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www.ime.uerj.br/cfl80

Poster of CFL condition—80 years gone by meeting

Having failed to obtain any CFL picture, we Richard Courant, Kurt Friedrichs, and Hans
have switched to a CLL one: Richard Courant, Lewy

Hans Lewy, and Jean Leray at the Arden Con-

ference Center around 1950. It may be thought

as a first order approximation... (From Peter

Lax files)



Foreword

Despite being largely disseminated nowadays, “impact factors” do not need to
be quoted to assure the depth and importance—in so many areas of science and
technology—of the article submitted in 1927 by Richard Courant, Kurt Friedrichs,
and Hans Lewy to Mathematische Annalen and published therein the following
year.!

The authors’ keen view of finite difference methods applied to approximate so-
lutions of partial differential equations has provided the right hand hold to deal with
numerical algorithms within this environment. The idea is to first look for how the
studied schemes mimic the main properties of the operators they are intended to
approximate—signal propagation speed being the first point to look at—and then to
estimate the distance between the continuous model, which lives within the real line,
and the discrete one, immersed in real life and, consequently, being tied to treating
only numbers we are bound to operate with. They realized how this question is re-
lated to the answer to a puzzle posed for a long time to numerical analysts of PDEs:
mesh refinements do not always improve the approximations, they can even make
approximations worse. They discovered that everything amounts to a desperate need
for stability—small changes in input data must never throw output far away from its
true habitat. The constraint the discrete schemes must satisfy to guarantee stability
became known as the CFL-condition, honoring the three authors.

In March 1967, to celebrate the article’s 40th anniversary, IBM Journal®> pub-
lished a special issue, Vol. 11(2), which featured the paper’s translation into En-
glish,? as well as three articles that report the outcome of numerical methods for
PDE:s after that historical publication. Each of them has roughly chosen as its focus

1Uber die partiellen Differenzengleichungen der mathematischen Physik, Vol. 100, pp. 32-74. See
Appendix B for a reprint of the paper original version.

2Now IBM Journal of Research and Development.

3See Appendix C for a reprint of this translation.
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viii Foreword

one of the three types of partial differential equations: elliptic,* hyperbolic,> and
parabolic.°

Around 80 years had gone by since the CFL paper was printed when a meet-
ing was held in Rio de Janeiro, in May 2010, to once again celebrate its outcome.
Hosted by Rio de Janeiro State University (UERJ), it was organized with the par-
ticipation of Rio’s main institutions that deal with computational sciences (see the
report in Appendix D). The meeting atmosphere was quite cozy, and it is a plea-
sure for the organizing committee to thank around 100 attendees that have made
CFL-condition, 80 years gone by a scientifically rewarding encounter. Our thanks
go also to the publishers of these proceedings. We further acknowledge the con-
tributions by Jacqueline Telles (secretarial chores), Jhoab P. de Negreiros (LaTeX
expertise), Sandra Moura (website design), and Tania Rodrigues (graphic designer).
Additional information about the meeting—in particular some texts from the ref-
ereed contributed papers, as well as many pictures taken at the meeting—may be
retrieved from its site at

http://www.ime.uerj.br/cfl80

Before summarizing the scientific papers contained in this volume, let us mention
one of its special features: the musical piece, recorded especially for these pro-
ceedings, authored by Hans Lewy—who was also a composer before turning to
mathematics—and played by Leonore (Lori) Lax, one of Richard Courant’s daugh-
ters. She has also written a text with some recollection of Lewy’s visits to Courant’s
home (see Appendix A, which contains some photos). The recording may be ac-
cessed through SpringerExtras at extras.springer.com/978-0-8176-8393-1.

The book opens with an article by Peter D. Lax, the meeting’s main speaker. He
dwells a little on the CFL paper and after some quick, sharp remarks—quite his
writing style—shows some results to corroborate his main assertion: “The theory
of difference schemes is much more sophisticated than the theory of differential
equations.”

Reuben Hersh’s contribution deals with a “mysterious” question: Numerical an-
alysts spend their lifetime to reach convergence results that become valid only when
the parameters involved turn out to be extremely large. But in everyday life, why are
they quite happy getting results drawn from real-life computers, therefore with not
so overwhelming numbers?

The article by Rolf Jeltsch and Harish Kumar discusses a model for the different
phenomena that occur at current interruption in a circuit breaker. They propose the
equations of resistive magneto-hydrodynamics (RMHD), and it turns out that this
is the first time a model based on RMHD has been used to simulate plasma arc in
three dimensions.

4Seymour V. Parter, Elliptic equations, pp. 244-247.
SPeter D. Lax, Hyberbolic Difference Equations: A Review of the Courant—Friedrichs—Lewy Paper
in the Light of Recent Developments, pp. 235-238.

50lof B. Widlund, On Difference Methods for Parabolic Equations and Alternating Direction Im-
plicit Methods for Elliptic Equations, pp. 239-243.
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Foreword ix

Sander Rhebergen and Bernardo Cockburn apply a novel space-time extension
of the hybridizable discontinuous Galerkin (HDG) finite element method to the
advection—diffusion equation. The resulting method combines the advantages of a
space-time DG method with sensible improvement in efficiency and accuracy for
the HDG methods.

The paper by J. Teixeira, Cal Neto, and Carlos Tomei indicates how a global
Lyapunov—Schmidt decomposition, introduced within a bona fide theoretical con-
text, gives rise to a quite effective numerical algorithm (which makes use of the
finite element method) for the nonlinear equation —Au — f(u) = g with Dirichlet
conditions on a bounded n-dimensional domain.

A filtering technique for the one-dimensional wave equation is proposed and
tested in the article by Aurora Marica and Enrique Zuazua. Their concern is the
failure of observability from the boundary for the quadratic classical finite element
approximation.

Margarete O. Domingues, S6nia M. Gomes, Olivier Roussel, and Kai Schneider
have authored an article which studies a wavelet-based multiresolution method. It
deals with space-time grid adaptive techniques for a finite volume being the time
discretization explicit. Their purpose, both to reduce the memory requirement and
to speed-up computing, is reached through an efficient self-adaptive grid refinement
and a controlled time-stepping.

Philippe G. LeFloch obtains a parabolic-type system for late-time asymptotics of
solutions to nonlinear hyperbolic systems of balance laws with stiff relaxation. For
these stiff problems, an approximation based on a finite volume is then introduced
which preserves the late-time asymptotic regime. This method carries an important
feature; namely, it requires the CFL condition associated with the hyperbolic system
under study, rather than the more restrictive parabolic-type stability condition.

Kai Schneider, Dmitry Kolomenskiy, and Erwan Deriaz pose the question: “Is the
CFL condition sufficient?”. Their numerical results, using a spectral discretization
in space, illustrate that the CFL condition is not sufficient for stability and that the
time step is limited by non-integer powers (larger than one) of the spatial grid size.

The collection is closed with a paper by Uri Ascher and Kees van den Doel: “Fast
Chaotic Artificial Time Integration”. The authors claim that some faster gradient-
descent methods generate chaotic dynamical systems for the normalized residual
vectors. The fastest practical methods of this family in general appear to be the
chaotic, two-step ones, but, despite their erratic behavior, these methods may also be
used as smoothers, or regularization operators. Besides, their results also highlight
the need for a better theory for these methods.

The meeting has also held a special session honoring Peter Lax.

Rio de Janeiro, Brazil Carlos A. de Moura
Carlos S. Kubrusly
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Stability of Difference Schemes

Peter D. Lax

Abstract The most powerful and most general method for constructing approx-
imate solutions of hyperbolic partial differential equations with prescribed initial
values is to discretize the space and time variables and solve the resulting finite
system of equations. How to discretize is a subtle matter, as we shall demonstrate.
In this report, some of the proofs are only sketched; details can be found in
Chap. 8 of my monograph “Hyperbolic Partial Differential Equations”, 2006, AMS.

Keywords Hyperbolic PDE’s - Finite difference schemes - Convergence - Stability

One of the seminal observations of the Courant—Friedrichs—Lewy paper of 1928
was that in order for solutions of a difference equation to converge to the solution of
the partial differential equation the difference scheme must use all the information
contained in the initial data that influence the solution. To satisfy this condition,
the ratio of the spatial discretization to the time discretization must be at least as
large as the largest velocity with which signals propagate in solutions of the partial
differential equation. This inequality is called the CFL condition.

I well remember from the early days of computing, when physicists and engi-
neers first undertook to solve numerically initial value problems, their utter astonish-
ment to see the numerical solution blow up because they have unwittingly violated
the CFL condition.

The CFL condition is only a necessary condition for the convergence of differ-
ence schemes. Here is an example: discretize the scalar equation

us+uy =0
by replacing the time derivative with a forward difference, and the space derivative

with a symmetric difference. This scheme diverges, no matter how small the time
discretization is compared to the space discretization.

P.D. Lax ()
Courant Institute of Mathematical Sciences, New York University, New York, USA
e-mail: lax@cims.nyu.edu

C.A. de Moura, C.S. Kubrusly (eds.), The Courant—Friedrichs—Lewy (CFL) Condition, 1
DOI 10.1007/978-0-8176-8394-8_1, © Springer Science+Business Media New York 2013
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2 P.D. Lax

In this talk, I will report on sufficient conditions for the convergence of various
difference schemes. I shall discuss a class of equations studied by K.O. Friedrichs,
first order symmetric hyperbolic systems of the form

u; = Auy + Buy, (D)

where u(x, y, t) is a vector-valued function, and A and B are real symmetric matri-
ces that may be smooth functions of x and y. The theory of these equations is fairly
straightforward: let u(x, y, t) be a solution in the whole (x, y)-space that dies down
fast as x and y tend to infinity. Take the scalar product of the equation with u and
integrate it over all x and y; we get

f(u-u,)dxdy:/(u-Aux—i—u'Buy)dxdy. 2)
If A and B are constant matrices, the integrand on the right is
d d
—(u, Au)/2 + —(u, Bu)/2, 3)
dx dy

a sum of perfect x and y derivatives; therefore the integral is zero. The integrand
on the left side is the ¢ derivative (1/2)d(u,u)/dt and can be regarded as the ¢
derivative of

E@t) = / %(u,u)dxdy.

Since the derivative of E () is zero, it follows that E(¢) is independent of time, the
law of conservation of energy.

When A and B are functions of x and y, the integrand on the right equals the
sum (3) minus

(u’ Axu)/z + (M, Byu)/23

a quantity bounded by cE(¢), ¢ some constant. Therefore, we conclude that
dE(t)/dt < cE(t), which implies that

E(t) < E(0)e". €]

Such an inequality for solutions of hyperbolic equation is called an energy inequal-
ity.
We turn now to two-level explicit difference schemes. We look first at the case of
one space dimension, that is,
Uy = Aty (5)

The difference schemes are of the form

un+1 — Chun, (6)
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where u” denotes the values of u at time 7 and u"! the values of u at the next time

level t + h, n an integer multiple of 4. We take the space discretization to be 4, the
same as the time discretization. The operator Cj, is a finite sum of the form

Ch=3C;17, )

where T is translation by h: (Tu)(x) = u(x 4+ h), and T/ is the j-th power of T.
Since we have chosen the space discretization and time discretization to be equal,
the CFL condition requires that signals for solutions of the differential equation (5)
propagate with speed not greater than 1. Since the signal speeds for solutions of
(5) are the eigenvalues of A, this requires that the eigenvalues of A lie between —1
and 1.

In order for the difference scheme (6)—(7) to be consistent with the differential
equation (5), the coefficients C; have to satisfy the conditions

Y ci=1. > ici=A. (8)

These conditions are satisfied by
C_1=(-A4A)/2, Ci=U+A)/2, allotherC;=0. 8)

Since the CFL condition requires that the eigenvalues of A be not greater than 1, it
follows that the coefficients C; in (8) are non-negative. We appeal now to:

Lemma 1 Suppose that the coefficients C; in the operator Cy in (7) are non-
negative real symmetric matrices that depend smoothly on x = jh. Then the L*-
norm of the operator Cy, is less than 1 + O(h).

We sketch the proof: abbreviate u, as u, u(,+1) as v; then the difference scheme
reads

v:Chu:ZCjTju.
Take the scalar product with v:
(v,v) = Z(v, CjTju).

Since the C; are non-negative, we can apply the Cauchy—Schwarz inequality:

(v.C;Tu) <[, Cj)\/(TTu, C;Tiu).
Using the arithmetic—geometric mean inequality on the product on the right, we get
,v) <(1/2) Y (. Cjv) + (1/2) > (T/u, C; T u).

According to the first consistency condition in (8), > C j = I; therefore, the first
sum on the right is (v, v)/2. If the coefficients C; are independent of x, the second
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sum is (u, u), so we get the desired inequality. If the C; depend on x, it gives rise
to a term O(h)(u, u).

The proof of this lemma is somewhat analogous, though a little trickier than the
energy estimate for solutions of the partial differential equation presented above.

It follows from the lemma that the n-th power of Cj, is bounded by (1 + O(h))";
these quantities are uniformly bounded if n# is less than some specified number 7.
This proves the stability of the difference scheme. According to the standard the-
ory of difference approximations, this guarantees the convergence of the difference
scheme.

Condition (8) is first order consistency, and it only guarantees that the solution of
the difference scheme differs from the solution of the differential equation by O ().
For higher order accuracy, we need higher order consistency:

ci=I, jCj=A, and jiCj =A% ©9)
2.¢€ 2_ic 2 i =4

These conditions are satisfied by the Lax—Wendroff scheme:
Co1=(A*=A)/2, Co=1-A*  Ci=(A*+A)/2, )

plus terms of order 4. According to the CFL condition, the eigenvalues of A are
less than 1; it follows that the eigenvalues of A? are less than those of A. If A has
a positive eigenvalue, the corresponding eigenvalue of C_; is negative; if A has a
negative eigenvalue, the corresponding eigenvalue of C_; is negative.

More generally it is not hard to show that, except for trivial cases, it is not pos-
sible to satisfy condition (9) by non-negative matrices C;. Therefore, for second
and higher order schemes, we need a proof of stability different from the proof for
schemes with positive coefficients.

Our starting point is a stability criterion due to von Neumann. We associate with
the difference scheme (6)—(7) its symbol defined as the matrix-valued trigonometric
polynomial

C(s)=)_ Cje'l*. (10

When the coefficients depend on x = Aj, so does the symbol C (s, x). The stability
criterion of von Neumann says that if the scheme (6)—(7) is stable, the absolute value
of the eigenvalues of its symbol C (s, x) are not greater than 1.

Sketch of proof In the constant coefficient case, C(s) is independent of x. If we take
the Fourier transform of the difference equation (6), we get

U™ (s) = C()U"(s), Y

where U"(s) =) ¢'7s and similarly for U"*!. We can iterate (11) and obtain the
operator linking the initial value U° to U":

U (s) = C(s)"Up(s).
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Clearly, if for some value of s, C(s) has an eigenvalue greater than 1, the L?-norm
of U"(s) blows up exponentially. This shows that if the von Neumann condition
is violated, the difference scheme is unstable. This argument can be modified for
schemes with variable coefficients.

Von Neumann raised the question whether the stability criterion, possibly some-
what sharpened, is sufficient for stability. For schemes in one space variable, the
answer is yes; here is a sketch of the argument.

The consistency conditions for schemes (8) and (9) in one space variable re-
late combinations of the coefficients C; to powers of the matrix A in the differential
equation (5). It follows that the natural choice for the coefficients C; will be polyno-
mials in A and its powers. Since A is a symmetric matrix, the symbol C(s) defined
in (10) is for each s and x a normal matrix. A normal matrix whose eigenvalues are
not greater than 1 in absolute value has norm <1; therefore, C*(s)C(s) < I. From
this one can deduce the stability of the scheme.

We turn now to difference approximations of hyperbolic equations (1) in two
space variables. We write the difference equation as

uZH:chuZH, (12)

where k = (k1, k2) and j = (ji, j2) are multi-indices, and uj is the value of the
approximate solution at time ¢ = nh and at the lattice point (k1, k2)h. The analogs
of the first order consistency conditions (8) are

Y ci=1. > hCi=A, > jCj=B. (13)

These relations can be satisfied analogously to (9) by setting all C; equal to zero
except at the four neighboring lattice points. We denote these as Cy, Cg, Cs, Cy.
We choose, in analogy with (8"),

Cw=1/2(1/2 - A), Crp=1/2(1/2+ A),
Cs=1/2(I/2—B),  Cy=1/2(I/2+ B).

(13"

If the norms of A and B are less than 1/2, all four matrices above are positive. The
argument given in the one dimensional case can be used to prove that this scheme
with positive coefficient is stable.

The domain of dependence of the point (0, 0, 1) for the difference scheme (13)
is the rectangle |x 4+ y| <1 and |x — u| < 1. The domain of dependence of the
point (0, 0, 1) for the differential equation is contained in that rectangle if the norm
of A+ B and A — B does not exceed 1. This shows that the sufficient conditions
|A| < 1/2,|B]| < 1/2 are more stringent than the CFL condition. O

One can modify the scheme (13) so that the new scheme is positive under the
CFL conditions

|A+B| <1, |A—B|=<1.
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We turn now to second order schemes for Eq. (1). A straightforward way of con-
structing such a scheme is to use the Taylor approximation:

w(t +h) = u@) +u (Oh + uy (Oh* + O(RY),

and then use the differential equation (1) to express u, and u;, in terms of space
derivatives. If we then approximate the first and second space derivatives with sym-
metric difference quotients, we get the nine point Lax—Wendroff difference scheme.
The symbol of this scheme,

C(s,r)= ZCj el listpr)

C(s,r)=1— A*(1 —coss) — B>(1 — cosr)
—1/2(AB + BA)sinssinr +i(Asins + Bsinr). (14)

The von Neumann stability condition is that the eigenvalues of C(s, r) should be
less than 1. But since the matrices A and B do not commute, except in trivial cases,
C(s, r) is no longer a normal matrix, so we cannot conclude that the norm of C (s, r)
is less than 1; in fact, it is not less than 1.

Instead of looking at the norm of C(s,r), Burt Wendroff and the author have
shown that if the matrices A and B have norm less than 1/8, the numerical range
of C(s,r) is contained in the unit circle. We recall that the numerical range of a
matrix M is the set of all complex numbers of the form w - Mw, w any unit vector
with complex entries. Since the spectrum belongs to the numerical range, it follows
that the scheme with symbol C (s, r) satisfies the von Neumann criterion. The con-
dition on the numerical range is more than the von Neumann condition and has as a
consequence the

Stability Theorem Suppose a difference scheme of form (12) has the following
properties:

(i) The coefficients Cj(x) are twice differentiable functions of x.
(i) For every s and x, the numerical range of the symbol C (s, x) lies in the unit
circle.

Then the numerical range of the difference operator Cy, is less than 1 + O(h).

Such an operator is stable; for, according to the Halmos—Pearcy theorem, the
numerical range of C;? is less than (1 + O(k))", and so the norm of C;’ is less than
twice that.

The key tool used in the proof is this result of Louis Nirenberg and the author:

Let Py, be a difference operator of the form

Py=Y_Pi(0)T,
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where the coefficients P;(x) are twice differentiable functions of x. Suppose that
the symbol of Py,

P(s.x) =) Pj(x) U5t
is Hermitian and non-negative for all s and x:
P(s,x)>0.
Then the Hermitian part of P, Re P, = (P, + P; )/2, satisfies
Re P, > — constant /.

The proof of this estimate is tricky, as indicated by the requirement that the coeffi-
cients of the scheme be not once but twice differentiable functions.
The results described above hold for any number of space variables, not just two.
I hope that the discussion presented proves the claim that the theory of difference
schemes is much more sophisticated than the theory of differential equations.



Mathematical Intuition: Poincaré, Polya, Dewey

Reuben Hersh

Abstract Practical calculation of the limit of a sequence often violates the defini-
tion of convergence to a limit as taught in calculus. Together with examples from
Euler, Pélya and Poincaré, this fact shows that in mathematics, as in science and
in everyday life, we are often obligated to use knowledge that is derived, not rigor-
ously or deductively, but simply by making the best use of available information—
plausible reasoning. The “philosophy of mathematical practice” fits into the general
framework of “warranted assertibility”, the pragmatist view of the logic of inquiry
developed by John Dewey.

Keywords Intuition - Induction - Pragmatism - Approximation - Convergence -
Limits - Knowledge

1 Introduction

In Rio de Janeiro in May 2010, I spoke at a meeting of numerical analysts honor-
ing the 80th anniversary of the famous paper by Courant, Friedrichs, and Lewy. In
order to give a philosophical talk appropriate for hard-core computer-oriented math-
ematicians, I focused on a certain striking paradox that is situated right at the heart
of analysis, both pure and applied. (That paradox was presented, with considerable
mathematical elaboration, in Phil Davis’s excellent article, The Paradox of the Irrel-
evant Beginning, cf. [5].) In order to make this paradox cut as sharply as possible,
I performed a little dialogue, with help from Carlos Motta. With the help of Jody
Azzouni, I used that dialogue again, to introduce this talk in Rome.

To set the stage, recall the notion of a convergent sequence, which is at the heart
of both pure analysis and applied mathematics. In every calculus course, the student
learns that whether a sequence converges to a limit and what that limit is depend
only on the “end” of the sequence—that is, the part that is “very far out”—in the
tail, so to speak, or in the infinite part. Yet, in a specific instance when the limit is

R. Hersh (X))
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, USA
e-mail: rhersh@ gmail.com

C.A. de Moura, C.S. Kubrusly (eds.), The Courant—Friedrichs—Lewy (CFL) Condition, 9
DOI 10.1007/978-0-8176-8394-8_2, © Springer Science+Business Media New York 2013


mailto:rhersh@gmail.com
http://dx.doi.org/10.1007/978-0-8176-8394-8_2

10 R. Hersh

actually needed, usually all that is considered is the beginning of the sequence—the
first few terms—the finite part, so to speak. (Even if the calculation is carried out
to a hundred or a thousand iterations, this is still only the first few, compared to the
remaining, neglected, infinite tail.)

In this little drama of mine, the hero is a sincere, well-meaning student, who
has not yet learned to accept life as it really is. A second character is the Success-
ful Mathematician—the Ideal Mathematician’s son-in-law. His mathematics is ec-
umenical: a little pure, a little applied, and a little in-between. He has grants from
federal agencies, a corporation here and there, and a private foundation or two. His
conversation with the Stubborn Student is somewhat reminiscent of a famous con-
versation between his Dad, the Ideal Mathematician, and a philosophy grad student,
who long ago asked, “What is a mathematical proof, really?”

2 A Dialogue

The Successful Mathematician (SM) is accosted by the Stubborn Student (SS) from
his Applied Analysis course.

SS:  Sir, do you mind if I ask a stupid question?

SM: Of course not. There is no such thing as a stupid question.

SS:  Right. I remember, you said that. So here’s my question. What is the real
definition of “convergence”? Like, convergence of an infinite sequence,
for instance?

SM: Well, I'm sure you already know the answer. The sequence converges to
a limit, L, if it gets within a distance epsilon of L, and stays there, for
any positive epsilon, no matter how small.

SS:  Sure, that’s in the book, I know that. But then, what do people mean
when they say, keep iterating till the iteration converges? How does that
work?

SM: Well, it’s obvious, isn’t it? If after a hundred terms your sequence stays
at 3, correct to four decimal places, then the limit is 3.

SS:  Right. But how long is it supposed to stay there? For a hundred terms,
for two hundred, for a hundred million terms?

SM: Of course, you wouldn’t go on for a hundred million. That really would
be stupid. Why would you waste time and money like that?

SS: Yes, I see what you mean. But what then? A hundred and ten? Two
hundred? A thousand?

SM: 1t all depends on how much you care. And how much it is costing, and
how much time it is taking.

SS:  All right, that’s what I would do. But when does it converge?

SM: 1told you. It converges if it gets within epsilon . ..

SS:  Never mind about that. I am supposed to go on computing “until it con-
verges”, so how am I supposed to recognize that “it has converged”?
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When it gets within four decimal points of some particular number and
stays there.

Stays there how long? Till when?

Whatever is reasonable. Use your judgment! It’s just plain common
sense, for Pete’s sake!

But what if it keeps bouncing around within four decimal points and
never gets any closer? You said any epsilon, no matter how small, not
just 0.0001. Or if I keep on long enough, it might finally get bigger than
3, even bigger than 4, way, way out, past the thousandth term.

Maybe this, maybe that. We haven’t got time for all these maybes. Some-
body else is waiting to get on that machine. And your bill from the com-
puting center is getting pretty big.

(mournfully) I guess you’re not going to tell me the answer.

You just don’t get it, do you? Why don’t you go bother that Reuben
Hersh over there, he looks like he has nothing better to do.

Excuse me, Professor Hersh. My name is—

That’s OK. I overheard your conversation with Professor Successful over
there. Have a seat.

Thank you. So, you already know what my question is.

Yes, I do.

So, what is the answer?

He told you the truth. The real definition of convergence is exactly what
he said, with the epsilon in it, the epsilon that is arbitrarily small but
positive.

So then, what does it mean, “go on until the sequence converges, then
stop”?

It’s meaningless. It’s not a precise mathematical statement. As a precise
mathematical statement, it’s meaningless.

So, if it’s meaningless, what does it mean?

He told you what it means. Quit when you can see, when you can be
pretty sure, what the limit must be. That’s what it means.

But that has nothing to do with convergence!

Right.

Convergence only depends on the last part, the end, the infinite part of
the sequence. It has nothing to do with the front part. You can change
the first hundred million terms of the sequence, and that won’t affect
whether it converges, or what the limit is.

Right! Right! Right! You really are an A student.

I know... So it all just doesn’t make any sense. You teach us some fancy
definition of convergence, but when you want to compute a number, you
just forget about it and say it converges when common sense, or what-
ever you call it, says something must be the answer. Even though it might
not be the answer at all!

Excellent. I am impressed.
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Stop patronizing me. I’'m not a child.

Right. I will stop patronizing you because you are not a child.

You're still doing it.

It’s a habit. I can’t help it.

Time to break a bad habit.

OK. But seriously, you are absolutely right. I agree with every word you
say.

Yes, and you also agree with every word Professor Successful says.

He was telling the truth, but he couldn’t make you understand.

All right. You make me understand.

It’s like theory and practice. Or the ideal and the actual. Or Heaven and
Earth.

How is that?

The definition of convergence lives in a theoretical world. An ideal
world. Where things can happen as long as we can clearly imagine them.
As long as we can understand and agree on them. Like really being pos-
itive and arbitrarily small. No number we can write down is positive and
arbitrarily small. It has to have some definite size if it is actually a num-
ber. But we can imagine it getting smaller and smaller and smaller while
staying positive, and we can even express that idea in a formal sentence,
so we accept it and work with it. It seems to convey what we want to
mean by converging to a limit. But it’s only an ideal, something we can
imagine, not something we can ever really do.

So you’re saying mathematics is all a big fairy tale, a fiction, it doesn’t
actually exist?

NO! I never said fairy tale or fiction. I said imaginary. Maybe I should
have said consensual. Something we can all agree on and work with
because we all understand it the same way.

That’s cool. We all. All of you. Does that include me?

Sure. Stay in school a few more years. Learn some more. You’ll get into
the club. You’ve got what it takes.

I’'m not so sure. I have trouble believing two opposite things at once.
Then how do you get along in daily life? How do you even get out of
bed in the morning?

What are you talking about?

How do you know someone hasn’t left a bear trap by your bedside that
will chop off your foot as soon as you step down?

That’s ridiculous.

It is. But how do you know it is?

Never mind how I know. I just know it’s ridiculous. And so do you.
Exactly. We know stuff, but we don’t always know how we know it. Still,
we do know it.

So you’re saying, we know that what looks like a limit really is a limit,
even though we can’t prove it, or explain it, still we know it.

We know it the same way you know nobody has left a bear trap by your
bedside. You just know it.
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SS: Right.

RH: But it’s still possible that you're wrong. It is possible that something
ridiculous actually happens. Not likely, not worth worrying about. But
not impossible.

SS: Then math is really just like everything else. What a bummer! I like
math because it’s not like everything else. In math, we know for sure.
We prove things. One and one is two. Pi is irrational. A circle is round,
not square. For sure.

RH: Then why are you upset? Everything is just fine, isn’t it?

SS: Why don’t you admit it? If you don’t have a proof, you just don’t know
if L is the limit or not.

RH: That’s a fair question. So what is the answer?

SS: Because you really want to think you know L is the limit, even if it’s not
true.

RH: Not that it’s not true, just that it might not be true.

Thanks for your kind attention. What is supposed to be the meaning of this perfor-
mance? What am I getting at? In this talk, I am NOT attempting to make a contri-
bution to the “problem of induction”. Therefore, I may be allowed to omit a review
of its 2,500-year literature. I am reporting and discussing what people really do, in
practical convergence calculations, and in the process of mathematical discovery.
I am going into a discussion of practical knowledge in mathematics, as a kind of
real knowledge, even though it is not demonstrative or deductive knowledge. I try
to explain why people must do what they do, in order to accomplish what they are
trying to accomplish. I will conclude by arguing that the right broader context for
the philosophy of mathematical practice is actually the philosophy of pragmatism,
as expounded by John Dewey.

But first of all, just this remarkable fact. What we do when we want actual num-
bers may be totally unjustified, according to our theory and our definition. And even
more remarkable-nobody seems to notice, or to worry about it!

Why is that? Well, the definition of convergence taught in calculus classes, as
developed by those great men Augustin Cauchy and Karl Weierstrass, seems to ac-
tually convey what we want to mean by limit and convergence. It is a great success.
Just look at the glorious edifice of mathematical analysis! On the other hand, in spe-
cific cases, it often is beyond our powers to give a rigorous error estimate, even when
we have an approximation scheme that seems perfectly sound. As in the major prob-
lems of three-dimensional continuum mechanics with realistic nonlinearities, such
as oceanography, weather prediction, stability of large complex structures like big
bridges and airplanes. ... And even when we could possibly give a rigorous error
estimate, it would often require great expenditure of time and labor. Surely it’s OK
to just use the result of a calculation when it makes itself evident and there’s no
particular reason to expect any hidden difficulty.

In brief, we are virtually compelled by the practicalities to accept the number that
computation seems to give us, even though, by the standards of rigorous logic, there
is still an admitted possibility that we may be mistaken. This computational result
is a kind of mathematical knowledge! It is practical knowledge, knowledge sound
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enough to be the basis of practical decisions about things like designing bridges and
airplanes-matters of life and death.

In short, I am proclaiming that in mathematics, apart from and distinct from
the so-called deductive or demonstrative knowledge, there is also ordinary, fallible
knowledge, of the same sort as our daily knowledge of our physical environment and
our own bodies. “Anything new that we learn about the world involves plausible rea-
soning, which is the only kind of reasoning for which we care in everyday affairs”,
cf. [19]. This sentence of Pdlya’s makes an implicit separation between mathemat-
ics and everyday affairs. But nowadays, in many different ways, for many different
kinds of people, mathematics blends into every-day affairs. In these situations, the
dominance of plausible over demonstrative reasoning applies even to mathematics
itself, as in the daily labors of numerical analysts, applied mathematicians, design
engineers. . .. Controlling a rocket trip to the moon is not an exercise in mathemati-
cal rigor. It relies on a lack of malice on the part of that Being referred to by Albert
Einstein as der lieber Gott.

(For fear of misunderstanding, I explain—this is not a confession of belief in a
Supreme Being. It’s just Einstein’s poetic or metaphoric way of saying, Nature is
not an opponent consciously trying to trick us.)

But it’s not only that we have no choice in the matter. It’s also that, to tell the
truth, it seems perfectly reasonable! Believing what the computation tells us is just
what people have been doing all along, and (nearly always) it does seem to be OK.
What’s wrong with that?

This kind of reasoning is sometimes called “plausible”, and sometimes called
“intuitive”. I will say a little more about those two words pretty soon. But I want
to draw your attention very clearly to two glaring facts about this kind of plausible
or intuitive reasoning. First of all, it is pretty much the kind of reasoning that we
are accustomed to in ordinary empirical science, and in technology, and in fact in
everyday thinking, dealing with any kind of practical or realistic problem of human
life. Secondly, it makes no claim to be demonstrative, or deductive, or conclusive,
as is often said to be the essential characteristic of mathematical thinking. We are
face to face with mathematical knowledge that is not different in kind from ordinary
everyday commonplace human knowledge. Fallible! But knowledge, nonetheless!

Never mind the pretend doubt of philosophical skepticism. We are adults, not
infants. Human adults know a lot! How to find their way from bed to breakfast-and
people’s names and faces—and so forth and so on. This is real knowledge. It is not
infallible, not eternal, not heavenly, not Platonic, it is just what daily life depends on,
that’s all. That’s what I mean by ordinary, practical, everyday knowledge. Based not
mainly on rigorous demonstration or deduction, but mainly on experience properly
interpreted. And here we see mathematical knowledge that is of the same ordinary,
everyday kind, based not on infallible deduction, but on fallible, plausible, intuitive
thinking.

Then what justifies it in a logical sense? That is, what fundamental presupposition
about the world, about reality, lies behind our willingness to commit this logical
offense, of believing what isn’t proved?
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I have already quoted the famous saying of Albert Einstein that supplies the key
to unlocking this paradox. My friend Peter Lax supplied the original German, I only
remembered the English translation.

Raffinniert ist der lieber Gott, aber boshaft ist Er nicht.
The Lord God is subtle, but He is not malicious.

Of course, Einstein was speaking as a physicist struggling to unravel the secrets of
Nature. The laws of Nature are not always obvious or simple, they are often subtle.
But we can believe, we must believe, that Nature is not set up to trick us, by a
malicious opponent. God, or Nature, must be playing fair. How do we know that?
We really don’t know it, as a matter of certainty! But we must believe it, if we seek
to understand Nature with any hope of success. And since we do have some success
in that search, our belief that Nature is subtle but not malicious is justified.

This problem of inferring generalizations from specific instances is known in
logic as “the problem of induction”. My purpose is to point out that such general-
izations in fact are made, and must be made, not only in daily life and in empirical
science, but also in mathematics.

That is, in the practice of mathematics also we must believe that we are not
dealing with a malicious opponent who is seeking to trick us. We experiment, we
calculate, we draw diagrams. And eventually, using caution and the experience of
the ages, we see the light. Gauss famously said, “I have my theorems. Now I have
to find my proofs”.

But is it not naive, for people who have lived through the hideous twentieth cen-
tury, to still hope that God is not malicious? Consider, for example, people who for
thousands of years have lived safely on some atoll in the South Pacific. Today an
unforeseen tsunami drowns them all. Might they not curse God in their last breath?

Here is an extensive quote from Leonhard Euler, by way of George Pélya. Euler
is speaking of a certain beautiful and surprising regularity in the sum of the divisors
of the integers.

This law, which I shall explain in a moment, is in my opinion, so much more
remarkable as it is of such a nature that we can be assured of its truth without
giving it a perfect demonstration. Nevertheless, I shall present such evidence
for it as might be regarded as almost equivalent to a rigorous demonstration. . .
Anybody can satisfy himself of its truth by as many examples as he may wish
to develop. And since I must admit that I am not in a position to give it a
rigorous demonstration, I will justify it by a sufficiently large number of ex-
amples. .. I think these examples are sufficient to discourage anyone from
imagining that it is by mere chance that my rule is in agreement with the
truth. .. The examples that I have just developed will undoubtedly dispel any
qualms which we might have had about the truth of my formula... It seems
impossible that the law which has been discovered to hold for 20 terms, for
example, would not be observed in the terms that follow.

(Taken from [19].)
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Observe two things about this quote from Euler. First of all, for him the plausible
reasoning in this example is so irresistible that it leaves no room for doubt. He is
certain that anyone who looks at his examples is bound to agree. Yet secondly, he
strongly regrets his inability to provide a demonstration of the fact, and still hopes
to find one.

But since he is already certain of the truth of his finding, why ask for a demon-
strative proof? The answer is easy, for anyone familiar with mathematical work.
The demonstration would not just affirm the truth of the formula, it would show
why the formula MUST be true. That is the main importance of proof in mathemat-
ics! A plausible argument, relying on examples, analogy and induction, can be very
strong, can carry total conviction. But if it is not demonstrative, it fails to show why
the result MUST be true. That is to say, it fails to show that it is rigidly connected
to established mathematics.

At the head of Chap. V of [19], Pélya placed the following apocryphal quotation,
attributed to “the traditional mathematics professor’:

“When you have satisfied yourself that the theorem is true, you start proving it”.

This faith—that experience is not a trap laid to mislead us—is the unstated ax-
iom. It lets us believe the numbers that come out of our calculations, including the
canned programs that engineers use every day as black boxes. We know that it can
sometimes be false. But even as we keep possible tsunamis in mind, we have no
alternative but to act as if the world makes sense. We must continue to act on the
basis of our experience. (Including, of course, experiences of unexpected disasters.)

Consider this recollection of infantile mathematical research by the famous
physicist Freeman Dyson, who wrote in 2004:

One episode I remember vividly, I don’t know how old I was; I only know
that I was young enough to be put down for an afternoon nap in my crib...
I didn’t feel like sleeping, so I spent the time calculating. I added one plus a
half plus a quarter plus an eighth plus a sixteenth and so on, and I discovered
that if you go on adding like this forever you end up with two. Then I tried
adding one plus a third plus a ninth and so on, and discovered that if you go on
adding like this forever you end up with one and a half. Then I tried one plus
a quarter and so on, and ended up with one and a third. So I had discovered
infinite series. I don’t remember talking about this to anybody at the time. It
was just a game I enjoyed playing.

Yes, he knew the limit! How did he know it? Not the way we teach it in high school
(by getting an exact formula for the sum of n terms of a geometric sequence, and
then proving that as n goes to infinity, the difference from the proposed limit be-
comes and remains arbitrarily small.) No, just as when we first show this to tenth-
graders, he saw that the sums follow a simple pattern that clearly is “converging”
to 2. The formal, rigorous proof gives insight into the reason for a fact we have
already seen plainly.
Can we go wrong this way? Certainly we can. Another quote from Euler.
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There are even many properties of the numbers with which we are well ac-
quainted, but which we are not yet able to prove; only observations have led
us to their knowledge. . ., the kind of knowledge which is supported only by
observations and is not yet proved must be carefully distinguished from the
truth; it is gained by induction, as we usually say. Yet we have seen cases in
which mere induction led to error. Therefore, we should take great care not to
accept as true such properties of the numbers which we have discovered by
observation and which are supported by induction alone. Indeed, we should
use such a discovery as an opportunity to investigate more exactly the proper-
ties discovered and to prove or disprove them. (In [19], p. 3.)

Notice how Euler distinguishes between “knowledge” and “truth”! He does say
“knowledge”, not mere “conjecture”.

There is a famous theorem of Littlewood concerning a pair of number-theoretic
functions 7 (x) and Li(x). All calculation shows that Li(x) is greater than 7 (x), for
x as large as we can calculate. Yet Littlewood proved that eventually 7 (x) becomes
greater than Li(x), and not just once, but infinitely often! Yes, mathematical truth
can be very subtle. While trusting it not to be malicious, we must not underesti-
mate its subtlety. (;r (x) is the prime counting function and Li(x) is the logarithmic
integral function.)

3 Mathematical Intuition

We are concerned with “the philosophy of mathematical practice”. Mathematical
practice includes studying, teaching and applying mathematics. But I suppose we
have in mind first of all the discovery and creation of mathematics-mathematical
research. We start with Jacques Hadamard, go on to Henri Poincaré, move on to
George Pdlya, and then to John Dewey.

Hadamard had a very long life and a very productive career. His most noted
achievement (shared independently by de la Vallée Poussin) was proving the log-
arithmic distribution of the prime numbers. I want to recall a famous remark of
Hadamard’s. “The object of mathematical rigor is to sanction and legitimize the
conquests of intuition, and there never was any other object for it.” (See [20].)

From the viewpoint of standard “philosophy of mathematics”, this is a very sur-
prising, strange remark. Isn’t mathematical rigor-that is, strict deductive reasoning-
the most essential feature of mathematics? And indeed, what can Hadamard even
mean by this word, “intuition”? A word that means one thing to Descartes, another
thing to Kant. I think the philosophers of mathematics have pretty unanimously
chosen to ignore this remark of Hadamard. Yet Hadamard did know a lot of math-
ematics, both rigorous and intuitive. And this remark was quoted approvingly by
both Borel and Pdlya. It seems to me that this bewildering remark deserves to be
taken seriously.

Let’s pursue the question a step further, by recalling the famous essay Mathemat-
ical Discovery, written by Hadamard’s teacher, Henri Poincaré, cf. [16]. Poincaré
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was one of the supreme mathematicians of the turn of the nineteenth and twentieth
century. We’ve been hearing his name recently, in connection with his conjecture on
the 3-sphere, just recently proved by Grisha Perelman of St. Petersburg. Poincaré
was not only a great mathematician, he was a brilliant essayist. And in the essay
Mathematical Discovery, Poincaré makes a serious effort to explain mathematical
intuition. He tells the famous story of how he discovered the Fuchsian and Theta-
Fuchsian functions. He had been struggling with the problem unsuccessfully when
he was distracted by being called up for military service:

At this moment I left Caén, where I was then living, to take part in a geological
conference arranged by the School of Mines. The incidents of the journey
made me forget my mathematical work. When we arrived at Coutances, we
got into a bus to go for a drive, and, just as I put my foot on the step the idea
came to me, though nothing in my former thoughts seemed to have prepared
me for it, that the transformations I had used to define Fuchsian functions
were identical with those of non-Euclidean geometry. I made no verification,
and had no time to do so, since I took up the conversation again as soon as I
had sat down in the bus, but I felt absolute certainty at once. When I got back
to Caén, I verified the result at my leisure to satisfy my conscience. (Cf. [16].)

What a perfect example of rigor “merely legitimizing the conquests of intuition™!
How does Poincaré explain it? First of all, he points out that some sort of subcon-
scious thinking must be going on. But if it is subconscious, he presumes it must be
running on somehow at random. How unlikely, then, for it to find one of the very
few good combinations, among the huge number of useless ones! To explain further,
he writes:

If I may be permitted a crude comparison, let us represent the future elements
of our combinations as something resembling Epicurus’ hooked atoms. When
the mind is in complete repose these atoms are immovable; they are, so to
speak, attached to the wall... On the other hand, during a period of apparent
repose, but of unconscious work, some of them are detached from the wall
and set in motion. They plough through space in all directions, like a swarm
of gnats, for instance, or, if we prefer a more learned comparison, like the
gaseous molecules in the kinetic theory of gases. Their mutual impacts may
then produce new combinations. (Cf. [16].)

The preliminary conscious work “detached them from the wall”. The mobilized
atoms, he speculated, would therefore be “those from which we might reasonably
expect the desired solution... My comparison is very crude, but I cannot well see
how I could explain my thought in any other way”. (Cf. [16].)

What can we make of this picture of “Epicurean hooked atoms”, flying about
somewhere-in the mind? A striking, suggestive image, but one not subject even in
principle to either verification or disproof. Our traditional philosopher remains little
interested. This is fantasy or poetry, not science or philosophy. But this is Poincaré!
He knows what he’s talking about. He has something important to tell us. It’s not
easy to understand, but let’s take him seriously, too.
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To be fair, Poincaré proposed his image of gnats or gas molecules only after
mentioning the possibility that the subconscious is actually more intelligent than
the conscious mind. But this, he said, he was not willing to contemplate. However,
other writers have proposed that the subconscious is less inhibited, more imagina-
tive, more creative than the conscious. (Poincaré’s essay title is sometimes translated
as Mathematical Creation rather than Mathematical Discovery.) David Hilbert sup-
posedly once said of a student who had given up mathematics for poetry, “Good! He
didn’t have enough imagination for mathematics”. Hadamard [12] in 1949 carefully
analyzed the role of the subconscious in mathematical discovery and its connection
with intuition. It is time for contemporary cognitive psychology to pay attention to
Hadamard’s insights. See the reference quoted in the Appendix about current scien-
tific work on the creative power of the subconscious.

Before going on, I want to mention the work of Carlo Cellucci, Emily Grosholz,
and Andrei Rodin. Cellucci strongly favors plausible reasoning, but he rejects intu-
ition. However, the intuition he rejects isn’t what I'm talking about. He’s rejecting
the old myth, of an infallible insight straight into the Transcendental. Of course,
I’'m not advocating that outdated myth. Emily Grosholz, on the other hand, takes
intuition very seriously. Her impressive historical study of what she calls “internal
intuition” is in the same direction as my own thinking being presented here. Andrei
Rodin has recently written a remarkable historical study of intuition, see [24]. He
shows that intuition played a central role in Lobachevski’s non-Euclidean geometry,
in Zermelo’s axiomatic set theory, and even in up-to-date category theory. (By the
way, in category theory he could also have cited the standard practice of proof by
“diagram chasing” as a blatant example of intuitive, visual proof.) His exposition
makes the indispensable role of intuition clear and convincing. But his use of the
term “intuition” remains, one might say, “intuitive”, for he offers no definition of
the term, nor even a general description, beyond his specific examples.

4 Polya

My most helpful authority is George Pélya. I actually induced Pélya to come give
talks in New Mexico, for previously, as a young instructor, I had met him at Stan-
ford where he was an honored and famous professor. P6lya was not of the stature
of Poincaré or Hilbert, but he was still one of the most original, creative, versa-
tile, and influential mathematicians of his generation. His book with Gabor Szego
[21] made them both famous. It expounds large areas of advanced analytic func-
tion theory by means of a carefully arranged, graded sequence of problems with
hints and solutions. Not only does it teach advanced function theory, it also teaches
problem-solving. And by example, it shows how to teach mathematics by teaching
problem-solving. Moreover, it implies a certain view of the nature of mathematics,
so it is a philosophical work in disguise.

Later, when Pélya wrote his very well-known, influential books on mathematical
heuristic, he admitted that what he was doing could be regarded as having philo-
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sophical content. He writes, “I do not know whether the contents of these four chap-
ters deserve to be called philosophy. If this is philosophy, it is certainly a pretty
low-brow kind of philosophy, more concerned with understanding concrete exam-
ples and the concrete behavior of people than with expounding generalities”. (Cf.
[19], page viii.) Unpretentious as Pélya was, he was still aware of his true stature in
mathematics. I suspect he was also aware of the philosophical depth of his heuristic.
He played it down because, like most mathematicians (I can only think of one or
two exceptions), he disliked controversy and arguing, or competing for the goal of
becoming top dog in some cubbyhole of academia. The Prince of Mathematicians,
Carl Friedrich Gauss, kept his monumental discovery of non-Euclidean geometry
hidden in a desk drawer to avoid stirring up the Beeotians, as he called them, mean-
ing the post-Kantian German philosophy professors of his day. (In ancient Athens,
“Beeotian” was slang for “ignorant country hick”.) Raymond Wilder was a leading
topologist who wrote extensively on mathematics as a culture. He admitted to me
that his writings implicitly challenged both formalism and Platonism. “Why not say
s0?” I asked. Because he didn’t relish getting involved in philosophical argument.

Well, how does Pélya’s work on heuristic clarify mathematical intuition? Pélya’s
heuristic is presented as pedagogy. Pélya is showing the novice how to solve prob-
lems. But what is “solving a problem”? In the very first sentence of the preface
to [20], he writes: “Solving a problem means finding a way out of a difficulty, a way
around an obstacle, attaining an aim which was not immediately attainable. Solving
problems is the specific achievement of intelligence, and intelligence is the specific
gift of mankind: solving problems can be regarded as the most characteristically
human activity”. “Problem” is simply another word for any project or enterprise
which one cannot immediately take care of with the tools at hand. In mathematics,
something more than a mere calculation. Showing how to solve problems amounts
to showing how to do research!

Pélya’s exposition is never general and abstract, he always uses a specific math-
ematical problem for the heuristic he wants to teach. His mathematical examples
are always fresh and attractive. And his heuristic methods? First of all, there is what
he calls “induction”. That is, looking at examples, as many as necessary, and using
them to guess a pattern, a generalization. But be careful! Never just believe your
guess! He insists that you must “Guess and test, guess and test”. Along with induc-
tion, there is analogy, and there is making diagrams, graphs and every other kind
of picture, and then reasoning or guessing from the picture. And finally, there’s the
“default hypothesis of chance”—that an observed pattern is mere coincidence.

(Mark Steiner has the distinction among philosophers of paying serious atten-
tion to Pélya. After quoting at length from Pdlya’s presentation of Euler’s heuristic
derivation of the sum of a certain infinite series, Steiner comes to an important con-
clusion: In mathematics we can have knowledge without proof! Based on the testi-
mony of mathematicians, he even urges philosophers to pay attention to the question
of mathematical intuition.)

I have two comments about Pélya’s heuristic that I think he would have accepted.
First of all, the methods he is presenting, by means of elementary examples, are
methods he used himself in research. “In fact, my main source was my own re-
search, and my treatment of many an elementary problem mirrors my experience
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with advanced problems”. (Cf. [20], page xi.) In teaching us how to solve prob-
lems, he’s teaching us about mathematical practice: How it works. What is done. To
find out “What is mathematics?” we must simply reinterpret Pélya’s examples as
descriptive rather than pedagogical.

Secondly, with hardly any stretching or adjustment, the heuristic devices that he’s
teaching can be applied for any other kind of problem-solving, far beyond mathe-
matics. He actually says that he is bringing to mathematics the kind of thinking
ordinarily associated with empirical science. But we can go further. These ways of
thinking are associated with every kind of problem-solving, in every area of human
life! Someone needed to get across a river or lake and had the brilliant idea of “a
boat”—whether it was a dugout log or a birch bark canoe. Someone else, needing
shelter from the burning sun in the California Mojave, thought of digging a hole in
the ground. And someone else, under the piercing wind of northern Canada, thought
of making a shelter from blocks of ice.

How does anyone think of such a thing, solve such a concrete problem? By some
kind of analogy with something else he has seen, or perhaps been told about. By
plausible thinking. And often by a sudden insight that arises “from below”. Intu-
itively, you might say.

5 Mental Models

It often happens that a concrete problem, whether in science or in ordinary daily
life, is pressing on the mind, even when the particular materials or objects in ques-
tion are not physically present. You keep on thinking about it, while you’re walking,
and when you’re waking from sleep. Productive thought commonly takes place, in
the absence of the concrete objects or materials being thought about. This think-
ing about something not present to sight or touch can be called “abstract think-
ing”. Abstract thinking about a concrete object. How does that work? How can our
mind/brain think productively about something that’s not there in front of the eyes?
Evidently, it operates on something mental, what we may call a mental image or
representation. In the current literature of cognitive psychology, one talks about “a
mental model”. In this article, I use the term “mental model” to mean a mental
structure built from recollected facts (some expressed in words), along with an en-
semble of sensory memories, perhaps connected, as if by walking around the object
in question, or by imagining the object from underneath or above, even if never ac-
tually seen in these views. A rich complex of connected knowledge and conjecture
based on verbal, visual, kinesthetic, even auditory or olfactory information, but sim-
plified, to exclude irrelevant details. Everything that’s helpful for thinking about the
object of interest when the object isn’t here. Under the pressure of a strong desire or
need to solve a specific problem, we assemble a mental model which the mind-brain
can manipulate or analyze.

Subconscious thinking is not a special peculiarity of mathematical thinking, but a
common, taken-for-granted, part of every-day problem-solving. When we consider
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this commonplace fact, we aren’t tempted to compare it to a swarm of gnats hook-
ing together at random. No, we assume, as a matter of course, that this subconscious
thinking follows rules, methods, habits or pathways, that somehow, to some extent,
correspond to the familiar plausible thinking we do when we’re wide awake. Such
as thinking by analogy or by induction. After all, if it is to be productive, what else
can it do? If it had any better methods, then those better methods would also be
what we would follow in conscious thinking! And subconscious thinking in math-
ematics must be much like subconscious thinking in any other domain, carrying on
plausible reasoning as enunciated by various writers, above all by George Pdlya.
This description of subconscious thinking is not far from Michael Polanyi’s “tacit
dimension”.

When applied to everyday problem solving, all this is rather obvious, perhaps
even banal. My goal is to clarify mathematical intuition, in the sense of Hadamard
and Poincaré. “Intuition” in the sense of Hadamard and Poincaré is a fallible psycho-
logical experience that has to be accounted for in any realistic philosophy of math-
ematics. It simply means guesses or insights attained by plausible reasoning, either
fully conscious or partly subconscious. In this sense, it is a specific phenomenon
of common experience. It has nothing to do with the ancient mystical myth of an
intuition that surpasses logic by making a direct connection to the Transcendental.

The term “abstract thinking” is commonplace in talk about mathematics. The
triangle, the main subject of Euclidean geometry, is an abstraction, even though it’s
idealized from visible triangles on the blackboard. Thinking of a physical object
in its absence, like a stream to be crossed or a boat to be imagined and then built,
is already “abstract” thinking, and the word “abstract” connects us to the abstract
objects of mathematics.

Let me be as clear and simple as I can be about the connection. After we have
some practice drawing triangles, we can think about triangles, we discover proper-
ties of triangles. We do this by reasoning about mental images, as well as images
on paper. This is already abstract thinking. When we go on to regular polygons
of arbitrarily many sides, we have made another departure. Eventually, we think
of the triangle as a 2-simplex, and abstract from the triangle to the n-simplex. For
n = 3 this is just the tetrahedron, but for n =4, 5, or 6, it is something never yet
seen by human eye. Yet these higher simplexes also can become familiar and, as it
were, concrete-seeming. If we devote our waking lives to thinking about them, then
we have some kind of “mental model” of them. Having this mental model, we can
access it, and thereby we can reason intuitively-have intuitive insights-by which I
mean simply insights not based on consciously known reasoning. An “intuition” is
then simply a belief (possibly mistaken!) arising from internal inspection of a mental
image or representation—a “model”. It may be assisted by subconscious plausible
reasoning, based on the availability of that mental image. We do this in practical
life. We do it in empirical science, and in mathematics. In empirical science and
ordinary life, the image may stand for either an actual object, a physical entity, or a
potential one that could be realized physically. In mathematics, our mental model is
sometimes idealized from a physical object-for example, from a collection of iden-
tical coins or buttons when we’re thinking about arithmetic. But in mathematics we



Mathematical Intuition: Poincaré, Pélya, Dewey 23

also may possess a mental model with no physical counterpart. For example, it is
generally believed that Bill Thurston’s famous conjectures on the classification of
four-manifolds were achieved by an exceptional ability, on the part of Thurston, to
think intuitively in the fourth dimension. Perhaps Grisha Perelman was also guided
by some four-dimensional intuition, in his arduous arguments and calculations to
prove the Thurston program.

To summarize, mathematical intuition is an application of conscious or subcon-
scious heuristic thinking of the same kind that is used every day in ordinary life by
ordinary people, as well as in empirical science by scientists. This has been said be-
fore, by both Hadamard and Pélya. In fact, this position is similar to Kurt Godel’s,
who famously wrote, “I don’t see any reason why we should have less confidence
in this kind of perception, i.e., in mathematical intuition, than in sense perception”.
Why, indeed? After all, both are fallible, but both are plausible, and must be based
on plausible reasoning.

For Godel, however, as for every writer in the dominant philosophy of mathe-
matics, intuition is called in only to justify the axioms. Once the axioms are written
down, the role of mathematical intuition is strictly limited to “heuristic”—to formu-
lating conjectures. These await legitimation by deductive proof, for only deductive
proof can establish “certainty”. Indeed, this was stated as firmly by Pdlya as by any
analytic philosopher. But what is meant by “mathematical certainty”? If it simply
means deductive proof, this statement is a mere circular truism. However, as I meant
to suggest by the little dialog at the beginning of this paper, there is also practical
certainty, even within mathematics! We are certain of many things in ordinary daily
life, without deductive proof, and this is also the case in mathematics itself. Prac-
tical certainty is a belief strong enough to lead to serious practical decisions and
actions. For example, we stake our lives on the numerical values that went into the
engineering design of an Airbus or the Golden Gate Bridge. Mainstream philoso-
phy of mathematics does not recognize such practical certainty. Nevertheless, it is
an undeniable fact of life.

It is a fact of life not only in applied mathematics but also in pure mathematics.
For example, the familiar picture of the Mandelbrot set, a very famous bit of re-
cent pure mathematics, is generated by a machine computation. By definition, any
particular point in the complex plane is inside the Mandelbrot set if a certain as-
sociated iteration stays bounded. If that iteration at some stage produces a number
with absolute value greater than two, then, from a known theorem, we can conclude
that the iteration goes to infinity, and the parameter point in question is outside the
Mandelbrot set. What if the point is inside the Mandelbrot set? No finite number
of iterations in itself can guarantee that the iteration will never go beyond absolute
value 2. If we do eventually decide that it looks like it will stay bounded, we may be
right, but we are still cheating. This decision is opportunistic and unavoidable, just
as in an ordinary calculation about turbulent flow.

Computation (numerics) is accepted by purists only as a source of conjectures
awaiting rigorous proof. However, from the pragmatic, non-purist viewpoint, if nu-
merics is our guide to action, then it is in effect a source of knowledge. Dewey called
it “warranted assertibility”. (Possibly even a “truth”. A “truth” that remains open to
possible reconsideration.)
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Fig.1 400 million polynomial roots

Another example from pure mathematics appeared on John Baez’s blog ([1])
where it is credited to Sam Derbyshire. His pictures plot the location in the complex
plane of the roots of all polynomials of degree 24 with coefficients plus one or
minus one. The qualitative features of these pictures are absolutely convincing—
i.e., impossible to disbelieve. Baez wrote, “That’s 224 polynomials, and about 24 x
224 roots—or about 400 million roots! It took Mathematica 4 days to generate the
coordinates of the roots, producing about 5 gigabytes of data”. (Figure 1 shows the
part of the plot in the first quadrant, for complex roots with non-negative real and
imaginary parts.)

There is more information in this picture than can even be formulated as conjec-
tures, let alone seriously attacked with rigor. Since indeed we cannot help believing
them (perhaps only believing with 99.999 % credence) then (pragmatically) we give
them “warranted assertibility”, just like my belief that I can walk out my door with-
out encountering sudden death in one form or another. The distinction between rig-
orous math and plausible math, pure math and applied math, etc., becomes blurred.
It is still visible, certainly, but not so sharp. It’s a little fuzzy. Purely computational
results in pure mathematics, when backed up by sophisticated checking against a
relevant theory, have a factual status similar to that of accepted facts from empirical
science. The distinction between what is taken to be “known”, and what is set aside
as merely guessed or “conjectured,” is not so cut and dried as the usual discussions
claim to believe.
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6 Mental Models Subject to Social Control

“Plausible” or “heuristic” thinking is applied, either consciously or subconsciously,
to mental models. These mental models may correspond to tangible or visible phys-
ical objects in ordinary life and empirical science. Or they may not correspond to
any such things, but may be pure mental representations, as in much of contempo-
rary analysis, algebra, and even geometry. By pure mental models I mean models
not obtained directly by idealization of visual or other sensual experience.

But what controls these mental models? If they have no physical counterpart,
what keeps them from being wildly idiosyncratic and incommunicable? What we
have omitted up to this point, and what is the crux of the matter: mathematical im-
ages are not private, individual entities. From the origin of mathematics in bartering,
buying and selling, or in building the Parthenon and the Pyramids, this subject has
always been a social, an “inter-subjective” activity. Its advances and conquests have
always been validated, corrected and absorbed in a social context-first of all, in the
classroom. Mathematicians can and must talk to each other about their ideas. One
way or the other, they do communicate, share and compare their conceptions of
mathematical entities, which means precisely these models, these images and rep-
resentations I have been describing. Discrepancies are recognized and worked out,
either by correcting errors, reconciling differences, or splitting apart into different,
independent pathways. Appropriate terminology and symbols are created as needed.

Mathematics depends on a mutually acknowledging group of competent prac-
titioners, whose consensus decides at any time what is regarded as correct or in-
correct, complete or incomplete. That is how it always worked, and that is how it
works today. This was made very clear by the elaborate process in which Perel-
man’s proposed proof of the Thurston program (including the Poincaré conjecture)
was vetted, examined, discussed, criticized, and finally accepted by the “Ricci flow
community”, and then by its friends in the wider communities of differential geom-
etry and low-dimensional topology, and then by the prize committees of the Fields
Medal and the Clay Foundation.

Thus, when we speak of a mathematical concept, we speak not of a single iso-
lated mental image, but rather of a family of mutually correcting mental images.
They are privately owned, but publicly checked, examined, corrected, and accepted
or rejected. This is the role of the mathematical research community, how it in-
doctrinates and certifies new members, how it reviews, accepts or rejects proposed
publication, how it chooses directions of research to follow and develop, or to ig-
nore and allow to die. All these social activities are based on a necessary condition:
that the individual members have mental models that fit together, that yield the same
answers to test questions. A new branch of mathematics is established when consen-
sus is reached about the possible test questions and their answers. That collection
of possible questions and answers (not necessarily explicit) becomes the means of
accepting or rejecting proposed new members.

If two or three mathematicians do more than merely communicate about some
mathematical topic, but actually collaborate to dig up new information and under-
standing about it, then the matching of their mental models must be even closer.
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They may need to establish a congruence between their subconscious thinking about
it as well as their conscious thinking. This can be manifested when they are working
together, and one speaks the very thought that the partner was about to speak.

And to the question
“What is mathematics?”

the answer is ) ) ) )
“It is socially validated reasoning about these

mutually congruent mental models”.

What makes mathematics possible? It is our ability to create mental models which
are “precise”, meaning simply that they are part of a shared family of mutually
congruent models. In particular, such an image as a line segment, or two intersecting
line segments, and so on. Or the image of a collection of mutually interchangeable
identical objects (ideal coins or buttons). And so on. To understand better how that
ability exists, both psychologically and neurophysiologically, is a worthy goal for
empirical science. The current interactive flowering of developmental psychology,
language acquisition, and cognitive neuroscience shows that this hope is not without
substance. (See, e.g., [2, 6, 13, 14, 26, 27].)

The existence of mathematics shows that the human mind is capable of creat-
ing, refining, and sharing such precise concepts, which admit of reasoning that can
be shared, mutually checked, and confirmed or rejected. There are great variations
in the vividness, completeness, and connectivity of different mental images of the
“same” mathematical entity as held by different mathematicians. And also great
variations in their ability to concentrate on that image and squeeze out all of its hid-
den information. Recall that well-known mathematician, Sir Isaac Newton. When
asked how he made his discoveries in mathematics and physics, he answered sim-
ply, “By keeping the problem constantly before my mind, until the light gradually
dawns”. Indeed, neither meals nor sleep were allowed to interrupt Newton’s con-
centration on the problem. Mathematicians are notoriously absent-minded. Their
concentration, which outsiders call “absent-mindedness”, is just the open secret of
mathematical success.

Their reasoning is qualitatively the same as the reasoning carried out by a hunter
tracking a deer in the Appalachian woodland a thousand years ago. “If the deer went
to the right, I would see a hoof print here. But I don’t see it. There’s only one other
way he could have gone. So he must have gone to the left”. Concrete deductive
reasoning, which is the basis for abstract deductive reasoning.

To sum up! I have drawn a picture of mathematical reasoning which claims to
make sense of intuition according to Hadamard and Poincaré, and which interprets
Polya’s heuristic as a description of ordinary practical reason, applied to the abstract
situations and problems of mathematics, working on mental models in the same way
that ordinary practical reasoning in absentia works on a mental model. (We may
assist our mental images by creating images on paper-drawing pictures-that to some
extent capture crucial features of the mental images.)
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7 Dewey and Pragmatism

Before bringing in John Dewey, the third name promised at the beginning, I must
first mention Dewey’s precursor in American pragmatism, Charles Sanders Peirce,
for Peirce was also a precursor to Pélya. To deduction and induction, Peirce added
a third logical operation, “abduction”, something rather close to Pélya’s “intelligent
guessing”.

The philosophy of mathematics as practiced in many articles and books is a thing
unto itself, hardly connected either to living mathematics or to general philoso-
phy. But how can it be claimed that the nature of mathematics is unrelated to the
general question of human knowledge? There has to be a fit between your beliefs
about mathematics and your beliefs about science and about the mind. I claim that
Dewey’s pragmatism offers the right philosophical context for the philosophy of
mathematical practice to fit into. I am thinking especially of Logic—the Theory of
Inquiry. For Dewey, “inquiry” is conceived very broadly and inclusively. It is “the
controlled or directed transformation of an indeterminate situation into one that is
so determinate in its constituent distinctions and relations as to convert the elements
of the original situation into a unified whole”. So broadly understood, inquiry is one
of the primary attributes of our species. Only because of that trait have we survived,
after we climbed down from the trees. I cannot help comparing Dewey’s defini-
tion of inquiry with Pélya’s definition of problem solving. It seems to me they are
very much pointing in the same direction, taking us down the same track. With the
conspicuous difference that, unlike Dewey, Pélya is concise and memorable.

Dewey makes a radical departure from standard traditional philosophy (following
on from his predecessors Peirce and William James, and his contemporary George
Herbert Mead). He does not throw away the concept of truth, but he gives up the
criterion of truthfulness, as the judge of useful or productive thinking. Immanuel
Kant made clear once and for all that while we may know the truth, we cannot know
for certain that we do know it. We must perforce make the best of both demonstra-
tive and plausible reasoning. This seems rather close to “warranted assertibility”, as
Dewey chooses to call it. But Pélya or Poincaré are merely talking about mathemat-
ical thinking, Dewey is talking about human life itself.

What about deductive thinking? From Dewey’s perspective of “warranted as-
sertibility”, deductive proof is not a unique, isolated mode of knowledge. A hunter
tracking a deer in the North American woodland a thousand years ago concluded,
“So it must have gone to the left”. Concrete deductive reasoning, the necessary basis
of theoretical deductive reasoning. And it never brings certainty, simply because any
particular deductive proof is a proof in practice, not in principle. Proof in practice is
a human artifact, and so it can’t help leaving some room for possible question, even
possible error. (And that remains true of machine proof, whether by analog, digital,
or quantum computer. What changes is the magnitude of the remaining possible er-
ror and doubt, which can never vanish finally.) In this way, we take our leave, once
and for all, of the Platonic ideal of knowledge-indubitable and unchanging-in favor,
one might say, of an Aristotelian view, a scientific and empirical one. And while de-
ductive proof becomes human and not divine or infallible, non-deductive plausible
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reasoning and intuition receive their due as a source of knowledge in mathematics,
just as in every other part of human life. Dewey’s breadth of vision—seeing philoso-
phy always in the context of experience, that is to say, of humanity at large—brings
a pleasant breath of fresh air into this stuffy room.

Nicholas Rescher writes in [23]:

The need for understanding, for “knowing one’s way about”, is one of the
most fundamental demands of the human condition... Once the ball is set
rolling, it keeps on going under its own momentum-far beyond the limits of
strictly practical necessity... The discomfort of unknowing is a natural as-
pect of human sensibility. To be ignorant of what goes on about us is almost
physically painful for us... The requirement for information, for cognitive
orientation within our environment, is as pressing a human need as for food
itself.

The need for understanding is often met by a story of some kind. In our scientific
age, we expect a story built on a sophisticated experimental-theoretical method-
ology. In earlier times, no such methodology was available, and a story might be
invented in terms of gods or spirits or ancestors. In inventing such explanations,
whether in what we now call mythology or what we now call science, people have
always been guided by a second fundamental drive or need. Rescher does not men-
tion it, but Dewey does not leave it out. That is the need to impart form, beauty,
appealing shape or symmetry to our creations, whether they be straw baskets, clay
pots, wooden spears and shields, or geometrical figures and algebraic calculations.
In Art as Experience, Dewey shows that the esthetic, the concern for pleasing form,
for symmetry and balance, is also an inherent universal aspect of humanity. In math-
ematics, this is no less a universal factor than the problem-solving drive. In Math-
ematical Discovery, Poincaré takes great pains to emphasize the key role of es-
thetic preference in the development of mathematics. We prefer the attractive look-
ing problems to work on, we strive for diagrams and graphs that are graceful and
pleasing. Every mathematician who has talked about the nature of mathematics has
portrayed it as above all an art form. So this is a second aspect of pragmatism that
sheds light on mathematical practice.

Rescher’s careful development omits mathematical knowledge and activity. And
Dewey himself doesn’t seem to have been deeply interested in the philosophy of
mathematics, although there are interesting pages about mathematics in Logic, as
well as in his earlier books The Quest for Certainty and The Psychology of Number.
He may have been somewhat influenced by the prevalent view of philosophy of
mathematics as an enclave of specialists, fenced off both from the rest of philosophy
and from mathematics itself.

But if we take these pragmatist remarks of Rescher’s seriously and compare them
to what mathematicians do, we find a remarkably good fit. Just as people living in
the woodland just naturally want to know and find out about all the stuff they see
growing—what makes it grow, what makes it die, what you can do with it to make
a canoe or a tent—so people who get into the world of numbers, or the world of
triangles and circles, just naturally want to know how it all fits together, and how it
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can be stretched and pulled this way or that. “Guess and test”, is the way George
Pdlya put it. “Proofs and refutations” was the phrase used by another mathemati-
cally trained Hungarian philosopher, following up an investigation started by Pélya.
Whichever way you want to put it, it is nothing more or less than the exploration
of the mathematical environment, which we create and expand as we explore it. We
are manifesting in the conceptual realm one of the characteristic behaviors of homo
sapiens.

Even though we lack claws or teeth to match beasts of prey, or fleetness to
overtake the deer, or heavy fur or a thick shell, we long ago adapted to virtually
every environment on Earth. We invented swimming, paddling and sailing, cook-
ing and brewing and baking and preserving, and we expanded our social groups
from families to clans to tribes to kingdoms to empires. All this by “inquiry”, or
by problem-solving. Dewey shows that this inquiry is an innate specific drive or
need of our species. It was manifested when, motivated by practical concerns, we
invented counting and the drawing of triangles. That same drive, to find projects,
puzzles, and directions for growth, to make distinctions and connections, and then
again make new distinctions and new connections, has resulted in the Empire of
mathematics we inhabit today.
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Appendix

Ap Dijksterhuis and Teun Meurs, Where creativity resides: the generative power
of unconscious thought, Social Psychology Program, University of Amsterdam,
Roetersstraat 15, 1018 WB Amsterdam, The Netherlands, 2004, 2005.

Abstract In three experiments, the relation between different modes of thought
and the generation of “creative” and original ideas was investigated. Participants
were asked to generate items according to a specific instruction (e.g., generate
place names starting with an “A”). They either did so immediately after receiving
the instruction, or after a few minutes of conscious thought, or after a few min-
utes of distraction during which “unconscious thought” was hypothesized to take
place. Throughout the experiments, the items participants listed under “unconscious
thought” conditions were more original. It was concluded that whereas conscious
thought may be focused and convergent, unconscious thought may be more associa-
tive and divergent.
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Three-Dimensional Plasma Arc Simulation
Using Resistive MHD

Rolf Jeltsch and Harish Kumar

Abstract We propose a model for simulating the real gas, high current plasma arc in
three dimensions based on the equations of resistive MHD. These model equations
are discretized using Runge—Kutta Discontinuous Galerkin (RKDG) methods. The
Nektar code is used for the simulation which is extended to include Runge—Kutta
time stepping, accurate Riemann solvers, and real gas data. The model is then shown
to be suitable for simulating a plasma arc by using it to generate a high current
plasma arc. Furthermore, the model is used to investigate the effects of the external
magnetic field on the arc. In particular, it is shown that the external magnetic field
forces the plasma arc to rotate.

Keywords Plasma arc - Resistive Magnetohydrodynamics (MHD) - Runge—Kutta
Discontinuous Galerkin (RKDG) methods

1 Introduction

A circuit breaker is an electrical switch designed to protect electrical circuits from
the damage that can be caused by high fault current or voltage fluctuations. Once a
circuit breaker detects a fault, contacts within the circuit breaker open to interrupt
the circuit. When the fault current is interrupted, a plasma arc is generated. This arc
must be cooled, and extinguished in a controlled way, to protect connected circuits
and the device itself. Hence, plasma arcs provide a safe way of diffusing the energy
of fault current. Consequently, the study of the arc behavior is of great importance
to the power industry.

Many physical phenomena occur during interruption of fault current in the cir-
cuit breaker, e.g., movement of contacts, pressure build up, radiative transfer, con-
vection, heat conduction, melting of contact material, magnetic and electric effects.
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Due to the presence of these wide ranging phenomena, simulation of plasma arc is
a difficult task. To overcome these difficulties, extensive approximations related to
the geometry, description of arc movements, and the influence of magnetic fields on
the plasma arc are made. Several authors propose models for the simulation of the
plasma arc. In [1], authors present a three-dimensional model for arc simulations at
100 A current. In [2], effects of the external magnetic fields and the gas materials
on a three-dimensional high current arc is simulated. However, the position of the
arc root stays the same during temporal evolution and an external magnetic field
is imposed, not calculated. In [3] and [4], the external magnetic field is calculated
using Biot—Savart law, and the arc root is not fixed.

The mathematical models proposed in [1-4] are based on Navier—Stokes equa-
tions for fluid flow and Maxwell’s equations for the electromagnetism which are
solved simultaneously. They are coupled by adding the source terms in momen-
tum balance due to Lorentz force and Joule heating in energy balance equation.
These models, although suitable for small magnetic Reynolds number simulations,
are highly unstable for large magnetic Reynolds number simulations.

In this work, we are interested in developing a mathematical model for a plasma
arc with very high currents (100-200 kA). At these high currents, very high tem-
peratures are expected. This gives rise to a high magnetic Reynolds number (in
particular, close to the contacts). Consequently, we consider a model based on the
equation of resistive magnetohydrodynamics (MHD). We believe that this is the first
time a model based on the resistive MHD has been used to simulate a plasma arc in
three dimensions (see [5-7]).

The equations of resistive magnetohydrodynamics (MHD) govern the evolution
of a quasi-neutral, conductive fluid and the magnetic field within it, neglecting the
magnetization of individual particles, the Hall current, and the time rate of change
of the electric field in Maxwell’s equations. The complete details about these equa-
tions can be found in [8]. Numerical discretization of these equations is a compli-
cated task due to the presence of nonlinearities in the convection flux. In addition to
these difficulties, for the plasma arc simulations we need to consider a complicated
geometry, real gas data for physical parameters, and mixed boundary conditions.

We use Runge—Kutta Discontinuous Galerkin (RKDG) methods for the dis-
cretization of MHD equations. Discontinuous Galerkin (DG) methods were first
introduced by Hill and Reed in [9] for the neutron transport equations. These meth-
ods were then generalized for systems of hyperbolic conservation laws by Cock-
burn, Shu and co-workers (see [10]). In DG methods, the solution in space is ap-
proximated using piecewise polynomials on each element. Exact or approximate
Riemann solvers from finite volume methods are used to compute the numerical
fluxes between elements. Due to the assumed discontinuity of the solution at ele-
ment interfaces, DG methods can easily handle adaptive strategies and can be easily
parallelized.

To simulate a plasma arc in a circuit breaker, we proceed as follows:

1. First, we assume that the domain is filled with hot gas. An arc is imposed between
the contacts by specifying appropriate initial and boundary conditions.
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2. This initial arc is then evolved till a steady state is reached. The principle idea
is that with time, gas will radiate, which will result in temperature reduction
everywhere except where gas is heated by the current in the arc. The resulting
solution is now considered as an actual arc.

3. We then apply the external magnetic field by suitably modifying the magnetic
field and the boundary conditions.

4. We show that using an appropriate external magnetic field it is possible to ma-
nipulate the arc. In particular, we show that the external magnetic field can be
used to force the arc to rotate.

The article is organized as follows: In Section 2, we present the model equations
of resistive MHD in non-dimensional variables. In Section 3, RKDG methods for
resistive MHD equations in three dimensions are described. We present the varia-
tional formulation using a model equation. We then describe the three-dimensional
basis functions for different types of elements. In Section 4, we first present initial
and boundary conditions for arc generations and discuss the simulation results. We
then investigate the effect of external magnetic field on the arc.

2 Equations of Resistive MHD

For non-dimensional conservative variables, the resistive MHD equations are

3
L4V (ov) =0, (1a)
ot

0w | g BB+ (p+ o BR)I- L) =0 (1b)
. vV — — _— =0,
ot P P35 Re
IB 1
— +Vx[(vxB+—(VxB)|=0, (1c)
ot S,
IE 1,
— +V-((E+pv+|=|BI-BB)- v
at 2
. +1 B-VB-V 1|B|2 Lor sT* (1d)
_— -V J— . —_ - —_—— =
Re Sy 2 G,
V.-B=0, (le)
with the equation of state for energy
p 1 2, oo
E=—"+- —|BJ, 2
T 2)

and the stress tensor

T=v(Vv+(V9)') - u%(v V)L 3)
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Here p is the density, v is the velocity, p is the pressure, B is the magnetic field, E is
the total energy, and T is the temperature of the plasma. Equation (1a) is the equation
for the mass conservation. Equations (1b)—(1d) are equations of balance law for the
momentum, the magnetic field, and the total energy, respectively. Equation (le) is
the divergence free condition for the magnetic field, representing non-existence of
magnetic monopoles.

The non-dimensionalization was carried out using the reference length L, the
reference pressure Py, and the reference temperature Ty. Using these parameters,
we use gas data to calculate the reference density pg at temperature 7y and pressure
Py. Furthermore, the reference velocity is calculated using Vo = /Py/po and the
reference magnetic field is calculated using By = +/Ppuo, where pig is magnetic
permeability. The non-dimensional parameters appearing in the above equations are
Reynolds number Re = @, Lundquist number S, = @, Prandlt number

sLoT? ..
90 Here v is viscos-

G, = M, and scaled Stefan’s radiation constant S = VoPo
ity of the fluid, n (= 1/0) is the resistivity of fluid (o is the conductivity of fluid),
k 1is the heat diffusion constant, R is the gas constant at temperature Ty, and y is
the ratio of specific heats. In general, all these quantities depend on the pressure and
temperature. However, we ignore their dependence on pressure. This is due to the
negligible variation in these values due to the pressure change when compared to

the variation due to the temperature change. Also, s is Stefan’s radiation constant.

3 RKDG Methods for Resistive MHD

In this section, we present spatial and temporal discretization of the MHD equations
(1a)—(1e). The spatial discretization is based on DG methods. Note that it is enough
to consider DG methods for the scalar advection—diffusion equation,

du 9 9
2t 2 a—xl_(ﬁ(u)— > a,-jBTju):o, )

1<i<n i<j<n

as we can apply similar spatial discretization to each component of (1a)—(1e). In (4),
fi is convection flux, a;; are diffusion coefficients with the condition that the matrix
(aij)ij is symmetric and semi-positive definite, so there exists a symmetric matrix
(bij) such that

ajj = Z bi]b[j.

I<i<d
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3.1 Variational Formulation

Following [10], we introduce an auxiliary variable ¢; =) . j<n by; aa% and rewrite
=J= J
4) as

u il
o T Z E(ﬁ(u)— Z bilQl) =0, (5a)

I<i<n i<l<n
081
a - Z E:o, forl=1,....n, (5b)
I<j<n
where g;; = f(;‘ bjjds. Wesetw = (u,q1,q2, ..., q,,T), and introduce the flux,
T
hi (w) = (fi ) = X<y Gitqr: —8lis - —8ni) - (6)

Multiplying with a test function and integrating by parts results in

—vudx— Z/ m vudx+/ h (w,m)vydx =0, (7a)

[qlvq,dx— Z/ jarg vq,dx+/ hg,(w,m)vpdx =0.  (7b)

This is the variational formulation which we need to approximate. The flux h(w, n)
is divided into two parts,

A

h= lAlconv + lAldiff7

where convective flux is given by
lAlconv(w_, w+, n) = (f(u+, u l‘l), O)T.

Here f is calculated using exact or approximated Riemann solvers. In these simu-
lations, we use local Lax—Friedrichs numerical flux given by

_ 1 _ max; (max(|A; (u™)], |2 (™)) _
fr(uut) =5 (F7) + f () - == S ),
(8)
where 2; are the eigenvalues of the Jacobian of the MHD convection flux f. We use
Bassi—Rebay flux (see [11]) to approximate the diffusion flux hdlff, i.e., the averages
of diffusion fluxes across the interface.

3.2 Three-Dimensional Basis Functions

The RKDG method we use is implemented in the Nektar code, developed by Karni-
adakis et al. (see [12—14]). The original code has been extended to include Runge—



36 R. Jeltsch and H. Kumar

Table 1 Local collapsed coordinates for three-dimensional elements

Element type Upper limits Local collapsed coordinates
Hexahedron —1<&,86,865<1 & & £
Prism E<LEH+&<0 =2 g &
with
—1=<§,68,85=<1
Pyramid f+&.6+6<0  G=NE0-1 =R -1 =g
with
—1=<§,68.85=<1
Tetrahedron S +é&+&5 <1 n = % -1 fig = 2(111—522) _1 m=E
with ’
—1<§.5.6 <1

Kutta time stepping, slope limiters, and accurate Riemann solvers, among other fea-
tures (see [15]). In the DG discretization, functions are approximated by using basis
functions

f=Y aigi, ©)

where the basis functions ¢;’s are simple functions, e.g., polynomials. These func-
tions are chosen in such a way that the whole algorithm is computationally efficient.
The set of polynomial basis functions used in Nektar were proposed by Dubiner in
[16] for two dimensions and were extended to three dimensions in [12]. They are
based on the tensor product of one-dimensional basis functions which are derived
using Jacobi polynomials. Here we describe three-dimensional basis functions.

The one-dimensional basis functions are defined on bounded intervals; therefore,
an implicit assumption on the tensor product basis functions for higher dimension
is that coordinates in two and three-dimensional regions are bounded by constant
limits. But in two or three dimensions, that is not true in general, e.g., for a trian-
gle. To overcome this difficulty, we define a collapsed coordinate system for three
dimensions which maps elements without this property (Tetrahedral) to the element
(Hexahedral) bounded by constant limits. These coordinates for various types of
elements are given in Table 1.

Under these transformed coordinates, three-dimensional elements are bounded
by constant limits. For example, a tetrahedron f3 which, in Cartesian coordinates,
is given by

T3 ={—1<&,&,& < lsuchthat& + & + & < —1},

is transformed to

Ts={-1<n,m.n<1)



Three-Dimensional Plasma Arc Simulation Using Resistive MHD 37

Table 2 Basis functions for three-dimensional elements

Hexahedron Basis  ¢pqr (61, 62, 63) = ¥ 1Y (2) ¥ (63)
Prism Basis bpgr (€1, 62, 8) = Y5 MV €YD, (63)
Pyramid Basis Gpgr €1, 62,83) =MDV 12V g, (13)
Tetrahedron Basis ¢ g, (61, €2, £3) = Y4 () V5, (1) V5, (13)

in local collapsed coordinates. To define three-dimensional basis functions, we first
define functions

1— p
va) =P, w,’;q<z)=( 2Z> PP(), (10)

_ p+q
V0 () = (1 . Z) A0 ()

where P, # is the nth-order Jacobi polynomial with weights o and 8. Then using

local collapsed coordinates, the three-dimensional basis functions for various ele-
ments are given in Table 2.

These basis functions are orthogonal under Legendre inner product over each ele-
ment, resulting in a diagonal mass matrix. The functions are polynomials in both the
Cartesian and non-Cartesian coordinates. It was proved in [17] that the coefficients
of the basis functions for a solution decay exponentially with polynomial order, thus
the numerical solution converges exponentially as the maximum polynomial order
of the approximation is increased.

3.3 Time Stepping

To advance solutions in time, the RKDG method uses a Runge—Kutta (RK) time
marching scheme. Here we present the second-, third-, and fourth-order accurate
RKDG schemes. For second- and third-order simulations, we present the TVD
RK schemes of Shu (see [18]). For the fourth-order simulations we use the clas-
sic scheme. Consider the semi-discrete ODE

duy,

— = Ly(up).

o h(un)
Let uj, be the discrete solution at time ", and let A" = 1 — ¢ 1n order to ad-
vance a numerical solution from time ¢ to "*!, the RK algorithm runs as follows:

1. Set uzo) =uj.
2. Fori=1,...,k+ 1, compute,
i—1
1 I I
u;l’) = Zailuz) + ﬂilAtnLh(uz)).
=0

n+1 _  (k+1)
3. Setu;, =uy, .
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Table 3 Parameters for Runge—Kutta time marching schemes

order o] Bil

2 1 1
1/21/2 01/2

3 1 1
3/41/4 01/4
1/302/3 002/3

The values of the coefficients used are shown in Table 3. For the linear advec-
tion equation, it was proved by Cockburn et al. in [19] that the RKDG method is
L -stable for piecewise linear (k = 1) approximate solutions if a second-order RK
scheme is used with a time-step satisfying

At
c— < -,
Ax — 3
where c is the constant advection speed. The numerical experiments in [10] show
that when approximate solutions of polynomial degree k are used, an order k + 1
RK scheme must be used, which simply corresponds to matching the temporal and

spatial accuracy of the RKDG scheme. In this case, the L°-stability condition is

At 1

c < .
Ax — 2k+1

For the nonlinear case, the same stability conditions are used but with c replaced by
the maximum eigenvalue of the system.

4 Three-Dimensional Arc Simulations

To simulate the plasma arc, the Nektar code has been modified to implement real gas
data for following physical parameters: electric conductivity, fluid viscosity, specific
heats, gas constant, and thermal conductivity. The gas used in circuit breakers is SFg.
The real gas data is implemented by approximating it at a pressure of 10° Pa with
piecewise smooth functions (see [6, 7]). An example of this is given in Fig. 1, where
we have plotted the approximated electrical conductivity w.r.t. temperature. Note
that the dependence of the gas data on temperature introduces further stiffness in
the equations. All the results presented here are of the first order accuracy.

The domain for simulation is illustrated in Fig. 2. In Fig. 2(left), we have the
three-dimensional domain for the computation which is the arc chamber of the cir-
cuit breaker. Figure 2(right) shows the XY plane cut of the three-dimensional ge-
ometry. The domain is axial symmetric along the y-axis. The radius of domain is
70 mm and length (y-axis) is 200 mm long. We assume that we have an arc attached
to both electrodes which are 10 mm wide.
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Fig. 1 Conductivity of the SFg gas at pressure P = 10° Pa
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Fig. 2 Geometry of the Arc chamber

In a circuit breaker with a rotating arc, the current that flows inside the arc also
goes through a coil located around the arc chamber. This process induces an external
magnetic field in the y-direction. This external magnetic field interacts with the arc
through the Lorentz force term in the momentum conservation equation. Observe
that, in the design of arc chamber, the contacts at the arc root have different radii,
which guarantees that the current in the resulting arc will not be parallel to the y-
axis. Consequently, the Lorentz force term J x B will be nonzero.
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Fig. 3 Temperature and current density at time ¢ = 0.569 ms

4.1 Arc Generation

Initially, we assume that the domain (see Fig. 2) is filled with SFg gas at the tem-
perature of 20000 K and the pressure of 10 Pa. At these values of pressure and
temperature, the density of the SFq gas is 0.0829 kg/m>. The flow is considered to
be steady initially, i.e., v = 0.0 m/s. The magnetic field components B, and B, are
computed using Biot—Savart Law and correspond to the total current of / = 100 kA
in the initial arc of width 10 mm (see [6, 7]) joining both contacts.

We consider the reference length of Lo = 1073 m. The reference pressure is
Py = 10° Pa, and the reference temperature is Ty = 5000 K. Using the gas data, we
have the reference density po = 0.506 kg/m>. The wall boundary conditions for the
wall are the same as in the previous chapter. The wall temperature is 7 = 10000 K
except at the arc roots where we put 7 = 20000 K. The wall boundary conditions
are implemented for velocity by inverting the normal component of the velocity at
the wall. The magnetic field conditions for the wall are implemented by assuming
the condition of no current.

Using these reference variables and assuming that the minimum conductivity is
omin = 6000, we would have a Lundquist number S, = o VoLoomin = 1.06 x 1072,
This value would give rise to an extremely stiff system and this, in turn, would
make the computational time unreasonably large. We scale this by a factor of 1000.
Similarly, we scale G, by a factor of 20. We do realize that this can effect results
quantitatively, but we believe that qualitatively the results still hold. We use 101044
tetrahedron elements in our computations. Computational time is 24 hours with 64
processors. At time ¢ = 0.569 ms we have the following results:

Figure 3(left) is the temperature profile of the arc in the XY plane. We observe
that most of the heating takes place at the center of the domain. Figure 3(right) is
the current density profile of the arc in the XY plane with the current lines and the
current moving downward. The current lines have moved towards the center of the
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[[v]| contour for ||v|| = 350 m/s and flow |[v] field in the XY plane
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Fig. 4 |v| field of the arc at t = 0.569 ms

XY plane slice of temperature profile XY plane cut of current density
Temperature: 10000 14000 18000 Current: 5 15 25 35 45 55 65 75

-3

Fig. 5 Temperature with external magnetic field after time r = 1.138 ms

domain from its initial position due to higher temperature. Figure 4 is the profile of
the velocity field. We also note that the gas is pushed away from the arc, through the
outflow boundaries. There is also a bifurcation in velocity flow lines near the lower
end of the domain.

4.2 Effects of External Magnetic Fields

The external magnetic field of By = 0.5 T is applied by adding it to the arc’s mag-
netic field and then modifying the boundary conditions with the magnetic field
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Fig. 6 |v| field with external magnetic field after time = 1.138 ms

By, =0.5T. Note that during the simulation the y-component By, of the magnetic
field is also simulated. The computational time was another 24 hours on 64 proces-
sors. After further r = 0.569 ms, we obtain the following results:

Figure 5(left) illustrates the temperature profile of the arc. We observe that the
temperature is comparatively less than what it was before. Figure 5(right) represents
the new current density profile. When compared with Fig. 3(right), we observe that
there is a change in the shape of the current density close to the lower contact. The
most important result is shown in Fig. 6. The streamlines of the velocity field show
that the arc is rotating. In fact, the velocity profile is completely changed when
compared with Fig. 4. Also, note the significant jump in the absolute value of the
velocity. Without the external magnetic field, the maximum absolute velocity was
490 m/s, compared to 689 m/s with the external magnetic field. Furthermore, the
maximum velocity is at the arc roots, instead of the center.

5 Conclusion

We show the suitability of the equations of resistive MHD for three-dimensional
computations of the plasma arc in high current circuit breakers. These equations are
used to generate the arc for a total current of 100 kA. We then apply the external
magnetic field and use it to generate a rotation in the arc and observe a significant
increase in the velocity. This can be used to minimize the operating energy of the
circuit breaker. One of the major obstacles in simulating the real gas arc is the stiff-
ness due to the low values of the conductivity. A possible solution for this can be
the use of implicit time stepping for the simulations.

Acknowledgements The authors would like to acknowledge C. Schwab, V. Wheatley, M. Torril-
hon, and R. Hiptmair for their support and constructive discussions on this work. G.E. Karniadakis



Three-Dimensional Plasma Arc Simulation Using Resistive MHD 43

provided the authors with the original version of Nektar and ABB Baden provided real gas data for
SFe gas, which is gratefully acknowledged.

References

10.

11.

18.
19.

. Schlitz, L.Z., Garimella, S.V., Chan, S.H.: Gas dynamics and electromagnetic processes in

high-current arc plasmas. Part I: model formulation and steady state solutions. J. Appl. Phys.
85(5), 2540-2546 (1999)

Schlitz, L.Z., Garimella, S.V., Chan, S.H.: Gas dynamics and electromagnetic processes in
high-current arc plasmas. Part II: effects of external magnetic fields and gassing materials. J.
Appl. Phys. 85(5), 2547-2555 (1999)

Lindmayer, M.: Simulation of switching devices based on general transport equation. In: Int.
Conference on Electrical Contacts, Ziirich (2002)

Barcikowski, F., Lindmayer, M.: Simulations of the heat balance in low-voltage switchgear.
In: Int. Conference on Electrical Contacts, Stockholm (2000)

Huguenot, P., Kumar, H., Wheatley, V., Jeltsch, R., Schwab, C.: Numerical simulations of
high current arc in circuit breakers. In: 24th International Conference on Electrical Contacts
(ICEC), Saint-Malo, France (2008)

Huguenot, P.: Axisymmetric high current arc simulations in generator circuit breakers based
on real gas magnetohydrodynamics models. Diss., Eidgenossische Technische Hochschule,
ETH, Ziirich, No. 17625 (2008)

Kumar, H.: Three dimensional high current arc simulations for circuit breakers using real
gas resistive magnetohydrodynamics. Diss., Eidgenossische Technische Hochschule, ETH,
Ziirich, No. 18460 (2009)

Goedbloed, H., Poedts, S.: Principles of Magnetohydrodynamics. Cambridge University
Press, Cambridge (2004)

Hill, T.R., Reed, W.H.: Triangular mesh methods for neutron transport equation. Tech. Rep.
LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

Cockburn, B.: Advanced numerical approximation of nonlinear hyperbolic equations. In: An
Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems.
Lecture Notes in Mathematics, pp. 151-268. Springer, Berlin (1998)

Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the nu-
merical solution of the compressible Navier—Stokes equations. J. Comput. Phys. 131, 267-279
(1997)

Sherwin, S.J., Karniadakis, G.E.: A new triangular and tetrahedral basis for high-order(hp)
finite element methods. Int. J. Numer. Methods Eng. 123, 3775-3802 (1995)

. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dy-

namics. Oxford University Press, Oxford (2005)
Lin, G., Karniadakis, G.E.: A discontinuous Galerkin method for two-temperature plasmas.
Comput. Methods Appl. Mech. Eng. 195, 3504-3527 (2006)

. Wheatley, V., Kumar, H., Huguenot, P.: On the role of Riemann solvers in discontinuous

Galerkin methods for magnetohydrodynamics. J. Comput. Phys. 229, 660-680 (2010)
Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345-390
(1991)

‘Warburton, T.C., Karniadakis, G.E.: A discontinuous Galerkin method for the viscous MHD
equations. J. Comput. Phys. 152, 608-641 (1999)

Shu, C.W.: TVD time discretizations. SIAM J. Math. Anal. 14, 1073-1084 (1988)

Cockburn, B., Shu, C.W.: The Runge—Kutta local projection p'-discontinuous Galerkin
method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337-361 (1991)



Space-Time Hybridizable Discontinuous
Galerkin Method for the Advection-Diffusion
Equation on Moving and Deforming Meshes

Sander Rhebergen and Bernardo Cockburn

Abstract We present the first space-time hybridizable discontinuous Galerkin fi-
nite element method for the advection—diffusion equation. Space-time discontin-
uous Galerkin methods have been proven to be very well suited for moving and
deforming meshes which automatically satisfy the so-called Geometric Conserva-
tion law, for being able to provide higher-order accurate approximations in both
time and space by simply increasing the degree of the polynomials used for the
space-time finite elements, and for easily handling space-time adaptivity strategies.
The hybridizable discontinuous Galerkin methods we introduce here add to these
advantages their distinctive feature, namely, that the only globally-coupled degrees
of freedom are those of the approximate trace of the scalar unknown. This results
in a significant reduction of the size of the matrices to be numerically inverted, a
more efficient implementation, and even better accuracy. We introduce the method,
discuss its implementation and numerically explore its convergence properties.

Keywords Discontinuous Galerkin methods - Advection—diffusion equations -
Space-time methods

1 Introduction

Many applications in fluid dynamics require the solution of a set of partial differ-
ential equations in time-dependent flow domains. Examples include fluid-structure
interaction, moving spatial configurations (e.g., helicopter rotors) and flows with
free-surfaces (e.g., wave impacts on coastal and off-shore structures), see, e.g.,
[21] and [10]. The accurate solution of partial differential equations by a numerical
method on moving and deforming meshes, however, is non-trivial. Many schemes
fail to preserve the trivial solution of a uniform flow field on dynamic meshes. This
condition, the so-called Geometric Conservation Law (GCL), was proved to be es-
sential for the accuracy of the solution [13].

One class of numerical methods that automatically satisfies the GCL is the space-
time Discontinuous Galerkin (DG) method. The main example is nothing but the
first DG method [25], originally devised for the numerical simulation of neutron
transport. Extensions have been obtained and successfully used in a wide variety of
applications, e.g., the compressible Euler and Navier—Stokes equations [11, 24, 33],

C.A. de Moura, C.S. Kubrusly (eds.), The Courant—Friedrichs—Lewy (CFL) Condition, 45
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the shallow-water equations [1, 2, 31], two-phase flows [27, 29], hyperbolic non-
conservative partial differential equations [26], and advection—diffusion and Oseen
flows [30, 32]. In addition to their versatility, these methods can provide higher-
order accurate approximations in both time and space and are ideally suited for
hp-adaptivity. On the other hand, they are computationally expensive and so require
the use of sophisticated solvers like Newton-GMRES solvers for the Navier—Stokes
equations [22] and like optimized multigrid methods, see [12, 28, 34, 35] for the
case of advection-dominated flows.

Recently, a new class of discontinuous Galerkin methods, namely, the hybridiz-
able Discontinuous Galerkin method (HDG) [3, 6, 8], see also [5, 9], was introduced,
in the framework of diffusion problems, with the sole purpose of reducing the com-
putational complexity of these methods. In the HDG method, the approximate scalar
variable and its corresponding flux are expressed in terms of an approximate trace
of the scalar variable on the element faces. By enforcing the continuity of the nor-
mal component of the flux across the faces, a unique value for the approximate trace
can be defined. A global system of equations for the approximate trace only is thus
obtained, therefore significantly reducing the globally-coupled degrees of freedom
of the discontinuous Galerkin method. The HDG method is computationally more
efficient, can be more efficiently implemented, and is more accurate than all pre-
viously known discontinuous Galerkin methods. The method has been extended to
time-dependent linear and nonlinear convection—diffusion in [4, 14, 15], to incom-
pressible fluid flow [7, 17-19] and to the compressible Euler and Navier—Stokes
equations [20]; see the recent review [16]. In all these papers, when dealing with
time-dependent problems, implicit finite difference or Runge—Kutta time-marching
methods were used. In this article, we extend the HDG method for the first time
to a space-time setting. The resulting method thus combines the advantages of a
space-time DG method with the efficiency and accuracy of the HDG methods.

The outline of this article is as follows. In Sect. 2, we introduce the advection—
diffusion equation to which, in Sect. 3, we apply the space-time HDG method.
A thorough numerical study of the convergence properties of the method is pre-
sented in Sect. 4. We end this article with some concluding remarks in Sect. 5.

2 The Advection-Diffusion Equation

We consider the following time-dependent advection—diffusion model problem:

u0+ (aku — ks ) k= f in &,
u=up on £2(ty), (1)
U=gp on Qp,

where a comma notation denotes differentiation with respect to the Cartesian coor-

dinate x; and the summation convention is used on repeated indices. Here £ € RY™!
is the physical space-time domain (with d the spatial dimension), f is a source term,
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a(x) € R? a given advective divergence-free velocity field, and « (x) € R¢*? a posi-
tive definite diffusion tensor. The initial flow field is denoted by u( and the Dirichlet
boundary data, gp, is defined on the Dirichlet boundary Qp.

By introducing an auxiliary variable 6y = —kysu s, we can rewrite (1) as a first-
order system of equations:

uo-+ (aru + ek)’k =f in &, (2a)
Ok +Kkksu s =0 in&, (2b)

with the boundary conditions

u=uop onS2(t),

u=gp oOon QD. (20)

3 The Space-Time HDG Method

In this section, we will present the space-time hybridizable discontinuous Galerkin
method. We closely follow the notation of, e.g., [11, 26, 33] to highlight the simi-
larities and differences between a space-time HDG and a space-time DG method.

3.1 Space-Time Notation

In a space-time method, space and time variables are not distinguished. A point
at time ¢ = xo with position vector x = (x1, x2, ..., Xg) has Cartesian coordinates
(x0, x) in the open domain £ C R+, At time ¢ the flow domain £2(t) is defined
as 2(t):={x € Re:(t,%) €& }. Let the initial and final time of the evolution of
the space-time domain be denoted by #y and 7', then the boundary of the space-time
domain, d&, consists of the hyper-surfaces

(1) ={x € & 1X0 =1o},
QT):={xedf:xp=T},
Q:={xedf:tn<xo<T}

The time interval [y, T'] is partitioned using the time levels 7o < 7] < --- < T, where
the nth time interval is defined as I, = (#,, t,41) with length Az, = t,41 — t,.
The space-time domain £ is then divided into N; space-time slabs £" = € N I,.
Each space-time slab £" is bounded by £2(t,), £2(t,+1) and Q" = 3dE"/(82(t,) U
Q(tn41)).

The flow domain $§2(z,) is approximated by $£2;(t,), where £2;,(t) — $£2(t) as
h — 0, with & the radius of the smallest sphere completely containing the largest
space-time element. The domain £2;,(t,) is divided into N,, non-overlapping spatial
elements K (¢,). Similarly, §2(#,+1) is approximated by £2;,(¢,+1). The space-time
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elements K are constructed by connecting K with K;"H by using linear interpo-
lation in time. In case of curved boundaries, a higher order accurate interpolation
is used for elements connected to the domain boundary. The space-time elements
K" are connected to a master element K by an iso-parametric mapping G'-. The
tessellation 7, of the space-time slab & consists of all space-time elements K'};
thus the tessellation 7, of the discrete flow domain &, := Uf:’;gl &) then is defined
as Tp = Uflv;gl T

The element boundary GIC?, which is the union of open faces of IC;f, consists
of three parts: K (t,) = lime o K (1, + €), Kj(t, ) =lime o K (ty11 — €), and
Q’} = Z)IC;?/(KJ- (tHUK; (t,41))- We define S}, as the set of surfaces S of the form
Q;? N a& or of the form Q’]’. N Q’},. We set Sp, := UQI’;OI Sy

To obtain the Arbitrary Lagrangian Eulerian (ALE) formulation, we have to in-
troduce the grid velocity v € RY. Let X(*) be a point on Q;f with xg = #". As the

mesh moves, the point x(#"") moves along Q;? to X (t"*!) according to some pre-
scribed movement defined by x(¢) = V (¢; x(¢")), t € I, with V a given function.
The grid velocity on Q’]’. is then defined by v = 9, V. The outward space-time normal
vector at an element boundary point on BIC? can then be shown to be given by [33]:

(176) at Kj(t;_'_l)s

n=|(-1,0) at K (), 3)
(—vkng,n)  at QF,

where 0 € R? and 77 € R? the space-component of the space-time normal.

3.2 Approximation Spaces

Let PP (KC) denote the space of polynomials of degree at most p on the reference
element /C and consider LZ(Q), that is, the space of square integrable functions
on £2. We introduce the discontinuous finite element spaces

W ={we L*(&):olc oG € PP(K), VK € Ta},
and
VP ={ve (L2E)" vk o Gk e (PP(K)), VK € Ta).
We also introduce a traced finite element space:
M} ={n e L*Sh) : ulsoGs € PP(S),VS € Si).

We set M;Z(gD) ={une M}f : = Pgp on I'p}, where P denotes the L2-projection
into the space {u|se Yu € M,f }. Note that Mf consists of functions which are
continuous inside the faces S € Sy, and discontinuous at their borders.
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3.3 Weak Formulation on Each Space-Time Element

Here, we are going to find the weak formulation on each of the space-time elements.
Our objective is to be able to determine an approximation inside each space-time
element only in terms of the data and on the numerical trace

ri=ills, € M). 4)
We proceed as follows. Multiplying (2a) by a test function w € Wf and (2b) by a

test function v € Vhp and integrating by parts in space-time over an element C € 7j,,
we obtain:

—/ (a),ou + o i (aru —}—Qk)) dx
K
+ / " (liny + @it + Gp)iig) ds = / fwdx, (52)
K K
/ Vi Ok dx—/ Uk’szxudx—l—/ kakSI/AH/_lX ds =0. (5b)
K K Q

Here, the numerical traces azii + 0, and i are approximations to, respectively,
aru — kisit s and u over 0K, and are introduced to couple local to global infor-
mation as well as for stability purposes. These numerical traces will be defined later
on.

To obtain the ALE-formulation to accommodate moving and deforming meshes,
we follow [33] and use the definition of the space-time normal vector (3) to write
the boundary integral in (5a) as:

|l + @+ B ds
K

s,

a)ﬁdi—/ wﬁdi+/ w(agi — ivk + g ds.  (6)
) K(t) o}
The numerical traces 7 on K (¢, _ ) and K (1) are chosen inspired in a causality-in-

time argument and are therefore defined as the upwind flux:

A [“n+1 at K(t,, ),

u
u, atK(@h),

n+
the previous and the current space-time slab. The function u is nothing but the
L2-projection of the initial data u into the space {w|q, ) : @ € W}/'}.

To be able to solve (5a) and (5b) locally, the numerical trace must depend only
on A and on the traces obtained from the interior of the space-time element K.
To achieve this, we take the numerical traces (azu + ék — vit)ny of the form

where u, and u | are the traces of u on K (#,) and K (1) from, respectively,

(agu + 6r — v g = (a — vp)ngh +Okng +t(uw—A) on Q, @)

for some positive function 7. The selection of t shall be described later.
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Finally, by using (6) in combination with the upwind flux on the time faces and
the numerical trace (7), (5a) and (5b) become:

_/ (a),()u + w i (axu +9k)) dx + (f
K K(t

U d)?—f a)u_d)?>(8a)
n+1 K@) n

1)
+/ o ((ax — v + it + T(u — 1)) ds =f fwdx, (8b)
Q K
/ VO dx —/ Vi, sKksU dx —i—/ VikisAngds =0, (8¢c)
K K Q

for all (w, v) € W}f X Vhp.

3.4 The Global Weak Formulation for the Approximate Trace A

We still need to determine X. To do this, we require that the boundary conditions be
weakly satisfied and that the normal component of the numerical trace of the flux
axu + ék — viu given in (7) be single valued. In other words, we require that A € M f
be the solution of

A=P(gp) on Q}, (%a)
> [ @+ b wiyieds =o. o)
Q

KeT

for all 1« € M} (0); recall that this implies that . =0 on Qp.

3.5 The Geometric Conservation Law

We now prove that the Geometric Conservation Law (GCL) is automatically sat-
isfied by the space-time HDG method. The GCL states that uniform flow must be
preserved on a moving mesh. Let U denote a uniform flow field. In a uniform flow
field, A = U and 6 = 0. Substituting this into (8a) and considering the element X
on the time interval (¢, t + €), we obtain:

—/ (w,oU—i—w,kakU)dx—l—/ wUd)E—/ U dx
K K (t+e) K(t)
+/ w(ar —vi)Unrds =0. (10)
Q

Note that this formulation is exactly the same as a standard space-time DG for-
mulation in uniform flows. Since U is constant and arbitrary, U can be divided out
of (10). Furthermore, we can rewrite (10) as:
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t+e
/ <—/ (w,0+ wrax)dx + / w(ay — vg)ng df) dt
t K(t) AK (1)

+/ a)di—/ wdx =0. (11)
K(t+¢€) K1)

With the following equality

t+e d
/ wdi—/ a)d)_c:/ <—/ a)d)_c)dt,
K (1+¢) K@) ‘ dt Jxo

noting that ¢, t 4 ¢ are arbitrary, and considering a constant polynomial approxima-
tion, we obtain the GCL.:

d
— di—/ vng ds =0, (12)
dt Jxu IK (1)

using the fact that integration over a closed surface d K () of a constant is equal to
zero. This law states that to preserve uniform flow on a moving mesh, the change in
area/volume of each element must be equal to the area/volume swept by the element
boundary [13].

3.6 Existence and Uniqueness of the Approximate Solution

Next, we present a result that shows that when the stabilization function 7 is suitably
defined, the approximation of our space-time HDG method is well defined.

Theorem 1 Assume that the matrix-valued function k is symmetric and positive
definite and constant on each space-time element KC € Tp,. Assume that the advective
velocity a is divergence-free. Then, if we take the stabilization function T such that

1
T= E(ak_vk)ﬁk—l-‘f() on QVK €Ty,

where T is a strictly positive constant, the approximate solution of the HDG method
under consideration is well defined.

Proof We only have to show that if the data is equal to zero, the only solution of
the weak formulation (8a)—(8c) relating A to (6, u) and the equations determining A
(9a), (9b) is the trivial one. It is easy to see that we only need to work on any time
slab £" assuming that u, = 0.

Thus, taking @ := u in (8a), we get

_ Z /(u,0u+u,k(aku+9k))dx+ Z / (”;Jrl)zdjE
K K(t

KeT)! KeT,! n+1)

+ Z / u(@pi — vk + O )i ds = 0.
KeTy” 2
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Integrating by parts and rearranging terms, we obtain

1 N2 -
— Z Lu,kekdx+§ Z /K (”n+1) dx

KeTy KeTp? KD
1 _ 1 _
+ — Z / (u;f)zdx - = Z f u2(ak —vp)ngds
2 ke 2. =)o
€7, KeT,
+ > / u (g — fvg + O ds =0.
Q

KeT,!

Since the tensor-valued function « is piecewise constant, we can take v := P
in (8c) to get

> [ aodx= Y [ ocdre Y [ odicds o
Kery 'K ket 7K KeTr 9
Adding this equation to the previous one, we obtain

1 N | 2,
D3 / ()i 5 Y / (uf)d
K(t KeTr K

Kern I K ) (&)
+ > / (1), Okbs dx + O =0,
Kerp 'K
where
R _ 1, - . A
Oy = Z Or(t — u)ny — Eu (ar — vi)ng + u(aru — uvg + 6)ny ) ds.
KeTp” 2
We claim that @, is a dissipative term. To see this, note that, by (9b),

. _ 1 -
@h = Z / <9k(u — u)nk — EMZ(ak — vk)nk
KeTp” 2

+ (u — i) (axu — dvg + ék)ﬁk> ds,

and by the definition of the numerical trace (7),

1
Opi= Y f <—§u2(ak —voitg + = 1) ((ax — vo)ikh + T(u — A))) ds
’CGEI’L Q

- Z / <—%((u =02+ 2% (ak — vtk + T — )»)2> ds
KeT,! Q

1 _ 2
= Z f <r——(ak—uk)nk)(u—,\) ds.
0 2

KeT!
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‘We can now conclude that ”;+1 =0 on £2,4+1, that ujl‘ =0on £2,, that 6, =0
on 7;", and that u = A on S}/. Equation (8c) now gives that u is constant in space
on the time-slab 7;1" and since u = A = 0 on the Dirichlet boundary, we obtain that
u=0on7," and that . =0 on S;. This completes the proof. 0

3.7 The Local Stabilization Parameter t

In the rest of this article, we assume x1; = k22 = k and «i; = 0 otherwise. Then
the local stabilization parameter t is chosen similarly as done in [14]. We, however,
slightly modify the local stabilization parameter to account for moving grids. Two
options are discussed in [14], the centered scheme and the upwinded scheme. To
account for the diffusion and advection effects, let T = t, + t4, where 7, and 74
are the local stabilization parameters related to the advection and diffusion, respec-
tively. Consider an interior face S = OL N OF between the space-time elements KL
and KR and denote by (-) the trace of (-) on S from K’, and similarly for (-)X.
Furthermore, let 7z be the outward normal with respect to ICL.

Centered Scheme  To obtain a centered scheme, take on each face 7t =R =1y,
and rdL = rf = n4, where

£ (13)
Z’

Na = |(ax — vi)itg|, Nd =

and ¢ denotes a representative diffusive length scale.

Upwinded Scheme To obtain an upwinded scheme, choose raL R and tdL’R ac-

cording to

[(ar — viong| + (ax — vi)ng
2|(ar — vi)n|

[(ar — ving| — (ax — vi)ng
2|(ar — vi)ny|

(tL.t8) = (nas na)

’

(‘CaR7 tf) = (nas nd)

3

with 1, and n, given in (13).

4 Numerical Results

In this section, we consider numerical results for the space-time HDG discretization
of the advection—diffusion equation. For each test case, we show the convergence
history of the flow field u, the auxiliary variables 6 and 6, and the mean of the flow
field i. Note that

o 1 2\
||u—uh||L2(_Q): Zﬁ(/ (u—uh)dx> .
K K
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4.1 Steady-State Solution of the Advection
and the Advection-Diffusion Equation on a Uniform Mesh

In this first test case, we consider both the advection and the advection—diffusion
equations on a uniform mesh. For this we consider (2a), (2b) on the space-time
domain £ = (0, T) x (O, 1)2 where the source term f(x1,x2) and the Dirichlet
boundary condition g are such that the exact solution is given by u(xy,x2) =
4 + sin(m x1) sin(wxp) + sin(2w x1) + sin(2wx3). We take a; = a» = 1 and, in the
case of the advection—diffusion equation, k = 0.01. In the case of the advection
equation, ¥ = 0. Therefore, for this test case, we modify the definition of 6 such
that Oy = u .

We use a space-time HDG discretization using linear-, quadratic-, and cubic-
polynomial approximations and obtain convergence orders. The local stabilization
parameter T is chosen such that we obtain a central scheme. For this steady-state
problem, we take one physical time step of 7 = Ar = 10'3. In Tables 1 and 2,
we show the convergence results obtained when « = 0.01 and x = 0, respec-
tively.

For the advection—diffusion equation, from Table 1, we see the expected orders of
convergence for the scalar variable u# and the auxiliary variables 6] and 6>, namely,
for a P? polynomial approximation we obtain the orders of convergence of p + 1.
For the mean variable i, for P! we obtain superconvergence with order p + 2. For
P2 and P3 we seem to be achieving superconvergence with order p + 3!

For the advection equation, from Table 2, we obtain the expected order of con-
vergence for the scalar variable u, namely, for a P? polynomial approximation we
obtain orders of convergence p + 1. For the “artificial” auxiliary variables 6; and
6>, we only obtain orders of convergence p. For the mean variable u, we find the
strange behavior that for odd p = 1, 3 polynomial approximation we achieve super-
convergence of orders p + 2 while for even p = 2, we only achieve a convergence
order of p + 1.

4.2 Steady-State Boundary Layer Problem

Next, we consider a boundary layer problem. Consider (2a), (2b) on the space-time
domain £ = (0, T) x (0, 1)> where f =0 and where g(x1, x2) equals at the domain
boundary the exact steady-state solution:

Uy x) = l<exp(a1//<) —exp(arx1/k)  exp(az/k) — eXp(azxz//c)>
1,X2) = exp(ai/x) — 1 exp(az/i) — 1

2

In the discretization, we use a Shishkin mesh in which the coordinates (x{', x5) of
a uniform mesh are mapped onto a mesh suitable for dealing with boundary layers.
The mapping is given by:
[2(1 —oj)x}, for x} < 0.5,
l’ =

i =1.2,
14+20i(x — 1), forx!>05 '
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Table 1 History of convergence for the steady-state advection—diffusion equation on a uniform
mesh with « = 0.01

Degree Neens — llu —unll 20 100 =0l 20y 102 =002y Nl —itnll 20
Error Order  Error Order  Error Order  Error Order
1 8 3532 - 6.80e-1 — 6.80e-1 — 1.45e-2 -
16  7.41e-3 23 2.62e-1 14 2.62e-1 14 1.64e-3 3.1
32 1.66e-3 2.2 8.84e-2 1.6 8.84e-2 1.6 1.92¢-4 3.1
64 3934 2.1 2.67e-2 1.7 2.67e-2 1.7 2.38e-5 3.0
128 9.59¢-5 2.0 7.44e-3 1.8 7.44e-3 1.8 3.05e-6 3.0
2 8 2523 - 530e-2 - 5.30e-2 - 1.99¢e-3 -
16  2.19e-4 35 9.46e-3 2.5 9.46e-3 2.5 1.50e—4 3.7
32 1.59e-5 3.8 1.54e-3 2.6 1.54e-3 2.6 7.46e-6 4.3
64 1.28e-6 3.6 2254 2.8 2.25¢-4 2.8 2.90e-7 4.7
128 1.29¢e-7 3.3 3.06e-5 2.9 3.06e-5 29 1.00e-8 4.9
3 8 9.7le-5 - 1.80e-3 - 1.80e-3 - 2.67e-5 -
16 6.0le-6 4.0 1.29¢e-4 3.8 1.29¢e-4 3.8 3.66e-7 6.2
32 3.64e-7 4.0 8.26e-6 4.0 8.26e-6 4.0 3.36e-9 6.8
64 2.13e-8 4.1 5.34e-7 4.0 5.34e-7 4.0 2.74e-11 6.9
128 1.27¢-9 4.1 3.52e-8 39 3.52¢e-8 39 5.23e-13 5.7

Table 2 History
whichk =0

of convergence for the steady-state advection equation on a uniform mesh in

Degree Neets  llu—unlliziey 101 — 002y 102 =002y i —inll 2o
Error Order  Error Order  Error Order  Error Order
1 8 443e-2 - 9.7le-1 - 9.71le-1 - 2.22e-2 -
16 1.0le-2 2.1 5.05e-1 0.9 5.05e-1 09 3.06e-3 2.9
32 2453 2.0 2.55e-1 1.0 2.55e-1 1.0 3.97e4 2.9
64  6.06e4 2.0 1.28e-1 1.0 1.28e-1 1.0 5.05e-5 3.0
128 1.51e4 2.0 6.39e-2 1.0 6.39e-2 1.0 6.35e-6 3.0
2 8 43le-3 - 8.57e-2 - 8.57e-2 - 3.89¢-3 -
16  5.76e4 29 2.07e-2 2.0 2.07e-2 2.0 5.26e—4 2.9
32 7.34e-5 3.0 5.13e-3 2.0 5.13e-3 2.0 6.73e-5 3.0
64 9.24e-6 3.0 1.28e-3 2.0 1.28e-3 2.0 8.48e—6 3.0
128 1.16e-6 3.0 320e-4 2.0 3.20e4 2.0 1.06e-6 3.0
3 8 1.20e4 - 4.77e-3 - 4.77e-3 - 8.77e-5 -
16 5826 4.4 5.86e—4 3.0 5.86e—4 3.0 2.85e-6 49
32 3.28e-7 4.1 7.30e-5 3.0 7.30e-5 3.0 9.08e-8 5.0
64  1.99¢-8 4.0 9.12e-6 3.0 9.12e-6 3.0 2.87e-9 5.0
128 1.23e-9 4.0 1.14e-6 3.0 1.14e-6 3.0 9.16e-11 5.0
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Fig. 1 The steady-state solution of the boundary layer problem using a cubic polynomial approx-
imation on a grid with 32 x 32 elements (using a central flux)

where o; = min(0.5, 2« /a; In(N;)), and where N; is the number of elements in the
x; direction (see, e.g., [28]). For this test case, we take a; =a» =1 and x = 0.01.

We solve the above problem using a space-time HDG discretization using linear-,
quadratic-, and cubic- polynomial approximations in space. For steady-state test-
cases, it is sufficient to take a constant polynomial approximation. The local sta-
bilization parameter 7 is chosen such that we obtain a central scheme. We will
consider two cases for the diffusive length scale, ¢, in (13), namely £ = 1 and
¢ =min(/[KL], v/IKRg]), in which K g are the areas of the two spatial elements
adjacent to the face on which t is evaluated. Furthermore, we set 7 = 0 on all bound-
aries. We remark that if 7 # 0 on the boundaries, for this test case we do not achieve
expected convergence rates. For this steady-state problem, we take one physical time
step of T = At = 101, The steady-state solution is depicted in Fig. 1. Tables 3 and 4
show the obtained convergence orders when £ = 1 and £ = min(/[K |, v/]KR]), re-
spectively.

For this test case, from Tables 3 and 4, we see that the diffusive length scale
£ in the stabilization parameter has an effect on the order of convergence for the
different variables. For degrees 1 and 2, if £ = min(4/[K .|, /]Kg|), we only obtain
orders of convergence p for the auxiliary variables 6 and 6, and for degree p = 1,
u converges with order p + 1. On the other hand, u converges with orders p + 1 for
all considered p, the auxiliary variables converge with orders of at least p + 1 for
p =3 and u superconverges with order p + 2 for p =2, 3.
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Table 3 History of convergence for the steady-state boundary layer problem with £ = 1
Degree Neents  llu—unlli2y 100 =001y 12— 00 N12)  llid —inlli2g)
Error Order  Error Order Error Order Error Order
1 8 846e-3 - 2.54e-3 - 2.54e-3 - 7.59%-4 -
16 3.40e-3 1.3 1.09¢e-3 1.2 1.09e-3 1.2 226e-4 1.7
32 1.16e-3 1.6 4.14e4 14 4144 14 537e-5 2.1
64 3.6le4 1.7 1.47¢4 1.5 147e4 1.5 1.10e-5 2.3
128 1.06e4 1.8 5.00e-5 1.6 5.00e-5 1.6 2.04e-6 24
2 8 7.08¢e4 - 3.15¢4 - 3.15¢e4 - 1.29e4 -
16 1.71e-4 2.0 5.62e-5 2.5 5.62e-5 2.5 7.96e-6 4.0
32 3.6le-5 22 1.14e-5 2.3 1.14e-5 23 8.70e-7 3.2
64 6.77le-6 24 2.38e-6 2.3 2.38e-6 2.3 526e-8 4.0
128 1.13e-6 2.6 4.69¢e-7 2.3 4.69¢e-7 2.3 1.11e-9 5.6
3 8 4.14e4 - 2.8%9e4 - 2.89¢e4 - 1.48e4 -
16 5.44e-5 29 3.84e-5 29 3.84e-5 29 1.21e-5 3.6
32 3726 39 2.63e-6 3.9 2.63e-6 3.9 3.60e-7 5.1
64 1297 49 9.17e-8 4.8 9.17e-8 4.8 4.06e-9 6.5
128  5.80e-9 4.5 4.10e-9 4.5 4.10e-9 4.5 1.97e-11 7.7

Table 4 History of convergence for the steady-state boundary layer problem with ¢ =

min(v[Kr|, vIKRI)

Degree Neens  llu—unllizey 161 =600 l2@) 162 =08lli20) i —inll 2
Error Order  Error Order  Error Order  Error Order
1 8 7.57e-3 - 2.54e-3 - 2.54e-3 - 7.85e—4 -
16 2.83e-3 1.4 1.13e-3 1.2 1.13e-3 1.2 2.42e-4 1.7
32 8.78e4 1.7 482¢4 1.2 482¢4 1.2 6.53e-5 1.9
64 242e4 19 227e4 1.0 227e4 1.0 1.77e-5 1.9
128 6425 1.9 1.20e4 0.9 1.20e4 0.9 5.29e-6 1.7
2 8 7974 - 3.15¢e4 - 3.15¢e4 - 1.27e-4 -
16 1.59¢4 23 5.95¢e-5 24 5.95e-5 24 9.00e-6 3.8
32 2.69e-5 2.6 1.47e-5 2.0 1.47e-5 2.0 1.44e-6 2.6
64  4.09e-6 2.7 4.3%-6 1.7 4396 1.7 9.69e-8 39
128  5.55¢e-7 29 142e-6 1.6 1.42e-6 1.6 2.72e-9 5.2
3 8 4294 - 2.96e4 - 2.96e4 - 1.54e—4 -
16 5.76e-5 2.9 4.03e-5 2.9 4.03e-5 2.9 1.31e-5 3.6
32 4.06e-6 3.8 2.86e-6 3.8 2.86e-6 3.8 4.40e-7 49
64 1.44e-7 4.8 1.02e-7 4.8 1.02e-7 4.8 5.96e-9 6.2
128  6.06e-9 4.6 4299 4.6 4.29¢-9 4.6 3.55e-11 7.4
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Taking ¢ = 1, for degree 1 and 2, it seems that u has difficulty converging with
the expected orders of convergence p + 1, while the auxiliary variables and the mean
show better orders of convergence than for the case £ = min(/[K .|, /]Kg]). For
degree p =3, u, 01, 6, converge with orders of at least p + 1 and u converges with
order of at least p 4 2!

4.3 A Rotating Gaussian Pulse on a Moving/Deforming Mesh

Finally, we consider the transport of a two-dimensional rotating Gaussian pulse,
a test case that was presented in [14]. We, however, consider a moving and de-
forming space-time domain £. Let the rotating velocity field be prescribed as
a = (—4x»,4x1). We consider the solution at final time T = 7 /4, which is the time
period for one-half rotation of the Gaussian pulse. The initial condition is given
by

= w10+ (2 —x0)?
202 ’

where (xi., xp¢) is the center and o is the standard deviation. The exact solution
with constant diffusivity constant « is given by

207 L E = X0 4 (B — xa0)?
202 + 4kt P 202 + 4kt ’

uo(x1, x2) =exp<

u(xy, x2) =

where X1 = x1 cos(4t) + xp sin(4¢) and X, = —x; sin(4¢) + x; cos(4t). The Dirich-
let boundary condition g is deduced from the exact solution. As in [14], we
choose (x1¢, x2¢) = (—0.2,0) and take o = 0.1. As diffusivity constant, we take
k =0.01.

The deformation of the space-time domain £ is based on the following transfor-
mation of a uniform mesh of the space-time domain [¢, t + Af] x [—0.5, 0.5]%. Let
(xy»x{, x3) be the coordinates on the uniform mesh. Then we consider the follow-

ing mapping:
u 1 u s 1 u *
xi=x+A 7 % |sin 2 §_X*+t ,

N t if xg =t,
1T =
t+ At ifxy=t+ At,

U xy ifi=1,
*Tlxy ifi=2,

where A is the amplitude. We set A = (.1. Furthermore, for the diffusivity constant
we take k = 0.01. We consider the convergence properties of the space-time HDG
method for two given CFL numbers, namely CFL =1 and CFL = 10. The history
of convergence for the given CFL numbers is given in, respectively, Tables 5 and 6.
In Fig. 2, we show some snapshots of the solution and mesh at different time levels.
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Fig. 2 Snapshots of the rotating Gaussian pulse on a moving/deforming mesh with CFL =1 on a

grid with 32 x 32 elements using a cubic polynomial approximation
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Table 5 History of convergence for the rotating Gaussian pulse on a moving/deforming mesh with

CFL=1
Degree  Neens  llu —unlli2e) 16 =67l 20) 1162 — 0%y Nl —itnll 2
Error Order  Error Order  Error Order  Error Order

1 8 1.50e-2 - 1.26e-3 - 1.23e-3 - 1.3le-2 -
16 3.26e-3 22 348e-4 1.9 3.57e-4 1.8 2.93e-3 2.2
32 5.46e-4 26 8.30e-5 2.1 93le-5 1.9 447e4 2.7
64  9.78e-5 2.5 2.19¢e-5 1.9 2.60e-5 1.8 5.91e-5 29

2 8 1.6le-3 - 2.09e-4 - 222e4 - 1.22e-3 -
16 1.19e-4 38 293e-5 28 3.46e-5 2.7 6.19e-5 43
32 1.22e-5 33 4.78¢e-6 2.6 5.71e-6 2.6 225e-6 438
64 1486 3.0 7.30e-7 2.7 8.81le-7 2.7 7.61e-8 49

3 8 1494 - 29le-5 - 334e-5 - 8.67e-5 -
16  6.72¢-6 4.5 2.46e-6 3.6 2.82e-6 3.6 1.2le-6 6.2
32 394e-7 4.1 2.06e-7 3.6 2.35e-7 3.6 1.41e-8 6.4
64 2388 4.0 1.60e-8 3.7 1.81e-8 3.7 2.07e-10 6.0

Table 6 History of convergence for the rotating Gaussian pulse on a moving/deforming mesh with

CFL=10
Degree  Ncelis lluw — up, ||L2(S?) e — 9{1 ||L2(Q) 162 — 9; ”LZ(.Q) i —tnll2
Error Order  Error Order  Error Order  Error Order

1 8 444e2 - 2.76e-3 - 35le-3 - 4.04e-2 -
16 1.79e-2 1.3 1.25¢-3 1.1 1.56e-3 1.2 1.69e-2 1.3
32 48le-3 19 344e4 19 4844 1.7 457e-3 19
64 943e4 24 7.67e-5 2.2 1.05e4 2.2 8.64e4 24

2 8 2.0le-2 - 1.70e-3 - 1.90e-3 - 1.69e-2 -
16 3.44e-3 25 3.57e4 23 3.85e4 2.3 3.09e-3 2.5
32 2834 3.6 342e-5 34 4.46e-5 3.1 2.25¢4 3.8
64 237e-5 3.6 4.69e-6 2.9 6.03e-6 2.9 9.7le-6 4.5

3 8§ 7.64e-3 - 9.59¢e4 - 8.82e4 - 6.03e-3 -
16  5.08e4 39 7.67e-5 3.6 8.38e-5 34 4.13e-4 39
32 247e-5 44 5.49¢-6 3.8 6.87e-6 3.6 7.97e-6 5.7
64 1.64e-6 3.9 3.99e-7 3.8 5.40e-7 3.7 1.36e-7 5.9

For this test case, from Tables 5 and 6, we consider the effect of the CFL number
on the convergence orders. Even though the mesh is moving/deforming, the results
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are very good. Indeed, for CFL = 1 for degree p, we achieve for u, 61, 6, the order
of convergence p + 1 while u# seems to superconverge with order at least p + 2!
Moreover, for CFL = 10, we also find orders of convergence p + 1 for u, 61, 6. For
p =1, it seems that u only converges with order p + 1, but for p = 2, 3, we find
again that u superconvergence with an order of at least (p + 2)!

5 Conclusions

We have introduced and numerically tested the first space-time HDG method for
time-dependent advection—diffusion problems. We have showed that, when the sta-
bilization function is suitably defined, the method provides optimally convergent
approximations, even in the advection-dominated regime and with highly-deformed
and moving meshes. Moreover, the superconvergence of the local averages seems
to be, to the knowledge of the authors, a new phenomenon whose theoretical study
constitutes the subject of ongoing research.
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A Numerical Algorithm for Ambrosetti-Prodi
Type Operators

José Teixeira Cal Neto and Carlos Tomei

Abstract We consider the numerical solution of the equation —Au — f(u) = g,
for the unknown u satisfying Dirichlet conditions in a bounded domain §2. The
nonlinearity f has bounded, continuous derivative. The algorithm uses the finite
element method combined with a global Lyapunov—Schmidt decomposition.

Keywords Semilinear elliptic equations - Finite element method -
Lyapunov—Schmidt decomposition

1 Introduction

We consider the partial differential equation
F(u)=—Au— f(u) =g, ulpe =0,

on domains §2 € R”, taken to be open, bounded, connected subsets of R” with piece-
wise smooth boundary 92, assumed to be at least Lipschitz at all points. There is a
vast literature concerning the number of solutions for general and positive solutions
for different kinds of nonlinearity f and right-hand side g (to cite a few, [1-9]).

Here we assume that the nonlinearity f : R — R has a bounded, continuous
derivative, a < f’(y) < b. We show how a global Lyapunov—Schmidt decomposi-
tion introduced by Berger and Podolak [10] in their proof of the Ambrosetti—Prodi
theorem (see [3, 4]) gives rise to a satisfactory solution algorithm using the finite el-
ement method. The decomposition was rediscovered by Smiley [11], who realized
its potential for numerics: our results advance along these lines.

Write Ap for the Dirichlet Laplacian in £2. The algorithm is especially conve-
nient when the number d of eigenvalues of —Ap in the range of f/ is small: the
infinite dimensional equation reduces to the inversion of a map from R to itself.
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The subject of semilinear elliptic equations is sufficiently mature that algorithms
should stand side by side with theory. The situation may be compared to the study
of functions of one variable in a basic calculus course. Some functions, like parabo-
las, may be handled without substantial computational effort, but understanding in-
creases with graphs, which are obtained by following a standard procedure.

We do not handle the difficulties and opportunities related to the finite dimen-
sional inversion: a generic solver (as in [12] and, for d = 2, [13]) should be replaced
by an algorithm which makes use of features inherited by the original map F. Here
we only deal with examples for which d = 1 and 2, and there is some craftsman-
ship in handling the 2-dimensional example. It is in this step of the PDE solver that
delicate issues like nonresonance and lack of properness come up.

2 The Basic Estimate

We consider the semilinear elliptic equation presented in the introduction for a non-
linearity f(y) : R — R with bounded, continuous derivative.

With these hypotheses, it is not hard to see that F (u) = —Au — f(u) isa C' map
between the Sobolev spaces Hg(.Q) and L2(£2) = H°(£2) and between HO1 (£2) and
H Y (02)~ H(} (£2). We concentrate on the second scenario, which is natural for the
weak formulation of the problem. Still, the geometric statements below hold in both
cases. To fix notation, set F : X — Y, where X = H}(2) and Y = H~'(£2).

The basic estimate is given in Proposition 1. Its proof is a simple extension of the
argument in [10].

Define f’(R) = [a, b] (a allowed to be —c0) and a larger interval [a, 15] D la, b].
Label the eigenvalues of —Ap in non-decreasing order. The index set J associated
to [a, l;] is the collection of indices of eigenvalues of —Ap in that interval. The set
J is associated to the nonlinearity f if [a, 5] = f’(R). Anindex set defined this way
is complete: it contains all indices labeling an eigenvalue in the interval.

Denote the vertical subspaces by Vx C X and Vy C Y, the spans of the nor-
malized eigenfunctions ¢;, j € J in X and Y, respectively, with orthogonal com-
plements Wy and Wy. Let P and Q be the orthogonal projections on V and W.
Clearly, the dimension of the vertical subspaces equals |J|, the cardinality of J. Let
v 4+ Wx C X be the horizontal affine subspace of vectors v + w, w € Wy and con-
sider a projected restriction F, : v+ Wy — Wy, the restriction of Py F to v + Wx.

Proposition 1 Ler J be the index set associated to the nonlinearity f (or to any
interval [a, b] containing f’(R)). Then the derivatives DF, : v + Wx — Wy are
uniformly bounded from below. More precisely, there exists C > 0 such that

VveVy Yw ev+ Wy Yhe Wx, |DF,(w)h|, > C|hllx. (1)

All such maps are invertible.

A direct application of Hadamard globalization theorem [15] implies that the
projected restrictions are diffeomorphisms, for each v € V.
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Fig. 1 Horizontal affine subspace, fiber; sheet, vertical affine subspace

3 The Underlying Picture

The geometric implications are very natural. The image under F of each horizontal
affine subspace v+ Wy is a sheet, i.e., a surface which projects under Py diffeomor-
phically to the horizontal subspace Wy. In particular, every vertical affine subspace
w + Vy intercepts each sheet exactly at a single point. It is not hard to see that the
intersection is transversal: tangent spaces of sheet and affine subspace form a direct
sum decomposition of Y.

A fiber is the inverse image of a vertical affine subspace: see Fig. 1. In a similar
fashion, fibers are surfaces of dimension |J| which meet every horizontal affine
subspace v + Wy at a single point—again, the intersection is transversal. Thus, a
vertical subspace parameterizes diffeomorphically each fiber, or, said differently,
each fiber has a single point of a given height.

Recall akey ideain [10] and [12]. It is clear that X and Y are respectively foliated
by fibers and vertical affine subspaces. By definition, all the solutions of F(u) = g
must lie in the fiber g = F ~!(g + Vy). So, in principle, one might solve the equa-
tion by first identifying oy >~ RIVI and then facing the finite dimensional inversion
of F:ag — g+ Vy.

Horizontal affine subspaces are taken diffeomorphically to sheets, but fibers are
not taken diffeomorphically to vertical affine subspaces. In a sense, the nonlinearity
of the problem was reduced to a finite dimensional issue.

4 Finding the Fiber

Recall that each horizontal affine subspace v + Wx contains exactly one element of
each fiber. So, to identify a,, choose v + Wy and search in it for an element of «g.
Said differently, one may think of F, : v + Wx — Wy as being a diffeomorphism
between fibers (represented by points in v + Wy ) and vertical affine subspaces (rep-
resented by points in Wy). The situation is ideal for an application of Newton’s
method: local improvements are performed by linearization of the diffeomorphism.
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Fig. 2 Uniform triangulations of [0, 1] x [0, 2] and a nodal function

There is one difficulty, however, related to implementation issues. The functional
spaces X and Y give rise to finite dimensional vector spaces generated by finite
elements. We provide some detail; an excellent reference is [16]. First of all, trian-
gulate the domain £2, i.e., split it into disjoint simplices in R”. In the examples of
Sect. 7, £2 is the uniformly triangulated rectangle [0, 1] x [0, 2]. A nodal function
is a continuous function that is affine linear on each simplex and has value one at a
given vertex and zero at the remaining vertices. These functions form a nodal basis
which spans a finite dimensional subspace of HO1 (£2). Figure 2 shows an example
of a triangulation of £2 and one nodal function.

Inner products of nodal functions, both in H Iand L2, are often zero, a fact
which simplifies the numerics associated to the weak formulation of the equation
F(u) = g. The vertical subspaces Vx and Vy are spanned by eigenfunctions ¢;,
J € J and are well approximated by a few linear combinations on the nodal basis.
On the other hand, obtaining a similar basis for the approximation of the orthogonal
subspaces Wy and Wy requires much more numerical effort and should be avoided.

To circumvent this problem, extend the Jacobian of F), : v+ Wx — Wy at a point
u to an invertible operator L, : X — Y which is easy to handle and apply Newton’s
method to L, instead. Setting

Lyz=—Az— Py f'(u)Pxz,

it is clear that L, has the required properties: it takes Wy to Wy and Vx to Vy and
the restriction to v + Wy equals D F,,, which is invertible. Moreover, the restriction
to Vx coincides with —A. This map is no longer a differential operator, due to the
integrals needed to compute the projections P. But those new terms are innocuous in
the finite element formulation—the sparsity of the underlying matrices is preserved,
together with the possibility of standard preconditioning routines.

We search for a point of a horizontal affine subspace v + Wx which belongs
to ag, g € Y. The algorithm is straightforward; see Fig. 3. Choose a starting point
uo and consider its image Fp. All would be well if the projections of Fy and g on
the horizontal subspace Wy were equal or at least very near. When this does not
happen, proceed by a continuation method to join both projections. Notice that the
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Fig. 3 Finding the right fiber

Fig. 4 Mapping a 1-D fiber

algorithm searches for the fiber (i.e., for a point in the fiber) by moving horizontally
in the domain. A direct Newton iteration does not necessarily work: think of finding
the (trivial) root of arctan(x) = O starting sufficiently far from the origin.

5 Moving Along the Fiber

The necessary ingredients for a simple predictor—corrector method to move along a
fiber are now available. Say u € a, and we want to find another point in o,. Recall
that fibers are parameterized by height v € V. Take u 4 v, which is probably not
in o, as a starting point for the algorithm in Sect. 4 to obtain the point of «, in the
same horizontal affine subspace of u 4+ v (see Fig. 4 for two such steps).

We don’t know much about the behavior of F restricted to a fiber: the hypotheses
on the nonlinearity f are not sufficient to imply properness of F, for example. In
particular, it is not clear that the restrictions of F to a fiber are also proper.
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Fig. 5 The derivative of f and the image of ag

6 Stability Issues

Proposition 1 in Sect. 2 ensures geometric stability, in the sense that the global
Lyapunov—Schmidt decompositions preserve their properties under perturbations.
This is convenient when replacing the vertical subspaces spanned by eigenfunctions
by their finite elements counterparts.

As for the algorithm itself, the identification of the fiber is robust, being a stan-
dard continuation method associated to a diffeomorphism between horizontal affine
spaces. The numerical analysis along a fiber is a different matter, and the funda-
mental issue was addressed by Smiley and Chun [12]: they showed that the finite
element approximations to the restriction of the function F to (compact sets of) the
fiber can be made arbitrarily close to the original map in the appropriate Sobolev
norm. Here one must proceed with caution: small metric perturbation may induce
variations in the number of solutions, as when changing from x > x2, x € R to
x+— x2 — ¢, which is a perturbation of order € for arbitrary C k norms. Still, solu-
tions of F' which are regular points are stable: they correspond to nearby solutions
of sufficiently good approximations F”.

A different approach might be to interpret the algorithm as a provider of good
starting points for Newton’s iteration or at least a continuation method. As stated
in [17], computer assisted arguments require good approximations for the eventual
validation of solutions.

7 Some Examples

For the examples that follow, F'(u) = —Au — f(u) = g, with Dirichlet conditions
on £2 =[0, 1] x [0, 2]. Here, — A p has simple eigenvalues and 1| = %nz ~ 12.34,
hy =212~ 19.74, A3 = %7‘[2 ~ 41.95. Denote by ¢,§ and qb,f the eigenfunctions
of —Ap normalizedin X and Y.

The first example is a nonlinearity f satisfying the hypotheses of Ambrosetti—
Prodi theorem with f(0) = 0 and derivative f’(x) = « arctan(x) + 8 with

30— XAy A A
Ran(f’):( 12 2 1-; 2>>0.
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Fig. 6 A right-hand side and a function on its fiber

X

Fig. 7 Ambrosetti—Prodi solutions

The graph of f’ is shown on the left of Fig. 5. Here, the index set associated to f
is J = {1}: Vx and Vy are spanned by qu(, qbf > 0. For right-hand side set g(x) =
—100x(x — 1)y(y — 2), shown on the left of Fig. 6, which has a large negative
component along the ground state.

We search for an element of the fiber «, in the horizontal subspace Wy, starting
from up = 0, in the notation of Sect. 4. The result is the function on the right of
Fig. 6. Now move along oy, as in Sect. 5. The graph on the right of Fig. 5 plots
(u, p) x (the height of u € arg) versus (F(u), ¢! )y (the height of F(u)). The hor-
izontal line indicates the height of g: the solutions of the original PDE correspond
to the intersections between the curve and this line. The two solutions found in this
case are presented in Fig. 7.

For the next example, J = {1} but f is a nonconvex function whose derivative is
depicted on the left of Fig. 8. We consider the fiber through ug(x) = —50¢f( (x) +
10qb§ (x), i.e., o F(ug). According to Fig. 8(right), moving up the fiber yields three
distinct solutions.

As a concluding example, we take a nonlinearity f for which J = {1, 2}: here
the vertical spaces are spanned by the first two eigenfunctions. The function f is of
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the same form as the first example and its derivative is shown in Fig. 9. We study
the fiber through the point o = 0, which is «g, since F(0) = 0. Recall from Sect. 4
that there is exactly one point of o for each height, i.e., given a point u € Vyx, there
is a unique point ¢ (u) € ap in the same horizontal affine subspace as u. For a circle
C centered at the origin in Vy, £(C) € «p. The image F (¢ (C)) is shown in the right
side of Fig. 10: here, we must project F (¢ (u)) along directions ¢f and qbg . Clearly,

Fig. 10 Two preimages on the circle



A Numerical Algorithm for Ambrosetti—Prodi Type Operators

150

100

50

-50

-100

o 60
n 40
" n
n 20 :}'\7723\\”2 n
W, ? N g Wigls WoWal
4 ez 93 94 w e4 63 e2 Z . —
s, o S,
-20 s S3 2
52
s, -40
% 60— ‘ . ‘
-150-100 -50 0 50 100 150 ~~--150 -100 -50 0

ul

F1

Fig. 11 Two preimages along the horizontal axis
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Fig. 12 The four solutions
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there is a double point Z in F(¢(C)) and it is not hard to identify in C its two
pre-images, U and D marked in the left of Fig. 10.

We now obtain two additional preimages of Z in a rather naive fashion. The
images under F o ¢ of the four half-axes of Vx are drawn on the right of Fig. 11. It
is clear, then, that the horizontal axis contains two preimages L and R of Z, which

are easily computed.

For the sake of completeness, Fig. 12 displays the four solutions.
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On the Quadratic Finite Element Approximation
of 1D Waves: Propagation, Observation,
Control, and Numerical Implementation

Aurora Marica and Enrique Zuazua

Abstract In arXiv:1112.4297, we studied the propagation, observation, and control
properties of the 1D wave equation on a bounded interval semi-discretized in space
using the quadratic classical finite element approximation. It was shown that the
discrete wave dynamics consisting of the interaction of nodal and midpoint compo-
nents leads to the existence of two different eigenvalue branches in the spectrum:
an acoustic one, of physical nature, and an optic one, of spurious nature. The fact
that both dispersion relations have critical points where the corresponding group
velocities vanish produces numerical wave packets whose energy is concentrated
in the interior of the domain, without propagating, and for which the observability
constant blows up as the mesh size goes to zero. This extends to the guadratic fi-
nite element setting the fact that the classical property of continuous waves being
observable from the boundary fails for the most classical approximations on uni-
form meshes (finite differences, linear finite elements, etc.). As a consequence, the
numerical controls of minimal norm may blow up as the mesh size parameter tends
to zero. To cure these high-frequency pathologies, in arXiv:1112.4297 we designed
a filtering mechanism consisting in taking piecewise linear and continuous initial
data (so that the curvature component vanishes at the initial time) with nodal com-
ponents given by a bi-grid algorithm. The aim of this article is to implement this
filtering technique and to show numerically its efficiency.

Keywords Linear and quadratic finite element method - Uniform mesh -
Vanishing group velocity - Observability/controllability property - Acoustic/optic
mode - Bi-grid algorithm - Conjugate gradient algorithm

A. Marica - E. Zuazua
BCAM—Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009, Bilbao,
Basque Country, Spain

A. Marica
e-mail: marica@bcamath.org

E. Zuazua (X))

Ikerbasque—Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011,
Bilbao, Basque Country, Spain

e-mail: zuazua@bcamath.org

C.A. de Moura, C.S. Kubrusly (eds.), The Courant—Friedrichs—Lewy (CFL) Condition, 75
DOI 10.1007/978-0-8176-8394-8_6, © Springer Science+Business Media New York 2013


http://arxiv.org/abs/arXiv:1112.4297
http://arxiv.org/abs/arXiv:1112.4297
mailto:marica@bcamath.org
mailto:zuazua@bcamath.org
http://dx.doi.org/10.1007/978-0-8176-8394-8_6

76 A. Marica and E. Zuazua

1 Preliminaries on the Continuous Model and Problem
Formulation

Consider the 1D wave equation with non-homogeneous boundary conditions:

YZt(xat)_,Vxx(xat)=07 xe(ov 1)5 t>07
y(0,1) =0, y(L,t)=v(), t>0, (D
y(x,0) =), yi(x,0)=y'(x), x€(0,1).

System (1) is said to be exactly controllable in time T > 2 if, for all 0 yh e
L?>x H ’1(0, 1), there exists a control function v € L2(O, T) such that the solution
of (1) can be driven to rest at time 7, i.e. y(x,T) = y;(x,T) =0.

We also introduce the adjoint 1D wave equation with homogeneous boundary
conditions:

U (x, 1) —uye(x,t)=0, xe(0,1), >0,
u@0,)=u(l,t) =0, >0, 2)
ulx, T)=ux), u,(x, T)=ul(x), xe(,1).

This system is well known to be well posed in the energy space V := H(} X
L?(0, 1) and the energy below is conserved in time:

1 1
£ ut) = 5 (0l gy + a0 [72) = 5 (g + ' 72)-

The Hilbert Uniqueness Method (HUM) introduced in [8] allows showing that
the property above of exact controllability for (1) is equivalent to the boundary
observability property of (2). The observability property ensures that the following
observability inequality holds for all solutions of (2), provided T > 2:

T
£, u") §C(T)/ | (1,0)] dt. 3)
0

The best constant C(T') in (3) is the so-called observability constant. The ob-
servability time 7 has to be larger than the characteristic one, 7* := 2, needed by
any initial data (u°, u') supported in a very narrow neighborhood of x = 1 to travel
along the characteristic rays parallel to x(¢#) = x — ¢, touch the boundary x = 0 and
bounce back to the boundary x = 1 along the characteristics parallel to x () = x +¢.

The HUM control v, the one of minimal L2(O, T)-norm, for which the solution
of (1) fulfills y(x, T) = y;(x, T) =0, has the explicit form

v(t) =0(t) :=ux(1,1), “)

where u(x, t) is the solution of (2) corresponding to the minimum @, a"y eV of
the quadratic functional

1 T
) =3 [0 P e = {0 ) @00 Oy )
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=2 _

0.5

0 0.5 1 0 0.5 1 1.5 2 x=1

Fig.1 The initial position H (x) (left) versus the HUM control vy (middle) versus the solution y of
the control problem (1) (right) (red = 1, orange = 1/2, green =0, cyan = —1/2, and blue = —1)

Here, V' = H~! x L%(0, 1) and (-, -}y, is the duality product between V and V'

In this paper, in order to analyze the efficiency of the various models under con-
sideration, we shall run the simulations on a specific example. We consider the par-
ticular case of the characteristic control time 7 = 2 and of initial data (yO, yl) in (1)
given by y! = 0 and the Heaviside function H as initial position:

1, xel0,1/2),

1, xell/2,1]. ©

Y@ =Hx) = {

The initial position, having discontinuities, involves significant high frequency com-
ponents that will be the source of instabilities for the numerical methods under con-
sideration. This example allows us to highlight the high-frequency pathologies of
the numerical approximations of the controlled wave problem (1) and the effects of
the filtering techniques we propose. In this particular case, the HUM control can be
explicitly computed by Fourier expansions, using the periodicity with time period
T = 2 of the solutions (cf. Sect. 3.3 in [3]), and it is given by (see Fig. 1):

=120 e, 1210 (1,321,
U(t)_vH(t)_{l/z, re(1/2,11U(3/2,2). M

The discrete approach to the numerical approximation of this kind of control
problems has been intensively studied during the last years, starting from some sim-
ple models on uniform meshes like finite differences or linear finite element methods
in [7] and, more recently, more complex schemes like the discontinuous Galerkin
ones in [10]. The problem consists in analyzing whether the controls of a numerical
approximation scheme of (1), obtained in a similar manner, i.e., by minimizing a
suitable discrete version of (5), converge to the control v of the wave equation (1) as
the mesh size parameter tends to zero. In all these cases, the convergence of the ap-
proximation scheme in the classical sense of the numerical analysis does not suffice
to guarantee that the sequence of discrete controls converges to the continuous ones,
as one could expect. This is due to the fact that there are classes of initial data for the
discrete adjoint problem generating high-frequency wave packets propagating at a
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very low group velocity and that, consequently, cannot be observed from the bound-
ary of the domain during a finite time uniformly with the mesh size parameter. This
leads to the divergence of the discrete observability constant as the mesh size tends
to zero.

Similar high-frequency pathological phenomena have also been observed for nu-
merical approximation schemes of other models, like the linear Schrédinger equa-
tion (cf. [5]), in which one is also interested in the uniformity of the so-called dis-
persive estimates, which play an important role in the study of the well-posedness
of some nonlinear models.

The rest of the paper is organized as follows. In Sect. 2, we summarize some well-
known results on the boundary controllability of the classical finite element space
semi-discretizations, especially the linear and the quadratic ones, emphasizing the
high frequency pathologies and their remedies based on the bi-grid algorithm. In
Sect. 3, we present in detail the implementation of the conjugate gradient algorithm
giving the numerical HUM controls, together with its two-grid adaptation, and we
show some numerical results to illustrate the validity of the theoretical ones. In
Sect. 4, we will summarize the conclusions of our paper and some related open
problems.

Before starting, let us give some basic notation. All vectors we deal with will
be considered as being column vectors and will be denoted by bold capital let-
ters. We will use capital letters for the components of the vectors and for ma-
trices and calligraphic capital letters for the discrete spaces. We denote: by h—
the mesh size and it will be the first superscript; by p—the degree of the nu-
merical approximation and it will be the first subscript; by the superscript *—
the transposition of a matrix; and by the overline symbol—the complex conjuga-
tion.

2 Preliminaries on Numerical Controls Using P; and P, Finite
Element Approximations

Let us now introduce the quadratic P, finite element approximation method and
recall the main existent results, taken essentially from [11]. We consider N € N,
h=1/(N+1),and 0 =xp < x; < xny41 =1 to be the nodes of a uniform grid of
the interval [0, 1], withx; = jh,0 < j < N +1, constituted by the subintervals I; =
(xj,xj41), with 0 < j < N. On this grid, we also define the midpoints x 11,2 =
(j+1/2)h, with 0 < j < N. Let us introduce the space P, (a, b) of polynomials of
order p on the interval (a, b) and the space of piecewise quadratic and continuous
functions U := {u € Hy (0, 1) s.t.u|;; € Pa(I}), 0 < j < N}. The space Uy can be
written as

Uy =span{gy ;. 1< j <N} @span{g3 ;. 0= j <N},
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Fig. 2 The basis functions: ¢ ; (left), 5 ;,, , (middle), and @1 ; (right)

where the two classes of basis functions are represented in Fig. 2 and are explicitly
given by

%Q(X,Xj—l,xj—l/z), xelj_q,
h
¢, (¥) = h%Q(X,X./H/z,le), xelj,
0, otherwise, (8)

h 4 +
$2.j+12%) = [_ﬁQ(X,xj’xj-H)iI

with Q(x, a, b) = (x — a)(x — b) and [ f]T—the positive part of f.

We will compare the results obtained when numerically approximating the con-
trols on this basis with the ones obtained by the linear P finite element approxi-
mation. In order to do this, in the same uniform grid of size h defined by the nodal
points xj, 0 < j < N + 1, we introduce the space of piecewise linear and contin-
uous functions L{h ={u e Hl(O 1) s.t.uly; € Pi(Ij), 0 < j < N}, which can be
written as Uh span{q&h 1 < j < N}, where ¢h (x)=[1—-(x— xj)/h]+. The
l1near/quadratlc approxunatlon of the adjoint problem (2)is

Find u/i (-, 1) €Ul s.t. —(u (1), <p)L2+(u 1) @)t =0, Yo e U,

dr?
Whe, T)=up’ (), uh (x.T)=up'(x), x€(0.1).
)
The solution u’;,(-, t) € L{;‘ admits the decomposition
pN+p—1
Whx.ty="Y_ Upj/p®)eh /,(x).
j=1

Consequently, the function uﬁ(~, t) can be identified with the vector of its coef-
ficients, Ug(t) = (Up,j/p(t))1<j<pN+p—1. Thus, problem (9) can be written as a
system of second-order linear ordinary differential equations (ODEs):

MU )+ S0 =0, ULT)=UL°, UL, (1)=UL' p=1.2, (10)
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where M {' and S{’ are the following N x N tri-diagonal mass and stiffness matrices
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and Mé’ and Sf are the following (2N + 1) x (2N + 1) pentha-diagonal mass and

stiffness matrices

8h h
i L9 0
b 4 b _h
15 15 15 30
h 8h h
0 5 &5 7
h _ h h 4h
My=10 -5 5 15
0 0 0
0 0 0
and
16 8
b _3 o0 o0
8 14 _8 1
3h 3h 3h 3h
o -8 . _8
3h 3h 3h
h _ 1 8 14
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0 0 0 0
1 _8 14 _38
3h 3h 3h 3h
o o -3 ¢

For p =1, 2 (corresponding to the linear/quadratic approximation), let us introduce
some notations for the discrete analogues of HO1 O, 1), L2(O, 1), and H! 0, 1),

hyi . _
Hhi =

i=1,0,—-1.

{Fg = (Fp,j/p)1§j§pN+p71 € (CPN+p_1 S.t. ”Fg ”HZ,,‘ < oo},
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The elements of 7—[2’1 verify the additional requirement F), o = F), y+1 = 0. The
inner products defining the discrete spaces Hg’l ,1=1,0,—1, are given by

(B )i = (M (S3) ™) ' SPESFY) o i=1.0-1, (1D

and the norms are given by ||F}}’,||2 ni = (Fh,Fh) ni, for all i = 1,0, —1. Here,
Hly PIH)
(*,+) p.e is the inner product in the Euclidean space CPV +r=1_ defined by

pN+p—1
h h . rel
(F;, G ) = Z Fpi/pGpk/p-
k=1
Set Vﬁ = 7—[};, ''x Hp and its dual V = 'HZ’_l X ’HZ’O, the duality product
h
(-, .>VZ'/’V§ between Vp and V) being defined as
. h

(( 1 l,G ) ( pz,Gp 2))]}];;/ Vi = (Fp l,F )Hho + (Gp ],Gp 2)7_[h0

Problem (10) is well posed in Vﬁ. The total energy of its solutions defined below
is conserved in time:

EDULO, UL = 2 (1040 [ + UL, ) 2ps0)
= (UL s+ U5 s0)- (12

In [7] and [11], the following discrete version of the observability inequality (3)
for the linear (p = 1) and for the quadratic (p = 2) approximation was analyzed:

h(uho, Ul <Ch(T)/ ||BhUZ(t)||;edt, (13)

where BZ isa(pN+p—1) x(pN + p — 1) observability matrix operator. Within
this paper we focus on the particular case of boundary observation operators BZ, in
the sense that they approximate the normal derivative u, (x, t) of the solution of the
continuous adjoint problem (2) at x = 1 as 7 — 0. One of the simplest examples of
such boundary matrix operators B;;’ that will be used throughout this paper is:

1 ..
-7 @ j)=(@EN+p—1pN),
Bpiji=1_ " ) (14)
0, otherwise.
The only non-trivial component of BhUh (t) is the last one which equals to
upx (XN4(p—1)/p-t) and is a first-order approx1mat10n of uy(1,t), where u is a so-
lution of (2).
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As shown in [7] for p =1 and in [11] for p = 2, the observability inequality
(13) does not hold uniformly as # — 0, meaning that the observability constant
CZ(T) in (13) blows up whatever 7' > 0 is. This is due to the existence of solutions
propagating very slowly concentrated on zones of the spectrum where the spectral
gap or the group velocity tends to zero as h — 0. To be more precise, for n € [0, 7],
let us introduce the Fourier symbols

6(1 —cos(n))
2 4 cos(n)
22 4+ 8cos?(1/2) + 2sign(a)/A(n)
1 +sin®(n/2)
where sign(a) = —1, sign(o) =1, and

A() :=14268 cosz(n/2) — 44cos4(77/2).

A1(n) =

AS(n) == , fora e{a, o},

Define A1(n) := +~/A1(n) and A5(n) := /A5(n), @ € {a, o}. Set A]{ = Aqy(kmh)
and Ag’k := A5 (kmh), a € {a, o}, and consider the following spectral problem:
h h _ rhagh h
S0, =A,M,0,. (15)

We take L2-normalized eigenvectors, i.e., ||(,0};,||Hh,0 = 1. The eigenvalues are ex-
14

plicitly given by
h.k ki p2 h,ok N
AT =AY/ R, A=A R,

with « € {a,0} and 1 < k < N. The superscripts a, o entering in the notation of
the P-eigenvalues stand for acoustic/optic, respectively, to distinguish these two
main branches of the spectrum. In the quadratic case, p = 2, additionally to the 2N

modes Ag’”’k, with 1 <k < N and « € {a, o}, there is also the so-called resonant

mode, given by Ag’r = 10/h%. In Fig. 3, we represent )J;, = /A’;, for different

values of p.
The solutions of (10) admit the following Fourier representation:

U= > @y rexp(ital)eh,
= (Aol
where the second sum is taken over the all possible eigensolutions (A?,, (p?’,) in (15).
Here, i, + = (72(1), j:'u\}) /i )LZ) /2 and ’Lt\; are the Fourier coefficients of the initial data
hi i . hi  h
U}’ defined by u’ := (U,", 0.
p defined by u’, Up (pP)H’;O
Firstly, let us remark that as kh — 1, Ag’k — 10, A’f, Ag'k — 12 and as kh — O,
Ag’k — 60. On the other hand, as we can see in Fig. 3, )fl"k and kg’a’k are strictly

increasing in k, while Ag’o’k is strictly decreasing. The group velocities, which are
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Fig.3 The square roots of the eigenvalues, )J[‘,: the continuous (black), acoustic (red), optic (blue),
resonant (green) modes for p =2 and k’l' (magenta)
the first-order derivatives of the Fourier symbols 1), and A, verify
oy A(m) =0 Al(O) =0 A%(n’) =0 Ag(n) =4 Ag(O) = 8,7/\3(0) =0
and 8)»1(7'[)—3)» (7{)-3)» (7‘[)—3)» ) = (16)

For all ¢ € {a, 0} and all 1 <k < N, the following spectral identities hold:

6llBl " |12 || Bl @l ¥ |12
h.,k 171 1, h,ak| 2 2¥2 2,
o) ”Hl 12 — Ak S ”H‘JIZW’ an

where
24(A — 10)2(A — 12)(A — 60)
(—19A2 — 120A + 3600) (A2 + 16 A +240)
Thus, for a finite observability time T, by taking solutions of (10) of the form

W(A) =

U (1) = exp(i (T — A1) oY

or
UA(1) = exp(i (T — A **) ek,

with (a, k) € {(a, N), (0o, N), (0, 1)}, we obtain that the observability constant
CZ(T) blows up at least polynomially as &7 — 0. In fact, by adapting the analysis
in [10] based on the Stationary Phase Lemma, we can obtain a polynomial blow-
up rate at any order. In [13], by arguments based on fine estimates on the family
of bi-orthogonals that are expected to be adaptable to the approximations used in
this paper, an exponential blow-up rate was proved for the finite difference semi-
discretization scheme.

In Fig. 4(a), (e), we represent the solution of the continuous (abbreviated by c)
adjoint system (2) with

u®(x) = exp(—y (x — 1/2)%/2) exp(ixgy) and u'(x)=—-ud(x), y=h"07,
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Fig. 4 Propagation along the rays of geometric optics of a Gaussian wave packet concentrated
around the wave number &y = 19/ h for h = 1/1000

for which the solution propagates at velocity one (the maximum amplitude for both
initial time ¢+ = 0 and final one + = 2 is at x = 1/2 after two reflections on the
boundary) along the generalized ray

0 — 2k+1+1/2—1, re@k+1/2,2k+1+1/2),
T -@k+141/2) 41, te@hk4+14+1/2,2k+2+1/2),

Also no dispersive effect holds since the corresponding group acceleration is identi-
cally zero (see Fig. 5, the black curves), despite of the value of the wave number 7.
The presence of the dispersion effects due to the group acceleration is responsible
for modifications on size of the support of the solutions as time evolves (cf. [12]),
whereas their absence leads to the conservation of the support size.

In Fig. 4(b), (f), we represent the corresponding solution of the numerical adjoint
problem (10) for p = 1; for both values of the wave number 7, the solution prop-
agates at a smaller group velocity than the continuous one since both ng =97 /10
and ng = 397 /40 belong to the region where 9,11 < 1; the dispersive effects are
visible for both wave numbers, since the group acceleration 8%)»1 is non-trivial,
however, they are more accentuated for no = 397 /40 than for ng = 97 /10 since
|85k1(39n/40)| > |83A1(9n/10)|, as we can see in Fig. 5, the blue curves.

In Fig. 4(c), (g), we represent the projection on the acoustic mode of the solution
to the adjoint problem (10) for p = 2. For n9 = 97/10, the velocity of propagation is
larger than one (8,,)%(971 /10) > 1) (at the final time ¢ = 2, the maximum amplitude
is located at a space position x > 1/2, after two reflections on the border); almost
no dispersive effect can be observed, since 83)»3(17) ~ 0, for all n € (0,97 /10). On
the other hand, for no = 397 /40, the projection on the acoustic branch propagates
at velocity 9,A5(397/10) < 1, so that it reflects only once on the boundary, but
more rapidly than the corresponding wave packet for p = 1 (which even does not
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Fig. 5 Group velocities (left) versus group accelerations (right): continuous (black), p =1 (blue),
p = 2 acoustic (red), p =2 optic (dotted red)

reflect on the boundary) since 8,7)\3(397r/40) > 3,;11(397/40). At the same time,
the dispersive effects are much more accentuated for the projection on the acoustic
branch than for p = 1 since |83A§(39n/40)| > |8$A1(39n/40)|, as we can see in
Fig. 5, the red curves.

In Fig. 4(d), (h), we represent the projection on the optic mode of the solution
to the adjoint problem (10), which propagates in the opposite direction than the
physical solution, due to the fact that Bnkg(n) < 0, for all n € (0, ), while in the
continuous case the group velocity is strictly positive (= 1). For no = 97/10, the
velocity of propagation is larger than the one for the corresponding acoustic pro-
jection (i.e., [0;A5(97/10)| > 3,15(97r/10)), reflected in the fact that the maximum
amplitude at t =2 is located next to x = 0; almost no dispersive effects occur. For
no = 397 /40, the optic projection propagates almost at the same velocity as the
acoustic one and almost with the same dispersive effects, the only visible change
being the reverse direction (see Fig. 5, the dotted red lines).

Several filtering techniques have been designed to face these high frequency
pathologies, all based on taking subclasses of initial data that filter them: the Fourier
truncation method (cf. [7]), which simply eliminates all the Fourier components
propagating non-uniformly, and the bi-grid algorithm (cf. [4]), rigorously studied in
[6, 9] and [14] in the context of the finite differences semi-discretization of the 1D
and 2D wave equation and of the Schrodinger equation (cf. [5]), which consists in
taking initial data with slow oscillations obtained by linear interpolation from data
given on a coarser grid. The interested reader is referred to the survey articles [3]
and [15] for a more or less complete presentation of the development of this topic
and the state of the art.

Let us describe how the bi-grid filtering acts for the linear and quadratic finite
element approximations under consideration. To be more precise, for an odd N, let
us define the set of data on the fine grid obtained by linear interpolation from data
on a twice coarser grid,

B = {F}f = (F1,j)1<j<N, s-t. F10=F1 ny4+1 =0,

1 .
and Fi ;41 = E(Fl,Zj + Fl2j4+2), YO< j < (N — 1)/2},
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and the set of linear data whose nodal components are given by a bi-grid algorithm,
Bl = {F’; = (F2,j2)1<j<aN+1 St Foo=F yy1 =0,
1 .
Fjv12= §(F2,j + F2j41), YO< j <N,
1 .
and Fp5j41 = §(F2,2j +F2j42), VO j<(N-1)/2¢.

The following result has been proved for the adjoint problem (10) for p =1 in
[9] or [14] and for p =2 in [11]:

Theorem 1 For all T > 2, the observability inequality (13) holds uniformly as
h — 0 within the class of initial data (Uﬁ’o, U};,’l) € (Bz X BZ) ) VZ in the adjoint
problem (10).

One of the possible proofs of this result is based on a dyadic decomposition
argument like in [6]. For the case p = 1, it reduces to showing that the total energy of
solutions corresponding to initial data in (B{l X Bi’) N V? can be uniformly bounded
from above by the energy of their projection on the first half of the spectrum. The
second step is to use the uniform observability inequality (13) in the class 7~1h X Tlh
consisting of discrete functions for which the second half of Fourier modes have
been truncated; this result can be obtained by the multiplier technique (cf. [7]) or
by Ingham-type inequalities (cf. [15]). For the quadratic case p = 2, the projection
on the first half of the acoustic mode has to be implemented to reduce the proof of
Theorem 1 to the observability inequality (13) on the class ’Tzh X ’75}’ of functions
for which the second half (the high frequency one) of the acoustic diagram and
the whole optic diagram have been truncated. The fact that for p = 2 the bi-grid
algorithm in Theorem 1 essentially truncates 3/4 of the spectrum versus only 1/2
for p =1 can be intuitively seen in the fact that 6121 involves two requirements on
its elements versus only one requirement for B{’. The observability time for these
two bi-grid algorithms coincides with the continuous optimal one 7* = 2, since
the group velocities 9,A; and 9,A5 are increasing functions on [0, 7/2] and then
dyA1(n) = 3,A1(0) = 1forall n € [0, /2] and similarly for 3,13. Thus, the minimal
velocity of propagation involving solutions with data in the class 7'15’ X Tph for both
p=1and p=2isequal to one.

In practice, one has to employ fully discrete schemes. In this respect, it is im-
portant to note that, using the results of Ervedoza—Zheng—Zuazua in [2] allowing to
transfer observability results for time-continuous conservative semigroups on time-
discrete conservative schemes, we see that our observability results in Theorem 1
are also valid for any conservative fully discrete finite element approximation, like,
for example, the implicit midpoint time-discretization scheme

hok+1 h.k hk—1 2(agh\ L ch (yrhok+1 hk—1 _
ULt Ul U 4 on* (M) sM (0 + U 2 =0,
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where 67 is the time step and U}[’,’k ~ U;’, (két). Note, however, that the results in [2]
do not yield the optimal observability time, a subject that needs further investigation.
Once the observability problem is well understood, we are in conditions to ad-
dress the discrete control problem. For a particular solution UZ (t) of the adjoint
problem (10), let us consider the following non-homogeneous discrete problem

hyrh hyh h\* phh h 1.0
MYy, () + S, Y (1) = —(B) "By U3, (), Y, (O =Y}, (18)
hoy _ yhl
Yh ) =Y,

Multiplying system (18) by any solution U}I’, () of the adjoint problem (10), inte-
grating in time and imposing that at r = T the solution is at rest, i.e.,

(VT ~Y5D), (U5, U3 Dy =0, V(U0 UR) €V 19)

h' \sn
Vo Vy

we obtain the identity,
T
hyh hyth .1 7,0 h h
/0 (BpUp(t)’ BpUp(t))p,edtz((Yp =Y, ), (Up(o)’UP,t(O)))V,’;",V};’ (20)

for all (UZ’O, U};,’l) € V[’Z. This is the Euler—Lagrange equation corresponding to the
quadratic functional, the discrete analogue of 7 in (5):

h (y1h,0 h,1
‘717 (Up ’Up )
L hyth 2 h,1 1,0 h h
= 5'/0 ” BpUp(t)”p,e dr — <(Yp' ’ _Yp’ )’ (Up(o)’ Up,t(o)»yg’,yg’
U" (1) being the solution of the adjoint problem (10) with initial data (U}, Uj")

and (Y%!, Y% e V2 the initial data to be controlled in (18). Actually, (18) and
(20) are completely equivalent so that, in practice, it is sufficient to prove the ex-
istence of a critical point for ;’ to deduce the existence of a control for (18). The

uniform observability inequality (13) within the class of initial data BZ X Bﬁ guaran-
tees the uniform coercivity of 7 ;’ and the convergence of the last component f)g of
Bﬁ’, ﬁﬁ (1), the discrete control, to the optimal control v for the continuous wave equa-
tion given by (4) when the initial data (Yh ’O, Yﬁ'l) in (18) approximates well the
initial data (yo, yl) in the continuous problem (1). Here fJ}I’] (1) is the solution of the
discrete adjoint system (10) corresponding to the minimizer (fﬂ;,’o, fJﬁ 1) € Bﬁ X B;‘]
of Jh.

3 Implementation of the Bi-grid Algorithm and Numerical
Results

The aim of this section is to numerically illustrate the three high frequency patholo-
gies for the quadratic approximation of the control problem (18) and the way in
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Fig. 6 The discrete Heaviside functions HZ and their projections

which the bi-grid filtering leads to the convergence of the solution of (18) to the con-
tinuous one. We will also compare the numerical results obtained for the quadratic
case p =2 and for the linear one p = 1.

In order to simplify the presentation, we will take as discrete initial data
(Yh’o, Yf,’,’l) in (18) Yl;,’l =0, Yl;,’o being an approximation of the Heaviside func-
tion H (x) in (6). Firstly, let us define the vectors Iflﬁ = (I:Ip,j/p) 1<j<pN-+p—1, Where
I-Nlp,j/p =(H, qbﬁ!j/p)Lz, forall 1 <j < pN + p — 1. The numerical approximation
of H(x) we consider is

h,0 __ yyh . mn—lygh
YO =Hh = (M) HE, 1)

For all « € {a, 0} and all 8 € {lo, hi}, (lo/hi standing for low/high-frequency), we
also define the projections of Hil, on some parts of the spectrum as follows:

K K
ho_ ho o hk hok ha _ ho hak hook
Hj ;= E :(Hl’(pl )’}-{’1"0(/)1 and Hy, = § :(sz‘Pz )Hng‘Pz ;
kg kg

where (kg , k;) =(1,(N-1)/2)if p =loand (kg k;) =((N+1)/2,N)if p =hi.
More precisely, H}l’,lo is the projection of H'f on the first half of the spectrum and

Hé’:f‘o that of Hg on the first half of the acoustic diagram (see Fig. 6).

Since the datum H (x) in (6) is irregular due to the presence of the jump, it in-
volves high-frequency eigenfunctions. This also happens with its numerical approx-
imations H’;, as it can be easily observed in Fig. 7. These high-frequency compo-
nents will lead to the divergence of the corresponding numerical controls.

In order to find the minimum of the discrete functional 7, ;‘, we will apply the

Conjugate Gradient (CG) algorithm (see [1, 4]) to iteratively solve the Euler—
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Fig. 7 The Fourier coefficients of H’; for p =1 (left), p =2 (center, blue = acoustic, red =
optic), p = 2—the optic branch (right)

Lagrange equation (20). Let us briefly recall it when no-filtering technique is ap-
plied.

Firstly, fix the initial data to be controlled (YZ”%, Y};”B), a tolerance ¢ (= 0.001
in our particular case) and a maximum number of iterations nm,x (= 200), aimed to
be a stopping criterium. In order to better follow the CG algorithm, we divide it into
several steps as follows:

Step 1. We initialize the algorithm solving the adjoint problem (10) with arbitrary

data (UZ’O, UZ’I) = (UZ”%, UZ’})) € V", for example, the trivial one. This step yields

the solution U}I', o).
Step 2. Compute the first gradient (GZ’%, Gi’;})) = VJ;’ (Uﬁ”%, Ul;”%)) by solving
the non-homogeneous problem (18) with initial data (Yh’o !

p‘O,YZ”O) and Ul (1) =
U];’O(t). This produces the solution Y’; ,o(t)~ Then

—1
G’;*,?):—(Sj’,) MIY" o (T) and G’}):B:YZ)O(T).

Step 3. If ||G};7’%||2 + ||Gh'1 1%, o> €2, compute the first descent direction

Hy PO
(D}0:D0) = =(G30. G}o)-

Step 4. Given (U};,’,%,UI;’,L), (G];,’%,G};,’,i,) and (DZZQ,DZ’,L) in V!, we compute
these quantities at the next iteration n + 1 as follows:

Step 4.a. Solve (10) for (U%, Uky = (D), D%)). Denote the solution by
D ().

Step 4.b. Solve (18) with trivial initial data and INJﬁ’7 ) = D};,‘n(t) and denote the
solution by Y};?,n 4+1(7). Take

h,0 _ h\—1 3 sh~h h,1 _ wh
ZPJ’__(SP) MPYp,n-H,t(T) and Zp,n_Yp,n+l(T)'
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Step 4.c. Set

h,0 2 h,1 2
G + G
I p,n”Hg,l I p,n”Hﬁn),O

T 7h,0 0 1 i1
(Zp,ny Dp,n)'HZ-l + (Zp,nv Dp,n

Pp,n = .
)’HIZ"O

Step 4.d. Compute the next iteration

(Uh,O Uh,l

p.an+1° p,n—H) = (Uh’o U,;'liy,ll’l) + Pp.n (Dh,o Dil;}l)'

p.n’ p.n’

Step 4.e. Compute the next gradient

(Gh,O Gh,l

. h (y7h.0 h,1
p.n+1° p,n—H) T le’ (U U

p.n+1° p,n+l)
by

(Gh,O Gh,l

pntls p,n+1) = (GZ:%’GZZL)""OP,"(Z}“O Zﬁ’,b)'

p.n
Step 4.f. Compute the next descent direction

(D};{,?zﬂ ; DZ’,LH)

h,0 2 h,1 2
IG 1751 TG [
p.n’ p.nJ:

(PO h,1
T (Gp,n+l’Gp,n+l)+ Gh,O 2 Gh,l 2
1GHA12 1 + 1GR3 10
P P

The algorithm ends up when for some n < npax We obtain

h,0 |2 h1 |2 2
IGES 2 + €5 20 <
or when n > nmax. When the second stopping criterium holds, we understand that
the CG algorithm does not converge (due to the fact that 7, ;’ looses coercivity).
For both stopping criteria, we take the minimizer of j;‘ to be (fjh ’O, ﬁﬁ’l) =
(U];,’,(,i, Uﬁ’},), where 7 is the last iteration number before stopping.

Let us now describe the changes we have to do in the CG algorithm to implement
the bi-grid filtering we propose in Theorem 1. The linear case p = 1 has been im-
plemented in [3]. For this reason, we restrict ourselves to the quadratic case p = 2.
However, whenever we have to implement any filtering technique, the only steps we
have to modify are Steps 2 and 4.b above. In order to simplify the presentation, we
describe only the modifications to be done on Step 2, the ones on Step 4.b being
similar. Firstly, set

Fy'=—MIYE ) (1) and F5'=MAYS (D),

and observe that, for all test function (US"O, Ug’]) € Vh, the Gateaux derivative of
jzh at (U;"g , Ug’é) has the following expressions:
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() (U35, Uzp) (U3, U3 ) = (132, 03),, + (F 1, U3,
= (Gg(o) Ug’o)ﬂg«l + (Ggé Ug’l)y’zﬂo'

Let us observe that the linear functions with nodal components given by a bi-grid

algorithm in Bé’ are in fact linear functions on a grid of size 2h. We consider that

both the test functions (Ug’o, Ug’ ]) and the gradient (Gg:g , Gg:é) belong to Bé’ X Bé’.

Consider the restriction operator Il that associates to any quadratic function of
coefficients Eg = (E2,j/2)1<j<2N+1 the linear function on the mesh of size 2A of

coefficients (ITEX); = Ez 5, forall 1 < j < (N — 1)/2. When both (U2°, U%1)
and (G570, G5 ) belong to B x B4, then

(650, U3 ")gysn + (63, U3 )0

= (1Gyy. nU’;’O)H%h,I +(M1Gyy, Uy

H%h,o .

Consider another restriction operator I" defined as
h 3
(F'E3); = E22j + 1 (B22j412+ E22j-172)

1 1
+ E(E2,2j+1 +Ez2j-1)+ Z(E2,2j+3/2 + Ez2j-3/2).
Then

(557 037),, + (31, 031), = (FE°, TU3Y), |+ (PP 110y ),

and the two components of the gradient are explicitly given by
Ghy=m'(sP)'rF and Ghy=n7' (M) TIrEL,

where IT~! is the inverse of the restriction operator IT defined as the linear inter-
polation on a grid of size #/2 of a function defined on a grid of size 2h. There-
fore, our filtering mechanism in Theorem 1 for p = 2 acts in fact like a classi-
cal bi-grid algorithm of mesh ratio 1/4. This is very similar to the bi-grid algo-
rithm designed in [5] to ensure discrete dispersive estimates for the finite difference
semi-discretization of the Schrédinger equation uniformly in the mesh size param-
eter h. In that case, the bi-grid algorithm has to face the two singularities of the
Fourier symbol p(n) = 4sin’(5/2) defined on 7 € [0, ]: the vanishing group ve-
locity at n = m, yielding the non-uniform gain of 1/2-derivative, and the vanish-
ing group acceleration at n = 1 /2, related to the non-uniform L{—L{-integrability
(see Fig. 8, right). In our case, by ordering in an increasing way the eigenvalues
on the two dispersion curves and constructing A2(n) = A5(n), for n € [0, 7] and
Aa(n) = A5Q2m — n), for n € [7, 2], we formally obtain a discrete wave equation
on the grid 7/2 whose dispersion relation A2(n), n € [0, 27], has vanishing group
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Fig. 8 Dispersion relations for the P-approximation of the wave equation (leff): continuous
(black), 25 (red), A5 (green), Ay (blue), versus Fourier symbols of the finite difference semi-dis-
cretization of the Schrodinger equation (right): continuous (black) and discrete (blue). At the
marked points, the symbols have vanishing group velocity (circles) or vanishing group acceler-
ation (squares)

velocity at n = ™ and at n = 27 (see Fig. 8, left). In order to remedy the patholo-
gies associated to both singular points 7+ and 277, a bi-grid of mesh ratio 1/4 should
suffice, despite of the discontinuity of A at n = .

Remark 1 In practice, one has to reduce the semi-discrete problem to be solved,
M th‘, (1) + shuh (1) = F" (1), to a fully discrete system with time-step of size §¢
and to take U* ~ U (k81). Set pu := 8t/ h to be the Courant number. When using
an explicit time scheme, for example, the leap-frog one,

Ukt gtk 4 ghok-1 +M2h2(Mh)*IShUh,k _ ((St)z(Mh)leh(k&L

a careful von Neumann analysis shows that the Courant—Friedrichs—Lewy (CFL)
condition for ju is i < min4 4/4/A, where the minimum is taken over all the eigen-
values A of the matrix h2(M")~1S". When dealing with (10) or (18) for the linear
approximation p = 1, this analysis gives u < 1/+/3. For the case p = 2, we obtain
w < 1/4/15 if we work with solutions involving both modes or y < +/2/5 if the
numerical solution involves only the acoustic mode. We observe that, globally, the
quadratic scheme requires smaller Courant numbers than the linear one, whereas
the resolution of the homogeneous problem (10) with data concentrated only on the
acoustic mode admits larger x’s than in the linear case.

We end up this section by discussing the numerical results in Figs. 9, 10, 11, 12.
For the Pj-approximation, we take 7 = 1/200 and for the P>-one, h = 1/100, in
order to have the same number of degrees of freedom in both approximations.

— Without restricting the space where the functional 7, Ii’ is minimized, the numer-
ical controls are highly oscillatory and diverge (see Figs. 9 and 10(a)—(b)). This
is due to the fact that the initial data H’;, involves the critical modes on the high-
frequency regime of the dispersion relations for which the numerical controls
diverge. These pathological effects can be seen separately by controlling the cor-
responding projections of the data H}[') on the high frequency modes (see Fig. 9(f)
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Fig. 9 Solutions of the control problem (18) versus their numerical controls for p = 1 arising by
minimizing th over the whole space V{’

for p =1 and Fig. 10(f), (h), (j) for p = 2). As long as the initial data Hﬁ is
projected on the first half of the acoustic mode for p =2 or on the first half of
the spectrum for p = 1, the CG algorithm and the numerical controls converge
(see Figs. 9(d) and 10(d)). The numerical controls obtained for these projections
Hlil,lo and Hg’lao as initial positions in the control problem (18) without filtering
are approximately the same as the ones obtained by the bi-grid filtering mecha-
nism taking as initial position the whole Hg (see also Fig. 11(b) and 12(b)). This
is due to the fact that the controls obtained by the bi-grid algorithm damp out
the high-frequency effects and for this reason they act mainly on the eigenmodes
involved in H}l"lo or Hglao

Without filtering, the high-frequency modes produce instabilities in the form of
oscillations of larger and larger amplitude which accumulate as time evolves in
the solutions of the control problem (18) (see Figs. 9(a), (e) and 10(a), (e), (g),
(1)). These high frequency effects are larger in the P> case than in the Pj one, due
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Fig. 10 Solutions of the control problem (18) versus their numerical controls for p = 2 arising by

minimizing 7 ' over the whole space V!
gJs % 2
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(a) Solution for Y7° H'f and Y*' =0 (b) Control for Y = H} and YI*' =0
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Fig. 11 Solutions of the control problem (18) versus their numerical controls for p = 1 arising by
minimizing th over the restricted space (Bi’ X B{‘) al V{‘

to the presence of the optic mode whose largest eigenvalues are much above the
largest ones for the linear approximation (60/ k2 versus 12/(h/2)* = 48 / h2) The
solutions of the adjoint problem (10) corresponding to the minimizer (U » o U p )
of J ,ﬁ’ over Vﬁ are typically highly oscillatory wave packets whose energy is
concentrated far from the boundary x = 1 at any time ¢ € [0, 2] (see Fig. 13, left).
— When the space over which the functional .7, 1},’ 1s minimized is restricted to the bi-
grid class (Bﬁ’, X Bf,) N V" the high-frequency modes diminish in time for both
the linear and the quadratic approximation as it can be observed in Figs. 11(e)
and 12(e), (g), (i). For the case p = 2, the optic modes are more dissipated than
the acoustic ones. However, by comparing Figs. 11(a)-(b) and 12(a)—(b), we ob-
serve that the numerical controls and the solutions of the discrete control prob-
lem (18) under filtering are much more accurate in the quadratic case than in
the linear one. As we made it precise before, for p = 2, the bi-grid filtering acts
mainly like a Fourier truncation of the whole optic mode A3 and of the second
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Fig. 12 Solutions of the control problem (18) versus their numerical controls for p = 2 arising by
minimizing th over the restricted space (Bé’ X Bé‘) n Vé’
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x=1 t=0

Fig. 13 Typical solution of the adjoint problem (10) corresponding to the minimizer (le;’O, fJi’, l)
of Jlﬁ‘ over Vz (left) or over (Bi‘, X BZ) X VZ (right)

-
o

Iog(llv—vglle(O‘T))

log(N)

Fig. 14 The error ||5f‘, — ﬁ”LZ(O‘T) for p =1 (blue) and p =2 (red) versus the number of degrees

of freedom N at the logarithmic scale. In dotted blue/red, we represent N—1/3 and N=2/° also at
the logarithmic scale. Here N takes values from 99 to 999 with increments of 100

half of the acoustic one A5, whereas for p = 1, it behaves like a Fourier trun-
cation of the second half of the dispersion diagram ;. But the low frequencies
of the acoustic mode approximate much better the continuous dispersion relation
A(n) =n, n € R, than the dispersion diagram of the linear approximation. In-
deed, as 7 ~ 0, A (1) ~ n + 1n°/24 + ° /1920, whereas A5 ~n+ n’/1440.
According to the results in [3], this improves the convergence rate h%/3 of the
numerical controls towards the continuous ones corresponding to the case p = 1
for initial data (y°, y!) in the continuous control problem (1) belonging to the
more regular space H(} x L?(0, 1), so that a convergence order 4%/ is obtained
for p = 2 under the same regularity assumptions. In Fig. 14, we represent the
errors in the numerical controls obtained by the bi-grid filtering at the loga-
rithmic scale for both approximations p = 1 and p = 2 for the initial posi-
tion Hﬁ approximating the Heaviside function H. The continuous initial data
0,y = (H,0) e H'/?=¢ x H~1/27¢(0, 1), for any € > 0, which is less than the
regularity imposed in [3]. Consequently, by interpolation, a natural sharp bound
for the convergence orders of the numerical controls should be #'/3 for p =1
versus h%/ for p = 2. This is confirmed by our numerical results.

All the numerical simulations in this paper are realized under the Matlab envi-
ronment. The corresponding numerical codes can be found following the link

www.bcamath.org/projects/MTM?2008-03541/sim/images/.
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4 Conclusions and Open Problems

In this paper, we have discussed and illustrated numerically the high frequency
pathological effects of the P, approximation of the 1D wave equation, previously
analyzed rigorously in [11] in what concerns the boundary observation and control
problems. We have also illustrated the efficiency of the bi-grid filtering algorithm
in recovering the convergence of the numerical controls and compared the results
obtained by this quadratic finite element method with those one recovers by means
of the Pj-approximation. Our conclusion is that, after applying the bi-grid filtering,
the quadratic approximation leads to more accurate controls than the linear one.

This filtering technique can be easily generalized to higher order finite element
approximation methods of waves (p > 3) on uniform meshes, a higher and higher
accuracy of the numerical controls being expected. However, the high-frequency
effects of the numerical approximations on irregular meshes is a completely open
problem.
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Abstract This paper considers space-time adaptive techniques for finite volume
schemes with explicit time discretization. The purpose is to reduce memory and to
speed-up computations by a multiresolution representation of the numerical solu-
tion on adaptive grids which are introduced by suitable thresholding of its wavelet
coefficients. Further speed-up is obtained by the combination of the multiresolution
scheme with an adaptive strategy for time integration, which is classical for ODE
simulations. It considers variable time steps, controlled by a given precision, using
embedded Runge—Kutta schemes. As an alternative to the celebrated CFL condition,
the aim in the application of such an time-adaptive scheme for PDE simulations is
to obtain accurate and safe integrations. The efficiency of this adaptive space-time
method is analyzed in applications to typical Riemann-Lax test problems for the
compressible Euler equations in one and two space dimensions. The results show
that the accuracy properties of the reference finite volume scheme on the finest reg-
ular grid, where the time step is determined by the CFL condition, is preserved.
Nevertheless, both CPU time and memory requirements are considerably reduced,
thanks to the efficient self-adaptive grid refinement and controlled time-stepping.
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1 Introduction

Multiresolution techniques have become an efficient tool, not only for data com-
pression, but also for adaptive simulations of partial differential equations, since the
seminal work by Ami Harten [14]. The main purpose of this paper is to show re-
sults illustrating the efficiency of a fully adaptive space-time multiresolution finite
volume method for solving the compressible Euler equations.

The Finite Volume method (FV) is one of the most robust and versatile discretiza-
tion techniques used in computational fluid dynamics [18]. Given a partition of the
computational domain, the quantities (such as mass, momentum, energy, and species
concentrations) are represented by their cell averages over the grid cells, which are
modified in each time step by the flux through the cells edges. Such a procedure
provides conservation of the quantities, which is valid locally, for any grid cell, as
well as globally, for the whole computational domain.

FV calculations can be accelerated significantly by the use of adaptive grids,
motivated by the presence of inhomogeneous singular features in the numerical so-
lution (as interfaces, shocks or reaction zones). Here we consider multiresolution
(MR) adaptive strategies to speed up FV schemes for time dependent partial differ-
ential equations in Cartesian geometries.

The MR technique is known to yield an appropriate framework to construct adap-
tive FV schemes for hyperbolic conservation laws since the work of Harten [15]. In
this context, cell average discretizations are considered in a hierarchy of embedded
partitions of the computational domain, at different scale levels. The principle of the
multiresolution analysis is to represent a set of cell average data given on a fine grid
as values on a coarser grid plus a series of differences at different levels, the wavelet
contributions, containing the information of the solution when going from a coarse
to a finer grid.

Using the wavelet coefficients as local regularity indicators—the idea of Harten,
which was subsequently explored in [1, 4, 6]—is to reduce the number of costly
flux evaluations to speed up the scheme, however, without reducing the memory
requirements. Fully adaptive MR schemes with memory compression have been
developed, where the representation of the numerical solutions is performed only
by the cell averages on the adaptive partitions formed by cells corresponding to
their significant wavelet coefficients [5, 7, 10, 11, 16, 20, 22-24]. Typically, little
information is required in each time step, since fine grids are only used near the
steep gradients, while coarser grids are sufficient to represent the solution in smooth
regions.

To further speed-up space-adaptive simulations, adaptive strategies may be
adopted for time integration. For instance, one strategy is the local scale-depend-
ent time stepping, which is classical in the AMR (Adaptive Mesh Refinement)
context [3]. The principle is to evolve the solution on large scale cells with larger
time steps, which are determined locally by the CFL condition, according to each
cell size. This technique has also been combined with MR schemes, as discussed
in [9, 10, 21]. Another adaptive time integration, which is usual for ODE simula-
tions, considers variable time steps, controlled by a given precision, using embed-
ded Runge—Kutta schemes. The aim in the application of such schemes for PDE
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simulations is to obtain accurate and safe integrations without the requirement of
a prescribed fixed CFL parameter. This controlled time-stepping technique, which
can also be combined with local time stepping, has been applied for AMR schemes
in [13], and for MR methods in [2, 5, 11, 12]. For the applications of the present pa-
per, only the combination of MR with controlled time stepping is considered, which
is herein referred as MR/CT scheme.

The text is organized as follows. In Sect. 2, we describe the reference FV
scheme and the corresponding space-adaptive MR and space-time-adaptive MR/CT
schemes. In Sect. 3, the MR/CT method is applied to the compressible Euler equa-
tions in one and two space dimensions. The results are compared with the exact
solution in 1D, or with those obtained with the reference FV scheme on the finest
regular grid in 2D. Their accuracy, CPU time, and memory compression are dis-
cussed taking into account two choices of the threshold parameters. Finally, conclu-
sions from our results are drawn and some perspectives of this work are given in
Sect. 4.

2 The Numerical Schemes

The compressible Euler equations can be written in the following conservation form,

1Y

— +V- f(Q)=0, ey

at
with Q = (p, pv, pe)T, where p = p(x, 1) is the density, v = v(x, t) is the vector
velocity with components (vy, v2, v3), and e = e(x, t) is the energy per unit of mass,
which are functions of time ¢ and position x = (x1, x3) € £2. The flux function

f=(f1, f2) is given by

pU] pLv2
2
pvT+p pVIV2
Si= ! , fr= ) ,
pPVIV2 pvy;+p
(pe + pvi (pe+ p)va

where p = p(x, t) denotes the pressure. The system is completed by an equation of
state for a calorically ideal gas

|v|?
p=pRT=(V—1)p(e—7>, (2

where T = T (x, t) is the temperature, y the specific heat ratio, and R the universal
gas constant. In dimensionless form, we obtain the same system of equations, but
the equation of state becomes p = yp—ﬂzz, where M denotes the Mach number. For
the present applications, the physical parameters are M =1 and y = 1.4.
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2.1 Reference Finite Volume Discretization

In the reference scheme for equation_s in the conservation form (1), the numer_ical SO-
lution is represented by the vector Q(¢) of the approximated cell-averages QO , (¢)

Okm(t) ~ O(x,)dx

|-Qk,m | 2k.m
on cells §2; ,, of a grid with uniform spacing Ax = Ay. For space discretization, a
finite volume method is chosen, which results in an ODE system of the form
do -
— =F(0Q), 3
7 Q) 3)

where F(Q) denotes the vector of the numerical flux function. For time integration,
approximate solutions Q" at a sequence of time instants " are obtained using an
explicit ODE solver, i.e., Runge—Kutta schemes. For stability, the time steps At, =
1 — " are determined by the CFL-condition [8]

CFL=A\ Al
= Amax 770

where Apnax is the maximum absolute value for the eigenvalues of the Jacobian ma-
trix of f(Q).

For the numerical tests of the present paper, the reference FV scheme uses a
second order MUSCL scheme with an AUSM+ flux vector splitting scheme [19]
and the van Albada limiter. For time integration, an explicit third-order Runge—Kutta
(RK3) scheme is used.

2.2 Adaptive Multiresolution Methods

The adaptive methods of the present paper fall into the MR category, combined with
a time adaptive strategy using controlled time-stepping.

MR Scheme The adaptive MR scheme belongs to a class of adaptive methods
which are formed by two basic parts: the operational part and the representation part.
The operational part consists of an accurate and stable discretization of the partial
differential operators. In the representation part, multiresolution analysis tools of the
discrete information are employed. The principle of the MR setting is to represent a
set of function data as values on a coarser grid G plus a series of differences at dif-
ferent levels of nested grids G; C G 41, see Fig. 1. The information at consecutive
scale levels are related by inter-level transformations: projection and prediction op-
erators. The wavelet coefficients d; are defined as prediction errors, and they retain
the detail information when going from a coarse G| to a finer grid G ;1 [23].

In MR schemes for the adaptive numerical solution of PDEs, the main idea is
to use the decay of the wavelet coefficients to obtain information on the local reg-
ularity of the solution. Adaptive MR representations are obtained by stopping the
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Fig. 1 Set of nested dyadic grids G, for0 < j <4

refinement in a cell at a certain scale level where the wavelet coefficients are non-
significant. In particular, these coefficients are small in regions where the solution
is smooth and significant close to irregularities, e.g., steep gradients. In the finite
volume context, the natural representation framework is the multiresolution analy-
sis based on cell-averages. Instead of using the cell-average representation on the
uniform fine grid, the MR scheme computes the numerical solution represented by
its cell-averages on an adaptive sparse grid, which is formed by the cells whose
wavelet coefficients are significant and above a given threshold.

An efficient way to store the reduced MR data is to use a tree data structure, where
grid adaptivity is related with an incomplete tree, and where the refinement may be
interrupted at intermediate scale levels. This means that, using the tree terminology,
an MR grid is formed by leaves, which are nodes without children; for an illustration
we refer to Fig. 2, left.

For the time evolution of the solution, three basic steps are considered: refine-
ment, evolution, and coarsening. The refinement operator is a precautionary mea-
sure to account for possible translation of the solution or creation of finer scales in
the solution between two subsequent time steps. Since the regions of smoothness
or irregularities of the solution may change with time, the MR grid at " may not
be convenient anymore at the next time step #**!. Therefore, before doing the time
evolution, the representation of the solution should be interpolated onto an extended
grid that is expected to be a refinement of the adaptive grid at ", and to contain the
adaptive grid at " +1.

Then, the time evolution operator is applied on the leaves of the extended grid. To
compute fluxes between leaves of different levels, we also add virtual leaves (Fig. 2,
right). Conservation is ensured by the fact that the fluxes are always computed on
the higher level, the value being reported on the leaves of a lower level.



106 M.O. Domingues et al.

Fig. 2 Left: Sketch of a 2D tree structure. Right: corresponding sketch with its leaves (plain) and
virtual leaves (dashed)

Finally, a wavelet thresholding operation (coarsening) is applied in order to un-
refine the cells in the extended grid that are not necessary for an accurate represen-
tation of the solution at **!. This data compression is based on the definition of
deletable cells, where the wavelet coefficients are not significant, i.e., their magni-
tudes are bellow a threshold parameter €;, where j denotes the cell scale level. In
order to control the L'-norm, Harten’s thresholding strategy is recommended, for
which

ej= 20U o< <1,
1£2]
where d = 1,2, or 3 is the space dimension, and J is the finest scale level. For
comparison, we shall also consider level independent threshold parameters: €; = €,
foralll <j<J-—1.

For the applications of the present paper, the multiresolution analysis corre-
sponds to a prediction operator based on a third order polynomial interpolation on
the cell-averages. For further details on the adaptive MR scheme, we refer to [23].

MR/CT Scheme In the MR/CT scheme, the time integration is performed with a
variable time step Az, which size is chosen dynamically. It should be small enough
to get a required precision and stability of the computed results, but sufficiently large
to avoid unnecessary computational work.

Instead of determining the time step by the celebrated CFL condition, using a
fixed CFL parameter determined a priori, the MR/CT scheme adopts a classical
strategy from ODE simulations, where the time step size selection is based on es-
timated local truncation errors. The main reason of controlling the error in the so-
lution is to obtain an accurate and safe integration in the whole interval. When the
estimated local error is smaller than a given tolerance, denoted by Sgesired, the algo-
rithm increases the step size to make the integration more efficient.

For the applications of the present paper, the MR/CT scheme is based on the
embedded Runge—Kutta Fehlberg 2(3) ODE solver [26]. The initial time step is
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determined by an input CFL(0) parameter provided by the user. From one time
instant to the next, given the current A¢, the next Aty is determined to maintain
the local truncation error below 8esired- Precisely, it has the form Afpey = AtE, with

E _ [ 5desired ]1/3
| O ow) — O (high) | ’

where Q(low) and Q(high) stand for the solutions produced by RK2 and RK3
schemes, respectively. To prevent the time step of varying too abruptly or to be
sure that Atyey in fact will produce an error less than dgesired, the time step variation
is limited by a factor that decreases exponentially from 10 %, in the initial time step,
to 1 % after a few iterations. For more details on the combined MR/CT scheme, we
refer to [11].

3 Numerical Tests

To illustrate the accuracy and efficiency of the MR/CT method, we consider two
test problems in one and two space dimensions. Since one of the purposes here
is to evaluate the effect of different threshold strategies, we refer to MR/CT-¢ and
MR/CT-¢; to distinguish between the constant and the Harten threshold parameters
which are used.

The simulations presented in this section were performed using the multiresolu-
tion code Carmen 1.54, initially developed by Roussel et al. [23]. In this updated
version, details are considered for averaged quantities of p, pe, and |v]|.

3.1 Lax Test-Case in 1D

The Riemann problem for the unidimensional Euler equations with initial condition

0.445
Q(x,t=0)=1]0.31061 ], ifx<0, and
8.928

0.5
Ox,t=0)= 0 , otherwise
1.4275

is known as the Lax problem. Details on this test-case, and its exact solution can
be found in [18, 27]. We compute the solution in the domain £2 = [—1, 1], with
Neumann boundary conditions applied on both sides. The simulations are performed
until physical time ¢ = 0.32, and all errors are taken at this final time. We take the
grid spacing Ax =27/~ at the finest scale level, and the results are obtained for
J=11.

For this problem, the maximum absolute value for the eigenvalues of the Jaco-
bian matrix is constant for ¢ > 0. Therefore, for the FV simulations, we assume a
constant time step A¢, which is obtained from the input CFL(0). Within ¢ < 0.32
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Fig. 3 1D Lax test-case: CFL evolution for MR/CT-€ (top) and MR/CT-¢; (bottom) schemes, for
different accuracy values gesired, With J = 11, CFL(0) = 0.4 (left) and CFL(0) = 1.5 (right)

using AUSM+ with van Albada limiter and an RK3 scheme, we found the stability
limit CFL < 1.33.

For the adaptive MR/CT scheme, an input CFL(0) parameter is provided by the
user, and CFL(t) evolves according to the new Ar obtained by the time step con-
trol. In [11], results are presented with initial CFL(0) values below and above the
CFL/RK3 stability limit. It was observed that initially there is a transient state, and
then CFL(t) becomes constant. The steady state value CFLy, = CFLx(8desired) de-
creases with dgesired, remaining within the stability limit of the reference FV scheme.
Nevertheless, it seems to be independent of the CFL(0) input. The accuracy of the
numerical solutions, measured in the L!-norm, has the same behavior, which is al-
most insensitive to the CFL history, with significant gain in the amount of memory
and CPU time required with respect to the reference FV scheme.

We revisit this test problem here to analyze the effect of the threshold strategy,
having in mind the applications in two and three dimensions, where the savings
in CPU time and memory are crucial. Therefore, we consider similar results using
MR/CT-¢; and MR/CT-€ schemes.

Figure 3 shows the CFL evolution for both threshold strategies, for dgesired =
2~M M =345 and 7, with J = 11, confirming the conclusions presented in [11],
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Table 1 1D Lax test-case: Comparison of L1-errors for density p and kinetic energy E, speed-up
and data compression of the numerical solutions at time ¢ = 0.32 with J = 11 levels. For the
MR/CT schemes, Sqesired = 2™+ and CFL(0) = 0.4 is used

Method Error CPU
L E Time Memory Leaves
(x107) (%) (%) (%) (%)
FV (Ref.) 4.144 0.009 100 100 100
e=10"2
MR/CT-€ 6.867 0.298 7.44 16.92 7.53
MR/CTS-¢; 4.321 0.108 10 24 11
e=10"3
MR/CT-€ 4.266 0.108 10 24 11
MR/CTS-€; 4.151 0.103 13 29 13
e=10"*
MR/CT-€ 4.141 0.106 13 30 13
MR/CTS-¢; 4.134 0.105 15 34 16

and showing that the influence of the threshold strategies seems to be insignificant
in the choices of the At parameters in the MR/CT schemes.

Table 1 shows memory and CPU time compression effects of the adaptive
schemes, for J = 11, 8gesired = 2™+, CFL(0) = 0.4, ¢ = 1072, 1073, and 10~*, to-
gether with L!-errors on density and kinetic energy

1
E= % / p(0)|v(x)|* dx = 0.966568.
-1

The reference FV scheme uses a constant time step At = 9.694157 x 107>, which
is obtained from CFL(0) = 0.4. In all the cases, concerning CPU time and compres-
sion gains with respect to the FV reference scheme, the effectiveness of the MR/CT
schemes increases with increasing €. In all the MR/CT cases, there is a slight vari-
ation of L and the percentage of energy errors. As expected, with respect to the
MR/CT-¢; scheme, the MR/CT-€ scheme requires less memory, with gain in CPU
time, but with a consequent increase in the L' and kinetic energy errors. However,
these differences in efficiency become less important as € decreases.

The plots for the exact density p(x, t = 0.32) and its numerical approximations
are shown in Fig. 4 (top, left), showing that the numerical solutions fit the exact
one. The other three plots correspond to zooms onto the rarefaction boundary (fop,
right), the contact discontinuity (bottom, left), and the shock (bottom, right). We can
observe that the MR/CT-€ solution loses resolution at the rarefaction part, where
FV and MR/CT-¢; solutions almost coincide with the exact solution. At the contact
discontinuity and the shock, the three schemes have a comparable behavior.

In Fig. 5, the leaves of the MR adaptive meshes are represented in the position
x level plane. As expected, the grid is refined close to irregularities, and the finest
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Fig.4 1D Lax test-case: Exact and numerical density obtained with the FV and MR/CT-¢ methods
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Fig. 5 1D Lax test-case: MR grids at time ¢ = 0.32 with J = 11, Sgesired = 274, CFL(0) = 0.4
and € = 1073 for the MR/CT-¢ scheme (left) and the MR/CT-¢; scheme (right)
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Fig. 7 2D Riemann problem: Domain decomposition for the definition of the initial condition

level is reached in the vicinity of the shock and the contact discontinuity. Close to
the rarefaction boundaries the MR/CT-¢; grid shows more refinement, explaining
the better resolution of its solution at this location.

The percentage of the leaf cells on each scale level with respect to the full uni-
form grid at the finest resolution is presented in Fig. 6. The higher degree of refine-
ment given by the MR/CT-¢; scheme at higher levels, mainly at j =9 and 10, is
noticeable, which comes from the rarefaction zone, as it can be observed in Fig. 5.

3.2 2D Test-Case: Lax—Liu Configuration #6

The case study chosen here is a typical Riemann problem for 2D gas dynamics, and
corresponds to the configuration #6 treated, e.g., in [17], and initially discussed in
[25, 28]. The computational domain is the square £2 = [0, 112, with free boundary
conditions. The domain is divided into four quadrants (Fig. 7), where the initial
data are set constant in each quadrant, according to the values given in Table 2.
The simulations are performed until r = 0.3, with J = 10 or 11. For the MR-CT
schemes, we take the parameters € = 1073, CFL(0) = 0.5, and Sdesired = 274,
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Table 2 Initial values for the 2D Lax-Liu configuration #6 [17]

Variables Quadrant

00 01 10 11
Density (p) 1.0 2.0 3.0 1.0
Pressure (p) 1.0 1.0 1.0 1.0
Velocity component (v1) —0.75 0.75 —0.75 0.75
Velocity component (v7) 0.5 0.5 -0.5 -0.5

Table 3 2D test-case: Speed-up and Lj-errors of density p and kinetic energy E of the MR/CT
numerical solutions at time ¢ = 0.3 with J = 10 and 11 levels, € = 1073, Sgesired = 2%, and
CFL(0) =0.5

Method Error CPU
L E Time Memory Leaves
(x1073) (%) (%) (%) (%)
J=10
MR/CT-€ 1.2146 0.0340 16 23 15
MR/CTS-€; 0.7961 0.0288 26 37 25
J=11
MR/CT-€ 2.0135 0.0156 7 11 7
MR/CTS-¢; 0.8470 0.0144 14 22 14

In Table 3, we compare the computational efficiency and the precision of the
MR/CT methods. The reference computations are given by the FV scheme on the
finest regular grid with constant time step Ar = 2.790179 x 10~%, for J = 10, and
At = 1.395089 x 1074, for J = 11, corresponding to CFL(0) = 0.5. This test prob-
lem also shows an almost constant &1.77 maximum eigenvalue. Concerning CPU
time and compression gains with respect to the FV reference scheme, the effec-
tiveness of the MR/CT schemes increases with J. As expected, with respect to the
MR/CT-¢; scheme, the MR/CT-¢ scheme requires about half of the memory, with
equivalent gain in CPU time, but with a consequent increase in L'-error. Neverthe-
less, the kinetic energy errors are comparable.

Contour plots for the density, velocity, and energy at r = 0.3 are presented in
Fig. 8 for the MR/CT-¢ (left) and MR/CT-¢; (right), for J = 11. They show that both
MR solutions are similar, but with a better definition of the details for the MR/CT-
€; case. This improved approximation is a consequence of a more refined MR grid
close to strong variation regions, as shown in Fig. 9. Density cuts at the line x = 0.5
are shown in Fig. 10 (top, left). We find a rather good agreement between both FV
and MR-CT computations. Zooms around the left, center, and right sides are also
shown. In the center, where both schemes have a well refined grid, the results are
very accurate. However, the MR/CT-¢ scheme is not able to resolve the transition
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Fig.8 2D test case: Density p (top), velocity |v| (center), and energy e (bottom) profiles at r = 0.3,
for the MR/CT-¢ (leff), and MR/CT-¢; (right), with J = 11, € = 1073, and 8gesired = 2~*. Contour
lines from 0, with intervals 0.1

regions of the constant states p = 3 and p = 2, where the constant € strategy is not
sensible enough.

Concerning time adaptivity, the influence of the threshold strategies seems to
be insignificant in the choices of the Ar parameters in the MR/CT schemes, as
presented in Fig. 11 (left). The plots in Fig. 11 (right) correspond to the distribution
of the percentage of leaves of the MR adaptive grids on each scale level, with respect
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Fig. 11 2D test-case: Evolution of the CFL number (/eft) and the percentage of cells for each scale
level (right) for the MR/CT methods at t = 0.3, with J = 11, € = 1073, and 8gesired = 2~

to the full uniform grid at the finest resolution. The higher degree of refinement
given by the MR/CT-¢; scheme at higher levels is noticeable.

4 Conclusions

The present work on adaptive multiresolution techniques in space and time illus-
trates the potential of such advanced numerical methods for solving the compress-
ible Euler equations in one and two space dimensions with reduced computational
complexity, i.e., reducing both memory and CPU time requirements with respect
to computations of the finest regular grid. The accuracy of the adaptive computa-
tions is nevertheless guaranteed by suitable thresholding of the wavelet coefficients
and the convergence order of the underlying finite volume scheme on the regular
grid is maintained. Furthermore, the adaptive time control mechanism maintains the
stability of the simulations and the solution satisfies an imposed precision in time.
The time step is adapted automatically by the numerical scheme during the time
evolution.

In the future work, we plan to perform computations in three space dimensions
and to benchmark extensively our multiresolution code against adaptive mesh re-
finement (AMR) strategies in terms of precision and CPU time. Preliminary results
comparing MR with AMR can be found in Deiterding et al. [9].
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A Framework for Late-Time/Stiff Relaxation
Asymptotics

Philippe G. LeFloch

Abstract We consider solutions to nonlinear hyperbolic systems of balance laws
with stiff relaxation and formally derive a parabolic-type effective system describ-
ing the late-time asymptotics of these solutions. We show that many examples from
continuous physics fall into our framework, including the Euler equations with (pos-
sibly nonlinear) friction. We then turn our attention to the discretization of these
stiff problems and introduce a new finite volume scheme which preserves the late-
time asymptotic regime. Importantly, our scheme requires only the classical CFL
(Courant-Friedrichs—Lewy) condition associated with the hyperbolic system under
consideration, rather than the more restrictive, parabolic-type stability condition.

Keywords Hyperbolic system - Late-time - Stiff relaxation - Finite volume
method - Asymptotic preserving

1 Introduction

This short presentation is based on the joint work [3] in collaboration with
C. Berthon and R. Turpault. We are interested in hyperbolic models arising in con-
tinuum physics and, especially, describing complex multi-fluid flows involving sev-
eral time-scales. The partial differential equations under consideration are nonlinear
hyperbolic systems of balance laws with stiff relaxation sources. We investigate here
the late-time behavior of entropy solutions.

Precisely, our objective is to derive the relevant effective system—which turns
out to be of parabolic type—and to investigate the role of a convex entropy asso-
ciated with the given system of balance laws. As we show it, many examples from
continuous physics fall into our framework. In addition, we investigate here the dis-
cretization of such problems, and we propose a new finite volume scheme which
preserves the late-time asymptotic regime identified in the first part of this paper.
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An outline of this paper follows. In Sect. 2, we present a formal derivation of
the effective equations associated with our problem. In Sect. 3, we demonstrate
that many examples of continuous physics are covered by our theory. Finally, in
Sect. 4, we are in a position to present the new discretization method and state
several properties of interest.

2 Late-Time/Stiff Relaxation Framework

2.1 Hyperbolic Systems of Balance Laws

We consider systems of partial differential equations of the form

R(U
satU—f-BxF(U):—%, U=U(t,x)e 2 CRY, (1)

where ¢ > 0, x € R denote the (time and space) independent variables. We make the
following standard assumptions. The flux F : 2 — RY is defined on a convex and
open subset £2. The first-order part of (1) is a hyperbolic system, that is, the matrix-
valued field A(U) := Dy F (U) admits real eigenvalues and a basis of eigenvectors.

We are interested in the singular limit problem & — 0 in the limit of late-time and
stiff relaxation. In fact, two distinct regimes for systems like (1) can be considered.
In the hyperbolic-to-hyperbolic regime, one replaces €9, U by 9;U, and establishes
that solutions to

R(U)
U+ 0, F(U) == U=U(@,x),

are driven by an effective system of equations (¢ — 0) of hyperbolic type. Such a
study was pioneered by Chen, Levermore, and Liu [7]. On the other hand, in the
hyperbolic-to-parabolic regime under consideration in the present work, we obtain
effective equations of parabolic type. Earlier work by Marcati et al. [9] discussed
this regime too and established several important convergence theorems.

Our objective here is to introduce a general framework to deal with such prob-
lems. We make the following assumptions.

Assumption 1 There exists an n x N matrix Q with (maximal) rank n < N such
that

QR(U)=0, Uef.
Hence, QU € Q2 =: w satisfies
€0, (QU) + 3, (QF (U)) =0.
Assumption 2 There exists a map £ : w C R — £2 describing the equilibria
u € w, with

R(E(u)) =0, u=0Q0&E®w).
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It is then convenient to introduce the equilibrium submanifold M :={U = £(u)}.

Assumption 3 It is also assumed that
QF(E(u)) =0, ueow.
To motivate this condition observe that, at least formally, the term 9, (Q F (€ (u)))

must vanish identically, so that Q F (€ («)) must be a constant, conveniently normal-
ized to be 0.

Assumption 4 For all u € w,

dim(ker(B(S(u)))) =n,
ker(B(£w)) NIm(B(Ew))) = (0).

Hence, the N x N matrix B := DRy has “maximal” kernel on the equilibrium
manifold.

2.2 Chapman-Engskog-Type Expansion

We proceed by using a Chapman—Engskog expansion in order to derive effective
equations satisfied by the local equilibria u = u(z, x) € . So, we write

U =Ew) +eU; +€*Ur + -+, u:=QU°,
which should satisfy €0, U¢ + 0, F (U®) = —R(U?)/¢. It follows that
QUi =QUy=---=0.
For the flux we find
F(U®) = F(Ew) +e A(Ew)U; + O(e?),

and for the relaxation

R(U?)

= B(EwW)U; + %D%,R(E(u)).(Ul, U1) + & B(E@)Us + O(e?).
In turn, we deduce that

€0 (Ew) + 0 (F(Ew))) + e 05 (A(Ew)) Up)

= —B(EW) Uy — %D%]R(éf(u)).(Ul, U1) — e B(Ew)) Uy + O(e?).
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We begin by considering the zero-order terms and thus deduce that U; € RV
satisfies the linear system

B(Ew)Uy = -3, (F(Ew))) e RY.

We can solve this equation in Uy, provided we recall that QU; = 0 and observe the
following.

Lemma 1 (Technical lemma) Let C be an N x N matrix satisfying dimker C = n,
and kerC N ImC = {0}, and let Q be an n x N matrix of rank n. Then, for all
J RV, the system

CcvV=1J,
QV =0,

admits a unique solution V € R™ if and only if QJ =0.
We can thus conclude with the following.

Proposition 1 (First-order corrector problem) The first-order corrector Uy is char-
acterized uniquely by

B(g(u))Ul = —3x(F(5(u))),
QU; =0.

We now turn our attention to the first-order terms and we arrive at

1
H(EW) +(A(EW) Uy) = —EDgR(g(u)).(Ul, Up) — B(Ew)) Us.

Multiplying by Q and using Q& (u) = u, we find

du+ 0, (QA(Ew)) Uy) = —%QD%]R(E(u)).(Ul ,Up) — OB(Ew))Us.
But, by differentiating the identity Q R(U) = 0, it follows that
OD}R.(Uy,Up) =0, QOBU, =0.
Theorem 1 (Late time/stiff relaxation effective equations) One has
du=—03(QA(EW)) Ur) =: dx (M (u)dyu)

for some n x n matrix M(u), where Uy is the unique solution to the first-order
corrector problem

B(Ew)U = —A(Ew)) 0, (Ew)),
QU; =0.
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2.3 The Role of a Mathematical Entropy

Next, we investigate the consequences of assuming existence of a mathematical
entropy @ : £2 — R, satisfying by definition:

Assumption 5 There exists an entropy-flux ¥ : 2 — R such that
DU¢A=DUW in 2.

So, all smooth solutions satisfy

£d, (@ (U°)) + o, (¥ (U%)) = —Dycp(us)%{”)

and, consequently, the matrix D%@ A is symmetric in §2. In addition, we assume
that the map @ is convex, i.e., the N x N matrix D121<1> is positive definite on M.

Assumption 6 The following compatibility property with the relaxation term holds:
Dy®R>0 in,
Dy®U)=v(U)Q eRY, vU)eR™.
Returning to the effective equations

du=0,D, D:=—-QA(Ew)) U,

and multiplying it by the Hessian of the entropy, we conclude that the term U; € RY
is now characterized by

L@)Uy = —(DE®) (Ew))d (F(Ew))),
QU; =0,

where L(u) = D}, ® (€ () B(E)).
Then, using the notation £(u)~! for the generalized inverse with constraint and
setting

S(u) :== QA(EWw)),
we obtain
D=SL(DL®)(E)d(F(©)).
Finally, one can check that

(D} ®)()d (F(©&)) = STv,

with v := 3, (D, ® (E))T.
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Theorem 2 (Entropy structure of the effective system) When the system of balance
laws is endowed with a mathematical entropy, the effective equations take the form

B = 3, (L(w) 3 (Du® (Ea))) "),
where
L) :=S@)Lw) ' Sw),
S(u) = QA(Ew)),
L(u) = (D§P)(Ew)B(Ew)),
where, for all b satisfying Qb = 0, the unique solution to
Lw)V=b  QV=0

is denoted by L(u)~'b (generalized inverse).

Alternatively, the above result can be reformulated in terms of the so-called en-
tropy variable (D, ® (€ )))T . Furthermore, an important dissipation property can
be deduced from our assumptions, as follows. From the entropy property and the
equilibrium property R(E(u)) =0, we find

Dy®R>0 in £,
(Du®PR)|y=£wy =0 inw.
Thus, the matrix D%, (Dy® R)|y=¢£w) 1s non-negative definite. It follows that
D}(Dy®R) =D} ®B + (DF®B)’  when U =E(u),

so that
D%@ B|U:5(M) >0 inw.

The equilibrium entropy @ (€(u)) has the property that its associated (entropy)
flux u — W (E(u)) is constant on the equilibrium manifold w. Indeed, for the map
¥ (£), we have

D, (¥(€)) = Dy¥(£)D,E
=Dy P(E)AE)D,E.

Observing that (Dy @)(E) = D, (P (E)) 0, we obtain

Dy (¥ (EW))) = Du®(Ew)) QA(Ew)) DyE (u)
= Dy (®(Ew))) Dy QF (Ew)).
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Since QF(£) =0, then D,QF(£) = 0 and the proof is completed. Therefore,
D, (¥ (E(m))) =0forall u € w.
Recalling the asymptotic expansion

Us=Ewm)+eU +---,
where U is given by the first-order corrector problem, we write
W(U®) =¥ (EW)) + e Dy¥ (Ew)Uy + O(e?),
and deduce
W (U°) = ed: Dy¥ (Ew))Us + O(e?).
Similarly, for the relaxation source term, we have
Dy®(U*)R(U?) = &> D@ (Ew)) Dy R(Ew)) Uy + O(e?).
‘We thus obtain
(P (EW))) + 0 (Dy¥ (Ew))Uy)
=-U[ (D} @ (Ew)B(EW)))Us.
But, we have already established

X(Dj@)(E)BE)X 20, XeRN.

Proposition 2 (Monotonicity of the entropy) The entropy is non-increasing in the
sense that

¥ (@(EW))) + ax (Dy¥ (Ew))Uy) <0.
In the notation given earlier, one thus have
W (P(Ew)) =0y (Dy(®(EW))))L(u)dx(Dy (@(5(14)))T).

Remark 1 The above framework can be extended to handle certain nonlinear diffu-
sion regime, corresponding to the scaling
RU)

ehU4+ 0 F(U)=— .
&q

The parameter ¢ > 1 introduces an additional scale, and is indeed necessary for
certain problems where the relaxation is nonlinear. The relaxation term is supposed
to be such that

R(EwW)+eU)=eIR(Ew)+M(@)U), UefR, ucw,

for some matrix M (¢). In that regime, the effective equations turn out to be of non-
linear parabolic type.
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3 Examples from Continuum Physics

3.1 Euler Equations with Friction Term
The simplest example of interest is provided by the Euler equations of compressible
fluids with friction:

€00 + 0x(pv) =0,

2
£ 3 (pv) + 3x (pv* + p(p)) = _%7

in which the density p > 0 and the velocity component v represent the main un-
knowns while the pressure p : RT™ — R™ is prescribed and satisfy the hyperbolicity
condition p’(p) > 0 for all p > 0. Then, the first-order homogeneous system is
strictly hyperbolic and (2) fits into our late-time/stiff relaxation framework provided

we set
_(r _ PV _(0

and Q = (1 0). In this case, the local equilibria u = p are scalar-valued, with

Ew) = (g) :
and we do have Q F(£(u)) =0.
The diffusive regime for the Euler equations with friction is analyzed as follows.
First, according to the general theory, equilibrium solutions satisfy

dhp=—3:(QA(EW)U1),
where
0 1
Dy F(€ = .
vFEwW) <p'(p> 0)
Here, U is the unique solution to

B(Ew)Uy = —0,(F(Ew))),
QU; =0

with

pew)=(g 7). alrE) = (4

This leads us to the effective diffusion equation for the Euler equations with friction

3p =07 (p(p), 3)
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which is a nonlinear parabolic equation, at least away from vacuum, since p’(p) > 0
by assumption. Interestingly, at vacuum, this equation may be degenerate since
p'(p) typically vanishes at p = 0. For instance, in the case of polytropic gases
p(p) =«kp¥ withk > 0and y € (1, y) we obtain

9o =ry dx(p" 'p). @)
In addition, by defining the internal energy e(p) > 0 by

¢p) =22,
0

we easily check that all smooth solutions to (2) satisfy

v? v3 ov?
edh| p— +peo) |+ p7+(pe(p)+p(p))v =—— (5)
so that the function
v2
oU) = iy + pe(p)

is convex entropy compatible with the relaxation. All the conditions of the general
framework are therefore satisfied by the Euler equations with friction.

3.2 M1 Model of Radiative Transfer

Our next model of interest arises in the theory of radiative transfer, i.e.,

T4_€
gore+ 0y f = P
o,/ +on(x(f/ee) =~ ©)
e_T4
eoT = ,
&

where the radiative energy e > 0 and the radiative flux f are the main unknowns,
restricted by the condition |f/e| < 1, while T > 0 denotes the temperature. The
function x : [—1, 1] — R™ is called the Eddington factor and, typically,

3 +4¢7
5424382

This system fits into our late-time/stiff relaxation framework if we introduce

x(&)=

e f e—1*
v=|(r]. FO=(xbe]. RO=|( f

T 0 T4_€
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Now, the equilibria are given by u = 7 + t*, with

4

Ew=|0], o=a o 1.

T

We do have Q F(€(u)) = 0 and the assumptions in Sect. 2 are satisfied.
We determine the diffusive regime for the M1 model from the expression

0 1 0 0 1 0
(DuF)(Ew)=|x©0) x'© o]=[3 0 0],
0 0 0 0 0O
where U] is the solution to the linear problem
1 0 —47° 0
0 1 0 |Uu=|aGE*3],
-1 0 47° 0
(1 0 HUy=0.
Therefore, we have
0
U= %138xr ,
0
and the effective diffusion equation for the M1 system reads
4 4 3
W(r+1*)=0s 37 9,7 ). (7)

Again, an entropy can be associated to this model.

3.3 Coupled Euler/M1 Model

By combining the previous two examples, we arrive at a more involved model:
€00 + 9x(pv) =0,
2 K o
0, pv + 3 (pv” + p(p)) = —spvt—f,

edie+ 9y f =0, ®)

f 0
€0 f +0x| x 2 e ——gf,
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in which the same notation as before is used and « and o are positive constants. In
the applications, a typical choice for the pressure is

p(p):Canv Cp<<17 77>1

To fit this model within the late-time/stiff relaxation framework, we need to set

P pY 0
2
_|pv _ | v+ _|kpv—of
U = e | FWU)= f > RWU) = 0
f x(Le of

The local equilibria are given by

o (1.0 0 0
’ “_QU_<e)’Q_(0 0 1 0)’

and once again, one has Q F(€(u)) = 0.
We can then compute

Ewm) =

SO O

0 10 0 0
) 0 0 0 L9 (o) — L
purEw)= |7 00 Oy | =59
1
0 0 3 0 —%8)56

and we arrive at the effective diffusion system for the coupled Euler/M 1 model:

1 2 1 2
0rp — ;axp(p) i d;e=0,
©))

) 132 0
e— —d,e=0.
! 30 *

The second equation is a standard heat equation, and its solution serves as a source-
term in the first equation.

3.4 Shallow Water with Nonlinear Friction

Our final example requires a more general theory of nonlinear relaxation mentioned
in Remark 1, and it reads
£0:h + 0y (hv) =0,

2 (10)
" ghvlhvl,

£, (hv) + 8y (hv* + p(h)) = _"82
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where h denotes the fluid height and v the fluid velocity. The pressure is taken to
be p(h) = gh?/2, and g > 0 is called the gravity constant. The friction coefficient

«k :R* — R is a positive function, and a standard choice is « (k) = 52 with kg > 0.
The nonlinear version of the late-time/stiff relaxation framework applies if we

set
h hv 0
v= (m) . FO)= (hv2 + p(h)) . RO)= <K2(h)ghu|hv|> '

The scalar equilibria u = h are associated with

5(u)=(g>, 0o=( 0).

Here, the relaxation is nonlinear and satisfies

R(Ew) +eU) =e*R(EWU) + M(e)U),

M) = (g (1))

in turn, we may derive a nonlinear effective equation for the Euler equations with
nonlinear friction, that is,

with

N/
3’h_8"<@ ¢_|axh|>’ (b

which is a nonlinear parabolic equation.
In addition, by introducing the internal energy e(h) := gh/2, we observe that all
smooth solutions to (10) satisfy the entropy inequality

2 2 2 2

v h v 5 k“(h) 5

88,(%1? +g?>+8x<h?+gh )v:— 2 ghv~lhv|. (12)
The entropy

o) = g

T TE,

satisfies the compatibility properties relevant to the nonlinear late-time/stiff relax-
ation theory, with in particular

R(Ew) + M(0)U;) = <8x1?(h)> ,

where U; = (0 B). We obtain here R(E(u) + M(0)U,) = c(u)U; with

c(u) = gk (h)y/h|dxh| = 0.
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4 Asymptotic-Preserving Finite Volume Schemes

4.1 General Strategy

We are now going to design finite volume schemes that are consistent with the
asymptotic regime ¢ — 0 determined in the previous section and, indeed, to recover
an effective diffusion equation that is independent of the mesh-size. The discretiza-
tion of hyperbolic-to-hyperbolic regimes was investigated first by Ji and Xin [11].
Here we propose a framework to cover hyperbolic-to-parabolic regimes. For earlier
work on this latter regime, see [1, 2, 4-6].

Step 1. Our construction is based on a standard finite volume scheme for the homo-
geneous system

U+ 0, F(U) =0,

and we will begin by describing such a scheme.
Step 2. We will then modify the above scheme and include a matrix-valued free
parameter, allowing us to approximate the non-homogeneous system

»U + 3. F(U)=—yRU),

for a fixed coefficient y > 0.

Step 3. Finally, we will perform an asymptotic analysis after replacing the dis-
cretization parameter At by e At, and y by 1/e. Our goal then will be to
determine the free parameters to ensure the asymptotic-preserving property.

Let us briefly define the so-called HLL discretization of the homogeneous sys-
tem, as proposed by Harten, Lax, and van Leer [10]. For simplicity, we present here
the solver based on a single constant intermediate state. The mesh is assumed to be
the uniform mesh made of cells of length Ax:

[xic1/2, Xiv12],  Xiv12=x + R

foralli =...,—1,0,1,.... The time discretization is based on a parameter Af,
restricted by the famous CFL condition (Courant, Friedrichs, Lewy, cf. [8]) with

L= A

Starting from some initial data (lying in the convex set £2),

0 1 Xi+1/2
U (x)=—/ Ux,00dx, x€l[xi—1/2,%i+1/2),
X

i—1/2

we construct piecewise constant approximations at each time " :

U"(x)=U", xelxi—12,%i41/2), i €Z.
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Following Harten, Lax, and van Leer [10], at each cell interface we use the ap-
proximate Riemann solver:

UL, %<—b,
~ X ~
U’R(;QUL»UR)Z U*, —-b<7<b,
Ug, )Tc>b,

where b > 0 is sufficiently large. The “numerical cone” (and numerical diffusion) is
thus determined by the parameter » > 0 and here, for simplicity in the presentation,
we have assumed a single constant b but, more generally, one can introduce two
speeds b, | < b;:l /o at each interface.

We introduce the intermediate state

~ 1 1
U*= (UL +Ug) — = (F(Ugr) — F(Up)),
2 2b
and assume the CFL condition
At 1
b— < -,
Ax — 2
so that the underlying approximate Riemann solutions are non-interacting. Our
global approximate solutions

Om (x,t" +1), tel0,Ar), xeR

are then obtained as follows.
The approximations at the next time level #*! are determined from

ﬁerl _ 1 Fitl/2 l"]'m m
; = — Ax(x,t +At)dx.
Xi—1/2

Then, recalling Ur = Z(Um + U +l) 2b (F(U! +1) — F(Uim)), and integrating
out the expression given by the Riemann solutions, we arrive at the scheme for the
homogeneous system

~ HLL _HLL
urtt=u - Ax (F,+1/2 F215),s

where
HLL 1 m b m
Fivip= 5( (U") + F(U)) - 2( i~ U").
(More generally, one could take into account two speeds b; < b;jrl /2.)

We observe that the above scheme enjoys invariant domains. The intermediate
states Ul.*+1 /2 can be written in the form of a convex combination

. 1 1 1 1
i+12= §<Uim + EF(Uz'm)> + 5( =5 F( i’il)) €8,
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provided b is large enough. An alternative decomposition is given by
7% 1 1— m m m 1 1— m m m
1275 I+ EA(UI' UML) UM+ 3 I — ZA(Ui UML) ) ULy

where A is an “average” of Dy F. By induction, it follows that (71.’" in §2 forall m, i.

4.2 Discretization of the Relaxation Term

We start from the following modified Riemann solver:

Ur, §<—b,
Un(f-UL UR>: U —b<i <0
T U*R, 0<% <b,
Ur, %>b,

with the following states at the interface:

U*L

aU* + (I - &)(UL = R(UL)),
U*R=oU* + (I — @) (Ug — R(Ug)).

‘We have here introduced certain N x N-matrix and N-vector defined by

y Ax - 5 -1
o= ]+7(1+£) , RWU)=U+0)"  RU).

The term o is a parameter matrix to be chosen so that (all inverse matrices are well-
defined and) the correct asymptotic regime is recovered at the discrete level.
At each interface x; 11,2, we use the modified Riemann solver

X =Xi41/2 rom 7rm
UR(W’ Ui Uit
and we superimpose non-interacting Riemann solutions

Ur(x, 1" +1), 1€[0,Ar), xeR.

The new approximate solution at the next time ! is

gt = [ g (x, 1" + Ar)d
i = Ax X X
X,

i—1/2

By integrating out the Riemann solutions, we arrive at the discretized balance law

1
_(Uim+1 - Uim) +

HLL
a1 )

HLL
E(QH-[/ZFHH/Z - Qi—l/zFifl/Z
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1 b _
= A—X(QH.]/Q —Qi_1/2)F(Uim) - A_x(l - Qi—l/z)Ri—lﬂ(Uim)
b _
- A_x(l —%+1/2)Ri+1/2(U,m)- (13)

Observing that the discretized source can be rewritten as
b = m b -1 ) m
E(I — ) Rit1(U") = EQH—IQ(Q;‘H/Z —I)Rit12(Ul")
4
= 5%+1/2R(Uim)

and, Similarly,
i(I —; 2)}51',1/2(1/-’41) = Za. 1 2R(1/- ),
Ax i1/ ! 27l !

we conclude that the proposed finite volume schemes for late-time/stiff-relaxation
problems take the form

1

+1 HLL HLL
E( T -UM) + E(gi-&-l/ZFH—l/z —a; 1 pF0))
1 4
= A_x(%ﬂ/z _Qifl/Z)F(Uim) - E(gi+l/2 +gi71/2)R(Uim)' (14)

Theorem 3 (Properties of the finite volume scheme) Provided
Tiv12 — i1 = O(Ax)

and the matrix-valued map o is sufficiently smooth, the modified finite volume
scheme is consistent with the hyperbolic system with relaxation. The following in-
variant domain property holds: If all the states at the interfaces

*L o D
T = pUl T =2 0) (U] = R(UT)),
*R 7% D

Ut =i Ul p + (= a0 (U — R(UL))

belong to $2, then all the states U™ belong to $2.

4.3 Discrete Late-Time Asymptotic Regime

As explained earlier, we now replace At by Ar/e and y by 1/¢, and consider

e +1 1 HLL HLL
E(Uzm —-U")+ E(%‘+1/2Fi+1/2 -9, 1nF))

1

1
= @2 T ;1) F(U") — 70 @iv12 +a;_1)R(U"),
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where

-1
Ax
A= <I + E(l +£i+1/2)> .
Plugging in an expansion near an equilibrium state
U =&(ul") +eUD" + O0(e?),
we find
1 1 b
FE, = SFEW) + 5 FEW) — 2 (Ewlh) — W) + 06

1
SR(UM) = B(E@W!)) W} + 0,

2be
iy = (1 +oi) " O,

The first-order terms for the discrete scheme lead us to

1 m
L e - )
2b
= _sz ((I +al+l/2) +1/2|5(u) (I +ao;_ 1/2) 1/2|€(u))
b - — m
+ m((l"‘ﬁiﬂ/z) t— (I+0a;_1p) NF(E(u))

b
((1+01+1/2) + (I +a;1)7 ) BEW)) WD}

At this juncture, we assume the existence of an n x n matrix M; 1,2 such that

1
ﬁMi+1/2Q~

We then multiply the equation above by the n x N matrix Q and obtain

L m+1 _ om\ _
77 u')=—j

with
OFlew = S F(EW) + ZF(EW) ~ 5 QEW) - )

b
= _E(uﬁl - ”:n)

QU+ ' =

( 1+1/2Q +1/2|5(u) Mi*l/ZQFiIiI]L/‘ﬂS(u)),

The discrete asymptotic system is thus

1 um+1 _um): 1

E( i i E(MHUZ(”;WH - “fn) +Mi71/2(”§n—1 - “f")) (15)
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Recall that for some n x n matrix M (u) the effective equation reads
O = 0y (./\/l(u)axu).

Theorem 4 (Discrete late-time asymptotic-preserving property) Assume the follow-
ing conditions on the matrix-valued coefficients:

o The matrices

Ax
I+0,1, 1+ 2%h I+o;i1p

are invertible for ¢ € [0, 1].
o There exists an n X n matrix M1 /2 ensuring the commutation condition

_ 1
QU +0;41) " = 73 Mit120.

o The discrete form of M(u) at each cell interface x; 11> satisfies
M1 = M)+ O(Ax).

Then, the effective system associated with the discrete scheme coincides with the one
of the late-time/stiff relaxation framework.

We refer the reader to [3] for numerical experiments with this scheme, which
turns out to efficiently compute the late-time behavior of solutions. It is observed
therein that asymptotic solutions may have large gradients but are actually regular.
We also emphasize that we rely here on the CFL stability condition based on the
homogeneous hyperbolic system, i.e., a restriction on At/Ax only is imposed. In
typical tests, about 10000 time-steps were used to reach the late-time behavior and,
for simplicity, the initial data were taken in the image of Q. A reference solution,
needed for a comparison, was obtained by solving the parabolic equation, under a
(stronger) restriction on At/ (Ax)2.

The proposed theoretical framework for late-time/stiff relaxation problems thus
led us to the development of a good strategy to design asymptotic-preserving
schemes involving matrix-valued parameter. The convergence analysis (¢ — 0) and
the numerical analysis (Ax — 0) for the problems under consideration are important
and challenging open problems. It will also very interesting to apply our technique
to, for instance, plasma mixtures in a multi-dimensional setting.
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Is the CFL Condition Sufficient? Some Remarks

Kai Schneider, Dmitry Kolomenskiy, and Erwan Deriaz

Abstract We present some remarks about the CFL condition for explicit time dis-
cretization methods of Adams—Bashforth and Runge—Kutta type and show that for
convection-dominated problems stability conditions of the type At < CAx” are
found for high order space discretizations, where the exponent o depends on the
order of the time scheme. For example, for second order Adams—Bashforth and
Runge—Kutta schemes we find o« =4/3.

Keywords Explicit time discretization - Stability - CFL condition - Runge—Kutta -
Adams—Bashforts - Computational fluid dynamics - Convection dominated
problems

1 Introduction

This discussion paper presents some reflections about the stability of time discretiza-
tion schemes for convection-dominated problems, presented by the first author at
the conference “CFL-condition, 80 years gone by”, held in Rio de Janeiro in May
2010. In Computational Fluid Dynamics, explicit schemes are typically used for
the nonlinear convection term. Thus for stability reasons, the celebrated Courant—
Friedrichs—Lewy (CFL) condition [3] has to be satisfied, which states that the time
step should be proportional to the space step, with a constant depending on the mag-
nitude of the velocity.

The aim of the paper is to revisit the time-stability issue for some higher or-
der time schemes. We present several numerical experiments using either one-
step methods of Runge—Kutta type or multi-step methods of Adams—Bashforth
type applied to the one-dimensional Burgers equations and to the two-dimensional
Euler/Navier—Stokes equations. The numerical results, using a spectral discretiza-
tion in space, illustrate that for stability the classical CFL condition is not sufficient
and that the time step is limited by non-integer powers (larger than one) of the spatial
grid size.
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The remainder of the manuscript is organized as follows. In Sect. 2, explicit one-
step and multi-step time schemes are recalled, together with their stability domains.
Section 3 presents some numerical examples for the inviscid Burgers equation in
one space dimension and for the two-dimensional incompressible Navier—Stokes
equation. Finally, some conclusions are drawn.

2 Stability of Time Schemes

We consider the general form of an evolutionary partial differential equation
dru = H(u) (D

where H (u) contains all the spatial derivatives. The above equation is completed
with suitable initial and boundary conditions. In fluid mechanics, one typically en-
counters equations where H is the sum of a nonlinear term with first order deriva-
tives and a linear term with second order derivatives. For simplicity, we consider
here a convection—diffusion equation, i.e., H(u) = —adyu + viy u, where a is
a constant convection velocity and v > 0 is the viscosity. For time discretization
of (1), we use here explicit schemes, either one-step methods of Runge—Kutta type,
or multi-step methods of Adams—Bashforth type. The time step is denoted by At,
and u" is an approximation of u(x, t) at time t" =nAt forn=0,1,....

In the following, we will recall some results on the stability of one-step and
multi-step methods; details can be found, e.g., [8].

2.1 Runge—Kutta Schemes

Explicit Runge—Kutta schemes are one-step schemes and use two time levels, 7"
and 1"+1. However, they imply s intermediate stages to increase the order. Typically,
they have the approximation order (Af)F where k = s. They can be written in the
general form:

Ky =H(u"), 2)
i—1
K,‘:H(Ltn—i-AtZai’jKj) fori=2,...,s, 3)
j=1
S
W =u"+ Aty biK;. 4)
j=1

For s = 1, we recover the explicit Euler method with by = 1. For the second order
Runge—Kutta method (RK2), we have a; 1 = 1/2, by =0, and b; = 1. The coeffi-
cients of RK3 are givenby a;1 =1/2,a21 =—1,a22=2and by =1/6, by =2/3,
b3 = 1/6. For the classical RK4 scheme, we have @11 =1/2, a1 =0, a22=1/2,
a31=a32=0,a33=1and by =1/6, b, =1/3, b3 =1/3, by = 1/6. For more
details, we refer, e.g., to the textbook of Deuflhard [5].
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Table 1 Coefficients of the Adams—Bashforth schemes

Scheme Order by by by b3

3 1

23 16 5
AB3 3 B -1 &

55 59 37 9
AB4 4 2 2 % 21

2.2 Adams—Bashforth Schemes

Adams-Bashforth schemes of order (Ar)* approximate the time derivative of (1)
using a finite difference with two time levels, while the term H (u) is approximated
by evaluations using k time levels, and thus they belong to the family of multi-step
methods. Their general form is given by

k—1
= b H (). (5)
j=0

The coefficients for some Adams—Bashforth schemes can be found in Table 1.

n-+ n

u ™t —u
At

2.3 Stability

To investigate the stability of the above time schemes, the Fourier method, also
called von Neumann stability analysis [2], is typically used; for details again, we
refer, e.g., to [8]. Thus we are looking for a solution u of (1) in terms of a truncated
Fourier series, u(x,t) ~ ZI k<K 7 (1)e™ and we obtain the following ordinary dif-
ferential equation for its Fourier coefficients 7y (¢),

dity = apuy  for k| <K (6)

with the complex numbers A; = —iak — vk?, denoted in the following for ease of
notation by A.
Applying Runge—Kutta methods to (6), we obtain

+1 :gvn (7)

where g(z) with z = A At is the Taylor expansion of ¢*4!. For absolute stability, the
amplification factor g has to satisfy g(z) < 1. The stability domains S in the com-
plex plane are determined by solving |g(z)| = ¢'? for 0 <6 < 2. For RK1 (explicit
Euler), RK2, RK3, and RK4, the corresponding domains are shown in Fig. 1 (left).

Applying Adams—Bashforth methods to (6) yields the following finite difference
equation:

vn

k—1
Wyt — L Ar iju"_j =0 (8)
j=0
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Fig. 1 Stability domains |g(z)] < 1 of Runge-Kutta methods (left) and |f(r)| < 1 of
Adams—Bashforth methods (right). The domains have to be completed by symmetry with respect
to the horizontal axis

which has solutions of the form r”. Here r is the root of the characteristic equation
k—1

foy=rf ==y bt =0 9)
j=0

which has k solutions. For absolute stability (a-stable schemes), all roots have to
satisfy the condition |r| < 1. The boundary of the stability domain S in the com-
plex plane is then determined by f(r) =0 with |r| = 1. A time step At is stable if
the point z = LAt belongs to the stability domain S. In Fig. 1 (right), the stability
domains of AB2, AB3, and AB4 are shown.

From the stability domains, we can draw the following well known conclusions:
For Adams—Bashforth schemes, we observe that the stability domain decreases for
increasing order, while for Runge—Kutta methods the stability domain becomes
larger for increasing order. For pure convection, i.e., . = —iak being purely imagi-
nary, we can observe that the explicit Euler scheme is unstable and that both second
order schemes, RK2 and AB2, are also unstable.

2.4 A Refined CFL Condition and Stability

Relaxing the absolute stability condition, but requiring the error to be bounded at
time T = nAt, we obtain the necessary and sufficient stability condition for the
amplification factor |g(z)| < 1 + C At where C is a constant. For the error &(z,) =
u(x,ty) — u,(x), we get the following L2-estimate:

le@) |2 = 8@ et) | ,» < C' A+ A" ||e(to) || 2 < C'eT||eto)]| 2. (10)

The absolute stability is recovered for the case C = 0.
For the explicit Euler method (RK1), we have g(z) = 1 4 z and applying this
scheme to a transport equation o;u +adu =0, i.e., A = —iak, we get |1 — iakAt|2 <
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1 + 2C At; and with k o« 1/Ax we thus obtain a time step constraint of the type
At < 2C(%)2, as presented in [6].

In the following, we summarize the time step stability conditions for the transport
equation, denoting p = %. For details, we refer to [4, 7]:

— st order explicit Euler explicit scheme

,02 2 Ax\?
lensillze < 1+ 7(1 llexll;2 and the CFL: Ar <2C| — ) ;
a
— 2nd order Runge—Kutta scheme
4 4
J A 1/ Ax\3
lentillz < 14 ga llenll;2 hence the CFL: At <2C3{ — ) ;
a

— 2nd order Adams—Bashforth scheme

p* 4 . . 2 1 Ax 3
lensillz < (14 Za llexll;2 inducing the CFL: Af <23C3( — | .
a
We recall that the classical CFL condition [3], which is a necessary condition,
yields At < C4x.

3 Numerical Results

In the following, we present a series of numerical results for the inviscid Burgers
equation in one space dimension and for the incompressible Euler/Navier—Stokes
equations in two dimensions to illustrate the time stability of different explicit
schemes.

3.1 Inviscid Burgers Equation

We consider the inviscid Burgers equation,
ou+udyu=0 forxeT(-1,1), te][0,10/n] (11)

with the initial condition ug(x) = 10 — 0.1sin(;rx) and completed with periodic
boundary conditions. For the numerical solution, we use a classical Fourier pseudo-
spectral method for space discretization, which is fully de-aliased, see, e.g., [1].
For time integration, we apply either Runge—Kutta schemes of order 1 up to 4 or
Adams—Bashforth schemes of order 2, 3, and 4.

The criterion to check the stability of the numerical simulations is based on the
total variation of the solution, which remains constant for the exact solution. The
divergence criterion we apply thus reads |luy (-, #)||l7v > K|lug(-)||7v with K = 5.
For each scheme we perform a series of computations for an increasing number
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10° 10° 10

N

Fig. 2 Time stability for the inviscid Burgers equation. Maximum At as a function of the number
of grid points. Left: Runge—Kutta methods. Right: Adams—Bashforth methods

of grid points, N =2%,...,2'3. In Fig. 2, we plot the maximal time step Az as a
function of the number of grid points for Runge—Kutta (left) and Adams—Bashforth
schemes (right) in double logarithmic representation. For sufficiently large N, we
indeed observe in all cases straight lines which correspond to the power law be-
haviors with exponents given in Sect. 2. For example, for the explicit Euler scheme
we find that Ar < C (Ax)z, while for the second order Runge—Kutta and Adams—
Bashforth schemes we observe At < C(Ax)*/3.

3.2 Incompressible Euler and Navier—Stokes Equations

Now we consider the two-dimensional incompressible Euler and Navier—Stokes
equations written in the vorticity-stream function formulation:

dw+u-Vo—vVie =0, VU =, u=Vviy. (12)

The above equations are completed with periodic boundary conditions. As the initial
condition we take the ‘three vortex’ initial condition (cf. Fig. 3, left) which corre-
sponds to two vortices with positive vorticity and one vortex with negative vorticity,
see, e.g., [10].

The numerical scheme consists of a Fourier pseudo-spectral method in space. In
time the AB2 scheme is used for the nonlinear advection term u - Vw, while exact
integration is applied for the linear viscous term vV2w. Details on the numerical
scheme can be found in [9].

We performed a series of computations up to ¢ = 10 for three different values of
viscosity, v = 1072,1073, and v = 0, the latter corresponding to the inviscid Euler
equation. The numerical resolution has been varied from N = 64° to 2048 grid
points. In Fig. 3, we show the evolution of the vorticity field for three time instants
which illustrate the merging of the two positive vortices. Note that even in the case
of the Euler equations the vorticity field remains smooth in the considered time
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Fig. 3 Interaction of three vorticities. Vorticity field at # = 0, 20, and 40
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Fig. 4 Time stability of Euler/Navier—Stokes equations using AB2 scheme for different values
of v. Maximum At as a function of the number of grid points

interval. The maximum stable time step Af is determined by considering again as
stability criterion the total variation of the stream function ¥, i.e., the largest Afyax
is determined such that ||y n (-, ) ||7v < K||[¥o(-)|I7v with K = 5. In Fig. 4, we plot
the maximum time step size At as a function of the number of grid points for three
different values of v = 10_2, 1073 and v = 0. For the inviscid case, we observe a
power law with slope —4/3, i.e., At < C(Ax)*3. In the viscous cases, we observe
a slower decay for increasing N (corresponding to decreasing Ax) which leads even
to a saturation for sufficiently large values of the viscosity, i.e., the maximum time
step size becomes independent of the spatial grid size. This can be explained by
remarking that the viscosity damps the small scales and thus the small grid size
is not necessary, which is reflected in vanishing (or very small amplitude) large
wavenumber Fourier modes.

4 Conclusions

Our numerical experiments give some evidence that the CFL condition is neces-
sary but not sufficient to guarantee the time stability of explicit time schemes given
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that high order space discretizations are used. For the inviscid Burgers equation, we
showed that applying either a second order Runge—Kutta or a second order Adams—
Bashforth scheme, the time step At has to be chosen to be smaller than (Ax)*3.In
the case of the explicit Euler scheme, it even necessitates At < C(Ax)? for stabil-
ity. For the Euler/Navier—Stokes equation, we have numerical evidence that similar
results as for the Burgers equation hold, confirmed here for the AB2 scheme. These
observations give thus a possible explanation why for spectral methods applied to
convection-dominated problems the CFL constant, also called the Courant number,
has to be decreased for increasing resolution as a modified CFL condition has to
be satisfied. Further details on the theoretical justification of the above results and
implications for CFD codes can be found in [4] and [7], respectively. Finally, we are
asking the question if these observations are well known?

Acknowledgements K.S. is grateful to Carlos de Moura for the invitation to the conference
“CFL-Condition, 80 years gone by”, held in Rio de Janeiro in May 2010.
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Fast Chaotic Artificial Time Integration

Uri Ascher and Kees van den Doel

Abstract Gradient descent methods for large positive definite linear and nonlinear
algebraic systems arise when integrating a PDE to steady state and when regular-
izing inverse problems. However, these methods may converge very slowly when
utilizing a constant step size, or when employing an exact line search at each step,
with the iteration count growing proportionally to the condition number. Faster gra-
dient descent methods must occasionally resort to significantly larger step sizes,
which in turn yields a strongly nonmonotone decrease pattern in the residual vector
norm.

In fact, such faster gradient descent methods generate chaotic dynamical systems
for the normalized residual vectors. Very little is required to generate chaos here:
simply damping steepest descent by a constant factor close to 1 will do. The fastest
practical methods of this family in general appear to be the chaotic, two-step ones.
Despite their erratic behavior, these methods may also be used as smoothers, or
regularization operators. Our results also highlight the need for better theory for
these methods.

Keywords Gradient descent - Artificial time integration - Dynamical system -
Stability - Chaos - Regularization

1 Introduction

The famous Courant-Friedrichs—Lewy (CFL) condition really provides a consis-
tency, or compatibility bound, rather than a stability one. It states a bound on the
allowed time step in terms of the spatial discretization step for explicit difference
methods applied to a hyperbolic partial differential equation (PDE). Its immense
popularity relates to the fact that this bound typically coincides with that of the sta-
bility condition for simple explicit methods in case of hyperbolic PDEs in one space
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variable, and it does relate to the essential limitation on time-stepping using explicit
methods when applied to time dependent PDEs in general. Thus, practitioners over
the years have often come to identify the CFL condition with an essential stability
restriction in a wide context.

However, occasionally the complete picture is more delicate, and this is indicated
already in the following basic example.

Example 1 For the simple initial value advection equation

3 3
B—Ltt—i_a%:()’ t>0, —00 < x <00, (la)
u(0, x) = up(x), (1b)

where a is a known constant, the exact solution is u (¢, x) = ug(x — at).

For an explicit discretization consider the well-known upwind method (e.g., [2]),
where we fix the spatial step size but allow the time step to vary. For a = —1 we
have for all j integer

k+1_ ok, %% ok k _
v; _vj+Ax(Uj+l vj), k=0,1,...,
where v]/‘. approximates u(ty,x;), x; = jAx and t; = Zf o @i. We set v =

uo(x;j), vj.
Next, consider the initial value function

1 x<0,
uo(x) = 0 x>0

The stability condition for this method is
o < Ax, Vk.

If this bound is violated, e.g., @g > Ax, then vl 2 = uo(—Ax) + 3 (uo(O) —
ug(—Ax)) = 1, whereas the exact solution is u(xg, —Ax) = ug(eg — Ax) = 0. This
inconsistency demonstrates a violation of the CFL condition which coincides with
the stability condition for the upwind method. There is no general way to recover
from such an inconsistency error by taking smaller time steps oy later on.

In contrast, consider the simple initial value heat equation

9 92
_u:_u’ >0, —00 <X < 00, (2a)
ot dx2

u(0,x) = uo(x), (2b)

and the explicit discretization

k+1 _ k Ok _
v; _uj—i-sz(]Jrl 2v +v ) k=0,1,....
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The stability condition is well-known to be

1o
o < —Ax“, Vk,
2
and there is no consistency condition such as the CFL.

In this latter case, there is no immediate a priori reason to believe that violat-
ing stability by taking o¢ > %sz cannot be recovered from by using smaller time
steps later on: in principle, those error modes that get excited at k = 0 may be sub-
sequently calmed down.

Let us generalize (2a)—(2b) for later purposes by considering its analogue on a
general bounded domain in several space dimensions and equipped with a source
function and garden-variety boundary conditions. Upon applying a finite difference
or finite element semi-discretization in space, we are then led to consider a problem
of the form

ﬂ=b—Av, t>0, 3)
dt
where A is a symmetric positive definite m X m matrix that is potentially large and
sparse, v is the solution mesh function reshaped as an (unknown) vector, and b is a
likewise reshaped vector of known inhomogeneities.

One may next wonder if it makes sense to violate the stability restriction, given
that this is indeed possible. The answer depends on the purpose of the computa-
tion. If what we want is a pointwise accurate solution (trajectory) then respecting
the stability restriction at each and every time step, at least approximately, is wise.
Indeed, typical mesh selection algorithms achieve this, being “greedy” in nature
[3, 10]. However, there are occasions where the goal is different. Such is the case in
many geometric integration applications [11]. Other occasions, on which we con-
centrate here, are when we wish to integrate the time-dependent problem to steady
state or when the purpose of integration is smoothing, or regularization of an ill-
posed problem [7, 18]. Such applications correspond to continuation, or homotopy
methods, where one is not interested in the accurate reconstruction of the homotopy
path but only in its end.

Thus, consider a forward Euler discretization of (3), with the purpose of inte-
grating the ODE system to steady state (so in particular, higher order discretiza-
tion methods are not necessarily more attractive than this simplest time integration
scheme). The method is written as

Vi+1 = Vi + 0Tk, rr=b—Av,, k=0,1,.... 4)

Its absolute stability condition requires

< — (5)
o s
k_)\1
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where A1 > Ay > -+ > A, > 0 are the eigenvalues of A.! This restriction must be
strictly obeyed if a uniform step size oy = « is to be employed, but we next consider
varying the step size.

Note that (4) can also be interpreted as a gradient descent (GD) method for the
problem of minimizing the convex quadratic function

1
fv) = EvTAv—bTv, (6)
which is equivalent to solving the steady state equations
Av=Dh. )

The best uniform step size for (4) is

. 2
o= = —-. (8)
)\1 + )Lm
The steepest descent step size, obtained by exact line search for (6) at each step, or
iteration, is

T
r, Iy
o = aED =k

rl Ary ©)
These are both slow methods requiring O («) iterations to reduce the residual by a
fixed amount, where x = kK (A) is the condition number. As it turns out, the steepest
descent step sizes never grow much larger than what (5) allows [1, 5].

To obtain a faster explicit method integrating the PDE to steady state, or a faster
GD method, a methodology must be found that automatically and significantly in-
creases the step size o every few steps in such a way that the resulting overall
method still converges. This may look like a lot to ask for at first, but as it turns
out there are many methods of this sort, all being variants of steepest descent that
are often much faster when the latter method is slow [6, 8, 9, 14, 15]. All of these
methods yield chaotic dynamical systems in terms of the normalized residual vec-
tors that their iteration sequences generate [17]. Furthermore, they retain some of
the smoothing properties that steepest descent (SD) and conjugate gradient (CG)
methods possess [12].

2 Faster Gradient Descent Methods

Many efforts have been devoted in the two decades that have passed since the pi-
oneering paper of [6] to the design, analysis, extension, and application of faster
gradient descent methods for function minimization. In the context of the iteration
(4), we mention here the following variants of steepest descent.

ILet us assume throughout for simplicity that A| > Ay and A,,,—1 > A.
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Table 1 Iteration counts for the model Poisson problem using
gradient descent with different step size choices for initial vectors
(@) vo=0and (b) vo=10"3-1

m X0 CG SD o HLSD SD(0.9)
49 (a) 10 341 348 69 97
(b) 10 341 348 62 99
225 (a) 33 1414 1417 179 291
(b) 32 1414 1419 151 258
961 (a) 71 5721 5689 279 497
(b) 70 5721 5698 417 609

1. The half-lagged steepest descent (HLSD) method [15] simply updates the step
size o only every second step, reading

a2j=0l2j+1:0‘§}), J=0,1,2,.... (10)

2. The relaxed steepest descent method, denoted SD(w), calls for calculating afD
at each iterate k and setting

ax = walP, (11)
with 0 < w < 1 a fixed constant [14]. Below we choose w = 0.9.

Example 2 Let us describe the model Poisson problem. The PDE
—Au=¢q, O<x,y<l, (12)

with ¢ (x, y) known and subject to homogeneous Dirichlet boundary conditions,
is discretized using the standard 5-point difference scheme. Utilizing a uniform
mesh width Ax = 1/(J + 1), and denoting by b the reshaped mesh function of
q(iAx, jAx), 1 <i,j < J, and also letting v be likewise composed of solution
mesh values, we have a problem in the form (7) with m = J 2 unknowns.

Table 1 records iteration counts required by different methods to bring the relative
residual norm |[rg||/||ro|l below a tolerance of 10~!2, for a right hand side b =1 of
all ones.”

We use two starting guesses, equally smooth and differing from each other by
1073 in the maximum norm.

The results in Table 1 exhibit the traits of gradient descent methods observed also
in [5, 17]. Thus, we note:

1. Steepest descent is essentially as good for this example as the best constant step
size, @™, and both can be unacceptably slow.

2The vector £»-norm is utilized here and elsewhere, unless otherwise specified.
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2. The iteration counts for the faster gradient descent methods HLSD and SD(0.9)
are much better than those for steepest descent and increase much slower than
k = O (m), behaving more like those of CG in trend.

3. The two-step method HLSD is better than the one-step method, although (not
shown) it is neither consistently better nor worse than other two-step methods
such as the method of [6] which we call LSD.

4. The progress of the iteration counts as a function of k = O (m) is less consistent
for HLSD and SD(0.9) than that of CG. The latter observation relates directly to
the fact that the quantities ||ry|| oscillate wildly as a function of k; see Fig. 2 of
[5], where the behavior of the resulting step size sequence is also depicted.

5. Finally, we observe the sensitivity for HLSD and SD(0.9) of the total number
of iterations required to achieve a fixed accuracy to small changes in the initial
vector vg. This is in marked contrast to the behavior of the CG iteration, or the
SD iteration, and it suggests a chaotic behavior of the iterative process for the
faster gradient descent methods.

There are many more experiments of this sort reported in [5, 17] that support the
above observations.

3 Chaos

The gradient descent family of methods (4) is completely characterized by the resid-
ual evolution

rk+1:(1—0[kA)rk, k=0,1, (13)

Furthermore, if we write A = U AUT with U orthogonal and A the diagonal matrix
of eigenvalues of A, and let t = U Ty, then (13) becomes

P =1 —ap Ay, (14)

with ||F;|| = |Irg]l. Thus, (14) has precisely the same convergence behavior as (13),
and hence we may consider (for analysis purposes) a diagonal A without loss of

generality. Note that now, if oy = ){1 forsome i, 1 <i < m,then the ith component

of the next residual vanishes: rl.(kH) = 0. If m is large, though, then even if we knew

the eigenvalues we would not want to use them in this way in practice.
Below it is convenient to omit the iteration index k where no confusion can pos-
sibly arise. An alternative notation to (13), for instance, is

r< (1 —oaAr.

To study the behavior of these residual vectors, we associate with r the Akaike
“probability” p, see [1], which is the component-wise square of the normalized
residual, given by

pi=)? I i=1,...,m. (15)
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In [17], we considered in detail the Jacobian of the transformation pg+1 < pk.
Using these over a long sequence of iterations, we calculated the Lyapunov ex-
ponent p for various gradient descent methods. Recall that for a stable system,
u < 0, whereas for a chaotic system, ; > 0 and nearby orbits separate exponen-
tially, cf. [16].

The summary of those experiments over many examples is that for all the faster
methods we have p > 0, whereas SD is marginally stable: u = 0. The over-relaxed
SD(w) variant with w > 1 has i < 0 and is stable and slow. The faster SD(w) meth-
ods are obtained for w < 1.

Having established that there is chaos in the faster methods, the question is what
characterizes them (other than the fact that they converge). Ironically, as it turns out,
the more special methods that are variants of steepest descent are the slower ones.
To get the feeling for this, it is better to consider the under-relaxed steepest descent
methods SD(w), say 0.5 < w < 1. These are not quite as fast as LSD or HLSD, but
they are much faster than SD, as we have seen, and this in itself may be considered
surprising. Note that these are simple, memoryless, one-step methods. There are
no random parameters and no switches in the step size selection strategy. Standard
arguments (e.g., [13]) imply that the methods yield monotonic decrease in f(v) of
(6) and converge Q-linearly, which is not known to occur for the two-step methods.
Finally, note that although this method with w < 1 takes at each iteration a fraction
of the SD step size, its average step size is much larger than that of SD! Here then
is one of the simplest and cleanest instances of both a chaotic system and the peril
of greed (in numerical algorithms at least).

Recall that for a diagonal A = diag(};) we can write

Zi)‘iriz

ykSDzl/aEDzirz:Zkipi, i=1,...,m, (16a)
i'i i

a; = way?, (16b)

P& = (4 —aayr®, =1, m. (16¢)

1

We make the following observations (see [5, 17] for the full details):

— If p; are roughly equal then A p; (or the first few) dominate, so a,fD ~1/A is
within the forward Euler stability bound, as is o.

— The corresponding step is effectively a smoother: it reduces high frequency (i.e.,
large-eigenvalue) residuals much more than low frequency ones. This effect may
be repeated over a few steps.

— The usual case is that the high frequency residuals become so small in magnitude
due to repeated smoothing that other frequencies temporarily dominate. This in
turn means that a much larger step size (x,fD (and hence «y) is obtained. The
ensuing step is unstable, increasing the high frequency probabilities p;; see (16a)—
(16¢), (15). Once these components are large, their A; p; dominate again and the
next few step sizes will be small and smoothing. This closes a chaotic cycle.
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— The unusual case is that of steepest descent! With SD the high frequency A1 p;
always dominates [1]. In the limit p; and p,, alternate (maintaining roughly the
same order of magnitude) while p; ~ 0 for 1 <i < m. Thus, chaos (and good
news) are both avoided.

4 Preconditioning and Regularization

Considered over a wide range of problems (3) and initial guesses, the LSD and
HLSD variants have been found in our experiments to be as good as any other prac-
tical gradient descent method and better than most. Of course, in practical situations
one would use preconditioning, but this does not change the relative merit of the
methods.

Furthermore, as our Table 1 indicates, the CG method is really better than any of
the gradient descent methods in the usual circumstances of (7) considered hitherto.
What the gradient descent methods offer is the attraction of simplicity, the direct
connection to artificial time integration (which is a very popular approach in practice
[4]), and robustness when the gradients are computed only approximately [17].

In particular, when these methods are used as a combination of smoothers and
solvers, which is often the case in computational inverse problems, the faster gradi-
ent descent methods often perform as well as any other method, including CG. In
[5, 12], we examined this question experimentally for several applications, includ-
ing image deblurring, image denoising, and DC-resistivity recovery of piecewise
constant functions. These are really nonlinear problems, and freezing them at each
iteration in order to determine the step size in the manner described here does more
damage to CG than to the faster GD methods. Rather than repeating the details of
these papers, let us only mention that in such circumstances often the SD method
does not look so awful either because its slowness develops only when many such
iterations are performed in an uninterrupted succession.
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Appendix A
Hans Lewy’s Recovered String Trio

Lori Courant Lax

Played by Lori Courant Lax, viola, Dorothy Strahl, violin,
and Carol Buck, cello

Hans Lewy was a musical prodigy. As a child he gave rave-review violin concerts.
He also learned music theory and started to compose. But at 19 or 20 he began to
turn to mathematics. He studied with my father, Richard Courant, and often came
to the chamber music evenings of my mother, Nina.

On one occasion he brought a string trio he had written, and my mother and
her friends tried to play it. They didn’t do very well, and Hans, with his typical
explosiveness, grabbed the parts, tore them up, and threw them on the floor.

“But I liked it!” said my mother as she gathered up the scraps. She laboriously
copied the parts, made a score, numbered the measures—all without the help of
whiteout or xerox.

I found the Lewy trio among my mother’s papers after her death. Enclosed here
is arecording of one movement of it, a romantic, gracious waltz, played by Dorothy
Strahl, violin, Carol Buck, cello, and myself on the viola.

L. Courant Lax (X)
New York, USA
e-mail: loriblax @ gmail.com

C.A. de Moura, C.S. Kubrusly (eds.), The Courant—Friedrichs—Lewy (CFL) Condition, 157
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Fig. 1 A piece of Lewy’s recovered string trio score

L. Courant Lax



A Hans Lewy’s Recovered String Trio 159

Fig. 2 Musicians Dorothy Strahl (violin) and Lori Courant Lax (viola); and Carol Buck (cello)
(Photos from L. Courant Lax files)
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Uber die partiellen Differenzengleichungen der
mathematischen Physik.

Von

R. Courant, K, Friedrichs und H. Lewy in Gottingen,

Ersetzt man bei den klassischen linearen Differentialgleichungs-
problemen der mathematischen Physik die Differentialquotienten durch
Differenzenquotienten in einem — etwa rechtwinklig angenommenen —
Gitter, so gelangt man zu algebraischen Problemen von sehr durch-
sichtiger Struktur. Die vorliegende Arbeit untersucht nach einer elemen-
taren Diskussion dieser algebraischen Probleme vor allem die Frage, wie
sich die Losungen verhalten, wenn man die Maschen des Gitters gegen
Null streben 148t. Dabei beschranken wir uns vielfach auf die einfachsten,
aber typischen Fille, die wir derart behandeln, daf die Anwendbarkeit
der Methoden auf allgemeinere Differenzengleichungen und solche mit be-
liebig vielen unabhéngigen Veranderlichen deutlich wird.

Entsprechend den fiir Differentialgleichungen geldufigen Fragestellungen
behandeln wir Randwert- und Eigenwertprobleme fiir elliptische Diffe-
renzengleichungen und das Anfangswertproblem fiir hyperbolische bzw.
parabolische Differenzengleichungen. Wir werden an einigen typischen
Beispielen beweisen, daB der Grenziibergang stets mdoglich ist, nimlich
daB die Lésungen der Differenzengleichungen gegen die Losungen der ent-
sprechenden Differentialgleichungsprobleme konvergieren; ja wir werden
sogar erkennen, daB bei elliptischen Gleichungen i. a. die Differenzen-
quotienten beliebig hoher Ordnung gegen die entsprechenden Differential-
quotienten streben. Die Losbarkeit der Differentialgleichungsprobleme
setzen wir nirgends voraus; vielmehr erhalten wir durch den Grenziiber-
gang hierfiir einen einfachen Beweis?). Wihrend aber beim elliptischen

1) Unsere Beweismethode 148t sich ohne Schwierigkeit so erweitern, daf sie bei
beliebigen linearen elliptischen Differentialgleichungen das Rand- und Eigenwertproblem
und bei beliebigen linearen hyperbolischen Differentialgleichungen das Anfangswert-
problem zu lésen gestattet.
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Falle einfache und weitgehend von der Wahl des Gitters unabhingige
Konvergenzverhiltnisse herrschen, werden wir bei dem Anfangswertproblem
hyperbolischer Gleichungen erkennen, daB die Konvergenz allgemein nur
dann vorhanden ist, wenn die Verhiltnisse der Gittermaschen in ver-
schiedenen Richtungen gewissen Ungleichungen geniigen, die durch die
Lage der Charakteristiken zum Gitter bestimmt werden.

Das typische Beispiel ist fiir uns im elliptischen Falle das Rand-
wertproblem der Potentialtheorie. Seine Lésung von der Losung des
entsprechenden Differenzengleichungsproblems her ist iibrigens in den
letzten Jahren mehrfach behandelt worden?). Allerdings werden dabei im
Gegensatz zu der vorliegenden Arbeit meist spezielle Eigenschaften der
Potentialgleichung benutzt, so daB die Anwendbarkeit der Methode auf
andere Probleme nicht ohne weiteres zu iibersehen ist.

Abgesehen von dem gekennzeichneten Hauptziel der Arbeit werden
wir im AnschluB an die elementare algebraische Diskussion des Rand-
wertproblems elliptischer Gleichungen dessen Zusammenhang mit dem
aus der Statistik bekannten Probleme der Irrwege erértern.

L Der elliptische Fall
§ 1.

YVorbemerkungen.
1. Definitionen.

Wir betrachten zunichst in der Ebene mit den rechtwinkligen Koor-
dinaten z, y ein quadratisches Punktgitter der Maschenweite % > 0, etwa
alle Punkte mit den Koordinaten z =nk, y = mhk,

m,n=0,+*1, +2,....

%) J. le Roux, Sur le probléme de Dirichlet, Journ. de mathém. pur. et appl
(6) 10 (1914), p.189. R. G. D. Richardson, A new method in boundary problems for
differential equations, Transactions of the Americ. Mathem. Soc. 18 (1917), p. 489 4.
H. B. Philips and N. Wiener, Nets and the Dirichlet Problem, Publ. of the Mass, In-
stitute of Techunology (1925).

Leider waren diese Abhandlungen dem ersten der drei Verfasser bei der Ab-
fassung seiner Note ,Zur Theorie der partiellen Differenzengleichungen®, Gott. Nachr.
23.X.1925, an welche die vorliegende Arbeit anschlieSt, entgangen.

Vgl. ferner: L. Lusternik, Uber einige Anwendungen der direkten Methoden in
der Variationsrechnung, Recueil de la Société Mathém. de Moscou, 1926. G. Bouligand,
Sur le probléme de Dirichlet, Ann. de la soc. polon. de mathém. 4, Krakau 1926.

Uber die Bedeutung des Differenzenansatzes und iiber weitere sie verwendende
Arbeiten vgl. R. Courant, Uber direkte Methoden in der Variationsrechnung, Math.
Annalen 97, 8. 711 und die dort angegebene Literatur.

Mathematische Anpalen. 100. 3
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Es sei G ein Gebiet der Ebene, begrenzt von einer stetigen, doppel-
punktfreien geschlossenen Kurve. Dann soll das zugehdrige — bei ge-
niigend kleiner Maschenweite eindeutig bestimmte — Gittergebiet @, aus
allen denjenigen Gitterpunkten bestehen, welche in G liegen und sich
von einem festen vorgegebenen Gitterpunkt aus G durch eine zusammen-
hingende Kette von Gitterpunkten verbinden lassen. Wir nennen zusammen-
hingende Kette von Gitterpunkten eine Folge solcher Punkte, bei der
jeder Punkt einer der vier Nachbarpunkte des folgenden ist. Als Rand-
punkt von G, bezeichnen wir einen solchen, dessen vier Nachbarpunkte
nicht alle zu G, gehoren. Alle anderen Punkte von G, nennen wir innere
Punkte,

Wir betrachten Funktionen %, v, ... des Ortes im Gitter, d. h. Funk-
tionen, welche nur fiir die Gitterpunkte definiert sind. Wir bezeichnen
sie auch mit #(z,y), v(2,¥),... . Fir ihre vorderen und hinteren
Differenzenquotienten verwenden wir die folgenden Abkiirzungen:

@) —u@ ) =v, 3@ y+h—ue,y)=1,

%(’M(x, 2/)-" u(z"—' h, ?/))=u5, %(u(x: ?/) '—u(x: Yy— h))=ui.

Entsprechend bilden wir Differenzenquotienten héherer Ordnung, z. B.

(e)s = Uz = iz = 35 (u( + i ) = 20(@, 9) + u (@ — B, 9))

usw.

2. Differenzenausdriicke und Greensche Umformungen.

Zu der einfachsten allgemeinen Ubersicht iiber lineare Differenzen-
ausdriicke zweiter Ordnung - gelangen wir nach dem Muster der Theorie
der partiellen Differentialgleichungen, indem wir aus zwei Funktionen u
und » und ihren vorderen Differenzenquotienten einen bilinearen Ausdruck

B(u,v)=au,v, +bu,v,+cu,v,+duv, + cu,v+ fuv+yuv,

+ 0 uv, + g uv
bilden, wobei

a=a(z,y),..., e=ea(z,¥),..., g=9(z,y)

Funktionen im Gitter sind.
Aus dem Bilinearausdruck erster Ordnung leiten wir einen Differenzen-
ausdruck zweiter Ordnung in folgender Weise ab: Wir bilden die Summe.

n? Z;ZB(u, v)

iiber alle Punkte eines Gebietes G, im Gitter, wobei in B(u, ) fiir die
Differenzenquotienten zwischen einem Randpunkte und einem nicht zn G,
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gehorigen Punkte Null zu setzen ist. Die Summe formen wir nun durch
partielle Summation um (d. h. wir ordnen nach v), und zerspalten sie in
eine Summe iiber die Menge der inneren Punkte @, und eine Summe iiber
die Menge der Randpunkte I',. Wir erhalten so:

(1) hQZ'GZB(u,v)=—kQZZvL(u)—k%’vQR(u).
3 Gy A

L(u) ist der fiir alle inneren Punkte von @, definierte lineare ,Diffe-
renzenausdruck zweiter Ordnung:

L(u)=(aus + (busly + (cwy)z + (duy)y
— g — fuy+ (yu) + (duk — gu.
R (u) ist fiir jeden Randpunkt ein linearer Differenzenausdruck, dessen

genaue Gestalt wir hier nicht angeben.
Ordnet man 3 3 B(u, v) nach u, so erhilt man
Gn

(2) h?zézB(u,v)=—kezzuM(p)—h-gzu@(v>.
h G, 2

M(v) heiBt der zu L(u) adjungierte Differenzenausdruck; er lautet:

U(v) = (av,)z + (boy)s + (cva )5+ (doy)y
+ (ev)z 4 (Bo)g — yv, — v, — gv,
wihrend ©(v) ein %R (u) entsprechender Differenzenausdruck fiir den
Rand ist.
Die Formeln (1), (2) und die aus ihnen folgende Formel

(3) h‘“’Z’Z(vL(u)—uM(v))—}-h%’(viﬁ(u)—-u@(”))-:o
G A

nennen wir die Greenschen Formeln.

Der einfachste und wichtigste Fall ergibt sich, wenn die Bilinearform
symmetrisch ist, d. h. wenn die Gleichungen b=¢, « =y, B =0 bestehen.
In diesem Falle stimmt der Ausdruck L (u) mit seinem adjungierten M (u)
itberein; wir nennen ihn deshalb selbstadjungiert, und er ist schon aus dem
quadratischen Ausdruck

B(u, u)=auz+ 2bu,uy + du; + 2a¢u,u + 2puyu + gu?
ableitbar.
Wir beschrinken uns im folgenden meist auf Ausdriicke L (%), die
sich selbst adjungiert sind. Der Charakter des Differenzenausdruckes L (u)
hidngt vor allem von der Natur derjenigen Glieder aus der quadratischen
Form B(u,u) ab, die in den ersten Differenzenquotienten quadratisch sind.
Wir nennen diesen Teil von B(u, ) die charakteristische Form:

P(u,u)=au;+ 2bu,uy + duy.
3*
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Je nachdem nun P(%,w) in den Differenzenquotienten (positiv) definit
oder indefinit ist, nennen wir den zugehorigen Differenzenausdruck L (%)
elliptisch oder hyperbolisch.

Der Differenzenausdruck

Adu = Uz + Uy,
mit dem wir uns vorzugsweise in den folgenden Paragraphen beschéftigen
werden, ist elliptisch. Er entsteht ndmlich aus dem quadratischen Ausdruck
B(u,u)=1u+ u: bzw. w4 u;-.

Die zugehorigen Greenschen Formeln lauten also:

(4) hg%’;z(u;"—f-uf):—hﬂzzudu——k%’uéﬁ(u)ﬁ)
A e %

(5) h'ZZIZ,’(vAu—uAv)—{—hlZ_,‘(vER(u)—uéﬁ(v))z
[27% A

Der Diﬁerenzenausdruck Au = U,z + U,7 ist offenbar das Analogon
o u

des Differentialausdruckes 52 + * fiir eine Funktion wu(a,y) der kon-

tinuierlichen Variablen z und y Ausfiihrlich geschrieben lautet der
Differenzenausdruck

Au——{u(x+h y)+u(@,y+h)+ule—h,y)+ulr,y—h) —4u(z, y).

Es ist also —4— A u der Uberschufl des arithmetischen Mittels der Funktions-

werte in den vier Nachbarpunkten iiber den Funktionswert in dem be-
treffenden Punkt.

Ganz ahnliche Uberlegungen fithren zu linearen Differenzenausdriicken
vierter Ordnung und entsprechenden Greenschen Formeln, wenn wir von
bilinearen Differenzenausdriicken ausgehen, welche aus Differenzenquotienten
zweiter Ordnung gebildet sind. Wir begniigen uns mit dem Beispiel des
Differenzenaunsdruckes

AAu = uyz7 + 2upzyy + Uyyiy.
Er entspringt aus dem quadratischen Ausdruck

B (%, u) = (usz+ uyy)’ = (4u)?,
wenn wir die Summe .
B33 Audw
&

%) Der Randausdruck % (u) 146t sich hier so beschreiben: Sind u,, %, ..., %,
die Funktionswerte in dem betrefifenden Randpunkte und seinen v Nachbarpunkten
(r<3), so ist

?ﬁ(u)-—'(%'i‘ - F Uy — V%)
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nach » ordnen, etwa indem wir in der Formel (5) an Stelle von % den
Ausdruck 4u setzen. Wir miissen dabel beachten, daB in dem Ausdruck
A dw der Funktionswert an einer Stelle mit den Funktionswerten in seinen
Nachbarpunkten und deren Nachbarpunkten verkniipft ist und daher nur
fiilr solche Punkte des Gebietes G, definiert ist, die innere Punkte auch
von G, sind (vgl. 5) und deren Gesamtheit wir mit @, bezeichnen wollen.
Wir erbalten dann die Greensche Formel
(6) RIS Au-Adv=013Sv-A44u+h 3 v-R(u),

én & Lt Iy
wo R (u) ein fiir jeden Punkt des Randstreifens I', I, definierbarer
linearer Differenzenausdruck ist, den wir nicht niher angeben. I, be-
deutet dabei die Menge der Randpunkte von G,.

§ 2.
Randwertprobleme und Eigenwertprobleme.

1. Die Theorie des Randwertproblems.

Die Randwertanfgabe fiir lineare elliptische homogene Differenzen-
gleichungen zweiter Ordnung, welche der klassischen Randwertaufgabe fiir
partielle Differentialgleichungen entspricht, formulieren wir folgendermaBen:

In einem Gittergebiete @, sei ein selbstadjungierter elliptischer linearer
Differenzenausdruck zweiter Ordnung L (u) gegeben. Er mége aus einem
quadratischen Ausdruck B (%, %) entspringen, der positiv-definit ist in dem
Sinne, daB er nicht verschwinden kann, wenn nicht u, und u, selbst
verschwinden,

Man bestimme nunsin @, eine solche der Differenzengleichung

L(u)=0

geniigende Funktion u, welche in den Randpunkten dieses Gittergebietes
mit vorgegebenen Werten iibereinstimmt.

Unsere Fordernng wird dargestellt durch ebenso viele lineare Glei-
chungen wie es innere Gitterpunkte des Grittergebietes, also zu bestimmende
Funktionswerte » gibt*). Einige dieser Gleichungen, nimlich soweit sie
zu Gitterpunkten gehdren, welche mit ihren vier Nachbarn im Innern
liegen, sind homogen; andere, bei welchen Randpunkte des Gittergebietes
mit eingehen, sind inhomogen. Setzen wir die rechten Seiten dieses in-

4) Bildet man zu einer beliebigen Differenzengleichung zweiter Ordnung L (v) =0,
indem man sie als ein lineares Gleichungssystem auffaBt, das transponierte Gleichungs-
system, so wird dieses durch die adjungierte Differenzengleichung M (v) =0 dargestellt.
Die oben betrachtete selbstadjungierte Differenzengleichung stellt also ein lineares
Gleichungssystem mit symmetrischera Koeffizientenschema dar,



Appendix B 169

38 R. Courant, K. Friedrichs und H. Lewy.

homogenen Gleichungssystems, d. h. die Randwerte von # gleich Null, so
folgt aus der Greenschen Formel (1), wenn wir dort % = v setzen, sofort
das Verschwinden von B (%, u) und wegen des Definitheitscharakters von
B (u, u) das Verschwinden von u, %, und damit auch von u. Die Diffe-
renzengleichung hat also die Losung % =0, wenn die Randwerte ver-
schwinden, oder mit anderen Worten, die Lésung ist durch die Randwerte,
wenn iiberhaupt, eindeutig bestimmt, da die Differenz zweier Ldsungen
mit denselben Randwerten verschwinden muf. Wenn aber ein lineares
Gleichungssystem mit ebenso vielen Unbekannten wie Gleichungen die
Eigenschaft besitzt, daB bei verschwindenden rechten Seiten auch die Un-
bekannten sdmtlich verschwinden miissen, so besagt der Fundamentalsatz
der Gleichungstheorie, daB bei beliebig vorgegebenen rechten Seiten genau
eine Losung vorhanden sein muB. In unserem Falle folgt somit die Existenz
einer Losung der Randwertaufgabe,

Wir sehen also, daBl bei unseren elliptischen Differenzengleichungen
die eindeutige Bestimmtheit und die Existenz der Losung der Randwert-
aufgabe durch den Fundamentalsatz der Theorie der linearen Gleichungen
miteinander zusammenhéngen, wihrend in der Theorie der partiellen Diffe-
rentialgleichungen bekanntlich beide Tatsachen mit ganz verschiedenen
Methoden bewiesen werden miissen, Der Grund fiir diese Schwierigkeit ist
darin zu erblicken, daB Differentialgleichungen nicht mehr mit endlich
vielen Gleichungen &quivalent sind; und man sich daher nicht mehr auf
die Gleichheit der Anzahl von Unbekannten und Gleichungen berufen kann.

Da die Differenzengleichung

du=0
aus dem positiv-definiten quadratischen Ausdruck
B33 (s +uy)
h

entspringt, ist also das Randwertproblem dieser Differenzengleichung stets
eindeutig losbar.

Ganz entsprechend wie fiir die Differenzengleichungen zweiter Ordnung”
entwickelt sich die Theorie fiir Differenzengleichungen héherer, z. B. vierter
Ordnung, wofiir das Beispiel der Differenzengleichung

44u=0

geniigen moge. Hier miissen die Werte der Funktion » in dem Rand-
streifen I', - I'; vorgegeben werden. Offenbar liefert auch die Differenzen-
gleichung 4 A% = 0 ebensoviel lineare Gleichungen wie unbekannte Funk-
tionswerte in den Punkten von G;. Um die eindeutige Losbarkeit der
Randwertaufgabe nachzuweisen, brauchen wir wieder nur zu zeigen, daB
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eine Losung, deren Werte im Randstreifen I+ I, Null sind, notwendig
identisch verschwindet. Zu dem Zweck bemerken wir, daf die Summe
iiber den zugehdrigen quadratischen Awusdruck:

(7) K3 3 (dw)’

fiir eine solche Funktion verschwindet, wie wir sofort erkennen, wenn wir
diese Summe nach der Greenschen Formel (6) umformen. Das Verschwin-
den der Summe (7) zieht aber das Verschwinden von 4% in allen Punkten
von Gy nach sich, und das kann bei verschwindenden Randwerten nach
dem oben Bewiesenen nur stattfinden, wenn die Funktion % iiberall den
Wert Null annimmt. Damit ist aber unsere Behauptung bewiesen und
die eindeutige Losbarkeit der Randwertaufgabe des Differenzenaunsdruckes
sichergestellt ®).

2. Beziehungen zu Minimumproblemen.

Die obige Randwertaufgabe steht in Zusammenhang mit dem folgen-
den Minimumproblem: Unter allen im Gittergebiet G, definierten Funk-
tionen ¢(z,y), welche in den Randpunkten vorgeschriebene Werte an-
nehmen, ist eine solche @ = (=, y) zu suchen, fiir welche die iiber das
Gittergebiet erstreckte Summe

hezg’ZB(% ®)

einen moglichst kleinen Wert annimmt. Dabei setzen wir voraus, da der
quadratische Differenzenausdruck erster Ordnung B (%, %) in dem oben (vgl.
3. 86) genannten Sinne positiv-definit ist. DaB sich aus dieser Minimum-
forderung als Bedingung fiir die Losung ¢ =u(z,y) die Differenzen-
gleichung L(p)=0 ergibt, wo L(¢) der in der obigen (vgl 8.35 (1))
Weise aus B(q, ¢) abgeleitete Differenzenausdruck zweiter Ordnung ist,
erkennt man entweder nach den Regeln der Differentialrechnung, indem
man die Summe A* 2; > B(gp, @) als Funktion der endlichen vielen Werte
h

von ¢ in den Gitterpunkten ansieht oder analog dem iiblichen Verfahren
in der Variationsrechnung.

Beispielsweise ist das Randwertproblem, eine Lésung der Gleichung
4¢==0 zu finden, die vorgegebene Randwerte annimmt, mit der Aufgabe

%) Vergleiche fiir die wirkliche Durchfijhrung der Ldsung unserer Randwert-
probleme durch iterierende Verfahren u. a. die Abhandlung: Uber Randwertaufgaben
bei partiellen Differenzengleichungen von R. Courant, Zeitschr. f. angew. Mathematik
0. Mechanik ¢ (1925), S. 322—325. Im iibrigen sei verwiesen auf den Bericht von
H. Henky, Zeitschr. f. angew. Math. u. Mech. 2 (1922), §. 58
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leichwertig, die Summe % 3 3 (@2 -+ ¢2) unter allen Funktionen, die
8 g o P y

die Randwerte annehmen, zum Minimum zu machen.

Ganz Ahnliches gilt fiir Differenzengleichungen vierter Ordnung, wobei
wir uns wiederum auf das Beispiel von 44¢ = 0 beschrinken. Die zu
dieser Differenzengleichung gehorige Randwertaufgabe ist mit dem Problem
gleichwertig, die Summe %°3 ¥ (4¢)® unter allen Funktionen ¢(z,y)

&

zum Minimum zu machen, deren Werte in dem Randstreifen I'; vorgegeben
sind. AuBer dieser Summe fithren auch noch andere in den zweiten Ab-
leitungen quadratische Ausdriicke durch die Forderung, sie zum Minimum
zu machen, auf die Gleichung 4 4u = 0, so z. B. die Summe:

B33 (wiat 20z + ),
h

in der simtliche in @, auftretenden zweiten Differenzenquotienten vor-
kommen sollen.

Dafl die gestellten Minimumprobleme immer eine Losung besitzen,
folgt aus dem Satz, daB eine stetige Funktion von endlichen vielen Ver-
inderlichen (den Funktionswerten von ¢ in den Gitterpunkten) stets ein
Minimum besitzen muB, wenn diese Funktion nach unten beschrinkt ist
und wenn sie gegen Unendlich strebt, sobald mindestens eine der un-
abhingigen Verinderlichen es tut®).

3. Die Greensche Funktion.

Ahnlich wie die Randwertaufgabe der homogenen Gleichung L (u)=0
kann man auch die Randwertaufgabe der unhomogenen Gleichung L (u) = — f
behandeln. Es geniigt, bei der unhomogenen Gleichung sich auf den Fall
zu beschrinken, daB die Randwerte von u iiberall verschwinden, da wir
fiir andere Randwerte die Losung durch Addition einer geeigneten Losung
der homogenen Gleichung erhalten. Um das lineare Gleichungssystem,
welches durch die Randwertaufgabe von L ()= — f reprisentiert ist, zu
l6sen, wihlen wir zunichst die Funktion f(z,y) so, daB sie in einem

Gitterpunkte mit den Koordinaten z=§£, y =17 den Wert — %, in allen

andern Gitterpunkten den Wert Null annimmt. Ist K(z, y; &, 5) die am
Rande verschwindende Losung der so entstehenden speziellen noch vom
Parameterpunkt (£, ) abhingigen Differenzengleichung, so wird die zu

% Daf die Voraussetzungen fir die Anwendungen dieses Satzes gegeben sind, ist
sebr leicht einzusehen.
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einer beliebigen Funktion gehorige Losung durch die Summe
u(z,y)=0" 33 K(z,y; & 1) f(£n)
h

(&, 7)) In G;
dargestellt.

Die Funktion K (2, y; &, %) in ibrer Abhingigkeit von den Punkten
(2,y) und (& 7) nennen wir die Greensche Funktion des Differential-
ausdruckes L (u). Bezeichnen wir mit K (z, y; £, 5) die Greensche Funk-
tion des adjungierten Ausdruckes M (v), so gilt die Relation

K(é: 7; &, ’7)=K(§3 /8 ga 7—7)’
die man auch unmittelbar aus der Greenschen Formel (5) folgert, wenn
man dort u= K(z,9; &,7) und v=K (z,y; £,%) setzt. Fiir einen

selbstadjungierten Differenzenausdruck ergibt sich aus der obigen Beziehung
die Symmetrierelation:

K(£,7; &,9) =K (& 5 E,7).

4. Eigenwertprobleme.

Selbstadjungierte Differenzenausdriicke L (%) geben AnlaB zu Eigen-
wertproblemen von folgendem Typ: Es sind die Werte eines Parameters A
— die Eigenwerte — zu suchen, fiir die die Differenzengleichung

L(u)+Aiu=0
in @G, eine auf dem Rande I', verschwindende Losung — die Eigenfunk-
tion — besitzt.

Das Eigenwertproblem ist iquivalent dem Hauptachsenproblem der
quadratischen Form B (u, u). Es gibt ebenso viele Eigenwerte 1, ..., 1%
wie innere Gitterpunkte im Gebiet G, und ebenso viele zugehérige Eigen-
funktionen 4@, ..., u®, Das System der Eigenfunktionen und Eigenwerte
und ihre Existenz ergibt sich aus dem Minimumproblem:

Unter allen am Rande verschwindenden Funktionen ¢ (2, y), die den
m — 1 Orthogonalititsbedingungen

7”202‘?"“(’):0 (r=1,...,m—1)
h
und der Normierungsbedingung
B33 et=1
G
geniigen, ist diejenige @ = u gesucht, fiir die die Summe
W3 3 B(p, )
G
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den kleinsten Wert annimmt. Der Wert dieses Minimums ist der m-te
Eigenwert und die Funktion, fiir die es angenommen wird, ist die m-te
Eigenfunktion ?).

§ 3.9
Zusammenhénge mit dem Problem der Irrwege.

Unser Thema steht in Beziehung zu einer Frage der Wahrscheinlich-
keitsrechnung, nimlich dem Problem der Irrwege in einem begrenzten
Gebiet?). Man stelle sich in einem Gittergebiet @, die Gitterstrecken als
Wege vor, lings deren ein Partikel von einem Gitterpunkt zu einem Nachbar-
punkt wandern kann. In diesem StraBennetz moge nun unser Partikel ziellos
herumirren, indem es an jeder Strafenecke unter den vier verfiigbaren
Richtungen eine nach dem Zufall auswahlt — alle vier seien gleich wahr-
scheinlich —. Die Irrfahrt endet, sobald ein Randpunkt von G, erreicht
ist, wo unsere Partikel absorbiert werden mogen.

Wir fragen:

1. Welches ist die Wahrscheinlichkeit w (P; R) daB man bei der Irr-
fahrt von einem Punkte P ausgehend irgend einmal in dem Randpunkte R
ankommt?

2. Welches ist die mathematische Hoffnung »(P; @), daB man bei
einer solchen von P ausgehenden Irrfahrt, ohne den Rand zu treffen, einen
Punkt @ von @, beriihrt?

7) Wegen der Orthogonalitit A? 2 Z uPu™ =0 (v+u) der Eigenfunktionen

1aBt sich jede am Rande verschmndende Funktion ¢ (2,y) des Gitters nach den
Eigenfunktionen in der Form

y=ZcWa
r=1
entwickeln, wo die Koeffizienten ¢ durch die Gleichung
G(V)=Zzgu(")
G
bestimmt sind. '
Auf diese Weise erhalten wir insbesondere die folgende Darstellung der Green-
schen Funktion:
1 ¥ (1')( ). M(E )
. __1 u" (2,y) u 7
E(z,y;&,7)= X o

=1

%) Fiir die Durchfiihrung des Grenziiberganges in § 4 ist § 3 entbehrlich.

?) Gerade in der Art wie hier die Grenzen des Gebietes hineinspielen, liegt ein
wesentlicher Unterschied der folgenden Betrachtung gegeniiber bekannten Uberlegungen,
die z. B. im Zusammenhange mit der Brownschen Molekularbewegung durchgefiihrt
worden sind.
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Diese Wahrscheinlichkeit bzw. mathematische Hoffnung wollen wir
durch folgenden ProzeB genauer erkliren. Wir denken uns im Punkte P
die Finheit irgendeiner Substanzmenge vorhanden. Die Substanz moge
sich in unserem StraBennetz mit einer konstanten Geschwindigkeit aus-
breiten, etwa in der Zeiteinheit eine Gitterstrecke zuriicklegen. In jedem
Gitterpunkte soll nach jeder der vier Richtungen genau ein Viertel der
dort ankommenden Substanz weiterstromen. Die Substanzmenge, die in
einem Randpunkte ankommt, soll dort festgehalten werden. Ist der Aus-
gangspunkt P ein Randpunkt, so soll die Substanzmenge iiberhaupt dort
bleiben.

Unter der Wahrscheinlichkeit w (P; R) iiberhaupt bei einer von P aus-
gehenden Irrfahrt an den Randpunkt R zu gelangen, ohne vorher den
Rand berithrt zu haben, verstehen wir die Substanzmenge, die sich nach
unendlicher Zeit in diesem Randpunkte angesammelt hat.

Unter der Wahrscheinlichkeit E,(P;@) in genau n Schritten vom
Punkte P zum Punkte @ zu gelangen, ohne den Rand zu beriihren, ver-
stehen wir die im Punkte @ nach n Zeiteinheiten befindliche Substanz-
menge, falls P und @ innere Punkte sind. Ist P oder @ ein Randpunkt,
so setzen wir sie gleich Null.

Die Grofle E,(P; Q) ist gerade die Anzahl der von P nach @ fiihren-
den den Rand nicht trefifenden Wege von n Schritten, durch 4" dividiert;
es ist also B, (P;Q)=E,(Q;P).

Unter der mathematischen Hoffnung »(P;Q) bei einem oben gekenn-
zeichneten Irrwege iiberhaupt einmal von P aus zum Punkte @ zu gelangen,
verstehen wir die unendliche Summe aller dieser Wahrscheinlichkeiten

v(P;Q>=§E,(P;Q>,1°>

also fiir innere Punkte P und Q die Summe aller Substanzmengen, die
in den verschiedenen Zeitmomenten den Punkt @ durchlanfen haben. Es
wird also dem Erreichen des Punktes @ der Erwartungswert 1 zugeschrieben.
Fiir Randpunkte ist diese Hoffnung gleich Null.

Bezeichnen wir die im Randpunkte B mit genau # Schritten ankom-
mende Menge mit F,(P;R), so ist die Wahrscheinlichkeit w(P; R) durch
die unendliche Reihe

w(P;R)=%F,(P;R)

dargestellt, deren samtliche Glieder positiv sind, und deren Teilsummen
nie grofler als Eins sein konnen, weil die am Rande ankommende Substanz

10) Thre Konvergenz werden wir sogleich beweisen.
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nur einen Teil der urspriinglichen Substanzmenge ausmacht. Damit ist
aber die Konvergenz dieser Reihe gesichert.

Man kann nun leicht einsehen, daB die Wahrscheinlichkeiten B, (P; @),
d. h. die nach genau n Schritten in einem Punkte @ anlangende Substanz-
menge mit wachsendem 7 gegen Null strebt. Ist nidmlich in irgendeinem
Punkte @, von dem aus ein Randpunkt R in m Schritten zu erreichen sei,
E,(P;Q)>«>0, so wird nach m Schritten in diesem Randpunkt R

mindestens die Substanzmenge {7» ankommen; da aber wegen der Kon-
vergenz der Summe 3 F, (P;R) die an den Randpunkt R ankommende

y=0
Substanzmenge mit der Zeit gegen Null strebt, so miissen auch die Grofien
E,(P;Q) selber mit wachsendem » gegen Null streben; d. h. die Wahr-
scheinlichkeit bei einem unendlich langen Wege im Innern zu bleiben,
ist Null.

Hieraus ergibt sich, daB die gesamte Substanzmenge schlieBlich an
den Rand ankommen mufB; mit anderen Worten, daf die iiber alle Rand-
punkte B erstreckte Summe

Sw(P;R)=1
ist. *

Wir haben noch die Konvergenz der unendlichen Reihe fiir die mathe-

matische Hoffnung v (P; Q)

v(P;Q)= JE,(P:Q)
zu beweisen,

Zu dem Zweck bemerken wir, daB die GroBen E, (P; Q) der folgenden
Relation geniigen

B, (P Q)= 7{B.(P; Q)+ B,(P: Q) + E,(P; Q,)+ E,(P;: Q)
[n=1],
wo @, bis @, die vier Nachbarpunkte des inneren Punktes @ sind. D. h.
die nach n 4 1 Schritten im Punkte @ ankommende Substanzmenge be-
steht aus dem vierten Teil der nach = Schritten in den vier Nachbar-
punkten von @ ankommenden Substanzmenge. Ist einer der Nachbar-
punkte von @ z.B. @, = R Randpunkt, so kommt die Tatsache, daB
zum Punkte @ von diesem Randpunkte aus keine Substanzmenge weiter
flieft, dadurch zum Ausdruck, daB wir E,(P; R) gleich Null gesetzt haben.
Ferner ist fiir einen inneren Punkt E, (P; P)= 1 und sonst B, (P;Q)=0.
Aus diesen Relationen ergeben sich fiir die Teilsummen

0.(P; Q)= JE,(P;Q)
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die Gleichungen
burs (P5 Q) = {0, (P5 Q)+ 0, (P5 Q) + 9, (P3 @) + 1, (P5 Q)
wenn P nicht mit @ zusammenfillt; andernfalls ist
%or(Pi P) =1+ 1 {0,(P; P) +2,(P; B,) +,(P; B,) + v,(P; P,)},

d. h. die Hofinung, von einem Punkte zu sich selbst zuriickzukommen,
setat sich zusammen aus der Hoffnung, auf einem nicht verschwindenden
Wege den Punkt P wieder zu erreichen, nimlich 2 {», (P;P,) +»,(P; P,)
+v,(P; Py) +v,(P; P,)} und aus der Hofinung Eins, die ausdriickt, daB
urspriinglich die gesamte Substanz in diesem Punkte vorhanden war.

Es gentigen also die GréBen v,(P;Q) der folgenden Differenzen-
gleichung!?)

Av"(P;Q)=£-§En(P;Q), wenn P+ @ ist,

Avn(P;Q)zfé(Eﬂ(P;Q)—l), wenn P—@ ist.

2, (P; Q) ist gleich Null, wenn @ ein Randpunkt ist.

Die Losung dieser Randwertaufgabe ist, wie schon frither auseinander-
gesetzt, fiir irgendwelche rechten Seiten eindeutig bestimmt (vgl. 8. 88);
sie hingt stetig von den rechten Seiten ab. Da nun die GroBen E (P; Q)
gegen Null streben, so konvergieren die Lésungen v, (P;Q) gegen die
Lésungen v (P; Q) der Differenzengleichung

4v(P;Q)=0, wenn P Q ist,
Av(P;Q):——}-j’— wenn P=Q ist,

2’
mit den Randwerten v(P;R)=0.

1) Dabei bezieht sich die 4-Operation auf den variablen Punkt Q.

Diese Gleichung 148t sich als eine Gleichung vom Wirmeleitungstypus aunffassen.
Betrachtet man nimlich die Funktion v, (P; Q) anstatt als Funktion des Index » unserer
oben zugrunde gelegten Vorstellung gemiB als Funktion der Zeit #, die zu n propor-
tional ist, indem man ¢ = nz und v, (P; Q) = v (P; Q; ¢) = v (¢) setzt, so kdnnen wir die
obigen Gleichungen in der folgenden Form schreiben ;

4 v(t):%-w fir P+Q,

Aq;(z)=i;-§(”—(’+——-’z_‘_”.—(‘_)-1> fir P=Q.

Uber den Grenziibergang von einer #hnlichen Differenzengleichung zu einer paraboli-
schen Differentialgleichung vgl. Teil IT, § 6, S. 67.
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Wir sehen also, da8 die mathematische Hoffnung v (P; Q) existiert
und nichts anderes ist als die zur Differenzengleichung 4 % = 0 zugehérige
Greensche Funktion K(P;Q) noch mit dem Faktor 4 versehen. Die
Symmetrie der Greenschen Funktion K(P;Q)= K(Q;P) ist eine un-
mittelbare Folge der Symmetrie der Grofen E,(P;@), mit deren Hilfe
sie definiert wurde.

Die Wahrscheinlichkeit w (P; R) geniigt hinsichtlich P der Relation

w(P; R) =+ {w(Py; B) +w(Py; R) + w(P,; R) + w(P,; R)},

also der Differenzengleichung
Adw=20.

Sind ndmlich P,, P,, P,, P, die vier Nachbarpunkte des inneren Punktes P,
so mufl jeder Weg von P nach R iiber einen dieser vier Wege fiihren,
und jede der vier Wegrichtungen ist gleich wahrscheinlich. Ferner ist die
Wahrscheinlichkeit, von einem Randpunkt R zu einem andern R’ zu gelangen,
w(R,R")=0, auBer wenn die beiden Punkte R und R’ zusammenfallen,
wo w(R,R)=1 gilt. Es ist also w(P;R) die Losung der Randwert-
aufgabe 4w = 0, wobei im Randpunkte R der Randwert 1 in allen anderen
Punkten der Randwert 0 vorgeschrieben ist. Die Losung der Randwert-
aufgabe bei beliebig vorgegebenen Randwerten % (R) hat dann einfach die
Gestalt u(P)= Y w(P;R)u(R), wobei iiber alle Randpunkte B zu sum-
i3

mieren ist'?). Setzen wir hierin fiir % die Funktion » =1 ein, so er-
halten wir wieder die Relation 1 = Y w(P;R).
3

Die hier gegebene Auffassung der Greenschen Funktion als Hoffnung
148t unmittelbar weitere Eigenschaften erkennen. Wir erwéhnen nur die
Tatsache, da8 die Greensche Funktion wichst, wenn man von dem Gebiete ¢
zu einem in G als Teilgebiet enthaltenen Teilgebiete G iibergeht; es wichst
dann namlich fiir jedes » die Anzahl der moglichen Gitterwege, von einem
Punkte P zu einem anderen @ zu gelangen, ohne den Rand zn berithren.

Natiirlich herrschen fiir mehr als zwei unabhéingige Verénderliche ent-
sprechende Beziehungen. Wir begniigen uns mit dem Hinweis, da8 auch
andere elliptische Differenzengleichungen eine dhnliche Wahrscheinlichkeits-
auffassung zulassen.

Fithrt man den Grenziibergang zu verschwindender Maschenweite durch,
was sich mit den Methoden des folgenden Paragraphen einfach ausfithren

%) Man erkennt iibrigens leicht, daB die Wahrscheinlichkeit w (P; R), an den’
Rand zu gelangen, der von der Greenschen Funktion K (P; Q) hinsichtlich @ gebildete
Randausdruck R (K (P, Q)) ist, indem man in der Greenschen Formel (5) u(z, y) mit
w (P, Q), v(z,y) mit v(P, Q) identifiziert.
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148t, so geht die Greensche Funktion im Gitter bis auf einen Zahlenfaktor

in die Greensche Funktion der Potentialgleichung iiber; eine dhnliche Be-

w(P; R)
h

ziehung besteht zwischen dem Ausdruck und der normalen Ab-

leitung der Greenschen Funktion am Rande des Gebietes. Auf diese Weise
lieBe sich z. B. die Greensche Funktion der Potentialgleichung als die
spezifische mathematische Hoffnung deuten, von einem Punkte zu einem
anderen zu gelangen®), ohne den Rand zu beriihren.

Nach dem Grenziibergang vom Gitter zum Kontinuum ist der Einfluf
der bei den Irrwegen vorgeschriebenen Gitterrichtungen verschwunden.
Dieser Tatsache Rechnung zu tragen, indem man den Grenziibergang mit
einem allgemeineren Irrfahrtenproblem ohne Richtungsbeschrinkung vor-
nimmt, ist eine prinzipiell interessante Aufgabe, welche jedoch iiber den
Rahmen dieser Abhandlung hinaus fiihrt und auf die wir bei anderer Ge-
legenheit zuriickzukommen hoffen.

§ 4.
Grenziibergang zur Losung der Differentialgleichung.
1. Die Randwertaufgabe der Potentialtheorie.

Bei der Durchfiihrung des Grenziiberganges von der Losung der
Differenzengleichungsprobleme zu der Losung der entsprechenden Differen-
tialgleichungen wollen wir hinsichtlich des Randes und der Randwerte auf
die groBtmégliche Allgemeinheit in der Formulierung verzichten, um das
fiir unsere Methoden Charakteristische klarer hervortreten zu lassen*).
Wir setzen demgemiB voraus, daB in der Ebene ein einfach zusammen-
hiingendes Gebiet @ vorgegeben ist, dessen Berandung aus endlich vielen
mit stetiger Tangente versehenen Kurvenbdgen gebildet wird. In einem &
im Innern enthaltenden Gebiete sei eine stetige und mit stetigen partiellen
Ableitungen erster und zweiter Ordnung versehene Funktion f£(z, )
gegeben. Fiir das zu der Maschenweite » und zum Gebiete G gehorige
Gittergebiet @ sei die Randwertaufgabe der Differenzengleichung du =0
mit denjenigen Randwerten, welche von der Funktion f(#, y) in den Rand-
punkten von G, angenommen werden, gelost; die Losung heiBe u,(z, ).
Wir wollen beweisen, daB die Gitterfunktion u, mit verschwindender
Maschenweite % gegen die Losung u der Randwertaufgabe der partiellen

13) Dabei ist dem Erreichen eines Flichenstiicks als Erwartungswert sein Flichen-
inhalt zmgeschrieben.

14) Es gei jedoch bemerkt, daf die Ausdebnung unserer Methoden auf allgemeinere-
Rinder und Randwerte keinerlei prinzipielle Schwierigkeiten bereitet,
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2 2
Differentialgleichung gx—f—{—g—?}: =0 fiir das Gebiet @ konvergiert, wobei

die Randwerte fiir das Gebiet @ wiederum durch diejenigen Werte geliefert
werden, welche die Funktion f(z,y) auf dem Rande von G annimmt.
Weiter werden wir zeigen, daB fiir jedes ganz im Innern von @ liegende
Gebiet die Differenzenquotienten beliebiger Ordnung von u, gleichmaBig
gegen die entsprechenden partiellen Differentialquotienten der Grenzfunktion
u (2, y) streben.

Bei der Durchfiithrung des Konvergenzbeweises ist es bequem, die
Forderung, daB = (z,y) die Randwerte annimmt, durch die folgende
schwichere Forderung zu ersetzen: Ist S, derjenige Randstreifen des Ge-
bietes G, dessen Punkte vom Rande eine Entfernung kleiner als r be-
sitzen, so strebt das Integral

—i—!j(u — 1 dzdy

mit abnehmendem » gegen Null®®).

Unser Konvergenzbeweis beruht auf der Tatsache, daB fiir jedes ganz
im Innern des Gebietes G liegende Teilgebiet G* die Funktion u,(z, y)
und jeder Differenzenquotient bei abnehmendem /% beschrinkt bleibt und
»gleichartig stetig® ist in folgendem Sinne: Es gibt fiir jede dieser Funk-
tionen w, (z, y) eine nur von dem Gebiete und nicht von % abhingige
Grofe 6 (e) derart, daB

|w, (P) —w, (P,)]| < e

ist, sobald die beiden Gitterpunkte P und P, des Gittergebietes G, in
dem gegebenen Teilgebiet liegen und voneinander einen kleineren Abstand
als (&) besitzen.

15) Daf tatsichlich unsere schwichere Randwertforderung zur eindeutigen

Kennzeichnung der Losung geniigt, folgt aus dem leicht zu beweisenden Satze:
2 2

Wenn fiir eine im Innern von @G der Differentialgleichung g—;z +g-y1:=0 geniigende

Funktion die obige Form der Randbedingung mit f(z,y)=0 erfillt ist und

2 2
jf ((%:—) + (_g_q;_ )dxdy existiert, so ist u(z,y) identisch Null. (Vgl. Courant,
/
G

»Uber die Losungen der Diff.-Gl. der Physik“, Math. Annalen 85, insbesondere S. 296 ff.)

Im Falle von zwei unabhiingigen Veridnderlichen }i8t sich aus unserer schwicheren
Forderung die tatsichliche Annahme der Randwerte folgern; im Falle von mehr
Variablen darf man das Entsprechende schon deswegen nicht allgemein erwarten, weil
s dort bekanntlich Ausnahmepunkte am Rande geben kann, in denen die Randwerte
nicht mehr angenommen zu werden brauchen, wihrend jedoch fiir die schwichere
Forderung stets eine Lisung existiert.
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Haben wir einmal die behauptete gleichartige Stetigkeit bewiesen, so
konnen wir bekanntlich eine Teilfolge unserer Funktionen , so auswihlen,
daf sie mit ihren Differenzenquotienten jeder Ordnung in jedem Teilge-
biet @* gleichmiBig gegen eine Grenzfunktion u(z, y) bzw. deren Differen-
tialquotienten strebt. Die Grenzfunktion besitzt dementsprechend Ablei-
tungen beliebig hoher Ordnung in jedem inneren Teilgebiet @* von @ und

2 2
geniigt dort der partiellen Differentialgleichung Z—g +Z71; =0. Wenn wir
dann noch zeigen, daB sie die Randbedingung befriedigt, so erkennen wir
in ihr die Losung unseres Randwertproblems fiir das Gebiet @. Da diese
Losung eindeutig bestimmt ist, so zeigt sich nachtriglich, daB nicht nur
eine Teilfolge der Funktionen u,, sondern diese Funktionenfolge selbst die
ausgesprochene Konvergenzeigenschaft besitzt.

Die gleichartige Stetigkeit unserer Grofien wird sich durch den Nach-
weis folgender Tatsachen ergeben:

1. Bei abnehmendem A bleiben die iiber das Gittergebiet G, erstreck-
ten Summen

BISu® ud b3 (w4 )
beschriinkt 16), o *

2. Geniigt w = w, in einem Gitterpunkt @, der Differenzengleichung
Aw =10 und bleibt bei abnehmendem % die Summe

B3 3w,
&

erstreckt iiber ein zu einem Teilgebiet G* von G gehoriges Gittergebiet
G, beschrinkt, so bleibt fiir jedes feste ganz im Innern von G* liegende
Teilgebiet G** auch die iiber das zugehdrige Gittergebiet G erstreckte
Summe

h* 3 3 (w; +wy)
Gy

bei abnehmendem 7 beschrinkt.

Zusammen mit 1. folgt hieraus, da sidmtliche Differenzenquotienten w
der Funktion u, wieder der Differenzengleichung 4w = 0 geniigen, da8
jede der Summen

h‘.’. Zzw‘l
G*
beschrinkt ist. '

3. Aus der Beschrinktheit dieser Summen folgt schlieBlich die Be-
schrinktheit und gleichartige Stetigkeit aller Differenzenquotienten selbst.

) Hier und gelegentlich im folgenden lassen wir bei Gitterfunktionen den
Index kb fort.

Mathematische Annalen. 100. 4
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2. Beweis der Hilissitze.

Der Beweis der Tatsache 1 folgt daraus, daf die Funktionswerte u,
selbst beschrinkt sind. Demn der grofte und der kleinste Wert der
Funktion wird am Rande angenommen??), strebt also gegen vorge-
gebene endliche Werte. Die Beschriinktheit der Summe %° 3 37 (g -+ uy) ist

Gr

eine unmittelbare Folge der im § 2, 2. formulierten Minimumeigenschaft
unserer Gitterfunktion, wonach sicherlich

hQZ’GZ(u§+u§)§h22(;’Z(ff+;}2)
h h
gilt. Die Summe rechts strebt aber mit abnehmender Maschenweite gegen

das Integral ff [ uAY (af ) } dzdy, welches nach unseren Voraussetzungen
existiert.

Um den unter 2. formulierten Hilfssatz zu beweisen, betrachten wir
die Quadratsumme

hQZ,’Q!Z(wj—}—w;-i—w;—{—w;),

wobei die Summation sich auf alle inneren Punkte eines Quadrates @,
bezieht (vgl. Fig. 1). Die Funktionswerte auf den duBeren Seiten S, des
Quadrates @, bezeichnen wir mit w,, die auf der
zweiten Randreihe §, mit w,. Dann liefert die
S Greensche Formel

(8) h222<w:+w§+ w, + w;)
“2 —wo)<2w —Z’w,

Sn

%

wobel die Summation rechts uber die beiden

Fig. 1. suBeren Randreihen 8, und 8, zu erstrecken ist,

und wo w, und w, sich auf benachbarte Punkte

beziehen. Wir betrachten nun eine Reihe von konzentrischen Quadraten

Qo> @y, Q5 -+ ., Qn mit den Rindern S,, 8, ..., Sy, von denen jedes aus

dem vorangehenden dadurch entsteht, dal der Kranz der nachsten Nach-

barpunkte hinzukommen wird (vgl. Fig. 1). Auf jedes dieser Quadrate
wenden wir die Abschdtzung (8) an und beachten, dafl stets

20 3 S (w)+w)) B 33 (w] + wf+ w4 wy)

17) Ausdriicklich bemerken wir im Hinblick auf die Ubertragung der Methode
auf andere Differentialgleichungen, daf wir uns von dieser Eigenschaft unabhingig
machen kénnen. Dazu brauchen wir nur die Ungleichung (15) heranzuziehen oder die
SchluBweise der Alternative anzuwenden (vgl. 8. 55).
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fiir k> 1 ist. Addieren wir der Reihe nach die » Ungleichungen
28° 3 3 (ws+w0y) < Sw’ — Sw 0Lk <n),

Sk Sk
so erhalten wir

2nh* 3 S(ws+w)) < Sw — Jw' < Sw.
Qo Sa S, Sa
Diese Ungleichung summieren wir von #=1 bis n=N. So ergibt sich

N2k9262(w§+w5)__<_ 3w’

wobei wir die Summe rechts nur vergrofern, wenn wir sie iiber das ganze
Quadrat @y erstrecken.

Lassen wir nun bei Verkleinerung der Maschenweite die Quadrate @,
und Qx gegen zwei feste im Innern von @ liegende konzentrische Qua-
drate mit dem Abstande a streben, so konvergiert Nh gegen @, und wir
finden, daf unabhingig von der Maschenweite

(9) w3 3 (wi ) < 55h° 3 3wt
bleibt, « .

Diese Ungleichung gilt — bei hinreichend kleiner Maschenweite — natiir-
lich nicht nur fiir zwei Quadrate ¢, und @y, sondern mit einer anderen
Konstanten ¢ fiir irgend zwei Teilgebiete von G, von denen das eine ganz
im Innern des anderen liegt. Damit ist die Behauptung von 2. bewiesen ).

Um nun drittens nachzuweisen, daB in
jedem inneren Teilgebiet die Funktion u,
und ihre sémtlichen Differenzenquotienten w,
die Verfeinerung der Maschenweite be-
schrinkt und gleichartig stetig bleiben, be-  # ? & 2 £
trachten wir ein Rechteck B mit den Eck- Fig. 2.
punkten Py, Q,, P, Q (vgl. Fig. 2), dessen
Seiten Py@, und PQ der z-Achse parallel sind und die Lange a haben.

Wir gehen aus von der Darstellung

w<Q0)—w(PO)=h2wx+h222wzy
50 yJ)

<

A

(5

a 2

%) Wenn wir nicht annehmen, daB Aw =0 ist, so erhalten wir an Stelle der
Ungleichung (9)

(10) BEZ(wi+w)) S 6h’ T Iw+6ht X X (4w)’
o* ¢* é*
bei geeigneten von h unabhiingigen Konstanten c,,c,, wobei G** ganz im Innern des

Gebietes G* liegt, das seinerseits im Innem von G enthalten ist.
4*
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und der aus ihr folgenden Ungleichung
a) (@)= w(R)| B Zlw|+4* 55w,

Wir lassen nun die Rechtecksseite PQ zwischen einer Anfangslage P, @),
im Abstande & von P @, und einer Endlage P,Q, im Abstande 25 von

P,Q, laufen und summieren die —Z-{—I zugehorigen Ungleicliungen (11).
Wir erhalten so die Abschitzung

lw(Po)—w(Qo)ié;ﬁhe%lezH—ﬁ?ZR’lewl,

indem wir die Summationsgebiete auf das ganze Rechteck R,= P,Q, P,Q,
ausdehnen. Nach der Schwarzschen Ungleichung folgt daraus:

(12) |w(By) = w(Qo)| < 5 V2ab Va® 3 Sl + V2ab Vi* 3 S,

Da die hier auftretenden mit 2® multiplizierten Summen nach Annahme
beschrinkt bleiben, so folgt, daB die Differenz |w(P,) — w(Q,)| zugleich
mit ihrem Abstande @ gegen Null strebt und zwar unabhingig von der
Maschenweite, da wir fiir jedes Teilgebiet G* von @ die GroBe b fest-
halten konnen. Damit ist die gleichartige Stetigkeit von w = w), in der
x-Richtung bewiesen. Entsprechend ergibt sie sich fiir die y-Richtung
und damit fiir jedes innere Teilgebiet G* von G. Die Beschrinktheit der
Funktion w, in G* folgt schlieBlich aus ihrer gleichartigen Stetigkeit und
der Beschrinktheit von A* ZG’ Swg.

Mit diesem Nachweis ist die Existenz einer Teilfolge von Funktionen
gesichert, welche gegen eine Grenzfunktion u(z, y) konvergiert und zwar
mit simtlichen Differenzenquotienten in dem oben gekennzeichneten Sinne
gleichmaBig fiir jedes innere Teilgebiet von G. Diese Grenzfunktion % (z, ¥)
besitzt also in G iiberall stetige partielle Differentialquotienten beliebiger
Ordnung und geniigt der partiellen Differentialgleichung des Potentials

20 2%u
s T o= 0

3. Die Randhedingung.

Um zu beweisen, daf die Lésung die oben formulierte Randbedingung
erfiillt, zeigen wir zunichst, daB fiir jede Gitterfunktion » die Ungleichung

(13) B 330 < Ar*h® 3 3 (v +v)) -+ Brh 3v?
S,z Sron Ty
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besteht, wo S, , derjenige Teil des Gittergebietes @G ist, der innerhalb des
Randstreifens ;,S‘r liegt. Dieser Randstreifen 8, war (vgl. S. 48) aus allen
Punkten von G gebildet, deren Abstand vom Rande kleiner als r ist; er
wird auBler von I" noch von einer Kurve I, begrenzt. Ferner bedeuten
A und B nur vom Gebiet und nicht von der Funktion » oder von der
Maschenweite % abhéngige Konstanten.

Um die obige Ungleichung nachzuweisen, zerlegen wir den Rand I
von @ in eine endliche Anzahl von Stiicken, fiir welche der Winkel der
Tangente entweder mit der 2-Achse oder mit der y-Achse oberhalb einer
positiven Schranke (etwa 30°) bleibt. Es sei z.B. y ein solches zur

Fig. 3. Fig. 4.

x-Achse hinreichend steil geneigtes Stiick von I' (vgl. Fig. 4). Die
Parallelen zur z-Achse durch die Endpunkte des Stiickes y schneiden aus
der Naherungskurve I', ein Stiick y, aus und begrenzen zusammen mit.y
und y, ein Stiick s, des Randstreifens S,. Der in dem Streifen s, ent-
haltene Teil des Gittergebietes G, heie s, , und der zugehdrige Teil des
Randes I, heiBe y,. |

Wir denken uns durch einen Gitterpunkt F, von s, , die Parallele
zur z-Achse gezogen. Sie trifit den Rand y, in einem Punkte P,. Das-
jenige Stiick dieser Parallelen, das in s, , liegt, bezeichnen wir mit p, ,.
Seine Linge ist sicher kleiner als ¢r, da r der groBte senkrechte Abstand
eines Punktes aus S, von I' ist. Dabei hingt die Konstante ¢ nur von
dem kleinsten Neigungswinkel einer Tangente von y mit der z-Achse ab.

Nun besteht zwischen dem Wert von v im Punkte P, und ihrem
Werte in P, die Beziehung

v(P)=v(P)+h 3 v,
:Ph I_’k
woraus sich durch Quadrieren und Anwendung der Schwarzschen Un-
gleichung
o(B)* £2v0(P,)  +2¢r-h S0?

Pr.k
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ergibt. Summieren wir hinsichtlich P, in der z-Richtung, so erhalten wir

R v < 2erv(P,)’ +2¢2r%h 302,
Pr ?r

Summieren wir noch einmal in der y-Richtung, so entsteht die Relation
(14) R332 <L2¢r Jv(P,)+2¢*r2h 3 S 02,
Sr Iy 8

die wir nur noch fiir die anderen Stiicke y von I" entsprechend aufzustellen
und dann zu addieren haben, um leicht die gewiinschte Ungleichung (13)
zu erhalten %),
Wir setzen nun
O = U, — fhs

sodaf v, am Rande I, verschwindet. Da dann 2° 3 3 (02 + v3) bei
G

abnehmendem % beschrinkt bleibt, so erhalten wir aus (13)
(16) hT-ZZv?gxr,
Sz,

wo % eine nicht von der Funktion v oder der Maschenweite abhingige
Konstante ist. Erstrecken wir die Summe links nicht iiber den ganzen
Randstreifen S, ,, sondern nur iiber die Differenz von zwei solchen;
8,5 — 8,5 S0 bleibt die Ungleichung (16) mit der selben Konstanten x
giiltig, und wir konnen den Grenziibergang zu verschwindender Maschen-
weite vollziehen. Aus der Ungleichung (16) entsteht dann

};ffv“’dxdygzr, v=u—f
Sr-50

Lassen wir nun den kleineren Randstreifen S , dem Rande zustreben, so
erhalten wir die Ungleichung

%J‘fv?dx dy =%ff(u —~f)dzdy <xr,
Sy Sp

die gerade ausdriickt, da8 die Grenzfunktion % die von uns geforderte
Randbedingung erfiillt.

1%) Durch dieselbe Betrachtungsweise, die zum Nachweis der Ungleichung (13)
fiihrt, 1aB8t sich auch die Ungleichung

(18) YIS <ah ot +eht XY (02 +0F)
Gr Iy Gr

ableiten, in der die Konstanten ¢, ¢, nur vom Gebiet G, aber nicht von der Maschen-
einteilung abhingen.
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4, Anwendbarkeit der Methode auf andere Probleme.

Unsere Methode stiitzt sich wesentlich auf die in dem obigen Hilfs-
satz ausgesprochene Ungleichheitsbeziehung (10)*°), weil aus ihr die beiden
letzten auf S.49 genannten Hauptpunkte des Beweises folgen; sie macht
keinerlei Giebrauch von speziellen Grundlésungen oder sonstigen speziellen
Eigenschaften unserer Differenzenausdriicke und 148t sich daher unmittelbar
sowohl auf den Fall von beliebig vielen unabhﬁ,ngigen Variablen als auf

das Eigenwertproblem der Dlﬂ'erentlalglelchung b + + Au =0 iiber-

tragen und liefert dabei hinsichtlich der Konvergenzverhaltmsse genau
dieselben Resultate wie oben?®!). Auch eine Ubertragung auf lineare
Differentialgleichungen anderer Art, insbesondere solche mit nicht kon-
stanten Koeffizienten, erfordert nur einige naheliegende Modifikationen. Der
wesentliche Unterschied besteht immer nur im Nachweis der Beschrinktheit
von h® 3 Su?, die allerdings nicht bei einem beliebigen solchen linearen
Probleme vorliegt. Aber im Falle der Unbeschrinktheit dieser Summe
1aBt sich zeigen, daf das allgemeine Randwertproblem der betreffenden
Differentialgleichung auch wirklich keine Losung besitzt, daB aber dafiir
in diesem Falle nicht verschwindende Losungen des zugehérigen homogenen
Problems, d.h. Eigenfunktionen, existieren 22).

5. Das Randwertproblem von AAdw =0.

Um zu zeigen, daB sich die Methode auch auf den Fall von Diffe-
rentialgleichungen hoherer Ordnung iibertragen 1a8t, behandeln wir im
folgenden kurz das Randwertproblem der Diﬁerentialgleichung

tu a*u —0

7 T 2500 %oy + ay
Wir suchen eine Losung dieser partiellen Differentialgleichung in
unserem Gebiete @, fiir welche die Funktionswerte und ihre ersten Ab-
leitungen am Rande vorgegeben sind, und zwar durch diejenigen Werte,
welche von einer vorgegebenen Funktion (2, ) am Rande definiert werden.

20) Hinsichtlich der Anwendung entsprechender Integralungleichungen vgl.
K. Friedrichs, Die Rand- und Eigenwertprobleme aus der Theorie der elastischen
Platten, Math, Annalen 98, S. 222.

1) Es ist dann zugleich bewiesen, daB jede Losung eines solchen Differential-
gleichungsproblems Ableitungen jeder Ordnung besitzt.

%) Vgl. Courant-Hilbert, Methoden der mathematischen Physik, 1, Kap. III, § 3,
wo mit Hilfe einer entsprechenden Alternative die Theorie der Integralgleichungen
behandelt wird. Vgl auch die demndchst erscheinende Gottinger Dissertation von
W. v. Koppenfels.
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Dabei setzen wir wie oben (S.47) voraus, daB f(a,y) in einem das
Gebiet G enthaltenden Gebiete der Ebene mit den ersten und zweiten
Ableitungen stetig ist.

Wir ersetzen unser Differentialgleichungsproblem durch die Aufgabe,
die Differenzengleichung 4 4% = 0 fiir das Gittergebiet @ zu 16sen, wobei
in den Punkten des Randstreifens I', I die Funktion » dieselben
Werte wie die vorgegebene Funktion f(z,y) annehmen soll. Nach § 2
wissen wir, daB diese Randwertaufgabe fiir G, auf eine und nur eine
Weise losbar ist. Wir werden zeigen, dafl bei Verfeinerung der Maschen-
weite 5 diese Losung in jedem inneren Teilgebiet von @ mit allen Diffe-
renzenquotienten gegen die Losung unserer Differentialgleichung bzw. gegen
die entsprechenden Differentialquotienten konvergiert.

Zu diesem Zwecke bemerken wir erstens, daB fiir die Losung » = u,
unseres Differenzenproblems die Summe

B? Zg“z (uﬁz + 2“2:; -+ u;y)

bei abnehmender Maschenweite beschrinkt bleibt. Wegen der Minimum-
eigenschaft der Losung unseres Differenzenproblems (vgl. 8. 89) ist namlich
diese Summe nicht grofer als die entsprechende Summe

B 3 3 (foe + 210y + fi)
G

und diese konvergiert bei Verfeinerung der Maschenweite gegen das Integal

bl
ff oac2 axay W)dxdy’

welches nach unseren Voraussetzungen existiert.
Aus der Beschrinktheit der Summe

h‘“’Z,Z(ufz+ 2“231 +us/2u)

folgt unmittelbar die Beschrinktheit von %° 3 Z (du)?, weiterhin auch
die von

h* 3 3 (uz +uy) und h® Z’Zu-
G Gn
Es besteht namlich fiir beliebige w die Ungleichung
(15) RIS Sw<eh? 3 S (wi +wy) +ch Jw?
Gy & Iy

(vgl. (15), S.54). Indem man in dieser Ungleichung die Funktion w
durch die ersten Differenzenquotienten von w ersetzt und auf diejenigen
Teilgebiete von @, anwendet, fiir welche diese Differenzenquotienten de-
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finiert sind, ergibt sich die weitere Ungleichung
2733wy + wy) L ok’ 33 (w5 2wey +wyy) +ch 3 (wp4-wy),
Gy @ T3+ T
wo die Konstanten ¢ wieder nicht von der Funktion und der Maschenweite
abhéngen. Wir wenden diese Ungleichungen auf w = %, an und beachten
dabei die Beschréinktheit der Summen iiber I', + I'; auf der rechten Seite
— diese Randsummen konvergieren ja definitionsgemi gegen die ent-
sprechenden mit f(z,y) gebildeten Integrale —. Somit folgt aus der
Beschranktheit von
B 22("‘32 + 2'“2:1/ + uyy)
¢
die Beschranktheit von *
h‘“’zgzj(uﬁ—}—u,f) und 2* 3 Sut.
3 Gr
Drittens setzen wir in der Ungleichung

(10) h"’%}tg(wf+w§)§ck22m2w2—&-chgz(;;’(dw)g

(vgl. 8.51), wo G* ein @** im Innern enthaltendes Teilgebiet von &
ist, fiir w nacheinander die Ausdriicke du, 4u,, Au, 4%, ,, ... ein, die
ja alle der Gleichung dw = 0 geniigen. Es folgt dann sukzessive, daB
fiir alle inneren Teilgebiete G* von G die Summen

R 3 3 (wg + wy),
G*
d. h. .
B3 S (4u; + duy), hz%z,’(duf,—}—du;y),...
Gt *

zugleich mit den schon als beschrinkt bekannten Summen
BISe, B3I+ w)
Gy Gr
und
R3S 5 (Au)
@

beschrinkt bleiben. y

SchlieBlich setzen wir fiir w in die Ungleichung (10) der Reihe nach
die Funktionen u,, Uy Uyys Upyys +o - ein, fiir die nach dem eben Be-
wiesenen

h* 33 (dw)’, d.h B3 I(du,,), ...
Gr G

beschrinkt bleibt. Wir erkennen dann, da8 fiir alle Teilgebiete auch die
Summen

K’ Z*Z(uzzx + Ugay), B Z’Z(uﬁw-{— Usyy)s -
Gy Gx
beschrankt bleiben.
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Aus dieser Tatsache konnen wir nunmehr wie auf S. 51 ff. schlieBen, da8
sich aus unserer Folge von Gitterfunktionen eine Teilfolge auswihlen 148t
die in jedem inneren Teilgebiet von @ mit sémtlichen Differenzenquotienten
gleichmaBig gegen eine im Innern von G stetige Grenzfunktion bzw. gegen
deren Differentialquotienten konvergiert.

Wir haben noch zu zeigen, daB diese Grenzfunktion, die offenbar der
Differentialgleichung 4 4% = 0 geniigt, auch noch die vorgeschriebenen
Randbedingungen erfiillt. Dabei begniigen wir uns analog wie oben damit,
diese Randbedingungen in der Form

PN 2.
ff(u —f)dzdy Lcr?, £f[(% — :%) -+ (S—Z — %) J;dx dyZcr®
auszusprechen ?3). DaB die Grenzfunktion diese Bedingungen erfiillt, ergibt
sich aber, indem wir das SchluBverfahren von 8. 53 wortlich auf die
Funktion % und ihre ersten Differenzenquotienten anwenden.

Wegen der eindeutigen Bestimmtheit der Losung unserer Randwert-
aufgabe erkennt man jetzt nachtriglich, da8 nicht nur eine ausgewiahlte
Teilfolge, sondern die Funktionenfolge % selbst die angegebenen Konvergenz-
eigenschaften besitzt.

1I. Der hyperbolische Fall.
§ 1.

Die Gleichung der schwingenden Saite.

Im zweiten Teil dieser Arbeit beschiftigen wir uns mit Anfangswert-
problemen von hyperbolischen linearen Differentialgleichungen und werden
beweisen, daB unter gewissen Voraussetzungen die Losungen entsprechen-
der Differenzengleichungen bei Verfeinerung der Maschenweite des zugrunde
gelegten Gitters gegen die Losung der Differentialgleichung konvergieren.

Wir konnen die hier auftretenden Verhéltnisse am einfachsten an dem
naheliegenden Beispiel der Schwingungsgleichung

(1)

darlegen. Dabei beschrinken wir uns auf dasjenige Anfangswertproblem,
in dem auf der Geraden =0 diec Werte der Losung % und ihrer Ab-
leitungen gegeben sind.

2 aﬁu

2 oz

@
e

=0

|

)

2%} DaB die Randwerte fiir Funktion und Ableitungen tatsichlich angenommen
werden, liBt sich unschwer zeigen. Vgl die entsprechenden Betrachtungen bei
K. Friedrichs loc. cit.
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Um die entsprechende Differenzengleichung anzugeben, legen wir in
der z, t-Ebene ein quadratisches achsenparalleles Gitter der Maschenweite .
Wir ersetzen die Differentialgleichung (1) dureh die Differenzengleichung

Up — Uz =10

in den Bezeichnungen von 8.34. Greifen wir einen Gitterpunkt P, heraus, so
verbindet die zugehérige Differenzengleichung den Wert der Funktion u
in diesem Punkte mit den Werten in den vier Nachbarpunkten. Kenn-
zeichnen wir wieder die vier Nachbarwerte durch die vier Indizes 1, 2, 3, 4
(s. Fig. 5), so nimmt die Differenzengleichung die einfache Gestalt

(2) Uy Uy — Uy — U, =0
an. Hierbei geht der Wert der Funktion % im Punkte P selbst nicht in
die Gleichung ein.

Wir denken uns das Gitter in zwei verschiedene Teilgitter zerlegt,
wie in der Fig. 5 durch Kreise und Kreuze angedeutet ist. Die Differenzen-

7
o + o +
4 A 2
+ o] + (o]

H

3 . .
o + o + . . .
+ o + o “ . . W

Fig. 5. Fig. 6.

gleichung verbindet dann nur die Werte der Funktion in jedem der Teil-
gitter untereinander. Wir wollen uns daher auf eines der beiden Teilgitter
beschrinken. Als Anfangsbedingungen haben wir hier die Werte der Funk-
tion » auf den beiden Gitterreihen ¢ = 0 und ¢ =k vorzugeben. Wir geben
zunichst die Losung dieses Anfangswertproblems explizite an; d. h. wir
driicken den Wert der Losung in irgendeinem Punkte S durch die vor-
gegebenen Werte auf den beiden Anfangsreihen aus. Man erkennt sofort,
daf der Wert in einem Punkte der Reihe # = 2% eindeutig bestimmt ist
lediglich durch die mit ihm verkniipften drei Werte auf den beiden ersten
Reihen. Der Wert in einem Punkte auf der vierten Reihe ist eindeutig
bestimmt durch die Werte der Losung in gewissen drei Punkten der zweiten
und dritten Reihe, also auch durch gewisse Werte auf den beiden ersten
Reihen. Allgemein wird zu einem Punkte § ein gewisser Abhéngigkeits-
bereich auf den beiden ersten Reihen gehdren; man erhilt ihn, wenn man
durch den Punkt S die Linien z 7= konst. und 2 — ¢ = konst. zieht,
bis sie die zweite Reihe in den Punkten « und g treffen (vgl. Fig. 6).
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Das Dreieck S« g nennen wir dann das Bestimmtheitsdreieck, weil in ihm
samtliche %-Werte sich nicht indern, sobald sie auf den ersten beiden
Reihen festgehalten werden. Die Seitenlinien des Dreiecks nennen wir
Bestimmtheitslinien.

Bezeichnet man nun die Differenzen von # in Richtung der Bestimmt-
heitslinien durch %’ und #' oder genauer

’ 1
Uy =u, — U, Uy = Uy — Uy,

r ___ L
Uy = Uy — U, u, =u, — U,
so nimmt die Differenzengleichung etwa die Form
Uy = Uy

an. D. h. auf einer Bestimmtheitslinie sind die Differenzen nach der anderen
Bestimmtheitsrichtung konstant, also gleich einer der vorgegebenen Diffe-
renzen zwischen zwei Punkten der ersten beiden Reihen. Andererseits ist
die Differenz ug — u, eine Summe iiber die Differenzen u’ lings der Be-
stimmtheitslinie Se, so daB wir unter Benutzung der eben gemachten Be-.
merkung als SchluBformel (in leicht verstindlicher Bezeichnung)

8,
(3) us=1u, + Su
erhalten. ]

Wir lassen nun die Maschenweite & gegen Null streben, wobei die
vorgegebenen Werte auf der zweiten oder ersten Reihe gegen eine zweimal

’

stetig differenzierbare Funktion f(z).und die Differenzenquotienten

o
13
gegen eine stetig differenzierbare Funktion g(z) gleichméBig konvergieren
mogen. Offenbar geht dabei die rechte Seite von (3) gleichmiBig in den
Ausdruck

T+t
(4) ra—0)+z [o)a

z—%

iiber, wenn § gegen den Punkt (2, ) konvergiert. Dies ist der bekannte
Ausdruck der Losung der Schwingungsgleichung (1) mit den Anfangs-

werten u(z,0) = f(z) und 2y (z,0)=f'(z)+ Y2g(z). Damit ist ge
zeigt, dal die Losungen unseres Differenzengleichungsproblems bei abnehmen-
der Maschenweite gegen die Losung des Differentialgleichungsproblems

konvergieren, wenn wir die Anfangswerte (in der oben angegebenen Weise)
konvergieren lassen.
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§ 2.

Uber den EinfluB der Wahl des Gitters.
Die Abhingigkeitsgebiete bei Differenzen- und Differentialgleichung.

Die im § 1 betrachteten Verhiltnisse legen folgende Uberlegungen nahe.

Ebenso wie fiir die Losung einer linearen hyperbolischen Differential-
gleichung im Punkte S nur ein gewisser Teil der Anfangswerte maBgebend
ist, ndmlich das von den Charakteristiken durch § ausgeschnittene ,Ab-
hiingigkeitsgebiet®, besitzt auch die Losung einer Differenzengleichung im
Punkte S ein gewisses Abhingigkeitsgebiet, das man erhilt, indem man
die Bestimmtheitslinien vom Punkte § aus zieht. In §1 fielen nun die
Richtungen der Bestimmtheitslinien der Differenzengleichung mit den charak-
teristischen Richtungen der Differentialgleichung zusammen, wodurch auch
die Abhingigkeitsgebiete in der Grenze iibereinstimmten. Diese Tatsache
hing aber wesentlich von der Orientierung des Gitters in der (z, ¢)- Ebene
ab und beruhte ferner darauf, daf wir das Gitter quadratisch gewihlt
hatten. Wir legen jetzt allgemeiner ein rechteckiges achsenparalleles Gitter
zugrunde, dessen Maschenweite in der ¢-Richtung (Zeitmasche) gleich A
und diejenige der z- Richtung (Raummasche) gleich x & mit konstantem » ist.
Das Abhangigkeitsgebiet der Differenzengleichung wu; — u,z = 0 fiir dieses
Gitter wird ganz im Innern des Abhingigkeitsgebietes der Differential-

2

gleichung %«g — %: 0 liegen oder wird es selbst in seinem Innern ent-
halten, je nachdem ob » < 1 oder » >1 ist.

Hierans ergibt sich eine merkwiirdige Tatsache: L&8t man im Falle
» <1 die Maschenweite h gegen Null abnehmen, so kann die Losung der
Differenzengleichung im allgemeinen

nicht gegen die Losung der Differen- A

tialgleichung konvergieren. Andert ,/. . :\

man namlich etwa bei der Schwin- S ,\\\
gungsgleichung (1) die Anfangswerte / N

der Losung der Differentialgleichung STt AN

in der Umgebung der Endpunkte St N\

« und B des Abhingigkeitsgebietes ,~ = 0oc et \)4
(vgl. Fig.7), so zeigt die Formel (4), Fig. 7.

daB sich aunch die Losung selbst im

Punkte (z,t) andert. Fiir die Losungen der Differenzengleichungen im
Punkte § sind aber die Vorgaben in den Punkten « und § irrelevant,
da diese auBlerhalb des Abhingigkeitsgebietes der Differenzengleichungen
liegen. — Daf im Falle » > 1 Konvergenz statthat, werden wir im § 3
beweisen. Vgl. hierzu Fig. 9, 8. 62.
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Betrachtet man dagegen z. B. die Differentialgleichung
*u  Pu 2w

(5) 2om — 5 P 0

in den beiden raumlichen Variablen z, y und der zeitlichen f, und ersetzt
sie durch entsprechende Differenzengleichungen in geradlinigen Gittern, so
ist es im Gegensatz zum Falle von nur zwei unabhiingigen Variablen un-
méglich, die Mascheneinteilung so zu wahlen, daB die Abhéngigkeitsgebiete
der Differenzen- und Differentialgleichung zusammenfallen; denn das Ab-
hiingigkeitsgebiet der Differenzengleichungen wird ein Viereck, wahrend das
der Differentialgleichung ein Kreis ist. Wir werden spater (vgl. § 4) die
Mascheneinteilung so wahlen, daB das Bestimmtheitsgebiet der Differenzen-
gleichung das Bestimmtheitsgebiet der Differentialgleichung im Innern ent-
hilt, und zeigen, da8 wieder Konvergenz stattfindet.

Uberhaupt wird ein wesentliches Ergebnis dieses Teils sein, daf man
bei jeder linearen hyperbolischen homogenen Differentialgleichung zweiter
Ordnung das Gitter so wahlen kann, daB die Losung der Differenzen-
gleichung gegen die Losung der Differentialgleichung konvergiert, wenn
man die Maschenweiten gegen Null streben laBt (vgl. hierzu §§ 8, 4, 7, 8).

§ 3.
Grenziibergang bei beliebigen rechteckigen Gittern.
Wir betrachten zunichst wieder die Schwingungsgleichung
2 2
(1) =0,
legen aber nunmehr ein rechteckiges achsenparalleles Gitter zugrunde,
dessen zeitliche Maschenweite %, dessen Raummasche x4 ist. Die zu-
gehorige Differenzengleichung lautet:

(6)  L(w) = 5(u — 20+ %) — —ps (4 — 20y 1) = 0,

wobei sich die Indizes auf den Mittelpunkt P, und die Ecken P,, P,, P;, P,
eines ,Elementarrhombus® (vgl. Fig. 8) beziehen. Vermdge der Gleichung

S
AL
1 . ,/ e \ e
° L) L4 AN
. ~ . &, .
4 \\
o o0 2 . ;// - 3 o \® .
. ° //l 3 . . .\\ . 3
3 3 . 'm/ L . . . . \\.
Fig. 8. Fig. 9.

L(u)=0 konnen wir den Wert der Funktion % in einem Punkte 8 durch
ihre Werte auf demjenigen Stiick der beiden Anfangsreihen =0 und t =7
darstellen, das man erhilt, wenn man vom Punkte S aus (vgl. Fig. 6, S.59)
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die zu den Seiten eines Elementarrhombus parallelen , Bestimmtheitslinien“
zieht. Wir denken uns die Anfangswerte so vorgegeben, daB sie und die
zwischen ihnen. gebildeten ersten Differenzenquotienten bei abnehmender
Maschenweite und bei festem » gleichmifig gegen stetige vorgegebene
Funktionen auf der Geraden ¢= 0 konvergieren. Fiir die Losungen der
Differenzengleichungen 1i8t sich wohl eine explizite Darstellung durch ihre
Anfangswerte aufstellen (entsprechend (8) in § 1); sie ist aber nicht so
einfach, dal man unmittelbar den Grenziibergang zu verschwindender
Maschenweite ausfiihren kann. Wir schlagen daher einen anderen Weg ein,
der uns die Behandlung auch des allgemeinen Problem erméglichen wird %4).
Wir multiplizieren den Differenzenausdruck L (%) mit (u, — %;) und
formen das Produkt unter Beachtung der folgenden Indentititen um:

(7) (uy — ug) (g — 2+ ug) = (uy — %,)° — (w0 — u5)%,
(8) (g — ug) (g — 2y -+ ) = (u; — uy)* — (% — u;)*
- —;—[(u1 — ) (g — u,)? — (U — %)% — (u, — u)%].
Wir erhalten so
(9) 2w, — ) L(w) = 55 (1= 55) [l — wo)® — (= 5)*)

o [y = ) (o — w)* = (1 — )" — (2 — %,)°).

Wir summieren nun das Produkt (9) iiber alle Elementarrhomben
eines Bestimmtheitsdreiecks S« f. Die auf der rechten Seite von (9) auf-
tretenden Differenzenquadrate kommen stets in zwei benachbarten Elemen-
tarrhomben vor, mit verschiedenen Vorzeichen versehen. Sie heben sich bei
der Summation fort, sobald beide Elementarrhomben zum Dreieck S« f
gehdren; es bleibt also nur eine vom Rande des Dreiecks beriihrende
Summe von Differenzenquadraten iibrig. Wir erhalten so die Relation:

(10) IPIE= I 1)

=33 [2(1- ) ("4 &%)
#1352 (1-5) (' + 5]
SIICIEESIOMENCARR COY

24) Zpm folgenden vgl. K. Friedrichs und H.Lewy, Uber die Eindeutigkeit usw., Math.
Annalen (98 1928), S.192ff, wo analoge Umformungen fiir Integrale benutzt werden.
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Hier bedeuten %’ und %' Differenzen in Bestimmtheitsrichtungen wie in
§ 1, wihrend % die Differenz der Funktionswerte in zwei Nachbarpunkten
bezeichnet, deren Verbindungslinie zur ¢-Achse paralle] ist. Die Summen
sind iber alle aus zwei Parallelreihen bestehenden Randstreifen zu er-
strecken, so daB simtliche vorkommenden Differenzen %', %', % einmal
und nur einmal auftreten.

Fiir eine Losung von L (%)= 0 verschwindet also die rechte Seite
von (10). Die dort auftretende Summe iiber die Anfangsreihen I und II
bleibt beschrinkt, wenn wir die Maschenweite % (bei festgehaltenem )
zu Null abnehmen lassen; sie geht ndmlich in ein Integral iiber vor-
gegebene Funktionen auf der Anfangslinie iiber. Infolgedessen bleiben auch
die in (10) iilber S« und 8B erstreckten Summen beschrénkt. Ist nun,

wie wir fordern miissen (vgl. S.61), x>1, also 1— xiﬂ nicht negativ,
so folgt weiter die Beschrinktheit der einzelnen Summen

WIS A

die wir iiber irgendwelche Bestimmtheitslinien erstreckt denken kénnen.

Hieraus konnen wir die ,gleichartige Stetigkeit“ (vgl. 1. Teil §4)
der Folge der Gitterfunktionen in allen Richtungen der Ebene ableiten?);
da die Werte von % auf der Anfangslinie beschrinkt sind, folgt die Existenz
einer gleichmaBig gegen eine Grenzfunktion u (x, ¢) konvergierenden Teilfolge.

Zugleich mit der Funktion w geniigen auch ihre ersten und zweiten
Differenzenquotienten der Differenzengleichung L (u)= 0. Die Anfangs-
werte dieser Differenzenquotienten lassen sich vermittelst der Gleichung
L (%)= 0 durch solche erste, zweite und dritte Differenzenquotienten von
w ausdriicken, in denen nur Punkte der beiden Anfangsreihen 1 und II
auftreten. Wir verlangen von ihnen, dafl sie gegen stetige Grenzfunktionen
streben, d. h. daB etwa die vorgegebenen Anfangswerte u(z,0), u,(z,0)
drei- bzw. zweimal stetig nach z differenzierbar sind.

Danach kénnen wir unsere oben angestellte Konvergenzbetrachtung
anstatt auf » auch auf seine ersten und zweiten Differenzenquotienten an-
wenden, also eine Teilfolge auswihlen, so daB diese Differenzenquotienten
gleichmaflig gegen Funktionen streben, die dann die ersten bzw. zweiten
Ableitungen der Grenzfunktion % (z,t) sein miissen. Die Grenzfunktion u

%) Sind S, und S, zwei Punkte im Abstand 8, so verbinde man sie durch einen
Streckenzug aus zwei Strecken S, S und 8 8,. von denen die erste der einen, die zweite
der anderen Bestimmtheitsrichtung parallel ist. Es gilt dann die Abschitzung

fug —ug | < ug —ug|+|ug—ug | <YV3 "Z %"A_Hrg ;,,2 w\T
: 8,8 88, B
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geniigt infolgedessen der Differentialgleichung — — — =0, die in der

att e
Grenze aus der Differenzengleichung L (u) =0 entsteht; sie stellt also die
Losung des Anfangswertproblems dar. Da diese Losung eindeutig bestimmt
ist, konvergiert jede Teilfolge der Gitterfunktionen und damit die Folge
selbst gegen die Grenzfunktion.

§ 4.
Die Sehwingungsgleichung in drei Variablen.
Wir behandeln nun die Schwingungsgleichung

2 2 2
(11) 22_3 0°u o u

und kniipfen an die im § 2 gemachten Bemerkungen iiber die Beziehung
der Abhingigkeitsbereiche an, Das Abbhéngigkeitsgebiet der Differential-
gleichung (11) ist der Kreiskegel mit einer zur z-Richtung parallelen Achse

und dem Offnungswinkel ¢, mit tge = i/% In irgendeinem rechtwinkligen
achsenparallelen Gitter setzen wir entsprechend die Differenzengleichung
(12) 2ur— Upz — Uy =10

an. Durch sie werden die Funktionswerte % in den Punkten eines ,Ele-
mentaroktaeders“ miteinander verkniipft. Sie gestattet, den Funktionswert
in einem Punkte S eindeutig durch die Funktionswerte in gewissen Punkten
der beiden Anfangsebenen ¢==0 und ¢=4% auszudriicken. Wir erhalten
zu jedem Punkte S eine Pyramide der Bestimmtheit, die aus den beiden
Grundlinien als Abhingigkeitsgebiet zwei Rhomben ausschneidet,

Lassen wir die Maschenweiten etwa unter Festhaltung ihrer Verhilt-
nisse gegen Null streben, so kénnen wir eine Konvergenz der Folge der
Gitterfunktionen gegen die Losung der Differentialgleichung hochstens dann
erwarten, wenn die Bestimmtheitspyramide den Bestimmtheitskegel der
Differentialgleichung im Inneren enthilt. Das einfachste Gitter dieser
Eigenschaft wird dasjenige sein, das so liegt, daB die Bestimmungspyramide
den Bestimmungskegel von auBen beriihrt. Unsere Differentialgleichung
ist gerade so gewdhlt, daB dies fiir ein kubisches achsenparalleles Gitter
eintritt.

Die Differenzengleichung (12) nimmt in diesem Gitter in den Be-
zeichnungen der Figur 10 die Gestalt an:

2 1
(18) L) = 350 — 2uto- )= 0, — 214, — ) — 5505 — 22— ),

Mathematische Annalen. 100, 5
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in die der Funktionswert %, im Mittelpunkt P iibrigens nicht mehr eingeht.
Die Werte der Losung auf den beiden Anfangsebenen seien die Werte einer
viermal stetig nach z,,y,,¢ differenzierbaren
Funktion.

Wir benutzen zum Konvergenzbeweise wieder
die im § 3 entwickelte Methode, indem wir fiir
die Losung unserer Differenzengleichung die drei-
fache Summe

APIPIPISE S AR

bilden, die iiber alle Elementaroktaeder der vom
Punkte S ausstrahlenden Bestimmtheitspyramide
zu erstrecken ist. Auf Grund der fast wortlich
zu iibernehmenden SchluBweise erkennen wir,
daB die Werte der Funktion % in inneren Punkten
der Bestimmtheitspyramide herausfallen und da8
nur noch Flichensummen iiber die vier Seitendoppelflichen F und die
beiden Grundflichen I IT der Pyramide iibrigbleiben,

Bezeichnen wir mit %’ die Differenz der Funktionswerte in zwei
Punkten, die durch eine Seitenlinie eines Elementaroktaeders verbunden
wird, so lautet die entstehende Formel

(14) 23 (W) - I3 (W) =0,
¥ T T

in der iber samtliche auf diesen Flichen enthaltenen Differenzen %' zu
summieren ist, so daB jede solche Differenz nur einmal auftritt®). Da
die Doppelsumme iiber die beiden Anfangsflichen beschrankt bleibt, weil
sie ja in ein Integral iiber Anfangswerte iibergeht, so bleibt auch die
Summe iiber die ,Bestimmtheitsflichen“ F beschrinkt.

Wir wenden unsere Betrachtung anstatt auf u selbst wieder auf ihre
ersten, zweiten und dritten Differenzenquotienten, die ja selbst der Diffe-
renzengleichung (13) geniigen und deren Anfangswerte vermittels (13)sich
durch erste bis vierte Differenzenquotienten allein aus Werten auf den ersten
beiden Anfangsebenen ausdriicken lassen. Ist w = w), einer der Differenzen-
quotienten bis zur dritten Ordnung, so wissen wir, daB die iiber eine

"2
Bestimmtheitsfliche F erstreckte Summe 4* 3 3] (%) beschrinks bleibt.

Hieraus ergibt sich aber durch genan denselben SchluB, den wir im ersten
Teil, § 4 angewandt haben, daB die Funktion % mit ihren ersten und

28) Es ist das Gitter gerade so gewahlt, da die Differenzen von u zwischen den
beiden Flichen F nicht mehr auftreten.
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zweiten Differenzenquotienten gleichartig stetig ist. Es gibt also eine gegen
Null abnehmende Folge von Maschenweiten, so daB diese Grofien, die ja
am Anfang beschrinkt sind, gegen stetige Grenzfunktionen konvergieren,
und zwar offenbar gegen die Losung der Differentialgleichung einschlieBlich
ihrer ersten und zweiten Ableitungen, was genau wie friiher (§ 8) folgt.

Anhang.
Erginzungen und Verallgemeinerungen.

§ 5.
Beispiel einer Differentialgleichung erster Ordnung.

Wir haben im § 2 gesehen, daB unter Umstinden das Abhangigkeits-
gebiet der Differentialgleichung nur einen Teil des Abhangigkeitsgebietes
der Differenzengleichung ausmacht, und dal also der Einfluf des Rest-
gebietes in der Grenze herausfdllt. Dies Phinomen kénnen wir an dem
Beispiel der Differentialgleichung erster Ordnung -g—? = explizite verfolgen,
wenn wir sie durch die Differenzengleichung

(15) QU — Uy + uz =0
ersetzen. Sie lautet ausgeschrieben in den Bezeichnungen der Fig. 5 (8. 59)
(16) u, =274,

Die Differenzengleichung verbindet wieder nur Punkte eines Teilgitters
untereinander. Das Anfangswertproblem besteht darin, da8 man auf der
Reihe §{= 0 der Funktion % in den Punkten z =274 diejenigen Werte
fy; vorschreibt, die dort eine stetige Funktion f(z) annimmt.

Wir betrachten etwa den Punkt S auf der ¢- Achse im Abstande 2n k.
Man verifiziert leicht die Darstellung der Losung » in S:

- oy 1 2n
(17) uS:ég;é?{<n+i)f2i'
Die Summe auf der rechten Seite strebt bei Verfeinerung der Maschen-
weite, d. h. bei n—oco einfach gegen den Wert f,. Man entnimmt das
aus der Stetigkeit von f(z) und dem Verhalten der Binomialkoeffizienten
bei wachsendem n. (Vgl. den nichsten Paragraphen.)

§ 6.
Die Wirmeleitangsgleichung.

Die Differenzengleichung (16) des § 5 1a8t sich auch als Analogon

einer ganz anderen Differentialgleichung auffassen, nimlich der Warme-
5¥
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leitungsgleichung

du  0’u
(18) 2 37 T iR 0

In irgendeinem rechteckigen achsenparallelen Gitter lautet die ent-
sprechende Differenzengleichung

(19) 2(m;u0>=(u2+u£2—~2u0).

wo [ die Zeit, A die Raummasche ist. Beim Grenziibergang zu ver-
schwindender Maschenweite behilt die Differenzengleichung nur dann ihre
Form, wenn ! proportional mit A® abnimmt. Setzen wir insbesondere
1=7% so fillt der Wert %, aus der Gleichung heraus und es entsteht die
Differenzengleichung

(16) Yt

deren Auflésung durch die Formel (17) gegeben wird:

(17) w(0,)= 3 o) e

Ein Punkt & der x-Achse ist bei abnehmender Maschenweite immer
durch den Index

(20) 24 =

e

gekennzeichnet. Die Maschenweite % ist mit der Ordinate ¢ des Auf-
punktes S durch die Gleichung

(21) 2nh® =1t
festgelegt.

Wir wollen untersuchen, was aus der Formel (17) entsteht, wenn &
gegen Null, d. h. » gegen unendlich strebt. Unter Benutzung der Formel (21)
schreiben wir die Gleichung (17) in die Gestalt

(22) 4(0,1) 2’2 gfn"yt (2 fuse2h.

Fiir den Koeffizienten von 24f,; = 2hf(&) verwenden wir die Ab-

kiirzung
¥2n 2n
g%n(é) 2 ——( ).
2}/2 2.2%%y ¢
n+y?tﬂ

Den Grenzwert dieses Koeffizienten, den man gewdhnlich mit Hilfe der
Stirlingschen Formel bestimmt, wollen wir hier berechnen, indem wir die
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Funktion g,, (£) als Lésung einer gewdhnlichen Differenzengleichung auf-
fassen und den Grenziibergang zu verschwindender Maschenweite 2 und
damit zur Differentialgleichung ausfiihren. Als diese Differenzengleichung
findet man

57 (0 6+ 20 = ,(8) = — 570, () 55
(indem wir g, (&) anstatt g,, (&) schreiben). Oder

! - S L

ﬁ(gh(§+2h)“gh(§)) = gh(é)t—l—hf-}-Qk':.

g, (£) geniigt auBerdem der Normierungsbedingung

2 a(8)-2h=271.

Pl
Diese Summe ist iiber das Abhingigkeitsgebiet der Differenzengleichung
zu erstrecken, das, wenn % — O strebt, in der Grenze die ganze z-Achse
erfillt.

Durch einfache Uberlegungen erkennt man, da8 g, (&) gleichmiBig

gegen die Losung g(z) der Differentialgleichung

g (2)=—a(®) 7
mit der Nebenbedingung
+w
S g(z)dz =271

konvergiert. Aus der Formel (28) entsteht dann durch Grenziibergang

+o

_E
w(0, )= | e Tr(e)as

die bekannte Losung der Warmeleitungsgleichung.
Die Betrachtungen dieses Paragraphen iibertragen sich ohne weiteres
auf den Fall von Differentialgleichungen

usw. bei mehr unabhingigen Verinderlichen.

§ 7.
Die allgemeine lineare homogene Differentialgleichung zweiter
Ordnung in der Ebene.

Wir behandeln die Diﬂerentialgleichung
%u
(23) at* — Bty +ﬂ ;Hru=0
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Die Koeffizienten sind zweimal stetig nach z, ¢ differenzierbar, wahrend
die Anfangswerte auf der Geraden {= 0 dreimalig stetig nach z differen-
zierbar sind. Wir ersetzen die Differentialgleichung in einem Gitter mit
der Zeitmaschenweite % und der Raummaschenweite x A, so daBl in einer

Umgebung des zu betrachtenden Stiickes der Anfangsgeraden 1 — é; >e>0
fiir unser konstantes » gilt, durch die Differenzengleichung )

(24) L(u)=wz (=, 1) — B upz (@, t) + eus+ fuy, +yu=0

und wihlen die Anfangswerte wie in § 3 (vgl. S. 63).
Zum Konvergenzbeweis formen wir wieder die Summe

hﬂgﬂz’zlﬂ—;&uu)

unter Verwendung der Identititen (7), (8) um. Aufer einer Summe
(vgl. (10)) iiber den Rand des Dreiecks Sef (vgl. Fig. 6) tritt dann noch
eine iiber das ganze Dreieck S«p erstreckte Summe auf, deren absoluter
Betrag sich nach oben mit Hilfe der Schwarzschen Ungleichung durch

a 2w 2 w’ 2 % 2 o
ow 3 X[5) +5) +G) + ]
@ -
abschitzen 148t, wo die Konstante C nicht von der Funktion w, der
Maschenweite 4 und in einer gewissen Umgebung der Anfangslinie auch
nicht vom Punkte S abhingt.

Hier konnen wir weiter 4° 3 3 u® nach oben durch
Sap

o33 (5) +on S
Sap 1

abschitzen®?), wo fiir die Konstanten O, C, dasselbe gilt, was fir C
gesagt wurde.
Wir erhalten so eine Ungleichung von der Form

(25) n -5+ 5]

+5 Y- 5) (5 + 5G]
goé,hezslﬂz (%) +(7f)2+(%)2] +D,

wo D eine fiir alle Punkte S und Maschenweiten % feste Schranke fiir die
auftretenden Summen iiber die Anfangsgerade ist.

2?) Vgl. zum Beweise die verwandte Ungleichung S. 64 unten.
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Als Spitzen 8 unserer Dreiecke wihlen wir nun von der Anfangs-
geraden ausgehend der Reihe nach die Punkte §,, 8,,..., 8, =8 auf einer
Parallelen zur ¢-Achse. Durch Summation der zugehorigen Ungleichungen
(25) konnen wir die Ungleichung

u
()]

(26) APHE 2(1-5) (1 + 5 4)]
+k222’[2(1—'°2)( >+f~<%)2}

<nh6, 3 S5V +(5) +(5) ]+

erhalten. Beachten wir nun, da man eine Differenz %’ bzw. %' durch
zwel Differenzen % und eine Differenz %' bzw. %’ ausdriicken kann, so
ergibt sich, daf wir die linke Seite von (26) hochstens verkleinern, wenn

wir sie durch s a 2n
ot 3 S+ (5 + ()]

ersetzen. Beschrinken wir uns nun auf eine solche Umgebung ¢t <nh der
Anfangsgeraden, in der

w|

C,—nhCi=0C;>0
ist, so erhalten wir aus (26)

@ arI S 6 sge

Aus der in (27) ausgedriickten Beschrinktheit der linken Seite ergibt sich
nach (25) die Beschréinktheit von
'’ 2 w' 2
DI 30,
woraus sich wie in § 3 die gleichartige Stetigkeit von u ergibt.

Wir wenden die Ungleichung (25) anstatt suf die Funktion « selbst
auf deren erste und zweite Differenzenquotienten w an, die anch Diffe-
renzengleichungen geniigen, deren Glieder zweiter Ordnung wie in (24)
lauten. In den Zusatzgliedern konnen zwar noch Ableitungen von u auf-
treten, die sich nicht durch w ausdriicken lassen, aber deren mit A% mul-
tiplizierte Flichenquadratsumme schon als beschrinkt angenommen werden
kann. Das aber geniigt, um auf diese Differenzengleichung fiir w den-
selben SchluB anzuwenden, den wir oben auf % angewandt haben. Wir
konnen somit die gleichartige Stetigkeit und Beschrinktheit der Funk-
tionen w und ihrer ersten und zweiten Ableitungen folgern, die infolge-
dessen eine Teilfolge besitzen, die gleichmafig gegen die Losung des
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Anfangswertproblems der Differentialgleichung konvergiert. Aus deren Ein-
deutigkeit folgt wieder, daB die Funktionenfolge selber konvergiert.

Wir miissen dabei allerdings voraussetzen, dafl die Differenzenquotienten
bis zur dritten Ordnung auf und zwischen den beiden Anfangsreihen gleich-
mibig gegen stetige Grenzfunktionen konvergieren %),

§ 8.
Das Anfangswertproblem einer beliebigen hyperbolischen linearen
Differentialgleichung zweiter Ordnung.

Wir wollen nun zeigen, daf die bisher entwickelten Methoden dazu
ausreichen, das Anfangswertproblem einer beliebigen linearen homogenen
hyperbolischen Differentialgleichung zweiter Ordnung zu lésen. Es geniigt
dabei, sich auf den Fall von drei Variablen zu beschrinken. Der Gedanken-
gang 1aBt sich unmittelbar auf mehr Variable iibertragen. Man kann leicht
einsehen, daB das allgemeinste derartige Problem durch eine Variablen-
transformation auf folgendes zuriickgefiihrt werden kann: Eine Funktion
u(x,y,t) zu finden, die der Differentialgleichung

(28)  wy,— (au,,+2bu,,+cu,, )+ eu,+ pu,+ yu,+ du=0
gentigt und die mit ihren ersten Ableitungen auf der Fliche ¢ = 0 vorge-
gebene Werte annimmt. Dabei sollen die Koeffizienten Funktionen der
Variablen z, y, ¢ sein und den Bedingungen

a>0, ¢>0, ac—5b>>0
geniigen.

Die Koeffizienten setzen wir dabei als dreimal nach z,y, ¢, und
die Anfangswerte u als viermal bzw. u, als dreimal nach z, y stetig
differenzierbar voraus.

Wir denken uns ferner die Koordinaten z und y um einen Punkt
der Anfangsebene so gedreht, daB in ihm &= 0 ist. Dann ist in einer
gewissen Umgebung @ dieses Punktes sicher die Bedingung

a—|b|>0, c—|b|>0
erfiilllt. Auf diese Umgebung beschrinken wir unsere Betrachtungen. Wir

kénnen dann eine dreimal stetig differenzierbare Funktion d >0 so
wahlen, da

a—d
(29) c—d >¢e>0
d—|b|

28) Diese Voraussetzung und die iiber die Differenzierbarkeit der Koeffizienten
der Differentialgleichung und ferner die Beschrinkung auf eine geniigend kleine Um-
gebung der Anfangsgeraden lassen sich in Sonderfillen mildern.
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mit konstantem e gilt. Dann setzen wir die Differentialgleichung in
die Form

(30) u,,—(a—2d)u,,—(c—a)u,,— %(d +b) (»,,+ 2u,, + uyy)
——;—(d— b)(u,,— 2u,,+u,,) +au,+ pu,+yu, 4 du=0.
Wir Jegen nun in den Raum das' Gitter der Punkte
t=1h, xt+y=mxh, x—y=nxk (Lmn=...-1,0,1,2,...)

und ersetzen die Gleichung (30) durch eine Diffe-
renzengleichung L (#)=0 in diesem Gitter.
Wir ordnen zu dem Zweck jedem Gitterpunkt P,
folgende Nachbarpunkte zu: Die Punkte P bzw.

L —>

P, die aus P, durch Verschiebung um % bzw. se .

— b in Richtung der ¢-Achse entstehen; ferner - w0 2 — >z
die Punkte P,, ..., Py, die mit P, in derselben 7e g
Parallelebene zur (2, y)- Ebene liegen; vgl. Fig.11. s

Diese Punkte bilden ein , Elementaroktaeder Fig. 11.

wit den Eckpunkten P,, P, P, P,, P,, P,.

Fiir jeden Gitterpunkt P,, der innerhalb von G liegt, ersetzen wir
die in (30) auftretenden zweiten Differentialquotienten folgendermafen
durch Differenzenquotienten aus dem zu P, gehérigen Elementaroktaeder.

Wir ersetzen

u,, durch (w,y — 2uy+u,)

h2

xx

u,, durch ”—“’17{5 (uy — 2uy +u,)
)

u,, durch (u, — 2wy + ug)

vy 22h2
4

';71'?(2%_ 2u, + ug)

%,,+2u,, +u,, durch
4
%,, — 2u,,+u, durch W(u5——2uo+u7).

Die in (30) auftretenden ersten Differentislquotienten ersetzen wir
durch irgendwelche entsprechende Differenzenquotienten in dem Elementar-
oktaeder. Den Koeffizienten in der Differenzengleichung geben wir die
Werte, die die Koeffizienten der Differentialgleichung im Punkte P,
annehmen.

Auf den ersten beiden Anfangsebenen t=0 und ¢=»h denken wir
uns die Funktionswerte so vorgegeben, daB sie bei Verfeinerung der
Maschenweiten unter Festhaltung des Verhiltnisses » der Raum- zur Zeit-
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maschenweite gegen die vorgegebenen Anfangswerte auf ¢= 0 streben,
wobei die zwischen den beiden Ebenen #= 0 und 7= /5 gebildeten Diffe-
renzenquotienten bis zur vierten Ordnung gegen die entsprechenden vor-
gegebenen Differentialquotienten gleichmifig konvergieren sollen.

Die Losung der Differenzengleichung L (u) =0 in einem Punkte ist
eindeutig durch die Werte auf den beiden Grundflichen der durch ihn
gehenden Bestimmtheitspyramide bestimmt.

Fiir den Konvergenzbeweis bilden wir die iiber alle Elementaroktaeder
einer Bestimmtheitspyramide erstreckte Summe

AIPIPI I 10D

und formen sie vermittels der Identititen (7), (8) um. Dadurch entsteht
einmal eine mit A® multiplizierte Raumsumme, die in den ersten Diffe-
renzenquotienten quadratisch ist, und ferner eine mit A® multiplizierte
Summe iiber die Seitendoppelflichen, in denen die Quadrate aller auf und
zwischen den Doppelflichen vorkommenden Differenzenquotienten vom
Typus w, — wu,, 4, — %, ..., u, — u; auftreten, wobei ihre Koeffizienten
wegen (29) groBer als eine feste positive Konstante sind, wenn wir iiber-

dies noch das Verhiltnis —i— von Zeit- zu Raummaschenweite geniigend
klein wihlen.

Von hier aus kénnen wir ganz ebenso vorgehen wie in den §§ 7, 4
und nachweisen, daf die Losungen unserer Differenzengleichung gegen die
Losung der Differentialgleichung konvergieren.

(Eingegangen am 1. 9. 1927.)
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Introduction

Problems involving the classical linear partial differential
equations of mathematical physics can be reduced to
algebraic ones of a very much simpler structure by replac-
ing the differentials by difference quotients on some (say
rectilinear) mesh. This paper will undertake an elementary
discussion of these algebraic problems, in particular of
the behavior of the solution as the mesh width tends to
zero. For present purposes we limit ourselves mainly to
simple but typical cases, and treat them in such a way that
the applicability of the method to more general difference
equations and to those with arbitrarily many independent
variables is made clear.

Corresponding to the correctly posed problems for
partial differential equations we will treat boundary value
and eigenvalue problems for elliptic difference equations,
and initial value problems for the hyperbolic or parabolic
cases. We will show by typical examples that the passage
to the limit is indeed possible, i.e., that the solution of
the difference equation converges to the solution of the
corresponding differential equation; in fact we will find
that for elliptic equations in general a difference quotient
of arbitrarily high order tends to the corresponding deriv-
ative. Nowhere do we assume the existence of the solution
to the differential equation problem—on the contrary, we
obtain a simple existence proof by using the limiting
process.” For the case of elliptic equations convergence is

1 Our method of proof may be extended without difficulty to cover bound-
ary value and eigenvalue problems for arbitrary linear elliptic differential

equations and initial value problems for arbitrary linear hyperbolic differential
equations.

obtained independently of the choice of mesh, but we
will find that for the case of the initial value problem for
hyperbolic equations, convergence is obtained only if
the ratio of the mesh widths in different directions satis-
fies certain inequalities which in turn depend on the posi-
tion of the characteristics relative to the mesh.

We take as a typical case the boundary value problem
of potential theory. Its solution and its relation to the
solution of the corresponding difference equation has
been extensively treated during the past few years.” How-
ever in contrast to the present paper, the previous work has
involved the use of quite special characteristics of the
potential equation so that the applicability of the method
used there to other problems has not been immediately
evident.

In addition to the main part of the paper, we append
an elementary algebraic discussion of the connection of
the boundary value problem of elliptic equations with the
random walk problem arising in statistics.

* Now at Courant Institute of Mathematical Sciences, New York Uni-
versity.

+ Now at University of California, Berkeley.

2 J., e Roux, “Sur le problem de Dirichlet™, Journ. de mathém. pur. et appl.
(6)10, 189 (1914). R, G. D. Richardson, “A new method in boundary problems
for differential equations”, Trans. of the Am. Math. Soc. 18, p. 489 ff, (1917).
H. B. Philips and N. Wiener, Nets and the Dirichlet Problem, Publ, of M.LT.
(1925). Unfortunately these papers were not known by the first of the three
authors when he prepared his note “On the theory of partial difference equa-
tions,” Gitt. Nachr. 23, X, 1925, on which the present work depends. See
also L. Lusternik, “On an apphcat\on of the direct method in variation cal-
¢ Mathém. de Moscou, 1926. G. Bouligand, “Sur
Ann. de la soc. polon. d: ‘mathém. 4, Cracow (1926)
On the meaning of the difference nd on further i
them, see R. Courant, “Uber direkte Methoden in der Vanadonsrechmms."
Math. Ann. 97, p. 711, and the references given therein.
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I. The elliptic case

Section 1. Preliminary remarks
o 1. Definitions

Consider a rectangular array of points in the (x, y)-plane,
such that for mesh width # > 0 the points of the lattice
are given by

x=nhl m,n = 0,1, £2, .
mh!

]

Y

Let G be a region of the plane bounded by a continuous
closed curve which has no double points. Then the cor-
responding mesh region, G,—which is uniquely deter-
mined for sufficiently small mesh width— consists of all
those mesh points lying in G which can be connected to
any other given point in G by a connected chain of mesh
points. By a connected chain of mesh points we mean a
sequence of points such that each point follows in the
sequence one of its four neighboring points. We denote
as a boundary point of G, a point whose four neighboring
points do not all belong to G,. All other points of G, we
call interior points.

We shall consider functions #, v, +-- of position on
the grid, i.e., functions which are defined only for grid
points, but we shall denote them as u(x, y), v(x, y), - .
For their forward and backward difference quotients we
employ the following notation,

we = 3 L + b 2) = e, D),

e, v+ 1) = ulr, ).

uy

I

wp = 5 lue, 3) = e = b ),

1
= [ule, ) — ulx, y — h)].
In the same way the difference quotients of higher order
are formed, e.g.,

(W) = tes = Us,

= ;12 [u(x + h, y) — 2u(x, ¥) -+ ulx — h, y)], etc.

o 2. Difference expressions and Green’s function

In order to study linear difference expressions of second
order, we form (using as a model the theory of partial
differential equations), a bilinear expression from the
forward difference quotients of two functions, « and v,

Blu, v) = au,v, + bu.v, + cu,v, + du,v, + auv
+ Buw + yuv, + duv, + guv,
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where a = a(x, y), -+ ,a = alx, y), -+ , & = g(x, y) are
functions on the mesh.

From the bilinear expression of first order we derive
a difference expression of second order in the following

way: we form the sum
LEDIDIP: CHD)
an

over all points of a region G, in the mesh, where in B(u, v)
the difference quotients between boundary points and
points not belonging to the mesh are to be set equal to
zero. We now transform the sum through partial summa-
tion, i.e., we arrange the sum according to v, and split
it up into a sum over the set of interior points, G}, and a
sum over the set of boundary points, I',. Thus we obtain:

K ZGAZ B(u, v)
= =K Eg Z vL(u) — h Zrum(u). (1)

L(u) is a linear difference expression of second order de-
fined for all interior points of G,

L) = (au,), + (bu)y + (cu)s + (du,),
— au, — Bu, + (yu): + (du); — gu.

R(u) is, for every boundary point, a linear difference ex-
pression whose exact form will not be given here.
If we arrange Za,‘ Z B(u, v) according to u, we find

IS Z E B(u, v)
= —n Z;;,.'Z uM(v) — h ‘; uS(v). 2)

M(v) is called the adjoint difference expression of L(u)
and has the form

M(v) = (av.): + (b0))s + (cv2)s + (dv,),
+ (av): + (Bv); — yo. —

while §(v) is a difference expression corresponding to R(x)
for the boundary.
Formulas (1) and (2) give

h Emz [vL(w) — uM(v)]
+h rz [oR() — us(v)] = 0. 3)

Formulas (1), (2), and (3) are called Green’s formula.

The simplest and most important case results if the
bilinear form is symmetric, ie., if the relations b = ¢,
a = v, 8 = & hold. In this case L(x) is identical with
M(u)—the self-adjoint case—and it can be derived from
the quadratic expression

Blu, u) = au + 2bu.u, + du’
+ 2au,u + 28uu + gi’.

dv, — gv,
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In the following we shall limit ourselves mainly to
expressions L(#) which are self-adjoint. The character
of the difference expression L(#) depends principally on
the nature of those terms in the quadratic form B(u, u)
which are quadratic in the first difference quotients. We
call this part of B(u, u) the characteristic form:

P(u, u) = au + 2bu.u, + duj.

We call the corresponding difference expression L(x) ellip-
tic or hyperbolic, depending on whether the function
P(u, u) of the difference quotients is (positive) definite
or indefinite.

The difference expression Au = u,; + u,; with which
we shall concern ourselves in the following paragraph is
elliptic, i.e., it comes from the quadratic expression
Blu, u) = ul + u: or ul4 ul.

The corresponding Green’s formulas are
Wy E(u:-l—u:): —n Yy, ZuAu

ar an’
— k> uR(u)
Th
K'Y, 3 (vAu — ulv)
Gr'

+ h ; [oN@w) — uR@)] = 0. (5

[Note 3] (4)

The difference expression, Au = u,; + u,;, is obviously
the analogue of the differentizl expression (39°1/dx") =+
(Bzu/ 3y") for a function u(x, y) of the continuous variables
x and y. Written out explicitly the difference expression is

Au = ;1* [u(x + h, y) + ulx, y + h)

+ ou(x — b, y) + ulx,y — ) — du(x, y)].

Therefore (h°/4)Au is the excess of the arithmetic mean
of the functional values at the four neighborhood points
over the functional value at the point in question.

Completely similar considerations lead to linear dif-
ference expressions of the fourth order and corresponding
Green’s formula, provided one starts from bilinear dif-
ference expressions which are formed from the difference
quotients of second order. Consider for example the
difference expression

AAU = Uppzs + 20rsyg t+ Uyygse
This corresponds to the quadratic expression

Blu, 3=1(s + w0 = (Au)?,

+ The boundary expression R() may be written as follows: Let uo, u1,..., uy
be values of the function at a boundary point and at its » neighboring points
(v < 3), then

R = G+ o+, = ).

provided one orders the sum
Y, X Audv
(%

according to v, or equivalently replaces # by Au in Eq. (5).
One must notice however that in the expression AAu,
the functional value at a point is connected with the values
at its neighboring points and at their neighboring points,
and accordingly is defined only for such points of the
region G, as are also interior points of the region G} (See
Section 5). The entirety of such points we designate as G}’.
We obtain then Green’s formula

®Y X AuAv
Ga'
=Y DoAut+h » ovRw), (6)
anr'’ Ta+Ta’

where RN(«) is a definable linear difference expression for
each point of the boundary strip T', -+ T';. T} indicates
the set of boundary points of G}.

7 7

Section 2. B y value and e, problems

o 1. The theory of boundary value problems

The boundary value problem for linear elliptic homo-
geneous difference equations of second order, which cor-
responds to the classical boundary value problem for
partial differential equations, can be formulated in the
following way.

Let there be given a self-adjoint elliptic linear difference
expression of second order, L(x), in a mesh region, G,.
L(u) results from a quadratic expression B(u, #) which is
positive definite in the sense that it cannot vanish if «, and
u, do not themselves vanish.

A function, u, is to be determined satisfying in G, the
difference equation L(¥) = 0, and assuming prescribed
values at the boundary points.

Under these requirements there will be exactly as many
linear equations as there are interior points of the mesh
at which the function u is to be determined. Some of
these equations which involve only mesh points whose
neighbors also lie in the interior of the region are homo-
geneous; others which involve boundary points of the
mesh region are inhomogeneous. If the right-hand side of
the inhomogeneous equations is set equal to zero, that is
if # = 0 on the boundary, then it follows from Green’s
formula (1), by setting u = v that B(u, u) vanishes, and
further, from the definiteness of B(u, u), that u, and u,
vanish, and hence that u itself vanishes. Thus the dif-
ference equation for zero boundary values has the solution
u = 0, or in other words the solution is uniquely deter-
mined since the difference of two solutions with the

+ If the matrix of the linear system of equations corresponding to an arbi-
trary difference equation of second order, L() = 0, is transposed, then the
transposed set of equations corresponds to the adjoint difference equation

M() = 0. Thus the above self-adjoint system gives rise to a set of linear equa-
tions with symmetric coefficients.
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same boundary value must vanish. Further, if a linear
system of equations with as many unknowns as equations
is such that for vanishing right-hand side the unknowns
must vanish, then the fundamental theorem of the theory
of equations asserts that for an arbitrary right-hand side
exactly one solution must exist. In our case there follows
at once the existence of a solution of the boundary value
problem.

Therefore we see that for elliptic difference equations
the uniqueness and existence of the solution of the bound-
ary value problem are related to each other through the
fundamental theorem of the theory of linear equations,
whereas for partial differential equations both facts must
be proved by quite different methods. The basis for this
difficulty in the latter case is to be found in the fact that
the differential equations are no longer equivalent to a
finite number of equations, and so one can no longer de-
pend on the equality of the number of unknowns and
equations.

Since the difference expression Au = 0 can be derived
from the positive definite quadratic expression

u* Zm > + ),

the boundary value problem for the difference expression
is uniquely solvable.

The theory for difference equations of higher order is
developed in exactly the same way as that for difference
equations of second order; for example one can treat the
fourth order difference equation AAu = 0. In this case
the values of the function must be prescribed on the bound-
ary strip ', + T'}. Evidently here also the difference equa-
tion yields just as many linear equations as there are
unknown functional values at the points of G}’. In order
to demonstrate the existence and uniqueness of the solu-
tion one needs only to show that a solution which has the
value zero in the boundary strip T'y 4 T} necessarily
vanishes identically. To this end we note that the sum
over the corresponding quadratic expression

wx, 2w ¥

for such a function vanishes, as can be seen by transform-
ing the sum according to Green’s formula (6). The vanish-
ing of the sum (7) however implies that Au vanishes at all
points of G}, and according to the above proof this can
only happen for vanishing boundary values if the function
u assumes the value zero throughout the region. Thus our
assertion is proved, and both the existence and uniqueness
of the solution to the boundary value problem for the
difference equations are guaranteedf'

s For the actual process of carrying through the solution of the boundary
value problem by an iterative method, see among others the treatment: “Uber
Randwertaufgaben bei partiellen Differenzengleichungen” by R. Courant,

Zeitschr. f. angew, Mathematik u. Mechanik 8, 322-325 (1925). Also there is a
report by H. Henky, in Zeitschr. f. angew. Math. u. Mech. 2, 58 ff (1922).
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© 2. Relation to the minimum problem

The above boundary value problem is related to the fol-
lowing minimum problem: among all functions ¢(x, y)
defined in the mesh region G and assuming given values
at the boundary points, that function ¢ = u(x, y) is to be
found for which the sum

i ZMZ Be, ¢)

over the mesh region assumes the least possible value.
We assume that the quadratic difference expression of
first order, B(u, u) is positive definite in the sense de-
scribed in Section 1, Part 2. One can show that the dif-
ference equation L(p) = O results from this minimum
requirement on the solution ¢ = u(x, y), where L{p) is the
difference expression of second order derived previously
from B(g, ¢). In fact this can be seen either by applying
therules of differential calculus to the sums #* Ea » Z Ble, o)
as a function of a finite number of values of ¢ at the grid
points, or by employing the usual methods from the
calculus of variations.

By way of example, solving the boundary value prob-
lem of finding the solution to the equation Ay = 0 which
assumes given boundary values, is equivalent to minimiz-
ing the sum 4’ Egh E (% + ¢}) over all functions which
take on the boundary values.

There is a similar correspondence for the fourth-order
difference equations, where we limit ourselves to the
example AA¢ = 0. The boundary value problem cor-
responding to this difference equation is equivalent to the
problem of minimizing the sum

i ZGVE (a9’

for functions that take on given values on the boundary
strip T'}. Besides this sum there are yet other quadratic
expressions in the second derivatives which give rise to the
equation AAu = 0 under the process of being minimized.
For example this is true in G, for the sum

B3 30 (i 4 20z, + 4.
an’

That the minimum problem posed above always has
a solution follows from the theorem that a continuous
function of a finite number of variables (the functional
values of ¢ at the grid points) always has a minimum if it
is bounded from below and if it tends to infinity as soon as
any of the independent variables goes to infinity.®

« 3. Green’s function

1t is possible to treat the boundary value problem for the
inhomogeneous equation, L(x) = —f, in much the same
way as the homogeneous case, L(x) = 0. For the inhomo-
geneous case it is sufficient to consider only the case of

It can easily be verified that the hypotheses for the application of this
theorem are satisfied.
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zero boundary conditions, since different boundary condi-
tions can be taken care of by adding a suitable solution of
the homogeneous equation. To solve the linear system of
equations representing the boundary value problem,
L(u) = —f, we first choose as the function f(x, y) a func-
tion which assumes the value —1/A" at the point x = £,
y = n of the mesh. If K(x, y; & #) is the solution (vanish-
ing on the boundary) of this difference equation which
depends on the parametric point (£, #), then the solution
for an arbitrary boundary condition can be represented by
the sum
ux,y) = ¥ 3 K, y; £ 0fE ).
(&ym) inGh

The function K(x, y; & n) which depends on the points
(x, y) and (&, 7) is called the Green’s function of the dif-
ferential expressions L(u). If we call the Green’s function
for the adjoint expression M(v), K(x, y; &, u), then the
equivalence

KE @3¢, 9) = RE n & #) holds,

as can be seen to follow immediately from Green’s form-
ula (3) when # = K(x, y; £, n),andv = R(x, y; §, %). Fora
self-adjoint difference expression the above relation gives
the symmetric expression

KE 738 n) = K& 0 & %),

e 4. Eigenvalue problems
Self-adjoint difference expressions, L(u), give rise to eigen-
value problems of the following type: find the value of a
parameter A, the eigenvalue, such that in G,, a solution,
the eigenfunction can be found for the difference equation
L(u) -+ Nu = 0, where u is to be zero on the boundary, I';.
The eigenvalue problem is equivalent to finding the
principle axes of the quadratic form B(u, u). Exactly as
many eigenvalues and corresponding eigenfunctions exist
as there are interior mesh points of the region G,. The
system of eigenfunctions and eigenvalues (and a proof of
their existence) is given by the minimum problem:

Among all functions, ¢(x, y), vanishing on the boundary,
and satisfying the orthogonality relation

Py Yeu” =0, (=1,
Ga

and normalized such that

Y X =1,
G

the function, ¢ = u, is to be found for which the sum

W ZF > Ble. o)
-

assumes its minimum value. The value of this minimum

,m— 1)

is the m*® eigenvalue, and the function for which it is
d is the m*h eigenfunction.”

Section 3. Connections with the problem of the random walk
The theme of the following is related to a question from
the theory of probability, namely the problem of the
random walk in a bounded region.® We consider the
lines of a mesh region G, as paths along which a particle
can move from one grid point to a neighboring one. In
this net of streets the particle can wander aimlessly, and
it can choose at random one of the four directions leading
from each intersection of paths of the net—all four direc-
tions being equally probable. The walk ends as soon as a
boundary point of G, is reached because here the particle
must be absorbed.
We ask:

1) What is the probability w(P; R) that a random walk
starting from a point P reaches a particle point R
of the boundary?

2) What is the mathematical expectation v(P; Q) that a
random walk starting from P reaches a point Q of
G, without touching the boundary?

This probability or mathematical expectation, respec-
tively, will be defined more precisely by the following
process. Assume that at the point P there is a unit con-
centration of matter. Let this matter diffuse into the mesh
with constant velocity, traveling say a mesh width in unit
time. At each meshpoint let exactly one-fourth of the
matter at the point diffuse outwards in each of the four
possible directions. The matter which reaches a boundary
point is to remain at that point. If the point of origin P
is itself a boundary point, then the matter never leaves that
point.

We define the probability w(P; R) that a random walk
starting from P reaches the boundary point R (without

7 From the orthogonality condition on the eigenfunctions,
2 (») (w)
Y 2 uu™ =0, v # w
Gh

it follows that each function, g(x, »), which vanishes on the boundary of the
mesh can be expanded in terms of the eigenfunctions in the form

N
—_ () (r)
y=2c"u",
=

where the coefficients are determined from the equations
() 2 ()
= X
an

In this way in particular the following representation for the Green’s func-
tions may be derived,

N

K(x, y; £, m) = *Zz;

u(x, y) u”(E, 9)
A 7

® Section 3 is not prerequisite to Section 4.

¢ The present treatment is essentially different from the familiar treatments
which can be carried through, say for exaniple in the case of Brownian motion
for molecules, The difference lies precisely in the way in which the boundary
of the region enters.
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previously attaining the boundary), as the amount of
matter which accumulates at this boundary point over
an infinite amount of time.

We define the probability E,(P; Q) that the walk starting
from the point P reaches the point Q in exactly n steps
without touching the boundary by the amount of matter
which accumulate in # units of time provided P and Q are
both interior points. If either P or Q are boundary points
then E, is set equal to zero.

The value E,(P; Q) is exactly equal to 1/4" times the
number of paths of » steps leading from P to Q without
touching the boundary. Thus E.(P; Q) = E.(Q; P).

We define the mathematical expectation v(P; Q) that
one of the paths considered above leads from P to the
point Q by the infinite sum of all of these possibilities,
u(P;Q) = > E(P; Q)  (Note 10),

v=0
ie., for the interior points P and Q, the sum of all the
concentrations which have passed through the point Q at
different times. This will be assigned the expected value 1
for a concentration originating at Q.

If the amount arriving at the boundary point R in
exactly  steps is designated as F,(P; R), then the proba-
bility w(P; R) is given by the series

WP R) = 3 FP; B).

All the terms of this series are positive and the partial
sum is bounded by one (since the concentration reaching
the boundary can be made up of only part of the initial
concentration), and therefore the convergence of the series
is assured.

Now it is easy to see that the probability E.(P; Q), that
is, the concentration reaching the point Q in exactly n
steps tends to zero as n increases. For if at any point Q,
from which the boundary point R can be reached in m
steps, we have E,(P; Q) > « > 0, then at least /4™ of
the concentration at @ will reach the point R after m
steps. However, since the sum Z;’,“:D F,(P; R) converges,
the concentration reaching R goes to zero with increasing
time, where the value of E,(P; Q) must itself vanish as
time increases; that is, the probability of an infinitely long
walk remaining in the interior of the region is zero.

From this it follows that the entire concentration even-
tually reaches the boundary; or in other words that the sum
ZR w(P; R) over all the boundary points R is equal to one.

The convergence of the infinite series for the mathemati-
cal expectation

oPi0) = 3 E(P; 0)

remains to be shown.

10 The convergence will be shown below.
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To this end we remark that the quantity E,(P; Q) satis-
fies the following relations
Eui(P; Q) = ${E(P; Q1) + Ed(P; Q2)

+ E(P: Q) + E(P; Q)}, [ 2 1],
where Q, through Q, are the four neighboring points of
the interior point Q. That is, the concentration at the
point Q at the n + 1°* step consists of 1/4 times the sum
of the concentrations at the four neighboring points at
the n'® step. If one of the neighbors of Q, for example
Q. = R, is a boundary point then it follows that no con-
centration flows from this boundary point to Q since the
expression E,(P; R) is zero in this case. Furthermore, for
an interior point, Ey(P; P) = 1 and of course E,(P; Q) = 0.

From these relationships we find for the partial sum

vi(P; Q) = "ZO E[(P; Q)
the equation
vani(P3 Q) = 1{a(P; Q) + vu(P; Q)
+ v.(P; 0s) + va(P; Q4)},
for P # Q. For the case of P = Q,
Vari(Ps P) = 1 + }{vu(P; P)) + va(P; P2)
+ 0u(P; Py) + vu(P; Py},

that is, the expectation that a point goes back into itself
consists of the expectation that a nonvanishing path leads
from P back again to itself—namely,

1{oa(P; P1) + vu(P; Po) + v.(P; Ps) + va(P; Pa)},

together with the expectation unity that expresses the
initial position of the concentration itself at this point.

The quantity v,(P; Q) thus satisfies the following dif-
ference equation™

80,(P5 0) = % E(P: 0), for P o0,

Be(P;0) = 35 (E(P; Q) — 1), for P=0.

v,(P; Q) is equal to zero when Q is a boundary point.

11 This defines the A-operation for the variable point Q. This equation can
be interpreted as an equation of the heat conduction type. That s, if the func-
tion »a(P; Q) is considered, not as a function of the index # as in our presenta-
tion above, but rather as a function of time, 1, which is proportional to 7, so
that { = n7 and va(P; Q) = o(P; Q; /) = v(s), then the above equations can be
written in the following form:

o+ 1) — o)

act) = %5 - for P#0,
Av(t) = %(i(i'r)_’r:ﬁ@ — %) for P =0.

Fora similar difference equation which has a parabolic differential equation
as its limiting form, sce Section 6 of the second half of the paper.
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The solution of this boundary value problem for arbi-
trary right-hand side is uniquely determined as we have
explained earlier (Section 2, Part 1), and depends con-
tinuously on the right-hand side. Since the variables
E,(P; Q) tend to zero, the solution v,(P; Q) converges to
the solution v(P; Q) of the difference equation

Av(P; Q) = 0 for P #Q
Av(P; Q) = —hi,' for P =0,

with boundary values v(P; R) = 0.

Thus we see that the mathematical expectation v(P; Q)
exists and is none other than the Green’s function for the
difference equation Au = 0, except for a factor of 4. The
symmetry of the Green’s function is an immediate conse-
quence of the symmetry of the quantity E,(P; Q) which
was used to define it.

The probability w(P; R) satisfies, with respect to P, the
relation

w(P; R) = 3{w(P.; R) - w(P:; R)
+ w(Ps; R) + w(Ps; R)},

and thus the difference equation Aw = 0. That is, if Py, P,,
P, P,, are the four neighboring points of the interior
point P, then each path from P to R must pass through
one of these four directions, and each of the four is equally
likely. Furthermore, the probability of going from one
boundary point R to another R’ is w(R; R’) = 0 unless
the two points R and R’ coincide, in which case w(R; R) = 1.
Thus w(P; R) is that solution of the boundary value prob-
lem Aw = 0 which assumes the value 1 at the boundary
point R and the value 0 at all other points of the boundary.
Therefore the solution of the boundary value problem for
an arbitrary boundary value u(R) has the simple form
u(P) = 3z w(P; Ru(R), where the sum is to be extended
over all the boundary points.'” If the function u = 1 is
substituted for « in this expression, then we check the rela-
tion 1 = 3., w(P; R).

The interpretation given above for Green’s function as
an expectation yields immediately further properties. We
mention only the fact that the Green’s function decreases
if one goes from the region G to a subregion G lying within
G; that is, the number of possible paths for steps on the
mesh leading from one point P to another Q (without
touching the boundary), decreases as the region decreases.

Of course, corresponding relationships hold for more
than two independent variables. We note only that other
elliptic difference equations admit a similar probability
interpretation.

12 Moreover it is easy to show that the probability w(P; R) of reaching the
boundary is the boundary expression R(K(P, 0)), constructed from the Green’s
function K(P; Q) in terms of Q, whete u(x, y) is to be identified with w(P, Q),
and v(x, y) with »(P, Q) in Green’s formula (5).

If the limit for vanishing mesh width is considered by
methods given in the following section, then the Green’s
function on the mesh goes over to the Green’s function
of the potential equation except for a numerical factor;
a similar relationship holds between the expression
w(P; R)/h and the normal derivative of the Green’s func-
tion at the boundary of the region. In this way, for ex-
ample, the Green’s function for the potential equation
could be interpreted as the specific mathematical expecta-
tion of going from one point to another,'® without reaching
the boundary.

In going over to the limit of a continuum from the mesh,
the influence of the direction in the mesh prescribed for
the random walk vanishes. This fact suggests that it would
be of some interest to consider limiting cases of more
general random walks for which the limitations on the
direction of the walk are relaxed. This lies outside of the
scope of this presentation, however, and we can only hope
to renew the question at some other opportunity.

Section 4. The solution of the differential equation as a
limiting form of the solution of the difference equation

o 1. The boundary value problem of potential theory

In letting the solution of the difference equation tend to the
solution of the corresponding differential equation we shall
relinquish the greatest possible degree of generality with
regard to the boundary and boundary values in order to
demonstrate more clearly the character of our method."
Therefore we assume that we are given a simply connected
region G with a boundary formed of a finite number of
arcs with continuously turning tangents. Let f(x, y) be a
given function which is continuous and has continuous
partial derivatives of first and second order in a region
containing G. If G, is the mesh region with mesh width 4
belonging to the region G, then let the boundary value
problem for the difference equation Au = 0 be solved for
the same boundary values which the function f(x, y)
assumes on the boundary; let #,(x, ) be the solution. We
shall prove that as #— 0 the function u,(x, y) converges
to a function u(x, y) which satisfies in G the partial dif-
ferential equation (9°x/9x") + (8°u/9y") = 0 and takes
the value of f(x, y) at each of the points of the boundary.
We shall show further that for any region lying entirely
within G the difference quotients of u, of arbitrary order
tend uniformly towards the corresponding partial deriva-
tives of u(x, y).

In the convergence proof it is convenient to replace the
boundary condition # = f by the weaker requirement that

rlf/;'(u—f)’dxdyao as r—0,

13 Here the a priori expectation of reaching a certain area element is under-
stood to be equal to the area of the element.

4 We mention however that carrying through our method for more general
boundaries and boundary values in no way causes any fundamental difficulty.
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Figure 1

where S, is that strip of G whose points are at a distance
from the boundary smaller than r.'® The convergence proof
depends on the fact that for any subregion G* lying en-
tirely within G, the function u,(x, y) and each of its dif-
ference quotients is bounded and uniformly continuous
as h— 0 in the following sense: For each of these functions,
say w,(x, y), there exists a 8(e) depending only on the
subregion and not on 4 such that

[wa(P) = wa(Py)| <'e

provided the mesh points P and P, lie in the same sub-
region of G, and are separated from each other by a dis-
tance less than &(¢).

Once uniform continuity in this sense (equicontinuity)
has been established we can in the usual way select from
the functions u, a subsequence of functions which tend
uniformly in any subregion G* to a limit function u(x, y),
while the difference quotients of u; tend uniformly towards

15 The weaker boundary value requirement does in fact provide the unique
characterization of the solution, as can be seen from the easily proved thcorem:
I the boundary condition above is satisfied for f(x, ) = 0 for a function
satisfying the equation

in the interior of G and if

IL [(%)2 + (35) ] dxdy

exists. then u(x, y) is identically zero. (See Courant, “Uber die Losungen der
Differentialgleichungen der Physik,"” Math Ann. 85, 296 ff.)

In the case of two independent variables the boundary values are actually
attained, as follows from the weaker requvremem but in the case of more
variables the corresponding result cannot in general be expected since there
can exist exceptional points on the boundary at which the boundary value is
not taken on even though a solution exists under the weaker requirement,
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the partial derivatives of x. The limit function then pos-
sesses derivatives of arbitrarily high order in any proper
subregion G* of G and satisfies V’u = 0 in this region. If
we can show also that u satisfies the boundary condition
we can regard it as the solution of our boundary value
problem for the region G. Since this solution is uniquely
determined, it is clear that not only a partial sequence of
the functions u,, but this sequence of functions itself
possesses the required convergence properties.

The uniform continuity (equicontinuity) of our quanti-
ties may be established by proving the following lemmas.

1) As h—> 0 the sums over the mesh region & 3 ¢, > &*
and £ g, 2, (u + u?) remain bounded.”

2) If w = w, satisfies the difference equation Aw = 0
at a mesh point of G,, and if, as #— 0 the sum

Y T W,
G

extended over a mesh region G% associated with a
subregion G* of G remains bounded, then for any
fixed subregion G** lying entirely within G* the sum

FE, D0+

over the mesh region Gj* associated with G** like-
wise remains bounded as # — 0. Using 1) there
follows from this, since all of the difference quotients
w of the function u, again satisfy the difference equa-
tion Aw = 0, that each of the sums #° Y _g,» > W’
is bounded.

3) From the boundedness of these sums there follows
finally the boundedness and uniform continuity of all
the difference quotients themselves.

* 2. Proof of the lemmas

The proof of 1) follows from the fact that the functional
values u, are themselves bounded. For the greatest (or
least) value of the function is assumed on the boundary"”
and so is bounded by a prescribed finite value. The bound-
edness of the sum i g, ¥, (u2 + u2) is an immediate
consequence of the minimum property of our mesh func-
tion formulated in Part 2 of Section 2 which gives in
particular

#X D tw) <n X 0+ )

but as £ — 0 the sum on the right tends to the integral

2+ () ]
‘/:/; I:<ax + oy dxdy
which, by hypothesis, exists.

16 Here and in the following we drop the index  from the grid functions.

17 We note, however, with a view to carrying over the method to other dif-
ferential equations, that we can relax these conditions. To this end we need
only to bring into play the inequality (15) or to use the reasoning of the alter-
native (see Part 4, Section 4)
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To prove 2) we consider the quadratic sum

B3 3k wik w+ Wh),

int.Qx
where the summation extends over all the interior points
of a square Q,, (see Fig. 1). We denote the values of the
function on the boundary S, of the square Q,, by w;, and
those on the boundary S,, of Qo, by w,. Then Green’s
formula gives

B3 2w Wi owy W) ®

int.Qy
DD
Sy So Ca

where S; and S, are respectively the boundary of Q, and
the square boundary of the lattice points Q, lying within
S,, while C, consists of the four corner points of the

boundary of Q,.
We now consider a sequence of concentric squares
Qo, Q1, *** , Q. with boundaries S, Sy, -+ , S, where

each boundary is separated from the next by a mesh width.
Applying the formula to each of these squares and ob-
serving that we have always

2K ZQ >+ W)

SEY W4+ wit+w+w), &>1)
(43
we obtain
20 3 30 (we + W)
Qo
<SITwW— S wWw=2w ((<Lk<n),
Sk Sk-3 Ck

where C, consists of the four corner points of the bound-
ary Qi

We strengthen the inequality by neglecting the last non-
positive term on the right and we then add the » inequalities
to obtain

W T T AW < W - DWW
Qo Sa So

Sn

Summing this inequality from n = 1to n = N we get
MEE SOt < T T
. ¥

Diminishing the mesh width # we can make the squares
Qo and Q, converge towards two fixed squares lying within
G and having corresponding sides separated by a distance
a. In this process Nh— a and we have, independent of the
mesh width

hz Z%E W+ w) < % Z“Z w. 9)

For sufficiently small 4 this inequality holds of course
not only for two squares Qo and Qy but with a change in
the constant, a, for any two subregions of G such that one

P, P, P,
a R,

b b
Qo Q Q,
Figure 2

is contained entirely within the other. Thus lemma (2)
is proved.'®

In order to prove the third result, that u, and all its
partial difference quotients w;, remain bounded and uni-
formly continuous as # — 0, we consider a rectangle R
(Fig. 2) with corners Py, Qo, P, Q and with sides P,Q, and
PQ of length a parallel to the x-axis.

We start with the relation

w(Qo) — w(Po) = h Z w, — K Z Z Ways
PQ R
and the inequality

[W(Q0) — w(P)| < & g [w.| + B* ZRZ [wal, (11)

which is a consequence of it.

We then let the side PQ of the rectangle vary between
an initial line P,Q,, a distance b from P,Q, and a final line
P,Q. a distance 2b from P,Q,, and we sum the corre-
sponding (b/h) + 1 inequalities (11). We obtain the esti-
mate

(P = w(Q)| < 547 #* T T Il
HH Y X el

where the summations extend over the entire rectangle,
Ry, = PoQyP;0Q,. From Schwarz’s inequality it then fol-
lows that,

(P = w0 < 5 V2B VEZ T W gy

+ \/le \/h2 Z E wzv-
s

18 If we do not assume that Aw = 0, then in place of the inequality (9)
we find:

DY ILCE
< eh? Za DR N _Z (aw)*  (10)

for suitable constants ¢ and c2 independent of 4, where G** lies entirely
within G*, and G* in turn is conuined in the interior of G.
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Since, by hypothesis, the sums which occur here multi-
plied by 4° remain bounded, it follows that as a — 0 the
difference |w(P;) — w(Qo)| — 0 independently of the
mesh-width, since for each subregion G* of G the quantity
b can be held fixed. Consequently the uniform continuity
(equicontinuity) of w = w, is proved for the x-direction.
Similarly it holds for the y-direction and so also for any
subregion G* of G. The boundedness of the function w,
in G* finally follows from its uniform continuity (equi-
continuity) and the boundedness of 4 ZG . Z Wi

By this proof we establish the existence of a subsequence
of functions u, which converge towards a limit function
u(x, y) and which do so uniformly together with all their
difference quotients, in the sense discussed above for every
interior subregion of G. This limit function u(x, y) has
throughout G continuous partial derivatives of arbitrary
order, and satisfies there the potential equation:

2 2
Sit g—y‘; —o.
o 3. The boundary condition

In order to prove that the solution satisfies the boundary
condition formulated above we shall first of all establish
the inequality

Y 2oL a4ty Y@+
Sr.n Sron
+ Brh Yy o° (13)
Ta

where S, is that part of the mesh region G, which lies
inside a boundary strip S,. This boundary strip S consists
of all points of G whose distance from the boundary is less
than r; it is bounded by T' and another curve I, (Fig. 3).
The constants 4 and B depend only on the region and not
on the function v nor the mesh width 4.
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In order to prove the above inequality, we divide the
boundary, T, of G into a finite number of pieces for which
the angle of the tangent with one of the x- or y-axes is
greater than some positive value (say 30°). Let v, for
instance, be a piece of I' which is sufficiently steep (in the
above sense) relative to the x-axis (see Fig. 4). Lines
parallel to the x-axis intersecting v will cut a section v,
from the neighboring curve T',, and will define together
with vy and v, a piece s, of the boundary strip S,. We use
the symbol s, , to denote the portion of G, contained in s,
and denote the associated portion of the boundary I';
by i

We now imagine a parallel to the x-axis to be drawn
through a mesh point P, of s, ,. Let it meet the boundary
v, in a point B,. The portion of this line which lies in
$,.» we call p, ;. Its length is certainly smaller than cr,
where the constant ¢ depends only on the smallest angle
of inclination of a tangent + to the x-axis.

Between the values of v at P, and P, we have the relation

o(P) = r(P) £ h ZP v,.

Squaring both sides and applying Schwarz’s inequality,
we obtain

o(P)? < 20(B)’ + 2cr-h 3 vk,
proh

Summing with respect to P, in the x-direction, we get
Y 0 < 2er0(B) + 28R Y vl

v o

Summing again in the y-direction we obtain the relation
h Z; >t < 2er [E o(B) + 28°7°h ZS >l (14)

r.h Ca o

Writing down the inequalities associated with the other
portions of I' and adding all the inequalities together we
obtain the desired inequality (13).”

We next set v, = u;, — f,, so that v, = Oon I';.

Then since #* Y g, 2, (2 + v2) remains bounded as
h— 0, we obtain from (13)

I8 2

= X 2V (16)
oS

where « is a constant which does not depend on the func-
tion v or the mesh size. Extending the sum on the left to
the difference S,,, — S,,, of two boundary strips, the
inequality (16) still holds with the same constant x and
we can pass to the limit #— 0.

1s By similar reasoning we can also establish the inequality
Y, Yo <ah 20t ek’ 3 3 (o) (1)
Gh T'n Gh

in which the constants c1 and c2 depend only on the region G and not on the
mesh division,
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Figure 4

From the inequality (16) we then get

lff v* dxdy < «r, v=u—f.
r 8r=8p

Now letting the narrower boundary strip S, approach the
boundary we obtain the inequality

1 2 -
,f./;'v dxdy =

which states that the limit function u satisfies the pre-
scribed boundary condition,

H[ w-pawr<e
rJdis,

o 4. Applicability of the method to other problems

Our method is based essentially on the inequalities arising
from the lemmas stated previously since the principal
points of the proofs follow from the two last lemmas in
Part 1 of Section 4.*° No use is made of special funda-
mental solutions or special properties of the difference
expression, and therefore the method can be carried over
directly to the case of arbitrarily many independent vari-
ables as well as to the eigenvalue problem,

du &
it t =0

The same sort of convergence relations will obtain in this
case as above,”' Also the method applies to linear partial
differential equations of other types, in particular its
application to equations with variable coefficients requires
only some minor modifications. The essential difference
in this case lies only in proving the boundedness of
I3 Z E «} which of course does not always hold for an
arbitrary linear problem. However in case this sum is not
bounded it can be shown that the general boundary value
problem for the differential equation in question also
possesses effectively no solutions, but that in this case there
exist nonvanishing solutions of the corresponding homo-
geneous problem, i.e., eigenfunctions.”

o 5. The boundary value problem AAu = 0

In order to show that the method can be carried over to
the case of differential equations of higher order, we will
treat briefly the boundary value problem of the differential
equation:

it 6,+——~0.

We seek, in G, a solution of this equation for which the
values of  and its first derivative are given on the bound-
ary, being specified there by some function f(x, y).

To this end we assume as previously that f(x, y) together
with its first and second derivatives is continuous in that
region of the plane containing the region G.

We replace our differential equation problem by the
new problem of solving the difference equation Au = 0
in the mesh region G subject to the condition that at the
points of the boundary strip 'y + I'} the function u takes
on the values f(x, y). From Section 2 we know that this
boundary value problem has a unique solution. We will
show that as the mesh size decreases, this solution, in each

20 For an application of ing integral i ities see K. Fried-
richs, “Die Rand- und Eigenwertprobleme aus der Theorie er elastischen
Platten”, Math. Ann. 98, 222 (1926).

 Similarly one proves at the same time that every solution of such a dif-
ferential equation problem has derivatives of every order.

22 See Courant-Hilbert, Methoden der Mathematischen Physik 1, Ch. TII,
Section 3, where the theory of integral equations is handled with the help of
the corresponding principle of the alternative. See also the Dissertation (Got-
tingen) of W. v. Koppenfels, which will appear soon.
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interior subregion of G, converges to the solution of the
differential equation, and that all of its difference quotients
converge to the corresponding partial derivatives.

We note first that for the solution ¥ = u,, the sum

B3 30 (e + 263, + )
an’

remains bounded as #~ 0. That is, by applying the mini-
mum requirements on the solution (Part 2, Section 2) one
finds that this sum is not larger than the corresponding sum

#3222 ),
"
and this converges as #— 0 to
¥, 0L if)
ffa (ax2 T 250y T op)

which exists, by hypothesis.
From the boundedness of the sum

#”X 20 G + 22, + )

follows immediately the boundedness of & Y g, 2 (Au)’®
and also that of

Y D@+ d) and By 34
Ga' Gn

That is, for arbitrary w the following inequality holds
(see Footnote 19),

B2 3w <o’ 33 (w4 w))
Gn [
+ch 3 W (15)
Ta

Then if one substitutes the first difference quotients of w
for w itself in this inequality and applies the expression
over the subregion of G, for which they are defined,
one finds the further inequality,

B3 (wE A W)
Gr
<k’ 3 3 (whe + 2wl + W)
Gy’
+oeh D (Wi W),
Ta+I'a’

where again the constant ¢ is independent of the function
and of the mesh size, We apply this inequality to w = u,
and thus find the boundedness of the sum over T', + T}
on the right-hand side; by definition these boundary sums
converge to the corresponding integral containing f(x, y).
Thus from the boundedness of

T T e+ 2+ )

follows the boundedness of 4 D¢, 2. (4 + u2) and
thence that of &* 3 g, 3, .
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For the third step we substitute one after the other the
expressions Au, Au., Au,, Aut,,, - - -, for win the inequality

HRZW+w) <ol T 3w
+oent 3 3 (aw)

(see Part 2, Section 4) where G* is a subregion of G con-
taining G** in its interior. The expressions introduced all
satisfy the equation Aw = 0. It follows then that for each
expression in turn and for all subregions G* of G that the
sums, 2 g >, (W24 w2), thatis, i e 9, (A2 Aud),
B )60 ) (A2, + Au,), -+ are bounded together with
the sums:

Y Yw WX Y+ w),

and Z Z (Au)’,

which are already known to be bounded.

Finally we substitute into the inequality (10), in place of
w, the sequence of functions .., U, ,, Uy, Uzzzy *+* 5 fOT
which

IS Za.'z Aaw)’, . i Z(“.Z (Au..)?, -

are bounded as shown above. We then find that for all
subregions the sums

B3 3 G k), B D (W i), e
Q¥ Ga*

remain bounded.

From these facts we can now conclude as previously
that from our sequence of mesh functions a subsequence
can be chosen which in each interior subregion of G con-
verges (together with all its difference quotients) uniformly
to a limit function (or respectively its derivatives) which
is continuous in the interior of G.

We have yet to show that this limit function which
obviously satisfies the differential equation AAu = 0 also
takes on the prescribed boundary conditions. For this
purpose we say here only that, analogous to the foregoing,
the expressions

ffs (u — §)" dxdy < o,

[ 2 e o 2o

Jdy ay.
hold.” That the limit function fulfills these conditions
may be seen by carrying over the treatment in Part 3,
Section 4 to the function » and its first difference quotient.

% That the boundary values for the function and its derivatives actually
are assumed is not difficult to prove. See for instance the corresponding treat-
ment of K. Friedrichs, loc. cif.
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From the uniqueness of our boundary value problem
we see furthermore that not only a selected subsequence,
but also the original sequence of functions # possesses the
asserted convergence properties.

1. The hyperbolic case

Section 1. The equation of the vibrating string

In the second part of this paper we shall consider the
initial value problem for linear hyperbolic partial dif-
ferential equations. We shall prove that under certain
hypotheses the solutions of the difference equations con-
verge to the solutions of the differential equations as the
mesh size decreases.

We can discuss the situation most easily by considering
the example of the approximation to the solution of the
wave equation
u 9u .

' ox

0 ]

We limit ourselves to the particular initial value problem
where the value of the solution u, and its derivatives are
given on the line 7 = 0.

In order to find the corresponding difference equation,
we construct in the (x, f)-plane a square grid with lines
parallel to the axes and with mesh width 4. Following the
notation of the first part of the paper we replace the
differential equation (1) by the difference equation
u,; — u., = 0. If we select a grid point, P,, then the cor-
responding difference equation relates the value of the
function at this point to the values at four neighboring
points. If we characterize the four neighboring values by
the four indices 1, 2, 3, 4 (cf. Fig. 5), then the difference

equation assumes the simple form
o+ ouy — up — ug = 0. ¥}

Note that the value of the function  at the point P, does
not appear itself in the equation.

We consider the grid split up into two subgrids, indi-
cated in Fig. 5 by dots and crosses respectively. The dif-
ference equation connects the values of the function over
each of the subgrids separately, and so we shall consider
only one of the two grids. As initial condition the values
of the function are prescribed on the two rows of the grid,
t = 0and t = h We can give the solution of this initial
value problem explicitly; that is, we express the value of
the solution at any point S in terms of the values given
along the two initial rows. One can see at once that the
value at a point of the row ¢ = 2k is uniquely determined
by only the three values at the points close to it in the two
first rows. The value at a point of the fourth row is uniquely
determined by the values of the solution at three particular
points in the second and third rows, and through them it is
related to certain values in the first two rows. In generaltoa
point S there will correspond a certain region of depend-
ence in the first two rows; it may be found by drawing
the lines x 4+ ¢ = const. and x — ¢ = const., through the
point S and extending them until they meet the second
row at the points a and B respectively (cf. Fig. 6). The
triangle Saf is called the triangle of determination because
all the values of  in it remain unchanged provided the
values on the first two rows of it are held fixed. The sides of
the triangle are called lines of determination.

If one denotes the differences of « in the direction of the
lines of determination by u’ and u', that is,

ul = u — uy, w o= u — Uy
‘o -
wh = uy — uy, Uy = Uy — us,
Figure 6
N
.
. .
. . .
0 . . .
. . . . .
a B
. . . .
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Figure 7

then the difference equation assumes the form

i.e., along a line of determination the differences with
respect to the other direction of determination are con-
stant, and thus are equal to one of the given differences be-
tween the value at two points on the first two rows.
Moreover the difference ugs — u, is a sum of differences u’
along the determining line S, so that using the remark
above, we can obtain the final result (in obvious notation):

B
us = ua + 2, u. (3)

We now let & go to zero, and let the prescribed values
on the second and first rows converge uniformly to a
twice continuously differentiable function, f(x), and the
difference quotients u’/hv2 there converge uniformly to a
continuously differentiable function g(x). Evidently the
right-hand side of (3) goes over uniformly to the expression

1 T+t
AL @

if S converges to the point (x, #). This is the well-known
expression for the solution of the wave equation (1) with
initial values u(x, 0) = f(x) and du(x, 0)/dt = f'(x) +
V2g(x). Thus it is shown that as £ — 0 the solution of the
difference equation converges to the solution of the dif-
ferential equation provided the initial values converge
appropriately (as above).

Section 2. On the influence of the choice of mesh. The do-
mains of dependence of the difference and differential
equations

The relationships developed in Section 1 suggest the fol-
lowing considerations,

In the same way that the solution of a linear hyperbolic
equation at a point S depends only on a certain part of
the initial line—namely the “domain of dependence”

COURANT, FRIEDRICHS AND LEWY
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Figure 8

lying between the two characteristics drawn through S,
the solution of the difference equation has also at the
point S a certain domain of dependence defined by the
lines of determination drawn through S. In Section 1 the
directions for the lines of determination of the difference
equation coincided with the characteristic directions for
the differential equation so that the domains of dependence
coincided in the limit. This result, however, was based
essentially on the orientation of the mesh in the (x,#)-
plane, and depended furthermore on the fact that a square
mesh had been chosen. We shall now consider a more
general rectangular mesh with mesh size equal to / (time
interval) in the f-direction and equal to k% (space interval)
in the x-direction, where k is a constant. The domain of
dependence for the difference equation, u,; — u#,; = 0
for this mesh will now either lie entirely within the domain
of dependence of the differential equation, 8°u/df" —
8°u/0x" = 0, or on the other hand will contain this latter
region inside its own domain accordingas k < lor k> 1
respectively.

From this follows a remarkable fact: if for the case
k < 1 one lets & — 0, then the solution to the difference
equation in general cannot converge to the solution of
the differential equation. In this case a change in the initial
values of the solution of the differential equation in the
neighborhood of the endpoints « and 8 of the domain of
dependence (see Fig. 7) causes, according to formula (4), a
change in the solution itself at the point (x, #). For the
solution of the difference equation at the point S, how-
ever, the changes at the points o and 3 are not relevant
since these points lie outside of the domain of dependence
of the difference equations. That convergence does occur
for the case & > 1 will be proved in Section 3. See for
example Fig. 9.

If we consider the differential equation

255 —Sa—57=0 5
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in two space variables, x and y, and time, ¢, and if we
replace it by the corresponding difference equation on a
rectilinear grid, then in contrast to the case of only two
independent variables it is impossible to choose the mesh
division so that the domain of dependence of the dif-
ference and differential equations coincide, since the do-
main of dependence of the difference equation is a quadri-
lateral while that of the differential equation is a circle.
Later (cf. Section 4) we shall choose the mesh division so
that the domain of determination of the difference equa-
tion contains that of the differential equation in its interior,
and shall show that once again convergence occurs.

On the whole an essential result of this section will be
that in the case of each linear homogeneous hyperbolic
equation of second order one can choose the mesh so that
the solution of the difference equation converges to the
solution of the differential equation as # — 0, (see for
instance Sections 3, 4, 7, 8).

Section 3. Limiting values for arbitrary rectangular grids
Now we consider further the wave equation

u _ du
ou_9du _ 1
it ax’ 0 )
but impose it now on a rectangular grid with time interval
h and space interval kh. The corresponding difference
equation is

L(u) = Zli (u — 2u0 + us)

= e = 20+ ) = 0, ®

where the indices represent a “fundamental rhombus”
with midpoint P, and corners Py, P, P;, P, (see Fig. 8).
According to the equation L(#) = 0 the value of the func-
tion u at a point S can be represented by its values on that

Figure 9
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section of the initial rows ¢ = 0 and ¢ = A cut out by lines
of determination through S paralle] to the sides of an
elementary rhombus. We assume that the initial values are
prescribed in such a way that as 7 — 0 for fixed & the first
difference quotients formed from them converge uniformly
to given continuous functions on the line # = 0. The initial
values can be used to form an explicit representation of
the solution of the difference equation (corresponding to
(3) in Section 1); however it is too complicated to yield a
limiting value easily as 4 — 0. Thus we will try another
approach which will also make it possible for us to treat
the general problem.”*

We multiply the difference expression L(u) by (u; — u,)
and form the product using the following identities:

(s — us)(uy — 2w + ug)
= (n — Mc)2 = (o — us)’, U]
(uy — us)(us — 2u0 + uy)
= (n — “n)z = (w0 — “n)’ = ¥ — )’
+ = w) = = wg) ~ (e — )l (8)
Then we obtain

2wy, — u)L(w) = %(1 - b)[(u. — w)

= (uo — "z)z] + Plk‘z [y — "2)2

F = w) = (= u)’ = (s — )] (9)

The product (9) is now summed over all elementary rhom-
buses of the domain of determination, Saf. The quadratic
difference terms on the right-hand side always appear with
alternate signs in two neighboring rhombuses so that they
cancel out for any two rhombuses belonging to the tri-
angle SafB. Only the sums of squared differences over the
“boundary” of the triangle remain, and we obtain the
relation:

G2 G ] v

2 For the following sce K. Friedrichs and H. Lewy, “Uber die Eindeutig-
keit...etc.,” Math. Ann. 98, 192 ff. (1928), where a similar transformation is
used for integrals. 229
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Here «’ and " denote differences in the direction of deter-
mination defined in Section 1, while # designates the dif-
ference of the functional values at two neighboring points
on a mesh line parallel to the ¢ axis. The range in Zh
over which (#)° is taken is the outermost boundary line
Se and its nearest parallel neighbor found by shifting the
points of Sae downward by the amount 4. There is a similar
range for (1)’ in Zsﬁ, and so all of the differences, «', u,
and u appear once and only once.

For the solution to the problem L(x) = 0 the right-hand
side of (10) vanishes. The sum over the initial rows I and IT
which occurs there remains bounded as #— 0 (for fixed k);
specifically it goes over into an integral of the prescribed
function along the initial line. Consequently the sums over
Sa and SB in (10) also remain bounded. If now & > 1
as we must require (see previous discussion), then 1 — 1/ K
is non-negative, and we find that the individual sums

<u’ )2 ')’

h YZa: hl/’ h g </1 ) ’

extended over any line of determination whatever, remain
bounded.

From this we can derive the “uniform continuity”
(equicontinuity) (cf. Section 4 of the first part of the paper)
of the sequence of grid functions in all directions in the
plane;” since the values of # on the initial line are bounded,
there must exist a subset which converges uniformly to a
limit function u(x, f).

Both the first and second difference quotients of the func-
tion u also satisfy the difference equation L(x) = 0. Their
initial values can be expressed through the equation
L(u) = 0 in terms of the first, second and third difference
quotients of  involving initial values at points on the two
initial lines I and II only. We require that they tend to
continuous limit functions, that is, that the given initial
values u(x, 0), u,(x, 0) be three times or respectively
twice continuously differentiable with respect to x.

From this we can apply the convergence considerations
set forth above to the first and second difference quotients
of u, as well as to u itself, and we can choose a subsequence
such that these difference quotients converge uniformly
to certain functions, which must be the first or respectively
second derivatives of the limit function u(x, 7). Hence the
limit function satisfies the differential equation 8°u/as" —
3’u/3x” = 0 which results as the limit of the difference
equation L(x) = 0; it represents indeed the solution of the
initial value problem. Since such a solution is uniquely

% If S1and S are two points at a distance 4, then one connects them by a
path of two segments, S1S and S5, where the former is parallel to one line of
determination and the latter to the other. Then one finds the appraisal,

us, — us| < lug, — us| + lus — ug,|
~ A2 - W2
< x/a\/hz(“—) +Vign g (4.
§3 M &\8
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determined, every subsequence of mesh functions con-
verges, and therefore the sequence itself converges to the
limit function.

Section 4. The wave equation in three variables

We treat next the wave equation,

(11

and consider its relation to the observations on the domain
of dependence discussed in Section 2. The domain of de-
pendence of the differential equation (11) is a circular cone
with axis parallel to the s-direction and with apex angle «,
where tan ¢ = 1 /\/Q. In any rectilinear grid parallel to the
axes we introduce the corresponding difference equation

2y — Ues — tyy = 0. (12)

This equation relates the functional values of u at points
of an elementary tetrahedron. In fact it allows the value of
the function u at a point S to be expressed uniquely in
terms of the values of the function at certain points of the
two initial planes ¢ = 0 and ¢ = h. At each point S we
obtain a pyramid of determination which cuts out from
the two base planes two rhombuses as domains of de-
pendence.

If we let the mesh widths tend to zero, keeping their
ratios fixed, then we can expect convergence of the se-
quence of mesh functions to the solution of the differential
equation only provided the pyramid of determination
contains the cone of determination of the differential
equation in its interior. The simplest grid with this property
will be one constructed in such a way that the pyramid of
determination is tangent to the exterior of the cone of
determination. Our differential equation is chosen so that
this occurs for a grid of cubes parallel to the axes.

The difference equation (12), in the notation of Fig. 10,
assumes for such a grid the form:

L) = 2 (= 200+ 1) = 2 (s = 200 + 1)

- 7:* (u — 2uo + uy), (13)

in which the functional value, u,, at the midpoint actually
cancels out. The values of the solution on the two initial
planes must be the values of a function having four con-
tinuous derivatives with respect to x,y.f.

For the convergence proof we again use the method de-
veloped in Section 3. We construct the triple sum

h’ZZZz"’";h““L(u)zo

for the solution to the difference equation, where the
summation is to be extended over all elementary octahe-
drons of the pyramid of determination emanating from
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Figure 10

the point S. Then almost exactly as before we find that
the values of the function u at the interior points of the
pyramid of determination cancel out in the summation
and that only the values on the two pyramids called F,
and on the two base surfaces I and II remain.

If we denote by ' the difference of the values of the
function at two points connected by a line of an elementary
octahedron, then we can write the result as

PIDIRCHRDIDICHE (19)

where the sum is extended over all surfaces containing
differences u'; each such difference is to appear only once.”
The double sum over the two initial surfaces stays bounded
since it goes over into an integral of the initial values.
Therefore the sum over the “surface of determination”
F remains bounded.

We now apply these results not to u itself, but to its
first, second and third difference quotients, which them-
selves satisfy the difference equation (13). Their initial
values can be expressed using only values on the first two
initial planes by means of (13) using first through fourth
difference quotients. If w = w, is one of the difference
quotients of any order up to third order, then we know
that the sum #* Z (w'/h)* extended over a surface of
determination remains bounded. From this it follows,
through exactly the methods used in Section 4 of the first
part of the paper, that the function u and its first and
second difference quotients are uniformly continuous
(equicontinuous). Thus there exists a sequence of mesh
widths decreasing to zero such that these quantities, which
%0 The grid ratio has been chosen in such a way that the differences between

values of u appearing on the two neighboring surfaces in F do not occur,
{as they did in the general case in one dimension treated in Section 3).

are bounded initially, converge to continuous limit func-
tions and, in fact, converge to the solution of the dif-
ferential equation and to the first and second derivatives of
this solution, all exactly as we found earlier (Section 3).

A Ii <, 7
PP pp

and g

Section 5. Example of a differential equation of first order

We have seen in Section 2 that in the case when the region
of dependence of the differential equation covers only a
part of the region of dependence of the difference equation,
the influence of the rest of the region is not included in the
limit. We can demonstrate this phenomenon explicitly
by the example of the differential equation of first order,
du/dt = 0 if we replace it by the difference equation

2u, — u, + uy = 0. (15)

In the notation of Fig. 5 this becomes

U + us
5 (16)

Uy =

As before, the difference equation connects only the points
of a submesh with one another. The initial value problem
consists of assigning as initial values for u at points x = 2ih
on the row ¢ = 0 the values, f,;, assumed there by a con-
tinuous function f(x).

‘We consider the point S at a distance 2nh up along the
r-axis. It is easy to verify that the solution « at $ is repre-
sented as

Us = i 2_!1;{ n }‘2;- 17
n+i

As the mesh size decreases, that is as n — «, the sum on
the right-hand side tends simply to the value fo. This can
be demonstrated from the continuity of f(x) and from the
behavior of the binomial coefficients as n increases (see
the following paragraph).

Section 6. The equation of heat conduction

The difference equation (16) of Section 5 can also be in-
terpreted as the analogue of an entirely different dif-
ferential equation, namely the equation of heat conduction,

22 _Jh_ 18)

In any rectangular mesh with mesh spacing / and # in
the time and space directions, respectively, the correspond-
ing difference equation becomes

2<u| _, un> _ <u, + M;IZ_ 2u,,>. (19)

In the limit as the mesh size goes to zero the difference
equation preserves its form only if / and 4 are decreased
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proportionately. In particular if we set / = A°, then the
value #, drops out of the equation and the difference equa-
tion becomes

Uy = u—zjzlﬂ (16)

The solution to (16) is given by formula

u(0, 1) = Z i%[ 2n ]fﬂ-"
e n+i

As the mesh width decreases, a point £ on the x-axis
is always characterized by the index

2i = ¢/h. (20)

The mesh width # is related to the ordinate ¢ of a particular
point by

20k = 1. (21)

We shall investigate what happens to formula (17) as
h— 0, that is n— o, Using (21) we write (17) in the form

i ﬁnn[
2:2"v/1t n+i

For the coefficient of 2kf,; = 2Ahf(£) we use the abbrevia-
tion

u(0, ) = fai+2h, (22)

2anl8) = ﬁ n .
2\/ " 2.2/t £
n \/E '\/;

The limiting value of the coefficient, which is usually
determined by using Stirling’s formula, we will calculate
here by considering the function g;,(£) as the solution of
an ordinary difference equation which approaches a dif-
ferential equation as A— 0. As the difference equation one
finds

1 1
22 8 + 20 = 8@ = —5; 0@ T

(in which we have written g,(£) instead of g..(§)). Or

ﬁ [et + 21) — 2] = —&:(®) Tm‘s

£.(%) satisfies the normalization condition
> a®-2n = 24/

This sum is over the region of dependence of the difference
equation, and as & — 0 this covers the entire x-axis.

It can be shown easily that g,(£) converges uniformly
to the solution g(x) of the differential equation

g'(x) = —g()x/t
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with the auxiliary condition

f_: g(x) dx = 2\/;.

From formula (22) after passing to the limit we find

u(0, 1) = f_: \/lth

which is the known solution of the heat conduction equa-
tion.

The results of this section can be carried over directly
to the case of the differential equation,

e FI(E) d,

and so on for even more independent variables.

Section 7. The general homogeneous linear equation of
second order in the plane

We consider the differential equation

T et e p = @3
The coefficients are assumed to be twice continuously
differentiable with respect to x and #, while the initial
values on the line # = 0 are assumed three times continu-
ously differentiable with respect to x. We replace the dif-
ferential equation by the difference equation

L(u) = u(x, 1) — Kugelx,

+ ou + Bu, +yu=0 (24)
in a grid with time mesh width # and space mesh width ck
so that in a neighborhood of the appropriate part of the
initial value line the inequality 1 — &°/c® > &> 0 holds
for the constant, c. The initial values are to be chosen
as in Section 3.

For the proof of convergence we again transform the
sum,

s ZZz"‘;”sL(u)
Saf

by using identities (7) and (8). In addition to a sum (see
for example (10)) over the doubled boundary of the tri-
angle Sa3 (Fig. 6) one obtains a sum over the entire tri-
angle Saf because of the variability of the coefficient &
and the presence of lower order derivatives in the dif-
ferential equation. By using the differentiability of k and
the Schwarz inequality one can show that this latter sum is
bounded from above by

e BE(E) + () + 4]

where the constant C is independent of the function u,
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the mesh width 4, and, in a certain neighborhood of the
initial line, also independent of the point S.

Again we can estimate an upper bound for Z Saf Z s
by27

L\ 2
oy Y (ﬁ) +Ch 34
Saf 111

where the same properties hold for Cy and C, as are stated
above for C.
Thus we obtain an inequality of the form

[ - + 50
g [ + 5]
cor g o[+ + ()] 0

where D, for all points S and mesh widths 4, is a fixed
bound for the sums over the initial line.

As vertices of our triangles we choose a sequence of
points Sy, Sy, -+ , S, = S lying on a line parallel to the
t-axis. By summing the corresponding sequence of in-
equalities (25) after multiplying by /4 we obtain the follow-
ing inequality

R[5 £
e 2[5 + £ 6]
<G Y S [(ﬁ) Z_> ;‘7 } kD

Sap
(26)

Now if we notice that one can express a difference u’
or u' in terms of two differences # and a difference u' or
respectively «’, then we see that the left-hand side of (26)
is larger than the simpler form

.\ 2 \2 A\ 2
2 u w v
Cun zs:sz [(h) +(h) + (h) ]
with a suitable constant C,.
Then by confining the discussion to a sufficiently small

neighborhood, 0 < ¢ < nh = 6 of the initial line where &
is small enough so that

Cy — nhCy = C; > 0,
we find from (26),

cr D[+ ) + (@) ] <Lo e

27 For proof one makes use of the inequality used in Footnote 25.

The bound given by (27) when combined with (25)

gives a bound on
7\ 2 \\2
(g )

5o 57
from which, as in Section 3, one can prove the uniform
continuity of u.

We apply the inequality (25) now, instead of to the
function u itself, to its first and second difference quotients,
w, which also satisfy difference equations whose second-
order terms are the same as those of (24). In the rest of the
terms there will appear lower order differences of # which
cannot be expressed in terms w, but they will appear in the
above argument in the form of quadratic double sums
multiplied by /4°. This is enough to let us reach the same
conclusions for the difference equation for w as we found
above for u. So we can conclude from this the uniform
continuity (equicontinuity) and boundedness of the func-
tion u and its first and second derivatives. Consequently a
subsequence exists which converges uniformly to the solu-
tion of the initial value problem for the differential equa-
tion. Again from the uniqueness of the solution we find that
the sequence of functions itself converges.

In all of this the assumption must be made that the
difference quotients up to third order involving values on
the two initial lines converge to continuous limit func-
tions.”

Section 8. The initial value problem for an arbitrary linear
hyperbolic differential equation of second order

We shall now show that the methods developed so far are
adequate for solving the initial value problem for an
arbitrary homogeneous linear hyperbolic differential
equation of second order. It suffices to limit the discussion
to the case of three variables. The development can be
extended immediately to the case of more variables. It is
easy to see that a transformation of variables can reduce
the most general problem of this type to the following:
a function u(x, y, #) is to be found which satisfies the dif-
ferential equation

u — (atz: + 2bus, + cu,,)
+ au, + Bu, + yu, + ou = 0, (28)

and which, together with its first derivative, assumes pre-
scribed values on the surface 1 = 0. The coefficients in
Eq. (28) are functions of the variables x, y, and ¢ and
satisfy the condition

a>0, ¢>0, ac— b >0.

We assume that the coefficients are three times dif-
ferentiable with respect to x, y, and ¢, and that the initial
2 This fon and also the ions on the di ility of the

coefficients of the differential equation, and further on the restriction to a
sufficiently small region of the initial line can be weakened in special cases.
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values u and u, are respectively four and three times con-
tinuously differentiable with respect to x and y.

The coordinates x and y can be drawn from a given
point on the initial plane in such a way that 5 = 0 there.
Then of course in a certain neighborhood of this point
the conditions

a—[p| >0, c—[p]>0
hold. We restrict our investigation to this neighborhood.

We can choose a three times continuously differentiable
function d > 0 so that

a—d
c—d [(>e>0 (29)
o=l

for some constant e. Then we put the differential equation
into the form

Uy — (@ — A, — (¢ — Aty
— 3(d + b)(tzs + 20y + uy,)
= 3(d — B)(tae ~ 2uzy + y)
+ au, + Bu, + yu, + du = 0. (30)

‘We now construct in the space a grid of points, ¢t = /A,
x4 y=mkh,x—y=nkl(,mn=---—101,2-+)
and we replace Eq. (30) by a difference equation L(u) = 0
over this mesh. We do this by assigning to each point P,
the following neighborhood: The point P, or the point
P, which lies at a distance & or — A respectively along the
t-axis from P,; also the points Py, -« + - , Pg which lie in the
same (x, y)-plane with P, (see Fig. 11). These points con-

COURANT, FRIEDRICHS AND LEWY

Appendix C

stitute an “elementary octahedron” with vertices P,/, P,
Py, P,, P;, P,. For each grid point lying in the interior of
G we replace the derivatives appearing in Eq. (30) by
difference quotients over the elementary octahedron
about P,.

‘We replace

1
we by 3 (uar — 2u0 + ua)

1
e BY T (s — 2u0 + )
1
Uy by 7ms (= 200 + u5)
4
tee + 2y F thy BY 7 (4 — 2u0 + )
4
Uy — 2U,, + u,, by e (us — 2ug + u).

The first derivatives in (30) are replaced by the cor-
responding difference quotients in the elementary octahe-
dron. The coefficients of the difference equation are given
the values assumed by the coefficients of the differential
equation at the point P,.

On the initial planes # = 0 and ¢ = & we assume that the
values of the function are assigned in such a way that as
the mesh size approaches zero for fixed k, the function
approaches the prescribed initial value, and the difference
quotients over the two planes up through differences of
fourth order converge uniformly to the prescribed deriva-
tives.

The solution of the difference equation L(x) = 0 at a
point is uniquely determined by the values on the two base
surfaces of the pyramid of determination passing through
the point.

To prove convergence we construct a sum

BE Y T2t )

over all the elementary octahedrons of the pyramid of
determination, and we transform it by using identities
(7) and (8). This gives one space summation multiplied
by A and quadratic in the first difference quotients, and
also over a double surface a sum which is multiplied by
K and contains the squares of all the difference quotients
of the type u, — uo, hg — Uy, **+ , g — Ug. In this ex-
pression according to (29) the coefficients are larger than
some fixed positive constant in all those cases where the
ratio 1/k between the time and space mesh sizes is taken
sufficiently small.

From here on one can proceed exactly as before (Sections
7, 4) and prove that the solution of the difference equation
converges to the solution of the differential equation.

(Submitted to Math. Ann. September 1, 1927)
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