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Abstract The main motivation for our present work is to reliably perform voice
(or signal) detection for a source of interest from a single microphone recording.
We rely on the assumption that the input signal contains invariant information
about the channel, or transfer function from each source to the microphone, which
could be reliably exploited for signal detection and classification. In this chapter
we employ a nonconventional method called generalized mutual interdependence
analysis (GMIA) that proposes a model for the computation of this hidden invariant
information present across multiple measurements. Such information turns out to
be a good characteristic feature of a signal source, transformation, or composition
that fits the model. This chapter introduces a unitary and succinct description of the
underlying model of GMIA, and the formulation and solution of the corresponding
optimization problem. We apply GMIA for feature extraction in the problem of own-
voice activity detection, which aims at classification of a near-field channel based
on access to prior information about GMIA features of the channel. It is extremely
challenging to recognize the presence of voice in noisy scenarios with interference
from music, car noise, or street noise. We compare GMIA with MFCC and cepstral-
mean features. For example, GMIA performs with equal error rates below 10 % for
music interference of SNRs down to −20 dB.
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1 Introduction

Our goal is to compute a simplified statistical data representation that retains
invariant information that is necessary for subsequent tasks such as classification
or prediction. Methods such as Fisher’s linear discriminant analysis (FLDA) [10],
canonical correlation analysis (CCA) [14], or ridge regression [23] extract “optimal”
representations of a dataset. For instance, FLDA defines a projection space that
maximizes the ratio of the between- and within-class scatter of the training data
to reduce the dimensionality of the input. CCA assumes one common source in
two datasets. The dimensionality of the data is reduced by retaining the space that
is spanned by pairs of projecting directions in which the datasets are maximally
correlated. In contrast, ridge regression finds a linear combination of the inputs
that best fits a desired response. In this chapter, we review an alternative second-
order statistical criterion to find an “optimal” dataset representation, called GMIA.
We aim to define an invariant computation or feature of high dimensional instances
of a single class, which does not change within its class, where the number of input
instances N is smaller than their dimensionality D.

We further consider the application of GMIA to the system identification problem
of an acoustical channel, as follows. Multiple people (representing the multiple
inputs of a linear acoustic system) could be engaged in conversational speech.
Audio could be captured using multiple microphones, which are the system outputs
available for identification of the linear time invariant system representing the
channels. Each transfer function input to output can be modeled as an FIR filter,
and the system can be modeled as a MIMO FIR acoustic system. Such a scenario,
encountered not just in acoustics but also in communications and other areas, is
conventionally addressed by blind source separation (for source estimation) and
blind channel identification techniques (for channel identification).

In this section we are interested in one sensor only, and we aim to exploit
partial additional information about the channel or source in order to recognize if
a particular channel, and consequently its source, is active. For example, practical
problems abstracted by this scenario are the own-voice activity detection (OVAD)
for hearing aids and headsets. The channel of interest corresponds to the invariant
channel of the owner’s voice to a single microphone. Detecting when the owner’s
voice is active, in contrast to external active speakers or noises, is of importance
for automatic processing (e.g., in the hearing aid). We are interested in a semi-blind
solution to OVAD, which exploits training information about the owner’s channel
(and possibly the owner’s voice) to assess if the currently identified active channel
fits the owner in contrast to external sources of sound.

Methods to blindly or semi-blindly identify the channel include second order
and higher-order statistical approaches. The latter require large amounts of data to
achieve good recognition performance, while second-order methods promise speed
and efficiency. We will apply GMIA, a second-order method, to effectively capture
the invariant own-voice channel information in noisy scenarios. Other applications,
in addition to OVAD for hearing aids and headsets, are the detection of the owner’s
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voice in videoconferencing, the detection and tracking of slowly varying dynamic
speech channels in interactive speech gaming, or the detection of active speech
channels in hands free communication. All could exploit a GMIA-based approach
to the corresponding single-input single-output (SISO) problem to address more
complex MIMO channel detection solutions.

The outline of this chapter is as follows. In Sect. 2 we discuss the importance of
voice detection applications and present related work. Section 3 revisits the gener-
alized mutual interdependence analysis (GMIA) method [4–7]. In Sect. 4 we bring
in a generative model for GMIA(λ ) parameterized by λ and demonstrate the effect
of noise on the extracted features. Section 5 analyzes the applicability of GMIA for
channel extraction and classification from monaural speech. In Sect. 6 we evaluate
the performance of GMIA for OVAD and compare these results with mel-frequency
cepstral coefficients (MFCC) and cepstral-mean (CM)-based approaches. We draw
conclusions in Sect. 7.

2 Motivation and Related Work

Signal detection in continuous or discrete time is a cornerstone problem in signal
processing. One particularly well-studied instance in speech and acoustic processing
is voice detection, which subsumes a solution to the problem of distinguishing
the most likely hypothesis between one assuming speech presence and a second
assuming the presence of noise. Furthermore, when multiple people are speaking, it
is difficult to determine if the captured audio signal is from a speaker of interest or
from other people. Speech coding, speech/signal processing in noisy conditions, and
speech recognition are important applications where a good voice/signal detection
algorithm can substantially increase the performance of the respective system.

Traditionally, voice detection approaches used energy criteria such as short-time
SNR estimation based on long-term noise estimation [22], likelihood ratio test
of the signal and exploiting a statistical model of the signal [3], or attempted to
extract robust features (e.g., the presence of a pitch [9], the formant shape [15], or
the cepstrum [13]) and compare them to a speech model. Diffuse, nonstationary
noise, with a time-varying spectral coherence, plus the presence of a superposition
of spatially localized but simultaneous sources make this problem extremely
challenging when using a single sensor (microphone).

Not surprisingly, during the last decade, researchers have focused on
multimodality sensing to make this problem tractable. Multiple channel voice
detection algorithms take advantage of the extra information provided by additional
sensors. For example, [21] blindly identify the mixing model and estimates
a signal with maximal signal-to-interference-ratio (SIR) obtainable through
linear filtering. Although the filtered signal contains large artifacts and is unsuitable
for signal estimation it was proven ideal for signal detection. Another example,
is the WITTY (Who is Talking to You) project from Microsoft [24], which deals
with the voice detection problem by means of integrated heterogeneous sensors
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(e.g., a combination of a close-talk microphone and a bone-conductive microphone).
Even further, multimodal systems using both microphones and cameras have been
studied [17].

The main motivation for our present work is to perform voice (or signal)
detection for the source of interest with the reliability of multimodal approaches
such as WITTY but in the absence of additional sensors such as a bone-conducting
microphone. We will demonstrate that a single microphone signal contains invariant
information about what may be the channel, or transfer function from each source
to the microphone, which could be reliably exploited for signal detection and
classification (e.g., OVAD). We use GMIA [6] to extract this invariant information
for both reference (training) and testing, and further to compare classification
performance on the OVAD problem to MFCC and CM-based approaches.

Mutual interdependence analysis (MIA) was first introduced by Claussen et al.
[4] to extract a representation, also called common or mutual component, which
is equally correlated with all the inputs. After successfully applying MIA to text-
independent speaker verification and illumination-robust face recognition [5], the
method was generalized to GMIA [6] to account for different noise levels and to
relax the requirement for equal correlation of the common component with each
input. A conclusive up-to-date statement of GMIA is presented in [7]. In the next
section we review GMIA and some of its properties.

3 Generalized Mutual Interdependence Analysis

In the following let xi ∈ R
D denote the ith input vector i = 1 . . .N and a column of

the input matrix X. Moreover, μ = 1
N ∑N

i=1 xi, 1 is a vector of ones and I represents
the identity matrix.

Extracting a common component s∈R
D in the inputs X can be defined as finding

a direction in R
D that is equally correlated with the inputs. That is:

ζ1 = XT · s where ζ is a constant. (1)

This is an underdetermined problem if D ≥ N. MIA finds an estimate of s, i.e., a
direction denoted by wMIA ∈ R

D that minimizes the projection scatter of the inputs
xi, under the linearity constraint to be in the span of X. That is, w = X ·c. Generally,
MIA is used to extract a common component from high-dimensional data D ≥ N.
Its cost function is given as:

wMIA = argmin
w,w=X·c

(
wT · (X− μ ·1T ) · (X− μ ·1T )T ·w

)
. (2)

By solving Eq. (2) in the span of the original inputs rather than mean subtracted
inputs, a closed-form solution can be found [4]:

wMIA = ζX · (XT ·X)−1 ·1. (3)
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The properties of MIA are captured in the following theorems:

Theorem 1. The minimum of the criterion in Eq. (2) is zero if the inputs xi are
linearly independent.

If inputs are linearly independent and span a space of dimensionality N ≤ D,
then the subspace of the mean subtracted inputs in Eq. (2) has dimensionality N−1.
There exists an additional dimension in R

N , orthogonal to this subspace. Thus, the
scatter of the mean subtracted inputs can be made zero. The existence of a solution
where the criterion in Eq. (2) becomes zero is indicative of an invariance property
of the data.

Theorem 2. The solution of Eq. (2) is unique (up to scaling) if the inputs xi are
linearly independent.

This is shown by the existence of the closed-form solution in Eq. (3). However,
it is important to note that, if w is not constrained to the span of the inputs, any
combination ŵMIA+b with b in the nullspace of X is also a solution. Also, the MIA
problem has no defined solution if the inputs are zero mean, that is, if X · 1 = 0.
The reason is that there exists w = 0 in the span of the inputs as a trivial solution to
Eq. (2).

The MIA data model in Eq. (1) is extended in [6] to incorporate measurement
noise n ∼ N (0,Cn) and to relax the equal correlation constraint from ζ1 to r:

r = XT ·w+n. (4)

We assume w to be a random variable. Our goal is to estimate w ∼ N (μw,Cw)
assuming that w and n are statistically independent. Given the model in Eq. (4), the
generalized MIA criterion (GMIA) is defined as:

wGMIA = μw +Cw ·X · (XT ·Cw ·X+Cn
)−1 · (r−XT ·μw

)
(5)

= μw +
(
X ·C−1

n ·XT +C−1
w
)−1 ·X ·C−1

n · (r−XT ·μw
)
. (6)

Throughout the remainder of the document, the GMIA parameters are Cw = I,
Cn = λ I, r = ζ1 and μw = 0. We refer to this parameterization by

GMIA(λ ) = ζX · (XT ·X+λ I
)−1 ·1. (7)

When λ → ∞, the GMIA solution represents the mean of the inputs. Indeed,
the inverse

(
XT ·X+λ I

)−1 → 1
λ I simplifying the solution to wGMIA → ζ

λ X · 1.
Furthermore, MIA [solution to Eq. (3)] is equivalent to GMIA(λ ) when λ = 0.
In the rest of this chapter, we denote MIA by GMIA(0) to emphasize their common
theoretical foundation.
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4 Generative Signal Model for GMIA

This section evaluates the behavior of GMIA(λ ) for different types and intensities
of additive distortions. In particular, we evaluate the effect of noise components
that are either recurring uncorrelated components or Gaussian noise. We use the
generative signal model in [7] to generate synthetic data with various properties.
In contrast to published work we show a gradual change in the intensities of the
different noise types and compare the feature extraction result to the true feature
desired. This allows an interpretation of GMIA(λ ) and analysis of its performance
on data with unknown noise conditions from the field.

Assume the following generative model for input data x:

x1 = α1 s+ f1 +n1

x2 = α2 s+ f2 +n2
...
xN = αN s+ fN +nN ,

(8)

where s is a common, invariant component or feature we aim to extract from the
inputs, αi, i = 1, . . . ,N are scalars (typically all close to 1), fi, i = 1, . . . ,N are
combinations of basis functions from a given orthogonal dictionary such that any
two are orthogonal, and ni, i = 1, . . . ,N are Gaussian noises. We will show that
GMIA estimates the invariant component s, inherent in the inputs x.

Let us make this model precise. As before, D and N denote the dimensionality
and the number of observations. Additionally, K is the size of a dictionary B of
orthogonal basis functions. Let B = [b1, . . . ,bK ] with bk ∈R

D. Each basis vector bk

is generated as a weighted mixture of maximally J elements of the Fourier basis
which are not reused ensuring orthogonality of B. The actual number of mixed
elements is chosen uniformly at random, Jk ∈ N and Jk ∼ U (1,J). For bk, the
weights of each Fourier basis element i are given by wjk ∼ N (0,1), j = 1, . . . ,Jk.
For i= 1, . . . ,D (analogous to a time dimension) the basis functions are generated as:

bk (i) =
∑Jk

j=1 wjk sin
(

2π iα jk
D +β jk

π
2

)
√

D
2 ∑Jk

j=1 w2
jk

with

α jk ∈
[

1, . . . ,
D
2

]
;β jk ∈ [0,1] ;

[
α jk,β jk

] �= [
αl p,βl p

]∀ j �= l or k �= p.

In the following, one of the basis functions bk is randomly selected to be the
common component s ∈ [b1, . . . ,bK ]. The common component is excluded from the
basis used to generate uncorrelated additive functions fn, n = 1, . . . ,N. Thus only
K − 1 basis functions can be combined to generate the additive functions fn ∈ R

D.
The actual number of basis functions Jn is randomly chosen, similarly to Jk, with
J = K − 1. The randomly correlated additive components are given by:
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fn (i) =
∑Jn

j=1 wjnc jn (i)√
∑Jn

j=1 w2
jn

with

c jn ∈ [b1, . . . ,bK ] ; c jn �= s, ∀ j,n; c jn �= cl p, ∀ j �= l and n = p.

Note that ‖s‖ = ‖fn‖ = ‖nn‖ = 1,∀n = 1, . . . ,N. To control the mean and variance
of the norms of common, additive, and noise components in the inputs, each
component is multiplied by the random variable a1 ∼N (m1,σ2

1 ), a2 ∼N (m2,σ2
2 )

and a3 ∼ N (m3,σ2
3 ), respectively. Finally, the synthetic inputs are generated as:

xn = a1s+ a2fn + a3nn (9)

with ∑D
i=1 xn (i) ≈ 0. The parameters of the artificial data generation model are

chosen as D = 1,000, K = 10, J = 10, and N = 20.
Throughout the experiments we keep the parameters m1 = 1, σ1 = 0.1, σ2 =

0.1 and m3 = 0 of the distributions for a1, a2, and a3 constant. We vary the mean
amplitude m2 of the recurring uncorrelated components and the variance σ3 of the
Gaussian noise and illustrate its effect on GMIA(0), GMIA(λ ), and the sample mean
in Fig. 1. The figure shows a matrix of 3D histograms for different parameters m2

and σ3. Each point in a histogram represents an experiment for a given value of
λ (x-axis). The y-axis indicates the correlation of the GMIA solution with s, the
true common component. The intensity (z-axis) of the point represents the number
of experiments, in a series of random experiments, where we obtain this specific
correlation value for the given λ . Overall, we performed 1,000 random experiments
with randomly generated inputs using various values of λ per histogram.

Results show that a change in the mean amplitude m2 of the recurring uncor-
related components fi has a minimal effect on GMIA(0) but greatly affects the
correlation coefficient of s with the sample mean. That is, the sample mean results
is a good representation of s only if m2 is low and the common component s is
dominant in the data. Moreover, this indicates that GMIA(0) succeeds in finding a
good representation of s.

The second row of Fig. 1 shows that an increased variance σ3 of the noise
can improve the GMIA(0) result. The increased noise level appears to acts as a
regularization in the matrix inversion when computing GMIA. This has the same
effect as an increased value of the regularization parameter λ .

Moreover, the experiments show that the results for all λ suffer for high noise
variances σ3, but that the spectral mean is affected the most. In all experiments,
GMIA(λ ) performs equally or outperforms GMIA(0) and the spectral mean. This
demonstrates that GMIA is more versatile than the spectral mean in extracting a
common component from data with an unknown and possibly varying distortion.
In the following section we evaluate how the extraction results are affected for
nonstationary, real-world data such as speech.
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Fig. 1 Histograms of GMIA(λ ) extraction performance for different levels of additive Gaussian
noise and uncorrelated additive components fi. The mean of the inputs extracts the common
component s well for low energy contributions of fi. Small levels of Gaussian noise result in a
drop of the GMIA(0) performance. Larger amount of Gaussian noise results first in an improved
GMIA(0) performance and later in a reduced extraction result overall λ . High levels of noise are
better addressed by GMIA(0) then the mean

S1

Hc
Near

S2

Hc
Far

Fig. 2 Own-voice activity detection (OVAD) scenario: person is wearing a headset; speech from
near-field (own), S1, or far-field (external sources), S2, is recorded on a single nearby microphone.
The signal incorporates channel information, e.g., HNear

c or HFar
c , respectively

5 Channel Extraction from Mono Speech Recordings

Lets us consider a single microphone recording of near-field and far-field nonover-
lapping conversational speech as in Fig. 2. As noted in Sect. 2, a potential application
of GMIA is to extract channel features in the context of owner speech detection for
hearing aids. This problem has been referred to as OVAD, to imply the recognition
of when the wearer of the hearing-aid (owner) is talking and when an external
speaker is talking in a conversation (between the owner and the external speaker).
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Such a detection facilitates, e.g., the hearing aid signal processing to be adapted
dynamically to own-voice (OV) or external-speaker (EXT) characteristics.

We aim for an understanding of the domain and timescales where real-world
acoustic data (e.g., conversational speech) fits the generative model studied in
Eq. (9). As a first step, in this section, we review the model for the recorded signal
and its dependence on speaker and channel characteristics. We use data from one or
more speakers for fixed positions (i.e., exhibiting common channels), as in Fig. 2,
to extract channel information using GMIA. Later, in Sect. 6, we address the OVAD
problem.

5.1 Speech and Channel Models

A speech signal can be modeled as an excitation that is convolved with a linear
dynamic filter, which represents the channel including the microphone charac-
teristic, the channel impulse response of the environment, and the vocal tract.
The excitation signal can be modeled for voiced speech as a periodic signal and

for unvoiced speech as random noise [8, p. 50]. Let E(p), H(p)
v , Hc, and S(p) be

the spectral representations of the excitation or pitch signal (covering the lungs
and vocal chords), the vocal tract filter (covering the mouth, tongue, teeth, lips,
and nasal cavity), the external channel impulse response, and the speech signal
parts of person p, respectively. Note that the channel impulse response implicitly
depends on the spatial location of the receiver. This can vary substantially from near-
field to far-field, or even over different far-field only or near-field only locations.
If the environment of the speaker is invariant (e.g., the speaker does not move
significantly) and we make simplifying assumptions to idealize the spectrum and
capture important features at the timescale of interest, assume the data can be

modeled as: S(p) = E(p) ·H(p)
v ·Hc. For person p and instance1 i, we obtain:

logS(p)
i = logE(p)

i + logH(p)
v + logHc. (10)

E(p)
i is nonstationary in general for timescales larger than the pitch period.2

H(p)
v may capture invariant characteristics of the speaker’s vocal tract as well as

phoneme-specific characteristics (and underlying speech neural control) that can be
considered stationary and hence invariant within phonetic timescales, in keeping
with the quasistationary assumptions of the speech process.3 This fundamental

1The instance i implicitly represents the timescale of interest, e.g., a timescale of the order of the
pitch period (10–20 ms) or of the order of the average word period (500 ms).
2The spectrum of the excitation changes slowly for voiced sounds and appears unchanged although
radically different over the duration of a consonant, at the phonetic timescale.
3A detailed analysis of these components of the speech production model is beyond present scope.
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model of speech production extended with the external channel transfer function
is the basis for defining inputs xi and the corresponding timescales where various
components play the role of s and fn from Eq. (9).

For example, [7] use training data from different nonlinearly distorted channels
for each person from various portions of the NTIMIT database [11]. The intuition
was that the channel variation results in a low contribution of the channel in the
GMIA extract while the vocal tract characteristic logH(p)

v is retained. In contrast,
in this chapter, we considered training instances xi from multiple people exploring
an identical external channel Hc (e.g., from the same external position and using
the same microphone, which is the case for own-voice recordings in OVR). In this

case the logE(p)
i and logH(p)

v components in Eq. (10) play the role of the orthogonal
components fn in our synthetic model (Eq. (9)), while logHc is the invariant. In such
a setup, GMIA can be used to identify invariant characteristics of the channel (e.g.,
near-field channel for OVR).

We use various portions of the TIMIT database [12] for our experiments in
this section. TIMIT contains speech from 630 speakers that is recorded with a
high quality microphone in a recording studio like environment. Each speaker is
represented by 10 utterances. We convolve the TIMIT speech with a head-related
transfer function (HRTF) to simulate various invariant channels. The output of an
algorithm for channel identification can thus be compared directly with the true
HRTF used to generate the data.

We chose a HRTF from a position on the right side of a dummy head with a
source distance of 20 cm, azimuth of 0◦ and at an elevation of −30◦ as invariant
channel, and a HRTF for the right side of the dummy head with a source distance of
160 cm, azimuth of 0◦ and at an elevation of 0◦ as external channel. The HRTF data
has been obtained from [18]. Thereafter, the data is windowed with half overlapping
Hann windows of 0.2 s length and transferred into the power spectral domain.

Our goal is to apply GMIA to extract channel information and evaluate if GMIA
representations can be used to distinguish different channels. Person-dependent

information is minimized by introducing variation in the excitation E(p)
i using

speech from both voiced and unvoiced signals. Note that speech signals contain
silence periods where no channel information is present. Furthermore, voiced
speech is sparse in the spectral domain. Therefore, not all parts of the channel
characteristic are fully represented at all times. Clearly, the channel does not equally
correlate with the spectral information of the speech from different time windows.
A GMIA representation will be computed separately from speech of the same or
multiple speakers.

5.2 Speaker Model

For one person p0, consider the vector xi obtained from a speech clip i:

xi = logS(p0)
i =

(
logHc + logH(p0)

v

)
+
(

logE(p0)
i

)
≈ s+ fi. (11)
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Fig. 3 Histograms as vertical slices of the plot of the correlation coefficients between GMIA(λ ),
for a fixed value of λ , from single-speaker data and two different HRTF’s. Dark gray bins
represent a large number and light gray bins a low number of instances with a particular correlation
coefficient. (a) The HRTF used to generate the speech data is well represented by the GMIA(λ )
result for λ = 101, resulting in a mean correlation coefficient of 0.9. (b) An HRTF that is not
contained in the speech data minimally correlates with the GMIA extract

We use data as above for one single person and with channels for near- and
far-field given by the HRTFs to the right side of the dummy head. According to
the data model in Eq. (11) we expect that GMIA computes a common component
capturing information about both the channel and the speaker characteristics.

Indeed, logHc + logH(p0)
v is invariant to the actual clip i used as input. Next we

compute GMIA and correlate the result with known channel information (HRTF) to
verify our hypothesis.

All experiments are repeated for 100 speakers and various values of λ . Figure 3a
illustrates the histogram of the correlation coefficients of the GMIA extract from the
near-field speech with the ground truth near-field HRTF for a 20 cm source/receiver
distance. Note that both wGMIA(10−4) ≈ wMIA and wGMIA(104) ≈ μ (the mean of the
inputs) do not compute maximal correlation coefficients. The median correlation
value at λ = 101 is 0.9, demonstrating that GMIA can extract good representations
of the original HRTF. In contrast, Fig. 3b shows histograms of the correlation coeffi-
cients with the HRTF from a far-field position (160 cm source/receiver distance) that
was not used in the data generation. The low correlation coefficients indicate that
channel characteristics are well separable with the extracted GMIA representations.

Note that Fig. 3a is similar to Fig. 1 for σ3 = 0.1 and m2 = 5, which represents the
case where the common component intensity varies over different training instances.
This confirms that for speech the channel is not equally correlated with the spectral
information from different time windows.

5.3 Channel Model

The previous subsection shows that the GMIA projection correlates well with the
channel and that it can be used as feature for channel detection or as classifier of the
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Fig. 4 Histograms (vertical slices of the plot) of the correlation coefficients between GMIA(λ )
from multiple-speaker data and two different HRTF’s. Dark gray bins represent a large number
and light gray bins a low number of instances with a particular correlation coefficient. (a) The
HRTF that is convolved with the data is well extracted for GMIA(λ ) with λ = 101 resulting in
a mean correlation coefficient of 0.9. The variance of the result is lower than for GMIA(λ ) from
single-speaker data (see Fig. 3) (b) The HRTF that is not contained in the data only minimally
correlates with the GMIA extract

channel. We would like to make the model in Eq. (11) more precise and eliminate
the speaker dependence as much as possible. For this we use data from multiple
speakers pi with i = 1 . . .N as follows:

xi = logS(pi)
i = (logHc)+

(
logE(pi)

i + logH(pi)
v

)
≈ s+ fi. (12)

We expect to compute a common component that better captures the channel.
The experiment is performed as follows. First, a number of speakers, corresponding
to the number of training instances N in Sect. 5.2, are selected randomly from the
TIMIT database. One of their 10 utterances is randomly selected and convoluted
with the previously chosen near-field HRTF. Thereafter, one speech segment (e.g.,
0.2 s long) is randomly selected from each speaker. These segments are thereafter
used to extract a GMIA representation in the log-spectral domain. The experiment
is repeated for 100 randomly selected sets of speakers and various values of λ .
Figure 4a shows a histogram of the correlation coefficients of the GMIA result
and the ground truth for the channel, the near-field HRTF. Figure 4b illustrates the
correlation coefficients between the GMIA extract and the HRTF from the external
channel (160 cm source/receiver distance) that was not used in the data generation.

Indeed, Fig. 4 shows a reduced variance of the correlation coefficients for
different speakers compared to Fig. 3 and thus a more reliable extraction of the
channel. GMIA will be further used for channel estimation in the OVAD problem.

6 Own Voice Activity Detection

Section 5 demonstrated the efficacy of GMIA to extract channel features using a
known HRTF as the channel convolved with the TIMIT speaker data under both
speaker model and channel model formulations. In this section, we extend this
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further to a realistic scenario of OVAD using the same large speaker database
convolved with near-field and far-field HRTFs to closely approximate own-voice
speakers and external speakers.

In the experimental scenarios used here with such data for OVAD, though the
underlying HRTF information is available (as was used in Sect. 5 for measuring the
correlation coefficients between extracted MIA features and the reference HRTF),
we assume the underlying HRTF information to be unknown and unavailable,
thereby treating them as implicit in the speech data (as is the case with real recorded
OV and EXT speaker data at an hearing aid); for this purpose, the underlying OV and
EXT channel information are equivalently considered only in the form as available
by means of estimates of channel information from held-out reference data, such
as by the GMIA extraction proposed here. Thus, in this scenario, how well the
GMIA-based features offer a good own-voice recognition performance when set
in a channel detection framework will serve to demonstrate the effectiveness of
GMIA to extract the underlying channel information from the actual OV and EXT
speech data.

Toward this, we demonstrate in this section the use of GMIA-based channel
features for OVAD in a verification framework posed as an hypotheses testing
problem. Further, in order to provide a comparative reference for the GMIA-based
approach, we consider two alternate approaches: one using cepstral mean as an
alternate channel feature and set in the same verification framework, and the other
using the conventional speech feature, namely, MFCC, set in a speaker verification
framework. We work with a 100-speaker database convolved with near-field and far-
field HRTFs to closely represent own-voice and external speakers. The performance
of these three verification systems are given and compared in terms of the equal-
error-rate (EER) measure. Additionally, given that GMIA is specifically formulated
to handle real-world data with additive noise, we also demonstrate the effectiveness
of GMIA for noisy data by considering three noise conditions, namely, street, car,
and music noises, at different SNRs (clean, 20 dB, 10 dB, 0 dB, −10 dB and−20 dB)
and show how its parameterization (in terms of λ —the assumed noise variance)
allows a superior performance at a range of optimal λ , in comparison to the other
two approaches (cepstral-mean- and MFCC-based speaker-verification).

6.1 GMIA Based Verification Framework for OVAD

Given the conversational speech signal, the OVAD problem can be reduced to that
of detecting the underlying channel. This in turn involves extracting the channel
feature from the speech signal and classifying it as own-voice or external-speaker
channel, thereby comprising a 2-class problem. Alternately, this can also be viewed
as a “own-voice verification” problem (e.g., as in speaker-verification), set in a
hypothesis testing framework of deciding between the two hypotheses:

H0: Input speech segment is own voice.
H1: Input speech segment is not own voice (i.e., external speaker).
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The verification framework adopted here is essentially as in speaker-verification,
which is well established [2, 19]. We outline this here as adopted to the channel
verification task: Given a set of OV and EXT speakers, a test OV speaker is verified
as OV speaker with respect to a set of OV channel features extracted from another
set of OV speakers. The latter is referred to as “reference” OV channel features, and
serves to represent the underlying unknown OV channel, as extracted by GMIA;
such a channel information, by virtue of being speech- and speaker independent,
can be expected to be invariant across a set of OV speakers and to generalize to an
unseen test OV speaker. Likewise, a test external (EXT) speaker can be verified as
“not OV” speaker against the same set of reference OV channel features. In general,
a set of test OV/EXT speakers represented in terms of their channel features are
verified in this manner with respect to another set of reference OV channel features,
thus constituting a statistically robust channel verification task.

Ideally, the OV test GMIA features ought to yield high correlation scores
(or alternately, low distance scores) with OV reference channel features, while
the EXT test GMIA features yield low correlation scores with the OV reference
channel features. If the features represent the OV and EXT channels well and
offer good separability in the GMIA feature space, the corresponding OV and EXT
score distributions are also well separated. An optimal threshold is determined on
the OV and EXT score distributions which minimizes false rejections (fr, which
is the number of true OV features rejected as “not OV”) and false acceptances
(fa, which is the number of true EXT features accepted as “OV”). The corresponding
EER of (Prob(fr), Prob(fa)) is reported as the OVR system performance, with lower
EER implying a better performance.

6.2 Alternate Approaches

In order to provide a baseline reference to the OVAD by GMIA-based channel
features as discussed above, we also consider two other alternatives to OVAD:
one using an alternate channel feature extraction, namely, the “cepstral mean,” and
another using a speaker-verification approach wherein OVR is carried out in terms
of verifying whether the input speaker is the wearer or not.

6.2.1 Cepstral-Mean-Based OVAD

The mean vector obtained from GMIA for large λ (λ → ∞) corresponds to the
mean of the log-spectral vectors in a clip (analysis window for extracting a GMIA
vector). Alternately, one can consider the mean of the cepstral vectors derived by
an inverse FFT or DCT of the log-spectral vectors, as is done for deriving cepstral
coefficients or MFCCs in speech recognition [16]. This mean vector, referred to
as “cepstral-mean” (CM) in speech recognition, is popularly used in the context
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of cepstral mean normalization (CMN) for channel compensation [1, 16]. Here, it
is already a well established concept that the cepstral mean of the log spectra of
long speech intervals approximates the channel cepstra and that subtraction of this
long-term averaged cepstral-mean from the individual frames of cepstral features
removes the channel effect, thereby rendering the resultant cepstral vectors robust
to channel variability (such as arising from channel differences in telephony speech
recognition due to differences in handset, physical channel media, wireless network
channels, etc., particularly between training and test conditions).

6.2.2 Speaker-Verification-Based OVAD

In a OVAD task, the OV speaker is fixed and given and can be made to provide
training data to define OV models that characterize the OV speaker. By this,
the OVAD task can be alternately defined as a conventional speaker-verification
task of treating the OV speaker as the target speaker and EXT speakers as the
impostor speakers. For this, it becomes necessary to use conventional “speaker”
feature representations, such as MFCC [2, 19]. In this case, the OV speaker is
represented by a statistical model (GMM) or a nonparametric model (VQ) in the
MFCC feature space.

The distribution of the MFCC vectors (and the GMM- or VQ-based
representation of this distribution) of a speaker characterizes the unique acoustic
signature or footprint of that speaker in the MFCC feature space as manifesting
in the unique spectral characteristics of his voice, manner of articulation of the
different sounds of the language (phonemes), and spectral dynamics (which can
be potentially captured in the delta and delta-delta MFCCs). The OV and EXT
speaker data occupy different regions in the feature space, by virtue of the fact
that the spectral characteristics of each of these speech is a result of convolution
with different channels (here, HRTF). An OV speaker model thereby offers a
better match with OV test speaker data than with EXT test speaker data, which
then becomes the primary basis of OVAD by MFCC-based speaker verification.
The verification task is thus essentially as described in Sect. 6.1, but constituting a
“speaker” verification (as against “channel” verification, since the MFCC features
here serve as “speaker” features) in this case taking the form of computing OV
scores between OV test MFCC vectors and the OV models and EXT scores between
EXT test MFCC vectors and the OV models, subsequently forming the OV and EXT
score distributions and then determining the EER.

6.3 Experimental Setup

Here, we present the experimental details of the three OVAD tasks, namely,
GMIA-based channel verification, cepstral-mean (CM)-based channel verification,
and MFCC-based speaker-verification. These three frameworks are as described
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generically earlier in Sects. 6.1 and 6.2. While the three tasks have specific
differences due to their underlying idiosyncratic frameworks, they share an overall
experimental scenario, comprising the following common aspects.

All the OVAD experiments use a randomly selected (but fixed) subset of 100
speakers from the TIMIT database (of 630 speakers) as the test set of OV and
EXT speakers, with each speaker having 10 sentences, each 3 to 4 s duration. The
fixed subset of 100 test speakers is convolved with single fixed near-field and far-
field HRTFs to generate the own voice and external type of speakers, respectively
(referred to as OV and EXT henceforth); the HRTFs used here are as described in
Sect. 5. In order to examine the noise robustness of GMIA and the two alternate
approaches, we consider three different noise conditions, namely, street, car, and
music, and five SNRs for each of these noise conditions (20 dB, 10 dB, 0 dB,
−10 dB, and 20 dB), in addition to the clean case. The specific noise data is added
to the original clean TIMIT sentences at the desired SNR subsequent to the HRTF
convolutions, i.e., to the OV and EXT data.

We now describe the specific variations in the experiments for each of the three
OVAD tasks.

6.3.1 GMIA-Based OVAD

While the 100 speakers as defined above constitutes the test data, GMIA
experiments use a set of 300 speakers (different from the 100 test speakers) to
define the “reference” OV channel feature. This is motivated by the channel model
formulation in Sect. 5.3, where a GMIA vector is extracted in a speaker-independent
manner. Here, a single GMIA reference vector is extracted from the 300-speaker
clean data, i.e., with N = 300, as defined in Sect. 5.3.

For the noise-added experiments, only the test data is made noisy, while the
above reference GMIA vector is extracted and kept fixed from clean 300 speaker
data. For the purposes of examining and establishing the noise-robust advantage
intrinsic to GMIA through its parameter λ , the GMIA-based channel verification
experiments are conducted for λ varying over the range of [10−4 to 104]. One such
experiment (for a given λ ) consists of using 100 test OV and EXT speaker data
and computing 1 GMIA vector for each speaker (from the entire duration of 30
to 40 s of that speaker, corresponding to N = 300–400 in X of Eq. (7)). The test
database of 100 speakers thus yields 100 OV and EXT scores, from which the EER
corresponding to the given λ is obtained. For a given noise-type and SNR, EER is
obtained as a function of λ over the range [10−4 to 104]. Such an EER-vs-λ curve
is obtained for all the 6 SNRs (clean, 20 dB, 10 dB, 0 dB, −10 dB, and 20 dB), for
each noise type (street, car, and music).

6.3.2 Cepstral-Mean-Based OVAD

The experimental framework for this task uses the identical test set of 100 speakers
as above, while differing only in the way the reference cepstral-mean channel
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feature vector is derived and in how the test set scores are computed in a leave-
one-out framework, in order to offer a statistically robust verification task; this is
outlined below.

For a given speaker (OV or EXT), a cepstral-mean vector is computed from the
entire duration of that speaker (30 to 40 s, yielding 300–400 cepstral vectors, each
obtained using framesize of 200 ms and overlap of 100 ms). The cepstral vector for
each frame is obtained by a DCT of the log-spectral vector.

For a given test OV speaker (among 100 test speakers), the remaining 99 OV
speakers are defined as the reference channel speakers. 1 cepstral-mean vector is
computed for each of these 99 speakers (from clean data), thereby providing 99
clean reference channel vectors (for that test OV speaker). One score is computed
between the test cepstral-mean vector (from the entire duration of that test speaker)
and the reference cepstral-mean vector (from among the 99 reference vectors) which
has the highest correlation with the test cepstral-mean vector. For the given test
OV speaker, the corresponding EXT speaker (the same speaker in the 100 speaker
database, but now from the EXT set) is used to compute the EXT score with respect
to the same OV reference channel vectors.

The above is repeated for each of the 100 test OV speakers as the test speaker
(with the remaining 99 speakers forming the reference channel set), thereby yielding
100 OV and EXT scores, from which the score distribution is formed and EER
determined; this corresponds to a specific noise type and SNR. EERs are obtained
for all 5 SNRs and clean cases for the 3 noise types (street, car, and music).

6.3.3 MFCC-Based OVAD

This OVAD task differs in several respects from the above two channel verification
tasks, in that it is essentially a speaker verification task and therefore has a fairly
different experimental setup, though sharing the broad parameters with the above
tasks to allow for a fair comparison.

The primary feature for this task is the MFCC vector computed with a framesize
of 20 ms and overlap of 10 ms, constituting quasistationary timescales as required
to derive spectral information of speech data. This yields 100 MFCC vectors per
second of speech data, and each TIMIT speaker (of duration 30–40 s) has about
3000–4000 vectors. The MFCC feature vector used here is derived with a set of
40 triangular filters applied on the log spectra of a frame followed by DCT on the
filter energy outputs to yield the cepstral coefficients; the MFCC vector used is of
dimension 36, consisting of 12 cepstral coefficients (coefficients 2 to 13, with the
first energy co-efficient not used, thereby making the feature insensitive to signal
energy), 12 delta and 12 delta-delta coefficients.

The verification task here is set in the leave-one-out framework (as defined for the
cepstral-mean task). For a given test speaker, the remaining 99 speakers are used to
define the reference OV speakers against which the test speaker MFCCs are scored.
Each of these 99 speakers is represented by a VQ codebook of size 64, considered
adequate from established speaker-identification tasks [20].
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A scoring window is defined for the test data for deriving a score with respect to
the reference VQ codebooks. The scoring windows used here are 1, 2, 4, 8, 16 and
30 s. For a specific scoring window duration, an accumulated dissimilarity (distance)
score is computed for the window with respect to each of the 99 VQ codebooks.
The accumulated score for a VQ codebook is the sum of the individual scores of
the MFCC vectors in the window, the individual score of a vector being the distance
between the vector and the nearest codevector in the VQ codebook. The final score
of the test window is determined as the minimum across the 99 VQ codebooks, i.e.,
a window of test vectors has a single score with respect to the best scoring reference
VQ codebook.

For a given test window duration, OV and EXT scores are computed over the test
data duration of a speaker and score distributions formed from such scores from all
test speakers in the above leave-one-out framework; an EER is obtained for each test
window duration for a given noise type and SNR. For the different noise types and
SNRs, only the test data is subjected to noise, while the reference VQ codebooks
are maintained as derived from clean data.

6.4 OVAD Results Analysis

In this section, we present results of the above three OVAD tasks (GMIA based
channel verification, CM-based channel verification, and MFCC-based speaker-
verification) for different noise types and SNRs. The performance of the three
verification approaches are given in terms of EER, as defined earlier in Sect. 6.1,
in street, car, and music noises, respectively, for different SNRs.

6.4.1 OVAD for GMIA, CM, and MFCC in Noisy Conditions

Figure 5a–c show EER as a function of λ for GMIA. As expected, the EER shows
a pronounced dependence on λ , consequently offering the best performance at
λ = 100 consistently for both clean and noisy cases. This is in agreement with
the similar dependence and optimality shown by the correlation coefficients for the
experiments reported in Sect. 5.3. Optimal results are obtained similarly for values
of λ = 0.1–10. This validates the importance of the parameterization of GMIA in
terms of λ to handle real-world noisy data.

�
Fig. 5 Own-voice activity detection with GMIA(λ ), MFCC, and CM for various noise types and
levels. (a) Street noise above 0, dB SNRs enables GMIA-based own-voice activity detection with
EERs below 10 %. GMIA(100) achieves best results. (b) Car noise above −10 dB SNRs enables
GMIA-based own-voice activity detection with EERs below 5 %. There is a clear improvement
for λ = 100 over the spectral mean. (c) Music noise is least affecting the GMIA-based own-voice
activity detection. (d) CM performs mostly below the spectral mean and by a large margin below
GMIA(100). MFCC performs below GMIA(100) for high SNRs and at level for low SNRs
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More specifically, it can be noted that for low SNRs and for all noise types, the
optimal λ results in a prominent dip in EER, when compared to MIA (for λ = 10−4)
and the spectral mean (for λ = 104). This is in line with the basis of the channel
model formulation in Sect. 5.3, indicating the ability of GMIA (at optimal λ ) to
extract an invariant component in the presence of a higher degree of uncorrelated
additive components fi [in Eq. (12)], in this case corresponding to large variability
in log-spectral components corrupted with higher levels of noise (lower SNRs).

With regard to MFCCs, Fig. 5d shows that MFCC offers competitive perfor-
mance to GMIA (comparable or even lower EERs at times, such as for street noise
at −20 dB and −10 dB and car noise at −20 dB) for lower SNRs, while the optimal
GMIA performances are better than MFCC for high SNRs. The better performance
of GMIA over MFCCs (particularly for high SNR cases) is accounted for as follows.
MFCC-based speaker-verification approach attempts to model the OV (or EXT)
space as the feature space spanned by the speech of the owner (or external) speaker
(i.e., spanned by all the phonetic realizations as is unique to a speaker) and hence
implicitly captures both the channel and speaker information. This in turn makes
the feature space occupied by the OV and EXT speaker data to be large and
diffuse, leading to potentially higher overlap of their feature spaces and a consequent
higher overlap of the OV and EXT score distributions with associated higher EERs.
In contrast, the GMIA features represent the channel information directly with
minimal associated speaker information (as was evident from the results in Fig. 4,
where the channel model, being extracted in a speaker-independent manner, offers
lower variance of the correlation coefficients) and consequently better separability
between the OV and EXT spaces and associated lower EERs.

Within the channel modeling framework, the alternative cepstral-mean features
(Fig. 5d) have higher EERs than the “spectral mean” of GMIA at λ = 104 (i.e.,
the asymptotic performance for GMIA for λ → ∞), particularly for lower SNRs.
Moreover, the EERs for cepstral mean are significantly higher than the best GMIA
EERs for all noise types and SNRs. In general, while CM offers reasonably
comparable performance at clean conditions, it degrades severely with increase
in noise levels and has poor noise robustness. When compared to MFCC, MFCC
clearly outperforms CM for all cases.

6.4.2 OVAD for GMIA, CM, and MFCC for Varying Test Durations

Figure 6 shows an important computational aspect of GMIA—the duration over
which a single GMIA vector is computed. In this figure, EER-vs-λ is shown for
varying durations (1, 2, 4, 8, and 16 s) over which the GMIA vector is computed
in the test data. GMIA exhibits no particular sensitivity to this duration (at the
optimal λ ) for clean case (Fig. 6a). Even 1 s of data is sufficient to realize a 0 %
EER for the clean case at the optimal λ .

However, for the noisy case (car noise at 0 dB) in Fig. 6b, the EER curve worsens
with decrease in the duration (from 16 s to 1 s). For 1 s data, even the EER at
optimal λ is as high as ∼30 % and it needs 4 s of data to enable EERs ∼8 %.
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Fig. 6 Own-voice activity detection with GMIA(λ ) and MFCC for various test durations.
(a) GMIA(100) and the spectral mean both outperform the MFCC in case of no noise.
(b) GMIA(100) outperforms MFCC for car noise with long test durations and achieves similar
results for short test durations. MFCC performs better then the spectral mean

This shows that channel extraction with GMIA requires large amounts of data
to enable noise-robust extraction, i.e., larger data implying sufficient uncorrelated
components [f in Eq. (12)] to enable their cancellation and reliable extraction of the
common channel component. This will impact online applications, where shorter
durations (over which an OVAD decision is reported) will be clearly preferred.

Considering MFCC, GMIA(100) offers better performance than MFCC for the
clean case. For the noisy case (Fig. 6b), GMIA(100) is again better than MFCC for
longer durations, but comparable for shorter durations. The dependence of MFCC
on longer durations is consistent with previously reported results on MFCC-based
speaker verification where it is known that test durations of the order of 5–10 s are
necessary to achieve optimal performance [20]; this is primarily due to the fact that
such speaker verification relies on having long acoustic signature of the speaker to
yield a sufficiently discriminating accumulated score.

Considering CM, for clean cases, CM has comparable performance to the
spectral mean (GMIA(104)); however, for the noisy case, CM is worse than MFCC
and also the spectral mean (GMIA(104)), indicating that CM is more sensitive to
noise than GMIA, though it can offer comparable performance to the spectral mean
for clean conditions.
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7 Conclusion

GMIA is a low-complexity second-order statistical method for projecting data in a
subspace that captures invariant properties of the data. This chapter summarizes
the theory behind GMIA in a unitary presentation and most importantly carries
the reader through a succession of increasingly difficult application examples.
The examples come from a conspicuous albeit well-studied signal processing
problem: voice (signal) activity detection and classification. We show how real-
world conversational speech data should be modeled to fit the GMIA assumptions.
From there, low-complexity GMIA computations can induce reliable features that
are used for classification under noisy conditions and operate with small amounts
of data. Furthermore, our results push the state of the art and are intriguing. For
example, GMIA features perform better than cepstral power and mel-frequency
cepstral coefficient features, particularly in noisy conditions, and are amenable to
online (real-time) detection algorithms. More significantly, the approach opens the
door for a large number of possible applications where a signal source (e.g., a
speaker), characterized by a slow varying or invariant channel that is learned can be
tracked from single channel data. The GMIA approach derived and applied in this
chapter resonates with the principle of doing more with less, which will certainly
find new applications in discrete time signal processing in the near future.
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