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Abstract Large data sets arise in a wide variety of applications and are often
modeled as samples from a probability distribution in high-dimensional space.
It is sometimes assumed that the support of such probability distribution is
well approximated by a set of low intrinsic dimension, perhaps even a low-
dimensional smooth manifold. Samples are often corrupted by high-dimensional
noise. We are interested in developing tools for studying the geometry of such
high-dimensional data sets. In particular, we present here a multiscale transform
that maps high-dimensional data as above to a set of multiscale coefficients that
are compressible/sparse under suitable assumptions on the data. We think of this
as a geometric counterpart to multi-resolution analysis in wavelet theory: whereas
wavelets map a signal (typically low dimensional, such as a one-dimensional
time series or a two-dimensional image) to a set of multiscale coefficients, the
geometric wavelets discussed here map points in a high-dimensional point cloud to a
multiscale set of coefficients. The geometric multi-resolution analysis (GMRA) we
construct depends on the support of the probability distribution, and in this sense it
fits with the paradigm of dictionary learning or data-adaptive representations, albeit
the type of representation we construct is in fact mildly nonlinear, as opposed to
standard linear representations. Finally, we apply the transform to a set of synthetic
and real-world data sets.
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1 Introduction

We are interested in developing tools for harmonic analysis and processing of large
data set that arise in wide variety of applications, such as sounds, images (RGB or
hyperspectral, [16]), gene arrays, EEG signals [9], and manifold-valued data [44],
to name a few. These data sets are often modeled as samples from a probability
distribution in R

D, but it is sometimes assumed that the support of such probability
distribution is in fact a set of low intrinsic dimension, perhaps with some nice
geometric properties, for example, those of a smooth manifold.

Approximating and learning functions in high-dimensional spaces is hard be-
cause of the curse of high dimensionality, it is natural to try to exploit the
intrinsic low dimensionality of the data: this idea has attracted wide interest across
different scientific disciplines and various applications. One example of exploitation
of low intrinsic dimension is to map the data to low-dimensional space, while
preserving salient properties of data [3, 19, 21, 27, 28, 30, 31, 46, 52, 54]. Another
example is the construction of dictionaries of functions supported on the data
[7, 17, 18, 38–40, 49, 50]. Yet another possibility is modeling the data as a union of
low-dimensional subspaces, which is related to the ideas of sparse representations
and dictionary learning ([1, 2, 10, 11, 51] and references therein).

When performing dimensionality reduction/manifold learning, the objective is
mapping data to a low-dimensional space. The maps used are often nonlinear, and
in at least two problems arise: that of extending the map from a training data set to
new data points and that of inverting such a map, i.e., going from a low-dimensional
representation of a data point back to its higher-dimensional original representation.
Both problems seem to be rather hard (depending of course of the map used) and to
require some form of high-dimensional interpolation/extrapolation.

We will work directly in the high-dimensional space, but by taking advantage
of the assumed low intrinsic dimensionality of the data and its geometry. One
advantage of this approach is that while our representations will be low-dimensional,
we will not have to produce inverse maps from low dimensions to high dimensions.
We construct geometric multi-resolution analysis (GMRA) for analyzing intrinsi-
cally low-dimensional data in high-dimensional spaces, modeled as samples from a
d-dimensional set M (in particular, a manifold) embedded in R

D, in the regime
d � D. Data may be sampled from a class of signals of interest; in harmonic
analysis, a linear infinite-dimensional function space F often models the class of
signals of interest, and linear representations in the form f = ∑i αiφi, for f ∈ F
in terms of a dictionary of atoms Φ := {φi} ⊆ F are studied. Such dictionaries
may be bases or frames and are constructed so that the sequence of coefficients
{αi}i has desirable properties, such as some form of sparsity, or a distribution highly
concentrated at zero. Several such dictionaries have been constructed for function
classes modeling one- and two-dimensional signals of interest [8,12,14,20,22,47]
and are proven to provide optimal representations (in a suitably defined sense) for
certain function spaces and/or for operators on such spaces. A more recent trend
[1,12,41–43,51,55], motivated by the desire to model classes of signals that are not
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well modeled by the linear structure of function spaces, has been that of constructing
data-adapted dictionaries: an algorithm is allowed to see samples from a class
of signals F (not necessarily a linear function space) and constructs a dictionary
Φ := {φi}i that optimizes some functional, such as the sparsity of the coefficients
for signals in F .

There are several parameters in this problem: given training data from F , one
seeks Φ with I elements, such that every element in the training set may be
represented, up to a certain precision ε , by at most m elements of the dictionary.
The smaller I and m are, for a given ε , the better the dictionary.

Several current approaches may be summarized as follows [42]: consider a finite
training set of signals Xn = {xi}n

i=1 ⊂ R
D, which we may represent by a R

D×n

matrix, and optimize the cost function

fn(Φ) =
1
n

n

∑
i=1

�(xi,Φ),

where Φ ∈ R
D×I is the dictionary, and � a loss function, for example,

�(x,Φ) := min
α∈RI

1
2
||x−Φα||2

RD +λ ||α||1,

where λ is a regularization parameter. This is basis pursuit [12] or lasso [53]. One
typically adds constraints on the size of the columns of Φ , for example, ||φi||RD ≤ 1
for all i, which we can write as Φ ∈ C for some convex set C . The overall problem
may then be written as a matrix factorization problem with a sparsity penalty:

min
Φ∈C ,α∈RI×n

1
2
||Xn −Φα||2F +λ ||α||1,1,

where ||α||1,1 := ∑i1,i2 |αi1,i2 |. We refer the reader to [42] and references therein for
techniques for attacking this optimization problem.

In this chapter we make additional assumptions on the data, specifically that it
is well approximated by a smooth low-dimensional manifold, and we exploit this
geometric assumption to construct data-dependent dictionaries. We use a multiscale
approach that will lead to a GMRA of the data: this is inspired not only by
quantitative geometric analysis techniques in geometric measure theory (see, e.g.,
[25, 32]) but also from multiscale approximation of functions in high dimensions
[5, 6]. These dictionaries are structured in a multiscale fashion and, under suitable
assumptions on the data, are computed efficiently; the expansion of a data point on
the dictionary elements is guaranteed to have a certain degree of sparsity, m, and
may also be computed by fast algorithms; the growth of the number of dictionary
elements I as a function of ε is controlled depending on geometric properties of
the data. This may be thought of as a wavelet analysis for data sets rather than for
functions, where the geometry of a set of points is approximated, rather than a single
function.
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2 Geometric Multi-resolution Analysis

Let μ be a probability measure in R
D and M its support. In this chapter we will

consider the case in which M is endowed with the structure of a Riemannian
manifold, but the examples will show that the construction is robust enough to
extend and be useful when this assumption is severely violated. In this setting we
have a Riemannian metric g and a volume measure dvol. The geodesic distance on
M associated with g will be denoted by ρ . We shall assume that dμ is absolutely
continuous with respect to dvol, with dμ/dvol bounded above and below. We are
interested in the case when the “dimension” d of M is much smaller than the
dimension of the ambient space R

D. While d is typically unknown in practice,
efficient (multiscale, geometric) algorithms for its estimation are available (see [37],
which also contains many references to previous work on this problem), under
additional assumptions on the geometry of M .

2.1 Dyadic Cubes

We start by constructing dyadic cubes on M . This may be thought of as an analogue
of dyadic cubes in Euclidean space. It is a collection of (measurable) subsets
{Q j,k}k∈K j , j≥J0 of M with the following properties [13, 23, 24]:

• For every j ∈ Z, μ(M \∪k∈K j Q j,k) = 0.
• For j′ ≥ j and k′ ∈ K j′ , either Q j′,k′ ⊆ Q j,k or μ(Q j′,k′ ∩Q j,k) = 0.
• For j < j′ and k′ ∈ K j′ , there exists a unique k ∈ K j such that Q j′,k′ ⊆ Q j,k.
• Each Q j,k contains a point c j,k such that BM

c1·2− j (c j,k) ⊆ Q j,k ⊆ BM
2− j(c j,k), for a

constant c1 depending on intrinsic geometric properties of M . Here BM
r (x) is

the ρ-ball inside M of radius r > 0 centered at x ∈ M . In particular, we have
μ(Q j,k)∼ 2−d j.

Let T be the tree structure associated to the decomposition above: for any j ∈Z and
k ∈ K j, we let ch( j,k) =

{
k′ ∈ K j+1 : Q j+1,k′ ⊆ Q j,k

}
. We use the notation ( j,x)

to represent the unique ( j,k(x)),k(x) ∈ K j such that x ∈ Q j,k(x).

2.2 Multiscale SVD and Intrinsic Dimension Estimation

An introduction to the use of the ideas we present for the estimation of intrinsic
dimension of point clouds is in [37] and references therein (see [35, 36] for
previous short accounts). These types of constructions are motivated by ideas in
both multiscale geometric measure theory [24, 26, 33] and adaptive approximation
of functions in high dimensions[5, 6].
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In each dyadic cell Q j,k we consider the mean

m j,k := Eμ [x|x ∈ Q j,x] =
1

μ(Q j,k)

∫

Qj,k

xdμ(x) ∈ R
D (1)

and the local covariance

cov j,k = Eμ [(x−m j,k)(x−m j,k)
∗|x ∈ Q j,k] ∈ R

D×D, (2)

where vectors in R
D are considered d-dimensional column vectors. Let the rank-d

singular value decomposition (SVD) [29] of cov j,k be

cov j,k ≈ Φ j,kΣ j,kΦ∗
j,k, (3)

where Φ j,k is an orthonormal D× d matrix and Σ is a diagonal d × d matrix. Let

V j,k :=Vj,k +m j,k, Vj,k = 〈Φ j,k〉, (4)

where 〈A〉 denotes the span of the columns of A, so that V j,k is the affine subspace of
dimension d parallel to Vj,k and passing through m j,k. It is an approximate tangent
space to M at location m j,k and scale 2− j; in fact by the properties of the SVD it
provides the best d j,k-dimensional planar approximation to M in the least squares
sense:

V j,k = argmin
Π

∫

Qj,k

||x−PΠ(x)||2 dμ(x), (5)

where Π is taken on the set of all affine d j,k-planes and PΠ is the orthogonal
projection onto the affine plane Π . Let P j,k be the associated affine projection

P j,k(x) := PV j,k (x) = Φ j,kΦ∗
j,k(x−m j,k)+m j,k, x ∈ Q j,k. (6)

The behavior of the singular values in the matrix Σ j,x in Eq. (3) as a function of
the scale j, for x fixed, contains a lot of useful information about the geometry of
the data around x. In particular they may be used to detect the intrinsic dimension
of the data in a neighborhood of x. We need to introduce several definition before
stating some results. Because of space constraints, we will consider here the case
when M is a manifold of co-dimension one, leaving the discussion of the general
case (M with arbitrary co-dimension and M not a manifold) to [2, 37]. Let

λ =
d

d+ 2
, κ =

d
(d+ 2)2(d+ 4)

[
d+ 1

2

d

∑
i=1

κ2
i −∑

i< j
κiκ j

]
,

where κi’s are the sectional curvatures of the manifold. We refer the reader to [37]
for an extended discussion of these quantities, which arise naturally in the study
of multiscale SVD of manifolds. When M has co-dimension larger than 1 more
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complicate functions of the curvatures arise [similar to those in Eq. (18)]; in the non-
manifold case a notion of L2 that generalizes the above may be used [37]. Suppose
we sample n points x1, . . . ,xn i.i.d. from the volume measure on the manifold, and
each is perturbed by i.i.d. realizations of white Gaussian noise in R

D with variance
σ2ID. We denote by X̃n,z̃,r the set of noisy samples xi+ηi that are in Bz+ηz(r), where
ηz is the noise corresponding to the data point z: this is the data being observed,
which is sampled and noisy, at disposal of an algorithm. We denote by Xz,r a random
variable distributed in Bz(r)∩M according to volume measure: this is the ideal data,
uncorrupted by noise and sampling. Finally, we let r2

= := r2 − 2σ2D.
Let r = 2− j and Xz,r = M ∩Bz(r). The behavior of the ideal covariance of Xz,r

(which is comparable to cov j,k) as a function of r reveals interesting properties of the
data, for example, it may be used to measure intrinsic dimension and L2-curvature
of M around a point z, since the d largest singular values will grow quadratically
in r, and the remaining ones will measure L2-curvatures. In particular for r small
the largest gap between these singular values will be the dth gap, leading to an
estimator of intrinsic dimension. However, since we do not have access to Xz,r, we
are interested in the behavior of the empirical covariance matrix of the noisy samples
X̃n,z̃,r as a function of r. In particular, we ask how close it is to cov(Xz,r) and when is
the dth gap of cov(X̃n,z̃,r) the largest, so that we may use it to estimate the intrinsic
dimension of M ? Observe that while we would like to choose r small, since then
the difference in the behavior of the top d singular values and the remaining ones
is largest, we are not allowed to do that anymore: having only n samples forces a
lower bound on r, since in small balls we will have too small a number of samples to
estimate the covariances. Moreover, the presence of noise also puts a lower bound on
the interesting range of r: since the expected length of a noise vector is σ

√
D, and the

covariance of the noise has norm σ , we expect that r should be larger than a function
of these quantities in order for cov(X̃n,z̃,r) to provide meaningful information about
the geometric of M .

Here and in what follows C,C1, and C2 will denote numerical constants whose
value may change with each occurrence.

Theorem 1 (n → ∞). Fix z ∈ M ; assume D ≥C, σ
√

D ≤
√

d
2
√

2κ ,

r ∈
(

Rmin + 4σ
√

D+
1

6κ
,Rmax −σ

√
D− 1

6κ

)
∩
(

3σ
(√

D∨d
)
,

√
d

κ

)

. (7)

Then for n large enough, with probability at least 1−Ce−C
√

D, we have

||cov(X̃n,z̃,r)− cov(Xz,r=)|| ≤C

(
κ2r4

=

d
+σ2 +

λ κr3
=

d

(
λ κr=

λ 2 −Cκ2r2
=

∧1

))
. (8)
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Fig. 1 We consider 4,000 points uniformly sampled on a 16-dimensional unit sphere, embedded
in R

100, with η ∼ 0.1N (0, I100) Gaussian noise added to each point. We plot empirical mean
(over data points z̃) of the squared singular values of the empirical covariance matrix cov(X̃n,z̃,r),
as a function of r: in the “reasonable” range of scales, above the size of the noise, we see 16
singular values corresponding to the approximate tangent planes, at 17th squared singular value
corresponding to curvature, and all the other squared singular values of size comparable to the
energy of the noise 10−2. The algorithm detects a range of scales, above the scale of the noise,
where the 16th gap between the squared singular values is largest, i.e., noise is small compared to
curvature, which is in turn small compared to elongation along the tangent plane. It is remarkable,
albeit predicted by our results, that only 4,000 points (typically considered a small number if 16
(even more in 100) dimensions), perturbed by large noise (note that e[||η ||]∼ 1), are enough to
obtain accurate geometric information

Moreover, in the range of scales

C1
σ
√

d√
λ 2 − δ 2

≤ r= ≤C2
λ 2 − δ 2

λ κ
, (9)

Δk(X̃n,z̃,r) is the largest gap, with the probability as above.

Theorem 1 essentially says that if we have O(d logd) points in μ(Bz(r)), and the
noise variance σ is not too large compared to curvature, then the largest gap in the
empirical covariance matrix of the data in Bz(r) is the dth gap, with high probability,
for r in the range:

C1σ2 ≤ r2

d
≤C2

λ 2

κ2d
.
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The upper bound λ
κ is dictated by curvature, while the lower bound σ

√
D is forced

by the noise level: the lower bound is comparable to the size of the covariance of
the noise, the upper bound is comparable to the size of the covariance of the data
computed at the largest radius λ/κ where the curvature is not too large, and the term
in the middle is comparable to the size of the data along the local approximating
plane.

Our second theorem explores the regime where the ambient dimension D goes to
infinity, but the number of samples n is fixed, dependent on the intrinsic dimension.
While of course n samples certainly lie in an n-dimensional affine subspace,
because of the ambient noise such subspace is unreliable at small scales, and this
regime captures the range of scales where we have independence from the ambient
dimension and the essentially linear dependence on d for the minimal needed
number of points in Bz(r=).

Theorem 2 (D → ∞, σ
√

D = O(1)). Fix z ∈M . Let the assumptions of Theorem 1
and the restriction (7) hold. Fix t ∈ (C,Cd) and assume ε := εr=,n,t ≤ 1

2 . Then for
D ≥C and m ≤ D, and σ0 constant, for r in the range of scales (7) intersected with

r ∈

⎛

⎜
⎝

4σ0

(
1∨ d√

D
∨λmaxε

)

λ 2
min − δ 2λmaxε − ε2

λ 2
min

(
Cσ0d

r ∨ 1
m

)
− σ0κ

t

,
λmax

4 ∧√
d

κ

⎞

⎟
⎠ ,

the following hold, with probability at least 1−Ce−Ct2
:

(i) Δk(cov(X̃n,z̃,r)) is the largest gap of cov(X̃n,z̃,r).

(ii) ||cov(X̃n,z̃,r)−cov(Xz,r=)−σ2ID|| ≤
(

σ2
0 ε+λmaxσ0r+

(
λmax + 2σ0κ + ε

m

)
r2+

O
(

r3

ε

))
ε
d .

These bounds, and in fact the finer bounds of [37], may of course be trivially
used to obtain perturbation bounds for the empirical noisy tangent spaces estimated
by looking at the top d singular vectors of the empirical covariance matrix of the
data in Bz̃(r) (a slightly better approach, taken in [37], uses Wieland’s lemma before
applying the usual sine theorems). It turns out that, since the noise essentially “to
first order” adds only a multiple to the identity matrix, the approximate tangent
space computed in this fashion is very stable, even in the regime of Theorem 2 [37].

This is the subject of [37], where it is shown that under rather general conditions
on the geometry of the data (much more general than the manifold case) and
under sampling and ambient noise, one may use these multiscale singular values to
estimate the intrinsic dimension of the data. Moreover, under suitable assumptions,
the number of samples in a ball around x required in order to do so is linear in the
intrinsic dimension and independent of the ambient dimension. We refer the reader
to [10, 35–37]. We now proceed by using not only the information in the singular
values but also in the singular vectors in the SVD decomposition in Eq. (3).
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Fig. 2 An illustration of the geometric wavelet decomposition. The centers m j,x’s are represented
as lying on M while in fact they are only close to M , and the corresponding planes V j,x are
represented as tangent planes, albeit they are only an approximation to them. Art courtesy of E.
Monson

2.3 Geometric Scaling Functions

Then P j,k(Q j,k) is the projection of Q j,k onto the local linear approximation given by
the affine subspace in Eq. (4). The fact that this linear subspaces are affine will have
various implications in our construction, creating mild nonlinearities and forcing
us to construct a different transform and data representation which is not simply
in the form of linear combination of certain atoms. On the other hand it seems an
extremely natural construction, and not only the nonlinearities involved will not
cause conceptual or computational overheads, but in fact we shall obtain algorithms
which are faster than those needed to compute sparse linear representations in the
standard dictionary learning setting. {Φ j,k}k∈K j are the geometric analogue of a
family of scaling functions at scale j, and therefore we call them geometric scaling
functions. They “span” an approximate piecewise linear manifold at scale j

M j := {P j,k(Q j,k)}k∈K j (10)

Under general conditions, M j → M in the Hausdorff distance, as j → +∞. It is
natural to define the nonlinear projection of M onto M j by

x j ≡ PM j (x) := P j,k(x), x ∈ Q j,k. (11)

Note that in general M j is not contained in M j+1, due to the nonlinearity of the
underlying manifold M . This is important as we move into the next section when
we will encode “the difference” between M j and M j+1.
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2.4 Geometric Wavelets

In wavelet analysis, wavelets span the difference between scaling function spaces
and are contained in the finer scale scaling function space. In our setting that would
correspond to encoding the difference needed to go from M j to M j+1: for a fixed
x∈M , x j+1−x j ∈R

D, but in general not contained in M j+1, due to the nonlinearity
of M j and M j+1. The main observation is that nevertheless the collection of vectors
x j+1 − x j for x varying in Q j+1,x is in fact contained in a low-dimensional subspace
and may be therefore encoded efficiently in terms of a basis of that subspace. We
proceed as follows: for j ≤ J− 1 we let

QM j+1(x) : = x j+1 − x j = x j+1 −P j,x(x j+1)+P j,x(x j+1)−P j,x(x)

= (I−Pj,x)(x j+1 − c j,x)+Pj,x(x j+1 − x)

= (I−Pj,x)(x j+1 − c j+1,x︸ ︷︷ ︸
∈Vj+1,x

+c j+1,x− c j,x)−Pj,x(x− x j+1). (12)

Let Wj+1,x := (I −Pj,x)Vj+1,x, Q j+1,x be the orthogonal projection onto Wj+1,x, and
let Ψj+1,x be an orthonormal basis for Wj+1,x, which we will call a geometric wavelet
basis. Observe dimWj+1,x ≤ dimVj+1,x = d j+1,x. We define several quantities below:

t j+1,x : = c j+1,x − c j,x,wj+1,x := (I −Pj,x)t j+1,x;

Q j+1,x(x) := Q j+1,x(x− c j+1,x)+wj+1,x.

Then we may rewrite Eq. (12) as

QM j+1(x) = Q j+1,x(x j+1 − c j+1,x)︸ ︷︷ ︸
∈Wj+1,x

+wj+1,x −Pj,x

(

x− xJ +
J−1

∑
l= j+1

(xl+1 − xl)

)

=Q j+1,x(x j+1)−Pj,x

J−1

∑
l= j+1

(xl+1 − xl)−Pj,x(x− xJ)

=Q j+1,x(x j+1)−Pj,x

J−1

∑
l= j+1

QMl+1(x)−Pj,x(x− xJ), (13)

where J ≥ j+1 is the index of the finest scale (and the last term vanishes as J →
+∞, under general conditions). Note that this multiscale expansion contains terms
that involve not only the current scale j+ 1 and the previous scale j but terms from
finer scales as well, all the way to the finest scale J. This is once again due to the
nonlinearity of M and of the whole construction: knowing PM j+1(x) is not enough
to construct PM j(x), since the whole local nonlinear structure of M determines the
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Fig. 3 We represent in this table the triangular array summarizing the geometric wavelet
expansion of a term in the first column in terms of geometric wavelets, according to the multiscale
relations (15) and the equalities in Eq. (13)

locally optimal projection PM j (x). In [2] we describe a variation of the transform
where optimality is relaxed and a “two-scale equation” is obtained.

In terms of the geometric scaling functions and wavelets, the above may be
written as

x j+1 − x j =Ψj+1,xΨ∗
j+1,x

(
x j+1 −m j+1,x

)
+wj+1,x −Φ j,xΦ∗

j,x

J−1

∑
l= j+1

QMl+1(x)

−Φ j,xΦ∗
j,x (x− xJ) . (14)

This shows that the difference x j+1−x j can be expressed as the sum of a component
in Wj+1,x, a second component that only depends on the cell ( j + 1,x) (but not on
the point x itself) which accounts for the translation of centers and lying in V⊥

j,x (but
not necessarily in Wj+1,x), and a sum of projections on Vj,x of differences xl+1 − xl

at finer scales. By construction we have the two-scale equation

PM j+1(x) = PM j(x)+QM j+1(x), x ∈ M (15)

which can be iterated across scales, leading to a multiscale decomposition along
low-dimensional subspaces, with efficient encoding and algorithms. We think of
Pj,k as being attached to the node ( j,k) of T and the Q j+1,k′ as being attached to
the edge connecting the node ( j+ 1,k′) to its parent.

We say that the set of multiscale piecewise affine operators {PM j} and {QM j+1}
form a geometric multi-resolution analysis or GMRA for short.

2.5 Approximation for Manifolds

We analyze the error of approximation to a d-dimensional manifold in R
D by

using geometric wavelets representation. Our analysis gives a full explanation of
the examples in Sect. 4.1. We have the following theorem from [2]:
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Theorem 3. Let (M ,ρ ,μ) be a compact C 1+α Riemannian manifold of dimension
d isometrically embedded in R

D, with α ∈ (0,1], and μ absolutely continuous with
respect to the volume measure on M . Let {PM j ,QM j+1} be a GMRA for (M ,ρ ,μ).
For any x ∈ M , there exists a scale j0 = j0(x) such that for any j ≥ j0 and any
p > 0, if we let dμ j,x := μ(Q j,x)

−1dμ ,

∥
∥
∥
∥
∥
∥z−PM j(z)

∥
∥
∥
RD

∥
∥
∥

Lp(Qj,x,dμ j,x(z))
=

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

z−PM j0
(z)−

j−1

∑
l= j0

QMl+1(z)

∥
∥
∥
∥
∥
RD

∥
∥
∥
∥
∥

Lp(Qj,x,dμ j,x(z))

≤ ||κ ||L∞(Qj,x) 2−(1+α) j + o(2−(1+α) j). (16)

If α < 1, κ(x) depends on the C 1+α norm of a coordinate chart from Tx(M ) to

Q j,x ⊆ M and on
∥
∥
∥ dμ

dvol

∥
∥
∥

L∞(Qj,x)
.

If α = 1,

κ(x) =
∥∥
∥
∥

dμ
dvol

∥∥
∥
∥

L∞(Qj,x)

min(κ1(x),κ2(x)), (17)

with

κ1(x) :=
1
2

max
i∈{1,...,D−d}

||Hi(x)||;

κ2
2 (x) := max

w∈SD−d

d(d+1)
4(d+ 2)(d+ 4)

⎡

⎣

∥
∥
∥
∥
∥

D−d

∑
l=1

wlHl(x)

∥
∥
∥
∥
∥

2

F

− 1
d+ 2

(
D−d

∑
l=1

wlTr(Hl(x))

)2
⎤

⎦ ,

(18)
and the D− d matrices Hl(x) are the d-dimensional Hessians of M at x.

Observe that κ2 can be smaller than κ1 (by a constant factor) or larger (by factors
depending on d2), depending on the spectral properties and commutativity relations
between the Hessians Hl . κ2

2 may be unexpectedly small, in the sense that it may
scale as d−2r4 as a function of d and r, as observed in [37]. For the proof we refer
the reader to [2].

3 Algorithms

We present in this section algorithms implementing the construction of the GMRA
and the corresponding geometric wavelet transform (GWT).
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3.1 Construction of Geometric Multi-resolution Analysis

The first step in the construction of the geometric wavelets is to perform a geometric
nested partition of the data set, forming a tree structure. For this end, one may
consider various methods listed below:

• Use of METIS [34]: a multiscale variation of iterative spectral partitioning. We
construct a weighted graph as done for the construction of diffusion maps [15,
21]: we add an edge between each data point and its k nearest neighbors and
assign to any such edge between xi and x j the weight e−||xi−x j ||2/σ . Here k and
σ are parameters whose selection we do not discuss here (but see [45] for a
discussion in the context of molecular dynamics data). In practice, we choose
k between 10 and 50 and choose σ adaptively at each point xi as the distance
between xi and its �k/2� nearest neighbor.

• Use of cover trees [4].
• Use of iterated PCA: at scale 1, compute the top d principal components of data

and partition the data based on the sign of the (d + 1)-st singular vector. Repeat
on each of the two partitions.

• Iterated k-means: at scale 1 partition the data based on k-means clustering, then
iterate on each of the elements of the partition.

Each construction has pros and cons, in terms of performance and guarantees.
For (I) we refer the reader to [34], for (II) to [4] (which also discussed several
other constructions), and for (III) and (IV) to [48]. Only (II) provides the needed
properties for the cells Q j,k. However constructed, we denote by {Q j,k} the family
of resulting dyadic cells and let T be the associated tree structure, as in Section 2.1.

In Fig. 4 we display pseudo-code for the GMRA of a data set Xn given a precision
ε > 0 and a method τ0 for choosing local dimensions (e.g., using thresholds or a
fixed dimension). The code first constructs a family of multiscale dyadic cells (with
local centers c j,k and bases Φ j,k) and then computes the geometric wavelets Ψj,k and
translations wj,k at all scales. In practice, we use METIS [34] to construct a dyadic
(not 2d-adic) tree T and the associated cells Q j,k.

3.2 The Fast Geometric Wavelet Transform and Its Inverse

For simplicity of presentation, we shall assume x = xJ; otherwise, we may first
project x onto the local linear approximation of the cell QJ,x and use xJ instead of x
from now on. That is, we will define x j;J = PM j (xJ), for all j < J, and encode the
differences x j+1;J − x j;J using the geometric wavelets. Note also that ‖x j;J − x j‖ ≤
‖x− xJ‖ at all scales.

The geometric scaling and wavelet coefficients {p j,x},{q j+1,x}, for j ≥ 0, of a
point x ∈ M are chosen to satisfy the equations
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Fig. 4 Pseudo-code for the construction of geometric wavelets

PM j(x) = Φ j,x p j,x +m j,x; (19)

QM j+1(x) =Ψj+1,xq j+1,x+wj+1,x −Pj,x

J−1

∑
l= j+1

QMl+1(x). (20)

The computation of the coefficients, from fine to coarse, is simple and fast: since
we assume x = xJ , we have

p j,x = Φ∗
j,x(xJ − c j,x) = Φ∗

j,x(ΦJ,x pJ,x + cJ,x − c j,x)

=
(
Φ∗

j,xΦJ,x
)

pJ,x +Φ∗
j,x(cJ,x − c j,x). (21)

Moreover the wavelet coefficients q j+1,x [defined in Eq. (20)] are obtained from
Eq. (14):

q j+1,x =Ψ∗
j+1,x(x j+1 − c j+1,x) =

(
Ψ∗

j+1,xΦ j+1,x
)

p j+1,x. (22)

Note that Φ∗
j,xΦJ,x and Ψ ∗

j+1,xΦ j+1,x are both small matrices (at most d j,x×d j,x) and
are the only matrices we need to compute and store (once for all, and only up to a
specified precision) in order to compute all the wavelet coefficients q j+1,x and the
scaling coefficients p j,x, given pJ,x at the finest scale.
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Fig. 5 Pseudo-code for the forward geometric wavelet transform

Fig. 6 Pseudo-code for the inverse geometric wavelet transform

In Figs. 5 and 6 we display pseudo-codes for the computation of the forward and
inverse geometric wavelet transforms (F/IGWT). The input to FGWT is a GMRA
object, as returned by GeometricMultiResolutionAnalysis, and a point
x ∈ M . Its output is the wavelet coefficients of the point x at all scales, which are
then used by IGWT for reconstruction of the point at all scales.

For any x ∈ MJ , the set of coefficients

qx = (qJ,x;qJ−1,x; . . . ;q1,x; p0,x) (23)

is called the discrete GWT of x. Letting dw
j,x = rank(Ψj+1,x), the length of the

transform is d +∑ j>0 dw
j,x, which is bounded by (J + 1)d in the case of samples

from a d-dimensional manifold (due to dw
j,x ≤ d).
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Fig. 7 Toy data sets for the following examples of GMRA

4 Examples

We conduct numerical experiments in this section to demonstrate the performance
of the algorithm (i.e., Figs. 4–6).

4.1 Low-Dimensional Smooth Manifolds

To illustrate the construction presented so far, we consider simple synthetic data
sets: a SwissRoll, an S-Manifold, and an Oscillating2DWave, all two-dimensional
manifolds but embedded in R

50 (see Fig. 7). We apply the algorithm to construct the
GMRA and obtain the FGWT of the sampled data (10,000 points, without noise) in
Fig. 8. We use the manifold dimension d j,k = d = 2 at each node of the tree when
constructing scaling functions and choose the smallest finest scale for achieving an
absolute precision .001 in each case. We compute the average magnitude of the
wavelet coefficients at each scale and plot it as a function of scale in Fig. 8. The
reconstructed manifolds obtained by the inverse geometric wavelets transform (at
selected scales) are shown in Fig. 9, together with a plot of relative approximation
errors,

E rel
j,2 =

1
√

Var(Xn)

√√√
√1

n ∑
x∈Xn

( ||x−Pj,x(x)||
||x||

)2

, (24)

where Xn is the training data of n samples. Both the approximation error and the
magnitude of the wavelet coefficients decrease quadratically with respect to scale as
expected.
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Fig. 8 Top row: wavelet coefficients obtained by the algorithm for the three data sets in Fig. 7.
The horizontal axis indexes the points (arranged according to the tree), and the vertical axis multi-
indexes the wavelet coefficients, from coarse (top) to fine (bottom) scales: the block of entries
(x, j),x ∈ Q j,k displays log10 |q j,x|, where q j,x is the vector of geometric wavelet coefficients of
x at scale j (see Sect. 3). In particular, each row indexes multiple wavelet elements, one for each
k ∈ K j . Bottom row: magnitude of wavelet coefficients decreasing quadratically as a function of
scale

We threshold the wavelet coefficients to study the compressibility of the wavelet
coefficients and the rate of change of the approximation errors (using compressed
wavelet coefficients). For this end, we use a smaller precision 10−5 so that the
algorithm can examine a larger interval of thresholds. We threshold the wavelet
coefficients of the Oscillating2DWave data at the level .01 and plot in Fig. 10 the
reduced matrix of wavelet coefficients and the corresponding best reconstruction of
the manifold (i.e., at the finest scale).
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Fig. 9 Top and middle: reconstructions by the algorithm of the three toy data sets in Fig. 7 at two
selected scales. Bottom: reconstruction errors as a function of scale
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Fig. 10 The wavelet coefficients of the Oscillating2DWave data may be thresholded leading to
adaptive approximation. Left: after sorting the points so that the x-axis orders them as going
from left to right on the manifold, we see that when the manifold oscillates more, larger wavelet
coefficients arise at fine scales. By threshold at the level of .01 and prune the dyadic tree
accordingly, we reconstruct the manifold at the corresponding precision (right)

4.2 Data Sets

4.2.1 MNIST Handwritten Digits

We first consider the MNIST data set of images of handwritten digits,1 each of size
28×28. We use the digits 0 and 1 and randomly sample for each digit 3,000 images
from the database. We apply the algorithm to construct the geometric wavelets and
show the wavelet coefficients and the reconstruction errors at all scales in Fig. 11.
We select local dimensions for scaling functions by keeping 50% and 95% of the
variance, respectively, at the nonleaf and leaf nodes. We observe that the magnitudes
of the coefficients stop decaying after a certain scale. This indicates that the data is
not on a smooth manifold. We expect optimization of the tree and of the wavelet
dimensions in future work to lead to a more efficient representation in this case.

We then fix a data point (or equivalently an image), for each digit, and show in
Fig. 12 its reconstructed coordinates at all scales and the corresponding dictionary
elements (all of which are also images). We see that at every scale we have a
handwritten digit, which is an approximation to the fixed image, and those digits
are refined successively to approximate the original data point. The elements of the
dictionary quickly fix the orientation and the thickness, and then they add other
distinguishing features of the image being approximated.

1Available at http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/.
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Fig. 11 From left to right: geometric wavelet representation of the MNIST digits data set for 1
and 0. As usual, the vertical axis multi-indexes the wavelet coefficients, from coarse (top) to fine
(bottom) scales: the block of entries at (x, j),x ∈ Q j,k is log10 |q j,x|, where q j,x is the vector of
geometric wavelet coefficients of x at scale j (see Sect. 3). In particular, each row indexes multiple
wavelet elements, one for each k ∈ K j . Top right: dimensions of the wavelet subspaces (with the
same convention as in the previous plot): even if the data lies in 784 dimensions, the approximating
planes used have mostly dimension 1–6, except for some planes at the leaf nodes. Rightmost inset:
reconstruction error as functions of scale. The decay is nonlinear and not what we would expect
from a manifold structure

Fig. 12 Left: in each figure we plot coarse-to-fine geometric wavelet approximations of the
original data point (represented in the last image). Right: elements of the wavelet dictionary
(ordered from coarsest to finest scales) used in the expansion of the data point on the left

Example: A Connection to Fourier Analysis and FFT

Consider band-limited functions of band B:

BFB = { f : supp. f̂ ⊆ [−Bπ ,Bπ ]}.
Classes of smooth functions (e.g., W k,2) are essentially characterized by their L2-
energy in dyadic spectral bands of the form [−2 j+1π ,−2 jπ ]∪ [2 jπ ,2 j+1π ], i.e., by
the L2-size of their projection onto BF2 j+1 �BF2 j (some care is of course needed in
that smooth frequency cutoff, but this issue is not relevant for our purposes here).
We generate random smooth (band-limited!) functions as follows:
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Fig. 13 We construct an orthogonal geometric multi-resolution analysis (see [2]) on a random
sample of 10,000 band-limited functions. Left: dimension of the GMRA wavelet subspaces.
Center: approximation error as a function of scale. Right: dominant frequency in each GMRA
subspace, showing that frequencies are sorted from low (top, coarse GMRA scales) to high (bottom,
fine GMRA scales). This implies that the geometric scaling function subspaces roughly correspond
to a Littlewood–Paley decomposition, and the GWT of a function f corresponds to a rough standard
wavelet transform

f (x) =
J

∑
j=0

a j(ω)cos( jx)

with a j random Gaussian (or bounded) with mean 2−� j
J �α and standard deviation

2−� j
J �α · 1

5 . The GMRA associated with a random sample of this family of functions
takes advantage of the multiscale nature of the data and organizes this family
of functions in a Littlewood–Paley type of decomposition: the scaling function
subspace at scale j roughly corresponds to BF2 j+1 �BF2 j , and the GMRA of a point
is essentially a block Fourier transform, where coefficients in the same dyadic band
are grouped together. Observe that the cost of the GMRA of a point f is comparable
to the cost of the fast Fourier transform.

5 Data Representation, Compression, and Computational
Considerations

A set of n points in R
D can trivially be stored in space Dn; if it lies, up to a least

squares error ε in a linear subspace of dimension dε � D, we could encode n points
in space dε(D+ n) (cost of encoding a basis for the linear subspace, plus encoding
of the coefficients of the points on that basis). This is much less than the trivial
encoding for dε � D. It can be shown [2] that the cost of encoding with a GMRA a
C 2 manifold M of dimension d sampled at n points, for a fixed precision ε > 0 and
n large, is O(ε− d

2 dD+ nd log2 ε− 1
2 ).

Also, the cost of the algorithm is

O(nD(log(n)+ d2))+Od,D(n logn),
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Fig. 14 Approximations of the probability distribution concentrated on a S-shaped 2-dimensional
manifold within the GMRA framework. From left to right, top to bottom: 4,000 samples drawn
from our approximate distribution, constructed at scale 4, 6, and 8, respectively, from 2,000
training samples. Bottom right: as a function of scale, the Hausdorff distance between points
generated by the SVD model and GWT models and the training data, as well as the Hausdorff
distance variability of the generated data and true data. We see that pM j has small distance to the
training set and decreasingly so for models constructed at finer scales, while pSV D j , being a model
in the ambient space, generates points farther from the distribution. Looking at the plots of the
in-model Hausdorff distance variability, we see that such measure increases for pM j as a function
of j (reflecting the increasing expression power of the model). Samples from the SVD model look
like a Gaussian point cloud, as the kernel density estimator did not have enough training samples
to adapt to the low-dimensional manifold structure

while the cost of performing the FGWT of a point is

O(2dD logn+ dD+ d2 logε−
1
2 ).

The cost of the IGWT is similar but without the first term.
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Fig. 15 Left and right columns: a training set of 2,000 digits 2 (respectively, 3) from the MNIST
data set are used to train probability models with GMRA (pM j , one for each scale j in the GMRA
of the training set) and SVD (pSV D j , one for each GMRA scale, see text). Left: 32 digits drawn
from pM5 , pSV D5 : the quality of pM5 is qualitatively better than that of pSV D5 . Center: plots of
the Hausdorff distance to training set and in-model Hausdorff distance variability. Right: a similar
experiment with a training set of 2,000 points from a SwissRoll-shaped manifold with no noise:
the finest scale GMRA-based models perform best (in terms of both approximation and variability,
the SVD-based models are once again unable to take advantage of the low intrinsic dimension)

6 Multiscale Models of Densities

We present a simple example of how our techniques may be used to model measures
supported on low-dimensional sets which are well approximated by the multiscale
planes we constructed; results from more extensive investigations will be reported
in an upcoming publication.

We sample n training points from a point cloud M and, for a fixed scale j, we
consider the coarse approximation M j [defined in Eq. (10)], and on each local linear
approximating plane Vj,k we use the training set to construct a multifactor Gaussian
model on Q j,k: let π j,k be the estimated distribution. We also estimate from the
training data the probability π j(k) that a given point in M belongs to Q j,k (recall
that j is fixed, so this is a probability distribution over the |K j| labels of the planes at
scale j). We may then generate new data points by drawing a k ∈K j according to π j
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and then drawing a point in Vj,k from the distribution π j,k: this defines a probability
distribution supported on M j that we denote by pM j .

In this way we may generate new data points which are consistent with both
the geometry of the approximating planes Vj,k and with the distribution of the data
on each such plane. In Fig. 14 we display the result of such modeling on a simple
manifold. In Fig. 15 we construct pM j by training on 2,000 handwritten 2s and
3s from the MNIST database, and on the same training set we train two other
algorithms: the first one is based on projecting the data on the first a j principal
components, where a j is chosen so that the cost of encoding the projection and
the projected data is the same as the cost of encoding the GMRA up to scale j
and the GMRA of the data and then running the same multifactor Gaussian model
used above for generating π j,k. This leads to a probability distribution we denote
by pSVDj . In order to test the quality of these models, we consider the following
two measures. The first measure is simply the Hausdorff distance between 2,000
randomly chosen samples according to each model and the training set: this is
measuring how close the generated samples are to the training set. The second
measure quantifies if the model captures the variability of the true data and is
computed by generating multiple point clouds of 2,000 points for a fixed model
and looking at the pairwise Hausdorff distances between such point clouds, called
the within-model Hausdorff distance variability.

The bias–variance trade-off in the models pM j is the following: as j increases
the planes better model the geometry of the data (under our usual assumptions), so
that the bias of the model (and the approximation error) decreases as j increases;
on the other hand the sampling requirements for correctly estimating the density
of Q j,k projected on Vj,k increases with j as less and less training points fall in
Q j,k. A pruning greedy algorithm that selects, in each region of the data, the correct
scale for obtaining the correct bias–variance trade-off, depending on the samples
and the geometry of the data, similar in spirit to the what has been studied in the
case of multiscale approximation of functions, will be presented in a forthcoming
publication. It should be remarked that such a model would be very complicated in
the wavelet domain, as one would need to model very complex dependencies among
wavelet coefficients, in both space and scale.
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