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Preface

This book is devoted to the phenomenon of fractal sets, or simply fractals. Fractals
have been known for about more than a century and have been observed in different
branches of science. But it is only recently (approximately in the last thirty years)
that they have become a subject of mathematical study.

The pioneer of the theory of fractals was Benoit Mandelbrot. His book Fractals:
Form, Chance and Dimension first appeared in 1977, and a second, enlarged, edition
was published in 1982. Since that time, serious articles, surveys, popular papers, and
books about fractals have appeared by the dozen (if not by hundreds). Also, in 1993,
the specialized journal Fractals was published by World Scientific. So, why write
one more book?

First, it turns out that in spite of the vast literature, many people, including
graduate students and even professional mathematicians, have only a vague idea
about fractals.

Second, in many popular books, the reader finds a large number of colorful
pictures and amazing examples but no accurate definitions and rigorous results.
In contrast, the articles written by professionals are, as a rule, too difficult for
beginners and often discuss very special questions, assuming that the motivation
and all connections are already known to the reader.

Last, and perhaps the most important reason, is my belief that the endeavor of
independent study of the geometry, analysis, and arithmetic of fractals is one of the
best ways for a young mathematician to acquire an active and stable knowledge of
the basic mathematical tools.

This subject also seems to me to be an excellent opportunity to test your ability
to produce creative work in mathematics.1 I mean here not only solving well-posed
problems, but recognizing hidden patterns and formulating new, fruitful problems.

My interest in fractals originates from the lecture course I gave at the University
of Pennsylvania in 1995 at the request of our undergraduate students. I repeated
the course in 1999, 2003, and 2005. In 2004 and in 2007, I had the opportunity

1According to Yu.I. Manin, to create in mathematics is to calculate with excitement.
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viii Preface

to present the material in several lectures at the summer school in Dubna, near
Moscow, organized for high school seniors and first-year university students who
were winners of the Russian Mathematical Olympiad. Both times, I was pleasantly
surprised by the activity of the audience and by their quickness in comprehending
all of the necessary information.

In this book, we deliberately restrict ourselves to only two examples of fractals:
the Sierpiński and Apollonian gaskets. I describe and rigorously formulate several
problems that come from the study of these fractals. Most of them can be formulated
and solved independently, but only the whole collection gives an understanding of
the world of fractals.

Some of these problems are more or less simple exercises, some are relatively
new results, and a few are unsolved problems of unknown difficulty. The solution
(and even formulation and understanding) of all the problems requires some
preliminary background, which contains, in particular, the following:

• Elements of analysis: functions of one variable, differential and integral calculus,
series.

• Elements of linear algebra: real and complex vector spaces, dimension, linear
operators, quadratic forms, eigenvalues and eigenvectors. Coordinates and inner
products.

• Elements of geometry: lines, planes, circles, disks, and spheres in R
3. Basic

trigonometric formulas. Elements of spherical and hyperbolic geometry.
• Elements of arithmetic: primes, relatively prime numbers, gcd (greatest common

divisor), rational numbers, algebraic numbers.
• Elements of group theory: subgroups, homogeneous spaces, cosets, matrix

groups.

All of this is normally contained in the first two or three years of a university
mathematics curriculum.

I consider the diversity of the necessary tools and their interconnection a
great advantage of this subject, because it is a characteristic feature of modern
mathematics.

Let me offer several words about the style of exposition. I tried to avoid two main
dangers: being dull by explaining too many details in the most elementary form and
being incomprehensible by using very effective but sometimes too abstract modern
techniques. It is to the reader to judge the success of this endeavor.

I also tried to communicate an informal knowledge of mathematical tools that
distinguish (almost all) professionals from most beginners. Sometimes, one phrase
explains more than a long article.2 So, from time to time, I intentionally use some
“high-altitude” notions, explaining each time in the simplest possible words what
they mean in the simplest situations.

2In my experience, this happened when I tried to understand induced representations, spectral
sequences, intersection homology, etc.
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Some additional information is included in the text in the form of sections with
the heading “Info.”

I also use “Remarks” as another form of additional information. The end of a
remark is indicated by the sign ~.

The end of a proof (or the absence of proof) is marked by the sign ut.

Acknowledgements The author deeply thanks the Erwin Schroödinger International Institute
for Mathematical Physics (ESI), where this work was begun; the Max Planck Institute in Bonn
(MPI); and the Institute des Hautes Etudes Scientifique (IHES), where it was completed. I also
thank the referees for helpful remarks.
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Chapter 1
Definitions and General Properties

1.1 First Appearance and Naive Definition

I will not describe the early manifestations of fractals in the natural sciences (such
as investigations of seashore length, cauliflower and snowflake forms); there are
enough examples in popular expositions (see, for example, the pioneering book
[Man82] or the nice recent book [LGRE00]).

For mathematicians, the simplest and best-known example of a fractal is the
famous Cantor set. An acquaintance with the Cantor set is a good test to distinguish
those who really understand real analysis from those who have merely formally
passed a calculus exam. We shall not go into details of this example just yet, but
in Sect. 1.2, we shall return to it and show that it is a part of the general theory of
self-similar fractals.

Much more interesting examples of fractals exist in the plane R
2. Here we shall

consider in detail one special example.
Many people know of the so-called Pascal’s triangle, whose entries are the

binomial coefficients
�
n
k

�
. It looks as follows:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

:: : : : : : : : : : : : : : : : : : : : : : ::

It is very easy to continue this triangle, since every entry is the sum of the two entries
above it.

A.A. Kirillov, A Tale of Two Fractals, DOI 10.1007/978-0-8176-8382-5 1,
© Springer Science+Business Media New York 2013
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4 1 Definitions and General Properties

Fig. 1.1 Pascal’s triangle
mod 2

Now let us replace these numbers by their residues modulo 2. In other words, we
put 0 in place of every even number and 1 in place of every odd number. We get the
following picture:

1

1 1

1 0 1

1 1 1 1

1 0 0 0 1

1 1 0 0 1 1

1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

:: : : : : : : : : : : : : : : : : : : : : : ::

How can one describe this picture? Observe that this triangle of size 8 contains
three identical triangles of size 4 (left, upper, and right); each of these triangles
contains three identical triangles of size 2, consisting of three ones.

The remaining places are occupied by zeros.
Let us try to imagine what happens if we continue our triangle up to 2N lines

for some large numberN . If we contract the triangle to the size of a book page and
replace 1’s by black dots and 0’s by white dots, we get a picture like Fig. 1.1.

Here the whole triangle contains three triangles of half size that look similar to
the whole thing. The space bounded by these triangles is filled by white dots.

It is rather clear that as N goes to infinity, our picture approaches a certain
limit.1 This limit is the so-called Sierpiński gasket, discovered in 1916 by the Polish
mathematician Wacław Sierpiński.

Another appearance of the same set is related to the following problem of linear
algebra. Let EN be an N � N matrix with entries from the simplest finite field
F2 D Z=2Z given by

.EN /i;j D
(
1 if i < j;

0 otherwise:

1See Info A below for a rigorous definition of a limit in this situation.
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Fig. 1.2 Pascal triangular
matrix

According to the general theory, this matrix is similar to a Jordan normal block
JN with

.JN /i;j D
(
1 if j D i C 1;

0 otherwise:

Let us try to find the matrix AN that establishes the similarity: ENAN D ANJN .
It turns out that AN can be chosen such that it looks like Fig. 1.2.

We leave it to the reader to explain this phenomenon and find the connection of
AN to Pascal’s triangle.

To go further, we need to generalize the notion of a limit, the main notion in
analysis, so that it can be applied not only to numbers but to objects of an arbitrary
nature. In particular, we want to give a meaning to the expression, “the sequence of
sets fXng converges to some limit set X .”

The corresponding domain of mathematics is called the theory of metric spaces.
Using this theory, we can define fractals (which are rather complicated sets) as limits
of some sequences of simpler sets.

Info A. Metric Spaces

We start with some general definitions, which later will be specialized and explained
with many examples. For some readers, the text below will look too abstract and
difficult for remembering and understanding. But you will see that the notions
introduced here are very useful in many situations. They allow us to treat uniformly
problems that seem completely different.



6 1 Definitions and General Properties

A.1 Distance and Limit

Definition A.1. A metric space is a pair .M; d/, where M is a set and d W M �
M �! R is a function that for every two points x and y defines the distance
d.x; y/ between x and y so that the following axioms are satisfied:

1. Positivity: For all x; y 2 M , the quantity d.x; y/ is a nonnegative real number
that vanishes iff2 x D y.

2. Symmetry: d.x; y/ D d.y; x/ for all x; y 2 M .
3. Triangle inequality: d.x; y/ � d.x; z/C d.z; y/ for all x; y; z 2 M .

The original examples of metric spaces are the real line .R; d /, where the
distance is defined by

d.x; y/ D jx � yjI (A.1)

the plane .R2; d / with the usual distance between x D .x1; x2/ and y D .y1; y2/:

d.x; y/ D
p
.x1 � y1/2 C .x2 � y2/2I (A.2)

and the three-dimensional space .R3; d / with the usual distance

d.x; y/ D
p
.x1 � y1/2 C .x2 � y2/2 C .x3 � y3/2: (A.3)

Definition A.2. We say that a sequence fxng in M is convergent, or has a limit, if
there exist a 2 M such that d.xn; a/ ! 0 as n ! 1.

Definition A.3. A sequence fxng is called fundamental, or a Cauchy sequence, if it
has the property

lim
m;n!1d.xm; xn/ D 0: (A.4)

For example, every convergent sequence is a Cauchy sequence. The converse is
not always true. For instance, in the ray R>0 of all positive numbers with the usual
distance of Eq. (A.1), the sequence xn D 1

n
is a Cauchy sequence, but it has no limit.

Definition A.4. A metric space .M; d/ is called complete if every fundamental
sequence in M has a limit.

In our book, we shall consider mostly complete metric spaces. In particular, the
examples (A.1)–(A.3) above are complete metric spaces according to a well-known
theorem of real analysis.

Definition A.5. A subspace X of a metric space .M; d/ is called closed in M if it
contains all its limit points, i.e., the limits of sequences fxng � X .

2A standard mathematical abbreviation for the expression “if and only if.”
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Exercise A.1. Let .M; d/ be a complete metric space and X a subset of M . Than
.X; d/ is itself a metric space.

Show that .X; d/ is complete if and only if the set X is closed in M .

Hint. This is simply a test on knowing and understanding the definitions. Formulate
accurately what has been done and what we have to prove, and you will obtain a
proof.

Warning. If this exercise does not seem easy to you, try again or discuss it with
your instructor.

A.2 Contracting Maps

Definition A.6. A map f from a metric space .M; d/ to itself is called contracting
if there is a real number � 2 .0; 1/ such that

d
�
f .x/; f .y/

� � � � d.x; y/ for all x; y 2 M: (A.5)

We shall use the following theorem.

Theorem (Theorem on contracting maps). Assume that M is a complete metric
space and f is a contracting map from M to itself. Then there exists a unique fixed
point for f in M , i.e., a point x satisfying f .x/ D x.

The proof of this theorem is rather short and very instructive. Moreover, it gives
a simple method to construct the fixed point. So, we give a proof here.

Proof. Let x0 be an arbitrary point of M . Consider the sequence fxngn�0 defined
inductively by xn D f .xn�1/ for n � 1.

We claim that this sequence is convergent. To this end, we show that fxng is a
Cauchy sequence. Indeed, let d.x0; x1/ D d . Then, from Eq. (A.5), we get

d.x1; x2/ � � � d; d.x2; x3/ � �2 � d; : : : d.xn; xnC1/ � �n � d:

Therefore, for everym < n we have d.xm; xn/ � Pn�1
kDm �k � d � �m

1�� � d . Hence

lim
m;n!1d.xm; xn/ ! 0;

and we are done.
Since M is complete, our Cauchy sequence has a limit, which we denote by x1.
Now, the function f , being contracting, is continuous. Therefore, f .x1/ D

limn!1 f .xn/ D limn!1 xnC1 D x1, i.e., x1 is a fixed point.
Finally, if we had two fixed points x and y, then d.x; y/ D d

�
f .x/; f .y/

� �
� � d.x; y/. this is possible only if d.x; y/ D 0; hence x D y: ut
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Home

SchoolCinema

PlaygroundFig. A.3 Indecisive boy

This theorem solves in particular the following toy problem, which appeared on
a mathematical Olympiad for middle-school students.

Problem A.1. A boy came out of his house and went to school. At the halfway
point he changed his mind and turned toward a playground. But after walking
halfway there, he turned toward a cinema. At the halfway point to the cinema, he
decided again to go to school, etc. (See Fig. A.3.)

Where will he end up if he continues to move in this way?

A.3 Compact Sets

Definition A.7. A metric space .M; d/ is called compact if every sequence fxng of
points in M has a convergent subsequence.

Definition A.8. A subset S � M is called an "-net inM if for everym 2 M , there
is a point s 2 S such that d.m; s/ < ".

Theorem (Theorem on "-nets). A metric space .M; d/ is compact iff it is
complete and for every " > 0, there is a finite "-net in M .

We give the proof here because it is a good example of mathematical reasoning
and because it helps in understanding the nature of compactness.

1. Assume that M is compact. Let us show thatM is complete. Consider a Cauchy
sequence fxng in M . We have to show that it has a limit. Since M is compact,
the sequence fxng contains a convergent subsequence fykg D fxnk g. Let a be the
limit: a D limk!1 yk . I claim that a is the limit of fxng. Indeed, since fxng is
a Cauchy sequence, for every " > 0, there exists a number N D N."/ such that
d.xm; xn/ <

"
2

for m; n > N."/. Also, there exists a number K D K."/ such
that d.yk; a/ < "

2
for k > K . So, for n > max .N; nK/, we have

d.xn; a/ � d.xn; xnK /C d.xnK ; a/ <
"

2
C "

2
D ":

Therefore, limn!1 xn D a.
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Now we show thatM admits a finite "-net for any " > 0. Assume the contrary,
namely, that for some " > 0, there is no finite "-net in M . Then I claim that M
contains a sequence fxng with the property that

d.xm; xn/ � " for all m ¤ n: (A.6)

Indeed, we construct the desired sequence by induction. Choose x1 2 M

arbitrarily. Suppose that points x1; x2; : : : ; xn satisfying Eq. (A.6) are already
chosen. Since the finite set fxig1�i�n is not an "-net, there is a point xnC1 2 M

such that d.xnC1; xi / � " for 1 � i � n.
The sequence fxng satisfying Eq. (A.6) does not contain any convergent sub-

sequence, because every subsequence also satisfies Eq. (A.6), hence is certainly
not a Cauchy sequence. A contradiction.

2. Assume that M is complete and that for every " > 0, there is a finite "-
net in M . Let us show that M is compact, that is, that every sequence fxng
contains a convergent subsequence. It is enough to find in fxng a Cauchy
subsequence. Let Sn be a finite "-net in M for " D 1

n
. Denote the points of

Sn by s.n/1 ; s
.n/
2 ; : : : ; s

.n/

jSn j, where jSnj is the number of points in Sn. Let

Bn
k D

n
x 2 M j d.x; s.n/k / � 1

n

o

denote the closed ball of radius 1
n

centered at s.n/k . Since Sn is an "-net in M , the

union of the balls B.n/

k ; 1 � k � jSnj, covers the whole set M . Put n D 1. So at

least one of the balls B.1/

k ; 1 � k � jS1j, contains infinitely many terms of our

sequence. Therefore, there exists an infinite subsequence fx.1/k g that is contained
in a ball of radius 1.

Now put n D 2. At least one of the balls B.2/

k contains infinitely many terms of

the subsequence fx.1/k g. Hence, there is a subsequence fx.2/k g that is contained in a

ball of radius 1
2
. And so on. Consider the diagonal subsequence fykg D fx.k/k g. This

is the desired Cauchy subsequence, because its terms, starting with the nth, belong
to a ball of radius 1

n
.

Exercise A.2. Show that a subset X in R; R2, or R3 is compact iff it is closed and
bounded.

Hint. If a subsetX is not closed or unbounded, then you can construct a sequence of
points in X without convergent subsequences. If X is bounded, then it is contained
in a segment, or in a square, or in a cube of size R for R big enough. Using the
theorem on "-nets, show that a segment, a square, and a cube are compact. Then
show that a closed subset of a compact set is itself a compact set.

}
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1.2 Definition of Self-Similar Fractals

Now we introduce the main technical tool to deal with a wide class of fractals.
Let M be a metric space. We denote by K.M/ the collection of all nonempty

compact subsets of M . We want to define a distance between two compact sets so
that K.M/ is itself a metric space. For this, we define first the distance d.x; Y /
between a point x and a compact set Y :3

d.x; Y / WD min
y2Y d.x; y/: (1.2.1)

Now the distance between two sets X and Y is defined by

d.X; Y / WD max
x2X d.x; Y /C max

y2Y d.y; X/: (1.2.2)

A more detailed expression for the same distance is

d.X; Y / WD max
x2X min

y2Y d.x; y/ C max
y2Y min

x2X d.x; y/: (1.2.3)

This definition looks rather cumbersome, but if you think a bit about how to
define the distance between two sets so that axioms 1–3 are satisfied, you will find
that the definitions in Eqs. (1.2.2) and (1.2.3) are as simple as possible.

In Fig. 1.3, the first and second terms in Eq. (1.2.3) are the lengths of segments
AB and CD respectively.

Exercise 1.1. Prove that the minimum in Eq. (1.2.1) and maximum in Eq. (1.2.2)
always exist.

Hint. Use the compactness of sets X and Y .

Exercise 1.2. Compute the distance (a) between the boundary of a square with side
1 and its diagonal; (b) between a unit circle and the disk bounded by this circle.

Answer. (a) 1Cp
2

2
; (b) 1.

Fig. 1.3 Hausdorff distance

3The sign WD used below means that the right-hand side of the equation is a definition of the
left-hand side.
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Remark 1.1. To make the notion of Hausdorff distance more visual, let us introduce
the following definition.

Definition 1.1. Let M be a metric space. A map f of some subset M 0 � M to M
is called an "-perturbation if d.x; f .x// � " for all x 2 M 0.

Then the statement “the Hausdorff distance between X and Y is equal d” is
equivalent to the statement “there exist an "1-perturbation f1 W X ! Y and an
"2-perturbation f2 W Y ! X such that "1 C "2 D d .”

~
Theorem 1.1. If the metric space M is complete (resp. compact), then the space
K.M/ is complete (resp. compact) as well.

Hint. Let fXng be a sequence of compact subsets in M that forms a Cauchy
sequence of points in K.M/. Consider the set X of those points x 2 M for which
there exists a sequence fxng such that xn 2 Xn and lim

n!1xn D x. Show thatX is the

limit of fXng in K.M/. (And in particular, show that X is compact and nonempty.)
For the second statement, use the theorem on "-nets.

Assume now that a family of contracting maps ff1; f2; : : : ; fkg in M is given.
Define the transformation F W K.M/ �! K.M/ by

F.X/ D f1.X/[ f2.X/ [ � � � [ fk.X/: (1.2.4)

Theorem 1.2. The map F is contracting. Therefore, if M is complete, there is a
unique nonempty compact subset X � M satisfying F.X/ D X .

Definition 1.2. The set X from Theorem 1.2 is called a homogeneous self-similar
fractal set. The system of functions f1; : : : ; fk is usually called an iterated function
system (i.f.s. for short) defining the fractal set X .

Sometimes, a more general definition is used. Namely, instead of Eq. (1.2.4), let us
define the map F by the formula

F.X/ D f1.X/
[
f2.X/

[
� � �
[
fk.X/

[
Y; (1.2.5)

where Y is a fixed compact subset ofM . This generalized map F is also contracting
because of the following facts.

Exercise 1.3. Show that the “constant” map fY that sends every X 2 K.M/ to a
fixed Y 2 K.M/ is contracting.

Exercise 1.4. Let F1 and F2 be two contracting maps of K.M/. Define the
map F by

F.X/ D F1.X/
[
F2.X/:
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Fig. 1.4 Cantor set (first seven steps in its construction)

Show that F is contracting, using the relation

d.X1
[
X2; Y1

[
Y2/ � max

�
d.X1; Y1/; d.X2; Y2/

�
:

Definition 1.3. A set X that is a fixed point for a map Eq. (1.2.5) is called an
inhomogeneous self-similar fractal.

Example 1. (1) Cantor set C � Œ0; 1�. Here M D Œ0; 1�, f1.x/ D 1
3
x, f2.x/ D

xC2
3

. It is instructive to look at how C , the fixed point for F , is approximated
by a sequence of sets fCng defined by the recurrence CnC1 D F.Cn/.

Choose first C1 D Œ0; 1�; then

C2 D Œ0; 1=3�[Œ2=3; 1�; C3DŒ0; 1=9�[Œ2=9; 1=3�[Œ2=3; 7=9�[Œ8=9; 1� : : : :

The sequence fCng is decreasing, CnC1 � Cn, and the limit set is C DT
n�1 Cn. This construction is shown in Fig. 1.4.
Now put C 0

1 D f0; 1g. Then

C 0
2 D f0; 1=3; 2=3; 1g; C 0

3 D f0; 1=9; 2=9; 1=3; 2=3; 7=9; 8=9; 1g; : : : :

The sequence fC 0
ng is increasing, C 0

nC1 � C 0
n, and the limit set C is the closure

of C 01 WD S
n�1 C 0

n. Note that C 01 is not compact. Therefore, it is not a point
of K.M/.

The main feature of self-similar fractals is easily seen in this example: if we
consider a piece of the Cantor set under a microscope that increases all sizes by
a factor of 3n, we shall see exactly the same picture as that seen with the naked
eye.

There is one more sequence fC 00
n g approximating the Cantor set. It corre-

sponds to the choice C 00
1 D f0g and admits a simple arithmetic description.

Let us write real numbers from Œ0; 1� using base-3 expansions. The notation
0:a1a2 : : : an, where the ai take values 0; 1; 2, is used for the number

a D a1

3
C a2

32
C � � � C an

3n
: (1.2.6)

The set C 00
n consists of all expressions (1.2.6) that use only values 0 and 2 for

ai . We obtain the full Cantor set if we also allow infinite three-adic fractions
(still with the digits 0 and 2).
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Fig. 1.5 I˛-fractal for ˛ D 0:5

(2) I˛-fractal. Let Y be the subset of R2 given by x D 0; �1 � y � 1. Fix a real
number ˛ 2 .0; 1p

2
/ and define the maps

f1.x; y/ D .�˛y; ˛x C 1/I f2.x; y/ D .�˛y; ˛x � 1/: (1.2.7)

The corresponding inhomogeneous self-similar fractal is shown in Fig. 1.5,
where for typographic convenience the y-axis is horizontal.

The first approximation Y
S
f1.Y /

S
f2.Y / for small ˛ looks like the

capital letter I. It explains the name.

Exercise 1.5. Compute

(a) The diameterD of I˛ (as a subset of R2).
(b) The length L of a maximal non-self-intersecting path on I˛.

Answer. (a) D D 2
p
1C˛2
1�˛2 ; (b) L D 2

1�˛ .

(3) Sierpiński gasket S. Here M D C, the complex plane.
Let ! D e

�i
3 be a sixth root of 1. Define

f1.z/ D z

2
; f2.z/ D z C !

2
; f3.z/ D z C 1

2
:

Definition 1.4. The fractal defined by the i.f.s. ff1; f2; f3g is called a
Sierpiński gasket.

In this case, there are three natural choices for the initial set S0.
First, take as S 00

0 the solid triangle with vertices 0; !; 1. Then the sequence
S 00
n D F n.S0/ is decreasing and S D limn!1 S 00

n D T
S 00
n ; see Fig. 1.6.

Second, we let S 0
0 be the hollow triangle with vertices at 0; 1; !. Then the

sequence S 0
n D F n.S 0

0/ is increasing, and S is the closure of S 01 D S
n�0 S 0

n.

Exercise 1.6. How many vertices, edges, and hollow triangles are in S 0
n?
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Fig. 1.6 Approximation S 00

n

Fig. 1.7 Approximation Sn

Fig. 1.8 Approximation S 0

n

Finally, let S0 be the set of 0; 1; !. Then Sn D F n.S0/ is a finite set. Here again,
Sn � SnC1 and S is the closure of S1 D S

n�0 Sn.
We shall call the approximations fS 00

n g; fS 0
ng and fSng two-dimensional, one-

dimensional, and zero-dimensional, respectively. The first is an approximation
from above, and the other two are approximations from below.

Remark 1.2. Looking at Fig. 1.7, you might think that some points of Sn have
six neighbors. For example, consider the middle point p in the third row.
However, comparing Fig. 1.7 with Fig. 1.8, we see that only four of these six
points are genuine neighbors. Note also that if we embed the approximation S6
in the next approximation S7, the point p becomes a middle point in the fifth
row and will have four neighbors.
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Thus, “being a neighbor” is a stronger property than “being at a shortest
distance.”

~

Info B. Hausdorff Measure and Hausdorff Dimension

We estimate the size of a curve by its length, the size of a surface by its area, the
size of a solid body by its volume, etc. But how do we measure the size of a fractal
set?

A solution to this problem was proposed by Felix Hausdorff in 1915. He defined
for every real number p > 0, a measure 	p of dimension p as follows.

Let X be a compact subset of Rn (to avoid technical complications, we do not
consider here more general sets). Then for every 
 > 0, it admits a finite covering by
balls of radius 
. (The centers of these balls form an "-net for X .) Let N.
/ denote
the minimal number of balls that coverX .

It is evident thatN.
/ grows (more precisely, it is nondecreasing) as " decreases.
Assume that it grows as some power of 
, namely, that the limit

	p.X/ WD lim

!0

N.
/ � 
p (B.1)

exists. Then this limit is called the Hausdorff p-measure of X . We do not discuss
here the general notion of a measure. For our purposes, the following proposition
will suffice.

Proposition B.1. The Hausdorff p-measure has the following properties:

(1) Monotonicity: if X � Y , then 	p.X/ � 	p.Y /.
(2) Subadditivity: if X � S1

kD1 Yk , then

	p.X/ �
1X

kD1
	p.Yi/: (B.2)

(3) Additivity: if Xi; 1 � i � n; are compact and 	p
�
Xi
T
Xj
� D 0 for i ¤ j ,

then

	p
� n[

iD1
Xi
� D

nX

iD1
	p.Xi /: (B.3)

In fact, the first property formally follows from the second one, but we formulated
it separately because of its clarity and usefulness.

If the p-measure of X is different from 0 and 1, then the number p is called the
Hausdorff dimension of X .
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Exercise B.1. Show that if X has Hausdorff dimension d , then the limit (B.1) is
equal to 1 for p < d and equal to 0 for p > d .

Remark 1.3. There are several variants of this definition. Namely, instead of balls
of radius 
, one can use arbitrary sets of diameter ", or when M D R

n, one can use
cubes with side length ".

Another variant: consider the covering ofX by subsetsXk of different diameters
"k � ", and instead of N."/, investigate the quantity

P
k "

p

k .
All these variants can lead to a different value of p-measure, but for “nice”

examples, including self-similar fractals, they define the same notion of dimension.

~
In many cases, it is not easy to prove that the limit (B.1) exists for a given set X ,

and still more difficult to compute it.
But often a weaker condition is satisfied and can be more easily checked:

N.
/ � 
p D O�.1/;

i.e., 0 < c �N.
/ � 
p � C < 1 for " small enough
(B.4)

In this case, we also say that X has Hausdorff dimension p. The constants c
and C give lower and upper estimates for the Hausdorff p-measure of X when this
measure is defined.

Exercise B.2. Show that the Hausdorff dimension ofX , when it exists, can be given
by the formula

dH.X/ D � lim
"&0

log N."/

log "
: (B.5)

Example 2. Let us find the Hausdorff dimensions of the self-similar fractals defined
above. In all cases, we assume that not only the Hausdorff dimension but also the
Hausdorff measure exists. This is not evident, but the persistent reader can try to
prove it by him/herself.

Then we use the following simple arguments to compute it.

1. Cantor set C . Suppose that for some real number d , the set C has finite nonzero
Hausdorff measure 	d .C /. Now, C consists of two pieces that are similar to C
with the coefficient 1

3
.

It follows from the definition of d -measure that each of these two pieces of

C has the measure
�
1
3

�d � 	d .C /. Therefore, we get the equation 2 � � 1
3

�d D 1,
which implies 3d D 2, or

d D log3 2 D log 2

log 3
	 0:63093 : : : :
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2. I-fractal I˛ . To compute the Hausdorff dimension of I˛ , we use the same scheme.
Assume that 0 < 	d .I˛/ < 1 and recall the decomposition

I˛ D f1.I˛/
[
f2.I˛/

[
Y:

Since both f1.I˛/ and f2.I˛/ are similar to I˛ with the coefficient ˛, we arrive
at the equation 	d .I˛/ D 2˛d	d .I˛/C 	d .Y /.

Note that 1 � d � 2, because I˛ contains the segment Y of Hausdorff
dimension 1 and is contained in a square of Hausdorff dimension 2.

Suppose d > 1. Then we have 	d .Y / D 0 according to Exercise B.1;
therefore, 2 � ˛d D 1 and

d D log˛
1

2
D � log 2

log˛
: (B.6)

The right-hand side of Eq. (B.6) satisfies the inequality 1 � d � 2 for ˛ 2
Œ 1
2
; 1p

2
�.

Exercise B.3. Prove that Eq. (B.6) gives the correct value for the Hausdorff
dimension of I˛ when ˛ 2 . 1

2
; 1p

2
/.

We leave it to the reader to investigate the cases ˛ D 1
2
, ˛ D 1p

2
, and ˛ … Œ 1

2
; 1p

2
�.

3. Sierpiński gasket. The set S is the union of three subsets 1
2
S, 1

2
.S C !/, and

1
2
.SC1/. So if S has finite d -measure	d .S/, we must have the relation	d .S/ D
3 � . 1

2
/d � 	d.S/. It follows that 2d D 3 and d D log2 3 	 1:5849625.



Chapter 2
The Laplace Operator on the Sierpiński Gasket

A powerful mathematical method for studying a certain setX is to consider different
spaces of functions onX . For example, ifX is a topological space, one can consider
the space C.X/ of continuous functions; if X is a smooth manifold, the space C1
of smooth functions is of interest; for a homogeneous manifold with a given group
action, the invariant (and, more generally, covariant)1 functions are considered, and
so on.

If M is a smooth manifold with additional structure(s), there are some naturally
defined differential operators on M . The eigenfunctions of these operators are
intensively studied and used in applications.

In the last century, a vast domain of modern mathematics arose that is known as
spectral geometry. The main subject of this mathematical subfield is the study of
spectra of naturally (i.e., geometrically) defined linear operators.

During the last two decades, spectral geometry has come to include analysis on
fractal sets. We refer to the nice surveys [Str99, TAV00] and the original papers
[Str00, MT95, Ram84] for more details.

In this book, we only briefly mention spectral geometry on fractal sets. Our main
goal is the study of harmonic functions on the Sierpiński gasket.

Info C. The Classical Laplace Operator
and Harmonic Functions

This section is not necessary for understanding the main text, but it gives motivation
for our study of the Laplace operator and harmonic functions on fractal sets.

1That is, functions that transform in a prescribed way under the action of the group. Details are
explained in textbooks on representation theory.

A.A. Kirillov, A Tale of Two Fractals, DOI 10.1007/978-0-8176-8382-5 2,
© Springer Science+Business Media New York 2013
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Here we consider smooth functions and differential operators in some domain
� � R

n. The reader with some acquaintance with elements of differential geometry
on Riemannian manifolds will understand that all our constructions make sense in
this general situation.

C.1 Analytic Approach

One of the most famous differential operators on R
n is the Laplace operator �,

defined by

�f D
nX

kD1

�
@

@ xk

�2
f:

The characteristic property of this operator is its invariance under the group En
of rigid motions of Rn. More precisely, it is known that every differential operator
on R

n that is invariant under En is a polynomial in �.
The operator � can be expressed as the composition of two other natural

operators: the gradient and divergence:

� D div ı grad: (C.1)

Here the operator grad acts from the space C1.�/ of smooth functions on� to the
space Vect1.�/ of smooth vector fields on � by the formula

gradf D
� @f
@x1

; : : : ;
@f

@x1

�
: (C.2)

The operator div acts from Vect1.�/ to C1.�/ by the formula

div v D @v1

@x1
C : : :

@vn

@xn
: (C.3)

There is another, more geometric, definition of the Laplace operator. Take an
"-neighborhoodU".x0/ of a point x0 (i.e., the ball of radius " centered at the point x0).
Then the integral of f over U".x0/ has the following asymptotic behavior as " ! 0:

Z

U".x0/

f .x/dnx D an"
n � f .x0/C bn"

nC2 � .� f /.x0/C o."nC2/;

where an D �n=2

�.1C n
2 /

is the volume of a unit ball in R
n and bn D n

nC2an.

Thus, we can define the value .� f /.x0/ as the limit

.� f /.x0/ D lim
"!0

1

bn"nC2

Z

U".x0/

�
f .x/ � f .x0/

�
dnx; (C.4)

which certainly exists for all functions with continuous second partial derivatives.
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Definition C.1. A function satisfying the equation�f D 0 is called harmonic.

It is known that on any domain � � R
n, harmonic functions are characterized by

the property

1

vol.U".x0//

Z

U".x0/

f .x/dnx D f .x0/; (C.5)

i.e., the average over any spherical neighborhood is equal to the value in the center.
This property has an important corollary.

Theorem C.1 (Maximum principle). Assume that � is a connected domain with
boundary (denoted by @�). Then any nonconstant real harmonic function on �
attains its maximal value only on the boundary.

It is also known that for any continuous function ' on the boundary @�, there
exists a unique harmonic function f on� that has ' as a boundary value (i.e., such
that f j@� D ').

More precisely, for any point x 2 �, there exists a probabilistic measure 	x on
@� such that f .x/ D R

@�
'.y/d	x.y/. The measure	x is called Poisson measure,

and in the case of a smooth boundary, it is given by a density �x/ that is a smooth
function of x 2 � and y 2 @�.

There is a simple physical interpretation of a harmonic function (as a stable heat
or charge distribution), and there is a probabilistic interpretation of Poisson measure
	x.A/ (as a probability of reaching the boundary in a set A starting from x and
moving randomly along�).

C.2 Algebraic Approach

There exists a pure algebraic approach to the definition of the Laplace operator.
Suppose that in a real vector space V , two quadratic formsQ0 andQ1 are given.

Assume also thatQ0 is positive:Q0.v/ > 0 for all v ¤ 0. Then we can introduce in
V a scalar product

.v1; v2/ WD Q0.v1 C v2/ �Q0.v1/�Q0.v2/

2
: (C.6)

In practice, V is usually infinite-dimensional, but the reader can assume that it is
finite-dimensional for simplicity. The quadratic form Q1 can be defined in terms of
Q0 as follows.

Proposition C.1. There exists a symmetric operator A in V such that

Q1.v/ D .Av; v/ for all v 2 V: (C.7)
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Remark C.1. Sometimes, the operator A is called a quotient of two forms Q1 and
Q0. Indeed, every quadratic form Q defines the symmetric bilinear form QQ W V �
V ! R by the formula

QQ.v1; v2/ WD Q.v1 C v2/�Q.v1/�Q.v2/

2
: (C.8)

The bilinear form QQ, in turn, can be interpreted as a map Q W V ! V �. Namely,
the functional f D Q.v1/ acts on V as f .v2/ D QQ.v1; v2/.

Thus, the operator A can be written as A D Q0
�1 ıQ1.

~
Now consider the following variational problem: find the extremum of the

quadratic form Q1 under the condition Q0 D 1. Applying the standard theorem
about conditional extrema, we get the following result.

Proposition C.2. The eigenvalues and unit eigenvectors of A are exactly the
critical values and critical points of the functionQ1.v/ on the sphere2 Q0.v/ D 1.

We apply the general algebraic scheme described above to the following
situation. Let � be a domain in R

n with a smooth boundary. Denote by V the
space of smooth functions on � with compact support restricted by some boundary
conditions; see below.

There are two natural quadratic forms on V :

Q0.v/ D
Z

�

v2.x/ dnx and Q1.v/ D
Z

�

jgrad vj2.x/dnx; (C.9)

where dnx is the standard measure on R
n and jgrad vj2 D Pn

kD1 j @vk

@xk
j2.

According to the general scheme, there is an operator A on V D L2.M; dm/

such that
Z

�

.grad v1; grad v2/d
nx D

Z

�

Av1.x/ � v2.x/ d
nx: (C.10)

On the other hand, an explicit computation using Stokes’s formula gives for the
left-hand side, the expression

Z

@�

v1@v2 d
n�1y �

Z

�

� v1.x/ � v2.x/ d
nx; (C.11)

where @ is the normal derivative and dn�1y is a measure on the boundary @�.
Suppose we restrict v by an appropriate boundary condition that forces the

boundary integral in Eq. (C.11) to vanish. Then the operator �� will be exactly
the ratio of Q1 and Q0.

2Another formulation: the eigenvalues and eigenvectors of A are the critical values and critical
points of the function Q.v/ WD Q1.v/

Q0.v/
on V nf0g:
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Two special examples are widely known: the Dirichlet problem, in which the
condition

v
ˇ
ˇ
@�

D 0 (C.12)

is imposed, and the Neumann problem, in which the boundary condition is

@v
ˇ̌
@�

D 0: (C.13)

In both cases, �� is a nonnegative self-adjoint operator in L2.�; dnx/ whose
domain of definition consists of differentiable functions v on� satisfying boundary
conditions and is such that�v 2 L2.�; dnx/ in the sense of generalized functions.

The connection of the operator � with variational problems gives a remarkable
physical interpretation of the eigenvalues and eigenfunctions of the Laplace op-
erator. Namely, the eigenvalues describe the frequencies, and the eigenfunctions
determine the forms of small oscillations of the domain � considered as an elastic
membrane.

We already mentioned that the question, “what can the spectrum of a Laplace
operator on a smooth compact manifold be?” has given rise to a whole new domain
in mathematics: spectral geometry.

Since fractal sets play an essential role in some modern mathematical models
of physical problems, the study of analogues of Laplace operators on fractals has
become very popular. We refer the interested reader to the surveys [TAV00, Str99]
and papers cited there.

}

2.1 The Laplace Operator on Sn

In the first version of this book, I wanted to describe in full detail the definition
and computation of the spectrum of the Laplace operator on SN and on S. After
that, I learned that such a program had already been realized by several physicists
and mathematicians; see, e.g., [Ram84, FS92, MT95]. Therefore, I decided not to
repeat the result one more time but instead to concentrate on some different and
less-well-known problems. So here I restrict myself to a short description of the
rather interesting technique used in the study of the spectrum.

To define the analogue of a Laplace operator on the Sierpiński gasket S, we
consider first the finite approximation Sn of S.

Let us try to follow the algebraic scheme used above. Let Sn be the nth finite
approximation to the Sierpiński gasket S. Denote by Vn the set of real functions
on Sn. Since Sn consists of 3nC1C3

2
points, Vn is a real vector space of dimension

dn D 3nC1C3
2

.
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Let us define two quadratic forms on Vn:

Q0.v/ D
X

s2Sn
v.s/2I Q1.v/ D

X

s0$s00

�
.v.s0/ � v.s00/

�2
; (2.1.1)

where the first sum is over all points of Sn, and the second is over all pairs of
neighboring points (i.e., points joined by an edge in S 0

n).
Clearly, these quadratic forms are discrete analogues of the quadratic forms

defined by Eq. (C.9) in Info C.
As in the case of the ordinary Laplace operator, we use Q0 to define a scalar

product in Vn:

.f1; f2/ D
X

s2Sn
f1.s/f2.s/:

Then the second form can be written as

Q1.f / D .�nf; f /; (2.1.2)

where
�
�nf

�
.s/ D k.s/f .s/ �

X

s0$s

f .s0/: (2.1.3)

Here k.s/ denotes the number of points that are neighbors to s, i.e., k.s/ D 4 (such
s are called inner points) and k.s/ D 2 (such s are called boundary points).

We introduce two types of boundary conditions.
The Dirichlet boundary condition is the equation f .s/ D 0 for s 2 @Sn.

The space V .D/
n of functions satisfying this condition has dimension 3n�3

2
. The

operator�.D/
n in this space is given by Eq. (2.1.3) for all inner points s.

The Neumann boundary condition is the equation 2f .s/ D f .s0/Cf .s00/, where
s 2 @Sn and s0; s00 are two neighboring points to s. The space V .N/

n of functions
satisfying this condition again has dimension 3n�3

2
. The operator�.N/

n in this space
is given by Eq. (2.1.3) for inner points.

Both �
.D/
n and �.N/

n are self-adjoint operators, and their spectra are known
explicitly (see, e.g., [FS92]).

For illustration and to make things clear, we consider in detail the case n D 2.
First let V D V

.D/
2 . It is a 3-dimensional space of functions on S2 whose values

are shown in Fig. 2.1.
The operator �.D/

2 sends the triple of values .x; y; z/ into the new triple .4x �
y�z; 4y�x�z; 4z�x�y/. In the natural basis, this operator is given by the matrix�

4 �1 �1�1 4 �1�1 �1 4

�
. The eigenvalues can be easily computed using the following lemma.

Lemma 2.1. Let the n � n matrix A have elements

aij D
(
a if i D j;

b if i ¤ j:
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Fig. 2.1 Functions on S2
with Dirichlet condition
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Fig. 2.2 Functions on S2
with the Neumann condition

Then A has the eigenvalue a � b with multiplicity n � 1 and one more eigenvalue
a D .n� 1/b.

In our case, we have a double eigenvalue 5 and simple eigenvalue 2. The corre-
sponding eigenspaces consist of triples .x; y; z/ with x C y C z D 0 and of triples
.x; y; z/ with x D y D z.

This means that the corresponding membrane (with fixed boundary) has two

frequencies of oscillations such that their ratio is
q

5
2

	 1:581.

Now let V D V
.N/
2 . The values of functions from this space are shown in Fig. 2.2.

I leave it to you to check that the operator �.N/
2 sends the triple .x; y; z/ to the

triple
�
3x � 3

2
.y C z/; 3y � 3

2
.y C z/; 3z � 3

2
.y C z/

�
. Therefore, its matrix is 

3 � 3
2 � 3

2

� 3
2 3 � 3

2

� 3
2 � 3

2 3

!

. The spectrum of this matrix contains the double eigenvalue 41
2

and

the single eigenvalue 0.
This means that the corresponding membrane (with a free boundary) has one

frequency of oscillations (slightly lower than the highest frequency in the first case)
and one equilibrium state x D y D z.
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2.2 Comparing Spectra of �n and of �n�1

The computations we make in this section are rather dull and cumbersome, but they
are necessary if we are to get deep and beautiful results about the spectrum of the
Laplace operator. The reader can skip this part and come back to it when he or she
is ready to understand the complete set of arguments.

Let us denote by V �
n the space of functions satisfying

.4 � �/f .s/ D
X

s$s0

f .s0/ (2.2.1)

for all inner points s 2 Sn.
Let us choose a function f 2 V

.�/
n . Assume that the restriction of f to Sn�1 is

not identically zero. Consider in detail a piece of Sn around a point where f ¤ 0.
We write the values of f at the corresponding points (values that do not matter are
denoted by question marks) as follows:

‹

‹ ‹

y ‹ z
u q r v

b p x s c

According to our hypothesis, x ¤ 0. Moreover, since f 2 V �
n , we have a family of

equations

.4 � �/x D p C q C r C sI
.4 � �/u D b C y C p C qI .4 � �/v D c C z C r C sI
.4 � �/p D b C u C q C xI .4 � �/q D y C u C p C xI
.4 � �/r D z C v C s C xI .4 � �/s D c C v C r C x: (2.2.2)

Adding the last four equations, we get

.4��/.pCqCrCs/ D .pCqCrCs/C.bCyCzCc/C2.uCv/C4x; (2.2.3)

and adding the two previous ones, we obtain

.4 � �/.u C v/ D .p C q C r C s/C .b C y C z C c/: (2.2.4)

From Eqs. (2.2.3) and (2.2.4) we can express .p C q C r C s/ and .u C v/ in terms
of .b C y C z C c/ and x. Then the first equation of Eq. (2.2.2) gives

.� � 6/.b C y C z C c/ D .� � 6/.4� �/.1� �/x: (2.2.5)
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We arrive at the following alternatives: either � D 6 or the function f (more
precisely, its restriction to Sn�1) belongs to V 	

n�1, where

4 � 	 D .4 � �/.1� �/; or 	 D �.5 � �/: (2.2.6)

The first important consequence of this alternative is the following theorem.

Theorem 2.1. The restriction of any harmonic function on Sn to Sn�1 is also
harmonic.

Indeed, for harmonic functions we have � D 0, and 	 D �.5� �/ is also zero.
This fact leads to a natural definition of harmonic functions on S1.

Definition 2.1. A function on S1 is called harmonic if its restriction to every Sn is
harmonic.

2.3 Eigenfunctions of the Laplace Operator on Sn

Here we consider briefly the spectrum of the operators �.D/
n with the goal to

construct a Laplace operator�.D/ on S.
First we have to study the so-called dynamics of the polynomialP.�/ D �.5��/.

Namely, for any number 	, we call any sequence 	k; k D 0; 1; 2; : : : such that
	0 D 	 and P.	k/ D 	k�1 for k � 1 a 	-string.

We want to extend a function f 2 V 	n
n in such a way that the extended function

belongs to f 2 V
	nC1

nC1 . From Eq. (2.2.6), we know that this is possible only if 	n
and 	nC1 are in the same 	-string.

Conversely, for any 	-string f	kg, we can construct a function f on S1 such
that its restriction to Sn (which can be zero!) belongs to V 	n

n for all n.
So, the following problem arises: is such function f on S1 uniformly continuous

and hence can be extended by continuity to S? When this is the case, we can
consider the extended function Qf as an eigenfunction for the Laplacian on the
whole gasket and define the corresponding eigenvalue as the limit of a suitably
renormalized sequence f	ng.

In this book, we consider in detail only the case 	n D 0, where the function f is
harmonic on S1.



Chapter 3
Harmonic Functions on the Sierpiński Gasket

In this chapter, we consider in greater detail the harmonic functions on the
Sierpiński gasket S. Note that a harmonic function satisfying the Dirichlet boundary
condition must be zero, and a harmonic function satisfying the Neumann boundary
condition must be a constant. So, we shall consider here harmonic functions with
no restrictions on the boundary values.

Recall that the boundary points of S are 0; 1; ! D 1Cip3
2

. So the segment Œ0; 1�
of the real line is a part of S, and we can consider the restrictions of harmonic
functions on this segment as ordinary real-valued functions on Œ0; 1�. It turns out that
these functions exhibit highly nontrivial analytic, algebraic, and number-theoretic
behavior.

3.1 First Properties of Harmonic Functions

We start with the following fact.

Lemma 3.1. The vector space H.S1/ of all harmonic functions on S1 has
dimension 3. The natural coordinates of a function f 2 H.S1/ are the values
of this function at three boundary points.

Proof. From linear algebra, we know that if a homogeneous system of linear
equations in n variables has only the trivial solution, then the corresponding
inhomogeneous system has a unique solution for any right-hand side. It follows
that dim H.Sn/ D 3 for all n � 1. Therefore, every harmonic function on Sn has a
unique harmonic extension to SnC1, hence to S1. ut

We need also the following simple observation.

Lemma 3.2. Let x; y; z be three neighboring points of Sm that form an equilateral
triangle. Put ˛ D yCz

2
; ˇ D xCz

2
; � D xCy

2
. Then ˛; ˇ; � also form an equilateral

A.A. Kirillov, A Tale of Two Fractals, DOI 10.1007/978-0-8176-8382-5 3,
© Springer Science+Business Media New York 2013

29



30 3 Harmonic Functions on the Sierpiński Gasket

a b

c

2a+b+2c
5

2a+2b+c
5

a+2b+2c
5

Fig. 3.1 The ratio 1:2:2

triangle and are neighboring points in SmC1 (see Fig. 3.1). For every harmonic
function f on SmC1, we have

f .˛/ D f .x/C 2f .y/C 2f .z/

5
; f .ˇ/ D 2f .x/C f .y/C 2f .z/

5
;

f .�/ D 2f .x/C 2f .y/C f .z/

5
:

(3.1.1)

The informal formulation of this result is that the neighboring points have twice
the impact of the opposite one.

Now we can prove the following important result.

Theorem 3.1. Every harmonic function on S1 is uniformly continuous, hence has
a unique continuous extension to S.

Proof. Let f c
ab be the harmonic function on S1 with the boundary values

f .0/ D a; f .1/ D b; f .!/ D c:

Let us call the quantity

varX f D sup
x;y2X

jf .x/ � f .y/j

the variation of the function f on the set X . From the maximum principle, we
conclude that

varS f c
ab D max fja � bj; jb � cj; jc � ajg:

From Lemma 3.2 and by induction on n, we derive easily that for any two
neighboring points x; y in Sn, we have

jf c
ab.x/ � f c

ab.y/j � varf �
�
3

5

�n
� const � d.x; y/ˇ; ˇ D log2

5

3
:
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Thus, the function f c
ab belongs to the Hölder classHˇ for ˇ D log2

5
3
. Therefore,

it is uniformly continuous. Hence, it can be extended by continuity to S. We keep
the same notation f c

ab for the extended function. ut

3.2 The Functions �; ';  ; �

Denote by ucab the restriction of the harmonic function f c
ab to the segment Œ0; 1�,

which is the horizontal side of S.
The following relations are rather obvious and follow from the natural action of

the permutation group S3 on S and on H.S/:

ucab.t/ D ucba.1 � t/I ucab.t/C uabc.t/C ubca.t/ 
 a C b C c: (3.2.1)

It follows that the values of any harmonic function at any point of Sn can be
expressed in terms of a single function ' WD u001.

Exercise 3.1. Derive from (3.2.1) that

ucab.t/ D c C .b � c/'.t/C .a � c/'.1 � t/: (3.2.2)

Therefore, it is of interest to obtain as much information as possible about
the nature of the function '. Technically, it is convenient to introduce three other
functions:

�.t/ WD u�1
01 .t/ D �1C 2'.t/C '.1 � t/;

 .t/ WD u101.t/ D 1 � '.1 � t/;

�.t/ WD u201.t/ D 2 � '.t/ � 2'.1� t/:

(3.2.3)

We call functions �; ';  ; � basic functions. The reason to introduce these four
functions is the following. Let H denote the space of real-valued functions on Œ0; 1�
spanned by restrictions of harmonic functions on S. (It is worth mentioning that H
is spanned by any two of the above functions �; ';  ; � and a constant function.)

Consider two transformations of the segment Œ0; 1� W ˛0.t/ D t
2

and ˛1.t/ D 1Ct
2

.
They induce the linear operators of functions

�
A0f

�
.t/ D f

�
t

2

�
and

�
A1f

�
.t/ D f

�
1C t

2

�
:

It turns out that both linear operators A0 and A1 preserve the 3-dimensional
subspace H. (This follows from the fact that a harmonic function on S remains
harmonic when restricted to a left or right lower subtriangle of S.)
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Moreover, we know exactly the eigenvalues of both operators and their eigen-
functions. Indeed, it is easy to check that 1;  ; � are eigenfunctions for A0 and that
1; 1��; 1�' are eigenfunctions forA1. The corresponding eigenvalues are 1; 3

5
; 1
5
.

(Apply, for example, Lemma 3.2 for the boundary values of � and for its
restriction to the left half of Œ0; 1�, and you get �. t

2
/ D 1

5
�.t/.)

These relations look more compact in the language of vectors and matrices. Let
us introduce the vector functions

�!
f .x/ D

0

@
 .x/

�.x/

1

1

A and �!g .x/ D
0

@
'.x/

�.x/

1

1

A : (3.2.4)

Then the following relations hold:

�!
f

�
t

2

�
D A0

�!
f .t/; �!g

�
1C t

2

�
D A1

�!g .t/; �!
f .1 � t/ D T�!g .t/; (3.2.5)

where

A0 D
0

@
3=5 0 0

0 1=5 0

0 0 1

1

A ; A1 D
0

@
3=5 0 2=5

0 1=5 4=5

0 0 1

1

A ; T D
0

@
�1 0 1

0 �1 1
0 0 1

1

A : (3.2.6)

One more useful property of the family of basic functions is that they form an
arithmetic progression:

� �  D  � ' D ' � �; (3.2.7)

as follows from consideration of the boundary values of the corresponding harmonic
functions on S.

Exercise 3.2. Using relations (3.2.5)–(3.2.7), complete the table of values of the
functions �; ';  ; � at the points k=8; k D 0; 1; : : : ; 7; 8.

FunctionnArgument 0 1
8

1
4

3
8

1
2

5
8

3
4

7
8

1

� 0 1
125

1
25

1
5

1

' 0 2
5

16
25

98
125

1

 0 27
125

9
25

3
5

1

� 0 4
5

24
25

124
125

1



3.2 The Functions �; ';  ; � 33

From 3.2.5, we derive several remarkable properties of the functions introduced
above. For example, we can describe the behavior of these functions near all dyadic
points r of the form r D k

2n
.

Lemma 3.3. All four functions �; ';  , and � increase strictly monotonically from
0 to 1 on Œ0; 1�.

Proof. Since '.t/ D �.t/C2�.t/
3

and  .t/ D 2�.t/C�.t/
3

, it is enough to prove that �.t/
and �.t/ are strictly increasing. Let 0 � t < s � 1. We have to show that �.t/ <

�.s/ and �.t/ < �.s/. Let us introduce the vector function
�!
h .t/ WD

0

@
�.t/

�.t/

1

1

A.

From (3.2.5), we derive the following transformation rules for
�!
h :

�!
h

�
t

2

�
D B0

�!
h .t/I �!

h

�
1C t

2

�
D B1

�!
h .t/; (3.2.8)

where

B0 D
0

@
3=5 1=5 0

0 1=5 0

0 0 1

1

A I B1 D
0

@
1=5 0 4=5

1=5 3=5 1=5

0 0 1

1

A : (3.2.9)

Consider now the binary presentations of t and s:

t D 0:t1t2 : : : tk : : : ; s D 0:s1s2 : : : sk : : : :

We can assume that ti D si for i < m; tm D 0; sm D 1.
Applying (3.2.8) several times, we get

�!
h .t/ D Bt1 � � �Btk�1

B0
�!
f .z/;

�!
h .s/ D Bt1 � � �Btk�1

B1
�!
f .w/

for some z 2 Œ0; 1/; w 2 .0; 1�. Since the Bi have nonnegative coefficients, it is

enough to verify that B1
�!
h .w/ > B0

�!
f .z/. (Here we write a > b if the first two

coordinates of a are bigger than the corresponding coordinates of b.)
But

B1
�!
h .w/ D

0

@
1=5 0 4=5

1=5 3=5 1=5

0 0 1

1

A

0

@
�.t/

�.t/

1

1

A >

0

@
0:8

0:2

1

1

A ;

while

B0
�!
f .z/ D

0

@
3=5 1=5 0

0 1=5 0

0 0 1

1

A

0

@
�.z/
�.z/
1

1

A <

0

@
0:8

0:2

1

1

A :

ut
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Fig. 3.2 Functions �; ';  ; �

Theorem 3.2. For all x 2 Œ0; 1�, we have the relations

A�1x˛ �  .x/ � Ax˛; B�1xˇ � �.x/ � Bxˇ

with A D 5

3
; ˛ D log2

5

3
; B D 5; ˇ D log2 5: (3.2.10)

Proof. Since 3
5

�  .x/ � 1 for 1
2

� x � 1, we conclude from the first relation that

�
3

5

�nC1
�  .x/ �

�
3

5

�n
for

1

2nC1 � x � 1

2n
:

But for the given value of ˛, we also have

�
3

5

�nC1
� x˛ �

�
3

5

�n
for

1

2nC1 � x � 1

2n
:

This implies the first statement of the theorem. The second can be proved in the
same way. ut

As a corollary of Theorem 3.2, we obtain

u0.r/ D C1; (3.2.11)

where u is any of the functions �; ';  ; � and r D k
2n

is any dyadic number with
only two exceptions: �0.0/ D � 0.1/ D 0 (see Fig. 3.2).
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On the other hand, the functions�; ';  ; �, being strictly monotone, have a finite
derivative at almost all points of the interval Œ0; 1�.

Problem 3.1. Compute explicitly the derivative u0.t/ whenever it is possible (e.g.,
at all rational points).

It is known, for example, that � 0. 1
3
/ D 0 and � 0. 1

15
/ D 1. This is proved in the

master’s thesis of Irina Kalashnikova, an undergraduate and graduate student at the
University of Pennsylvania. She also showed that at all rational nondyadic points t ,
the derivative � 0.t/ takes the value 0 or 1.

The next interesting feature of u.t/ is that one can compute explicitly the integral
of this function over any interval with dyadic endpoints. For instance, we have the
following lemma.

Lemma 3.4. Z 1

0

uca;b.t/dt D 3a C 3b C c

7
: (3.2.12)

On the other hand, the corollary above suggests that t is perhaps not a good
parameter for functions ucab. A more natural choice for the independent parameter x
and a function y.x/ is

x D ' C  � 1 D �C � � 1I y D � �  D  � ' D ' � �: (3.2.13)

As t runs from 0 to 1, x increases from �1 to 1, while y grows from 0 to 1
5

at
t D 1

2
and then decays again to 0. The alternative definition is x D u0�1;1, y D u10;0.

Theorem 3.3. The quantity y is a differentiable function of x.

A more precise statement is given by the following theorem.

Theorem 3.4. The derivative y 0 D dy

dx
is a continuous strictly decreasing function

of x.

Exercise 3.3. Show that the derivative y 0.x/ satisfies the equations

y 0
�
x

�
t

2

��
D 3y 0.x.t//C 1

3y 0.x.t//C 5
; y 0

�
x

�
1C t

2

��
D 3y 0.x.t// � 1
5 � 3y 0.x.t//

:

Hint. Prove and use the relations

x

�
t

2

�
D 1

2
x.t/C 3

10
y.t/ � 1

2
I y

�
t

2

�
D 1

10
x.t/C 3

10
y.t/C 1

10

x

�
1C t

2

�
D 1

2
x.t/ � 3

10
y.t/C 1

2
I y

�
1C t

2

�
D � 1

10
x.t/C 3

10
y.t/C 1

10
:

(3.2.14)

The next two problems are open questions.
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Problem 3.2. Compute the following moments:1

mn W D
Z 1

�1
xnydx; Mn W D

Z 1

�1
yndx: (3.2.15)

Problem 3.3. Compute the Fourier coefficients

cn W D
Z 1

�1
e��inxydx: (3.2.16)

3.3 Extension and Computation of �.t/ and  .t/

There is a method to compute the values of �.t/ at binary fractions rapidly. Namely,
we know that �.t/ satisfies the relations2

�.2t/ D 5�.t/; �

�
1C t

2

�
C �

�
1 � t

2

�
D 2C 3�.t/

5
: (3.3.1)

We can use the first relation in (3.3.1) to extend � to the whole real line, putting

�.t/ WD 5N�.2�N jt j/ where N is large enough for 0 � 2�N jt j � 1:

(3.3.2)

Then the second equation for t D k
2n

can be rewritten in the form

�.2n C k/C �.2n � k/ � 2�.2n/ D 3�.k/ for 0 � k � 2n: (3.3.3)

It is easy to derive from (3.3.3) the following statement.

Theorem 3.5. For every integer k, the value �.k/ is also an integer and �.k/ 
 k

mod 3.

The relation (3.3.3) allows us not only to compute the values �.k/ for integer k,
but also to formulate the following conjecture.

Conjecture 1. Let ˇ D log2 5 D 2:3219281 : : :. The ratio �.t/

tˇ
attains its maximal

value 1.044. . . at the point tmax 	 8
15

and its minimal value 0.912. . . at the point
tmin 	 93

127
.

1One reviewer computed several moments mn explicitly. Though they are rational numbers, their
lowest terms are rather awkward, and it is difficult to make any conjecture about them in general.
2The simplest way to derive these relations is to compare the boundary values of both sides, taking
into account that they are harmonic functions. See Theorem 3.6 below.
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Table 3.1 Table of values of �.k/; 36 .k/ and their second differences

k �.k/ 1
3
�2� 36 .k/ 36� k �.k/ 1

3
�2� 36 .k/ 36 �� 

1 1 1 729 729 34 3,745 �11 9,985 245
2 5 1 1,215 486 35 3,965 5 10,191 206
3 12 2 1,620 405 36 4,200 �2 10,400 209
4 25 1 2,025 405 37 4,429 �11 10,597 197
5 41 1 2,403 378 38 4,625 5 10,755 158
6 60 2 2,700 297 39 4,836 26 10,916 161
7 85 5 2,997 297 40 5,125 1 11,125 209
8 125 1 3,375 378 41 5,417 �23 11,331 206
9 168 �2 3,744 369 42 5,640 �2 11,480 149
10 205 1 7,405 261 43 5,857 17 11,617 137
11 245 5 4,239 234 44 6,125 5 11,775 158
12 300 2 4,500 261 45 6,408 �2 11,936 161
13 361 1 4,761 261 46 6,685 17 12,085 149
14 425 5 4,995 234 47 7,013 53 12,255 170
15 504 14 5,256 261 48 7,500 2 12,500 245
16 625 1 5,625 369 49 7,993 �47 12,745 245
17 749 �11 5,991 366 50 8,345 �11 12,915 170
18 840 �2 6,240 249 51 8,664 14 13,064 149
19 925 5 6,453 213 52 9,025 1 13,225 161
20 1,025 1 6,675 222 53 9,389 �11 13,383 158
21 1,128 �2 6,888 213 54 9,720 14 13,520 137
22 1,225 5 7,065 177 55 10,093 53 13,669 149
23 1,337 17 7,251 186 56 10,625 5 13,875 206
24 1,500 2 7,500 249 57 11,172 �38 14,084 209
25 1,669 �11 7,749 249 58 11,605 1 14,245 161
26 1,805 1 7,935 186 59 12,041 41 14,403 158
27 1,944 14 8,112 177 60 12,600 14 14,600 197
28 2,125 5 8,325 213 61 13,201 1 14,809 209
29 2,321 1 8,547 222 62 13,805 41 15,015 206
30 2,520 14 8,760 213 63 14,532 122 15,260 245
31 2,761 41 9,009 249 64 15,625 1 15,625 365
32 3,125 1 9,375 366 65 16,721 �119 15; 989 2

3
364 2

3

33 3,492 �38 9,740 365 66 17,460 �38 16; 233 1
3

243 2
3

A similar approach allows us to compute the values of the extended function  
at integral points. The key formula is the following analogue of (3.3.3):

�
�2
k 
�
.2n/ D � 1

3nC1 �.k/ for 0 � k � 2n: (3.3.4)

In Table 3.1, we give the values of �.k/ and values of  .k/ (multiplied by
36 D 729 to make them integral). We also show the first differences � .k/ WD
 .k/ �  .k � 1/ for the function  .k/ and the second differences�2

1�.k/ for the
function �.k/.
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Note that the first differences � .k/ manifest a symmetry in the intervals
Œ2l ; 2lC1�. This symmetry is due to the relation

 .3C t/C  .3 � t/ D 2 .3/ D 40

3
for jt j � 1: (3.3.5)

In particular, putting t D k
16
; 0 � k � 16, we get

 .48C k/C  .48 � k/ D 25; 000

729
:

The same symmetry is observed for ':

'
�
1
4

C t
�C '

�
1
4

C t
� D 2'

�
1
4

�
for jt j � 1

4
: (3.3.6)

All this suggests that we search for minimal “wavelets” such that the graphs of
all basic functions can be constructed from affine images of these wavelets.

The candidates are the graphs of � on Œ 1
2
; 1� and of  on Œ 3

4
; 1�.

We leave it to the reader to observe other patterns in this table and to prove
corresponding statements. For example, look at the values of � at the points 2n,
2n ˙ 1, 2n C 2n�1, and 2n C 2n�1 C 1.

It is also of interest to study the p-adic behavior of �.t/ and the possible
extension of �.t/ to a function from Q2 to Q5.

Finally, we recommend that the reader draw a graph of the function k ! � .k/

on the interval Œ2n C 1; 2nC1� and think about its limit as n goes to 1.

Info D. Fractional Derivatives and Fractional Integrals

The derivative of order n is defined as the nth iteration of the ordinary derivative.
Sometimes, the integral

R x
0
f .t/dt is called the antiderivative of f , or the derivative

of order �1. One can also define the derivative of order �n as the nth iteration of
the antiderivative. The explicit form of this operation is

f .�n/.x/ D
Z x

0

dt1

Z t1

0

dt2 � � �
Z tn�1

0

f .tn/dtn:

This iterated integral can be written as the n-dimensional integral

Z

�x

f .tn/dt1dt2 � � � dtn;

where�x is the simplex inRn with coordinates t1; t2; : : : tn given by the inequalities

0 � t1 � t2 � � � � � tn � x:
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If we change the order of integration, we can rewrite this integral in the form

Z

�x

f .tn/dt1dt2 � � � dtn D
Z x

0

vol�x.t/f .t/dt D
Z x

0

.x � t/n�1

.n � 1/Š
f .t/dt: (D.1)

Here�x.t/ is the .n�1/-dimensional simplex that is obtained as the intersection
of �x and the hyperplane tn D t .

Now we observe that the factor .x�t /n�1

.n�1/Š make sense not only for n 2 N, but for
any real n. Namely, Euler’s gamma function �.˛/, given by the formula

�.˛/ D
Z 1

0

x˛e�x dx
x
;

has the properties

�.˛ C 1/ D ˛�.˛/; �.nC 1/ D nŠ for n 2 N:

So it can serve as an interpolation of the factorial function to noninteger values
of ˛. Therefore, we replace n by �˛ and define an antiderivative of order �˛, or a
derivative of order ˛ by the formula

f .˛/.x/ D
Z x

0

.x � t/�˛�1

�.�˛/ f .t/dt: (D.2)

Of course, we have to make precise what kind of functions we allow to consider
and how to understand this integral when the integrand has a singularity at 0. At the
outset, it is enough to assume that our functions are defined and smooth on .0; 1/

and also that they vanish at zero together with several derivatives.

Exercise D.1. Denote by ˆˇ.x/ the function xˇ�1

�.ˇ/
. Show that

ˆ
.˛/

ˇ .x/ D ˆˇ�˛.x/: (D.3)

Hint. Use Euler’s beta function, given by

B.˛; ˇ/ D
Z 1

0

t˛�1.1 � t/ˇ�1dt;

and the identity

B.˛; ˇ/ D �.˛/�.ˇ/

�.˛ C ˇ/
:
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Note also the connection between fractional derivatives and the convolution
operation on RC:

.f1 � f2/.x/ D
Z x

0

f1.t/f2.x � t/dt:

Namely, the derivative of order ˛ is just a convolution with ˆ�˛ , while the integral
of order ˛ is a convolution with ˆ˛ .

}

3.4 Some Arithmetic Properties of Basic Functions

As was shown in Sect. 3.3, the function �.t/ takes integer values at integer points.
Such functions often have interesting arithmetic properties. For convenience, we
extend this function to the whole line R by the rules

�.2t/ D 5�.t/; �.�t/ D �.t/: (3.4.1)

The extended function still takes integer values at integer points.
We also extend the functions  ; '; � to the positive half-line RC by the rules

 .2t/ D 5

3
 .t/; '.t/ D �.t/C  .t/

2
; �.t/ D 3 .t/ � �.t/

2
: (3.4.2)

We can consider these functions boundary values of harmonic functions defined on
the infinite Sierpiński gasket bounded by the rays x � 0; y D 0 and x � 0; y D
x

p
3

2
(Fig. 3.3).

We want to study the local behavior of � in the vicinity of some dyadic number
r D k

2n
. In view of 3.4.1, it is sufficient to consider only odd positive integers

k D 2mC 1.

Fig. 3.3 The infinite Sierpiński gasket
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a−

c

a+

b−

a0

b+

k − 1 k k + 1

Fig. 3.4 A fragment of the
infinite Sierpiński gasket

Theorem 3.6. For every odd k and every � 2 Œ0; 1�, we have

�.k ˙ �/ D �.k/C�2 � �.�/˙�1 � �2�.�/C 3 .�/
�
; (3.4.3)

where �2 D �.k�1/C�.kC1/�2�.k/
2

; �1 D �. kC1
2 /��. k�1

2 /

2
.

Corollary. For every n and every odd k and odd l < 2n, we have3

�.2nk C l/ 
 �.2nk � l/ mod
�
2�.l/C 3nC1 .l/

�
(3.4.4)

and

�.2nk C l/C �.2nk � l/ � 2�.2nk/ 
 0 mod �.l/: (3.4.5)

Here are some particular cases:

(a) n D 1; k D 2mC 1; l D 1 W �.4mC 3/ 
 �.4mC 1/ mod 11;
(b) n D 2; k D 2mC 1; l D 3 W �.8mC 7/ 
 �.8mC 1/ mod 84;
(c) k D 1 W �.2n C l/ 
 �.2n � l/ mod

�
2�.l/C 3nC1 .l/

�
(here we have not

only congruence but in fact equality, since in this case, 2�1 D 1).

Proof of the theorem. Consider the triangular piece of the infinite gasket that is
based on the segment Œk � 1; k C 1�. It is shown in Fig. 3.4.

We denote the values of � at the points k�1; k; kC1 by a�; a; aC respectively.
Then the values bC; b�; c in the remaining vertices shown in Fig. 3.4 can be
uniquely determined from the equations

5a D 2a� C 2aC C c; 5b˙ D 2a˙ C 2c C a�:

3Note that the number 3nC1 .l/ is an integer when l < 2n.
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The result is

c D 5a � 2a� � 2aC; bC D 2a � 3a� C 2aC
5

; b� D 2a � 2aC C 3a�
5

:

Consider now the functions g˙ W � ! �.k ˙ �/. Knowing the boundary values of
the corresponding harmonic functions on pieces of S, we can write

g˙.�/ D a C a˙ C b˙ � 2a

2
�  .�/C a˙ � b˙

2
� �.�/:

To prove the theorem, it remains to note that

a˙ C b˙ � 2a

2
D ˙ 3

10
.aC � a�/ D ˙3 ��1

and

a˙ � b˙
2

D a� C aC � 2a

2
˙ 1

5
.aC � a�/ D �2 ˙ 2�1: ut

Proof of the corollary. Put � D l
2n

in (3.4.1). Then we get

�.2nk C l/ � �.2nk � l/ D 5n
�
�
�
k C l

2n

�� �
�
k � l

2n

��

D 2 � 5n�1

�
2�
�
l
2n

�C 3 
�
l
2n

�� D 2 ��1 � �2�.l/C 3nC1 .l/
�
:

Since 2�1 2 Z, we have proved (3.4.4). The congruence (3.4.5) can be proved in a
similar way. ut

3.5 FunctionD.k/

One more function deserves more detailed study. Let

D.k/ WD �.k C 1/� 2�.k/C �.k � 1/
3

: (3.5.1)

Theorem 3.7. The function D.k/ takes integer values at integer points, except
D.0/ D 2

3
, and has the following properties:

D.2k/ D D.k/; D.2k C 1/CD.2k � 1/ D 3D.k/ for all k: (3.5.2)

These properties allow us easily to compute the table of values of D.k/, which
reveals some very interesting behavior. We list here some facts, leaving the proofs
to the readers.
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1. If 2a � k < 2aC1, then for n � 0,

D.2nCa C k/ D ˛.k/C ˇ.k/ � 3n (3.5.3)

for some integers or half-integers ˛.k/; ˇ.k/ and for all n � 0.
2. The sets D�1.n/ seem to have a very special structure. It is clear that it is

enough to indicate only the subset D�1
odd.n/ of odd numbers from these sets. The

following statements, except the first one, are only conjectures, confirmed by
numerical computation:

D�1.f0; �1; ˙3; ˙4; �5; ˙6; ˙7; ˙8; ˙9; ˙10; 11; ˙12g/ D ;;
D�1

odd.1/ D f2n � 3 j n � 2g;
D�1

odd.2/ D f3g;
D�1

odd.�2/ D f2n � 3 j n � 2g;
D�1

odd.5/ D f2n C 3 j n � 2g;
D�1

odd.�11/ D f7 � 2n C 3 j n � 1gSf11 � 2n C 3 j n � 1g;
D�1

odd.14/ D f2n C 3 j n � 2g.

Hint: Consider possible values of D.n/ mod 3; mod 4; mod 7; mod 11.

3.6 The Functions x.t/, y.t/, and y.x/

Theorem 3.6 suggests that t is apparently not a good parameter for basic functions.
A more natural choice for the independent parameter x and a function y.x/ is

x D ' C  � 1 D �C � � 1I y D � �  D  � ' D ' � �: (3.6.1)

An alternative definition is x D u 0�1;1, y D u 1
0;0:

As t runs from 0 to 1, the value of x increases from �1 to 1, while the value of y
grows from 0 at 0 to 1

5
at 1

2
and then decays again to 0 at 1.

All basic functions are easily expressed in terms of x and y:

� D x C 1 � 3y

2
; ' D x C 1 � y

2
;  D x C 1C y

2
; � D x C 1C 3y

2
:

(3.6.2)

Another advantage of this choice is the nice behavior of x and y with respect to
the operator T W T x D �x; Ty D y:

A disadvantage is the more complicated behavior with respect to A0 and A1.

Namely, if we introduce the vector function
�!
h .t/ D .x.t/; y.t/; 1/t , then we get

the following transformation rules:

�!
h

�
t

2

�
D C0

�!
h .t/;

�!
h

�
1C t

2

�
D C1

�!
h .t/; (3.6.3)
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where

C0 D 1

10

0

@
5 3 �5
1 3 1

0 0 10

1

A ; C1 D 1

10

0

@
5 �3 5

�1 3 1

0 0 10

1

A : (3.6.4)

Both quantities x and y are originally functions of t 2 Œ0; 1�. Since x defines a
bijection Œ0; 1� ! Œ�1; 1�, we can consider the map

Qy WD y ı x�1 W Œ�1; 1� ! Œ0; 1�:

Often, we will not distinguish between y and Qy and write simply y.x/.4

The claim that x is a better parameter is supported by the following fact.

Theorem 3.8. The derivative y0 D dy

dx
exists and is a continuous strictly decreasing

function of x.

We leave the proof to the reader as a rather nontrivial exercise. In my opinion,
the best way to prove the theorem is to show that y is a concave function in x, i.e.,

y

�
x1 C x2

2

�
>
y.x1/C y.x2/

2
: (3.6.5)

Exercise 3.4. Show that the derivative y0.x/ satisfies the equations

y 0
�
x

�
t

2

��
D 3y0.x.t//C 1

3y0.x.t//C 5
; y 0

�
x

�
1C t

2

��
D 3y0.x.t// � 1

5 � 3y0.x.t//
: (3.6.6)

Hint. Use the relations (3.2.14).

The relations (3.6.6) allow us to compute the derivative y 0.x/ explicitly at some
points (knowing that the derivative exists).

For example, if we put t D 0 in the first relation, we get the equation y 0.0/ D
3y 0.0/C1
3y 0.0/C5 , or 3y 0.0/2 C 2y 0.0/� 1 D 0.

This quadratic equation has two roots: 1
3

and �1. But since y.�1/ D 0 and
y.�1C "/ > 0, only the first root is suitable. So we get y 0.�1/ D 1

3
.

In the same way, putting t D 1 in the second relation, we get y 0.1/ D � 1
3
.

The graphs of the functions y.x/ and y 0.x/ are shown in Fig. 3.5.
The method used above can be applied to compute y 0.x/ for any x of the

form x.t/ with a rational t . Indeed, every rational number r can be written as an
eventually periodic dyadic fraction. It follows that r has the form r D k

2m.2n�1/ ,
where n is the length of the period and m is the number of digits before the
periodicity begins.

For example, 5
6

D 0:11010101 : : :D 0:1.10/ D 5
2.22�1/ .

4The reader must nevertheless distinguish between y.x/ and y.x.t//.
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x

y

1−1

−1
3

1
3

1
5

y(x)

y′(x)

Fig. 3.5 The graphs of the functions y.x/ and y 0.x/

The number r 0 D k
2n�1 is a fixed point of some transformation of the form

˛ WD ˛i1˛i2 � � �˛in (see Sect. 3.2). And the number r is the image of r 0 under some
transformation of the form ˛0 WD ˛j1˛j2 � � �˛jm .

Geometrically, the transformation ˛ is the contraction with center at r 0 and ratio
2�n. It follows that under this contraction, the functions x � x.r 0/ and y � y.r 0/
are transformed linearly by some 2 � 2 matrix with rational coefficients. It gives a
quadratic equation for the derivative y 0.x/ at the point x.r 0/. The value of y 0.x.r//
can be computed using (3.6.6).

Exercise 3.5. Find x
�
5
6

�
; y

�
5
6

�
and the value of y 0.x/ at x

�
5
6

�
.

The next problem is open.

Problem 3.4. Let � � R
2 be the graph of the function y.x/. It contains a big subset

X of points with rational coordinates. For instance, all the points that correspond to
the rational values of the parameter t belong to X .

It is of great interest to study the closure Xp in the p-adic topology (see Info G
below).

3.7 The Harmonic Image of S

To conclude the first part of the book, we show how the Sierpiński gasket is related
to the Apollonian gasket—the main subject of the second part.

Let us introduce a complex harmonic function z D f i
p
3

�1 ; 1 on S. The boundary
values of this function form an equilateral triangle. The whole image of S is shown
in Fig. 3.6.

We see that the image of S under the harmonic map to C looks like a part
of another famous fractal, the Apollonian gasket. The second part of the book is
devoted to a detailed study of Apollonian gaskets from different points of view.
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Fig. 3.6 Harmonic image
of S

The ultimate problem, however, is to explore the similarity of these two sorts of
fractals to understand each of them better.

3.8 Multidimensional Analogues of S

The Sierpiński gasket has natural analogues in higher dimensions. By definition,
the n-dimensional Sierpiński gasket is a self-similar fractal set in R

n defined by the
system of contractions

fi .x/ D x C pi

2
; (3.8.1)

where the pi 2 R
n, 1 � i � nC 1, are not in one hyperplane.

It is not difficult to show that the n-dimensional Sierpiński gasket has Hausdorff
dimension log2.nC 1/ (see Fig. 3.7 for n D 2).

Exercise 3.6. Define a projection of the .2n � 1/-dimensional Sierpiński gasket to
an n-dimensional plane in such a way that almost all points of the image have a
unique preimage.

The theory of harmonic functions on a multidimensional gasket is completely
parallel to the theory described above. We mention some facts from this theory. We
choose one edge of the initial n-simplex fp1; p2; : : : ; pnC1g, say p1p2, identify it
with the standard segment Œ0; 1�, and restrict all harmonic functions to this edge.

Lemma 3.5. The restriction of a harmonic function f to the edge p1p2 depends
only on the values f .p1/; f .p2/ and on the sum

PnC1
kD3 f .pk/.

Hint. Use the symmetry of the restriction with respect to permutations of points
p3; : : : ; pnC1.

Corollary. The restrictions of harmonic functions on S to any edge pipj form a
3-dimensional space.

Let f c
a;b denote any harmonic function on S satisfying f .p1/ D a; f .p2/ D b

and
PnC1

kD3 f .pk/ D c. The restriction of this function to the segment Œp1; p2� is a
uniquely defined function of the parameter t 2 Œ0; 1�. We denote it by uca;b.t/.
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Fig. 3.7 The
three-dimensional Sierpiński
gasket

We define basic functions by

�.t/ D u�1
0;1.t/; '.t/ D u00;1.t/;  .t/ D un�1

0;1 .t/; �.t/ D un0;1.t/; (3.8.2)

and the functions x; y by

x.t/ D u0�1;1.t/; y.t/ D u10;0.t/: (3.8.3)

Then

x D �C � � 1 D ' C  � 1; y D ' � � D � �  D  � '
n � 1

:

Note also that un�1
1;1 .t/ 
 1.

Here are the principal relations:

�.2t/ D .nC 3/ � �.t/;  .2t/ D nC 3

nC 1
�  .t/I (3.8.4)

�.1C �/C �.1 � �/ D 2C .nC 1/�.�/

�.1C �/ � �.1 � �/ D 2 nC1
n
 .�/C .n�1/.nC2/

n
�.�/I

(3.8.5)

 .1C �/C  .1 � �/ D 2 � n�1
nC1�.�/

 .1C �/�  .1 � �/ D 2
n
 .�/C .n�1/.nC2/

n.nC1/ �.�/:
(3.8.6)

These relations allow us to develop the arithmetic theory of basic functions for
any integer n, not necessarily positive,5 analogously to the case n D 2.

In particular, the function �.t/ always takes integer values at integer points.

5I do not know of a geometric interpretation of these functions for n � 0 as harmonic functions of
some kind.
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Some values of n are of special interest.
When n D 1, we get �.t/ D t2; '.t/ D  .t/ D t; �.t/ D 2t � t2.
When n D 0, we obtain y D 0, hence �.t/ D '.t/ D  .t/ D �.t/, and this

function satisfies the relations

�.2t/ D 3�.t/; �.2m C k/C �.2m � k/ D 2 � 3m C �.k/: (3.8.7)

To analyze the structure of �, it is useful to introduce the function

f .k/ WD �.k C 1/� 2�.k/C �.k � 1/ for any integer k > 0: (3.8.8)

Theorem 3.9. The function f .k/ possesses the following properties:

f .2k/ D f .k/; f .2nCk/Cf .2n�k/ D f .k/ for 0 < k < 2n: (3.8.9)

A detailed investigation of this function is very interesting, and I would highly
recommend it for an independent study.

For n D �1, we have �.t/ D t , and it is not clear how to define other basic
functions.

Finally, for n D �2, we obtain

�.k/ D
(
1 if k 6
 0 mod 3;

0 if k 
 0 mod 3:

Similar formulas hold for other basic functions in this case.
We leave it to the reader to consider other negative values for n and discover

interesting facts.

Info E. Numerical Systems

E.1. Standard Digital Systems

Most of the real numbers are irrational, so they cannot be written as a ratio of two
integers. Moreover, real numbers form an uncountable set. Therefore, we can not
label them by any “words” or “strings” that contain only finite number of digits.

On the other hand, there are many numerical systems that allow us to write all
the real numbers using infinite words using only a finite or countable set of digits.
Two well-known examples are the usual decimal and binary systems.

Recall that a digital numerical system S contains the following data:

• A real or complex base b, jbj > 1.
• A set of real or complex digits D D fd1; d2; : : : g, which usually contains the

number 0.
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To any semi-infinite sequence of the form

a D anan�1 � � �a1a0:a�1a�2 � � �a�n � � � ; ak 2 ZC;

the system S associates the number

val.a/ D
nX

�1
dak � bk: (E.1)

In a standard numerical system, the base is a positive integer m, and the digits
are dj D j 2 Xm D f0; 1; : : : ; m � 1g: It is well known that every nonnegative
real number x can be written in the form

x D val.a/ D
nX

�1
aj � bj : (E.2)

More precisely, every nonnegative integer N can be uniquely written as val.a/
with the additional condition ak D 0 for k < 0.

Every real number in the interval Œ0; 1� can be almost uniquely written as val.a/
with the condition ak D 0 for k � 0: The nonuniqueness arises from the identity

X

k�1
.m� 1/ �m�k D 1: (E.3)

The usual way to avoid this ambiguity is never to use an infinite sequence of the
digit m � 1.

Motivated by this example, for any numerical system S , we call those numbers
that can be written in the form (E.2) with ak D 0 for k < 0 whole numbers, while
fractional numbers are those that can be written in the same form with ak D 0 for
k � 0. The set of whole numbers is denoted by W.S/, while the set of fractional
numbers is denoted by F.S/.

For a standard system S , we have W.S/ D ZC; F .S/ D Œ0; 1�.

E.2. Nonstandard Systems

Exercise E.1. Consider the system S with the base b D �2 and digits f0; 1g.
Check that for this system, W.S/ D Z and F.S/ D Œ� 2

3
; 1
3
�. Show that every

real number can be almost uniquely written in the form (E.2).

Exercise E.2. Introduce a system S with the base b D 1 C i and digits f0; 1g.
Check that here, W.S/ D ZŒi �, which consists of numbers of the form a C ib,
a; b 2 Z. These are called the Gaussian integers. As forF.S/, it is a fractal compact
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Fig. E.8 The set F

set of dimension 2, determined by the property

F D 1 � i

2

�
F
[
.1C F /

�
:

Here, as always, when an arithmetic operation is applied to a set, it means that it
is applied to each element of the set. A picture of this set is shown in Fig. E.8 (taken
from the book [Edg90]).

Exercise E.3. Let ! D e
2�i
3 , a cube root of 1. Does there exist a system S with

a base and digits from ZŒ!� for which W.S/ D ZŒ!�? What is F.S/ for such a
system?

E.3. Continued Fractions

There is one more interesting numerical system related to the notion of continued
fraction. Let k D fk1; k2; : : : g be a finite or infinite system of positive integers. We
associate to k the number
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val.k/ D 1

k1 C 1

k2 C 1

k3 C � � � C 1

kn

(E.4)

if the sequence k is finite or the limit of the expression (E.4) as n ! 1 if the
sequence k is infinite.

It is well known that the limit in question always exists. Moreover, every
irrational number from .0; 1/ is the value of the unique infinite continued fraction.
As for rational numbers from .0; 1/, they can be values of two different finite
continued fractions: k D fk1; : : : ; kn�1; 1g and k0 D fk1; : : : ; kn�1 C 1g.

There is a simple algorithm to reconstruct a sequence k with a given val.k/.
Namely, denote by Œx� the integer part of a real number x. By definition, it is the
greatest integer n � x. By fxg we denote the fractional part of x, which is x � Œx�.

Now, for every x 2 .0; 1/, we define consecutively

x1 D 1

x
; k1 D Œx1�I x2 D 1

fx1g ; k2 D Œx2�; : : : ; xn D 1

fxn�1g ; kn D Œxn�; : : : :

For a rational x, this process stops when for some n, we have fxnC1g D 0. Then the
continued fraction k D fk1; : : : ; kng has the value x.

For an irrational x, the process never stops, and we get an infinite continued
fraction k with value x.

Example. Let kn D 2 for all n. Then x D val.k/ evidently satisfies the equation
1
x

D 2 C x; hence x2 C 2x � 1 D 0 and x D �1 ˙ p
2. Since x 2 .0; 1/, we

conclude that x D p
2� 1. So, the square root of 2 is given by an infinite continued

fraction,

p
2 D 1C 1

2C 1

2C 1

2C 1
2C:::

;

and hence is not a rational number.
This result6 was known to Pythagoras and kept secret because it undermined his

adherents’ faith in the power of (rational) numbers.
There are a few cases in which the value of an infinite continued fraction can be

expressed in terms of known functions. I know of two such cases.

6More precisely, its geometric interpretation, showing that the diagonal of a square is not
commensurable with its side.
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First, if the fraction in question is pure periodic, i.e., when the number kn depends
only on a residue n mod m for some m, or mixed periodic, when this property
holds beginning with some number n0.

In this case, the number val.k/ satisfies a quadratic equation with rational
coefficients and can be written explicitly. The converse is also true: every real root of

a quadratic equation with rational coefficients (which has the form aCp
b

c
; a; b; c 2

Z), can be written in the form of a periodic continued fraction.
In the second case, the sequence fkng is an arithmetic progression or some

modification of it. We cite three examples:

tanh 1 D e2 � 1

e2 C 1
D 1

1C 1

3C 1

5C 1

7C 1
9C:::

I tanh
1

2
D e � 1

e C 1
D 1

2C 1

6C 1

10C 1

14C 1
18C:::

I

eD2C 1

1C 1

2C 1

1C 1

1C 1

4C 1

1C 1

1C 1
6C:::

:

E.4. A General Scheme

It turns out that all numerical systems described above are particular cases of the
following general scheme. Fix a set D � Z of “digits.” To each digit d 2 D we
associate a real or complex n � n matrix Ad . Choose also a row n-vector f and a
column n-vector v.

Then to any semi-infinite sequence of digits a D fa1; a2 : : : g we associate the
number

val.a/ D f � .Aa1Aa2 � � � / � v

whenever the infinite product make sense.
Let us explain the relationship to previously described numerical systems.

Let Aa D
�
m 0

a 1

�
; 0 � a � m � 1. Then

Aan � � �Aa1Aa0 D
0

@
mnC1 0

Pn
jD0 ajmj 1

1

A :

So, if we put f D .0; 1/; v D
�
1

0

�
, we get

val.a0; a1 : : : ; an/ D a0 C a1mC � � � C anm
n D f � Aa0Aa1 � � �Aan � v:

This is exactly the standard numerical system.
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Let now Ak D
�
k 1

1 0

�
. Consider the matrices

Ak D
�
k 1

1 0

�
; AkAl D

�
kl C 1 k

l 1

�
; AkAlAm D

�
klmCmC k kl C 1

lmC 1 l

�

and compare them with the continued fractions

1

k
I 1

k C 1
l

D l

kl C 1
I 1

k C 1

1C 1
m

D lmC 1

klmCmC k
:

This comparison suggests a general identity:

Lemma E.1. The value of a continued fraction can be computed by the formula

val.k/ D 1

k1 C 1

k2 C 1

k3 C � � � C 1

kn

D .Ak1 � Ak2 � � �Akn/21
.Ak1 � Ak2 � � �Akn/11

: (E.5)

So, continued fractions form a slight modification of our general scheme.

3.9 Applications of Generalized Numerical Systems

3.9.1 Application to the Sierpiński Gasket

First, let us try to label the points of S. Consider the following alphabet with three
digits: �1; 0; 1. To any finite word a D a1a2 : : : an in this alphabet we associate
the complex number

val.a/ D "a1

2
C "a2

4
C � � � C "an

2n
; where " D e2�i=3:

We also associate the number 0 to the empty sequence.
It is easy to understand that the numbers val.a/ for all 3n sequences of length n

are situated in the centers of the 3n triangles of rank n � 1, complementary to S.

Exercise 3.7. For every infinite sequence a, let us denote by a.n/ the sequence of
the first n digits of a. Show that the following hold:

(a) The sequence val.a.n// has a limit as n ! 1. We denote this limit by val.a/.
(b) The point val.a/ belongs to S.
(c) val.a/ D val.b/ iff one sequence can be obtained from the other by substituting

the tail of the form xyyyy : : : by the tail yxxxx : : : .
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Exercise 3.8. Which infinite sequences correspond

(a) to boundary points?
(b) to points of segments joining the boundary points?
(c) to vertices of Sn?
(d) to segments joining the vertices of Sn?

3.9.2 Application to the Question Mark Function

The question mark function is a function defined by Minkowski in 1904 for the
purpose of mapping the quadratic irrational numbers in the open interval .0; 1/ to
rational numbers of .0; 1/ in a continuous, order-preserving manner. Later, in 1938,
this function was introduced by A. Denjoy for arbitrary real numbers.

By definition,7 the function ?.�/ sends a number a represented by the continued
fraction

a D 1

a1 C 1

a2 C 1

: : : C 1

ak C 1

: : :

to the number

?.a/ WD
X

k�1

.�1/k�1

2a1C���Cak�1 D
a1‚ …„ ƒ

0:0 : : : 0

a2‚…„ƒ
1 : : : 1

a3‚…„ƒ
0 : : : 0 : : : :

For example,

?
�
3
7

� D ?

 
1

2C 1

3C 1
1

!

D 0:0110;

?
�p

2
2

�
D 0:1100 D 4

5
;

?
�
e2�1
e2C1

�
D
X

k�0
2�k2:

We shall say more about this function in the second part of the book. Here we
observe only that this is one more example of a function that is naturally defined
using generalized numerical systems.

7It would be better to say, by one of the possible definitions (see below).



Part II
The Apollonian Gasket

Introduction

In the second part of the book, we consider another remarkable fractal: the
Apollonian gasket A. It consists of circles (or disks) on the two-dimensional sphere
and seems rather different from the Sierpiński gasket S. For example, it is not
a self-similar fractal (though it can be represented as the union of four subsets
homeomorphic to S).

Nevertheless, there are deep and beautiful relationships between these two
fractals, and our goal, only partly achieved here, is to reveal these relationships.

Many of facts discussed below are of an elementary geometric nature. However,
in modern educational programs, Euclidean geometry occupies a very small place,
and we cannot rely on the reader’s having acquired the necessary information at
school. Therefore, at times, we use more sophisticated tools from algebra and
analysis to get the desired geometric results.

As in the first part, we study our gasket from different points of view: geometric,
group-theoretic, and number-theoretic. The interplay of all three approaches makes
the subject very interesting and promising.



Chapter 4
Circles and Disks on Spheres

Info F. The Conformal Group and Stereographic Projection

F.1 The Conformal Group

The Apollonian gasket, like the Sierpiński gasket, possesses a high degree of
symmetry. This symmetry is related to conformal mappings.1

For our immediate goals, it is enough to consider only mappings of the extended
real plane R

2 or the extended complex line C. But the main formulas are very
similar in all dimensions, and it is natural to speak about conformal mappings
of domains in an arbitrary Euclidean space R

n. We will use it later to speak of
multidimensional analogues of the Apollonian gasket.

We begin with the following general definition.
Let � � R

n be a domain and let f W � ! R
n be a smooth map. Then at each

point x 2 �, the derivativeDf is a real matrix of size n�n. In terms of coordinates,
we have

x D .x1; x2; : : : ; xn/I f D .f 1.x/; f 2.x/; : : : ; f n.x/I Df D
�
��
�
@f i

@xj

�
��
� :

(F.1)

Definition F.1. We say that a mapping f is conformal if for all x 2 �, the matrix
Df.x/ is proportional to an orthogonal matrix A.x/.2

More precisely, we say that a conformal mapping call f is of the first kind if
det A.x/ D 1, and of the second kind if det A D �1.

1The notion of conformal mappings makes sense for every Riemannian manifold, but we prefer to
keep the exposition on an elementary level.
2Recall that a matrix A is said to be orthogonal if it satisfies the equation At D A�1; the
corresponding linear operator in R

n preserves the dot product of vectors.

A.A. Kirillov, A Tale of Two Fractals, DOI 10.1007/978-0-8176-8382-5 4,
© Springer Science+Business Media New York 2013
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So infinitesimally, a conformal mapping looks like the composition of a rotation,
a dilation and perhaps a reflection. Hence on a small scale, it preserves the geometric
form of figures. This explains the name “conformal.”

In the one-dimensional case, this definition is too broad, since it includes all
smooth transformations. So in this case, we will use another definition for conformal
mappings.

Definition F.2. A function f of one variable is called a fractional linear transfor-
mation, or Möbius transformation, if it has the form

f .x/ D ax C c

bx C d
: (F.2)

Such transformations make sense for every field. In particular, we will use real,
complex, and quaternionic fractional linear transformations to describe conformal
mappings in dimensions n D 1; 2; 3; 4:

In the real case, the transformation (F.2) is by definition a conformal mapping of
the extended real line R. It belongs to the first or second kind, depending on the sign

of det

�
a c

b d

�
D ad � bc.

In the complex case, the fractional linear transformations of C (considered as
transformations of the extended real plane) are precisely the conformal mappings of
the first kind. The conformal mappings of the second kind have the form

f .z/ D ˛z C �

ˇz C ı
: (F.3)

In any dimension n, the full conformal group Gn of transformations of R
n

contains all rotations, translations, dilations, and orthogonal reflections.
There is another remarkable conformal mapping of the second kind that does

not belong to any of these types. It is called inversion and is denoted by Inv.
The formula is

Inv.x/ D x

jxj2 : (F.4)

Sometimes, Inv is called reflection in the unit sphere. It is justified by the
following fact: Inv is conjugate in Gn to an ordinary reflection in a hyperplane,
and the set of fixed points for Inv, the mirror, is the unit sphere.

It is well known that the group Gn is generated by transformations of the above
types, including Inv. Moreover, rotations, translations, and Inv already generateGn.
This property of Gn is convenient when we have to show that some geometric
structure or object is preserved by conformal mappings. It is enough to check it
separately for all rotations and translations and also for Inv.
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P

s(A)
A

s(A)

P

A

Fig. F.1 Stereographic
projection for n D 1; 2

The subgroup Gn of conformal mappings of the first kind is characterized by
preserving orientation (or by the condition det Df > 0). It is a normal subgroup of
index 2 in Gn. As representatives of the two cosets in Gn=Gn, one can take Id and
Inv.3

F.2 Stereographic Projection

Here we consider a remarkable example of a conformal map: the stereographic
projection s of a sphere Sn to the extended Euclidean space R

n
.4

In our exposition, we consider the general n-dimensional case. But all arguments
and computations are practically the same in all dimensions. So the reader not
familiar with the subject can start with the case n D 1 or n D 2, as shown in
Fig. F.1. For readers with little or no experience in the terminology of group theory,
we recommend first reading Sect. F.4.

Let R
nC1 be a Euclidean space with coordinates .˛0; ˛1; : : : ; ˛n/. The unit

sphere Sn � R
nC1 is given by the equation ˛20 C ˛21 C � � �˛2n D 1. The point

P D .1; 0; 0; : : : ; 0/ 2 Sn is called the north pole.

3Here we use the terminology and elementary facts of group theory. The reader can find all
necessary information in textbooks on abstract algebra, such as Artin, Michael (1991), Algebra,
Prentice Hall, ISBN 978-0-89871-510-1.
4Until now, we have defined conformal mappings only for domains in extended Euclidean spaces.
So strictly speaking, we can not call s a conformal mapping. But using s, we can identify Sn with
R
n
, and conformal mappings of R

n
become transformations of Sn. The fact is that they are exactly

conformal transformations of Sn as a Riemannian manifold.
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Let R
n be another Euclidean space with coordinates .x1; x2; : : : ; xn/. It is

convenient to think of R
n as a subspace in R

nC1 consisting of points with
coordinates .0; x1; : : : ; xn/.

Define a map s from SnnP to R
n by the formula

s.˛/ D
�
0;

˛1

1 � ˛0 ;
˛2

1 � ˛0 ; : : : ;
˛n

1 � ˛0

�
: (F.5)

The inverse map has the form

s�1.x/ D
� jxj2 � 1

jxj2 C 1
;

2x1

1C jxj2 ;
2x2

1C jxj2 ; : : : ;
2xn

1C jxj2
�
; (F.6)

where jxj2 D x21 C x22 C � � � C x2n:

Exercise F.1. Check that the three points P; A D .˛0; ˛1; : : : ; ˛n/ and X WD
s.A/ D �

0; x1.˛/; x2.˛/; : : : ; xn.˛/
�

belong to one line in R
nC1.

Hint. Check that .1 � ˛0/X C ˛0P D A.

So, our map s is geometrically a projection of SnnP from the point P to the
coordinate plane Rn 2 R

nC1 given by the equation ˛0 D 0.
Neither the algebraic nor the geometric definition of s makes sense at the point

P . We assume additionally that s.P / D 1 2 R
n
. The map s defined in this way is

a bijection between Sn and R
n
.

The map s transfers the conformal group Gn acting on R
n into some group of

transformations of the sphere Sn. These are exactly the conformal mappings of Sn

as a Riemannian manifold, but we do not discuss this here.
Instead, we show that s sends disks to disks (and circles to circles), which it must

do as a conformal mapping.
A general hyperplane in R

nC1 is given by the linear equation

p0˛0 C p1˛1 C � � � C pn˛n C pnC1 D 0: (F.7)

This hyperplane divides RnC1 into two half-spacesHṗ , where the left-hand side of
Eq. (F.7) is positive or negative.

Now, fixing p0; : : : ; pnC1, the extremal values of the left-hand side of Eq. (F.7)

on the unit sphere
Pn

kD0 j˛kj2 D 1 are ˙r C pnC1, where r D �Pn
kD0 p2k

� 1
2 .

Therefore, the hyperplaneHp intersects the unit sphere along a nontrivial .n�1/-
sphere when jpnC1j < r . We write this condition in the form

p2nC1 � p20 � p21 � � � � � p2n < 0: (F.8)

If Eq. (F.8) is satisfied, the intersection of Sn with H�
p is a disk QDp 2 Sn, given in

coordinates ˛0; ˛1; : : : ; ˛n by the linear inequality

p0˛0 C p1˛1 C � � � C pn˛n C pnC1 � 0: (F.9)
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It is natural to consider the vector p an element of the Minkowski space R1;n (see
below) and denote the left-hand side of Eq. (F.8) by jpj2.

Since the inequality (F.9) does not change its meaning after multiplication of p
by a positive constant, we can normalize p by the condition5 jpj2 D �1.

Expressing f˛ig in terms of the coordinates fxj g of the point s.˛/, we get an
inequality defining the disk Dp WD s. QDp/ � R

n
in the form

p0.jxj2 � 1/C 2p1x1 C � � � C 2pnxn C pnC1.jxj2 C 1/ � 0:

It can be rewritten in the form

aC .�!p ;�!x /C cj�!x j2 � 0; (F.10)

where a D pnC1�p0, c D pnC1Cp0, �!p D .p1; : : : ; pn/, and �!x D .x1; : : : ; xn/.
Now we can use the equation jpj2 D ac�j�!p j2 and the normalization jpj2 D �1

to write our inequality as follows:

c �
ˇ
ˇ
ˇx C

�!p
c

ˇ
ˇ
ˇ
2 � c�1: (F.11)

The last inequality for c > 0 describes a ball in R
n with center � p

c
and radius 1

c
.

If c < 0, then Eq. (F.11) describes the complement of a ball with center � p
c

and radius � 1
c
. We agree to associate to this generalized ball the negative curvature

c. Its preimage on Sn contains the north pole inside.
Finally, if c D 0, then Eq. (F.11) does not make sense, and Eq. (F.10) defines a

half-space (the corresponding ball QD � Sn in this case contains the north pole as a
boundary point).

F.3 The Matrix Definition of Gn

We discuss one more definition of the group Gn, one that is useful in practical
computations. It follows from the matrix realization of the groups Gn and Gn. Let
R
1;nC1 be the .1; n C 1/-dimensional Minkowski space. It is a Euclidean space of

dimension nC 2 endowed with a bilinear form of signature .1; nC 1/. In standard
coordinates x D .x0; x1; : : : ; xn; xnC1/, the form looks like

.x; y/ D x0y0 � x1y1 � � � � � xnyn � xnC1ynC1: (F.12)

5Do not confuse p 2 R
1;n with p 2 R

n, introduced below.
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We use the standard notation O.1; n C 1I R/ for the group of invertible linear
transformations of R

1;nC1 preserving the form (F.12). By SO.1; n C 1I R/, we
denote the subgroup of matrices with determinant 1.

Elements g 2 O.1; n C 1I R/ are real matrices of size n C 2. In the standard
basis, they have the block form

 
a b

c d

!

; (F.13)

where a is a real number, b is a row .n C 1/-vector, c is a column .n C 1/-vector,
and d is a square .n C 1/ � .n C 1/ matrix. In order for g to preserve the bilinear
form, a; b; c; d must satisfy the conditions

a2 D 1C bbt I dd t D 1nC1 C cct I ca D bd t ; (F.14)

which imply the inequalities

a ¤ 0; det d ¤ 0: (F.15)

Thus, the group O.1; nC 1I R/ splits into four separate parts according to the signs
of a and det d . It is known that these parts are connected, open in the group O.1;
n C 1I R/, and closed in the set MatnC2.R/ of all matrices. The part with a > 0;

det d > 0 that contains the unit is itself a group, denoted by SOC.1; n C 1I R/;
the second component of SO.1; n C 1I R/ with a < 0; det d < 0 is denoted by
SO�.1; nC 1I R/.

Consider now the projective space PnC1.R/ corresponding to R
1;nC1. It is a set,

obtained fromR
1;nC1 by deleting the origin and identifying the proportional vectors.

The ordinary coordinates fxi g of a point x 2 R
1;nC1nf0g are by definition the

homogeneous coordinates of the corresponding point Œx� 2 Pn.R/. They are written
as .x0 W x1 W � � � W xnC1/ to emphasize that only their ratios matter. The linear action
of the group O.1; n C 1I R/ on the R

1;nC1 defines the group PO.1; n C 1I R/ of
projective transformations of PnC1.R/.

Introduce the sets

UC WD fx 2 R
1;nC1j.x; x/ > 0; x0 > 0g and

U� WD fx 2 R
1;nC1j.x; x/ > 0; x0 < 0g: (F.16)

They are stable under the action of SOC.1; n C 1I R/ and can be interchanged by
other components.

Choose the inhomogeneous coordinates ˛i D xi =x0 on Pn.R/. In these
coordinates, the images of UC and U� both coincide with the interior of the unit
ball B W PnC1

kD1.˛k/2 < 1. The boundary of this ball is the n-dimensional sphere
given by the equation

@B W
nC1X

kD1
.˛k/2 D 1: (F.17)
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Thus, we get the projective action of O.1; n C 1I R/ on the set Sn � PnC1.R/
(i.e., the action of the corresponding projective group PO.1; nC1I R/). This action
is not faithful and has a kernel of order 2. The following theorem is the basis of our
matrix definition of the conformal group.

Theorem F.1. Every conformal mapping of Sn corresponds to two elements of
PO.1; n C 1I R/, while every conformal mapping of the first kind corresponds to
the unique element of PSOC.1; nC 1I R/.

Here we conclude our general survey, and in the next section, we shall consider
cases of small dimension.

F.4 Small Dimensions

In the main text, we shall consider mostly the case n D 2 and also briefly the cases
n D 3, n D 4. In all these cases, the conformal group Gn has additional properties,
which we discuss here.

Case n D 1. This case is not important from the point of view of our tiling
problem. So I advise the reader to skip this part of the section and come back to it
after you have understood the more general situation.

The full group of symmetries for n D 1 is the group of fractional linear
transformations (F.2) of a real variable x. The basic space is P1.R/, or the circle
S1. The disks are just arcs of the circle, and the Apollonian gasket reduces here to
covering a circle by three neighboring arcs.

Case n D 2. The group G2 is isomorphic to PSOC.1; 3I R/ and also to
the Möbius group PSL.2; C/ D PGL.2; C/.6 The group G2 is isomorphic to
POC.1; 3I R/ and also to the extended Möbius group. Recall that the Möbius group
acts on C by fractional linear (or Möbius) transformations

w ! ˛w C ˇ

� w C ı
; where

�
˛ ˇ

� ı

�
2 SL.2; C/: (F.18)

Besides these transformations, the extended Möbius group also contains complex
conjugation, whence all transformation of the form

w ! ˛ w C ˇ

� w C ı
where

�
˛ ˇ

� ı

�
2 SL.2; C/: (F.19)

Among these transformations there are the reflections s that satisfy the equation
s2 D 1 and for which the set of fixed points is a circle or a straight line. We denote
the set of fixed points by Ms and call it a mirror. Conversely, there is a unique
reflection with given mirrorM ; we denote it by sM .

6These two groups coincide, because every matrix from GL.2; C/ is proportional to a matrix from
SL.2; C/.
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If the circle M degenerates to a straight line l , then the transformation sM is an
ordinary reflection in l . For the unit circle M0 centered at the origin, the reflection
sM0 coincides with the inversion Inv defined by Eq. (F.4). In general, sM can be
defined as g ı Inv ı g�1, where g 2 G2 is any transformation that sends C to M .

Exercise F.2. Show that all reflections form a single conjugacy class in G2.

Hint. Show that G2 acts transitively on D.

Exercise F.3. Show that the groupG2 is generated by reflections.

Hint. Use the well-known fact that SL.2; C/ is generated by elements

g.t/ D
�
1 t

0 1

�
; t 2 C; and s D

�
0 1

�1 0
�
: (F.20)

Exercise F.4. Show that the conjugacy classes in G2 are precisely the level sets
I.g/ D const for the function

I.g/ WD .tr g/2

det g
� 4 (F.21)

with one exception; namely, the set I.g/ D 0 is the union of two classes: feg and
the class of a Jordan block.

Exercise F.5. Show that all involutions in G2 form two conjugacy classes: the unit
class and the class that contains a rotation of S2 through 180ı around z-axis.

Exercise F.6. Show that all involutions in PO�.1; 3I R/ that are not reflections
form a single conjugacy class with a representative acting as the antipodal map
on S2.

We quote two main properties of the group G2.

Proposition F.1. For every two triples of different points .z1; z2; z3/ and
.w1; w2; w3/ on C, there exists a unique transformation g 2 G2 such that
g.zi / D wi , i D 1; 2; 3.

Proof. First check the statement when w1 D 0; w2 D 1; w3 D 1. The correspond-
ing transformation gz1;z2;z3 can be written explicitly:

gz1;z2;z3 .z/ D z � z1
z � z3

W z2 � z1
z2 � z3

: (F.22)

The transformation g that we want is g D g�1
w1;w2;w3 ı gz1;z2;z3 . ut

Proposition F.2. Every circle and every straight line is mapped by transformations
g 2 G2 to a circle or a straight line. (Alternatively, every disk goes to a disk.)

To prove this statement we use the following lemma.
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Lemma F.1. Let a; c be two real numbers and b a complex number such that ac �
jbj2 < 0. Then the inequality

a C Nbw C b Nw C cw Nw � 0 (F.23)

describes a disk D 2 D. More precisely, it is

(a) a closed disk with radius r D c�1 and center � b
c

when c > 0;
(b) the complement of an open disk with radius r D �c�1 and center � b

c
when

c < 0;
(c) a closed half-plane when c D 0.

Moreover, every disk D 2 D can be given by an inequality of the form (F.23).

Proof. This is just a particular case of Eq. (F.21). ut
Proposition F.2 follows from Lemma F.1 because the inequality (F.23) goes to an

inequality of the same kind under transformations (F.20), hence under all fractional
linear transformations.

Remark F.1. Note that the set G2nG2 of conformal mappings of the second kind
does not form a group. It is a two-sided coset in G2 with respect to G2. It is useful
to know that it possesses both properties listed in Propositions F.1 and F.2: it acts
simply transitively on triples of distinct points in C and preserves circles and disks.

~
Case n D 3. The group G3 D PSO0.1; 4I R/ is isomorphic to the group

PU.1; 1I H/, which is the quotient of U.1; 1I H/ by its center f˙12g. The group

U.1; 1I H/ consists of quaternionic7 matrices g D
�
a b

c d

�
satisfying

g� �
�
1 0

0 �1
�

� g D
�
1 0

0 �1
�
;

which is equivalent to the system of equations

jaj2 D jd j2 D 1C jbj2 D 1C jcj2; Nab D Ncd:
Put a D u cosh t , d D v cosh t , where t 2 R and u; v are quaternions of unit

norm. Then there exists a quaternion of unit norm w such that b D w sinh t and
c D v Nwu sinh t .8

7The algebra of quaternions is a four-dimensional real noncommutative algebra. It can be realized
as a subalgebra of Mat2.C/ or of Mat4.R/.
8Recall that the hyperbolic functions are defined as cosh t D etCe�t

2
, sinh t D et�e�t

2
.
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If g is not diagonal, the parameters u; v; w, and t are defined uniquely. For
diagonal matrices, we have t D 0, and the value of w does not matter. So our group
is the union of S3 � S3 � S3 � .Rnf0g/ and S3 � S3.

The group PU.1; 1I H/ acts on the unit sphere S3 by the formula u 7! .au C b/

.cu C d/�1
Case n D 4. The group G4 D POC.1; 5I R/ is isomorphic to another

quaternionic group, PGL.2; H/ D GL.2; H/=R��12, which acts on the quaternionic
projective space P

1.H/ ' H ' R4 ' S4. The explicit formula is again q 7!
.aq C b/.cq C d/�1.

4.1 Descartes’s Theorem on Disks in the Plane

We start with a simple looking geometric problem:

Describe all configurations of four mutually tangent circles in the plane.

Examples of such configurations are shown in Fig. 4.1. We include the cases in
which one of the circles degenerates to a straight line (a circle of infinite radius) and
in which one of the circles is tangent to others from inside (we shall interpret the
later as a circle with negative radius).

There exist some other configurations that we want to exclude. They are shown
in Fig. 4.2. Here all four circles have a common point of tangency, finite or infinite.
The reason why these configurations are excluded will be clear when we make the
formulation of the problem more precise and pass from circles to disks.

It turns out that the complete solution of this problem uses tools from several
different domains of mathematics. Moreover, the problem has natural multidimen-
sional analogues and requires a more precise and slightly modified formulation.
Here we outline an elementary approach that already shows us the necessity of
refinements and modifications.

Fig. 4.1 Quadruples of
tangent circles

Fig. 4.2 “Wrong
quadruples”
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Fig. 4.3 Triple of tangent
circles (a)

r1

r1

r2

r2

Fig. 4.4 Triple of tangent
circles (b)

O3

O2

O1

r1

r2

r3

r3

Fig. 4.5 Triple of tangent
circles (c)

To approach our problem, we take one step back and consider a triple of mutually
tangent circles. There are three kinds of such triples; see Figs. 4.3–4.5.

Note that the triangle formed by the points of tangency is acute in case (a), right
in case (b), and obtuse in case (c).

In case (a), it is rather obvious that our three circles can have arbitrary positive
radii r1; r2; r3. Indeed, let O1; O2; O3 be the centers of the circles in question.
We can always construct the triangleO1O2O3, since its sides are known, jOiOj j D
ri C rj , and satisfy the triangle inequality

jOiOj j C jOjOkj D .ri C rj /C .rj C rk/ � ri C rk D jOiOkj: (4.1.1)
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O1 O2

O3

O4

Fig. 4.6 Toward the proof of
Descartes’s theorem

In case (c), we have jO1O2j D r1 C r2, jO2O3j D r3 � r2, jO3O1j D r3 � r1, and
r1 C r2 � r3. There is a general formula that is valid in both cases (a) and (c):

jOiOj j D jri C rj j; (4.1.2)

provided that we replace r3 by �r3. Then Eq. (4.1.2) will be satisfied if r1Cr2 � jr3j,
or r1 C r2 C r3 � 0.

In case (b), the center O3 is situated at infinity. We put r3 D 1, and Eq. (4.1.2),
suitably interpreted, is still satisfied.

If four circles are mutually tangent, then their radii r1; r2; r3; r4 are not arbitrary
but must satisfy a particular equation. That equation and some of its consequences
were apparently known in ancient Greece, more than two thousand years ago.

More recently, the condition was explicitly given by René Descartes, the famous
French mathematician and philosopher of the first half of the seventeenth century.
So we call it Descartes’s equation.

This equation looks simpler if we replace the radii ri by the inverse quantities

ci WD r�1
i ; 1 � i � 4:

The geometric meaning of the quantity ci is the curvature of the circle of radius ri .9

The equation in question looks as follows:

.c1 C c2 C c3 C c4/
2 � 2.c21 C c22 C c23 C c24/ D 0: (4.1.3)

We leave to geometry fans the challenge of recovering the proof of Descartes’s
theorem using high-school geometry. The following exercise and Fig. 4.6 might
help.

Exercise 4.1. Show that the following formula for the area of the triangleO1O2O3
above is true for both cases (a) and (c):

9The reason why curvatures are better than radii will be explained later, when we develop a group-
theoretic approach to the problem. We shall see that the group transformations act linearly in terms
of curvatures but not in terms of radii.
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Fig. 4.7 Degenerate
Descartes’s equation

S D p
r1r2r3.r1 C r2 C r3/: (4.1.4)

Note that the expression under the square root sign is always positive.

Hint. Use Heron’s formula.

There is a special case of Descartes’s theorem that is much easier to prove.
Namely, assume that one of the four circles degenerates to a straight line. Let, for
example, c4 D 0, so that the relation between the remaining curvatures is

.c1 C c2 C c3/
2 � 2.c21 C c22 C c23/ D 0: (4.1.5)

Fortunately, the left-hand side of Eq. (4.1.5) can be decomposed into simple
factors. To this end, we rewrite it in the form of a quadratic polynomial in c1:

�c21 C 2c1.c2 C c3/� c22 C 2c2c3 � c23
This quadratic polynomial has roots c2 C c3 ˙ 2

p
c2c3 D .

p
c2 ˙ p

c3/
2.

Therefore, it can be written as

�
�
c1 � .pc2 C p

c3/
2
��
c1 � .

p
c2 � p

c3/
2
�

D .
p
c1 C p

c2 C p
c3/.�p

c1 C p
c2 C p

c3/.
p
c1 � p

c2 C p
c3/

� .pc1 C p
c2 � p

c3/:

It follows that Eq. (4.1.5) is true iff at least one of the following equations is
satisfied:

p
c1 ˙ p

c2 ˙ p
c3 D 0 or

p
r2r3 ˙ p

r1r2 ˙ p
r1r3 D 0: (4.1.6)

The signs in fact depend on the relative sizes of the radii. Thus, for example, when
r1 � r2 � r3, we have

p
r1r2 D p

r2r3 C p
r3r1. You can easily verify this relation

using Figs. 4.7 and 4.8.
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d

r1

r1

r2
r2-r1

Fig. 4.8 Degenerate triple
with d D 2

p
r1r2

r1=1

r2=
1
2 r2=

1
2

r3=
1
3

Fig. 4.9 “Violation” of
Descartes’s equation

In the next section, we give a proof of a more general result using matrix algebra
and the geometry of Minkowski space. But before doing so, we have to correct one
inaccuracy in the previous exposition.

Namely, we did not take into account the fact that the curvature is a signed
quantity: it can be positive or negative. Neglecting this may make the formula (4.1.3)
incorrect. Indeed, let us check the equality (4.1.3) in the case shown in Fig. 4.9.

If we take c1 D 1; c2 D c3 D 2; c4 D 3, we get the incorrect equality

64 D .1C 2C 2C 3/2 D 2.1C 4C 4C 9/ D 36:

But if we set the value of c1 equal to �1, then we get the correct equality

36 D .�1C 2C 2C 3/2 D 2.1C 4C 4C 9/ D 36:
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Looking at the picture, we see that the circle of radius 1 is in a special position:
the other circles touch it from inside. We have already seen that in this case, it is
convenient to interpret this circle as having negative radius �1.

To make the exposition rigorous, we need either to introduce a notion of
orientation for our circles or to consider, instead of circles, the solid disks bounded
by them. Readers who are acquainted with the elements of algebraic topology will
perhaps prefer the first option. Those who want to remain in the framework of school
geometry can simply consider solid disks on the two-dimensional sphere S2 instead
of circles in the plane R2.

Remark 4.1. These two possibilities are in fact equivalent. Indeed, every disk
inherits an orientation from the ambient plane or sphere, and the boundary of
an oriented disk has a canonical orientation. In our case, it can be defined by a
simple “left-hand rule”: when we go along the circle in the positive direction, the
surrounded domain must remain on the left.

In particular, the outer circle on Fig. 5.3 bounds the domain that is comple-
mentary to the unit disk. So we are forced to include domains of this sort in our
considerations.

Also, it seems natural to complete the plane R
2 by an infinite point 1. The new

set R
2

can be identified with the two-dimensional sphere S2 using stereographic
projection (see Info F). Under this identification, the “generalized disks” go the
ordinary disks on S2 that contain the north pole inside. Those disks that contain the

north pole as a boundary point correspond to half-planes in R
2
.

~
So, we have determined our main object of study. It is the set D of disks on the

two-dimensional sphere S2. To each disk D 2 D, there corresponds an oriented
circle C D @D.

We can (and will) identify S2 ' R
2

with the extended complex plane C and
consider our disks and circles subsets of C.

Let us say that two disks are tangent if they have exactly one common
point. In terms of oriented circles, this means a “negative tangency,” because the
orientations of the two circles at the common point are opposite.

Now it is clear why we excluded the configurations shown in Fig. 4.2: they
have “positive tangency” and do not correspond to a configuration of four mutually
tangent disks.

Let C be an oriented circle of ordinary radius r on C. We say that

• C has c D r�1 if C bounds an ordinary disk;
• C has curvature c D �r�1 if it is the boundary of the complement of a disk;
• C has curvature c D 0 if the circle is actually a straight line.

In particular, the outer circle in Fig. 5.3 corresponds to the complement of the
open unit disk. Therefore, the curvature of its boundary is �1.

Remark 4.2. Let us look in greater detail at the set of solutions to Eq. (4.1.3).
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Note first that if the quadruple .c1; c2; c3; c4/ is a solution, then so is
.�c1; �c2; �c3; �c4/.

Further, Eq. (4.1.3) can be written in the form

2.c1 C c2/.c3 C c4/ D .c1 � c2/2 C .c3 � c4/2: (4.1.7)

We see that either c1 C c2 � 0 and c3 C c4 � 0, or c1 C c2 � 0 and c3 C c4 � 0.
Suppose that values are chosen such that c1 � c2 � c3 � c4. Then in the first case,
we have jc4j � c3 � c2 � c1, while in the second case, we have c4 � c3 � c2 �
�jc1j.

Only in the first case can our solution be interpreted as a set of curvatures of four
mutually tangent disks. So only this case will be considered below.10

Thus, from now on, we can assume that one of the following situations occurs:

(a) All numbers ci are positive.
(b) Three numbers are positive, while the fourth is negative and smaller in absolute

value than the others.
(c) Three numbers are positive and the fourth is 0.
(d) Two of the ci are positive and equal, while the other two are equal to zero.

~

4.2 Proof of Descartes’s Theorem for n D 2

Here we give a short algebraic proof of Descartes’s theorem. We organize this proof
in such a way that later, we can prove s stronger and more general theorem by the
same method with small modifications.

Let R1;3 be the four-dimensional real vector space with coordinates t; x; y; z and
with the indefinite scalar product

.p1; p2/ D t1t2 � x1x2 � y1y2 � z1z2: (4.2.1)

The space R
1;3 is called Minkowski space and is a basic object in the special

theory of relativity. The scalar square jpj2 D .p; p/ of a vector p 2 R
1;3 can be

positive, zero, or negative. Correspondingly, the vectorp is called timelike, lightlike,
or spacelike. The timelike vectors are of two kinds: future vectors with t > 0 and
past vectors with t < 0.

The physical meaning of p is an event that take place at the moment t of time at
the point .x; y; z/ 2 R

3.

10In fact, the solutions of the second kind also can be associated with tangent disks, but on the
sphere with the opposite orientation.
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Physicists call the the group L of all linear transformations of R1;3 that preserve
the scalar product (4.2.1) the full Lorentz group. It splits into four connected
components, and the component containing the unit is called the proper Lorentz
group L0. In mathematical papers, these groups are denoted by O.1; 3/ and
SOC.1; 3/, respectively (see the details in Info F).

The relativity principle claims that all physical laws are invariant under the
proper Lorentz group.

Algebraically, elements g 2 O.1; 3/ are given by 4�4 real matrices jgi;j j whose
rows (columns) are mutually orthogonal vectors from R

1;3 such that the first row
(first column) has the scalar square 1, while all other rows (columns) have the scalar
square �1.11

An element g 2 O.1; 3/ belongs to the proper Lorentz group if two additional
conditions are satisfied: det g D 1 and g 0;0 > 0.

Now we show how to use Minkowski space to label disks on the unit sphere. A
disk on S2 can be defined as the intersection of S2 with a half-spaceHu;� given by

Hu;� D fv 2 R
3
ˇ
ˇ .u; v/C � � 0g; where u 2 S2 and � 2 .�1; 1/: (4.2.2)

Instead of the pair .u; �/ 2 S2 � .�1; 1/, we can use the one spacelike vector
p D .t; x; y; z/ 2 R

1;3 given by

p D 1p
1C �2

� .�; u/:

Namely, the half-space in question has the form

Hp D fv 2 R
3
ˇ
ˇ xv1 C yv2 C zv3 C t � 0g: (4.2.3)

It is clear that Hp1 D Hp2 iff p1 D c � p2 with c > 0. Therefore, we can and will
normalize p by the condition jpj2 D �1.

The space D of disks on S2 is thus identified with the set P�1 of all spacelike
vectors p 2 R

1;3 with jpj2 D �1. It is well known that P�1 is a hyperboloid
of one sheet in R

4 and that the group L0 ' SOC.1; 3I R/ acts transitively on it.
The stabilizer of the point .0; 0; 0; 1/ is isomorphic to the group SOC.1; 2I R/,
which is naturally embedded in L0.

We get our first interpretation of D as a homogeneous manifold.

Exercise 4.2. Show that the three-dimensional hyperboloid in R
1;3 defined by the

equation jpj2 D �1 is diffeomorphic to S2 � R.

Hint. Use the parameters u; � introduced above.

11Compare with the properties of the usual orthogonal matrices: all rows (columns) have length 1
and are orthogonal to one another.
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Our next interpretation of the space D uses complex matrix theory. We start with
inequality (F.23) and collect the coefficients on the left-hand side into a 2�2matrix

M D
�
a b
Nb c
�

. Recall that we imposed on a; b; c the condition ac � jbj2 < 0. SoM

is a Hermitian matrix with det M < 0. Here again we can and will normalizeM by
the condition det M D �1.

Thus the set D is identified with the collectionH�1 of all Hermitian 2�2matrices
M with det M D �1.

Exercise 4.3. Show that the two previous interpretations are related as follows: to

a vector p D .t; x; y; z/ 2 R
1;3 there corresponds the matrixM D

�
a b
Nb c
�

with

a D t � z; b D x C iy; c D t C z: (4.2.4)

Hint. Compare Eqs. (4.2.3) and (F.23).

Now we want to describeD in the second interpretation as a homogeneous space.
We have already seen the action of the groupG D PSL.2; C/ on C by fractional

linear transformations. Moreover, by Proposition F.2, G2 acts on the set D of all
disks on C.

On the other hand, the group SL.2;C/ acts on the set H of Hermitian 2 � 2

matrices by the rule

g W M 7! gMg�; (4.2.5)

and this action preserves the set H�1 of matrices with determinant �1. (Actually,
this is a G-action, since the center C of SL.2;C/ acts trivially.)

Theorem 4.1. There exists a homomorphism �W SL.2; C/ ! L0 ' SO0.1; 3I R/
such that the following diagram is commutative:

G � D �����! D
p

x
?
?

x
?
?k

x
?
?k

SL.2; C/ � H�1 �����! H�1

�

?
?
y

?
?
yk

?
?
yk

L0 � P�1 �����! P�1

where p is the natural projection of SL.2; C/ to PSL.2; C/ ' G and horizontal
arrows denote the actions.

Here we use a convenient way of formulating mathematical statements in the
form of commutative diagrams. A diagram consisting of vertices (which denote
sets) and arrows (which denote maps) is called commutative if the composition of
maps along some path joining two vertices depends only on those vertices but not
of the choice of path.
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We leave the verification to the reader but give here the explicit formula for the
homomorphism � .

Exercise 4.4. Show that the homomorphism � has the form

�

�
a b

c d

�
D

0

B
B
B
B
@

jaj2Cjbj2Cjcj2Cjd j2
2

Re.a Nb C c Nd/ Im. Nab C Ncd/ jbj2�jaj2�jcj2Cjd j2
2

Re.a Nc C b Nd/ Re.a Nd C b Nc/ Im. Nad � Nbc/ Re.b Nd � a Nc/
Im.a Nc C b Nd/ Im.a Nd C b Nc/ Re. Nad � Nbc/ Im.b Nd � a Nc/

jcj2�jaj2�jbj2Cjd j2
2

Re. Ncd � Nab/ Im. Ncd � Nab/ jaj2�jbj2�jcj2Cjd j2
2

1

C
C
C
C
A
:

Remark 4.3. The inverse map of SOC.1; 3I R/ ! PSL.2; C/ is well defined, but
its lifting to SL.2; C/ is defined only up to sign. It is called the spinor representation
of SOC.1; 3I R/.

In particular, all products of the form 2a Na; 2a Nb; : : :, etc., are well defined and
given in the following table:

Na Nb Nc Nd
2a g00�g03�g30Cg33 g01�g31Ci.g32�g02/ g10�g13Ci.g20�g23/ g11Cg22Ci.g21�g12/
2b g01�g31Ci.g02�g32/ g00Cg03�g30�g33 g11�g22Ci.g12Cg21/ g10Cg13Ci.g20Cg23/
2c g10�g13Ci.g23�g20/ g11�g22�i.g12Cg21/ g00�g03Cg30�g33 g01Cg31�i.g02Cg32/
2d g11Cg22Ci.g12�g21/ g10Cg13�i.g20Cg23/ g01Cg31Ci.g02Cg32/ g00Cg03Cg30Cg33

~
Exercise 4.5. Describe the image under � of the following subgroups of G:

(a) PGL.2; R/; (b) PSU.2; C/; (c) PSU.1; 1I C/.
Hint. Use the fact that the elements of the subgroup in question are stabilizers of
some geometric objects.

Answers:

(a) �
�
PGL.2; R/

� D Stab .0; 0; 1; 0/ ' SOC.1; 2I R/;
(b) �

�
PSU.2; C/

� D Stab .1; 0; 0; 0/ ' SO.3; R/;
(c) �

�
PSU.1; 1I C/� D Stab .0; 0; 0; 1/ ' SOC.1; 2I R/.

An interesting problem is to compare the image under � of the subgroup
SL.2; Z C iZ/ with the subgroup SOC.1; 3I Z/.

4.2.1 Generalized Descartes’s Theorem

We use the terminology of Minkowski space introduced at the beginning of this
section.

Let Di; 1 � i � 4; be four mutually tangent disks. Denote by pi , (resp.Mi ) the
corresponding spacelike vectors with jpi j2 D �1 (resp. the Hermitian matrices with
det Mi D �1).
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Lemma 4.1. The disks D1 and D2 are tangent iff the following equivalent condi-
tions are satisfied:

(a) p1 C p2 is a future light vector
(b) .p1; p2/ D 1 and p1 C p2 has positive t-coordinate
(c) det .M1 CM2/ D 0 and tr .M1 CM2/ > 0

Proof. First, we show that the oriented circles Ci D @Di , i D 1; 2, are negatively
(resp. positively) tangent iff jp1 ˙ p2j2 D 0, or equivalently, det.M1 ˙M2/ D 0.

Using the appropriate Möbius transformation, we can assume that the first circle
is the real line with the standard orientation. The corresponding vector and matrix

are p1 D .0; 0; �1; 0/ and M1 D
�
0 �i
i 0

�
.

Let C2 be an oriented circle tangent to C1. Denote the tangent point by a. Then
the transformation w 7! c

a�w for a real c preserves C1. For an appropriate c, it
sends C2 to the horizontal line 2i CR with a certain orientation. The corresponding

vector and matrix are p2 D ˙.1; 0; �1; 1/ and M2 D ˙
�
2 �i
i 0

�
, where the plus

sign corresponds to the standard orientation and the minus sign to the opposite one.
We see that the conditions above are satisfied. Conversely, if these conditions are
satisfied, we can find a Möbius transformation such that the vectors p1 and p2 take
the form above. Then the corresponding circles are tangent.

The proof of the lemma follows the same scheme. Note only that for light vectors,
the sign of the t-coordinate is preserved by G and so is the sign of the trace of M
when det M D 0. ut

We now return to the theorem. Consider the Gram matrix of scalar products for
pi . According to Lemma 4.1, it looks as follows:

Gij WD .pi ; pj / D 1 � 2ıij : (4.2.6)

It is well known that the determinant of the Gram matrix of a system of n vectors
in R

n equals the square of the determinant consisting of the coordinates of these
vectors. The same is true up to sign for pseudo-Euclidean spaces, e.g., for R1;3.

Since G2 D 4 � 1, we have det G D 16. It follows that the vectors pi are linearly
independent, and hence they form a basis in R

1;3.
For any vector v 2 R

1;3, we define its covariant coordinates vi and contravariant
coordinates vj with respect to the basis fpig as follows:

vi D .v; pi /I v D
4X

jD1
vj � pj : (4.2.7)

Let us find the relationship between these coordinates. From Eqs. (4.2.6) and (4.2.7),
we have
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vi D
0

@
4X

jD1
vj � pj ; pi

1

A D
4X

jD1
Gij vj D

4X

jD1
vj � 2vi : (4.2.8)

Taking the sum over i , we get
P4

jD1 vi D 4
P4

jD1 vj � 2
P4

jD1 vj D 2
P4

jD1 vj ,
and finally,

vj D 1

2

4X

jD1
vi � 1

2
vj : (4.2.9)

From Eq. (4.2.8) we also derive an expression for jvj2 in term of coordinates:

jvj2 D
0

@
X

j

vj

1

A

2

� 2
X

j

.vj /2 D 1

4

 
X

i

vi

!2
� 1

2

X

i

v2i : (4.2.10)

It follows that for every light vector v, we have

 
X

i

vi

!2
� 2

X

i

v2i D 0: (4.2.11)

Put, in particular, v D .1; 0; 0; �1/. Then vi D .v; pi / D ti C zi D ci , and
Eq. (4.2.11) gives exactly the statement of Descartes’s theorem.

In fact, the same approach allows us to prove more.

Theorem 4.2 (Generalized Descartes’s theorem). The matrices Mi satisfy the
relation

 
X

i

Mi

!2
� 2

X

i

M 2
i D �8 � 1: (4.2.12)

Proof. Introduce an inner product on the space of 2 � 2 Hermitian matrices that
corresponds to the quadratic formQ.M/ D det M . The explicit formula is

.M1; M2/ D det .M1 CM2/� det M1 � det M2

2
: (4.2.13)

In particular, we have .M; 1/ D 1
2
trM .

Recall also the Cayley identity, which for 2 � 2 matrices has the form

M2 D M � trM � det M � 1: (4.2.14)

Now let M1; M2; M3; M4 be four Hermitian matrices, corresponding to four
mutually tangent disks and normalized by the condition det Mi D �1. Then
Eq. (4.2.14) takes the form

M2
i D Mi � trMi C 1: (4.2.15)
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1 1

4
9 916 1625 25

Fig. 4.10 Quadratic
sequences of curvatures

Introduce the notation

†1 WD
iD4X

iD1
Mi ; †2 WD

iD4X

iD1
M 2
i :

We have seen above that in this case, .Mi ; Mj / D 1 � 2ıij . In particular, this
implies that .†1; Mi / D 2 and .†1; †1/ D 8. Further, taking the inner product of
both sides of Eq. (4.2.15) with Mj and summing over i , we obtain

.†2; Mj / D tr†1: (4.2.16)

On the other hand, we have †21 D †1 � tr†1 � 8 � 1. Taking the inner product with
Mj , we get

.†21; Mj / D 2tr†1 � 4trMj : (4.2.17)

Subtracting Eq. (4.2.16) from Eq. (4.2.17) twice, we finally obtain

.†21 � 2†2; Mj / D �8.1; Mj /; or .†21 � 2†2 C 8 � 1; Mj / D 0:

Since the Mi form a basis in the space of Hermitian matrices, we get the desired
relation (4.2.12). ut

The relation (4.2.12) can be considered the matrix form of Descartes’s theorem.
It gives us information not only about radii of tangent disks but also about their
configuration.

We mention the following corollary, which is useful in computations.

Theorem 4.3 (Quadratic series of curvatures). Let DC and D� be two tangent
disks and letMC; M� be the corresponding matrices. Suppos, the sequence of disks
fDkg, k 2 Z, has the following property: every Dk is tangent to D˙ and to Dk˙1.

Then the corresponding sequence of matrices fMkg, k 2 Z, is quadratic in the
parameter k:

Mk D A � k2CB � kCC; where A D MC CM�; B D M1 �M�1
2

; C D M0:

(4.2.18)

An illustration of this theorem can be seen in Figs. 4.10 and 6.4.



Chapter 5
Definition of the Apollonian Gasket

5.1 Basic Facts

Consider all possible finite or countable configurations of disks on S2 such that no
two disks have a common interior point. We call such a configuration a tiling of S2

by disks. A naive approach to Apollonian gaskets is based on the belief that starting
with some “natural” initial configuration of disks and inserting the maximal possible
number of disks in all available gaps, we arrive eventually at the same picture (up to
conformal mapping). In this form, the statement is wrong and becomes true only if
we restrict the initial configurations rather severely.

Here we give a rigorous definition of the Apollonian gasket and prove its unique-
ness, assuming that initially we have four mutually tangent disks D1; D2; D3; D4

on S2.
The further construction of the gasket A goes as follows. At the first step,

we delete the interiors of disks Di , 1 � i � 4, from S2. Then four closed
curvilinear triangles remain. Call them triangles of level 1 and denote them by Ti ,
i D 1; 2; 3; 4, so that Ti has no common point withDi . The union of these triangles
we denote by A0 and consider it the first approximation to A.

Next, we inscribe in each triangle Ti a largest possible disk, denote it byDi , and
call it a disk of level 1. Then we delete the interiors of disks of level 1 from A0 and
obtain as remainder the union of 12 closed triangles. The part of the remainder that
belongs to Ti consists of three triangles. Each of them is bounded byDi and two of
the initial disks, say Dj andDk . Note that the indices i; j; k are distinct, and let m
be the fourth index. Then we denote the corresponding triangle by Tim. In total, the
remainder consists of 12 triangles Tim, i ¤ m. We denote it by A00 and consider it a
second approximation to A.

At the third step, we inscribe a diskDim of maximal possible size in each triangle
Tim and delete the interior of the disk. The remaining set consists of 36 triangles,
which we number Tim1m2 , i ¤ m1, m1 ¤ m2. The union

S
im1m2

Tim1m2 is the third
approximationA000, and so on.

A.A. Kirillov, A Tale of Two Fractals, DOI 10.1007/978-0-8176-8382-5 5,
© Springer Science+Business Media New York 2013
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Continuing this procedure, we delete from S2 a countable set of open disks.
The remaining closed set A is of fractal nature and is called the Apollonian gasket
in honor of the ancient Greek mathematician Apollonius of Perga, who lived in

the third and second centuries BCE. Of course, we can replace S2 by R
2

or C and
consider the corresponding picture in the extended plane.

According to general practice, we use the term “Apollonian gasket” also for the
collection of (open or closed) disks and the collection of circles that are involved in
the construction.

Let us discuss different forms of the Apollonian gasket. At first glance, the
pictures in question look different for different choices of the initial four disks.
Nevertheless, all these pictures are in a sense equivalent.

To understand this, consider the group G of conformal mappings of C given by
the formula (F.18).

Exercise 5.1. Show that any two quadruples of mutually tangent circles can be
transformed one into another by a conformal mapping.

Hint. Show that a triple of mutually tangent circles is uniquely defined by the
triple of tangent points and apply Proposition F.1. Then show that there are exactly
two quadruples that contain the given triple and that these two quadruples can be
transformed into each other by a conformal mapping.

So, up to conformal mapping, there is only one class of Apollonian gaskets.

Theorem 5.1. An Apollonian gasket A is determined by any triple of mutually
tangent disks in it. (In other words, if two Apollonian gaskets have a common triple
of mutually tangent disks, then they coincide).

The statement looks rather evident, and I encourage readers to endeavor to find
their own proof. The proof given below is rather long and is based on the special
numeration of all disks in a given gasket.

The numeration in question is suggested by the construction of a gasket. Namely,
call the initial four disks D1; D2; D3; D4 disks of level 0. If we delete from S2

the union of their interiors, the remaining set is a union of four closed curvilinear
triangles. Above, we called them triangles of level 1 and denoted them by Ti ; i D
1; 2; 3; 4, so that Ti has no common point with Di . Next, we inscribed in each of
these triangles a maximal possible disk, called it a disk of level 1, and denoted it
by Di .

After deleting from Ti the interior of Di , it becomes a union of three triangles.
We call them triangles of the level 2 and denote them by Tij , j ¤ i . In each of them
we inscribe a maximal possible disk denoted by Dij , call it a disk of level 2, and
continue this procedure.

At the nth step, we consider a triangle Ti1i2:::in�1 , inscribe a maximal possible disk
Di1i2:::in�1 , and delete its interior. The remaining set is a union of three triangles of
level n, which we label with Ti1i2:::in�1in , in ¤ in�1. The maximal disk in a triangle
of level n is called a disk of level n and has the same label as the ambient triangle.
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D2

D4

D3

D1

D0

D3 D2

D31

D32 D23

D21

D12D13
D1

D24

D14

D34

Fig. 5.1 Numeration of disks in the triangular gasket

We observe that two different disks of the same level n � 1 are never tangent to
each other.

Thus, we have labeled all triangles (or disks) of level n � 1 by sequences of the
form i1i2 : : : in, where ik take values 1, 2, 3, 4 and ik ¤ ikC1 (see Fig. 5.1). Besides
these, there are only four initial disks, labeled by Di , 1 � i � 4.

Lemma 5.1. Let D; D0; D00; D000 be four mutually tangent disks on S2. Then if
three of them belong to some gasket A, then so does the fourth.

Proof. Assume that D; D0; D00 belong to A and have levels m; m0; m00, respec-
tively. We can assume that m � m0 � m00. Since the disks of the same level m � 1

cannot be tangent, we have to consider the following four cases:

.1/ 0 < m < m0 < m00I .2/ 0 D m < m0 < m00I

.3/ 0 D m D m0 < m00I .4/ 0 D m D m0 D m00:

In the first case, we can suppose that D D Di1i2:::im , D0 D Dj1j2:::jm0
, and D00 D

Dk1k2:::km00
. By construction, D00 is a disk inscribed in a triangle Tk1k2:::km00

that is
bounded by arcs of three disks. One of them isDk1k2:::km00

�1
of levelm00 � 1, and the

other two disks have levels, say p and q, such that p � q < m00 � 1. (Equality is
possible only if p D 0.)
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From the construction of A, it is also clear that all disks tangent toD00 except the
three mentioned above have level > m00. But we know that D and D0 are tangent
to D00. It follows that m D p, m0 D q, and our three disks are exactly D; D0, and
Dk1k2:::km00

�1
. Therefore, the disk Dk1k2:::km00

�1
is tangent to D; D0; D00. Another

disk that is also tangent to D; D0; D00 is Dk1k2:::km00km00
�1

of level m00 C 1. We see
that both disks tangent to D; D0; D00 belong to A. ut

In the other cases, the proof is completely analogous, but simpler. For example,
the disk tangent to D1D2, and D34 must be either D3 or D343. Hence it belongs
to A. ut

Proof of the theorem. Let two gaskets A and QA have a common triple of mutually
tangent disks D; D0; D00. Assume that these disks have level l � m � n in A. We
want to show that A � QA using induction on n.

For n D 0, our three disks are just the initial disks, say D1; D2, and D3, for
A. According to Lemma 5.1, the disks D4 and D4 belong to QA, because so do
D1; D2; D3.

Again use induction and suppose that we already know that all disks of level
� n � 1 in A belong also to QA. Then every disk of level n, being tangent to three
disks of level � n � 1, also belongs to QA.

Return to the first induction. Assume that we have proved that if the common
disks have level < n in A, then A � QA.

Let D; D0; D00 be common disks of levels k � l < n respectively. From the
proof of Lemma 5.1, we know that among the disks tangent to D; D0; D00, there is
one that has level n � 1. Call it D000. Then D; D0; D000 is a common triple of level
� n � 1, and we are done.

Thus A � QA. But in the initial data A and QA play symmetric roles. Therefore,
QA � A and QA D A. ut

Lemma 5.2. The triangle Ti1i2:::in is contained in Tj1j2:::jm iff m � n and ik D jk
for 1 � k � m.

Proof. Note that triangles of the same level cannot have more than three common
points. So our first triangle is contained in only one triangle of level m. But it is
contained in Ti1i2:::im and in Tj1j2:::jm . So we come to the statement of the lemma. ut

5.2 Examples of Gaskets

There are three maximally symmetric choices for an initial triple of mutually tangent
circles. The corresponding Apollonian gaskets are shown in Figs. 5.2–5.4. We call
them the band gasket, the rectangular gasket, and the triangular gasket.

All three gaskets are stereographic projections of a maximally symmetric gasket
on S2 generated by four mutually tangent disks of the same size. See Fig. 5.5.

There are some other interesting realizations of Apollonian gaskets, of which we
want to mention two. Their study uses some facts about the Fibonacci numbers.
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Fig. 5.2 Band gasket

Fig. 5.3 Rectangular gasket

Fig. 5.4 Triangular gasket

Info G. The Fibonacci Numbers

The famous Italian mathematician Leonardo of Pisa, often called by the nickname
Fibonacci, lived long ago, in the thirteenth century. Among other things, he
considered the sequence of integers fˆkg satisfying the recurrence

ˆkC1 D ˆk Cˆk�1 (G.1)
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Fig. 5.5 Spherical gasket

and the initial conditionˆ1 D ˆ2 D 1. It looks as follows:

n �7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7
ˆn 13 �8 5 �3 2 �1 1 0 1 1 2 3 5 8 13

Later, these numbers appeared in many algebraic and combinatorial problems
and were given the name Fibonacci numbers. We briefly describe the main facts
related to this and similar sequences.

Consider the set V of all two-sided real sequences fvngn2Z satisfying the
recurrence relation (G.1), i.e., vnC1 D vn C vn�1. It is a real vector space in which
the operations of addition and multiplication by a real number are defined termwise.

The dimension of this space is 2, because every sequence in question is com-
pletely determined by two terms v0; v1, and these terms can be chosen arbitrarily.
We can consider .v0; v1/ coordinates in V . So the series of Fibonacci numbers is
a vector in V with coordinates .0; 1/. Another well-known sequence, called the
Lucas numbers, has coordinates .2; 1/.
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D2 D1 D−1 D−2

D−3

D−4

D0

D3

D4
D∞

Fig. 5.6 The image of A1 in the band gasket

Let T denote the transformation sending the sequence fvng to the sequence
fvnC1g (which also satisfies the same recurrence relation). It is a linear operator
in V . The spectrum of this operator consists of numbers � satisfying �2 D � C 1.

There are two such numbers: � D 1Cp
5

2
	 1:618 and ���1 D 1�p

5
2

D 1� �. The
first of these numbers has a special name, the golden ratio, because the rectangle
with sides in proportion � W 1 is considered the most pleasant to the human eye.

For future use, we introduce also the quantities c D �2 D 3Cp
5

2
D � C 1 and

� D p
� D

q
1Cp

5
2

.
The corresponding eigenvectors of T are geometric progressions v0

n D �n and
v00
n D .��/�n. Since they are linearly independent, every element of V is a linear

combination of these eigenvectors.
In particular, the nth Fibonacci number can be written as

ˆn D ˛ � �n C ˇ � .���1/n for appropriate ˛ and ˇ:

Using the normalizationˆ1 D ˆ2 D 1, we get ˛ D �ˇ D 1
�C��1 D 1p

5
: Thus,

ˆ2k D �2k���2k
p
5

D ck � c�k
p
5

I ˆ2kC1 D �2kC1C��2k�1
p
5

D ckC 1
2 Cc�k� 1

2p
5

:

(G.2)

Conversely,

�n D ˆnC1 Cˆn�1 Cˆn
p
5

2
I cn D ˆ2nC1 Cˆ2n�1 Cˆ2n

p
5

2
: (G.3)

Note also that ˆ�2n D �ˆ2nI ˆ�2n�1 D ˆ2nC1.
It follows that

ˆn 	 �np
5

and lim
n!1

ˆnC1
ˆn

D �: (G.4)
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The Lucas number are given by a simpler expression: Ln D �n C .��/�n. They
look as follows:

n: �7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7
Ln: 29 18 �11 7 �4 3 �1 2 1 3 4 7 11 18 29

}

5.3 Examples of Unbounded Apollonian Tilings

Consider a quadruple q1 of mutually tangent disks, one of which is a lower
half-plane, while the other three have boundary curvatures that form a geometric
progression. Then the four curvatures can be written as 0 < x�1 < 1 < x. The
number x must satisfy the equation

.x C 1C x�1/2 D 2.x2 C 1C x�2/; or x2 � 2.x C x�1/C x�2 D 1: (5.3.1)

Putting y WD x C x�1, we obtain y2 � 2y � 3 D 0. So y is 1 or 3. Only the second

value of y gives a real value of x. We have x D 3Cp
5

2
D 2

3�p
5
, which is the number

c introduced in Info G.
The gasket A1 generated by q1 has the following property. If we dilate it by the

factor c, it goes to its mirror reflection in a vertical line. And if we dilate by c2, it
goes to one of its horizontal translations. Choosing an appropriate position of A1,
we can arrange the mirror in question to be the imaginary axis and the translation to
be the identity; see Fig. 5.8. This means that A1 is invariant under the transformation
w 7! �c Nw. Indeed, A1 and �c � A1 have a common triple of disks.

The gasket A1 contains, in particular, a series of disks Dk with boundary
curvatures ck , k 2 Z. These disks can be given by the inequalities

ˇ
ˇckw C .�1/k 2p

5
C i

ˇ
ˇ � 1; (5.3.2)

c−2

c−1

1
c

c2Fig. 5.7 The gasket A1
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c

c−1

1

c−2

c

c−1

1
c2

Fig. 5.8 Gaskets A1 and
c � A1

and the corresponding normalized Hermitian matrices (see Sect. 4.3) are

Mk D
 

4
5
c�k .�1/k 2p

5
� i

.�1/k 2p
5

C i ck

!

D
�
.��/�k 0

0 �k

�
�
 

4
5

2p
5

� i.�1/k
2p
5

C i.�1/k 1

!

�
�
.��/k 0

0 �k

�
; (5.3.3)

where � WD p
c 	 1:618034 : : : is the famous “golden ratio.”

Each of the relations (5.3.2) and (5.3.3) implies that the dilation w ! �c � Nw
sends the disk Dn to Dn�1 and hence preserves the gasket A1 (Fig. 5.8).

Exercise 5.2. Find a matrix g 2 SL.2; C/ that transforms the gasket A1 into the
band gasket.

Hint. Find the transformation g that preserves the real line and sends the disk D0

to a parallel line. Show how the images will be situated (see Fig. 5.6).

Another interesting gasket A2 with unbounded curvatures can be defined as
follows.

Consider a quadruple q2 whose disks have boundary curvatures forming a
geometric progression .1; �; �2; �3/, where � > 1. Then Descartes’s equation is

.1C � C �2 C �3/2 D 2.1C �2 C �4 C �6/: (5.3.4)

Simplify this equation by writing it in the form

0 D 1�2���2�4�3��4�2�5C�6; or 4C.�C��1/C2.�2C��2/ D .�3C��3/:

Introducing u D �C ��1, we get

4C u C 2.u2 � 2/ D .u3 � 3u/; or u3 � 2u2 � 4u D 0:

This equation has three solutions: u D 0; 1 � p
5; 1 C p

5. Only the last solution
gives a real value for �, and we get

� D �Cp� D �2C� 	 2:890054 : : : I ��1 D ��p� D �2�� 	 0:346014 : : : :

(5.3.5)
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The corresponding disks Dk form a spiral that converges to certain point a
as k ! �1. If we take for a the origin, our spiral will be invariant under
multiplication by a complex number � with j�j D �. Denote the argument of �
by 2˛. Then the corresponding matricesMk must have the form

Mk D
�

a�k be2ik˛

Nbe�2ik˛ c��k
�
; ac � jbj2 D �1: (5.3.6)

The condition that the disks Dk and DkCm are tangent is det.Mk C MkCm/ D 0.
This condition actually does not depend on k, and it leads to the equation

jbj2
ac

D �m C ��m C 2

eim˛ C e�im˛ C 2
:

Put s D 1
2

log �. Then the right-hand side of the equation takes the form

1C cosh 2ms

1C cos 2m˛
D
�

cosh ms

cos m˛

�2
:

We know that D0 is tangent to Dm for m D 1; 2; 3. So we have

jbjp
ac

D cosh s

j cos ˛j D cosh 2s

j cos 2˛j D cosh 3s

j cos 3˛j : (5.3.7)

Since cosh 3s D cosh s .2 cosh 2s � 1/ and cos 3˛ D cos˛ .2 cos 2˛ � 1/, we
conclude, comparing the second and last terms in Eq. (5.3.7), that 2 cosh 2s � 1 D
j2 cos 2˛ � 1j.

This can happen only if 2 cos 2˛ � 1 < 0: Therefore, we get 2 cosh 2s � 1 D
1 � 2 cos 2˛, or cosh 2s D 1 � cos 2˛, which is possible only if cos 2˛ � 0.

Using the relation cosh 2s D 1� cos 2˛, we get, comparing the second and third
terms,

cosh s D ˙cos˛ � .1 � cos 2˛/

cos 2˛
:

Now the relation 2 cosh2 s D cosh 2s C 1 gives us the equation

2

�
cos˛ � .1 � cos 2˛/

cos 2˛

�2
D 2 � cos 2˛:

Denote cos 2˛ by x and write the equation in the algebraic form

.x C 1/.1� x/2

x2
D 2 � x; or .x C 1/.1� x/2 D 2x2 � x3;

or 2x3 � 3x2 � x C 1 D 0:
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λ−1

1 λ
λ

2

Fig. 5.9 The gasket A2

It has a solution x D 1=2, and this allows us to rewrite it in the simple form
.2x � 1/.x2 � x � 1/ D 0. So the other two solutions are � and ���1 D 1 � �.
Only one of these three solutions is negative: x D ���1.

We conclude that cos 2˛ D ���1, cosh 2s D �. Hence, � C ��1 D 2� and
� D � Cp

�2 � 1 D �2 C � . Also, we get jbjp
ac

D �2, and therefore

jbj2 D �2p
5
; ac D ��2

p
5
: (5.3.8)

It follows that we know the matrices Mk up to complex conjugation and
conjugation by a diagonal matrix. Geometrically, this means that we know the gasket
A2 up to rotation, dilation, and reflection in a straight line. In particular, we can put

Mk D 1
4
p
5

�
��1 � �k � � e2ik˛

� � e2ik˛ ��1 � ��k
�
; (5.3.9)

so that

D0 D
8
<

:
w

ˇ
ˇ̌
ˇ
ˇ̌

w C 1C 1p
5

ˇ̌�
s
1C 2

p
5

5

9
=

;
: (5.3.10)

Further, let us compute the number �, which is determined up to complex
conjugation. We have

2 sin2 ˛ D 1 � cos 2˛ D � and 2 cos2 ˛ D 1C cos 2˛ D 1 � ��1 D ��2:

Therefore, sin2 ˛ D ��1 and sin 2˛ D ˙��1. So, we have e2i˛ D cos 2˛ C
i sin 2˛ D ���1 ˙ i��1. Finally,

� D �e2i˛ D �.1C ��1/.1� i�/: (5.3.11)

The corresponding picture is shown as Fig. 5.9.
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5.4 Integral Solutions to Descartes’s Equation

Here we consider the arithmetic properties of the set of solutions to Descartes’s
equation (4.1.3). Make the following change of variables:

t D c0 C c1 C c2 C c3

2
; x D c0 C c1 � c2 � c3

2
;

y D c0 � c1 C c2 � c3

2
; z D c0 � c1 � c2 C c3

2
:

(5.4.1)

Then we have

t2 � x2 � y2 � z2 D .c0 C c1 C c2 C c3/
2

2
� .c20 C c21 C c22 C c23/;

and Eq. (4.1.3) becomes
t2 � x2 � y2 � z2 D 0: (5.4.2)

In other words, the solutions to Eq. (4.1.3) correspond to light vectors in Minkowski
space.

Lemma 5.3. The integral solutions to Eq. (4.1.3) correspond to integral light
vectors in R

1;3 (i.e., light vectors with integral coordinates).

Proof. From Eq. (4.1.3), it is clear that the sums c0 ˙ c1 ˙ c2 ˙ c3 are always even.
So every integral solution to Eq. (4.1.3) corresponds to a light vector p with integral
coordinates. Conversely, from Eq. (5.4.2), it follows that the sum t ˙ x ˙ y ˙ z is
always even. Therefore, from the equations

c0 D t C x C y C z

2
; c1 D t C x � y � z

2
;

c2 D t � x C y � z

2
; c3 D t � x � y C z

2
;

we deduce that every integral light vector corresponds to an integral solution to
Eq. (4.1.3). ut

Thus, we arrive at the following problem.

Problem 5.1. Describe the set of integral points on the light cone in R
1;3.

The solution to the analogous problem for rational points is well known. To
every rational point .t; x; y; z/ of the light cone there corresponds a rational point�
x
t
;
y

t
; z
t

�
of S2. The stereographic projection sends the point . x

t
;
y

t
; z
t
/ 2 S2 to the

point xCiy
t�z 2 P1.QŒi �/.
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Conversely, every .r C is/ 2 P1.QŒi �/ comes from a rational point

�
2r

r2 C s2 C 1
;

2s

r2 C s2 C 1
;

r2 C s2 � 1

r2 C s2 C 1

�
2 S2:

Putting r D k
n
; s D m

n
, we see that every integral vector on the light cone in R

1;3 is
proportional (but not necessarily equal) to the vector

t D k2 Cm2 C n2; x D 2kn; y D 2mn; z D k2 Cm2 � n2; (5.4.3)

with integer k; m; n.
Note that for every integral light vector p, all its multiples np, n 2 Z, are also

integral light vectors. So we can restrict ourselves to the study of primitive vectors,
namely vectors whose greatest common divisor of their coordinates is equal to 1.

Lemma 5.4. Every primitive integral light vector p must have an odd coordinate t
and exactly one odd coordinate among x; y; z.

Proof. If t is even, then x2Cy2Cz2 is divisible by 4. Since every square has residue
0 or 1 mod 4, it follows that all x; y; z must be even. But then p is not primitive.

If t is odd, then x2 C y2 C z2 
 1 mod 4. It follows that exactly one of the
numbers x; y; z is odd. ut
Problem 5.2. Find a convenient parameterization of all primitive integral light
vectors.

For instance, assume that t; z are odd and x; y are even. Is it true that Eq. (5.4.3)
holds for some relatively prime k; m; n?

Now consider the subgroup � of the Lorentz group G that preserves the set of
integral light vectors.

Exercise 5.3. Show that � coincides with the group SOC.1; 3I Z/ of matrices with
integral entries in SOC.1; 3I R/.
Hint. Let g 2 � . Show that the sum and difference of any two columns of g is
an integer vector and that the same property holds for row vectors. Check that the
coordinates of an integer light vector cannot be all odd.

The group � acts on the set of all integral light vectors and preserves the subset
P of primitive vectors.

Exercise 5.4. (a) Find the index of PSL.2; ZŒi �/ in PGL.2; ZŒi �/.
(b)� What are the images of these subgroups in OC.1; 3I R/?
Exercise 5.5. Show that the homomorphism �W PGL.2; C/ ! SOC.1; 3I R/ can
be extended to a homomorphism �WG ! OC.1; 3I R/.
Hint. Show that one can take the diagonal matrix diag.1; 1; �1; 1/ as the image
under � of the element s 2 G acting as complex conjugation.

Problem 5.3. Describe the �-orbits in P .
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Info H. Structure of Groups Freely Generated by Reflections

The theory of groups generated by reflections is a large and very interesting domain
in modern mathematics. We consider here only some facts that we need in relation
to the Apollonian gaskets.

First, we describe the structure of the free group Fn on n generators
x1; x2; : : : ; xn. This group may be characterized by the following universal
property.

For every group G with n generators y1; y2; : : : ; yn , there exists a unique homomorphism
˛ of Fn onto G such that ˛.xi / D yi ; 1 � i � n.

Let us show that such a group exists and is unique up to isomorphism. Indeed,
if there are two such groups, Fn with generators x1; x2; : : : ; xn and F 0

n with
generators x0

1; x
0
2; : : : ; x

0
n, then from the universal property, we deduce that there

are homomorphisms ˛ W Fn ! F 0
n and ˛0 W F 0

n ! Fn such that ˛.xi / D x0
i and

˛0.x0
i / D xi . Consider the composition ˛0ı˛. It is a homomorphism of Fn onto itself

preserving the generators. The universal property implies that this homomorphism
is the identity. The same is true for the composition ˛ ı ˛0. Hence Fn and F 0

n are
isomorphic.

Now we prove the existence. For this, we consider the collectionWn of all words
in the alphabet x1; x�1

1 ; : : : ; xn; x
�1
n satisfying the following condition:

.�/ The letters xi and x�1
i cannot be neighbors.

We denote the length of a word w by l.w/. Let W .k/
n be the set of all words of

length k in Wn. It is clear that W0 contains only the empty word, and W1 contains
2n one-letter words.

Exercise H.1. Show that #.W .k/
n / D 2n.2n � 1/k�1 for k � 1.

We want to introduce a group structure on Wn. We define the product w1w2 of
two words w1; w2 by induction on the length l.w1/ of the first factor. Namely, if
l.w1/ D 0; i.e., if w1 is the empty word, we put w1w2 WD w2.

Now assume that the product is defined for l.w1/ < k and consider the case
l.w1/ D k � 1. Let the last letter of w1 be x"1i ; 1 � i � n; "1 D ˙1, and let the
first letter of w2 be x"2j ; 1 � j � n; "2 D ˙1.

If i ¤ j or i D j; "1 C "2 ¤ 0, we define the product w1w2 simply as the
juxtaposition (concatenation) of w1 and w2. This new word has length l.w1/C l.w2/
and satisfies condition .�/.

If i D j and "1 C "2 D 0, we denote by Qw1 (resp. Qw2) the word obtained from w1
(resp. w2) by removing the last (resp. first) letter. Then we put w1w2 WD Qw1 Qw2. For
example, if w1 D x1; w2 D x�1

1 x2, we have Qw1 D ;; Qw2 D x2, and w1w2 D x2.
From this definition it easily follows that we always have l.w1w2/ � l.w1/ C

l.w2/ and l.w1w2/ 
 l.w1/C l.w2/ mod 2.
To check that Wn is a group with respect to the product defined above, it remains

to prove that the operation defined above is associative (induction on the length of
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the middle factor) and that it admits a unit (empty word) and an inverse element
(the same word written back to front with opposite exponents). As is traditional,
this checking is left to the reader.

Let us check that the group Wn has the universal property. Indeed, if G is any
group generated by y1; y2; : : : ; yn, there is a unique homomorphism ˛WWn ! G

such that ˛.fxi g/ D yi . (Here fxi g denotes a one-letter word.) Namely, for a word
w D x

"1
i1
x
"2
i2
: : : x

"k
ik

, we must put ˛.w/ D y
"1
i1

� y"2i2 � : : : � y"kik , where the sign “ � ”
denotes the multiplication in G. On the other hand, it is easy to check that the so-
defined map ˛ is indeed a homomorphism of Wn onto G. We have established the
existence of a free group Fn and at the same time proved the following proposition.

Proposition H.1. Every element of Fn can be uniquely written in the form

g D x
"1
i1
x
"2
i2
: : : x

"k
ik
; (H.1)

where the condition .�/ is satisfied.

We need also another family of groups �n, n � 1, which are freely generated
by n involutions s1; : : : ; sn. By definition, the group �n possesses another universal
property.

For every group G generated by n involutions t1; : : : ; tn, there exists a unique
homomorphism ˛ of �n onto G such that ˛.si / D ti ; 1 � i � n.

The existence and uniqueness (up to isomorphism) of the group �n can be proved
in the same way as for Fn. The only difference is that the set Wn now consists of all
words in the alphabet s1; : : : ; sn without repetition of letters.

Proposition H.2. Any element of �n can be uniquely written in the form

g D si1si2 : : : sik ; k � 0; where ia ¤ iaC1 for 1 � a � k � 1: (H.2)

Exercise H.2. (a) Show that in this case,

#.W .k/
n / D

(
1 for k D 0;

n.n � 1/k�1 for k � 1:

(b) Show that �n is isomorphic to Fn=J , where Fn is a free group with gener-
ators s1; : : : ; sn and J is the minimal normal subgroup in Fn that contains
s21 ; : : : ; s

2
n:

Theorem H.1. Every nontrivial (i.e., different from e) involution in �n is conjugate
to exactly one of the generators s1; : : : ; sn.

Proof. Let g 2 �n be an involution. According to Proposition H.2, it can be written
in the form g D si1si2 : : : sin . Then g�1 D sinsin�1 : : : si1 . But g�1 D g, whence
sin�k

D sikC1
for k D 0; 1; : : : ; n � 1.
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For n D 2k even, it follows that k D 0 and g is the empty word.
For n D 2k � 1 odd, we have g D wsikw�1, where w D si1 : : : sik�1

. Hence, g is
conjugate to sik .

Finally, we show that si is not conjugate to sj for i ¤ j . Assume the contrary.
Then there is a word w such that wsi D sjw. Let w0 be a shortest such word. From
the equation w0si D sjw0, we conclude that the first letter of w0 is sj and the last
letter of w0 is si . Hence, w0 D sjw0si for some word w 0. Then we get sjw0 D w0si ,
which is impossible, since l.w0/ D l.w0/� 2 < l.w0/. ut

For small values of n, the group �n admits a simpler description. For example,
for n D 1, the group �1 is simply the group Z2 D Z=2Z of order 2.

For n D 2, the group �2 is isomorphic to the group Aff.1; Z/ of affine
transformations of the integer lattice. It has a matrix realization by matrices of the

form

�
a b

0 1

�
, where a D ˙1; b 2 Z. We leave it to the reader to check that the

matrices

��1 0
0 1

�
and

��1 1
0 1

�
can be taken as generating involutions s1; s2.

For n D 3, the group �3 can be realized as a discrete group of transformation
acting on the Lobachevsky (D hyperbolic) plane L. Consider, e.g., the Poincaré
model of L as the upper half-plane y > 0 (see Info H below). The three generators
of �3 are reflections in three mutually tangent mirrors. For example, we can take the
unit circleM0 as one of the mirrors and two vertical linesM˙1 W x D ˙1 as the two
others. These mirrors bound a triangle T of finite area with three infinite vertices.
For every word w without repetitions, let us denote by Tw the image of T under an
element � 2 �3 corresponding to the word w.

It can be proved by induction on l.w/ that the triangles Tw are distinct, have no
common inner points, and cover the whole plane.

The case n D 4 is more difficult, and exactly this case occurs in our study.
Moreover, the group �4 arises in two different ways, which we discuss in Sects. 7.1
and 7.2.



Chapter 6
Arithmetic Properties of Apollonian Gaskets

Here we study some arithmetic questions arising when we consider the curvatures
of disks which constitute an Apollonian gasket.

6.1 The Structure of Q

Here we want to investigate the set P1.Q/ D Q of rational numbers including the
infinite point 1. It can be called a rational circle.

First, think about how to parameterize Q. Every number r 2 Q can be written
in the form p

q
, where p; q 2 Z. But the map ˛ W Z � Z �! Q; ˛.p; q/ D p

q
, is

surjective but by no means injective.
We can impose the condition gcd.p; q/ D 1, that is, that p and q be relatively

prime, or in other words, that the fraction p

q
be in lowest terms. Note, however,

that the set X of relatively prime pairs .p; q/ is itself a rather complicated
object. The map ˛, restricted to X , will be “two-to-one”: ˛�1.r/ D ˙.p; q/.
And there is no natural way to choose exactly one representative from every pair
f.p; q/; .�p; �q/g. However, for all r D p

q
2 Q, we can assume q > 0. But for

q D 0, there is no preference between p D ˙1.

Remark 6.1. For the analytically minded reader, we can say that the construction
here is similar to the Riemann surface of the function f .w/ D p

w. The map z 7!
w D z2 has two preimages for each w 2 C

�, but this double-valued function does
not admit an analytic (or even continuous) single-valued branch.

~
Remark 6.2. A remarkable way to label all positive rational numbers was dis-
covered recently by Neil Calkin and Herbert Wilf (“Recounting the Rationals,”
American Mathematical Monthly 107 (2000), pp. 360–363). Let b.n/ be the number
of partitions of an integer n � 0 into powers of 2, no power of 2 being used more

A.A. Kirillov, A Tale of Two Fractals, DOI 10.1007/978-0-8176-8382-5 6,
© Springer Science+Business Media New York 2013
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than twice. Than the ratio rn D b.n/
b.nC1/ takes every positive rational value exactly

once! The initial piece of this numeration is given in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

b.n/ 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4
rn 1 1

2
2 1

3
3
2

2
3

3 1
4

4
3

3
5

5
2

2
5

5
3

3
4

4 1
5

5
4

4
7

n 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

b.n/ 7 3 8 5 7 2 7 5 8 3 7 4 5 1 6 5 4
rn

7
3

3
8

8
5

5
7

7
2

2
7

7
5

5
8

8
3

3
7

7
4

4
5

5 1
6

6
5

5
9

It is of interest to compare this numeration with the one given by Farey series
(see below).

~
Our next step in the study of Q is the introduction of a natural distance between

points. In the following, we tacitly assume that all rational numbers are written in
lowest terms.

Let us call two numbers ri D pi
qi

, i D 1; 2, from Q friendly if the following
equivalent conditions are satisfied:

.a/ jp1q2 � p2q1j D 1; .b/ jr1 � r2j D 1

jq1q2j : (6.1.1)

It is worth mentioning that the friendship relation is not an equivalence relation:1

every integer k is friendly to 1, but only neighboring integers are friendly to each
other.

Note that the group PGL.2; Z/ acts on Q by fractional linear transformations
and that this action preserves the friendship relation. We can often use this fact in
our study.

Lemma 6.1. The group PSL.2; Z/ acts simply transitively on the set of all ordered
pairs of friendly numbers from Q. The group PGL.2; Z/ acts transitively but with a
nontrivial stabilizer isomorphic to Z2.

Proof. Let ri D pi
qi

, i D 1; 2, be a pair of friendly numbers. Assume for definiteness
that p1q2�p2q1 D 1. We have to show that there is a unique element � of PSL.2; Z/

1Just as in the real life.
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that sends the standard friendly pair .1; 0/ to the given pair .r1; r2/. Let g D�
a b

c d

�
be a representative of � in SL.2; Z/. Then we have �.0/ D b

d
; �.1/ D a

c
.

The conditions �.1/ D r1; �.0/ D r2 imply .a; c/ D k1 � .p1; q1/, .b; d/ D
k2 � .p2; q2/. Therefore, 1 D detg D ad � bc D k1k2 � .p1q2 � p2q1/

�1 D k1k2

and k1 D k2 D ˙1. Hence g D ˙
�
p1 p2

q1 q2

�
is determined up to sign and defines

the unique element of PSL.2; Z/.
The stabilizer of the pair .0; 1/ in PGL.2; Z/ consists of classes of matrices�
1 0

0 ˙1
�

. ut

Exercise 6.1. Describe all numbers that are (a) friendly to 0; (b) friendly to 1;
(c) friendly to 1.

We define a distance in the set Q in the following way. Given two numbers r 0
and r 00, denote by d.r 0; r 00/ the minimal n 2 ZC for which there exists a chain
r 0 D r0; r1; : : : ; rn�1; rn D r 00 such that for all k, the number rk is friendly to rk˙1
for 1 � k � n � 1.

Exercise 6.2. (a) Show that .Q; d / is a discrete metric space on which the group
PGL.2; Z/ acts by isometries.

(b) Find the stabilizer of the point 1.

Answer. (b) The group Aff.1; Z/ of transformations r 7! ar C b, a D ˙1, b 2 Z.

Exercise 6.3. Compute the distances (a) d.1; n/I (b) d.0; n/; (c) d.0; 5
8
/.

Answer. (a) 1; (b) 0 for n D 0, 1 for n D ˙1; 2 for jnj > 1; (c) 4.

Exercise 6.4. (a) Show that for every r 0; r 00 2 Q, the distance d.r 0; r 00/ is finite.
(b) Is the metric space Q bounded?

Answer. (a) See Theorem 6.1 below; (c) No.

Rather interesting and nontrivial problems arise when we consider the geometry
of balls and spheres in Q. As usual, we define a ball with center a and radius r
as the set Br.a/ D fb 2 Q

ˇ
ˇ d.a; b/ � rg. Analogously, a sphere is the set

Sr.a/ D fb 2 Q
ˇ̌
d.a; b/ D rg.

Theorem 6.1. The ball Bn.1/ consists of all rational numbers that can be written
as a continued fraction of length n, i.e., as

r D k1 C 1

k2 C 1

k3 C 1

: : : kn�1 C 1

kn

(6.1.2)

where ki are arbitrary integers (positive or negative).
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proof. First of all, let us show that for every r of the form (6.1.2), the distance
d.1; r/ does not exceed n. We shall do this by induction on n.

For n D 1, the result follows from Exercise 6.3. Assume that the theorem is true
for all continued fractions of length � n � 1 and consider a continued fraction of
length n given by Eq. (6.1.2). Denote by r 0 the number 1

r�k1 . It is clear that r 0 is
represented by a continued fraction of length n � 1, whence d.1; r 0/ � n � 1.
Now, from the invariance of the distance with respect to shifts r 7! r C k, k 2 Z,
and with respect to the inversion r 7! r�1, we have

d.1; r/ D d.1; r � k1/ D d.0; r 0/ � d.0; 1/C d.1; r 0/ � 1C .n � 1/ D n:

The first sign � is just the triangle inequality, and the second follows from
Exercise 6.3(a) and from the induction hypothesis. ut

The structure of spheres is a more delicate question. The “complexity” of a sphere
grows with its radius.

For instance, consider S1.1/ D Z. It is a homogeneous space with respect to the
group Aff.1; Z/, which plays the role of the “group of rotations” around the infinite
point; see Exercise 6.3(a).

The sphere S2.1/ consists of points k1C 1
k2

, where k1; k2 2 Z and k2 ¤ 0; ˙1.
Under the action of Aff.1; Z/, it splits into infinitely many orbits �m, enumerated
by the number m D jk2j � 2: The stabilizer of the point k C 1

m
2 �m is trivial for

m > 2 and contains one nonunit element r 7! 2k C 1 � r for m D 2.

Problem 6.1. Describe the orbits of Aff.1; Z/ on the sphere Sk.1/ for k > 2.

6.2 Rational Parameterization of Circles

It is well known that a circle as a real algebraic manifold is rationally equivalent to
a real projective line. This means that one can establish a bijection between a circle
and a projective line using rational functions with rational coefficients.

For example, the circle x2 C y2 D 1 can be identified with a projective line with
parameter t as follows:

x D t2 � 1
t2 C 1

; y D 2t

t2 C 1
I t D y

1 � x D 1C x

y
: (6.2.1)

In particular, as t runs through all rational numbers (including 1), the corre-
sponding points .x; y/ run through all rational points2 of the circle.

From this fact one can derive the well-known description of primitive integral
solutions to the equation x2 Cy2 D z2. Namely, in every primitive solution, exactly

2That is, points with rational coordinates.



6.2 Rational Parameterization of Circles 99

one of the numbers x; y is even. Assume that it is y; then there are relatively prime
numbers a; b such that

x D a2 � b2; y D 2ab; ˙z D a2 C b2: (6.2.2)

Analogously, the projectivization of the future light cone in R
1;3 is nothing but

the two-dimensional sphere, which is rationally equivalent to a completed two-
dimensional plane. Therefore, all future light vectors .t; x; y; z/ with integral
nonnegative coefficients can be written, up to positive proportionality, in the form

t D k2 C l2 Cm2; x D 2km; y D 2lm; z D jk2 C l2 �m2j: (6.2.3)

I do not know whether any integral solution can be written exactly in the form
(6.2.3) for some integers k; l; m with gcd.k; l; m/ D 1.3

Next, we take into account that on the real projective line R, there is a natural
orientation. For our goals, it is convenient to define the orientation as a cyclic order
for every three distinct points x1; x2; x3 2 R. Geometrically, this order means that
going from x1 to x3 in the positive direction, we pass x2 on our way. We shall
also use the expression “x2 is between x1 and x3.” Note that in this case, x2 is not
between x3 and x1.

Exercise 6.5. (a) Show that in the case that all x1; x2; x3 are finite (i.e., ¤ 1), the
statement “x2 is between x1 and x3” is equivalent to the inequality

.x1 � x2/.x2 � x3/.x3 � x1/ > 0:

(b) Which of the following are true?

(i) 1 is between 0 and 1;
(ii) 1 is between 0 and 1;

(iii) �1 is between 0 and 1.

We now introduce a new operation4 of “inserting” on R. It associates to an
ordered pair of rational numbers .r1; r2/ a third number, denoted by r1 # r2,
such that

r1 # r2 WD p1 C p2

q1 C q2
; if r1 D p1

q1
; r2 D p2

q2
; (6.2.4)

where the signs of pi and qi are chosen such that r1 # r2 is between r1 and r2.

Exercise 6.6. Compute the following expressions:
(a) 0 # 1; (b) 1 # 0; (c) 1 # �2; (d) 1 # 2; (e) 2 # 1; (f) 1

2
# � 1

3
.

Answer. (a) 1; (b) �1; (c) �3; (d) 3
2
; (e) 1; (f) �2.

3As one of the reviewers pointed out, the quadruple .7; 2; 3; 6/ is a counterexample, since 7 is not
a sum of three squares.
4I learned from R. Borcherds that this operation is known to mathematicians in England as “English
major addition.” It is also the subject of one of the standard jokes quoted in Gelfand’s seminar.



100 6 Arithmetic Properties of Apollonian Gaskets

The operation # has especially nice properties when r1 and r2 are friendly
numbers. In this case, the number r1 # r2 is evidently friendly to both r1 and r2.

Exercise 6.7. Show that for friendly numbers r1; r2, the number r1 # r2 is the
unique rational number between r1 and r2 (in the sense of the cyclic order described
above) that is friendly to both of them.

These considerations lead to the notion of Farey series. The standard Farey
series F n of rank n by definition consists of all rational numbers 0 < p

q
< 1 with

1 � q � n written in increasing order. The number of terms in F n is equal toPn
kD2 '.k/, where '.k/ is the Euler totient function, which counts the number of

integers between 1 and k that are relatively prime to k. It is given by the formula

'.n/ D n �
Y

pjn

�
1 � p�1� ; where p runs through all prime divisors of n:

For example, the Farey series F 5 contains '.2/ C '.3/ C '.4/ C '.5/ D 1 C
2C 2C 4 D 9 terms:

1

5
;

1

4
;

1

3
;

2

5
;

1

2
;

3

5
;

2

3
;

3

4
;

4

5
:

We refer to [Nev49] for many known facts about standard Farey series, mentioning
only some of them here.

Exercise 6.8. Show that neighboring terms of Farey series are friendly numbers.

For our goals, we introduce a slightly different definition. Namely, the modified
Farey series F .n/ � R is defined as follows: The series F .0/ consists of three
numbers, 0; 1, and 1, with given cyclic order. The series F .nC1/, n � 1, is obtained
from F .n/ by inserting between every pair of consecutive numbers a; b the number
a # b. So the modified Farey series F .n/ consists of 3 � 2n cyclic ordered numbers.
We denote by f .n/

k , 1 � 2n � k � 2nC1, the kth member of F .n/. In particular, for

every n � 0, we have f .n/
0 D 0, f .n/

2n D 1, f .n/

2nC1 D 1.
The modified Farey series of rank � 4 are shown below:

kW 0 1 2

f
.0/

k W 0
1

1
1

1
0

kW �1 0 1 2 3 4

f
.1/
k W � 1

1
0
1

1
2

1
1

2
1

1
0

kW �3 �2 �1 0 1 2 3 4 5 6 7 8

f
.2/
k W � 2

1 � 1
1 � 1

2
0
1

1
3

1
2

2
3

1
1

3
2

2
1

3
1

1
0

kW �7 �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
.3/

k W � 3
1 � 2

1 � 3
2 � 1

1 � 2
3 � 1

2 � 1
3

0
1

1
4

1
3

2
5

1
2

3
5

2
3

3
4

1
1

4
3

3
2

5
3

2
1

5
2

3
1

4
1

1
0

To find an explicit formula for the numbers f .n/

k is a nontrivial problem. We shall
discuss it below.
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Fig. 6.1 Graph of the function ?

Exercise 6.9. Show that f .n/

k D f
.nC1/
2k , so that f .n/

k actually depends only on the

dyadic number r D k
2n

. Sometimes, we shall write fr instead of f .n/

k .

To simplify the exposition, let us consider the part of F .n/ between 0 and 1, i.e.,
members fr with r between 0 and 1.

Note that if we change the procedure and insert between any two numbers a; b
not a # b, but the arithmetic mean value aCb

2
, we obtain at the nth step, the

arithmetic progression with 2n C 1 terms starting with 0 and ending by 1. The kth
member of this progression is a.n/k D k

2n
, or in the same notation as above, ar D r

(Fig. 6.1).
Now we are prepared to define a remarkable function first introduced by

Hermann Minkowski. He called it the “question mark function” and denoted it by
?.x/; see Info E in Part I.

Theorem (Minkowski’s theorem). There exists a unique continuous and strictly
increasing function ? W Œ0; 1� ! Œ0; 1� such that

? .a # b/ D ?.a/C ?.b/
2

for all friendly rational numbers a; b 2 Œ0; 1�:
(6.2.5)

Sketch of proof. The formula (6.2.5) and induction over n imply that if the desired
function exists, it must have the property ?

�
f
.n/

k

� D a
.n/

k . It follows that ?
�
fr
� D r

for all r 2 ZŒ 1
2
�
T
Œ0; 1�.
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On the other hand, we can define ? on ZŒ 1
2
� by the formula ?.fr / D r . Since both

sets ff .n/k g and fa.n/k g are dense in Œ0; 1�, the function can be extended uniquely as
a monotone function from Œ0; 1� to Œ0; 1�. For example, we can put

?.x/ D lim
n!1 ?.xn/; (6.2.6)

where fxng is a monotone sequence of rational numbers converging to x. ut
The inverse function p to the question mark function solves the problem of

computing f .n/

k posed above, since for every dyadic r 2 Œ0; 1�, we have fr D p.r/.
On the set ZŒ 1

2
�
T
Œ0; 1� of binary fractions, the function p.x/ can be computed

step by step using the property

p

�
2k C 1

2nC1

�
D p

�
k

2n

�
# p

�
k C 1

2n

�
; (6.2.7)

which follows immediately from Eq. (6.2.5), and repeating the construction of the
modified Farey series.

Theorem 6.2. The function p WD ?�1 has the following properties:

1. .a/ p.1 � x/ D 1 � p.x/I .b/ p.x
2
/ D p.x/

1Cp.x/ I .c/ p. 1Cx
2
/ D 1

2�p.x/ .
2. .p/0. k

2n
/ D 1 for every n and 0 � k � 2n.

3. For every rational nondyadic number r 2 Œ0; 1�, the value p.r/ is a quadratic
irrationality, i.e., has a form r1 C p

r2 for some rational r1; r2.
4. We have the following remarkable formula:

p

0

@0:0 : : : 00„ ƒ‚ …
k1

11 : : : 11„ ƒ‚ …
l1

: : : 00 : : : 00„ ƒ‚ …
kn

11 : : : 11„ ƒ‚ …
ln

: : :

1

AD 1

k1C
1

l1C
1

: : : knC
1

lnC
1

: : :

: : :

(6.2.8)

where on the left-hand side, the binary system is used, while on the right-hand
side, we use a continued fraction. The formula (6.2.8) works also for finite binary
fractions.5

Sketch of proof. The relations 1(a)–(c) can be derived from the following useful
fact.

5Guess about the form of the right-hand side of the formula in this case.
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Lemma 6.2. Let g D
�
a b

c d

�
2 GL.2; Z/. Then the transformation of Q given by

r 7! g � r WD ar C b

cr C d

commutes with the insertion operation #, i.e.,

.g � r1/ # .g � r2/ D g � .r1 # r2/: (6.2.9)

We leave the proof of this claim to the reader and make only two useful remarks,
each of which could serve as the basis for a proof.

1. The transformations in question send friendly pairs to friendly pairs.
2. The group GL.2; Z/ is generated by two elements:

g1 D
�
1 1

0 1

�
; g2 D

�
0 1

1 0

�
:

Now we prove relation 1(a). Consider the following diagram:

Œ0; 1�
x 7!1�x�����! Œ0; 1�

p

?
?y

?
?yp

Œ0; 1�
x 7!1�x�����! Œ0; 1�

(6.2.10)

Relation 1(a) claims that it is commutative. To check this, choose a point x 2 Œ0; 1�
that is a dyadic fraction r D k

2n
D ar . Then the vertical arrow sends this number to

p.ar/ D fr , and the horizontal arrow sends fr to f1�r (check this, consulting the
table above).

On the other hand, the horizontal arrow sends r to 1 � r D a1�r , and then the
vertical arrow sends a1�r to f1�r . Thus for every number of the form k

2n
, relation

1(a) holds. By continuity, it holds everywhere.
Consider relation 1(b). It is equivalent to the commutativity of the diagram

Œ0; 1�
x 7! x=2�����! Œ0; 1

2
�

p

?
?
y

?
?
yp

Œ0; 1�
x 7! x

1Cx�����! Œ0; 1
2
�

(6.2.11)

Here again we start with an element r D ar 2 Œ0; 1�. The horizontal arrow sends it
to ar=2, and then the vertical arrow transforms it to fr=2.

On the other hand, the vertical arrow sends ar to fr , and we have to show that
the horizontal arrow transforms it to fr=2. That is, we want to check the equality



104 6 Arithmetic Properties of Apollonian Gaskets

fr
1Cfr D fr=2. For this, we observe that the transformation x 7! x

1Cx maps the

segment Œ0; 1� to the segment Œ0; 1
2
�. Since it belongs to PGL.2; Z/, it transforms

the part of Farey series between f0 and f1 to the par between f0 and f1=2. Then by
induction on n, we check that it sends f 2k

2n
to f k

2n
.

The relation 1(c) can be proved in the same way using the diagram

Œ0; 1�
x 7! 1Cx

2�����! Œ 1
2
; 1�

p

?
?
y

?
?
yp

Œ0; 1�
x 7! 1

2�x�����! Œ 1
2
; 1�

(6.2.12)

The point is that affine transformations respect half-sums, while the transforma-
tions from PGL.2; Z/ respect the insertion operation.

I recommend that the reader formulate and prove some other properties of ? and
p using other diagrams.

It is also useful to extend the definition of ? and p to the whole set R by the
formulas

p

�
1

x

�
D 1

p.x/
I p.�x/ D �p.x/: (6.2.13)

We shall verify property 2 only at the point x D 0. The general case x D k
2n

can
be done similarly, or it can be reduced to the case x D 0 by 1(a)–1(c).

We have p.0/ D 0, p. 1
2n
/ D 1

nC1 . So if 1
2n

� �x � 1
2n�1 , we have 1

nC1 �
�p � 1

n
.

Therefore, 2
n�1

nC1 � �p

�x
� 2n

n
for 1

2n
� �x � 1

2n�1 and p0.0/ D C1.
Statement 3 follows from the formula (6.2.8). As for this formula, it can be

proved for finite fractions by induction using the Farey series. Note that in the last
section of Part I, we used Eq. (6.2.8) as a definition of the question mark function.

ut
Remark 6.3. Let us interpret the function p WD ?�1 as a distribution function for
a probability measure 	 on Œ0; 1�: the measure of an interval Œa; b� is equal to
p.b/ � p.a/. This measure is a weak limit6 of the sequence of discrete measures
	n, n � 1, concentrated on the subset F .n/, so that the point f .n/

k has the mass 1
2n

for 1 � k � 2n.
It is clear that the support of 	 is the whole segment Œ0; 1� (i.e., the measure of

every interval .a; b/ � Œ0; 1� is positive). While for an ordinary Farey series, the
measure defined in a similar way is uniform, in our case it is far from it. The detailed
study of this measure is a very promising subject (see, e.g., [de Rha59]).
~

6We say that a measure 	 on Œ0; 1� is a weak limit of the sequence of measures 	n if for every
continuous function f on Œ0; 1�, we have limn!1

R 1
0 f .x/d	n.x/ D R 1

0 f .x/d	.x/.
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Exercise 6.10. Find the values of ?.x/ and ?0.x/ at the point x D 1
3
.

Hint. Using the relation 1
2

� 1
4

C 1
8

� 1
16

C 1
32

� 1
64

C � � � D 1
3
, show that

‹

�
1

3
� 1

3 � 4n
�

D ˆ2n�1
ˆ2nC1

; ‹

�
1

3
C 2

3 � 4n
�

D ˆ2n

ˆ2nC2
;

whereˆn is the nth Fibonacci number, given by the formula

ˆn D �n � .��/�n
� C ��1 ;

where � D
p
5C1
2

	 1:618 : : : is the golden ratio.7

Answer. ?
�
1
3

� D 3�p
5

2
I ?0� 1

3

� D 0.

Problem 6.2. Is it true that ?0.x/ D 0 for all rational numbers except a.n/k ?

We can sum up the content of this section as follows: there is a monotone
parameterization of all rational numbers in Œ0; 1� by the simpler set of all binary
fractions in the same interval.

If we remove the restriction r 2 Œ0; 1�, we get a parameterization of Q by ZŒ 1
2
�

that preserves the cyclic order on the circle introduced above.

Remark 6.4. There is an interesting geometric interpretation of the Farey series and
of the Minkowski question mark function. It was discovered by George de Rham
[de Rha59].

Consider the square Œ�1; 1� � Œ�1; 1� � R
2. Let us divide every side into three

equal parts and join neighboring division points. We get an octagon with equal
angles but unequal sides. Repeat this procedure: divide every side of the octagon
into three equal parts and join the neighboring division points. The result will be a
convex polygon with 16 sides that is contained in the octagon. Proceeding in this
way, we get a nested series of convex polygons …n, n � 1, with 2nC1 sides. The
intersection of all these polygons is a convex domain D bounded by a C2-smooth
curve C (see Fig. 6.2). Note the following facts:

(a) The center of each side of every …n belongs to C . Let us enumerate those that
belong to the upper half of C by the numbers rk D k

2n
, �2n � k � 2n.

(b) Let the upper half of C be given by the equation y D f .x/, jxj � 1. Let xk be
the x-coordinate of rk. Then f 0.xk/ D frk , the member of the nth Farey series.

~

7See Info G.
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Fig. 6.2 The de Rham curve

6.3 Nice Parameterizations of Disks Tangent to a Given Disk

Let A be an Apollonian gasket. Choose a disk D 2 A corresponding to a Hermitian
matrixM and consider those disks in A that are tangent to D.

The tangent points form a countable subset T � @D. We shall show later that
one can parameterize points of T by rational numbers (including 1) in such a way
that the natural cyclic order on T , as a part of @D, corresponds to the cyclic order
on Q, as a part of R.

Let Dr be the disk tangent to D at the point tr 2 T and let Mr be the
corresponding Hermitian matrix.

We say that a parameterization r ! tr of T by Q is nice if it has the following
properties:

1. If r D p

q
in lowest terms, then

Mr D Ap2C2BpqCCq2�M; where A; B; C are fixed Hermitian matrices.

2. The disk Dr is tangent to Dr 0 iff r D p

q
and r 0 D p0

q0
are friendly, i.e., iff jpq0 �

p0qj D 1.

Of course, conditions 1 and 2 are very strong and contain all the information about
tangent disks. Therefore, the next result is rather important.

Theorem 6.3. Nice parameterizations exist and have the following additional
property: Let v0; v1; v2; v3 be vectors in R

1;3 corresponding to matrices A C
C; B; A� C; M . Then the Gram matrix of their scalar products has the form

G D k.vi ; vj /k D

0

B
B
@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1

C
C
A : (6.3.1)
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Fig. 6.3 Nice parameterization of a line in the band gasket

First main example: band gasket. Let D D fw 2 C
ˇ
ˇ Im w � 0g, D1 D fw 2

C
ˇ
ˇ Im w � 1g. Let D0; D1 be the disks of unit diameter, tangent to D at points

0; 1 and to D1 at points i; i C 1 (Fig. 6.3).
Then @D D R; T D Q. The tautological parameterization of T is nice, with

M D
�
0 i

�i 0
�
; Mp

q
D
�

2p2 �2pq � i
�2pq C i 2q2

�
; Dp

q
W
ˇ
ˇ̌
ˇ w�2pq C i

2q2

ˇ
ˇ̌
ˇ�

1

2q2
:

Second main example: rectangular gasket. Let D D fw 2 C
ˇ̌ jwj � 1g

be the complement to the open unit disk, and let D0 be given by the condition
jw � 1

2
j � 1

2
, D1 by the condition jw C 1

2
j � 1

2
, and D1 by the condition

jw � 2i
3

j � 1
3
.

Here @D is the unit circle, and a nice parameterization is tr D pCiq
p�iq , so that

M D
��1 0
0 1

�
; Mr D

�
p2 C q2 � 1 �.p C iq/2

�.p � iq/2 p2 C q2 C 1

�
;

Dp
q

W
ˇ̌
ˇ
ˇ w � .p C iq/2

p2 C q2 C 1

ˇ̌
ˇ
ˇ � 1

p2 C q2 C 1
:

Proof of Theorem 6.3. Let D0; D1; D1 be any three disks from A that are tangent
to D and to each other. We associate the labels 0; 1 and 1 to the corresponding
tangent points in @D (Fig. 6.4).

Then, assuming that the theorem is true and the parameterization is nice, we can
compute A; B; C from the equations

M1 D A �M; M0 D C �M; M1 D AC 2B C C �M:
We get

A D M CM1; C D M CM0; B D 1

2
.M1 �M �M0 �M1/:
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Fig. 6.4 Nice parameterization of the outer circle in the rectangular gasket

Then, using the property of matrices M0; M1; M1, and M , we can check rela-
tion (6.3.1). From there, statement 2 of the theorem follows easily if we define Mr

using statement 1. ut
Practically, a nice parameterization can be defined step by step. Assume that the

disks Dr1 and Dr2 corresponding to friendly rational numbers r1 and r2 are already
defined and are tangent to D and to each other. Then we associate to r D r1 # r2,
the disk tangent to Dr1 , Dr2 , andD.

In fact, there are two such disks and two possible values of r D r1 # r2; the right
choice is uniquely determined by the cyclic order.

Corollary. The boundary curvature of the disk tangent to D at the point r D p

q
(in

lowest terms) is given by a quadratic polynomial in p; q:

c.p; q/ D �
c1 C c

� � p2 C �
c1 � c0 � c1 � c� � pq C �

c0 C c
� � q2 � c; (6.3.2)

where ci is the boundary curvature of the disk Di .
In particular, if four mutually tangent disks in an Apollonian gasket A have

integral boundary curvatures, then all disks from A have this property.

Exercise 6.11. For the triangular Apollonian gasket, find the curvatures of the disks
tangent to the outer disk.

Answer. c.p; q/ D 2.p2�pqCq2/p
3

C 1.

Exercise 6.12. Describe the canonical parameterization for the outer circle of the
triangular gasket.

Hint. Label by 0; 1; 1 the tangent points corresponding to the three maximal inner
disks.
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6.4 Integral Apollonian Gaskets

6.4.1 Basic Quadruples

There are many models of Apollonian gasket for which the curvatures of all circles
are integers. We call them integral gaskets. For each such gasket, we can choose the
quadruple of disks such that corresponding boundary curvatures form an integral
quadruple .c1 � c2 � c3 � c4/ with minimal c1. Call it a basic quadruple.

Lemma 6.3. For a basic quadruple, we have

c4 � 0; jc4j < c3 <
�
1C 2p

3

�
jc4j 	 2:1547 : : : � jc4j:

Proof. LetDi , 1 � i � 4, be a quadruple of mutually tangent disks with curvatures
ci , 1 � i � 4. The first inequality has already been proved (see Remark 4.2).

Consider now Descartes’s equation (4.1.3) as a quadratic equation in c1 with
given c2; c3; c4. Then we get

c1 D c2 C c3 C c4 ˙ 2
p
c2c3 C c3c4 C c4c2: (6.4.1)

Since the initial quadruple is basic, we have to choose the minus sign in Eq. (6.4.1)
(otherwise, we could replace c1 by a smaller quantity).

The inequality c1 � c2 together with Eq. (6.4.1) gives c3 C c4 �
2
p
c2c3 C c3c4 C c4c2, or .c3 � c4/

2 � 4c2.c3 C c4/ � .c3 C c4/
2. This can

be true only when c4 � 0.
Finally, for nonpositive c4, we have .c3 � c4/2 � 4c2.c3 C c4/ � 4c3.c3 C c4/, or

3c23 C6c3c4Cc24 � 4c24 . This gives
p
3.c3Cc4/ � �2c4, hence c3 � 2Cp

3p
3

jc4j. ut
Here is a list of basic quadruples of small sizes generating nonisomorphic gaskets

in order of increasing jc4j:
c4 D 0 .1; 1; 0; 0/I
c4 D �1 .3; 2; 2; �1/I
c4 D �2 .7; 6; 3; �2/I
c4 D �3 .13; 12; 4; �3/; .8; 8; 5; �3/I
c4 D �4 .21; 20; 5; �4/; .9; 9; 8; �4/I
c4 D �5 .31; 30; 6; �5/; .18; 18; 7; �5/I
c4 D �6 .43; 42; 7; �6/; .15; 14; 11; �6/; .19; 15; 10; �6/I
c4 D �7 .57; 56; 8; �7/; .20; 17; 12; �7/; .32; 32; 9; �7/I
c4 D �8 .73; 72; 9; �8/; .24; 21; 13; �8/; .25; 25; 12; �8/I
c4D�9 .91; 90; 10; �9/; .50; 50; 11; �9/; .22; 19; 18; �9/;
.27; 26; 14; �9/I
c4 D �10
.111; 110; 11; �10/; .39; 35; 14; �10/; .27; 23; 18; �10/I
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c4 D �11
.133; 132; 12; �11/; .72; 72; 13; �11/; .37; 36; 16; �11/; .28; 24; 21; �11/.
Three general formulas:

c4 D �km .k2 C kmCm2; k.k Cm/; m.k Cm/; �km/
c4 D 1 � 2k .2k2; 2k2; 2k C 1; 1 � 2k/
c4 D �4k �

.2k C 1/2; .2k C 1/2; 4.k C 1/; �4k�

The reader can find many other interesting facts about integral gaskets in [G03].
However, a description of all basic quadruples is still unknown.

Info I. The Möbius Inversion Formula

In number-theoretic computations, the Möbius inversion formula is frequently used.
We explain here how it works.

Suppose we have a partially ordered set X with the property that for every
element x 2 X , there are only finitely many elements that are less than x. Let
now f be any real- or complex-valued function on X . Define a new function F by
the formula

F.x/ D
X

y�x
f .y/: (I.1)

Proposition I.1. There exists a unique function Q	 on X � X with the following
properties:

1. Q	.x; y/ D 0 unless y � x.
2. Q	.x; x/ D 1.
3. If the functions f and F are related by Eq. (I.1), then

f .x/ D
X

y�x
Q	.x; y/F.y/: (I.2)

In many applications, the set X is a semigroup of nonnegative elements in some
partially ordered abelian group G, and the order relation is translation-invariant:
y < x is equivalent to a C y < a C x for every a 2 G. In this case, 	 is also
translation-invariant, Q	.a C x; a C y/ D Q	.x; y/, and hence it can be written in
the form 	.x�y/, where 	 is a function on G that is zero outsideX . The inversion
formula takes the form

f .x/ D
X

y�x
	.x � y/F.y/ (Möbius inversion formula): (I.3)

We leave the proofs for the interested reader and consider only some examples
that we need in our book.
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Example 1. Let G D Z with the standard order. Then the formula (I.1) takes the
form F.n/ D P

m�n f .m/, and the inversion formula is f .n/ D F.n/ � F.n� 1/.
We see that in this case, Proposition I.1 is true and the function 	 is given by

	.n/ D

8
ˆ̂<

ˆ̂
:

1 if n D 0;

�1 if n D 1;

0 otherwise:

Example 2. G D G1 � G2, and the order on G is the product of orders on G1 and
on G2, i.e.,

.g1; g2/ > .0; 0/ , g1 > 0 and g2 > 0:

Here the 	-function for G is simply the product of the 	-functions for G1 and G2.
Note that if G1 and G2 are ordered groups, the G D G1 � G2 is only partially

ordered.

Example 3. G D Q
� is the multiplicative group of nonzero rational numbers. The

partial order is defined as follows: r1 � r2 if the number r2
r1

is an integer. So in this
case, X D ZC with the order relation m < n if m j n (m is a divisor of n).

It is easy to see that this partially ordered group is the direct sum of a countable
number of copies of Z with the usual order. Indeed, every element of G can be
uniquely written in the form r D Q

k�1 p
nk
k , where pk is the kth prime number,

nk 2 Z, and only finitely many of nk are nonzero. The number r is an integer iff all
nk are nonnegative.

Therefore, the function 	 is the product of infinitely many functions from
Example 1. The exact definition is as follows.

Definition I.1.

	.n/ D

8
ˆ̂
<

ˆ̂:

1&if n D 1;

.�1/k if n is a product of k distinct primes,

0 otherwise.

Equation (I.3) in this case is the classical Möbius inversion formula

f .n/ D
X

d jn
	.d/F

� n
d

�
: (I.4)

As an application, we derive here the formula for the Euler '-function.
Let us classify the numbers k � n according to the value of d D gcd.k; n/.

It is clear that gcd. k
d
; n
d
/ D 1. It follows that the number of those k for which

gcd.k; n/ D d is equal to '. n
d
/. We have obtained the identity

n D
X

d jn
'
� n
d

�
:
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Applying the Möbius inversion formula, we get

'.n/ D
X

d jn
	.d/ � n

d
; or

'.n/

n
D
X

d jn

	.d/

d
: (I.5)

}

A well-known unsolved problem is to compute the Hausdorff dimension of the
Apollonian gasket and the Hausdorff measure of its different modifications (e.g.,
spherical or triangular gaskets). We know the answer to the first question to a high
degree of accuracy: in [MC03], it is shown that the Hausdorff dimension of the
Apollonian gasket is d D 1:308535‹‹‹ : : :. However, we have no idea about the
nature of this number. For example, is it irrational? Can it be expressed in terms of
some logarithms as for the Cantor set or Sierpiński gasket? Has it any interesting
arithmetic properties?

Another interesting problem is to compute the total area of the disks in some
Apollonian gasket that are tangent to a given disk D, e.g., to the outer disk in the
rectangular or triangular gasket.

We start, however, with a slightly easier problem. Consider the first main example
of the band gasket above. We want to compute the total area of the disks in the band
gasket that are tangent to the real axis at the rational points of the segment Œ0; 1�.
A more natural question, one with a simpler answer, is to compute the area of the
part of the unit square with vertices 0; 1; 1 C i; i covered by the disks tangent to
the lower side of the square.

We know that the diameter of the disk with tangent point m
n

2 Œ0; 1� is 1
n2

. Hence
its area is �

4n4
. There are '.n/ disks of this size. So for the area in question, we have

the expression

A D �

4
�
X

n�1

'.n/

n4
: (6.4.2)

This number can be expressed through the values of the Riemann �-function at the
points 3 and 4.

Let us use the formula for '.n/ obtained in Info I. The formula (6.4.2) takes the
form

A D �

4
�
X

n�1

X

d jn

	.d/

dn3
:

We denote n
d

by m and sum over d and m. We get

A D �

4
�
X

d�1

X

m�1

	.d/

m3d4
D �

4
�
X

m�1

1

m3
�
X

d�1

	.d/

d4
:

6.4.2 Some Computations
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The sum
P

m�1 1
m3

is, by definition, the value �.3/. On the other hand, the sum
P

d�1
	.d/

d4
can be written as

X

k�0
.�1/k �

X

1�i1<i2<���<ik
.pi1pi2 � � �pik /�4 D

Y

i�1

�
1 � 1

p4i

�
D 1
P

n�1 1
n4

D 1

�.4/
:

Finally, we get

A D �

4
� �.3/
�.4/

D 45�.3/

2�3
	 0:872284:

The total area of the disks tangent to the outer disk of the rectangular gasket is
equal to

�

2
�

X

gcd.p;q/D1

1

.p2 C q2 C 1/2
:

It can be expressed in terms of the �-function related to the Gaussian field Q.i/.

Exercise 6.13. Let †m denote the sum
P

Z2nf.0;0/g 1
.k2Cl2/m . Show that

X

gcd .p;q/D1

1

.p2 C q2/m
D †m

�.2m/
(6.4.2)

and
X

gcd .p;q/D1

1

.p2 C q2 C 1/2
D

1X

mD1
.�1/m�1 m �†mC1

�.2mC 2/
: (6.4.3)



Chapter 7
Geometric and Group-Theoretic Approach

Info J. The Hyperbolic (Lobachevsky) Plane L

A hyperbolic space satisfies all of the axioms of Euclidean space except for the
famous fifth postulate about the uniqueness of parallel lines. Such a space exists
in all dimensions, but here we consider only the case n D 2. We collect here
some information about two-dimensional hyperbolic space, also known as the
Lobachevsky plane L. We introduce three convenient models of L.

J.1 The First Poincaré Model

Let C be the complex plane with a complex coordinate z D x C iy, x; y 2 R

and i the imaginary unit. Denote by H the upper half-plane of C given
by the condition Im z > 0. The first Poincaré model identifies L, as a
set, with H . The group G of conformal mappings of both kinds (see Info
F) acts on H and is, by definition, the full group of symmetries of L.
So according to Felix Klein’s philosophy, the geometric properties of L are those
that are invariant under the groupG.

In particular, the distance d.z1; z2/ between two points z1; z2 2 H must be G-
invariant. It turns out that this condition defines the distance uniquely up to scale.

To find an explicit formula for the distance, we can proceed as follows.
To every pair p D .z1; z2/ there corresponds a quadruple q.p/ D .z1; z2; Nz1; Nz2/.
The correspondence p ! q.p/ is clearly invariant under the action of PSL.2; R/.

On the other hand, it is well known that for every quadruple q D .z1; z2; z3; z4/
of points in C, the so-called cross-ratio �.q/ WD z2�z3

z1�z3
W z2�z4

z1�z4
does not change under

fractional linear transformations from PSL.2; C/.
We introduce the quantity

�.p/ WD �
�
q.p/

� D z2 � Nz1
z1 � Nz1 W z2 � Nz2

z1 � Nz2 D jz1 � Nz2j2
4 Im z1 Im z2

: (J.1)

A.A. Kirillov, A Tale of Two Fractals, DOI 10.1007/978-0-8176-8382-5 7,
© Springer Science+Business Media New York 2013
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This function on the set of pairs of points in H is positive, symmetric, and
invariant with respect to the full group G. Let us clarify how it is related to
the desired distance. To this end, we restrict our consideration to the subset T
of H consisting of points z.�/ D ie� , � 2 R. This subset is invariant under
dilations z.�/ 7! et z.�/ D z.t C �/ and admits a natural dilation-invariant distance
d.z.�1/; z.�2// D j�1 � �2j.

Compare this distance with the restriction of � to T � T :

�.z.�1/; z.�2// D .e�1 C e�2/2

4e�1C�2
D 1

4
.e�1��2 C 2C e�2��1/ D cosh2

��1 � �2
2

�
:

We come to the relation

�.z1; z2/ D cosh2
�
d.z1; z2/

2

�
D cosh

�
d.z1; z2/

�C 1

2
: (J.2)

It holds on T � T , and both sides are G-invariant.

Exercise J.1. Show that G � .T � T / D H � H . More precisely, every pair of
points .z1; z2/ can be obtained by a transformation g 2 G from a pair .i; ie� / for
an appropriate � 2 R.

It follows from the exercise that the relation (J.3) holds everywhere. A simple
computation leads to the final formula

cosh d.z1; z2/ D 2� .z1; z2/� 1 D .x1 � x2/
2 C y21 C y22
2y1y2

: (J.3)

It is well known that the area of a domain � � L and the length of a curve
C � L are given by integrals1

area .�/ D
Z

�

dx ^ dy

y2
; length .C / D

Z

C

p
.dx/2 C .dy/2

y
: (J.4)

Exercise J.2. Show that the geodesics, i.e., the shortest curves, are half-circles
orthogonal to the real axis (including vertical rays).

Hint. Use the fact that any two points p; q on L define a unique geodesic. Hence
this geodesic must be invariant under every transformation g 2 G that preserves
or permutes these two points. Apply this to the points p D ir , q D ir�1 and
transformations s W z 7! �Nz, t W z 7! �z�1.

1Indeed, the first integrand here is the unique (up to a scalar factor) differential 2-form that is
invariant under the action of G. It is covariant under G: a conformal mapping of second kind
changes the sign of the form. The second integrand is the square root of the unique (also up to a
scalar factor) G-invariant quadratic differential form (i.e., metric) on L.
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There is a remarkable relation between the area of a triangle with geodesic sides
and its angles:

area .ABC/ D � � A� B � C: (J.5)

Exercise J.3. Check formula (J.5) for a triangle with three zero angles given by the
inequalities �a � x � a, x2 C y2 � a2.

Exercise J.4. Show that the set of points Br.a/ D fz 2 L
ˇ
ˇ d.z; a/ � rg

(Lobachevsky disk) in the first Poincaré model is just an ordinary disk with center
a0 and radius r 0. Express a0 and r 0 in terms of a and r .

Answer. a0 D Re a C i cosh r � Im a; r 0 D sinh r � Im a .

Exercise J.5. Consider the Euclidean disk D W .x � a/2 C .y � b/2 � r2 on H .
Find its diameter d and area A in the sense of hyperbolic geometry.

Answer. d D log bCr
b�r I A D 2�

�
bp
b2�r2 � 1

�
D 4� sinh2

�
d
4

�
:

J.2 The Second Poincaré Model

Sometimes, another variant of the Poincaré model is more convenient. Namely, a
Möbius transformation h W w 7! w�i

wCi sends the real line to the unit circle and the
upper half-planeH to the interiorD0 of the unit diskD W x2 Cy2 � 1. All we said
above about H can be repeated forD0 mutatis mutandis.

Thus, the group G acting on the upper half-plane is replaced by the group G
0 D

h �G � h�1 acting onD0. The connected component of the identity in G is the group
h � PSL.2; R/ � h�1 D PSU.1; 1I C/.

To a pair p0 D .w1; w2/ 2 D0 � D0 we associate in a G
0
-invariant way the

quadruple q0.p0/ D .w1; w2; Nw�1
1 ; Nw�1

2 /. We introduce the function

�0.p/ WD �
�
q0.p0/

� D j1� w1 Nw2j2
.1 � jw1j2/.1 � jw2j2/ : (J.6)

The subgroup of dilations of H in G given by matrices g� D
�

e�=2 0

0 e��=2
�

becomes the subgroup of matrices g0
� D h � g� � h�1 D

�
cosh �=2 sinh �=2
sinh �=2 cosh �=2

�
in

G
0
. This subgroup preserves the interval h � T D T 0 D .�1; 1/ � D0. Let us now

introduce the local parameter t on T 0 so that x D tanh t
2
. Then the transformationg0

�

takes the simple form t to tC� . Therefore, the invariant distance on T is d.t1; t2/ D
jt1 � t2j. On the other hand,

�0
�

tanh
t1

2
; tanh

t2

2

�
D .1 � tanh t1

2
tanh t2

2
/2

.1 � tanh2 t1
2
/.1� tanh2 t2

2
/

D cosh2
�
t1 � t2

2

�
:
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Then Eqs. (J.2) and (J.3) take the form

�0.w1; w2/ D cosh2
�
d 0.w1; w2/

2

�
D cosh

�
d 0.w1; w2/

�C 1

2
; (J.7)

cosh d.w1; w2/ D j1 � w1 Nw2j2 C jw1 � w2j2
.1 � jw1j2/.1 � jw2j2/ : (J.8)

Formula (J.4) is replaced by

area .�/ D
Z

�

4 dx ^ dy

.1 � x2 � y2/2
; length .C / D

Z

C

2
p
.dx/2 C .dy/2

1 � x2 � y2
: (J.9)

The geodesics are arcs of circles orthogonal to @D (including the diameters of the
disk). Formula (J.5) remains true.

Exercise J.6. Show that the set of points fz 2 L ˇˇ d.z; a/ � rg (Lobachevsky disk)
in the second variant of the Poincaré model is an ordinary disk with center a0 and
radius r 0. Express a0 and r 0 in terms of a and r .

Answer. a0 D 2a
1Cjaj2C.1�jaj2/ cosh r I r 0 D .1�jaj2/ sinh r

1Cjaj2C.1�jaj2/ cosh r .

Exercise J.7. Find the diameter d and area A of the disk Dr.a; b/ W .x � a/2 C
.y � b/2 � r2 in D.

Answer. d D log .1Cr/2�a2�b2
.1�r/2�a2�b2 I A D 4� sinh2. d

4
/.

J.3 The Klein Model

The extended Möbius group G is isomorphic to PO.2; 1; R/ � PGL.3; R/
(see Info F). Therefore, there is one more realization of the hyperbolic plane L.
It is the Klein model, which we describe now.

The group O.2; 1; R/ acts on the real vector space R2;1 with coordinatesX; Y; Z
preserving the coneX2CY 2 D Z2. Consider the real projective plane P WD P2.R/

with homogeneous coordinates .X W Y W Z/ and local coordinates x D X
Z
; y D

Y
Z

. The corresponding projective action of PO.2; 1; R/ on P preserves the circle
x2 C y2 D 1 and the open disk D0 W x2 C y2 < 1. This is the Klein model of L.

An explicit formula for the group action is

x 7! a0x C b0y C c0

ax C by C c
; y 7! a00x C b00y C c00

ax C by C c
; (J.10)
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where

g D
0

@
a0 b0 c0
a00 b00 c00
a b c

1

A belongs to O.2; 1; R/ � GL.3; R/:

We know that g 2 O.2; 1; R/ iff gtIg D I , where I D diag .1; 1;�1/, or in
full detail,

.a0/2 C .a00/2 D a2 C 1; .b0/2 C .b00/2 D b2 C 1; .c0/2 C .c00/2 D c2 � 1;

a0b0 C a00b00 D ab; b0c0 C b00c00 D bc; c0a0 C c00a00 D ca:

(J.11)

Exercise J.8. (a) Show that the group O.2; 1; R/ has four connected components
characterized by the signs of det g and c.

(b) Show that PO.2; 1; R/ has two connected components: PSOC.2; 1; R/ and
PSO�.2; 1; R/ distinguished by the sign of a0b00 � a00b0.

Note that the Klein model uses the same set D0 and the same abstract group
G ' PO.2; 1I R/ as the second Poincaré model, but the group actions are different.

More precisely, there exist a smooth map f WD0 ! D0 and a homomorphism
˛WG ! PO.2; 1; R/ such that the following diagram is commutative:

G � D0 conformal action���������! D0

˛

?
?
y

?
?
yf

?
?
yf

PO.2; 1; R/ � D0
projective action���������! D0

To describe the homomorphism ˛, consider first the connected component of the
identity G � G, which we identify with the group PSU.1; 1I C/. The restriction of
˛ to this subgroup induces the homomorphism Q̨ W SU.1; 1I C/ ! SOC.2; 1I R/,
which has the form

g D
�
a b

b a

�
! Q̨ .g/ D

0

@
Re.a2 C b2/ �Im.a2 C b2/ 2Re .ab/
Im.a2 C b2/ Re.a2 � b2/ �2 Im .ab/
2Re .ab/ �2 Im .ab/ jaj2 C jbj2

1

A : (J.12)

The second connected component of G is a two-sided G-coset c � G D G � c,
where c acts as complex conjugation on D0. From the relation c � g � c D g, we
derive that ˛.c/ D diag.�1; 1; �1/ 2 SO�.2; 1I R/, i.e., ˛.c/ acts on D0 by the
rule x 7! x, y 7! �y.

Therefore, the horizontal diameter ofD0 is the set of fixed points of an involution
˛.c/ and hence is a geodesic in the Klein model. Of course, the same is true for all
other diameters.
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The remarkable property of Klein model is that all geodesics are ordinary straight
lines. Indeed, the projective transformations send lines to lines (in contrast to
conformal mappings, which send circles to circles). In this model, the violation of
the fifth postulate is most transparent.

To compute the map f , we use the following particular cases of Eq. (J.12):

Q̨ W
�

ei� 0

0 e�i�
�

!
0

@
cos 2� � sin 2� 0
sin 2� cos 2� 0

0 0 1

1

A

and

Q̨ W
�

cosh t sinh t
sinh t cosh t

�
!

0

@
cosh 2t 0 sinh 2t
0 1 0

sinh 2t 0 cosh 2t

1

A :

We see that rotation through the angle 2� in the Poincaré model corresponds to the
same rotation in the Klein model.

In contrast, the motion along the diameter

x 7! x cosh t C sinh t

x sinh t C cosh t
; or, if x D tanh �; � ! � C t

goes to the motion

x 7! x cosh 2t C sinh 2t

x sinh 2t C cosh 2t
; or � ! � C 2t

with doubled speed.
We conclude that in polar coordinates .r; ˛/ in the Poincaré model and .�; �/ in

the Klein model, the diffeomorphism f takes the form

f .r; ˛/ D .�; �/ where � D ˛; � D tanh
�
2 tanh�1.r/

�
: (J.13)

Exercise J.9. Show that the relation between r and � in Eq. (J.13) can be written
also in the following forms:

.a/
1C �

1 � � D
�
1C r

1 � r
�2

I .b/ � D 2

r C r�1 : (J.14)

Another interesting geometric fact is that the diffeomorphism f “straightens” arcs
of circles orthogonal to the boundary, sending them into corresponding chords (see
Fig. J.1).

The Klein model has two disadvantages: a more complicated formula for the
distance between two points and nonconformality (the angles between curves are
not equal to Euclidean angles in the model).
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r

ρ

(0,0)

ρ = f(r)
Fig. J.1 The
diffeomorphism f

The area form and the length element for the Klein model in polar coordinates
.�; �/ look like

area .�/ D
Z

�

�2d� ^ d�

.1 � �2/p1C �2
; (J.15)

length .C / D 1

2

Z

C

p
.d�/2 C �2.1 � �2/.d�/2

1� �2
:

Exercise J.10. Prove that the Klein and the second Poincaré models are related
geometrically as follows. Let s be the restriction of the stereographic projection
to the open southern hemisphere S2�. It sends S2� onto the open horizontal disk D
bounded by the equator. Let p be the vertical projection of S2� to D.

Then the map s ıp�1WD ! D is an isomorphism between the Klein and
Poincaré models.

}

7.1 The Möbius Group and Apollonian Gaskets

Here we consider in greater detail the action of the Möbius group G and extended
Möbius group G in connection with Apollonian gaskets.

If we apply an (extended) Möbius transformation to a given Apollonian gasket A,
we obtain another gasket A0. Moreover, we know that every Apollonian gasket can
be obtained in this way from one fixed gasket. So, the set of all possible Apollonian
gaskets forms a homogeneous space with G (or G) as a group of motions.

Let Aut .A/ (resp. Aut .A/) denote the subgroup of G (resp. of G) consisting of
transformations that preserve the gasket A.

Theorem 7.1. The subgroups AutA � G and Aut .A/ � G are discrete.

Proof. Let D1; D2; D3 be three mutually tangent disks in A. Choose three interior
points w1 2 D1; w2 2 D2; w3 2 D3. Afterward, choose a neighborhood of identity
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element U � G that is small enough so that for every g 2 U we have g � w1 2 D1,
g � w2 2 D2, g � w3 2 D3. On the other hand, if g 2 AutA, then it must send
disks D1; D2; D3 to some other disks of A. Hence, an element g 2 U

T
Aut.A/

preservesD1; D2; D3, hence their tangent points, and so must be the identity. This
proves the discreteness of Aut .A/ in G.

The other statement can be proved in the same way by considering four mutually
tangent disks. ut

We want to describe the algebraic structure of the groups Aut.A/ and Aut.A/.
Fix one special gasket, e.g., the band gasket shown in Fig. 5.2. We denote it by A0.
We denote respectively byD1; D2; D3; D4 the half-plane Im w � 1, the half-plane
Im w � �1, the disk jw�1j � 1, and the disk jwC1j � 1. We call these the original
quadruple in A0 and denote it by q0.

First of all, we want to describe the subgroup of G that preserves the basic
quadruple.

Theorem 7.2. The group G acts simply transitively on the set of all ordered
quadruples. The stabilizer in G of the original unordered quadruple is contained
in Aut.A0/ and is isomorphic to S4: all permutations of disks in the quadruple are
possible.

Proof. Let Q0 D .D0
1; D

0
2; D

0
3; D

0
4/ be any ordered quadruple. There exists a

unique element g 2 G that transforms the ordered triple T0 D .D1; D2; D3/ into
the triple T 0 D .D0

1; D
0
2; D

0
3/ (since an ordered triple is completely characterized

by the ordered triple of tangent points).
The disk g.D4/ is one of the two disks that are tangent to D0

1; D
0
2; D

0
3. These

two disks are intertwined by a unique element ofG preservingD0
1; D

0
2; D

0
3, namely,

by the reflection s in the mirror orthogonal to D0
1; D

0
2; D

0
3. (This is obvious for the

initial triple .D1; D2; D3/, and hence is true for every triple.) Thus, exactly one of
the elements g and s ı g transforms q0 into q0.

It remains to check that the stabilizer of q0 in G is isomorphic to S4. We already
know that every permutation s of disks in q0 can be achieved by an element g 2 G0,
since there is a g 2 G that sends .D1; D2; D3; D4/ to .Ds.1/; Ds.2/; Ds.3/; Ds.4//.
Assume that g ¤ e belongs to the stabilizer of the ordered quadruple q0 in G. Then
g cannot be in G (it has at least six fixed points).

Recall that the set GnG of antiholomorphic transformations, not being a
group, still acts simply transitively on the set of ordered triples of distinct points.
The stabilizer of an ordered triple is the reflection in the mirror passing through
three points in question. (It is an easy exercise.) Therefore, it cannot have six fixed
points that are not all on the same circle. (For the original quadruple, these points
are 0; 1 and ˙1˙ i .) ut

There are four quadruples qi , 1 � i � 4, that have with q0 a common triple
Ti D Q0nfDi g. Denote byD0

i the disk in qi that is not in q0 and by si the reflection
that sendsDi to D0

i and preserves all other disks from q0. See Fig. 7.1.
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D3

D1 D2

M1M2

M3

M4

D4

Fig. 7.1 Basic reflections: si .Dj / D Dj for i ¤ j . Here si is the reflection inMi

Theorem 7.3. The group generated by reflections si , 1 � i � 4, is isomorphic to
the group �4 introduced in Info H.

Outline of the proof. First of all, we recall (see Info H) that we have labeled
elements of the group �4 with words in the alphabet f1; 2; 3; 4g that do not contain
any digit twice in a row. We call such words reduced.

Recall also that l.w/ denotes the length of a word w, andW .k/ denotes the set of
all reduced words of length k. Thus, the set W .0/ contains only the empty word ;;
the set W .1/ contains four words fig, where i D 1; 2; 3; 4;; the set W .2/ contains
12 words fij g, i ¤ j ; etc.

Evidently, we have an action of �4 on the gasket A0: the generators act as
reflections fsi g. Let Di.�/ denote the image of the disk Di under the action of the
element � 2 �4. The idea of the proof is to show that all disksDi.�/ are distinct.

First, we observe that Di.�1/ ¤ Dj .�2/ for i ¤ j . This follows from the fact
that we can color all disks from A0 in four colors, so that all four colors occur in
every quadruple of mutually tangent disks. Indeed, the set S2nq0 consists of four
triangles bounded by three disks of different colors. So, for a new disk inscribed in
each triangle, we can use the complementary color. In this new picture, again all
quadruples contain four disks of different colors and we can continue the coloring.

The action of �4 preserves the coloring, since the generators have this property.
Now we can define a new numeration of disks in A0. Namely, let us consider

all finite nonempty words in the alphabet f1; 2; 3; 4g without repeating digits. To a
one-digit word fig we associate the disk D0

i D siDi 2 qi . In general, we associate
to a word fi1i2 : : : ikg the disk si1 si2 � � � sikDi1 .
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It is enough to check that Di.�/ ¤ Di for � ¤ e. We leave this as a (nontrivial)
exercise. One way is to compare the numeration of disks in Sect. 5.1 with labeling
of elements of �4 above. Another way is to see how the numeration changes when
we replace the quadruple q0 by qi WD si � q0. ut

We continue to study the action of G on disks.

Exercise 7.1. (a) Find all transformations g 2 G that preserve the unordered triple
D1; D2; D3.

(b) Same question about the unordered quadrupleD1; D2; D3; D4.

Hint. (a) Consider the triple of tangent points 1˙ i and 1.
(b) Find which solutions to (a) preserve the disk D4.

From Exercise 7.1, we derive the following result.

Theorem 7.4. (a) The stabilizer S � G of any unordered triple of mutually
tangent disks in A is contained in Aut.A/ and is isomorphic to S3: all
permutations of the triple are possible.

(b) The stabilizer S � G of any unordered triple in A is contained in Aut.A/ and
is isomorphic to S3 � S2; the central element, generating S2, is the reflection in
the mirror orthogonal to @D1; @D2; @D3.

(c) The stabilizer in G of every unordered quadruple of mutually tangent disks in
A is contained in Aut.A/ and is isomorphic to A4: all even permutations of the
quadruple are possible.

(d) The stabilizer in G of every unordered quadruple in A is contained in Aut.A/
and is isomorphic to S4: all permutations of the quadruple are possible.

(e) The group Aut.A/ acts simply transitively on the set of ordered quadruples in
A. With respect to Aut.A/, the ordered quadruples form two orbits.

For an ordered triple QT , the stabilizer in G is trivial, so an element g 2 G is
completely determined by the ordered triple g � QT . For the same reason, an element
g 2 G is completely determined by the ordered quadruple g � Qq.

Now consider all pairs of tangent disks in A0. They form a homogeneous set
with respect to the group Aut.A/. The stabilizer of fD1; D2g coincides with the
group Aff.1; Z/, which is isomorphic to �2 D Z2 � Z2. Indeed, the stabilizer in
question consists of transformations w ! ˙w C k, k 2 Z, and is freely generated
by reflections s1.w/ D �w, s2.w/ D 1 � w.

Finally, consider the stabilizer in Aut.A/ of the disk D1 2 A0. It is convenient
to replace the gasket A0 by 1

2
.A0 C 1� i/, so thatD1 becomes the upper half-plane

and the tangent points ofD1 with D3 and D4 will be 0 and 1; see Fig. 7.2.
Then the stabilizer of this new D1 in G is a subgroup of PSL.2; C/ that

stabilizes the upper half-plane. We leave it to the reader to check that it coincides
with PSL.2; R/ � G. The stabilizer in G is obtained by adding the reflection
s0.w/ D � Nw.
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D1

D2

Fig. 7.2 The stabilizer of a pair .D1; D2/

The three generators of �4 that preserveD1 are

s1 W w 7! �2 � Nw; s2 W w 7! 2 � Nw; s3 W w 7! Nw�1: (7.1.1)

So the stabilizer ofD1 in AutA is generated by

a1 D s0s1 W w 7! w�2; a2 D s0s2 W w 7! wC2; a3 D s0s3 W w 7! �w�1: (7.1.2)

It is not difficult to see that the matrices

�
1 �2
0 1

�
and

�
0 �1
1 0

�
generate a subgroup

of SL.2; Z/ that consists of matrices with two even and two odd elements.

7.2 Action of the Group �4 on an Apollonian Gasket

Let q0 be the original quadruple (see the text before Theorem 7.2). Denote by si ,
1 � i � 4, the reflection preserving three disks from q0, exceptingDi .

Theorem 7.5. (a) The group generated by s1; s2; s3; s4 is isomorphic to �4. The
action of this group on disks has four orbits, each of which contains one of the
initial disks D1; D2; D3; D4.

(b) The stabilizer of D1 is generated by reflections s2; s3; s4 and is isomorphic to
�3. The action of this group on disks tangent to D1 has three orbits, each of
which contains one of the disks D2; D3; D4.

(c) The stabilizer of D1; D2 is generated by reflections s3; s4 and is isomorphic to
�2. The action of this group on disks tangent to both D1; D2 has two orbits,
each of which contains one of the disks D3; D4.

We omit the proof based on the results of previous sections but give here an
illustration in which disks of four different �4-orbits have different colors (Fig. 7.3).
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Fig. 7.3 Orbits of �4

There is another group generated by reflections that acts on an Apollonian gasket.
Namely, let hij be the reflection in the mirror that passes through the tangent point
tij of Di and Dj and is orthogonal to two other initial disks. It is clear that this
reflection interchanges Di and Dj and preserves two other initial disks. Let H be
the group generated by the six reflections hij . We leave it to the reader to check that
H is finite and isomorphic to the permutation group S4.

Theorem 7.6. The full group Aut.A/ of fractional linear transformations of an
Apollonian gasket A is the semidirect product H Ë �4 of the subgroup H and the
normal subgroup �4.

Outline of proof. By definition,H permutes the initial disks, and hence conjugation
with h 2 H yields the corresponding permutation of generators si . It follows that
the action of H normalizes the action of �4.

Further, from Theorem 7.4, we conclude that �4 can transform any unordered
quadruple q to the initial quadruple q0 (also considered unordered). Since H
permutes the four disks of q0, using the groupH Ë�4, we can transform any ordered
quadruple q in A to the ordered quadruple q0.
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Let now � 2 G be any transformation of A. It sends the initial ordered quadruple
q0 to some ordered quadruple q. There exists an element � 0 2 H Ë �4 that sends
q back to q0. The composition � 0 ı � preserves q0, hence is the identity. Therefore,
� D .� 0/�1 belongs to H Ë �4, and we are done. ut
Exercise 7.2. Let M be the collection of all mirrors for A0. Is it a homogeneous
space for �4, for Aut.A/, and for Aut.A/?

Here we construct a group of transformations of quite a different kind. Let si , i D
0; 1; 2; 3, denote linear transformations of R4 that send a point c D .c0; c1; c2; c3/

to the point c0 D .c0
0; c

0
1; c

0
2; c

0
3/, where

c0
k D

(
ck if k ¤ i;

2
P

j¤i cj � ci if k D i:
: (7.2.1)

Lemma 7.1. The transformations si preserve the quadratic form

Q.c/ D .c0 C c1 C c2 C c3/
2

2
� .c20 C c21 C c22 C c23/;

hence send a solution of Descartes’s equation to another solution.

Proof. The hyperplane Mi given by the equation ci D P
j¤i cj is invariant under

si , since for the points of this hyperplane, we have c0
i D 2ci � ci D ci . Hence si is

a reflection in Mi in the direction of the i th coordinate axis.
From Eq. (4.1.3), we see first that Descartes’s equation has the form Q.c/ D 0,

and second that the coordinate ci of a solution c satisfies the quadratic equation
c2i Cpci Cq D 0, where p D �2Pj¤i cj . Therefore, the second solution c0

i to this
equation satisfies c0

i C ci D �p (Viète’s theorem). Thus, we get another solution to
Descartes’s equation if we replace ci by c0

i , leaving all other coordinates unchanged.
ut

Recall that we have defined above the change of coordinates (5.4.1) that sends
integral solutions to Descartes’s equation to integral light vectors in Minkowski
space R

1;3 with coordinates t; x; y; z. So we can consider the transformations si
acting on R

1;3. Lemma 7.2 implies that they belong to the pseudoorthogonal group
O.1; 3I R/. In fact, one can prove a more precise statement.

Exercise 7.3. Show that si acts on R
1;3 as a reflection:

si .v/ D v � 2.v; �i /

.�i ; �i /
�i ; (7.2.2)



128 7 Geometric and Group-Theoretic Approach

where �i , 0 � i � 3, are the column vectors of the matrix

0

BB
@

1 1 1 1

1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1

CC
A, which

reducesQ.c/ to diagonal form.

Hint. Check that the transformations (5.4.1) in the space R
4 with coordinates

.c0; c1; c2; c3/ are reflections.

Let �4 be the free product of four copies of the group Z2 D Z=2Z.

Lemma 7.2. The group �4 is isomorphic to the semidirect product Z2 Ë F3, where
F3 is the free group on three generators, and the nontrivial element of Z2 acts on F3
by the outer automorphism inverting all generators.

Proof. Indeed, let

�4 D hs0; s1; s2; s3
ˇ
ˇ s2i D 1i:

Introduce the new generators s WD s0 and �i WD s0si , i D 1; 2; 3. Then s2 D 1,
s�i s D ��1

i , and we have only to show that the �i are free generators. The proof can
be obtained from the explicit realization of �4 given above. ut

We define the homomorphismˆW�4 ! O.1; 3I R/ byˆ.si / D si , i D 0; 1; 2; 3.

Theorem 7.7. ˆ is an isomorphism of �4 to some discrete subgroup Q�4 in
OC.1; 3I R/.

The generators of Q�4 are

ˆ.�1/ D

0

BB
@

5 �4 2 2
4 �3 2 2
2 �2 1 0
2 �2 0 1

1

CC
A ; ˆ.�2/ D

0

BB
@

5 2 �4 2
2 1 �2 0
4 2 �3 2
2 0 �2 1

1

CC
A ;

ˆ.�3/ D

0

B
B
@

5 2 2 �4
2 1 0 �2
2 0 1 �2
4 2 2 �3

1

C
C
A I ˆ.s/ D

0

B
B
@

2 �1 �1 �1
1 0 �1 �1
1 �1 0 �1
1 �1 �1 0

1

C
C
A :

The first three matrices are unipotent with Jordan block structure .3; 1/. It would
be interesting to give a direct geometric proof of the discreteness of the group Q�4
(see, e.g., [CH65]).



Chapter 8
MultiDimensional Apollonian Gaskets

8.1 General Approach

Consider the analogue of the Descartes disk problem: find the relationship between
curvatures of nC 2 mutually tangent balls in R

n.
Here again, it is better to extend R

n, adding one infinite point 1. The resulting
space R

n
is topologically equivalent to the unit sphere Sn in the vector space RnC1

with coordinates ˛1; : : : ; ˛nC1 given by the equation
PnC1

kD1 ˛2k D 1.
Let Bn be the set of all balls in Rn. We introduce several parameterizations of

Bn. It is instructive to compare this general result with the case n D 2 studied in the
previous sections.

First Parameterization. Let R1;nC1 be the .nC 2/-dimensional real vector space
with coordinates .p0; : : : ; pnC1/, endowed with the quadratic form

jpj2 WD �
p0
�2 � �

p1
�2 � �

p2
�2 � � � � � �

pnC1
�2
: (8.1.1)

To every vector p 2 R
1;nC1 with jpj2 < 0 we associate a half-space Hp � R

nC1
defined by the condition

Hp WD
(

˛ 2 R
nC1

ˇ̌
ˇ
ˇ p

0 C
nC1X

kD1
pk˛k � 0

)

: (8.1.2)

Exercise 8.1. Show that the intersection Sn
T
Hp is:

 for jpj2 > 0, empty;
 for jpj2 D 0, either the whole sphere or a single point (which one?);
 for jpj2 < 0, a closed ball, which we denote by Bp .

Hint. Consider in R
nC1 the projection onto a line orthogonal to Hp .

A.A. Kirillov, A Tale of Two Fractals, DOI 10.1007/978-0-8176-8382-5 8,
© Springer Science+Business Media New York 2013

129
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It is clear that for c > 0, the half-spaces Hp and Hcp coincide, whence Bp D
Bcp . So we can and will normalize p by the condition jpj2 D �1. Thus, the set Bn
of all balls in Sn is parameterized by the points of the hyperboloid jpj2 D �1 in
R
1;nC1.

Second Parameterization. Define the stereographic projection s W Sn ! R
n

as in
Info F. This map gives a bijection of Sn onto R

n
and sends balls to balls.

The inequality from (8.1.2) goes to the inequality

aC .b; x/C c.x; x/ < 0; (8.1.3)

where x D .x1; : : : ; xn/; b D .p1; : : : ; pn/; a D p0 �pnC1; c D p0CpnC1 and
the condition ac � jbj2 < is satisfied. We normalize, as we did before, the vector
.p0; : : : ; pnC1/, or the triple .a; b; c/, by the condition jpj2 D ac � jbj2 D �1.

We leave it to the reader to find a proof of the following lemma.

Lemma 8.1. Two balls Bp1 and Bp2 are tangent iff jp1 C p2j2 D 0.

Exercise 8.2. Assume that @Bp1 and @Bp2 contain a common point x. Find the
angle between the radii of Bp1 and Bp2 at x.

Hint. Use the fact that the answer essentially does not depend on the dimension n:
only the intersection of the whole picture with the plane passing through the centers
of balls and the tangent point matters.

Answer.
cos˛ D �.p1; p2/: (8.1.4)

Let nowBpk , k D 1; 2; : : : ; nC2, be mutually tangent balls in Rn. Then, exactly
as in Sect. 4.2, we see that1

�
pi ; pj

� D 1 � 2ıi;j :

Thus the eigenvalues of the Gram matrixGi;j D �
pi ; pj

�
are 2 with multiplicity

n C 1, and �n with multiplicity 1. Therefore, the Gram matrix is nonsingular, and
the vectors pk , 1 � k � nC 2, form a basis in R

1;nC1.
Further, we introduce for each vector v 2 R

1;nC1, two kinds of coordinates:
covariant coordinates vk D .v; pk/ and contravariant coordinates vk by the
condition v D P

vkpk .
The relations between the two kinds of coordinates are derived exactly as we did

in Sect. 1.4 for the two-dimensional case. They are

vj D
X

i

vi � 2vj ; vi D 1

2n

X

j

vj � 1

2
vi :

1This follows also from (8.1.4), since for externally tangent balls, cos ˛ D cos� D �1.
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The quadratic form in these coordinates is expressed as

jvj2 D
 
X

i

vi
!2

� 2
X

i

.vi /2 D 1

2n

0

@
 
X

i

vi

!2
� n

X

i

.vi /
2

1

A :

Put now v D .1; �1; 0; : : : ; 0; 0/; then vk D �
v; pk

� D pnC1
k C p0k D ck .

Recall that ck is the curvature of the ball Bpk . Since jvj2 D 0, we get

 
X

k

ck

!2
D n �

X

k

c2k; (8.1.5)

which is the n-dimensional analogue of Descartes’s equation.

Exercise 8.3. � Prove the n-dimensional analogue of the generalized Descartes
equation:

˙2
1 D n �˙2 � 2n2 � 1; (8.1.6)

where

˙1 D
nC1X

iD0
Mi ; ˙2 D

nC1X

iD0
M 2
i ; (8.1.7)

andMi , 0 � i � nC 1, are matrices corresponding to nC 2 mutually tangent balls
in R

n.

Let fB0
kg1�k�n be a set of mutually tangent balls in R

n. We want to describe all

sequences fBj gj2Z of balls in R
n

that have the property that Bj is tangent to Bj˙1
and to all fB0

kg1�k�n. Let dk be the curvature of B0
k and let cj be the curvature

of Bj . From (8.1.5) we have two equations:

.cj C cj˙1 C d1 C � � � C dn/
2 D n � �c2j C c2j˙1 C d21 C � � � C d2n

�
:

Subtracting one from the other, we get

2cj C cjC1 C cj�1 C 2d1 C � � � C 2dn D n.cjC1 C cj�1/;

or
.n � 1/.cjC1 C cj�1/ � 2cj D 2.d1 C � � � C dn/:

It is an inhomogeneous recurrence equation for the sequence fcj g. Subtracting
two such equations for successive j ’s, we get the homogeneous recurrence equation

.n � 1/cjC1 � .nC 1/cj C .nC 1/cj�1 � .n � 1/cj�2 D 0: (8.1.8)

The corresponding characteristic equation is

.n � 1/�3 � .nC 1/�2 C .nC 1/� � .n � 1/ D 0 (8.1.9)
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with roots �0 D 1; �˙1 D 1˙p
n.2�n/
n�1 . Note the different structures of these roots

and consequently the different behaviors of the series fcj g in cases n D 2, n D 3,
and n > 3.

When n D 2, the characteristic equation has a triple root � D 1. It follows that
the corresponding sequence fcj g is quadratic in j . Indeed, for n D 2, the left-hand
side of (8.1.8) is exactly the third difference of the sequence fcj g.

For n D 3, the characteristic equation has roots 1 and 1˙p�3
2

, i.e., two sixth
roots of unity that are not cube roots. Therefore, the sequence fcj g is 6-periodic.
Moreover, not only the curvatures but the balls themselves form a 6-periodic
sequence. This fact was known already in ancient Greece (see [Sod36] for details).

There is one more circumstance that we would like to mention. Since only three
out of the six possible sixth roots of unity have been used, the sequence fcj g not
only is 6-periodic, but has an additional property: cj C cjC3 is independent of j .

We leave to the reader to formulate the corresponding geometric property of the
ball sequence.

Exercise 8.4. Let B1; B2; B3 be three unit balls in R
3 that are mutually tangent.

Find six balls that are tangent to all of Bk , k D 1; 2; 3.

Hint. The corresponding curvatures are 0; 0; 3; 6; 6; 3.

For n > 3, the situation is quite different. The characteristic equation has one real

root �0 D 1 and two complex roots �˙1 D 1˙ipn2�2n
n�1 of absolute value 1. Write

them in the form �˙1 D e˙i˛. Then cos˛ D 1
n�1 .

Proposition 8.1. All integral solutions to the equation cos 2�
m

D 1
n

have the form
m D n D 1; m D 2, n D �1; m D 3, n D �2Im D 6, n D 2.

It follows that for n > 3, the sequence of balls fBj gj2Z in R
n tangent to n given

balls has a quasiperiodic character and self-intersects infinitely many times.
From the recurrence relation

cjC1 D 2

n � 1
cj � cj�1; (8.1.10)

we conclude also that for n > 3, the curvatures cannot be integers for all j .

8.2 The Three-Dimensional Apollonian Gasket

As we saw above, the case n D 3 is exceptional. From any integral solution
.c1; : : : ; c5/ to Descartes’s equation, we can make five new solutions; namely, the
i th transformation si replaces ci by

P
j¤i cj � ci and preserves all other cj . The

transformations si satisfy as before the relations s2i D Id, but moreover, they satisfy
the relations .si sj /3 D Id for i ¤ j . Hence, every pair .si ; sj /, i ¤ j , generates a
group isomorphic to S3, the Weyl group for A2.
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Still more interesting is that any three reflections .si ; sj ; sk/ generate the affine
Weyl group for A2, which is the semidirect product S3 Ë Z

2.

Proposition 8.2. For any three mutually tangent balls, the set of balls tangent to
all three can be parameterized by the circle T D R=2�Z, so that the balls B˛ and
Bˇ are tangent iff j˛ � ˇj D �

3
mod Z.

Proposition 8.3. For any two mutually tangent balls, the set of balls tangent to both
of them can be parameterized by a sphere S2, or better, by R2, so that the balls B˛
and Bˇ are tangent iff j˛ � ˇj D 1.

We leave to the reader to prove these propositions and relate their statements to
the structure of the subgroups hsi ; sj i and hsi ; sj ; ski.

Problem 8.1. Determine the structures of the group � D hs1; s2; s3; s4; s5i and its
subgroup hsi ; sj ; sk; sl i.

A great deal of useful information about this problem can be found in the book
[EGM98]. See also [Con97] as a very interesting introduction to the theory of
quadratic forms.

The notion of a nice parameterization can be generalized to the three-dimensional
case. Consider the algebraic number field K D QŒ"�, where " D e

2�i
3 is a cube root

of unity. A general element of K has the form k D ˛"C ˇ N", where ˛; ˇ 2 Q, and
bar means complex conjugation. Note that

jjkjj2K D jkj2 D k Nk D ˛2 � ˛ˇ C ˇ2: (8.2.1)

Denote by E the set of all complex numbers of the form a"C b N", where a; b 2 Z.
It is the set of integers in the algebraic number field K . There are six invertible
integers with norm 1: ˙1, ˙", ˙N". They are called units of the ring E . It is well
known that every element of E can be uniquely (modulo units) written as a product
of primes. As for the primes, they include all rational (i.e., ordinary) primes of the
form p D 3m�1 and also the numbers k D a"Cb N" for which jkj2 D a2�abCb2

is equal to 3 or to a rational prime of the form 3mC 1.
It follows that every element k 2 K can be uniquely (modulo units) written as a

fraction p

q
, where p; q 2 E have no common factors (except units). It can be also

written as k D l"CmN"
n

, where l; m; n are ordinary integers with gcd.l; m; n/ D 1.

Definition 8.1. Let D be a 3-ball in an integral three-dimensional Apollonian

gasket A. A parameterization of @D by the points of R
2

is called nice if the tangent

points forD and other balls in A correspond exactly to elements of K � R
2
.

Let Dk 2 A be the ball tangent to D that corresponds to the point k D p

q
2 K.

Theorem 8.1. Nice parameterizations exist and have the following properties:

(a) Let K 3 k D p

q
. The curvature ck of the ball Dk has the form
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ck D ˛jpj2 C ˇp Nq C Ň Npq C � jqj2 C ı; (8.2.2)

where ˛; �; ı 2 R, ˇ 2 C.
(b) There is a coordinate system .x1; x2; x3/ in the ambient space R3 such that

xi D ˛i jpj2 C ˇip Nq C Ň
i Npq C �i jqj2 C ıi

˛jpj2 C ˇp Nq C Ň Npq C � jqj2 C ı
: (8.2.3)

(c) Let ki D pi
q1

, i D 1; 2. The balls Dk1 andDk2 are tangent iff

jk1 � k2j D 1

jq1q2j : (8.2.4)

We leave to the reader the proof of the theorem and development of the matrix
variant of the theory.

In conclusion, we illustrate Theorem 8.1 by two examples of nice parameteriza-
tions for a three-dimensional Apollonian gasket.

We associate to a ball in R
3 with center x C iy C j z and radius r the Hermitian

matrix

�
a b
Nb c
�

, where c D 1
r
, b D xCiyCj z

r
, Nb D x�iy�j z

r
, a D x2Cy2Cz2�r2

r
.

Our gasket A is the analogue of the band plane gasket. It contains two half-

spaces, z � 1 and �z � 1, corresponding to matricesM˙ D
�
2 �j

˙j 0

�
; further, it

contains infinitely many unit balls corresponding to matrices

�jvj2 � 1 v
�Nv 1

�
, where v

runs through the lattice V � C generated by 2" and 2 N".
Our first example is the parameterization of all balls tangent to the plane z D 1

by the elements of NK. Namely, to k D p

q
2 NK we associate the matrix

Mk D
�
4jpj2 C jqj2 � 2 2p Nq C .1 � jqj2/j
2 Npq � .1 � jqj2/j jqj2

�
: (8.2.5)

The corresponding ball is tangent to the plane at the point tk D �2p
q

C .1 � 1
jqj2 /j

and has radius r D 1
jqj2 .

Our second example is the parameterization of all balls tangent to the unit ball
corresponding to the matrix M D � �1 0

0 1

�
. Here we have

Mk D
� jpj2 C jqj2 C 1 2p Nq C .jpj2 � jqj2/j
2 Npq C .jqj2 � jpj2/j jpj2 C jqj2 � 1

�
: (8.2.6)

The corresponding ball is tangent to the unit ball at the point tk D �2p NqC.jqj2�jpj2/j
jpj2Cjqj2

and has the radius r D 1
jpj2Cjqj2�1 .
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