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Abstract We present a unified theory for passive synthetic aperture imaging based
on inverse scattering, estimation-detection theory, and microlocal analysis. Passive
synthetic aperture imaging uses sources of opportunity for illumination and moving
receivers to measure scattered field. We consider passive airborne receivers that
fly along arbitrary, but known, flight trajectories and static or mobile sources
of opportunity transmitting two types of waveforms: Single-frequency or ultra-
narrowband continuous-wave (CW) waveforms and wideband pulsed waveforms.
Our theory results in two new and novel synthetic aperture imaging modalities:
Doppler synthetic aperture hitchhiker (DSAH) that uses single-frequency or ultra-
narrowband CW waveforms, and synthetic aperture hitchhiker (SAH) that uses
wideband pulsed waveforms. We use inverse scattering and estimation-detection
theory to develop measurement models in the form of Fourier integral operators
(FIOs) for DSAH and SAH. These models are based on windowed, scaled, and
translated correlations of the measurements from two different receiver locations.
This processing removes the transmitter-related terms from the phase of the result-
ing FIOs that map the radiance of the scene to correlated measurements. We use
microlocal analysis to develop approximate inversion formulas for these FIOs.
The inversion formulas involve backprojection of the correlated measurements onto
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certain manifolds where the passive range and passive Doppler are constant for SAH
and DSAH imaging, respectively. We present resolution analysis and numerical
simulations to demonstrate our theoretical results. While we focus primarily on the
passive synthetic aperture radar, the theory we present is also applicable to other
wave-based passive synthetic aperture imaging problems such as those in acoustics
and geophysics.

Keywords Passive imaging • Passive radar • Synthetic aperture imaging
• Microlocal analysis • Fourier integral operator (FIO) • Doppler synthetic
aperture hitchhiker (DSAH) • Synthetic aperture hitchhiker (SAH) • Passive
iso-range contour • Passive iso-Doppler contour • Filtered-backprojection (FBP)
• Scene radiance

1 Introduction

With the rapid growth of illumination sources of opportunity, such as broadcasting
stations, mobile phone base stations, as well as relatively low cost and rapid
deployment of receivers, there has been a growing interest in passive detection and
imaging applications in recent years [1, 2, 5–7, 9–14, 17–20, 23, 27–29, 32, 36].

Most of the existing passive imaging methods are focused on the detection of
scatterers with stationary receivers [2, 5–7, 9–14, 17–20, 27–29, 32, 36]. Recently, a
number of methods for passive synthetic aperture were introduced [1, 23, 38, 40].

In this chapter, we presented a unified theory of passive synthetic aperture
imaging based on inverse scattering theory, estimation-detection theory and
microlocal analysis. Our theory facilitates resolution analysis and relates
backprojection-based image reconstruction to statistical beamforming methods
as well as to ambiguity theory [21, 22, 31, 34, 35, 37]. It is applicable to passive
imaging with both cooperative and noncooperative sources of illumination where
the location of the sources and transmitted waveforms are unknown. The theory
can be also viewed as a limiting case of the passive imaging and detection methods
that we developed for sparsely distributed receivers [36]. It results in new and novel
passive synthetic aperture imaging modalities [38, 40] with several advantages over
the existing passive radar detection methods. (See [36, 38, 40] for a comparative
review of related work.)

We consider multiple receivers moving along arbitrary, but known, trajectories
over a non-flat topography and two types of illumination sources of opportunity:
Single-frequency or ultra-narrowband continuous-wave (CW), and wideband pulsed
waveforms of opportunity. Due to the high Doppler resolution nature of the single-
frequency or ultra-narrowband CW waveforms, we refer to the modality that uses
these waveforms as the Doppler synthetic aperture hitchhiker (DSAH) [40]. Due
to the high-range resolution nature of the wideband pulsed waveforms, we refer to
the modality that uses wideband pulsed waveforms as the Range synthetic aperture
hitchhiker or simply the synthetic aperture hitchhiker (SAH) [38].
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For each pair of receivers, we correlate the windowed signal obtained from
one of the receivers with the windowed, scaled, and translated version of the
received signal from another receiver. We express the relationship between the scene
radiance and the correlated measurements in the form of Fourier integral operators
(FIOs). The correlation of received signals removes the transmitter related terms
from the phase component of the resulting FIOs. As a result these FIOs can be
inverted approximately by using microlocal techniques without the knowledge of
the location of the transmitters. The DSAH measurement model does not rely on
the start–stop approximation and is based on the fast-time Doppler, while the SAH
measurement model relies on the start–stop approximation. In this context the SAH
measurement model can be derived from the DSAH measurement model by setting
the fast-time Doppler variable to unity.

The high-frequency analysis of the DSAH and SAH FIOs shows that the
correlated measurements are the projections of the scene radiance onto the passive
iso-Doppler and passive iso-range curves in DSAH and SAH imaging, respectively.

We use microlocal techniques to develop filtered-backprojection type
approximate inversions of DSAH and SAH FIOs. The reconstructed images
preserve the location and orientation of the visible edges of the scene radiance.
Additionally, the reconstruction formulas can be implemented efficiently using
the fast-backprojection algorithms [8]. Our unified approach to passive imaging
readily facilitates resolution analysis that is consistent with the ambiguity theory
[22, 31, 37].

While we focused primarily on passive synthetic aperture radar, the theory
of DSAH and SAH imaging and the resulting methods and algorithms are also
applicable to other wave-based passive imaging problems, such as those that arise
in geophysics or acoustics.

The organization of the chapter is as follows: In Sect. 2, we derive and analyze
the leading order contributors of the measurement models for DSAH and SAH.
In Sect. 3, we develop filtered-backprojection type image formation methods for
DSAH and SAH, respectively. In Sect. 4, we analyze the resolution of DSAH
and SAH imaging. In Sect. 5, we present numerical simulations to demonstrate
the performance of the DSAH and SAH imaging methods. Finally, in Sect. 6, we
conclude our discussion.

2 Measurement Model

We use the following notational conventions throughout the paper. The bold Roman,
bold italic, and Roman lowercase letters are used to denote variables in R

3, R2, and
R, respectively, i.e., z= (z,z) ∈R

3, with z ∈R
2 and z ∈R. The calligraphic letters

(F ,K , etc.) are used to denote operators.
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Fig. 1 An illustration of the
imaging geometry

Given a pair of transmitter and receiver antennas located at T and R,
respectively, we model the received signal by [26]

f (t,R,T) ≈
∫

eiω(t−(|R−z|+|z−T|)/c0)

(4π)2 |R−z| |z−T| ω2 p̂(ω)

×Jtr

(
ω , ẑ−T,T

)
Jrc

(
ω , ẑ−R,R

)
V (z)dω dz , (1)

or in time-domain by

f (t,R,T) ≈
∫

p̈(t − (|R−z|+ |z−T|)/c0)

(4π)2 |R−z| |z−T|
×Jtr

(
ẑ−T,T

)
Jrc

(
ẑ−R,R

)
V (z)dz , (2)

where t denotes time, c0 denotes the speed of light in free space, V (z) is the
reflectivity function, p̂ denotes the Fourier transform the transmitted waveform,
p(t), Jtr, and Jrc are the transmitter and receiver antenna beam pattern related terms,
respectively.

We denote the earth’s surface by z = (z,ψ(z)) ∈ R
3, where z ∈ R

2 and ψ :
R

2 → R is a known function for the ground topography. Furthermore, we assume
that the scattering takes place in a thin region near the surface. Thus, the reflectivity
function is in the form

V (z) = ρ(z)δ (z−ψ(z)). (3)

Our passive imaging theory is applicable to both mobile and stationary sources
of opportunity. However, for the rest of our discussion, we assume that there is a
single, stationary transmitter of opportunity illuminating the scene. This allows us to
simplify the analysis and distill the important aspects that can readily be generalized
using the ideas similar to the ones presented in our work [38].

Let T ∈ R
3 denote the location of the transmitter of opportunity and let there

be N airborne receivers, each traversing a smooth trajectory γγγ i(t
′), i = 1, . . . ,N as

shown in Fig. 1. Then, we denote the received signal at the ith receiver starting at
time t ′ = s by
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ei(t + s) = f (t + s,γγγ i(t + s),T)

=

∫
p̈(t + s− (|γγγi(t + s)−z|+ |z−T|)/c0)

(4π)2 |γγγ i(t + s)−z| |z−T|
×Jtr

(
ẑ−T,T

)
Jrc

(
̂z− γγγ i (t + s),γγγ i (t + s)

)
ρ (z) dz. (4)

Note that the time variable t ′ represents the absolute time, while t represents the
relative time within the time interval staring at t ′ = s.

For a finite and relatively short interval, we use the Taylor series expansion
around t = 0,

γγγ i(t + s) = γγγ i(s)+ γ̇γγ i(s)t + · · · (5)

to approximate

|γγγ i(t + s)−z| ≈ |γγγ i(s)−z|+ ̂γγγ i(s)−z · γ̇γγ i(s)t . (6)

Substituting the approximation (6) into (4), we have

ei(t + s) ≈
∫

p̈(αi(s,z)t + s− (|γγγi(s)−z|+ |z−T|)/c0)

(4π)2 |γγγ i(s)−z| |z−T|
×Jtr

(
ẑ−T,T

)
Jrc

(
̂z− γγγ i (t + s),γγγ i (t + s)

)
ρ (z) dz , (7)

where the time dilation

αi(s,z) = 1−
̂γγγ i(s)−z · γ̇γγ i(s)

c0
(8)

is the Doppler-scale-factor induced by the movement of the ith receiver.
We define the windowed, scaled, and translated correlation of the received

signals ei and e j by

ci j(s
′,s,μ) =

∫
ei(t + s′)e∗j(μt + s)φ(t)dt, (9)

for some s,s′ ∈ R and μ ∈ R
+, i, j = 1, . . . ,N, where φ(t) is a smooth compactly

supported temporal windowing function centered at t = 0.
In the following sections, we develop mappings that relate the expected value

of the correlated measurements ci j, denoted by E[ci j], to the scene to be imaged.
We assume that the sources of opportunity are noncooperative, where the location
of the transmitter, T, and transmitter antenna beam pattern related term Jtr are
unknown.

We use a stochastic model for the transmitter antenna beam pattern related term,
Jtr, and the scene reflectivity, ρ , and assume ρ and Jtr are statistically independent,
to express E[ci j] as
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E[ci j](s
′,s,μ) ≈

∫
p̈(αi(s,z)t + s′ − (|γγγ i(s

′)−z|+ |z−T|)/c0)

× p̈∗(μα j(s,z
′)t + s− (|γγγ j(s)−z′|+ |z′ −T|)/c0)

×Cρ(z,z
′)CJtr(z,z

′,T)ARi j (z,z
′, t,s′,s,μ)

(4π)4 Gi j(z,z′,s,s′,μ)
dz dz′φ(t)dt . (10)

Cρ and CJtr denote the correlation functions of ρ and Jtr, respectively, i.e.,

Cρ(z,z
′) = E[ρ(z)ρ∗(z′)] , (11)

CJtr(z,z
′,T) = E

[
Jtr

(
ẑ−T,T

)
J∗tr

(
ẑ′ −T,T

)]
. (12)

ARi j denotes the product of the receiver antenna beam patterns,

ARi j(z,z
′, t,s′,s,μ) = Jrc

(
̂z− γγγ i(t + s′),γγγ i(t + s′)

)

× J∗rc
(

̂z′ − γγγ j(μt + s),γγγ j(μt + s)
)
, (13)

and Gi j is the product of the geometric spreading factors,

Gi j(z,z
′,s′,s) = |T−z| |T−z′||γγγ i(s

′)−z| |γγγ j(s)−z′|. (14)

Note that for noncooperative sources of opportunity,T, and thus |T−z| |T−z′|, are
unknown. For the case of cooperative sources of opportunity where these quantities
along with the transmitted antenna beam pattern are assumed to be known, (12) can
be modified to include the known quantities.

Next, we make the incoherent-field approximation [3] by assuming that ρ and Jtr

satisfy the following equalities:

Cρ(z,z
′) = Rρ(z)δ (z−z′) , (15)

CJtr(z,z
′,T) = RT (z)δ (z−z′). (16)

Rρ is the average power of the electromagnetic radiation emitted by the scene at
location z, and RT is the average power of the electromagnetic radiation emitted
by the transmitter at location T that is incident on the target surface at z. In this
regard, Rρ is referred to as the scene radiance and RT is referred to as the transmitter
irradiance [3].

Substituting (15) and (16) into (10), we obtain

E[ci j](s
′,s,μ) =

∫
p̈(αi(s

′,z)t + s′ − (|γγγ i(s
′)−z|+ |z−T|)/c0)

× p̈∗(μα j(s,z)t + s− (|γγγ j(s)−z|+ |z−T|)/c0)

× Rρ(z)RT (z)ARi j (z,z, t,s
′,s,μ)

(4π)4 Gi j(z,z,s,s′,μ)
dzφ(t)dt (17)

for some s,s′ ∈ R, μ ∈ R
+ and i, j = 1, . . . ,N. We refer to (17) as the correlated

measurements.



Theory of Passive Synthetic Aperture Imaging 217

Our objective is to determine the scene radiance Rρ given E[ci j](s′,s,μ) for a
range of s′, s, and μ . In the following two sections, we study two special cases of
the measurement model to derive the measurement models for the DSAH and SAH.

2.1 Model for Doppler Synthetic Aperture Hitchhiker Imaging

In DSAH, narrowband or ultra-narrowband CW waveforms of opportunity are used
for imaging. Thus,

p(t) = eiω0t p̃(t) , (18)

where ω0 denotes the carrier frequency and p̃(t) is the complex envelope of p, which
is a slow varying function of t as compared to eiω0t .

Substituting (18) into (17), we express E[ci j] as

E[ci j(s
′,s,μ)] =

ω4
0

(4π)4

∫
eiω0(αi(s

′,z) t+s′−(|γγγi(s
′)−z|+|T−z|)/c0)

× e−iω0(μα j(s,z) t+s−(|γγγ j(s)−z|+|T−z|)/c0)

× RT (z)Ap̃(z,z, t,s′,s,μ)ARi j (z,z, t,s
′,s,μ)

Gi j(z,z,s′,s,μ)

×Rρ(z)dzφ(t)dt , (19)

where Ap̃ is the product of the complex envelope of the transmitted waveform,

Ap̃ = p̃(αi(s
′,z)t + s′ − (|γγγ i(s

′)−z|+ |T−z|)/c0)

× p̃∗(μα j(s,z)t + s− (|γγγ j(s)−z|+ |T−z|)/c0) . (20)

After rearranging the terms in (19), we have

E[ci j(s
′,s,μ)]≈ FDSAH

i j [Rρ ](s
′,s,μ)

=

∫
e−iϕDSAH

i j (t,z,s′ ,s,μ) ADSAH
i j (z, t,s′,s,μ)Rρ (z)dz dt , (21)

where

ϕDSAH
i j (t,z,s′,s,μ) = ω0α j(s,z)t

[
μ − Si j(s

′,s,z)
]
, (22)

with

Si j
(
s′,s,z

)
=

αi (s′,z)
α j (s,z)

=
1−

(
̂γγγ i(s

′)−z
)
· γ̇γγ i(s

′)/c0

1−
(

̂γγγ j(s)−z
)
· γ̇γγ j(s)/c0

, (23)
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and

ADSAH
i j (z, t,s′,s,μ) =

ω4
0 RT (z)Ap̃(z,z, t,s′,s,μ)ARi j (z,z, t,s

′,s,μ)φ(t)
(4π)4 Gi j(z,z, t,s′,s,μ)

×eiω0(s
′−s−(|γγγi(s

′)−z|−|γγγ j(s)−z|)/c0) . (24)

We refer to Si j(s′,s,z) as the Doppler-hitchhiker-scale-factor.
For cooperative sources of opportunity, where the transmitter locations and

antenna beam patterns are assumed to be known, we treat Jtr deterministically and
replace RT (z) with Jtr(ẑ−T,T)J∗tr(ẑ−T,T).

We refer to FDSAH
i j defined in (21) as the DSAH or Doppler-hitchhiker FIO; and

ϕDSAH
i j , ADSAH

i j as the phase and amplitude terms of the operator FDSAH
i j .

Note that the scaled and translated correlation of the received signal removes all
transmitter related terms from the phase of the operator FDSAH

i j .

2.1.1 High-Frequency Analysis of the DSAH FIO and Passive
iso-Doppler Contours

We assume that for some mDSAH
A , ADSAH

i j satisfy the inequality

sup(t,μ,s′,s,z)∈UDSAH

∣∣∣∂ αt
t ∂ αμ

μ ∂ β1
s′ ∂ β2

s ∂ ε1
z1 ∂ ε2

z2 ADSAH
i j (z, t,s′,s,μ)

∣∣∣
≤CDSAH

A (1+ t2)(m
DSAH
A −|αt |)/2 , (25)

where UDSAH is any compact subset ofR×R
+×R×R×R

2 and the constant CDSAH
A

depends on UDSAH,αt,μ ,β1,2, and ε1,2. In practice, (25) is satisfied for transmitters
and receivers are sufficiently far away from the illuminated region.

Under the assumption (25), (21) defines FDSAH
i j as an FIO whose leading-order

contributions come from those points lying in the intersection of the illuminated
surface (z,ψ(z)) and points that have the same Doppler-hitchhiker-scale-factor,
i.e., {z∈R

3 : Si j(τ ′,τ,z) = μ}. We denote the curves formed by this intersection by

FDSAH
i j (s′,s,μ) = {z : Si j(s

′,s,z = (z,ψ(z))) = μ}. (26)

When the speed of the receivers is much slower than the speed of light c0, Si j can
be approximated as follows:

Si j
(
s′,s,z

)
= 1+

(
̂γγγ j (s)−z

)
· γ̇γγ j (s)/c0 −

(
̂γγγ i (s

′)−z
)
· γ̇γγ i (s

′)/c0

1−
(

̂γγγ j (s)−z
)
· γ̇γγ j (s)/c0

≈ 1+

[
̂

(
γγγ j (s)−z

)
· γ̇γγ j (s)− ̂(γγγ i (s

′)−z) · γ̇γγ i

(
s′
)]

/c0 . (27)
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Fig. 2 DSAH iso-Doppler
contours F12(s′, s,μ)
for the Doppler-hitchhiker-
scale-factor
S12(22.0674s,−11.0337s,z).
Two receivers are traversing a
circular flight trajectory
(dashed line) at the speed of
261m/s over a flat
topography. γγγ1(s̃) = γγγC(s̃)
and γγγ2(s̃) = γγγC(s̃−π/4),
respectively, where white and
black triangles denote the
positions of the two receivers
at s̃ = π/6, respectively.
(See (23) and (70) for
explicit formulae of
S12(22.0674s,−11.0337s,z)
and γγγC(s̃), respectively)

Substituting (27) into

Si j(s
′,s,z) = μ , (28)

multiplying both sides of (28) by ω0, and rearranging the terms, we have

ω0

c0

[
̂(γγγ i(s′)−z) · γ̇γγ i(s

′)− ̂(γγγ j(s)−z) · γ̇γγ j(s)
]
= (1− μ)ω0, (29)

where the left-hand side of (29) is the hitchhiker Doppler defined in [38] for a fixed
frequency. In this regard, we refer to FDSAH

i j (s′,s,μ) as the passive iso-Doppler or
DSAH iso-Doppler contour. Figure 2 shows the DSAH iso-Doppler contours for two
receivers traversing a circular trajectory over a flat topography.

2.2 Model for Synthetic Aperture Hitchhiker Imaging

In SAH, wideband pulsed waveforms of opportunity are used for imaging.
Assuming that the velocity, γ̇γγ j(s), of the receivers are much less than the speed

of light, we use the “start–stop” approximation, where the receiver is assumed to
be stationary within a certain window of time, and approximate the Doppler-scale
factor

αi(s,z) ≈ 1. (30)
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Then the received signal at the ith receiver starting at time t ′ = s′ is approximated by

ei(t + s′) ≈
∫

p̈(t + s′ − (|γγγ i(s
′)−z|+ |z−T|)/c0)

(4π)2 |γγγ i(s
′)−z| |z−T|

×Jtr

(
ẑ−T,T

)
Jrc

(
̂z− γγγ i (s

′),γγγ i

(
s′
))

ρ (z) dz . (31)

Similarly, under the start–stop approximation, the Doppler-hitchhiker-scale-factor
becomes

Si j(s
′,s,z) ≈ (1−αi(s

′,z))(1+α j(s,z)) ≈ 1. (32)

Consequently, by (28), it is sufficient to consider E[ci j] for μ = 1.
In this regard, taking into account the high range resolution of the wideband

waveforms, we incorporate the fast-time delay in the forward model of SAH and
define

di j(s
′,s,τ) = ci j(s

′,s− τ,1) =
∫

ei(t + s′)e∗j(t + s− τ)φ(t)dt. (33)

We refer to (33) as the spatiotemporal correlation of ei and e j.
Using (31), we approximate the expectation of di j(s′,s,τ) as

E[di j(s,s
′,τ)] =

∫
p̈(t + s′ − (|γγγi(s

′)−z|+ |z−T|)/c0)

× p̈∗(t + s− τ − (|γγγ j(s)−z|+ |z−T|)/c0)

× Rρ(z)RT (z)ÃRi j (z,z,s
′,s)

(4π)4 Gi j(z,z,s′,s)
dzφ(t)dt

=

∫
eiω(t+s′−(|γγγi(s

′)−z|+|z−T|)/c0)

×e−iω(t+s−τ−(|γγγ j(s)−z|+|z−T|)/c0)

× ω2|p̂(ω)|2Rρ(z)RT (z)ÃRi j(z,z,s
′ ,s)

(4π)4 Gi j(z,z,s,s′)
dz dωφ(t)dt , (34)

where

ÃRi j(z,z
′,s′,s) = ARi j(z,z

′,0,s′,s,1) (35)

and ARi j and Gi j are as in (13) and (14). We write

E[di j(s
′,s,τ)] ≈ F SAH

i j [Rρ ](s,s
′,τ)

=

∫
e−iϕSAH

i j (ω,z,s,s′,τ) ASAH
i j (z,ω ,s,s′)Rρ(z)dz dω , (36)
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where

ϕSAH
i j (ω ,z,s′,s,τ) = ω [ri j(s

′,s,z)/c0 + s− s′ − τ] , (37)

with

ri j(s
′,s,z) = |γγγ i(s

′)−z|− |γγγ j(s)−z| (38)

and

ASAH
i j (z,ω ,s′,s) =

ω4 |p̂(ω)|2 RT (z) ÃRi j (z,z,s
′,s)

(4π)4 Gi j(z,z,s′,s)
. (39)

We refer to ri j(s′,s,z) as the hitchhiker or passive range.
We remark that under the start–stop approximation ϕDSAH

i j ≈ 1 and ϕSAH
i j is given

by the exponential term in ADSAH
i j [see (24)], where s is replaced with s− τ in SAH

to incorporate the fast-time delay information.
Similar to DSAH, for cooperative sources of opportunity, we treat Jtr determin-

istically and replace R̃T (z) with Jtr(ẑ−T,T)J∗tr(ẑ−T,T).
We refer to F SAH

i j defined in (36) as the SAH or range hitchhiker or simply

hitchhiker FIO; and ϕSAH
i j , ASAH

i j as the phase and amplitude terms of the operator

F SAH
i j .
Note that the spatiotemporal correlation of the received signal removes all

transmitter related terms from the phase of the operator F SAH
i j .

2.2.1 High-Frequency Analysis of the SAH FIO and Passive
iso-Range Contours

We assume that for some mSAH
A , ASAH

i j satisfy the inequalities

sup
(ω,s′ ,s,z)∈USAH

∣∣∣∂ αω
ω ∂ β1

s′ ∂ β2
s ∂ ε1

z1
∂ ε2

z2
ASAH

i j (z,ω ,s′,s)
∣∣∣≤CSAH

A (1+ω2)(m
SAH
A −|αω |)/2 ,

(40)

where USAH is any compact subset of R×R×R×R
2; the constant CSAH

A depends
on USAH,αω ,β1,2, ε1,2. These assumptions are needed to make various stationary
phase calculations hold. In practice, (40) is satisfied for transmitters and receivers
sufficiently far away from the illuminated region.

Under the assumption (40), (36) defines F SAH
i j as an FIO whose leading-order

contribution comes from those points lying at the intersection of the illuminated
surface and the hyperboloid {x ∈ R

3 : ri j(s′,s,z) = c0(τ + s′ − s)}. We denote the
curves formed by this intersection by

Hi j(s
′,s,τ) = {z : ri j(s

′,s,z) = c0(τ + s′ − s)} (41)



222 L. Wang et al.

X (km)

Y
 (

km
)

−5 0 5 10 15 20 25

−5

0

5

10

15

20

25

Fig. 3 SAH Iso-range
contours H12(s′, s,C) for the
hitchhiker range
r12(22.0674s,−11.0337s,z).
Two receivers are traversing a
circular flight trajectory
(dashed line) at the speed of
261m/s over a flat
topography. γγγ1(s̃) = γγγC(s̃)
and γγγ2(s̃) = γγγC(s̃−π/4),
respectively, where white and
black triangles denote the
positions of the two receivers
at s̃ = π/6, respectively.
(See (38) and (70) for explicit
formulae of
r12(22.0674s,−11.0337s,z)
and γγγC(s̃), respectively)

and refer to Hi j(s′,s,τ) as the passive iso-range or SAH iso-range contour. For
flat topography, ψ(z) = 0, the SAH iso-range contours are given by hyperbolas
on the plane z3 = 0. We present the iso-range contours for circular receiver flight
trajectories over a flat topography in Fig. 3.

Comparing the DSAH and SAH presented in Sects. 2.1 and 2.2, we see that the
DSAH imaging does not rely on the start–stop approximation and is based on the
fast-time Doppler. In other words, the DSAH imaging method takes into account
range variations or Doppler induced due to the movement of the receivers during
the reception of a CW waveform. SAH imaging, on the other hand, relies on the
start–stop approximation and ignores the range variation due to the movement of
the receivers, hence the fast-time Doppler, during the reception of a wideband pulse.
Thus, the SAH measurement model can be derived from the DSAH measurement
model by setting the Doppler-scale-factor to unity and decoupling the time into fast-
and slow-time variables.

3 Image Formation

Our objective is to form an image of the scene radiance Rρ(z) using E[ci j(s′,s,μ)]
or E[di j(s′,s,τ)], i, j = 1, . . . ,N based on the correlated measurement models (21)
for DSAH or (36) for SAH, respectively.

Since both FDSAH
i j and F SAH

i j are FIOs, we form an image of the scene radiance
by other suitably designed FIOs, which we refer to as the filtered-backprojection
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operators. For DSAH, we backproject E[ci j(s′,s,μ)] onto passive iso-Doppler
contours defined by Fi j(s′,s,μ). For SAH, we backproject E[di j(s′,s,τ)] onto pas-
sive iso-range contours defined by Hi j(s′,s,τ) for i, j = 1, . . . ,N. We form an image
of the scene radiance by the superposition of the filtered and backprojected data.

3.1 DSAH Filtered-Backprojection Operator

For DSAH image formation, we invert E[ci j(s′,s,μ)] as follows:

R̃DSAH
ρ (z) = ∑

i j

∫
K DSAH

i j [E[ci j]](z,s
′)ds′ , (42)

where we define

K DSAH
i j [E[ci j]](z,s

′) =
∫

eiϕDSAH
i j (t,z,s′,s,μ)QDSAH

i j (z, t,s′,s)E[ci j(s
′,s,μ)]dtdsdμ .

(43)

We refer to K DSAH
i j as the DSAH filtered-backprojection operator with respect to

the ith and jth receivers with filter QDSAH
i j to be determined below.

We assume that for some mDSAH
Q , QDSAH

i j satisfies the inequality

sup
(t,s′ ,s,z)∈KDSAH

∣∣∣∂ αt
t ∂ β1

s′ ∂ β2
s ∂ ε1

z1
∂ ε2

z2
QDSAH

i j (z, t,s′,s)
∣∣∣ ≤ CDSAH

Q (1+ t2)(m
DSAH
Q −|αt |)/2 ,

(44)

where KDSAH is any compact subsets of R×R×R×R
2, and the constant CDSAH

Q

depends on KDSAH,αt ,β1,2, ε1,2. The assumption in (44) makes K DSAH
i j an FIO.

Substituting (21) into (43) and the result back into (42), we obtain

R̃DSAH
ρ (z) = ∑

i j
K DSAH

i j FDSAH
i j [Rρ ](z)

=
∫

ei[ϕDSAH
i j (t,z,s′,s,μ)−ϕDSAH

i j (t′,z′,s′,s,μ)] QDSAH
i j (z, t,s′,s)

×ADSAH
i j (z′, t,s′,s,μ)Rρ (z

′)dt ′ dt dsds′ dμ dz′ . (45)

We use the stationary phase theorem to approximate the t ′ and μ integrations
[4, 15, 16, 24] and obtain

R̃DSAH
ρ (z) ≈ ∑

i j

∫
e

iω0t

[
1− ̂(γγγ j(s)−z)·γ̇γγ j(s)/c0

][
Si j(s′,s,z′)−Si j(s′,s,z)

]

×QDSAH
i j

(
z, t,s′,s

)
ADSAH

i j

(
z′, t,s′,s,Si j

(
s′,s,z′))Rρ

(
z′) dt dsds′ dz′ .

(46)
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Fig. 4 An illustration of the vector ΞΞΞDSAH
i j (s′, s,z) in the data collection manifold Ω DSAH

i j,z for the

flat topography, ψ(z) = 0. ΞΞΞ DSAH
i j (s′, s,z) is the projection of the difference of the scaled vectors

γ̇γγ i,⊥(s′) and γ̇γγ j,⊥(s) onto the tangent plane of the ground topography at z. (See (48) for an explicit

form of ΞΞΞ DSAH
i j (s′, s,z))

We linearize Si j(s′,s,z′) around z′ = z and approximate

Si j(τ ′,τ,z′)− Si j(τ ′,τ,z) ≈ (z′ −z) ·∇zSi j(s
′,s,z) . (47)

Let

ΞΞΞ DSAH
i j (s′,s,z) = ω0

[
1− ̂(γγγ j(s)−z) · γ̇γγ j(s)/c0

]
∇zSi j(s

′,s,z)

=
ω0

c0
Dψ(z) ·

[
1

|γγγ i(s
′)−z| γ̇γγ i,⊥(s

′)− Si j(s′,s,z)
|γγγ j(s)−z| γ̇γγ j,⊥(s)

]
, (48)

where

Dψ(z) =

[
1 0 ∂ψ(z)/∂ z1

0 1 ∂ψ(z)/∂ z2

]
(49)

and γ̇γγ i,⊥(s′), γ̇γγ j,⊥(s) are the projections of γ̇γγ i(s
′) and γ̇γγ j(s) onto the planes whose

normal vectors are ( ̂γγγ i(s
′)−z) and ( ̂γγγ j(s)−z), respectively.

We show an illustration of the vector ΞΞΞ DSAH
i j (s′,s,z) in Fig. 4 for two receivers

flying over a flat topography.
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Substituting (47) and (48) into (46), we obtain

R̃DSAH
ρ (z) ≈ ∑

i j

∫
e−it (z′−z)·ΞΞΞ DSAH

i j (s′,s,z) QDSAH
i j (z, t,s′,s)

×ADSAH
i j (z, t,s′,s)Rρ (z

′)dt dsdz′ ds′ . (50)

Note that under the assumptions (44) and (25), (50) shows that K DSAH
i j FDSAH

i j
is a pseudodifferential operator [33]. This means that the backprojection operator
reconstructs the visible edges of the scene radiance at the correct location and
correct orientation.

3.2 SAH Filtered-Backprojection Operator

For SAH imaging, we form an image of the scene radiance as follows:

R̃SAH
ρ (z) = ∑

i j

∫
K SAH

i j [E[di j]](z,s
′)ds′ , (51)

where we define

K SAH
i j [E[d]] (z,s′) = ∑

i j

∫
eiϕSAH

i j (ω,z,s,s′,τ)QSAH
i j (z,ω ,s′,s)d(s′,s,τ)dτ dω dsds′.

(52)

We refer to K SAH
i j as the SAH filtered-backprojection operator with respect to

the ith and jth receivers with filter QSAH
i j to be determined below.

Similarly, we assume that for some mSAH
Q , QSAH

i j satisfies the inequality

sup
(ω,s′ ,s,z)∈KSAH

∣∣∣∂ αω
ω ∂ β1

s′ ∂ β2
s ∂ ε1

z1
∂ ε2

z2
QSAH

i j (z,ω ,s′,s)
∣∣∣ ≤ CSAH

Q (1+ω2)(m
SAH
Q −|αω |)/2 ,

(53)

where KSAH is any compact subsets of R×R×R×R
2, and the constant CSAH

Q

depends on KSAH,αω ,β1,2, ε1,2. The assumption in (53) makes K SAH
i j an FIO.

Substituting (36) into (52), and using the stationary phase theorem as in DSAH
imaging, we approximate

R̃SAH
ρ (z) = ∑

i j
K SAH

i j F SAH
i j [Rρ ](z)

=

∫
eiω[ri j(s

′,s,z′)−ri j(s
′,s,z)]/c0 QSAH

i j (z,ω ,s′,s)

×ASAH
i j (z′,ω ,s′,s)Rρ (z

′)dω dsds′ dz′ . (54)
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Fig. 5 An illustration of the vector ΞΞΞSAH
i j (s′, s,z) in the data collection manifold Ω SAH

i j,z for the

flat topography, ψ(z) = 0. ΞΞΞSAH
i j (s′, s,z) is the projection of the difference of the unit vectors

̂γγγ j(s)−z and ̂γγγ i(s
′)−z onto the tangent plane of the ground topography at z. (See (56) for an

explicit form of ΞΞΞ SAH
i j (s′, s,z))

We linearize ri j(s′,s,z′) around z′ = z and make the following approximations:

ri j(s
′,s,z′)− ri j(s

′,s,z) = (z′ −z) ·ΞΞΞ SAH
i j (s′,s,z) , (55)

where

ΞΞΞ SAH
i j

(
s′,s,z

)
= Dψ (z) ·

(
̂γγγ j (s)−z− ̂γγγ i (s

′)−z
)

(56)

and Dψ(z) is given in (49).
For flat topography, we present an illustration of ΞΞΞ SAH

i j (s′,s,z) in Fig. 5.
Substituting (55) into (54), we obtain

R̃SAH
ρ (z) = ∑

i j

∫
eiω(z′−z)·ΞΞΞSAH

i j (s′,s,z)/c0 QSAH
i j (z,ω ,s′,s)

×ASAH
i j (z,ω ,s′,s)Rρ(z)dω dsds′ dz′ . (57)

Under the assumptions (53) and (40), (57) shows that K SAH
i j F SAH

i j is a pseudod-
ifferential operator [33]. This means that the backprojection operator reconstructs
the visible edges of the scene radiance at the correct location and orientation in
SAH imaging.
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3.3 Determination of the Filter

QDSAH
i j and QSAH

i j can be determined with respect to various criteria [39]. Ideally,
they are chosen such that the leading-order contributions of the point spread
functions (PSFs) of K DSAH

i j and K SAH
i j are Dirac-delta functions. This choice of

the filters ensures that K DSAH
i j and K SAH

i j reconstruct the visible edges of the scene
radiance not only at the correct location and orientation, but also with the correct
strength [25, 26, 30, 39].

In DSAH imaging, for each s′ and z, we make the following change of variables:

(t,s)→ ξξξ DSAH
i j = t ΞΞΞ DSAH

i j (s′,s,z) (58)

in (50) and obtain

R̃DSAH
ρ (z) ≈ ∑

i j

∫
Ω DSAH

i j,s′ ,z
e−i(z′−z)·ξξξ DSAH

i j QDSAH
i j

(
z, t

(
ξξξ DSAH

i j

)
,s′,s

(
ξξξ DSAH

i j

))

×ADSAH
i j

(
z, t

(
ξξξ DSAH

i j

)
,s′,s

(
ξξξ DSAH

i j

))∣∣∣∣∣
∂ (t,s)

∂ξξξ DSAH
i j

∣∣∣∣∣Rρ (z
′)dξξξ DSAH

i j dz′ds′ ,

(59)

where |∂ (t,s)/∂ξξξ DSAH
i j | is the determinant of the Jacobian that comes from the

change of variables given in (58).
The domain of integration in (59) is given as follows:

Ω DSAH
i j,s′,z =

{
ξξξ DSAH

i j = t ΞΞΞ DSAH
i j (s′,s,z) |ADSAH

i j (z, t,s′,s) 	= 0,

(t,s′,s) ∈ (R,R,R)
}
. (60)

We refer to Ω DSAH
i j,s′,z as the DSAH partial data collection manifold at (s′,z) obtained

by the ith and jth receivers for a fixed s′ and refer to the union ∪i j,s′Ω DSAH
i j,s′,z as the

DSAH data collection manifold at z and denote it by Ω DSAH
z . This set determines

many of the properties of the reconstructed DSAH image.
To approximate the PSF with the Dirac-delta function, we choose the filter as

follows:

QDSAH
i j (z, t,s′,s) =

ADSAH∗
i j (z, t,s′,s,μ)

|ADSAH
i j (z, t,s′,s,μ)|2

χDSAH
Ωi j,s′ ,z

(z, t,s′,s)

|∂ (t,s)/∂ξξξ DSAH
i j |

, (61)

where χDSAH
Ωi j,s′ ,z

is a smooth cutoff function that is equal to one in the interior of

Ω DSAH
i j,s′,z and zero in the exterior of Ω DSAH

i j,s′,z .



228 L. Wang et al.

Similarly, in SAH Imaging, for each s′ and z, we make the following change of
variables:

(ω ,s)→ ξξξ SAH
i j =

ω
c0

ΞΞΞ SAH
i j (s′,s,z) (62)

in (57) and obtain

R̃SAH
ρ (z) ≈ ∑

i j

∫
ΩSAH

i j,s′ ,z
ei(z′−z)·ξξξ SAH

i j QSAH
i j

(
z,ω

(
ξξξ SAH

i j

)
,s′,s

(
ξξξ SAH

i j

))

×ADSAH
i j

(
z,ω

(
ξξξ SAH

i j

)
,s′,s

(
ξξξ SAH

i j

))∣∣∣∣∣
∂ (ω ,s)

∂ξξξ SAH
i j

∣∣∣∣∣Rρ(z
′)dξξξ SAH

i j dz′ds′ ,

(63)

where

∣∣∣∣ ∂ (ω,s)

∂ξξξ SAH
i j

∣∣∣∣ is the determinant of the Jacobian that comes from the change of

variables in (62).
In (63), the domain of integration is given as follows:

Ω SAH
i j,s′,z =

{
ξξξ SAH

i j =
ω
c0

ΞΞΞ SAH
i j (s′,s,z) |ASAH

i j (z,ω ,s′,s) 	= 0,

(ω ,s′,s) ∈ (R,R,R)

}
. (64)

We refer to Ω SAH
i j,s′,z as the SAH partial data collection manifold at (s′,z) obtained by

the ith and jth receivers for a fixed s′ and refer to the union ∪i j,s′Ω SAH
i j,s′,z as the SAH

data collection manifold at z and denote it by Ω SAH
z . Again, this set determines

many of the properties of the reconstructed SAH image.
Similarly, to approximate the PSF with the Dirac-delta function, we choose the

filter as follows:

QSAH
i j (z,ω ,s′,s) =

ASAH∗
i j (z,ω ,s′,s)

|ASAH
i j (z,ω ,s′,s)|2

χSAH
Ωi j,s′,z

(z,ω ,s′,s)

|∂ (ω ,s)/∂ξξξ SAH
i j |

, (65)

where χSAH
Ωi j,s′ ,z

is a smooth cutoff function that is equal to one in the interior of

Ω SAH
i j,s′,z and zero in the exterior of Ω SAH

i j,s′,z .
Irrespective of the choice of the filters, the filtered-backprojection operators

K DSAH
i j and K SAH

i j reconstruct the visible edges of the scene radiance at the correct
location and correct orientation. With the choice of the filters given in (61) and (65),
the resulting image formation method can recover the visible edges not only at the
correct location and orientation, but also with the correct strengths.
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4 Resolution Analysis

Substituting (61) and (65) into (59) and (63), respectively, we obtain

R̃DSAH
ρ (z) ≈ ∑

i j

∫
ΩDSAH

i j,s′ ,z
e−i(z′−z)·ξξξ DSAH

i j Rρ(z
′)dz′ dξξξ DSAH

i j ds′ , (66)

R̃SAH
ρ (z) ≈ ∑

i j

∫
ΩSAH

i j,s′ ,z
ei(z′−z)·ξξξ SAH

i j Rρ(z
′)dz′ dξξξ SAH

i j ds′ . (67)

Equation (66) and (67) show that the DSAH and SAH images, R̃DSAH
ρ and

R̃SAH
ρ are bandlimited versions of Rρ whose bandwidth are determined by the data

collection manifolds Ω DSAH
z and Ω SAH

z , respectively. The data collection manifolds
determine the resolution of the reconstructed images at z. The larger the data
collection manifold, the better the resolution of the reconstructed image is.

Microlocal analysis of (66) and (67) tell us that an edge at point z is visible in
DSAH or SAH image if the direction nz normal to the edge is contained in Ω DSAH

z

or Ω SAH
z , respectively [25, 26, 30, 39]. Consequently, an edge at point z with nz

normal to edge is visible if there exists i, j,s′,s such that ξξξ DSAH
i j or ξξξ SAH

i j is parallel
to nz .

The bandwidth contribution of ξξξ DSAH
i j and ξξξ SAH

i j to a visible edge at z is given by

ω0

c0
Lφ

∣∣∣∣∣Dψ(z) ·
[

1
|γγγ i(s

′)−z| γ̇γγ i,⊥(s
′)− Si j(s′,s,z)

|γγγ j(s)−z| γ̇γγ j,⊥(s)

]∣∣∣∣∣ , (68)

Bω
c0

∣∣∣Dψ(z) · ( ̂γγγ j(s)−z− ̂γγγ i(s
′)−z)

∣∣∣ , (69)

where Lφ denotes the length of the support of φ(t) and Bω denotes the bandwidth
of the transmitted waveform.

Equation (68) shows that for DSAH imaging, the longer the support of φ(t)
becomes, the larger the magnitude of ξξξ DSAH

i j is, giving rise to sharper reconstructed

edges perpendicular to ξξξ DSAH
i j , i, j = 1, . . . ,N. Additionally, the higher the carrier

frequency of the transmitted signal ω0 becomes, larger the magnitude of ξξξ DSAH
i j is,

contributing to higher image resolution.
Equation (69) shows that for SAH imaging, as the bandwidth of the transmitted

signal becomes larger, the magnitude of ξξξ SAH
i j gets larger, which results in higher

image resolution. The sharpness of the reconstructed edges is also directly propor-
tional to the bandwidth of the transmitted signal.

Furthermore, we note that in DSAH imaging, the resolution depends on the
range via the terms |γγγ i(s

′)−z| and |γγγ j(s)−z| and the velocities of the receivers via
the terms γ̇γγ i,⊥ and γ̇γγ j,⊥. As the scatterers are further away from the receivers, or the
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Table 1 Parameters that
affect the DSAH image
resolution

Parameter Increase Resolution

Carrier frequency: ω0 ↑ ↑
Length of the windows Lφ ↑ ↑
Distance |γγγ i(s

′)−z|, |γγγ j(s)−z| ↑ ↓
Antenna velocity γ̇γγ i or γ̇γγ j ↑ ↑
Number of s samples ↑ ↑
Number of time windows (s′) ↑ ↑
↑: Increase (higher) ↓: Decrease (lower)

Table 2 Parameters that affect the SAH image resolution

Parameter Increase Resolution

Bandwidth of the transmitted waveform: Bω ↑ ↑
Angle between ̂γγγ j(s)−z and ̂γγγ i(s

′)−z ↑ ↑
Number of s samples ↑ ↑
Number of time windows (s′) ↑ ↑
↑: Increase (higher) ↓: Decrease (lower)

velocities of the receivers decrease, the resolution gets worse due to the decrease in
the magnitude of ξξξ DSAH

i j . In SAH imaging, the resolution also depends on the angle

between the unit vectors ̂γγγ j(s)−z and ̂γγγ i(s′)−z. The larger the angle is, the larger

the magnitude of ξξξ SAH
i j becomes, resulting in better resolution.

Additionally, the increase in the number of s samples and the time windows
(indicated by s′) used for imaging also leads to a larger data collection manifold
in DSAH or SAH imaging, which improves the resolution.

We summarize the parameters that affect the resolution of the reconstructed
image in DSAH and SAH imaging in Tables 1 and 2, respectively.

5 Numerical Simulations

We considered a scene of size [0,22]× [0,22]km2 with flat topography. The scene
was discretized into 128 × 128 pixels, where [0,0,0]km and [22,22,0]km
correspond to the pixels (1,1) and (128,128), respectively.

In all the numerical experiments, we used two airborne receivers and a
single, stationary transmitter operating either cooperatively or noncooperatively.
We assumed that both the receiver and transmitter antennas were isotropic.
We assumed that the transmitter was located at y0 = (0,0,6.5)km and the receivers
were traversing the circular trajectory given by

γC(s̃) = (11+ 11cos(s̃),11+ 11sin(s̃),6.5)km. (70)
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Fig. 6 Discretized scene reflectivity used in the numerical simulations of (a) DSAH imaging and
(b) SAH imaging. [0,0,0]km and [22,22,0]km are located at the lower left and upper right corners,
respectively

Let γ1(s̃) and γ2(s̃) denote the trajectories of the two receivers. We set γ1(s̃) = γC(s̃)
and γ2(s̃) = γ1(s̃− π

6 ). Note that the variable s̃ in γC is equal to V
R t, where V is the

speed of the receiver, and R is the radius of the circular trajectory. We set the speed
of the two receivers to 261m/s. We chose the sampling rate of s to be 1.9335 Hz so
as to uniformly sample the circular trajectory with 512 points.

In accordance with the incoherent field approximation, we used the following
multiple-point-target model for the scene reflectivity,

ρ(z) =
L

∑
l=1

glδ (z−zl) , (71)

where gl , l = 1, . . . ,L are independent Gaussian random variables with mean μl and
variance σ2

l . The corresponding scene radiance is given by

Rρ(z) = E[ρ(z)ρ∗(z)] = ∑
l

(μ2
l +σ2

l )δ (z−zl). (72)

In our simulations, we considered a deterministic reflectivity and set σ2
l = 1.

We used L = 9 and approximated the Dirac-delta functions in (72) by square
target reflectors of size 344× 344m2, each having a unit reflectivity, i.e., μl = 1,
l = 1, . . . ,9.

Figure 6a, b show the scene with targets used in the simulations of the DSAH
imaging and SAH imaging, respectively. Figure 7 shows the receiver trajectories
and the transmitter antenna location used for DSAH and SAH simulations.

We performed image reconstruction for each s′ and coherently superimposed the
reconstructed images obtained over a range of s′.
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Fig. 7 3-D view of the scene with multiple point targets, illuminated by a single transmitter
located at y0 = (0,0,6.5)km and the circular receiver trajectory γC(s̃) = (11 + 11cos(s̃),11 +
11sin(s̃),6.5)km, as shown by the red solid line. At a certain time instant, two receivers are located
at the positions shown in the figure

5.1 Numerical Simulations for DSAH Imaging

We used (9) to generate the data and chose the windowing function φ in (9) to be a
Hanning function.

The transmitted waveform was assumed to be a single-frequency CW waveform
with 800MHz carrier frequency. The length of the windowing function was set to
Lφ = 0.0853s.

For the case of a cooperative transmitter, the reconstructed image is shown in
Fig. 8a. It can be seen that the targets are well reconstructed using the DSAH image
formation method.

Figure 8b shows the reconstructed image using a noncooperative transmitter.
Since the location of the transmitter was assumed to be unknown, the received
signal was not compensated for the transmitter related geometric spreading factors.
As a result, the targets closer to the transmitter appears brighter in the reconstructed
image than those that are further away from the transmitter.

5.2 Numerical Simulations for SAH Imaging

We used (33) to generate the data for performing SAH imaging simulations and
chose the windowing function φ in (33) to be a Hanning function as in DSAH
imaging simulations.

A transmitted pulse at center-frequency 0Hz with bandwidth equal to 0.873MHz
was used in the simulations.
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Fig. 8 The reconstructed DSAH images obtained by superposing the images obtained using
multiple s′ values and two receivers traversing the circular flight trajectories γ1(s̃) and γ2(s̃) as
shown in Fig. 7 and a single (a) cooperative transmitter, and (b) noncooperative transmitter located
at y0

Fig. 9 The reconstructed SAH images obtained by superposing the images obtained using
multiple s′ values and two receivers traversing the circular flight trajectories γ1(s̃) and γ2(s̃) as
shown in Fig. 7 and a single (a) cooperative transmitter, and (b) noncooperative transmitter located
at y0

The reconstructed images corresponding to the cooperative and noncooperative
transmitter cases are shown in Fig. 9a, b, respectively. We see that the targets are
reconstructed successfully in both cases and in the noncooperative case, the strength
of the targets closer to the transmitter are higher as expected.

6 Conclusion

We presented a unified theory of passive synthetic aperture imaging based on
inverse scattering theory, estimation-detection theory and microlocal analysis. Our
theory involves development of passive measurement models based on inverse
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scattering and estimation-detection theory and analytic inversion methods based
on microlocal analysis. The measurement models involve windowed, scaled, and
translated correlation of the received signals at different receiver locations. This
correlation process results in measurement models in the form of FIOs. Taking into
account the nature of the waveforms of opportunity, we developed two different
measurement models: DSAH FIO and SAH FIO.

DSAH FIO-based model projects the scene radiance onto passive iso-Doppler
contours, and SAH FIO-based model projects the scene radiance onto passive
iso-range contours. The correlation process removes the transmitter-related terms
from the phase of the resulting FIO-based DSAH and SAH measurement models,
allowing us to perform backprojection without the knowledge of the transmitter
locations.

We used microlocal techniques to backproject the correlated signals onto the
passive iso-Doppler contours in DSAH imaging and onto passive iso-range contours
in SAH imaging. The filtered-backprojection reconstruction methods for DSAH
and SAH have the desirable property of preserving the visible edges of the scene
radiance at the correct location and orientation, and at the correct strength with
appropriate choice of filters.

Our analysis shows that the resolution of the reconstructed DSAH images is
determined primarily by the temporal duration and frequency of the transmitted
waveforms, and the resolution of the reconstructed SAH images is determined
primarily by the bandwidth of the transmitted waveforms. These results are
consistent with the ambiguity theory of the CW or ultra-narrowband waveforms
and the wideband waveforms.

While we focused primarily on the passive synthetic aperture radar, the theory of
DSAH and SAH imaging introduced in this chapter and the resulting methods and
algorithms are also applicable to other wave-based passive imaging problems, such
as those that arise in geophysics or acoustics.
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