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Abstract We survey the recent solution of the so-called A, conjecture, that states:
all Calderén—Zygmund singular integral operators are bounded on L2?(w) with
a bound that depends linearly on the A, characteristic of the weight w. We
also survey corresponding results for commutators. We highlight the interplay of
dyadic harmonic analysis in the solution of the A, conjecture, especially Hytonen’s
representation theorem for Calderén—Zygmund singular integral operators in terms
of Haar shift operators. We describe Chung’s dyadic proof of the corresponding
quadratic bound on L?(w) for the commutator of the Hilbert transform with a BM O
function, and we deduce sharpness of the bounds for the dyadic paraproduct on
L”(w) that were obtained extrapolating Beznosova’s linear bound on L?(w). We
show that if an operator T is bounded on the weighted Lebesgue space L” (w) and
its operator norm is bounded by a power « of the A, characteristic of the weight,
then its commutator [7, b] with a function b in BM O will be bounded on L"(w)
with an operator norm bounded by the increased power o + max{l, ﬁ} of the
A, characteristic of the weight. The results are sharp in terms of the growth of the
operator norm with respect to the A, characteristic of the weight forall 1 < r < oo.
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1 Introduction
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ITfllzrwy < C,v) | flLrs (1)

where f € LP(u) iff || f || Lrw = (f | f(x)]Pu(x) dx)'/? < oo, and u, v are locally
integrable positive a.e. functions defined on R”. When u = 1 we denote || /|, :=

| f Iz -

Two-weight problem: Find necessary and sufficient conditions on the weights so
that above inequality holds for a given operator or class of operators T, and find
the optimal rate of dependence of the constant C(w) on the weight.

In this survey we will concentrate on one-weight inequalities, u = v, for
Calder6n—Zygmund singular integral operators, more specifically for the Hilbert
transform 7 = H and for the commutator of the Hilbert transform with a function b
in the space BM O of bounded mean oscillation, namely 7 = [b, H] := bH — Hb.

The Hilbert transform is bounded on L? (w) if and only if the weight w belongs to
the Muckenhoupt A, class [31]. This is also true for Calderén—Zygmund singular
integral operators [11]. A weight w is in the Muckenhoupt A, class if

W]a, :=su L/w L/w_l/(”_l) . < 00 2
SRR ANVTN/RYANTIN '

In the last decade there has been a flurry of activity trying to identify the exact
dependence of the operator bound on the A, characteristic, [w]4,, of the weight.
This dependence was first proved to be linear in A, for a few dyadic operators [30,
79,80], then for the Beurling—Ahlfors [70], Hilbert [67], and Riesz transforms [68],
and for the dyadic paraproduct [4]. Finally Tuomas Hytdnen solved in the positive
the A, conjecture [33]: If T is a Calderén—Zygmund singular integral operator,
w € Ay, then the dependence on the A, characteristic of the weight is linear, that is,

ITf N 2wy < CWLa LS 2260y 3

Sharp extrapolation [20] then yields the correct L” bounds for the class of
Calderén—Zygmund singular integral operators:

max{l,%}
ITf v < Colwly, "I lLrow-

Remark. The long-standing two-weight problem for the Hilbert transform “a la
Muckenhoupt” is an outstanding open problem: Characterize the pairs of weights
(u,v), in terms of conditions like the A, condition in the one-weight problem, for
which (1) holds. Recently there has been progress due to Lacey, Sawyer, Shen, and
Uriarte-Tuero [45]. Note that Cotlar and Sadosky solved, years ago, the two-weight
problem “a la Helson-Sz&go,” that is, using complex analysis techniques [13, 14].

In this chapter we want to highlight the interplay with dyadic harmonic analysis
[60] in the solution of the A, conjecture. Initially the A, conjecture was shown to
hold, one at a time, for dyadic operators and for operators such as the Hilbert trans-
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form that have lots of symmetries. Stephanie Petermichl showed, in groundbreaking
work in 2000, that the Hilbert transform can be written as an appropriate average of
dyadic shift operators [32,66], and later she showed, in a tour de force using Bellman
function techniques, that for the dyadic shift operators the A, conjecture is true
and therefore also for the Hilbert transform [67]. This work represented a quantum
jump in our understanding of singular integral operators. Until then a simpler
dyadic model, the martingale transform, was considered the toy model for singular
integrals. One would first try to prove results for this model and then hope to prove
them for a genuine singular integral operator, but the transition was by no means
automatic [60]. Petermichl’s representation theorem made this transition trivial for
the Hilbert transform. For a while it seemed that the miracle of this representation
theorem was a consequence of the symmetries of the operator. Similar constructions
were found for other symmetric operators: the Riesz transform (n-dimensional
analogue of the Hilbert transform) [68], the Beurling—Ahlfors transform [70], and
for sufficiently smooth convolution Calderén—Zygmund singular integral operators
[76]. The fact that for the Beurling—Ahlfors transform the A, conjecture holds for
p > 2 (linear estimate in A, characteristic in the range of p > 2) had important
implications in the theory of quasiconformal mappings [2].

All these operators have a representation as averages of dyadic Haar shift
operators of bounded complexity. In 2008, Oleksandra Beznosova showed that the
linear bound on L?(w) also holds for the dyadic paraproduct, an operator not in
the above class [4]. Hytonen was able to prove a representation theorem valid for
all Calderén—Zygmund singular integral operators (not only convolution) in terms
of dyadic Haar shift operators of arbitrary complexity, paraproducts, and adjoints
of the paraproducts. Different groups of researchers had already shown that the A,
conjecture was true for all these Haar shift operators [17, 18,44], using techniques
other than Bellman function which had dominated the scene until then. However, the
dependence of the operator bound on the complexity was exponential and prevented
one from deducing the A, conjecture for general Calderén—Zygmund singular
operators. Only for those operators that were averages of dyadic shift operators
of bounded complexity one could deduce the A, conjecture. Hytonen was able to
overcome this obstacle as well, proving a polynomial dependence on the complexity
and the linear dependence on the A, characteristic of the weight for Haar shift
operators, therefore proving the A, conjecture [33]. Precursors to Petermichl’s and
Hytonen’s results can be found in Figiel’s work [24]. Nowadays some of the simpler
arguments yielding polynomial and even linear dependence on the complexity use
minimally Bellman functions [54, 74], or do not use them at all [37,42].

The commutator [», H] is more singular than the operator H, and this is reflected
on the nature of its bounds on weighted L? spaces. Daewon Chung showed in [8]
that

1B, H1f 200y < COWELILS 226 “

That is, the dependence on the A, characteristic of the operator bound is now
quadratic as opposed to the linear bound enjoyed by the Hilbert transform. Chung’s
proof can be labeled as a dyadic proof. It suffices to consider the commutator
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with Petermichl’s Haar shift operator [69]. Then known linear bounds for the
shift operator [67] and for the dyadic paraproduct [4] can be used, and Bellman
function arguments can be invoked as did all of Chung’s predecessors until then. We
observe that the sharp bounds for the commutator of the Hilbert transform imply
that Beznosova’s bounds [4] are the sharp bounds for the dyadic paraproduct in
L?(w), which was not known until now. The author in collaboration with Chung and
Carlos Pérez established a transference theorem that states that if a linear operator
T obeys a linear bound on L?(w) then its commutator with a BMO function
obeys a quadratic bound [10]. In light of Hytonen’s theorem this means that all
commutators of Calder6n—Zygmund singular operators with BM O functions obey
a quadratic bound as in inequality (4). The argument follows the classical Coifman,
Rochberg, and Weiss argument [12] exploiting the Cauchy integral formula and
some very precise quantitative results in the theory of A, weights and BMO
functions. Generalizations of these results to commutators with fractional integrals
and to the two-weight setting appear in [16], and weak-type estimates and strong
estimates involving instead the A characteristic of the weight appear in [59]. In this
note we present the simple modifications necessary to state a transference theorem
that provides bounds on L"(w), r # 2, for the commutator given corresponding
bounds on L” (w) for the initial operator.

The author strongly believes that Petermichl and Hytonen’s representation theo-
rem in terms of dyadic operators could have important consequences in applications,
in the same way that the 7'(1) theorem [19] had repercussions in computational
harmonic analysis via the Beylkin, Coifman, and Rokhlin algorithm to decompose
singular integral operators [3].

This chapter is organized as follows. In Sect.2 we define the Hilbert transform
and the dyadic Haar shift operators, recall some of their basic properties, state
Petermichl’s representation theorem, and show how it provides a straightforward
proof of the boundedness of the Hilbert transform on L?(R) (Riesz’s theorem). In
Sect. 3 we discuss weighted inequalities for the Hilbert transform and recount the
prehistory of linear estimates for dyadic operators on L?(w). We state the sharp
extrapolation theorem and deduce L”(w) bounds from linear bounds and observe
that these bounds are sometimes sharp, but not always, as Buckley’s estimates for
the maximal function show. We then define the Haar shift operators of complexity
(m,n), discuss their boundedness properties, and state Hytonen’s theorem (the
A, conjecture), as well as his representation theorem. In Sect.4 we define the
commutator, state its boundedness properties, and sketch Chung’s dyadic proof of
the quadratic estimate on L?(w). We note that this quadratic estimate is sharp, and
we show that Chung’s dyadic method of proof implies that Beznosova’s bound
for the dyadic paraproduct is sharp as well. Finally we state a variation of the
transference theorem for commutators on L" (w) with r # 2 and present its proof in
the Appendix.
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2 Hilbert Transform Versus Dyadic Shift Operators

We define the Hilbert transform both on Fourier and space domains, and we describe
its boundedness and symmetry properties. We introduce the dyadic intervals, the
random dyadic grids, and corresponding Haar bases, and we emphasize some of the
properties these bases share with wavelets such us being an unconditional basis on
L7 spaces. We define Petermichl’s Haar shift operators and describe their symmetry
properties; we state Petermichl’s representation theorem and show how it provides
a straightforward proof of the boundedness of the Hilbert transform on L?(R).

2.1 Hilbert Transform

In this section we recall the definition of the Hilbert transform on Fourier domain as
a Fourier multiplier and on space domain as a convolution with a singular kernel. We
also recall how symmetry properties completely characterize the Hilbert transform.
These are well-known facts that can be found in any Fourier analysis book such as
[21,26,73]. You will also find here the definition of BM O, the space of functions
of bounded mean oscillation.

2.1.1 Fourier Multiplier

The Fourier transform of a Schwartz function is defined by
7© = [ feemiar
R

With some work one can define the Fourier transform on L?(R) and show that it

is an isometry, that is, ||?||2 = || f'|| (Plancherel’s identity).
On Fourier side the Hilbert transform can be defined as a Fourier multiplier:

HF €) = —i sgn(®) 1 (&), )
where sgn(§) = 1if £ > 0,sgn(§) = —1if £ <0, andis zero at £ = 0.

The absolute value of the symbol m g (§) := —i sgn(§) is 1 a.e., and Plancherel’s
identity used twice implies that H : L?(R) — L?(R) and that it is an isometry:

LHS a=IHF la=[F = ll2-
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2.1.2 Singular Integral Operator

Since the Hilbert transform is given on Fourier side by

Hf€) = mu(©) £ (&),

multiplication on Fourier side comes from convolution on space with the distribu-
tional kernel kg which is the inverse Fourier transform of the multiplier mpy. A
calculation yields
ki () o= (m) () = pov.—.
X
For a distributional kernel, the integration must be done in the principal value sense:

Hf(x) = ky * f(x) =p.v.l/Mdy = uml/ SO 45 (6)
T y ‘

0T Jijx—yl>e X — Y

Had the kernel kg been integrable, boundedness on L?(R) would be a conse-
quence of the Hausdorff-Young’s inequality for p > 1:if g € L'(R), f € L?(R),
then ||g* f |, < llgll1]|f|l,- Butky is notin L'(R); despite this fact, H is bounded
on L?(R) forall 1 < p < oo, as Marcel Riesz proved in 1927:

IHf N, = Coll -

However, H is not bounded on L'(R) nor on L>®(R), but there are appropriate
substitutes: H is of weak type (1,1) and is bounded on BM O [21,26,73]. Recall
that a function b : R — R belongs to BM O, the space of bounded mean oscillation,
if and only if

1
61l Bro = Supm / |b(x) —m;b|dx < oo, (7)
I I

where m ;b denotes the integral average of b on the interval I, m;b = ﬁ J; b(x)dx.
This space was introduced by John and Nirenberg in the 1960s [39]. The space of
bounded functions L*°(R) is a proper subset of BM O; the canonical example of a
function that is not bounded but it is in BM O is log | x| [26].

2.1.3 Symmetries

The Hilbert transform commutes with translations and dilations and anticommutes
with reflections, and it is essentially the only bounded linear operator in L?(R) that
has those properties. In what follows 7 € R and § > 0.

¢ Convolution <  H commutes with translations tj, f (x) := f(x — h)

w(Hf) = H(w.f).
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e Homogeneity of kernel < H commutes with dilations Ds f(x) = f(5x)
Ds(Hf) = H(Ds f).
e Kernelodd <« H anticommutes with reflections f (x) := f(=x)

(Hf)=-H(f).

Theorem 1 ([26,73]). Let T be a linear and bounded operator in L*(R) that
commutes with translations and dilations and anticommutes with reflections, then
T must be a constant multiple of the Hilbert transform: T = cH.

Using this principle, Petermichl [66] showed that we can write H as a suitable
“average of dyadic operators”; see also [32].

2.2 Dyadic Shift Operators

We first introduce the dyadic intervals and associated Haar basis, as well as random
dyadic grids. We recall some important properties of the Haar basis shared with
wavelet bases such us being an unconditional system in L? spaces and weighted
L?(w) whenever w € A,. We then describe Petermichl’s averaging theorem and
give some intuition why this should work. We deduce Riesz’s theorem from this
representation, that is, the boundedness on L (R) of the Hilbert transform.

2.2.1 Dyadic Intervals

The standard dyadic grid 9 is the collection of intervals of the form [k27/, (k +
1)27/), for all integers k, j € Z. They are organized by generations: 2 = U;ez%;,
and our labeling is such that I € &; iff |I| = 27/. They satisfy:

e Trichotomy or nestedness: 1,J € 9 then INJ =@, [ CJ, or JcCl.
* One parent, two children: If I € 9;, then there is a unique interval I € 9;_,

such that I C I and |I| = 2|I|. There are exactly two disjoint intervals, the right
and left children /,, I; € Y41, suchthat I = I, U [; and |I| = 2|1,| = 2|1)].

2.2.2 Random Dyadic Grids

A dyadic grid in R is a collection of intervals, organized in generations, each of
them being a partition of R, that have the trichotomy and two children per interval
property. For example, the shifted and rescaled regular dyadic grid will be a dyadic
grid. However, these are not all possible dyadic grids.
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The following parametrization will capture al// dyadic grids. Consider the scaling
or dilation parameter r with 1 < r < 2 and the random parameter B with
B = {Bi}iez, Bi =0, 1;letx; = >, f;2" and then define

@f =x; + 9, and @;‘ﬁ = r@f.
The family of intervals 2"f so defined is a dyadic grid. Here r is a dilation
parameter, and B a random parameter that encode all possible dyadic grids. Notice
that for the standard dyadic grid zero is never an interior point of a dyadic interval,
and it is always on the right side of any dyadic interval it belongs to. If we translate
2 by a fixed number it will simply shift zero, and it will still have this singular
property. The translated grids correspond to parameters 8 such that §; is constant
for all sufficiently large j. But these are not all the possible grids. Once we have
an interval in a dyadic grid its descendants are completely determined, simply
subdivide; however, there are two possible choices for the parent, four possible
choices for the grandparent, and 2" choices for the nth-parent. The parameter
captures all of these possibilities. Those B’s that do not become eventually constant
eliminate the presence of a singular point such as zero in the standard grid.

The random dyadic grids were introduced by Nazarov, Treil, and Volberg in their
study of Calderén—Zygmund singular integrals on nonhomogeneous spaces [56]
and are utilized by Hytonen in his representation theorem [32, 33]. The advantage
of this parametrization is that there is a very natural probability space, say (£2, P)
associated to the parameters, and averaging here means calculating the expectation
in this probability space, thatis, Ef = [, f dP.

2.2.3 Haar Basis

Given an interval [, its associated Haar function is defined to be

hp(x) s= 1720, () = 2 (%),

where y;(x) = 1if x € I, zero otherwise. Note that ||, || = 1, and it has zero
integral [ h; = 0. One can check, from these integral properties and the nestedness
properties of the dyadic intervals, that {/;};c is an orthonormal system in L?(R).
Furthermore, the system is complete, that is, it is an orthonormal basis in LZ(R).

Alfred Haar introduced in 1910 the Haar basis in L2([0, 1]) and showed that for
continuous functions their Haar expansions converge uniformly [28], unlike their
expansions in the trigonometric (Fourier) basis [21,26,73].

A basis is unconditional in L?(R) if and only if changes in the signs of the
coefficients of a function keep it in the same space with comparable norms [82]. The
trigonometric system {e?*"*}, .7 does not form an unconditional basis in L? ([0, 1))
for p # 2 [26,82]. On the other hand, the Haar basis {/;};e% is an unconditional
basisin L”(R). More precisely we can define an operator, the martingale transform,
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given by

Ty f(x) = Zol(f,h])h], where o7 = £1. )
1€9

Unconditionality of the Haar basis in L?”(R) reduces then to show that the
martingale transform is bounded in L?(R) with norm independent of the choice
of signs:

sup ”Tof”p =< Cp”f”p-

This was proved by Burkholder who also found the optimal constant C, [7].

The Haar system {h;};cy is an unconditional basis in L?(w) if and only if
w € A,. This fact is deduced from the boundedness of the martingale transform on
L?(w) [75]. For sharp linear bounds in L?(w) for the martingale transform see [79].

The Haar basis is the first example of a wavelet basis, that is, a basis {; x} j kez,
that is found by translating and dilating appropriately a fixed function v, the
wavelet, more precisely, ¥;x(x) := 27//2y/(2/x + k). The Haar functions are
translates and dyadic dilates of the function /2(x) := y0.1/2)(x) — x[1/2.1)(x). These
unconditionality properties are shared by a large class of wavelets [29,75, 82].

2.2.4 Petermichl’s Dyadic Shift Operator

Petermichl’s dyadic shift operator S associated to the standard dyadic grid & is
defined for function f € L?(R) by

Sf() =Y (fhi)Hi(x).  where Hp:=2""2(h;, —hy).
1€

Petermichl’s shift operator is an isometry in L?(R), that is, it preserves L>-norms,
ISfll2 = |I.f]l2. Notice that if I € &, Sh;(x) = Hj(x). A periodic version of
the Hilbert transform that we denote by H,, has the property that it maps cosines
into sines, H, cos(x) = sin(x). Draw the profiles of /; and H; and you can view
them as a localized sine and cosine. This indicates that this shift operator may be a
good dyadic model for the Hilbert transform. More evidence comes from the way it
interacts with translations, dilations, and reflections.

Denote by S, g Petermichl’s shift operator associated to the dyadic grid Z,g.
Each shift operator S, g does not commute with translations and dilations, nor
does it anticommute with reflections; however, one can verify that the following
symmetries for the family of shift operators {S) g} (- e hold:

* Translation: (S, g f) = Sy, (tn f), Where 7, (r, B) € £2.
* Dilation: Ds(S,8f) = Sp;p(Ds f), where Ds(r, B) € £2.
* Reflection: S, g f = Srﬁ(f), where Bi =1-—8.
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Where the maps tj,, Ds : §2 — §2 are bijections. Each shift dyadic operator does
not have the symmetries that characterize the Hilbert transform, but the average over
all dyadic grids will, therefore,

Theorem 2 (Petermichl’s [32,66]).
ES, g = / S, pdP(r,B) = cH.
Q

Petermichl’s result then follows once one verifies that ¢ # 0 (which she did!).
Similar trick works for the Beurling—Ahlfors [70] and the Riesz transforms [68].
Vagharshakyan showed that sufficiently smooth one-dimensional Calder6n—
Zygmund convolution operators are averages of Haar shift operators of bounded
complexity [76].

2.2.5 L? Boundedness of the Hilbert Transform: A Dyadic Proof
Estimates for the Hilbert transform H follow from uniform estimates for Peter-
michl’s shift operators.

Lemma 1 (Riesz [17]). The Hilbert transform is bounded on L? for 1 < p < oo.

IHf 1l = Cpll £l
Proof. Suffices to check that

sup ”Sr.ﬂf”p = Cp”f”p-
(r.p)eq

Case p = 2 follows from orthonormality of the Haar basis. First rewrite
Petermichl’s shift operator in the following manner, where I is the parent of / in
the dyadic grid 2"F:

1 ~
Srpf = —sgn(l, I){f, hj)h;,

where sgn(/, I) = 1if I is the right child of I and —1 if I is the left child. We can
now use Plancherel to compute the L? norm, and noticing that each parent has two
children,

h+ 2
I 718 = 3 W00 g

1€%p

Minkowski integral inequality then shows that

IES s/, <EISepfll2 < £ l2-

Case p # 2 follows from the unconditionality of the Haar basis on L”(R). O
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3 Weighted Inequalities and the A, Conjecture

In this section we discuss weighted inequalities for the Hilbert transform and recount
the prehistory of linear estimates for dyadic operators on L?(w). We state the sharp
extrapolation theorem and deduce L”(w) bounds from linear bounds and observe
that these bounds are sometimes sharp, but not always, as Buckley’s estimates for
the maximal function show. We then define the Haar shift operators of complexity
(m, n), discuss their boundedness properties, and finally state Hytonen’s theorem
(A, conjecture).

3.1 Boundedness on Weighthed L?

The Hilbert transform is bounded on weighted L”(w); the celebrated 1973 Hunt—
Muckenhoupt—Wheeden theorem says:

Theorem 3 (Hunt—-Muckenhoupt—Wheeden [31]).
we A, < Hf[Lroy = CoWILf lLrow-

Dependence of the constant on the A, characteristic was found 30 years later.

Theorem 4 (Petermichl [67]).

1
max{l,ﬁ

VHS Nron < COL T 1 f o

Proof (Sketch of the proof). For p = 2 suffices to find uniform (on the grids) linear
estimates for Petermichl’s shift operator (this was the hard part which she did using
Bellman functions and a bilinear Carleson embedding theorem due to Nazarov,
Treil, and Volberg [55]). For p # 2 a sharp extrapolation theorem [20] that we
will discuss in Sect.3.1.2 automatically gives the result from the linear estimate
in L(w). O

3.1.1 Chronology of First Linear Estimates on L?(w)

In 1993, Steve Buckley showed that the maximal function obeys a linear bound in
L?(w) [6]. Starting in 2000, one at a time over a span of 10 years, a handful of dyadic
operators or operators with enough symmetries that could be written as averages of
dyadic operators were shown to obey a linear bound in L?(w); see (3):

* Martingale transform (Janine Wittwer [79] in 2000)
* Dyadic square function (Sanja Hukovic, Treil, Volberg [30], Wittwer [80] in
2000)
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* Beurling transform (Petermichl, Volberg [70] in 2002)

* Hilbert transform (Stephanie Petermichl [67] in 2003, published 2007)
* Riesz transforms (Stephanie Petermichl [68] in 2008)

e Dyadic paraproduct in R (Oleksandra Beznosova [4] in 2008)

These estimates were based on Bellman functions and bilinear Carleson esti-
mates by Nazarov, Treil, and Volberg [55]. See [61] for Bellman function extensions
of the results for dyadic square functions to homogeneous spaces. See [9] for a neat
Bellman function transference lemma that allows to use Bellman functions in R to
deduce results in R” with no sweat, similar considerations are used in [74]. There are
now simpler Bellman function proofs that recover the estimates for the dyadic shift
operators [54,74] and for the dyadic paraproduct [52]. The Bellman function method
was introduced in harmonic analysis by Nazarov, Treil, and Volberg, and with their
students and collaborators, they have been able to use this method to obtain a
number of astonishing results not only in this area; see [77, 78] and references.

3.1.2 Estimates in L”(w) via Sharp Extrapolation

The L?(w) inequalities can be deduced from the linear bounds on L?(w), thanks to
a sharp version of Rubio de Francia’s extrapolation theorem [25].

Theorem 5 (Sharp Extrapolation Theorem [20]). Iffor allw € A, there is >0,
and C > 0 such that

ITf llzrony = COW% LS Mmoo

then forallw € A, and 1 < p < oo,

amax{l,%}

1T e < Corbily 70 1Lf oo,

Duoandikoetxea found recently a shorter proof of this theorem [22]. Sharp
extrapolation from r = 2 is sharp for the martingale, Hilbert, Beurling—Ahlfors,
and Riesz transforms for all 1 < p < oo [20]. Therefore the theorem cannot be
improved in terms of the power on the A, characteristic of the weight. However, it
is not necessarily sharp for each individual operator. The theorem is sharp for the
dyadic square function and 1 < p < 2, see [20], but it is not sharp for p > 2, see
[46]. The optimal power for the square function is max{%, ﬁ} (see [18]), which
corresponds to sharp extrapolation starting at r = 3 with square root power instead
of starting at r = 2 with linear power; see also [50]. We conclude that sharp
extrapolation is not always sharp. Buckley’s estimates for the maximal function
are a more dramatic example of the above statement.

Remember the Hardy-Littlewood maximal function is defined as

wmzmﬁ[mmw

I>x
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The maximal function is known to be bounded on L?(R) for 1 < p; it is not
bounded on L!(R), but it is of weak type (1, 1) [21,26,73]. Muckenhoupt showed
in 1972 [53] that the maximal function is bounded on L”(w) if and only if w € 4.
The optimal dependence on the A, characteristic of the weight was discovered by
Buckley 20 years later.

Theorem 6 (Buckley [6]). Letw € A, and 1 < p, then

1
IMfNLron < Cowli 1L f lro-

This estimate is key in the proof of the sharp extrapolation theorem. Observe that
if we start with Buckley’s estimate on L” (w), then sharp extrapolation will give the
right power for all 1 < p < r; however, for p > r, it will simply give ﬁ which is

1

bigger than the correct power =

3.1.3 Estimates for Larger Classes of Operators

Petermichl’s shift operator and the martingale transform are the simplest among a
larger class of Haar shift operators that we now define.
A Haar shift operator of complexity (m, n), Sy .., is defined as follows:

Suaf )= Y i (fhhx), ©)

LED I€Dy(L).J €Dy (L)

I

. ,L
where the coefficients ¢} ;| < 77,

L with length 27| L|.

The normalization of the coefficients ensures that ||S,,., f |2 < || f|l2. The reader
can now check that the martingale transform is a Haar shift operator of complexity
(0, 0) and Petermichl’s shift operator is a Haar shift operator of complexity (0, 1).
However, the dyadic paraproduct mp, which is defined for a functionb € BMO as

and Z,,(L) denote the dyadic subintervals of

w06 = Yo f (b)), where mif = o [ f(ax.

1€2

is not a Haar shift operator. The Haar shift operators were introduced in [44] and
used in [17, 18]. Later, a larger class, the generalized dyadic shift operators, that
included the paraproducts was defined [33, 37], where the Haar functions in (9)
were replaced by |I|7'/2y;(x) and boundedness on L?(R) is now part of the
definition since it will not follow from the normalization of the coefficients. In
this setting the dyadic paraproduct, the martingale transform, and Petermichl’s Haar
shift operator are generalized dyadic shift operators of complexity (0, 1), (1, 1), and
(1, 2), respectively. The adjoint of the dyadic paraproduct, defined by
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x1(x)
1]

wp f() =Y (fohi) (b, k)

1€2

is a generalized dyadic shift operator of complexity (1,0), and the composition
w7y is of complexity (0,0). On the other hand the composition 7,7, is not a
generalized dyadic shift operator; localization has been lost.

The following authors either extend to other settings or recover most of the
previous known results (the linear bounds on L?(w)) and can extend them to the
larger class of Haar shift operators, and in particular averaging appropriately, they
can get Hilbert, Riesz, and Beurling—Ahlfors transforms:

* Lacey, Moen, Pérez, and Torres [43] obtain sharp bound on weighted L? spaces
for fractional integral operators.

* Lacey, Petermichl, and Reguera [44] use a corona decomposition and a two-
weight theorem for “well-localized operators” of Nazarov, Treil, and Volberg,
to recover linear bounds for Haar shifts operators on L?(w); they do not use
Bellman functions. Dependence on the complexity is exponential. This result
does not include dyadic paraproducts.

¢ Cruz-Uribe, Martell, and Pérez [17, 18] recover all results for Haar shift
operators. No Bellman functions, no two-weight results. Instead they use a local
median oscillation introduced by Lerner [47,48]. The method is very flexible,
they can get new results such as the sharp bounds for the square function for
p > 2, they can recover also the result for the dyadic paraproduct, they can
get results for vector-valued maximal operators and two-weight results as well.
Dependence on complexity is exponential.

After these results were posted a lot of activity followed and results covering
larger classes of operators appeared:

* Lerner [48, 50] showed that all standard convolution-type operators in arbitrary
dimension gave the expected result for p € (1,3/2] N [3, co). He also showed
sharp estimates on L?(w) for all p > 1 and for all sort of square functions. This
is based on controlling them with Wilson’s intrinsic square function [81].

* Hytonen, Lacey, Reguera, Sawyer, Uriarte-Tuero, and Vagharshakyan posted a
preprint in 2010 which was then replaced by a 2011 preprint with more authors
[37]. They obtain the desired result for a general class of Calder6n—Zygmund
non-convolution operators, still requiring smoothness of the kernels.

e Pérez, Treil, and Volberg [65] showed that all Calderén—Zygmund operators
obey an almost linear estimate on L2(w): [w]4, log(1 + [w]4,). They identified
the obstacle that would remove the log term.
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3.1.4 The A, Conjecture (Now Theorem)

The A, conjecture said that all Calderén—Zygmund singular integral operators
should obey a linear bound on L?(w). This was finally proved by Tuomas Hytonen
in 2010.

Theorem 7 (Hytonen [33]). Let 1 < p < oo and let T be any Calderon—
Zygmund singular integral operator in R"; then there is a constant cr, , > 0
such that

max{l,ﬁ}
”Tf”Lf’(w) = CTnyp [W]Ap ”f”LP(w)-

It is enough to consider the case p = 2 thanks to sharp extrapolation. Hytonen
proves the representation theorem, gets linear estimates on L?(w) with respect to
the A, characteristic for Haar shift operators, and gets polynomial dependence in
the complexity. Together these imply the theorem for p = 2. We consider the
representation theorem to be of independent interest, and we state it here.

Theorem 8 (Hytonen [33]). Let T be a Calderon—Zygmund singular integral
operator, then

Tf=E( > anaS;hf].

(m.n)€EN?

where the coefficients in the series are of the form a,,, = e "+M%/2 o is the
smoothness parameter of T, and S,;', are Haar shift operators of complexity (m, n)
when (m,n) # (0,0), and when (m,n) = (0,0) they are a linear combination
of a Haar shift of complexity (0,0), a dyadic paraproduct, and the adjoint of the
dyadic paraproduct, all based on the dyadic grid 9, g, and E is the expectation in
the probability space (£2, P) associated to the random dyadic grids 9, p.

Leading to the solution of the A, conjecture were the results of Pérez, Treil, and
Volberg [65]. Since the appearance of Hytonen’s theorem several simplifications of
the argument have appeared [34, 38, 42, 54, 74], as well as an extension to metric
spaces with geometric doubling condition [58]. There is also a very nice survey of
the A, conjecture [41].

Can we expect more singular operators to have worst estimates? Yes, for
example, the commutators of b € BMO with T a Calderén—Zygmund singular
integral operator.

4 Sharp Weighted Inequalities for the Commutator

In this section we define the commutator, state its boundedness properties, and
sketch Chung’s dyadic proof of the quadratic estimate on L?(w). We note that this
quadratic estimate is sharp, and we show that Chung’s dyadic method of proof
implies that Beznosova’s bounds for the dyadic paraproduct are sharp as well.
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Finally we state a variation of the transference theorem for commutators on L" (w)
with r # 2 and present its proof in Appendix.

4.1 The Commutator

The commutator [b, H] of b € BM O and H the Hilbert transform is defined:

[b.H]f =b(Hf)— H(®bf).

It is well known that the commutator [b, H] is bounded on L?(R).

Theorem 9 (Coifman et al. [12]). Letb € BMO and 1 < p < oo, then

LA, 61 1, = CpllbllBmoll flp-

However, the commutator is not of weak type (1, 1) as Carlos Pérez showed
[62]. The commutator [b, H] is more singular than H. Another way to quantify
this roughness is to observe that the maximal function M controls H ; however, to
control the commutator we need M2 [63].

Observe that separately bH and H b are not bounded on L? (R) whenb € BMO,
simply because multiplication by a BM O function does not preserve L”(R) (one
needs the multiplier to be bounded and L*°(R) < BMO). The commutator
introduces some key cancellation. This is very much connected to the celebrated
H' - BMO duality by Feffferman and Stein [23] (H' denotes the Hardy space on
the line).

Coifman, Rochberg, and Weiss have a beautiful argument in [12] to prove
boundedness on L”(R) of the commutator based on the boundedness of the Hilbert
transform on L7 (v) for v € A,; it is this argument that was exploited to obtain the
following weighted inequalities for the commutator in quite a general framework;
here we state the estimate for the Hilbert transform.

Theorem 10 (Alvarez et al. [1]). Ifw € A, andb € BMO, then

ILH. b f lIrowy = CoMIBI Mo NS llLrw)-

4.2 Chung’s Dyadic Argument

Daewon Chung proved the following sharp bound on L?(w) for the commutator of
the Hilbert transform and a BM O function:
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Theorem 11 (Chung [8]).

. 1
2mdx{l,ﬁ}

ILH. B f llLrwy = CpllbllBmowly, I e oo)-
The result is sharp in L?(w), meaning that in that case the quadratic power cannot be
improved. Similar examples show extrapolated bounds are sharp in L?(w); see [8].
Chung’s proof is based on a decomposition of the product b f using the dyadic
paraproduct 7, f, its adjoint 7z, f, and a related operator 7 ; b; this line of argument
was suggested in [69]. He works with Petermichl’s dyadic shift operator S instead of
H, and Bellman functions. This argument works for dyadic shift operators (hence
for Riesz and Beurling transforms, and it is sharp for them as well). We will sketch
Chung’s proof after some preliminaries on paraproducts.

4.2.1 Dyadic Paraproduct

Recall that dyadic paraproduct associated to the function b € BM O is defined by

7 f(x) = Zmlf (b, hy)hi(x), where m; f = |Tl|/lf(x)dx.

1€

The dyadic paraproduct is bounded on L”(R) for 1 < p < oo and is of weak
type (1, 1) [60]. Paraproducts appeared in the work of Bony [5] on paradifferential
equations; they also appeared in the proof of the 7'(1) theorem [19].

Theorem 12 (Beznosova [4]). Letb € BMO, w € A», then forall f € L*(w)

||7fbf||L2(w) + ||7T1;kf||L2(w) = C||b||BM0[W]Az||f||L2(w)-

Ordinary multiplication Mj f = bf is not bounded on L?(R) unless b €
L°°(R). The space BM O includes unbounded functions. Hence the boundedness
properties of the paraproduct are better than those of the ordinary product. It is well
known that the following decomposition holds:

bf =erf+ﬁgf+ﬁfb. (10)

The first two terms are not only bounded on L”(IR) but are also bounded on L?(w)
(follows by extrapolation from boundedness on L?(w)) when b € BMO and w €
Ap; the enemy in this decomposition is the third term 7 b. It is because of this
relation with the ordinary product that the name “paraproduct” was coined.

Proof (Sketch of Chung’s proof of Theorem 11). Apply the decomposition (10) to
the commutator with Petermichl’s shift operator S:

[S.61f = [S.7p) f + [S. 7,1 f + [S(wyb) — 757 (B)]. amn
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The first two terms give quadratic bounds from the linear bounds for S, m;, and
;. Boundedness of the commutator on L”(w) will be recovered from the uniform
boundedness of the third commutator. Surprisingly (at the time this was discovered)
the third term is better; it obeys a linear bound, and so do halves of the other two
commutators:

IS rb) — sy (B) | 12wy + 1S 76 f Il 1200y + 1775 Sl 220w
< C|bllsmo [W]A2||f||L2(w)-

Providing uniform quadratic bounds for the commutator [S, b], hence

ICH. Dl 2y < C1DN B30 WL 1l 2200)-

|

Chung proved his linear estimates using Bellman functions. A posteriori one
realizes that the operators [S (7 y}b) —7s¢y(D)], S7p, and 7 S are generalized Haar
shift operators; hence, the linear bound is a particular case of the results in [33, 34,
37,38]. For the commutator the bad terms are the nonlocal operators 75 and S n;‘.

4.2.2 Commutators Versus Paraproducts

Beznosova proved the linear bound for the dyadic paraproduct, and then sharp
extrapolation shows that the following bounds hold in L?(w) forw € A:

max {1, l }
s flLrony < Cpllbllisrolwly, N e on-

It was not known whether these were sharp for some orall 1 < p < oco.

Theorem 13. The above estimate is optimal in the power max {1, ——}.
p—1

Proof. Suppose there is an @ < 1 and a p > 1 such that for all b € BM O weights
w € A, and for all f € L?(w) the following estimate holds:

o m }
7o fllLrow < Cp”b”BMO[W]A = Il fllzeow)-

One can verify that the same estimate holds for 7;. Then we will obtain the
following bound for the commutator of the Hilbert transform and b:

(1+a) max {1, = 1}

B, H1f ey = CpllbllBarowly, 1A zr o)

And this is a contradiction because the power 2 max {1, _1 } is optimal for [b, H].
O
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4.3 Transference Theorem in L" (w) for Commutators

The following transference theorem holds:

Theorem 14 (Chung et al. [10]). If a linear operator T obeys linear bounds in
L*w) forallw € A,

ITf N 2wy < CWLa LS 12260y

then its commutator with b € BM O obeys quadratic bounds for allw € Aj,

7261 f |20 < CIWE, Bl sar0 1 £ 1l 2o 12)

Proof follows the beautiful Coifman—Rochberg—Weiss classical argument using
the Cauchy integral formula and immediately generalizes to higher-order commuta-
tors T}f‘ = [b, Tbk ~!]. Under the same assumptions of Theorem 14,

175 f 2w < CRIT 1B G301 1|20 - (13)

Extrapolation gives bounds on L”(w); they are sharp for all 1 < p < oo, all
k > 1, and all dimensions, as examples involving the Riesz transforms show [10].

As a corollary of these and Hytonen’s theorem we conclude that for each
Calder6n—Zygmund singular integral operators 7 there is a constant C >0 such that
for all BM O functions b and for all A, weights w, (12) holds. Sharp extrapolation
then shows that for all Calder6n—Zygmund singular operators 7',

. 1
mdx{l,F}

2
T, D1 f ey < Cplwly 161 Bazo | f | Le - (14)

r
A refinement of the argument in [10] shows that

Theorem 15. If a linear operator T obeys a power bound in L" (w) for allw € A,

1T NLron < COWIG, LS oo
then its commutator with b € BM O obeys the following bounds for allw € A, :

a+max{l,ﬁ}

1T, B) S llrowy < Carlwly, 61l Bpo LS Ly ow)-

Notice that in the case of 7" a Calder6n—Zygmund singular integral operator,
we recover the L”(w) norm obtained from sharp extrapolation in [10], because
the initial estimate on L”(w) corresponds to « = max{l1, %1}; hence in this case
Theorem 15 gives (14). Because this bound is known to ‘ge sharp for the Hilbert
and Riesz transforms, we deduce that the power obtained in Theorem 15 cannot be
improved.

We present the proof of this result in the Appendix.



300 M.C. Pereyra

Generalizations and variations of these results have already appeared. Cruz-Uribe
and Moen [16] prove corresponding estimates for commutators with fractional
integrals (they also use the classical Coifman—Rochberg—Weiss argument). They
use the machinery developed by Cruz-Uribe, Martell, and Pérez [18] and Lerner’s
local mean oscillation [48] to obtain two-weight estimates for the commutators with
Calder6n—Zygmund singular integral operators and fractional integrals. Carmen
Ortiz-Caraballo [59] shows the following quadratic estimate for b € BM O, and any
Calderon—Zygmund operator 7', on L”(w) where the weightis in Ay C Ny514,,
the following estimate was obtained before Hytonen proved the A, conjecture, so
it was the first nontrivial bound valid for all commutators of Calderén—Zygmund
singular integral operators:

T, bllran < Cullbllsmo p (P WL, -

There are now mixed A,-As estimates that hold for all Calderén-Zygmund
singular integral operators [34-36, 49]; inequality (15) is an example of such an
estimate when p = 2. These estimates can be transferred to the commutators [36].

Theorem 16 (Hytonen and Pérez [36]). If a linear operator T obeys the following
bounds in L*(w) for allw € Ay:

ITf 200 < CIWIE, (Wlaos + 1) 2 1 2. 15)

then its commutator of order k > 1 with b € BM O obeys the following bounds for
allw € Aj:

1 _ 1
IT5 20 < CWE, (Wi + W Taos) T2 1B B30 L f 1l 2260)-

The two-weight problem is still an outstanding open problem for most operators.
Necessary and sufficient conditions are known for the maximal function via Sawyer-
type conditions [51, 72], for the martingale transform and other dyadic operators
[55] (these are of Sawyer type as well with respect to the dyadic operators), and for
the dyadic square function (Beznosova, O., personal communication); compare to
[81]. As for sufficient conditions many different sets are known, including several
sets for the Hilbert transform [15, 40,45, 57]. In all these cases the conditions are
somehow inherent to the operator studied: “Sawyer-type conditions.” An exception
being sufficient conditions in terms of “bump conditions” in Orlicz spaces [16, 18].
Lacking are theorems of the nature; operator A is bounded from L” (u) into L?(v)
if and only if operator B is bounded from L7 (u) into L? (v).

Appendix

Proof (Sketch the proof of Theorem 15).
We “conjugate” the operator as follows: if z is any complex number we define
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T.(f) =e"T(Ee™ /).
Then, a computation gives (for instance for “nice” functions)

.71 = ST Do = 5 [ 1

2mi lzl=e <

dz, e>0

by the Cauchy integral theorem; see [1, 12].
Now, by Minkowski’s inequality,

6. TIC N Lron =

2 €2

/| TPl e
Z|=—€

The key point is to find the appropriate radius €. First we look at the inner norm,

T er o = NT @ F) e guermecs) »

and try to find appropriate bounds on z. To do this we use the main hypothesis,
namely that 7 is bounded on L" (v) if v € A, with

1T Lr oy = CVIG, -

Let v = we™¢2?. We must check that if w € A, then v € A, for || sufficiently
small:

r—1
[V]4, = sup (L/ weRezb() dx) (L/ w_le‘(x)e_ﬁReZb(") dx) )
0 O] 0 10| 0

Now, since w € A,, then w € RH, for some ¢ > 1[11]. Recall that w € RH, if
and only if there is a constant C > 0 such that for all cubes Q,

1 i C
— [ wid — [ w.
(|Q|/QW x) =101 J,"

The following precise reverse Holder condition for A, weights holds [64]:

Lemma 2. I[fwe A, and q =1 (< 2), thenw € RH, and

+ 22r+n+1 [W]A

1 i 2
_ ad 5—/ . 16
(|Q|/QW x) 01 /," (10)
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It is well known that if w € A, then o := = = A, with r’ = - the dual
exponent of r, and [w]ﬁ{r = [o]’,,. Applying Lemma 2 to o and r’ we conclude then

. 1
that if s:1+22"/T1[0]A, <2 theno € RH, and

(ﬁ/Qasdx)s < %/Qo. (17)

Let + = min{q, s}, where ¢ and s are as above, then t < ¢ and ¢ < s. Holder’s
inequality with p = ¢/t > 1 and p = s/t > 1, respectively, implies that

| ) 1 Lo,
i 'q < , — q < —
(|Q|/QW ’“) “TorJo” (|Q|/Q“ x) 0]

Using these and Holder’s inequality twice with p = ¢, we have for an arbitrary Q

r—1
(L/ w(x)erRezb(x) dx) (L/ U(X)e—r/Rezb(x) dx) < 4[W]A, [ef’rRezb]j/ '
101 Jo 101 Jo ,

Now, since b € BM O, it is well known thate” € A, for n small enough [21,27].
We need a quantitative version of this result.

Lemma 3. Given b € BMO then there are 0 < a, < 1 and B, > 1 such that if
n < min{l, r — 1}z, then (€], < BI.
This follows from a similar computation to the one done for r = 2 in [10]. In
our case, we need to ensure that |t'r Rez| < min{l,r — l}nbﬁ)‘% to deduce that
[e" "Rezb 14, < B1. That is We are constrained to consider complex numbers z such
that | Rez| < min{}, =1} —

”b”BMO

Recall thatt = mln{l + 22,+,ﬁ11 L !

— }; a calculation now shows

[w] r 22,/+n+1[w]£r—l
that
g 1+ 22r+n+1[W]A,1 p> 2
14 22 H =T p <2
Furthermore ¢/ [w]mﬂm{1 = with comparability constant depending exponen-

tially in the dimensmn n and max{r, r'}.

. 1, .
For |z] <e,withe ™ ~ ||b||amolw ]I:‘”{ = ,and since 1 <t < 2, thus ¢’ > 2,

we have that

r
7

W4, = [we™=P1y < 4[wla, Bi < 4[wla, B2
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Observe that le™ £l ro) = lle™ f |l rermesry = L.f |17y, andif |2] < i,

1T (Mo = 1TE Moy < DG lron < 40905, B2 1S NLron-

Uy

Choose the radius € = —
rt'||b| smo

, and we can continue estimating the norm of the

commutator

6. TYC Lron =

o r 1 o r
s [ A B = S, B

max{1,

1
Finally, observe that € ™! is essentially [w] 4, =T }||b|| BMO, SO we conclude that

a+max{1,r%}
1B, TI ) r oy < Cr W]y, bl Bmo-

This finishes the proof of the theorem. O
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