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Foreword

Despite being largely disseminated nowadays, “impact factors” do not need to
be quoted to assure the depth and importance—in so many areas of science and
technology—of the article submitted in 1927 by Richard Courant, Kurt Friedrichs,
and Hans Lewy to Mathematische Annalen and published therein the following
year.1

The authors’ keen view of finite difference methods applied to approximate so-
lutions of partial differential equations has provided the right hand hold to deal with
numerical algorithms within this environment. The idea is to first look for how the
studied schemes mimic the main properties of the operators they are intended to
approximate—signal propagation speed being the first point to look at—and then to
estimate the distance between the continuous model, which lives within the real line,
and the discrete one, immersed in real life and, consequently, being tied to treating
only numbers we are bound to operate with. They realized how this question is re-
lated to the answer to a puzzle posed for a long time to numerical analysts of PDEs:
mesh refinements do not always improve the approximations, they can even make
approximations worse. They discovered that everything amounts to a desperate need
for stability—small changes in input data must never throw output far away from its
true habitat. The constraint the discrete schemes must satisfy to guarantee stability
became known as the CFL-condition, honoring the three authors.

In March 1967, to celebrate the article’s 40th anniversary, IBM Journal2 pub-
lished a special issue, Vol. 11(2), which featured the paper’s translation into En-
glish,3 as well as three articles that report the outcome of numerical methods for
PDEs after that historical publication. Each of them has roughly chosen as its focus

1Über die partiellen Differenzengleichungen der mathematischen Physik, Vol. 100, pp. 32–74. See
Appendix B for a reprint of the paper original version.
2Now IBM Journal of Research and Development.
3See Appendix C for a reprint of this translation.
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viii Foreword

one of the three types of partial differential equations: elliptic,4 hyperbolic,5 and
parabolic.6

Around 80 years had gone by since the CFL paper was printed when a meet-
ing was held in Rio de Janeiro, in May 2010, to once again celebrate its outcome.
Hosted by Rio de Janeiro State University (UERJ), it was organized with the par-
ticipation of Rio’s main institutions that deal with computational sciences (see the
report in Appendix D). The meeting atmosphere was quite cozy, and it is a plea-
sure for the organizing committee to thank around 100 attendees that have made
CFL-condition, 80 years gone by a scientifically rewarding encounter. Our thanks
go also to the publishers of these proceedings. We further acknowledge the con-
tributions by Jacqueline Telles (secretarial chores), Jhoab P. de Negreiros (LaTeX
expertise), Sandra Moura (website design), and Tania Rodrigues (graphic designer).
Additional information about the meeting—in particular some texts from the ref-
ereed contributed papers, as well as many pictures taken at the meeting—may be
retrieved from its site at

http://www.ime.uerj.br/cfl80

Before summarizing the scientific papers contained in this volume, let us mention
one of its special features: the musical piece, recorded especially for these pro-
ceedings, authored by Hans Lewy—who was also a composer before turning to
mathematics—and played by Leonore (Lori) Lax, one of Richard Courant’s daugh-
ters. She has also written a text with some recollection of Lewy’s visits to Courant’s
home (see Appendix A, which contains some photos). The recording may be ac-
cessed through SpringerExtras at extras.springer.com/978-0-8176-8393-1.

The book opens with an article by Peter D. Lax, the meeting’s main speaker. He
dwells a little on the CFL paper and after some quick, sharp remarks—quite his
writing style—shows some results to corroborate his main assertion: “The theory
of difference schemes is much more sophisticated than the theory of differential
equations.”

Reuben Hersh’s contribution deals with a “mysterious” question: Numerical an-
alysts spend their lifetime to reach convergence results that become valid only when
the parameters involved turn out to be extremely large. But in everyday life, why are
they quite happy getting results drawn from real-life computers, therefore with not
so overwhelming numbers?

The article by Rolf Jeltsch and Harish Kumar discusses a model for the different
phenomena that occur at current interruption in a circuit breaker. They propose the
equations of resistive magneto-hydrodynamics (RMHD), and it turns out that this
is the first time a model based on RMHD has been used to simulate plasma arc in
three dimensions.

4Seymour V. Parter, Elliptic equations, pp. 244–247.
5Peter D. Lax, Hyberbolic Difference Equations: A Review of the Courant–Friedrichs–Lewy Paper
in the Light of Recent Developments, pp. 235–238.
6Olof B. Widlund, On Difference Methods for Parabolic Equations and Alternating Direction Im-
plicit Methods for Elliptic Equations, pp. 239–243.

http://www.ime.uerj.br/cfl80
http://extras.springer.com/978-0-8176-8393-1
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Sander Rhebergen and Bernardo Cockburn apply a novel space-time extension
of the hybridizable discontinuous Galerkin (HDG) finite element method to the
advection–diffusion equation. The resulting method combines the advantages of a
space-time DG method with sensible improvement in efficiency and accuracy for
the HDG methods.

The paper by J. Teixeira, Cal Neto, and Carlos Tomei indicates how a global
Lyapunov–Schmidt decomposition, introduced within a bona fide theoretical con-
text, gives rise to a quite effective numerical algorithm (which makes use of the
finite element method) for the nonlinear equation −Δu− f (u)= g with Dirichlet
conditions on a bounded n-dimensional domain.

A filtering technique for the one-dimensional wave equation is proposed and
tested in the article by Aurora Marica and Enrique Zuazua. Their concern is the
failure of observability from the boundary for the quadratic classical finite element
approximation.

Margarete O. Domingues, Sônia M. Gomes, Olivier Roussel, and Kai Schneider
have authored an article which studies a wavelet-based multiresolution method. It
deals with space-time grid adaptive techniques for a finite volume being the time
discretization explicit. Their purpose, both to reduce the memory requirement and
to speed-up computing, is reached through an efficient self-adaptive grid refinement
and a controlled time-stepping.

Philippe G. LeFloch obtains a parabolic-type system for late-time asymptotics of
solutions to nonlinear hyperbolic systems of balance laws with stiff relaxation. For
these stiff problems, an approximation based on a finite volume is then introduced
which preserves the late-time asymptotic regime. This method carries an important
feature; namely, it requires the CFL condition associated with the hyperbolic system
under study, rather than the more restrictive parabolic-type stability condition.

Kai Schneider, Dmitry Kolomenskiy, and Erwan Deriaz pose the question: “Is the
CFL condition sufficient?”. Their numerical results, using a spectral discretization
in space, illustrate that the CFL condition is not sufficient for stability and that the
time step is limited by non-integer powers (larger than one) of the spatial grid size.

The collection is closed with a paper by Uri Ascher and Kees van den Doel: “Fast
Chaotic Artificial Time Integration”. The authors claim that some faster gradient-
descent methods generate chaotic dynamical systems for the normalized residual
vectors. The fastest practical methods of this family in general appear to be the
chaotic, two-step ones, but, despite their erratic behavior, these methods may also be
used as smoothers, or regularization operators. Besides, their results also highlight
the need for a better theory for these methods.

The meeting has also held a special session honoring Peter Lax.

Carlos A. de Moura
Carlos S. Kubrusly

Rio de Janeiro, Brazil
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Stability of Difference Schemes

Peter D. Lax

Abstract The most powerful and most general method for constructing approx-
imate solutions of hyperbolic partial differential equations with prescribed initial
values is to discretize the space and time variables and solve the resulting finite
system of equations. How to discretize is a subtle matter, as we shall demonstrate.

In this report, some of the proofs are only sketched; details can be found in
Chap. 8 of my monograph “Hyperbolic Partial Differential Equations”, 2006, AMS.

Keywords Hyperbolic PDE’s · Finite difference schemes · Convergence · Stability

One of the seminal observations of the Courant–Friedrichs–Lewy paper of 1928
was that in order for solutions of a difference equation to converge to the solution of
the partial differential equation the difference scheme must use all the information
contained in the initial data that influence the solution. To satisfy this condition,
the ratio of the spatial discretization to the time discretization must be at least as
large as the largest velocity with which signals propagate in solutions of the partial
differential equation. This inequality is called the CFL condition.

I well remember from the early days of computing, when physicists and engi-
neers first undertook to solve numerically initial value problems, their utter astonish-
ment to see the numerical solution blow up because they have unwittingly violated
the CFL condition.

The CFL condition is only a necessary condition for the convergence of differ-
ence schemes. Here is an example: discretize the scalar equation

ut + ux = 0

by replacing the time derivative with a forward difference, and the space derivative
with a symmetric difference. This scheme diverges, no matter how small the time
discretization is compared to the space discretization.

P.D. Lax (�)
Courant Institute of Mathematical Sciences, New York University, New York, USA
e-mail: lax@cims.nyu.edu

C.A. de Moura, C.S. Kubrusly (eds.), The Courant–Friedrichs–Lewy (CFL) Condition,
DOI 10.1007/978-0-8176-8394-8_1, © Springer Science+Business Media New York 2013
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2 P.D. Lax

In this talk, I will report on sufficient conditions for the convergence of various
difference schemes. I shall discuss a class of equations studied by K.O. Friedrichs,
first order symmetric hyperbolic systems of the form

ut =Aux +Buy, (1)

where u(x, y, t) is a vector-valued function, and A and B are real symmetric matri-
ces that may be smooth functions of x and y. The theory of these equations is fairly
straightforward: let u(x, y, t) be a solution in the whole (x, y)-space that dies down
fast as x and y tend to infinity. Take the scalar product of the equation with u and
integrate it over all x and y; we get

∫
(u · ut ) dx dy =

∫
(u ·Aux + u ·Buy)dx dy. (2)

If A and B are constant matrices, the integrand on the right is

d

dx
(u,Au)/2+ d

dy
(u,Bu)/2, (3)

a sum of perfect x and y derivatives; therefore the integral is zero. The integrand
on the left side is the t derivative (1/2)d(u,u)/dt and can be regarded as the t
derivative of

E(t)=
∫

1

2
(u,u)dx dy.

Since the derivative of E(t) is zero, it follows that E(t) is independent of time, the
law of conservation of energy.

When A and B are functions of x and y, the integrand on the right equals the
sum (3) minus

(u,Axu)/2+ (u,Byu)/2,
a quantity bounded by cE(t), c some constant. Therefore, we conclude that
dE(t)/dt ≤ cE(t), which implies that

E(t)≤E(0)ect . (4)

Such an inequality for solutions of hyperbolic equation is called an energy inequal-
ity.

We turn now to two-level explicit difference schemes. We look first at the case of
one space dimension, that is,

ut =Aux. (5)

The difference schemes are of the form

un+1 = Chun, (6)
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where un denotes the values of u at time t and un+1 the values of u at the next time
level t + h, n an integer multiple of h. We take the space discretization to be h, the
same as the time discretization. The operator Ch is a finite sum of the form

Ch =
∑

CjT
j , (7)

where T is translation by h: (T u)(x) = u(x + h), and T j is the j -th power of T .
Since we have chosen the space discretization and time discretization to be equal,
the CFL condition requires that signals for solutions of the differential equation (5)
propagate with speed not greater than 1. Since the signal speeds for solutions of
(5) are the eigenvalues of A, this requires that the eigenvalues of A lie between −1
and 1.

In order for the difference scheme (6)–(7) to be consistent with the differential
equation (5), the coefficients Cj have to satisfy the conditions

∑
Cj = I,

∑
jCj =A. (8)

These conditions are satisfied by

C−1 = (I −A)/2, C1 = (I +A)/2, all other Cj = 0. (8′)

Since the CFL condition requires that the eigenvalues of A be not greater than 1, it
follows that the coefficients Cj in (8) are non-negative. We appeal now to:

Lemma 1 Suppose that the coefficients Cj in the operator Ch in (7) are non-
negative real symmetric matrices that depend smoothly on x = jh. Then the L2-
norm of the operator Ch is less than 1+O(h).

We sketch the proof: abbreviate un as u, u(n+1) as v; then the difference scheme
reads

v = Chu=
∑

CjTju.

Take the scalar product with v:

(v, v)=
∑(

v,CjT
ju
)
.

Since the Cj are non-negative, we can apply the Cauchy–Schwarz inequality:

(
v,CjT

ju
)≤

√
(v,Cjv)

√(
T ju,CjT ju

)
.

Using the arithmetic–geometric mean inequality on the product on the right, we get

(v, v)≤ (1/2)
∑
(v,Cjv)+ (1/2)

∑(
T ju,CjT

ju
)
.

According to the first consistency condition in (8),
∑
Cj = I ; therefore, the first

sum on the right is (v, v)/2. If the coefficients Cj are independent of x, the second
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sum is (u,u), so we get the desired inequality. If the Cj depend on x, it gives rise
to a term O(h)(u,u).

The proof of this lemma is somewhat analogous, though a little trickier than the
energy estimate for solutions of the partial differential equation presented above.

It follows from the lemma that the n-th power of Ch is bounded by (1+O(h))n;
these quantities are uniformly bounded if nh is less than some specified number T .
This proves the stability of the difference scheme. According to the standard the-
ory of difference approximations, this guarantees the convergence of the difference
scheme.

Condition (8) is first order consistency, and it only guarantees that the solution of
the difference scheme differs from the solution of the differential equation by O(h).
For higher order accuracy, we need higher order consistency:

∑
Cj = I,

∑
jCj =A, and

∑
j2Cj =A2. (9)

These conditions are satisfied by the Lax–Wendroff scheme:

C−1 =
(
A2 −A)/2, C0 = I −A2, C1 =

(
A2 +A)/2, (9′)

plus terms of order h. According to the CFL condition, the eigenvalues of A are
less than 1; it follows that the eigenvalues of A2 are less than those of A. If A has
a positive eigenvalue, the corresponding eigenvalue of C−1 is negative; if A has a
negative eigenvalue, the corresponding eigenvalue of C−1 is negative.

More generally it is not hard to show that, except for trivial cases, it is not pos-
sible to satisfy condition (9) by non-negative matrices Cj . Therefore, for second
and higher order schemes, we need a proof of stability different from the proof for
schemes with positive coefficients.

Our starting point is a stability criterion due to von Neumann. We associate with
the difference scheme (6)–(7) its symbol defined as the matrix-valued trigonometric
polynomial

C(s)=
∑

Cje
ijs . (10)

When the coefficients depend on x = hj , so does the symbol C(s, x). The stability
criterion of von Neumann says that if the scheme (6)–(7) is stable, the absolute value
of the eigenvalues of its symbol C(s, x) are not greater than 1.

Sketch of proof In the constant coefficient case, C(s) is independent of x. If we take
the Fourier transform of the difference equation (6), we get

Un+1(s)= C(s)Un(s), (11)

where Un(s) =∑
eijs and similarly for Un+1. We can iterate (11) and obtain the

operator linking the initial value U0 to Un:

Un(s)= C(s)nU0(s).
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Clearly, if for some value of s, C(s) has an eigenvalue greater than 1, the L2-norm
of Un(s) blows up exponentially. This shows that if the von Neumann condition
is violated, the difference scheme is unstable. This argument can be modified for
schemes with variable coefficients.

Von Neumann raised the question whether the stability criterion, possibly some-
what sharpened, is sufficient for stability. For schemes in one space variable, the
answer is yes; here is a sketch of the argument.

The consistency conditions for schemes (8) and (9) in one space variable re-
late combinations of the coefficients Cj to powers of the matrix A in the differential
equation (5). It follows that the natural choice for the coefficients Cj will be polyno-
mials in A and its powers. Since A is a symmetric matrix, the symbol C(s) defined
in (10) is for each s and x a normal matrix. A normal matrix whose eigenvalues are
not greater than 1 in absolute value has norm ≤1; therefore, C∗(s)C(s) ≤ I . From
this one can deduce the stability of the scheme.

We turn now to difference approximations of hyperbolic equations (1) in two
space variables. We write the difference equation as

un+1
k =

∑
cju

n
k+j , (12)

where k = (k1, k2) and j = (j1, j2) are multi-indices, and unk is the value of the
approximate solution at time t = nh and at the lattice point (k1, k2)h. The analogs
of the first order consistency conditions (8) are

∑
C′j = I,

∑
j1Cj =A,

∑
j2Cj = B. (13)

These relations can be satisfied analogously to (9) by setting all Cj equal to zero
except at the four neighboring lattice points. We denote these as CW , CE , CS , CN .
We choose, in analogy with (8′),

CW = 1/2(I/2−A), CE = 1/2(I/2+A),
CS = 1/2(I/2−B), CN = 1/2(I/2+B). (13′)

If the norms of A and B are less than 1/2, all four matrices above are positive. The
argument given in the one dimensional case can be used to prove that this scheme
with positive coefficient is stable.

The domain of dependence of the point (0,0,1) for the difference scheme (13)
is the rectangle |x + y| ≤ 1 and |x − u| ≤ 1. The domain of dependence of the
point (0,0,1) for the differential equation is contained in that rectangle if the norm
of A+ B and A− B does not exceed 1. This shows that the sufficient conditions
|A|< 1/2, |B|< 1/2 are more stringent than the CFL condition. �

One can modify the scheme (13) so that the new scheme is positive under the
CFL conditions

|A+B| ≤ 1, |A−B| ≤ 1.
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We turn now to second order schemes for Eq. (1). A straightforward way of con-
structing such a scheme is to use the Taylor approximation:

u(t + h)= u(t)+ ut (t)h+ utt (t)h2 +O
(
h3),

and then use the differential equation (1) to express ut and utt in terms of space
derivatives. If we then approximate the first and second space derivatives with sym-
metric difference quotients, we get the nine point Lax–Wendroff difference scheme.
The symbol of this scheme,

C(s, r)=
∑

Cj e
i(j1s+j2r),

is

C(s, r) = I −A2(1− cos s)−B2(1− cos r)

− 1/2(AB +BA) sin s sin r + i(A sin s +B sin r). (14)

The von Neumann stability condition is that the eigenvalues of C(s, r) should be
less than 1. But since the matrices A and B do not commute, except in trivial cases,
C(s, r) is no longer a normal matrix, so we cannot conclude that the norm of C(s, r)
is less than 1; in fact, it is not less than 1.

Instead of looking at the norm of C(s, r), Burt Wendroff and the author have
shown that if the matrices A and B have norm less than 1/8, the numerical range
of C(s, r) is contained in the unit circle. We recall that the numerical range of a
matrix M is the set of all complex numbers of the form w ·Mw, w any unit vector
with complex entries. Since the spectrum belongs to the numerical range, it follows
that the scheme with symbol C(s, r) satisfies the von Neumann criterion. The con-
dition on the numerical range is more than the von Neumann condition and has as a
consequence the

Stability Theorem Suppose a difference scheme of form (12) has the following
properties:

(i) The coefficients Cj(x) are twice differentiable functions of x.
(ii) For every s and x, the numerical range of the symbol C(s, x) lies in the unit

circle.

Then the numerical range of the difference operator Ch is less than 1+O(h).

Such an operator is stable; for, according to the Halmos–Pearcy theorem, the
numerical range of Cnj is less than (1+O(h))n, and so the norm of Cnj is less than
twice that.

The key tool used in the proof is this result of Louis Nirenberg and the author:
Let Ph be a difference operator of the form

Ph =
∑

Pj (x)T
j ,
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where the coefficients Pj (x) are twice differentiable functions of x. Suppose that
the symbol of Ph,

P(s, x)=
∑

Pj (x) e
i(j1s+j2r),

is Hermitian and non-negative for all s and x:

P(s, x)≥ 0.

Then the Hermitian part of Ph, RePh = (Ph + P ∗h )/2, satisfies

RePh ≥− constanth.

The proof of this estimate is tricky, as indicated by the requirement that the coeffi-
cients of the scheme be not once but twice differentiable functions.

The results described above hold for any number of space variables, not just two.
I hope that the discussion presented proves the claim that the theory of difference

schemes is much more sophisticated than the theory of differential equations.



Mathematical Intuition: Poincaré, Pólya, Dewey

Reuben Hersh

Abstract Practical calculation of the limit of a sequence often violates the defini-
tion of convergence to a limit as taught in calculus. Together with examples from
Euler, Pólya and Poincaré, this fact shows that in mathematics, as in science and
in everyday life, we are often obligated to use knowledge that is derived, not rigor-
ously or deductively, but simply by making the best use of available information–
plausible reasoning. The “philosophy of mathematical practice” fits into the general
framework of “warranted assertibility”, the pragmatist view of the logic of inquiry
developed by John Dewey.

Keywords Intuition · Induction · Pragmatism · Approximation · Convergence ·
Limits · Knowledge

1 Introduction

In Rio de Janeiro in May 2010, I spoke at a meeting of numerical analysts honor-
ing the 80th anniversary of the famous paper by Courant, Friedrichs, and Lewy. In
order to give a philosophical talk appropriate for hard-core computer-oriented math-
ematicians, I focused on a certain striking paradox that is situated right at the heart
of analysis, both pure and applied. (That paradox was presented, with considerable
mathematical elaboration, in Phil Davis’s excellent article, The Paradox of the Irrel-
evant Beginning, cf. [5].) In order to make this paradox cut as sharply as possible,
I performed a little dialogue, with help from Carlos Motta. With the help of Jody
Azzouni, I used that dialogue again, to introduce this talk in Rome.

To set the stage, recall the notion of a convergent sequence, which is at the heart
of both pure analysis and applied mathematics. In every calculus course, the student
learns that whether a sequence converges to a limit and what that limit is depend
only on the “end” of the sequence—that is, the part that is “very far out”—in the
tail, so to speak, or in the infinite part. Yet, in a specific instance when the limit is

R. Hersh (�)
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, USA
e-mail: rhersh@gmail.com

C.A. de Moura, C.S. Kubrusly (eds.), The Courant–Friedrichs–Lewy (CFL) Condition,
DOI 10.1007/978-0-8176-8394-8_2, © Springer Science+Business Media New York 2013
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10 R. Hersh

actually needed, usually all that is considered is the beginning of the sequence—the
first few terms—the finite part, so to speak. (Even if the calculation is carried out
to a hundred or a thousand iterations, this is still only the first few, compared to the
remaining, neglected, infinite tail.)

In this little drama of mine, the hero is a sincere, well-meaning student, who
has not yet learned to accept life as it really is. A second character is the Success-
ful Mathematician—the Ideal Mathematician’s son-in-law. His mathematics is ec-
umenical: a little pure, a little applied, and a little in-between. He has grants from
federal agencies, a corporation here and there, and a private foundation or two. His
conversation with the Stubborn Student is somewhat reminiscent of a famous con-
versation between his Dad, the Ideal Mathematician, and a philosophy grad student,
who long ago asked, “What is a mathematical proof, really?”

2 A Dialogue

The Successful Mathematician (SM) is accosted by the Stubborn Student (SS) from
his Applied Analysis course.

SS: Sir, do you mind if I ask a stupid question?
SM: Of course not. There is no such thing as a stupid question.
SS: Right. I remember, you said that. So here’s my question. What is the real

definition of “convergence”? Like, convergence of an infinite sequence,
for instance?

SM: Well, I’m sure you already know the answer. The sequence converges to
a limit, L, if it gets within a distance epsilon of L, and stays there, for
any positive epsilon, no matter how small.

SS: Sure, that’s in the book, I know that. But then, what do people mean
when they say, keep iterating till the iteration converges? How does that
work?

SM: Well, it’s obvious, isn’t it? If after a hundred terms your sequence stays
at 3, correct to four decimal places, then the limit is 3.

SS: Right. But how long is it supposed to stay there? For a hundred terms,
for two hundred, for a hundred million terms?

SM: Of course, you wouldn’t go on for a hundred million. That really would
be stupid. Why would you waste time and money like that?

SS: Yes, I see what you mean. But what then? A hundred and ten? Two
hundred? A thousand?

SM: It all depends on how much you care. And how much it is costing, and
how much time it is taking.

SS: All right, that’s what I would do. But when does it converge?
SM: I told you. It converges if it gets within epsilon . . .
SS: Never mind about that. I am supposed to go on computing “until it con-

verges”, so how am I supposed to recognize that “it has converged”?
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SM: When it gets within four decimal points of some particular number and
stays there.

SS: Stays there how long? Till when?
SM: Whatever is reasonable. Use your judgment! It’s just plain common

sense, for Pete’s sake!
SS: But what if it keeps bouncing around within four decimal points and

never gets any closer? You said any epsilon, no matter how small, not
just 0.0001. Or if I keep on long enough, it might finally get bigger than
3, even bigger than 4, way, way out, past the thousandth term.

SM: Maybe this, maybe that. We haven’t got time for all these maybes. Some-
body else is waiting to get on that machine. And your bill from the com-
puting center is getting pretty big.

SS: (mournfully) I guess you’re not going to tell me the answer.
SM: You just don’t get it, do you? Why don’t you go bother that Reuben

Hersh over there, he looks like he has nothing better to do.

SS: Excuse me, Professor Hersh. My name is–
RH: That’s OK. I overheard your conversation with Professor Successful over

there. Have a seat.
SS: Thank you. So, you already know what my question is.
RH: Yes, I do.
SS: So, what is the answer?
RH: He told you the truth. The real definition of convergence is exactly what

he said, with the epsilon in it, the epsilon that is arbitrarily small but
positive.

SS: So then, what does it mean, “go on until the sequence converges, then
stop”?

RH: It’s meaningless. It’s not a precise mathematical statement. As a precise
mathematical statement, it’s meaningless.

SS: So, if it’s meaningless, what does it mean?
RH: He told you what it means. Quit when you can see, when you can be

pretty sure, what the limit must be. That’s what it means.
SS: But that has nothing to do with convergence!
RH: Right.
SS: Convergence only depends on the last part, the end, the infinite part of

the sequence. It has nothing to do with the front part. You can change
the first hundred million terms of the sequence, and that won’t affect
whether it converges, or what the limit is.

RH: Right! Right! Right! You really are an A student.
SS: I know. . . So it all just doesn’t make any sense. You teach us some fancy

definition of convergence, but when you want to compute a number, you
just forget about it and say it converges when common sense, or what-
ever you call it, says something must be the answer. Even though it might
not be the answer at all!

RH: Excellent. I am impressed.
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SS: Stop patronizing me. I’m not a child.
RH: Right. I will stop patronizing you because you are not a child.
SS: You’re still doing it.
RH: It’s a habit. I can’t help it.
SS: Time to break a bad habit.
RH: OK. But seriously, you are absolutely right. I agree with every word you

say.
SS: Yes, and you also agree with every word Professor Successful says.
RH: He was telling the truth, but he couldn’t make you understand.
SS: All right. You make me understand.
RH: It’s like theory and practice. Or the ideal and the actual. Or Heaven and

Earth.
SS: How is that?
RH: The definition of convergence lives in a theoretical world. An ideal

world. Where things can happen as long as we can clearly imagine them.
As long as we can understand and agree on them. Like really being pos-
itive and arbitrarily small. No number we can write down is positive and
arbitrarily small. It has to have some definite size if it is actually a num-
ber. But we can imagine it getting smaller and smaller and smaller while
staying positive, and we can even express that idea in a formal sentence,
so we accept it and work with it. It seems to convey what we want to
mean by converging to a limit. But it’s only an ideal, something we can
imagine, not something we can ever really do.

SS: So you’re saying mathematics is all a big fairy tale, a fiction, it doesn’t
actually exist?

RH: NO! I never said fairy tale or fiction. I said imaginary. Maybe I should
have said consensual. Something we can all agree on and work with
because we all understand it the same way.

SS: That’s cool. We all. All of you. Does that include me?
RH: Sure. Stay in school a few more years. Learn some more. You’ll get into

the club. You’ve got what it takes.
SS: I’m not so sure. I have trouble believing two opposite things at once.
RH: Then how do you get along in daily life? How do you even get out of

bed in the morning?
SS: What are you talking about?
RH: How do you know someone hasn’t left a bear trap by your bedside that

will chop off your foot as soon as you step down?
SS: That’s ridiculous.
RH: It is. But how do you know it is?
SS: Never mind how I know. I just know it’s ridiculous. And so do you.
RH: Exactly. We know stuff, but we don’t always know how we know it. Still,

we do know it.
SS: So you’re saying, we know that what looks like a limit really is a limit,

even though we can’t prove it, or explain it, still we know it.
RH: We know it the same way you know nobody has left a bear trap by your

bedside. You just know it.
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SS: Right.
RH: But it’s still possible that you’re wrong. It is possible that something

ridiculous actually happens. Not likely, not worth worrying about. But
not impossible.

SS: Then math is really just like everything else. What a bummer! I like
math because it’s not like everything else. In math, we know for sure.
We prove things. One and one is two. Pi is irrational. A circle is round,
not square. For sure.

RH: Then why are you upset? Everything is just fine, isn’t it?
SS: Why don’t you admit it? If you don’t have a proof, you just don’t know

if L is the limit or not.
RH: That’s a fair question. So what is the answer?
SS: Because you really want to think you know L is the limit, even if it’s not

true.
RH: Not that it’s not true, just that it might not be true.

Thanks for your kind attention. What is supposed to be the meaning of this perfor-
mance? What am I getting at? In this talk, I am NOT attempting to make a contri-
bution to the “problem of induction”. Therefore, I may be allowed to omit a review
of its 2,500-year literature. I am reporting and discussing what people really do, in
practical convergence calculations, and in the process of mathematical discovery.
I am going into a discussion of practical knowledge in mathematics, as a kind of
real knowledge, even though it is not demonstrative or deductive knowledge. I try
to explain why people must do what they do, in order to accomplish what they are
trying to accomplish. I will conclude by arguing that the right broader context for
the philosophy of mathematical practice is actually the philosophy of pragmatism,
as expounded by John Dewey.

But first of all, just this remarkable fact. What we do when we want actual num-
bers may be totally unjustified, according to our theory and our definition. And even
more remarkable-nobody seems to notice, or to worry about it!

Why is that? Well, the definition of convergence taught in calculus classes, as
developed by those great men Augustin Cauchy and Karl Weierstrass, seems to ac-
tually convey what we want to mean by limit and convergence. It is a great success.
Just look at the glorious edifice of mathematical analysis! On the other hand, in spe-
cific cases, it often is beyond our powers to give a rigorous error estimate, even when
we have an approximation scheme that seems perfectly sound. As in the major prob-
lems of three-dimensional continuum mechanics with realistic nonlinearities, such
as oceanography, weather prediction, stability of large complex structures like big
bridges and airplanes. . . . And even when we could possibly give a rigorous error
estimate, it would often require great expenditure of time and labor. Surely it’s OK
to just use the result of a calculation when it makes itself evident and there’s no
particular reason to expect any hidden difficulty.

In brief, we are virtually compelled by the practicalities to accept the number that
computation seems to give us, even though, by the standards of rigorous logic, there
is still an admitted possibility that we may be mistaken. This computational result
is a kind of mathematical knowledge! It is practical knowledge, knowledge sound
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enough to be the basis of practical decisions about things like designing bridges and
airplanes-matters of life and death.

In short, I am proclaiming that in mathematics, apart from and distinct from
the so-called deductive or demonstrative knowledge, there is also ordinary, fallible
knowledge, of the same sort as our daily knowledge of our physical environment and
our own bodies. “Anything new that we learn about the world involves plausible rea-
soning, which is the only kind of reasoning for which we care in everyday affairs”,
cf. [19]. This sentence of Pólya’s makes an implicit separation between mathemat-
ics and everyday affairs. But nowadays, in many different ways, for many different
kinds of people, mathematics blends into every-day affairs. In these situations, the
dominance of plausible over demonstrative reasoning applies even to mathematics
itself, as in the daily labors of numerical analysts, applied mathematicians, design
engineers. . . . Controlling a rocket trip to the moon is not an exercise in mathemati-
cal rigor. It relies on a lack of malice on the part of that Being referred to by Albert
Einstein as der lieber Gott.

(For fear of misunderstanding, I explain—this is not a confession of belief in a
Supreme Being. It’s just Einstein’s poetic or metaphoric way of saying, Nature is
not an opponent consciously trying to trick us.)

But it’s not only that we have no choice in the matter. It’s also that, to tell the
truth, it seems perfectly reasonable! Believing what the computation tells us is just
what people have been doing all along, and (nearly always) it does seem to be OK.
What’s wrong with that?

This kind of reasoning is sometimes called “plausible”, and sometimes called
“intuitive”. I will say a little more about those two words pretty soon. But I want
to draw your attention very clearly to two glaring facts about this kind of plausible
or intuitive reasoning. First of all, it is pretty much the kind of reasoning that we
are accustomed to in ordinary empirical science, and in technology, and in fact in
everyday thinking, dealing with any kind of practical or realistic problem of human
life. Secondly, it makes no claim to be demonstrative, or deductive, or conclusive,
as is often said to be the essential characteristic of mathematical thinking. We are
face to face with mathematical knowledge that is not different in kind from ordinary
everyday commonplace human knowledge. Fallible! But knowledge, nonetheless!

Never mind the pretend doubt of philosophical skepticism. We are adults, not
infants. Human adults know a lot! How to find their way from bed to breakfast-and
people’s names and faces—and so forth and so on. This is real knowledge. It is not
infallible, not eternal, not heavenly, not Platonic, it is just what daily life depends on,
that’s all. That’s what I mean by ordinary, practical, everyday knowledge. Based not
mainly on rigorous demonstration or deduction, but mainly on experience properly
interpreted. And here we see mathematical knowledge that is of the same ordinary,
everyday kind, based not on infallible deduction, but on fallible, plausible, intuitive
thinking.

Then what justifies it in a logical sense? That is, what fundamental presupposition
about the world, about reality, lies behind our willingness to commit this logical
offense, of believing what isn’t proved?
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I have already quoted the famous saying of Albert Einstein that supplies the key
to unlocking this paradox. My friend Peter Lax supplied the original German, I only
remembered the English translation.

Raffinniert ist der lieber Gott, aber boshaft ist Er nicht.

The Lord God is subtle, but He is not malicious.

Of course, Einstein was speaking as a physicist struggling to unravel the secrets of
Nature. The laws of Nature are not always obvious or simple, they are often subtle.
But we can believe, we must believe, that Nature is not set up to trick us, by a
malicious opponent. God, or Nature, must be playing fair. How do we know that?
We really don’t know it, as a matter of certainty! But we must believe it, if we seek
to understand Nature with any hope of success. And since we do have some success
in that search, our belief that Nature is subtle but not malicious is justified.

This problem of inferring generalizations from specific instances is known in
logic as “the problem of induction”. My purpose is to point out that such general-
izations in fact are made, and must be made, not only in daily life and in empirical
science, but also in mathematics.

That is, in the practice of mathematics also we must believe that we are not
dealing with a malicious opponent who is seeking to trick us. We experiment, we
calculate, we draw diagrams. And eventually, using caution and the experience of
the ages, we see the light. Gauss famously said, “I have my theorems. Now I have
to find my proofs”.

But is it not naïve, for people who have lived through the hideous twentieth cen-
tury, to still hope that God is not malicious? Consider, for example, people who for
thousands of years have lived safely on some atoll in the South Pacific. Today an
unforeseen tsunami drowns them all. Might they not curse God in their last breath?

Here is an extensive quote from Leonhard Euler, by way of George Pólya. Euler
is speaking of a certain beautiful and surprising regularity in the sum of the divisors
of the integers.

This law, which I shall explain in a moment, is in my opinion, so much more
remarkable as it is of such a nature that we can be assured of its truth without
giving it a perfect demonstration. Nevertheless, I shall present such evidence
for it as might be regarded as almost equivalent to a rigorous demonstration. . .
Anybody can satisfy himself of its truth by as many examples as he may wish
to develop. And since I must admit that I am not in a position to give it a
rigorous demonstration, I will justify it by a sufficiently large number of ex-
amples. . . I think these examples are sufficient to discourage anyone from
imagining that it is by mere chance that my rule is in agreement with the
truth. . . The examples that I have just developed will undoubtedly dispel any
qualms which we might have had about the truth of my formula. . . It seems
impossible that the law which has been discovered to hold for 20 terms, for
example, would not be observed in the terms that follow.
(Taken from [19].)
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Observe two things about this quote from Euler. First of all, for him the plausible
reasoning in this example is so irresistible that it leaves no room for doubt. He is
certain that anyone who looks at his examples is bound to agree. Yet secondly, he
strongly regrets his inability to provide a demonstration of the fact, and still hopes
to find one.

But since he is already certain of the truth of his finding, why ask for a demon-
strative proof? The answer is easy, for anyone familiar with mathematical work.
The demonstration would not just affirm the truth of the formula, it would show
why the formula MUST be true. That is the main importance of proof in mathemat-
ics! A plausible argument, relying on examples, analogy and induction, can be very
strong, can carry total conviction. But if it is not demonstrative, it fails to show why
the result MUST be true. That is to say, it fails to show that it is rigidly connected
to established mathematics.

At the head of Chap. V of [19], Pólya placed the following apocryphal quotation,
attributed to “the traditional mathematics professor”:

“When you have satisfied yourself that the theorem is true, you start proving it”.

This faith—that experience is not a trap laid to mislead us—is the unstated ax-
iom. It lets us believe the numbers that come out of our calculations, including the
canned programs that engineers use every day as black boxes. We know that it can
sometimes be false. But even as we keep possible tsunamis in mind, we have no
alternative but to act as if the world makes sense. We must continue to act on the
basis of our experience. (Including, of course, experiences of unexpected disasters.)

Consider this recollection of infantile mathematical research by the famous
physicist Freeman Dyson, who wrote in 2004:

One episode I remember vividly, I don’t know how old I was; I only know
that I was young enough to be put down for an afternoon nap in my crib. . .
I didn’t feel like sleeping, so I spent the time calculating. I added one plus a
half plus a quarter plus an eighth plus a sixteenth and so on, and I discovered
that if you go on adding like this forever you end up with two. Then I tried
adding one plus a third plus a ninth and so on, and discovered that if you go on
adding like this forever you end up with one and a half. Then I tried one plus
a quarter and so on, and ended up with one and a third. So I had discovered
infinite series. I don’t remember talking about this to anybody at the time. It
was just a game I enjoyed playing.

Yes, he knew the limit! How did he know it? Not the way we teach it in high school
(by getting an exact formula for the sum of n terms of a geometric sequence, and
then proving that as n goes to infinity, the difference from the proposed limit be-
comes and remains arbitrarily small.) No, just as when we first show this to tenth-
graders, he saw that the sums follow a simple pattern that clearly is “converging”
to 2. The formal, rigorous proof gives insight into the reason for a fact we have
already seen plainly.

Can we go wrong this way? Certainly we can. Another quote from Euler.
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There are even many properties of the numbers with which we are well ac-
quainted, but which we are not yet able to prove; only observations have led
us to their knowledge. . . , the kind of knowledge which is supported only by
observations and is not yet proved must be carefully distinguished from the
truth; it is gained by induction, as we usually say. Yet we have seen cases in
which mere induction led to error. Therefore, we should take great care not to
accept as true such properties of the numbers which we have discovered by
observation and which are supported by induction alone. Indeed, we should
use such a discovery as an opportunity to investigate more exactly the proper-
ties discovered and to prove or disprove them. (In [19], p. 3.)

Notice how Euler distinguishes between “knowledge” and “truth”! He does say
“knowledge”, not mere “conjecture”.

There is a famous theorem of Littlewood concerning a pair of number-theoretic
functions π(x) and Li(x). All calculation shows that Li(x) is greater than π(x), for
x as large as we can calculate. Yet Littlewood proved that eventually π(x) becomes
greater than Li(x), and not just once, but infinitely often! Yes, mathematical truth
can be very subtle. While trusting it not to be malicious, we must not underesti-
mate its subtlety. (π(x) is the prime counting function and Li(x) is the logarithmic
integral function.)

3 Mathematical Intuition

We are concerned with “the philosophy of mathematical practice”. Mathematical
practice includes studying, teaching and applying mathematics. But I suppose we
have in mind first of all the discovery and creation of mathematics-mathematical
research. We start with Jacques Hadamard, go on to Henri Poincaré, move on to
George Pólya, and then to John Dewey.

Hadamard had a very long life and a very productive career. His most noted
achievement (shared independently by de la Vallée Poussin) was proving the log-
arithmic distribution of the prime numbers. I want to recall a famous remark of
Hadamard’s. “The object of mathematical rigor is to sanction and legitimize the
conquests of intuition, and there never was any other object for it.” (See [20].)

From the viewpoint of standard “philosophy of mathematics”, this is a very sur-
prising, strange remark. Isn’t mathematical rigor-that is, strict deductive reasoning-
the most essential feature of mathematics? And indeed, what can Hadamard even
mean by this word, “intuition”? A word that means one thing to Descartes, another
thing to Kant. I think the philosophers of mathematics have pretty unanimously
chosen to ignore this remark of Hadamard. Yet Hadamard did know a lot of math-
ematics, both rigorous and intuitive. And this remark was quoted approvingly by
both Borel and Pólya. It seems to me that this bewildering remark deserves to be
taken seriously.

Let’s pursue the question a step further, by recalling the famous essay Mathemat-
ical Discovery, written by Hadamard’s teacher, Henri Poincaré, cf. [16]. Poincaré
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was one of the supreme mathematicians of the turn of the nineteenth and twentieth
century. We’ve been hearing his name recently, in connection with his conjecture on
the 3-sphere, just recently proved by Grisha Perelman of St. Petersburg. Poincaré
was not only a great mathematician, he was a brilliant essayist. And in the essay
Mathematical Discovery, Poincaré makes a serious effort to explain mathematical
intuition. He tells the famous story of how he discovered the Fuchsian and Theta-
Fuchsian functions. He had been struggling with the problem unsuccessfully when
he was distracted by being called up for military service:

At this moment I left Caën, where I was then living, to take part in a geological
conference arranged by the School of Mines. The incidents of the journey
made me forget my mathematical work. When we arrived at Coutances, we
got into a bus to go for a drive, and, just as I put my foot on the step the idea
came to me, though nothing in my former thoughts seemed to have prepared
me for it, that the transformations I had used to define Fuchsian functions
were identical with those of non-Euclidean geometry. I made no verification,
and had no time to do so, since I took up the conversation again as soon as I
had sat down in the bus, but I felt absolute certainty at once. When I got back
to Caën, I verified the result at my leisure to satisfy my conscience. (Cf. [16].)

What a perfect example of rigor “merely legitimizing the conquests of intuition”!
How does Poincaré explain it? First of all, he points out that some sort of subcon-
scious thinking must be going on. But if it is subconscious, he presumes it must be
running on somehow at random. How unlikely, then, for it to find one of the very
few good combinations, among the huge number of useless ones! To explain further,
he writes:

If I may be permitted a crude comparison, let us represent the future elements
of our combinations as something resembling Epicurus’ hooked atoms. When
the mind is in complete repose these atoms are immovable; they are, so to
speak, attached to the wall. . . On the other hand, during a period of apparent
repose, but of unconscious work, some of them are detached from the wall
and set in motion. They plough through space in all directions, like a swarm
of gnats, for instance, or, if we prefer a more learned comparison, like the
gaseous molecules in the kinetic theory of gases. Their mutual impacts may
then produce new combinations. (Cf. [16].)

The preliminary conscious work “detached them from the wall”. The mobilized
atoms, he speculated, would therefore be “those from which we might reasonably
expect the desired solution. . . My comparison is very crude, but I cannot well see
how I could explain my thought in any other way”. (Cf. [16].)

What can we make of this picture of “Epicurean hooked atoms”, flying about
somewhere-in the mind? A striking, suggestive image, but one not subject even in
principle to either verification or disproof. Our traditional philosopher remains little
interested. This is fantasy or poetry, not science or philosophy. But this is Poincaré!
He knows what he’s talking about. He has something important to tell us. It’s not
easy to understand, but let’s take him seriously, too.
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To be fair, Poincaré proposed his image of gnats or gas molecules only after
mentioning the possibility that the subconscious is actually more intelligent than
the conscious mind. But this, he said, he was not willing to contemplate. However,
other writers have proposed that the subconscious is less inhibited, more imagina-
tive, more creative than the conscious. (Poincaré’s essay title is sometimes translated
as Mathematical Creation rather than Mathematical Discovery.) David Hilbert sup-
posedly once said of a student who had given up mathematics for poetry, “Good! He
didn’t have enough imagination for mathematics”. Hadamard [12] in 1949 carefully
analyzed the role of the subconscious in mathematical discovery and its connection
with intuition. It is time for contemporary cognitive psychology to pay attention to
Hadamard’s insights. See the reference quoted in the Appendix about current scien-
tific work on the creative power of the subconscious.

Before going on, I want to mention the work of Carlo Cellucci, Emily Grosholz,
and Andrei Rodin. Cellucci strongly favors plausible reasoning, but he rejects intu-
ition. However, the intuition he rejects isn’t what I’m talking about. He’s rejecting
the old myth, of an infallible insight straight into the Transcendental. Of course,
I’m not advocating that outdated myth. Emily Grosholz, on the other hand, takes
intuition very seriously. Her impressive historical study of what she calls “internal
intuition” is in the same direction as my own thinking being presented here. Andrei
Rodin has recently written a remarkable historical study of intuition, see [24]. He
shows that intuition played a central role in Lobachevski’s non-Euclidean geometry,
in Zermelo’s axiomatic set theory, and even in up-to-date category theory. (By the
way, in category theory he could also have cited the standard practice of proof by
“diagram chasing” as a blatant example of intuitive, visual proof.) His exposition
makes the indispensable role of intuition clear and convincing. But his use of the
term “intuition” remains, one might say, “intuitive”, for he offers no definition of
the term, nor even a general description, beyond his specific examples.

4 Pólya

My most helpful authority is George Pólya. I actually induced Pólya to come give
talks in New Mexico, for previously, as a young instructor, I had met him at Stan-
ford where he was an honored and famous professor. Pólya was not of the stature
of Poincaré or Hilbert, but he was still one of the most original, creative, versa-
tile, and influential mathematicians of his generation. His book with Gábor Szegö
[21] made them both famous. It expounds large areas of advanced analytic func-
tion theory by means of a carefully arranged, graded sequence of problems with
hints and solutions. Not only does it teach advanced function theory, it also teaches
problem-solving. And by example, it shows how to teach mathematics by teaching
problem-solving. Moreover, it implies a certain view of the nature of mathematics,
so it is a philosophical work in disguise.

Later, when Pólya wrote his very well-known, influential books on mathematical
heuristic, he admitted that what he was doing could be regarded as having philo-
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sophical content. He writes, “I do not know whether the contents of these four chap-
ters deserve to be called philosophy. If this is philosophy, it is certainly a pretty
low-brow kind of philosophy, more concerned with understanding concrete exam-
ples and the concrete behavior of people than with expounding generalities”. (Cf.
[19], page viii.) Unpretentious as Pólya was, he was still aware of his true stature in
mathematics. I suspect he was also aware of the philosophical depth of his heuristic.
He played it down because, like most mathematicians (I can only think of one or
two exceptions), he disliked controversy and arguing, or competing for the goal of
becoming top dog in some cubbyhole of academia. The Prince of Mathematicians,
Carl Friedrich Gauss, kept his monumental discovery of non-Euclidean geometry
hidden in a desk drawer to avoid stirring up the Bœotians, as he called them, mean-
ing the post-Kantian German philosophy professors of his day. (In ancient Athens,
“Bœotian” was slang for “ignorant country hick”.) Raymond Wilder was a leading
topologist who wrote extensively on mathematics as a culture. He admitted to me
that his writings implicitly challenged both formalism and Platonism. “Why not say
so?” I asked. Because he didn’t relish getting involved in philosophical argument.

Well, how does Pólya’s work on heuristic clarify mathematical intuition? Pólya’s
heuristic is presented as pedagogy. Pólya is showing the novice how to solve prob-
lems. But what is “solving a problem”? In the very first sentence of the preface
to [20], he writes: “Solving a problem means finding a way out of a difficulty, a way
around an obstacle, attaining an aim which was not immediately attainable. Solving
problems is the specific achievement of intelligence, and intelligence is the specific
gift of mankind: solving problems can be regarded as the most characteristically
human activity”. “Problem” is simply another word for any project or enterprise
which one cannot immediately take care of with the tools at hand. In mathematics,
something more than a mere calculation. Showing how to solve problems amounts
to showing how to do research!

Pólya’s exposition is never general and abstract, he always uses a specific math-
ematical problem for the heuristic he wants to teach. His mathematical examples
are always fresh and attractive. And his heuristic methods? First of all, there is what
he calls “induction”. That is, looking at examples, as many as necessary, and using
them to guess a pattern, a generalization. But be careful! Never just believe your
guess! He insists that you must “Guess and test, guess and test”. Along with induc-
tion, there is analogy, and there is making diagrams, graphs and every other kind
of picture, and then reasoning or guessing from the picture. And finally, there’s the
“default hypothesis of chance”—that an observed pattern is mere coincidence.

(Mark Steiner has the distinction among philosophers of paying serious atten-
tion to Pólya. After quoting at length from Pólya’s presentation of Euler’s heuristic
derivation of the sum of a certain infinite series, Steiner comes to an important con-
clusion: In mathematics we can have knowledge without proof! Based on the testi-
mony of mathematicians, he even urges philosophers to pay attention to the question
of mathematical intuition.)

I have two comments about Pólya’s heuristic that I think he would have accepted.
First of all, the methods he is presenting, by means of elementary examples, are
methods he used himself in research. “In fact, my main source was my own re-
search, and my treatment of many an elementary problem mirrors my experience
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with advanced problems”. (Cf. [20], page xi.) In teaching us how to solve prob-
lems, he’s teaching us about mathematical practice: How it works. What is done. To
find out “What is mathematics?” we must simply reinterpret Pólya’s examples as
descriptive rather than pedagogical.

Secondly, with hardly any stretching or adjustment, the heuristic devices that he’s
teaching can be applied for any other kind of problem-solving, far beyond mathe-
matics. He actually says that he is bringing to mathematics the kind of thinking
ordinarily associated with empirical science. But we can go further. These ways of
thinking are associated with every kind of problem-solving, in every area of human
life! Someone needed to get across a river or lake and had the brilliant idea of “a
boat”—whether it was a dugout log or a birch bark canoe. Someone else, needing
shelter from the burning sun in the California Mojave, thought of digging a hole in
the ground. And someone else, under the piercing wind of northern Canada, thought
of making a shelter from blocks of ice.

How does anyone think of such a thing, solve such a concrete problem? By some
kind of analogy with something else he has seen, or perhaps been told about. By
plausible thinking. And often by a sudden insight that arises “from below”. Intu-
itively, you might say.

5 Mental Models

It often happens that a concrete problem, whether in science or in ordinary daily
life, is pressing on the mind, even when the particular materials or objects in ques-
tion are not physically present. You keep on thinking about it, while you’re walking,
and when you’re waking from sleep. Productive thought commonly takes place, in
the absence of the concrete objects or materials being thought about. This think-
ing about something not present to sight or touch can be called “abstract think-
ing”. Abstract thinking about a concrete object. How does that work? How can our
mind/brain think productively about something that’s not there in front of the eyes?
Evidently, it operates on something mental, what we may call a mental image or
representation. In the current literature of cognitive psychology, one talks about “a
mental model”. In this article, I use the term “mental model” to mean a mental
structure built from recollected facts (some expressed in words), along with an en-
semble of sensory memories, perhaps connected, as if by walking around the object
in question, or by imagining the object from underneath or above, even if never ac-
tually seen in these views. A rich complex of connected knowledge and conjecture
based on verbal, visual, kinesthetic, even auditory or olfactory information, but sim-
plified, to exclude irrelevant details. Everything that’s helpful for thinking about the
object of interest when the object isn’t here. Under the pressure of a strong desire or
need to solve a specific problem, we assemble a mental model which the mind-brain
can manipulate or analyze.

Subconscious thinking is not a special peculiarity of mathematical thinking, but a
common, taken-for-granted, part of every-day problem-solving. When we consider
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this commonplace fact, we aren’t tempted to compare it to a swarm of gnats hook-
ing together at random. No, we assume, as a matter of course, that this subconscious
thinking follows rules, methods, habits or pathways, that somehow, to some extent,
correspond to the familiar plausible thinking we do when we’re wide awake. Such
as thinking by analogy or by induction. After all, if it is to be productive, what else
can it do? If it had any better methods, then those better methods would also be
what we would follow in conscious thinking! And subconscious thinking in math-
ematics must be much like subconscious thinking in any other domain, carrying on
plausible reasoning as enunciated by various writers, above all by George Pólya.
This description of subconscious thinking is not far from Michael Polanyi’s “tacit
dimension”.

When applied to everyday problem solving, all this is rather obvious, perhaps
even banal. My goal is to clarify mathematical intuition, in the sense of Hadamard
and Poincaré. “Intuition” in the sense of Hadamard and Poincaré is a fallible psycho-
logical experience that has to be accounted for in any realistic philosophy of math-
ematics. It simply means guesses or insights attained by plausible reasoning, either
fully conscious or partly subconscious. In this sense, it is a specific phenomenon
of common experience. It has nothing to do with the ancient mystical myth of an
intuition that surpasses logic by making a direct connection to the Transcendental.

The term “abstract thinking” is commonplace in talk about mathematics. The
triangle, the main subject of Euclidean geometry, is an abstraction, even though it’s
idealized from visible triangles on the blackboard. Thinking of a physical object
in its absence, like a stream to be crossed or a boat to be imagined and then built,
is already “abstract” thinking, and the word “abstract” connects us to the abstract
objects of mathematics.

Let me be as clear and simple as I can be about the connection. After we have
some practice drawing triangles, we can think about triangles, we discover proper-
ties of triangles. We do this by reasoning about mental images, as well as images
on paper. This is already abstract thinking. When we go on to regular polygons
of arbitrarily many sides, we have made another departure. Eventually, we think
of the triangle as a 2-simplex, and abstract from the triangle to the n-simplex. For
n = 3 this is just the tetrahedron, but for n = 4, 5, or 6, it is something never yet
seen by human eye. Yet these higher simplexes also can become familiar and, as it
were, concrete-seeming. If we devote our waking lives to thinking about them, then
we have some kind of “mental model” of them. Having this mental model, we can
access it, and thereby we can reason intuitively-have intuitive insights-by which I
mean simply insights not based on consciously known reasoning. An “intuition” is
then simply a belief (possibly mistaken!) arising from internal inspection of a mental
image or representation—a “model”. It may be assisted by subconscious plausible
reasoning, based on the availability of that mental image. We do this in practical
life. We do it in empirical science, and in mathematics. In empirical science and
ordinary life, the image may stand for either an actual object, a physical entity, or a
potential one that could be realized physically. In mathematics, our mental model is
sometimes idealized from a physical object-for example, from a collection of iden-
tical coins or buttons when we’re thinking about arithmetic. But in mathematics we
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also may possess a mental model with no physical counterpart. For example, it is
generally believed that Bill Thurston’s famous conjectures on the classification of
four-manifolds were achieved by an exceptional ability, on the part of Thurston, to
think intuitively in the fourth dimension. Perhaps Grisha Perelman was also guided
by some four-dimensional intuition, in his arduous arguments and calculations to
prove the Thurston program.

To summarize, mathematical intuition is an application of conscious or subcon-
scious heuristic thinking of the same kind that is used every day in ordinary life by
ordinary people, as well as in empirical science by scientists. This has been said be-
fore, by both Hadamard and Pólya. In fact, this position is similar to Kurt Gödel’s,
who famously wrote, “I don’t see any reason why we should have less confidence
in this kind of perception, i.e., in mathematical intuition, than in sense perception”.
Why, indeed? After all, both are fallible, but both are plausible, and must be based
on plausible reasoning.

For Gödel, however, as for every writer in the dominant philosophy of mathe-
matics, intuition is called in only to justify the axioms. Once the axioms are written
down, the role of mathematical intuition is strictly limited to “heuristic”—to formu-
lating conjectures. These await legitimation by deductive proof, for only deductive
proof can establish “certainty”. Indeed, this was stated as firmly by Pólya as by any
analytic philosopher. But what is meant by “mathematical certainty”? If it simply
means deductive proof, this statement is a mere circular truism. However, as I meant
to suggest by the little dialog at the beginning of this paper, there is also practical
certainty, even within mathematics! We are certain of many things in ordinary daily
life, without deductive proof, and this is also the case in mathematics itself. Prac-
tical certainty is a belief strong enough to lead to serious practical decisions and
actions. For example, we stake our lives on the numerical values that went into the
engineering design of an Airbus or the Golden Gate Bridge. Mainstream philoso-
phy of mathematics does not recognize such practical certainty. Nevertheless, it is
an undeniable fact of life.

It is a fact of life not only in applied mathematics but also in pure mathematics.
For example, the familiar picture of the Mandelbrot set, a very famous bit of re-
cent pure mathematics, is generated by a machine computation. By definition, any
particular point in the complex plane is inside the Mandelbrot set if a certain as-
sociated iteration stays bounded. If that iteration at some stage produces a number
with absolute value greater than two, then, from a known theorem, we can conclude
that the iteration goes to infinity, and the parameter point in question is outside the
Mandelbrot set. What if the point is inside the Mandelbrot set? No finite number
of iterations in itself can guarantee that the iteration will never go beyond absolute
value 2. If we do eventually decide that it looks like it will stay bounded, we may be
right, but we are still cheating. This decision is opportunistic and unavoidable, just
as in an ordinary calculation about turbulent flow.

Computation (numerics) is accepted by purists only as a source of conjectures
awaiting rigorous proof. However, from the pragmatic, non-purist viewpoint, if nu-
merics is our guide to action, then it is in effect a source of knowledge. Dewey called
it “warranted assertibility”. (Possibly even a “truth”. A “truth” that remains open to
possible reconsideration.)
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Fig. 1 400 million polynomial roots

Another example from pure mathematics appeared on John Baez’s blog ([1])
where it is credited to Sam Derbyshire. His pictures plot the location in the complex
plane of the roots of all polynomials of degree 24 with coefficients plus one or
minus one. The qualitative features of these pictures are absolutely convincing—
i.e., impossible to disbelieve. Baez wrote, “That’s 224 polynomials, and about 24×
224 roots—or about 400 million roots! It took Mathematica 4 days to generate the
coordinates of the roots, producing about 5 gigabytes of data”. (Figure 1 shows the
part of the plot in the first quadrant, for complex roots with non-negative real and
imaginary parts.)

There is more information in this picture than can even be formulated as conjec-
tures, let alone seriously attacked with rigor. Since indeed we cannot help believing
them (perhaps only believing with 99.999 % credence) then (pragmatically) we give
them “warranted assertibility”, just like my belief that I can walk out my door with-
out encountering sudden death in one form or another. The distinction between rig-
orous math and plausible math, pure math and applied math, etc., becomes blurred.
It is still visible, certainly, but not so sharp. It’s a little fuzzy. Purely computational
results in pure mathematics, when backed up by sophisticated checking against a
relevant theory, have a factual status similar to that of accepted facts from empirical
science. The distinction between what is taken to be “known”, and what is set aside
as merely guessed or “conjectured,” is not so cut and dried as the usual discussions
claim to believe.
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6 Mental Models Subject to Social Control

“Plausible” or “heuristic” thinking is applied, either consciously or subconsciously,
to mental models. These mental models may correspond to tangible or visible phys-
ical objects in ordinary life and empirical science. Or they may not correspond to
any such things, but may be pure mental representations, as in much of contempo-
rary analysis, algebra, and even geometry. By pure mental models I mean models
not obtained directly by idealization of visual or other sensual experience.

But what controls these mental models? If they have no physical counterpart,
what keeps them from being wildly idiosyncratic and incommunicable? What we
have omitted up to this point, and what is the crux of the matter: mathematical im-
ages are not private, individual entities. From the origin of mathematics in bartering,
buying and selling, or in building the Parthenon and the Pyramids, this subject has
always been a social, an “inter-subjective” activity. Its advances and conquests have
always been validated, corrected and absorbed in a social context-first of all, in the
classroom. Mathematicians can and must talk to each other about their ideas. One
way or the other, they do communicate, share and compare their conceptions of
mathematical entities, which means precisely these models, these images and rep-
resentations I have been describing. Discrepancies are recognized and worked out,
either by correcting errors, reconciling differences, or splitting apart into different,
independent pathways. Appropriate terminology and symbols are created as needed.

Mathematics depends on a mutually acknowledging group of competent prac-
titioners, whose consensus decides at any time what is regarded as correct or in-
correct, complete or incomplete. That is how it always worked, and that is how it
works today. This was made very clear by the elaborate process in which Perel-
man’s proposed proof of the Thurston program (including the Poincaré conjecture)
was vetted, examined, discussed, criticized, and finally accepted by the “Ricci flow
community”, and then by its friends in the wider communities of differential geom-
etry and low-dimensional topology, and then by the prize committees of the Fields
Medal and the Clay Foundation.

Thus, when we speak of a mathematical concept, we speak not of a single iso-
lated mental image, but rather of a family of mutually correcting mental images.
They are privately owned, but publicly checked, examined, corrected, and accepted
or rejected. This is the role of the mathematical research community, how it in-
doctrinates and certifies new members, how it reviews, accepts or rejects proposed
publication, how it chooses directions of research to follow and develop, or to ig-
nore and allow to die. All these social activities are based on a necessary condition:
that the individual members have mental models that fit together, that yield the same
answers to test questions. A new branch of mathematics is established when consen-
sus is reached about the possible test questions and their answers. That collection
of possible questions and answers (not necessarily explicit) becomes the means of
accepting or rejecting proposed new members.

If two or three mathematicians do more than merely communicate about some
mathematical topic, but actually collaborate to dig up new information and under-
standing about it, then the matching of their mental models must be even closer.
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They may need to establish a congruence between their subconscious thinking about
it as well as their conscious thinking. This can be manifested when they are working
together, and one speaks the very thought that the partner was about to speak.

And to the question
“What is mathematics?”

the answer is
“It is socially validated reasoning about these
mutually congruent mental models”.

What makes mathematics possible? It is our ability to create mental models which
are “precise”, meaning simply that they are part of a shared family of mutually
congruent models. In particular, such an image as a line segment, or two intersecting
line segments, and so on. Or the image of a collection of mutually interchangeable
identical objects (ideal coins or buttons). And so on. To understand better how that
ability exists, both psychologically and neurophysiologically, is a worthy goal for
empirical science. The current interactive flowering of developmental psychology,
language acquisition, and cognitive neuroscience shows that this hope is not without
substance. (See, e.g., [2, 6, 13, 14, 26, 27].)

The existence of mathematics shows that the human mind is capable of creat-
ing, refining, and sharing such precise concepts, which admit of reasoning that can
be shared, mutually checked, and confirmed or rejected. There are great variations
in the vividness, completeness, and connectivity of different mental images of the
“same” mathematical entity as held by different mathematicians. And also great
variations in their ability to concentrate on that image and squeeze out all of its hid-
den information. Recall that well-known mathematician, Sir Isaac Newton. When
asked how he made his discoveries in mathematics and physics, he answered sim-
ply, “By keeping the problem constantly before my mind, until the light gradually
dawns”. Indeed, neither meals nor sleep were allowed to interrupt Newton’s con-
centration on the problem. Mathematicians are notoriously absent-minded. Their
concentration, which outsiders call “absent-mindedness”, is just the open secret of
mathematical success.

Their reasoning is qualitatively the same as the reasoning carried out by a hunter
tracking a deer in the Appalachian woodland a thousand years ago. “If the deer went
to the right, I would see a hoof print here. But I don’t see it. There’s only one other
way he could have gone. So he must have gone to the left”. Concrete deductive
reasoning, which is the basis for abstract deductive reasoning.

To sum up! I have drawn a picture of mathematical reasoning which claims to
make sense of intuition according to Hadamard and Poincaré, and which interprets
Pólya’s heuristic as a description of ordinary practical reason, applied to the abstract
situations and problems of mathematics, working on mental models in the same way
that ordinary practical reasoning in absentia works on a mental model. (We may
assist our mental images by creating images on paper-drawing pictures-that to some
extent capture crucial features of the mental images.)



Mathematical Intuition: Poincaré, Pólya, Dewey 27

7 Dewey and Pragmatism

Before bringing in John Dewey, the third name promised at the beginning, I must
first mention Dewey’s precursor in American pragmatism, Charles Sanders Peirce,
for Peirce was also a precursor to Pólya. To deduction and induction, Peirce added
a third logical operation, “abduction”, something rather close to Pólya’s “intelligent
guessing”.

The philosophy of mathematics as practiced in many articles and books is a thing
unto itself, hardly connected either to living mathematics or to general philoso-
phy. But how can it be claimed that the nature of mathematics is unrelated to the
general question of human knowledge? There has to be a fit between your beliefs
about mathematics and your beliefs about science and about the mind. I claim that
Dewey’s pragmatism offers the right philosophical context for the philosophy of
mathematical practice to fit into. I am thinking especially of Logic—the Theory of
Inquiry. For Dewey, “inquiry” is conceived very broadly and inclusively. It is “the
controlled or directed transformation of an indeterminate situation into one that is
so determinate in its constituent distinctions and relations as to convert the elements
of the original situation into a unified whole”. So broadly understood, inquiry is one
of the primary attributes of our species. Only because of that trait have we survived,
after we climbed down from the trees. I cannot help comparing Dewey’s defini-
tion of inquiry with Pólya’s definition of problem solving. It seems to me they are
very much pointing in the same direction, taking us down the same track. With the
conspicuous difference that, unlike Dewey, Pólya is concise and memorable.

Dewey makes a radical departure from standard traditional philosophy (following
on from his predecessors Peirce and William James, and his contemporary George
Herbert Mead). He does not throw away the concept of truth, but he gives up the
criterion of truthfulness, as the judge of useful or productive thinking. Immanuel
Kant made clear once and for all that while we may know the truth, we cannot know
for certain that we do know it. We must perforce make the best of both demonstra-
tive and plausible reasoning. This seems rather close to “warranted assertibility”, as
Dewey chooses to call it. But Pólya or Poincaré are merely talking about mathemat-
ical thinking, Dewey is talking about human life itself.

What about deductive thinking? From Dewey’s perspective of “warranted as-
sertibility”, deductive proof is not a unique, isolated mode of knowledge. A hunter
tracking a deer in the North American woodland a thousand years ago concluded,
“So it must have gone to the left”. Concrete deductive reasoning, the necessary basis
of theoretical deductive reasoning. And it never brings certainty, simply because any
particular deductive proof is a proof in practice, not in principle. Proof in practice is
a human artifact, and so it can’t help leaving some room for possible question, even
possible error. (And that remains true of machine proof, whether by analog, digital,
or quantum computer. What changes is the magnitude of the remaining possible er-
ror and doubt, which can never vanish finally.) In this way, we take our leave, once
and for all, of the Platonic ideal of knowledge-indubitable and unchanging-in favor,
one might say, of an Aristotelian view, a scientific and empirical one. And while de-
ductive proof becomes human and not divine or infallible, non-deductive plausible
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reasoning and intuition receive their due as a source of knowledge in mathematics,
just as in every other part of human life. Dewey’s breadth of vision—seeing philoso-
phy always in the context of experience, that is to say, of humanity at large—brings
a pleasant breath of fresh air into this stuffy room.

Nicholas Rescher writes in [23]:

The need for understanding, for “knowing one’s way about”, is one of the
most fundamental demands of the human condition. . . Once the ball is set
rolling, it keeps on going under its own momentum-far beyond the limits of
strictly practical necessity. . . The discomfort of unknowing is a natural as-
pect of human sensibility. To be ignorant of what goes on about us is almost
physically painful for us. . . The requirement for information, for cognitive
orientation within our environment, is as pressing a human need as for food
itself.

The need for understanding is often met by a story of some kind. In our scientific
age, we expect a story built on a sophisticated experimental-theoretical method-
ology. In earlier times, no such methodology was available, and a story might be
invented in terms of gods or spirits or ancestors. In inventing such explanations,
whether in what we now call mythology or what we now call science, people have
always been guided by a second fundamental drive or need. Rescher does not men-
tion it, but Dewey does not leave it out. That is the need to impart form, beauty,
appealing shape or symmetry to our creations, whether they be straw baskets, clay
pots, wooden spears and shields, or geometrical figures and algebraic calculations.
In Art as Experience, Dewey shows that the esthetic, the concern for pleasing form,
for symmetry and balance, is also an inherent universal aspect of humanity. In math-
ematics, this is no less a universal factor than the problem-solving drive. In Math-
ematical Discovery, Poincaré takes great pains to emphasize the key role of es-
thetic preference in the development of mathematics. We prefer the attractive look-
ing problems to work on, we strive for diagrams and graphs that are graceful and
pleasing. Every mathematician who has talked about the nature of mathematics has
portrayed it as above all an art form. So this is a second aspect of pragmatism that
sheds light on mathematical practice.

Rescher’s careful development omits mathematical knowledge and activity. And
Dewey himself doesn’t seem to have been deeply interested in the philosophy of
mathematics, although there are interesting pages about mathematics in Logic, as
well as in his earlier books The Quest for Certainty and The Psychology of Number.
He may have been somewhat influenced by the prevalent view of philosophy of
mathematics as an enclave of specialists, fenced off both from the rest of philosophy
and from mathematics itself.

But if we take these pragmatist remarks of Rescher’s seriously and compare them
to what mathematicians do, we find a remarkably good fit. Just as people living in
the woodland just naturally want to know and find out about all the stuff they see
growing—what makes it grow, what makes it die, what you can do with it to make
a canoe or a tent—so people who get into the world of numbers, or the world of
triangles and circles, just naturally want to know how it all fits together, and how it
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can be stretched and pulled this way or that. “Guess and test”, is the way George
Pólya put it. “Proofs and refutations” was the phrase used by another mathemati-
cally trained Hungarian philosopher, following up an investigation started by Pólya.
Whichever way you want to put it, it is nothing more or less than the exploration
of the mathematical environment, which we create and expand as we explore it. We
are manifesting in the conceptual realm one of the characteristic behaviors of homo
sapiens.

Even though we lack claws or teeth to match beasts of prey, or fleetness to
overtake the deer, or heavy fur or a thick shell, we long ago adapted to virtually
every environment on Earth. We invented swimming, paddling and sailing, cook-
ing and brewing and baking and preserving, and we expanded our social groups
from families to clans to tribes to kingdoms to empires. All this by “inquiry”, or
by problem-solving. Dewey shows that this inquiry is an innate specific drive or
need of our species. It was manifested when, motivated by practical concerns, we
invented counting and the drawing of triangles. That same drive, to find projects,
puzzles, and directions for growth, to make distinctions and connections, and then
again make new distinctions and new connections, has resulted in the Empire of
mathematics we inhabit today.

Acknowledgements In this work, I benefited from suggestions and criticisms by Carlo Cellucci,
Richard Epstein, Russell Goodman, Cleve Moler, Peter Lax, Ulf Persson, Vera John-Steiner, and
members of the study group on mathematical thinking in Santa Fe, New Mexico.

Appendix

Ap Dijksterhuis and Teun Meurs, Where creativity resides: the generative power
of unconscious thought, Social Psychology Program, University of Amsterdam,
Roetersstraat 15, 1018 WB Amsterdam, The Netherlands, 2004, 2005.

Abstract In three experiments, the relation between different modes of thought
and the generation of “creative” and original ideas was investigated. Participants
were asked to generate items according to a specific instruction (e.g., generate
place names starting with an “A”). They either did so immediately after receiving
the instruction, or after a few minutes of conscious thought, or after a few min-
utes of distraction during which “unconscious thought” was hypothesized to take
place. Throughout the experiments, the items participants listed under “unconscious
thought” conditions were more original. It was concluded that whereas conscious
thought may be focused and convergent, unconscious thought may be more associa-
tive and divergent.
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Three-Dimensional Plasma Arc Simulation
Using Resistive MHD

Rolf Jeltsch and Harish Kumar

Abstract We propose a model for simulating the real gas, high current plasma arc in
three dimensions based on the equations of resistive MHD. These model equations
are discretized using Runge–Kutta Discontinuous Galerkin (RKDG) methods. The
Nektar code is used for the simulation which is extended to include Runge–Kutta
time stepping, accurate Riemann solvers, and real gas data. The model is then shown
to be suitable for simulating a plasma arc by using it to generate a high current
plasma arc. Furthermore, the model is used to investigate the effects of the external
magnetic field on the arc. In particular, it is shown that the external magnetic field
forces the plasma arc to rotate.

Keywords Plasma arc · Resistive Magnetohydrodynamics (MHD) · Runge–Kutta
Discontinuous Galerkin (RKDG) methods

1 Introduction

A circuit breaker is an electrical switch designed to protect electrical circuits from
the damage that can be caused by high fault current or voltage fluctuations. Once a
circuit breaker detects a fault, contacts within the circuit breaker open to interrupt
the circuit. When the fault current is interrupted, a plasma arc is generated. This arc
must be cooled, and extinguished in a controlled way, to protect connected circuits
and the device itself. Hence, plasma arcs provide a safe way of diffusing the energy
of fault current. Consequently, the study of the arc behavior is of great importance
to the power industry.

Many physical phenomena occur during interruption of fault current in the cir-
cuit breaker, e.g., movement of contacts, pressure build up, radiative transfer, con-
vection, heat conduction, melting of contact material, magnetic and electric effects.
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Due to the presence of these wide ranging phenomena, simulation of plasma arc is
a difficult task. To overcome these difficulties, extensive approximations related to
the geometry, description of arc movements, and the influence of magnetic fields on
the plasma arc are made. Several authors propose models for the simulation of the
plasma arc. In [1], authors present a three-dimensional model for arc simulations at
100 A current. In [2], effects of the external magnetic fields and the gas materials
on a three-dimensional high current arc is simulated. However, the position of the
arc root stays the same during temporal evolution and an external magnetic field
is imposed, not calculated. In [3] and [4], the external magnetic field is calculated
using Biot–Savart law, and the arc root is not fixed.

The mathematical models proposed in [1–4] are based on Navier–Stokes equa-
tions for fluid flow and Maxwell’s equations for the electromagnetism which are
solved simultaneously. They are coupled by adding the source terms in momen-
tum balance due to Lorentz force and Joule heating in energy balance equation.
These models, although suitable for small magnetic Reynolds number simulations,
are highly unstable for large magnetic Reynolds number simulations.

In this work, we are interested in developing a mathematical model for a plasma
arc with very high currents (100–200 kA). At these high currents, very high tem-
peratures are expected. This gives rise to a high magnetic Reynolds number (in
particular, close to the contacts). Consequently, we consider a model based on the
equation of resistive magnetohydrodynamics (MHD). We believe that this is the first
time a model based on the resistive MHD has been used to simulate a plasma arc in
three dimensions (see [5–7]).

The equations of resistive magnetohydrodynamics (MHD) govern the evolution
of a quasi-neutral, conductive fluid and the magnetic field within it, neglecting the
magnetization of individual particles, the Hall current, and the time rate of change
of the electric field in Maxwell’s equations. The complete details about these equa-
tions can be found in [8]. Numerical discretization of these equations is a compli-
cated task due to the presence of nonlinearities in the convection flux. In addition to
these difficulties, for the plasma arc simulations we need to consider a complicated
geometry, real gas data for physical parameters, and mixed boundary conditions.

We use Runge–Kutta Discontinuous Galerkin (RKDG) methods for the dis-
cretization of MHD equations. Discontinuous Galerkin (DG) methods were first
introduced by Hill and Reed in [9] for the neutron transport equations. These meth-
ods were then generalized for systems of hyperbolic conservation laws by Cock-
burn, Shu and co-workers (see [10]). In DG methods, the solution in space is ap-
proximated using piecewise polynomials on each element. Exact or approximate
Riemann solvers from finite volume methods are used to compute the numerical
fluxes between elements. Due to the assumed discontinuity of the solution at ele-
ment interfaces, DG methods can easily handle adaptive strategies and can be easily
parallelized.

To simulate a plasma arc in a circuit breaker, we proceed as follows:

1. First, we assume that the domain is filled with hot gas. An arc is imposed between
the contacts by specifying appropriate initial and boundary conditions.
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2. This initial arc is then evolved till a steady state is reached. The principle idea
is that with time, gas will radiate, which will result in temperature reduction
everywhere except where gas is heated by the current in the arc. The resulting
solution is now considered as an actual arc.

3. We then apply the external magnetic field by suitably modifying the magnetic
field and the boundary conditions.

4. We show that using an appropriate external magnetic field it is possible to ma-
nipulate the arc. In particular, we show that the external magnetic field can be
used to force the arc to rotate.

The article is organized as follows: In Section 2, we present the model equations
of resistive MHD in non-dimensional variables. In Section 3, RKDG methods for
resistive MHD equations in three dimensions are described. We present the varia-
tional formulation using a model equation. We then describe the three-dimensional
basis functions for different types of elements. In Section 4, we first present initial
and boundary conditions for arc generations and discuss the simulation results. We
then investigate the effect of external magnetic field on the arc.

2 Equations of Resistive MHD

For non-dimensional conservative variables, the resistive MHD equations are

∂ρ

∂t
+∇ · (ρv) = 0, (1a)

∂(ρv)
∂t

+∇ ·
(
ρvv−BB+

(
p+ 1

2
|B|2

)
I− 1

Re
Π

)
= 0, (1b)

∂B
∂t
+∇ ×

(
v×B+ 1

Sr
(∇ ×B)

)
= 0, (1c)

∂E

∂t
+∇ ·

(
(E + p)v+

(
1

2
|B|2I−BB

)
· v

− 1

Re
Π · v+ 1

Sr

(
B · ∇B−∇

(
1

2
|B|2

))
− 1

Gr
∇T

)
= ST 4 (1d)

∇ ·B = 0, (1e)

with the equation of state for energy

E = p

γ − 1
+ 1

2
ρ|v|2 + 1

2
|B|2, (2)

and the stress tensor

Π = ν(∇v+ (∇v)�
)− ν 2

3
(∇ · v)I. (3)
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Here ρ is the density, v is the velocity, p is the pressure, B is the magnetic field, E is
the total energy, and T is the temperature of the plasma. Equation (1a) is the equation
for the mass conservation. Equations (1b)–(1d) are equations of balance law for the
momentum, the magnetic field, and the total energy, respectively. Equation (1e) is
the divergence free condition for the magnetic field, representing non-existence of
magnetic monopoles.

The non-dimensionalization was carried out using the reference length L0, the
reference pressure P0, and the reference temperature T0. Using these parameters,
we use gas data to calculate the reference density ρ0 at temperature T0 and pressure
P0. Furthermore, the reference velocity is calculated using V0 = √P0/ρ0 and the
reference magnetic field is calculated using B0 = √P0μ0, where μ0 is magnetic
permeability. The non-dimensional parameters appearing in the above equations are
Reynolds number Re = ρ0V0L0

ν
, Lundquist number Sr = μ0V0L0

η
, Prandlt number

Gr = ρ0V0L0R0
κ

, and scaled Stefan’s radiation constant S = sL0T
4
0

V0P0
. Here ν is viscos-

ity of the fluid, η (= 1/σ) is the resistivity of fluid (σ is the conductivity of fluid),
κ is the heat diffusion constant, R0 is the gas constant at temperature T0, and γ is
the ratio of specific heats. In general, all these quantities depend on the pressure and
temperature. However, we ignore their dependence on pressure. This is due to the
negligible variation in these values due to the pressure change when compared to
the variation due to the temperature change. Also, s is Stefan’s radiation constant.

3 RKDG Methods for Resistive MHD

In this section, we present spatial and temporal discretization of the MHD equations
(1a)–(1e). The spatial discretization is based on DG methods. Note that it is enough
to consider DG methods for the scalar advection–diffusion equation,

∂u

∂t
+

∑
1≤i≤n

∂

∂xi

(
fi(u)−

∑
i≤j≤n

aij
∂

∂xj
u

)
= 0, (4)

as we can apply similar spatial discretization to each component of (1a)–(1e). In (4),
fi is convection flux, aij are diffusion coefficients with the condition that the matrix
(aij )ij is symmetric and semi-positive definite, so there exists a symmetric matrix
(bij ) such that

aij =
∑

1≤l≤d
bilblj .
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3.1 Variational Formulation

Following [10], we introduce an auxiliary variable ql =∑
1≤j≤n blj ∂u∂xj and rewrite

(4) as

∂u

∂t
+

∑
1≤i≤n

∂

∂xi

(
fi(u)−

∑
i≤l≤n

bilql

)
= 0, (5a)

ql −
∑

1≤j≤n

∂glj

∂xj
= 0, for l = 1, . . . , n, (5b)

where glj =
∫ u

0 blj ds. We set w = (u, q1, q2, . . . , q
�
n ), and introduce the flux,

hi (w)=
(
fi(u)−∑

1≤l≤n ailql,−g1i , . . . ,−gni
)�
. (6)

Multiplying with a test function and integrating by parts results in
∫
K

∂u

∂t
vu dx −

∑
1≤i≤n

∫
K

hiu
∂

∂xi
vu dx +

∫
∂K

ĥu(w,n)vh dx = 0, (7a)

∫
K

qlvql dx −
∑

1≤j≤n

∫
K

hjql
∂

∂xj
vql dx +

∫
∂K

ĥql (w,n)vh dx = 0. (7b)

This is the variational formulation which we need to approximate. The flux ĥ(w,n)
is divided into two parts,

ĥ= ĥconv + ĥdiff,

where convective flux is given by

ĥconv
(
w−,w+,n

)= (
f̂
(
u+, u−,n

)
,0
)�
.

Here f̂ is calculated using exact or approximated Riemann solvers. In these simu-
lations, we use local Lax–Friedrichs numerical flux given by

fLF
(
u−, u+

)= 1

2

(
f
(
u−

)+ f (u+))− maxi (max(|λi(u−)|, |λi(u+)|))
2

(
u+ − u−),

(8)
where λi are the eigenvalues of the Jacobian of the MHD convection flux f . We use
Bassi–Rebay flux (see [11]) to approximate the diffusion flux ĥdiff, i.e., the averages
of diffusion fluxes across the interface.

3.2 Three-Dimensional Basis Functions

The RKDG method we use is implemented in the Nektar code, developed by Karni-
adakis et al. (see [12–14]). The original code has been extended to include Runge–
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Table 1 Local collapsed coordinates for three-dimensional elements

Element type Upper limits Local collapsed coordinates

Hexahedron −1≤ ξ1, ξ2, ξ3 ≤ 1 ξ1 ξ2 ξ3

Prism ξ1 ≤ 1, ξ2 + ξ3 ≤ 0
with
−1≤ ξ1, ξ2, ξ3 ≤ 1

η̄1 = 2(1+ξ1)
1−ξ2 − 1 ξ2 ξ3

Pyramid ξ1 + ξ3, ξ2 + ξ3 ≤ 0
with
−1≤ ξ1, ξ2, ξ3 ≤ 1

η̄1 = 2(1+ξ1)
1−ξ2 − 1 η2 = 2(1+ξ2)

1−ξ2 − 1 η3 = ξ3

Tetrahedron ξ1 + ξ2 + ξ3 ≤−1
with
−1≤ ξ1, ξ2, ξ3 ≤ 1

η1 = 2(1+ξ1)−ξ2−ξ3 − 1 η2 = 2(1+ξ2)
1−ξ2 − 1 η3 = ξ3

Kutta time stepping, slope limiters, and accurate Riemann solvers, among other fea-
tures (see [15]). In the DG discretization, functions are approximated by using basis
functions

f =
∑
i

aiφi, (9)

where the basis functions φi ’s are simple functions, e.g., polynomials. These func-
tions are chosen in such a way that the whole algorithm is computationally efficient.
The set of polynomial basis functions used in Nektar were proposed by Dubiner in
[16] for two dimensions and were extended to three dimensions in [12]. They are
based on the tensor product of one-dimensional basis functions which are derived
using Jacobi polynomials. Here we describe three-dimensional basis functions.

The one-dimensional basis functions are defined on bounded intervals; therefore,
an implicit assumption on the tensor product basis functions for higher dimension
is that coordinates in two and three-dimensional regions are bounded by constant
limits. But in two or three dimensions, that is not true in general, e.g., for a trian-
gle. To overcome this difficulty, we define a collapsed coordinate system for three
dimensions which maps elements without this property (Tetrahedral) to the element
(Hexahedral) bounded by constant limits. These coordinates for various types of
elements are given in Table 1.

Under these transformed coordinates, three-dimensional elements are bounded
by constant limits. For example, a tetrahedron T̂3 which, in Cartesian coordinates,
is given by

T̂3 = {−1≤ ξ1, ξ2, ξ3 ≤ 1 such that ξ1 + ξ2 + ξ3 ≤−1},

is transformed to

T̂3 = {−1≤ η1, η2, η3 ≤ 1}
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Table 2 Basis functions for three-dimensional elements

Hexahedron Basis φpqr (ξ1, ξ2, ξ3)=ψap(ξ1)ψaq (ξ2)ψar (ξ3)
Prism Basis φpqr (ξ1, ξ2, ξ3)=ψap(η̄1)ψ

a
q (ξ2)ψ

b
pr (ξ3)

Pyramid Basis φpqr (ξ1, ξ2, ξ3)=ψap(η̄1)ψ
a
q (η2)ψ

c
pqr (η3)

Tetrahedron Basis φpqr (ξ1, ξ2, ξ3)=ψap(η1)ψ
b
pq(η2)ψ

c
pqr (η3)

in local collapsed coordinates. To define three-dimensional basis functions, we first
define functions

ψap(z)= P 0,0
p (z), ψbpq(z)=

(
1− z

2

)p
P

2p+1,0
q (z), (10)

ψcpqr(z)=
(

1− z
2

)p+q
P

2p+2q+2,0
r (z), (11)

where Pα,βn is the nth-order Jacobi polynomial with weights α and β . Then using
local collapsed coordinates, the three-dimensional basis functions for various ele-
ments are given in Table 2.

These basis functions are orthogonal under Legendre inner product over each ele-
ment, resulting in a diagonal mass matrix. The functions are polynomials in both the
Cartesian and non-Cartesian coordinates. It was proved in [17] that the coefficients
of the basis functions for a solution decay exponentially with polynomial order, thus
the numerical solution converges exponentially as the maximum polynomial order
of the approximation is increased.

3.3 Time Stepping

To advance solutions in time, the RKDG method uses a Runge–Kutta (RK) time
marching scheme. Here we present the second-, third-, and fourth-order accurate
RKDG schemes. For second- and third-order simulations, we present the TVD
RK schemes of Shu (see [18]). For the fourth-order simulations we use the clas-
sic scheme. Consider the semi-discrete ODE

duh

dt
= Lh(uh).

Let unh be the discrete solution at time tn, and let Δtn = tn+1 − tn. In order to ad-
vance a numerical solution from time tn to tn+1, the RK algorithm runs as follows:

1. Set u(0)h = unh.
2. For i = 1, . . . , k + 1, compute,

u
(i)
h =

i−1∑
l=0

αilu
(l)
h + βilΔtnLh

(
u
(l)
h

)
.

3. Set un+1
h = u(k+1)

h .



38 R. Jeltsch and H. Kumar

Table 3 Parameters for Runge–Kutta time marching schemes

order αil βil

2 1 1

1/2 1/2 0 1/2

3 1 1

3/4 1/4 0 1/4

1/3 0 2/3 0 0 2/3

The values of the coefficients used are shown in Table 3. For the linear advec-
tion equation, it was proved by Cockburn et al. in [19] that the RKDG method is
L∞-stable for piecewise linear (k = 1) approximate solutions if a second-order RK
scheme is used with a time-step satisfying

c
Δt

Δx
≤ 1

3
,

where c is the constant advection speed. The numerical experiments in [10] show
that when approximate solutions of polynomial degree k are used, an order k + 1
RK scheme must be used, which simply corresponds to matching the temporal and
spatial accuracy of the RKDG scheme. In this case, the L∞-stability condition is

c
Δt

Δx
≤ 1

2k+ 1
.

For the nonlinear case, the same stability conditions are used but with c replaced by
the maximum eigenvalue of the system.

4 Three-Dimensional Arc Simulations

To simulate the plasma arc, the Nektar code has been modified to implement real gas
data for following physical parameters: electric conductivity, fluid viscosity, specific
heats, gas constant, and thermal conductivity. The gas used in circuit breakers is SF6.
The real gas data is implemented by approximating it at a pressure of 106 Pa with
piecewise smooth functions (see [6, 7]). An example of this is given in Fig. 1, where
we have plotted the approximated electrical conductivity w.r.t. temperature. Note
that the dependence of the gas data on temperature introduces further stiffness in
the equations. All the results presented here are of the first order accuracy.

The domain for simulation is illustrated in Fig. 2. In Fig. 2(left), we have the
three-dimensional domain for the computation which is the arc chamber of the cir-
cuit breaker. Figure 2(right) shows the XY plane cut of the three-dimensional ge-
ometry. The domain is axial symmetric along the y-axis. The radius of domain is
70 mm and length (y-axis) is 200 mm long. We assume that we have an arc attached
to both electrodes which are 10 mm wide.
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Fig. 1 Conductivity of the SF6 gas at pressure P = 106 Pa

Fig. 2 Geometry of the Arc chamber

In a circuit breaker with a rotating arc, the current that flows inside the arc also
goes through a coil located around the arc chamber. This process induces an external
magnetic field in the y-direction. This external magnetic field interacts with the arc
through the Lorentz force term in the momentum conservation equation. Observe
that, in the design of arc chamber, the contacts at the arc root have different radii,
which guarantees that the current in the resulting arc will not be parallel to the y-
axis. Consequently, the Lorentz force term J×B will be nonzero.
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Fig. 3 Temperature and current density at time t = 0.569 ms

4.1 Arc Generation

Initially, we assume that the domain (see Fig. 2) is filled with SF6 gas at the tem-
perature of 20000 K and the pressure of 106 Pa. At these values of pressure and
temperature, the density of the SF6 gas is 0.0829 kg/m3. The flow is considered to
be steady initially, i.e., v= 0.0 m/s. The magnetic field components Bx and Bz are
computed using Biot–Savart Law and correspond to the total current of I = 100 kA
in the initial arc of width 10 mm (see [6, 7]) joining both contacts.

We consider the reference length of L0 = 10−3 m. The reference pressure is
P0 = 106 Pa, and the reference temperature is T0 = 5000 K. Using the gas data, we
have the reference density ρ0 = 0.506 kg/m3. The wall boundary conditions for the
wall are the same as in the previous chapter. The wall temperature is T = 10000 K
except at the arc roots where we put T = 20000 K. The wall boundary conditions
are implemented for velocity by inverting the normal component of the velocity at
the wall. The magnetic field conditions for the wall are implemented by assuming
the condition of no current.

Using these reference variables and assuming that the minimum conductivity is
σmin = 6000, we would have a Lundquist number Sr = μ0V0L0σmin = 1.06×10−2.
This value would give rise to an extremely stiff system and this, in turn, would
make the computational time unreasonably large. We scale this by a factor of 1000.
Similarly, we scale Gr by a factor of 20. We do realize that this can effect results
quantitatively, but we believe that qualitatively the results still hold. We use 101044
tetrahedron elements in our computations. Computational time is 24 hours with 64
processors. At time t = 0.569 ms we have the following results:

Figure 3(left) is the temperature profile of the arc in the XY plane. We observe
that most of the heating takes place at the center of the domain. Figure 3(right) is
the current density profile of the arc in the XY plane with the current lines and the
current moving downward. The current lines have moved towards the center of the
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Fig. 4 ‖v‖ field of the arc at t = 0.569 ms

Fig. 5 Temperature with external magnetic field after time t = 1.138 ms

domain from its initial position due to higher temperature. Figure 4 is the profile of
the velocity field. We also note that the gas is pushed away from the arc, through the
outflow boundaries. There is also a bifurcation in velocity flow lines near the lower
end of the domain.

4.2 Effects of External Magnetic Fields

The external magnetic field of By = 0.5 T is applied by adding it to the arc’s mag-
netic field and then modifying the boundary conditions with the magnetic field
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Fig. 6 ‖v‖ field with external magnetic field after time t = 1.138 ms

By = 0.5 T. Note that during the simulation the y-component By of the magnetic
field is also simulated. The computational time was another 24 hours on 64 proces-
sors. After further t = 0.569 ms, we obtain the following results:

Figure 5(left) illustrates the temperature profile of the arc. We observe that the
temperature is comparatively less than what it was before. Figure 5(right) represents
the new current density profile. When compared with Fig. 3(right), we observe that
there is a change in the shape of the current density close to the lower contact. The
most important result is shown in Fig. 6. The streamlines of the velocity field show
that the arc is rotating. In fact, the velocity profile is completely changed when
compared with Fig. 4. Also, note the significant jump in the absolute value of the
velocity. Without the external magnetic field, the maximum absolute velocity was
490 m/s, compared to 689 m/s with the external magnetic field. Furthermore, the
maximum velocity is at the arc roots, instead of the center.

5 Conclusion

We show the suitability of the equations of resistive MHD for three-dimensional
computations of the plasma arc in high current circuit breakers. These equations are
used to generate the arc for a total current of 100 kA. We then apply the external
magnetic field and use it to generate a rotation in the arc and observe a significant
increase in the velocity. This can be used to minimize the operating energy of the
circuit breaker. One of the major obstacles in simulating the real gas arc is the stiff-
ness due to the low values of the conductivity. A possible solution for this can be
the use of implicit time stepping for the simulations.
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Space-Time Hybridizable Discontinuous
Galerkin Method for the Advection–Diffusion
Equation on Moving and Deforming Meshes

Sander Rhebergen and Bernardo Cockburn

Abstract We present the first space-time hybridizable discontinuous Galerkin fi-
nite element method for the advection–diffusion equation. Space-time discontin-
uous Galerkin methods have been proven to be very well suited for moving and
deforming meshes which automatically satisfy the so-called Geometric Conserva-
tion law, for being able to provide higher-order accurate approximations in both
time and space by simply increasing the degree of the polynomials used for the
space-time finite elements, and for easily handling space-time adaptivity strategies.
The hybridizable discontinuous Galerkin methods we introduce here add to these
advantages their distinctive feature, namely, that the only globally-coupled degrees
of freedom are those of the approximate trace of the scalar unknown. This results
in a significant reduction of the size of the matrices to be numerically inverted, a
more efficient implementation, and even better accuracy. We introduce the method,
discuss its implementation and numerically explore its convergence properties.

Keywords Discontinuous Galerkin methods · Advection–diffusion equations ·
Space-time methods

1 Introduction

Many applications in fluid dynamics require the solution of a set of partial differ-
ential equations in time-dependent flow domains. Examples include fluid-structure
interaction, moving spatial configurations (e.g., helicopter rotors) and flows with
free-surfaces (e.g., wave impacts on coastal and off-shore structures), see, e.g.,
[21] and [10]. The accurate solution of partial differential equations by a numerical
method on moving and deforming meshes, however, is non-trivial. Many schemes
fail to preserve the trivial solution of a uniform flow field on dynamic meshes. This
condition, the so-called Geometric Conservation Law (GCL), was proved to be es-
sential for the accuracy of the solution [13].

One class of numerical methods that automatically satisfies the GCL is the space-
time Discontinuous Galerkin (DG) method. The main example is nothing but the
first DG method [25], originally devised for the numerical simulation of neutron
transport. Extensions have been obtained and successfully used in a wide variety of
applications, e.g., the compressible Euler and Navier–Stokes equations [11, 24, 33],
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the shallow-water equations [1, 2, 31], two-phase flows [27, 29], hyperbolic non-
conservative partial differential equations [26], and advection–diffusion and Oseen
flows [30, 32]. In addition to their versatility, these methods can provide higher-
order accurate approximations in both time and space and are ideally suited for
hp-adaptivity. On the other hand, they are computationally expensive and so require
the use of sophisticated solvers like Newton-GMRES solvers for the Navier–Stokes
equations [22] and like optimized multigrid methods, see [12, 28, 34, 35] for the
case of advection-dominated flows.

Recently, a new class of discontinuous Galerkin methods, namely, the hybridiz-
able Discontinuous Galerkin method (HDG) [3, 6, 8], see also [5, 9], was introduced,
in the framework of diffusion problems, with the sole purpose of reducing the com-
putational complexity of these methods. In the HDG method, the approximate scalar
variable and its corresponding flux are expressed in terms of an approximate trace
of the scalar variable on the element faces. By enforcing the continuity of the nor-
mal component of the flux across the faces, a unique value for the approximate trace
can be defined. A global system of equations for the approximate trace only is thus
obtained, therefore significantly reducing the globally-coupled degrees of freedom
of the discontinuous Galerkin method. The HDG method is computationally more
efficient, can be more efficiently implemented, and is more accurate than all pre-
viously known discontinuous Galerkin methods. The method has been extended to
time-dependent linear and nonlinear convection–diffusion in [4, 14, 15], to incom-
pressible fluid flow [7, 17–19] and to the compressible Euler and Navier–Stokes
equations [20]; see the recent review [16]. In all these papers, when dealing with
time-dependent problems, implicit finite difference or Runge–Kutta time-marching
methods were used. In this article, we extend the HDG method for the first time
to a space-time setting. The resulting method thus combines the advantages of a
space-time DG method with the efficiency and accuracy of the HDG methods.

The outline of this article is as follows. In Sect. 2, we introduce the advection–
diffusion equation to which, in Sect. 3, we apply the space-time HDG method.
A thorough numerical study of the convergence properties of the method is pre-
sented in Sect. 4. We end this article with some concluding remarks in Sect. 5.

2 The Advection–Diffusion Equation

We consider the following time-dependent advection–diffusion model problem:

u,0 + (aku− κksu,s),k = f in E,
u= u0 on Ω(t0),
u= gD on QD,

(1)

where a comma notation denotes differentiation with respect to the Cartesian coor-
dinate xk and the summation convention is used on repeated indices. Here E ∈R

d+1

is the physical space-time domain (with d the spatial dimension), f is a source term,
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a(x) ∈R
d a given advective divergence-free velocity field, and κ(x) ∈R

d×d a posi-
tive definite diffusion tensor. The initial flow field is denoted by u0 and the Dirichlet
boundary data, gD , is defined on the Dirichlet boundary QD .

By introducing an auxiliary variable θk =−κksu,s , we can rewrite (1) as a first-
order system of equations:

u,0 + (aku+ θk),k = f in E, (2a)

θk + κksu,s = 0 in E, (2b)

with the boundary conditions

u= u0 on Ω(t0),
u= gD on QD.

(2c)

3 The Space-Time HDG Method

In this section, we will present the space-time hybridizable discontinuous Galerkin
method. We closely follow the notation of, e.g., [11, 26, 33] to highlight the simi-
larities and differences between a space-time HDG and a space-time DG method.

3.1 Space-Time Notation

In a space-time method, space and time variables are not distinguished. A point
at time t = x0 with position vector x̄ = (x1, x2, . . . , xd) has Cartesian coordinates
(x0, x̄) in the open domain E ⊂ R

d+1. At time t the flow domain Ω(t) is defined
as Ω(t) := {x̄ ∈ R

d : (t, x̄) ∈ E}. Let the initial and final time of the evolution of
the space-time domain be denoted by t0 and T , then the boundary of the space-time
domain, ∂E , consists of the hyper-surfaces

Ω(t0) := {x ∈ ∂E : x0 = t0},
Ω(T ) := {x ∈ ∂E : x0 = T },

Q := {x ∈ ∂E : t0 < x0 < T }.
The time interval [t0, T ] is partitioned using the time levels t0 < t1 < · · ·< T , where
the nth time interval is defined as In = (tn, tn+1) with length Δtn = tn+1 − tn.
The space-time domain E is then divided into Nt space-time slabs En = E ∩ In.
Each space-time slab En is bounded by Ω(tn), Ω(tn+1) and Qn = ∂En/(Ω(tn) ∪
Ω(tn+1)).

The flow domain Ω(tn) is approximated by Ωh(tn), where Ωh(t)→ Ω(t) as
h→ 0, with h the radius of the smallest sphere completely containing the largest
space-time element. The domain Ωh(tn) is divided into Nn non-overlapping spatial
elements Kj(tn). Similarly, Ω(tn+1) is approximated by Ωh(tn+1). The space-time
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elements Knj are constructed by connecting Knj with Kn+1
j by using linear interpo-

lation in time. In case of curved boundaries, a higher order accurate interpolation
is used for elements connected to the domain boundary. The space-time elements
Kn are connected to a master element K̂ by an iso-parametric mapping GnK. The
tessellation T nh of the space-time slab Enh consists of all space-time elements Knj ;

thus the tessellation Th of the discrete flow domain Eh :=⋃Nt−1
n=0 Enh then is defined

as Th :=⋃Nt−1
n=0 T nh .

The element boundary ∂Knj , which is the union of open faces of Knj , consists

of three parts: Kj(t+n ) = limε↓0Kj(tn + ε), Kj(t−n+1) = limε↓0Kj(tn+1 − ε), and
Qnj = ∂Knj /(Kj (t+n )∪Kj(t−n+1)). We define Snh as the set of surfaces S of the form

Qnj ∩ ∂E or of the form Qnj ∩Qn
j ′ . We set Sh :=⋃Nt−1

n=0 Snh .
To obtain the Arbitrary Lagrangian Eulerian (ALE) formulation, we have to in-

troduce the grid velocity v ∈ R
d . Let x̄(tn) be a point on Qnj with x0 = tn. As the

mesh moves, the point x̄(tn) moves along Qnj to x̄(tn+1) according to some pre-
scribed movement defined by x̄(t) = V (t; x̄(tn)), t ∈ In, with V a given function.
The grid velocity on Qnj is then defined by v = ∂tV . The outward space-time normal
vector at an element boundary point on ∂Knj can then be shown to be given by [33]:

n=
⎡
⎢⎣
(1, 0̄) at Kj(t

−
n+1),

(−1, 0̄) at Kj(t+n ),
(−vkn̄k, n̄) at Qnj ,

(3)

where 0̄ ∈R
d and n̄ ∈R

d the space-component of the space-time normal.

3.2 Approximation Spaces

Let Pp(K) denote the space of polynomials of degree at most p on the reference
element K̂ and consider L2(Ω), that is, the space of square integrable functions
on Ω . We introduce the discontinuous finite element spaces

W
p
h =

{
ω ∈ L2(Eh) : ω|K ◦GK ∈ Pp(K̂),∀K ∈ Th

}
,

and

V
p
h =

{
ν ∈ (L2(Eh)

)d : ν|K ◦GK ∈
(
Pp(K̂)

)d
,∀K ∈ Th

}
.

We also introduce a traced finite element space:

M
p
h =

{
μ ∈ L2(Sh) : μ|S ◦GS ∈ Pp(Ŝ),∀S ∈ Sh

}
.

We set Mp
h (gD)= {μ ∈Mp

h : μ= PgD on ΓD}, where P denotes the L2-projection
into the space {μ|∂Ω ∀μ ∈ Mp

h }. Note that Mp
h consists of functions which are

continuous inside the faces S ∈ Sh and discontinuous at their borders.
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3.3 Weak Formulation on Each Space-Time Element

Here, we are going to find the weak formulation on each of the space-time elements.
Our objective is to be able to determine an approximation inside each space-time
element only in terms of the data and on the numerical trace

λ := û|Sh ∈Mp
h . (4)

We proceed as follows. Multiplying (2a) by a test function ω ∈Wp
h and (2b) by a

test function ν ∈ V ph and integrating by parts in space-time over an element K ∈ Th,
we obtain:

−
∫
K

(
ω,0u+ω,k(aku+ θk)

)
dx

+
∫
∂K
ωL

(
ûn0 + (âku+ θ̂k)n̄k

)
ds =

∫
K
fωdx, (5a)

∫
K
νkθk dx −

∫
K
νk,sκksudx +

∫
Q
νkκks ûn̄s ds = 0. (5b)

Here, the numerical traces âku + θ̂k and û are approximations to, respectively,
aku − κksu,s and u over ∂K, and are introduced to couple local to global infor-
mation as well as for stability purposes. These numerical traces will be defined later
on.

To obtain the ALE-formulation to accommodate moving and deforming meshes,
we follow [33] and use the definition of the space-time normal vector (3) to write
the boundary integral in (5a) as:∫

∂K
ω
(
ûn0 + (âku+ θ̂k)n̄k

)
ds

=
∫
K(t−n+1)

ωû dx̄ −
∫
K(t+n )

ωû dx̄ +
∫
Q
ω(âku− ûvk + θ̂k)n̄k ds. (6)

The numerical traces û on K(t−n+1) andK(t+n ) are chosen inspired in a causality-in-
time argument and are therefore defined as the upwind flux:

û=
[
u−n+1 at K(t−n+1),

u−n at K(t+n ),

where u−n and u−n+1 are the traces of u on K(tn) and K(tn+1) from, respectively,
the previous and the current space-time slab. The function u−0 is nothing but the
L2-projection of the initial data u0 into the space {ω|Ωh(t0) : ω ∈Wp

h }.
To be able to solve (5a) and (5b) locally, the numerical trace must depend only

on λ and on the traces obtained from the interior of the space-time element K.
To achieve this, we take the numerical traces (âku+ θ̂k − vkû)n̄k of the form

(âku+ θ̂k − vkû)n̄k = (ak − vk)n̄kλ+ θkn̄k + τ(u− λ) on Q, (7)

for some positive function τ . The selection of τ shall be described later.
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Finally, by using (6) in combination with the upwind flux on the time faces and
the numerical trace (7), (5a) and (5b) become:

−
∫
K

(
ω,0u+ω,k(aku+ θk)

)
dx +

(∫
K(t−n+1)

ωu−n+1 dx̄ −
∫
K(t+n )

ωu−n dx̄
)

(8a)

+
∫
Q
ωL

(
(ak − vk)n̄kλ+ θkn̄k + τ(u− λ)

)
ds =

∫
K
fωdx, (8b)

∫
K
νkθk dx −

∫
K
νk,sκksudx +

∫
Q
νkκksλn̄s ds = 0, (8c)

for all (ω, ν) ∈Wp
h × V ph .

3.4 The Global Weak Formulation for the Approximate Trace λ

We still need to determine λ. To do this, we require that the boundary conditions be
weakly satisfied and that the normal component of the numerical trace of the flux
âku+ θ̂k−νkû given in (7) be single valued. In other words, we require that λ ∈Mp

h

be the solution of

λ= P(gD) on QnD, (9a)

∑
K∈T n

h

∫
Q
μ(âku+ θ̂k − vkû)n̄k ds = 0, (9b)

for all μ ∈Mp
h (0); recall that this implies that μ= 0 on QD .

3.5 The Geometric Conservation Law

We now prove that the Geometric Conservation Law (GCL) is automatically sat-
isfied by the space-time HDG method. The GCL states that uniform flow must be
preserved on a moving mesh. Let U denote a uniform flow field. In a uniform flow
field, λ= U and θk = 0. Substituting this into (8a) and considering the element K
on the time interval (t, t + ε), we obtain:

−
∫
K
(ω,0U +ω,kakU)dx +

∫
K(t+ε)

ωU dx̄ −
∫
K(t)

ωU dx̄

+
∫
Q
ω(ak − vk)Un̄k ds = 0. (10)

Note that this formulation is exactly the same as a standard space-time DG for-
mulation in uniform flows. Since U is constant and arbitrary, U can be divided out
of (10). Furthermore, we can rewrite (10) as:



Space-Time Hybridizable Discontinuous Galerkin Method 51

∫ t+ε

t

(
−
∫
K(t)

(ω,0 +ω,kak) dx̄ +
∫
∂K(t)

ω(ak − vk)n̄k ds̄
)
dt

+
∫
K(t+ε)

ω dx̄ −
∫
K(t)

ω dx̄ = 0. (11)

With the following equality∫
K(t+ε)

ω dx̄ −
∫
K(t)

ω dx̄ =
∫ t+ε

t

(
d

dt

∫
K(t)

ω dx̄

)
dt,

noting that t , t + ε are arbitrary, and considering a constant polynomial approxima-
tion, we obtain the GCL:

d

dt

∫
K(t)

dx̄ −
∫
∂K(t)

vkn̄k ds̄ = 0, (12)

using the fact that integration over a closed surface ∂K(t) of a constant is equal to
zero. This law states that to preserve uniform flow on a moving mesh, the change in
area/volume of each element must be equal to the area/volume swept by the element
boundary [13].

3.6 Existence and Uniqueness of the Approximate Solution

Next, we present a result that shows that when the stabilization function τ is suitably
defined, the approximation of our space-time HDG method is well defined.

Theorem 1 Assume that the matrix-valued function κ is symmetric and positive
definite and constant on each space-time element K ∈ Th. Assume that the advective
velocity a is divergence-free. Then, if we take the stabilization function τ such that

τ ≥ 1

2
(ak − νk)n̄k + τ0 on Q ∀K ∈ Th,

where τ0 is a strictly positive constant, the approximate solution of the HDG method
under consideration is well defined.

Proof We only have to show that if the data is equal to zero, the only solution of
the weak formulation (8a)–(8c) relating λ to (θ, u) and the equations determining λ
(9a), (9b) is the trivial one. It is easy to see that we only need to work on any time
slab En assuming that u−n = 0.

Thus, taking ω := u in (8a), we get

−
∑
K∈T n

h

∫
K

(
u,0u+ u,k(aku+ θk)

)
dx +

∑
K∈T n

h

∫
K(t−n+1)

(
u−n+1

)2
dx̄

+
∑
K∈T n

h

∫
Q
u(âku− ûvk + θ̂k)n̄k ds = 0.
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Integrating by parts and rearranging terms, we obtain

−
∑
K∈T n

h

∫
K
u,kθk dx + 1

2

∑
K∈T n

h

∫
K(t−n+1)

(
u−n+1

)2
dx̄

+ 1

2

∑
K∈T n

h

∫
K(t+n )

(
u+n

)2
dx̄ − 1

2

∑
K∈T n

h

∫
Q
u2(ak − νk)n̄k ds

+
∑
K∈T n

h

∫
Q
u (âku− ûvk + θ̂k)n̄k ds = 0.

Since the tensor-valued function κ is piecewise constant, we can take ν := κ−1θ

in (8c) to get
∑
K∈T n

h

∫
K

(
κ−1)

ks
θkθs dx −

∑
K∈T n

h

∫
K
θs,sudx +

∑
K∈T n

h

∫
Q
θsûn̄s ds = 0.

Adding this equation to the previous one, we obtain

1

2

∑
K∈T n

h

∫
K(t−n+1)

(
u−n+1

)2
dx̄ + 1

2

∑
K∈T n

h

∫
K(t+n )

(
u+n

)2
dx̄

+
∑
K∈T n

h

∫
K

(
κ−1)

ks
θkθs dx +Θh = 0,

where

Θh :=
∑
K∈T n

h

∫
Q

(
θk(û− u)n̄k − 1

2
u2(ak − νk)n̄k + u(âku− ûvk + θ̂k)n̄k

)
ds.

We claim that Θh is a dissipative term. To see this, note that, by (9b),

Θh :=
∑
K∈T n

h

∫
Q

(
θk(û− u)n̄k − 1

2
u2(ak − νk)n̄k

+ (u− û)(âku− ûvk + θ̂k)n̄k
)
ds,

and by the definition of the numerical trace (7),

Θh :=
∑
K∈T n

h

∫
Q

(
−1

2
u2(ak − νk)n̄k + (u− λ)

(
(ak − vk)n̄kλ+ τ(u− λ)

))
ds

=
∑
K∈T n

h

∫
Q

(
−1

2

(
(u− λ)2 + λ2)(ak − νk)n̄k + τ(u− λ)2

)
ds

=
∑
K∈T n

h

∫
Q

(
τ − 1

2
(ak − νk)n̄k

)
(u− λ)2 ds.
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We can now conclude that u−n+1 = 0 on Ωn+1, that u+n = 0 on Ωn, that θh = 0
on T nh , and that u = λ on Snh . Equation (8c) now gives that u is constant in space
on the time-slab T nh and since u= λ= 0 on the Dirichlet boundary, we obtain that
u= 0 on T nh and that λ= 0 on Snh . This completes the proof. �

3.7 The Local Stabilization Parameter τ

In the rest of this article, we assume κ11 = κ22 = κ and κks = 0 otherwise. Then
the local stabilization parameter τ is chosen similarly as done in [14]. We, however,
slightly modify the local stabilization parameter to account for moving grids. Two
options are discussed in [14], the centered scheme and the upwinded scheme. To
account for the diffusion and advection effects, let τ = τa + τd , where τa and τd
are the local stabilization parameters related to the advection and diffusion, respec-
tively. Consider an interior face S =QL∩QR between the space-time elements KL
and KR and denote by (·)L the trace of (·) on S from KL, and similarly for (·)R .
Furthermore, let n̄ be the outward normal with respect to KL.

Centered Scheme To obtain a centered scheme, take on each face τLa = τRa = ηa
and τLd = τRd = ηd , where

ηa =
∣∣(ak − vk)n̄k∣∣, ηd = κ

�
, (13)

and � denotes a representative diffusive length scale.

Upwinded Scheme To obtain an upwinded scheme, choose τL,Ra and τL,Rd ac-
cording to

(
τLa , τ

L
d

)= (ηa, ηd) |(ak − vk)n̄k| + (ak − vk)n̄k
2|(ak − vk)n̄k| ,

(
τRa , τ

R
d

)= (ηa, ηd) |(ak − vk)n̄k| − (ak − vk)n̄k
2|(ak − vk)n̄k| ,

with ηa and ηd given in (13).

4 Numerical Results

In this section, we consider numerical results for the space-time HDG discretization
of the advection–diffusion equation. For each test case, we show the convergence
history of the flow field u, the auxiliary variables θ1 and θ2 and the mean of the flow
field ū. Note that

‖ū− ūh‖L2(Ω) =
√√√√∑

K

1

|K|
(∫

K

(u− uh)dx̄
)2

.
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4.1 Steady-State Solution of the Advection
and the Advection–Diffusion Equation on a Uniform Mesh

In this first test case, we consider both the advection and the advection–diffusion
equations on a uniform mesh. For this we consider (2a), (2b) on the space-time
domain E = (0, T ) × (0,1)2 where the source term f (x1, x2) and the Dirichlet
boundary condition g are such that the exact solution is given by u(x1, x2) =
4+ sin(πx1) sin(πx2)+ sin(2πx1)+ sin(2πx2). We take a1 = a2 = 1 and, in the
case of the advection–diffusion equation, κ = 0.01. In the case of the advection
equation, κ = 0. Therefore, for this test case, we modify the definition of θ such
that θk = u,k .

We use a space-time HDG discretization using linear-, quadratic-, and cubic-
polynomial approximations and obtain convergence orders. The local stabilization
parameter τ is chosen such that we obtain a central scheme. For this steady-state
problem, we take one physical time step of T = Δt = 1015. In Tables 1 and 2,
we show the convergence results obtained when κ = 0.01 and κ = 0, respec-
tively.

For the advection–diffusion equation, from Table 1, we see the expected orders of
convergence for the scalar variable u and the auxiliary variables θ1 and θ2, namely,
for a Pp polynomial approximation we obtain the orders of convergence of p+ 1.
For the mean variable ū, for P 1 we obtain superconvergence with order p+ 2. For
P 2 and P 3 we seem to be achieving superconvergence with order p+ 3!

For the advection equation, from Table 2, we obtain the expected order of con-
vergence for the scalar variable u, namely, for a Pp polynomial approximation we
obtain orders of convergence p+ 1. For the “artificial” auxiliary variables θ1 and
θ2, we only obtain orders of convergence p. For the mean variable ū, we find the
strange behavior that for odd p = 1,3 polynomial approximation we achieve super-
convergence of orders p + 2 while for even p = 2, we only achieve a convergence
order of p+ 1.

4.2 Steady-State Boundary Layer Problem

Next, we consider a boundary layer problem. Consider (2a), (2b) on the space-time
domain E = (0, T )× (0,1)2 where f = 0 and where g(x1, x2) equals at the domain
boundary the exact steady-state solution:

u(x1, x2)= 1

2

(
exp(a1/κ)− exp(a1x1/κ)

exp(a1/κ)− 1
+ exp(a2/κ)− exp(a2x2/κ)

exp(a2/κ)− 1

)
.

In the discretization, we use a Shishkin mesh in which the coordinates (xu1 , x
u
2 ) of

a uniform mesh are mapped onto a mesh suitable for dealing with boundary layers.
The mapping is given by:

xi =
[

2(1− σi)xui , for xui < 0.5,

1+ 2σi(xui − 1), for xui ≥ 0.5,
i = 1,2,
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Table 1 History of convergence for the steady-state advection–diffusion equation on a uniform

mesh with κ = 0.01

Degree Ncells ‖u− uh‖L2(Ω) ‖θ1 − θh1 ‖L2(Ω) ‖θ2 − θh2 ‖L2(Ω) ‖ū− ūh‖L2(Ω)

Error Order Error Order Error Order Error Order

1 8 3.53e–2 – 6.80e–1 – 6.80e–1 – 1.45e–2 –

16 7.41e–3 2.3 2.62e–1 1.4 2.62e–1 1.4 1.64e–3 3.1

32 1.66e–3 2.2 8.84e–2 1.6 8.84e–2 1.6 1.92e–4 3.1

64 3.93e–4 2.1 2.67e–2 1.7 2.67e–2 1.7 2.38e–5 3.0

128 9.59e–5 2.0 7.44e–3 1.8 7.44e–3 1.8 3.05e–6 3.0

2 8 2.52e–3 – 5.30e–2 – 5.30e–2 – 1.99e–3 –

16 2.19e–4 3.5 9.46e–3 2.5 9.46e–3 2.5 1.50e–4 3.7

32 1.59e–5 3.8 1.54e–3 2.6 1.54e–3 2.6 7.46e–6 4.3

64 1.28e–6 3.6 2.25e–4 2.8 2.25e–4 2.8 2.90e–7 4.7

128 1.29e–7 3.3 3.06e–5 2.9 3.06e–5 2.9 1.00e–8 4.9

3 8 9.71e–5 – 1.80e–3 – 1.80e–3 – 2.67e–5 –

16 6.01e–6 4.0 1.29e–4 3.8 1.29e–4 3.8 3.66e–7 6.2

32 3.64e–7 4.0 8.26e–6 4.0 8.26e–6 4.0 3.36e–9 6.8

64 2.13e–8 4.1 5.34e–7 4.0 5.34e–7 4.0 2.74e–11 6.9

128 1.27e–9 4.1 3.52e–8 3.9 3.52e–8 3.9 5.23e–13 5.7

Table 2 History of convergence for the steady-state advection equation on a uniform mesh in

which κ = 0

Degree Ncells ‖u− uh‖L2(Ω) ‖θ1 − θh1 ‖L2(Ω) ‖θ2 − θh2 ‖L2(Ω) ‖ū− ūh‖L2(Ω)

Error Order Error Order Error Order Error Order

1 8 4.43e–2 – 9.71e–1 – 9.71e–1 – 2.22e–2 –

16 1.01e–2 2.1 5.05e–1 0.9 5.05e–1 0.9 3.06e–3 2.9

32 2.45e–3 2.0 2.55e–1 1.0 2.55e–1 1.0 3.97e–4 2.9

64 6.06e–4 2.0 1.28e–1 1.0 1.28e–1 1.0 5.05e–5 3.0

128 1.51e–4 2.0 6.39e–2 1.0 6.39e–2 1.0 6.35e–6 3.0

2 8 4.31e–3 – 8.57e–2 – 8.57e–2 – 3.89e–3 –

16 5.76e–4 2.9 2.07e–2 2.0 2.07e–2 2.0 5.26e–4 2.9

32 7.34e–5 3.0 5.13e–3 2.0 5.13e–3 2.0 6.73e–5 3.0

64 9.24e–6 3.0 1.28e–3 2.0 1.28e–3 2.0 8.48e–6 3.0

128 1.16e–6 3.0 3.20e–4 2.0 3.20e–4 2.0 1.06e–6 3.0

3 8 1.20e–4 – 4.77e–3 – 4.77e–3 – 8.77e–5 –

16 5.82e–6 4.4 5.86e–4 3.0 5.86e–4 3.0 2.85e–6 4.9

32 3.28e–7 4.1 7.30e–5 3.0 7.30e–5 3.0 9.08e–8 5.0

64 1.99e–8 4.0 9.12e–6 3.0 9.12e–6 3.0 2.87e–9 5.0

128 1.23e–9 4.0 1.14e–6 3.0 1.14e–6 3.0 9.16e–11 5.0
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Fig. 1 The steady-state solution of the boundary layer problem using a cubic polynomial approx-
imation on a grid with 32× 32 elements (using a central flux)

where σi =min(0.5,2κ/ai ln(Ni)), and where Ni is the number of elements in the
xi direction (see, e.g., [28]). For this test case, we take a1 = a2 = 1 and κ = 0.01.

We solve the above problem using a space-time HDG discretization using linear-,
quadratic-, and cubic- polynomial approximations in space. For steady-state test-
cases, it is sufficient to take a constant polynomial approximation. The local sta-
bilization parameter τ is chosen such that we obtain a central scheme. We will
consider two cases for the diffusive length scale, �, in (13), namely � = 1 and
� = min(

√|KL|,√|KR|), in which KL,R are the areas of the two spatial elements
adjacent to the face on which τ is evaluated. Furthermore, we set τ = 0 on all bound-
aries. We remark that if τ �= 0 on the boundaries, for this test case we do not achieve
expected convergence rates. For this steady-state problem, we take one physical time
step of T =Δt = 1015. The steady-state solution is depicted in Fig. 1. Tables 3 and 4
show the obtained convergence orders when �= 1 and �=min(

√|KL|,√|KR|), re-
spectively.

For this test case, from Tables 3 and 4, we see that the diffusive length scale
� in the stabilization parameter has an effect on the order of convergence for the
different variables. For degrees 1 and 2, if �=min(

√|KL|,√|KR|), we only obtain
orders of convergence p for the auxiliary variables θ1 and θ2 and for degree p = 1,
ū converges with order p+ 1. On the other hand, u converges with orders p+ 1 for
all considered p, the auxiliary variables converge with orders of at least p + 1 for
p = 3 and ū superconverges with order p+ 2 for p = 2,3.
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Table 3 History of convergence for the steady-state boundary layer problem with �= 1

Degree Ncells ‖u− uh‖L2(Ω) ‖θ1 − θh1 ‖L2(Ω) ‖θ2 − θh2 ‖L2(Ω) ‖ū− ūh‖L2(Ω)

Error Order Error Order Error Order Error Order

1 8 8.46e–3 – 2.54e–3 – 2.54e–3 – 7.59e–4 –

16 3.40e–3 1.3 1.09e–3 1.2 1.09e–3 1.2 2.26e–4 1.7

32 1.16e–3 1.6 4.14e–4 1.4 4.14e–4 1.4 5.37e–5 2.1

64 3.61e–4 1.7 1.47e–4 1.5 1.47e–4 1.5 1.10e–5 2.3

128 1.06e–4 1.8 5.00e–5 1.6 5.00e–5 1.6 2.04e–6 2.4

2 8 7.08e–4 – 3.15e–4 – 3.15e–4 – 1.29e–4 –

16 1.71e–4 2.0 5.62e–5 2.5 5.62e–5 2.5 7.96e–6 4.0

32 3.61e–5 2.2 1.14e–5 2.3 1.14e–5 2.3 8.70e–7 3.2

64 6.71e–6 2.4 2.38e–6 2.3 2.38e–6 2.3 5.26e–8 4.0

128 1.13e–6 2.6 4.69e–7 2.3 4.69e–7 2.3 1.11e–9 5.6

3 8 4.14e–4 – 2.89e–4 – 2.89e–4 – 1.48e–4 –

16 5.44e–5 2.9 3.84e–5 2.9 3.84e–5 2.9 1.21e–5 3.6

32 3.72e–6 3.9 2.63e–6 3.9 2.63e–6 3.9 3.60e–7 5.1

64 1.29e–7 4.9 9.17e–8 4.8 9.17e–8 4.8 4.06e–9 6.5

128 5.80e–9 4.5 4.10e–9 4.5 4.10e–9 4.5 1.97e–11 7.7

Table 4 History of convergence for the steady-state boundary layer problem with � =
min(

√|KL|,√|KR |)
Degree Ncells ‖u− uh‖L2(Ω) ‖θ1 − θh1 ‖L2(Ω) ‖θ2 − θh2 ‖L2(Ω) ‖ū− ūh‖L2(Ω)

Error Order Error Order Error Order Error Order

1 8 7.57e–3 – 2.54e–3 – 2.54e–3 – 7.85e–4 –

16 2.83e–3 1.4 1.13e–3 1.2 1.13e–3 1.2 2.42e–4 1.7

32 8.78e–4 1.7 4.82e–4 1.2 4.82e–4 1.2 6.53e–5 1.9

64 2.42e–4 1.9 2.27e–4 1.0 2.27e–4 1.0 1.77e–5 1.9

128 6.42e–5 1.9 1.20e–4 0.9 1.20e–4 0.9 5.29e–6 1.7

2 8 7.97e–4 – 3.15e–4 – 3.15e–4 – 1.27e–4 –

16 1.59e–4 2.3 5.95e–5 2.4 5.95e–5 2.4 9.00e–6 3.8

32 2.69e–5 2.6 1.47e–5 2.0 1.47e–5 2.0 1.44e–6 2.6

64 4.09e–6 2.7 4.39e–6 1.7 4.39e–6 1.7 9.69e–8 3.9

128 5.55e–7 2.9 1.42e–6 1.6 1.42e–6 1.6 2.72e–9 5.2

3 8 4.29e–4 – 2.96e–4 – 2.96e–4 – 1.54e–4 –

16 5.76e–5 2.9 4.03e–5 2.9 4.03e–5 2.9 1.31e–5 3.6

32 4.06e–6 3.8 2.86e–6 3.8 2.86e–6 3.8 4.40e–7 4.9

64 1.44e–7 4.8 1.02e–7 4.8 1.02e–7 4.8 5.96e–9 6.2

128 6.06e–9 4.6 4.29e–9 4.6 4.29e–9 4.6 3.55e–11 7.4
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Taking �= 1, for degree 1 and 2, it seems that u has difficulty converging with
the expected orders of convergence p+1, while the auxiliary variables and the mean
show better orders of convergence than for the case � = min(

√|KL|,√|KR|). For
degree p = 3, u, θ1, θ2 converge with orders of at least p+ 1 and ū converges with
order of at least p+ 2!

4.3 A Rotating Gaussian Pulse on a Moving/Deforming Mesh

Finally, we consider the transport of a two-dimensional rotating Gaussian pulse,
a test case that was presented in [14]. We, however, consider a moving and de-
forming space-time domain E . Let the rotating velocity field be prescribed as
a = (−4x2,4x1). We consider the solution at final time T = π/4, which is the time
period for one-half rotation of the Gaussian pulse. The initial condition is given
by

u0(x1, x2)= exp

(
− (x1 − x1c)

2 + (x2 − x2c)
2

2σ 2

)
,

where (x1c, x2c) is the center and σ is the standard deviation. The exact solution
with constant diffusivity constant κ is given by

u(x1, x2)= 2σ 2

2σ 2 + 4κt
exp

(
− (x̃1 − x1c)

2 + (x̃2 − x2c)
2

2σ 2 + 4κt

)
,

where x̃1 = x1 cos(4t)+ x2 sin(4t) and x̃2 =−x1 sin(4t)+ x2 cos(4t). The Dirich-
let boundary condition g is deduced from the exact solution. As in [14], we
choose (x1c, x2c) = (−0.2,0) and take σ = 0.1. As diffusivity constant, we take
κ = 0.01.

The deformation of the space-time domain E is based on the following transfor-
mation of a uniform mesh of the space-time domain [t, t +Δt] × [−0.5,0.5]2. Let
(xu0 , x

u
1 , x

u
2 ) be the coordinates on the uniform mesh. Then we consider the follow-

ing mapping:

xi = xui +A
(

1

2
− xui

)
sin

(
2π

(
1

2
− xu∗ + t∗

))
,

t∗ =
[
t if xu0 = t,
t +Δt if xu0 = t +Δt,

xu∗ =
[
x2 if i = 1,

x1 if i = 2,

where A is the amplitude. We set A= 0.1. Furthermore, for the diffusivity constant
we take κ = 0.01. We consider the convergence properties of the space-time HDG
method for two given CFL numbers, namely CFL = 1 and CFL = 10. The history
of convergence for the given CFL numbers is given in, respectively, Tables 5 and 6.
In Fig. 2, we show some snapshots of the solution and mesh at different time levels.
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Fig. 2 Snapshots of the rotating Gaussian pulse on a moving/deforming mesh with CFL= 1 on a
grid with 32× 32 elements using a cubic polynomial approximation
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Table 5 History of convergence for the rotating Gaussian pulse on a moving/deforming mesh with

CFL= 1

Degree Ncells ‖u− uh‖L2(Ω) ‖θ1 − θh1 ‖L2(Ω) ‖θ2 − θh2 ‖L2(Ω) ‖ū− ūh‖L2(Ω)

Error Order Error Order Error Order Error Order

1 8 1.50e–2 – 1.26e–3 – 1.23e–3 – 1.31e–2 –

16 3.26e–3 2.2 3.48e–4 1.9 3.57e–4 1.8 2.93e–3 2.2

32 5.46e–4 2.6 8.30e–5 2.1 9.31e–5 1.9 4.47e–4 2.7

64 9.78e–5 2.5 2.19e–5 1.9 2.60e–5 1.8 5.91e–5 2.9

2 8 1.61e–3 – 2.09e–4 – 2.22e–4 – 1.22e–3 –

16 1.19e–4 3.8 2.93e–5 2.8 3.46e–5 2.7 6.19e–5 4.3

32 1.22e–5 3.3 4.78e–6 2.6 5.71e–6 2.6 2.25e–6 4.8

64 1.48e–6 3.0 7.30e–7 2.7 8.81e–7 2.7 7.61e–8 4.9

3 8 1.49e–4 – 2.91e–5 – 3.34e–5 – 8.67e–5 –

16 6.72e–6 4.5 2.46e–6 3.6 2.82e–6 3.6 1.21e–6 6.2

32 3.94e–7 4.1 2.06e–7 3.6 2.35e–7 3.6 1.41e–8 6.4

64 2.38e–8 4.0 1.60e–8 3.7 1.81e–8 3.7 2.07e–10 6.0

Table 6 History of convergence for the rotating Gaussian pulse on a moving/deforming mesh with

CFL= 10

Degree Ncells ‖u− uh‖L2(Ω) ‖θ1 − θh1 ‖L2(Ω) ‖θ2 − θh2 ‖L2(Ω) ‖ū− ūh‖L2(Ω)

Error Order Error Order Error Order Error Order

1 8 4.44e–2 – 2.76e–3 – 3.51e–3 – 4.04e–2 –

16 1.79e–2 1.3 1.25e–3 1.1 1.56e–3 1.2 1.69e–2 1.3

32 4.81e–3 1.9 3.44e–4 1.9 4.84e–4 1.7 4.57e–3 1.9

64 9.43e–4 2.4 7.67e–5 2.2 1.05e–4 2.2 8.64e–4 2.4

2 8 2.01e–2 – 1.70e–3 – 1.90e–3 – 1.69e–2 –

16 3.44e–3 2.5 3.57e–4 2.3 3.85e–4 2.3 3.09e–3 2.5

32 2.83e–4 3.6 3.42e–5 3.4 4.46e–5 3.1 2.25e–4 3.8

64 2.37e–5 3.6 4.69e–6 2.9 6.03e–6 2.9 9.71e–6 4.5

3 8 7.64e–3 – 9.59e–4 – 8.82e–4 – 6.03e–3 –

16 5.08e–4 3.9 7.67e–5 3.6 8.38e–5 3.4 4.13e–4 3.9

32 2.47e–5 4.4 5.49e–6 3.8 6.87e–6 3.6 7.97e–6 5.7

64 1.64e–6 3.9 3.99e–7 3.8 5.40e–7 3.7 1.36e–7 5.9

For this test case, from Tables 5 and 6, we consider the effect of the CFL number
on the convergence orders. Even though the mesh is moving/deforming, the results
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are very good. Indeed, for CFL= 1 for degree p, we achieve for u, θ1, θ2 the order
of convergence p + 1 while ū seems to superconverge with order at least p + 2!
Moreover, for CFL= 10, we also find orders of convergence p+ 1 for u, θ1, θ2. For
p = 1, it seems that ū only converges with order p + 1, but for p = 2,3, we find
again that ū superconvergence with an order of at least (p+ 2)!

5 Conclusions

We have introduced and numerically tested the first space-time HDG method for
time-dependent advection–diffusion problems. We have showed that, when the sta-
bilization function is suitably defined, the method provides optimally convergent
approximations, even in the advection-dominated regime and with highly-deformed
and moving meshes. Moreover, the superconvergence of the local averages seems
to be, to the knowledge of the authors, a new phenomenon whose theoretical study
constitutes the subject of ongoing research.

Acknowledgements All test cases were implemented using hpGEM [23] for which we thank
V.R. Ambati for technical support. Sander Rhebergen gratefully acknowledges funding by a Rubi-
con Fellowship from the Netherlands Organisation for Scientific Research (NWO) and the Marie
Curie Cofund Action. Bernardo Cockburn was supported in part by the National Science Founda-
tion (Grant DMS-0712955) and by the University of Minnesota Supercomputing Institute.

References

1. Ambati, V.R., Bokhove, O.: Space-time discontinuous Galerkin finite element method for shal-
low water flows. J. Comput. Appl. Math. 204, 452–462 (2007)

2. Ambati, V.R., Bokhove, O.: Space-time discontinuous Galerkin discretization of rotating shal-
low water equations. J. Comput. Phys. 225, 1233–1261 (2007)

3. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method
for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008)

4. Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, R.: Superconvergent and optimally
convergent LDG-hybridizable discontinuous Galerkin methods for convection-diffusion-
reaction problems. SIAM J. Sci. Comput. 31, 3827–3846 (2009)

5. Cockburn, B., Gopalakrishnan, J.: A characterization of hybridized mixed methods for the
Dirichlet problem. SIAM J. Numer. Anal. 42, 283–301 (2004)

6. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous
Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM
J. Numer. Anal. 47, 1319–1365 (2009)

7. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of an HDG
method for Stokes flow. Math. Comput. 80, 723–760 (2011)

8. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG
methods. Math. Comput. 79, 1351–1367 (2010)

9. Gopalakrishnan, J., Tan, S.: A convergent multigrid cycle for the hybridized mixed method.
Numer. Linear Algebra Appl. 16, 689–714 (2009)

10. Hueber, B., Walhorn, E., Dinkler, D.: A monolithic approach to fluid-structure interaction
using space-time finite elements. Comput. Methods Appl. Mech. Eng. 193, 2087–2104 (2004)



62 S. Rhebergen and B. Cockburn

11. Klaij, C.M., van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin method
for the compressible Navier–Stokes equations. J. Comput. Phys. 217, 589 (2006)

12. Klaij, C.M., van Raalte, M.H., van der Ven, H., van der Vegt, J.J.W.: Vegt, h-multigrid for
space-time discontinuous Galerkin discretizations of the compressible Navier–Stokes equa-
tions. J. Comput. Phys. 227, 1024–1045 (2007)

13. Lesoinne, M., Farhat, C.: Geometric conservation laws for flow problems with moving bound-
aries and deformable meshes, and their impact on aeroelastic computations. Comput. Methods
Appl. Mech. Eng. 134, 71–90 (1996)

14. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous
Galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228, 3232–3254
(2009)

15. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous
Galerkin method for nonlinear convection–diffusion equations. J. Comput. Phys. 228, 8841–
8855 (2009)

16. Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods. In:
Proceedings of the International Conference on Spectral and High Order Methods, June 2009,
Trondheim, Norway. LNCSE. Springer, Berlin (2009)

17. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for
Stokes flow. Comput. Methods Appl. Mech. Eng. 193, 2087–2104 (2010). I have: 199, 582–
597 (2010)

18. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous
Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230,
1147–1170 (2011)

19. Peraire, J., Nguyen, N.C., Cockburn, B.: A hybridizable discontinuous Galerkin method for
the incompressible Navier–Stokes equations. In: AIAA, Orlando, Florida, p. 362 (2010)

20. Peraire, J., Nguyen, N.C., Cockburn, B.: A hybridizable discontinuous Galerkin finite method
for the compressible Euler and Navier–Stokes equations. In: AIAA, Orlando, Florida, p. 363
(2010)

21. Persson, P.-O., Bonet, J., Peraire, J.: Discontinuous Galerkin solution of the Navier–Stokes
equations on deformable domains. Comput. Methods Appl. Mech. Eng. 198, 1585–1595
(2009)

22. Persson, P.-O., Peraire, J.: Newton-GMRES preconditionning for discontinuous Galerkin dis-
cretizations of the Navier–Stokes equations. SIAM J. Sci. Comput. 30, 2709–2733 (2008)

23. Pesch, L., Bell, A., Sollie, W.E.H., Ambati, V.R., Bokhove, O., van der Vegt, J.J.W.: hpGEM—
a software framework for discontinuous Galerkin finite element methods. ACM Trans. Math.
Softw. 33 (2007)

24. Pesch, L., van der Vegt, J.J.W.: A discontinuous Galerkin finite element discretization of the
Euler equations for compressible and incompressible fluids. J. Comput. Phys. 227, 5426–5446
(2008)

25. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los
Alamos Scientific Laboratory, Report LA-UR-73-479 (1973)

26. Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous Galerkin finite element meth-
ods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227, 1887
(2008)

27. Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous Galerkin finite element
method for shallow two-phase flows. Comput. Methods Appl. Mech. Eng. 198, 819–830
(2009)

28. Rhebergen, S., van der Vegt, J.J.W., van der Ven, H.: Multigrid optimization for space-time
discontinuous Galerkin discretizations of advection dominated flows. In: Kroll, N., Bieler, H.,
Deconinck, H., Couallier, V., Van der Ven, H., Sorensen, K. (eds.) ADIGMA—A European
Initiative on the Development of Adaptive Higer-Order Variational Methods for Aerospace
Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 113,
pp. 257–269. Springer, Berlin (2010)



Space-Time Hybridizable Discontinuous Galerkin Method 63

29. Sollie, W.E.H., Bokhove, O., van der Vegt, J.J.W.: Space-time discontinuous Galerkin finite
element method for two-fluid flows. J. Comput. Phys. 230, 789–817 (2011)

30. Sudirham, J.J., van der Vegt, J.J.W., van Damme, R.M.J.: Space-time discontinuous Galerkin
method for advection-diffusion problems on time-dependent domains. Appl. Numer. Math.
56, 1491–1518 (2006)

31. Tassi, P.A., Rhebergen, S., Vionnet, C.A., Bokhove, O.: A discontinuous Galerkin finite ele-
ment model for river bed evolution under shallow flows. Comput. Methods Appl. Mech. Eng.
197, 2930–2947 (2008)

32. van der Vegt, J.J.W., Sudirham, J.J.: A space-time discontinuous Galerkin method for the
time-dependent Oseen equations. Appl. Numer. Math. 58, 1892–1917 (2008)

33. van der Vegt, J.J.W., van der Ven, H.: Space-time discontinuous Galerkin finite element
method with dynamic grid motion for inviscid compressible flows I. General formulation.
J. Comput. Phys. 182, 546–585 (2002)

34. van der Vegt, J.J.W., Rhebergen, S.: hp-Multigrid as smoother algorithm for higher order dis-
continuous Galerkin discretizations of advection dominated flows. Part I. Multilevel analysis.
J. Comput. Phys. 231(22), 7537–7563 (2012)

35. van der Vegt, J.J.W., Rhebergen, S.: hp-Multigrid as smoother algorithm for higher order dis-
continuous Galerkin discretizations of advection dominated flows. Part II. Optimization of the
Runge-Kutta smoother. J. Comput. Phys. 231(22), 7564–7583 (2012)



A Numerical Algorithm for Ambrosetti–Prodi
Type Operators

José Teixeira Cal Neto and Carlos Tomei

Abstract We consider the numerical solution of the equation −Δu − f (u) = g,
for the unknown u satisfying Dirichlet conditions in a bounded domain Ω . The
nonlinearity f has bounded, continuous derivative. The algorithm uses the finite
element method combined with a global Lyapunov–Schmidt decomposition.

Keywords Semilinear elliptic equations · Finite element method ·
Lyapunov–Schmidt decomposition

1 Introduction

We consider the partial differential equation

F(u)=−Δu− f (u)= g, u|∂Ω = 0,

on domainsΩ ∈R
n, taken to be open, bounded, connected subsets of Rn with piece-

wise smooth boundary ∂Ω , assumed to be at least Lipschitz at all points. There is a
vast literature concerning the number of solutions for general and positive solutions
for different kinds of nonlinearity f and right-hand side g (to cite a few, [1–9]).

Here we assume that the nonlinearity f : R→ R has a bounded, continuous
derivative, a ≤ f ′(y) ≤ b. We show how a global Lyapunov–Schmidt decomposi-
tion introduced by Berger and Podolak [10] in their proof of the Ambrosetti–Prodi
theorem (see [3, 4]) gives rise to a satisfactory solution algorithm using the finite el-
ement method. The decomposition was rediscovered by Smiley [11], who realized
its potential for numerics: our results advance along these lines.

Write ΔD for the Dirichlet Laplacian in Ω . The algorithm is especially conve-
nient when the number d of eigenvalues of −ΔD in the range of f ′ is small: the
infinite dimensional equation reduces to the inversion of a map from R

d to itself.
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The subject of semilinear elliptic equations is sufficiently mature that algorithms
should stand side by side with theory. The situation may be compared to the study
of functions of one variable in a basic calculus course. Some functions, like parabo-
las, may be handled without substantial computational effort, but understanding in-
creases with graphs, which are obtained by following a standard procedure.

We do not handle the difficulties and opportunities related to the finite dimen-
sional inversion: a generic solver (as in [12] and, for d = 2, [13]) should be replaced
by an algorithm which makes use of features inherited by the original map F . Here
we only deal with examples for which d = 1 and 2, and there is some craftsman-
ship in handling the 2-dimensional example. It is in this step of the PDE solver that
delicate issues like nonresonance and lack of properness come up.

2 The Basic Estimate

We consider the semilinear elliptic equation presented in the introduction for a non-
linearity f (y) :R→R with bounded, continuous derivative.

With these hypotheses, it is not hard to see that F(u)=−Δu−f (u) is a C1 map
between the Sobolev spacesH 2

0 (Ω) and L2(Ω)=H 0(Ω) and betweenH 1
0 (Ω) and

H−1(Ω)�H 1
0 (Ω). We concentrate on the second scenario, which is natural for the

weak formulation of the problem. Still, the geometric statements below hold in both
cases. To fix notation, set F :X→ Y , where X =H 1

0 (Ω) and Y =H−1(Ω).
The basic estimate is given in Proposition 1. Its proof is a simple extension of the

argument in [10].
Define f ′(R)= [a, b] (a allowed to be −∞) and a larger interval [ã, b̃] ⊃ [a, b].

Label the eigenvalues of −ΔD in non-decreasing order. The index set J associated
to [ã, b̃] is the collection of indices of eigenvalues of −ΔD in that interval. The set
J is associated to the nonlinearity f if [ã, b̃] = f ′(R). An index set defined this way
is complete: it contains all indices labeling an eigenvalue in the interval.

Denote the vertical subspaces by VX ⊂ X and VY ⊂ Y , the spans of the nor-
malized eigenfunctions φj , j ∈ J in X and Y , respectively, with orthogonal com-
plements WX and WY . Let P and Q be the orthogonal projections on V and W .
Clearly, the dimension of the vertical subspaces equals |J |, the cardinality of J . Let
v +WX ⊂X be the horizontal affine subspace of vectors v +w,w ∈WX and con-
sider a projected restriction Fv : v+WX→WY , the restriction of PYF to v+WX .

Proposition 1 Let J be the index set associated to the nonlinearity f (or to any
interval [ã, b̃] containing f ′(R)). Then the derivatives DFv : v +WX → WY are
uniformly bounded from below. More precisely, there exists C > 0 such that

∀v ∈ VX ∀w ∈ v +WX ∀h ∈WX,
∥∥DFv(w)h∥∥Y ≥ C‖h‖X. (1)

All such maps are invertible.

A direct application of Hadamard globalization theorem [15] implies that the
projected restrictions are diffeomorphisms, for each v ∈ VX .
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Fig. 1 Horizontal affine subspace, fiber; sheet, vertical affine subspace

3 The Underlying Picture

The geometric implications are very natural. The image under F of each horizontal
affine subspace v+WX is a sheet, i.e., a surface which projects under PY diffeomor-
phically to the horizontal subspace WY . In particular, every vertical affine subspace
w + VY intercepts each sheet exactly at a single point. It is not hard to see that the
intersection is transversal: tangent spaces of sheet and affine subspace form a direct
sum decomposition of Y .

A fiber is the inverse image of a vertical affine subspace: see Fig. 1. In a similar
fashion, fibers are surfaces of dimension |J | which meet every horizontal affine
subspace v +WX at a single point—again, the intersection is transversal. Thus, a
vertical subspace parameterizes diffeomorphically each fiber, or, said differently,
each fiber has a single point of a given height.

Recall a key idea in [10] and [12]. It is clear thatX and Y are respectively foliated
by fibers and vertical affine subspaces. By definition, all the solutions of F(u)= g
must lie in the fiber αg = F−1(g + VY ). So, in principle, one might solve the equa-
tion by first identifying αg � R

|J | and then facing the finite dimensional inversion
of F : αg→ g + VY .

Horizontal affine subspaces are taken diffeomorphically to sheets, but fibers are
not taken diffeomorphically to vertical affine subspaces. In a sense, the nonlinearity
of the problem was reduced to a finite dimensional issue.

4 Finding the Fiber

Recall that each horizontal affine subspace v+WX contains exactly one element of
each fiber. So, to identify αg , choose v +WX and search in it for an element of αg .
Said differently, one may think of Fv : v +WX→WY as being a diffeomorphism
between fibers (represented by points in v+WX) and vertical affine subspaces (rep-
resented by points in WY ). The situation is ideal for an application of Newton’s
method: local improvements are performed by linearization of the diffeomorphism.
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Fig. 2 Uniform triangulations of [0,1] × [0,2] and a nodal function

There is one difficulty, however, related to implementation issues. The functional
spaces X and Y give rise to finite dimensional vector spaces generated by finite
elements. We provide some detail; an excellent reference is [16]. First of all, trian-
gulate the domain Ω , i.e., split it into disjoint simplices in R

n. In the examples of
Sect. 7, Ω is the uniformly triangulated rectangle [0,1] × [0,2]. A nodal function
is a continuous function that is affine linear on each simplex and has value one at a
given vertex and zero at the remaining vertices. These functions form a nodal basis
which spans a finite dimensional subspace of H 1

0 (Ω). Figure 2 shows an example
of a triangulation of Ω and one nodal function.

Inner products of nodal functions, both in H 1 and L2, are often zero, a fact
which simplifies the numerics associated to the weak formulation of the equation
F(u) = g. The vertical subspaces VX and VY are spanned by eigenfunctions φj ,
j ∈ J and are well approximated by a few linear combinations on the nodal basis.
On the other hand, obtaining a similar basis for the approximation of the orthogonal
subspacesWX andWY requires much more numerical effort and should be avoided.

To circumvent this problem, extend the Jacobian of Fv : v+WX→WY at a point
u to an invertible operator Lu :X→ Y which is easy to handle and apply Newton’s
method to Lu instead. Setting

Luz=−Δz− PYf ′(u)PXz,
it is clear that Lu has the required properties: it takes WX to WY and VX to VY and
the restriction to v+WX equals DFv , which is invertible. Moreover, the restriction
to VX coincides with −Δ. This map is no longer a differential operator, due to the
integrals needed to compute the projections P . But those new terms are innocuous in
the finite element formulation—the sparsity of the underlying matrices is preserved,
together with the possibility of standard preconditioning routines.

We search for a point of a horizontal affine subspace v + WX which belongs
to αg , g ∈ Y . The algorithm is straightforward; see Fig. 3. Choose a starting point
u0 and consider its image F0. All would be well if the projections of F0 and g on
the horizontal subspace WY were equal or at least very near. When this does not
happen, proceed by a continuation method to join both projections. Notice that the
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Fig. 3 Finding the right fiber

Fig. 4 Mapping a 1-D fiber

algorithm searches for the fiber (i.e., for a point in the fiber) by moving horizontally
in the domain. A direct Newton iteration does not necessarily work: think of finding
the (trivial) root of arctan(x)= 0 starting sufficiently far from the origin.

5 Moving Along the Fiber

The necessary ingredients for a simple predictor–corrector method to move along a
fiber are now available. Say u ∈ αg and we want to find another point in αg . Recall
that fibers are parameterized by height v ∈ VX . Take u+ v, which is probably not
in αg , as a starting point for the algorithm in Sect. 4 to obtain the point of αg in the
same horizontal affine subspace of u+ v (see Fig. 4 for two such steps).

We don’t know much about the behavior of F restricted to a fiber: the hypotheses
on the nonlinearity f are not sufficient to imply properness of F , for example. In
particular, it is not clear that the restrictions of F to a fiber are also proper.
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Fig. 5 The derivative of f and the image of αg

6 Stability Issues

Proposition 1 in Sect. 2 ensures geometric stability, in the sense that the global
Lyapunov–Schmidt decompositions preserve their properties under perturbations.
This is convenient when replacing the vertical subspaces spanned by eigenfunctions
by their finite elements counterparts.

As for the algorithm itself, the identification of the fiber is robust, being a stan-
dard continuation method associated to a diffeomorphism between horizontal affine
spaces. The numerical analysis along a fiber is a different matter, and the funda-
mental issue was addressed by Smiley and Chun [12]: they showed that the finite
element approximations to the restriction of the function F to (compact sets of) the
fiber can be made arbitrarily close to the original map in the appropriate Sobolev
norm. Here one must proceed with caution: small metric perturbation may induce
variations in the number of solutions, as when changing from x �→ x2, x ∈ R to
x �→ x2 − ε, which is a perturbation of order ε for arbitrary Ck norms. Still, solu-
tions of F which are regular points are stable: they correspond to nearby solutions
of sufficiently good approximations Fh.

A different approach might be to interpret the algorithm as a provider of good
starting points for Newton’s iteration or at least a continuation method. As stated
in [17], computer assisted arguments require good approximations for the eventual
validation of solutions.

7 Some Examples

For the examples that follow, F(u) = −Δu− f (u) = g, with Dirichlet conditions
on Ω = [0,1] × [0,2]. Here, −ΔD has simple eigenvalues and λ1 = 5

4π
2 ≈ 12.34,

λ2 = 2π2 ≈ 19.74, λ3 = 17
4 π

2 ≈ 41.95. Denote by φXk and φYk the eigenfunctions
of −ΔD normalized in X and Y .

The first example is a nonlinearity f satisfying the hypotheses of Ambrosetti–
Prodi theorem with f (0)= 0 and derivative f ′(x)= α arctan(x)+ β with

Ran
(
f ′
)=

(
3λ1 − λ2

2
,
λ1 + λ2

2

)
> 0.
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Fig. 6 A right-hand side and a function on its fiber

Fig. 7 Ambrosetti–Prodi solutions

The graph of f ′ is shown on the left of Fig. 5. Here, the index set associated to f
is J = {1}: VX and VY are spanned by φX1 , φY1 ≥ 0. For right-hand side set g(x)=
−100x(x − 1)y(y − 2), shown on the left of Fig. 6, which has a large negative
component along the ground state.

We search for an element of the fiber αg in the horizontal subspace WX , starting
from u0 = 0, in the notation of Sect. 4. The result is the function on the right of
Fig. 6. Now move along αg , as in Sect. 5. The graph on the right of Fig. 5 plots
〈u,φX1 〉X (the height of u ∈ αg) versus 〈F(u),φY1 〉Y (the height of F(u)). The hor-
izontal line indicates the height of g: the solutions of the original PDE correspond
to the intersections between the curve and this line. The two solutions found in this
case are presented in Fig. 7.

For the next example, J = {1} but f is a nonconvex function whose derivative is
depicted on the left of Fig. 8. We consider the fiber through u0(x)=−50φX1 (x)+
10φX2 (x), i.e., αF(u0). According to Fig. 8(right), moving up the fiber yields three
distinct solutions.

As a concluding example, we take a nonlinearity f for which J = {1,2}: here
the vertical spaces are spanned by the first two eigenfunctions. The function f is of
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Fig. 8 Non-convex f

Fig. 9 The range of f ′ contains λ1 and λ2

Fig. 10 Two preimages on the circle

the same form as the first example and its derivative is shown in Fig. 9. We study
the fiber through the point u0 = 0, which is α0, since F(0)= 0. Recall from Sect. 4
that there is exactly one point of α0 for each height, i.e., given a point u ∈ VX , there
is a unique point ζ(u) ∈ α0 in the same horizontal affine subspace as u. For a circle
C centered at the origin in VX , ζ(C) ∈ α0. The image F(ζ(C)) is shown in the right
side of Fig. 10: here, we must project F(ζ(u)) along directions φY1 and φY2 . Clearly,
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Fig. 11 Two preimages along the horizontal axis

Fig. 12 The four solutions

there is a double point Z in F(ζ(C)) and it is not hard to identify in C its two
pre-images, U and D marked in the left of Fig. 10.

We now obtain two additional preimages of Z in a rather naive fashion. The
images under F ◦ ζ of the four half-axes of VX are drawn on the right of Fig. 11. It
is clear, then, that the horizontal axis contains two preimages L and R of Z, which
are easily computed.

For the sake of completeness, Fig. 12 displays the four solutions.
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On the Quadratic Finite Element Approximation
of 1D Waves: Propagation, Observation,
Control, and Numerical Implementation
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Abstract In arXiv:1112.4297, we studied the propagation, observation, and control
properties of the 1D wave equation on a bounded interval semi-discretized in space
using the quadratic classical finite element approximation. It was shown that the
discrete wave dynamics consisting of the interaction of nodal and midpoint compo-
nents leads to the existence of two different eigenvalue branches in the spectrum:
an acoustic one, of physical nature, and an optic one, of spurious nature. The fact
that both dispersion relations have critical points where the corresponding group
velocities vanish produces numerical wave packets whose energy is concentrated
in the interior of the domain, without propagating, and for which the observability
constant blows up as the mesh size goes to zero. This extends to the quadratic fi-
nite element setting the fact that the classical property of continuous waves being
observable from the boundary fails for the most classical approximations on uni-
form meshes (finite differences, linear finite elements, etc.). As a consequence, the
numerical controls of minimal norm may blow up as the mesh size parameter tends
to zero. To cure these high-frequency pathologies, in arXiv:1112.4297 we designed
a filtering mechanism consisting in taking piecewise linear and continuous initial
data (so that the curvature component vanishes at the initial time) with nodal com-
ponents given by a bi-grid algorithm. The aim of this article is to implement this
filtering technique and to show numerically its efficiency.
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1 Preliminaries on the Continuous Model and Problem
Formulation

Consider the 1D wave equation with non-homogeneous boundary conditions:
⎧⎪⎨
⎪⎩
ytt (x, t)− yxx(x, t)= 0, x ∈ (0,1), t > 0,

y(0, t)= 0, y(1, t)= v(t), t > 0,

y(x,0)= y0(x), yt (x,0)= y1(x), x ∈ (0,1).
(1)

System (1) is said to be exactly controllable in time T ≥ 2 if, for all (y0, y1) ∈
L2 ×H−1(0,1), there exists a control function v ∈ L2(0, T ) such that the solution
of (1) can be driven to rest at time T , i.e. y(x,T )= yt (x, T )= 0.

We also introduce the adjoint 1D wave equation with homogeneous boundary
conditions: ⎧⎪⎨

⎪⎩
utt (x, t)− uxx(x, t)= 0, x ∈ (0,1), t > 0,

u(0, t)= u(1, t)= 0, t > 0,

u(x,T )= u0(x), ut (x, T )= u1(x), x ∈ (0,1).
(2)

This system is well known to be well posed in the energy space V := H 1
0 ×

L2(0,1) and the energy below is conserved in time:

E
(
u0, u1)= 1

2

(∥∥u(·, t)∥∥2
H 1

0
+ ∥∥ut (·, t)∥∥2

L2

)= 1

2

(∥∥u0
∥∥2
H 1

0
+ ∥∥u1

∥∥2
L2

)
.

The Hilbert Uniqueness Method (HUM) introduced in [8] allows showing that
the property above of exact controllability for (1) is equivalent to the boundary
observability property of (2). The observability property ensures that the following
observability inequality holds for all solutions of (2), provided T ≥ 2:

E
(
u0, u1)≤ C(T )

∫ T

0

∣∣ux(1, t)∣∣2 dt. (3)

The best constant C(T ) in (3) is the so-called observability constant. The ob-
servability time T has to be larger than the characteristic one, T � := 2, needed by
any initial data (u0, u1) supported in a very narrow neighborhood of x = 1 to travel
along the characteristic rays parallel to x(t)= x − t , touch the boundary x = 0 and
bounce back to the boundary x = 1 along the characteristics parallel to x(t)= x+ t .

The HUM control v, the one of minimal L2(0, T )-norm, for which the solution
of (1) fulfills y(x,T )= yt (x, T )= 0, has the explicit form

v(t)= ṽ(t) := ũx(1, t), (4)

where ũ(x, t) is the solution of (2) corresponding to the minimum (ũ0, ũ1) ∈ V of
the quadratic functional

J
(
u0, u1)= 1

2

∫ T

0

∣∣ux(1, t)∣∣2 dt − 〈(
y1,−y0), (u(·,0), ut (·,0))〉V ′,V . (5)
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Fig. 1 The initial positionH(x) (left) versus the HUM control ṽH (middle) versus the solution y of
the control problem (1) (right) (red= 1, orange= 1/2, green= 0, cyan=−1/2, and blue=−1)

Here, V ′ =H−1 ×L2(0,1) and 〈·, ·〉V ′,V is the duality product between V and V ′.
In this paper, in order to analyze the efficiency of the various models under con-

sideration, we shall run the simulations on a specific example. We consider the par-
ticular case of the characteristic control time T = 2 and of initial data (y0, y1) in (1)
given by y1 ≡ 0 and the Heaviside function H as initial position:

y0(x)=H(x) :=
{

1, x ∈ [0,1/2),
−1, x ∈ [1/2,1]. (6)

The initial position, having discontinuities, involves significant high frequency com-
ponents that will be the source of instabilities for the numerical methods under con-
sideration. This example allows us to highlight the high-frequency pathologies of
the numerical approximations of the controlled wave problem (1) and the effects of
the filtering techniques we propose. In this particular case, the HUM control can be
explicitly computed by Fourier expansions, using the periodicity with time period
τ = 2 of the solutions (cf. Sect. 3.3 in [3]), and it is given by (see Fig. 1):

ṽ(t)= ṽH (t)=
{
−1/2, t ∈ (0,1/2] ∪ (1,3/2],
1/2, t ∈ (1/2,1] ∪ (3/2,2). (7)

The discrete approach to the numerical approximation of this kind of control
problems has been intensively studied during the last years, starting from some sim-
ple models on uniform meshes like finite differences or linear finite element methods
in [7] and, more recently, more complex schemes like the discontinuous Galerkin
ones in [10]. The problem consists in analyzing whether the controls of a numerical
approximation scheme of (1), obtained in a similar manner, i.e., by minimizing a
suitable discrete version of (5), converge to the control v of the wave equation (1) as
the mesh size parameter tends to zero. In all these cases, the convergence of the ap-
proximation scheme in the classical sense of the numerical analysis does not suffice
to guarantee that the sequence of discrete controls converges to the continuous ones,
as one could expect. This is due to the fact that there are classes of initial data for the
discrete adjoint problem generating high-frequency wave packets propagating at a
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very low group velocity and that, consequently, cannot be observed from the bound-
ary of the domain during a finite time uniformly with the mesh size parameter. This
leads to the divergence of the discrete observability constant as the mesh size tends
to zero.

Similar high-frequency pathological phenomena have also been observed for nu-
merical approximation schemes of other models, like the linear Schrödinger equa-
tion (cf. [5]), in which one is also interested in the uniformity of the so-called dis-
persive estimates, which play an important role in the study of the well-posedness
of some nonlinear models.

The rest of the paper is organized as follows. In Sect. 2, we summarize some well-
known results on the boundary controllability of the classical finite element space
semi-discretizations, especially the linear and the quadratic ones, emphasizing the
high frequency pathologies and their remedies based on the bi-grid algorithm. In
Sect. 3, we present in detail the implementation of the conjugate gradient algorithm
giving the numerical HUM controls, together with its two-grid adaptation, and we
show some numerical results to illustrate the validity of the theoretical ones. In
Sect. 4, we will summarize the conclusions of our paper and some related open
problems.

Before starting, let us give some basic notation. All vectors we deal with will
be considered as being column vectors and will be denoted by bold capital let-
ters. We will use capital letters for the components of the vectors and for ma-
trices and calligraphic capital letters for the discrete spaces. We denote: by h—
the mesh size and it will be the first superscript; by p—the degree of the nu-
merical approximation and it will be the first subscript; by the superscript ∗—
the transposition of a matrix; and by the overline symbol—the complex conjuga-
tion.

2 Preliminaries on Numerical Controls Using P1 and P2 Finite
Element Approximations

Let us now introduce the quadratic P2 finite element approximation method and
recall the main existent results, taken essentially from [11]. We consider N ∈ N,
h= 1/(N + 1), and 0= x0 < xj < xN+1 = 1 to be the nodes of a uniform grid of
the interval [0,1], with xj = jh, 0≤ j ≤N+1, constituted by the subintervals Ij =
(xj , xj+1), with 0 ≤ j ≤ N . On this grid, we also define the midpoints xj+1/2 =
(j + 1/2)h, with 0≤ j ≤N . Let us introduce the space Pp(a, b) of polynomials of
order p on the interval (a, b) and the space of piecewise quadratic and continuous
functions Uh2 := {u ∈H 1

0 (0,1) s.t. u|Ij ∈P2(Ij ), 0≤ j ≤N}. The space Uh2 can be
written as

Uh2 = span
{
φh2,j ,1≤ j ≤N

}⊕ span
{
φh2,j+1/2,0≤ j ≤N

}
,
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Fig. 2 The basis functions: φh2,j (left), φh2,j+1/2 (middle), and φh1,j (right)

where the two classes of basis functions are represented in Fig. 2 and are explicitly
given by

φh2,j (x)=

⎧⎪⎨
⎪⎩

2
h2Q(x,xj−1, xj−1/2), x ∈ Ij−1,
2
h2Q(x,xj+1/2, xj+1), x ∈ Ij ,
0, otherwise,

φh2,j+1/2(x)=
[
− 4

h2
Q(x,xj , xj+1)

]+
(8)

with Q(x,a, b)= (x − a)(x − b) and [f ]+—the positive part of f .
We will compare the results obtained when numerically approximating the con-

trols on this basis with the ones obtained by the linear P1 finite element approxi-
mation. In order to do this, in the same uniform grid of size h defined by the nodal
points xj , 0 ≤ j ≤ N + 1, we introduce the space of piecewise linear and contin-
uous functions Uh1 := {u ∈ H 1

0 (0,1) s.t. u|Ij ∈ P1(Ij ), 0 ≤ j ≤ N}, which can be
written as Uh1 = span{φh1,j ,1 ≤ j ≤ N}, where φh1,j (x) = [1− (x − xj )/h]+. The
linear/quadratic approximation of the adjoint problem (2) is

{
Find uhp(·, t) ∈ Uhp s.t. d

2

dt2
(uhp(·, t), ϕ)L2 + (uhp(·, t), ϕ)H 1

0
= 0, ∀ϕ ∈ Uhp,

uhp(x,T )= uh,0p (x), uhp,t (x, T )= uh,1p (x), x ∈ (0,1).
(9)

The solution uhp(·, t) ∈ Uhp admits the decomposition

uhp(x, t)=
pN+p−1∑
j=1

Up,j/p(t)φ
h
p,j/p(x).

Consequently, the function uhp(·, t) can be identified with the vector of its coef-
ficients, Uhp(t) = (Up,j/p(t))1≤j≤pN+p−1. Thus, problem (9) can be written as a
system of second-order linear ordinary differential equations (ODEs):

Mh
pUhp,tt (t)+ ShpUhp(t)= 0, Uhp(T )=Uh,0p , Uhp,t (T )=Uh,1p , p = 1,2, (10)
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whereMh
1 and Sh1 are the following N ×N tri-diagonal mass and stiffness matrices

Mh
1 =

⎛
⎜⎜⎜⎜⎝

2h
3

h
6 0 · · · 0 0

h
6

2h
3

h
6 · · · 0 0

...
. . .

. . .
. . .

...
...

0 0 0 · · · h
6

2h
3

⎞
⎟⎟⎟⎟⎠ ,

Sh1 =

⎛
⎜⎜⎜⎜⎝

2
h

− 1
h

0 · · · 0 0

− 1
h

2
h

− 1
h

· · · 0 0
...

. . .
. . .

. . .
...

...

0 0 0 · · · − 1
h

2
h

⎞
⎟⎟⎟⎟⎠

and Mh
2 and Sh2 are the following (2N + 1)× (2N + 1) pentha-diagonal mass and

stiffness matrices

Mh
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8h
15

h
15 0 0 0 0 · · · 0 0 0 0

h
15

4h
15

h
15 − h

30 0 0 · · · 0 0 0 0

0 h
15

8h
15

h
15 0 0 · · · 0 0 0 0

0 − h
30

h
15

4h
15

h
15 − h

30 · · · 0 0 0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...
...

0 0 0 0 0 0 · · · − h
30

h
15

4h
15

h
15

0 0 0 0 0 0 · · · 0 0 h
15

8h
15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Sh2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16
3h − 8

3h 0 0 0 0 · · · 0 0 0 0

− 8
3h

14
3h − 8

3h
1

3h 0 0 · · · 0 0 0 0

0 − 8
3h

16
3h − 8

3h 0 0 · · · 0 0 0 0

0 1
3h − 8

3h
14
3h − 8

3h
1

3h · · · 0 0 0 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...
...

0 0 0 0 0 0 · · · 1
3h − 8

3h
14
3h − 8

3h

0 0 0 0 0 0 · · · 0 0 − 8
3h

16
3h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For p = 1,2 (corresponding to the linear/quadratic approximation), let us introduce
some notations for the discrete analogues of H 1

0 (0,1), L
2(0,1), and H−1(0,1),

Hh,i
p := {

Fhp = (Fp,j/p)1≤j≤pN+p−1 ∈C
pN+p−1 s.t.

∥∥Fhp
∥∥
Hh,i
p
<∞}

,

i = 1,0,−1.
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The elements of Hh,1
p verify the additional requirement Fp,0 = Fp,N+1 = 0. The

inner products defining the discrete spaces Hh,i
p , i = 1,0,−1, are given by

(
Ehp,F

h
p

)
Hh,i
p
:= ((

Mh
p

(
Shp
)−1)1−i

ShpEhp,F
h
p

)
p,e
, i = 1,0,−1, (11)

and the norms are given by ‖Fhp‖2
Hh,i
p

:= (Fhp,Fhp)Hh,i
p

, for all i = 1,0,−1. Here,

(·,·)p,e is the inner product in the Euclidean space C
pN+p−1, defined by

(
Fhp,G

h
p

)
p,e
:=

pN+p−1∑
k=1

Fp,k/pGp,k/p.

Set Vhp :=Hh,1
p ×Hh,0

p and its dual Vh,
′

p :=Hh,−1
p ×Hh,0

p , the duality product

〈·, ·〉Vh,′p ,Vhp
between Vh,

′
p and Vhp being defined as

〈(
Fhp,1,G

h
p,1

)
,
(
Fhp,2,G

h
p,2

)〉
Vh,′p ,Vhp

:= (
Fhp,1,F

h
p,2

)
Hh,0
p
+ (

Ghp,1,G
h
p,2

)
Hh,0
p
.

Problem (10) is well posed in Vhp . The total energy of its solutions defined below
is conserved in time:

Ehp
(
Uh,0p ,Uh,1p

) = 1

2

(∥∥Uhp(t)
∥∥2
Hh,1
p
+ ∥∥Uhp,t (t)

∥∥2
Hh,0
p

)

= 1

2

(∥∥Uh,0p
∥∥2
Hh,1
p
+ ∥∥Uh,1p

∥∥2
Hh,0
p

)
. (12)

In [7] and [11], the following discrete version of the observability inequality (3)
for the linear (p = 1) and for the quadratic (p = 2) approximation was analyzed:

Ehp
(
Uh,0p ,Uh,1p

)≤ Chp(T )
∫ T

0

∥∥BhpUhp(t)
∥∥2
p,e
dt, (13)

where Bhp is a (pN +p− 1)× (pN +p− 1) observability matrix operator. Within
this paper we focus on the particular case of boundary observation operators Bhp , in
the sense that they approximate the normal derivative ux(x, t) of the solution of the
continuous adjoint problem (2) at x = 1 as h→ 0. One of the simplest examples of
such boundary matrix operators Bph that will be used throughout this paper is:

Bp,ij :=
{
− 1
h
, (i, j)= (pN + p− 1,pN),

0, otherwise.
(14)

The only non-trivial component of BhpUhp(t) is the last one which equals to
uh,x(xN+(p−1)/p, t) and is a first-order approximation of ux(1, t), where u is a so-
lution of (2).
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As shown in [7] for p = 1 and in [11] for p = 2, the observability inequality
(13) does not hold uniformly as h→ 0, meaning that the observability constant
Chp(T ) in (13) blows up whatever T > 0 is. This is due to the existence of solutions
propagating very slowly concentrated on zones of the spectrum where the spectral
gap or the group velocity tends to zero as h→ 0. To be more precise, for η ∈ [0,π],
let us introduce the Fourier symbols

Λ1(η) := 6(1− cos(η))

2+ cos(η)
,

Λα2 (η) :=
22+ 8 cos2(η/2)+ 2sign(α)

√
Δ(η)

1+ sin2(η/2)
, for α ∈ {a,o},

where sign(a)=−1, sign(o)= 1, and

Δ(η) := 1+ 268 cos2(η/2)− 44 cos4(η/2).

Define λ1(η) := √Λ1(η) and λα2 (η) :=
√
Λα2 (η), α ∈ {a,o}. Set Λk1 := Λ1(kπh)

and Λα,k2 :=Λα2 (kπh), α ∈ {a,o}, and consider the following spectral problem:

Shpϕ
h
p =ΛhpMh

pϕ
h
p. (15)

We take L2-normalized eigenvectors, i.e., ‖ϕhp‖Hh,0
p
= 1. The eigenvalues are ex-

plicitly given by

Λ
h,k
1 =Λk1/h2, Λ

h,α,k
2 =Λα,k2 /h2,

with α ∈ {a,o} and 1 ≤ k ≤ N . The superscripts a,o entering in the notation of
the P2-eigenvalues stand for acoustic/optic, respectively, to distinguish these two
main branches of the spectrum. In the quadratic case, p = 2, additionally to the 2N
modes Λh,α,k2 , with 1 ≤ k ≤ N and α ∈ {a,o}, there is also the so-called resonant

mode, given by Λh,r2 = 10/h2. In Fig. 3, we represent λhp :=
√
Λhp for different

values of p.
The solutions of (10) admit the following Fourier representation:

Uhp(t)=
∑
±

∑
(Λhp,ϕ

h
p)

ûp,± exp
(±itλhp)ϕhp,

where the second sum is taken over the all possible eigensolutions (Λhp,ϕ
h
p) in (15).

Here, ûp,± = (̂u0
p± û1

p/iλ
h
p)/2 and ûip are the Fourier coefficients of the initial data

Uh,ip defined by ûip := (Uh,ip , ϕhp)Hh,0
p

.

Firstly, let us remark that as kh→ 1, Λa,k
2 → 10, Λk1,Λ

o,k
2 → 12 and as kh→ 0,

Λ
o,k
2 → 60. On the other hand, as we can see in Fig. 3, λh,k1 and λh,a,k2 are strictly

increasing in k, while λh,o,k2 is strictly decreasing. The group velocities, which are
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Fig. 3 The square roots of the eigenvalues, λhp : the continuous (black), acoustic (red), optic (blue),

resonant (green) modes for p = 2 and λh1 (magenta)

the first-order derivatives of the Fourier symbols λ·p and Λ·p , verify

∂ηΛ1(π)= ∂ηΛ1(0)= ∂ηΛa
2(π)= ∂ηΛo

2(π)= ∂ηΛa
2(0)= ∂ηΛo

2(0)= 0

and ∂ηλ1(π)= ∂ηλa
2(π)= ∂ηλo

2(π)= ∂ηλo
2(0)= 0. (16)

For all α ∈ {a,o} and all 1≤ k ≤N , the following spectral identities hold:

∥∥ϕh,k1

∥∥2
Hh,1

1
= 6‖Bh1 ϕh,k1 ‖2

1,e

12−Λk1
and

∥∥ϕh,α,k2

∥∥2
Hh,1

2
= ‖B

h
2 ϕh,α,k2 ‖2

2,e

W(Λ
α,k
2 )

, (17)

where

W(Λ)= 24(Λ− 10)2(Λ− 12)(Λ− 60)

(−19Λ2 − 120Λ+ 3600)(Λ2 + 16Λ+ 240)
.

Thus, for a finite observability time T , by taking solutions of (10) of the form

Uh1(t)= exp
(
i(T − t)λh,N1

)
ϕh,N1

or

Uh2(t)= exp
(
i(T − t)λh,α,k2

)
ϕh,α,k2 ,

with (α, k) ∈ {(a,N), (o,N), (o,1)}, we obtain that the observability constant
Chp(T ) blows up at least polynomially as h→ 0. In fact, by adapting the analysis
in [10] based on the Stationary Phase Lemma, we can obtain a polynomial blow-
up rate at any order. In [13], by arguments based on fine estimates on the family
of bi-orthogonals that are expected to be adaptable to the approximations used in
this paper, an exponential blow-up rate was proved for the finite difference semi-
discretization scheme.

In Fig. 4(a), (e), we represent the solution of the continuous (abbreviated by c)
adjoint system (2) with

u0(x)= exp
(−γ (x − 1/2)2/2

)
exp(ixξ0) and u1(x)=−u0

x(x), γ = h−0.9,
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Fig. 4 Propagation along the rays of geometric optics of a Gaussian wave packet concentrated
around the wave number ξ0 = η0/h for h= 1/1000

for which the solution propagates at velocity one (the maximum amplitude for both
initial time t = 0 and final one t = 2 is at x = 1/2 after two reflections on the
boundary) along the generalized ray

x(t)=
{

2k+ 1+ 1/2− t, t ∈ (2k + 1/2,2k+ 1+ 1/2),

−(2k+ 1+ 1/2)+ t, t ∈ (2k + 1+ 1/2,2k+ 2+ 1/2),
k ∈ Z.

Also no dispersive effect holds since the corresponding group acceleration is identi-
cally zero (see Fig. 5, the black curves), despite of the value of the wave number η0.
The presence of the dispersion effects due to the group acceleration is responsible
for modifications on size of the support of the solutions as time evolves (cf. [12]),
whereas their absence leads to the conservation of the support size.

In Fig. 4(b), (f), we represent the corresponding solution of the numerical adjoint
problem (10) for p = 1; for both values of the wave number η0, the solution prop-
agates at a smaller group velocity than the continuous one since both η0 = 9π/10
and η0 = 39π/40 belong to the region where ∂ηλ1 < 1; the dispersive effects are
visible for both wave numbers, since the group acceleration ∂2

ηλ1 is non-trivial;
however, they are more accentuated for η0 = 39π/40 than for η0 = 9π/10 since
|∂2
ηλ1(39π/40)|> |∂2

ηλ1(9π/10)|, as we can see in Fig. 5, the blue curves.
In Fig. 4(c), (g), we represent the projection on the acoustic mode of the solution

to the adjoint problem (10) for p = 2. For η0 = 9π/10, the velocity of propagation is
larger than one (∂ηλa

2(9π/10) > 1) (at the final time t = 2, the maximum amplitude
is located at a space position x > 1/2, after two reflections on the border); almost
no dispersive effect can be observed, since ∂2

ηλ
a
2(η)∼ 0, for all η ∈ (0,9π/10). On

the other hand, for η0 = 39π/40, the projection on the acoustic branch propagates
at velocity ∂ηλa

2(39π/10) < 1, so that it reflects only once on the boundary, but
more rapidly than the corresponding wave packet for p = 1 (which even does not
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Fig. 5 Group velocities (left) versus group accelerations (right): continuous (black), p = 1 (blue),
p = 2 acoustic (red), p = 2 optic (dotted red)

reflect on the boundary) since ∂ηλa
2(39π/40) > ∂ηλ1(39π/40). At the same time,

the dispersive effects are much more accentuated for the projection on the acoustic
branch than for p = 1 since |∂2

ηλ
a
2(39π/40)| > |∂2

ηλ1(39π/40)|, as we can see in
Fig. 5, the red curves.

In Fig. 4(d), (h), we represent the projection on the optic mode of the solution
to the adjoint problem (10), which propagates in the opposite direction than the
physical solution, due to the fact that ∂ηλo

2(η) < 0, for all η ∈ (0,π), while in the
continuous case the group velocity is strictly positive (≡ 1). For η0 = 9π/10, the
velocity of propagation is larger than the one for the corresponding acoustic pro-
jection (i.e., |∂ηλo

2(9π/10)|> ∂ηλa
2(9π/10)), reflected in the fact that the maximum

amplitude at t = 2 is located next to x = 0; almost no dispersive effects occur. For
η0 = 39π/40, the optic projection propagates almost at the same velocity as the
acoustic one and almost with the same dispersive effects, the only visible change
being the reverse direction (see Fig. 5, the dotted red lines).

Several filtering techniques have been designed to face these high frequency
pathologies, all based on taking subclasses of initial data that filter them: the Fourier
truncation method (cf. [7]), which simply eliminates all the Fourier components
propagating non-uniformly, and the bi-grid algorithm (cf. [4]), rigorously studied in
[6, 9] and [14] in the context of the finite differences semi-discretization of the 1D
and 2D wave equation and of the Schrödinger equation (cf. [5]), which consists in
taking initial data with slow oscillations obtained by linear interpolation from data
given on a coarser grid. The interested reader is referred to the survey articles [3]
and [15] for a more or less complete presentation of the development of this topic
and the state of the art.

Let us describe how the bi-grid filtering acts for the linear and quadratic finite
element approximations under consideration. To be more precise, for an odd N , let
us define the set of data on the fine grid obtained by linear interpolation from data
on a twice coarser grid,

Bh1 : =
{

Fh1 = (F1,j )1≤j≤N, s.t. F1,0 = F1,N+1 = 0,

and F1,2j+1 = 1

2
(F1,2j + F1,2j+2), ∀0≤ j ≤ (N − 1)/2

}
,
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and the set of linear data whose nodal components are given by a bi-grid algorithm,

Bh2 :=
{

Fh2 = (F2,j/2)1≤j≤2N+1 s.t. F2,0 = F2,N+1 = 0,

F2,j+1/2 = 1

2
(F2,j + F2,j+1), ∀0≤ j ≤N,

and F2,2j+1 = 1

2
(F2,2j + F2,2j+2), ∀0≤ j ≤ (N − 1)/2

}
.

The following result has been proved for the adjoint problem (10) for p = 1 in
[9] or [14] and for p = 2 in [11]:

Theorem 1 For all T ≥ 2, the observability inequality (13) holds uniformly as
h→ 0 within the class of initial data (Uh,0p ,Uh,1p ) ∈ (Bhp × Bhp) ∩ Vhp in the adjoint
problem (10).

One of the possible proofs of this result is based on a dyadic decomposition
argument like in [6]. For the case p = 1, it reduces to showing that the total energy of
solutions corresponding to initial data in (Bh1 ×Bh1 )∩Vh1 can be uniformly bounded
from above by the energy of their projection on the first half of the spectrum. The
second step is to use the uniform observability inequality (13) in the class T h1 × T h1
consisting of discrete functions for which the second half of Fourier modes have
been truncated; this result can be obtained by the multiplier technique (cf. [7]) or
by Ingham-type inequalities (cf. [15]). For the quadratic case p = 2, the projection
on the first half of the acoustic mode has to be implemented to reduce the proof of
Theorem 1 to the observability inequality (13) on the class T h2 × T h2 of functions
for which the second half (the high frequency one) of the acoustic diagram and
the whole optic diagram have been truncated. The fact that for p = 2 the bi-grid
algorithm in Theorem 1 essentially truncates 3/4 of the spectrum versus only 1/2
for p = 1 can be intuitively seen in the fact that Bh2 involves two requirements on
its elements versus only one requirement for Bh1 . The observability time for these
two bi-grid algorithms coincides with the continuous optimal one T � = 2, since
the group velocities ∂ηλ1 and ∂ηλa

2 are increasing functions on [0,π/2] and then
∂ηλ1(η)≥ ∂ηλ1(0)= 1 for all η ∈ [0,π/2] and similarly for ∂ηλa

2. Thus, the minimal
velocity of propagation involving solutions with data in the class T hp × T hp for both
p = 1 and p = 2 is equal to one.

In practice, one has to employ fully discrete schemes. In this respect, it is im-
portant to note that, using the results of Ervedoza–Zheng–Zuazua in [2] allowing to
transfer observability results for time-continuous conservative semigroups on time-
discrete conservative schemes, we see that our observability results in Theorem 1
are also valid for any conservative fully discrete finite element approximation, like,
for example, the implicit midpoint time-discretization scheme

Uh,k+1
p − 2Uh,kp +Uh,k−1

p + (δt)2(Mh
)−1
Sh
(
Uh,k+1
p +Uh,k−1

p

)
/2= 0,
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where δt is the time step and Uh,kp ≈ Uhp(kδt). Note, however, that the results in [2]
do not yield the optimal observability time, a subject that needs further investigation.

Once the observability problem is well understood, we are in conditions to ad-
dress the discrete control problem. For a particular solution Ũhp(t) of the adjoint
problem (10), let us consider the following non-homogeneous discrete problem

Mh
pYhp,tt (t)+ ShpYhp(t)=−

(
Bhp

)∗
BhpŨhp(t), Yhp(0)=Yh,0p ,

Yhp,t (0)=Yh,1p .
(18)

Multiplying system (18) by any solution Uhp(t) of the adjoint problem (10), inte-
grating in time and imposing that at t = T the solution is at rest, i.e.,

〈(
Yhp,t (T ),−Yhp(T )

)
,
(
Uh,0p ,Uh,1p

)〉
Vh,′p ,Vhp

= 0, ∀(Uh,0p ,Uh,1p
) ∈ Vhp, (19)

we obtain the identity,
∫ T

0

(
BhpŨhp(t),B

h
pUhp(t)

)
p,e
dt = 〈(

Yh,1p ,−Yh,0p
)
,
(
Uhp(0),U

h
p,t (0)

)〉
Vh,′p ,Vhp

, (20)

for all (Uh,0p ,Uh,1p ) ∈ Vhp . This is the Euler–Lagrange equation corresponding to the
quadratic functional, the discrete analogue of J in (5):

J h
p

(
Uh,0p ,Uh,1p

)

= 1

2

∫ T

0

∥∥BhpUhp(t)
∥∥2
p,e
dt − 〈(

Yh,1p ,−Yh,0p
)
,
(
Uhp(0),U

h
p,t (0)

)〉
Vh,′p ,Vhp

,

Uhp(t) being the solution of the adjoint problem (10) with initial data (Uh,0p ,Uh,1p )

and (Yh,1p ,Yh,0p ) ∈ Vh,
′

p the initial data to be controlled in (18). Actually, (18) and
(20) are completely equivalent so that, in practice, it is sufficient to prove the ex-
istence of a critical point for J h

p to deduce the existence of a control for (18). The
uniform observability inequality (13) within the class of initial data Bhp×Bhp guaran-
tees the uniform coercivity of J h

p and the convergence of the last component ṽhp of

BhpŨhp(t), the discrete control, to the optimal control ṽ for the continuous wave equa-

tion given by (4) when the initial data (Yh,0p ,Yh,1p ) in (18) approximates well the
initial data (y0, y1) in the continuous problem (1). Here Ũhp(t) is the solution of the

discrete adjoint system (10) corresponding to the minimizer (Ũh,0p , Ũh,1p ) ∈ Bhp×Bhp
of J h

p .

3 Implementation of the Bi-grid Algorithm and Numerical
Results

The aim of this section is to numerically illustrate the three high frequency patholo-
gies for the quadratic approximation of the control problem (18) and the way in
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Fig. 6 The discrete Heaviside functions Hhp and their projections

which the bi-grid filtering leads to the convergence of the solution of (18) to the con-
tinuous one. We will also compare the numerical results obtained for the quadratic
case p = 2 and for the linear one p = 1.

In order to simplify the presentation, we will take as discrete initial data
(Yh,0p ,Yh,1p ) in (18) Yh,1p = 0, Yh,0p being an approximation of the Heaviside func-
tionH(x) in (6). Firstly, let us define the vectors H̃hp = (H̃p,j/p)1≤j≤pN+p−1, where

H̃p,j/p = (H,φhp,j/p)L2 , for all 1≤ j ≤ pN +p− 1. The numerical approximation
of H(x) we consider is

Yh,0p =Hhp :=
(
Mh
p

)−1H̃hp. (21)

For all α ∈ {a,o} and all β ∈ {lo,hi}, (lo/hi standing for low/high-frequency), we
also define the projections of Hhp on some parts of the spectrum as follows:

Hh1,β =
k+β∑
k−β

(
Hh1,ϕ

h,k
1

)
Hh,0

1
ϕ
h,k
1 and Hh,α2,β =

k+β∑
k−β

(
Hh2,ϕ

h,α,k
2

)
Hh,0

2
ϕh,α,k2 ,

where (k−β , k
+
β )= (1, (N−1)/2) if β = lo and (k−β , k

+
β )= ((N+1)/2,N) if β = hi.

More precisely, Hh1,lo is the projection of Hh1 on the first half of the spectrum and

Hh,a2,lo that of Hh2 on the first half of the acoustic diagram (see Fig. 6).
Since the datum H(x) in (6) is irregular due to the presence of the jump, it in-

volves high-frequency eigenfunctions. This also happens with its numerical approx-
imations Hhp , as it can be easily observed in Fig. 7. These high-frequency compo-
nents will lead to the divergence of the corresponding numerical controls.

In order to find the minimum of the discrete functional J h
p , we will apply the

Conjugate Gradient (CG) algorithm (see [1, 4]) to iteratively solve the Euler–
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Fig. 7 The Fourier coefficients of Hhp for p = 1 (left), p = 2 (center, blue = acoustic, red =
optic), p = 2—the optic branch (right)

Lagrange equation (20). Let us briefly recall it when no-filtering technique is ap-
plied.

Firstly, fix the initial data to be controlled (Yh,0p,0,Y
h,1
p,0), a tolerance ε (= 0.001

in our particular case) and a maximum number of iterations nmax (= 200), aimed to
be a stopping criterium. In order to better follow the CG algorithm, we divide it into
several steps as follows:

Step 1. We initialize the algorithm solving the adjoint problem (10) with arbitrary
data (Uh,0p ,Uh,1p )= (Uh,0p,0,Uh,1p,0) ∈ Vhp , for example, the trivial one. This step yields

the solution Uhp,0(t).

Step 2. Compute the first gradient (Gh,0p,0,G
h,1
p,0) := ∇J h

p (U
h,0
p,0,U

h,1
p,0) by solving

the non-homogeneous problem (18) with initial data (Yh,0p,0,Y
h,1
p,0) and Ũhp(t) =

Uhp,0(t). This produces the solution Yhp,0(t). Then

Gh,0p,0 =−
(
Shp
)−1
Mh
pYhp,0,t (T ) and Gh,1p,0 =Yhp,0(T ).

Step 3. If ‖Gh,0p,0‖2
Hh,1
p

+ ‖Gh,1p,0‖2
Hh,0
p

≥ ε2, compute the first descent direction

(
Dh,0p,0,D

h,1
p,0

)=−(Gh,0p,0,Gh,1p,0
)
.

Step 4. Given (Uh,0p,n,U
h,1
p,n), (G

h,0
p,n,G

h,1
p,n) and (Dh,0p,n,D

h,1
p,n) in Vhp , we compute

these quantities at the next iteration n+ 1 as follows:
Step 4.a. Solve (10) for (Uh,0p ,Uh,1p ) = (Dh,0p,n,D

h,1
p,n). Denote the solution by

Dhp,n(t).

Step 4.b. Solve (18) with trivial initial data and Ũhp(t) = Dhp,n(t) and denote the

solution by Yhp,n+1(t). Take

Zh,0p,n =−
(
Shp
)−1
Mh
pYhp,n+1,t (T ) and Zh,1p,n =Yhp,n+1(T ).
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Step 4.c. Set

ρp,n := −
‖Gh,0p,n‖2

Hh,1
p

+ ‖Gh,1p,n‖2
Hh,0
p

(Zh,0p,n,D
h,0
p,n)Hh,1

p
+ (Zh,1p,n,Dh,1p,n)Hh,0

p

.

Step 4.d. Compute the next iteration

(
Uh,0p,n+1,U

h,1
p,n+1

) := (
Uh,0p,n,U

h,1
p,n

)+ ρp,n(Dh,0p,n,Dh,1p,n).
Step 4.e. Compute the next gradient

(
Gh,0p,n+1,G

h,1
p,n+1

) := ∇J h
p

(
Uh,0p,n+1,U

h,1
p,n+1

)

by
(
Gh,0p,n+1,G

h,1
p,n+1

) := (
Gh,0p,n,G

h,1
p,n

)+ ρp,n(Zh,0p,n,Zh,1p,n).
Step 4.f. Compute the next descent direction

(
Dh,0p,n+1,D

h,1
p,n+1

)

:= −(Gh,0p,n+1,G
h,1
p,n+1

)+
‖Gh,0p,n+1‖2

Hh,1
p

+ ‖Gh,1p,n+1‖2
Hh,0
p

‖Gh,0p,n‖2
Hh,1
p

+ ‖Gh,1p,n‖2
Hh,0
p

(
Dh,0p,n,D

h,1
p,n

)
.

The algorithm ends up when for some n < nmax we obtain

∥∥Gh,0p,n
∥∥2
Hh,1
p
+ ∥∥Gh,1p,n

∥∥2
Hh,0
p
< ε2

or when n ≥ nmax. When the second stopping criterium holds, we understand that
the CG algorithm does not converge (due to the fact that J h

p looses coercivity).

For both stopping criteria, we take the minimizer of J h
p to be (Ũh,0p , Ũh,1p ) :=

(Uh,0p,n,U
h,1
p,n), where n is the last iteration number before stopping.

Let us now describe the changes we have to do in the CG algorithm to implement
the bi-grid filtering we propose in Theorem 1. The linear case p = 1 has been im-
plemented in [3]. For this reason, we restrict ourselves to the quadratic case p = 2.
However, whenever we have to implement any filtering technique, the only steps we
have to modify are Steps 2 and 4.b above. In order to simplify the presentation, we
describe only the modifications to be done on Step 2, the ones on Step 4.b being
similar. Firstly, set

Fh,02 =−Mh
2 Yh2,0,t (T ) and Fh,12 =Mh

2 Yh2,0(T ),

and observe that, for all test function (Uh,02 ,Uh,12 ) ∈ Vh2 , the Gateaux derivative of

J h
2 at (Uh,02,0,U

h,1
2,0) has the following expressions:
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(
J h

2

)′(Uh,02,0,U
h,1
2,0

)(
Uh,02 ,Uh,12

)= (
Fh,02 ,Uh,02

)
2,e +

(
Fh,12 ,Uh,12

)
2,e

= (
Gh,02,0,U

h,0
2

)
Hh,1

2
+ (

Gh,12,0,U
h,1
2

)
Hh,0

2
.

Let us observe that the linear functions with nodal components given by a bi-grid
algorithm in Bh2 are in fact linear functions on a grid of size 2h. We consider that

both the test functions (Uh,02 ,Uh,12 ) and the gradient (Gh,02,0,G
h,1
2,0) belong to Bh2×Bh2 .

Consider the restriction operator Π that associates to any quadratic function of
coefficients Eh2 = (E2,j/2)1≤j≤2N+1 the linear function on the mesh of size 2h of

coefficients (ΠEh2)j = E2,2j , for all 1 ≤ j ≤ (N − 1)/2. When both (Uh,02 ,Uh,12 )

and (Gh,02,0,G
h,1
2,0) belong to Bh2 ×Bh2 , then

(
Gh,02,0,U

h,0
2

)
Hh,1

2
+ (

Gh,12 ,Uh,12

)
Hh,0

2

= (
ΠGh,02,0,ΠUh,02

)
H2h,1

1
+ (
ΠGh,12,0,ΠUh,12

)
H2h,0

1
.

Consider another restriction operator Γ defined as

(
ΓEh2

)
j
=E2,2j + 3

4
(E2,2j+1/2 +E2,2j−1/2)

+ 1

2
(E2,2j+1 +E2,2j−1)+ 1

4
(E2,2j+3/2 +E2,2j−3/2).

Then

(
Fh,02 ,Uh,02

)
2,e +

(
Fh,12 ,Uh,12

)
2,e =

(
Γ Fh,02 ,ΠUh,02

)
1,e +

(
Γ Fh,12 ,ΠUh,12

)
1,e

and the two components of the gradient are explicitly given by

Gh,02,0 =Π−1(S2h
1

)−1
Γ Fh,02 and Gh,12,0 =Π−1(M2h

1

)−1
Γ Fh,12 ,

where Π−1 is the inverse of the restriction operator Π defined as the linear inter-
polation on a grid of size h/2 of a function defined on a grid of size 2h. There-
fore, our filtering mechanism in Theorem 1 for p = 2 acts in fact like a classi-
cal bi-grid algorithm of mesh ratio 1/4. This is very similar to the bi-grid algo-
rithm designed in [5] to ensure discrete dispersive estimates for the finite difference
semi-discretization of the Schrödinger equation uniformly in the mesh size param-
eter h. In that case, the bi-grid algorithm has to face the two singularities of the
Fourier symbol p(η) = 4 sin2(η/2) defined on η ∈ [0,π]: the vanishing group ve-
locity at η = π , yielding the non-uniform gain of 1/2-derivative, and the vanish-
ing group acceleration at η = π/2, related to the non-uniform L

p
x –Lqt -integrability

(see Fig. 8, right). In our case, by ordering in an increasing way the eigenvalues
on the two dispersion curves and constructing λ2(η) = λa2(η), for η ∈ [0,π] and
λ2(η)= λo2(2π − η), for η ∈ [π,2π], we formally obtain a discrete wave equation
on the grid h/2 whose dispersion relation λ2(η), η ∈ [0,2π], has vanishing group
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Fig. 8 Dispersion relations for the P2-approximation of the wave equation (left): continuous
(black), λa2 (red), λo2 (green), λ2 (blue), versus Fourier symbols of the finite difference semi-dis-
cretization of the Schrödinger equation (right): continuous (black) and discrete (blue). At the
marked points, the symbols have vanishing group velocity (circles) or vanishing group acceler-
ation (squares)

velocity at η = π± and at η = 2π (see Fig. 8, left). In order to remedy the patholo-
gies associated to both singular points π± and 2π , a bi-grid of mesh ratio 1/4 should
suffice, despite of the discontinuity of λ2 at η= π .

Remark 1 In practice, one has to reduce the semi-discrete problem to be solved,
MhUhtt (t) + ShUh(t) = Fh(t), to a fully discrete system with time-step of size δt
and to take Uh,k ≈ Uh(kδt). Set μ := δt/h to be the Courant number. When using
an explicit time scheme, for example, the leap-frog one,

Uh,k+1 − 2Uh,k +Uh,k−1 +μ2h2(Mh
)−1
ShUh,k = (δt)2(Mh

)−1Fh(kδt),

a careful von Neumann analysis shows that the Courant–Friedrichs–Lewy (CFL)
condition for μ is μ≤minΛ

√
4/Λ, where the minimum is taken over all the eigen-

values Λ of the matrix h2(Mh)−1Sh. When dealing with (10) or (18) for the linear
approximation p = 1, this analysis gives μ≤ 1/

√
3. For the case p = 2, we obtain

μ ≤ 1/
√

15 if we work with solutions involving both modes or μ ≤ √2/5 if the
numerical solution involves only the acoustic mode. We observe that, globally, the
quadratic scheme requires smaller Courant numbers than the linear one, whereas
the resolution of the homogeneous problem (10) with data concentrated only on the
acoustic mode admits larger μ’s than in the linear case.

We end up this section by discussing the numerical results in Figs. 9, 10, 11, 12.
For the P1-approximation, we take h = 1/200 and for the P2-one, h = 1/100, in
order to have the same number of degrees of freedom in both approximations.

– Without restricting the space where the functional J h
p is minimized, the numer-

ical controls are highly oscillatory and diverge (see Figs. 9 and 10(a)–(b)). This
is due to the fact that the initial data Hhp involves the critical modes on the high-
frequency regime of the dispersion relations for which the numerical controls
diverge. These pathological effects can be seen separately by controlling the cor-
responding projections of the data Hhp on the high frequency modes (see Fig. 9(f)
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Fig. 9 Solutions of the control problem (18) versus their numerical controls for p = 1 arising by
minimizing J h

1 over the whole space Vh1

for p = 1 and Fig. 10(f), (h), (j) for p = 2). As long as the initial data Hhp is
projected on the first half of the acoustic mode for p = 2 or on the first half of
the spectrum for p = 1, the CG algorithm and the numerical controls converge
(see Figs. 9(d) and 10(d)). The numerical controls obtained for these projections
Hh1,lo and Hh,a2,lo as initial positions in the control problem (18) without filtering
are approximately the same as the ones obtained by the bi-grid filtering mecha-
nism taking as initial position the whole Hhp (see also Fig. 11(b) and 12(b)). This
is due to the fact that the controls obtained by the bi-grid algorithm damp out
the high-frequency effects and for this reason they act mainly on the eigenmodes
involved in Hh1,lo or Hh,a2,lo.

– Without filtering, the high-frequency modes produce instabilities in the form of
oscillations of larger and larger amplitude which accumulate as time evolves in
the solutions of the control problem (18) (see Figs. 9(a), (e) and 10(a), (e), (g),
(i)). These high frequency effects are larger in the P2 case than in the P1 one, due
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Fig. 10 Solutions of the control problem (18) versus their numerical controls for p = 2 arising by
minimizing J h

2 over the whole space Vh2
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Fig. 11 Solutions of the control problem (18) versus their numerical controls for p = 1 arising by
minimizing J h

1 over the restricted space (Bh1 ×Bh1 )∩ Vh1

to the presence of the optic mode whose largest eigenvalues are much above the
largest ones for the linear approximation (60/h2 versus 12/(h/2)2 = 48/h2). The
solutions of the adjoint problem (10) corresponding to the minimizer (Ũh,0p , Ũh,1p )

of J h
p over Vhp are typically highly oscillatory wave packets whose energy is

concentrated far from the boundary x = 1 at any time t ∈ [0,2] (see Fig. 13, left).
– When the space over which the functional J h

p is minimized is restricted to the bi-
grid class (Bhp × Bhp) ∩ Vhp , the high-frequency modes diminish in time for both
the linear and the quadratic approximation as it can be observed in Figs. 11(e)
and 12(e), (g), (i). For the case p = 2, the optic modes are more dissipated than
the acoustic ones. However, by comparing Figs. 11(a)–(b) and 12(a)–(b), we ob-
serve that the numerical controls and the solutions of the discrete control prob-
lem (18) under filtering are much more accurate in the quadratic case than in
the linear one. As we made it precise before, for p = 2, the bi-grid filtering acts
mainly like a Fourier truncation of the whole optic mode λo

2 and of the second
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Fig. 12 Solutions of the control problem (18) versus their numerical controls for p = 2 arising by
minimizing J h

2 over the restricted space (Bh2 ×Bh2 )∩ Vh2
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Fig. 13 Typical solution of the adjoint problem (10) corresponding to the minimizer (Ũh,0p , Ũh,1p )

of J h
p over Vhp (left) or over (Bhp ×Bhp)× Vhp (right)

Fig. 14 The error ‖ṽhp − ṽ‖L2(0,T ) for p = 1 (blue) and p = 2 (red) versus the number of degrees

of freedom N at the logarithmic scale. In dotted blue/red, we represent N−1/3 and N−2/5 also at
the logarithmic scale. Here N takes values from 99 to 999 with increments of 100

half of the acoustic one λa
2, whereas for p = 1, it behaves like a Fourier trun-

cation of the second half of the dispersion diagram λ1. But the low frequencies
of the acoustic mode approximate much better the continuous dispersion relation
λ(η) = η, η ∈ R, than the dispersion diagram of the linear approximation. In-
deed, as η ∼ 0, λ1(η) ∼ η + η3/24 + η5/1920, whereas λa

2(η) ∼ η + η5/1440.
According to the results in [3], this improves the convergence rate h2/3 of the
numerical controls towards the continuous ones corresponding to the case p = 1
for initial data (y0, y1) in the continuous control problem (1) belonging to the
more regular space H 1

0 × L2(0,1), so that a convergence order h4/5 is obtained
for p = 2 under the same regularity assumptions. In Fig. 14, we represent the
errors in the numerical controls obtained by the bi-grid filtering at the loga-
rithmic scale for both approximations p = 1 and p = 2 for the initial posi-
tion Hhp approximating the Heaviside function H . The continuous initial data

(y0, y1)= (H,0) ∈H 1/2−ε×H−1/2−ε(0,1), for any ε > 0, which is less than the
regularity imposed in [3]. Consequently, by interpolation, a natural sharp bound
for the convergence orders of the numerical controls should be h1/3 for p = 1
versus h2/5 for p = 2. This is confirmed by our numerical results.

All the numerical simulations in this paper are realized under the Matlab envi-
ronment. The corresponding numerical codes can be found following the link

www.bcamath.org/projects/MTM2008-03541/sim/images/.

http://www.bcamath.org/projects/MTM2008-03541/sim/images/
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4 Conclusions and Open Problems

In this paper, we have discussed and illustrated numerically the high frequency
pathological effects of the P2 approximation of the 1D wave equation, previously
analyzed rigorously in [11] in what concerns the boundary observation and control
problems. We have also illustrated the efficiency of the bi-grid filtering algorithm
in recovering the convergence of the numerical controls and compared the results
obtained by this quadratic finite element method with those one recovers by means
of the P1-approximation. Our conclusion is that, after applying the bi-grid filtering,
the quadratic approximation leads to more accurate controls than the linear one.

This filtering technique can be easily generalized to higher order finite element
approximation methods of waves (p ≥ 3) on uniform meshes, a higher and higher
accuracy of the numerical controls being expected. However, the high-frequency
effects of the numerical approximations on irregular meshes is a completely open
problem.

Acknowledgements Both authors were partially supported by ERC Advanced Grant FP7-
246775 NUMERIWAVES, Grants MTM2008-03541 and MTM2011-29306 of MICINN Spain,
Project PI2010-04 of the Basque Government, and ESF Research Networking Programme OPT-
PDE. Additionally, the first author was supported by Grant PN-II-ID-PCE-2011-3-0075 of CNCS-
UEFISCDI Romania.

References

1. Castro, C., Cea, M., Micu, S., Münch, A., Negreanu, M., Zuazua, E.: Wavecontrol: a program
for the control and stabilization of waves. Manual. http://www.bcamath.org/documentos_
public/archivos/personal/conferencias/manual200805.pdf

2. Ervedoza, S., Zheng, C., Zuazua, E.: On the observability of time-discrete conservative linear
systems. J. Funct. Anal. 254(12), 3037–3078 (2008)

3. Ervedoza, S., Zuazua, E.: The wave equation: control and numerics. In: Cannarsa, P.M., Coron,
J.M. (eds.) Control and stabilization of PDEs. Lecture Notes in Mathematics, CIME Subseries,
vol. 2048, pp. 245–339. Springer, Berlin (2012)

4. Glowinski, R., Li, C.H., Lions, J.L.: A numerical approach to the exact boundary controlla-
bility of the wave equation. I. Dirichlet controls: description of the numerical methods. Jpn. J.
Appl. Math. 7(1), 1–76 (1990)

5. Ignat, L., Zuazua, E.: Numerical dispersive schemes for the nonlinear Schrödinger equation.
SIAM J. Numer. Anal. 47(2), 1366–1390 (2009)

6. Ignat, L., Zuazua, E.: Convergence of a two-grid algorithm for the control of the wave equa-
tion. J. Eur. Math. Soc. 11(2), 351–391 (2009)

7. Infante, J.-A., Zuazua, E.: Boundary observability for the space semidiscretization of the 1D
wave equation. Modél. Math. Anal. Numér. 33, 407–438 (1999)

8. Lions, J.L.: Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, vol.
1. Masson, Paris (1988)

9. Loreti, P., Mehrenberger, M.: An Ingham type proof for a two-grid observability theorem.
ESAIM Control Optim. Calc. Var. 14(3), 604–631 (2008)

10. Marica, A., Zuazua, E.: Localized solutions and filtering mechanisms for the discontinuous
Galerkin semi-discretizations of the 1D wave equation. C. R. Acad. Sci. Paris Ser. I 348,
1087–1092 (2010)

http://www.bcamath.org/documentos_public/archivos/personal/conferencias/manual200805.pdf
http://www.bcamath.org/documentos_public/archivos/personal/conferencias/manual200805.pdf


Quadratic Finite Element Approximation of 1D Waves 99

11. Marica, A., Zuazua, E.: On the quadratic finite element approximation of 1D waves: propaga-
tion, observation and control. SIAM J. Numer. Anal. (accepted). arXiv:1112.4297

12. Marica, A., Zuazua, E.: High frequency wave packets for the Schrödinger equation and its
numerical approximations. C. R. Acad. Sci. Paris Ser. I 349, 105–110 (2011)

13. Micu, S.: Uniform boundary controllability of a semi-discrete 1D wave equation. Numer.
Math. 91, 723–768 (2002)

14. Negreanu, M., Zuazua, E.: Convergence of a multigrid method for the controllability of a 1D
wave equation. C. R. Math. Acad. Sci. Paris 338, 413–418 (2004)

15. Zuazua, E.: Propagation, observation, control and numerical approximations of waves. SIAM
Rev. 47(2), 197–243 (2005)

http://arxiv.org/abs/arXiv:1112.4297


Space-Time Adaptive Multiresolution
Techniques for Compressible Euler Equations
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Abstract This paper considers space-time adaptive techniques for finite volume
schemes with explicit time discretization. The purpose is to reduce memory and to
speed-up computations by a multiresolution representation of the numerical solu-
tion on adaptive grids which are introduced by suitable thresholding of its wavelet
coefficients. Further speed-up is obtained by the combination of the multiresolution
scheme with an adaptive strategy for time integration, which is classical for ODE
simulations. It considers variable time steps, controlled by a given precision, using
embedded Runge–Kutta schemes. As an alternative to the celebrated CFL condition,
the aim in the application of such an time-adaptive scheme for PDE simulations is
to obtain accurate and safe integrations. The efficiency of this adaptive space-time
method is analyzed in applications to typical Riemann–Lax test problems for the
compressible Euler equations in one and two space dimensions. The results show
that the accuracy properties of the reference finite volume scheme on the finest reg-
ular grid, where the time step is determined by the CFL condition, is preserved.
Nevertheless, both CPU time and memory requirements are considerably reduced,
thanks to the efficient self-adaptive grid refinement and controlled time-stepping.
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1 Introduction

Multiresolution techniques have become an efficient tool, not only for data com-
pression, but also for adaptive simulations of partial differential equations, since the
seminal work by Ami Harten [14]. The main purpose of this paper is to show re-
sults illustrating the efficiency of a fully adaptive space-time multiresolution finite
volume method for solving the compressible Euler equations.

The Finite Volume method (FV) is one of the most robust and versatile discretiza-
tion techniques used in computational fluid dynamics [18]. Given a partition of the
computational domain, the quantities (such as mass, momentum, energy, and species
concentrations) are represented by their cell averages over the grid cells, which are
modified in each time step by the flux through the cells edges. Such a procedure
provides conservation of the quantities, which is valid locally, for any grid cell, as
well as globally, for the whole computational domain.

FV calculations can be accelerated significantly by the use of adaptive grids,
motivated by the presence of inhomogeneous singular features in the numerical so-
lution (as interfaces, shocks or reaction zones). Here we consider multiresolution
(MR) adaptive strategies to speed up FV schemes for time dependent partial differ-
ential equations in Cartesian geometries.

The MR technique is known to yield an appropriate framework to construct adap-
tive FV schemes for hyperbolic conservation laws since the work of Harten [15]. In
this context, cell average discretizations are considered in a hierarchy of embedded
partitions of the computational domain, at different scale levels. The principle of the
multiresolution analysis is to represent a set of cell average data given on a fine grid
as values on a coarser grid plus a series of differences at different levels, the wavelet
contributions, containing the information of the solution when going from a coarse
to a finer grid.

Using the wavelet coefficients as local regularity indicators—the idea of Harten,
which was subsequently explored in [1, 4, 6]—is to reduce the number of costly
flux evaluations to speed up the scheme, however, without reducing the memory
requirements. Fully adaptive MR schemes with memory compression have been
developed, where the representation of the numerical solutions is performed only
by the cell averages on the adaptive partitions formed by cells corresponding to
their significant wavelet coefficients [5, 7, 10, 11, 16, 20, 22–24]. Typically, little
information is required in each time step, since fine grids are only used near the
steep gradients, while coarser grids are sufficient to represent the solution in smooth
regions.

To further speed-up space-adaptive simulations, adaptive strategies may be
adopted for time integration. For instance, one strategy is the local scale-depend-
ent time stepping, which is classical in the AMR (Adaptive Mesh Refinement)
context [3]. The principle is to evolve the solution on large scale cells with larger
time steps, which are determined locally by the CFL condition, according to each
cell size. This technique has also been combined with MR schemes, as discussed
in [9, 10, 21]. Another adaptive time integration, which is usual for ODE simula-
tions, considers variable time steps, controlled by a given precision, using embed-
ded Runge–Kutta schemes. The aim in the application of such schemes for PDE
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simulations is to obtain accurate and safe integrations without the requirement of
a prescribed fixed CFL parameter. This controlled time-stepping technique, which
can also be combined with local time stepping, has been applied for AMR schemes
in [13], and for MR methods in [2, 5, 11, 12]. For the applications of the present pa-
per, only the combination of MR with controlled time stepping is considered, which
is herein referred as MR/CT scheme.

The text is organized as follows. In Sect. 2, we describe the reference FV
scheme and the corresponding space-adaptive MR and space-time-adaptive MR/CT
schemes. In Sect. 3, the MR/CT method is applied to the compressible Euler equa-
tions in one and two space dimensions. The results are compared with the exact
solution in 1D, or with those obtained with the reference FV scheme on the finest
regular grid in 2D. Their accuracy, CPU time, and memory compression are dis-
cussed taking into account two choices of the threshold parameters. Finally, conclu-
sions from our results are drawn and some perspectives of this work are given in
Sect. 4.

2 The Numerical Schemes

The compressible Euler equations can be written in the following conservation form,

∂Q

∂t
+∇ · f (Q)= 0, (1)

with Q = (ρ,ρv, ρe)T , where ρ = ρ(x, t) is the density, v = v(x, t) is the vector
velocity with components (v1, v2, v3), and e= e(x, t) is the energy per unit of mass,
which are functions of time t and position x = (x1, x2) ∈ Ω . The flux function
f = (f1, f2) is given by

f1 =

⎛
⎜⎜⎜⎝

ρv1

ρv2
1 + p
ρv1v2

(ρe+ p)v1

⎞
⎟⎟⎟⎠ , f2 =

⎛
⎜⎜⎜⎝

ρv2

ρv1v2

ρv2
2 + p

(ρe+ p)v2

⎞
⎟⎟⎟⎠ ,

where p = p(x, t) denotes the pressure. The system is completed by an equation of
state for a calorically ideal gas

p = ρRT = (γ − 1)ρ

(
e− |v|

2

2

)
, (2)

where T = T (x, t) is the temperature, γ the specific heat ratio, and R the universal
gas constant. In dimensionless form, we obtain the same system of equations, but
the equation of state becomes p = ρT

γM2 , where M denotes the Mach number. For
the present applications, the physical parameters are M = 1 and γ = 1.4.
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2.1 Reference Finite Volume Discretization

In the reference scheme for equations in the conservation form (1), the numerical so-
lution is represented by the vector Q̄(t) of the approximated cell-averages Q̄k,m(t)

Q̄k,m(t)≈ 1

|Ωk,m|
∫
Ωk,m

Q(x, t) dx

on cells Ωk,m of a grid with uniform spacing Δx =Δy. For space discretization, a
finite volume method is chosen, which results in an ODE system of the form

dQ̄

dt
= F(Q̄), (3)

where F(Q̄) denotes the vector of the numerical flux function. For time integration,
approximate solutions Q̄n at a sequence of time instants tn are obtained using an
explicit ODE solver, i.e., Runge–Kutta schemes. For stability, the time steps Δtn =
tn+1 − tn are determined by the CFL-condition [8]

CFL= λmax
Δt

Δx
,

where λmax is the maximum absolute value for the eigenvalues of the Jacobian ma-
trix of f (Q).

For the numerical tests of the present paper, the reference FV scheme uses a
second order MUSCL scheme with an AUSM+ flux vector splitting scheme [19]
and the van Albada limiter. For time integration, an explicit third-order Runge–Kutta
(RK3) scheme is used.

2.2 Adaptive Multiresolution Methods

The adaptive methods of the present paper fall into the MR category, combined with
a time adaptive strategy using controlled time-stepping.

MR Scheme The adaptive MR scheme belongs to a class of adaptive methods
which are formed by two basic parts: the operational part and the representation part.
The operational part consists of an accurate and stable discretization of the partial
differential operators. In the representation part, multiresolution analysis tools of the
discrete information are employed. The principle of the MR setting is to represent a
set of function data as values on a coarser grid G0 plus a series of differences at dif-
ferent levels of nested grids Gj ⊂Gj+1, see Fig. 1. The information at consecutive
scale levels are related by inter-level transformations: projection and prediction op-
erators. The wavelet coefficients dj are defined as prediction errors, and they retain
the detail information when going from a coarse Gj to a finer grid Gj+1 [23].

In MR schemes for the adaptive numerical solution of PDEs, the main idea is
to use the decay of the wavelet coefficients to obtain information on the local reg-
ularity of the solution. Adaptive MR representations are obtained by stopping the
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Fig. 1 Set of nested dyadic grids Gj , for 0≤ j ≤ 4

refinement in a cell at a certain scale level where the wavelet coefficients are non-
significant. In particular, these coefficients are small in regions where the solution
is smooth and significant close to irregularities, e.g., steep gradients. In the finite
volume context, the natural representation framework is the multiresolution analy-
sis based on cell-averages. Instead of using the cell-average representation on the
uniform fine grid, the MR scheme computes the numerical solution represented by
its cell-averages on an adaptive sparse grid, which is formed by the cells whose
wavelet coefficients are significant and above a given threshold.

An efficient way to store the reduced MR data is to use a tree data structure, where
grid adaptivity is related with an incomplete tree, and where the refinement may be
interrupted at intermediate scale levels. This means that, using the tree terminology,
an MR grid is formed by leaves, which are nodes without children; for an illustration
we refer to Fig. 2, left.

For the time evolution of the solution, three basic steps are considered: refine-
ment, evolution, and coarsening. The refinement operator is a precautionary mea-
sure to account for possible translation of the solution or creation of finer scales in
the solution between two subsequent time steps. Since the regions of smoothness
or irregularities of the solution may change with time, the MR grid at tn may not
be convenient anymore at the next time step tn+1. Therefore, before doing the time
evolution, the representation of the solution should be interpolated onto an extended
grid that is expected to be a refinement of the adaptive grid at tn, and to contain the
adaptive grid at tn+1.

Then, the time evolution operator is applied on the leaves of the extended grid. To
compute fluxes between leaves of different levels, we also add virtual leaves (Fig. 2,
right). Conservation is ensured by the fact that the fluxes are always computed on
the higher level, the value being reported on the leaves of a lower level.
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Fig. 2 Left: Sketch of a 2D tree structure. Right: corresponding sketch with its leaves (plain) and
virtual leaves (dashed)

Finally, a wavelet thresholding operation (coarsening) is applied in order to un-
refine the cells in the extended grid that are not necessary for an accurate represen-
tation of the solution at tn+1. This data compression is based on the definition of
deletable cells, where the wavelet coefficients are not significant, i.e., their magni-
tudes are bellow a threshold parameter εj , where j denotes the cell scale level. In
order to control the L1-norm, Harten’s thresholding strategy is recommended, for
which

εj = ε

|Ω|2
d(j−J+1), 0≤ j ≤ J − 1,

where d = 1,2, or 3 is the space dimension, and J is the finest scale level. For
comparison, we shall also consider level independent threshold parameters: εj ≡ ε,
for all 1≤ j ≤ J − 1.

For the applications of the present paper, the multiresolution analysis corre-
sponds to a prediction operator based on a third order polynomial interpolation on
the cell-averages. For further details on the adaptive MR scheme, we refer to [23].

MR/CT Scheme In the MR/CT scheme, the time integration is performed with a
variable time step Δt , which size is chosen dynamically. It should be small enough
to get a required precision and stability of the computed results, but sufficiently large
to avoid unnecessary computational work.

Instead of determining the time step by the celebrated CFL condition, using a
fixed CFL parameter determined a priori, the MR/CT scheme adopts a classical
strategy from ODE simulations, where the time step size selection is based on es-
timated local truncation errors. The main reason of controlling the error in the so-
lution is to obtain an accurate and safe integration in the whole interval. When the
estimated local error is smaller than a given tolerance, denoted by δdesired, the algo-
rithm increases the step size to make the integration more efficient.

For the applications of the present paper, the MR/CT scheme is based on the
embedded Runge–Kutta Fehlberg 2(3) ODE solver [26]. The initial time step is
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determined by an input CFL(0) parameter provided by the user. From one time
instant to the next, given the current Δt , the next Δtnew is determined to maintain
the local truncation error below δdesired. Precisely, it has the formΔtnew =Δtξ , with

ξ =
[

δdesired

|Q̄(low) − Q̄(high)|
]1/3

,

where Q̄(low) and Q̄(high) stand for the solutions produced by RK2 and RK3
schemes, respectively. To prevent the time step of varying too abruptly or to be
sure that Δtnew in fact will produce an error less than δdesired, the time step variation
is limited by a factor that decreases exponentially from 10 %, in the initial time step,
to 1 % after a few iterations. For more details on the combined MR/CT scheme, we
refer to [11].

3 Numerical Tests

To illustrate the accuracy and efficiency of the MR/CT method, we consider two
test problems in one and two space dimensions. Since one of the purposes here
is to evaluate the effect of different threshold strategies, we refer to MR/CT-ε and
MR/CT-εj to distinguish between the constant and the Harten threshold parameters
which are used.

The simulations presented in this section were performed using the multiresolu-
tion code Carmen 1.54, initially developed by Roussel et al. [23]. In this updated
version, details are considered for averaged quantities of ρ, ρe, and |v|.

3.1 Lax Test-Case in 1D

The Riemann problem for the unidimensional Euler equations with initial condition

Q(x, t = 0)=
⎛
⎝ 0.445

0.31061
8.928

⎞
⎠ , if x < 0, and

Q(x, t = 0)=
⎛
⎝ 0.5

0
1.4275

⎞
⎠ , otherwise

is known as the Lax problem. Details on this test-case, and its exact solution can
be found in [18, 27]. We compute the solution in the domain Ω = [−1,1], with
Neumann boundary conditions applied on both sides. The simulations are performed
until physical time t = 0.32, and all errors are taken at this final time. We take the
grid spacing Δx = 2J−1 at the finest scale level, and the results are obtained for
J = 11.

For this problem, the maximum absolute value for the eigenvalues of the Jaco-
bian matrix is constant for t > 0. Therefore, for the FV simulations, we assume a
constant time step Δt , which is obtained from the input CFL(0). Within t ≤ 0.32
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Fig. 3 1D Lax test-case: CFL evolution for MR/CT-ε (top) and MR/CT-εj (bottom) schemes, for
different accuracy values δdesired, with J = 11, CFL(0)= 0.4 (left) and CFL(0)= 1.5 (right)

using AUSM+ with van Albada limiter and an RK3 scheme, we found the stability
limit CFL≤ 1.33.

For the adaptive MR/CT scheme, an input CFL(0) parameter is provided by the
user, and CFL(t) evolves according to the new Δt obtained by the time step con-
trol. In [11], results are presented with initial CFL(0) values below and above the
CFL/RK3 stability limit. It was observed that initially there is a transient state, and
then CFL(t) becomes constant. The steady state value CFL∞ = CFL∞(δdesired) de-
creases with δdesired, remaining within the stability limit of the reference FV scheme.
Nevertheless, it seems to be independent of the CFL(0) input. The accuracy of the
numerical solutions, measured in the L1-norm, has the same behavior, which is al-
most insensitive to the CFL history, with significant gain in the amount of memory
and CPU time required with respect to the reference FV scheme.

We revisit this test problem here to analyze the effect of the threshold strategy,
having in mind the applications in two and three dimensions, where the savings
in CPU time and memory are crucial. Therefore, we consider similar results using
MR/CT-εj and MR/CT-ε schemes.

Figure 3 shows the CFL evolution for both threshold strategies, for δdesired =
2−M ,M = 3,4,5, and 7, with J = 11, confirming the conclusions presented in [11],
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Table 1 1D Lax test-case: Comparison of L1-errors for density ρ and kinetic energy E, speed-up

and data compression of the numerical solutions at time t = 0.32 with J = 11 levels. For the

MR/CT schemes, δdesired = 2−4 and CFL(0)= 0.4 is used

Method Error CPU

L1
(×10−3)

E

(%)
Time
(%)

Memory
(%)

Leaves
(%)

FV (Ref.) 4.144 0.009 100 100 100

ε = 10−2

MR/CT-ε 6.867 0.298 7.44 16.92 7.53

MR/CTS-εj 4.321 0.108 10 24 11

ε = 10−3

MR/CT-ε 4.266 0.108 10 24 11

MR/CTS-εj 4.151 0.103 13 29 13

ε = 10−4

MR/CT-ε 4.141 0.106 13 30 13

MR/CTS-εj 4.134 0.105 15 34 16

and showing that the influence of the threshold strategies seems to be insignificant
in the choices of the Δt parameters in the MR/CT schemes.

Table 1 shows memory and CPU time compression effects of the adaptive
schemes, for J = 11, δdesired = 2−4, CFL(0) = 0.4, ε = 10−2,10−3, and 10−4, to-
gether with L1-errors on density and kinetic energy

E = 1

2

∫ 1

−1
ρ(x)

∣∣v(x)∣∣2 dx = 0.966568.

The reference FV scheme uses a constant time step Δt = 9.694157× 10−5, which
is obtained from CFL(0)= 0.4. In all the cases, concerning CPU time and compres-
sion gains with respect to the FV reference scheme, the effectiveness of the MR/CT
schemes increases with increasing ε. In all the MR/CT cases, there is a slight vari-
ation of L1 and the percentage of energy errors. As expected, with respect to the
MR/CT-εj scheme, the MR/CT-ε scheme requires less memory, with gain in CPU
time, but with a consequent increase in the L1 and kinetic energy errors. However,
these differences in efficiency become less important as ε decreases.

The plots for the exact density ρ(x, t = 0.32) and its numerical approximations
are shown in Fig. 4 (top, left), showing that the numerical solutions fit the exact
one. The other three plots correspond to zooms onto the rarefaction boundary (top,
right), the contact discontinuity (bottom, left), and the shock (bottom, right). We can
observe that the MR/CT-ε solution loses resolution at the rarefaction part, where
FV and MR/CT-εj solutions almost coincide with the exact solution. At the contact
discontinuity and the shock, the three schemes have a comparable behavior.

In Fig. 5, the leaves of the MR adaptive meshes are represented in the position
× level plane. As expected, the grid is refined close to irregularities, and the finest
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Fig. 4 1D Lax test-case: Exact and numerical density obtained with the FV and MR/CT-ε methods
at t = 0.32 with J = 11 (top, left). For all MR cases ε = 10−3, and for the CTS cases δdesired = 2−4,
CFL(0)= 0.4. Zooms onto the rarefaction (top, right), the contact discontinuity (bottom, left) and
the shock (bottom, right)

Fig. 5 1D Lax test-case: MR grids at time t = 0.32 with J = 11, δdesired = 2−4, CFL(0) = 0.4
and ε = 10−3 for the MR/CT-ε scheme (left) and the MR/CT-εj scheme (right)
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Fig. 6 1D Lax test-case: Distribution of the percentage of cells for each scale at time t = 0.32
with J = 11, δdesired = 2−3, CFL(0)= 0.4 and ε = 10−3 for MR/CT-ε and MR/CT-εj

Fig. 7 2D Riemann problem: Domain decomposition for the definition of the initial condition

level is reached in the vicinity of the shock and the contact discontinuity. Close to
the rarefaction boundaries the MR/CT-εj grid shows more refinement, explaining
the better resolution of its solution at this location.

The percentage of the leaf cells on each scale level with respect to the full uni-
form grid at the finest resolution is presented in Fig. 6. The higher degree of refine-
ment given by the MR/CT-εj scheme at higher levels, mainly at j = 9 and 10, is
noticeable, which comes from the rarefaction zone, as it can be observed in Fig. 5.

3.2 2D Test-Case: Lax–Liu Configuration #6

The case study chosen here is a typical Riemann problem for 2D gas dynamics, and
corresponds to the configuration #6 treated, e.g., in [17], and initially discussed in
[25, 28]. The computational domain is the square Ω = [0,1]2, with free boundary
conditions. The domain is divided into four quadrants (Fig. 7), where the initial
data are set constant in each quadrant, according to the values given in Table 2.
The simulations are performed until t = 0.3, with J = 10 or 11. For the MR-CT
schemes, we take the parameters ε = 10−3, CFL(0)= 0.5, and δdesired = 2−4.
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Table 2 Initial values for the 2D Lax–Liu configuration #6 [17]

Variables Quadrant

00 01 10 11

Density (ρ) 1.0 2.0 3.0 1.0

Pressure (p) 1.0 1.0 1.0 1.0

Velocity component (v1) −0.75 0.75 −0.75 0.75

Velocity component (v2) 0.5 0.5 −0.5 −0.5

Table 3 2D test-case: Speed-up and L1-errors of density ρ and kinetic energy E of the MR/CT

numerical solutions at time t = 0.3 with J = 10 and 11 levels, ε = 10−3, δdesired = 2−4, and

CFL(0)= 0.5

Method Error CPU

L1
(×10−3)

E

(%)
Time
(%)

Memory
(%)

Leaves
(%)

J = 10

MR/CT-ε 1.2146 0.0340 16 23 15

MR/CTS-εj 0.7961 0.0288 26 37 25

J = 11

MR/CT-ε 2.0135 0.0156 7 11 7

MR/CTS-εj 0.8470 0.0144 14 22 14

In Table 3, we compare the computational efficiency and the precision of the
MR/CT methods. The reference computations are given by the FV scheme on the
finest regular grid with constant time step Δt = 2.790179× 10−4, for J = 10, and
Δt = 1.395089× 10−4, for J = 11, corresponding to CFL(0)= 0.5. This test prob-
lem also shows an almost constant ≈1.77 maximum eigenvalue. Concerning CPU
time and compression gains with respect to the FV reference scheme, the effec-
tiveness of the MR/CT schemes increases with J . As expected, with respect to the
MR/CT-εj scheme, the MR/CT-ε scheme requires about half of the memory, with
equivalent gain in CPU time, but with a consequent increase in L1-error. Neverthe-
less, the kinetic energy errors are comparable.

Contour plots for the density, velocity, and energy at t = 0.3 are presented in
Fig. 8 for the MR/CT-ε (left) and MR/CT-εj (right), for J = 11. They show that both
MR solutions are similar, but with a better definition of the details for the MR/CT-
εj case. This improved approximation is a consequence of a more refined MR grid
close to strong variation regions, as shown in Fig. 9. Density cuts at the line x = 0.5
are shown in Fig. 10 (top, left). We find a rather good agreement between both FV
and MR-CT computations. Zooms around the left, center, and right sides are also
shown. In the center, where both schemes have a well refined grid, the results are
very accurate. However, the MR/CT-ε scheme is not able to resolve the transition
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Fig. 8 2D test case: Density ρ (top), velocity |v| (center), and energy e (bottom) profiles at t = 0.3,
for the MR/CT-ε (left), and MR/CT-εj (right), with J = 11, ε = 10−3, and δdesired = 2−4. Contour
lines from 0, with intervals 0.1

regions of the constant states ρ = 3 and ρ = 2, where the constant ε strategy is not
sensible enough.

Concerning time adaptivity, the influence of the threshold strategies seems to
be insignificant in the choices of the Δt parameters in the MR/CT schemes, as
presented in Fig. 11 (left). The plots in Fig. 11 (right) correspond to the distribution
of the percentage of leaves of the MR adaptive grids on each scale level, with respect
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Fig. 9 2D test case: Adaptive grids at t = 0.3, for the MR/CT-ε (left), and the MR/CT-εj schemes
(right), with J = 11, ε = 10−3, and δdesired = 2−4

Fig. 10 2D test-case: Density cuts at x = 0.5 for t = 0.3, J = 11 and ε = 10−3, δdesired = 2−4,
for the FV and MR/CT methods (top, left). Corresponding zooms around the regions [0.15,0.25]
(top, right), [0.4,0.6] (bottom, left) and [0.78,0.9] (bottom, right)
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Fig. 11 2D test-case: Evolution of the CFL number (left) and the percentage of cells for each scale
level (right) for the MR/CT methods at t = 0.3, with J = 11, ε = 10−3, and δdesired = 2−4

to the full uniform grid at the finest resolution. The higher degree of refinement
given by the MR/CT-εj scheme at higher levels is noticeable.

4 Conclusions

The present work on adaptive multiresolution techniques in space and time illus-
trates the potential of such advanced numerical methods for solving the compress-
ible Euler equations in one and two space dimensions with reduced computational
complexity, i.e., reducing both memory and CPU time requirements with respect
to computations of the finest regular grid. The accuracy of the adaptive computa-
tions is nevertheless guaranteed by suitable thresholding of the wavelet coefficients
and the convergence order of the underlying finite volume scheme on the regular
grid is maintained. Furthermore, the adaptive time control mechanism maintains the
stability of the simulations and the solution satisfies an imposed precision in time.
The time step is adapted automatically by the numerical scheme during the time
evolution.

In the future work, we plan to perform computations in three space dimensions
and to benchmark extensively our multiresolution code against adaptive mesh re-
finement (AMR) strategies in terms of precision and CPU time. Preliminary results
comparing MR with AMR can be found in Deiterding et al. [9].
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A Framework for Late-Time/Stiff Relaxation
Asymptotics

Philippe G. LeFloch

Abstract We consider solutions to nonlinear hyperbolic systems of balance laws
with stiff relaxation and formally derive a parabolic-type effective system describ-
ing the late-time asymptotics of these solutions. We show that many examples from
continuous physics fall into our framework, including the Euler equations with (pos-
sibly nonlinear) friction. We then turn our attention to the discretization of these
stiff problems and introduce a new finite volume scheme which preserves the late-
time asymptotic regime. Importantly, our scheme requires only the classical CFL
(Courant–Friedrichs–Lewy) condition associated with the hyperbolic system under
consideration, rather than the more restrictive, parabolic-type stability condition.

Keywords Hyperbolic system · Late-time · Stiff relaxation · Finite volume
method · Asymptotic preserving

1 Introduction

This short presentation is based on the joint work [3] in collaboration with
C. Berthon and R. Turpault. We are interested in hyperbolic models arising in con-
tinuum physics and, especially, describing complex multi-fluid flows involving sev-
eral time-scales. The partial differential equations under consideration are nonlinear
hyperbolic systems of balance laws with stiff relaxation sources. We investigate here
the late-time behavior of entropy solutions.

Precisely, our objective is to derive the relevant effective system—which turns
out to be of parabolic type—and to investigate the role of a convex entropy asso-
ciated with the given system of balance laws. As we show it, many examples from
continuous physics fall into our framework. In addition, we investigate here the dis-
cretization of such problems, and we propose a new finite volume scheme which
preserves the late-time asymptotic regime identified in the first part of this paper.
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An outline of this paper follows. In Sect. 2, we present a formal derivation of
the effective equations associated with our problem. In Sect. 3, we demonstrate
that many examples of continuous physics are covered by our theory. Finally, in
Sect. 4, we are in a position to present the new discretization method and state
several properties of interest.

2 Late-Time/Stiff Relaxation Framework

2.1 Hyperbolic Systems of Balance Laws

We consider systems of partial differential equations of the form

ε ∂tU + ∂xF (U)=−R(U)
ε
, U =U(t, x) ∈Ω ⊂R

N, (1)

where t > 0, x ∈R denote the (time and space) independent variables. We make the
following standard assumptions. The flux F :Ω→ R

N is defined on a convex and
open subsetΩ . The first-order part of (1) is a hyperbolic system, that is, the matrix-
valued field A(U) :=DUF(U) admits real eigenvalues and a basis of eigenvectors.

We are interested in the singular limit problem ε→ 0 in the limit of late-time and
stiff relaxation. In fact, two distinct regimes for systems like (1) can be considered.
In the hyperbolic-to-hyperbolic regime, one replaces ε∂tU by ∂tU , and establishes
that solutions to

∂tU + ∂xF (U)=−R(U)
ε
, U =U(t, x),

are driven by an effective system of equations (ε→ 0) of hyperbolic type. Such a
study was pioneered by Chen, Levermore, and Liu [7]. On the other hand, in the
hyperbolic-to-parabolic regime under consideration in the present work, we obtain
effective equations of parabolic type. Earlier work by Marcati et al. [9] discussed
this regime too and established several important convergence theorems.

Our objective here is to introduce a general framework to deal with such prob-
lems. We make the following assumptions.

Assumption 1 There exists an n×N matrix Q with (maximal) rank n < N such
that

QR(U)= 0, U ∈Ω.
Hence, QU ∈QΩ =: ω satisfies

ε∂t (QU)+ ∂x
(
QF(U)

)= 0.

Assumption 2 There exists a map E : ω ⊂ R
m → Ω describing the equilibria

u ∈ ω, with

R
(
E(u)

)= 0, u=QE(u).
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It is then convenient to introduce the equilibrium submanifold M := {U = E(u)}.

Assumption 3 It is also assumed that

QF
(
E(u)

)= 0, u ∈ ω.

To motivate this condition observe that, at least formally, the term ∂x(QF(E(u)))
must vanish identically, so thatQF(E(u)) must be a constant, conveniently normal-
ized to be 0.

Assumption 4 For all u ∈ ω,

dim
(
ker

(
B
(
E(u)

)))= n,
ker

(
B
(
E(u)

))∩ Im
(
B
(
E(u)

))= {0}.
Hence, the N × N matrix B := DRU has “maximal” kernel on the equilibrium
manifold.

2.2 Chapman–Engskog-Type Expansion

We proceed by using a Chapman–Engskog expansion in order to derive effective
equations satisfied by the local equilibria u= u(t, x) ∈ ω. So, we write

Uε = E(u)+ εU1 + ε2U2 + · · · , u :=QUε,

which should satisfy ε∂tUε + ∂xF (Uε)=−R(Uε)/ε. It follows that

QU1 =QU2 = · · · = 0.

For the flux we find

F
(
Uε

)= F (E(u))+ εA(E(u))U1 +O
(
ε2),

and for the relaxation

R(Uε)

ε
= B(E(u))U1 + ε

2
D2
UR

(
E(u)

)
.(U1,U1)+ εB

(
E(u)

)
U2 +O

(
ε2).

In turn, we deduce that

ε ∂t
(
E(u)

)+ ∂x(F (E(u)))+ ε ∂x(A(E(u))U1
)

=−B(E(u))U1 − ε
2
D2
UR

(
E(u)

)
.(U1,U1)− εB

(
E(u)

)
U2 +O

(
ε2).
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We begin by considering the zero-order terms and thus deduce that U1 ∈ R
N

satisfies the linear system

B
(
E(u)

)
U1 =−∂x

(
F
(
E(u)

)) ∈R
N.

We can solve this equation in U1, provided we recall that QU1 = 0 and observe the
following.

Lemma 1 (Technical lemma) Let C be an N ×N matrix satisfying dim kerC = n,
and kerC ∩ ImC = {0}, and let Q be an n × N matrix of rank n. Then, for all
J ∈R

N , the system

CV = J,
QV = 0,

admits a unique solution V ∈R
m if and only if QJ = 0.

We can thus conclude with the following.

Proposition 1 (First-order corrector problem) The first-order corrector U1 is char-
acterized uniquely by

B
(
E(u)

)
U1 = −∂x

(
F
(
E(u)

))
,

QU1 = 0.

We now turn our attention to the first-order terms and we arrive at

∂t
(
E(u)

)+ ∂x(A(E(u))U1
)=−1

2
D2
UR

(
E(u)

)
.(U1,U1)−B

(
E(u)

)
U2.

Multiplying by Q and using QE(u)= u, we find

∂tu+ ∂x
(
QA

(
E(u)

)
U1

)=−1

2
QD2

UR
(
E(u)

)
.(U1,U1)−QB

(
E(u)

)
U2.

But, by differentiating the identity QR(U)= 0, it follows that

QD2
UR.(U1,U1)≡ 0, QBU2 ≡ 0.

Theorem 1 (Late time/stiff relaxation effective equations) One has

∂tu=−∂x
(
QA

(
E(u)

)
U1

)=: ∂x(M(u)∂xu
)

for some n × n matrix M(u), where U1 is the unique solution to the first-order
corrector problem

B
(
E(u)

)
U1 = −A

(
E(u)

)
∂x
(
E(u)

)
,

QU1 = 0.
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2.3 The Role of a Mathematical Entropy

Next, we investigate the consequences of assuming existence of a mathematical
entropy Φ :Ω→R, satisfying by definition:

Assumption 5 There exists an entropy-flux Ψ :Ω→R such that

DUΦA=DUΨ in Ω.

So, all smooth solutions satisfy

ε∂t
(
Φ
(
Uε

))+ ∂x(Ψ (Uε))=−DUΦ(Uε)R(U
ε)

ε

and, consequently, the matrix D2
UΦ A is symmetric in Ω . In addition, we assume

that the map Φ is convex, i.e., the N ×N matrix D2
UΦ is positive definite on M.

Assumption 6 The following compatibility property with the relaxation term holds:

DUΦR ≥ 0 in Ω,

DUΦ(U)= ν(U)Q ∈R
N, ν(U) ∈R

m.

Returning to the effective equations

∂tu= ∂xD, D := −QA(E(u))U1

and multiplying it by the Hessian of the entropy, we conclude that the term U1 ∈R
N

is now characterized by

L(u)U1 = −
(
D2
UΦ

)(
E(u)

)
∂x
(
F
(
E(u)

))
,

QU1 = 0,

where L(u)=D2
UΦ(E(u))B(E(u)).

Then, using the notation L(u)−1 for the generalized inverse with constraint and
setting

S(u) :=QA(E(u)),
we obtain

D = SL−1(D2
UΦ

)
(E)∂x

(
F(E)

)
.

Finally, one can check that

(
D2
UΦ

)
(E)∂x

(
F(E)

)= ST v,
with v := ∂x(DuΦ(E))T .
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Theorem 2 (Entropy structure of the effective system) When the system of balance
laws is endowed with a mathematical entropy, the effective equations take the form

∂tu= ∂x
(
L(u) ∂x

(
DuΦ

(
E(u)

))T )
,

where

L(u) := S(u)L(u)−1S(u)T ,

S(u) :=QA(E(u)),
L(u) := (

D2
UΦ

)(
E(u)

)
B
(
E(u)

)
,

where, for all b satisfying Qb= 0, the unique solution to

L(u)V = b, QV = 0

is denoted by L(u)−1b (generalized inverse).

Alternatively, the above result can be reformulated in terms of the so-called en-
tropy variable (DuΦ(E(u)))T . Furthermore, an important dissipation property can
be deduced from our assumptions, as follows. From the entropy property and the
equilibrium property R(E(u))= 0, we find

DUΦR ≥ 0 in Ω,

(DUΦR)|U=E(u) = 0 in ω.

Thus, the matrix D2
U(DUΦR)|U=E(u) is non-negative definite. It follows that

D2
U(DUΦR)=D2

UΦB +
(
D2
UΦB

)T when U = E(u),

so that

D2
UΦ B|U=E(u) ≥ 0 in ω.

The equilibrium entropy Φ(E(u)) has the property that its associated (entropy)
flux u �→ Ψ (E(u)) is constant on the equilibrium manifold ω. Indeed, for the map
Ψ (E), we have

Du
(
Ψ (E)

) =DUΨ (E)DuE
=DUΦ(E)A(E)DuE .

Observing that (DUΦ)(E)=Du(Φ(E))Q, we obtain

Du
(
Ψ
(
E(u)

)) =DuΦ(E(u))QA(E(u))DuE(u)
=Du

(
Φ
(
E(u)

))
DuQF

(
E(u)

)
.
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Since QF(E) = 0, then DuQF(E) = 0 and the proof is completed. Therefore,
Du(Ψ (E(u)))= 0 for all u ∈ ω.

Recalling the asymptotic expansion

Uε = E(u)+ εU1 + · · · ,
where U1 is given by the first-order corrector problem, we write

Ψ
(
Uε

)= Ψ (E(u))+ εDUΨ (E(u))U1 +O
(
ε2),

and deduce

∂xΨ
(
Uε

)= ε∂xDUΨ (E(u))U1 +O
(
ε2).

Similarly, for the relaxation source term, we have

DUΦ
(
Uε

)
R
(
Uε

)= ε2D2
UΦ

(
E(u)

)
DUR

(
E(u)

)
U1 +O

(
ε3).

We thus obtain

∂t
(
Φ
(
E(u)

))+ ∂x(DUΨ (E(u))U1
)

=−UT1
(
D2
UΦ

(
E(u)

)
B
(
E(u)

))
U1.

But, we have already established

X
(
D2
UΦ

)
(E)B(E)X ≥ 0, X ∈R

N.

Proposition 2 (Monotonicity of the entropy) The entropy is non-increasing in the
sense that

∂t
(
Φ
(
E(u)

))+ ∂x(DUΨ (E(u))U1
)≤ 0.

In the notation given earlier, one thus have

∂t
(
Φ
(
E(u)

))= ∂x(Du(Φ(E(u))))L(u)∂x(Du(Φ(E(u)))T ).
Remark 1 The above framework can be extended to handle certain nonlinear diffu-
sion regime, corresponding to the scaling

ε ∂tU + ∂xF (U)=−R(U)
εq

.

The parameter q ≥ 1 introduces an additional scale, and is indeed necessary for
certain problems where the relaxation is nonlinear. The relaxation term is supposed
to be such that

R
(
E(u)+ εU)= εqR(E(u)+M(ε)U), U ∈Ω, u ∈ ω,

for some matrix M(ε). In that regime, the effective equations turn out to be of non-
linear parabolic type.
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3 Examples from Continuum Physics

3.1 Euler Equations with Friction Term

The simplest example of interest is provided by the Euler equations of compressible
fluids with friction:

ε∂tρ + ∂x(ρv)= 0,

ε ∂t (ρv)+ ∂x
(
ρv2 + p(ρ))=−ρv

ε
,

(2)

in which the density ρ ≥ 0 and the velocity component v represent the main un-
knowns while the pressure p :R+ →R

+ is prescribed and satisfy the hyperbolicity
condition p′(ρ) > 0 for all ρ > 0. Then, the first-order homogeneous system is
strictly hyperbolic and (2) fits into our late-time/stiff relaxation framework provided
we set

U =
(
ρ

ρv

)
, F (U)=

(
ρv

ρv2 + p(ρ)
)
, R(U)=

(
0
ρv

)
,

and Q= (1 0). In this case, the local equilibria u= ρ are scalar-valued, with

E(u)=
(
ρ

0

)
,

and we do have QF(E(u))= 0.
The diffusive regime for the Euler equations with friction is analyzed as follows.

First, according to the general theory, equilibrium solutions satisfy

∂tρ =−∂x
(
QA

(
E(u)

)
U1

)
,

where

DUF
(
E(u)

)=
(

0 1
p′(ρ) 0

)
.

Here, U1 is the unique solution to

B
(
E(u)

)
U1 =−∂x

(
F
(
E(u)

))
,

QU1 = 0

with

B
(
E(u)

)=
(

0 0
0 1

)
, ∂x

(
F
(
E(u)

))=
(

0
∂x(p(ρ))

)
.

This leads us to the effective diffusion equation for the Euler equations with friction

∂tρ = ∂2
x

(
p(ρ)

)
, (3)
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which is a nonlinear parabolic equation, at least away from vacuum, since p′(ρ) > 0
by assumption. Interestingly, at vacuum, this equation may be degenerate since
p′(ρ) typically vanishes at ρ = 0. For instance, in the case of polytropic gases
p(ρ)= κργ with κ > 0 and γ ∈ (1, γ ) we obtain

∂tρ = κγ ∂x
(
ργ−1∂ρ

)
. (4)

In addition, by defining the internal energy e(ρ) > 0 by

e′(ρ)= p(ρ)
ρ2

,

we easily check that all smooth solutions to (2) satisfy

ε ∂t

(
ρ
v2

2
+ ρe(ρ)

)
+ ∂x

(
ρ
v3

2
+ (
ρe(ρ)+ p(ρ))v

)
=−ρv

2

ε
, (5)

so that the function

Φ(U)= ρ v
2

2
+ ρe(ρ)

is convex entropy compatible with the relaxation. All the conditions of the general
framework are therefore satisfied by the Euler equations with friction.

3.2 M1 Model of Radiative Transfer

Our next model of interest arises in the theory of radiative transfer, i.e.,

ε∂t e+ ∂xf = τ
4 − e
ε

,

ε∂tf + ∂x
(
χ(f/e)e

) = −f
ε
, (6)

ε∂t τ = e− τ
4

ε
,

where the radiative energy e > 0 and the radiative flux f are the main unknowns,
restricted by the condition |f/e| ≤ 1, while τ > 0 denotes the temperature. The
function χ : [−1,1]→R

+ is called the Eddington factor and, typically,

χ(ξ)= 3+ 4ξ2

5+ 2
√

4− 3ξ2
.

This system fits into our late-time/stiff relaxation framework if we introduce

U =
⎛
⎝ef
τ

⎞
⎠ , F (U)=

⎛
⎝ f

χ(
f
e
)e

0

⎞
⎠ , R(U)=

⎛
⎝e− τ

4

f

τ 4 − e

⎞
⎠ .
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Now, the equilibria are given by u= τ + τ 4, with

E(u)=
⎛
⎝τ

4

0
τ

⎞
⎠ , Q := (1 0 1).

We do have QF(E(u))= 0 and the assumptions in Sect. 2 are satisfied.
We determine the diffusive regime for the M1 model from the expression

(DUF)
(
E(u)

)=
⎛
⎝ 0 1 0
χ(0) χ ′(0) 0

0 0 0

⎞
⎠=

⎛
⎝0 1 0

1
3 0 0
0 0 0

⎞
⎠ ,

where U1 is the solution to the linear problem

⎛
⎝ 1 0 −4τ 3

0 1 0
−1 0 4τ 3

⎞
⎠U1 =

⎛
⎝ 0
∂x(τ

4/3)
0

⎞
⎠ ,

(1 0 1)U1 = 0.

Therefore, we have

U1 =
⎛
⎝ 0

4
3τ

3∂xτ

0

⎞
⎠ ,

and the effective diffusion equation for the M1 system reads

∂t
(
τ + τ 4)= ∂x

(
4

3
τ 3∂xτ

)
. (7)

Again, an entropy can be associated to this model.

3.3 Coupled Euler/M1 Model

By combining the previous two examples, we arrive at a more involved model:

ε∂tρ + ∂x(ρv)= 0,

ε∂tρv+ ∂x
(
ρv2 + p(ρ))=−κ

ε
ρv+ σ

ε
f,

ε∂t e+ ∂xf = 0,

ε∂tf + ∂x
(
χ

(
f

e

)
e

)
=−σ

ε
f,

(8)
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in which the same notation as before is used and κ and σ are positive constants. In
the applications, a typical choice for the pressure is

p(ρ)= Cpρη, Cp� 1, η > 1.

To fit this model within the late-time/stiff relaxation framework, we need to set

U =

⎛
⎜⎜⎝
ρ

ρv

e

f

⎞
⎟⎟⎠ , F (U)=

⎛
⎜⎜⎝

ρv

ρv2 + p(ρ)
f

χ(
f
e
)e

⎞
⎟⎟⎠ , R(U)=

⎛
⎜⎜⎝

0
κρv− σf

0
σf

⎞
⎟⎟⎠ .

The local equilibria are given by

E(u)=

⎛
⎜⎜⎝
ρ

0
e

0

⎞
⎟⎟⎠ , u=QU =

(
ρ

e

)
, Q=

(
1 0 0 0
0 0 1 0

)
,

and once again, one has QF(E(u))= 0.
We can then compute

DUF
(
E(u)

)=
⎛
⎜⎜⎝

0 1 0 0
p′(ρ) 0 0 0

0 0 0 1
0 0 1

3 0

⎞
⎟⎟⎠ , U1 =

⎛
⎜⎜⎝

0
1
κ
(−∂xp(ρ)− 1

3∂xe)

0
− 1

3σ ∂xe

⎞
⎟⎟⎠ ,

and we arrive at the effective diffusion system for the coupled Euler/M1 model:

∂tρ − 1

κ
∂2
xp(ρ)−

1

3κ
∂2
x e= 0,

∂t e− 1

3σ
∂2
x e= 0.

(9)

The second equation is a standard heat equation, and its solution serves as a source-
term in the first equation.

3.4 Shallow Water with Nonlinear Friction

Our final example requires a more general theory of nonlinear relaxation mentioned
in Remark 1, and it reads

ε∂th+ ∂x(hv)= 0,

ε∂t (hv)+ ∂x
(
hv2 + p(h))=−κ2(h)

ε2
g hv|hv|,

(10)
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where h denotes the fluid height and v the fluid velocity. The pressure is taken to
be p(h)= g h2/2, and g > 0 is called the gravity constant. The friction coefficient
κ :R+ →R

+ is a positive function, and a standard choice is κ(h)= κ0
h

with κ0 > 0.
The nonlinear version of the late-time/stiff relaxation framework applies if we

set

U =
(
h

hv

)
, F (U)=

(
hv

hv2 + p(h)
)
, R(U)=

(
0

κ2(h)ghv|hv|
)
.

The scalar equilibria u= h are associated with

E(u)=
(
h

0

)
, Q= (1 0).

Here, the relaxation is nonlinear and satisfies

R
(
E(u)+ εU)= ε2R

(
E(U)+M(ε)U),

with

M(ε) :=
(
ε 0
0 1

)

in turn, we may derive a nonlinear effective equation for the Euler equations with
nonlinear friction, that is,

∂th= ∂x
( √

h

κ(h)

∂xh√|∂xh|
)
, (11)

which is a nonlinear parabolic equation.
In addition, by introducing the internal energy e(h) := gh/2, we observe that all

smooth solutions to (10) satisfy the entropy inequality

ε∂t

(
h
v2

2
+ gh

2

2

)
+ ∂x

(
h
v2

2
+ gh2

)
v =−κ

2(h)

ε2
ghv2|hv|. (12)

The entropy

Φ(U) := hv
2

2
+ gh

2

2
satisfies the compatibility properties relevant to the nonlinear late-time/stiff relax-
ation theory, with in particular

R
(
E(u)+M(0)Ū1

)=
(

0
∂xp(h)

)
,

where Ū1 = (0 β). We obtain here R(E(u)+M(0)Ū1)= c(u)Ū1 with

c(u)= gκ(h)√h|∂xh| ≥ 0.
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4 Asymptotic-Preserving Finite Volume Schemes

4.1 General Strategy

We are now going to design finite volume schemes that are consistent with the
asymptotic regime ε→ 0 determined in the previous section and, indeed, to recover
an effective diffusion equation that is independent of the mesh-size. The discretiza-
tion of hyperbolic-to-hyperbolic regimes was investigated first by Ji and Xin [11].
Here we propose a framework to cover hyperbolic-to-parabolic regimes. For earlier
work on this latter regime, see [1, 2, 4–6].

Step 1. Our construction is based on a standard finite volume scheme for the homo-
geneous system

∂tU + ∂xF (U)= 0,

and we will begin by describing such a scheme.
Step 2. We will then modify the above scheme and include a matrix-valued free

parameter, allowing us to approximate the non-homogeneous system

∂tU + ∂xF (U)=−γR(U),
for a fixed coefficient γ > 0.

Step 3. Finally, we will perform an asymptotic analysis after replacing the dis-
cretization parameter Δt by εΔt , and γ by 1/ε. Our goal then will be to
determine the free parameters to ensure the asymptotic-preserving property.

Let us briefly define the so-called HLL discretization of the homogeneous sys-
tem, as proposed by Harten, Lax, and van Leer [10]. For simplicity, we present here
the solver based on a single constant intermediate state. The mesh is assumed to be
the uniform mesh made of cells of length Δx:

[xi−1/2, xi+1/2], xi+1/2 = xi + Δx
2

for all i = . . . ,−1,0,1, . . . . The time discretization is based on a parameter Δt ,
restricted by the famous CFL condition (Courant, Friedrichs, Lewy, cf. [8]) with

tm+1 = tm +Δt.
Starting from some initial data (lying in the convex set Ω),

U0(x)= 1

Δx

∫ xi+1/2

xi−1/2

U(x,0) dx, x ∈ [xi−1/2, xi+1/2),

we construct piecewise constant approximations at each time tm:

Um(x)=Umi , x ∈ [xi−1/2, xi+1/2), i ∈ Z.
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Following Harten, Lax, and van Leer [10], at each cell interface we use the ap-
proximate Riemann solver:

ŨR

(
x

t
;UL,UR

)
=

⎧⎪⎨
⎪⎩
UL,

x
t
<−b,

Ũ�, −b < x
t
< b,

UR,
x
t
> b,

where b > 0 is sufficiently large. The “numerical cone” (and numerical diffusion) is
thus determined by the parameter b > 0 and here, for simplicity in the presentation,
we have assumed a single constant b but, more generally, one can introduce two
speeds b−i+1/2 < b

+
i+1/2 at each interface.

We introduce the intermediate state

Ũ � = 1

2
(UL +UR)− 1

2b

(
F(UR)− F(UL)

)
,

and assume the CFL condition

b
Δt

Δx
≤ 1

2
,

so that the underlying approximate Riemann solutions are non-interacting. Our
global approximate solutions

ŨmΔx
(
x, tm + t), t ∈ [0,Δt), x ∈R

are then obtained as follows.
The approximations at the next time level tm+1 are determined from

Ũm+1
i = 1

Δx

∫ xi+1/2

xi−1/2

ŨmΔx
(
x, tm +Δt)dx.

Then, recalling Ũ �i+1/2 = 1
2 (U

m
i +Umi+1)− 1

2b (F (U
m
i+1)−F(Umi )), and integrating

out the expression given by the Riemann solutions, we arrive at the scheme for the
homogeneous system

Ũm+1
i =Umi −

Δt

Δx

(
FHLL
i+1/2 − FHLL

i−1/2

)
,

where

FHLL
i+1/2 =

1

2

(
F
(
Umi

)+ F (Umi+1

))− b
2

(
Umi+1 −Umi

)
.

(More generally, one could take into account two speeds b−i+1/2 < b
+
i+1/2.)

We observe that the above scheme enjoys invariant domains. The intermediate
states Ũ �i+1/2 can be written in the form of a convex combination

Ũ �i+1/2 =
1

2

(
Umi +

1

b
F
(
Umi

))+ 1

2

(
Umi+1 −

1

b
F
(
Umi+1

)) ∈Ω,
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provided b is large enough. An alternative decomposition is given by

Ũ �i+1/2 =
1

2

(
I + 1

b
A
(
Umi ,U

m
i+1

))
Umi +

1

2

(
I − 1

b
A
(
Umi ,U

m
i+1

))
Umi+1,

where A is an “average” ofDUF . By induction, it follows that Ũmi inΩ for allm, i.

4.2 Discretization of the Relaxation Term

We start from the following modified Riemann solver:

UR

(
x

t
;UL,UR

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

UL,
x
t
<−b,

U�L, −b < x
t
< 0,

U�R, 0< x
t
< b,

UR,
x
t
> b,

with the following states at the interface:

U�L = αŨ� + (I − α)(UL − R̄(UL)),
U�R = αŨ� + (I − α)(UR − R̄(UR)).

We have here introduced certain N ×N -matrix and N -vector defined by

α =
(
I + γΔx

2b
(I + σ)

)−1

, R̄(U)= (I + σ)−1R(U).

The term σ is a parameter matrix to be chosen so that (all inverse matrices are well-
defined and) the correct asymptotic regime is recovered at the discrete level.

At each interface xi+1/2, we use the modified Riemann solver

UR

(
x − xi+1/2

t − tm ;Umi ,Umi+1

)

and we superimpose non-interacting Riemann solutions

UmΔx
(
x, tm + t), t ∈ [0,Δt), x ∈R.

The new approximate solution at the next time tm+1 is

Um+1
i =

∫ xi+1/2

xi−1/2

UmΔx
(
x, tm +Δt)dx.

By integrating out the Riemann solutions, we arrive at the discretized balance law

1

Δt

(
Um+1
i −Umi

)+ 1

Δx

(
αi+1/2F

HLL
i+1/2 − αi−1/2F

HLL
i−1/2

)
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= 1

Δx
(αi+1/2 − αi−1/2)F

(
Umi

)− b

Δx
(I − αi−1/2)R̄i−1/2

(
Umi

)

− b

Δx
(I − αi+1/2)R̄i+1/2

(
Umi

)
. (13)

Observing that the discretized source can be rewritten as

b

Δx
(I − αi+1/2)R̄i+1/2

(
Umi

) = b

Δx
αi+1/2

(
α−1
i+1/2 − I

)
R̄i+1/2

(
Umi

)

= γ
2
αi+1/2R

(
Umi

)

and, similarly,

b

Δx
(I − αi−1/2)R̄i−1/2

(
Umi

)= γ
2
αi−1/2R

(
Umi

)
,

we conclude that the proposed finite volume schemes for late-time/stiff-relaxation
problems take the form

1

Δt

(
Um+1
i −Umi

)+ 1

Δx

(
αi+1/2F

HLL
i+1/2 − αi−1/2F

HLL
i−1/2

)

= 1

Δx
(αi+1/2 − αi−1/2)F

(
Umi

)− γ
2
(αi+1/2 + αi−1/2)R

(
Umi

)
. (14)

Theorem 3 (Properties of the finite volume scheme) Provided

σ i+1/2 − σ i−1/2 =O(Δx)

and the matrix-valued map σ is sufficiently smooth, the modified finite volume
scheme is consistent with the hyperbolic system with relaxation. The following in-
variant domain property holds: If all the states at the interfaces

U�Li+1/2 = αi+1/2Ũ
�
i+1/2 + (I − αi+1/2)

(
Umi − R̄

(
Umi

))
,

U�Ri+1/2 = αi+1/2Ũ
�
i+1/2 + (I − αi+1/2)

(
Umi+1 − R̄

(
Umi+1

))

belong to Ω , then all the states Umi belong to Ω .

4.3 Discrete Late-Time Asymptotic Regime

As explained earlier, we now replace Δt by Δt/ε and γ by 1/ε, and consider

ε

Δt

(
Um+1
i −Umi

)+ 1

Δx

(
αi+1/2F

HLL
i+1/2 − αi−1/2F

HLL
i−1/2

)

= 1

Δx
(αi+1/2 − αi−1/2)F

(
Umi

)− 1

2ε
(αi+1/2 + αi−1/2)R

(
Umi

)
,
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where

αi+1/2 =
(
I + Δx

2εb
(I + σ i+1/2)

)−1

.

Plugging in an expansion near an equilibrium state

Umi = E
(
umi

)+ ε(U1)
m
i +O

(
ε2),

we find

FHLL
i+1/2 =

1

2
F
(
E
(
umi

))+ 1

2
F
(
E
(
umi+1

))− b
2

(
E
(
umi+1

)− E
(
umi

))+O(ε),

1

ε
R
(
Umi

)= B(E(umi ))(U1)
m
i +O(ε),

αi+1/2 =
2bε

Δx
(I + σ i+1/2)

−1 +O(1).

The first-order terms for the discrete scheme lead us to

1

Δt

(
E
(
um+1
i

)− E
(
umi

))

=− 2b

Δx2

(
(I + σ i+1/2)

−1FHLL
i+1/2|E(u) − (I + σ i−1/2)

−1FHLL
i−1/2|E(u)

)

+ 2b

Δx2

(
(I + σ i+1/2)

−1 − (I + σ i−1/2)
−1)F (E(umi ))

− b

Δx

(
(I + σ i+1/2)

−1 + (I + σ i−1/2)
−1)B(E(umi ))(U1)

m
i .

At this juncture, we assume the existence of an n× n matrix Mi+1/2 such that

Q(I + σ i+1/2)
−1 = 1

b2
Mi+1/2Q.

We then multiply the equation above by the n×N matrix Q and obtain

1

Δt

(
um+1
i − umi

)=− 2

bΔx2

(
Mi+1/2QF

HLL
i+1/2|E(u) −Mi−1/2QF

HLL
i−1/2|E(u)

)
,

with

QFHLL
i+1/2|E(u) =

Q

2
F
(
E
(
umi

))+ Q
2
F
(
E
(
umi+1

))− b
2
Q
(
E
(
umi+1

)− E
(
umi

))

= −b
2

(
umi+1 − umi

)
.

The discrete asymptotic system is thus

1

Δt

(
um+1
i − umi

)= 1

Δx2

(
Mi+1/2

(
umi+1 − umi

)+Mi−1/2
(
umi−1 − umi

))
. (15)
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Recall that for some n× n matrix M(u) the effective equation reads

∂tu= ∂x
(
M(u)∂xu

)
.

Theorem 4 (Discrete late-time asymptotic-preserving property) Assume the follow-
ing conditions on the matrix-valued coefficients:

• The matrices

I + σ i+1/2,

(
1+ Δx

2εb

)
I + σ i+1/2

are invertible for ε ∈ [0,1].
• There exists an n× n matrix Mi+1/2 ensuring the commutation condition

Q(I + σ i+1/2)
−1 = 1

b2
Mi+1/2Q.

• The discrete form of M(u) at each cell interface xi+1/2 satisfies

Mi+1/2 =M(u)+O(Δx).

Then, the effective system associated with the discrete scheme coincides with the one
of the late-time/stiff relaxation framework.

We refer the reader to [3] for numerical experiments with this scheme, which
turns out to efficiently compute the late-time behavior of solutions. It is observed
therein that asymptotic solutions may have large gradients but are actually regular.
We also emphasize that we rely here on the CFL stability condition based on the
homogeneous hyperbolic system, i.e., a restriction on Δt/Δx only is imposed. In
typical tests, about 10000 time-steps were used to reach the late-time behavior and,
for simplicity, the initial data were taken in the image of Q. A reference solution,
needed for a comparison, was obtained by solving the parabolic equation, under a
(stronger) restriction on Δt/(Δx)2.

The proposed theoretical framework for late-time/stiff relaxation problems thus
led us to the development of a good strategy to design asymptotic-preserving
schemes involving matrix-valued parameter. The convergence analysis (ε→ 0) and
the numerical analysis (Δx→ 0) for the problems under consideration are important
and challenging open problems. It will also very interesting to apply our technique
to, for instance, plasma mixtures in a multi-dimensional setting.
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Is the CFL Condition Sufficient? Some Remarks

Kai Schneider, Dmitry Kolomenskiy, and Erwan Deriaz

Abstract We present some remarks about the CFL condition for explicit time dis-
cretization methods of Adams–Bashforth and Runge–Kutta type and show that for
convection-dominated problems stability conditions of the type Δt ≤ CΔxα are
found for high order space discretizations, where the exponent α depends on the
order of the time scheme. For example, for second order Adams–Bashforth and
Runge–Kutta schemes we find α = 4/3.

Keywords Explicit time discretization · Stability · CFL condition · Runge–Kutta ·
Adams–Bashforts · Computational fluid dynamics · Convection dominated
problems

1 Introduction

This discussion paper presents some reflections about the stability of time discretiza-
tion schemes for convection-dominated problems, presented by the first author at
the conference “CFL-condition, 80 years gone by”, held in Rio de Janeiro in May
2010. In Computational Fluid Dynamics, explicit schemes are typically used for
the nonlinear convection term. Thus for stability reasons, the celebrated Courant–
Friedrichs–Lewy (CFL) condition [3] has to be satisfied, which states that the time
step should be proportional to the space step, with a constant depending on the mag-
nitude of the velocity.

The aim of the paper is to revisit the time-stability issue for some higher or-
der time schemes. We present several numerical experiments using either one-
step methods of Runge–Kutta type or multi-step methods of Adams–Bashforth
type applied to the one-dimensional Burgers equations and to the two-dimensional
Euler/Navier–Stokes equations. The numerical results, using a spectral discretiza-
tion in space, illustrate that for stability the classical CFL condition is not sufficient
and that the time step is limited by non-integer powers (larger than one) of the spatial
grid size.
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The remainder of the manuscript is organized as follows. In Sect. 2, explicit one-
step and multi-step time schemes are recalled, together with their stability domains.
Section 3 presents some numerical examples for the inviscid Burgers equation in
one space dimension and for the two-dimensional incompressible Navier–Stokes
equation. Finally, some conclusions are drawn.

2 Stability of Time Schemes

We consider the general form of an evolutionary partial differential equation

∂tu=H(u) (1)

where H(u) contains all the spatial derivatives. The above equation is completed
with suitable initial and boundary conditions. In fluid mechanics, one typically en-
counters equations where H is the sum of a nonlinear term with first order deriva-
tives and a linear term with second order derivatives. For simplicity, we consider
here a convection–diffusion equation, i.e., H(u) = −a∂xu + ν∂xxu, where a is
a constant convection velocity and ν ≥ 0 is the viscosity. For time discretization
of (1), we use here explicit schemes, either one-step methods of Runge–Kutta type,
or multi-step methods of Adams–Bashforth type. The time step is denoted by Δt ,
and un is an approximation of u(x, t) at time tn = nΔt for n= 0,1, . . . .

In the following, we will recall some results on the stability of one-step and
multi-step methods; details can be found, e.g., [8].

2.1 Runge–Kutta Schemes

Explicit Runge–Kutta schemes are one-step schemes and use two time levels, tn

and tn+1. However, they imply s intermediate stages to increase the order. Typically,
they have the approximation order (Δt)k where k = s. They can be written in the
general form:

K1 =H
(
un
)
, (2)

Ki =H
(
un +Δt

i−1∑
j=1

ai,jKj

)
for i = 2, . . . , s, (3)

un+1 = un +Δt
s∑
j=1

bjKj . (4)

For s = 1, we recover the explicit Euler method with b0 = 1. For the second order
Runge–Kutta method (RK2), we have a1,1 = 1/2, b0 = 0, and b1 = 1. The coeffi-
cients of RK3 are given by a1,1 = 1/2, a2,1 =−1, a2,2 = 2 and b1 = 1/6, b2 = 2/3,
b3 = 1/6. For the classical RK4 scheme, we have a1,1 = 1/2, a2,1 = 0, a2,2 = 1/2,
a3,1 = a3,2 = 0, a3,3 = 1 and b1 = 1/6, b2 = 1/3, b3 = 1/3, b4 = 1/6. For more
details, we refer, e.g., to the textbook of Deuflhard [5].
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Table 1 Coefficients of the Adams–Bashforth schemes

Scheme Order b0 b1 b2 b3

AB2 2 3
2 − 1

2

AB3 3 23
12 − 16

12
5
12

AB4 4 55
24 − 59

24
37
24 − 9

24

2.2 Adams–Bashforth Schemes

Adams–Bashforth schemes of order (Δt)k approximate the time derivative of (1)
using a finite difference with two time levels, while the term H(u) is approximated
by evaluations using k time levels, and thus they belong to the family of multi-step
methods. Their general form is given by

un+1 − un
Δt

=
k−1∑
j=0

bjH
(
un−j

)
. (5)

The coefficients for some Adams–Bashforth schemes can be found in Table 1.

2.3 Stability

To investigate the stability of the above time schemes, the Fourier method, also
called von Neumann stability analysis [2], is typically used; for details again, we
refer, e.g., to [8]. Thus we are looking for a solution u of (1) in terms of a truncated
Fourier series, u(x, t)≈∑

|k|≤K ûk(t)eikx and we obtain the following ordinary dif-
ferential equation for its Fourier coefficients ûk(t),

dt ûk = λk ûk for |k| ≤K (6)

with the complex numbers λk = −iak − νk2, denoted in the following for ease of
notation by λ.

Applying Runge–Kutta methods to (6), we obtain

vn+1 = gvn (7)

where g(z) with z= λΔt is the Taylor expansion of eλΔt . For absolute stability, the
amplification factor g has to satisfy g(z) ≤ 1. The stability domains S in the com-
plex plane are determined by solving |g(z)| = eiθ for 0≤ θ < 2π . For RK1 (explicit
Euler), RK2, RK3, and RK4, the corresponding domains are shown in Fig. 1 (left).

Applying Adams–Bashforth methods to (6) yields the following finite difference
equation:

un+1 − un − λΔt
k−1∑
j=0

bju
n−j = 0 (8)
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Fig. 1 Stability domains |g(z)| ≤ 1 of Runge–Kutta methods (left) and |f (r)| ≤ 1 of
Adams–Bashforth methods (right). The domains have to be completed by symmetry with respect
to the horizontal axis

which has solutions of the form rn. Here r is the root of the characteristic equation

f (r)= rk − rk−1 − λΔt
k−1∑
j=0

bj r
k−1−j = 0 (9)

which has k solutions. For absolute stability (a-stable schemes), all roots have to
satisfy the condition |r| ≤ 1. The boundary of the stability domain S in the com-
plex plane is then determined by f (r)= 0 with |r| = 1. A time step Δt is stable if
the point z = λΔt belongs to the stability domain S . In Fig. 1 (right), the stability
domains of AB2, AB3, and AB4 are shown.

From the stability domains, we can draw the following well known conclusions:
For Adams–Bashforth schemes, we observe that the stability domain decreases for
increasing order, while for Runge–Kutta methods the stability domain becomes
larger for increasing order. For pure convection, i.e., λ=−iak being purely imagi-
nary, we can observe that the explicit Euler scheme is unstable and that both second
order schemes, RK2 and AB2, are also unstable.

2.4 A Refined CFL Condition and Stability

Relaxing the absolute stability condition, but requiring the error to be bounded at
time T = nΔt , we obtain the necessary and sufficient stability condition for the
amplification factor |g(z)| ≤ 1+ CΔt where C is a constant. For the error ε(tn)=
u(x, tn)− un(x), we get the following L2-estimate:∥∥ε(tn)∥∥L2 =

∥∥g(z)nε(t0)∥∥L2 ≤ C′(1+Δt)n
∥∥ε(t0)∥∥L2 ≤ C′eCT

∥∥ε(t0)∥∥L2 . (10)

The absolute stability is recovered for the case C = 0.
For the explicit Euler method (RK1), we have g(z) = 1 + z and applying this

scheme to a transport equation ∂tu+a∂u= 0, i.e., λ=−iak, we get |1− iakΔt |2 ≤
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1 + 2CΔt ; and with k ∝ 1/Δx we thus obtain a time step constraint of the type
Δt ≤ 2C(Δx

a
)2, as presented in [6].

In the following, we summarize the time step stability conditions for the transport
equation, denoting ρ = Δt

Δx
. For details, we refer to [4, 7]:

– 1st order explicit Euler explicit scheme

‖εn+1‖L2 ≤
(

1+ ρ
2

2
a2
)
‖εn‖L2 and the CFL: Δt ≤ 2C

(
Δx

a

)2

;

– 2nd order Runge–Kutta scheme

‖εn+1‖L2 ≤
(

1+ ρ
4

8
a4
)
‖εn‖L2 hence the CFL: Δt ≤ 2C

1
3

(
Δx

a

) 4
3 ;

– 2nd order Adams–Bashforth scheme

‖εn+1‖L2 ≤
(

1+ ρ
4

4
a4
)
‖εn‖L2 inducing the CFL: Δt ≤ 2

2
3C

1
3

(
Δx

a

) 4
3

.

We recall that the classical CFL condition [3], which is a necessary condition,
yields Δt ≤ CΔx

a
.

3 Numerical Results

In the following, we present a series of numerical results for the inviscid Burgers
equation in one space dimension and for the incompressible Euler/Navier–Stokes
equations in two dimensions to illustrate the time stability of different explicit
schemes.

3.1 Inviscid Burgers Equation

We consider the inviscid Burgers equation,

∂tu+ u∂xu= 0 for x ∈ T(−1,1), t ∈ [0,10/π] (11)

with the initial condition u0(x) = 10 − 0.1 sin(πx) and completed with periodic
boundary conditions. For the numerical solution, we use a classical Fourier pseudo-
spectral method for space discretization, which is fully de-aliased, see, e.g., [1].
For time integration, we apply either Runge–Kutta schemes of order 1 up to 4 or
Adams–Bashforth schemes of order 2, 3, and 4.

The criterion to check the stability of the numerical simulations is based on the
total variation of the solution, which remains constant for the exact solution. The
divergence criterion we apply thus reads ‖uN(·, t)‖TV > K‖u0(·)‖TV with K = 5.
For each scheme we perform a series of computations for an increasing number
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Fig. 2 Time stability for the inviscid Burgers equation. Maximum Δt as a function of the number
of grid points. Left: Runge–Kutta methods. Right: Adams–Bashforth methods

of grid points, N = 24, . . . ,213. In Fig. 2, we plot the maximal time step Δt as a
function of the number of grid points for Runge–Kutta (left) and Adams–Bashforth
schemes (right) in double logarithmic representation. For sufficiently large N , we
indeed observe in all cases straight lines which correspond to the power law be-
haviors with exponents given in Sect. 2. For example, for the explicit Euler scheme
we find that Δt ≤ C(Δx)2, while for the second order Runge–Kutta and Adams–
Bashforth schemes we observe Δt ≤ C(Δx)4/3.

3.2 Incompressible Euler and Navier–Stokes Equations

Now we consider the two-dimensional incompressible Euler and Navier–Stokes
equations written in the vorticity-stream function formulation:

∂tω+ u · ∇ω− ν∇2ω= 0, ∇2Ψ = ω, u=∇⊥Ψ. (12)

The above equations are completed with periodic boundary conditions. As the initial
condition we take the ‘three vortex’ initial condition (cf. Fig. 3, left) which corre-
sponds to two vortices with positive vorticity and one vortex with negative vorticity,
see, e.g., [10].

The numerical scheme consists of a Fourier pseudo-spectral method in space. In
time the AB2 scheme is used for the nonlinear advection term u · ∇ω, while exact
integration is applied for the linear viscous term ν∇2ω. Details on the numerical
scheme can be found in [9].

We performed a series of computations up to t = 10 for three different values of
viscosity, ν = 10−2,10−3, and ν = 0, the latter corresponding to the inviscid Euler
equation. The numerical resolution has been varied from N = 642 to 20482 grid
points. In Fig. 3, we show the evolution of the vorticity field for three time instants
which illustrate the merging of the two positive vortices. Note that even in the case
of the Euler equations the vorticity field remains smooth in the considered time
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Fig. 3 Interaction of three vorticities. Vorticity field at t = 0, 20, and 40

Fig. 4 Time stability of Euler/Navier–Stokes equations using AB2 scheme for different values
of ν. Maximum Δt as a function of the number of grid points

interval. The maximum stable time step Δt is determined by considering again as
stability criterion the total variation of the stream function ψ , i.e., the largest Δtmax
is determined such that ‖ψN(·, t)‖TV ≤K‖ψ0(·)‖TV with K = 5. In Fig. 4, we plot
the maximum time step size Δt as a function of the number of grid points for three
different values of ν = 10−2,10−3 and ν = 0. For the inviscid case, we observe a
power law with slope −4/3, i.e., Δt ≤ C(Δx)4/3. In the viscous cases, we observe
a slower decay for increasingN (corresponding to decreasingΔx) which leads even
to a saturation for sufficiently large values of the viscosity, i.e., the maximum time
step size becomes independent of the spatial grid size. This can be explained by
remarking that the viscosity damps the small scales and thus the small grid size
is not necessary, which is reflected in vanishing (or very small amplitude) large
wavenumber Fourier modes.

4 Conclusions

Our numerical experiments give some evidence that the CFL condition is neces-
sary but not sufficient to guarantee the time stability of explicit time schemes given



146 K. Schneider et al.

that high order space discretizations are used. For the inviscid Burgers equation, we
showed that applying either a second order Runge–Kutta or a second order Adams–
Bashforth scheme, the time step Δt has to be chosen to be smaller than (Δx)4/3. In
the case of the explicit Euler scheme, it even necessitates Δt ≤ C(Δx)2 for stabil-
ity. For the Euler/Navier–Stokes equation, we have numerical evidence that similar
results as for the Burgers equation hold, confirmed here for the AB2 scheme. These
observations give thus a possible explanation why for spectral methods applied to
convection-dominated problems the CFL constant, also called the Courant number,
has to be decreased for increasing resolution as a modified CFL condition has to
be satisfied. Further details on the theoretical justification of the above results and
implications for CFD codes can be found in [4] and [7], respectively. Finally, we are
asking the question if these observations are well known?

Acknowledgements K.S. is grateful to Carlos de Moura for the invitation to the conference
“CFL-Condition, 80 years gone by”, held in Rio de Janeiro in May 2010.
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Fast Chaotic Artificial Time Integration

Uri Ascher and Kees van den Doel

Abstract Gradient descent methods for large positive definite linear and nonlinear
algebraic systems arise when integrating a PDE to steady state and when regular-
izing inverse problems. However, these methods may converge very slowly when
utilizing a constant step size, or when employing an exact line search at each step,
with the iteration count growing proportionally to the condition number. Faster gra-
dient descent methods must occasionally resort to significantly larger step sizes,
which in turn yields a strongly nonmonotone decrease pattern in the residual vector
norm.

In fact, such faster gradient descent methods generate chaotic dynamical systems
for the normalized residual vectors. Very little is required to generate chaos here:
simply damping steepest descent by a constant factor close to 1 will do. The fastest
practical methods of this family in general appear to be the chaotic, two-step ones.
Despite their erratic behavior, these methods may also be used as smoothers, or
regularization operators. Our results also highlight the need for better theory for
these methods.

Keywords Gradient descent · Artificial time integration · Dynamical system ·
Stability · Chaos · Regularization

1 Introduction

The famous Courant–Friedrichs–Lewy (CFL) condition really provides a consis-
tency, or compatibility bound, rather than a stability one. It states a bound on the
allowed time step in terms of the spatial discretization step for explicit difference
methods applied to a hyperbolic partial differential equation (PDE). Its immense
popularity relates to the fact that this bound typically coincides with that of the sta-
bility condition for simple explicit methods in case of hyperbolic PDEs in one space
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variable, and it does relate to the essential limitation on time-stepping using explicit
methods when applied to time dependent PDEs in general. Thus, practitioners over
the years have often come to identify the CFL condition with an essential stability
restriction in a wide context.

However, occasionally the complete picture is more delicate, and this is indicated
already in the following basic example.

Example 1 For the simple initial value advection equation

∂u

∂t
+ a ∂u

∂x
= 0, t ≥ 0, −∞< x <∞, (1a)

u(0, x) = u0(x), (1b)

where a is a known constant, the exact solution is u(t, x)= u0(x − at).
For an explicit discretization consider the well-known upwind method (e.g., [2]),

where we fix the spatial step size but allow the time step to vary. For a = −1 we
have for all j integer

vk+1
j = vkj +

αk

Δx

(
vkj+1 − vkj

)
, k = 0,1, . . . ,

where vkj approximates u(tk, xj ), xj = jΔx and tk = ∑k−1
i=0 αi . We set v0

j =
u0(xj ), ∀j .

Next, consider the initial value function

u0(x)=
{

1 x ≤ 0,

0 x > 0.

The stability condition for this method is

αk ≤Δx, ∀k.
If this bound is violated, e.g., α0 > Δx, then v1−1 = u0(−Δx) + α0

Δx
(u0(0) −

u0(−Δx))= 1, whereas the exact solution is u(α0,−Δx)= u0(α0−Δx)= 0. This
inconsistency demonstrates a violation of the CFL condition which coincides with
the stability condition for the upwind method. There is no general way to recover
from such an inconsistency error by taking smaller time steps αk later on.

In contrast, consider the simple initial value heat equation

∂u

∂t
= ∂

2u

∂x2
, t ≥ 0, −∞< x <∞, (2a)

u(0, x) = u0(x), (2b)

and the explicit discretization

vk+1
j = vkj +

αk

Δx2

(
vkj+1 − 2vkj + vkj−1

)
, k = 0,1, . . . .
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The stability condition is well-known to be

αk ≤ 1

2
Δx2, ∀k,

and there is no consistency condition such as the CFL.
In this latter case, there is no immediate a priori reason to believe that violat-

ing stability by taking α0 >
1
2Δx

2 cannot be recovered from by using smaller time
steps later on: in principle, those error modes that get excited at k = 0 may be sub-
sequently calmed down.

Let us generalize (2a)–(2b) for later purposes by considering its analogue on a
general bounded domain in several space dimensions and equipped with a source
function and garden-variety boundary conditions. Upon applying a finite difference
or finite element semi-discretization in space, we are then led to consider a problem
of the form

dv
dt
= b−Av, t ≥ 0, (3)

where A is a symmetric positive definite m×m matrix that is potentially large and
sparse, v is the solution mesh function reshaped as an (unknown) vector, and b is a
likewise reshaped vector of known inhomogeneities.

One may next wonder if it makes sense to violate the stability restriction, given
that this is indeed possible. The answer depends on the purpose of the computa-
tion. If what we want is a pointwise accurate solution (trajectory) then respecting
the stability restriction at each and every time step, at least approximately, is wise.
Indeed, typical mesh selection algorithms achieve this, being “greedy” in nature
[3, 10]. However, there are occasions where the goal is different. Such is the case in
many geometric integration applications [11]. Other occasions, on which we con-
centrate here, are when we wish to integrate the time-dependent problem to steady
state or when the purpose of integration is smoothing, or regularization of an ill-
posed problem [7, 18]. Such applications correspond to continuation, or homotopy
methods, where one is not interested in the accurate reconstruction of the homotopy
path but only in its end.

Thus, consider a forward Euler discretization of (3), with the purpose of inte-
grating the ODE system to steady state (so in particular, higher order discretiza-
tion methods are not necessarily more attractive than this simplest time integration
scheme). The method is written as

vk+1 = vk + αkrk, rk = b−Avk, k = 0,1, . . . . (4)

Its absolute stability condition requires

αk ≤ 2

λ1
, (5)
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where λ1 ≥ λ2 ≥ · · · ≥ λm > 0 are the eigenvalues of A.1 This restriction must be
strictly obeyed if a uniform step size αk = α is to be employed, but we next consider
varying the step size.

Note that (4) can also be interpreted as a gradient descent (GD) method for the
problem of minimizing the convex quadratic function

f (v)= 1

2
vT Av− bT v, (6)

which is equivalent to solving the steady state equations

Av= b. (7)

The best uniform step size for (4) is

αk = α∗ = 2

λ1 + λm . (8)

The steepest descent step size, obtained by exact line search for (6) at each step, or
iteration, is

αk = αSD
k = rTk rk

rTk Ark
. (9)

These are both slow methods requiring O(κ) iterations to reduce the residual by a
fixed amount, where κ = κ(A) is the condition number. As it turns out, the steepest
descent step sizes never grow much larger than what (5) allows [1, 5].

To obtain a faster explicit method integrating the PDE to steady state, or a faster
GD method, a methodology must be found that automatically and significantly in-
creases the step size αk every few steps in such a way that the resulting overall
method still converges. This may look like a lot to ask for at first, but as it turns
out there are many methods of this sort, all being variants of steepest descent that
are often much faster when the latter method is slow [6, 8, 9, 14, 15]. All of these
methods yield chaotic dynamical systems in terms of the normalized residual vec-
tors that their iteration sequences generate [17]. Furthermore, they retain some of
the smoothing properties that steepest descent (SD) and conjugate gradient (CG)
methods possess [12].

2 Faster Gradient Descent Methods

Many efforts have been devoted in the two decades that have passed since the pi-
oneering paper of [6] to the design, analysis, extension, and application of faster
gradient descent methods for function minimization. In the context of the iteration
(4), we mention here the following variants of steepest descent.

1Let us assume throughout for simplicity that λ1 > λ2 and λm−1 > λm.
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Table 1 Iteration counts for the model Poisson problem using

gradient descent with different step size choices for initial vectors

(a) v0 = 0 and (b) v0 = 10−3 · 1
m x0 CG SD α∗ HLSD SD(0.9)

49 (a) 10 341 348 69 97

(b) 10 341 348 62 99

225 (a) 33 1414 1417 179 291

(b) 32 1414 1419 151 258

961 (a) 71 5721 5689 279 497

(b) 70 5721 5698 417 609

1. The half-lagged steepest descent (HLSD) method [15] simply updates the step
size α only every second step, reading

α2j = α2j+1 = αSD
2j , j = 0,1,2, . . . . (10)

2. The relaxed steepest descent method, denoted SD(ω), calls for calculating αSD
k

at each iterate k and setting

αk = ωαSD
k , (11)

with 0<ω < 1 a fixed constant [14]. Below we choose ω= 0.9.

Example 2 Let us describe the model Poisson problem. The PDE

−Δu= q, 0< x,y < 1, (12)

with q(x, y) known and subject to homogeneous Dirichlet boundary conditions,
is discretized using the standard 5-point difference scheme. Utilizing a uniform
mesh width Δx = 1/(J + 1), and denoting by b the reshaped mesh function of
q(iΔx, jΔx), 1 ≤ i, j ≤ J , and also letting v be likewise composed of solution
mesh values, we have a problem in the form (7) with m= J 2 unknowns.

Table 1 records iteration counts required by different methods to bring the relative
residual norm ‖rk‖/‖r0‖ below a tolerance of 10−12, for a right hand side b= 1 of
all ones.2

We use two starting guesses, equally smooth and differing from each other by
10−3 in the maximum norm.

The results in Table 1 exhibit the traits of gradient descent methods observed also
in [5, 17]. Thus, we note:

1. Steepest descent is essentially as good for this example as the best constant step
size, α∗, and both can be unacceptably slow.

2The vector �2-norm is utilized here and elsewhere, unless otherwise specified.
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2. The iteration counts for the faster gradient descent methods HLSD and SD(0.9)
are much better than those for steepest descent and increase much slower than
κ =O(m), behaving more like those of CG in trend.

3. The two-step method HLSD is better than the one-step method, although (not
shown) it is neither consistently better nor worse than other two-step methods
such as the method of [6] which we call LSD.

4. The progress of the iteration counts as a function of κ =O(m) is less consistent
for HLSD and SD(0.9) than that of CG. The latter observation relates directly to
the fact that the quantities ‖rk‖ oscillate wildly as a function of k; see Fig. 2 of
[5], where the behavior of the resulting step size sequence is also depicted.

5. Finally, we observe the sensitivity for HLSD and SD(0.9) of the total number
of iterations required to achieve a fixed accuracy to small changes in the initial
vector v0. This is in marked contrast to the behavior of the CG iteration, or the
SD iteration, and it suggests a chaotic behavior of the iterative process for the
faster gradient descent methods.

There are many more experiments of this sort reported in [5, 17] that support the
above observations.

3 Chaos

The gradient descent family of methods (4) is completely characterized by the resid-
ual evolution

rk+1 = (1− αkA)rk, k = 0,1, . . . . (13)

Furthermore, if we write A=UΛUT with U orthogonal andΛ the diagonal matrix
of eigenvalues of A, and let r̂=UT r, then (13) becomes

r̂k+1 = (1− αkΛ)r̂k, (14)

with ‖r̂k‖ = ‖rk‖. Thus, (14) has precisely the same convergence behavior as (13),
and hence we may consider (for analysis purposes) a diagonal A without loss of
generality. Note that now, if αk = λ−1

i for some i, 1≤ i ≤m, then the ith component

of the next residual vanishes: r(k+1)
i = 0. If m is large, though, then even if we knew

the eigenvalues we would not want to use them in this way in practice.
Below it is convenient to omit the iteration index k where no confusion can pos-

sibly arise. An alternative notation to (13), for instance, is

r← (1− αA)r.
To study the behavior of these residual vectors, we associate with r the Akaike
“probability” p, see [1], which is the component-wise square of the normalized
residual, given by

pi = (ri)2/‖r‖2, i = 1, . . . ,m. (15)
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In [17], we considered in detail the Jacobian of the transformation pk+1 ← pk .
Using these over a long sequence of iterations, we calculated the Lyapunov ex-
ponent μ for various gradient descent methods. Recall that for a stable system,
μ ≤ 0, whereas for a chaotic system, μ > 0 and nearby orbits separate exponen-
tially, cf. [16].

The summary of those experiments over many examples is that for all the faster
methods we have μ> 0, whereas SD is marginally stable: μ= 0. The over-relaxed
SD(ω) variant with ω > 1 has μ< 0 and is stable and slow. The faster SD(ω) meth-
ods are obtained for ω < 1.

Having established that there is chaos in the faster methods, the question is what
characterizes them (other than the fact that they converge). Ironically, as it turns out,
the more special methods that are variants of steepest descent are the slower ones.
To get the feeling for this, it is better to consider the under-relaxed steepest descent
methods SD(ω), say 0.5≤ ω < 1. These are not quite as fast as LSD or HLSD, but
they are much faster than SD, as we have seen, and this in itself may be considered
surprising. Note that these are simple, memoryless, one-step methods. There are
no random parameters and no switches in the step size selection strategy. Standard
arguments (e.g., [13]) imply that the methods yield monotonic decrease in f (v) of
(6) and converge Q-linearly, which is not known to occur for the two-step methods.
Finally, note that although this method with ω < 1 takes at each iteration a fraction
of the SD step size, its average step size is much larger than that of SD! Here then
is one of the simplest and cleanest instances of both a chaotic system and the peril
of greed (in numerical algorithms at least).

Recall that for a diagonal A= diag(λi) we can write

γ SD
k = 1/αSD

k =
∑
i λir

2
i∑

i r
2
i

=
∑
i

λipi, i = 1, . . . ,m, (16a)

αk = ωαSD
k , (16b)

r
(k+1)
i = (1− αkλi)r(k)i , i = 1, . . . ,m. (16c)

We make the following observations (see [5, 17] for the full details):

– If pi are roughly equal then λ1p1 (or the first few) dominate, so αSD
k ∼ 1/λ1 is

within the forward Euler stability bound, as is αk .
– The corresponding step is effectively a smoother: it reduces high frequency (i.e.,

large-eigenvalue) residuals much more than low frequency ones. This effect may
be repeated over a few steps.

– The usual case is that the high frequency residuals become so small in magnitude
due to repeated smoothing that other frequencies temporarily dominate. This in
turn means that a much larger step size αSD

k (and hence αk) is obtained. The
ensuing step is unstable, increasing the high frequency probabilities pi ; see (16a)–
(16c), (15). Once these components are large, their λipi dominate again and the
next few step sizes will be small and smoothing. This closes a chaotic cycle.
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– The unusual case is that of steepest descent! With SD the high frequency λ1p1
always dominates [1]. In the limit p1 and pm alternate (maintaining roughly the
same order of magnitude) while pi ≈ 0 for 1 < i < m. Thus, chaos (and good
news) are both avoided.

4 Preconditioning and Regularization

Considered over a wide range of problems (3) and initial guesses, the LSD and
HLSD variants have been found in our experiments to be as good as any other prac-
tical gradient descent method and better than most. Of course, in practical situations
one would use preconditioning, but this does not change the relative merit of the
methods.

Furthermore, as our Table 1 indicates, the CG method is really better than any of
the gradient descent methods in the usual circumstances of (7) considered hitherto.
What the gradient descent methods offer is the attraction of simplicity, the direct
connection to artificial time integration (which is a very popular approach in practice
[4]), and robustness when the gradients are computed only approximately [17].

In particular, when these methods are used as a combination of smoothers and
solvers, which is often the case in computational inverse problems, the faster gradi-
ent descent methods often perform as well as any other method, including CG. In
[5, 12], we examined this question experimentally for several applications, includ-
ing image deblurring, image denoising, and DC-resistivity recovery of piecewise
constant functions. These are really nonlinear problems, and freezing them at each
iteration in order to determine the step size in the manner described here does more
damage to CG than to the faster GD methods. Rather than repeating the details of
these papers, let us only mention that in such circumstances often the SD method
does not look so awful either because its slowness develops only when many such
iterations are performed in an uninterrupted succession.
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Appendix A
Hans Lewy’s Recovered String Trio

Lori Courant Lax

Played by Lori Courant Lax, viola, Dorothy Strahl, violin,
and Carol Buck, cello

Hans Lewy was a musical prodigy. As a child he gave rave-review violin concerts.
He also learned music theory and started to compose. But at 19 or 20 he began to
turn to mathematics. He studied with my father, Richard Courant, and often came
to the chamber music evenings of my mother, Nina.

On one occasion he brought a string trio he had written, and my mother and
her friends tried to play it. They didn’t do very well, and Hans, with his typical
explosiveness, grabbed the parts, tore them up, and threw them on the floor.

“But I liked it!” said my mother as she gathered up the scraps. She laboriously
copied the parts, made a score, numbered the measures—all without the help of
whiteout or xerox.

I found the Lewy trio among my mother’s papers after her death. Enclosed here
is a recording of one movement of it, a romantic, gracious waltz, played by Dorothy
Strahl, violin, Carol Buck, cello, and myself on the viola.

L. Courant Lax (�)
New York, USA
e-mail: loriblax@gmail.com

C.A. de Moura, C.S. Kubrusly (eds.), The Courant–Friedrichs–Lewy (CFL) Condition,
DOI 10.1007/978-0-8176-8394-8, © Springer Science+Business Media New York 2013
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Fig. 1 A piece of Lewy’s recovered string trio score
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Fig. 2 Musicians Dorothy Strahl (violin) and Lori Courant Lax (viola); and Carol Buck (cello)
(Photos from L. Courant Lax files)
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Reprint of CFL original paper
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