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Abstract We consider an information theoretic model of a communication channel
with a time-varying probability law. Specifically, our model consists of a state-
dependent discrete memoryless channel, in which the underlying state process is
independent and identically distributed with known probability distribution, and for
which the channel output at any time instant depends on the inputs and states only
through their current values. For this channel, we provide a strong converse result for
its capacity, explaining the structure of optimal transmission codes. Exploiting this
structure, we obtain upper bounds for the reliability function when the transmitter
is provided channel state information causally and noncausally. Instrumental to
our proofs is a new technical result which provides an upper bound on the rate
of codes with code words that are “conditionally typical over large message-
dependent subsets of a typical set of state sequences.” This technical result is
a nonstraightforward extension of an analogous result for a discrete memoryless
channel without states; the latter provides a bound on the rate of a good code with
code words of a fixed composition.
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1 Introduction

The information theoretic model of a communication channel for message trans-
mission is described by the conditional probability law of the channel output given
the input. For instance, the binary symmetric channel is a model for describing the
communication of binary data in which noise may cause random bit-flips with a
fixed probability. A reliable encoded transmission of a message generally entails
multiple uses of the channel. In several applications, such as mobile wireless
communication, digital fingerprinting, and storage memories, the probability law
characterizing the channel can change with time. This time-varying behavior of the
channel probability is described typically in terms of the evolution of the underlying
channel condition, termed “state.” The availability of channel state information
(CSI) at the transmitter or receiver can enhance overall communication performance
(cf. [1, 6, 7]).

We consider a state-dependent discrete memoryless channel (DMC), in which
the underlying state process is independent and identically distributed (i.i.d.) with
known probability mass function (PMF), and for which the channel output at any
time instant depends on the inputs and states only through their current values. We
address the cases of causal and noncausal CSI at the transmitter. In the former case,
the transmitter has knowledge of all the past channel states as well as the current
state; this model was introduced by Shannon [8]. In the latter case, the transmitter
is provided access at the outset to the entire state sequence prevailing during the
transmission of a message; see Gelfand–Pinsker [5]. We restrict ourselves to the
situation where the receiver has no CSI, for receiver CSI can be accommodated by
considering the states, too, as channel outputs.

Two information theoretic performance measures are of interest: Channel
capacity and reliability function. The channel capacity characterizes the largest
rate of encoded transmission for reliable communication. The reliability function
describes the best exponential rate of decay of decoding error probability with
transmission duration for coding rates below capacity. The capacities of the
models above with causal and noncausal CSI were characterized in classic papers
by Shannon [8] and Gelfand–Pinsker [5]. The reliability function is not fully
characterized even for a DMC without states; however, good upper and lower
bounds are known, which coincide at rates close to capacity [3, 9, 10].

Our contributions are twofold. First, we provide a strong converse for the
capacity of state-dependent channels, which explains the structure of optimal
codes. Second, exploiting this structure, we obtain upper bounds for the reliability
functions of the causal and noncausal CSI models. Instrumental to our proofs is
a new technical result which provides an upper bound on the rate of codes with
code words that are “conditionally typical over large message-dependent subsets of
a typical set of state sequences.” This technical result is a nonstraightforward analog
of [3, Lemma 2.1.4] for a DMC without states; the latter provides a bound on the rate
of a good code with codewords of a fixed composition. A preliminary conference
version of this work is in [11].
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In the next section, we compile pertinent technical concepts and tools that will
be used to prove our results. These standard staples can be found, for instance, in
[2, 3]. The channel models are described in Sect. 3. Sections 4–6 contain our main
results.

2 Preliminaries: Types, Typical Sets and Image Sets

Let X be a finite set. For a sequence x ∈ X n, the type of x, denoted by Qx, is a
pmf on X , where Qx(x) is the relative frequency of x in x. Similarly, joint types are
pmfs on product spaces. For example, the joint type of two given sequences x∈X n

s ∈S n is a pmf Q on X ×S , where Qx,s(x,s) is the relative frequency of the tuple
(x,s) among the tuples (xt ,st), t = 1, . . . ,n. Joint types of several n-length sequences
are defined similarly.

The number of types of sequences in X n is bounded above by (n + 1)|X |.
Denoting by T

(n)
Q the set of all sequences in X n of type Q, we note that

(n+ 1)−‖X ‖ exp[nH(Q)]≤
∥
∥
∥T

(n)
Q

∥
∥
∥≤ exp[nH(Q)]. (1)

For any pmf P on X , and type Q on X n,

Pn(x) =
n

∏
t=1

P(xt) = ∏
x∈X

P(x)nQ(x)

= exp[−n(D(P‖Q)+H(Q))], x ∈ T
(n)

Q ,

from which, along with (1), it follows that

(n+ 1)−‖X ‖ exp[−n(D(P‖Q)]≤ Pn
(

T
(n)

Q

)

≤ exp[−n(D(P‖Q)].

Next, for a pmf P on X and δ > 0, a sequence x ∈ X n is P typical with constant
δ if

max
x∈X

|Qx(x)−P(x)| ≤ δ ,

and P(x) = 0 implies Qx(x) = 0. The set of all P-typical sequences with constant

δ , is called the P-typical set, denoted T
(n)
[P] (where the dependence on δ is not

displayed explicitly). Thus,

T
(n)
[P] =

⋃

types Q :
max
x∈X

|Qx(x)−P(x)| ≤ δ

T
(n)

Q .
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In general, δ = δn and is assumed to satisfy the “δ -convention” [3], namely

δn → 0,
√

nδn → ∞ as n → ∞. (2)

The typical set has large probability. Precisely, for δ = δn as in (2),

Pn
(

T
(n)

Q

)

≥ 1− ‖X ‖
4nδ 2 . (3)

Consider sequences x ∈ X n, y ∈ Y n of joint type Qx,y. The sequence y ∈ Y n has
conditional type V if Qx,y = QxV , for some stochastic matrix V : X → Y . Given a
stochastic matrix W : X →Y , and x ∈X n, a sequence y ∈Y n of conditional type
V is W -conditionally typical if for all x ∈ X :

max
y∈Y

|V (y | x)−W(y | x)| ≤ δ ,

and W (y | x) = 0 implies V (y | x) = 0. The set of all W -conditionally typical

sequences conditioned on x ∈ X n is denoted by T
(n)
[W ]

(x). In a manner similar to
(3), it holds that

W n
(

T
(n)
[W ]

(x) | x
)

≥ 1− ‖X ‖‖Y ‖
4nδ 2 .

For a subset A of X , we shall require also estimates of the minimum cardinality
of sets in Y with significant W -conditional probability given x ∈ A. Precisely, a set
B ⊆ Y is an ε-image (0 < ε ≤ 1) of A ⊆ X under W : X → Y if W (B | x) ≥ ε
for all x ∈ A. The minimum cardinality of ε-images of A is termed the image
size of A (under W ), and is denoted by gW (A,ε). Coding theorems in information
theory use estimates of the rates of the image size of A ⊆ X n under W n, i.e.,
(1/n) loggWn(A,ε). In particular, for multiterminal systems, we compare the rates
of image sizes of A ⊆ X n under two different channels W n and V n. Precisely,
given stochastic matrices W : X → Y and V : X → S , for every 0 < ε < 1,

δ > 0 and for every A ⊆ T
(n)
[PX ]

, there exists an auxiliary rv U and associated pmfs
PUXY = PU|XPXW and PUXZ = PU|XPXV such that

∣
∣
∣
∣

1
n

loggWn(B(m0),ε)−H(Y |U)− t

∣
∣
∣
∣
< δ , (4)

∣
∣
∣
∣

1
n

loggV n(B(m0),ε)−H(S|U)− t

∣
∣
∣
∣
< δ ,

where 0 ≤ t ≤ min{I(U ∧Y ), I(U ∧S)}.
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3 Channels with States

Consider a state-dependent DMC W : X ×S → Y with finite input, state, and
output alphabets X , S , and Y , respectively. The S -valued state process {St}∞

t=1
is i.i.d. with known pmf PS. The probability law of the DMC is specified by

W n(y | x,s) =
n

∏
t=1

W (yt | xt ,st), x ∈ X n ,s ∈ S n, y ∈ Y n.

An (M,n)-code with encoder CSI consists of the mappings ( f ,φ) where the encoder
mapping f = ( f1, . . . , fn) is either causal, i.e.,

ft : M ×S t → X , t = 1, . . . ,n,

or noncausal, i.e.,

ft : M ×S n → X , t = 1, . . . ,n.

with M = {1, . . . ,M} being the set of messages. The decoder φ is a mapping

φ : Y n → M .

We restrict ourselves to the situation where the receiver has no CSI. When the
receiver, too, has CSI, our results apply in a standard manner by considering an
associated DMC with augmented output alphabet Y ×S .

The rate of the code is (1/n) logM. The corresponding (maximum) probability
of error is

e( f ,φ) = max
m∈M

∑
s∈S n

PS(s)W n((φ−1(m))c | f (m,s),s), (5)

where φ−1(m) = {y ∈ Y n : φ(y) = m} and (·)c denotes complement.

Definition 1. Given 0 < ε < 1, a number R > 0 is ε-achievable if for every δ > 0
and for all n sufficiently large, there exist (M,n)-codes ( f ,φ) with (1/n) logM >
R− δ and e( f ,φ) < ε . The supremum of all ε-achievable rates is denoted by C(ε).
The capacity of the DMC is

C = lim
ε→0

C(ε).

If C(ε) = C for 0 < ε < 1, the DMC is said to satisfy a strong converse [12]. This
terminology reflects the fact that for rates R>C, e( f ,φ)> ε for n≥N(ε), 0< ε < 1.
(In contrast, a standard converse shows that for R >C, e( f ,φ) cannot be driven to 0
as n → ∞.)
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For a given pmf PX̃ S̃ on X ×S and an rv U with values in a finite set U , let
P (PX̃ S̃,W ) denote the set of all pmfs PUXSY on U ×X ×S ×Y with

X = h(U,S) (6)

for some mapping h,

U −◦−X ,S−◦−Y, PX ,S,Y = PX̃ S̃W. (7)

For γ ≥ 0, let Pγ (PX̃ S̃,W ) be the subset of P (PX̃ S̃,W ) with I(U ∧S)≤ γ; note that
P0 (PX̃ S̃,W ) corresponds to the subset of P (PX̃ S̃,W ) with U independent of S.

The classical results on the capacity of a state-dependent channel are due to
Shannon [8] when the encoder CSI is causal and Gelfand and Pinsker [5] when
the encoder CSI is noncausal.

Theorem 1. For the case with causal CSI, the capacity is

CSh = max
PX |S

max
P0(PX |SPS,W)

I(U ∧Y ),

and holds with the strong converse.

Remark. The capacity formula was derived by Shannon [8], and the strong converse
was proved later by Wolfowitz [12].

Theorem 2 (Gelfand–Pinsker [5]). For the case with noncausal CSI, the capac-
ity is

CGP = max
PX |S

max
P(PX |SPS,W)

I(U ∧Y )− I(U ∧S).

One main result below is to show that the previous result, too, holds with a strong
converse.

Definition 2. The reliability function E(R), R ≥ 0, of the DMC W is the largest
number E ≥ 0 such that for every δ > 0 and for all sufficiently large n, there exist
n-length block codes ( f ,φ) with causal or noncausal CSI as above of rate greater
than R− δ and e( f ,φ) ≤ exp [−n(E − δ )] (see, for instance, [3]).

4 A Technical Lemma

For a DMC without states, the result in [3, Corollary 6.4] provides, in effect, an
image size characterization of a good codeword set; this does not involve any
auxiliary rv. In the same spirit, our key technical lemma below provides an image
size characterization for good codeword sets for the causal and noncausal DMC
models, which now involves an auxiliary rv.
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Lemma 1. Let ε,τ > 0 be such that ε + τ < 1. Given a pmf PS̃ on S and
conditional pmf P̃X |S, let ( f ,φ) be a (M,n)-code as above. For each m ∈ M , let
A(m) be a subset of S n which satisfies the following conditions:

A(m)⊆ T n
[PS̃]

, (8)

‖A(m)‖ ≥ exp
[

n
(

H(PS̃)−
τ
6

)]

, (9)

f (m,s) ∈ T n
[PX̃ |S̃]

(s), s ∈ A(m). (10)

Furthermore, let ( f ,φ) satisfy one of the following two conditions:

W n(φ−1(m) | f (m,s),s) ≥ 1− ε, s ∈ A(m), (11a)

1
‖A(m)‖ ∑

s∈A(m)

W n(φ−1(m) | f (m,s),s) ≥ 1− ε. (11b)

(a) In the causal CSI case, for n ≥ N(‖X ‖,‖S ‖,‖Y ‖,τ,ε),1 it holds that

1
n

logM ≤ I(U ∧Y )+ τ,

for some PUXSY ∈ Pτ(PX̃ |S̃PS̃,W ).
(b) In the noncausal CSI case, for n ≥ N(‖X ‖,‖S ‖,‖Y ‖,τ,ε), it holds that

1
n

logM ≤ I(U ∧Y )− I(U ∧S)+ τ,

for some PUXSY ∈ P(PX̃ |S̃PS̃,W ).

Furthermore, in both cases it suffices to restrict the rv U to take values in a finite
set U with ‖U ‖ ≤ ‖X ‖‖S ‖+ 1.

Proof. Our proof below is for the case when (11a) holds. The case when (11b) holds
can be proved similarly with minor modifications; specifically, in the latter case, we
can find subsets A′(m) of A(m), m ∈ M , that satisfy (8)–(10) and (11a) for some
ε ′,τ ′ > 0 with ε ′+ τ ′ < 1 for all n sufficiently large.

With (11a) holding, set

B(m) = {( f (m,s),s) ∈ X n ×S n : s ∈ A(m)}, m ∈ M .

1In our assertions, we indicate the validity of a statement “for all n ≥ N(.)” by showing the explicit
dependency of N; however, the standard picking of the “largest such N” from (finitely many) such
Ns is not indicated.
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Let PỸ = PX̃ S̃W be a pmf on Y defined by

PỸ (y) = ∑
s,x
PS̃X̃ (s,x)W (y | x,s), y ∈ Y .

Consequently,

W n(T n
[PỸ ]

| f (m,s),s) > ε + τ, s ∈ A(m), (12)

for all n ≥ N(‖X ‖, |S ‖, |Y ‖,τ,ε) (not depending on m and s in A(m)). Denoting

C(m) = φ−1(m)∩T n
[PỸ ]

,

we see from (11a) and (12) that

W n(C(m) | f (m,s),s) > τ > 0, ,( f (m,s),s) ∈ B(m),

so that

‖C(m)‖ ≥ gW n(B(m),τ),

where gW n(B(m),τ) denotes the smallest cardinality of a subset D of Y n with

W n(D | ( f (m,s),s)) > τ, ( f (m,s),s) ∈ B(m). (13)

With m0 = argmin1≤m≤M ‖C(m)‖, we have

M‖C(m0)‖ ≤
M

∑
m=1

‖C(m)‖= ‖T n
[PỸ ]

‖ ≤ expn

(

H(PỸ )+
τ
6

)

.

Consequently,

1
n

logM ≤ H(PỸ )+
τ
6
− 1

n
loggWn(B(m0),τ). (14)

The remainder of the proof entails relating the “image size” of B(m0), i.e.,
gWn(B(m0),τ), to ‖A(m0)‖, and is completed below separately for the cases of
causal and noncausal CSI.

First consider the causal CSI case. For a rv Ŝn distributed uniformly over A(m0),
we have from (9) that

1
n

H(Ŝn) =
1
n

log‖A(m0)‖ ≥ H(PS̃)−
τ
6
. (15)
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Since
1
n

H(Ŝn) =
1
n

n

∑
i=1

H(Ŝi | Ŝi−1) = H(ŜI | ŜI−1, I),

where the rv I is distributed uniformly over the set {1, . . . ,n} and is independent of
all other rvs, the previous identity, together with (15), yields

H(PS̃)−H(ŜI | ŜI−1, I)≤ τ
3
. (16)

Next, denote by X̂n the rv f (m0, Ŝn) and by Ŷ n the rv which conditioned on X̂n, Ŝn,
has (conditional) distribution W n, i.e., Ŷ n is the random output of the DMC W when
the input is set to

(

X̂n, Ŝn
)

. Then, using [3, Lemma 15.2], we get

1
n

loggW n(B(m0),τ)≥ 1
n

H(Ŷ n)− τ
6
, (17)

for all n sufficiently large. Furthermore,

1
n

H(Ŷ n) =
1
n

n

∑
i=1

H(Ŷi | Ŷ i−1)

≥ H(ŶI | X̂ I−1, ŜI−1,Ŷ I−1, I)

= H(ŶI | X̂ I−1, ŜI−1, I)

= H(ŶI | ŜI−1, I),

where the last-but-one equality follows from the DMC assumption, and the last
equality holds since X̂ I−1 = f (m0, ŜI−1). The inequality above, along with (17) and
(14) gives

1
n

logM ≤ H(PỸ )−H(ŶI | ŜI−1, I)+
τ
3
. (18)

Denote by Û the rv (ŜI−1, I) and note that the following Markov property holds:

ŶI −◦− X̂I, ŜI −◦−Û.

Also, from the definition of B(m0),

PX̂I ,ŜI
(x,s) =

1
n

n

∑
i=1

PX̂i,Ŝi
(x,s)

=
1
n

n

∑
i=1

∑
x,s∈B(m0)

1(xi = x,si = s)
‖B(m0)‖

=
1

‖B(m0)‖ ∑
x,s∈B(m0)

Qx,s(x,s),
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where Qx,s(x,s) is the joint type of x,s, and the last equation follows upon
interchanging the order of summation. It follows from (8) and (10) that ‖PX̂I ,ŜI

−
PX̃ S̃‖ ≤ δn for some δn → 0 satisfying the delta convention. Furthermore,

‖PŶI
−PỸ‖= ∑

y

∣
∣
∣
∣
∣
∑
x,s

W (y|x,s)PX̃ S̃(x,s)−∑
x,s

W (y|x,s)PX̂I ŜI
(x,s)

∣
∣
∣
∣
∣

≤ ∑
x,s

∑
y

W (y|x,s)
∣
∣
∣PX̃ S̃(x,s)−PX̂I ŜI

(x,s)
∣
∣
∣

= ‖PX̃ S̃ −PX̂I ŜI
‖ ≤ δn.

Let the rvs X̃ , S̃,Ỹ have a joint distribution PX̃ S̃Ỹ . Define a rv U which takes values in
the same set as Û , has PÛ |X̂I ŜI

as its conditional distribution given X ,S, and satisfies
the Markov relation

Y −◦−X ,S−◦−U.

Then using the continuity of the entropy function and the arguments above, (18)
yields

1
n

logM ≤ I(U ∧Y )+ τ,

and (16) yields
I(U ∧S)≤ τ,

for all n sufficiently large, where PUXSY ∈ Pτ(PX̃ S̃,W ).
Turning to the case with noncausal CSI, define a stochastic matrix V :

X ×S →S with

V (s′ | x,s) = 1(s′ = s),

and let gV n be defined in a manner analogous to gWn above with S n in the role of
Y n in (13). For any m ∈ M and subset E of S n, observe that

V n(E | f (m,s),s) = 1(s ∈ E), s ∈ S n.

In particular, if E satisfies

V n(E | f (m,s),s) > τ, s ∈ A(m), (19)

it must be that A(m)⊆ E , and since E = A(m) satisfies (19), we get that

‖A(m)‖= gV n(B(m),τ) (20)

using the definition of B(m). Using the image size characterization in (4) [3,
Theorem 15.11], there exists an auxiliary rv U and associated pmf PUXSY =
PU|XSPX̃ S̃W such that
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∣
∣
∣
∣

1
n

loggWn(B(m0),τ)−H(Y |U)− t

∣
∣
∣
∣
<

τ
6
,

∣
∣
∣
∣

1
n

loggV n(B(m0),τ)−H(S|U)− t

∣
∣
∣
∣
<

τ
6
, (21)

where 0 ≤ t ≤ min{I(U ∧Y ), I(U ∧S)}. Then, using (14), (20), and (21) we get

1
n

logM ≤ I(U ∧Y )+H(S |U)− 1
n

log‖A(m0)‖+ τ
2
,

which, by (9), yields

1
n

logM ≤ I(U ∧Y )− I(U ∧S)+ τ.

In (21), PUXSY ∈ P(PX̃ |S̃PS̃,W ) but need not satisfy (6). Finally, the asserted
restriction to PUXSY ∈ P(PX̃ |S̃PS̃,W ) follows from the convexity of I(U ∧Y )−
I(U ∧S) in PX |US for a fixed PUS (as observed in [5]).

Lastly, it follows from the support lemma [3, Lemma 15.4] that it suffices to
consider those rvs U for which ‖U ‖ ≤ ‖X ‖‖S ‖+ 1. �

5 The Strong Converse

Theorem 3 (Strong converse). Given 0 < ε < 1 and a sequence of (Mn,n) codes
( fn,φn) with e( fn,φn)< ε , it holds that

limsup
n

1
n

logMn ≤C,

where C =CSh and CGP for the cases of causal and noncausal CSI, respectively.

Proof. Given 0< ε < 1 and a (M,n)-code ( f ,φ) with e( f ,φ)≤ ε , the proof involves
the identification of sets A(m), m ∈ M , satisfying (8)–(10) and (11a). The assertion
then follows from Lemma 1. Note that e( f ,φ) ≤ ε implies

∑
s∈S n

PS (s)W n(φ−1(m) | f (m,s),s) ≥ 1− ε

for all m ∈ M . Since PS

(

T n
[PS]

)

→ 1 as n → ∞, we get that for every m ∈ M ,

PS

({

s ∈ T n
[PS]

: W n(φ−1(m) | f (m,s),s) >
1− ε

2

})

≥ 1− ε
3

(22)
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for all n ≥ N(‖S ‖,ε). Denoting the set

{

·
}

in (22) by Â(m), clearly for every

m ∈ M ,

W n(φ−1(m) | f (m,s),s) ≥ 1− ε
2

, s ∈ Â(m),

and

PS
(

Â(m)
)≥ 1− ε

3

for all n ≥ N(‖S ‖,ε), whereby for an arbitrary δ > 0, we get

‖Â(m)‖ ≥ exp [n(H(PS)− δ )]

for all n ≥ N(‖S ‖,δ ). Partitioning Â(m), m ∈ M , into sets according to the
(polynomially many) conditional types of f (m,s) given s in Â(m), we obtain a subset
A(m) of Â(m) for which

f (m,s) ∈ T n
m (s), s ∈ A(m),

‖A(m)‖ ≥ exp [n(H(PS)− 2δ )],

for all n ≥ N(‖S ‖,‖X ‖,δ ), where T n
m (s) represents a set of those sequences in

X n that have the same conditional type (depending only on m).
Once again, the polynomial size of such conditional types yields a subset M ′ of

M such that f (m,s) has a fixed conditional type (not depending on m) given s in
A(m), and with

1
n

log‖M ′‖ ≥ 1
n

logM− δ

for all n ≥ N(‖S ‖,‖X ‖,δ ). Finally, the strong converse follows by applying
Lemma 1 to the subcode corresponding to M ′ and noting that δ > 0 is arbitrary. �

6 Outer Bound on Reliability Function

An upper bound for the reliability function E(R), 0 < R < C, of a DMC without
states is derived in [3] using a strong converse for codes with codewords of a
fixed type. The key technical Lemma 1 gives an upper bound on the rate of
codes with codewords that are conditionally typical over large message-dependent
subsets of the typical set of state sequences and serves, in effect, as an analog of
[3, Corollary 6.4] for state-dependent channels to derive an upper bound on the
reliability function.
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Theorem 4 (Sphere packing bound). Given δ > 0, for 0 < R <C, it holds that

E(R)≤ ESP(1+ δ )+ δ ,

where

ESP = min
PS̃

max
PX̃ |S̃

min
V∈V (R,PX̃ S̃)

[

D(PS̃‖PS)+D(V‖W | PX̃ S̃)
]

(23)

with

V (R,PX̃ S̃) = VSh(R,PX̃ S̃) =
{

V : X ×S → Y : max
PUXSY∈P0(PX̃ S̃,V )

I(U ∧Y )< R
}

,

(24)

and

V (R,PX̃ S̃) = VGP(R,PX̃ S̃)

=
{

V : X ×S → Y : max
PUXSY∈P(PX̃ S̃,V )

I(U ∧Y )− I(U ∧S)< R
}

, (25)

for the causal and noncausal CSI cases, respectively.

Remark. In (23), the terms D(PS̃‖PS) and D(V‖W | PS̃PX̃ |S̃) account, respectively,
for the shortcomings of a given code for corresponding “bad” state pmf and “bad”
channel.

Proof. Consider sequences of type PS̃ in S n. Picking Â(m) = T n
PS̃

, m ∈ M , in the
proof of Theorem 3, and following the arguments therein to extract the subset A(m)
of Â(m), we have for a given δ > 0 that for all n ≥ N(‖S ‖,‖X ‖,δ ), there exists a
subset M ′ of M and a fixed conditional type, say PX̃ |S̃ (not depending on m), such
that for every m ∈ M ′,

A(m)⊆ Â(m) = T n
PS̃
,

‖A(m)‖ ≥ exp [n(H(PS̃)− δ )],

f (m,s) ∈ T n
PX̃ |S̃(s), s ∈ A(m),

1
n

log‖M ′‖ ≥ R− δ .

Then for every V ∈ V (R,PX̃ S̃), we obtain using Lemma 1 (in its version with
condition (11b)), that for every δ ′ > 0, there exists m ∈ M ′ (possibly depending
on δ ′ and V ) with

1
‖A(m)‖ ∑

s∈A(m)

V n((φ−1(m))c | f (m,s),s) ≥ 1− δ ′
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for all n ≥ N(‖S ‖,‖X ‖,‖Y ‖,δ ′). Since the average V n-(conditional) probability
of

(

φ−1(m)
)c

is large, its W n-(conditional) probability cannot be too small. To that
end, for this m, apply [3, Theorem 10.3, (10.21)] with the choices

Z = Y n ×A(m),

S = (φ−1(m))c ×A(m),

Q1(y,s) =
V n(y | f (m,s),s)

‖A(m)‖ ,

Q2(y,s) =
W n(y | f (m,s),s)

‖A(m)‖ ,

for (y,s) ∈ Z, to obtain

1
‖A(m)‖ ∑

s∈A(m)

W n((φ−1(m))c | f (m,s),s) ≥ exp

(

−nD(V‖W | PX̃ |S̃PS̃)+ 1

1− δ ′

)

.

Finally,

e( f ,φ) ≥ ∑
s∈A(m)

PS (s)W n((φ−1(m))
c | f (m,s),s)

≥ exp[−n(D(PS̃‖PS)+D(V‖W | PX̃ |S̃PS̃)(1+ δ )+ δ )]

for n ≥ N(‖S ‖,‖X ‖,‖Y ‖,δ ,δ ′), whereby it follows for the noncausal CSI
case that

limsup
n
−1

n
loge( f ,φ)≤ min

PS̃

max
PX̃ |S̃

min
V∈V (R,PX̃ S̃)

[D(PS̃‖PS)

+D(V‖W | PX̃ |S̃PS̃)(1+ δ )+ δ ]

for every δ > 0. Similarly, for the case of causal CSI, for τ > 0, letting

Vτ(R,PX̃ S̃) =
{

V : X ×S → Y : max
PUXSY∈Pτ (PX̃ S̃,V )

I(U ∧Y )< R
}

, (26)

we get

limsup
n
−1

n
loge( f ,φ) ≤ min

PS̃

max
PX̃ |S̃

min
V∈Vτ (R,PX̃ S̃)

[D(PS̃‖PS)+D(V‖W | PX̃ |S̃PS̃)].

The continuity of the right side of (26), as shown in the Appendix, yields the claimed
expression for ESP in (23) and (24). �
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Appendix: Continuity of the Right Side of (26)

Let

f (R,PUX̃S̃) = min
V :I(U∧Y)<R
PY |X̃ S̃=V

D(PS̃‖PS)+D(V‖W | PX̃ |S̃PS̃). (27)

Further, let

g(PS̃,τ) = max
PUX̃|S̃:I(U∧S̃)≤τ

U−◦−X̃,S̃−◦−Y

f (R,PUX̃S̃), (28)

and

g(τ) = min
PS̃

g(PS̃,τ). (29)

To show the continuity of g(τ) at τ = 0, first note that g(τ) ≥ g(0) for all τ ≥ 0.
Next, let P0

S̃
attain the minimum in (29) for τ = 0. Clearly,

g(P0
S̃,τ) ≥ g(τ). (30)

Also, let Pτ
UX̃ |S̃ attain the maximum of g(P0

S̃
,τ) in (28). For the associated joint pmf

P0
S̃
Pτ

UX̃ |S̃, let Pτ
U denote the resulting U-marginal pmf, and consider the joint pmf

Pτ
UP

0
S̃
Pτ

X̃ |US̃
. Then, using (28) and (29) and the observations above,

f (R,Pτ
UP

0
S̃P

τ
X̃ |US̃)≤ g(0)≤ g(τ)≤ g(P0

S̃,τ) = f (R,P0
S̃P

τ
UX̃ |S̃).

The continuity of g(τ) at τ = 0 will follow upon showing that

f (R,P0
S̃P

τ
UX̃ |S̃)− f (R,Pτ

UP
0
S̃P

τ
X̃ |US̃)→ 0 as τ → 0.

The constraint on the mutual information (28) gives by Pinsker’s inequality [3, 4]
that,

τ ≥ D
(

Pτ
U|S̃P

0
S̃‖Pτ

UP
0
S̃

)

≥ 2
∥
∥
∥Pτ

U|S̃P
0
S̃ −Pτ

UP
0
S̃

∥
∥
∥

2
,
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i.e.,

∥
∥
∥Pτ

U|S̃P
0
S̃ −Pτ

UP
0
S̃

∥
∥
∥≤

√

τ
2
. (31)

For PUX̃ S̃ = Pτ
UP

0
S̃
Pτ

X̃ |US̃
, let V 0 attain the minimum in (26), i.e.,

PY |X̃ S̃ =V 0, I(U ∧Y )< R, and

f (R,Pτ
UP

0
S̃P

τ
X̃ |US̃) = D(PS̃‖PS)+D(V 0‖W | PX̃ |S̃PS̃).

By (31), for PUX̃S̃ = P0
S̃
Pτ

UX̃ |US̃
and PY |X̃ S̃ = V 0, by standard continuity arguments,

we have
I(U ∧Y )< R+ν,

and
D(PS̃‖PS)+D(V 0‖W | PX̃ |S̃PS̃)≤ f (R,Pτ

UP
0
S̃P

τ
X̃ |US̃)+ν,

where ν = ν(τ)→ 0 as τ → 0. Consequently,

f (R,P0
S̃P

τ
UX̃ |US̃)≤ D(PS̃‖PS)+D(V 0‖W | PX̃ |S̃PS̃)≤ f (R,Pτ

UP
0
S̃P

τ
X̃ |US̃)+ν.

Finally, noting the continuity of f (R,PUX̃S̃) in R [3, Lemma 10.4], the proof is
completed. �
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