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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-
theart ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis, but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish the scope and interaction that such a host of issues
demands.

vii



viii ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Prediction theory

Biomedical signal processing Radar applications
Compressive sensing Sampling theory
Communications applications Spectral estimation
Data mining/machine learning Speech processing
Digital signal processing Time-frequency and
Fast algorithms time-scale analysis
Gabor theory and applications Wavelet theory
Image processing

Numerical partial differential equations

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries, Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function”. Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, e.g., by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
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trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.
The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’étre of the ANHA series!

University of Maryland John J. Benedetto
College Park Series Editor






Preface

The chapters in these two volumes have at least one (co)author who spoke at the
February Fourier Talks during the period 2006-2011.

The February Fourier Talks

The February Fourier Talks (FFT) were initiated in 2002 as a small meeting on
harmonic analysis and applications, held at the University of Maryland, College
Park. Since 2006, the FFT has been organized by the Norbert Wiener Center in
the Department of Mathematics, and it has become a major annual conference.
The FFT brings together applied and pure harmonic analysts along with scientists
and engineers from industry and government for an intense and enriching two-day
meeting. The goals of the FFT are the following:

* To offer a forum for applied and pure harmonic analysts to present their latest
cutting-edge research to scientists working not only in the academic community
but also in industry and government agencies,

* To give harmonic analysts the opportunity to hear from government and industry
scientists about the latest problems in need of mathematical formulation and
solution,

» To provide government and industry scientists with exposure to the latest research
in harmonic analysis,

* To introduce young mathematicians and scientists to applied and pure harmonic
analysis,

* To build bridges between pure harmonic analysis and applications thereof.

These goals stem from our belief that many of the problems arising in engineer-
ing today are directly related to the process of making pure mathematics applicable.
The Norbert Wiener Center sees the FFT as the ideal venue to enhance this process
in a constructive and creative way. Furthermore, we believe that our vision is shared

xi
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by the scientific community, as shown by the steady growth of the FFT over the
years.

The FFT is formatted as a two-day single-track meeting consisting of thirty-
minute talks as well as the following:

* Norbert Wiener Distinguished Lecturer series
* General interest keynote address

* Norbert Wiener Colloquium

* Graduate and postdoctoral poster session

The talks are given by experts in applied and pure harmonic analysis, including
academic researchers and invited scientists from industry and government agencies.

The Norbert Wiener Distinguished Lecture caps the technical talks of the first
day. It is given by a senior harmonic analyst, whose vision and depth through the
years have had profound impact on our field. In contrast to the highly technical
day sessions, the keynote address is aimed at a general public audience and
highlights the role of mathematics, in general, and harmonic analysis, in particular.
Furthermore, this address can be seen as an opportunity for practitioners in a
specific area to present mathematical problems that they encounter in their work.
The concluding lecture of each FFT, our Norbert Wiener Colloquium, features a
mathematical talk by a renowned applied or pure harmonic analyst. The objective
of the Norbert Wiener Colloquium is to give an overview of a particular problem
or a new challenge in the field. We include here a list of speakers for these three
lectures:

Distinguished lecturer Keynote address Colloquium
e Peter Lax * Frederick Williams * Christopher Heil
* Richard Kadison » Steven Schiff * Margaret Cheney
» Elias Stein * Peter Carr * Victor Wickerhauser
* Ronald Coifman * Barry Cipra * Robert Fefferman
* Gilbert Strang * William Noel * Charles Fefferman
* James Coddington * Peter Jones

e Mario Livio

The Norbert Wiener Center

The Norbert Wiener Center for Harmonic Analysis and Applications provides a
national focus for the broad area of mathematical engineering. Applied harmonic
analysis and its theoretical underpinnings form the technological basis for this area.
It can be confidently asserted that mathematical engineering will be to today’s
mathematics departments what mathematical physics was to those of a century ago.
At that time, mathematical physics provided the impetus for tremendous advances
within mathematics departments, with particular impact in fields such as differential
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equations, operator theory, and numerical analysis. Tools developed in these fields
were essential in the advances of applied physics, e.g., the development of the solid-
state devices which now enable our information economy.

Mathematical engineering impels the study of fundamental harmonic analysis
issues in the theories and applications of topics such as signal and image processing,
machine learning, data mining, waveform design, and dimension reduction into
mathematics departments. The results will advance the technologies of this mil-
lennium.

The golden age of mathematical engineering is upon us. The Norbert Wiener
Center reflects the importance of integrating new mathematical technologies and
algorithms in the context of current industrial and academic needs and problems.
The Norbert Wiener Center has three goals:

* Research activities in harmonic analysis and applications
* Education—undergraduate to postdoctoral
 Interaction within the international harmonic analysis community

We believe that educating the next generation of harmonic analysts, with a strong
understanding of the foundations of the field and a grasp of the problems arising in
applications, is important for a high-level and productive industrial, government,
and academic workforce.

The Norbert Wiener Center web site: www.norbertwiener.umd.edu

The Structure of the Volumes

To some extent the eight parts of these two volumes are artificial placeholders
for all the diverse chapters. It is an organizational convenience that reflects major
areas in harmonic analysis and its applications, and it is also a means to highlight
significant modern thrusts in harmonic analysis. Each of the following parts includes
an introduction that describes the chapters therein:

Volume 1 Volume 2
I Sampling Theory V Measure Theory
II Remote Sensing VI Filtering

IIT Mathematics of Data Processing VII Operator Theory
IV Applications of Data Processing ~ VIII Biomathematics


www.norbertwiener.umd.edu
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2 V  Measure Theory

The four chapters in this part treat old themes as well as some modern
applications of measure theory. Measure theory was developed in the late nineteenth
and early twentieth centuries, and its founders include E. Borel, H. Lebesgue,
and J. Radon. It remains a central field in mathematics offering rigorous tools to
tackle problems arising in mathematical analysis. Measure theory is also one of
the foundational courses that many aspiring mathematicians are required to take.
Even more, modern probability theory owes its very existence to measure theory,
which also plays essential roles in areas such dynamical systems, harmonic analysis,
and partial differential equations. The breadth and the depth of the chapters in this
part partially illustrate how these two volumes are intended for various audiences
ranging from graduate students, researchers, to practitioners in harmonic analysis
and its applications.

The first chapter of this part is by ROBERT B. BURCKEL, who provides new
proofs of two classical results about measures on the circle. The first result
characterizing nonzero analytic measures on the unit circle is due to the Riesz
brothers (1916). The second result, due to Szegd (1920), gives a condition under
which the closed linear span of the monomials on the unit circle is dense in the
Hilbert space associated with a measure on the circle. Burckel’s beautiful proofs
are based largely on Hilbert space arguments rather than being purely measure
theoretical.

In the second chapter of this part, CARLOS CABRELLI, UDAYAN B. DARJI, AND
URSULA MOLTER give a nontrivial extension of a construction of strongly invisible
sets due to R. O. Davies to measures on Polish spaces (complete separable metric
spaces). The setting of this type of result is measure theoretic dimension theory
which offers methods to classify measurable sets. In this short but elegant chapter,
Cabrelli, Darji, and Molter introduce tools that allow them to construct a large class
of visible Cantor sets in Polish spaces. Visible Cantor sets are sets of finite positive
measure for some Hausdorff measure or some translation invariant Borel measure.
They also investigated strongly invisible sets in the setting of Polish groups. The new
results they obtain include the density of certain of these classes of measurable sets
within the set of all compact sets in the underlying space.

JEAN-PIERRE GABARDO’S chapter offers new insights to some applications of
measure theory in time-frequency analysis. In particular, he establishes relationships
between convolution inequalities for positive Borel measures in Euclidean space
and the notion of upper and lower Beurling density for these measures. Such
relationships arise in the study of the packing and tiling properties of translates
of sets in Euclidean spaces, in which case the Borel measures considered are sums
of Dirac masses. The connection to time-frequency analysis lies in the fact that the
quantitative behavior of Beurling density is important in the theory of uniform and
nonuniform Gabor systems. A Gabor system consists of the time-frequency shifts
of a fixed window function along a discrete set of points in Euclidean space. If this
system is a frame, then the upper Beurling density of the corresponding discrete set
must be finite, while its lower Beurling density must be at least one. In this case,
an appropriate choice of the window function can lead to the decomposition and
reconstruction of any function from samples of its short-time Fourier transform.
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In the final chapter of this part, BILL MORAN, STEPHEN HOWARD, AND DOUG
COCHRAN use the parallel between frame theory and the theory of positive operator-
valued measures (POVMs) on a Hilbert space, ¢, to introduce the new concept
of a framed POVM. Frames are redundant sets of vectors that provide stable and
efficient algorithms for the decomposition and reconstruction of any vector in 7.
Consequently, frames are a natural tool in many signal processing applications. On
the other hand, the notion of POVM was introduced and developed in quantum
mechanics as a tool to represent the most general form of quantum measurement
of a system. After giving an overview of the similarities between frames for J#
and POVMs associated to .77, the authors show that the class of framed POVMs is
large in a sense defined in their chapter. In fact, this class includes frames as well
as more recent extensions such as fusion frames and generalized frames. One of
the interesting aspects of framed POVMs is that tools from quantum mechanics can
now be translated to obtain new results in frame theory.



Absolute Continuity and Singularity
of Measures Without Measure Theory

R.B. Burckel

Abstract This chapter presents proofs, largely by Hilbert-space arguments, of two
classical results about measures on the circle associated with the Riesz Brothers
(1916) and Gabor Szegd (1920).

Keywords Absolutely continuous measures ® Approximation theorems of Weier-
strass and Féjer * Hilbert-space methods in measure theory * M. Riesz Theorem ¢
Shifts in Hilbert space ¢ Singular measures ¢ Szegd’s Theorem ¢ Wold decompo-
sition

This chapter presents proofs of two classical results about measures on the circle
associated with the Riesz Brothers [3] and G. Szegd [5]. Of course, measure theory
cannot be fully eschewed (so the title is something of a come-on), but the proofs are
largely by Hilbert-space arguments, and some minimal notation is needed:

Zistheintegers, N:={n € Z :n>1},Ny:={neZ:n>0},D:={z ¢
C:lzl <1}, T := oD, C(T) is the continuous functions on T, A is normalized
Lebesgue measure on the Borel subsets of T. For a complex-valued Borel measure
v on T the number

v(k) = /Tz_k dv(z)

is called the k-th Fourier coefficient of v, for each k € Z. The absolute continuity
relation is signalled, as is customary, by < . For a subset S of a vector space span(S)
will denote its (algebraic) linear span. Classical theorems of Weierstrass and Fejér
assert that

span {z* : k € Z} is uniformly dense in C(T). (WF)

R.B. Burckel (0<)

Department of Mathematics, Kansas State University,
138 Cardwell Hall, Manhattan, KS-66506, USA
e-mail: burckel @math.ksu.edu

T.D. Andrews et al. (eds.), Excursions in Harmonic Analysis, Volume 2, 5
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-8379-5_1,
© Springer Science+Business Media New York 2013



6 R.B. Burckel

A consequence of (WF) is
span (X 1 k € Z} is dense in every L?(v) space, (WF),

and so the Fourier coefficients uniquely determine v; that is, v(k) = 0 for all k if
and only if v = 0. v is called analytic if

V(—n) = /z” dv(z) =0 VmeN. (A)
T

This terminology derives from the fact (Cauchy’s integral theorem) that if f is
continuous on D and analytic in D, then the measure fdA is analytic.

Theorem 1 (F. and M. Riesz Theorem). Every non-zero analytic measure v is
mutually absolutely continuous with respect to A.

Proof. Let u denote the total variation measure of v and f the Radon—Nikodym
derivative g—;. Thatis,dv = fdu and | f| = 1 u-a.e. Then (A) can be written

/z"f(z)du(z) =0 VneN. (1)
T

Let (,) and ||| denote inner product and norm in L?(u) and U (suggesting
unilateral shift) the operator, evidently unitary, of multiplication by z on this Hilbert
space. According to (1) the constant function 1 is orthogonal to every U" f (n € N),
so the set

M := L?(u)-closure of span {U" f : n € N} 2)

is a proper subspace of L?(u), evidently U-invariant. Since | /| = 1 u-a.e., (WF),
entails that

span{z’ f : k € Z} is dense in L?(1). 3)

Let us note that
UM € M. 4

Forif UM = M, then U*M = U*UM = M, so M would contain (U*)"U" f =
()" f =" f foralln, m € N and consequently z* f for all k € Z. From this
and (3) would follow the contradiction L2(;t) C M. This confirms (4).

Form the orthogonal complement M @ UM, which is not {0} by (4), and note that
the (closed) subspaces U¥(M @UM ) are orthogonal, which is pretty clear when they
are written as UM @ UM :my,my e M © UM, p > k = (UPm,, U¥m,) =
(UP=%my,my) = 0 since UP*m; € UM and m, L UM.

As a special case of this

{U*h}kez is an orthonormal sequence in L (i) (5)
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for every unit vector 1 € M © UM . Note that

subspace ﬂ U"M is orthogonal to U (M @ UM) Vk € Z. 6)

n>0

For if mi € M © UM and my lies in this intersection, then my = U‘kH'lmz for
some m, € M, and so

(mo., Urmy) = (UK, Urmy) = (UK, my) = 0,
since UKI=k+1;1, € UM . The same argument shows that

ﬂ U"M is orthogonal to U1 = ¥ Vk € Z. (6),

n>0

For (mg, UF1) = (UKIF1, UF1) = (UkI=*+1m, 1) = 0, since, as already noted,
11 M.

Now the well-known Wold decomposition (see Sz.-Nagy and Foias [6, p.3]) says
that M is the orthogonal sum

M=(\U'Me@PU"MoUM). )
n>0 k>0

Again, this is pretty transparent when the right side is written out:

(UM &M oUM)® (UM o UM)& (UM QU M) & -

n>0

From Eqg. (6); and (WF),, it follows that the space (\ U"M must be {0} and (7)

n>0
reads
M =PUukM oum) (8)
k>0
Next we aim to show that
M © UM is 1-dimensional. ©)]

To this end, consider a fixed h € M © UM of norm 1 [recalling (4)]. If (9) fails,
there exists g € M © UM of norm 1 which is orthogonal to /. Then, by the familiar
maneuvers, U"h 1 U"g for all m,n € Ny.

0= (U"h,U"g) = (U""h,g) VYm.,n>0=

0= (Urh,g) = /zkhgd,u vk € Z.
T
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The function hg being in L' (1), these equations affirm that all Fourier coefficients
of the (complex Borel) measure 4§ du vanish. Hence this measure is 0. That is,

lhgl =|hllgl=0 p-ae. (10)
As noted in Eq. (5)

1 if k=0

k 2 _ k _
/Tzlhl du(z) = (Uh. h) = 0 if k eZ\ {0},

that is, the measure ||?du has exactly the same Fourier coefficients as A, so
|h|>dp = dA. (11)
Similarly, |g|?du = dA, which with Eq. (11) gives |h|*du = |h|dA = |h||g|*dju=0,

by (10). That is, || = O p-a.e., contrary to /4 being of norm 1 in L?(u1). This
contradiction confirms (9). Thatis, M © UM = Ch and then by Eq. (8)

L*(1)-closure of span {U"h : n € No} = M.

In particular, since Uf = zf € M, we see that zf lies in the L?(u)-closure of
span{U"h = 7"h : n € Ny}. It follows that for each k € Z, 7* f lies in the L?(u)-
closure of span{z"h : n € Z}. That is,

L?(p)-closure of span {z* f : k € Z} c L?(j1)-closure of span {Z'h : n € Z}. (12)
Equality (3) forces equality in (12), which then clearly entails that
fdu < hdp < fdu,

and thanks to Eq. (11)
dA < |h|dp < dA.
Thus dA and fdu (which is dv) are mutually absolutely continuous.

Corollary 1 (Szeg6). Let o be a Borel probability measure on T that annihilates
some set of positive Lebesgue measure. Then the functions 7", n € N, span L*(0).

Proof. Denote by M the L?(o)-closure of span{z” : n € N} and assume M #
L?(0). There is then a non-zero function g € L?(o) orthogonal to M :

O:(gsZn)LZ(g):/Z_"gdU Vn e N.
T

This says that gdo is a non-zero analytic measure, hence Lebesgue measure A is
absolutely continuous with respect to gdo. By hypothesis, some Borel set B with
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A(B) > 0 has 0(B) = 0. The latter equality implies that gdo also gives measure 0
to B, contradicting dA <« gdo.

Remark 1. The usual formulation of Szegd’s theorem is more quantitative and
more general: If & denotes the Radon—Nikodym derivative with respect to A of
the absolutely continuous part of o, then the distance in L?(o) from 1 to span
{z' : n € N} is exp(/loghd)). In the notation of the proof just given, # would
be 0 on B, so [loghdA = —oo and the exponential of it is 0, which puts 1 into the
L?(o)-closure of span{z" : n € N}, from which the above corollary follows easily.

Remark 2. On the other hand, a weaker version of the corollary was proved by
Holland [1]. He started with a Borel probability measure o on T which is singular
with respect to Lebesgue measure A and by a very clever, explicit and elementary
construction he manufactured a sequence of polynomials

P,x) =) A (neN)
k=1

such that
o0
D olA =1
k=1

and
n
/ll—Pn|2do:1—Z|Ak|2 (n € N).
T k=1

In fact, the Ay are the Taylor coefficients of the holomorphic function

F(z)—1

u+z
m, dU(H) (ZED).

u—=z

where F(z) := /
T

Mirabile dictu.

Remark 3. Also the half of the F. and M. Riesz theorem asserting that v < A was
given a remarkable one-page function-theoretic proof by @ksendal [2]. A complex-
valued Borel measure v on T satisfying (A) is given and what has to be shown is
that v(K) = 0 for every A-null Borel set K. Because Borel measures on T are inner
regular, it suffices to consider compact K. Clearly it suffices to show this for the
modified measure vy := v — v(T)A. This measure is also analytic but in addition
annihilates 1. That is,

vo(—n) = /z” dvo(z) =0 Vn € Ny. (A)o
T

Foreachn € N,an N € N, z; € K and p; > 0 are chosen appropriately and the
rational functions
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N

z—7;
g@=1-||—
jl:[1 2=+ pj)z;

are introduced. They are bounded by 2 on T and are shown to converge there to
the indicator function of K as n — o0. Since g, is holomorphic in a neighborhood
of I, the partial sums of its Taylor series at 0 approximate it uniformly on T and
each sum has vg-integral O thanks to (A),. Consequently, fT g, dvg = 0. It follows
then from the dominated convergence theorem that vo(K) = lim [ g, dvy = 0, as
wanted.
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Visible and Invisible Cantor Sets

Carlos Cabrelli, Udayan B. Darji, and Ursula Molter

Abstract In this chapter we study for which Cantor sets there exists a gauge-
function /, such that the h-—Hausdorff measure—is positive and finite. We show that
the collection of sets for which this is true is dense in the set of all compact subsets
of a Polish space X . More general, any generic Cantor set satisfies that there exists a
translation-invariant measure p for which the set has positive and finite p-measure.
In contrast, we generalize an example of Davies of dimensionless Cantor sets (i.e.,
a Cantor set for which any translation invariant measure is either 0 or non-o-finite)
that enables us to show that the collection of these sets is also dense in the set of all
compact subsets of a Polish space X .

Keywords Cantor set * Visible set ¢« Hausdorff measure ¢ Cantor space * Polish
space * Dimensionless set ¢ Strongly invisible set * Davies set * Comeager set *
Tree * Cantor tree » Generic element

1 Introduction

Measure theoretic dimension theory provides a fundamental tool to classify sets.
However, Hausdorff dimension as well as other notions of dimension such as
packing dimension and Minkowski dimension are not completely satisfactory.
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For example, there are many examples of compact sets whose Hausdorff measure
at its critical exponent is zero or infinite. This could also happen even if we consider
the generalized Hausdorff #-measure where / is an appropriate gauge function in a
well-defined class. See for example [2]. Furthermore, in 1930 Davies [5] produced
a beautiful example of a Cantor set on the real line whose pt-measure is zero or no
o-finite for every translation invariant Borel measure p. See [6] for more results in
this direction.

In this chapter we study this phenomena. We try to estimate in some way the size
of the class of visible sets, i.e., sets that have positive and finite measure for some
h-Hausdorff measure or some translation invariant Borel measure.

We focus on Cantor sets in the context of Polish spaces. In [4] the authors proved
that a large class of Cantor sets defined by monotone gap-sequences are visible.
They explicitly construct the corresponding gauge function /. See also [3]. Here we
extend this result to a larger class in general Polish spaces (Theorem 3.2). We also
obtain density results for the class of visible sets and study generic visibility for
subsets of the real line.

Then we focus on the concept of strong invisibility (see Definition 2.4). We were
able to extend the ideas in the construction of Davies to a general abelian Polish
group, obtaining a big class of strongly invisible compact sets in these groups. We
also prove that the set of strongly invisible sets in the space of compact sets in the
line with the Hausdorff distance is dense.

This chapter is organized as follows. We first introduce some notation and
terminology in Sect. 2. A key ingredient will be the definition of visibility and strong
invisibility and the analysis of the appropriate topology to be able to state density
results. In Sect. 3 we show that a large class of Cantor sets is visible, and in Sect. 4
we show how to construct many strongly invisible sets.

2 Terminology and Notation

Throughout X will denote a Polish space, i.e., a separable space with a complete
metric. We let 4’(X) denote the set of all compact subsets of X endowed with
the Hausdroff metric dy. We recall that for X Polish, € (X) is Polish, and for X
compact, € (X) is compact. We let Z(X) denote the set of Borel subsets of X.

A subset of a Polish space is a Cantor space (or Cantor set) if it is compact, has
no isolated points, and has a basis of clopen sets, i.e., sets which are simultaneously
open and closed. There is always a homeomorphism between two Cantor sets. We
also consider several special types of Cantor sets subsets of the reals. We note that
for a subset of the reals to be a Cantor set, it suffices to have the properties of being
compact, perfect, and containing no interval.

We now describe a general way of describing any Cantor set subset of [0, 1] of
Lebesgue measure zero which contains {0, 1} (see [1]). Let D be the set of dyadic
rationals in (0, 1).
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D={i27F|1<i<2"-1keN},

G =1¢:D— 0.1 ¢ =1p,

deD

and for each ¢ € ¢ we associate the function,

o)=Y o).

d’eD,d’<d

The function ¢ can be thought of as a density function supported on D, and @
is the associated cumulative distribution function. Associated to ¢, we define the
Cantor set K, as follows:

K, =[0.1]\ | (@(d). 2(d) + ¢(d)).

deD

We think of ¢ as the “gap function” of K,,. We have the following basic facts.

Proposition 2.1. For each ¢ € ¢, K, is Cantor set subset of [0, 1] containing
{0, 1} with Lebesgue measure zero. Conversely, given any Cantor set K subset of

[0, 1] with Lebesgue measure zero which also contains {0, 1}, there is ¢ € & such
that K = K,.

Proposition 2.2. Suppose 1,92 € 9 are such that K,, = K,,. Then, there is a
homeomorphism g on [0, 1], mapping D onto itself such that ¢; = ¢y 0 g.

The following special subclass of K,’s was studied in [4]. Let

o0
28 ={a e (RMN : « is decreasing and Za(i) =1;.

n=1

For each ¢ € 9, we define K, = K, where ¢(1/2) = a(l), ¢(1/4) = a(2),
©(3/4) = a(3),... ,(p(zszj'l) = ()5(27_l + s5). We call the sequence o a “gap
sequence.”

We introduce necessary terminology and notation concerning measures. Let

= {h :[0,00) — [0,00)|h(0) = 0, & is continuous and nondecreasing},

and u;, be the associated Hausdorff measure defined on the Borel subsets of X .

Definition 2.3. We call M € AB(X) s -visible if there is h € 5 such that 0 <
un(M) < oo, i.e., M is an h-set for some h € 7.

In [4] it was shown that for any o« € 28, K, is ¢ -visible.
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The main purpose of this chapter is to determine whether the previous result can
be extended to other K, or if not, how big is the class of Cantor sets for which this
is true.

In Polish groups, i.e., topological groups with Polish topology, Hausdorff
measures are particular instances of general translation invariant Borel measures.

Definition 2.4. Let X be a Polish group. A set M € Z(X) is called visible if there
exists a translation invariant Borel measure p on Z(X) such that 0 < u(M) < oo.
Aset M € (X) is called strongly invisible if for every translation invariant Borel
measure 4 on AB(X) we have that (M) = 0 or M is not uo-finite.

Davies [5] showed that there is a compact subset of R which is strongly invisible.
In a Polish group a Davies set is a compact set which is strongly invisible. Many
natural examples of Borel sets which are strongly invisible were given in [6].

We would like to discuss visibility of a “randomly” chosen compact or Cantor
set. Unfortunately, even in the case of the reals, there is no suitable natural measure
on the set of compact or Cantor sets. Hence, we use the notion of genericity. Let X
be a Polish space. A set M C X is meager if it is the countable union of nowhere
dense sets. The set of meager sets forms a o-ideal, i.e., a subset of a meager set
is meager, and the countable union of meager sets is meager. Moreover, as X is
complete, the Baire category theorem holds, and hence no nonempty open set is
meager. One thinks of meager sets as a collection of small sets and its complements
as big sets. A set is comeager if its complement is meager. We say that a generic
element of X has property P when the set of elements of X which has property
P is comeagerin X.

3 Visible Sets

In this section we study visible sets and .7-visible sets. In particular, Theorem 3.2
shows that a large class of Cantor sets are 5#-visible. Proposition 3.3 shows that
this includes the class of Cantor sets K, @ € ., studied in [4]. Then, we discuss
how big are the classes of visible, .7-visible, and strongly invisible sets. We show
that the class of .77-visible and strongly invisible sets are dense in 4([0, 1]) and,
moreover, a generic compact subset of [0, 1] is visible. It remains open whether a
generic compact subset of [0, 1] is JZ-visible.

3.1 J7-Visibility

We now introduce the construction necessary for our main J#-visibility theorem.
Let
N<N — U Nn
n€N

be the set of all finite sequences from N. For 0 € N <N o = 0y...0,, we denote
by |o| = n the length of ¢, and for k < |o|, olk are the first k digits of 0. We say
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that o € N<N is an extension of t € NN if |¢| > || and o||t| = 7. Further, if
o € NN, o|n is the restriction of o to the first n digits.

A tree T is simply a subset of N<N with the property that if € T and o is an
extension of 7, then 7 € T. The body of 7', denoted by [T7], is

[T] ={o eNY:0|n e T foralln € N}.

Foratree T and o € T, the valency of o in T is the cardinality of {n e N:on € T}.
A tree T is a Cantor tree if for each o € T, the valency of o is finite and at least 2.
If T is a Cantor tree and each o € T has valency n, then T is an n-Cantor tree.

Let X be a Polish space and T be a tree. A function f from T into the collection
of all nonempty open subsets of X is called a 7 -assignment into X if the following
conditions are satisfied:

. Foreacho € T, f(0) is a nonempty open subset of X.

. The diameter of f (o) is less than 1/|o| forallo € T.

. Ifo,7 € T witho # t and |o| = |t|, then f(o) N f(7) = @.
. If o, 7 € T with t an extension of ¢, then f(7) C f(0).

RIS S

If f is a T-assignment into X, then we let

1= ) foln).

o€[T]n=1
The following proposition is obvious.

Proposition 3.1. Let X be a Polish space, T be a Cantor tree, and f be a T-
assignment into X. Then, [ f] is a Cantor set.

For the following definitions assume that 7" is a Cantor tree and f is a T-
assignment into X. We say that f is a regular T-assignment if for all » € N
the following holds:

max{diam(f(0)) : 0 € T,|o| = n + 1} < min{diam(f(0)) : 0 € T, |o| = n}.

Let 2</<oo. We say that f satisfies the /-intersection condition if the following
condition holds.

For each n € N and each open ball B in X, if B intersects at least / elements of
{f(0) : 0 € T,|o| = n}, then we must have that f(c) € B for some o € T with
lo| = n.

Theorem 3.2. Let X be a Polish space, T be a n-Cantor tree, and f be a T-
assignment which is regular and satisfies the [ -intersection condition. Then, [ f] is

JE-visible.

Proof. Foreachk € N, let
my = min{diam(f(o)) :0 € T, |o| =k} and
M = max{diam(f(0)) : 0 € T, |o| = k}.
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Leth €  such that h([my, M]) = n=*, k € N. This is possible since f is regular.
We claim that [ f] is a h-set for u”.

It is clear from the construction that u/ ([ f]) < 1.

Let now jo € N be such that n/0 > [ and ¢ = n=/0~!. We will show that
" (f]) = e

For this, let ¢ be any collection of open balls in X which covers [ f]. It suffices
to show that ), A(diam(B)) > c. Let Cy, Cs, ... C; be distinct elements of ¢
such that

t
[f1c|JC andeach C;iN[f]+#0.
i=1

Let A be the Lebesgue number associated with the covering Cy, C,,...C,; and [f]
such that if B is any open set with diam(B) < A and B N [f] # @, then B C C; for
somel <i <t.

Let kg € N be such that 1/ky < A and each of C;, 1 <i < ¢, contains more than
n/0 many elements from { f(0) : 0 € T, |o| = ko}.

Now, foreach 1 <i <1, let ¢; be the cardinality of

{f@):0eT ol =k. [0 € C}

and let d; € N be such that n% < ¢; < n“*!. We note that each d; > j, and

t
Zci > ko ag 1/ko < A.

i=1

Fix 1 < i < t. We next observe that C; intersects at least [ elements from the
collection

{f(0):0 €T, |o|=ko—(di — jo)}
For otherwise, we would have that C; intersects less than ! - n%—/o elements from
the collection { f(0) : 0 € T, |o| = ko}. As -n%~lo = [ .n=ho . p% < pd < ¢;,
this would lead to a contradiction.
Now, since f satisfies the /-intersection condition, we have that m C C; for
some o; € T with |o;| = ko — (d; — Jjo).
Now,

> " h(diam(C;)) = > h(diam(f(07)))

i=1 i=1

!
> Zn—(ko—(di—jo))
i=1

t
= p ko, —Jo E ndi
i=l1
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Since n% < ¢; < né*land Y i_, ¢; > n*, we have that Y\ _, n% > nko/n.
Hence, we have that 3"/ _, h(diam(C;)) > n~/°/n = n=/07! = ¢, as claimed.

We will now show that the Cantor sets K,, considered in [4], fall under the
hypothesis of the Theorem 3.2, and therefore the latter theorem extends the result
obtained in the earlier paper.

Proposition 3.3. Leta € 9S. There is a regular T -assignment f from a 2-Cantor
tree, satisfying the 3-intersection condition, such that [ f] = K.

Proof. Recall that K, = K, where ¢ € ¢ is defined as ¢(1/2) = a(1), ¢(1/4) =
a(2), 9(3/4) = ad).....e(EH) = (2’7" + 5). In addition, let ¢(0) = 0,
@(0) =0,and &(1) = 1.

Let 7 be a 2-Cantor tree, i.e., T = (g, {0, 1}~.

To define f, let d, = Z!”zll 7 be the dyadic rational associated to 0. For o €
{0, 1}¥, define

flo) == (cb(da) T o(dy). B(dy + Zik)) .

In this way, { f(0) : 0 € T,|o| = k} is the union of 2¥ consecutive disjoint
intervals; hence f clearly satisfies the 3-intersection property. Further,

k=1{0€T,|o|=k} o€[T]n=1

In addition, since « is decreasing, diam( f(0)), |o| = k is at least the diameter of
f (o) for any o with || = k + 1, and therefore f is a regular T-assignment.

The previous theorem showed that there is in fact a very large class of Cantor
sets that are .7 -visible. We will now state a lemma that will allow us to conclude,
that in fact, the set of Cantor sets that are .7Z’-visible is dense in % (R).

Lemma 3.4. Any collection £ of compact subsets of R satisfying the following
properties is dense in the set of all compact subsets of R:

1. £ contains sets with arbitrarily small diameters.

2. IfAe Zand A, ..., A, are translates of A, then U'_|A; € ZL.
Corollary 3.5. The collection of 7 -visible compact subset of R is dense in € (R).

Proof. We first recall that the standard middle third Cantor set is 5#-visible just
as any clopen subset of it. Further, any translation of any of these sets is also
H-visible. Using Lemma 3.4, we have the result.
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3.2 Generic Visibility

We next show that a generic compact subset of R is visible.
We need some lemmas in order to prove the theorem.

Lemma 3.6. If B C R is a set that is linearly independent over the rationals and
a € R,a # 0, then (B + «) N B contains at most one point.

Proof. To obtain a contradiction, assume that @ # 0, x; # X, are points in B such
that y; = x1 +«, y» = xa + « € B. Clearly, x; # x2, y1 # Y2, Y1 # X1
and y, # xp. If x; = y,, then we have that « = x; — x;, which leads to y; =
X1 + x1 — X, contradicting that B is linearly independent over the rationals. An
analogous argument shows that x, # y;. Hence, we have that all of xi, x,, y1, y»
are distinct. However, this implies that y; — x; — y» + x; = 0, contradicting that B
is linearly independent over the rationals.

Lemma 3.7. If K is an uncountable, compact set that is linearly independent over
the rationals, then there exists a translation invariant Borel measure . such that
0 < u(K) < +oc.

Proof. Let v be any nonatomic Borel measure such that v(K) = 1. Let Zx =
{B C K : Bisopenrelativeto K}, and ¢ := {B +t, B € $Bx, t € R} U{R} and
let P : ¥ — R be a set function defined as

P@) =0,
P(B+1t)=v(B) BePHBg,t eR, and
P(R) = +o0.

P is apremeasure and we use Method II [8] to construct the sought-after measure p:

w(A)y= gin}) us(A) where ,ug(A):inf{Z P(C;):diam(C;)<8,C; €%, U;C; DA}.
—>

Since we use Method II, we know that u is Borel and metric. We need to show

that

e 1 is translation invariant.
e 0< u(K) < 4oo.

The first part is a direct consequence of the definition of P.

For the second, it is clear that u(K) < 1.

For the other inequality, let {C;} € % be a covering of K with diam(C;) <
8,C; = B; +t;. Since K is compact,

KC (B +a)U(By+a)U---U(B, + a,), where (B; +O{,')ﬂK7é®.
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By the linear independence over the rationals of K, if o; # 0, (B; + «;) N K
contains exactly one point and we call it x;. Therefore, we can find j,... ji for
which C;, = Bj, and

K\{xil,...,xi,}gle UBjZU"'UBjk.

Then
k

k
Y P(B;) =) v(B}) = v(U_ B;)
s=1

s=1

since v is a Borel measure. But
V(UE_ B) > v(K \ {xi, .. xi, ) = v(K) = 1.

This yields the desired result.
We are now ready for the main theorem of this section.
Theorem 3.8. A generic compact subset of R is visible.

Proof. Now the proof follows from Lemma 3.7 and the fact that a generic compact
subset of R is uncountable and it follows from Theorem 19.1 [7] that it is linearly
independent over the rationals.

4 Davies Sets in Polish Abelian Groups

In this section we extract out key ideas from the construction of Davies [5] to give
a general procedure for constructing compact strongly invisible sets in an abelian
Polish group.

Let G be an abelian Polish group and {#;} be a sequence of distinct points in G
such that ) 72, d(0,#) < oo. Foreach o € {0, 1} let p(0) = > 72, o (k).

We say that sequence {#;} is good if

(p(0) = p(x). 0.7 € {0, 1}Y) = (0 =1),

i.e., each element of p({0, 1}"V) has a unique expansion in terms of {#;}.

Lemma 4.1. Let G be an uncountable, abelian Polish group. Then G has a good
sequence.

Proof. Let {t;} be any sequence in G such that for all k > 1 we have that

> 1
> d0.1)) < 50, 10).
j=k+1

Then, this {#; } has the desired property.
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Theorem 4.2. Every uncountable abelian Polish group contains a strongly invisible
compact set.

Proof. Let G be an uncountable abelian Polish group, {#;} a good sequence in
G constructed as in Lemma 4.1 and as before for each o € {0, 1} let p(0) =
Yoo o (k).

Moreover, assume that {A; : k = 0,1,...} is a decreasing sequence of subsets
of N such that Ag = N and Ay \ A4 is infinite forall k = 0,1, .. ..

Finally, define for k > 1,

By ={0€{0, 11N :0()=0ifi <kori € A}.

and
Cr ={p(0) : 0 € By}

The properties of the sequence {# } imply that Y ;= , diam(Cy) < oc.

We consider now a sequence {x,} of distinct points in G converging to zero, and
a sequence of pairwise disjoint balls { B(x,)} centered at x,,.

Since the diameters of the sets C; go to zero, it is possible to find an increasing
sequence {n} of positive integers, such that C,,, + Ii is included in the ball B(x)
for some translation /; € G. Define C to be the union | J, (C,, +i) plus the element
zero. So, C is compact.

We will see that the set C has the required properties.

For k,! € N, denote by B]?’l ={oe€eB;:o0k)=---=0(k+1[—-1)=0}and
by CQ, = {p(0):0 € B),}.

Then Cy is a finite union of disjoint translates of C 1?,1 since

Ce = J(CP) +u)

u

where u € {Zg;gaﬂkﬂ' co; €401}, a; =0ifk +1i € Ak}.
We want to see now that Ci 4, is the disjoint union of uncountable translates of
C,?[. For this, define

Dy ={te{0, 1}V :1(s) =0ifs <k +lors ¢ A\ Axss}

The set Dy is uncountable and so is the set {p(r) : © € Dy} because the
sequence {t } is good.

It is easy to see now that the collection of translates {C,?J + p(t) : T € Diy}is
pairwise disjoint and that

Cerr = |J (€2 + p(@)

T€Dy

Now we are ready to see that C is strongly invisible.
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Let u be a translation invariant Borel measure. If ;£(C) is not zero, then there

. 0 ..
exists k € N sucl} that [,L(an.) > 0. Then an,nk+1—nk has positive measure. It
follows that Cy,, ., is not o—finite with respect to the measure ji. So, neither is C.

Using this construction, together with Lemma 3.4, we can show the following
proposition.

Proposition 4.3. The set of strongly invisible sets is dense in € (R).

Proof. Following [5] we have that there are compact strongly invisible sets of
arbitrary small diameters. Moreover, the finite union of translates of a fixed strongly
invisible set is again strongly invisible. Using Lemma 3.4, we have the desired
result.
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Convolution Inequalities for Positive Borel
Measures on R and Beurling Density

Jean-Pierre Gabardo

Abstract We consider certain convolution inequalities for positive Borel measures
in Euclidean space and show how they are related to the notions of upper and lower-
Beurling density for these measures. In particular, the upper-Beurling density of a
measure 4 is shown to be the infimum of the constants C > 0 such that u % f < C
a.e. on R? for some nonnegative function f with [ f(x)dx = 1, and a similar
characterization is obtained for the lower-Beurling density of p. We also consider
convolution inequalities involving several measures and provide applications of
these results to systems of windowed exponentials and Gabor systems.

Keywords Upper-Beurling density ¢ Lower-Beurling density ¢ Beurling den-
sity * Locally-finite measure ¢ Translation-bounded measure * vector-valued mea-
sure * Convolution of positive measures ¢ Dirac mass ¢ Gabor frames

1 Introduction

Our main goal in this work is to establish a link between certain convolution
inequalities for positive Borel measures in Euclidean space and corresponding
notions of Beurling density associated with such measures. We show, for example,
that if 1 is a positive Borel measure on R?, if ' > 0 is Lebesgue integrable on R?,
and their convolution product satisfies % f < C almost everywhere on R for
some constant C > 0, then we must have the inequality 2 (u) fpa f(x)dx < C,
where 27 (u) is the upper-Beurling density of x and that the quantity 27 (i) is
the best possible constant in this last inequality. Similarly, we will prove that if, in
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addition, p is translation-bounded and if 4« * f > C almost everywhere on R¢ for
some constant C > 0, then 2~ () [za f(x)dx > C, where 2~ (), the lower-
Beurling density of w, is the best possible constant.

The fact that convolution inequalities of the type mentioned above give rise to
some estimates on the corresponding Beurling densities of the associated measure
is not new, and, in fact, particular cases of these results have been mentioned and
used a number of times in the literature by various researchers. Examples of these
situations can be found in the study of the packing and tiling properties of the
translates of sets (or functions) in R? (e.g., [2,3]). In that case, the measure j is
simply a sum of Dirac masses it = ), 01, where A corresponds to the set of
translates involved in the packing or tiling. Other examples can be found in the
theory of (weighted or unweighted) irregular Gabor systems (see e.g., [4, 5]). In
that case, if such a system forms a Bessel collection or a frame for R4, one can
deduce certain convolution inequalities for a related positive measure defined on the
time-frequency space R?¢. Using the results mentioned above, one can then obtain
estimates on the Beurling density of the points associated with the time-frequency
shifts of the window (or windows if there is more than one) involved in the system.

It is worth mentioning that in all the known results in the literature where
these types of estimates appear, some restriction is made on the type of measure
W or the type of function f for which the convolution inequality is assumed to
hold. The proof that the resulting inequality holds for the corresponding Beurling
density is then dependent on these additional assumptions. This has the effect that
the proofs are sometimes unnecessarily complicated and that the generality of the
results is somewhat reduced. Hence, one of main tasks will be to establish the results
mentioned above in full generality so that they can be applied in a systematic way
to various situations.

This chapter is organized as follows. In Sect. 2, we define the convolution of
(generally) unbounded positive Borel measures on R? and prove that the result of
the convolution of a positive Borel measure with a nonnegative locally integrable
function is always given by a function (possibly taking the value co). In Sect. 3, we
define the notion of translation-bounded measure and Beurling densities. We prove
certain results relating these; in particular the fact that a measure p is translation-
bounded if and only if the upper-Beurling 2 () is finite. Sections 4 and 5 contain
the main theorems of this chapter. Section 4 deals with the case of a convolution
product with a single measure while Sect. 5 generalizes this situation to the case of
a sum of convolution products involving several measures.

2 Convolution of Positive Borel Measures

The positive Borel measures on R? that we will consider here will generally be
unbounded, but they will be, unless otherwise specified, “locally finite” which
means that the measure of any compact subset of R? is finite. A major topic
considered in this chapter will be the study of certain properties of the convolution
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of such positive measures. The convolution of general unbounded complex-valued
measures is not well defined in general, but this difficulty disappears when we deal
with positive measures as we allow the measure of some sets to be infinite. We
begin by recalling some known definitions and prove some elementary facts about
the convolution of general positive Borel measures on R¢. If y and v are (locally
finite) positive Borel measures on R, we can define their convolution product p * v
by the formula

G E) = [ gpte+ ) du @ ).

for any Borel subset E of R, where 1 ® v denotes the tensor product of the two
measures. By the Fubini—Tonelli theorem, this last expression can be computed as

G = [ ([ 2+ 5 00)) aneo

- / ( / 15 + ) du(X)) ().
]Rd ]Rd

Of course, the resulting measure, although still a Borel measure, might not be finite
on compact sets even if 1 and v are both locally finite. It is easily checked that
if u, v, and p are (locally finite) positive Borel measures on R? and if pu * v
and pu * p are locally finite as well, then (u * v) x p = u * (v * p). The space
of complex-valued (resp. locally) integrable functions on R will be denoted by
L'(RY) (resp. L] (R?)). Any Lebesgue measurable function f with f > 0 defines

loc

a Borel measure u  via the formula
wr(E) = / f(x)dx, E Borel subset of RY.
E

We will use the notation dit y = f(x)dx to denote this measure. In the case where
the convolution of two positive Borel measures w, v is of the form d(u * v) =
F(x) dx, for some nonnegative Lebesgue measurable function F, we write ;v =
F, with a slight abuse of notation.

Lemma 1. Let i1 be a locally finite, positive Borel measure on RY and let f €
L} (R?) with f > 0. Then, there exists a Borel measurable function H on R? with

loc

0 < H(x) < oo for x € R? suchthat u x f = H.

Proof. Let By denote the closed ball centered at 0 with radius N > 0 in R. Define
N = 1 xpy and fy = f xpy foranyinteger N > 1. Then, uy * fy is a bounded
Borel measure for any N > 0. If D is a Borel measurable subset of R? with zero
Lebesgue measure we have

(un * fn)(D) = /Rd (/Rd ap(x+y) fn(y) dy) duy(x) = 0.
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By the Lebesgue—Radon—-Nikodym theorem (see [7]) (applied to the situation where
the sigma-finite measure in the theorem is the Lebesgue measure restricted to the
Borel subsets of R?), there exists a Borel measurable (and integrable) function Hy
on R? with Hy > 0 such that

(uy * fn)(E) = / Hy(x)dx, E Borel subset of R?.
E
Clearly, the sequence {Hy}n>1 is pointwise increasing and H(x) = limy—oo
Hy (x) is well defined as a Borel measurable function taking its values in [0, co].

Furthermore, the Lebesgue monotone convergence theorem shows that, for any
Borel subset E of R?, we have

lim (uy * fy)(E) = lim / Hy(x)dx = / H(x)dx.
N—>o0 N—oco [E E
The same theorem shows also that

Jim (uny * fy)(E) = lim ( / XEX + ) () xBy (X) X8y (V) d(y)) du(x)
— 00 R" ]Rd

N—o0

[ (L et 7601000 o) = e 1368,

which proves our claim. O

Note that, even in the case where p is a bounded measure and f is integrable in the
previous theorem, the convolution p * f cannot, in general, be written in the form

G ) = [ = 0du0). xR m

as the integral does not even make sense if f is not Borel measurable. However, as
the following lemma will show, the formula is correct when f is Borel measurable.

Lemma 2. Let i be a locally finite, positive Borel measure on R?. Suppose that
f e Ll (R?)issuchthat f > 0 and is Borel measurable. Then u * f = H where

loc

H is given by (1).

Proof. Since the function (x, y) — yg(x 4+ y) f(y) is Borel measurable on R??
for any Borel subset E of R, the Fubini-Tonelli theorem yields

@ = [ ([, xe 0 r00ar) duco

-/, (/R xE(y)f(y—x)dy) aun = [ (/R f(y—X)dM(x)) day,

which proves the lemma. O
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Since every Lebesgue measurable function is equal almost everywhere to a Borel
measurable function (see [1, Section 21]), the function H in Lemma 1 can be
explicitly computed using formula (1) by simply choosing a Borel measurable
representative of f € L} (RY).

loc

3 Translation-Bounded Measures and Beurling Densities

We will denote by | E| the Lebesgue measure of a measurable subset £ of R? and
by EE, the complement of E, i.e., the set RY \ E.Forz = (z1,...,2m) € RY, we
define the d-dimensional box of side length R > 0 centered at z to be the set

IR ={y=01.....ym) €R?, |z —yi| <R/2,i=1,....,m}.

For simplicity, we will write /g for Iz (0). The notion of Beurling density plays
an important role in many areas of modern Fourier analysis. One of the first use
of the concept of Beurling density for discrete subsets of R? appeared in the paper
by H. Landau ([6]) studying sampling and interpolation in spaces of band-limited
functions. More recently, many researchers have used this notion, particularly in the
study of Gabor frames (e.g., [4, 5]). If  is a positive Borel measure on R?, the
quantities

2% (n) = limsup sup 1 UrE)

I
20 and 97 () = liminf inf L UrE)
R—00  zeRd R R

—00 zeRd R4

are called the upper and lower Beurling density of the measure u, respectively.
If both these densities are equal and finite, we say that the Beurling density of the
measure y exists, and we define it to be the quantity Z(u) := 2% (u) = 2~ ().
If A C R? is a discrete set, the corresponding Beurling densities 21 (A), 27 (A)
and Z(A) are defined as the corresponding Beurling density of the measure y =
> .ca 61, where §; is the Dirac mass at A. A positive Borel measure y on R? is
called translation-bounded if, for every compact K C RY, there exists a constant
C.(K) > 0 such that

n(K+2z) <Cu(K), zeR

where K + z = {Z + z, 7 € K}. Clearly, i will be translation-bounded if the
inequality above holds for just one compact set K with nonempty interior. We will
need the following lemma.

Lemma 3. Let [ be a translation-bounded Borel measure on R¢. Then, for any
rectangular box
B =lai,bi] x - x[aq, ba]
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contained in R we have
d
p(B) < Cu(D) [ lbi —ai) +1]. ©)
i=1

Proof. Let I = [0, 1] be the unit hypercube in R?. Fix a box B as above and, for
eachi = 1,...,d, choose an integer k; such thata; +k; < b; < a; +k; + 1. Then,

ki kq
B C [a1,a1+k+1]x---X[ag,aq+kqg+1] = U I+(ay+ri,...,a5+rq).
r1=0 rq=0
Hence,
d d
u(B) < Cu(D) [Tky + 1) < Cu) [T 1) —ay) + 11,
j=1 j=1
which proves the lemma. O

Corollary 1. Let ju be a translation-bounded, positive Borel measure on R?. Then,
there exists a constant C depending only on | such that

nIr(z) <C(A+RY), R>0, zeR’ 3)

Proof. Let I = [0, 1]¢ be the unit hypercube in R¢. Fix z € RY. If0 < R < 1, we
have the inclusion Ig(z) C I +w where w; := z; — 1/2fori = 1,...,d. Hence,
w(lr(z)) < Cu(I).If R > 1, the previous lemma shows that

pw(Ir(2) < Cu(I) (1 4+ R < Cu(1)27 (1 + RY),

which proves our claim. O

Corollary 2. Let p be a positive Borel measure on R?. Then, u is translation-
bounded if and only if 2™ (1) < oo.

Proof. If p is translation-bounded, then 2% (1) < oo by Corollary 1. Conversely,
given any compact set K, choose Ry > 0 and 7y € R such that K C Ig,(z0). By
definition of Z7 (1), we can find Ry > Ry such that j(Ig, (z)) < (27 (1) + 1) R¢
for all z € R? which implies that

WK +2) < (@ (w + 1R, zeR?

Hence, u is translation-bounded. O

The following lemma will play a crucial role to obtain certain estimates in the
following section.
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Lemma 4. Let i be a translation-bounded, positive Borel measure on R¢. Suppose
that M > N > 0. Then, for any z € R4, we have

(I (@) + ») — pUIn (@) < d Cu(I) (M + D)"Y (N +2)/2, forall y € Iy.
4)
Proof. We have

HUM@ +9) = (U @) +3) N I @) = 1T @) = i (T @) N U@ + 0)F)
and
d
(UIn@+»° = R;.

j=1
where
R ={w=(wi,....wq) €RY z; +y;—w; > M/20rz; +y; —w; < —M/2}.
Note that the set /7(z) N R; is equal to
{W € Rdv |Zi_wi|§M/27 izl,...,d, [ 7é ./ and M/2_y] <Z]_W] = M/2}7
if y; > 0, and to

weR!, [g—wi|<M/2, i=1,....d i#]
and — M/2<z;j —w; <—M/2—y;},

if y; < 0. Using Lemma 3, we obtain thus that

w(In@) N R;) < Cul) (M 4+ 1D (ly;|+1) < Cu(I) (M + 1)1 (N +2)/2.

Hence,
i (1u@ 0 @ + F) = 1 (U@ N R))
< Xd: p(In@ NR;)<dCu(l)(M + 1) (N +2)/2
=
and

w(y (@) +y) — pu(In (@) = —d Cu(I) (M + DN (N +2)/2. ()

We have also,

wu () = nIn (@ +y) = —d Cu(I) (M + 1)1 (N +2)/2,
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using the previous estimate (5) with z replaced by z 4 y and y by —y. This, together
with Eq. (5), yields the required inequality. O

4 Convolution Inequalities and Beurling Densities

In this section, we consider the relationship between convolution inequalities involv-
ing a single positive Borel measure on R? and the corresponding Beurling densities.
We start by proving that the translation-bounded measures on R? are exactly those
measures whose convolution product with some nonnegative integrable function
give rise to a bounded function on R¢ . To simplify the notations, we introduce the set

PR ={f e L"(RY) with f >0 and / f(x)dx = 1}.
]Rd

Proposition 1. Let i be a positive Borel measure on R?. Then, the following are
equivalent:

(a) W is translation-bounded.
(b) There exist f € 2(R?) and a constant C > 0 such that u * f <C a.e. on R?.

Proof. If ju is translation-bounded, let f = y;,. Then, [p, f(x)dx = I and
poa ) = [ =0 dn0) = i+ = G, x €Y,

showing that (b) holds. Conversely, if there exists a function f € Z(RY) satisfying
(b), choose a bounded measurable set £ suchthat0 < a < f < o0 on E where a is
a positive constant. We have then y % a yg < C a.e.on R?. Letting £ = {—x, x €
E}, we have thus

mwxaygx*yxp <C|E|, ae.on RY,

Since yr € L*>(R) and

(xe*xg) (x) = /Rd xe(x + ) xe(»)dy, xeR?,

the function g := yg * y is continuous and compactly supported. Furthermore
2(0) = |E|*> > 0. Therefore, g > ¢ > 0 on some set /., for r > 0 and ¢ > 0 small
enough. Letting C; = a~' C |E|, we have

/ g(x —y)du(y) < Cy, forae.x € RY.
R4
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Since the left-hand side of the previous inequality is continuous, this inequality must
hold for all x € RY. Hence,

px+1,) <c! /+1 gx —y)du(y)

fc_lfd glx—y)du(y) <c™'C. xeRY,
R
which shows that p is translation-bounded. O

Definition 1. Let .%; denotes the set of compact subsets of R? with nonzero
Lebesgue measure. Let 11 be a positive Borel measure on R?. We define

wx + K)

ET(n) = hm sup inf and
N—o0 Kexy XEly |K|
K
E (n) = hm inf sup px + K
—00 KEXy yely |K|

Proposition 2. Let v be a positive Borel measure on RY. Then, we have the
inequalities
EY(W) <t (w) and E(n) = 7 (). (6)

Furthermore, if | is translation-bounded, we have the equalities
EX (W) =2 (), (W =2 (W), (7

and the collection of compact sets ¥y in the definition of & () and &~ () can be
replaced by the collection of translates of sets Igr, R > 1.

Proof. We will start by proving the inequalities in Eq. (6). Let us first assume that
&1 () < oo. Fix e > 0 and let { Ky }y>1 be a sequence in .#; such that

K
E* () —e < inf PEEEN oy
XEly |KN|

We have then

1 w(x + Ky)

— dx > &t (u)—e, N >1.
Un| Jiy |Ky|

Since, by Fubini’s theorem,
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[ e koae= [ e ([ zno-nm0)
= / (/ Yy (Y —X) 1y (%) dx) du(y)
R4 R4
= / (/ Xy (V= X) xxy(x) dx) dp(y)
R4 R4

= [ 1@ ([, o =naum) as= [ e+ noax

it follows that

1 wlx + Iy)

dx > &T(u) —e, N >1.
IKnl Jry 1IN

In particular, for every N > 1, there must exist xy € Ky such that

ulxy + In)

> ET(n) —e.
Iy > &7 (1)

This shows that 2 () > &7 (i) — € and, since € > 0 is arbitrary, that 21 () >
ET(w). If & () = oo, we can find a sequence { Ky} x> in .#; such that

oo, N — o0,

and the same computation as above shows that 21 () = oo = &1 (). Thus the
first inequality in Eq. (6) holds. If &~ (x) = oo, the second inequality in Eq. (6) is
obvious. We can thus assume that £~ (u) < oo. Fix € > 0 and let {Ky}y>1 be a
sequence in %y such that

u(x + Ky)

<& (u)+e€, N=>1.
e IKN (v
We have then

1 w(x + Ky)

— dx <& (u) +€, N =>1,
vl Jiy KN
which implies, as before, that

1 w(x + Iy)
IKn| Jxy  N|

dx <& (u)+e, N=1
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and thus, since € > 0 is arbitrary, that 2~ (u) < & (u), proving thus the second
inequality in Eq. (6). Let us now assume that p is translation-bounded. Using
Corollary 1, it follows that 2 (1) < oo. Fix € > 0. Using the definition of 2 (1),
we can find an increasing sequence of positive numbers r; with lim; ., r; = 00
and corresponding points x; € R? such that

p(xj + 1))
d

iy

>t () —€/2.

Let N > 1 be an integer. We claim that we can find an integer J such that,

pl + 1y +x) ol + 1)
rd - rd
J J

—€/2

forall x € Iy and all j > Jo. Indeed, using Lemma 4, we have, for r; > N and
x € Iy, that

w(x;+ 1, + xl— w(x;+ 1) 5 dC,(I)(rj + 1301—1 (N +2)/2 <ef2
J

r; r

J
if j is large enough. Hence, we have

w(x; + I, + x))

inf -~ > 9" (n) —e.
x€ly rj
which shows that K
sup inf M > 2T (u) —e,
Kexy X€In | K|

and thus that &1 (u) > 27 (u), since € > 0 is arbitrary. Using Eq. (6), this
proves the first equality in Eq. (7). Since &1 (u) = 21 (u), the previous com-
putation also shows that the supremum over all compact sets in J#; in the definition
of &1 (u) is the same as the one over the smaller collection of all translates of
the sets /g, R > 1. Similarly, using the definition of 2~ () which is finite (since
27 (n) < 2% (n) and 27 (1) < o0), we can find, for any € > 0, an increasing
sequence of positive numbers s; with lim; ., 5; = oo and corresponding points
y; € R™ such that

HY+Iv _
%5@ (1) + €/2.

Let N > 1 be an integer. As before, we can find an integer Jj such that,

+¢€/2

M(yj + I, +x) (v + ISj)
d d

¥ S
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forall x € Iy and all j > Jy. Hence, we have

w(y; +I; +x))
d

sup <2 (u) +e,
XEly Sj
which shows that ( )
m(x + —
inf  sup ——= <9 + €,
Koty oo K] )

and thus that £~ (u) < 2 (w), since € > 0 is arbitrary. Using Eq. (6), this
shows that the second equality in Eq. (7) holds. Since & (u) = 27 (u), the
previous computation also shows that the infimum over all compact sets in JZ; in
the definition of &¥(u) is the same as the one over the smaller collection of all
translates of the sets /g, R > 1. This concludes the proof. O

Let us introduce the following definitions. Let u be a positive Borel measure on
R?. We define
¢ () =inf{C >0, p* f <C ae. forsome f € BZ(R‘J)},

with the convention that 6" (1) = oo if the set where the infimum above is taken
happens to be empty. Similarly,

¢~ (w) =sup{D >0, u* f > D ae. forsome f € Z(R')}.

Note that the fact that the inequalities appearing in the previous definitions must hold
“almost everywhere” as opposed to “everywhere” is unimportant. For example, if
ux f <C ae.on R, we can replace f with f % h, where & > 0 is continuous,
compactly supported, and with integral equal to 1, to obtain a corresponding
inequality which now holds everywhere on R¢ . For the same reason, one can always
restrict the functions f to be continuous or even smoother in our definition of
€T () or € () without affecting those values.

Proposition 3. Let 11 be a positive Borel measure on R?. Then,

(a) €T (1) < oo if and only if u is translation-bounded.
(b) €~ (1) =€+ (.

Proof. The statement in (a) follows directly from Proposition 1. In order to prove
(b), we can assume that ¥ (1) < co. Given € > 0, choose f, g € Z(R?) with

px f<ET(w) +e.

If D > 0 is a constant such that  x g > D a.e. we have

D=Dxf<psgxf=pxfxg<%t(n)+e
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which implies that '~ (i) < € (1) since € > 0 is arbitrary. O

We can now state the main result in this section.

Theorem 1. Let i be a positive Borel measure on R¢. Then,

(a) € () = 2% ().

(b) €~ (n) = 2~ (un) and if, in addition, | is translation-bounded, then we have
the equality €~ (1) = 27 ().

Proof. We first prove (a). If 11 is not translation-bounded, we have 27 () = oo by

Corollary 2 and €'+ () = oo by part (a) of Proposition 3. We can thus assume that

W is translation-bounded and thus that both €+ (i) and 27 (1) are finite. Given

€ > 0, we can find R > 0 such that

u(Ir(2)

R <9 (w) +e, zeR? (8)

Letting / = R yy,, wehave f € L'(R?), f >0, [pa f(x)dx =1 and

pUr()

oD e R?.

(x* f)z) =

Using Eq. (8) and the definition of ¥ (1), we deduce that € () < 2 (),
since € > 0 is arbitrary. To prove the converse inequality, we use the fact that
9% () = &F(u) by Eq. (7) of Proposition 2. Given € > 0, we can find a sequence
of compact set { Ky }y>1 with | Ky| > 0 such that

w(x + Ky)

> &t —€, x€ly.
K| = () N

Suppose now that C > 0 is a constant such that u x f < C a.e. for some function
f € L'RY) with f > 0and [p, f(x)dx = 1. Define hy = |Ky|™" xz, * it
where kN = {—x, x € Ky}. Then,

x+ K
hy(x) = % > &t () —e€, xely,

and
fxhy = |KN|_1)(,5N % f*pu<C ae onR?.

Therefore,
[ [, re=nmmaar=c
I, JRd

which implies that



36 J.-P. Gabardo

(tw-9 [ [ re-noe=c

I JIy

Since, for every x € I, the sequence {le f(x — y)dy}ns is increasing and
converges to 1, it follows from the Lebesgue monotone convergence theorem that

st —e= tim (Fw-e) [ [ re-naarsc
S I In

By the definition of €+ (i), we obtain that &+ () — € < €+ (u) and thus that
DT () = T () < €T (u) since € > 0 is arbitrary. This proves the statement
in (a).

For part (b), we will prove first that 2~ (u) < €~ (n). If 27 (u) = oo, we can
find for any M > 0, a number R > 0 such that

%zm zeRY. )

As before, this implies that €~ () > M and thus €~ (u) = oo since M > 0 is
arbitrary. Similarly, if 27 () < oo, we can find for any € > 0 a number R > 0

such that
pr(2)
Rd
which implies that €~ (u) > 27 (1), since € > 0 is arbitrary. Suppose now that
M is translation-bounded. To prove the converse inequality, we use the fact that
2~ () = & (u) by Eq. (7) of Proposition 2. Given € > 0, we can find a sequence
of compact set { Ky }y>1 with | Kx| > 0 such that

> 2 (u)—e, zeR? (10)

<& () +e, xely.

By Proposition 2, we can assume that each set Ky is equal to some translate of a
set Ir, R > 1. Hence, using Corollary 1, we can also assume the existence of a
constant L > 0 depending only on p such that

x€R4 |Kn| N
Suppose now that D > 0 is a constant such that u x f > D a.e. for some function
f € L'RY) with f > 0and [, f(x)dx = 1. Define hy = [Kn|™" xg, * it
where KN ={—x, x € Ky}. Then,

u(x + Ky)

hy(x) = K]

<& (w)+e xE€ly,

0<hy(x)<L, xeR?
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and
fxhy = |KN|_1)(,5N % f %> D ae.on R’

Therefore,

// Fx = y)hy()dydx = D
n Jre

which implies that
(é”‘(M)Jre)/ f(x—y)dydx+/ / £ — ) hy(y)dy dx = D.
I In I Rd\IN

Since, for every x € I, the sequence { /| In f(x—y)dy}nys is increasing, it follows
from the Lebesgue monotone convergence theorem that

Jim_ (& (o)te) /, | /, Flx—y) dy dx= (& (j)+e) /R f0)di=E (ot

Furthermore, since, for each x € I,

/ flx - y)hN(wdy‘ - / Fe =) hy () dy < L / Flx—y)dy
RI\ Ty RI\ Ty RA

and
/11 L/Rd f(x_y)dydsz/Rd f(y)dy < oo,

the Lebesgue dominated convergence theorem shows that

lim // f(x—y)hy(y)dydx = 0.
N—o00 I Rd\IN

We deduce thus that £~ (i) + € > D and, using the definition of ¥~ (1), we obtain
that &~ () + € > € (). Hence, 27 () = & (nu) > € (u) since € > 0 is
arbitrary. This completes the proof. O

It is important to notice that the assumption that the measure p be translation-
bounded in part (b) of the previous theorem cannot be dropped. Indeed, consider the
example where f(x) = el and y is the measure 1 = 8§y + diei el (6,248 p).
We have

(x f)) = e+ i &f (eI 4 enieHi)
j=1

oo
1+ E el el 4 E ele /| e g E el e/’ | ek,
j=1

1<j</Ix] J=Ix
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It is clear that u * f > 0 everywhere and is bounded on compact subsets of R.
Furthermore if j > 0 and j? < x < (j + 1)?, we have

(* f)(x) = el e 77 p it h=GHD] = ei+i% emx 4 o/ =i% ¥ 1= g(x).
If j =0, wehave g(x) =" +e™* > 2andif j > I, we have
§0) =~ T e e e

and g’ (x) = g(x) > 0. Hence, the minimum value of the function g on the interval
[j2.(j +1)¥is g(j + j?) = 2. Thus it shows that  * f > 2 on [0, o) and since
W * f is even, we have thus u * f > 2 on R. Since fR f(x)dx = 2, it follows
that €~ (w) > 1. On the other hand, we have 2~ () = 0 since the support of p
contains gaps that are arbitrarily large. It is clear that u is not translation-bounded in
this example. Similar examples in higher dimensions can be obtained by considering
tensor products.

We now state some straightforward consequences of Theorem 1 which are often
used in applications.

Corollary 3. Let i be a positive Borel measure on R? and let h € L'(R?) with
h>0:

(a) Ifthere exists a constant C > 0 such that the inequality puxh < C holds a.e. on
RY, then (1) [ga h(x)dx < C.

(b) If u is translation-bounded and there exists a constant C > 0 such that the
inequality i * h > C holds a.e. on R?, then we have 2~ (i) < 27 () < 00
and 7~ (1) [ra h(x)dx > C.

Corollary 4. Let i1 be a positive Borel measure on R? and let h € L'(R?) with
h > 0. Suppose that there exists a constant C > 0 such that

wxh=C ae onR?.

Then, the Beurling density 2 () of  exists, and we have the equality

2(wn) /Rd h(x)dx = C.

Conversely, if the Beurling density 2(11) of u exists, we can find, for every € > 0, a
function h € 2(R?) such that

D) —e <pusxh<D(u)+ e ae on R,
Proof. The first statement of the corollary follows immediately from Theorem 1.

To prove the second one, we note that, by the definition of €% (i) and ¢~ () and
Theorem 1 again, we can find function /; and /, in 22(R?) such that
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wxh <2(u)+e and pxhy > 2(u)—e ae.onR?.

The results follows by letting &z = hy * hj. O

We point out that, in general, if the Beurling density Z(u) of a measure u exists,
it might not possible to find a function 1 € Z(R?) such that 1 * h = Z(u). For
example, if 4 = 1 4 &y, where §; denotes the Dirac mass at the origin, we have
2(u) = 1, but if & is as above, we have u * h = 1 + h which clearly cannot be
equal to 1 almost everywhere.

Corollary 5. Let i be a positive Borel measure on R? and let h € L'(R?) \ {0}
with h > 0. Then,

(a) T xh) = T (W) fa h(x)dx.

(b) If p is translation-bounded, 7~ (p x h) = 27 (i) [ga h(x) dx.

(c) The Beurling density P (i * h) exists if and only if Z(u) exists and (i xh) =
PD(1) [ra h(x)dx in that case.

Proof. 1t is enough to prove the result in the case where fRd h(x)dx = 1.If f €
Z(R%) and C > 0 is a constant such that

ux f<C a.e.oan,

then we have also

wxhx f=uxfxh<C a.e.on RY,
which shows that €t (u * h) < €t (u). On the other hand, if

wxhs f<C ae.onRY,

then €1 (u) < C and thus €7 (1) < € (u * h). It follows that €T () = €+
(u = h) and the result in part (a) follows from part (a) of Theorem 1. Similar
arguments show that €~ () = €~ (u * h). If p is translation-bounded, so is  *

and we have thus 27 () = 27 (u * h) using part (b) of Theorem 1. This proves
(b) and (c) is an immediate consequence of (a) and (b). ]

The example given after Theorem 1 shows that the equality in part (b) of the
previous corollary may fail if u is not translation-bounded.

5 Vector-Valued Measures

In tiling or paving problems involving several tiles or in the theory of multi-windows
Gabor frames, for example (see [5]), one is led to consider convolution inequalities
as in the previous section involving more than one measure. Consider a finite
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collection py, ..., i, of positive Borel measures on RZ. We associate with it the
vector-valued measure p defined by

ro= (1o ).

Given a vector a = (ay,...,a,) € R” witha; > O foreachi = 1,...,m, we
define the collection

yy(Rd)z{(fl,...,fm)e (L'(R"))", f,zo,/w fi(x) dx=aq;, izl,...,m}.

Our goal in this section is to compute the expressions

€t (p,a) =inf ,

CzO,Z wi x f;<C a.e. for some (fl,...,fm)ec@;"(Rd)

i=1

with the convention that €+ (i, a) = oo if the set where the infimum above is taken
turns out to be empty, and

m
D > O,Z Wi x fi>D a.e. forsome (f1,..., fn) € QQ”(R”I)

i=1

¢ (p,a)=sup

We let 2"(RY) = Zp(R), €+() = €+ (p,a0) and € (r) = € (. a0),

where a9 € R” is defined by letting its components a; = 1 for each i =
1,...,m. It is clear that €7 (,a) = €V(ji) and €~ (n,a) = € (i) where
= (a1, am m). We will need the following lemma.

Lemma 5. Let (fi,..., fin) € Z"(RY) andlet u;, i = 1,...,m, be positive Borel
measures on R?. Suppose that there exists a constant C > 0 such that

Z fi*pi <C. ae onR"

i=1

Suppose, furthermore, that there exists a constant Cy such that, for every integer
N > 1, we can find a compact set Ky with |Ky| > 0 and positive constants C; y,
i=1,....msuchthaty /L, C;n > Cyand

>Ci,Na x € ly.

|Kn| -

Then, we have the inequality
Co<C.

Proof. Define h; y = |Ky|™! iy * Hir 1 = 1,...,m, where Ky = {—x, x €
Ky }. Then,
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pix + Ky)

hin(x) = Kn] >

Ci,Nv )CEIN,iZI,...,m.

and

Z fixhiy =|Ky|™! Xiy * (Z fi *M,-) < C ae.on R’

i=1 i=1

Therefore,

> [ [ - mmare<c

i=1

which implies that

Zc,-,N[ fikx =y)dydx < C. (11)

i=1 hJiy

Since,

/ff(x—y)dyff fiHydt, xel,, N>1,
Iy R4

the Lebesgue dominated convergence theorem shows that

lim /11 N f,-(x—y)dydx:/Rd fi(t)dr = 1.

N—o00
Given € > 0, we can thus find an integer Ny such that
/ fitx—y)dydx>1—€, N >Ny, i=1,...,m.
n Jiy

Using Eq. (11), we obtain that, for N > N,

Co(l-e) <) Cin(l—e) =C.

i=1

Since € > 0 is arbitrary, the inequality Cy < C follows. O
Theorem 2. Let o = (U1, ..., n) be a vector-valued measure where each ;,
i = 1,...,mis a positive Borel measure on RY and ler a = (ay,...,a,) € R™,
with a; > O foreachi = 1,...,m, be given. Then,

€t (n.a) = 77 (). where p =Y a; .

i=1
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Proof. We can assume that a = ag as above and thus that u = Y /- w;. If €7 (p)
is finite, then there exists a constant C > 0 such that u; x f; < C a.e. for each
i = 1,...,m and each measure p; must be translation-bounded by Proposition 1.
Hence, p is translation-bounded and 2 (1) < oo by Corollary 2. Conversely, if
97 () < oo, the measure j is translation-bounded using the same result and thus
so is each measure y;. By Proposition 1, there exist functions #; € L'(R?) with
h; > 0 and fRd h;(x)dx = 1 as well as positive constants C;, i = 1,...,m, such
that ; * f; < C; a.e.onR?.

Hence,

dwmxfi<y G

i=1 i=1
and €T (u) < oo. It follows that €T () = oo if and only if 7 (u) = oo. We
can thus assume that y is translation-bounded and that both '+ (p) and 27 (u) are
finite. Given € > 0, we can find R > 0 such that

1
%§Q+(u)+e, zeR%. (12)
Letting f; = Ry, fori = 1,...,m, we have f; € L'(R?), f; > 0,
Jga fi(x)dx =1and

pr(2)

RI zeRY.

D (i * f)@) =

i=1

Using Eq. (12) and the definition of €t (i), we deduce that € (n) < 21 (),
since € > 0 is arbitrary. Conversely, using the definition of 2% (i), we can
find an increasing sequence of positive numbers r; with lim; o, r; = oo and
corresponding points x; € R? such that

M (xj + Ir./))
7

> 9 (n) —e€/2.

Let N > 1 be an integer. We claim that we can find an integer Jy such that, for
1<i<m,

ix; + 1, +x i(x; + I,

/"L(] dj )zu(ld ’)—e/(2m)

¥ ¥

forall x € Iy and all j > Jy. Indeed, using Lemma 4, we have, for r; > N and
x € Iy, that

wi (xj + I, +x) —wi (x; + 1) _dCu () + DI=Y(N +2)/2
rd N d
j

<€/(2m)

Ty
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if j is large enough.

Since
- i i+ Ir~ i+ Ir‘
Z H (x]d /) —€/(2m) ZlI“()Cj—tj/)—e/229+(/L)_éa
i=1 Ty g

we deduce from Lemma 5 with Ky = x; + I,j and

i (xj + 1,
Ciy = W —€/2m), i=1,...,m,
j
forany j > Jo, that 2% () —e < €T (w). Since € > 0 is arbitrary, the inequality
9T () < €T (w) follows. This proves our claim. O

Corollary 6. Fori = 1,...,m, let ju; be positive Borel measures on R¢ and let h;
be functions h; in L'(R?) with h; > 0. Suppose that there exists a constant C > 0
such that

Z Wi *h; <C a.e. on RY.

i=1

Then, we have the inequality

7 (W =C
where p =Y 7, (fRd hi(x) dx) i
Lemma 6. For i = 1,...,m), let pu; be positive translation-bounded Borel
measures on RY and let (fi,..., fn) € P"(R?). Suppose that there exists a

constant C > 0 such that

m
Z fixu; = C, ae on R?,

i=1

Suppose, furthermore, that there exists a constant Cy such that, for every integer
N > 1, we can find a compact set Ky with |Ky| > 0 and positive constants C; y,
i=1,....1 suchthat ) ;L C;y < Cy and

pi(x + Kn) _

<Cin, x€ly.
|Ky| '

Suppose also that there exists a constant L > 0 such that

CMI(KN)EL, Nzl’ l:l,,m
|Kn|

Then, we have the inequality
C >C.
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Proof. Define h; y = |Ky|™! gy * Hir 1 = 1,...,m, where Ky = {—x, x €
Ky }. Then,

hi,N(x):+§Ci,N, xely,i=1,...,m.

and
m m
Tk hiy = | Ky oy * i *x u; | = C ae.on .
hiw = 1Kyl 1z, pi| =€ R
i=l i=l1
We have also
hin(x) <L, xeRY i=1..m.
Therefore,
m
S [ fe-nhodar=c
i=1 /I JR

which implies that

;Ci,N /11 /IN ﬁ(x_y)dydx+;/11 /Rd\IN filx—=y)hin(y)dydx > C.

13)
Since
/ filx =y) hin(y)dy §L/ filx=y)dy, xel
RI\ Ty RY
and
/ / Jilx —y)dydx =/ Jiy)dy =1 < o0,
I JRd RY
the Lebesgue dominated convergence theorem shows that
lim / / fix=y)hin(y)dydx =0, i=1,...,m.
N—o00 I Rd\l/v
The Lebesgue monotone convergence theorem also shows that
lim / ﬁ(x—y)dydx:/ fiydt=1, i=1,...,m.
N—o0 n Jiy R4
Given € > 0, we can thus find an integer Ny such thatfor N > Nypandi = 1,...,m,

we have

[ [ se-pnoasice X[ [ fe-nmsoiaar<e
I Iy I, Rd\IN

i=1
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Using Eq. (13), we obtain that, for N > N,

m
Ci(l+e)=) Ciy(l+€)=C—e
i=1
Since € > 0 is arbitrary, the inequality C; > C follows. O

Theorem 3. Let 1 = (W1,..., Un) be a vector-valued measure where, for each
i =1,...,m, u; is a positive Borel measure on R and let a € R™ be a vector
whose components are all positive. Then,

C(n.a) = D (). where p =Y a; ;.

i=1

Furthermore, if each measure ;, i = 1,...,m, is translation-bounded, we have
the equality

¢ (r.a) =77 (n). (14)
Proof. As before, we can assume that a = ay = (1,...,1). The inequality

¢ (n) = 27 (u) follows immediately from the inequality €~ (n) > 27 (n)
obtained in part (b) of Theorem 1 and the inequality 4~ (u) > % (w), if
w =i, [, which follows immediately from the respective definitions of these
quantities. Let us now prove (14) under the assumption that each measure pu;,
i = 1,...m, and thus also p, is translation-bounded. Using Corollary 1, it follows
that 21 (1) < oo and thus 2~ () < oo. Fix € > 0. Using the definition of 2~ (1),
we can find an increasing sequence of positive numbers r; with lim; ., r; = 00
and corresponding points x; € R? such that

M (xj + Ir,/)
d

_ €
<9 (M)‘f‘z-
T

Let N > 1 be an integer. We claim that we can find an integer Jy such that, for
1 <i<mandj>Jy,

pi (x; +d1rj + x) < Hi (xj:' L) 4 i’ xely.
re re 2m

Indeed, using Lemma 4, we have, for r; > N and x € Iy, that

pi (g Iy ) =i (1) | dCuD O+ DTN 42)/2 €
r;l - r}j 2m
if j is large enough. Furthermore, since, by assumption, each measure w;, i =
1,...,m, is translation-bounded, we can use Corollary 1 to show the existence of a
constant L > 0 such that
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C,. 1
CwGH I ) Rl R0 1<i<m.
[1R|
Since
m
Mi -x'+Ir' € 2 x'+1r' € _
Z (]d /)+_ _ (]d /)+_§-@(M)+€a
£ ré 2m ré 2
i=1 J J
we deduce from Proposition 5 with Ky = x; + I, ; and
i(x; + 1,
Ci,N=Ldrj)+i, i=1,....m,
re 2m

J

for any j > Jy, that 27 (u) + € > € (n). Since € > 0 is arbitrary, Eq. (14)
follows. O

Corollary 7. For i = 1,...,m, let p; be translation-bounded, positive Borel
measures on R? and let h; be functions h; in L'(R?) with h; > 0. Suppose that
there exists a constant C > 0 such that

Z Wi *h; > C a.e. on RY.

i=1

Then, we have the inequality
7 (w) = C.
where = "1, (fga hi(x)dx) p;.
Combining Corollaries 6 and 7, we obtain the following result.

Corollary 8. Fori = 1,...,m, let u; be positive Borel measures on R? and let h;
be functions h; in L'(R?) with h; > 0. Suppose that there exists a constant C > 0
such that

m
Z Wi xh; = C a.e. on R?.

i=1

Then, the Beurling density 2(iu) of the measure @ = Y i, (fRd hi(x) dx) Wi
exists and we have the equality

Z(n) = C.
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Positive-Operator-Valued Measures: A General
Setting for Frames

Bill Moran, Stephen Howard, and Doug Cochran

Abstract This chapter presents an overview of close parallels that exist between the
theory of positive-operator-valued measures (POVMs) associated with a separable
Hilbert space and the theory of frames on that space, including its most important
generalizations. The concept of a framed POVM is introduced, and classical frames,
fusion frames, generalized frames, and other variants of frames are all shown to
arise as framed POVMs. This observation allows drawing on a rich existing theory
of POVMs to provide new perspectives in the study of frames.

Keywords Frame ¢ Generalized frame ¢ Fusion frame ¢ Positive operator-valued
measure (POVM) ¢ Framed POVM e Spectral measure ¢ Naimark’s Theorem ¢
Stinespring’s Theorem ¢ Radon-Nikodym Theorem

1 Introduction

Frames have become a standard tool in signal processing, allowing uniform
description of many linear but non-orthogonal transform techniques that underpin
a wide variety of signal and image processing algorithms. Initially popularized in
connection with wavelet applications, frames are now widely used in sampling,
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compression, array processing, as well as in spectral and other transform methods
for time series.

Frames were initially introduced in a 1952 paper of Duffin and Schaeffer [10],
where they appeared as an abstraction of sampled Fourier transforms. Little interest
was shown in them until the appearance of the 1986 paper [§8] by Daubechies,
Grossmann, and Meyer which coincided with the rise of wavelet methods in
signal processing. Subsequently they were taken up by numerous authors. Several
excellent sources, including [7, 11, 14, 15], are available for further details of both
the theory and the many applications of frames.

The standard definition of a frame is as a collection # = {¢; : k € K} of
elements of a separable Hilbert space 7. The index set K may be finite or infinite.
In order for .% to constitute a frame, there must exist constants 0 < 4 < B < oo
such that, for all f € 52,

ANSIP <Y o, /)P < BISIP. (D

keK

Roughly speaking, a projection f +— ( f, ¢x) of a vector f representing the state of
a system onto an individual element ¢, of a frame may be seen as a measurement
of that system, and the aim is to reconstruct the state f from the collection of all
individual measurements {{ f, ¢x) : k € K} in a robust way. The frame condition
as stated in Eq. (1) expresses the ability to do that, and the frame bounds A and
B provide a measure of robustness. If A = B, the frame is said to be tight.
Orthonormal bases are special cases of tight frames, and for these A = B = 1.

Several generalizations of the basic concept of a frame have been proposed.
These include, in particular, the possibility that the family {¢; : k € K} C
is indexed by a continuum rather than a discrete index set, resulting in what are
called generalized frames. There are various formulations of generalized frames
in the literature; see in particular [1]. From the perspective of this chapter, the
infrastructure of a generalized frame is a measurable function from a measure
space, which serves the role of the index set, to 7. Specifically, let (£2, %, 1) be
a measure space (e.g., 2 = R with % its Borel sets and y Lebesgue measure) and
let @ : 2 — S be a u-measurable function. The collection {®(¢) : t € 2} C
is a generalized frame for J# if it satisfies a condition analogous to the frame
condition (1), i.e., for all f € 7,

AlFIP < /9 (@), /)17 du(r) < BILfI*. 2

Define I1, : 5# — 2 to be orthogonal projection into the one-dimensional
subspace spanned by the unit-norm element ¢ € J7, i.e., I1,(f) = (¢, f) ¢. With
this notation, Eq. (2) becomes

Al < / Mo dp(t) < BLL. 3)
2
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where [ denotes the identity operator on .7 and the inequalities mean that the
differences are positive definite operators on 7. The integral in Eq. (3) is in the
weak sense, i.e., for a suitable measurable family of operators {S(z) : t € £} on
S, the integral |, o S(2)du(2) is defined to be the operator D satisfying

(. Dg) = /9 (. S(0)g) du(o)

for f and ¢ in 2.

Fusion frames generalize the concept of a frame in a different direction. They
have received considerable recent attention in the signal processing literature; see,
for example, [3,5,12,20]. In a fusion frame, the one-dimensional projections 1, are
replaced by projections IT; onto potentially higher-dimensional closed subspaces
Wy C . Thus a fusion frame .% is a family {(Wi,wr) : k € K} of closed
subspaces of 57 and a corresponding family of weights wix > 0 satisfying the frame
condition

ANSIP <Y will (I < BILSIP 4)

keK

for all f € J#. Some authors have promoted fusion frames as a means of
representing the problem of fusion of multiple measurements in, for example, a
sensor network. In this view, each projection corresponds to a node of the network,
and the fusion frame itself, as its name suggests, provides the mechanism for fusion
of these measurements centrally.

Not surprisingly, the ideas of generalized frames and fusion frames can be
combined into a composite generalization. A generalized fusion frame # for F
consists of a pair of measurable functions (@, w). In this setting, w : 2 — Ry and
D 2 - P(H) where P (S) denotes the space of orthogonal projections of
any rank (including possibly co) on J#, endowed with the weak operator topology.
Measurability of @ is in the weak sense that ¢ — (¢, @(¢)¥) is u-measurable for
each ¢ and v in 7. As part of the definition, it is also required that the function
t— @(t)f isin L(£2, u) for each f € JZ. The frame condition in operator form,
as in Eq. (3), becomes

Al 5/ w(t)?®(t) du(r) < BIL
2

As described in later sections of this chapter, this definition of a generalized
fusion frame leads to a concept that is, in effect if not in formalism, remarkably
similar to that of a positive-operator-valued measure (POVM) — a concept that
has been prevalent in the quantum physics literature for many years. This is
hardly unexpected from a signal processing viewpoint, as the concept of POVM
was introduced and developed in quantum mechanics as a means to represent the
most general form of quantum measurement of a system. Further, connections
between POVMs and frames have been noted frequently in the physics literature
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(e.g., [4,18]), although these relationships seem to be unmentioned in mathematical
work on frames.

The remainder of this chapter develops a generalization of the POVM concept as
used in quantum mechanics, which encompasses the theory of frames — including
all of the generalizations discussed above. Once generalized fusion frames are
accepted, setting the discourse in terms of POVMs enables the importation of
much theory from the quantum mechanics literature and also brings to light some
decompositions that are not readily apparent from the frame formalism.

A key result used in what follows is the classical theorem of Naimark [16] which,
long before frames became popular in signal processing or POVMs were used in
quantum mechanics, formalized analysis and synthesis in this general context. When
applied to the cases above, Naimark’s perspective exactly reproduces those notions.

Subsequent sections describe positive-operator-valued measures, introduce the
theorem of Naimark, and discuss how POVMs relate to frames and their gener-
alizations. In this brief description of the relationship between POVMs and the
generalizations of frames, it will only be possible to touch on the power of the
POVM formalism.

2 Analysis and Synthesis

The various concepts of frame, fusion frame, and generalized frame all give rise to
analysis and synthesis operations. In the case of a frame, a prevalent point of view is
that an analysis operator F' takes a “signal” in JZ to a set of complex “coefficients”
in the space £,(K) of square-summable sequences on the index set K, i.e., F is the
Bessel map given by F(f) = {(f, ¢k) : k € K} where the finiteness of the upper
frame bound B guarantees the square summability of this coefficient sequence. The
synthesis operator is the adjoint map F* : £,(K) — 5, given by

F*({la}) = ) argr,

keK

and corresponds to synthesis of a signal from a set of coefficients. It follows directly
from Eq. (1) that the frame operator F = F* F satisfies

Al < F < BIL. (®)]

To accommodate developments later in this chapter, it is useful to describe
analysis and synthesis with frames in a slightly different way. With each ¢, in
the frame %, associate the one-dimensional orthogonal projection operator [T that
takes f € S to

{er. f)
|l |12

I.(f) =

(43
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Note that [Ty : 77 — W), where W is the one-dimensional subspace of % spanned
by @r. Also, [[ITk(f)Il = |{(¢k. f)|/llgkll. Thus the frame condition (1) is
equivalent to

ANFIP < Do willm(NOIP < BIFIP

keK

where wiy = | {¢k, f)| = 0. From a comparison of this expression with Eq. (4),
it is clear that the weights wy account for the possibility that the frame elements
¢ € . are not of unit norm. Although it is typical to think of the analysis operator
as producing a set of coefficients for each signal f € ¢ via the Bessel map, as
described above, it is more suitable for generalization to regard it as a map from
H to  that “channelizes” f into signals wi [Tk (f) € Wy C 2. The synthesis
operator is then a linear rule for combining a set of signals from the channels W to
form an aggregate signal in .77

With this view, the analysis operator for a fusion frame is a natural generalization
of its frame counterpart in which the subspaces W can be of dimension greater than
one and the projection operators [T are from # to W;. The analysis operator is
F : # — @Dcx Wi given by

F(f) = {wille(f) -k € K} € @D Wi

keK

The adjoint map F* : @, cx Wi — H is given by

Fr(&h) =) w e #, (& keKye PW

keK kekK

The frame bound conditions guarantee that everything is well-defined. The corre-
sponding fusion frame operator F = F*F : J# — J¢ is given by

F(f) =Y willi(f),

keK

and the same kind of frame bound inequality as in Eq. (5) holds for fusion frames.
For the generalized frame described in Sect. 1, the analysis operator F : ¢ —
L,($2, ) is given by

F(NH@O) =(f®@)., 1€ fe,

and its adjoint by

F*(u) = /Qu(t)q)(t)du(t) €A, ue L2, p).

Again, the generalized frame operator F = F* F satisfies inequalities (5).
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For generalized fusion frames there is a corresponding definition of analysis and
synthesis operators, but its description requires the definition of direct integrals of
Hilbert spaces [9]. In any case the ideas will be subsumed under the more general
development to follow.

It is immediately evident that, in each case discussed above, the synthesis
operator does not reconstruct the analyzed signal, i.e., in general F*F # I. In
the case of a frame, inversion of the analysis operator is performed by invoking a
dual frame. There are various different usages of this terminology in the literature
(see [5,13,15]). For the purposes here, given a frame {¢; } for the Hilbert space .7,
a dual frame {@y } satisfies

= Ao Yo =Y (k. [ex. 6)

keK keK

In other words, the dual frame inverts the analysis and synthesis operations of
the original frame to give perfect reconstruction. Such a dual frame always exists;
indeed, it is easy to verify that

@ =F (o) 7

has the appropriate property. Dual frames as defined in Eq. (6) are not in general
unique; the one in Eq. (7) is called the canonical dual frame. In the case of a fusion
frame {(Wj,wy) : k € K}, the concept of duality is more intricate. See [13] for
discussion of dual frames in this context.

3 Positive-Operator-Valued Measures

The goal of this section is to define a framed POVM and give some examples of
such objects. Consider a topological space §2 which, to avoid technicalities, will
be assumed to be ‘“nice,” for example, a complete separable metric space or a
locally compact second countable space. The crucial point is that §2 has sufficient
structure to make the concept of regularity of measures meaningful and useful,
though regularity will not be explicitly discussed in this chapter. Denote by Z(£2)
the o-algebra of Borel sets on §2 and by &2 (.%) the space of positive operators on a
Hilbert space 7. A framed POVM is a function M : B(§2) — P (I¢) satisfying
the following two conditions:

(POVM-1) For all f in 57, o — (f, M(w) f) is a regular Borel measure on
2B(82), denoted by 7.
(POVM-2) Al < M(£2) < Blforsome0 < A < B < .

As in the case of frames, the numbers A and B are called the frame bounds for
M . Without the condition POVM-2, the object is called a POVM, i.e., without the
epithet “framed.” Such a function is a measure on Z(£2) that takes values in the
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set of positive operators on .77, though the countable aspect of its additivity is only
in a weak sense. In the quantum mechanics context, POVM-2 is replaced by the
more strict requirement that M (£2) = 1. A framed POVM is tight if A = B, and if
A = B =1, M is a probability POVM. Probability POVMs are used in quantum
mechanics as the most general form of quantum measurement.

As an example of a framed POVM, consider a fusion frame {(W;,wy) : k € K}
in 7. Define £2 = K with the o-field Z(§2) taken to be the power set of £2.
Denoting, as above, projection onto Wj by I,

M(w) = Zwkﬂk. €]

kew

It is straightforward to see that this satisfies both parts of the definition of a framed
POVM, with the frame bounds being the bounds in the definition of the fusion frame.
Thus, every fusion frame, and hence every frame, is trivially represented as a framed
POVM.

If 7 = {®(t) : t € 2} is a generalized frame for 7, a POVM M : B(2) —
P (H) can be defined by

M) = / Mo du(t), ©

where [1g() denotes projection into the one-dimensional subspace of ¢ spanned
by @(t). M is a framed POVM with the same frame bounds as those of .%.

As will be discussed in Sect. 5, POVMs provide a rather general framework for
analysis and reconstruction of signals. It will be seen that framed POVMs are only
slightly more general than generalized fusion frames discussed briefly in Sect. 1.
The impetus for studying POVMs in this context arises in part from the opportunity
to draw on existing theory about POVMs in the physics literature for development
and description of new constructs in signal processing. Some examples in this
chapter illustrate this possibility, though much of the formalism is omitted from
this overview.

4 Spectral Measures and the Naimark Theorem

A POVM S is a spectral POVM if

S(a)l ﬂa)z) = S(a)l)S(a)g), w1, W E%(Q)
Spectral POVMs arise, for example, in the spectral theorem for Hermitian operators
on Hilbert space (see, e.g., [21]). If S is a spectral POVM, then S(2) is a projection,
and every S(w) with w € Z(£2) is a projection dominated by S(£2), i.e.,

S(@)S(2) = S(2)S(w) = S(w).
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Thus, for any w € #(£2), S(w) is completely specified by its behavior on the closed
subspace S(£2)7 of 5. Consequently, for most purposes, it suffices to assume
S(§2) = L. In particular, if a spectral POVM is framed, then this condition must
hold; conversely, imposing this condition on a spectral POVM ensures that it is
framed. Since the focus here is on framed POVMs, it will be assumed that S(£2) =
I,» whenever a spectral POVM appears in subsequent discussion in this chapter.
Note that, while a spectral POVM S need not be probability POVM in general, the
condition that it is framed implies that S will be a probability POVM. Intuitively,
spectral POVMs play an analogous role relative to framed POVMs to the one played
by orthogonal bases relative to frames, i.e., spectral POVMs generalize orthogonal
bases in a sense similar to that in which framed POVMs generalize frames.

With this machinery in place, it is possible to state the key theorem on POVMs
due to Naimark [16], who formulated the result for POVMs without the framed
condition. The following version is a relatively straightforward adaptation to framed
POVMs.

Theorem 1. Suppose M : B(2) — P () is a framed POVM with frame bounds
A and B. Then there is an “auxiliary” Hilbert space 5%, a spectral POVM S with
values in P(H#*), and a bounded linear map V : A% — S such that

M(w) = VS(w)V*, w € B(2)

and AL < VV* < BL

For developments later in this chapter, it will be useful to have a sketch of the
proof of this theorem. Given a POVM M : A(§2) — & (J¢), consider the linear
space .Z of J#-valued simple functions on £2, i.e., finite linear combinations of
functions of the form

¢ iftew

En(1) = (10)

0 otherwise,

where w € Z(£2) and £ € JZ. A pre-inner product on . is obtained by defining

(o 6u)z = (M()E, M()E) 2. (11)

Completion followed by factoring out zero-length vectors produces 5%, as a Hilbert
space. The map from J# to .Z taking £ to £q results in V* : # — % and V
takes &, to M(§2)* M (w)E. The spectral measure S arises first on .Z as

S(@") () = Evne EeH, w0 €B(R2), (12)

and then carries over to J#%.

The collection (S, 5%, V) is known as a Naimark representation of the framed
POVM M : B(§2) — H(5€). Further, a Naimark representation is minimal if the
set

{S()V* 0 :9 € 3, w e B(2)}
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is dense in .#*. Minimal Naimark representations are essentially unique in the
sense that if (S, 5%, V) and (S’, %’B’, V') are two such representations for the same
M, then there is a surjective isometry 7' : J% — %] such that V'T = V
and T7'S"(w)T = S(w) for all ® € Z(82). A fashionable way to handle the
Naimark representation in recent literature (see [17]) is to convert POVMs to
(completely) positive operators on commutative C *-algebras via integration. In this
setting, Naimark’s theorem becomes a special case of Stinespring’s theorem [19],
which does not require commutativity of the C *-algebra. A full description of this
approach would be tangential to this chapter.

Example 1. Consider a generalized frame @ : §£2 — . on the measure space
(£2, u) with frame bounds A < B. @ gives rise to a framed POVM M as in
Eq. (9). To form a Naimark representation for M, define the Hilbert space .7
to be L,(£2, 1) and let the spectral measure S be the canonical one on this space,
ie.,

S@)f(1) =1.0) (1), [ € L2, p).

§ is clearly a spectral measure since the characteristic functions satisfy 1,1, =
lone’- Themap V : L,(£2, u) — 2 is defined by

V(f) = /9 FOB@) duo),

where f(t)@(t) is the product of the scalar f(¢) and @(z) € SZ. It can be verified
that this is indeed a (the) minimal Naimark representation of M .

Example 2. Let # = {(Wi,wi) : k € K} be a fusion frame in 7. % corresponds
to a framed POVM as in Eq. (8). In this case, .##% may be taken to be the formal
direct sum @, cx Wi. The appropriate spectral measure S is defined on subsets J
of 2 = K by

S =P i (13)

keJ

where [Ty is the projection into Wy in %%, Writing an element f of J#% as f =
{fv € Wy 1k € K}, themap V : 2% — J# is given by

V(f) =Y wifi, (14)

keK

where the terms in the sum are considered as elements of #. The square
summability of the weights wy guarantees that the sum in Eq. (14) converges in
¢ because the Cauchy—Schwarz inequality gives

Sl = (X 2) (o) (1s)

keK keK keK
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Thus V : % — 2 is a bounded linear map; in fact, by Eq. (15),

wi=(2w)”

kek
Its adjoint V* : J# — " is given by
V() = {wiIk(p) 1 k € K}.
Setting w = 2 = K gives S(£2) = I and
M(2)=VS(2)V*=VV*,

The frame bounds imply A < VV* < B, and, if the fusion frame is tight, then
VV* = AL

From a comparison of the descriptions in Sect. 2 with the examples given here, it
is evident that Naimark’s theorem provides exactly the machinery for discussing
analysis and synthesis operators in a general context. This is undertaken in the next
section.

5 Analysis and Synthesis for General POVMs

The preceding examples indicate that the Naimark representation provides a mecha-
nism for analysis and synthesis in POVMs that precisely extends the corresponding
ideas for frames and fusion frames. To be specific, let M : B(§2) — P () be a
POVM and let (S, 5%, V) be the corresponding minimal Naimark representation.
In this context, 5% will be called the analysis space and V* : # — " the
analysis operator. Similarly, V : 2% — # will be called the synthesis operator.
The use of this terminology is directly analogous to the way it is used for frames and
their generalizations in Sect. 2. Further, the Naimark representation also provides a
means, via the spectral measure S, for keeping track of the labeling of the POVM.

Analysis of an element f € J# is the J#*-valued measure &/ on %(£2)
defined by

A (f)©) = f@) = S@)V*f € A" (16)
In the case of a frame {¢; : k € K}, this measure on subsets of £2 = K associates
the “coefficients” ( f, ¢x) ex € £2(K) with the signal f, where {e; : k € K} is the

standard basis of £,(K). Given a measure p : #(£2) — #" as in Eq. (16), the
synthesis operator takes p to

F(p) = V/Q do(t) € A (17)
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As the examples in the preceding sections show, these analysis and synthesis
operators correspond precisely to those of classical frames, fusion frames, and
generalized fusion frames.

6 Isomorphism of POVMs

Two POVMs (M, 2, 74) and (M,, §2, 5%) are isomorphic if there is a surjective
unitary transformation U : J# — % such that UM (0)U™' = M,(w) for all
o € HB(82). The following result is a straightforward consequence of the proof of
the Naimark theorem.

Theorem 2. Suppose that POVMs M| : B(2) — P(I4) and M, : B(2) —
P(54) are isomorphic via the unitary transformation U . 7] — 6. Let
(Sy, %ﬁ, V1) and (5>, %ﬁ, V») be minimal Naimark representations of M\ and M,
respectively. Then there is a unitary transformation U" : jflu — %@ﬁ such that
U'S1(w) (UM ™! = Sy(w) for all w € B(R2) and the following diagram commutes:

4 Y
"l %
%ﬁﬁnjfzﬂ

Although this result does not appear to be explicitly stated in the literature,
it is implicit in many applications of the Naimark and Stinespring theorems. In
particular, the paper of Arveson [2] discusses related ideas. The proof follows by
consideration of the construction of the Naimark representation using Hilbert-space-
valued functions as described in Sect. 4. Specifically, using the notation of the
sketch proof of Naimark’s theorem given in Sect. 4, observe that for the isomorphic
POVMS M, and M,, U gives rise to a map .&| — % taking &, to U(§)w which
then produces U*. Moreover, it follows from the definition of the spectral measure
in Eq. (12) that US| () (U") ™! = S,(w) forall v € B(R2).

7 Canonical Representations and POVMs

Combining the Naimark theorem and Theorem 2 with the canonical representation
of spectral POVMs (described in, e.g., [21]) yields a canonical representation of
POVMs such that two isomorphic POVMs have the same canonical representation.
This serves to illustrate the utility of the POVM formalism. The canonical represen-
tation decomposes .7*, the analysis space of a POVM M : %(2) — P () that
arises in its Naimark representation, into a direct sum P, .y 4, such that:
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1. Each of the spaces ¥, is invariant under the spectral measure, i.e.,
S(w)¥, C 9, w e B(82),n e N.

2. The restriction of S to ¢, has uniform multiplicity, i.e., 4, >~ C* ® L,(u,) if 4,
has finite dimension u,, and 4, >~ £,(N) ® L,(u,) if ¢, is infinite-dimensional.

This representation is essentially unique up to unitary equivalence and replacement
of each of the measures u, by one having the same null sets. Denote by P, the
projection into ¢, regarded as a subspace of .7, Under the (minimal) Naimark
representation, V : 7% — J# is such that V*S(w)V = M(w) forw € B(2). V
can be decomposedas V = > VP, = > V,. The image of V,* is in %, so that

M) =) V,S@V).  ocBR).

The map M, : B(2) - P(%,), defined by M, (w) = V,S(w)V,’, is a POVM;
more precisely, the values of M, are positive operators on the closure of the image
of V,,. The individual measures M, are themselves POVMs, though they need not
be framed even if M is framed. However, M, (§2) = V,, V,*. Thus, if M is a framed
POVM with frame bounds A < B,

Ay <Y M,(2) =) _V,V,* < Bly.

Observe that V,*V, V. *V,, = 0 for n # m, since the image of V¥ lies in &, which
is in the kernel of V,,. So, in an obvious sense,

M:ZMH.

neN

Thus every framed POVM is a sum of “uniform multiplicity” POVMs, though
these need not be framed, and this composition is essentially unique. The canonical
representation is characterized by the sequence of equivalence classes of measures
{[n] : n € N} and the linear map V.

Example 3. Consider a frame .% = {¢i : k € K} in S with frame bounds A < B
and its corresponding framed POVM M . In this case ¢ is £,(K); V : A" —
is given by V(ex) = ¢i. The spectral measure on the subsets of K is given by

S(H)=) M. JCK.
keJ

where [T, denotes projection into the subspace of £,(K) spanned by the standard
basis element e;. Alternatively, this can be redefined by regarding members of
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£>(K) as complex-valued functions on §2 = K and taking S(J)(f) = 1, f so
that the spectral measure is uniform with multiplicity one.

Example 4. The case of a fusion frame {(Wj,wy) : k € K} is more complicated
than the frame case. The spectral measure S on subsets of £2 = K is given by
Eq. (13). For each j € K, denote

U; = {k € K : dim W, = j}.

Then
Y, = @ Wi c #*

keUy

is isomorphic to C/ ® £,(Uy) or, if j = o0, £,(U;) ® £>(U,). Evidently, ¥; has
uniform multiplicity j, and the measure i ; is counting measure on U}, provided
U; is not empty. If all W for k € K have the same dimension, then the spectral
measure S has uniform multiplicity.

8 Dual POVMs

As observed in Sect. 2, each of frame generalizations associates a “dual” object with
the frame, and there is a canonical dual in each case. This is also possible for framed
POVMs and indeed is relatively straightforward using the Naimark representation.
Consider a POVM M : #B($2) — () and its minimal Naimark representation
(2,8, 5%, V). The canonical dual POVM to M is the POVM M - B(§2) —
() having Naimark representation (£2, S, 7%, (VV*)71V), ie.,

M) = VV VSV V.

The frame condition on M guarantees 0 < A = V*V < B < oo, which not only
ensures the existence of (V' V*)™!, but implies M is a framed POVM with bounds
B~! < A7! (see Theorem 1). Further,

M(@)M (@) = (VS@)V*)((V V) VS@)V*(V V™)
M(@)M(@) = (VV)TVS@V* V™) (VS@)V*)
In particular, invoking the assumption S(§2) = 1.+ gives
M(2)M(2) = M(2)M(2) = L.

From the point of view of analysis and synthesis, if f € J#, its analysis with
respect to M is the measure <7 (f) given in Eq. (16). Subsequently applying the
synthesis operator . associated with the canonical dual POVM M yields (17) gives
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S (f)2)=VVHVS@V*f = f.

Similarly, analysis of f by M followed by synthesis with M is also the identity,
ie.,

LA (f)2) =VSE@)WV*VVHf = f

9 Radon-Nikodym Theorem for POVMs

This section summarizes some results pertinent to framed POVMs on finite-
dimensional Hilbert spaces. This setting is prevalent in signal processing appli-
cations, and it will be seen that the theory developed is valid in a number of
infinite-dimensional examples as well. In this setting, the concept of a framed
POVM is identical to that of a generalized fusion frame, as described in Sect. 1.

Let M : B(£2) — P () be aframed POVM where dim 7 is finite. The finite-
dimensional assumption on J# allows definition of a real-valued Borel measure
(w) = Tr(M(w)) on the Borel sets of £2. This positive regular Borel measure is a
key element in the following Radon-Nikodym theorem for POVMs (see [6]).

Theorem 3. Let M : B(2) — P(H) be a POVM with € finite-dimensional.
Then there exists a regular positive real-valued measure (1 on HB(S2) and an
operator-valued bounded measurable functionr : 2 — P () such that

M(w):/r(t)d,u(t), w € B(R2).

The measure p is called the base measure of the POVM and r the Radon-
Nikodym derivative of the POVM M with respect to p. This representation is useful
in facilitating constructions of POVMs when 57 is finite-dimensional.

Corollary 1. If M is a framed POVM with frame bounds A < B, then
ALe = [ O < BL,
Q2

It is instructive to observe how this Radon-Nikodym theorem manifests in
the motivating examples. In particular, this result shows that, when 77 is finite-
dimensional, framed POVMs correspond exactly to generalized fusion frames as
introduced in Sect. 1.

Example 5. Let # = {¢r : k € K} be a frame in J#. The associated POVM is
given by M(J) = Y ., I for subsets J of 2 = K. In this case, the operator-
valued function r is given by

r(k) =My, kek.
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In this special case, there is no need for the finite-dimensional restriction on .77
A POVM constructed from a frame in this way automatically possesses a Radon-
Nikodym derivative with respect to counting measure on the subsets of K.

Example 6. In the case of a generalized frame @ : £2 — ¢ for a Hilbert space 77,
the associated POVM is given in Eq. (9). In this case, the operator-valued function
is7(¢) = Mge(). As in the previous case, a POVM constructed in this way satisfies a
Radon-Nikodym theorem with respect to the given measure i on §2 even when ¢
is not finite-dimensional.

Example 7. For a fusion frame {(Wi,wx) : k € K}, £ = K and p is counting
measure on subsets of K. The function r : B(K) — P (J¢) is given by r(k) =
W% Iy, , which coincides with the previous observation that the POVM in this case
is defined by

M) =Y wily. oCK.

kew

Although the values of r are not projections, they are nonnegative multiples of
projections. If the counting measure p were replaced by v(k) = w]%, then the
expression (9) for M would become

M(w) = / My, dv(k), w CK,

and the Radon-Nikodym derivative of M with respect to v would have true
projections as its values.

APOVM M : 2 — H() is decomposable if there is an essentially bounded
measurable function r : 2 — Z?(5¢) and a measure (& on %(§2) such that

M(w) :/r(t)d,u(t) w e B(R).

As observed above, if dim.7Z is finite, the POVM is decomposable. Further,
every POVM arising from a (generalized) frame is decomposable, even when 7
is not finite-dimensional. In effect, decomposable framed POVMs correspond to
generalized fusion frames as described in Sect. 1, and thus this concept captures the
simultaneous generalization of frames to fusion frames and generalized frames.

10 Conclusions

In this overview, we have set forth the concept of a framed positive-operator-
valued measure and shown that classical frames, as well as several generalizations
of frames, arise as special cases of framed POVMs. We have described how
Naimark’s theorem for POVMs leads to notions of analysis and synthesis for
POVMs that subsume their frame counterparts. We have further discussed how
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canonical representations of spectral POVMs lead to canonical descriptions of
framed POVMs and that this leads to a notion of a canonical dual POVM analogous
to that of the canonical dual of a frame.
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The theory of filters, their design, and analysis take a prominent role in signal
and image processing. The first examples of filtering appeared independently of and
well before the introduction of automated computational devices. However, it was
the applications enabled by the appearance of computers that transformed filtering
from an aide to solve differential equations into a field of its own. Today, when we
think of filters, we think, for example, of Wiener and Kalman filters and also about
the impact that the modern theory of filters has on applications of harmonic analysis,
for example, in terms of wavelet theory.

In the first chapter of this part, Daniel Alpay, Palle Jorgensen, and Izchak
Lewkowicz discuss various aspects of wavelet filters. Nearly all practical imple-
mentations of wavelet transforms rely on finite impulse response (FIR) filters.
In their work, the authors explore the extension of this classical understanding
of wavelet filters, by considering them as matrix-valued meromorphic functions.
This leads them to the introduction of generalized Schur functions, their associated
reproducing kernel Pontryagin spaces, and the Cuntz relations. As such, this chapter
provides a fascinating mathematical bridge between system theory and wavelet
analysis. A broad introduction, aimed at both mathematicians and engineers, makes
this work particularly useful.

Inspired by his work on the JPEG-2000 standard, Christopher M. Brislawn
ventures into the world of group-theoretic characterizations of perfect reconstruction
filter banks. This practical motivation yields a restriction of the broad class of FIR
filters, studied in the previous chapter, to filter banks with well-behaved lifting
factorizations: whole-sample (WS) symmetric and half-sample (HS) symmetric
filter classes. Although the technique of lifting, introduced by Ingrid Daubechies
and Wim Sweldens, found many applications in signal processing, here we are
presented with a completely new approach. The notion of group lifting structure
is defined, and its irreducible factorizations are analyzed. The use of group theory
allows the author to find striking differences between WS and HS filters.

Shidong Li and Michael Hoffman explore the class of filter banks associated with
biorthogonal wavelets through the notion of pseudoframes for subspaces (PFFS).
PFFS were introduced by Li and Ogawa to overcome certain important limitations
which arise in the theory of frames. This chapter starts with an overview of the state
of the art in PFFS and proceeds to exploit the PFFS-based representations of perfect
reconstruction biorthogonal filters. The authors show how the flexibility of PFFS
aids in construction of biorthogonal filters with various desired properties, such as a
required number of vanishing moments or a maximized coding gain.

FIR filters are also in the focus of the chapter written by Yang Wang and
Zhengfang Zhou. Here, FIR filters are identified with banded Toeplitz matrices—
diagonal-constant matrices studied by Otto Toeplitz and Gabor Szego. Szegd limit
theorems are among the most important results describing Toeplitz matrices, as they
deal with the limit behavior of their eigenvalues. This, in turn, leads naturally to
questions concerning convergence of iterations of banded Toeplitz operators. These
types of questions arise independently in signal and data processing, through the so-
called empirical mode decomposition (EMD). This chapter provides a mathematical
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foundation underlying EMD theory through the introduction of FIR filters and the
characterization of the eigenvectors of their banded Toeplitz operators.

Wei Zhu and M. Victor Wickerhauser study the ever-important question of
finding most effective implementations of discrete wavelet transforms. Lifting
analysis, discussed in the chapter by C. Brislawn, provides one way to achieve
such effective algorithms. Among the most fundamental questions that need to be
addressed are Daubechies and Sweldens listed analysis and exploitation of the non-
uniqueness which arises in lifting through the Euclidean algorithm. In this chapter
the authors provide important improvements to the lifting algorithm, by reducing the
number of distant memory accesses and by showing that certain equivalent lifting
factorizations possess much worse complexity and propagation-of-error properties.
All this is achieved by exploiting the nonuniqueness of lifting factorizations and
by building lifting steps that are optimized for these specific tasks, for example,
minimizing the number of involved nearest neighbor array elements.
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1 Introduction

Roughly speaking, systems whose inputs and outputs may be viewed as signals
are called filters. Mathematically, filters are often presented as operator-valued
functions of a complex variable. In applications, filters are used in areas as
(i) prediction, (ii) signal processing, (iii) systems theory, and (iv) Lax—Phillips
scattering theory [55]. There, one is faced with spectral theoretic questions which
can be formulated and answered with the use of a suitable choice of an operator-
valued function defined on a domain in complex plane; in the case of scattering
theory, the scattering operator and the scattering matrix; in the other areas, the
names used include polyphase matrix; see, for example, [43,49]. We also mention
that more recently, filters are used in (iv) multiresolution analysis (MRA) in
wavelets. We follow standard conventions regarding time-frequency duality, i.e., the
correspondence between discrete time on one side and a complex frequency variable
on the other. In the simplest cases, one passes from a time series to a generating
function of a complex variable. These frequency response functions fall in various
specific classes of functions of a complex variable; the particular function spaces in
turn are dictated by applications. Again, motivated by applications, in our present
study, we adopt a wider context for both sides of the duality divide. On the frequency
side, we work with operator-valued functions. This framework is relevant to a host
of applications, and we believe of independent interest in operator theory. From the
literature, we mention [22,57] (see also [21]) and the papers referenced below.

We here consider the set of CV*" -valued functions meromorphic in the open unit
disk D! and define two subsets of it: We shall denote by €y the family satisfying
the symmetry

W(enz) = W(z) Py, (1

2ni . B
where ey = e~ and Py denote the permutation matrix

PNz(OIX(N‘” ! ) 2)

In—1 Owv—nx1

We shall also denote by %’V the set of CV*" -valued functions which take unitary
values’ on the unit circle T.

Classically wavelet filters, denoted by #J, are characterized by rational func-
tions satisfying both symmetries, i.e.,

Wy =UN NGy (3)

In a previous paper (see [9]), we have provided an easy-to-compute characterization
of # as both a set of rational functions and in terms of state space realization.

IClassically, in the engineering literature, the functions are analytic, or more generally meromor-
phic, outside the closed unit disk. The map z —> 1/z relates the two settings.

2For rational functions, the term para-unitary is also used in the engineering literature.
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The aim of this work is to explore the possibility of extending the notion
of wavelet filters, described in Eq. (3). The functions considered still satisfy the
symmetry in Eq. (1), but:

* The functions are not necessarily rational or finite dimensional.
* The functions are not necessarily unitary on the unit circle T.
* The functions are meromorphic (rather than analytic) in .

To explain our strategy, first recall the following: If W is a CV*V -valued function

which is rational and takes unitary values on the unit circle, the kernel

IN — W(Z) W(W)*
1 —zw*

Kw(z,w) =

is positive definite in the open unit disk D) if W has no poles there or more generally
has a finite number of negative squares in . See Definition 3.4 for the latter. In
our approach, unitarity on the unit circle is replaced by the requirement that W
is a generalized Schur function, in the sense that W is meromorphic in D and
the associated kernel Ky (z, w) has a finite number of negative squares there. This
family includes in particular the case of matrix-valued rational functions which take
contractive values on the unit circle. We will also consider the case where the values
on the unit circle are, when defined, contractive with respect to indefinite metrics.
These kernels are of the form

S =W W(w)*
1—zw*

“)

when W is CP2*P!-yalued and analytic in a neighborhood of the origin, and where
Jy and J, are signature matrices, respectively, in C?*?! and CP2*P2, which have
the same number of strictly negative eigenvalues:

v—(J1) = v—(J2), ©)

and such that the kernel Ky has a finite number of negative squares. In [9] we
studied the realization of wavelet filters in the CV>*™ -valued (with M > N) rational
case. The above approach allows us to extend these results to the case where the
filter is not necessarily rational and M may be smaller than N. Furthermore, the
conditions in [9] of the function being analytic in the open unit disk, and taking
coisometric values on the unit circle, are both relaxed (in particular, in the previous
case, in Eq. (5), we had J; = Iy and J, = Iy).

This chapter is organized as follows. Since we address different audiences,
Sects.2—4 are of a review nature. In Sect.2, we give background on the use of
filters in mathematics. We note that the more traditional framework in the literature
has so far been unnecessarily restricted by two kinds of technical assumptions: (i)
restricting to rational operator-valued functions and (ii) restricting the range of the
operator-valued functions considered. In Sect. 3 we address indefinite inner product
spaces and survey the theory of Pontryagin and Krein spaces. This overview allows
us in Sect. 4 to describe a setting that expands both the above-mentioned restrictions
in (i) and (ii), namely the theory of generalized Schur functions. Our results in
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Sects.5 and 6 (Theorems 5.3, 5.4, and 6.4) deal with representations. We use
these results in obtaining classifications and decomposition theorems. In Sect. 7,
we employ these theorems in the framework of wavelets.

2 Some Background

2.1 Cuntz Relations

The Cuntz relations were realized by Cuntz in [24] as generators of a simple
purely infinite C *-algebra. Since then, they found many applications, and the related
literature about Cuntz relations has flourished. Since Cuntz’s paper [24], the study
of their representations has mushroomed, and now makes up a big literature, see,
for example, [13, 18-20, 25,37,39], and some of their applications [32,38,40-42],
for example, to fractals [31].

In the initial framework, one is given a finite set Sj,..., Sy of isometries with
orthogonal ranges adding up to the whole Hilbert space. Their representations play
arole in a variety of applications, for example, wavelets, and more generally multi-
scale phenomena. The study of what are called non-type I C *-algebras was initiated
in the pioneering work of Glimm [34, 35] and Dixmier [28]. This in turn was
motivated by use of direct integrals in representation theory, both in the context
of groups and C *-algebras. Direct integrals of representations are done practically
with the use of Borel cross sections. Glimm proved that there are purely infinite
C *-algebras which do not admit Borel cross sections as a parameter space for the
set of equivalence classes of irreducible representations; the Cuntz algebra(s) Oy
is the best-known examples [24]. Nonetheless, it was proved in [18] that there are
families of equivalence classes of representations of Oy indexed by wavelet filters,
the latter in turn being indexed by infinite-dimensional groups.

One illustration of the need for expanding the framework of Oy from Hilbert
space to the case of Krein spaces is illustrated by applications to scattering theory
for the automorphic wave equation [54]. The initial study was restricted to the
case when the operators S; act on Hilbert space and when they act isometrically.
However, since then, there has been a need for generalizing the Cuntz relations. It
was noted in [19] that the isometric case adapts well to the restricted framework of
orthogonal wavelet families [26]. Nonetheless, applications to engineering dictate
much wider families, such as wavelet frames.

In this work we extend what is known in the literature in a number of different
directions, including to the case of Pontryagin spaces. We obtain Cuntz relations
for isometries between certain reproducing kernel Pontryagin spaces of analytic
functions.
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2.2 Wavelet Filters

In electrical engineering terminology, systems whose inputs and outputs may be
viewed as signals are called filters. By filter, we here mean functions W(z) defined
on the disk in the complex plane and taking operator values, i.e., linear operators
mapping between suitable spaces.

While filters (in the sense of systems and signal processing) have already been
used with success in analysis of wavelets, so far some powerful tools from systems
theory have not yet been brought to bear on wavelet filters. The traditional restriction
placed on these functions W(z) is that they are rational and take values in the unitary
group when z is restricted to have modulus 1. In models from systems theory, the
complex variable z plays the role of complex frequency. A reason for the recent
success of wavelet algorithms is a coming together of tools from engineering and
harmonic analysis. While wavelets now enter into a multitude of applications from
analysis and probability, it was the incorporation of ideas from signal processing
that offered new and easy-to-use algorithms, and hence wavelets are now used in
both discrete problems, as well as in harmonic analysis decompositions. It is our
purpose to use tools from systems theory in wavelet problems and also show how
ideas from wavelet decompositions shed light on factorizations used by engineers.
Each of the various wavelet families demands a separate class of filters, for the case
of compactly supported biorthogonal wavelets, see, for example, Resnikoff, Tian,
Wells [60] and Sebert and Zou [63]. By now there is a substantial literature on the
use of filters in wavelets (see, e.g., [18,26,37,39]). For filters in wavelets, there are
two pioneering papers [50,51] and the book [56].

In a previous work [9] we characterized all rational wavelet filters attaining
unitary values on the unit circle. It turned out that this family is quite small
(and in particular the subset of finite impulse response filters, commonly used in
engineering).

Thus, we here remove both restrictions on the filters, i.e., rational and unitary, and
consider W(z) which are generalized Schur functions and use reproducing kernel
Pontryagin spaces associated with W . See [6] for background.

We hope that this message will be useful to practitioners in their use of these
rigorous mathematics tools.

3 Pontryagin Spaces and Krein Spaces

For a number of problems in the study of signals and filters (e.g., stability
considerations), it is necessary to work with Hermitian inner products that are not
positive definite. This view changes the Hermitian quadratic forms, allowing for
negative squares, as well as the associated linear spaces. But more importantly, this
wider setting also necessitates changes in the analysis, for example, in the meaning
of the notion of the adjoint operator, as well as the reproducing kernels. There are a
number of subtle analytic points involved, as well as a new operator theory. We turn
to these details below.
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3.1 Krein Spaces

A Krein space is a pair (V,[-,+]), where V is a linear vector space on C endowed
with an Hermitian form [-, -], and with the following properties: V' can be written as
V =Vy + V_, where:

1. V4 endowed with the Hermitian form [-, -] is a Hilbert space.
2. V_ endowed with the Hermitian form —[-, -] is a Hilbert space.
3. It holds that Vi N V_ = {0}.

4. Forallvy € V4,

[v,v-]=0.

The representation V' = V. + V_ is called a fundamental decomposition and is
highly nonunique as soon as dim V_ > 0. Given such a decomposition, the map

o(vy +vo) =vy —v_

is called a fundamental symmetry. Note that the space V endowed with the
Hermitian form (where w = w4 + w_ is also an element of V', with wy € V)

(Vv W) = [V, UW] = [V+,W+] - [V_,W_]

is a Hilbert space. These norms are called natural norms, and they are all equivalent.
The Hilbert space topologies associated to any two such decompositions are
equivalent, and V' is endowed with any of them; see [15, p. 102]. When V_ is finite
dimensional, V' is called a Pontryagin space and the dimension of V_ is called the
negative index (or the index for short) of the Pontryagin space. We refer to the books
[6,12,15,36] for more information on Krein and Pontryagin spaces. Note that in
[36] it is the space V. rather than V_ which is assumed finite dimensional in the
definition of a Pontryagin space. Surveys may be found in for instance in [7,29,30].
Itis interesting to note that Laurent Schwartz introduced independently the notion of
Krein and Pontryagin spaces (he used the terminology Hermitian spaces for Krein
and Pontryagin spaces) in his paper [62]. For applications of Krein spaces to the
study of boundary conditions for hyperbolic PDE, including wave equations, and
exterior domains, see, for example, [23, 52, 53, 58]. We now give two examples,
which will be important in the sequel.

Example 3.1. Let J € CP*? be an Hermitian involution, i.e.,
J=J1=J*x

Such a matrix is called a signature matrix. We denote by C; the space C? endowed
with the associated indefinite inner product

[x,y]ly =y*Jx, x,yeCP’.
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It is a finite-dimensional Pontryagin space.

Example 3.2. Let J be a signature matrix. We consider the space H,(D)? of
functions analytic in D and with values in C?:

f@ =) a?, a,eC,
=0

such that
o0
*
S azan < co.
n=0

Then, H,(D)? endowed with the Hermitian form

[fgls = biday (with g(z) =) by2")
n=0

n=0

is a Krein space, which we denote by H, ; (D).

In the above example, if p = 1 and J = 1 (as opposed to J = —1), the space
H, ; (D) is equal to the classical Hardy space H;(ID) of the unit disk.

3.2 Operators in Krein and Pontryagin Spaces

When one considers a bounded operator A between two Krein spaces (77, [+, |1)
and (%, [+, -]») (in this chapter, it will be most of the time between two Pontryagin
spaces) the adjoint can be computed in two different ways, with respect to the
Hilbert spaces inner products (and then we use the notation 4*) and with respect to
the Krein spaces inner products (and then we use the notation A*}). More precisely,
if o1 and o, are fundamental symmetries in J#] and %, which define the Hilbert
spaces inner products

(Sugh =lonfi.gili and  (f2, 82)2 = [02 /2, &2]a,
(with f1, g1 € ) and f>, g, € J#), we have for fi € 7 and f, € 5
[Af1, oo = (02411, f2)2

= (fi. A% o2 o)
= [f. A f].

with
AM = 5, 4%0,. (6)
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In the case of C; (see Example 3.1) we have
A = ga*J. 7

The operator A from Z(A) C J#;, where (1, [-, ]1) is a Krein space, into the Krein
space (%5, [-, -]») is a contraction if

[Akl,Akl]z < [k17k1]17 Vkl € .@(A)

A densely defined contraction, or even isometry, operator A between Krein spaces
need not be continuous, let alone have a continuous extension. See for instance [29,
Theorem 1.1.7]. In the case of Pontryagin spaces with same negative index, 4 has a
continuous extension to all of J#7; see [6, Theorem 1.4.1, p. 27] and Theorem 3.3.
Even when it is continuous and has a well-defined adjoint, this adjoint need not
be a contraction. The operator is called a bicontraction if both it and its adjoint
are contractions. When the Krein spaces are Pontryagin spaces with same negative
index, a contraction is automatically continuous and its adjoint is also a contraction.
An important notion in the theory of Pontryagin spaces is that of relation. Given
two Pontryagin spaces &) and &?,, a relation is a linear subspace of &) x &?,. For
instance the graph of an operator is a relation. The domain of the relation &% is the
set of f € &, such that there is a g € &2, for which (f, g) € Z. A relation Z is
called contractive if

g.g <=[f. fli Y(fg)eZ.
A key result is the following theorem of Shmulyan (see [6, Theorem 1.4.1, p. 27]).

Theorem 3.3. A densely defined contractive relation between Pontryagin spaces
with same negative index extends to the graph of a uniquely defined contraction
operator from &\ into ;.

3.3 Kernels

Recall that a (say, matrix-valued) function K(z, w) of two variables, defined for z
and w in a set £2, is called a positive definite kernel if it is Hermitian: K(z, w)* =
K(w, z) for all z, w € 2 and if for every choice of M € Nand wy,...,wy € £2 the
M x M Hermitian block matrix with (€, j) block entry K(w¢,w;) is nonnegative.
For instance, if b is a finite Blaschke product,

“ z—a,
b@) = l—[ 1 —za*

n=1 n

for some ay, ..., a, in the open unit disk, the kernel
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1 —=b(2)b(w)*

kb (Zﬂ W) = 1 _ ZW*

is positive definite, as can be seen from the formula

kb (Zs W) = (kb ('a W)v kb('v Z))Hz(D)'

When b is replaced with a function s analytic and contractive in the open unit disk,
the corresponding kernel k;(z, w) = % is still positive definite in D; see
[16, 17]. This follows, for instance, from the fact that the operator of multiplication
by s is a contraction from H,(ID) into itself. In the special case of a finite Blaschke
product (or more generally, of an inner function), this multiplication operator is an
isometry. This makes the underlying computations much easier. More generally,
the kernels which appear in the following section can be seen as far reaching
generalizations of the kernels ky(z, w).
The notion of positive definite kernel has been extended by Krein as follows:

Definition 3.4. 1 Let x € Ny. A (say, matrix-valued) function K(z, w) defined on
a set §2 has « negative squares if it is Hermitian and if for every choice of M €
N and wy,...,wy € 2 the M x M Hermitian block matrix with (€, j) block
entry K(w¢,w;) has at most « strictly negative eigenvalues and exactly « strictly
negative eigenvalues for some choice of M, wy,...,wy. When x = 0, the function
is positive definite.

The one-to-one correspondence between positive definite kernels and reproduc-
ing kernel Hilbert spaces was first extended to the indefinite case by Schwartz; see
[62]: There is a one-to-one correspondence between reproducing kernel Pontryagin
spaces and kernels with a finite number of negative squares. For completeness, we
mention that such a result fails if the number of negative squares is not finite. A
necessary and sufficient condition for a function to be the reproducing kernel of a
Krein space is that this function is the difference of two positive kernels, but the
associated Krein space need not be unique. Here too we refer to Schwartz [62]
and also to the paper [1]. Realization of operator-valued analytic functions (without
assumptions on an associated kernel but with some symmetry hypothesis) has also
been considered. See for instance [27]. The C?*?-valued function K(z, w) defined
for z, w in an open set §2 of the complex plane will be called an analytic kernel if
it is Hermitian and if it is analytic in z and w*. If it has moreover a finite number
of negative squares, the elements of the associated reproducing kernel Pontryagin
space are analytic in §2. See [6, Theorem 1.1.2, p. 7].

There are two important classes of operators between reproducing kernel spaces,
namely multiplication and composition operators. We conclude this section with
three results on these operators.
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Theorem 3.5. Let (41, [-,-]1) and (J, [, -]2) be two reproducing kernel Krein
spaces of vector-valued functions, defined in §2, and with reproducing kernels
Ki(z,w) and K,(z,w), respectively, C?'*P'- and CP>*P2-yalued. Let m be a CP2*P! -
valued function and let ¢ be a map from §2 into itself. Assume that the map

(Tny S)(2) = m(2) f(9(2)) ®)

defines a bounded operator from (1, [, 1) into (4, [+, -]2). Then, for every z,w €
2, and & € C,

(75 Kol )) @) = Kilz omm()* 6. ©

Proof. Letz,w € £2,& € CP2, and & € CP'. We have

& (Th k(w2 ) () = [T Kalowiéa s Kl D]
= [Ka(-,w)&2, Ty (K1, 2ED]2
= [K>( w)s . mO)Ki(p (), D61
= [m()Ki(p(-).2)& . Ka(-w)k];
= (EmmKi(pw). 981)"
= &1 K1 (2 p(0)m(w)"6s.

As a corollary we have the following result.

Theorem 3.6. Assume in the preceding theorem that % and J¢; are Pontryagin
spaces with same negative index. Then, Ty, , is a contraction if and only if the kernel

Ka(z, w) — m(2) K1 (@(2), (w))m(w)* (10)

is positive definite in 2.

Proof. Assume that T is a contraction. Then, its adjoint is also a contraction since
the Pontryagin spaces have the same negative index. Let g € % be of the form

N
g@) =Y Kz wi)k.

k=1

where N € N,wy,...,wy € wand &y,...,Ey € CP2. By Eq.(9) we have
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N
> Emwo) Ki(p(we). o (wi))m(wi)* &

k=1

N N
= |:Z K1z pwi))mwo)* &, Y Ki(z, ¢(Wz))m(wz)*§z]
=1

k=1 1
= [T Tie]

g, gl

IA

N
= Z £ Kr(we, wi )&k,

k=1

and hence the kernel Eq.(10) is positive definite. Conversely, assume that the
kernel Eq. (10) is positive definite. Then the linear span of the pairs of functions

(K2 W)€, KiCoow)mw)™§), we 2, §eCP,

defines a linear densely defined contractive relation in %] x J%;. By Shmulyan’s
theorem (see Theorem 3.3), this relation has an everywhere defined extension which
is the graph of a bounded contraction: There is a unique contraction X from .%; into
%1 such that

X(Ka2(w)€) = Ki(,pw))m(w)*§, we 2, §eCP.

By Eq. (9), we have X*] = 1,4, and this concludes the proof. O

We will consider in the sequel special cases of this result, in particular, when
m(z)=(1z---ZV71);
see Theorem 5.3, or more generally when

m(z) = (mo(z) m () -+~ my-1(2)) .

see Theorem 5.4. The operator T,, , defined by Eq.(8) is then a block operator,
and its components satisfy, under appropriate supplementary hypothesis, the Cuntz
relations formally defined in Eqs. (18)—(19).

We conclude this section with a result on composition operators in reproducing
kernel Pontryagin spaces.

Theorem 3.7. Let K(z, w) be a CP*?-valued function which has k negative squares
in the set 2. The associated reproducing kernel Pontryagin space will be denoted
by Z(K). Let ¢ be a map from §2 into itself, and assume that
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f@@)=0= f =0

for f € P(K). Then:
(a) The function K,(z,w) = K(¢(2), p(w)) has at most k negative squares in £2,
and its associated reproducing Pontryagin space is the set of functions of the form

F(2) = f(9(2), with f € P(K) and Hermitian form
[F.Glok, = [/ 8low- Y
(b) The map f v f(¢) is unitary from P(K) into itself if and only if
K(z.w) = K(¢(2),¢(w)), Vz.we 2. (12)

Proof. Set
My ={f(9@). [ € PK)}.
By hypothesis, we have f(¢(z)) = 0 if and only if f = 0, and so the Hermitian

form (11) is well defined and induces a Pontryagin structure on .#,. Furthermore,
withc € C? and F(z) = f(¢(z)) € .#,, we have

2Ky = [F (). KC.oW))clz k)
=" f(p(2)
= F(w),

and hence the reproducing kernel property is in force. To prove (b) we use the
uniqueness of the kernel for a given reproducing kernel Pontryagin space. O

To fine-tune the previous result, note that for ¢(z) = z", the composition map is
an isometry from H, (D)) into itself but is not unitary (unless N = 1). We also note
that the preceding theorem holds also for reproducing kernel Krein spaces. Indeed,
the correspondence between functions which are difference of positive functions
on a given set and reproducing kernel Krein spaces is not one-to-one, but a given
reproducing kernel Krein space has a unique reproducing kernel.

4 Generalized Schur Functions and Associated Spaces

In this section we review the main aspects of the realization theory of generalized
Schur functions and of their associated reproducing kernel Pontryagin spaces.
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4.1 Generalized Schur Functions

In the positive definite case, this theory originates with the works of de Branges and
Rovnyak; see [16,17]. In earlier work on models involving operators in Hilbert space
and matrix factorization, de Branges spaces have served as a surprisingly powerful
tool. The theory was developed in the indefinite case in a fundamental series of
papers by Krein and Langer, see for instance [44—48], and using reproducing kernel
methods in [7] and in the book [6]. It was later used in [6, p. 119] and in the paper
[3] to study generalized Schur functions with some given symmetry. In this chapter
we use this setting to present nonrational and non unitary wavelet filters. In [6] the
case of operator-valued functions is studied, but we here consider the case of C7*?-
valued functions. We now recall the definition of a generalized Schur function.
A (say CP*P-valued) function W is called a Schur function if it is analytic and
contractive in the open unit disk, or, equivalently, if the associated kernel

I, — WERWWw)*

KW(ZsW) = 1_Zw*

13)
is positive definite in a neighborhood of the origin. Then, it has a unique analytic
extension to the open unit disk, and this extension is such that the kernel Ky is
still positive definite in D. There are two other kernels associated to W, namely the

kernel K77 (z, w) (with W(z) &L W(z*)*) and the kernel

Kw(zw) 2705 )

Dw(z,w) = | %ot o
(Z;_w*(W) KW(Zv W)

These three kernels are simultaneously positive definite in the open unit disk. The
first is the state space for a unique coisometric realization of W, the second is the
state space for a unique isometric realization of W, and the reproducing kernel
Hilbert space with reproducing kernel Dy is the state space for a unique unitary
realization of W. In these three cases, uniqueness is up to an invertible similarity
operator.

Let J € CP*? be a signature matrix. We now consider functions with values in
C, defined in Example 3.1, denoted by ® (rather than W). A CP*?-valued function
® analytic in a neighborhood of the origin is called J-contractive if the associated

kernel
J—00r)JOW)*
Koz w) = © ’ ) (14)
1 —zw

is positive definite. It has a unique meromorphic extension to the open unit disk, and
this extension is such that the kernel Kg is still positive definite in the domain of
analyticity of ® in ID. Here too, besides the kernel K¢ we have the kernel K3(z, w)

and the kernel
Ko(zw) JO()—JO(w ))

Do(z,w) = BB J z—w*
% K3z w)
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‘We note that the kernel Ko can be written as

I, — O(2)O(w)

Ko(aw) = L

where [*] denotes the adjoint in C;. This conforms with the way these kernels and
the two other related kernels are written down in [6].

As we already mentioned, Krein and Langer developed in [44-48], the theory of
operator-valued functions such that the corresponding kernels Ko (with a signature
operator rather than a signature matrix) have a finite number of negative squares
in some open subset of the open unit disk. Then, ® has a unique meromorphic
extension to the open unit disk, and this extension is such that Kg has the same
number of negative squares in £2(®), the domain of analyticity & in D. The three
kernels have simultaneously the same number of negative squares and, as in the
positive definite case, are respectively state spaces for coisometric, isometric, and
unitary realizations of ©.

In the special case J = I (we return to the notation W rather than ® for the
function), Krein and Langer proved (see [44]) that W can be written as Wy B -1
where W is analytic and contractive in the open unit disk and where By is a finite
matrix-valued Blaschke product. It follows that W has a finite number of poles in
the open unit disk. In the rational case and when W takes unitary values on the
unit circle, W is a quotient of two matrix-valued rational Blaschke product. Note
however that when J has mixed inertia, W may have an infinite number of poles,
even when k = 0. For example, take

10 1 0
J = (0 _1) and W(z) = (0 b(z)_l)’

where b is a convergent Blaschke product with an infinite number of zeros. Such
examples originate with the work of Potapov [59].

Definition 4.1. We denote by .#? (D) the family of C?*?-valued functions W
meromorphic in the open unit disk and such that the kernel Ky (defined by Eq. (13))
has « negative squares in the domain of analyticity of W in D.

Given a signature matrix J, we denote by ./ (D) the family of C?*?-valued
functions ® meromorphic in the open unit disk and such that the kernel K¢ (defined
by Eq. (14)) has k negative squares in the domain of analyticity of ® in D.

We denote by &Z(W) and Z(0), respectively, the associated reproducing kernel
Pontryagin spaces.

Since the kernels Ky and Kg are analytic in z and w*, the elements of the
associated reproducing kernel Pontryagin spaces are analytic in the domain of
definition of W or ©, respectively. See [6, Theorem 1.1.3, p. 7].

More generally, it is useful to consider non square generalized Schur functions.
We consider J; € CP**Pt and J, € CP*P! two signature matrices, of possibly
different sizes, such that Eq. (5) is in form denoted by v_:
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v_(J1) = v_(J2).
Reproducing kernel Pontryagin spaces with reproducing kernel of the form (4):

J2 — @(z)Jl@(w)*
1 —zw*

when © is CP2*P1-valued and analytic in a neighborhood of the origin, have been
characterized in [6, Theorem 3.1.2, p. 85] (in fact, the result there is more general
and considers operator-valued functions). In the statement below R, denotes the
backward-shift operator
f(@) - f0)
Z

Rof(z) =

Theorem 4.2. Let (2, |-, ») be a reproducing kernel Pontryagin space of CP2-
valued functions. It has a reproducing kernel of the form (4) if and only if it is
invariant under the backward-shift operator Ry and

[Rof.Roflo = f. flo — f(O)" 2 f(0). V[feP

An example of such non square ® appears in Sect. 6.2. See Eq. (37).

4.2 State Spaces and Realizations

We begin with recalling the following definition. Let W be an operator-valued
function analytic in a neighborhood of the origin. A realization of W is an
expression of the form

W(z) = D +zC(I —zA)™'B, (15)

where D = W(0) and A, B, C are operators between appropriate spaces. It is an
important problem to connect the properties of W and of the operator matrix

A B
M:(CD). (16)

When the values of W are linear bounded operators between two Krein spaces,
Azizov proved that a realization exists and that M can be chosen unitary. See [11]
and [27] for further discussion and additional references. When W is a matrix-
valued rational function without a pole at the origin, the spaces may be chosen finite
dimensional, when no special structure is forced on the operator matrix M .

In Sect. 4.1, we have studied the correspondence between kernels and operator-
valued Schur functions. Here we then pass to the realizations of Schur functions.
The introduction of Schur functions offers many advantages, relevant to algorithms
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and to computation. Case in point: In the next section, we give explicit formulas
for realizations, i.e., for the computation of the four block operator entries A
through D making up admissible realizations of a given Schur function and
therefore of a kernel. As we show, there are several such choices, the coisometric
realization (Theorem 4.3) and the unitary realization of de Branges and Rovnyak
(Theorem 4.4), among others. There is in turn a rich literature on Schur algorithms
in various special cases; see, for example, [2] for an overview. In preparation of
Sect. 4.3 we need some definitions. Let &2 denote the space where A acts in Eq. (15).
We say that the realization is closely inner connected if the span of the functions

(I —zA)"'BE,

where £ runs through C? (recall that J/ € C?*?) and z runs through a neighborhood
of the origin, is dense in &?. With the same choices of ¢ and z, it will be called
closely outer connected if the span of the functions

(I —zAM) T
is dense in &, and connected if the span of the functions
(I —zA)"'Bg, and (I —wAlh)~IclHy

is dense in & (1 running through C? and w through the same neighborhood of
the origin as z). Here the adjoints are between Pontryagin spaces. We note that
the terminology is different from that of classical system theory. In the finite-
dimensional case, what is called here closely inner connected corresponds to
observability, and what is called outer connected corresponds to controlability. The
notion of being closely connected is specific to this domain and is, in general,
different from minimality.

4.3 Coisometric and Unitary Realizations

Let © € ./ be a generalized Schur function, assumed analytic in a neighborhood
of the origin. In this section we review how the spaces Z(®) and Z(O) are the
state spaces for coisometric and unitary realizations, respectively. For the following
theorems, see [6, Theorem 2.2.1, p. 49] and [6, Theorem 2.1.3], respectively.
In Theorems 4.3 and 4.4 the notions of coisometry and unitarity mean that
M in Eq.(16) is an operator coisometric (resp. unitary) from the Pontryagin
Z(O) & Cy into itself (resp. from Z(O) & C; into itself).

Theorem 4.3. Let J € CP*? be a signature matrix and © € .. be analytic in a
neighborhood of the origin. Then the formulas
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Af = 19 ; /O
(BE)(2) = Ms,
Cf = f(0),
Dt = 6(0)&,

with f € Z(O) and & € CP, define a closely outer connected realization of ®
which is coisometric. This realization is unique up to a continuous and continuously
invertible similarity operator.

This coisometric realization was introduced by de Branges and Rovnyak in [16]
for scalar Schur functions and extended to the operator-valued case in [17]. We note
that the coisometric realization is also known as the backward-shift realization; see,
for example, [33].

L. de Branges and J. Rovnyak also formulated the unitary realization below.

Theorem 4.4. Let J € CP*? be a signature matrix and © € .. be analytic in a
neighborhood of the origin. The formulas

’

7 S(2) — f(0)
()02

& 28(2) = ()£ (0)
O(2) — 6(0)

(BE)(@) = — |
(J — B IBO))E
c (f ) _ 1(0).
14
DE = O(0)E,

with f € 2(©) and & € C?, define a closely connected realization of ® which is
unitary. This realization is unique up to a continuous and continuously invertible
similarity operator.

It is important to note that, in some cases, all three realizations are unitary. This
is in particular the case when @ is rational and J-unitary on the unit circle. See
Sect.4.4.

4.4 Finite-Dimensional de Branges Spaces

The finite-dimensional case is of special importance, and the case J = [ was
considered in details in our previous work [9]. Then the three realizations are
unitary, and it is easier to focus on the &(®) spaces. As proved in [7, Corollary
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p. 111] for the case J = I and in [7, Theorem 5.5, p. 112] for the general case,
given @ € %/, the associated space Z?(©) is finite dimensional if and only if © is
rational and J -unitary on the unit circle:

OE"*JOE'") = J,

at all points e (¢ € [0,2n]) where it is defined. If moreover ® is analytic in a
neighborhood of the closed unit disk, we have

Z() =H,; © OH, ;.
Rationality is not enough to insure that () is finite dimensional, as illustrated
by the case J = 1 and ® = 0. Then, Z(®) = Hy(D).

Definition 4.5. We will denote by %,/ the multiplicative group of rational CP*”-
valued functions ® which take J -unitary values on the unit circle and for which the
corresponding kernel Ky has « negative squares. We set

v =)
k=0

The results and realizations presented in the previous section take now an easier
form. The various operators can be seen as matrices. Unitarity above is with respect
to the indefinite metric of #(®)@®C,, and we can rephrase Theorem 4.4 as follows:

Theorem 4.6. Let W be a rational CP*?-valued function analytic at the origin,
and let
W(z) = D +zC(I —zA)™'B

be a minimal realization of W. Then, W is J -unitary on the unit circle if and only
if there exists an invertible Hermitian matrix H (which is uniquely determined from
the given realization) such that

(o (29 (e =(49)

The change of variable z — 1/z yields

Theorem 4.7. Let W be analytic at infinity, and let
W) =D +C(zI —A)'B
be a minimal realization of W. Then, W is J -unitary on the unit circle if and only

if there exists an invertible Hermitian matrix H (which is uniquely determined from
the given realization) and such that Eq. (17) holds.
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The matrix H is called the associated Hermitian matrix (to the given minimal
realization). This result was proved in [8, Theorem 3.10] for the case where A is
non-singular. For the approach using reproducing kernel Hilbert spaces, see [4,6,7].

5 Cuntz Relations

5.1 Cuntz Relations and the de Branges—Rovnyak Spaces

The results of this section are related to [10, 22]. In that last paper, the functions
1,...,z¥7" below are replaced by the span of a finite-dimensional backward-shift
invariant subspace, but the discussion is restricted to the Hilbert space case and
scalar-valued functions.

Normally by Cuntz relations we refer to a finite system of isometries Sy, ..., Sy
in a Hilbert space .77 satisfying two conditions:

(a) Different isometries in the system must have orthogonal ranges
SISk =0. j #k. (18)

(b) The sum of the ranges equals ¢
N
>SSt =1Iy. (19)
j=1

Note that (a) already forces .7 to be infinite dimensional. Indeed, if 7 is finite
dimensional, an isometry is unitary and the orthogonality of the ranges is not
possible; see the discussion below and Sect. 5.3. If we allow the isometries to operate
between two finite-dimensional spaces of different dimensions, then one can find
isometries which satisfy the Cuntz relations. It is the set of three conditions: Each
S; is isometric in a Hilbert space ¢, and (a) and (b) together imply that every
realization is a representation of a simple, purely infinite C *-algebra, called Oy . In
applications to filters, the N individual subspaces represent frequency bands. This
allows for versatile computational algorithms tailored to multiscale problems such
as wavelet decompositions and analysis on fractals. In our present paper, we relax
some of the original very restrictive axioms, while maintaining the computational
favorable properties. Our more general framework still allows for algorithms based
on iteration of the operator family Sj, ..., Sy in a particular representation.

If one allows isometries between two Hilbert spaces, then the finite-dimensional
case may occur, as illustrated by the following example:

M =C, A =C
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and
1 0
S| = , S = .
=) ==()
We have
SIS1=85S =1, S;S =555 =0,
and

We go beyond the setting of Hilbert space and relax the conditions (a) and (b)
imposed in the original framework from C *-algebra theory, allowing here isometric
operators between two Pontryagin spaces. We still preserve the features of the
representations of use in iterative algorithms.

It is not surprising that in Sect. 5.3 we have finite-dimensional spaces. Now for
the generalized theory, we must allow for de Branges and Rovnyak spaces and for
negative squares and signature matrix. The resulting modifications in the form of
the Cuntz relations, in the case of Hilbert space, entail some nontrivial modifications
addressed in the next two sections. Our main results for this are proved in the present
section and in Sect. 5.3 for the finite-dimensional case.

The main result of this section is that one can associate in a natural way to an
element © € . (D) a family of operators which satisfy the Cuntz relations. We
begin with a preliminary result, which is a corollary of Theorem 3.7 with ¢(z) = z".

Proposition 5.1. Let © € .7 (D), and let Z(O) be the associated Pontryagin
space, with reproducing kernel

J = 0()JOW)*

K@(Zv W) = 1 —zw*
The function
J—0eEN)JemN)*
N Ny _
Ko(z",w") = 1 — NN

has also k negative squares in its domain of definition in D. The associated
reproducing kernel Pontryagin space My is equal to the space of functions of the
form F(z) = f(zV), where f € P(O), with the following indefinite inner product

[F,Glay = /. glz©) (20)

where g € 2(0) and G(z) = g(ZV).
We have:

Theorem 5.2. Let © € ./ (D), and let P(O) be the associated Pontryagin space
with reproducing kernel



Extending Wavelet Filters 89

J —0O@)JOWw)*
1 —zw* ’

K@(Z, W) =

Then, for N € N, the function Oy defined by Oy (z) = O(zV) belongs to .7,
Furthermore, (©y) consists of all the functions of the form

N—1

f@=>"ZfiE). fie2O).

=0
Any such representation is unique, and the inner product in #(®y) is given by

N—1
[f8loen = Y _Lfi-giloe)
j=0
where g(z) = Z;V;OI 7/ g; (V) for some gy, ..., gn—1 € P(O).
Proof. We proceed in a number of steps.

Step 1. Ttholds that v_(®y) < N - k.
Indeed,

J =0 JomwN ) T -—0EN)JewN)* 1 —Nwh*

1 —zw* 1 —zZNwh* 1 —zw*
N—1
_J—eE )y JewN)* Z sk
= 1 — N yh= : W
k=0

This expresses the kernel Kg, as the sum of N kernels, each with « negative
squares. Thus, v_(®y) < Nk. To show that there is equality, we need to show
that the associated spaces have pairwise intersections which all reduce to the zero
function.

Step 2. Let k,£ € {0,...,N — 1}, such that k # £. Then, with .#) as in the
previous theorem:
Zk.///N ﬂZ[.///N = {0}.

Indeed, assume that k > £ and let f, g € .4 be such that
2fEY) =L@,

Then, f and g will simultaneously be identically equal to 0,x;. Assume f # 0,x1.

One of its components, say the first, with f = (x1 @) - xp (z))t is not identically
equal to zero (p is the size of the signature matrix J). Then we obtain
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k=0 _ J’I(ZN)
x1(zV)’

where y; denotes the first component of g. Since f and g are meromorphic
in D, the function y;/x; has a Laurent expansion at the origin. Moreover the
Laurent expansion of %(ZN ) contains only powers which are multiple of N. By
the uniqueness of the Laurent expansion, this contradicts the fact that it is equal to
=t with |k — €| < N.
Step 3. It holds that

P(Oy) = @?’;olzj///zv,

and it holds that vg, = Nk.
This is because the spaces z/ .4y have pairwise intersections which reduce to the
zero functions in view of Step 2.

O
Theorem 5.3. In the notation above, set
S; N =7 [ 2(©) — 2On).
Then,
SMf =1 268 — 26). @D
and
Sj[»*]Sk =8kl 0)
(22)

N—1

o _ g
D88 = Izey,
Jj=0

where the [*] denotes adjoint between Pontryagin spaces.
Proof. We proceed in a number of steps.

Step 1. The operators S; are continuous.

The operators §; are between Pontryagin spaces of different indices, and some
care is required to check continuity. To this end, fix j € {0,..., N — 1} and note
that §; is everywhere defined. Furthermore we claim that it is a closed operator.
Indeed, let fi, f>... be a sequence of elements in & (®) converging strongly to
f € Z(O) and such that the sequence S; fi,S; f2,... converges strongly to
g € Z(Oy). Strong convergence in a Pontryagin space implies weak convergence,
and in a reproducing kernel Pontryagin space, weak convergence implies pointwise
convergence. Therefore, for every w where @ is defined,

Jim i) = £ (),

and
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lim (S; fi)(w) = g(w).

k—00
Since (S fx)(w) = w’ fi(w), and thus g(w) = w’ f(w). Therefore g = S, f, and
the operator S; is closed and hence continuous.

Step 2. Equation (21) is in force.
Let g(z) = Z,iv;()l Far (@) € P(Oy) where the g € P(O), and let u €
A (0). Then,

N—1
= [0, )|
k=0 P(ON)
=[u, gjlzo©)
=[u. $"gl o).

where [, ]»©) and [, ] #(0,) denote the indefinite inner products in the correspond-
ing spaces. Hence, we have Sj[.*]g =gj.

Step 3. The Cuntz relations hold.
From Eq. (21) we have for u € &(0)

0 if j#k,

[+] (¥ k(N
S Sru S u(z
j Ok ;@ uh) it =k

Furthermore, for f(z) = Z?’:—(} Z fi(ZV) € P2(Oy) (where the f; € 2(0)), we
have

SeSHf = Sc(fi) = F @),

and thus
N—1

>SS = Ise-
k=0
We note that, with
S=(S S Sy=1) 2O — 2(Oy),
the Cuntz relations (21) can be rewritten as
SSH =150, and SMS =T,

At this stage, let us introduce some more notation. We set

Opi(2) = OEY").
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and Si(o) = §;fori =0,..., N — 1. We can reiterate the preceding analysis with
Oy instead of ®. We then obtain N isometries S(l), R S](Vl)_1 from & (Oy) into
P (Oy2) satisfying the Cuntz relations. Iterating k times, one obtains k sets of
isometries

j—1 j—1 .
SUT L SUTR =1k,

from Z(Oy;-1) into F(Oy;), which also satisfy the Cuntz relations. This gives
us N* isometries _— )
0) (1 -1
S; 1 Siz o Sik ’

with (iy,12,...,ik) €{0,...,N — l}k, from Z(O) into F (O yr), all satisfying the
Cuntz relations.

5.2 Cuntz Relation: The General Case

We now wish to extend the results of Sect.5.1 and in particular Theorem 5.2 to
the case where the N functions 1,z,...,z" ™! are replaced by prescribed functions
mo(z), m1(z), ..., my—1(z), whose finite-dimensional linear span we denote by .%Z,
and the kernel K (z, w) is replaced by a given analytic CV*¥ -valued kernel K (z, w)
and the kernel K¢, (z, w) is replaced by a kernel K (z,w). Let as in Sect.5.1,
Ky(z,w) = K(Z¥,w"). We address the following problem: Given K and K two
Hermitian kernels defined on a set £2 and with a finite number of negative squares

there, when can one find decompositions of the form

N—1
f@ = m@eg.E"). (23)

n=0
where the functions g, ..., gy—1 belong to Z(K) for some, or all, elements in

3”(?). We have:

Theorem 5.4. Let K(z,w) and k(z, w) be two kernels defined on a set §2, and
assume that "
v_(K) = Nv_(K). 24)

Let my,...,my—1 be N functions on §2. Assume that the kernel

N—1
K@ w) - (Z mn(z)mn(w)*) K(zw)

n=0

is positive definite in 2. Then, with ¢(z) = zV, the choice g, = T,,[;],Wﬁ,, n =
0,...,N — 1 solves Eq. (23).

Proof. We use Theorem 3.6 with K»(z,w) = K (z,w) and
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Kzw) 0 0. 0
0 K(Ew 0--- 0
Ki(z,w) =
0 0 -0 K(zw)

Then

n=0

N—1
(Z mn(z)mnw)*) K(zw) = m@Ki@mw)*,
and Theorem 3.6 with K; and K, as above and

m(z) = (mo(2) mi(2) -+~ my-1(2)), and @(z) = 2",

leads to the fact that the map

f=m@)fEY)

is a contraction from (Z(K))" into 3”(%). O
In applications, one uses the kernel ?(z, w) = Ky (z, w) in the above result.

Proposition 5.5. A sufficient condition for Eq. (24) to hold is that
m; Z(K)Nm P (K) = {0}, (25)

forall j,k €{0,..., N — 1} such that j # k.

Proof. Indeed, when this condition is in force, we have that the Pontryagin space
with reproducing kernel m(z) K (z, w)m(w)* is the direct sum of the Pontryagin
spaces with reproducing kernels m; (z) K (z, wym ;(w)*, j =0,...,N — L. O

We note that there is similarity between Eq. (23) and the solution of Gleason’s
problem. Gleason’s problem is the following: Given a linear space of functions .#
of functions analytic in a set 2 C CV and given a € £2, Gleason’s problem is the
following: when can we find functions g, ..., gy € .# (which depend on a) such
that

N
f(Z) - f(a) = Z(Zn - an)gn(z, a).

n=1

5.3 Cuntz Relations: Realizations in the Rational Case

Recall that for a given generalized Schur function &, we presented in Theorems 4.3
and 4.4 coisometric and unitary realizations, respectively. The unitary realization
turns to be more involved than the coisometric backward-shift realization. In some
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cases, these two realizations are unitarily equivalent, in particular, when @ is
rational and J -unitary on the unit circle. As we already discussed in Sect. 4.4, this
is equivalent to having the space &2 (®) finite dimensional. In this section we adopt
this simplifying assumption and study the realization of @y (z) = @(z") in terms
of the realization of ©.

We take the signature matrix J to belong to CL*L | We know (see [6,7] and
Theorem 4.3) that

O =246 —2)' B,

where 2 = Oy (0) = ©(0) and where o7, B, and € are defined as follows: € is
the evaluation at the origin:

¢ f = /).
A is defined by
e —ON(0
BE = Mg, £eCL,

z
and .7 is the backward shift in #2(®y ). The matrix (see [7])

o B

C 9

is unitary in the & (®y ) metric. We know from Theorem 5.2 that Z(Oy) is equal
to the space of functions of the form

N—1
f@ =Y @) (26)

k=0

where the f; € &(0) are uniquely defined. We will denote by U the map

5
P
fvor

from Z(O@y) onto (Z(O))". In view of Eq.(22), U is a unitary map (between
Pontryagin spaces).
Let T denote the following map from (Z(©))" into itself defined by

070 0 fO fl

0017 0 fl f2

TUf = o=

I : :
ko 00---0 Sn-1 Ry fo
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Proposition 5.6. Let f € P(Oy), with representation (26). It holds that
U/ f = (TU)E). @7
and it holds that

(A [, g)p©on = (TULTUE) p@)- (28)

Proof. Indeed, with f of the form (26), we have

_ N—1 Ny
o f@ = Rofe = LAV 5 sty pt HED 0O

k=1
sothat U/U* f is equal to
Jo A
S 1
. H . b
Sy Ro fo

i.e., Eq.(27) is in force. Finally Eq.(28) follows from the formula for the inner
productin Z(Oy). O

Proposition 5.7. Let f € Z(Oy) with representation (26). Then,
¢f=C(I,0---0)Uf, (29)

where C is the evaluation at the origin in Z(O).

Proof. This is clear from

fo
fi
“f=f0)=(C00--0)| :

foot

Proposition 5.8. We have
Pt = "1 (BEHEY),
where B is the operator from Ct into 2(0):

BE = RyOFE,
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and we have
(BE, Bn) p0y) = (BE, Bn) me), n.€€Ch. (30)

Proof. We have

HE(2) = RoONE(2) =

Ny _
FEI=E0 _ )

Equality (30) follows form the definition of the inner product in & (Oy). O

These various formulas allow to show directly that the realization is indeed
unitary and to compute the associated Hermitian matrix in the finite-dimensional
case.

6 Decompositions

6.1 Generalized Down-Sampling and an Hermitian Form

In the preceding section we considered decompositions of a function in the
form (23). Here we consider different kind of decompositions. We consider matrices
P € CN*N gatisfying

det(Iy —€4 P #0, €=1,....N—1, and PV =1Iy. (31)

We do not assume that P! # Iy, and in particular the choice P = [ is allowed.
The special case P = €y Py plays also an important role.

Theorem 6.1. Let W be a CN*M _valued function defined in the open unit disk
(typically, M = 1 or M = N). Let P € CV*N satisfying Eq. (31), and let, for
k=0,....,.N—1,

N—1

1
W) = D (enPYW (eh2). (32)
=0
Then,

Wi(enz) = (enP) *Wi(2)), k=0,...,N—1, (33)

N—1
W@ =) W) (34)

k=0

Proof. We have
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N—
1
Welena) = Z(eNP)“ W(eyenz)
=0

=
= (exP)* (ﬁ > (en P)"“*”W(efv“z))

=0

= (ex P) (Wi (2)),

since (ey P)* = Iy, and this proves Eq. (33). To prove Eq. (34) we write

N—1

N-—1 N-—1
Y W@ =) (% Y (enP) W(éfvz))
k=0 k=0

= W(2),

since, in view of Eq. (31),

Py — ) if £ =0,
Z(GN ) {(IN —(enPYNY(I —(exP)H ' =0 if{=1,2,...N —1.

|

When P = Iy, the index k = 1 corresponds to the down-sampling operator.

6.2 Orthogonal Decompositions in Krein Spaces

In some cases the decomposition (34) is orthogonal for the underlying Krein space
(or Pontryagin space) structure. We will assume that the Krein space (2, [+, -].¢)
consists of C"-valued functions and satisfies the following property:

Hypothesis 6.2. Let P be a matrix satisfying Eq.(31), and let ¢(z7) = enz. We
assume that:

1. The composition operator f +— f(¢) is continuous and unitary from % into
itself.
2. The operator of multiplication by P on the left is continuous and unitary from

Hinto itself.

We note that, in particular, the operator Tp , defined by Eq. (8),
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Try f(z) = Pf(enz).
is continuous and unitary from % into itself. Note also that
Th, =1z

Hypothesis 6.2 holds in particular for the spaces H, ; when P is J-unitary, i.e.,
satisfies
P*JP = .

Theorem 6.3. Let (% ,[-, -]) be a Krein space of C" -valued functions, satisfying
Hypothesis 6.2. Let W € J¢ and let

Wi(z) = % g(ew)"‘ W(ey2). (35)
Then,
We. Wil =0, L #k,
W(z) = Wo(2) + -+ Wi-1(2),
and

Wi(enz) = (en P)*W(2).

Proof. The last two claims are proved in Theorem 6.1. The first claim takes into
account the hypothesis on 2" and is proved as follows: We take k; and k, in
{0, ..., N — 1} and assume that k, < k. Taking into account the definition of W,
we see that the inner product [Wy, , Wi, ] » is a sum of N2 inner products, namely

[(en PY I W(eya). (en PYROW (€Dl G € {00 N — 15
These N? inner products can be rearranged as N sums of inner product, each sum

being equal to 0. Indeed, consider first the inner products corresponding to £; = £;.
In view of the unitary of the operator Tp,, we have

N—1 N—1

> [(ENP)kl‘fl W(ey2), (ey PY20 W(efvlz)] =D Pt | ww

£,=0 > £,=0 v
=0.

Indeed, using 0 < k; — k; < N — 1 and so, by hypothesis on P, we have
det(Iy — (ey P)'7%2) # 1,

and the sum
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N—1

Y (en Py ) =o.

£,=0

Let us now regroup the factors of [W(z), W(enz)].». Taking into account that
[PENTIW (N2, W@Le = [PUYTIW (), Wen2)lr,

we have

=
N}

[(ex PO, (e P 1)]

A
0

o~
Il

+ [(eNP)k‘(N_l) W (eN~'2), W(z)]%

N-=2

(Z(e P)fi=(tHDE (eNP)k1<N—1’) W@, W(eNz)]

H

H

N—1
[(em © (Z((eNPW )t ) W(2), W(eNz)}
0.

The remaining terms are summed up to O in the same way. O

6.3 Decompositions in Reproducing Kernel Spaces

We begin with a result in the setting of Schur functions, as opposed to generalized
Schur functions.

Theorem 6.4. Let W be a CP*4-valued Schur function and let ¢(z) = €yz. Then
the operator of composition by ¢ is a contraction from € (W) into itself if and only
if there exists a CT*1-valued Schur function X (z) such that

W(z) = W(en2)X(2). (36)

Proof. By Theorem 3.6, the map T, is a contraction if and only if the kernel

W(en2)W(exnw)* — W)W (w)*
1—zw*

Kw(z,w) — Kw(enz, eyw) =
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is positive definite in the open unit disk. By Leech’s factorization theorem (see [61,
p- 107]), the above kernel is positive definite if and only if there is a Schur function
X(z) such that Eq. (36) is in force. O

As an example, take any Schur function s and build

W(z) = \/LN (5(2) s(enz) -+ s(eN712)) (37)

Then
W(z) = W(enz) Py,

where Py is defined by Eq. (2).

7 The Family &

An effective approach to generating wavelet bases is the use of MRA; see, for
example, [13, 18, 26]. Traditionally one looks for a finite family of functions in
L,(R, dx) or Ly(R¢,dx) for some dimension d. If d = 1, one chooses a scale
number, say N. If d > 1, instead one scales with a d x d matrix A over the
integers. We assume that A is expansive, i.e., with eigenvalues bigger than 1 in
modulus. If A is given, let N be the absolute value of its determinant. To create
MRA wavelets we need an initial finite family .% of N functions in Ly(R) or
L,(R?). One of the functions is called the scaling function (¢ in the discussion
below). For the moment, we will set d =1, but the outline below easily generalizes
tod > 1. An MRA wavelet basis is a basis for L, (R) or L,(R?) which is generated
from the initial family % and two operations: one operation is scaling by the
number N (or the matrix A if d>1) and the other is action by integer translates
of functions. The special property for the finite family of functions .% is that if
the N-scaling is applied for each function ¥ in F the result is in the closed span
of the integer translates of the scaling function ¢. The corresponding coefficients
are called masking coefficients. The reason for this is that the scaled functions
represent refinements, and they are computed from masking points in a refinement.
The role of the functions mg, m,...,my—_; are the frequency response functions
corresponding to the system of masking coefficients. From these functions we then
build a matrix-valued function W(z) as in Eq. (38). The question we address here
is the characterization of the matrix-valued function which arises this way. Now
the wavelet filters we consider here go beyond those studied earlier in that we
allow for wider families of multiresolution analyses (MRAs). This includes more
general wavelet families, allowing, for example, for wavelet frame bases, see, e.g.,
[13,41,42], multi-scale systems in dynamics, and analysis of fractals; see [31].



Extending Wavelet Filters 101
7.1 The Family 6x: Characterization

The filters we consider are matrix-valued (or operator-valued) functions of a
complex variable. In general if a positive integer N is given, and if a matrix
function W(z) is designed to take values in CV*V | then of course, there are N2
scalar-valued functions occurring as matrix entries. However, in the case of filters
arising in applications involving N distinct frequency bands, for example, in wavelet
constructions with scale number N, then we can take advantage of an additional
symmetry for the given matrix function W(z); see, for example, Eq. (1) in the
Introduction. Here we point out that this N -symmetry condition (or N -periodicity)
means that W(z) is then in fact determined by only N scalar-valued functions;
see Eq.(38). These functions play three distinct roles as follows: they are (1) the
scalar-valued filter functions, §;, fori = 0, 1,..., N — 1, in generalized quadrature-
mirror filter systems (the quadrature case corresponds to N = 2); (2) scaling filters
for scale number N with each of the N scalar functions §; generating an element
in a wavelet system of functions on the real line and corresponding to scale number
N; and (3) the system of scalar functions (5;);=o... ny—1 generates an operator family
(S7)i=0....N—1 constituting a representation of the Cuntz relations, thus generalizing
Theorem 5.3. The results presented in this section are related to [9].

Recall that ey = e* . We shall say that a CN*N_yalued (N > 2) function W
meromorphic in the open unit disk D belongs to @y if it is of the form

S0(z)  Solenz) -+ SoleN~'2)
1 §1(z)  Si(enz) -+ Si(eN'2)
W) = —= : . , (38)
v N :
Sv—1(2) Sn—1(enz) -+ Sn—1(eN12)
where S, . .., Sy—1 are complex-valued functions meromorphic in . Note that such

a function, when analytic at the origin, will never be invertible there. A special case
of this analyticity restriction of course is when W(z) has polynomial entries. Under
the filter-to-wavelet® correspondence [18], polynomial filters are the compactly
supported wavelets. In the sequel, it will turn out that we shall concentrate on the
opposite cases. Namely, not only W(z) will have a pole at the origin, in fact, we
shall have W(Z)Eio = OnxN-

Recall that we have denoted by Py the permutation matrix

Py = (le(N—l) 1 )
In—t Ov—nxi

(see Eq. (2)).

3This correspondence: polynomial filter to compactly supported wavelet even works if d > 1.
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Lemma 7.1. A CN*Nvalued function meromorphic in the open unit disk is of the
form (38) if and only if it satisfies Eq. (1):

Wi(enz) = W(z)Pn.

Proof. Let W be a CV*V _valued function meromorphic in ID and satisfying Eq. (1),
and let sy, ... sy denote its columns, i.e.,

W(z) = (51(2) $2(2) ... sn(2)) - (39)

Namely, from Eq. (38),

§0(6{V_IZ)
1| s
S (Z) = ﬁ . s

o j—1
SN—1(€1JV 2)

Multiplying W by Py from the right makes a cyclic shift of the columns to the left,
namely

W) Py = (52(2) 3(2) -+ sn (2) 51(2)) -
Equation (1) then leads to

(S1(€NZ) 52(enz) -+ sn—1(enz) sN(gNZ)) -
= (52(2) $3(2) -+ sx(2) $12)) -

Thus
52(2) = s1(enz),  $3(2) = s1(€x2),...,5n () = s1(en '2),

and so W is of the asserted form. The converse is clear. O

Note that in contrast to Lemma 7.1, in Eq. (37), we did not assume that W is
square.

When one assumes that the function W in the previous lemma is a generalized
Schur function, the symmetry condition (1) can be translated into the realization. We
present the result for the closely outer connected coisometric realization, but similar
results hold for the closely inner connected isometric realization and connected
unitary realizations as well (see Sect.4.2 for these notions). In the statement, recall
that the state space & will in general be infinite dimensional and endowed with a
Pontryagin space structure.

Theorem 7.2. Let W be a generalized Schur function, and let
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W) =D +z2C(I —zA)™'B

be a closely inner coisometric realization of W, with state space . Then, W
satisfies Eq. (1) if and only if there is a bounded invertible operator T from

into itself such that
exA B\ (T 0O _ T 0 A B ‘ (40)
GNC D 0 IN 0 IN C D

Furthermore, the operator T satisfies
™ =1. (41)

Proof. The first equation follows from the uniqueness of the closely connected
coisometric realization. Iterating Eq. (40) and taking into account that e,]\\,' =1we

get
AB\(TY 0\ _(T" O A B
cpJ\o1y) \o IyJ\CD)
By uniqueness of the similarity operator we have TV = I. O

Proposition 7.3. Let Wi and W, be in €y . Then the functions
Wi@QW2(@)* and Wi(2)Wa(1/2)*

are meromorphic functions of 7" .

Proof. Let W(z) = Wi(z)W2(z)*. Since Py Py, = Iy, we have

W(enz) = Wi(enz)Wa(enz)™
= Wi(z2) Py Py W2 (2)*
= Wi@W@)"
= W(2),

ie.,

W(enz) = W(z). (42)

The functions W, and W, are meromorphic in the open unit disk and so is the
function W. We denote by A the set of poles of W and by Ay the set of points
w in the open unit disk such that w¥ € A. Let, for z = re’® with r > 0 and
0 € (—m, ],

R(z) = W(¥re' V).
The function R is analytic in D\ {Ax U (—1, 0]}. Thanks to Eq. (42), it is continuous

across the negative axis at those points in (—1, 0) which are notin D\ A y . It follows
that R is analytic in D\ Ay U {0}. Furthermore, W(z) = R(z"). Any singular point
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of R is a pole (otherwise its roots of order N would be essential singularities of W),
and so R is meromorphic in D. O

In the rational case, the previous result has an easier and more precise proof.
Indeed consider the Laurent expansion at the origin of W':

o0
W) =Y Wi
—
It converges in a punctured disk 0 < |z| < r for some r > 0. Equation (42) implies

that
o0 oo
Z szk = Z Wkéf\,zk.

—mo —mo

By uniqueness of the Laurent expansion we get that
Wy =0, for k& NZ.

Thus, if m > 0, we may assume without loss of generality that my = Nng for some
no € N. The function

—1
W_(z) = Z W, Z*

k=—m0

is rational and so is the function
o0
k
Wi(e) =) Wi,
k=0

We see that
W@ = Y WV

—mo<nN<—N

and so W_(z) = R_(z"), where the function

R-@= ) W

—mo<nN<—N

is rational and analytic at infinity. The function W, is analytic at the origin and thus
can be written in realized form as

Wi(z) = D +zC(I, —zA)"'B.

Comparing with
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o0
Wi =) Wanz'™,
n=0

we have that
0 if p+1¢& NN,

W.n if p+1=nN, nelN.

CA’B =

It follows that W4 (z) = R4 (z"), where R is the rational function defined by

o0
Ry(d=D+) "CA"""'B

n=1

oo
=D+ ) 'CA"IV4N

n=1
=D +zC(1, —zAY)'AN ' B.
The function
R(z) = R—(2) + R+(2)

is rational.
The proof of the preceding proposition can be mimicked to obtain the following
result:

Proposition 7.4. Let Wy and W, be in €y, with nonidentically vanishing determi-
nant. Then there exists a meromorphic function R such that

Wi(z)Wa(z)~" = R(ZY). (43)

To this end, recall that the unitary matrix Fy:

E;(O'O) E;(O'l) E;(O'Z) cer g (O(N=D)
6;/(1-0) 6;/(1-1) 6;/(1-2) e, (V=D
1 —(20 -1 -2 _(2(N—
Fy = EN( ) EN( ) EN( ) L. e~ @W-1

VN

—((N=1)-0) —((N=D-1) —(N=1)2) —((N=1)-(N—1
generates the discrete Fourier transform. Namely, the discrete Fourier transform of
x € CV is given by X = Fyx, and the inverse discrete Fourier transform is given

by x = FyX. Let furthermore

Wy (2) = diag{l, 27", ..., 2"V} Fy. (44)
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With this special choice of W, the previous proposition becomes

Proposition 7.5. W € €y and detW = 0 if and only if it can be written as
W) = R Wy (),

where R and WN are as in Egs. (43) and (44), respectively.

7.2 A Connection with Periodic Systems

Let
Dy (z) = diag (zN,zN_lef\V’_l,zN_zeﬂ‘V_z, ... ZEN),

so that
Dy (1) = diag (1,eN 1, K72, ew).

Functions which satisfy the related symmetry
W(enz) = Dn(1)™'W(2) Py 45)

appear in the theory of periodic systems. A function W satisfies Eq. (45) if and only
if it is of the form

50(z) So(enz) - So(eN'2)
~ 1~ 1 - _
$1z)  ySienz) - _611://7151(6% '2)

Su-1(2) éﬁ%@v_l(e’vz) w1 (ey ).
€N

See [5, Theorem 4.1, p. 381]. We note that the corresponding general bitangential
interpolation problem (see [14] for references) was solved in [5] for functions
analytic and contractive in the open unit disk (i.e., for Schur functions). Let us
denote by Pery the family of functions meromorphic in the open unit disk and
which satisfy Eq. (45).

Proposition 7.6. The map W +— Dy W is one-to-one from Pery onto €y. If W
is analytic and contractive in the open unit disk, so is Dy W .

Proof. We first note that

Dy(enz) = Dy(z)Dn(1). 47

Letnow W € Pery. In view of Egs. (47) and (45) we have
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Dy(en2)W(enz) = Dy(2)Dy(1) Dy (1) "' W(z) Py
= Dy(@W(2) Py,

andso DyW € 6. |

Epilogue: A reason for the recent success of wavelet algorithms is a coming
together of tools from engineering and harmonic analysis. While wavelets now
enter into a multitude of applications from analysis and probability, it was the
incorporation of ideas from signal processing that offered new and easy-to-use
algorithms, and hence wavelets are now used in both discrete problems, as well as
in harmonic analysis decompositions. Following this philosophy we here employed
tools from system theory to wavelet problems and tried to show how ideas from
wavelet decompositions throw light on factorizations used by engineers.

Since workers in wavelet theory often are not familiar with filterers in general,
and FIR filters (short for finite impulse response) in particular, widely used in
the engineering literature, we have taken the opportunity to include a section for
mathematicians about filters. Conversely (in the other direction), engineers are often
not familiar with wavelet analysis, and we have included a brief exposition of
wavelet facts addressed to engineers . We showed that there are explicit actions
of infinite-dimensional Lie groups which account for all the wavelet filters, as well
as for other classes of filters used in systems theory. Moreover, we described these
groups and explained how they arise in systems. The corresponding algorithms,
including the discrete wavelet algorithms, are used in a variety of multi-scale
problems, as used, for example, in data mining. These are the discrete algorithms,
and we described their counterparts in harmonic analysis in standard L, Lebesgue
spaces, as well as in reproducing kernels Hilbert spaces. We also outlined the role
of Pontryagin spaces in the study of stability questions.

In the engineering literature the study of filters is mostly confined to FIR filters.
Recall that FIR filters correspond to having the spectrum at the origin. In our
previous work [9] we have explained that the set of FIR wavelet filters is small
in a sense we made precise. This suggests two possible conclusions:

1. It is unrealistic to offer optimization schemes over all FIR wavelet filters as part
of the design procedure.

2. It calls upon using, at least in some circumstances, also stable IIR (short for
infinite impulse response) wavelet filters, i.e., the spectrum is confined to the
open unit disk.

The above extension to % /¥ allows us to consider filters whose spectrumis in C\ T.
The generalization to %/ permits the spectrum to be everywhere in the complex
plane.

Roughly, we hope that this message will be useful to practitioners in their use
of these rigorous mathematics tools. We offer algorithms hopefully improving on
those used before.
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On the Group-Theoretic Structure of Lifted
Filter Banks

Christopher M. Brislawn

Abstract The polyphase-with-advance matrix representations of whole-sample
symmetric (WS) unimodular filter banks form a multiplicative matrix Laurent
polynomial group. Elements of this group can always be factored into lifting
matrices with half-sample symmetric (HS) off-diagonal lifting filters; such linear
phase lifting factorizations are specified in the ISO/IEC JPEG 2000 image coding
standard. Half-sample symmetric unimodular filter banks do not form a group,
but such filter banks can be partially factored into a cascade of whole-sample
antisymmetric (WA) lifting matrices starting from a concentric, equal-length HS
base filter bank. An algebraic framework called a group lifting structure has been
introduced to formalize the group-theoretic aspects of matrix lifting factorizations.
Despite their pronounced differences, it has been shown that the group lifting
structures for both the WS and HS classes satisfy a polyphase order-increasing
property that implies uniqueness (“modulo rescaling”) of irreducible group lifting
factorizations in both group lifting structures. These unique factorization results can
in turn be used to characterize the group-theoretic structure of the groups generated
by the WS and HS group lifting structures.

Keywords Lifting ¢ Filter bank ¢ Linear phase filter ¢ Group theory ¢ Group
lifting structure ¢ JPEG 2000  Wavelet  Polyphase matrix ¢ Unique
factorization ¢ Matrix polynomial

1 Introduction

Lifting [9, 22, 23] is a general technique for factoring the polyphase matrix
representation of a perfect reconstruction multirate filter bank into elementary
matrices over the Laurent polynomials. As one might expect of a technique as
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universal as elementary matrix factorization, lifting has proven extremely useful for
both theoretical investigations and practical applications. For instance, lifting forms
the basis for specifying discrete wavelet transforms in the ISO/IEC JPEG 2000
standards [12, 13].

In addition to providing a completely general mathematical framework for stan-
dardizing discrete wavelet transforms, lifting also provides a cascade structure for
reversible filter banks—nonlinear implementations of linear filter banks that furnish
bit-perfect invertibility in fixed-precision arithmetic [5, 6, 19, 26]. Reversibility
allows digital communication systems to realize the efficiency and scalability of
subband coding while also providing the option of lossless transmission, a key
feature that made lifting a particularly attractive choice for the JPEG 2000 standard.

The author became acquainted with lifting while serving on the JPEG 2000
standard, and he was struck by the group-theoretic flavor of the subject. After
completing his standards committee work, he began studying the lifting structure
of two-channel linear phase FIR filter banks in depth, leading to the publications
outlined in the present chapter. In spite of its universality, lifting is not particularly
well suited for analyzing paraunitary filter banks because, as discussed in [1,
Sect.IV], lifting matrices are never paraunitary. This means lifting factorization
takes place outside of the paraunitary group, whereas we shall show that lifting
factorization can be defined to take place entirely within the group of whole-sample
symmetric (WS, or odd-length linear phase) filter banks by decomposing WS filter
banks into linear phase lifting steps. This allows us to prove both existence and
(rather surprisingly) uniqueness of “irreducible” WS group lifting factorizations.
One consequence of this unique factorization theory is that we can characterize the
group-theoretic structure of the unimodular WS filter bank group up to isomorphism
using standard group-theoretic constructs.

Besides WS filter banks, there is also a class of half-sample symmetric (HS, or
even-length linear phase) filter banks. The differences between the group-theoretic
structure of WS and HS filter banks are striking. For instance, HS filter banks do
not form a matrix group, but linear phase “partial” lifting factorizations partition
the class of unimodular HS filter banks into cosets of a particular matrix group
generated by whole-sample antisymmetric (WA) lifting filters. The complete group-
theoretic classification of unimodular HS filter banks is still incomplete as of this
writing but comprises an extremely active area of research by the author.

This chapter is an expository overview of recent research [1-4]. It is targeted
at a mathematical audience that has at least a passing familiarity with elementary
group theory and with the connections between wavelet transforms and multirate
filter banks.

1.1 Perfect Reconstruction Filter Banks

This chapter studies two-channel multirate digital filter banks of the form shown
in Fig. 1 [7,8,15,21,24,25]. We only consider systems in which both the analysis
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Fig. 1 Two-channel perfect reconstruction multirate filter bank

filters { Hyo(z), H1(z)} and the synthesis filters {Go(z), G1(z)} are linear translation-
invariant (or time-invariant) finite impulse response (FIR) filters. A system like
that in Fig. 1 is called a perfect reconstruction multirate filter bank (frequently
abbreviated to just “filter bank™ in this chapter) if it is a linear translation-invariant
system with a transfer function satisfying

)2 (Z) —d
— =az 1
X0) ey
for some integer d € Z and some constant a # 0.
FIR filters are written in the transform domain as Laurent polynomials,
b
F@Q =) fmz"eClzz'].
with impulse response f(n). The support interval of an FIR filter, denoted
supp-int(F) = supp-int(f) = [a,b] C Z, )

is the smallest closed interval of integers containing the support of the filter’s
impulse response or, equivalently, the largest closed interval for which f(a) # 0
and f(b) # 0. If supp_int( /) = [a, b] then the order of the filter is

order(F) = b —a. 3)

1.2 The Polyphase-with-Advance Representation

It is more efficient to compute the decimated output of a filter bank like the one in
Fig. 1 by splitting the signal into even- and odd-indexed subsequences,

xi(n)=xQ2n+i), i =0,1; X =X+ ' X1(2). 4)
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The polyphase vector form of a discrete-time signal is defined to be

_ | xo(m) |, | Xo(2)
x(")z[mn)] Xw:[xmz)] ©)

The analysis polyphase-with-advance representation of a filter [4, Eq. (9)] is
filmy= f@n—j), j=0,1; FQ) = F() +zF).

Its analysis polyphase vector representation is

d
— FO(Z) _ —n
ro =R -2 sme “
fn) = [fO(”)} with £ (c), f(d) #0. )
Ji(n)

Since we generally work with analysis filter bank representations, “polyphase”
will mean “analysis polyphase-with-advance.” The polyphase filter (6), (7) has the
polyphase support interval

supp_int(f) = [c, d], (8

which differs from the scalar support interval (2) for the same filter. The polyphase
order of (6) is
order(F)=d —c . )

These definitions generalize for FIR filter banks, { Hy(z), Hi(z)}. Decompose
each filter H;(z) into its polyphase vector representation H;(z) as in (6) and form
the polyphase matrix

T d
Ho = [ 5710 | = non e (10)
h(n) = [Z?Em with h(c), h(d) # 0. (11)

Bold italics denote column vectors and bold roman (upright) fonts denote matrices.
The polyphase support interval of the filter bank in (10), (11) is defined to be

supp-int(h) = [c, d], (12)

and the polyphase order is defined to be

order(H) = d —c. (13)
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Fig. 2 The polyphase-with-advance representation of a two-channel multirate filter bank

With this notation, the output of the analysis bank in Fig. 1 can be written
Y(2) = HQG@X(z).

An analogous synthesis polyphase matrix representation, G(z), can be defined for
the synthesis filter bank {G¢(z), G1(z)}; see [4, Sect. II-A].

The block diagram for this matrix-vector filter bank representation, which we call
the polyphase-with-advance representation [4], is shown in Fig. 2. The polyphase
representation transforms the non-translation-invariant analysis bank of Fig. 1 into
a demultiplex operation, x (k) + x(n), followed by a linear translation-invariant
operator acting on vector-valued signals. The polyphase representation therefore
reduces the study of multirate filter banks to the study of invertible transfer matrices
over the Laurent polynomials.

Since Laurent monomials are units, invertibility of H(z) over Clz,z7!] is
equivalent to

H(z)| = detHR) =dz % a#0.d €. (14)

d is called the determinantal delay of H(z) and a is called the determinantal
amplitude. A filter bank satisfying (14) is called an FIR perfect reconstruction (PR)
filter bank [24]. It was noted in [4, Theorem 1] that the family J of all FIR PR
filter banks forms a nonabelian matrix group, called the FIR filter bank group. The
unimodular group, N, is the normal subgroup of F consisting of all matrices of
determinant 1,

H@)|=1. (15)

The unimodular group can also be regarded as SL(2, C [z, Z_l]).

1.3 Linear Phase Filter Banks

It is easily shown [4, Eq. (20)] that a discrete-time signal is symmetric about one of
its samples, x (i), if and only if its polyphase vector representation (5) satisfies

X H=7A)X (), where A(z) = diag(l,z7"). (16)
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Fig. 3 (a) Whole-sample symmetric filter bank (b) Half-sample symmetric filter bank

We say a signal satisfying (16) is whole-sample symmetric (WS) about iy € Z.
Similarly, a discrete-time signal is half-sample symmetric (HS) about an odd
multiple of 1/2 (indexed by iy € Z/2) if and only if

X(Z—l) — Z(Zi"_l)/zJX(Z), where J = |:(1) (1)i| . an

Analogous characterizations of whole- and half-sample antisymmetry (abbreviated
WA and HA, respectively) are obtained by putting minus signs in (16) and (17).
Real-valued discrete-time signals (or filters) possessing any of these symmetry
properties are called linear phase signals (filters).

It was proven in [16] that the only nontrivial classes (classes with at least
one nontrivial real degree of freedom) of two-channel FIR PR linear phase filter
banks are the whole- and half-sample symmetric classes shown in Fig. 3. Arbitrary
combinations of symmetry are not necessarily compatible with invertibility; e.g., if
both filters have odd lengths then both must be symmetric (WS). In an even-length
filter bank, one filter must be symmetric (HS) while the other must be antisymmetric
(HA). It was also proven in [16] that the sum of the impulse response lengths must
be a multiple of 4, so it is possible for HS (but not WS) filter banks to have filters of
equal lengths, as shown in Fig. 3.

Linear phase properties of filter banks are also straightforward to characterize in
the polyphase domain [4, Sect. III]. The group delay [17] of a linear phase FIR filter
is equal to the midpoint (or axis of symmetry) of the filter’s impulse response. Let
d; denote the group delay of h; fori =0, 1.

Lemma 1 ([4], Lemma 2). A real-coefficient FIR transfer matrix H(z) is a WS
analysis filter bank with group delays dy and d, if and only if

H(:") = diag(z®. z")H(2) Az 7). (18)
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If H(z) satisfies (14) then the delay-minimized WS filter bank normalization
dy=0, d; =—1 (19)
ensures that the determinantal delay, d = (do+dy+1)/2,1s zero and (18) becomes
H(z™") = AQH@AE). (20)
The analogous delay-minimized HS filter bank normalization is
dy=—-1/2=d,. (21)

Both filters have the same axis of symmetry, as in Fig. 3b; we call such filter banks
concentric. Delay-minimized HS filter banks are characterized by the relation

H(z') = LH(z)J] where L = diag(l, —1). (22)

We now see a striking difference between the algebraic properties of WS and
HS filter banks. Since A(z™') = A7'(z), (20) says that A(z) intertwines H(z)
and H(z™!), so the set of all filter banks satisfying (20) (i.e., the set of all delay-
minimized WS filter banks) forms a multiplicative group. In sharp contrast, filter
banks satisfying (22) do not form a group.

Definition 1 ([1], Definition 8). The unimodular WS group, W, is the group of all
real FIR transfer matrices that satisfy both (15) and (20).

Definition 2 ([1], Definition 9). The unimodular HS class, %, is the set of all real
FIR transfer matrices that satisfy both (15) and (22).

2 Lifting Factorization of Linear Phase Filter Banks
We now define lifting and apply it to linear phase filter banks, focusing on the
problem of factoring linear phase filter banks into linear phase lifting steps.

2.1 Lifting Factorizations

Daubechies and Sweldens [9] used the Euclidean algorithm for C[z,z~!] to prove
that any unimodular FIR transfer matrix can be decomposed into a lifting factoriza-
tion (or lifting cascade) of the form

H(z) = Dk Sn—1(2) ---S1(2) So(2) . (23)
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Fig. 4 Two-step lifting representation of a unimodular filter bank

The diagonal matrix Dx = diag(1/K, K) is a unimodular gain-scaling matrix
with scaling factor K # 0. The lifting matrices S; (z) are upper- or lower-triangular
with ones on the diagonal and a lifting filter, S;(z), in the off-diagonal position.

In the factorization corresponding to Fig. 4, the lifting matrix for the step So(z)
(which is a lowpass update) is upper-triangular and the matrix for the second step
(a highpass update) is lower-triangular. For example, the Haar filter bank

Ho(z) = (z+ 1)/2, Hi(g) =z—1, (24)

has a unimodular polyphase representation with two different lifting factorizations,

~[1/21/27 _[1/20 1 0][11
ma@=| =0 (6] 5)

_Jri2q[ 1o
_[0 1 }[—11] (26)

Factorization (25) fits the ladder structure of Fig. 4 with Sp(z) = 1, Si(z) = —1/2,
and K = 2. Factorization (26), on the other hand, begins with a highpass lifting
update and does not require a gain-scaling operation.

Definition 3 ([13], Annex G). The update characteristic of a lifting step (or lifting
matrix) is a binary flag, m = 0 or 1, indicating which polyphase channel is being
updated by the lifting step.

For instance, the update characteristic, m, of the first lifting step in Fig.4 is
“lowpass,” coded with a zero (m = 0), while the update characteristic of the second
step is “highpass” (m; = 1). The update characteristic m; is defined similarly for
each matrix S; (z) in a lifting cascade (23).

Next, we generalize (23) slightly to accommodate factorizations that lift one filter
bank to another. A partially factored lifting cascade,

H(z) = Dgx Sy—1(z) ---So(z) B(2), 27
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is an expansion relative to some base filter bank, B(z), with scalar filters By(z) and
Bi(z). We sometimes write such factorizations in recursive form:

H(z) = Dy EV 7 (z),
EM(z) =S,E"V(Z), 0<n<N, (28)
ETV(z) = B(2).

2.2 Whole-Sample Symmetric Filter Banks

The fact that delay-minimized WS filter banks form a group makes it easy to
characterize the lifting matrices that lift one delay-minimized WS filter bank to
another,

F(z) = S(2) H(2). (29)

Lemma 2 ([4], Lemma 8). A lifting matrix, S(z), lifts a filter bank satisfying (20)
to another filter bank satisfying (20) if and only if S(z) also satisfies (20). An upper-
triangular lifting matrix satisfies (20) if and only if its lifting filter is half-sample
symmetric about 1/2. A lower-triangular lifting matrix satisfies (20) if and only if
its lifting filter is HS about —1/2.

Note that HS lifting filters with appropriate group delays form lifting matrices
that are WS filter banks. It is easy to show that the lifting filters symmetric about 1/2
form an additive group, Py, of Laurent polynomials and that the upper-triangular
lifting matrices with lifting filters in Py form a multiplicative group, U. Similarly,
the lifting filters symmetric about —1/2 form an additive group, Py, and the lower-
triangular lifting matrices with lifting filters in P; form a multiplicative group, L.

Given Lemma 2, it is natural to ask whether every filter bank in W has a lifting
factorization of the form (23) in which every lifting matrix S; (z) satisfies (20). The
answer is yes, and the proof is a constructive, order-reducing recursion that does not
rely on the Euclidean algorithm.

Theorem 1 ([4], Theorem 9). A unimodular filter bank, H(z), satisfies the delay-
minimized WS condition (20) if and only if it can be factored as

H(z) =Dg Sy-1(2) -+~ 81(2) So(2), (30)

where each lifting matrix, S;(z), satisfies (20).

We refer to such decompositions as WS group lifting factorizations. This is the form
of lifting factorizations specified in [13, Annex G] for user-defined WS filter banks.

Definition 1 of the unimodular WS group, W, is independent of lifting, but we
need lifting to define reversible WS filter banks. Let U, and £, be the subgroups
of U and £ with matrices whose lifting filters have dyadic coefficients of the form
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k-2", k,n € Z. Since gain-scaling operations are not generally invertible in fixed-
precision arithmetic, gain scaling is not used in reversible implementations.

Definition 4 ([1], Example 3). The group W, of reversible unimodular WS filter
banks is defined to be the group of all transfer matrices H(z) generated by lifting
factorizations (30) where S;(z) € U, U L, and Dg = L.

2.3 Half-Sample Symmetric Filter Banks

Lifting factorization of HS filter banks is harder (i.e., more interesting) than lifting
factorization of WS filter banks, in part “because” HS filter banks do not form a
group. For instance, the characterization in Lemma 2 of lifting matrices that lift one
WS filter bank to another is equally valid for left lifts, as in (29), and right lifts in
which S(z) acts on the right. This fails badly for HS filter banks.

Theorem 2 ([4], Theorem 12). Suppose that H(z) is an HS filter bank satisfying
the concentric delay-minimized condition (22). If F(z) is right-lifted from H(z),

F(z) = H(2) S(2).
then F(2) can only satisfy (22) if S(z) = 1 and F(z) = H(z).
Fortunately, half-sample symmetry can be preserved by left-lifting operations.

Lemma 3 ([4], Lemma 10). If either H(z) or F(2) in (29) is an HS filter bank
satisfying the concentric delay-minimized condition (22), then the other filter bank
also satisfies (22) if and only if S(z) satisfies

Sz ") =LS@L=5"(@), 31
which says that the lifting filter is whole-sample antisymmetric (WA) about 0.

WA lifting filters form an additive group, P,, and the upper-triangular (resp.,
lower-triangular) lifting matrices with lifting filters in P, form a group, U (resp.,
L). In contrast to WS group lifting factorizations, concentric delay-minimized
HS filter banks never factor completely into WA lifting steps [4, Theorem 13].
The obstruction, which does not exist for WS filter banks, is the possibility
that a reduced-order intermediate HS filter bank in the factorization process will
correspond to filters Hy(z) and H;(z) of equal lengths. Given a concentric equal-
length HS filter bank, it is never possible to reduce its order by factoring off a WA
lifting step. This leaves us with an incomplete lifting theory for unimodular HS filter
banks.

Theorem 3 ([4], Theorem 14). A unimodular filter bank, H(z), satisfies the con-
centric delay-minimized HS convention (22) if and only if it can be decomposed
into a partially factored lifting cascade of WA lifting steps satisfying (31) and a
concentric equal-length HS base filter bank B(z) satisfying (22):
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H(z) = Sy—1(2) - - - So(z) B(z). (32)

There is no gain-scaling matrix, Dg, in (32) since B(z) has been left unfactored.

One popular choice for the equal-length base filter bank in HS lifting construc-
tions is the Haar filter bank, which has a particularly simple lifting factorization (26).
The 2-tap/10-tap HS filter bank specified in JPEG 2000 Part 2 [13, Annex H.4.1.1.3]
is lifted from the Haar via a lower-triangular 4th-order WA lifting step. Another
important example is the 6-tap/10-tap HS filter bank in [13, Annex H.4.1.2.1]. This
filter bank was originally constructed by spectral factorization and has a lifting
factorization of the form H(z) = S(z)B(z), where S(z) is a second-order WA filter
and B(z) is an equal-length (6-tap/6-tap) HS filter bank.

Defining a class £, of reversible HS filter banks is awkward; see [1, Example 5].

3 Uniqueness of Linear Phase Lifting Factorizations

In the last section we saw that every filter bank in the unimodular WS and HS classes
factors into linear phase lifting steps of an appropriate form. Lifting factorizations,
like other elementary matrix decompositions, are highly nonunique, and although
linear phase factorizations are more specialized than general lifting decompositions,
there seems little reason a priori to expect them to be unique. There are, however, a
few trivial causes of nonuniqueness that we can exclude in an ad hoc fashion.

Definition S ([1], Definition 3). A lifting cascade (27) is irreducible if all lifting
steps are nontrivial (S;(z) # I) and there are no consecutive lifting matrices with
the same update characteristic, i.e., the lifting matrices strictly alternate between
lower- and upper-triangular.

Every lifting cascade can be simplified to an irreducible cascade using matrix
multiplication. Merely restricting attention to irreducible lifting cascades is far from
sufficient to ensure unique factorizations, as the two irreducible lifting factorizations
of the Haar filter bank (25)—(26) show. To view nonuniqueness in a different
light, move the lifting steps from (26) over to the right end of (25) and use [9,
Sect.7.3] to factor diag(1/2, 2) into lifting steps. This results in an irreducible
lifting factorization of the identity,

ol | | e o R [ [ R

In a similar manner, any transfer matrix with two distinct irreducible lifting
factorizations gives rise to an irreducible factorization of the identity; cf. [1,
Example 1], which presents an irreducible, reversible lifting factorization of the



124 C.M. Brislawn

identity using linear phase (HS and HA) lifting filters. By constructing irreducible
lifting factorizations of the identity, it is possible to sharpen the universal lifting
factorization result of [9] into the following universal nonunique factorization result.

Proposition 1 ([1], Proposition 1). If G(z) and H(z) are any FIR perfect recon-
struction filter banks then G(z) can be irreducibly lifted from H(z) in infinitely many
different ways.

3.1 Group Lifting Structures

In light of the rich supply of elementary matrices, this plethora of irreducible lifting
factorizations (almost all of which are useless for applications) results from our
failure to specify precisely which liftings we regard as useful. The JPEG committee
restricted the scope of [13, Annex G] to linear phase lifting factorizations of
WS filter banks because these were considered to be the most useful liftings for
conventional image coding, while [13, Annex H] was written to accommodate
arbitrary lifted filter banks for niche applications. Taking a cue from the JPEG
committee, we formalize a framework for specifying restricted universes of lifting
factorizations. Group theory turns out to be a convenient tool for this task.

3.1.1 Lifting Matrix Groups

As mentioned above, upper-triangular (resp., lower-triangular) lifting matrices form
multiplicative groups, U (resp., £), as do lifting matrices whose lifting filters are
restricted to additive groups of Laurent polynomials. This includes groups of filters
whose symmetry and group delay are given, such as the groups Py and P; of HS
lifting filters associated with Lemma 2. Define abelian group isomorphisms

v, A:Clz.z7 '] = N

that map a lifting filter S(z) € C[z,z™!] to lifting matrices,

U(S)E[(l)sgz)} and A(S)E[SEZ)?}. (34)

Definition 6 ([1], Definition 4). Given two additive groups of Laurent polynomi-
als, P; < Cl[z,z7'],i = 0, 1, the groups U = v(Py) and L = A(P,) are called the
lifting matrix groups generated by Py and P;.
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3.1.2 Gain-Scaling Automorphisms

The unimodular gain-scaling matrices Dx = diag(1/K, K) also form an abelian
group with the product DgD; = Dk, which says that we have an isomorphism

D:R* = R\{0} — D < N. (35)

D acts on N via inner automorphisms,

-2
N R

This is equivalent to the intertwining relation
Di A(z) = (%A(2)) Dk (37)

and makes y: Dk + )¢ a homomorphism of D onto a subgroup y(D) < Aut(N).

Definition 7 ([1], Definition 5). A group § < N is D-invariant if all of the inner
automorphisms yx € y(D) fix the group G; i.e., %G = G, so that yx|g € Aut(9).
This is equivalent to saying that D lies in the normalizer of G in N:

D < Nx(S5) = {AeN:AGA =g} .

For instance, when the lifting filter groups Py and P; are vector spaces, it follows
easily from (36) that U = v(Py) and £L = A(P;) are D-invariant matrix groups.

3.1.3 Definition of Group Lifting Structures

We now have the machinery needed to define a “universe” of lifting factorizations.
In the following, ‘B denotes a set (not necessarily a group) of base filter banks from
which other filter banks are lifted in partially factored lifting cascades (27).

Definition 8 ([1], Definitions 6 and 7). A group lifting structure is an ordered four-
tuple,
G =(D,U, L, B,

where D is a gain-scaling group, U and £ are upper- and lower-triangular lifting
matrix groups, and 8 C N. The lifting cascade group, C, generated by S is the
subgroup of N generated by U and £L:

C=(UUL)={S--S:k>18 eUUL}. (38)
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The scaled lifting group, 8, generated by & is the subgroup generated by D and C:
§=(DUC) ={A;---Ar:k>1, A; e DUUU L}. (39)

We say G is a D-invariant group lifting structure if U and £, and therefore C, are
D-invariant groups.

Given a group lifting structure, the universe of all filter banks generated by & is
DeB ={DCB:DeD, CeC, BeB}.

The statement “H has a (group) lifting factorization in &” means H € ‘DCB. H has
a lifting factorization in & if and only if it has an irreducible factorization in G.

The group lifting structure that characterizes the universe of WS group lifting
factorizations is defined as follows. The lifting matrix groups U = v(Py) and
L = A(P)) are determined by the groups Py and P, of HS lifting filters defined
in Sect.2.2. By Theorem 1 unimodular WS filter banks factor completely over U
and £, so we set B = {I}. Since Py and P, are vector spaces, setting D = D(R*)
results in a D-invariant group lifting structure, Sy = (D, U, £, *B). The conclusion
of Theorem 1 can be stated succinctly in terms of Cy = (U U L) as

W = DCwB = DCy . (40)

The group lifting structure for delay-minimized HS lifting factorizations is more
complicated. The lifting matrix groups U = v(P,) and £L = A(P,) are determined
by the group P, of WA lifting filters defined in Sect. 2.3. Per Theorem 3, we define
B to be the set of all concentric equal-length HS filter banks. Defining D = D(R*)
results in a D-invariant group lifting structure, &g = (D, U, £, Bg). With Cy =
(U U L) the conclusion of Theorem 3 can be stated as

= DCysBy, . 41)

Group lifting structures Sy, and G, for reversible WS and HS filter banks are
defined in [1, Sect. IV].

3.2 Unique Irreducible Group Lifting Factorizations

We need one more hypothesis in addition to irreducibility to infer uniqueness of
group lifting factorizations within a given group lifting structure. The key is found
in the fact that nonunique lifting factorizations can be rewritten as irreducible
lifting factorizations of the identity, such as (33). Given a (nonconstant) lifting of
the identity like [1, Eq.(21)], if some partial product E"(z) of lifting steps (28)
has positive polyphase order then the order of subsequent partial products must



On the Group-Theoretic Structure of Lifted Filter Banks 127

eventually decrease because the final product, I, has order zero. This suggests
that lifting structures that only generate “order-increasing” cascades will generate
unique factorizations, an idea that will be made rigorous in Theorem 4.

Definition 9 ([1], Definition 10). A lifting cascade (27) is strictly polyphase
order-increasing (usually shortened to order-increasing) if the order (13) of each
intermediate polyphase matrix (28) is strictly greater than that of its predecessor:

order (E(”)) > order (E(”_l)) for0 <n < N.
A group lifting structure, G, is called order-increasing if every irreducible cascade
in C*B is order-increasing.
3.2.1 An Abstract Uniqueness Theorem
Theorem 4 ([1], Theorem 1). Suppose that S is a D-invariant, order-increasing
group lifting structure. Let H(z) be a transfer matrix generated by &, and suppose

we are given two irreducible group lifting factorizations of H(z) in DCB:

H(z) = Dg Sy-1(2) -+~ So(2) B(z) (42)
=Dg Sy_(2)-S;x) B'(2) . (43)

Then (42) and (43) satisfy the following three properties:

N'=N, (44)
B'(z) =D, B(z) wherea = K/K’, (45)
S!(z) = %Si(z) fori =0,...,N—1. (46)

If, in addition, B(z) and B'(z) share a nonzero matrix entry at some point zo, then
the factorizations (42) and (43) are identical; i.e., K’ = K, B'(z) = B(z), and

S/(z) =Si(z) fori=0,....N—1. (A47)

It also follows that K’ = K if either of the scalar base filters, By(z) or B1(z), shares
a nonzero value with its primed counterpart; e.g., if the base filter banks have equal
lowpass DC responses.

The relationship described by (44)—(46) leads to the following definition.

Definition 10 ([1], Definition 11). Two factorizations of H(z) that satisfy (44)-
(46) are said to be equivalent modulo rescaling. If all irreducible group lifting
factorizations of H(z) are equivalent modulo rescaling for every H(z) generated by
G, we say that irreducible factorizations in & are unique modulo rescaling.
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3.2.2 Application to WS and HS Group Lifting Structures

Applying Theorem 4 is nontrivial, and verifying the order-increasing property is the
hardest aspect of the whole theory. The key lemma for proving the order-increasing
property for the WS and HS group lifting structures is the following result.

Lemma 4 ([2], Lemma 2). Let & be a group lifting structure satisfying the
following two polyphase vector conditions.

1. For all B(z) € B, the polyphase support intervals (8) for the base polyphase
filter vectors are equal:

supp-int(hy) = supp-int(h;). (48)

2. For all irreducible lifting cascades in CB, the polyphase support intervals (8)
for the intermediate polyphase filter vectors satisfy the proper inclusions

supp_int (e (1"_),””) supp-int (ef,’]z ) forn > 0. (49)

It then follows that G is strictly polyphase order-increasing.

Hypothesis (48) is the correct answer to the ill-posed question, “What do all
concentric equal-length HS base filter banks have in common with the lazy wavelet
filter bank, I?” This was one of the last pieces of the uniqueness puzzle to be solved
and unified the uniqueness proofs for the WS and HS cases.

Theorem 5 ([2], Theorem 1). Let G and G, be the group lifting structures
defined in [1, Sect. IV-A]. Every filter bank in W has a unique irreducible lifting
factorization in &, and every filter bank in W, has a unique irreducible lifting
Sactorization in Gy, .

Corollary 1 ([2], Corollary 1). A delay-minimized unimodular WS filter bank can
be specified in JPEG 2000 Part 2 Annex G syntax in one and only one way.

The proof of Theorem 5 involves deriving the support-interval covering prop-
erty (49) needed to invoke Lemma 4 and Theorem 4. The support-interval covering
property results from the following tedious lemma based on the recursive formula-
tion of lifting (28). The update characteristic of S, (z) (Definition 3) is m,, and the
support radius of a filter is the radius of its support interval,

b—a+1

supp-rad(f) = { >

J ,  where [a,b] = supp_int( f). (50)
Lemma 5 ([2], Lemma 5). Let Sy—1(z) ---So(2) € Cw be an irreducible cascade
with intermediate scalar filters E,.(")(z),i = 0, 1. Let ri(") be the support radius
of ei("), and let t") > 1 be the support radius of the HS lifting filter S,(z).
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@

; ) is centered at —i,

Then supp-int (e

supp-int (ei(")) = [—ri(") —1, rl-(") —i] , 1=0,1,

where
r =" +26" —1 forn =0, (51)
i =) 420 1 forn > 1, (52)
O D
withry_, = ri_, =0.

There is a similar unique factorization result for unimodular HS filter banks.

Theorem 6 ([2], Theorem 2). Let Gy and Gy, be the group lifting structures
defined in [1, Sect. IV-B]. Every filter bank in $) has an irreducible group lifting
factorization in Gy, that is unique modulo rescaling. Every filter bank in ), has a
unique irreducible group lifting factorization in G, .

4 Group-Theoretic Structure of Linear Phase Filter Banks

We can now characterize the group-theoretic structure of the groups generated by
a D-invariant, order-increasing group lifting structure. First we consider the lifting
cascade group, C, which only depends on U and £, after which we consider the
structure generated by scaling operations in the scaled lifting group, 8.

4.1 Free Product Structure of Lifting Cascade Groups

Recall the definition of free products in the category of groups.

Definition 11 ([11,18]). Let {S; : i € I} be an indexed family of groups, and let
P be a group with homomorphisms j; : §; — P. Then P is called a free product
of the groups G; if and only if, for every group H and family of homomorphisms
fi © Gi — X, there exists a unique homomorphism ¢ : P — H such that o j; = f;
forall i € I. This is equivalent to saying that there exists a unique homomorphism
¢ such that the diagram in Fig. 5 commutes forall i € .

Defining free products via the universal mapping property in Fig. 5 means free
products are coproducts in the category of groups and are therefore uniquely
determined (up to isomorphism) by their generators §; [11, Theorem 1.7.5], [18,
Theorem 11.50]. There is a constructive procedure (the “reduced word construc-
tion” [11, 18]) that generates a canonical realization of the free product of an
arbitrary family of groups. Standard notation for free productsis P = Gy xGo*---.
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¢
fi

5 — P
\/

H

Fig. 5 Commutative diagram defining a free product of the groups 9;

Ju Je
U——>C «-— [
|

L9
Ju ; Je
H

Fig. 6 Universal mapping property for the coproduct € = U*L

The intuition behind Theorem 7 is the identification of irreducible group lifting
factorizations over U and £ with the group of reduced words over the alphabet
U U £, which is the canonical realization of U*£. The reduced word construction
of UxL is a somewhat technical chore when done rigorously, and it would be a
messy affair at best to write down and verify an isomorphism between the group of
reduced words over LU £ and a lifting cascade group in one-to-one correspondence
with a collection of irreducible group lifting factorizations. For this reason the proof
presented in [3] avoids the details of the reduced word construction and instead uses
uniqueness of irreducible group lifting factorizations to show that € satisfies the
categorical definition of a coproduct.

4.1.1 Lifting Cascade Groups Are Free Products of U and £

An easy lemma is needed to deal with group lifting structures whose irreducible
group lifting factorizations are only unique modulo rescaling.

Lemma 6 ([3], Lemma 1). If (D,U, £,B) is a D-invariant, order-increasing
group lifting structure with lifting cascade group C = (WU L) then irreducible
group lifting factorizations in C are unique, even if irreducible group lifting
factorizations of filter banks in DCB are only unique modulo rescaling.

Lemma 6 ensures that all D-invariant, order-increasing group lifting structures
satisfy the hypotheses of the following theorem, whose proof consists of showing
that C satisfies the universal mapping property in Fig. 6.
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Theorem 7 ([3], Theorem 1). Let U and L be upper- and lower-triangular lifting
matrix groups with lifting cascade group C = (U U L). If every element of C has
a unique irreducible group lifting factorization over U U L then C is isomorphic to
the free product of U and L:

Cx=UxL.

This free product structure, € = UL, is one of the conditions that are required
for C to be a free group.

Theorem 8 ([3], Theorem 2). Let C = (U U L) be a lifting cascade group over
nontrivial lifting matrix groups W and L. C is a free group (necessarily on two
generators) if and only if U and L are infinite cyclic groups and € = UxL.

4.2 Semidirect Product Structure of Scaled Lifting Groups

Consider the interaction between the gain-scaling group D and the lifting cascade
group C in a scaled lifting group, § = (D U €C). As we have seen, D acts on C via
inner automorphisms so it is not surprising that, under suitable hypotheses, 8 has
the structure of a semidirect product, whose definition we now review.

Definition 12 ([11,14,18]). Let G be a (multiplicative) group with identity element
1 and subgroups K and Q. G is an (internal) semidirect product of X by Q, denoted
§ = Q x X, if the following three axioms are satisfied:

§G=(KUQ) (XandQ generate ), (53)
X <G (X is anormal subgroup of 9), (54)
KXNQ=1g (the trivial group). (55)

If § = Qx X then (K U Q) = QK and such product representations, g = gk for
g € § = QX, are unique.

For groups X and Q that are not subgroups of a common parent, a similar
construction called an external semidirect product, denoted § = Q xy K, can be
performed whenever we have an automorphic group action 6: Q — Aut(X).

4.2.1 Scaled Lifting Groups Are Semidirect Products of € by D

LetS = (D, U, £, *B) be a group lifting structure with lifting cascade group € and
scaled lifting group 8. The following theorem has the same hypotheses as those of
Theorem 4, but rather than invoking the unique factorization theorem, the argument
in [3] proves Theorem 9 directly from the hypotheses.
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Theorem 9 ([3], Theorem 3). If S is a D-invariant, order-increasing group lifting
structure then 8 is the internal semidirect product of C by D:

S =DxC.

This result can be combined with Theorem 7 to yield a complete group-theoretic
description of the group of unimodular WS filter banks,

W = 8w = DCw.

Corollary 2 ([3], Corollary 2). Let Gw = (D,U,L,I) be the group lifting
structure for the unimodular WS group, W, defined in [1, Sect.IV]. The group-
theoretic structure of W is

W 2 D g (UxL).

A similar characterization is possible for HS filter banks. While $) is not a group,
the product representation

H =DCxuBys = 8¢B4q, (56)
By = {B € H:order(By) = order(B;)} (57)

exhibits $) as a collection of right cosets, S4B, of S8y by elements of Bg. These
cosets do not partition §), however, since they are not disjoint: B = D,B € B
implies 83 B = S5B’. To obtain a nonredundant partition of §) into cosets, we can
either eliminate scaling matrices (i.e., form cosets of Cg rather than of Sg) or else
normalize the elements of B .

Corollary 3 ([3], Corollary 3). Let Gy = (D, U, L,By) be the group lifting
structure for the unimodular HS class, 9, defined in [I, Sect.IV]. The group-
theoretic structure of 8¢ is

85 = D xp (UxL),

and $) can be partitioned into disjoint right cosets (but not left cosets) of either Cg
or8g:

9 =[J{CsB:B € By} (58)
= J{SsB:B € B}, (59)

where %', is given by, e.g.,
B, = {B € Bg:By(l) = 1}. (60)

Scaled lifting groups with the structure § = D xg (U*L) have formal similarities
[3, Sect. IV] to other examples in the mathematical literature of continuous groups
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with dilations, such as homogeneous groups [10,20]. Unlike homogeneous groups,
however, scaled lifting groups are neither nilpotent nor finite dimensional, so scaled
lifting groups at present appear to be a new addition to the realm of continuous
groups with scaling automorphisms.

5 Conclusions

We have surveyed recent results characterizing the group-theoretic structure of the
two principal classes of two-channel linear phase perfect reconstruction unimodular
filter banks, the whole-sample symmetric and the half-sample symmetric classes.
WS filter banks presented in the polyphase-with-advance representation naturally
form a multiplicative subgroup, W, of the group of all unimodular matrix Laurent
polynomials. Although the class §) of unimodular HS filter banks does not form
a group, lifting factorization theory shows that HS filter banks form cosets of a
particular group generated by unimodular diagonal gain-scaling matrices and lifting
matrices with whole-sample antisymmetric lifting filters. An algebraic framework
known as a group lifting structure has been introduced for formalizing the group-
theoretic structure of lifting factorizations, and it has been shown that the group
lifting structures for WS (respectively, HS) filter banks satisfy a nontrivial polyphase
order-increasing property that implies uniqueness of irreducible group lifting
factorizations.

These unique factorization results have in turn been used to characterize the
structure (up to isomorphism) of the lifting cascade group and the scaled lifting
group associated with each of these classes of linear phase filter banks. Specifically,
in both cases the lifting cascade group generated by the linear phase lifting
matrices is the free product of the upper- and lower-triangular lifting matrix groups,
C = UxL. Also in both cases, the scaled lifting group generated by the lifting
cascade group and the diagonal gain-scaling matrix group has the structure of a
semidirect product, § = DC = D xg (UxL). In the case of WS filter banks this
directly furnishes the structure of the unimodular WS group, W, since W = 8. In
the case of HS filter banks, § is partitioned by the family of all right cosets of Cg by
concentric equal-length base HS filter banks. Alternatively, $) is also partitioned by
the family of all right cosets of 8¢ by concentric equal-length base HS filter banks
with unit lowpass DC response.
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Parametric Optimization of Biorthogonal
Wavelets and Filterbanks via Pseudoframes
for Subspaces

Shidong Li and Michael Hoffman

Abstract We present parametric optimizations of biorthogonal wavelets and as-
sociated filter banks using pseudoframes for subspaces (PFFS). PFFS extends
the theory of frames in that pseudoframe sequences need not reside within the
subspace of interest. In particular, when PFFES is applied to biorthogonal wavelets,
the underlying flexibility presents opportunities to incorporate optimality, regularity,
as well as perfect reconstruction into one parametric design approach. This approach
reduces certain filter optimization problems to optimization over a free parameter.
While past constructions can be reproduced, results with additional optimality
are also obtained and presented here with numerical examples. Tables of filter
coefficients along with graphs are provided.

Keywords Pseudoframes ¢ Frames ¢ Biorthogonal wavelets ¢ Filter banks ¢
Compression ¢ Filter design

1 Introduction: Pseudoframes for Subspaces
and Biorthogonal Wavelets

Frames and frame variations have generated vast interest and applications, see,
e.g., [1-3,6-8,12-17, 19, 20, 23, 24] with pseudoframes first appearing in [25, 26].
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Pseudoframes for subspaces (PFFS) is an extension of frames. It is a notion of
frame-like expansions for a subspace 2~ of a separable Hilbert space [27].

Let 2 be a closed subspace of a separable Hilbert space 7. Let {x,} C .7 be
a Bessel sequence w.r.t. 2, and let {x} be a Bessel sequence in .7#. We say {x,}
isa 2 PFFS w.r.t. {x} if

Ve, f=) (fix)x. e))

The important distinction between PFFS and frames is that none of the sequences
{x,} and {x}} are necessarily required to be in :Z". Consequently, {x, } and {x} are
not generally in the same subspace either. The resulting flexibility is the key point
in PFFS.

The purpose of this chapter is to elaborate on the construction of new biorthog-
onal wavelets and filter banks utilizing PFFS as a method to obtain certain optimal
design criteria.

To this end we will restate the most fundamental characterization of PFES [27].
Let {x,} € 7 and {x} C . Assume that {x, } is a Bessel sequence with respect
to (w.r.t.) the subspace 2. Assume also that {x," } is a Bessel sequence in .77”. Define
U:%2 — I*(Z)by

VieZ, Uf ={{fx) 2)
and define V : [>(Z) — . such that

Ve={cm}el*(@). Ve=>) cn)x;. (3)

n

Then the following characterization of PFFS holds.

Theorem 1 ([27]). Let {x,} and {x} be two sequences in F (not necessarily in
X ). Assume that {x,} is a Bessel sequence w.rt. the subspace &', and {x} is a
Bessel sequence in 5. Let U be defined by Eq. (2), and V be defined by Eq. (3).
Suppose that & is any projection from € onto 2. Then {x,} is a pseudoframe for
Z w.rt. {x}} if and only if

VU = 2. 4

Therefore, the constructions of PFES all start from Eq. (4) which basically requires
the pseudoframes to preserve projections onto the subspace in question. The con-
struction of PFFS has typically two (nonsymmetrical) directions. One corresponds
to finding the “left inverse” V from a given U ; the other relates to finding the U from
a given V, all according to Eq. (4). We refer to [27] for details of the constructions.

Let {x} be a Bessel sequence in .5 such that sp{x,} 2 2 . All PFFS-dual
sequences {x,} can be constructed as follows. Let {x,,T} C 7 be such that x;r =
(V*)e,, where (V*)' denotes the pseudoinverse of (V*), and
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Veel?, (Vie=Y cx]. 5)

n

and let {y, } be an arbitrary Bessel sequence in .7°. We have then the following:

Corollary 1 ([27]). Let {x} be a Bessel sequence in 7€ such that sp{x*,} 2 Z .
Assume further that R(V) is closed. Let {x}} be defined in Eq. (5) and {y,} be
a Bessel sequences in €. All dual PFFS sequences {x,} for Z w.rt. {x;} are
given by
Xp = P*x] 4 yu — Z(x;,x;)ﬁ*ym, Vn € Z, (6)
m

where &7* is the adjoint operator of the projection 2.

Applying this construction to a shift-invariant subspace 2" such that sp{t,¢} 2
2 and assuming {t,¢} € L?(R) is a Bessel sequence, we have seen in [27] that
PFFS allows for the characterization of the entire class of duals of translates as
follows:

qg,, = t,,q; Vn € Z,

where

$=Po +y—PY (¢'. tud)tay inL2(R), (7)

and ¢t = V*Te, is the dual corresponding to the pseudoinverse of V in 5p{x, }, and
y € L?(R) is such that {7, y} is a Bessel sequence. Here, we have chosen P as an
orthogonal projection.

PFFS Applied to Biorthogonal Wavelets

In a special case, let us assume that {z,¢} is an exact frame of sp{r,¢} = 2, and
translate the result of Corollary I into this special setting. With the given assumption
that {7,¢"} is the unique biorthogonal dual frame to {7,¢}, (1,07, T,0) = Sum.
Therefore, we may arrive at the following expected result:

o =P, +1,y— P,y =1,0" + (I — P)1,). (8)

Aslong as y ¢ sp{t,¢} = 2, Eq. (8) would yield nonunique biorthogonal dual
sequences {7, }.

We shall show that biorthogonal wavelet construction via PFFS opens up
opportunities for design optimization without disrupting any important features
of the original pair such as symmetry, compact support, improved regularity, or
vanishing moments. Here, we will show that maximum attenuation and desired
filter response can be incorporated with the design of FIR bi-filter banks while
maintaining the vanishing moments, symmetry, etc.
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2 Construction of Biorthogonal Wavelets and Filters
via PFFS

Assume that ¢ € L?(R) and that {r,¢} forms a biorthogonal basis of V, =
5pita¢}. Assume also that {¢, V;} generates a (biorthogonal) MRA of L*(R). As
we analyzed, all biorthogonal PFFS dual scaling functions {qb,, = t,,q&} are given by

¢ =¢" + Ag. 9)

where ¢° € 1 is the standard dual function of ¢ and A¢ € VOJ-. In general, it
is evident that if ¢* is any biorthogonal PFFS-dual function of ¢, then so is ¢ =
¢+ A¢ forany A¢ € VOJ-. With a slight abuse of notation, we shall be considering
equation (9) with ¢° being any biorthogonal dual.

Assume that we are only interested in sufficiently regular and refinable ¢ such
that ¢3 = Z ﬁ,,¢~>1,,. Considerable studies on the conditions for sequences such as h

can be found in [10]. Then the following relationship holds:

hn = (. d1a) = (¢° + Ad. 1) = hl) + Dby,

where we have assumed A¢p = Agy + A¢y +--- with A¢; e W; =V \ 'V,
and

Ahy = (Ao, d1a).

What Does It Mean to Have {Ah,} ~ A¢py € Wy?

In the context of biorthogonal wavelets and multiresolution analysis, the add-on
filter sequence component {A#,} is solely relevant to information in the subspace
Wo. In the case of B-spline wavelets, since there is no compactly supported
biorthogonal wavelets and the corresponding linear phase FIR filters in the conven-
tional biorthogonal sense within Vj [9], we have thus observed that the regularity,
vanishing moments, and compact support properties are the consequences of “add-
on” components from information in the complement Wy = V; \ V4.

From the sub-band processing point of view, since these nice properties are
demanded in practical applications [4, 5,11, 18,22,28-31], we now understand the
need to bring some information in the high-pass band (W,) back to the low-pass
band to offset some of the drawbacks in the conventional local structure.

All of the above have to be done in such a way that the perfect reconstruction
principle is not violated. Recall that a set of four filter sequences {&,}, {g,}, {h.},
and {g,} are said to form a biorthogonal sub-band system (or perfect reconstruction
filter bank (PRFB)) if
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> (hzn—kﬁzn—l + g2n—k§2n—1) = 8, (10)

n

where {h~n} is often termed the dual filter sequence to {/,} and {g,} the dual filter

to {gn}-
The following are the basic parametric construction of FIR biorthogonal filters
from the “add-on” component point of view.

Theorem 2. Let {h,} and {g,} be a set of filter bank filters, and let {h°} and {g°}
be the corresponding biorthogonal dual filters satisfying (10). Let AH(y) be the
Fourier series of { \h,}, and H(y) be the Fourier series of {h,}. Then {h, = h +
Ah,} is a biorthogonal PFFS-dual filter if and only if

AHG) = H +5)-40), (an

where §(y) is trigonometric polynomial satisfying

—_— 1 . . 1
ot (v +5) (100 + a0+ ) =o (12)
Moreover, the other two corresponding biorthogonal filters g and g are given by
—2niy 0 1 ~ 1
G(y) =e HYy +5)+ Hy(y + ) |- (13)
~ —2ni 1
G(y)=e""H |y + 5 ) (14)

Proof. Following a similar proof in [10], the Fourier transform of Eq. (10) shows

H(y)H(y)+ H (y + %) H ()/ + %) =2. (15)

Since H(y) = H(y) + AH(y), Eq. (15) implies that
H()/)AH()/)+H()/+%) AH ()/-i-%) =0. (16)

This in turn implies that

AH(y)=H (V + %) “4(y)
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for some 1-periodic trig polynomial ¢ such that

H(y)H (J/ + %) (@()/) +4 (J/ + %)) =0, a.e.

This finishes the proof of the first half of the assertion. The proof of the filter
relationships (13) and (14) for the corresponding high-pass filters G and G is
similar. O

We comment that, with the filter relationships as in Eqs. (13) and (14), the
conditions we have just derived are essentially to require that

> huhn—k = 8o. VK (17)

Bring in the fact that hy = h% + Ah, and that {h%} is biorthogonal to {/,}, we
essentially have

Zh,,Ah,,_zk =0, Vk, (18)

with {Ah,} ~ Ag € Wy C Vit

We demonstrate how to construct new linear phase and symmetric FIR biorthog-
onal filters that maintain a given number of vanishing moments etc. in their wavelets
while introducing the flexibility of other optimization opportunities.

2.1 Basic Relationships for Symmetric Cases

In the following presentations, we recall that the number of vanishing moments of a
biorthogonal wavelets equals to the number of zeros of the corresponding low-pass
filters at y = %

Theorem 3. Let H be a symmetric biorthogonal FIR filter such that H(y) # 0
for all y except for y = % and perhaps a set of measure zero. Assume that a dual
filter H® is symmetric with 21 zeros at y = % Let 4(y) be the trig polynomial in

1
Theorem 2 satisfying ¢(0) = ¢ (5) = 0. Then a set of symmetric § function with
2] zeros aty = % is given by

G(y) = (1 —cos4ny) gi(y)cos2nNy, N = odd, (19)

where §i(y) = p(cosdmy) is a trig polynomial s.t. @1(%) # 0. In particular, let
g1 = 2, the corresponding sequence {q,} of G(y) is given by

Gn = TN-2by + T_N_2by,
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m 21 _ 7/ —
b, = -1 (m)/( 2)',n=2m 20)
0, n=2m+1.

where

For such choices of 4, new biorthogonal PFFS-duals H remain symmetric, and H
has at least the same number of zeros at % as that of H®. Here H = H° + AH
and, with N =1,

1 1
AH(y)=H(y + E)é =2H(y + E)(l —cos4ny) cos2my. 21

Notice that if H = y_ 11 the choice of ¢ would be free for any trigonometric
polynomial. However, this is not of interest here because we require that H
corresponds to FIR filters.

Proof. By the assumption of the theorem, Eq. (12) holds if and only if

. . 1
q(y) =—q (V + 5) ; (22)

implying that |§| is %-periodic. Viewing the symmetry requirement and the number
of zeros needed at %, we see that § can be a trig polynomial of cos(4ry) modulated
by a factor of cos 2z Ny for some odd integer N. Hence,

G(y) = (1 —cos 4 y) g (cos 4my) cos 2Ny,
where g, should have no zeros at % A simple trig identity simplification will show
that such a ¢ will indeed have at least 2/ zeros at % Let us find the filter sequence
associated with §. For ¢, = 2,
G(y) = 2'sin? 277y - Gy - cos2n Ny

= (127" (e — eZ”iy)Zl 2cos27Ny

21
= (_1)’2—1 (2 cos ZJTN)/) eZﬂi(Zl)y Z(_l)k (2l ) e_zﬂi(zk))/

k
k=0
4l+1
= 2cos rrNyez’”(z”y Z be iy
n=0

where

R (2’)/(—2)1, n=om,
b, = m

0, n=2m-+1.
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Therefore,

41+1
q'*(y) — (e—ZJTiNy + eZﬂiNgu) eZﬂi(Zl)y Z bne—Zﬂiny
n=0
41+1
= > (tv-2by + Toy-aby) e .

n=0

Here ;b = b,—;. We have therefore proved the assertion.

Letting ¢, Be a Scalar Parameter A

In Theorem 3 the choice was made to let g; = 2. This is valid since the only
condition placed on the trig polynomial §; is that this function must have no zeros
at % In the implementations discussed below and in Proposition 1, we have instead
set §; = 2A. Here the scalar parameter A is very useful for optimization purposes
(without increasing the filter length than that of the choice of §; = 2). While g,
could be any polynomial in cos4ry (see discussions at the end of this article), the
choice of the scalar parameterization A minimizes the length of PFFS bi-filters.

From this point and on, the A parameter would always be the consequence of
such choices, and eventually become the optimization parameter in various optimal
design procedures.

Combining the result of Theorem 3 with Eq. (11), we have obtained the following
parametric PFFS-dual bi-filters equation.

Proposition 1. Let {h,} be a pair of symmetric biorthogonal filters with 21 zeros at
y = % Let {h,} be any symmetric bi-dual filter with 2l zeros at y = % then, with
{b,} being given by Eq. (20),

hy = hy + A (Z(—l)% (G R rlz,bn+k)) (23)

k

is a biorthogonal PFFS-dual with at least 21 zeros at % Here we have set N = 1.

The proof of this result amounts to a deconvolution, plus the fact Eq. (18) is
always satisfied whenever A# is equal to the second term of Eq. (23).
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2.2 Basic Relationships for Shift-Symmetric cases

As seen in the constructions in [10], among symmetric biorthogonal wavelets, there
are also ones that are (without loss of generality) symmetric after shifting by a time
index t = % These, in relevance to linear phase filters, translate into the fact that

H(-y) =e™7"H(y). (24)

We shall term those filters shift-symmetric. For this class of PFFS-duals, the § as in
Eq. (11) will be slightly different. We have the following construction.

Theorem 4. Let H and H be a pair of biorthogonal filters, both satisfying (24).
Assume that H(y) # 0 for all y except for y = % and perhaps a set of measure
zero. Assume further that the dual filter H® has 21 +1 zeros at y = % (I=0,1,---).
Then a class of A H(y) satisfying the shifted-symmetry property (24) with 21 + 1
zeros at % is given by

1 .
AH(y) = (cosy)? T (sinmy)? ' cos 2y 41 (y) H(y + E)e—zﬂ'”, (25)

where §1(y) = §i(cosdny)|,_1 # 0, and N is an odd integer. Without particular

2
specification, §; = 1 and N = | whenever AH appears for shift-symmetric cases.

The proof of Theorem 4 is similar to that of Theorem 3.
We can derive the expression of the filter sequence { A/, } with a straightforward
calculation.

Proposition 2. Let AH and N be given in Theorem 4, and let hy bea bi-dual filter
whose corresponding H (y) has 2l + 1 zeros aty = % Then

h;z = h~n + A (2:(_1)kE (fl—zlcﬂ+k + flztcn“'k)) (26)
k

is a PFFS biorthogonal dual whose Fourier series H' has at least 21 + 1 zeros at
%, and {c,} is given by

=n" (ZZH)/(—z)’,n =2m+1
Ccp = m

0, n=2m.

The proof of this proposition is very similar to that of Theorem 3 and Proposi-
tion 1.
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3 Design Opportunities Provided by the Parametric
Construction

In this section we provide examples of construction of bi-filters optimized to three
different criteria:

1. Targeting a desired filter response in order to keep the filter length short, while
keeping a given number of vanishing moments

2. Maximizing stopband attenuation, while keeping a given number of vanishing
moments

3. Adding integer vanishing moments to a given bi-filter, which was the traditional
focus of known constructions

In each case we demonstrate that the problem is reduced to the optimization over
the free scalar parameter A.

3.1 Targeting a Desired Filter

In filter design it is common to attempt to emulate the frequency response
characteristics of some target filter H'. Here we characterize this problem as finding
min ; {| |H — H'||,} subject to the condition that H is dual to a B-spline filter H .

In the PFFS context, one such problem is reduced to an unconstrained op-
timization over a free parameter while maintaining perfect reconstruction and a
given number of vanishing moments, without greatly lengthening the filter length.
Namely, we consider problems such as

min{||H' — (H® + AAH)||2} 27)
AER

Proposition 3. Let H be the filter response corresponding to a given B-spline
wavelet. Let H® be a bi-filter having p zeros aty = % Let H' be the targeting filter
response with desirable characteristics, and let AH be given by Eq. (21) or (25)
with also p zeros aty = % If

1 1
/ Re (H'AH) dy+/ Re (HYAH) dy
At 0 0

28
[AH|P =

then
|H — (H* + M AH)||, = anilril{HHt —(H° + A AH)|5}
€

and H = H® + A" AH will have at least p zeros at y = %



Bi-wavelets with PFFS 147

Proof. With the given assumptions we can expand the square of the norm from
Eq. (27), 5
17 —H'3=|H" — (H° + 2AH)]]3.

So our objective function is
1
r(d) = / |H' — (H° + AAH)|*dy.
0

Expanding the integrand, the objective function becomes quadratic in A, and the
optimal solution to A" arrives at Eq. (28).

3.2 Similar Performance with Shorter Filters

We can now apply the result of Proposition 3 to design shorter bi-dual filters of
spline wavelets that have frequency characteristics similar to those of longer length,
while still keeping a given number of vanishing moments.

We begin by writing out one of the B-spline bi-filters from [10] as a sum
of appropriately weighted “out of subspace” components (which is shown in
Proposition 5). Let H° be a spline dual filter as constructed in [10] with p zeros
aty = % It is true that a bi-filter with an additional four zeros at y = % will be
given by

Hy = H° + ATAH, + A5 AH,, (29)

where A H| and A H, are given by Eq. (21) or (25) with p and p+2 zerosaty = %,
respectively. A} and A} are the corresponding parameter values from Proposition 5

so that H, will then correspond to one of the filters in [10] with p + 4 zeros at
1

Yy = 5.

ASplying Proposition 3 we can now construct a significantly shorter bi-filter
targeting H, while still keeping p zeros at y = % This is done by adding A' A H,
to H® where A is from Eq. (28). The following corollary states this result in detail
and can be easily verified by substituting Eq. (29) for H' into Proposition (3) with

H = H°+ AAH,.

Corollary 2. Let H® be a spline bi-filter with p zeros at y = % and let AH,, AH,,
A, A3, and the corresponding H, be as in Eq. (29). For H = H® + AAH,, then

the choice of
Re (AHAH,)d
A= a4yl Re(AHAH) dy
[1AH\|" gy

will minimize || H, — H |2 while H will maintain at least p vanishing moments and
the time sequence h will have four fewer taps than that of h;.
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Fig. 1 10-tap PFFS-dual filters (solid) versus the 14-tap filter (dashed) derived in [10]. Shown are
the (a) wavelets, (b) Sscaling functions, (¢) frequency response, and (d) filter coefficients, all dual
to those of the first-order B-spline

Figures 1 and 2 show two examples of this construction. Notice that the
frequency responses as well as the wavelets and scaling functions are nearly
identical, whereas the filter sequences are shorter by four-taps.

3.3 Maximum Stopband Attenuation

In certain applications it is desirable that the filter response has a sharp decay in a
given stopband. In this section we show how the parametric PFFS construction can
produce dual filters with optimal attenuation for any given stopband frequency y;.
We also show that this implementation reproduces the filters of the construction in
[10] as ys — %
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Fig. 2 13-tap PFFS-dual filters (solid) versus the 17-tap filter (dashed) derived in [10]. Shown are
the (a) wavelets, (b) scaling functions, (c) frequency response, and (d) filter coefficients dual to the
second-order B-spline

3.3.1 The Parametric Formula

One stopband optimization problem (also seen in [28]) can be formulated as follows.
Let H° be a given bi-dual filter with p zeros at % Consider a set of all bi-dual filters

H with at least p zeros at y = % We may then set an objective function J be
the energy of the frequency response H between a chosen stopband y, and % and

minimize J over a given set of such dual filters H. Among all such dual H, we shall
consider those of the same length and parameterized by a nonzero scaler A, namely,
consider only those H that are given by H = H® + AAH where AH, as given by
Eq. (21) or (25), has p zeros at % We then see that the minimization of J over these

H can be carried out by simply manipulating the A parameter.

1
7.
mjnJEmjn/ ‘H(y)‘zdy
H H Jy,

niinfi |H (y) + A AH(y)| dy, (30)
Vs

where we minimize only over real A to keep the sequence {ﬁn} real valued.
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Fig. 3 PFFS duals with maximum stopband attenuation to a given stopband frequency (solid)
are compared with those in [10] (dashed). Shown are the (a) wavelets, (b) scaling functions,
(¢) frequency response, and (d) filter coefficients associated with the length 17 filter, dual to the
second-order B-spline

Again J is quadratic in A, one can easily derive that the minimum is achieved at

Jj Re (H°()BH®)) dy

J7 |AH(y)Pdy

A4 = (31)

This formula thus provides a means to maximize the stopband attenuation of bi-dual
filters H to any y; € (0, %]

Examples with maximum stopband attenuation for given stopbands are shown in
Figs.3 and 4. We see that the stopband attenuation of the new bi-filter frequency
responses is indeed greater than those examples in [10] of the same length.
Meanwhile, the smoothness of the scaling and wavelet functions has also been
seemingly improved.
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Fig. 4 PFFS duals with maximum stopband attenuation to a given stopband frequency (solid) are
compared to those in [10] (dashed) with the same length filter. Shown are the (a) wavelets, (b)
scaling functions, (c) frequency response, and (d) filter coefficients associated with the length 12
filter, dual to the third-order B-spline

3.3.2 Limiting Behavior of A7 (y;,)

Here is an observation worth of mentioning. By letting y; — % the value of A4
from Eq. (31) converges to A* as in Proposition 5 which adds precisely two zeros at
y = 3 to the original bi-dual H°.

Proposition 4. Let H® be a biorthogonal dual of a spline function with p vanishing
moments as constructed in [10], and let AH be given by Eq. (21) or (25). Then as
1

ys_>§

Al - 2*
where A* is such that H = H°® + A*AH has two additional integer vanishing
moments as seen in Proposition 5.

Proof. For the symmetric case, we start by simply expanding the general form of the
filters as given in Proposition I into Eq. (31). Since the functions in the integrands
are bounded and integrable, as y; — % the integrals must go to zero, and we are
justified in using L"Hopital’s rule to evaluate the limit. The fundamental theorem of
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calculus then allows us to evaluate the limit:

L (k —ltn )(cos 7y5)¥ (sin 7y5)?" (sin 7y5)2 cos 27y
n

lim A = lim — . .
V=3 ys—3 23+ (sin yy ) (cos wys ) ¥ (cos 2w ys)?

Z,;;B(k—1+n)

n

230+1

Plugging this value into Eq. (1) and setting y; = % will confirm the result.
The proof of the shift-symmetric case is completely similar.

This observation indicates that the bi-filters designed in [10] could not have the
stopband attenuation considered since the stopband frequency y; is equivalently set
— 1
aty; = 5 in [10].

3.4 Ability to Increase Wavelet Vanishing Moments

The number of vanishing moments of a wavelet is directly related to the regularity
of the bi-scaling and bi-wavelet functions, which is also known to be equal to the
number of zeros of the filter H and H aty = % We shall demonstrate how zeros at

y = % of a PFFS-dual filter can be easily increased by the parametric approach in
the general setting, then show how results for the setting of [10] can be reproduced
using the PFFS approach.

Assume that H and H° are a pair of dual biorthogonal filters. Then according to
our earlier discussions, any new PFFS-dual biorthogonal filter can be written as

~ I,

H(y)=H()+ H(y +5)4()
where ¢ is a trig polynomial satisfying ¢(y) + ¢(y + %) = 0. One can verify that
to keep at least the same number of zeros at % (same number of vanishing moment
in ¥), ¢ can be of the following form:

o 1. .
4(y) = H'(y)H(y + E)ql(cos 4ry) cos2n Ny

for some odd integer N. Hence,

H(y) = H(y) (1 + H(y + %)H()/ + %)ql(cos 4mry) cosZnNy)

= H(y)F(y)
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1 1
where F(y) = 1 + H(y + E)H(y + E)c}l(cos 4my)cos2m Ny. Evidently, the

new PFFS-dual biorthogonal filter has at least the same number of zeros at y = 1

3
Observe however,
1 —_
F(3) = 1= HOH©O) §i().

which can easily yield another zero at y = % for §1(1) = 1/H°(0)H(0) since
H(0)H(0) # 0.
In the context of the spline bi-wavelet system constructed in [10] the following

proposition can easily be verified and shows that the PFFS approach reproduces the
results of [10].

Proposition 5. Suppose H is the filter corresponding to a spline function with 21
zeros at % for the symmetric case (or 21 + 1 zeros at % for the shift-symmetric case)

and that the biorthogonal dual filter H® has 21 zeros at % for the symmetric case (or
21 + 1 zeros at %for the shift-symmetric case). If AH is given by Eq. (21) (or (25)
for the shift-symmetric case), and
—1
k—1+4n
(")

230+1

=~

I
<)

A =1
withk =1 +1, or for the shift-symmetric case,

_l(k—1+n)
n
0

231+3

bl

3
I

AT =

with k = | + [ + 1, the PFFS dual given by H = H® + A*AH will have an
additional two zeros at %

3.5 Other Optimization Potentials

We demonstrated in the previous sections a few possibilities for optimizing the bi-
filter construction over a scalar A. This is quite effective and the major rationale for
working with a scalar is to keep the bi-filter length as small as possible. We also
mentioned only three criteria that are all signal independent. So, we mention here
two other possible optimization problems that could be carried out with our PFFS
approach.
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3.5.1 Nonscalar §; Polynomials

We can choose the trig polynomial §; (cos 47 y) as in Theorem 3 to have more than
one parameter to work with so as to enhance the optimization potentials. Take the
symmetric case, for instance, let

g1 = A+ E( —cosdny). (32)

A and £ could be used to tune the filter to meet two different criteria at the same
time. For example, one would be able to increase the number of zeros at y = % by
a choice of A since the second term is zero at %, and & could be adjusted to enhance
uniform Lipschitz-a regularity. The only sacrifice is that such “out of subspace”
components add more number of nonzero coefficients to the filters.

Choices such as Eq. (32) with two or more parameters open up a vast degree
of flexibility in filter design and are believed to have further applications to signal-
dependent methods not discussed here.

3.5.2 Ability to Maximize the Coding Gain

Maximum coding gain is often a design goal to maximize the energy compaction
after the sub-band decomposition and to enhance the coding/compression efficiency.
In [21] the PFFS construction methodology is used to construct filters with
maximum coding gain for common signal models. This is a signal-dependent design
approach and it is thus not discussed further here.

Matlab programs for the PFFS optimal filter designs that can be installed and
added into the Wavelet Toolbox are available upon request to the authors.

Acknowledgements Shidong Li is partially supported by NSF grants DMS-0406979 and DMS-
0709384.
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On the Convergence of Iterative Filtering
Empirical Mode Decomposition

Yang Wang and Zhengfang Zhou

Abstract Empirical mode decomposition (EMD), an adaptive technique for data
and signal decomposition, is a valuable tool for many applications in data and signal
processing. One approach to EMD is the iterative filtering EMD, which iterates
certain banded Toeplitz operators in [*°(Z). The convergence of iterative filtering is
a challenging mathematical problem. In this chapter we study this problem, namely
for a banded Toeplitz operator 7 and x € /°°(Z) we study the convergence of 7" (x).
We also study some related spectral properties of these operators. Even though these
operators don’t have any eigenvalue in Hilbert space /%(Z), all eigenvalues and their
associated eigenvectors are identified in /°°(Z) by using the Fourier transform on
tempered distributions. The convergence of 7" (x) relies on a careful localization of
the generating function for 7" around their maximal points and detailed estimates on
the contribution from the tails of x.

Keywords Finite impulse response filter * Toeplitz operator * Empirical mode
decomposition e Intrinsic mode functions e Iterative filtering

1 Introduction

Leta = (ax) € ['(Z). We consider the operator
T, : [°°(Z)—>1°°(Z) associated with a, given by

Talx) = (Z 4 xkﬂ)kez
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where x = (x;) € [°°(Z). In the signal processing literature T, is called a filter,
and it is a finite impulse response (FIR) filter if ay # 0 for only finitely many
k € Z. Note that T, is in fact a Toeplitz operator and an FIR filter simply means
the Toeplitz operator T, is banded. In this chapter we shall use the terms filter
and Toeplitz operator interchangeably, and only FIR filters and banded Toeplitz
operators will be considered. Toeplitz operators are classical operators that have
been studied extensively, see [2] and the references therein. There is an even larger
literature on filters, which we shall not divulge into. In this chapter our main focus
is on the iteration of certain type of banded Toeplitz operators. More precisely, we
consider the following question: Let T, be banded and x € /°°(Z). When will T} (x)
converge (in the sense that every entry converges) as n—00? This question arises
from signal and data processing using empirical mode decomposition (EMD), which
is an important tool for analyzing digital signals and data sets [8, 12]. Our study is
motivated primarily by the desire to provide a mathematical framework for EMD.

Signal and data analysis is an important and necessary part in both research and
practical applications. Understanding large data set is particularly important and
challenging given the explosion of data and numerous ways they are being collected
today. Often the challenge is to find hidden information and structures in data and
signals. To do so one might encounter several difficulties with the data: The data
represent a nonlinear process and is nonstationary; the essential information in the
data is often mingled together with noise or other irrelevant information, and others.
Historically, Fourier spectral analysis has provided a general method for analyzing
signals and data. The term “spectrum” is synonymous with the Fourier transform
of the data. Another popular technique is wavelet transform. These techniques are
often effective but are known to have their limitations. To begin with, none of
these techniques is data adaptive. This can be a disadvantage in some applications.
There are other limitations. For example, Fourier transform may not work well for
nonstationary data or data from nonlinear systems. It also does not offer spatial
and temporal localization to be useful for some applications in signal processing.
Wavelet transform captures discontinuities very successfully. But it too has many
limitations; see [8] for a more detailed discussion. These limitations have led Huang
et al. [8] to propose the EMD as a highly adaptive technique for analyzing data.
EMD has turned out to be a powerful complementary tool to Fourier and wavelet
transforms. The goal of EMD is to decompose a signal into a finite number of
intrinsic mode functions (IMF), from which hidden information and structures can
often be captured by analyzing their Hilbert transformations. We shall not discuss
the details of IMF and EMD in this chapter. They can be found in [3,5,8,9,12,13,15]
and the references therein.

The original EMD is obtained through an algorithm called the sifting algorithm.
The local maxima and minima of a function (signal) are respectively connected via
cubic splines to form the so-called upper and lower envelopes. The average of the
two envelopes is then subtracted from the original data. This process is iterated
to obtain the first IMF in the EMD. The other IMFs are obtained by the same
process on the residual signal. The sifting algorithm is highly adaptive. A small
perturbation, however, can alter the envelopes dramatically, raising some questions
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about its stability. Another drawback is that there is no natural way to generalize
EMD to higher dimensions, which severely limits the scope of its applications. As
powerful as EMD is in many applications, a mathematical foundation is virtually
nonexistent. Many fundamental mathematical issues such as the convergence of the
sifting algorithm have never been established.

To address these concerns, a new approach, the iterative filtering EMD, is
proposed in [12]. Instead of the average of the upper and lower envelopes, the
iterative filtering EMD replaces them by certain FIR filters, usually low-pass
filters that yield a “moving average” similar to the mean of the envelopes in the
original sifting algorithm. It is shown in [12] that iterative filtering approach often
leads to comparable EMD as the classical EMD, and in general it serves as a
useful alternative or complement. Furthermore iterative filtering EMD has some
advantages over the classic EMD, making it well suited for certain applications
[10,14,16].

The iterative filtering EMD proposed in [12] has the following set up: let a =
(ar)rez be finitely supported, i.e., only finitely many a; # 0, which we choose so
that T,(x) represents a “moving average” of x. Now let

Z(x) =x—Ta(x). ey

The first IMF in the EMD is given by I} = lim,—,« -Z"(x), and subsequent IMF’s
are obtained recursively via Iy = lim,— .Z,f (x—1I, —---—Ix—1). In practical
applications the process stops when some stopping criterion is met. For a periodic
x the convergence of .£"(x) is completely characterized in [12]. However, the
convergence for x € /°°(7Z) in general is a much more difficult problem. The main
purpose of this chapter is to study this question.

The rest of this chapter is organized as follows: In Sect.2 we introduced the
notations and state the main theorem. In Sect. 3 we prove a result on sum of Dirac
measures, which is closely related to the Poisson summation formula as well as a
classical result of Cordoba [4]. We use it to characterize all eigenvectors of banded
Toeplitz operators on [7(Z) for 1 < p < co. The proof of the main theorem, which
is quite tedious, is given in Sect. 4.

2 Main Result and Notations

For any x = (xg)kez € [°°(Z) we shall use xy to denote the cutoff of x from
k = —N to N,ie., Xy = (yx) such that y = x; for—=N < x < Nand y; =0
otherwise. We shall often also view X = (x)rez € [*°(Z) as a function x : Z—>C
with x(k) = x;. We say x = (xx) € [*°(Z) is symmetric if x; = x_j forall k € Z,
and it is finitely supported if supp(x) := {k € Z : x; # 0} is a finite set.
Throughout this chapter the Fourier transform of a function f(x) is defined as
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FE) = T€) = /R F)e i d.

The inverse Fourier transform of g(§) is

F @00 = [ s@e e e
R

For each x € [°°(Z) there is an associated complex measure (tyx := Y oy XkOk,
where 6, is the Dirac measure supported at b for any b € R, i.e., 8,(x) = 6(x — b).
It is well known that px is a tempered distribution. Thus fiy is also well defined as
a tempered distribution. We shall often use X to denote iy for simplicity, especially
when x is finitely supported; in such case X(§) is a trigonometric polynomial.

Going back to Toeplitz operators, it is easy to check that for any a € ['(Z) we
have

Tu(X)(€) = A(—§)7ix() = A(-H)R(E).

For any finitely supported a the spectrum of T, is precisely {a(§) : £ € [0, 1)}. Let
Zay = {0 €10,1) :a(6) = A}. This set will occur very frequently in this chapter.

Before stating our main theorem we introduce a few more notations. For any
0 € Rletvg := (e?" k%) cz. If O € Z,; then Ta(vg) = Avg. For any x = (x;) and
y = (yx) in [°°(Z) define

[x, y]_nll>nc>lo2n+1 Z Xk Pk

if it exists. One can view this as a form of “inner product.”

One of the main objectives of this chapter is to study the convergence of the new
sifting algorithm from which we obtain the IMFs by I} = lim,oo(/ — 73,)" (X —
I, —---—1I;—1). Since I — T, is simply the Toeplitz operator Ts5_, where § = (ko)
with 8oo = 1 and 9 = O for k # 0. So we shall focus on iterations of T, for
general finitely supported a. Our main theorem of this chapter is:

Theorem 2.1. Let a = (ay) be finitely supported and symmetric such that —1 <
a(§) < landa(§) # 1. Forany x € [®°(Z), if [x, vg] exists for all 0 € Z, then

nll)ngo T, (x) = Z [x, vg]vg pointwise. 2)
9€Za_1

Here pointwise convergence means the kth entry 7, (x)(k) of 7,'(x) converges for
each k € Z. Informally speaking, 7, (x) converges pointwise to the “projection” of
x onto the 1-eigenspace of T,. Note that the eigenvalues of T, are precisely {a(§) :
£ € [0,1)} (see Sect. 3), so the condition —1 < a(§) < 1 is natural. It is not clear
whether the condition [x, vg] exists for each 6 € Z, is a necessary condition. The
following example shows that lim, o 7' (x) does not exist for a x € [*°(Z).
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Example 2.1. Let a = (ay) with ap = %, a, = a— = %, and a; = O for all
other k. a(£) = sin’ % satisfies the hypothesis of Theorem 2.1. Let x = (x;) where
xr = Oforall k < 0andx; = (—1)""! for 2" < K < 2¢*D' Then it is easy to
show that 7} (x)(0) does not converge. In fact every point in [—%, %] is a limit point
of the sequence.

3 Eigenvectors of Banded Toeplitz Operators

To study the iterations of banded Toeplitz operators it is natural to ask about their
eigenvalues and eigenvectors in /°°(Z). We state some results here. While these
results may not be new (although we have not found them in the literature), our
approach appears to be.

For any x = (x) € [°°(Z) the associated measure [y is a tempered distribution
[7, 11]. Hence its Fourier transform, given by

(T 9) == (s ) = ) xxp(k) 3)

keZ
for any ¢ in the Schwartz class, is also a tempered distribution.
Lemma 3.1. Let x € [%°(Z) such that supp(ftx) = A is a uniformly discrete set in
R. Then
ﬁ; = Z 0,35/3 4)
pea

for some bounded sequence (cg)ge in C.
Proof. Since A is uniformly discrete we may find Y3 € C°(R) for each B € A

such that ZﬂeA Vg = 1 and supp(¥g) N A = {B}. Now forany B € A, Y [ix is a
tempered distribution supported on a single-point {8}. It follows that

N
— ()
Vpix =) ;8.
j=0

where 8/(3j ) denotes the Jjth derivative of 84 (see, e.g., Folland [6]). We only need to
show that a; = 0 for j > O for all B € A. If not there exists some o* € A such

that Yo+ fix = Y0_g a8 withay # 0, N > 0. o

Without loss of generality we assume that «* = 0. Now take a test function ¢ €

Cy°(R) such that supp(¢p) = [—s, €], supp(¢) N supp(y¥g) = @ for all B # 0, and
¢(0) =0for j < N but p™)(0) # 0. Set ¢ (x) = ¢(Ax). Then

N
(xeda) = (D2 v o) = Vol 8a) = (Y a,81.92) = an Vo™ (0),
j=0

Bes
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which goes to co as A—o00. On the other hand,

41 = liw il = |1 208(3) |2 T 219G
keZ keZ

)

which goes to C [, |p(€)| dE as A—oo. This is a contradiction. Thus fiy =
2 pen CpOp-

It remains to show cg are bounded. Take a test function ¢ € C°°(R) such that
¢(0) = 1 and supp(¢p) = [—¢, €], where ¢ < inf{|o; — aa| : 001,00 € A, ) # ).
Applying (fix, ¢) = (ix, @) to @(x) = ¢(x — B) foreach B € A we obtain

gl = i D = | D e (k) | < Ixlloo 3 | B(K) |

keZ keZ

This proves the lemma.
The following theorem is closely related to a well-known result of Cordoba [4],
which is a classic result in the study of quasicrystals.

Theorem 3.2. Let A be a uniformly discrete set in R and u = ZﬂeA xp8g where
(xg) is bounded. Assume that supp(it) C Z. Then

(A) There exist «y,...,o, € [0,1) such that A = U'}Ll(aj + 7).
(B) There exist cy, ..., cy suchthat xg = c; forall B € aj + Z. Thus,

m
n= ch Z5a,+k-
j=1  kez
(O 7l = Len (X e k)5
Proof. By Lemma 3.1 we have i = Y , ., piSk. For ¢ € C§°(R) denote

$1.0(x) 1= P(Ax)e™™*. Then ¢ ,(§) = A~ 'p(A~" (5 —1)).
It follows from (i, ¢1.) = (&, ¢x.) that

Y (k) =Y xafai(@).

keZ a€A
This yields
; 1 ~ro—1
2mwikt __
> P e = = 3 () 5)
k€Z a€A

Substituting 1/A for A we can rewrite the equation as

AT k(TS =) " xed (Me — 1)), 6)

k€Z a€R
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where x, = 0 for « & A. Observe that because all x, are bounded and A is
uniformly discrete we have

Jim > xe (e —1) = x4 (0).

a€R

However, the right-hand side of Eq. (6) has

A—l Z pk(p(k—lk)ebﬂ'kl‘l — A—l Zpkd)(k_lk)eZ”iktz

kEZ kEZ

for any #,, t, with t; — t, € Z. By choosing ¢ such that a(O) = [p ¢ # 0it follows
that x;, = x;, whenever t; —#, € Z. Thus A must be the union of equivalent classes
modulo Z, i.e., cosets of Z. Being uniformly discrete A can only be a finitely union
of cosets of Z. Hence there exist «y, ..., a, € [0, 1) such that A = U’;’=1 (aj + 7).
Furthermore, xg = c; for all B € «; + Z. Finally (C) follows directly from taking
the Fourier transform of u and the Poisson summation formula

ZSk—i—oc — Z eZm’akSk' 0
keZ

ke

Remark 1. The condition supp(it) C Z in the theorem can be replaced with
supp(t) C I' for some lattice I". In this setting the theorem still holds if the set
Z in (A) and (B) is replaced by the dual lattice I"* of I, and the Z in (C) is replaced
by I'.

Remark 2. A theorem of Cordoba [4] draws the same conclusions under the
hypotheses that supp(it) is a uniformly discrete set but requires that the set
{xg : B € A}is finite.

Theorem 3.3. Let a = (ay) be finitely supported. Suppose Ty # ¢ I where I is the
identity map. Then M is an eigenvalue of T, if and only if A € {a(§) : £ € [0,1)}.
Furthermore x € [°°(Z) is an eigenvector of T, for the eigenvalue A if and only if

X = Z CopVp (7)

for some constants ce, where Z, ) = {t € [0,1) :a(t) = A}.

Proof. For any A = a(r) it is easy to check that v, is an eigenvector of T,. Let A
be an eigenvalue of T, with T,(x) = Ax for some nonzero x € /°°(Z). Observe that
F (i1,00) = AF (s1x). Thus

ﬁy_l(/ix) = /\y_l(/ix)s and (ﬁ_ A)'QN_I(IJLX) = 0.
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It follows that supp(.Z ' (1ux)) € Zax + Z. Thus A € {a(§) : § € [0,1)}, and
because T, # c¢ [ the set Z,, is finite. Hence Z,; + Z is uniformly discrete.
Lemma 3.1 implies that

y_l(/ix) = Z b8y

Q€Zy 1+

for some bounded sequence (b, ). Theorem 3.2 now applies to .% ~! (j1x) to show that

T (uy) = Z co 250+k-

0€”Za k€L

The structure of 1y now follows from part (C) of Theorem 3.2, which yields

x= 3 cove.

0€Zy )

|

Corollary 3.4. For any finitely supported a = (ay) the operator T, has no point
spectrum in I (Z) forany 1 < p < oo unless T, =c 1.

Proof. Clearly any eigenvector for T, in [7(Z) is also an eigenvector in [*°(Z) for
the same eigenvalue. If 7, # c¢ I then by Theorem 3.3, all eigenvectors of 7, in
[®°(Z) are of the form (7), which do not belong to /”(Z) for an 1 < p < oco. This
is easily seen from the fact that such x are almost periodic so the entries do not tend
to 0. Thus T, has no point spectrum in /?(Z) for 1 < p < oo. O

4 Proof of Main Theorem

In this section we assume the hypotheses of Theorem 2.1 and prove the theorem
by breaking it down into a series of lemmas and estimates. Without loss of
generality we assume that a = (ai) is symmetric and ax = 0 for k > ¢ or
k < —q, i.e., supp(a) C [—q,q]. To prove the theorem it suffices to prove that

limy 00 7, (x)(0) = > pc 7., [X, Vol.
Lemma 4.1. Let T = R/Z. Then

Jim 7000 = [ 36150 d¢ ®)
and
Jn (o= Y [ degeE) =0 ©)

0€Zy
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for any § > 0 such that the intervals {(0 — 8,0 + 6) : 60 € Z,1} in T are disjoint.
Proof. Note that 2" is a trigonometric polynomial of degree gn, T, (x)(0) is the
constant term of a" (—§)X,, (€). Integrating it over T yields 7' (x)(0). Equation (8)
follows from the fact that a" (—§) = a" (§).

To prove Eq. (9) we observe that

(@0 - 3 /E OG- /E (605 (8) d,

0€Zq

where |§ — 6| > § on E for any 8 € Z, . Thus there exists an ¢ > 0 such that
[a(§)| < 1—eon E. Also [X,,(§)] < [X[lccgn, sO

Jim | [ &©%© d| < lim (- Ixlocgn =0. (10

|

Throughout this section we shall assume that § > 0 is small enough so that {(6 —
8,0 +6):0 € Z,,} in T are disjoint. Our next step shows that with small enough
8 > 0, for any € > 0, the estimate

[ wOGeE- x| < (an
§—6]<é

holds for sufficiently large n. This is achieved by performing a series of delicate
estimates. Obviously Theorem 2.1 follows readily from Eq. (11).
We now fix any 6 € Z, . Note thata < 1 soa’(f) = 0 and

aE) =1-co6 —0)" + O((E —0)"

near 0, where ¢y > 0. It follows that a(0 4 t) = 1 — cgt>” + hg(t) where hg(t) =
O(t*"*+1) is bounded and

§
/ a" ()X, (8) dé = / a" (0 + 1)Xg, (0 +t)dt = A(n,0,8) + B(n,0,9),
le—0]<8 -5

where
§
An,$8,0) = / 1- cetzm)”@(é? + 1) dt, (12)
-5
§
B(n,8,0) = / @0 + )" — (1 — cot®™)") Xgn (0 + 1) dt. (13)
-5

We first prove that lim, .o B(1,8,6) = 0. To do so we study the term a(0 + )" —
(1 —cot*)" on [0, 8].
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Lemma 4.2. Let F,(t) = (1 —t* + h(t))" — (1 — t*)" where k > 2 and h(t) =
o(t*¥) is analytic and nonzero. Let § > 0 be sufficiently small. Then for sufficiently
large n the function F,, has only one critical point t, € (0, 8], at which |F(t,)| =
max; (o] | Fu(?)] < Cnt.

Proof. Let f(t) = 1—t*4+h(t) and g(t) = 1—t*. Since / is analytic and nonzero,
we have h(t) = Kt + O(t"") where m > k and K # 0. Note that F,,(0) = 0
and F,(6§)—0 exponentially. But F), (n_kl) does not go to 0 exponentially. Hence
F, has at least one critical point in (0, §] for sufficiently large n. Let ¢, be a critical
point, i.e., F/(t,) = 0. It follows that f"~'(t,) f'(t,) — &" ' (t.)g’(t,) = 0, and
thus

n—1 t / t K
g _l(”) = f,(”) — 1= 28mk ok, (14)
frtw) gl () k
|
Claim. lim,_oo(n — 1)tk = m/k.
It is clear that if #,;, > where ¢ > 0 then #—)O when K > 0, the

ST
limit is +00 when K < 0. This is a contradiction. Hencé t,—0. Now observe that
g(t)/f(ty) = 1 — Ki™ + O(t"*"). By taking logarithm on both sides of Eq. (14)
we obtain

m
— 1 0@y,

—(n— DK™ + 0((n — D"ty = — .

The claim lim;,—, o, (7 — l)t,]f = m/k now follows.

We next show that this 7, is unique for sufficiently large n. This is done by the sign
of F"(t,).

Fn//_ (f//fn 1 _ // n 1)+n(n—1) (f/an -2 _ /Zgn—Z)'

Thus " 1 2

F " " gn_ 2 2 gn_
nf"2:<f f—gw>+(n—1)<f -8 W)

Att = t, we have Z)’f;_ 11 = L/ It is not hard to verify that this yields

n;;/lz = fg/(i:—,/)/ +(n - l)f/g(g)/ at 1 =1,

One can also check easily that at t = ¢,

fe'(f'/¢g) = Kmm—k)y™ > + 0@,
f'e(f/g) = —Km(m— k)"t =2 4 o+,
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Thus by the claim,

F)(t)

— _ 1 _ k _— _

If K > 0, we have F, () > 0 on [0,4] and F,/(t,) < 0, which implies that any
critical point #, is a local maximum for sufficiently large n. But any two local
maximum must sandwich a local minimum. Thus there can only be one critical
point, at which F,, must achieve its maximum. If K < 0, F,(#) < 0 on [0, §] and
F)(t,) > 0. By the same reason #, is the only critical point of F, and it is the
minimum. Thus in either case we must have | F(¢,)| = max;e(o,s) | £ (¢)|. Finally,

|Fa(0)] < (1= 25" ((1 4+ Kqit™)" — 1)

for some K1 > 0 on [0, §]. It follows from lim, e ntX = m/k that (1 — t;”)”—>e%
and (1 + Kit")" —1 = 0" %) = O(n_%). This proves the lemma.

Lemma 4.3. lim,_,o, B(n,§,0) = 0.

Proof. Let F,(t) =a(0 + t)" — (1 — cpt>™)". Without loss of generality we may
assume that cg = 1. Then F, satisfies the hypothesis of Lemma 4.2. Let ¢, be the
unique critical point of F, on (0,8]. So F, is monotone on [0,?,] and [z,,8]. A
special mean value theorem for integration (see, e.g., Bartle [1], Theorem 30.11)
now implies that for some 7 € [0, §],

th n In
/ Fo ()X (0 +1)dt = Fn(O)/ )(/(;1(9+Z)dt+F,,(tn)/ Xgn (0 + 1) dt.
0 0 n
Note that F,,(0) = 0 and
§ qn 1
‘/ iq\n(@—i-t)dt)f €Y~ = o(n).
n j=1j

It follows that ,
‘/ Fn(t)fq\n(9+t)dt‘: O~ Inn).
0

By the same token,
8 1
)/ Fo()%5 (6 —i—t)dt): O~ Inn).
tﬂ

Thus f(f F,(t)X4n (0 + 1) dt —>0. Similarly fi)g F,(t)X4n (0 + 1) dt —>0. These
combine to yield lim,_, ., B(n,§,0) = 0. O
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Lemma 4.4. Assume that b,k > 0 and p > 0. For any € > 0 such that bek < 1we
have

€ 1 +
/ (1= be*y" P dr < min{ aRNe n‘pTl},
0 p+1

Kok
where C = [;° ™ 5P ds.

Proof. Using the fact that | — x < e~ forall x > 0, we have (1 — bt*)" < et
Making the substitution s = £/nr we have

€ K/ne
+ :
/ (1 —be*y"er dr < n= i / e s ds.
0 0

. . . We —bsk .
The lemma follows from two estimates. First, the integral fo € sPds is
bounded by C; = f° e™" 57 ds. Second, it is also bounded by ﬁ({/ﬁe)l’“. O

Next we concentrate on estimating A(n, §, 8). To achieve this, for each ¢ > 0,
we break X, (6 + ) up into three parts:

X (0 +1) = ( Z + Z + Z )xkehik(9+t) =N+ ]+ T,

lk|<en®  eno<lk|<e™no e~ lno<|k|<qn

where o0 = ﬁ As a result we write A(n,8,0) = A1(n,68,0,¢e) + A,(n,68,0,¢) +
Asz(n, 8,0, ¢), where

§
Aj(n,(s,e,e):/ (1—cot™)'J; (6 +1)dt, j =123 (15)
-3

Note that here all J; (6 + ¢) depend on n, ¢, but for simplicity of notations, we keep
the dependence in the background.

Lemma 4.5. Lete > 0. Then |A1(n, 8, 0, €)| < Cy+/¢ for sufficiently large n, where
C, > 0 is independent of n.
Proof. By the Cauchy—Schwartz inequality we have

§ §
|A1(n,8,0,¢) 5/ (1 — cgt™)?" dt/ [J1(6 + 1)|*dr.
-5 -5

2rikt

Using the orthogonality of e on T, we have

; :
[ 16+ 0par< [ 106 + 0P < den i

1
2

Also by Lemma 4.4, f_88(1 — cpt?™)?" dt < Cn~°. The lemma now follows. O
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Lemma 4.6. Let ¢ > 0. Then |A3(n,§,0,¢)| < Cse for sufficiently large n, where
Cs > 0 is independent of n.
Proof. We first establish the inequality

8 ) ) Cn°
‘ / (1 — cor?™yre? ikt gy ‘: 2 ‘ / (1= cor™)" cos(2rke) dr |< =5 (16)
-8 0
for all |k| > e~ 'n®, where again o0 = ﬁ The substitution s = n?¢ yields
8 1 o
/ (1 — cot®™)" cos(2mkt)dt = —G/ gn(s)cos(Ls)ds an
0 n=Jo
cps2h
where L = nyak and g,(s) = (1 — %)n. Again, 1 — % < e so
gn(s) < e~ Observe that we have g.(8n%) = 0(6_6982”%)’ g (0) = 0,
and g/ (6n°%) = 0("3_6'982”1’1). Combining these with integration by parts twice

on Eq. (17) we obtain

8n°

8n° 1
/ gu(s) cos(Ls) ds = O(ne=#%") — 72 / g,/ (s) cos(Ls) ds.
0 0

It is easy to check that |g”(s) cos(Ls)| < (a;s*" 2 + ar5*"2)e=5™" for some
constants a;,a, > 0. Thus f(f" g)/(s) cos(Ls) ds is bounded by [;°(ays*"~2 +
ars¥m2)e~s™" ds, which is finite. Hence there exists C3 > 0 such that

C// B C?:IHZU

n®
: Ls)d ‘<—3_—,
‘/0 gn(s)cos(Ls)ds |< 2 ypyE:

which yields Eq. (16). Finally by Eq. (16),

nU
As(n.8.0.0) < Cilxlloo D 45 = Cae. O

e~ Ino<|k|<qn

Lemma 4.7. Assume that [X,v—_g] = 0. Let ¢ > 0. Then |Ay(n,§, 0, )| < Cye for
sufficiently large n, where Cy > 0 is independent of n.

Proof. Sety = (yx) := (xxe*™*%)rez. Then y,,(t) = X, (0 + t). By the fact that
ffg(l — cot?™)" sin(2rkt)dt = 0,

5
Ay(n,8,0,¢e) = Z Yk/ (1 = cor2™y"e2m* gy
-5

eno <|k|<e~1no

8
=2 Y ety [ (1=t cos(2mki)dt.
0

en% <k<e~1no
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Now denote Sy := Z;;_k yjand Uy = f(f(l — cot?™)" cos(2mkt) dt. Then y; +
V—k = Sk — Sk—1. Using summation by parts

N N—1
Az(n,8,0,¢) = Z (Sk — Sk—1)Ux = Z Sk (Ux = U1) — Sy—1Uy + SnUy
k=M k=M

where M = |en®| + 1l and N = |& 'n°|. Using the fact |Sy| < a1k for some
constant @; and Lemma 4.4 we have

)
[Sy—1Upm| < alsnG/ (1- Cglzm)n dr < a/18.
0

By Eq. (16) there exists some a, > 0 such that

o o

;o n _q n _
|SNUN| §a1C3Nm§a28 l’lam = apé.
It remains to estimate 7' := ,1(\:]%4 Sk (Ux — Ug+1). The hypothesis [x,v_g] = 0

implies that limy oo Sk /k = 0. Thus for n > Ny we have supys.,,0 [Sk/k| < . It
follows from the Cauchy—Schwartz inequality that

5 N—-1 Sk 2 N—1 N—1
TP =| 3 2Lk = Ui [ =6°( 3 #2) (X W= Uis?).
k=M k=M k=M

Now Uy — Ux4+1 = fo‘g(l — cot®™)" sin(rrt) sin(;w(2k + 1)) dt. Observe that the
functions {+/2sin(;(2k + 1)¢)} are orthonormal on [0, 1]. Parseval’s inequality
yields

N—1

1 § 2 §
Z (U — Ui g1)* < 5/ (1 — cot™)*" sin®(t) dt < %/ (1 — cot™)*" 2 dr.
k= 0 0
(18)

By Lemma 4.4
8 3
/ (1 —cpt™)*1>dt <Cn~ 2 = Cn ™.
0

Thus
IT* < ase®(e'n?)’n™ = aze’.

These estimates show that for sufficiently large » we have

|A2(l’l,8, 9,8)' E C2€. O
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We can now complete the proof of Theorem 2.1. Let X := x — 5., [X, Vo]vy.

Then 7' (x) = T, (X) + D _4ez,,[X, vo]ve. Note that X satisfies the hypothesis of
Lemma4.7. Combining Lemma 4.3 and Lemmas 4.5-4.7 yields 7}’ (X)(0)—0. Thus

lim 7' (x)(0) = ) [x.ve]va(0) = D [x.vl.

0€Zq 0€Za1

Finally, let t be the left shift operator on [*°(Z), i.e., T((xx)) = (xg+1). Then
T, ot = 1 o Ty. It follows that

T (x)(k) = t* o T/ (x)(0) = T (rk(x)) (0).

But [t¥(x), v4] = [x, vg]e*"'*? for 6 € Z, . Thus

T (x)(k) = T (<“(x)) (0) = Z [x, vgle2™k.

0€Zq

This completes the proof of Theorem 2.1.

Remark. Lemma 4.7 is the only place where the condition [x, vg] exists for all
0 € Z,, is being used. With this condition we may apply summation by parts
and the convergence of Si/k to obtain the necessary final estimates. It is also clear
from the proof that we can apply summation by parts again to show the following:
Let Sx(8) = Z];=_k xje 2% and S;(0) = Y, <k Sj(0)/j. Assume that
limy 00 S;(0)/ k exists for every 6 € Z, then the conclusion of the theorem still
holds. Unfortunately the convergence of S} (6)/k is equivalent to the convergence
of Si(8)/ k. We shall omit the proof here.
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Wavelet Transforms by Nearest Neighbor Lifting

Wei Zhu and M. Victor Wickerhauser

Abstract We show that any discrete wavelet transform (DWT) using finite impulse
response (FIR) filters may be factored into lifting steps that use only nearest
neighbor array elements. We then discuss the advantages and disadvantages of
imposing this additional requirement.

Keywords Condition number ¢ Euclid’s algorithm ¢ Laurent polynomial  Partial
division * Polyphase matrix ¢ Symmetric extension lifting step ¢ Shift matrix e
Symmetric division ¢ Z transform

1 Introduction

Our goal is to implement discrete wavelet transforms (DWT) efficiently. The
recursive algorithms of Daubechies [3] and Mallat [5] offer an O(n) algorithm for
n-point time series. The lifting implementation of Daubechies and Sweldens [4]
offers an alternative which is also O (n) complex but which only requires about half
as many arithmetic operations in the most common cases. Additionally, it acts on
the input in such a way that requires just O(1) auxiliary memory.

For DWT on an interval, artifacts may arise at the boundary if the input’s
periodization from that interval is discontinuous. Symmetric extension before
periodization, thoroughly described in [1], reduces these artifacts and is easy to
include within a lifting implementation.

In this chapter we consider two further enhancements to the lifting method, with
or without symmetric extension and periodization:

* Nearest neighbor lifting to reduce the number of distant memory accesses.
» Lifting sequence choice allowing some utility to be maximized.
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Nearest neighbors in an input array are elements whose indices differ by one. The
corresponding memory locations are thus close enough to ensure that both are very
likely to reside in the same physical cache and thus are quick to access. Different
but equivalent lifting sequences all give the same filter transformation but may have
different arithmetic complexity or propagation-of-error properties. In this chapter,
we will show how the existence and construction of these enhancements improve
the efficiency of DWT.

2 Review of Discrete Wavelet Transforms

Recall that DWT consists of:

+ Signal: u € ¢, in practice finitely supported or periodic.

« Analysis filters: linear maps H,G : £ — (2, composed of convolution and
downsampling.

* DWT: for integer J > O levels, filter the signal into a collection of wavelet
components

U {I:Iju; GH''u, GH'"%u, ..., GHu, Gu}

e Synthesis filters: linear maps H,G : 02 > 2 composed of convolution and
resampling and related to H, G.
¢ Wavelet reconstruction:
u=GGu+ HHu
=GGu+ H (Géﬁu + Hﬁzu)

=GGu+ H(GGHu+H (+-+ H(GGH''u+ HH'u))---).

An example of DWT to depth J = 4 is depicted in Fig. 1. In it the analysis filters
are determined by sequences i <> H and g < G, while the synthesis filters are
adjoints H = H* < h* and G = G* < g*. Reconstruction of u is depicted as
moving up and adding.

A filter F : £*> — {? is a linear transformation determined by an absolutely
summable sequence f = {f, : n € Z}:

Fx,, = Zfz,n_,,xn, mel.

The adjoint filter F* determined by the same sequence f is

F*x, = Zf_gm_,,xm, neZ.
m
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|
| h | g |
|

[ gh ]
hhh'] [ ghh hy ~4¢€
ghhh

hhhh

Fig. 1 Four-level discrete wavelet transform with filters s and g

Thus (Fx,y) = (x, F*y) forall x, y € €2, using the Hermitian inner product in £.
The conjugate filter F of F has sequence f = {f, : n € Z} defined by

fo=D)"fiee = fi= (D", = F=—F.

Filter F is called finite, equivalently finite impulse response (FIR), if its sequence
f is finitely supported. Such filters have a support interval I = [min S, max S] of
finite length |I|, where S = {n € Z : f, # 0}.If F is finite then F is also finite,
with the same support length.

Filter H is called orthogonal if it and its conjugate filler G = H satisfy the
orthogonality conditions:

HH* =1d; GG*=1d; GH*=HG*=0;, H*H+G*G =1d.

Filters H, G form a perfect reconstruction pair if they and their conjugates H=G
and G = H satisfy the weaker biorthogonality conditions:

HH*=1d; GG*=1d: GH*+ HG*=0; H*H+G*G = 1d.

These may be satisfied for some G # H. Howeyver, since H=-HandG = -G,
any perfect reconstruction pair H, G also satisfies

HH*=1d; GG*=1d: GH*+HG*=0, H*H+G*G =1d.

Thus (H,G) = (G, H) form a perfect reconstruction pair whenever (H, G) are a
perfect reconstruction pair.

Call H a perfect reconstruction filter if there exists a complement filter G such
that (H, G) is a perfect reconstruction pair. Any orthogonal filter H is evidently a
perfect reconstruction filter: we get a perfect reconstruction pair using G = H as
its complement.

Equivalent perfect reconstruction conditions may be stated for filter sequences.
For example, with H <> h and its conjugate H=G6 <« g, the orthogonality
conditions become:
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> h()hk +2n) = 1n) = Y g(k)g(k + 2n):;
k k

> glohtk +2n) = 0 = h(k)gk + 2n);
k k

and

> hQk +m)h(2k +n) + Y g2k +m)g(2k +n) = 1(n —m),
k k

forall n,m € Z. Here
1, ifn =0,
1) = if n
0, otherwise.

It is a straightforward exercise to rewrite the remaining conditions for biorthogonal
perfect reconstruction pairs in terms of filter sequences.

3 Review of Lifting
Recall the definition of the Z-transform of a sequence x = {x, € C:n € Z} € {*

def —n
even part x,(z) = Z XonZ s

X@ =) xz"  with dof _
- odd part x,(2) = szn+1z ",
n

We recover the Z-transform of x from the even and odd parts x,, x,:
x(2) = xe(2) + 7 %o ().
Likewise, we get the even and odd parts from the Z-transform:

x(z) + x(—2z)

x(z) — x(=2)
5 , —_

Xo (Zz) = 271

X () =

Any filter F determined by a sequence { f, : n € Z} is likewise determined by the
Z-transform f(z) = ", f,z". We may denote the even and odd parts by f.(z) and
fo(2), respectively, and write the actions of F' and its adjoint F'* on x as pointwise
multiplication of Z-transforms:
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FX(Z) = ZFme_m = ZZme—nan_m
=YD PmamX2Z "+ Y Y a1 X1 "

(g ) () (5 (50
:(%ymfﬁ(gkwd)+f«éhmﬂfﬂ<§ywmﬂ)

= fo(@)xe(@) + 2" ()% (2);

F*X(Z) = ZF*an_n = ZZ]FZm—nme_n

=§:Z}ﬁmf““:=<§:ﬁfﬂ<§}me) = fx@.
m n n m

Remark 1. There is also a “correlation and downsampling” definition of filter and
adjoint:

. * r
Fxm = Z f2m+,,x,,, meZ, F Xp = Z f2m+n-xm7 ne€Z.
n m

Writing this in terms of Z-transforms is straightforward and left to the reader.

There are algebraic relations between the Z-transforms of a filter F and its
conjugate F, respectively denoted by f and f. Namely,

, fe@ = fozh).
f@=—"f=, _
fo@) = = fo&h).

Remark 2. Tt is possible to generalize to the M -conjugate for fixed M € Z:

fo = D" forrti—n = fi=ED""hyiion, = F=-F
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For the M -conjugate of filter F', compute

fe@) =M £,
f@) =M f(=, _
fold) = —=zM fo (7).

Using the relations just stated, perfect reconstruction conditions for filters may be
written in terms of Z-transforms. For filters H, G, H = G, G = H, these become:

hh)+g@8EH =1 h@h(—z") +g@&(=z"") = 0.

In terms of the even and odd parts:

he@he@™) + (@)@ = 1 he@ho(™") + ge(DEo(") = 0;
h()(z)ﬁ()(z_l) + go(z)go(z_l) = 1; h()(z)ﬁe(z_l) + go(z)ge(z_l) =0.

We now turn our attention to finite filters. If p € ¢2 is finitely supported, then its
Z-transform p(z) is a Laurent polynomial:

pR)=>_ p". a<b. abel

If p £ 0,then S = {n : p, # 0} is a finite nonempty set and the degree may be
defined by deg p = max S —min S, a nonnegative integer one less than the support
length of the sequence p.

Laurent polynomials form the commutative ring C[z,z '] with multiplicative
identity 1. Element p # 0 is called a unit, if and only if p has a multiplicative
inverse, if and only if p is a monomial p(z) = KZ7" for some constants K # 0 and
n € Z, and if and only if deg p = 0. Then p~!(z) = K~'z7".

We may also form matrices over the Laurent polynomials. The case we will use
is the matrix ring Mat (2 x 2, C[z,z™"]), with elements:

_a@ b2 , -1
M(z) = [C(Z) d(z)i|’ a,b,c,d € Clz,7 ']

M is invertible if and only if det M = a(z)d(z) — b(z)c(z) is invertible in C[z, z7!],
namely is a nonzero monomial Kz". Then

—1 _ =1l _-n d(z) —b(2)
M=Kz [—C(Z) a(z)]
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Now, any pair H, G of finite filters determines a polyphase matrix:
he(2) ge(2)
P(z) = [ ¢ :

ho (2) go(2)

Likewise, their conjugates H = G,G = H determine the related polyphase matrix:

50 [he(@ 8.@7 _[&@) he(2)
Pl = [Mz) go@} = [go(z) ﬁ(,(z)]

Both P and P belong to Mat(2 x 2, C[z.z"']). A straightforward calculation now
show that the perfect reconstruction condition for (H, G) is equivalent to:

PP ") =1d.

Remark 3. In practice, /d may be replaced by any invertible diagonal matrix in
Mat(2 x 2, C[z,z~']). The two units of C[z, z~!] appearing on the diagonal will then
be monomials Kz" or multiples by nonzero K of shifts by n indices. The original
sequence x is easily reconstructed from such a shifted and multiplied version.

Say that a Laurent polynomial /(z) has a complement g = g(z) if the polyphase
matrix determined by £, g is invertible. It follows immediately that finite filter H is
part of a perfect reconstruction pair, if and only if H has a complement, if and only
if its Z-transform has a complement. This reduces part of filter design to algebra.

Now, C|[z,z"!] is a Euclidean domain, so the division lemma holds:

Lemma 1. Suppose a,b € Clz,z"'] with dega > degh > 0. Then there exists a
quotient q and a remainder r with degr < degb so that

a(z) = q(2)b(z) + r(2).

Note that degq = dega — degb.

Write ¢ = a/b and r = a%b, as in the C programming language, but note that
neither g nor r is unique.

Lemma 2. There are at most 2'tdeea=deeb dittorent ways to divide a(z)/b(z),
among which at most 2 4+ dega — deg b quotients are different.

Proof. First note that division is a generalization of Gaussian elimination. The
vector of b’s coefficients is shifted, scaled, and added to the vector of a’s coefficients
to eliminate either the highest or lowest power of z, namely the leftmost or rightmost
term. After at most 1 + dega — degb such eliminations, the remainder will have
degree less than deg b. Each sequence of eliminations is determined by its sequence
of “left” and “right” directives, making at most 2!Tdega—dee? different ways to find
the quotient.
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However, left and right eliminations commute as long as dega > degb. Hence,
two quotients will be the same if their elimination sequences contain the same
number of left and right eliminations, regardless of order. Thus, there can be no
more distinct quotients than the number of sequences of length 1 + dega — degb
with distinct numbers of “left” directives, which is 2 + dega — degb. O

Example 1. Let a(z) = 2z7' + 4 + zand b(z) = 1 + z. Then dega = 2 and
degb = 1, so there are three distinct quotients:

az) = 277 +2)b(2) + (—2) (left, left).
a(z) = B3z '+ )b(x) + (=2 ') (right, right).
az) = 2"+ b)) + 1 (left, right) or (right, left).

We may say “left division” to mean always eliminating the leftmost term and “right
division” to mean always eliminating the rightmost term. When dega — degb is
even, there will be an even number of terms to eliminate so we may say “symmetric
division” to mean an equal number of left and right eliminations.

A Laurent polynomial p = p(z) is said to be symmetric if it is unchanged by
reversing the order of its coefficients. This is equivalent to the property

AM)(Y2) M p(z™") = p(2).

For symmetric p not identically zero, the reflection index M is unique. Monomials
¢ are evidently symmetric with M = 2k. We may further distinguish whole or half
index symmetry, depending upon whether M is even or odd. The parity of M will

be the same as that of deg p.

Lemma 3. Ifa,b € Clz,z7'] are symmetric Laurent polynomials, then symmetric
division results in a symmetric quotient a/b and symmetric remainder a%b.

Proof. The result holds if dega < degb, since then a/b = 0 and a%b = a.

For all other cases, use induction on n = dega — degb.

If n = 0, left elimination and right elimination produce identical monomial
quotients, which are trivially symmetric. The remainders are evidently identical and
symmetric as well.

If n = 1, the quotient will have degree 1 with two identical coefficients, hence
it will be symmetric. The remainder will be the difference between two symmetric
polynomials with the same reflection index M, hence it will itself be symmetric
with that same M .

The induction step follows from the observation that a symmetric (left, right)
pair of elimination steps reduces the degree of the dividend by 2 while preserving
its symmetry. This reduces n by 2 and contributes to the quotient a symmetric
polynomial of the same reflection index M as a. O
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We now recall some basic notions useful in Euclidean domains:

e Write b|a (b divides a) if a = gb + 0 for some ¢q. Thus bla = degb < dega.

» Say that d is a common divisor of a and b if d|a and d |b.

¢ Say that a common divisor d is a greatest common divisor of a and b if every
common divisor ¢ of @ and b also divides d.

Lemma 4. If d| and d, are greatest common divisors for a and b, then d\ = ud,
for some unitu € Clz,z7'].

Theorem 1. Every pair a,b € Clz,z7!], not both zero, has a greatest common
divisor that is unique up to multiplication by a unit.

Denote this set of greatest common divisors by ged(a, b). Say that a, b are coprime
if ged(a, b) is contained in the set of units.
Assume a, b are Laurent polynomials with dega > degb > 0. Their greatest

common divisor may be found by the Euclidean algorithm for Laurent polynomials.

def def .
Putayg = aand by = b, and define ay, by recursively:

ak+1 = by; bry1 = ar — qibx, k=0,1,2,...,

where ¢ is one of the possible quotients ay /by. It thus determines by as the
corresponding one of the possible remainders ay %by.

Lemma 5. Let n be the smallest positive integer for which b, = 0. Then a, €
gcd(a, b).

By Lemma 4, finding any representative in gcd(a, b) determines all the others.

Example 2. Consider a(z) = aog(z) = 2z7' + 4 +zand b(z) = bo(z) = 1 + z.
Using symmetric division, the first step is

a@=1+z  h@=1 qR=2"+L1
The second step is

ax(z) = 1, by(z) =0, G2 =1+z.

227 44+ [zt + 1L+ 1]
1+z N 1 0 1 oflo]’

so ged(a,b) = 1.

Therefore

Note that a,, is determined only up to a unit, defined by the sequence of quotients
qu LI ] Qn—l~

Theorem 2. Laurent polynomial h has a complement g if and only if h, and h, are
coprime.
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Proof. Apply the Euclidean algorithm to find the polyphase matrix. Write the
recursion in matrix form:

a1 _[o 1 ar (2) a@] o 1 a(z)
|:bk+l(Z):|_|:1—Qk(Z):| [bk(Z)] :>[ 0 }_g[l—qn—k(@}[b(z)]

Inverting the product of matrices gives

a@] @ 1] e
[b@}‘(_” ﬂ[ 1 OH 0 }

k=0

If n is odd, absorb the unit (—1)" term into a,.
Puta = h, and b = h, and assume gcd(h,, h,) = K7", K # 0. Define g., g, by

wr [he@ @] _ Trlax@11[K 0
P(z) = [ha(Z) gO(Z)}_kI—[:o[ 1 0}[ 0 K—lz—m]

Then P(z) is evidently invertible. Get /2, g from P(z™')' = P(z)~". ]

This leads immediately to general implementations of DWT by lifting:

Theorem 3 (Daubechies and Sweldens). For every perfect reconstruction finite
filter pair (H,G) with polyphase matrix P, there exist finitely many Laurent
polynomials s; (z) and t; (z), 1 <i <m < 00, and a nonzero constant K such that

_rl1s@1[ 1 01[K o0
rao=111"" [0 V][0 &)

i=1

Remark 4. The matrix factors correspond to the following operations on
sequences:

* Prediction: Unit upper triangular factor; u, < u, + Su,.
* Updating: Unit lower triangular factor, u, < u, + Tu,.
s Scaling: Last diagonal matrix, u, < Kue, u, < K 'u,.

Since u,,u, may be stored as disjoint arrays, this transform can be performed in
place, without extra memory for temporary results.

Proof. Observe first:

o) = B o) = Dol t]
1 ol [0 1 10]  [10]|lqx 1]
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The flip matrices [(1) (1)] cancel if predict and update steps alternate.

Second, note that a leftover flip matrix may be factored into lifting steps in a
number of ways:

01 10711 1o][-10
10] [—11][l0o1][-11 01
=101 =17[107[1~1]
L or]lo t][t1]|lo 1]
[t o[ 1o][11][ 10]
S lo—1]|-11]J[Oo1 | —-11]

g bt e b

Third, note that diagonal shift matrices may be factored into lifting steps:

R [ [ B |
g )| [ PR [ |
I R [ | e ) [

Other factorizations exist, but at most five lifting steps are needed per shift. Thus,
[z’” 0

0 _m] or [Z 0 ?n] factor into at most 5m lifting steps. Afterward, only the
Z Z

] remains. |

constant diagonal matrix [ o
& 0 K-

4 Nearest Neighbor Factorization

Assume that a smooth sampled signal u € ¢ is finitely supported in the index
interval [0, N —1]. Big endpoint values |u(0)| or [u(N —1)| may result in misleading
large DWT coefficients. Similarly, a big difference |u(N — 1) — u(0)| may result in
large periodized DWT coefficients. These undesirable effects are mitigated through
the use of symmetric extension, as described in [1]. It requires symmetric H, G,
defining
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u(n) = u(—n), if-Nin;j0;
u(n) = u(2N —1—n), ifNinj2N,

and then treating u as 2N — 2-periodic. Several other extensions are possible,
depending on the symmetry type of H, G.

It is easy to implement symmetric extension for certain special implementations.
The lifting factorization

1 s 1 07K 0
P(Z)_H[o I Mrm)lHO K—l}

k=1
uses only nearest neighbors if it satisfies the following conditions:

se(2) = o + Bz,

4 (2) = vkz + bk,
with ok, Bk, vk, 8k € C. Nearest neighbor action on sequences has the explicit
forms:

e Nearest neighbor predict: ux < uz + oxuzp—1 + Brlok+1-
e Nearest neighbor update: usx4+1 < Uzk+1 + Vilok + OpUog+2.

For nearest neighbor factorizations, symmetric extension becomes:

o Symmetric extension nearest neighbor predict step:

o(uz—1 + Usp+1), 1f2k #0;

Upg <= Uzk +
Z(Xblzk_H, lek =0.

» Symmetric extension nearest neighbor update step:

y(uok + uak42), if2k+1#N—1;

Uk 41 < Uk+1 + ;
2y uy—s, if2k+1=N—1.

Hence the endpoints get almost the same treatment as the interior points.

5 All Lifting Can Be Nearest Neighbor Lifting

Unfortunately, not every perfect reconstruction filters factor into nearest neighbor
lifting steps directly, even allowing for any choice of quotients in Euclid’s algorithm.
For example, let
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1 1
V2 V2

This is similar to the Haar orthogonal filter pair. Then

h(z) = 1+ gl = (- +z7h.

1 I _, I, 1

—; —=7 7 g@ =727 g0 =—7.

V2 V2 V2 V2

There are no division steps in Euclid’s algorithm, so the (empty) sequence of
quotients is unique. The ordinary lifting factorization gives:

111 ¢ 1 0][1-4A47 2= 0
o= LA 8]

This is not a nearest neighbor factorization because the off-diagonal nonconstant
terms have powers other than z and z~'. However, in common with nearest neighbor
lifting steps, the off-diagonal terms s(z),#(z) have degs < 1 and deg ¢ < 1, and
further factorization is possible (see Lemma 7) to obtain nearest neighbor steps.

We may obtain quotients of constrained degree through a modification of the
division lemma:

he(z) = ho(z) =

Lemma 6 (Partial division). Suppose a,b € Clz,z~'] with dega > degbh > 0.
Then there exists a partial quotient q and a partial remainder r with degq < 1 and
degr < dega so that

a(z) = q(2)b(z) + r(2).

Proof. We limit ourselves to eliminating just one or two terms from a with a partial
quotient of the form ¢(z) = 7" (y + §z). Then degg < 1, but not both y = 0 and
8 =0,sodegr = deg(a — gb) < dega. O

It is clear that any common divisor of a(z) and b(z) also divides the partial
remainder 7(z) = a(z) — q(z)b(z), so we obtain lifting factors of degree one or
less with Euclid’s algorithm expanded to use partial division:

Theorem 4. Assume a and b are two coprime nonzero Laurent polynomials. Then
there exist Laurent polynomials q1, . ..,q, with degqy < 1 forallk = 1,...,n,

such that
a@] _yrrla@ 177K
o)=L llo)
wheren < 2(dega + degb + 1).

We may now slightly strengthen Theorem 3:

Corollary 1. For every perfect reconstruction finite filter pair (H,G) with
polyphase matrix P, there is a lifting factorization
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s 1 0]1[K ©
r=T1[o"7 ][] [0 6]

i=1
where the Laurent polynomials s;(z) and t;(z), | <i < m < 0o, each have degree
one or less, and K is a nonzero constant.

As shown earlier, the degree condition is not enough to guarantee that the
factorization gives a nearest neighbor filter transform. To get from degree one or
less to nearest neighbor polynomials requires additional factorization:

Lemma 7.

122"z '+ B8)] _[7" 0 laz ' +B81[z™ 0.
0 1 Loz™]|o 1 0 7]’

[ 1 O:|_[z_’”0:|[ 1 0i|[z’” O:|
Py +8)1 | 0 " |y+8z1|[0z™]|

where m is any integer and a, B, y, and § are constants.
Factoring the 7 shifts into at most 5m nearest neighbor lifting steps, each yields:

Corollary 2. Any degree-one predict or update matrix factors further into a finite
number of nearest neighbor lifting steps.

Remark 5. The conditions deg sy < 1 and deg#; < 1 may also be obtained from an
ordinary lifting factorization by further decomposition:

[lsl(z)—i-sz(z)}_[lsl(z):”lsz(z)}
0 1 Lo 1 0 1 |°

[ 1 O}_[ 1 O}[ 1 O}
@ +n@ 1] [0@1][la@ 1]

However, this may create multiple successive predict factors and multiple successive
update factors and ultimately requires more matrices.
6 Backward Error Analysis for Lifting Factorizations

We now turn consider how various lifting factorizations affect the conditioning of
DWT. In terms of the polyphase matrix, this may be computed as follows:
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Lemma 8. If P(z) is the polyphase matrix of a perfect reconstruction filter pair,
then

w5 VA PO P@) : |2l = 1}
cond(P) = .

inf{ A (PR P Q) : |2 = 1}
Furthermore, if P = Py --- Py, then cond (P) < cond (P;) ---cond (P,).

For a proof of this fact and extensive discussion of polyphase matrices, see [6].

We may use the special form of lifting step matrices to estimate the condition
number of the factorization of P in another, simpler way. For definiteness, consider
an “update” step in floating-point arithmetic with absolute truncation error €. Its
polyphase matrix G may be represented within the computer by something that
differs by as much as §G, where

1 0 e 0
G@:[mn} = M@Z[MQJ’

and Laurent polynomial #(z) = Y, txz * has error §t(z) = Y, 8txz*. Each
polynomial coefficient ¢ is computed from the filter /2 by elimination and therefore
satisfies

81| < (1 4 degh)e + O(e?).
For such G, define

|G|(2) £ |:|t|1(z) (1)] where |t|(z) &t thklz_k.
k

Then the maximum matrix infinity norm of G(z) may be computed as follows:

def
IGllo = sup [G@)loo < sup [ |GI(2) oo = 1 + sup [t](2) = 1+ Y |tl.

|z|=1 lz|I=1 lz|I=1 x

The same estimate applies to “predict” steps as well.
Now assume that P(z) is a polyphase matrix with lifting factorization

_ 1 5i(2) I O K O | der '
- L 0] # e

where each G is a lifting step. Taking truncation errors into account, the computed
results using floating-point arithmetic therefore satisfy

P(2) +68P() =[](G; (@) +8G;(2)).
J



188 W. Zhu and M. V. Wickerhauser

Table 1 Condition number bounds for nearest neighbor factorization versus
ordinary lifting versus the polyphase matrix

Filter Cond of P(z) Cond of lifting Cond of N-N
9-7 1.32 205 205
D4 1 77 71
D6 1 76 76
Cubic B-spline 4 56 56
CDF-1-1 1 8.59 8.59
CDF-1-3 1.28 8.72 3,100
CDF-1-5 1.42 6.25 1,200
CDF-2-2 2 8.59 8.59
CDF-2-4 2 99 1,900
CDF-3-1 4 643 643
CDF-3-3 4 723 3,200
CDF-4-2 8 111 111
CDF-4-4 8 113 2,800

By expanding the product and using the submultiplicativity of the matrix infinity
norm, we get

I8P oo < € (1 + degh) Y " [1Glloc + O(€?).
j

indicating that to obtain the smallest condition number, we should use a factorization
with small lifting coefficients and not too many low-degree lifting steps.

Assuming the worst case, equality, we can estimate the condition number for
three implementations of the filter bank:

1. The original polyphase matrix P
2. The usual (shortest) lifting factorization of P
3. The nearest neighbor lifting factorization of P

The results are displayed in Table 1, for a number of symmetric and nonsymmetric-
orthogonal filters.

7 Applications and Examples

Because of nonuniqueness in the quotients in Euclid’s algorithm for matrices over
Laurent polynomials, we may choose a lifting factorization optimized for a minimal
number of nearest neighbors.

In some cases, the original lifting steps yield a nearest neighbor algorithm. The
filter indexing may need to be adjusted to eliminate or at least minimize the number
of Z shift matrices. In addition, the sequence of quotients {gx(z) : k = 0,1,...,n—
1} may be chosen to minimize the condition number bound.
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Example 3. To show how re-indexing may result in a nearest neighbor factorization,
consider Daubechies’ D4 filters, defined as follows:

h(z) = haz > 4 hoz 2 4+ izt + ho,
g(x) = hoz™" — hy 4 haz — h3 2%,
with

p_ltY3 o 3+43 _3-43 _1-3
0 4\/55 1 4\/57 .

Then the polyphase matrix is

_ [ hazt 4+ ho —=hy — haz

s | he(@) ge(2)
P(Z)—P(Z)_[ :|_[h3z_l+h1 h0+h21i|'

ho(z) g0(2)

It has the following two factorizations, the first obtained by left division in Euclid’s
algorithm and the second by right division:

b [1-V3 1 olriz7| 28 o
(@) = 0 1 V321 (01 0 31

g 7

| 3 1 o [1=—T| 58" o
= H =3 | 34346 | 3443
01 || =B +38%6 1|0 1 0 Sy

The forward transform corresponding to the first (left-division) factorization is not
nearest neighbor:

Xom+1 < Xom+1 — \/gxzm;

V3 V3-2 o) |
Xom <= Xom + ==Xy T T X433

Xom+1 <= Xom + Xom—2;

V3t o

Xom <— szma
V3-1

Xom+1 <~ \/5 Xom+1-

The inverse transform for the left-division factorization into lifting steps is similarly
not nearest neighbor, as may be seen from its polyphase matrix:
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V3+1
By =| v 2 [ LO] e [ 0]
Z'1]lo 1 —V31

It is left as an exercise to derive the predict and update steps from these matrices.

The second (right-division) factorization can be made nearest neighbor by
factoring the leftover diagonal shift matrices into lifting steps. However, if the
coefficients of & are first shifted so that i(z) = 21_2 hy 1227, then right division in
Euclid’s algorithm yields a nearest neighbor transform directly:

3 1 0 —! 3-3 0
1 % 1
P(7) = 3 3 342

It is again left as an exercise to find the corresponding predict and update steps.

Example 4. Not all orthogonal filters will give nearest neighbor factorization
directly after a simple index shift. Consider the orthogonal filters defined earlier:

h(z) = ?(1 +27) glx) = ?(—z8 +2z7h.

We cannot get a nearest neighbor factorization simply by using an index shift. For
this filter, it is necessary to use Lemma 7 and pay the price of additional lifting steps.

Example 5. Not all filters offer a choice of lifting factorizations. The biorthogonal
perfect reconstruction filters CDF-2-4h and CDF-2g have the following coeffi-
cients:

3 3 1 19
W =22 sl P
(2) x/_(lzgz 1’ g% +64Z +
LA L1901, 33
64 64" 8% 64" T 128°
1 1 1
— (il )
g(2) x/_(4z 22 +4)

CDF biorthogonal filters [2] are symmetric, so there is a unique lifting factorization
using the Euclidean algorithm. But since the degrees of /(z) and g(z) are very
different, in most cases it does not yield a nearest neighbor factorization directly.

1 -1 1 3 -1 19 19 3.2
P(x) = -7 = 1| |G tagtaz—57 1 V2 0
10 1 0 2

T2
_ [ =i [-& +g1]fo1
10 1 o]l10
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64Z_64 V2 0

[ 1 0}[0 —JTE}

_ 112011 -3z"+ &
0 1 10]]o 1
2 018 =210 V2 0
oz Jlo 1 0 zf| 0 -2

An application of Lemma 7, Corollary 2, and Theorem 3 may be used to convert
this into a nearest neighbor factorization.

Example 6. 1f the filter h has a perfect reconstruction complement, then its coeffi-
cients may be re-indexed and the proper quotients chosen in the division algorithm
so that ged(h., h,) is a constant. However, this is not guaranteed to produce nearest
neighbor lifting.

Cons1der Daubechies’ orthogonal D6 filter; it may have its indices shifted so that
h(z) = Z i —_, hkz . The filter thus indexed, together with its complement g = h,
has the following polyphase matrix:

he(@) = haz ' +ho+hoaz ge(2) = —hoz ' —hy — sz
ho(z) = h3z '+ hy 4+ h_iz 20(@) = hsz ' + ho + haz.

Then the lifting factorization by symmetric division yields a constant ged(/,, h,) =~
1.918, entirely through nearest neighbor predict and update steps:

P = 1 0][1-1.565"+0.352 1 0
| —-04121]]0 1 0.028 4+ 0.492z 1

1-0.390 || 1.918 O
0 1 0 0.521 ]

Alternatively, with the indexing h(z) = ZZ —0 hiz%, we get a different polyphase
matrix:

he(z) = haz 2 + haz™ ' + ho 2e(2) = —hiz7" — hsg' — hs??
ho(z) = hSZ_2 + h3Z_l + hy go(2) = ho+ haz + h4zz.

Using the same division as for D4 now gives nonconstant gcd(h,, h,) = 1.91877!,
but with nearest neighbor predict and update steps:
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P = 1 0][1-1.565"+0.352 1 0
| —041211]0 1 0.028 + 0.4927 1

1-03907][1.918! 0
0 1 0 0.521z |°

However, choosing right division so that the gcd comes out constant gives

P2 = 1 0][1-1.565"+0.355 1 0
1 —-04121]10 1 0.001645z7" —0.028 1

1 607.65z— 116.522 [ =33.172 0
0 1 0 0.03]

which is evidently not a nearest neighbor factorization.
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Operator theory is at the crossroads of several areas of mathematics, physics, and
engineering. For instance, linear and non linear operator theory is an essential tool
in partial differential equations and mathematical physics, while operator algebras
are fundamental in noncommutative analysis. In engineering, operators are used
to model effectively the actions of certain systems on signals. The seven chapters
in this part give an overview of the modern role of operator theory in analysis,
mathematical physics, time-frequency analysis, multi-scale harmonic analysis, and
medical imaging reconstructions.

The first chapter of this part by OVIDIU CALIN, DER-CHEN CHANG, and
YUTIAN LI offers an elegant construction of the heat kernel for certain operators
on a Lie group. In particular, they construct a heat kernel associated to operators
consisting of the finite sum of squares of left invariant vector fields on a finite
dimensional noncommutative Lie group that satisfies an involutivity condition. This
construction is achieved through a novel approach they developed, and it relies on
replacing the usual bracket-generating condition by a new one they call the rotal
involutivity property. This condition together with a geometric method involving
Hamiltonian formalism are the main tools in their construction.

In their chapter JAVIER DUOANDIKOETXEA and VIRGINIA NAIBO give an
excellent overview of mixed-norm inequalities for the k-plane transform and some
related potential-type operators supported on k-planes. The history of these types of
operators goes back to the work of J. Radon on the reconstruction of sufficiently
smooth two-dimensional functions from their line integrals: this is the Radon
transform. The applications of such techniques include x-rays in medical imaging.
The chapter focuses on a review of recent results on the boundedness of k-plane
transforms with special attention paid to their actions on radial functions. One of the
main tools used by the authors is the maximal operator associated to these operators.
The boundedness of this maximal operator leads to interesting consequences for the
bounds of the Kakeya maximal operator.

PETER C. GIBSON, MICHAEL P. LAMOUREUX, and GARY F. MARGRAVE
address some fundamental questions on Gabor multipliers. Gabor multipliers
are operators obtained by composing the short-time Fourier transform (STFT),
multiplication by a distribution on phase space, and the inverse STFT. The STFT,
also known as the Gabor transform, appeared in D. Gabor’s seminal work on
the theory of communication. In particular, Gabor proposed to decompose and
reconstruct finite energy signals using the STFT with a Gaussian window. Gabor’s
proposal can also be viewed as a resolution of the identity operator in terms of time-
frequency shifts of the Gaussian. This is in fact an example of a Gabor multiplier
in which the distribution on phase space is identically equal to one. Today, other
choices of window functions that allow similar analysis are known, but the design
of windows in Gabor analysis is still not completely resolved. In this chapter, the
authors give a characterization of all linear operators that can be written as Gabor
multipliers. Moreover, given one such linear operator, they analyze the choice of
window needed to write it as a Gabor multiplier. Though theoretical, these results
have applications in seismic image data processing. In this context, the authors have
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developed an approach that uses Gabor multipliers to represent nonstationary filters
and wave field extrapolators.

The fourth chapter of this part is by JOHN R. KLAUDER and BO-STURE
K. SKAGERSTAM. While their contribution is rooted in quantum mechanics, Klauder
and Skagerstam point out its applicability in time-frequency analysis. The specific
context for this chapter is the Berezin-Lieb inequalities which dictate upper and
lower bounds for partition functions based on phase space integrals involving certain
representations. These inequalities were first established by F. A. Berezin and
E. H. Lieb using the well-known Husimi and Glauder-Sudarshan symbol classes.
In an earlier work, Klauder and Skagerstam defined larger classes of these phase
space symbols. In the present chapter, they use these new classes of space phase
symbols to extend the Berezin-Lieb inequalities as a consequence of more general
integral inequalities.

In his chapter, DIEGO MALDONADO gives a survey of boundedness properties
and the symbolic calculus for certain bilinear pseudo-differential operators. After a
brief review of some of the classical results due to Hormander, Kohn, Nirenberg,
Calderé6n, and Vaillancourt, Maldonado considers the bilinear pseudo-differential
operators defined by R. R. Coifman and Y. Meyer in their seminal work. The
remaining part of the chapter consists of a review of recent deep results by him and
his collaborators. These include novel results on paraproducts, as well as results on
a special class of bilinear pseudo-differential operators, viz., the bilinear Calder6n-
Zygmund operators.

Part VII ends with MAR{A C. PEREYRA’S exposition of the recent solution of the
A, conjecture. This asserts that all Calderén-Zygmund singular integral operators
are bounded on weighted L? spaces with a bound that depends linearly on the
A, characteristic of the weight as well as corresponding results for the associated
commutators. Pereyra guides us through the history of the conjecture culminating
in its recent proof by Tuomas Hytonen. The special case of the boundedness on
weighted L? spaces of the Hilbert transform as well as its commutators with certain
BMO functions is considered and shown to lead to sharp bounds on the dyadic
paraproduct on corresponding weighted L? space. Some of the main tools that
appear in her exposition are dyadic harmonic analysis, Bellman function techniques,
the martingale transform, and dyadic Haar shift operators.



On the Heat Kernel of a Left Invariant
Elliptic Operator

Ovidiu Calin, Der-Chen Chang, and Yutian Li

Dedicate to Professor John J. Benedetto

Abstract The goal of this chapter is to find the heat kernel of a left invariant
operator on a Lie group, by using a geometric method involving Hamiltonian
formalism.

Keywords Heat kernel * Lie group ¢ Curvature * Geodesic

1 Introduction

There is a vast literature dealing with properties of the sum of squares L =
X? + --- X2, with k < n of left invariant vector fields X; on a noncommutative
Lie group G of dimension n (see [1,2,5,7,9]). Most papers assume that the bracket
generating condition holds, i.e., the vector fields X; together with their iterated
Lie brackets generate the Lie algebra £(G). This condition implies the operator L
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hypoelliptic (see Hormander [8]) and also global connectivity by piecewise smooth
curves tangent to the distribution H = span{Xj, ..., X} (see Chow and Rashevskii
[6,12], see also [4, Chap. 3]). The distribution H in this case is not involutive.

We are in a completely different situation if for any two vector fields X,Y €
L(G) then the Lie bracket [X, Y] is a linear combination of X and Y :

VXY € £(G) = [X,Y] =aX + BY, a.BeR (1)

The vector field [X, Y] always belongs to £(G); however, the aforementioned
property states that [ X, Y] belongs to the plane spanned by the vector fields X and Y.
This will be regarded in the future as the total involutivity property of the group G.

This can be stated equivalently in terms of constants of structure as follows. Let
{E\,..., E,} be abasis of the Lie algebra £(G). The constants of structure Ci]; are
defined by

[Ei.Ej] =) ClE:.

k=1
Then the total involutivity property can be written as
Cl =0fork ¢{i.j}.

This property does not always hold for any noncommutative Lie group. A
counterexample on hand is the Heisenberg group H (see [7]). If {X|, X2, X3} is
a basis of its Lie algebra b, then

(X1, X2] = X3, [X1, X3] = [X2, X3] =0,

so [X1, X>] is not a linear combination of X; and X,.
Milnor [10] proved that if a noncommutative Lie group G of dimension n > 2
has the property (1), then there is a one-form w such that

[X,Y] = o(X)Y —w(Y)X.

Furthermore, he showed that any left invariant metric g on the Lie group G has
constant negative sectional curvature. This means that for any 2-plane = we have
K, = —||w|* < 0, where

lol? = of + - + oy,

with @ = )" w; dx;. In the case n > 3, by Schur’s theorem, it follows that the
Riemannian space (G, g) has a constant negative curvature.

The result was extended by Nomizu [11] for left invariant Lorentz metrics on G;
however, in this case the sectional curvature is not necessary negative.

In the following we shall consider an example of a Lie group that satisfies the
total involutivity property (1).
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Let G = (R%*, 0) be endowed with the noncommutative group law

(X1, X2, ..o Xog—1, X2k) © (X[, X5, ..o, Xy, X0y)

—) / / —) / /
= (x1+e 2xp, X2+ x5, Xk—1 F e KXYy, Xk + XY). 2)

One can check that

E\=e0y,, Ey =0x,,..., Enkm1 = €70y, |, Eox = 0xy, 3)

are left invariant vector fields that span the Lie algebra £(G). The commutator
relations are
[Ev, E2] = Ey, ... [Ex—1, Exk] = Eoj—,

and hence G satisfies the property (1).

The authors are not aware of any general result regarding the heat kernel of an
operator defined as sum of squares of vector fields L = X 12 + .- X2 withk <n
of left invariant vector fields X; on a noncommutative Lie group G of dimension n
that satisfies the total involutivity property (1).

In the case when n = k, then L is an elliptic operator on the connected, simple
connected, and constant curvature space G. Hence it must be isomorphic to the
hyperbolic space H,. Then our problem reduces to the hope of being able to express
the heat kernel of the elliptic operator L using the heat kernel of the elliptic operator

L:Y12+...+Yn2’

where Yy = F, X} are vector fields induced by the isomorphism F : G — H,,.

However, in this chapter, we shall consider a direct method of a geometric flavor.
The purpose of this chapter is to find the heat kernel of the sum of squares of the
vector fields given by (3). It suffices to solve the problem in the case k = 1, since the
heat kernel in the general case is a product of heat kernels in the lower dimension.
This shall be done using a similar analysis to the one done in the case of the
Heisenberg group for the heat kernel of the Heisenberg Laplacian (see [1,2]). In this
case the Lie group is 2-dimensional, and it resembles the Grushin case, replacing
the polynomial coefficient by an exponential.

2 Introducing the Geometry of a Lie Group

Consider the Lie group G = (R?, o) with the noncommutative group law
(xX1,x2) 0 (X}, X3) = (x1 +e"2x], X2 + X3). @)

One can check that
El = e_xzaxls E2 = axz (5)
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are left invariant vector fields which span the Lie algebra of G. The commutator
relation is [E|, E;] = Ej, so the constants of structure are zero with the exception
of C}, = —C,; = 1. Consider the Riemannian metric on R? in which the vector
fields { £, E,} form an orthonormal basis

e?2 0
&ij :g(axl-va.’cj):( 0 1)~

A computation shows that all Christoffel symbols are zero with the exception of

2x:

I'py =151 = —T1p = €772,
l_ 1_ 2_ 2xz
I',=rI, =1, I|}=—-e"

By a straightforward computation or just by using a MAPLE package we get

R},,= — 1, and hence

R = gn R = —*2.

Since g1182 — (g12)> = e>?2, it follows that the relation

Rioix = K(g11822 — (g12)?)

holds for K = —1, i.e., the Riemannian manifold (G, g) is a space with negative
constant curvature. By Hadamard’s theorem it follows that the space is geodesically
complete, i.e., any two points can be joined by a unique geodesic. This is an
important feature which will be used when computing the heat kernel of the
associated operator.

3 The Associated Elliptic Operator

The geometry of the Riemannian space (G, g) is associated with the sum of squares
elliptic operator!

1 1,
L= E(El2 + E}) = E(e 2297 +0%). (6)

We are interested in finding an explicit formula for the heat kernel of the opera-
tor (6). The principal symbol

!This operator resembles the Grushin operator %(xgagl + Biz), but in this case it is left invariant
with respect to a group law.
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1 _ 1 -
H(x,p) = S pi + p3) = 3 ) &" (¥)pip;

is considered as a Hamiltonian function. It is known that the geodesics of the space
(G, g) can be obtained as the x-projection of the bicharacteristics associated with
the Hamiltonian H (see for instance [3], Chap. 6.) In order to find the equations of
the geodesics, we shall solve the bicharacteristics system

%1 = H, =e *p, (N
%= H,, = pa, ®)
p1 = —H, =0 = p; = c (constant), ©)]
pr=—H, =e¢p7, (10)

with the boundary conditions

x1(0) = x(0) =0, x1(7) =x1, x2(7) = x2. (11)

3.1 Finding Geodesics

Since we are working on a group it suffices to study only the geodesics (x1 1), x2 (t))
starting at the origin. All the other geodesics are obtained by left translations with
respect to the law (4).

3.1.1 Finding the x;-Component
Differentiating in Eq. (8) and using Eqgs. (9) and (10) yields the ODE
¥ = cle 0. (12)

It can be checked by direct differentiation that a first integral of motion for (12) is
the total energy

1 1

Exg + Ecze_z"2 = E (constant). (13)

Consider that parametrization of the bicharacteristics for which £ = % This is
obtained for the parameter s = +/2x(arc length). This way the parameters are
the momentum p; = c and the geodesic length 7/+/2. Since there is a unique

geodesic between the origin and any given point in R?, then the parameters ¢ and t
are uniquely determined by the boundary conditions (11).
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Substituting £ = % in (13), then separating and integrating between 0 and s,
yields
x2(s) du

0 I —cZe

Making the substitution v = e* transforms the previous relation into

+s.

2(5)
/e dv
1 V2 —c?

Since the left side is always positive and s > 0, only the positive sign on the right
side will provide a solution. Integrating and solving for x,(s) yields

+s.

cosh™ 1 (€2 /c) = cosh™!(1/c) + 5 <=
e = ¢ cosh (cosh™" (1/c) +5) <>
e?) = coshs + ¢ sinh (cosh_l (1/c)) sinhs <

e = coshs + V1 — ¢2sinhs, Vs € [0, 7].

This can be also written as

2 _ cosh(K + s) (14)
~ coshK
where K = cosh™'(1/¢).
3.1.2 Finding the x{-Component
Substituting (14) in (7) yields
1
F=ce = ——— (15)

ccosh’(K + 5)
Integrating between 0 and s yields
x1(s) = é[tanh(K + ) —tanh K |
= cosh K tanh(K + s) —sinh K. (16)
Proposition 1. The geodesics starting at the origin and parameterized by

s =+/2x (arc length)



On the Heat Kernel of a Left Invariant Elliptic Operator 203

are given by

x1(s) = cosh K tanh(K + s) — sinh K,
x2(s) = logcosh(K + s) — logcosh K,

with K = cosh™'(1/c), where c is the constant value of the momentum p;.

4 The Riemannian Distance

We shall express the Riemannian distance from the origin in terms of the boundary
conditions

x1(t) =x1, x(1) = x0.

Making s = 7 in (14) and (16) yields

o cosh(K + ‘C)’ (17)
cosh K
x1 = cosh K tanh(K + 7) —sinh K (18)

We shall solve the system (17) and (18) for 7 and K in terms of the boundary
conditions x; and x,. It will be useful to denote W = K + t and solve the system
for the unknowns W and K. Then t = W — K will provide the distance from the
origin to Xx.

Using (17) Eq. (18) becomes

coshK .
X = sinh W — sinh K
cosh W
= e “gsinh W —sinh K. (19)

Equation (17) can be also written as
e 2 coshW —cosh K = 0. (20)
Taking the square and converting into sinh we have

e 22 cosh> W —cosh’ K = (0 <

e > sinh® W —sinh> K = 1 —e 2.
Factoring and using (19) yields

xi(e™2sinh W +sinh K) = 1 —e 22,
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Assuming x; # 0 yields

| —e 2%
e 2sinhW +sinhK = ———. (21)
X1

Adding and subtracting Eqs. (19) and (21) yields

X2 1_ —2)62 2 1 h
simhw = A e b)) sinha 0 (22)
2)C1 X1 2
, l—e2 —x} _ sinhx, x
§nhK = ——°  —N _ ¢ _n (23)
2x) X 2

Then we can compute the value of the parameter 7 in terms of x; and x;

t=W-K

= sinh_l (m + XIexz) — sinh_l (efmw _ ﬂ)
X1 2 X1 2

2 2\ 2
sinhox; + 231 + \/xl2 + (sinhxz +ex2 %‘)
= log

; (24)

. xz 2 . X2 2
e~ 2sinhxy; — 5 +4/x7 + (e‘xZ sinh x, — 71)

where we used the formula sinh™' u = log(u + /1 + u?).

Remark 1. If let x; = 0in (18) then tanh(K + 7) = tanh K, which implies t = 0.
Substituting in (17) yields > = 1 and hence x, = 0. In this case the geodesic starts
and ends at the origin and has the length zero and hence it reduces to a point.

5 Heat Kernels

Given two points xo and x in space R" and a time ¢ > 0 the propagator from x to
x within time ¢, is given by the path integral

P(xo, x51) = / e 5@ dm (), (25)

d5x0 Xt

where
Py vy = 19 1 [0,1] > R" 1 ¢(0) = xo, ¢(t) = x}

is the space of continuous paths ¢ from xo to x in time ¢. This means that P
depends on all continuous paths joining x¢ and x parametrized by [0, ¢]. Among
all the possible paths between the aforementioned points, the classical path plays a
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distinguished role. This is the path on which a classical particle would travel and is
given by the solution of the Euler—Lagrange system of equations. It is a remarkable
fact that for a classical Lagrangian, i.e., a Lagrangian which is at most quadratic
in X; and x;, the path integral (25) depends only on the classical action. This is
the famous van Vleck’s formula which expresses the path integral in the following
closed form (see [13]):

Pl = [ &S )

qu() Xt

= /det _ 1 280, x:0) e—Stroxin),
27 0xodx

where S(xo, x; ) is the classical action obtained integrating the Lagrangian along
the solution x(#) of the Euler-Lagrange equation. It is known that the action
function S(xo, x; t) satisfies the Hamilton—Jacobi equation:

(26)

as
T + H(x,y;VS) = 0,

where VS = (g—i g—‘;) The factor in (26)

_ 1 92S(x0,x:1)
V(t) = \/det (_E—axoax )

is called the van Vieck determinant, and it plays the role of the volume element in
the geometric method described in many articles (see, for example [2, 3, 5]). Now
we just need to construct the action function and the volume element to obtain the
heat kernels.

5.1 The Action Function

Since the underlying geometry is Riemannian, the action function between the
origin and the point x = (X}, x2) in time ¢ is given by

_dist(0,x)*  dist(0, x1, x2)*

S0, x;t
0, x:0) 21 21

see for instance [3], Chap. 7. Therefore it suffices to find the distance dist(0, x) in
the g-metric. According to our previous parametrization, the Riemannian distance
is the length of the geodesic, and it is given by dist(0, x) = 7/+/2, with T given by
formula (24).
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5.2 The Volume Element

As we mentioned in the beginning of this section, we need to compute the volume
element as the van Vleck determinant; see [5, Sect. 7.9]. This method works only for
the case where the Lagrangian is at most quadratic in the positions and momenta.
In order to achieve this goal, we make the change of variables

u=xi, y=e 2,

Then in the new coordinates (u«, v),
3)2(1 - ai, 3)2(2 =0, + vzaf (27)
and ) {
L= E(e—z’czai1 +03) = 5(%35 +v0, +1%3?). (28)

Now the Lagrangian £(u, v, i, v) and Hamiltonian H (u, v, 1, v) of the operator (28)
are at most quadratic in u, v, i, v. Then the action function between O(0, 1) and
(u,v)is

dist(0, 1; u, v)?
2t

A+~ '—v (1+u?)v—1—y 2
| ety o ()
— log ,
4t 1—u2—2 2 1—u2—2 2
7 Tyt (T)

SO, 1,u,v;t) =

and
S(ug, vo, u,vit) = S0, 1, u — up,v/vo;t).
Hence,
s  aS S vas
ug  ou’ vy v OV’
and

S _i(as 82_S)

avavy - Vo v Vavz

Now the van Vleck determinant is

1 928
V(t) = \/det (—E auauo)
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1 0%2S 928 B 202§ 0928
27 \| dudug dvdvy  dudvg dviuyg

_ L | @S e oS S\’
27| vy | Qu? ov TV Youov ) |

Noting that § = Z and using (27), we have

2¢ 92 2 2
o [ 2325 (28]

E axf @ a 8x18x2
hs] 2 2 2 2
e 2 at n 0t at n 0t
4mt x1 ax? 9x, 0x3
1/2
dt dt n Pr 71 / (29)
—_— —— ‘[ .
8x1 8x2 8x1 8x2
where the derivatives of T with respect to x; and x, can be obtained from (24) though

it is in a complicated form. Finally, combining the calculations in this section, we
obtain the heat kernel for the operator

0 Ja 1
_—]L: _ —2x282 82 X
ot o 2 (e w +0)
In fact, we may consider the heat kernel for the operator

k m

9 9 1o m 2
g_ZLj - E_Zf(e xzjaX21—1+axzj)
defined on Ry x G. Since
LiLjl=0 for i#]

then the heat kernel will be the product of heat kernels for each operator L;. One
has the following theorem.

Theorem 1. The heat kernel for the operator % - Z'};l L; defined on Ry x G
has the following form:

k 2
P(vast) = P(valvx27--'7x2k—ls-x2kst) = 1_[ ‘/j(t)e_Tjtv
j=1
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where
: X2 x%jfl 2 : X2 x%./'*l 2
sinh x; + €% 2= + \/x3,_| + (sinhxy; + e 25+)
7; = log - = ,
e % sinhxy; — XZ"Z_I + \/ x%j_l + (e sinhxy; — —)CZ"Z_I)2
V() et ( ot )2+ i ( ot )2+ 0t
(1) = — T T
/ 4t aij_l ax%j_l 8x2]~ ax%j
1/2
[ ot 0t N R :|2
— T .
aij_l 8x2]~ 8x2]~_18x2]~
Moreover,

P(xo,X,1) = P(O,xoxal,t),
with o being the group law which is defined by (2) and Xal being the inverse of Xo.

So far, all the calculations are based on the hypothesis that the constant ¢
in (9) is not zero. When ¢ = 0, then p; = 0 (from (9)). Then (7) tells us
that x; = O which implies that x;(s) = constant. Therefore, along any vertical
line, the operator becomes a§2 (which is the one-dimensional Laplacian) and the
corresponding geodesics are line segments (along the vertical line x; = constant.)
In this case, we may assume that x; = 0. From the formula (24), we know that

sinh x; + v/ sinh? x,

T = log
e~ sinh x, + v/e~2 sinh® x,
2 sinh
= log oY loge™ = x;.

2e~*2 sinh x;
It follows that the action function is

dist(0,0,x2)* > x3

S0, xy,1) =
0, x2,1) 21 4t 4t
and the volume element is

X2 x2

V(t) = .
@) 47t '\ sinh x;

The heat kernel in this case takes the form

1 X o
PO, x2,8) = — 2 e

4mt \ sinh x;
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Mixed-Norm Estimates for the k-Plane
Transform

Javier Duoandikoetxea and Virginia Naibo

Abstract The Radon transform constitutes a fundamental concept for X-rays in
medical imaging, and more generally, in image reconstruction problems from
diverse fields. The Radon transform in Euclidean spaces assigns to functions their
integrals over affine hyperplanes. This can be extended so that the integration is
performed on affine k-dimensional subspaces; the corresponding transform is called
k-plane transform.

An overview of mixed-norm inequalities for the k-plane transform and related
potential-type operators supported on k-planes is presented. Particular attention is
given to the action of these operators on classes of radial functions, and applications
to bounds for the Kakeya maximal operator are discussed.

Keywords Radon transform ¢ X-ray transform ¢ k-plane transform ¢ Grassman-
nian manifold * Mixed-norm estimates ¢ Directional operators * Homogeneous
singular integrals ¢ Potential operators ¢ Kakeya maximal operator

1 Introduction

The reconstruction of an object from a series of projections has its roots in
the work of Johann Radon [28, 29], who in 1917 showed that a sufficiently
smooth function of two variables is uniquely determined by its integrals along

J. Duoandikoetxea

Departamento de Matematicas, Universidad del Pais Vasco-Euskal Herriko
Unibertsitatea, Apartado 644, 48080 Bilbao, Spain

e-mail: javier.duoandikoetxea@chu.es

V. Naibo (B<)

Department of Mathematics, Kansas State University, 138 Cardwell Hall,
Manhattan, KS-66506, USA

e-mail: vnaibo@math.ksu.edu

T.D. Andrews et al. (eds.), Excursions in Harmonic Analysis, Volume 2, 211
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-8379-5_11,
© Springer Science+Business Media New York 2013



212 J. Duoandikoetxea and V. Naibo

arbitrary lines. A two-dimensional object can be thought of in terms of its density
function f(x1,x2), (x1.x2) € R?, and the integral

Py f((x1,x2), (ur,uz)) = /_ fx1 —tuy, xp —tup)dt,

where (1, up) is a unit vector in R2, corresponds to the total mass along the line
through the point (x;, x,) in the direction of (1, u;). The operator P; f is called the
X-ray transform or the Radon transform of f.

More generally, one can consider smooth functions on R” and integration over
affine subspaces of dimension other than one. Given f € #(R"), the Schwartz
class of rapidly decreasing functions on R” and an integer k € (0, n), the k-plane
transform of f is defined by

Pefe.m) = / Flx = ) dhe ().

where x € R”, m is a k-dimensional subspace of R”, and A; denotes Lebesgue
measure on 7. The operators P, and P, correspond to the X -ray transform and the
Radon transform, respectively, and they coincide in the case n = 2. For an extensive
overview of results and applications concerning these transformations consult the
book by Markoe [26] and references therein.

We denote by G(n,k) the Grassmannian manifold of all k-dimensional sub-
spaces of R” endowed with a finite measure y, i, unique up to a constant factor, that
is invariant under orthogonal transformations. We use the notation ¥, . for the affine
Grassmannian, %, ; = {(n,x) : 7 € G(n,k) and x € 71}, with the measure
induced by the linear functional i — [ ., 1) (ficpt (. x) dAp—i (x)) dyn ().

If £ € L'(R") then Fubini’s theorem yields
[ PG @) = 1 e 7 € Gl
T

and therefore Py f(x, ) exists almost everywhere for x € 7+, In fact, the above
equality gives that Py f is integrable on %, and

1 Pi f L, ) < Yok (Gui) | f 11 @y

As a consequence, Py f(ir, x) exists almost everywhere in (7, x) € ¢, x when f €
L'(R"). Even more, if 1 < p < 7 thenevery f € LP(R") is integrable over almost
every k-plane and therefore Py, is well defined on all of L?(R"). On the other hand,
if p > 7 then the k-plane transform is not well defined on L”(R") since there exist
nonnegative functions f € L”(R") that are not integrable over any k-plane of R";
for instance, f(x) = x(jx|>e) (x)|x|_% 1ogl\x\ . These results on lower integrability of
L? functions are due to Solmon—Smith [31] and Solmon [33]; see also Oberlin—

Stein [27], Calder6n [3], and Rubin [30].
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In this chapter we present a survey of results concerning boundedness properties
of the k-plane transform and other related operators on Lebesgue spaces in the
form of mixed-norm estimates. More precisely, we are interested in the following
inequalities:

a/r Va
(/ (/ |Pkf(x,n>|fdyn,k(n)) dx) < Crorlflran. ()
rx \JG@uk)

and

r/q 1/r
(/G( o (/l | P f(x, m)|? dkn—k(x)) an,k(n)> < Cpyrl fllLr@n. )

Inequalities of type (1) are motivated by the study of boundedness properties of
integral operators with variable kernel as explained in Sect. 2. Since G(n, 1) can be
identified with half S"~! and y, ; with the surface measure on it, inequality (4) of
Sect. 2 coincides with (1) for k = 1. When r = ¢, inequalities of type (2), when
true, describe boundedness properties of Py from L? (R") into L?(%, k) such as the
one for p = g = 1 in the previous page.

The organization of the chapter is as follows. In Sect.2 we motivate the study
of mixed-norm inequalities for directional operators that arise when applying the
method of rotations introduced by Calderén—Zygmund in [4] to study boundedness
properties of homogenous singular integrals with variable kernel. Section 3 contains
an overview of results on mixed-norm inequalities (1) and (2) for the k-plane
transform, and Sect. 4 emphasizes these inequalities when restricting the operators
to classes of radial functions. Section5 is devoted to mixed-norm estimates of
a family of potential-type operators defined on k-planes of which the k-plane
transform is a particular case. The proofs of the theorems appearing in Sect.5
comprise the study of a maximal operator associated to k-planes, which we address
in Sect. 6. The boundedness properties of this last operator on classes of radial
functions have fine consequences on the bounds for the Kakeya maximal operator
when restricted to such classes of functions and we present these in Sect. 7.

We conclude this section with a few words on notation. We will frequently use
the Lorentz spaces L' (R") and L?”*(R"). We say that the operator T satisfies a
weak (p, q) inequality if 7 is bounded from L?(R") into L?°°(R"); that is, there
exists a constant C such that

[{x eR" :[Tf(x)] > A} = C (”]{Hiﬂ)q

for all f € LP(R") and all A > 0. If the above inequality only holds for
characteristic functions of measurable sets we say that the operator T satisfies
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a restricted weak (p,q) inequality; this is equivalent to 7 being bounded from
LPY(R") into L9*°(R"). If 1 < p < oo then p’ will denote the conjugate index
of p, % + % = 1. For a measurable set E C R"” we use the notation |E| for its
Lebesgue measure and y g for its characteristic function.

2 Integral Operators with Variable Kernel
and Directional Operators

Suppose that 7 is a bounded linear operator on L”(R). Given u € S"~!, we define
the directional operator 7, on the space .’ (R") of Schwartz functions as follows: If
x € R?, then x = t,u + y, for unique 7, € R and y, € R" perpendicular to u, and
T.f(x) :== T(fux)(ty), where f € #(R") and f,(s) = f(su + yx). Note that
Fubini’s theorem implies that

ITufler@n = Clfllr@ny.  f e RY),

where C is independent of u, since 7" is bounded on L?(R").

Typical examples of directional operators are the directional Hilbert transform,
the directional maximal operator associated to the Hardy-Littlewood maximal
operator, and the X -ray transform. All of these appear when applying the method of
rotations introduced by Calderén and Zygmund in [4] in the study of homogenous
singular integrals of variable kernel. In the next two sections we explain how mixed-
norm inequalities for directional operators are sufficient to prove these boundedness
properties. See also the survey on directional operators and mixed norms by
Duoandikoetxea [15] and references therein.

2.1 The Directional Hilbert Transform and the Directional
Maximal Operator

Consider the singular integral with variable kernel

Q(x, ’
To f(x) :p.v./ﬂ@ll%f(x—y)dy, x € R",

where y' = y/|y| and we assume that £2(x, -) is integrable and has mean value zero
so that T, is well defined on . (R"). If §2 is odd in its second variable, the method
of rotations gives

Taft) =3 [ Q0w Hof(x)dotw),
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where H, is the directional Hilbert transform,
o0
—1
Huf(x)zp.v/ Mdl, xeR" ue s\
—00

Assuming sup, cgn fsn—l |£2(x, u)|" do(u) < oo for some r > 1, it then follows
that T is bounded from L?(R") into L?(R"), 1 < p < o0, if

p/r 1/p
(/n (/S,11 [H, f(x)]" da(u)) dx) < Cprll fllr@n - 3)

Inequality (3) is easily proved to be true for p > r since the directional Hilbert
transform is uniformly bounded on L?”(R"); on the other hand, only partial results
for the case p < r are known. It is conjectured that if 1 < p < oo then (3) holds
ifandonly if 1 < r < oo and 2 < ”l;l + 1. This last condition is shown to
be necessary by considering f(x) = x(x<1)(x) in (3), while the characteristic
function of a Besicovitch-type set rules out the index r = oo. The conjecture
was completely proved in the two-dimensional case and for 1 < p < 2 in
higher dimensions by Calder6n and Zygmund in [5]. These results were improved
by Christ, Duoandikoetxea, and Rubio de Francia in [8] to the range 1 < p <
max (2, ’Hz'l )

When 2 is even in its second variable, the study of boundedness properties on

Lebesgue spaces of the associated maximal singular integral,

2(x,y") p
To f(x) = sup / —nf(x—y)dy, x € R,
O0<e<N<oo Je<|y|<N |Y|

relies on mixed-norm inequalities for the directional maximal operator

h
Muf(x)zsupl/ | f(x —tu)| dt, ue S x eR".
h>0 h —h
Mixed-norm inequalities for M, analogous to those in (3) have been proved
for indices in the same ranges as for the directional Hilbert transform. See
Fefferman [21], Cowling—Mauceri [11], and Christ-Duoandikoetxea—Rubio de
Francia [8].

2.2 The X-ray Transform

The X-ray transform appears when considering integral operators with variable
kernel of the form



216 J. Duoandikoetxea and V. Naibo

hatw = [ S0 w -

Again, by the method of rotations,

hafe) =3 [ 26w P dow.

and therefore, under certain integrability conditions on §2, boundedness properties
of I o from L?(R") into L7(R") follow if the X-ray transform satisfies mixed-
norm inequalities of the type

1/q

q/r
(/ (/ |P1f(x,u)|"do(u)) dx) < Coprlflran. @
Rn Sn—l

3 Mixed-Norm Inequalities for the k-Plane Transform

In this section we tour results concerning inequalities (1) and (2) for the k-plane
transform.

Necessary conditions on the indices p, ¢, and r for (1) and (2) follow from
scaling arguments and by checking the inequalities with appropriate functions. More
specifically, regarding inequality (1):

* A scaling argument replacing f by fix) = f(Ax), A > 0, in (1), yields % -
%:k. )

* The condition 1 < p < ¢ is implied by the function f(x) = y(xj>e) (X)|x] 7
Wl\x\’ which is in L?”(R") for all p > 1 but is not integrable on any k-plane
with k > %, as mentioned in the introduction. Note that the condition from the
previous argument implies 1 < p < .

e The function f = yp,1) forces # % — k; indeed, it can be seen that
Py f(x, ) ~ 1 for large x and = in a subset of G(n, k) of measure proportional

to |x|¥=", from which it follows that

q/r
/ (/ |Pkf(x,n)|rdyn,k(n)) dsz/ || k=malr
RX G(n,k) |x|>c

The integral on the right-hand side is finite if and only if (k —n)q/r < —n and
since % = % — k we obtain the above-mentioned condition.

* The characteristic function of an appropriate parallelepiped implies % > %
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As for inequality (2):

* The same scaling argument as above now requires % - % =k.

* The condition 1 < p < # is again forced by f(x) = y(x|>¢) (x)|x|_%mlm.

* The characteristic function of a parallelepiped of side lengths 1 x § x --- x § for

a small positive number § gives r < (n — k) p’.

For inequality (1), the above conditions are also sufficient for the X -ray transform
(k = 1) and the Radon transform (k = n — 1) as proved by Duoandikoetxea—
Oruetxebarria in [16, 17], respectively. As for inequality (2), it is conjectured that
the above necessary conditions on the indices are also sufficient. The conjecture
has been completely proved for k > n/2 and partially proved for the case
k < n/2; see Solmon [32, 33], Oberlin—Stein [27] (¢ = n — 1), Drury [12-14],
Christ [7], Wolff [35] (k = 1). We next state the best-known results on mixed-norm
inequalities of type (2).

Theorem 1 (Christ [7]). Assuming % — % = k, inequality (2) holds for all f €
LP(R") if

and r <m—k)p,
orif

4 Mixed-Norm Inequalities for the k-plane Transform
on Radial Functions

A function f : R" — Risradial if f(x) = fo(]x]|) for some fp : [0, 00) — R. In
Duoandikoetxea—Naibo—Oruetxebarria [20], the authors considered inequalities (1)
and (2) when restricted to radial functions. In this context, those necessary con-
ditions on the indices stated in the previous section that follow from the scaling
arguments or that use radial functions to force the inequalities are also sufficient.

Theorem 2 (Duoandikoetxea—Naibo—Oruetxebarria [20]). For radial functions
inequality (1) holds if and only if

n n
I1<r<oo, lI<p<—-, ——-—
k= p q r P

and inequality (2) holds if and only if

lfrfoos 1§p<_s -
k' p q

The following figures illustrate the range of indices p and r indicated in
Theorem 2, with g given by the scaling relation outside of the picture.
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1 1
T r
1 1
k 1 k 1
n Ly n Loy
Inequality (1) - radial functions Inequality (2) - radial functions

The key point in the proof of Theorem 2 is based on an endpoint estimate
corresponding to the indices p = n/k, ¢ = oo, and r = o0, as stated in the
following lemma.

Lemma 1 (Duoandikoetxea—Naibo—Oruetxebarria [20]). If E C R” is radially
symmetric and I1 is a translate of a k-plane in R" then

M(E N IT) < Cru|EM.

The figure below illustrates Lemma 1 when n = 2 (and therefore k = 1): the
length of the intersection of the line IT with the set E given by the union of the
annuli is controlled by the square root of the area of E.

E=FUEULE;

E,
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The proof of Theorem 2 supplies the following estimates for the pairs (%, %) on
the borders of the regions depicted above for inequalities (1) and (2):

* Noting that the left-hand side of the inequality in Lemma 1 corresponds to the
k-plane transform of y g, we can rewrite it as

Sup PkXE(x77T) SCkJIHXE”L%»l(Rn)'
x€R", 7€G(n k)

This, in turn, implies that Py is bounded, when restricted to radial functions, from
L"EL(R™) into L (L") (in the spirit of inequality (1) and from L"/%!(R") into
L7 (L) (in the spirit if inequality (2), 1 <r < oo.

* The identity

— n—k
[roax= [ [ o) a0

(see Solmon [32]) and the identification of the manifolds G (n, k) and G(n,n—k)
through the correspondence 7 — 7+ yield

/ P f(x, ) dyu i () = ¢ I f(x),
G(n.k)

where [} is the Riesz potential of order k. The boundedness properties of /; then

show (D forr =1,1<p < ¢ ﬂ — 2 = k, and give a weak-type estimate for

r=1,p=149= 2
* In relation to inequality (1), Py is bounded from the class of radial functions in
LY Ry into L4°(L") for =k = 2 —k and 4 — 2 = k.

n
q

We refer the reader to Kumar—Ray [25] for Welghted versions of Theorem 2 with
power weights, and to Kumar—Ray [24] for weighted mixed norm inequalities for
the Radon transform on general functions.

5 Mixed-Norm Inequalities for Potential-Type Operators
Associated to k-planes

The X -ray transform is an element in a scale of potential-type directional operators
which appear when the method of rotations is applied to integral operators with
variable kernels that have the homogeneity of the Riesz potentials. Indeed, for 0 <
o < n, we have

Loa f(x) =/ L) e yyay = / Q(x.u) Po f(x.u) du,

||na
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where

P, f(x,u) :/_oo f(x —tu)|e|* " dr.

Then the X-ray transform corresponds to ¢ = 1. Analogously to what was
explained in Sect. 2.2, boundedness properties of I, o on Lebesgue spaces fol-
low from mixed-norm estimates of the type (1) for P, f(x,u). More generally,
Duoandikoetxea—Naibo—Oruetxebarria [20] considered mixed-norm inequalities for
potential-like operators supported on k-planes of the form

Praf(x.7) =/f(x—y)|y|”—kdxk(y>, 0<a<n,

(then P, = P;4) and proved the following theorem.

Theorem 3 (Duoandikoetxea—Naibo—Oruetxebarria [20]). For radial functions
inequality (1) holds for Py o if and only if

n n o n n—=k n
l<p<—, ——=-=uq,
o P 4 r p

The following figures illustrate the regions given by Theorem 3 for the indices p
and r according to the cases &« < k and « > k.

1 1
r r
1 1
@ k 1 1 k (3 1 1
n n P n n P
Theorem 3, a <k Theorem 3, o>k

When « < k, the proof of Theorem 3 is based on Lemma 1 and boundedness
properties of the Hardy-Littlewood maximal operator associated to k-planes. This
maximal operator is defined by

1
M f(x,m) = sup—k/ | f(x —»)|dAk(y), x eR", w € G(n, k),
rR>0 R¥ Jiyen:|yl<ry
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which coincides with the directional maximal operator of Sect.2.1 when k = 1.
Indeed, Lemma 1 allows to get an endpoint estimate corresponding to p = =,
r = o00,and g = oo, mainly,

sup Peaye(x,m) < C|E|¥", E radially symmetric,
x€R", reG(n k)

and the following version of Hedberg’s inequality [22] for potential operators
associated to k-planes,

Pioye(x,m) < C My yg(x, ) /| E[/",

This last inequality and boundedness properties of M) when restricted to radial
functions (see part (i) of Theorem 4 ) give an endpoint estimate for Py, corre-
spondingto p = ¢, r = 0o,and q = n/(k — ). More precisely, Py 4 restricted to
radial functions is bounded from L"/%!(R") into L"/(k=®).%0([,%),

All of the above allows to get appropriate weak estimates for indices p, r, g such
that (%, %) is on the segments with endpoints (5, 0) and (', 1) or endpoints (% 0)
and (1, 1), respectively, and ¢ is given by the scaling relation £ — 2 = . Finally,
for each fixed r real interpolation between Lorentz spaces yields Theorem 3 when
a <k.

The case @ > k uses Lemma 1 and the pointwise inequality for nonnegative f,
x € R" and 7 € G(n, k) given by

Pk,af(-xJT) = Pk,ﬂf(xvﬁ)l_s Pk,yf(xvn)sv o= (1 _S):B + sy,

0<B<a<y=n,

applied with 8 = k and y = n to get that P, is bounded, when restricted to
radial functions, from L"/*!(R") into L®(L"~®/@=5) The indices p = 2 and
r = (n — k)/(ox — k) correspond to the point of intersection of the segments with
endpoints (5,0) and (;, 1) and endpoints (%, 0) and (1, 1). The rest of the proof
follows similarly to that of Theorem 2.

Almost sharp versions (in terms of the conditions on p, ¢, and r being necessary
and sufficient) of Theorem 3 for k = 1 and k = n — 1 in the non-radial case were
proved by Duoandikoetxea—Oruetxebarria in [16] and [17], respectively.

6 The Hardy-Littlewood Maximal Operator
Associated to k-planes

In this section, we study boundedness properties of the maximal operator

My f(x) = sup My f(x, ),

neG(n,k)
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with My as introduced in Sect.5. The operator, .#) is known as the universal
maximal operator and it follows that

%mwmﬁﬁmm»xwﬂ

X€R

where R is a parallelepiped in R”. A construction using Besicovitch-type sets allows
to show that .#}, is unbounded on L?(R"), 1 < p < oo. However, this situation
changes for p > n/k when restricting to radial functions as stated in the following
theorem.

Theorem 4 (Duoandikoetxea—Naibo—-Oruetxebarria [20]). (i) The operator 4/}
is of restricted weak-type (, 1) when restricted to radial functions; this is,
there exists a constant C such that

n

LA a0\ B
|weWuMﬂm>Mmc<—JT@g,

for all radial functions f € L%'(R") and A > 0.
(ii) If p > n/k then M is bounded on L? (R") when restricted to radial functions;
this is, there exists a constant C such that

|4 fllLr ey < C |l fllLe@n

for all radial functions f € L?(R").

The case k = 1 of Theorem 4 was treated in Carbery—Herndndez—Soria [6].
However, the methods of proofs in [20] are different and unify well for all k& > 1.
We recall that part (i) is an essential estimate in our proof of Theorem 3. The proof of
Theorem 4 is a consequence of the boundedness properties of the Hardy-Littlewood
maximal operator and the following pointwise inequality:

Theorem 5 (Duoandikoetxea—Naibo—Oruetxebarria [20]). If E C R" is a
radially symmetric set of finite measure, then

Mg (x,m) < C Muge(0)"", x eR" 7w € G, k), Q)
where My, denotes the usual Hardy-Littlewood maximal operator in R" and the

constant C depends only on n and k.

An elementary argument was used in [20] to prove that there is a constant C
depending only on k and n such that
AM(BNE A[BIn E[\*/"
i )ECC[] |) ©
Ak(B) |A[B]]
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for all radially symmetric sets E in R”, all k-balls B lying on translates of k-planes
and where
A[B] :={x e R" : |x| = |y| for some y € B}.

Inequality (6) then says that
Miye(x,m) < C (o yp(x)", x eR" 7w e Gn.k).

where .o/ is the maximal operator over annuli on R”, this is,

A f(x) = sup

X€Agyp,0<a<b<oo |Aa bl

/ /()] dy.
Aap

with A, := {x € R" : @ < |x| < b}. Theorem 5 then follows after observing that
A f(x) ~ My f(x), xeR" fradial.

A by-product of the pointwise inequality (5) is a weighted version of Theorem 4.
We recall thatif 1 < p < oo, the weight w is in the Muckenhoupt class A, if there
exists a constant C such that

—1
(151, r99) (5 [ e ) e

for all balls B C R”". The class A; is defined as the class of weights w such that
Mpyw(x) ~w(x), xeR"

Let L (R") be the L” spaces based on R” with respect to the measure w(x)dx, and
LE9(R") be the corresponding Lorentz spaces. Then M), is bounded on L% (R"),
1 < p < oo, if and only if w € A, and from L! (R") into LL,*°(R") if and only if
w € A;. As a consequence we obtain:

Corollary 1 (Weighted version of Theorem 4). (i) If w € Ay, the operator M is
of restricted weak-type (1,%) with respect to the measure w(x)dx when
restricted to radial functions; that is, there exists a constant C such that

w

LW (Rn

dx <C ,
w(x)dx < 0

/{ixe]R” My f(x)>A}

for all radial functions f € L,’%’I(R”) and A > 0.
(ii) If p > n/k andw € Apin then My is bounded on Li,(R") when restricted to
radial functions, that is, there exists a constant C such that
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-2 f Nl g ey = €IS N Loy

for all radial functions f € LL(R").

In Duoandikoetxea—Naibo [18] inequality (5) was extended to other classes of
functions in the case of the universal maximal operator (k = 1)

R

1
MM f(x) = sup sup — | f(x —tu)|dt.
uesn—1 R>0 R —R
We say that a function f defined on R” is [ -radial if f(x) = fo(|x|;), where fy
is a function defined on (0, co) and |x|, = (Z’}Zl |xj|q)l/q, X = (X1,Xx2,°+ ,Xp)
e R".

Theorem 6 (Duoandikoetxea—Naibo [18]). Let 1 < g <n andlet E C R" be an
l9-radial set of finite measure. Then

Mixe(x) < C Muyp(x)'", x eR", 7

where the constant C depends only on n and q.

As in the case ¢ = 2, the proof of (7) combines an inequality with the maximal
operator over /,-annuli and the pointwise equivalence of this last operator with
the Hardy-Littlewood maximal operator when restricted to /9-radial functions.
Inequality (7) does not hold when ¢ = 1 or ¢ > n. Indeed, let § be a small positive
number, E be the /,-annulus with inner radius 1 — § and outer radius 1 + §, and
x = (2,1,0,---,0); then .4 yg(x) ~ 89 forq > n, M ye(x) ~ 1 forqg = 1,
and Mh/)(E(x) ~ 8.

Corollary 1. Let 1 < g < n. When restricted to |1-radial functions, .#, is bounded
on LP(R") for p > n and unbounded for p < n. For p = n it is of restricted weak

type.

Unboundedness for p < n follows when considering y g where E is the unit /¢-
ball; indeed, .#) x g (x) ~ |x|;1 for big x, and therefore .4, yg ¢ LY (R") if p < n.
In addition, .#, is not of weak-type (n,n) when restricted to /,-radial functions.
This follows from previous mentioned examples adapted to the /,-norm setting; for
instance, f(x) = |x|;1(10g |x|q)_1)({‘x‘q>e}(x) isin L"(R"), but 4, f(x) = oo.

A substitute of Theorem 6 for the cases ¢ = 1 and g = oo using a larger maximal
operator was also proved in Duoandikoetxea—Naibo [18]. This result also implies
sharp L? estimates, p > n, for ./ when restricted to /*°- and /'-radial functions.

Duoandikoetxea—Naibo [18] extended Lemma 1 to /9-radial functions for 1 <
q < n and showed that it is not true for ¢ = 1 or ¢ > n. As a consequence,
Theorem 3 also holds for P;, when restricted to the class of /?-radial functions,
1 < g < n, since its proof is based on Corollary 1 and this extension of
Lemma 1.
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We refer the reader to Duoandikoetxea—Moyua—Oruetxebarria [19] for a sharper
version of inequality (7), which allows for general radial functions (for ¢ = 2) and
uses the two-dimensional Hardy-Littlewood maximal operator as an upper bound
in all dimensions.

7 Application: Bounds for the Kakeya Maximal Operator

Given N > 0, let Zy be the set of all parallelepipeds in R" with n — 1 sides
of length a and the remaining side of length Na, for some a > 0. The Kakeya
maximal operator is defined by

1
Ay f() = sup W[R|f<y)|dy, xR

XEREZXN

Since every parallelepiped with n — 1 sides of length a and the remaining side of
length Na, for some a > 0, is contained in a ball of radius comparable to Na, then
J is pointwise dominated by the Hardy-Littlewood maximal operator; indeed,
there exists a constant C that depends only on 7 such that

N f(x) <CN" "My f(x), xeR".

It then follows that . %y is bounded on L?(R") for 1 < p < oo and is of weak-type
(1, 1).

A very important problem in harmonic analysis consists in estimating the
norm of the operator #y, ||#x| Lr—Lr, as a bounded operator on L?(R"). The
above pointwise inequality gives a bound for the weak-type (1, 1) operator norm
proportional to N"~!. Interpolation with the L (R") operator norm gives that

n—=1
||f/45/N||Lp_>Lp < an , 1< p<oo.

It is conjectured that 2%y is bounded on L” (R") with norm majorized as

C(p)(log N)“», for some a(p) > 0if p > n,

|ZNlLr—>Lr < _ .
C(p)N™"P=1(log N)*?»), forsomea(p) >0ifl <p <n.

This conjecture is related to the problem of determining the Hausdorff dimension
of the Kakeya set and the boundedness properties of Bochner—Riesz multipliers.
The conjecture has been proved when n = 2 in Cérdoba [9] and when n > 3 and
1 < p < (n+ 2)/2 (Cérdoba [10], Christ—-Duoandikoetxea—Rubio de Francia [8],
Bourgain [1, 2], Wolff [34], Katz—Tao [23]). The conjecture is also related to
sharp mixed-norm estimates for the directional maximal operator M, introduced
in Sect. 2.1 (see Duoandikoetxea [15]).
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Let S C R” be a star-shaped set with respect to the origin (i.e., if x € §, then
the segment joining x with the origin is contained in .S). Then S can be described
in polar coordinates as S \ {0} = {(p,u) € (0,00) x S"7' : 0 < p < Fs(u)},
IS| =1 [, Fs(u)" du, and

Fg(u)
[rre=piay= [ [ 17— it dpau
= /Sn_l Fs)" My f(x,u)du < n|S| . f(x).

This inequality implies that the Kakeya maximal operator is pointwise controlled by
the universal maximal operator,

Jy f(x) <n A f(x), xeR".

As a consequence of the boundedness properties of .#) given in Corollary 1 on
classes of radial functions we obtain the conjecture on the bounds of the Kakeya
maximal operator when restricted to /7-radial functions.

Theorem 7 (Duoandikoetxea—Naibo [18]). Fix 1 < g <n.

e If p > n there exists a constant C independent of N such that

N fller ey < C |l f L@y,

for all 19-radial functions f € LP(R").
o There exists a constant C independent of N such that

1
julgll{x SN FOOl> A < C LS Nl

for all l9-radial functions f € L™ (R"), (restricted weak-type (n,n)).
e There exists a constant C independent of N such that

1 _1
sup Al{x : | £ > AI¥ = C (log N)' ™ |f s

for all 19-radial functions f € L"(R"), (weak-type (n,n)).
e There exists a constant C independent of N such that

1N fller@ny < € log N {|Lf [l g

Sfor all l-radial functions f € L"(R").

The case ¢ = 2 (radial functions) of this theorem was already treated in Carbery—
Hernandez—Soria [6]. An analogous result for /'-radial and / *°-radial functions was
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also proved in Duoandikoetxea—Naibo [18] but with worse exponents for log N in
the weak-type and strong-type estimates corresponding to p = n.
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Representation of Linear Operators
by Gabor Multipliers

Peter C. Gibson, Michael P. Lamoureux, and Gary F. Margrave

Abstract We consider a continuous version of Gabor multipliers: operators consist-
ing of a short-time Fourier transform, followed by multiplication by a distribution
on phase space (called the Gabor symbol), followed by an inverse short-time
Fourier transform, allowing different localizing windows for the forward and inverse
transforms. This chapter focuses on the following broad questions. Firstly, for
a given pair of forward and inverse windows, which linear operators can be
represented as a Gabor multiplier, and what is the relationship between the Kohn—
Nirenberg symbol of such an operator and the corresponding Gabor symbol? We
answer this question completely. Secondly, for a linear operator of a given type,
can windows be specially chosen, or “tuned”, to suit the operator so that the
Gabor symbol reflects the operator’s type? In studying this latter question for
product-convolution operators, we derive a new class of “extreme value” windows
that, with respect to the representation of linear operators, are more general than
standard Gaussian windows while sharing many of Gaussian windows’ desirable
properties. The results in this chapter help to justify techniques developed for
seismic imaging that use Gabor multipliers to represent nonstationary filters and
wavefield extrapolators.
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Keywords Gabor multiplier * Gabor symbol ¢ Kohn—Nirenberg operator
» Schwartz kernel ¢ Short-time Fourier transform ¢ Analysis window ¢ Synthesis
window * Window pair * Compatible window pair * Extreme value window
* Spreading function * Underspread operator * Symplectic Fourier transform

1 Introduction

1.1 Overview

We are interested in exploiting the short-time Fourier transform, also known as the
Gabor transform, to establish a general framework for evaluating linear operators.
A Gabor multiplier is an operator consisting of a short-time Fourier transform,
followed by multiplication by a distribution on phase space—called the Gabor
symbol—followed by an inverse short-time Fourier transform. Such operators are
also known as localization operators, or anti-Wick operators, depending on the
context. (See, for instance, [2], [5, Chap. 2], and the references therein.) We envisage
a two-step scheme for numerical evaluation of a linear operator L: (1) represent L
as a Gabor multiplier and (2) numerically evaluate the Gabor multiplier on given
data. The scheme is predicated on the existence of fast algorithms to evaluate
forward and inverse Gabor transforms, which we discuss in detail elsewhere [9,11].
The present chapter is devoted to step (1). Thus we concentrate entirely on the
theoretical issue of precisely which linear operators may be represented as Gabor
multipliers based on given windows. In addition we study the subsidiary question
of how to adapt windows to suit the class of operators at hand. As a testing
ground for the latter analysis, we focus on product-convolution operators, which
are closely related to partial differential operators. This work was motivated by
two particular applications in seismic imaging, nonstationary filtering and wavefield
extrapolation. In both cases Gabor methods have yielded major improvements,
even before the underlying mathematics had been fully understood; details of
the particular applications appear in [10-13]. The present chapter supplies the
mathematical analysis needed to properly justify some of these newly developed
techniques.

This chapter is organized as follows. In Sects. 1.2 and 1.3, we fix our notation
and introduce the well-established Kohn—Nirenberg formalism, which provides a
convenient framework in which to discuss general linear operators. In Sect. 1.4 we
discuss a particular class, product-convolution operators, which provides some of
the rationale for Sect. 4.

Our principal object of study, Gabor multipliers, is defined precisely in Sect. 2.1.
In Sect. 2.2 we derive their Schwartz kernels, and then in Sect.2.3 we derive the
key equation, Theorem 2, that relates the Gabor symbol of a linear operator to its
Kohn—Nirenberg symbol.
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In Sect. 3 we use Theorem 2 to describe precisely the class of operators that may
be represented as Gabor multipliers based on a given pair of windows. We develop
these results further for the special case of Gaussian windows and then compactly
supported windows in Sects. 3.2 and 3.3, respectively.

Based on the results established in Sect.3 for Gaussian windows, in Sect.4
we take up the problem of studying a wider class windows that are suited to
Gabor multiplier representation of product-convolution operators. More precisely,
we investigate window pairs that, like Gaussians, respect the separation of time and
frequency inherent in product-convolution operators. This leads, via a classification
discussed in Sect.4.2, to the unexpected emergence of what we term “extreme
value” windows. These are analysed and compared to Gaussians in Sect. 4.3. Our
final result, Theorem 4, shows that extreme value windows, while sharing some of
the desirable properties of Gaussians, are in certain respects superior. We anticipate
that they will be useful windows in applications of Gabor analysis.

Finally, in Sect. 5, we give a brief summary.

1.2 Notation and Conventions

Our notation is mostly standard, with the exceptions that: (1) we use the version
of the Fourier transform that has a factor of 2w in the exponent, and (2) we
take tempered distributions to be continuous, conjugate linear, rather than linear,
functionals on the space of Schwartz class functions. Generally speaking, we deal
with functions and distributions on R”, where the value of 7 is fixed within a given
context, and R” is always the domain of integration, which we omit. We indicate
a point in R?" by a pair (x, y) of points x, y € R”, and integration over R?" is
indicated by a pair of integral signs. For convenient reference we have compiled in
Table 1 a list of some of the function spaces and operators that we use repeatedly.

We work within the basic framework of %, the space of continuous, linear
operators

L: % — 5,

making frequent use of the correspondence between .Z, and .7, [14]. More
precisely, given a linear operator L € .%,, there is a unique distribution K =
K(L) e 5”2/”, its Schwartz kernel, that satisfies the equation

(K,0 ® @) = (Lo, 0) Vo,0 € 7. (1)

And conversely, given K € .7}, , the Eq. (1) evidently determines a unique L € .%,.
(Here ® denotes the tensor product: f ® g(x,y) = f(x)g(y).) The adjoint of a
linear operator L € .%, is the linear operator L* € ., defined by the equation

(L*0.0) = (LO.9)  Vo,0 €7, 2
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Table 1 Notation
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S Function and distribution spaces
Schwartz class functions ¢ : R” — C
724 (conjugate linear) tempered distributions u : ./, — C
P, C° functions ¢ : R" — C such that |0%¢p| is bounded
by a polynomial p, for every multi-index o
Operators
Description Symbol Action on functions Adjoint
Composition with a Ty pr>goy Ty =
change of variables o
¥ R" >R ‘det Jy—1 ‘ ’7W_1
F . 7 -9
Fourier 7 5?”,_) %n, ¢ () _(pz(fl)éx F* = 7!
transform (T = ) = [ (x) dx
F1 1 Sy = S L y) > ZeE,
Partial Fourier ! (2’; (2’; wx.y) _Zmé.l;ﬁ(iy) Fi =771
transform (Fan = ) =/e To(x,y)dx
Pt Sy = S ,y) = Fre(x,
Partial Fourier 2o 2n o(xy ) _Zmngp(x' " T =75
transform (yZn g yZn) = _/ e (p(X, y) dy
‘ Fot o= S 9.5 > @ wn) .
Symplectic ’ A Ft = Fy
Fourier (S50 = 73, = [[ mEnT g (x, ) dxdg ’ ’
transform
. M&‘ : %z g %z it
Modulation x) > 2TE X (x M =M_
(S > ) p(x) o(x) p £
. T : S —> S
Translation Y (;n/ N %;) (1) = (t — x) TF =T_y
Multiplication Py Py —> S o> g -
by A €.

In order for the operator .7, listed in Table 1, to be well behaved, some
restrictions have to be placed on ¥; in this regard we introduce the notion of a
“tempered change of variables”, as follows.

Definition 1. We say that a smooth, invertible map

¥ R" > R"

is a tempered change of variables if each of the operators .7, 7%, 7y —1,and T, ]//*,1

maps .%,, into .%,.

There are two tempered changes of variables on R*” whose corresponding operators
we assign special notations:

I_=Ty_, where ¥y_(x,y) = (x,y —x); 3)
Ts = Ty, where ¥(x,y) = (¥, —x). )
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In terms of this notation, the symplectic Fourier transform is simply the usual
Fourier transform composed with the operator 7, i.e., %y = Z;.%.

1.3 The Kohn—Nirenberg Formalism

Given an arbitrary tempered distribution o (x, §) € .5, we write o (X, D) for the
operator defined by the formula

G(X.D): S — F o(X. D)p(x) = / PTG (x,£) Fp(E) dE. (5)

(Here X : R” — R” denotes the identity map, so that, for example, X%(x) =
x%. D stands for the differential operator D = ﬁa.) We refer to o(X, D) as a
Kohn—Nirenberg pseudodifferential operator; the distribution o (x, §) is its Kohn—
Nirenberg symbol.

In the context of classical pseudodifferential operators, where the symbol o (x, §)
is required to be smooth and of bounded growth, the integral on the right-hand side
of (5) is inherently well defined. A simple way to give the integral an unambiguous
interpretation in the present much more general setting is to define o (X, D) in terms
of its Schwartz kernel:

K(o(X, D)) = 9_%0. (6)

Since each of the operators .7_ and .%; carries .7, bijectively onto itself, it is evi-
dent from the representation (6) that the class of Kohn—Nirenberg pseudodifferential
operators on R” is identical with .%, itself. Among the various ways to represent a
linear operator, however, the Kohn—Nirenberg symbol and accompanying formal
representation (5) are of particular interest since, from the physical point of view,
they are natural both for partial differential operators and for nonstationary filters
[7,§ 14.2]. In other words, in applications one is sometimes given the Kohn-
Nirenberg symbol of a linear operator directly.

Note that the Kohn—Nirenberg symbol o; and the Schwartz kernel K(L) of
a linear operator L : ., — .7, both belong to .#;,. But there is a sense in
which these are distinct versions of .7, in that o is a distribution on phase
space, R" x @, while K(L) is a distribution on the cross product R” x R" of
the underlying space with itself. Indeed, since it is sometimes useful to make this
distinction between space and frequency, we reserve £ and 7 for frequency variables,
using other letters (such as x, y, 7, ¢, v, w) for spatial variables. Of course here we
are using the terms “space” and “frequency” in a generic sense to indicate that the
variables in question are Fourier dual to one another. Depending on the particular
context, “space” could represent any of space, time, or space-time, with “frequency”
representing wavenumber, frequency, or wavenumber-frequency.

One last notion pertaining to the Kohn—Nirenberg formalism plays a central role
in the present chapter. The spreading function of a linear operator L € .%, is defined
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to be the symplectic Fourier transform of its Kohn—Nirenberg symbol. Hence the
spreading function ¢ is a distribution on phase space that represents the operator
L, just as the original symbol o does.

1.4 Operators with Distinct Characteristics in Space
and Frequency

The Kohn—Nirenberg formalism gives a precise notion of the “spatial” and the
“frequency” structure of an operator L € .%,: the behaviour of the symbol oy (x, §)
in the x variables corresponds to spatial characteristics; the behaviour of oy (x, §)
in £ corresponds to frequency. We are especially interested in operators that have
distinct characteristics in space and frequency. The prototypical class exhibiting
such a distinction is product-convolution operators, which are operators of the form
P,C, where C; denotes convolution with f and P, denotes multiplication by g
[1]. The Kohn-Nirenberg symbol of P,C is easily seen to be

o(x,8) = g(x) 1 (). 7

Thus the Kohn—Nirenberg symbol of a product-convolution operator is a tensor
product,0 = g® ? In general the nature of g and ? may be completely different
from one another, in which case the corresponding operator has completely different
spatial and frequency characteristics. The fact that every linear partial differential
operator is a finite sum of product-convolution operators, as can be seen from the
general form of the symbol

o(x.§) =) galX)E",

underlies the importance of the latter class. Moreover it is in the nature of partial
differential operators for the symbol to be polynomial in frequency, while the
spatial structure, corresponding to the functions g, typically represents physical
parameters that are of a very different nature—possibly not even smooth.

Based on these considerations we tailor our analysis in this chapter to operators
that have distinct characteristics in space and frequency, and we focus on repre-
sentations of such operators that preserve this distinction. More precisely, we study
the representation of operators as Gabor multipliers, described in Sect.2. A Gabor
multiplier has an associated Gabor symbol, analogous to the Kohn—Nirenberg
symbol. In Sect. 4 we introduce the notion of compatible window pairs, which lead
to Gabor multiplier representations that respect the distinction between space and
frequency in the following sense: up to a phase factor, the resulting Gabor symbol
is a tensor product if and only if the Kohn—Nirenberg symbol is.
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2 The Relation Between Gabor and Kohn—Nirenberg
Symbols

2.1 Gabor Multipliers
Ifge 5’”/ is a tempered distribution, then the formula

Vep(x,§) = (M:Tog, @)

defines a short-time Fourier transform Vy, : %, — 75, with analysis window
g. The basic theory of short-time Fourier transforms is described in [7, § 3]. For
y € “n, the range of V), lies in .%,; the adjoint V,* of V,, is the map

V) S = S (Vu, @) = (u, V).

If the distribution u € .5, happens to be an L? function, then Vy*u is given by the
formula

Vou(t) = // u(x, E)M Ty y(r) dxdé.

For r > 0, let ¢, denote the scaled Gaussian on R”, ¢, (x) = e~ T%% Given a
pair of distributions (g, y) € .7, x ., we write (g, y) for the limit

(g,y) = lim Vepr(x,0)V, 0, (x,0) dx

r—>00
= lim /g * @ (X)Y * @y (x)dx ¢))
r—>0o0

whenever the latter exists and is finite. Here the symbol * denotes convolution.

Definition 2. A window pair on R" is a pair of distributions (g, y) € .7, x.#, such
that (i) for every pair of Schwartz class functions (¢, ) € .7, X.%;, @Vye € Y,
and (ii) in the sense of (8), (g, y) is well defined and non-zero. We write WP,, for
the set of all window pairs in .7} x ..

It is evident from the definition that (g,y) € WP, if and only if (y,g) € WP,.
Examples of window pairs include:

* Any pair (g, y) of Gaussians g(x) = e, y(x) = e ***, where m, u are
positive scalars

* Any non-orthogonal pair of Schwartz class functions.

* (g,y) when g is bounded by a polynomial and locally integrable, y € ., and
{g,v) #0

* The pair (1, §) (i.e., the constant function 1 and Dirac’s delta function)
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It is a basic fact about the short-time Fourier transform that for any window pair
(g,v), the map
1 B
(g,y)VV Ve 1 S — S ©)]
is the identity. Recall from Table 1 that we use the symbol P) to denote multiplica-
tion by A. Inserting P, between the forward and inverse transforms of (9) leads to
the following.

Definition 3. Given a window pair (g, ) on R” and a distribution A € .7}, we
call
1
M = ——V*PV,
eyt

a Gabor multiplier; we refer to the distribution A as its Gabor symbol. g and y are
the analysis window and synthesis window, respectively.

Definition 2 ensures that .#; " is well defined. More precisely, .#;" determines
a well-defined sesquilinear functional (¢, 0) (///f’yqo, 0), with the prescribed
interpretation
8.y _ 1 Vo
(A" .0) (g’y)(l,ngVyé’)-

(Note that Feichtinger and Nowak [3] use the term “short-time Fourier transform
multiplier” for a Gabor multiplier based on identical windows (g, g), while in [3]
“Gabor multiplier” refers to a more general object than we have defined.) A Gabor
multiplier, in the sense of Definition 3, is a linear operator belonging to .Z,. Its
adjoint is also a Gabor multiplier, and the precise connection between the two works
out as follows.

Proposition 4. For any window pair (g,y) and any distribution A € .7, the
adjoint of the Gabor multiplier //{f’y is (///f'y)* = ///;y'g

The structure of a Gabor multiplier is such that it carries an implicit diagonaliza-
tion on phase space. From the theoretical point of view, this fact makes it desirable
to express a given linear operator L € %, as a Gabor multiplier, the structure of
the operator then being encoded in its Gabor symbol. Note that the Kohn—Nirenberg
form is itself a Gabor multiplier, as the following easily verified formula attests:

Yo e Sy, MY =o0(X,D). (10)

This is just one extreme of a whole range of such representations, each of which
has its own characteristics. Since there exist fast computational methods to evaluate
discretized Gabor multipliers [9] it is also desirable to express an operator as a Gabor
multiplier from the point of view of applications. However, speed of computation
is contingent on localization of the windows, so from this point of view the Kohn—
Nirenberg form (10) is not particularly advantageous, as the analysis window 1 has
no localization whatsoever.
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2.2 The Schwartz Kernel of a Gabor Multiplier

One problem that we are concerned with in the present chapter is to express a
given Kohn—Nirenberg pseudodifferential operator as a Gabor multiplier based on
prescribed windows. Before considering the issue in detail, we deal briefly with
the converse problem of expressing a given Gabor multiplier as a pseudodifferential
operator. In light of the expression (6) for the Schwartz kernel of a pseudodifferential
operator, the latter problem is equivalent to computing the Schwartz kernel of a
Gabor multiplier. This turns out to be relatively straightforward and can be carried
out in full generality. In stating the basic result we make use of the following
notation. Let E : %}, — %5, denote the map defined by

Ep(xvé) :p(x,x,%-,_é)- (11)
The corresponding adjoint is the map
E*: S, — S (E*u, @) = (u, E@).

Theorem 1. An arbitrary Gabor multiplier ///f’y has Schwartz kernel

1 * *
Ky = 7 eiE A (12)

Proof. By Definition 3,

1 -
(A7 .0) = WM’ VeV, 0).

3

and we have

VegV,0(x.8) = / p(D)e g (1 — x) dr / 0(x)e 2 "5 (¢ — x) dr
= / / @)™ Eg(r — x)0(x)e " (v — x) drde
= // XM= 5(r — x)g(t — x)0@@(7, 1) drdt (13)

= // e_z”i(f*f)'(f’_g)T(x,x)f ® g(1,1)0¢@(z, t) drdt

= Vyez0 ®9(x, x, §, =£).
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Thus,

1
(M7 0, 0) = 0] (A EV,0:0®9)

1
= Gy Vresf . 0®0).

2.3 The Key Equation Relating Symbols

Since generalized Kohn—Nirenberg operators encompass all of .Z, (by (6)), given an
arbitrary Gabor multiplier ./ f ¥ on R”, there exists a distribution o € .9, such that
o(X,D) = A, f v, By Theorem 1, this is equivalent, in terms of Schwartz kernels,
to the equation

1
3_920' = mv;ég *A, (14)

which can be solved for ¢ in terms of A to yield

(g - Ve E A (15)

On the other hand, it is not possible in general to solve Eq.(14) for A in terms
of o. In order to characterize precisely when a solution does exist, it is simpler to
compare the symplectic Fourier transforms of o and A rather than the distributions
themselves. Recalling the operators .7_, .7, and E defined earlier on lines (3), (4),
and (11) and letting 74 denote the inverse of 7_, we begin with a preliminary
calculation.

Lemma 5. As operators on .75,

Ty VT4V gz EY = Vay Fs.

y®g
Proof. 1t suffices to compare the action of the respective adjoint operators

EVyez -7 T and Z Py,

where P@ denotes multiplication by Vv, on the space %, of test functions. Thus
we verify that for every test function ¢ € .%5,,

EV,or 757 T = 7, (Ti7).
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This is a matter of direct calculation:
EVyoi T-Fy ' T p(x,§) = Vyoz T-Fy ' T p(x, x, £, —§) (16)
y(y —x)g(r —x)dndy dr
= /// 2T T (i, 1 — y)F(y — X)
g(t —x)dndydz. an

Applying the change of variables (y,?) — (t,u) = (y — x,t — ), the integral (17)
transforms to

/// eZﬂineZﬂi(I"rx)wcz*(p(n,M));(_L,)g(t + u)d?]dl’du
- / // TCTTENTIN G (1)g (¢ + u)p(—u. n)dv dy du

= [[[ emeremeny @t — et a du
= 7, (Vevg) (x.6). (18)
Comparing (16) and (18) yields the desired result. ]
The relation between the symplectic Fourier transforms of o and A is as follows.
Theorem 2. The equationo(X, D) = ///f’y holds if and only if 6° = ﬁ Vey 2.
Proof. Suppose o(X, D) = .. Then

o' = G F1 Ty T_Fro

1

1
= —— 7T V5-E*A
(g.7) r®s

1 ~
= ——V,y A® (by Lemma 5).
(g.7)
Conversely, if 6° = Q}T Y :X\S, then, again by Lemma 5, Eq. (14) holds, which

says that 0 (X, D) and ./ f 7 have the same Schwartz kernel and hence are equal.
O
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Theorem 2 is not a new result. The special case where g = y are identical,
normalized Gaussians appears in [5, p. 141] and more recently as Theorem 17.1
in [15]. In the one-dimensional setting, with the additional assumption that the
operator in question be traceclass, the special case corresponding to identical, but
not necessarily Gaussian, windows appears as Equation (10.3.19) in [8]. In any case
our main interest in this result is as a means to characterize the class of operators
that may be represented as Gabor multipliers based on a fixed window pair.

3 The Class of Operators Based on a Fixed Window Pair

Although every Gabor multiplier has a corresponding Kohn—Nirenberg symbol,
Theorem 2 implies that for a fixed window pair (g, y) there need not exist a Gabor
symbol corresponding to every Kohn—Nirenberg operator. The general situation is
that given a window pair (g, y), there is a corresponding class of operators that may
be expressed as Gabor multipliers based on (g, y):

Op(g.y) = {M7 | he A,

Theorem 2 facilitates a simple characterization of Op(g, y), illustrated in the present
section. Our ultimate objective, which motivates Sect. 4, is to “tune” Op(g, y) to
include operators of a desired type by judicious choice of g and y.

3.1 Characterization of the Spreading Function

The basic relation between Gabor and K-N symbols provides a representation of the
set Op(g, y) of all Gabor multipliers based on (g, y) in terms of the corresponding
set of spreading functions. We use the following notation: given ¢ € &2,, we write
¢, for the set of distributions

0I5 =00 |pe A, }.
Theorem 3. Given a window pair (g,y) on R",
Op(g.7) = {0(X.D)|5" € Vey.#3,} -

Proof. Given o € .7 , there exists a distribution A € .#j such that 6° =
ey VerA ifandonly if 6° € Ly Vey 75, = Voy 75, O

The problem of describing Op(g, y) is thus tied to the description of the set of
distributions V,y.#; . Let us now specialize to the case of Gaussian windows.
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3.2 Gabor Multipliers Based on Gaussian Windows

We study the dependence of Op(g,y) on (g,y) in the case where g and y are
Gaussians, from the following perspective. If L is a given product-convolution
operator, say, to what extent can we choose g and y to ensure that L € Op(g, y)?
The starting point in this regard is a calculation based on Theorem 3.

Proposition 6. Let g(x) = e™** and y(x) = e "** be Gaussians on R", where
m, > 0. Then

Op(g.y) ={0(X,D) |5’ € (h®k).%,},
m x2
where h(u) = e~ gnd k(n) = e mFal,

Proof. By a straightforward calculation,

n

b4 iy — M T
Vey(u,n) = e Tt NeT mAu e T mFu
2y (u, 1) m+
n - m
Since | /27— e Ty = 7 it follows that Vey 7, = (h@k) 73, for
the given /1 and k. The proposition then follows from Theorem 3. O

Roughly speaking the broad implication of Proposition 6 is that if L € Op(g, y),
then the spreading function of L must be rapidly decaying, the rate of decay being
dictated by the Gaussian h®k. For example, every underspread operator, defined as
an operator having compactly supported spreading function (hence decaying more
rapidly than 1 ®k), belongs to Op(g, y). To analyse the situation in more detail, let
us consider product-convolution operators L of a special type, namely those having
a Gaussian Kohn—Nirenberg symbol of the form

o1 (x,€) = e re e, (19)

where a, b > 0. The spreading function for such an operator is

n
~ b4 I
B = (=) & Fee
a

For h, k as in Proposition 6,

&) € (h®k).7,

— (h@k)™'5} € 7,

2 mu 2 2
—_— = >(0and — — > 0. (20)
b m4+u a m4+pu

—

The quadratic inequalities (20) easily yield the following result.
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Proposition 7. Let g,y be as in Proposition 6, and let L € %, have symbol (19).
In the case where g = y (i.e. m = ), L € Op(g,y) if and only if ab < 4x? and
a/2 <m < 2m?%/b. In the general case, for any a, b, the inequalities (20) determine
an unbounded region in the (m, ) plane for which L € Op(g,y).

The foregoing proposition illustrates several facts. Firstly, it is restrictive to use
identical analysis and synthesis windows: an operator L of the given type need
not be representable as a Gabor multiplier based on identical Gaussian windows.
Secondly, from the point of view of the operator L, the smaller the value of the
product ab (corresponding to slower decay of the symbol o, ), the larger the class
of window pairs (g, y) for which L € Op(g, y). Finally, even if ab is large, L can
be represented as a Gabor multiplier based on windows (g, ) provided that g, y
are chosen to have sufficiently different widths (i.e. with mu sufficiently small and
m + p sufficiently large).

In dealing with product-convolution operators it is very convenient to be able to
analyze the separate behaviour of the functions / and k arising in Proposition 6,
facilitating results such as Proposition 7. The fact that Op(g, y) can be described in
terms of a tensor product #®*k is a special feature of Gaussian windows, but it is not
unique to them. In Sect. 4 we introduce a broader class of window pairs that share
this same advantage.

3.3 Multipliers Based on Compactly Supported Windows

We have mentioned already that rapidly decreasing windows are desirable for
numerical computation. In this respect one cannot do better than to use windows that
have compact support, which of course decay even faster than Gaussian windows.
In this section we examine briefly the representation of a very simple class, namely
translation operators, as Gabor multipliers based on compactly supported windows.
Translation operators are underspread, so the results above in Sect. 3.2 show that
using arbitrary Gaussian windows, any translation operator can be represented as
a Gabor multiplier. This is not the case for compactly supported windows, as we
now show.
The Kohn—Nirenberg symbol of translation by T € R”, denoted 7%, is

0(x.8) = ¥,
which has symplectic Fourier transform
o’ (y.m) = 8(y + 1)8(n).
Thus the support of 6* is the singleton {(—z, 0)}.

Now, suppose that we wish to express the operator 7; = o (X, D) as a Gabor
multiplier based on compactly supported windows g, y. Theorem 2 implies that
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if this can be achieved using Gabor symbol A, then suppc® = supp (Vg)/f‘). In
particular, since

supp (Vg yA*) € supp Vgy N supp A°,

it is necessary that supp® < supp V,y. But the support of V¥ is constrained by
that of g and y, as follows.

Lemma 8. Let (g,y) be a window pair on R" where at least one of supp g and
suppy is bounded. Then the support of Vyy is contained in

(suppy — supp g) x R",

where the minus sign denotes Minkowski difference:

suppy —supp g = {x — y|x € suppy and y € supp g}.

Proof. Note that boundedness of supp g or supp y implies supp y—supp g is a closed
set. The integrand of the expression defining V,y, e 2"y (1) g (7 — u), is different
from zero only if T € suppy and T —u € supp g, or, equivalently, if ¢ € supp y and
u € T — supp g, which implies that

U € suppy — supp g. 21
So if (21) fails to hold, then V,y(u,n) = 0; since supp y — supp g is closed, this
implies that (u, ) & supp Vg . O

Thus the possibility of realizing a translation operator as a Gabor multiplier is
contingent upon the windows used, as follows.

Proposition 9. Given windows (g, y) where at least one of supp g and suppy is
bounded, the equality T; = ///f’y is possible only if T € supp g — supp y.

Proof. If T, = o(X, D) can be expressed as a Gabor multiplier .#; ", then, by
Theorem 2,

supp Vey 2 suppo” = {(—7,0)}.

Lemma 8 therefore requires that

(=7,0) € (suppy —suppg) x R”
< T €suppg —suppy.

|

Concerning the converse question of when a translation can be expressed as a
Gabor multiplier, we give a simple example. Let 1 € C§°(R") be a function that
is strictly positive on the open unit cube, (0, 1)”, and zero elsewhere, and consider
windows g = y = h. In this case, supp g — suppy = [—1, 1]", and one can easily
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verify that Vyy(—7,0) > Oif and only if t € (—1,1)". For t € (-1, 1)", the choice
of Gabor symbol

(g’ )’) e—27rir~$

Alx.§) = Ve Cr.0)

results in ./, f ¥ = T,. Thus almost every translation not excluded by Proposition 9
is realizable as a Gabor multiplier with the given windows, the only exceptions being
boundary points of the cube [—1, 1]".

4 A General Class of Gaussian-like Window Pairs

In this section we focus on a particular class of window pairs for which V,y has
an explicit form that generalizes the Gaussian case and which facilitates analysis of
Op(g, y) by separating space and frequency components.

4.1 Definition of Compatible Window Pairs

According to Proposition 6, V,y.#;, has the form (@ ® k).;, when g and y are
Gaussian. The tensor product form 4 ® k is a great convenience from the point
of view of trying to ensure that a given product-convolution operator L belongs to
Op(g, ), since the spreading function of any product-convolution operator is itself
a tensor product. On the other hand, Proposition 6 also shows that for Gaussian
windows g and y, the class Op(g,y) is limited to operators whose spreading
functions decay very rapidly—what one might call near-underspread operators. Do
there exist rapidly decaying windows for which V,y.#;  has the form (h®k).7;, , as
for Gaussians, but for which Op(g, y) is less restrictive? We show in this section that
the answer is yes. To do so, we study window pairs having the following property.

Definition 10. A window pair is said to be compatible, or, for emphasis, strongly
compatible, if V,y can be expressed in the form

Vey(u, ) = e Ohu)k(n),

for some smooth function ¢ : R* — R”.

The class of compatible window pairs includes all Gaussian pairs, but it includes
many other functions as well—see Sect.4.2. The following generalization of
compatibility serves a purely technical role in the present discussion.

Definition 11. A window pair (g, y) is weakly compatible if the spectrogram
[Vey |? splits as a tensor product:

Vey(x. £) = H(0)K (),
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for some H, K : R" — R. Equivalently, (g, y) is weakly compatible if V,y splits
as a tensor product up to a phase factor:

Vey(u,n) = ™D h(u)k(n), (22)

for some i,k : R"” — C and p : R — R.

For a weakly compatible window pair (g, y) the function V,y has a special form,
given in the next proposition. Here the notation }; is used to denote reflection
in the argument: f(x) = f(—x). (We omit the proposition’s proof, which is
straightforward.)

Proposition 12. A window pair (g,y) is weakly compatible if and only if there
exists a phase function p : R — R satisfying p(u, 0) = p(0, n) = 0 such that

e2mip(u,n)

Vg)’(uv n = |

TR (v *?) () (5/\ * ?) (). (23)

1
(g.7)
The main thrust of the above proposition is that if (g, y) is weakly compatible, then
the functions %, k in Definition 11 may be assumed to have the form 4 = y * g and
k =¥ * g, up to multiplication by a scalar. We return now to the implications of the
original Definition 10.

Proposition 13. A window pair (g, y) is (strongly) compatible if and only if there
exists a smooth function  : R" — R”" such that for every u € R",

_ yxg)
yT.§ = ———
(r.8)

Proof. 1f the pair (g, y) is compatible then Eq. (23) holds, where p has the specific
form p(u,n) = n - {(u) for some smooth ¢ : R* — R”. Taking the inverse Fourier
transform with respect to 7 of this equation yields (24), with ¢ = —. O

Tyw(rg)- (24)

The formulation (24) can be viewed as product-translation invariance of g, y: the
product of y with a translate of g is itself a rescaled translation of the product of y
with g. The advantage of this formulation is that it can be used to obtain an explicit
classification of compatible windows.

4.2 Classification of Compatible Windows

It turns out that there is one key example of a compatible window pair that is
essentially distinct from Gaussians. The class of all Schwartz class compatible
windows can be generated from this key example, together with Gaussians, by
means of a simple family of transformations and constructions, which we now
describe. The following two propositions may be easily verified directly from
Definition 10.
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Proposition 14. Let A be a non-singular linear transformation on R"; let wy, wy,
by, by be vectors in R"; and let ag,ay € C be non-zero scalars. If (g,y) is a
compatible window pair on R", then so is the pair (g',y'), where

g (1) = ape N g(At + by) and Y1) = 1"y (At + by).

In other words, compatibility is invariant under rescaling, translation, modulation,
and linear changes of variables, provided the same linear transformation is applied
to both windows.

Proposition 15. If (go, yo) and (g1, Y1) are compatible window pairs on R™ and
R”, respectively, then the window pair (g0 ® g1, Yo ® y1) is compatible on R™ 1",

A Gaussian on R” is a tensor product of Gaussians on R!, so in light of
Propositions 14 and 15, all pairs of Gaussian windows can be generated starting
with a pair of Gaussians on R!.

As mentioned earlier, the formulation (24) facilitates a classification of compati-
ble windows. More precisely, by taking repeated derivatives of the logarithm of (24),
one can set up a differential equation that must be satisfied by each component of a
compatible window pair and thereby explicitly compute all possibilities. The details
of this analysis are rather involved and will be presented elsewhere in [6]. The key
example that arises as a solution to the aforementioned differential equation is the
following.

Proposition 16. Let m, p and o be positive scalars, and set g(t) = e " and
y(t) = e =" Then the window pair (g, y) is compatible on R', and the associated
function ¢ required by Definition 10 is ¢ (u) = L 5 log (H'e - )

Like Gaussians, these windows have a fundamental role in probability theory and
arise in connection to a variant of the central limit theorem. More precisely, let £
denote the function g of Proposition 16 in the special case m = o = 1:

E()=¢"*.

Properly scaled affine transformations of E, of the form

1 a—t

_E ,

b ( b )
are the density functions of so-called “extreme value” probability distributions,
described in [4]. Based on this, we refer to the windows of Proposition 16 as extreme
value windows—see Fig. 1.

The Fourier transform of an extreme value window is proportional to the gamma
function, restricted to a line of constant real part:

mt—e® 2
7)o =, (2-20).
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,/\\

Fig. 1 Extreme value windows. The function f(r) = ¢/, above, and its reversal f(—t), below,
are plotted for « = 10. Note that f(—t) is close to being causal, i.e. zero for negative values of ¢.
This is because the double exponential e ' tends to the Heaviside function with increasing o

Thus the Fourier transform of an extreme value distribution is analytic, never zero,
and rapidly decreasing. Of course, since extreme value windows are compatible,
they are by design suited to the representation of product-convolution operators—or
other operators that have distinct space and frequency structure. The analogue of
Proposition 6 for extreme value windows is the following.

Proposition 17. Ler g(t) = e, y(t) = e "' be extreme value windows on
RY where m,u,a > 0. Then

Op(g.y) ={0(X.D)|5" € (h®k) A3},

where

_mtp

h(u) = (e"'l%" + e_"%l“) ‘ and k(n) =T (

w2
a )

Proof. By Theorem 3 it suffices to show that V,y.7) = (h®k).#, for the given
h, k. By direct calculation,

1 i _ma_ __po _% 2mi
Vey(um = — (1 + e (""**‘” +e ’"l+“u) r (m : - - %n) '

The proposition then follows from the observation that < (1 + emon) T S =
O
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In Sect.4.3 we use Proposition 17 to compare extreme value windows with
Gaussians in terms of representation of linear operators as Gabor multipliers. As
a final remark in the present section, we reiterate that the class of all Schwartz class
compatible window pairs can be generated by means of Propositions 14 and 15,
starting with pairs of Gaussians and pairs of extreme value windows on R! (see [6]).

4.3 Extreme Value Versus Gaussian Windows

Extreme value windows are attractive from the point of view of numerical com-
putation since they are rapidly decreasing. From the perspective of representing
operators as Gabor multipliers, extreme value windows have a decided advantage
over Gaussians in that the former are more general: a strictly wider class of operators
can be represented as Gabor multipliers based on extreme value windows than can
be represented using Gaussians.

Theorem 4. Let o, m, u,n,v > 0 be arbitrary positive scalars, and set
@)y =" gty =, g(t) =" p() ="
Then (g,y) is a more general window pair on R! than (f. @), in the sense that

Op(f.¢) C Op(g. ).

Proof. By Propositions 6 and 17, the conclusion of the theorem is equivalent to the
inclusion

(h®k)”; C (HQK).7;, (25)
where
mp 72
W) = e W k() = e,
n+v .
no v - 2
and H(u) = (em” +e—m“) . K =T (” Ty _zm ) .
o

Note that H (x) behaves like (" —e~"*)"" for large |u|, while Stirling’s formula

n v Jr2
shows that | K(n)| behaves like |n|%_%e_7” for large |n|. Therefore both i/H
and k /K are rapidly decreasing. Moreover, h/H and k/K are both in &; (and in
fact they are Schwartz class functions). It follows that

h _k , ,
(ﬁ@)f)’% C .,

which implies (25). O
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Of course the theorem holds for the reversals (f(—t),¢(—t)) of the given
extreme value windows as well. The difference in generality between the two classes
of windows is significant. For example, Theorem 4 immediately implies that for any
fixed extreme value window f,

| op(g.¥) c Op(f. /).

(g,}/) Gaussian

That is, even without using distinct analysis and synthesis windows, a fixed extreme
value window pair is more general than the totality of Gaussian window pairs.

5 Summary

Given the Kohn—Nirenberg symbol o;, of a linear operator L and a window pair
(g,7), one may apply Theorem 3 to decide whether L can be represented as
a Gabor multiplier based on g and y. And if it can, Theorem 2 shows how to
compute the Gabor symbol A in terms of or. Of course if L does not belong
to Op(g, y), the problem is to find new windows that allow representation of L.
This is potentially difficult since in general one wants to use windows that are
“nice” (highly localized and smooth, say), but the results we have obtained in the
present chapter nevertheless provide some guiding principles as well as certain
concrete results. For example, if L is near-underspread, then one may determine
appropriate Gaussian windows using Proposition 6. The general principle at play is
that the window pair (g, y) is more general (i.e., Op(g, y) is larger), the greater the
difference in localization, or width, between g and y. Thus, from the perspective of
representing a wide class of operators as Gabor multipliers, it pays to use distinct
analysis and synthesis windows.

For operators that have very different characteristics in space (or time) versus
in frequency, compatible windows can be used to construct a Gabor multiplier
representation whose symbol exhibits this same distinction. Extreme value win-
dows seem a natural window to use in this context, or even generally. However,
Proposition 17 shows that, although any extreme value windows g,y are more
general than Gaussians, still not every linear operator belongs to Op(g, y). Thus,
for instance, a partial differential operator whose spreading function does not
decay rapidly at infinity could not be represented as a Gabor multiplier in a non-
trivial way using the windows considered in this chapter; this is a direction for
further research. Concerning the somewhat technical notion of compatibility, it is
remarkable that it leads to extreme value windows, which in retrospect seem very
natural. Note that we do not have a complete classification of weakly compatible
window pairs, and so there may be some interesting windows of this type which
are not strongly compatible. Indeed it can be shown that a pair (g, y) of gamma
functions g(¢t) = I'(a —ibt), y(t) = I'(c — i bt) falls into this category.
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Lastly, we reiterate that, coupled with algorithms for fast computation of

discretized Gabor multipliers, the results presented in the present chapter help to
establish a general framework for practical evaluation of a wide class of linear
operators, including nonstationary filters.

References

10.

11.

12.

13.

14.
15.

. Busby, R.C., Smith, H.A.: Product-convolution operators and mixed-norm spaces.

Trans. Amer. Math. Soc., 263(2), 309-341 (1981)

. Cordero, E., Tabacco, A.: Localization operators via time-frequency analysis. In: Ashino, R.,

Boggiatto, P., Wong, M.W. (eds.) Advances in pseudo-differential operators. Operator Theory:
Advances and Applications, vol. 155. Birkhéuser, Boston (2004)

. Feichtinger, H.G., Nowak, K.: A first survey of Gabor multipliers. In: Feichtinger, H.G.,

Strohmer, T. (eds.) Advances in Gabor Analysis, Applied and Numerical Harmonic Analysis.
Birkhiuser, Boston (2003)

. Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or

smallest member of a sample. Proc. Camb. Phil. Soc. XXIV(Pt. 2), 180-190 (1928)

. Folland, G.B.: Harmonic analysis in phase space. Annals of Mathematics Studies. Princeton

University Press, Princeton (1989)

. Gibson, P.C., Zizler, P.. Compatible windows in Gabor analysis. Unpublished manuscript

(2002)

. Grochenig, K.: Foundations of time-frequency analysis. Applied and Numerical Harmonic

Analysis. Birkhéduser, Boston (2001)

. Kozek, W.: Adaptation of Weyl-Heisenberg frames to underspread environments. In:

Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applica-
tions. Applied and Numerical Harmonic Analysis. Birkhéuser, Boston (1998)

. Lamoureux, M.P., Gibson, P.C., Grossman, J.P., Margrave, G.F.: A fast, discrete Gabor

transform via a partition of unity, CREWES Technical Report Volume 15, University of
Calgary — Consortium for Research in Elastic Wave Exploration Seismology (2003)
Margrave, G.F., Ferguson, R.J.: Wavefield extrapolation by nonstationary phase shift. Geophys.
64, 1067-1078 (1999)

Margrave, G.F,, Ferguson, R.J., Lamoureux, M.P.: Approximate Fourier integral wavefield
extrapolators for heterogeneous, anisotropic media. Canad. Appl. Math. Quarterly 10(2),
331-343 (2002)

Margrave, G.F., Lamoureux, M.P., Grossman, J.P., Iliescu, V.: Gabor deconvolution of seismic
data for source waveform and Q correction. In: 72nd Annual International Meeting, Society of
Exploration Geophysicists, Expanded Abstract Volume, pp. 2190-2193 (2002)

Margrave, G.E,, Gibson, P.C., Grossman, J.P., Henley, D.C., Iliescu, V., Lamoureux, M.P.: The
Gabor transform, pseudodifferential operators, and seismic deconvolution. Integrated Comput.
Aided Eng. 12(1), 43-56 (2005)

Schwartz, L.: Théorie des noyaux. Proc. Internat. Congress Math. 1, 220-230 (1950)

Wong, M.W.: Weyl Transforms. Universitext. Springer, New York (1998)



Extension of Berezin-Lieb Inequalities

John R. Klauder and Bo-Sture K. Skagerstam

Abstract The Berezin-Lieb inequalities provide upper and lower bounds for a
partition function based on phase-space integrals that involve the Glauber—Sudarshan
and Husimi representations, respectively. Generalizations of these representations
have recently been introduced by the present authors, and in this article, we extend
the use of these new representations to develop numerous analogs of the Berezin—
Lieb inequalities that may offer improved bounds. Several examples illustrate the
use of the new inequalities. Although motivated by problems in quantum mechanics,
these results may also find applications in time-frequency analysis, a valuable cross-
fertilization that has been profitably used at various times in the past.

Keywords Coherent states e Berezin-Lieb inequality ¢ Quantum partition
function e Partition function ¢ Classical bounds ¢ Husimi representation ¢ Upper
symbol ¢ Lower symbol

1 Introduction

The Berezin—Lieb inequalities offer upper and lower bounds for partition functions
of elementary quantum systems. In particular, for a system composed of a single
canonical degree of freedom, let P and Q denote canonical Heisenberg variables,
fulfilling the commutation relation [Q, P] = i, in units where 7 = 1. Let |0)
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denote the normalized ground state of an elementary oscillator for which (Q +
iP)|0) = 0. Canonical coherent states for this system are taken to be states of the
form (see, e.g., [1-3])

|p.q) = Ulp.4110), Ulp.q] = e 27eh) e
for all (p,q) € R?, where U[p, q] denotes the unitary Weyl operator. Let H =
H(P, Q) denote the Hamiltonian for the system in question. The corresponding

classical Hamiltonian is denoted by H.(p,q). We introduce two well-known
symbols associated with #, namely, the Husimi [4] symbol Hy (p, ¢) defined by

Hyu(p.q) = (p.q|H(P,Q)|p.q) = (O|H(P + p, Q + q)|0), (2

and the Glauber-Sudarshan [5, 6] symbol Hg—_s(p,q) implicitly defined by the
operator representation

H(P,Q) = /Hc—s(p,q) |p.q){p.qldpdq/2m. (3)

It follows from Eq. (2) that these two symbols are related by the integral equation
Ha (') = [ 100.'1p.0)F Ho-s(p.)dpda /2x
= [ e (. dpag/an

Armed with these definitions, the Berezin—Lieb inequalities [7, 8] read

/e—ﬁHH(P’q) dpdg/2m < Tr[e PP < /e_ﬁHG‘S(P"” dpdq/2m. (5)

In what follows we will implicitly rederive this inequality as a special example of
our generalizations.

The purpose of this chapter is to extend such inequalities by offering infinitely
many additional symbol pairs that can stand in place of the Husimi and Glauber—
Sudarshan symbols in Eq.(5), thereby generalizing the original Berezin—Lieb
inequalities.

2  Multiple Phase-Space Symbols

In a recent paper [9], the authors have introduced a wide class of phase-space
symbols that are analogues of the Husimi and Glauber—Sudarshan dual pair. Let us
first recall the principal elements of that study specialized to the discussion at hand.
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We first introduce a nonnegative, trace-class operator 0 = ot > 0 which we
normalize so that Tr(o) = 1. Such operators have the generic form given by

U:ZCl|bl>(bl|s (6)
=1

where {|b;)}72, denotes a complete orthonormal sets of vectors, and the coefficients
{c;}2, satisfy the conditions ¢; > 0 and )2, ¢; = 1. In short, o enjoys all the
properties to be a density matrix.

We shall make use of the function Tr(U [k, x]o) defined for all (k, x) in phase
space, and we restrict o so that the expression

Tr(U[k,x] o) #0 7

for all (k, x) € R,
We next recall the Weyl representation of operators given by

A= //i(k,x)U[k,x] dkdx /2, (8)
where
A(k,x) = Tr(U[k, x]" A). )
Given two such operators A and B, it follows that
Tr(ATB) = //I(k,x)*é(k,x) dkdx/2m. (10)
In terms of the double Fourier transformation, given by
A(p.q) = /eiwk—m) Ak, x)dkdx/2m, (11)
and likewise for B(p, q), it also follows that
(4" B) = [ 4(p.0)" B(p.q) dpda/2x. (12
We next modify the symmetric expression for Tr(4" B) given by Eq. (10) so that

Ak, x)*

i — AN
Tr(4"B) _/ Te(U[k, x]o)

§ {Tr(U [k, x]0) B (k, x)} dk dx /27
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g

= //f_g(k,x)* By (k,x)dkdx/2x

Ak, x)

m} {Tr(Ulk.x]o)B (k. x)}dkdx/2n

— / A_o(pq)* Bo(p.q)dpdg/2m. (13)

In the final line we have introduced the Fourier transform of the symbols in
the line above. We next show that there are alternative expressions involving the
symbols A_;(p,q) and B, (p,q) directly in their own space of definition rather
than implicitly through a Fourier transformation.

We begin first with the symbol B, (p, ¢). In particular, we note that

B (p.q) = / k4= Tr(U [k, x]o) B (k, x) dk dx /2
= /Tr(U[p,q]TU[k,x] Ulp,qlo) Tr(Ulk, x]" B) dkdx/2n

= / Tr(U[k, x]U[p.qlo Ulp.q)") Te(U [k, x]" B) dk dx /27

= Tr(U[p.qlo Ulp.q]" B), (14)
where in the second line we have used the Weyl form of the commutation relations,
and in the last line we have used the Weyl representation Eq. (10), which leads us to

the desired expression for B, (p, g). This expression is the sought-for generalization
of the Husimi representation; indeed, if o = |0) (0|, it follows immediately that

B, (p.q) = Tr(U[p.q]10) (0|U[p.q]" B)
={(p.q|B|p.q) = Bu(p.q). (15)

For general o, to find the expression for A_,(p, ), we appeal to the relation
14" B) = [ A-a(p.)" Balpo) dpd/2n

- / Ao(p.q)*Te(Ulp.qlo Ulp.)] Bydpdg/2m,  (16)

an equation, which, thanks to its validity for all suitable operators B, carries the
important implication that

A= / Ao (prq) Ulp.qlo Ulp.q] dpdg/2n. (17)
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Observe that this equation implies a very general operator representation as a
linear superposition of basic operators given by U|[p.g]o U[p.q]", for a general
choice of ¢.

Equation (17) for A4 is the sought-for generalization of the Glauber—Sudarshan
representation; indeed, if & = |0) (0|, it follows immediately that

A= / Ao (p.q) Up.q110) (0| Ulp. gl dpdg/2m
= /A—g(p,q) |p.q){p.qldpdq/2n

=./"Aa_suxq)lp,q>qu|dpdq/zn. (18)

Once again there is a direct connection between the generalization of the Husimi
representation, A,(p,q), and the generalization of the Glauber—Sudarshan repre-
sentation, A_, (p, ¢). In particular, it follows that

Ao (r,5)= / A—o(p.q)Te(U[r,slaU[r,s]"U[p.qloU[p.q]")dpdg /27

— [ 40Tl = pag =]
oU[r — p.q —s]'o)dpdq/2x. (19)

This equation is a convolution, which just reflects the multiplicative connection
between these two symbols in Fourier space.

3 Derivation of Inequalities

Let {|r)}S2, denote an arbitrary, complete, orthonormal basis. Consider the expres-
sion [cf., Eq. (6)]

f(p.qlr) = (r|U[p,qlo Ulp.@)]'|r)

=> " al(r|U[p.q)|b:)*. (20)

=1

It follows that

/f(p,qlr)dpdq/Zﬂ =1, (21)
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and also that
o0
> fpglr) =1. (22)
r=1

We can interpret these results in two different ways: On the one hand, f(p, ¢|r) is
a probability density on R? for each value of r; on the other hand, f(p,q|r) forms
a discrete probability on {1, 2, 3, ...} for each phase-space point (p, ¢).

3.1 Jensen’s Inequality

The Jensen inequality [10, 11] applies to convex functions ¢ (x )—such as e #*—
and arbitrary probability distributions on x € R. If {((-)) denotes an average over
that probability distribution, then the Jensen inequality reads

((x)) = ((x)). (23)
or, in particular,
e P < (7). 24)
This equation will be important in what follows.
Let #H denote the Hamiltonian with a discrete spectrum {i,}°2, and an associ-
ated set of eigenvectors {|7)}°2, such that
Hlr) = prlr). (25)

It also follows that

H=> plr)(r| (26)

r=1

Following Lieb [8], we first observe that
(rle™™|r) = exp[—B(r|H|r)]

= exp [—/3 [0 1001 dpdq/zn}

< / e BH= (00 £(p.qlr)dpdg/2m. @7
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Summing on r leads to
Tr(e#™) < / e PH=(PD dpdg/27. (28)

Second, we learn that
exp[—B Ho(p.q)] = exp[=BZ; ur f(p.qlr)]

< > expl-Bu,] f(p.qlr). (29)

r=1

Integrating over R? leads to
/e_ﬂ Ao D) dpdg /27 < Tr(e ™). (30)

Above we have two separate inequalities, one an upper bound, the other a lower
bound. These bounds apply for any choice of o that fits our requirements, and so
we can decouple the choice of o and assert that o can be chosen independently in
the two cases. In summary, therefore, we have established the inequalities

/ e PHo (P dpdg/2m < Tr(e PHM) < / e PP dpdg/2n,  (31)

where ¢’ and o may be chosen independently of each other. This possibility permits
optimizing both bounds by taking the supremum over the lower bound and taking
the infimum over the upper bound. The bounds as given by Eq.(31) now lead to
upper and lower bounds, respectively, of the free energy F(8) = —InZ(8)/8,
where Z(f) denotes the partition function, as well as bounds on the ground-state
energy Ey since Ey = limg o0 F(B).

4 Symbols for the Lower Bound

We focus on the symbol

Hy(p.q) = Tr(U[p.qlo U[p.q) H(P, Q))
=Tr(H(P + p,Q + q)o). (32)

For simplicity, we introduce the shorthand notation that

() =Tr((-)o). (33)
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In that case we find, e.g., that

(@)o =Tt((Q +q)0) =q + 0. (34)

where the notation (q), is the symbol H, (p, g) when the operator H is simply Q.
Below we list a table of symbols needed for our present purposes:

@o=9q+Q,

(Po=p+P,

@) = ¢*+2q40 + 02,

(»*)s = P> +2pP + P2,

(4p)s =qp +qP + p0O + OP ,

(r9)e = pq +pQ +qP + PO,

@Yo = q¢* +44°0 + 6¢°02 + 49 07 + 0*,

(pYo = p* + 4p°P 4+ 6p* P2 + 4pP3 + P+,

@*P" = ¢* P> +2pq°P +2qp°Q + ¢* P2 + p* Q% + 4qp QP
+2¢0P? +2p Q2P + 0°P2,

(P°q)e = P> +2p¢°P +2qp°0 + ¢* P2 + p* 0% + 4pg PO
+2¢gP?Q +2pP0Q2 + P2Q2. (35)

Note that on the left-hand side the order matters, i.e., (¢p)s # (pq)o, etc. We also
notice that for the quadratic symbols

(@Hs = (g + 0)* + A(Q) ,
(PM)o = (p+ P>+ A(P),

1 _ _
5[(qp)a +(r9s]l=(q+ OQ)p+ P)+ AQ, P), (36)

in terms of the variances A(O) = @—62 and A(Oq, O,) = (010, + O,01)/2—
O, O,. For a conventional minimal uncertainty state, e.g., A(Q)A(P) = 1/4 and
A(Q,P)=0.

We also introduce a special-case table based on a symmetry we shall impose on
o and to be made use of below, namely, that all odd-order averages vanish, i.e.,
0= E =P =P = w = 0. This special-case table reads

(q)(r =4q,
(p)o = p.
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@) =q* + 02

(PHs = p* + P2,

(qp)o = qp + QP ,

(rq)s = pq + PO,

(@4 = ¢* +64*0% + 07,

(p*)e = p* +6p7 P2 + P*,

@*P7)s =4’ P + 47 P2 + p* 02 + 4qpOP + Q?P2,

(P*4»e = P’¢* + ¢*P2 + p*Q% + 4pgPQ + P2Q7 . 37)

5 Symbols for the Upper Bound

The construction of the upper limit is somewhat more involved than that for the
lower limit. We start with Eq. (17), which is

A= /A—g(p,q)U[p,q]GU[p,q]podq/h- (38)

For reasons of clarity we limit ourselves to a number-operator diagonal form for o,
ie,o =Y ooocaln){(nl, ¢y > 0,and > o2 ¢, = 1, where N |n) = n|n) for the
number eigenstates {|n) }. We learn that in general

A

/°A_ﬁ(p,q)Lﬂp,qnn>0ﬂIJqu1*dpdq/2n

o0
D
n=0

o0
> e /A—a(p,q) |p.q:n)(p.q;n|dpdq/2m, (39)
n=0
in terms of the so-called semi-coherent states or displaced coherent states | p, g; n) =
Ulp,q]|n) (see, e.g., [12-17]). To see what this means, let us take a simple example
with 4 = P2 4+ Q2. Since an operator is determined by its expectation value in

canonical coherent states, it is sufficient to consider the Husimi symbol Ay (p, q)
as given by Eq. (2), i.e.,

(r,s:0[(P* + Q) |r.s:0) = (O|[(P +7)* + (Q +9)*]|0) = (r* +5°) + 1

=Y [lp+ 17 + @+ 57 + kol pa(p.) dpda/ 21 (40)
n=0



260 J.R. Klauder and B.-S.K. Skagerstam

where
Po(p.q) = 10 p.g:n) > = &= 2 (p2 4 g7y /2" (1)
Here, we have made use of the Ansatz
(P?+ 0%)—o(p.q) = p* +4° + k2, (42)

where k; is a constant to be determined, and we immediately learn that
o0
ky=—1-2Y c,n=—-1-2n, (43)
n=0

where we have defined mean values m = Y ™2 cn f(n). It now, e.g., follows
that the right-hand side of Eq.(17), with the upper symbol as given by Egs. (42)
and (43), has |n) as an eigenvector with eigenvalue 2n + 1. It is not entirely
trivial to verify this explicitly, but it follows using the properties of displaced
coherent states as well as properties of the conventional associated Laguerre
polynomials L7

meon . k(@ + m)!xk
Ln (x)_];o( D ki + 0! “)

In like fashion, it follows for A = (P? + 0?)? and the corresponding Husimi
symbol that

(r.5:01(P* + 02 |r.5:0) = (O][(P + 1) + (0 + $)2PI0) = (- + 5> + 1)2
=Y / (P + 12+ @+ 522 +ks((p + 1) + (@ +9)) + kel
n=0

Xpn(p,q)dpdq/2m, (45)

expressed in terms of the (assumed) symbol
(P2 + 0= (p.q) = (P* + ¢*)* + ka(p* + ¢°) + ks (46)

One now finds, making use of Eq. (41), that

o0
ks=2-8) ci(n+1)=—6-87. (47)
n=0
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and

ke=1-4Y c,(n+1)(n+2)—2ks > ca(n+1)

n=0 n=0

=5+ 167 + 167> — 4n2. (48)

In a similar manner and for A = Q*, we can write

(@90 (p.q) =¢" +a2q’ + a4 (49)
where
a, = =3(1 +2n), (50)
and
1 3, 1=
a4=3(z+§n+2n —Enz). (51)

The expressions above now relate the standard symbols to the generalized
symbols. Extension of these expressions to other polynomials in P and Q is
straightforward.

6 Examples

With the special choice for o considered above, i.e., 0 = Zzio cnln){n|, ¢, >
0, and Zzio ¢p, = 1, we will now consider some specific examples in order to
illustrate the use of the generalized upper and lower symbols. We first remark that
in the trivial case of a harmonic oscillator with H = (P> 4+ 0?)/2, such that
Z(B) = 1/[2sinh(B/2)], the lower symbol Eq. (36) and the upper symbol Eq. (42),
together with the bounds in Eq. (31), lead to the expression

e—ﬂ(A(PHA(Q))/Z/’B <Z(PB) < eﬁ(1/2+ﬁ)/z/ﬁ, (52)

which, obviously, is true. We can optimize this expression in the form
e/ < Z(B) < /8. (53)
From the corresponding lower bound we then obtain an upper bound on the ground-

state energy Eo < 1/2 since Ey = —limg_ o In Z(8)/f. In the high-temperature
limit, i.e., B — 0, the bounds in Eq. (53) exactly reproduce the classical Gibbs
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partition function Zy(B)/2n = 1/f taking the fundamental phase-space volume
2m into account and making use of

Za(B) = / e FHAPD dpdg (54)

with, of course, Hy(p,q) = (p> + ¢%)/2.

6.1 A Nonlinear Oscillator

Here we consider Hamiltonians of the form H = %H(N), where N is the
usual number operator. We study this example more for its ease of analysis and
pedagogical value. We choose as our example H = (N — a)(N — b). Such
a form of a Hamiltonian has its roots in, e.g., the description of a single-mode
nonlinear Kerr medium in quantum optics or a single vibrational mode beyond the
harmonic approximation. We make the choice ¢ = 1 and » = 5. We observe
that the partition function Z(8) = Y oo exp[—B(n — 1)(n — 5)] then has the
form Z(B) ~ exp(4p) for large values of B. A straightforward application of
Poisson resummation techniques also leads to the behavior Z(8) ~ +/z/B/2 for
small values of 8, which corresponds to the high-temperature limit of the classical
partition function Z /27 using Eq. (54) with H, = (p? + ¢*)?*/4 — 1(p*> + ¢*)
/2 +33/4.

We may then combine these factors for H = (N — 1)(N —5) at hand by noting
that

(N —1)(N =5) = %(P2+ Q2—1)2—6%(P2+ 0*—1)+5
= %(P“ + 0%+ P*0* + Q2P2)—7%(P2 + 0%)+33/4. (55)
Consequently,

Ho(p. @)= 510 + @) + (%0 + @ p)0] = T31(7")0 + (@] + 33/4

1 — . — I
= Z[p4 +6p> P2+ P4+ 4" +6¢°02 + 0% + ¢°p* + ¢° P2 + p*Q?
+4qpOP + Q*P? + p’q” +¢° P2 + p’ Q% + 4pqPQ + P2Q?]

1 _ _
—7§[p2+P2+q2+Q2]+33/4. (56)



Extension of Berezin—Lieb Inequalities 263

Since we have restricted our choice of ¢ so that it is only a function of N, i.e.,
o = 0(N), o has now a symmetry that makes @ =P2=C, Pt = @ = Cy,
Q2P2 = P2Q2? = (Cy, and importantly that QP + PQ = 0. The three constants
C;, C4,and Cyy are the only remnants of ¢ in H;(p, q), and of necessity, they
satisfy C, > 1/2, Cy > C22, and C4 > Cy,. With the restriction 0 = o(/N) we can
actually be more precise and write

1 1 (— 1 3 (= 1
C2=§+ﬁ,C22=§(n2+fl+§),C4=§(n2+ﬁ+§). (57)
Putting this information together, we find that

1
H,(p.q) = Z(p2 +¢°) + K1 (p* + ¢ + K. (58)

where

7 7 3
K = — —2 = - n— —
1=4(G-2) 4( 2),

1 33 —
KZEC4+§C22—7C2+T=(n—3)2—4. (59)

We note the fact that H, (p, g) is a function only of the combination (p? + ¢?)
on the basis of our restriction that 0 = o(N). It follows, therefore, that the lower
bound of interest is given by

/exp{—ﬂHa(p,q)}dpdq/Zn = %/ exp{—ﬂ [%Sz + Kis + K2:|} ds, (60)
0

where we have passed to polar coordinates and set s = (p* + ¢?). The upper-bound
integral is a function of B as well as the o-parameters, C,, C4, and Csy, i.e., the
independent mean value 71 and dispersion (n — 71)? parameters.

The lower bound of Eq. (31) together with Eq. (60) now leads to the lower bound
Vr/B/2 < Z(B) as B — 0. This lower-bound again corresponds to the high-
temperature limit for the classical partition function Zy(8)/27. By making use
of £y = —limg_0InZ(B)/B, Eq. (60) leads to the upper limit £y < —4 using
the state ¢ = |3)(3|. We observe that such a state will not strictly satisfy the
restriction imposed by Eq.(7) since Tr(U[k, x] o) then will be zero at isolated
points away from the origin k = x = 0. But, in fact, the restriction Eq.(7) is
then not required if A is a polynomial in P and Q since the symbol A(k,x) as
defined in Eq.(9) will involve derivatives of delta functions with support at the
origin [9, 18].
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The upper bound of Eq. (31), using Egs. (42) and (46), now leads to

Z(p) < %/Ooo exp{—ﬁ [i(s2 + kas + ke) — ;(s + ky) + 34—3}} ds, (61)

where the parameters k,, k4, and k¢ are given by Egs. (43), (47), and (48),
respectively. It is now evident again that Eq. (61) reproduces the high-temperature
limit of the classical partition function Z(8) =~ +/m/B/2. The upper bound of
Eq. (31) gives unfortunately now a rather poor lower bound on the ground-state
energy Eg > —12—9n —ﬁ, ie., Eg > —12.

6.2 An Anharmonic Oscillator

We next consider the Hamiltonian H = (P24 Q?)/2+10%/2 > 0, A > 0, to define
the partition function. With the lower and upper symbols as given by Eqs. (37), (42),
and (49), we now find that

1
Z(B) < i e Bllrthai)/2 / A a2 ©2)
A LTT
and
1 — —2
Z(B) > ﬂJz_e—ﬂ<A<P>+A(Q)+AQ4>/2/e—<xz+x<x4/ﬂ+ong D24y (63)
4

In the limit of large B, the lower bound on Z(f) and the fact that H > 0 then
leadto 0 < Ey < (1 + A0%)/2. With ¢ = [0)(0| one finds the upper-bound
Ey < (1 + 31/4)/2 which, e.g., can be compared to the “exact” numerical value
of 2Ey = 1.392351641530... for A = 1 [19]. We expect that this upper bound
could be improved with a different choice of 0. A consequence of the upper and
lower bounds in Eqs. (62) and (63) now is that for sufficiently small § the upper and
lower bounds converge to the well-studied (see, e.g., Refs. [20-22] ) classical and
asymptotic form

“P=g le—n / eIy = 74 (B) /27
1 A
_ A B/16A
s\ g Kis(B/164) (64)

using Eq. (54) with Hy(p.q) = (p*> + q%)/2 + Ag*/2. The expression in Eq. (64)
involves all the energy states of the anharmonic oscillator in a highly non-trivial
manner. In our case we are specifically interested in the limit § — 0, i.e., Z(f8) >~

ra/4)ep/M"42p2x.
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7 Comments

For clarity, we have mainly focused on matrices 0 = o (/N) which meant that
o = Y o2, ca|n)(n|. More general matrices of course would involve expansions
of the form

oo

o= Z Con PR (65)

n,n’=0

expressed in terms of a general matrix {c,,/} that still ensures that o has all the
properties of a partition function. The use of such more general choices for o will
inevitably lead to expressions involving the matrix elements [12—17]

(n|Ulp.q]In")

2"'n! l 2 NI B 2
=\ 2 &P —Z(p +q7)|(qg+ip) " L, E(p +4q°) ). (66)

for n > n’ expressed in terms of the associated Laguerre polynomials Eq. (44);
instead, when n < n’, use (n|U[p,q]ln’) = (0'|U[—p,—q]|n)*. The simple
example where H = P2 + w?Q? w # 1, shows that the optimal choice of o
is not always given by |0) (0|, where (Q + iP)|0) = 0, but in the present case by
o = |0;w)(0; |, where (w Q + iP)|0;w) = 0. This remark serves to confirm
that the generalized representations have the possibility to make better bounds. It
may be true that choices for o of the form |) (1| (analogues of pure states) may
be optimal and that perhaps choosing |{) as the ground state of the Hamiltonian
under examination may lead to optimal bounds. Those are interesting questions for
the future.

8 Conclusion

We have developed new, classical, phase-space bounds to deal with specialized (i.e.,
the partition function) questions that arise in quantum mechanics, and which, by
their very nature, are technically easier to deal with than in their original form. It
is quite likely that the generalized phase-space symbols we have introduced may
have additional applications both in quantum mechanics and in time-frequency
analysis.
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Diego Maldonado

Abstract This chapter is based on the presentation “Generalized bilinear Calderon
—Zygmund operators and applications” delivered by the author during the 2008
February Fourier Talks at the Norbert Wiener Center for Harmonic Analysis and
Applications, Department of Mathematics, University of Maryland, College Park,
on February 21st. In turn, that presentation was based on material from the article
“Weighted norm inequalities for paraproducts and bilinear pseudodifferential
operators with mild regularity,” J. Fourier Anal. Appl. 15 (2), (2009), 218-261,
by Virginia Naibo and the author. This chapter also surveys some more recent
results concerning the symbolic calculus and mapping properties of bilinear pseudo-
differential operators.
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A classical theorem of Mikhlin ([34], [38, p. 263]) establishes that for a function
m € C®(R" \ {0}), satisfying the estimates

0gm(E)| < ColEI7* £ e R"\ {0}, (1)

for all multi-index o € Nj with |a| < [rn/2] + 1, the operator T}, defined by

T f@)i= [ m@ @ as

is bounded from L?(R") into L?(R") whenever 1 < p < oo. T, f is the result
of multiplying by m the spectrum of f, and when this action preserves the space
LP(R"), T,, (as well as m) is called a multiplier for L?(R"). When the recipe
for multiplication of the spectrum depends on the point x, we are looking at
pseudo-differential operators, and, instead of multipliers, we speak about symbols.
Formally, a symbol o defines a pseudo-differential operator 75, given by

Ty f) = [ ol 676 de

Among the most useful classes of symbols is the Hormander class S's. More
precisely, let m € Rand 0 < §,p < 1. A function 0 € C*®(R" x R") belongs
to Hormander’s class S;’fg if

09000 (x. §)| < Cap(1 + [E)" TRl x & e RY, @)

forall o, B € Nj. Notice that now m denotes real number, called the order of . Here
are some classical theorems involving Hormander classes that will be of relevance
in the later discussion.

Theorem 1 (Kohn-Nirenberg [29]). For o € S, we have that T, : L* — L?
is bounded, and the classes S P,O possess a symbolic calculus for transposition and
composition.

Theorem 2 (Hormander [27]). For 0 < § < p < lando € S[?’g, we have that

T, : L?> — L? is bounded, and the classes S;?.s possess a symbolic calculus for
transposition and composition.

Theorem 3 (Calderéon—Vaillancourt [9]). For 0 < p < lando € S/?, o We have
that T, : L* — L? is bounded.

Around 1969, L. Nirenberg asked the following question: Suppose that the
symbol o verifies

0fo(x.8) < Co1+[EDT, x.&eR", (3)
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for all B € Nj, with no a priori regularity in the x-variable (compare (3) to (2)
with p = 1 and m = § = 0), does it follow that T, : L? — L[??1n 1972,
this question was answered in the negative by Ching, one of Nirenberg’s students,
who constructed a counterexample; see [12]. Actually, Ching’s counterexample is
smooth in the x-variable, but its x-derivatives lack a pointwise control as in (2).
The answer to the question, however, becomes positive if, in addition to (3), o is
assumed to be homogeneous of degree 0 in the &-variable (see [38, p. 268]), and this
goes back to the pioneering contributions of Calderén and Zygmund.

Another question is: How about a pointwise control as in (2), but adapted to
milder regularity conditions in the x-variable? In this direction, let @ be a modulus
of continuity and let X, be the class of all o(x, §) satisfying, for x, £ € R" and
B € N7, the inequalities

000 (x.6)| < Cp (1 + [E)77

and
000 (x +h.£) — dlo(x.£)| < Cpo(h]) (1+ ).

Then we have

Theorem 4 (Coifman-Meyer, [13, p. 38]). The following statements are equiva-
lent:

! dt
(i) / w?(t) - <o
0
(ii) Forallo € X,, T, is bounded on L*(R").
(iii) Forallo € ¥, and all p € (1,00), T, is bounded on L? (R").
(iv) Forallo € X,, T, is bounded from H'(R") into L' (R").

Now we move on to the bilinear setting. A smooth function o (x, £, ) defined on
R" x R" x R" has an associated bilinear pseudodifferential operator 7, (formally)
defined by

Lo = [ [ e gn @ dedn xR fg e SR

We say that the bilinear symbol o (x, &, n) belongs to the bilinear Hérmander class
BS” if
0.8

10902070 (x. £ 0)| < Capy (1 + €] + [y PoRImPUBFID — x £ e R (4)
for all o, B,y € N{. The study of bilinear pseudo-differential operators grew
from the seminal work of Coifman and Meyer [13-15], who used them as models
to represent Calderén—Zygmund commutators. Further applications now include
the study of compensated compactness (see [16, 17,44]), and, as bilinear pseudo-

differential operators also model expressions of the type Za’ g Cap i’ f Bf g, they
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are useful in generalizing Leibniz’s rule in the spirit of the Kato-Ponce inequality,
see [3,36]. Motivated by the study of certain bilinear operators including bilinear
pseudo-differential operators and paraproducts with mild regularity, we will next
describe how some of the linear results above have a bilinear counterpart and how
some others fail to have a natural bilinearization.

A counterpart to Theorem 1 regarding the mapping properties of bilinear pseudo-
differential operators is due to Coifman—Meyer [14], Grafakos—Torres [25,26], and
Kenig—Stein [28]. Namely,

Theorem 5. Given o € BS{ and 1 < p,q < oo with 1/p +1/q = 1/r, the
mapping property

T, : LP(R") x LY(R") — L"(R").
holds true.

Notice that the Holder scaling 1/p + 1/q = 1/r in Theorem 5 is to be expected
as the symbol 0y = 1 belongsto BS ?,0 and T, renders the product of two functions.

In contrast, the natural counterpart to Theorem 3 fails to hold true. Indeed, as
Bényi and Torres showed in [4], the class BS& o does not produce the expected
mapping behavior in the bilinear setting. Namely,

Theorem 6 (Bényi-Torres, [4]). There exists a bilinear symbol 6 € B S(()),o such
that T, does not map LP(R") x L1(R") into L™ (R") for any choice of indices 1 <
p.q<oowithl/p+1/q=1/r.

On the other hand, a key feature in the theory of linear pseudo-differential
operators, namely, the symbolic calculus, does possess a bilinear counterpart.
Theorems 7 and 8 , proved in [7], establish the invariance under transposition of
the bilinear Hormander classes. Recall that the two transposes of a bilinear operator
T, denoted by T*! and T*2, are defined by the duality relations

(T(f.g).h) =(T"'(h.g), f) = (T(f h). ).

Theorem 7 (Invariance under transposition, [7]). Assume thatm € R, 0 < § <
p<1,8§<1,ando € BS;’TS. Then, for j =1, 2, TG*] = T,,*j,where(f*j IS BS;:?S.

For the next result, we write
o0
o ~ E 0;
Jj=0
if there is a non-increasing sequence my \, —oo such that

N-1

. my
o — Zo] €BS,§,
j=0

forall N > 0.
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Theorem 8 (Asymptotic expansion, [7]). [fm € R,0 < § < p < lando €
BS o> then o*! and 0** have the asymptotic expansions

. il
o~ Yy (o (x —E = 0. )

and
ilel
0"~ Y 0 (o (x, E,—E — ),
o!
o
More precisely, if N € N, then
1
l §—
o* — Z Hagag(o(x,—s —n,1) € BSZ;L( AN 6)
la|<N
and
1
1 m(5—
0" = Y O E 5 —m) € BSTOON, (6)
la|<N

In addition, regarding mild regularity of the bilinear symbols, Theorem 4 has the
following bilinear counterpart.

Theorem 9 (Coifman-Meyer, [13, p. 55]). Let  be a modulus of continuity. If

! dr
/ w?(t) — < 00
0 t

and o (x, &, n) satisfies
9000 (x.£.1)] = Cap(l + [8] + )~

and

w(|h])
(1 + [E] + [p) el +1PD

’

1920 (0 (x + h, 1) — 0 (x. E.)| < Cup
forall o, B € NI, then T, can be extended as a bounded operator from
LP(R") x LY(R") into L" (R")

forl<p,q<ooand%+$:}e(0,l).
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Various other well-known linear estimates for pseudo-differential operators have
natural bilinear analogues (see, for instance, [1-4, 13,24,26,32]). However, another
example of a linear result that misses bilinearization is the case of the linear
Marcinkiewicz multiplier theorem, whose natural bilinear version fails to hold true,
as shown by Grafakos and Kalton in [23].

We will be concerned with an extension of Theorem 9 (see Theorem 10). For
w,$2 :]0,00) = [0,00),m € R, and p € (0, 1] we write 0 € BSJ, oif

185000 (x, £, )| < Cap(1+ |&] + Inly" P *1PDand @)

w(|h))$2(1€] + |1

# (1 4 |&| + |p|)—mtedal+1BD ®

19200 (0 (x + h &) — o (x.Em)] < Ca

for all x, §,7n € R" and o, B € Nj. Also, for a > 0, we write @ € Dini(a) if
 : [0, 00) — [0, 00), w is non-decreasing, concave, and

1
dr
|| Dinia) ;:/ w“(t)T < oo.
0

For 1 < p < oo, the discrete variant of Muckenhoupt’s A, class is denoted by
A,(Z") and consists of the positive sequences {w_},cz» such that

p—1

1 1 ,
Wla,@ = sup | = Z wo |l = Z wi? < 0.
’ oeq \ HQ N Z") eonz #QNZ" eonz

Forz € Z'set Q, == {x ¢ R" : |x; —z| < 1/2,i = 1,...,n}. Consider
1 < p.q < oo and a positive sequence {w.}.cz:. We denote by ;! the space of all
sequences {d};ezn such that ||allg 1= (3 .cpn lac|? w.)"/4 < oo. In particular we
write /7 instead of [}, when w = 1. The weighted amalgam space (L?, 1) consists
of the locally integrable functions f on R” such that {|| £ Lp(QZ)} € I, with
norm

ZEZL"

1/q
1 o sgy = (Z ||f||ip(Qz)wz) .

ZEZM

The usual interpretation applies when ¢ = oo.
We are now in position to state one of the main results from [33].

Theorem 10 ([33]). Leta € (0,1), w € Dini(a/2), and 2 : [0,00) — [0, 00)

non-decreasing such that

sup ' (1)2(1/1) < oo.

O<t<l
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Consider 1 < p,q < ooand% <r< oosuchthat% = %+é. Then, if o €

BSﬂw,Q, with |a| 4+ |B| < 4n + 4, the bilinear pseudo-differential operator T, has
the following boundedness properties:

(i) If 1 < p, q, then

176 (/- r@n = ClIfllr@nligllLe @

where L?(R") or L4(R") should be replaced by L°(R") (bounded functions
with compact support) if p = 0o or g = 00, respectively.
(ii) If p =1o0rq =1, then

175 (f )lLroo@ny < CILf lLr@nllgllLe®ny,

where L?(R") or LY(R") should be replaced by L* (R") if p = 0o or g = o0,
respectively.
(iii)
175 (f. &) Brmo@n) = CIl fll oo @ |8l oo @)
(iv) If 1 < p,g < 00, andw € Anin(p,q), then

176 (f gy = CUA N @ €1 g @

where A,, 1 < r < 00, denotes the Muckenhoupt weight class.
(v) Ifw € Ay, the following endpoint estimates hold

175 (f, g)”L}lv/zoo(Rn) = C||f||L}1,(R”)”g”L}V(R”)

and
175 (. g)||L31/2(Rn) = C”f”H,L(R”)”g”H‘},(R”)-
(vi) Finally, if 1 < p,g < 00, 1 < 51,80 < 00, 1/s3 = 1/s1 + 1/s3, andw €

Amin(s, 52)(Z"), then T, verifies the following inequality on weighted amalgam
spaces

|75 (f. g)”(y,[ft?) =< C”f||(Lp,1j,1)”g”(Lqu?y

Our approach to the proof of Theorem 10, based on a bilinear interpretation of
some of Yabuta’s ideas in [42, 43], also applies to the study of some molecular
paraproducts with mild regularity.
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2 Molecular Paraproducts with Mild Regularity

In this section we address some mapping properties of paraproducts built from Dini-
continuous molecules. For v € Z and k € Z", let P, be the dyadic cube

Py = {(xl,...,x,,)ER” ki <2%x; <k + 1,0 = 1,...,n}. ©)]

The lower left corner of P = P is xp = x,x := 27"k. Notice that the Lebesgue
measure of P is |P| = 27"". We set

9D ={Py:velkecl}

as the collection of all dyadic cubes.

Let w : [0,00) — [0, 00) be a nondecreasing function. Following [33], an -
molecule associated to a dyadic cube P = P, is a function ¢pp = ¢, : R* — C
such that, for some A > 0 and N > n, it satisfies the decay (or concentration)
condition

Apvn/2 )
620 = Gy * S E (10)
and the mild regularity condition
vn/2 A 1 1
(br )= (242" 0 le) [ g =
(1)

forall x,y € R".
For instance, if ¢ is a Dini-continuous function with enough decay, then

Pk (x) := 2" (2"x — k) (12)

is an w-molecule associated to P. '
Given three families of w-molecules {(;S’Q}Qeg, Jj = 1,2,3, the molecular
paraproduct I1( f, g) associated to these families is defined by

I(f.g) =Y 10172 (f.db)g. 0h)dh. fige S®).  (13)

Qe

The term paraproduct was coined by Bony in [8] and ever since it has been used to
denote superpositions of various time-frequency components of two functions. For
a brief account on the evolution of the notion of paraproducts, see [6]. Paraproducts
have found plenty of inspired applications: from Bony’s paradifferential calculus
(see [8]) and David—Journé’s remarkable 7'(1)-theorem (see [18]), to their alliance
with wavelet analysis in the study of PDEs (see, for instance, [10, 11,23, 39, 40])
and their role as toy models or building blocks of classical operators in Fourier
analysis (see, for instance, [21, 22,30, 31,35-37,41]), just to mention a few. The
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paraproducts we will work with are built from mildly regular molecules which come
to cover the gap between the smooth molecules and paraproducts in [5, 19, 20], and
the (discontinuous) Haar molecules and dyadic paraproducts studied, for instance,
in [30,41].

In [5], sufficient conditions on smooth molecules were established so that smooth
paraproducts of the form (13) can be realized as bilinear Calderén—Zygmund
operators. In this chapter we revisit the analysis of w-molecules introduced in [33]
and mention how the paraproducts they build can be realized as bilinear Calderén—
Zygmund operators of type w(¢) (as defined in Sect.3), provided that they have
enough decay, suitable cancelation, and w € Dini(1/2).

Concerning Dini-continuous molecules, one of the main results in [33] reads:

Theorem 11 ([33]). Consider w € Dini(1/2) and let {¢>é}Qe% j =1,2,3 be
three families of w-molecules with decay N > 10n such that at least two of them,
say j = 1,2, enjoy the cancelation property

/anﬁé(x)dxzo, 0e2.j=1,2.

Then, the paraproduct I1( f, g) defined in (13) verifies the inequalities (i)—(vi) as in
Theorem 10.

3 Bilinear Calderon-Zygmund Operators of Type o (t)

In [42,43], Yabuta developed the notion of linear Calder6n—Zygmund operator of
type @(t) (which includes the classical Calderén—Zygmund operators). In [33], a
bilinear program inspired by Yabuta’s work was carried out as follows. Let w :
[0, 00) — [0, 00) be a nondecreasing function. We say that K(x, y, z) defined on
R¥\ {(x,y,2) € R¥ : x = y = z} is a bilinear Calderén—Zygmund kernel of type
w(t) if for some constants 0 < t < 1 (the specific value of 7 € (0, 1) is immaterial
in the development of the theory), Cx > 0, and every (x, y,z) € R¥ \ {(x,.z2) €
R : x = y = z} it holds

C
Koy 9l = s +K|X_Z|)2n (14)
and
|K(x +h.y.2) — K(x.y.2)| + |[K(x.y + h.2) — K(x, y.2)|
+|K(x,y,z+h)— K(x,y,2)|
= (\x—ylifx—z\)h @ (Ix—y\lf:—‘\x—d) : 15)
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whenever || < T max(|x —y|, |x —z|). A bilinear operator T : . (R") x.#(R") —
< (R") is said to be associated to a bilinear Calder6n—Zygmund kernel of type w(t),
K(x,y,z2),if

T(f.9)(x) = / K(x.7.9 f (g dydz

R JR?

whenever x ¢ supp(f) N supp(g) and f, g € Cs°(R"). If, in addition, 7 maps
LP(R") x LY(R") — L"*(R"),
forsome 1 < p,g <ooandr > 1with1/p+1/g=1/r,or
LP?(R") x LY(R") — L"(R"),

for some 1 < p,q < ocowith 1/p + 1/q = 1, T is called a bilinear Calderén—
Zygmund operator of type w(t).

The multilinear Calder6n—Zygmund theory, which corresponds to the case
w(t) = t° for some € € (0,1], was introduced by Coifman and Meyer in
[13—15]. This theory was then further investigated by Grafakos and Torres [25, 26]
and Kenig and Stein [28].

Next, we list the main theorems in [33].

Theorem 12 ([33]). Consider w € Dini(1/2) and let T be a bilinear operator
associated to a bilinear Calderon—Zygmund kernel of type w(t), K(x, y, z). Assume
that for some 1 < p,q < o0oand(0 < r < oo satisfying

111
—+-=-,
poq

T maps LP(R") x L1(R") into L™*°(R"). Then, T can be extended to a bounded
operator from L' (R") x L'(R") into L3°° R™).

By means of duality arguments, Theorem 12 implies.

Theorem 13 ([33]). Consider @ € Dini(1/2) and T be a bilinear Calderdén—

Zygmund operator of type w(t) in R" with kernel K. Let 1 < p, ¢ < 00,1 <r < o0

9 2 —
such thatll, = % + é. Then we have

(i) If p, q > 1, then T can be extended to a bounded operator from LP(R") x
L2(R") into L™ (R"), where L? (R") or L4(IR") should be replaced by L°(R")
if p = 0o or q = 00, respectively.

(ii) If p = 1 orq = 1, then T can be extended to a bounded operator from
LP(R")x LY(R") into L™*°(R"), where L? (R") or L9 (R") should be replaced
by L2(R") if p = oo or g = oo, respectively.

(iii) T can be extended to a bounded operator from L2°(R") x L°(R") into BMO.
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Theorem 14 ([33]). Let 1 < p, g < o0, 1 = 5+ g and w € Aco. Consider

o
w € Dini(1/2) and let T be a bilinear Calderén—Zygmund operator of type w(t)
in R" with kernel K. Let Cg be the constant in (14) and (15), and let W denote
the norm of T as a bounded operator from L'(R") x L'(R") into L%’“(R”) (see
Theorem 12). Then for [ and g bounded and compactly supported,

IT(f ey = Copn(Cx + WA Sl Loy |- 8 L9,y (16)

where A stands for the Hardy-Littlewood maximal operator. In particular, if w €
Amin(p.q), We have

ITCf @ er@ny < Cpn(Cx + WIS Il Loy 1811 24 ey an
and therefore, T extends as a bounded operator from LL(R") x LI (R") into

L (R"). Weighted endpoint estimates and weighted H' estimates also hold true;
see Remark 5 and Theorem 6.9 in [33].

Theorem 15 ([33]). Consider v € Dini(1/2) and let T be a bilinear Calderén—
Zygmund operator of type w(t) with kernel K. If 1 < p,q < 00, 1 < 51,5 < o0,
1/r=1/p+1/q,1/s3=1/s; + 1/s3, andw € Ag(Z"), s = min{sy, 52}, then

ITCA M wr gy = CUS Nwraznyllgl Lo sz (18)
( ) ( e i )

4 The Proofs of Theorems 10 and 11

In this section we come back to the bilinear pseudo-differential operator

(0w = [ [ otane N f@zmazan. g s @),

whose symbol o (x, £, n) satisfies the conditions

C
@ af op
|a§ano—(xvgv 77)| = (1 + |g| + |n|)‘0¢‘+‘ﬂ‘, (19)
2 +
0297 (0 + & 1) — 0 (2.6 )| = Cug o(lhl) — e F 1D (o

(14 [&] + [nDlel AT

for all x, &, n € R" and multi-indices o, 8 € Njj.
Theorems 16-18 establish sufficient conditions on w and £2 so that the class
BSloyw’ o produces pseudo-differential operators with bilinear Calderén—Zygmund
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kernels of type w®(¢) for some a € (0, 1), the class B S?,w,:? produces pseudo-
differential operators with bilinear Calderén—Zygmund operators of type w“(t) for
some a € (0, 1), and so that the paraproducts based on w-molecules can be realized
as bilinear Calder6n—Zygmund kernels of type 6(¢), for some appropriate 0(z).

Theorem 16 ([33]). Let w, 2 : [0, 00) — [0, 00) be nondecreasing functions with
 concave. Suppose that there exists a € (0, 1) such that w and §2 verify

sup 0! 74(1)2(1/1) < oo. (21)

O<t<l1

If o(x,&,n) verifies (19) and (20) with || + |B| < 2n + 2, then T, has a bilinear
Calderon—Zygmund kernel of type w®(t).

Theorem 17 ([33]). Let §2 : [0,00) — [0, 00) be a nondecreasing function, a €
(0,1), and w € Dini(a/2) such that (21) holds. If o (x, &, 1) verifies (19) and (20)
with |a| 4+ |B| < 4n + 4, then Ty is a bilinear Calderén—Zygmund operator of type
w?(1).

Theorem 18 ([33]). Assume w € Dini(1/2) and let {qb]Q}QE@, Jj =1,2,3 be three
families of w-molecules with decay N > 10n and such that at least two of them
have cancelation. Then, the paraproduct I1 defined in (13) has a bilinear Calderon—
Zygmund kernel of type 0(t) with

0(t) := A*Ayw(Cyt), t>0,

for some positive constants Ay and Cy (hence, 0 € Dini(1/2)). Here A is asin(10)
and (11). Moreover, I1 has the mapping property

IT: L*(R") x L*(R") — L'(R").

In particular, IT is a bilinear Calderén—Zygmund operator of type 0(t).

The proofs of Theorems 10 and 11 now follow from the realization as bilinear
Calderén—Zygmund operators of type w(?) of the pseudo-differential operators and
molecular paraproducts in Theorems 16, 17, and 18 and the boundedness properties
in Theorems 12-15.
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Weighted Inequalities and Dyadic Harmonic
Analysis

Maria Cristina Pereyra

Abstract We survey the recent solution of the so-called A, conjecture, that states:
all Calderén—Zygmund singular integral operators are bounded on L2?(w) with
a bound that depends linearly on the A, characteristic of the weight w. We
also survey corresponding results for commutators. We highlight the interplay of
dyadic harmonic analysis in the solution of the A, conjecture, especially Hytonen’s
representation theorem for Calderén—Zygmund singular integral operators in terms
of Haar shift operators. We describe Chung’s dyadic proof of the corresponding
quadratic bound on L?(w) for the commutator of the Hilbert transform with a BM O
function, and we deduce sharpness of the bounds for the dyadic paraproduct on
L”(w) that were obtained extrapolating Beznosova’s linear bound on L?(w). We
show that if an operator T is bounded on the weighted Lebesgue space L” (w) and
its operator norm is bounded by a power « of the A, characteristic of the weight,
then its commutator [7, b] with a function b in BM O will be bounded on L"(w)
with an operator norm bounded by the increased power o + max{l, ﬁ} of the
A, characteristic of the weight. The results are sharp in terms of the growth of the
operator norm with respect to the A, characteristic of the weight forall 1 < r < oo.

Keywords Dyadic harmonic analysis * Weighted inequalities * A, conjecture
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ITfllzrwy < C,v) | flLrs (1)

where f € LP(u) iff || f || Lrw = (f | f(x)]Pu(x) dx)'/? < oo, and u, v are locally
integrable positive a.e. functions defined on R”. When u = 1 we denote || /|, :=

| f Iz -

Two-weight problem: Find necessary and sufficient conditions on the weights so
that above inequality holds for a given operator or class of operators T, and find
the optimal rate of dependence of the constant C(w) on the weight.

In this survey we will concentrate on one-weight inequalities, u = v, for
Calder6n—Zygmund singular integral operators, more specifically for the Hilbert
transform 7 = H and for the commutator of the Hilbert transform with a function b
in the space BM O of bounded mean oscillation, namely 7 = [b, H] := bH — Hb.

The Hilbert transform is bounded on L? (w) if and only if the weight w belongs to
the Muckenhoupt A, class [31]. This is also true for Calderén—Zygmund singular
integral operators [11]. A weight w is in the Muckenhoupt A, class if

W]a, :=su L/w L/w_l/(”_l) . < 00 2
SRR ANVTN/RYANTIN '

In the last decade there has been a flurry of activity trying to identify the exact
dependence of the operator bound on the A, characteristic, [w]4,, of the weight.
This dependence was first proved to be linear in A, for a few dyadic operators [30,
79,80], then for the Beurling—Ahlfors [70], Hilbert [67], and Riesz transforms [68],
and for the dyadic paraproduct [4]. Finally Tuomas Hytdnen solved in the positive
the A, conjecture [33]: If T is a Calderén—Zygmund singular integral operator,
w € Ay, then the dependence on the A, characteristic of the weight is linear, that is,

ITf N 2wy < CWLa LS 2260y 3

Sharp extrapolation [20] then yields the correct L” bounds for the class of
Calderén—Zygmund singular integral operators:

max{l,%}
ITf v < Colwly, "I lLrow-

Remark. The long-standing two-weight problem for the Hilbert transform “a la
Muckenhoupt” is an outstanding open problem: Characterize the pairs of weights
(u,v), in terms of conditions like the A, condition in the one-weight problem, for
which (1) holds. Recently there has been progress due to Lacey, Sawyer, Shen, and
Uriarte-Tuero [45]. Note that Cotlar and Sadosky solved, years ago, the two-weight
problem “a la Helson-Sz&go,” that is, using complex analysis techniques [13, 14].

In this chapter we want to highlight the interplay with dyadic harmonic analysis
[60] in the solution of the A, conjecture. Initially the A, conjecture was shown to
hold, one at a time, for dyadic operators and for operators such as the Hilbert trans-
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form that have lots of symmetries. Stephanie Petermichl showed, in groundbreaking
work in 2000, that the Hilbert transform can be written as an appropriate average of
dyadic shift operators [32,66], and later she showed, in a tour de force using Bellman
function techniques, that for the dyadic shift operators the A, conjecture is true
and therefore also for the Hilbert transform [67]. This work represented a quantum
jump in our understanding of singular integral operators. Until then a simpler
dyadic model, the martingale transform, was considered the toy model for singular
integrals. One would first try to prove results for this model and then hope to prove
them for a genuine singular integral operator, but the transition was by no means
automatic [60]. Petermichl’s representation theorem made this transition trivial for
the Hilbert transform. For a while it seemed that the miracle of this representation
theorem was a consequence of the symmetries of the operator. Similar constructions
were found for other symmetric operators: the Riesz transform (n-dimensional
analogue of the Hilbert transform) [68], the Beurling—Ahlfors transform [70], and
for sufficiently smooth convolution Calderén—Zygmund singular integral operators
[76]. The fact that for the Beurling—Ahlfors transform the A, conjecture holds for
p > 2 (linear estimate in A, characteristic in the range of p > 2) had important
implications in the theory of quasiconformal mappings [2].

All these operators have a representation as averages of dyadic Haar shift
operators of bounded complexity. In 2008, Oleksandra Beznosova showed that the
linear bound on L?(w) also holds for the dyadic paraproduct, an operator not in
the above class [4]. Hytonen was able to prove a representation theorem valid for
all Calderén—Zygmund singular integral operators (not only convolution) in terms
of dyadic Haar shift operators of arbitrary complexity, paraproducts, and adjoints
of the paraproducts. Different groups of researchers had already shown that the A,
conjecture was true for all these Haar shift operators [17, 18,44], using techniques
other than Bellman function which had dominated the scene until then. However, the
dependence of the operator bound on the complexity was exponential and prevented
one from deducing the A, conjecture for general Calderén—Zygmund singular
operators. Only for those operators that were averages of dyadic shift operators
of bounded complexity one could deduce the A, conjecture. Hytonen was able to
overcome this obstacle as well, proving a polynomial dependence on the complexity
and the linear dependence on the A, characteristic of the weight for Haar shift
operators, therefore proving the A, conjecture [33]. Precursors to Petermichl’s and
Hytonen’s results can be found in Figiel’s work [24]. Nowadays some of the simpler
arguments yielding polynomial and even linear dependence on the complexity use
minimally Bellman functions [54, 74], or do not use them at all [37,42].

The commutator [», H] is more singular than the operator H, and this is reflected
on the nature of its bounds on weighted L? spaces. Daewon Chung showed in [8]
that

1B, H1f 200y < COWELILS 226 “

That is, the dependence on the A, characteristic of the operator bound is now
quadratic as opposed to the linear bound enjoyed by the Hilbert transform. Chung’s
proof can be labeled as a dyadic proof. It suffices to consider the commutator
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with Petermichl’s Haar shift operator [69]. Then known linear bounds for the
shift operator [67] and for the dyadic paraproduct [4] can be used, and Bellman
function arguments can be invoked as did all of Chung’s predecessors until then. We
observe that the sharp bounds for the commutator of the Hilbert transform imply
that Beznosova’s bounds [4] are the sharp bounds for the dyadic paraproduct in
L?(w), which was not known until now. The author in collaboration with Chung and
Carlos Pérez established a transference theorem that states that if a linear operator
T obeys a linear bound on L?(w) then its commutator with a BMO function
obeys a quadratic bound [10]. In light of Hytonen’s theorem this means that all
commutators of Calder6n—Zygmund singular operators with BM O functions obey
a quadratic bound as in inequality (4). The argument follows the classical Coifman,
Rochberg, and Weiss argument [12] exploiting the Cauchy integral formula and
some very precise quantitative results in the theory of A, weights and BMO
functions. Generalizations of these results to commutators with fractional integrals
and to the two-weight setting appear in [16], and weak-type estimates and strong
estimates involving instead the A characteristic of the weight appear in [59]. In this
note we present the simple modifications necessary to state a transference theorem
that provides bounds on L"(w), r # 2, for the commutator given corresponding
bounds on L” (w) for the initial operator.

The author strongly believes that Petermichl and Hytonen’s representation theo-
rem in terms of dyadic operators could have important consequences in applications,
in the same way that the 7'(1) theorem [19] had repercussions in computational
harmonic analysis via the Beylkin, Coifman, and Rokhlin algorithm to decompose
singular integral operators [3].

This chapter is organized as follows. In Sect.2 we define the Hilbert transform
and the dyadic Haar shift operators, recall some of their basic properties, state
Petermichl’s representation theorem, and show how it provides a straightforward
proof of the boundedness of the Hilbert transform on L?(R) (Riesz’s theorem). In
Sect. 3 we discuss weighted inequalities for the Hilbert transform and recount the
prehistory of linear estimates for dyadic operators on L?(w). We state the sharp
extrapolation theorem and deduce L”(w) bounds from linear bounds and observe
that these bounds are sometimes sharp, but not always, as Buckley’s estimates for
the maximal function show. We then define the Haar shift operators of complexity
(m,n), discuss their boundedness properties, and state Hytonen’s theorem (the
A, conjecture), as well as his representation theorem. In Sect.4 we define the
commutator, state its boundedness properties, and sketch Chung’s dyadic proof of
the quadratic estimate on L?(w). We note that this quadratic estimate is sharp, and
we show that Chung’s dyadic method of proof implies that Beznosova’s bound
for the dyadic paraproduct is sharp as well. Finally we state a variation of the
transference theorem for commutators on L" (w) with r # 2 and present its proof in
the Appendix.
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2 Hilbert Transform Versus Dyadic Shift Operators

We define the Hilbert transform both on Fourier and space domains, and we describe
its boundedness and symmetry properties. We introduce the dyadic intervals, the
random dyadic grids, and corresponding Haar bases, and we emphasize some of the
properties these bases share with wavelets such us being an unconditional basis on
L7 spaces. We define Petermichl’s Haar shift operators and describe their symmetry
properties; we state Petermichl’s representation theorem and show how it provides
a straightforward proof of the boundedness of the Hilbert transform on L?(R).

2.1 Hilbert Transform

In this section we recall the definition of the Hilbert transform on Fourier domain as
a Fourier multiplier and on space domain as a convolution with a singular kernel. We
also recall how symmetry properties completely characterize the Hilbert transform.
These are well-known facts that can be found in any Fourier analysis book such as
[21,26,73]. You will also find here the definition of BM O, the space of functions
of bounded mean oscillation.

2.1.1 Fourier Multiplier

The Fourier transform of a Schwartz function is defined by
7© = [ feemiar
R

With some work one can define the Fourier transform on L?(R) and show that it

is an isometry, that is, ||?||2 = || f'|| (Plancherel’s identity).
On Fourier side the Hilbert transform can be defined as a Fourier multiplier:

HF €) = —i sgn(®) 1 (&), )
where sgn(§) = 1if £ > 0,sgn(§) = —1if £ <0, andis zero at £ = 0.

The absolute value of the symbol m g (§) := —i sgn(§) is 1 a.e., and Plancherel’s
identity used twice implies that H : L?(R) — L?(R) and that it is an isometry:

LHS a=IHF la=[F = ll2-
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2.1.2 Singular Integral Operator

Since the Hilbert transform is given on Fourier side by

Hf€) = mu(©) £ (&),

multiplication on Fourier side comes from convolution on space with the distribu-
tional kernel kg which is the inverse Fourier transform of the multiplier mpy. A
calculation yields
ki () o= (m) () = pov.—.
X
For a distributional kernel, the integration must be done in the principal value sense:

Hf(x) = ky * f(x) =p.v.l/Mdy = uml/ SO 45 (6)
T y ‘

0T Jijx—yl>e X — Y

Had the kernel kg been integrable, boundedness on L?(R) would be a conse-
quence of the Hausdorff-Young’s inequality for p > 1:if g € L'(R), f € L?(R),
then ||g* f |, < llgll1]|f|l,- Butky is notin L'(R); despite this fact, H is bounded
on L?(R) forall 1 < p < oo, as Marcel Riesz proved in 1927:

IHf N, = Coll -

However, H is not bounded on L'(R) nor on L>®(R), but there are appropriate
substitutes: H is of weak type (1,1) and is bounded on BM O [21,26,73]. Recall
that a function b : R — R belongs to BM O, the space of bounded mean oscillation,
if and only if

1
61l Bro = Supm / |b(x) —m;b|dx < oo, (7)
I I

where m ;b denotes the integral average of b on the interval I, m;b = ﬁ J; b(x)dx.
This space was introduced by John and Nirenberg in the 1960s [39]. The space of
bounded functions L*°(R) is a proper subset of BM O; the canonical example of a
function that is not bounded but it is in BM O is log | x| [26].

2.1.3 Symmetries

The Hilbert transform commutes with translations and dilations and anticommutes
with reflections, and it is essentially the only bounded linear operator in L?(R) that
has those properties. In what follows 7 € R and § > 0.

¢ Convolution <  H commutes with translations tj, f (x) := f(x — h)

w(Hf) = H(w.f).
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e Homogeneity of kernel < H commutes with dilations Ds f(x) = f(5x)
Ds(Hf) = H(Ds f).
e Kernelodd <« H anticommutes with reflections f (x) := f(=x)

(Hf)=-H(f).

Theorem 1 ([26,73]). Let T be a linear and bounded operator in L*(R) that
commutes with translations and dilations and anticommutes with reflections, then
T must be a constant multiple of the Hilbert transform: T = cH.

Using this principle, Petermichl [66] showed that we can write H as a suitable
“average of dyadic operators”; see also [32].

2.2 Dyadic Shift Operators

We first introduce the dyadic intervals and associated Haar basis, as well as random
dyadic grids. We recall some important properties of the Haar basis shared with
wavelet bases such us being an unconditional system in L? spaces and weighted
L?(w) whenever w € A,. We then describe Petermichl’s averaging theorem and
give some intuition why this should work. We deduce Riesz’s theorem from this
representation, that is, the boundedness on L (R) of the Hilbert transform.

2.2.1 Dyadic Intervals

The standard dyadic grid 9 is the collection of intervals of the form [k27/, (k +
1)27/), for all integers k, j € Z. They are organized by generations: 2 = U;ez%;,
and our labeling is such that I € &; iff |I| = 27/. They satisfy:

e Trichotomy or nestedness: 1,J € 9 then INJ =@, [ CJ, or JcCl.
* One parent, two children: If I € 9;, then there is a unique interval I € 9;_,

such that I C I and |I| = 2|I|. There are exactly two disjoint intervals, the right
and left children /,, I; € Y41, suchthat I = I, U [; and |I| = 2|1,| = 2|1)].

2.2.2 Random Dyadic Grids

A dyadic grid in R is a collection of intervals, organized in generations, each of
them being a partition of R, that have the trichotomy and two children per interval
property. For example, the shifted and rescaled regular dyadic grid will be a dyadic
grid. However, these are not all possible dyadic grids.
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The following parametrization will capture al// dyadic grids. Consider the scaling
or dilation parameter r with 1 < r < 2 and the random parameter B with
B = {Bi}iez, Bi =0, 1;letx; = >, f;2" and then define

@f =x; + 9, and @;‘ﬁ = r@f.
The family of intervals 2"f so defined is a dyadic grid. Here r is a dilation
parameter, and B a random parameter that encode all possible dyadic grids. Notice
that for the standard dyadic grid zero is never an interior point of a dyadic interval,
and it is always on the right side of any dyadic interval it belongs to. If we translate
2 by a fixed number it will simply shift zero, and it will still have this singular
property. The translated grids correspond to parameters 8 such that §; is constant
for all sufficiently large j. But these are not all the possible grids. Once we have
an interval in a dyadic grid its descendants are completely determined, simply
subdivide; however, there are two possible choices for the parent, four possible
choices for the grandparent, and 2" choices for the nth-parent. The parameter
captures all of these possibilities. Those B’s that do not become eventually constant
eliminate the presence of a singular point such as zero in the standard grid.

The random dyadic grids were introduced by Nazarov, Treil, and Volberg in their
study of Calderén—Zygmund singular integrals on nonhomogeneous spaces [56]
and are utilized by Hytonen in his representation theorem [32, 33]. The advantage
of this parametrization is that there is a very natural probability space, say (£2, P)
associated to the parameters, and averaging here means calculating the expectation
in this probability space, thatis, Ef = [, f dP.

2.2.3 Haar Basis

Given an interval [, its associated Haar function is defined to be

hp(x) s= 1720, () = 2 (%),

where y;(x) = 1if x € I, zero otherwise. Note that ||, || = 1, and it has zero
integral [ h; = 0. One can check, from these integral properties and the nestedness
properties of the dyadic intervals, that {/;};c is an orthonormal system in L?(R).
Furthermore, the system is complete, that is, it is an orthonormal basis in LZ(R).

Alfred Haar introduced in 1910 the Haar basis in L2([0, 1]) and showed that for
continuous functions their Haar expansions converge uniformly [28], unlike their
expansions in the trigonometric (Fourier) basis [21,26,73].

A basis is unconditional in L?(R) if and only if changes in the signs of the
coefficients of a function keep it in the same space with comparable norms [82]. The
trigonometric system {e?*"*}, .7 does not form an unconditional basis in L? ([0, 1))
for p # 2 [26,82]. On the other hand, the Haar basis {/;};e% is an unconditional
basisin L”(R). More precisely we can define an operator, the martingale transform,
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given by

Ty f(x) = Zol(f,h])h], where o7 = £1. )
1€9

Unconditionality of the Haar basis in L?”(R) reduces then to show that the
martingale transform is bounded in L?(R) with norm independent of the choice
of signs:

sup ”Tof”p =< Cp”f”p-

This was proved by Burkholder who also found the optimal constant C, [7].

The Haar system {h;};cy is an unconditional basis in L?(w) if and only if
w € A,. This fact is deduced from the boundedness of the martingale transform on
L?(w) [75]. For sharp linear bounds in L?(w) for the martingale transform see [79].

The Haar basis is the first example of a wavelet basis, that is, a basis {; x} j kez,
that is found by translating and dilating appropriately a fixed function v, the
wavelet, more precisely, ¥;x(x) := 27//2y/(2/x + k). The Haar functions are
translates and dyadic dilates of the function /2(x) := y0.1/2)(x) — x[1/2.1)(x). These
unconditionality properties are shared by a large class of wavelets [29,75, 82].

2.2.4 Petermichl’s Dyadic Shift Operator

Petermichl’s dyadic shift operator S associated to the standard dyadic grid & is
defined for function f € L?(R) by

Sf() =Y (fhi)Hi(x).  where Hp:=2""2(h;, —hy).
1€

Petermichl’s shift operator is an isometry in L?(R), that is, it preserves L>-norms,
ISfll2 = |I.f]l2. Notice that if I € &, Sh;(x) = Hj(x). A periodic version of
the Hilbert transform that we denote by H,, has the property that it maps cosines
into sines, H, cos(x) = sin(x). Draw the profiles of /; and H; and you can view
them as a localized sine and cosine. This indicates that this shift operator may be a
good dyadic model for the Hilbert transform. More evidence comes from the way it
interacts with translations, dilations, and reflections.

Denote by S, g Petermichl’s shift operator associated to the dyadic grid Z,g.
Each shift operator S, g does not commute with translations and dilations, nor
does it anticommute with reflections; however, one can verify that the following
symmetries for the family of shift operators {S) g} (- e hold:

* Translation: (S, g f) = Sy, (tn f), Where 7, (r, B) € £2.
* Dilation: Ds(S,8f) = Sp;p(Ds f), where Ds(r, B) € £2.
* Reflection: S, g f = Srﬁ(f), where Bi =1-—8.
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Where the maps tj,, Ds : §2 — §2 are bijections. Each shift dyadic operator does
not have the symmetries that characterize the Hilbert transform, but the average over
all dyadic grids will, therefore,

Theorem 2 (Petermichl’s [32,66]).
ES, g = / S, pdP(r,B) = cH.
Q

Petermichl’s result then follows once one verifies that ¢ # 0 (which she did!).
Similar trick works for the Beurling—Ahlfors [70] and the Riesz transforms [68].
Vagharshakyan showed that sufficiently smooth one-dimensional Calder6n—
Zygmund convolution operators are averages of Haar shift operators of bounded
complexity [76].

2.2.5 L? Boundedness of the Hilbert Transform: A Dyadic Proof
Estimates for the Hilbert transform H follow from uniform estimates for Peter-
michl’s shift operators.

Lemma 1 (Riesz [17]). The Hilbert transform is bounded on L? for 1 < p < oo.

IHf 1l = Cpll £l
Proof. Suffices to check that

sup ”Sr.ﬂf”p = Cp”f”p-
(r.p)eq

Case p = 2 follows from orthonormality of the Haar basis. First rewrite
Petermichl’s shift operator in the following manner, where I is the parent of / in
the dyadic grid 2"F:

1 ~
Srpf = —sgn(l, I){f, hj)h;,

where sgn(/, I) = 1if I is the right child of I and —1 if I is the left child. We can
now use Plancherel to compute the L? norm, and noticing that each parent has two
children,

h+ 2
I 718 = 3 W00 g

1€%p

Minkowski integral inequality then shows that

IES s/, <EISepfll2 < £ l2-

Case p # 2 follows from the unconditionality of the Haar basis on L”(R). O
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3 Weighted Inequalities and the A, Conjecture

In this section we discuss weighted inequalities for the Hilbert transform and recount
the prehistory of linear estimates for dyadic operators on L?(w). We state the sharp
extrapolation theorem and deduce L”(w) bounds from linear bounds and observe
that these bounds are sometimes sharp, but not always, as Buckley’s estimates for
the maximal function show. We then define the Haar shift operators of complexity
(m, n), discuss their boundedness properties, and finally state Hytonen’s theorem
(A, conjecture).

3.1 Boundedness on Weighthed L?

The Hilbert transform is bounded on weighted L”(w); the celebrated 1973 Hunt—
Muckenhoupt—Wheeden theorem says:

Theorem 3 (Hunt—-Muckenhoupt—Wheeden [31]).
we A, < Hf[Lroy = CoWILf lLrow-

Dependence of the constant on the A, characteristic was found 30 years later.

Theorem 4 (Petermichl [67]).

1
max{l,ﬁ

VHS Nron < COL T 1 f o

Proof (Sketch of the proof). For p = 2 suffices to find uniform (on the grids) linear
estimates for Petermichl’s shift operator (this was the hard part which she did using
Bellman functions and a bilinear Carleson embedding theorem due to Nazarov,
Treil, and Volberg [55]). For p # 2 a sharp extrapolation theorem [20] that we
will discuss in Sect.3.1.2 automatically gives the result from the linear estimate
in L(w). O

3.1.1 Chronology of First Linear Estimates on L?(w)

In 1993, Steve Buckley showed that the maximal function obeys a linear bound in
L?(w) [6]. Starting in 2000, one at a time over a span of 10 years, a handful of dyadic
operators or operators with enough symmetries that could be written as averages of
dyadic operators were shown to obey a linear bound in L?(w); see (3):

* Martingale transform (Janine Wittwer [79] in 2000)
* Dyadic square function (Sanja Hukovic, Treil, Volberg [30], Wittwer [80] in
2000)
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* Beurling transform (Petermichl, Volberg [70] in 2002)

* Hilbert transform (Stephanie Petermichl [67] in 2003, published 2007)
* Riesz transforms (Stephanie Petermichl [68] in 2008)

e Dyadic paraproduct in R (Oleksandra Beznosova [4] in 2008)

These estimates were based on Bellman functions and bilinear Carleson esti-
mates by Nazarov, Treil, and Volberg [55]. See [61] for Bellman function extensions
of the results for dyadic square functions to homogeneous spaces. See [9] for a neat
Bellman function transference lemma that allows to use Bellman functions in R to
deduce results in R” with no sweat, similar considerations are used in [74]. There are
now simpler Bellman function proofs that recover the estimates for the dyadic shift
operators [54,74] and for the dyadic paraproduct [52]. The Bellman function method
was introduced in harmonic analysis by Nazarov, Treil, and Volberg, and with their
students and collaborators, they have been able to use this method to obtain a
number of astonishing results not only in this area; see [77, 78] and references.

3.1.2 Estimates in L”(w) via Sharp Extrapolation

The L?(w) inequalities can be deduced from the linear bounds on L?(w), thanks to
a sharp version of Rubio de Francia’s extrapolation theorem [25].

Theorem 5 (Sharp Extrapolation Theorem [20]). Iffor allw € A, there is >0,
and C > 0 such that

ITf llzrony = COW% LS Mmoo

then forallw € A, and 1 < p < oo,

amax{l,%}

1T e < Corbily 70 1Lf oo,

Duoandikoetxea found recently a shorter proof of this theorem [22]. Sharp
extrapolation from r = 2 is sharp for the martingale, Hilbert, Beurling—Ahlfors,
and Riesz transforms for all 1 < p < oo [20]. Therefore the theorem cannot be
improved in terms of the power on the A, characteristic of the weight. However, it
is not necessarily sharp for each individual operator. The theorem is sharp for the
dyadic square function and 1 < p < 2, see [20], but it is not sharp for p > 2, see
[46]. The optimal power for the square function is max{%, ﬁ} (see [18]), which
corresponds to sharp extrapolation starting at r = 3 with square root power instead
of starting at r = 2 with linear power; see also [50]. We conclude that sharp
extrapolation is not always sharp. Buckley’s estimates for the maximal function
are a more dramatic example of the above statement.

Remember the Hardy-Littlewood maximal function is defined as

wmzmﬁ[mmw

I>x
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The maximal function is known to be bounded on L?(R) for 1 < p; it is not
bounded on L!(R), but it is of weak type (1, 1) [21,26,73]. Muckenhoupt showed
in 1972 [53] that the maximal function is bounded on L”(w) if and only if w € 4.
The optimal dependence on the A, characteristic of the weight was discovered by
Buckley 20 years later.

Theorem 6 (Buckley [6]). Letw € A, and 1 < p, then

1
IMfNLron < Cowli 1L f lro-

This estimate is key in the proof of the sharp extrapolation theorem. Observe that
if we start with Buckley’s estimate on L” (w), then sharp extrapolation will give the
right power for all 1 < p < r; however, for p > r, it will simply give ﬁ which is

1

bigger than the correct power =

3.1.3 Estimates for Larger Classes of Operators

Petermichl’s shift operator and the martingale transform are the simplest among a
larger class of Haar shift operators that we now define.
A Haar shift operator of complexity (m, n), Sy .., is defined as follows:

Suaf )= Y i (fhhx), ©)

LED I€Dy(L).J €Dy (L)

I

. ,L
where the coefficients ¢} ;| < 77,

L with length 27| L|.

The normalization of the coefficients ensures that ||S,,., f |2 < || f|l2. The reader
can now check that the martingale transform is a Haar shift operator of complexity
(0, 0) and Petermichl’s shift operator is a Haar shift operator of complexity (0, 1).
However, the dyadic paraproduct mp, which is defined for a functionb € BMO as

and Z,,(L) denote the dyadic subintervals of

w06 = Yo f (b)), where mif = o [ f(ax.

1€2

is not a Haar shift operator. The Haar shift operators were introduced in [44] and
used in [17, 18]. Later, a larger class, the generalized dyadic shift operators, that
included the paraproducts was defined [33, 37], where the Haar functions in (9)
were replaced by |I|7'/2y;(x) and boundedness on L?(R) is now part of the
definition since it will not follow from the normalization of the coefficients. In
this setting the dyadic paraproduct, the martingale transform, and Petermichl’s Haar
shift operator are generalized dyadic shift operators of complexity (0, 1), (1, 1), and
(1, 2), respectively. The adjoint of the dyadic paraproduct, defined by
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x1(x)
1]

wp f() =Y (fohi) (b, k)

1€2

is a generalized dyadic shift operator of complexity (1,0), and the composition
w7y is of complexity (0,0). On the other hand the composition 7,7, is not a
generalized dyadic shift operator; localization has been lost.

The following authors either extend to other settings or recover most of the
previous known results (the linear bounds on L?(w)) and can extend them to the
larger class of Haar shift operators, and in particular averaging appropriately, they
can get Hilbert, Riesz, and Beurling—Ahlfors transforms:

* Lacey, Moen, Pérez, and Torres [43] obtain sharp bound on weighted L? spaces
for fractional integral operators.

* Lacey, Petermichl, and Reguera [44] use a corona decomposition and a two-
weight theorem for “well-localized operators” of Nazarov, Treil, and Volberg,
to recover linear bounds for Haar shifts operators on L?(w); they do not use
Bellman functions. Dependence on the complexity is exponential. This result
does not include dyadic paraproducts.

¢ Cruz-Uribe, Martell, and Pérez [17, 18] recover all results for Haar shift
operators. No Bellman functions, no two-weight results. Instead they use a local
median oscillation introduced by Lerner [47,48]. The method is very flexible,
they can get new results such as the sharp bounds for the square function for
p > 2, they can recover also the result for the dyadic paraproduct, they can
get results for vector-valued maximal operators and two-weight results as well.
Dependence on complexity is exponential.

After these results were posted a lot of activity followed and results covering
larger classes of operators appeared:

* Lerner [48, 50] showed that all standard convolution-type operators in arbitrary
dimension gave the expected result for p € (1,3/2] N [3, co). He also showed
sharp estimates on L?(w) for all p > 1 and for all sort of square functions. This
is based on controlling them with Wilson’s intrinsic square function [81].

* Hytonen, Lacey, Reguera, Sawyer, Uriarte-Tuero, and Vagharshakyan posted a
preprint in 2010 which was then replaced by a 2011 preprint with more authors
[37]. They obtain the desired result for a general class of Calder6n—Zygmund
non-convolution operators, still requiring smoothness of the kernels.

e Pérez, Treil, and Volberg [65] showed that all Calderén—Zygmund operators
obey an almost linear estimate on L2(w): [w]4, log(1 + [w]4,). They identified
the obstacle that would remove the log term.
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3.1.4 The A, Conjecture (Now Theorem)

The A, conjecture said that all Calderén—Zygmund singular integral operators
should obey a linear bound on L?(w). This was finally proved by Tuomas Hytonen
in 2010.

Theorem 7 (Hytonen [33]). Let 1 < p < oo and let T be any Calderon—
Zygmund singular integral operator in R"; then there is a constant cr, , > 0
such that

max{l,ﬁ}
”Tf”Lf’(w) = CTnyp [W]Ap ”f”LP(w)-

It is enough to consider the case p = 2 thanks to sharp extrapolation. Hytonen
proves the representation theorem, gets linear estimates on L?(w) with respect to
the A, characteristic for Haar shift operators, and gets polynomial dependence in
the complexity. Together these imply the theorem for p = 2. We consider the
representation theorem to be of independent interest, and we state it here.

Theorem 8 (Hytonen [33]). Let T be a Calderon—Zygmund singular integral
operator, then

Tf=E( > anaS;hf].

(m.n)€EN?

where the coefficients in the series are of the form a,,, = e "+M%/2 o is the
smoothness parameter of T, and S,;', are Haar shift operators of complexity (m, n)
when (m,n) # (0,0), and when (m,n) = (0,0) they are a linear combination
of a Haar shift of complexity (0,0), a dyadic paraproduct, and the adjoint of the
dyadic paraproduct, all based on the dyadic grid 9, g, and E is the expectation in
the probability space (£2, P) associated to the random dyadic grids 9, p.

Leading to the solution of the A, conjecture were the results of Pérez, Treil, and
Volberg [65]. Since the appearance of Hytonen’s theorem several simplifications of
the argument have appeared [34, 38, 42, 54, 74], as well as an extension to metric
spaces with geometric doubling condition [58]. There is also a very nice survey of
the A, conjecture [41].

Can we expect more singular operators to have worst estimates? Yes, for
example, the commutators of b € BMO with T a Calderén—Zygmund singular
integral operator.

4 Sharp Weighted Inequalities for the Commutator

In this section we define the commutator, state its boundedness properties, and
sketch Chung’s dyadic proof of the quadratic estimate on L?(w). We note that this
quadratic estimate is sharp, and we show that Chung’s dyadic method of proof
implies that Beznosova’s bounds for the dyadic paraproduct are sharp as well.
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Finally we state a variation of the transference theorem for commutators on L" (w)
with r # 2 and present its proof in Appendix.

4.1 The Commutator

The commutator [b, H] of b € BM O and H the Hilbert transform is defined:

[b.H]f =b(Hf)— H(®bf).

It is well known that the commutator [b, H] is bounded on L?(R).

Theorem 9 (Coifman et al. [12]). Letb € BMO and 1 < p < oo, then

LA, 61 1, = CpllbllBmoll flp-

However, the commutator is not of weak type (1, 1) as Carlos Pérez showed
[62]. The commutator [b, H] is more singular than H. Another way to quantify
this roughness is to observe that the maximal function M controls H ; however, to
control the commutator we need M2 [63].

Observe that separately bH and H b are not bounded on L? (R) whenb € BMO,
simply because multiplication by a BM O function does not preserve L”(R) (one
needs the multiplier to be bounded and L*°(R) < BMO). The commutator
introduces some key cancellation. This is very much connected to the celebrated
H' - BMO duality by Feffferman and Stein [23] (H' denotes the Hardy space on
the line).

Coifman, Rochberg, and Weiss have a beautiful argument in [12] to prove
boundedness on L”(R) of the commutator based on the boundedness of the Hilbert
transform on L7 (v) for v € A,; it is this argument that was exploited to obtain the
following weighted inequalities for the commutator in quite a general framework;
here we state the estimate for the Hilbert transform.

Theorem 10 (Alvarez et al. [1]). Ifw € A, andb € BMO, then

ILH. b f lIrowy = CoMIBI Mo NS llLrw)-

4.2 Chung’s Dyadic Argument

Daewon Chung proved the following sharp bound on L?(w) for the commutator of
the Hilbert transform and a BM O function:
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Theorem 11 (Chung [8]).

. 1
2mdx{l,ﬁ}

ILH. B f llLrwy = CpllbllBmowly, I e oo)-
The result is sharp in L?(w), meaning that in that case the quadratic power cannot be
improved. Similar examples show extrapolated bounds are sharp in L?(w); see [8].
Chung’s proof is based on a decomposition of the product b f using the dyadic
paraproduct 7, f, its adjoint 7z, f, and a related operator 7 ; b; this line of argument
was suggested in [69]. He works with Petermichl’s dyadic shift operator S instead of
H, and Bellman functions. This argument works for dyadic shift operators (hence
for Riesz and Beurling transforms, and it is sharp for them as well). We will sketch
Chung’s proof after some preliminaries on paraproducts.

4.2.1 Dyadic Paraproduct

Recall that dyadic paraproduct associated to the function b € BM O is defined by

7 f(x) = Zmlf (b, hy)hi(x), where m; f = |Tl|/lf(x)dx.

1€

The dyadic paraproduct is bounded on L”(R) for 1 < p < oo and is of weak
type (1, 1) [60]. Paraproducts appeared in the work of Bony [5] on paradifferential
equations; they also appeared in the proof of the 7'(1) theorem [19].

Theorem 12 (Beznosova [4]). Letb € BMO, w € A», then forall f € L*(w)

||7fbf||L2(w) + ||7T1;kf||L2(w) = C||b||BM0[W]Az||f||L2(w)-

Ordinary multiplication Mj f = bf is not bounded on L?(R) unless b €
L°°(R). The space BM O includes unbounded functions. Hence the boundedness
properties of the paraproduct are better than those of the ordinary product. It is well
known that the following decomposition holds:

bf =erf+ﬁgf+ﬁfb. (10)

The first two terms are not only bounded on L”(IR) but are also bounded on L?(w)
(follows by extrapolation from boundedness on L?(w)) when b € BMO and w €
Ap; the enemy in this decomposition is the third term 7 b. It is because of this
relation with the ordinary product that the name “paraproduct” was coined.

Proof (Sketch of Chung’s proof of Theorem 11). Apply the decomposition (10) to
the commutator with Petermichl’s shift operator S:

[S.61f = [S.7p) f + [S. 7,1 f + [S(wyb) — 757 (B)]. amn
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The first two terms give quadratic bounds from the linear bounds for S, m;, and
;. Boundedness of the commutator on L”(w) will be recovered from the uniform
boundedness of the third commutator. Surprisingly (at the time this was discovered)
the third term is better; it obeys a linear bound, and so do halves of the other two
commutators:

IS rb) — sy (B) | 12wy + 1S 76 f Il 1200y + 1775 Sl 220w
< C|bllsmo [W]A2||f||L2(w)-

Providing uniform quadratic bounds for the commutator [S, b], hence

ICH. Dl 2y < C1DN B30 WL 1l 2200)-

|

Chung proved his linear estimates using Bellman functions. A posteriori one
realizes that the operators [S (7 y}b) —7s¢y(D)], S7p, and 7 S are generalized Haar
shift operators; hence, the linear bound is a particular case of the results in [33, 34,
37,38]. For the commutator the bad terms are the nonlocal operators 75 and S n;‘.

4.2.2 Commutators Versus Paraproducts

Beznosova proved the linear bound for the dyadic paraproduct, and then sharp
extrapolation shows that the following bounds hold in L?(w) forw € A:

max {1, l }
s flLrony < Cpllbllisrolwly, N e on-

It was not known whether these were sharp for some orall 1 < p < oco.

Theorem 13. The above estimate is optimal in the power max {1, ——}.
p—1

Proof. Suppose there is an @ < 1 and a p > 1 such that for all b € BM O weights
w € A, and for all f € L?(w) the following estimate holds:

o m }
7o fllLrow < Cp”b”BMO[W]A = Il fllzeow)-

One can verify that the same estimate holds for 7;. Then we will obtain the
following bound for the commutator of the Hilbert transform and b:

(1+a) max {1, = 1}

B, H1f ey = CpllbllBarowly, 1A zr o)

And this is a contradiction because the power 2 max {1, _1 } is optimal for [b, H].
O
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4.3 Transference Theorem in L" (w) for Commutators

The following transference theorem holds:

Theorem 14 (Chung et al. [10]). If a linear operator T obeys linear bounds in
L*w) forallw € A,

ITf N 2wy < CWLa LS 12260y

then its commutator with b € BM O obeys quadratic bounds for allw € Aj,

7261 f |20 < CIWE, Bl sar0 1 £ 1l 2o 12)

Proof follows the beautiful Coifman—Rochberg—Weiss classical argument using
the Cauchy integral formula and immediately generalizes to higher-order commuta-
tors T}f‘ = [b, Tbk ~!]. Under the same assumptions of Theorem 14,

175 f 2w < CRIT 1B G301 1|20 - (13)

Extrapolation gives bounds on L”(w); they are sharp for all 1 < p < oo, all
k > 1, and all dimensions, as examples involving the Riesz transforms show [10].

As a corollary of these and Hytonen’s theorem we conclude that for each
Calder6n—Zygmund singular integral operators 7 there is a constant C >0 such that
for all BM O functions b and for all A, weights w, (12) holds. Sharp extrapolation
then shows that for all Calder6n—Zygmund singular operators 7',

. 1
mdx{l,F}

2
T, D1 f ey < Cplwly 161 Bazo | f | Le - (14)

r
A refinement of the argument in [10] shows that

Theorem 15. If a linear operator T obeys a power bound in L" (w) for allw € A,

1T NLron < COWIG, LS oo
then its commutator with b € BM O obeys the following bounds for allw € A, :

a+max{l,ﬁ}

1T, B) S llrowy < Carlwly, 61l Bpo LS Ly ow)-

Notice that in the case of 7" a Calder6n—Zygmund singular integral operator,
we recover the L”(w) norm obtained from sharp extrapolation in [10], because
the initial estimate on L”(w) corresponds to « = max{l1, %1}; hence in this case
Theorem 15 gives (14). Because this bound is known to ‘ge sharp for the Hilbert
and Riesz transforms, we deduce that the power obtained in Theorem 15 cannot be
improved.

We present the proof of this result in the Appendix.
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Generalizations and variations of these results have already appeared. Cruz-Uribe
and Moen [16] prove corresponding estimates for commutators with fractional
integrals (they also use the classical Coifman—Rochberg—Weiss argument). They
use the machinery developed by Cruz-Uribe, Martell, and Pérez [18] and Lerner’s
local mean oscillation [48] to obtain two-weight estimates for the commutators with
Calder6n—Zygmund singular integral operators and fractional integrals. Carmen
Ortiz-Caraballo [59] shows the following quadratic estimate for b € BM O, and any
Calderon—Zygmund operator 7', on L”(w) where the weightis in Ay C Ny514,,
the following estimate was obtained before Hytonen proved the A, conjecture, so
it was the first nontrivial bound valid for all commutators of Calderén—Zygmund
singular integral operators:

T, bllran < Cullbllsmo p (P WL, -

There are now mixed A,-As estimates that hold for all Calderén-Zygmund
singular integral operators [34-36, 49]; inequality (15) is an example of such an
estimate when p = 2. These estimates can be transferred to the commutators [36].

Theorem 16 (Hytonen and Pérez [36]). If a linear operator T obeys the following
bounds in L*(w) for allw € Ay:

ITf 200 < CIWIE, (Wlaos + 1) 2 1 2. 15)

then its commutator of order k > 1 with b € BM O obeys the following bounds for
allw € Aj:

1 _ 1
IT5 20 < CWE, (Wi + W Taos) T2 1B B30 L f 1l 2260)-

The two-weight problem is still an outstanding open problem for most operators.
Necessary and sufficient conditions are known for the maximal function via Sawyer-
type conditions [51, 72], for the martingale transform and other dyadic operators
[55] (these are of Sawyer type as well with respect to the dyadic operators), and for
the dyadic square function (Beznosova, O., personal communication); compare to
[81]. As for sufficient conditions many different sets are known, including several
sets for the Hilbert transform [15, 40,45, 57]. In all these cases the conditions are
somehow inherent to the operator studied: “Sawyer-type conditions.” An exception
being sufficient conditions in terms of “bump conditions” in Orlicz spaces [16, 18].
Lacking are theorems of the nature; operator A is bounded from L” (u) into L?(v)
if and only if operator B is bounded from L7 (u) into L? (v).

Appendix

Proof (Sketch the proof of Theorem 15).
We “conjugate” the operator as follows: if z is any complex number we define
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T.(f) =e"T(Ee™ /).
Then, a computation gives (for instance for “nice” functions)

.71 = ST Do = 5 [ 1

2mi lzl=e <

dz, e>0

by the Cauchy integral theorem; see [1, 12].
Now, by Minkowski’s inequality,

6. TIC N Lron =

2 €2

/| TPl e
Z|=—€

The key point is to find the appropriate radius €. First we look at the inner norm,

T er o = NT @ F) e guermecs) »

and try to find appropriate bounds on z. To do this we use the main hypothesis,
namely that 7 is bounded on L" (v) if v € A, with

1T Lr oy = CVIG, -

Let v = we™¢2?. We must check that if w € A, then v € A, for || sufficiently
small:

r—1
[V]4, = sup (L/ weRezb() dx) (L/ w_le‘(x)e_ﬁReZb(") dx) )
0 O] 0 10| 0

Now, since w € A,, then w € RH, for some ¢ > 1[11]. Recall that w € RH, if
and only if there is a constant C > 0 such that for all cubes Q,

1 i C
— [ wid — [ w.
(|Q|/QW x) =101 J,"

The following precise reverse Holder condition for A, weights holds [64]:

Lemma 2. I[fwe A, and q =1 (< 2), thenw € RH, and

+ 22r+n+1 [W]A

1 i 2
_ ad 5—/ . 16
(|Q|/QW x) 01 /," (10)
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It is well known that if w € A, then o := = = A, with r’ = - the dual
exponent of r, and [w]ﬁ{r = [o]’,,. Applying Lemma 2 to o and r’ we conclude then

. 1
that if s:1+22"/T1[0]A, <2 theno € RH, and

(ﬁ/Qasdx)s < %/Qo. (17)

Let + = min{q, s}, where ¢ and s are as above, then t < ¢ and ¢ < s. Holder’s
inequality with p = ¢/t > 1 and p = s/t > 1, respectively, implies that

| ) 1 Lo,
i 'q < , — q < —
(|Q|/QW ’“) “TorJo” (|Q|/Q“ x) 0]

Using these and Holder’s inequality twice with p = ¢, we have for an arbitrary Q

r—1
(L/ w(x)erRezb(x) dx) (L/ U(X)e—r/Rezb(x) dx) < 4[W]A, [ef’rRezb]j/ '
101 Jo 101 Jo ,

Now, since b € BM O, it is well known thate” € A, for n small enough [21,27].
We need a quantitative version of this result.

Lemma 3. Given b € BMO then there are 0 < a, < 1 and B, > 1 such that if
n < min{l, r — 1}z, then (€], < BI.
This follows from a similar computation to the one done for r = 2 in [10]. In
our case, we need to ensure that |t'r Rez| < min{l,r — l}nbﬁ)‘% to deduce that
[e" "Rezb 14, < B1. That is We are constrained to consider complex numbers z such
that | Rez| < min{}, =1} —

”b”BMO

Recall thatt = mln{l + 22,+,ﬁ11 L !

— }; a calculation now shows

[w] r 22,/+n+1[w]£r—l
that
g 1+ 22r+n+1[W]A,1 p> 2
14 22 H =T p <2
Furthermore ¢/ [w]mﬂm{1 = with comparability constant depending exponen-

tially in the dimensmn n and max{r, r'}.

. 1, .
For |z] <e,withe ™ ~ ||b||amolw ]I:‘”{ = ,and since 1 <t < 2, thus ¢’ > 2,

we have that

r
7

W4, = [we™=P1y < 4[wla, Bi < 4[wla, B2
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Observe that le™ £l ro) = lle™ f |l rermesry = L.f |17y, andif |2] < i,

1T (Mo = 1TE Moy < DG lron < 40905, B2 1S NLron-

Uy

Choose the radius € = —
rt'||b| smo

, and we can continue estimating the norm of the

commutator

6. TYC Lron =

o r 1 o r
s [ A B = S, B

max{1,

1
Finally, observe that € ™! is essentially [w] 4, =T }||b|| BMO, SO we conclude that

a+max{1,r%}
1B, TI ) r oy < Cr W]y, bl Bmo-

This finishes the proof of the theorem. O
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Medical and biological sciences are nowadays spearheading important research
and development efforts around the world. In this, they both benefit from and are
benefactors of progress in applied mathematics, with many fundamental contribu-
tions arising in the field of harmonic analysis. Prominent examples of interactions
between the mathematical and biomedical sciences include the role of the Kaczmarz
algorithm in computed tomography and of Radon transforms in magnetic resonance
imaging—both rewarded with Nobel Prizes in physiology and medicine. There is
no doubt that this trend is going to continue. This is supported by the growing
importance of fields such as systems biology, which reflects the fact that biological
and medical models become increasingly more complex and involved, or bioinfor-
matics, which addresses the issue of rapid growth in available medical data. With
this in mind, we present some contributions describing state-of-the-art applications
of harmonic analysis to current problems in the medical and biological sciences.

Alex Chen, Andrea L. Bertozzi, Paul D. Ashby, Pascal Getreuer, and Yifei Lou
introduce us to the field of atomic force microscopy (AFM)—a powerful tool to
study biological, chemical, and physical processes at the atomic level. The authors
detail the role of mathematical advancements in this novel imaging modality.
This includes the discussion of the role of sampling methodologies in AFM image
reconstruction, as well as a review of a number of interpolation and inpainting
approaches that are useful in AFM applications.

Gregory S. Chirikjian analyzes the role of representation theory and numerical
harmonic analysis in the mechanics of double-helical DNA molecules. Through
modeling of DNA as an elastic filament capable of bending and twisting, the author
introduces the representation theory on unimodular Lie groups, with special em-
phasis placed on the three-dimensional group of rigid-body motions. The associated
unitary irreducible representations are then used to provide explicit solutions of the
diffusion equations describing the DNA structure. The result is a simplified model
for a distribution of DNA poses.

Martin Ehler, Julia A. Dobrosotskaya, Emily J. King, and Robert F. Bonner
present state-of-the-art mathematical applications in ophthalmology, the branch
of medicine that deals with the human eye. It is not at all unexpected that the
image analysis of our visual system poses a number of captivating problems of
fundamental importance to our health. As an example the authors consider the
early detection of age-related retinal diseases. Among such diseases is AMD
(age-related macular degeneration), the most common cause of blindness among
the elderly populations in the developed world. A number of image analysis tools
is employed to understand its mechanics, including computational models for
rhodopsin bleaching kinetics, variational inpainting techniques, and multispectral
analysis.

The problems in magnetic resonance (MR) are analyzed by Evren Ozarslan,
Cheng G. Koay, and Peter J. Basser. Nuclear MR is a technique that allows us to
obtain information about the imaged domain via the analysis of diffusion processes
in that domain. The chapter focuses on MR performed in the g-space (i.e., after the
mapping by the Fourier transform). This technique allows the researchers to analyze
microscopic tissue structures, which otherwise are inaccessible to conventional MR
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imaging. Hermite functions are one of their mathematical tools. Applications to
reconstruction of certain two- and three-dimensional signals from one-dimensional
measurements are also provided.

A long history of the use of Fourier analysis in the study of structured
materials is revisited by Richard O. Prum and Rodolfo H. Torres. Their goal is to
analyze the nature of nonpigmentary coloration in the tissues of living organisms.
Their groundbreaking work mathematically establishes the fact that coherent light
scattering can also be achieved as a result of reflection from quasi-ordered collagen
fibers. This result manifests itself in our perception of certain nano-structures as
colors.

Paul Hernandez-Herrera, David Jiménez, Ioannis A. Kakadiaris, Andreas Kout-
sogiannis, Demetrio Labate, Fernanda Laezza, and Manos Papadakis give us a
harmonic analysis view on neuroscience imaging. The chapter begins with an
extensive, historical, accessible overview of modern neuron imaging techniques.
This is followed by a detailed study of the approximation errors due to the action
of a group of orthogonal transformations on Euclidean space. These results depend
on efficient directional representations, with examples including such novel repre-
sentation systems as shearlets and curvelets. All this fascinating work culminates in
an algorithm for computation of realistic models for naturally occurring neuronal
dendrites.



Enhancement and Recovery in Atomic Force
Microscopy Images

Alex Chen, Andrea L. Bertozzi, Paul D. Ashby, Pascal Getreuer,
and Yifei Lou

Abstract Atomic force microscopy (AFM) images have become increasingly use-
ful in the study of biological, chemical, and physical processes at the atomic level.
The acquisition of AFM images takes more time than the acquisition of most optical
images, so that the avoidance of unnecessary scanning becomes important. Details
that are unclear from a scan may be enhanced using various image processing
techniques. This chapter reviews various interpolation and inpainting methods and
considers them in the specific application of AFM images. Lower-resolution AFM
data is simulated by subsampling the number of scan lines in an image, and
reconstruction methods are used to recreate an image on the original domain. The
methods considered are classified in the categories of linear interpolation, nonlinear
interpolation, and inpainting. These techniques are evaluated based on qualitative
and quantitative measures, showing the extent to which scan times can be reduced
while preserving the essence of the original features. A further application is in
the removal of streaks, which can occur due to scanning errors and post-processing
corrections. Identified streaks are removed, and the resulting unknown region is
filled using inpainting.
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1 Introduction

The atomic force microscope (AFM) is an extremely high-magnification micro-
scope [5]. It achieves its high resolution by moving an atomically sharp probe
over surfaces and recording the highly localized interaction force. Isolating specific
interaction forces such as electrostatic, magnetic, specific chemical interactions,
van der Waals attraction, and Pauli repulsion enables the AFM to measure many
surface properties in addition to topography [2,12,17,20,22,29]. The AFM is also
able to measure surfaces in any environment from liquids to corrosive gases and
vacuum. The high resolution, versatility, and broad information content make AFM
a frequent choice for nanoscience imaging.

The current standard method of AFM data collection is the raster scan. The probe
starts by traveling along the “fast scan direction,” or in the +x direction. As it
reaches the end of the scan region, it takes a small step in the “slow scan direction,”
or +y direction, and scans in the —x direction until it retraces the x displacement.
Another small step in the +y direction is taken, and the scanner moves in the +x
direction to initiate another scan line. Continuing in this manner, an image is formed.
The backward (retrace) scans are often displayed independently from the forward
(trace) scans due to errors in position from scanner nonlinearities and hysteresis.
A feedback mechanism maintains the probe—sample interaction at constant force to
ensure that the probe is not damaged by contact with the sample.

Because the AFM is a local probe it must collect data serially to construct
an image over time which can be a significant disadvantage. The sample and
probe are massive objects that are difficult to accelerate requiring relatively slow
scan velocities otherwise the feedback mechanism that holds the interaction force
constant may not be able to compensate quickly enough, causing erroneous readings
or damage to the probe. This problem is even more pronounced when the sample
has sharp gradients. Another problem is thermal drift, the tendency for the probe
and sample to move relative to each other due to temperature variations in the probe,
sample, and substrate [19]. Since an image is formed point by point, the topography
data may be skewed or distorted. As a result, it is challenging for AFM to record
dynamic processes.

Figure 1 shows images of a chemical reaction that occurs faster than the AFM
scan time. Shorter scan times are required to better capture sample dynamics. Before
oxidation, the surface is atomically flat with a few step edges where the sample
changes height by one atomic layer. After oxidation for the same region, the material
at the step edges has been reacted leading to roughening, erosion, and migration.
Imaging the surface during oxidation does not sufficiently resolve the oxidation
edges, since data is collected at varying times.
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Fig. 1 AFM scans showing morphological changes to a potassium bromide surface when oxidized
by ozone. Left: Before oxidation. Middle: After oxidation. Right: Image of another surface
collected during oxidation in an attempt to observe the chemical reaction. However, the reaction
happens during a single image. The time and location of specific oxidation events is unavailable

An active area of research to improve the temporal resolution of AFM includes
building lighter and stronger scanners that can operate at higher frequencies while
maintaining a safe probe—sample interaction force. The best-performing instruments
can record images at video rate [1, 18]. However, this approach often has significant
sample size and environmental limitations compromising the versatility of AFM.
Methods that increase the instrument’s temporal resolution while maintaining
versatility are needed.

Recording fewer scan lines per image can make AFM image collection faster.
Alternatively, tracking only the boundaries of important features can drastically
reduce image times. The important question regarding these methods is whether
such scans still resolve the areas of interest sufficiently.

There are two classes of image processing techniques, interpolation and inpaint-
ing, used to fill in missing data. Though there is significant overlap in the methods
and approaches, we generally take interpolation to denote methods based on local
averaging ideas and let inpainting refer to methods that detect important image
features in a known region and seek to continue these into the unknown region.

One of the major applications of interpolation is to increase the resolution
of an image by interpolating intermediate values between known data points.
Interpolation is thus well suited to the problem of converting coarse raster scans
to higher-resolution images.

This chapter considers various image reconstruction methods and the degree
to which AFM images can be enhanced. The focus is on using interpolation and
inpainting techniques on AFM images that have been obtained with fewer scan
lines (subsampling along the slow scan direction). This is in contrast to the typical
applications of interpolation, in which both axes are usually subsampled by the same
factor, and inpainting, in which one typically has large connected known regions and
unknown regions.
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The rest of the chapter is organized as follows. Section?2 introduces the re-
construction problem and relevant terminology. Sections3 and4 review some
commonly used interpolation algorithms and assess their strengths and weaknesses.
Inpainting techniques, which look at the reconstruction from another perspective
and are more readily generalizable, are addressed in Sect. 5. Several reconstructions
on AFM images are presented in each of these sections.

2 Description of the Reconstruction Problem

The scenes underlying images are often taken to lie in continuous space. When
images of these scenes are captured, they are sampled at a certain rate and thus
mapped to discrete space. This sampling rate is directly related to the image
resolution. If the sampling rate is increased (upsampling), the image resolution is
increased. Similarly, downsampling decreases image resolution. Interpolation can
thus be reinterpreted as the inverse problem of recreating a higher-resolution version
of a given scene.

Let the given discrete image be denoted as I,,, for (m,n) ¢ Z?() £2. The
problem is to reconstruct an image /(x, y) with (x, y) ¢ §£2. Such an image /(x, y)
should be close to I at the points (m,n) & Z? () £2 and continue the structural
features present in /.

2.1 Adapting Reconstruction Methods to AFM

The fastest AFM scans that still distinguish image features are the most preferable.
Image reconstruction methods can then be used to obtain an approximation of a
higher-resolution version. There are, however, further considerations in adapting
these methods to AFM problems.

In general, the maximum sampling rate in space for data points is proportionally
related to the speed of the tip, while the tip speed is limited by considerations such
as feature height and scanning pattern. For a fixed tip speed, there is no benefit to
sampling at a rate lower than the maximum rate since the tip still must traverse the
same area [8]. This consideration fixes the number of points in each scan line for a
specific velocity. However, decreasing the number of scan lines can bring practical
benefits, as long as the important features are still being detected.

In terms of the reconstruction problem, this means that interpolating by different
factors in the two dimensions of the image is of great interest. The usual treatment
of the interpolation problem, however, is that both dimensions are scaled by the
same factor. Most interpolation algorithms are valid when the scaling in the two
dimensions is not equal, but in the AFM reconstruction problem, care must be taken
to ensure that reconstructions consider features, such as interrupted edges, correctly.
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Fig. 2 Subsampling the “annealed gold” image in the slow scan (vertical) direction. Left: Original
image. Right: Subsampling by a factor of 4 along the vertical axis. Nearest neighbor interpolation
to preserve the aspect ratio

A further distinction between the AFM application and many other applications
is in image acquisition. For each pixel, optical systems use, for example, a charge-
coupled device to measure incoming light over a small photoactive region. Since
lenses and filters also introduce blur, each sample represents a weighted average
over a small area in continuous space. In acquiring an AFM image, however, the
tip obtains a sample by visiting a point instead of averaging over a region. While
this sample still represents a convolution between the tip and the surface, it is
concentrated over a smaller area. In other words, optical images aggregate over the
entire domain while AFM images capture concentrated point samples.

This subtle difference in image acquisition can result in the loss of image
features from subsampling. Typically, a lower-resolution image can be obtained
from a higher-resolution version by some averaging of the original data [21]. Such
averaging results in the greatest retention of information. This method is also
analogous to the taking of a lower-resolution camera image because the amount
of light from a neighborhood of pixels is averaged. There is, however, significant
information loss when the lower-resolution image is formed from simply discarding
certain lines of data, as in AFM subsampling. Figure 2 shows the contrast between
an image of annealed gold and the same image obtained by subsampling lines. In
the latter image, the intensities along some edges vary due to the loss of information
around the edge pixels, resulting in pixelation.

This method of sampling also makes AFM imaging more susceptible to aliasing.
Aliasing is an effect where an oscillating pattern appears to change frequency after
sampling. It occurs when sampling a pattern that is finer than what is representable
with the image resolution and manifests in the sampled data as artificial oscillations
and Moiré patterns. The blurring in optical systems cancels out (“anti-aliases”) most
high-frequency oscillations so that aliasing is limited. AFM imaging does not have
as much blurring, so aliasing is a problem.
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2.2 Desirable Traits of Reconstruction Methods

Image reconstruction methods are typically evaluated based on several criteria.
Generally, preserving edge sharpness allows objects to be distinguished clearly from
each other and from the background. At the same time, it is important to filter noise
in order to remove random features that may obscure the image and make it difficult
to evaluate. Unfortunately, the two goals are often antithetical since both edges
and noise are typically defined by high gradients. In contrast to the randomness
of noise, however, edges often can be identified as continuous contours traversing
high-gradient regions. A good reconstruction algorithm keeps edges sharp while
smoothing noise.

Another consideration is the “connectivity principle,” [7] which states that edge
curves should be connected through the unknown region whenever possible. This
principle is based on human perception and experience, as well as the particular
prevalence of long, thin objects in nature and in man-made applications. Particular
examples include road inpainting [3] and the identification of bar codes [10, 11].
Reconstruction algorithms have historically had particular problems connecting
such slim objects through an unknown region. Inpainting methods relying on the
evolution of a fourth-order PDE [25] are more likely to satisfy the connectivity
principle due to their penalization of high-curvature edges.

A related problem is the shape of such an edge connection. Often, edges are
connected by the shortest path [6], which can result in unrealistic kinks. The same
penalization on high-curvature edges discussed for the connectivity principle also
fixes the overreliance on shortest path connections. These considerations are well
studied for the typical inpainting problem, in which there are large unknown regions
interrupting mostly known data.

The connectivity principle and staircasing pose particular challenges in the AFM
inpainting problem. Since the known data is relatively more disconnected than in
usual inpainting applications, it is unlikely to expect edge connections with the same
degree of effectiveness. Indeed, experiments in Sect. 7 show that this is the case.

3 Linear Interpolation

Linear interpolation methods average values of nearby pixels to calculate values
at intermediate points. Mathematically, the reconstructed image is the result of the
input image convolved with a given kernel. Linear interpolation methods are linear
in the sense that the relative weights on neighboring points in the average do not
depend on their respective intensities, that is, the convolution kernel is not dependent
on the image intensity values. Thus, these methods are fast and easy to calculate. At
the same time, since they do not take any edge information into account, there is
always a trade-off between artificial ripples and staircasing along diagonal edges.
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3.1 Nearest Neighbor

Nearest neighbor interpolation is one of the simplest methods of interpolation. In
this method, the value of the nearest known point is copied directly without regard
to any other point. That is, if (x, y) ¢ £2, then I(x, y) = I(m,n) where (m,n) =
argmin(i,j) 72N QdiSt((i’ ./)v ()C, y))

Since nearest neighbor interpolation copies data points I_m,n without alteration,
any noise will also be copied. Similarly, edges are thickened, giving the image
a blocky, pixelated appearance. Nearest neighbor interpolation is also useful in
comparing images on varying domain sizes without altering the underlying quality
of the image.

3.2 Bilinear and Bicubic Interpolation

Taking averages is one of the primary methods used to eliminate noise, one of
the primary problems with nearest neighbor interpolation. Polynomial interpolation
methods fill in intermediate points by taking a weighted average, with the weighting
depending on their distances to nearby points. Bilinear and bicubic interpolation are
examples of these methods.

Bilinear interpolation is a combination of two linear interpolation steps along the
x-coordinate, then along the y-coordinate. First, linear interpolation is performed
along the x-coordinate for each fixed y-coordinate, followed by linear interpolation
along the y-coordinate.

If x; = |x],y1 = |yl,¢c = x—x1,d =y — y1, where |-] denotes the floor
function, then bilinear interpolation is given by

](X, y) = (1_6)(1_d)1x1,y1 +(1_C)d1x1,y1+1 +C(1_d)1x1+1,y1 +Cd1x1+1,y1+1‘

An undesirable property of nearest neighbor interpolation is that the result is
artificially discontinuous between pixels. Bilinear and other higher-order polyno-
mial methods construct the interpolant from continuous piecewise polynomials, so
the result is always continuous. This has an effect of smoothing the image, which
improves interpolation of smooth regions and directional features.

Bicubic interpolation is similarly a two-dimensional version of cubic interpola-
tion. The values in each square (x, y) € [m,m + 1] x [n,n + 1] are approximated
by a polynomial that has at most cubic terms in both x and y.

The resulting polynomial 7(x,y) = Y °_,3>_ a; ;x'y/ can be calculated by
using the values I , %, g—{,, and (112:5; at the corners, with the derivatives being calcu-
lated numerically. Bicubic interpolation results in an even smoother reconstruction
than bilinear interpolation. Since bicubic interpolation is also computationally
efficient, it is often used for resizing applications [26].
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3.3 Lanczos

Interpolation with a sinc kernel, also known as Whittaker—Shannon interpolation,
has the remarkable property that the interpolation is exact when the underlying
signal is bandlimited. Applied to image interpolation, this results in an extremely
smooth image. Sinc interpolation also avoids the staircasing that can occur at diag-
onal edges. Unfortunately, since edges are the result of sharp changes, application
of the sinc filter across them results in significant ripple artifacts as the edges are
fitted to lower frequencies. The Lanczos filter is a windowed version of the sinc
filter. The windowing of the sinc function allows for the higher frequency changes
characteristic of edges. It thus provides a compromise between staircasing and ripple
effects.

4 Nonlinear Interpolation

Nonlinear interpolation algorithms attempt to solve the problems of staircasing and
rippling by taking an adaptive approach. Any image of practical interest has some
structure, which can be used in the reconstruction. Thus, instead of an unbiased
average of intensity values, averaging is based on the detection of edges. These
methods generally attempt to average along edges to preserve edge sharpness. As
with linear interpolation, noise is smoothed since these points are not identified as
edge points.

4.1 Contour Stencils

Interpolation by contour stencils was introduced [13, 14] as a nonlinear method to
detect the orientation of edges. Edges are detected in the input image by comparing
each image patch to each element in a set of “contour stencils,” which predict
the location and direction of edges. The stencil which provides the best match to
the image patch is selected. The reconstruction step then follows by interpolating
according to the selected stencil.

The predicted orientation of edges follows from measuring the total variation

along a curve,
T
lullrvie) = /
0

so that a small value for ||u||7v(c) suggests that an edge lies along C.
In order to make the problem computationally efficient, a subset of possible
image contours is used, the set X' of “contour stencils.” An example set of contour

d
gu(y(t))‘ dt,y : [0, T] = C,
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Fig. 3 Several contour stencils for a rectangular grid with pixel aspect ratio 4:1. The lines depict
the orientation measured over each cell of the neighborhood. The stencil set comprises lines at 32
orientations, 16 parabolas, 8 corners, and a circle

stencils is shown in Fig. 3. This set of contour stencils can distinguish between eight
different orientations for edges.

Once the contour orientations at every pixel have been estimated, the interpolant
is constructed as a linear combination of oriented Gaussians. In this way, the
interpolated image is encouraged to have the same contour orientations as those
detected in the input image.

4.2 Prioritized Line Interpolation

This section introduces prioritized line interpolation (PLI), which is designed to
connect edges that have been broken by the subsampling process. The idea is
to assume that edges are locally linear in space and are locally nearly constant.
Then, starting with the highest gradient points, which are more likely to be edge
points, the algorithm searches a neighborhood for possible edge connections. Once
a suitable location is found, unknown points along the connection are filled in by
linear interpolation.
The PLI algorithm is as follows:

1. Each point in the interior of the image is placed in a priority queue {A4; }l_l,
where N is the number of interior pixels, in decreasing order of a function based
on the discrete gradient; that is, the function

Sij) = wigr; —wij| + lwio1j —wij| + uij+1

_ui,j| + |I/l,',j_1 - M,"jl.
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L] -l'_JI_

Fig. 4 Interpolation reconstructions from a section of an image of lipid bilayer domains on mica,
subsampled by a factor of 2 on the vertical axis. Left to right, top to bottom: Original image;
nearest neighbor interpolation; Lanczos-3 interpolation; bicubic interpolation; contour stencil
interpolation; PLI

2. For a neighborhood N; of the point 4; (a square neighborhood centered at A;
with radius r, for simplicity), the algorithm considers any known points {B;; }
with gray value within a certain threshold 7;.

3. For each B;;, the unknown points lying between B;; and A; are determined
by linear interpolation, as long as the sum of the absolute differences from the
known points do not exceed a threshold 7,.

4. Repeat steps 2 and 3 until a significant portion of the image is filled.

5. Any remaining unknown points are filled with some interpolation or inpainting
algorithm.

PLI is able to reconstruct edges and other large-scale features well. There are
significant small-scale artifacts, however, making the algorithm less suitable for
reconstructing small and thin features (Figs. 4 and 5).

In the examples that follow, r = 10, ¢, = 5,and t, = 5.

5 Variational Inpainting

The principle underlying inpainting is similar to that of nonlinear interpolation
algorithms such as contour stencils. These algorithms generally detect features in
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Fig. 5 Interpolation reconstructions from a section of an image of lipid bilayer domains,
subsampled by a factor of 4 on the vertical axis. Left to right, top to bottom: Original image;
nearest neighbor interpolation; Lanczos-3 interpolation; bicubic interpolation; contour stencil
interpolation; PLI

the known region and continue them into the unknown region while preserving
properties such as edge continuity and curvature.

A major advantage of inpainting over interpolation methods is that they are more
readily generalizable to reconstructing information in general unknown regions.
With the extra information available from subsampling on only one axis instead
of both, inpainting algorithms can reconstruct many features in an image more
accurately. This is especially relevant to AFM applications, in which the sampling
rate can be increased in the fast scan direction much more readily in the slow scan
direction. Thus, the fast scan direction typically has sufficient resolution, while the
slow scan direction requires enhancement. Inpainting methods, however, are usually
more computationally expensive than interpolation methods.

Variational image inpainting methods define energy functionals that seek to
recreate plausible images given the known data. These energies generally have the
following structure:

E@) = R(u) + A(x, y) F(d(f.u)).

where R(u) is a “regularization” term that penalizes unlikely image features such as
high gradients (relatively less common than smooth changes), and A(x, y) F(d( f, u))
is a data “fidelity” term that penalizes deviation from known data, as measured
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by the distance function d(-,-). The weight A(x, y) is generally chosen to have a
constant weight A in the known region §2; and 0 in the unknown region:

A, if(x, y) e £24,

0, if(x, y) e £2\£2;. M

Ax) = {

Minimization of the energy gives an image with the desired properties. One of the
simplest models for variational inpainting with this structure is the H! (diffusion)
model:

1 A
E(u)=—/|Vu|2dxdy+—/ (f —u)*dx dy.
2 /o 2 Jo,

The regularization term of the H'! energy indeed penalizes the high gradients
characteristic of noise. Unfortunately, edges are also excessively smoothed due to
the squared penalty on gradients. The gradient descent equation also shows this fact:

Mt:Au‘i_k(f_u)y

which indicates that the propagation of information is by isotropic diffusion.
Generally, features are reconstructed reasonably well, but since the diffusion is
completely unbiased, significant blurring results.

A significant improvement is the total variation (TV) model of Rudin, Osher, and
Fatemi [24], originally for image denoising. The TV inpainting energy is

E(u):/Q|Vu|dxdy+k/9(f—u)2dxdy.

As in the H'! model, large gradients are penalized, so that the model seeks smooth
continuations of the data while removing noise. However, the lack of a square on
the regularization term prevents excessive penalization. There are various methods
to minimize this energy. Gradient descent has typically been used as a simple
and straightforward method to find a minimizer. More recently, the Split Bregman
method [15] and graph cuts [9] have made minimization more efficient.

5.1 Fourth-Order Inpainting Methods

The TV model significantly improves edge definition. There are several other
factors, however, that are desirable in an inpainting model. The connectivity
principle is introduced in Sect. 2.2. In the TV model, the connectivity principle is,
in particular, often violated when connecting broken edges. If an unknown region
separates two long, thin objects flowing toward each other, it is logical to assume
that they should be connected through the unknown region. Yet the added amount of
total variation needed to connect the objects may be high, so the TV model would
keep the two objects separate.
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One solution is to add a penalty on edge contour curvature, since a long,
thin object which ends abruptly certainly has high curvature at its terminus.
The curvature term adds to the complexity of the energy and the corresponding
gradient descent. In fact, since curvature depends on second-order derivatives, the
corresponding gradient descent equation is a fourth-order PDE.

A related problem is the shape of such an edge connection. Since the regu-
larization term of the TV inpainting model depends only on the total variation,
straightedge connections are preferred over curved edge connections, as the former
would contain fewer pixels at high-gradient locations.

In fourth-order inpainting methods, boundary conditions on the evolved function
and its gradient need to be specified. The boundary condition on the function itself
tends to promote continuity of edges near the boundary of the inpainting region. The
second boundary condition promotes continuity in the gradient and thus promotes
the propagation of information along level lines in a smooth manner.

Low-curvature image simplifiers (LCIS) [25, 27] is a fourth-order inpainting
method that provides many fine-scale features that are lost in methods such as H'!
and TV inpainting. The inpainted version follows the evolution

up ==V - (g(AW)VAu) + A(f —u),

where g(s) = H—% is a “conductance threshold.” For high values of Au, g(Au) is
small, so that there is little evolution across high gradients. However, low values of
Au give large values of g(Au), promoting the propagation of information.

LCIS is based on the Perona—Malik equation [23], a second-order PDE often
used for image denoising tasks because it propagates information via anisotropic
diffusion. Thus, edge sharpness is preserved while noise is smoothed. Unfortu-
nately, the Perona—Malik equation is ill-posed in continuous space, making the
model somewhat theoretically unsatisfying. On the other hand, LCIS preserves the
anisotropic diffusion properties of the Perona—Malik model while being globally
well posed [4, 16] and making more realistic curvature connections.

The results of several inpainting reconstructions are shown in Figs. 6 and 7 for
an image of lipid bilayer domains that has been subsampled by factors of 2 and 4 on
the vertical axis.

6 Reconstructing Damaged Scan Lines

With many AFM images, there are some artifacts related to the process of raster
scanning. After each scan line is complete, flattening is done in order to adjust for
effects such as tilt and thermal drift, mostly linear in their effects. In this way, a first-
order polynomial is subtracted from each scan line. Flattening generally works well
in compensating for tilt and thermal drift, but some errors still occur, particularly
relating to streaks.
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Fig. 6 Inpainting reconstructions from a section of a lipid bilayer image, subsampled by a factor
of 2 on the vertical axis. Left to right, top to bottom: Original image; H1 inpainting; TV inpainting;
LCIS inpainting

These streaks can occur for various reasons. In the course of scanning, the probe
may be damaged, be temporarily changed from the addition of material from the
sample, or be changed when thermal excitations cause jumps between stable states
in the governing equations of the probe—sample interactions.

Another source of the streaks is when anomalous features are detected within
a given scan line. In general, since the anomalous features are part of the image,
it is useful to keep these in a processed image. One problem with this is that due
to the flattening process, streaks can occur in scan lines directly following these
contaminants. Since flattening is done by subtracting a polynomial function from
each scan line, this can result in shifting the data around the feature. One further
challenge is designing an automatic detection method that can distinguish between
streaks due to features in the sample and streaks due to mistakes in the scanning
process.

One of the current standard techniques to deal with these streak artifacts is
removal of the entire line, followed by an average of the neighboring scan lines. This
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Fig. 7 Inpainting reconstructions from a section of a lipid bilayer image, subsampled by a factor
of 4 on the vertical axis. Left to right, top to bottom: original image; H1 inpainting; TV inpainting;
LCIS inpainting

can cause some distortions, particularly near edges. Figure 8 shows the removing of
streaks from the image by manual identification of the inaccurate parts, followed
by inpainting of the identified regions by LCIS inpainting and by averaging. The
results look comparable, since the unknown regions are small. However, inpainting
algorithms work slightly better near edges and when there are multiple streaks
nearby.

7 Reconstructing Important Features

In this section, various image features are examined more closely and the various
algorithms are compared and contrasted. Figure 9 shows zoomed versions of the
most common type of edge, one that forms the boundary between two regions of
contrasting intensity.
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Fig. 8 Inpainting damaged scan lines from the “annealed gold” image. Top left: Original image.
Top right: Manual identification of the damaged areas is displayed in white. Bottom left: Averaging
of damaged lines. Bottom right: Recovery by LCIS inpainting

Since the nonlinear interpolation methods explicitly detect the orientation of
edges, they are generally able to reconstruct sharper edges than the linear inter-
polation methods. Additionally, the staircasing effect is reduced as well. The edge
is reconstructed more sharply in the PLI algorithm than in contour stencils at the
expense of more artifacts.

Analogously, the TV and LCIS inpainting methods result in better edge re-
constructions than the H1 method because information is designed to propagate
along edges and not isotropically. These result in edges that are comparable to the
nonlinear interpolation techniques in sharpness.

A second type of edge is that of a trench separating two regions of similar
intensity. These types of edges are typically much more difficult for inpainting
and interpolation methods due to the trench values making up a smaller portion of
the neighborhood around an edge. Thus, both interpolation and inpainting methods
tend to blur these edges by averaging with the surrounding values. Additionally,
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Fig. 9 A high-contrast edge from an image of annealed gold, subsampling by 4 in the vertical

direction. Left to right, top to bottom: Original image; nearest neighbor interpolation; bicubic
interpolation; contour stencil interpolation; PLI; H1 inpainting; TV inpainting; LCIS inpainting

-

-

Fig. 10 Edges from a trench between two regions of similar intensity from an image of annealed
gold, subsampling by 4 in the vertical direction. Left to right, top to bottom: Original image; nearest
neighbor interpolation; bicubic interpolation; contour stencil interpolation; PLI; H1 inpainting; TV
inpainting; LCIS inpainting

variational inpainting places an extra penalty on having a double-sided gradient, so
that edges often remain disconnected. The PLI algorithm connects this type of edge
but at the expense of significant artifacts.

Example reconstructions on this type of edge are in Fig. 10.

Staircasing of diagonal edges occurs with both the interpolation and inpainting
methods. Figure 11 shows a comparison between the recovery of several different
interpolation and inpainting algorithms. The TV inpainting algorithm performs very
well in straightening all edges, due to its tendency to connect edges in straight
lines. Most of the algorithms give minimal staircasing for the longer edge of the
InP nanowire but do much worse along the shorter side of the nanowire. This is due
to the fact that the longer edge lies mostly along the vertical direction. In the space
of the recovered image, the points along the edge are separated by a shorter distance
and thus more easily connected.
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Fig. 11 A comparison of edge quality in the recovery from various inpainting and interpolation
algorithms on the InP nanowire image, subsampled by a factor of 4 in one direction. Left to right,
top to bottom: Original image; nearest neighbor interpolation; bicubic interpolation; contour stencil
interpolation; PLI; H1 inpainting; TV inpainting; LCIS inpainting

7.1 Difference Images

Difference images can be helpful in determining where the largest errors in the
reconstruction take place. They are computed by taking the absolute value of
the difference between the reconstructed image and the ground truth image. Not
surprisingly, they often occur near edges and noise. The lightest parts often indicate
systematic errors in a certain method. Figures 12 and 13 show the difference images
formed from the various methods on the InP nanowire and lipid bilayer images.

The various algorithms can also be measured objectively through the calculation
of the peak signal-to-noise ratio (PSNR), which uses the root-mean-squared error
(RMSE):
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Fig. 12 Difference images of various inpainting and interpolation algorithms on the InP nanowire,
subsampled by a factor of 4 in the vertical direction. The original image is shown in the top left
corner for comparison. Left to right, top to bottom: Original image; nearest neighbor interpolation;
bicubic interpolation; contour stencil interpolation; PLI; H1 inpainting; TV inpainting; LCIS
inpainting

Then the PSNR is defined as

1
PSNR = 20 - log, (RMSE) .

Another method that compares the quality of an image reconstruction is the Mean
Structural SIMilarity (MSSIM) index, which measures the similarity between two
images by comparing luminance, contrast, and structure [28].

These measures give some indication of the effectiveness of a method, but they
can sometimes be misleading as well. If an algorithm performs well near important
features such as edges but badly in the background, its performance indicators
will be worse than for an algorithm that does well in the background and worse
near edges. Yet the former might be preferable in that the features of interest are
reconstructed well.
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Fig. 13 Difference images of various inpainting and interpolation algorithms on the lipid bilayer
image, subsampled by a factor of 4 in the vertical direction. The original image is shown in the
top left corner for comparison. Left to right, top to bottom: Original image; nearest neighbor
interpolation; Lanczos-3 interpolation; bicubic interpolation; contour stencil interpolation; PLI;
HI inpainting; TV inpainting; LCIS inpainting

A table of the PSNR and SSIM on the various reconstructions of the lipid bilayer
image is shown in Table 1, and the same table is shown for the InP nanowire image
in Table 2.
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Table 1 A comparison Objective measures of an algorithm’s effectiveness
of peak signal-to-noise ratio

(PSNR) and Mean Structural Method PSNR MSSIM
SIMilarity (MSSIM) for Nearest neighbor 14.8636 0.4494
various recovery algorithms Bicubic 15.6739 0.4489
on the lipid bilayer image Contour stencils 15.1333 0.4396
PLI 14.9638 0.4728
H1 16.0301 0.4398
TV 16.5837 0.4356
LCIS 16.6496 0.4292
The best-performing algorithm in each column is in
bold
Table 2 A comparison Objective measures of an algorithm’s effectiveness
of peak signal-to-noise ratio
(PSNR) and Mean Structural Method PSNR MSSIM
SIMilarity (MSSIM) for Nearest neighbor 26.3990 0.9104
various recovery algorithms Bicubic 27.9555 0.9367
on the InP nanowire image Contour stencils 28.0161 0.9364
PLI 28.5414 0.9262
H1 27.8737 0.9383
TV 27.9498 0.9422
LCIS 27.1007 0.9292
The best-performing algorithm in each column is in
bold
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Numerical Harmonic Analysis and Diffusions
on the 3D-Motion Group

Gregory S. Chirikjian

Abstract Representation theory and harmonic analysis on the group of proper
motions in three-dimensional Euclidean space has been applied in a variety of
areas ranging from robotics to DNA statistical mechanics. This theory can be
used to implement noncommutative convolutions analytically and numerically, as
well as to solve diffusion equations over this group. This chapter presents a brief
review of this theory together with an emphasis on DNA applications involving
diffusions and convolutions. Since representations of this noncompact group are
infinite dimensional, quantification of numerical truncation errors is also addressed.

Keywords Noncommutative harmonic analysis ® Group representation theory e
Infinite-dimensional matrices * Exponential map

1 Introduction

This chapter is a review of applications of the representation theory and harmonic
analysis on the group of rigid-body motions in three dimensional space and associ-
ated numerical issues. For a more detailed treatment and many other applications,
see [4].

The group of proper/special motions in three-dimensional Euclidean space,
SE(3), consists of elements that can be thought of as 4 x 4 homogeneous
transformation matrices of the form
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where (t,R) € R* x SO(3), 0 € R’ is the zero vector, 0" = [0,0,0] is its
transpose, and I is the identity matrix (which in the above context is 3 x 3).
Matrix multiplication, g; o g, is the group product, and this is noncommutative
(g1 08 # g og). Since SE(3) is the emphasis of this review, the notation
G = SE(3) is used for this six-dimensional Lie group. In the applications that
will follow, functions of the form f : G — Ry will arise. Since G is a connected
unimodular matrix Lie group, a bi-invariant integration measure, dg, exists such that

fhog)dg = [ f(gohdg= [ f(g"hdg= [ f(g)dg (2)
I I I I

for any fixed h € G whenever fG f(g)dg is finite. The explicit form for the
integration measure for G is the product dg = dR dt where dR is the Haar measure
for SO(3) and dt is the Lebesgue measure for R3. Explicitly, dt = d#,dz,dt3, and
when ZXZ Euler angles «,,y are used to parameterize SO(3), then to within an
arbitrary constant, dR = sin fdadfBdy. This will be relevant in the applications that
follow where the emphasis will be probability density functions where

/ F(g)dg = / Ft R)ARdt = 1.
G R’} JS0(3)

For small translational (rotational) displacements from the identity along (about)
the kth coordinate axis in three-dimensional space, the 4 x 4 homogeneous
transforms representing infinitesimal motions look like

gi(e) =1+ ¢Ey,

where now I is the 4 x 4 identity and

00 00 0010 0-100
00-10 0000 1 000
E, = Y S ;o By = ;
! 01 00 2 ~1000 3 0 000
00 00 0000 0 000
0001 0000 0000
g |0000] p _fooor] . _fooo0o0
0000 0000 0001
0000 0000 0000

E., E,, E; describe infinitesimal rotations, whereas E4, E5, E¢ are infinitesimal
translations. These matrices { E; } serve as a basis for a Lie algebra under the matrix
commutator [4, B] = AB — BA.
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1.1 Probability Theory and Harmonic Analysis on Unimodular
Lie Groups

Given two probability density functions fi(g) and f(g), their convolution is the
probability density function (pdf)

(i * f)(g) = /G £ falh ™" o g)dh, 3)

In general (f1 * f2)(g) # (f2 * f1)(g) due to the noncommutative nature of G, but
in special cases it is possible to define pdfs that commute under convolution.

A powerful generalization of classical Fourier analysis can be used to compute
such convolutions. This theory is built on families of unitary matrix-valued functions
of group-valued argument that are parameterized by values A drawn from a set G
(called the unitary dual of G) and satisfy the homomorphism property:

U(g1082.4) = U(g1.H)U(g2. 1). “4)
Using * as a superscript to denote the Hermitian conjugate, it follows that
I=Ule,A) =U(g " og,A)=Ulg™" , HU(gA),

and so
Ug™'. 1) = U(g. L)' =U*g.A).

Here A (which is analogous to frequency) indexes the complete set of all IURs.

In this generalized Fourier analysis (called noncommutative harmonic analysis)
each U(g, ) is constructed to be irreducible in the sense that it is not possible
to simultaneously block-diagonalize U(g, A) by the same similarity transformation
for all values of g in the group. Such a matrix function U(g, ) is called an
irreducible unitary representation (IUR). Completeness of a set of representations
means that every (reducible) representation can be decomposed into a direct sum of
the representations in the set.

Though IURs, U(g, A), are known for many Lie groups as described in [9, 10, 15,
18], the sole emphasis of this chapter is the case when G = SE(3).

Once a complete set of IURs is known for a unimodular Lie group, the Fourier
transform of a function on that group can be defined as

£ = /G F@U(g™" . 1)dg. 5)

For unimodular groups such as the motion groups, an inversion formula can be used
to recover the original function from all of the Fourier transforms as
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f(g) = /G alf D)U(g. HIA). ©)

In general, the integration measure d(A) on the dual (frequency) space G of a
unimodular Lie group must be constructed on a case-by-case basis. In the case of
SE(3), Aisof theform A = (p,s) € RxoxZ,d(A) = p*dp,and [5 =3 s [o_ -
The exact form of U(g, A) for SE(3) will be explained in explicit detail in Sect. 3.

1.2 Operational Properties

In analogy with classical Fourier analysis, a number of useful operational properties
exist for the noncommutative Fourier transform for G = SE(3).
A convolution theorem follows from (4) as

(Fix LA = A AR 7

and the Parseval/Plancherel formula
[ 1r@ras = [ 17wk ®)

follows from (5) and (6) and the unitary nature of U(g, A). Here || - || is the Hilbert-
Schmidt (Frobenius) norm, and d (1) is the integration measure on G.

If ¢ is the Lie algebra associated with G, then the exponential map exp : 4 —
G can be used to parameterize a neighborhood in G around the identity. It turns
out that in the case of SE(3) this neighborhood is the whole group minus a set of
measure zero. Moreover, if { E;} is a basis for ¢, it is possible to define differential
operators akin to directional derivatives as

(Eif)g) = 5 fgoesCED) | ©
t=0

Another useful definition is
d
u(E;, 1) = I (U(exp(tE;), X)) |r=o0. (10)

As a consequence of these definitions, it can be shown that operational properties
result as follows. By the definition of the group Fourier transform and operators E;
reviewed earlier,

= d
ED0 = [ reoewtEn| U e ap
t=0
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By performing the change of variables 4 = g o exp(tE;) and using the homomor-
phism property of the representations U(-, 1),

(E:f)(2) = /G 0, %(U(exp(ra)oh—%x)) dh (12)

t=0

)/f(h)U(h_l,)k)dh. (13)
t=0 G

d
= ( 3 U(Exp(EN). A)

Then using the definition in (10),

(B f)(X) = u(Er. 2) £ (2. (14)

This is called an operational property because the differential operator is converted
into an algebraic operation in Fourier space.

For a general treatment of connected unimodular matrix Lie groups and con-
nections with information theory, see [2]. Applications of the motion group in the
two-dimensional case are reviewed in [4,6,17,20]. For additional applications in the
three-dimensional case, see [3, 16].

1.3 Structure of the Remainder of This Chapter

The remainder of this chapter is structured as follows. Section 2 reviews applications
in DNA statistical mechanics in which diffusion equations on G arise. For many
stiffness models, the diffusion equations describing the flexibility of double-helical
DNA are degenerate. Section 3 reviews the Fourier transform for functions on G
in explicit detail, and Sect. 4 then shows how the associated operational properties
can be used to solve these diffusion equations. Section 5 reviews a theorem that
relates exponentials of Lie algebra representation matrices that produce represen-
tations of the associated Lie group. Section 6 builds on this theory by reviewing
how the effects of truncation of infinite-dimensional operators lead to numerical
approximations of infinite-dimensional representations and diffusion operators.

2 DNA Mechanics

In this section, continuum filament models of DNA are reviewed together with
associated diffusion equations that result from subjecting elastic filaments to
ambient Brownian motion forcing. These diffusion equations result in probability
densities that can be solved for using Fourier analysis on the Euclidean motion

group.
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2.1 Continuum Filament Model

Let s denote the arc length along an inextensible shearless elastic filament capable
of bending and twisting. Such filaments are an appropriate model for double-helical
DNA molecules. Attach reference frames along the filament with their local z-axis
pointing along the tangent to the filament. When s = 0, the attached reference frame
is viewed as the identity. Then the relative reference frame attached at another value
of s will be (a(s), R(s)) € G.

One model for the elastic energy in such an elastic filament model of DNA with
potential energy per unit length V' is

E = /L V(s)ds where V = %a)(s)TB(s)a)(s) — b (s)w(s) +c,
0

where o is the dual vector of 2 = RT%, which is the unique vector such that
o x x = 2x for all x € R>. Here w can be thought of as angular velocity with
respect to the independent arc length variable s (rather than time). This vector is
defined relative to the local reference frame attached to the filament at arc length s.
Here B is a stiffness matrix and b is a vector, both of which can depend on s.

With the identity reference frame e = (0,I) € G attached at s = 0, the position
to any point on the arc-length-parameterized helical backbone will be

a(s) = /S R(0) e; do, (15)
0

where e; = [0, 0, I]T. When there are no external forces applied to the filament, the
lowest energy conformations are given by

B—V =0 = o(s) =B '(5)b().
dw

In the special case when w(s) = wy is constant,

dR

e Ry with R0)=1 = R(s) =exp(s§). (16)
Substituting this into (15) then defines a helix. It can be shown that the correspond-
ing backbone curve is written in closed form as [21]
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T2 (1 = cos [l ls) + mins (s — Syl

llwoll

a(s) = m(cos lwolls — 1) + nany (s - w) , (17)

llwoll

(2 2 __ sinflaplls
s (”1+”2)(S ool

where n = wy/||wol|.

If it happens that B = B(s) and b = b(s) vary with s in such a way that w(s)
is not constant, then the equilibrium conformation is still described by go(s) =
(a(s), R(s)) € G, but this pair will generally not have a closed-form solution like
the one given above in (16) and (17) .

2.2 Modeling the Effects of Brownian Motion

Consider the equilibrium statistics of a stochastically forced elastic filament. Let the
evolution of the probability density of relative pose of reference frames attached
to a stochastically forced elastic filament at values of curve parameter O and s be
denoted as f(g;0,s). Since it is a probability density, by definition

/Gf(g:o,s)dg =1 (18)

Clearly f(g,s) = f(g:0,s) must be related in some way to the equilibrium shape
of the filament, its stiffness, and the strength of the Brownian motion forcing from
the ambient solvent. And the strength of this noise should be related in some way to
the temperature. In fact, since f(g:0,s) is the function describing the distribution
of poses for a filament at equilibrium, it can be represented exactly as a path integral
[12], or equivalently, as a diffusion equation [5]:

i _ 1

n Z Dix(s) E\Ef f — Zé;(s) E f (19)

k =1
subject to the initial conditions
/(8:0,0) = 8(g).
In the case of the inextensible model described above,

D(s) =2kpT -B7'(s) ® 0eR™®  and  &(s) = [0"(s),e]]" € RE,
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where kg is the Boltzmann constant and 7' is temperature in degrees Kelvin, & is
the direct sum of matrices, and O is the 3 x 3 zero matrix.

Under the extreme condition that 7 — 0, no diffusion would take place, and
f(g:.0,5) = 8(g;'(s) o g). For the biologically relevant case (I' ~ 300), (19)
can be solved using the harmonic analysis approach in [5, 21, 22]. If we make the
shorthand notation f;, ;,(g) = f(g;s1,s2), then it will always be the case for s; <
s < 5, that

Fon@) = (fos % fun)(g) = /G Fos) fi(h o g)dh,  (20)

This is the convolution of two pose distributions. Here /4 is a dummy variable of
integration, and d/ is the bi-invariant integration measure for SE(3). While (20)
will always hold for semiflexible phantom chains, in the homogeneous case when
B and w are independent of s, there is the additional convenient properties that

f(g:is1.:) = f(g:0,50—s1) and f(g:s2.51) = f(g " s1.82). (2D

The first of these says that for a uniform chain the pose distribution only depends
on the difference of arc length along the chain. The second provides a relationship
between the pose distribution for a uniform chain resulting from taking the frame at
s1 to be fixed at the identity and recording the poses visited by s, and the distribution
of frames that results when s, is fixed at the identity.

The description above is for a phantom model. That is, neither of these nor (20)
will hold when excluded-volume interactions due to distal points in arc length
coming into spatial proximity are taken into account. Such effects can be built in
as explained in [1].

2.3 Solving Diffusion Equations on the Euclidean Group

The true benefit of the group-theoretic approach is realized when observing that in
coordinate form, (19) is expressed as pages of complicated-looking (but essentially
elementary) mathematical expressions. In contrast, it is possible to write out the
solution very simply using results from group theory. One numerical approach that
works well for dilute solutions of DNA of lengths in the range of 1/2-2 persistence
lengths (60-300 base pairs at 300 K) is based on the group Fourier transform for
SE(3). The reason why this approach is most appropriate for this regime is that
DNA of this length is flexible enough for Fourier methods (which work better for
more spread out distributions than for highly focused ones) to be applicable, and it
is short enough that the effects of self-contact can be neglected.
Applying (14) to (19) gives
% = B, s) f(A,5) (22)
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where

6 6
BOL) = 5 32 Dy ulEr ) u(Ep.3) — 36 (s) uEr, ).

ij=1 k=1

In the case of a referential configuration that is helical and stiffness parameters that
are uniform (and therefore independent of s), then ZA(A,s) = HBy(A) is constant
with respect to arc length, s, and the solution can be written in Fourier space as

f(A,5) = exp(s Bo(A)), (23)

and the inversion formula can be used to recover f(g,s). The details of this
procedure have been discussed in a number of the author’s papers, together with
the use of the convolution theorem for group Fourier transforms to “stitch together”
the statistics of several segments of DNA connected by joints and/or kinks [21,22].
In the case when Z(4; s) is not independent of s, the differential equation in (22),
which is an ODE for each fixed value of A, can be solved either as a product of
exponentials or by numerical integration.

3 Fourier Analysis on the 3D-Motion Group

This section reviews the construction of IURs for G = SE(3) together with
the corresponding harmonic analysis and operational calculus. This is done at the
explicit level in order to be a useful tool in solving the sorts of problems described
in the previous section. The presentation in this section follows that in [6], which in
turn followed [14, 15].

3.1 Induced Representations for SE(3)

Let the pair (a, A) denote a translation/position a € R? and a rotation/orientation
A € SO(3). Two such pairs, when viewed as elements of SE(3), satisfy the group
operation ( aj, Aj)o(ay, Ay) = (Ajay+a;, A1 A;). Operators for the [URs of SE(3)
that act on functions on the sphere can be written in the form

U 4 p.s)p)(w) = e AR AR -1,) (AW, (24)
where p = pu and u is a unit vector. Here ¢(:) is defined on the unit sphere and

As: ¢ - e 0<¢<2n



342 G.S. Chirikjian

fors = 0, £1, £2, ... (which is not to be confused with the earlier usage of s as
arc length; here the pair (p, s) = A and they have nothing to do with arc length).

The irreducible representations of the motion group can be built on spaces
p(p) € Z*(S,), with the inner product defined as

T 2
(1. 02) = / / 1) ¢2(p) sin © dO 4 | 25)
=0 J®=0

where p = (p sin® cos @, p sin® sin@®, pcos®@)and p > 0,0 < O < 7,
0<® <2m.

3.2 Matrix Elements of IURs

To obtain the matrix elements of the unitary representations, we use the group

property
Ua, A;p,s) = U@,L; p,s) - U0, 4; p,s). (26)

This can be written as [14, 15]

I
Urmam@ Aip.s) = Y [I'.m' | p.s | 1 jJ@Ujm(A.l)  (27)

j==

by using (26), where U, ,,(A, 1) are the matrix elements of IURs for SO(3) given
in [2, 6]. The translational part of the matrix elements Uy .1 m(a, A; p,s) can be
written in closed form as [14, 15]'

[I'.m" | p.s | 1,m](a)

U+

G QU+ DK+

= (47)"/? [ N

) k=%:—/|l @2l +1) Jk(pa)C(k, 01,5 | 1.5)
Clleom —m's ' m’ | Lm) Y™™ (u(g,0)) . (28)

where 0, ¢ are polar and azimuthal angles of the translation vector a = a - u(¢, 6),
Y/ (u) are the spherical harmonics defined according to the Condon and Shortley
convention [8], and C(k,m—m’;1’,m’ | I, m) are Clebsch-Gordan coefficients (see
[11]).

The matrix elements of the transform are given in terms of matrix elements (27) as

"Here ji () is the classical kth-order spherical Bessel function.
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Formiim(p.s) = / f@ A Tmrmw@ A ps)ddda, (29
SE®3)

where we have used the unitarity property.
The inverse Fourier transform is defined by

n 1 = [® N
1@ =7 = 55 2 [ weelfp U ) P dp. GO)
§=—00
Explicitly
1 00 00 00 4 / o
fad) = 3 Y Y Y Z/
s=—00 1/=ls| I=|s| m'=—1' m=—1 *°
P2AP frmpr (DU i m(a, Az p.s) (31

Representations (24), which can be viewed as infinite-dimensional matrices
denoted as U(g; p, s) with elements (27), satisfy the homomorphism properties

U(giog2p,s) = Ugip.s)-Ulgp,s),

where o is the group operation.

4 Operational Matrices

The Lie algebra representation matrices
d
w(Ei: p.s) = - (Ulexp(tEr): p.s) (32
1=0

play an important role in operational properties. They can be derived explicitly as
infinite-dimensional matrices by evaluating the expressions for U(g; p, s) given in
the previous section. Detailed calculations are given in [4, 19]. The result is that the
matrix elements of each representation u(Ey; p, s) for the Lie algebra 4 = se(3)
can be explicitly written as

i i
ul’,m’;l,m(El; D, S) = _Ecl_mgl’l/Sm’-l—l,m - 56,1115['[’8m’—1,m (33)

1 1
uy mrim(Eas pys) = +§Cl_m51’[’5m’+l,m - Ecin(sl’]/(sm/—l,m (34)

Ml’,m’;l,m(EZ; D, S) = _im5[’[’8m’,m (35)
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uy mrsim(E4; p,s)

i i i
=Ly Bwmsrbiis + LA w800+ Ly B a1
2°0 2 " 2"
ip ip. ip |
+ ?Vi/,m/3m’,m—151f—1,1 + ?Al,_mfsm',m—l&/,z - ?Vz,_m3m’,m—151'+1,1

(36)
uy mrsim(Es; p,s)

P )4 P
= —E)/zs/,_m/5m/,m+151/—1,1 + Elf,m5m/,m+151f,/ + EV/S,m5m/,m+151’+1,/

P Do P s
- Eyi/,m/(sm’,m—l(gl’—l,l - EA],_mSm’,m—lal’,l + Eyl,—mgm’,m—lal’-i-l,l (37)

and

. . sm .
wr mrsim(Ees po8) = ipky S m8r—10 418w m81r 1 +1 DK 1y S mS1 411,

I+ 1)
(38)
where
y (= —m)( —m—1)"
”m_( P@I- 1@+ 1) )
s syU—m(I+m+1)
bm = I+1)
and

. (12 _ m2)(12 _ S2) 1/2
K’_(my—my+n)'

Jm

Whereas the matrix elements u;7 .1 m(Ex; p, s) are obtained by evaluating the
matrix elements Uys 7.1 (g5 p, §) at special values of g = exp(? Ey ), differentiating
with respect to 7, and evaluating the result at # = 0, in the following section, it will
be shown how to go in the opposite direction. Namely, the matrix U(g; p, s) can be
obtained by exponentiating a linear combination of matrices u(Ex; p, s).

S The Exponential Map and Representations

Given a matrix representation U(g, 1) of G, a representation of the Lie algebra ¢,
u(X, A), results from (10). This is called a representation of ¢ because it inherits
the Lie bracket from the Lie algebra:

u([X, Y], 2) = [u(X, 1), u(Y,1)],
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where X,Y € ¢ and [,,] is the matrix commutator. Below, an explicit rela-
tionship between u(X,A) and U(exp X, A) is reviewed which will be important
when discussing truncation and numerical approximations of infinite-dimensional
representations.

Theorem 1 ([9,18]). Given a connected unimodular n-dimensional Lie group G,
associated Lie algebra ¥, and u(E;, 1) as defined in (10), then

U(exp(tE;); A) = exp[t u(E;, 1)], (39)
where E; € 4. Furthermore, if the matrix exponential parameterization
n
g(x1,...,x,) =exp (Z x,-E,-) (40)
i=1

is surjective, then when the u(E;, 1)s are not simultaneously block-diagonalizable
by some matrix S (1),

U(g:A) = exp (Z xi u(E;, /\)) (41)
i=1
is an irreducible representation for all g € G.

Proof. For the exponential parameterization (40),

gltxy, ..., txy)og(txy,...,txy) = g((t + O)x1, ..., ([t + T)xp)
forallz, v € R,i.e., thesetofall g(¢txy,...,tx,) forms a one-dimensional (Abelian)

subgroup of G for fixed values of x;. From the definition of a representation it
follows that

Ug(t+o)x1,...,t +1)x),A) =U(gtxy, ..., tx,), M) U(g(txy,...,Tx,), A)
=U(g(txy,...,txy), M) U(g(txy,..., tx,), A).

Then differentiating the above expression with respect to t and setting ¢ = 0, and
using the definition

Uy, ..., xp;A) = U(g(xy, ..., x0), M)

gives

d -~ d -~ -
—U(txy,...,tx;; 1) = —U(@Tx1,...,TX05 ) U(txy, ..., txy; A).
dr dr =0
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But since infinitesimal operations commute, it follows from (10) that

d -~
—U(tx1,...,Tx5; A)

dz ~ = anx,' M(El‘,},).

=0 =

Therefore the matrix differential equation

d -~ - N
aU(txl,...,tx,,;A) = (Zx,- u(Ei,A)) U(txy,...,tx,; A)

i=1
results, subject to the initial conditions
U@o,...,0;1) =1L

The solution is therefore

U(txl,...,txn;)k) = exp (th,- u(Ei,A)) .

i=1

Evaluating at 1 = 1, (41) results, and setting all x; = 0 except x; produces (39).
The irreducibility of these representations follows from the assumed properties of
u(X, 1) =>""_, x; u(E;, ) and the fact that

exp(S(A) u(X, 1) [S)] ™) = S(A) exp(u(X, 1) [SA)] ™.

The above works well for compact Lie groups, in which the representation
matrices are finite. But for noncompact Lie groups such as SE(3), the matrices
are infinite dimensional. The next section addresses the errors that result from
truncating infinite-dimensional matrices before exponentiating. This is relevant both
to the previous section, and in the numerical evaluation of exponentiated diffusion
matrices such as those arise in modeling DNA.

6 Bounding the Effects of Truncation in Infinite-Dimensional
Systems

The matrices U(g,A) and u(E;, A) are both infinite dimensional for the motion
group of three-dimensional Euclidean space. In order to use the theory described
in previous sections in a practical numerical framework, some sort of truncation is
required. In this section, the effects of truncating the expressions for U(g, A) as well
as the effects of truncating u(E;, 1), and the diffusion operator % in (23), before
exponentiating are analyzed. The analysis reviewed here follows that in [7, 13].
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6.1 How Close Is a Truncated Unitary Matrix to Being
Unitary?

In the theory of infinite-dimensional matrices, it is common to consider the effects
of truncation by partitioning the matrix into finite and infinite parts. In the context
of IURs for SE(3), the indices of the matrices extend to infinity in both directions,
and a finite section is taken as the middle block.

Consider a (27 + 1)-dimensional unitary matrix

Un Ux Uz
U=|UyUpUy|,
Ui Uz Usz

This can be considered to be either an infinite-dimensional IUR of G with Uy,
being a finite block or the above U could be the exponential of a truncated
infinite-dimensional Lie algebra representation. Since the matrices u(E;, 1) are
skew-Hermitian, so too are finite blocks centered on the middle element. In the
former case 77 would be infinite, whereas in the latter it would be finite.

In either case, U is unitary. Let [U]r, = U be a (275 + 1)-dimensional square
block of this matrix where of course 7, < 7T;. Here we address how close [U]y, is
to being unitary. This is relevant because truncating unitary matrix representations
of groups or exponentiating truncated Lie algebra representations are two ways to
numerically approximate the infinite-dimensional quantities of interest.

Since U is unitary UU* = L7, 4. The square of the Frobenius norm then gives
IUU*|? = |llar; 41> = 271 + 1. If we consider the block multiplication of the
middle row of blocks in U with the corresponding collies in U *, this gives

U21 U1*2 + U22U2*2 + U23U3*2 = ]IZTz-H-
Taking the norm gives
U2 U5 + UnUsy 4 Us3 Uy || = |Tary 41 |
= V2D + 1 < |Un U, + UnUs || + [|[UnUx|.

In other words,

I UL U]z, | = V2T2 + 1 = |Un Uy + Us3Us || (42)

On the other hand, since all of the rows and columns of U are unit under the
Frobenius norm, it follows that

2Ty + 1= |U|? = 2(T1 = T) + |Un2|)* + | Una|* + | U]
=2(Ty — T2) + |Ua|* + [|Un2|* + | UaslI*.
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Since the norm of any matrix is always greater than or equal to zero, it follows that
2 2 2 2
[UlI" + 1Us2|” = U2 + [|Uasll” = 27> + 1.

and
[Unl* <275 + 1

I[Uln || < v2T2 + 1. 43)

Using (42) and (43), it follows that

or

|WInWI I WG] | UnUp + UnUsI

z > > 0.
U]z V2T, + 1 V2T, +1

where

(U210 + UnUs || < [UnUGI+ 1UnU || < 1Ua UGN+ 101Ul
1 1
< (U 1> + 1Us1H) 2 (Ui |1> + |U|1*)?
= |Un|* + U] = |Ui2|I> + U=

This indicates that there is a lower bound on the achievable accuracy when using a
finite section [U]r, in place of an infinite-dimensional unitary representation.

6.2 Using Stability Theory to Bound the Difference of Systems

Here systems theory is used to bound the difference between the matrix exponential
of an infinite-dimensional matrix and its truncated version. This is applicable both
to finding finite-dimensional approximations of (23) and (41).

In error analysis, it is useful to consider the general problem of obtaining
expressions that bound the difference of two systems. For example, given

Xl = AX, and Xz =(A+ B@))X»
with initial conditions X;(0), what can be said about || X;(t) — X»(¢)||? Define
A(t) = Xo(t) — Xi1(¢) and Ay = A(0) = X»(0) — X1(0). Suppose that the two

original systems were solved. Then, we can define two new systems that both result
from subtracting the first of the original systems from the second:

A= AA+ B(@t)X,
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or
A= (A+ B@1)A+ B(1)X,.

Then, using a basic result from linear systems theory, the first of the above can be
written as

A(t) = exp(At) Ao + /t exp(A(t — 1)) B(r) Xz (7)dr. 44)
0

In the case when B(t) = By is constant, we can also write

A(t) = exp((A + Boy)t)Ao + /Ot exp((4 + Bo)(t — 1)) Bo X, (7)dr.

Then norms can be applied.

Note that we will be comparing the “inner parts” of truncated and nontruncated
systems. B = By will correspond to the border that surrounds a truncated infinite-
dimensional matrix. And we will not be concerned so much with ||A| as with
Il [A]7 |I, which will provide a tighter estimate of the difference that we seek.

6.2.1 Bounds on Norm of Truncated Differences

Consider the following infinite-dimensional system

Xll Xlz X13 A Ap O X X X3
Xo1 Xop Xo3 | = | Az [A]r Ao Xo1 X0 Xn3
X31 X3 X33 O Az Az X31 X35 X33

and the corresponding finite section

_ 0O 0 O A4y O O\ /0 O O
[(Xlr = [Alr[X]r <= [ O[X]r O | = | 4 [A]lr 425 | | O [X]r O
0O 0 O 0O 0 43/ \0 0 O

The initial conditions are X(0) = I and [X]7(0) = I (where I is shorthand for
[I]7). The solutions to these systems are X = exp A¢ and [X]r = exp([A]r?).
We are interested in knowing something about

1 X22 — [X]r|l = [ [exp At]r —exp([A]r?) |-

Let X7 denote O & [X]r @ Q. Then by defining A = X — Xr, it follows that
|X22 — [X]7|l = ||Ir Alr||. Using the results from the previous section, we can
write
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| X2 = [X]7|| = Iy Alr|| = |17 exp(At) Aglr

t
+ / I exp(A(t — 1)) B X7 (v) Ip dz]|, (45)
0
where
0 A4, 0
B=10 0 O
0O A3 O
Moreover, we can write
¢ An[X]r
D [ ) B T
0 An[X]r
‘ Ap[X]r
f/ Ir exp(A(t — 1)) 0) dr
0 An[X]r

t
= / [T7 exp(A(z — )| A12 & As|/I[X]r[dz,
0
where for the Frobenius norm,

1
412 ® Al = (|4l + 143172 < 4] + [ 435].

In the case when A and [A]7 are skew-Hermitian and if the Frobenius norm is used,
I[X]7 || = T and likewise || I7 exp(A(t — t))|| = T (since I picks off T' rows of
this infinite-dimensional unitary matrix, each row having a unit length). Therefore,
in this case,

|| lexp At]r —exp([A]r 1) | < T*||A12 @ At (46)

This is a bound that we can use to quantify the error in the truncation and
exponentiation method for approximating infinite-dimensional IURs for SE(3).

On the other hand, if we want to find bounds on the effects of truncation and
exponentiation of SE(3) diffusion matrices, if we can obtain the eigenvalues of A
and [A]r, and if all of these eigenvalues have negative real part, then the eigenvalue
with smallest magnitude negative real part will limit. Namely, if

|lexp Az]| < Ce™ and | exp[A]rt]|| < Cre "

then

Il lexp At]r — exp([A]r ) |

IA

t
T-C-Cr|Apn® Anle™ / eleer)Tdy
0

T-C-Cr|A A
_ 412 ® Az [ — e (47)
C —CT
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This provides an upper bound on the error due to truncation and exponentiation of
infinite-dimensional matrices.

6.3 Numerical Harmonic Analysis and Diffusions on Groups

The solution to the linear diffusion equation with drift df/ds = A* f subject to the
initial conditions f(g,0) = 6(g) can be written using the operational properties of
the group Fourier transform and inversion formula as

f(g,s) = / tr [e“'AA*(Me”(X’A)] dAa, (48)
G

where g = exp X with X = Z?=1 x;iEi, u(X,A) = Z?=1 xiu(E;, L), and

6 6 6
A0y = 3 303 DyulEr Ay 2) — Y G Ex ).
k=1

i=1j=1

When considering the numerical evaluation of (48) and properties of the solution
f(g,s), anumber of issues can be explored. For example, when can the exponentials
es4"M and e“XY pe computed efficiently? When can their product be computed
efficiently? Is there a way to compute tr[-] without explicitly computing the matrix
product? Would bringing the integral inside of tr[-] lead to internal cancelations that
aid in speeding up computations? Even though in general [¢* 4" e“X-1)] =£ 0, are
there situations in which tr[e’ 4" Me*X D] & tr[exp[s A*(1) + u(X, 1)]] is a close
approximation?

In addition, in some applications, it is not necessary to know f(g,s) at many
values of g but rather only at g = e, in which case all that needs to be computed is

fles) = / r [e“‘*“)] da. (49)
G

And since || f(g, s)|| (the integral of the square of f(g,s) over G) is a measure of
how concentrated f(g, s) is, it is sometimes useful to compute

”f(g’ S)”Z — /étr I:es A*(k)es AA()»)] dk’ (50)

which follows from the Parseval equality.

When [A*(/\), AA(A)] = 0, e.g., when A has no drift terms, this can be written
as a single exponential.

In [7] issues related to the efficient computation of ¢* 4”@, XM “and f(e, 5)
and || f(g.s)||> are addressed together with exact “closed-form” lower and upper
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bounds on integrals such as (48)—(50). These bounds can serve either as alternatives
to approximate numerical evaluation or as checks on their accuracy.

7 Conclusions

This chapter has reviewed how harmonic analysis on the group of rigid-body
motions in three-dimensional Euclidean space can be used to solve diffusion
equations related to DNA statistical mechanics. Since IURs of the motion group
are operators that can be expressed as infinite-dimensional matrices, truncation
is required when using them in numerical codes. This chapter therefore reviews
different issues related to truncation effects, thereby bringing together theory,
applications, and numerical analysis issues.

References

1. Chirikjian, G.S.: Group theory and biomolecular conformation, I.: mathematical and computa-
tional models. J. Phys.: Condens. Matter 22 (2010) 323103 (21pp)
2. Chirikjian, G.S.: Information-theoretic inequalities on unimodular Lie groups. J. Geomet.
Mech. 2(2), 119-158 (2010)
3. Chirikjian, G.S.: Modeling loop entropy. Methods Enzymol. Part C 487, 101-130 (2011)
4. Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, vol. 2. Birkhéuser,
Boston (2012)
5. Chirikjian, G.S., Wang, Y.F.: Conformational statistics of stiff macromolecules as solutions to
PDEs on the rotation and motion groups. Phys. Rev. E 62(1), 880-892 (2000)
6. Chirikjian, G.S., Kyatkin, A.B.: Engineering Applications of Noncommutative Harmonic
Analysis. CRC Press, Boca Raton (2001)
7. Chirikjian, G.S., Liu, Y.: Truncation of infinite-dimensional group representations. In prepara-
tion.
8. Condon, E.U., Shortley, Q.W.: The Theory of Atomic Spectra. Cambridge University Press,
Cambridge (1935)
9. Gelfand, .M., Minlos, R.A., Shapiro, Z.Ya.: Representations of the rotation and Lorentz groups
and their applications. Macmillan, New York (1963)
10. Gurarie, D.: Symmetry and Laplacians. Introduction to Harmonic Analysis, Group Represen-
tations and Applications. Elsevier Science, The Netherlands (1992) (Dover edition 2008)
11. Jones, M.N.: Spherical Harmonics and Tensors for Classical Field Theory. Research Studies
Press, England (1985)
12. Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, 2nd edn.
World Scientific, Singapore (1995)
13. Liu, Y.: Probability density estimation on rotation and motion groups. Ph.D. Dissertation, JHU,
(2007)
14. Miller, W. Jr.: Some applications of the representation theory of the Euclidean group in three-
space. Commun. Pure App. Math. 17, 527-540 (1964)
15. Miller, W. Jr.: Lie Theory and Special Functions. Academic, New York (1968)
16. Park, W., Wang, Y., Chirikjian, G.S.: The path-of-probability algorithm for steering and
feedback control of flexible needles. Internat. J. Robot. Res. 29(7), 813-830 (2010)



Numerical Harmonic Analysis and Diffusions on the 3D-Motion Group 353

17.

18.

19.

20.

21.

22.

Park, W., Midgett, C.R., Madden, D.R., Chirikjian, G.S.: A stochastic kinematic model of
class averaging in single-particle electron microscopy. Internat. J. Robot. Res. (Special issue
on Stochasticity in Robotics and Biological Systems) 30(6), 730-754 (2011)

Vilenkin, N.Ja., Klimyk, A.U.: Representation of Lie Groups and Special Functions, vols. 1-3.
Kluwer, Dordrecht, Holland (1991)

Wang, Y.: Applications of diffusion processes in robotics, optical communications and polymer
science. Ph.D. Dissertation, JHU (2001)

Wang, Y., Chirikjian, G.S.: Engineering applications of the motion-group Fourier transform.
In: Rockmore, D.N., Healy, D.M., Jr. (eds.) Modern Signal Processing, pp. 63—-78. MSRI
Publications 46, Cambridge University Press (2004)

Zhou, Y., Chirikjian, G.S.: Conformational statistics of bent semiflexible polymers. J. Chem.
Phys. 119(9), 4962-4970 (2003)

Zhou, Y., Chirikjian, G.S.: Conformational statistics of semi-flexible macromolecular chains
with internal joints. Macromolecules 39(5), 1950-1960 (2006)



Quantification of Retinal Chromophores
Through Autofluorescence Imaging to Identify
Precursors of Age-Related Macular
Degeneration

M. Ehler, J. Dobrosotskaya, E.J. King, and R.F. Bonner

Abstract Age-related macular degeneration is a common disease that impairs
central vision. To better understand early disease progression, we quantified two
families of retinal chromophores: macular pigments in retinal axons and rod
photoreceptor rthodopsin, whose changes have been associated with age-related
maculopathy progression. First, we introduced noninvasive multispectral fluores-
cence imaging of the human retina and quantified macular pigments from those
multispectral image sets. Second, we modeled the brightening of the lipofuscin
autofluorescence in confocal scanning laser ophthalmoscopy imaging sequences to
map local rod rhodopsin density.

1 Introduction

As the elderly demographic in many industrialized countries is growing, age-related
diseases are becoming more common. One such disease is age-related macular
degeneration (AMD), which is the most common cause of blindness among the
elderly in the developed world, cf. [4, 5, 20]. In a majority of Americans over
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the age of 60, the earliest clinical signs of retinal pigment epithelium (RPE)
dysfunction are observed in color fundus photographs as drusen—bright, highly
reflective extracellular deposits arising from the RPE. Macular drusen increase in
number and size with advancing age. Larger, irregularly shaped, perifoveal sub-RPE
drusen (“soft”); regions of supra-RPE reticular drusen; and elevated levels of RPE
bisretinoids are considered to confer the greatest risk for progression to advanced
AMD. Currently, pathologists in reading centers classify drusen based on size and
shape [2] in reflection color fundus images, and many retinal diseases are diagnosed
and evaluated by subjective examination of retinal images and lower resolution
visual field testing [26]. To this end, we are developing automated analysis tools
to obtain molecular maps of these biomarkers from multispectral autofluorescence
images.

Effective prevention of disease progression requires the identification of pre-
cursor lesions and the ability to quantify biomarker imbalances. Retinal imaging
modalities have intrinsically high resolutions (&~ 5um) that are inherent to the evo-
lutionary design of the eye and its ocular media. Improved quantitative automated
image analysis tools should increase understanding of mechanisms of early retinal
disease and provide a means to assess disease prevention strategies. Noninvasive
autofluorescence imaging of RPE fluorophores and absorbing molecules in the
overlying retina offers the possibility to sensitively monitor early changes in retinal
function and early pathophysiology.

In the present chapter' we present approaches based on autofluorescence imaging
to quantitatively measure three families of retinal chromophores, macular pigments,
rod photoreceptor rhodopsin, and bisretinoids (lipofuscin fluorophores). Macular
pigments (lutein and zeaxanthin) concentrate within the photoreceptor nerve fibers,
and low macular pigment levels have been identified as risk factors for AMD. To
quantify macular pigment distributions, we developed noninvasive multi-spectral
fluorescence imaging of the human retina by adding selected interference filter sets
to standard fundus cameras, cf. [7-11,17-19]. By exciting the fluorescent lipofuscin
granules within the RPE, the Beer—Lambert model for the double-path penetration
enables us to effectively measure the spatial macular pigment distribution from a set
of multi-spectral autofluorescence images.

Localized rod photoreceptor and rhodopsin losses have been observed in post-
mortem histology of age-related maculopathy. Degraded dark adaptation during
aging is due to reduction in the rate of RPE regeneration of cis retinal to rod
rhodopsin and thus may locally reflect early RPE dysfunction. We extended a
model for rod rhodopsin bleaching and regeneration proposed in [3,21, 23, 28] to
create high-resolution maps of the spatial rod rhodopsin distribution from confocal
scanning laser ophthalmoscope (cSLO) autofluorescence movies. Although there
are virtually no rods in the center of the foveola, rod photoreceptors gradually
appear in the foveola outskirts, where macular pigments are present. In contrast

1Unless stated otherwise, images were derived from NEI cameras or modified from resources at
the National Eye Institute (NEI) or the Canadian National Institute for the Blind (CNIB).
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to [3,21,23,28], we explicitly incorporate the signal attenuation caused by macular
pigments, which enables rod rhodopsin measurements in the entire macula.

The outline is as follows: We give a brief overview of AMD in Sect.2 and in-
troduce retinal autofluorescence imaging together with its physical model in Sect. 3.
Macula pigment is quantified in Sect. 4. The model and physical measurements for
rod rhodopsin quantification are presented in Sect. 5, and the computational aspects
are discussed in Sect. 5.4. Conclusions are given in Sect. 6.

2 Age-Related Macular Degeneration

Aging of the human retina is universally associated with microscopic changes within
the RPE, which is located at the back of the retina. In particular, the accumulation
of fluorescent bisretinoids within RPE lipofuscin granules appears to be a chronic
stressor [24] that, on the other hand, provides a direct means of imaging local
changes in the RPE and the overlying retina via visible light autofluorescence.

AMD is a disease associated with aging that affects the macula, the part of
the retina that enables central vision. Its incidence increases geometrically with
increasing age above age 60 and may reflect an advanced pathophysiology in a
continuum of progressive RPE dysfunction associated with aging. “Dry” AMD
refers to loss of photoreceptors in the macula caused by local regional atrophy in
the RPE that reduces its support of the overlying retina, which then atrophies. Other
patients with severe visual loss develop “wet” AMD, which refers to choroidal
neovascularization and subretinal hemorrhage. Here, new choroidal microvessels
invade Bruch’s membrane and, when they leak or hemorrhage, cause irreversible
damage to the overlying retinal layers that can lead to rapid vision loss.

Early signs of dry AMD are blurry vision and loss of sensitivity. A standard
symptom of wet AMD is that straight lines appear wavy. The Amsler grid in Fig. 1
is used to detect the first visual signs of maculopathy, and, often, a person with
wet AMD may view the Amsler grid as in Fig.2b. Although enough peripheral
vision can remain, such macular degeneration hampers reading or recognizing faces,
because the central vision is impaired, cf. Fig. 2d.

3 Retinal Autofluorescence Imaging

The retina is a multilayer neural tissue, uniquely suited for noninvasive optical
imaging with high resolution due to its evolutionary design with its back-side pho-
todetection. As light penetrates the retina, it is largely unscattered and only locally
absorbed by retinal chromophores (first, hemoglobin within large retinal vessels,
then macular pigments largely in the photoreceptor axons, then the unbleached
opsins within the photoreceptor outer segments) before reaching the lipofuscin gran-
ules in the RPE. The emitted fluorescence from unoxidized lipofuscin bisretinoids
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Fig. 1 While focusing on the dot in the center of the grid, with one eye covered, ask yourself the
following questions: Am I able to see the corners and sides of the square? Do I see any crooked
lines? Are there any holes or missing areas?

can be excited by a range of visible wavelengths (blue to yellow) to yield long-
wavelength emission in the red, which is detected noninvasively by the fluorescence
imaging camera. Generally, the excitation and emission wavelengths are partially
absorbed by the various retinal chromophores (hemoglobin, macular pigments,
rhodopsin) in the double passage through the retina requiring a double-path model.
If AF(A, A) denotes the measured autofluorescence, where A is the excitation and
A the emission wavelength, then the Beer—Lambert law for the double-path yields

AF(A, ) = [(A)P(A, A)e PNFTDPD) W

where D is the optical density of the underlying tissue, @(A, A) is the fluorescence
efficiency of lipofuscin, and 7(A) is the radiant power of the excitation light.

We use two different imaging techniques: First, to measure macular pigment,
we developed autofluorescence imaging of the human retina at varying emission
and excitation wavelengths by modifying standard fundus cameras. Secondly, we
quantify rod rhodopsin from images recorded at a commercial cSLO camera
(Heidelberg Retinal Angiograph 4.0) that delivers an average of ~ 3uW/mm? at
488 nm, by rapidly scanning a small laser beam (10j.) over the retina. The intensity
of excitation in the ¢cSLO is > 100-fold less than in the fundus camera so that
each c¢SLO image is acquired over a 100 ms scan with an incremental rhodopsin
bleaching (~ 1%). After ~ 40s of cSLO imaging, the rhodopsin is completely
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a b

drusen in color fundus image. amsler grid as it might be viewed by
a person with AMD.

normal vision. Reduced sensitivity, loss of central vi-
sion.

Fig. 2 Noticeable visual changes in AMD (a) Drusen in color fundus image (b) Amsler grid as it
might be viewed by a person with AMD (c¢) Normal vision (d) Reduced sensitivity, loss of central
vision

bleached, and its initial attenuation of the excitation light at 488 nm is removed. The
magnitude of the brightening of the autofluorescence in registered movies allows
mapping of rhodopsin density with high resolution.

4 Quantifying Macular Pigment

Macular pigment is composed of lutein and the related carotenoid zeaxanthin, and
low macular pigment levels in the retina have been identified as risk factors for
AMD. Neither lutein nor zeaxanthin is formed within the body and so can only
be obtained from the diet. Both pigments are found in green, leafy vegetables (see
Table 1).
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Table 1 Lutein/zeaxanthin Weight Content per

content per serving Food (g) SCI'Vil’lg (ug)

(1 cup) [29] -
Spinach (cooked) 190 29,811
Kale (cooked) 130 25,606
Collards (cooked) 170 18,527
Peas (cooked) 160 3,840
Spinach (raw) 30 3,659
Pumpkin (cooked) 245 2,484
Corn (cooked) 156 2,429
Brussels sprouts 155 2,389
Broccoli (cooked) 156 2,015
Asparagus (cooked) 180 1,112
Carrots (cooked) 156 1,072
Beans (cooked) 125 886

Measurements of macular pigment based on two-wavelength autofluorescence
images have been introduced by Delori et al. in [13]. To more robustly analyze
the spatial macular pigment distribution, we introduce a multiple-wavelength model
that enables more effective self-consistency tests.

Let AF (A, 1) and AF,(A, A) be the autofluorescence measured at the fovea
and the perifovea, respectively. While AF ; depends on the specific location within
the fovea, the term AF, is often replaced by a circular average at 6 degrees [13].
We denote the optical density of the foveal and perifoveal tissue by D, and
D,, respectively. Let @y and @, be the fluorescence efficiencies of lipofuscin
in the foveal and perifoveal regions. According to (1), the foveal and perifoveal
autofluorescence are given by

AF (A, 0) = [(A)D (A, L)e PrN+Dr @A),

AF,(A, 1) = [(A)D,(A, A)e” PrD+DpA),

Since there is no macular pigment in the perifoveal region, the optical density of
macular pigment Dyp at 460 nm is the difference

Dyip(460) = D/ (460) — D ,(460).

We use the relative extinction coefficient kyp of macular pigment, scaled to
kmp(460) = 1, such that

Dwmp(A) = kmp (1) Duip(460),

and we obtain

log (AFP(A,A)) g (@,,(A,A)

B s (A, )

AF/(A, Q) ) + Dwmp(460) (kmp(A) + kmp(R)).
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We choose n pairs of excitation and emission wavelengths {(A;,A;)}i_, and
weights {w; }'; _; such that

Zn:a)j =0.
j=1

We apply the above equations for each wavelength pair (A, A;), multiply by w;,
and add them up to obtain

! AF (A»,)L~)) . (%(A;,k;))
og [ 2220 og [ 222D
j;wj o8 (AFf(Aij) ];w] o 4, %)
+Dyp(460) Y ; (knp(A ) + knp(4)).

j=1

We can assume that the fluorophore at the fovea has the same composition as
that at the perifovea (constant shape of its spectrum over {(A;, A j)}’}zl), and that
foveal-perifoveal differences in absorption by other pigments (retinal blood, visual
pigments, and RPE melanin) are negligible, so that the ratio

Py(4;.4))

Pr(Aj.4))

does not depend on ;. Therefore, we obtain

n ) A, . n
3wy log (M2 i)y i (460) S oy (kain(4) + k().
j=1

AF/(Aj,Aj) =
which enables us to determine Dyp(460) by
1 LOAFY (AL X))
Dup(460) = —; og| || =" @
> =1 @) (kmp(Aj) + kvp(4)) jl:[lAF/(A,»,xj)

If we only choose two excitation wavelengths A; = 480 and A, = 520 with the
weights 1 and —1, respectively, and keep the emission wavelength A fixed, then our
formula leads to

Dyp(460) =

1 tog (AF2U480. DAF, (520,10 o
kntp(480) — ke (520) 2 \ AF, (520, 2)AF ; (480, 1)

as originally proposed in [13].
In contrast to (3), the formula (2) enables several tests for self-consistency by
removing or adding wavelength pairs and by changing the weights. Figure 3a shows
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Fig. 3 Macular pigment measurements (a) Two bands (blue and yellow excitation) of a multispec-
tral image set (b) (Left) Spatial map of MP density, (right) radial profile of MP density

two wavelengths of a multi-spectral autofluorescence image set. The spatial macular
pigment map is given in Fig. 3b, where we optimized the map over several choices
of weights to maximize self-consistency of the measurement. As expected, the
macular pigment density is concentrated in the fovea and decreases with distance
from the center.

5 Measuring Rod Rhodopsin Through Retinal Bleaching

We aim to map rhodopsin density within the human retina with sufficient accu-
racy to characterize local rod rhodopsin loss relative to surrounding areas. Such
high-resolution maps are a measure of local rod function that could be uniquely
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Fig. 4 (Top) 11-cis retinal, (bottom) all-trans retinal. In the outer segment, opsin is bound to 11-cis
retinal that undergoes a conformational change into all-frans retinal when activated by blue light

sensitive to early changes in function of the RPE and rods within ophthalmoscop-
ically (e.g., fundus camera or OCT) identified lesions. A model for rod rhodopsin
bleaching and regeneration has been proposed in [3,21,23,28]. We extend this model
to describe one-minute-long cSLO movies that show autofluorescence brightening
to a steady-state level as the rhodopsin bleaches. Retinal bleaching has long been
observed in the literature [3, 6, 14-16,21-24,27, 28] but has not yet been used to
quantify or map local rod rhodopsin density changes in retinal disease.

5.1 Bleaching Model

A dark-adapted retina corresponds to a state when opsin only appears in its bound
form with 11-cis retinal. Rod rhodopsin is opsin bound to 11-cis retinal that is
activated by blue light and undergoes a conformational change into all-trans retinal,
cf. Fig.4. While 11-cis retinal absorbs blue light, the resulting photo-isomer all-
trans retinal plus opsin is transparent at 488—507 nm. This photo-isomerization from
11-cis to all-trans is referred to as rhodopsin bleaching [21,23,28].

If we start with a dark-adapted retina, then the intensity of the local autoflu-
orescence AF within a small circle of pixels should increase as the rhodopsin
bleaches (becomes transparent to the 488nm exciting laser light). The unbleached
rhodopsin in the photoreceptor layer initially attenuates the lipofuscin excitation by
~ 50 % outside the central fovea, and the excitation light reaching the RPE then
progressively increases as the overlying rhodopsin is locally bleached. Thus, we
need to incorporate the time course in (1), so that we have

AF(A, A1) = I(A)®(A, L) PADTDAD)
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where we assume a constant radiation power /(A). The optical density changes over
time, and the major chromophores are macular pigment in the fovea and rhodopsin
in the perifoveal region. There is, however, a region within the fovea, where both
are present at a significant density. Although the macular pigment contribution was
ignored in [21, 23, 28], here, we explicitly model the signal attenuation caused
by macular pigment absorption to obtain rod rhodopsin maps covering the entire
macula. Therefore, we obtain

D(A,t) + D(A,t) = Dmp(A) + Dvp(A) + Din(A, 1) + Din(A, 1),

where Dy, denotes the optical density of present rhodopsin. If R(¢) denotes the
fraction of rhodopsin remaining at time #, then we obtain

D(A,t) + D(A,t) = Dmp(A) + Dvp(A) + (Din(A) + Din(A) R(?),
where R(0) = 1 corresponds to the dark-adapted retina and
Drh(A) + Drh(k)

is the double-path optical density of rhodopsin present at time ¢+ = 0. If p,(0)
denotes the physical density of present rhodopsin at time + = 0 and its molar
extinction coefficient is ky,, then we have

Din(A) + Din(A) = pin(0)(ken(A) + kin(4)),

which yields

AF(A, A, 1) = I(A)P(A, /\)e—(DMP(AHDMp(/\)+prh(0)(krh(A)+krh(l))R(t))'

In order to determine p, (0), we still need to specify R(¢).

5.2 Regeneration Model

To specify the fraction of rhodopsin remaining at time ¢, we need to study rhodopsin
regeneration, a process that competes with bleaching and in which 11-cis retinal
binds to free opsin so that rhodopsin is rebuilt [21,23]. In the RPE cells, cis retinol
(vitamin A;) is built from trans-ester through isomerase. The enzyme 11-cis retinol
dehydrogenase (RDH) yields cis retinal from cis retinol. The interphotoreceptor
binding protein (IRBP) escorts cis retinal to the outer segment where it binds to
opsin so that rhodopsin is rebuilt, see Fig.5. To specify R(¢), we need to model
the regeneration process, for which we started with Michaelis—Menten kinetics of
the production of cis retinal from cis retinol. The change in the fraction of unbound
opsin
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Fig. 5 Rhodopsin regeneration scheme, modified from images used in [21]. Retinol = vitamin A,
(ROL), retinaldehyde (RAL), 11-cis retinol dehydrogenase (RDH), cellular retinaldehyde-binding
protein (CRALBP), interphotoreceptor binding protein (IRBP), and rhodopsin (Rh)

Ops(t) =1—R(?)
is proportional to the 11-cis retinal concentration that binds to opsin:
S+ESI[ES|S E+ P,

where S is 11-cis retinol, E is 11-cis-RDH (RDHS5), and P is 11-cis retinal. The
fractional change of unbound opsin satisfies

a%Ops(l) = —kP(t)Ops(?).
Thus, when rhodopsin is bleached by a steady light of illuminance /, its regeneration
resembles a first-order reaction

1—R(?)

-
where t is the time constant. Therefore, the fractional change of the rhodopsin
concentration satisfies

IR@) | 1-R@)

7 . “)

d

—R(t) = —

o RO
where L is a “bleaching constant” that corresponds to the reciprocal of “photosen-

sitivity”” and has been measured by retinal densitometry [1,25]. Equation (4) has the
analytical solution

L I tl\ ¢
R(t) = —= —(1+=)=). 5
® I+§+I+%eXp( (+L)f) )
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In cSLO measurements, the retinal illuminance / is much bigger than %, and we
evaluate R only at # much smaller than 7. Therefore, (5) reduces to

R(t) =~ exp (—%I) .

5.3 Protocol

We follow a simple protocol in which the subject wears vermillion sunglasses (rod-
protecting) while waiting and the photographer performs focus adjustment using
the infrared reflection imaging (nonbleaching) in the cSLO. A 488nm excited
autofluorescence movie (x 8§ frames/s, 1 min long) is started that is recorded from
the start with blinks every 10s, which refresh the tear film layer on the cornea. The
average photon flux bleaches the rod rhodopsin after > 25s. We record the cSLO
movie until steady-state rhodopsin bleaching.

Remark 1. Note that the bleaching kinetics and differences between foveal and
perifoveal rhodopsin distribution do not affect macular pigment measurements.
Each flash of the fundus camera in macular pigment measurements fully bleaches
rhodopsin so that our subsequent multi-spectral images are not affected by the
bleaching kinetics and hence do not depend on the rod rhodopsin distribution.

5.4 Computational Aspects

Combining the findings in Sects. 5.1 and 5.2 leads to
AF(A, A 1) = ae 7"
where a := I(A)D(A,A), B := %, and
¥ = Dmp(A) + Dup(A) + pm(0) (ki (A) + ki (1)).

To derive py(0), we first determine the optical density of macular pigment
Dyip(460) so that we can compute

Dyip(A) + Dyp(A) = (kwp(A) + kmp(A)) Dvp(460).

In order to determine p;,(0), we shall compute the model parameters «, 8, and y as
a minimum of the energy functional
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T

Er(a.B.y) = / (e = f(1))dr, (6)

To

where f(t) is the image data derived from the ¢cSLO measurements. A gradient
descent method determines the optimal values of «, f, and y as the steady-state
solutions of the following system of ODEs:

I
Q
|

d T
= —/T (e exp(—y exp(=B1)) — f(1)) exp(—y exp(—p1))dt. (M

)

T
95— oy /T (ccexp(—y exp(—B1)) — £(1)) exp(—y exp(—Bi)) exp(—Br)rdr.
®)

d T
V= /T (c exp(—y exp(=B1)) — f(t)) exp(—y exp(—p1)) exp(=pr)dz. (9)

Due to the high non-linearity of the model, the differential equations are solved
using an explicit finite difference scheme with the time stepping chosen individually
for each parameter. When aiming for the recovery of the actual parameters of
each bleaching curve, we consider the parameters that we recover as optimal
approximations within the declared model to the actual parameters. The recovered
parameters can coincide with the actual ones (¢, 8, y), differ by a numerical-error
margin, or differ due to the fact that in certain areas the proposed model does not
describe all physiological phenomena completely. The details of the minimization
procedure and its mathematical foundations are described in [12]. A spatial map of
y is shown in Fig. 6, and spatial variations within a bleaching movie are visualized
in Fig. 7.

6 Conclusion

The analysis of cSLO lipofuscin autofluorescence image sequences in dark-adapted
subjects provides a new means for high-resolution mapping of the state of human
rod photoreceptors. We extended a validated physiological model of rhodopsin
bleaching kinetics by incorporating the macular pigment density, which we can
reliably quantify from multispectral autofluorescence images. As opposed to [3,
21, 23, 28], we can therefore determine the correct rod rhodopsin density even
within the central fovea, where both macular pigments and rhodopsin are present
at a significant density. The physiological variables a(x, y), B(x, y), and y(x, y)
appear to be consistent as we optimize the model parameters using the steady state
of a system of ODEs. Our model and parameter optimization provide plausible
high-resolution maps of rod rhodopsin distributions in normal individuals using a
clinically simple 1min noninvasive imaging sequence.
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Fig. 6 Values of the parameters « and y determined via the gradient descent minimization with a
fixed value of B = 0.0368 (a) Values of a between 43 and 108 (b) Values of ¢ between 0.1 and 0.5
(¢) A typical temporal sequence of the intensity values (blue) at one pixel and the corresponding
fit (red)

Our new noninvasive imaging and analysis approaches appear well suited for
measuring localized changes in macular pigments and rod photoreceptors and to
correlate them at high spatial resolution with localized pathological changes of the
RPE seen in steady-state local autofluorescence images. Further refinement and val-
idation should lead to better methods for evaluating very early microscopic lesions,
their natural progression, and their responses to benign disease prevention strategies
that are most likely to be effective with early “preclinical” changes. For instance,
the retinal irradiance during cSLO lipofuscin autofluorescence imaging provides
> 97 % complete rhodopsin bleaching and therefore is insensitive to the visual
cycle. If one uses a 576nm laser wavelength, for which the rhodopsin absorption
is about eightfold less, then a longer movie at 576nm or intermittent imaging at
488nm might result in lower steady-state bleaching fractions and slower kinetics,
enabling us to extract the visual cycle time. Additionally, the Heidelberg Spectralis
HRA+OCT allows simultaneous optical coherence tomography and cSLO auto
fluorescence measurements, cf. Fig.8, in which 3-dimensional structure (OCT)
can be correlated with local changes in rhodopsin and fluorescence bisretinoids
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Fig. 7 Fitted bleaching curves at various regions (a) Regions marked on the first image of the
bleaching stack. Note that the model is off on the blood vessel (b) Fitted bleaching curves, the
additional blue curve corresponds to the fitting of an average over the annulus-like area between
the two blue ovals shown in (a)

Fig. 8 The Heidelberg Spectralis HRA+OCT enables us to complement local autofluorescence
measurements with optical coherence tomography images, recorded in parallel and well aligned

by our new autofluorescence image analysis methods. Such integrated quantitative
analysis could allow improved characterization of the natural history of early lesion
progression and responses to therapies.
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Simple Harmonic Oscillator Based
Reconstruction and Estimation

for One-Dimensional g-Space Magnetic
Resonance (1D-SHORE)

Evren Ozarslan, Cheng Guan Koay, and Peter J. Basser

Abstract The movements of endogenous molecules during the magnetic resonance
acquisition influence the resulting signal. By exploiting the sensitivity of diffusion
on the signal, g-space MR has the ability to transform a set of diffusion-attenuated
signal values into a probability density function or propagator that characterizes the
diffusion process. Accurate estimation of the signal values and reconstruction of the
propagator demand sophisticated tools that are well suited to these estimation and
reconstruction problems. In this work, a series representation of one-dimensional
g-space signals is presented in terms of a complete set of orthogonal Hermite
functions. The basis possesses many interesting properties relevant to g-space MR,
such as the ability to represent both the signal and its Fourier transform. Unlike the
previously employed cumulant expansion, bi-exponential fit, and similar methods,
this approach is linear and capable of reproducing complicated signal profiles,
e.g., those exhibiting diffraction peaks. The estimation of the coefficients is fast
and accurate while the representation lends itself to a direct reconstruction of
ensemble average propagators as well as calculation of useful descriptors of it,
such as the return-to-origin probability and its moments. In axially symmetric and
isotropic geometries, respectively, two- and three-dimensional propagators can be
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reconstructed from one-dimensional g-space data. Useful relationships between the
one- and higher-dimensional propagators in such environments are derived.

Keywords Magnetic resonance * g-space ¢ Diffusion ¢ Propagator * MR e
Hermite polynomial ¢ Return-to-origin * Return-to-axis * Return-to-plane * Axial
symmetry ¢ Isotropy

1 Introduction

Diffusion is a transport process characterized by the spontaneous and incessant
movements of particles. The characteristics of the diffusion process are determined
by the structure of the host matrix. As such, one can obtain information about the
domain in which diffusion is taking place by observing diffusion. One widespread
method for measuring diffusion involves the nuclear magnetic resonance (NMR
or MR) technique whose sensitivity to diffusion of spin-bearing molecules was
realized in its earliest days [9]. Later on, it was demonstrated that by incorporating
a pair of pulsed magnetic field gradients into conventional MR acquisitions, one
can observe diffusion in a convenient and controllable way [37]. This “pulsed-field-
gradient” (PFG) MR technique enabled the examination of numerous substances in
diverse areas. A spin that is moving between the application of the two diffusion
sensitization pulses of the PFG experiment suffers a net phase shift. A population
of randomly moving spins yields an incoherent phase profile, which leads to an
attenuation of the MR signal [17].

In diffusion MR, the net displacement vector R is a Fourier conjugate to an
experimentally controlled variable q = y3G/(27), where y is the gyromagnetic
ratio, § is the duration of the diffusion gradient pulses, and G is the diffusion gradient
vector, i.e., [13,38],

1@®=/mwﬂﬂm. )

Here, E(q) is the MR signal attenuation and, when § is small, P;p(R) is an
ensemble average propagator indicating the probability for molecules to undergo
a displacement R in the interval between the two pulses. Therefore, P;p(R) can
be estimated from data obtained via sampling the three-dimensional “g-space” and
then employing a Fourier transform scheme.

Frequently, because of experimental limitations or because the desired charac-
teristics of the specimen can be extracted from one-dimensional data, the entire
three-dimensional g-space is not sampled. Instead, a one-dimensional version of the
g-space acquisition is performed by keeping the direction of the diffusion gradients
fixed, and varying only their strength. If the x-axis is defined to be the direction of
the gradients, then a one-dimensional average propagator can be obtained from the
relationship

Hm=/@¥WE@. @)
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Fig. 1 MR signal attenuation expected from spins diffusing inside a rectangular pore of length
L is depicted via the continuous line on the left panel. Also shown on this panel are the curves
obtained from a bi-exponential fit (dashed line) and cumulant expansion with 10th-, 30th-, and
60th-order approximations (dotted lines). The right panel shows the errors acquired in the bi-
exponential fit and the 60th order cumulant expansion. In these simulations, the bi-exponential fit
was obtained from 400 points uniformly covering a ¢ L interval of [0,2.5]. The cumulant expansions
are obtained by analytically expanding the logarithm of the signal attenuation in a power series

By sensitizing the signal to the random motion of the molecules, the g-space MR
technique enables the study of microscopic compartments whose dimensions cannot
be resolved by conventional MR imaging and microscopy. Moreover, the one-
dimensional average propagator was shown to provide information about diffusion,
flow, restrictions to motion, and even spatially dependent relaxation sinks [6].
In one application of diffusion acquisitions involving specimens with an ordered
microstructure, the non-monotonic dependence of the g-space signal on g [4,23]
was exploited to determine cell sizes. In another application, the g-space signal has
been used to estimate scaling exponents that were related to the fractal dimension
of disordered media [25]. Since the diffusion propagator is a probability density
function, among its descriptors are the moments of this density function. Another
important quantity is the probability for no net displacement, or more commonly
referred to as the return-to-origin probability [10]. These quantities are all indicators
of tissue microstructure, which could be altered by changes due to development,
aging, and disease.

Estimation of the derived quantities and reconstruction of the propagators can
be significantly improved if the signal decay can be expressed parametrically. For
this purpose, bi-exponential fitting [5,26] and cumulant expansion [11, 16, 18, 39]
techniques have been applied to g-space data. However, both of these approaches
are limited in their ability to reproduce general E(g) profiles. For example, bi-
exponential functions are monotonic by design, and as such, they can not possibly
model non-monotonic diffraction-like features. The cumulant expansion method
is bound to fail as well, because the signal minima are typically at or beyond the
radius of convergence [7, 14] for such expansions. Moreover, Pawula’s theorem
guarantees that the propagators reconstructed from a cumulant expansion terminated
beyond the Gaussian term will have unacceptable properties [32]. Figure 1 illustrates
how both of these methods fail in reproducing the exact MR signal attenuation
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from spins diffusing inside a rectangular pore. Other parameterizations of the
g-space signal include the assignment of a continuous spectrum of diffusivities
[33, 36, 42] and fitting stretched exponential [2, 15] or Rigaut-type asymptotic
fractal expressions [12, 15] to diffusion-attenuated MR data. These parametric
representations also suffer from the above-mentioned problems.

In this work, we propose expressing the one-dimensional g-space MR signal in
terms of the eigenfunctions of the quantum-mechanical simple harmonic oscillator
Hamiltonian, sometimes called the Hermite functions, which form a complete
orthogonal basis for the space of square-integrable functions [21]. Because Fourier
transforms of these functions are Hermite functions themselves, our approach
directly yields a propagator expressed in the same set of basis functions. Estimation
of probability distributions in a series of Hermite functions is well studied in the
statistics literature [35], and such expansions were shown to possess powerful
properties, such as rapid convergence in both real and Fourier spaces [41], which
suit problems of g-space signal analysis and average propagator estimation.

After introducing the basis and a numerical estimation method for its coefficients
in the next section, in Sect. 3, we evaluate the accuracy of the signal, propagator,
moment, and return-to-origin probability estimates. Several important and useful
relationships regarding the employed basis and geometries with axial symmetry or
isotropic environments are derived in the appendices.

2 Theory

We propose expressing the diffusion-weighted MR signal as

N—1
S(@) =) ay¢ulu,q), 3)
n=0
with
Guiq) = ——— 27 i 2ug). 4
2n pl

Here H,(x) is the nth-order Hermite polynomial and u is a characteristic length to
be determined. The MR signal attenuation, defined to be E(g) = S(q)/S(0), can
be expressed in the same basis as

N—1
E(q) =) an¢u(u.q), )
n=0
where
a/
ap = = (6)
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Fig. 2 First four functions used in the expansion of the MR signal profiles, S(g). Note that the
real and imaginary parts of, respectively, the even- and odd-ordered functions are plotted as the
other parts are 0

with So = S(0) is the signal with no diffusion weighting, which can be estimated
from the coefficients a),:

N—1 N—1

, =10,
So = a, ¢n(u,0) = —a,. @)
> =§4 7

n=0

Note that the ¢, functions are related to the eigenfunctions of the quantum-
mechanical simple harmonic oscillator Hamiltonian. It is well known that these
functions form a complete orthogonal basis for the space of square-integrable
functions [21]. Figure2 depicts the first few of these functions. One important
property of these functions is that their Fourier transforms are also Hermite
functions; this characteristic enables direct estimation of the propagator through the

expression
N—1

P(x) =) ay Y, x), ®)
n=0

where

Y (u, x) = mud)n(zﬂus-x)

1 —2 /(2
= VG ©
‘u

Note that the functions ¥, (u, x) are real-valued, which assures that the probabilities
will be real-valued when the a, are real. This is a consequence of the phase
convention we have employed in Eq.4, which ensures that the real and imaginary
parts of the signal are even and odd, respectively. Moreover, Eq. 6 guarantees that the
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total probability, i.e., the integral of the function P (x), will be unity. See Appendix
1 for some additional properties of this basis.

2.1 Implementation

A set of a), coefficients can be estimated by solving a set of linear equations. To
see this, we shall denote by S the M -dimensional vector of signal values. The mth
component of this vector is S, = S(¢;). Similarly, an M x N dimensional matrix,
Q, can be defined with components Q,,, = ¢, (u, ¢,). The estimation problem is
reduced simply to a matrix equation S = Qa’, where the N -dimensional vector of
a), coefficients is denoted as a’. In our implementation, this equation was solved
by computing the pseudoinverse of Q via singular value decomposition [34]. S is
computed subsequently using Eq. 7, which is inserted into Eq. 6 to determine the
coefficients a,,.

It is important to note that a prior estimate of u is necessary for the above
estimation scheme. An adequate choice of u is necessary to obtain a reasonable
approximation of the signal with few terms in the series. To this end, in our
implementation, we first estimated a maximum value for « from the first few points
of S(g); in this range of g-values, the signal was assumed to undergo Gaussian
attenuation. Note that when the signal is Gaussian, all coefficients except a( vanish,
and the signal attenuation is given by E(q) = exp(—2m2¢*u?). Starting with this
estimate of u#, we gradually reduced it, and at each value of u, we estimated the a,
coefficients using the above scheme. Next, the signal attenuation values at the data
points corresponding to the particular # and a, values were computed. These values
shall be denoted by E'(u, ¢). The mean error defined by

1 & »
€ =35 > (E™(u.q) — E*(q:))", (10)

i=1

was evaluated at each step, where E%(g;) are the original data points. The search
for the optimal u was discontinued when a local minimum was achieved, or €(u) fell
below 1 x 107!, The last set of u and a,, values were used in subsequent analysis.

The average probability estimates can be computed for arbitrary values of x
using Eqgs. 8-9. A return-to-yz-plane probability can be estimated either from the
x = 0 point of P(x), or directly from Eqs. 26 with 22. The moments, (x"), can be
computed from the coefficients a, using Eq. 25.

Many examples of media of interest to the MR community exhibit certain
levels of symmetry such as full isotropy or axial symmetry. For such specimens,
one-dimensional E(q) data is sufficient to reconstruct two- and three-dimensional
average propagators in cases of axial symmetry and isotropy, respectively. It was
shown that such higher-dimensional propagators may be more meaningful than the
one-dimensional propagator [29]. For the case of axial symmetry, several general
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relationships exist between the one- and two-dimensional propagators and their
moments along with the expressions of the same quantities in terms of the a,
coefficients. These are derived in Appendix 3. Finally, Appendix 4 includes the
derivations of similar relationships between one- and three-dimensional propagators
for isotropic geometries.

3 Results

We test our estimation and reconstruction scheme on six different signal attenuations
with analytically (i.e., exactly) available average probability profiles and moments.
Table 1 includes the percentage deviations of the zero-displacement probabilities as
well as even-order moments, estimated using the proposed series representation,
from the exact ground-truth values for five of the geometries considered.

From its first days, PFG-MR techniques have been used to measure the bulk
diffusion coefficients of fluids. In this case, the signal as well as the average propa-
gator is Gaussian. Similarly, when the sample has two distinct, non-exchanging, but
freely diffusing compartments, the signal and the average propagators can be written
in terms of sums of two Gaussians. It has been shown in numerous studies that bi-
exponential fits are quite satisfactory in modeling typical signal decays observed
from real tissue [19, 20]. Therefore, it is very important for a new reconstruction
scheme to fit mono- and bi-exponential decays. Figure 3 illustrates the performance
of the approach in mono- and bi-exponential signal attenuations where the diffusion
coefficient was taken to be 1.0 x 107> mm?/s in the mono-exponential case. In
the simulations of bi-exponential attenuation, the diffusion coefficients were taken
to be 1.5 x 1073 mm?/s and 2.5 x 10~* mm?/s with volume fractions of 0.6 and
0.4, respectively. 33 sampling points were used, and a total of 12 even-ordered a,
coefficients were kept in the series representation under the assumption that the
propagator is symmetric. The first row depicts the signal attenuation values (left)
as well as the deviation of the estimated signals from the ground truth (right).
In the case of mono-exponential attenuation, the scheme is exact up to numerical
precision while the performance is very accurate for bi-exponential decay as well.

Table 1 Percent (%) deviations of the estimated quantities from their exact values

Mono-exponential Bi-exponential Rectangular pore Cylindrical pore Spherical pore

So 3.0 x 1014 70x 1077 42x 10712 43x10712 1.9x 1013
P(0) 57x10"" 40x1072 3.3 1.7 % 107! 1.3x 1072
Pyp(0) 4.0 x 10712 22x107 - 4.3 -

Pip(0) 1.9 x 10711 6.9x 1071 - - 5.7

(x% 0 44x107%  1.6x107° 7.4 x 1077 51 %1071

(x2)  41x10713 43x1075  51x107° 2.4 %1075 1.0x 1077
(x¥  5.0x107'2 56x107%  6.7x1074 2.9x 107 2.5% 1076
(x¢)  34x107M 39%x 107 6.7x1073 3.0 x 1073 3.8 x 1075
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Fig. 3 Signal decay profiles and one-, two-, and three-dimensional propagators (left column, from
top to bottom) including both the ground-truth and estimated curves from mono-exponential as
well as bi-exponential diffusion. The right column shows the associated errors in the estimates.
Note that the two- and three-dimensional propagators are symmetrized around the O radius to make
comparisons with the one-dimensional propagator convenient
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Fig. 4 Diffusion signal decay, and the corresponding average propagator (left column, from top
to bottom) from the simulations of Gaussian diffusion with flow. Note that the signal is complex-
valued due to flow, which yields a horizontal shift in the reconstructed average propagator. The
right column shows the associated errors in the estimates

The figure demonstrates that the scheme yields not only a good approximation
within the sampling window, but also a satisfactory extrapolation of the decay curve
outside the sampling window. The second, third, and fourth rows of the figure
illustrate the results obtained from the one-, two-, and three-dimensional Fourier
transforms of the signal decay curves. The two-dimensional Fourier transform
was performed under the assumption that the signal originated from an axially
symmetric environment, while the three-dimensional Fourier transform assumed
isotropy. In these cases, one-dimensional g-space data are sufficient to reconstruct
these higher-dimensional propagators as detailed in Appendices 3 and 4. In all
cases, the reconstructed propagators are indistinguishable from the ground-truth
propagators.

To show the performance of the scheme for non-symmetric displacement
probabilities, we simulated a flowing fluid with the assumption that the molecules
undergo a net coherent displacement of 1.5u. In the presence of flow, the expected
signal attenuation is complex-valued, and the odd-ordered coefficients of the series
in Eq. 3 have to be retained. Our simulations started with 33 complex data points
and N was set to 23. The results shown in Fig.4 indicate that the errors in
the signal decay as well as in the reconstructed average propagator are negligible
and the peak of the displacement probability shifted by the correct distance.
Note that because of the lack of symmetry, the zero-displacement probabilities
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are not meaningful for this set of simulations. Additionally, unlike in the other
geometries considered, the propagator in the presence of flow has non-zero odd-
ordered moments. Consequently, we did not include the percentage deviations from
this simulation in Table 1. The percentage deviation of the estimated Sy from the
correct one was only 9.7 x 1074, The percent deviations in the moments (x°)
through (x7) were 4.4 x 10714, 9.7 x 1071, 3.5 x 1072, 2.6 x 1078, 3.6 x 1077,
1.4x 1075, 1.1 x 107, and 3.0 x 1077,

Next we tackle three different scenarios of restricted diffusion. All of these
simulations start with generating 33 data points, and a total of 28 terms in the series
of Eq. 3 are kept. First, we simulate the signal attenuation from a one-dimensional
geometry in which the molecules are trapped between two parallel plates separated
from each other by a distance L. When the diffusion time is long, the diffraction-
like features are apparent, which leads to a challenging signal decay profile to
estimate. However, as shown in the first row of Fig. 5, the proposed basis performs
well not only in the sampling window but also in the extrapolation region. Note
the tremendous improvement over the results obtained from bi-exponential fitting
as well as cumulant expansion as was illustrated in Fig. 1. This improvement was
achieved in spite of the fact that the analytical form of the cumulant expansion was
used and the bi-exponential fitting was performed on 400 data points. In contrast,
our SHORE simulation was numerical and used less than 10% of the data points
within the same window.

The corresponding propagator is given by a triangular function, which is not
differentiable at three points. Although our basis is composed of smooth functions,
the approximation is quite successful for this piecewise smooth function (see the
second row of Fig.5). Finally, in the last row of the same figure, we consider the
diffraction pattern predicted for a double-PFG experiment [23]. In such experiments,
rather than bouncing back from the horizontal axis, the signal decay is expected
to cross the horizontal axis and become negative at exactly half the g-value of
the corresponding single-PFG experiment [23]. The satisfactory performance of
the approach for this more oscillatory signal attenuation profile suggests that the
approximation can be used to model signal decays obtained from multiple PFG
sequences.

The second simulated restricted diffusion scenario is diffusion taking place inside
a cylinder of radius ry. The simulations of this axially symmetric geometry were
performed with identical parameters, and the two-dimensional axially symmetric
Fourier transform was computed both exactly and also from the a, coefficients as
described in Appendix 3. The results are presented in Fig. 6. Finally in Fig.7 we
depict the results obtained from simulations of diffusion inside a sphere of radius
Ry. For this geometry both the one- and three-dimensional average propagators are
included. Note that the two- and three-dimensional average propagators obtained
from the cylindrical and spherical pores resemble the triangular propagator obtained
from the rectangular pore. This observation suggests that the true displacement
profile is approximately linear in these geometries—a finding that cannot be gleaned
by studying the form of one-dimensional propagators.
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Fig. 5 Signal decay expected from a rectangular pore obtained via a single-PFG experiment
and the error in its SHORE estimate (top row). These images are the SHORE counterpart of the
cumulant expansion and bi-exponential fitting results presented in Fig. 1. The associated average
propagator and the error in the reconstruction are shown in the middle row. The bottom row shows
the signal expected from a double-PFG experiment. Note that unlike in the case of the single-PFG
experiment, this plot is not logarithmic to accommodate negative portions of the curve

The results presented in Table 1 demonstrate the accuracy of the quantities that
are computed directly from the a, coefficients using the relations derived in the
appendices. Note that zero-displacement probabilities are typically more difficult
to estimate because of their sensitivity to the signal values over the entire g-axis.
Therefore, extrapolations become more significant in these estimations. Similarly,
the higher-order moments are related to the higher-order derivatives of the signal
decay at the origin. Therefore, the accuracy in the estimates of the moments is an
indication of the accuracy in the derivatives of E(q) at ¢ = 0. Finally, we would
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Fig. 6 Signal decay curve and two-dimensional axially symmetric propagator (left column, from
top to bottom) for the cylindrical pore with radius ry. The associated errors are depicted in the right
column

like to note that because the one-dimensional moments are directly proportional to
the two- and three-dimensional radial moments, as implied by Eqs. 41 and 56, the
percent deviations in the radial moments are identical to those in one-dimensional
moments. Consequently, these deviations are not included in Table 1.

4 Discussion

We would like to point out that the two- and three-dimensional average
propagators were not qualitatively different from their one-dimensional counter-
parts in the simulations of mono- and bi-exponential attenuations. However, in
the case of restricted diffusion, e.g., inside a spherical pore, as seen in Fig.7,
the propagator obtained from the three-dimensional Fourier transform resembles
the one-dimensional triangular propagator for diffusion inside a rectangular pore
although the one-dimensional propagator of the spherical pore is smoother and
Gaussian-like. This is an indication that the violation of the Gaussian phase
approximation is more severe in one-dimensional geometries, because in one-
dimensional propagators of higher-dimensional pores, displacements are projected
onto one of the axes leading to a smoothing effect in such environments. Moreover,
since the propagator is the autocorrelation function of the shape function, it is
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Fig. 7 Signal decay profile and one-dimensional and three-dimensional isotropic propagator (left
column, from top to bottom) for the spherical pore with radius Ry. The associated errors in the
estimates are included in the right column

straightforward to prove that, in closed pores, the zero-displacement probability
is just the reciprocal of the pore “volume.” As can be seen in Egs.29, 46, and
61, this was exactly the case for the zero-displacement values of the one-, two-,
and three-dimensional propagators for rectangular, cylindrical, and spherical pores,
respectively. The x = 0 values of the one-dimensional propagators for cylindrical
and spherical pores (see Eqgs. 47 and 63) suggest that there may not be such a shape-
independent relation between the P (x = 0) value of a higher-dimensional geometry
and the shape of the pore.

The technique we have presented here is linear because the estimated coeffi-
cients, a;, are expressible as a linear combination of the signal values. In fact,
to estimate the coefficients of the series representation, we posed the problem as
a matrix equation. The scheme demands an a priori estimate of the characteristic
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length u. This can be done in many different ways; the approach we have described
in the Theory section starts by fitting the small-g section of the E(gq) data to a
Gaussian decay curve, i.e., E(g) =~ e~ 27"’ and gradually reducing the u-value
until the mean error, i.e., the average squared deviation of the signal attenuation
estimates from the original values, reaches a minimum or drops below a very small
value comparable to the machine precision. Note that the estimation of a maximum
value for u from the first few points of the signal profile is nonlinear, and because
it is performed on fewer data points, the estimates are prone to error. However, the
completeness of the employed basis, regardless of u, guarantees the convergence of
the series although a deviation in the estimated u-value from its ground-truth value
may affect the rate of this convergence. In our simulations, we observed that even
10% error in the estimation of u was tolerable and did not change the quality of the
results significantly.

As discussed above, the constant u is a characteristic length proportional to
the square root of the diffusion time. Because the basis is symmetric under the
interchange of u and ¢, the same formalism can be applied to data obtained by
varying the diffusion time while keeping the diffusion gradient strength fixed.

The analyses we have presented have focused entirely on one-dimensional data
and we have provided the details of the 1D-SHORE framework introduced for
the first time in Ref. [27]. Although we presented results from reconstructions
of two- and three-dimensional propagators, these results were based on axially
symmetric or isotropic geometries, respectively. In these geometries, having the
g-space data along one direction is tantamount to having it on the entire plane or
within the entire three-dimensional space, making it possible to compute the higher-
dimensional propagators using one-dimensional transforms (see Eqs. 33 and 49).
However, because of the separation of variables of the higher-dimensional analog
of the simple harmonic oscillator Hamiltonian in Eq. 11, our scheme has a trivial
extension to two- and three-dimensional g-space signals even in the absence of axial
symmetry or isotropy as we showed in [30]. A similar approach was introduced
in Ref.[1] that uses Gauss—Laguerre functions. We envision that representing
the MR signal attenuation analytically in a series of orthogonal functions will
have many applications. Most recently, the 1D-SHORE framework was shown to
be useful in accurately estimating the moments of the underlying compartment
size distributions, which could be employed to obtain new forms of MR image
contrast [31].

5 Conclusion

We have introduced a new basis to represent one-dimensional g-space signal and
reconstruct the average propagators from it. The basis is well known in quantum
mechanics, but some characteristics of the basis make it particularly relevant
to and useful for g-space MR. Among these is its capability to accommodate
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complex-valued signals while ensuring a real and normalized average propagator.
Additionally, the Fourier transform of each component is readily available making
it possible to reconstruct the average propagators immediately. Similarly, useful
descriptors of the propagator such as return-to-origin probabilities and its moments
can be computed from the basis representation. On several simulations, the accuracy
of the estimations was assessed, and we demonstrated that it successfully represents
signal profiles even when the signal and the propagators have unusual forms such
as in the presence of diffraction-like features. Unlike the previously employed
cumulant expansion, multi-exponential fitting, and similar approaches, the basis
functions are complete and orthogonal, and the estimation/reconstruction scheme
is linear with a wider range of applicability.
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Appendix 1: Remarks on the Basis Functions

Note that the functions ¥, (u, x), defined in Eq. 9, are the solutions to the eigenvalue
equation

2 2
(_uzB_ N x_z) U (11, %) = A Y (11, ), (11)
X u

with eigenvalues A, = (2n + 1). Taking the Fourier transform of both sides, it is
easy to show that the functions ¢, (i, q) are the solutions to the eigenvalue equation

1 02
(‘@n—u)za_qz + (2nu>2q2) 60 (0,q) = A 0 (1, (12)

Since Eqgs.11 and 12 are identical upon the transformations x —> ¢ and
u — (2wu)~', ¥, and ¢, have the same form up to a multiplicative factor (see
Eq.9). In fact, the operator on the left-hand side of these eigenvalue equations is
the Hamiltonian operator with a quadratic potential, which describes the simple
harmonic oscillator problem in quantum mechanics. However, our definitions of the
eigenfunctions are slightly different from their forms as commonly used in quantum
mechanics. Specifically, our basis is not normalized, but the scaling is such that
when diffusion is Gaussian, a, = 8,0, Where §;; is the Kronecker delta.

Despite these minor differences from the basis used in quantum mechanics, our
basis functions still satisfy the relationships

Il
o

0 N
A n\U, = (13
w (u Z) \/Ewn—l (I/t, Z)sn )

v
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and
0 ,n=0

ﬁqﬁn—l(us (I)J’l > 1 ’

where A and A are the “lowering operators” defined by

1 z d
A= (; + ud—z) (15)

Adu(u,q) = % (14)

and

. i 1 d
A=— (27ug + — — . (16)
T

Writing the Polynomials in the Definitions of E(q) and P(x)
in Power Series

It is possible to show that the Hermite polynomials can be written as [§]

n n—m y|
H@= 3 0" e (17)

m=024,... (n—m)! (m/2)! .

Inserting this expression into Eq.5, the following power series expansion for the
signal decay is obtained:

N—1 n .
 on2gk jonmmp—mtn/2 /) n—m
E(q)=e1 E an E = m/2)] Qrqu)"". (18)

n=0 m=0.24,...

The double summation in the above expression can be recast by using the transfor-
mationsk =n—-m(k =0,1,2,...,.N—Dandl =m( =0,2,...,.N—k—1)
as shown in Fig. 8:

N—1
E(q) =7 Y byi(w) g (19)
k=0
where
i Qruk VI 2R (k + 1))
b = . 20
Vi () = > T e (20)
1=0,2,...
Using the same approach, the propagator can be written as
N—1
P(x) = e™/@ 3 ey (u) 1, @1

k=0
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Fig. 8 Transformation of the indices n and m into k and /. Note that N = 8 in this figure

where
< V2T +1)!
e () = Mk+l - ; 1y (l/+)!)ak+l' 22)
Moments of P(x) and P(0)

The mth-order moment of P(x) is defined to be
o0
(x™) = / dx x™ P(x) . (23)
—00

The usual strategy to compute the moments of a propagator from its E(g) profile
involves the power series expansion of the plane wave in the Fourier relationship
between the signal and the probability, i.e.,

E(q)

0o .
/ dx e7127% P(x)
—0o0

(—=i2nq) (—i2mq)? o (—=i2ng)?

=1+ T (x) + o X7y + 3

(xH+... @4

Therefore, a power series representation of E(g) data upon a term-by-term compar-
ison with Eq. 24 would yield the moments of P(x).

However, the moments can be computed directly using the Hermite function
representation of the E(q) profile as well. This can be done by inserting Eqs. 21-22
into 23 yielding
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N—1 N—k—1
w3 (k+m—1)l| s 1)1/2,/ Tk +1)! 05)

Ak+1,
|
k=02,... [1=02,... (1/2)

when m is even. Odd-ordered moments can be computed using essentially the same
expression where the index k takes odd values, i.e., k = 1,3,5,....
Note that P(0) can be evaluated conveniently by setting x = 0 in Eq. 21, i.e.,

P(0) = cno(u). (26)

Note that P(x = 0) is not a true return-to-origin probability, but, since P(x) is
obtained through a one-dimensional Fourier transform, it is the probability for the
molecules to return to the yz-plane—a consequence of the Fourier slice theorem.

Appendix 2: The Rectangular Pore

When the spins are trapped between two infinite plates, one located at x = 0 and
the other at x = L, the expected signal intensity at long diffusion times is given
by [40]

27)

where it is implied that the diffusion gradients are applied perpendicular to the
infinite plates. The corresponding average propagator is

L—lx|
Precl (x) — L2 ) (28)

Obviously, the return-to-yz-plane probability is simply

1
P 0) = £ (29)

Finally, the even-order moments of the propagator are given as

myrect __ 2L™
N = T Dm (30)

while the odd-ordered moments vanish.
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Appendix 3: Axially Symmetric Geometries and the
Cylindrical Pore

General Results

Many geometries of interest have an anisotropic structure with an oblate or prolate
shape, where the environment possesses a symmetry axis. In our treatment we shall
take the z-axis to be along this symmetry axis. In such an axially symmetric or
transversely isotropic process, the same signal attenuation profile is obtained when
the diffusion gradient is applied in any direction (which defines the x-axis in our
treatment) perpendicular to the symmetry axis. In this case, a two-dimensional
isotropic Fourier transform can be evaluated from one-dimensional g-space data,
ie.,

) )
PZD(r) = / dqx / dqy elan.r E(q), 31
—00 —00

where the two-dimensional vectors q and r reside on the xy-plane. The radial
and polar coordinates of these vectors shall be denoted to be (g, 6,) and (r, 6,),
respectively. Inserting the Rayleigh expansion for two-dimensional plane waves,

o0
9T = N i J,(2mgr) e, (32)

m=—00

into Eq. 31, the two-dimensional isotropic propagator for axially symmetric envi-
ronments is obtained to be

o0
Por) =2 [ dagq durar) E@). (33)
0
The same analysis can be repeated for the inverse Fourier transform, yielding
o0
E(q) = 27r/ drr Jo(2mqr) Pap(r). (34)
0

The one-dimensional average propagator, obtained from a one-dimensional
Fourier transform, is related to the two-dimensional propagator via the relation

P(x) = / dy Pa(x, )

* r
- 2/ P (r) ————dr | (35)
W

which is a consequence of the Fourier slice theorem. Clearly, the above expression
is just the Abel transform [3] of P,p(r). Therefore, the inverse Abel transform
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of the one-dimensional projection reveals the two-dimensional axially symmetric
propagator to be

1 [*° P
P2D(r) = —; \/%dx (36)

The return-to- yz-plane probability can be estimated from the two-dimensional
axially symmetric propagator:

P(x=0)= 2/00 dr Pyp(r). (37)
0

On the other hand, a return-to-z-axis probability can be calculated by setting r = 0
in Eq.33,i.e.,

Pi(0) = 21 /0 dqq E(Q). (38)

The radial moments of the two-dimensional axially symmetric propagator are
defined as

(r',p = 27 / dr r™ 1 Pop(r). (39)
0

Similar to what is done in Eq. 24, the Bessel function in Eq. 34 can be written as a
power series, yielding

(2mq)*
22

(2rq)®
(2-4-6)2

Q2rq)*
2D 2.4y

E(q)=1- (r?) (r*)ap — (r%p+.... (40)
A term-by-term comparison of the series in Eqs. 24 and 40 suggests that the radial

moments are given in terms of the one-dimensional moments by the relationship

m!!

{r")an
Note that this relationship holds only when m is even; axial symmetry implies that

odd-ordered moments of the one-dimensional propagator, (x™), will vanish.

Estimates in Terms of a, Coefficients

Inserting Eq. 19 into Eq. 33 yields [8]

rk/2+1) (k r2 ) @)

N1
Po(r) =) ka(u)W thi{g+ L L -0
k=0

where | Fj (¢, y; z) is the confluent hypergeometric function of the first kind. Stan-
dard computational libraries do not include an implementation of these functions.
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However, a simple and accurate implementation can be performed by exploiting the
recurrence relation [8]

a1 Fila+1,y;20) =@+2a0—y) i1 Fi(o,y;2) + (y—a) 1 Fi(e—1,y;2). (43)

Since | Fi (o, y;0) = 1, a return-to-z-axis probability can be computed simply by
summing up the factors before the confluent hypergeometric function in Eq. 42.
Note that the radial moments, (r"),p, can be computed from a, by using Eq. 25
along with Eq.41.

The Cylindrical Pore

In this section we shall consider restricted diffusion within a cylinder of radius ry,
which is an example of an axially symmetric process. The MR signal attenuation is
given by [17]

7 (Zﬂqro))zl w

EYg) = ( aro

By inserting Eq. 44 into 33, the two-dimensional axially symmetric propagator can

be evaluated to be
2
4cos! (2L) — L. /4— (L)
cyl( ) ro ro ro ;< 2r0 (45)
P, (r) = = .
2D 2712r§

0 ,r > 2rg

It immediately follows that the return-to-z-axis probability is given by
P0) = — (46)
2D nrg’

Moreover, the return-to-y z-plane probability was calculated, by inserting Eq. 45 into
Eq.37, to be

16
P‘:yl(x = 0) = 3—2 (4’7)
JT<ro
Finally, the radial moments are given by
Qmt4 nn
( m>cyl _ (m + ) (48)

D= Gy mt a0

Note that (x™) can be calculated by inserting this expression into Eq.41.
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Appendix 4: Isotropic Geometries and the Spherical Pore

General Results

Many specimens of interest in pulsed-field-gradient MR are isotropic. Even in
the presence of local anisotropy [22, 24, 28], the randomness in the shape and
orientation of the pores would lead to isotropy due to the averaging of signals
from individual compartments. In such environments, having the ¢g-space data with
diffusion gradients applied along a single direction is tantamount to having the data
all across the three-dimensional g-space. Therefore, it is possible to characterize the
entire average propagators and related parameters via one-dimensional sampling.
In fact, the resulting three-dimensional isotropic propagator can be computed
through the relationship

2 o0
Pio(R) = = / dq g sin(2mqR) E(q). 49)
0

which is obtained by inserting the Rayleigh expansion of three-dimensional plane
waves [26]

12an — 47 Z i ]l (27qu) Z Ylm(R/R) Ylm(q/q) (50)

m=-I

into the 3D Fourier transform relationship between E(q) and P (R) in Eq. 1, where
qg = |q], R = |R|, and q and R are three-dimensional vectors. The Fourier
slice theorem enables establishment of the relation between the three-dimensional
isotropic propagator and one-dimensional propagator:

o0 o0
P(x) = / dy / dz Pu(/ 7 + )
—00 —00
o0
= 271/ dp p Pip(v/ p? + x2)
0

= 27[/ dR R Pip(R). 1)
|

x|

Here the first step involves the change of variables p> = y? + z2. Similarly, the
transformation R?> = x>+ p? was employed in the second step. Taking the derivative
of both sides with respect to x and subsequently employing the fundamental
theorem of calculus, one obtains

1 dP(x)) (52)

P3p(R) = (——

2nx  dx

x=R
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Eq. 51 implies that the return-to-yz-plane probability can be calculated using the
relationship

P(x =0)=2r /oo dR R P3p(R). (53)
0

Note that Eq. 49 leaves the return-to-origin probability undetermined, which should
be calculated using the relationship

o0
Pip(0) = 4 / dg q” E(q). (54)
0
The radial moments of the three-dimensional isotropic propagator are defined as

(R™)sp = 4m / - dR R™*2 P3p(R). (55)
0

Inserting Eq. 52 into the above expression and performing integration by parts, it is
straightforward to show that the radial moments of the three-dimensional isotropic
propagator and the moments of the one-dimensional propagator are related through
the relationship

(R™)3p = (m + 1) {x™). (56)

Note that this relationship holds only when m is even. odd-ordered moments of the
one-dimensional propagator, (x™), vanish due to isotropy.

Estimates in Terms of a, Coefficients

By inserting the expansion of the one-dimensional propagator in Eq. 8 into Eq. 52
and differentiating by using the relationships in Eqs. 13 and 15, one can expand the
three-dimensional isotropic propagator as

N—1
Psp(R) = ) an & (u, R), (57)
n=0
where
1
P Yo(u, R) ,n=20
En(u, R) = . (58)

1 n 1
) Y (u, R) — \/;_JTMR Yu—1(u, R),n > 1
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Note that the return-to-origin probability can be estimated from the coefficients a,
by setting R = 0 in the above expression. Finally, the radial moments, ( R")3p, can
be computed from a, by using Eq. 25 along with Eq. 56.

The Spherical Pore

Diffusion inside a spherical pore of radius Ry yields the following MR signal
attenuation at long diffusion times [40]:

3 sin(2wgRy)
(2mgRo)? 2mqRy

2
EP(q) = [ — cos(27th0))i| . (59)

By inserting Eq.59 into 49, one can evaluate the three-dimensional isotropic
propagator to be

3(2Ry—R)*(4Ry+ R
» (2Ro )(6 0+ ),R§2R0
P'(R) = 64 R} ) (60)
0 R > 2R,

It immediately follows that the return-to-origin probability is given by

3

sph
P3B © = 47R3’
0

(61)

The one-dimensional propagator can be obtained via a one-dimensional Fourier
transform of E*P"(g) or by inserting Eq. 60 into Eq. 51. In either case, it is given by

3(2Ry — |x|)? (4R2 + 6R 2
. QR — ¥ R+ 6Rx|+2) |1
PP (x) = 160R; , (62)
0 ,|x| > 2Ry

which implies that the return-to-yz-plane probability is given by

3
PP(x =0) = —. 63
(x =0) SR, (63)

Since isotropic geometries are also axially symmetric, the expressions derived in
Appendix 3 apply also to this appendix. For brevity, we shall include only the result
for the return to long-axis probability predicted for spherical pores:

PY0) = (64)

SnR(z) '
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Finally, the radial moments are given by

(R™)¥h = o 2 R (65)
DT 3+ 13m2 +54m+ 720 07

Note that (x™) can be calculated using this expression along with Eq. 56.
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Fourier Blues: Structural Coloration
of Biological Tissues

Richard O. Prum and Rodolfo H. Torres

Abstract The non-pigmentary colors of the tissues of living organisms are pro-
duced by the physical interaction of light with nanostructures in the tissues. Contrary
to what has been previously assumed for many decades, it has been established
now that many of the beautiful blue and green colors observed in the tissues of
mammals, birds, and butterflies are the result of coherent scattering or constructive
interference. Using Fourier analysis one can show that many structurally colored
tissues are quasi-ordered on the appropriate nanoscale to produce the observed
colors by constructive interference. Understanding the mechanisms of coloration
in animals is very important because of the role that bright colors play in communi-
cation, courtship display, and mate selection in many species of the animal kingdom.
In this note we give an exposition of some of the extensive work done recently on
nanomaterials with noncrystalline, local scale order. The focus of this article is, in
particular, on a truly fascinating manifestation of Fourier analysis and synthesis in
nature, which provides a way to explain coloration phenomena that are of interest
in behavioral and evolutionary biology.
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1 Introduction

The study of the forms of coloration in different materials is a rich, intricate,
and multidisciplinary activity. The classic book by Nassau [15] presents a detailed
account of at least fifteen different forms of coloration found in our physical world.
From a scientific point of view, the explanation of the origin of the colors observed
belongs mainly to the métiers of physics and chemistry, but the implications of
the presence of coloration in different materials extend to many other disciplines.
In particular, coloration as mean of communication plays a crucial role in many
areas of biology and the study of species capable of analyzing the complicated color
signals. Among such species are certainly humans, and color and coloration play a
central role in many situations extending from the scientific, through the practical,
to the aesthetic aspects of our lives. Colors allow us to discover and understand
physico/chemical phenomena taking place both at microscopic scales invisible to
our eyes and at intergalactic distance in our universe; they code, guide, warn, and
help us in many aspects of our everyday lives, and they are also capable to stimulate
our minds, provoke emotions, and move our souls through the plastic arts.

For biologists it has become clear that the analysis of the mechanisms of
coloration, their functions, and evolution can only be studied in an integrative
way if one is to fully understand the amazing color displays in many species.
In particular, birds are animals capable of communicating though coloration, and
the analysis of bird coloration in recent times has refocused some of its efforts to
this comprehensive approach. We refer to the two volumes [11] for an extensive
account of some of the state of the art in the subject.

Mathematics could not be absent in the explanation of the phenomena of
coloration. It is not only present as the universal language of science, but also,
through the powerful lenses of Fourier analysis, it provides new explanations
and understanding of certain forms of colorations. In this expository note, we
will describe some of the developments in which we have been involved in
our interdisciplinary collaborations in [19-27]. We will illustrate how Fourier
analysis naturally appears in the theoretical formulation of mechanisms of structural
coloration through coherent scattering. We will concentrate here on aspects of the
coloration of the skin of birds, but the same tools and techniques apply to the study
of feathers and other tissues of living organisms.

1.1 Bird Coloration

Both chemical pigments and the physical aspects of the wavelike behavior of
light are responsible for the coloration of birds. Pigments have the property of
absorbing and emitting selective wavelengths of the ambient light. The resulting
colors are determined by the molecular structure of the pigments. Such pigments
may be synthesized by the birds themselves or acquired by the birds through their
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diet. By removing the pigmentary substance from the tissues the colors disappear,
verifying that the pigments are the cause of the coloration. A typical example of
pigmentary coloration is provided by flamingos, whose recognizable pink color
tends to fade out in captivity through a modification of their diet from the one they
have in the wild. Likewise, the black or brown colors of the feathers of a crow or a
robin are produced by melanin pigments synthesized by the animal, just as in human
black or red hair.

Unlike pigmentary colors (usually yellows, oranges, reds, browns, and blacks)
structurally produced colors in avian tissues (often blues and greens) are the result
of the physical interaction of light with optical heterogeneities of the tissues.
Incoherent Rayleigh scattering has been erroneously assumed to be responsible for
the observed non-pigmentary colors of many birds. Rayleigh (or Tyndall) scattering
occurs when small, light-scattering objects are randomly distributed without a
spatial pattern in the path of the light. Small objects will preferentially scatter
smaller wavelengths, giving rise to a bluish or violet color. This mechanism is the
explanation for the color of the blue sky. According to this conception of biological
structural color, small melanin granules present in the feathers or skin of bird tissues
will reflect back short waves, such as violet and blue, but will let pass through
longer waves such as red and yellow. The physical and biological literature in the
subject can be found in the classical works [10,13,15,35]. A key feature of Rayleigh
scattering is that it lacks iridescence or color change with angle of observation, so
it was originally applied to all the biological examples of structural color that lack
iridescence. Nevertheless, the Rayleigh scattering hypothesis was never supported
by spectrophotometric data or microscopic observation of the tissues.

The Rayleigh hypothesis was questioned by Raman [28] in the thirties, but
his speculations that color in a certain bird from southern India was produced by
constructive interference were dismissed because of the lack of crystalline structure
of the bird tissue; see [17]. Dyck [6, 7] in the 1970s was the first to document
that the reflectance spectrum of many bird feathers presents a clear peak within
the visible spectrum matching the color observed. This is in contradiction with the
continuous increase of energy distribution in the direction of the ultraviolet (UV)
part of the spectrum that Rayleigh scattering would produce. It was not until the
turn of the century that a new explanation for non-iridescent coloration in many
animal tissues emerged. The more recent research has established that most greens,
blues, and violets observed in birds are in fact structural colors produced by coherent
scattering.

1.2 Fourier Analysis Comes in to the Picture

The new explanations about coloration involve Fourier analysis and follow a model
by Benedek [1]. The first use of these techniques was our study of the blue feather
barbs of a South American bird called the Plum-throated Coating, Cotinga maynana
(Cotingidae) [22]. The intense blue color of the cotinga is produced by closely
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packed spherical air bubbles in the protein of the feathers. This was followed by
numerous other works in the study of many other types of structurally colored
tissues. The tissues that have been analyzed by now present a big diversity of nano-
structures at scales comparable to the wavelengths of visible light. A certain order
or periodicity in these structures permits a predictable phase relationship between
the light waves scattered and the coherent scattering of certain reinforced specific
wavelengths.

Traditionally, the classification of the color-producing structural tissues has
been based on the particular physical model used to explain idealized perfectly
periodic structures similar to the ones in nature. Nanomaterials may be periodic
(or crystalline) in one, two, or three dimensions. These highly periodic materials
produce iridescent colors which change in hue with the angle of observation, as
typically seen in hummingbirds or peacocks. However, quasi-ordered materials lack
periodicity at longer spatial scales, but are still substantially ordered at local spatial
scales. There were no traditional physical methods for analysis of constructive
interference by materials with only local order, which led to the application of
Fourier analysis to the problem.

In our approach we use Fourier analysis to study the geometric nanostructure
of 2D transmission electron microscope images of these color-producing tissues.
This gives as a frequency content analysis of the images that we use to produce a
prediction or modeling of the coherent scattering behavior of the tissue. We also
compare these predictions with the reflectance spectrum of the colorful tissues
measured with a spectrophotometer. The reflectance spectrum gives the relative
intensity of energy at different bandwidths within the visible spectrum.

The use of Fourier analysis in the study of structured materials has a long history.
For example, the structure of crystals and quasicrystals can be studied by looking
at the diffraction patterns obtained when a crystalline material is illuminated with
X-rays. Mathematically, this essentially accounts for the analysis of the Fourier
transform of the characteristic function of the crystal or the density of mass function.
We refer the reader to the book [29] for a very nice introduction to the subject.

Some of the patterns obtained in crystallography can be explained by Bragg’s
law, named after the only father-son team of Nobel laureates. They were the first
to describe the phenomena of X-ray diffraction by crystals [2]. In very ordered
materials two parallel incident electromagnetic waves will bounce from scatterers
in the material and arrive at a distant observer with a lag in phase produced by the
different distances traveled (path addition). This difference in phase produces the
reinforcement of certain waves with appropriate wave numbers and the cancelation
of others. For this to happen, the wavelengths and the physical distances defining
the ordered structures in the material have to be of comparable size. Simple
trigonometry shows that for light incident at an angle 6 onto parallel atomic planes
separated by a distance d, the first peak of diffraction takes place for wavelengths A
given by Bragg’s law:

A = 2dsinf. (D)
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It is important to note that (1) relates a physical dimension of the illuminated
material with the wavelength of the light.

For very short X-ray waves with wavelengths of the order of 10™'%n Bragg’s
effect takes place at the atomic level. Diffraction photographs of crystals produced
very ordered patterns proving the existence of a very particular arrangement of the
atoms in the material. In crystallography one has to deal with an inverse problem.
The structure of a crystal, or at least its symmetries, is to be determined by looking
at the crystal spectrum, i.e., the patterns in their Fourier transforms.

In biological tissues, structural color production takes place at a much larger
spatial scale than the inter atomic distance in crystals. Nevertheless, the situation is
similar to Bragg’s law. As expressed by Benedek in [1], it is a general principle that

“...light is scattered only by those fluctuations in the index of refraction whose
wavelengths are larger than one-half of the wavelength of the light in the
medium.”

The structure in the material originating those fluctuations can clearly be
observed in electronic microscope images of the tissues, and their Fourier spectrum
can be computed and related to the spectral measurements made with a spectropho-
tometer. Essentially, the predominant spatial periodicity of the tissues, as quantified
by the Fourier transform, gives a prediction of the wavelengths of light scattered the
most. The direct problem of computing the Fourier transform is simpler than the
inverse problem of crystallography and can be carried out numerically using the fast
Fourier transform (FFT). (But this truth has interesting biological implications, i.e.,
there are multiple biological nanostructures that can make the same color!)

1.3 More About Color

In describing colors and forms of coloration it is convenient to recall the difference
between the production of color by addition or subtraction, which sometimes
produces some confusions. Coloration by addition is the result of the combination
of light of different wavelengths. For example, the superposition of red and blue
lights over a white screen produces the so-called color magenta. If one adds light
of its complementary color, green, one obtains white light. On the other hand, the
coloration produced in the presence of pigments is due to color subtraction. The
color attributed to a pigment, the one observed, is the one complementary to the one
absorbed. For example, if we mix a green pigment (one that absorbs blue and red)
with a magenta one (one that absorbs green) the result is black.

It is important also to recall that the visible spectrum of humans ranges
approximately between 400 nm and 700 nm. Our optical systems posses three color
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receptors most sensible to different sets of wavelengths around the red, green, and
blue colors. It is the combined excitation of these receptors together with the amount
of luminosity and ambient light conditions that determines the final interpretation of
colors that our brain makes of certain electromagnetic waves. The colors observed
in birds due to coherent scattering result from the constructive superposition of
the wavelengths scattered the most. In the study of the resulting hues observed
and measured by spectrophotometry, the rules of coloration by addition take place.
However, unlike our ears, which let our brain distinguish between each individual
note played as part of a cord, our visual system only interprets the final result of the
superposition of light of different wavelengths. That is, the same perceived color
can be created by addition in different ways.

It is interesting to note that birds have a broader visible spectrum with a fourth
receptor and are able to see into the UV (320-400nm) part of the electromagnetic
spectrum [11]. It is perhaps impossible for us to image how do the colors seen
by birds actually look like to them because of this ability to see UV ones, but
we can still study the full spectral content of the signals. This detailed spectrum,
undetected by our eyes but measurable by a spectrophotometer and predicted by our
Fourier analysis, is what helps us explain the physical mechanisms taking place in
the production of the color.

In the rest of this expository article we chose to describe some of the physical and
mathematical models employed in the description of structural colors in the skin of
some birds. The same models apply to feathers and other living tissues. We refer to
the already cited literature for more technical details. This note also overlap in part
with a more elementary exposition translated into Spanish presented in [32].

2 A Physical Model for Coherent Scattering

To explain how Fourier methods can be used to predict the color produced, we
based our analysis on some of the work in [1, 33, 34] and the references therein.
A mathematical and physical explanation of the transparency of the human cornea
(a biological tissues similar in structure to the wattles of some birds), as well as
the reasons of its turbidity due to swollen pathological abnormalities, was given
by Benedek in [1]. The cornea is made of long and thin parallel collagen fibers
immersed in a ground substance of mucopolysaccharide. A cross section of a bundle
of such fibers looks very much like the cross section of the tissues of some birds,
though at a smaller scale. According to Benedek, Maurice [14] was one of the
first researchers to realize that, to explain the transparency of the cornea, it was
important to understand the relationship among the phases of waves scattered by
each of the fibers in the tissue. Maurice first speculated that the fibers should be
equal in diameter and have their longitudinal axis centered on the points in a perfect
lattice. Maurice thought the absence of the perfect crystalline periodicity in electron
micrographs of the cornea was an experimental artifact, but soon it was realized
that the corneal collagen fibers were not arranged in a perfect crystal lattice which
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required a new theoretical explanation. A series of experimental, numerical, and
theoretical works culminated then with Benedek’s explanation that a perfect lattice
arrangement is not necessary. Again, fluctuations in the index of refraction whose
wavelength are equal to or larger than one-half the wavelength in the medium of an
incident light are responsible for most of the coherently scattered light. In the case
of the cornea these fluctuations from the fibers to the ground substance in which
they are immersed are of very small physical dimensions and produce most of the
scattered energy at very small wavelengths [33]. Wavelengths in the visible part of
the spectrum are then almost completely transmitted, giving the transparency of the
cornea.

The fibers in the tissue can be modeled as very long and thin cylinders or
rather needles. Benedek described the propagation of a scattered electromagnetic
field in the plane perpendicular to these fibers. Because of the particular geometric
arrangement, further physical considerations imply that most of the scattered
field by each fiber propagates only in this plane, and a two-dimensional analysis
is a reasonable approximation to the physical situation. A brief and simplified
description to illustrate the arguments in [1] is as follows. To model the situation,
imagine then a distribution of point masses M at positions x; in the plane and an
incident light wave

E(x,t) = Egekox=en, @)

where the two-dimensional wave vector kg has length
kol = 27n/A, 3)

n is the mean index of refraction, A is the wavelength of the incident beam, and w is
the angular time frequency of the incident light. The incident electric field induces
oscillating dipoles in the medium which in turn irradiate new electric fields in every
direction, and also part of the field is transmitted. The scattered field at a particular
position in the plane is determined by the superposition of all the individual scattered
fields. The rays emanating from different fibers travel different distances to a given
fixed point. Moreover, the oscillations induced by the incident field at the different
positions R; take place at different times producing also a retardation in time.
Appropriately using this time delay and path addition, the field scattered by M at
a position R in the direction given by the vector kg, with |kg| = |ko| and forming
an angle 6 with the incident wave, is computed in [1] to be

E] — Eoei(k()R—a)f)e—ika . (4)
Here k = ko — kg is called the scattering vector and
. dmn

|k| = 2|ko|sin(8/2) = - sin(6/2). (5)

Or, in terms of wavelengths, we have that
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A = 2nAg sin(6/2), (6)
where )
4]
A = —. 7
STY @

The total scattered field is then given by

ET — Eoei(koR—a)l‘) Z e—ikxj' . (8)
J

Note that, formally using delta distributions and the Fourier transform, the last factor
in (8) is the interference function which can be seen as a Fourier transform

1) =Y 8, (k) = (£;8:)(k) = f (k). ©)
J
and where
f=> 5 (10)
J

can be viewed as a density distribution of mass.

The intensity of the scattered light is proportional to the square of the scattered
electric field. Thus, as argued by Benedek, the intensity will be large for those
spacial frequencies k so that

(k)2 = |f (k)2 (11)

is large. For example, when we measure backward scattering (that is the one back
to a distant observer) which correspond 6 = , the scattering will be very intense
if f has a large Fourier component with wavelength

Ak =A/(2n), 12)

i.e., half the wavelength of the wavelength in the medium of the incident light.
This is a restatement of Bragg’s law in this context, which permits again to relate
the wavelength of the constructively reinforced scattered light with a physical
dimension in the material.

Like with crystals or quasicrystals, if the density function f is very ordered,
then the Fourier transform f will show clear peaks at certain frequencies. Loosely
speaking (see [29]), a quasicrlstal can be defined to be a countable set A such that
there exits another (dual) set A, with the property that

(m) = Zy,- 0y, + “small continuous spectrum.” (13)



Fourier Blues 409

When computed numerically the size of the Fourier transform of a quasicrys-
tal reveals very high values at the (approximate) positions in the set A with the
continuously distributed spectrum as a background noise.

The physical description we gave above is only an approximation of the real
situation. In the case of many tissue we no longer have very thin needles or even
fibers. The density f in Benedek’s theory is then replaced by the fluctuations
in density from an average value. We refer again the reader to [1]. The density
function f can be seen in the electronic microscope observations of the tissues. The
predominant components in the Fourier transform of the density function are what
we still claim determine to some extend and via (12) the hue and the distribution of
energy observed in the spectrophotometer.

In tissues that lack a perfect crystal structure, the observed peaks will not
necessarily be on a lattice, but they will still occur around a certain characteristic
frequency within the visible spectrum. To determine theoretically the exact position
of such peaks would require a precise knowledge of the dimensions and arrange-
ments of the fibers. Because of the diversity of tissues and variations in specimens
making assumptions about the exact diameter and position of fibers is too rigid to
model many real-life situations, and we perform instead a numerical calculation
of the Fourier transform. It is not possible to characterize all functions which will
produce a noticeable peak in their spectra within a certain bandwidth. We are only
interested in a particular scale that affects the distribution of energy of the scattered
light in the visible part of the spectrum. What we want to corroborate is that the
numerous tissues examined do posses the necessary order to produce such peaks.

3 Fourier Analysis of Nano-Structured Tissues and Color
Prediction

We illustrate this application of Fourier analysis with some results already in the
literature. Our first study on bird’s skin was from the brilliantly colored patches
around and above the eyes of a small group of perching birds from Madagascar—
the asities (Eurylaimidae, Aves)—shown in Fig. 1 which we reproduce from [23].
As described in [23] the asities are a group of suboscine perching fruit and nectar-
feeding birds endemic to the tropical forests of Madagascar. Adult males of the
asities have brilliantly colored, sexually dimorphic facial skin during the breeding
season. The colorful patches of facial skin play an important role in inter-sexual
communication and mate choice of these birds.

The caruncles in the dermis of these tissues (Fig. 1b) are composed of numerous
bundles of macrofibrils arrays of long parallel collagen fibers of similar diameters
and separated by a mucopolysaccharide matrix. At large scales, the macrofibrils
have little apparent order and run through the tissue in different directions. However,
cross sections at 10k—50k magnification of any macrofibril reveal the circular shape
of the cross sections of the parallel collagen fibers and their uniform distribution.
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Fig. 1 Blue and green facial caruncles of asities. (a) Phileipitta castanea. (b) Close-up of the
supraorbital caruncles of Phileipitta castanea. Scale bar approximately 500 um. (¢) Neodrepanis
coruscans. (d) Neodrepanis hypoxantha

Figure 2 (also reproduced from [23]) shows a cross section of the collagen fibers
of a typical tissue and the corresponding (modulus square of the) FFT of the image.
The fibers show small variations in their diameters and center- to- center distances.
The fibers in this image are not arranged in a crystal-like array, and the Fourier
transforms shows certain concentric ring structures and have a radial-like symmetry
(although it obviously cannot be perfectly radially symmetric). The intensity of the
rings decreases as we move away from the origin on the Fourier transform domain.
Intuitively the images can be thought as being made up of certain predominant
periodicities of a particular length in every direction. The location of peaks in the
side of the Fourier transform indicates that the fluctuations in the density function
are rather homogeneous and similar in all directions in the tissues at least at a
particular small scale. This is clearly observed in the images of the tissues. We
call this arrangements in the tissue a quasi-order. The distance between nearest
neighboring fibers does not change much from place to place, though there is very
little correlation among fibers that are further away.

A big diversity of tissues and their corresponding FFTs can be seen in Figs.3
and 4 below. They are from a larger study of many other birds that we carried out
in [20]. Interestingly, some tissues analyzed do present an almost perfectly periodic
structure which is clearly present too in the FFT of the images of the tissues. Note,
for example, the image of tissue from Philepitta castanea (bird photo in Fig. 1a),
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Fig. 2 Typical transmission electron micrograph of a cross section of an array of collagen fibers
from the caruncle tissues. Scale bar approximately 200 nm. The colors map from blue to red
indicate the magnitude of the squared Fourier components. Blur indicates small values and red
high ones

which is given in Fig. 3i, and its FFT given in Fig. 4f. (For photos of the other birds
mentioned in the figures please see [20].)

What is observed in the FFT images can be explained as follows: The radially
decay of intensity is determined, in part, by the fact that the fibers are not needles
whose cross sections are determined by delta masses at certain points but rather have
approximately circular cross sections of a certain radius R. Though the physical
problem is different, the mathematical problem of computing the Fourier transform
of such collection of circles (or rather the characteristic function of the cross
section) is equivalent to determine the Franunhofer diffraction patterns produced
by a number of circular apertures of similar size.

Let By be a circle of radius R centered at the origin in two-dimensional
Euclideian space and let yp, be its characteristic function. Let B; be the circle
with same radius but with center translated to the point x; and let xp; be the
corresponding characteristic function. The Fourier transform of a the images of the
tissue is then the Fourier transform of the characteristic function of a collection
of circles {B; }?’ZO. Using the properties of the Fourier transform this is easily
computed to be

SN o1, (V) = 18, (¥) 08y, (14)

Therefore, the Fourier transform is determined by the product of two factors. One is
determined by the shape of the aperture, while the other is determined only by the
position of them. For a circle, the first factor is a radially decaying or damped wave.
The sum of deltas in (14) is part of what is sometimes called a Dirac comb. For
appropriate distribution of the deltas, the modulus square of the Fourier transform
of them presents very high peaks (almost new deltas) at a particular position.



412 R.O. Prum and R.H. Torres

Fig. 3 Transmission electron micrographs of nano-structured arrays of dermal collagen from
several species of birds of different colors. (a) Oxyura jamaicensis, light blue; (b) Numida
meleagris, dark blue; (c) Tragopan satyra, dark blue; (d) Tragopan caboti, dark blue; (e) Tragopan
caboti, light blue; (f) Tragopan caboti, orange; (g) Syrigma sibilatrix, blue; (h) Ramphastos toco,
dark blue; (i) Philepitta castanea, light blue; (j) Gymnopithys leucapsis, light blue; (K) Procnias
nudicollis, green; and (1) Terpsiphone mutata, dark blue. All scale bars represent 200 nm
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Fig. 4 Two-dimensional FFT spectra of transmission electron micrographs of nano-structured
collagen arrays from the tissues of different birds. (a) Dromaius novaehollandiae, blue; (b)
Tragopan satyra, dark blue; (¢) Pilherodius pileatus, light blue; (d) Coua reynaudii, dark blue; (e)
Ramphastos toco, dark blue; (f) Philepitta castanea, light blue; (g) Gymnopithys leucapsis, light
blue; (h) Procnias nudicollis, green; and (i) Dyaphorophyia concreta, yellow green. The colors
from blue to red indicate the magnitude of the squared Fourier components

For example, if we consider an infinite dimensional lattice of points in two
dimensions generated by linear combinations with integer coefficients of two
linearly independent vectors v; and v,, then the Fourier transform of the sum of
the deltas at the points of the lattice is a sum of deltas at a dual lattice. This fact is
just a restatement of Poisson summation formula. See, for example, [29] or [3]. The
dual lattice is generated by the vectors u; and u» satisfying uy - v; = Jy;, where
now Jy; is the Kronecker delta, §;x = 0if j # kandd;; = 1.If A = (v1,v)
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is the matrix of the linear transformation that maps the standard square lattice onto
the lattice generated by v; and v, then (A™")* = (u;,u,), where * denotes the
transposed of a matrix. See again [29] and [3] for details.

If we consider instead a finite portion of an infinite lattice and compute its Fourier
transform, one observes distinct peaks at the points of the dual lattice rather than
deltas, but an echo, as called in [29], or a finite size effect is observed as a variation
in intensity. The location of the peaks is not affected much by this echo, but the
height and width of the peaks are. In particular, the height is determined by the
number of points in the finite region of the lattice analyzed and, hence, in our case,
the physical length of the image of the tissue. In a perfect lattice as the number of
points increases to infinity the Fourier transform converges locally around the peaks
to delta distributions. However, when analyzing biological tissues, the finite effect
should not be completely disregarded because the tissues do have specific finite
dimension.

In the quasi-ordered tissue a precise mathematical description is harder to state.
Except for the local order extended to the next neighboring fibers, the tissues have
no order that can be analytically quantified in an obvious way. To quantify such
order or (lack of it) we compute the Fourier transform numerically. Intuitively, the
lack of order at larger distances makes the predominant frequencies to be mostly
associated to the nearest-neighbored order, and the quasi-homogeneity of the tissues
(the tissues look the same in any orientation) makes the peaks in the side of the
Fourier transforms to be uniformly distributed in a ring at particular frequencies.
The peak at the origin of the Fourier transform corresponds to the transmitted energy
of the incident field that is not scattered. The first peak outside the origin occurs at
a frequency determined in part by the average distance from the center of a fiber to
the center of the nearest one and the size of the fibers and the overall arrangement,
and represents the main physical periodicity in the tissue.

Using Benedek’s theory we can try to use the Fourier transforms of the images
of the tissues to give some prediction of the dimensions of the spatial variation
in refractive index and hence the predominant wavelengths to be constructively
scattered. The refractive indices of the collagen and the mucopolysaccharide are
known (approximately 1.55 and 1.35, respectively). With these indexes of refraction
and the density function as observed in the electronic microscope image, the
average refractive index used can be estimated numerically from the micrographs
(by looking at regions of black and white). Using the peaks observed in the FFT
of the image of the tissue, one can predict the wavelength of the predominant color
observed using the formula (12). For backward scattering, wavelengths of about
twice the spatial periodicity measured by the FFT will be scattered the most.

It is not only the peaks in the Fourier transform what matters in the model but also
the general distribution of energy. In order to exploit further information encoded
in the Fourier transform of the images, we want to make some kind of comparison
of the distribution of energy of our predictions with the actual spectrophotometer
measurements. As mentioned in the introduction colors can be made up in different
ways, but the whole spectral distribution helps falsify the Rayleigh hypothesis.
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For the comparison, we first need to have a one-dimensional distribution of
energy as the one given by the spectrophotometer. One can think of several ways
to do this. One is, for example, to select an arbitrary radial direction. A similar
approach to this was carried out by Vaezy et al. [33, 34]. However, the radial
symmetry of the Fourier transform of the quasi-ordered tissues suggests that
we consider instead a different analysis. For the comparison we want to further
accentuate the radial symmetry, and hence we replace |?|2 by its average on small
concentric rings. Though artificially imposed, this radial (or azimuthal) average
certainly reflects the ringlike structure observed in the images of the Fourier
transform of the quasi-ordered tissue. To obtain a one-dimensional distribution of
energy we use the radial average distribution to compute the total energy in each
frequency band. We normalize the total energy or Fourier power (the L? norm of the
Fourier transform) to be one over the visible part of the spectrum. Finally we plotted
the amount of energy on a certain bandwidth as a percentage of the total energy and
compare it with the spectrophotometer measurements (reflectance spectrum).

Figure5 reproduced from [20] shows the comparisons between the actual
reflectance spectrum measured with a spectrophotometer and our predictions using
the radial average FFT. These were done for several tissues whose images appear
in Fig. 3 and whose FFT are given in Fig. 4. See also [20, 23] for further technical
details.

We observe that the resulting general profile of distribution of relative energy is
similar to the one obtained by spectrophotometry. The quantitative discrepancy in
the actual numerical computation is not surprising given the many elements involved
in the collection and preparation of the specimens that could slightly modify
their structure and the numerous approximations and analytical simplifications we
have made, both physically and mathematically. The qualitative similitudes in the
observed and predicted spectrum (both in terms of locations of peaks and general
shape) are, on the other hand, quite noticeable and are a reasonable experimental
corroboration of the validity of the physical model used. It is evident that only
certain wavelengths are coherently scattered, and their range of values (and hence
the colors observed) are determined by the physical periodicities in the tissues.

4 Lack of Iridescence and Other Works that Followed

Our experiments also clearly put in evidence that the color is not produced by
Rayleigh scattering (which would produce for spectrum a ramp toward the UV).
Our analysis based on the existing theory by Benedek was the first to provide an
alternative explanation for the phenomena. Further, the general radial symmetry of
the Fourier transform of the quasi-ordered tissues explains why these tissues are
not highly iridescent: the spatial frequency of variation in refractive index remains
similar in all directions within the quasi-ordered tissues and thus produces a uniform
hue for backward scattering of light independent of the angle of incidence. (See
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Fig. 5 Comparisons of reflectance spectra (blue) measured with a spectrophotometer and the
Fourier-predicted spectra (orange) for samples of tissues from different birds. (a) Lophophorus
impejanus, dark blue; (b) Tragopan temminckii, dark blue; (¢) Tragopan temminckii, light blue;
(d) Tragopan caboti, orange; () Syrigma sibilatrix, light blue; (f) Coua caerulea, dark blue; (g)
Ramphastos toco, dark blue; (h) Selenidera culik, green; and (i) Dyaphorophyia concreta, yellow-
green. The reflectance spectra are reported as a percentage reflectance (blue, left axis), and the
predicted spectra are reported as a percentage of Fourier power (orange, right axis)

Noh et al. [17] for a rigorous demonstration of this fact.) Interestingly, it was this
feature of coherent scattering from quasi-ordered materials that originally led to the
confusion with Rayleigh scattering. Researchers in the field traditionally conceived
of only two alternative sorts of order: complete crystalline periodicity or complete
random distribution of particles. Within this framework, iridescent structural colors
were associated with the interference from crystalline materials, and non-iridescent
colors were associated with Rayleigh scattering from random distributions. The
possibility of order only at the local scale and its optical consequences were not
considered.

In very ordered materials to perform the radial average is, perhaps, not fully
justified, but the relative intensity of the peaks is so large that we still get a good
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match with the measured reflectance spectrum, see again [23]. In fact, the color of
the extremely ordered tissues is more brilliant and pure tone than those in some of
the quasi-ordered ones. A natural question to ask at this point is why then the very
ordered tissues are non-iridescent. The answer lays again in the more complicated
structure of the tissue at other larger scales and which is hard to incorporate in our
first analysis. As mentioned before, the tissue is made of several layers of fibers in
different directions and, as explained in [1], the total scattered field is some average
field made from the contributions of all the layers. The lack of organization of the
different layers has a similar effect to what is already observed in the quasi-ordered
tissue. Though within an array of parallel fibers running in a particular direction we
have an almost perfect hexagonal lattice, the same lattice in another set of parallel
fibers may appear rotated by an arbitrary angle. The total intensity then will have a
substantially uniform peak in its frequency content in a dense distribution of angles
around the origin. An average effect is still what we observe or measure with the
spectrophotometer. In other words, if all the cross section of parallel arrays of fibers
would have the same orientation for the observed hexagonal lattice, the tissues
would be iridescent. But, as we just explained, this is not the case. For comparison,
we mention again hummingbirds, whose structurally color tissues have an almost
perfect parallel laminar morphology resembling thin parallel films, and hence they
do produce iridescent coloration according to Bragg’s law.

Blue, green, and violets produced by coherent scattering have been documented
by now by our methods. One could speculate that warmer colors are harder to
produce by constructive interference since they would require a spatial order at a
larger scale, which is perhaps too difficult to achieve in a biological tissue that
needs to keeps such order as it grows. Otherwise, it may be that rarity of blue or
green pigments prevents animals from making pigmentary blues or greens, but that
the availability of long wavelength pigments favors those outcomes.

We have also analyzed feather barbs which look black to human eyes but possess
vivid UV peaks (approximately 350 nm) that are not visible to humans but are easily
perceived by birds. See [25]. In feathers the periodicities in the tissues take place in
three dimensions and are provided by a distribution of air bubbles inside the tissues.

The methods have also been applied with similar results to the study of coloration
in primates [21], butterflies [27], and dragonflies [26]. In addition, the Fourier
method has been applied by Shawkey et al. [30] to a three-dimensional bird feather
data set that was acquired by electron tomography. The empirical result provided
some advance over 2D Fourier analysis of electron micrographs when dealing with
3D arrangements, but it still had inaccuracies due to systemic distortions in the 3D
tomographic reconstruction.

The works mentioned above were some of the first approaches to the under-
standing of so many diverse structurally colored biological tissues. Since then many
other works have appeared in the literature. The results using the relative simple
model of Benedek have been by now corroborated with other more comprehensive
techniques and experimentation. In particular, Prum and a multidisciplinary team at
Yale University have recently employed in their studies small-angle X-ray scattering
(SAXS) carried out at the Argonne National Labs. These studies hope to improve



418 R.O. Prum and R.H. Torres

upon the empirical limitations of Fourier transforms of electron micrographs by
direct measurement of the Fourier transform of electron density variations in these
nanostructures. See the works [4,5,12] for technical details and further explanations.

In our original analysis unidirectional light was assumed, and we were concerned
only with backward scattering. A more delicate analysis and experimentation using
omni-directional lighting in the quasi-ordered structures of birds feathers was
recently carried out in [17] using SAXS. It was shown in [17] that in fact, under
directional light, the scattering peak occurs in the backward direction. Moreover the
authors in [17] also showed that under omni-directional lighting the colors observed
remain unchanged with the angle of observation. See the cited reference for further
information.

Likewise, our original analyses only concerned single scattering, i.e., interactions
of photons that were each scattered only a single time by the scattering objects. But
it became apparent that some inaccuracies in experimental comparisons of Fourier
predicted and measured reflectance spectra were the result of multiple scattering:
i.e., interactions among photons scattered two or more times by the nanostructures.
This led to new physical theory and tests on double scattering by quasi-ordered
nanostructures [16, 18]. These works show that multiple scattering by quasi-ordered
nanostructures produces new optical phenomena (e.g., double-peaked reflectance
spectra) that were not anticipated in traditional optics. Although they require a new
experimental method, the new X-ray scattering studies demonstrate the fundamental
relevance and accuracy of the Fourier transform to the analysis of this optical
phenomenon in nature.

The study of nature made structured tissues also relates to the study of photonic
materials. A lot of activity in this area has taken place as groups of researchers try
to fabricate photonic crystals and understand their properties. See [8] for references.
In addition the tissues we studied have resemblances and similar physical properties
to hyperuniform systems as studied, for example, by Torquato and Sillinger in [31].
These systems are theoretical arrangements of distribution of points that produce
complete band gaps at low frequencies. The understanding of the fluctuation of
density in materials and their scattering and transmitting properties will certainly
continue to be an intense area of research in the immediate future. It is interesting
to see how such materials are already present in biological tissues and are used in
nature for a variety of purposes.

S Summary

We wanted to illustrate here how Fourier analysis and numerical experiment with
numerous tissues sustain the claim that quasi-ordered systems can produce non-
iridescent structural colors by coherent scattering. Such color production occurs
when only some wavelengths of visible light are selectively reinforced. The Fourier
transform becomes an ideal analytical tool because it is a mathematical analog of the
actual physical process of light interacting with the optically heterogeneous tissues.



Fourier Blues 419

The application presented renewed our appreciation of the ability of the Fourier
transform to codify order or the lack of it, which makes Fourier analysis a very
valuable tool for studies in material sciences.

Lastly, we find the use of Fourier analysis in biological questions addressing
physical phenomena that affect communication and behavior in animals rather
thought-provoking. We marvel at this beautiful manifestation of Fourier analysis
in nature and the role it may play in sexual selection in many bird species. In fact,
the animals’ sexual preference for a specific color is not really based on the physical
reason for the coloration, which is the collagen fiber order at invisible nano-scales.
Instead, preference is based on the observable features of the reflectance spectrum
resulting from such order. We can say that, essentially, preference is based on the
Fourier transform of the invisible structures!

As it is well-known, Fourier introduced his groundbreaking analysis of the heat
equation (by now called Fourier analysis) in his famous Analytic theory of heat [9].
We have mentioned in other occasions (e.g., [32]) a favorite quote from his work,
which we want to repeat here one more time:

“...1if the order which is established in this phenomena could be grasped by
our senses, it would produce in as an impression comparable to the sensation
of musical sound.”

With this quote in mind, we would like to conclude by pointing out that the order
in the nanostructures of the biological tissues studied can indeed be perceived by
our senses as vivid colors, and these colors can certainly be as aesthetically pleasing
to the observer as the sensation of musical sound referred to in Fourier’s words.
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A Harmonic Analysis View on Neuroscience
Imaging

Paul Hernandez—Herrera, David Jiménez, Ioannis A. Kakadiaris, Andreas
Koutsogiannis, Demetrio Labate, Fernanda Laezza, and Manos Papadakis

Abstract After highlighting some of the current trends in neuroscience imaging,
this work studies the approximation errors due to varying directional aliasing,
arising when 2D or 3D images are subjected to the action of orthogonal transfor-
mations. Such errors are common in 3D images of neurons acquired by confocal
microscopes. We also present an algorithm for the construction of synthetic data
(computational phantoms) for the validation of algorithms for the morphological
reconstruction of neurons. Our approach delivers synthetic data that have a very
high degree of fidelity with respect to their ground-truth specifications.

Keywords Synthetic tubular data ¢ Synthetic dendrites ¢ Directional aliasing
* Approximation error * Dendritic arbor segmentation * Confocal microscopy

1 Overture

What is the substance of knowledge and memory? These fundamental questions
have been at the center of philosophical debate for over three millennia, but only
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during the last fifty years our understanding of these essential human cognitive
functions is finally becoming concrete. The quest for answers takes us back to the
philosopher Plato (424/423 BC-348/347 BC) who, in the dialogue “Theaetetus,”
written circa 360 BC when Athens’ glory was in decline amidst the Peloponnesian
war, attempts to define knowledge from a philosophical viewpoint. In the dialogue,
Euclid (not the famous geometer from Alexandria) recounts a discussion between
Socrates and Theaetetus aiming to discover the nature of knowledge. Around the
middle of their conversation Socrates refers to knowledge as being a series of
“engrams”, impressions on the “wax of the soul”:

Socrates: And the origin of truth and error is as follows: When the wax in the
soul of any one is deep and abundant, and smooth and perfectly tempered, then
the impressions which pass through the senses and sink into the heart of the soul,
as Homer says in a parable, meaning to indicate the likeness of the soul to wax
(knpog); these, I say, being pure and clear, and having a sufficient depth of wax,
are also lasting, and minds, such as these, easily learn and easily retain, and are
not liable to confusion, but have true thoughts, for they have plenty of room, and
having clear impressions of things, as we term them, quickly distribute them into
their proper places on the block. And such men are called wise. Do you agree?

Theaetetus : Entirely.

Socrates: But when the heart of any one is shaggy a quality which the all-wise
poet commends, or muddy and of impure wax, or very soft, or very hard, then there
is a corresponding defect in the mind the soft are good at learning, but apt to forget;
and the hard are the reverse; the shaggy and rugged and gritty, or those who have
an admixture of earth or dung in their composition, have the impressions indistinct,
as also the hard, for there is no depth in them; and the soft too are indistinct, for
their impressions are easily confused and effaced. Yet greater is the indistinctness
when they are all jostled together in a little soul, which has no room. These are the
natures which have false opinion; for when they see or hear or think of anything,
they are slow in assigning the right objects to the right impressions in their stupidity
they confuse them, and are apt to see and hear and think amiss and such men are
said to be deceived in their knowledge of objects, and ignorant.

Theaetetus: No man, Socrates, can say anything truer than that.!

With the “wax of the soul” theory, Greek philosophers anticipated the im-
pressively modern concept of the human brain and its plastic neuronal network
connections as the site of memory engrams formation and knowledge retention
[21,22]. Despite the impressive advances of modern science, however, our journey
towards the comprehension of the physical nature of the “wax of the soul” and of
the memory engrams is still at the “end of the beginning”. We are optimistic that
through interdisciplinary, collective scientific efforts, this mystery will be finally
unlocked.

!Translated by Benjamin Jowett [27].
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1.1 Outline

This article is organized as follows. In Sect.2, we provide a brief historical
overview of neuroscience and describe the challenges and opportunities opened up
by the recent advances in microscopy. In particular, we discuss the significance of
developing computational tools for the morphological reconstruction of neurons.
Next, in Sect.3, we give an overview of the algorithms currently available for
the segmentation and morphological reconstruction of neurons, including a brief
account of online reconstruction and functional imaging of neurons (ORION), a
suite of algorithms and software developed by some of the authors of this paper
which provides semiautomatic segmentation and morphological reconstruction of
dendritic arbors in neurons. In Sect. 4 we examine the aliasing errors arising when
images are subjected to the action of orthogonal transformations. Such errors are
common in 3D images of neurons acquired by confocal microscopes. The action of
those orthogonal transformations modifies the frequency content of images during
the conversion of an image from analog to digital as the high-frequency content may
be enhanced or attenuated solely due to the action of an orthogonal transformation.
We also provide error estimates and sufficient conditions for the sampling kernels
guaranteeing that these reconstruction error estimates are not affected by the action
of a group of orthogonal transformations. Finally, in Sect. 5, we use the results of
Sect. 4 to develop an algorithm for the construction of highly accurate phantoms
of tubular 3D structures which are useful to model realistic phantoms of dendritic
arbors of arbitrary topological complexity and can be used for the benchmarking of
segmentation and tracing algorithms.

2 The Saga

2.1 Historical Background

The concept of the neuron as the primary structural unit of the central nervous
system was introduced as early as the Nineteenth century by the ground-breaking
studies of Camillo Golgi (1843-1926) and Ramén y Cajal (1852-1934). Utilizing
an ingenious tissue staining technique developed by Golgi, Ramén y Cajal provided
the earliest evidence of the neuron as the primary discrete unit of the central nervous
system, and defined its microanatomy using light microscopy. By examining the
structure of thousands of neurons in every region of the brain, Ramén y Cajal
discovered the universal structure of neurons consisting of a cell body (also called
the soma), dendrites, and an axon. With impressive accuracy, he also postulated
that dendrites, which are multiple branching structures that arise from the cell body,
and the axon, a single elongated cellular protrusion stemming from the cell body,
retain different functions and mediate specialized connections between neurons. In
following studies in 1933, Ramén y Cajal conjectured that neuronal spines, which
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are the protuberances appearing along the dendrites (similar to rose thorns hence
called espinas), are the points where these specialized connections through which
the axon of one neuron contacts a neighboring neuron are established. Remarkably,
he postulated that spines are a manifestation of the economy of nature: they increase
the surface of a dendrite enabling stronger connections between neural cells via
the dendrite—axon route [72, pp. 3,101]. These connections are now referred to as
synapses® and constitute the fundamental structures that permit a neuron to transmit
electrochemical signals to another neighboring cell (usually to another neuron).
With these fundamental studies, Ramén y Cajal laid the foundations of modern
neuroscience. While neuroanatomy studies were flourishing, in the 1930s, Curtis,
Cole, Hodgkin, and Huxley, four neurophysiologists, were investigating the electri-
cal properties of the axon of the Atlantic giant squid, a large and easily accessible
tissue preparation, and provided the first recordings of the action potential, a form
of regenerative electrical waveform that propagates down the axon [14, 25]. With
the use of the voltage clamp technique, Hodgkin and Huxley discovered that the
action potential arises from sequential changes in the cell membrane permeability to
Na™ and K™ ions and developed the first mathematical model of the action potential
propagation using nonlinear differential equations. For the first time in history, these
experiments revealed the basis of electric function in neurons. Later studies in the
1950s by Fatt, Katz, and del Castillo [31] established that, by propagating down
the axon, the action potential mediates synaptic transmission. Once it reaches the
presynaptic bouton (the large ending of the axon), the action potential is decoded
into a chemical signal through the release of discrete quanta of neurotransmitter
molecules which eventually reach the postsynaptic side of the synapse (spine) and
bind to specific membrane ion channels, called receptors. Upon binding to the
neurotransmitter, receptors change conformation allowing specific ions to permeate
into the postsynaptic cell and generate an electric charge called the excitatory
postsynaptic potential (EPSP). If this electric charge exceeds a certain threshold,
the EPSP elicits an action potential in the postsynaptic cell (the receiving cell). It
is through this sequence of electrochemical chain reactions that the information is
transmitted and stored in the brain through a connectome of neuronal networks.
Although these basic concepts of neurophysiology are very well established, the
explosive development of ultrasophisticated, unprecedented resolution imaging
technologies in modern times have revealed new fascinating aspects of synaptic
transmission and specifically has highlighted the critical role of synaptic spines as
the main integrators of neuronal information.

2From the Greek prefix “ovv-" and the root of the verb ‘@mwrouar’, to touch; by adding the prefix
the verb cvva T means to clasp together but in ancient and in modern Greek, it means “to form
an accord or to establish a formal relationship”.
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2.2 Modern Neuroscience

The emergence of fluorescence-based technologies and the development of sophis-
ticated fluorescence microscopes, such as confocal and multiphoton, facilitate the
acquisition of high-resolution fluorescent images of dendrites and spines both in
vitro and in vivo and allow the monitoring of their dynamic structural changes in
real time. It is now well documented that spines can grow or disappear in response
to rapid and local changes in synaptic transmission (spine plasticity) or to more
global and prolonged effects induced by network activity (neuronal homeostasis).
These dynamic morphological changes of spines, associated with plasticity and
homeostasis, are considered to be the structure-function link in the heart of learning
and memory formation and are associated with different behavioral states or chronic
neuropathologies [21,22,58,59,72-74]. It is through structure-function changes of
synaptic spines throughout neuron networks that we retain what we have learned, we
respond to external stimuli, and eventually we adapt to the surrounding environment.
With no doubts, the ability to accurately capture the morphological information of
dendrites and spines and track their dynamic changes will rapidly translate into a
better understanding of brain function. Towards futuristic applications this improved
knowledge of cellular and subcellular neuronal morphologies could be included
in electrophysiological computer simulations, so that quantitative and qualitative
effects of dendritic and spine structure under stimulation can be extensively
characterized. With the current computational capabilities, these models can be
implemented into supercomputers to allow the generation of virtual neurons which
retain all anatomical and functional characteristics of their real counterparts. When
modeled neurons are organized into complex structures under appropriate rules
governing their anatomical and functional connectivity, in principle, entire portions
of the nervous system would be simulated into realistic neural networks, leading to
what G. Ascoli phrased as: “A detailed computer model of a virtual brain that was
truly equivalent to the biological structure” and “could in principle allow scientists
to carry out experiments that could not be performed on real nervous systems
because of physical constraints” [2].

While the technological advances in fluorescence-based microscopy have opened
up exciting avenues of investigation in neuroscience and have set high-standard
goals to modern neurophysiology, this area of research has also raised a number of
computational, algorithmic, and mathematical challenges involving the acquisition
and modeling of high-resolution data acquired through confocal microscopy, the
preprocessing of the data (which are typically affected by blurring and Poisson
noise), and the morphological reconstruction of dendritic structures and spines.
Capturing and accurately modeling the morphological transitions of spines and
dendrites in response to various functional states of a neuron will bring us a step
closer to identify the physical nature of the “wax of the soul” anticipated by Plato
and to unravel how memory traces or engrams are formed, retained, translated into
human cognitive functions [21,22].
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3 Imaging Neurons

3.1 The State of the Art

As indicated by the observations in the section above, the ability to produce
accurate morphological reconstruction of dendritic arbors and spines in neurons
is of fundamental importance to the goal of generating a virtual neuron. During
the last ten years, a flurry of activity was aimed at the development of automatic
or semiautomatic computational tools for delivering morphological reconstructions
of neurons, and there are currently several academic and a few commercial and
freeware imaging suites available. All of these algorithms depict branching and
terminal points, diameters of dendritic branches and the soma and output the results
in 3D visualizations. Their performance varies and depends on the level of training
per data set, the noise that affects the data, and on the level of manual intervention
required. These reconstructions rely on a tracing of the dendritic arbor which has
been a hot research topic, the least, in the last ten years, e.g., [1, 19,20, 24,29, 38—
41,43,44,48,49, 51,55, 58,59, 70,71, 73]. More recently, significant work on the
tracing and morphological reconstruction of dendritic arbors emerged as a result of
the DIADEM competition [7,40]. Although, all of them are designed to capture the
3D structure of the dendritic arbor with sufficient accuracy, they usually miss the
spatially localized detail of the surface of the dendritic branches, and in particular
they ignore spines [56] as the common goal of all of the dendrite-tracing methods is
to detect the centerline of dendritic branches. This naturally and reasonably becomes
a new system of coordinates for navigating the dendrite. Although several of the
dendrite-tracing algorithms estimate the dendritic diameter locally, their estimations
cannot capture the localized details of the dendritic surface with the exception of
[29,30,35,36,52-55] which generates a probabilistic segmentation of the volume of
the dendritic arbor; thus the likelihood of the association of a voxel to the dendritic
surface is obtained.

The existing spine detection capabilities of current 3D algorithms build upon the
type of centerline tracing we previously described. Using the detected centerline for
navigation within the dendrite, they typically apply the Rayburst detection algorithm
[48, 61, 70]. Several other methods rely on detecting spines on 2D maximum
intensity projections, but those methods frequently miss significant spines and the
many of the weaker ones as they are obscured by the projection of the higher
intensity parts of the dendritic volume onto them [3, 13]. In particular, Fan et al. use
maximum intensity projections for in vivo spine detection and analysis [18]. There
is very limited work on in vivo spine detection primarily because of the necessity to
use tracking algorithms when 2D image analysis methods are employed. There are
also pseudo-3D approaches in the sense that spines are detected on each scanning
plane and then the results of the detection are fused to create a 3D image stack
[3,11,12,18,45,75,76]. Classification of spines according to their types, estimation
of volume, and of head diameter is mainly being done with the Rayburst algorithm
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[17]—often applied in 2D only [34, 51]—which counts voxels whose intensity
exceeds an operator-chosen threshold in certain directions. However, there are two
main problems in all of these approaches:

1. The use of intensity thresholds applied on the original image in order to detect the
surface of spines. Since Poisson noise corrupts images, intensity thresholds are
increasingly unreliable as the concentration of the fluorophores decreases. This
is often the case in undeveloped or thin spines, but more importantly, it affects
spine necks resulting into detached spines which are harder to distinguish from
leaking fluorophores or plain noise spikes.

2. Constraints of technical nature as well as the need to decrease image acquisition
duration lead to the use of anisotropic voxels, typically of aspect ratio 1:1:3—
1:1:4. Although images are corrected to account for blurring introduced by the
microscope, dendritic volumes are reconstructed with voxels of these aspect
ratios. This implies that objects such as spines which are oriented in an arbitrary
way in 3D and have a diameter of 10—13 voxels with their neck being less than 2—
3 voxels thick at the highest resolution will not be properly classified according to
their shape as their shape is distorted by this anisotropic sampling grid. A partial
heuristic remedy utilizing the Rayburst algorithm is proposed in [17] to mitigate
this problem, but it can only have limited success since the data are severely
undersampled at off the x y-plane orientations.

3.2 Online Reconstruction and Functional Imaging
of Neurons

ORION [29, 30, 35, 36,52-55,67] is a suite of algorithms and integrated software
that can be used for the morphological reconstruction of dendritic arbors from 3D
images obtained by multiphoton or confocal microscopes. ORION can identify
dendritic centerlines their branching and terminal points and estimates the diameter
of branches at every centerline point; however, it does not identify or classify
spines, and 3D visualizations of the morphological reconstructions of dendritic
arbors do not include spines [10]. ORION segmentation of the dendritic arbor is
based on extracting the eigenvalues of the Hessian of an ensemble of low-pass
Gaussian-filtered outputs of the original 3D volume and by learning how these
eigenvalues depend on a tubular model estimated from the data. The segmented
volume results from a probability 3D map conditioned on the learned model.
Dendritic centerlines and branching points represent the unique solution of a certain
optimization problem. ORION has been successfully tested on synthetic data,
on real data where the system outperformed experts, and on several DIADEM
competition image sets. Notice however that, since ORION is designed to work
primarily on dendritic arbors that are acyclic connected graphs, it cannot be applied
to some of the DIADEM data sets. Figure 1 illustrates an application of ORION.
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Fig. 1 (a) MIP of the logarithm of a raw image of CA1 hippocampal pyramidal neuron labeled
with Dil fluorescent dye demonstrating the nature of the noise in voxels next to the dendritic
branches. (b) Morphological reconstruction of a pyramidal neuron with ORION. The segmented
dendrite’s voxels are color-coded red. Note the absence of spines

4 Approximations Under the Action of a Group
of Orthogonal Transformations

Since all images have compact support in the space domain R? (d = 2 ord = 3),
their conversion from analog to digital form occurring during acquisition requires
truncating the image in the frequency domain. Typically, this process is modeled by
convolving the given image, say f € L?(R?), with a kernel function ¢,, referred to
as the analysis kernel. Hence, if 0 < ¢ < 1 is a preselected constant representing
the level of the desired relative error, there is a compact subset of the frequency
domain, say £2, such that [, |7 (6)2dE < 8||7||%. The set §2 is called the essential

bandwidth of f. With no loss of generality we assume 2 C T¢ = [-1/2,1/2]".
In particular, we define

pim | f L@ few @) and [ 7@l <elF{ .

where W12 (IR?) is the Sobolev space containing all functions  whose distributional
partial derivatives up to second order are contained in L'(R). We can view %%, as
a family of functions that are almost bandlimited, as for a function bandlimited in
£2 one would have [, |7(E)|d§ = 0. This observation motivates us to generalize
classical sampling theory approaches in the spirit of [4]. Specifically, we adopt an
oversampling approach implementing the digitization of the input image and its
reconstruction from its samples. To this end we use two kernels, the analysis kernel
¢, and the synthesis kernel ¢s. Two compact sets are associated with this pair of
kernels, B, and B;. We assume §2 C B;, B, C B, and By C (Td)°, where the
superscript o indicates the interior of a set, and:
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- s C CXR) N L'(RY).

. All partials derivatives of ?q;d and ?q;s up to second order are bounded.

C1@a(®) < 1+, [¢s(§)] < 1+ eforall§ € RY.

19a() — 1| < eif & € By, [$a(§)| < eif & ¢ B..

pu€) — 1] <eif§ € By, |gu(§)| <eif & ¢ T

g |Bu®IdE < £ and [, [6:(6)]dE < e.

. There exists C >0 such that ", .y |¢a(§ + k)[> < C and 3, .0 |ds(€ + k))? <
C forae. £ € R,

~N N R W=

With these conditions in mind we define

f = Z (fv Tn¢a>Tn¢Sa 2)

nezd

where the right-hand side of (2) converges with respect to the L’-norm due to
Property (7) . Notice that Property (1) guarantees that both kernels have good
spatial localization. Properties (3) and (4) indicate that B, and By are the pass-bands
of ¢, and ¢, respectively, while their stop bands are both contained in T¢. The
digitization process gives the sequence {{ f, T,,¢.) : n € Z¢}, while the inversion of
this process, the reconstruction of original analog image from its samples ( f, T,,¢,)
is referred to as the digital to analog conversion. Typically, in imaging, we only use
the first part the analog to digital conversion, while the reverse process has only
theoretical value. In general, f # f It is one of our goals to estimate || f — f||,
called the reconstruction error, with respect to different meaningful norms. In the
applications presented in this chapter, the L° norm is the proper norm because
it guarantees the uniform fidelity of the reconstruction of f throughout the spatial
domain. In practice though, it is impossible to keep an infinite number of the samples
{{f, Tpa) }neza. Therefore, it becomes necessary to make a choice of a finite set
A C 74 such that the only values kept belong to {( f. T,,¢.)} 4. Hence,

fa =) {1 i) T, 3)

neA

gives an approximation of the original input signal or image f. Specializing to
images, their finite extend and the limitations of the acquisition devices prescribe a
certain size of voxels/pixels. This mathematically amounts to prescribing a certain
essential bandwidth which has the form of a parallelepiped in R? (d = 2,3) and
A = ]_[f=1[—NS, N;], where all Ny are integers. So it is important to study the
overall approximation error || f — f4 ||, with respect to various norms. In this chapter
we are interested in the approximation error with respect to the L° norm, and in
particular, we propose how to control this error when f varies, due to the action
of a group of orthogonal transformations defined on R?. Specifically, given a group
G of orthogonal transformations acting on R?, e.g., G = SO(d), we want to be
able to find suitable kernels ¢, and ¢ so that if for a choice of A C 7¢ ( e.g.,
A = ]_[f=1[—NS,NS]) the error || f — falloo < € thatis, || f — falloo is small
enough, then
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supyregllo(M) f — (p(M) flalloo <€,

where p(M) f(x) = f(Mx), x € RY.
Since,

loM) f = (p(M) f)alloo < lp(M) f = p(M) flleo + lo(M) f = (0(M) ) alloo

“
forall M € G and f € L*(R?) N L*®(R?), it becomes apparent that we need to
control the growth of each one of the terms in the right-hand side of the previous
inequality as M varies. The first of the two terms is known as reconstruction error
while the other is called truncation error. Throughout the rest of the section we
assume f € L*(RY) and f e L'(RY).

There is an abundance of work on the study of decay estimates of these two types
of errors, e.g., [4,5,16,26,28,41,44,60] and of the approximation error as well in
one and multidimensions both in the context of linear (when A = ]_[f=1 [N, Ny)),
nonlinear and n-term approximation, e.g., [33, 62-66]. An excellent tutorial on
nonlinear approximations [15] provides several more references that we did not
include in this chapter. The novel concept we introduce in this section is that the
proper selection of approximants should take into account the variations of an image
due to the action of groups of orthogonal transformations on it, e.g., rotations. This
kind of variation affects the rate of convergence of linear approximations as we
demonstrate with an example at the end of the section. As Table 1 indicates that non-
linear and n-term approximations may be affected as well as the high-pass content of
the image increases due to its rotation and the non-isotropy of the analysis kernel. In
particular, if we keep A fixed, the error || p(M) f —(p(M) f) 4|| in any relevant norm
may vary with M . Nevertheless, the error estimate provided by Theorem 1 provides
a search range for A that does not depend on the individual transformations M, but
it rather depends on the group to which M belong to.

Before continuing with the analysis of both errors, we give an example demon-
strating the practical significance of this problem in images acquired by confocal
microscopy, when ¢, is anisotropic.

The most common practice among neuroscientists is to acquire their data by
using an anisotropic sampling grid of the form Z? x (NZ), where N = 3,4 [17],
which amounts to using anisotropic analysis and synthesis kernels. The use of this
grid saves time and overcomes limitations due to the quantum nature of light but
reduces the resolution to the point that spine volumes cannot be accurately estimated
[17]. Scanning time increases nonlinearly [17] as the resolution in the z-direction
increases and at xy is kept high.

Heuristic methods, popular among neuroscientists, have been proposed to resolve
this issue [17], but those methods ignore the real mathematical problem, the
undersampling in the z-direction. Figure 2 shows exactly how the volumes of spines
are consistently ignored in the binary segmentation of a hippocampal CA1 neuron.

Let us now return to our analysis. Take 0 < & < 1, 2 € T¢ and f € B, We
also assume that ¢, and ¢ are analysis and synthesis kernels satisfying Properties
(1) through (7), 2 C B;, B, C B, and By C (T?)°. By taking the Fourier

s
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Fig. 2 Left: Part of the binary segmentation of the hippocampus CA1l neuron shown in Fig. 1.
Notice the smoothness on the dendrite’s side while its “other side” is rougher. The smoothness
on the smooth side is due to the undersampling in the z-direction. This data set was sampled on
the grid Z? X (4Z). Right: MIP results of the tracing of an olfactory cell (OP2) from the Diadem
competition data sets. The centerline annotated by an expert is marked with green. Centerline
tracing results with ORION are marked with red. The raw image is in the background. There are
two cells in this image stack although only a single cell should have been included in the image
stack. ORION traces both of them, but by default it considers them as a single cell

transform on both sides of Eq. (2) we obtain
FE = D (£ Tuga)e 2™ | §s(§) 1= AE)s(£) . )
nezd
where A is a Z¢-periodic function verifying

A@) = | D (L Tupde™™E ) = 3 F(E + Ot +0). 6)

nezd Lezd

The next observation is critical for estimating the error bounds.

4.1 Bounds for the Coefficients of A

Several of the estimates that will be given below critically depend on the coefficients
(f. Tua). By Parseval’s theorem, we have

(1T = (7705 = [ T@d@e e = (73.) 0.
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In general, for a function g such that g € C 2m (Rd ), wherem = 1,2, ..., and all of
its derivatives are integrable, we have

(A" (x) = Qui)™™ (xF + -+ x3)" g(x) = @ri)* | x[3" g (x).

Since, Properties (1) and (2) and the definition of %%, imply that the distributional
Laplacian A (?:ﬁd) is integrable, we assert

|2 (79,
@rylnE

=

(1Tl = |(78)”

Therefore, Y, cza |{ f, Tuepa)| < 00 and A belongs to A(T?).
So, if in addition to the previous assumptions for f and for the analysis kernel
¢, we have f € W12" and all partial derivatives of ¢, up to order 2m, where

m=1,2,..., are bounded, then
(an (79:)

o Ixl |(73:) ) <

1

< HA’" 7%a
o ( )
therefore, if x € R4

_ 14" (g0l

= @um ]l

(ATl = |(75) W) ™

4.2 Estimation of the Approximation Error || f — f4|loo

First, we proceed with the estimation of ||? — f |l1. Note that
17 =71 = [ 176 - a@d. o

- / 176 — A©P.(6)]dE + / 176) — A©)Pu()\dE.
'[rd

(T4)¢

Using Property (6) and the fact f € %%, the second term in the previous sum can
be bounded by

/ 176 — A©P(6)]k < / 7 ©)\d + sup | 4©)| [ B0
(Td)e R4

(T)e (T
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<ellfli+ | D ATl ] e
nezd

Next we estimate the contribution of the term [, |?(§) — f (§)|d¢ to the
reconstruction error of f:

[ 76 - aep@ne = [ 76 - (Z ?@mmm) 3u(6) dt
Td Td Lezd
= [|a-Fod@n7©)a
Td
+ Y FE+ 0+ 0p(6)] db.
Ta |tezi\(o}
Now,
3 TE+08.E+0pH|dE< U+ Y / |76 +0)|ds

Ta |eezi\(o} =N

<A+l flh =2ellfli -

Using Property (3) we infer [1—¢(§)s (§)] < 14[¢a()p(E)] < 1+(14£)> < 5.
On the other hand, if § € £2, Properties (4) and (5) imply |1 — ?ﬁa(s)iﬁs(gn <
2¢ + &2 < 3¢. Therefore

[0 -5@a@7 k= [|0-5.68.676)|
T4 2

+ [ Ja-Feopenie)a

T\Q

<3 [ [F@|a+s [ [7@]=sa7n.

T\ Q2

Collecting terms we conclude

1f = Flloo < [(Z |<ﬁTn¢a>|)+nu?nl} ‘. ®)

nezd
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Now, let A be a finite subset of Z¢. Then,

LF = Falloo < | DA Tugpadl | il - )

n¢A

Next, take G to be a group of orthogonal transformations acting on R? and M €
G.If p(M) f € %5, then Egs. (4), (8), and (9) imply that for every A be a finite
subset of Z? we have

lo(M) f = (o(M) f)allo

< || 32 1o £ T | + 1171 | &+ | S 100 £ T | 1l

nezd n¢A

= [ 3 1A Taapt My | + 111710 | &+ [ 7 [0f Tarap (M T)gs)]

| \nezd ng¢A

sl

Assuming f € W' and that ¢A>a has bounded partial derivatives up to order 2m
withm > 1, Eq. (7) gives

RN i G AL2) | M,
s A mnp = — , neZ.

! ! @m)" | Mnll;
Since, |Mn| = |n| for all grid points n, we conclude that the estimate

of the error |[p(M)f — (p(M)f)allco provided above depends on the norm
H Am (7 o(MT)¢, ) H R which depends on M.

We can now summarize the previous discussion in the following theorem.
Theorem 1. Assume that G is a group of orthogonal transformations acting on R¢,
2 C(T9°, 0 < & < 1. Suppose, M(2) € 2 forall M € G. We also assume that
¢a and ¢s are analysis and synthesis kernels satisfying Properties (1)—(7), 2 C B,
B, C B, and By C (T%)° and p(M)¢, = ¢, for all M € G. In addition, we
assume that qAﬁa has bounded partial derivatives up to order 2m with m € Z". Then,
forevery f € B, such that f € W™ the following estimate holds:

lp(M) f = (o(M) flaylloo < Cre+C2 Y nl;?. M€,
lnl>N

where Ay = ]_[le[—NS,NS] with Ny = N foralls = 1,2,...,d. The constants
Cy and C, depend only on f.
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Proof. First, observe that M (§2) C 2 forall M € G implies that, if f € %5, then,
p(M) f € %5, Since, p(M )¢, = ¢, for all M € G using (10), we conclude

A7 (7 6
|(f:7hlnP(A1T)¢aH < H““Q;“‘%Jl, n e Zd.
Qry"
So, the factors Ci = (X,em [(f Taap(MT)p)) + 1171l and

G == o) bl |47 (7 4.)
from (10) and

depend only on f. The conclusion follows
1

lo(M) f = (p(M) Falloo < | | D2 1A Tunp Mgl | + 1111 111 | &

nezd

+{ D0 [ Tuap(M DB | sl < Cre+ Cs
néAyn

-2
O 1 P

lnll2=N

since M preserves norms.

Remark 1. 1. Theorem 1 requires analysis kernels to be invariant under the action
of the groups of orthogonal transformations that may affect an image of interest.
A slight modification of the statement of Theorem 1 can make it applicable to
data representations defined by families of analysis and synthesis kernels instead
of a single pair of kernels. Popular examples of these families are shearlegs [23,
32] and curvelets [8]. Condition p(M )¢, = ¢, for all M € G is now replaced
by the requirement that the family of analysis filters must remain invariant under
the action of G. In other words, if one ¢, works well for £, then p(MT)¢, must
be another analysis filter in the family of filters used by the data representation
to allow to maintain control over the size of A when approximating p(M) f by
(p(M) f) 4 and thus maintain the sparsity of the representation.

2. The hypothesis M(£2) C §2 for all M € G in the statement of the previous
theorem is not redundant. Indeed, assume that ¢, and ¢, satisfy all of the

assumptions of the previous theorem. In addition, we assume B, = T2 and
that ¢A>a vanishes outside T2. Take 0 < d < ;75“/5 and assume that B, =

[—% +d,i - d? and 2 = B;.. Now pick f so that f is smooth and

vanishes outside [‘/Ti, 3 —d] x [‘/Ti, 3 —d]. If M is the rotation by 7/4, then,
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Table 1 Experiment results

lo(M) f — (o(M) f)ay lloo

N ”f_fA ” ”f _fAN ”oo ||P(M)f_(P(M)f)AN ”oo
OO
35  1.3023-10% 6.3961 - 10731 8.3299-10~'°
45 2.0835-10'6 3.8408 - 107180 8.0026- 1017
50 2.6247 - 10%7 1.2856-1072%  3.3746- 103!
55 oo 0 1.3558 - 10108
60 oo 0 2.8357 107228
65  undefined 0 0
a b Cc
ki
H

Fig. 3 (a) §u, ) /- by, (©) [0(M) 1 &,

(,o(M)f)E = 0 therefore (p(M) f, T,¢.) = 0, for all n € Z?. In this case
lp(M) f = (p(M) f)alloo = |1 f oo for every A C Z2.

We close this section with a simulation intending to demonstrate how rotations
affect the rate of decay of ||p(M) f — (p(M) f) ay llooc as N — o0.

Let M be a rotation by /4 in R?. Consider f such that ?(El, &) =
xn &) xn (&), where I} = [—01, —03] U [02, 01] and I, = [—03, 03]. Let

g &8 GRs)

aa(&, £) =¢e @i 25 and as(él, &)=e¢e 205

where 0 < 07 <01 <04 <06 < 1land 0 < 03 < 05 < 0¢. In this example
we set o = 0.6,05 = 0.55,00, = 0.15,04 = 0.5,00 = 0.25,03 = 0.12. We
compute the errors ||p(M)f — (p(M) f)aylloo and || f — faylloo» as N grows,
where Ay = {(m,n) € Z? : max(|m|,|n|) < N}.

In Table | we can observe the results of this experiment. Notice that (o(M) f)
converges to zero more slowly than fj, .

Figure 3 shows the contour figures for aa, f . aa, and [,o(M)f] ad
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5 Construction of Synthetic Tubular 3D Data Sets

As mentioned above, a fundamental step in the development of a computational
platform for neuronal reconstructions is the segmentation of the dendritic arbor
and the extraction of its centerline. Validating the accuracy of the performance
of these two tasks heavily relies on the manual segmentation of dendritic arbors
which is time consuming, tedious, and often quite subjective. Therefore, the
benchmarking of dendritic arbor segmentation and centerline extraction algorithms
often becomes controversial, as most of the times the “gold standard” entirely relies
on the experience of the user and cannot be verified against histology. Indeed,
it is very common in neuroscience imaging that segmentation results manually
obtained by experts working on the same data sets significantly differ, and automatic
segmentation algorithms may outperform experts. Hence, there is a real need
for highly accurate computational phantoms representing tubular structures in 3D
that can be used to benchmark the baseline performance of segmentation and
morphological reconstruction algorithms. To this end, we introduce a new method
for the construction of highly accurate computational phantoms that represent the
geometry of realistic tubular 3D structures. Our method yields very complex 3D data
sets emulating with high accuracy at the resolution level normally used in confocal
microscopy, and the prescribed morphological properties are centerline, branching
points and branch diameter. Thus such data sets enable the reliable validation of
segmentation and centerline extraction algorithms. It is clear that noisy data sets
can easily be derived from our algorithm using standard methods like those in [68].

One feature of our approach is the ability to simulate varying fluorescence
intensity values even within the same cross-section of the volume. The basic
scenario for the spatial distribution of the fluorescence intensity values assumes that
at any cross-section the maximum intensity occurs only at centerline voxel. The
intensity values for each voxel in a cross section perpendicular to the centerline
(transversal cross section) decreases almost radially, in the sense that voxels in
the same transversal cross section and equidistant from the centerline voxel have
the same intensity values. Moreover, for any two transversal cross-sections whose
centerline voxels have the same intensity values, the spatial distributions of the
intensity values in these cross sections are identical. We refer to this model of spatial
distribution of intensity values as the ideal tubular intensity distribution model. This
radial symmetry of the intensity function can only be implemented approximately
in a digital phantom, since voxels are not dimensionless in the 3D space. Moreover,
the centerline must be smooth everywhere except possibly at branching points.

5.1 Related Work

Only few methods to generate synthetic data for tubular objects can be found in
the literature. In particular, Canero et al. [9] proposed a method to generate images
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of synthetic vessels. After generating a random centerline, the intensity for each
pixel in the vessel is modeled as a function of the distance from the pixel to the
centerline and the radius of the vessel. Vasilkoski et al. [68] proposed a method
to generate a 3D image stack of a neuron assuming that the infused fluorophore
is distributed uniformly throughout the neuron and that the background intensity
is zero. Then, they convolve the volume with a Gaussian point spread function to
simulate the photon count w(x, y,z) in the image stack. The actual photon count
n(x,y,z) for each voxel was randomly generated using the Poisson distribution
with mean equal to u(x, y,z). Bouix et al. [6] created synthetic tubular structures
by using a predefined centerline. They slide a sphere centered on the centerline
starting at a seed point. Voxel intensities are all the same inside the tubular volume
while noise may be added at the final stage. Unfortunately, all these methods tend
to suffer from a significant degree of geometric artifacts.

5.2 Methods

The first step in our approach, to create synthetic data volumes such as dendritic
arbor phantoms is to construct the prescribed volume at a very high spatial resolution
level, much higher than the resolution level used in confocal microscopy. Next,
to reduce the resolution of those volumes, we downsample the data by a factor
of two per dimension. To bring the data set to the desired resolution level we
typically repeat the downsampling step as needed (typically three or four times). The
problem that often arises with this reduction of resolution is aliasing causing image
degradation with errors directionally varying in 3D. This problem compromises
the radial symmetry of the ideal tubular intensity distribution model. To reduce the
effect of such aliasing we first filter the input volume with a low-pass antialiasing
filter. One might naturally wonder what are the properties that the antialiasing filters
should have in order to minimize the adverse effects of this reduction of resolution on
the symmetry properties imposed by the ideal tubular intensity distribution model.
Although we do not directly address this question, we will provide below a family of
antialiasing filters and justify why they are suitable for this application by invoking
Theorem 1. We are now ready to proceed with the description of our approach.
Using the prescribed geometric properties (i.e., centerline points, branching and
terminal points, and thickness) of the sought tubular structure (e.g., a dendrite)
we first create a very high resolution approximation of the desired volume in
the physical domain. In the language of multiscale analysis, this high-resolution
image provides an approximation of the physical structure at a very high scale
and, so, it may not be distinguished from the prototype structure living in the
physical “continuous” domain R*. We denote this initial volume by ;. To create
the centerline of Iy we use cubic spline interpolation in 3D. Using this centerline
and the diameter information we create a “mask” M| which is an indicator function
taking two values only, 0 if a voxel does not belong to I; and 1 otherwise. To create
My we superimpose spheres of radii matching the diameter of [ at the location
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where the sphere is centered. The centers of these spheres belong to the centerline
of 1. The centers of these spheres are not uniformly distributed on the centerline
of Iy. Their distribution varies depending on the spatial accuracy needed for M,
(Fig. 4a). The use of spheres helps to successfully and accurately create the curved
parts of M, with low computational cost. Each voxel in the interior of each of
one of these spheres is assigned the value 1 (Fig.4b). Thus, M, is defined to be
a characteristic function of the set of voxels whose value is at least equal to 1. To
algorithmically define the transversal cross sections in I, for each voxel v with
mask value My(v) = 1, we assign a “tag”, ¢(v), where ¢(v) is the most proximal
centerline voxel to v. We thus partition /; into cross sections via the equivalence
relation vq ~ vy if and only if ¢(vy) = ¢(v2). Figure 4e depicts how this equivalence
relation defines cross sections in a digital high-resolution volume Iy. So far, the
intensity values of I are identical with the values of M.

To complete the construction of I we assign the desired intensity values for each
voxel at which M| is equal to 1. For all other voxels the intensity is set constant to
a fixed “background” value. For dendritic arbor phantoms the luminosity intensity
on the centerline may decay as the distance of a point in the dendrite from the soma
increases in order to simulate the decaying concentration of the infused fluorophore
in distal branches from the point of infusion. However, several other models may be
chosen to simulate the fluorescence intensity values induced by various fluorophore
administration protocols.

In our approach, we assume that both rates of decay of the intensity values,
radially, in any transversal cross section and along the centerline, are constant.
However, the theoretical model of the luminosity intensity at cross sections assumes
that this function is an isotropic Gaussian. This assumption is standard across all
proposed models for confocal microscopy data. Implementing though an isotropic
Gaussian in small transversal cross sections gives results no different from those
obeying the linear decay model both radially in transversal cross section and
along the centerline. Figure 4e depicts an example of the luminosity intensity in a
transversal cross section with radius R = 50 pixels, background intensity Izg = 10,
and maximum intensity at the center of the cross section I,x = 150.

Figures 5a—d depicts the intensity obtained for a synthetic tubular structure:
shown are images for the plane x — y at z = 160, 168, 176, 180. The maximum
intensity is obtained at z = 160 because the centerline is on this plane. The intensity
value at a voxel is high if the voxel is close to the skeleton and the intensity decays
as we approach the boundary.

The original synthetic volume [, created so far has 8 or even 16 times higher
resolution than that of a typical data set acquired using confocal microscopy. In
order to generate a 3D data volume useful for our purposes we need to drastically
reduce the resolution by a factor of 8 at least. Simple downsampling is the first
obvious, yet bad choice. Downsampling following the application of a special
antialiasing filter is the right approach. In the following, we argue about the
properties of this filter that mitigate undesirable directional aliasing.

A plain cylinder in R?® can be modeled using the tensor product of two Gaussians,

X2 y2+2
T 52 2
falﬂz(xmyvz):e 2516 e xvva’ER'
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Fig. 4 (a) Side view of cross sections of spheres whose centers belong to the centerline. (b) A
snapshot of the resulting mask M, from the same observation point. The small marching step of
centers of the spheres yields a smooth digitized mask. (¢) Binary mask with radius increasing along
the centerline. (d) Circular cross section for two points on the centerline. (e) Graph of fluorescent
intensity on a circular cross section

The centerline of this cylinder is the x-axis. We take o}, 0, > 0. The first Gaussian
factor controls the length of the cylinder while the second controls the decay of
the intensity values of this structure. The cylinder can be oriented to any different
centerline by applying a 3D rotation R on the argument of f and must be digitized
in a way that, ideally, does not generate artifacts due to its spatial orientation. The
original tubular structure .# can then be considered as finite sum of the form

Ji D

n K
I = ZZ Z Z Ty Riik ji.jo Joj 05, » Rk € SOB), @ik jp > 0.

i=1k=1ji=1 jr=1

It is this volume defined on R* and from this volume we essentially create I,
by applying Theorem 1. Since, the rotations Rj; may be random we must assume
that the set §2 the theorem requires must be invariant under all 3D rotations. Pick a
desirable 0 < ¢ < 1. Since

fE1.6.6) = 2n)i0;, o2 e 20N 8 20, B4,



A Harmonic Analysis View on Neuroscience Imaging 443

| B

Fig. 5 (a)-(d) Intensity values on the high-resolution synthetic volume at different x-y planes
(z=160,168,176,180)

it is not hard to observe that £2 must contain all sets of the form [—2L2, L2] x
J1 J1

[— dj1.ja ‘111 Jj2
0jy
these paralleleplpeds This implies that £2 must be a sphere centered at the origin
whose radius is greater than all 42 and all 22 Then, according to Theorem 1,
9j Tj

Lph s [-Urk L2 where aj, j, > 0 depends on ¢ and all rotations of

the analysis kernel we use (theoretically only) to derive I from .# must be radial. To
this end we use a refinable function ¢, which defines an Isotropic Multiresolution
Analysis [50] which is an MRA with the additional property that each resolution
space V; is invariant under rotations as well. The use of the MRA will soon become
clear. Take

1, lEl < 1/4
Zacgy — ) 14cos(6x|E|—3F
¢7(§) = § reolrl=F) < g < 5712
0, €] > 5/12
and consider ¢/ := 2¥/2¢,(2/) as the analysis kernel of Theorem 1 where j is

the appropriate scale required by the theorem. Note that in this case 2 = B, =
B(0,2/ /4). This condition determines the scale j. The synthesis kernel is of similar
form, but we do not need it here, because the volume Iy consists of the values
{(F, T)-i,¢i) : n € Z3}. Thus, we will make no further reference to it. There is
one added benefit which we obtain for free. Since ¢; has compact support in the
frequency domain, [ is covariant to translations. Simply, one does not need worry
about the effect of translations in this digitization process.

The Isotropic Multiresolution Analysis allows to reduce the resolution as needed.
This is where we make use of the fact that this construct is an MRA. To do so, we
use as the antialiasing filter the mask Hj of the refinable function ¢,. This is given,
in the frequency domain, by
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Fig. 6 Phantoms of olfactory dendrites (OP1 (a) and OP2 (b)) generated from information from
the Diadem competition site

1, 1§l <1/8
. _3n
H{ (€)= % 1/8 < |&| < 5/24
0, €] > 5/ < 24.

To summarize the previous discussion we list the steps of the proposed algorithm
for generating synthetic 3D data sets of tubular structures.

Algorithm 1

Require: Manual reconstruction of a neuron.

Ensure: A computational phantom of a neuron.
Step 1: Create a high resolution volume

1.1 Refine manual reconstruction: compute for each branch new centerline points using cubic
interpolation.

1.2 Create neuron’s shape: center a sphere at each centerline and assign value equal to 1 to
each voxel inside the sphere.

1.3 Compute the intensity for each voxel: The intensity is a function of the distance from
each voxel to the centerline and radius of tubular structure and it satisfies the ideal tubular
intensity distribution model.

Step 2: Downsample volume

2.1 Decrease the resolution: Apply an isotropic low-pass filter, e.g. Hj and downsample.

5.3 Experiments

We performed two sets of experiments to illustrate our algorithm. For the first set of
experiments we construct simple volumes such as straight cylinder whose centerline
lies on a circle. For the second set of experiments, we constructed three synthetic
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Fig. 7 (a) and (b) Depiction of a cross section and isosurface of cylinder using our method and
symlets. (¢) and (d) Isosurface of the second volume for first set of experiments using our method
and symlets; slices at three angles (30°, 45°, and 90°) with respect to the arc of the circle depicting
the centerline. (e)—(g) Depiction of a cross section at the slices shown on (¢) by our method; (h)—(j)
cross section at the slices shown on (d) by symlets
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dendrite volumes using specifications from the DIADEM competition (Fig. 6). The
reader can observe how the radial symmetry of the cross-sectional intensity function
is achieved regardless of the incidence angle of the cross section, due to the use of
isotropic filters with small transition band, such as the proposed IMRA filter H'.

On these sets we evaluated the capabilities of the proposed method. We focused
on the following three desirable properties. (1) The symmetry of the luminosity
intensity function in every cross section: this function must satisfy I(n) =
I(m)if ||n —c|| = |l]n — m||, where ¢ is the center of the cross section. (2)
The smoothness of the centerline: in a realistic volume, the centerline must be a
polygonal line. (3) The variation of the angle of the normal vector at any point on
the boundary isosurface and the centerline. Typically, this angle must be equal to
90° except at bifurcation points. We used these criteria to qualitatively evaluate the
performance of the proposed method using both the isotropic low-pass-IMRA filters
H and filters obtained from a tensor product of 1D symlets. It can be observed from
Fig. 7 that the isotropic filter performs better than the symlet filter counterpart.
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