)
k.

It is now straightforward to check that any logarithmic interpolation of the points
(ρmk ,umk ) yields a suitable function ϕ�. To be specific, any function ϕ� defined on
[0,∞) for which

logϕ�(r) = logumk −
logρmk − logr

logρmk − logρmk+1

(logumk − logumk+1),

for all r ∈ (ρmk+1 ,ρmk ] and k ≥ 1, clearly belongs to the set Φ and meets all our
requirements. 
�

For any α ∈ (0,γa], we now define a mapping Tα on the set Φ� by letting

Tαϕ : r �→ ϕ(rα/γa)

for any function ϕ ∈ Φ�. All the functions Tαϕ belong to Φ and satisfy sTαϕ =

α/γa, so they roughly behave like rα/γa near the origin. Furthermore, Tγa is
the identity mapping. Now, recall that Lemma 6 yields a function ϕ� for which
|n|ϕ�(|an|1/γa)≥ 1 infinitely often; the series ∑n |n|Tαϕ�(|an|1/α) thus diverges. We
are in a situation where the assumption of Lemma 5 fails and, in fact, the set La(α)
does not necessarily have a vanishing H d−1,Tαϕ�-mass. On the contrary, it should
be regarded as large and omnipresent in Rd in terms of (d−1+α/γa)-dimensional
Hausdorff measure, in the sense that it belongs to Falconer’s class G d−1+α/γa of sets
with large intersection defined above.

This follows from our next result, namely, Lemma 7, which describes the large
intersection properties of the sets La(α). The properties are expressed by means of
the classes Gg(W ) that were introduced in [21] in order to extend Falconer’s classes
to general gauge functions g and open sets W ⊆ Rd , with a view to establishing a
suitable framework to describe precisely the large intersection properties of various
sets arising in the metric theory of Diophantine approximation. In what follows, we
shall restrict our attention to the classes Gd−1,ϕ(Rd) of sets with large intersection in
the whole space Rd with respect to gauge functions of the form r �→ rd−1ϕ(r) with
ϕ ∈ Φ . We refer to [21] for a precise definition of those classes and a description



Multivariate Davenport Series 109

of their main properties, and we content ourselves here with recalling that the class
Gd−1,ϕ(Rd) is closed under countable intersections and bi-Lipschitz mappings, and
is formed of Gδ -subsets E of Rd satisfying

∀W �= /0 open H d−1,ψ(E ∩W ) = ∞ (48)

for any function ψ ∈ Φ growing faster than ϕ at zero, in the sense that ψ/ϕ
tends to infinity monotonically, in which case we write ψ ≺ ϕ . A straightforward
consequence of these properties is the fact that, when d − 1+ sϕ is positive, the
class Gd−1,ϕ(Rd) is included in Falconer’s class G d−1+sϕ . Let us now describe the
large intersection properties of the sets La(α); in the next statement,Φα denotes the
collection of functions ϕ ∈Φ satisfying ϕ ≺ Tαϕ� for some ϕ� ∈Φ�.

Lemma 7. For any real α ∈ (0,γa],

La(α) ∈
⋂

ϕ∈Φα
Gd−1,ϕ(Rd)⊆ G d−1+α/γa .

Proof. Let us consider a function ϕ ∈ Φα and a function ϕ� ∈ Φ� for which ϕ ≺
Tαϕ�. We shall make use of a ubiquity result, which enables one to deduce the
large intersection properties of the set La(α) from the sole fact that a corresponding

enlarged set, namely, one of the sets L(ϕ�,1)
a (γa), . . . ,L

(ϕ�,d)
a (γa), has full Lebesgue

measure in Rd . Indeed, there exists an index i such that Lebesgue-almost every

point x ∈ Rd belongs to L(ϕ�,i)
a (γa), that is, satisfies

dist(x,Hk,n)< Tαϕ�(|an|1/α) for i.m. (k,n) ∈ Z×Ni.

Moreover, letting Ui denote the line spanned by the ith vector of the canonical basis
of Rd , we see that the hyperplanes Hk,n are such that

sup
n∈Ni
k∈Z

|{x ∈Ui |dist(x,Hk,n)< 1}|< ∞.

We may therefore apply Theorem 3.6 in [22] and deduce that La(α) ∈ Gd−1,ϕ(Rd).
To finish the proof, it suffices to consider a function ϕ ∈ Φα with sϕ = α/γa and
to recall that Gd−1,ϕ(Rd) ⊆ G d−1+sϕ . Such functions exist; as a matter of fact, one
may take ϕ(r) = Tαϕ�(r) log(1/Tαϕ�(r)) where ϕ� is given by Lemma 6. 
�

The above results being established, we are now in position to prove Theorems 2
and 3. This is the purpose of the last part of this section.
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11.3 End of the Proof

Recall that we have to establish the following properties: The iso-Hölder sets E f (h)
and the singularity sets E ′

f (h) of the Davenport series f have Hausdorff dimension
equal to d−1+h/γa in every nonempty open set. We also need to show that the latter

sets belong to the classes G
d−1+h/γa when h is positive. By virtue of Theorem D

in [26], this implies that the singularity sets have packing dimension equal to d
in every nonempty open set, a feature that is also mentioned in the statement of
Theorem 3. In view of various remarks written above, it only remains to consider
the case where h < γa and to establish the following three propositions.

Proposition 9. For any real number h ∈ [0,γa),

max{dimH E f (h),dimH E ′
f (h)} ≤ d − 1+

h
γa
.

Proof. We begin by making use of Lemma 4. The two inclusions (43), combined
with the fact that the sets DJ(a) and DM(a) are countable unions of hyperplanes,
imply that ⎧

⎪⎨

⎪⎩

dimH E f (h)≤ max{d− 1,dimH E ′
f (h)},

dimH E ′
f (h)≤ max

{
d− 1, inf

α>h
dimH La(α)

} .

To conclude, it suffices to apply Lemma 5 which, along with the alternate ex-
pression (20) of γa, ensures that the dimension of La(α) is bounded above by
d− 1+α/γa. 
�

In the next statement, G
d−1,ϕ

(Rd) denotes the extended class of sets with large
intersection that is defined in terms of the initial class Gd−1,ϕ(Rd) by the following
condition: For all E ⊆ Rd ,

E ∈ G
d−1,ϕ

(Rd) ⇐⇒ ∃E ′ ∈ Gd−1,ϕ(Rd) E ′ ⊆ E.

The purpose of this extension is to avoid checking that the singularity sets are
Gδ -sets, which is inessential here. It is easy to see that the extended class

G
d−1,ϕ

(Rd) contains the initial class Gd−1,ϕ(Rd) and coincides with the latter on
the Gδ -sets, in view of [21, Proposition 1(e)]. Moreover, the extended class enjoys

the same remarkable properties as the initial class: G
d−1,ϕ

(Rd) is closed under
countable intersections and bi-Lipschitz mappings, and its members satisfy Eq. (48).

Moreover, when d − 1 + sϕ is positive, the class G
d−1,ϕ

(Rd) is included in the

corresponding extended version G
d−1+sϕ of Falconer’s class.

Proposition 10. Let us consider a real number h ∈ (0,γa). Then,
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E ′
f (h) ∈

⋂

ϕ∈Φh

G
d−1,ϕ

(Rd)⊆ G
d−1+h/γa .

Proof. Lemma 7 ensures that the set La(h) belongs to the classes Gd−1,ϕ(Rd)
associated with the functionsϕ ∈Φh. The same property holds for the set Rd \DJ(a);
indeed, being the complement of a countable union of hyperplanes, this set is a Gδ -
set with full Lebesgue measure in Rd , and such a set belongs to all the classes
Gg(Rd), see [21, Proposition 11]. Using the stability under intersection of the
classes of sets with large intersection, we deduce that

La(h)\DJ(a) ∈
⋂

ϕ∈Φh

Gd−1,ϕ(Rd)⊆ G d−1+h/γa ,

where the last inclusion also follows from Lemma 7. To conclude, it suffices to make
use of Lemma 4, which ensures that La(h)\DJ(a) is a subset of E ′

f (h), see the first
inclusion in Eq. (44). 
�

Our last statement gives a lower bound on the Hausdorff dimension of the sets
E f (h) and E ′

f (h) in every nonempty open subset of Rd . Recall that E f (0) contains
the set DJ(a), by virtue of Lemma 4. As γa is finite, the latter set is a dense countable
union of hyperplanes, thereby having Hausdorff dimension at least d − 1 in every
nonempty open set. We may therefore restrict our attention to the positive values
of h.

Proposition 11. Let us consider a real number h ∈ (0,γa) and a nonempty open
subset W of Rd. Then,

min{dimH(E f (h)∩W),dimH(E
′
f (h)∩W)} ≥ d − 1+

h
γa
.

Proof. It follows from Proposition 10 that the singularity set E ′
f (h) satisfies Eq. (48)

for any function ψ ∈ Φ such that ψ ≺ ϕ for some ϕ ∈ Φh. Moreover, choosing
a function ψ for which sψ = h/γa, we also deduce from Lemma 5 that all
the sets La(α), for α < h, have a vanishing H d−1,ψ -mass. Such a function
ψ exists: It suffices to take ψ(r) = Thϕ�(r)(log(1/Thϕ�(r)))2, and also ϕ(r) =
Thϕ�(r) log(1/Thϕ�(r)), where ϕ� is given by Lemma 6. We finally get

H d−1,ψ (E f (h)∩W
)≥ H d−1,ψ (E ′

f (h)∩W
)
= ∞,

where the first inequality is due to the second inclusion in Eq. (44), which appears
in the statement of Lemma 4. The result follows. 
�
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Dimensions of Self-affine Sets: A Survey

Kenneth Falconer

Abstract Self-affine sets may be expressed as unions of reduced scale affine copies
of themselves. We survey general and specific constructions of self-affine sets
and in particular the problem of finding or estimating their Hausdorff or box-
counting dimensions. The structure and dimensional properties of self-affine sets
are somewhat subtle, for example, their dimensions need not vary continuously in
the defining transformations.

1 Introduction

Many familiar fractals are made up of smaller copies of themselves in some sense.
Probably best known are self-similar sets such as the Sierpiński triangle or von Koch
curve. However, there are many other possibilities. For example, self-conformal
sets are made up of conformal images of themselves, and statistically self-similar
sets comprise scaled down components with the same statistical distribution as the
whole. Here we will consider self-affine sets, which are composed of scaled down
affine copies of themselves. We will review both general and specific constructions
of self-affine sets and in particular the problem of finding the Hausdorff or box-
counting dimensions of such sets.
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1.1 Basic Definitions

The “iterated function system” framework that has been universally adopted
for representing sets that are unions of smaller copies was introduced by John
Hutchinson [35] and promoted by Michael Barnsley [3] and others.

A family {S1, . . . ,Sm} of contractions on R
N , that is, mappings R

N → R
N

satisfying

|Si(x)− Si(y)| ≤ ci|x− y|, x,y ∈ R
N , 0 < ci < 1

is called an iterated function system (IFS). The fundamental property of an IFS is
that there exists a unique, non-empty compact E ⊆ R

N such that

E =
m⋃

i=1

Si(E), (1)

called the attractor of the IFS. This may be proved elegantly by applying Banach’s
fixed-point theorem to the mapping A �→⋃m

i=1 Si(A) on the complete metric space of
non-empty compact subsets of RN endowed with the Hausdorff metric (see [4, 24,
35]). If the Si are similarity transformations, E is called self-similar. If the Si = Ti +
ωi are affine contractions, where the Ti are non-singular contracting linear mappings
on R

N and ωi ∈ R
N are translation vectors, E is called self-affine.

Taking a (large enough) compact domain B such that Si(B) ⊆ B for all i, we get
an iterated construction of E:

E =
∞⋂

k=0

⋃

i1,...,ik

Si1 ◦ · · · ◦ Sik(B);

see Fig. 1. We also get a coding of points of E: if i = (i1, i2, . . .) ∈ {1,2, . . . ,m}N, let

X(i)≡ X(i1, i2, . . .) := lim
k→∞

Si1 ◦ Si2 ◦ · · · ◦ Sik(0) (2)

(the limit exists since the Si are contractions). Then

E =
⋃

i1,i2,...

X(i1, i2, . . .),

though the points of E do not necessarily have a unique coding.
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Fig. 1 The hierarchy of regions in the construction of the attractor

We will be particularly interested in the dimensions of attractors. We write dimH

for Hausdorff dimension, dimB and dimB for lower and upper box-counting
dimension and, if these are equal, dimB for the box dimension or Minkowski
dimension.

For a self-similar set E , where each Si is a similarity transformation of ratio ri,

dimH E = dimB E = dimB E = s where 1 =
m

∑
i=1

rs
i , (3)

provided the open set condition holds, that is, there exists a non-empty open set
O such that

⋃m
i=1 Si(O) ⊆ O with this union disjoint; this ensures that the union in

Eq. (1) is “almost disjoint”. The similarity dimension of the self-similar set E is
the value of s that satisfies Eq. (3) which depends only on the scaling ratios of the
similarities in the IFS.

For self-affine sets, things are more awkward. One of the difficulties is that the
dimensions are not continuous in the contractions in the IFS even when the Si(E)
are well separated. For example, the attractor of the two affine maps in Fig. 2 has
dimension 1 if the displacement λ > 0, since its projection onto the horizontal axis
has positive length, whilst if λ = 0 the attractor is a middle-third Cantor set in
the vertical axis, which has dimension log2/ log3 < 1. In other examples, such as
the carpets discussed in Sect. 3, the different types of dimension may take different
values.
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Fig. 2 The attractor on the left where λ > 0 has dimension 1, whilst that on the right where λ = 0
has dimension log2/ log3 < 1

There are two approaches to finding dimensions of self-affine sets:

(a) Finding generic formulae for dimensions that hold almost always (in some
sense)

(b) Seeking the dimension of specific sets

We will consider both approaches in the succeeding sections.
Note that several papers and books contain overviews of various aspects of self-

affine sets as well as many further references; see, for example, [10, 11, 16, 49, 50].

2 The Affinity Dimension

It is generally easier to obtain upper bounds for dimensions than lower estimates.
For self-affine sets the “affinity dimension”, which is defined in terms of “singular
value functions”, always gives an upper bound and, in many generic situations, gives
the actual value of the dimensions.

2.1 Cutting up Ellipses

To find the Hausdorff dimension of a set E ⊆ R
N we need to consider sums ∑i |Ui|s

where {Ui} is a δ -cover of E , that is, a cover by small sets of diameter at most δ ,
and | · | denotes diameter. For the case where N = 2, suppose some covering set Ui is
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Fig. 3 The ellipse Ui may be cut into roughly α1/α2 pieces Vi of diameters about α2 and these
may contribute to a more efficient cover of the attractor than the single set Ui

“long and thin”, for example, an ellipse with semi-axes α1 ≥ α2. The contribution
to ∑ |Ui|s from Ui is ≈ αs

1. For an alternative covering we can partition or “cut up”

Ui into about α1/α2 pieces {Vj}α1/α2
j=1 that are roughly square with side α2, so that

the single term |Ui|s ≈ αs
1 in the sum may be replaced by

α1/α2

∑
j=1

|Vj|s ≈ α1

α2
αs

2 = α1αs−1
2 ,

and this may be much less than αs
1 for small α1 if s > 1 see (Fig. 3).

Thus we define the singular values α1 ≥α2 ≥ 0 of a linear mapping T : R2 →R
2

to be the positive square roots of the eigenvalues of T T ∗. Equivalently the αi are the
semi-axis lengths of the ellipse T (B) where B is the unit ball. We then define the
singular value function of T by

φ s(T ) =

{
αs

1 (0 ≤ s ≤ 1)
α1αs−1

2 (1 ≤ s ≤ 2)
.

More generally for T : RN →R
N ,

φ s(T ) = α1 . . .αp−1αs−p+1
p , (4)

where αi is the ith singular value (arranged in decreasing order) and p is the integer
such that p− 1 ≤ s ≤ p.

There are two important properties of φ s. Firstly it is submultiplicative, that is,

φ s(T1T2)≤ φ s(T1)φ s(T2), (5)

and secondly, if T is a contracting linear map, then φ s(T ) is continuous and
decreasing in s.

We may now get an upper bound for the dimensions of self-affine sets. Let

Si(x) = Ti(x)+ωi i = 1,2, . . . ,m (6)
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be an affine IFS, where the Ti are linear contractions on R
N and theωi are translation

vectors, and let E be its self-affine attractor. Let B be a large disc with Si(B)⊆ (B)
for all i. Then for each k we get a covering of E by ellipses:

E ⊆
⋃

i1...ik

Si1 ◦ · · · ◦ Sik(B),

where each Si1 ◦ · · ·◦Sik(B) is an ellipse with semi-axes given by the singular values
of Ti1 ◦ · · · ◦Tik (see Fig. 1)

Thus, given δ > 0, if k is large enough, we may use these ellipses (if 0 < s ≤ 1)
or partitioned ellipses (if 1 < s ≤ 2) to get a δ -cover of E that gives an upper bound
for the s-dimensional Hausdorff premeasure H s

δ (E) of E:

H s
δ (E) = inf{∑ |Ui|s : {Ui} is a δ -cover of E}

≤
{

c∑i1...ik α1(Ti1 ◦ · · · ◦Tik)
s (0 ≤ s ≤ 1)

c∑i1...ik α1(Ti1 ◦ · · · ◦Tik)α2(Ti1 ◦ · · · ◦Tik)
s−1 (1 ≤ s ≤ 2)

= c ∑
i1...ik

φ s(Ti1 ◦ · · · ◦Tik)

where c does not depend on k or δ . Hence, writing

Φs
k := ∑

i1...ik

φ s(Ti1 ◦ · · · ◦Tik),

we have H s
δ (E) ≤ cΦs

k if k is sufficiently large. It follows from Eq. (5) that Φs
k

itself is also submultiplicative, that is, Φs
k+l ≤ Φs

kΦ
s
l , so, by the standard property

of submultiplicative sequences, the limit

Φs := lim
k→∞

(Φs
k)

1/k

exists and is decreasing in s. Thus if Φs < 1 then the Hausdorff measure H s(E) =
limδ→0 H s

δ (E)≤ limk→∞Φs
k = 0, so

dimH E ≤ s where s satisfies Φs = 1.

A slight refinement of this argument choosing a covering by pieces all about the
same size also gives an upper bound for the box dimensions:

dimH E ≤ dimB E ≤ dimB E ≤ s where s satisfies Φs = 1. (7)

The argument easily extends to R
N with Eq. (7) holding where the singular value

function is defined by Eq. (4).
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2.2 The Affinity Dimension

The affinity dimension daff ≡ daff (T1, · · · ,Tm) of the self-affine set E of the IFS of
affine maps Si = Ti +ωi is the value of s satisfying

Φs(T1, . . . ,Tm)≡Φs = lim
k→∞

(
∑

i1...ik

φ s(Ti1 ◦ · · · ◦Tik)
)1/k

= 1; (8)

notice that the affinity dimension depends only on the linear parts of the IFS
functions. Thus we showed above:

Proposition 1. Let E be the self-affine attractor of the IFS consisting of affine
mappings Si(x) = Ti(x)+ωi. Then

dimH E ≤ dimB E ≤ dimB E ≤ daff (T1, · · · ,Tm). (9)

We shall see that we “often” get equality in Eq. (9).
We first note some general features ofΦs ≡Φs(T1, . . . ,Tm) for affine IFSs on R

N

which have consequences for the affinity dimension:

(a) Φs is continuous and strictly decreasing in s.
(b) Φs is piecewise convex in s, being convex between integral values of s but not

in general differentiable when s is an integer.
(c) For IFSs on R

2, Φs(T1, . . . ,Tm) is continuous in T1, . . . ,Tm except (perhaps)
when T1, . . . ,Tm have a common real eigenvector. More generally for IFSs on
R

N , Φs(T1, . . . ,Tm) is continuous except (perhaps) on a set V of Ti which may
be expressed as a finite union of algebraic hypersurfaces [29].

(d) Apart from the exceptional {Ti} in (c), convergence in Eq. (8) is controlled by

Φs ≤ (Φs
k)

1/k ≤ ca1/kΦs

for some constant c.

In the special case where we can choose a coordinate basis of R
N such that

T1, . . . ,Tm are all upper triangular, it may be shown that

Φs(T1, . . . ,Tm) =Φs(T D
1 , . . . ,T D

m ), (10)

where T D
i is the diagonal matrix with the same diagonal elements as Ti. Since the T D

i
commute,Φs(T D

1 , . . . ,T D
m ) is easy to calculate and can be expressed as the maximum

of a finite number of explicit expressions, allowing the affinity dimension to be
found (see [2, 27]).
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2.3 Generic Results

We now seek lower estimates of dimensions of self-affine sets. In this section we
obtain some generic or almost sure estimates and in particular show that self-affine
sets often have Hausdorff and box dimensions equal to the affinity dimension. The
dimensions of sets constructed from affine maps with the same linear parts but with
different translations were addressed by Falconer [19] in the case where ‖Ti‖ < 1

3
and extended to ‖Ti‖< 1

2 by Solomyak [53]. As before we consider affine IFS maps
Si(x) = Ti(x)+ωi on R

N . We write ω := (ω1, . . . ,ωm), and denote the attractor by
Eω when we need to emphasize its dependence on the translations.

Theorem 1. If ‖Ti‖< 1
2 for all i then

dimH Eω = dimB Eω = min{daff (T1, . . . ,Tm),N}

for almost all ω = (ω1, . . . ,ωm) ∈R
Nm w.r.t. Nm-dimensional Lebesgue measure.

Sketch of Proof. The upper bound follows from Proposition 1. For the lower bound,
code points of the attractor Eω as Xω(i) = limk→∞ Si1 ◦ · · · ◦ Sik(0). Let A be a
ball in R

N , and think of ω = (ω1, . . . ,ωm) as a random point of Am with respect
to a probability measure given by normalized Lebesgue measure. Let E denote
expectation. A geometrical calculation shows that, if 0 < s < N,

E |Xω (i)−Xω(j)|−s ≤ c
φ s(Ti∧j)

for a constant c independent of i, j, where i∧ j is the common initial word of i =
i1, i2, . . . and j = j1, j2, . . ..

If Φs > 1 one may construct a measure μ on {1,2, . . . ,m}N such that μ(Ci) ≤
c1φ s(Ti) for all i (where Ci =

{
ij : j ∈ {1,2, . . . ,m}N} are the cylinder sets). This

ensures that

E

∫ ∫
dμ(i)dμ(j)

|Xω(i)−Xω(j)|s ≤ c
∫ ∫

dμ(i)dμ(j)
φ s(Ti∧j)

< ∞. (11)

For each ω , the attractor Eω supports a measure μω given by the projection of μ
under i �→ Xω(i), that is with

∫
f (x)dμω =

∫
f (Xω (i))dμ(i) for continuous functions

f : RN →R. It follows from Eq. (11) that for almost all ω ∈ AN

∫

Eω

∫

Eω

dμω(x)dμω(y)
|x− y|s =

∫ ∫
dμ(i)dμ(j)

|Xω(i)−Xω(j)|s < ∞

which implies that dimH Eω ≥ s by the energy criterion for Hausdorff dimension. �
In a recent variant, Käenmäki and Vilppolainen [41] obtained a similar result to

Theorem 1 for sub-self-affine sets, that is, compact sets E satisfying E ⊆⋃k
i=1 Si(E)
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where the Si are self-affine mappings. The Hausdorff and box dimensions both equal
the zero of a pressure function almost surely.

Unfortunately, Theorem 1 gives little information about which translations
(ω1, . . . ,ωm) give an attractor with dimensions equal to the affinity dimension.
Nevertheless, the set of exceptional dimensions cannot be too big. With s as the
affinity dimension of {T1, . . . ,Tm} and t ≤ s, write

E(t) = {(ω1, . . . ,ωm)⊆ R
Nm : dimH Eω < t},

for the set of translates where the dimension of the attractor is exceptionally small.
Recall that the Fourier dimension of A ⊆ R

Nm is defined by

dimF A = sup{t : there exists a measure μ on A s.t. μ̂(x) = O(|x|−t/2) as |x| → ∞}.

Theorem 2 ([28]).

(a) dimH E(t)≤ Nm− c(s− t) for a constant c > 0.
(b) dimF E(t)≤ 2t.

A further drawback of Theorem 1 is that it only holds when ‖Ti‖ < 1
2 for all i;

indeed examples show that the conclusion can fail if ‖Ti‖= 1
2 for all i (see [18,53]).

One approach to getting around this restriction is to introduce more randomness
by allowing perturbative translations at each stage of the construction. The sets
obtained are no longer strictly self-affine, but “almost self-affine”.

Recall that for self-affine sets Eω =
⋃

i Xω(i) where

Xω(i) = lim
k→∞

Si1 ◦ Si2 ◦ · · · ◦ Sik(0)

= lim
k→∞

(Ti1 +ωi1)(Ti2 +ωi2)(Ti3 +ωi3) · · · (Tik +ωik)(0)

= lim
k→∞

ωi1 +Ti1ωi2 +Ti1Ti2ωi3 +Ti1Ti2Ti3ωi4 + · · ·

Now introduce a random perturbation at each stage of the construction:

Xω(i) = lim
k→∞

(Ti1 +ωi1)(Ti2 +ωi1,i2)(Ti3 +ωi1,i2,i3) · · · (Tik +ωi1,i2,...ik )(0)

= lim
k→∞

ωi1 +Ti1ωi1,i2 +Ti1Ti2ωi1,i2,i3 +Ti1Ti2Ti3ωi1,i2,i3,i4 · · · ,

whereωi1,i2,...,ik are independent and identically distributed “perturbations”. We then
call the set

Eω =
⋃

i

Xω(i)

almost self-affine. These sets were investigated by Jordan, Pollicott and Simon.



124 K. Falconer

Theorem 3 ([36]). For almost self-affine sets Eω ,

dimH Eω = dimB Eω = min{daff (T1, . . . ,Tm),N}

for almost all ω . (Here we require only that ‖Ti‖< 1 for all i.)

2.4 Sets with Dimension Attaining the Affinity Dimension

There are a number of situations where we can be sure that the dimension of a
self-affine set equals its affinity dimension.

For example, plane self-affine sets whose projections onto lines have uniformly
positive length have box dimension equal to the affinity dimension.

Theorem 4 ([20]). Let Si(x) = Ti(x) +ωi be an IFS of affine contractions on R
2

with attractor E. Suppose that:

(a) The open set condition holds.
(b) There is a c > 0 such that the Lebesgue measure of the projection of E onto

every line is at least c. (Note that this is the case if E contains a connected
component other than a line segment.)

Then
dimB E = daff (T1, . . . ,Tm).

Similar results hold for affine IFSs on R
N .

Sets satisfying Theorem 4 include generalized Sierpı́nski triangles [26]. Here
the IFS consists of three affine transformations mapping a right-angled isosceles
triangle with unit perpendicular sides to subtriangles of base lengths a,1− a,1− b
and heights b,b,1− b, respectively, where 0 < a,b < 1 (see Fig. 4). We may apply
Theorem 4 and, noting that the transformations are upper triangular, obtain from
Eq. (10) that

dimB E = daff (T1,T2,T3)

= max
{

s, t : bs +(1− b)s = 1,b
(
(at−1 +(1− a)t−1)+(1− b)t = 1

}
.

There are many further examples of sets satisfying Theorem 4 with the linear
parts of the affine transformations representable by upper triangular matrices for
which the box dimension may be found using Eq. (10) such as the example in
Fig. 5.

Käenmäki and Shmerkin [40] introduced a class of self-affine sets of “Kakeya
type”. Here the linear part of each IFS transformation and its adjoint (1) maps a
certain cone into itself, with these cones being essentially disjoint for different IFS
transformations, and (2) satisfies a projection condition. Then the box dimension of
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Fig. 4 Affine Sierpiński triangles for different a and b

Fig. 5 A self-affine set with affine transformations given by upper triangular matrices

Kakeya-type affine sets equals the affinity dimension, even if overlapping occurs in
the construction.

Situations which guarantee that the Hausdorff dimension is given by the affinity
dimension are harder to identify. However, Hueter and Lalley [34] have shown that
this is the case for certain affine IFSs where the inverses of the linear parts map a
quadrant of the plane into itself.

Theorem 5. Suppose that Si = Ti +ωi : R2 →R
2 (i = 1, . . . ,m) satisfy:

(a) α1(Ti)
2 < α2(Ti)≤ α1(Ti) for all i.

(b) T−1
i (Q\ {0})⊆ intQ for all i where Q is the second quadrant of the plane.

(c) The Si satisfy the strong separation condition, that is, the images Si(E) are
disjoint.



126 K. Falconer

Fig. 6 A Bedford–McMullen carpet with its template

Then
dimH E = dimB E = daff (T1, . . . ,Tm).

3 Self-affine Carpets

We will call a plane self-affine set a carpet if it is the attractor of an affine IFS of
maps Si = Ti +ωi such that there is an orthonormal coordinate basis of R

2 such
that each Ti maps the positive coordinate axes onto themselves, in other words
each Ti has a positive diagonal matrix with respect to this basis. Thus there are
coordinate rectangles R1, . . . ,Rm such that Si : [0,1]2 → Ri are direct affine maps,
that is, mappings that do not involve rotation or reflection. We term such R1, . . . ,Rm

a “template” for the self-affine set, which can be constructed by repeated substitution
of the template in itself. Carpets often have dimensions strictly less than the affinity
dimension, often with different Hausdorff and box dimensions.

3.1 Bedford–McMullen Carpets

The first carpets were analysed independently by Bedford [12] and McMullen [46].
Here the unit square is divided into p× q equal rectangles of sides 1

p × 1
q , where

2≤ p< q. A subcollection R1, . . . ,Rm of these rectangles is selected for the template,
with the IFS consisting of direct affine mappings Si : [0,1]2 → Ri (see Fig. 6).

Suppose that there are Nj-selected rectangles in the jth column for j = 1,2, . . . , p
and p1 of the columns contain at least one selected rectangle. Then
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dimH E =
1

log p
log

( p

∑
j=1

Nlog p/ logq
j

)
,

dimB E =
log p1

log p
+ log

( 1
p1

p

∑
j=1

Nj

) 1
logq

.

Note that the dimensions depend on the positions of the rectangles selected, and
dimH E and dimB E differ from each other and from the affinity dimension unless
the same number of rectangles are selected in every column. These formulae were
extended to higher dimensions, where the sets are called “self-affine sponges”, by
Kenyon and Peres [38].

3.2 Other Carpets

A detailed analysis of carpets base on two congruent rectangles was given by
Pollicott and Weiss [51]. Gatzouras and Lalley [32] found the Hausdorff and box
dimensions of a generalization of Bedford–McMullen carpets. Here the template is
based on nonoverlapping columns with each column containing several rectangles
each with width at least equal to the height (see Fig. 7).

A further generalization was given by Barański [1] who found the Hausdorff and
box dimensions of “aligned rectangle” constructions. In this case the unit square is
divided into rectangles by (finite) sets of parallel horizontal and vertical lines, not
necessarily equally spaced. The template comprises a set of rectangles R1, . . . ,Rm

selected from the resulting grid.
Another variant was provided by Feng and Wang [30] where the IFS is given by

direct affine maps of the unit square onto arbitrary coordinate rectangles R1, . . . ,Rm

with disjoint interiors (or more generally satisfy a “rectangular open set condition”).
In this case the box dimension of the attractor E is given in terms of the dimensions
of projections of E onto the two coordinate axes, though in general these are not
always easy to calculate explicitly.

In general the formulae for the dimensions of these carpets assume that the
rectangles Ri do not have overlapping interiors. However, Shmerkin [54] considers
carpets where overlapping is permitted, obtaining an expression that gives the
Hausdorff and box dimensions of almost all self-affine sets in certain parameterized
families.

3.3 Box-Like Sets

“Box-like sets”, though not strictly carpets, were considered by Fraser [31]. As
before, R1, . . . ,Rk are coordinate rectangles with disjoint interiors in the unit square,
and Si : [0,1]2 → Ri are affine mappings. Here, however, the Si may incorporate any
of the symmetries of the unit square before scaling, that is, rotations of 90◦,180◦
and 270◦ and reflections about horizontal, vertical and diagonal axes (Fig. 8).
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A Gatzouras-Lalley Carpet

A Baranski carpet´

A Feng-Wang Carpet

Fig. 7 Varieties of carpet with their templates

Assume that at least one Si = Ti+ωi involves a 90◦ or 270◦ rotation or a diagonal
reflection prior to coordinate scalings. Let p = dimB projE where proj denotes
projection onto one of the principal axes (the rotation or reflection ensures that the
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Fig. 8 A box-like set with its template

dimension of the projection is the same for both axes). Define a modified singular
value function by setting

φ s
0(T ) = α

p
1 α

s−p
2 ,

where α1 ≥ α2 are the singular values of T , and similarly to before let

Φs
0 = lim

k→∞

(
∑

i1...ik

φ s
0(Ti1 ◦ · · · ◦Tik)

)1/k
.

Then dimB projE = s where s is the unique positive solution ofΦs
0 = 1. To apply this

formula one needs to know dimB projE , though if the projections onto the axes have
positive length or dimension 1 then s is just the affinity dimension. The projections
may be represented as a pair of graph-directed self-similar sets, which under certain
special conditions satisfy an open set condition in which case their dimension is
given by the spectral radius of a certain matrix.

4 Self-affine Functions

Dimensions of graphs of (usually continuous) self-affine functions have also been
well studied. One basic model is an IFS on a strip in the coordinate plane D :=
{(x,y) : 0 ≤ x ≤ 1} with the IFS consisting of affine maps S1, . . . ,Sm of the form

Si(x,y) = (x/m+(i− 1)/m,aix+ ciy+ bi) i = 1, . . . ,m,

where m ≥ 2 is an integer and ai,ci,bi ∈ R. Thus the Si preserve vertical lines.
We assume that 1/m < ci < 1 so that the Si contract more in the x-direction than in
the y-direction. Writing p1 = (0,b1/(1− c1)) and pm = (1,(am + bm)/(1 − cm))
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Fig. 9 The Takagi or “Blancmange” function

for the fixed points of S1 and Sm, we also assume that Si(pm) = Si+1(p1) for
i = 1, . . . ,m− 1, which ensures that the IFS attractor is the graph of a continuous
function. Then, except for the degenerate case when S1(p1), . . . ,Sm(p1), pm are
collinear, the graph has box dimension 1 + log(c1 + · · ·+ cm) which is just the
affinity dimension in the case of triangular matrices. There are many variants on
this model, for example with varying increment lengths in the x-direction. Earlier
papers on dimensions of self-affine functions [3, 13, 42] concentrated on the box
dimensions of the graphs, but the Hausdorff dimension has since been addressed
in various ways, with conditions given for the Hausdorff and box dimensions to
be equal [14, 56, 57]. Ledrappier [43] found the Hausdorff dimension of the graph
of the Takagi “Blancmange” function, given by ∑∞n=0 2−nh(2nx), where h(y) is the
distance of y from the nearest integer (see Fig. 9).

Barnsley (see [3–5]) proposed using self-affine functions for “fractal interpo-
lation”, that is, finding a function that takes prescribed values at certain points,
with the function required to have a suitable degree of irregularity, which can
be interpreted as the graph having a specified dimension. There is now a very
considerable literature on fractal interpolation, its variants and applications.

5 Related Topics

We have restricted attention above to self-affine sets, but there are many natural
generalizations and extensions, some of which we mention briefly here.

5.1 Multifractal Analysis of Measures on Self-affine Sets

Dimension questions for fractal sets frequently have multifractal analogues. Thus
given a probability measure μ with support on one of the self-affine sets constructed
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above, it is natural to consider the generalized q-dimensions and multifractal spectra
of μ (see [24, 50]). Cases of particular interest are where μ is the projection of a
Bernoulli or Gibbs measure on {1,2, . . . ,m}N under the map (2).

For q> 0 there is a natural generalization of Eq. (8) suited to multifractal analysis
given by

Φs
q = lim

k→∞

(
∑

i1...ik

φ s(Ti1 ◦Ti2 ◦ · · · ◦Tik)
1−qμ(Ci1,i2,...,ik )

q
)1/k

,

where Ci =
{

ij : j ∈ {1,2, . . . ,m}N} are the cylinder sets. The generalized q-
dimensions of μ are bounded above by sq, the solution of Φsq

q = 1.
Under certain conditions the generalized q-dimension equals sq. This is the case

for Bernoulli measures on almost all self-affine sets in the sense of Theorem 1 if
‖Ti‖ < 1

2 and 1 < q ≤ 2, see [23], and for Bernoulli measures on almost all almost
self-affine sets if q > 1, see [25]. Recently results on fine multifractal analysis of
such measures on self-affine sets have been obtained in certain cases [6].

There is a substantial literature on multifractal analysis of Bernoulli measures
on self-affine carpets. King [39] gave a detailed multifractal analysis for mea-
sures on Bedford–McMullen carpets, and this was extended to Gibbs measures
by Barral and Mensi [7] and to higher dimensional self-affine sponges by Olsen
[47, 48]. However, all these analyses required a very strong separation condition
between the rectangles of the carpets (or blocks of the sponges), but this requirement
was dispensed with recently, at least in the plane case, by Jordan and Rams [37].

The work on the dimension of Feng–Wang carpets [30] also includes an analysis
of measures on these carpets.

5.2 Nonlinear Analogues

Another major extension is to attractors (1) of IFSs where the Si are nonlinear
mappings. These occur in the context of dynamical systems where the Si may be
branches of the inverse of some mapping f of a domain, with the IFS attractor being
a hyperbolic dynamical repeller of f . Assuming that the Si are differentiable, such
mappings may be regarded as “locally affine”.

Self-conformal sets, that is, where the derivatives of the contractions Si are
similarity mappings, are fairly well understood. The thermodynamic formalism
enables the self-similar theory to be extended to self-conformal sets, with Bowen’s
pressure formula giving the Hausdorff and box dimension of the attractors (see,
e.g., [15, 22, 50]). The associated dynamical repellers include many Julia sets of
complex dynamics.

For nonconformal IFSs and repellers of nonconformal dynamical systems, the
theory is far from complete. It is often possible to get upper bounds (in the plane
case) by iterating a cover of discs to get a cover by ellipses which can be cut up into
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roughly round pieces, a technique that goes back to Douady and Oesterlé [17] (see
also [22, 55]), but finding exact formulae is difficult.

A subadditive version of the thermodynamic formalism (see the book by Barreira
[10]) enables one to define a pressure-type expression Φs involving singular value
functions of the derivatives at fixed points of the iterated mappings such that the
solution of Φs = 1 might be a good candidate for the dimension. This was used
in [21] to obtain a nonlinear analogue of Theorem 4 for the box dimension in
the nonconformal case under a “1-bunched” or “bounded distortion” condition.
Examples involving “triangular maps” [45] showed this condition to be necessary.
For the case of a product of expanding maps, see [33]. Luzia [44] gave a
nonlinear version of Theorem 5 which applies to both box-counting and Hausdorff
dimensions. Other estimates for dimensions of nonlinear attractors or repellers are
given in [8–10] and there are two recent surveys [11, 16] containing many further
references.

There is a substantial body of literature on the dimension of functional attractors
or repellers of differential equations; such estimates are important in applications in
estimating the extent of chaotic regimes and for applying embedding results (see the
books [52, 55]).
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The Multifractal Spectra of V-Statistics
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Abstract Let (X ,T ) be a topological dynamical system and let Φ : Xr → R be a
continuous function on the product space Xr =X ×·· ·×X (r ≥ 1). We are interested
in the limit of V-statistics taking Φ as kernel:

lim
n→∞n−r ∑

1≤i1,··· ,ir≤n

Φ(T i1x, · · · ,T ir x).

The multifractal spectrum of topological entropy of the above limit is expressed by a
variational principle when the system satisfies the specification property. Unlike the
classical case (r = 1) where the spectrum is an analytic function when Φ is Hölder
continuous, the spectrum of the limit of higher-order V-statistics (r ≥ 2) may be
discontinuous even for very nice kernelΦ .
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1 Introduction

Consider a topological dynamical system (X ,T ), where T : X → X is a continuous
transformation on a compact metric space X with metric d. For r ≥ 1, let Xr =
X × ·· · ×X (product of r copies of X) and let C(Xr) be the space of continuous
functionsΦ : Xr →R.

For Φ ∈C(Xr) and n ≥ 1, let

VΦ(n,x) = n−r ∑
1≤i1,··· ,ir≤n

Φ(T i1 x, · · · ,T ir x)

and VΦ(x) = limn→∞VΦ(n,x) if the limit exists. For α ∈ R, define

EΦ(α) =
{

x ∈ X : lim
n→∞VΦ(n,x) = α

}
.

The problem treated in the present chapter is to measure the sizes of the sets
EΦ(α). To measure the sizes of the sets EΦ(α), we adopt the notion of topological
entropy introduced by Bowen ([8]), denoted by htop. We denote by Minv the set of
all T -invariant probability Borel measures on X and by Merg its subset of all ergodic
measures. The measure-theoretic entropy of μ in Minv is denoted by hμ .

For μ ∈ Minv, the set Gμ of μ-generic points is defined by

Gμ :=

{

x ∈ X :
1
n

n−1

∑
j=0

δT jx
w∗−→ μ

}

,

where
w∗−→ stands for the weak star convergence of measures. Bowen ([8]) proved

that on any dynamical system, we have htop(Gμ)≤ hμ for any μ ∈Minv. For ergodic
measure μ , we get equality. But in general, the equality does not hold. A dynamical
system (X ,T ) is said to be saturated if for any μ ∈ Minv, we have htop(Gμ) = hμ .
It is proved in [13] that systems of specification are saturated.

In this chapter, we shall prove a variational principle which relates the topological
entropy htop(EΦ(α)) to the measure-theoretic entropies of invariant measures in the
following set, called (Φ,α)-fiber,

MΦ(α) =
{
μ ∈ Minv :

∫

Xr
Φdμ⊗r = α

}
,

where μ⊗r = μ×·· ·× μ is the product of r copies of μ .

Theorem 1. Suppose that the dynamical system (X ,T ) is saturated. Let Φ ∈C(Xr)
(r ≥ 1). If MΦ(α) = /0, we have EΦ(α) = /0. If MΦ(α) �= /0, we have

htop(EΦ(α)) = sup
μ∈MΦ (α)

hμ . (1)
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Theorem 1 is well known when r = 1 (see, e.g., [3, 4, 11, 13]). In particular, it is
known that for regular potential Φ , α �→ htop(EΦ(α)) is an analytic function (see,
e.g., [10,19]). But as we shall see, when r ≥ 2, this function can admit discontinuity
even for “very regular” potentials.

The above consideration was motivated by the following problem. Recently the
multiple ergodic limit

MΦ (x) := lim
n→∞

1
n

n−1

∑
i=0

Φ(σ ix,σ2ix, · · · ,T rix) (2)

has been studied by Furstenberg ([15]), Bergelson ([5]), Bourgain ([7]), Assani
([2]), Host and Kra ([16]), and others. Fan, Liao, and Ma proposed in [12] to
give a multifractal analysis of the multiple ergodic average MΦ , in other words,
to determine the Hausdorff dimensions of the level sets

LΦ (α) = {x ∈ X : MΦ (x) = α}.

This problem in its generality remains open.
However, there are two results for the shift dynamics on symbolic space and for

some special potentials Φ . The first one concerns the case where X = {−1,1}N, T

is the shift, and Φ(x1, · · · ,xr) = x(1)1 · · ·x(1)r (x(1)i being the first coordinate of xi). By
using Riesz products, the authors in [12] proved that for α ∈ [−1,1] we have

dimLΦ(α) = 1− 1
r
− 1

r

(
1−α

2
log2

1−α
2

+
1+α

2
log2

1+α
2

)
.

The second one concerns the case where X = {0,1}N, T is the shift, andΦ(x1,x2) =

F(x(1)1 ,x(1)2 ) is a function depending only on the first coordinates x(1)1 and x(1)2 of x1

and x2. The multifractal analysis of these double ergodic average was determined
in [14]. A related work was done in [17] answering a question in [12] about the
Hausdorff dimension of a subset of LΦ(α) for extremal values of α .

As shown in [14], the dimension of the “mixing part” of LΦ(α) which is defined
by

sup{dimμ : μ(LΦ (α)) = 1, μ is mixing}
is equal to

sup

{
dimμ :

∫
Φdμ⊗r = α, μ is mixing

}
.

This equality is very similar to the variational principle stated in Theorem 1.
In Sect. 2, we recall some facts about V-statistics. In Sect. 3, we recall some

notions like topological entropy, generic points, and specification property. The
main theorem, Theorem 1, is proved in Sect. 4. In Sect. 5, we examine the special
case of full shift together with some examples. We will see that, even for very regular
functionΦ , the function α → htop(LΦ (α)) may admit discontinuity.
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To finish this introduction, we emphasize that the problem of multifractal
analysis of multiple ergodic limits remains largely open.

2 V-Statistics

V-statistics are tightly related to U-statistics which are well known in statistics. Let
μ be a probability law on R. A U-parameter of μ is defined through a function called
kernel h : Rd → R by

θ (μ) = θh(μ) =
∫

Rd
hdμ⊗d,

where μ⊗d is the product measure μ×·· ·× μ (d times) on R
d . This U-statistics is

well defined for all μ such that the integral exists.
In statistics, U-parameters are also called estimable parameters and they con-

stitute the set of all parameters that can be estimated in an unbiased fashion. A
fundamental problem in statistics is the estimation of a parameter θ (μ) for an
unknown probability law μ . To estimate a U-parameter θh, people employ the
U-statistics for θh:

Uh(X1, · · · ,Xn) =
(n− d)!

n! ∑h(Xi1 , · · · ,Xid )

where the sum is taken over all (i1, · · · , id) with i j’s distinct and 1 ≤ i j ≤ n, where
X1, · · · ,Xd is a sequence of observations of μ . Closely related to U-statistics is the
V-statistics (von Mises statistics):

Vh(X1, · · · ,Xn) = n−d ∑
1≤i1,··· ,id≤n

h(Xi1 , · · · ,Xid ).

People expect that Uh(X1, · · · ,Xn) converges almost surely to θh. This fact, if it
holds, allows one to estimate θh using observations. If it is the case, we say the U-
parameter strong law of large numbers (SLLN) holds. The U-statistics SLLN had
been well studied for independent observations. In [1], the authors have studied
the U-statistics SLLN for ergodic stationary process (Xn), i.e., Xn = f ◦ T n where
T is ergodic measure-preserving transformation on a probability space (Ω ,A ,P),
f :Ω → R is a measurable function, and X1 admits μ as probability law.

If h is a kernel bounded by a integrable function and if (Xn) is ergodic, it can be
proved (see [1]) that almost surely

lim
n→∞ |Uh(X1, · · · ,Xn)−Vh(X1, · · · ,Xn)|= 0.

It is also proved in [1] that the U-statistics SLLN holds if the kernel h is continuous.
In the following, we consider only V-statistics.
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3 Topological Entropy

For any integer n ≥ 1, the Bowen metric dn on X is defined by

dn(x,y) = max
0≤ j<n

d(T jx,T jy).

For any ε > 0, we will denote by Bn(x,ε) the open dn-ball centered at x of radius ε .
Let Z ⊂ X be a subset of X . Let ε > 0. A cover is a collection of Bowen balls (at

most countable) R = {Bni(xi,ε)} such that Z ⊂⋃
i Bni(xi,ε). For such a cover R, we

put n(R) = mini ni. Let s ≥ 0. Define

Hs
n(Z,ε) = inf

R
∑

i
exp(−sni),

where the infimum is taken over all covers R of Z with n(R) ≥ n. The quantity
Hs

n(Z,ε) being a nondecreasing function of n, the following limit exists:

Hs(Z,ε) = lim
n→∞Hs

n(Z,ε).

Considering the quantity Hs(Z,ε) as a function of s, there exists a critical value,
which we denote by htop(Z,ε), such that

Hs(Z,ε) =
{
+∞, s < htop(Z,ε)
0, s > htop(Z,ε).

The following limit exists:

htop(Z) = lim
ε→0

htop(Z,ε).

The limit htop(Z) is called the topological entropy of Z ([8]).
For x ∈ X , we denote by V (x) the set of all weak limits of the sequence of

probability measures n−1∑n−1
j=0 δT jx. Recall that X is compact. It is clear then that

for any x we have
/0 �=V (x)⊂ Minv.

The following lemma is due to Bowen ([8]).

Lemma 1. For t ≥ 0, we have htop(B(t))≤ t where

B(t) =
{

x ∈ X : ∃ μ ∈V (x) satisfying hμ ≤ t
}
.

The set Gμ of μ-generic points is the set of all x such that V (x) = {μ}. The
Bowen lemma implies that

htop(Gμ)≤ hμ



140 A.-h. Fan et al.

for any invariant measure μ . It is simply because x ∈ Gμ implies μ ∈ V (x). Bowen
also proved that the inequality becomes equality when μ is ergodic. However, in
general, we do not have the equality and it is even possible that Gμ = /0. In fact,
μ(Gμ) = 1 or 0 according to whether μ is ergodic or not (see [9]).

The equality htop(Gμ) = hμ does hold for any invariant probability measure in
any dynamical system with specification [13].

Lemma 2. Any dynamical system with specification (X ,T ) is saturated. In other
words, htop(Gμ) = hμ for any μ ∈ Minv.

A dynamical system (X ,T ) is said to satisfy the specification property if for any
ε > 0 there exists an integer m(ε)≥ 1 having the property that for any integer k ≥ 2,
for any k points x1, . . . ,xk in X , and for any integers

a1 ≤ b1 < a2 ≤ b2 < · · ·< ak ≤ bk

with ai − bi−1 ≥ m(ε) (∀2 ≤ i ≤ k), there exists a point y ∈ X such that

d(T ai+ny,T nxi)< ε (∀ 0 ≤ n ≤ bi − ai, ∀1 ≤ i ≤ k).

The specification property implies the topological mixing. Blokh ([6]) proved
that these two properties are equivalent for continuous interval transformations.
Mixing subshifts of finite type satisfy the specification property. In general, a
subshift satisfies the specification if for any admissible words u and v there exists
a word w with |w| ≤ k (some constant k) such that uwv is admissible. For β -shifts
defined by Tβ x = βx( mod 1), there is only a countable number of β ’s such that the
β -shifts admit Markov partition (i.e., subshifts of finite type), but an uncountable
number of β ’s such that the β -shifts satisfy the specification property [20].

We finish this section by mentioning that continuous functions on Xr can be
uniformly approximated by tensor functions. It is a consequence of the Stone-
Weierstrass theorem.

Lemma 3. Let F ∈C(Xr). For any ε > 0, there exists a function of the form

F̃(x1, · · · ,xr) =
n

∑
j=1

f (1)j (x1) f (2)j (x2) · · · f (r)j (xr),

where f (i)j ∈C(X), such that ‖F − F̃‖∞ < ε .

We will write

F̃ =
n

∑
j=1

f (1)j ⊗ f (2)j ⊗·· ·⊗ f (r)j .
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4 Proof of Theorem 1

We can actually consider Banach-valued V -statistics. More than Theorem 1 can be
proved.

Let B be a real Banach space andB∗ its dual space. The duality will be denoted by
〈y,x〉 (x ∈ B,y ∈ B

∗). We consider B∗ as a locally convex topological space with the
weak star topology σ(B∗,B). For any B

∗-valued continuous function Φ : X → B
∗,

we consider its V -statistics VΦ(n,x) as before, formally in the same way.
Fix a subset W ⊂ B. For a sequence {ξn} ⊂B

∗ and a point ξ ∈ B
∗, we denote by

limsupn→∞ ξn
W≤ ξ the fact

limsup
n→∞

〈ξn,w〉 ≤ 〈ξ ,w〉 for all w ∈W.

It is clear that limsupn→∞ ξn
B≤ ξ means ξn converges to ξ in the weak star topology

σ(B∗,B).
Given α ∈ B

∗ and W ⊂ B. We define

EΦ (α,W ) =

{
x ∈ X : limsup

n→∞
VΦ(n,x)

W≤ α
}

MΦ(α,W ) =

{
μ ∈ Minv :

∫
Φdμ

W≤ α
}
,

where
∫
Φdμ denotes the vector-valued integral in Pettis’ sense (see [18]) and the

inequality “
W≤” means

∫ 〈Φ,w〉dμ ≤ 〈α,w〉 for all w ∈W.

Theorem 2. Suppose that the dynamical system (X ,T ) is saturated. If
MΦ(α,W ) = /0, we have EΦ(α,W ) = /0. If MΦ(α,W ) �= /0, we have

htop(EΦ(α,W )) = sup
μ∈MΦ (α ,W)

hμ . (3)

Proof. We prove the first assertion by showing that EΦ(α,W ) �= /0 implies
MΦ(α,W ) �= /0. Let x ∈ EΦ(α,W ). There exists a measure μ ∈ V (x) ⊂ Minv

and a sequence of integers (nk) such that

μ = w∗− lim
k→∞

1
nk

nk

∑
j=1

δT jx. (4)

We are going to show that μ ∈ MΦ(α,W ).
Let w ∈ W . Then 〈Φ,w〉 is a continuous function on X . For an arbitrarily small

ε > 0, by the Stone-Weierstrass theorem (see Lemma3), there exists a function Φ̃
of the form
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Φ̃ =∑
j

f (1)j ⊗ f (2)j ⊗·· ·⊗ f (r)j

(finite sum of tensor products) such that

‖〈Φ,w〉− Φ̃‖∞ ≤ ε.

Notice that

VΦ̃(n,x) =∑
j

r

∏
i=1

Sn f (i)j (x)

n
,

where

Sn f (x) =
n

∑
k=1

f (T kx)

denotes the ergodic sum for a given function f . According to Eq. (4), we have

lim
k→∞

VΦ̃(nk,x) =∑
j

r

∏
i=1

∫

X
f (i)j dμ =

∫

Xr
Φ̃dμ⊗d. (5)

On the other hand, we write

∫
〈Φ,w〉dμ⊗d −〈α,w〉= σ1 +σ2 +σ3 +σ4,

where

σ1 =

∫
(〈Φ,w〉− Φ̃)dμ⊗d,

σ2 =

∫
Φ̃dμ⊗d −VΦ̃(nk,x),

σ3 = VΦ̃(nk,x)−V〈Φ ,w〉(nk,x),

σ4 = V〈Φ ,w〉(nk,x)−〈α,w〉.
We have

|σ1| ≤ ε, |σ3| ≤ ε, limσ2 = 0, limsupσ4 ≤ 0.

So, we get ∫
〈Φ,w〉dμ⊗d ≤ 〈α,w〉+ 2ε.

Since ε is arbitrary, we have thus proved that μ ∈ Minv(α,W ). The first assertion is
then proved.

Prove now the second assertion. What we have just proved also implies

EΦ(α,W )⊂ B(t) = {x ∈ X : ∃μ ∈V (x) such that hμ ≤ t},
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where t = supμ∈MΦ (α ,W) hμ . By the Bowen lemma (Lemma 1), we get

htop(EΦ(α)) ≤ sup
μ∈MΦ (α)

hμ . (6)

To finish the proof of the second assertion, it suffices to prove the reverse inequality
of Eq. (6). Let μ ∈ MΦ(α). Let x ∈ Gμ . For any ε > 0 and any w ∈W , consider Φ̃
as above. We have

lim
n→∞VΦ̃(n,x) =

∫

Xr
Φ̃dμ⊗r.

It follows that

limsup
n→∞

V〈Φ ,w〉(n,x) ≤ lim
n→∞VΦ̃(n,x)+ ε

=

∫

Xr
Φ̃dμ⊗r + ε

≤
∫

Xr
〈Φ,w〉dμ⊗r + 2ε ≤ 〈α,w〉+ 2ε.

Letting ε → 0 we get
limsup

n→∞
〈VΦ(n,x),w〉 ≤ 〈α,w〉.

In other words, we have proved Gμ ⊂ EΦ(α,W ) for all μ ∈ Minv(α,W ). So,

htop(EΦ(α))≥ htop(Gμ).

By Lemma 2, htop(Gμ) = hμ . Taking the supremum over μ ∈ Minv(α,W ) leads to
the reverse inequality of Eq. (6).

5 Example: Shift Dynamics

Let (X ,T ) = (Σm,σ) with m ≥ 2, where σ : Σm → Σm is the shift on the space
Σm = {0,1, · · · ,m− 1}N.

Let
L(Φ ,W ) = {α ∈ B

∗ : EΦ(α,W ) �= /0}.
If W = B, we write LΦ = L(Φ ,W ). Define f(Φ ,W ) : L(Φ ,W ) → R by

f(Φ ,W )(α) = htop(EΦ(α,W )).

Theorem 3. f(Φ ,W ) : L(Φ ,W ) →R is upper semi-continuous.
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Proof. Let αn,α ∈ L(Φ ,W ). Suppose αn → α in the weak star topology. We have to
show that

limsup
n

f(Φ ,W )(αn)≤ f(Φ ,W )(α).

Since each fiber like Minv(α,W ) is compact, there are maximizing measures μαn ∈
Minv(αn,W ) and μα ∈ Minv(α,W ) such that

f(Φ ,W )(αn) = hαn , f(Φ ,W )(α) = hα . (7)

Without loss of generality, we can assume that μαn converges weakly, say to μ∗.
Since

∀w ∈W,

∫
〈Φ,w〉dμn ≤ 〈αn,w〉,

taking limit shows that μ∗ ∈ Minv(α,W ). It follows that

hμ∗ ≤ hμα . (8)

On the other hand, recall that for the shift dynamics, the entropy function μ �→ hμ
is upper semi-continuous. So,

limsup
n

hαn ≤ hμ∗ . (9)

We combine Eqs. (7), (8), and (9) to finish the proof.

Theorem 4. Assume thatΦ is a function defined on Σ r
m (r ≥ 1) which depends only

on the first k coordinates of each of its variables (k ≥ 1). Then the supremum in the
variational principle (3) is attained by a (k− 1)-Markov measure.

Proof. This is just because the integral
∫
Φdμ⊗r depends only on the values

μ([a1, · · · ,ak]) of the measure μ on cylinders [a1, · · · ,ak] and there exists a (k− 1)-
Markov measure ν such that

μ([a1, · · · ,ak]) = ν([a1, · · · ,ak])

for all cylinders [a1, · · · ,ak] and such that hν ≥ hμ .

In particular, if k = 1, maximizing measures are Bernoulli measures. For the
Bernoulli measure μp determined by a probability vector p = (p0, · · · , pm−1), we
have hμp = H1(p) where

H1(p) =−
m−1

∑
j=0

p j log p j.

Suppose that the functionΦ is a product of r functions and each of its factor depends
only on the first coordinate, i.e.,

Φ(x(1), · · · ,x(r)) = φ1(x
(1)
1 ) · · ·φr(x

(r)
1 ).
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Let
A(p) =

∫

Σ r
m

Φ(x(1), · · · ,x(r))dμp(x
(1)) · · ·dμp(x

(r)).

Notice that EΦ(α) �= /0 iff α =A(p) for some probability vector p= (p0, · · · , pm−1).
The following result is a direct consequence of the last theorem.

Theorem 5. Let Φ(x(1), · · · ,x(r)) = φ1(x
(1)
1 ) · · ·φr(x

(r)
1 ). We have

A(p) =
r

∏
k=1

m−1

∑
j=0

φk( j)p j .

For any α satisfying EΦ(α) �= /0, we have

htop(EΦ(α)) = max
A(p)=α

H1(p), (10)

where the maximum is taken over all probability vectors p satisfying A(p) = α .

If k = 2, maximizing measures are Markov measures. A Markov measure μp,P is
determined by a probability vector p and a transition matrix P. Its entropy is equal
to

H2(p,P) =−
m−1

∑
i=0

pi

m−1

∑
j=0

pi, j log pi, j.

Suppose Φ(x(1), · · · ,x(r)) is of the form φ1(x
(1)
1 ,x(1)2 ) · · ·φr(x

(r)
1 ,x(r)2 ). Let

A(p,P) =
∫

Σ r
m

Φ(x(1), · · · ,x(r))dμp,P(x
(1)) · · ·dμp,P(x

(r)).

Theorem 6. Let Φ(x(1), · · · ,x(r)) = φ1(x
(1)
1 ,x(1)2 ) · · ·φr(x

(r)
1 ,x(r)2 ). We have

A(p,P) =
r

∏
k=1

m−1

∑
i, j=0

φk(i, j)pi pi, j.

For any α satisfying EΦ(α) �= /0, we have

htop(EΦ(α)) = max
A(p,P)=α

H2(p,P), (11)

where the maximum is taken over all couples (p,P) satisfying A(p,P) = α .

Let us consider two examples. We will use the following trivial property of the
entropy function H(x) =−x logx− (1− x) log(1− x).

Lemma 4. Given two numbers p1, p2 ∈ [0,1]. We have
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Fig. 1 Case x∗ = 1 (with a = 0.5, b = 1.5)

H(p1)< H(p2) iff |p1 − 1/2|> |p2 − 1/2|.

We have H(p1) = H(p2) iff |p1 − 1/2|= |p2 − 1/2|.

Example 1. Consider the case m = 2, k = 1, and r = 2. Let x = p1. Then p0 = 1−x
and we have

A(p) = [φ1(0)(1− x)+φ1(1)x][φ2(0)(1− x)+φ2(1)x].

For simplicity, we write A(x) for A(p). Suppose that φ1(0) �= φ1(1) and φ2(0) �=
φ2(1). Otherwise, the question is trivial. By multiplying φ by a constant we can
suppose that A(x) is of the form

A(x) = (x− a)(x− b).

Let x = x∗ be the critical point of the quadratic function A (i.e., x∗ = a+b
2 ).

Using the last lemma, it is easy to find the unique point xα such that

A(xα) = α, htop(EΦ(α)) = H(xα).

The point xα is the closest to 1/2 among those x such that A(x) = α .
We distinguish three cases.

Case I. x∗ ≤ 0 or x∗ ≥ 1 (see Fig. 1).

1. A(x) is strictly monotonic in the interval [0,1].
2. LΦ is the interval with end points ab and (1− a)(1− b).
3. For any α ∈ LΦ , A(xα) = α admits a unique solution xα in [0,1].

Case II. 0 < x∗ ≤ 1/2 (see Fig. 2).

1. A(x) is strictly monotonic in the intervals [x∗,1].
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Fig. 2 Case 0 < x∗ < 1/2 (with a = 0.2,b = 0.4)

Fig. 3 Case 1/2 < x∗ < 1 (with a = 0.6,b = 0.9)

2. LΦ is the interval with end points A(x∗) and (1− a)(1− b).
3. For any α ∈ LΦ , A(xα) = α admits a unique solution xα in [x∗,1].

Case III. 1/2 ≤ x∗ < 1 (see Fig. 3).

1. A(x) is strictly increasing in the interval [0,x∗].
2. LΦ is the interval with end points ab and A(x∗).
3. For any α ∈ LΦ , A(xα) = α admits a unique solution xα in [0,x∗].

Remark 1. We can see in the case m = 2, k = 1, and r = 2 the spectrums are always
continuous (in fact, they are differentiable in the interior of LΦ ). In the following
examples we will see that this is no longer the case when m = 2, k = 1, and r = 3.

Example 2. Consider the case m = 2, k = 1 and r = 3. We have

A(x) = [φ1(0)(1− x)+φ1(1)x][φ2(0)(1− x)+φ2(1)x][φ3(0)(1− x)+φ3(1)x].

By multiplying φ by a constant, we can always suppose that A is of the form
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A(x) = (x− a)(x− b)(x− c).

This cubic polynomial function is either increasing or admit a local maximal
point xmax and a local minimal point xmin and then we must have xmax < xmin. As we
will see, the continuity of the spectrum depends on the location of xmax and xmin.

When A is increasing or when xmax,xmin /∈ (0,1), LΦ is the interval with −abc
and (1−a)(1−b)(1−c) as end points. For any α in the interval, A(xα) = α admits
a unique solution xα in [0,1] and htop(EΦ (α)) = H(xα). In this case the spectrum is
continuous (and differentiable).

Suppose now that A(x) admits a local maximal point xmax and a local minimal
point xmin (with xmax < xmin). Then there exist a unique x′ > xmin and a unique
x′′ < xmax such that

A(x′) = A(xmax), A(x′′) = A(xmin).

We point out that there are three possible situations: the spectrum is continuous, ad-
mits one discontinuous point, or admits two discontinuous points. Before presenting
in detail these three situations we prove the following lemma which will be useful
for our discussion.

Lemma 5. Let P be a polynomial of degree 3 with positive leading coefficient.
Suppose that P admits a local maximal point xmax and a local minimal point xmin.
Then xmax < xmin and

x1 < xmax < x2, |x1 − xmax|= |x2 − xmax| ⇒ P(x1)< P(x2)

y1 < xmin < y2, |y1 − xmin|= |y2 − xmin| ⇒ P(y1)< P(y2).

Proof. The fact xmax < xmin follows from P(−∞) = −∞ and P(+∞) = +∞. By the
existence of the extremal points, we can write

P′(x) = λ (x− xmax)(x− xmin)

with λ > 0. It follows that

u < xmax < v,xmax − u = v− xmax ⇒ |P′(u)|
|P′(v)| =

|u− xmin|
|v− xmin| > 1.

This means that for two equidistant points from xmax, the left point climbs quicker
than the right point descents. By integration, we get

P(x1) = P(xmax)+
∫ x1

xmax

P′(u)du, P(x2) = P(xmax)+
∫ x2

xmax

P′(u)du.

Making the change of variable v− xmax = xmax − u, we obtain
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Fig. 4 Situation 1/2 < xmax < 1 < xmin (a = 0.4, b = 1, and c = 2)

∫ x1

xmax

P′(u)du =−
∫ xmax

x1

|P′(u)|du <−
∫ x2

xmax

|P′(v)|dv ≤ P(x2)−P(xmax).

The first equality holds since P′ is positive in (x1,xmax). Hence P(x1) < P(x2). We
prove P(y1)< P(y2) in the same way.

In the following we present three situations. We use the last two lemmas. In each
situation, there is a unique point xα such that

A(xα) = α, htop(EΦ (α)) = H(xα).

We call xα the maximizing point. For everyα ∈ LΦ , there could be one, two, or three
points x such that A(x) = α . The maximizing point xα is the one which is the nearest
to 1/2. In Figs. 4–6, those parts of graph of A corresponding to the maximizing points
will be traced by solid lines, and other parts will be traced by dotted lines.

Situation I. 1/2 ≤ xmax < 1 < xmin (see Fig. 4).
Let a = 0.4, b = 1, and c = 2. Then xmax = 2/3 and xmin = 1.6. The spectrum is
continuous. The following hold:

1. LΦ = [A(0),A(xmax)].
2. The maximizing points lie in [0,xmax].
3. A(x) is strictly monotonic in [0,xmax].

Situation II. 1/2 ≤ xmax < xmin < 1 (see Fig. 5).
Let a = 0.4, b = 0.7, and c = 0.8. Then xmax = 0.5131, xmin = 0.7375, and x′ =
0.8737. The spectrum admits one discontinuous point. The following hold:

1. LΦ = [A(0),A(1)].
2. The maximizing points lie in [0,xmax]∪ (x′,1].
3. A(x) is strictly monotonic in each of above two intervals.
4. The spectrum has one discontinuous point at A(xmax)(= A(x′)), the entropy

jumps from H(xmax) to H(x′).
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Fig. 5 Situation 1/2 < xmax < xmin < 1 (a = 0.4, b = 0.7, and c = 0.8)

Fig. 6 Situation 0 < xmax < 1/2 < xmin < 1 (a = 0.15, b = 0.7, and c = 0.8)

Situation III. 0 < xmax < 1/2 < xmin < 1 (see Fig. 6).
Let a = 0.15, b = 0.7, and c = 0.8. Then xmax = 0.3479, xmin = 0.7520, x′ =
0.9541, and x′′ = 0.1458. The spectrum admits two discontinuous points. The
following hold:

1. LΦ = [A(0),A(1)].
2. The maximizing points lie in the intervals [0,x′′)∪ [xmax,xmin]∪ (x′,1].
3. A(x) is strictly monotonic in each of above three intervals.
4. The spectrum has two discontinuity points. One is A(x′′)(= A(xmin)), where

the entropy jumps from H(x′′) to H(xmin); the other is A(xmax)(= A(x′)),
where the entropy jumps from H(xmax) to H(x′).
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Projections of Measures Invariant Under
the Geodesic Flow

Maarit Järvenpää

Abstract We discuss projection properties of measures which are invariant under
the geodesic flow and describe their connection to quantum unique ergodicity. This
overview is based on collaboration with R. Hovila, E. Järvenpää, F. Ledrappier, and
M. Leikas.

1 Introduction

Dimensional properties of projections of sets and measures have been a subject
of intensive investigation for decades. The study of the behaviour of Hausdorff
dimension under projections dates back to the 1950s when Marstrand [16] proved
a well-known preservation theorem according to which the Hausdorff dimension
of a planar set is preserved under typical orthogonal projections. In [12] Kaufman
verified the same preservation result using potential theoretical methods, and
in [17] Mattila considered the higher-dimensional case. For measures the following
analogous principle has been discovered in various contexts (see, e.g., Kaufman
[12], Mattila [17], Hu and Taylor [8], and Falconer and Mattila [3]): Let m and n
be integers such that 0 < m < n and let μV be the image of a compactly supported
Radon measure μ on Rn under the orthogonal projection onto an m-plane V . Then
for almost all m-planes V we have

dimHμV = dimHμ provided that dimHμ ≤ m. (1)

On the other hand, for almost all m-planes V ,

μV � L m provided that dimHμ > m. (2)
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Department of Mathematical Sciences, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
e-mail: maarit.jarvenpaa@oulu.fi

J. Barral and S. Seuret (eds.), Further Developments in Fractals and Related Fields,
Trends in Mathematics, DOI 10.1007/978-0-8176-8400-6 8,
© Springer Science+Business Media New York 2013

153



154 M. Järvenpää

Here dimH is Hausdorff dimension, L m is m-dimensional Lebesgue measure,
and the symbol � denotes the absolute continuity. Moreover, we use the orthog-
onally invariant Radon probability measure on the Grassmann manifold of all
m-dimensional linear subspaces of Rn. In the case that μ has finite m-energy, that is,

Im(μ) =
∫ ∫

|x− y|−m dμ(x)dμ(y)< ∞,

a substantially stronger form of theorem 2 holds: we have for all typical m-planes
that

μV � L mwith Radon−Nikodym derivative in L2. (3)

Analogies of the above results have been investigated for typical smooth
mappings in the sense of prevalence and for infinite dimensional spaces in [9, 25],
and [10]. In [21] Peres and Schlag verified an elegant extension of the projection for-
malism to parametrized families of transversal mappings and Sobolev dimensions
of measures on compact metric spaces.

For the purpose of studying projection properties of measures which are invariant
under the geodesic flow, we may restrict our consideration to the one-dimensional
parameter space and define transversality in the following context: Let (Y,d) be a
compact metric space, let J ⊂ R be an open interval, and let P : J ×Y → R be a
continuous function. Assume that for any l = 0,1, . . . there is a constant C̃l ≥ 1 such
that

|∂ l
t P(t,y)| ≤ C̃l (4)

for all t ∈ J and y∈Y . Here ∂ l
t is the lth partial derivative with respect to t. Moreover,

for all t ∈ J and x, y ∈ Y with x �= y, define

Tt(x,y) =
P(t,x)−P(t,y)

d(x,y)
.

Transversality is defined in the following manner:

Definition 1. The mapping P satisfying Eq. 4 is transversal if there is a constant CT

such that for all t ∈ J and for all x, y ∈ Y with x �= y the condition |Tt(x,y)| ≤ CT

implies that
|∂tTt(x,y)| ≥CT ,

and furthermore, for all l = 0,1, . . ., there exists a constant Cl such that

|∂ l
t Tt(x,y)| ≤Cl

for all t ∈ J and x,y ∈ Y with x �= y.

The methods of [21] play an important role in the results discussed in Sect. 2.
For our purposes, a significant difference between the earlier results and those of
[21] is that the absolute continuity result Eq. 3 is generalized in terms of fractional
derivatives by showing that densities of typical projections onto m-dimensional
spaces have fractional derivatives of order ε/2 in L2 provided that the original
measure has finite (m+ε)-energy. For detailed information about a variety of related
contributions, see [19, 21].
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This chapter is organized as follows: In Sect. 2 we introduce our setting and
discuss projection properties of measures which are invariant under the geodesic
flow. Special emphasis is given to the role of the machinery of [21]. Quite
surprisingly, it turns out that the preservation result is valid for two-dimensional base
manifolds only; in higher-dimensional case such res0ult fails. Section 3 is dedicated
to the relation between quantum unique ergodicity and projection properties of
measures invariant under the geodesic flow.

2 Projections of Measures Invariant Under
the Geodesic Flow

Assume that M is a smooth compact Riemann surface. Denoting by T 1M the unit
tangent bundle and by ϕ = ϕt , t ∈ R, the geodesic flow on T 1M, let μ be a Radon
probability measure on T 1M which is invariant under the geodesic flow, that is,
ϕ∗μ = μ . Here ϕ∗μ is the image measure of μ under ϕ . Finally, let Π : T 1M → M
be the natural projection.

The projection theorems mentioned in Sect. 1, in particular, results Eqs. 1, 2,
and 3, are genuinely “almost all” results, and therefore, they do not provide
information about any specified projection. However, similar methods are applicable
for the purpose of studying the Hausdorff dimension of the image Π∗μ of μ
under Π . This interesting feature was discovered by Ledrappier and Lindenstrauss
in [13]. The following analogues of Eqs. 1 and 2 hold (see [13]):

dimHΠ∗μ = dimHμ provided that dimHμ ≤ 2 (5)

and
Π∗μ � L 2 provided that dimHμ > 2. (6)

Analogously to Eq. 3, Ledrappier and Lindenstrauss proved that

the Radon−Nikodym derivative is a L2−function if Iα(μ)< ∞ for α > 2. (7)

The methods of [13] are based on the Kaufman-type potential theoretic techniques
[12].

In [11] the question of whether Eq. 7 could be further generalized in terms of
fractional derivatives is investigated. In addition to giving a positive answer to
this question by employing the techniques from [21], the validity of the results
Eqs. 5 and 6 is studied for higher-dimensional base manifolds. Quite surprisingly, it
appears that the Hausdorff dimension is not necessarily preserved in the higher-
dimensional case. Indeed, for any n ≥ 3, there exist an n-dimensional compact
smooth Riemann manifold M and a measure μ on T 1M such that μ is locally
invariant and the Hausdorff dimension of μ decreases under the projection Π :
T 1M → M. For the construction, see [11].
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The failure of the preservation can be understood in terms of the formalism
introduced in [21]—the reason behind the failure being that for n-dimensional
base manifolds the local invariance produces parametrized family of projections
onto (n− 1)-dimensional planes in 2(n− 1)-dimensional space. The parameter is
given by the time coordinate, and therefore the family is one-dimensional. Since the
dimension of the space of (n− 1)-planes in 2(n− 1)-dimensional space is greater
than 1, if n ≥ 3, the transversality condition cannot hold.

The methods in [11] are based on the techniques of [21]. In general, the measure
μ is complicated to handle. However, the fact that μ is invariant under the geodesic
flow implies that locally a suitable restriction of μ is roughly of the form ν ×L 1

where ν is a measure on a two-dimensional square. In [11] we verify that locally the
projection of the restriction of μ is in a certain sense of the form νt ×L 1 where
νt is a projection of ν onto one-dimensional space. In this we obtain a family
of projections parametrized by the time coordinate t. If the base manifold is two-
dimensional the family turns out to be transversal in the sense of definition 1. This
enables us to reprove theorems 5 and 6 by employing the techniques in [21]. As
mentioned above, the novelty of our proof is that it illustrates the reason behind the
failure of the preservation in higher-dimensional case. For details, see [11].

In [11] theorem 7 is extended by showing that Π∗μ has fractional derivatives of
order γ in L2 for all γ < (α − 2)/2 provided that Iα(μ) < ∞ for α > 2. The proof
relies again on the machinery of [21].

The behaviour of projections of measures which are invariant under the geodesic
flow has been studied using other concepts of dimension. In [14] Leikas computed
the packing dimension of Π∗μ and gave an example illustrating that the packing
dimension can decrease even in the two-dimensional case. By employing the
techniques of [4], Hovila [5] considered the lower and upper dimension spectra
and parametrized families of transversal mappings between smooth manifolds and
computed for 1 < q ≤ 2 the lower and upper q-dimensions of Π∗μ .

3 Quantum Unique Ergodicity

According to Eq. 6, the canonical projection of a ϕ-invariant measure of dimension
greater than 2 is absolutely continuous with respect to the Lebesgue measure. In this
section we address the question of whether the absolute continuity condition holds
at the threshold 2 and give a negative answer to this question. Our discussion
is motivated by quantum unique ergodicity.

Letting ψn be a sequence of orthonormal eigenfunctions of the Laplacian on
M, the associated eigenvalues converge to infinity. The aim of quantum unique
ergodicity is to describe the possible weak* limits of the probability measures with
density |ψn|2 as n tends to infinity.

The problem is solved by Lindenstrauss for arithmetic hyperbolic surfaces in the
case when the orthonormal eigenfunctions ψn are also eigenfunctions of the Hecke
operators. In this case the only limit is the normalized Lebesgue measure (see [15]).
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A weak form of the quantum unique ergodicity conjecture, stating that any weak*
limit is nonsingular, is closely related to the validity of Eq. 6 at the threshold 2.
Indeed, Anantharaman and Nonnenmacher [2] considered both a general hyperbolic
surface and more general eigenfunctions on an arithmetic surface and verified that
any weak* limit is the projection of a ϕ-invariant measure with dimension at least 2.
Rivière in turn showed that this property remains true on surfaces with variable
negative curvature [24]. In [6] we showed that one cannot conclude from the results
of [2] and [24] that a weak form of the quantum unique ergodicity conjecture holds
by verifying the following result the proof of which we shortly sketch:

Theorem 1. For any compact surface M whose curvature is everywhere negative,
there exists an ergodic ϕ-invariant measure μ on T 1M such that dimHΠ∗μ = 2 and
Π∗μ is singular with respect to the Lebesgue measure on M.

Proof. According to Eq. 5, it is sufficient to construct an ergodic ϕ-invariant
measure μ such that dimHμ = 2 and μ is singular with respect to the Lebesgue
measure.

Letting m be an ergodic ϕ-invariant measure on T 1M, we have

dimHm = 1+ 2
hm(ϕ)
λ (m)

,

where hm(ϕ) is the entropy and λ (m) is the Lyapunov exponent [22]. This gives

dimHm = 2 ⇐⇒ hm(ϕ)/λ (m) = 1/2.

Hence, on any family for which the ratio hm(ϕ)/λ (m) varies continuously from
0 to 1, there will be measures having Hausdorff dimension 2. To construct such
measures, we consider Markov measures in a symbolic coding of the geodesic flow.
For the existence of the symbolic coding, see [23].

For any n× n-matrix A = Ai j with entries 0 or 1, define a subshift of finite type
Σ ⊂ {1, . . . ,n}Z as the set of sequences ω = (ωk) such that

Aωkωk+1 = 1 for all k.

Furthermore, letting σ be the left shift on Σ and letting r be a positive function on
Σ , define the special flow (Σ̃r, σ̃t) by translation on the second coordinate where

Σ̃r = {(ω,s) | ω ∈ Σ ,0 ≤ s ≤ r(ω)}/(ω,r(ω))∼ (σ(ω),0),

that is, for t ≥ 0, we have

σ̃t(ω ,s) = (σ k(ω),u),
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where u = t + s−∑k−1
j=0 r(σ j(ω)) and k is the unique natural number satisfying 0 ≤

u < r(σ k(ω)) and similarly for t < 0.
In what follows we select the function r in a special way. Indeed, due to [23],

there is a mixing subshift of finite type (Σ ,σ) and Hölder functions r : Σ → R and
π : Σ̃r → T 1M such that π ◦ σ̃t = ϕt ◦π . Choosing such r, it is enough to construct
a measure on Σ̃r with appropriate properties. Projecting this measure to T 1M by π
gives the desired measure μ .

Let P = Pi j be a Markov matrix such that Pi j > 0 if and only if Ai j = 1 and let μP

be a σ -invariant Markov measure on Σ . We define a σ̃ -invariant probability measure
μ̃P on Σ̃r by

μ̃P =

∫
Σ L |[0,r) dμP
∫
Σ r dμP

.

Now the measure mP = π∗μ̃P is ergodic for ϕ , and using Abramov formula [1], we
can calculate the ratio

R =
hmP(ϕ)
λ (mP)

.

Using l-step Markov measures guarantees that there are many Markov matrices P
on Σ such that R = 1/2 implying dimHmP = 2. It remains to verify the singularity
with respect to the Lebesgue measure.

The aim is to show that P can be chosen in such a way that the upper derivative
of mP with respect to the Lebesgue measure is typically infinite, that is,

limsup
ε→0

mP(B((x,v),ε))
ε2 = ∞ (8)

for mP-almost all (x,v) ∈ T 1M. Here B((x,v),ε)) is a closed ball with centre (x,v)
and radius ε . By [18, Theorem 2.12], Eq. 8 implies singularity.

For the purpose of giving the main idea of the proof of Eq. 8, we consider
fluctuations of measures of balls and define observables (Xu

n ,Y
u
n ) and (Xs

n ,Y
s
n )

such that Xn describes the mass of a ball and Yn describes the radius on local
unstable (u) and stable (s) manifolds. The vector-valued almost sure invariance
principle [20] implies that (Xu

n ,Y
u
n ) and (Xs

n ,Y
s
n ) can be approximated by two-

dimensional Brownian motions meaning that for v ∈ {u,s} there exist λ > 0 and a
probability space (X ,P) supporting a sequence of random variables (X̃ v

n ,Ỹ
v
n ) having

the same distribution as (Xv
n ,Y

v
n ) and a two-dimensional Brownian motion W v with

a covariance matrix Qv such that

|(X̃ v
n ,Ỹ

v
n )−Wv(n)| � n

1
2−λ

P-almost surely for large n. From this we deduce that the fluctuations of the
observables are large enough which implies the claim Eq. 8. The crucial steps are to
show that the covariance matrix is nonsingular and to handle stable and unstable
manifolds simultaneously. For details, see [6].
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The measure constructed in theorem 1 is supported by the whole unit tangent
bundle T 1M. In [7] it is shown that on a certain class of Riemann surfaces with
constant negative curvature and with boundary, there exist natural two-dimensional
measures invariant under the geodesic flow having two-dimensional supports such
that their projections to the base manifold are two-dimensional, but the supports
of the projections are Lebesgue negligible. In this case the singularity is due to
the projection. In [7] the main tool is Besicovitch–Federer projection theorem for
transversal families of mappings stated as follows (in theorem 2 we denote by H m

the m-dimensional Hausdorff measure):

Theorem 2. Let l,m, and n be integers with m ≤ l and m < n. Let E ⊂ Rn be H m-
measurable with H m(E)<∞. Assume thatΛ ⊂Rl is open and {Pλ : Rn →Rm}λ∈Λ
is a transversal family of maps. Then E is purely m-unrectifiable, if and only if
H m(Pλ (E)) = 0 for L l -almost all λ ∈Λ .
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Multifractal Tubes

Lars Olsen

Abstract Tube formulas refer to study of volumes of r neighbourhoods of sets.
For sets satisfying some (possible very weak) convexity conditions, this has a long
history going back to Steiner in the early Nineteenth century. However, within
the past 20 years, Lapidus has initiated and pioneered a systematic study of tube
formulas for fractal sets. Following this line of investigation, it is natural to ask as
to what extent it is possible to develop a theory of multifractal tubes. In this survey
we will explain one approach to this problem based on Olsen (Multifractal tubes,
Preprint, 2011). In particular, we will propose a general framework for studying tube
formulas of multifractals and, as an example, we give a complete description of the
asymptotic behaviour of the multifractal tube formulas for self-similar measures
satisfying the Open Set Condition.

1 Fractal Tubes

Let E be a subset of R
d and r > 0. We now write B(E,r) for the open r

neighbourhood of E , i.e.

B(E,r) =
{

x ∈ R
d
∣
∣∣dist(x,E)< r

}
.

Intuitively we will think of the set B(E,r) as consisting of the E surrounded by
a “tube” of width r. Our main interest is to compute the volume of the “tube” of
width r surrounding E or equivalently computing the volume of the set B(E,r) and
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subtract the volume of E . To make this formal, we define the Minkowski volume
Vr(E) of E by

Vr(E) =
1
rd L d(B(E,r)) ;

here and below L d denotes the Lebesgue measure in R
d and the normalizing factor

1
rd is included to make the subsequent results simpler—we note that different authors
use different normalizing factors. Tube formulas refer to formulas for computing the
Minkowski volume Vr(E) as a function of the width r of the “tube” surrounding E .
In particular, one is typically interested in the following two types of results:

1. Asymptotic behaviour: finding a formula for the asymptotic behaviour of Vr(E)
as r ↘ 0.

2. Explicit formulas: finding an explicit formulas for Vr(E) valid for all small r.

For convex sets E , this problem has a rich and fascinating history starting with
the work of Steiner in the early Nineteenth century. This theory reached its mature
form in the 1960s where Federer [13, 14] unified the tube formulas of Steiner for
convex bodies and of Weyl for smooth submanifolds, as described in [2, 21, 50],
and extended these results to sets of positive reach. Federer’s tube formula has since
been extended in various directions by a number of researchers in integral geometry
and geometric measure theory, including [18, 19, 47–49, 52, 53] and most recently
(and most generally) in [25]. The books [21, 35, 48] contain extensive endnotes
with further information and many other references. While the above references
investigate tube formulas for sets that satisfy some (possibly very weak) convexity
conditions, very recently there has been significant interest in developing a theory
of tube formulas for fractal sets and a number of exciting works have appeared.
Indeed, in the early 1990s, Lapidus introduced the notion of “complex dimensions”
and has during the past 20 years very successfully pioneered the use of “complex
dimension” to obtain explicit tube formulas for certain classes of fractal sets; this
exiting theory is described in detail in Lapidus and van Frankenhuysen’s intriguing
books [29, 30]. In a parallel development and building on earlier work by Lalley
[26–28] and Gatzouras [20] (see also [11]), Winter [51] has initiated the systematic
study of curvatures of fractal sets and applied this theory to study the asymptotic
behaviour of the Minkowski volume Vr(E) of fractal sets E using methods from
renewal theory.

The Minkowski volume Vr(E) is closely related to various notions from Fractal
Geometry. Indeed, using the Minkowski volume Vr(E), we define the lower and
upper Minkowski dimension of E by

dimM(E) = liminfr↘0
logVr(E)
− logr ,

dimM(E) = limsupr↘0
logVr(E)
− logr .

The link with Fractal Geometry is now explained as follows. Namely, box
dimensions play an important role in Fractal Geometry and it is not difficult to see
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that the lower Minkowski dimension equals the lower box dimension and that the
upper Minkowski dimension equals the upper box dimension; for the definition of
the box dimensions the reader is referred to Falconer’s textbook [10].

It is clearly also of interest to analyse the behaviour of the Minkowski volume
Vr(E) itself as r ↘ 0. Indeed, if, for example, a1, . . . ,ad ,b1, . . . ,bd are real numbers
with ai ≤ bi for all i, and U denotes the rectangle [a1,b1]×·· ·× [ad ,bd ] in R

d , then
it is clear that 1

r−d Vr(U)→ (b1 − a1) · · · (bd − ad) = L d(U). This suggests that if t

is a real number, then the limit limr↘0
1

r−t Vr(E) (if it exists) may be interpreted as
the t-dimensional volume of E . Motivated by this, for a real number t, we therefore
define the lower and upper t-dimensional Minkowski content of E by

Mt(E) = liminfr↘0
1

r−t Vr(E) ,

M
t
(E) = limsupr↘0

1
r−t Vr(E) .

If Mt(E) = M
t
(E), i.e. if the limit limr↘0

1
r−t Vr(E) exists, then we say the E is t

Minkowski measurable, and we will denote the common value of Mt(E) and M
t
(E)

by Mt(E), i.e. we will write

Mt(E) = Mt(E) = M
t
(E) .

Of course, a set E may not be Minkowski measurable, i.e. the limit limr↘0
1

r−t Vr(E)
may not exist. In this case it is natural to study the limiting behaviour of “averages”
of 1

r−t Vr(E). We therefore define the lower and upper average t-dimensional
Minkowski content of E by

Mt
ave(E) = liminfr↘0

1
− logr

∫ 1
r

1
s−t Vs(E) ds

s ,

M
t
ave(E) = liminfr↘0

1
− logr

∫ 1
r

1
s−t Vs(E) ds

s .

If Mt
ave(E) = M

t
ave(E), i.e. if the limit limr↘0

1
− logr

∫ 1
r

1
s−t Vs(E) ds

s exists, then we
say the E is t average Minkowski measurable, and we will denote the common
value of Mt

ave(E) and M
t
ave(E) by Mt

ave(E), i.e. we will write

Mt
ave(E) = Mt

ave(E) = M
t
ave(E) .

While the Minkowski dimensions in many cases can be computed rigorously
relatively easy, it is a notoriously difficult problem to compute the Minkowski
content. In fact, it is only within the past 15 years that the Minkowski content of
non-trivial examples has been computed. Indeed, using techniques from complex
analysis, Lapidus and collaborators [29, 30] have computed the Minkowski content
of certain self-similar subsets of the real line, and using ideas from the theory of
Mercerian theorems, Falconer [11] has obtained similar results.
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It is our intention to extend the notion of Minkowski volume Vr(E) to multi-
fractals and investigate the asymptotic behaviour of the corresponding multifractal
Minkowski volume as r ↘ 0 for self-similar multifractals. In order to motivate our
definitions we will now explain what the term “multifractal analysis” covers.

2 Multifractals

2.1 Multifractal Spectra

Distributions with widely varying intensity occur often in the physical sciences,
for example, the spatial–temporal distribution of rainfall, the spatial distribution
of oil and gas in the underground, the distribution of galaxies in the universe, the
dissipation of energy in a highly turbulent fluid flow and the occupation measure on
strange attractors. Such distributions are called multifractals and have recently been
the focus of much attention in the physics literature.

Figure 1 shows a typical multifractal, i.e. a measure with widely varying intensity.
Dark regions have high concentration of mass and light regions have low concen-
tration of mass. For a Borel measure μ on a R

d and a positive number α , let us
consider the set Δμ(α) of those points x in R

d for which the measure μ(B(x,r)) of
the ball B(x,r) with centre x and radius r behaves like rα for small r, i.e. the set

Fig. 1 A typical multifractal, i.e. a measure with widely varying intensity. Dark regions have high
concentration of mass and light regions have low concentration of mass
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Δμ(α) =
{

x ∈ suppμ
∣
∣
∣∣ lim

r↘0

logμ(B(x,r))
logr

= α
}
,

where suppμ denotes the support of the measure. If the intensity of the measure μ
varies very widely, it may happen that the sets Δμ(α) display a fractal-like character
for a range of values of α . If this is the case, then the measure is called a multifractal
measure or simply a multifractal, and it is natural to study the sizes of the sets
Δμ(α) as α varies. There are two approaches to this. We may consider the measure
μ(Δμ(α)) of the sets Δμ(α) as α varies. This approach was adopted by Cutler in
a series of papers [5–7] and leads to a “decomposition” of the measure into its α-
dimensional components. However, typically the sets Δμ(α) have zero μ measure
except for a few exceptional values of α . Hence, the measure μ(Δμ(α)) does in
general not allow us to distinguish between the sets Δμ(α). The other approach is
to find the (fractal) dimension of Δμ(α). In most examples of interest the set Δμ(α)
is dense in the support of μ for all values of α for which Δμ(α) is non-empty, and
thus

dimBΔμ(α) = dimBΔμ(α) = dimB suppμ

and
dimBΔμ(α) = dimBΔμ(α) = dimB suppμ

for all values of α for which Δμ(α) �= ∅, where dimB and dimB denote the lower
and upper box dimension, respectively. Box dimensions are thus in general of little
use in discriminating between the size of the sets Δμ(α). It is therefore more natural
to study the Hausdorff dimension,

fμ(α) = dimΔμ(α) , (1)

of the sets Δμ(α) as a function of α where dim denotes the Hausdorff dimension.
The function in Eq. (1) and similar functions are generically known as “the
multifractal spectrum of μ”, “the singularity spectrum of μ” or “the spectrum of
scaling indices”, and one of the main problems in multifractal analysis is to study
these and related functions. The function fμ(α) was first explicitly defined by the
physicists Halsey et al. in 1986 in their seminal paper [22]. The concepts underlying
the above mentioned multifractal decompositions go back to two early papers by
Mandelbrot [32,33] from 1972 and 1974, respectively. Mandelbrot [32,33] suggests
that the bulk of intermittent dissipation of energy in a highly turbulent fluid flow
occurs over a set of fractal dimension. The ideas introduced in [32, 33] were taken
up by Frisch and Parisi [17] in 1985 and finally by Halsey et al. [22] in 1986. Of
course, for many measures, the limit limr↘0

logμ(B(x,r))
logr may fail to exist for all or

many x, in which case we need to work with lower or upper limits as r tends to 0
and (perhaps) replace “= α” in the definition of Δμ(α) with “≤ α” or “≥ α”.
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2.2 Renyi Dimensions

Based on a remarkable insight together with a clever heuristic argument Halsey et al.
[22] suggest that the multifractal spectrum fμ(α) can be computed in the following
way—known as the so-called “Multifractal Formalism” in the physics literature.
The “Multifractal Formalism” involves the so-called Renyi dimensions which we
will now define. Let μ be a Borel measure on R

d . For q ∈ R and r > 0, we define
the qth moment Iq

μ,r(E) of a subset E of Rd with respect to μ at scale r by

Iq
μ,r(E) =

∫

E

μ(B(x,r))q−1 dμ(x). (2)

Next, the lower and upper Renyi dimensions of E with respect to μ are defined by

dimq
R,μ(E) = liminfr↘0

log Iq
μ ,r(E)

− logr , (3)

dim
q
R,μ(E) = limsupr↘0

log Iq
μ ,r(E)

− logr . (4)

In particular, the Renyi dimensions of the support of μ play an important role in
the statement of the “Multifractal Formalism”. For this reason it is useful to denote
these dimensions by separate notation, and we therefore define the lower and upper
Renyi spectra τμ(q),τμ(q) : R→ [−∞,∞] of μ by

τμ(q) = dimq
R,μ(suppμ) = liminf

r↘0

log Iq
μ,r(suppμ)
− logr

,

τμ(q) = dim
q
R,μ(suppμ) = limsup

r↘0

log Iq
μ,r(suppμ)
− logr

.

2.3 The Multifractal Formalism

We can now state the “Multifractal Formalism”. Loosely speaking the “Multifractal
Formalism” says the the multifractal spectrum fμ and the Renyi dimensions carry
the same information. More precisely, the multifractal spectrum equals the Legendre
transform of the Renyi dimensions. Before stating this formally, we remind the
reader that if ϕ : R → R is a real-valued function, then the Legendre transform
ϕ∗ : R→ [−∞,∞] of ϕ is defined by

ϕ∗(x) = inf
y
(xy+ϕ(y)) .
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The Multifractal Formalism: A Physics Folklore Theorem. The multifractal
spectrum fμ of μ equals the Legendre transforms,s τ∗μ and τ∗μ , of the Renyi
dimensions, i.e.

fμ(α) = τ∗μ(α) = τ
∗
μ(α)

for all α ≥ 0.

The “Multifractal Formalism” is a truly remarkable result: it states that the
locally defined multifractal spectrum fμ can be computed in terms of the Legendre
transforms of the globally defined moment scaling functions τ∗μ and τ∗μ . There is
apriori no reason to expect that the Legendre transforms of the moment scaling
functions τ∗μ and τ∗μ should provide any information about the fractal dimension of
the set of points x such that μ(B(x,r))≈ rα for r ≈ 0. In some sense the “Multifractal
Formalism” is a genuine mystery.

During the past 20 years there has been an enormous interest in verifying the
Multifractal Formalism and computing the multifractal spectra of measures in the
mathematical literature. In the mid-1990s Cawley and Mauldin [3] and Arbeiter
and Patzschke [1] verified the Multifractal Formalism for self-similar measures
satisfying the open set condition (OSC), and within the last 10 years the multifractal
spectra of various classes of measures in Euclidean space Rd exhibiting some degree
of self-similarity have been computed rigorously, cf. the textbooks [12, 42] and the
references therein.

3 Multifractal Tubes

3.1 Multifractal Tubes

Motivated by Lapidus and van Frankenhuysen investigations [29, 30] of tube
formulas for fractal sets, it is natural to develop a theory of multifractal tube
formulas for multifractal measures. In this section we will present a framework
attempting to do this. As an example, we will also give a complete description of
the asymptotic behaviour of the multifractal tube formulas for self-similar measures
satisfying the Open Set Condition.

Multifractal tube formulas are defined as follows. First note that if r > 0 and E is
a subset of Rd , then the Minkowski volume Vr(E) is given by

Vr(E) =
1
rd L d(B(E,r)) =

1
rd

∫

B(E,r)

dL d(x) ,
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where we have rewritten the Lebesgue measure L d(B(E,r)) of B(E,r) as the
integral

∫
B(E,r) dL d(x). Motivated by the Renyi dimensions (i.e. Eqs. (2) and (4))

and the above expression for Vr(E), we now define the multifractal Minkowski
volume as follows. Namely, let r > 0 and E be a subset of Rd . For real number q
and a Borel measure μ on R

d , we now define the multifractal q Minkowski volume
V q
μ,r(E) of E with respect to the measure μ by

V q
μ,r(E) =

1
rd

∫

B(E,r)

μ(B(x,r))q dL d(x) .

Note, that if q = 0, then the q multifractal Minkowski volume V q
μ,r(E) reduces to the

usual Minkowski volume, i.e.

V 0
μ,r(E) =Vr(E) .

The importance of the Renyi dimensions in multifractal analysis together with the
formal resemblance between the multifractal Minkowski volume V q

μ,r(E) and the
moments Iq

μ,r(E) used in the definition the Renyi dimensions may be seen as a
justification for calling the quantity V q

μ,r(E) for the multifractal Minkowski volume;
a further justification for this terminology will be proved below.

Using the multifractal Minkowski volume we can define multifractal Minkowski
dimensions. For real number q and a Borel measure μ on R

d , we define the lower
and upper multifractal q Minkowski dimension of E , by

dimq
M,μ(E) = liminfr↘0

logV q
μ ,r(E)

− logr ,

dim
q
M,μ(E) = limsupr↘0

logV q
μ ,r(E)

− logr .

Again we note the close similarity between the multifractal Minkowski dimensions
and the Renyi dimensions. Indeed, the next proposition shows that this similarity is
not merely a formal resemblance. In fact, for q ≥ 0, the multifractal Minkowski
dimensions and the Renyi dimensions coincide. This clearly provides further
justification for calling the quantity V q

μ,r(E) for the multifractal Minkowski volume.

Proposition 1 ([38]). Let μ be a Borel measure on R
d and E ⊆ R

d. If q ≥ 0, then

dimq
M,μ(E) = dimq

R,μ(E) ,

dim
q
M,μ(E) = dim

q
R,μ(E) .

In particular, if q ≥ 0, then

dimq
M,μ(suppμ) = τμ(q) ,
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dim
q
M,μ(suppμ) = τμ(q) .

Proof. This follows easily from the definitions. �
Having defined multifractal Minkowski dimensions, we also define multifractal

Minkowski content and average multifractal Minkowski content. For real numbers
q and t, we define the lower and upper (q, t)-dimensional multifractal Minkowski
content of E with respect to μ by

Mq,t
μ (E) = liminfr↘0

1
r−t V q

μ,r(E) ,

M
q,t
μ (E) = limsupr↘0

1
r−t V q

μ,r(E) .

If Mq,t
μ (E) = M

q,t
μ (E), i.e. if the limit limr↘0

1
r−t V q

μ,r(E) exists, then we say the E is
(q, t) multifractal Minkowski measurable with respect to μ , and we will denote the
common value of Mq,t

μ (E) and M
q,t
μ (E) by Mq,t

μ (E), i.e. we will write

Mq,t
μ (E) = Mq,t

μ (E) = M
q,t
μ (E) .

Of course, sets may not be multifractal Minkowski measurable, and it is therefore
useful to introduce a suitable averaging procedure when computing the multifractal
Minkowski content. Motivated by this we define the lower and upper (q, t)-
dimensional average multifractal Minkowski content of E with respect to μ by

Mq,t
μ,ave(E) = liminfr↘0

1
− logr

∫ 1
r

1
s−t V q

μ,s(E)
ds
s ,

M
q,t
μ,ave(E) = liminfr↘0

1
− logr

∫ 1
r

1
s−t V q

μ,s(E)
ds
s .

If Mq,t
μ,ave(E) = M

q,t
μ,ave(E), i.e. if the limit limr↘0

1
− logr

∫ 1
r

1
s−t V q

μ,s(E)
ds
s exists, then

we say the E is (q, t) average multifractal Minkowski measurable with respect to μ ,
and we will denote the common value of Mq,t

μ,ave(E) and M
q,t
μ,ave(E) by Mq,t

μ,ave(E),
i.e. we will write

Mq,t
μ,ave(E) = Mq,t

μ,ave(E) = M
q,t
μ,ave(E) .

3.2 Multifractal Tubes of Self-similar Measures

As an example, we will now compute the multifractal Minkowski content of
self-similar measures. We first recall the definition of self-similar measures. Let
Si : Rd → R

d for i = 1, . . . ,N be contracting similarities and let (p1, . . . , pN) be a
probability vector. We denote the Lipschitz constant of Si by ri ∈ (0,1). Let K and
μ be the self-similar set associated with the list (S1, . . . ,SN) and the self-similar
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measure associated with the list (S1, . . . ,SN , p1, . . . , pN), i.e. K is the unique non-
empty compact subset of Rd such that

K =
⋃

i

Si(K) , (5)

and μ the unique Borel probability measure on R
d such that

μ =∑
i

piμ ◦ S−1
i , (6)

cf. [24]. We note that it is well-known that suppμ = K.
We will frequently assume that the list (S1, . . . ,SN) satisfies certain “disjointness”

conditions, viz the OSC or the strong separation condition (SSC) defined below.

The Open Set Condition: There exists an open non-empty and bounded subset
U of Rd with ∪iSiU ⊆U and SiU ∩S jU =∅ for all i, j with i �= j.

The Strong Separation Condition: There exists an open non-empty and bounded
subset U of Rd with ∪iSiU ⊆U and SiU ∩S jU =∅ for all i, j with i �= j.

Multifractal analysis of self-similar measures has attracted an enormous interest
during the past 20 years. For example, using methods from ergodic theory, Peres and
Solomyak [43] have recently shown that for any self-similar measure μ , the Renyi

dimensions always exist, i.e. the limit limr↘0
log Iq

μ ,r(K)

− logr always exists regardless of
whether or not the OSC is satisfied provided q≥ 0. If in addition the OSC is satisfied,

an explicit expression for the two limits τμ(q) = liminfr↘0
log Iq

μ ,r(K)

− logr and τμ(q) =

limsupr↘0
log Iq

μ ,r(K)

− logr can be obtained. Indeed, Arbeiter and Patzschke [1] and Cawley
and Mauldin [3] proved that if the OSC is satisfied, then

τμ(q) = liminf
r↘0

log Iq
r (K)

− logr

= β (q) ,

τμ(q) = limsup
r↘0

log Iq
r (K)

− logr

= β (q) , (7)

for q ∈ R, where β (q) is defined by

∑
i

pq
i rβ (q)i = 1 . (8)

Arbeiter and Patzschke [1] and Cawley and Mauldin [3] also verified the Multifrac-
tal Formalism for self-similar measures satisfying the OSC. Namely, in [1, 3], it is
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proved that if μ is a self-similar measure satisfying the OSC, then

fμ(α) = β ∗(α)

for all α ≥ 0; recall, that the definition of the Legendre transform ϕ∗ of a real-
valued functionϕ :R→R is given in Sect. 2.3. We continue this line of investigation
by computing the multifractal Minkowski dimensions and multifractal Minkowski
content of self-similar measures satisfying various separation conditions. Firstly, we
note that the multifractal Minkowski dimensions coincide with β (q). This is not a
deep fact and is included mainly for completeness.

Theorem 1 ([38]). Let K and μ be given by Eqs. (5) and (6). Fix q ∈R and assume
that Condition (i) or Condition (ii) below is satisfied.

(i) The OSC is satisfied and 0 ≤ q.
(ii) The SSC is satisfied.

Then we have
dimq

M,μ(K) = dim
q
M,μ(K) = β (q)

for all q ∈ R.

Proof. As noted above, this is not a deep fact and follows from the definitions using
standard arguments similar to those in [1] or Falconer’s textbook [12]. �
Next, we give a complete description of the asymptotic behaviour of the multifractal
tube formulas for self-similar measures satisfying the Open Set Condition. In
particular, we prove that if the set {logr−1

1 , . . . , logr−1
N } is not contained in a discrete

additive subgroup of R, then K is (q,β (q)) multifractal Minkowski measurable with
respect to μ , and if the set {logr−1

1 , . . . , logr−1
N } is contained in a discrete additive

subgroup of R, then K is (q,β (q)) average multifractal Minkowski measurable with
respect to μ . This is the content of Theorem 2. The proof of Theorem 2 is based on
Renewal Theory and will be discussed after the statement of the theorem.

Theorem 2 ([38]). Let K and μ be given by Eqs. (5) and (6). Fix q ∈R and assume
that Condition (i) or Condition (ii) below is satisfied.

(i) The OSC is satisfied and 0 ≤ q.
(ii) The SSC is satisfied.

Define λq : (0,∞)→ R by

λq(r) =V q
μ,r(K)−∑

i

pq
i 1(0,ri](r)V q

μ,r−1
i r

(K).

Then we have the following:

1. If the set {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup
of R, then
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1

r−β (q)
V q
μ,r(K) = cq + εq(r),

where cq ∈ R is the constant given by

cq =
1

−∑i pq
i rβ (q)i logri

∫ 1

0
rβ (q)λq(r)

dr
r

and εq(r) → 0 as r ↘ 0. In addition, K is (q,β (q)) multifractal Minkowski
measurable with respect to μ:

Mq,β (q)
μ (K) = 1

−∑i pq
i r
β(q)
i logri

∫ 1
0 rβ (q)λq(r) dr

r .

2. If the set {logr−1
1 , . . . , logr−1

N } is contained in a discrete additive subgroup of R
and 〈logr−1

1 , . . . , logr−1
N 〉= uZ with u > 0, then

1

r−β (q)
V q
μ,r(K) = πq(r)+ εq(r),

where πq : (0,∞)→R is the multiplicatively periodic function with period equal
to eu, i.e.

πq(e
ur) = πq(r)

for all r ∈ (0,∞), given by

πq(r) =
1

−∑i pq
i rβ (q)i logri

∑
n∈Z,renu≤1

(reun)β (q)λq(re
un)u

and εq(r) → 0 as r ↘ 0. In addition, K is (q,β (q)) average multifractal
Minkowski measurable with respect to μ with

Mq,β (q)
μ,ave (K) = 1

−∑i pq
i r
β(q)
i logri

∫ 1
0 rβ (q)λq(r) dr

r .

It is instructive to consider the special case q = 0. Indeed, since the multifractal
Minkowski volume for q = 0 equals the usual Minkowski volume and since the
(q, t)-dimensional multifractal Minkowski content for q = 0 equals the usual t-
dimensional Minkowski content, the following corollary providing formulas for
the asymptotic behaviour of the Minkowski volume of self-similar sets follows
immediately from Theorem 2 by putting q = 0. This result was first obtained by
Gatzouras [20] and later by Winter [51].

Corollary 1 ([20]). Let K be given by Eqs. (5) and (6). Assume that the OSC is
satisfied. Let t denote the common value of the box dimensions and the Hausdorff
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dimension of K, i.e. t is the unique number such that ∑i rt
i = 1 (see [12] or [24]).

Define λ : (0,∞)→R by

λ (r) =Vr(K)−∑
i

1(0,ri](r)Vr−1
i r(K).

Then we have:

1. If the set {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup
of R, then

1
r−t Vr(K) = c+ ε(r),

where c ∈ R is the constant given by

c =
1

−∑i rt
i logri

∫ 1

0
rβ (q)λ (r)

dr
r

and ε(r)→ 0 as r ↘ 0. In addition, K is t Minkowski measurable with

Mt (K) = 1
−∑i rt

i log ri

∫ 1
0 rtλ (r) dr

r .

2. If the set {logr−1
1 , . . . , logr−1

N } is contained in a discrete additive subgroup of R
and 〈logr−1

1 , . . . , logr−1
N 〉= uZ with u > 0, then

1
r−t Vr(K) = π(r)+ ε(r),

where π : (0,∞)→ R is the multiplicatively periodic function with period equal
to eu, i.e.

π(eur) = π(r)

for all r ∈ (0,∞), given by

π(r) =
1

−∑i rt
i logri

∑
n∈Z,renu≤1

(reun)t λ (reun)u

and ε(r)→ 0 as r ↘ 0. In addition, K is t average Minkowski measurable with

Mt
ave(K) = 1

−∑i rt
i logri

∫ 1
0 rtλ (r) dr

r .

Proof. Since β (0) = dimB(K) = dimB(K) = dim(K) = t (see [12] or [24]) and
V 0
μ,r(K) =Vr(K), this follows from Theorem 2 by putting q = 0. �
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3.3 How Does One Prove Theorem 2 on the Asymptotic
Behaviour of Multifractal Tubes of Self-similar Measures?

How does one prove Theorem 2? The proof is based on Renewal Theory and, in
particular, on a very recent renewal theorem by Levitin and Vassiliev [31]. Below
we state Levitin and Vassiliev’s Renewal Theorem.

Theorem 3 (Levitin and Vassiliev’s Renewal Theorem [31]). Let t1, . . . , tN > 0
and p1, . . . , pN > 0 with ∑i pi = 1. Define the probability measure P by

P =∑
i

piδti .

Let λ ,Λ : R→R be real-valued functions satisfying the following conditions:

1. The function λ is piecewise continuous.
2. There are constants c,k > 0 such that

|λ (t)| ≤ ce−k|t|

for all t ∈R.
3. We have

Λ(t)→ 0 as t →−∞.
4. We have

Λ(t) =
∫
Λ(t − s)dP(s)+λ (t)

for all t ∈R.

Then the following holds:

1. The non-arithmetic case: If {t1, . . . , tN} is not contained in a discrete additive
subgroup of R, then

Λ(t) = c+ ε(t)

for all t ∈R where

c =
1

∫
sdP(s)

∫
λ (s)ds

and ε(t)→ 0 as t → ∞. In addition,

1
T

∫ T

0
Λ(t)dt → c =

1
∫

sdP(s)

∫
λ (s)ds as T → ∞. (9)

2. The arithmetic case: If {t1, . . . , tN} is contained in a discrete additive subgroup
of R and 〈t1, . . . , tN〉= uZ with u > 0, then

Λ(t) = π(t)+ ε(t)
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for all t ∈R where π : R→R is the periodic function with period equal to u, i.e.

π(t + u) = π(t)

for all t ∈R, given by

π(t) =
1

∫
sdP(s)

u∑
n∈Z
λ (t + nu)

and ε(t)→ 0 as t → ∞. In addition

1
T

∫ T

0
Λ(t)dt → c =

1
∫

sdP(s)

∫
λ (s)ds as T → ∞. (10)

Proof. All statements, except Eqs. (9) and (10), follow [31]. Below we prove
Eqs. (9) and (10). Indeed, Eq. (9) follows immediately and Eq. (10) is proved as
follows. Namely, since π is periodic with period equal to u, we conclude that

1
T

∫ T

0
Λ(t)dt =

1
T

∫ T

0
π(t)dt +

1
T

∫ T

0
ε(t)dt

→ 1
u

∫ u

0
π(t)dt

=
1

∫
t dP(t)

∫ u

0
∑
n∈Z
λ (t + nu)dt . (11)

Next, observe that since |λ (t)| ≤ ce−k|t| for all t ∈ R and
∫

ce−k|t| dt < ∞, it follows
from two applications of Lebesgue’s Dominated Convergence Theorem and the fact
that π is periodic with period equal to u that

∫ u

0
∑
n∈Z
λ (t + nu)dt = ∑

n∈Z

∫ u

0
λ (t + nu)dt

= ∑
n∈Z

∫ (n+1)u

nu
λ (t)dt

= ∑
n∈Z

∫
1[nu,(n+1)u)(t)λ (t)dt

=

∫

∑
n∈Z

1[nu,(n+1)u)(t)λ (t)dt

=
∫
λ (t)dt . (12)
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Finally, combining Eqs. (11) and (12) shows that

1
T

∫ T

0
Λ(t)dt → 1∫

t dP(t)

∫
λ (t)dt .

This completes the proof. �
The key difference between Levitin and Vassiliev’s Renewal Theorem and the
classical renewal theorem from Feller’s books [15, 16] is the conclusion in the
arithmetic case. While the assumptions in the classical renewal theorem are weaker,
the conclusion in the arithmetic case is also weaker. More precisely, in the arithmetic
case, Levitin and Vassiliev’s Renewal Theorem says that the error-term ε(t) tends
to 0 as t tends to infinity, i.e.

lim
t→∞ε(t) = 0 ,

whereas the classical renewal theorem only allows us to conclude that the error-term
ε(t) tends to 0 as t tends to infinity through “steps” of length u, i.e.

lim
n ∈ N
n → ∞

ε(nu+ s) = 0

for all s ∈ R.
Using Levitin and Vassiliev’s Renewal Theorem (Theorem 3) we can now prove

Theorem 2. Below is a sketch of the proof.

Sketch of Proof of Theorem 2

In order to prove Theorem 2, we will apply Levitin and Vassiliev’s Renewal
Theorem to the probability measure P = Pq and the functions λ = λ 0

q and Λ = Λ0
q

defined below. First recall that λq : (0,∞)→R is defined by

λq(r) =V q
μ,r(K)−∑i pq

i 1(0,ri](r)V q

μ,r−1
i r

(K) ,

and define Λq : (0,∞)→R by

Λq(r) =V q
μ,r(K) .

We can now define the functions λ 0
q ,Λ0

q : R→R. Namely, define λ 0
q : R→R by

λ 0
q (t) = 1[0,∞)(t)e−tβ (q)λq(e

−t) ,

and define Λ0
q : R→ R by

Λ0
q (t) = 1[0,∞)(t)e−tβ (q)Λq(e

−t) .
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Finally, define the probability measure Pq by

Pq =∑
i

pq
i rβ (q)i δlogr−1

i
.

The crux of the matter now is to show that the probability measure P = Pq and the
functions λ = λ 0

q and Λ = Λ0
q satisfy conditions (1)–(4) in Levitin and Vassiliev’s

Renewal Theorem.

Condition (1) is satisfied. This is not difficult to show. Indeed, it follows by
applying results from [34] that the function f : (0,∞) → R defined by f (r) =∫

B(K,r) μ(B(x,r))q dL d(x) is continuous. This clearly implies that condition (1) is
satisfied.

Condition (2) is satisfied. This is the difficult part of the proof and requires a
number of very delicate estimates. In particular, the proof of condition (2) is based
on the three key estimates below. The proofs of Key Estimate 2 and Key Estimate
3 are both highly technical and require a number very delicate estimates. Below we
state the three key estimates. However, we will not prove the estimates. Instead the
reader is referred to [38]. Before we can state the key estimates we need to introduce
some notation. For i �= j and r > 0, let

Qq
i, j(r) =

1
rd

∫

B(SiK,r)∩B(S jK,r)

μ(B(x,r))q dL d(x) .

Let Σ = {1, . . . ,N} and write

Σm = {1, . . . ,N}m ,

Σ∗ =
⋃

m

Σm ,

i.e. Σm is the family of all strings i = i1 . . . im of length m with i j ∈ {1, . . . ,N}, and
Σ∗ is the family of all finite strings i = i1 . . . im with i j ∈ {1, . . . ,N}. For i ∈ Σm, we
write |i|=m for the length of i and for a positive integer n with n≤m, we write i|n=
i1 . . . in for the truncation of i to the nth place. Also, for i= i1 . . . im, j = j1 . . . jn ∈ Σ∗,
let ij = i1 . . . im j1 . . . jn denote the concatenation of i and j. Next, if i = i1 . . . im ∈ Σ∗,
we will write

Si = Si1 ◦ · · · ◦ Sim ,

ri = ri1 · · ·rim ,

pi = pi1 · · · pim . (13)

Also for brevity, put rmin = mini=1,...,N ri and rmax = maxi=1,...,N ri.
For i,h ∈ Σ∗, we write i ≺ h if and only if i is a substring of h, i.e. if and

only if there are strings s, t ∈ Σ∗ such that h = sit. If (S1, . . . ,Sn) satisfies the OSC,
then it follows from a result by Schief [46] that there exists an open, bounded and
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non-empty subset U of Rd with ∪iSiU ⊆ U , SiU ∩ S jU = ∅ for all i, j with i �= j,
and U ∩K �=∅. In particular, since U ∩K �=∅, we can choose l ∈ Σ∗ such that

SlK ⊆U , (14)

and the compactness of SlK now implies that d0 = dist(SlK,Rd \U)> 0. For brevity
write D0 = dK. Choose a positive integer M such that 1

rM−1
max

≥ 2 D0
d0

, and put a =

1
D0

rmin
rM+1
max

and b = 1
D0

1
rM+1
min

. Finally, define Zq : (0,∞)→R by

Zq(r) = ∑
h∈Σ∗,|h|≥|l|,ar≤rh≤br,l�≺h

pq
h .

The three key estimates are now:

Key Estimate 1. |λq(r)| ≤ ∑i�= j Qq
i, j(r) for all 0 < r < rmin.

Key Estimate 2. There is a constant c > 0 such that

∑
i�= j

Qq
i, j(r)≤

⎧
⎪⎨

⎪⎩

cZq( 1
2 r) for q < 0 and all r > 0,

cZq(2r) for 0 ≤ q and all r > 0.

Key Estimate 3. There are constants k > 0 and γ(q) ∈ R with γ(q) < β (q) such
that

Zq(r) ≤ k r−γ(q) for all r > 0.

Combining the three key estimates we can now prove that condition (2) is satisfied.
Indeed, choose t0 > 0 such that e−t < rmin for t ≥ t0. For t ≥ t0, we now have

|λ 0
q (t)| = 1[0,∞)(t)e−tβ (q) |λq(e

−t)|
(15)

≤ e−tβ (q)∑
i�= j

Qq
i, j(e

−t) [by Key Estimate 1]

(16)

≤
{

e−tβ (q)cZq( 1
2 e−t) for q < 0,

e−tβ (q)cZq(2e−t) for 0 ≤ q
[by Key Estimate 2]

(17)

≤
{

e−tβ (q) ck ( 1
2 e−t)−γ(q) for q < 0,

e−tβ (q) ck (2e−t)−γ(q) for 0 ≤ q
[by Key Estimate 3] (18)

(19)

= c0 e−(β (q)−γ(q))t, (20)

where c0 = ck max(( 1
2 )

−γ(q),2−γ(q)).
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Next, since λ 0
q is piecewise continuous (by condition (1)), we conclude that λ 0

q
is bounded on the compact interval [0, t0], and we therefore deduce that there is a
constant M0 such that |λ 0

q (t)| ≤M0 for all t ∈ [0, t0]. It follows from this and Eq. (20)
that

|λ 0
q (t)| ≤ max

(
M0

e−(β(q)−γ(q))t0 , c0

)
e−(β (q)−γ(q))t (21)

for all t ≥ 0.
Inequality Eq. (21) and the fact that λ 0

q (t) = 0 for all t < 0 now prove that
condition (2) is satisfied.

Condition (3) is satisfied. This follows trivially from the fact that Λ0
q (t) = 0 for

all t < 0.

Condition (4) is satisfied. Indeed, it follows immediately from the definitions of
λ 0

q , Λ0
q and Pq that

Λ0
q (t) = 1[0,∞)(t)e−tβ (q)Λq(e

−t)

= 1[0,∞)(t)e−tβ (q)

(

∑
i

pq
i 1(0,ri](e

−t)V q

μ,r−1
i e−t (K) + λq(e

−t)

)

=∑
i

pq
i e−tβ (q)1(0,ri](e

−t)1[0,∞)(t)V q
μ,r−1

i e−t (K) + λ 0
q (t)

=∑
i

pq
i rβ (q)i 1[0,∞)(t− logr−1

i )1[0,∞)(t)e−β (q)(t− logr−1
i )V q

μ,e−(t−logr−1
i )

(K)+λ 0
q (t)

=∑
i

pq
i rβ (q)i 1[0,∞)(t − logr−1

i )e−β (q)(t−logr−1
i )V q

μ,e−(t−logr−1
i )

(K) + λ 0
q (t)

=∑
i

pq
i rβ (q)i Λ0

q (t − logr−1
i ) + λ 0

q (t)

=

∫
Λ0

q (t − s)dPq(s) + λ 0
q (t)

for all t ∈ R. This proves that condition (4) is satisfied.
Since conditions (1)–(4) are satisfied, Levitin and Vassiliev’s Renewal Theorem

can now be applied to the probability measure P = Pq and the functions λ = λ 0
q and

Λ =Λ0
q . We divide the proof into two cases.

Case 1. If {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup of
R. If {logr−1

1 , . . . , logr−1
N } is not contained in a discrete additive subgroup of R,

then Levitin and Vassiliev’s Renewal Theorem implies that

Λ0
q (t) = cq + ε0

q (t),
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where cq ∈R is the constant given by

cq =
1

∫
sdPq(s)

∫
λ 0

q (s)ds

=
1

−∑i pq
i rβ (q)i logri

∫ ∞

0
e−sβ (q)λq(e

−s)ds

=
1

−∑i pq
i rβ (q)i logri

∫ 1

0
rβ (q)λq(r)

dr
r

and

ε0
q (t)→ 0 as t → ∞.

In particular, we have

rβ (q)V q
μ,r(K) =Λ0

q (log 1
r ) = cq + εq(r), (22)

where εq(r) = ε0
q (log 1

r )→ 0 as r ↘ 0.

Finally, it follows from Eq. (22) that

rβ (q)V q
μ,r(K)→ cq as r ↘ 0.

This completes the proof of Theorem 2 in Case 1.

Case 2. If {logr−1
1 , . . . , logr−1

N } is contained in a discrete additive subgroup of
R. If {logr−1

1 , . . . , logr−1
N } is contained in a discrete additive subgroup of R and

〈t1, . . . , tN〉= uZ with u > 0, then Levitin and Vassiliev’s Renewal Theorem implies
that

Λ0
q (t) = π

0
q (r)+ ε

0
q (t),

where π0
q : R→R is the function given by

π0
q (t) =

1
∫

sdPq(s)
u∑

n∈Z
λ 0

q (t + nu)

=
1

−∑i pq
i rβ (q)i logri

u∑
n∈Z
λ 0

q (t + nu)

and

ε0
q (t)→ 0 as t → ∞.

Moreover, we have

π0
q (t + u) = π0

q (t)
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for all t ∈ R, i.e. π0
q is additively periodic with period equal to u. In particular, we

have

rβ (q)V q
μ,r(K) =Λ0

q (log 1
r ) = πq(r)+ εq(r),

where πq : R→ R is the function given by

πq(r) = π0
q (log 1

r )

=
1

−∑i pq
i rβ (q)i logri

u∑
n∈Z
λ 0

q (log 1
r + nu)

=
1

−∑i pq
i rβ (q)i logri

u∑
n∈Z

1[0,∞)(log 1
r + nu)e−β (q)(log 1

r +nu)λq(e
−(log 1

r +nu))

=
1

−∑i pq
i rβ (q)i logri

u ∑
n∈Z,renu≤1

(renu)β (q)λq(re
nu)

and εq(r) = ε0
q (log 1

r )→ 0 as r ↘ 0. Moreover, since π0
q is additively periodic with

period equal to u, we have

πq(e
ur) = π0

q (log 1
eur ) = π

0
q (log 1

r − u) = π0
q (log 1

r ) = πq(r)

for all r > 0, i.e. πq is multiplicatively periodic with period equal to eu.

Finally it follows from Levitin and Vassiliev’s Renewal Theorem that

1
T

∫ T

0
Λ0

q (t)dt → cq as T → ∞.

However, since

1
T

∫ T

0
Λ0

q (t)dt =
1
T

∫ T

0
e−tβ (q)V q

μ,e−t (K)dt

=
1

− loge−T

∫ 1

e−T
sβ (q)V q

μ,s(K)
ds
s
,

we now conclude that

1
− logr

∫ 1

r
sβ (q)V q

μ,s(K)
ds
s
→ cq as r ↘ 0.

This completes the proof of Theorem 2 in Case 2. �
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4 Multifractal Tube Measures

4.1 Multifractal Tube Measures

The statement in Theorem 2 is a global one: it provides information about the
limiting behaviour of the suitably normalized multifractal Minkowski volume

1

r−β (q)
V q
μ,r(K)

of the entire support K of μ as r ↘ 0. However, it is equally natural to ask for
local versions of Theorem 2 describing the limiting behaviour of the normalized
multifractal Minkowski volume

1

r−β (q)
V q
μ,r(E)

of (well-behaved) subsets E of the support of μ as r ↘ 0. In order to address this
question, we now introduce multifractal tube measures. A further motivation for
introducing multifractal tube measures comes from convex geometry and will be
discussed below.

The multifractal tube measures are defined as follows. Fix a Borel measure μ
on R

d and r > 0. For a real number q, we define the multifractal Minkowski tube
measure I q

μ,r by

I q
μ,r(E) =

1
rd

∫

E∩B(suppμ,r)

μ(B(x,r))q dL d(x)

for Borel subsets E of R
d . Of course, the measures I q

μ,r will, in general, not
converge weakly as r ↘ 0 (indeed, this is clear since Theorem 2 shows that, in
general, I q

μ,r(R
d) =V q

μ,r(K) does not converge as r ↘ 0). Hence in order to ensure
weak convergence of I q

μ,r as r ↘ 0 it is necessary to normalize the measures I q
μ,r.

There are two natural ways to normalized. Firstly we can normalize by volume.
More precisely, we define the volume normalized multifractal tube measure V q

μ,r by

V q
μ,r =

1
I q
μ,r(Rd)

I q
μ,r .

Secondly, we can normalize by scaling. More precisely, we defined the lower and
upper scaling normalized multifractal tube measures S q

μ,r and S
q
μ,r by

S q
μ,r =

1

r
−dim

q
M,μ (suppμ)

I q
μ,r ,

S
q
μ,r = 1

r
−dimq

M,μ (suppμ)
I q
μ,r .
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It is instructive to consider the particular case q = 0. To discuss this case we first
make the following definition. Namely, if U is a closed subset of Rd and r > 0, the
parallel volume measure VU,r of U is defined by

VU,r(E) =
L d(E ∩B(U,r))

L d(B(U,r))
,

see, for example, the texts [21,35,48]. We now note that if q = 0 and μ is any Borel
measure with suppμ = U , then the volume normalized multifractal tube measure
V q
μ,r simplifies to

V 0
μ,r(E) =

L d(E ∩B(suppμ ,r))
L d(B(suppμ ,r))

=
L d(E ∩B(U,r))

L d(B(U,r))

= VU,r(E) . (23)

This observation provides a further motivation for introducing multifractal tube
measures. Namely, the measure V 0

μ,r(E) = VU,r(E) is closely related to the notion
of curvature measures in convex geometry. Curvature measures were introduced in
the 1950s and are now recognized as a very powerful tool for analysing geometric
properties of convex sets; see [21, 35, 48]. Indeed, if U is a closed convex subset
of R

d with non-empty interior and l = 0,1,2, . . . ,d, then it is possible to define
the lth order curvature measure Vl

U associated with U . Each curvature measure Vl
U

is defined as the weak limit Vl
U = limr↘0 V

l
U,r of a certain family (Vl

U,r )r>0 of
measures. While we will not provide the reader with the definition of the measures
Vl

U,r for a general integer l = 0,1,2, . . . ,d (instead the interested reader can find the
definition in previously mentioned texts [21, 35, 48]), we do note that if l = d, then
Vd

U,r = VU,r. In particular, the d-th order curvature measure Vd
U is defined by

Vd
U = lim

r↘0
Vd

U,r

= lim
r↘0

VU,r ,

where lim denotes the limit with respect to the weak topology. This and the fact that
V 0
μ,r = VU,r show that the weak limit

lim
r↘0

V q
μ,r

(if it exists) may be viewed as a dth order multifractal curvature measure and the
study of multifractal tube measures can therefore be seen as a first attempt to create
a theory of multifractal curvatures.
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It is, of course, also possible to define versions of the parallel volume measure
analogous to S q

μ,r and S q
μ,r. Indeed, if U is a closed subset of Rd and r > 0, we

define the lower and upper scaling parallel volume measures SU,r and SU,r of U by

SU,r(E) =
1

r−dimM(U)+d L d(E ∩B(U,r)) ,

SU,r(E) = 1

r−dimM(U)+d
L d(E ∩B(U,r)) ;

recall that dimM and dimM denote the lower and upper Minkowski dimension,
respectively. As above, we note that if q = 0 and μ is any probability measure with
suppμ =U , then the scaling normalized multifractal tube measures S q

μ,r and S q
μ,r

simplify to

S 0
μ,r(E) = SU,r(E) , (24)

S
0
μ,r(E) = SU,r(E) . (25)

4.2 Multifractal Tube Measures of Self-similar Measures

For self-similar measures μ satisfying the OSC, we will now investigate the
existence of the weak limits of the multifractal tube measures V q

μ,r, S q
μ,r and S

q
μ,r

as r ↘ 0. In fact, in many cases, these limits exist and equal (the suitably) normalized
multifractal Hausdorff measure restricted to the support of μ .

We start by recalling the definition of the multifractal Hausdorff measure. In an
attempt to develop a general theoretical framework for studying the multifractal
structure of Borel measures, Olsen [36], Pesin [41] and Peyrière [44] introduced
a family of measures {H q,t

μ | q, t ∈ R} based on certain generalizations of the
Hausdorff measure. The measures H q,t

μ have subsequently been investigated further
by a large number of authors, including [4, 8, 9, 23, 37, 39, 40, 45]. Let E ⊆ R

d and
δ > 0. A countable family B = (B(xi,ri))i of closed balls in R

d is called a centred
δ -covering of E if E ⊆ ∪i B(xi,ri), xi ∈ E and 0 < ri < δ for all i. For E ⊆ R

d ,
q, t ∈R and δ > 0 write

H
q,t
μ,δ (E) = inf

{

∑
i

μ(B(xi,ri))
q(2ri)

t

∣
∣
∣∣
∣
(B(xi,ri))i is a centred δ -covering of E

}

,

H
q,t
μ (E) = sup

δ>0
H

q,t
μ,δ (E) ,

H q,t
μ (E) = sup

F⊆E
H

q,t
μ (F) .
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It follows from [36] that H q,t
μ is a measure on the family of Borel subsets of Rd . The

measure H q,t
μ is, of course, a multifractal generalization of the centred Hausdorff

measure. In fact, it is easily seen that if t ≥ 0, then 2−tH 0,t
μ ≤ H t ≤ H 0,t

μ where
H t denotes the t-dimensional Hausdorff measure. It is also easily seen that the
measure H q,t

μ in the usual way assign a dimension to each subset E of R
d (cf.

[36]): there exists a unique number dimq
μ(E) ∈ [−∞,∞] such that

H q,t
μ (E) =

{
∞ for t < dimq

μ(E)

0 for dimq
μ(E)< t

.

The number dimq
μ(E) is an obvious multifractal analogue of the Hausdorff

dimension dim(E) of E . In fact, it follows immediately from the definitions that
dim(E) = dim0

μ(E). One of the main importances of the multifractal Hausdorff

measure H q,t
μ is its connection with the multifractal spectrum of μ . Indeed, if we

define the dimension function bμ : R→ [−∞,∞] by

bμ(q) = dimq
μ(suppμ) ,

then it follows from [36] that the multifractal spectrum fμ of μ (cf. Eq. (1)) is
bounded above by the Legendre transform b∗μ of bμ , i.e.

fμ(α) ≤ b∗μ(α)

for all α ≥ 0, cf. [36]; recall, that the definition of the Legendre transform ϕ∗
of a real-valued function ϕ : R → R is given in Sect. 2.3. This inequality may
be viewed as a rigorous version of the “Multifractal Formalism”. Furthermore,
for many natural families of measure we have fμ(α) = b∗μ(α) for all α ≥ 0, cf.
[4, 8, 9, 36, 37].

We can now explicitly identify the weak limits of the multifractal tube measures
V q
μ,r, S q

μ,r and S
q
μ,r as r ↘ 0 for self-similar measures μ . The first result shows

that the weak limit of V q
μ,r (as r ↘ 0) always exists and equals the normalized

multifractal Hausdorff measure.

Theorem 4 ([38]). Let K and μ be given by Eqs. (5) and (6). Fix q ∈R and assume
that Condition (i) or Condition (ii) below is satisfied.

(i) The OSC is satisfied and 0 ≤ q.
(ii) The SSC is satisfied.

Then we have

V q
μ,r → 1

H
q,β (q)
μ (K)

H
q,β (q)
μ K weakly.
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Next, we study the limiting behaviour of S q
μ,r and S

q
μ,r as r ↘ 0 for self-similar

measures μ . Contrary to Theorem 4, the weak limits of S q
μ,r and S

q
μ,r as r ↘ 0 may

not exist. Indeed, if the set {logr−1
1 , . . . , logr−1

N } is contained in a discrete additive
subgroup of R, then the weak limits of S q

μ,r and S
q
μ,r as r ↘ 0 do not necessarily

exist; however, the weak limits of certain averages of S q
μ,r and S

q
μ,r exist and equal

a multiple of the normalized multifractal Hausdorff measure. On the other hand, if
the set {logr−1

1 , . . . , logr−1
N } is not contained in a discrete additive subgroup of R,

then the weak limits of S q
μ,r and S

q
μ,r as r ↘ 0 always exist and, as above, they

equal a multiple of the normalized multifractal Hausdorff measure.

Theorem 5 ([38]). Let K and μ be given by Eqs. (5) and (6). Fix q ∈R and assume
that Condition (i) or Condition (ii) below is satisfied.

(i) The OSC is satisfied and 0 ≤ q.
(ii) The SSC is satisfied.

Then the following holds:

(1) We have

S q
μ,r = S

q
μ,r =

1

r−β (q)
I q
μ,r .

Write S q
μ,r for the common value of S q

μ,r and S
q
μ,r, i.e. write

S q
μ,r =

1

r−β (q)
I q
μ,r .

Also, write

S q
μ,r,ave =

1
− logr

∫ 1

r

1

s−β (q)
I q
μ,s

ds
s
.

(2) If the set {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup
of R, then

S q
μ,r → Mq,β (q)

μ (K) 1

H
q,β(q)
μ (K)

H
q,β (q)
μ K weakly,

S q
μ,r,ave → Mq,β (q)

μ,ave (K) 1

H
q,β(q)
μ (K)

H
q,β (q)
μ K weakly;

recall that K is (q,β (q)) multifractal Minkowski measurable with respect to μ
and (q,β (q)) average multifractal Minkowski measurable with respect to μ by

Theorem 2 and the multifractal Minkowski content Mq,β (q)
μ (K) and the average

multifractal Minkowski content Mq,β (q)
μ,ave (K) are therefore well defined.
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(3) If the set {logr−1
1 , . . . , logr−1

N } is contained in a discrete additive subgroup of
R, then

S q
μ,r,ave → Mq,β (q)

μ,ave (K) 1

H
q,β(q)
μ (K)

H
q,β (q)
μ K weakly;

recall that K is (q,β (q)) average multifractal Minkowski measurable with
respect to μ by Theorem 2 and the average multifractal Minkowski content

Mq,β (q)
μ,ave (K) is therefore well defined.

As with Theorem 2, it is instructive to consider the special case q = 0. Indeed, we
note (cf. Eq. (23)) that

V 0
μ,r(E) =

L d(E ∩B(K,r))
L d(B(K,r))

= VK,r(E),

i.e. V 0
μ,r equals the normalized parallel body measure VK,r. Also, writing t for the

common value of the box dimensions and Hausdorff dimension of K, we note [see
Eq. (25)] that

S 0
μ,r(E) = S

0
μ,r(E) =

1
r−t+d L d(E ∩B(K,r))

= SK,r(E) = SK,r(E) ,

i.e. S 0
μ,r and S

0
μ,r equal the scaling parallel body measures SK,r and SK,r. The

following corollaries therefore follow immediately from Theorem 2, Theorems 1
and 2 by putting q = 0. These results were first obtained by Winter in his doctoral
dissertation [51].

Corollary 2 ([51]). Let K be given by Eq. (5). Assume that the OSC is satisfied. Let
t denote the common value of the box dimensions and the Hausdorff dimension of
K, i.e. t is the unique number such that ∑i rt

i = 1. For r > 0, the normalized parallel
body measure VK,r is given by

VK,r(E) =
1

L d(B(K,r))
L d(E ∩B(K,r)) .

Then we have

VK,r → 1
H t(K)

H t K weakly.

Proof. Since V 0
μ,r = VK,r, this follows from Theorem 4 by putting q = 0. �
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Corollary 3 ([51]). Let K be given by Eq. (5). Assume that the OSC is satisfied. Let
t denote for the common value of the box dimensions and the Hausdorff dimension
of K, i.e. t is the unique number such that ∑i rt

i = 1.

(1) We have

SK,r(E) = SK,r(E) =
1

r−t+d
L d(E ∩B(K,r)) .

Write SK,r for the common value of SK,r and SK,r, i.e. write

SK,r(E) =
1

r−t+d L d(E ∩B(K,r)) .

Also, write

SK,r,ave(E) =
1

− logr

∫ 1

r

1
s−t+d L d(E ∩B(K,s))

ds
s
.

(2) If the set {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup
of R, then

SK,r → Mt (K) 1
H t (K) H t K weakly,

SK,r,ave → Mt
ave(K) 1

H t (K)
H t K weakly;

recall that K is t Minkowski measurable and t average Minkowski measurable
by Corollary 1 and the Minkowski content Mt (K) and the average Minkowski
content Mt

ave(K) are therefore well defined.
(3) If the set {logr−1

1 , . . . , logr−1
N } is contained in a discrete additive subgroup of

R then

SK,r,ave → Mt
ave(K) 1

H t (K) H t K weakly;

recall that K is t average Minkowski measurable by Corollary 1 and the average
multifractal Minkowski content Mt

ave(K) is therefore well defined.

Proof. Since S 0
μ,r = S

0
μ,r = SK,r, this follows from Theorem 5 by putting

q = 0. �
In Sect. 4.1 it was suggested that one motivation for introducing the multifractal

tube measures V q
μ,r is that the limiting behaviour of V q

μ,r may be viewed as providing
a local version of Theorem 2. Namely, Theorem 2 describes the limiting behaviour
of 1

r−β(q)V
q
μ,r(K) as r ↘ 0, whereas Theorem 4 provides information about the the

limiting behaviour of 1
r−β(q)V

q
μ,r(E) as r ↘ 0 for “well-behaved” subsets E of K.

The viewpoint is made precise in the next corollary. Below we use the following
notation, namely, if X is a metric space and E ⊆ X , then we will denote the the
boundary of E in X by ∂E .
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Corollary 4. Let K and μ be given by Eqs. (5) and (6). Fix q ∈ R and assume that
Condition (i) or Condition (ii) below is satisfied.

(i) The OSC is satisfied and 0 ≤ q.
(ii) The SSC is satisfied.

Let E ⊆ R
d be a Borel set with:

1. H
q,β (q)
μ (E ∩K)> 0

2. H
q,β (q)
μ (∂E ∩K) = 0

3. E ∩B(K,r) = B(E ∩K,r) for r small enough

(Observe that, for example, the set E = R
d satisfies the above conditions, and if

K = L∪M with dist(L,M) > 0 and H
q,β (q)
μ (L) > 0 and 0 < δ < dist(L,M), then

the set E = B(L,δ ) satisfies the above conditions.)
Then we have the following:

1. If the set {logr−1
1 , . . . , logr−1

N } is not contained in a discrete additive subgroup
of R, then E ∩K is (q,β (q)) multifractal Minkowski measurable with respect to
μ with

Mq,β (q)
μ (E ∩K) = Mq,β (q)

μ (K)
H

q,β (q)
μ (E ∩K)

H
q,β (q)
μ (K)

;

recall that K is (q,β (q)) average multifractal Minkowski measurable with

respect to μ by Theorem 2 and the multifractal Minkowski content Mq,β (q)
μ (K)

is therefore well defined.
2. If the set {logr−1

1 , . . . , logr−1
N } is contained in a discrete additive subgroup of R,

then E ∩K is (q,β (q)) average multifractal Minkowski measurable with respect
to μ with

Mq,β (q)
μ,ave (E ∩K) = Mq,β (q)

μ,ave (K)
H

q,β (q)
μ (E ∩K)

H
q,β (q)
μ (K)

;

recall that K is (q,β (q)) average multifractal Minkowski measurable with
respect to μ by Theorem 2 and the average multifractal Minkowski content

Mq,β (q)
μ,ave (K) is therefore well defined.

Proof. This follows immediately from Theorem 5 since the condition E ∩B(K,r) =
B(E ∩K,r) implies that

I q
μ,r(E) =

1
rd

∫

E∩B(K,r)
μ(B(x,r))q dL d(x) =

1
rd

∫

B(E∩K,r)
μ(B(x,r))q dL d(x)

= V q
μ,r(E ∩K). �

Note that Corollary 4 is a genuine extension of Theorem 2: namely, if we let E = K
in Corollary 4, then Corollary 4 simplifies to Theorem 2.
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The Multiplicative Golden Mean Shift
Has Infinite Hausdorff Measure

Yuval Peres and Boris Solomyak

Abstract In an earlier work, joint with R. Kenyon, we computed the Hausdorff
dimension of the “multiplicative golden mean shift” defined as the set of all reals in
[0,1] whose binary expansion (xk) satisfies xkx2k = 0 for all k ≥ 1. Here we show
that this set has infinite Hausdorff measure in its dimension. A more precise result
in terms of gauges in which the Hausdorff measure is infinite is also obtained.

1 Introduction

Consider the set

ΞG :=

{

x =
∞

∑
k=1

xk2−k : xk ∈ {0,1}, xkx2k = 0 for all k

}

which we call the “multiplicative golden mean shift.” The reason for this term is that
the set of binary sequences corresponding to the points of ΞG is invariant under the
action of the semigroup of multiplicative positive integersN∗: Mr(xk)= (xrk) for r ∈
N. Fan, Liao, and Ma [3] showed that dimM(ΞG) = ∑∞k=1 2−k−1 log2 Fk+1 =
0.82429 . . . , where Fk is the k-th Fibonacci number: F1 = 1, F2 = 2, Fk+1 =
Fk−1 +Fk, and raised the question of computing the Hausdorff dimension of ΞG.
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Theorem 1 ([5, 6]). We have dimH(ΞG)< dimM(ΞG). In fact,

dimH(ΞG) =− log2 p = 0.81137 . . . , where p3 = (1− p)2, 0 < p < 1. (1)

Here we prove

Theorem 2. (i) The set ΞG has infinite (not σ -finite) Hausdorff measure in its
dimension. Moreover, let s = dimH(ΞG). Then H φ (ΞG) = ∞ for

φ(t) = ts exp

[
−c

| logt|
(log | log t|)2

]
(2)

provided that c> 0 is sufficiently small, and furthermore, ΞG is not σ -finite with
respect to H φ .

(ii) On the other hand, we have H ψθ (ΞG) = 0 for

ψθ (t) = ts exp

[
− | log t|
(log | log t|)θ

]
, (3)

provided that θ < 2.

Remarks. 1. In [6] we have pointed out a remarkable analogy between dimension
properties of multiplicative shifts of finite type and self-affine carpets of Bedford
and McMullen, see ([1, 8]), although we are not aware of any direct connection.
The stated theorem provides further evidence of this: it exactly corresponds to
Theorem 3 from the paper by the first-named author [9]. We should point out,
however, that our proof requires many new elements; in particular, the recurrence
relation from Lemma 3 below has no parallels in [9].

2. For self-affine carpets with non-uniform horizontal fibers, there is an elegant
“soft” argument showing that the Hausdorff measure of the set in its dimension
cannot be positive and finite [7], and more generally, this holds for any gauge [9].
It would be interesting to find a similar argument for the multiplicative golden
mean shift as well.

3. We expect that similar results hold for other multiplicative shifts of finite type
considered in [6]. Since the proofs are quite technical, we decided to focus on
the most basic example of ΞG.

2 Preliminaries and the Scheme of the Proof

It is more convenient to work in the symbolic space Σ2 = {0,1}N, with the metric

ρ((xk),(yk)) = 2−min{n: xn �=yn}.
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It is well known that the dimensions of a compact subset of [0,1] and the
corresponding set of binary digit sequences in Σ2 are equal (this is equivalent to
replacing the covers by arbitrary interval with those by dyadic intervals), and the
Hausdorff measures in the gauges that we are considering are comparable, up to a
multiplicative constant. Thus, it suffices to work with the set XG—the collection of
all binary sequences (xk) such that xkx2k = 0 for all k. Observe that

XG = {ω = (xk)
∞
k=1 ∈ Σ2 : (xi2r)∞r=0 ∈ ΣG for all i odd} , (4)

where ΣG is the usual (additive) golden mean shift:

ΣG := {(xk)
∞
k=1 ∈ Σ2, xkxk+1 = 0, for all k ≥ 1} .

We will use the Rogers–Taylor density theorem from [11]. We state it in the
symbolic space Σ2 where [u] denotes the cylinder set of sequences starting with
a finite “word” u and xn

1 = x1 . . .xn. Given a continuous increasing function φ on
[0,∞), with φ(0)= 0, we consider the generalized Hausdorff measure with the gauge
φ , denoted by H φ ; see, e.g., [2, p.33] or [10, p.50] for the definition and basic
properties.

Theorem 3 (Rogers and Taylor). Let P be a finite Borel measure on Σ2 and let
Λ be a Borel set in Σ2 such that P(Λ) > 0. Let φ be any gauge function. If for all
x ∈Λ ,

β1 ≤ liminf
n→∞

φ(2−n)

P [xn
1]

≤ β2 (5)

(where β1,β2 may be zero or infinity), then

c1β1P(Λ)≤ H φ (Λ)≤ c2β2P(Λ),

where c1 and c2 are positive and finite.

Corollary 1. Let P be a finite Borel measure on Σ2 and let Λ be a Borel set in Σ2

such that P(Λ) > 0. Let φ be any gauge function.

(i) If for P -a.e. x ∈Λ

lim
n→∞(log2P [x

n
1]− log2 φ(2

−n)) =−∞,

then H φ (Λ) = ∞.
(ii) If for all x ∈Λ

lim
n→∞(log2P [x

n
1]− log2 φ(2

−n)) = +∞,

then H φ (Λ) = 0.



196 Y. Peres and B. Solomyak

For an odd i denote by J(i) = {2ri}∞r=0 the geometric progression with ratio 2
starting at i. Equation (4) says that x ∈ XG if and only if the “restriction” of x to
every J(i) belongs to ΣG. We can define a measure on XG by taking an infinite
product of probability measures on each “copy” of ΣG.

In order to compute dimH(XG), it was enough to take the same measure μ on
each copy see [5]. Given a probability measure μ on ΣG, we define a probability
measure on XG by

Pμ [u] := ∏
i≤n, i odd

μ
[
u|J(i)

]
, (6)

where u|J(i) denotes the “restriction” of the word u to the subsequence J(i). It
was proved in [5, 6] that there is a unique probability measure μ on ΣG such that
dimH(Pμ) = dimH(XG). Denote by μ(r) the Markov (nonstationary) measure on
ΣG, with initial probabilities (r,1− r) and the matrix of transition probabilities P =

(P(i, j))i, j=0,1 =
(

r 1− r
1 0

)
. Then μ = μ(p), where p3 = (1− p)2. The measure

μ(r) on cylinder sets can be explicitly written as follows:

μ(r)([u1 . . .uk]) = (1− r)N1(u1...uk)rN0(u1...uk)−N1(u1...uk−1), (7)

where u ∈ {0,1}k is a word admissible in ΣG, i.e., if u j = 1, then u j+1 = 0 for
j ≤ k−1, and Ni(u) denotes the number of symbols i in the word u. To verify Eq. (7),
note that the probability of a 1 is always 1− r (including the first position), and the
probability of a 0 is r, except when it follows a 1, in which case its probability
equals one.

For the lower bound, i.e., part (i) of Theorem 2, we have to “fine-tune” the
measure Pμ by taking a product of measures μ(pk) on subsequences J(i) with odd i
such that 2k ≤ i < 2k+1. It is clear that we must have limk→∞ pk = p; in fact, we will
take pk = p+ δ

k . More precisely, let

μk = μ(pk), where pk = p+
δ
k
, k ≥ 1, p0 = p, (8)

and δ > 0 is sufficiently small, so that p1 = p+ δ < 1. Next, we define for u ∈
{0,1}n, with 2�−1 < n ≤ 2�,

Pδ [u] :=
�

∏
k=1

∏
n

2k < i≤ n
2k−1 , i odd

μ�−k
[
u|J(i)

]
, (9)

where u|J(i) = ui . . .u2k−1i is a word of length k. It is easy to see that Pδ is a
probability measure on XG.
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Without loss of generality we can (and will) use logarithms base 2 in Eqs. (2)
and (3). Theorem 2(i) immediately follows from Corollary 1(i) and the following
proposition.

Proposition 1. There exist constants δ > 0 and c > 0 such that the measure Pδ
defined by Eq. (9) satisfies

lim
n→∞

(
log2Pδ [x

n
1]− log2 φ(2

−n)
)
=−∞

for Pδ -a.e. x ∈ XG, where φ is the gauge function from Eq. (2). Equivalently,

lim
n→∞

(
log2Pδ [x

n
1]+ ns+

cn
(log2 n)2

)
=−∞ (10)

for Pδ -a.e. x ∈ XG, where s =− log2 p = dimH(XG).

For the upper bound of the Hausdorff measure, i.e., part (ii) of Theorem 2, it is
enough to take the same measure μ = μ(p) as in [5,6]; however, the proof is rather
delicate; it follows the scheme of [9, Theorem 3(ii)], but with many modifications.

We will need a classical large deviation inequality, which we state in the
generality needed for us.

Lemma 1 (Hoeffding’s inequality [4]). Let {Xi}i≥1 be a sequence of independent
random variables with expectation zero, such that |Xi| ≤ C, and let Sn = ∑n

i=1 Xi.
Then

P
(
Sn ≥ tn

)≤ exp
(
− t2n

2C2

)
(11)

for all t > 0 and n ≥ 1.

3 Lower Estimates of Hausdorff Measure

Here we prove Proposition 1. We start with a reduction.

Lemma 2. If Eq. (10) holds for positive integers n satisfying

n = 2��/2�d, where 2�−1 < n ≤ 2�, d ∈ N, (12)

with a constant c > 0, then Eq. (10) holds for all n with c replaced by c/2.

Proof. For a large integer n ∈ (2�−1,2�], let

d := �2−��/2�n�, m := 2��/2�d.

Then
n−

√
2n ≤ n− 2��/2� < m ≤ n.
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It is clear that m satisfies Eq. (12) (possibly with a different �). Observe that

log2Pδ [x
n
1]+ ns+

(c/2)n
(log2 n)2 ≤ log2Pδ [x

m
1 ]+ms+

cm
(log2 m)2

+s(n−m)+ c

[
n/2

(log2 n)2 − m
(log2 m)2

]
.

Since

s(n−m)+ c

[
n/2

(log2 n)2 − m
(log2 m)2

]
≤ s

√
2n+ c

[
n/2

(log2 n)2 − n−√
2n

(log2 n)2

]

< 0

for large enough n, the claim follows. 
�
For k ≥ 1 let αk be the partition of ΣG into cylinders of length k. For a measure μ

on Σ2 and a finite partition α , denote by Hμ(α) the μ-entropy of the partition, with
base 2 logarithms:

Hμ(α) =− ∑
A∈α

μ(A) log2 μ(A).

Let n be such that Eq. (12) holds. In view of Eq. (9),

log2Pδ [x
n
1]≤

��/2�
∑
k=1

∑
n

2k < i≤ n
2k−1 , i odd

log2 μ�−k
[
xn

1|J(i)
]
. (13)

Note that xn
1|J(i) is a word of length k for i ∈ (n/2k,n/2k−1], with i odd, which is

a beginning of a sequence in ΣG. Thus, [xn
1|J(i)] is an element of the partition αk.

The random variables x �→ log2 μ�−k[xn
1|J(i)] are i.i.d for i ∈ (n/2k,n/2k−1], with i

odd, and their expectation equals −Hμ�−k(αk), by the definition of entropy. Note
that there are n/2k+1 odds in (n/2k,n/2k−1]. It is easy to see from Eqs. (7) and (8)
that

∣
∣log2 μ�−k[x

n
1|J(i)]

∣
∣≤Ck, (14)

for i ∈ (n/2k,n/2k−1], with some C > 0, independent of n and k. Let

Sn/2k+1 := ∑
n

2k < i≤ n
2k−1 , i odd

log2 μ�−k[x
n
1|J(i)]

and S∗
n/2k+1 := Sn/2k+1 + n

2k+1 Hμ�−k(αk), be the corresponding sum of centered

(zero expectation) random variables. Then we have, for k = 1, . . .��/2�, and any
ε ∈ (0, 1

2 ), using Eq. (14) in Hoeffding’s inequality Eq. (11):
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Pδ

(
x : Sn/2k+1 >

−n
2k+1 Hμ�−k(αk)+

( n
2k+1

)1−ε)

= Pδ

(
x : S∗n/2k+1 >

( n
2k+1

)1−ε)

≤ exp

[
− (n/2k+1)1−2ε

2C2k2

]
.

Denote bε =∑∞k=1 2−(k+1)ε . Now it follows from Eq. (13) that

Pδ

(

x : log2Pδ [x
n
1]>−n

��/2�
∑
k=1

Hμ�−k(αk)

2k+1 + bεn
1−ε

)

(15)

≤ Pδ

(

x :
��/2�
∑
k=1

S∗n/2k+1 >
��/2�
∑
k=1

( n
2k+1

)1−ε
)

≤
��/2�
∑
k=1

Pδ

(
x : S∗n/2k+1 >

( n
2k+1

)1−ε)

≤
��/2�
∑
k=1

exp

[
− n1−2ε

2C22(k+1)(1−2ε)k2

]

≤ �exp

[
−C′

�2

( n

2��/2�+1

)1−2ε
]

≤ log2(2n)exp

[
− C′

log2
2(2n)

(n
8

) 1
2−ε

]
, (16)

where we used that
√

8n > 21+��/2� and � ≤ log2(2n) by Eq. (12) in the last step.
Since the last expression is summable in n, it follows from Borel–Cantelli that for
Pδ -a.e. x ∈ XG, the event in parentheses in Eq. (15) holds only for finitely many n.
This is the set of full Pδ measure for which we will prove Eq. (10), for n satisfying
Eq. (12).

Below we let H(r) =−r log2 r− (1− r) log2(1− r).

Lemma 3. We have, for any r ∈ (0,1) and the measure μ(r) defined by Eq. (7),

Hμ(r)(αk) = H(r)Fk−1(r), k ≥ 1, (17)

where F0(x) = 1, F1(x) = 1+ x, and

Fk(x) = 1+ xFk−1(x)+ (1− x)Fk−2(x), k ≥ 2. (18)
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Moreover, the polynomials Fk(x) can be expressed as follows:

Fk(x) =
(x− 1)k+2 − (k+ 2)x+(2k+ 3)

(x− 2)2 , k ≥ 0. (19)

Proof. For k = 1 the formula Eq. (17) is trivially true. For k ≥ 2 we have

Hμ(r)(αk) = Hμ(r)(α1)+Hμ(r)(αk|α1) = H(r)+Hμ(r)(αk|α1).

By the definition of conditional entropy and the properties of ΣG, we have

Hμ(r)(αk|α1) = rHμ(r)(αk−1)+ (1− r)Hμ(r)(αk−2).

(We set Hμ(r)(α0)= 0 here.) Indeed, 0 in ΣG can be followed by an arbitrary element
of ΣG, and 1 is followed by 0 and then by an arbitrary element of ΣG. Now Eqs. (17)
and (18) are easily checked by induction. The explicit formula for Fk(x) was found
using that

Fk(x)−Fk−1(x) = 1− (1− x)(Fk−1(x)−Fk−2(x)),

and can also be checked by induction. 
�
Since μ�−k = μ(p�−k), we have by Eq. (17)

��/2�
∑
k=1

Hμ�−k(αk)

2k+1 =
��/2�
∑
k=1

H(p�−k)Fk−1(p�−k)

2k+1 . (20)

Recall that p�−k = p+ δ
�−k . Next we write the Taylor estimate at p, such that p3 =

(1− p)2. We have p ≈ 0.56984> (1/2), so it suffices to consider x ∈ ( 1
2 ,1). Below

Ci denote positive absolute constants. It follows from Eq. (19) that

|Fk(x)| ≤C1k, |F ′(x)| ≤C2k, |F ′′(x)| ≤C3k, x ∈ (1/2,1), k ≥ 1. (21)

Therefore,

∣
∣
∣
∣∣

��/2�
∑
k=1

H(p�−k)Fk−1(p�−k)

2k+1 −
��/2�
∑
k=1

H(p)Fk−1(p)
2k+1 −

��/2�
∑
k=1

(HFk−1)
′(p)

2k+1 · δ
�− k

∣
∣
∣
∣∣

≤C4

��/2�
∑
k=1

k
2k+1 ·

( δ
�− k

)2 ≤C5
δ 2

�2 . (22)

Lemma 4. We have

∞

∑
k=1

H(p)Fk−1(p)
2k+1 = s =− log2 p (23)
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and

∞

∑
k=1

(HFk−1)
′(p)

2k+1 = 0. (24)

Proof. One can verify directly that A(r) := H(r)∑∞k=1
Fk−1(r)

2k+1 = 2H(r)
3−r , and this

function achieves its maximum at p. Alternatively, this follows from [5], since A(r)
equals what was denoted s(μ) in [5], for μ = μ(r). 
�

In view of Eq. (21), we have
∣
∣
∣∑∞k=��/2�+1

H(p)Fk−1(p)
2k+1

∣
∣
∣≤C6� ·2−�/2; hence Eq. (23)

implies

∣
∣
∣
∣
∣

��/2�
∑
k=1

H(p)Fk−1(p)
2k+1 − s

∣
∣
∣
∣
∣
≤C6� ·2−�/2. (25)

Next, writing 1
�−k = 1

� +
k
�2 +

k2

�2(�−k)
, we obtain

��/2�
∑
k=1

(HFk−1)
′(p)

2k+1 · δ
�− k

=
δ
�

��/2�
∑
k=1

(HFk−1)
′(p)

2k+1 +
δ
�2

��/2�
∑
k=1

k(HFk−1)
′(p)

2k+1 +
δ
�2

��/2�
∑
k=1

k2(HFk−1)
′(p)

2k+1(�− k)

=: S1 + S2 + S3.

Using Eq. (21), by Eq. (24) we have

|S1| ≤ δ
�

∣
∣∣
∣
∣

∞

∑
k=��/2�+1

(HFk−1)
′(p)

2k+1

∣
∣∣
∣
∣
≤C7

δ
�
· �

2�/2
=

C7δ
2�/2

, (26)

and

|S3| ≤C8
δ
�3 . (27)

Finally,

∣
∣
∣
∣
∣
S2 − δ

�2

∞

∑
k=1

k(HFk−1)
′(p)

2k+1

∣
∣
∣
∣
∣
≤C9

δ
�2 · �2

2�/2
=

C9δ
2�/2

. (28)

Lemma 5. We have

τ :=
∞

∑
k=1

k(HFk−1)
′(p)

2k+1 > 0.
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The proof uses a (rigorous) numerical calculation, and we postpone it to the end
of the section. Combining Eqs. (20), (22), (25), (26), (27), and (28), we obtain

∣
∣
∣
∣
∣

��/2�
∑
k=1

Hμ�−k(αk)

2k+1 − s− τδ
�2

∣
∣
∣
∣
∣
≤ C5δ 2

�2 +
C6�

2�/2
+

(C7 +C9)δ
2�/2

+
C8δ
�3 . (29)

Now we can conclude the proof of the proposition. Let x ∈ XG be such that for all n
sufficiently large, satisfying Eq. (12), we have

log2Pδ [x
n
1]≤−n

��/2�
∑
k=1

Hμ�−k(αk)

2k+1 + bεn
1−ε .

Recall that this holds for Pδ -a.e. x by Eq. (16) and Borel–Cantelli Lemma. Then
from Eq. (29) we obtain, keeping in mind that n ∈ (2�−1,2�]:

Sn(x) := log2Pδ [x
n
1]+ ns+

cn
(log2 n)2

≤ cn
(log2 n)2 − τδ n

(log2 n)2 + bεn
1−ε +

C5δ 2n
(log2 n)2

+C6
√

n log2 n+(C7 +C9)δ
√

n+
C8δn

(log2 n)3 .

Now we choose a positive δ < τ
3C5

, which is possible by Lemma 5, so that

C5
δ 2n

(log2 n)2 < 1
3

τδn
(log2 n)2 , and then choose c ∈ (0,τδ/3), whence

cn
(log2 n)2 <

1
3
· τδ n

(log2 n)2 .

Then

Sn(x)≤−1
3

τδn
(log2 n)2 +bεn

1−ε+C6
√

n log2 n+(C7+C9)δ
√

n+
C8δn

(log2 n)3 →−∞,

as n → ∞, and Eq. (10) follows. Proposition 1 is now proved completely.

Proof of Theorem 2(i). As already mentioned, H φ (ΞG) = H φ (XG) = ∞ follows
from the Rogers–Taylor density theorem (more precisely, from Corollary 1(i)). If
H φ |ΞG was σ -finite for some c > 0, we would have H φ (ΞG) = 0 for all larger
values of c, which is a contradiction. 
�
Remark. It is clear, without any calculation, that there exists γ > 0, arbitrarily small,
such that

τγ :=
∞

∑
k=1

k1+γ (HFk−1)
′(p)

2k+1 �= 0.
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This implies, by a minor modification of the argument, that H φγ (XG) = ∞ for the
gauge function

φγ (t) = ts exp
[
−c

| logt|
(log | logt|)2+γ

]
.

To this end, we need to take pk = p± δ
k1+γ in Eq. (8), where the sign is that of τγ .

The details are left to the reader.

Proof (Proof of Lemma 5). A numerical calculation (we used Mathematica) showed
that

12

∑
k=1

k(HFk−1)
′(p)

2k+1 ≈ 0.187469.

Thus, we only need to estimate the remainder.
We have (HFk−1)

′(p) = H(p)F ′
k−1(p)+H ′(p)Fk−1(p). Recall that p ≈ 0.56984,

and a calculation gives

H(p)≈ 0.68336< 0.7, H ′(p)≈−0.281198; hence |H ′(p)|< 0.3.

Recall Eq. (19) that Fn(x) = (x− 2)−2[(x− 1)n+2 − (n+ 2)x+(2n+3)],whence

0 < Fn(p)< 2−(n+2)− (n+ 2)/2+(2n+3)< 3+ 3n/2.

Further,

F ′
n(p) =

2((p− 1)n+2− (n+ 2)p+(2n+3))
(p− 2)3 +

(n+ 2)(p− 1)n+1− (n+ 2)
(p− 2)2 .

Note that in the expression for F ′
n(p) the 1st term is positive and the 2nd term is

negative. The first term, in absolute value, is less than 2(3+3n/2)= 3n+6, and the
second term, in absolute value, is less than n+ 3 for n ≥ 1. Thus,

|F ′
n(p)|< 3n+ 6.

It follows (using a crude estimate) that
∣∣
∣
∣
∣

∞

∑
k=13

k(HFk−1)
′(p)

2k+1

∣∣
∣
∣
∣
<

∞

∑
k=13

(0.7(3k+ 3)+ 0.3(3k+ 3)/2)k
2k+1 <

∞

∑
k=13

3k(k+ 1)
2k+1 .

Finally,

∞

∑
k=13

3k(k+ 1)
2k+1 = (3/4)[(1− x)−1x15]′′|x=1/2

= (3/4)[2−11 + 30 ·2−12+ 15 ·14 ·2−12]< 0.1 < 0.187469,

completing the proof of the claim that ∑∞k=1
k(HFk−1)

′(p)
2k+1 > 0. 
�
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4 Upper Bound for Hausdorff Measure

First we give a short proof of a weaker result: H ψ (XG) = 0 where

ψ(t) = ts exp
[
− | log2 t|

g(log2 | log2 t|)
]

(30)

where g is increasing and
∫ ∞ dt

g(t) = ∞; in particular, this includes ψ = ψθ from
Eq. (3) with θ = 1.

Proof. We use the measure Pμ from Eq. (6), where μ = μ(p), p3 = (1− p)2, as in
[5]. Consider any point x ∈ XG. Then we obtain from Eq. (9), as in [5], for n even:

Pμ [x
n
1] = (1− p)N1(xn

1)p
N0(xn

1)−N1

(
xn/2

1

)

= pn p
N0

(
x

n/2
1

)
−N0(xn

1)/2
, (31)

in view of 1 − p = p3/2, N1(xn
1) = n − N0(xn

1). Note that log2ψ(2−n) = −ns −
n

(ln2)g(log2 n) . In view of s =− log2 p, we have

log2Pμ [x
n
1]− log2ψ(2−n)

n
=

s
2

⎛

⎝
N0

(
xn/2

1

)

n/2
− N0(xn

1)

n

⎞

⎠+
1

(ln2)g(log2 n)
. (32)

Denote

b j :=
log2Pμ

[
x2 j

1

]
− log2ψ

(
2−2 j

)

2 j =
s
2

⎛

⎝
N0

(
x2 j−1

1

)

2 j−1 −
N0

(
x2 j

1

)

2 j

⎞

⎠+
1

(ln2)g( j)
.

Then

b1 + · · ·+ b� =
s
2

⎛

⎝N0(x
1
1)−

N0

(
x2�

1

)

2�

⎞

⎠+
�

∑
j=1

1
(ln2)g( j)

→+∞, �→ ∞,

by the assumption on the function g. It follows that limsup2 jb j =+∞; hence

limsup
n→∞

(log2Pμ [x
n
1]− log2ψ(2

−n)) = +∞,

and we obtain H ψ (XG) = 0 by Corollary 1(ii). 
�
Obtaining the same result for ψθ from Eq. (3) with 1 < θ < 2 is more delicate.

Our proof follows the scheme of the proof of [9, Theorem 3(ii)], but we have to
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make a number of modifications. The following lemma is a version of [9, Lemma
5] in the form convenient for us.

Lemma 6. (i) Let 1 < η < 2. Suppose that {γ(n)}∞n=1 is a real sequence such that

C1 := sup
n
|γ(n)− γ(n− 1)|< ∞ (33)

and for all n ≥ n0

γ(n)≥ γ(2n)
2

+
n

(log2(2n))η
. (34)

Then either there exists c > 0 such that for all n ≥ n0

γ(2n)≥ c
2n

(log2(2n))η−1 , (35)

or there exists ε > 0 such that for infinitely many n

γ(2n)≤−εn and γ(n)− γ(2n)
2

≤ n
log2(2n)

. (36)

(ii) For any real sequence {γ(n)}∞n=1 satisfying Eq. (33),

γ(n)− γ(2n)
2

<
n

log2(2n)
(37)

for infinitely many n.

Proof. (i) Iterating Eq. (34) we obtain for n ≥ n0 and m ≥ 1:

γ(n)≥ γ(2mn)
2m + n ·

m

∑
j=1

1
( j+ log2 n)η

. (38)

Case 1: γ(n)≥ 0 for all n ≥ n0. Then Eq. (38) implies for n ≥ n0:

γ(n)≥ n
∞

∑
j=1

1
( j+ log2 n)η

≥ c
n

(log2 n)η−1 ,

whence Eq. (35) holds.
Case 2: there exists n1 ≥ n0 such that γ(n1)<−ε < 0. Then Eq. (34) implies
γ(2n1) ≤ 2γ(n1) < −2ε , and inductively, γ(2mn1) ≤ −2mε for all m ≥ 1.
Moreover, for infinitely many m, we have

γ
(
2m−1n1

)− γ(2
mn1)

2
≤ 2m−1n1

log2(2mn1)
,
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since otherwise,

γ
(
2m−1n1

)

2m−1 − γ(2
mn1)

2m >
n1

m+ logn1
, m ≥ m0 + 1,

and then taking the sum over m from m0 + 1 to � yields

γ(2m0n1)

2m0
− γ

(
2m0+�n1

)

2m0+�
→ ∞, �→ ∞,

which is a contradiction, since |γ(i)| ≤C1i by Eq. (33). Thus, Eq. (36) holds
for infinitely many n = 2mn1, as desired.

(ii) If the claim is not true, then Eq. (34) holds for n ≥ n0 with η = 1, for some
n0 ∈N. Then we obtain Eq. (38) with η = 1. But γ(2mn)≥−C12mn by Eq. (33),
and we get a contradiction letting m → ∞. 
�

We still use the measure Pμ from Eq. (6), as in [5], so by Eq. (31), keeping in
mind that s =− log2 p, we have

log2Pμ
[
x2n

1

]
+ s(2n) =

[
N0(x

2n
1 )/2−N0(x

n
1)
]

s. (39)

Observe that

N0(x
n
1) =

�+1

∑
k=1

∑
n

2k < i≤ n
2k−1 , i odd

N0(x
n
1|Ji), 2�−1 < n ≤ 2�. (40)

By the definition of the measure Pμ , the random variables N0(xn
1|Ji) are i.i.d. for

odd i ∈ ( n
2k ,

n
2k−1 ]. Note that |xn

1|Ji | = k for such i, and the distribution of these
random variables is the distribution of N0(u), |u| = k, where {ui} is the Markov
chain corresponding to μ . By the definition of μ = μ(p),

E
[
N0[u]

]
=

k−1

∑
j=0

(pP j)0, |u|= k,

where p = (p,1 − p) and P =
(

p 1− p
1 0

)
. Since P has left eigenvectors π =

( 1
2−p ,

1−p
2−p) and τ = (1,−1) corresponding to the eigenvalues 1 and p− 1, respec-

tively, we have

(pP j)0 =
1

2− p
[1− (p− 1) j+2], j ≥ 0;

hence

E
[
N0[u]

]
=

k
2− p

− 1
2− p

k−1

∑
j=0

(p− 1) j+2 =
k

2− p
− (1− (p− 1)k)(p− 1)2

(2− p)2 =: Lk.

(41)
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Lemma 7. We have
∣
∣
∣
∣∣
E
[
N0(x2n

1 )
]

2
−E

[
N0(x

n
1)
]
∣
∣
∣
∣∣
≤C(log2 n)2, n ∈N,

for some C > 0, where x has the law of Pμ .

Proof. Denote by Zodd(a,b] the set of odd integers in the interval (a,b], where a < b
are reals. We have from Eqs. (40) and (41)

E
[
N0(x

n
1)
]
=

�+1

∑
k=1

#Zodd

( n
2k ,

n
2k−1

]
·Lk.

Note that Zodd(
n

2�+1 ,
n
2�
] = {1} if n = 2�, and it is empty otherwise. It follows that

E
[
N0(x2n

1 )
]

2
−E

[
N0(x

n
1)
]
=

�+1

∑
k=1

⎛

⎝
#Zodd

(
n

2k−1 ,
n

2k−2

]

2
−#Zodd

( n
2k ,

n
2k−1

]
⎞

⎠·Lk+d ·L�+2,

(42)
where d ∈ {0,1/2}. It is easy to see that

∣
∣
∣
∣#Zodd(a,b]−

(
b− a

2

)∣∣
∣
∣≤ 1, for 0 < a < b, (43)

hence, taking Eq. (41) into account,

∣
∣
∣
∣∣
E
[
N0(x2n

1 )
]

2
−E

[
N0(x

n
1)
]
∣
∣
∣
∣∣
≤ 2

�+2

∑
k=1

Lk ≤C′
�+2

∑
k=1

k ≤C′′�2 ≤C(log2 n)2.


�
Proof (Proof of Theorem 2(ii)). In order to show that H ψθ (XG) = 0, we cover XG

by three subsets: B, L, and Λ , defined as follows. Let

B :=

{
x ∈ XG : ∃η > θ ,

N0(x2n
1 )

2
−N0(x

n
1)>

−2n
(log2(2n))η

for infinitely many n

}
.

(44)
Denote

N∗
0 (x

n
1) := N0(x

n
1)−E

[
N0(x

n
1)
]

and let

L :=

{
x ∈ XG : ∃ε > 0,

N0(x2n
1 )

2
−N0(x

n
1)≥

−2n
log2(2n)

and

N∗
0 (x

2n
1 )≤−εn for infinitely many n

}
. (45)
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Finally, let Λ = XG \ (L∪B). It suffices to verify that each of the three sets B,L,Λ
has zero H ψθ -measure (indeed, L and Λ even have zero H s-measure).

Step 1: H ψθ (B)= 0. Let Bη be the set of x∈XG such that the condition in Eq. (44)
holds for a fixed η . Thus, B =

⋃
η>θ Bη =

⋃
η∈Q, η>θ Bη , and it is enough to

show that H ψθ (Bη) = 0. We have from Eq. (39) and the definition of ψθ for all
x ∈ Bη :

log2Pμ [x
2n
1 ]− log2ψθ (2

−2n) = s

(
N0(x2n

1 )

2
−N0(x

n
1)

)
+

2n
(ln2)(log2(2n))θ

>
−2ns

(log2(2n))η
+

2n
(ln 2)(log2(2n))θ

for infinitely many n. Since η > θ , it follows that

limsup
n→∞

(
log2Pμ

[
x2n

1

]− log2ψθ
(
2−2n))=+∞;

hence H ψθ (Bη) = 0 by Theorem 3.
Step 2: H ψθ (L) = 0. Denote by L(ε) the set of points x ∈ XG which satisfy the

condition in Eq. (45) for a given ε > 0. For ε > 0 and n ∈ N let Ln(ε) be the set
of words u of length 2n for which the condition in Eq. (45) holds. (Note that this
condition depends only on the first 2n symbols of x; thus, Eq. (45) holds for all
x ∈ [u].) If u ∈ Ln(ε) then by Eqs. (39) and (45)

log2

(
Pμ [u]2

2ns)≥ −2sn
log2(2n)

;

hence

2−2ns ≤ exp

(
2sn(ln2)
log2(2n)

)
Pμ [u]. (46)

By the definition of Ln(ε) we have

∑
u∈Ln(ε)

Pμ [u]≤ Pμ
(
x : N∗

0 (x
2n
1 )≤−εn

)
. (47)

The following lemma is a consequence of large deviation estimates; it will be
used in the last step of the proof as well.

Lemma 8. There exist c2,c3 > 0 such that for all t > 0 and n ∈N,

Pμ
(
x : |N∗

0 (x
2n
1 )| ≥ tn

)≤ c2 exp(−c3t2n).

Proof. We have by Eq. (40),
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N∗
0 (x

2n
1 ) =

�+1

∑
k=1

S∗Ak
, where Ak = #Zodd

( n
2k ,

n
2k−1

]
,

S∗Ak
:= ∑

n
2k < i≤ n

2k−1 , i odd

N∗
0 (x

n
1|Ji),

and

N∗
0 (x

n
1|Ji) = N0(x

n
1|Ji)−E[N0(u)] for |u|= k and i ∈ Zodd

( n
2k ,

n
2k−1

]
.

Now,

Pμ

(∣
∣
∣
�+1

∑
k=1

S∗Ak

∣
∣
∣≥ tn

)

≤
�+1

∑
k=1

Pμ

(∣
∣
∣S∗Ak

∣
∣
∣≥ tn

k(k+ 1)

)
,

since∑∞k=1
1

k(k+1) = 1. Note that S∗Ak
is a sum of Ak independent random variables,

which are bounded by k in modulus; hence by Hoeffding’s inequality Eq. (11)

Pμ

(∣
∣
∣S∗Ak

∣
∣
∣≥ tn

k(k+ 1)

)
= Pμ

(∣
∣
∣S∗Ak

∣
∣
∣≥ Ak · tn

k(k+ 1)Ak

)

≤ 2exp

[
− t2n2

2k4(k+ 1)2Ak

]
.

Observe that Ak ≤ n
2k+1 + 1 ≤ n

2k by Eq. (43); hence

Pμ

(∣
∣∣S∗Ak

∣
∣∣≥ tn

k(k+ 1)

)
≤ 2exp

[
− t2n ·2k

2k4(k+ 1)2

]
,

and, therefore,

Pμ
(
x : |N∗

0 (x
2n
1 )| ≥ tn

)≤ 2
∞

∑
k=1

exp

[
− t2n ·2k

2k4(k+ 1)2

]
≤ c2 exp(−c3t2n),

for some positive c2,c3, as desired. 
�
Combining Eqs. (46), (47) and Lemma 8, with t = ε , yields

∑
u∈Ln(ε)

(2−2n)s ≤ c2 exp

[
2sn(ln2)
log2(2n)

− c3ε2n

]
.

The right-hand side of this inequality is summable in n, so by choosing large n0,
we can make the sum

∑
n≥n0

∑
u∈Ln(ε)

(2−2n)s = ∑
n≥n0

∑
u∈Ln(ε)

(d[u])s



210 Y. Peres and B. Solomyak

arbitrarily small. But for any n0, the union
⋃∞

n=n0

⋃
u∈Ln(ε)[u] forms a cover of

L(ε), proving that H s(L(ε)) = 0. Finally, L =
⋃
ε∈Q L(ε), so we obtain that

H s(L) = 0 and certainly H ψθ (L) = 0.
Step 3. For η ∈ (1,2), ε ∈ (0,η), and c > 0, letΛ(η ,ε,c) be the set of x ∈ XG such

that for n sufficiently large we have

N0(x2n
1 )

2
−N0(x

n
1)≤

−2n
(log2(2n))η

(48)

and

N∗
0 (x

2n
1 )≥ c

2n
(log2(2n))η−1 , (49)

but for infinitely many n,

N0(x2n
1 )

2
−N0(x

n
1)>

−2n
(log2(2n))η−ε

. (50)

By Lemma 6(ii), applied to {N0(xn
1)}n≥1, Eq. (50) certainly holds for ε = η− 1.

We claim that

XG \ (B∪L)⊂
⋃

η∈(1,2)

⋃

c>0

⋃

ε∈(0,2−η)
Λ(η ,ε,c). (51)

Indeed, for x ∈ XG \ B let η∗ be the infimum of η for which Eq. (48) holds for
n sufficiently large (note that x �∈ B means such η exists). Then η∗ ∈ [1,2) by
Lemma 6(ii), and Eq. (48) holds with η =η∗+ 2−η∗

3 for n sufficiently large, whereas

Eq. (50) holds for ε ∈ (η−η∗,2−η) = ( 2−η∗
3 , 2(2−η∗)

3 ). Let

γ(n) := N∗
0 (x

n
1), n ≥ 1.

It is clear that
|γ(n+ 1)− γ(n)| ≤ 2, n ≥ 1.

It follows from Eq. (48) and Lemma 7 that

γ(n)− γ(2n)
2

≥ 2n
(log2(2n))η

−C(log2 n)2 ≥ n
(log2(2n))η

for n sufficiently large. Thus, the sequence {γ(n)}n≥1 satisfies the assumptions of
Lemma 6(i). By Lemma 6(i), either there exists c > 0 such that for all n sufficiently
large

N∗
0 (x

2n
1 )≥ c

2n
(log2(2n))η−1 ,
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which together with the above yields that x ∈ Λ(η ,ε,c), or else there exists ε > 0
such that for infinitely many n,

N∗
0 (x

2n
1 )≤−εn and N∗

0 (x
n
1)−

N∗
0 (x

2n
1 )

2
≤ n

log2(2n)
;

hence by Lemma 7,

N0(x
n
1)−

N0(x2n
1 )

2
≤ n

log2(2n)
+ c(log2 n)2 ≤ 2n

log2(2n)

for infinitely many n, so that x ∈ L, proving the claim. Since the union in Eq. (51)
can be taken over rational η ,c,ε , it suffices to show that H s(Λ(η ,ε,c)) = 0 for
ε ∈ (0,2−η).

Let Γn(η ,ε,c) be the collection of words u of length 2n for which Eqs. (48)–(50)
hold (as before, this is well defined). If u ∈ Γn(η ,ε,c), then by Eqs. (39) and (50)

log2(Pμ [u]2
2ns)≥ −2ns

(log2(2n))η−ε
;

hence

2−2ns ≤ exp

(
2ns(ln2)

log2(2n)η−ε

)
Pμ [u]. (52)

By the definition of Γn(η ,ε,c) and Lemma 8, with t = 2c
(log2(2n))η−1 ,

∑
u∈Γn(η,ε,c)

Pμ [u] ≤ Pμ

(
x : N∗

1 (x
2n
1 )≥ c

2n
(log2(2n))η−1

)

≤ c2 exp

(
− c̃n
(log2(2n))2η−2

)
,

with c̃ = 4c3c2. Combining this with Eq. (52) yields

∑
u∈Γn(η,ε,c)

2−2ns ≤ expc2

[
2ns(ln2)

log2(2n)η−ε
− c̃n

(log2(2n))2η−2

]
.

Recall that ε < 2−η , and therefore η− ε > 2η− 2 and the right-hand side of the
last inequality is summable in n. It follows that, by taking n1 sufficiently large, the
sum

∑
n≥n1

∑
u∈Γn(η,ε,c)

2−2ns



212 Y. Peres and B. Solomyak

can be made arbitrarily small. Since for any n1, the union

⋃

n≥n1

⋃

u∈Γn(η,ε,c)
[u]

covers Λ(η ,ε,c), this implies H s(Λ(η ,ε,c)) = 0 (and hence H ψθ (Λ(η ,ε,c)) =
0), completing the proof. 
�
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The Law of Iterated Logarithm and Equilibrium
Measures Versus Hausdorff Measures
for Dynamically Semi-regular Meromorphic
Functions

Bartłomiej Skorulski and Mariusz Urbański

Abstract The Law of Iterated Logarithm for dynamically semi-regular
meromorphic mappings and loosely tame observables is established. The equi-
librium states of tame potentials are compared with an appropriate one-parameter
family of generalized Hausdorff measures. The singularity/absolute continuity
dichotomy is established. Both results utilize the concept of nice sets and the theory
of infinite conformal iterated function systems.

1 Introduction

One of the central questions in ergodic theory is to find out how mixing and how
random is a dynamical system which preserves a probability measure. There is an
enormous literature on the subject establishing fast (desirably exponential) decay of
correlations, the Central Limit Theorem, and the Law of Iterated Logarithm. The
classical results concern Bernoulli shifts, Markov chains (see [2] or any standard
book on probability theory), and Gibbs states of Hölder continuous potentials for
dynamical systems exhibiting some sort of hyperbolic behavior (see, e.g., [10].
Strong stochastic laws such as exponential decay of correlations and the Central
Limit Theorem were established in [9] for the class of dynamically semi-regular
meromorphic functions (we refer the reader to Sect. 2 for the definition).

As it was shown in [8, 9], this is a large class of functions and its ergodic theory
and thermodynamic formalism were well developed and understood. What was
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missing there was the Law of Iterated Logarithm. Some research to fill this gap was
undertaken in [1] where the Law of Iterated Logarithm was established, provided
that the dynamics of a semi-regular map f was conjugated (on a subset of the Julia
set of f ) to the shift map. In the present chapter we establish this law without these
kinds of restrictions. In Sect. 4 we prove the following theorem (see Theorem 7).

Theorem 1. Let f : C → Ĉ be a dynamically semi-regular meromorphic function
and fix t > ρ/α . Let ψt : Jf → R be a loosely tame function. Then the asymptotic
variance σ2

f (ψt) exists and, if σ2
f (ψt) > 0, equivalently if ψt : Jf → R is not

cohomologous to a constant in the class of Hölder continuous functions on Jf , then
the function ψt : Jf → R satisfies the Law of Iterated Logarithm with respect to the
dynamical system ( f ,μt ) with Aψt =

√
2σ f̂ (ψ̂t)> 0.

Here, the constants ρ and α come from the definition of semi-regularity (see
Sect. 2) and the class of loosely tame observables (see Sect. 2) include all bounded
Hölder continuous functions. The measure μt is a Borel probability invariant
measure which is an equilibrium state forψ and is unique in the sense of Theorem 4.
The existence of this kind of measure for semi-regular meromorphic function was
proved in [9] and unfortunately is unknown in general. However, if one can prove
their existence in general it seems possible to generalize results obtained here.

Our approach is based on the one hand on our observation that under relatively
mild conditions the Law of Iterated Logarithm for an induced (first return) map
entails this law for the original system (see Theorem 5), and, on the other hand, on
the fact (see [4, 13, 15]) that each dynamically semi-regular function, as a matter of
fact each tame meromorphic function, admits first return maps that form a very well
understood class of conformal iterated function systems (see [7]). For this class of
system all above-mentioned stochastic laws are known [7].

Sticking to the realm of dynamically semi-regular meromorphic functions, the
second theme of our chapter is the issue of comparing the equilibrium states of
tame potentials with an appropriate one-parameter family of generalized Hausdorff
measures. This circle of investigations goes back to the fundamental work [5] of
Makarov in potential theory (harmonic measure) and its dynamical counterpart [12].
The dichotomy phenomenon of singularity/absolute continuity observed in [12]
has been afterward also detected in the context of parabolic Jordan curves [3] and
conformal iterated function systems (see [16], comp [7]). In this chapter we exhibit
it in the realm of meromorphic functions. In Sect. 5 we show the following theorem
(see Theorem 9).

Theorem 2. Let f : C → Ĉ be a dynamically semi-regular meromorphic function
and for every t > ρ/α let ψt =−t log | f ′|τ + k be a loosely tame function. Suppose
that σ2(ψ̂t)> 0 (this is in particular true if t �= HD(Jr, f ), more particularly if t ≥ 2)
and that h : (a,+∞)→ (0,+∞) is a slowly growing function. Then:

(a) If h belongs to the upper class, then the measures μt and Hh̃|Jf are mutually
singular.

(b) If h belongs to the lower class, then μt is absolutely continuous with respect
to Hh̃.
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As for the Law of Iterated Logarithm our approach here utilizes the concept of
nice sets that generate infinite conformal iterated function systems in the sense of
[7]. For them, as already mentioned, the dichotomy is known (see [16], comp [7]).
It is then an easy observation that it also holds for original meromorphic functions.
The key technical issues in here are to conclude that the asymptotic variance of an
appropriate function related to the induced system (IFS) is positive and that these
functions have finite moments of all orders.

2 Preliminaries

Let f : C→ Ĉ be a meromorphic function. The Fatou set of f consists of all points
z ∈ C that admit an open neighborhood Uz such that all the forward iterates f n,
n ≥ 0, of f are well-defined on Uz and the family of maps { f n|Uz : Uz → C}∞n=0 is
normal. The Julia set of f , denoted by Jf , is then defined as the complement of the
Fatou set of f in C. By Sing( f−1) we denote the set of singularities of f−1. We
define the postsingular set of f : C→ Ĉ as

PS( f ) =
∞⋃

n=0

f n(Sing( f−1)).

Given a set F ⊂ Ĉ and n ≥ 0, by Comp( f−n(F)) we denote the collection of all
connected components of the inverse image f−n(F). A meromorphic function f :
C→ Ĉ is called tame if its postsingular set does not contain its Julia set. This is the
primary object of our interest in this chapter.

We make heavy use of the concept of a nice set which Rivera–Letelier introduced
in [13] in the realm of the dynamics of rational maps of the Riemann sphere. In Neil
Dobbs [4] proved their existence for tame meromorphic functions from C to Ĉ. The
following theorem follows directly from Lemma 11 from [4].

Theorem 3. Let f :C→ Ĉ be a tame meromorphic function. Fix z∈J ( f )\P( f ),
κ > 1, and K > 1. Then there exists L > 1 such that for all r > 0 sufficiently small,
there exists an open connected set U =U(z,r)⊂ C\P( f ) such that:

(a) If V ∈ Comp( f−n(U)) and V ∩U �= /0, then V ⊂U.
(b) If V ∈ Comp( f−n(U)) and V ∩U �= /0, then, for all w,w′ ∈V,

|( f n)′(w)| ≥ L and
|( f n)′(w)|
|( f n)′(w′)| ≤ K.

(c) B(z,r) ⊂U ⊂ B(z,κr)⊂ C\P( f ).

Let U be the collection of all nice sets of f : C → Ĉ, i.e., all the sets U = Uz

satisfying the above proposition with some z ∈ Jf \PS( f ), κ > 1, K > 1 L > 1, and
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some r > 0. Note that if U ∈ U and V ∈ Comp( f−n(U)) satisfies the requirements
(a), (b), and (c) from Theorem 3 then there exists a unique holomorphic inverse
branch

f−n
V : B(z,κr)→C such that f−n

V (U) =V.

As noted in [15], the collection

S = SU = {φe}e∈E

of all such inverse branches all restricted to the set X =U , bijectively parametrized
by some arbitrary countable set E , forms an iterated function system in the sense
of [6, 7]. In particular, it clearly satisfies the Open Set Condition. We have just
mentioned [6, 7]. In what concerns iterated function systems we try our concepts
and notation to be compatible with that of [7]. We now recall that given n ∈ N and
ω = ω1ω2 . . .ωn ∈ En, we put

φω = φω1 ◦φω2 ◦ . . .φωn : X → X .

Given ω ∈ EN, for every n ∈ N, we put ω |n := ω1ω2 . . .ωn ∈ En. Then the sets

{φω|n(X)}n≥1

form a descending sequence of nonempty compact sets and therefore
⋂

n≥1

φω|n(X) �= /0.

Making use of the Poincaré (hyperbolic) metric on B(z,κr), a standard argument
shows that Euclidean diameters of these sets decrease to zero uniformly exponen-
tially fast. Thus, the intersection

⋂

n≥1

φω|n
(
Xt(ωn)

)

is a singleton and we denote its only element by π(ω). In this way we get the coding
map π , also frequently called a projection, from the symbol space EN to X :

π : EN → X .

We put

JS := π(EN),

and call this set the limit set of the iterated function system S . Given ω ,τ ∈ EN,
we define ω ∧τ ∈ EN∪E∗ to be the longest initial block common for both ω and τ .
For each κ > 0, we define a metric, dκ , on I∞, by setting

dκ(ω ,τ) = e−κ |ω∧τ|.
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These metrics are all equivalent and induce the same topology and Borel sets. A
function is uniformly continuous with respect to one of these metrics if and only if
it is uniformly continuous with respect to all. Also, a function is Hölder continuous
with respect to one of these metrics if and only if it is Hölder continuous with respect
to all of them. The projection π : EN → X is Hölder continuous.

In Sect. 4 we will make use of the thermodynamic formalism built out of such
systems (see [7]). We now recall the basic concepts and theorems resulting forming
this formalism. Let σ : EN → EN be the shift map, i.e., σ(ω1ω2ω3 . . .) = ω2ω3 . . ..
Let

G = {g(e) : X →R : e ∈ E}
be a family of real-valued functions. For every n ≥ 1 and β > 0 let

Vn(G) = sup
ω∈En

sup
x,y∈Xt(ω)

{|g(ω1)(φσ(ω)(x))− g(ω1)(φσ(ω)(y))|}eβ (n−1).

We have made the conventions that the empty word /0 is the only word of length 0
and φ /0 = IdX . Thus, V1(G) < ∞ simply means the diameters of the sets gi(X) are
uniformly bounded. The collection G is called a Hölder family of functions (of order
β ) if

Vβ (G) = sup
n≥1

{Vn(G)}< ∞. (1)

We call the Hölder family G summable Hölder (of order β ) if (1) is satisfied and

∑
e∈E

esup(g(e)))<∞. (2)

The following limit exists and it is called topological pressure of the family G:

P(G) = lim
n→∞

1
n

log ∑
|ω|=n

exp

(

sup

(
n

∑
j=1

g(ω j) ◦φσ jω

))

.

A Borel probability measure m is said to be G-conformal, provided it is supported
on the limit set JS and the following two conditions are satisfied: for every e ∈ E
and for every Borel set A ⊂ X ,

m(φe(A)) =
∫

A
exp

(
g(e)−P(G)

)
dm (3)

and

m(φa(X)∩φb(X)
)
= 0 (4)

for all a,b ∈ E , a �= b. It is proved in [7] that all Hölder summable families G
of functions admit unique G-conformal measures mG and their unique invariant
versions, i.e., Borel probability measures μG on JS that are equivalent to mG with
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bounded (and separated from zero) Hölder continuous Radon–Nikodym derivatives
with the property that

μG(A) = ∑
e∈E
μG(φe(A))

for every Borel set A ⊂ X .
We now continue with meromorphic functions alone. So, keep f : C → Ĉ a

meromorphic function. The function f is called topologically hyperbolic if

distEuclid(Jf ,PS( f )) > 0,

and it is called expanding if there exist c > 0 and λ > 1 such that

|( f n)′(z)| ≥ cλ n

for all integers n ≥ 1 and all points z ∈ Jf \ f−n(∞). Note that every topologically
hyperbolic meromorphic function is tame. A meromorphic function that is both
topologically hyperbolic and expanding is called hyperbolic. The meromorphic
function f : C→ Ĉ is called dynamically semi-regular if it is of finite order, denoted
in this chapter by ρ , and satisfies the following rapid growth condition for its
derivative:

| f ′(z)| ≥ κ−1(1+ |z|)α1(1+ | f (z)|)α2 , z ∈ Jf , (5)

with some constant κ > 0 and α1,α2 such that α2 >max{−α1,0}. Set α :=α1+α2.
Let k : Jf → R be a weakly Hölder continuous function in the sense of [9]. The

definition introduced in [9] is somewhat technical and we will not provide it in the
current chapter. What is important is that each bounded, uniformly locally Hölder
function k : Jf → R is weakly Hölder. Fix τ > α2 as required in [9]. For t ∈R, let

ψt =−t log | f ′|τ + k, (6)

where | f ′(z)|τ is the norm, or, equivalently, the scaling factor, of the derivative
of f evaluated at a point z ∈ Jf with respect to the Riemannian metric |dτ(z)| =
(1+ |z|)−τ |dz|. Following [9] functions of the form (6) (frequently referred to as
potentials) are called loosely tame. Let Lt : Cb(Jf )→ Cb(Jf ) be the corresponding
Perron–Frobenius operator given by the formula

Ltg(z) = ∑
w∈ f−1(z)

g(w)eψt (w).

It was shown in [9] that, for every z ∈ Jf and for the function 1 : z �→ 1, the limit

lim
n→∞

1
n

logLt1(z)

exists and takes on the same common value, which we denote by P(t) and call the
topological pressure of the potential ψt . The following theorem was proved in [9].
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Theorem 4. If f : C → Ĉ is a dynamically semi-regular meromorphic function
and k : Jf → R is a weakly Hölder continuous potential, then for every t > ρ/α
there exist uniquely determined Borel probability measures mt and μt on Jf with the
following properties:

(a) L ∗
t mt = mt .

(b) P(t) = sup{hμ( f )+
∫
ψt dμ : μ ◦ f−1 = μ and

∫
ψt dμ >−∞}.

(c) μt ◦ f−1 = μt ,
∫
ψt dμt >−∞, and hμt ( f )+

∫
ψt dμt = P(t).

(d) The measures μt and mt are equivalent and the Radon–Nikodym derivative dμt
dmt

has a nowhere-vanishing Hölder continuous version which is bounded above.

3 The Law of Iterated Logarithm: Abstract Setting

In this section we deal with issues related to the Law of Iterated Logarithm in the
setting of general measure-preserving transformations. Let (X ,μ) be a probability
space and let T : X → X be a measurable map preserving measure μ . Let g : Y →R

be a square integrable function and Sng = ∑n−1
k=0 g ◦Tk. We put

σ2
T (g) := limsup

n→∞
1
n

∫

X
(Sn(g)− nμ(g))2 dμ

and

σ 2
T (g) := liminf

n→∞
1
n

∫

X
(Sn(g)− nμ(g))2 dμ .

In the case when these two numbers are equal, we denote by σ2
T (g) their common

value and call it the asymptotic variance of g.
Let us now briefly recall the Rokhlin’s natural extension of the dynamical system

(T,μ). The phase space is

X̃ = {(xn)n≤0 : T (xn) = xn+1 ∀n ≤−1}.

The transformation T̃ : X̃ → X̃ is determined by the property that

(
T̃
(
(xn)n≤0

))
k = T (xk).

Let π0 : X̃ → X be the canonical projection onto the zeroth coordinate, i.e,

π0
(
(xn)n≤0

)
= x0.

It is well known (see, e.g., [11]) that there exists a unique probability T̃ -invariant
measure μ̃ on X̃ such that

μ̃ ◦π−1
0 = μ .



220 B. Skorulski and M. Urbański

The dynamical system (T̃ , μ̃) is a measure-preserving automorphism and

π0 ◦ T̃ = T ◦π0.

This system is referred to as the Rokhlin’s natural extension of (T,μ).
We say that two functions g1 : X → R and g2 : X → R are cohomologous in a

class C of function from X to R if there exists a function u ∈C such that

g2 − g1 = u− u ◦T.

Any function cohomologous to the zero function is called a coboundary.
We shall prove the following generalization and extension of Lemma 53 in [17].

Lemma 1. Let (X ,μ) be a probability space and let T : X → X be a measurable
map preserving measure μ . Fix A, a measurable subset of X with positive measure
μ . Let τ : A → N be the first return time to A and let TA = T τA : A → A be the
corresponding first return map. Assume that

μ(τ−1
A ([n,+∞)))≤ const ·n−α ,

for some α > 8 and all n ≥ 1. For every function g : X →R let ĝ : A → R be defined
by the formula

ĝ(x) =
τA(x)−1

∑
j=0

g ◦T j(x). (7)

If g ∈ L4(μ), σ2
T (g) > 0, and μ(g) = 0, then ĝ : A → R is not a coboundary in the

class of bounded measurable functions on A.

Proof. Seeking contradiction suppose that ĝ : A →R is such a coboundary, i.e.,

ĝ = u− u ◦TA (8)

with some bounded measurable function u : A →R. We may assume without loss of
generality that the dynamical system (T,μ) is a measure-preserving automorphism.
In fact, let (T̃ , μ̃) be Rokhlin’s natural extension of (T,μ), Ã := π−1

0 (A), g̃ := ĝ◦π0,
and ũ := u ◦π0. Then (8) implies that

g̃ = ũ− ũ◦ T̃Ã

and the set τ−1
A (n) (the set of points with first return time n) will be mapped to

the sets π0
(
τ−1

A (n)
)
. In particular they will have the same measures, respectively, μ

and μ̃ .
For every n ≥ 0 let

An = {x ∈ A : τA(x)≥ n}.
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Fix an integer n ≥ 1. For all x ∈ A let

i = i(x) := min{0 ≤ l ≤ n : T l(x) ∈ A}.

If no such l exists, set i = n. Let

j = j(x) := max{0 ≤ l ≤ n : T l(x) ∈ A}.

If no such l exists, set j = 0. We have

0 ≤ i ≤ j ≤ n

and there exists a unique integer 0 ≤ k ≤ j− i such that

T j−i(T i(x)) = T k
A (T

i(x)).

Hence we can write

Sng(x) = Sig(x)+ STA
k (ĝ)(T i(x))+ Sn− jg(T

j(x)) = a(x)+ b(x)+ c(x),

where a(x) = Sig(x), b(x) = STA
k (ĝ)(T i(x)), and c(x) = Sn− jg(T j(x)). In order to

show that σ2
T (g) = 0, we shall estimate

(∫
(Sn(g))

2dμ
) 1

2

= ||(Sn(g))||2 ≤ ||a||2 + ||b||2 + ||c||2. (9)

We shall deal with each of these three L2 norms separately. Since b(x) =

STA
k (ĝ)(T i(x)) and |STA

k (ĝ)(T i(x))| ≤ 2||u||∞, we get immediately that

||b||2 ≤ 2||u||∞. (10)

Next, we estimate ||a||2. We have

a(x) =
n

∑
l=0

1i−1(l)(x)Slg(x).

Applying Cauchy–Schwarz inequality, we therefore get

||a||2 ≤
n

∑
l=0

||1i−1(l)Slg||2 =
n

∑
l=0

(∫
1i−1(l)(Slg)

2dμ
) 1

2

≤
n

∑
l=0

(∫
1i−1(l)dμ

) 1
4
(∫

(Slg)
4dμ

) 1
4
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=
n

∑
l=0

(μ(i−1(l)))
1
4

(∫
(Slg)

4dμ
) 1

4

=
n

∑
l=0

(μ(i−1(l)))
1
4 ||Slg||4

=
n

∑
l=0

(μ(i−1(l)))
1
4

∥
∥
∥∥
∥

l−1

∑
s=0

g ◦Ts

∥
∥
∥∥
∥

4

≤
n

∑
l=0

(μ(i−1(l)))
1
4

l−1

∑
s=0

||g ◦Ts||4

=
n

∑
l=0

(μ(i−1(l)))
1
4

l−1

∑
s=0

||g||4

= ||g||4
n

∑
l=1

l(μ(i−1(l)))
1
4 . (11)

Now notice that for μ almost every x∈X , there exist x′ ∈A and an integer k ≥ 1 such
that T k(x′) = x and τA(x′) ≥ k+ i(x) (the strict inequality can hold only if i(x) = n
and T n(x) /∈ A). Hence,

i−1(l)⊂
∞⋃

k=1

T k(τ−1
A (k+ l)).

Thus, as T : X → X is an automorphism, we get that

μ(i−1(l))≤
∞

∑
k=1

μ
(
T k(τ−1

A (k+ l))
)
=

∞

∑
k=1

μ
(
τ−1

A (k+ l)
)
= μ(Al+1).

Inserting this to (11), we obtain

||a||2 ≤ ||g||4
n

∑
l=0

l(μ(Al+1))
1
4 ≤ const||g||4

n

∑
l=1

l(l + 1)−α/4

≤ const||g||4
∞

∑
l=1

l1− α
4 <+∞. (12)

The last inequality holds, since α > 8.
The upper estimate of ||c||2 can be done similarly. Indeed, exactly as (11), we

obtain the following.

||c||2 = ||Sn− jg ◦ (T j)||2 = ||Sn− jg||2 ≤ ||g||4
n

∑
l=0

(n− l)(μ( j−1(l))
1
4 . (13)
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Now notice that if T i(x)(x) /∈ A, then c(x) = 0 and otherwise T j(x)(x) ∈ A and
τA(T j(x)(x))> n− j(x). So,

j−1(l)⊂ T−l(An−l+1)⊂ T−l(An−l).

Inserting this to (13), we thus get

||c||2 ≤ ||g||4
n

∑
l=0

(n− l)(μ(An−l))
1
4 v = ||g||4

n−1

∑
l=0

(n− l)(μ(An−l))
1
4

= ||g||4
n

∑
l=1

l(μ(Al))
1
4 ≤ ||g||4

n

∑
l=1

lconstl−α/4

= const||g||4
∞

∑
l=1

l1− α
4

<+∞. (14)

Again, the last inequality holds, since α > 8.
Combining this, (10) and (12) and inserting them to (9), we see that the integrals∫

(Sng)2dμ remain uniformly bounded as n → ∞. This obviously implies that
σ2

T (g) = 0. This contradiction finishes the proof. 
�
We shall now show that under mild conditions if a first return map satisfies the

Law of Iterated Logarithm, then so does the original map. Precisely, we say that
a μ-integrable function g : X → R satisfies the Law of Iterated Logarithm if there
exists a positive constant Ag such that

limsup
n→∞

Sng− n
∫

gdμ√
n loglogn

= Ag.

From now on we assume without loss of generality that

μ(g) =
∫

gdμ = 0.

Keep a measurable set A ⊂ X with μ(A) > 0. Given a point x ∈ A, the sequence
(τn(x))∞n=1 is then defined as follows:

τ1(x) := τA(x) and τn(x) = τn−1(x)+ τ(T τn−1(x)(x)).

Finally we can prove the following theorem. Its proof can be also found in [17].

Theorem 5. Let T : X → X be a measurable dynamical system preserving a
probability measure μ on X. Assume that the dynamical system (T,μ) is ergodic.
Fix A, a measurable subset of X having a positive measure μ . Let g : X → R be a
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measurable function such that the function ĝ : A → R satisfies the Law of Iterated
Logarithm with respect to the dynamical system (TA,μA). If, in addition,

∫
|ĝ|2+γdμ < ∞ (15)

for some γ > 0, then the function g : X → R satisfies the Law of Iterated Logarithm
with respect to the original dynamical system (T,μ) and Ag =

√
μ(A).

Proof. Since the Law of Iterated Logarithm holds for a point x ∈ X if and only
if it holds for T (x), in virtue of ergodicity of T , it suffices to prove our theorem
for almost all points in A. By our assumptions there exists a positive constant Aĝ

such that

limsup
n→∞

Sτng(x)√
n loglogn

= Aĝ

for μA-a.e. x ∈ A. Since, by Kac’s Lemma,

lim
n→∞

τn

n
=

1
μ(A)

∫

A
τdμ =

1
μ(A)

, (16)

μA-a.e. on A, we thus have

limsup
n→∞

Sτng√
τn log logτn

= limsup
n→∞

Sτng√
n loglogn

=
√
μ(A) (17)

μA-a.e. on A. Now, for every n ∈ N and (almost) every x ∈ A, let k = k(x,n) be the
positive integer uniquely determined by the condition that

τk(x)≤ n < τk+1(x).

Since

Sng(x) = Sτk(x)g(x)+ Sn−τk(x)g(T
τk(x)(x)),

we have that

Sng(x)√
n loglogn

=
Sτk(x)g(x)√
n loglogn

+
Sn−τk(x)g(x)√

n loglogn
. (18)

Since by (16)

lim
n→∞

τk+1(x)
τk(x)

= 1,

we get from (17) that

limsup
n→∞

Sτk g(x)√
n loglogn

= limsup
n→∞

Sτkg(x)√
τk loglogτk

= Aĝ.
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Because of this and because of (18), we are only left to show that

lim
n→∞

Sn−τk(n)g(x)√
n loglogn

= 0 (19)

μA-a.e. on A. To do this, note first that

Sτk+1−τk |g|(T τk(x))√
k loglogk

=
|ĝ|(T k

A (x))√
k loglogk

.

Take an arbitrary ε ∈ (0,γ). Since

μ
({x ∈ A : |ĝ|(T k

A (x))≥ ε
√

k loglogk})

= μ
({x ∈ A : |ĝ|(x)≥ ε

√
k loglogk})

= μ
({x ∈ A : |ĝ|2+ε(x)≥ ε2+ε(k loglogk)1+ε/2})

≤
∫ |ĝ|2+εdμ

ε2+ε(k loglogk)1+ε/2
, (20)

using (15), we conclude that

∞

∑
k=1

μ
({x ∈ A : |ĝ|(x)≥ ε

√
k loglogk})< ∞.

So, applying Borel–Cantelli lemma, (19) follows. This finishes the proof. 
�

4 The Law of Iterated Logarithm: Meromorphic Functions

Let f : C→ Ĉ be a dynamically semi-regular meromorphic function and t > ρ/α .
Let S = {φe}e∈E be the iterated function system induced by some nice set U for f .
Our first technical result, ultimately aiming at the Law of Iterated Logarithm, is this.

Lemma 2. If f : C→ Ĉ is a dynamically semi-regular meromorphic function and
t > ρ/α , then

limsup
n→∞

1
n

logμt

( ⋃

|ω|≥n

φω(U)
)
< 0.

Proof. Noting that U ∩⋃n−1
k=1 f k(φω (U)) = /0 and repeating the proof of Proposi-

tion 6.3 from [15], we show that

Pc(t) := limsup
n→∞

1
n

log ∑
|ω|=n

exp
(
sup

(
Sn−1(ψt ◦ f ◦φω)

))
< P(t).
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Hence,

limsup
n→∞

1
n

logmt

( ⋃

|ω|=n

f (φω (U))
)

≤ limsup
n→∞

1
n

log ∑
|ω|=n

exp
(
sup

(
Sn−1(ψt ◦ f ◦φω)

)−P(t)(n− 1)
)

= Pc(t)−P(t)< 0.

Since, see Theorem 4(d), the Radon–Nikodym derivative dμt
dmt

is uniformly bounded
above, we thus get that

limsup
n→∞

1
n

logμt

(
f

( ⋃

|ω|=n

φω(U)

))
≤ Pc(t)−P(t).

Since the probability measure μt is f -invariant, we have

μt

(
f
( ⋃

|ω|=n

φω (U)
))

≥ μt

( ⋃

|ω|=n

φω (U)
)
,

and therefore,

limsup
n→∞

1
n

logμt

( ⋃

|ω|=n

φω(U)

)
≤ Pc(t)−P(t).

So, finally,

limsup
n→∞

1
n

logμt

( ⋃

|ω|≥n

φω (U)
)
≤ Pc(t)−P(t)< 0.

The proof is complete. 
�
Because of Lemma 2 we obviously have some constant C > 0 such that

μt

( ⋃

|ω|≥n

φω (U)
)
≤Cn−9 (21)

for all n ≥ 1. For every e ∈ E let Ne ≥ 1 be the unique integer determined by the
property that f Ne ◦φe = Id. Let f̂ : JS → JS be the first return map on JS , i.e., f̂
is defined by the formula

f̂ (φe(z)) = f Ne(φe(z)) = z
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for all e ∈ E and all z ∈ JS . Ne is then the first return time to JS . Recall from
the previous section that given g : Jf → R, the function ĝ : JS : R is given by the
following formula:

ĝ(φe(z)) =
Ne−1

∑
j=0

g ◦ f j(φe(z))

for all e ∈ E and all z ∈ JS . Let m̂t and μ̂t be the probability conditional measures
on JS respectively of mt and μt . The measure μ̂t is then f̂ -invariant. Let

ψ(e)
t (z) = ψ̂t(φe(z))−P(t)Ne.

Then, a straightforward formal calculation shows that m̂t is the Ft -conformal

measure for the Hölder summable family Ft = {ψ(e)
t }e∈E and that μ̂t is the

corresponding invariant version of m̂t . Therefore all the results proved in [7] for
conformal and invariant measures of summable Hölder families apply to measures
m̂t and μ̂t . We will need them at the end of the section. At the moment, as an
immediate consequence of Theorem 5, we get the following.

Theorem 6. Let f : C → Ĉ be a dynamically semi-regular meromorphic function
and fix t > ρ/α . Let g : Jf → R be a measurable function such that the function
ĝ : JS → R satisfies the Law of Iterated Logarithm with respect to the dynamical
system ( f̂ , μ̂t). If, in addition,

∫

Jf

|ĝ|2+γdμt < ∞ (22)

for some γ > 0, then the function g : Jf →R satisfies the Law of Iterated Logarithm
with respect to the dynamical system ( f ,μt ) and Ag =

√
JS .

In order to be able to apply this theorem, we need a technical result establishing
(22) for a large class of functions from Jf to R. This is the content of the following
lemma.

Lemma 3. Let ψ = ψs : Jf → R be a loosely tame function. Then for every γ > 0,

∫

JS

|ψ̂|γdm̂t <+∞.

Proof. Since the measure m̂t is proportional to mt on JS , our equivalent task is to
show that

∫

JS

|ψ̂|γdmt <+∞.

Fix ε > 0. Because of expanding properties of the function f : C→ Ĉ there exists a
constant C > 0 such that

|ψ(z)| ≤C| f ′(z)|ετ
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for all z ∈ J( f ). Therefore, for every e ∈ E and all z ∈ JS we get,

|ψ̂(φe(z))|=
∣
∣
∣∣

Ne−1

∑
j=0

ψ( f j(φe(z)))

∣
∣
∣∣≤

Ne−1

∑
j=0

∣
∣ψ( f j(φe(z)))

∣
∣

≤C
Ne−1

∑
j=0

| f ′( f j(φe(z))|ετ ≤C
Ne−1

∏
j=0

| f ′( f j(φe(z))|ετ

=C|( f Ne )′(φe(z))|ετ .
Thus

|ψ̂φe(z))|γmt(φe(JS ))

* |ψ̂(φe(z))|γ exp
(
SNeψt(φe(z))−P(ψt)Ne

)

≤Cγ exp
(
γε log |( f Ne )′(φe(z))|τ − t log |( f Ne )′(φe(z))|τ + SNek(z))−P(ψt)Ne

)

=Cγ exp
(
SNeψt−γε (φe(z))−P(ψt)Ne

)

=Cγ exp
(
SNeψt−γε (φe(z))−P(ψt−γε )Ne

)
exp

(
(P(ψt−γε −P(ψt))Ne

)

*Cγ exp
(
(P(ψt−γε )−P(ψt))Ne

)
mt−γε (φe(JS ). (23)

Since, by Lemma 7.5 in [9], the function (t − δ1, t + δ1) + u �→ P(ψu) (δ1 > 0
sufficiently small) is real-analytic, we get a constant M > 0 such that for all ε > 0
sufficiently small, we have that

|P(ψt−γε )−P(ψt)| ≤ Mε.

Formula (23) then yields

|ψ̂(φe(z))|γmt(φe(JS )≤CγeMεNe mt−γε (φe(JS )). (24)

Now, for every k ≥ 1, let

Uc
k =

k⋂

j=0

f− j(C\U).

Fixing u > ρ/α2, we have for every n ≥ 1 that

mu

( ⋃

e∈E:Ne=n

φe(JS )

)
= mu

(
U ∩ f−1(Uc

n−1)∩ f−n(U)
)≤ mu( f−1(Uc

n−1))

= mu( f−1(1Uc
n−1

)) = mu(1Uc
n−1

◦ f )

= mu
(
e−P(ψu)nLu

(
1Uc

n−1
◦ f
))

= mu
(
e−P(ψu)(n−1)L n−1

u

(
e−P(ψu)Lu

(
1Uc

n−1
◦ f
)))
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= mu
(
e−P(ψu)(n−1)L n−1

u

(
1Uc

n−1
(e−P(ψu)Lu1)

)

≤ C1mu
(
e−P(ψu)(n−1)L n−1

u

(
1Uc

n−1

))
(25)

with some constant C1 > 0. Looking at this moment at the proof of Proposition 6.3 in
[14] and taking into account continuity properties of the Perron–Frobenius operator
Lu, we conclude that there exist κ > 0 and c2 > 0 such that

mu
(
L n−1

u

(
1Uc

n−1

))≤C2e−κneP(ψu)(n−1)

for all u ∈ (t − δ , t + δ ) with some 0 < δ ≤ δ1 small enough and all integers n ≥ 1.
Substituting this to (25) we get that

mu

( ⋃

e∈E:Ne=n

φe(JS )

)
≤C1C2e−κn (26)

for all ∈ (t − δ , t + δ ). Fix 0 < ε < min{δ/γ,κ/(2M)}4. Inserting then (26) into
(24), we obtain

∫
|ψ̂ |γdmt =

∞

∑
n=1

∫

⋃
e∈E:Ne=n φe(JS )

|ψ̂|γdmt =
∞

∑
n=1
∑

Ne=n

∫

φe(JS )
|ψ̂ |γdmt

≤
∞

∑
n=1
∑

Ne=n
||ψ̂|φe(JS )||γ∞mt(φe(JS ))

≤Cγ
∞

∑
n=1

eMεn ∑
Ne=n

mt−γε (φe(JS ))

=Cγ
∞

∑
n=1

eMεnmt−γε
( ⋃

Ne=n

φe(JS )

)

≤CγC1C2

∞

∑
n=1

eMεne−κn

≤CγC1C2

∞

∑
n=1

e−
1
2κn. (27)

The proof is complete. 
�
Now we are in position to provide a short proof of the following theorem and its

corollary, both forming the main results of this section.

Theorem 7. Let f : C → Ĉ be a dynamically semi-regular meromorphic function
and fix t > ρ/α . Let ψ : Jf → R be a loosely tame function (ψ(z) = ψs(z) =
−s log | f ′(z)|τ +h(z) with s �= 0). Then the asymptotic variance σ2

f (ψ) exists and, if

σ2
f (ψ)> 0, or equivalently if ψ : Jf → R is not cohomologous to a constant in the
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class of Hölder continuous functions on Jf , then the function ψ : Jf → R satisfies
the Law of Iterated Logarithm with respect to the dynamical system ( f ,μt ).

Proof. Adding a constant to ψ we may assume without loss of generality that∫
ψdμt = 0. The existence of the asymptotic variance σ2

f (ψ) was established in

Theorem 6.17 of [9]. The fact that σ2
f (ψ) > 0 if and only if ψ : Jf → R is not

cohomologous to a constant in the class of Hölder continuous functions on Jf is
the content of Proposition 6.21 in [9]. It follows from Lemma 5.2 in [9] that the
function ψ̂ is Hölder continuous; more precisely, its composition with the canonical
projection from EN onto JS is a Hölder continuous map. Along with Lemma 3
this implies (see Lemma 2.5.6 in [7] and the beginning of the p. 41 in [7]) that
the asymptotic variance σ2

f̂
(ψ̂) exists and, in addition with Theorem 2.5.5 and

Lemma 2.5.6, both in [7], that the function ψ̂ satisfies the Law of Iterated Logarithm
with respect to the dynamical system ( f̂ , μ̂t) (with Aψ̂ = σ2

f̂
(ψ̂)), provided that

σ2
f̂
(ψ̂)> 0. But since, by Lemma 7.11 in [9], the function ψ has all moments with

respect to the measure μt , we in particular have that ψ ∈ L4(μt). Then, using (21),
Lemma 1 implies that ψ̂ is not a coboundary in the class of bounded measurable
functions on JS . It then directly follows from Lemma 4.8.8 in [7] that σ2

f̂
(ψ̂) > 0.

Now, with the help of Lemma 3, a direct application of Theorem 6 completes the
proof. 
�

As an immediate consequence of this theorem, with the help of Theorem 6.20 in
[9], we get the following.

Corollary 1. Let f : C→ Ĉ be a dynamically semi-regular meromorphic function
and fix t > ρ/α . If ψ : Jf → R is a loosely tame function, then the function ψ :
Jf →R satisfies the Law of Iterated Logarithm with respect to the dynamical system
( f ,μt ) with Aψ =

√
2σ f̂ (ψ̂)> 0.

5 Equilibrium States Versus Hausdorff Measures

Keep f : C → Ĉ a dynamically semi-regular meromorphic function and t > ρ/α .
Let

Dt := HD(μt),

let the function ζ : JS → (0,+∞) be defined by the formula

ζ (φe(z)) =− log |φ ′e(z)|,

and let

χt :=
∫
ζdμt .
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The number χt is called the Lyapunov exponent of the measure μt . Let h : (a,+∞)→
(0,+∞) (a > 0 small enough) be a nondecreasing function. This function h is said
to belong to the lower class, if

∫ ∞

a

h(r)
r

exp

(
−1

2
(h(r)2

)
dr <+∞

and to the upper class, if

∫ ∞

a

h(r)
r

exp

(
−1

2
(h(r)2

)
dr =+∞.

Let finally Hh̃ be the Hausdorff measure on C induced by the gauge function h̃.
Now, let

ψ∗
t = ψt +Dtζ −P(ψt) =−(t −Dt) log | f ′|τ +(h−P(ψt)).

Associated to the function h and the function ψt is the function h̃ defined for all
sufficiently small t > 0 by the following formula:

h̃(r) = rDt exp

(
σ(ψ∗

t )√χt
h(− logr)

√
− logr

)
.

Since the projection π : EN → JS and the function ψ̂∗
t : JS → R are both Hölder

continuous, since all the integrals
∫ |ψ̂∗

t |γdμt (γ > 2) are finite (see Lemma 3 where
this is proved for all γ > 0), and since the measures m̂t and μ̂t are respectively Ft-
conformal and invariant, Theorem 4.8.3 in [7] applies to give the following.

Theorem 8. Suppose that σ2(ψ̂∗
t ) > 0 and that h : (a,+∞)→ (0,+∞) is a slowly

growing function. Then:

(a) If h belongs to the upper class, then the measures μ̂t and Hh̃|JS
are mutually

singular.
(b) If h belongs to the lower class, then μ̂t is absolutely continuous with respect

to Hh̃.

We shall now prove a sufficient condition for σ2(ψ̂∗
t ) to be positive. It is trivially

verifiable. Let Jr, f be the set of points in Jf that do not escape to infinity under the
action of the map f : C→ Ĉ. It is called in the literature the radial (or conical) Julia
set of f .

Lemma 4. If t �= HD(Jr, f ), then the function ψ∗
t =−(t−Dt) log | f ′|τ+(h−P(ψt))

is not cohomologous to a constant in the class of Hölder continuous functions on Jf

and σ2(ψ̂∗
t )> 0. In particular this is true for all t ≥ 2.

Proof. First observe that because of Theorem 8.1 (Volume Lemma) and Theo-
rem 6.25 (Variational Principle), both in [9], we have
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∫
ψ∗

t dμt =−tχμt +
hμt ( f )

χμt

χμt +

∫
hdμt −P(ψt)

= hμt ( f )− tχμt +

∫
hdμt −P(ψt)

= 0. (28)

We already know that ψ∗
t is cohomologous to a constant in the class of Hölder

continuous functions on Jf if and only if σ2(ψ̂∗
t ) = 0. So, assume that ψ∗

t is
cohomologous to a constant. By (28) ψ∗

t is then a coboundary. By Theorem 6.20
in [9], we get that

t = Dt . (29)

The fact that ψ∗
t is a coboundary equivalently means that the function −Dt log | f ′|τ

is cohomologous to ψt −P(ψt). But the topological pressure of the latter function
vanishes; whence P(−Dt log | f ′|τ ) = 0. Theorem 8.3 in [9] (Bowen’s Formula) then
implies that

Dt = HD(Jr, f ). (30)

This theorem was in fact in [9] formulated for dynamically regular functions only;
however, apart from dynamical semi-regularity all what was needed there was the
existence of a zero of the pressure function of potentials −t log | f ′|τ . Combining
(29) and (30) yields t = HD(Jr, f ), proving the first part of our lemma. Knowing now
however that Bowen’s Formula holds and having the conformal measure mHD(Jr, f

,
the fact that HD(Jr, f )) < 2 follows in the same way as Corollary 1.4 in [8]. The
proof is complete. 
�

As an immediate consequence of Theorem 8 and Lemma 4 we get the following
main result of this chapter.

Theorem 9. Let f : C → Ĉ be a dynamically semi-regular meromorphic function
and for every t > ρ/α let ψt =−t log | f ′|τ +h. Suppose that σ2(ψ̂∗

t )> 0 (this is in
particular true if t �= HD(Jr, f ), more particularly if t ≥ 2) and that h : (a,+∞) →
(0,+∞) is a slowly growing function. Then:

(a) If h belongs to the upper class, then the measures μt and Hh̃|Jf are mutually
singular.

(b) If h belongs to the lower class, then μt is absolutely continuous with respect
to Hh̃.

Towards the end of the chapter note that the function hc(t) = c
√

loglogt, c ≥ 0,
belongs to the upper class if and only if c ≤√

2. With the consistent notation
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h̃c(r) = rDt exp

(
σ(ψ̂)√χt

hc(− logr)
√
− logr

)

= rDt exp

(
c
σ(ψ̂)√χt

√
log(1/r) log3(1/r)

)
,

we therefore immediately obtain the following consequence of Theorem 9.

Theorem 10. Let f : C→ Ĉ be a dynamically semi-regular meromorphic function
and for every t > ρ/α , let ψt = −t log | f ′|τ + hc. Suppose that σ2(ψ̂∗

t ) > 0; this is
in particular true if t �= HD(Jr, f ), more particularly if t ≥ 2. Then:

(a) The measures μt and Hh̃c
|Jf are mutually singular for all 0 ≤ c ≤√

2.

(b) The measure μt is absolutely continuous with respect to Hh̃c
for all c >

√
2.

Given κ > 0 let Hκ be the standard Hausdorff measure corresponding to the
parameter κ , i.e., Hκ = Hr �→rκ with the notation introduced above. Taking in
Theorem 10 c = 0, we obtain the following.

Corollary 2. Let f : C→ Ĉ be a dynamically semi-regular meromorphic function
and for every t > ρ/α let ψt =−t log | f ′|τ +h. Suppose that σ2(ψ̂∗

t )> 0; this is in
particular true if t �= HD(Jr, f ), more particularly if t ≥ 2. Then the measures μt and
HHD(μt )|Jf are mutually singular.
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14. Skorulski, B., Urbański, M.: Dynamical rigidity of transcendental meromorphic functions.
Nonlinearity 25(8), 2337–2348 (2012)
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Cookie-Cutter-Like Sets with Graph-Directed
Construction

Shen Fan, Qing-Hui Liu, and Zhi-Ying Wen

Abstract In this chapter, we extend the cookie-cutter-like construction introduced
by Ma, Rao, and Wen to the case having the graph-directed construction which is
introduced by Mauldin and Williams and obtain a new class of fractals, which can
be used to study the dimensions of the spectrum of discrete Schrödinger operators.
Under suitable assumptions we prove that this class of fractals possesses the
properties of bounded variation, bounded distortion, bounded covariation, and the
existence of Gibbs-like measures. With these properties we give expressions for
the Hausdorff dimensions, box dimensions, and packing dimensions of the fractals.
We also discuss the continuous dependence of the dimensions on the defining data.

1 Introduction

Cookie-cutter (CC) set is a typical fractal generated by a nonlinear iterated function
system (IFS) which plays an important role in the fractals and dynamical systems
(for a survey, see [1]), then this construction is extended to the case with a Moran
structure, called cookie-cutter-like construction (CCL) [7] and has been used to
study the dimensions of the spectrum of discrete Schrödinger operators [6]. Based
on this construction, in this chapter, we will consider a further extension to the
case having graph-directed construction, which is introduced in [9]. This new
extension appears also in the structure of the spectrum of discrete Schrödinger
operators [4]. After studying the properties of the associated limit fractal sets
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in detail, we determine the Hausdorff dimensions, packing dimensions, and the
box dimensions of these new fractals by explicit expressions; we discuss also the
continuous dependence of the dimensions on the defining data.

We first recall some known facts and preliminaries starting with the cookie-cutter
structure.

1.1 Cookie-Cutter and Cookie-Cutter-Like Constructions

Let I = [0,1], I1, I2 be two disjoint subintervals of I, and f is an expanding
continuous mapping from I1 ∪ I2 to I, the restriction of f to each I1, I2 is 1–1 and
onto. Let

E = {x ∈ I
∣∣ f n(x) is defined, ∀n ∈ N}, (1)

then E is called a cookie-cutter set generated by f . This classical construction comes
from dynamical systems; see [1, 3, 10], for a good introduction.

Another way of defining cookie-cutter set is by IFS. Denote the corresponding
branch inverse of f on I1, I2 by φ1,φ2, and let Σn

2 = {i1i2 · · · in
∣
∣ik = 1 or 2,1≤ k ≤ n},

Σ2 = {1,2}N, then

E =
⋂

n≥1

⋃

i1···in∈Σn
2

φi1 ◦ · · · ◦φin(I). (2)

Let σ be the shift mapping on Σ2, i.e., σ(i1i2i3 · · · ) = i2i3 · · · . Define
π : Σ2 → E as

π(i1i2 · · · ) = lim
n→∞φi1 ◦ · · · ◦φin(I),

then it is well known that (Σ2,σ) is isomorphic to (E, f ), i.e., the following diagram
is commutable:

CDΣ2@ > σ > > Σ2@VπVV@VVπVE@ > f > > E.

π is called the coding mapping of E .
In [7], Ma, Rao, and Wen generalized the cookie-cutter construction in the

following way: let I = [0,1], { fk}k≥1 be a sequence of expanding continuous
mappings

fk :
qk⋃

j=1

Ik
j → I,

where Ik
1 , . . . , I

k
qk

are disjoint subintervals of I. For each k ≥ 1, the restriction of fk

to each initial interval Ik
j (1 ≤ j ≤ qk) is 1-1 and onto. The CCL set generated by

{ fk}k≥1 is defined as

E = {x ∈ I
∣∣ fn ◦ · · · ◦ f1(x) is defined, ∀n ∈N}. (3)
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By an analogous argument with the case of cookie-cutter construction, we can
define it in another way: for any k ≥ 1, denote the corresponding branch inverse of

fk by φ (k)1 , . . . ,φ (k)qk . Let Ωn =
n

∏
k=1

{1,2, . . . ,qk}, then

E =
⋂

n≥1

⋃

i1···in∈Ωn

φ (1)i1
◦ · · · ◦φ (n)in (I). (4)

Let Ω =
∞

∏
k=1

{1,2, . . . ,qk}, which is called the coding space of E; we may also

define a coding map π from Ω to E .

1.2 Graph-Directed Construction

Recall now some preliminaries on the graph-directed construction introduced by
Mauldin and Williams [9].

Let V = {1, . . . ,n} be the vertex set, E ⊂ {(i, j) : i, j ∈ V} be the set of edges,
and denote G = (V ,E ) the directed graph. Let I1, . . . , In be disjoint intervals of R.

Suppose for each e = (i, j) ∈ E , there exists a contractive similitude φe : I j → Ii

with contraction ratio 0 < te < 1, and suppose that for each i ∈ V , there is some
j ∈ V such that (i, j) ∈ E .

For e = (i, j) ∈ E , we denote the initial point of e as i(e) = i and the terminal
point of e as t(e) = j. We say that e1e2 · · ·em is an admissible word of length m, if
for each 1 ≤ k ≤ m− 1, t(ek) = i(ek+1).

Let Ωm be the set of admissible words of length m; then the graph-directed
invariant set can be defined as

K =
⋂

m≥1

⋃

e1···em∈Ωm

φe1 ◦ · · · ◦φem(It(em)). (5)

We can define K in another way: K = ∪n
i=1Ki, where (K1, . . . ,Kn) ∈∏n

i=1 K (Ii)(
K (Ii) denotes the set of compact subsets of Ii

)
is the unique vector of compact

sets such that

Ki =
⋃

e∈E ,i(e)=i

φe(Kt(e)), ∀1 ≤ i ≤ n. (6)

Let Σ = {e1e2 · · · |t(ek) = i(ek+1), ∀k ≥ 1}; there exists a surjection π : Σ → K,
π is also called coding mapping.

Example 1. Let V = {0,1},E = {e1,e2,e3} where e1 = (0,0),e2 = (0,1),e3 =
(1,0),G = (V,E ).
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0 1
e1f

e2f

e3f

Remark 1. The above construction can be extended as follows: (1) for each pair
of vertices (i, j), we allow several edges starting at i and ending at j; (2) Each
similitude φe can be replaced by contractive mappings. In both cases, by an
analogous argument with the case of graph-directed set, the corresponding graph-
directed invariant set still exists and the equality (6) holds still. The construction
corresponding to case (2) is called the graph-directed cookie-cutter set (GCC).

1.3 Cookie-Cutter-Like Sets with Graph-Directed
Construction (GCCL)

We are going to extend further the GCC construction in Remark 1 in the following
way, i.e., at each iteration, by keeping the vertex set invariant, we allow the set of
edges change.

Let I1, . . . , In be pairwise disjoint intervals in [0,1] , V = {1, . . . ,n} be the set of

vertices, and Qk := [q(k)i, j ]i, j≤n(k ≥ 1) be nonnegative integer matrix of order n.

For each matrix Qk there is a corresponding digraph G (k) = (V ,Ek) such that for

any pair of vertices i, j ∈ V , there exist q(k)i, j edges starting at the vertex i and ending

at the vertex j. We denote by
(
(i, j), l

)
the l-th edge in Ek starting at i and ending

at j; if no confusion will happen, we will denote this edge as (e, l) where e = (i, j)
pointing out the initial and the terminal vertex of this edge, and we write i(e) = i
and t(e) = j, respectively, as the initial and the terminal vertex of the edge (e, l).
Similar with the graph-directed construction, we suppose that:

(1) For each k ≥ 1 and for any i ∈ V , there exist (e, l) ∈ Ek such that i(e) = i and

q(k)e ≥ 1, i.e., there exist edges start from the vertex i in each digraph G (k).

(2) If q(k)e � 1, we suppose that there exist q(k)e pairwise disjoint subintervals

{I(k)e,l }1�l�q(k)e
of Ii(e) and an expanding continuous map f (k)e :

⋃q
(k)
e

l=1 I(k)e,l → It(e),

such that the restriction of f (k)e to each initial interval I(k)e,l (1 ≤ l ≤ q(k)e )

is 1-1 and onto, and denote the corresponding inverse branches of f (k)e as

{φ (k)e,l , l = 1, . . . ,q(k)e }.

For (e1, l1)∈ E1, . . . ,(em, lm)∈ Em, we say that (e1, l1) · · · (em, lm) is an admissible
path (or admissible word) of length m, if t(el) = i(el+1).

Let

Ωm = {(e1,k1) · · · (em,km)|(e1,k1) · · · (em,km) is an admissible path} (7)

be the set of all the admissible path of length m.
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Let m ≥ 1 and σ = (e1,k1) · · · (em,km) ∈ Ωm be an admissible path of length m,
and set

φσ = φ (1)e1,k1
◦ · · · ◦φ (m)

em,km
, and Iσ = φσ (It(em)).

Finally, define

E =
⋂

m�1

⋃

σ∈Ωm

Iσ ; (8)

then E is called the cookie-cutter-like set with graph-directed construction (GCCL).

Example 2. From the graph-directed construction point of view, the CCL set can
be obtained through a sequence of graphs {G (k) := (V ,Ek)} which have the same
vertex set V = {0}, and for each k ≥ 1, G (k) have qk edges from vertex 0 to vertex 0,

0 eq(1)1

e1(1) ...
0 eq(K)K

e1
(K) ... ......,f

f

f

f

G (1) G (k) ,
where φ

e
(k)
j
= φ (k)j ,∀k ≥ 1, j = 1, . . . ,qk. Then the CCL set

E =
⋂

n≥1

⋃

i1···in∈Ωn

φ
e(1)i1

◦ · · · ◦φ
e(n)in

(I). (9)

Remark 2. (1) This new construction generalizes the graph-directed one in several
aspects: (i) multi-edges are allowed for a pair of vertices; (ii) the involved maps
can be nonlinear; (iii) the indexed graphs may change in each step.

(2) We can compare the generalization from CCL to GCCL with the generalization
from full shift to subshift of finite type.

We are going to study the following problems under some regularity condition
on the maps:

(1) The expressions of the Hausdorff dimension and the packing dimension of the
set E defined by Eq. (8)

(2) Conditions such that the Hausdorff measure Hs∗(E) (resp. packing measure
Ps∗(E)) is finite and positive, where s∗ and s∗ are the Hausdorff and packing
dimension of E , respectively

(3) The continuous dependence of the dimensions of E on the defining data of E

The statements of the answers of the above problems will be given in Sect. 2.
The remainder of this chapter is organized as follows. In Sect. 2, we present the

regularity assumptions on the maps and state the main results. Section 3 is devoted to
establishing four principal properties of GCCL, namely bounded variation, bounded
distortion, bounded covariation, and the existence of Gibbs-like measures, which
play the essential role in the proofs of the main theorems of this chapter. Section 4
will be devoted to the proofs of the main theorems.
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2 Main Results

2.1 Basic Assumption

Definition 1. Let I, I1, . . . , Iq ⊂ R be bounded closed intervals and I1, . . . , Iq be
pairwise disjoints. f : ∪q

j=1I j → I is called a mapping of cookie-cutter type
provided:

(1) f : I j → I is 1-1 and onto for each j = 1, . . . ,q. ( The corresponding branch
inverse is denoted by φ j = ( f |Ij )

−1 : I → I j).
(2) f is differentiable with Hölder continuous derivative D f , i.e., there exist

constant c f > 0 and γ f ∈ (0,1] such that for any x,y ∈ I j, j = 1, . . . ,q,

|D f (x)−D f (y)| ≤ c f |x− y|γ f .

(3) f is boundly expanding in the sense that

1 < b f := inf
x
{|D f (x)|} ≤ sup

x
{|D f (x)|} := B f <+∞.

The array [∪q
j=1I j;c f ,γ f ,b f ,B f ] is called the defining data of f .

In the following, we suppose always the following two conditions are fulfilled:

(C1) If q(k)e ≥ 1, then the mapping f (k)e is of cookie-cutter type with the defining

data [
⋃q(k)e

l=1 I(k)e,l ;c(k)e ,γ(k)e ,b(k)e ,B(k)
e ].

(C2) There exist constants B ≥ b > 1, 1 ≥ γ > 0, and c > 0 such that

b ≤ inf{b(k)e |q(k)e ≥ 1}� sup{B(k)
e |q(k)e ≥ 1} ≤ B,

γ ≤ inf{γ(k)e |q(k)e ≥ 1}� sup{γ(k)e |q(k)e ≥ 1}� 1,

sup{c(k)e |q(k)e ≥ 1} ≤ c.

Define F (k) := { f (k)e : q(k)e ≥ 1}. We say that the GCCL set E is generated by
[(F (k))k≥1,c,γ,b,B].

Remark 3. Let a=min{|Ii| : i∈V },A=max{|Ii| : i∈V }; from the condition (C2),
we see that

sup{q(k)e : q(k)e ≥ 1}� BA
a

< ∞,

and we denote M := max{q(k)e : q(k)e ≥ 1}.
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2.2 Main Theorems

For each m � 1, let sm be the unique solution of the following equation:

∑
ω∈Ωm

|Iω |sm = 1,

and define s∗ := liminfsm, s∗ := limsupsm.

Definition 2 ([6]). Let {Mk}k�1 be a sequence of nonnegative matrix of order n.
We say that the sequence of matrices is primitive (with index p) if there exists p � 0
such that for any h � 1, the entries of the matrix Mh · · ·Mh+p are all strictly positive.

Now we state the main results of this chapter.

Theorem 1. Let E be a GCCL, then

dimBE = s∗.

Moreover, if the sequence of matrices {Qk}k�1 is primitive, then

dimH E = s∗, dimP E = dimBE = s∗.

Theorem 2. Let E be a GCCL and the sequence of matrices {Qk}k�1 be primitive.
Then Hs∗(E) (resp. Ps∗(E)) and liminf

l→∞ ∑
ω∈Ωl

|Iω |s∗ (resp. limsup
l→∞

∑
ω∈Ωl

|Iω |s∗) are

simultaneously null, positive and finite, or infinite.

Now let V := {1,2, . . . ,n}, I1, . . . , In and {Qk}k�1 be fixed. Let E and Ẽ be

generated, respectively, by [ f (k)e , I(k)e,l ,c,γ,b,B] and [ f̃ (k)e , Ĩ(k)e,l , c̃, γ̃, b̃, B̃], and let s∗ and
s̃∗ (resp. s∗ and s̃∗) be the Hausdorff dimension (resp. packing dimension) of GCCL’s
E and Ẽ .

Let dk := max
q(k)e ≥1

{
ρH(

q
(k)
e⋃

l=1

I(k)e,l ,
q
(k)
e⋃

l=1

Ĩ(k)e,l ), ρU( f (k)e , f̃ (k)e )
}

, where ρH is the Hausdorff

metric and ρU is the uniform metric on the function space C1[0,1], and define d̃ :=
d̃(E, Ẽ) := supk dk.

Theorem 3 (Continuous Dependence of the Dimensions). Let E be a GCCL.
Then the Hausdorff dimension and the packing dimensions of E depend continu-
ously on its defining data under the metric d̃.

3 Four Properties of GCCL

For the convenience at first we introduce more notations.
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3.1 More on Coding Space and Other Notations

We have defined Ωm as the set of all admissible paths of length m in Eq. (7). Define
Ω ∗ =

⋃
m�1Ωm.

For σ = (e1,k1)(e2,k2) · · · (em,km) and 1 � l � l
′ � m, we denote

|σ |= m, σ |l = (e1,k1)(e2,k2) · · · (el ,kl), σ |l
′

l = (el ,kl) · · · (el′ ,kl′ )

and denote Ωl,m = {σ |ml : σ ∈Ω ∗, |σ |� m}. Define

Ω∞ = {(e1,k1)(e2,k2) · · ·
∣
∣∀m ≥ 1,(e1,k1) · · · (em,km) is admissible}.

Forω ∈Ωl and σ ∈Ωl+1,m we can define the operationω ∗σ by simply conjuncting
two words. If ω ∗ σ ∈ Ωm, we say that ω and σ are compatible and denote by
ω ←↩ σ .

For σ = (e1,k1) · · · (em,km) ∈Ωm with |σ |= m � 1, set

Fσ = f (m)
em ◦ · · · ◦ f (1)e1 .

Recall that by the definitions φσ and Iσ , we have |Iσ |� b−(m−1)|Iim | and |Iσ | → 0
as |σ | → ∞.

It is easy to verify that these basic intervals {Iσ}σ∈Ω∗ have the following net
properties:

• For σ = (e1,k1) · · · (em,km) ∈Ωm, Fσ : Iσ → It(em) is 1− 1 and onto.
• Iσ ′ ⊂ Iσ if |σ ′|� |σ | and σ = σ ′||σ |.
• Iω1 ∩ Iω2 = /0, if ω1,ω2 ∈Ωm and ω1 �= ω2.

3.2 Proofs of Four Properties

Lemma 1 (Bounded Variation). There exists a constant 0 < ξ < ∞, such that for
each m � 1,ω ∈Ωm, and x,y ∈ Iω , we have

ξ−1 � |DFω(x)|
|DFω(y)| � ξ .

Proof. Fix m � 1,ω = (e1,k1)(e2,k2) · · · (em,km) ∈ Ωm, and x,y ∈ Iω . Notice that

for each 1 � l � m, Fω|l maps Iω to the set φ (l+1)
el+1,kl+1

◦ · · · ◦ φ (m)
em,km

(It(em)); hence by
the chain rule and the mean value theorem, we get

|Fω|l (x)−Fω|l(y)|� |φ (l+1)
el+1,kl+1

◦ · · · ◦φ (m)
em,km

(It(em))|� b−(m−l).
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Then we can get

∣
∣ log |D f (l+1)

el+1 (Fω|l (x))|− log |D f (l+1)
el+1 (Fω|l (y))|

∣
∣

�
∣
∣|D f (l+1)

el+1 (Fω|l (x))|− |D f (l+1)
el+1 (Fω|l (y))|

∣
∣

� cb−(m−l)γ ;

therefore, by the above inequality and chain rule,
∣
∣ log |DFω(x)|− log |DFω(y)|

∣
∣

�
m−1

∑
l=1

∣∣ log |D f (l+1)
el+1 (Fω|l (x))|− log |D f (l+1)

el+1 (Fω|l (y))|
∣∣

�
m−1

∑
l=1

cb−(m−l)γ � cb−γ

1− b−γ
=

c
bγ − 1

.

Taking ξ = exp{ c
bγ−1}, we get this lemma. 
�

Lemma 2 (Bounded Distortion). There exists a constant 0 < ζ <∞, such that for
any m � 1, ω ∈Ωm, and x ∈ Iω , we have

ζ−1 � |Iω ||DFω(x)|� ζ .

Moreover, for each ω ∈Ωm,

|Iω |� aζ−1B−1|Iω||ω|−1
|.

Proof. Let ω = (e1,k1)(e2,k2) · · · (em,km), then Fω(Iω) = It(em) and there exists
some point y ∈ Iω such that |DFω(y)||Iω |= |It(em)|. By Lemma 1, we get

ξ−1|It(em)|� |Iω ||DFω(x)|= |Iω ||DFω(y)| |DFω(x)|
|DFω(y)| � ξ |It(em)|� ξ .

Take ζ = ξ
min{|Ii |:i∈V} , then we get

ζ−1 � |Iω ||DFω(x)|� ζ , ∀x ∈ Iω . (10)

Moreover, since

|DFω(y)|= |D f (m)
em (Fω||ω|−1

(y))| |DFω||ω|−1
(y)|

and

|DFω(y)||Iω |= |It(em)|,
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by Eq. (10), we get

|Iω |
|Iω||ω|−1

| =
|It(em)|

|DFω(y)| |Iω||ω|−1
|

=
|It(em)|

|D f (m)
em (Fω||ω|−1

(y))| |DFω||ω|−1
(y)| |Iω||ω|−1

|
� aB−1ζ−1.

Then

|Iω |� aζ−1B−1|Iω||ω|−1
|. (11)


�
Lemma 3 (Bounded Covariation). There exists a positive constant ρ > 0, such
that for all m > l � 1, ω1,ω2 ∈Ωl ,σ ∈Ωl+1,m, if ω1 ←↩ σ and ω2 ←↩ σ , we have

ρ−1 |Iω2∗σ |
|Iω2 |

� |Iω1∗σ |
|Iω1 |

� ρ |Iω2∗σ |
|Iω2 |

.

Proof. Suppose that σ = (el+1,kl+1) · · · (em,km); we then denote

Jσ = φ (l+1)
el+1,kl+1

◦ · · · ◦φ (m)
em,km

(It(em)).

Since Fω1(Iω1∗σ ) = Jσ and Fω2(Iω2∗σ ) = Jσ , by the mean value theorem, we get
|Jσ |= |DFω1(z1)| |(Iω1∗σ )|, for some z1 ∈ Iω1∗σ .

By Eq. (10) there exists a constant ζ > 0 such that ζ−1 � |Iω1 | |DFω1(z1)| � ζ .
Thus

ζ−1|Jσ |� |Iω1∗σ |
|Iω1 |

� ζ |Jσ |.

According to the same discussion, we also have

ζ−1|Jσ |� |Iω2∗σ |
|Iω2 |

� ζ |Jσ |;

hence we

ζ−2 |Iω2∗σ |
|Iω2 |

� |Iω1∗σ |
|Iω1 |

� ζ 2 |Iω2∗σ |
|Iω2 |

.

Let ρ = ζ 2, we get the lemma. 
�
Now, with Remark 3 and Lemma 3, one can easily prove the following lemma.
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Lemma 4. If the matrix sequence {Qk}k�1 is primitive with index p, then there
exists a positive constant η > 0 determined by p,M,ρ , such that ∀l � m, and
ω0,ω1 ∈Ωl

η−1 ∑
σ1∈Ωl+1,m
ω1←↩σ1

|Iω1∗σ1 |β
|Iω1 |β

� ∑
σ0∈Ωl+1,m
ω0←↩σ0

|Iω0∗σ0 |β
|Iω0 |β

� η ∑
σ1∈Ωl+1,m
ω1←↩σ1

|Iω1∗σ1 |β
|Iω1 |β

. (12)

Lemma 5 (Existence of Gibbs-Like Measures). If the sequence of matrices
{Qk}k�1 is primitive, then ∀β > 0, there exist η > 0 and a probability μβ supported
by E such that for all l � 1 and ω0 ∈Ωl , we have

η−1 |Iω0 |β
∑σ∈Ωl

|Iσ |β
� μβ (Iω0)� η

|Iω0 |β
∑σ∈Ωl

|Iσ |β
.

Proof. First, for each m � 1, we define a probability μm supported by E such that
for any ω ∈Ωm

μm(Iω) =
|Iω |β

∑σ∈Ωm |Iσ |β
.

Now we fix l � 1,ω0 ∈Ωl .
For m > l, from Eq. (12), we get

η |Iω0 |β ∑
ω∈Ωm

|Iω |β = η |Iω0 |β ∑
ω1∈Ωl

∑
σ1∈Ωl+1,m
ω1←↩σ1

|Iω1∗σ1 |β

= ∑
ω1∈Ωl

⎛

⎜
⎝η |Iω0 |β ∑

σ1∈Ωl+1,m
ω1←↩σ1

|Iω1∗σ1 |β
⎞

⎟
⎠

� ∑
ω1∈Ωl

⎛

⎜
⎝|Iω1 |β ∑

σ0∈Ωl+1,m
ω0←↩σ0

|Iω0∗σ0 |β
⎞

⎟
⎠

=

(

∑
ω1∈Ωl

|Iω1 |β
)
⎛

⎜
⎝ ∑
σ0∈Ωl+1,m
ω0←↩σ0

|Iω0∗σ0 |β
⎞

⎟
⎠ .

Then we have

μm(Iω0) = ∑
σ0∈Ωl+1,m
ω0←↩σ0

|Iω0∗σ0 |β
∑ω∈Ωm |Iω |β

� η ∑
ω1∈Ωl

|Iω0 |β
|Iω1 |β

.
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According the same discussion, we can get

η−1 ∑
ω1∈Ωl

|Iω0 |β
|Iω1 |β

� μm(Iω0).

Let μβ be a weak limit of the measure {μm}m�1, and by Theorem 1.24 of [8], we
get this lemma. 
�

4 Proofs of the Theorems

4.1 Proof of Theorem 1

Proof. One can get the first statement directly using Theorem 3 of [6]. We just need
to discuss the case that {Qk}k≥1 is primitive.

(1) dimH E = s∗
Let β > s∗. Then by the definition of s∗, there exists a subsequence of

integers ml such that sml < β ; thus

Hβ (E)� liminf
l→∞ ∑

ω∈Ωml

|Iω |β � liminf
l→∞ ∑

ω∈Ωml

|Iω |sml = 1,

which yields dimH E � β and so dimH E � s∗.
Now take any β < s∗, thus sl > β for l large enough; thus

∑
ω∈Ωl

|Iω |β > ∑
ω∈Ωl

|Iω |s∗ = 1.

Let μβ be a Gibbs-like measure defined in Lemma 5. Then by Lemma 5, for
large m and ω ∈Ωm, we have

μβ (Iω)� η |Iω |β .

Take r > 0 small and let Mr = {Iω : ω ∈ Ω ∗, |Iω | < r � |Iω||ω|−1
|}. Then by

Eq. (11), we get ∀x ∈ E

μβ (B(x,r)) � ∑
Iω∈Mr

Iω∩B(x,r) �= /0

μβ (Iω)� η ∑
Iω∈Mr

Iω∩B(x,r) �= /0

|Iω |β � a−1ηζBrβ .

By Frostman’s Lemma [12], we know that dimH E � β ; hence, dimH E � s∗.
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(2) dimP E = dimBE = s∗
Since the sequence of matrices {Qk}k�1 is primitive, notice that for any ω ,

from the construction of E it is seen that dimBE = dimB(E ∩ Iω ). Suppose an
open set U with U ∩E �= /0, then U will contain a basic interval of some order
Iω , so dimB(U ∩E) = dimB(E), by Corollary 3.9 in [2], dimP E = dimBE.

Let β > s∗, then sl < β for l large enough; thus

∑
ω∈Ωl

|Iω |β � ∑
ω∈Ωl

|Iω |sl = 1.

Let μβ be a Gibbs-like measure associated with E . Then by the above inequality
and Lemma 5, for large l and each ω0 ∈Ωl , we have

μβ (Iω0)� η−1|Iω0 |β .
Let r > 0 and let Mr = {Iω : ω ∈Ω ∗, |Iω |� r < |Iω||ω|−1

|}. Suppose x ∈ E and

x ∈ Iω j ∈ Mr, then Iω j ⊂ B(x,r); we have by Eq. (11)

μβ (B(x,r)) � μβ (Iω j )� η−1|Iω j |β � η−1aβ ζ−βB−β r−β .

By Frostman’s lemma again, we get dimP E � β and hence dimP E � s∗.
For any β < s∗, there exists a subsequence of integers ml such sml > β ; hence

Qβ (E)� limsup
l→∞

∑
ω∈Ωl

|Iω |β � limsup
l→∞

∑
ω∈Ωml

|Iω |sml = 1;

by the definition of upper box-counting dimension introduced by Tricot [11],
we know dimBE � β ; hence dimBE � s∗.

By the above discussion, we get dimP E = dimBE = s∗. 
�

4.2 Proof of Theorem 2

Proof. (1) Denote by a∗ = liminfl→∞∑ω∈Ωl
|Iω |s∗ ; then by the definition of Haus-

dorff dimension and s∗, it suffices to prove a∗ > 0 ⇒ Hs∗(E)> 0 and a∗ =∞⇒
Hs∗ = ∞. Now we consider the two cases, respectively:

(i) a∗ > 0 ⇒ Hs∗(E)> 0. Take l large such that

∑
ω∈Ωl

|Iω |s∗ > a∗
2
.

Then by Lemma 5, the Gibbs-like measure μs∗ satisfies, for l and each
ω0 ∈Ωl ,

μs∗(Iω0)�
2η
a∗

|Iω0 |s∗ .
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Now for small r > 0 and ∀x ∈ E , let Mr = {Iω : ω ∈ Ω ∗, |Iω | � r <
|Iω||ω|−1

|}; by Lemma 11, we get

μs∗(B(x,r))� ∑
Iω∈Mr

Iω∩B(x,r) �= /0

μs∗(Iω )�
2η
a∗ ∑

Iω∈Mr
Iω∩B(x,r) �= /0

|Iω |s∗ � 4η
aB−1ζ−1a∗

rs∗ ;

therefore

limsup
r→0

μs∗(B(x,r))
rs∗ � 4η

aB−1ζ−1a∗
,

then we can get Hs∗(E)� aB−1ζ−1a∗
4η > 0.

(ii) a∗ = ∞⇒ Hs∗(E) = ∞.

Suppose that a∗ =∞; then for any ε > 0, we have for large l

∑
ω∈Ωl

|Iω |s∗ > 1
ε
.

By an analogous discussion as in part (i), we get

limsup
r→0

μs∗(B(x,r))
rs∗ � 4ηε

aB−1ζ−1 ,

so Hs∗(E)� aB−1ζ−1

4ηε
, it follows Hs∗(E) = ∞.

(2) For the case of packing dimension, let a∗ := limsupl→∞∑ω∈Ωl
|Iω |s∗ . We prove

the proposition by the following steps:

Claim 1. There exists λ > 0 such that Ps∗
0 (E) � λa∗. Since the sequence of

matrices {Qk}k�1 is primitive, with the condition of f (k)i, j , we know that there
exists q > 0, such that ∀ω ∈Ω ∗, there exist a subinterval of Iω of order |ω |+ q,
say Iω ′ and a point xω ∈ E ∩ Iω ′ such that B(x, |Iω ′ |)⊂ Iω . First suppose a∗ < ∞,

then there exist infinitely many l’s such that ∑ω∈Ωl
|Iω |s∗ > a∗

2 . For such l’s and
each ω ∈Ωl , we choose the balls B(x, |Iω ′ |); such balls are disjoint and centered
in E , so they form a packing of E , then we get

∑
ω∈Ωl

|Iω ′ |s∗ � ∑
ω∈Ωl

(ζ−qaqB−q|Iω |)s∗ � a∗

2

(
aq

ζ qBq

)s∗

,

which yield Ps∗
0 (E) � a∗

2

(
aq

ζ qBq

)s∗
; take λ = 1

2

(
aq

ζ qBq

)s∗
, and we get the desired

conclusion.
By the same way, we prove that if a∗ = ∞, then Ps∗

0 (E) = ∞.
Claim 2. a∗ = 0 ⇒ Ps∗

0 = 0. Let a∗ = 0. Then for any ε > 0, we have for large l
enough

∑
ω∈Ωl

|Iω |s∗ � ε.
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Let Mr = {Iω : ω ∈ Ω ∗, |Iω | � r < |Iω||ω|−1
|} and let μs∗ be the Gibbs-like

measure. Then by Lemma 5, we have for large l and each ω0 ∈Ωl ,

μs∗(Iω0)� (ηε)−1|Iω0 |s
∗
.

Suppose x ∈ Iω ∈ Mr, then Iω ⊂ B(x,r), we have

μs∗(B(x,r)) � μs∗(Iω)� (ηε)−1|Iω |s∗ � (εη)−1as∗ζ−s∗B−s∗rs∗ ,

then we know
Ps∗(E)� Ps∗

0 (E)� 2s∗ηa−s∗ζ s∗Bs∗ε,

from which follows Ps∗(E) = Ps∗
0 (E) = 0.

Claim 3. 0 < Ps∗
0 (E)< ∞⇒ 0 < a∗ < ∞. For l large enough,

∑
ω∈Ωl

|Iω |s∗ < 2a∗.

By Lemma 5, the Gibbs-like measure μs∗ fulfills, for large k and each ω0 ∈Ωk,

μs∗(Iω0)� (2a∗η)−1|Iω0 |s
∗
.

Let Mr = {Iω : ω ∈Ω ∗, |Iω |� r < |Iω||ω|−1
|}; suppose x ∈ Iω ∈ Mr, then Iω ⊂

B(x,r) and |Iω |� r � a−1ζB|Iω |, then we have

μs∗(B(x,r)) � μs∗(Iω)� (2a∗η)−1|Iω |s∗ � (2a∗ηa−s∗ζ s∗Bs∗)−1rs∗ ,

so

liminf
r→0

μs∗(B(x,r))
(2r)s∗ � 2−s∗(2a∗ηa−s∗ζ s∗Bs∗)−1,

then Ps∗(E)� Ps∗
0 (E)� 2s∗+1a∗ηa−s∗ζ s∗Bs∗ < ∞.

Claim 4. Ps∗
0 (E) = ∞⇒ Ps∗(E) = ∞. Suppose Ps∗

0 (E) = ∞, then by Claim 3, a∗ =
∞; thus for any R > 0, there exist infinitely many l’s such that

∑
ω∈Ωl

|Iω |s∗ > R. (13)

Now take any open set U that meets E; it will contain a basic interval, say
Iω0(ω0 ∈Ωmwith somem).
For any ω ∈Ωm and l > m satisfying Eq. (13), by Eq. (12), we have

|Iω |s∗ ∑
σ∈Ω l

m+1
ω0←↩σ

|Iω0∗σ |s
∗ � η−1|Iω0 |s

∗ ∑
σ1∈Ω l

m+1
ω←↩σ1

|Iω∗σ1 |s
∗
,
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then, we get

∑
ω∈Ωm

|Iω |s∗ ∑
σ∈Ω l

m+1
ω0←↩σ

|Iω0∗σ |s
∗

� η−1|Iω0 |s
∗ ∑
ω∈Ωm

∑
σ1∈Ω l

m+1
ω←↩σ1

|Iω∗σ ′ |s∗ ,

� η−1|Iω0 |s
∗
R,

which yields

∑
σ∈Ω l

m+1
ω0←↩σ

|Iω0∗σ |s
∗ � R|Iω0 |s

∗

η ∑ω∈Ωm |Iω |s∗
.

An analogous argument as in Claim 1 asserts that

Ps∗
0 (E ∩U)� Ps∗

0 (E ∩ Iω0) =∞,

then Ps∗(E) = ∞.
Claim 5. Ps∗

0 (E)< ∞⇒ Ps∗(E)< ∞. This is Theorem 2.3 of [5].
With the above five claims, we get the proposition for packing dimension. 
�

4.3 Proof of Theorem 3

Proof. Let π :Ω∞→ E, π̃ :Ω∞→ Ẽ be the coding mappings. Then it is easy to see
that they are homeomorphisms and h := π̃ ◦π−1 is a homeomorphism from E to Ẽ .
For x ∈ E , denote x̃ = h(x), and we have the following lemma.

Lemma 6. With the notations as above, for x= π(ω)∈E, x̃= π̃(w)∈ Ẽ and m� 1,
we have

|Fω|m(x)− F̃ω|m(x̃)|�
d̃(E, Ẽ)

b− 1
.

Proof. Suppose that ω = (e1,k1)(e2,k2)(e3,k3) · · · ; then for any l � 1, a ∈ It(el)
,

since f (l)el (φ (l)el ,kl
(a)) = f̃ (l)el (φ̃

(l)
el ,kl

(a)), by the definition of d̃

| f (l)el (φ
(l)
el ,kl

(a))− f (l)el (φ̃
(l)
el ,kl

(a))|

= | f̃ (l)el (φ̃
(l)
el ,kl

(a))− f (l)el (φ̃
(l)
el ,kl

(a))|
� d̃l � d̃(E, Ẽ),
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we get thus by the mean value theorem

|φ (l)el ,kl
(a)− φ̃ (l)el ,kl

(a)|� b−1d̃(E, Ẽ). (14)

For any m � 1, l � 1, set

Φω|m+1,m+l
= φ (m)

em,km
◦ · · · ◦φ (m+l)

em+l ,km+l
,

Φ̃ω|m+1,m+l
= φ̃ (m)

em,km
◦ · · · ◦ φ̃ (m+l)

em+l ,km+l
,

then we have

Fω|m(x) =
∞⋂

l=1

Φω|m+1,m+l
(It(em+l )

), (15)

F̃ω|m(x̃) =
∞⋂

l=1

Φ̃ω|m+1,m+l
(It(em+l )). (16)

For any t ∈ Iim+l , m � 1, l � 1, by Eq. (14), we get

∣
∣Φω|m+1,m+l

(t)− Φ̃ω|m+1,m+l
(t)
∣
∣

�
l−1

∑
q=0

∣
∣Φω|m+1,m+l−q

◦ Φ̃ω|m+l−q+1,m+l
(t)

−Φω|m+1,m+l−q−1
◦ Φ̃ω|m+l−q,m+l

(t)
∣∣

=
l−1

∑
q=0

∣
∣DΦω|m+1,m+l−q−1

(zq)
∣
∣
∣
∣φ (m+l−q)

em+l−q−1,km+l−q
◦ Φ̃ω|m+l−q,m+l

(t)

−φ̃ (m+l−q)
em+l−q,km+l−q

◦ Φ̃ω|m+l−q,m+l
(t)
∣
∣

�
l−1

∑
q=0

b−q(b−1d̃(E, Ẽ))

� d̃(E, Ẽ)
b− 1

,

where zq ∈ I and we take Φω|l1 ,l2 = id for l1 > l2. Then by the definition of the
Hausdorff metric, we get

ρH
(
Φω|m+1,m+l

(It(em+l)
),Φ̃ω|m+1,m+l

(It(em+l )
)
)
� d̃(E, Ẽ)

b− 1
.
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By Eqs. (15) and (16), we have

|Fω|m(x)− F̃ω|m(x̃)|
� ρH

(
Φω|m+1,m+l

(It(em+l )),Φ̃ω|m+1,m+l
(It(em+l ))

)

+|Φω|m+1,m+l
(It(em+l )

)|

� d̃(E, Ẽ)
b− 1

+ b−l;

letting l → ∞, we get the conclusion of the lemma. 
�
Now, let us continue the proof of Theorem 3.

Let sm, s̃m be the m-th pre-dimensions of E and Ẽ , respectively. First assume that
[c,γ,b,B] = [c̃, γ̃, b̃, B̃].

For each m � 1,ω = (e1,k1)(e2,k2) · · · (em,km) ∈ Ωm, take x ∈ E ∩ Iω and x̃ ∈
Ẽ ∩ Ĩω ; then by the chain rule and Lemma 6, we have

∣
∣
∣ log

|DFω(x)|
|DF̃ω(x̄)|

∣
∣
∣

�
m

∑
k=1

∣
∣
∣ log |D f (k)ek

(
Fω|k−1

(x)
)|− log |D f̃ (k)ek

(
F̃ω|k−1

(x̃)
)|
∣
∣
∣

�
m

∑
k=1

∣
∣D f (k)ek

(
Fω|k−1

(x)
)−D f̃ (k)ek

(
F̃ω|k−1

(x̃)
)∣∣

�
m

∑
k=1

∣
∣D f (k)ek

(
Fω|k−1

(x)
)−D f (k)ek

(
F̃ω|k−1

(x̃)
)∣∣

+
m

∑
k=1

∣
∣D f (k)ek

(
F̃ω|k−1

(x)
)−D f̃ (k)ek

(
F̃ω|k−1

(x̃)
)∣∣

� m
cd̃γ

(b− 1)γ
+md̃.

From the above inequality and Lemma 2, we get

ζ−2 exp

{
m

[
cd̃γ

(b− 1)γ
+ d̃

]}
� |Iω |

|Ĩω | � ζ
2 exp

{
m

[
cd̃γ

(b− 1)γ
+ d̃

]}
, (17)

where ζ = 1
min{|Ii|:i∈V } exp{ c

bγ−1}.
Put limsupm→∞ |sm − s̃m|= d; then there exist infinite m such that sm � s̃m +d or

sm � s̃m−d. We only discuss the first case, and the second case can be treated in the
same way. From Eq. (17), we have
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1 = ∑
ω∈Ωm

|Iω |sm � ∑
ω∈Ωm

|Iω |s̃m+d

� b−md ∑
ω∈Ωm

[
ζ 2 exp

{
m

[
cd̃γ

(b− 1)γ
+ d̃

]}
|Ĩω |

]s̃m

= b−md
[
ζ 2 exp

{
m

[
cd̃γ

(b− 1)γ
+ d̃

]}]s̃m

which gives

d � s̃m

m logb

{
logζ 2 +m

[
cd̃γ

(b− 1)γ
+ d̃

]}
,

so

d � cs̃∗

(b− 1)γ logb
d̃γ +

s̃∗

logb
d̃, (18)

where s̃∗ = limsupm→∞ s̃m ≤ 1.
From Eq. (18), we get the statement for the case of [c,γ,b,B] = [c̃, γ̃, b̃, B̃].
For the case that [c,γ,b,B] �= [c̃, γ̃, b̃, B̃], by an analogous argument as the above,

we get finally the conclusion of the theorem. 
�
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Recent Developments on Fractal Properties
of Gaussian Random Fields

Yimin Xiao

Abstract We review some recent developments in studying fractal and analytic
properties of Gaussian random fields. It is shown that various forms of strong local
nondeterminism are useful for studying many fine properties of Gaussian random
fields. A list of open questions is included.

1 Introduction

Fractal properties of Brownian motion and Lévy processes have been studied since
the pioneering works of [66, 101] and have become significant part of the theory on
stochastic processes. We refer to [102, 121], and the references therein for further
information.

In recent years, there has been an increased interest in investigating various
properties of random fields. On one hand, random fields arise naturally in probability
theory, stochastic partial differential equations, and studies of Markov processes.
On the other hand, they are extensively applied as stochastic models in various
scientific areas such as image processing, physics, biology, hydrology, geostatistics,
and spatial statistics. However, compared with the rich theory on fine properties of
Brownian motion and Lévy processes, the progress in studying random fields has
been relatively slow. One of the main difficulties is the lack of powerful technical
tools such as Markov property and stopping times.

In this chapter we survey some recent studies on sample path properties of
Gaussian random fields. We will mainly focus on results which are either based
on various properties of strong local nondeterminism or on new concepts in fractal
geometry (such as packing dimension profiles).
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The rest of this chapter is organized as follows. Section 2 is an introduction on
Gaussian random fields in which we recall the notions of strong local nondetermin-
ism and provide some typical examples. In Sect. 3, we discuss analytic properties
of Gaussian random fields, such as exact modulus of continuity, law of the iterated
logarithm (LIL), Chung’s LIL, existence, and regularity of local times. Section 4 is
on fractal properties of Gaussian random fields. We illustrate how anisotropy in the
time variable and/or space variable may affect the fractal structures of the random
fields. More specifically we provide Hausdorff and packing dimension results on
the images, graphs, and inverse images and set of intersections, set of exceptional
oscillations, and of Gaussian random fields. There are many open problems on
analytic and geometric properties of Gaussian random fields. We list some of them
in Sects. 3 and 4.

We end the introduction with some general notation. Throughout this chapter, we
consider random fields {X(t), t ∈ R

N} which take values in R
d , and we call them

(N,d)-random fields. We use | · | and 〈·, ·〉 to denote, respectively, the Euclidean
norm and the inner product in R

N (or Rd). The Lebesgue measure in R
N is denoted

by λN . A point t ∈R
N is written as t =(t1, . . . , tN), or 〈t j〉 or as 〈c〉 if t1 = · · ·= tN = c.

For any s, t ∈R
N such that s j < t j ( j = 1, . . . ,N), [s, t] =∏N

j=1 [s j , t j] is called a closed
interval (or a rectangle). We will let A denote the class of all closed intervals in R

N .
For two functions f and g defined on T ⊆ R

N , the notation f (t) * g(t) for t ∈ T
means that the function f (t)/g(t) is bounded from below and above by positive
constants that do not depend on t ∈ T .

We will use c to denote an unspecified positive and finite constant which may not
be the same in each occurrence. More specific constants are numbered as c1 ,c2 , . . ..

2 Gaussian Random Fields

Two of the most important Gaussian random fields are, respectively, the Brownian
sheet W = {W (t), t ∈ R

N
+} and fractional Brownian motion BH = {BH(t), t ∈ R

N}
of index H ∈ (0,1), and they have been under extensive investigations for several
decades. Both of them are centered (N,d)-Gaussian random fields, the former has
covariance function

E[Wi(s)Wj(t)] = δi j

N

∏
k=1

sk ∧ tk, ∀s, t ∈ R
N
+, (1)

and the latter has covariance function

E[BH
i (s)B

H
j (t)] =

1
2
δi j

(
|s|2H + |t|2H −|s− t|2H

)
, ∀s, t ∈ R

N . (2)

In the above δi j = 1 if i = j and 0 if i �= j. The Brownian sheet W and fractional
Brownian motion BH are natural multiparameter extensions of Brownian motion in
R

d and have played important roles in probability theory and in various applications.
It is known that there are some fundamental differences between W and BH . For
example, it follows from Eq. (1) that the increments of W over disjoint intervals of
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R
N
+ are independent and, along each direction of the axis, W is a rescaled Brownian

motion in R
d . On the other hand, Eq. (2) implies that BH is H-self-similar and has

stationary increments. Moreover, BH is isotropic in the sense that BH(s)−BH(t)
depends only on the Euclidean distance |s − t|. For further information on the
Brownian sheet W and fractional Brownian motion, we refer to Adler [1], Kahane
[43], Khoshnevisan [51], and Samorodnitsky and Taqqu [92].

Several classes of anisotropic Gaussian random fields have been introduced
and studied for theoretical and application purposes. For instance, [46] introduced
fractional Brownian sheets and studied some of their regularity properties. Bonami
and Estrade [14], Biermé et al. [12], Li and Xiao [68], and Xue and Xiao [127]
constructed several classes of anisotropic Gaussian random fields with stationary
increments and certain operator-scaling properties. Anisotropic Gaussian random
fields also arise naturally in stochastic partial differential equations (see, e.g., [20,
41, 82, 84]) and as spatial or spatiotemporal models in statistics (e.g., [17, 35, 95]).

It is known that, compared with isotropic Gaussian fields such as fractional Brow-
nian motion, the probabilistic and geometric properties of anisotropic Gaussian
random fields are much richer (see [4, 109, 110, 112, 123, 127]) and their estimation
and prediction problems are more difficult to study.

There are three kinds of anisotropy, namely, time-variable anisotropy, space-
variable anisotropy, and the anisotropy in both variables. Typical examples of
time-anisotropic Gaussian random fields are fractional Brownian sheets introduced
by [46], the solution of the stochastic heat equation driven by space–time white noise
(see [82]), and operator-scaling Gaussian random fields with stationary increments
constructed by [12]. Examples of space-anisotropic Gaussian random fields include
those in [1, 113], Gaussian fields with fractional Brownian motion components in
[115], and the operator-fractional Brownian motion studied by [26,74]. A large class
of (N,d)-random fields which are anisotropic in both space and time variables have
been constructed and studied by [68].

In the following two sections, we provide a brief discussion on the properties of
anisotropy in the space and time variables of (N,d)-random fields.

2.1 Space-Anisotropic Gaussian Random Fields

Let X = {X(t), t ∈R
N} be an (N,d)-Gaussian random field defined by

X(t) = (X1(t), . . . ,Xd(t)), (3)

where the coordinate processes X1, . . . ,Xd are assumed to be stochastically continu-
ous. For every i = 1, . . . ,d, let

σ2
i (t,h) = E

[(
Xi(t + h)−Xi(t)

)2
]
, t,h ∈ R

N .
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Then for every t ∈ R
N , σi(t,h) → 0 as |h| → 0. Many probabilistic and geometric

properties of X are determined by the asymptotic properties of σ2
i (t,h). If, as h→0,

σ2
i (t,h) → 0 with different rates for i = 1, . . . ,d, then the coordinate processes

X1, . . . ,Xd have different asymptotic properties which can affect the properties of X
in various ways. In this case, we say that X is anisotropic in the space variable (or,
simply, space anisotropic). An important class of space-anisotropic random fields
are those satisfying the operator-self-similarity. An (N,d)-random field X is called
operator-self-similar in the space variable if there exists a d × d matrix D = (di j)
such that for all constants c > 0,

{X(ct), t ∈ R
N} d

= {cD X(t), t ∈R
N}. (4)

In the above and in the sequel,
d
= denotes equality of all finite-dimensional

distributions and cD is the linear operator on R
d defined by

cD =
∞

∑
n=0

(lnc)nDn

n!
.

The linear operator D is called a space-variable self-similarity exponent (which may
not be unique).

Mason and Xiao [74] constructed a class of operator-self-similar Gaussian
random fields with stationary increments, which are called operator-fractional
Brownian motions, and they showed that the Hausdorff dimension of the image
X(E) is determined by the positive parts of the eigenvalues of D, the self-similarity
exponent of X . To study the effect of space anisotropy on fractal properties of X , we
can first work with the special example of X = {X(t), t ∈ R

N}, which is defined by
Eq. (3), where X1, . . . ,Xd are independent N-parameter fractional Brownian motions
in R with indices α1, . . . ,αd , respectively. Then the (N,d)-Gaussian field X is
operator-self-similar with exponent D = (di j) which is the diagonal matrix with
dii = αi for i = 1, . . . ,d. When α1, . . . ,αd are not the same, X is anisotropic in
the space variable. We call X a Gaussian random field with independent fractional
Brownian motion components. Didier and Pipiras [26] consider more general
framework and provide a characterization of all operator-fractional Brownian
motions by means of their integral representations in the spectral and time domains.

2.2 Time-Anisotropic Gaussian Random Fields

Let X = {X(t), t ∈R
N} be an (N,d)-random field defined by Eq. (3). We say that X

is anisotropic in the time variable (or time anisotropic) if the coordinate processes
are (approximately) identically distributed and for some 1 ≤ i ≤ d, the random
field {Xi(t), t ∈R

N} has different distributional properties along different directions
of RN .
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Analogous to the space-anisotropy case, an (N,d)-random field {X(t), t ∈ R
N}

is called operator-self-similar in the time variable if there exists an N ×N matrix E
such that for all constants c > 0,

{
X(cE t), t ∈R

N} d
=
{

cX(t), t ∈ R
N}. (5)

The linear operator E is called a time-variable self-similarity exponent (which may
not be unique).

A typical example of Gaussian random fields which are operator-self-similar in
the time variable is fractional Brownian sheets (cf. [46]). For a given vector H =
(H1, . . . ,HN) ∈ (0,1)N , an (N,1)-fractional Brownian sheet W H

0 = {W H
0 (t), t ∈R

N}
with index H is a real-valued, centered Gaussian random field with covariance
function given by

E
[
W H

0 (s)W H
0 (t)

]
=

N

∏
j=1

1
2

(
|s j|2Hj + |t j|2Hj −|s j − t j|2Hj

)
, s, t ∈R

N . (6)

It follows from Eq. (6) that W H
0 is operator-self-similar in the time variable with

exponent E = (ai j), which is the N ×N diagonal matrix with aii = (NHi)
−1 for all

1 ≤ i ≤ N and ai j = 0 if i �= j. Note that, in the direction of ith coordinate, W H
0 (s)

is a re-scaled fractional Brownian motion of index Hi. Hence, if H1, . . . ,HN are not
the same, then W H

0 is a time-anisotropic Gaussian field. Other important examples
of time-anisotropic random fields include the solution to stochastic heat equation
driven by space–time white noise [41, 82] and those with stationary increments
constructed by [12, 123].

Recently Li and Xiao [68] have extended the notions of operator-self-similarity
and operator scaling to multivariate random fields by allowing scaling of the random
field in both “time” domain and state space by linear operators. For any given N×N
matrix E and d × d matrix D, they construct a large class of (N,d)-Gaussian or
stable random fields X = {X(t), t ∈R

N} such that for all constants c > 0
{

X(cEt), t ∈ R
N} d

=
{

cDX(t), t ∈ R
d}. (7)

If E = I, the identity matrix, then Eq. (7) reduces to Eq. (4). If D = I, then Eq. (7)
reduces to Eq. (5).

Similarly to [74], Xiao [123] proved that the Hausdorff and packing dimensions
of the range, graphs and level sets of a Gaussian random field X which satisfies
Eq. (5) are determined by the real parts of the eigenvalues of E . However, fractal
properties of (N,d)-Gaussian random fields which satisfy Eq. (7) have not been
studied in general.

2.3 Assumptions

Now let us specify the class of Gaussian random fields to be considered in this
chapter.
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Let X = {X(t), t ∈R
N} be a Gaussian random field with values in R

d defined by
Eq. (3). We assume that X1, . . . ,Xd are independent copies of a real-valued, centered
Gaussian random field X0 = {X0(t), t ∈R

N}. Many sample path properties of X can
be determined by the following function:

σ2(s, t) = E
(
X0(s)−X0(t)

)2
, ∀s, t ∈R

N . (8)

Let I ∈ A be a fixed closed interval and we will consider various sample path
properties of X(t) when t ∈ I. We say that X0 is approximately isotropic on I if there
is a function g : R+ →R+ such that

σ2(s, t)* g(|s− t|), ∀ s, t ∈ I.

For simplicity we will mostly assume I = [ε,1]N , where ε ∈ (0,1) is fixed, or
I = [0,1]N .

Let H = (H1, . . . ,HN) ∈ (0,1)N be a fixed vector. Let ρ be the metric on R
N

defined by

ρ(s, t) =
N

∑
j=1

|s j − t j|Hj , ∀s, t ∈ R
N . (9)

For any r > 0 and t ∈R
N , we denote by Bρ(t,r) = {s ∈R

N : ρ(s, t)≤ r} the closed
ball in the metric ρ .

As in [123], we will make use of the following general conditions on X0:

(C1) There exists a positive constant c ≥ 1 such that

c−1ρ(s, t)2 ≤ σ2(s, t)≤ cρ(s, t)2, ∀ s, t ∈ I. (10)

(C2) There exists a constant c > 0 such that for all s, t ∈ I,

Var
(
X0(t)

∣
∣X0(s)

) ≥ cρ(s, t)2.

Here and in the sequel, Var
(
Y
∣
∣Z
)

denotes the conditional variance of Y
given Z.

(C3) There exists a constant c > 0 such that for all integers n ≥ 1 and all u,
t1, . . . , tn ∈ I (and u �= 0 if 0 ∈ I),

Var
(

X0(u) | X0(t
1), . . . ,X0(t

n)
)
≥ c

N

∑
j=1

min
0≤k≤n

∣
∣u j − tk

j

∣
∣2Hj , (11)

where t0
j = 0 for every j = 1, . . . ,N.

(C4) There exists a constant c > 0 such that for all integers n ≥ 1 and all u,
t1, . . . , tn ∈ I (and u �= 0 if 0 ∈ I),

Var
(

X0(u) | X0(t
1), . . . ,X0(t

n)
)≥ c min

0≤k≤n
ρ(u, tk)2, (12)

where t0 = 0.



Recent Developments on Fractal Properties of Gaussian Random Fields 261

Remark 1. The following are some remarks about the above conditions:

• Under Condition (C1), X0 has a version which has continuous sample functions
on I almost surely. Henceforth we will assume that the Gaussian random field X
has continuous sample paths.

• Condition (C2) is referred to as “two-point” local nondeterminism in the metric
ρ [or with indices H = (H1, . . . ,HN) ∈ (0,1)N]. Together with (C1), it is useful
for determining the fractal dimensions of many random sets generated by X .

• Condition (C3) is weaker than (C4). Following the terminology in [57], (C3) is
called the property of sectorial local nondeterminism. Condition (C4) is called the
strong local nondeterminism in the metric ρ . These conditions are important for
establishing sharp results on modulus of continuity, Chung’s LIL, sharp Hölder
conditions for the local times, and exact Hausdorff measure functions, among
others.

• Pitt [89] proved that multiparameter fractional Brownian motion BH satisfies
(C4) with H = lHρ . Wu and Xiao [109] proved that a fractional Brownian
sheet W H satisfies condition (C3). We refer to [123, 127] for more examples of
anisotropic Gaussian random fields which satisfy condition (C4).

Recently, Luan and Xiao [71] have provided a general condition for a
Gaussian random field X0 with stationary increments to satisfy (C4) in terms
of the spectral measure Δ of X0. This condition can be applied even when Δ is
singular, supported on a fractal set or on a discrete set such as ZN . Their theorem
can be applied to prove that the solution of a fractional stochastic heat equation
on the circle S1 (see [83,105]) has the property of strong local nondeterminism in
the space variable (at fixed time t). Hence fine properties of the sample functions
of the solution can be obtained by using the results discussed below. Similarly,
we can show that the spherical fractional Brownian motion on S1 introduced by
Istas [42] is also strongly locally nondeterministic. These processes share local
properties with ordinary fractional Brownian motion with appropriate indices.

3 Analytic Results

Sample functions of a Gaussian random field may present various fine properties
such as continuity and differentiability. See [2, 72, 99].

For an anisotropic Gaussian random field, its sample function may be differen-
tiable in certain directions, but not differentiable in other directions (see [127] for
explicit criterion for Gaussian random fields with stationary increments) and may
have rich (sometimes complicated) geometric structures. Our main objective is to
characterize the analytic and geometric properties of a Gaussian random field C
in terms of its parameter H = (H1, . . . ,HN), if X satisfies some of the conditions
(C1)–(C4).

Geometric properties of a Gaussian random field X are very closely related to
the regularities (or irregularities) of the sample functions of X . In this section, we
discuss analytic properties such as uniform and local moduli of continuity and local
times of Gaussian random fields.
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3.1 Exact Modulus of Continuity and LIL

Sample path continuity and Hölder regularity of Gaussian random fields have been
studied by many authors. A powerful chaining argument leads to sharp upper bounds
for uniform and local moduli of continuity of Gaussian processes in terms of metric
entropy or majorizing measures. Here “sharp” means logarithmic correction factors
can be obtained. See [2,72,99]. Sharp lower bounds for local and uniform moduli of
continuity of Gaussian processes are discussed in [72, Chapter 7]. However, except
for a few special cases such as certain one-parameter Gaussian processes [72], the
Brownian sheet [85], and fractional Brownian motion [8], there have not been many
explicit results on sharp lower bounds for uniform and local moduli of Gaussian
random fields.

The following theorem on uniform modulus of continuity is proved in [76].

Theorem 1. Let X = {X(t), t ∈R
N} be real-valued and centered Gaussian random

field which satisfies conditions (C1) and (C3). Then for every compact interval I ⊆
R

N, there exists a positive and finite constant c1, depending only on I and Hj, ( j =
1, . . . ,N) such that

lim
ε→0+

sup
s,t∈I,σ(s,t)≤ε

|X(t)−X(s)|
σ(s, t)

√
log(1+σ(s, t)−1)

= c1 a.s., (13)

where σ(s, t) is as in Eq. (8).

Notice that the limit in Eq. (13) exists almost surely due to monotonicity. So the
real issue is to prove that the limit is a (nonrandom) constant which is positive and
finite. Condition (C1) allows us to apply standard method (e.g., the entropy method)
to derive an upper bound for sups,t∈I,σ(s,t)≤ε |X(t)−X(s)|. Thus the 0-1 law in [72,
Chapter 7] implies that the limit is nonrandom and finite. The hard part is to prove
c1 > 0; this is where the sectorial local nondeterminism (C3) plays an important
role.

For the local modulus of continuity, [76] proved the following LIL.

Theorem 2. Let {X(t), t ∈ R
N} be a real-valued, centered Gaussian random field

with stationary increments and X(0)= 0. If X satisfies condition (C1) for I = [0,1]N,
then there is a positive constant c2 such that for every t0 ∈R

N we have

limsup
|ε|→0+

sup
s:|s j |≤ε j

|X(t0 + s)−X(t0)|
σ(s)

√
loglog

(
1+∏N

j=1 |s j|−Hj
) = c2 a.s., (14)

where σ2(s) = E
[
X(s)2

]
.

For the local oscillation of X(t) with t ∈ Bρ(t0,r), [76] proved the following
result.
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Theorem 3. Let X = {X(t), t ∈ R
N} be a real-valued, centered Gaussian random

field with stationary increments and X(0) = 0. If X satisfies condition (C1) for I =
[0,1]N, then there is a positive and finite constant c3 such that for every t0 ∈ R

N

we have

lim
r→0+

sup
s:σ(s)≤r

|X(t0 + s)−X(t0)|
σ(s)

√
loglog(1+σ(s)−1)

= c3 a.s. (15)

Remark 2. Noticed that the logarithmic factors in Theorems 2 and 3 are quite
different, since (C1) implies σ(s) * ∑N

j=1 |s j|Hj as s → 0 in Theorem 3, and the

corresponding term ∏N
j=1 |s j |−Hj in Theorem 2 is much bigger. This is due to the

fact that the supremum in Eq. (14) is taken over a larger domain.

Theorems 2 and 3 cannot be applied directly to fractional Brownian sheet W H

because it does not have stationary increments in the ordinary sense. However, [76,
Theorem 6.4] shows that Eqs. (14) and (15) still hold for all t0 ∈ [a,∞)N (where
a > 0 is a constant). The oscillation behavior of W H(t) at the origin t0 = 0 is very
different and is characterized by [108]. Together these results reveal the subtlety of
the influence of anisotropy on fine properties of random fields.

Several interesting questions can be raised. Comparing Theorems 1–3, one
can show as in [86] that there exists a random point t at which the local
oscillation sups:σ(s)≤r |X(t + s)− X(t)| is unusually large, say, of the order σ(s)
√

log(1+σ(s)−1). Motivated by this, we define the following sets of “fast points”:

F1(γ) =
{

t ∈ I : limsup
|s|→0+

|X(t + s)−X(t)|
σ(s)

√
log

(
1+∏N

j=1 |s j|−Hj
) ≥ γ

}
(16)

and

F2(γ) =
{

t ∈ I : limsup
|s|→0+

|X(t + s)−X(t)|
σ(s)

√
log(1+σ(s)−1)

≥ γ
}
. (17)

It follows from Theorems 2 and 3 and Fubini’s theorem that both F1(γ) and
F2(γ) have zero Lebesgue measure. It is interesting to study their Hausdorff and
packing dimensions. In the case of N = 1 and X is Brownian motion, F1(γ) = F2(γ)
and its Hausdorff dimension was determined by [86] and further refined by [49].
Khoshnevisan et al. [53] developed a general method for studying limsup-type
random fractals which is applicable not only to the set of fast points of Brownian
motion but also to many other random sets defined by exceptional oscillation or
growth, including the set of fast points of the Brownian sheet (see also [27] for
another treatment of the set of fast points of two-parameter Brownian sheet W )
and fractional Brownian motion, thick points of the sojourn measure of Brownian
motion [25].

In the current random field setting, however, it is not known whether F1(γ) and
F2(γ) have different fractal properties. Hence we formulate the following problem.

Problem 1. Determine the Hausdorff and packing dimensions of F1(γ) and F2(γ).
For a given Borel set E ⊆R

N , when do we have F1(γ)∩E �=∅ and F2(γ)∩E �=∅?
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Following [107], a point t0 is called a singularity of X if the LIL fails at t0.
Hence the points in F1(γ) and F2(γ) are singularities of X . Walsh [107] studied
the propagation of the singularities of the Brownian sheet and proved the following
theorem. See also [129] for part (i).

Theorem 4. Let W = {W (s, t),(s, t) ∈ R
2
+} be the real-valued Brownian sheet:

(i) For each fixed s ≥ 0,

P

{
limsup

r→0

|W (s+ r, t)−W(s, t)|
√

2r loglog(1/r)
=
√

t for all t ≥ 0

}
= 1. (18)

(ii) Let t0 > 0 be fixed and let S ≥ 0 be a random variable which is measurable with
respect to σ{W(s, t) : s ≥ 0,0 ≤ t ≤ t0}. Then for almost every ω ∈Ω ,

limsup
r→0

|W (S(ω), t0 + r)−W(S(ω), t0)|√
2r loglog(1/r)

= ∞

⇐⇒ limsup
r→0

|W (S(ω), t + r)−W(S(ω), t)|
√

2r loglog(1/r)
= ∞ for all t ≥ t0. (19)

Part (i) says that, at every fixed time s ≥ 0, the law of iterated logarithm for
the (rescaled) Brownian motion W (·, t) holds uniformly for all t ≥ 0. This is a
refinement of LIL for Brownian motion. Part (ii) is a converse of (i) and means that,
if S(ω) is a random singularity of the Brownian motion W (·, t0), then every point on
the vertical ray {(S(ω), t) : t ≥ t0} is a singularity of W . This reveals specifically
that the singularities of W propagate parallel to the coordinate axes.

Blath and Martin [13] have extended Theorem 4 to the two-parameter fractional
Brownian sheet W H with H1 = 1/2 and H2 ∈ (0,1) (which they call semi-fractional
Brownian sheet). The fact that, for any t2 > 0, {W H(t1, t2), t1 ≥ 0} is a Brownian
motion plays a crucial role in their proofs.

Walsh [107] asked whether an analogous property holds for other Gaussian
random fields such as Lévy’s multiparameter Brownian motion B1/2. As far as I
know, this problem has not been solved. Hence we formulate the following problem.

Problem 2. We say that t0 is a singularity of Gaussian random field X if the limsup
in Eq. (15) is infinity. How do the singularities of X propagate?

3.2 Chung’s LIL and Modulus of Nondifferentiability

The results in Sect. 3.1 are about large oscillations. For small local oscillation of
X at t0 ∈ R

N , [70] proved the following Chung-type law of iterated logarithm. For
earlier results on Chung’s LIL for isotropic Gaussian random fields, as well as their
connections to small ball probabilities, we refer to the excellent survey of [67].



Recent Developments on Fractal Properties of Gaussian Random Fields 265

Theorem 5. Let X = {X(t), t ∈ R
N} be a Gaussian random field with stationary

increments and X(0) = 0. If X satisfies conditions (C1) and (C4) on an interval
I ⊆R

N, then there exists a positive and finite constant c4 such that for every t0 ∈R
N,

liminf
r→0

maxρ(t,t0)≤r |X(t)−X(t0)|
r(log log1/r)−1/Q

= c4, a.s., (20)

where Q = ∑N
i=1 Hi

−1.

When N = 1 this extends a result of [79]. Theorem 5 assumes that X has stationary
increments and satisfies (C4) and thus is not applicable to other Gaussian random
fields such as fractional Brownian sheets. Talagrand [96] and Zhang [128] proved
the Chung’s LIL for the Brownian sheet W = {W (s, t),(s, t) ∈ R

2
+} as “time” goes

to ∞. Their arguments also prove the following Chun’s LIL at t0 = 0, which is quite
different from Eq. (20).

Theorem 6. There is a positive and finite constant c5 such that

liminf
r→0

(log log1/r)1/2

r(loglog log1/r)3/2
max

0≤s,t≤r
|W (s, t)|= c5 a.s. (21)

The problem for proving a Chung’s LIL for a general fractional Brownian sheet
W H with index H ∈ (0,1)N has not been solved completely. For some interesting
partial results, see [73]. By applying the result of [79] to the restriction of W H to the
direction of the jth coordinate, say {W H(1, . . . ,1, t j,1, . . . ,1), t j ∈ R}, one can see
that the Chung’s LIL is analogous to that of a one-parameter fractional Brownian
motion of Hurst index Hj.

It is also an open problem to establish a uniform version of Eq. (5) for Gaussian
random fields. In the special case of fractional Brownian motion, we believe (cf.
[116]) that there is a positive and finite constant c6 such that

liminf
r→0

sup
t∈[0,1]N

max|s−t|≤r |BH(t)−BH(s)|
rH(log1/r)−H/N

= c6, a.s. (22)

Even though the lower bound can be easily proved (cf. [116]), the upper bound
is more difficult. For the special case of N = 1, Eq. (22) has been proved recently
by [39].

Similarly to Eqs. (16) and (17) one can define the set of exceptionally small
oscillation

S(γ) =
{

t ∈ I : liminf
r→0+

maxρ(t,t0)≤r |X(t)−X(t0)|
r(log1/r)−1/Q

≤ γ
}

(23)

and ask similar questions for S(γ) as in Problem 1. The method of limsup random
fractals developed by [53] should be useful in studying these problems.
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3.3 Regularity of Local Times

The roughness or irregularity of sample functions of X can be reflected in the
regularity (or smoothness) of the local times of X . This was first observed by
Berman [9] who developed Fourier analytic method for studying the existence and
continuity of local times of Gaussian processes. Berman [10] introduced the notion
of “local nondeterminism” for Gaussian processes to overcome many difficulties
caused by the lack of Markov property and to unify his methods for studying local
times. Berman’s work has been extended and strengthened in various ways. See
[34, 122, 123] for more information.

We recall briefly the definition of local times. Let Y (t) be a Borel vector field on
R

p with values in R
q. For any Borel set T ⊆ R

p, the occupation measure of Y on T
is defined as the following measure on R

q:

μT (·) = λp
{

t ∈ T : Y (t) ∈ ·}.

If μT is absolutely continuous with respect to the Lebesgue measure λq, we say that
Y (t) has local times on T , and define its local time, L(·,T ), as the Radon–Nikodým
derivative of μT with respect to λq, i.e.,

L(x,T ) =
dμT

dλq
(x), ∀x ∈R

q.

In the above, x is called the space variable, and T is the time variable. Note that if
Y has local times on T then for every Borel set S ⊆ T , L(x,S) also exists.

Suppose we fix a rectangle T =∏p
i=1[ai,ai+hi]⊆R

p, where a ∈R
p and h∈R

p
+.

If we can choose a version of the local time, still denoted by L(x,∏p
i=1[ai,ai + ti]),

such that it is a continuous function of (x, t1, . . . , tp) ∈ R
q ×∏p

i=1[0,hi], Y is said to
have a jointly continuous local time on T . When a local time is jointly continuous,
L(x, ·) can be extended to a finite Borel measure supported on the level set

Y−1
T (x) = {t ∈ T : Y (t) = x}; (24)

see [1] for details. This makes local times a useful tool in studying fractal properties
of Y .

When X = {X(t), t ∈R
N} is an (N,d)-Gaussian random field with approximately

isotropic increments (e.g., fractional Brownian motion), [116] proved sharp local
and uniform modulus of continuity for the local time L(x, ·) in the set variable. For
simplicity, we focus on fractional Brownian motion BH = {BH(t), t ∈ R

N} with
values in R

d . The following theorem was proved by [5,7]. See also [15] for the case
of N = 1, where large deviation results for the local times and intersection local
times are proved.
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Theorem 7. Let BH = {BH(t), t ∈R
N} be a fractional Brownian motion in R

d with
index H ∈ (0,1). If N > Hd, then there exists a positive and finite constant c7 such
that for every a ∈R

N,

limsup
r→0

L∗(B(a,r))
rN−Hd(loglog(1/r))Hd/N

= c7, a.s. (25)

and for every T > 0, there is a positive and finite constant c8 such that

limsup
r→0

sup
a∈[−T,T ]N

L∗(B(a,r))
rN−Hd(log(1/r))Hd/N

= c8, a.s. (26)

In the above, L∗(B(a,r)) = maxx∈Rd L(x, B(a,r)).

Equation (25) gives the LIL for L∗(B(a,r)) and is used to derive an exact
Hausdorff measure function for the level set of fractional Brownian motion in [6].
Their result significantly improves that in [116].

The existence and joint continuity of local times of a fractional Brownian sheet
W H with values in R

d and index H = (H1, . . . ,HN) ∈ (0,1)N were studied by
[126]. Ayache et al. [3] proved that the optimal condition for the joint continuity
of the local times of W H is ∑N

j=1 H−1
j > d. Xiao [123] proved similar results

for a class of Gaussian random fields with stationary increments which satisfy
conditions (C1) and (C3). Wu and Xiao [112] provided a unified treatment by
applying sectorial local nondeterminism to estimate high moments of local times
and improved significantly the results in [3, 123].

When X is anisotropic, the problems for finding sharp local and uniform modulus
of continuity for L(x, ·) and L∗(·) = maxx∈Rd L(x, ·) in the set variable are more
complicated and have not been solved. In the following we state the main result
in [112].

First we give some notation. Henceforth we assume that H = (H1, . . . ,HN) ∈
(0,1)N is fixed and

0 < H1 ≤ ·· · ≤ HN < 1. (27)

When ∑N
j=1

1
Hj

> d, there exists τ ∈ {1, 2, . . . ,N} such that

τ−1

∑
j=1

1
Hj

≤ d <
τ

∑
j=1

1
Hj

,

with the convention that ∑0
1(·)≡ 0. We denote

α :=
N

∑
j=1

1
Hj

− d, ητ := τ+Hτd−
τ

∑
j=1

Hτ
Hj

(28)
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and we will distinguish three cases:

Case 1.
τ−1
∑
j=1

1
Hj

< d <
τ
∑
j=1

1
Hj

Case 2.
τ−1
∑
j=1

1
Hj

= d <
τ
∑
j=1

1
Hj

and Hτ−1 = Hτ

Case 3.
τ−1
∑
j=1

1
Hj

= d <
τ
∑
j=1

1
Hj

and Hτ−1 < Hτ

The first result is on local Hölder condition for L∗(·).
Theorem 8. Let X = {X(t), t ∈R

N} be an anisotropic Gaussian random field with
values in R

d which satisfies conditions (C1) and (C3) on an interval I ∈ A . Then
there exist positive constants c9 and c10 such that for every a ∈ I,

limsup
r→0

L∗(Bρ(a,r))
ϕ1(r)

≤ c9, a.s. in Cases 1 and 2,

limsup
r→0

L∗(Bρ(a,r))
ϕ2(r)

≤ c10, a.s. in Case 3,

(29)

where

ϕ1(r) = rα
(

loglog(1/r)
)ητ ,

ϕ2(r) = rα
(

loglog(1/r)
)ητ logloglog

(
1/r

)
.

The second result is on uniform Hölder condition for L∗(·).
Theorem 9. Under the same conditions as in Theorem 8, we have

limsup
r→0

sup
a∈I

L∗(Bρ(a,r))
Φ1(r)

≤ c11, a.s. in Cases 1 and 2,

limsup
r→0

sup
a∈I

L∗(Bρ(a,r))
Φ2(r)

≤ c12, a.s. in Case 3,

(30)

where c11 and c12 are positive and finite constants and

Φ1(r) = rα
(

log(1/r)
)ητ ,

Φ2(r) = rα
(

log(1/r)
)ητ loglog

(
1/r

)
.

In the special case of H1 = · · ·= HN := H, we have α = N
H −d and ητ =Hd. The

above theorems give local and uniform Hölder conditions for L∗(·) in the Euclidean
metric:

limsup
r→0

L∗(B(a,r))
rN−Hd(log log(1/r))Hd ≤ c9, a.s. (31)
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and

limsup
r→0

sup
a∈I

L∗(Bρ(a,r))
rN−Hd(log(1/r))Hd ≤ c11, a.s. (32)

Notice that the powers of loglog1/r in Eqs. (25) and (31) are different. This is
due to the different forms of strong local nondeterminism.

Unlike in Theorem 7, we do not know whether the results in Theorems 8 and 9
are sharp. Hence we raise the following question.

Problem 3. Under what conditions can one establish exact local and uniform
moduli of continuity for the local time L(x, ·) and L∗(·)?

4 Fractal Properties

Now we turn to fractal properties of Gaussian random fields, which include
Hausdorff and packing dimensions of random sets such as the images, graph, level
sets, and the set of intersections. We also present uniform dimension results as well
as exact Hausdorff and packing measure functions for the image sets. These latter
results depend on properties of strong local nondeterminism. We refer to [30] or
[75] for definitions and basic properties of Hausdorff and packing measures and
corresponding dimensions.

Given an (N,d)-random field X , the following random sets generated by X are
often random fractals:

1. Range or image set X (E) = {X(t) : t ∈ E}, where E ⊆ R
N

2. Graph GrX (E) = {(t,X(t)) : t ∈ E}
3. Level set X−1(x) = {t ∈ E : X(t) = x}, where x ∈ R

d

4. Excursion set (or inverse image)

X−1(F) =
{

t ∈R
N : X(t) ∈ F

}
,

where F ⊆ R
d .

5. Set of k-multiple times

Lk =
{
(t1, . . . , tk) ∈R

Nk
�= : X(t1) = · · ·= X(tk)

}
,

where R
Nk
�= =

{
(t1, . . . , tk) ∈R

Nk : t1, . . . , tk are distinct
}

.
6. Set of k-multiple points

Mk =
{

x ∈R
d : ∃ (t1, . . . , tk) ∈ R

Nk
�= such that x = X(t1) = · · ·= X(tk)

}
.
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4.1 Hausdorff Dimension Results

Let X = {X(t), t ∈ R
N} be an (N,d)-Gaussian field defined by Eq. (3) such that the

coordinate processes X1, . . . ,Xd are independent copies of a real-valued, centered
Gaussian random field X0 = {X0(t), t ∈R

N}. Recall that we have assumed that H =
(H1, . . . ,HN) ∈ (0,1)N satisfies Eq. (27).

The Hausdorff and packing dimensions of the range, graph, level sets of
fractional Brownian sheets, and, more generally, anisotropic Gaussian random fields
which satisfy conditions (C1) and (C2) have been established in [4, 123].

Theorem 10. Let X = {X(t), t ∈ R
N} be an (N,d)-Gaussian field defined in

the above. Assume that X0 satisfies condition (C1) with I = [0,1]N. Then, with
probability 1,

dimHX
(
[0,1]N

)
= dimP X

(
[0,1]N

)
= min

{
d;

N

∑
j=1

1
Hj

}
(33)

and

dimHGrX
(
[0,1]N

)
= dimP GrX

(
[0,1]N

)

= min

{ k

∑
j=1

Hk

Hj
+N − k+(1−Hk)d, 1 ≤ k ≤ N;

N

∑
j=1

1
Hj

}

=

{
∑N

j=1
1

Hj
, if ∑N

j=1
1

Hj
≤ d,

∑k
j=1

Hk
Hj

+N − k+(1−Hk)d, if ∑k−1
j=1

1
Hj

≤ d < ∑k
j=1

1
Hj

,
(34)

where ∑0
j=1

1
Hj

:= 0.

Theorem 11. Let X = {X(t), t ∈ R
N} be an (N,d)-Gaussian random field defined

as above. Assume that X0 satisfies conditions (C1) and (C2) on I = [ε,1]N. Then the
following statements hold:

(i) If ∑N
j=1

1
Hj

< d, then for every x ∈R
d, X−1(x)∩ I = /0 a.s.

(ii) If ∑N
j=1

1
Hj

> d, then for every x ∈R
d, with positive probability,

dimH

(
X−1(x)∩ I

)
= dimP

(
X−1(x)∩ I

)

= min

{ k

∑
j=1

Hk

Hj
+N − k−Hkd, 1 ≤ k ≤ N

}

=
k

∑
j=1

Hk

Hj
+N − k−Hkd, if

k−1

∑
j=1

1
Hj

≤ d <
k

∑
j=1

1
Hj

.

(35)
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For the inverse images, [11,123] provided conditions on F such that P
{

X−1(F)∩
I �=∅

}
> 0 and proved the following result.

Theorem 12. Let X = {X(t), t ∈ R
N} be an (N,d)-Gaussian random field as in

Theorem 11 and let F ⊆ R
d be a Borel set such that dimF ≥ d−Q. Then

∥∥dimH

(
X−1(F)∩ I

)∥∥
L∞(P) = min

1≤k≤N

{ k

∑
j=1

Hk

Hj
+N − k−Hk

(
d− dimHF

)
}
, (36)

where, for any function Y :Ω →R+, ‖Y‖L∞(P) is defined as

‖Y‖L∞(P) = sup
{
θ : Y ≥ θ on an event E with P(E)> 0

}
.

Under an extra condition on F , Theorem 2.5 in [11] shows that with positive
probability,

dimH

(
X−1(F)∩ I

)
= min

1≤k≤N

{ k

∑
j=1

Hk

Hj
+N − k−Hk(d− dimHF)

}

=
k

∑
j=1

Hk

Hj
+N − k−Hk(d − dimHF), if

k−1

∑
j=1

1
Hj

≤ d− dimHF <
k

∑
j=1

1
Hj

. (37)

There are several possible ways to strengthen and extend Theorems 10–12 and to
ask further questions about these random sets. For example, it would be interesting
to determine the exact Hausdorff and packing measure functions for the range
X
(
[0,1]N

)
, graph GrX

(
[0,1]N

)
, and the level set X−1(x) and to characterize the

hitting probabilities of these random sets. Further information on exact Hausdorff
and packing measure functions will be provided in Sects. 4.5 and 4.6. Testard [104],
Xiao [119,123], Bierme et al. [11], and Chen and Xiao [16] have provided necessary
conditions and sufficient conditions on E ⊆R

N or/and F ⊆ Rd for X
(
[0,1]N

)∩F �=
∅, or GrX

(
[0,1]N

)∩ (E ×F) �= ∅ with positive probability. See Sect. 4.7 below.
However, except in a few special cases, the following questions are still open.

Problem 4. Find necessary and sufficient conditions on F ⊆ R
d or E ⊆ R

N for
X
(
[0,1]N

)∩F �=∅, GrX
(
[0,1]N

)∩ (E ×F) �=∅ with positive probability.

For results on the Brownian sheet, the hitting probabilities of the range and level
sets have been completely characterized in [55,57]. The corresponding problem for
the graph set is more complicated and has only been solved for Brownian motion;
see [60] and the references therein for further information.

In the following, we consider the natural questions to find the Hausdorff, Fourier
and packing dimensions of the image set X(E), where E ⊆ R

N is an arbitrary Borel
set (typically, a fractal set). It is not hard to see that, due to the anisotropy of X ,
the Hausdorff dimension of X(E) cannot be determined by dimHE and the index H
alone (see [109]). This is in contrast with the cases of fractional Brownian motion
or the Brownian sheet.
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To determine the Hausdorff dimension of X(E) for an arbitrary Borel set E , [109,
123] make use of Hausdorff dimension dimρ

H
on the metric space (RN ,ρ), where ρ

is defined in Eq. (9), and prove the following theorem.

Theorem 13. Let X = {X(t), t ∈R
N} be an (N,d)-Gaussian field as in Theorem 10.

Then for every Borel set E ⊆ R
N,

dimHX(E) = min
{

d, dimρ
H

E
}
, a.s. (38)

The Fourier and packing dimensions of X(E) will be discussed in Sects. 4.2
and 4.3 below. We end this section with the following remark.

Remark 3. Note that the results in this section and in most of the subsequent
sections are concerned with Gaussian random fields which may be time anisotropic,
but not space anisotropic. Hausdorff dimensions for the range, graph, level sets, and
other properties of Gaussian random fields which are space anisotropic have been
considered in [1, 18, 19, 114, 115]. The results are different, and there are still many
open questions. For example, for space anisotropic Gaussian random fields, the
Hausdorff dimension of X−1(F) and the Fourier dimensions (see Sect. 4.2 below)
of the images have not been determined. Moreover, for (N,d)-random fields which
are anisotropic in both time and space, little has been known about their fractal
properties.

4.2 The Fourier Dimension and Salem Sets

Besides Hausdorff and packing dimensions, one can define the Fourier dimension of
a set F ⊆ R

d , which is related to the asymptotic behavior of the Fourier transforms
of the probability measures carried by F .

Let us recall from [43] the definitions of Fourier dimension and Salem set. Given
a constant β ≥ 0, a Borel set F ⊆ R

d is said to be an Mβ -set if there exists a
probability measure ν on F such that

∣∣ν̂(ξ )
∣∣= o(|ξ |−β ) as ξ → ∞, (39)

where ν̂ denotes the Fourier transform of ν . The asymptotic behavior of ν̂(ξ ) at
infinity carries some information about the geometry of F . It can be verified that
(i) if β > d/2 in Eq. (39), then ν̂ ∈ L2(Rd) and, consequently, F has positive d-
dimensional Lebesgue measure; (ii) if β > d, then ν̂ ∈ L1(Rd). Hence ν has a
continuous density function which implies that F has interior points.

For any Borel set F ⊆ R
d , the Fourier dimension of F , denoted by dim

F
F , is

defined as

dim
F

F = sup
{
γ ∈ [0,d] : F is an Mγ/2-set

}
. (40)
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It follows from Frostman’s theorem that dim
F

F ≤ dimHF for all Borel sets F ⊆
R

d . The strict inequality may hold. For example, the Fourier dimension of triadic
Cantor set is 0, but its Hausdorff dimension is log2/ log3. It has been known that the
Hausdorff dimension dimHF describes a metric property of F , whereas the Fourier
dimension measures an arithmetic property of F . As a further example of this aspect,
we mention that every set F ⊆ R

d with positive Fourier dimension generates Rd as
a group (cf. [43]).

A Borel set F ⊆ R
d is called a Salem set if dim

F
F = dimHF . Such sets are of

importance in studying the problem of uniqueness and multiplicity for trigonometric
series (cf. [130, Chapter 9] and [45]) and the restriction problem for the Fourier
transforms (cf. [77]).

The images of many random fields are Salem sets. For fractional Brownian
motion BH = {BH(t), t ∈ R

N} with values in R
d , [43, 44] proved that, for every

Borel set E ⊆ R
N with dimHE ≤ Hd, BH(E) is almost surely a Salem set with

Fourier dimension 1
H dimHE .

The Fourier dimensions of the images of various Gaussian random fields have
been studied by [56] for the Brownian sheet, [93] for a large class of approximately
isotropic Gaussian random fields, and by [109] for fractional Brownian sheets.
We mention that the argument in [109] is based on the property of sectorial local
nondeterminism and can be applied more generally.

It would be interesting to know whether other random sets such as the graph,
level sets, or inverse images of a Gaussian random field are Salem sets. Recently
[33] showed that the zero set of one-dimensional Brownian motion is a Salem set
of Fourier dimension 1/2 by studying the Fourier transform of the local times of
Brownian motion. Their result is related to that of [44] for the images of stable Lévy
processes because the zero set of Brownian motion equals, up to a countable set, the
image of a stable subordinator of index 1

2 . However, for a Gaussian random field
X , no direct connection between its level set X−1(x) and the image of a tractable
random field has been established.

4.3 Packing Dimension Results

Packing measure and packing dimension were introduced by [103, 106] as dual
concepts to Hausdorff measure and dimension. Since Hausdorff and packing
dimensions of a set (or a measure) are determined by different geometric aspects of
the set (or the measure), many random sets have different values for their Hausdorff
and packing dimensions. To understand better the fractal nature of a set, it is
important to determine both Hausdorff and packing dimensions of the set.

As we have seen in Sect. 4.1, for a Gaussian random field X which satisfies
Conditions (C1) and (C2), the Hausdorff and packing dimensions of X([0,1]N),
GrX([0,1]N), and X−1(x) coincide. However, [29, 122, 124] have shown that, for
many Gaussian random fields, the Hausdorff and packing dimensions of these
random sets may differ.
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In this section, we mainly consider the packing dimension of X(E), where X is a
Gaussian field as in Sect. 4.1 and E ⊆R

N is an arbitrary set.
In the special case of Brownian motion W = {W(t), t ∈ R+} in R

d , [88] proved
that if d ≥ 2, then with probability 1,

dimPW (E) = 2dimP E for every Borel set E ⊆ R+. (41)

This not only determines the packing dimension of the image W (E) but also says
that the exceptional null probability event [on which Eq. (41) fails] does not depend
on E . Hence Eq. (41) is called a uniform dimension result; see Sect. 4.4 for more
information. However, when d = 1, [100] constructed a compact set E ⊆ R+ such
that dimPW (E)< 2dimP E a.s.; they also obtained the best possible lower bound for
dimPW (E). Xiao [117] solved the problem of finding dimPW (E) by proving

dimPW (E) = 2Dim1/2E a.s., (42)

where DimsE is the packing dimension profile of E defined by [31] [which is defined
by replacing ρ in Eq. (43) below by the Euclidean metric]. We mention that [54]
have recently introduced more general notion of packing dimension profiles and
determined the packing dimension of the images of an arbitrary Lévy process.

Xiao [117] proved results analogous to Eq. (42) for fractional Brownian motion
BH and the Brownian sheet. Khoshnevisan and Xiao [59] provided a connection
between BH(E) and the packing dimension profile of [38] and thus showed that the
packing dimension profile of [31] coincides with that of [38].

In order to determine the packing dimension of X(E) for time-anisotropic
Gaussian field X as in Sect. 4.1, [29] extended the packing dimensional profile of
[31] to the metric space (RN ,ρ) and define, for any finite Borel measure μ on R

N ,
the s-dimensional packing dimension profile of μ in the metric ρ as

Dimρs μ = sup

{

β ≥ 0 : liminf
r→0

Fμs,ρ(x,r)

rβ
= 0 for μ-a.a. x ∈R

N

}

, (43)

where, for any s > 0, Fμs,ρ(x,r) is the s-dimensional potential of μ in metric ρ
defined by

Fμs,ρ(x,r) =
∫

RN
min

{
1,

rs

ρ(x,y)s

}
dμ(y). (44)

For any Borel set E ⊆ R
N , the s-dimensional packing dimension profile of E in the

metric ρ is defined by

Dimρs E = sup
{

Dimρs μ : μ ∈M+
c (E)

}
, (45)

where M+
c (E) denotes the family of finite Borel measures with compact support

in E .
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The following packing dimension analogue of Theorem 13 is a special case of
Theorem 4.5 in [29].

Theorem 14. Let X = {X(t), t ∈R
N} be an (N,d)-Gaussian field as in Theorem 10.

Then for every Borel set E ⊆ R
N,

dimP X(E) = Dimρd E, a.s. (46)

In the aforementioned references, the measure-theoretic approach to packing
dimension and packing dimension profiles has been essential. Even though in this
chapter we focus on fractal properties of random sets, similar questions can be
investigated for related random measures as well. We refer to [32, 94] for some
recent results.

The packing dimensions of other random sets such as GrX(E) and X−1(F) are
not known in general. The former is related to the following problem.

Problem 5. What is the packing dimension of X(E) if X is space anisotropic? In
particular, what is dimP GrBH(E)?

Motivated by [54], we expect that an answer to the above question is to use the
packing dimension profile associated with the kernels κ = {κr,r > 0} defined by

κr(s, t) = P
{‖X(s)−X(t)‖ ≤ r

}
, ∀s, t ∈ R

N . (47)

When the coordinate processes of X are approximately independent and have
approximately scaling properties, κ is comparable with the kernel

κ̃r(s, t) =
d

∏
i=1

min

{
1,

r
|si − ti|αi

}
.

Details will be given elsewhere.

4.4 Uniform Dimension Results

We note that the exceptional null probability events in Eqs. (38), (46), and (37)
depend on E ⊆ R

N and F ⊆ R
d , respectively. In many applications, we have a

random time set E(ω) or F(ω) ⊆ R
d and wish to know the fractal dimensions of

X(E(ω),ω) and X−1(F(ω),ω). For example, for any Borel set F ⊆ R
d , we can

write the intersection X(R+)∩F as X(X−1(F)), the set Mk of k-multiple points of
X as X(L′

k), where L′
k is the projection of Lk into R

N . For such problems, the results
of the form Eqs. (38), (46), and (37) give no information.

Kaufman [47] was the first to show that if W is the planar Brownian motion, then

P
{

dimHW (E) = 2dimHE for all Borel sets E ⊆ R+

}
= 1. (48)
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Since the exceptional null probability event in Eq. (48) does not depend on E , it is
referred to as a uniform dimension result. For Brownian motion in R, Eq. (48) does
not hold. This can be seen by taking E =W−1(0).

Several authors, including J. Hawkes, W.E. Pruitt, E.A. Perkins, and S.J. Taylor,
have studied the problems on uniform Hausdorff and packing dimension results for
the ranges and level sets of stable Lévy processes. See [102] or [121] for more
information.

For approximately isotropic Gaussian random fields, [78] established a uniform
Hausdorff dimension result for the images under the condition of strong local
nondeterminism. In the special case of fractional Brownian motion, their result
gives: If N ≤ Hd, then a.s.

dimH BH(E) =
1
H

dimHE for all Borel sets E ⊆ R
N .

A similar result for the Brownian sheet was established by [81] by using a
very different method, which relies on special properties of the Brownian sheet.
Khoshnevisan et al. [56] gave an alternative proof for Mountford’s result by
applying the sectorial local nondeterminism (C3), and their argument is similar in
spirit to that in [78].

Recently, [110] have shown that, while the anisotropy in the space variable
destroys the uniform dimension result for the images, the uniform Hausdorff
dimension result still holds for the image sets of time-anisotropic Gaussian random
fields.

Theorem 15. Let X = {X(t), t ∈ R
N} be an (N,d)-Gaussian random field defined

by Eq. (3) whose coordinate processes are independent copies of X0. If X0 satisfies
conditions (C1) and (C3), and ∑N

j=1 Hj
−1 ≤ d, then with probability 1,

dimHX(E) = dimρ
H

E for all Borel sets E ⊆ (0,∞)N , (49)

where dimρ
H

is Hausdorff dimension on the metric space (RN ,ρ).

In light of Theorem 15 and the results in Sect. 4.2, one can ask naturally whether
the Hausdorff dimension dimHX(E) in Eq. (49) can be replaced by the Fourier
dimension dim

F
X(E). Such a uniform result would be useful when E is a random

set. This question is open even for Brownian motion.
Next we turn to the uniform dimension problem on the inverse images. It follows

from [78] that for fractional Brownian motion BH with N > Hd,

dimH

(
BH)−1

(F) = N −Hd+HdimHF for all Borel sets F ⊆ R
d . (50)

More generally, if X = {X(t), t ∈ R
N} is an (N,d)-Gaussian random field which

satisfies Conditions (C1) and (C3) with H1 = · · ·= HN := H and N > Hd, then one
can modify the proofs in [78] to prove that Eq. (50) still holds for X and for all
F ⊆ O , where

O =
⋃

a<b:a,b∈Q

{
x ∈ R

d : L(x, [a,b])> 0
}
.



Recent Developments on Fractal Properties of Gaussian Random Fields 277

However, it is not known whether similar results still hold for Gaussian random
fields which are anisotropic either in the space variable or in the time variable.

Problem 6. Do uniform Hausdorff and packing dimension results hold for the
inverse images of time-anisotropic or space-anisotropic Gaussian random fields?

For the time-anisotropic Gaussian fields in Theorem 12 which also satisfy (C3),
we can prove that if ∑N

�=1 H−1
� > d, then almost surely

dimHX−1(F)≤ min
1≤k≤N

{ k

∑
j=1

Hk

Hj
+N − k−Hk

(
d− dimHF

)
}

(51)

holds for all Borel sets F ⊆ R
d .

We end this section with the following problem which is related to Problem 4.
Note that, when E ⊆ [0,1]N , GrX

(
[0,1]N

)∩ (E ×F) �= ∅ is equivalent to X(E)∩
F �= ∅. When this happens, it is of interest to determine the Hausdorff and packing
dimensions of the random sets X(E)∩F and E ∩X−1(F).

In the previous sections, Theorems 11, 13, and 14 consider the special cases of
E = I or F = R

d , respectively. When E ⊆ R+ and F ⊆ R
d are both arbitrary Borel

sets, there have only been a few partial results. Some upper and lower bounds for
the Hausdorff dimension dimH

(
X(E)∩F

)
have been obtained by [48] for Brownian

motion, [37] for stable Lévy processes, and [104] for fractional Brownian motion.
Recently, Khoshnevisan and Xiao [59] have determined the Hausdorff dimension
dim

(
W (E) ∩ F

)
, where W is a Brownian motion in R

d . Similar problems for
Gaussian random fields and the packing dimension of X(E)∩F (even when X is
Brownian motion) are open. Regarding the latter problem, we expect that a new
form of packing dimension profile may be needed in order to determine the packing
dimension of X(E)∩F .

4.5 Exact Hausdorff Measure Functions

In Sect. 4.1, Hausdorff and packing dimensions of the range X
(
[0,1]N

)
, graph

GrX
(
[0,1]N

)
, and level sets are obtained for time-anisotropic Gaussian random

fields. It is a natural question to determine exact Hausdorff and packing measure
functions for these random sets. Recall that a measure function ϕ : (0,1)→ R+ is
called an exact Hausdorff measure function for a set F ⊆ R

d if 0 < ϕ-m(F) < ∞.
Here ϕ-m denotes the ϕ-Hausdorff measure. In Sect. 4.6, we will use ϕ-p to denote
the ϕ-packing measure. A measure function ϕ is called an exact packing measure
function for F if 0 < ϕ-p(F)< ∞.

Investigating exact Hausdorff and packing measure functions for the random
sets generated by a random field X not only provides more precise information
about the fractal properties of the sample functions of X but also stimulates deep
understanding of the probability properties such as small ball probabilities, large
deviations, and dependence structures of X . These latter questions have proved to
be significant and sometimes challenging.
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The problems on finding exact Hausdorff measure functions for the range and
graph of the Brownian sheet and fractional Brownian motion have been considered
in [28, 97, 98, 115, 116]. Here is a brief summary of the known results on the ranges
and graph sets:

1. Let W = {W (t), t ∈ R
N
+} be the Brownian sheet in R

d . Ehm [28] proved

the following results. If 2N < d, then ϕ3(r) = r2N
(

loglog1/r
)N is an exact

Hausdorff measure function for the range and graph of W . If 2N > d, then

W ([0,1]N) a.s. has interior points and ϕ4(r) = rN+ d
2 (loglog1/r)

d
2 is an exact

Hausdorff measure function for the graph of W .
When 2N = d, the problems for finding exact Hausdorff measure functions

for the range and graph of W are open.
2. Let BH = {BH(t), t ∈ R

N} be an (N,d)-fractional Brownian motion of index H.
Talagrand [97] proved that if N < Hd then ϕ5(r) = rN/H loglog1/r is an exact
Hausdorff measure function for the range and graph of BH . Pitt [89] showed
that if N > Hd, then BH([0,1]N) a.s. has positive Lebesgue measure and interior

points. Xiao [115] showed that ϕ6(r) = rN+(1−H)d
(

loglog1/r
)Hd/N is an exact

Hausdorff measure function for the graph of BH .
In the case of N = Hd, [98] showed that ϕ7-m

(
BH([0,1]N)

)
is σ -finite almost

surely, where ϕ7(r) = rd log(1/r) loglog log1/r. The same is also true for the
Hausdorff measure of the graph set of BH . However, the corresponding lower
bound problems for the Hausdorff measure of the range and graph have remained
open.

It is interesting to notice the subtle differences in the exact Hausdorff functions for
the range and graph sets of fractional Brownian motion and the Brownian sheet,
respectively. The differences are a reflection of the two different types of strong
local nondeterminism [i.e., (C3) and (C4)] that they satisfy.

The exact Hausdorff measure of the level sets of a class of approximately isotopic
Gaussian random fields was obtained in [116]. In the case of fractional Brownian
motion, [6] established the following result which improves Theorem 1.3 in [116]
significantly.

Theorem 16. Let BH = {BH(t), t ∈ R
N} be a d-dimensional fractional Brownian

motion of index H. For every I ∈A , there exists a finite constant c13 > 0 (depending
only on H,N, and d) such that, with probability 1,

ϕ8-m
(
(BH)−1({0})∩ I

)
= c13 L(0, I), (52)

where L(0, I) is the local time of BH at 0 and ϕ8(r) = rN−Hd(log log1/r)Hd/N .

For the Brownian sheet W = {W (t), t ∈ R
N
+} with values in R

d , [69] proved
that ϕ9(r) = rN−d/2(loglog1/r)d/2 is an exact Hausdorff measure function for
W−1({0}). His method is based on moment estimates of the local times of W . Notice
that there is a subtle difference between ϕ8(r) and ϕ9(r).
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Xiao [115] provided the exact Hausdorff measure functions for the ranges of
a class of space-anisotropic Gaussian random fields. The following result for the
range of a time-anisotropic Gaussian random field is proved by [71].

Theorem 17. Let X = {X(t), t ∈ R
N} be an (N,d)-Gaussian random field defined

by Eq. (3), where X1, . . . ,Xd are independent copies of a centered, real-valued
Gaussian field X0 with stationary increments and X0(0) = 0. We assume that X0

satisfies conditions (C1) and (C4). If d > ∑N
j=1 H−1

j , then we have

0 < ϕ10-m(X([0,1]N))< ∞ a.s., (53)

where ϕ10(r) = r∑
N
j=1 H−1

j loglog(1/r).

Many questions on exact Hausdorff measure functions for anisotropic Gaussian
random fields remain unsolved. In particular, we ask:

Problem 7. What are the exact Hausdorff measure functions for the graph and level
sets of Gaussian random fields in Theorem 17?

4.6 Exact Packing Measure Functions

The exact packing measure function for random sets was first considered by [103]
who proved that ψ1(r) = r2/(log | logr|) is an exact packing measure function for
the range of Brownian motion in R

d (d ≥ 3). The situation for d = 2 is very different.
Le Gall and Taylor [65] proved that the range of the planar Brownian motion W (2)

does not have an exact packing measure function. More precisely they showed
that, for any measure function of the form ψ(r) = r2 log(1/r)h(r), where h(r) is
monotone increasing but log(1/r)h(r) is decreasing, almost surely,

ψ− p
(
W (2)([0,1])

)
=

{
0
∞

according as
∞

∑
n=1

h
(
2−2n)

{
< ∞
= ∞.

(54)

Furthermore, [62] proved that, for every integer k ≥ 2, the set of k-multiple

points M(2)
k of W (2) does not have an exact packing measure function. Recently,

[80] proved a similar result for the set of double points of Brownian motion in R
3

and established an integral test in terms of the intersection exponent ξ3(2,2) of two
packets of two independent Brownian motions in R

3.
So far no exact packing measure results have been established for Gaussian

random fields other than those mentioned above and fractional Brownian motion
considered by [113, 120].

Theorem 18. Let BH = {BH(t), t ∈R
N} be a fractional Brownian motion in R

d of
index H. If N < Hd, then there exist positive constants c14 and c15 such that, with
probability 1,

c14 ≤ ψ2 − p
(
X([0,1]N)

)≤ ψ2 − p
(
GrX([0,1]N)

)≤ c15, (55)

where ψ2(s) = sN/H/(loglog1/s)N/(2H).
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The proof of Theorem 18 in [120] relies on the liminf properties of the occupation
measures of BH and the delayed hitting probability estimates. Such results have not
been established for other Gaussian fields including the Brownian sheet. The main
difficulty lies in dealing with their complicated dependence structures. I think it
would be interesting to investigate the following problems.

Problem 8. Determine the exact packing measure functions for the range, graph
set, and level sets of the Brownian sheet and anisotropic Gaussian random fields.

4.7 Hitting Probabilities and Intersections of Gaussian
Random Fields

Many authors have investigated intersections of the trajectories of stochastic
processes. For Brownian motion, the questions have been studied by A. Dvoretzky,
P. Erdös, S. Kakutani, S. J. Taylor, and J.-F. Le Gall. See [52] for historical accounts
and a very nice proof for the existence theorem using an elementary argument based
on the self-similarity and Markov property of Brownian motion. The results on
intersections of Brownian motion have been extended to Lévy processes, Gaussian
processes, and other processes. We refer to the survey papers of [102,121] for further
information on intersections of Markov processes.

In this section, we give some recent results on intersections of two independent
Gaussian random fields obtained in [16]. These results are established based on
refining the hitting probability estimates for Gaussian random fields obtained in
[11, 119, 123]; see also [21, 22, 24] for related results. This approach is different
from those based on intersection local times in [40, 90, 91, 111], where fractional
Brownian motions are considered.

The following theorem from [16] extends the results on hitting probabilities in
the aforementioned references.

Theorem 19. Let X = {X(t), t ∈ R
N} be an (N,d)-Gaussian random field defined

by Eq. (3) and assume that X0 satisfies conditions (C1) and (C2) on a closed interval
I. If E ⊆ I and F ⊆R

d are Borel sets, then there is a constant c16 ≥ 1, which depends
on I, F, and H only, such that

c−1
16 Cρ̃ ,d(E ×F)≤ P

{
X(E)∩F �=∅

}
≤ c16 H d

ρ̃ (E ×F), (56)

where Cρ̃ ,d and H d
ρ̃ denote, respectively, the d-dimensional capacity and Hausdorff

measure in the metric space (RN+d , ρ̃) and where

ρ̃
(
(s,x),(t,y)

)
= max

{
ρ(s, t), |x− y|}, ∀(s,x),(t,y) ∈ R

N ×R
d.
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As we have mentioned in Problem 4, except in the case of Brownian motion, it is
an open problem to provide a necessary and sufficient condition for P

{
X(E)∩F �=

∅
}
> 0.

Next we apply Theorem 19 to study intersections of two independent Gaussian
random fields. Let XH = {XH(s),s ∈ R

N1} and XK = {XK(t), t ∈ R
N2} be two

independent Gaussian random fields taking values in R
d , defined as in Eq. (3). More

specifically, we assume that XH is defined as

XH(s) = (XH
1 (s), . . . ,XH

d (s)), s ∈ R
N1 , (57)

where XH
1 , . . . ,XH

d are independent copies of real-valued, centered Gaussian random
field XH

0 . The Gaussian random field XK is defined in the same way. Here H ∈
(0,1)N1 and K ∈ (0,1)N2 are constant vectors.

We say the two Gaussian fields XH and XK intersect if there exist s ∈R
N1 and t ∈

R
N2 such that XH(s) =XK(t). The following problems are concerned with existence

of intersections:

(i) When do XH and XK intersect (with positive probability)?
(ii) Let E1 ⊆ R

N1 and E2 ⊆ R
N2 be arbitrary Borel sets. When do XH and XK

intersect if we restrict the “time” s ∈ E1 and t ∈ E2? That is, when is

P
{

XH(E1)∩XK(E2) �=∅

}
> 0? (58)

(iii) Given a Borel set F ⊆ R
d , when does F contain intersection points of XH(s)

(s ∈ E1) and XK(t), (t ∈ E2)? That is, when is

P
{

XH(E1)∩XK(E2)∩F �=∅

}
> 0? (59)

Clearly, Question (i) is a special case of Question (ii), which is a special case of
Question (iii). For answering Questions (i) and (ii), consider the Gaussian random
field Z = {Z(s, t),(s, t) ∈R

N1+N2} with values in R
d defined by

Z(s, t) ≡ XH(s)−XK(t), s ∈ R
N1 , t ∈ R

N2 . (60)

Then Eq. (58) is equivalent to P
(
Z(E1 × E2) ∩ {0} �= ∅

)
> 0. Hence sufficient

conditions and necessary conditions for this to hold can be obtained from hitting
probability estimates for Gaussian field Z, which is done in Theorem 2.1 of [16].
Instead of giving more details, we content with the following simpler result which
provides an answer to Question (i). In the following, we let Q := ∑N1

j=1 H−1
j +

∑N2
j=1 K−1

j .

Theorem 20. Let XH = {XH(s),s ∈ R
N1} and XK = {XK(t), t ∈ R

N2} be two
independent Gaussian random fields with values in R

d such that XH
0 and XK

0 satisfy
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(C1) and (C2), respectively, on interval I1 ⊆ R
N1 with indices H = (H1, . . . ,HN1)

and on interval I2 ⊆ R
N2 with indices K = (K1, . . . ,KN2):

(i) If d < Q, then P
{

XH(I1)∩XK(I2) �=∅
}
= 0.

(ii) If d > Q, then P
{

XH(I1)∩XK(I2) �=∅
}
> 0.

(iii) If, in addition, we assume that XH
0 has stationary increments and satisfies (C4)

on interval I1 ⊆ R
N1 , then d = Q implies P

{
XH(I1)∩XK(I2) �=∅

}
= 0.

In order to answer Question (iii), we consider the Gaussian random field Y =
{Y (s, t),(s, t) ∈R

N1+N2} with values in R
2d defined by

Y (s, t) =
(
XH(s),XK(t)

)
, ∀(s, t) ∈ R

N1+N2 .

Then Eq. (59) holds if and only if

P
{

Y (E1 ×E2)∩ F̃ �=∅

}
> 0, (61)

where F̃ = {(x,x) : x∈F}⊆R
2d . This hitting probability is also estimated by [16] in

terms of Bessel–Riesz-type capacity and Hausdorff measure of E1 ×E2 ×F , under
appropriate metric on R

N1+N2+d .
It follows from Theorem 20 that, when ∑N1

i=1 H−1
i +∑N2

j=1 K−1
j > d, we have

P
(
XH(I1)∩XK(I2) �=∅

)
> 0. It is of interest to determine the Hausdorff dimensions

of the set of intersection times L2 := {(s, t) ∈ I1 × I2 : XH(s) = XK(t)} and the set
of intersections M2 = XH(I1)∩ XK(I2). Since L2 is the level set of the Gaussian
random field Z(s, t) = XH(s)−XK(t), the Hausdorff and packing dimensions of L2

can be obtained from Theorem 11. However, the Hausdorff and packing dimensions
of M2 have not been determined in their full generality.

In the following, we provide a partial answer for the intersection set of two
independent fractional Brownian motions obtained by [111].

Let Bα1 = {Bα1(s), s ∈ R
N1} and Bα2 = {Bα2(t), t ∈ R

N2} be two independent
fractional Brownian motions with values in R

d and indices α1 and α2, respectively.
Let

M2 =
{

x ∈ R
d : x = Bα1(s) = Bα2(t) for some (s, t) ∈ R

N1+N2
}

= Bα1(RN1)∩Bα2(RN2).

Theorem 21. If N1
α1

+ N2
α2

> d, then with probability 1,

dimH M2 = dimP M2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d if N1 > α1d and N2 > α2d,
N2
α2

if N1 > α1d and N2 ≤ α2d,
N1
α1

if N1 ≤ α1d and N2 > α2d,
N1
α1

+ N2
α2

− d if N1 ≤ α1d and N2 ≤ α2d.

(62)
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Besides intersections of independent Gaussian random fields, one can study anal-
ogous questions for self-intersections of a Gaussian random field. The arguments
described above are still applicable for studying the existence of self-intersections.
For related work on fractional Brownian motion and the Brownian sheet, we refer
to [23, 36, 61, 90, 98]. The first three papers provide sufficient conditions for the
existence of k-multiple points and the last two papers show that the corresponding
conditions are also necessary. We mention that the methods in [23, 98] are very
different and [23] only prove necessity for k = 2.

Finally we remark that, while the Hausdorff and packing dimensions of the set of
k-multiple points of fractional Brownian motion and the Brownian sheet have been
obtained (cf. [56]), no results on exact Hausdorff or packing measure functions have
been obtained for any Gaussian random fields.
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Nagoya Math. J. 46, 63–86 (1972)

10. Berman, S.M.: Local nondeterminism and local times of Gaussian processes. Indiana Univ.
Math. J. 23, 69–94 (1973)
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