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Abstract This chapter considers the structure of groups of operators preserving the
aperiodic autocorrelation peak sidelobe level of mth root codes. These groups are
shown to be helpful for efficient enumeration of codes by peak sidelobe level for a
given m and given code length N. In the binary case, it is shown that there is a single
Abelian group of order 8 generated by sidelobe-preserving operators. Furthermore,
it is shown that shared symmetry in the binary Barker codes can be discovered in a
natural way by considering degeneracies of group actions. The group structure for
m = 4 (the quad-phase case) is shown to have higher complexity; in fact, instead of
a single group, there are four groups (two pairs of isomorphic groups), and they are
no longer Abelian. Group structure is identified for the cases of odd code lengths N,
leaving group structure for even-length cases mostly unresolved. Moving to general
mth roots codes, it is shown that results found for the quad-phase case generalize
quite well. In particular, it is shown that there are 4m2 groups. All m groups are
identified for any odd m. When m is even, the structure for odd code lengths N is
identified. The group structure for m even and N even is left unresolved.

Keywords Barker code • Skew-symmetry • Autocorrelation sidelobes • Binary
code • Polyphase code • Unimodular code • Group action

1 Introduction

In signal processing terminology, a code is a finite sequence of complex scalars,
called code elements. A code is called unimodular if each of its elements has
modulus 1 (hence unimodularity refers to the elements rather than to the code which,
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if it has N elements, has size
√

N ). A subset of the unimodular codes is the set of
polyphase codes, for which all elements have elements that are mth roots of unity
for some n. Polyphase codes with n= 2 are called binary codes; all elements are ±1.

Binary and polyphase codes that achieve low aperiodic autocorrelation (AAC)
average or peak sidelobe levels are valuable for radar and communications appli-
cations. This is due to the fact that the autocorrelation function approximates the
response for the matched (or North) filter for phase-coded signals [16]. The matched
filter is optimal for signal-to-noise ratio, and hence can pull signals out of receiver
inputs where the signal is buried in noise.

If it is desired to find the lowest peak sidelobe level for a given code length, or
codes which achieve it, the most approach is exhaustive search. Taking the search
space as all mth root codes for some m and some length N, it is helpful to consider
a partition of this space into equivalence classes relative to a group generated by
sidelobe-preserving operators. If a method can be found which involves searching
single representatives from each equivalence class, the search may be expedited.
Furthermore, listing the best representative (for some measure of sidelobe level of
interest) is more efficient than listing the best codes from the search space.

Because search techniques quickly grow computationally costly, even
prohibitive-ly so, as code length grows, it is tempting to try and identify patterns in
codes that might allow the construction of codes with a good chance of providing
low sidelobe levels. Here is possibly another opening for the use of sidelobe-
preserving operator groups, (SPGs) may provide some help. For the most notable
example of low-sidelobe codes, the binary Barker codes, those of odd length share
a skew-symmetric property closely linked to degeneracies in actions of the sidelobe
preserving group on these codes. Knowledge of such a symmetry can narrow the
search space greatly. For example, for odd-length binary codes of length N, if, rather
than searching all the codes, only skew-symmetric codes are searched, the search
space is reduced from size 2N to size 2(N−1)/2. This computational cost benefit
comes at the cost of possibly missing optimal-sidelobe-level codes.

It is natural to ask whether something like skew symmetry, and its connection
to a group degeneracy, can be found for non-binary codes. In order to suggest this
possibility, this chapter will examine a quad-phase code with Barker-level sidelobes
that satisfies a symmetry much like skew symmetry. Furthermore, it will be shown
that an operator in the associated group maps this code to itself, meaning that
the isometry subgroup for this code has more than one element, and hence its
equivalence class degenerates under group action.

The chapter is organized as follows. After an introduction (Sect. 1) and notation
and terminology (Sect. 2), Sect. 3 will discuss motivation for examining SPGs.
Section 4 will look at the group structure for the binary case. Section 5 will show
that consideration of degeneracies in group actions for odd-length binary Barkers
leads in a naturalway to the uncovering of their skew-symmetry-property. Section 6
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will then consider the group structure for the quad phase case. Finally, Sect. 7 will
discuss general mth root, to which findings for the quad-phase case are found to
generalize quite well.

2 Basic Notation and Terminology

Let Qm represent the set of mth roots of unity or the set of m complex numbers z
such that zm = 1. For a specified value of m ≥ 2, let

x = [x1,x2, . . . ,xN ] (1)

denote an N-length code, each of whose elements resides in Qm. Furthermore, let
(Qm)N mean the set of codes x with elements in Qm that is,

(Qm)N = {x : |x|= N,xi ∈ Qm, i = 1, . . . ,N}. (2)

Clearly, |(Qm)N |= mN . For the special case of m = 2, the codes x ∈ (Q2)N will be
referred to as binary codes of length N.

The AAC sequence for an x ∈ (Qm)N has length 2N − 1 and is defined by

AACx = x∗ xc, (3)

where ∗ means acyclic convolution, x means the reversal of a code x, and xc

means elementwise complex conjugation. The elements of the AAC of x may be
represented explicitly in terms of sums of pairwise products of elements of x in the
following way:

AACx(k) =
N−|k−N|

∑
i=1

xix
c
i+|k−N| (4)

for k = 1, . . . ,2N − 1. In the binary case, the elements of x are real (either 1 or −1),
so the complex conjugation operation can be ignored.

The “peak” of the autocorrelation is AACx(N). The peak is equal to N, since

AACx(N) = x1xc
1 + · · ·+ xNxc

N = |x|2 = N. (5)

Elements for indices k �= N are referred to as “sidelobes” of the autocorrelation. The
autocorrelation is symmetric with respect to the peak; that is,

AACx(k) = AACc
x(2N − k) (6)

for k = 1, . . . ,2N − 1.
The “peak sidelobe level” for a code x is defined to be

PSL x = max
k �=N

|AACx(k)|. (7)
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The lowest achievable value of PSL x for x ∈ (Qm)N for any m ≥ 2 and N ≥ 1 is 1.
This is because when k = 1 or k = 2N−1, the sidelobe is a x1xN , so its modulus is 1.
The binary codes x that achieve PSL x = 1 are called Barker codes, after the author
of an early paper identifying these codes [1]. When m > 2, codes x ∈ (Qm)N that
achieve PSL x = 1 are called generalized Barker sequences [7] or polyphase Barker
sequences [6].

Finally, some notation is needed for discussing groups and group actions. An
expression of the form < g1,g2, . . . ,gk > will mean the group generated by the
elements g1, . . . ,gk. Given a group G and two elements g,h ∈ G, the notation gh will
be shorthand for the conjugation of g by h, that is, hg−1 (this is not to be confused
with complex conjugation). Given two groups G and H, the notation G×H will
represent the Cartesian product of G with H, and GH will represent a semidirect
product of G and H (see, e.g., [2]).

3 PSL-Preserving Operator Groups: Motivation

Codes with low peak sidelobe level are desired in applications such as radar and
communications where match filtering is used for detection (see [11, 14, 16]). For
a given length, it is useful to know the lowest achievable PSL and some or all
the codes which achieve it. Although there exist some well-known construction
techniques for codes with low sidelobe levels, often the lowest-PSL codes must
be found by random or exhaustive searches. As code length grows, random and
exhaustive searches tend to become prohibitively computationally costly.

It can be informative to know how many codes achieve these lowest, or at least
relatively low, PSL values. Such enumeration efforts inevitably necessitate a deci-
sion about whether to list or enumerate all such codes or to list representatives from
code equivalence classes, where the equivalence is defined relative to operations that
preserve autocorrelation sidelobe level.

A sidelobe-preserving operator will be understood to mean a transformation that
preserves the magnitude of every sidelobe of the autocorrelation AACx for each
x ∈ (Qm)N , for some m and N. Golomb and Win [8] list four sidelobe-preserving
operator, for general polyphase codes. They are:

1. Reversal x
2. Complex conjugation xc

3. Constant multiple transformation (CMT): given any unit-modulus complex
number α , form the product αx

4. Progressive multiplication transformation (PMT): given any unit-modulus com-
plex number ρ , multiply the ith element, xi, by ρ i for i = 1, . . . ,N

For N-length binary codes x (i.e., m = 2), involving only real quantities, the set
of four transformations identified by Golomb and Win reduces to a set of three
somewhat simpler transformations:
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1. Reversal x
2. Negation −x
3. Alternating-sign: multiply element xi by (−1)i, i = 1, . . . ,N

To illustrate the usefulness of these transformations for enumeration, suppose
that for N = 13, there is a need to determine the lowest achievable PSL for a binary
code of length N and the binary codes that achieve it. This length is small enough
that an exhaustive search is practical. The simplest, most naive approach would
generate each of the 213 codes, compute their PSL values, and keep only those
with the lowest PSL. Four codes would be found having the Barker-level PSL of 1,
optimal not just for length 13 but for any length. Examination of these codes would
lead to the observation that any one of the four could be found by applying various
compositions of the three binary transformations listed above. Hence, rather than
listing all four, it is enough to list a single representative, say [16]:

x =
[

1 1 1 1 1 −1 −1 1 1 −1 1 −1 1
]
. (8)

Behind the efficiency of this use of representatives are an equivalence relation,
and a partition of the search space into equivalence classes. Given that there are
three transformations being applied in various orders, these equivalence classes
would be expected to hold eight codes, in general, rather than the four found
having the optimal PSL for length 13. Indeed, if all eight permutations of the binary
transformations are applied to the length-13 Barker code given above, and the set
of eight resulting codes are tabulated, this set can be arranged into four sets of
twin codes. In other words, the size-8 equivalence class degenerates into one of
size 4. This suggests that the code has special structure and the structure is related
to “actions” of the three transformations under composition.

Skolnik [16] lists the lowest optimal PSL values for lengths from 3 to 40, which
was the best list available in 1990, along with the number of binary codes achieving
these values. Skolnik uses the term “allomorphic” for codes transformable into each
other by the composition of sidelobe-preserving operations (“allo-” being the Greek
root for “other” and “morph” being the Greek root for “form”). The first three
columns of Table 1 list these results, along with similar figures for N = 2.

Interestingly, the values tabulated in [16] were developed using only two of the
three binary code sidelobe-preserving operators (negation and reversal). If the third
one is taken into account as well, the result is for most code lengths a reduction in
the number of representative codes; the results are listed in the fourth column of
Table 1. For most of the lengths, the number of representative codes is reduced by
half. However, there is a small set of lengths for which the extra transformation fails
to change this number; this means that for these lengths, the third transformation
maps the set of minimum-PSL codes into itself. Furthermore, this set of lengths,
{3,5,7,11,13}, is special in that it is the set of odd lengths for which Barker codes
exist.

At the least, the behavior of sidelobe-preserving operators is useful for efficient
representation of codes of interest for their low peak sidelobe levels. However, it also
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Table 1 Adding a third operator changes the number of representatives

Number of representatives,
Number of representatives, for negation, reversal

N Best PSL for negation and reversal and alternating sign

2 1 2 1
3 1 1 1
4 1 2 1
5 1 1 1
6 2 8 4
7 1 1 1
8 2 16 8
9 2 20 10
10 2 10 5
11 1 1 1
12 2 32 16
13 1 1 1
14 2 18 9
15 2 26 13
16 2 20 10
17 2 8 4
18 2 4 2
19 2 2 1
20 2 6 3
21 2 6 3
22 3 756 378
23 3 1,021 515
24 3 1,716 858
25 2 2 1
26 3 484 242
27 3 774 388
28 2 4 2
29 3 561 283
30 3 172 86
31 3 502 251
32 3 844 422
33 3 278 139
34 3 102 51
35 3 222 111
36 3 322 161
37 3 110 52
38 3 34 17
39 3 60 30
40 3 114 57

appears that degeneracies in the “actions” of compositions of these transformations
can uncover structures in codes having low peak sidelobe levels. These ideas will be
made more precise in the following sections.
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4 Sidelobe-Preserving Operator Groups: The Binary Case

The binary case has the nice property that the sidelobe-preserving transformations
can each be effected by matrix operations. Hence, consider defining

1. g1 =−xIN

2. g2 = xJN

3. g3 = xAN

where IN is the order-N identity matrix, JN is the order-N matrix defined by

JN =

⎛

⎜
⎜
⎜
⎜⎜
⎝

0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎠

(9)

and AN is the matrix

AN =

⎛

⎜
⎜
⎜
⎜⎜
⎝

−1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . (−1)N−1 0
0 0 . . . 0 (−1)N

⎞

⎟
⎟
⎟
⎟⎟
⎠
. (10)

Then g1 and g2 preserve the autocorrelation sequence of any binary code, as can
be seen by recalling that AACx = x ∗ x. The third operator, g3, which switches
the sign of every other element of a code x, has the effect on the autocorrelation
of switching the sign of every other sidelobe. However, the magnitude of every
sidelobe is preserved.

The three operators g1, g2, and g3 generate a group of order 8. To see this,
consider five additional operators:

1. g0 = IN

2. g4 = g1 ◦ g2

3. g5 = g1 ◦ g3

4. g6 = g2 ◦ g3

5. g7 = g1 ◦ g2 ◦ g3

where the symbol ◦ refers to composition of operations (Table 2). The 8× 8 multi-
plication table is given in Table 2 (where composition is used as the multiplication
operator).

These eight operations constitute a group G under composition, as can be
checked by showing that the result of composing any two elements lies in the group
(i.e., the closure property), that the group includes an identity, that each element
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Table 2 Multiplication table
for the binary operators

◦ g0 g1 g2 g3 g4 g5 g6 g7

g0 g0 g1 g2 g3 g4 g5 g6 g7

g1 g1 g0 g4 g5 g2 g3 g7 g6

g2 g2 g4 g0 g6 g1 g7 g3 g5

g3 g3 g5 g6 g0 g7 g1 g2 g4

g4 g4 g2 g1 g7 g0 g6 g5 g3

g5 g5 g3 g7 g1 g6 g0 g4 g2

g6 g6 g7 g3 g2 g5 g4 g0 g1

g7 g7 g6 g5 g4 g3 g2 g1 g0

has an inverse relative to the identity, and that the associativity property holds [2].
Furthermore, G is Abelian, and isomorphic to Z2 ×Z2 × Z2 (see [3]), and indeed,
G =< g1 > × < g2 > × < g3 >. The group generator relations are simple ones,
essentially stating that the three generators are each of order 2 and that the group
multiplication is commutative:

1. g1 ◦ g1 = g2 ◦ g2 = g3 ◦ g3 = g0

2. g1 ◦ g2 = g2 ◦ g1

3. g2 ◦ g3 = g3 ◦ g2

4. g1 ◦ g3 = g3 ◦ g1

Note that the only time when it is important to take note of the code length N is
when using matrix representation for the operators. It is notable that this same 8×8
group applies to binary codes of all lengths. On the other hand, properties of actions
of the group elements on sets of codes can depend on code structure, the parity of
N, and on congruence of N modulo 4, as will be shown in the next section.

The next sections will look at group structure for more general mth-root-of-unity
codes. A group generated by sidelobe-preserving operators for some m and N will
be referred to as a SPG.

5 Equivalence Classes, Group Actions, and the Odd-Length
Barker Codes

Consider again the binary case, and the group G defined in the previous section.
Furthermore, define two codes x,y ∈ (Q2)N to be equivalent if y = gkx for some
gk ∈ G. This induces a partition of (Q2)N into equivalence classes of size 8 or less.

An interesting question for computational searches is whether it is possible
to generate single representatives of each equivalence class by a deterministic
algorithm. The answer is that it is possible; one such algorithm was provided in
Coxson et al. [4].

As indicated earlier, the odd-length Barker codes provide examples of size-4
equivalence classes. This suggests a shared symmetry that results in degenerate
orbits. The theory of group actions suggests that there exists a non-trivial identity
(or non-trivial identities, as is actually the case) for the odd-length Barker codes. It
is an instructive exercise to find them.
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The following candidates can be ruled out quickly:

1. g1: g1x =−x has no fixed points in (Q2)N for any N > 0.
2. g3: g3x = xAN has no fixed points in (Q2)N for any N > 0.
3. g5: g5x =−xAN has no fixed points in (Q2)N for any N > 0.

Two more can be ruled out almost as quickly:

1. g2: g2x = x fixes symmetric codes x, none of which can achieve PSLx = 1 for
N > 2.

2. g3: g4x =−x fixes some x ∈ (Q2)N , but only when N is even.

That leaves g6 and g7 as the only possibilities for nontrivial identities.
Consider first g7. Matrix representation helps rule out possibilities for

solutions to
0 = g7x− x =−(xAN + x).

Indeed, based on simple considerations in the solution of sets of linear equations, it
is possible to rule out any solutions when N is even or when N ≡ 3 mod 4. However,
when N ≡ 1 mod 4, one arrives at the following linear equation (making use of the
matrix representation available in the binary case):

0 = g7x− x = x

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

−1 0 0 . . . 0 . . . 0 0 1
0 −1 0 . . . 0 . . . 0 −1 0
0 0 −1 . . . 0 . . . 1 0 0
...

...
... . . .

... . . .
...

...
...

0 0 0 . . . 0 . . . 0 0 0
...

...
... . . .

... . . .
...

...
...

0 0 1 . . . 0 . . . −1 0 0
0 −1 0 . . . 0 . . . 0 −1 0
−1 0 0 . . . 0 . . . 0 0 1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

. (11)

Since the matrix on the right-hand side has a zero row, and is hence singular,
there exists a solution in RN . It remains to show that there exists a solution in
(Q2)N . However, the simple form of the set of equations in this case leads in a
straightforward way to a set of solutions of the form

x =
[

z y −zA(N−1)/2

]
, (12)

where z can be chosen arbitrarily from (Q2)(N−1)/2 and y ∈ {1,−1}.
By a similar process, it is possible to conclude that g6 has a solution only when

N ≡ 3 mod 4, and the solutions are of the form

x =
[

z y zA(N−1)/2

]
, (13)

where z can be chosen arbitrarily from (Q2)(N−1)/2 and y ∈ {1,−1}.
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This shared structure of the odd-length Barker codes is well-known (see, for
instance, [17]) and is often credited to Golay and referred to as (Golay) skew
symmetry (see, e.g., [12]). It is interesting, nonetheless, to rediscover this property
using the theory of group actions.

Note that if x has the skew symmetry property, then any code equivalent to it is
also skew-symmetric. To see this, let x and y be two members of (Q2)N for N ≡
3 mod 4 and let y = gkx for some gk ∈ G. Then g6x = x implies

g6(y) = (g6 ◦ gk)x = (gk ◦ g6)x = (gk)x = y. (14)

A similar argument can be made using g7 for N ≡ 1 mod 4.
It is easy to check that the odd-length Barker codes are skew-symmetric.

Representatives of every odd-length Barker are listed here (see [16]):

1. N = 3: [
1 1 −1

]
. (15)

2. N = 5: [
1 1 1 −1 1

]
. (16)

3. N = 7: [
1 1 1 −1 −1 1 −1

]
. (17)

4. N = 11: [
1 1 1 −1 −1 −1 1 −1 −1 1 −1

]
. (18)

5. N = 13: [
1 1 1 1 1 −1 −1 1 1 −1 1 −1 1

]
. (19)

It needs to be mentioned that while the odd-length Barker codes are skew-
symmetric and achieve the lowest possible PSL, this does not mean that skew-
symmetry implies low sidelobe level. If an exhaustive search is done, and a count
made of the number of equivalence classes of odd-length binary skew-symmetric
codes, for lengths between 3 and 25, the result is the set of tallies given in the table
below.

In Table 3, notice that the number of equivalence classes for high PSL values
is nearly as high as those for low sidelobe level. The reason that only even values
of PSL are listed is that odd-length skew-symmetric binary codes can have only
odd PSL (a nice exercise for the reader). This means that for some lengths N, in
particular those where the lowest PSL is even, a search over skew-symmetric codes
will not be able to find the optimal codes. Nonetheless, such searches will find codes
with near-optimal PSL for a considerable savings in computational cost.

Here we see that shared structure in a very special set of codes (those having the
lowest achievable peak sidelobe level) can be uncovered by studying degeneracies
in group actions for a group generated by sidelobe-preserving operations. A natural
question to ask is whether this is a coincidence, and furthermore, if it is not a
coincidence, why this connection should exist. These questions are not going to be
answered in this chapter. The following sections will pursue the structure of operator
groups for a more general set of codes.
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Table 3 Number of skew-symmetric binary codes, N = 3–25

N 1 3 5 7 9 11 13 15 17 19 21 23

3 1 0 0 0 0 0 0 0 0 0 0 0
5 1 1 0 0 0 0 0 0 0 0 0 0
7 1 2 1 0 0 0 0 0 0 0 0 0
9 0 5 2 1 0 0 0 0 0 0 0 0
11 1 4 8 2 1 0 0 0 0 0 0 0
13 1 9 9 10 2 1 0 0 0 0 0 0
15 0 6 26 24 11 2 1 0 0 0 0 0
17 0 5 45 40 23 12 2 1 0 0 0 0
19 0 4 68 82 59 27 13 2 1 0 0 0
21 0 8 68 195 115 79 30 14 2 1 0 0
23 0 9 107 270 335 154 98 33 15 2 1 0
25 0 3 128 515 552 475 201 119 36 16 2 1

6 Sidelobe-Preserving Operator Group Structure
for Quad-Phase Codes

Moving from the binary case to the quad-phase case, the elements of a code x ∈
(Q4)N are chosen not from the set {−1,1} but the set {−1,1, i,−i}, where i =√−1. The longest known quad-phase code with PSL = 1 (i.e., a generalized Barker
sequence) is the length-15 code [13]

x =
[

1 1 1 i i 1 −i −i i −1 −i i 1 −1 1
]
. (20)

Interestingly, this code satisfies x = −xA15, where A15 is the 15 × 15 diagonal
matrix that effects an alternating-sign transformation on the elements of x; that is,
it has diagonal elements −1,1,−1, . . . ,(−1)15. Hence, this code obeys the same
symmetry as the binary Barker codes for lengths N ≡ 1 mod 4.

As will be shown, this means dealing with added complications in the sidelobe-
preserving group. One of the complications is that instead of a single group, there are
now four, depending on the congruence of code length N modulo 4. Furthermore,
the groups have size 64 and are no longer Abelian. Finally, it will no longer be
possible to represent transformations in terms of matrix operations.

Before examining this case, it is useful to look at the sidelobe-preserving
operations in a more general setting, the general unimodular case where code
elements can lie anywhere on the unit circle. For consistency with the notation
used previously, let Q∞ represent the unit circle and let (Q∞)N represent the set
of N-length codes whose elements are drawn from the unit circle. Golomb and Win
[8] provide a list of the sidelobe-preserving transformations for this quite general
case. Let x ∈ (Q∞)N . Then the following operations each preserve the magnitudes
of the AAC sequence and hence the peak sidelobe level (using simpler notation than
previously, to facilitate the discussions to come):
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1. C: elementwise complex conjugation, xc

2. R: reversal, x
3. Mμ : multiplication by μ ∈ Q∞ to give μx
4. Pρ : progressive multiplication (or phase ramp) using ρ ∈ Q∞

What is meant by progressive multiplication is that element xi is multiplied by ρ i for
i = 1, . . . ,N. Note that complex conjugation operation cannot be represented using
matrix multiplication.

The transformations R and Mμ preserve the autocorrelation sequence, while the
operations C and Pρ preserve the magnitudes of the sidelobes (and hence the peak
sidelobe level) but do not preserve the autocorrelation sequence in general.

Moving to the quad-phase case, let x be an arbitrary member of (Q4)N for
N > 0, and consider the following specialization of the generalized list of sidelobe-
preserving operations given above:

1. C: elementwise complex conjugation
2. R: reversal, x
3. Mi: multiplication by μ = i
4. Pi: progressive multiplication by ρ = i

No loss of generality results from the particular choice of values for μ and ρ since
in each case, the choice of i specifies a generator for the order-4 cyclic group
containing every other possibility.

The four operators generate a group of order 64. To see this, first fix N > 0. Then
< R,Pi > (the group generated by R and Pi) is a dihedral group of order 8. Also,
Mi generates a cyclic group of order 4, < Mi >. It follows that < Mi,R,Pi > has a
normal subgroup, < Mi >, modulo in its dihedral-8 subgroup < R,Pi >. Hence

|< Mi,R,Pi > |= (4)(8) = 32. (21)

Now consider the group < Mi,R,Pi,C >. Every element may be written RaPb
i CdMe

i
where a,d ∈ {0,1} and b,c ∈ {0,1,2,3}. So

|< Mi,R,Pi,C > | ≤ (2)(2)(4)(4) = 64. (22)

Since C has order 2 and does not belong to < Mi,R,Pi >,

|< Mi,R,Pi,C > | ≥ (2)(32) = 64. (23)

Therefore G =< Mi,R,Pi,C > has size 64.
Let g0 be the group identity. Then with some effort, the list of generator relations

is found to be

1. C2 = R2 = g0

2. M4
i = P4

i = g0

3. RC =CR
4. PiMi = MiPi
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5. MiR = RMi

6. CMi = M−1
i C =−MiC

7. CPi = P−1
i C

8. RPi = MN+1
i P−1

i R

Note that the last of these relation, depends on N or, more to the point, the value
of N modulo 4. Hence, there are four apparently different sets of relations, yielding
four possibly different groups.

To simplify the following discussions, let Gi refer to the group for N ≡ i mod 4,
for i = 0, . . . ,3. When the value of N is not specified, and the discussion applies to
all four cases, the notation G will be used.

There exist 267 distinct groups of order 64 (see, e.g., [3]). A first hint at group
structure for the four quad-phase groups results from counting the orders of group
elements. In the case of G3, the count of group elements of order 2 is 35. Fortunately,
there is a single group of the 267 groups of order 64 having 35 elements of order 2,
and that is the Cartesian product of two dihedral-8 groups. Hence G3 is isomorphic
to D8 ×D8. The count of order-2 elements for G1 is also 35, suggesting that G1 and
G3 are isomorphic.

Identification of the group structure for the two remaining cases, G0 and G2, is
left unresolved for now.

1. 27 elements of order 2
2. 20 elements of order 4
3. 16 elements of order 8

This narrows the possible order-64 group structures to three in these two cases
(see [3]).

Element order counts can sometimes be unreliable. Fortunately, it is possible to
do better than order tallies. Martin Isaacs, of the Department of Mathematics at
University of Wisconsin Madison, has suggested the following approach involving
semidirect products and automorphisms on subgroups [10].

Let A =< Mi,Pi >. Since Mi and Pi have order 4 and commute, A is Abelian and
isomorphic to Z4 ×Z4, where Z4 is the integers modulo 4 with respect to addition.
Next, let U =<C,R >. Since C and R commute and have order 2, U is noncyclic of
order 4, and isomorphic to Z2 ×Z2.

Note that the intersection of U and A contains only the identity. Then G = AU ,
that is, G is the semidirect product of A with U acting on it (in other words, U
normalizes A), by the following observations:

1. CMiC−1 = MC
i = M−1

i and PC
i = P−1

i imply that C normalizes A.
2. RMiR−1 =MR

i =Mi and PR
i =P−1

i Mk
i where k =N+1 imply that R normalizes A.

Determination of the structure of G now depends on knowing what automorphisms
of A are induced by conjugation by C and R.

Automorphisms of A can be represented as 2× 2 matrices over Z4. Invertibility
of a matrix over Z4 will mean the determinant is ±1 modulo 4.
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Conjugation of Pi and Mi by C gives

1. PC
i =CPiC−1 = P−1

i
2. MC

i =CMiC−1 = M−1
i

These two relationships will be encapsulated in the matrix −I2, the negative of the
2× 2 identity matrix.

Similarly, conjugation of Pi and Mi by R gives PR
i = RP−1

i R−1 = Mk
i P−1

i and
MC

i =CMiC−1 = Mi, where k = N + 1. Conjugation of Pi twice by R gives

R(Mk
i P−1

i )R−1 = (RMk
i R−1)(RP−1

i R−1

= Mk
i R(RPi)

−1

= Mk
i R(Mk

i P−1
i R)−1

= Mk
i PiM

−1
i

= Pi. (24)

A 2× 2 matrix to represent this is then
(

1 0
k −1

)
, (25)

the square of which, modulo 4, is the identity.
The subgroup U is essentially the multiplicative group generated by the two

matrices. The easiest case is for k = N + 1 ≡ 0 mod 4, that is, G3. An equivalent
set of generators, then, after setting k = 0, is

(
1 0
0 −1

)
(26)

and (
1 0
0 −1

)
. (27)

It follows that:

1. Conjugation by C leaves M alone but inverts P.
2. Conjugation by R inverts M and leaves P alone.

Together, these imply that G3 is isomorphic to D8×D8, the same conclusion arrived
at from the group element order tally.

Next, if R and C are conjugated by the same invertible matrix, this simply changes
the “basis” for A, leaving the group unchanged. Consider using

(
1 0
1 3

)
, (28)
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whose inverse modulo 4 is (
1 0
3 1

)
. (29)

Then the matrix for C is unchanged by the conjugation, but the matrix for R becomes

(
1 0

k− 2 −1

)
. (30)

It follows that the four groups fall into two pairs of isomorphic groups, with
G3 and G1 isomorphic and G0 and G2 isomorphic. Furthermore, G1 and G3 are
isomorphic to D8 ×D8, the Cartesian product of the dihedral-8 group with itself.
The automorphism argument above means G3 =< RC,Mi >×< R,Pi >.

To achieve a similar identification of G1 detailing the generators of the two
dihedral-8 groups in the Cartesian product, note that the only generator relation
that differs for G3 and G1 is the final one. Starting with the form of this last relation
that holds for G1, which is RPi = M2

i P−1
i R, observe that it may be rewritten

R(M−1
i Pi) = (M−1

i Pi)
−1R. (31)

Defining a new operator, P̃i = M−1
i Pi, it is straightforward to check that P̃i can

replace Pi wherever it appears in the list of generators relations, without affecting
the validity of any of the relations. All that has changed is that the “phase ramp”
starts at −i rather than i; the element-to-element phase increment remains π/2. It
follows that G1 =< RC,Mi >×< R,M−1

i Pi > .
Consider again the generalized Barker sequence of length 15:

x =
[

1 1 1 ii 1 −i −ii −1 −ii 1 −1 1
]
. (32)

As noted earlier, this code satisfies x = −xA15, meaning that the composition of
operators (M2

i ) ◦R ◦ (P2
i ) maps x to itself. Then (M2

i ) ◦R ◦ (P2
i ) is a group element

of G3, since the order-4 cyclic group generated by Mi is a subgroup of the dihedral
group < RC,Mi > and the order-4 cyclic group generated by Pi is a subgroup of the
dihedral group < R,Pi > (and hence R ◦P2

i is an element of < R,Pi >). So, as in
the binary Barker case, x is a quad-phase of optimally low peak sidelobe level for
which a nonidentity element of the associated SPG fixes x, causing its equivalence
class to degenerate. This is due to the fact that the isometry subgroup of x contains
an element other than the group identity and therefore has size 2 or greater; then, by
Lagrange’s orbit-stabilizer theorem [15], the equivalence class of x degenerates to
size 32= 64/2 or smaller [5,9]. By applying combinations of operators to this code,
it is easy to establish that the equivalence class must be at least size 32; hence it is
exactly size 32. This example provides further anecdotal support for a link between
low-peak-sidelobe codes and degeneracies in SPG group actions.
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7 Generalizing from Quad-Phase to mth Roots of Unity

Turning from the quad-phase codes x ∈ (Q2)N to the more general mth roots codes
x ∈ (Qm)N for m ≥ 3, it will be seen that the approach used in the quad-phase case
generalizes well. First, the set of sidelobe preservers becomes:

1. C: elementwise complex conjugation
2. R: reversal, x
3. Mμ : multiplication by μ = ei2π/m

4. Pμ : progressive multiplication by μ = ei2π/m

No loss of generality results from the particular choice of values for μ . This is
because with value ei2π/m, μ is a generator for a cyclic group of order m containing
the other mth roots of unity. Similarly, Pμ is the generator for an order-m cyclic
group of “phase ramps” (or progressive multiplication transformations), and hence
contains all possible choices for this operator. These cycle groups are subgroups of
the SPG or SPGs.

Two of the SPG group generators have order 2 and the other two have order m.
The argument for quad-phase group order can be generalized in a natural way to
give (2)(2)(m)(m) = 4m2 for group order.

The set of generator relations is:

1. C2 = R2 = g0

2. Mm
μ = Pm

μ = g0

3. RC =CR
4. PμMμ = MμPμ
5. Mμ R = RMμ
6. CMμ = M−1

μ C
7. CPμ = P−1

μ C
8. RPμ = MN+1

μ P−1
μ R

Here, as before, g0 represents the group identity. The final relation has a different
form for each of m powers of μ , implying that there are as many as m groups of
order 4m2. Let Gi represent the SPG for N ≡ i mod m, i = 0,1, . . . ,m− 1.

Similar arguments as for the quad-phase case (m = 4) work here to conclude that
Gm−1 =< RC,Mμ >×< R,Pμ > (i.e., when N+1≡ 0 mod m). Then, turning to the
case N+1≡ 2 mod m, it is possible to conclude that by attaching an M−1

μ term to Pμ

(as was done in the quad-phase case), leads to G1 =< RC,Mμ > ×< R,M−1
μ Pμ >.

This process of incrementing i by 2 and attaching an additional M−1
μ can be repeated

as many times as needed, allowing

G2k−1 =< RC,Mμ >×< R,(M−1
μ )kPμ >

for any m− 1 ≥ k ≥ 0.
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Now notice that whenever m is odd, every one of the m SPGs has the structure
< RC,Mμ > × < R,(M−1

μ )kPμ >. This is because when m is odd, every one of the
m SPGs is encountered in no more than m jumps, by repeatedly incrementing j by
2, starting with j = 0, in N + 1 ≡ j mod m. Therefore, when m is odd, every SPG is
isomorphic to D2m ×D2m.

When m is even, it happens that the groups fall into two classes, those for N odd
and those for N even. When N is odd,

G2k−1 =< RC,Mμ >×< R,(M−1
μ )kPμ >

for any k ≥ 0, by the same argument used for m odd. Hence, G is isomorphic to
D2m×D2m when m is even and N is odd. The group structure when m is even and N
is even is left for others to resolve.

8 Conclusions

This chapter considers the structure of groups of peak-sidelobe-preserving operators
for the AAC of mth root codes. These groups are shown to be helpful for efficient
enumeration of codes for a given m, by peak sidelobe level. In the binary case, it
is shown that the group is an Abelian group of order 8. Furthermore, it is shown
that shared symmetry in the binary Barker codes can be discovered in a natural way
from considering degeneracies the group actions. The group structure for m = 4 (the
quad-phase case) is shown to have increased complexity; in fact, instead of a single
group, there are four groups (two pairs of isomorphic groups). Group structure is
identified for the cases of odd N. Moving to general mth roots codes, it is shown
that results found for the quad-phase case generalize quite well. It is shown that
there are 4m2 groups. All m groups are identified for any odd m. When m is even,
the structure for any odd N is identified. The group structure for m even and N even
is left unresolved.
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