
On the Quadratic Finite Element Approximation
of 1D Waves: Propagation, Observation,
Control, and Numerical Implementation

Aurora Marica and Enrique Zuazua

Abstract In arXiv:1112.4297, we studied the propagation, observation, and control
properties of the 1D wave equation on a bounded interval semi-discretized in space
using the quadratic classical finite element approximation. It was shown that the
discrete wave dynamics consisting of the interaction of nodal and midpoint compo-
nents leads to the existence of two different eigenvalue branches in the spectrum:
an acoustic one, of physical nature, and an optic one, of spurious nature. The fact
that both dispersion relations have critical points where the corresponding group
velocities vanish produces numerical wave packets whose energy is concentrated
in the interior of the domain, without propagating, and for which the observability
constant blows up as the mesh size goes to zero. This extends to the quadratic fi-
nite element setting the fact that the classical property of continuous waves being
observable from the boundary fails for the most classical approximations on uni-
form meshes (finite differences, linear finite elements, etc.). As a consequence, the
numerical controls of minimal norm may blow up as the mesh size parameter tends
to zero. To cure these high-frequency pathologies, in arXiv:1112.4297 we designed
a filtering mechanism consisting in taking piecewise linear and continuous initial
data (so that the curvature component vanishes at the initial time) with nodal com-
ponents given by a bi-grid algorithm. The aim of this article is to implement this
filtering technique and to show numerically its efficiency.
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1 Preliminaries on the Continuous Model and Problem
Formulation

Consider the 1D wave equation with non-homogeneous boundary conditions:
⎧
⎪⎨

⎪⎩

ytt (x, t) − yxx(x, t) = 0, x ∈ (0,1), t > 0,

y(0, t) = 0, y(1, t) = v(t), t > 0,

y(x,0) = y0(x), yt (x,0) = y1(x), x ∈ (0,1).

(1)

System (1) is said to be exactly controllable in time T ≥ 2 if, for all (y0, y1) ∈
L2 × H−1(0,1), there exists a control function v ∈ L2(0, T ) such that the solution
of (1) can be driven to rest at time T , i.e. y(x,T ) = yt (x, T ) = 0.

We also introduce the adjoint 1D wave equation with homogeneous boundary
conditions:

⎧
⎪⎨

⎪⎩

utt (x, t) − uxx(x, t) = 0, x ∈ (0,1), t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x,T ) = u0(x), ut (x, T ) = u1(x), x ∈ (0,1).

(2)

This system is well known to be well posed in the energy space V := H 1
0 ×

L2(0,1) and the energy below is conserved in time:

E
(
u0, u1) = 1

2

(∥
∥u(·, t)∥∥2

H 1
0

+ ∥
∥ut (·, t)

∥
∥2

L2

) = 1

2

(∥
∥u0

∥
∥2

H 1
0

+ ∥
∥u1

∥
∥2

L2

)
.

The Hilbert Uniqueness Method (HUM) introduced in [8] allows showing that
the property above of exact controllability for (1) is equivalent to the boundary
observability property of (2). The observability property ensures that the following
observability inequality holds for all solutions of (2), provided T ≥ 2:

E
(
u0, u1) ≤ C(T )

∫ T

0

∣
∣ux(1, t)

∣
∣2

dt. (3)

The best constant C(T ) in (3) is the so-called observability constant. The ob-
servability time T has to be larger than the characteristic one, T � := 2, needed by
any initial data (u0, u1) supported in a very narrow neighborhood of x = 1 to travel
along the characteristic rays parallel to x(t) = x − t , touch the boundary x = 0 and
bounce back to the boundary x = 1 along the characteristics parallel to x(t) = x + t .

The HUM control v, the one of minimal L2(0, T )-norm, for which the solution
of (1) fulfills y(x,T ) = yt (x, T ) = 0, has the explicit form

v(t) = ṽ(t) := ũx(1, t), (4)

where ũ(x, t) is the solution of (2) corresponding to the minimum (ũ0, ũ1) ∈ V of
the quadratic functional

J
(
u0, u1) = 1

2

∫ T

0

∣
∣ux(1, t)

∣
∣2

dt − 〈(
y1,−y0),

(
u(·,0), ut (·,0)

)〉

V ′,V . (5)
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Fig. 1 The initial position H(x) (left) versus the HUM control ṽH (middle) versus the solution y of
the control problem (1) (right) (red = 1, orange = 1/2, green = 0, cyan = −1/2, and blue = −1)

Here, V ′ = H−1 × L2(0,1) and 〈·, ·〉V ′,V is the duality product between V and V ′.
In this paper, in order to analyze the efficiency of the various models under con-

sideration, we shall run the simulations on a specific example. We consider the par-
ticular case of the characteristic control time T = 2 and of initial data (y0, y1) in (1)
given by y1 ≡ 0 and the Heaviside function H as initial position:

y0(x) = H(x) :=
{

1, x ∈ [0,1/2),

−1, x ∈ [1/2,1]. (6)

The initial position, having discontinuities, involves significant high frequency com-
ponents that will be the source of instabilities for the numerical methods under con-
sideration. This example allows us to highlight the high-frequency pathologies of
the numerical approximations of the controlled wave problem (1) and the effects of
the filtering techniques we propose. In this particular case, the HUM control can be
explicitly computed by Fourier expansions, using the periodicity with time period
τ = 2 of the solutions (cf. Sect. 3.3 in [3]), and it is given by (see Fig. 1):

ṽ(t) = ṽH (t) =
{

−1/2, t ∈ (0,1/2] ∪ (1,3/2],
1/2, t ∈ (1/2,1] ∪ (3/2,2).

(7)

The discrete approach to the numerical approximation of this kind of control
problems has been intensively studied during the last years, starting from some sim-
ple models on uniform meshes like finite differences or linear finite element methods
in [7] and, more recently, more complex schemes like the discontinuous Galerkin
ones in [10]. The problem consists in analyzing whether the controls of a numerical
approximation scheme of (1), obtained in a similar manner, i.e., by minimizing a
suitable discrete version of (5), converge to the control v of the wave equation (1) as
the mesh size parameter tends to zero. In all these cases, the convergence of the ap-
proximation scheme in the classical sense of the numerical analysis does not suffice
to guarantee that the sequence of discrete controls converges to the continuous ones,
as one could expect. This is due to the fact that there are classes of initial data for the
discrete adjoint problem generating high-frequency wave packets propagating at a
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very low group velocity and that, consequently, cannot be observed from the bound-
ary of the domain during a finite time uniformly with the mesh size parameter. This
leads to the divergence of the discrete observability constant as the mesh size tends
to zero.

Similar high-frequency pathological phenomena have also been observed for nu-
merical approximation schemes of other models, like the linear Schrödinger equa-
tion (cf. [5]), in which one is also interested in the uniformity of the so-called dis-
persive estimates, which play an important role in the study of the well-posedness
of some nonlinear models.

The rest of the paper is organized as follows. In Sect. 2, we summarize some well-
known results on the boundary controllability of the classical finite element space
semi-discretizations, especially the linear and the quadratic ones, emphasizing the
high frequency pathologies and their remedies based on the bi-grid algorithm. In
Sect. 3, we present in detail the implementation of the conjugate gradient algorithm
giving the numerical HUM controls, together with its two-grid adaptation, and we
show some numerical results to illustrate the validity of the theoretical ones. In
Sect. 4, we will summarize the conclusions of our paper and some related open
problems.

Before starting, let us give some basic notation. All vectors we deal with will
be considered as being column vectors and will be denoted by bold capital let-
ters. We will use capital letters for the components of the vectors and for ma-
trices and calligraphic capital letters for the discrete spaces. We denote: by h—
the mesh size and it will be the first superscript; by p—the degree of the nu-
merical approximation and it will be the first subscript; by the superscript ∗—
the transposition of a matrix; and by the overline symbol—the complex conjuga-
tion.

2 Preliminaries on Numerical Controls Using P1 and P2 Finite
Element Approximations

Let us now introduce the quadratic P2 finite element approximation method and
recall the main existent results, taken essentially from [11]. We consider N ∈ N,
h = 1/(N + 1), and 0 = x0 < xj < xN+1 = 1 to be the nodes of a uniform grid of
the interval [0,1], with xj = jh, 0 ≤ j ≤ N +1, constituted by the subintervals Ij =
(xj , xj+1), with 0 ≤ j ≤ N . On this grid, we also define the midpoints xj+1/2 =
(j + 1/2)h, with 0 ≤ j ≤ N . Let us introduce the space Pp(a, b) of polynomials of
order p on the interval (a, b) and the space of piecewise quadratic and continuous
functions Uh

2 := {u ∈ H 1
0 (0,1) s.t. u|Ij

∈P2(Ij ), 0 ≤ j ≤ N}. The space Uh
2 can be

written as

Uh
2 = span

{
φh

2,j ,1 ≤ j ≤ N
} ⊕ span

{
φh

2,j+1/2,0 ≤ j ≤ N
}
,
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Fig. 2 The basis functions: φh
2,j (left), φh

2,j+1/2 (middle), and φh
1,j (right)

where the two classes of basis functions are represented in Fig. 2 and are explicitly
given by

φh
2,j (x) =

⎧
⎪⎨

⎪⎩

2
h2 Q(x,xj−1, xj−1/2), x ∈ Ij−1,
2
h2 Q(x,xj+1/2, xj+1), x ∈ Ij ,

0, otherwise,

φh
2,j+1/2(x) =

[

− 4

h2
Q(x,xj , xj+1)

]+
(8)

with Q(x,a, b) = (x − a)(x − b) and [f ]+—the positive part of f .
We will compare the results obtained when numerically approximating the con-

trols on this basis with the ones obtained by the linear P1 finite element approxi-
mation. In order to do this, in the same uniform grid of size h defined by the nodal
points xj , 0 ≤ j ≤ N + 1, we introduce the space of piecewise linear and contin-
uous functions Uh

1 := {u ∈ H 1
0 (0,1) s.t. u|Ij

∈ P1(Ij ), 0 ≤ j ≤ N}, which can be
written as Uh

1 = span{φh
1,j ,1 ≤ j ≤ N}, where φh

1,j (x) = [1 − (x − xj )/h]+. The
linear/quadratic approximation of the adjoint problem (2) is

{
Find uh

p(·, t) ∈ Uh
p s.t. d2

dt2 (uh
p(·, t), ϕ)L2 + (uh

p(·, t), ϕ)H 1
0

= 0, ∀ϕ ∈ Uh
p,

uh
p(x,T ) = u

h,0
p (x), uh

p,t (x, T ) = u
h,1
p (x), x ∈ (0,1).

(9)
The solution uh

p(·, t) ∈ Uh
p admits the decomposition

uh
p(x, t) =

pN+p−1∑

j=1

Up,j/p(t)φh
p,j/p(x).

Consequently, the function uh
p(·, t) can be identified with the vector of its coef-

ficients, Uh
p(t) = (Up,j/p(t))1≤j≤pN+p−1. Thus, problem (9) can be written as a

system of second-order linear ordinary differential equations (ODEs):

Mh
pUh

p,tt (t) + Sh
pUh

p(t) = 0, Uh
p(T ) = Uh,0

p , Uh
p,t (T ) = Uh,1

p , p = 1,2, (10)
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where Mh
1 and Sh

1 are the following N × N tri-diagonal mass and stiffness matrices

Mh
1 =

⎛

⎜
⎜
⎜
⎜
⎝

2h
3

h
6 0 · · · 0 0

h
6

2h
3

h
6 · · · 0 0

...
. . .

. . .
. . .

...
...

0 0 0 · · · h
6

2h
3

⎞

⎟
⎟
⎟
⎟
⎠

,

Sh
1 =

⎛

⎜
⎜
⎜
⎜
⎝

2
h

− 1
h

0 · · · 0 0

− 1
h

2
h

− 1
h

· · · 0 0
...

. . .
. . .

. . .
...

...

0 0 0 · · · − 1
h

2
h

⎞

⎟
⎟
⎟
⎟
⎠

and Mh
2 and Sh

2 are the following (2N + 1) × (2N + 1) pentha-diagonal mass and
stiffness matrices

Mh
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

8h
15

h
15 0 0 0 0 · · · 0 0 0 0

h
15

4h
15

h
15 − h

30 0 0 · · · 0 0 0 0

0 h
15

8h
15

h
15 0 0 · · · 0 0 0 0

0 − h
30

h
15

4h
15

h
15 − h

30 · · · 0 0 0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...
...

0 0 0 0 0 0 · · · − h
30

h
15

4h
15

h
15

0 0 0 0 0 0 · · · 0 0 h
15

8h
15

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

Sh
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

16
3h

− 8
3h

0 0 0 0 · · · 0 0 0 0

− 8
3h

14
3h

− 8
3h

1
3h

0 0 · · · 0 0 0 0

0 − 8
3h

16
3h

− 8
3h

0 0 · · · 0 0 0 0

0 1
3h

− 8
3h

14
3h

− 8
3h

1
3h

· · · 0 0 0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...
...

0 0 0 0 0 0 · · · 1
3h

− 8
3h

14
3h

− 8
3h

0 0 0 0 0 0 · · · 0 0 − 8
3h

16
3h

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For p = 1,2 (corresponding to the linear/quadratic approximation), let us introduce
some notations for the discrete analogues of H 1

0 (0,1), L2(0,1), and H−1(0,1),

Hh,i
p := {

Fh
p = (Fp,j/p)1≤j≤pN+p−1 ∈C

pN+p−1 s.t.
∥
∥Fh

p

∥
∥
Hh,i

p
< ∞}

,

i = 1,0,−1.
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The elements of Hh,1
p verify the additional requirement Fp,0 = Fp,N+1 = 0. The

inner products defining the discrete spaces Hh,i
p , i = 1,0,−1, are given by

(
Eh

p,Fh
p

)

Hh,i
p

:= ((
Mh

p

(
Sh

p

)−1)1−i
Sh

pEh
p,Fh

p

)

p,e
, i = 1,0,−1, (11)

and the norms are given by ‖Fh
p‖2

Hh,i
p

:= (Fh
p,Fh

p)Hh,i
p

, for all i = 1,0,−1. Here,

(·,·)p,e is the inner product in the Euclidean space C
pN+p−1, defined by

(
Fh

p,Gh
p

)

p,e
:=

pN+p−1∑

k=1

Fp,k/pGp,k/p.

Set Vh
p := Hh,1

p × Hh,0
p and its dual Vh,′

p := Hh,−1
p × Hh,0

p , the duality product

〈·, ·〉Vh,′
p ,Vh

p

between Vh,′
p and Vh

p being defined as

〈(
Fh

p,1,Gh
p,1

)
,
(
Fh

p,2,Gh
p,2

)〉

Vh,′
p ,Vh

p

:= (
Fh

p,1,Fh
p,2

)

Hh,0
p

+ (
Gh

p,1,Gh
p,2

)

Hh,0
p

.

Problem (10) is well posed in Vh
p . The total energy of its solutions defined below

is conserved in time:

Eh
p

(
Uh,0

p ,Uh,1
p

) = 1

2

(∥
∥Uh

p(t)
∥
∥2
Hh,1

p
+ ∥

∥Uh
p,t (t)

∥
∥2
Hh,0

p

)

= 1

2

(∥
∥Uh,0

p

∥
∥2
Hh,1

p
+ ∥

∥Uh,1
p

∥
∥2
Hh,0

p

)
. (12)

In [7] and [11], the following discrete version of the observability inequality (3)
for the linear (p = 1) and for the quadratic (p = 2) approximation was analyzed:

Eh
p

(
Uh,0

p ,Uh,1
p

) ≤ Ch
p(T )

∫ T

0

∥
∥Bh

pUh
p(t)

∥
∥2

p,e
dt, (13)

where Bh
p is a (pN +p − 1)× (pN +p − 1) observability matrix operator. Within

this paper we focus on the particular case of boundary observation operators Bh
p , in

the sense that they approximate the normal derivative ux(x, t) of the solution of the
continuous adjoint problem (2) at x = 1 as h → 0. One of the simplest examples of
such boundary matrix operators B

p
h that will be used throughout this paper is:

Bp,ij :=
{

− 1
h
, (i, j) = (pN + p − 1,pN),

0, otherwise.
(14)

The only non-trivial component of Bh
pUh

p(t) is the last one which equals to
uh,x(xN+(p−1)/p, t) and is a first-order approximation of ux(1, t), where u is a so-
lution of (2).
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As shown in [7] for p = 1 and in [11] for p = 2, the observability inequality
(13) does not hold uniformly as h → 0, meaning that the observability constant
Ch

p(T ) in (13) blows up whatever T > 0 is. This is due to the existence of solutions
propagating very slowly concentrated on zones of the spectrum where the spectral
gap or the group velocity tends to zero as h → 0. To be more precise, for η ∈ [0,π],
let us introduce the Fourier symbols

Λ1(η) := 6(1 − cos(η))

2 + cos(η)
,

Λα
2 (η) := 22 + 8 cos2(η/2) + 2sign(α)

√
Δ(η)

1 + sin2(η/2)
, for α ∈ {a,o},

where sign(a) = −1, sign(o) = 1, and

Δ(η) := 1 + 268 cos2(η/2) − 44 cos4(η/2).

Define λ1(η) := √
Λ1(η) and λα

2 (η) := √
Λα

2 (η), α ∈ {a,o}. Set Λk
1 := Λ1(kπh)

and Λ
α,k
2 := Λα

2 (kπh), α ∈ {a,o}, and consider the following spectral problem:

Sh
pϕh

p = Λh
pMh

pϕh
p. (15)

We take L2-normalized eigenvectors, i.e., ‖ϕh
p‖Hh,0

p
= 1. The eigenvalues are ex-

plicitly given by

Λ
h,k
1 = Λk

1/h2, Λ
h,α,k
2 = Λ

α,k
2 /h2,

with α ∈ {a,o} and 1 ≤ k ≤ N . The superscripts a,o entering in the notation of
the P2-eigenvalues stand for acoustic/optic, respectively, to distinguish these two
main branches of the spectrum. In the quadratic case, p = 2, additionally to the 2N

modes Λ
h,α,k
2 , with 1 ≤ k ≤ N and α ∈ {a,o}, there is also the so-called resonant

mode, given by Λ
h,r
2 = 10/h2. In Fig. 3, we represent λh

p :=
√

Λh
p for different

values of p.
The solutions of (10) admit the following Fourier representation:

Uh
p(t) =

∑

±

∑

(Λh
p,ϕh

p)

ûp,± exp
(±itλh

p

)
ϕh

p,

where the second sum is taken over the all possible eigensolutions (Λh
p,ϕh

p) in (15).

Here, ûp,± = (̂u0
p ± û1

p/iλh
p)/2 and ûi

p are the Fourier coefficients of the initial data

Uh,i
p defined by ûi

p := (Uh,i
p , ϕh

p)Hh,0
p

.

Firstly, let us remark that as kh → 1, Λ
a,k
2 → 10, Λk

1,Λ
o,k
2 → 12 and as kh → 0,

Λ
o,k
2 → 60. On the other hand, as we can see in Fig. 3, λ

h,k
1 and λ

h,a,k
2 are strictly

increasing in k, while λ
h,o,k
2 is strictly decreasing. The group velocities, which are
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Fig. 3 The square roots of the eigenvalues, λh
p : the continuous (black), acoustic (red), optic (blue),

resonant (green) modes for p = 2 and λh
1 (magenta)

the first-order derivatives of the Fourier symbols λ·
p and Λ·

p , verify

∂ηΛ1(π) = ∂ηΛ1(0) = ∂ηΛ
a
2(π) = ∂ηΛ

o
2(π) = ∂ηΛ

a
2(0) = ∂ηΛ

o
2(0) = 0

and ∂ηλ1(π) = ∂ηλ
a
2(π) = ∂ηλ

o
2(π) = ∂ηλ

o
2(0) = 0. (16)

For all α ∈ {a,o} and all 1 ≤ k ≤ N , the following spectral identities hold:

∥
∥ϕh,k

1

∥
∥2
Hh,1

1
= 6‖Bh

1 ϕh,k
1 ‖2

1,e

12 − Λk
1

and
∥
∥ϕh,α,k

2

∥
∥2
Hh,1

2
= ‖Bh

2 ϕh,α,k
2 ‖2

2,e

W(Λ
α,k
2 )

, (17)

where

W(Λ) = 24(Λ − 10)2(Λ − 12)(Λ − 60)

(−19Λ2 − 120Λ + 3600)(Λ2 + 16Λ + 240)
.

Thus, for a finite observability time T , by taking solutions of (10) of the form

Uh
1(t) = exp

(
i(T − t)λ

h,N
1

)
ϕh,N

1

or

Uh
2(t) = exp

(
i(T − t)λ

h,α,k
2

)
ϕh,α,k

2 ,

with (α, k) ∈ {(a,N), (o,N), (o,1)}, we obtain that the observability constant
Ch

p(T ) blows up at least polynomially as h → 0. In fact, by adapting the analysis
in [10] based on the Stationary Phase Lemma, we can obtain a polynomial blow-
up rate at any order. In [13], by arguments based on fine estimates on the family
of bi-orthogonals that are expected to be adaptable to the approximations used in
this paper, an exponential blow-up rate was proved for the finite difference semi-
discretization scheme.

In Fig. 4(a), (e), we represent the solution of the continuous (abbreviated by c)
adjoint system (2) with

u0(x) = exp
(−γ (x − 1/2)2/2

)
exp(ixξ0) and u1(x) = −u0

x(x), γ = h−0.9,
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Fig. 4 Propagation along the rays of geometric optics of a Gaussian wave packet concentrated
around the wave number ξ0 = η0/h for h = 1/1000

for which the solution propagates at velocity one (the maximum amplitude for both
initial time t = 0 and final one t = 2 is at x = 1/2 after two reflections on the
boundary) along the generalized ray

x(t) =
{

2k + 1 + 1/2 − t, t ∈ (2k + 1/2,2k + 1 + 1/2),

−(2k + 1 + 1/2) + t, t ∈ (2k + 1 + 1/2,2k + 2 + 1/2),
k ∈ Z.

Also no dispersive effect holds since the corresponding group acceleration is identi-
cally zero (see Fig. 5, the black curves), despite of the value of the wave number η0.
The presence of the dispersion effects due to the group acceleration is responsible
for modifications on size of the support of the solutions as time evolves (cf. [12]),
whereas their absence leads to the conservation of the support size.

In Fig. 4(b), (f), we represent the corresponding solution of the numerical adjoint
problem (10) for p = 1; for both values of the wave number η0, the solution prop-
agates at a smaller group velocity than the continuous one since both η0 = 9π/10
and η0 = 39π/40 belong to the region where ∂ηλ1 < 1; the dispersive effects are
visible for both wave numbers, since the group acceleration ∂2

ηλ1 is non-trivial;
however, they are more accentuated for η0 = 39π/40 than for η0 = 9π/10 since
|∂2

ηλ1(39π/40)| > |∂2
ηλ1(9π/10)|, as we can see in Fig. 5, the blue curves.

In Fig. 4(c), (g), we represent the projection on the acoustic mode of the solution
to the adjoint problem (10) for p = 2. For η0 = 9π/10, the velocity of propagation is
larger than one (∂ηλ

a
2(9π/10) > 1) (at the final time t = 2, the maximum amplitude

is located at a space position x > 1/2, after two reflections on the border); almost
no dispersive effect can be observed, since ∂2

ηλa
2(η) ∼ 0, for all η ∈ (0,9π/10). On

the other hand, for η0 = 39π/40, the projection on the acoustic branch propagates
at velocity ∂ηλ

a
2(39π/10) < 1, so that it reflects only once on the boundary, but

more rapidly than the corresponding wave packet for p = 1 (which even does not
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Fig. 5 Group velocities (left) versus group accelerations (right): continuous (black), p = 1 (blue),
p = 2 acoustic (red), p = 2 optic (dotted red)

reflect on the boundary) since ∂ηλ
a
2(39π/40) > ∂ηλ1(39π/40). At the same time,

the dispersive effects are much more accentuated for the projection on the acoustic
branch than for p = 1 since |∂2

ηλa
2(39π/40)| > |∂2

ηλ1(39π/40)|, as we can see in
Fig. 5, the red curves.

In Fig. 4(d), (h), we represent the projection on the optic mode of the solution
to the adjoint problem (10), which propagates in the opposite direction than the
physical solution, due to the fact that ∂ηλ

o
2(η) < 0, for all η ∈ (0,π), while in the

continuous case the group velocity is strictly positive (≡ 1). For η0 = 9π/10, the
velocity of propagation is larger than the one for the corresponding acoustic pro-
jection (i.e., |∂ηλ

o
2(9π/10)| > ∂ηλ

a
2(9π/10)), reflected in the fact that the maximum

amplitude at t = 2 is located next to x = 0; almost no dispersive effects occur. For
η0 = 39π/40, the optic projection propagates almost at the same velocity as the
acoustic one and almost with the same dispersive effects, the only visible change
being the reverse direction (see Fig. 5, the dotted red lines).

Several filtering techniques have been designed to face these high frequency
pathologies, all based on taking subclasses of initial data that filter them: the Fourier
truncation method (cf. [7]), which simply eliminates all the Fourier components
propagating non-uniformly, and the bi-grid algorithm (cf. [4]), rigorously studied in
[6, 9] and [14] in the context of the finite differences semi-discretization of the 1D
and 2D wave equation and of the Schrödinger equation (cf. [5]), which consists in
taking initial data with slow oscillations obtained by linear interpolation from data
given on a coarser grid. The interested reader is referred to the survey articles [3]
and [15] for a more or less complete presentation of the development of this topic
and the state of the art.

Let us describe how the bi-grid filtering acts for the linear and quadratic finite
element approximations under consideration. To be more precise, for an odd N , let
us define the set of data on the fine grid obtained by linear interpolation from data
on a twice coarser grid,

Bh
1 : =

{

Fh
1 = (F1,j )1≤j≤N, s.t. F1,0 = F1,N+1 = 0,

and F1,2j+1 = 1

2
(F1,2j + F1,2j+2), ∀0 ≤ j ≤ (N − 1)/2

}

,
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and the set of linear data whose nodal components are given by a bi-grid algorithm,

Bh
2 :=

{

Fh
2 = (F2,j/2)1≤j≤2N+1 s.t. F2,0 = F2,N+1 = 0,

F2,j+1/2 = 1

2
(F2,j + F2,j+1), ∀0 ≤ j ≤ N,

and F2,2j+1 = 1

2
(F2,2j + F2,2j+2), ∀0 ≤ j ≤ (N − 1)/2

}

.

The following result has been proved for the adjoint problem (10) for p = 1 in
[9] or [14] and for p = 2 in [11]:

Theorem 1 For all T ≥ 2, the observability inequality (13) holds uniformly as
h → 0 within the class of initial data (Uh,0

p ,Uh,1
p ) ∈ (Bh

p × Bh
p) ∩ Vh

p in the adjoint
problem (10).

One of the possible proofs of this result is based on a dyadic decomposition
argument like in [6]. For the case p = 1, it reduces to showing that the total energy of
solutions corresponding to initial data in (Bh

1 ×Bh
1 )∩Vh

1 can be uniformly bounded
from above by the energy of their projection on the first half of the spectrum. The
second step is to use the uniform observability inequality (13) in the class T h

1 × T h
1

consisting of discrete functions for which the second half of Fourier modes have
been truncated; this result can be obtained by the multiplier technique (cf. [7]) or
by Ingham-type inequalities (cf. [15]). For the quadratic case p = 2, the projection
on the first half of the acoustic mode has to be implemented to reduce the proof of
Theorem 1 to the observability inequality (13) on the class T h

2 × T h
2 of functions

for which the second half (the high frequency one) of the acoustic diagram and
the whole optic diagram have been truncated. The fact that for p = 2 the bi-grid
algorithm in Theorem 1 essentially truncates 3/4 of the spectrum versus only 1/2
for p = 1 can be intuitively seen in the fact that Bh

2 involves two requirements on
its elements versus only one requirement for Bh

1 . The observability time for these
two bi-grid algorithms coincides with the continuous optimal one T � = 2, since
the group velocities ∂ηλ1 and ∂ηλ

a
2 are increasing functions on [0,π/2] and then

∂ηλ1(η) ≥ ∂ηλ1(0) = 1 for all η ∈ [0,π/2] and similarly for ∂ηλ
a
2. Thus, the minimal

velocity of propagation involving solutions with data in the class T h
p × T h

p for both
p = 1 and p = 2 is equal to one.

In practice, one has to employ fully discrete schemes. In this respect, it is im-
portant to note that, using the results of Ervedoza–Zheng–Zuazua in [2] allowing to
transfer observability results for time-continuous conservative semigroups on time-
discrete conservative schemes, we see that our observability results in Theorem 1
are also valid for any conservative fully discrete finite element approximation, like,
for example, the implicit midpoint time-discretization scheme

Uh,k+1
p − 2Uh,k

p + Uh,k−1
p + (δt)2(Mh

)−1
Sh

(
Uh,k+1

p + Uh,k−1
p

)
/2 = 0,
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where δt is the time step and Uh,k
p ≈ Uh

p(kδt). Note, however, that the results in [2]
do not yield the optimal observability time, a subject that needs further investigation.

Once the observability problem is well understood, we are in conditions to ad-
dress the discrete control problem. For a particular solution Ũh

p(t) of the adjoint
problem (10), let us consider the following non-homogeneous discrete problem

Mh
pYh

p,tt (t) + Sh
pYh

p(t) = −(
Bh

p

)∗
Bh

pŨh
p(t), Yh

p(0) = Yh,0
p ,

Yh
p,t (0) = Yh,1

p .
(18)

Multiplying system (18) by any solution Uh
p(t) of the adjoint problem (10), inte-

grating in time and imposing that at t = T the solution is at rest, i.e.,
〈(

Yh
p,t (T ),−Yh

p(T )
)
,
(
Uh,0

p ,Uh,1
p

)〉

Vh,′
p ,Vh

p

= 0, ∀(
Uh,0

p ,Uh,1
p

) ∈ Vh
p, (19)

we obtain the identity,
∫ T

0

(
Bh

pŨh
p(t),Bh

pUh
p(t)

)

p,e
dt = 〈(

Yh,1
p ,−Yh,0

p

)
,
(
Uh

p(0),Uh
p,t (0)

)〉

Vh,′
p ,Vh

p

, (20)

for all (Uh,0
p ,Uh,1

p ) ∈ Vh
p . This is the Euler–Lagrange equation corresponding to the

quadratic functional, the discrete analogue of J in (5):

J h
p

(
Uh,0

p ,Uh,1
p

)

= 1

2

∫ T

0

∥
∥Bh

pUh
p(t)

∥
∥2

p,e
dt − 〈(

Yh,1
p ,−Yh,0

p

)
,
(
Uh

p(0),Uh
p,t (0)

)〉

Vh,′
p ,Vh

p

,

Uh
p(t) being the solution of the adjoint problem (10) with initial data (Uh,0

p ,Uh,1
p )

and (Yh,1
p ,Yh,0

p ) ∈ Vh,′
p the initial data to be controlled in (18). Actually, (18) and

(20) are completely equivalent so that, in practice, it is sufficient to prove the ex-
istence of a critical point for J h

p to deduce the existence of a control for (18). The
uniform observability inequality (13) within the class of initial data Bh

p ×Bh
p guaran-

tees the uniform coercivity of J h
p and the convergence of the last component ṽh

p of

Bh
pŨh

p(t), the discrete control, to the optimal control ṽ for the continuous wave equa-

tion given by (4) when the initial data (Yh,0
p ,Yh,1

p ) in (18) approximates well the
initial data (y0, y1) in the continuous problem (1). Here Ũh

p(t) is the solution of the

discrete adjoint system (10) corresponding to the minimizer (Ũh,0
p , Ũh,1

p ) ∈ Bh
p ×Bh

p

of J h
p .

3 Implementation of the Bi-grid Algorithm and Numerical
Results

The aim of this section is to numerically illustrate the three high frequency patholo-
gies for the quadratic approximation of the control problem (18) and the way in
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Fig. 6 The discrete Heaviside functions Hh
p and their projections

which the bi-grid filtering leads to the convergence of the solution of (18) to the con-
tinuous one. We will also compare the numerical results obtained for the quadratic
case p = 2 and for the linear one p = 1.

In order to simplify the presentation, we will take as discrete initial data
(Yh,0

p ,Yh,1
p ) in (18) Yh,1

p = 0, Yh,0
p being an approximation of the Heaviside func-

tion H(x) in (6). Firstly, let us define the vectors H̃h
p = (H̃p,j/p)1≤j≤pN+p−1, where

H̃p,j/p = (H,φh
p,j/p)L2 , for all 1 ≤ j ≤ pN +p − 1. The numerical approximation

of H(x) we consider is

Yh,0
p = Hh

p := (
Mh

p

)−1H̃h
p. (21)

For all α ∈ {a,o} and all β ∈ {lo,hi}, (lo/hi standing for low/high-frequency), we
also define the projections of Hh

p on some parts of the spectrum as follows:

Hh
1,β =

k+
β∑

k−
β

(
Hh

1,ϕh,k
1

)

Hh,0
1

ϕ
h,k
1 and Hh,α

2,β =
k+
β∑

k−
β

(
Hh

2,ϕh,α,k
2

)

Hh,0
2

ϕh,α,k
2 ,

where (k−
β , k+

β ) = (1, (N −1)/2) if β = lo and (k−
β , k+

β ) = ((N +1)/2,N) if β = hi.

More precisely, Hh
1,lo is the projection of Hh

1 on the first half of the spectrum and

Hh,a
2,lo that of Hh

2 on the first half of the acoustic diagram (see Fig. 6).
Since the datum H(x) in (6) is irregular due to the presence of the jump, it in-

volves high-frequency eigenfunctions. This also happens with its numerical approx-
imations Hh

p , as it can be easily observed in Fig. 7. These high-frequency compo-
nents will lead to the divergence of the corresponding numerical controls.

In order to find the minimum of the discrete functional J h
p , we will apply the

Conjugate Gradient (CG) algorithm (see [1, 4]) to iteratively solve the Euler–
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Fig. 7 The Fourier coefficients of Hh
p for p = 1 (left), p = 2 (center, blue = acoustic, red =

optic), p = 2—the optic branch (right)

Lagrange equation (20). Let us briefly recall it when no-filtering technique is ap-
plied.

Firstly, fix the initial data to be controlled (Yh,0
p,0,Yh,1

p,0), a tolerance ε (= 0.001
in our particular case) and a maximum number of iterations nmax (= 200), aimed to
be a stopping criterium. In order to better follow the CG algorithm, we divide it into
several steps as follows:

Step 1. We initialize the algorithm solving the adjoint problem (10) with arbitrary
data (Uh,0

p ,Uh,1
p ) = (Uh,0

p,0,Uh,1
p,0) ∈ Vh

p , for example, the trivial one. This step yields

the solution Uh
p,0(t).

Step 2. Compute the first gradient (Gh,0
p,0,Gh,1

p,0) := ∇J h
p (Uh,0

p,0,Uh,1
p,0) by solving

the non-homogeneous problem (18) with initial data (Yh,0
p,0,Yh,1

p,0) and Ũh
p(t) =

Uh
p,0(t). This produces the solution Yh

p,0(t). Then

Gh,0
p,0 = −(

Sh
p

)−1
Mh

pYh
p,0,t (T ) and Gh,1

p,0 = Yh
p,0(T ).

Step 3. If ‖Gh,0
p,0‖2

Hh,1
p

+ ‖Gh,1
p,0‖2

Hh,0
p

≥ ε2, compute the first descent direction

(
Dh,0

p,0,Dh,1
p,0

) = −(
Gh,0

p,0,Gh,1
p,0

)
.

Step 4. Given (Uh,0
p,n,Uh,1

p,n), (Gh,0
p,n,Gh,1

p,n) and (Dh,0
p,n,Dh,1

p,n) in Vh
p , we compute

these quantities at the next iteration n + 1 as follows:
Step 4.a. Solve (10) for (Uh,0

p ,Uh,1
p ) = (Dh,0

p,n,Dh,1
p,n). Denote the solution by

Dh
p,n(t).

Step 4.b. Solve (18) with trivial initial data and Ũh
p(t) = Dh

p,n(t) and denote the

solution by Yh
p,n+1(t). Take

Zh,0
p,n = −(

Sh
p

)−1
Mh

pYh
p,n+1,t (T ) and Zh,1

p,n = Yh
p,n+1(T ).
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Step 4.c. Set

ρp,n := −
‖Gh,0

p,n‖2
Hh,1

p

+ ‖Gh,1
p,n‖2

Hh,0
p

(Zh,0
p,n,Dh,0

p,n)Hh,1
p

+ (Zh,1
p,n,Dh,1

p,n)Hh,0
p

.

Step 4.d. Compute the next iteration

(
Uh,0

p,n+1,Uh,1
p,n+1

) := (
Uh,0

p,n,Uh,1
p,n

) + ρp,n

(
Dh,0

p,n,Dh,1
p,n

)
.

Step 4.e. Compute the next gradient

(
Gh,0

p,n+1,Gh,1
p,n+1

) := ∇J h
p

(
Uh,0

p,n+1,Uh,1
p,n+1

)

by
(
Gh,0

p,n+1,Gh,1
p,n+1

) := (
Gh,0

p,n,Gh,1
p,n

) + ρp,n

(
Zh,0

p,n,Zh,1
p,n

)
.

Step 4.f. Compute the next descent direction

(
Dh,0

p,n+1,Dh,1
p,n+1

)

:= −(
Gh,0

p,n+1,Gh,1
p,n+1

) +
‖Gh,0

p,n+1‖2
Hh,1

p

+ ‖Gh,1
p,n+1‖2

Hh,0
p

‖Gh,0
p,n‖2

Hh,1
p

+ ‖Gh,1
p,n‖2

Hh,0
p

(
Dh,0

p,n,Dh,1
p,n

)
.

The algorithm ends up when for some n < nmax we obtain

∥
∥Gh,0

p,n

∥
∥2
Hh,1

p
+ ∥

∥Gh,1
p,n

∥
∥2
Hh,0

p
< ε2

or when n ≥ nmax. When the second stopping criterium holds, we understand that
the CG algorithm does not converge (due to the fact that J h

p looses coercivity).

For both stopping criteria, we take the minimizer of J h
p to be (Ũh,0

p , Ũh,1
p ) :=

(Uh,0
p,n,Uh,1

p,n), where n is the last iteration number before stopping.
Let us now describe the changes we have to do in the CG algorithm to implement

the bi-grid filtering we propose in Theorem 1. The linear case p = 1 has been im-
plemented in [3]. For this reason, we restrict ourselves to the quadratic case p = 2.
However, whenever we have to implement any filtering technique, the only steps we
have to modify are Steps 2 and 4.b above. In order to simplify the presentation, we
describe only the modifications to be done on Step 2, the ones on Step 4.b being
similar. Firstly, set

Fh,0
2 = −Mh

2 Yh
2,0,t (T ) and Fh,1

2 = Mh
2 Yh

2,0(T ),

and observe that, for all test function (Uh,0
2 ,Uh,1

2 ) ∈ Vh
2 , the Gateaux derivative of

J h
2 at (Uh,0

2,0,Uh,1
2,0) has the following expressions:
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(
J h

2

)′(Uh,0
2,0,Uh,1

2,0

)(
Uh,0

2 ,Uh,1
2

) = (
Fh,0

2 ,Uh,0
2

)

2,e
+ (

Fh,1
2 ,Uh,1

2

)

2,e

= (
Gh,0

2,0,Uh,0
2

)

Hh,1
2

+ (
Gh,1

2,0,Uh,1
2

)

Hh,0
2

.

Let us observe that the linear functions with nodal components given by a bi-grid
algorithm in Bh

2 are in fact linear functions on a grid of size 2h. We consider that

both the test functions (Uh,0
2 ,Uh,1

2 ) and the gradient (Gh,0
2,0,Gh,1

2,0) belong to Bh
2 ×Bh

2 .
Consider the restriction operator Π that associates to any quadratic function of
coefficients Eh

2 = (E2,j/2)1≤j≤2N+1 the linear function on the mesh of size 2h of

coefficients (ΠEh
2)j = E2,2j , for all 1 ≤ j ≤ (N − 1)/2. When both (Uh,0

2 ,Uh,1
2 )

and (Gh,0
2,0,Gh,1

2,0) belong to Bh
2 ×Bh

2 , then

(
Gh,0

2,0,Uh,0
2

)

Hh,1
2

+ (
Gh,1

2 ,Uh,1
2

)

Hh,0
2

= (
ΠGh,0

2,0,ΠUh,0
2

)

H2h,1
1

+ (
ΠGh,1

2,0,ΠUh,1
2

)

H2h,0
1

.

Consider another restriction operator Γ defined as

(
Γ Eh

2

)

j
= E2,2j + 3

4
(E2,2j+1/2 + E2,2j−1/2)

+ 1

2
(E2,2j+1 + E2,2j−1) + 1

4
(E2,2j+3/2 + E2,2j−3/2).

Then

(
Fh,0

2 ,Uh,0
2

)

2,e
+ (

Fh,1
2 ,Uh,1

2

)

2,e
= (

Γ Fh,0
2 ,ΠUh,0

2

)

1,e
+ (

Γ Fh,1
2 ,ΠUh,1

2

)

1,e

and the two components of the gradient are explicitly given by

Gh,0
2,0 = Π−1(S2h

1

)−1
Γ Fh,0

2 and Gh,1
2,0 = Π−1(M2h

1

)−1
Γ Fh,1

2 ,

where Π−1 is the inverse of the restriction operator Π defined as the linear inter-
polation on a grid of size h/2 of a function defined on a grid of size 2h. There-
fore, our filtering mechanism in Theorem 1 for p = 2 acts in fact like a classi-
cal bi-grid algorithm of mesh ratio 1/4. This is very similar to the bi-grid algo-
rithm designed in [5] to ensure discrete dispersive estimates for the finite difference
semi-discretization of the Schrödinger equation uniformly in the mesh size param-
eter h. In that case, the bi-grid algorithm has to face the two singularities of the
Fourier symbol p(η) = 4 sin2(η/2) defined on η ∈ [0,π]: the vanishing group ve-
locity at η = π , yielding the non-uniform gain of 1/2-derivative, and the vanish-
ing group acceleration at η = π/2, related to the non-uniform L

p
x –L

q
t -integrability

(see Fig. 8, right). In our case, by ordering in an increasing way the eigenvalues
on the two dispersion curves and constructing λ2(η) = λa

2(η), for η ∈ [0,π] and
λ2(η) = λo

2(2π − η), for η ∈ [π,2π], we formally obtain a discrete wave equation
on the grid h/2 whose dispersion relation λ2(η), η ∈ [0,2π], has vanishing group
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Fig. 8 Dispersion relations for the P2-approximation of the wave equation (left): continuous
(black), λa

2 (red), λo
2 (green), λ2 (blue), versus Fourier symbols of the finite difference semi-dis-

cretization of the Schrödinger equation (right): continuous (black) and discrete (blue). At the
marked points, the symbols have vanishing group velocity (circles) or vanishing group acceler-
ation (squares)

velocity at η = π± and at η = 2π (see Fig. 8, left). In order to remedy the patholo-
gies associated to both singular points π± and 2π , a bi-grid of mesh ratio 1/4 should
suffice, despite of the discontinuity of λ2 at η = π .

Remark 1 In practice, one has to reduce the semi-discrete problem to be solved,
MhUh

tt (t) + ShUh(t) = Fh(t), to a fully discrete system with time-step of size δt

and to take Uh,k ≈ Uh(kδt). Set μ := δt/h to be the Courant number. When using
an explicit time scheme, for example, the leap-frog one,

Uh,k+1 − 2Uh,k + Uh,k−1 + μ2h2(Mh
)−1

ShUh,k = (δt)2(Mh
)−1Fh(kδt),

a careful von Neumann analysis shows that the Courant–Friedrichs–Lewy (CFL)
condition for μ is μ ≤ minΛ

√
4/Λ, where the minimum is taken over all the eigen-

values Λ of the matrix h2(Mh)−1Sh. When dealing with (10) or (18) for the linear
approximation p = 1, this analysis gives μ ≤ 1/

√
3. For the case p = 2, we obtain

μ ≤ 1/
√

15 if we work with solutions involving both modes or μ ≤ √
2/5 if the

numerical solution involves only the acoustic mode. We observe that, globally, the
quadratic scheme requires smaller Courant numbers than the linear one, whereas
the resolution of the homogeneous problem (10) with data concentrated only on the
acoustic mode admits larger μ’s than in the linear case.

We end up this section by discussing the numerical results in Figs. 9, 10, 11, 12.
For the P1-approximation, we take h = 1/200 and for the P2-one, h = 1/100, in
order to have the same number of degrees of freedom in both approximations.

– Without restricting the space where the functional J h
p is minimized, the numer-

ical controls are highly oscillatory and diverge (see Figs. 9 and 10(a)–(b)). This
is due to the fact that the initial data Hh

p involves the critical modes on the high-
frequency regime of the dispersion relations for which the numerical controls
diverge. These pathological effects can be seen separately by controlling the cor-
responding projections of the data Hh

p on the high frequency modes (see Fig. 9(f)
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Fig. 9 Solutions of the control problem (18) versus their numerical controls for p = 1 arising by
minimizing J h

1 over the whole space Vh
1

for p = 1 and Fig. 10(f), (h), (j) for p = 2). As long as the initial data Hh
p is

projected on the first half of the acoustic mode for p = 2 or on the first half of
the spectrum for p = 1, the CG algorithm and the numerical controls converge
(see Figs. 9(d) and 10(d)). The numerical controls obtained for these projections
Hh

1,lo and Hh,a
2,lo as initial positions in the control problem (18) without filtering

are approximately the same as the ones obtained by the bi-grid filtering mecha-
nism taking as initial position the whole Hh

p (see also Fig. 11(b) and 12(b)). This
is due to the fact that the controls obtained by the bi-grid algorithm damp out
the high-frequency effects and for this reason they act mainly on the eigenmodes
involved in Hh

1,lo or Hh,a
2,lo.

– Without filtering, the high-frequency modes produce instabilities in the form of
oscillations of larger and larger amplitude which accumulate as time evolves in
the solutions of the control problem (18) (see Figs. 9(a), (e) and 10(a), (e), (g),
(i)). These high frequency effects are larger in the P2 case than in the P1 one, due
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Fig. 10 Solutions of the control problem (18) versus their numerical controls for p = 2 arising by
minimizing J h

2 over the whole space Vh
2
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Fig. 11 Solutions of the control problem (18) versus their numerical controls for p = 1 arising by
minimizing J h

1 over the restricted space (Bh
1 ×Bh

1 ) ∩ Vh
1

to the presence of the optic mode whose largest eigenvalues are much above the
largest ones for the linear approximation (60/h2 versus 12/(h/2)2 = 48/h2). The
solutions of the adjoint problem (10) corresponding to the minimizer (Ũh,0

p , Ũh,1
p )

of J h
p over Vh

p are typically highly oscillatory wave packets whose energy is
concentrated far from the boundary x = 1 at any time t ∈ [0,2] (see Fig. 13, left).

– When the space over which the functional J h
p is minimized is restricted to the bi-

grid class (Bh
p × Bh

p) ∩ Vh
p , the high-frequency modes diminish in time for both

the linear and the quadratic approximation as it can be observed in Figs. 11(e)
and 12(e), (g), (i). For the case p = 2, the optic modes are more dissipated than
the acoustic ones. However, by comparing Figs. 11(a)–(b) and 12(a)–(b), we ob-
serve that the numerical controls and the solutions of the discrete control prob-
lem (18) under filtering are much more accurate in the quadratic case than in
the linear one. As we made it precise before, for p = 2, the bi-grid filtering acts
mainly like a Fourier truncation of the whole optic mode λo

2 and of the second
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Fig. 12 Solutions of the control problem (18) versus their numerical controls for p = 2 arising by
minimizing J h

2 over the restricted space (Bh
2 ×Bh

2 ) ∩ Vh
2
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Fig. 13 Typical solution of the adjoint problem (10) corresponding to the minimizer (Ũh,0
p , Ũh,1

p )

of J h
p over Vh

p (left) or over (Bh
p ×Bh

p) × Vh
p (right)

Fig. 14 The error ‖ṽh
p − ṽ‖L2(0,T ) for p = 1 (blue) and p = 2 (red) versus the number of degrees

of freedom N at the logarithmic scale. In dotted blue/red, we represent N−1/3 and N−2/5 also at
the logarithmic scale. Here N takes values from 99 to 999 with increments of 100

half of the acoustic one λa
2, whereas for p = 1, it behaves like a Fourier trun-

cation of the second half of the dispersion diagram λ1. But the low frequencies
of the acoustic mode approximate much better the continuous dispersion relation
λ(η) = η, η ∈ R, than the dispersion diagram of the linear approximation. In-
deed, as η ∼ 0, λ1(η) ∼ η + η3/24 + η5/1920, whereas λa

2(η) ∼ η + η5/1440.
According to the results in [3], this improves the convergence rate h2/3 of the
numerical controls towards the continuous ones corresponding to the case p = 1
for initial data (y0, y1) in the continuous control problem (1) belonging to the
more regular space H 1

0 × L2(0,1), so that a convergence order h4/5 is obtained
for p = 2 under the same regularity assumptions. In Fig. 14, we represent the
errors in the numerical controls obtained by the bi-grid filtering at the loga-
rithmic scale for both approximations p = 1 and p = 2 for the initial posi-
tion Hh

p approximating the Heaviside function H . The continuous initial data

(y0, y1) = (H,0) ∈ H 1/2−ε ×H−1/2−ε(0,1), for any ε > 0, which is less than the
regularity imposed in [3]. Consequently, by interpolation, a natural sharp bound
for the convergence orders of the numerical controls should be h1/3 for p = 1
versus h2/5 for p = 2. This is confirmed by our numerical results.

All the numerical simulations in this paper are realized under the Matlab envi-
ronment. The corresponding numerical codes can be found following the link

www.bcamath.org/projects/MTM2008-03541/sim/images/.

http://www.bcamath.org/projects/MTM2008-03541/sim/images/
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4 Conclusions and Open Problems

In this paper, we have discussed and illustrated numerically the high frequency
pathological effects of the P2 approximation of the 1D wave equation, previously
analyzed rigorously in [11] in what concerns the boundary observation and control
problems. We have also illustrated the efficiency of the bi-grid filtering algorithm
in recovering the convergence of the numerical controls and compared the results
obtained by this quadratic finite element method with those one recovers by means
of the P1-approximation. Our conclusion is that, after applying the bi-grid filtering,
the quadratic approximation leads to more accurate controls than the linear one.

This filtering technique can be easily generalized to higher order finite element
approximation methods of waves (p ≥ 3) on uniform meshes, a higher and higher
accuracy of the numerical controls being expected. However, the high-frequency
effects of the numerical approximations on irregular meshes is a completely open
problem.
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