
Chapter 6
Arithmetic Properties of Apollonian Gaskets

Here we study some arithmetic questions arising when we consider the curvatures
of disks which constitute an Apollonian gasket.

6.1 The Structure of Q

Here we want to investigate the set P 1.Q/ D Q of rational numbers including the
infinite point 1. It can be called a rational circle.

First, think about how to parameterize Q. Every number r 2 Q can be written
in the form p

q
, where p; q 2 Z. But the map ˛ W Z � Z �! Q; ˛.p; q/ D p

q
, is

surjective but by no means injective.
We can impose the condition gcd.p; q/ D 1, that is, that p and q be relatively

prime, or in other words, that the fraction p

q
be in lowest terms. Note, however,

that the set X of relatively prime pairs .p; q/ is itself a rather complicated
object. The map ˛, restricted to X , will be “two-to-one”: ˛�1.r/ D ˙.p; q/.
And there is no natural way to choose exactly one representative from every pair
f.p; q/; .�p; �q/g. However, for all r D p

q
2 Q, we can assume q > 0. But for

q D 0, there is no preference between p D ˙1.

Remark 6.1. For the analytically minded reader, we can say that the construction
here is similar to the Riemann surface of the function f .w/ D p

w. The map z 7!
w D z2 has two preimages for each w 2 C�, but this double-valued function does
not admit an analytic (or even continuous) single-valued branch.

~
Remark 6.2. A remarkable way to label all positive rational numbers was dis-
covered recently by Neil Calkin and Herbert Wilf (“Recounting the Rationals,”
American Mathematical Monthly 107 (2000), pp. 360–363). Let b.n/ be the number
of partitions of an integer n � 0 into powers of 2, no power of 2 being used more
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96 6 Arithmetic Properties of Apollonian Gaskets

than twice. Than the ratio rn D b.n/

b.nC1/
takes every positive rational value exactly

once! The initial piece of this numeration is given in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

b.n/ 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4
rn 1 1

2
2 1

3
3
2

2
3

3 1
4

4
3

3
5

5
2

2
5

5
3

3
4

4 1
5

5
4

4
7

n 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

b.n/ 7 3 8 5 7 2 7 5 8 3 7 4 5 1 6 5 4
rn

7
3

3
8

8
5

5
7

7
2

2
7

7
5

5
8

8
3

3
7

7
4

4
5

5 1
6

6
5

5
9

It is of interest to compare this numeration with the one given by Farey series
(see below).

~
Our next step in the study of Q is the introduction of a natural distance between

points. In the following, we tacitly assume that all rational numbers are written in
lowest terms.

Let us call two numbers ri D pi

qi
, i D 1; 2, from Q friendly if the following

equivalent conditions are satisfied:

.a/ jp1q2 � p2q1j D 1; .b/ jr1 � r2j D 1

jq1q2j : (6.1.1)

It is worth mentioning that the friendship relation is not an equivalence relation:1

every integer k is friendly to 1, but only neighboring integers are friendly to each
other.

Note that the group PGL.2; Z/ acts on Q by fractional linear transformations
and that this action preserves the friendship relation. We can often use this fact in
our study.

Lemma 6.1. The group PSL.2; Z/ acts simply transitively on the set of all ordered
pairs of friendly numbers from Q. The group PGL.2; Z/ acts transitively but with a
nontrivial stabilizer isomorphic to Z2.

Proof. Let ri D pi

qi
, i D 1; 2, be a pair of friendly numbers. Assume for definiteness

that p1q2�p2q1 D 1. We have to show that there is a unique element � of PSL.2; Z/

1Just as in the real life.
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that sends the standard friendly pair .1; 0/ to the given pair .r1; r2/. Let g D�
a b

c d

�
be a representative of � in SL.2; Z/. Then we have �.0/ D b

d
; �.1/ D a

c
.

The conditions �.1/ D r1; �.0/ D r2 imply .a; c/ D k1 � .p1; q1/, .b; d/ D
k2 � .p2; q2/. Therefore, 1 D det g D ad � bc D k1k2 � .p1q2 � p2q1/

�1 D k1k2

and k1 D k2 D ˙1. Hence g D ˙
�

p1 p2

q1 q2

�
is determined up to sign and defines

the unique element of PSL.2; Z/.
The stabilizer of the pair .0; 1/ in PGL.2; Z/ consists of classes of matrices�

1 0

0 ˙1

�
. ut

Exercise 6.1. Describe all numbers that are (a) friendly to 0; (b) friendly to 1;
(c) friendly to 1.

We define a distance in the set Q in the following way. Given two numbers r 0
and r 00, denote by d.r 0; r 00/ the minimal n 2 ZC for which there exists a chain
r 0 D r0; r1; : : : ; rn�1; rn D r 00 such that for all k, the number rk is friendly to rk˙1

for 1 � k � n � 1.

Exercise 6.2. (a) Show that .Q; d / is a discrete metric space on which the group
PGL.2; Z/ acts by isometries.

(b) Find the stabilizer of the point 1.

Answer. (b) The group Aff.1; Z/ of transformations r 7! ar C b, a D ˙1, b 2 Z.

Exercise 6.3. Compute the distances (a) d.1; n/I (b) d.0; n/; (c) d.0; 5
8
/.

Answer. (a) 1; (b) 0 for n D 0, 1 for n D ˙1; 2 for jnj > 1; (c) 4.

Exercise 6.4. (a) Show that for every r 0; r 00 2 Q, the distance d.r 0; r 00/ is finite.
(b) Is the metric space Q bounded?

Answer. (a) See Theorem 6.1 below; (c) No.

Rather interesting and nontrivial problems arise when we consider the geometry
of balls and spheres in Q. As usual, we define a ball with center a and radius r

as the set Br.a/ D fb 2 Q
ˇ̌

d.a; b/ � rg. Analogously, a sphere is the set
Sr.a/ D fb 2 Q

ˇ̌
d.a; b/ D rg.

Theorem 6.1. The ball Bn.1/ consists of all rational numbers that can be written
as a continued fraction of length n, i.e., as

r D k1 C 1

k2 C 1

k3 C 1

: : : kn�1 C 1

kn

(6.1.2)

where ki are arbitrary integers (positive or negative).
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proof. First of all, let us show that for every r of the form (6.1.2), the distance
d.1; r/ does not exceed n. We shall do this by induction on n.

For n D 1, the result follows from Exercise 6.3. Assume that the theorem is true
for all continued fractions of length � n � 1 and consider a continued fraction of
length n given by Eq. (6.1.2). Denote by r 0 the number 1

r�k1
. It is clear that r 0 is

represented by a continued fraction of length n � 1, whence d.1; r 0/ � n � 1.
Now, from the invariance of the distance with respect to shifts r 7! r C k, k 2 Z,
and with respect to the inversion r 7! r�1, we have

d.1; r/ D d.1; r � k1/ D d.0; r 0/ � d.0; 1/ C d.1; r 0/ � 1 C .n � 1/ D n:

The first sign � is just the triangle inequality, and the second follows from
Exercise 6.3(a) and from the induction hypothesis. ut

The structure of spheres is a more delicate question. The “complexity” of a sphere
grows with its radius.

For instance, consider S1.1/ D Z. It is a homogeneous space with respect to the
group Aff.1; Z/, which plays the role of the “group of rotations” around the infinite
point; see Exercise 6.3(a).

The sphere S2.1/ consists of points k1 C 1
k2

, where k1; k2 2 Z and k2 ¤ 0; ˙1.
Under the action of Aff.1; Z/, it splits into infinitely many orbits �m, enumerated
by the number m D jk2j � 2: The stabilizer of the point k C 1

m
2 �m is trivial for

m > 2 and contains one nonunit element r 7! 2k C 1 � r for m D 2.

Problem 6.1. Describe the orbits of Aff.1; Z/ on the sphere Sk.1/ for k > 2.

6.2 Rational Parameterization of Circles

It is well known that a circle as a real algebraic manifold is rationally equivalent to
a real projective line. This means that one can establish a bijection between a circle
and a projective line using rational functions with rational coefficients.

For example, the circle x2 C y2 D 1 can be identified with a projective line with
parameter t as follows:

x D t2 � 1

t2 C 1
; y D 2t

t2 C 1
I t D y

1 � x
D 1 C x

y
: (6.2.1)

In particular, as t runs through all rational numbers (including 1), the corre-
sponding points .x; y/ run through all rational points2 of the circle.

From this fact one can derive the well-known description of primitive integral
solutions to the equation x2 C y2 D z2. Namely, in every primitive solution, exactly

2That is, points with rational coordinates.
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one of the numbers x; y is even. Assume that it is y; then there are relatively prime
numbers a; b such that

x D a2 � b2; y D 2ab; ˙z D a2 C b2: (6.2.2)

Analogously, the projectivization of the future light cone in R1;3 is nothing but
the two-dimensional sphere, which is rationally equivalent to a completed two-
dimensional plane. Therefore, all future light vectors .t; x; y; z/ with integral
nonnegative coefficients can be written, up to positive proportionality, in the form

t D k2 C l2 C m2; x D 2km; y D 2lm; z D jk2 C l2 � m2j: (6.2.3)

I do not know whether any integral solution can be written exactly in the form
(6.2.3) for some integers k; l; m with gcd.k; l; m/ D 1.3

Next, we take into account that on the real projective line R, there is a natural
orientation. For our goals, it is convenient to define the orientation as a cyclic order
for every three distinct points x1; x2; x3 2 R. Geometrically, this order means that
going from x1 to x3 in the positive direction, we pass x2 on our way. We shall
also use the expression “x2 is between x1 and x3.” Note that in this case, x2 is not
between x3 and x1.

Exercise 6.5. (a) Show that in the case that all x1; x2; x3 are finite (i.e., ¤ 1), the
statement “x2 is between x1 and x3” is equivalent to the inequality

.x1 � x2/.x2 � x3/.x3 � x1/ > 0:

(b) Which of the following are true?

(i) 1 is between 0 and 1;
(ii) 1 is between 0 and 1;

(iii) �1 is between 0 and 1.

We now introduce a new operation4 of “inserting” on R. It associates to an
ordered pair of rational numbers .r1; r2/ a third number, denoted by r1 # r2,
such that

r1 # r2 WD p1 C p2

q1 C q2

; if r1 D p1

q1

; r2 D p2

q2

; (6.2.4)

where the signs of pi and qi are chosen such that r1 # r2 is between r1 and r2.

Exercise 6.6. Compute the following expressions:
(a) 0 # 1; (b) 1 # 0; (c) 1 # �2; (d) 1 # 2; (e) 2 # 1; (f) 1

2
# � 1

3
.

Answer. (a) 1; (b) �1; (c) �3; (d) 3
2
; (e) 1; (f) �2.

3As one of the reviewers pointed out, the quadruple .7; 2; 3; 6/ is a counterexample, since 7 is not
a sum of three squares.
4I learned from R. Borcherds that this operation is known to mathematicians in England as “English
major addition.” It is also the subject of one of the standard jokes quoted in Gelfand’s seminar.
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The operation # has especially nice properties when r1 and r2 are friendly
numbers. In this case, the number r1 # r2 is evidently friendly to both r1 and r2.

Exercise 6.7. Show that for friendly numbers r1; r2, the number r1 # r2 is the
unique rational number between r1 and r2 (in the sense of the cyclic order described
above) that is friendly to both of them.

These considerations lead to the notion of Farey series. The standard Farey
series F n of rank n by definition consists of all rational numbers 0 <

p

q
< 1 with

1 � q � n written in increasing order. The number of terms in F n is equal toPn
kD2 '.k/, where '.k/ is the Euler totient function, which counts the number of

integers between 1 and k that are relatively prime to k. It is given by the formula

'.n/ D n �
Y
pjn

�
1 � p�1

�
; where p runs through all prime divisors of n:

For example, the Farey series F 5 contains '.2/ C '.3/ C '.4/ C '.5/ D 1 C
2 C 2 C 4 D 9 terms:

1

5
;

1

4
;

1

3
;

2

5
;

1

2
;

3

5
;

2

3
;

3

4
;

4

5
:

We refer to [Nev49] for many known facts about standard Farey series, mentioning
only some of them here.

Exercise 6.8. Show that neighboring terms of Farey series are friendly numbers.

For our goals, we introduce a slightly different definition. Namely, the modified
Farey series F .n/ � R is defined as follows: The series F .0/ consists of three
numbers, 0; 1, and 1, with given cyclic order. The series F .nC1/, n � 1, is obtained
from F .n/ by inserting between every pair of consecutive numbers a; b the number
a # b. So the modified Farey series F .n/ consists of 3 � 2n cyclic ordered numbers.
We denote by f

.n/

k , 1 � 2n � k � 2nC1, the kth member of F .n/. In particular, for

every n � 0, we have f
.n/

0 D 0, f
.n/

2n D 1, f
.n/

2nC1 D 1.
The modified Farey series of rank � 4 are shown below:

kW 0 1 2

f
.0/

k W 0
1

1
1

1
0

kW �1 0 1 2 3 4

f
.1/

k W � 1
1

0
1

1
2

1
1

2
1

1
0

kW �3 �2 �1 0 1 2 3 4 5 6 7 8

f
.2/

k W � 2
1 � 1

1 � 1
2

0
1

1
3

1
2

2
3

1
1

3
2

2
1

3
1

1
0

kW �7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
.3/

k W � 3
1 � 2

1 � 3
2 � 1

1 � 2
3 � 1

2 � 1
3

0
1

1
4

1
3

2
5

1
2

3
5

2
3

3
4

1
1

4
3

3
2

5
3

2
1

5
2

3
1

4
1

1
0

To find an explicit formula for the numbers f
.n/

k is a nontrivial problem. We shall
discuss it below.
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Fig. 6.1 Graph of the function ?

Exercise 6.9. Show that f
.n/

k D f
.nC1/

2k , so that f
.n/

k actually depends only on the

dyadic number r D k
2n . Sometimes, we shall write fr instead of f

.n/

k .

To simplify the exposition, let us consider the part of F .n/ between 0 and 1, i.e.,
members fr with r between 0 and 1.

Note that if we change the procedure and insert between any two numbers a; b

not a # b, but the arithmetic mean value aCb
2

, we obtain at the nth step, the
arithmetic progression with 2n C 1 terms starting with 0 and ending by 1. The kth
member of this progression is a

.n/

k D k
2n , or in the same notation as above, ar D r

(Fig. 6.1).
Now we are prepared to define a remarkable function first introduced by

Hermann Minkowski. He called it the “question mark function” and denoted it by
?.x/; see Info E in Part I.

Theorem (Minkowski’s theorem). There exists a unique continuous and strictly
increasing function ? W Œ0; 1� ! Œ0; 1� such that

? .a # b/ D ?.a/ C ?.b/

2
for all friendly rational numbers a; b 2 Œ0; 1�:

(6.2.5)

Sketch of proof. The formula (6.2.5) and induction over n imply that if the desired
function exists, it must have the property ?

�
f

.n/

k

� D a
.n/

k . It follows that ?
�
fr

� D r

for all r 2 ZŒ 1
2
�
T

Œ0; 1�.
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On the other hand, we can define ? on ZŒ 1
2
� by the formula ?.fr / D r . Since both

sets ff .n/

k g and fa.n/

k g are dense in Œ0; 1�, the function can be extended uniquely as
a monotone function from Œ0; 1� to Œ0; 1�. For example, we can put

?.x/ D lim
n!1 ?.xn/; (6.2.6)

where fxng is a monotone sequence of rational numbers converging to x. ut
The inverse function p to the question mark function solves the problem of

computing f
.n/

k posed above, since for every dyadic r 2 Œ0; 1�, we have fr D p.r/.
On the set ZŒ 1

2
�
T

Œ0; 1� of binary fractions, the function p.x/ can be computed
step by step using the property

p

�
2k C 1

2nC1

�
D p

�
k

2n

�
# p

�
k C 1

2n

�
; (6.2.7)

which follows immediately from Eq. (6.2.5), and repeating the construction of the
modified Farey series.

Theorem 6.2. The function p WD ?�1 has the following properties:

1. .a/ p.1 � x/ D 1 � p.x/I .b/ p. x
2
/ D p.x/

1Cp.x/
I .c/ p. 1Cx

2
/ D 1

2�p.x/
.

2. .p/0. k
2n / D 1 for every n and 0 � k � 2n.

3. For every rational nondyadic number r 2 Œ0; 1�, the value p.r/ is a quadratic
irrationality, i.e., has a form r1 C p

r2 for some rational r1; r2.
4. We have the following remarkable formula:

p

0
@0:0 : : : 00„ ƒ‚ …

k1

11 : : : 11„ ƒ‚ …
l1

: : : 00 : : : 00„ ƒ‚ …
kn

11 : : : 11„ ƒ‚ …
ln

: : :

1
A D 1

k1C 1

l1C
1

: : : knC 1

lnC 1

: : :

: : :

(6.2.8)

where on the left-hand side, the binary system is used, while on the right-hand
side, we use a continued fraction. The formula (6.2.8) works also for finite binary
fractions.5

Sketch of proof. The relations 1(a)–(c) can be derived from the following useful
fact.

5Guess about the form of the right-hand side of the formula in this case.
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Lemma 6.2. Let g D
�

a b

c d

�
2 GL.2; Z/. Then the transformation of Q given by

r 7! g � r WD ar C b

cr C d

commutes with the insertion operation #, i.e.,

.g � r1/ # .g � r2/ D g � .r1 # r2/: (6.2.9)

We leave the proof of this claim to the reader and make only two useful remarks,
each of which could serve as the basis for a proof.

1. The transformations in question send friendly pairs to friendly pairs.
2. The group GL.2; Z/ is generated by two elements:

g1 D
�

1 1

0 1

�
; g2 D

�
0 1

1 0

�
:

Now we prove relation 1(a). Consider the following diagram:

Œ0; 1�
x 7!1�x�����! Œ0; 1�

p

??y ??yp

Œ0; 1�
x 7!1�x�����! Œ0; 1�

(6.2.10)

Relation 1(a) claims that it is commutative. To check this, choose a point x 2 Œ0; 1�

that is a dyadic fraction r D k
2n D ar . Then the vertical arrow sends this number to

p.ar/ D fr , and the horizontal arrow sends fr to f1�r (check this, consulting the
table above).

On the other hand, the horizontal arrow sends r to 1 � r D a1�r , and then the
vertical arrow sends a1�r to f1�r . Thus for every number of the form k

2n , relation
1(a) holds. By continuity, it holds everywhere.

Consider relation 1(b). It is equivalent to the commutativity of the diagram

Œ0; 1�
x 7! x=2�����! Œ0; 1

2
�

p

??y
??yp

Œ0; 1�
x 7! x

1Cx�����! Œ0; 1
2
�

(6.2.11)

Here again we start with an element r D ar 2 Œ0; 1�. The horizontal arrow sends it
to ar=2, and then the vertical arrow transforms it to fr=2.

On the other hand, the vertical arrow sends ar to fr , and we have to show that
the horizontal arrow transforms it to fr=2. That is, we want to check the equality
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fr

1Cfr
D fr=2. For this, we observe that the transformation x 7! x

1Cx
maps the

segment Œ0; 1� to the segment Œ0; 1
2
�. Since it belongs to PGL.2; Z/, it transforms

the part of Farey series between f0 and f1 to the par between f0 and f1=2. Then by
induction on n, we check that it sends f 2k

2n
to f k

2n
.

The relation 1(c) can be proved in the same way using the diagram

Œ0; 1�
x 7! 1Cx

2�����! Œ 1
2
; 1�

p

??y
??yp

Œ0; 1�
x 7! 1

2�x�����! Œ 1
2
; 1�

(6.2.12)

The point is that affine transformations respect half-sums, while the transforma-
tions from PGL.2; Z/ respect the insertion operation.

I recommend that the reader formulate and prove some other properties of ? and
p using other diagrams.

It is also useful to extend the definition of ? and p to the whole set R by the
formulas

p

�
1

x

�
D 1

p.x/
I p.�x/ D �p.x/: (6.2.13)

We shall verify property 2 only at the point x D 0. The general case x D k
2n can

be done similarly, or it can be reduced to the case x D 0 by 1(a)–1(c).
We have p.0/ D 0, p. 1

2n / D 1
nC1

. So if 1
2n � �x � 1

2n�1 , we have 1
nC1

�
�p � 1

n
.

Therefore, 2n�1

nC1
� �p

�x
� 2n

n
for 1

2n � �x � 1
2n�1 and p0.0/ D C1.

Statement 3 follows from the formula (6.2.8). As for this formula, it can be
proved for finite fractions by induction using the Farey series. Note that in the last
section of Part I, we used Eq. (6.2.8) as a definition of the question mark function.

ut
Remark 6.3. Let us interpret the function p WD ?�1 as a distribution function for
a probability measure � on Œ0; 1�: the measure of an interval Œa; b� is equal to
p.b/ � p.a/. This measure is a weak limit6 of the sequence of discrete measures
�n, n � 1, concentrated on the subset F .n/, so that the point f

.n/

k has the mass 1
2n

for 1 � k � 2n.
It is clear that the support of � is the whole segment Œ0; 1� (i.e., the measure of

every interval .a; b/ � Œ0; 1� is positive). While for an ordinary Farey series, the
measure defined in a similar way is uniform, in our case it is far from it. The detailed
study of this measure is a very promising subject (see, e.g., [de Rha59]).
~

6We say that a measure � on Œ0; 1� is a weak limit of the sequence of measures �n if for every
continuous function f on Œ0; 1�, we have limn!1

R 1

0 f .x/d�n.x/ D R 1

0 f .x/d�.x/.
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Exercise 6.10. Find the values of ?.x/ and ?0.x/ at the point x D 1
3
.

Hint. Using the relation 1
2

� 1
4

C 1
8

� 1
16

C 1
32

� 1
64

C � � � D 1
3
, show that

‹

�
1

3
� 1

3 � 4n

�
D ˆ2n�1

ˆ2nC1

; ‹

�
1

3
C 2

3 � 4n

�
D ˆ2n

ˆ2nC2

;

where ˆn is the nth Fibonacci number, given by the formula

ˆn D �n � .��/�n

� C ��1
;

where � D
p

5C1
2

� 1:618 : : : is the golden ratio.7

Answer. ?
�

1
3

� D 3�p
5

2
I ?0� 1

3

� D 0.

Problem 6.2. Is it true that ?0.x/ D 0 for all rational numbers except a
.n/

k ?

We can sum up the content of this section as follows: there is a monotone
parameterization of all rational numbers in Œ0; 1� by the simpler set of all binary
fractions in the same interval.

If we remove the restriction r 2 Œ0; 1�, we get a parameterization of Q by ZŒ 1
2
�

that preserves the cyclic order on the circle introduced above.

Remark 6.4. There is an interesting geometric interpretation of the Farey series and
of the Minkowski question mark function. It was discovered by George de Rham
[de Rha59].

Consider the square Œ�1; 1� � Œ�1; 1� � R2. Let us divide every side into three
equal parts and join neighboring division points. We get an octagon with equal
angles but unequal sides. Repeat this procedure: divide every side of the octagon
into three equal parts and join the neighboring division points. The result will be a
convex polygon with 16 sides that is contained in the octagon. Proceeding in this
way, we get a nested series of convex polygons …n, n � 1, with 2nC1 sides. The
intersection of all these polygons is a convex domain D bounded by a C 2-smooth
curve C (see Fig. 6.2). Note the following facts:

(a) The center of each side of every …n belongs to C . Let us enumerate those that
belong to the upper half of C by the numbers rk D k

2n , �2n � k � 2n.
(b) Let the upper half of C be given by the equation y D f .x/, jxj � 1. Let xk be

the x-coordinate of rk. Then f 0.xk/ D frk
, the member of the nth Farey series.

~

7See Info G.
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Fig. 6.2 The de Rham curve

6.3 Nice Parameterizations of Disks Tangent to a Given Disk

Let A be an Apollonian gasket. Choose a disk D 2 A corresponding to a Hermitian
matrix M and consider those disks in A that are tangent to D.

The tangent points form a countable subset T � @D. We shall show later that
one can parameterize points of T by rational numbers (including 1) in such a way
that the natural cyclic order on T , as a part of @D, corresponds to the cyclic order
on Q, as a part of R.

Let Dr be the disk tangent to D at the point tr 2 T and let Mr be the
corresponding Hermitian matrix.

We say that a parameterization r ! tr of T by Q is nice if it has the following
properties:

1. If r D p

q
in lowest terms, then

Mr D Ap2 C2BpqCC q2 �M; where A; B; C are fixed Hermitian matrices.

2. The disk Dr is tangent to Dr 0 iff r D p

q
and r 0 D p0

q0 are friendly, i.e., iff jpq0 �
p0qj D 1.

Of course, conditions 1 and 2 are very strong and contain all the information about
tangent disks. Therefore, the next result is rather important.

Theorem 6.3. Nice parameterizations exist and have the following additional
property: Let v0; v1; v2; v3 be vectors in R1;3 corresponding to matrices A C
C; B; A � C; M . Then the Gram matrix of their scalar products has the form

G D k.vi ; vj /k D

0
BB@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1
CCA : (6.3.1)
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0−1 11
2−1

2
1
3

2
3−1

3−2
3

Fig. 6.3 Nice parameterization of a line in the band gasket

First main example: band gasket. Let D D fw 2 C
ˇ̌

Im w � 0g, D1 D fw 2
C

ˇ̌
Im w � 1g. Let D0; D1 be the disks of unit diameter, tangent to D at points

0; 1 and to D1 at points i; i C 1 (Fig. 6.3).
Then @D D R; T D Q. The tautological parameterization of T is nice, with

M D
�

0 i

�i 0

�
; M p

q
D

�
2p2 �2pq � i

�2pq C i 2q2

�
; D p

q
W
ˇ̌̌
ˇ w�2pq C i

2q2

ˇ̌̌
ˇ � 1

2q2
:

Second main example: rectangular gasket. Let D D fw 2 C
ˇ̌ jwj � 1g

be the complement to the open unit disk, and let D0 be given by the condition
jw � 1

2
j � 1

2
, D1 by the condition jw C 1

2
j � 1

2
, and D1 by the condition

jw � 2i
3

j � 1
3
.

Here @D is the unit circle, and a nice parameterization is tr D pCiq

p�iq
, so that

M D
��1 0

0 1

�
; Mr D

�
p2 C q2 � 1 �.p C iq/2

�.p � iq/2 p2 C q2 C 1

�
;

D p
q

W
ˇ̌̌
ˇ w � .p C iq/2

p2 C q2 C 1

ˇ̌̌
ˇ � 1

p2 C q2 C 1
:

Proof of Theorem 6.3. Let D0; D1; D1 be any three disks from A that are tangent
to D and to each other. We associate the labels 0; 1 and 1 to the corresponding
tangent points in @D (Fig. 6.4).

Then, assuming that the theorem is true and the parameterization is nice, we can
compute A; B; C from the equations

M1 D A � M; M0 D C � M; M1 D A C 2B C C � M:

We get

A D M C M1; C D M C M0; B D 1

2
.M1 � M � M0 � M1/:
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22

3

3

6

6

6

6

11

11

11

11

14

14

14

14

tp/q =

(3
5 , 4

5) = 2+i

(0,1)

(1,0)

(0,−1)

(−1,0)

p−iq
p+iq

cp/q = 1 + p2 + q22−i

Fig. 6.4 Nice parameterization of the outer circle in the rectangular gasket

Then, using the property of matrices M0; M1; M1, and M , we can check rela-
tion (6.3.1). From there, statement 2 of the theorem follows easily if we define Mr

using statement 1. ut
Practically, a nice parameterization can be defined step by step. Assume that the

disks Dr1 and Dr2 corresponding to friendly rational numbers r1 and r2 are already
defined and are tangent to D and to each other. Then we associate to r D r1 # r2,
the disk tangent to Dr1 , Dr2 , and D.

In fact, there are two such disks and two possible values of r D r1 # r2; the right
choice is uniquely determined by the cyclic order.

Corollary. The boundary curvature of the disk tangent to D at the point r D p

q
(in

lowest terms) is given by a quadratic polynomial in p; q:

c.p; q/ D �
c1 C c

� � p2 C �
c1 � c0 � c1 � c

� � pq C �
c0 C c

� � q2 � c; (6.3.2)

where ci is the boundary curvature of the disk Di .
In particular, if four mutually tangent disks in an Apollonian gasket A have

integral boundary curvatures, then all disks from A have this property.

Exercise 6.11. For the triangular Apollonian gasket, find the curvatures of the disks
tangent to the outer disk.

Answer. c.p; q/ D 2.p2�pqCq2/p
3

C 1.

Exercise 6.12. Describe the canonical parameterization for the outer circle of the
triangular gasket.

Hint. Label by 0; 1; 1 the tangent points corresponding to the three maximal inner
disks.
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6.4 Integral Apollonian Gaskets

6.4.1 Basic Quadruples

There are many models of Apollonian gasket for which the curvatures of all circles
are integers. We call them integral gaskets. For each such gasket, we can choose the
quadruple of disks such that corresponding boundary curvatures form an integral
quadruple .c1 � c2 � c3 � c4/ with minimal c1. Call it a basic quadruple.

Lemma 6.3. For a basic quadruple, we have

c4 � 0; jc4j < c3 <

�
1 C 2p

3

�
jc4j � 2:1547 : : : � jc4j:

Proof. Let Di , 1 � i � 4, be a quadruple of mutually tangent disks with curvatures
ci , 1 � i � 4. The first inequality has already been proved (see Remark 4.2).

Consider now Descartes’s equation (4.1.3) as a quadratic equation in c1 with
given c2; c3; c4. Then we get

c1 D c2 C c3 C c4 ˙ 2
p

c2c3 C c3c4 C c4c2: (6.4.1)

Since the initial quadruple is basic, we have to choose the minus sign in Eq. (6.4.1)
(otherwise, we could replace c1 by a smaller quantity).

The inequality c1 � c2 together with Eq. (6.4.1) gives c3 C c4 �
2
p

c2c3 C c3c4 C c4c2, or .c3 � c4/
2 � 4c2.c3 C c4/ � .c3 C c4/

2. This can
be true only when c4 � 0.

Finally, for nonpositive c4, we have .c3 � c4/
2 � 4c2.c3 C c4/ � 4c3.c3 C c4/, or

3c2
3 C6c3c4 Cc2

4 � 4c2
4 . This gives

p
3.c3 Cc4/ � �2c4, hence c3 � 2Cp

3p
3

jc4j. ut
Here is a list of basic quadruples of small sizes generating nonisomorphic gaskets

in order of increasing jc4j:
c4 D 0 .1; 1; 0; 0/I
c4 D �1 .3; 2; 2; �1/I
c4 D �2 .7; 6; 3; �2/I
c4 D �3 .13; 12; 4; �3/; .8; 8; 5; �3/I
c4 D �4 .21; 20; 5; �4/; .9; 9; 8; �4/I
c4 D �5 .31; 30; 6; �5/; .18; 18; 7; �5/I
c4 D �6 .43; 42; 7; �6/; .15; 14; 11; �6/; .19; 15; 10; �6/I
c4 D �7 .57; 56; 8; �7/; .20; 17; 12; �7/; .32; 32; 9; �7/I
c4 D �8 .73; 72; 9; �8/; .24; 21; 13; �8/; .25; 25; 12; �8/I
c4D�9 .91; 90; 10; �9/; .50; 50; 11; �9/; .22; 19; 18; �9/;

.27; 26; 14; �9/I
c4 D �10

.111; 110; 11; �10/; .39; 35; 14; �10/; .27; 23; 18; �10/I
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c4 D �11

.133; 132; 12; �11/; .72; 72; 13; �11/; .37; 36; 16; �11/; .28; 24; 21; �11/.
Three general formulas:

c4 D �km .k2 C km C m2; k.k C m/; m.k C m/; �km/

c4 D 1 � 2k .2k2; 2k2; 2k C 1; 1 � 2k/

c4 D �4k
�
.2k C 1/2; .2k C 1/2; 4.k C 1/; �4k

�
The reader can find many other interesting facts about integral gaskets in [G03].

However, a description of all basic quadruples is still unknown.

Info I. The Möbius Inversion Formula

In number-theoretic computations, the Möbius inversion formula is frequently used.
We explain here how it works.

Suppose we have a partially ordered set X with the property that for every
element x 2 X , there are only finitely many elements that are less than x. Let
now f be any real- or complex-valued function on X . Define a new function F by
the formula

F.x/ D
X
y�x

f .y/: (I.1)

Proposition I.1. There exists a unique function Q� on X � X with the following
properties:

1. Q�.x; y/ D 0 unless y � x.
2. Q�.x; x/ D 1.
3. If the functions f and F are related by Eq. (I.1), then

f .x/ D
X
y�x

Q�.x; y/F.y/: (I.2)

In many applications, the set X is a semigroup of nonnegative elements in some
partially ordered abelian group G, and the order relation is translation-invariant:
y < x is equivalent to a C y < a C x for every a 2 G. In this case, � is also
translation-invariant, Q�.a C x; a C y/ D Q�.x; y/, and hence it can be written in
the form �.x � y/, where � is a function on G that is zero outside X . The inversion
formula takes the form

f .x/ D
X
y�x

�.x � y/F.y/ (Möbius inversion formula): (I.3)

We leave the proofs for the interested reader and consider only some examples
that we need in our book.
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Example 1. Let G D Z with the standard order. Then the formula (I.1) takes the
form F.n/ D P

m�n f .m/, and the inversion formula is f .n/ D F.n/ � F.n � 1/.
We see that in this case, Proposition I.1 is true and the function � is given by

�.n/ D

8̂
<̂
ˆ̂:

1 if n D 0;

�1 if n D 1;

0 otherwise:

Example 2. G D G1 � G2, and the order on G is the product of orders on G1 and
on G2, i.e.,

.g1; g2/ > .0; 0/ , g1 > 0 and g2 > 0:

Here the �-function for G is simply the product of the �-functions for G1 and G2.
Note that if G1 and G2 are ordered groups, the G D G1 � G2 is only partially

ordered.

Example 3. G D Q� is the multiplicative group of nonzero rational numbers. The
partial order is defined as follows: r1 � r2 if the number r2

r1
is an integer. So in this

case, X D ZC with the order relation m < n if m j n (m is a divisor of n).

It is easy to see that this partially ordered group is the direct sum of a countable
number of copies of Z with the usual order. Indeed, every element of G can be
uniquely written in the form r D Q

k�1 p
nk

k , where pk is the kth prime number,
nk 2 Z, and only finitely many of nk are nonzero. The number r is an integer iff all
nk are nonnegative.

Therefore, the function � is the product of infinitely many functions from
Example 1. The exact definition is as follows.

Definition I.1.

�.n/ D

8̂̂
<
ˆ̂:

1&if n D 1;

.�1/k if n is a product of k distinct primes,

0 otherwise.

Equation (I.3) in this case is the classical Möbius inversion formula

f .n/ D
X
d jn

�.d/F
� n

d

�
: (I.4)

As an application, we derive here the formula for the Euler '-function.
Let us classify the numbers k � n according to the value of d D gcd.k; n/.

It is clear that gcd. k
d

; n
d

/ D 1. It follows that the number of those k for which
gcd.k; n/ D d is equal to '. n

d
/. We have obtained the identity

n D
X
d jn

'
� n

d

�
:
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Applying the Möbius inversion formula, we get

'.n/ D
X
d jn

�.d/ � n

d
; or

'.n/

n
D

X
d jn

�.d/

d
: (I.5)

}

6.4.2 Some Computations

A well-known unsolved problem is to compute the Hausdorff dimension of the
Apollonian gasket and the Hausdorff measure of its different modifications (e.g.,
spherical or triangular gaskets). We know the answer to the first question to a high
degree of accuracy: in [MC03], it is shown that the Hausdorff dimension of the
Apollonian gasket is d D 1:308535‹‹‹ : : :. However, we have no idea about the
nature of this number. For example, is it irrational? Can it be expressed in terms of
some logarithms as for the Cantor set or Sierpiński gasket? Has it any interesting
arithmetic properties?

Another interesting problem is to compute the total area of the disks in some
Apollonian gasket that are tangent to a given disk D, e.g., to the outer disk in the
rectangular or triangular gasket.

We start, however, with a slightly easier problem. Consider the first main example
of the band gasket above. We want to compute the total area of the disks in the band
gasket that are tangent to the real axis at the rational points of the segment Œ0; 1�.
A more natural question, one with a simpler answer, is to compute the area of the
part of the unit square with vertices 0; 1; 1 C i; i covered by the disks tangent to
the lower side of the square.

We know that the diameter of the disk with tangent point m
n

2 Œ0; 1� is 1
n2 . Hence

its area is �
4n4 . There are '.n/ disks of this size. So for the area in question, we have

the expression

A D �

4
�
X
n�1

'.n/

n4
: (6.4.2)

This number can be expressed through the values of the Riemann 	-function at the
points 3 and 4.

Let us use the formula for '.n/ obtained in Info I. The formula (6.4.2) takes the
form

A D �

4
�
X
n�1

X
d jn

�.d/

dn3
:

We denote n
d

by m and sum over d and m. We get

A D �

4
�
X
d�1

X
m�1

�.d/

m3d 4
D �

4
�
X
m�1

1

m3
�
X
d�1

�.d/

d 4
:
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The sum
P

m�1
1

m3 is, by definition, the value 	.3/. On the other hand, the sumP
d�1

�.d/

d4 can be written as

X
k�0

.�1/k �
X

1�i1<i2<���<ik

.pi1pi2 � � � pik /�4 D
Y
i�1

�
1 � 1

p4
i

�
D 1P

n�1
1
n4

D 1

	.4/
:

Finally, we get

A D �

4
� 	.3/

	.4/
D 45	.3/

2�3
� 0:872284:

The total area of the disks tangent to the outer disk of the rectangular gasket is
equal to

�

2
�

X
gcd.p;q/D1

1

.p2 C q2 C 1/2
:

It can be expressed in terms of the 	-function related to the Gaussian field Q.i/.

Exercise 6.13. Let †m denote the sum
P

Z2nf.0;0/g 1
.k2Cl2/m . Show that

X
gcd .p;q/D1

1

.p2 C q2/m
D †m

	.2m/
(6.4.3)

and
X

gcd .p;q/D1

1

.p2 C q2 C 1/2
D

1X
mD1

.�1/m�1 m � †mC1

	.2m C 2/
: (6.4.4)
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