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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-
theart ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis, but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish the scope and interaction that such a host of issues
demands.

vii



viii ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Biomedical signal processing
Compressive sensing
Communications applications
Data mining/machine learning
Digital signal processing
Fast algorithms
Gabor theory and applications
Image processing
Numerical partial differential equations

Prediction theory
Radar applications
Sampling theory
Spectral estimation
Speech processing
Time-frequency and time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries, Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function”. Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, e.g., by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
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adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.
The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

University of Maryland John J. Benedetto
College Park Series Editor





Preface

The chapters in these two volumes have at least one (co)author who spoke at the
February Fourier Talks during the period 2006–2011.

The February Fourier Talks

The February Fourier Talks (FFT) were initiated in 2002 as a small meeting on
harmonic analysis and applications, held at the University of Maryland, College
Park. Since 2006, the FFT has been organized by the Norbert Wiener Center in
the Department of Mathematics, and it has become a major annual conference.
The FFT brings together applied and pure harmonic analysts along with scientists
and engineers from industry and government for an intense and enriching two-day
meeting. The goals of the FFT are the following:

• To offer a forum for applied and pure harmonic analysts to present their latest
cutting-edge research to scientists working not only in the academic community
but also in industry and government agencies,

• To give harmonic analysts the opportunity to hear from government and industry
scientists about the latest problems in need of mathematical formulation and
solution,

• To provide government and industry scientists with exposure to the latest research
in harmonic analysis,

• To introduce young mathematicians and scientists to applied and pure harmonic
analysis,

• To build bridges between pure harmonic analysis and applications thereof.

These goals stem from our belief that many of the problems arising in engineer-
ing today are directly related to the process of making pure mathematics applicable.
The Norbert Wiener Center sees the FFT as the ideal venue to enhance this process
in a constructive and creative way. Furthermore, we believe that our vision is shared

xi



xii Preface

by the scientific community, as shown by the steady growth of the FFT over the
years.

The FFT is formatted as a two-day single-track meeting consisting of thirty-
minute talks as well as the following:

• Norbert Wiener Distinguished Lecturer series
• General interest keynote address
• Norbert Wiener Colloquium
• Graduate and postdoctoral poster session

The talks are given by experts in applied and pure harmonic analysis, including
academic researchers and invited scientists from industry and government agencies.

The Norbert Wiener Distinguished Lecture caps the technical talks of the first
day. It is given by a senior harmonic analyst, whose vision and depth through the
years have had profound impact on our field. In contrast to the highly technical
day sessions, the keynote address is aimed at a general public audience and
highlights the role of mathematics, in general, and harmonic analysis, in particular.
Furthermore, this address can be seen as an opportunity for practitioners in a
specific area to present mathematical problems that they encounter in their work.
The concluding lecture of each FFT, our Norbert Wiener Colloquium, features a
mathematical talk by a renowned applied or pure harmonic analyst. The objective
of the Norbert Wiener Colloquium is to give an overview of a particular problem
or a new challenge in the field. We include here a list of speakers for these three
lectures:

Distinguished lecturer

• Peter Lax
• Richard Kadison
• Elias Stein
• Ronald Coifman
• Gilbert Strang

Keynote address

• Frederick Williams
• Steven Schiff
• Peter Carr
• Barry Cipra
• William Noel
• James Coddington
• Mario Livio

Colloquium

• Christopher Heil
• Margaret Cheney
• Victor Wickerhauser
• Robert Fefferman
• Charles Fefferman
• Peter Jones

The Norbert Wiener Center

The Norbert Wiener Center for Harmonic Analysis and Applications provides a
national focus for the broad area of mathematical engineering. Applied harmonic
analysis and its theoretical underpinnings form the technological basis for this area.
It can be confidently asserted that mathematical engineering will be to today’s
mathematics departments what mathematical physics was to those of a century ago.
At that time, mathematical physics provided the impetus for tremendous advances
within mathematics departments, with particular impact in fields such as differential
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equations, operator theory, and numerical analysis. Tools developed in these fields
were essential in the advances of applied physics, e.g., the development of the solid-
state devices which now enable our information economy.

Mathematical engineering impels the study of fundamental harmonic analysis
issues in the theories and applications of topics such as signal and image processing,
machine learning, data mining, waveform design, and dimension reduction into
mathematics departments. The results will advance the technologies of this mil-
lennium.

The golden age of mathematical engineering is upon us. The Norbert Wiener
Center reflects the importance of integrating new mathematical technologies and
algorithms in the context of current industrial and academic needs and problems.
The Norbert Wiener Center has three goals:

• Research activities in harmonic analysis and applications
• Education—undergraduate to postdoctoral
• Interaction within the international harmonic analysis community

We believe that educating the next generation of harmonic analysts, with a strong
understanding of the foundations of the field and a grasp of the problems arising in
applications, is important for a high-level and productive industrial, government,
and academic workforce.

The Norbert Wiener Center web site: www.norbertwiener.umd.edu

The Structure of the Volumes

To some extent the eight parts of these two volumes are artificial placeholders
for all the diverse chapters. It is an organizational convenience that reflects major
areas in harmonic analysis and its applications, and it is also a means to highlight
significant modern thrusts in harmonic analysis. Each of the following parts includes
an introduction that describes the chapters therein:

Volume 1

I Sampling Theory
II Remote Sensing
III Mathematics of Data Processing
IV Applications of Data Processing

Volume 2

V Measure Theory
VI Filtering
VII Operator Theory
VIII Biomathematics

www.norbertwiener.umd.edu
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2 I Sampling Theory

Sampling theory has a long history going at least as far back as Lagrange with
explicit sampling formulas. The classical sampling theorem due to Cauchy in the
1840s is often associated with names such as Hadamard, E. T. Whittaker, J.M.
Whittaker, Kotel’nikov, Wiener, Raabe, Someya, Shannon (see Chapter 1 of [1]).
It is also a subject that has expanded significantly in recent years both with regard
to compelling theoretical advances and modern applicability.

The first of our six chapters on sampling theory is by AKRAM ALDROUBI.
Aldroubi gives an overview of the theory of nonlinear signal representations in
terms of unions of subspaces. It is a theory that Aldroubi and his collaborators
have spearheaded. It is formulated as a general model for data representations,
which includes a variety of applications from compressive sensing and dimension
reduction to motion and tracking in video. Frames, shift-invariant subspaces, and
the so-called minimum subspace approximation property are key concepts in the
theory, and useful algorithms are part and parcel of the presentation.

BERNHARD G. BODMANN, PETER G. CASAZZA, JESSE D. PETERSON, IHAR

SMALYANAU, AND JANET C. TREMAIN provide original constructions of fusion
frames with rigid geometric properties. Fusion frames can be viewed as a gen-
eralization of frames. By their definition it is tantalizing to try to invoke them in
modeling environments in which data sets, e.g., communications data, overlap and
where the goal is to provide efficient connectivity, e.g., good communications, over
the union of the sets. Part of the authors’ setting is based on Naimark’s classical
theorem relating frames and orthonormal bases, but their technology is both deep
and beyond the original Naimark theorem. Their specific constructions are of equi-
isoclinic Parseval fusion frames, motivated from a rich history and a setting for
present-day applicability.

JENS G. CHRISTENSEN AND GESTUR OLAFSSON exposit their theory of
the classical sampling theorem in the grand setting of commutative connected
homogeneous spaces. Lie groups and homogeneous spaces are the starting point,
leading to invariant differential operators on homogeneous spaces. There is a
necessary and technical excursion dealing with oscillation estimates on Lie groups,
as well as state-of-the-art results on the path from Gelfand pairs to Ruffino’s recent
topological isomorphism theorem for positive definite spherical functions. It is a
virtuosic route to the definition of bandlimited functions for homogeneous spaces,
and, then, to the authors’ classical sampling theorem in this generality.

CHARLES FEFFERMAN began a program going back to fundamental questions,
posed by Hassler Whitney in the 1930s, dealing with smooth extensions of
functions. He led an effort, along with several others, solving some of these
problems and addresing the comparably fundamental problems of devising best-
possible and useful algorithms for interpolation of data. He and Klartay (2009) have
best-possible algorithms, and Fefferman has shown the importance of constructing
useful algorithms with regard to this problem. Fefferman’s chapter is an important,
readable introduction to Whitney’s extension theorem, his problems, and to the
exciting algorithmic questions that remain. It provides a marvelous setting for
mathematicians of various stripes to transcend the pure power of the solutions to
Whitney’s problems to their relevance in current applicability and the importance of
viable algorithms to effect this applicability.
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JOSEPH D. LAKEY resurrects the classical vision of Henry J. Landau’s poignant
encapsulation in 1983 of the fundamental issues of sampling theory. Lakey brings
to bear an imposing analytic overview and also integrates the most recent topics in
sampling beginning with the fundamental work of Candès, Romberg, and Tao, as
well as a potpourri of deep results ranging from those of Logan, Widom, Rokhlin,
and others. It is a reassuring testament to Henry Landau’s magisterial understanding
of the uncertainty principle and classical sampling theory.

KABE MOEN, HRVOJE ŠIKIĆ, GUIDO WEISS, AND EDWARD WILSON go
beyond the sampling theory of the previous chapter (by Lakey) by formulating the
essential ideas of classical sampling theory in terms of technological notions such
as convolution idempotents, Zak transforms, frames, and principal shift-invariant
spaces. This is a state-of-the-art setting for formulating and proving sampling
formulas.

Reference

1. Benedetto, J.J., Ferreira, P.J.S.G. (eds.): Modern Sampling Theory. Applied and Numerical
Harmonic Analysis. Birkhäuser, Boston (2001)



Unions of Subspaces for Data Modeling
and Subspace Clustering

Akram Aldroubi

Abstract Signals and data are often modeled as vectors belonging to a subspace of
a Hilbert space (or Banach space)H , e.g., bandlimited signals. However, nonlinear
subsets can also serve as signal model, e.g., signals with finite rate of innovation or
sparse signals. Discovering the model from data observations is a fundamental task.
The goal of this chapter is to discuss the problem of learning a nonlinear model of
the form M = ∪l

i=1Vi from a set of observations F = { f1, . . . , fm}, where the Vi are
the unknown subspaces to be found. Learning this nonlinear model from observed
data has applications to computer vision and signal processing and is connected
to several areas of mathematics. In this chapter we give a brief description of the
theoretical as well as the applied aspects related to this type of nonlinear modeling
in terms of unions of subspaces.

Keywords Union of subspaces • Sparse signals • Subspace segmentation • Sig-
nal learning from observations • Spectral clustering • Non-linear signal models •
Motion segmentation • Minimum subspace approximation property (MSAP) •
Nearness to local subspaces

1 Introduction

This chapter is an overview of the problem of nonlinear signal representations in
terms of unions of subspaces and its connection to other areas of mathematics
and engineering. The point presented stems from recent research with my many
collaborators [1–7].

A. Aldroubi (�)
Department of Mathematics, Vanderbilt University, 1520 Stevenson Center,
Nashville, TN 37240, USA
e-mail: akram.aldroubi@vanderbilt.edu

T.D. Andrews et al. (eds.), Excursions in Harmonic Analysis, Volume 1,
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-8376-4 1,
© Springer Science+Business Media New York 2013

5



6 A. Aldroubi

A standard model for signals, images, or multivariate data is often a
shift-invariant space, such as a set of bandlimited functions, a B-spline space,
or the level zero subspace of a multiresolution of L2(Rd). Given a class of signals,
the appropriate model can be learned from signal observations. For example, we
may observe a set of signals F = { f1, . . . , fm} ⊂ L2(Rd) from a signal class of
interest and then wish to use these observations to find a shift-invariant space that
is consistent with these observations. Mathematically, this problem can be stated as
follows. Let Vn be the set of all shift-invariant spaces with length at most n. That is,
V ∈ Vn if

V =V (Φ) := span{ϕi(·− k) : i = 1, . . . ,s, k ∈ Zd} (1)

for some set of generators Φ = {ϕi ∈ L2(Rd) : i = 1, . . . ,s} with s≤ n. The problem
is to find a shift-invariant space that is nearest to the data F in the sense that

V o = argminV ′∈Vn

m

∑
i=1
‖ fi−PV ′ fi‖p, 0 < p < ∞, (2)

where PV ′ is the orthogonal projection on V ′ and ‖ · ‖ denotes the standard norm in
L2(Rd). The choice p = 2 is good for noisy data; however, the choice 0 < p ≤ 1
may be more advantageous when outliers are present [23]. Observe that the shift-
invariant spaces in Vn have infinite dimensions, while there are finitely many data
observations. However, the spaces in Vn are constrained (to be shift-invariant). Thus,
if the number of generators n < m, it may not possible to find a space V ∈ Vn that
contains F. For p = 2, the existence of a minimizer V o as in (2) that is nearest to the
data F has been established in [1]. Moreover, a construction of a set {ϕi ∈ L2(Rd) :
i = 1, . . . ,s} such that {ϕi(x− k) : i = 1, . . . ,s, k ∈ Z

d} is a Parseval frame for V o

and a formula for the error e(F,V o) =
m
∑

i=1
‖ fi−PVo fi‖2 have also been established

in [1].
A general nonlinear model for signal or data representation in the finite- or

infinite-dimensional cases can be stated as follows:

Problem 1 (Unions of Subspaces Model). Let H be a Hilbert space, F =
{ f1, . . . , fm} a finite set of vectors in H , C a family of closed subspaces of
H , and V the set of all sequences of elements in C of length l (i.e., V =
V (l) =

{{V1, . . . ,Vl} : Vi ∈ C ,1 ≤ i ≤ l
}
). Find a sequence of l subspaces Vo =

{V o
1 , . . . ,V

o
l } ∈ V (if it exists) such that

e(F,Vo) = inf{e(F,V) : V ∈ V }= ∑
f∈F

d2( f ,EV ). (3)

The problem above is that of finding the unions of subspaces model M =∪l
i=1Vi

that is nearest to a set of data F = { f1, . . . , fm} (see Fig. 1 for an illustration). For
l = 1, this problem reduces to least squares problem. However, for l > 1 the problem
becomes a nonlinear, generalized version of the least squares problem (l = 1), which
has many applications in mathematics and engineering.
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Fig. 1 An example illustrating a set of data points in R
3 that we wish to model by a union of three

subspaces, two of which are of dimension two and one of dimension one. The union drawn for this
situation is clearly not the one nearest to the data points

Examples where H is infinite dimensional occur in signal modeling. The typical
situation is H = L2(Rd), F⊂ L2(Rd) is a finite set of signals, and C is the set of all
finitely generated shift-invariant spaces of L2(Rd) of length at most n [3,24,27]. The
class of signals with finite rate of innovation is another example where the space H
is infinite dimensional [26]. Applications where a union of subspaces underlies the
signal model in infinite dimensions can be found in [2, 24, 26].

An important application in finite dimensions is the subspace segmentation
problem in computer vision (see, e.g., [31] and the references therein). The
subspace segmentation problem can be described as follows: Let M =

⋃l
i=1 Vi

where {Vi ⊂H }l
i=1 is an unknown set of subspaces of a Hilbert space H . Let

W =
{

wj ∈H
}m

j=1 be a set of data points drawn from M . Then,

1. Determine the number of subspaces l.
2. Determine the set of dimensions {di}l

i=1.
3. Find an orthonormal basis for each subspace Vi.
4. Collect the data points belonging to the same subspace into the same cluster.
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Because the data is often corrupted by noise, may have outliers, or may not be
complete (e.g., there may be missing data points), a union of subspaces that is
nearest to W =

{
wj ∈H

}m
j=1 (in some sense) is sought. In special cases, the

number l of subspaces or the dimensions of the subspaces {di}l
i=1 are known. A

number of approaches have been devised to solve the problem above or some of its
special cases [9, 11, 12, 15–19, 21, 22, 25, 28–35].

Other related applications include the problem of face recognition, the motion
tracking problem in videos (see, e.g., [6, 13, 20, 30, 31, 33]), and the problem of
segmentation and data clustering in hybrid linear models (see, e.g., [10, 23, 35] and
the references therein). Compressed sensing is another related area where s-sparse
signals in C

d can be viewed as belonging to a union of subspaces M = ∪i∈IVi, with
dimVi ≤ s, where s is the signals’ sparsity [8].

Problem 1 raises many theoretical and practical questions, some of which will
be described and discussed below. One of the theoretical questions is related to the
existence of a solution. Specifically, what are the conditions on C that assure the
existence of a solution to Problem 1? Equally important is to find search algorithms
for solving Problem 1. These algorithms must be fast and must work well in noisy
environments.

This overview is organized as follows. The first part discusses the conditions
under which solutions to Problem 1 exist. The second part is devoted to various
search algorithms and their analysis. The last part is an application to motion and
tracking in video.

2 Existence of Solutions and the Minimum Subspace
Approximation Property

It has been shown that, given a family of closed subspaces C , the existence of
a minimizing sequence of subspaces Vo = {V o

1 , . . . ,V
o
l } that solves Problem 1 is

equivalent to the existence of a solution to the same problem but for l = 1 [2]:

Theorem 1. Problem 1 has a minimizing set of subspaces for all finite sets of data
and for any l ≥ 1 if and only if it has a minimizing subspace for all finite sets of data
and for l = 1.

This suggests the following definition:

Definition 1. A set of closed subspaces C of a separable Hilbert space H has
the minimum subspace approximation property (MSAP) if for every finite subset
F⊂H , there exists an element V ∈ C that minimizes the expression

e(F,V ) = ∑
f∈F

d2( f ,V ), V ∈ C . (4)
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We will say that C has MSAP(k) for some k ∈ N if the previous property holds for
all subsets F of cardinality j ≤ k.

Using this terminology, Problem 1 has a minimizing sequence of subspaces if and
only if C satisfies the MSAP. It should be noted that MSAP(k+1) is strictly stronger
than MSAP(k). Obviously, MSAP is stronger than MSAP(k) for any k ∈ N.

There are some cases for which it is known that the MSAP is satisfied.
For example, if H = C

d and C = {V ⊂ H : dimV ≤ s}, the Eckart–Young
theorem [14] implies that C satisfies MSAP. Another example is the one
described in the introduction when H = L2(Rd) and C = Vn = {V : V =

span{ϕ1(x− k), . . . ,ϕn(x− k) : k ∈ Zd}} is the set of all shift-invariant spaces of
length at most n. For this last example, a result in [1] implies that C satisfies the
MSAP.

The general approach for the existence of a minimizer has been recently
considered in [7]. The family C is viewed as a set of projectors. Specifically, a
subspace V ∈ C is identified with the orthogonal projector Q = QV whose kernel
is exactly V (i.e., Q = I−PV where PV is the orthogonal projector on V ). In this
way, any set of closed subspaces C of H is identified with a set of projectors
{Q ∈ Π(H ) : ker(Q) ∈ C } ⊂ Π(H ), where Π(H ) ⊂B(H ) denotes the set of
orthogonal projectors. Using this identification, this set of projectors is denoted by
C as well, and e(F,V ) in (4) is expressed as

e(F,V ) = ΦF(QV ) = ∑
f∈F
〈QV f , f 〉. (5)

The functional ΦF defined above is easily seen to be linear on the set B(H ) of
bounded linear operators on H .

The right topology for the set of bounded linear operators B(H ) in this case is
the weak operator topology. Indeed, in this topology, ΦF is a continuous functional
for each F, and the set of projectors Π(H ) is pre-compact. Thus it is evident that if
the set C ⊂ Π(H ) is weakly closed in B(H ), then ΦF attains its minimum (and
maximum) for some V o ∈ C . This condition, however, is too strong as can be seen
from this obvious example: let H = R

3 and consider the set C = C1∪C2 which is
the union of the plane C1 = span{e1,e2} and the set of lines C2 = ∪v{span{v} : v =
e3 + ce2, for some c ∈ R}. Then C (identified with a set of projectors as described
earlier) is not closed (since Qspan{e2} /∈ C ), but C satisfies the MSAP, since if the
infimum is achieved by the missing line span{e2}, it is also achieved by the plane C1.

2.1 A Sufficient Geometric Condition for MSAP

Clearly, as the example above has shown, it is not necessary for C to be closed in
order for C to have the MSAP even if H has finite dimension. It turns out that
the right set to analyze is the set C+ consisting of C together with the positive
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semidefinite operators added to it. For example, the theorem [7] below gives a
sufficient condition for MSAP in terms of the set C+ = C + P+(H ) where
P+(H ) is the set of positive semidefinite (self-adjoint operators). It also gives
a sufficient condition for MSAP in terms of the convex hull co(C ) of C , i.e., the
smallest convex set containing C :

Theorem 2 ([7]).

(C = C )⇒ (C + = C+)⇒ (co(C+) = co(C +))⇒ (C satisfies MSAP),

and the implications are strict in general.

The theorem above can be used to obtain another proof of the Eckart–
Young theorem [14], or the fact that the set C (n) = Vn = {V : V =

span{ϕ1(·− k), . . . ,ϕn(·− k) : k ∈ Zd}} ⊂ L2(Rd) of all shift-invariant spaces of
length at most n satisfies MSAP as proved in [1]. It can also be used to prove that
the set Cm(n) = {V : span{ϕ1(·− k), . . . ,ϕn(·− k) : k ∈ Zd} of all shift-invariant
spaces of length at most n that are also 1

mZ invariant satisfies MSAP as proved in
[4]. Note that Cm ⊂ C . However, unlike the proofs in [1, 4], the use of Theorem 2
does not give constructive proofs.

2.2 Characterization of MSAP in Finite Dimensions

In finite dimensions, the last two implications of Theorem 2 can be reversed. Thus,
the necessary and sufficient condition for MSAP is that C+ is closed. An equivalent
characterization is that the convex hull co(C+) of C + is equal to the convex hull
co(C +) of its closure. A third characterization for a finite d-dimensional space H
is that C satisfies the MSAP (d− 1) (see Definition 1). These characterizations are
proved in [7], and we have:

Theorem 3. Suppose H has dimension d. Then the following are equivalent:

(i) C satisfies MSAP(d-1).
(ii) C satisfies MSAP.

(iii) C+ is closed.
(iv) co(C +) = co(C+).

Unfortunately, the above equivalences are false in infinite dimensions. The difficulty
is that although the operators of norm ≤ 1 form a compact subset for the weak
operator topology, in infinite-dimensional spaces, the set of projectors is not closed
in this topology. This creates most of the complications in infinite dimensions.

For example, to see why in infinite dimensions the last implication of Theorem 2
cannot be reversed, take C to be the set of all finite-dimensional subspaces (except
the trivial vector space) of some infinite-dimensional space H . It has MSAP since
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for all finite sets F in H , one can find a finite-dimensional subspace containing it.
On the other hand, the convex hull of C+ does not contain {0}, while the weak
closure of C does.

An example that shows that, in infinite dimensions, the second implication of
Theorem 2 is not an equivalence can be constructed as follows: let H = �2 and
consider the sequence of vectors vn = e1 + en, which weakly converges to e1,
and the sequence wn = e2 + en+1, which weakly converges to e2. For all n ≥ 3,
let Pn be the projector on the space spanned by vn and wn. One checks that the
sequence {Pn} converges weakly to Q = (PE1 +PE2)/2, where E1 = span{e1} and
E2 = span{e2}. Moreover, since Pn = Q+(PEn +PEn+1)/2, where En = span{en}
and En+1 = span{en+1}, we conclude that Q < Pn for any n. Now define C =
{Pn, n ≥ 3}∪ {PE1 ,PE2}. The closure of C consists of C ∪ {Q}. By the previous
remark, Q does not belong to C+, so that C+ is not closed. But on the other hand,
Q ∈ co(C ), hence C ⊂ co(C ) which implies that co(C ) = co(C ). It follows that
co(C +) = co(C+).

2.3 Characterization of MSAP in Infinite Dimensions

For the infinite-dimensional case, the necessary and sufficient conditions are found
in terms of the set of contact half-spaces. A contact half-space to a set E is a half-
space containing E such that its boundary has a nontrivial intersection with E; a
half-space is a closed set of the form Hφ ,a = {x ∈ B(H ) : φ(x) ≥ a}, for some
a∈R and φ an R-linear functional on B(H ). The boundary of such a half-space is
the (affine) hyperplane given by φ(x) = a. The set of contact half-spaces containing
E is denoted by T (E). Using these concepts, the necessary and sufficient condition
for MSAP in infinite dimensions is:

Theorem 4 ([7]). Let C be a set of projectors in B(H ). Then C has MSAP if and
only if

T (C +) = T
(
C+

)
.

3 Algorithms and Dimensionality Reduction

Search algorithms for finding solutions to Problem 1 are often iterative. For compu-
tational efficiency, dimensionality reduction is generally needed. Moreover, iterative
algorithms often need a good initial approximation to the solution. A general,
abstract algorithm of this kind is described in [2].



12 A. Aldroubi

3.1 Algorithm for the Noise-Free Case

A fast algorithm for the noise-free case can be found using a simple reduced row
echelon algorithm. Before getting into the details, we first need some definitions.

Definition 2. Let S be a linear subspace of RD with dimension d. A set of data
F drawn from S ⊂ R

D with dimension d is said to be generic if (i) |F| > d, (ii)
span F = S, and (iii) every d vector from F forms a basis for S.

Definition 3. Matrix R is said to be the binary reduced row echelon form of matrix
A if all non-pivot column vectors are converted to binary vectors by setting nonzero
entries to one.

Theorem 5. Let {Si}k
i=1 be a set of nontrivial linearly independent subspaces

of RD with corresponding dimensions {di}k
i=1. Let F = [w1 · · ·wN ] ∈ R

D×N be a
matrix whose columns are drawn from

⋃k
i=1 Si. Assume the data is drawn from each

subspace and that it is generic. Let Brref(F) be the binary reduced row echelon form
of F. Then:

1. The inner product 〈ei,b j〉 of a pivot column ei and a non-pivot column b j in
Brref(F) is one, if and only if the corresponding column vectors {wi,wj} in F
belong to the same subspace Sl for some l = 1, . . . ,k.

2. Moreover, dim(Sl) = ‖b j‖1, where ‖b j‖1 is the l1-norm of b j.
3. Finally, wp ∈ Sl if and only if bp = b j or 〈bp,b j〉= 1.

The theorem above provides an effective approach to cluster the data points. We
simply find the reduced row echelon form of the data matrix W and cluster the data
points according to the corresponding columns in the reduced row echelon form.
For example, consider the following data matrix that contains data points drawn
from the union of three linearly independent subspaces (i.e., from M =

⋃{Vi}3
i=1)

as column vectors.

W =

⎡

⎢
⎢⎢
⎢
⎢
⎣

2872 138 342 263 1956 2016 1793 801 195 360 1076 1882 1918 2350 83
4041 249 467 516 129 288 2612 769 312 174 241 176 3019 3270 219
2906 4292 352 7240 2861 3072 1847 665 6968 646 1709 2794 2080 2366 1012
5803 1405 657 2498 549 864 3854 687 2158 390 629 628 4711 4654 545
5124 744 2092 1335 662 1056 2835 1116 1131 484 774 762 4867 4546 309
6701 3192 757 5420 775 1248 4502 578 5148 578 919 896 5638 5354 812
7102 1625 802 2862 888 1440 4793 522 2522 672 1064 1030 6059 5666 585
495 223 117 577 322 960 266 247 169 668 866 520 275 430 388
1184 2910 192 8282 435 1152 755 200 1482 762 1011 654 951 970 6320
2065 1117 287 3027 4040 4800 1376 159 715 1360 2920 4100 1797 1662 2172

⎤

⎥
⎥⎥
⎥
⎥
⎦
. (6)

The computed (binary) reduced row echelon form of W is Wb:

Wb =

⎡

⎢
⎢⎢
⎢
⎣

1 0 0 0 0 0 0 1 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥
⎥⎥
⎥
⎦
. (7)
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Then, from the binary reduced echelon form, it is trivial to correctly clusters
columns of W as {1,3,7,8,13,14}, {2,4,9,15}, and {5,6,10,11,12}.

Although an algorithm based on this method is fast and effective, it fails
dramatically in a noisy environment, and a simple thresholding of small entry values
is not enough to provide robust results in practice. A modification of this algorithm
can be used to obtain an initial set of optimal subspaces in an iterative algorithm
such as the one in [2] for solving Problem 1.

3.2 A Subspace Segmentation Algorithm for Subspaces
of Equal and Known Dimensions

When the dimensions of the subspaces are equal and known, the algorithm described
below uses local subspaces and spectral clustering technique to provide a very
efficient and robust to noise [5] approach for solving the subspace clustering
problem in the special case where the dimensions of the subspaces are equal and
known.

Let W be an n×m data matrix whose columns are drawn from a union of
subspaces of dimensions at most d, possibly perturbed by noise. The singular value
decomposition (SVD) not only reduces the noise (assuming that the rank of W
is estimated correctly) but it also projects the high-dimensional data to a lower
dimension. We then can represent W as follows (using SVD):

W =UΣVt , (8)

where U =
[
u1 u2 · · · un

]
is an n×n matrix, V =

[
v1 v2 · · · vm

]
is an m×m matrix,

and Σ is an n×m diagonal matrix with diagonal entries σ1, . . . ,σl , l = min{m,n}.
Let r be the rank (known or estimated) of W . Then UrΣr(Vr)

t is the best rank-r
approximation of W =UΣVt , where Ur refers to a matrix that has the first r columns
of U as its columns and (Vr)

t refers to the first r rows of Vt . It can be shown that the
columns of (Vr)

t group (cluster) in the same way as the columns of W , and therefore
(Vr)

t can be used to replace the data matrix W [5]. Note that the data points in W
are m dimensional columns, whereas they are r dimensional in (Vr)

t .

3.3 The Nearness to a Local Subspace Algorithm

The following algorithm assumes that the subspaces have dimension d, and it
generates a subspace segmentation and data clustering:

• Dimensionality Reduction and Normalization: Compute the SVD of W and
estimate the effective rank r of W using
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r = argmin j

σ2
j+1

∑ j
i=1 σ2

i

+κ j, (9)

where σ j is the jth singular value and κ is a suitable constant. This allows us to
replace the data matrix W with the matrix (Vr)

t that consists of the first r rows of
Vt (thereby reducing the dimensionality of data).

Another type of data reduction is to normalize it to lie on the (�2) unit sphere.
Specifically, the columns of (Vr)

t are normalized to lie on the unit sphere S
r−1.

This is because by projecting the subspace on the unit sphere, we effectively
reduce the dimensionality of the data by one.

• Local Subspace Estimation: The data points (i.e., each column vector of (Vr)
t )

that are close to each other are likely to belong to the same subspace. For
this reason, we estimate a local subspace for each data point using its closest
neighbors. Then we can find, for each point xi, a d-dimensional subspace that is
nearest (in the least square sense) to the data xi and its k nearest neighbors.

• Construction of a Binary Similarity Matrix: So far, we have associated a local
subspace Si for each point xi. Ideally, the points and only those points that belong
to the same subspace as xi should have zero distance from Si. This suggests
computing the distance of each point x j to the local subspace Si and forming
a distance matrix H.

A distance matrix H is then generated whose component di j is the average
of the Euclidian distance of x j to the subspace Si associated with xi and the
distance of xi to the subspace S j associated with x j. Note that as di j decreases,
the probability of having x j on the same subspace as xi increases.

Since we are assuming noisy data, a point x j that belongs to the same subspace
as xi may have nonzero distance to Si. However, this distance is likely to be small
compared to the distance between x j and Sk if x j and xk do not belong to the same
subspace. Thus, we compute a threshold that will distinguish between these two
cases and transform the distance matrix into a binary matrix in which a zero in
the (i, j) entry means xi and x j are likely to belong to the same subspace, whereas
(i, j) entry of one means xi and x j are not likely to belong to the same subspace.

To do this, we convert the distance matrix H = (di j)m×m into a binary
similarity matrix S = (si j) by applying a data-driven thresholding as described
in [5].

• Segmentation: The last step is to use the similarity matrix S to segment the
data. To do this, we first normalize the rows of S to obtain the normalized
similarity matrix S̃. Observe that the initial data segmentation problem has now
been converted to segmentation of n 1-dimensional subspaces from the rows of S̃.
This is because, in the ideal case, from the construction of S̃, if xi and x j are in the
same subspace, the ith and jth rows of S̃ are equal. Since there are l subspaces,
there will be l 1-dimensional subspaces.

Now, the problem is again a subspace segmentation problem, but this time
the data matrix is S̃ with each row as a data point. Also, each subspace is
1-dimensional and there are l subspaces. Therefore, we can apply SVD again
to obtain
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S̃t =UlΣl(Vl)
t

and cluster the columns of (Vl)
t , that is, the rows of Vl . Note that Vl is m× l, and as

before, (Vl)
t replaces S̃t . Since the problem is only segmentation of subspaces of

dimension 1, we can use any traditional segmentation algorithm such as k-means
to cluster the data points.

4 Application to Motion Segmentation

Consider a moving affine camera that captures N frames of a scene that contains
multiple moving objects. Let p be a point of one of these objects and let xi(p),yi(p)
be the coordinates of p in frame i. Define the trajectory vector of p as the vector
w(p) = (x1(p),y1(p), . . . ,xN(p),yN(p))t in R

2N . It can be shown that the trajectory
vectors of all points of an object in a video belong to a vector subspace in R

2N of
dimension no larger than 4 [21]. Thus, trajectory vectors in videos can be modeled
by a union M = ∪l

i=1Vi of l subspaces where l is the number of moving objects
(background is itself a motion).

A precise description of motion tracking in video can be found in [6]. Finding the
nearest unions of subspaces to a set of trajectory vectors as in Problem 1 allows for
segmenting and tracking the moving objects. Techniques for motion tracking can be
compared to state of the art methods on the Hopkins 155 dataset [30]. The Hopkins
155 dataset was created as a benchmark database to evaluate motion segmentation
algorithms. It contains two and three motion sequences. Cornerness features that
are extracted and tracked across the frames are provided along with the dataset. The
ground truth segmentations are also provided for comparison. Figure 2 shows two
samples from the dataset with the extracted features.

Fig. 2 Samples from the Hopkins 155 dataset
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Table 1 Percentage classification errors for sequences with two motions

Checker (78) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average (%) 6.09 2.57 6.52 4.46 1.55 0.83 1.12 0.23
Median (%) 1.03 0.27 1.75 0.00 0.29 0.00 0.00 0.00

Traffic (31) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average (%) 1.41 5.43 2.55 2.23 1.59 0.23 0.02 1.40
Median (%) 0.00 1.48 0.21 0.00 1.17 0.00 0.00 0.00
Articulated (11) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average (%) 2.88 4.10 7.25 7.23 10.70 1.63 0.62 1.77
Median (%) 0.00 1.22 2.64 0.00 0.95 0.00 0.00 0.88

All (120 seq) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average (%) 4.59 3.45 5.56 4.14 2.40 0.75 0.82 0.57
Median (%) 0.38 0.59 1.18 0.00 0.43 0.00 0.00 0.00

4.1 Results

Tables 1–3 display some of the experimental results for the Hopkins 155 dataset. Our
nearness to local subspace (NLS) approach has been compared with six (6) motion
detection algorithms: (1) GPCA [31], (2) RANSAC [18], (3) local subspace affinity
(LSA) [33], (4) MLS [19, 21], (5) agglomerative lossy compression (ALC) [32],
and (6) sparse subspace clustering (SSC) [15]. An evaluation of those algorithms
is presented in [15] with a minor error in the tabulated results for articulated three
motion analysis of SSC-N. SSC-B and SSC-N correspond to Bernoulli and normal
random projections, respectively [15]. Table 1 displays the misclassification rates
for the two motions video sequences. The NLS algorithm outperforms all of the
algorithms for the checkerboard sequences, which are linearly independent motions.
The overall misclassification rate is 0.57% when three neighboring points are used
for local subspace calculations. This is 24 % better than the next best algorithm.
Table 2 shows the misclassification rates for the three motion sequences. NLS has
1.31% misclassification rate and performs 47% better than the next best algorithm
(i.e., SSC-N). Table 3 presents the misclassification rates for all of the video
sequences. NLS has 0.76% misclassification rate and performs 39% better than the
next best algorithm (i.e., SSC-N). In general, the NLS algorithm outperforms SSC-
N, which is given as the best algorithm for the two and three motion sequences
together.

In conclusion, the NLS algorithm is reliable in the presence of noise, and
applied to the Hopkins 155 dataset, it generates the best results to date for motion
segmentation. The two motion, three motion, and overall segmentation rates for the
video sequences are 99.43%, 98.69%, and 99.24%, respectively.

Acknowledgments This research is supported in part by NSF grants DMS-0807464 and DMS-
0908239.
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Table 2 Percentage classification errors for sequences with three motions

Checker (26) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average(%) 31.95 5.80 25.78 10.38 5.20 4.49 2.97 0.87

Traffic (7) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average (%) 19.83 25.07 12.83 1.80 7.75 0.61 0.58 1.86
Median (%) 19.55 23.79 11.45 0.00 0.49 0.00 0.00 1.53

Articulated (2) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average (%) 16.85 7.25 21.38 2.71 21.08 1.60 1.60 5.12
Median (%) 16.85 7.25 21.38 2.71 21.08 1.60 1.60 5.12

All (35 seq) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average (%) 28.66 9.73 22.94 8.23 6.69 3.55 2.45 1.31
Median (%) 28.26 2.33 22.03 1.76 0.67 0.25 0.20 0.45

Table 3 Percentage classification errors for all sequences

All (155 seq) GPCA LSA RANSAC MSL ALC SSC-B SSC-N NLS

Average (%) 10.34 4.94 9.76 5.03 3.56 1.45 1.24 0.76
Median (%) 2.54 0.90 3.21 0.00 0.50 0.00 0.00 0.20
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Ihar Smalyanau, and Janet C. Tremain

Abstract The construction of Parseval frames with special, rigid geometric
properties has left many open problems even after decades of efforts. The
construction of similar types of fusion frames is even less developed. We construct
a large family of equi-isoclinic Parseval fusion frames by taking the Naimark
complement of the union of orthonormal bases. If these bases are chosen to
be mutually unbiased, then the resulting fusion frame subspaces are spanned
by mutually unbiased basic sequences. By giving an explicit representation for
Naimark complements, we are able to construct concrete fusion frames in their
respective Hilbert spaces.

Keywords Frames • Parseval frames • Tight frames • Fusion frames • Parseval
fusion frames • Unbiased basic sequences • Equi-isoclinic subspaces • Naimark
complement • Chordal distance • Mutually unbiased bases • Mutually unbiased
basic sequences • Tight fusion frame • Naimark’s theorem • Naimark comple-
ment fusion frame • Synthesis operator • Principal angles

1 Introduction

Hilbert space frame theory is a powerful tool for robust and stable representation
of signals [19, 20]. It has found a broad range of applications to problems in
wireless communication, time-frequency analysis, coding, sampling theory, and
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much more [13]. A generalization of frames, called fusion frames, was developed in
[10] (see also [28,30,31]) and quickly found application to problems in engineering
including sensor networks, distributed processing, hierarchical data processing,
packet encoding, and more [2,5,11]. In frame theory, we measure the amplitudes of
the projections of a signal onto the frame vectors. A fusion frame is a collection
of subspaces of a Hilbert space (see Sect. 3 for definitions) where the signal is
represented by the projections onto the fusion frame subspaces. This provides
a platform for performing hierarchical data processing. Fusion frames provide
multilevel processing capabilities with resilience to noise and erasures [2,12,23,24]
due to their redundancy. For applications, we generally need additional properties on
the fusion frame, the most desired being the Parseval property. Apart from the use
of group representations [20], and although a recent breakthrough called spectral
tetris has allowed for large classes of Parseval fusion frames to be constructed [7,9],
it has proven to be extremely difficult to construct Parseval fusion frames.

One of the main drawbacks of fusion frame theory is that until now, results were
geared towards constructing tight fusion frames. In [26], there is a nearly complete
classification of dimensions for the spaces, dimensions for the subspaces, number of
subspaces, and weights for which tight fusion frames exist. In applications. however,
it is possible that the fusion frame is given—such as the case of sensor networks—
and we do not get to construct a tight fusion frame. Recently, in [4], the notion of
non-orthogonal fusion frames was introduced to deal with this case. By using non-
orthogonal projections, the authors are able to show that most fusion frames can be
turned into tight fusion frames if we use non-orthogonal projections.

Apart from tightness, additional desirable properties in frame design are of
geometric nature: frames whose vectors have equal norm or are equiangular.
Among equal-norm Parseval frames there is a special class obtained by forming the
union of orthonormal bases and scaling the vectors with a common factor. Within
this class, using mutually unbiased bases provides a near match to equiangular
Parseval frames which is desirable for applications [1], in particular in quantum state
tomography [32]. The construction of large frames made of mutually unbiased bases
is possible in prime power dimensions [33], but is otherwise similarly challenging
as the construction of highly or minimally redundant equiangular Parseval frames.

We wish to consider the fusion frame analogue of these desired geometric
properties in frame design. One could consider the fusion frame version of
equiangular Parseval frames either to be Parseval fusion frames whose subspaces
have equal chordal distances [14] or as the stricter requirement that the subspaces
are equi-isoclinic [25]. In [23, 24], it is shown that a tight fusion frame (see Sect. 3
for definitions) has maximal robustness against one subspace erasure when all
subspaces have equal dimensions. They further show that a tight fusion frame
consisting of equi-dimensional subspaces with equal chordal distances (called equi-
distance tight fusion frames) gives the best robustness with respect to two and more
subspace erasures when the performance is measured in terms of the mean-square
error. Equi-distance Parseval fusion frames can be constructed, for example, from
Hadamard matrices [22]. When the worst-case error is optimized instead, then equi-
isoclinic fusion frames, if they exist, are found to be optimal for two erasures.
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Optimality for larger numbers of erasures requires a more detailed analysis [2].
Lemmens and Seidel first introduced the notion of equi-isoclinic subspaces [25],
which was further studied by Hoggar [21] and others [15–18].

In dimensions where equi-distance or equi-isoclinic Parseval fusion frames are
not realizable, one still has a notion of optimality in the more general type of
Grassmannian frames. In [6], the authors study the problem of packing equi-
dimensional subspaces of RM so they are as far apart as possible (called optimal
packings). They give packings so that either all the principal angles are the same or
have at most two different values.

In this chapter we will use the notion of Naimark complements to construct a
large class of equi-isoclinic Parseval fusion frames. In addition, we construct the
special type of equi-isoclinic Parseval fusion frame for which the subspaces are
spanned by mutually unbiased basic sequences.

2 Preliminary Results

In this section we will introduce definitions and the main ideas studied in this
chapter. We begin with Hilbert space frames.

Definition 1. A family of vectors { fi}i∈I is a frame for a Hilbert space H if there
are constants 0 < A ≤ B < ∞, called a lower and upper frame bound, respectively,
so that for all f ∈H we have

A‖ f‖2 ≤∑
i∈I
|〈 f , fi〉|2 ≤ B‖ f‖2.

If A = B, this is called an A-tight frame, and if A = B = 1, it is a Parseval frame.
The analysis operator of the frame is T : H → �2(I) given by

T f = ∑
i∈I
〈 f , fi〉ei,

where {ei}i∈I is the canonical orthonormal basis of �2(I). The synthesis operator of
the frame is T ∗ : �2(I)→H given by

T ∗
(

∑
i∈I

aiei

)

= ∑
i∈I

ai fi.

The frame operator is the positive, self-adjoint, and invertible operator S = T ∗T :
H →H given by

S f = ∑
i∈I
〈 f , fi〉 fi, for all f ∈H .

It follows that AI ≤ S ≤ BI and the frame is Parseval if and only if S = I.
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Definition 2. Given two subspaces W1,W2 of a Hilbert space H with dim W1 = k≤
dim W2 = �, the principal angles (θ1,θ2, . . . ,θk) between the subspaces are defined
as follows: The first principal angle is

θ1 = min{arccos |〈 f ,g〉| : f ∈ SW1 ,g ∈ SW2},

where SWi = { f ∈Wi : ‖ f‖ = 1}. Two vectors f1,g1 are called principal vectors if
they give the minimum above.

The other principal angles and vectors are then defined recursively via

θi = min{arccos|〈 f ,g〉| : f ∈ SW1 ,g ∈ SW2 ,and f ⊥ f j,g ⊥ g j,1≤ j ≤ i− 1}.

Conway, Hardin, and Sloane introduced the chordal distance between subspaces
of a Hilbert space [14].

Definition 3. If W1,W2 are subspaces of H of dimension k, the chordal distance
dc(W1,W2) between the subspaces is given by

d2
c (W1,W2) = k− tr[P1P2] = k−

k

∑
j=1

cos2 θ j,

where Pi is the orthogonal projection onto Wi and {θ j}k
j=1 are the principal angles

for W1,W2.

If P1,P2 are the orthogonal projections onto the k-dimensional subspaces W1,W2,
the nonzero singular values of P1P2 are the squares of the cosines of the principal
angles {θ j}k

j=1 between W1 and W2. Hence,

tr[P1P2] =
k

∑
j=1

cos2 θ j = k− d2
c (W1,W2).

Definition 4. Two k-dimensional subspaces W1,W2 of a Hilbert space are isoclinic
with parameter λ , if the angle θ between any f ∈W1 and its orthogonal projection
P f in W2 is unique with cos2 θ = λ .

Multiple subspaces are equi-isoclinic if they are pairwise isoclinic with the same
parameter λ .

An alternative definition is given in [16] where two subspaces are called isoclinic
if the stationary values of the angles of two lines, one in each subspace, are equal.
The geometric characterization given by Lemmens and Seidel is that when a sphere
in one subspace is projected onto the other subspace, then it remains a sphere,
although the radius may change [25]. This is all equivalent to the principal angles
between the subspaces being identical.

Much work has been done on finding the maximum number of equi-isoclinic
subspaces given the dimensions of the overall space and the subspaces (and often
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the parameter λ ). Specifically, Seidel and Lemmens [25] give an upper bound on the
number of real equi-isoclinic subspaces, and Hoggar [21] generalizes this to vector
spaces over R and C.

We will show that equi-isoclinic subspaces can be constructed with the help of
the Naimark complement from a simple type of Parseval frame formed by taking the
union of orthonormal bases and scaling the vectors by a common factor. A special
case occurs when we form the union of mutually unbiased bases.

Definition 5. A family of orthonormal sequences {gi j}N
i=1, j = 1,2, . . . ,L in an M-

dimensional Hilbert space HM is called mutually unbiased if there is a constant
0 < c so that

|〈gi j,gk�〉|= c, for all j �= �.

If N = M, then we say the family consists of mutually unbiased bases. In this case,

c must equal
√

1
N .

3 Fusion Frames and Their Complements

Fusion frames were developed in [10] and quickly generated much literature (see
www.fusionframe.org) because of their application to problems in engineering.

Definition 6. Given a Hilbert space H and a family of closed subspaces {Wi}i∈I

with associated positive weights vi, i ∈ I, a collection of weighted subspaces
{(Wi,vi)}i∈I is a fusion frame for H if there exist constants 0 < A ≤ B < ∞
satisfying

A‖ f‖2 ≤∑
i∈I

v2
i ‖Pi f‖2 ≤ B‖ f‖2 for any f ∈H ,

where Pi is the orthogonal projection onto Wi.

The constants A and B are called fusion frame bounds. A fusion frame is called
tight if A and B can be chosen to be equal, Parseval if A = B = 1, and orthonormal if

H =⊕i∈IWi.

The fusion frame operator is the positive, self-adjoint, and invertible operator
SW :H →H given by

SW f = ∑
i∈I

v2
i Pi f , for all f ∈H .

It is known [11] that {Wi,vi}i∈I is a fusion frame with fusion frame bounds A,B if
and only if AI ≤ SW ≤ BI. Any signal f ∈H can be reconstructed [11] from its
fusion frame measurements {viPi f}i∈I by performing

f = ∑
i∈I

viS
−1(viPi f ).

www.fusionframe.org
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A frame { fi}i∈I can be thought of as a fusion frame of one-dimensional
subspaces where Wi = span { fi} for all i ∈ I. The fusion frame is then {Wi,‖ fi‖}.
A difference between frames and fusion frames is that for frames, an input signal
f ∈H is represented by a collection of scalar coefficients {〈 f , fi〉}i∈I that measure
the projection of the signal onto each frame vector fi, while for fusion frames, an
input signal f ∈H is represented by a collection of vector coefficients {ΠWi( f )}i∈I

corresponding to projections onto each subspace Wi.
There is an important connection between fusion frame bounds and bounds from

frames taken from each of the fusion frame’s subspaces [10].

Theorem 1. For each i ∈ I, let vi > 0 and Wi be a closed subspace of H , and let
{ fi j} j∈Ji be a frame for Wi with frame bounds Ai,Bi. Assume that 0< A= infi∈I Ai≤
supi∈I Bi = B < ∞. Then the following conditions hold:

1. {Wi,vi}i∈I is a fusion frame for H .
2. {vi fi j}i∈I, j∈Ji is a frame for H .

In particular, if {Wi,vi} j∈Ji}i∈I is a fusion frame for H with fusion frame bounds
C,D, then {vi fi j}i∈I, j∈Ji is a frame for H with frame bounds AC,BD. Also, if
{vi fi j}i∈I, j∈Ji is a frame for H with frame bounds C,D, then {Wi,vi,} j∈Ji}i∈I is
a fusion frame for H with fusion frame bounds C

B ,
D
A .

Corollary 1. For each i ∈ I, let vi > 0 and Wi be a closed subspace of H . The
following are equivalent:

1. {Wi,vi}i∈I is a fusion frame for H with fusion frame bounds A,B.
2. For every orthonormal basis {ei j} j∈Ki for Wi, the family {viei j}i∈I, j∈Ki is a frame

for H with frame bounds A,B.
3. For every Parseval frame { fi j}i∈I, j∈Ji for Wi, the family {vi fi j}i∈I, j∈Ji is a frame

for H with frame bounds A,B.

Corollary 2. For each i ∈ I, let vi > 0 and Wi be a closed subspace of H . The
following are equivalent:

1. {Wi,vi}i∈I is a Parseval fusion frame for H .
2. For every orthonormal basis {ei j} j∈Ki for Wi, the family {viei j}i∈I, j∈Ki is a

Parseval frame for H .
3. For every Parseval frame { fi j}i∈I, j∈Ji for Wi, the family {vi fi j}i∈I, j∈Ji is a

Parseval frame for H .

We now turn our attention to complements of fusion frames.

3.1 Naimark Complements

A fundamental result in frame theory is Naimark’s theorem (see, e.g., [8,13,20] for
a generalization).
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Theorem 2. A family { fi}N
i=1 is a Parseval frame for a Hilbert space H if and only

if there is a Hilbert space �2(N) with orthonormal basis {ei}N
i=1, H ⊂ �2(N), and

the orthogonal projection P of �2(N) onto H satisfies Pei = fi, for all i= 1,2, . . . ,N.

Definition 7. If {Pei}N
i=1 as in Naimark’s theorem is a Parseval frame for HM ,

then {(I − P)ei}N
i=1 is a Parseval frame for the subspace HN−M of �2(N) called

the Naimark complement of {Pei}N
i=1.

For a Parseval fusion frame {Wi,vi}M
i=1 we also have a Naimark complement.

For this, we choose orthonormal bases {gi j}n j
i=1 for Wj, j = 1,2, . . . ,M. Then

{√v jgi j}n j , M
i=1, j=1 is a Parseval frame which we can denote as {Pei j}n j , M

i=1, j=1. Since

〈Pei j,Pek�〉=−〈(I−P)ei j,(I−P)ek�〉, j �= l,

it follows that {(I−P)ei j}n j
i=1 is an orthogonal set. Letting

W ′
j = span {(I−P)ei j}n j

i=1,

it can be shown that {W ′
j ,
√

1− v2
j}M

j=1 is a Parseval fusion frame called the Naimark

complement fusion frame. We note that the Naimark complement fusion frame
actually depends on the choice of orthonormal bases for the fusion frame, but we
will now check that all possible Naimark complements are unitarily equivalent.

Lemma 1. Let H1, H3 be M-dimensional Hilbert spaces, H2, H4 - (N −M)-
dimensional Hilbert spaces, and let U : H1 →H3 be a unitary operator. If { fi⊕
gi}N

i=1 ⊆H1⊕H2 and {U fi⊕hi}N
i=1 ⊆H3⊕H4 are orthonormal sets, then Vgi =

hi is a unitary operator.

Proof. For all families of scalars {ai}N
i=1 we have

∥∥
∥
∥
∥

N

∑
i=1

ai( fi⊕ gi)

∥∥
∥
∥
∥

2

=
N

∑
i=1
|ai|2 =

∥∥
∥
∥
∥

N

∑
i=1

ai(U fi⊕ hi)

∥∥
∥
∥
∥

2

.

Thus

∥
∥
∥∥
∥

N

∑
i=1

ai fi

∥
∥
∥∥
∥

2

+

∥
∥
∥∥
∥

N

∑
i=1

aigi

∥
∥
∥∥
∥

2

=

∥
∥
∥∥
∥

N

∑
i=1

ai( fi⊕ gi)

∥
∥
∥∥
∥

2

=

∥
∥
∥∥
∥

N

∑
i=1

ai(U fi⊕ hi)

∥
∥
∥∥
∥

2

=

∥∥
∥
∥
∥

N

∑
i=1

aiU fi‖2 + ‖
N

∑
i=1

aihi

∥∥
∥
∥
∥

2

=

∥∥
∥
∥
∥

N

∑
i=1

ai fi‖2 + ‖
N

∑
i=1

aihi

∥∥
∥
∥
∥

2

.

Hence, ‖∑N
i=1 aigi‖2 = ‖∑N

i=1 aihi‖2. ��
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One consequence of the above lemma is that Naimark complements for Parseval
fusion frames are independent of the choice of orthonormal bases for the subspaces
up to the application of a unitary operator. For our constructions, this will allow us
to explicitly identify our equi-isoclinic fusion frames in the Naimark complement
of our original fusion frame. A detailed proof for the following corollary may be
found in [8].

Corollary 3. If { fi}N
i=1 is a Parseval frame for HM and {gi}N

i=1 is a family of
vectors in HN−M so that { fi ⊕ gi}N

i=1 is an orthonormal basis for HN, then up
to a unitary operator, {gi}N

i=1 is the Naimark complement of { fi}N
i=1.

3.2 Identifying the Naimark Complement

Now we will give an explicit representation of the Naimark complements for the
fusion frames we will be working with.

Proposition 1. Let A1, . . . ,AM be N×N unitary matrices, and let

A =

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1M

a21 a22 · · · a2M
...

... · · · ...
aM1 aM2 · · · aMM

⎤

⎥
⎥
⎥
⎦

be a unitary matrix. Then

A =

⎡

⎢
⎢
⎢
⎣

a11A1 a12A2 · · · a1MAM

a21A1 a22A2 · · · a2MAM
...

... · · · ...
aM1A1 aM2A2 · · · aMMAM

⎤

⎥
⎥
⎥
⎦

is a unitary matrix.

Proof. A direct calculation shows that A∗A = Id. ��
Corollary 4. Given orthonormal bases {gi j}N

i=1, j = 1,2, . . . ,M for HN, consider
the N×MN matrix

[A1 A2 · · · AM] =

⎡

⎣
| | | | | |

g11 · · · gN1 g12 · · · gN2 · · · g1M · · · gNM

| | | | | |

⎤

⎦ .

This is the synthesis operator for the M-tight frame {gi j} N, M
i=1, j=1. Choose a unitary

matrix
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A =

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1M

a21 a22 · · · a2M
...

... · · · ...
aM1 aM2 · · · aMM

⎤

⎥
⎥
⎥
⎦
.

Then the column vectors of the matrix

A ′ =
√

1
M

⎡

⎢
⎣

a21A1 a22A2 · · · a2MAM
...

... · · · ...
aM1A1 aM2A2 · · · aMMAM

⎤

⎥
⎦

are the Naimark complement for the Parseval frame

{√
1
M gi j

} N, M

i=1, j=1
.

Proof. This is immediate from Corollary 3 and Proposition 1. ��
Corollary 5. Letting Wj be the span of the column vectors of a1 jA j, then
{Wj,

√
a1 j}M

j=1 is a Parseval fusion frame for HN. Letting W ′
j be the span of

the column vectors of
⎡

⎢⎢
⎢
⎣

a2 jA j

a3 jA j
...

aM jA j

⎤

⎥⎥
⎥
⎦
,

then {W ′
j ,
√

∑M
i=2 ai j}M

j=1 is a Parseval fusion frame which is the Naimark comple-

ment of the Parseval fusion frame {Wj,
√

a1 j}M
j=1.

Now that we have identified our Parseval fusion frames, we find the principal
angles and the chordal distance between our fusion frame subspaces by recalling
results from [8]:

Theorem 3. Let {Wi,vi}K
i=1 be a Parseval fusion frame for HN with Naimark

complement Parseval fusion frame {W ′
i ,
√

1− v2
i }K

i=1. Let {θ�,i j}k
�=1 be the principal

angles for the subspaces Wi,Wj. Then the principal angles {θ ′l,i j} for the subspaces
W ′

i ,W
′
j are

⎧
⎨

⎩
arccos

⎡

⎣ vi√
1− v2

i

v j√
1− v2

j

cos(θ�,i j)

⎤

⎦

⎫
⎬

⎭

k

�=1

.

Theorem 4. Let {Wi,vi}K
i=1 be a Parseval fusion frame for HN. Then the Naimark

complement Parseval fusion frame {W ′
i ,
√

1− v2
i }K

i=1 satisfies
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d2
c (W

′
i ,W

′
j) =

[

1− v2
i

1− v2
i

v2
j

1− v2
j

]

k+

[
v2

i

1− v2
i

v2
j

1− v2
j

]

d2
c (Wi,Wj).

This construction creates equi-isoclinic fusion frame subspaces in our Naimark
complement which we shall further discuss in Sect. 4. Now, however, we briefly
leave our discussion of Naimark complements to consider the spatial complement
of a fusion frame.

3.3 Spatial Complements

Definition 8. Let {(Wi,vi)}i∈I be a fusion frame for H . If the family {(W⊥
i ,vi)}i∈I ,

where W⊥
i is the orthogonal complement of Wi, is also a fusion frame, then we call

{(W⊥
i ,vi)}i∈I the orthogonal fusion frame to {(Wi,vi)}i∈I .

Proposition 2. Let {Wi,vi}i∈I be a Parseval fusion frame for H . Then

1. ∑i∈I v2
i ≥ 1

2. ∑i∈I v2
i = 1 if and only if Wi = H for all i ∈ I

Proof. To prove the first statement, let Pi be the orthogonal projection of H onto
Wi. Since the fusion frame is Parseval, for all f ∈H ,

f = ∑
i∈I

v2
i Pi( f ).

Thus

‖ f‖ = ‖∑
i∈I

v2
i Pi( f )‖

≤∑
i∈I
‖v2

i Pi( f )‖

= ∑
i∈I

v2
i ‖Pi( f )‖

≤
(

∑
i∈I

v2
i

)

‖ f‖. (1)

Then the second statement follows from considering when equality holds in
inequality (1) for all f ∈H :

∑
i∈I

v2
i = 1⇔∑

i∈I

v2
i ‖Pi( f )‖ = ‖ f‖

⇔ Pi( f ) = f for all i ∈ I

⇔Wi = H for all i ∈ I. ��
We need a result from [5].
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Theorem 5. Let {(Wi,vi)}i∈I be a fusion frame for H with optimal fusion frame
bounds 0 < A ≤ B < ∞ such that ∑i∈I v2

i < ∞. Then the following conditions are
equivalent:

1.
⋂

i∈I Wi = {0}.
2. B < ∑i∈I v2

i .
3. The family {(W⊥

i ,vi)}i∈I is a fusion frame for H with optimal fusion frame
bounds ∑i∈I v2

i −B and ∑i∈I v2
i −A.

Corollary 6. Let {(Wi,vi)}i∈I be a Parseval fusion frame for H with ∑i∈I v2
i > 1.

Then {(W⊥
i ,vi)}i∈I is a

(
∑ j∈I v2

j − 1
)

tight fusion frame, and

⎧
⎨

⎩
W⊥

i ,
vi√

∑ j∈I v2
j − 1

⎫
⎬

⎭

is a Parseval fusion frame.
Moreover, we have

d2
c (Wi,Wj) = d2

c (W
⊥
i ,W⊥

j ).

Proof. The only part that needs a proof is the moreover part, but this is a well-
known result from [27,29] where the authors show that the nonzero principal angles
between two subspaces and the nonzero principal angles between their orthogonal
complements are equal. ��

4 Equi-isoclinic Fusion Frames and Mutually Unbiased
Basic Sequences

Now we combine our results to find equi-isoclinic fusion frames, and we find a
special case where the fusion frame subspaces are spanned by mutually unbiased
basic sequences. We will need a result from [3].

Theorem 6. Let P be the orthogonal projection of �2(M) onto HN. Given the Par-
seval frame {Pei}M

i=1 for HN, and J⊆{1,2, . . . ,M}, the following are equivalent:

1. span{(I−P)ei}i∈J = (I−P)(�2(M)).
2. {Pei}i∈Jc is linearly independent.

Now we present the main results.

Theorem 7. Let {gi j}N , M
i=1, j=1 be the union of M orthonormal bases for a Hilbert

space HN. Let

{
Wj,

√
1
M

}M

i=1
be the Parseval fusion frame for HN where Wj =
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span
{

gi j
}N

i=1 = HN. Let {W ′
j ,
√

M−1
M }M

j=1 be the Naimark complement, a Parseval

fusion frame for H(M−1)N. Using Naimark’s theorem, we can write gi j =
√

1
M Pei j

where P is an orthogonal projection from �2(MN) onto HN. Then the following
hold:

1. For any j ∈ {1,2, . . . ,M},

span{W ′
i }i�= j = H(M−1)N .

2. The principal angles for W
′
i ,W

′
j are

θl,i j = arccos

[
1

M− 1

]
,

so this is a equi-isoclinic Parseval fusion frame.

Proof. To prove (1), we use that {gi j}N
i=1 is, for any fixed j, a linearly

independent set. This implies by the preceding theorem that selecting the
complement of the index set, that is, all j′ �= j, provides a spanning subset{√

1
M (I−P)ei j′ : j′ �= j

}
for the Naimark complement. Since the subspaces W ′

j

are spanned by

{√
1
M (I−P)ei j′

}
, the result follows.

To prove (2), we note that the principal angles for Wi,Wj are all arccos1 = 0. The
conversion for principal angles gives

arccos

⎡

⎣
1√
M√

1− ( 1√
M
)2

1√
M√

1− ( 1√
M
)2

cos0

⎤

⎦= arccos

[
1

M− 1

]
. ��

The second item in the theorem has a converse.

Corollary 7. Let {Wi,vi}M
i=1 be a Parseval fusion frame for HN(M−1) with dimWi =

N for all i = 1,2, . . . ,M. Then

M

∑
i=1

v2
i = M− 1.

If vi =
√

M−1
M for all i= 1,2, . . . ,M, then all principal angles between the subspaces

Wi are equal to arccos
[

1
M−1

]
.

Proof. Since ∑M
i=1 dimWi = NM, the Naimark complement fusion frame

{W ′
i ,
√

1− v2
i }M

i=1 spans HNM−N(M−1) = HN . Since dimWi = dimW
′
i = N,

W
′
i = HN for every i. The result is now immediate from the preceding theorem. ��
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Additionally, in the special case where our bases are mutually unbiased, the
resulting Naimark fusion frame subspaces are spanned by mutually unbiased basic
sequences.

Corollary 8. Let {gi j}N , M
i=1, j=1 be a family of mutually unbiased bases for a Hilbert

space HN. Let {Wj,
√

1
M}M

i=1 be the Parseval fusion frame for HN where Wj =

span {gi j}N
i=1. Let {W ′

j ,
√

M−1
M }M

j=1 be the Naimark complement Parseval fusion

frame for H(M−1)N. Using Naimark’s theorem, we can write gi j =
√

1
M Pei j where

P is an orthogonal projection from �2(MN) onto HN. Then the family {
√

M
M−1 (I−

P)ei j}N
i=1, for j = 1,2, . . . ,M consists of mutually unbiased orthonormal sequences,

and the subspaces

Wj = span{(I−P)ei j}N
i=1

are equi-isoclinic.

Proof. The equi-isoclinic property is a consequence of the preceding theorem. The
fact that the basic sequences spanning the subspaces are mutually unbiased comes
from the fact that the Gram matrix of the Naimark complement differs on all off-
diagonal elements only by an overall change of sign from the Gram matrix of the
mutually unbiased bases. ��

Maximal mutually unbiased bases are known to exist in all prime power
dimensions pr [33], so by the Naimark complement, there are Parseval fusion
frames with M ≤ pr + 1 equi-isoclinic subspaces of dimension pr, spanned by
mutually unbiased basic sequences in a Hilbert space of dimension N = (M−1)pr.
The union of these unbiased basic sequences forms a tight frame of redundancy
M/(M− 1), and thus we can achieve redundancies arbitrarily close to one if pr is
chosen sufficiently large.

Lastly, we now present a concrete example of a special case of our main
theorem. In HN , consider M copies of an orthonormal basis {gi}N

i=1 as {gi j}N,M
i=1, j=1.

Hence { 1√
M

gi j}N,M
i=1, j=1 is a Parseval frame. Let T : HN → �2(MN) be the

analysis operator of this Parseval frame, and let Wj = span{gi j}N
i=1. Then

{Wj,
1√
M
}M

j=1 is a Parseval fusion frame. Let P be the orthogonal projection

of �2(MN) onto the range of T . Let {ei j}N, M
i=1, j=1 be the orthonormal basis

for �2(MN) so that Pei j = T gi j. Write our Parseval fusion frame in the order
1√
M

Pe11,
1√
M

Pe12, . . . ,
1√
M

Pe1M, 1√
M

Pe21, . . . ,
1√
M

PeNM . Now,
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T =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

Pe11
...

Pe1M

Pe21
...

Pe2M
...

PeN1
...

PeNM

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

1
M · · · 1

M 0 · · · 0 · · · 0 · · · 0
...

...
...

...
...

...
1
M · · · 1

M 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1

M · · · 1
M · · · 0 · · · 0

...
...

...
...

...
...

0 · · · 0 1
M · · · 1

M · · · 0 · · · 0
. . .

0 · · · 0 0 · · · 0 · · · 1
M · · · 1

M
...

...
...

...
...

...
0 · · · 0 0 · · · 0 · · · 1

M · · · 1
M

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

and

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

(I−P)e11
...

(I−P)e1M

(I−P)e21
...

(I−P)e2M
...

(I−P)eN1
...

(I−P)eNM

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

1− 1
M · · · − 1

M 0 · · · 0 · · · 0 · · · 0
...

...
...

... · · · ...
...

− 1
M · · · 1− 1

M 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1− 1

M · · · − 1
M · · · 0 · · · 0

...
...

...
... · · · ...

...
0 · · · 0 − 1

M · · · 1− 1
M · · · 0 · · · 0

. . .

0 · · · 0 0 · · · 0 · · · 1− 1
M · · · − 1

M
...

...
...

... · · · ...
...

0 · · · 0 0 · · · 0 · · · − 1
M · · · 1− 1

M

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

.

In this setting, W ′
1 is

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

1− 1
M · · · − 1

M 0 · · · 0 · · · 0 · · · 0
...

...
...

... · · · ...
...

0 · · · 0 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1− 1

M · · · − 1
M · · · 0 · · · 0

...
...

...
... · · · ...

...
0 · · · 0 0 · · · 0 · · · 0 · · · 0

. . .

0 · · · 0 0 · · · 0 · · · 1− 1
M · · · − 1

M
...

...
...

... · · · ...
...

0 · · · 0 0 · · · 0 · · · 0 · · · 0

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

.
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The above represents an orthonormal basis for W ′
1. Similarly we have W ′

j for
j = 1,2, . . . ,M. This leads to:

Proposition 3. For the projections above we have:

1. Wj = {Pe1 j,Pe2 j, . . . ,PeN j}implies span{W ′
i }i�= j = H(M−1)N.

2. The family {Wi,vi}M
i=1, vi =

1√
M

for i = 1,2, . . . ,M is a Parseval fusion frame for
HN.

3. The family {W ′
i ,
√

1− v2
i =

√
M−1

M }M
i=1 is a Parseval fusion frame for H(M−1)N.

4. Letting Ui = span{(I−P)ei j}M
j=1, then {Ui,1}N

i=1 is an orthonormal fusion frame
with dimUi = M− 1.

5. The principal angles for W
′
i ,W

′
j are

arccos

⎡

⎣
1√
M√

1− ( 1√
M
)2

1√
M√

1− ( 1√
M
)2

cos0

⎤

⎦= arccos

[
1

M− 1

]
,

and this is an equi-isoclinic Parseval fusion frame.
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Sampling in Spaces of Bandlimited Functions
on Commutative Spaces

Jens Gerlach Christensen and Gestur Ólafsson

Abstract A homogeneous space X = G/K is called commutative if G is a locally
compact group, K is a compact subgroup, and the Banach ∗-algebra L1(X)K

of K-invariant integrable functions on X is commutative. In this chapter we
introduce the space L2

Ω (X) of Ω -bandlimited function on X by using the spectral
decomposition of L2(X). We show that those spaces are reproducing kernel Hilbert
spaces and determine the reproducing kernel. We then prove sampling results for
those spaces using the smoothness of the elements in L2

Ω (X). At the end we discuss
the example of Rd , the spheres Sd , compact symmetric spaces, and the Heisenberg
group realized as the commutative space U(n)�Hn/U(n).

Keywords Sampling • Bandlimited functions • Reproducing kernel Hilbert
spaces • Gelfand pairs • Commutative spaces • Representation theory • Abstract
harmonic analysis

1 Introduction

Reconstruction or approximation of a function using a discrete set of values of the
function, or a transformation of the function, has an old and prominent history.
A well-known example is the reconstruction of a function using discrete sets of
line integrals, a fundamental tool in computerized tomography. Stepping into the
digital age has only made this more important. But sampling theory as independent
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mathematical subject originates from the fundamental article [44]. We refer to [50],
in particular the introduction, and [51] as good places to consult about the history
of the subject.

Sampling theory is a field of interest to engineers, signal analysts, and mathe-
maticians alike. It is concerned with the reconstruction of a function or signal from
its values at a certain collection of points. Sampling theory is concerned with many
questions:

1. Which classes of signals can we expect to reconstruct?
2. Which conditions do the sampling points have to satisfy?
3. How are the signals reconstructed from samples?
4. Reconstruction algorithms and error analysis.
5. The speed of the reconstruction.

The first, and arguably most famous, result is the Whittaker–Shannon–
Kotelnikov sampling theorem which states that an audible (bandlimited) signal
can be reconstructed from its values at equidistant sample points if the samples are
taken at the Nyquist rate. If sampling takes place at a slower rate the signal cannot
be reconstructed. With a higher sampling rate than the Nyquist rate (oversampling)
the signal can be reconstructed by many different methods. Some of the developed
methods also apply in the case when the samples are not equidistant but within the
Nyquist rate (irregular sampling).

Frames [8, 33] generalize orthonormal bases and are relatively new additions
to mathematics, yet they have become increasingly important for approximation
theory, reconstruction in function spaces, time frequency analysis, and generaliza-
tions to shift (translation) invariant spaces on topological groups and homogeneous
spaces. So there is no surprise that frames have also been widely used in sampling
theory. We will not go into detail here, but would like to point out the article by
Benedetto [3] and by Benedetto and Heller [4] as well as the fundamental work by
Feichtinger, Gröchenig, and their coauthors [16, 17, 21–25, 29]. Again, we refer to
[50], in particular Chapter 10, for a good overview.

The natural generalization of the spaces of bandlimited functions on R
n is

similarly defined translation invariant spaces of functions on Lie groups and
homogeneous spaces. Of particular interest are homogeneous Riemannian spaces, a
subject closely related to the coorbit theory of Feichtinger and Gröchenig and more
general reproducing kernel Hilbert spaces in connection with unitary representations
of Lie groups [9–11, 18–20, 28]. Here we have some natural tools from analysis at
our disposal, including an algebra of invariant differential operators and in particular
the Laplace operator. Most commonly the spaces of bandlimited functions are
defined in terms of the boundness of the eigenvalues of the Laplace operator. The
bounded geometry of the space allows us then to derive the needed Sobolev and
Bernstein inequalities. We point out [26,27,29,30,41] as important contributions to
the subject.

In this chapter we follow an approach which allows for more general spec-
tral sets than those coming from the Laplacian. In particular we find sampling
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theorems for square integrable functions on the homogeneous space X = G/K
whose vector-valued Fourier transform (defined using spherical representations) is
supported in a compact subset of the Gelfand spectrum of L1(X)K .

This chapter is organized as follows. In Sect. 2 we recall some standard notation
for Lie groups G and homogeneous spaces X. We introduce the algebra of invariant
differential operators on homogeneous spaces and connect it with the algebra of
invariant polynomials on Txo(X), where xo is a fixed base point. We then recall some
basic fact about representations, and in particular, we introduce the space of smooth
and analytic vectors. In Sect. 3 we discuss sampling in reproducing kernel Hilbert
spaces on Lie groups. The main ideas are based on the work of H. Feichtinger and K.
Gröchenig.

Section 4 deals with oscillation estimates on Lie groups. The exposition is based
on [9] and uses smoothness of the functions to derive oscillation results and hence
sampling theorems.

We introduce the notion of Gelfand pairs and commutative spaces in Sect. 5. Here
we assume that the group is connected, which allows us to state that X = G/K is
commutative if and only if the algebra D(X) of G-invariant differential operators is
commutative. We review well-known facts about positive-definite functions and the
spherical Fourier transform on X. One of the main results in this section is a recent
theorem of Ruffino [43] which implies that we identify the parameter set for the
spherical Fourier transform with a subset of Cs, where s is the number of generators
for D(X). The result by Ruffino generalizes statements about Gelfand pairs related
to the Heisenberg group by Benson, Jenkins, and Ratcliff [7]. In Sect. 6 we relate
the positive-definite spherical functions to K-spherical representations of G and
introduce the vector-valued Fourier transform on X. This relates the representation
theory of G to the harmonic analysis on X.

In Sect. 7 we finally introduce the space of bandlimited functions on X. The
definition is based on the support of the Plancherel measure on X rather than the
spectrum of the Laplacian on X as in [26, 27, 41]. We do not prove it, but in
all examples the definitions of a bandlimited function are equivalent, though our
definition allows for more general spectral sets. Another benefit of our approach
is that one does not have to worry about injectivity radius for the exponential
function nor about the construction of smooth partitions of unity (characteristic
functions for a disjoint cover can be used just as well). Our sampling result
is proved in Sect. 8 using a Bernstein inequality for the space of bandlimited
functions. Finally, in Sect. 9, we give some examples of commutative spaces and
their spherical harmonic analysis. Those examples include the spheres and, more
generally, compact symmetric spaces and the Heisenberg group as a homogeneous
space for the group U(n)�Hn.
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2 Notation and Preliminaries

2.1 Locally Compact Groups

In the following G denotes a locally compact Hausdorff group with left-invariant
Haar measure μG. Sometimes we write dx instead of dμG(x). For 1 ≤ p < ∞ we let
Lp(G) denote the space of equivalence classes of p-integrable functions on G with
norm

‖ f‖Lp =
(∫

| f (x)|p dx
)1/p

.

Further, let L∞(G) denote the space of essentially bounded function on G with norm

‖ f‖∞ = ess sup
x∈G
| f (x)|.

The spaces Lp(G) are Banach spaces for 1 ≤ p ≤ ∞, and L2(G) is a Hilbert space
with inner product

( f ,g) =
∫

f (x)g(x)dx.

When it makes sense (either the integrand is integrable or as a vector-valued
integral) we define the convolution

f ∗ g(x) =
∫

f (y)g(y−1x)dy.

Equipped with convolution the space L1(G) becomes a Banach algebra. For
functions on G we denote the left and right translations by

�(a) f (x) = f (a−1x) and ρ(a) f (x) = f (xa),

respectively. Now, let K be a compact subgroup of G with bi-invariant Haar measure
μK . We always normalize μK so that μK(K) = 1. The same convention applies to
other compact groups and compact spaces.

If A is a set of functions on G we denote the left K-fixed subset as

A K = { f ∈A | �(k) f = f},

and similarly the right K-fixed subset is denoted

A ρ(K) = { f ∈A | ρ(k) f = f}.

Let X = G/K and x0 = eK, and let κ : G→ X be the canonical map g �→ gx0. The
space X possesses a G-invariant measure μX, and we define the Lp-spaces
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Lp(X) = { f | f is μX-measurable and
∫
| f (x)|p dμX < ∞}.

We will identify functions on X by K-invariant functions via f ↔ f ◦κ . Since K
is compact the map f �→ f ◦ κ is an isometric isomorphism Lp(X) � Lp(G)ρ(K).
In particular, Lp(X) is a closed G-invariant subspace of Lp(G). The projection
Lp(G)→ Lp(X) is

pK( f )(x) =
∫

K
f (xk)dμK(k).

If f ∈ L1(G) and g ∈ Lp(X), 1 ≤ p ≤ ∞, then f ∗ g ∈ Lp(X) and ‖ f ∗ g‖Lp ≤
‖ f‖L1‖g‖Lp . If f is further assumed to be left K-invariant, then

f ∗ g(ky) =
∫

G
f (x)g(x−1ky)dμG(x)

=

∫

G
f (kx)g(x−1y)dμG(x)

=

∫

G
f (x)g(x−1y)dμG(x)

= f ∗ g(y).

Thus f ∗ g is also left K-invariant. Denote by mG the modular function on G. Note
that mG is usually denoted by Δ or ΔG, but we will need that notation for the Laplace
operator on X respectively G. We have mG|K = 1 as K is compact. Hence mG is
K-bi-invariant. It follows that L1(X)K is invariant under the anti-involutions f∨(x) =
mG(x)−1 f (x−1) and f ∗ = f∨. In particular, L1(X)K is a closed Banach ∗-subalgebra
of L1(G).

2.2 Lie Theory

Let G be a connected Lie group and K a compact subgroup. Most of the statements
hold for non-connected groups, but some technical problems turn up as we start to
deal with the Lie algebra and invariant differential operators. We will therefore for
simplicity assume that G is connected from the beginning.

Denote by g the Lie algebra of G and k the Lie algebra of K. Fix a K-invariant
inner product 〈 , 〉 on g. That is always possible as K is compact. Let s := k⊥. Then
s is K-invariant and s� Txo(X) (as a K-module) via the map

X �→D(X) , D(X)( f )(xo) :=
d
dt

∣
∣∣
∣
t=0

f (exp(tX)xo).
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Denote also by 〈 , 〉 the restriction of 〈 , 〉 to s×s. As the tangent bundle on T (X) is
isomorphic to G×K s as a G-bundle, it follows that the restriction of 〈 , 〉 to s defines
a G-invariant Riemannian structure on X.

Let D : C∞
c (X)→C∞

c (X) be a differential operator. For g∈G let g ·D : C∞
c (X)→

C∞
c (X) be the differential operator

g ·D( f )(x) = D(�(g−1) f )(g−1x).

D is said to be G-invariant if g ·D = D for all g ∈ G. Thus D is G-invariant if and
only if D commutes with left translation, D(�(g) f ) = �(g)D( f ). Denote by D(X) the
algebra of G-invariant differential operators on X. The algebra D(X) has a simple
description. For a polynomial function p : g→ C define a left-invariant differential
operator Dp : C∞

c (G)→C∞
c (G) by

Dp( f )(g) := p

(
∂

∂ t1
, . . . ,

∂
∂ tm

)
f (gexp(t1X1 + · · ·+ tmXm))|t1=···=tm=0

= p

(
∂

∂ t1
, . . . ,

∂
∂ tm

)
f (gexp(t1X1) · · ·exp(tmXm))|t1=···=tm=0,

where we have extended our basis of s to a basis X1, . . . ,Xm of g. If p is a K-invariant
polynomial, then

Dp( f )(gk) = p

(
∂

∂ t1
, . . . ,

∂
∂ tm

)
f (gk exp(t1X1 + · · ·+ tnXm))|t1=···=tm=0

= p

(
∂

∂ t1
, . . . ,

∂
∂ tn

)
f (gexp(t1X1 + · · ·+ tmXm)k)|t1=···=tm=0

for all k ∈ K. Hence, if p is K-invariant and f is right K-invariant, it is clear that Dp

only depends on the polynomial q = p|s, and Dp f = Dq f is right K-invariant and
defines a function on X. Therefore Dq is a G-invariant differential operator on X.

Denote by S(s) the symmetric algebra over s. Then S(s) is commutative and
isomorphic to the algebra of polynomial functions.

Theorem 1. The map S(s)K → D(X) is bijective.

Proof. This is Theorem 10 in [34]. ��
Remark 1. If we take p(X) = ‖X‖2, then Dp =: Δ is the Laplace operator on X.

Remark 2. The algebra D(X) is not commutative in general. Hence the above map
is not necessarily an algebra homomorphism.

For a fixed basis X1, . . . ,Xm for g it will ease our notation to introduce the
differential operator Dα : C∞

c (G)→ C∞
c (G) for a multi-index α of length k with

entries between 1 and m:

Dα f (x) = D(Xα(k))D(Xα(k−1)) · · ·D(Xα(1)) f (x).
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2.3 Representation Theory

Let π be a representation of the Lie group G on a Hilbert space H . Then u ∈
H is called smooth respectively analytic if the H -valued function πu(x) = π(x)u
is smooth respectively analytic. Denote by H ∞, respectively H ω , the space of
smooth, respectively analytic, vectors in H . For u ∈H ∞ and X ∈ g let

π∞(X)u := lim
t→0

π(exptX)u− u
t

and πω(X) := π∞(X)|H ω . We have:

Lemma 1. Let (π ,H ) be a unitary representation of G. Then the following
holds:

1. The space H ∞ is G-invariant.
2. π∞(g)H ∞ ⊆H ∞ and (π∞,H ∞) are a representation of g. In particular

π∞([X ,Y ]) = π∞(X)π∞(Y )−π∞(Y )π∞(X).

3. π∞(Ad(g)X) = π(g)π∞(X)π(g−1).
4. π∞(X)∗|H ∞ =−π∞(X).
5. H ∞ is dense in H .

Corresponding statements are also true for H ω . To show that H ∞ is dense in
H , let f ∈ L1(G). Define π( f ) : H →H by

π( f )u =
∫

G
f (x)π(x)udμG(x) .

Then ‖π( f )‖≤ ‖ f‖L1 , π( f ∗g) = π( f )π(g), and π( f ∗) = π( f )∗. Thus, π : L1(G)→
B(H ) is a continuous ∗-homomorphism. If f ∈ C∞

c (G) then it is easy to see that
π( f )H ⊆H ∞. The main step in the proof is to show that

π∞(X)π( f )u = π(�∞(X) f )u,

where

�∞(X) f (x) = lim
t→0

f (exp(−tX)x)− f (x)
t

.

Lemma 2. If {Uj} is a decreasing sequence of e-neighborhoods such that
⋂

Uj =
{e} and f j ∈C∞

c (G) is so that f j ≥ 0, supp f j ⊂Uj, and ‖ f‖L1 = 1, then π( f j)u→ u
for all u ∈H . In particular, H ∞ is dense in H .
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3 Reconstruction in Reproducing Kernel Hilbert Spaces

We will be concerned with sampling in subspaces of the Hilbert space L2(G). We
start with the definition of a frame due to Duffin and Schaeffer [14]. For further
references see the introduction.

Definition 1. For a Hilbert space H a set of vectors {φi} ⊆H is a frame for H
if there are constants 0 < A≤ B < ∞ such that

A‖ f‖2
H ≤∑

i
|( f ,φi)|2 ≤ B‖ f‖2

H

for all f ∈H .

These conditions ensure that the frame operator S : H →H given by

S f = ∑
i

( f ,φi)φi

is invertible and that f can be reconstructed by

f = ∑
i
( f ,φi)ψi,

where ψi = S−1φi. The sequence {ψi} is also a frame called the dual frame. In
general there are other ways to reconstruct f from the sequence {( f ,φi)}.

The inversion of S can be carried out via the Neumann series

S−1 =
2

A+B

∞

∑
n=0

(
I− 2

A+B
S
)n

, (1)

which has rate of convergence ‖I− 2
A+B S‖ ≤ B−A

A+B (which is the best possible for
optimal frame bounds [31, 37, 39]).

In order to obtain frames from samples it is natural to restrict ourselves to a
class of functions with nice properties for point evaluation. A Hilbert space H of
functions on G is called a reproducing kernel Hilbert space if point evaluation is
continuous, i.e., if for every x ∈ G, there is a constant Cx such that for all f ∈H

| f (x)| ≤Cx‖ f‖H .

A classical reference for reproducing kernel Hilbert spaces is [1]. For such spaces
point evaluation is given by an inner product f (x) = ( f ,gx), where gx ∈H is called
the reproducing kernel for H . Our aim is to find a sequence of points {x j} such
that {gxj} is a frame.

Here are the main facts about closed reproducing kernel subspaces of L2(G)
which is all what we will need here:
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Proposition 1. If H is a closed and left invariant reproducing kernel subspace of
L2(G), then:

1. There is a φ ∈H such that f = f ∗φ for all f ∈H .
2. The functions in H are continuous.
3. The kernel φ satisfies φ(x−1) = φ(x) so f (x) = f ∗φ(x) = ( f , �(x)φ).
4. The mapping f �→ f ∗ φ is a continuous projection from L2(G) onto H . In

particular H = { f ∈ L2(G) | f ∗φ = f}.
Proof. Here are the main ideas of the proof. By Riesz’ representation theorem there
is a gx ∈ H such that

f (x) =
∫

f (y)gx(y)dy.

Let g(x) := ge(x). The left invariance of H ensures that

f (x) = [�(x−1) f ](e) =
∫

f (xy)ge(y)dy =
∫

f (y)g(x−1y)dy = ( f , �(x)g).

Hence gx(y) = g(x−1y). We also have

g(x−1y) = (gx,gy) = (gy,gx) = g(y−1x).

Thus, if we set φ(x) = g(x−1), which agrees with g∗ in case G is unimodular, we get
f = f ∗φ , which in particular implies that H ⊆C(G) as claimed.

Assume that f ∗ φ = f and that f ⊥H . Then f (x) = ( f ,gx) = 0 as gx ∈H .
Hence f = 0 and H = L2(G)∗φ = { f ∈ L2(G) | f ∗φ = f}. ��
Remark 3. It should be noted that several functions φ ∈ L2(G) could satisfy f =
f ∗ φ for f ∈H . Just take an arbitrary function η such that η∨ ∈H ⊥. Then f ∗
(φ +η) = f ∗ φ . For example, as we will see later, if H is a space of bandlimited
functions, then φ could be a sinc function with larger bandwidth than the functions
in H . However, the restriction that φ ∈H ensures uniqueness of φ .

The sampling theory of H. Feichtinger, K. Gröchenig, and H. Führ (see the
introduction for references) builds on estimating the variation of a function under
small right translations. The local oscillations were therefore introduced as follows:
For a compact neighborhood U of the identity define

oscU( f ) = sup
u∈U
| f (x)− f (xu−1)|.

Before stating the next result we need to introduce a reasonable collection of
points at which to sample: For a compact neighborhood U of the identity, the points
xi are called U-relatively separated if the xiU cover G and there is an N such that
each xiU intersects at most N other x jU . This in particular implies that each x ∈ G
belongs to at most N of the xiU and that

1G ≤∑
i

1xiU ≤ N1G.
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Lemma 3. Let H be a reproducing kernel subspace L2(G) with reproducing
convolution kernel φ . Assume that for any compact neighborhood U of the identity
there is a constant CU such that for any f ∈ H the estimate ‖oscU( f )‖L2 ≤
CU‖ f‖H holds. If we can choose U such that CU < 1, then for any U-relatively
separated points {xi} the norms ‖{ f (xi)}‖�2 and ‖ f‖L2 are equivalent, and {�(xi)φ}
is a frame for H .

Proof.

‖{ f (xi)}‖2
�2 = |U |−1

∥
∥
∥∑

i

| f (xi)|21xiU

∥
∥
∥

L1

≤ |U |−1
∥
∥
∥∑

i
| f (xi)|1xiU

∥
∥
∥

2

L2

≤ |U |−1
(∥∥
∥∑

i
| f (xi)− f |1xiU

∥∥
∥

L2
+
∥∥
∥∑

i
| f |1xiU

∥∥
∥

L2

)2

≤ |U |−1
(∥∥∥∑

i

|oscU( f )|1xiU

∥
∥∥

L2
+
∥
∥∥∑

i

| f |1xiU

∥
∥∥

L2

)2

≤ |U |−1N2(‖oscU ( f )‖L2 + ‖ f‖L2)2

≤ |U |−1N2(1+CU)
2‖ f‖2

L2 .

Here N is the maximal number of overlaps between the xiU’s. To get the other
inequality we let ψi be a bounded partition of unity such that 0 ≤ ψi ≤ 1xiU and
∑i ψi = 1. Then,

‖ f‖L2 ≤
∥
∥
∥ f −∑

i
f (xi)ψi

∥
∥
∥

L2
+
∥
∥
∥∑

i
f (xi)ψi

∥
∥
∥

L2

≤
∥
∥
∥∑

i
oscU( f )ψi

∥
∥
∥

L2
+
∥
∥
∥∑

i
| f (xi)|1xiU

∥
∥
∥

L2

≤ ‖oscU( f )‖L2 +N|U |‖ f (xi)‖�2

≤ CU‖ f‖L2 +N|U |‖ f (xi)‖�2

If CU < 1 then we get

(1−CU)‖ f‖L2 ≤ N|U |‖ f (xi)‖�2 .

This concludes the proof. ��
Remark 4. From the proof of the lemma follows that the norm equivalence becomes
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(
1−CU

|U |N
)2

‖ f‖2
L2 ≤ ‖{ f (xi)}‖2

�2 ≤
(

N
1+CU

|U |
)2

‖ f‖2
L2 , (2)

and thus the frame constants A and B can be chosen to be

A =

(
1−CU

|U |N
)2

and B =

(
N

1+CU

|U |
)2

.

It follows that the rate of convergence for the Neumann series (1) can be esti-
mated by

B−A
B+A

=
N2(1+CU)

2− (1−CU)
2/N2

N2(1+CU)2 +(1−CU)2/N2 →
N4− 1
N4 + 1

as CU → 0.

This shows that as the sampling points xi are chosen closer (U gets smaller) the rate
of convergence can be very slow (assuming that we can choose the overlaps of the
xiU’s bounded by a certain N even if U gets smaller). We therefore have very little
control of the rate of convergence in this case.

To obtain operators with faster-decaying Neumann series, H. Feichtinger and
K. Gröchenig introduced new sampling operators. An example is the sampling
operator T : H →H defined as

T f = ∑
i

f (xi)ψi ∗φ .

Using oscillations it is possible to estimate the norm of I−T by CU :

‖ f −T f‖L2 =
∥
∥
∥
(
∑

i

| f − f (xi)|ψi

)
∗φ

∥
∥
∥

L2
≤ ‖oscU f‖L2 ≤CU‖ f‖L2 .

Thus T is invertible on H if CU < 1, and the rate of convergence of the
Neumann series is governed directly by CU . By increasing the rate of sampling
(decreasing U and thereby CU ) fewer iterations are necessary in order to obtain
good approximation. This was not the case for the frame inversion above.

4 Oscillation Estimates on Lie Groups

In this section we will show how oscillation estimates can be obtained for functions
on Lie groups.

First we set up the notation. As before we let G be a Lie group with Lie algebra g.

Fix a basis {Xi}dim(G)
i=1 for g. Denote by Uε the set

Uε :=
{

exp(t1X1) · · ·exp(tnXn)
∣
∣∣ − ε ≤ tk ≤ ε,1 ≤ k ≤ n

}
.
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Remark 5. Note that Uε depends on the choice of basis as well as the ordering of
the vectors. It would therefore be more natural to use sets of the form Vε := exp{X ∈
g | ‖X‖ ≤ ε} or even Wε := exp{X ∈ s | ‖X‖ ≤ ε}exp{X ∈ k | ‖X‖ ≤ ε}. Both of
those sets are invariant under conjugation by elements in K. The reason to use Uε
as defined above is that this is the definition that works best for the proofs! But it
should be noted that Vε ,Wε ⊆Uε . Hence the local oscillation using either Vε or Wε
is controlled by the local oscillation using Uε .

Set
oscε ( f ) = oscUε ( f ).

By δ we denote an n-tuple δ = (δ1, . . . ,δn) with δi ∈ {0,1}. The length |δ | of δ
is the number of nonzero entries |δ | = δ1 + · · ·+ δn. Further, define the function
τδ : (−ε,ε)n → G by

τδ (t1, . . . , tn) = exp(δ1tnX1) · · ·exp(δnt1Xn).

Lemma 4. If f is right differentiable of order n = dim(G) then there is a constant
Cε such that

oscε ( f )(x) ≤Cε ∑
1≤|α |≤n

∑
|δ |=|α |

∫ ε

−ε
· · ·

∫ ε

−ε︸ ︷︷ ︸
|δ | integrals

|Dα f (xτδ (t1, . . . , tn)
−1)|(dt1)

δ1 · · · (dtn)
δn .

For ε ′ ≤ ε w e have Cε ′ ≤Cε .

Proof. We refer to [9] for a full proof. Instead we restrict ourselves to a proof in 2
dimension that easily carries over to arbitrary dimensions. We will sometimes write
eX instead of expX .

For y ∈Uε there are s1,s2 ∈ [−ε,ε] such that y−1 = e−s2X2 e−s1X1 . Hence

| f (x) − f (xy−1)|
= | f (x)− f (xe−s2X2e−s1X1)|
≤ | f (x)− f (xe−s2X2)|+ | f (xe−s2X2)− f (xe−s2X2e−s1X1)|

=

∣
∣
∣∣

∫ s2

0

d
dt2

f (xe−t2X2)dt2

∣
∣
∣∣+

∣
∣
∣∣

∫ s1

0

d
dt1

f (xe−s2X2e−t1X1)dt1

∣
∣
∣∣

≤
∫ ε

−ε

∣
∣D(X2) f (xe−t2X2)

∣
∣ dt2

+
∫ ε

−ε

∣
∣D(X1) f (xe−s2X2e−t1X1)

∣
∣ dt1. (3)

Since

e−s2X2 e−t1X1 = e−t1X1e−s2X(t1) with X(t) = Ad(exp(tX1))X2
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the term |D(X1) f (xe−s2X2 e−t1X1)| can be estimated by

|D(X1) f (xe−s2X2e−t1X1)|
= |D(X1) f (xe−t1X1e−s2X(t1))|
≤ |D(X1) f (xe−t1X1e−s2X(t1))−D(X1) f (xe−t1X1)|+ |D(X1) f (xe−t1X1)|

=

∣
∣∣
∣

∫ s1

0

d
dt2

D(X1) f (xe−t1X1e−t2X(t1))dt2

∣
∣∣
∣+ |D(X1) f (xe−t1X1)|

=

∣
∣
∣
∣

∫ s1

0
D(X(t1))D(X1) f (xe−t1X1e−t2X(t1))dt2

∣
∣
∣
∣+ |X1 f (xe−t1X1)|

≤Cε

∫ ε

−ε

∣
∣D(X2)D(X1) f (xe−t2X2e−t1X1)

∣
∣ dt2

+

∫ ε

−ε

∣
∣D(X1)D(X1) f (xe−t2X2e−t1X1)

∣
∣ dt2

+|D(X1) f (xe−t1X1)|. (4)

The last inequality follows since D(X(t2)) = a(t1)D(X1)+b(t1)D(X2) is a differen-
tial operator with coefficients a and b depending continuously, in fact analytically,
on all variables. Together (3) and (4) provide the desired estimate. ��

Since right translation is continuous on L2(G) and supu∈U ‖ru f‖L2 ≤ CU‖ f‖L2

for compact U [42, Theorem 3.29] gives

‖oscε( f )‖L2 ≤ ∑
1≤|α |≤n

∑
|δ |=|α |

∫ ε

−ε
· · ·

∫ ε

−ε︸ ︷︷ ︸
|δ | integrals

‖rτδ (t1,...,tn)−1Dα f‖L2(dt1)
δ1 · · ·(dtn)

δn

≤CUε ∑
1≤|α |≤n

∑
|δ |=|α |

∫ ε

−ε
· · ·

∫ ε

−ε︸ ︷︷ ︸
|δ | integrals

‖Dα f‖L2(dt1)
δ1 · · · (dtn)

δn

≤CUε ∑
1≤|α |≤n

(
n
|α|

)
ε |α |‖Dα f‖L2 .

To sum up we get

Theorem 2. If Dα f ∈ L2(G) for all |α| ≤ n, then

‖oscε( f )‖L2 ≤Cε ∑
1≤|α |≤n

‖Dα f‖L2 ,

where Cε → 0 as ε → 0.
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We will need the following fact later when we obtain a Bernstein-type inequality
for bandlimited functions on a commutative space. If 〈X ,Y 〉 defines an inner product
on g and X1, . . . ,Xn is an orthonormal basis, then the associated Laplace operator has
the form ΔG = D(X1)

2 + · · ·+D(Xn)
2. We have:

Lemma 5. Let the notation be as above. Then

∑
1≤|α |≤n

‖Dα f‖L2 ≤C‖(I−ΔG)
n/2 f‖L2 .

Proof. According to Theorem 4 in [48] the Sobolev norm on the left can be
estimated by the Bessel norm, defined in [45], on the right. ��

5 Gelfand Pairs and Commutative Spaces

In this section we introduce the basic notation for Gelfand pairs and commutative
spaces. Our standard references are [12], Chapter 22, [13,35], Chapter IV, and [49].
We give several examples in Sect. 9.

Theorem 3. Suppose that G is a connected Lie group and K a compact subgroup.
Then the following are equivalent:

1. The Banach ∗-algebra L1(X)K is commutative.
2. The algebra C∞

c (X)K is commutative.
3. The algebra D(X) is commutative.

Definition 2. Let G be a connected Lie group and K a compact subgroup. (G,K) is
called a Gelfand pair if one, and hence all, of the conditions in Theorem 3 holds. In
that case X is called a commutative space.

If G is abelian, then (G,{e}) is a Gelfand pair. Similarly, if K is a compact group
that acts on the abelian group G by group homomorphisms, i.e., k ·(xy) = (k ·x)(k ·y)
then (G�K,K) is a Gelfand pair. One of the standard ways to decide if a given space
is commutative is the following lemma:

Lemma 6. Assume there exists a continuous involution τ : G→G such that τ(x) ∈
Kx−1K for all x ∈ G. Then X = G/K is commutative.

Proof. As x �→ x−1 is an antihomomorphism it follows that f �→ f∨ is an antiho-
momorphism on L1(X)K . On the other hand if we define f τ (x) := f (τ(x)) then
f �→ f τ is a homomorphism. But as τ(x) = k1x−1k2 it follows that f∨ = f τ for all
f ∈ L1(X)K , and hence L1(X)K is abelian. ��
Example 1. Let G = SO(d+1) and K = SO(d) is the group of rotations around the
e1-axis

K =

{(
1 0
0 A

)∣∣∣
∣ A ∈ SO(d)

}
.
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Then K = {k ∈ G | k(e1) = e1}. For a ∈ G write a = [a1, . . . ,ad+1] where a j are the
row vectors in the matrix a. Then a · e1 = a1. If x ∈ Sd set a1 = x and extend a1 to
a positively oriented orthonormal basis a1, . . . ,ad+1 and set a = [a1, . . . ,ad+1] ∈ G.
Then a · e1 = x, so the action of G is transitive on Sd . This also shows that the
stabilizer of e1 is the group

K =

{(
1 0
0 k

)∣∣∣
∣ k ∈ SO(d)

}
� SO(d) .

Hence Sd = G/K. Let

A :=

⎧
⎨

⎩
at =

⎛

⎝
cos(t) −sin(t) 0
sin(t) cos(t) 0

0 0 Id−1

⎞

⎠

∣
∣∣
∣
∣
∣

t ∈R

⎫
⎬

⎭
.

Then every element g ∈G can be written as k1ak2 with k1,k2 ∈ K and a ∈ A. Define

τ(a) =
(−1 0

0 Id

)
a

(−1 0
0 Id

)
.

Then τ|K = id and τ(a) = a−1 if a ∈ A. Hence τ(x) ∈ Kx−1K which implies that Sd

is a commutative space.
Instead of working with the group it is better to work directly with the sphere.

Think of Sd−1 as a subset of Sd by v �→ (0v). If u ∈ Sd then there is a t and v ∈ Sd−1

such that
u = cos(t)e1 + sin(t)v = kvate1,

where kv is a rotation in K. The involution τ is now simply

u �→ cos(t)e1− sin(t)v = kva−1
t e1,

which can be rotated, using an element from K, back to u.

From now on (G,K) will always—if nothing else is stated—denote a Gelfand
pair and X will stand for a commutative space. We start with a simple lemma (see
[13], p. 75).

Lemma 7. Assume that (G,K) is a Gelfand pair. Then G is unimodular.

Recall that a function ϕ : G→ C is positive definite if ϕ is continuous, and for
all N ∈ N, all c j ∈C, and all x j ∈G, j = 1, . . . ,N, we have

N

∑
i, j=1

cic jϕ(x−1
i x j)≥ 0.
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The following gives different characterizations of positive-definite spherical
functions. In particular, they arise as the ∗-homomorphisms of the commutative
Banach ∗-algebra L1(X)K and as positive-definite normalized eigenfunctions of
D(X). Recall that we are always assuming that G and hence also X are connected.

Theorem 4. Let ϕ ∈ L∞(X). Then the following assertions are equivalent:

1. ϕ is K-bi-invariant and L1(X)K → C, f �→ f̂ (ϕ) :=
∫

G f (x)ϕ(x)dμG(x), is a
homomorphism.

2. ϕ is continuous and for all x,y ∈ G we have

∫

G
ϕ(xky)dμK(k) = ϕ(x)ϕ(y).

3. ϕ is K-bi-invariant, analytic, ϕ(e) = 1, and there exists a homomorphism χϕ :
D(X)→ C such that

Dϕ = χϕ(D)ϕ (5)

for all D ∈ D(X).

The homomorphism in (a) is a ∗-homomorphism, if and only if ϕ is positive definite.

Remark 6. We note that (5) implies that ϕ is analytic because Δϕ = χϕ(Δ)ϕ and
Δ is elliptic.

Definition 3. ϕ ∈ L∞(X)K is called a spherical function if it satisfies the conditions
in Theorem 4.

Denote by Psp(X) the space of positive-definite spherical functions on X. It is
a locally compact Hausdorff topological vector space in the topology of uniform
convergence on compact sets. The spherical Fourier transform S : L1(X)K →
C (Psp(X)) is the map

S ( f )(ϕ) = f̂ (ϕ) :=
∫

G
f (x)ϕ(x)dμG(x) =

∫

G
f (x)ϕ(x−1)dμG(x).

The last equality follows from the fact that ϕ(x) = ϕ(x−1) if ϕ is positive definite.
We note that f̂ ∗ g = f̂ ĝ.

Theorem 5. There exists a unique measure μP on Psp(X) such that the following
holds:

1. If f ∈ L1(X)K ∩L2(X) then ‖ f‖L2 = ‖ f̂‖L2 .
2. The spherical Fourier transform extends to a unitary isomorphism

L2(X)K → L2(Psp(X),dμP)

with inverse



Sampling in Spaces of Bandlimited Functions on Commutative Spaces 51

f =
∫

Psp(X)
f̂ (ϕ)ϕ dμP(ϕ), (6)

where the integral is understood in L2-sense.
3. If f ∈ L1(X)K ∩L2(X) and f̂ ∈ L1(Psp(X),dμP) then (6) holds pointwise.

At this point we have not said much about the set Psp(X). However, it was
proved in [43] that Psp(X) can always be identified with a subset of Cs for some
s ∈N in a very simple way.

Lemma 8. The algebra D(X) is finitely generated.

Proof. This is the corollary on p. 269 in [34]. ��
Let D1, . . . ,Ds be a set of generators and define a map

Φ : Psp(X)→C
s , ϕ �→ (D1ϕ(e), . . . ,Dsϕ(e)) .

Let Λ1 := Φ(Psp(X)) with the topology induced from C
s, Λ := Φ(suppμP) and

μ̂ := Φ∗(μP) is the push-forward of the measure on Psp(X).

Theorem 6 (Ruffino [43]). The map Φ : Psp(X)→ Λ is a topological isomor-
phism.

Remark 7. In [43] the statement is for the set of bounded spherical functions. But
Psp(X) is a closed subset of the set of bounded spherical functions, so the statement
holds for Psp(X). Furthermore, we can choose the generators D j such that D j =D j,
i.e., D j has real coefficients. If ϕ ∈Psp(X), then ϕ ∈Psp(X) and it follows that
Λ1 = Λ1. We will always assume that this is the case.

For λ ∈ Λ1 we let ϕλ := Φ−1(λ ). We view the spherical Fourier transform of
f ∈ L1(X)K ∩L2(X)K as a function on Λ given by f̂ (λ ) := f̂ (ϕλ ).

6 Spherical Functions and Representations

To extend Theorem 5 to all of L2(X) one needs to connect the theory of spherical
functions to representation theory. In this section (G,K) will always denote a
Gelfand pair. A unitary representation (π ,H ) of G is called spherical if the space
of K-fixed vectors

H K := {u ∈H | (∀k ∈ K) π(k)u = u}
is nonzero.

Lemma 9. Let f ∈ L1(X)K. Then π( f )H ⊆H K.

Proof. We have for k ∈ K:

π(k)π( f )v =
∫

G
f (x)π(kx)vdx =

∫

G
f (k−1x)π(x)vdx = π( f )v.

��
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For the following statement, see for example Proposition 6.3.1 in [13].

Lemma 10. If (G,K) is a Gelfand pair and H is an irreducible unitary represen-
tation of G, then dimH K ≤ 1.

Corollary 1. Let (π ,H ) be an irreducible unitary representation of G such that
H K �= {0}. Then there exists a ∗-homomorphism χπ : L1(X)K → C such that

π( f )u = χπ( f )u

for all u ∈H K.

Proof. Let eπ ∈H K be a unit vector. As dimH K = 1 it follows that H K = Ceπ .
It follows from Lemma 2 that π( f )eπ = (π( f )eπ ,eπ)eπ . The lemma follows now
by defining χπ( f ) := (π( f )eπ ,eπ). ��

Using the heat kernel one can show that H K ⊂H ω , but the following is enough
for us.

Theorem 7. H K ⊆H ∞.

Proof. It is enough to show that eπ ∈H ∞. By Lemma 2 it is possible to choose
f ∈C∞

c (X) so that (π( f )eπ ,eπ) �= 0. Let

h(x) =
∫

K
f (kx)dμK(k),

then
χπ( f ) = (π(h)eπ ,eπ) = (π( f )eπ ,eπ) �= 0.

Hence

eπ =
1

χπ( f )
π(h)eπ ∈H K ∩H ∞.

��
Theorem 8. Let (π ,H ) be an irreducible spherical representation of G and eπ ∈
H K a unit vector. Then the function

ϕπ(x) := (eπ ,ππ(x)eπ)

is a positive-definite spherical function. If ϕ is a positive-definite spherical function
on G, then there exists an irreducible unitary representation (π ,H ) of G such that
dimH K = 1 and ϕ = ϕπ .

Proof. Here are the main ideas of the proof. First we note that
∫

K
π(ky)eπ dμK(k) = (π(y)eπ ,eπ)eπ .

Hence
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∫

K
ϕπ(xky)dμK(k) = (π(x−1)eπ ,

∫

K
π(ky)eπ)dμK(k)

= (π(x−1)eπ ,(π(y)eπ ,eπ)eπ)

= (eπ ,π(x)eπ)(eπ ,π(y)eπ)

= ϕπ(x)ϕπ (y).

Hence ϕπ is a spherical function. It is positive definite because

N

∑
i, j=1

cic jϕπ(x
−1
i x j) =

∥
∥∥
∥
∥

N

∑
i=1

ciπ(xi)eπ

∥
∥∥
∥
∥

2

≥ 0.
��

Theorem 9. Let ϕ : G → C be a positive-definite function. Then ϕ ∈ Psp(X) if
and only if there exists an irreducible spherical unitary representation (π ,H ) and
eπ ∈H K, ‖eπ‖= 1 such that

ϕ(g) = (eπ ,π(g)eπ).

Proof. We have already seen one direction. The other direction follows by the
classical Gelfand-Naimark-Segal construction. Assume that ϕ is a positive-definite
function. Let H denote the space of functions generated by linear combinations of
�(x)ϕ , x ∈ G. Define

(
N

∑
j=0

c j�(x j)ϕ ,
N

∑
j=0

d j�(y j)ϕ

)

0

:= ∑
i, j

cid jϕ(x−1
i y j).

(By adding zeros we can always assume that the sum is taken over the same set of
indices.) Then ( , )0 is a positive semidefinite Hermitian form on H0. Let N :=
{ψ ∈H0 | ‖ψ‖0 = 0}. Then N is G-invariant under left translations and G acts
on H0/N by left translation. The form ( , )0 defines an inner product on H /N
by ( f +N ,g+N ) := ( f ,g)0. Let H be the completion of H0/N with respect
with the metric given by ( , ). Then H is a Hilbert space and the left translation
on H0 induces a unitary representation πϕ on H . If e is the equivalence class of
ϕ ∈ H , then, since ϕ is K-invariant and ‖ϕ‖0 = 1, we get e ∈ H K \ {0} and
(e,πϕ(x)e) = ϕ(x). ��

For λ ∈Λ1 and ϕ = ϕλ we denote the corresponding representation by (πλ ,Hλ ).
We fix once and for all a unit vector eλ ∈H K

λ . Let prλ =
∫

K πλ (k)dk. Then prλ is
the orthogonal projection Hλ →H K

λ , prλ (u) = (u,eλ )eλ . Let f ∈ L1(X). Then,
as f is right K-invariant, we get πλ ( f ) = πλ ( f ) ◦ prλ . It therefore makes sense to
define a vector-valued Fourier transform by

f̃ (λ ) := πλ ( f )eλ

(see [40]). We note that if f is K-invariant, then f̂ (λ ) = ( f̃ (λ ),eλ ).
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If f ∈ L1(X)∩L2(X), then

�̃(x) f = πλ (x) f̃ (λ ) and Tr(πλ ( f )) = (πλ ( f )eλ ,eλ ).

Let g =
∫

f ∗ ∗ f (kx)dμK . Then g is K-bi-invariant and the function

ĝ(λ ) = (πλ ( f ∗)πλ ( f )eλ ,eλ ) = ‖ f̃ (λ )‖2

is integrable on Λ . Finally

‖ f‖2 = f ∗ ∗ f (e) = g(e) =
∫

λ
ĝ(λ )dμ̂(λ ) =

∫

λ
‖ f̃ (λ )‖2 dμ̂(λ ).

Furthermore, if λ �→ ( f̃ (λ ),eλ ) is integrable, then by the same argument as above

f (x) = �(x−1) f (e) =
∫

λ
(πλ (x

−1) f̃ (λ ),eλ )dμ̂(λ ) =
∫

λ
( f̃ (λ ),πλ (x)eλ )dμ̂(λ ).

Thus we have proved the following theorem:

Theorem 10. The vector-valued Fourier transform defines a unitary G-
isomorphism

L2(X)�
∫ ⊕

λ
(πλ ,Hλ )dμ̂.

If f ∈ L2(X) is so that the function λ �→ ‖ f̃ (λ )‖ is integrable, then

f (x) =
∫

λ
( f̃ (λ ),πλ (x)eλ )dμ̂.

7 The Space of Bandlimited Functions

As before (G,K) denotes a Gelfand pair with G connected and X = G/K the
corresponding commutative space. In this section we introduce the bandlimited
functions and prove a sampling theorem for the space L2

Ω (X) of Ω -bandlimited
functions on X.

Definition 4. Suppose Ω ⊂Λ is compact. We say that f ∈ L2(X) is Ω -bandlimited
if supp f̃ ⊆ Ω . A function f in L2(X) is bandlimited if there is a compact Ω ⊆ Λ
such that f is Ω -bandlimited.

We denote by L2
Ω (X) the space of Ω -bandlimited functions. As Ω will be fixed,

we just say that f is bandlimited if f ∈ L2
Ω (X). Let φ = φΩ be such that φ̃ (λ ) =

1Ω eλ . Since Ω is compact it follows that φ ∈ L2
Ω (X). However, φ is generally not

integrable, because λ �→ 1Ω (λ )eλ is not necessarily continuous.
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Lemma 11. We have that

φΩ (x) =
∫

Ω
ϕλ (x)dμ̂(λ )

is K-invariant and positive definite. In particular, φ∗Ω = φΩ .

Proof. Since |(eλ ,πλ (x)eλ )λ |1Ω (λ ) ≤ 1Ω (λ ), we observe that the function λ �→
(1Ω (λ )eλ ,πλ (x)eλ )λ is integrable. Therefore Theorem 5 implies that

φΩ (x) =
∫

Ω
(eλ ,πλ (x)eλ )λ dμ̂(λ ) =

∫

Ω
ϕλ (x)dμ̂(λ ).

We have

∑
i, j

cic jφ(x−1
i x j) =

∫

Ω
∑
i, j

cic jϕλ (x
−1
i x j)dμ̂(λ )≥ 0

as the spherical functions ϕλ , λ ∈Ω , are positive definite. ��
Theorem 11. L2

Ω (X) is a reproducing kernel Hilbert space with reproducing kernel
K(x,y) = φΩ (y−1x). Furthermore, the orthogonal projection L2(G) → L2

Ω (X) is
given by f �→ f ∗φΩ .

Proof. We have for f ∈ L2
Ω (X)

∣
∣
∣
∣

∫

λ
( f̃ (λ ),πλ (x)eλ )λ dμ̂(λ )

∣
∣
∣
∣≤

∫

Ω
‖ f̃ (λ )‖λ dμ̂(λ )≤ |Ω |1/2‖ f̃‖L2 ,

where |Ω | denotes the volume
∫

Ω dμ̂ of Ω which is finite as Ω is compact. It follows
that

f (x) =
∫

Ω
( f̃ (λ ),πλ (x)eλ )λ dμ̂(λ )

=

∫

λ
( f̃ (λ ),1Ω (λ )πλ (x)eλ )λ dμ̂(λ )

=

∫

X
f (y)�(x)φΩ (y)dy

=

∫

X
f (y)φΩ (y−1x)dy

= f ∗ϕΩ (x) .

Thus L2
Ω (X) is a reproducing kernel Hilbert space with reproducing kernel K(x,y) =

φΩ (y−1x). The rest follows now from Proposition 1. ��
Let us point out the following consequence of Proposition 1:

Corollary 2. Let f ∈ L2(G). Then f ∈ L2
Ω (X) if and only if f ∗φΩ = f .
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8 The Bernstein Inequality and Sampling of Bandlimited
Functions

The definition of the topology on Λ inspired by [43] ensures that the eigenvalues cλ
for the Laplacian on eλ are bounded when λ is in a compact set Ω . This enables us
to obtain

Lemma 12. For a compact set Ω ⊆ Λ the functions in L2
Ω (X) are smooth, and

there is a constant c(Ω) such that the following Bernstein inequality holds:

‖Δ k f‖L2 ≤ c(Ω)k‖ f‖L2 .

Proof. As we have seen, each f ∈ L2
Ω (X) can be written

f (x) =
∫

Ω
( f̂ (λ ),πλ (x)eλ )λ dμ̂(λ ).

For fixed λ the function

t �→ ( f̃ (λ ),πλ (xetXi)eλ )λ

is differentiable as eλ ∈H ∞
λ . Thus, there exists a tλ between zero and t such that

(
f̃ (λ ),

πλ (xetXi)eλ −πλ (x)eλ
t

)

λ
= ( f̃ (λ ),πλ (xetλ Xi)πλ (Xi)eλ )λ .

It follows that

f (xetXi )− f (x)
t

=

∫

Ω

(
f̃ (λ ),

πλ (xetXi)eλ −πλ (x)eλ
t

)

λ
dμ̂(λ )

=
∫

Ω
( f̃ (λ ),πλ (x)πλ (e

tλ Xi)πλ (Xi)eλ )λ dμ̂(λ )

≤
∫

Ω
‖ f̃ ‖λ‖πλ (x)πλ (e

tλ Xi)πλ (Xi)eλ‖λ dμ̂(λ )

≤
∫

Ω
‖ f̃ ‖λ‖πλ (Xi)eλ‖λ dμ̂(λ ).

Here we have used that eλ is a smooth vector for πλ and the unitarity of πλ . Now

‖πλ (Xi)eλ‖2
λ ≤ |

(

eλ ,∑
i

πλ (Xi)πλ (Xi)eλ

)

λ

|= cλ‖eλ‖2
λ .
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Therefore the Lebesgue-dominated convergence theorem ensures that

lim
t→0

f (xetXi )− f (x)
t

=

∫

Ω
( f̃ (λ ),πλ (x)πλ (Xi)eλ )λ dμ̂(λ ),

which shows that f is differentiable. Repeat the argument to show that f is smooth
and notice that

Δ k f (x) =
∫

Ω
ck

λ ( f̃ (λ ),πλ (x)eλ )λ dμ̂(λ ).

It then finally follows that

‖Δ k f (x)‖2
L2 =

∫

Ω
|cλ |2k‖ f̃‖2

λ dμ(λ )≤ c(Ω)2k
∫

Ω
‖ f̃‖2

λ dμ̂(λ ).

We have thus proved the Bernstein inequality. ��
Corollary 3. Let Ω ⊆Λ be a compact set and define the neighborhoods Uε by

Uε = {exp(t1X1) . . .exp(tnXn) | (t1, . . . , tn) ∈ [−ε,ε]n}.

It is possible to choose ε small enough that for any Uε -relatively separated family
{xi}, the functions {�(xi)φ} provide a frame for L2

Ω .

Corollary 4. Let Ω ⊆Λ be a compact set and define the neighborhoods Uε by

Uε = {exp(t1X1) . . .exp(tnXn) | (t1, . . . , tn) ∈ [−ε,ε]n}.

It is possible to choose ε small enough that, for any Uε -relatively separated family
xi and any partition of unity 0≤ ψi ≤ 1xiUε , the operator

T f = ∑
i

f (xi)ψi ∗φ

is invertible on L2
Ω . If the functions {�(xi)φ} also form a frame for L2

Ω , the functions
{T−1(ψi ∗φ)} provide a dual frame.

Proof. Due to the expansion

f = ∑
i

f (xi)T
−1(ψi ∗φ) = ∑

i
( f , �xi φ)T

−1(ψi ∗φ),

Proposition 2.4 in [38] tells us it is enough to check that T−1(ψi ∗ φ) is a Bessel
sequence, i.e., it satisfies ∑i |( f ,T−1(ψi ∗ φ))|2 ≤ C‖ f‖2

L2 . Since, T is a bounded
invertible operator on L2

Ω , the operator (T−1)∗ is also bounded on L2
Ω . Then, since

convolution with φ is self-adjoint and (T−1)∗ f = ((T−1)∗ f )∗φ , we get

( f ,T−1(ψi ∗φ)) = ((T−1)∗ f ,ψi ∗φ) = ((T−1)∗ f ,ψi) =
∫

G
(T−1)∗ f (x)ψi(x)dx.
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Therefore

|( f ,T−1(ψi ∗φ))|2 ≤
(∫

G
|(T−1)∗ f (x)|ψi(x)dx

)2

≤
∫

G
|(T−1)∗ f (x)|2ψi(x)dx

∫
ψi(x)dx

≤ |U |
∫

G
|(T−1)∗ f (x)|2ψi(x)dx

and finally

∑
i

|( f ,T−1(ψi ∗φ))|2 ≤ |U |‖(T−1)∗ f‖2
L2 ≤ |U |‖(T−1)∗‖2‖ f‖2

L2 . ��

9 Examples of Commutative Spaces

In this section we give some examples of the theory developed in the previous
section. We do not discuss the Riemannian symmetric spaces of the noncompact
type as those can be found in [41].

9.1 The Space R
d

The simplest example of a Gelfand pair is (Rd ,{0}). The algebra of invariant
differential operators is D(Rd) =C[∂1, . . . ,∂d ], the polynomials in the partial deriva-
tives ∂ j = ∂/∂x j. The positive-definite spherical functions are the exponentials
ϕλ (x) = eiλ ·x, λ ∈R

d . Using ∂1, . . . ,∂d as generators forD(Rd) Theorem 6 identifies
Λ with iRd via the map ϕλ �→ i(λ1, . . . ,λd). Note the slight difference from our
previous notation for ϕλ .

We can also consider R
d as the commutative space corresponding to the

connected Euclidean motion group G = SO(d)�R
d with K = SO(d). The K-

invariant functions are now the radial functions f (x) = Ff (‖x‖), where Ff is a
function of one variable. We have D(Rd) = C[−Δ ] and Theorem 6 now identifies
the spectrum Λ with R

+. For λ ∈ R we denote by ϕλ the spherical function with
−Δϕλ = λ 2ϕλ .

Denote by Jν the Bessel function

Jν(r) =
(r/2)ν

Γ (1/2)Γ (ν + 1/2)

∫ 1

−1
cos(tr)(1− t2)ν−1/2 dt

(see [36], p. 144).
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Lemma 13. The positive-definite spherical functions for the Euclidean motion
group are given by

ϕλ (x) =
2

d−2
2 Γ

(
d
2

)

(λ‖x‖) d−2
2

J(d−2)/2(λ‖x‖)

=
Γ
(

d
2

)

√
πΓ

(
d−1

2

)
∫ 1

−1
cos(λ‖x‖t)(1− t2)

d−3
2 dt.

Proof. Denote for the moment the right-hand side by ψλ . Then ψλ is analytic as cos
is even. It is also a radial eigenfunction of −Δ with eigenvalue λ 2 and ψλ (0) = 1.
Now Theorem 4 implies that ϕλ = ψλ . ��
Remark 8. We note that we can write

ϕλ (x) =
∫

Sd−1
e−iλ (ω,x) dσ(ω)

where dσ is the normalized rotational invariant measure on the sphere.

It is easy to describe the representation (πλ ,Hλ ) associated to ϕλ . For λ ∈ R
∗ set

Hλ = L2(Sd−1,dσ) = L2(Sd−1) and define

πλ ((k,x))u(ω) := eiλ (ω,x)u(k−1(ω)) .

We take the constant function ω �→ 1 as normalized K-invariant vector eλ . Then

(eλ ,πλ ((k,x))eλ ) =

∫

Sd−1
eiλ (ω,x) dσ(ω) = ϕλ (x) .

We refer to [40] for more information.

9.2 The Sphere Sd

Let Sd = {x ∈ R
d+1 | ‖x‖ = 1} be the unit sphere in R

d+1. We refer to Chapter 9
of [15] and Chapter III in [47] for more detailed discussion on harmonic analysis
and representation theory related to the sphere. In particular, most of the proofs can
be found there. Recall from Example 1 that Sd = G/K where G = SO(d + 1) and
K = SO(d) and that Sd is a commutative space.
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For d = 1 we have S1 = T = {z ∈ C | |z| = 1} is an abelian group, and the
spherical functions are just the usual characters z �→ zn (or if we view T= R/2πZ,
the functions θ �→ einθ ). We therefore assume that d ≥ 2, but we would also like to
point out another special case. SO(3) � SU(2) and SOo(4) = SU(2)×SU(2). The
group K = SU(2) is embedded as the diagonal in SU(2)×SU(2). Then

S3 = SO(4)/SO(3)� SU(2)� {z ∈H | |z|= 1}

and the K-invariant functions on S3 corresponds to the central functions on SU(2),

i.e., f (kuk−1) = f (u). Hence Λ , the set of spherical representations, is just ŜU(2);
the set of equivalence classes of irreducible representations of SU(2) and the
spherical functions are

ϕπ =
1

d(π)
Trπ =:

1
d(π)

χπ ,

where d(π) denotes the dimension of Vπ . We will come back to this example later.
Denote by g= so(d+1) = {X ∈Md+1(R) | XT =−X} the Lie algebra of G. We

can take 〈X ,Y 〉=−Tr(XY ) as a K-invariant inner product on g. Then

k=

{(
0 0
0 Y

)∣∣
∣
∣ Y ∈ so(d)

}
� so(d)

and s= k⊥ is given by

s=

{
X(v) =

(
0 −vT

v 0

)∣∣
∣
∣ v ∈ R

d
}
� R

d .

A simple matrix multiplication shows that kX(v)k−1 = X(k(v)) where we have
identified k ∈ SO(d) with its image in K. It follows that the only invariant polyno-
mials on s are those of the form p(X(v)) = q(‖v‖2) where q is a polynomial of one
variable. It follows that D(Sd) = C[Δ ] where Δ now denotes the Laplace operator
on Sd−1. Thus D(Sd) is abelian and this shows again that Sd = SO(d+1)/SO(d) is
a commutative space.

Recall that a polynomial p(x) on R
d+1 is homogeneous of degree n if p(λ x) =

λ n p(x) for all λ ∈ R and p is harmonic if Δ
Rd+1 p = 0. Denote by Hn the space of

harmonic polynomials that are homogeneous of degree n and set

Yn := Hn|Sd = {p|Sd | p ∈Hn}. (7)

As the action of G on R
d+1 commutes with Δ

Rd+1 it follows that each of the
spaces Yn is G-invariant. Denote the corresponding representation by πn, then
πn(a)p(x) = p(a−1x) for p ∈ Yn.

Theorem 12. The following holds:
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1. (πn,Yn) is an irreducible spherical representation of SOo(d+ 1).
2. If (π ,V ) is an irreducible spherical representation of G then there exists an n

such that (π ,V )� (πn,Yn).

3. dimYn = (2n+ d− 1) (d+n−2)!
(d−1)!n! =: d(n).

4. −Δ |Yn = n(d+ n− 1).
5. L2(Sd) �G

⊕∞
n=0 Yn. In particular, every f ∈ L2(Sd) can be approximated by

harmonic polynomials.

The last part of the above theorem implies that Λ = N= {0,1, . . .}. We use this
natural parametrization of Λ rather than the one given in Sect. 6.

For Ω ∈ N the Paley–Wiener space for Ω is

L2
Ω (Sd) = {p|Sd | p is a harmonic polynomial of degree ≤Ω}.

It is noted that dimL2
Ω (Sd) < ∞ which is also the case in the more general case of

compact Gelfand pairs.
The group SO(d) acts transitively on spheres in R

d . Hence every v ∈ Sd is
K-conjugate to a vector of the form (cos(θ ),sin(θ ),0, . . . ,0)T and a function f is
K-invariant if and only if there exists a function Ff of one variable such that

f (v) = Ff (cos(θ )) = Ff ((v,e1)) = Ff (v1).

In particular, this holds for the spherical function ϕn(x) corresponding to the
representation πn as well as the reproducing kernel φ of the space L2

Ω (Sd). In fact,
for d ≥ 2, the spherical functions are determined by the Jacobi polynomials or
normalized Gegenbauer polynomials in the following manner: Fφn(t) = Φn(t) or
ϕn(x) = Φn((x,e1)) = Φn(cos(θ )), where

Φn(cos(θ )) = 2F1

(
n+ d− 1,−n,

d
2

;sin2(θ/2)

)

= 2F1

(
n+ d− 1,−n,

d
2

;
1− cos(θ )

2

)

=
n!(d− 2)!
(n+ d− 2)!

C(d−1)/2
n (cos(θ )).

As the polynomials ϕn(t) are real valued we can write the spherical Fourier
transform as

f̂ (n) =
∫

Sd
f (x)ϕn(x)dσ(x) =

Γ
(

d+1
2

)

√
πΓ

(
d
2

)
∫ 1

−1
Ff (t)Φn(t)(1− t2)

d
2−1 dt

with inversion formula
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f (x) =
∞

∑
n=0

d(n) f̂ (n)ϕn(x) =
∞

∑
n=0

d(n) f̂ (n)Φn((x,e1)).

In particular the sinc-type function is given by

φΩ (x) = FφΩ ((x,e1)) =
ω

∑
n=0

d(n)Φn((x,e1)). (8)

Note also that we can write the convolution kernel φΩ (a−1b), a,b ∈ SO(d + 1) as
FφΩ ((x,y)) where x = be1 and y = ae1.

For d = 1 the sphere is the torus T = {z ∈C | |z|= 1} and ϕn(z) = zn. Hence

φΩ (eit) =
ω

∑
n=−Ω

enit =
sin((Ω + 1/2)t)

sin(t/2)

is the Dirichlet kernel DΩ . In the higher dimensional cases the kernel φΩ behaves
very similar to the Dirichlet kernel. Here are some of its properties:

Lemma 14. Let the notation be as above. Then the following holds:

1. φΩ (e1) = ∑ω
n=0 d(n) = dimL2

Ω (Sd)↗ ∞ as Ω → ∞.
2.

∫
Sd φΩ (x)dσ(x) = 1.

3. ‖φΩ‖2
L2 = ∑ω

n=0 d(n)→ ∞ as Ω → ∞.

4. If f ∈ L2(Sd), then f ∗φΩ =
∫

Sd−1
f (x)FφΩ ((·,x))dσ(x) −→

Ω→∞
f in L2(Sd).

Let N(Ω) = dimL2
Ω (Sd)= 1+d(1)+ · · ·+d(Ω). Then every set of points {ω j ∈ Sd |

j = 1, . . . ,N(Ω)} such that the functions FφΩ ((·,ω j)) are linearly independent will
give us a basis (and hence a frame) for L2

Ω (Sd). Further N(Ω) is the minimal number
of points so that the sampling will determine an arbitrary function f ∈ L2

Ω (Sd). If
n > N(Ω), then the functions {FφΩ ((·,ω j))}n

j=1 will form a frame if and only if the
set is generating.

Let us go back to the special case S3 � SU(2). The set Λ � ŜU(2) is isomorphic
to N in such a way that d(n) = d(πn) = n+ 1. Every element in SU(2) is conjugate
to a matrix of the form

u(θ ) =
(

eiθ 0
0 e−iθ

)
.

Thus the positive-definite spherical functions are given by

ϕn(u(θ )) =
1

n+ 1
χπn(u(θ )) =

1
n+ 1

sin((n+ 1)θ )
sin(θ )

.

It follows that the reproducing kernel φΩ is
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φΩ (u(θ )) =
1

sin(θ )

Ω+1

∑
n=1

sin(nθ )

=
1

2isin(θ )

(
Ω+1

∑
n=1

(
eiθ
)n−

Ω+1

∑
n=1

(
e−iθ

)n
)

=
sin((Ω + 2)θ/2)sin((Ω + 1)θ/2)

sin(θ )sin(θ/2)
.

9.3 Symmetric Spaces of the Compact Type

To avoid introducing too much new notation we will not go into much detail about
general symmetric spaces X = G/K of the compact type. The general case follows
very much the same line as the special case of the sphere. Recall that “symmetric
space of the compact type” means that the group G is compact and there exists an
involution τ : G→G such that with Gτ = {u ∈ G | τ(u) = u} we have

(Gτ )o ⊆ K ⊆ Gτ .

An example is the sphere Sd where as in the last section G = SOo(d + 1) and the
involution τ is given by

u �→
(−1 0

0 Id

)
u

(−1 0
0 Id

)
=

(
u11 −vt

−v k

)

as in Example 1 and the previous section. All symmetric spaces of the compact
type are commutative. The spectral set Λ is well understood (see Theorem 4.1,
p. 535 in [35]). In particular Λ is discrete. Each representation (πλ ,Hλ ) occurs
with multiplicity one in L2(X). Let

Yλ := {(u,πλ (·)eπ) | u ∈Vλ}.

Then, if compact Ω is given, there exists a finite set Λ(Ω)⊂Λ such that

L2
Ω (X) =

⊕

λ∈Λ(Ω)

Yλ

and N(Ω) = dimL2
Ω (X) is finite. In particular, only finitely many points are needed

to determine the elements in L2
Ω (X).

The spherical functions are well understood. They are given by the generalized
hypergeometric functions (and Jacobi polynomials) of Heckman and Opdam [32].
Again the function
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φΩ = ∑
λ∈Λ(Ω)

d(πλ )ϕλ ∈Cω(X)

generalizes the Dirichlet kernel. Furthermore, Lemma 14 holds true in the general
case.

9.4 Gelfand Pairs for the Heisenberg Group

For the details in the following discussion we refer to [6, 46]. We let Hn = C
n×R

denote the 2n+ 1-dimensional Heisenberg group with group composition

(z, t)(z′, t ′) =
(

z+ z′, t + t ′+
1
2

Im(zz′)
)
.

Denoting z = x + iy the Heisenberg group is equipped with the left and right
Haar measure dxdydt where dx,dy,dt are Lebesgue measures on R

n,Rn, and R,
respectively. The group K = U(n) acts on Hn by the group homomorphism given by

k · (z, t) = (kz, t).

Let G = K �Hn. It follows that Lp(G/K)� Lp(Hn) and Lp(G/K)K � Lp(Hn)
K =

Lp(Hn)rad. It is known that the algebra L1(Hn)
K of integrable radial functions on Hn

is commutative and thus (G,K) is a Gelfand pair. This is also the case for several
other subgroups of U(n) as shown in [5].

9.4.1 Representation Theory for G = U(n)�HHn

A collection of important representations for the Heisenberg group is the represen-
tations for λ > 0 given by

πλ (z, t) f (w) = eiλ t−λ Im(wz)/2−λ |z|2/4 f (w+ z).

They act irreducibly on the Fock space Fλ of entire functions on C
n with norm

defined by

‖F‖2
λ =

( λ
2π

)n ∫

Cn
|F(z)|2e−λ |z|2/2 dz < ∞.

For λ < 0 define the representations

πλ (z, t) f (w) := π−λ (z, t) f (w)

on the anti-holomorphic functions Fλ := F−λ . These representations are irre-
ducible, and the left regular representation of Hn on L2(Hn) decomposes as
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(�Hn ,L
2(Hn))�

∫ ⊕

R∗
(πλ ,Fλ ) |λ |n dλ .

We should note that there are more irreducible representations than the πλ , but they
are one dimensional and do not show up in the Plancherel formula (they are of
Plancherel measure 0).

Let us now turn to the regular representation of G = U(n)�Hn on L2(Hn)
which is

�G(k,z, t) f (z′, t ′) = f

(
k−1(z′ − z), t ′ − t− 1

2
Im(z′z)

)
.

Notice that U(n) acts only on the z-variable, and for fixed k ∈ U(n) the elements
Gk = {(kz, t) | (z, t)∈Hn} form a group isomorphic to Hn. For fixed k the left regular
representation ofHn on L2(Gk) can be decomposed using the representations πλ . We
get

(�Hn ,L
2(Gk)) =

∫ ⊕

R∗
(πk

λ ,Fλ ) |λ |n dλ ,

where πk
λ (z, t) = πλ (kz, t). Note that for λ > 0 (the case of λ < 0 is handled

similarly) we have, with ν(k) f (w) = f (k−1w),

πk
λ (z, t) = ν(k)πλ (z, t)ν(k)−1.

Denote by νλ ,m the representation ν restricted to the homogeneous polynomials
Pλ ,m of degree m with inner product from Fλ . Then (ν,Fλ ) decomposes into

∞⊕

m=0

(νλ ,m,Pλ ,m).

Note that dim(Pλ ,m) = 2m + n. Let Hλ ,m be the Hilbert space spanned by
πλ (Hn)uλ ,m with uλ ,m in Pλ ,m. The representations πλ ,m of G on Hλ ,m thus obtained
are irreducible [46], dim(HK

λ ,m) = 1, and they provide a decomposition of the left

regular representation of G on L2(Hn):

(�G,L
2(Hn)) =

∞⊕

m=0

∫ ⊕

R∗
(πλ ,m,Hλ ,m) |λ |n dλ .

9.4.2 Spherical Functions

The bounded U(n)-spherical functions in this case are

φλ ,m(z, t) =
∫

U(n)
(πk

λ (z, t)uλ ,uλ )Fλ dk = eiλ tL(n−1)
m

(
|λ ||z|2/2

)
e−|λ ||z|

2/4
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for λ ∈R\{0} and m= 0,1,2, . . . . Here L(n−1)
m is the Laguerre polynomial of degree

m and order n− 1

L(n−1)
m (x) =

(
m+ n− 1

m

)−1 m

∑
k=0

(−1)k
(

m+ n− 1
m− k

)
xk

k!
.

In this fashion the spectrum for L1(Hn)
K can be identified with the Heisenberg

fan [46]
Fn = {((2m+ n)|λ |,λ ) | m = 0,1, . . . ;λ �= 0}∪R+

with Plancherel measure supported on Λ = {((2m+n)|λ |,λ ) | m = 0,1, . . . ;λ �= 0}
and given explicitly as

∫

λ
F(φ)dμ(φ) =

∫

R∗

∞

∑
m=0

(2m+ n)F(φλ ,m)|λ |n dλ .

As shown by [7] and more generally in [43] the topologies on Fn and Λ are the
topologies inherited from R

2.

9.4.3 Sampling and Oversampling of Bandlimited Functions

Let L2
Ω (Hn) be the space of functions in L2(Hn) with Fourier transform supported in

Ω = ((2m+ n)|λ |,λ ) | m = 0, . . . ,M;0 < |λ | ≤ R}.

In this case the sinc-type function is given by the expression

φ(z, t) =
M

∑
m=0

[∫ R

0
eiλ tL(n−1)

m

(
|λ ||z|2/2

)
e−|λ ||z|

2/4 dλ

+

∫ R

0
e−iλ tL(n−1)

m

(
|λ ||z|2/2

)
e−|λ ||z|

2/4 dλ
]

=
M

∑
m=0

∫ R

0
2cos(λ t)L(n−1)

m

(
|λ ||z|2/2

)
e−|λ ||z|

2/4 dλ .

Let xiU with xi ∈ G be a cover of the group G = Hn � K, then xiKUK covers
the Heisenberg group Hn. Let ψi be a bounded partition of unity, which could for
example be characteristic functions for disjoint sets Ui ∈ xiU . The operator T then
has the form

T f = ∑
i

f (xiK)ψi ∗φ ,
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where φ is given above. Choosing xi close enough we can invert T to obtain

f = ∑
i

f (xiK)T−1(ψi ∗φ).

One typical problem with the above reconstruction is that the functions
T−1(ψi ∗φ) have slow decay. We therefore lose locality of the reconstruction which
is undesirable in applications. This can be solved by expressing the inversion using
functions g and h with faster decay but with the expense of having to oversample.
Let ĝ be the restriction to Fn of a compactly supported Schwartz function on R

2

for which ĝ|Ω = 1. Let us say the support of ĝ is the compact set Ωg. Let ĥ be the
restriction to Fn of another Schwartz function which is one on Ωg and has support in
the compact set Ωh. According to Theorem 1.1 in [2] there are K-invariant Schwartz
functions g and h on Hn such that their Fourier transforms are equal to ĝ and ĥ,
respectively. The functions g and h are therefore integrable and bandlimited, and
f ∈ L2

Ω can be reconstructed by the following algorithm if the sampling points xi

are close enough. Denote by S the spline approximation

S f = ∑
i

f (xi)ψi.

Let
f0 = S f

and define
fk+1 = fk ∗ h− S( fk ∗ h).

Then, as argued in Theorem 3.1 from [22], we can reconstruct f in L2
Ω by

f =

(
∞

∑
k=0

fk

)

∗ g.

Remark 9. This oversampling situation is not possible for symmetric spaces of the
noncompact type. The reason is that there are no integrable bandlimited functions
with Fourier transform constant on a set with limit point.
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Smooth Interpolation of Data by Efficient
Algorithms

C. Fefferman

Abstract In 1934, Whitney (Trans. Am. Math. Soc. 36:63–89, 1934; Trans.
Am. Math. Soc. 36:369–389, 1934; Ann. Math. 35:482–485, 1934) posed several
basic questions on smooth extension of functions. Those questions have been
answered in the last few years, thanks to the work of Bierstone et al. (Inventiones
Math. 151(2):329–352, 2003), Brudnyi and Shvartsman (Int. Math. Res. Notices
3:129–139, 1994; J. Geomet. Anal. 7(4):515–574, 1997), Fefferman (Ann. Math.
161:509–577, 2005; Ann. Math. 164(1):313–359, 2006; Ann. Math. 166(3):779–
835, 2007) and Glaeser (J. d’ Analyse Math. 6:1–124, 1958). The solution of
Whitney’s problems has led to a new algorithm for interpolation of data, due to
Fefferman and Klartag (Ann. Math. 169:315–346, 2009; Rev. Mat. Iberoam. 25:49–
273, 2009). The new algorithm is theoretically best possible, but far from practical.
We hope it can be modified to apply to practical problems. In this expository chapter,
we briefly review Whitney’s problems, then formulate carefully the problem of
interpolation of data. Next, we state the main results of Fefferman and Klartag
(Ann. Math. 169:315–346, 2009; Rev. Mat. Iberoam. 25:49–273, 2009) on efficient
interpolation. Finally, we present some of the ideas in the proofs.

Let us set up notation. We fix positive integers m,n throughout the chapter. We work
in Cm(Rn), the space of m times continuously differentiable functions F : Rn → R

for which the norm

‖F‖= sup
x∈Rn

max
|α |≤m

|∂ α F(x)|

is finite. (We would like to be able to treat Sobolev spaces also. Work on Sobolev
interpolation of data is just beginning; see A. Israel, G. Luli, C. Fefferman, and
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P. Shvartsman, to appear.)

Let F ∈ Cm(Rn) and x ∈ R
n be given. We write Jx(F) (the “jet”of F at x) to

denote the mth order Taylor polynomial of F at x:

[Jx(F)] (y) = ∑
|α |≤m

1
α!

(∂ α F(x)) · (y− x)α .

Thus, Jx(F) belongs to P , the vector space of all real-valued polynomials of
degree at most m on R

n. The jet Jx(F) encodes the values at x of F and its derivatives
through order m.

Whitney’s classic problems are as follows. Suppose we are given a subset E ⊂R
n

and a function f : E → R. We make no assumptions on the set E .

Question 1: How can we tell whether f extends to a Cm function on R
n? That is,

how can we tell whether there exists F ∈Cm(Rn) such that F = f on E?
If such an F exists, then we ask:

Question 2: How small can we take ‖F‖?
Question 3: What can we say about Jx(F) for a given point x lying in or near E?
Question 4: Can we take F to depend linearly on f ?

Whitney himself settled these questions in the one-dimensional case (n= 1). He also
proved the Whitney extension theorem, answering an easier version of Questions
1–4. Here is

Theorem 1 (Whitney’s Extension Theorem [16]:). Let E ⊂ R
n be a closed set,

and let (Px)x∈E be a family of polynomials Px ∈P , indexed by the points of E.
Then the following are equivalent:

(A) There exists F ∈Cm(Rn) such that Jx(F) = Px for each x ∈ E.
(B) There exists a real number M > 0 such that:

• |∂ α Px(x)| ≤M for |α| ≤ m, x ∈ E.
• |∂ α (Px−Py)(y)| ≤M|x− y|m−|α | for |α| ≤ m− 1, x,y ∈ E.
• |∂ α (Px−Py)(y)|/|x− y|m−|α | tends to zero as |x− y| → 0, |α| ≤ m, x,y ∈ E.

Moreover, the least possible M in (B) is comparable to the least possible (inf)‖F‖
in (A). That is, cM ≤ inf‖F‖ ≤CM, for constants c,C depending only on m,n.

Given a family of jets (Px)x∈E satisfying (B), Whitney’s proof exhibits an F ∈
Cm(Rn) as in (A) such that ‖F‖ ≤ CM. This F is given by an explicit formula.
In particular, it depends linearly on the family (Px)x∈E .

The proof of Whitney’s extension theorem is a milestone in our understanding of
analysis. Along with the work of Marcinkiewicz [14], it is an early appearance of
the idea of a Calderón–Zygmund decomposition.

In Questions 1–4, we are given merely a function value f (x) at each point x ∈ E ,
rather than a jet Px as in the Whitney extension theorem. It is our responsibility to
compute (or guess) the derivatives of F up to order m at the points of E .
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Progress on Whitney’s problems occurred over several decades. In 1958,
Glaeser [12] answered Questions 1 and 3 in the case of C1(Rn) (m = 1). Glaeser’s
solution was based on a geometric construction, which he called the “iterated
paratangent space.”

In the 1970s, Brudnyi and Shvartsman [3,4] discovered the key idea of “finiteness
principles.” The simplest finiteness principle is as follows:

Theorem 2. Let E ⊂ R
2 be finite, and let f : E → R. For every subset S ⊂ E with

at most 6 points, suppose there exists FS ∈ C2(R2) with norm at most 1, such that
FS = f on S. Then there exists F ∈C2(R2) with norm less than a universal constant,
such that F = f on E.

Brudnyi and Shvartsman also proved the analogous result for C2(Rn); the number
of points in the subset S is at most k# ≡ 3 · 2n−1 (= 6 in two dimensions);
Brudnyi–Shvartsman showed that this k# is best possible. For several related results
and conjectures, we refer the reader to [3, 4].

In 2002, Bierstone, Milman, and Pawłuski [2] found an analogue of Glaeser’s
iterated paratangent space relevant to Cm(Rn). They answered a close relative of
Questions 1 and 3 for the case in which E ⊂ R

n is a subanalytic set.
Finally, the papers [6–8] proved a finiteness principle for Cm(Rn), modified

slightly the iterated paratangent space of Bierstone–Milman–Pawłuski, and gave
complete answers to Questions 1–4. For further details, we refer the reader to the
expository paper[9].

Our purpose here is to discuss the problem of interpolation of data. Again, we fix
m,n≥ 1, and we work in Cm(Rn). This time, we are given f : E → R with E finite;
say, #(E) = N, where #(E) denotes the number of points of E . We may not choose
to fit f perfectly. Therefore, we suppose we are given a “tolerance”σ : E → [0,∞).

We want to compute a function F ∈Cm(Rn) and a real number M ≥ 0 such that

‖F‖ ≤M, and |F(x)− f (x)| ≤Mσ(x) for all x ∈ E. (1)

We would like to take M as small as possible. In the special case σ ≡ 0, we
demand that F = f on E .1

Let us define ‖ f‖E,σ to be the infimum of M over all pairs (F,M) that satisfy (1).
Elementary examples show that this infimum need not be attained. Therefore, for a
constant C > 1, we define a “C-optimal interpolant” for (E, f ,σ) to be a function
F ∈Cm(Rn) such that for some M ≥ 0, we have

‖F‖ ≤M; |F(x)− f (x)| ≤Mσ(x) for all x ∈ E; and M ≤C‖ f‖(E,σ). (2)

1It is perhaps natural to use two different positive numbers M1,M2 in the two inequalities in (1).
However, since we are free to multiply σ (x) by our favorite positive constant, we lose no generality
in taking a single M.
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We can now give a crude statement of the problem of interpolating data. Given
m,n,E, f ,σ , we pose:

Problem 1: Compute a C–optimal interpolant with C not too big.
Problem 2: Compute the order of magnitude of ‖ f‖(E,σ).

Our solution will consist of an algorithm, to be run on an (idealized) computer.
To make the above problems precise, we owe the reader several clarifications.

We must explain:

• What it means to say that C is “not too big”
• What we mean by the “order of magnitude”
• What is an (idealized) computer
• What it means to “compute a function”
• Efficient vs. wasteful computation

The explanations are as follows:
A “not-too-big”constant is simply a constant depending only on m and n. (Recall,

we are working in Cm(Rn ).) We denote such constants by c,C,C′, etc. These
symbols may denote different constants in different occurrences.

To “compute the order of magnitude”of a real number X ≥ 0 is to compute some
real number Y for which we guarantee that

cX ≤ Y ≤CX .

Our idealized “computer” has standard von Neumann architecture. Unlike a real
computer, our idealized machine is assumed here to deal with exact real numbers,
without roundoff error. Thus, we assume that an arbitrary real number may be stored
at a single memory address and that the registers perform arithmetic operations
(including powers and logarithms) to perfect accuracy.2

Our idealized computer can deal with only finitely many real numbers. What
does it mean to “compute a function” F ∈Cm(Rn)?

We have in mind the following dialogue with the computer:
First, we enter the data (m,n,E, f ,σ). The computer performs one-time work,

then responds to our queries.
A query consists of a point x ∈ R

n. When we enter the coordinates of a query
point x, the computer responds by producing the list of numbers (∂ α F(x))|α |≤m.

Since F ∈Cm(Rn), this is the most we can expect.
The above notion of “computing a function” is clearly too restrictive for many

purposes. It demands in particular that F(x) can be computed exactly from x
by performing finitely many arithmetic operations. Thus, Bessel functions cannot
be computed according to our stringent definition. Since our main theorem will

2This unrealistic model of computation is subject to serious criticism[15]. In
Fefferman–Klartag[10, 11], we make a rigorous analysis of the roundoff error. That analysis
is omitted in this expository chapter for the sake of simplicity.
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assert that the desired F can be computed, we are undisturbed by the overly strict
definition.

Finally, we owe the reader a discussion of “efficient” vs. “wasteful” computation.
The resources used to compute F ∈Cm(Rn) (as explained above) are as follows:

• The number of computer operations used to perform the one-time work.
• The number of operations used to respond to a query.
• The number of memory cells in the RAM. (Recall that each memory cell can

hold a single real number.).

We refer to these, respectively, as the “one-time work,” the “query work,” and
the “storage.” For an “efficient” algorithm, all the resources used are as small as
possible.

We note a few trivial lower bounds for the resources needed to compute a C-
optimal interpolant for (m,n,E, f ,σ). First of all, any interpolation algorithm must
at least read the data and reproduce f (x) perfectly for x ∈ E if we take σ ≡ 0.

Since E consists of N points, it follows that any interpolation algorithm entails at
least N operations of one-time work, and at least N memory cells of storage.

Similarly, to respond to a query x, any interpolation algorithm must at least read
the query and print out a response. Thus, the query work for any interpolation
algorithm is at least 1.

We point out also that any algorithm that computes the order of magnitude of
‖ f‖(E,σ) requires at least N operations, since at least it looks at the data.

We are now ready to state our main results. We are given positive integers m,n;
a finite set E ⊂R

n consisting of N points; and functions f : E → R, σ : E → [0,∞).

Theorem 3. The algorithm given in [11] computes a C1-optimal interpolant, using
one-time work at most C2N logN, storage at most C3N, and query work at most
C4 logN.

Theorem 4. The algorithm given in [10] computes the order of magnitude of
‖ f‖(E,σ) using work at most C5N logN and storage at most C6N.

Recall that C1 · · ·C6 denote constants depending only on m and n.
The computer resources indicated by Theorems 3 and 4 differ only by a factor

logN from the trivial lower bounds we pointed out above. Very likely, Theorems 3
and 4 are best possible. Nevertheless, the algorithms in [10, 11] are not of practical
use, because they compute a C1-optimal interpolant for a very large constant C1.
(The constants C2, . . . ,C6 are not nearly so bad.) We hope that an improved version
of our algorithm may (someday) yield practical results.

Note that our algorithms apply to arbitrary interpolation problems (m,n,E, f ,σ).
We have made no assumptions on the geometry of the set E . Such assumptions
greatly simplify the task of interpolating data.

The rest of this chapter gives some ideas from the proofs of Theorems 3 and 4.
We will define certain basic convex sets Γ(x,M), compute their approximate size
and shape, and use them to compute a C-optimal F . We begin with the definition.
Let m,n,E, f ,σ be given. For each x ∈ R

n and M > 0, we define Γ(x,M) to consist
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of the Taylor polynomials Jx(F) of all functions F ∈Cm(Rn) that satisfy

‖F‖ ≤M and |F− f | ≤Mσ on E. (3)

Immediately from the definition, we see that Γ(x,M) is a (possibly empty) convex
subset of the vector space P of mth degree polynomials. (In particular, Γ(x,M) is
empty if we take M too small, since there are then no functions F satisfying (3).)

The convex sets Γ(x,M) are a key tool in computing a C-optimal interpolant.
Moreover, we hope to convince the reader that they are interesting in their own
right. To see this, consider a trivial one-dimensional example: Suppose I take a car
trip. My position is a function of time. Say y = F(t). I don’t know the function
F , but I know that its second derivative satisfies |F ′′(t)| ≤M for some explicit M,
because my car can’t accelerate very fast. At particular times t1, t2, . . . , tN , I look out
the window and observe my approximate position. This tells me that

|F(t)− f (t)| ≤Mσ(t) for t ∈ E ≡ {t1, t2, . . . , tN},

where f and σ arise from my observations. Given the above, what can we say about
my position, velocity and acceleration at some given time t0? This question amounts
to asking us to compute Γ(t0,M) in a one-dimensional case.

We now explain how to compute the approximate size and shape of Γ(x,M). Our
goal is to compute convex sets

Γ∗(x,M) ⊂P (possibly empty), such that

Γ∗(x,cM) ⊂ Γ(x,M) ⊂ Γ∗(x,M).

We explain how to exhibit such Γ∗(x,M). In this expository chapter, we restrict
attention to x ∈ E , even though Γ∗(x,M) can be computed for general x ∈ R

n.
By induction on �≥ 0, we will define (possibly empty) convex sets Γ�(x,M) (all

x ∈ E). These Γ� will satisfy

Γ�(x,M) ⊃ Γ(x,M), and

Γ�(x,M) ⊃ Γ�+1(x,M), for each x ∈ E and �≥ 0.

We will then set Γ∗(x,M) ≡ Γ�∗(x,M) for a large enough integer constant �∗
depending only on m and n.

The inductive definition of the Γ�(x,M) proceeds as follows:
In the base case �= 0, we simply define

Γ0(x,M) = {P ∈P : |∂ α P(x)| ≤M for |α| ≤ m, and |P(x)− f (x)| ≤Mσ(x)}

for each x ∈ E . Note that Γ0(x,M) is a (possibly empty) convex subset of P and
that Γ0(x,M) ⊃ Γ(x,M).
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The set Γ0(x,M) is defined trivially, ignoring the information available at points
of E other than x.

For the induction step, we fix � ≥ 0, and we suppose that Γ�(x,M) has already
been defined for all x ∈ E . We suppose that each Γ�(x,M) is a (possibly empty)
convex subset of P and that Γ�(x,M) ⊃ Γ(x,M) for each x ∈ E .

Our task is to define a (possibly empty) convex set Γ�+1(x,M) for each x ∈ E and
check that

Γ�(x,M) ⊃ Γ�+1(x,M) ⊃ Γ(x,M).

This will complete our induction on �.
To define Γ�+1(x,M), we just use Taylor’s theorem, which can be stated in the

following form:

Let F ∈Cm(Rn) with ‖F‖ ≤M, and suppose x,y ∈ R
n.

Set P = Jx(F) and P′ = Jy(F). Then

|∂ α(P−P′)(x)| ≤M|x− y|m−|α | for all |α| ≤ m.

As a corollary, we obtain a basic property of the sets Γ(x,M).

Proposition 1. Let x,y ∈ E. Given P ∈ Γ(x,M), there exists P′ ∈ Γ(y,M) such that

|∂ α(P−P′)(x)| ≤M|x− y|m−|α | for |α| ≤ m.

The above proposition motivates our definition of Γ�+1(x,M). For each x ∈ E , we
take Γ�+1(x,M) to consist of all P ∈ Γ�(x,M) such that for each y ∈ E , there exists
P′ ∈ Γ�(y,M) for which we have

|∂ α(P−P′)(x)| ≤M|x− y|m−|α | (all |α| ≤ m).

Note that Γ�+1(x,M) is a (possibly empty) convex subset of P and that
Γ�(x,M)⊃ Γ�+1(x,M).

Moreover, Γ�+1(x,M)⊃ Γ(x,M), thanks to the above proposition.
This completes our induction on �. We have succeeded in defining the Γ�(x,M)

for all x ∈ E, �≥ 0.
Note that our definition of Γ�+1(x,M) for a given x ∈ E involves Γ�(y,M) for all

y ∈ E . We will return to this point soon.
We know that each Γ�(x,M) is a (possibly empty) convex subset of P, and that

Γ�(x,M)⊃ Γ(x,M) for each �, and Γ�(x,M) ⊃ Γ�+1(x,M).
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The basic mathematical result on the above Γ� is as follows:

Theorem 5. For a large enough integer constant �∗ (depending only on m and n),
we have

Γ�∗(x,cM)⊂ Γ(x,M) ⊂ Γ�∗(x,M) for all x ∈ E and M > 0.

Thus, we have succeeded in computing the approximate size and shape of the
Γ(x,M). Unfortunately, the above computation is too expensive. Recall that each
Γ�+1(x,M) is defined using all the Γ�(y,M)(y ∈ E). Since each y talks to each x, the
work required to compute all the Γ�+1(x,M)(x ∈ E) from all the Γ�(y,M)(y ∈ E)
contains a factor N2. In Theorems 3 and 4, we promised algorithms that do only
N logN work.

Thus, we cannot use the above Γ�’s to compute the approximate size and shape
of the Γ(x,M).

The remedy is to change the definition of the Γ� without losing their usefulness.
To do so, we bring in an idea from computer science, namely, the well-separated
pairs decomposition (WSPD), due to Callahan–Kosaraju [5]; see also Har-Peled and
Mendel [13]. (We also use the closely related balanced box decomposition tree of
Arya–Mount–Netanyahu–Silverman–Wu [1], but we suppress that discussion here.)

To understand how the WSPD can overcome the need to do N2 work, we next
discuss a problem much easier than the interpolation problems considered above.

Let E ⊂ R
n be a finite set, consisting of N points. Let f : E → R. We want to

compute the Lipschitz constant of f , given by

‖ f‖Lip = max
x′,x′′∈E distinct

| f (x′)− f (x′′)|
|x′ − x′′| .

The obvious computation of ‖ f‖Lip requires work ∼ N2. However, a clever
method computes ‖ f‖Lip to within (say) a 1 % error by using O(N logN) operations.
The idea is that for certain E ′, E ′′ ⊂ E , we can compute the restricted maximum

∧ ≡
[

max
(x′ ,x′′)∈E ′×E ′′

| f (x′)− f (x′′)|
|x′ − x′′|

]

much faster than the obvious way.
We will take E ′ and E ′′ well separated, i.e., we suppose that

distance(E ′,E ′′)> 103 · [diameter (E ′)+ diameter (E ′′)].

Here, of course,

distance (E ′,E ′′) = min{|x′ − x′′| : x′ ∈ E ′, x′′ ∈ E ′′},
diameter (E ′) = max{|x′ − y′| : x′, y′ ∈ E ′}, and similarly for diameter (E ′′).
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Let us see how to compute ∧ to within a 1 % error for such E ′,E ′′, faster than the
obvious method that takes work ∼ #(E ′) ·#(E ′′).

First of all, as (x′,x′′) varies over E ′ ×E ′′, the distance |x′ − x′′| is essentially
constant. Therefore, to compute ∧, it is enough to compute

max{| f (x′)− f (x′′)| : x′ ∈ E ′, x′′ ∈ E ′′}.

To achieve the above maximum, either

Case 1: We maximize f (x′) over all x′ ∈ E ′, and minimize f (x′′) over all
x′′ ∈ E ′′;

or else

Case 2: We maximize f (x′′) over all x′′ ∈ E ′′, and minimize f (x′) over all
x′ ∈ E ′.

It follows easily that ∧ can be computed (up to a 1 % error) with work ∼ #(E ′)+
#(E ′′).

We have succeeded in beating the trivial algorithm to compute ∧.
The above discussion motivates the following:

Theorem 6. Let E ⊂R
n be a finite set, consisting of N elements. Then {(x,y)∈ E×

E : x �= y} can be partitioned into Cartesian products E ′1×E ′′1 , E ′2×E ′′2 , . . . , E ′L×
E ′′L , with L ≤ CN, such that each pair (E ′�,E

′′
� ) is well separated. Moreover, an

efficient algorithm computes the above decomposition [5].

We omit a careful discussion of the meaning of the preceding sentence. Returning
to the problem of computing the Lipschitz constant, we deliver the coup de grâce.

Let E ′1×E ′′1 , E ′2×E ′′2 , . . . , E ′L×E ′′L be as in Theorem 6. For each �= 1, . . . , L,
let

(
x′�,x

′′
�

) ∈ E ′�×E ′′� be given. Then the Lipschitz constant of f differs by at most
1 % from the quantity

max
{∣∣ f (x′�)− f (x′′� )

∣
∣ /

∣
∣x′�− x′′�

∣
∣ : �= 1, . . . , L

}
.

(We will prove this in a moment). (4)

Consequently, once we find the “representatives” (x′�, x′′� ), �= 1, . . . ,L, we can then
compute the Lipschitz constant of f with work at most C ·L≤C′N. To compute the
representatives by the algorithm of Callahan–Kosaraju requires work O(N logN).
Thus, computing a Lipschitz constant, a task that seems to require N2 operations,
can actually be done in O(N logN) operations.

We pause to explain in detail why the Lipschitz constant of f is given by the
restricted maximum (4) up to a 1 % error. The point is as follows.

Proposition 2. Suppose
∣
∣ f (x′�)− f (x′′� )

∣
∣ ≤ ∣

∣x′�− x′′�
∣
∣ for � = 1, . . . ,L. Then

| f (x′)− f (x′′)| ≤ (1.01)|x′ − x′′| for all x′, x′′ ∈ E.
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Proof. Suppose not. Let (x′,x′′) ∈ E ×E be a counterexample with |x′ − x′′| as
small as possible. Thus,

∣∣ f (x′)− f (x′′)
∣∣> (1.01)|x′ − x′′| (strict inequality). (5)

In view of the strict inequality, x′ and x′′ are distinct. Consequently, we have
(x′,x′′) ∈ E ′�×E ′′� for some �. Fix that �. Since E ′� and E ′′� are well separated and
since also (x′�,x

′′
� ) ∈ E ′�×E ′′� , it follows that

|x′ − x′�|+ |x′′ − x′′� | ≤ diam (E ′�)+ diam (E ′′� )≤ 10−3 dist (E ′,E ′′),

and therefore

|x′ − x′�|+ |x′′ − x′′� | ≤ 10−3|x′�− x′′� |. (6)

Thanks to our choice of x′ and x′′ to minimize |x′ − x′′|, it follows from (6) that

| f (x′)− f (x′�)| ≤ (1.01)|x′ − x′�| and | f (x′′)− f (x′′� )| ≤ (1.01)|x′′ − x′′� |.

Consequently,

| f (x′)− f (x′′)| ≤ | f (x′)− f (x′�)|+ | f (x′�)− f (x′′� )|+ | f (x′′� )− f (x′′)|
≤ (1.01)|x′ − x′�|+ |x′�− x′′� |+(1.01)|x′′ − x′′� |
≤ (1.01) ·10−3|x′�− x′′� |+ |x′�− x′′� |+(1.01) ·10−3|x′�− x′′� |
≤ (1.003) · |x′�− x′′� | ≤ (1.01)|x′ − x′′|,

where the last inequality follows from (6).
Thus, | f (x′)− f (x′′)| ≤ (1.01)|x′ − x′′|, contradicting (5). ��
This concludes our discussion of the Lipschitz constant. Returning to the interpo-
lation problem, we now change the definition of the convex sets Γ�(x,M) by using
the WSPD. Our new Γ�’s can be computed with N logN work, and they have the
following key properties in common with the old, expensive Γ�’s:

Property 0: Γ0(x,M) = {P ∈P : |∂ α P(x)| ≤M (all α)
and |P(x)− f (x)| ≤M} .

Property 1: Γ�(x,M) is a (possibly empty) convex subset of P .
Property 2: Γ�(x,M) ⊃ Γ(x,M) for each x ∈ E, �≥ 0.
Property 3: Γ�(x,M) ⊃ Γ�+1(x,M) for each x ∈ E, �≥ 0.
Property 4: Let x,y ∈ E , and let P ∈ Γ�+1(x,M).

Then there exists P′ ∈ Γ�(y,M) such that

|∂ α(P−P′)(x)| ≤M|x− y|m−|α | (all |α| ≤ m).
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In our earlier discussion, we essentially took Property 4 to be the definition of
Γ�+1(x,M).

There are additional key properties enjoyed by the new Γ�(x,M), but we omit
them here. Indeed, we omit the definition of our new Γ�, which requires additional
structure of the WSPD not discussed in this article.

The proof of Theorem 5 uses only the key properties on the above list, not the
precise definition of the Γ�. Therefore, thanks to Theorem 5 (in its generalized
form), our new, cheaper Γ� allow us to compute the approximate size and shape
of the convex sets Γ(x,M).3 The computation, running over all x ∈ E , takes at most
O(N logN) operations, as promised in Theorems 3 and 4.

This concludes our discussion of the computation of the approximate size and
shape of the Γ(x,M).

At last it is time to explain how to prove Theorems 3 and 4, once we have
computed the approximate size and shape of the Γ(x,M) (by computing our cheap
Γ�(x,M)). These results reduce quickly to Theorem 5. In fact, by definition, the set
Γ(x,M) is nonempty if and only if M ≥ ‖ f‖(E,σ).

By computing the approximate size and shape of the Γ(x,M), we have in
particular computed the order of magnitude of ‖ f‖(E,σ). Thus, Theorem 4 reduces
easily to Theorem 5. Moreover, the proof of Theorem 5 is constructive. Given
P ∈ Γ�∗(x,cM), we prove that P ∈ Γ(x,M) by constructing an explicit interpolant
F , satisfying ‖F‖ ≤ M, |F − f | ≤ Mσ on E , and Jx(F) = P. If we take M as
small as possible with Γ�∗(x,cM) nonempty, then the interpolant F is C-optimal.
The proof of Theorem 3 amounts to an efficient implementation of the proof of
Theorem 5.

Thus, everything comes down to Theorem 5, which (after a trivial localization us-
ing a partition of unity) in turn amounts to solving the following local interpolation
problem:
LIP (Q,x0,P0): Suppose we are given a cube Q, a point x0 ∈E∩Q, and a polynomial
P0 ∈ Γ�(x0,M) for a suitable �. Produce a function FQ ∈Cm(Q) such that:

(*1) The mth derivatives of F are bounded by CM on Q.
(*2) |FQ(x)− f (x)| ≤CMσ(x) for all x ∈ E ∩Q.
(*3) Jx0(FQ) = P0.

Our task is to solve LIP (Q,x0,P0) for a cube Q of sidelength 1. To carry out this
task, we will also consider LIP (Q,x0,P0) for smaller cubes Q.

In the explanation below, we sacrifice accuracy for ease of understanding.
A local interpolation problem carries a “label”A , to be explained later. For

the moment, we just remark that the label A tells us certain information on the
geometry of the convex set Γ�(x0,M) in LIP (Q,x0,P0). When we “attach” the
label A to the problem LIP (Q,x0,P0), we guarantee in advance that the geometric

3For the rest of this chapter, whenever we refer to Theorem 5, we mean the generalized version in
which the Γ� are not specified, but merely assumed to satisfy a list of key properties.
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conditions indicated by A hold for the convex set Γ�(x0,M). This information may
help us in constructing functions FQ that satisfy (*1)–(*3) above.

Thus LIP (Q,x0,P0) may or may not carry a given label A , but if it does, then
we have extra information that may help us solve the problem LIP (Q,x0,P0).

One particular label plays a special role; it is the empty set ∅, which provides
no information whatever on the geometry of Γ�(x0,M). Every LIP (Q,x0,P0) carries
the label ∅.

There is a natural order relation < on the set of all labels. If A ′ < A , then
an interpolation problem that carries the label A ′ is easier than a problem that
carries the label A . In particular, the label ∅ corresponds to the hardest version
of LIP (Q,x0,P0), in which we are given no additional information to work with.

There are only finitely many possible labels; indeed, the number of labels is a
constant depending only on m and n.

We will solve a local interpolation problem with a given label A by reducing it
to local interpolation problems with labels A ′ <A . Thus, we proceed by induction
on the label. Let us now describe that induction.

In the base case, our local interpolation problem LIP (Q,x0,P0) carries the easiest
possible label (the label called M later on). We may then simply take FQ = P0, and
one checks without difficulty that FQ satisfies (*1)–(*3). Thus, we can easily solve
LIP (Q,x0,P0) in the base case.

For the induction step, we fix a label A , and suppose that we can solve any local
interpolation problem that carries a label A ′ < A . We must solve a LIP (Q,x0,P0)
that carries the label A . To do so, we partition Q into finitely many subcubes Qν
and introduce a “representative point” xν ∈ E ∩Qν for each ν . The construction of
the partition involves the label A and the geometry of the Γ�−1(x,M) for all the
points x ∈ E ∩Q. For each xν , we invoke the key property called Property 4, with �
in Property 4 replaced by our present �−1. Thus, for each ν , we obtain a polynomial

Pν ∈ Γ�−1(xν ,M), such that |∂ α(Pν −P0)(x0)| ≤M|xν − x0|m−|α | for |α| ≤ m.
(7)

We now have a cube Qν , a point xν ∈E∩Qν , and a polynomial Pν ∈Γ�−1(xν ,M).
Thus, we can pose the local interpolation problem

LIP (ν)≡ LIP(Qν ,xν ,Pν) for each ν.

Our partition {Qν} was constructed to guarantee that each of the above problems
LIP(ν) carries a label A ′

ν < A . Therefore, by our induction hypothesis, we can
solve each LIP(ν), to produce a “local interpolant” Fν ∈Cm(Qν ) that satisfies:

(*1)ν The mth derivatives of Fν are bounded by CM on Qν .
(*2)ν |Fν(x)− f (x)| ≤CMσ(x) for all x ∈ E ∩Qν .
(*3)ν Jxν (Fν) = Pν .



Smooth Interpolation of Data by Efficient Algorithms 83

By using a partition of unity adapted to the partition {Qν}, we can then patch
together the Fν into a function FQ ∈Cm(Q).

If we are careful, then our FQ will satisfy (*1)–(*3) and thus solve LIP (Q,x0,P0).
This will complete our induction on the label A , solve all local interpolation
problems, and complete the proof of Theorem 5.

To make the above construction work, we have to take one main precaution.
We must pick the polynomials Pν in (7) to satisfy the consistency condition

|∂ α (Pν −Pν ′)(xν)| ≤CM |xν − xν ′ |m−|α | (all |α| ≤ m) (8)

whenever the cubes Qν and Qν ′ touch. This is much stronger than the defining
condition (7), since Qν and Qν ′ may be much smaller than Q, and therefore |xν−xν ′ |
may be much smaller than |x0− xν |. If (8) fails, then we have no chance to control
the mth derivatives of F as in (*1).

Thus, it is essential to pick the Pν to satisfy (8) in addition to (7). Achieving this
extra consistency is the most delicate point in our proof of Theorem 5. We postpone
for a few paragraphs our brief remarks on how to achieve (8).

We owe the reader an explanation of a local interpolation problem LIP (Q,x0,P0)
with a “label” A . In fact, a label A is simply a subset of the set M of all multi-
indices α = (α1,α2, · · · , αn) ∈ {0,1,2, · · ·}n of order |α|= α1 + · · ·+αn ≤m−1.
The problem LIP (Q,x0,P0) carries the label A if there exist polynomials Pα ∈
P indexed by α ∈ A , such that the following conditions are satisfied, where δQ

denotes the sidelength of Q and δβ α denotes the Kronecker delta:

• P0 +Mδ m−|α |
Q Pα ∈ Γ�(x0,CM) for each α ∈A .

• ∂ β Pα(x0) = δβ α for β ,α ∈A .

•
∣
∣∂ β Pα(x0)

∣
∣≤Cδ |α |−|β |Q for β ∈M , α ∈A .

These conditions assert that the convex set Γ�(x0,CM) ⊂ P is “fat enough ”in
certain directions corresponding to the Pα ∈ P.

Note that the above conditions hold vacuously when A is the empty set ∅. Thus,
as promised, the label ∅ provides no extra information.

However, when A is nonempty, the above conditions provide us with some
room to maneuver—we can change P0 and stay inside Γ�(x0,CM). In the proof
of Theorem 5 sketched above, we exploit this freedom of maneuver for each of the
local problems LIP(Qν ,xν ,Pν). Initially, the Pν satisfy the consistency condition
in (7), but not the strong consistency condition (8). However, by exploiting our
freedom of maneuver, we can modify slightly each Pν , to achieve (8) without
sacrificing (7).

This completes our sketch of the proof of Theorem 5. We again warn the reader
that it is not completely accurate. See [10, 11] for the correct version.
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An Overview of Time and Multiband Limiting

Joseph D. Lakey

Abstract The purpose of this chapter is to provide an up-to-date overview of time
and multiband limiting somewhat parallel to Landau’s (Fourier Techniques and
Applications (Kensington, 1983), pp. 201–220. Plenum, New York, 1985) overview.
Particular focus is given to the theory of time and frequency limiting of multiband
signals and to time-localized sampling approximations of Shannon type for band-
limited signals.

Keywords Time-limiting • Band-limiting • Shannon sampling • Multiband •
Prolate spheroidal wave function • Prolate discrete prolate spheroidal sequence •
Uncertainty principle • Legendre polynomial

Dedicated to the memory of Dennis Healy

1 Introduction

This exposition provides an overview of certain developments in the theory of
time and multiband limiting made since Landau’s [21] overview. Two principal
developments are outlined here. The first addresses behavior of eigenvalues. For
the case of time limiting of signals band limited to an interval, the results reviewed
are by now classical. In the multiband case, there are two essential regimes,
one involving mildly disconnected time and frequency supports—this will be
called the Landau–Widom regime—which allows for some number of independent
signals that are well localized in time and frequency and the other involving
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highly disconnected time and frequency supports—this will be called the Candès–
Romberg–Tao regime—which rarely allows for any signals that are jointly well
localized. The second development involves signals band limited to an interval and
addresses the numerical approximation of a time- and band-limited signal on the
one hand and the ability to interpolate such a signal locally from samples on the
other.

Given a compact set S ⊂ R with indicator function 1S(t) = 1 if t ∈ S and
1S(t) = 0, otherwise, one defines the time-limiting operator QS( f )(t) = f (t)1S(t).
Similarly, given a compact subset Σ ⊂ R, one defines the band-limiting operator
PΣ = F−1QΣ F , where F ( f )(ω) =

∫ ∞
−∞ f (t)e−2π itω dt is the Fourier transform of

f . We will abuse notation freely in abbreviating QT = Q[−T,T ] with Q = Q1 and
PΩ = P[−Ω/2,Ω/2] with P = P1. The area of the product S×Σ will be denoted by
a = a(S,Σ) = |S||Σ |, where |S| is the Lebesgue measure of S. When a(S,Σ) < ∞,
the kernel of the operator PΣ QS is K = KS,Σ with K(s, t) = (1Σ )

∨(s− t)1S(t). Its
trace and Hilbert–Schmidt norm are, respectively,

tr(PΣ QS) =

∫
K(s,s)ds = (1Σ )

∨(0)
∫

1S = |S||Σ |= a(S,Σ) and

‖PΣ QS‖2
HS = ‖KS,Σ‖2

L2(S×S) =

∫

S

∫

S
|(1Σ )

∨(t− s)|2 dsdt. (1)

In the following section we will review properties of the (discrete) spectrum of
PΣ QS, emphasizing the special case in which Σ and S are intervals. We also discuss
those properties of the eigenfunctions that depend only on the operator PΣ QS. In the
subsequent section we will discuss further properties of the eigenfunctions of PQT

that depend on Sturm–Liouville properties of these functions.

2 Eigenfunctions of Time and Band Limiting to an Interval

The unitary dilation (Dα f )(t) =
√

α f (α t) satisfies P = D1/Ω PΩ DΩ and QT =
D1/T QDT (see Table 1). Thus PΩ QT is unitarily equivalent to PQΩT , since

PQΩT = D1/Ω PΩ DΩ QΩT = D1/Ω PΩ DΩ D1/Ω QT DΩ = D1/Ω (PΩ QT )DΩ .

2.1 Eigenfunction Consequences of the Prolate Operator

2.1.1 Commutation of PQT with the Prolate Differential Operator

One of the fundamental observations made by Slepian and Pollak in [27] is that
the differential operator P in (3) commutes with the time-localization operator
Q and the frequency-localization operator Pa , for a an appropriate fixed multiple
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Table 1 Scaling relations for time and band limiting

Operation Formula Relations

Dα (Dα f )(t) =
√

α f (αt) Dα1 Dα1 = Dα1α2

F (F f )(s) =
∫ ∞
−∞ f (t)e−2πist dt (F 2 f )(t) = f (−t); DαF = FD1/α

Qβ (Qβ f )(t) = f (t)1[−β ,β ](t) Qβ Dα = Dα Qαβ
Pγ (Pγ f )(t) = (F−1 Qγ/2 F f )(t) Pαγ Dα = Dα Pγ

F Pγ Qβ = Qγ/2P2β F−1

of c. Slepian and Pollak simply observed that this “lucky accident,” as Slepian
[26] called it, followed from general properties relating differential operators
to corresponding integral operators. Considerably later, Walter [28] viewed this
accident as a characterization of certain differential operators that commute with
multiplication by the indicator functions of intervals. Walter’s result can be phrased
as follows.

Theorem 1. Suppose that P
(
t,d/dt

)
is a differential operator of the form

ρ0(t)
d2

dt2 + ρ1
d
dt +ρ2 with quadratic coefficients ρi such that P

(
t,d/dt

)
commutes

with multiplication by the characteristic function of [−T,T ] and such that
F (P(t,d/dt)) commutes with multiplication by the characteristic function of
[−Ω/2,Ω/2]. Then there exist constants a and b such that

ρ0(t) = a(t2−T 2) and ρ1(t) = 2at while ρ2(t) = π2aΩ 2t2 + b . (2)

The prolate differential operator, defined by

P = Pc =
d
dt
(t2− 1)

d
dt

+ c2t2 = (t2− 1)
d2

dt2 + 2t
d
dt

+ c2t2, (3)

arises in solving the wave equation in prolate spheroidal coordinates by means of
separation of variables. It corresponds to the particular case of (2) in which a = 1,
T = 1, c = πΩ , and b= 0. When the time–frequency area a equals 2Ω , one has a =
2c/π . Theorem 1 states that any second-order differential operator with quadratic
coefficients that the operator commutes, not the coefficients with the time- and band-
limiting operators is a multiple of a rescaling of the differential operator P , plus a
multiple of the identity. Because of this lucky accident, the eigenfunctions of PΩ QT

are, up to a dilation factor, prolate spheroidal wave functions (PSWFs).

2.1.2 Completeness of the Eigenfunctions of PQT in L2[–T,T]

Completeness follows from Sturm–Liouville theory. It also follows from the spectral
theorem for compact self-adjoint operators: the eigenfunctions of PQT are complete
in PW and from Parseval’s theorem and Proposition 1, completeness in L2[−T,T ]
follows.
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2.1.3 PQT Has a Simple Spectrum

That PΩ QT has a simple spectrum follows from the fact that the operator Pc has
a simple spectrum; see [27]. To establish the latter requires somewhat advanced
Sturm–Liouville theory. We denote by λ0 > λ1 > .. . the eigenvalues of PQT and by
ϕn the L2(R)-normalized prolate spheroidal eigenfunction corresponding to λn.

2.2 Eigenfunction Consequences of Time and Band Limiting

2.2.1 Fourier Covariance of Eigenfunctions of PQT

A PSWF eigenfunction ψ of PQT is real analytic and has a Fourier transform
supported in [−1/2,1/2].

Proposition 1. If ψ = ϕn is a λ -eigenfunction of PQT then

ψ̂
( ξ

2T

)
= (−in)/

√
λ1[−T,T ] ψ(ξ ) .

2.2.2 The PSWF Parameter c and the Time–Bandwidth Product a

As mentioned above, the parameter c in the operator Pc in (3) is related to the
time–bandwidth product a(T,Ω) = 2ΩT of the operator PΩT Q by a = 2c/π .

2.2.3 Double Orthogonality of Eigenfunctions of PQT

Since PQT has a simple spectrum, the PSWFs are orthogonal in L2(R). In L2[−T,T ]
one has

∫ T
−T ϕn(s)ϕm(s)ds = λn δnm as well. This double orthogonality extends to

the case in which P is replaced by PΣ such that Σ =−Σ ; see [27].

2.2.4 A “Square Root” for PQT

Up to a dilation factor, one can regard FQT as half of a time- and band-limiting
operation: (DaFQ)2 = ±P2aQ when acting, respectively, on real-valued even or
odd functions, expressed as follows.
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Proposition 2. If ψ is an eigenfunction of Pa/2Q with eigenvalue λ = λn(a) then

ψ is an eigenfunction of Fa with μ = μn(a) = 2in
√

λn(a)/a , where1

Fa( f )(t) =
∫ 1

−1
e

πa
2 ist f (s)ds =

2√
a
(Da/4F

−1Q)( f )(t) .

One has Pa/2Q = a
4 F∗a Fa so that λn(a) = a

4 |μn(a)|2.

3 Eigenvalues of Time and Band Limiting

PQT has a simple, discrete spectrum [27]. An eigenfunction having an eigenvalue
close to one is band limited and, approximately, time limited. Having a concrete
definition of “eigenvalue close to one” would allow one to define the dimension of
the space of signals band limited to [−1/2,1/2] that are approximately time limited
to [−T,T ]. This makes particularly good sense when there is a sharply defined
transition from eigenvalues close to one down to eigenvalues close to zero.

The eigenvalue λn of PΩ QT depends only on the area a = 2ΩT . We will write
Aa = PQa/2. Landau [22] provided an intuitive but somewhat imprecise estimate of
the width of the plunge region {n : 1−α > λn(a) > α} for a and α > 0 fixed in
terms of tr(Aa) = ∑λn and ‖Aa‖HS = ∑λ 2

n .

3.1 The Number of Eigenvalues of PQT Between α and 1−α

Fix the time–frequency area a = 2T and consider the number of eigenvalues of A2T

that are neither close to one nor close to zero. By (1),

∞

∑
n=0

λn = tr(A2T ) = 2T.

With sinc(t) = sinπt/πt, the kernel of A2T is K(t,s) = 1[−T,T ] sinc(t− s) and

∞

∑
n=0

λn = tr(A2T ) =

∫
K(t, t)dt =

∫ T

−T
1ds = 2T,

while the Hilbert–Schmidt norm of PQT satisfies

∞

∑
n=0

λ 2
n = ‖PQT‖2

HS =
∫ T

−T

∫ T

−T
sinc 2(t− s)dsdt =

∫ T

−T

∫ T−s

−T−s
sinc 2t dt ds .

1The operator given by integration against the kernel e−icst1[−1,1](s) is often denoted by Fc. One
has Fc = Fa when c = aπ/2 as we assume here.
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An integration by parts of the outer integral over s and an application of the
fundamental theorem of calculus yield

∞

∑
n=0

λ 2
n = 2T

∫ 2T

0
sinc2t dt + 2

∫ 2T

0
(T − t)sinc 2t dt ≥ 2T −M1 log(2T )−M2.

Here, M1 and M2 are independent of T since
∫ ∞

0 sinc 2t dt = 1/2,
∫ ∞

2T sinc 2(t)dt <
1/(2π2T ), and

∫ 2T
0 t sinc2(t)dt is comparable to log(2T ). Subtracting the Hilbert–

Schmidt estimate from the trace identity yields

∞

∑
n=0

λn(1−λn)≤M1 log(2T )+M2 .

Thus, for any fixed α ∈ (0,1/2), one has

∑
α<λn<1−α

λn(1−λn) ≥ α(1−α)#{n : α < λn < 1−α} or

#{n : α < λn < 1−α} ≤ ∑α<λn<1−α λn(1−λn)

α(1−α)
≤ M1 log2T +M2

α(1−α)
. (4)

Generalizing to any pair Ω and T , one sees that several eigenvalues of PΩ QT are
close to one, followed by a plunge region of width proportional to log2ΩT over
which the eigenvalues transition from being close to one to being close to zero. The
remaining eigenvalues, as it happens, decay to zero superexponentially, e.g., [30].
We will see how many eigenvalues of PΩ QT are close to one momentarily.

3.2 The Multiband Case: Plunge Width Proportional
to the Number of Intervals

In [19], Landau used much the same method as above to estimate the decay of
eigenvalues of the time–frequency localization operator PΣ QS when S and Σ are
finite unions of intervals. In the particular case S = [−T,T ], ϕ̂n is an eigenfunction
of P2T QΣ with kernel K(ξ ,η) = 1Σ (η)sin 2πT(ξ −η)/(π(ξ−η)). Arguing along

the same lines as before, using the fact that
∫

I sinc2(t)dt ≤ 2
∫ |I|/2

0 sinc 2(t)dt tells
us that when Σ = ∪M

ν=1Iν with pairwise disjoint intervals Iν of length |Iν |= �ν ,

∑
n

λ 2
n (2T,Σ) =

∫

Σ

∫

Σ

∣
∣
∣
sin2πT(ξ −η)

π(ξ −η)

∣
∣
∣
2

dξ dη

≥
M

∑
ν=1

(
2T �ν − 1

π2 log+ 2T�ν − 1
)
= 2T |Σ |−A log+(2T )−M,
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where log+(x) = max(log(x),0). In particular, A depends only on the linear
distribution of Σ and A ≥ NΣ/π2 when each of the NΣ intervals comprising A has
the same length. Combining the estimates for ∑λn and ∑λ 2

n one obtains

∑
n

λn(1−λn)≤ A log+(2T )−M . (5)

When Σ is a fixed finite union of intervals and A≥ NΣ/π2,

#{n : α < λn < 1−α} ≤ ∑α<λn<1−α λn(1−λn)

α(1−α)
≤ A log2T +M

α(1−α)
.

Suppose that T = 1 and Σ is a finite, pairwise disjoint union of a frequency
intervals I1, . . . , Ia each of unit length. Then PΣ Q1/2 will be a complicated operator,
but it should have on the order of a eigenvalues of magnitude at least 1/2. Consider
now the limiting case in which the frequency intervals become separated at infinity.
Any function ψ j that is concentrated in frequency on I j will be almost orthogonal
over [−1/2,1/2], in the separation limit, to any function ψk that is frequency-
concentrated on Ik when j �= k. To see this, write ψ j(t) = e2π imjtϕ j(t) where m j

is the midpoint of I j and ϕ̂ j is essentially concentrated on [−1/2,1/2]. Then

∫ 1/2

−1/2
e2π i(mj−mk)tϕ j(t)ϕk(t)dt = ϕ̂ j ∗ ϕ̂k ∗ sinc(m j−mk) = O(1/|m j−mk|)

as |m j−mk| →∞. This almost orthogonality prevents eigenvalues from the separate
interval operators PIQ1/2 from combining into large eigenvalues of PΣ Q1/2. Conse-
quently, PΣ Q1/2 will have on the order of a eigenvalues of size approximately equal
to λ0(a = 1) in the separation limit, while the remaining eigenvalues will not be
much larger than λ1(a = 1)< 1/2. The operator PQ1/2, corresponding to single time
and frequency intervals of unit length, has norm λ0(a = 1) ≥ ‖sinc1[−1/2,1/2]‖ >
0.88. The trace of PQ1/2 is equal to a = 1 on the one hand and to ∑λn on the other,
so λ1(a = 1)≤ 1−λ0(a = 1)< 1/2. Incidentally, similar reasoning shows that PΣ Q
cannot have any eigenvalues larger than 1/2 when Σ is a union of a large number of
short, mutually distant intervals, even if a = |Σ |> 1.

3.3 Landau and Widom’s 2ΩT Theorem

Landau and Widom [23] applied advanced techniques from spectral theory in order
to estimate precisely, albeit asymptotically, the logarithmic term that gets subtracted
from the time–bandwidth product to estimate the number of eigenvalues of PΩ QT

that are close to one. Theorem 2 was stated and proved by Landau and Widom in an
equivalent, slightly different manner. As before, Aa = PQa/2.
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Theorem 2 ([23]).

(i) The number N(Aa ,α) of eigenvalues of Aa larger than α satisfies

N(Aa ,α) = a +
1

π2 log
(1−α

α

)
loga + o(loga) as a → ∞ . (6)

(ii) Let S and Σ be finite pairwise disjoint unions of NS and NΣ intervals,
respectively, with |S| = |Σ | = 1. Set Ba = Ba(S,Σ) = PaΣ QSPaΣ where aΣ =
{aξ : ξ ∈ Σ}. Then the number N(Ba ,α) of eigenvalues of Ba larger than α
satisfies

N(Ba ,α) = a +
NSNΣ

π2 log
(1−α

α

)
loga + o(loga), a → ∞ . (7)

The estimate (6) boils down to estimating the polynomial moments of the discrete
measure dt [−N(Aa , t)] such that

N(Aa ,α) =
∫ 1

α
dt [−N(Aa , t)] .

The result then follows from approximating 1[α ,1] by polynomials. The spectral
measure estimate requires a variant of Szegő’s eigenvalue distribution theorem [17]
—a statement that the number of eigenvalues of a Toeplitz operator grows like the
measure of the set on which the Fourier transform of the kernel exceeds α—also
due to Landau [20], that is asymptotic in a.

The case of finitely many time and frequency intervals involves a reduction to
the single interval case, which also requires asymptotic separation of the intervals.
Although the factor NSNΣ disappears when α = 1/2, it appears prominently for
other α ∈ (0,1).

3.4 Further Asymptotic Behavior of the Eigenvalues

In the following, φ (c)
n−1 is the nth eigenfunction of F2c/π with norm one in L2[−1,1].

Lemma 1 ([24]). Let c > 0. Then

μn

( c
2π

)
=

in
√

πcn(n!)2

(2n)!Γ (n+ 3/2)
exp

(∫ c

0

(2φ (τ)
n (1)2− 1

2τ
− n

τ

)
dτ

)

.

Consequently,
∣
∣
∣μn

( c
2π

)∣∣
∣≤

√
π(n!)2cn

Γ (n+ 3/2)(2n)!
.

The lemma proves that, for any fixed value of c, the eigenvalues decay super-
exponentially as n→ ∞ by Stirling’s approximation, cf. Widom [30].
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3.5 The Number of Eigenvalues of Aa Larger than 1/2

Theorem 2 deals with asymptotic behavior of eigenvalues. Theorem 3, proved by
Landau in [22], (cf. [18]), shows that there are, in essence, a eigenvalues of Aa
larger than 1/2: the “o(loga)” term in (6) disappears when α = 1/2.

In [22], (cf. [18]) Landau proved the following:

Theorem 3. The eigenvalues of Aa satisfy

λ"a#−1 ≥ 1/2≥ λ$a% .

In the theorem, "x# and $x% denote the greatest integer less than or equal to x
and least integer greater than or equal to x respectively. The Weyl–Courant minimax
characterization of the singular values λ0 ≥ λ1 ≥ . . . of PΣ QSPΣ can be stated as

λn =

{
minSn max{‖QS f‖2 : f ∈ PWΣ , ‖ f‖= 1, f⊥Sn}

maxSn+1 min{‖QS f‖2 : f ∈ PWΣ , ‖ f‖= 1, f ∈Sn+1}.

Here, Sn ranges over all n-dimensional subspaces including, notably, the subspace
spanned by the first n eigenfunctions of PΣ QSPΣ . In his 1965 work [18], Landau
identified a convolver h such that if f ∈ PW and f ∗ h(m) vanishes at any integer in
[−a/2, a/2] then ‖QT f‖2 ≤ 0.6. A sharper bound with 0.6 replaced by 0.5 was
attributed to B.F. Logan in [18], but the sharp bound was never published until
Landau’s 1993 work [22] in which the convolver h(t) =

√
2cosπt1[−1/2,1/2](t) was

used. It satisfies ‖h‖2 = 1 and ĥ(ξ ) ≥ 1/
√

2 whenever |ξ | ≤ 1/2. We refer to [14]
for the details of Landau’s estimates. The theorem can also be viewed as a corollary
of the multiple interval case Proposition 3, whose proof fundamentally relies on
Landau’s method.

3.5.1 Extension of Theorem 3 to Multiple Intervals

Landau’s technique can be extended to the case in which S is a finite union of
intervals (but still Σ = [−1/2,1/2]). In [18], Landau observed that if S is a union of
m intervals then

|S|− 2m ≤ #{k : (k− 1/2,k+ 1/2)⊂ S}
≤ #{k : (k− 1/2,k+ 1/2)∩S �= /0} ≤ |S|+ 2m .

The two numbers quantify dimensions of vanishing subspaces that can be used in
the Weyl–Courant lemma. In Izu’s dissertation [15], one can find a proof of an
equivalent version of the following.
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Proposition 3. Let Σ = [−1/2,1/2] and let S be a finite union of m pairwise
disjoint intervals. Denote by

ν = max
α

#{k ∈ Z : (k− 1/2,k+ 1/2)⊂ S+α} and

μ = min
β

#{� ∈ Z : (�− 1/2, �+ 1/2)∩S+β �= /0}.

Then the eigenvalues λn of QSP satisfy

λν−1 ≥ 1/2≥ λμ . (8)

In particular, for |S| ≥ 1, "|S|#− 2m+ 2≤ ν ≤ μ ≤ $|S|%+ 2m− 2 so that

λ"|S|#−2m+1 ≥ 1/2≥ λ$|S|%+2m−2. (9)

3.5.2 Discussion

Landau’s estimate, effectively (9), represents a worst case in terms of the distribution
of intervals in S. Both ν and μ will be closer to |S| when the intervals are close
to being aligned along a grid. If each of the intervals comprising S has the form
[k− 1/2,k+ 1/2) then ν = μ = |S| and one recovers the bounds λ"|S|#−1 ≥ 1/2 ≥
λ$|S|%, even though S can be disconnected (see [15]).

4 Discrete Theory

4.1 Finite Discrete Prolate Spheroidal Sequences

The discrete theory of index and band limiting (eigensequences are discrete prolate
spheroidal (DPS) sequences on Z) was developed by Slepian [25]. There is a
parallel theory for the finite (discrete) Fourier transform on ZN as well. Xu and
Chamzas [32] referred to the corresponding eigenvectors as periodic discrete prolate
spheroidal sequences (P-DPSS) and regarded them as periodic sequences. We will
call them finite discrete prolate spheroidal sequences (FDPS), thinking of time and
frequency localization as operations on functions x : ZN → C. FDP sequences were
also used in the work of Jain and Ranganath [16]. Grünbaum [10, 11] addressed the
analogue of Theorem 1 for finite matrices. For K fixed such that 2K+1≤ N, define
the Toeplitz matrix A = AK :

Ak� = ak−� =
sin((2K + 1)(k− �)π/N)

N sin((k− �)π/N)
, (k, � = 0, . . . ,N− 1) . (10)
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A vector in the image of A is said to be K-band limited, since its N-point discrete
Fourier transform (DFT) vanishes at any index m such that m mod N > K. The
dimension of the range of A is 2K + 1.

In contrast to the infinite case, the finite matrix Ak� can have degenerate
eigenvalues one and zero for time and band limiting. Denote by AM =AK

M the M×M
principal minor of A. Multiplication of a vector (a function on ZN) by AM plays the
analogous role to integrating against the sinc kernel over [−T,T ]. Assuming that
M ≥ 2K + 1, Xu and Chamzas [32] proved that, when ordered in nonincreasing
order, the eigenvalues λn of AM satisfy λ0 = · · · = λM+2K−N = 1 if M + 2K ≥ N,
while λ2K+1 = · · ·= λM−1 = 0 in this case. The intermediate eigenvalues are simple
and have values strictly between zero and one.

The eigenvectors can be computed by noting that AM commutes with a symmetric
tridiagonal matrix T , e.g., Grünbaum [10,11]. Eigenvectors sn = (sn(0), . . . ,sn(M−
1))T (n = 0, . . . ,min(M−1,2K)) of AM corresponding to nonzero eigenvalues have
K-band-limited extensions s̃n to C

N obtained by applying the matrix A in (10) to the
vectors (sn(0), . . . ,sn(M−1),0, . . . ,0)T . The s̃n are called FDP sequences. They are
doubly orthogonal, just as in the case of the PSWFs in L2(R). If M < 2K + 1 then
the restrictions of the s̃n to their first M coordinates form a basis for CM , but the ZN

periodic extensions of s0, . . . ,sM−1 are not complete in the space of K-band-limited
sequences. On the other hand, if M > 2K + 1 then these periodic extensions are
complete in the space of K-band-limited sequences, but the restrictions of s0, . . . ,s2K

to C
M are not complete [32].

4.2 Finite Fourier Uncertainty Inequalities

That AM can have unit eigenvalues is reminiscent of the fact that if M divides N then
the indicator vector 1�+MZN of the coset ZN/ZM has a DFT that is a modulation of
1(N/M)ZN

, e.g., [13, Chap. 4]. In particular, time and band limiting to such cosets
gives rise to operators having some number of eigenvalues equal to one. Donoho
and Stark [7] observed that these picket fence signals x on C

N are minimizers of
the quantity |suppx||supp x̂|, which is always at least N if x �= 0. If sparse subsets
S and Σ are chosen at random—e.g., from the uniform distribution of subsets of
ZN having a fixed size—then the probability that the corresponding time- and band-
limiting operator will have a large norm—greater than 1/2, say—is very small.

4.3 Quantitative Robust Uncertainty Principles

Candès, Romberg, and Tao [3–6] found that norm estimates on time- and band-
limiting operators corresponding to sparse time and frequency supports could be
useful in signal recovery problems. They considered the problem of finding a bound
on the norm—and hence on the largest eigenvalue—of the discrete version of the
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operator PΣ QSPΣ when the time–frequency area is small. In the finite case, the
normalized area is a = |S||Σ |/N, where |S| is the counting measure of S. Denote
by ASΣ the operator with matrix DSF

−1
N DΣFN where FN is the matrix of the N-

point DFT and DS is the diagonal matrix with DS( j, j) = 1 if j ∈ S and DS( j,k) = 0
otherwise, corresponding to multiplication by the discrete indicator function 1S.
Then

ASΣ A∗SΣ = DSF
−1
N DΣ FN(DSF

−1
N DΣFN)

∗

= DSF
−1
N DΣ FNF ∗

NDΣFNDS = DSF
−1
N DΣFNDS, (11)

since F ∗
N = F−1

N and DΣ is idempotent.
Candès et al. were motivated by applications to compressed sensing in which

a signal x could be recovered (via optimization techniques) from its values on S
provided that its Fourier transform x̂ vanishes outside Σ . This recovery is contingent
upon invertibility of I−ASΣ , which holds if ‖ASΣ‖ & 1. Candès et al. were able to
obtain such bounds in a probabilistic sense using a technical array of probabilistic
and combinatorial methods. For technical reasons, Candès et al. assumed that N ≥
512. In order to discuss the rate at which the probability that ‖ASΣ A∗SΣ‖> 1/2 decays
(in problem size N) they fixed a parameter 1 ≤ β ≤ (3/8) logN, so β is at most a
fraction of logN. A sparse vector defined on ZN should be supported in a set of size
at most a fraction of N. To quantify sparsity, set

M(N,β ) =
N

√
(β + 1) logN

(
1√
6
+ o(1)

)
.

The “o(1)” term arises in technical estimates for the proof of the following theorem.

Theorem 4 ([5, 6]). Fix S ⊂ ZN of size smaller than M(N,β ), and let Σ ⊂ ZN

be randomly generated from the uniform distribution of subsets of ZN of given
size |Σ |, chosen so that |S|+ |Σ | ≤ M(N,β ). Then, with probability at least
1−O((logN)1/2/Nβ ), every signal x supported in S satisfies

‖x̂1Σ‖2 ≤ 1
2
‖x‖2,

while every signal x frequency supported in Σ satisfies

‖x1S‖2 ≤ 1
2
‖x‖2 .

The second inequality says that ‖ASΣ‖2 ≤ 1/2. The arithmetic–geometric in-
equality implies that the normalized time–frequency area satisfies

a =
|S||Σ |

N
≤ 1

4N
M(N,β )2 ≤ N

24(β + 1) logN
(1+ o(1)),
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Fig. 1 Eigenvalues for disconnected Fourier supports. Eigenvalue scree plots (left) are shown with
corresponding Fourier supports (right) for a 512-point DFT. In each case, the time support is a
discrete interval of length 64 points, and the Fourier support has 128 points. The normalized area
is a = 16. As the Fourier support becomes more disconnected, the eigenvalues become more evenly
spread out

suggesting that even small N can support time–frequency set pairs of normalized
area substantially larger than one on which no signal is mostly localized. The
probability is defined with respect to the uniform distribution among all sets Σ of
fixed size |Σ |. The proof involves complicated combinatorial estimates for Fourier
sums arising in traces of powers of ASΣ .

4.4 Discussion

Figure 1 illustrates the dispersion of eigenvalues of ASΣ = F−1DΣ FDS as the
frequency support becomes disconnected. Here, the normalized area is held fixed
at a = 16 and the time support is a fixed interval. Only the bottom row of Fig. 1
corresponds to a “typical” randomly generated frequency support.

5 Further Analytical and Numerical Properties

5.1 The Case c = 0: The Legendre Polynomials

The nth Legendre polynomial Pn(t) is a solution of

d
dt
(t2− 1)

dPn

dt
= χn(0)Pn(t) or (t2− 1)

d2Pn

dt2 + 2t
dPn

dt
− χn(0)Pn = 0 , (12)
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in which χn(0) = n(n+ 1). This equation is the c = 0 limit of Pϕ = χn(c)ϕ , with
P as in (3). The constant functions are solutions with χ0(0) = 0, and the function
P1(t) = t with χ1(0) = 2. The Legendre polynomials can be defined iteratively by
means of the Gram–Schmidt process in order that the polynomials are orthogonal
over [−1,1] with respect to 〈 f , g〉 = ∫ 1

−1 f (t)g(t)dt. It is standard to normalize Pn

so that Pn(1) = 1.

5.2 Approximations of Prolates in Legendre Series

Bouwkamp [1] first suggested a method to express PSWFs in Legendre series
in which a recursion formula for Legendre polynomials gives rise to a recursion
involving both the coefficients of the Legendre series expansion and the eigenvalue.
Bouwkamp then used a continued fractions approach to estimate the eigenvalues
χn(c) and then the coefficients of the Legendre series. A more up-to-date approach
was outlined by Boyd [2]. Let P̄m =

√
m+ 1/2Pm (m ≥ 0) be the L2[−1,1]-

normalized basis of Legendre polynomials. As in the Bouwkamp method, each

prolate φn = φ (c)
n is expressed as its Legendre expansion

φn =
∞

∑
m=0

βnmP̄m, (13)

with the goal of estimating the coefficients βnm assuming that the eigenvalues of
the prolate differential operator P are known. Applying P to both sides of this
equation gives rise to an equation for the coefficients. Let A = {amk}∞

m,k=0, the
doubly infinite tridiagonal matrix with nonzero elements

amk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2m(m− 1)

(2m− 1)
√
(2m− 3)(2m+ 1)

if m≥ 2, k = m− 2

m(m+ 1)+
c2(2m2 + 2m− 1)
(2m+ 3)(2m− 1)

if m = k≥ 0

c2(m+ 2)(m+ 1)

(2m+ 3)
√
(2m+ 5)(2m− 1)

if m≥ 0, k = m+ 2

0 else.

Then PP̄m = ∑∞
k=0 AmkP̄k. Applying P to both sides of (13) gives

χnφn =
∞

∑
k=0

( ∞

∑
m=0

βnmAmk

)
P̄k. (14)
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For fixed n ≥ 0, let bn = (βn0,βn1,βn2, . . .). Equating coefficients in (14) and (13)
gives the matrix equations

AT bn = χn bn, (15)

that is, the vector bn (whose entries are the L2-normalized Legendre coefficients of
φn) is an eigenvector of AT with eigenvalue χn.

Truncating the sum in (13) after Ntr terms and following the procedure outlined
above yield a finite matrix eigenvalue problem

(Atr)T btr
n = χ tr

n btr
n (16)

with btr
n ∈R

Ntr and Atr the top left Ntr×Ntr submatrix of the matrix A above. Because
of the structure of Atr (whereby the only nonzero entries are of the form am,m−2, amm,
and am,m+2), equation (16) may be written as a pair of uncoupled eigenproblems for
even and odd values of n, respectively:

(Atr
e )

T b(2n)
e = χ tr

2nb(2n)
e ; (Atr

o )
T b(2n+1)

o = χ tr
2n+1b(2n+1)

o (17)

with Ao, Ae both (Ntr/2)×(Ntr/2) tridiagonal matrices (assuming Ntr even) given by
(Ae)mk = a2m,2k and (Ao)mk = a2m+1,2k+1. Once solved, the eigenproblems (17) yield

approximations of the Legendre coefficients βnm of the prolates φ (c)
0 ,φ (c)

1 , . . . ,φ (c)
N−1

as in (13). Boyd [2] reported that for all N and c, the worst approximated prolate

is that of highest order φ (c)
N−1 so that if the truncation Ntr is chosen large enough

so that φ (c)
N−1 is computed with sufficient accuracy, then so too will φ (c)

n with 0 ≤
n ≤ N − 2. Numerical evidence was given to suggest that if Ntr ≈ 30+ 2N, then
βN−1,Ntr < 10−20, and it was claimed that if Ntr > 30+ 2N then the approximations

to {φ (c)
n }N−1

n=0 are accurate as long as c≤ c∗(N) = π(N + 1/2)/2.

5.3 Another Look Legendre Series of PSWFs

Assume now that Legendre coefficients can be estimated accurately and consider,
in turn, the accuracy of approximation of PSWFs over [−1,1] by truncated partial

sums of Legendre series. Proposition 4 is due to Xiao et al. [31]. As before, let φ (c)
n

denote the nth L2[−1,1]-normalized PSWF eigenfunction of

F2c
π
( f )(t) =

∫ 1

−1
eicxt f (x)dx. (18)

Let Pn denote the nth Legendre polynomial on [−1,1] normalized such that P(1) =
1, so that

∫ 1
−1 P2

n = 1/(n+ 1/2). Since
∫ 1
−1 xmPn(x)dx = 0 if m < n, expanding the

exponential in its power series gives
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∫ 1

−1
eicxt Pn(x)dx =

∞

∑
ν=[n/2]

∫ 1

−1

(
aν x2ν + ibνx2ν+1)Pn(x)dx

aν(t) =
(−1)ν(ct)2ν

(2ν)!
; bν(t) =

(−1)ν(ct)2ν+1

(2ν + 1)!
.

The following remainder estimate is based on [31, Lemma 3.3].

Proposition 4. (i) If n > (2[|etc|]+ 1) then

|F2c
π
(Pn)(t)|< Cn

2n
√

2n+ 1
(Cn → 0 as n→ ∞). (19)

(ii) If φ c
m denotes the mth eigenfunction of F2c

π
with eigenvalue μc

m then, for n >

2([|etc|]+ 1),
∣∣
∣
∫ 1

−1
φ c

m(x)Pn(x)dx
∣∣
∣≤ C

2n
√

n+ 1/2|μc
m|

.

With αmn = (n+ 1/2)βmn as in (13), one has

φ c
m(t) =

∞

∑
n=0

αmnPn(t); αmn =
(

n+
1
2

)∫ 1

−1
φ c

mPn . (20)

Proposition4 provides an estimate of the error of approximating any value φ c
m(t)

for t inside a bounded interval by applying F2c
π

to a partial sum of the Legendre

expansion of φ c
m, since

∣∣
∣F2c

π
(φm)(t)−F2c

π

(
N

∑
n=0

αmnPn

)

(t)
∣∣
∣≤

∞

∑
N+1

∣∣
∣F2c

π

(
αmnPn

)∣∣
∣

≤
∞

∑
N+1

C
√

n+ 1/2
2n|μc

m|
∣∣
∣F2c

π

(
Pn
)∣∣
∣≤

∞

∑
N+1

C2

4n|μc
m|

if N > 2[|etc|]+1. In particular, the integer values of φ c
m(k) can be approximated by

applying F2c/π to the Nth partial sum of the Legendre expansion of φ c
m on [−1,1].

This approximation will be effective for any k such that N > 2[|ekc|] + 1, with an
error controlled by 1/(4N |μc

m|). In fact, the estimates just considered can be used to
justify effective approximations of the values φ c

n (k) for larger k as well. However,
in what follows we are interested in approximating integer samples for k essentially
within a fixed multiple of the time-limiting interval.
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5.4 Approximation of Samples of Prolates

5.4.1 Integer Values of ϕT
m

Let ϕT again denote an L2(R)-normalized eigenfunction of PQT , that is, ϕT is
band limited to [−1/2,1/2] and approximately time limited to [−T,T ]. Then, by
Proposition 2, ψ(t) = DT ϕT is an eigenfunction of F2T with Fa as in (18), that is,

F2T (ψ)(t) =
∫ 1

−1
eπ iTst ψ(s)ds = μψ(t)

for an appropriate μ ∈C. Equivalently, if ϕT is an eigenfunction of PQT then DT ϕT

will satisfy (see Table 1)

(DT (ϕT ))(t) =
1
μ

∫ 1

−1
eπ iTst(DT ϕT )(s)ds .

Therefore, with αmn as in (20) and ϕT
m the mth eigenfunction of PQT ,

ϕT
m(k) =

1√
T
(DT (ϕT

m))
( k

T

)
=

1√
T μm

∫ 1

−1
eπ isk(DT ϕT

m)(s)ds

≈ 1√
T μm

N(T )

∑
n=0

(n+ 1/2)〈DTϕT
m , Pn〉

∫ 1

−1
eπ iskPn(s)ds

≈ 1√
T μm

N(T )

∑
n=0

αmn(2T )

{
(−i)n Jn+1/2

(
π k)
√

k, k �= 0

δ0,n, k = 0 .

The formula for the Fourier coefficients of Pn is classical and can be found in the
Bateman project manuscripts [9, p. 122] or [8, vol. II, p. 213].

6 Sampling Formulas for Prolates

Our goal in this section is to show that if ϕn is the nth eigenfunction of PQT

with n & 2T so that λn ≈ 1, then QT ϕn can be approximated accurately by sinc-
interpolating its samples near [−T,T ]. Since the methods of the previous section
already provide accurate approximations of prolates via Legendre expansions, one
might wonder what is the purpose of this alternative method. The purpose is to
be able to construct an approximation of QT f when f ∈ PW directly from the
integer samples of f in a suitable neighborhood of [−T,T ]. The primary goal is to
obtain approximate coefficients cn( f ) ≈ 〈 f , ϕn〉, (n = 0, . . . ,N(T )) from which the
expansion f ≈ ∑cn( f )ϕn can be computed by whatever means of approximation
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of ϕn is available. Since the eigenfunctions of PQT form an orthonormal basis for
PW, and since the sinc function provides a reproducing kernel for PW, one has the
Mercer expansion:

sinc(t− s) =
∞

∑
n=0
〈sinc(·− s), ϕn(·)〉ϕn(t) =

∞

∑
n=0

ϕn(s)ϕn(t) .

Evaluating at s = k ∈ Z yields

sinc(t− k) =
∞

∑
n=0

ϕn(k)ϕn(t) .

Walter and Shen [29] observed that this identity can be coupled with the Shannon
sampling theorem to provide the following proposition, to which we will refer as
the first Walter–Shen sampling formula.

Proposition 5. Fix T > 0. Let {ϕn} denote the 2T-concentrated PSWFs frequency
supported in [−1/2,1/2]. For any f ∈ PW, one has

f (t) =
∞

∑
n=0

∞

∑
k=−∞

f (k)ϕn(k) ϕn(t) .

The proposition is also a direct consequence of the fact that the shifted sinc functions
form an orthonormal basis for PW and the inner product on PW is the same as the
�2-inner product of the sequences of integer samples.

The Shen–Walter formula depends implicitly on the duration parameter T
defining the PSWFs, but the eigenvalues of PQT do not appear. It is natural to ask
whether some variation of the first Walter–Shen sampling formula can lead to an
efficient approximation of a nearly time- and band-limited signal f in terms of its
integer samples in or close to the time concentration interval. In particular, if f ∈ PW
is concentrated in [−T,T ], how is this concentration reflected in the samples ϕn(k)
on the one hand and, if f ∈ span{ϕ0, . . . ,ϕN}, how is this concentration reflected in
the samples of f , on the other?

A function f ∈ PW is essentially concentrated in [−T,T ] if it nearly belongs to
PSWFN = span{ϕ0, . . . ,ϕN} in the sense that ∑n≥N |〈 f , ϕn〉|2 is small. A function
whose samples f (k) satisfy ∑|k|>MT | f (k)|2 is also, in a sense, approximately
concentrated around [−T,T ]. It is natural to ask for a sense in which these two
conditions are effectively the same. To answer this question one must bound the
quantities ∑n≥N |〈 f , ϕn〉|2 and ∑|k|>M | f (k)|2 in terms of one another for specific
values of N and M, when f ∈ PW is assumed either nearly to belong to PSWFN or
to have rapidly decaying samples away from [−T,T ].
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6.1 Samples of PSWFs

The sample sequences {ϕn(k)} of the PSWFs are orthogonal to one another:

δnm = 〈ϕn, ϕm〉 =
∫ (

∑
k

ϕn(k)sinc (t− k)
)(

∑
�

ϕm(�)sinc(t− �)
)

dt

= ∑
k

∑
�

ϕn(k)ϕm(�)
∫

sinc(t− k)sinc(t− �)dt

= ∑
k

∑
�

ϕn(k)ϕm(�)δk� = ∑
k

ϕn(k)ϕm(k). (21)

The sequences {ϕn(k)} are also complete in �2(Z) since they can be used to
construct the sequence of samples of any f ∈ PW.

Since the PSWFs are orthogonal on [−T,T ], one also has

λnδnm = 〈QT ϕn, ϕm〉= ∑
k

∑
�

ϕn(k)ϕm(�)

∫ T

−T
sinc(t− k)sinc(t− �)dt .

Consider the matrix A : Z×Z→R defined by

Ak� =
∫ T

−T
sinc(t− k)sinc(t− �)dt . (22)

The equation above can be written

λnδnm = ∑
k

ϕn(k) ∑
�

Ak� ϕm(�). (23)

Since the sample sequences of the PSWFs form a complete orthonormal basis for
�2(Z), this implies that these sequences are eigenvectors of A.

Proposition 6. The matrix A defined in (22) has the same eigenvalues as PQT .
Additionally, the eigenvector for λn is the sample sequence {ϕn(k)} of the eigen-
function ϕn of PQT .

An immediate corollary is the second Walter–Shen sampling formula.

Corollary 1. If f ∈ PW, then

PQT f (t) =
∞

∑
n=0

λn

∞

∑
k=−∞

f (k)ϕn(k) ϕn(t) .
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6.2 Quadratic Decay for PSWF Samples

Shen and Walter [29] used the mean value theorem for differentiable functions of
a real variable to show that the integer samples of the nth eigenfunction of PQT

satisfies the quadratic decay estimate ∑|k|>T (ϕn(k))2 ≤CT
√

1−λn. An alternative
approach was taken in [12] in which the mean value theorem for analytic functions
was employed to obtain a quadratic decay estimate on the samples. However, in this
case the tail of the sample sequence has to be taken with regard to samples not just
outside [−T,T ] but, instead, having some distance from [−T,T ].

Proposition 7. Let 0 ≤ N < 2T and let M(T ) = (π2 + 1)(1+ logγ (T ))T for some
γ > 1. Then there is a C > 0 such that, for any n≤ 2T, one has

∑
|k|>M(T )

ϕ2
n (k)≤C (1−λn) .

Remark. The quantity M(T ) arises from the use of a Fourier bump function in order
to obtain suitable mean-value inequalities. In particular, the logγ(T ) term arises from
limitations on the best known decay in the time domain of such a mollifier. We
conjecture that the estimate of Proposition 7 remains true with M(T ) = (π2 + 1)T .

6.3 Approximate Time-Localized Projections

In this section we consider the problem of approximating the projection of f ∈ PW
onto PSWFN using a collection of samples near [−T,T ]. As above, ϕn will be the
nth PSWF eigenfunction of PQT . We will let

fN,K = ∑
|k|≤K

f (k)
N

∑
n=0

ϕn(k)ϕn(t) and fN = lim
K→∞

fN,K . (24)

In [29], Walter and Shen proved that ∑|k|>T ϕn(k)2 ≤ C(n,T )(1−λn)
1/2 so that if

f ∈ PSWFN , N ≤ 2T , then

∫ T

−T

∣
∣∣ f (t)− fN,[T ]

∣
∣∣
2 ≤ ‖ f‖2

N

∑
n=0

λn(1−λn)
1/2C(n,T ) .

Proposition 7 suggests that an approximation by fN,M(T ) rather than by fN,T can
provide an estimate of f whose squared error decays like (1−λN) rather than (1−
λn)

1/2. Since fN(t) = ∑N
n=0

(
∑k f (k)ϕn(k)

)
ϕn(t) and since ‖ f‖2 = ∑( f (k))2,

|〈 fN − fN,M(T ), ϕn〉|2 ≤
N

∑
n=0
|〈 f , ϕn〉|2 ∑

|k|>M(T )

ϕ2
n (k)≤C‖ f‖2(1−λn) . (25)
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Using orthogonality of the ϕn over [−T,T ] one then has the following.

Proposition 8. If f ∈ PW then fN ∈ PSWFN is the orthogonal projection of f onto
the span of {ϕ0, . . . ,ϕN} and, with M(T ) as in Proposition 7,

‖QT
(

fN− fN,M(T )

)‖2 ≤
N

∑
n=0

λn|〈 fN − fN,M(T ), ϕn〉|2 ≤C‖ f‖2
N

∑
n=0

λn(1−λn) .

Proof. The orthogonality of the functions ϕn over [−T,T ] implies that

‖QT
(

fN − fN,M(T )

)‖2 =
N

∑
n=0

λn|〈 fN − fN,M(T ), ϕn〉|2,

and the proposition then follows from (25). ��
Slepian and Pollak observed that ‖QT

(
f − fN

)‖2 =∑∞
n=N+1 λn|〈 f , ϕn〉|2 (see [27,

(17), p. 52]). Combining this with (25) and recalling that λn < 1/2 if n > 2T + 1,
the triangle inequality yields the following.

Corollary 2. If f ∈ PW then for T > 0 fixed,

‖QT
(

f − fN,M(T )

)‖2 ≤C
∞

∑
n=0

|〈 f , ϕn〉|2λn(1−λn) .
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8. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions,
vols. I, II. McGraw-Hill, New York (1953)
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A Panorama of Sampling Theory

Kabe Moen, Hrvoje Šikić, Guido Weiss, and Edward Wilson

Abstract By a sampling function we mean a member ϕ of a vector space V of,
preferably, continuous, C-valued functions on a topological space X for which there
is an orbit G ·x0 of a countable abelian group G acting continuously on X , and each
f ∈ V is the sum of the terms f (k · x0)ϕ(k · x), k ∈ G. Such a recovery formula
generalizes the well-known Shannon sampling formula. This chapter presents
a general discussion of sampling theory and introduces several new classes of
sampling functions ϕ : R → C for sampling sets of the form Z + x0. In Sect. 2
we discuss the very close connection between general convolution idempotents and
sampling functions. In Sect. 3 we review the properties of the Zak transform and
use it to construct a large family of continuous sampling functions ϕ ∈ L2(R) where
{Tkϕ : k∈Z} is a frame for the principal shift-invariant space Vϕ = 〈ϕ〉 generated by
ϕ . This family includes all band-limited sampling functions as well as all continuous
sampling functions ϕ ∈ Vψ , ψ ∈Cc(R). In Sect. 4 we look at a class of continuous
functions ψ which do not generate (via the Z-transform) any square-integrable
sampling functions and use the Laurent transform (or Z-transform) to show how
ψ generates a possibly infinite family of non-square-integrable sampling functions.
In Sect. 5 we sketch the manner in which purely algebraic tools lead to construction
of a very large class of convolution idempotents and associated sampling functions
that cannot be obtained by Zak or Laurent transform methods.
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1 Introduction

We present a rather general description of sampling theory. We begin by describing
this subject in a simple setting that will allow us to extend it to a very general setting
and to treat many different aspects of it using several algebraic and analytic tools.

We begin by considering complex-valued functions on R. Suppose f : R→C and
there exists a (comparatively) small subset S ⊂ R such that all the values of f on
R are completely determined by the values f has on S. We say that S is a sampling
subset for f on R. A well-known result of sampling is the following: if f : R→ C
is square integrable and satisfies the “band-limited” condition supp f̂ ⊂ [− 1

2 ,
1
2 ],

then all the values of f are determined by the values of f on the sampling set Z
(the integers). This is expressed by the equality

f (x) = ∑
k∈Z

f (k)sinc(x− k), (1)

where sincx = sinπx
πx , x ∈ R. This is often called the Shannon sampling theorem.

The proof of formula (1) is not hard and uses the very strong band-limited
assumption that f is a very smooth function which vanishes at infinity and that
the series in (1) converges absolutely and uniformly (it also converges in Lp(R)
for p ≥ 2). In fact, the sinc function is the Fourier transform of the characteristic
function χ[− 1

2 ,
1
2 ]

(as is easily calculated).

Let us first make some observations about this result that will lead us to several
extensions. The series (1) has the form

f (x) = ∑
k∈Z

c(k)ϕ(x− k), (2)

where ϕ ∈ L2(R) and c = {c(k)} = {c(k) : k ∈ Z} is a complex valued sequence.
In the case that ϕ = sinc, the family B = {ϕk(x) = (Tkϕ)(x) = ϕ(x− k) : k ∈
Z} is an orthonormal family in L2(R) (Tkϕ is the inverse Fourier transform of
e−2π ikξ χ[− 1

2 ,
1
2 ]
(ξ )). Moreover, the function ϕ = sinc satisfies the Nyquist condition

ϕ(k) =
{

1 if k = 0
0 if k �= 0

when k ∈ Z; from this, it follows that ck = f (k). From these observations, it follows
easily that we can construct many different functions ϕ that produce “sampling
formulae” of this type. For example, let ϕ : R → C be a compactly supported
complex-valued function satisfying the Nyquist condition ϕ(0) = 1 and ϕ(k) = 0
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if k �= 0 for k ∈ Z, and let V be the vector space of all linear combinations of the
form (2) with c = {c(k)} a complex sequence. When we let x = k ∈ Z it follows that
c(k) = f (k) and, thus, (2) becomes

f (x) = ∑
k∈Z

f (k)ϕ(x− k), (3)

which is a sampling formula of the type we have been considering. Since we are
assuming that ϕ is compactly supported, the sum in (3) is finite. We will show
in Sect. 2 that there are many functions ϕ that are not compactly supported and
associated vector spaces V for which (3) is well defined; moreover, ϕ need not
satisfy the Nyquist condition.

Another observation about these vector spaces V associated with sampling
functions is that they are shift invariant. This means that if f ∈V , then the translation
operators, Tk, satisfying (Tk f )(x) = f (x− k), k ∈ Z, map V into V . The reader can
check that if f satisfies (3), so does Tk f for any k ∈ Z. This observation indicates
that the principal shift-invariant subspaces Vϕ generated by ϕ ∈ L2(R) must have
some association with the notion of sampling we are considering. We have studied
shift-invariant spaces, and their extensions, in the papers [3, 4]. Our point of view
was to study the properties of the family B = {ϕk = Tkϕ : k ∈ Z} generating these
spaces and how much they tell us about the functions in them. The definition of Vϕ ,
also denoted 〈ϕ〉, for ϕ ∈ L2(R) is spanB, the closure in L2(R) of the collection of
all finite linear combinations of the ϕk’s. As we shall see, the “analysis” that inspired
part of our sampling results involves some of the results we obtained in our study of
principal shift-invariant spaces.

2 The Role of Convolution Idempotents for Obtaining
Sampling Formulae

We have shown how the simple Nyquist condition on a function ϕ : R→C produces
a shift-invariant space V =Vϕ such that each f ∈V satisfies a sampling formula (3).
We shall now present a property involving the coefficients in the expansions of the
spanning set B= {Tkϕ : k∈Z} that provides such sampling equalities. The integers,
Z, are a group with respect to addition; thus, we can consider convolutions c∗ d of
two sequences in CZ:

(c∗ d)( j) = ∑
k∈Z

c(k)d( j− k).

We will always assume that the sums defining the convolutions are unconditionally
convergent; moreover, we shall always discuss the meaning of these sums. Suppose
we consider those sequences that are the coefficients of the Fourier series of 1-
periodic functions in L2([0,1)). We know that the convolution of the sequences
{ f̂ ( j) : j ∈ Z} and {ĝ( j) : j ∈ Z} of f ,g ∈ L2([0,1)) are the Fourier coefficients of
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the product f g. This product may no longer be in L2([0,1)), but it is in L1([0,1)) and
its Fourier series is well defined. Hence, ( f̂ ∗ ĝ)( j) = ( f g)ˆ( j) for all j ∈Z. Suppose,
now, that Ω is a measurable subset of [0,1) and f = g = χΩ . Then f g = χ2

Ω = χΩ
since f (x) = 1 or 0 (depending whether x∈Ω or x /∈Ω ). It follows that the sequence
{c(k)} defined by c(k) = χ̂Ω (k) satisfies

(c∗ c)( j) = ∑
k∈Z

c(k)c( j− k) = c( j) (4)

for all j ∈ Z. When a sequence c = {c(k)} satisfies (4), we call it a convolution
idempotent sequence. We have just shown that the collection of convolution
idempotent sequences is infinite. Let us observe that the 1-periodic extension of
χ[− 1

2 ,
1
2 ]

has Fourier coefficients that are the trivial convolution idempotent sequence

c(k) = δ0k (the Kronecker delta). Of course, the values of ϕ = χ[− 1
2 ,

1
2 ]

at the integers

show that ϕ satisfies the Nyquist condition (ϕ(k) = δ0k,k ∈ Z).
Suppose that ϕ : R→C. For each x∈ [0,1) let ϕx be the C-valued sequence on Z

satisfying ϕx( j) =ϕ(x+ j). Thus, each ϕ : R→C produces a family of C-sequences
{ϕx : x ∈ [0,1)}. Similarly, if we have a family {cx : x ∈ [0,1)} of C-sequences on
Z, indexed by x ∈ [0,1), we obtain a function ϕ : R→C by setting ϕ(x+ j) = cx( j)
at x+ j ∈ R.

We can now use the convolution operation, introduced at the beginning of this
section, to write the sampling formula (3) in the form

fx = f0 ∗ϕx x ∈ [0,1). (5)

That is,

f (x+ j) = ∑
k∈Z

f (k)ϕ(x+ j− k)

for each x ∈ [0,1) and j ∈ Z, which is precisely (3) with x+ j replacing x.
We are now ready to use the convolution idempotent sequences to construct

sampling formulae.

Theorem 1. Suppose c is a convolution idempotent on Z. Then there exists a
complex-valued function ϕ on R such that ϕ0 = c and a shift-invariant linear space
of functions, V , such that

f (x) = ∑
k∈Z

f (k)ϕ(x− k) f ∈V (6)

and the series converges absolutely for each x ∈ R.

Proof. Let ψ : R→C be any compactly supported Nyquist function. Thus ψ0(k) =
δ0k and ψx has at most finitely many nonzero terms for each x ∈ [0,1). Let

ϕ(x) = ∑
k∈Z

c(k)ψ(x− k).
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Thus ϕx = c∗ψx and we have c = c∗ψ0 = ϕ0. Consequently,

ϕx = c∗ψx = (c∗ c)∗ψx = c∗ (c∗ψx) = ϕ0 ∗ (c∗ψx) = ϕ0 ∗ϕx, (7)

where the use of the associativity property is justified since it is easy to check that
each of the sums in (7) converges absolutely. We thus have the equality ϕx = ϕ0∗ϕx,
from which we will obtain the desired sampling formula. Let CZ

c be the set of all
sequences b = {b(k)} such that b(k) �= 0 for, at most, finitely many k ∈ Z, and let V
be the linear space of all f of the form

f (x) = ∑
k

b(k)ϕ(x− k)

for some b = {b(k)} ∈ CZ
c . Then, for l ∈ Z, we have

fx(l) = ∑
k∈Z

b(k)ϕx(l− k) = (b ∗ϕx)(l)

which, by (7), equals

[b ∗ (ϕ0 ∗ϕx)](l) = [(b ∗ϕ0)∗ϕx](l).

On the other hand, (b ∗ϕ0)( j) = ∑k∈Z b(k)ϕ( j− k) = f ( j) = f0( j). Thus fx(l) =
[(b ∗ϕ0) ∗ϕx](l) = ( f0 ∗ϕx)(l) which is equivalent to f (x+ l) = ∑k∈Z f (k)ϕ(x +
l− k) for x ∈ [0,1) and l ∈ Z. This last inequality for y = x+ l ∈ R is the desired
sampling formula (6). ��
Remark 1. (1) The sampling function ϕ we constructed in this proof can be lacking

any smoothness: just let ψ be any “weird” nonmeasurable function. ϕ can also
be a very smooth square-integrable function: let ψ be a C∞ function supported
in [−1/4,1/4] and c a convolution idempotent in �2(Z). We only required the
absolute convergence of the series (7). Many who looked at this manuscript felt
that “smoothness” is a natural property for the functions involved in sampling
formulae.

(2) We stress that we showed that there are infinitely many sampling functions
that are not of Nyquist type. There are several interesting questions that arise
naturally from Theorem 1. We postpone many of these questions for the
moment. Let us, however, describe now a much more general algebraic setting
for what we have done that also applies to other results we will develop.

Let X be a nondiscrete topological space and CX the vector space of all functions
mapping X into C. We assume that our sampling points have an algebraic structure
arising from a finitely generated abelian group G = (G ,+) with identity 0, acting
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continuously on X .1 The group action is denoted by (l,x) �→ l · x and satisfies (k+
l) ·x = k · (l ·x) and 0 ·x = x for all x ∈ X . We assume that this action is “free” in the
sense that if l · x = x for some x ∈ X , then l = 0 (the only element of G that has a
fixed point is the identity). The spaces X = Rn and G = Zn with k ·x = k+ x are the
most basic example. Given x0 ∈ X , G · x0 denotes the orbit of x0 under G .

We can now state what is meant by a sampling space and the analog of Theorem 1
in this setting. We say that a topological vector space Vwhich is a vector subspace
of CX is a sampling space if and only if there exists a triple (G ,ϕ ,C ) satisfying the
following properties:

1. G is a finitely generated abelian group with a continuous free action on X .
2. ϕ ∈V and the functions (Tkϕ)(x) = ϕ

(
(−k) · x) are in V for each k ∈ G .

3. C is a shift-invariant vector subspace of CG = {c : G → C} = {c = {c(k)} :
c(k) ∈ C,k ∈ G }, and there exists x0 ∈ X such that for f ∈ V , c f = { f (k ·
x0)}k∈G ∈ C .

4. For each c ∈ C , the sum

∑
k∈G

c(k)(Tkϕ)(x)

converges absolutely for each x ∈ X to a function fc ∈ V , and, for each f ∈ V ,
f = fc = fc f :

f (x) = ∑
k∈G

f (k · x0)(Tkϕ)(x), (8)

x ∈ X .

We emphasize: the function ϕ is called the sampling function for V , C is the
coefficient space, G · x0 is the sampling set, and (8) is the sampling formula for V .
Observe that the set {Tkϕ : k ∈ G } is a set of uniqueness for V in the sense that the
map f �→ c f is a bijection from V to C and provides an explicit recovery of each
f ∈V via (8).

Let us finish this section with the following easy example: Let G = Zn acting on
X = {x = (x1, . . . ,xn) ∈ Rn : xi �= 0, i = 1, . . . ,n} with the group action

k · x =

⎛

⎜
⎜
⎜
⎝

ec1k1 0 · · · 0
0 ec2k2 · · · 0
...

. . . 0
0 0 · · · ecnkn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x1

x2
...

xn

⎞

⎟
⎟
⎟
⎠

= (ec1k1 x1, . . . ,e
cnknxn),

where k = (k1, . . . ,kn) ∈ Zn and c1, . . . ,cn are fixed non-zero real numbers. It is
routine to construct a large collection of more complicated examples where the
action of G is not simultaneously differentiable and G may have a non-trivial finite
subgroup.

1Think of Z acting on R or more generally Zn acting on Rn.
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3 The Use of the Zak Transform for Obtaining Sampling
Formulae

We have seen that the notion of sampling requires that the functions we deal with
have well-defined pointwise values. Thus, we consider that many of the functions
we deal with have some form of continuity. In particular, we introduce the following
definition:

Definition 1. A function ψ : R → C is �2(Z)-continuous if and only if the map
x �→ ψx = {ψ(x+ k)}k∈Z is continuous from R into �2(Z). Specifically, this means
that given ε > 0 and x ∈ R there exists a δ > 0 such that |x− y|< δ implies

(

∑
k∈Z
|ψ(x+ k)−ψ(y+ k)|2

)1/2

= ‖ψx−ψy‖�2(Z) < ε.

There is an equivalent definition of this notion. Suppose ψ : R → C is �2(Z)-
continuous. Then the function

a(x,ξ ) = ∑
k∈Z

ψ(x+ k)e−2π ikξ

satisfies
∫ 1

0
|a(x,ξ )|2 dξ = ‖ψx‖2

�2(Z) = ∑
k∈Z
|ψ(x+ k)|2 < ∞,

and, moreover, a(x,ξ )− a(y,ξ ) = ∑k∈Z[ψ(x+ k)−ψ(y+ k)]e−2π ikξ . Thus

∫ 1

0
|a(x,ξ )− a(y,ξ )|2 dξ = ‖ψx−ψy‖2

�2(Z),

and since ψ is �2(Z)-continuous, the last expression is less than ε2 if |x− y| < δ .
This means that the map

ϕ(x) �→ a(x, ·) ∈ L2(T) =
{

a(x, ·) :
∫ 1

0
|a(x,ξ )|2 dξ = ‖a(x, ·)‖2

L2(T) < ∞
}

satisfies the “L2(T)-continuity condition”:

‖a(x, ·)− a(y, ·)‖L2(T) < ε if |x− y|< δ . (9)

We will make use of the Zak transform, as defined and developed in [5]
(see also [6]), to show how the functions ψ we just described can be used to obtain
sampling formulae. Formally, the Zak transform is the operator Z acting on L2(R)
by the equality

(Zψ)(x,ξ ) = ∑
k∈Z

ψ(x+ k)e−2π ikξ ≡ a(x,ξ ) (10)
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for each ψ ∈ L2(T). Since

∫ 1

0
∑
k∈Z
|ψ(x+ k)|2 dx = ∑

k∈Z

∫ k+1

k
|ψ(x)|2 dx =

∫ ∞

−∞
|ψ(x)|2 dx,

we have ∑k∈Z |ψ(x+ k)|2 < ∞ a.e. This allows us to consider (for a.e. x ∈ R) the
Fourier series of the function a(x, ·) ∈ L2(T) = L2([0,1)) with Fourier coefficients
ψx(−k) = ψ(x− k), k ∈ Z. As is shown in [5] the functions a(x,ξ ) (the images of
Z) are 1-periodic in ξ and satisfy

a(x+ l,ξ ) = e2π ilξ a(x,ξ ) (11)

for each l ∈ Z, x ∈ R. Moreover,

∫ ∫

T2
|(Zψ)(x,ξ )|2 dxdξ =

∫ 1

0

∫ 1

0
|a(x,ξ )|2 dxdξ = ‖ψ‖2

L2(R) (12)

for each ψ ∈ L2(R). In fact, if a(x,ξ ) is any square-integrable function on T2 =
[0,1)× [0,1), then there exists ψ ∈ L2(R) such that (Zψ)(x,ξ ) = a(x,ξ ). If we
extend a(x,ξ ) to all (x,ξ ) ∈ R2 by 1-periodicity in ξ and by (11) in x we obtain a
space M of functions on a : R2 →C, with norm

‖a‖M = ‖a‖L2(T2) =

(∫ 1

0

∫ 1

0
|a(x,ξ )|2 dxdξ

)1/2

that is the isometric image of L2(R) under the operator Z; that is, ‖Zψ‖M =
‖ψ‖L2(R) for all ψ ∈ L2(R).

There exists a “companion” space to M , the space M̃ . The definition of M̃ is
very much like the definition of M ; essentially, it involves the “interchange” of the
roles played by x and ξ . We begin by the definition of the operator Z̃ on L2(R). If
θ ∈ L2(R) we define Z̃θ by letting

(Z̃θ )(x,ξ ) = ∑
k∈Z

θ (ξ + k)e2π ikx = ã(x,ξ ).

The function ã(x,ξ ) is 1-periodic in x, and, for almost every ξ and l ∈ Z,

ã(x,ξ + l) = e−2π ilxã(x,ξ ) (13)

[compare with (11)].
Let us extend any function ã(x,ξ ) ∈ L2(T2) to a function ã defined on R2 which

is 1-periodic in x and satisfies (13) in ξ , to obtain a member of the space M̃ ;
furthermore let the norm of this space be ‖ã‖M̃ = ‖ã‖L2(T2). It is easy to check

(and this is done in [5]) that Z̃ maps L2(R) isometrically onto M̃ . Furthermore,
M̃ =UM , where U is the unitary operator defined by (Ua)(x,ξ ) = e−2π ixξ a(x,ξ ),
for a ∈M . It follows that Z−1 and Z̃−1 must exist and are, simply,
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(Z−1a)(x) =
∫ 1

0
a(x,ξ )dξ , (Z̃−1a)(ξ ) =

∫ 1

0
ã(x,ξ )dx. (14)

Another simple calculation gives us

(UZψ)(x,ξ ) = ∑
k∈Z

ψ(x+ k)e−2π i(k+x)ξ = ã(x,ξ ). (15)

Combining Eqs. (14) and (15), therefore, we obtain

(Z̃−1UZψ)(ξ ) =
∫ 1

0
∑
k∈Z

ψ(x+ k)e−2π i(x+k)ξ dx =
∫ ∞

−∞
ψ(x)e−2π ixξ dx = ψ̂(ξ ).

This shows:

Theorem 2. F = Z̃−1UZ is the unique extension of the Fourier transform on
L1(R)∩L2(R) to a unitary operator on L2(R).

All of these assertions are proved rigorously in [5] (the appropriate indications
are when an equality should be interpreted in the a.e. sense). We remind our
reader(s) that the continuity assumptions on the functions ψ we are using permit
us to “ignore the a.e. sense.”

In [4] (and, more generally, in [3]) various properties of the generating system
Bψ = {ψ(·− k) = Tkψ : k ∈ Z} of 〈ψ〉= spanB (the closure in the L2(R)-norm)2

are shown to be equivalent to properties of the “weight” pψ (ξ ) = ∑k∈Z |ψ̂(ξ + k)|2
for the space

L2(T, pψ ) =

{
1 -periodic functions, m(ξ ), satisfying

∫ 1

0
|m(ξ )|2 pψ(ξ )dξ < ∞

}
.

For example, we showed that Bψ is a frame for 〈ψ〉 if and only if there exist
constants 0 < A≤ B < ∞ such that

AχΩ (ξ )≤ pψ(ξ )≤ BχΩ (ξ ) a.e. (16)

for all ξ ∈ [0,1), where Ω = supp pψ . It is an easy consequence of (15) and
Theorem 2 that |(UZψ)(x,ξ )|= |(Z̃ψ̂)(x,ξ )|. Thus

pψ (ξ ) =
∫ 1

0
|(Zψ)(x,ξ )|2 dx. (17)

Let us now turn our attention to the use of the Zak transform for the construction
of a large family of �2(Z)-continuous sampling functions on translation invariant
Hilbert spaces of continuous, square-integrable functions with sample sets of

2〈ψ〉 =Vψ is the principal shift-invariant space introduced at the end of Sect. 1.
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the form Z + x0, x0 ∈ R (for short, (Z + x0)-sampling functions). We begin by
establishing the basic properties of �2(Z)-continuous functions ψ : R→ C:

(1) Since x �→ ‖ψx‖�2(Z) is continuous and 1-periodic, Mψ=maxx∈[0,1) ‖ψx‖�2(Z) <

∞. Hence, ψ ∈ L2(R) with ‖ψ‖L2(R) ≤Mψ , and, by (12),

Mψ = max
x∈[0,1)

‖(Zψ)(x, ·)‖L2(T).

(2) For b ∈ �2(Z), let Bψb = b ∗Z ψ be the function on R defined by

(Bψb)(x) = (b ∗ψx)(0) = ∑
j∈Z

b( j)Tjψ(x). (18)

Bψb is bounded and continuous since for x,y ∈ R, the Schwartz inequality for
�2(Z) implies |(Bψ b)(x)| ≤Mψ‖b‖�2(Z) and

|(Bψb)(x)−|(Bψb)(y)| ≤ ‖b‖�2(Z)‖ψx−ψy‖�2(Z).

It follows that (18) implies that Wψ = Bψ(�
2(Z)) is a translation-invariant

linear subspace of the Banach space (BC(R),‖·‖∞) and Mψ is the operator norm
of the bounded linear operator Bψ from (�2(Z),‖ · ‖�2(Z)) onto (Wψ ,‖ · ‖∞).

(3) If mb = ∑k∈Z b(k)e−k, then (10) implies that

Z(Bψ b)(x, ·) = mb · (Zψ)(x, ·). (19)

When ‖pψ‖∞ < ∞, it follows from (19) and (12) that Bψb ∈ L2(R) and
Bψ is a bounded linear operator from (�2(Z),‖ · ‖�2(Z)) onto (Wψ ,‖ · ‖L2(R)) ⊂
(BC(R) ∩ L2(R),‖ · ‖L2(R)) with operator norm ‖pψ‖∞ and kernel Kψ =

{b ∈ �2(Z) : mb pψ = 0 a.e.}. With Ω = supp pψ and K⊥ψ the orthogonal
complement of Kψ in �2(Z), the one to one map Bψ

∣∣
K⊥ψ

from (K⊥ψ ,‖ · ‖�2(Z))

onto (Wψ ,‖ · ‖L2(R)) has a bounded inverse precisely when

0 < essinf
ξ∈Ω

pψ(ξ ) =
1

‖1/pψ‖L∞(Ω)
.

Consider this condition 0 < essinf Ω pψ ≤ ‖pψ‖∞ < ∞ together with (16); we
see that, in this case, we have that Bψ = {Tkψ : k ∈ Z} is a frame for Vψ = 〈ψ〉.
Thus, Wψ is a Hilbert subspace of (BC(R)∩L2(R),‖·‖L2(R)), Bψ is a frame for
(Wψ ,‖ · ‖L2(R)), and this last space is a continuous version of Vψ = 〈ψ〉. (The
correspondence between f ∈Wψ and the a.e. equivalence class determined by
f ∈ L2(R) gives us an isometry between (Wψ ,‖ · ‖L2(R)) and (Vψ ,‖ · ‖L2(R))).
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Theorem 3. Suppose ψ : R→ C is �2(Z)-continuous, Bψ is a frame for Vψ , Ω =
supp pψ , and for some x0 ∈ R, both ‖Zψ(x0, ·)‖∞ and

∥∥ χΩ
Zψ(x0,·)

∥∥
∞ are finite. Then,

with m = χΩ/Zψ(x0, ·), the well-defined pointwise function ϕ = Z−1(m · (Zψ)) is
�2(Z)-continuous, Bϕ is a frame for Wϕ =Wψ , and ϕ is a (x0+Z)-sampling function
for the sample space Wϕ .

Proof. For x,y ∈R, we have

‖Zϕ(x, ·)−Zϕ(y, ·)‖L2(T) = ‖m(Zψ(x, ·)−Zψ(y, ·))‖L2(T)

≤ ‖m‖∞‖Zψ(x, ·)−Zψ(y, ·)‖L2(T).

Since ‖m‖∞ < ∞ and Zψ is L2(T)-continuous, Zϕ is L2(T)-continuous, and, hence,
ϕ is �2(Z)-continuous. Because both m and pψ are essentially bounded on T and
essentially bounded away from 0 on Ω , the same properties hold for pϕ = mpψ .
By (16), Bϕ is a frame for Wϕ = Wψ as well as a frame for Vϕ = Vψ . Finally,
Zϕ(x0, ·) = m(·)Zψ(x0, ·) = χΩ a.e.; thus, ϕx0 is a convolution idempotent in CZ

with b ∗ϕx0 = b for each b ∈ K⊥ϕ = K⊥ψ = {b ∈ �2(Z) : mb = mbχΩ a.e.}. Since
Wϕ = {b ∗Z ϕ : b ∈ K⊥ϕ }, it follows that ϕ is a (x0 +Z)-sampling function for the
Hilbert space Wϕ ⊆ BC(R)∩L2(R). ��
Remark. Much of the extensive literature on Z+ x0 sampling functions focuses on
band-limited sampling functions and sampling functions in Vψ where ψ ∈Cc(R). It
is easy to see that every band-limited ψ = F̌ (F ∈ L2(R) with compact support) is

�2(Z)-continuous and the band-limited function ψ◦ = Z−1
(

χΩ F√
pψ

)
yields a Parseval

frame for Vψ . In this way Theorem 3 recaptures the classification in [8] of band-
limited sampling functions. When ψ ∈ Cc(R), Zψ(x, ·) and pψ are trigonometric
polynomials with ‖pψ‖∞ = max |pψ | < ∞, and Bψ is a frame for Vψ when pψ is
nonvanishing. As observed in [2,7], Vψ contains a (Z+x0)-sampling function when
Zψ(x0, ·) is nonvanishing; obviously these sampling functions are special cases of
those described in Theorem 3.

The class of �2(Z)-continuous functions is much larger than the space of linear
combinations of a band-limited function and one in Cc(R); in particular, it includes
all continuous functions ψ : R→C satisfying the mild decay condition

|ψ(x)| ≤ O(|x|− 1
2−ε) as |x| → ∞

for some ε > 0. For a general �2(Z)-continuous function ψ , however, it is difficult

to determine whether or not the Parseval frame generator ψ◦ = Z−1
(

χΩ Zψ√
pψ

)
for

Vψ is also �2(Z)-continuous and whether or not Zψ(x0, ·) satisfies the hypotheses
of Theorem 3. Matters improve considerably by passing to functions which, in an
obvious sense, are �1(Z)-continuous (e.g., continuous and |ψ(x)| = O(|x|−1−ε) for
some ε > 0 as |x| → ∞) and, hence, also �2(Z)-continuous. Then Zψ(x,ξ ) is jointly
continuous in (x,ξ ) and, as observed above, ‖pψ‖∞, and Theorem 3 applies when
we have some x0 for which Zψ(x0, ·) is nonvanishing. As we have emphasized, the
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rolê of Theorem 3 is to provide a large class of square-integrable sampling functions
ϕ which are not only continuous, but Bϕ is a frame for the continuous version of
Vψ or Vϕ .

Several authors [1] have investigated measure theoretic sampling functions
arising from a generator ψ for a principle shift-invariant space Vψ by letting

ϕ = Z−1
(

χΩ Zψ
Zψ(x0,·)

)
with χΩ/Zψ(x0, ·) ∈ L2(T) and ψ modified on a set of measure

0 in order to make ϕ pointwise well defined with ϕx ∈ �2(Z) for all x. But,
without additional assumptions on ψ , one cannot make a.e. modifications of ψ
in order that ϕ is continuous and ϕ is only certain to be a sampling function for
span{Tkϕ : k ∈ Z}.

4 Sampling via the Laurent Transform

As observed in [2], there are continuous compactly supported functions ψ : R→ C
such that (Zψ)(x0, ·) has at least one zero for each x0 ∈ R; as a result, the Zak
transform method for producing sampling functions ϕ from such a ψ fails. In this
section, we will show that an appropriate use of the Laurent transform shows
that such ψ’s can produce a countable family of non-square-integrable sampling
functions.

We will construct sampling functions that are very different from the ones we
have obtained. In particular, some of these sampling functions may have exponential
growth at infinity. In order to do this, we recall some facts about Laurent series and
their coefficients.

Definition 2. Given a sequence c = {c(k) : k ∈ Z} set,

R+(c) = limsup
k→∞
k≥0

|c(k)|1/k and R−(c) = limsup
k→∞
k≥0

|c(−k)|1/k.

When R+(c)R−(c) < 1 we say that c is a Laurent series coefficient sequence. We
denote this by c ∈L .

It is often useful to view a sequence c ∈ L as two sequences c+ and c− where
c+ = (c(k))k≥0 and c− = (c(k))k<0 so that R+(c) and R−(c) depend only on c+ and
c− respectively. Given c ∈L we define the Laurent series

mc(z) = ∑
k∈Z

c(k)zk z ∈ Ac,

where Ac denotes the annulus

Ac = A

(
0,R−(c),

1
R+(c)

)
=

{
z ∈ C : R−(c)< |z|< 1

R+(c)

}
.
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Ac is the maximum open annulus about zero for which the Laurent series for mc
converges to a holomorphic function. If 0 ≤ r < R ≤ ∞ and m is a holomorphic
function on A = A(0,r,R), then there is a unique c ∈ L for which A ⊆ Ac and
m = mc on A. Moreover, for each S ∈ (r,R) and k ∈ Z, we have, using Cauchy’s
integral formula,

c(k) =
1

2π i

∫

|z|=S

m(z)
zk+1 dz = S−k

∫ 1

0
m(Se2π iξ )e−2π ikξ dξ . (20)

This shows that, given 0≤ r <R≤∞, the map c �→mc is a vector space isomorphism
from

Lr,R = {c ∈L : R−(c)≤ r,R+(c)≤ 1/R}.
onto

Hol(A(0,r,R)) = {m : m is holomorphic on A(0,r,R)}.
For a,b ∈Lr,R we have ma(z)mb(z) = mc(z), where c = a ∗ b and

c(k) = ∑
j∈Z

a( j)b(k− j), k ∈ Z;

this last sum converges unconditionally. Thus, the isomorphism c �→ mc carries the
algebraic structure of convolution to pointwise multiplication.

We are now ready to introduce our main tool: the Laurent transform (also called
the Z-transform). Given a function ψ : R→C and x ∈ [0,1), if ψx ∈L , we define

(Lψ)(x,z) = ∑
k∈Z

ψ(x+ k)zk R−(ψx)< |z|< 1
R+(ψx)

. (21)

We will be concerned with functions ψ ∈C(R) such that ψx ∈Lr,R for some 0≤ r <
R≤∞ and for all x∈ [0,1). Moreover, we will assume that Lψ : R×A(0,r,R)→C is
a continuous function. We will refer to such functions ψ as class Lr,R. Let us make
a few useful calculations. Suppose, first, that ψ is of class Lr,R and c ∈Lr,R; then

ϕ(x+ k) = ∑
k∈Z

c( j)ψ(x+ k− j) = (c∗ψx)(k)

is well defined (absolutely convergent) for each (x,k) ∈ [0,1)×Z since it is the kth
coefficient of the Laurent series expansion for the function mc(z)(Lϕ)(x,z), (x,k) ∈
[0,1)×Z. That is,

(Lϕ)(x,z) = mc(z)(Lψ)(x,z). (22)

Moreover, if ψ is of class Lr,R, with r < 1 < R, then for |z| = 1, (Lψ)(x,z) =
(Zψ)(x,ξ ), where z = e−2π iξ .

It is clear that if ψ has a Laurent transform at 0, we have that (Lψ)(0, ·) ≡ 1 if
and only if ψ satisfies the Nyquist condition. This observation allows us to construct
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sampling functions that are different from those constructed by the Zak transform.
In particular, we are still able to find sampling functions when the Zak transform
methods fail. In order to state the main result of this section, we make the following
four comments (1–4) below.

When ψ is of type Lr,R and c ∈Lr′,R′ for r ≤ r′ < R′ ≤ R we define c ∗Z ψ to
be the function ϕ of type Lr′,R′ for which ϕx = c ∗ψx for each x ∈ [0,1). Thus,
(Lϕ)(x,z) = mc(z)(Lψ)(x,z), and

Lr′,R′ ∗Z ψ = {c∗Z ψ : c ∈Lr′,R′}

is the shift-invariant space generated by ψ and the convolution algebra Lr′,R′ ⊃
Lr,R ⊃L0,∞ ⊃CZ

c :

1. If (Lψ)(0, ·) is nonvanishing on the annulus A= A(0,r,R) and c∈Lr,R for which
mc(z) = 1

(Lψ)(0,z) for each z ∈ A, ϕ ∈ c∗Z ψ is a sampling function for Lr,R ∗Z ψ
since (Lϕ)(0, ·) ≡ 1 on A; this means that ϕ0 = δ0 and ϕ is of Nyquist type.
Moreover, Lr,R ∗Z ϕ = Lr,R ∗Z ψ .

2. Similarly, when (Lψ)(0, ·) is nonvanishing on a subannulus A′= A(0,r′,R′) of A,
we obtain a sampling function ϕA′ for Lr′,R′ ∗Z ψ with Lr′,R′ ∗Z ϕA′ =Lr′,R′ ∗Z ψ .

3. If (Lψ)(0, ·) is not identically zero (i.e., ψ0 �= 0), then (Lψ)(0, ·) has only finitely
many zeros on compact subsets of A. We then have a countable (possibly finite)
collection of mutually disjoint subannuli, Ai = A(0,ri,Ri), i ∈ I, of A for which
(Lψ)(0, ·) is nonvanishing on Ai but has at least one zero on

∂Ai∩A = {z ∈ A : |z|= ri or |z|= Ri}.

Also, A =
⋃

i∈I Ai. We then obtain a family (ϕi)i∈I = (ϕAi)i∈I of sampling
functions ϕi for Lri,Ri ∗Z ψ = Lri,Ri ∗Z ϕi ⊃ Lr,R ∗Z ψ . Note that the ϕi’s are
distinct since ϕi = ci ∗Z ψ where

mci =
χAi

(Lψ)(0, ·)

has at least one pole on ∂Ai. For i �= j c j ∗ c−1
i is not defined. We can pass,

however, from ϕi to ϕ j in two steps by ϕ j = c j ∗Z ψ = c j ∗Z (c−1
i ∗Z ϕi).

4. We can replace 0 in (1), (2), or (3) by any x0 ∈ (0,1) to obtain, from ψ , various
sampling functions for the sample set x0 +Z when ψx0 �= 0. Observe that if ψ is
of type Lr,R, with r < 1 < R, then continuity of (Lψ) on R×A(0,r,R) implies
that ψ is �2(Z) continuous. Clearly, for z = e−2π iξ on the unit circle about 0,
(Lψ)(x,z) = (Zψ)(x,ξ ). In this sense, Lψ is an analytic continuation of Zψ .
Trivially, when ψ ∈Cc(R), ψ is of type L0,∞.

Theorem 4. Suppose ψ is of type Lr,R with 0≤ r < 1 < R≤∞ and (Zψ)(x0, ·), for
each x0 ∈ R, has at least one zero in the other variable. Then, for each x0 such that
ψx0 �= 0, we have annuli A+ = A(0,1,R′) and A− = A(0,r′,1) with r≤ r′ < 1< R′ ≤
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R defining sampling functions ϕ+ and ϕ− for the sample set x0 +Z with sampling
spaces V+ = L1,R′ ∗Z ψ = L1,R′ ∗Z ϕ+ and V− = Lr′,1 ∗Z ψ = Lr′,1 ∗Z ϕ−.

Proof. We only need to apply (2) above with r′ and R′ for which (Lψ)(x0, ·) has no
zeros on the annuli A+ and A−. ��

We point out to the reader that this theorem represents only one of the many
variations that follow by similar arguments.

5 Sparse Subsets of Abelian Groups and Exotic Idempotents

As noted in Sect. 2, sampling formulae depend on convolution idempotents, that is,
sequences {c(k)}k∈Z that satisfy

c(k) = ∑
k∈Z

c( j)c(k− j), k ∈ Z,

where the above sum converges absolutely. There are exactly two sequences in �1(Z)
(which is a convolution algebra) that are convolution idempotents: c = 0 and c = δ0,
the sequence that is 1 at the origin and zero everywhere else. For sequences in �p(Z)
for 1 < p ≤ 2, as observed in Sect. 2, there are several convolution idempotents. In
fact, if 1 < p ≤ 2 and c ∈ �p(Z) ⊂ �2(Z), then c is a convolution idempotent if
and only if c(k) = χ̂Ω (k) for some measurable subset Ω of [0,1]. We do not know
if there are convolution idempotents that belong to �p(Z)\�2(Z) for some p > 2.
Below we present some exotic convolution idempotents in the setting of finitely
generated abelian groups.

As in Sect. 1, let G = (G ,+) be a finitely generated additive group whose
maximal finite subgroup F = {l ∈G : m · l = 0, for some m∈N} is a proper subgroup
of G . Thus, for some n, G /F ∼= Zn, and each choice of generators for G leads to a
direct sum decomposition G = G1 +F with G1

∼= Zn. A subset S ⊆ G is said to be
sparse if, for each l ∈ G , the set

{(i, j) ∈ S× S : i+ j = l}
is a finite set. When S is sparse and a,b ∈ CG are supported in S, that is, vanish off
S, the convolution

(a ∗ b)(l) = ∑
i+ j=l

a(i)b( j) l ∈ G

is well defined (absolutely convergent) since the sum only involves finitely many
nonzero terms. In fact, the same statement applies when we replace C by any
other field. Subsets of F are trivially sparse, and idempotents in CG supported in
F are uninteresting. We say an idempotent c ∈ CG is exotic if

suppc = {l ∈ G : c(l) �= 0}
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is an infinite sparse set.
The first examples of exotic idempotents were produced at Washington Uni-

versity in Saint Louis by Nik Weaver (2010, personal communication). They are
constructed as follows. Let {zi}i≥0 be any nonzero sequence of complex numbers.
Weaver devised an inductive algorithm producing an exotic idempotent c∈CZ with
c(1000i) = zi for i ≥ 0, and suppc is the union of {1000i : i ≥ 0} and an intricate
subset of {k ∈ Z : k < 0}. One of us (Wilson) generalized Weaver’s technique to
show that for G as above, there are large families of exotic idempotents in CG

whose support is not in any proper subgroup G ′ of G having a complementary
subgroup G ′′ for which G = G ′+G ′′ is a direct sum. Returning to the group Z,
for N ≥ 8 and {ri}i≥0 a sequence in N with ri in a small neighborhood of Ni, there
are exotic idempotents c in CZ supported on the union of {ri : i ≥ 0} and a subset
of the negative integers. By varying the choice of nonvanishing sequences {zi}i≥0

for which c(ri) = zi, there are exotic idempotents in CZ with rapid decay at ±∞
and other idempotents with exponential growth at ±∞. But none of these exotic
idempotents are in �2(Z), and, more generally, none are of the form Rkc(k), k ∈ Z
for some c ∈ �2(Z). Whether or not there exist idempotents in CZ which are neither
exotic nor dilates of �2(Z) idempotents is unknown.

The generalization of Weaver’s technique for producing large families of exotic
idempotents in CG , G as above, uses subsets S ⊂ G for which both S and S+ S are
graded in a certain way by finite subsets. Specifically, S is the disjoint union of a
subset R = {ri : i ≥ 0} of G \{0} and finite subsets Ii, i ≥ 1, of G \{0}, and S+ S
is the disjoint union of the subsets Ji = ri + Ii+1, i ≥ 0. Moreover, with I0 = /0 and
Si = {ri}∪ Ii, i≥ 0, each of the sets {ri,2ri}, Ii, and Ii + Ii are subsets of Ji for i≥ 0,
and for 0< j < i, S j+Si is also a subset of Ji. Hence, for j > i+1, (S j + S)∩ Ji = /0,
and the only members of (Si+1 + Si+1)∩ Ji are those of the form ri+1 + l with l ∈
Ii+1. In particular, S is sparse and, for each choice of {zi}i≥0, with zi �= 0 for i ≥
1, there is a unique idempotent c ∈ CG , with suppc ⊆ S and c(ri) = zi for i ≥ 1.
Indeed, c is obtained by inductive solutions of the equation (c− c∗ c)χJi = 0, i≥ 0
with each such equation defining the values of c on Ii+1 in terms of previously
determined values on S0∪S1∪·· ·∪Si. Curiously, the coefficients of c on members
of Ii+1 are ratios of monomials i+1 of complex variables. Hence, the coefficients are
a multivariate meromorphic function. For G = Z and ri = Ni with N ≥ 8, intricate
combinatoric relations inductively define the smallest subsets Ji of

{
k ∈ Z : Ni−1/2 < |k|< Ni+1/2

}

i≥0

for which, with Ii+1 = Ji− ri+1, S = {Ni : i≥ 0}∪⋃∞
i=1 Ii satisfies the above grading

properties, and, for each nonzero sequence {zi}i≥0, there is an idempotent c with
c(Ni) = zi and suppc = S.
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Remote sensing is a means of collecting data about objects without coming
into contact with them. Typically the setting is the earth’s surface and atmosphere,
garnering information dealing with geology, meteorology, oceans and glaciers,
natural disasters, and the classification and detection problems associated with man-
made issues. Remote sensing technology is phenomenally varied. For example, the
airborne photography technology, going back to Tournachon’s aerial photographs
in 1858 from a balloon, has given rise to more recent satellite, radar, and lidar
methodologies to obtain data.

Under the general rubric of remote sensing, the five chapters of Part II address
fundamental modern issues in the field dealing with compressive sensing, hyper-
spectral image data, synthetic-aperture radar (SAR) imagery, and the role of radar
waveforms for imaging.

MARGARET CHENEY, BRETT BORDEN, and LING WANG develop a theory for
the imaging of moving targets that encompasses the impact of spatial, temporal,
and spectral properties of scattered waves. The authors, with their broad range of
expertise, make a convincing argument for such a theory in which an end goal is
the formation of high-resolution moving-target images in the setting of different
waveforms at different locations received at different places. An in-depth physics-
based mathematical model is developed integrating effects due to waveforms, wave
propagation, as well as the impact of spatial diversity of transmitters and receivers.
The methodology is for the most part based in classical deep analysis with a segue
relating the resulting point spread function (PSF) with the narrowband ambiguity
function. The PSF characterizes the behavior of the imaging system by relating the
phase-space reflectivity distribution to the actual image. The authors’ analysis of
the PSF is a tour de force ranging from the theoretical to a panorama of essential
examples.

CHRISTOPHER J. DELOYE, J. CHRISTOPHER FLAKE, DAVID KITTLE, ROBERT

S. RAND, and DAVID J. BRADY tie together imaging spectrometers to analyze
hyperspectral imagery data in the context of compressive sensing. The authors deal
with a class of spectrometers, a so-called coded aperture snapshot spectral imagery
(CASSI) sensing system, which can be integrated into the basic compressive sensing
theory of Donoho, Candès, Romberg, and Tao in a natural way. In fact, the CASSI
system can satisfy the restricted isometry property (RIP) with high probability,
giving rise to sparse solutions for data reconstruction. A feature of the chapter is
the authors’ understanding of hyperspectral imagery, allowing them genuinely to
apply CASSI reconstructions for pixel classification performance. It is natural to
quantify sparsity in addressing the complexity of hyperspectral cubes; it is exciting
to see results using such a theoretical foundation.

DAVID B. GILLIS and JEFFREY H. BOWLES are also experts in the study of
hyperspectral imagery with a deep knowledge of the interaction of theory and data,
as well as the techniques required to analyze given gigabyte-sized images in efficient
ways. Their chapter is a lucid introduction, honed by experience, of the complex
methodologies used to fathom hyperspectral data in terms of dimensionality reduc-
tion. Here we see the reliable, and sturdy, but often limited, principal component
analysis (PCA), along with linear mixing models (LMM), methods for end-member
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determination and the more general blind source separation (BSS) problem. The
authors also describe in context more recent ideas dealing with manifold learning
and nonlinear kernel methods for dimension reduction and natural but not yet highly
developed spatial-spectral methods. The perspective is wonderful and the examples
are luminous by virtue of the authors’ understanding.

JOHN GREER rounds out our three chapters dealing with modern techniques used
to extract salient information from hyperspectral imagery data in efficient, useful,
time-sensitive ways. His specific topic is hyperspectral demixing, and he brings
to bear first-class theoretical expertise and invaluable experimental experience in
sparse reconstruction methodologies. Orthogonal matching pursuit (OMP) and basis
pursuit (BP), which can be so valuable in applications such as transform-based
encoding, e.g., with JPEG 2000, take a backseat to the author’s ingenious sparse
demixing (SD) algorithm.

LING WANG, CAN EVREN YARMEN, and BIRSEN YAZICI present a unified
theory of passive SAR imagery data analysis. The physical backdrop is the emerging
area of opportunistic sensing, which is a natural component of modern remote
sensing given sensing interactions and the fragility of primary sensors in active
environments. The mathematical background is dazzling, using microlocal analysis
to approximate measurement models formulated in terms of Fourier integral
operators (FIOs). The authors’ technology for passive SAR can be viewed as a
major application of their imaging theory given in terms of both ultra-narrowband
continuous-wave waveforms and wideband pulsed waveforms. The mathematical
theory in which images are formed by means of the aforementioned FIOs, called
filtered-backprojection operators, gives way to compelling numerical simulations
illuminating (sic) the power of the theory.
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sensors and a general distribution of objects, each undergoing linear motion; thus
the theory deals with imaging distributions in phase space. We derive a model for the
data that is appropriate for narrowband waveforms in the case when the targets are
moving slowly relative to the speed of light. From this model, we develop a phase-
space imaging formula that can be interpreted in terms of filtered back projection
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1 Introduction

The use of radar for detection and imaging of moving targets is a topic of great
interest [1–29]. It is well known that radar signals have two important attributes,
namely the time delay, which provides information on the target range, and the
Doppler shift, which can be used to infer target downrange velocity. Classical “radar
ambiguity” theory [30–32] shows that the transmitted waveform determines the
accuracy to which target range and velocity can be obtained from a backscattered
radar signal. This theory provides an understanding of how to exploit temporal and
spectral attributes of radar data.

Another well-developed theory for radar imaging is that of synthetic-aperture
radar (SAR) imaging. SAR combines high-range-resolution measurements from a
variety of locations to produce high-resolution radar images [21, 33–35]. SAR is
thus a theory for combining temporal and spatial attributes of radar data. SAR,
however, cannot handle the case when there is unknown relative motion between the
target and radar platform; research addressing this includes [3, 7–22]. This research
generally does not consider the possibility of using waveforms other than high-
range-resolution ones.

When high-Doppler-resolution waveforms are transmitted from a moving
platform, the Doppler-shifted returns can also be used to form images of a stationary
scene [36]. This theory provides a way to exploit spectral and spatial attributes of
radar data.

These three theories are depicted on the coordinate planes in Fig. 1. None of these
theories address the possibility of forming high-resolution moving-target images in
the case when different waveforms are transmitted from different spatial locations
and received at spatially distributed receivers. Such a theory is needed to address
questions such as:

Fig. 1 A notional diagram
showing how our work
(depicted by the question
mark) relates to standard
radar imaging methods
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Fig. 2 This shows an example of the geometry we consider. The antennas are fixed and illuminate
a scene in which there are multiple moving targets

• In a system with multiple transmitters and receivers positioned at different
locations, which transmitters should transmit which waveforms?

• How many transmitters are needed, and where should they be positioned?
• How can data from such a system be used to form an image of unknown moving

targets?
• What is the resolution (in position and in velocity) of such a system?

Some work has been done to develop such a theory:

• Ambiguity theory for bistatic systems has been developed in [34,35,37,38]; such
systems allow for estimation of only one component of the velocity vector.

• For multistatic systems, the work [23–29] developed methods for moving-target
detection.

• Theory for use of a multistatic system for imaging of a stationary scene is well
known; see, for example, [39–42].

• Multistatic imaging of moving targets (phase-space imaging) was developed in
[43] for the case of fixed transmitters and receivers (see Fig. 2). This theory
combines spatial, temporal, and spectral attributes of radar data; in particular
the theory exploits the actual Doppler shift from moving targets. In appropriate
special cases, this theory reduces to the standard imaging methods shown in
Fig. 1.

The work [43] is extended in this chapter, which sets forth the basic ideas in the
special cases that are of interest to radar-based imaging, and undertakes an initial
numerical exploration of the properties of the imaging system. In particular, we
show that under some circumstances, this approach allows for both (spatial) image
formation and also estimation of the full vector velocities of multiple targets.
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Table 1 Table of notation

Symbol Designation

xxx Position (three-dimensional vector)
t Time (scalar)
yyy Transmitter position (three-dimensional vector)
syyy(t) Waveform transmitted by a transmitter located at yyy
−Tyyy Starting time of the waveform syyy

vvv Velocity (three-dimensional vector) of a moving scatterer
qvvv(xxx) Distribution of scatters with position xxx and velocity vvv at time t = 0
αxxx,vvv Doppler scale factor for a scatter at position xxx moving with velocity vvv
ψ(t,xxx) Wavefield at time t and position xxx
ψ in(t,xxx,yyy) Free-space field at xxx generated by a source at yyy
zzz Receiver position (three-dimensional vector)
RRRxxx,zzz xxx− zzz, three-dimensional vector from zzz to xxx
μzzz,vvv 1+ R̂RRxxx,zzz ··· vvv/c
ψsc(t, zzz,yyy) Scattered field at the receiver location zzz due to the field transmitted from position yyy.
αxxx,vvv Doppler scale factor
ppp Position (three-dimensional vector) in the reconstructed scene
uuu Velocity (three-dimensional vector) of object in reconstructed scene
Iuuu Reconstruction of reflectivity of objects moving with velocity uuu
J Geometry-dependent weighting function for improving the image quality
K Point spread function (PSF)
Ayyy Radar ambiguity function for the waveform used by the transmitter located at yyy
θ Angle of reconstructed position vector ppp
φ Angle of reconstructed velocity uuu

In Sect. 2, we develop a physics-based mathematical model that incorporates not
only the waveform and wave propagation effects due to moving scatterers but also
the effects of spatial diversity of transmitters and receivers. In Sect. 3, we show how
a matched-filtering technique produces images that depend on target velocity, and
we relate the resulting point-spread function (PSF) to the classical radar ambiguity
function. We show four-dimensional plots of the PSF for three different geometries.
Finally, in Sect. 4, we list some conclusions.

2 Model for Data

We model wave propagation and scattering by the scalar wave equation for the
wavefield ψ(t,xxx) due to a source waveform s̃(t,xxx):

[∇2− c−2(t,xxx)∂ 2
t ]ψ(t,xxx) = s̃(t,xxx) . (1)

For example, a single isotropic source located at yyy transmitting the waveform
s(t) starting at time t = −Tyyy could be modeled as s̃(t,xxx) = δ (xxx− yyy)syyy(t + Tyyy),
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where the subscript yyy reminds us that different transmitters could transmit different
waveforms. For simplicity, in this discussion we consider only localized isotropic
sources; the work can easily be extended to more realistic antenna models [46].

A single scatterer moving at velocity vvv corresponds to an index-of-refraction
distribution n2(xxx− vvvt):

c−2(t,xxx) = c−2
0 [1+ n2(xxx− vvvt)] , (2)

where c0 denotes the speed of light in vacuum. We write qvvv(xxx−vvvt) = c−2
0 n2(xxx−vvvt).

To model multiple moving scatterers, we let qvvv(xxx−vvvt)d3xd3v be the corresponding
quantity for the scatterers in the volume d3xd3v centered at (xxx,vvv). Thus qvvv is the
distribution in phase space, at time t = 0, of scatterers moving with velocity vvv.
Consequently, the scatterers at xxx give rise to

c−2(t,xxx) = c−2
0 +

∫
qvvv(xxx− vvvt)d3v . (3)

We note that the physical interpretation of qvvv involves a choice of time origin. The
choice that is particularly appropriate, in view of our assumption about linear target
velocities, is a time during which the wave is interacting with targets of interest.
This implies that the activation of the antenna at yyy takes place at a negative time
which we denote by −Tyyy; we write s̃(t,xxx) = syyy(t +Tyyy)δ (xxx− yyy). The wave equation
corresponding to (3) is then

[
∇2− c−2

0 ∂ 2
t −

∫
qvvv(xxx− vvvt)d3v∂ 2

t

]
ψ(t,xxx) = syyy(t +Tyyy)δ (xxx− yyy) . (4)

From this point on, we drop the subscript on c0 so that c denotes the speed of light
in vacuum.

In the absence of scatterers, the field from the antenna is

ψ in(t,xxx,yyy) =− syyy(t +Tyyy−|xxx− yyy|/c)
4π |xxx− yyy| . (5)

(Details are given in the Appendix.)
We write ψ = ψ in + ψsc and neglect multiple scattering (i.e., use the weak-

scatterer model) to obtain the expression for the scattered field ψsc:

ψsc(t,zzz,yyy) =
∫ δ (t− t ′ − |zzz− xxx|/c)

4π |zzz− xxx|
∫

qvvv(xxx− vvvt ′)d3v

× s̈yyy(t ′+Tyyy−|xxx− yyy|/c)
4π |xxx− yyy| d3xdt ′, (6)

where the dots denote derivatives with respect to time. (For details of the derivation,
see the Appendix.)
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In Eq. (6), we make the change of variables xxx �→ xxx′ = xxx− vvvt ′, (i.e., change the
frame of reference to one in which the scatterer qvvv is fixed) to obtain

ψsc(t,zzz,yyy) =−
∫ δ (t− t ′ − |xxx′+ vvvt ′ − zzz|/c)

4π |xxx′+ vvvt ′ − zzz|
∫

qvvv(xxx′)
4π |xxx′+ vvvt ′ − yyy|

× s̈yyy(t
′+Tyyy−|xxx′+ vvvt ′ − yyy|/c)d3x′ d3vdt ′. (7)

The physical interpretation of (7) is as follows: The wave that emanates from yyy at
time −Tyyy encounters a target at time t ′; this target, during the time interval [0, t ′],
has moved from xxx′ to xxx′ + vvvt ′; the wave scatters with strength qvvv(xxx′) and then
propagates from position xxx′+ vvvt ′ to zzz, arriving at time t. Henceforth we will drop
the primes on xxx.

Next we assume that the target is slowly moving. More specifically, we assume
that |vvv|t and k|vvv|2t2 are much less than |xxx− zzz| and |xxx− yyy|, where k = ωmax/c, with
ωmax the (effective) maximum angular frequency of all the signals syyy. In this case,
expanding |zzz− (xxx+ vvvt ′)| around t ′ = 0, yields

|zzz− (xxx+ vvvt ′)| ≈ Rxxx,zzz + R̂RRxxx,zzz ···vvvt ′, (8)

where RRRxxx,zzz = xxx− zzz, Rxxx,zzz = |RRRxxx,zzz|, and R̂RRxxx,zzz = RRRxxx,zzz/Rxxx,zzz.
We can carry out the t ′ integration in (7) as follows: we make the change of

variables

t ′′ = t− t ′ −
(

Rxxx,zzz + R̂RRxxx,zzz ··· vvvt ′
)
/c (9)

which has the corresponding Jacobian
∣
∣∣
∣

∂ t ′

∂ t ′′

∣
∣∣
∣=

1
|∂ t ′′/∂ t ′| =

1

1+ R̂RRxxx,zzz ···vvv/c
.

We denote the denominator of this Jacobian by μzzz,vvv. The argument of the delta
function in (7) contributes only when t ′′ = 0; Eq. (9) with t ′′ = 0 can be solved for
t ′ to yield

t ′ =
t−Rxxx,zzz/c

1+ R̂RRxxx,zzz ··· vvv/c
. (10)

The argument of s in Eq. (7) is then

t ′+Tyyy− |xxx+ vvvt ′ − yyy|
c

≈ t ′+Tyyy−
(

Rxxx,yyy

c
+

R̂RRxxx,yyy ··· vvv
c

t ′
)

=
1− R̂RRxxx,yyy ··· vvv/c

1+ R̂RRxxx,zzz ···vvv/c

(
t− Rxxx,zzz

c

)
− Rxxx,yyy

c
+Tyyy, (11)
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Fig. 3 The bistatic range is the sum of the distances Rxxx,zzz and Rxxx,yyy, and the bistatic bisector is the
vector R̂RRxxx,yyy + R̂RRxxx,zzz

where we have used (8) and (10). The quantity

αxxx,vvv =
1− R̂RRxxx,yyy ···vvv/c

1+ R̂RRxxx,zzz ··· vvv/c
≈ 1− (R̂RRxxx,yyy + R̂RRxxx,zzz) ··· vvv/c (12)

is the Doppler scale factor. Note that for |vvv|/c& 1, the Doppler scale factor (12)
can be written approximately as αxxx,vvv ≈ 1+βxxx,vvv, where

βxxx,vvv =−(R̂RRxxx,yyy + R̂RRxxx,zzz) ···vvv/c. (13)

For a narrowband signal with carrier frequency ωyyy, the quantity ωyyyβxxx,vvv is the
(angular) Doppler shift. We note that the Doppler scale factor depends on the bistatic
bisector vector R̂RRxxx,yyy + R̂RRxxx,zzz (see Fig. 3).

With (11) and the notation of Eqs. (12) and (7) becomes

ψsc(t,zzz,yyy) =
∫

s̈yyy [αxxx,vvv (t−Rxxx,zzz/c)−Rxxx,yyy/c+Tyyy]

(4π)2Rxxx,zzzRxxx,yyyμzzz,vvv
qvvv(xxx)d3xd3v. (14)

We recognize (14) as the superposition of time-delayed and Doppler-scaled
copies of the (second derivative of the) transmitted waveform. The key feature of this
model is that it correctly incorporates the positions of the transmitters and receivers,
the transmitted waveform, and the target position and velocity. In particular, the time
delay and Doppler scale depend correctly on the target and sensor positions and on
the target velocity.
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If we denote the transmitters by yyy1,yyy2, . . . ,yyyM , then at receiver zzz, the data we
measure is the sum ∑m ψsc(t,zzz,yyym).

We denote the receivers by zzz1,zzz2, . . . ,zzzN ; for ease in notation, we replace yyym
by m and zzzn by n. Below we assume that we can measure the data ψsc(t,n,m) =
ψsc(t,zzzn,yyym),n = 1,2, . . .N, and m = 1,2, . . .M . Here we are implicitly assum-
ing that, at the receiver located at zzzn, we can identify the part of the signal
∑m ψsc(t,zzzn,yyym) that is due to the transmitter at yyym. In the case of multiple
transmitters, this identification can be accomplished, for example, by having dif-
ferent transmitters operate at different frequencies or possibly by quasi-orthogonal
pulse-coding schemes.

3 Imaging

We now address the question of extracting information from the scattered waveform
described by Eq. (14).

We will form a (coherent) image as a filtered adjoint or weighted matched filter
[44]. Note that in general the desired phase-space image is six-dimensional; if
all targets are assumed to move within a two-dimensional plane, then the desired
phase-space image is four-dimensional.

3.1 Imaging Formula

We form an image Iuuu(ppp) of the objects with velocity uuu that, at time t = 0, were
located at position ppp. Thus Iuuu(ppp) is constructed to be an approximation to quuu(ppp).

We form an image by matched filtering and summing over all transmitters
and receivers. Matched filtering corresponds to taking the inner product with the
expected signal due to a delta-like target. From (14) with qvvv(xxx) = δ (xxx− ppp)δ (vvv−uuu),
we see that the predicted signal from a single point target at the phase-space position
(ppp,uuu) (i.e., a target at position ppp traveling with velocity uuu) is proportional to
(the second time derivative of)

sm [αppp,uuu (t−Rppp,n/c)−Rppp,m/c+Tyyy] . (15)

To obtain a phase-space image Iuuu(ppp), we take the inner product of the data ψsc

with (15) and sum over all transmitters and receivers:

Iuuu(ppp) = (4π)2
N

∑
n=1

M

∑
m=1

Rppp,nRppp,mμn,uuuαppp,uuuJn,m

×
∫

s∗m [αppp,uuu (t−Rppp,n/c)−Rppp,m/c+Tm]ψsc(t,n,m)dt, (16)
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where Jn,m is a geometry-dependent weighting function that can be inserted to
improve the image [44]. The weights Rppp,nRppp,mμn,uuu are included so that they will
cancel the corresponding factors in the data when ppp = xxx and uuu = vvv.

The operation (16) amounts to geometry-corrected and phase-corrected matched
filtering with a time-delayed, Doppler-scaled version of the transmitted waveform.
Note that we are assuming a coherent system, i.e., that a common time clock is
available to all sensors, so that we are able to form the image (16) with the correct
phase relationships. If the system is not coherent, then magnitudes can be taken
in (16) before the summation is performed; this will result in a degraded image.

3.2 Image Analysis

In order to characterize the behavior of this imaging system, we substitute Eq. (14)
into Eq. (16), obtaining

Iuuu(ppp) =
∫

K(ppp,uuu;xxx,vvv)qvvv(xxx)d3xd3v (17)

where K, the PSF, is

K(ppp,uuu;xxx,vvv) =−
N

∑
n=1

M

∑
m=1

Jn,m

∫
s∗m [αppp,uuu (t−Rppp,n/c)−Rppp,m/c+Tm]

s̈m [αxxx,vvv (t−Rxxx,n/c)−Rxxx,m/c+Tm] dt
Rppp,nRppp,mμn,uuu

Rxxx,nRxxx,mμn,vvv
αppp,uuu. (18)

The PSF characterizes the behavior of the imaging system in the sense that it
contains all the information about how the true phase-space reflectivity distribution
qvvv(xxx) is related to the image Iuuu(ppp). If qvvv(xxx) is a delta-like point target at (xxx,vvv), then
the PSF K(ppp,uuu;xxx,vvv) is the phase-space image of that target.

With a change of variables, (18) can be written as

K(ppp,uuu;xxx,vvv) =
N

∑
n=1

M

∑
m=1

An

(
αppp,uuu

αxxx,vvv
,Δτm,n(xxx, ppp,uuu,vvv)

)
Rm,n(xxx, ppp,uuu,vvv), (19)

where the wideband radar ambiguity function [45] is

Am(σ ,τ) =
∫

ṡ∗m(σ t− τ)ṡm(t)dt, (20)
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where

Rm,n(xxx, ppp,uuu,vvv) =
Jn,mRppp,nRppp,mμn,uuuαppp,uuu

Rxxx,nRxxx,mμn,vvvαxxx,vvv
(21)

and where the delay (second) argument of the ambiguity function can be written as

−Δτm,n = αppp,uuu
Rxxx,n−Rppp,n

c
+

[
αppp,uuu

αxxx,vvv

(
Rxxx,m

c
−Tm

)
− Rppp,m

c
+Tm

]

= αppp,uuu
Rxxx,n−Rppp,n

c
+

Rxxx,m−Rppp,m

c
+

(
αppp,uuu

αxxx,vvv
− 1

)(
Rxxx,m

c
−Tm

)
. (22)

The last term of (22) can be made negligible by activating the transmitters at times
−Tm chosen so that Rxxx,m/c−Tm is negligible.

The multistatic phase-space point-spread function is a weighted coherent
sum of radar ambiguity functions evaluated at appropriate arguments.

3.3 Examples of the Point-Spread Function

The PSF contains all the information about the performance of the imaging system.
Unfortunately it is difficult to visualize this PSF because it depends on so many
variables. In the case when the positions and velocities are restricted to a known
plane, the PSF is a function of four variables.

We would like to know whether we can find both the position and velocity of
moving targets. Ideally, the PSF is delta-like, and so we can obtain both position
and velocity. If, however, the PSF is ridge-like, then there will be uncertainty in
some directions or in some combination of positions and velocities.

In order to look for possible ridge-like behavior, we write the PSF as

K(ppp,uuu;xxx,vvv) = K
(|ppp|(cosθ ,sinθ ), |uuu|(cosφ ,sin φ),xxx,vvv

)
. (23)

We plot the PSF for a fixed target position xxx and target velocity vvv. We then sample
θ and φ at intervals of π/4, and for each choice of θ and φ , we plot |ppp| versus |uuu|.
This process results in 9× 9 = 81 plots of |ppp| versus |uuu|. Finally, to show the entire
four-dimensional space at a glance, we display all the 81 plots simultaneously on a
grid, arranged as shown in Fig. 4.
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Fig. 4 This shows how our
figures display the
four-dimensional
point-spread function (23)

3.3.1 Simulation Parameters

Our strategy in the simulations is to use a delta-like ambiguity function, and
investigate the effect of geometry on the overall PSF. In all cases, we use a transmit
time of Tyyy = 0:

• Waveforms: Two waveforms of unit amplitude are used.
Waveform 1 is a high-range-resolution chirp of duration 9.2× 10−6 s and

bandwidth 200 MHz. It is sampled at 250 MHz (2,300 sample points).
Waveform 4 is a single long CW pulse, of duration 0.05 s, sampled at 5 kHz

(250 sample points). It has high Doppler resolution.
• Target location and velocity: The target location is (225 m, 45◦), and its velocity

is (20 m/s, 0◦).

3.4 Examples

3.4.1 Two Transmitters, One Receiver

For the simulation of two transmitters and one receiver, the two transmitters are
located at (10,000 m, 0) and (−10,000 m, 0), respectively, and the receiver is located
at (0, 10,000 m) Ê (see Fig. 5).

The PSFs for a single transmitter and two receivers are shown in Figs. 6
through 8. Figure 6 shows the PSF when both transmitters transmit waveform 1,
Fig. 7 shows the PSF when both transmitters transmit waveform 4, and Fig. 8
shows the PSF when one transmitter transmits waveform 1 and the other transmits
waveform 4.

We see that for this geometry, the PSF is ridge-like. Whereas a high-range-
resolution waveform provides only range information, it appears that the use
of high-Doppler-resolution waveforms may be able to provide not only velocity
information but also some range information. The fact that the location ridges
(Figs. 6 and 8) are higher than the velocity ridges (Figs. 7 and 8) may be explained
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Fig. 5 This shows the geometry for the two-transmitter, single-receiver case, together with the
target and region of interest (not to scale)

by the fact that the total power of (the discretized version of) waveform 1 is greater
than that of (the discretized version of) waveform 4. This suggests that balancing
the power of the various transmitters may be important.

The case in which the power is balanced is shown in Fig. 9. Note that since
we assume that the signal due to each transmitter is known, we can do the power
balancing in the reconstruction process rather than modifying the actual transmitted
power.

3.4.2 Two Transmitters, Two Receivers

For the two-transmitter, two-receiver case, the two transmitters are located at
(10,000 m, 0) and (0, 10,000 m), and the two receivers are located at (10,000 m,
0) and (−10,000 m, 0), respectively. See Fig. 10.

Figure 11 shows the combined PSF when the transmitter on the x-axis transmits
waveform 1 and the transmitter on the y-axis transmits a multiple of waveform 4.

Comparing Figs. 8 and 11, we see that adding a receiver weakens the ambiguities.
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Fig. 6 This shows the combined point-spread function for the two-transmitter, single-receiver
case, when both transmitters transmit waveform 1

3.4.3 Circular Geometry

We also considered a circular arrangement of eight transmitters and ten receivers.
The transmitters are equally spaced around a circle of radius 10,000 m; the receivers
are equally spaced around a circle of radius 9,000 m. (See Fig. 12.) The scene of
interest has radius 1,000 m.

We see from Fig. 13 that the velocity information cannot be obtained from the
high-range-resolution waveform.

We note that both the position and the velocity can be resolved well if the same
high-Doppler-resolution waveform is used for each transmitter (Figs. 14 and 15).

4 Conclusions and Future Work

We have developed a linearized imaging theory that combines the spatial, temporal,
and spectral aspects of scattered waves.
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Fig. 7 This shows the combined point-spread function for the two-transmitter, single-receiver
case, when both transmitters transmit waveform 4

This imaging theory is based on the general (linearized) expression we derived
for waves scattered from moving objects, which we model in terms of a distribution
in phase space. The expression for the scattered waves is of the form of a Fourier
integral operator; consequently we form a phase-space image as a filtered adjoint of
this operator or weighted matched filter.

The theory allows for activation of multiple transmitters at different times, but
the theory is simpler when they are all activated so that the waves arrive at the target
at roughly the same time.

We conclude that a single kind of high-range-resolution waveform should be
avoided if both the position and the velocity are to be reconstructed. Furthermore,
we see that a single kind of high-Doppler-resolution waveform can reconstruct not
only the velocity but also the position. This may be related to the theory of Doppler
SAR imaging [36].

We leave for the future an investigation of the effect of relative waveform power
on the imaging results.
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Fig. 8 This shows the combined point-spread function for the two-transmitter, single-receiver
case, when the transmitter on the x-axis transmits waveform 1 and the transmitter on the y-axis
transmits waveform 4

Appendix Details of the Derivation of (5) and (6)

A.1 The Transmitted Field

We consider the transmitted field ψ in in the absence of any scatterers; ψ in satisfies
the version of Eq. (1) in which c is simply the constant background speed c0, namely

[∇2− c−2
0 ∂ 2

t ]ψ
in(t,xxx,yyy) = syyy(t +Tyyy)δ (xxx− yyy) . (A.1)

Henceforth we drop the subscript on c.
We use the Green’s function g, which satisfies

[∇2− c−2∂ 2
t ]g(t,xxx) =−δ (t)δ (xxx)
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Fig. 9 This shows the combined point-spread function for the two-transmitter, single-receiver
case, when the transmitter on the x-axis transmits waveform 1 and the transmitter on the y-axis
transmits a power-balanced multiple of waveform 4

and is given by

g(t,xxx) =
δ (t−|xxx|/c)

4π |xxx| . (A.2)

We use (A.2) to solve (A.1), obtaining

ψ in(t,xxx,yyy) =−
∫

g(t− t ′, |xxx− xxx′|)syyy(t
′+Tyyy)δ (xxx′ − yyy)dt ′ dxxx′

=− syyy(t +Tyyy−|xxx− yyy|/c)
4π |xxx− yyy| . (A.3)

A.2 The Scattered Field

We write ψ = ψ in + ψ̃sc, which converts (1) into
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Fig. 10 This shows the geometry for the two-transmitter, two-receiver case, together with the
target and region of interest (not to scale)

[∇2− c−2∂ 2
t ]ψ̃

sc =
∫

qvvv(xxx− vvvt)d3v∂ 2
t ψ . (A.4)

The map q �→ ψ̃sc can be linearized by replacing the full field ψ on the right side
of (A.4) by ψ in. (This is the Born or single-scattering approximation.) The resulting
differential equation we solve with the help of the Green’s function; the result is

ψsc(t,zzz) =−
∫

g(t− t ′, |zzz− xxx|)
∫

qvvv(xxx− vvvt ′)d3v∂ 2
t′ψ

in(t ′,xxx)dt ′ d3x,

(A.5)

which is (6).
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Fig. 11 This shows the combined point-spread function for the two-transmitter, two-receiver case,
when the transmitter on the x-axis transmits waveform 1 and the transmitter on the y-axis transmits
a power-balanced multiple of waveform 4

Fig. 12 This shows the circular geometry (not to scale)
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Fig. 13 This shows the combined point-spread function for the circular geometry when all
transmitters are transmitting waveform 1

Fig. 14 This shows the combined point-spread function for the circular geometry when all
transmitters are transmitting waveform 4
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Fig. 15 This shows the combined point-spread function for the circular geometry when every
other transmitter transmits waveform 1 and the others transmit a power-balanced multiple of
waveform 4
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Exploitation Performance and Characterization
of a Prototype Compressive Sensing Imaging
Spectrometer

Christopher J. Deloye, J. Christopher Flake, David Kittle, Edward H. Bosch,
Robert S. Rand, and David J. Brady

Abstract The coded aperture snapshot spectral imager (CASSI) systems are a
class of imaging spectrometers that provide a first-generation implementation of
compressive sensing themes to the domain of hyperspectral imaging. Via multiplex-
ing of information from different spectral bands originating from different spatial
locations, a CASSI system undersamples the three-dimensional spatial/spectral data
cube of a scene. Reconstruction methods are then used to recover an estimate of the
full data cube. Here we report on our characterization of a CASSI system’s perfor-
mance in terms of post-reconstruction image quality and the suitability of using the
resulting data cubes for typical hyperspectral data exploitation tasks (e.g., material
detection, pixel classification). The data acquisition and reconstruction process does
indeed introduce trade-offs in terms of achieved image quality and the introduction
of spurious spectral correlations versus data acquisition speedup and the potential
for reduced data volume. The reconstructed data cubes are of sufficient quality to
perform reasonably accurate pixel classification. Potential avenues to improve upon
the usefulness of CASSI systems for hyperspectral data acquisition and exploitation
are suggested.
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1 Introduction

Candès et al. [4] and Donoho’s [7] seminal work on compressive sensing have
led to significant developments involving sub-Nyquist sampling rates which can
potentially impact sensing modalities that require a large number of costly and time-
intensive measurements. These consequential results are paving the way for sensing
devices with faster acquisition rates, lower power consumption, decreased need for
large data storage, or faster transmission/downlink rates.

Such developments have the potential to positively impact the data acquisition
rates, data transmission latencies, and storage requirements for so-called hyper-
spectral imaging systems. These are imaging spectrometers that typically collect
hundreds of individual spectral bands for each spatial pixel in an acquired scene.
The spectral information obtained allows one to detect and identify target materials
in a scene or to classify spatial locales based on spectral similarity. This technology
has found applications in the identification of ground surface mineral deposits,
monitoring vegetation health, estimating crop yield, monitoring chemical and oil
spills, and disaster relief efforts, among others. The data generation rate from these
systems is significant: each pixel’s spectral information takes∼ 0.1–1 kB depending
on number of bands and data precision; a full three-dimensional (two spatial/one
spectral) “data cube” can thus be many hundreds of megabytes. However, most
scenes are typically highly correlated both spatially and spectrally, so much of this
information is redundant.

Applying compressive sensing ideas to realize the above-mentioned benefits
in the realm of hyperspectral imaging relies on taking advantage of this intrinsic
redundancy. Initial attempts in this direction are already under way. For example,
Castrodad et al. [6] and Krishnamurthy et al. [12] both have considered differ-
ent modes of simulating compressively sensed hyperspectral data. Both studies
demonstrated the ability to exploit data cubes reconstructed from a sparse sampling.
Castrodad et al. demonstrated accurate classification results even when only 20 %
of the full data cube was used in reconstructions. While showing initial promise,
actually moving from these simulations to a functioning real-world compressive
sensing imaging spectrometer is a tall order. Specifically, the physical limitations
of actual optical systems make it difficult to design a system that satisfies the
requirements of the pure compressive sensing theory (e.g., the measurement matrix
satisfying the restricted isometry property (RIP) or having a small coherence
between the measurement matrix and the data representation basis).

With that said, several optical imaging systems that exploit scene redundancy to
reduce the amount of information collected have been built. The Rice single pixel
camera is an instrument that reduces information by randomly multiplexing spatial
information together, with a design benefit of keeping the cost down for expensive
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sensing elements [21]. It is also possible to enhance existing sensing systems by
adding compressive sensing structure. For example, the coded strobing photography
system increases temporal resolution of video by taking advantage of periodic
motion and utilizing a coded strobing light into the imaging system [18]. There
is also a class of systems, the coded aperture snapshot spectral imagers (CASSI),
explicitly designed to collect compressive measurements of a hyperspectral data
cube. The full data cube can then be reconstructed from the reduced set of
measurements. The design of the camera gives it advantages when imaging dynamic
scenes, imaging in low-light situations, and in obtaining low-resolution persistent
observations.

In this contribution we report on a study to characterize the performance of
the single-disperser CASSI design [20]. In Sect. 2 we describe the mathematical
underpinnings of this system’s design and data reconstruction methods and draw out
the connections these have with the compressive sensing theory. Then we describe
in Sect. 3 the design goals and implementation of our experiment. In Sects. 4 and 5
we discuss the CASSI system’s performance in terms of reconstructed image spatial
quality and the ability to exploit the spectral information to classify pixels based on
materials present in the scene. We summarize and conclude in Sect. 6.

2 Coded Aperture Snapshot Spectral Imager

The single-disperser CASSI sensor can be modeled as a sequence of consecutive
mathematical operations. A scene is imaged with a standard lens onto a coded
aperture. The transmitted light is then spectrally filtered to a light wavelength
bandpass between 450–650 nm, relayed to a prism which disperses the light by
wavelength. The dispersion also causes each pixel on the imaging CCD to receive a
multiplexed signal; that is, each pixel receives light from a range of spatial locations
with each location contributing a different wavelength of light into the pixel.

2.1 Forward Model

Consider the scene represented as a spectral volume I(x′,y′,λ ) that describes the
reflective intensity from the location in the scene that is projected onto the (x′,y′)
location of the coded aperture mask at some wavelength λ ∈ [Λ1,Λ2]. The following
calculations will adhere to the schematic diagram in Fig. 1. The aperture code can
be described spatially as a binary-valued function A(x′,y′) ∈ {0,1}. For a fixed
wavelength we can write the reimaged and spatially modulated scene projected
forward from the aperture mask location as

S(x′,y′,λ ) = I(x′,y′,λ )A(x′,y′). (1)
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Fig. 1 Schematic of the CASSI forward model from [20]

The prism dispersion can be described by the function p(λ ), and thus we can write
the idealized spectral density at a point (x,y) on the detector for the wavelength λ as

SD(x,y,λ ) = I(x′+ p(λ ),y′,λ )A(x′+ p(λ ),y′) = S(x′+ p(λ ),y′,λ ), (2)

where we have modeled the optical propagation through the imaging optics and
disperser as

SD(x,y,λ ) =
∫

R

∫

R
S(x′,y′,λ )δ (x′ − (x+ p(λ )))δ (y′ − y)dy′dx′

=
∫

R

∫

R
I(x′,y′,λ )A(x′,y′)δ (x′ − (x+ p(λ )))δ (y′ − y)dx′dy′

= I(x+ p(λ ),y,λ )A(x+ p(λ ),y). (3)

The imaging system multiplexes neighboring spectra due to the shear from the
dispersive element and this integration can be written down as

D(x,y) =
∫ Λ2

Λ1

SD(x,y,λ )dλ , (4)

where we have not accounted for any wavelength or spatially dependent response of
the detector array.

If we consider the volume to be a voxelized hypercube, we can discretize the
forward model by taking into account the physical expanse of the scene, coded
aperture, and detector array. This is illustrated in Fig. 2. If the size of a pixel on the
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Fig. 2 Discretized schematic of CASSI forward model from [1]

detector array is ρ , then we can integrate over the multiplexed scene across array
elements as

d[i, j] =
∫

R

∫

R
D(x,y)χ[ρ(i− 1

2 ),ρ(i+
1
2 )]×[ρ( j− 1

2 ),ρ( j+ 1
2 )]

dxdy, (5)

where χ is the characteristic function

χA(x) =

{
1 x ∈ A
0 x /∈ A

.

Here the pixels are perfectly square and have no spacing between consecutive
elements, and d[i, j] are the intensity measurements made by the detector array at
position (i, j).

We can also discretize the aperture code as a mask of equally sized square holes.
If we ensure that the size of the aperture code features is suitably large compared
to the wavelengths passing through them, then we can simplify the model by not
representing diffraction in the system. We set the feature size of the mask elements
to be η . Then

A(x′,y′) = ∑
i, j

ai, jχ[η(i− 1
2 ),η(i+

1
2 )]×[η( j− 1

2 ),η( j+ 1
2 )]
, (6)

where the binary aperture code elements are ai, j ∈ {0,1}. The final detector
measurements are then

d[i, j] =
∫

R

∫

R
D(x,y)χ[ρ(i− 1

2 ),ρ(i+
1
2 )]×[ρ( j− 1

2 ),ρ( j+ 1
2 )]

dxdy

=

∫

R

∫

R

∫ Λ2

Λ1

SD(x,y,λ )χ[ρ(i− 1
2 ),ρ(i+

1
2 )]×[ρ( j− 1

2 ),ρ( j+ 1
2 )]

dλ dxdy;
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substituting with Eq. (2) yields

=

∫

R

∫

R

∫ Λ2

Λ1

I(x+ p(λ ),y,λ )A(x+ p(λ ),y)χ[ρ(i− 1
2 ),ρ(i+

1
2 )i]×[ρ( j− 1

2 ),ρ( j+ 1
2 )]

dλ dxdy;

finally substituting with Eq. (6) gives

= ∑
i, j

ai, j

∫

R

∫

R

∫ Λ2

Λ1

I(x+ p(λ ),y,λ )ai, jχ[η(i− 1
2 )−p(λ ),η(i+ 1

2 )−p(λ )]×[η( j− 1
2 ),η( j+ 1

2 )]

·χ[ρ(i− 1
2 ),ρ(i+

1
2 )]×[ρ( j− 1

2 ),ρ( j+ 1
2 )]

dλ dxdy.

2.2 Inversion of the CASSI Model

The forward model of the CASSI sensing system takes a data cube I and maps
it onto the detector response d. We represent this process with the operator H
and write HI = d. This operator is underdetermined and, in general, solving the
inverse problem is challenging. Recent results in the compressive sensing and sparse
representation literature have focused attention on methods and situations in which
this inverse problem can be made well posed and solved with techniques from
optimization theory [4, 5, 7].

A simple form of the problem can be written down in the following way. Suppose
f is a signal

f : ZN → R,

and Ω ⊂ ẐN is a small subset of the dual-group

ẐN = {ψ : ZN →C | |ψ(n)|= 1 and ψ is a continuous homomorphism}.

We wish to understand when it is possible to discern all of f from only the small
collection of samples f̂ restricted to the set Ω . In general this cannot be done as
restricting the values of the Fourier transform essentially filters the data and when
the content in f is large, the inverse transform cannot recreate the signal. Donoho,
Candès, Romberg, and Tao discovered that this problem can be solved exactly with
a high probability if the underlying signal is sparse and the set Ω is sufficiently
sized. Moreover, they showed that this solution can be retrieved by an application
of convex minimization.

If we write the discrete Fourier transform (DFT) as F and the subselection of the
elements in Ω as the operator Φ , then we can write the minimization problem as

min‖g‖�0 subject to ΦFg = y, (7)
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where y = f̂ |Ω . The solution to this problem is not computationally tractable. Part
of the innovation in the papers listed above is that the solution to (7) can be realized
as the more easily implemented problem

min‖g‖�1 subject to ΦFg = y. (8)

The solution to (7) is equivalent to (8) with high probability when Φ satisfies the
RIP and the number of elements in Ω satisfies

|Ω | ≥Cμ2(Φ,F)S logN, (9)

where C is a constant that depends on the probability of successful reconstruction,
μ(Φ,F) is the coherence term, and S is the underlying sparsity of the signal.

Definition 1. The coherence between two representations Φ and F is

μ(Φ,F) = max
i�= j

∣
∣〈Φi∗,F∗ j

〉∣∣ ,

where Φi∗ is the ith row of Φ and F∗ j is the jth column of F .

Definition 2. A matrix Φ ∈ Rm×n satisfies the RIP for an integer s < n if ∃δs > 0
such that for every m× s submatrix of Φ , Φs and for every g,

(1− δs)‖g‖2
�2
≤ ‖Φsg‖2

�2
≤ (1+ δs)‖g‖2

�2
.

It should be noted that the related problem

min‖g‖TV subject to ΦFg = y (10)

can be solved by applying problem (8) to the derivative of g given sufficient
smoothness conditions. This is important for our application of the theory since the
total variation norm regularizes tend to produce excellent visual fidelity in image
reconstruction problems [17].

The CASSI instrument can be realized as an application of compressive sensing
by observing that many of the natural scenes the system may wish to image are
spatially compressible in any given wavelength. The number of measurements
from the CCD are smaller than would be needed to completely describe the
volume I and so we have a system that incoherently samples a small collection
of measurements from a spatially compressible set of images. Given how much
redundancy exists between various layers of the hypercube, it makes sense that the
cube is compressible in some wavelet basis. Therefore, if we write this transform as
W , we can decompose the volume into WI =Γ and then write the CASSI system as

HI = d =⇒ (
HW−1)Γ = d;
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here H acts like the subselection matrix Φ and W−1 as the basis F from the simple
model in Eq. (8). If the coded aperture is chosen as a binary random pattern from an
appropriate distribution, H will satisfy the RIP with high probability [2]. Similarly
a basis can be found that both sparsifies the volume I and has minimal coherence
with the sensing matrix H, the discrete cosine transform being an example [19].
The reconstruction inverse problem can then be written in the form of Eq. (8):

W−1
(

argmin
Γ
‖(HW−1)Γ − y‖�2 + τ‖Γ‖�1

)
, (11)

where τ is appropriately chosen so that the unique solution from this unconstrained
convex problem coincides with the solution obtained from the similar constrained
problem. Equation (11) is how the designers of the CASSI system originally
cast the reconstruction problem [10, 20], using the gradient projection for sparse
reconstruction method [9] to solve this inverse problem. The �1 regularizer tends
to produce wavelet coefficients that are sparse, which is a desirable property given
our assumptions on the underlying scene. However, if we instead wish to place
higher priority on obtaining band-wise reconstructions that are sparse in the spatial
gradient, we can cast the inverse problem in the form of Eq. (10):

argmin
I
‖HI− y‖�2 + τ‖I‖TV , (12)

where the total variation regularizer encourages exactly this sparsity of the spatial
gradient in the reconstructions [3]. Because of this property, we prefer the use
of Eq. (12), and it is this convex optimization problem that we use for the
reconstructions in this chapter. However, the authors are not aware of any theorems
guaranteeing the equivalence of (12) and (11).

3 Experiment Design Summary

With the theoretical discussion of the CASSI imaging spectrometer data acquisition
and reconstruction in place, we now turn to our evaluation of a prototype CASSI
system. In this evaluation, we considered both spatial image quality measures and
the usefulness of the reconstructed data cubes to perform material detection and
scene classification. There were two primary challenges to making our experimental
tests realistic. First, we were restricted to using a laboratory space, so direct
imaging within typical remote-sensing environments with all their inherent spatial
and spectral complexity was not possible. Second, the CASSI prototype used was
only sensitive to the visible band, a region of the spectrum where many materials do
not have identifying spectral features.

The goal then was to develop targets that would provide some degree of
the spatial and spectral complexity found in an actual remote-sensing environ-
ment. Capturing both types of complexity at the same time was not achievable.
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Fig. 3 The two targets used in this experiment. Left panel: the 6-ink printout of the overhead
suburban scene. Right panel: the petri dish target containing real materials

As a compromise, we developed two targets that independently captured these
different forms of complexity. The first target—intended to provide a spatially
complex scene—was a large-format ( ≈ 813× 914 mm) six-color print of a typical
suburban landscape obtained from high-resolution overhead imagery available
from U.S. Geological Survey websites. The other target provided more spectral
complexity and consisted of several materials in various combinations sealed within
petri dishes that were then mounted on plywood. Images of the two targets are shown
in Fig. 3.

The materials used in the petri dish target included construction sand, dried moss,
green and brown paint chips, red fabric, a rare-earth compound neodymium oxide
(Nd2O3), and polystyrene beads coated with a UV fluorescing paint. The sand
and plywood served as our background materials. The moss provided a natural
foliage spectrum; the paint chips, a set of man-made materials with colors similar
to the foliage; the red fabric, a man-made material with a spectra distinct from
the foliage; and the Nd2O3 provided a substance with numerous sharp absorption
features in the visible window. The fluorescent paint was intended to provide a
sharp emission feature; however, the paint’s fluorescence efficiency was not large
enough to allow the emission feature to be visible relative to the intensity of the
illuminating lights. The set of spectra provided by these materials include both
unique elements (the Nd2O3 and red fabric) and several sets of mutual “confusers,”
that is, materials with very similar spectra (sand, plywood, and paint chips). In total,
the real materials “petri dish” target consisted of 85 petri dishes, the contents
of which were chosen to provide tests of material detection and classification
against variations in object size, total dish coverage fraction, and relative material
abundances.

The CASSI instrument used in our tests had a spectral bandpass between ≈ 460
and 650 nm divided into 47 spectral bands of nonuniform width. The individual
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bandwidths varied from ≈2 nm at the blue end of this range to 8 nm at the red
end. The system’s native instantaneous field of view (IFOV), that is, the half-angle
extent of the cone visible to an individual pixel based solely on the detector’s
pixel pitch and the system’s effective focal length, was 0.0004 radians. However,
the coded aperture mask had a minimum feature size of 3 pixels when projected
onto the detector array. This impacts the resolution achieved in the reconstructions,
increasing it to a nominal effective IFOV of ≈0.001 radians. As discussed below,
the effective IFOV actually achieved does vary from this nominal value.

For our data collection, the targets were wall mounted and illuminated with 16
Solux 50 W 4,700 K flood lamps. The target-to-objective distance was 5.2 m. With
the nominal CASSI effective IFOV, this gives a ground sample distance (GSD, the
physical length of the target that is imaged onto the height of a single pixel) of
≈5.2 mm. We acquired multiple snapshots of each target with the CASSI system.
Between each snapshot, the coded mask’s position in the focal-plane of the objective
lens was altered. We reconstructed the three-dimensional spatial/spectral data cubes
using between 1 and 64 of these snapshots by finding the minimum of Eq. (12) on
a band-by-band basis. We also acquired multiband imagery of both targets with a
conventional digital imaging system to serve as a reference point against which the
CASSI reconstructions could be compared.

4 Image Spatial Quality Evaluation

Figure 4 compares a 64-snapshot CASSI reconstruction of the overhead suburban
scene with the reference image data (scaled and registered to the CASSI reconstruc-
tions) in the blue, green, and red channels. The wavelengths of the corresponding
CASSI band centers are indicated on the figure. One immediate comment is that the
CASSI reconstructions achieve a higher spatial resolution in the longer wavelength
bands. This is not too surprising given that the CASSI bands are wider at longer
wavelengths and the overall transmission efficiency of the optics and detector drop
off below 500 nm. In other words, the shorter wavelength bands suffer from a lower
signal-to-noise ratio and this impacts the reconstruction quality. However, even
in the longest-wave band displayed in Fig. 4, the CASSI reconstructions show a
resolution degradation relative to the scaled reference data.

4.1 Relative Resolution Analysis

One question of interest then is what resolution can a CASSI reconstruction obtain
relative to the system’s native resolution. To estimate the answer to this question,
we employed a method developed by Nunez et al. [14] for calculating the relative
resolution between a test image and a higher-resolution reference image of the same
scene. This method employs an “á trous” discrete wavelet transform of the higher-
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Fig. 4 A comparison between the reference and CASSI images of the overhead suburban scene in
three bands corresponding to blue, green, and red channels, respectively. The CASSI images were
reconstructed from 64 snapshots

resolution reference image to produce a series of approximating images with
increasingly lower resolution. The wavelet transform employed is dyadic so that
the relative resolution between successive image approximations is a factor of 1/2.
That is, at the wavelet function scale ι , where ι is simply the number of successive
applications of the transform required to produce a given approximating image, the
resolution of the resulting approximation is a factor of 2−ι relative to the original
image. Details of the application of this “á trous” transform algorithm to produce
the lower-resolution image stack can be found in [15].

We estimate the test images’ relative resolution by first calculating the
correlation coefficient between the test image and each of the approximations
in the lower-resolution wavelet image stack. The resulting correlation coefficients
are interpolated as a function of ι . The relative resolution is then determined from
the ι value, ιmax, at which the correlation coefficient interpolation achieves its
maximum.

Using the conventional camera images (again, rescaled and registered to the
CASSI reconstructions) as our reference, we compared the relative resolution of the
CASSI reconstructions of both targets at the three CASSI spectral bands centered
on wavelengths λ = 477,548, and 636 nm as a function of number of snapshots
used in the reconstructions. Figure 5 summarizes our results in the form of the
resolution of the reference images relative to the CASSI reconstructions (i.e., plotted
there is 2ιmax , not 2−ιmax) as a function of snapshot number in each spectral band.
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Fig. 5 The resolution of the reference images relative to the CASSI reconstructions (i.e., 2ιmax ) in
the three designated spectral bands as a function of snapshot number. The upper panel shows the
results for the overhead suburban scene, the lower panel those for the petri dish target

The poorer resolution achieved by the reconstructions in the blue follow our
expectations from Fig. 4. The blue band resolution is between 2/3 and 1/4 that
achieved in the red with a trend to poorer relative performance with decreasing
number of snapshots used in the reconstruction. Also apparent is the general trend
of improving resolution with snapshot number: between 16 and 64 snapshots, the
suburban scene reconstruction resolution improved≈1.7 times, while the petri dish
reconstructions improved by a factor of ≈2.2.

The original GSD of the reference images was a factor of ≈1.16 larger than that
of the CASSI system’s native resolution. Accounting for this additional factor, the
above results indicate that for 64-snapshot reconstructions, the CASSI system used
in this experiment can deliver a red-band image resolution that is ≈1.9–2.2 times
poorer than the system’s native resolution. For the 32-snapshot reconstructions, the
image resolution is ≈2.6–2.9 times reduced from the system’s native resolution.

4.2 Image Fourier Power Spectra

A more complete description of the spatial characteristics of the CASSI
reconstructions can be obtained via analysis of the individual band images’ spatial
Fourier transforms. Here, specifically, we focus on comparisons between the Fourier
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power spectral density of a set of reconstructions and reference images. To avoid
potential confusion of terminology, we detail how we calculate the power spectral
density below.

The image in a single band can be represented by a function, F (x,y), giving
the intensity at each point on the discrete set of the image’s pixel coordinates
(x,y). The two-dimensional DFT of the image, F̃ (kx,ky), is then a complex-valued
function of the discrete set of horizontal and vertical wavenumbers kx, ky. The power
present at (kx,ky) is defined as

P(kx,ky) = F̃ ∗(kx,ky)F̃ (kx,ky), (13)

where F̃ ∗ indicates the complex conjugate of F̃ . We now estimate the imaged
scene’s azimuthally averaged Fourier power spectral density, dP/dk, by taking
concentric radial annuli in (kx,ky)-space, summing the power present in each
annulus, and dividing this total power by the area of the annulus. That is, we bin

our discrete set of (kx,ky) by radial wavenumber, k =
√

k2
x + k2

y . The power in the

�th such radial bin is

P� ≡ ∑
(kx,ky)∈k�

F̃ ∗(kx,ky)F̃ (kx,ky) , (14)

where k� designates the set of all (kx, ky) coordinate pairs that fall within �th bin.
We then divide P� by the area of the �th bin’s cylindrical annulus. In this process,
we apply a normalization so that the total power has value unity

Ptot ≡∑
�

P� = 1 . (15)

The corresponding definition of dP/dk in the continuum limit would be given by

2π
∫ kmax

0

dP
dk

kdk = Ptot = 1 , (16)

where kmax = 1/
√

2 is the maximum value attained by k.
Figure 6 shows several comparisons between the dP/dk of red-band images

for both targets. Figures 6a, b highlight how the CASSI reconstructions’ dP/dk
vary with snapshot number (with the dP/dk of the reference photo’s red channel
shown for comparison). These panels demonstrate that there is an ordering of power
at k � 0.05 with snapshot number, that is, the relative amount of mid-to-high-
frequency power increases with number of snapshots. This is obviously consistent
with the improved resolution with snapshot number seen above. Additionally, the
distinguishing feature between reconstructions with differing snapshot number is
the relative rate of fall off in dP/dk between 0.05� k � 0.2. For k � 0.2, the CASSI
dP/dk all tend to have the same slope, at least for reconstructions based on 8 or
more snapshots. That is, the relative scaling high-frequency power with k appears
to be independent of the number of snapshots once a sufficient number of snapshots
are used.
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a b

c d

Fig. 6 Panel (a): the normalized, discrete Fourier power spectral densities, dP/dk of recon-
structions using 1, 8, 16, 32, and 64 snapshots for the petri dish target’s red-band (solid lines).
The dashed line shows the dP/dk of this target’s reference photograph red channel resized and
registered to the CASSI data. Panel (b): same as (a), but for the overhead suburban scene. In this
case, there is no 8-snapshot reconstruction. Panels (c) and (d): comparisons showing the impact of
the reference image “átrous” wavelet resolution degradation relative to CASSI reconstructions for
the petri dish and overhead suburban targets, respectively

As a consequence of this, it seems that the information present in CASSI
reconstructions at k � 0.1–0.2 is essentially uncorrelated with the scene being
imaged. This point is highlighted in Fig. 7a which compares the dP/dk of the
reference photos and 64-snapshot CASSI reconstructions for both targets. From
this figure, the differences in the intrinsic dP/dk between the scenes is clear with
the highly cluttered overhead suburban scene containing significantly more high-
frequency structure. For k � 0.15, the CASSI reconstructions’ dP/dk agree well
with those of the reference image, but diverge for larger k. Despite the intrinsic
difference in the two scenes’ structures, the two CASSI reconstruction dP/dk appear
to share the same high-frequency scaling.

This fact is confirmed in Fig. 7b where the CASSI reconstructions’ dP/dk
for both targets and all snapshot numbers are plotted. A different multiplicative
factor has been applied to each reconstruction’s dP/dk in order to scale the
dP/dk to approximately the same values at k > 0.2. Apart from the one-snapshot
reconstructions, all the CASSI reconstructions share a general high-frequency
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a b

Fig. 7 Panel (a): the red-band dP/dk for both targets highlighting the differences in their intrinsic
high spatial-frequency content. Panel (b): the red-band dP/dk of all CASSI reconstructions of both
targets norm scaled so that their high-frequency tails have the same amplitude

behavior scaling. We do not have a definitive explanation for the underlying
mechanism producing this behavior but surmise that the main driver has more to
do with the reconstruction step as opposed to the data acquisition methodology.
As such, we note that the actual value of the high-frequency dP/dk slope is likely
sensitive to the reconstruction parameter τ (see Eq. 12).

5 Spectral Exploitation of CASSI Data Cubes

Our evaluation of the suitability of CASSI reconstructions for spectral exploitation
applications considered pixel classification performance, pixel demixing/abundance
estimates, and quantifying detectability limits. Here we report only on our
classification studies.

There is currently no protocol in place for producing radiometrically calibrated
reconstructions from the CASSI instrument. This precludes use of library re-
flectance spectra as exemplars/endmembers in the classification process. The req-
uisite exemplar spectra for each material class were therefore obtained in-scene via
the following method. From the 64-snapshot reconstruction (i.e., the reconstruction
with the highest spatial resolution), for each of the eight material classes in the
scene (brown paint, green paint, red fabric, polystyrene, Nd2O3, moss, sand, and
plywood), we identified ≈20–200 “pure” pixels that contained only the specified
material class. These pixels were selected primarily on the basis of spatial location:
interior pixels of the larger paint chips and fabric swatches, pixels from the
sand-only dishes, etc. For each of the CASSI reconstructions used for spectral
exploitation, this collection of pixel sets were used to calculate scene-specific class
exemplars by taking the mean of each class’ set of pixels.
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To assess the accuracy of our classification results, we developed a set of “ground
truth” pixels in the following manner. During our data collection, we also obtained
a higher spatial resolution image of the petri dish target with our reference camera
system. From these images, we identified ≈600–1200 pure pixels for each material
class by a combination of visual inspection and knowledge of each dish’s contents.
From these pixel sets we created a ground truth map in the frame of the high-
resolution image. We registered the high-spatial-resolution image to the CASSI
reconstructions and applied the resulting transform to project our ground truth map
onto the CASSI reconstructions. By the end of this process, the resulting ground
truth map in the CASSI data frame contained ≈200–600 pixels in each material
class.

We ran four different supervised classification methods on the 32-snapshot
reconstruction, using this scene’s set of exemplar spectra calculated as described
above. We focus on the 32-snapshot reconstruction since it represents a truly
“compressive” measurement in terms of total data volume collected. That is, with
47 bands, conventional collection methods must obtain 47× npixels measurements
(where npixels is the total number of pixels occupied by the scene), so the 32-snapshot
reconstruction represents a savings factor of 32/47= 0.681 in terms of data volume;
since the aperture mask is only 50 % transmissive, the actual information content
collected for the 32-snapshot is only 0.34 that collected by conventional methods.
By the same token, a 64-snapshot reconstruction is definitively not compressive as
it requires 1.36 times as much data volume as conventional acquisition methods.

The classification methods used were the Euclidean minimum distance method,
the spectral angle mapper (SAM) method [8], an adaptive coherence estimator
(ACE) method [11, 13, 16], and a matched filter (MF) method [16]. The minimum
distance method uses the Euclidean distance metric between target and exemplar
spectra in the vector space formed by taking each of the N spectral bands as a
component of an N-dimensional vector. The SAM method’s metric is the angle
between the target and exemplar spectra in this N-dimensional vector space.
The ACE and MF, while also relying on essentially angle-based metrics, represent
more sophisticated approaches in that both take into account the spectral statistics
of the scene; details of these methods can be found in the references.

For each classifier method/material class pairing, we constructed receiver
operating characteristic (ROC) curves using our ground truth map to characterize
the classifier’s performance. From the ROC curves, we determined the optimal
value of the classifier’s detection thresholds by identifying the point on each ROC
curve that maximizes the difference between the true- and false-positive rates (PTP

and PFP, respectively). We took the detection threshold producing this point as
the optimal value for each material class. Figure 8 summarizes the results of this
process in terms of the maximum PTP−PFP value for the non-background material
classes (i.e., excluding sand and plywood) for the four classifiers.

Some insight into the relative performance of the classification methods in
this figure can be obtained by comparing the material classes’ mean spectra.
Foliage, brown paint, sand, polystyrene, and plywood all have similar shapes in the
visible from a spectral angle perspective, but differ in relative overall reflectivity.
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Fig. 8 A summary of the four supervised classification methods’ performance when applied to
the 32-snapshot CASSI reconstruction. Shown is the maximal value of the difference between true
detection and false alarm rates (PTP − PFP) for each classifier on each non-background material
class. The minimum distance classifier produced the best results on average across these material
classes

Plywood and polystyrene cluster together at the high-end of scene brightness; sand
and brown paint are nearly indistinguishable in the lower-middle of the brightness
range; foliage, the darkest material, is well separated from the others at the bottom
of the brightness range. The green paint’s brightness is similar to that of sand and
brown paint, but its spectrum has a change in slope at the red end of the visible
that provides for some separation in spectral angle. The Nd2O3 is well separated by
spectral angle, but overlaps the polystyrene and plywood at high mixing fractions;
sand becomes an increasingly important confuser as the Nd2O3 mixing fraction
decreases. The red fabric, however, has a rather unique spectral shape and large
enough dynamic range in brightness across the visible that it is not easily confused
with other materials in either a Euclidean distance or angle based metric.

Based on this discussion, it is not surprising that all four methods classify the
red fabric rather accurately. The SAM, ACE, and MF methods perform relatively
poorly on the foliage, polystyrene, and brown paint classes as these classes are
separated primarily by overall brightness, not spectral shape. Correspondingly,
the minimum distance classifier provides the best performance on these classes.
On the green paint and Nd2O3, this relative ordering switches and the angle-based
methods perform better, generally speaking. As an illustration of the results that we
obtained with these methods, we show in Fig. 9 two portions of the classification
map produced with the minimum distance algorithm. The corresponding confusion
matrix is provided in Table 1. Together these show that there is a larger degree
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Fig. 9 Selected segments of the petri dish target 32-snapshot reconstructed image (left panels)
alongside the same segments of the classification map (right panels) determined by the minimum
distance algorithm using the optimal thresholds for each class

Table 1 The confusion matrix for the minimum distance classifier on the 32-snapshot reconstruc-
tion of the petri dish target at the optimal classifier thresholds for each material

Ground truth

Green Brown Red Poly- Ply-
Classification paint paint fabric styrene Moss Nd2O3 Sand wood Totals

Green paint 0.778 0.005 – – 0.025 – 0.025 0.011 0.093
Brown paint 0.049 0.775 0.026 – 0.007 0.004 0.172 0.030 0.105
Red fabric – – 0.698 – – – 0.011 – 0.077
Polystyrene – – 0.004 0.748 – 0.060 0.035 0.126 0.117
Moss 0.078 0.005 – – 0.946 – 0.005 – 0.115
Nd2O3 – – 0.011 0.032 – 0.365 0.022 0.028 0.056
Sand 0.093 0.216 0.261 – 0.021 0.302 0.684 0.267 0.255
Plywood – – – 0.221 – 0.271 0.046 0.538 0.183
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a b

Fig. 10 Minimum distance classifier ROC curves for several of the material classes as a function
of number of snapshots used in the reconstruction. Panel (a): red fabric (black lines) and green
paint (gray lines). Panel (b): foliage (black lines) and polystyrene (gray lines)

of misclassification with the background classes not captured in the ROC curve
analysis. This is due primarily to the ground truth set containing only ≈ 2 % of the
total pixels in the image and is not an issue unique to CASSI reconstructions.

All of this demonstrates that the CASSI data reconstructions can be successfully
exploited to classify pixels based on their spectra. Our focus has been on the 32-
snapshot reconstruction as this provides a mild savings in data collection relative
to that required for a 47-band standard imaging spectrometer to image the scene.
There is the question of how does classification performance vary with number
of snapshots. Figure 10 provides some initial data on this question by showing
the minimum distance classifier results on red fabric, green paint, foliage, and
polystyrene for reconstructions based on 16, 32, and 64 snapshots. The results in
this figure are mixed: red fabric and green paint (Fig. 10a) both show a drop-off
in performance with decreasing snapshot number, while the performance on foliage
and polystyrene (Fig. 10b) show no appreciable change. The cause of these different
behaviors is unclear but could include differences in proximity of confuser classes,
differences in size distributions of the materials (e.g., sub-GSD paint chips being
more rapidly blurred into the background with decreasing spatial resolution), or
even the specific choice of ground truth pixels.

6 Discussion and Summary

In our analysis of the prototype CASSI multiplexed, coded-mask imaging
spectrometer system, we considered two basic performance metrics: spatial quality
of the reconstructed images and the accuracy with which the reconstructed data
cubes could be exploited to perform pixel classification.

The spatial resolution of the CASSI reconstructions generally is lower than
the intrinsic resolution of the underlying optical system and is a function of
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both wavelength and number of snapshots used. Due to a combination of the λ -
dependent sensitivity of the detector and nonuniform bandwidths, the delivered
resolution is markedly better in the red portions of the spectrum; for a 32-snapshot
reconstruction, the resolution is a factor ≈ 2–7 poorer than the intrinsic resolution
moving from the red to the blue end of the spectrum. We also found that the
CASSI reconstructions we analyzed all shared a common scaling in their Fourier
power spectral density at high spatial frequencies, irrespective of the imaged scene’s
spatial-frequency distribution. We hypothesize that this imposed high spatial-
frequency scaling is an artifact of the reconstruction process and likely has a strong
dependence on τ .

We showed that the spectral information in the reconstructed data cubes can
be successfully exploited to perform pixel classification. We found, somewhat
surprisingly, that the simplest classification method that we applied, the minimum
distance method, produced the best classification accuracy on average. The fact
the typically more accurate spectral-angle-based methods did not generally perform
well here may in part be due to the reconstruction methodology we use. This method
introduces band-by-band correlations that can reduce the inter class differences in
a spectral-angle-based metric, leading to a greater degree of class confusion and
poorer classification performance.

We have demonstrated the potential for a CASSI system to deliver the
functionality demanded of imaging spectrometers—albeit with the trade-offs of
somewhat reduced spatial resolution, the additional processing-time costs involved
in performing the reconstructions, and the likely introduction of reconstruction
errors. In spite of these trade-offs, a CASSI system could deliver advantages over
conventional imaging spectrometers in certain circumstances, in particular under
low-light conditions or situations where very rapid data acquisition is required
(e.g., to capture information on rapidly moving objects). Future development of
CASSI technology will thus involve several connected fronts: first, identifying
application environments where the CASSI data acquisition mode provides an
inherent advantage; second, implementing engineering optimizations to mitigate
some of the trade-offs discussed here (at least as far as such trade-offs impact
detector performance in a given application); and third, exploring whether alternate
reconstruction algorithms might deliver improved results relative to that of the
currently implemented method.
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An Introduction to Hyperspectral
Image Data Modeling

David B. Gillis and Jeffrey H. Bowles

Abstract Hyperspectral data sets collect light from an object over a large number
of narrowly spaced, contiguous wavelengths. The resulting data set associates with
each spatial pixel (x,y) an n-dimensional vector (or spectrum) (z1, . . . ,zn), where zi

is the intensity at wavelength λi and n is the number of spectral channels (or bands).
The large increase in spectral content can be used to develop improved image
processing algorithms; however, to fully exploit this information, mathematical
models and algorithms are needed that can handle the large amount of data
associated with each image. Models should also be able to fully use the highly
structured, spatial/spectral nature of the data. In this chapter, we present a general
overview of hyperspectral imaging and review a number of existing data models that
have been presented to analyze such data.

Keywords Hyperspectral imaging • Linear and nonlinear modeling • Spatial/
spectral data analysis

1 Introduction

Hyperspectral imagers (HSI) are a relatively new type of imaging sensor that
captures light over a wide range of wavelengths in many (typically hundreds) of
contiguous bands. By way of analogy, a black-and-white (or gray scale) image
can be considered a way of associating with each pixel in a given image a scalar
value (e.g., the intensity or brightness of the pixel), while a color image typically
associates a 3-vector (namely, intensities in the red, blue, and green wavelength
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areas) to each pixel. Hyperspectral imaging extends this by associating to each pixel
an n-vector, with components equal to the wavelength of the captured light.

The increased information available in a hyperspectral image holds promise for
a wide number of image processing applications, including, among many others,
classification and segmentation, change detection, and target identification.

The increased information comes at a price, however; typical HSI images are on
the order of several hundred megabytes, and gigabyte-sized images are not unusual.
To fully analyze data sets of this size and complexity in a reasonable amount of
time require mathematical models and algorithms that can efficiently exploit both
the spatial and spectral information inherent in the data.

In this chapter, we present a general background of hyperspectral imaging and
review of a number of the mathematical models that have been introduced to aid in
the analysis of HSI data.

2 Hyperspectral Imaging

Hyperspectral image data consists of a set of vectors (or spectra) that are associated
with a given spatial position or pixel. Intuitively, the data may be thought of as a
three-dimensional “cube,” with x and y representing the spatial coordinates and z
the associated spectrum. For a fixed wavelength z, the associated (x,y) pairs form a
(gray scale) image, commonly called a band image; conversely, for a fixed (x,y), the
pixel P(x,y) = (λ1, . . . ,λn) ∈ R

n defines the spectrum for the given pixel. We note
that the spectra are a function of the object that occupies a given pixel, and thus
different pixels will generally have different spectra. Similarly, the band images
associated with different wavelengths will vary, as different objects reflect light
differently (Fig. 1). The physical units of the data are generally either in radiance
or reflectance; for a water-based scene, the data may also be in remote sensing
reflectance.

Fig. 1 Two views of hyperspectral imagery. On the left, HSI as a series of gray scale images. Each
image corresponds to a given wavelength λ . On the right, each pixel in the image defines a vector
(spectrum) over the wavelength range



An Introduction to Hyperspectral Image Data Modeling 175

In this section, we present an overview of how the data is generated and discuss
the difference between the various types of units. We note that, in this chapter, we are
focused mainly on reflective, remote-sensing HSI; that is, we generally assume the
data has been collected from an airborne sensor (located on a plane or satellite) that
is pointed at the surface of the Earth and collects sunlight reflected from the Earth
somewhere over the wavelength range 300–2,500 nm. There are other types of HSI
data; for example, there exist HSI sensors that collect data in the 5–10μm range
(known as longwave) that is primarily a function of the thermal properties (used,
e.g., in detecting chemical properties of particles in the atmosphere); similarly, in
HSI microscopy, the incoming illumination may be something other than sunlight.

Recall that our Sun outputs a steady stream of electromagnetic radiation in the
form of photons of varying wavelengths. The solar spectrum, or distribution of
the photons as a function of wavelength, can be estimated as a black-body with
a temperature of around 5800 K. The Sun’s radiation that reaches the top of the
Earth’s atmosphere ranges from a low of around 100 nm (in the ultraviolet portion
of the EM spectrum) to as high as 1 mm, with the majority being in 300–2,500nm
range.

As photons enter the atmosphere, they may interact (i.e., be scattered or
absorbed) with particles in the atmosphere or, more likely, continue down to the
Earth’s surface. At this point, they will be reflected or absorbed, governed by the
optical properties of whatever object they hit on the ground. Reflected light will
travel back through the atmosphere and eventually captured by the sensor. Each
pixel in the image corresponds to a particular area on the ground; the exact size of
that area (known as the ground sample distance or GSD) is determined by the optics
of the imager, as well as the height it is flying at. Modern-day sensors typically have
GSDs on the order of a few meters to as large as a kilometer.

The “raw” signal collected at the sensor is comprised of photons reflected back
to it from the ground, as well as additional photons that have been scattered from
the atmosphere into the sensor’s field of view (generally known as path radiance).
The sensor converts the incoming photons into “counts” or digital numbers that are
stored as binary data. The raw numbers are then converted into radiance units via
machine calibration procedures.

In general, hyperspectral data is distributed in this form (e.g., radiance units).
In many cases, however, it is preferable to work in reflectance units. To be more
precise, different materials will reflect various wavelengths of light differently,
depending on their chemical properties. This variation of reflectivity vs. wavelength
defines a unique spectral reflectance signature that can be used to identify the
object. For example, to our eyes grass is green due to the fact that it reflects
green wavelengths (around 500 nm) much more strongly than the other visible
wavelengths. However, a well-camouflaged tank also appears green, making it
difficult to identify if it is in a large grass of field. As we look at more and more
wavelengths, however, it becomes easier to identify differences between the two.

With this in mind, we would like to convert the radiance (i.e., the amount of
collected light) from the sensor into a measure of the reflectivity of the object on the
ground that was imaged. The process of converting radiance to reflectivity is known
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as atmospheric correction. There are a number of algorithms available to do this,
and we will not pursue them in this chapter. We do note that atmospheric correction
is non-trivial; it involves knowing (or estimating) several atmospheric parameters.
Some of the algorithms include the empirical line method (ELM) [27,42], fast line-
of-sight atmospheric analysis of spectral hypercubes (FLAASH) [2], the atmosphere
removal algorithm (ATREM) [16], Tafkaa [17], and quick atmospheric correction
(QUACK) [5].

3 Notation

We begin with some notation that we will use throughout the rest of this chapter.
Recall that a hyperspectral data cube consists of a series of gray scale images, one
for each wavelength of light that is collected by the sensor. Following tradition,
we call the rows of each image the lines and the columns the samples; the spectral
coordinates are the bands or wavelengths. The image thus consists of a total of Ns×
Nl×Nb elements, where Ns,Nl , and Nb are the number of samples, lines, and bands,
respectively. We will generally reserve m and n = Ns×Nl to be number of bands
and spatial pixels, respectively. Image spectra will be written as column vectors
x = (x1, . . . ,xm)

t ∈ R
m. We will generally use linear indexing so that the image

spectra are x1, . . . ,xn. When necessary, we will be slightly sloppy and use xi, j to
denote the spectrum at sample i and column j. (Note that this is the reverse of
standard mathematical notation.) Finally, we will let X denote the m-by-n matrix
that contains the image spectra as its columns

X = [x1 · · ·xn] .

4 Linear Models

As we have noted, the high dimensionality of HSI data is both a curse and a blessing;
the data contains a great deal of information, but the high dimensionality greatly
increases the computational complexity and storage cost, as well as subtler effects
in modeling (the so-called curse of dimensionality). For this reason, one of the basic
data models in HSI is to try to find a lower-dimensional representation of the data
that retains most of the important information in the scene. Dimensionality reduction
techniques are important in their own right, as they often offer a better view of the
data, as well as reducing random noise from the sensor. They are also commonly
used as first step in a number of different exploitation algorithms, as well as being
useful for compression, which can be used to reduce the storage costs of the data.

Given their usefulness, it is not surprising that there have been a large number of
dimensionality reduction algorithms presented in the literature (though not always
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explicitly listed as such). Of these, the vast majority are linear models, which is
the focus of this section. In this section we discuss newer, nonlinear models which
expand on these.

In very general terms, linear models treat image spectra x ∈ R
m as a collection

of points in m-dimensional space; the goal is to find some k-dimensional (possibly
affine) subspace that “best” represents the data, for some definition of best. It is
important to note that, by moving to spectral space, all spatial information is lost.
In a certain sense, point models throw away half of the information in a scene;
however, as we will see, we can sometimes recover this information by choosing
the right basis for the given subspace.

4.1 Principal Components and Singular Value Decomposition

One of first linear models used in HSI processing, and probably still the most
popular, is known as principal components analysis (PCA) [24]. PCA uses the
eigenvectors of the data covariance matrix to define an orthogonal projection onto
an (affine) subspace. Formally, let

x̄ =
n

∑
i

xi

be the mean of the image spectra, and let

Σ =
1

n− 1

n

∑
i

(xi− x̄)(xi− x̄)t

be the m-by-m covariance matrix. Note that Σ is symmetric and positive semi-
definite; it follows that it has a full set of orthonormal eigenvectors and real,
nonnegative eigenvalues λ1 ≥ λ2 ≥ ·· ·λm ≥ 0. Let W,D = diag(λ1, . . . ,λn) be the
corresponding eigen decomposition ΣW =W D. Then the PCA transformation P is
defined as

y = P(x) =W−1(x− x̄).

Alternatively, let

M̄ = [x1− x̄ · · ·xn− x̄]

be the mean-centered matrix of the image spectra and let M̄ =WSVt be the singular
value decomposition. Then

Σ = M̄M̄t =WSWt .

In hyperspectral data, it is very often the case that the first few eigenvalues dominate
the rest, that is, only the first few (typically between 10 and 30) eigenvalues are
significantly greater than 0. In this sense, we can say that the first k eigenvectors
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contain most of the information in the data, and the remaining dimensions can
be safely ignored. If we let Wk be the m-by-k matrix containing only the first k
eigenvectors, then the reduced PCA projection is given by

y = Pk(x) =Wk(x− x̄).

Note that Pk projects the m-dimensional spectrum x to the k-dimensional vector y.
PCA has a number of useful properties; for example, it can be shown that the

transformed data is uncorrelated; also, the first principal component has the maxi-
mum variance, the second has the maximal variance in any direction perpendicular
to the first, etc. However, PCA generally does not respect the spatial component of
the data. For example, usually only the first few components contain any meaningful
spatial information; the remaining components are basically noise. PCA also tends
to get confused by multimodal distributions, such as scenes containing varying
backgrounds. Also, by using only the dominant eigenvectors, small but significant
differences between various elements can be suppressed. In particular, statistical
outliers are ignored; in many cases (such as anomaly detection), these are the most
interesting pixels in a given scene.

For these reasons, a number of variations and extensions to PCA have been
proposed. Perhaps the best known is the maximum (or minimum) noise transform
(MNF) [19]. This transform separates image spectra into signal and noise compo-
nents and then maximizes the signal-to-noise ratios of the projected band images.
The resulting transform generally produces a set of band images that are highly
spatially correlated.

4.2 The Linear Mixing Model

4.2.1 Linear Mixing

The linear mixing model [26] is based on the notion of mixed pixels. Intuitively,
mixed pixels arise when two or more objects occupy a single pixel of an image. For
example, consider a scene that contains a large grassy field with a small river running
through it. Away from the river, the image pixels will contain only a single spectrum,
namely, grass (we ignore for the moment any variation in the grass signature that
may occur). Similarly, pixels that are in the middle of the river will contain only
water spectra. Now consider pixels on the riverbank; it is easy to imagine that a
single pixel will contain both grass and water. In this case, the measured spectrum
xm will be a weighted sum of the grass spectrum xg and the water spectrum xw.
The weight associated to each component is equal to the proportion p of the area of
the pixel that the component occupies; thus we can write the measured spectrum as
xm = pxg +(1− p)xw.
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More generally, a spectrum x containing k components can be written as

x =
k

∑
i=1

αixi,

where, by the proportionality constraint, αi ≥ 0 and ∑αi = 1. We note that this is
a local condition, since we are simply assuming that the measured spectrum is a
linear combination of the various elements in the pixel.

The main assumption of the LMM is that there exists a global set of component
spectra, known as endmembers, such that every pixel may be written as a sum of
these spectra. Formally, if we let e1, . . . ,ek represent the endmembers, then the LMM
says that each image pixel x j may be written as the sum

x j =
k

∑
i=1

αi, jei, (1)

αi ≥ 0,∑αi, j = 1, (2)

Intuitively, the endmembers represent the major materials (grass, water, asphalt,
etc.) within a scene, and the scalars αi, usually referred to as the abundance
coefficients, represent how much of a given material lies within a given pixel.
One nice feature of the LMM is that it defines a set of gray scale images, one for
each endmember, that maps out the spatial concentrations of the various materials
(Fig. 3). These abundance maps are often useful in various postprocessing tasks.

In order to implement the LMM, the two tasks that need to be done are
to determine the endmembers and then to estimate the abundance coefficients
(generally known as unmixing). We examine each of these steps below.

4.2.2 Endmember Determination

There are many endmember algorithms that have been presented in the literature.
In this section, we present a few of the more common ones; we do not mean to
suggest that this list is anywhere near complete.

A central theme in the majority of endmember selection schemes is that, in
the fully constrained LMM, the endmembers form the vertices of a k-dimensional
simplex within m-dimensional band space. To find the endmembers of a given scene,
then, one attempts to find a simplex which best encapsulates the data; the vertices
of this simplex will be the endmembers (Fig. 2).

One of the first hyperspectral endmember detections schemes is the pixel purity
index (PPI) [6]. To run PPI, the data are first projected to a low-dimensional
subspace (the dimensionality of which is determined by the user) via PCA or MNF.
Next, a random set of k unit vectors (known as “skewers”) are generated, and the
data is projected onto each of the skewers. Define the set of all extreme points for
each projection as S; note that S may have as many as 2k members but will generally
have fewer since the same data point can be extremal in different projections.
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Fig. 2 The linear mixing model assumes that the data points (black dots) can be encapsulated
within a k-simplex (dotted line). The vertices of the simplex are known as endmembers and
represent the pure materials in the scene. All other points can be represented as a convex
combination of the endmembers. It is often assumed that the endmembers are actual data points
(left); however, in certain situations, only mixtures are present in scene (right), and the missing
endmember (open dot) must be estimated

The PPI score for each member in S is simply the number of skewers for which
the point is extremal. Finally, choose a suitable threshold for PPI and define the
endmembers to be the set of points in S that are greater than or equal to the threshold.
Note that the threshold is often chosen to be one, in which case every member of the
set S becomes an endmember. Since the original publication of the PPI algorithm, a
number of extensions have been added.

Another well-known algorithm is the N-FINDR routine [48]. The aim of this
algorithm is to choose a set of k points from the data such that the simplex formed
from these points is of maximal volume. An exact solution of this problem would
require n choose k calculations, which is clearly not feasible for even small images.
To get around this, a greedy approach is used. In particular, an initial set of k spectra
are chosen at random from the data. All but the first member is held fixed, and each
of the remaining image pixels are substituted (one by one) for the first element, and
the volume of the resulting simplex is calculated. The image pixel that produces
the largest volume simplex is then chosen to replace the first endmember. Next, the
second endmember is allowed to vary, and the process repeated. This continues until
the last endmember has been varied; then we move back to the first endmember.
The process is continued until no new changes occur, which often takes only one or
two passes through the endmember set.

In both PPI and N-FINDR (and, in fact, in most endmember selection schemes),
it is implicitly assumed that every major constituent in the scene fully fills at least
pixel. This assumption is due to the fact that these models only choose endmembers
from the pixels in the scene. However, this may not be the case, especially when the
GSD of the sensor is large. As an example, consider a cornfield; assuming the rows
of corn are tightly spaced but separated from each other, then each pixel will likely
contain both corn plants and the underlying dirt; no pixel will contain exclusively
corn or dirt. In this case, each pixel will be a mixture of the corn and dirt spectra,
but these spectra will not be in the data. In this case, we say the corn spectrum is a
virtual endmember (Fig. 2).
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Finding virtual endmembers can be challenging. One approach that explicitly
looks for these types of endmembers is the ORASIS algorithm [7]. The ORASIS
algorithm begins by using a vector quantization approach to identify unique pixels
in the scene; in particular, the algorithm begins by running through the data and
removing redundant spectra (those that are spectrally similar to previously seen
pixels). A low-dimensional representation of the remaining spectra is constructed
using a bottom-up, modified Gramm-Schmidt algorithm. Finally, a simplex is
constructed that encloses the data. The vertices of the simplex are defined using
convex combinations of the data points; in particular, the ORASIS algorithm is able
to find “missing” endmembers and construct virtual endmembers without assuming
they are in data.

Finally, we note that in all of the models presented in this section (and, again, in
most endmember selection schemes in the literature) the data are modeled solely as
points in band space; in particular, all spatial information is lost. Incorporating the
spatial information is not easy; however, a few attempts have been made, including
the morphological approach of [39].

4.2.3 Unmixing

Once the endmembers for a given scene have been determined, the next step is to
estimate the abundance coefficients for each image pixel. Since the endmembers do
not in general span the entire space of the data, no exact solution is available, and
the abundances must be chosen to optimize some error criterion.

The most common estimate seeks to minimize the least squares or L2 norm.
In particular, the coefficients αi are chosen to minimize the residual error

r = ‖x−∑αiei‖2,

where ‖·‖2 is the standard 2-norm.
If neither of the constraints (Eq. 2) are used, then the solution is easily found

using the pseudo-inverse. In particular, if we let

e = [e1, . . . ,ek]

be the m-by-k matrix whose columns are given by the endmembers and let α =
(α1, . . . ,αk) the k-vector containing the abundances, then it is easy to show [29] that

α =
(
ete
)−1 etx

is the optimal least-squares solution. Similarly, if only the sum-to-one constraint is
needed, then the abundances can be found by affine projection. If the nonnegativity
constraint is desired, then no closed form solution exists, and numerical optimiza-
tion routines, such as nonnegative least squares, must be used [21].
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We note that L2-based solutions tend to be dense, that is, most of the abundances
tend to be nonzero, even when enforcing the nonnegativity constraint. Intuitively,
this does not make a lot of sense, since this implies that each pixel contains at least
a small amount of every endmember material. In reality, we would expect a sparse
solution, that is, most abundances are zero (implying that the associated endmember
is absent), and only a small number of coefficients are nonzero.

There have been a few attempts made to deal with this issue. Some of the earlier
methods used statistical tests to estimate which (and/or how many) endmembers
were present in a given pixel and then unmixed using only those endmembers. Other
approaches looked at pairs (or even larger groupings) to unmix.

In recent years, the field of compressed sensing has brought new attention to L1

(and L0) minimization. Various methods have been used to apply L1 minimization
to unmix the data. We note, however, L1 minimization cannot be used with the sum-
to-one constraint, which does have physical meaning. We note that L1 minimization
has been taken further and used to find the endmembers (ref).

4.2.4 Endmember Variation

One of the main drawbacks of the linear mixing model is that it implicitly assumes
that each constituent in a given scene can be modeled by a single endmember
vector. In reality, different pixels belonging to the same general class will show
some variation. For example, if a scene contains, say, a large field of grass, the
individual pixels will be highly similar but not quite exactly the same. Similarly, a
forest scene will have pixels that have the same general shape but will vary (more
than the grass). The only way the traditional LMM can deal with this is to find
multiple endmembers, all representing the same general class (Fig. 3).

There have been a few different ways of dealing with this variation presented
[46]. One of the more common approaches is to model the endmembers statistically
[4, 15]; usually, it is assumed that the pixels corresponding to a given class can
be modeled as a multivariate Gaussian model, and the scene as a whole can be
represented using a Gaussian mixing model. Once the endmembers have been
found, the abundances can be derived via various optimization techniques, usually
based on expectation-maximization (EM).

An alternative approach is to model the endmember variation geometrically.
Given the high (spectral) correlation of the pixels corresponding to the same general
class, the distribution tends to be highly singular and can be well approximated by
a low-dimensional subspace. The generalized mixing model [18] uses this approach
to model each endmember as a low-dimensional subspace. One complication arising
from this generalization is unmixing; note that in the LMM, each endmember has
a natural “scale” (namely, the norm of the vector). Moving to subspaces removes
this scale. To deal with this, one can either use affine subspaces or, alternatively, use
oblique projections to decompose a given pixel.
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Fig. 3 Examples of linear mixing. (a) The original HSI image. (b) and (c) are examples of
unmixing using the (traditional) linear mixing model. The endmember in (b) corresponds to
dirt/asphalt and is able to identify most pixels in this class. The endmember in (c) corresponds
to a forest spectrum; note that it does a relatively poor job of finding all members; this is due to
the variability in the class. (d) Shows an example of a grouped vegetation endmember from the
generalized linear mixing model
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4.2.5 Blind Source Separation and ICA

The determination of endmembers in hyperspectral imagery can be considered as
a special case of the blind source (or signal) separation (BSS) problem. In signal
processing, the BSS problem is to separate a set of (unknown) signals from a mixed
data source. The usual example is the “cocktail party problem,” in which a number
of individuals are all talking at once; a microphone placed in the room would capture
a mix of the individual conversations, and the goal is to separate this source into
its individual components. Note that humans can do this with very little effort, but
automating this procedure is not easy. A wide number of approaches have been tried
with some success (including PCA), but BSS is still an active research problem.

One of the more successful approaches to the problem is independent component
analysis (ICA) [14]. The underlying assumption of ICA is that the signals are
statistically independent. The standard (linear) ICA model is

x = As,

where x ∈ R
m is the known source (in HSI, x is simply an image pixel), A is the

(unknown) m-by-k mixing matrix, whose columns are the unmixed columns, and
s ∈ R

k are the corresponding signal weights). The aim is to find A such that s is as
independent as possible. A number of different methods have been introduced to
solve this problem, including JADE [13] and FastICA [22].

ICA has been used with some success in HSI [37]. The main problems are
that, generally, the independence of the endmembers is questionable and the
high dimensionality of the data (which greatly increases the computational cost).
To account for this, the data is usually first whitened and also projected to a lower-
dimensional space, usually via PCA or MNF.

4.2.6 Nonlinear Mixing

The fundamental assumption of the linear mixing model is that in a pixel containing
multiple materials, the measured spectrum is in fact a linear combination of the
component spectra. When the components are separated spatially (e.g., in a pixel
that is say half water and half grass), then the incoming light will generally reflect
off only one component, and the linear hypothesis is valid.

However, if the incoming light interacts with multiple materials, then the
resulting spectrum is generally not linear, and the LMM is not applicable. Such
mixtures are usually called intimate mixtures [26]; examples include particulate
mineral mixtures (e.g., different grains of sand on a beach) and tree canopies (where
the incoming light can be bounced around multiple times before being reflected back
to the sensor).



An Introduction to Hyperspectral Image Data Modeling 185

4.3 Other Linear Methods

Principal components and the linear mixture model are the two most popular linear
models being used in HSI data analysis, but a number of other models have been
proposed.

One common technique is band selection [25], in which one tries to find an
optimal subset of the original bands of the image; note that band selection can
be thought as a projection into the subspace spanned by the chosen bands. Band
selection can be useful in its own right as a dimensionality reduction step. It can
also be used to identify which particular wavelengths are most useful for a given
problem. Once these wavelengths have been identified, they can be used for example
to build a specialized multispectral sensor, which is generally easier to build, and can
have higher spatial resolution.

Note that the units in hyperspectral data (whether radiance or reflectance)
are physical measurements and thus nonnegative. Under the assumptions of the
(constrained) linear mixing model (ref), the m-by-n data matrix M containing the
image spectra can be factored as an m-by-k matrix E (the endmembers) and a k-by-n
matrix A (the abundance coefficients)

M = EA.

Since the endmembers represent actual objects in the scene, E must be nonnegative;
similarly, since the abundances represent fractional amounts, A is also nonnegative.
Thus the linear mixing model can be considered as a special case of nonnegative
matrix factorization [32]. A number of different algorithms, not specifically de-
signed for HSI, have been introduced. A number of authors have used these
techniques to factor HSI [43].

Concluding this section is projection pursuit (PP), in which the subspace
containing the data is built up in single steps, by finding “interesting” directions,
removing the data component in that direction, and repeating. Different definitions
of interesting are possible and will generally lead to different data sets. We note that
PCA can be thought as a special case of PP, in which the variance is the object of
interest. Examples of PP in HSI data analysis include [23].

5 Nonlinear Models

In the previous section, we assumed that hyperspectral data can be modeled linearly;
in particular, we assumed that the high-dimensional HSI data can be accurately
modeled as lying within a relatively low-dimensional subspace. In many situations,
this approach, while perhaps not exact, is a reasonable approximation. However,
there are other situations where this model breaks down. For example, as we
mentioned previously, the presence of multiple objects in a single pixel can lead
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to nonlinear mixing. Other nonlinearities can arise from multiple scattering and
adjacency affects. To better account for these situations, attempts to model HSI
using nonlinear structures have been developed.

5.1 Manifold Learning

The basic assumption in manifold learning is that the data have a low intrinsic
dimensionality, that is, it is assumed that the data lie on some low-dimensional
surface (another way of saying this is that the data has only a few degrees of
freedom). In contrast to linear models, manifold learning allows the surface to
be curved, that is, the data is assumed to lie on some low-dimensional manifold.
The goal of manifold learning is to be able to find the coordinate structure of the
underlying manifold and to project the data into these new coordinates. In this
sense, manifold learning can be thought of as a nonlinear dimensionality reduction
technique.

Over the last several years, there has been a tremendous interest in manifold
learning techniques. Many of these methods can be considered as generalizations
of metric multidimensional scaling (MMS) [33]. In MMS, we begin with high-
dimensional data points xi ∈ R

m (as usual, in HSI, the x are simply the spectra),
and the pair-wise distances di, j = d(xi,x j) (under some metric d) are calculated and
stored in an n-by-n matrix D (here, n is the number of points). The data are centered,
and the eigenvectors corresponding to the k largest eigenvalues are found. If we let
E denote the n-by-k matrix whose columns are the eigenvectors, then the rows of E
define a k-dimensional representation of the original data.

In classical MMS, the distance metric is simply the Euclidean norm, and it can
be shown that the reduced data are optimal in the sense of preserving interpoint
distances. (In this particular case, the reduced data is basically just PCA in disguise.)

In recent years, this approach has been generalized to other distance functions
(which are not, strictly speaking, metrics). One of the best known algorithms is
Isomap [47], in which the interpoint distances are estimates of the geodesic distance
on the underlying manifold. In particular, to calculate the distances between points,
a local neighborhood graph is first calculated, in which points are connected only
to their closest spectral neighbors. Since by definition a manifold is locally flat
(e.g., isomorphic to R

k), the geodesic distance locally can be estimated by the
standard Euclidean distance. To estimate the distance between points outside the
local neighborhood, standard graph shortest path algorithms are used. Once all
the interpoint distances are calculated, the matrix D is formed, and the data is
projected exactly as in MMS.

One of the main drawbacks of Isomap, especially with regard to HSI processing,
is that the data scales quadratically (or worse) in both storage and complexity.
For example, images often contain 500,000 or more pixels; the resulting distance
matrix has 250,000,000,000 or more elements. To handle this, data is often
subsampled [45] to reduce the number of pixels (known as landmarks) that need
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to be processed. Once the projection has been defined, the remaining pixels can
be reduced using weighted sums of the landmark pixels. Our colleague Charles
Bachmann has been using this approach to develop extremely efficient algorithms
that can handle very large HSI images [3].

5.2 Kernel Methods

Kernel methods [9] are a family of techniques that map (nonlinearly) the original
data into a much higher dimensional space; the aim is to find a suitable representa-
tion of the data such that linear methods can be used to analyze the data.

To be more precise, let x1, . . . ,xn ∈ R
m be our original spectra; we wish to find

an inner product space H of dimensionality N ) n and a mapping

Φ : Rn ⇒H.

Suppose now that we have an algorithm that is linear in nature, that is, the only
computations that need to be done are inner products (and, by extension, matrix-
vector products; note that this includes in particular all of the models of the previous
section). If we wanted to apply this to the transformed data, we would need to
compute inner products of the form

〈Φ(x),Φ(y)〉.
Note this computation is expensive since we are working in the very-high-
dimensional space H.

The so-called “kernel trick” allows us to get around this difficulty while still
benefiting from the increased dimensionality. In particular, it can be shown that,
under certain conditions, the inner product can be calculated without even knowing
the mapping Φ; in particular, Mercer’s theorem says that the inner products in H can
be replaced by a scalar function on R

nxRn, that is, there is a function K :RnxRn⇒R

such that

K(xi,x j) = 〈Φ(xi),Φ(x j)〉.
To apply the kernel trick, one simply needs to choose a suitable kernel K that
satisfies the appropriate conditions. Some of the more popular kernels are the
polynomial kernels K(x,y) = (xty+ c)d and the Gaussian or radial basis function

K(x,y) = e
‖x−y‖

c .

Kernel-based methods have applied to a wide variety of HSI applications,
including “kernelized” versions of PCA [44], endmember selection [8, 38], RX
anomaly detection [28], and classification via support vector machines (SVM)
[10, 34].
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6 Spatial-Spectral Models

As we have mentioned, the vast majority of current HSI data models begin by
assuming the spectra xi ∈ R

m are points in some m-dimensional vector space. The
problem with this approach is that all of the spatial information is lost; essentially,
these models throw away half of the available information in the data.

Developing mathematical models that can fully incorporate both the spatial and
spectral models would thus seem to offer the best hope for extracting the most
amount of meaningful information from a given scene. Unfortunately, developing
models that can do this is not easy. In this section, we give a brief review of the
current state of the art in this direction.

One of the first attempts to use spatial-spectral models was to restrict attention
to a spatially local neighborhood of a given pixel and then to use spectral modeling.
The stereotypical example of this approach is the RX anomaly detection algorithm
[40]. In anomaly detection, the aim is to look for image pixels that are significantly
different than the remaining background. The RX algorithm solves this problem
by examining each pixel in a given image; for each candidate pixel, the statistics
of spatially neighboring pixels (as points in spectral space) are estimated, and the
Mahalanobis distance between the background mean and target pixel is calculated.
Pixels which are anomalous should have relative high scores (i.e., be significantly
different than the background). This approach is easily extended to other statistically
based algorithms that rely on estimating the background variation.

Although neighborhood-based approaches are often called spatial-spectral tech-
niques, in reality, the actual models are still point structures in spectral space.
In the last few years, research has turned to finding true spatial/spectral models
for HSI data. For example, morphologically based methods have been used for
both segmentation and endmember extraction. Other techniques that combine linear
mixing with spatial information include Markov models for classification and
sharpening. Several compression schemes have been introduced, using wavelets,
discrete cosine transform, and others.

Two relatively new spatial/spectral models that deserve attention are based on
graphs and tensors. In [11, 12] the authors model a given image as a weighted
graph, with pixels as nodes and weights defined as a (kernelized, see section above)
function of spatial and spectral similarity. Spectral graph methods (see section
above) are then used to segment the image. In the tensor approach [41], one models
the entire image as a 3-tensor

M =
(
ai, j,k ∈ R

Ns×Nl×Nb
)
.

A 3-tensor can be considered as a generalization of vectors (1-tensor) and matrices
(2-tensor). Under this formulation, linear algebraic techniques (such as PCA and
nonnegative matrix factorization) can be extended to multilinear algebra (multiway
PCA, Tucker decompositions).
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7 Models for Water-Based Scenes

Although we have not been explicit about it, we have generally assumed that the
data we are analyzing is land based; in particular, we assume that the incoming light
passes through only one medium (the atmosphere). When looking at water-based
scenes, however, the situation is much more complicated. We still have the usual
issues with atmospheric effects; now we also need to incorporate the effects of the
water body on the incoming and reflected light.

Oceanographers generally divide the world’s water into two classes: Case 1
waters are the open ocean, far from shore, and unaffected by coastal processes.
Case 2 waters are everything else, including near-shore oceanic water, rivers, and
estuaries [35].

The optical properties of Case 1 waters tend to be relatively simple to analyze;
the only real variable that needs to be modeled is the amount of phytoplankton and
associated chlorophyll. Multispectral sensors such as MODIS and SeaWiFS have
been used for years to model Case 1 waters, with much success.

Case 2 waters, however, are much more complicated. Instead of just chlorophyll,
the incoming light field can be scattered and absorbed by a variety of other
materials, including suspended sediments (such as sand particles) and (color)
dissolved organic materials (cdom). In addition, the light may reach the bottom and
be reflected off the sea floor and eventually reach the sensor.

Remote sensing of the ocean (often called “ocean color”) attempts to use
measured spectra from a scene to derive the physical parameters associated with
that scene; this includes measurements such as the amount of chlorophyll, tss, and
cdom, as well as depth (or bathymetry) and the nature of the bottom. Given all of
these complications, it is not surprising that multispectral data does not have enough
information to fully understand the scene, and hyperspectral data is needed. In HSI
ocean sensing, the signature of interest is what is known as the remote sensing
reflectance Rrs, which is the water leaving radiance, measured directly above the
surface of the water, divided by the downwelling radiance. This normalization is
done to eliminate any illumination effects, and allows us to concentrate on the
scattering and absorption properties of the water itself, which are known as the
inherent optical properties (IOP) of the water (Fig. 4).

Assuming the IOPs, depth, and bottom type are known, the Rrs spectrum can
be predicted using the radiative transfer equation (RTE) [35]. In practice, we seek
to invert the RTE, that is, we begin with a measured spectrum and seek the IOPs
and bottom parameters. Unfortunately, direct inversion RTE (an integrodifferential
equation) is not possible, and other methods are needed.

The most common method is to use parameterized equations to estimate the
IOPs in terms of chlorophyll, tss, and cdom concentrations and then use forward-
modeling techniques to create spectra with known parameters. To recover the
parameters for a given target spectrum, one seeks to find parameters that, when
plugged into the forward model, produce a spectrum that “matches” the target
spectrum, according to some metric.
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Fig. 4 Examples of IOP characterization via large lookup tables. (a) Original HSI image of Lee
Stocking Island, Bermuda, captured by the HICO sensor. (b) and (c) Derived bathymetry and
chlorophyll concentration maps, respectively

In order to run the forward modeling, there are a couple of options. The first is to
use a simplified approximation of the RTE (known as semi-analytical (SA) models)
that can quickly produce spectra for a given input [30, 31]. If we let α ∈ R

k be the
set of input parameters to the model and let F : Rk ⇒ R

m denote the forward model
(so that F(α) is the output spectrum), then the goal is to choose the α that minimizes

‖F(α)−T‖,
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where T ∈ R
n is the given target spectrum. This minimization can be done in

reasonable time using standard convex optimization routines, such as Levenberg-
Marquardt.

An alternative approach is to forward model the spectrum by numerically solving
the RTE equation, using software such as HydroLight [1]. The drawback of this
approach is that calculating even a single spectrum for a given set of parameters can
take a relatively large amount of time, making numerical optimization techniques
implausible. However, once a spectrum has been produced, it can always be
stored and used in the future. This idea has lead to the use of very large lookup
table approaches to IOP inversion of HSI data [36]. Using HydroLight, we can
precompute large numbers of forward modeled with known parameters. With this
table in place, we can then take an unknown target spectrum and simply search the
table to see if it “matches” any entry; if so, we can assume that the parameters that
went into the modeled spectrum are the same as the target spectrum. The main
drawbacks of this approach are that we need a very large number (millions) of
precomputed spectra to account for all of the variability in nature, which in turn
leads to searching issues (basically, we are performing nearest-neighbor search in
high dimensions, a notoriously difficult problem). Also, there is no guarantee that
the target spectrum has been precomputed; if not, then no “good” match will be
found, and no information about the IOPs can be derived.

8 Resources

In our final section we present additional resources, including software, data, and
some general references on HSI.

The most common software package for hyperspectral analysis is the commercial
ENVI package from ITT, which is unfortunately fairly expensive. Some free
alternatives include MultiSpec from Purdue, Tetracorder from the USGS, and the
open source Opticks. There are also a couple of MATLAB packages available,
including the (free) MATLAB Hyperspectral Toolbox. Most (but not all) data is
distributed in binary formats that are relatively well documented; many of them can
be read directly from MATLAB.

Acquiring data can still be difficult. JPL has a few free AVIRIS data sets available
on their website; more data is available free for graduate students doing research.
NASA has extensive data from the hyperion satellite available (as well as tons
of multispectral data). Both the hypercube and multicube softwares come with
(limited) sample data. The SpecTIR company also has a number of sample cubes
available for download from their website. Both USGS and JPL have libraries of
reflectance spectrum for many common materials.

For the interested reader, more complete discussions of many of the topics in this
chapter can be found in [20, 26].
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Hyperspectral Demixing: Sparse Recovery
of Highly Correlated Endmembers

John B. Greer

Abstract We apply three different sparse reconstruction techniques to spectral
demixing. Endmembers for these signatures are typically highly correlated, with
angles near zero between the high-dimensional vectors. As a result, theoretical
guarantees on the performance of standard pursuit algorithms like orthogonal
matching pursuit (OMP) and basis pursuit (BP) do not apply. We evaluate the
performance of OMP, BP, and a third algorithm, sparse demixing (SD), by demixing
random sparse mixtures of materials selected from the USGS spectral library (Clark
et al., USGS digital spectral library splib06a. U.S. Geological Survey, Digital Data
Series 231, 2007). Examining reconstruction sparsity versus accuracy shows clear
success of SD and clear failure of BP. We also show that the relative geometry
between endmembers creates a bias in BP reconstructions.

Keywords Hyperspectral demixing • Sparse demixing (SD) • Correlated
endmembers • Basis pursuit (BP) • Orthogonal matching pursuit (OMP)

1 Introduction

Sparsity arises in many important problems in mathematics and engineering. Recent
algorithms for finding sparse representations of signals have achieved success in
applications including image processing [15], compression [22], and classification
[19]. These algorithms, including basis pursuit (BP) [7] and various matching
pursuit (MP) methods [16], are guaranteed to converge to correct solutions for
problems that meet criteria established, for example, in [6,23]. In practice, however,
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they are often applied to problems that do not meet those criteria. One such
example is the source separation problem of spectral demixing of hyperspectral
images (HSI).

Spectral demixing is the identification of the materials, called endmembers,
comprising a hyperspectral pixel, and their fractional abundances. Images captured
by hyperspectral sensors such as airborne visible/infrared imaging spectrome-
ter (AVIRIS) [14], hyperspectral mapper (HyMap) [9], and hyperspectral digital
imagery collection experiment (HYDICE) [1] have pixels containing spectral
measurements for hundreds of narrowly spaced wavelengths. Ideally these mea-
surements could be used to identify materials by comparing directly with a spectral
library, trading a difficult computer vision problem for relatively straightforward
spectral analysis. In reality, measured signatures rarely correspond to spectra of pure
materials. HSI cameras take images with high spectral resolution at the expense of
low spatial resolution; for example, AVIRIS has a 20-m ground resolution when
flown at high altitude (20 km) [14]. As a result, measured spectra often correspond
to mixtures of many materials.

1.1 The Linear Mixture Model

Even though HSI sensors generally measure nonlinear combinations of the con-
stituent materials’ spectra, HSI analysts often assume linear mixing of pure signals
[13, 25]. This assumption holds if the materials occur in spatially separated regions
with negligible light scattering.

Let E denote an n-by-k matrix of endmembers E = [ei]
k
1 . The linear mixture

model (LMM) assumes that every pixel signature x ∈ R
n has an abundance vector

α ∈R
k satisfying

x = Eα +η , (1)

where η is a small error term. Ideally, endmembers correspond to pure materials,
but they more likely represent common mixtures of materials. The abundance vector
α gives the relative quantities of the materials making up the mixture.

We consider three common versions of the LMM, each with its own set of
constraints on α and E :

(LMM 1) αi ≥ 0, ∑αi = 1, and rank(E)≥ k− 1.
(LMM 2) αi ≥ 0, ∑αi ≤ 1, and E has full rank.
(LMM 3) αi ≥ 0 and E has full rank.

The rank constraints ensure uniqueness of each signature’s abundance vector.
Each of these models has different assumptions on the physical properties of the
endmembers in E. For LMM 1, we assume either full illumination of every pixel
or that at least one endmember represents shade. LMM 2 assumes that E contains
spectral signatures corresponding to materials lit as brightly as the brightest pixels
in the image. Darker pixels have abundance vectors with ∑αi < 1. LMM 3 allows
pixels brighter than any of the ei. The rank restrictions typically pose no problem,
since k << n in practice.
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a b

Fig. 1 The left shows a standard depiction of the simplex model for HSI. We argue that the
depiction on the right is more realistic. Since mixtures on the simplex interior contain all of the
endmembers, they should rarely occur in natural images

Each LMM has its own constraint set A for the abundance vectors. Define

S = {y | y = Eα,α ∈A } . (2)

In LMM2 1 and 2, S describes a simplex. In LMM 1, S is a (k− 1)-dimensional
simplex with corners given by the k columns of E. For LMM 2, S is a k-dimensional
simplex determined by E and the origin. The two problems are mathematically
equivalent: we can write LMM 1 as LMM 2 by translating the origin to an
arbitrary endmember in E, then removing that column from E. Similarly, we can
write LMM 2 as LMM 1 by adding a column of zeros to E. In LMM 3, S is
the wedge determined by the columns of E. Notice that for a given image, we
can rescale the columns of E so that ∑αi ≤ 1 for all pixels within the image.
We therefore focus on LMMs 1 and 2. In particular, we assume E has full rank.

Demixing often requires learning the endmembers as well as the abundances
(blind source separation), but throughout this chapter, we assume known endmem-
bers. See [2, 11, 17, 18, 21, 26] for more information on learning endmembers.

1.2 Sparse Mixtures

Figure 1a shows a standard idealized scatter plot of LMM 1 [3, 4, 13, 26]. In such
illustrations, authors typically distribute most pixels throughout the simplex interior.
We argue that Fig. 1b illustrates hyperspectral data more accurately. Any interior
point of a simplex is a combination of all the endmembers. Physically, this means
that the region captured by the pixel contains samples of each endmember within the
scene. We suspect that such pixels rarely occur. Instead, most pixels contain a strict
subset of the scene’s endmembers and thus lie on the simplex boundary. The simplex
interior should be nearly empty.
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Fig. 2 The left depicts LMM 3. We show the line ∑αi = 1, which forms a boundary for LMM 2.
In that case all mixtures must lie below this line. The right shows sparse mixtures for LMM 3

LMM 2 determines another simplex, but one face of this simplex corresponds to
admissible abundance vectors satisfying ∑αi = 1. These vectors are not necessarily
sparse. For LMM 3, sparse signals again occur on the boundary of S. Figure 2
illustrates sparse and non-sparse mixtures for LMM 3 with the extra boundary of
LMM 2 included for reference.

Traditional pixel demixing algorithms minimize error, using nonnegative least
squares (NLS). This might not achieve the most realistic results, however, since we
expect some error due to model uncertainty and noise. Assuming that most pixels are
made up of only a few endmembers, we may instead seek a balance between error
and sparsity. We allow some error in the reconstruction if it comes with a sparser
mixture.The ideal mixture is the sparsest mixture with small, but acceptable, error.

1.3 Outline

We evaluate three different algorithms for calculating sparse abundance vectors:
a basis pursuit (BP) algorithm that uses the L1 of the abundance vectors [12], a
greedy algorithm called sparse demixing [11], and a natural extension of orthogonal
matching pursuit (OMP) to the endmember problem. Theorems guaranteeing the
convergence of OMP and BP to accurate sparse mixtures all require low mutual
information of the set of vectors being searched over. In practice, they are often
used with highly correlated vectors. One such example is hyperspectral demixing.
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Section 2 briefly describes the three algorithms and summarizes results from [11]
that show that BP preferentially selects endmembers based on the relative geometry
between endmembers. Section 4 demonstrates the relative performance of OMP, BP,
and SD by demixing spectra with known abundances. We choose a set of endmem-
bers from the USGS Library [8], then randomly select a sparse matrix A. We look
at this problem both with and without Gaussian noise. Since these algorithms are
intended to find sparse mixtures that accurately approximate the signature, we judge
success by examining reconstruction sparsity versus accuracy.

2 Spectral Demixing

Given a matrix of endmembers E and a spectral signature x, HSI analysts typically
demix pixels with NLS [13]. The NLS approximation y of x solves y = Eα for

α = arg min
α ′∈A

‖ Eα ′ − x ‖2 . (3)

Defining S by (2), we rewrite (3) as

y = argmin
y′∈S

‖ y′ − x ‖2 . (4)

This quadratic programming problem has a simple geometric solution. Let x̂ denote
the orthogonal projection of x on the column space of E. For problems LMMs (2)
and (3),

x̂ = E
(

E*E
)−1

E*x.

Note that since E has full rank, E*E is invertible. Since x̂ is the orthogonal
projection of x, y solves (4) if and only if

y = argmin
y′∈S

‖ y′ − x̂ ‖2 . (5)

If x̂ lies in S, then y = x̂. If x̂ lies outside S, then (5) gives the closest point y to x̂ on
the boundary of S.

3 Applying Sparse Coding to the Demixing Problem

We assume that the abundance vector α satisfies (1) for some η with

‖ η ‖2= ε > 0.
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Unlike standard demixing, we assume that the correct abundance vector is the
sparsest one that gives an approximation within ε of the measured spectrum.
Minimizing the L2 (Euclidean) norm generally does not give sparse mixtures. The
NLS constraint y ∈ S, however, automatically enforces sparsity for some mixtures.
If a pixel lies exactly on the boundary of S, then NLS correctly recognizes it as a
sparse mixture. However, sensor noise, measurement errors, and model inaccuracy
likely prevent such cases. Even when a pixel contains only a few endmembers, these
errors push the pixel off the boundary of S. If they push the pixel outside S, then NLS
gives the correct sparse solution. If they push the pixel inside S, NLS gives a mixture
of all the endmembers.

The sparsest abundance vector giving an approximate mixture with error ε is

α = arg min
β∈A

{‖ β ‖0 | ‖ Eβ − x ‖2< ε} (6)

for ε > 0. The L0 semi-norm of α, ‖ α ‖0, is the number of nonzero components
of α. Minimizing the nonconvex L0 semi-norm is NP-hard, so matching pursuit
algorithms only find approximate solutions to the problem. One of these algorithms,
OMP has been shown to solve (6) for some matrices E [23]. Minimizing the L1

norm [defined by (8)] also gives sparse solutions for some matrices E, and it has the
mathematical advantage of convexity [5, 10].

In this section, we describe three algorithms for calculating sparse abundance
vectors. The first is a basis pursuit (BP) algorithm that uses the L1 norm. The others,
OMP and sparse demixing (SD), find approximate solutions to (6).

3.1 Basis Pursuit

In [12], Guo et al. calculated sparse abundance vectors by minimizing

α = arg min
β∈A

λ ‖ β ‖1 +
1
2
‖ Eβ − x ‖2

2 . (7)

In each constraint set A , αi ≥ 0, so

‖ α ‖1:= ∑
i
|αi|= ∑

i
αi. (8)

Note that the L1 term makes no meaningful contribution to (7) for LMM 1, since
‖ α ‖1= 1 for all admissible α. Whenever discussing BP, we assume LMM 2 or
LMM 3.

Unfortunately, for general endmember matrices E, (7) does not necessarily give
sparse abundance vectors. In fact, Greer[11] shows that (7) gives sparser solutions
than NLS only for certain cases. For many other cases, including the L1 norm
reduces sparsity. We briefly describe a rationale for this and refer to [11] for details.
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The set A of admissible abundance vectors determines a subset S of the column
space of E [see (2)]. Since E has full rank, every y ∈ S has a unique abundance
vector α satisfying Eα = y. In fact, α(y) = Φy for

Φ =
(

E*E
)−1

E*.

We call the abundance vector components, αi, coefficient functions. Each coefficient
function is linear, with αi(ei) = 1 and αi(y) = 0 for all y on the (k− 1)-dimension
hyperplane determined by e j �=i and the origin.

For y ∈ S define

φ(y) :=‖ α(y) ‖1= ∑
i

αi = ∑
i, j

Φi jy j. (9)

In particular, φ is a linear function of y in S with ∇φ = Φ*1, where 1 denotes a
column vector of ones. Since φ(ei) = 1 for every column ei of E , and φ (0) = 0, ∇φ
is normal to the (k− 1)-dimensional hyperplane determined by the columns of E.
Thus the L1 term’s effect depends entirely on the geometry of the endmembers in E.

Define

F(s) = λ φ(s)+
1
2
‖ s− x ‖2

2 .

Solving (7) is equivalent to solving

y = argmin
s∈S

F(s). (10)

The convex function F has a global minimum in R
k at

y = x−λ ∇φ . (11)

Compare (11) with the minimum of the NLS optimization function,

G(s) =
1
2
‖ s− x ‖2

2 .

The minimum of G(s) occurs inside S only when x lies inside S. The minimum of
F can occur on the interior of S even for cases where x lies on the exterior—cases
where NLS gives a sparse solution. If y lies inside S, then the L1 reconstruction does
not give a sparser representation than NLS. This happens, for example, for any point
x on the interior of S that is further than λ |∇φ | from the boundary of S. On the other
hand, the L1 reconstruction of x is less accurate than the NLS solution, which gives
x the exact answer. For these points, NLS is clearly the better method.

The L1 norm’s ability to increase sparsity depends on the sign of ∇α i · ∇φ
for each i. Figure 3 shows the effects of the L1 norm for a problem with two
endmembers giving coefficient functions, α1 and α2, with ∇α1 · ∇φ < 0 and
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Fig. 3 Failure of L1 demixing. For this pair of endmembers, NLS produces sparser mixtures for
points near the left-hand boundary

∇α2 ·∇φ > 0. Let yλ (x) solve (11) for given λ and x. Suppose ∇α i ·∇φ > 0. Then
for any given x, αi (yλ (x)) monotonically decreases to 0 as λ increases. The same
does not hold if ∇α i ·∇φ < 0. In this case, x close to the boundary αi = 0, either
inside or outside S, can yield minima yλ (x) that lie on the interior of S. Section 4.2
will demonstrate how this affects demixing.

3.2 Orthogonal Matching Pursuit

OMP is a greedy algorithm that iteratively increases the number of nonzero
components in α while minimizing the approximation’s residual error at each
step. The linear mixing model constraints require modifying the OMP algorithm
(introduced in [27]). This section describes one natural modification.

Suppose we have a spectral signature x, a set of endmembers {ei} and an error
bound ε. For a subset of endmembers, Λk, let xk be the NLS reconstruction of x over
Λk. Define

rk = x− xk,

and set

Λ0 =

{
argmin

i
‖ x− ei ‖2

}
.

Until ‖ rk ‖2< ε, OMP sequentially improves the approximation xk by setting

Λk+1 = Λk ∪
{

argmax
i

r*i ei

‖ ei ‖2

}
. (12)

The standard OMP algorithm uses the absolute value of the inner product, but the
LMMs nonnegativity constraint leads to better results without the absolute value.
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Fig. 4 Consider the simplex and data point shown in the left figure. This point is nearly a
mixture of the two materials forming the left side of the simplex. The middle figure shows the
approximations produced in three iterations of OMP. The right shows the approximations produced
in three iterations of SD. Notice that the second iteration of SD gives the closest sparse mixture,
which OMP never produces

3.3 Sparse Demixing

Sparse demixing (SD) uses the greedy approach of OMP, but works in the opposite
direction: it begins with a representation over all endmembers, then removes
endmembers one by one until reaching the sparsest representation within a specified
accuracy. SD first performs NLS over the full set of endmembers, then removes the
endmember corresponding to the smallest component of α. Next, it performs NLS
on the simplex determined by this smaller set of endmembers. This process repeats,
in each iteration removing the endmember corresponding to the smallest abundance
value, until the approximation leaves the accuracy range specified by ε in (6). See
[11] for details on the application of SD to all three LMMs.

SD has some advantage over OMP. Its initial step gives the widely used NLS
solution. For examples like the one in Fig. 4, OMP produces mixtures containing all
the endmembers, even though sparsity assumptions for (1) place x on the simplex’s
left edge. SD gives the desired mixture in two iterations.

SD takes advantage of key differences between pixel demixing and standard
sparse reconstruction problems. In its intended applications, OMP searches large
overcomplete sets of vectors for spanning subsets. SD is impractical for such
applications, but HSI demixing usually involves far fewer endmembers than the
number of spectral bands. Thus, starting with all the endmembers and sequentially
eliminating them is feasible.

4 Numerical Experiments

To evaluate the three algorithms describe in Sect. 2, we demix random mixtures
satisfying LMM 1 and LMM 2. Each mixture consists of a sparse subset of
14 endmembers chosen from the USGS spectral libraries [8]: nine minerals and
five vegetation endmembers. Figure 5 shows the spectral signatures of these
endmembers. The spectra from these libraries each have 450 bands ranging from
0.395 to 2.56 μm. These materials differ enough to distinguish between them in HSI
(see, for example, [20]).
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Fig. 7 Distribution of endmembers in the LMM 1 example

Although linearly independent, the spectra are highly correlated, with angles
between many pairs of the spectra near zero. See Fig. 6 for a histogram of the dot
products between the 14 (normalized) spectra. Notice that those dot products are all
larger than 1

2 . Due to this high correlation, support recovery theory for BP and OMP
does not apply [23, 24]. The examples demonstrate the failure of BP.

4.1 LMM 1 (∑αi = 1)

The first example uses mixtures satisfying LMM 1. We determined the set of spectra,
X , by randomly selecting a 14-by-1,000 matrix of abundances. Each entry had a
20 % chance of being nonzero, with nonzero entries distributed uniformly between
0 and 1. Columns with all zeros were eliminated. This example has 961 nonzero
spectra. Finally, we scaled each column so that its abundances added to 1. Figure 7
shows the distribution of endmembers in X . It also shows the distribution of the
number of endmembers comprising each spectral signature in X : each is a mixture
of between 1 and 6 endmembers.

Figure 8 shows results of demixing X with no added noise. In this case, NLS
gives the exact abundances of X . As discussed in Sect. 3.1, for all λ , BP gives the
same solution as NLS for LMM 1. Each curve in Fig. 11 is parametrized by ε,
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(left) and large (right) ε and λ . Errors are calculated with respect to the non-noisy spectra. The SD
and OMP curves intersect at ε = 0, which is the NLS solution

the amount of error allowed for the sparse approximations [see (6)]. Increasing ε
sacrifices some of that accuracy for sparsity. This increase of ε corresponds to more
iterations in SD and fewer iterations in OMP. The curves intersect at ε = 0, which is
the NLS solution. Curves lying closer to the origin correspond to methods that find
sparser solutions with greater accuracy. In this case SD performs better than OMP
until both reach the large-error regime—about 9 % relative error.

We next add Gaussian noise with a standard deviation of 0.03 to X . NLS does
not give the correct solution for this more realistic scenario. Noise has pushed some
of the spectra in X to the interior of the endmember-determined simplex, making
NLS choose a mixture that is non-sparse and incorrect. We use the non-noisy
signatures in X to calculate errors. Figure 9 shows that SD improves the accuracy
of the abundances while simultaneously decreasing the number of endmembers.
OMP does not perform as well, but it still shows an initial drop in the number of
endmembers with very little increase in error.



Hyperspectral Demixing: Sparse Recovery of Highly Correlated Endmembers 207

ba

1 2 3 4 5 6
0

100

200

300

400

500

600

Number of Endmembers

N
um

be
r 

of
 S

pe
ct

ra

0 20 40 60 80 100 120 140 160 180

Alunite
Buddingtonite

Calcite
Chalcedony

Goethite
Hematite
Jarosite

Kaolinite
Muscovite

Blue Spruce
Dry Grass

Grass
Maple Leaf

Tumbleweed

Number of Instances

Fig. 10 Distribution of endmembers for the LMM 2 example

0 0.005 0.01 0.015 0.02 0.025 0.03
1

1.5

2

2.5

3

3.5

4

4.5

Average Relative Error

A
ve

ra
ge

 N
um

be
r 

of
 E

nd
m

em
be

rs

SD
OMP
BP

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1

1.5

2

2.5

3

3.5

4

4.5

Average Relative Error

A
ve

ra
ge

 N
um

be
r 

of
 E

nd
m

em
be

rs

SD
OMP
BP

Small e, l Large e, l

Fig. 11 Comparison of BP, SD, and OMP for random sparse spectra satisfying LMM 2 with no
added noise for small (left) and large (right) ε and λ . Notice that BP does not offer any improved
sparsity over NLS, which corresponds to the intersection of all three curves

4.2 LMM 2 (∑αi ≤ 1)

For this example, we used the process in Sect. 4.1 to randomly select a 15-by-1,500
sparse abundance matrix, with the extra row corresponding to an endmember of
all zeros. After scaling and eliminating all-zero columns, we removed the 15th row.
The resulting set, X , contains 1,152 spectral signatures satisfying LMM 2. Figure 10
shows the distribution of endmembers across X .

Figure 11 shows how BP, OMP, and SD all perform on Xwithout added noise.
NLS again gives the exact solution. Both OMP and SD depend on the parameter
ε, with ε = 0 giving the NLS solution [see (6)] and increased ε giving sparser
solutions. The curve for BP depends on λ , with λ = 0 corresponding to NLS
[see (7)]. BP performs poorly. In fact, increasing λ increases both errors and the
number of endmembers. The set X contains only exact sparse mixtures that lie on
the simplex boundary. As discussed in Sect. 3.1, as λ increases, BP drives many of
these spectra to the simplex interior.

BP preferentially selects the ith endmember if ∇αi ·∇φ < 0, for abundance αi

and φ defined by (9). Figure 12 demonstrates this phenomenon. The curve plots the
number of BP approximations that contain each given endmember as λ increases.
For very large λ , nearly all the BP approximations contain the same endmember.
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Fig. 13 The selection of endmembers by OMP and SD. As ε increases, SD decreases the number
triggered for each endmember. OMP performs somewhere between SD and BP. Some endmembers
show brief increases, and one never drops below its original value

SD and OMP perform very differently. Figure 13 tracks the selection of
endmembers by SD and OMP for each value of ε. SD consistently decreases each
endmember’s number of substantiations as ε increases. It shows no obvious bias.
On the other hand, OMP treats some endmembers differently, with substantiations
of one of the endmembers increasing with ε. Nevertheless, OMP shows far less bias
than BP.

We next added Gaussian noise (standard deviation 0.03) to the signatures in
X . In this more realistic case, NLS gives incorrect mixtures. All three curves
intersect at the NLS solution, λ = ε = 0. Errors are calculated with respect to the
exact, non-noisy mixtures. Again SD shows the best performance. Both SD and
OMP provide more accurate solutions than NLS. BP does not perform nearly as
well. It does, however, improve the sparsity as λ increases. This example shows a
greater difference in performance between BP and SD than shown in [11]. This is
likely because that paper measures error as the distance between the reconstruction
and the pixel, which in this example corresponds to the difference between the
reconstruction and the noisy signature (Fig. 14).
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Fig. 14 Performance of BP, OMP, and SD on LMM 2 with added Gaussian noise. In all cases,
increasing λ or ε improves sparsity. Note, however, that for small, positive ε , both SD and OMP
improve the error by approximating with sparser mixtures

5 Conclusions

This chapter evaluates the ability of sparse reconstruction algorithms to find sparse
mixtures of endmembers, which are typically highly correlated. Although restricted
to hyperspectral demixing, the work may give some insight into the more general
problem of sparse reconstruction over coherent sets. In this case, which certainly
is not unique to the HSI problem, we have no theory guaranteeing that standard
pursuit algorithms will provide sparse and accurate reconstructions. This chapter’s
examples show the failure of BP, and some success with OMP, for the endmember
problem. It’s natural to wonder about their relative performance for other problems.
There may also be other application-specific pursuit algorithms that, like SD, offer
superior performance searching for sparse support over sets of correlated vectors.
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Theory of Passive Synthetic Aperture Imaging

Ling Wang, Can Evren Yarman, and Birsen Yazıcı

Abstract We present a unified theory for passive synthetic aperture imaging based
on inverse scattering, estimation-detection theory, and microlocal analysis. Passive
synthetic aperture imaging uses sources of opportunity for illumination and moving
receivers to measure scattered field. We consider passive airborne receivers that
fly along arbitrary, but known, flight trajectories and static or mobile sources
of opportunity transmitting two types of waveforms: Single-frequency or ultra-
narrowband continuous-wave (CW) waveforms and wideband pulsed waveforms.
Our theory results in two new and novel synthetic aperture imaging modalities:
Doppler synthetic aperture hitchhiker (DSAH) that uses single-frequency or ultra-
narrowband CW waveforms, and synthetic aperture hitchhiker (SAH) that uses
wideband pulsed waveforms. We use inverse scattering and estimation-detection
theory to develop measurement models in the form of Fourier integral operators
(FIOs) for DSAH and SAH. These models are based on windowed, scaled, and
translated correlations of the measurements from two different receiver locations.
This processing removes the transmitter-related terms from the phase of the result-
ing FIOs that map the radiance of the scene to correlated measurements. We use
microlocal analysis to develop approximate inversion formulas for these FIOs.
The inversion formulas involve backprojection of the correlated measurements onto
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certain manifolds where the passive range and passive Doppler are constant for SAH
and DSAH imaging, respectively. We present resolution analysis and numerical
simulations to demonstrate our theoretical results. While we focus primarily on the
passive synthetic aperture radar, the theory we present is also applicable to other
wave-based passive synthetic aperture imaging problems such as those in acoustics
and geophysics.

Keywords Passive imaging • Passive radar • Synthetic aperture imaging
• Microlocal analysis • Fourier integral operator (FIO) • Doppler synthetic
aperture hitchhiker (DSAH) • Synthetic aperture hitchhiker (SAH) • Passive
iso-range contour • Passive iso-Doppler contour • Filtered-backprojection (FBP)
• Scene radiance

1 Introduction

With the rapid growth of illumination sources of opportunity, such as broadcasting
stations, mobile phone base stations, as well as relatively low cost and rapid
deployment of receivers, there has been a growing interest in passive detection and
imaging applications in recent years [1, 2, 5–7, 9–14, 17–20, 23, 27–29, 32, 36].

Most of the existing passive imaging methods are focused on the detection of
scatterers with stationary receivers [2, 5–7, 9–14, 17–20, 27–29, 32, 36]. Recently, a
number of methods for passive synthetic aperture were introduced [1, 23, 38, 40].

In this chapter, we presented a unified theory of passive synthetic aperture
imaging based on inverse scattering theory, estimation-detection theory and
microlocal analysis. Our theory facilitates resolution analysis and relates
backprojection-based image reconstruction to statistical beamforming methods
as well as to ambiguity theory [21, 22, 31, 34, 35, 37]. It is applicable to passive
imaging with both cooperative and noncooperative sources of illumination where
the location of the sources and transmitted waveforms are unknown. The theory
can be also viewed as a limiting case of the passive imaging and detection methods
that we developed for sparsely distributed receivers [36]. It results in new and novel
passive synthetic aperture imaging modalities [38, 40] with several advantages over
the existing passive radar detection methods. (See [36, 38, 40] for a comparative
review of related work.)

We consider multiple receivers moving along arbitrary, but known, trajectories
over a non-flat topography and two types of illumination sources of opportunity:
Single-frequency or ultra-narrowband continuous-wave (CW), and wideband pulsed
waveforms of opportunity. Due to the high Doppler resolution nature of the single-
frequency or ultra-narrowband CW waveforms, we refer to the modality that uses
these waveforms as the Doppler synthetic aperture hitchhiker (DSAH) [40]. Due
to the high-range resolution nature of the wideband pulsed waveforms, we refer to
the modality that uses wideband pulsed waveforms as the Range synthetic aperture
hitchhiker or simply the synthetic aperture hitchhiker (SAH) [38].
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For each pair of receivers, we correlate the windowed signal obtained from
one of the receivers with the windowed, scaled, and translated version of the
received signal from another receiver. We express the relationship between the scene
radiance and the correlated measurements in the form of Fourier integral operators
(FIOs). The correlation of received signals removes the transmitter related terms
from the phase component of the resulting FIOs. As a result these FIOs can be
inverted approximately by using microlocal techniques without the knowledge of
the location of the transmitters. The DSAH measurement model does not rely on
the start–stop approximation and is based on the fast-time Doppler, while the SAH
measurement model relies on the start–stop approximation. In this context the SAH
measurement model can be derived from the DSAH measurement model by setting
the fast-time Doppler variable to unity.

The high-frequency analysis of the DSAH and SAH FIOs shows that the
correlated measurements are the projections of the scene radiance onto the passive
iso-Doppler and passive iso-range curves in DSAH and SAH imaging, respectively.

We use microlocal techniques to develop filtered-backprojection type
approximate inversions of DSAH and SAH FIOs. The reconstructed images
preserve the location and orientation of the visible edges of the scene radiance.
Additionally, the reconstruction formulas can be implemented efficiently using
the fast-backprojection algorithms [8]. Our unified approach to passive imaging
readily facilitates resolution analysis that is consistent with the ambiguity theory
[22, 31, 37].

While we focused primarily on passive synthetic aperture radar, the theory
of DSAH and SAH imaging and the resulting methods and algorithms are also
applicable to other wave-based passive imaging problems, such as those that arise
in geophysics or acoustics.

The organization of the chapter is as follows: In Sect. 2, we derive and analyze
the leading order contributors of the measurement models for DSAH and SAH.
In Sect. 3, we develop filtered-backprojection type image formation methods for
DSAH and SAH, respectively. In Sect. 4, we analyze the resolution of DSAH
and SAH imaging. In Sect. 5, we present numerical simulations to demonstrate
the performance of the DSAH and SAH imaging methods. Finally, in Sect. 6, we
conclude our discussion.

2 Measurement Model

We use the following notational conventions throughout the paper. The bold Roman,
bold italic, and Roman lowercase letters are used to denote variables in R

3, R2, and
R, respectively, i.e., z= (z,z) ∈R

3, with z ∈R
2 and z ∈R. The calligraphic letters

(F ,K , etc.) are used to denote operators.
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Fig. 1 An illustration of the
imaging geometry

Given a pair of transmitter and receiver antennas located at T and R,
respectively, we model the received signal by [26]

f (t,R,T) ≈
∫

eiω(t−(|R−z|+|z−T|)/c0)

(4π)2 |R−z| |z−T| ω2 p̂(ω)

×Jtr

(
ω , ẑ−T,T

)
Jrc

(
ω , ẑ−R,R

)
V (z)dω dz , (1)

or in time-domain by

f (t,R,T) ≈
∫

p̈(t− (|R−z|+ |z−T|)/c0)

(4π)2 |R−z| |z−T|
×Jtr

(
ẑ−T,T

)
Jrc

(
ẑ−R,R

)
V (z)dz , (2)

where t denotes time, c0 denotes the speed of light in free space, V (z) is the
reflectivity function, p̂ denotes the Fourier transform the transmitted waveform,
p(t), Jtr, and Jrc are the transmitter and receiver antenna beam pattern related terms,
respectively.

We denote the earth’s surface by z = (z,ψ(z)) ∈ R
3, where z ∈ R

2 and ψ :
R

2 → R is a known function for the ground topography. Furthermore, we assume
that the scattering takes place in a thin region near the surface. Thus, the reflectivity
function is in the form

V (z) = ρ(z)δ (z−ψ(z)). (3)

Our passive imaging theory is applicable to both mobile and stationary sources
of opportunity. However, for the rest of our discussion, we assume that there is a
single, stationary transmitter of opportunity illuminating the scene. This allows us to
simplify the analysis and distill the important aspects that can readily be generalized
using the ideas similar to the ones presented in our work [38].

Let T ∈ R
3 denote the location of the transmitter of opportunity and let there

be N airborne receivers, each traversing a smooth trajectory γγγ i(t
′), i = 1, . . . ,N as

shown in Fig. 1. Then, we denote the received signal at the ith receiver starting at
time t ′ = s by
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ei(t + s) = f (t + s,γγγ i(t + s),T)

=

∫
p̈(t + s− (|γγγi(t + s)−z|+ |z−T|)/c0)

(4π)2 |γγγ i(t + s)−z| |z−T|
×Jtr

(
ẑ−T,T

)
Jrc

(
̂z− γγγ i (t + s),γγγ i (t + s)

)
ρ (z) dz. (4)

Note that the time variable t ′ represents the absolute time, while t represents the
relative time within the time interval staring at t ′ = s.

For a finite and relatively short interval, we use the Taylor series expansion
around t = 0,

γγγ i(t + s) = γγγ i(s)+ γ̇γγ i(s)t + · · · (5)

to approximate

|γγγ i(t + s)−z| ≈ |γγγ i(s)−z|+ ̂γγγ i(s)−z · γ̇γγ i(s)t . (6)

Substituting the approximation (6) into (4), we have

ei(t + s) ≈
∫

p̈(αi(s,z)t + s− (|γγγi(s)−z|+ |z−T|)/c0)

(4π)2 |γγγ i(s)−z| |z−T|
×Jtr

(
ẑ−T,T

)
Jrc

(
̂z− γγγ i (t + s),γγγ i (t + s)

)
ρ (z) dz , (7)

where the time dilation

αi(s,z) = 1−
̂γγγ i(s)−z · γ̇γγ i(s)

c0
(8)

is the Doppler-scale-factor induced by the movement of the ith receiver.
We define the windowed, scaled, and translated correlation of the received

signals ei and e j by

ci j(s
′,s,μ) =

∫
ei(t + s′)e∗j(μt + s)φ(t)dt, (9)

for some s,s′ ∈ R and μ ∈ R
+, i, j = 1, . . . ,N, where φ(t) is a smooth compactly

supported temporal windowing function centered at t = 0.
In the following sections, we develop mappings that relate the expected value

of the correlated measurements ci j, denoted by E[ci j], to the scene to be imaged.
We assume that the sources of opportunity are noncooperative, where the location
of the transmitter, T, and transmitter antenna beam pattern related term Jtr are
unknown.

We use a stochastic model for the transmitter antenna beam pattern related term,
Jtr, and the scene reflectivity, ρ , and assume ρ and Jtr are statistically independent,
to express E[ci j] as
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E[ci j](s
′,s,μ) ≈

∫
p̈(αi(s,z)t + s′ − (|γγγ i(s

′)−z|+ |z−T|)/c0)

× p̈∗(μα j(s,z
′)t + s− (|γγγ j(s)−z′|+ |z′ −T|)/c0)

×Cρ(z,z
′)CJtr(z,z

′,T)ARi j (z,z
′, t,s′,s,μ)

(4π)4 Gi j(z,z′,s,s′,μ)
dz dz′φ(t)dt . (10)

Cρ and CJtr denote the correlation functions of ρ and Jtr, respectively, i.e.,

Cρ(z,z
′) = E[ρ(z)ρ∗(z′)] , (11)

CJtr(z,z
′,T) = E

[
Jtr

(
ẑ−T,T

)
J∗tr
(
ẑ′ −T,T

)]
. (12)

ARi j denotes the product of the receiver antenna beam patterns,

ARi j(z,z
′, t,s′,s,μ) = Jrc

(
̂z− γγγ i(t + s′),γγγ i(t + s′)

)

× J∗rc
(

̂z′ − γγγ j(μt + s),γγγ j(μt + s)
)
, (13)

and Gi j is the product of the geometric spreading factors,

Gi j(z,z
′,s′,s) = |T−z| |T−z′||γγγ i(s

′)−z| |γγγ j(s)−z′|. (14)

Note that for noncooperative sources of opportunity,T, and thus |T−z| |T−z′|, are
unknown. For the case of cooperative sources of opportunity where these quantities
along with the transmitted antenna beam pattern are assumed to be known, (12) can
be modified to include the known quantities.

Next, we make the incoherent-field approximation [3] by assuming that ρ and Jtr

satisfy the following equalities:

Cρ(z,z
′) = Rρ(z)δ (z−z′) , (15)

CJtr(z,z
′,T) = RT (z)δ (z−z′). (16)

Rρ is the average power of the electromagnetic radiation emitted by the scene at
location z, and RT is the average power of the electromagnetic radiation emitted
by the transmitter at location T that is incident on the target surface at z. In this
regard, Rρ is referred to as the scene radiance and RT is referred to as the transmitter
irradiance [3].

Substituting (15) and (16) into (10), we obtain

E[ci j](s
′,s,μ) =

∫
p̈(αi(s

′,z)t + s′ − (|γγγ i(s
′)−z|+ |z−T|)/c0)

× p̈∗(μα j(s,z)t + s− (|γγγ j(s)−z|+ |z−T|)/c0)

× Rρ(z)RT (z)ARi j (z,z, t,s
′,s,μ)

(4π)4 Gi j(z,z,s,s′,μ)
dzφ(t)dt (17)

for some s,s′ ∈ R, μ ∈ R
+ and i, j = 1, . . . ,N. We refer to (17) as the correlated

measurements.
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Our objective is to determine the scene radiance Rρ given E[ci j](s′,s,μ) for a
range of s′, s, and μ . In the following two sections, we study two special cases of
the measurement model to derive the measurement models for the DSAH and SAH.

2.1 Model for Doppler Synthetic Aperture Hitchhiker Imaging

In DSAH, narrowband or ultra-narrowband CW waveforms of opportunity are used
for imaging. Thus,

p(t) = eiω0t p̃(t) , (18)

where ω0 denotes the carrier frequency and p̃(t) is the complex envelope of p, which
is a slow varying function of t as compared to eiω0t .

Substituting (18) into (17), we express E[ci j] as

E[ci j(s
′,s,μ)] =

ω4
0

(4π)4

∫
eiω0(αi(s

′,z) t+s′−(|γγγi(s
′)−z|+|T−z|)/c0)

× e−iω0(μα j(s,z) t+s−(|γγγ j(s)−z|+|T−z|)/c0)

× RT (z)Ap̃(z,z, t,s′,s,μ)ARi j (z,z, t,s
′,s,μ)

Gi j(z,z,s′,s,μ)

×Rρ(z)dzφ(t)dt , (19)

where Ap̃ is the product of the complex envelope of the transmitted waveform,

Ap̃ = p̃(αi(s
′,z)t + s′ − (|γγγ i(s

′)−z|+ |T−z|)/c0)

× p̃∗(μα j(s,z)t + s− (|γγγ j(s)−z|+ |T−z|)/c0) . (20)

After rearranging the terms in (19), we have

E[ci j(s
′,s,μ)]≈FDSAH

i j [Rρ ](s
′,s,μ)

=

∫
e−iϕDSAH

i j (t,z,s′ ,s,μ) ADSAH
i j (z, t,s′,s,μ)Rρ (z)dz dt , (21)

where

ϕDSAH
i j (t,z,s′,s,μ) = ω0α j(s,z)t

[
μ− Si j(s

′,s,z)
]
, (22)

with

Si j
(
s′,s,z

)
=

αi (s′,z)
α j (s,z)

=
1−

(
̂γγγ i(s
′)−z

)
· γ̇γγ i(s

′)/c0

1−
(

̂γγγ j(s)−z
)
· γ̇γγ j(s)/c0

, (23)
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and

ADSAH
i j (z, t,s′,s,μ) =

ω4
0 RT (z)Ap̃(z,z, t,s′,s,μ)ARi j (z,z, t,s

′,s,μ)φ(t)
(4π)4 Gi j(z,z, t,s′,s,μ)

×eiω0(s
′−s−(|γγγi(s

′)−z|−|γγγ j(s)−z|)/c0) . (24)

We refer to Si j(s′,s,z) as the Doppler-hitchhiker-scale-factor.
For cooperative sources of opportunity, where the transmitter locations and

antenna beam patterns are assumed to be known, we treat Jtr deterministically and
replace RT (z) with Jtr(ẑ−T,T)J∗tr(ẑ−T,T).

We refer to FDSAH
i j defined in (21) as the DSAH or Doppler-hitchhiker FIO; and

ϕDSAH
i j , ADSAH

i j as the phase and amplitude terms of the operator FDSAH
i j .

Note that the scaled and translated correlation of the received signal removes all
transmitter related terms from the phase of the operator FDSAH

i j .

2.1.1 High-Frequency Analysis of the DSAH FIO and Passive
iso-Doppler Contours

We assume that for some mDSAH
A , ADSAH

i j satisfy the inequality

sup(t,μ,s′,s,z)∈UDSAH

∣
∣
∣∂ αt

t ∂ αμ
μ ∂ β1

s′ ∂ β2
s ∂ ε1

z1 ∂ ε2
z2 ADSAH

i j (z, t,s′,s,μ)
∣
∣
∣

≤CDSAH
A (1+ t2)(m

DSAH
A −|αt |)/2 , (25)

where UDSAH is any compact subset ofR×R
+×R×R×R

2 and the constant CDSAH
A

depends on UDSAH,αt,μ ,β1,2, and ε1,2. In practice, (25) is satisfied for transmitters
and receivers are sufficiently far away from the illuminated region.

Under the assumption (25), (21) defines FDSAH
i j as an FIO whose leading-order

contributions come from those points lying in the intersection of the illuminated
surface (z,ψ(z)) and points that have the same Doppler-hitchhiker-scale-factor,
i.e., {z∈R

3 : Si j(τ ′,τ,z) = μ}. We denote the curves formed by this intersection by

FDSAH
i j (s′,s,μ) = {z : Si j(s

′,s,z = (z,ψ(z))) = μ}. (26)

When the speed of the receivers is much slower than the speed of light c0, Si j can
be approximated as follows:

Si j
(
s′,s,z

)
= 1+

(
̂γγγ j (s)−z

)
· γ̇γγ j (s)/c0−

(
̂γγγ i (s
′)−z

)
· γ̇γγ i (s

′)/c0

1−
(

̂γγγ j (s)−z
)
· γ̇γγ j (s)/c0

≈ 1+

[
̂

(
γγγ j (s)−z

)
· γ̇γγ j (s)− ̂(γγγ i (s

′)−z) · γ̇γγ i

(
s′
)
]
/c0 . (27)
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Fig. 2 DSAH iso-Doppler
contours F12(s′, s,μ)
for the Doppler-hitchhiker-
scale-factor
S12(22.0674s,−11.0337s,z).
Two receivers are traversing a
circular flight trajectory
(dashed line) at the speed of
261m/s over a flat
topography. γγγ1(s̃) = γγγC(s̃)
and γγγ2(s̃) = γγγC(s̃−π/4),
respectively, where white and
black triangles denote the
positions of the two receivers
at s̃ = π/6, respectively.
(See (23) and (70) for
explicit formulae of
S12(22.0674s,−11.0337s,z)
and γγγC(s̃), respectively)

Substituting (27) into

Si j(s
′,s,z) = μ , (28)

multiplying both sides of (28) by ω0, and rearranging the terms, we have

ω0

c0

[
̂(γγγ i(s′)−z) · γ̇γγ i(s

′)− ̂(γγγ j(s)−z) · γ̇γγ j(s)
]
= (1− μ)ω0, (29)

where the left-hand side of (29) is the hitchhiker Doppler defined in [38] for a fixed
frequency. In this regard, we refer to FDSAH

i j (s′,s,μ) as the passive iso-Doppler or
DSAH iso-Doppler contour. Figure 2 shows the DSAH iso-Doppler contours for two
receivers traversing a circular trajectory over a flat topography.

2.2 Model for Synthetic Aperture Hitchhiker Imaging

In SAH, wideband pulsed waveforms of opportunity are used for imaging.
Assuming that the velocity, γ̇γγ j(s), of the receivers are much less than the speed

of light, we use the “start–stop” approximation, where the receiver is assumed to
be stationary within a certain window of time, and approximate the Doppler-scale
factor

αi(s,z) ≈ 1. (30)
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Then the received signal at the ith receiver starting at time t ′ = s′ is approximated by

ei(t + s′) ≈
∫

p̈(t + s′ − (|γγγ i(s
′)−z|+ |z−T|)/c0)

(4π)2 |γγγ i(s
′)−z| |z−T|

×Jtr

(
ẑ−T,T

)
Jrc

(
̂z− γγγ i (s

′),γγγ i

(
s′
))

ρ (z) dz . (31)

Similarly, under the start–stop approximation, the Doppler-hitchhiker-scale-factor
becomes

Si j(s
′,s,z) ≈ (1−αi(s

′,z))(1+α j(s,z)) ≈ 1. (32)

Consequently, by (28), it is sufficient to consider E[ci j] for μ = 1.
In this regard, taking into account the high range resolution of the wideband

waveforms, we incorporate the fast-time delay in the forward model of SAH and
define

di j(s
′,s,τ) = ci j(s

′,s− τ,1) =
∫

ei(t + s′)e∗j(t + s− τ)φ(t)dt. (33)

We refer to (33) as the spatiotemporal correlation of ei and e j.
Using (31), we approximate the expectation of di j(s′,s,τ) as

E[di j(s,s
′,τ)] =

∫
p̈(t + s′ − (|γγγi(s

′)−z|+ |z−T|)/c0)

× p̈∗(t + s− τ− (|γγγ j(s)−z|+ |z−T|)/c0)

× Rρ(z)RT (z)ÃRi j (z,z,s
′,s)

(4π)4 Gi j(z,z,s′,s)
dzφ(t)dt

=

∫
eiω(t+s′−(|γγγi(s

′)−z|+|z−T|)/c0)

×e−iω(t+s−τ−(|γγγ j(s)−z|+|z−T|)/c0)

× ω2|p̂(ω)|2Rρ(z)RT (z)ÃRi j(z,z,s
′ ,s)

(4π)4 Gi j(z,z,s,s′)
dz dωφ(t)dt , (34)

where

ÃRi j(z,z
′,s′,s) = ARi j(z,z

′,0,s′,s,1) (35)

and ARi j and Gi j are as in (13) and (14). We write

E[di j(s
′,s,τ)] ≈F SAH

i j [Rρ ](s,s
′,τ)

=

∫
e−iϕSAH

i j (ω,z,s,s′,τ) ASAH
i j (z,ω ,s,s′)Rρ(z)dz dω , (36)
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where

ϕSAH
i j (ω ,z,s′,s,τ) = ω [ri j(s

′,s,z)/c0 + s− s′ − τ] , (37)

with

ri j(s
′,s,z) = |γγγ i(s

′)−z|− |γγγ j(s)−z| (38)

and

ASAH
i j (z,ω ,s′,s) =

ω4 |p̂(ω)|2 RT (z) ÃRi j (z,z,s
′,s)

(4π)4 Gi j(z,z,s′,s)
. (39)

We refer to ri j(s′,s,z) as the hitchhiker or passive range.
We remark that under the start–stop approximation ϕDSAH

i j ≈ 1 and ϕSAH
i j is given

by the exponential term in ADSAH
i j [see (24)], where s is replaced with s− τ in SAH

to incorporate the fast-time delay information.
Similar to DSAH, for cooperative sources of opportunity, we treat Jtr determin-

istically and replace R̃T (z) with Jtr(ẑ−T,T)J∗tr(ẑ−T,T).
We refer to F SAH

i j defined in (36) as the SAH or range hitchhiker or simply

hitchhiker FIO; and ϕSAH
i j , ASAH

i j as the phase and amplitude terms of the operator

F SAH
i j .
Note that the spatiotemporal correlation of the received signal removes all

transmitter related terms from the phase of the operator F SAH
i j .

2.2.1 High-Frequency Analysis of the SAH FIO and Passive
iso-Range Contours

We assume that for some mSAH
A , ASAH

i j satisfy the inequalities

sup
(ω,s′ ,s,z)∈USAH

∣
∣
∣∂ αω

ω ∂ β1
s′ ∂ β2

s ∂ ε1
z1

∂ ε2
z2

ASAH
i j (z,ω ,s′,s)

∣
∣
∣≤CSAH

A (1+ω2)(m
SAH
A −|αω |)/2 ,

(40)

where USAH is any compact subset of R×R×R×R
2; the constant CSAH

A depends
on USAH,αω ,β1,2, ε1,2. These assumptions are needed to make various stationary
phase calculations hold. In practice, (40) is satisfied for transmitters and receivers
sufficiently far away from the illuminated region.

Under the assumption (40), (36) defines F SAH
i j as an FIO whose leading-order

contribution comes from those points lying at the intersection of the illuminated
surface and the hyperboloid {x ∈ R

3 : ri j(s′,s,z) = c0(τ + s′ − s)}. We denote the
curves formed by this intersection by

Hi j(s
′,s,τ) = {z : ri j(s

′,s,z) = c0(τ + s′ − s)} (41)
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Fig. 3 SAH Iso-range
contours H12(s′, s,C) for the
hitchhiker range
r12(22.0674s,−11.0337s,z).
Two receivers are traversing a
circular flight trajectory
(dashed line) at the speed of
261m/s over a flat
topography. γγγ1(s̃) = γγγC(s̃)
and γγγ2(s̃) = γγγC(s̃−π/4),
respectively, where white and
black triangles denote the
positions of the two receivers
at s̃ = π/6, respectively.
(See (38) and (70) for explicit
formulae of
r12(22.0674s,−11.0337s,z)
and γγγC(s̃), respectively)

and refer to Hi j(s′,s,τ) as the passive iso-range or SAH iso-range contour. For
flat topography, ψ(z) = 0, the SAH iso-range contours are given by hyperbolas
on the plane z3 = 0. We present the iso-range contours for circular receiver flight
trajectories over a flat topography in Fig. 3.

Comparing the DSAH and SAH presented in Sects. 2.1 and 2.2, we see that the
DSAH imaging does not rely on the start–stop approximation and is based on the
fast-time Doppler. In other words, the DSAH imaging method takes into account
range variations or Doppler induced due to the movement of the receivers during
the reception of a CW waveform. SAH imaging, on the other hand, relies on the
start–stop approximation and ignores the range variation due to the movement of
the receivers, hence the fast-time Doppler, during the reception of a wideband pulse.
Thus, the SAH measurement model can be derived from the DSAH measurement
model by setting the Doppler-scale-factor to unity and decoupling the time into fast-
and slow-time variables.

3 Image Formation

Our objective is to form an image of the scene radiance Rρ(z) using E[ci j(s′,s,μ)]
or E[di j(s′,s,τ)], i, j = 1, . . . ,N based on the correlated measurement models (21)
for DSAH or (36) for SAH, respectively.

Since both FDSAH
i j and F SAH

i j are FIOs, we form an image of the scene radiance
by other suitably designed FIOs, which we refer to as the filtered-backprojection
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operators. For DSAH, we backproject E[ci j(s′,s,μ)] onto passive iso-Doppler
contours defined by Fi j(s′,s,μ). For SAH, we backproject E[di j(s′,s,τ)] onto pas-
sive iso-range contours defined by Hi j(s′,s,τ) for i, j = 1, . . . ,N. We form an image
of the scene radiance by the superposition of the filtered and backprojected data.

3.1 DSAH Filtered-Backprojection Operator

For DSAH image formation, we invert E[ci j(s′,s,μ)] as follows:

R̃DSAH
ρ (z) = ∑

i j

∫
K DSAH

i j [E[ci j]](z,s
′)ds′ , (42)

where we define

K DSAH
i j [E[ci j]](z,s

′) =
∫

eiϕDSAH
i j (t,z,s′,s,μ)QDSAH

i j (z, t,s′,s)E[ci j(s
′,s,μ)]dtdsdμ .

(43)

We refer to K DSAH
i j as the DSAH filtered-backprojection operator with respect to

the ith and jth receivers with filter QDSAH
i j to be determined below.

We assume that for some mDSAH
Q , QDSAH

i j satisfies the inequality

sup
(t,s′ ,s,z)∈KDSAH

∣
∣
∣∂ αt

t ∂ β1
s′ ∂ β2

s ∂ ε1
z1

∂ ε2
z2

QDSAH
i j (z, t,s′,s)

∣
∣
∣ ≤ CDSAH

Q (1+ t2)(m
DSAH
Q −|αt |)/2 ,

(44)

where KDSAH is any compact subsets of R×R×R×R
2, and the constant CDSAH

Q

depends on KDSAH,αt ,β1,2, ε1,2. The assumption in (44) makes K DSAH
i j an FIO.

Substituting (21) into (43) and the result back into (42), we obtain

R̃DSAH
ρ (z) = ∑

i j
K DSAH

i j FDSAH
i j [Rρ ](z)

=
∫

ei[ϕDSAH
i j (t,z,s′,s,μ)−ϕDSAH

i j (t′,z′,s′,s,μ)] QDSAH
i j (z, t,s′,s)

×ADSAH
i j (z′, t,s′,s,μ)Rρ (z

′)dt ′ dt dsds′ dμ dz′ . (45)

We use the stationary phase theorem to approximate the t ′ and μ integrations
[4, 15, 16, 24] and obtain

R̃DSAH
ρ (z) ≈ ∑

i j

∫
e

iω0t

[
1− ̂(γγγ j(s)−z)·γ̇γγ j(s)/c0

][
Si j(s′,s,z′)−Si j(s′,s,z)

]

×QDSAH
i j

(
z, t,s′,s

)
ADSAH

i j

(
z′, t,s′,s,Si j

(
s′,s,z′

))
Rρ

(
z′
)

dt dsds′ dz′ .

(46)
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Fig. 4 An illustration of the vector ΞΞΞDSAH
i j (s′, s,z) in the data collection manifold Ω DSAH

i j,z for the

flat topography, ψ(z) = 0. ΞΞΞ DSAH
i j (s′, s,z) is the projection of the difference of the scaled vectors

γ̇γγ i,⊥(s′) and γ̇γγ j,⊥(s) onto the tangent plane of the ground topography at z. (See (48) for an explicit

form of ΞΞΞ DSAH
i j (s′, s,z))

We linearize Si j(s′,s,z′) around z′ = z and approximate

Si j(τ ′,τ,z′)− Si j(τ ′,τ,z) ≈ (z′ −z) ·∇zSi j(s
′,s,z) . (47)

Let

ΞΞΞ DSAH
i j (s′,s,z) = ω0

[
1− ̂(γγγ j(s)−z) · γ̇γγ j(s)/c0

]
∇zSi j(s

′,s,z)

=
ω0

c0
Dψ(z) ·

[
1

|γγγ i(s
′)−z| γ̇γγ i,⊥(s

′)− Si j(s′,s,z)
|γγγ j(s)−z| γ̇γγ j,⊥(s)

]

, (48)

where

Dψ(z) =

[
1 0 ∂ψ(z)/∂ z1

0 1 ∂ψ(z)/∂ z2

]

(49)

and γ̇γγ i,⊥(s′), γ̇γγ j,⊥(s) are the projections of γ̇γγ i(s
′) and γ̇γγ j(s) onto the planes whose

normal vectors are ( ̂γγγ i(s
′)−z) and ( ̂γγγ j(s)−z), respectively.

We show an illustration of the vector ΞΞΞ DSAH
i j (s′,s,z) in Fig. 4 for two receivers

flying over a flat topography.
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Substituting (47) and (48) into (46), we obtain

R̃DSAH
ρ (z) ≈ ∑

i j

∫
e−it (z′−z)·ΞΞΞ DSAH

i j (s′,s,z) QDSAH
i j (z, t,s′,s)

×ADSAH
i j (z, t,s′,s)Rρ (z

′)dt dsdz′ ds′ . (50)

Note that under the assumptions (44) and (25), (50) shows that K DSAH
i j FDSAH

i j
is a pseudodifferential operator [33]. This means that the backprojection operator
reconstructs the visible edges of the scene radiance at the correct location and
correct orientation.

3.2 SAH Filtered-Backprojection Operator

For SAH imaging, we form an image of the scene radiance as follows:

R̃SAH
ρ (z) = ∑

i j

∫
K SAH

i j [E[di j]](z,s
′)ds′ , (51)

where we define

K SAH
i j [E[d]] (z,s′) = ∑

i j

∫
eiϕSAH

i j (ω,z,s,s′,τ)QSAH
i j (z,ω ,s′,s)d(s′,s,τ)dτ dω dsds′.

(52)

We refer to K SAH
i j as the SAH filtered-backprojection operator with respect to

the ith and jth receivers with filter QSAH
i j to be determined below.

Similarly, we assume that for some mSAH
Q , QSAH

i j satisfies the inequality

sup
(ω,s′ ,s,z)∈KSAH

∣
∣
∣∂ αω

ω ∂ β1
s′ ∂ β2

s ∂ ε1
z1

∂ ε2
z2

QSAH
i j (z,ω ,s′,s)

∣
∣
∣ ≤ CSAH

Q (1+ω2)(m
SAH
Q −|αω |)/2 ,

(53)

where KSAH is any compact subsets of R×R×R×R
2, and the constant CSAH

Q

depends on KSAH,αω ,β1,2, ε1,2. The assumption in (53) makes K SAH
i j an FIO.

Substituting (36) into (52), and using the stationary phase theorem as in DSAH
imaging, we approximate

R̃SAH
ρ (z) = ∑

i j
K SAH

i j F SAH
i j [Rρ ](z)

=

∫
eiω[ri j(s

′,s,z′)−ri j(s
′,s,z)]/c0 QSAH

i j (z,ω ,s′,s)

×ASAH
i j (z′,ω ,s′,s)Rρ (z

′)dω dsds′ dz′ . (54)
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Fig. 5 An illustration of the vector ΞΞΞSAH
i j (s′, s,z) in the data collection manifold Ω SAH

i j,z for the

flat topography, ψ(z) = 0. ΞΞΞSAH
i j (s′, s,z) is the projection of the difference of the unit vectors

̂γγγ j(s)−z and ̂γγγ i(s
′)−z onto the tangent plane of the ground topography at z. (See (56) for an

explicit form of ΞΞΞ SAH
i j (s′, s,z))

We linearize ri j(s′,s,z′) around z′ = z and make the following approximations:

ri j(s
′,s,z′)− ri j(s

′,s,z) = (z′ −z) ·ΞΞΞ SAH
i j (s′,s,z) , (55)

where

ΞΞΞ SAH
i j

(
s′,s,z

)
= Dψ (z) ·

(
̂γγγ j (s)−z− ̂γγγ i (s

′)−z
)

(56)

and Dψ(z) is given in (49).
For flat topography, we present an illustration of ΞΞΞ SAH

i j (s′,s,z) in Fig. 5.
Substituting (55) into (54), we obtain

R̃SAH
ρ (z) = ∑

i j

∫
eiω(z′−z)·ΞΞΞSAH

i j (s′,s,z)/c0 QSAH
i j (z,ω ,s′,s)

×ASAH
i j (z,ω ,s′,s)Rρ(z)dω dsds′ dz′ . (57)

Under the assumptions (53) and (40), (57) shows that K SAH
i j F SAH

i j is a pseudod-
ifferential operator [33]. This means that the backprojection operator reconstructs
the visible edges of the scene radiance at the correct location and orientation in
SAH imaging.
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3.3 Determination of the Filter

QDSAH
i j and QSAH

i j can be determined with respect to various criteria [39]. Ideally,
they are chosen such that the leading-order contributions of the point spread
functions (PSFs) of K DSAH

i j and K SAH
i j are Dirac-delta functions. This choice of

the filters ensures that K DSAH
i j and K SAH

i j reconstruct the visible edges of the scene
radiance not only at the correct location and orientation, but also with the correct
strength [25, 26, 30, 39].

In DSAH imaging, for each s′ and z, we make the following change of variables:

(t,s)→ ξξξ DSAH
i j = t ΞΞΞ DSAH

i j (s′,s,z) (58)

in (50) and obtain

R̃DSAH
ρ (z) ≈ ∑

i j

∫

Ω DSAH
i j,s′ ,z

e−i(z′−z)·ξξξ DSAH
i j QDSAH

i j

(
z, t

(
ξξξ DSAH

i j

)
,s′,s

(
ξξξ DSAH

i j

))

×ADSAH
i j

(
z, t

(
ξξξ DSAH

i j

)
,s′,s

(
ξξξ DSAH

i j

))
∣
∣
∣∣
∣

∂ (t,s)
∂ξξξ DSAH

i j

∣
∣
∣∣
∣
Rρ (z

′)dξξξ DSAH
i j dz′ds′ ,

(59)

where |∂ (t,s)/∂ξξξ DSAH
i j | is the determinant of the Jacobian that comes from the

change of variables given in (58).
The domain of integration in (59) is given as follows:

Ω DSAH
i j,s′,z =

{
ξξξ DSAH

i j = t ΞΞΞ DSAH
i j (s′,s,z) |ADSAH

i j (z, t,s′,s) �= 0,

(t,s′,s) ∈ (R,R,R)
}
. (60)

We refer to Ω DSAH
i j,s′,z as the DSAH partial data collection manifold at (s′,z) obtained

by the ith and jth receivers for a fixed s′ and refer to the union ∪i j,s′Ω DSAH
i j,s′,z as the

DSAH data collection manifold at z and denote it by Ω DSAH
z . This set determines

many of the properties of the reconstructed DSAH image.
To approximate the PSF with the Dirac-delta function, we choose the filter as

follows:

QDSAH
i j (z, t,s′,s) =

ADSAH∗
i j (z, t,s′,s,μ)

|ADSAH
i j (z, t,s′,s,μ)|2

χDSAH
Ωi j,s′ ,z

(z, t,s′,s)

|∂ (t,s)/∂ξξξ DSAH
i j |

, (61)

where χDSAH
Ωi j,s′ ,z

is a smooth cutoff function that is equal to one in the interior of

Ω DSAH
i j,s′,z and zero in the exterior of Ω DSAH

i j,s′,z .
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Similarly, in SAH Imaging, for each s′ and z, we make the following change of
variables:

(ω ,s)→ ξξξ SAH
i j =

ω
c0

ΞΞΞ SAH
i j (s′,s,z) (62)

in (57) and obtain

R̃SAH
ρ (z) ≈ ∑

i j

∫

ΩSAH
i j,s′ ,z

ei(z′−z)·ξξξ SAH
i j QSAH

i j

(
z,ω

(
ξξξ SAH

i j

)
,s′,s

(
ξξξ SAH

i j

))

×ADSAH
i j

(
z,ω

(
ξξξ SAH

i j

)
,s′,s

(
ξξξ SAH

i j

))
∣
∣∣
∣
∣
∂ (ω ,s)

∂ξξξ SAH
i j

∣
∣∣
∣
∣
Rρ(z

′)dξξξ SAH
i j dz′ds′ ,

(63)

where

∣∣
∣
∣

∂ (ω,s)

∂ξξξ SAH
i j

∣∣
∣
∣ is the determinant of the Jacobian that comes from the change of

variables in (62).
In (63), the domain of integration is given as follows:

Ω SAH
i j,s′,z =

{
ξξξ SAH

i j =
ω
c0

ΞΞΞ SAH
i j (s′,s,z) |ASAH

i j (z,ω ,s′,s) �= 0,

(ω ,s′,s) ∈ (R,R,R)

}
. (64)

We refer to Ω SAH
i j,s′,z as the SAH partial data collection manifold at (s′,z) obtained by

the ith and jth receivers for a fixed s′ and refer to the union ∪i j,s′Ω SAH
i j,s′,z as the SAH

data collection manifold at z and denote it by Ω SAH
z . Again, this set determines

many of the properties of the reconstructed SAH image.
Similarly, to approximate the PSF with the Dirac-delta function, we choose the

filter as follows:

QSAH
i j (z,ω ,s′,s) =

ASAH∗
i j (z,ω ,s′,s)

|ASAH
i j (z,ω ,s′,s)|2

χSAH
Ωi j,s′,z

(z,ω ,s′,s)

|∂ (ω ,s)/∂ξξξ SAH
i j |

, (65)

where χSAH
Ωi j,s′ ,z

is a smooth cutoff function that is equal to one in the interior of

Ω SAH
i j,s′,z and zero in the exterior of Ω SAH

i j,s′,z .
Irrespective of the choice of the filters, the filtered-backprojection operators

K DSAH
i j and K SAH

i j reconstruct the visible edges of the scene radiance at the correct
location and correct orientation. With the choice of the filters given in (61) and (65),
the resulting image formation method can recover the visible edges not only at the
correct location and orientation, but also with the correct strengths.
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4 Resolution Analysis

Substituting (61) and (65) into (59) and (63), respectively, we obtain

R̃DSAH
ρ (z) ≈ ∑

i j

∫

ΩDSAH
i j,s′ ,z

e−i(z′−z)·ξξξ DSAH
i j Rρ(z

′)dz′ dξξξ DSAH
i j ds′ , (66)

R̃SAH
ρ (z) ≈ ∑

i j

∫

ΩSAH
i j,s′ ,z

ei(z′−z)·ξξξ SAH
i j Rρ(z

′)dz′ dξξξ SAH
i j ds′ . (67)

Equation (66) and (67) show that the DSAH and SAH images, R̃DSAH
ρ and

R̃SAH
ρ are bandlimited versions of Rρ whose bandwidth are determined by the data

collection manifolds Ω DSAH
z and Ω SAH

z , respectively. The data collection manifolds
determine the resolution of the reconstructed images at z. The larger the data
collection manifold, the better the resolution of the reconstructed image is.

Microlocal analysis of (66) and (67) tell us that an edge at point z is visible in
DSAH or SAH image if the direction nz normal to the edge is contained in Ω DSAH

z

or Ω SAH
z , respectively [25, 26, 30, 39]. Consequently, an edge at point z with nz

normal to edge is visible if there exists i, j,s′,s such that ξξξ DSAH
i j or ξξξ SAH

i j is parallel
to nz .

The bandwidth contribution of ξξξ DSAH
i j and ξξξ SAH

i j to a visible edge at z is given by

ω0

c0
Lφ

∣
∣
∣
∣∣
Dψ(z) ·

[
1

|γγγ i(s
′)−z| γ̇γγ i,⊥(s

′)− Si j(s′,s,z)
|γγγ j(s)−z| γ̇γγ j,⊥(s)

]∣∣
∣
∣∣
, (68)

Bω
c0

∣
∣
∣Dψ(z) · ( ̂γγγ j(s)−z− ̂γγγ i(s

′)−z)
∣
∣
∣ , (69)

where Lφ denotes the length of the support of φ(t) and Bω denotes the bandwidth
of the transmitted waveform.

Equation (68) shows that for DSAH imaging, the longer the support of φ(t)
becomes, the larger the magnitude of ξξξ DSAH

i j is, giving rise to sharper reconstructed

edges perpendicular to ξξξ DSAH
i j , i, j = 1, . . . ,N. Additionally, the higher the carrier

frequency of the transmitted signal ω0 becomes, larger the magnitude of ξξξ DSAH
i j is,

contributing to higher image resolution.
Equation (69) shows that for SAH imaging, as the bandwidth of the transmitted

signal becomes larger, the magnitude of ξξξ SAH
i j gets larger, which results in higher

image resolution. The sharpness of the reconstructed edges is also directly propor-
tional to the bandwidth of the transmitted signal.

Furthermore, we note that in DSAH imaging, the resolution depends on the
range via the terms |γγγ i(s

′)−z| and |γγγ j(s)−z| and the velocities of the receivers via
the terms γ̇γγ i,⊥ and γ̇γγ j,⊥. As the scatterers are further away from the receivers, or the
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Table 1 Parameters that
affect the DSAH image
resolution

Parameter Increase Resolution

Carrier frequency: ω0 ↑ ↑
Length of the windows Lφ ↑ ↑
Distance |γγγ i(s

′)−z|, |γγγ j(s)−z| ↑ ↓
Antenna velocity γ̇γγ i or γ̇γγ j ↑ ↑
Number of s samples ↑ ↑
Number of time windows (s′) ↑ ↑
↑: Increase (higher) ↓: Decrease (lower)

Table 2 Parameters that affect the SAH image resolution

Parameter Increase Resolution

Bandwidth of the transmitted waveform: Bω ↑ ↑
Angle between ̂γγγ j(s)−z and ̂γγγ i(s

′)−z ↑ ↑
Number of s samples ↑ ↑
Number of time windows (s′) ↑ ↑
↑: Increase (higher) ↓: Decrease (lower)

velocities of the receivers decrease, the resolution gets worse due to the decrease in
the magnitude of ξξξ DSAH

i j . In SAH imaging, the resolution also depends on the angle

between the unit vectors ̂γγγ j(s)−z and ̂γγγ i(s′)−z. The larger the angle is, the larger

the magnitude of ξξξ SAH
i j becomes, resulting in better resolution.

Additionally, the increase in the number of s samples and the time windows
(indicated by s′) used for imaging also leads to a larger data collection manifold
in DSAH or SAH imaging, which improves the resolution.

We summarize the parameters that affect the resolution of the reconstructed
image in DSAH and SAH imaging in Tables 1 and 2, respectively.

5 Numerical Simulations

We considered a scene of size [0,22]× [0,22]km2 with flat topography. The scene
was discretized into 128 × 128 pixels, where [0,0,0]km and [22,22,0]km
correspond to the pixels (1,1) and (128,128), respectively.

In all the numerical experiments, we used two airborne receivers and a
single, stationary transmitter operating either cooperatively or noncooperatively.
We assumed that both the receiver and transmitter antennas were isotropic.
We assumed that the transmitter was located at y0 = (0,0,6.5)km and the receivers
were traversing the circular trajectory given by

γC(s̃) = (11+ 11cos(s̃),11+ 11sin(s̃),6.5)km. (70)
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Fig. 6 Discretized scene reflectivity used in the numerical simulations of (a) DSAH imaging and
(b) SAH imaging. [0,0,0]km and [22,22,0]km are located at the lower left and upper right corners,
respectively

Let γ1(s̃) and γ2(s̃) denote the trajectories of the two receivers. We set γ1(s̃) = γC(s̃)
and γ2(s̃) = γ1(s̃− π

6 ). Note that the variable s̃ in γC is equal to V
R t, where V is the

speed of the receiver, and R is the radius of the circular trajectory. We set the speed
of the two receivers to 261m/s. We chose the sampling rate of s to be 1.9335 Hz so
as to uniformly sample the circular trajectory with 512 points.

In accordance with the incoherent field approximation, we used the following
multiple-point-target model for the scene reflectivity,

ρ(z) =
L

∑
l=1

glδ (z−zl) , (71)

where gl , l = 1, . . . ,L are independent Gaussian random variables with mean μl and
variance σ2

l . The corresponding scene radiance is given by

Rρ(z) = E[ρ(z)ρ∗(z)] = ∑
l

(μ2
l +σ2

l )δ (z−zl). (72)

In our simulations, we considered a deterministic reflectivity and set σ2
l = 1.

We used L = 9 and approximated the Dirac-delta functions in (72) by square
target reflectors of size 344× 344m2, each having a unit reflectivity, i.e., μl = 1,
l = 1, . . . ,9.

Figure 6a, b show the scene with targets used in the simulations of the DSAH
imaging and SAH imaging, respectively. Figure 7 shows the receiver trajectories
and the transmitter antenna location used for DSAH and SAH simulations.

We performed image reconstruction for each s′ and coherently superimposed the
reconstructed images obtained over a range of s′.
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Fig. 7 3-D view of the scene with multiple point targets, illuminated by a single transmitter
located at y0 = (0,0,6.5)km and the circular receiver trajectory γC(s̃) = (11 + 11cos(s̃),11 +
11sin(s̃),6.5)km, as shown by the red solid line. At a certain time instant, two receivers are located
at the positions shown in the figure

5.1 Numerical Simulations for DSAH Imaging

We used (9) to generate the data and chose the windowing function φ in (9) to be a
Hanning function.

The transmitted waveform was assumed to be a single-frequency CW waveform
with 800MHz carrier frequency. The length of the windowing function was set to
Lφ = 0.0853s.

For the case of a cooperative transmitter, the reconstructed image is shown in
Fig. 8a. It can be seen that the targets are well reconstructed using the DSAH image
formation method.

Figure 8b shows the reconstructed image using a noncooperative transmitter.
Since the location of the transmitter was assumed to be unknown, the received
signal was not compensated for the transmitter related geometric spreading factors.
As a result, the targets closer to the transmitter appears brighter in the reconstructed
image than those that are further away from the transmitter.

5.2 Numerical Simulations for SAH Imaging

We used (33) to generate the data for performing SAH imaging simulations and
chose the windowing function φ in (33) to be a Hanning function as in DSAH
imaging simulations.

A transmitted pulse at center-frequency 0Hz with bandwidth equal to 0.873MHz
was used in the simulations.
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Fig. 8 The reconstructed DSAH images obtained by superposing the images obtained using
multiple s′ values and two receivers traversing the circular flight trajectories γ1(s̃) and γ2(s̃) as
shown in Fig. 7 and a single (a) cooperative transmitter, and (b) noncooperative transmitter located
at y0

Fig. 9 The reconstructed SAH images obtained by superposing the images obtained using
multiple s′ values and two receivers traversing the circular flight trajectories γ1(s̃) and γ2(s̃) as
shown in Fig. 7 and a single (a) cooperative transmitter, and (b) noncooperative transmitter located
at y0

The reconstructed images corresponding to the cooperative and noncooperative
transmitter cases are shown in Fig. 9a, b, respectively. We see that the targets are
reconstructed successfully in both cases and in the noncooperative case, the strength
of the targets closer to the transmitter are higher as expected.

6 Conclusion

We presented a unified theory of passive synthetic aperture imaging based on
inverse scattering theory, estimation-detection theory and microlocal analysis. Our
theory involves development of passive measurement models based on inverse
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scattering and estimation-detection theory and analytic inversion methods based
on microlocal analysis. The measurement models involve windowed, scaled, and
translated correlation of the received signals at different receiver locations. This
correlation process results in measurement models in the form of FIOs. Taking into
account the nature of the waveforms of opportunity, we developed two different
measurement models: DSAH FIO and SAH FIO.

DSAH FIO-based model projects the scene radiance onto passive iso-Doppler
contours, and SAH FIO-based model projects the scene radiance onto passive
iso-range contours. The correlation process removes the transmitter-related terms
from the phase of the resulting FIO-based DSAH and SAH measurement models,
allowing us to perform backprojection without the knowledge of the transmitter
locations.

We used microlocal techniques to backproject the correlated signals onto the
passive iso-Doppler contours in DSAH imaging and onto passive iso-range contours
in SAH imaging. The filtered-backprojection reconstruction methods for DSAH
and SAH have the desirable property of preserving the visible edges of the scene
radiance at the correct location and orientation, and at the correct strength with
appropriate choice of filters.

Our analysis shows that the resolution of the reconstructed DSAH images is
determined primarily by the temporal duration and frequency of the transmitted
waveforms, and the resolution of the reconstructed SAH images is determined
primarily by the bandwidth of the transmitted waveforms. These results are
consistent with the ambiguity theory of the CW or ultra-narrowband waveforms
and the wideband waveforms.

While we focused primarily on the passive synthetic aperture radar, the theory of
DSAH and SAH imaging introduced in this chapter and the resulting methods and
algorithms are also applicable to other wave-based passive imaging problems, such
as those that arise in geophysics or acoustics.
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Mathematics of data processing is represented by select topics of harmonic and
geometric analysis showcasing the latest developments in this area. Three chapters
are devoted to analysis of special classes of polynomials and code design. Two
chapters deal with finding the structure of large data sets, and one chapter studies an
aspect of a class of stochastic processes.

The first of the six chapters on mathematics of data processing is by GEORGE

BENKE. He connects a beam-pattern design problem for thin arrays to the uni-
modular polynomial problem in harmonic analysis which asks for a trigonometric
polynomial P(X) with unit modulus coefficients that has equal values of |P(X)|. He
extends the construction of Golay-Rudin-Shapiro polynomials to produce trigono-
metric polynomials of unit coefficients supported on a set of size N = pn +O(pn/2)
for a given integer n≥ 2 and prime p≥ 2.

GUANGLIANG CHEN, ANNA V. LITTLE, and MAURO MAGGIONI analyze large
data sets in high dimensions using geometric multi-resolution analysis. Given
a point cloud obtained by sampling a lower-dimensional manifold and adding
noise, the authors present results on dimension estimation and subsequently on
parametric modeling of the underlying manifold. Their approach is constructive,
and an algorithm that implements the geometric wavelet transform is also presented.
The chapter ends with numerical results on synthetic and real-world data sets, such
as the MNIST data set of handwritten digits.

CAROL T. CHRISTOU and GARRY M. JACYNA study the fourth-order structure
function of a fractional Brownian motion. Their focus is on the flatness function
which is the ratio of the fourth-order structure function to the square of the
second-order structure function. The authors show that the flatness function grows
unboundedly with the lower band-edge frequency of the high-pass component of
the signal.

RONALD COIFMAN and MATAN GAVISH present a framework that integrates
methods of harmonic analysis and geometry to problems and concepts from
machine learning. The main problem is exemplified by finding structures in point
clouds. Using a similarity measure (affinity), the authors construct an approximation
of the discretized Laplace-Beltrami operator whose set of eigenfunctions generate
the first-level structure of the point cloud.

GREGORY E. COXSON analyzes transformations that preserve good autocor-
relation properties of unimodular codes. Specifically he looks for groups of
transformations that do not change the magnitude of the peak sidelobe level (PSL).
For binary codes there is a single Abelian group of order 8 that preserves the PSL.
For quad-phase codes, whose entries belong to {1,−1, i,−i}, there are four groups
(two pairs of isomorphic groups). For the general mth roots of unity codes of odd
length there are 4m2 groups. The author describes their structure for odd values of m.

DAVID JOYNER studies classes of self-reciprocal polynomials p(z) of degree n
that satisfy zn p( 1

z ) = p(z). He is particularly interested in self-reciprocal polynomi-
als whose zeros are on the unit circle. The author lists several classes of polynomials
such as Littlewood polynomials, zeta polynomials, Duursma zeta polynomials, and
Alexander polynomials. He ends his chapter by conjecturing that zeros of self-
reciprocal polynomials whose coefficients grow slowly are on the unit circle.



Golay–Rudin–Shapiro Polynomials
and Phased Arrays

George Benke

Abstract A single-frequency plane wave propagating at speed c in the direction of
the unit vector N is given by

S(X, t) = exp iω
(

t− N ·X
c

)
. (1)

Suppose {X1, . . . ,XN} ⊂ Rn is a fixed set of locations, called the array, and
w1, . . . ,wN ⊂ C is a set of weights. The linear combination

G(t) =
N

∑
k=1

wkS(X, t) =
N

∑
k=1

wk exp(iωt)exp

(
iω
c

N ·Xk

)

= exp iωt
N

∑
k=1

wk exp

(
−2π i

(
N ·Xk

λ

))
= (exp iωt)H(N) (2)

is the output of the “phased array”. Given unit vector N0, if we let

wk = exp

(
2π i

(
N0 ·Xk

λ

))
(3)

then H(N0) = N and |H(N)| ≤ N for all N. The “phased array problem” is to find
{X1, . . . ,XN} such that |H(N) looks as much like a delta function as possible.
We study this problem in the simplified case where {X1, . . . ,XN} lie on a line.
In this case, through a mild change of variables, H(N) is replaced by the 1-periodic
trigonometric polynomial

A(x) =
N

∑
k=1

e2π inkx, (4)
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where the integers nk specify the location of the Xk on the line. Then the problem
is to chose the nk so that A(x) looks like a (periodic) delta function with mass at
x = 0. In order to achieve a sharp peak at x = 0 the nk must be very spread out.
When this is so, the array is referred to as a “thin phased array”. However if the
nk are too uniformly spaced there will be large peaks at locations other than x = 0.
The graph of |A(x)| is fairly insensitive to the distribution of the nk in the region
close to x = 0, called the “main lobe region”. The complement of the main lobe
region is called the “sidelobe region”. The problem is to minimize the maximum
of |A(x)| in the sidelobe region. Energy considerations show that the maximum of
|A(x)| in the sidelobe region cannot be less than O(

√
N). Random choices of the nk

cannot do better than O(
√

N logN) for sidelobe maxima. In this chapter we give
a construction which achieves O(

√
N) sidelobe maxima. Specifically we use the

theory of generalized golay–rudin–shapiro polynomials to construct asymptotically
optimal thin phased arrays. More precisely, given n ≥ 2 and prime p ≥ 2 we
construct integer sets {n1, . . . ,nN} contained in {0,1, . . . , pn+1} such that

∣
∣∣
∣
∣

N

∑
k=1

e2π inkx

∣
∣∣
∣
∣
≤
∣∣
∣
∣
sinπ pn+1x

psinπx

∣∣
∣
∣+O(pn/2),

where N = pn +O(pn/2).

Keywords Golay • Rudin • Shapiro • Golay–Rudin–Shapiro • Phased array •
Antenna • Unimodular polynomial • Thin array • Array factor • Complementary
pair

1 Introduction

In this chapter we discuss the connection between an extremal problem in harmonic
analysis and the design of optimal phased arrays. An old question in harmonic
analysis, often called the unimodular polynomial problem, is “how close can we
come to having a trigonometric polynomial P(x) with unit modulus coefficients
also have equal values of |P(x)| ?”. While still not completely solved, the liter-
ature on this problem contains may spectacular results [3–7, 10, 14–17]. At the
same time engineers have asked “how close can we get to designing phased
arrays with flat sidelobes?”. A tiny sample of the large literature in this area is
[11–13, 19–21, 23–25].

A particularly interesting chapter in the investigation of the unimodular
polynomial problem is that of the theory of Golay–Rudin–Shapiro polynomials.
In 1949 Golay [6] wrote a paper entitled “Multislit spectroscopy,” in which he
defined pairs of ±1 valued sequences such that the sum of the autocorrelations
is a discrete δ -function. Such pairs are called complementary sequences and
have been studied and extended in various directions [1, 3–5, 7, 8, 14–18, 22].
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If the ±1’s from a complementary pair of sequences are the coefficients of a pair
of polynomials P(x) and Q(x), then the autocorrelation property is equivalent
to |P(x)|2 + |Q(x)|2 ≡ constant. Such pairs of polynomials were defined by
Shapiro [17] in 1957 and later by Rudin [16] in 1959. These Golay–Rudin–Shapiro
polynomials address the unimodular polynomial problem since they satisfy

‖P‖2 ≤ ‖P‖∞ ≤
√

2‖P‖2. (5)

The phase array design problem can be formulated a little more precisely by
asking “how close can we come to finding sets of integers {n1, . . . ,nN} of prescribed
density such that

∣∣
∣
∣
∣

N

∑
k=1

e2π inkx

∣∣
∣
∣
∣

(6)

looks like a δ -function in the interval −1/2 ≤ x ≤ 1/2 ?”. It turns out that this
requires two conflicting properties: (1) the nk’s should be spread evenly over a larger
interval of integers, and (2) the nk’s should not have too much arithmetic structure.
This problem has been addressed for small N by computationally intensive opti-
mization techniques and searches. However, there is practical as well as theoretical
interest in the case where N is large. For such N the computational complexity
makes such approaches infeasible. Choosing the sets {n1, . . . ,nN} randomly has
also been considered [2, 9, 13, 19]. However, it can be shown that such methods are
necessarily sub-optimal. More precisely, it can be shown that for N element sets, the
sidelobes cannot be better than O(

√
N), and random sets can only achieve sidelobes

of order O(
√

N logN).
We will show how generalized Golay–Rudin–Shapiro polynomials can be used

to construct sets of integers {n1, . . . ,nN} such that the sidelobes are O(
√

N) and
the density is asymptotically 1/p, where p is a prime. Our initial construction
does not allow us to specify N arbitrarily, instead producing sets of cardinality
N = pn +O(pn/2) which are subsets of {1,2, . . . , pn+1} and produce sidelobes of
order O(pn/2). However such sets can be concatenated to give sets of arbitrary
cardinality N, asymptotic density 1/p and sidelobes of order O(

√
N). It is an open

question as to how to find sets of cardinality N, sidelobes of order O(
√

N) but
arbitrary density.

The remainder of this chapter is structured as follows. Since we wish to make this
paper accessible to readers other than antenna engineers, we have included Sect. 2
which gives some background in array theory and which formulates the array design
problem as a precise mathematical problem which is solved in Sect. 4. To prepare
for and to motivate the work in Sect. 4, we have included Sect. 3, where we briefly
review the definition and basic properties of the classical Golay–Rudin–Shapiro
polynomials. We then show how the definition and theory of complementary pairs
can be extended to complementary triples and by a small example how such
polynomials can be used to construct certain subsets of integers. Essentially, this
is our construction. However, the claimed properties are not obvious from the
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example and are proven in the main theoretical Sect. 4. In Sect. 4 we reformulate
those parts of generalized Golay–Rudin–Shapiro theory [1] which are relevant to
our construction and prove the claimed properties.

2 Some Background on Phased Arrays

A complex time-varying field in an n-dimensional space is a function S(X, t) from
Rn×R into the complex numbers C. Given a set B ∈ Rn, an “antenna supported in
B” is an operator which takes S(X, t) restricted to B×R and produces some kind
of information about the field. If B is a discrete set we have an antenna array. By a
phased array we mean an operator which takes the field S(X, t) and produces

G(t) =
N

∑
k=1

wkS(Xk, t), (7)

where B = {X1, . . . ,XN} and w1, . . . ,wN are a set of weights. For example, if σ(t)
is a “signal”, then

S(X, t) = σ
(

t−N ·X
c

)
(8)

corresponds to the signal σ(t) propagating with speed c in the direction of the unit
vector N. Two useful properties of an antenna are (1) to produce Kσ(t), an amplified
version of the signal, and (2) the vector N which gives the propagation direction of
the signal.

An important special case is the single-frequency complex plane wave

S(X, t) = exp iω
(

t−N ·X
c

)
. (9)

The output of a phased array sensing this field is

G(t) =
N

∑
k=1

wkS(Xk, t) =
N

∑
k=1

wk exp(iωt)exp

(−iω
c

N ·Xk

)
(10)

= exp iωt
N

∑
k=1

wk exp

(
−2π i

(
N ·Xk

λ

))
, (11)

where λ = 2πc/ω is the wavelength of the signal. Let

H(N) =
N

∑
k=1

wk exp

(
−2π i

(
N ·Xk

λ

))
. (12)
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Then the array output is H(N)exp iωt. Thus the array produces an output which
is an amplified version of the propagating signal, where the amplification factor
H(N) depends on the propagation direction of the signal. The function H(N) defined
on the unit sphere in Rn is called the “antenna pattern” of the array. Note that
the antenna pattern depends on the wavelength λ , the array “sensor” locations
X1, . . . ,XN and the weights w1, . . . ,wN . Note also that |H(N)| ≤ N and can equal
N if the weights wk are set such that

wk = exp

(
2π i

(
N ·Xk

λ

))
. (13)

Given any direction N0, if weights are set such that

wk = exp

(
2π i

(
N0 ·Xk

λ

))
, (14)

then the antenna pattern is

|H(N)|=
∣
∣
∣∣
∣

N

∑
k=1

exp

(
−2π i

(
(N−N0) ·Xk

λ

))∣∣
∣∣
∣
. (15)

In this case we say that the antenna has been “pointed” or “steered” in the direction
N0 since for signals propagating in that direction we obtain the largest possible
amplification. Suppose we are interested in the maximum amplification of signals
propagating in a certain direction N0 and the rejection of signals propagating in
other directions. In this case we would like |H(N)| to resemble a δ -function on the
unit sphere supported at N0. Of course since H(N) is a trigonometric polynomial
this is impossible. So we ask “how close can we come to making |H(N)| resemble
a δ -function?”

Since N0 and λ are given and the wk are chosen as above to point the antenna
in the direction N0, the array pattern |H(N)| is determined solely by the sensor
positions {X1, . . . ,XN}. Defining the set {X1, . . . ,XN} so as to produce desired
characteristics in the antenna pattern |H(N)| is the “array design problem”. In this
chapter we consider the “thin array design problem”. By this we mean that

1. Sensor positions {X1, . . . ,XN} are a subset of the line X(τ) = X0 + τv in Rn.
2. The number N of sensors is given.
3. Sensor positions {X1, . . . ,XN} are a subset of the lattice interval {X0 + nv|1 ≤

n ≤ M} with X1 corresponding to n = 0 and XN corresponding to n = M. The
array is thin if M is substantially larger than N.

4. |H(N)| resembles a δ -function with peak at N0.

The last point is vague and needs elaboration. This point will be clarified below,
but first we make a few simple remarks. Since the sensor positions lie in the lattice
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interval, each Xk has the form Xk = X0+nkv where nk is an integer. Hence the array
pattern is

|H(N)| =
∣
∣
∣∣
∣

N

∑
k=1

exp

(−2π i
λ

(N−N0) · (X0 + nkv)
)∣∣
∣∣
∣
, (16)

=

∣
∣
∣
∣∣

N

∑
k=1

exp

(
−2π ink

(
(N−N0) ·v

λ

))∣∣
∣
∣∣
. (17)

It is customary to choose the lattice length scale to be λ/2, meaning that ‖v‖= λ/2.
This produces

|H(N)|=
∣
∣
∣
∣∣

N

∑
k=1

exp

(
−2π ink

(
(N−N0)cosθ (N)

2

))∣∣
∣
∣∣
, (18)

where θ (N) is the angle between N−N0 and v. Setting

x =
(N0−N)cosθ (N)

2
(19)

the array pattern in terms of the new variable x is |A(x)| where

A(x) =
N

∑
k=1

e2π inkx. (20)

Since N and N0 are unit vectors −1 ≤ x ≤ 1. The 1-periodic trigonometric
polynomial A(x) is called the “array factor” of the array.

So our array design problem amounts to choosing an integer set Λ = {n1, . . . ,nN}
such that |A(x)| resembles a δ -function. Consider first the example where nk = k.
In this case

|A(x)|=
∣
∣
∣
∣
∣

N

∑
k=1

e2π ikx

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
sin πNx
sinπx

∣
∣
∣
∣ . (21)

In the interval 1/2≤ x≤ 1/2, A(x) is zero for x= j/N for non-zero integers−N/2≤
j ≤ N/2. The part of the graph of |A(x)| between x = −1/N and x = 1/N is called
the “main lobe” of the array factor and the part between x = j/N and x = ( j+1)/N
is called a “sidelobe”. Using this terminology, our array design problem has the
following objectives:

1. Minimize the width of the main lobe.
2. Maximize the height of the main lobe.
3. Minimize the maximum height of the sidelobes.

Next suppose we consider choosing integers nk = pk for k = 1, . . . ,N and p a
fixed positive integer. This produces
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|A(x)|=
∣
∣
∣∣
sinπN px
sinπ px

∣
∣
∣∣ , (22)

which is a scaled copy of the case just considered. This function has period 1/p,
and therefore in the interval 1/2 < x≤ 1/2 there are p− 1 extra copies of the main
lobe, which has height N. These copies are called “grating lobes” and work against
objective (3) above. On the other hand the width of the main lobe is now 2/N p
which is a reduction by a factor of p from the original case. This change is an
improvement with respect to objective (1) above. The array corresponding to p = 1
is called a “filled array” while the cases p > 1 are “sparse arrays” or “thin arrays”.
The desirable narrow main lobe that occurs when p is large stems from the fact
that the N integers in Λ are spread over the large interval {p, p+ 1, . . . ,N p} The
length of the interval (N−1)p is called the “aperture” of the array and 1/p is called
the “density” or “fill factor” of the array. The undesirable grating lobes stem from
the regular arithmetic structure of the array. Therefore to meet our design objectives
we want to choose integer sets Λ = {n1, . . . ,nN} which are spread uniformly over
the integer interval {p, p+ 1, . . . ,N p} but not with arithmetic regularity.

What is the best that we can hope for with a given N and p? The first problem
is that there is no good and universally agreed upon definition of main lobe and
sidelobe for arbitrary sets Λ . Since values of A(x) near x = 0 are controlled by the
large scale structure of Λ , the main lobe is relatively unaffected by the detailed
structure of Λ so long as the integers in Λ are spread fairly uniformly over the
aperture. On the other hand the sidelobes not near x = 0 encode the detailed
structural information about Λ , and minimizing the sidelobe maxima amounts to
minimizing the arithmetic structure in Λ at all but the largest scales.

To get an idea about the best we can hope for regarding the sidelobe maxima,
consider the function

b(x) = s1[−1/2,1/N p](x)+N1[−1/N p,1/N p](x)+ s1[1/N p,1/2](x) (23)

which models an array pattern with a flat-topped main lobe of height N, width 2/N p
and flat side sidelobe regions of height s. Taking ‖b‖2

2 = N which is the same as
‖A‖2

2, we can easily calculate s, and find that

s =

(
1− 2

p

1− 2
N p

)1/2

N1/2 =C(N, p)N1/2. (24)

Note that

C(N, p)→ (1− 2/p)1/2 as N → ∞. (25)

Analogous but much more complicated calculations show that the sidelobe maxima
for an actual array pattern |A(x)| cannot be less than C(p)N1/2 where C(p) is a
constant depending on the density 1/p.
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These remarks still do not address the question of where the sidelobes begin.
Returning briefly to the case of a filled array where

|A(x)|=
∣
∣
∣∣
sinπNx
sinπx

∣
∣
∣∣ (26)

and the main lobe is supported in [−1/N,1/N] we find that A(3/2N) > 2N/3π ,
so that the lobe immediately to the right of the main lobe has a maximum which
is O(N) rather than O(

√
N). The sidelobe maxima are not O(

√
N) until x is

approximately 1/
√

N.
Suppose sensor positions are chosen randomly. That is, suppose N1, . . . ,NN are

independent identically distributed random variables with uniform distribution in
the set of integers {1,2, . . . ,N p}. Then for each x

A(x) =
N

∑
k=1

e2π iNkx (27)

is a random variable with mean

E(A(x)) = N
1

N p

N p

∑
n=1

e2π inx =
sinπN px
psinπx

. (28)

Note that this expression is similar to the array factor

sinπN px
sinπ px

(29)

for the uniformly spaced thin array but with the exception that E(A(x)) does not
have grating lobes. Also E(A(x)) is a 1/p-scaled version of the array factor for a
filled array with Λ = {1,2, . . . ,N p}.

These considerations motivate us to regard

sinπN px
psin πx

(30)

as the ideal model array factor that an N-sensor array with density 1/p seeks to
achieve. We therefore formulate the precise mathematical problem:

Given integers N ≥ 1 and p≥ 2, find a function C(p) and an algorithm which produces sets
of integers {n1, . . .,nN} contained in {1,2, . . .,N p} such that for all −1/2 ≤ x≤ 1/2

∣
∣
∣
∣∣

N

∑
k=1

exp(2π inkx)

∣
∣
∣
∣∣
≤
∣
∣
∣∣
sinπN px
psinπ px

∣
∣
∣∣+C(p)N1/2. (31)
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3 Golay–Rudin–Shapiro Polynomials

The Golay–Rudin–Shapiro polynomials are defined by

P0(x) = 1, Q0(x) = 1 (32)

and

Pn+1(x) = Pn(x)+ exp(2π i2nx)Qn(x)

Qn+1(x) = Pn(x)− exp(2π i2nx)Qn(x). (33)

The coefficients of these polynomials are therefore

P0 : 1

Q0 : 1

P1 : 1 1

Q1 : 1 − 1

P2 : 1 1 1 − 1

Q2 : 1 1 − 1 1

P3 : 1 1 1 − 1 1 1 − 1 1

Q3 : 1 1 1 − 1 − 1 − 1 1 − 1 (34)

Note that

1. The coefficients of Pn+1 and Qn+1 are obtained from the coefficients of Pn and
Qn by a simple “append” rule whereby the coefficients of Qn are appended
to the coefficients of Pn to produce the coefficients of Pn+1 and the negative
of the coefficients of Qn are appended to the coefficients of Pn to produce the
coefficients of Qn+1.

2. The coefficients of Pn and Qn are +1 or −1
3. Pn and Qn have exactly 2n coefficients
4. ‖Pn‖2 = ‖Qn‖2 = 2n/2

5. |Pn(x)|2 + |Qn(x)|2 = 2
(
|Pn−1(x)|2 + |Qn−1(x)|2

)

6. |Pn(x)|2 + |Qn(x)|2 = 2n+1

7. ‖Pn‖2 ≤ |Pn(x)| ≤ 2(n+1)/2 = 21/2‖Pn‖2
‖Qn‖2 ≤ |Qn(x)| ≤ 2(n+1)/2 = 21/2‖Qn‖2

The inequalities in item 3 above express the remarkable “flatness” property of the
Golay–Rudin–Shapiro polynomials. This flatness property stems from the equality
in item 3, and that inequality is the parallelogram law for the vectors Pn−1(x) and
Qn−1(x). Moreover the parallelogram law is an expression of the fact that the matrix(

1 1
1 −1

)
is 21/2 times the unitary matrix

(
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)
. These connections are
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more apparent if basic Golay–Rudin–Shapiro recursion is expressed in matrix from
as follows.

(
Pn+1(x)
Qn+1(x)

)
=

(
1 1
1 −1

)(
1 0
0 e2π i2nx

)(
Pn(x)
Qn(x)

)
. (35)

These observations suggest a generalization of the Golay–Rudin–Shapiro poly-

nomials whereby the unitary 2×2 matrix

(
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)
is replaced by a larger

unitary matrix. This idea is more fully developed in [1] and forms the foundation
for the developments in array design that follow. As an example, consider the case
where the defining matrix is

M(r) =

⎛

⎝
1 1 1
1 ω ω2

1 ω2 ω4

⎞

⎠ , (36)

where ω = exp(2π ir/3). Note that M(r) is
√

3 times a unitary matrix. Letting Pn,
Qn and Rn be defined by

P0(x) = 1, Q0(x) = 1, R0(x) = 1, (37)

Pn+1(x) = Pn(x)+ e2π i3nxQn(x)+ e2π i2·3nxRn(x)

Qn+1(x) = Pn(x)+ωe2π i3nxQn(x)+ω2e2π i2·3nxRn(x)

Qn+1(x) = Pn(x)+ω2e2π i3nxQn(x)+ω4e2π i2·3nxRn(x), (38)

it can be shown that

1. The coefficients of Pn+1, Qn+1 and Rn+1 are obtained by and append rule similar
to the classic Golay–Rudin–Shapiro case.

2. The coefficients of Pn, Qn and Rn are third roots of unity.
3. Pn, Qn and Rn have exactly 3n coefficients.
4. ‖Pn‖2 = ‖Qn‖2 = ‖Rn‖2 = 3n/2

5. |Pn(x)|2 + |Qn(x)|2 + |Rn(x)|2 = 3
(
|Pn−1(x)|2 + |Qn−1(x)|2 + |Rn(x)|2

)

6. |Pn(x)|2 + |Qn(x)|2 + |Rn(x)|2 = 3n+1

7. ‖Pn‖2 ≤ |Pn(x)| ≤ 3(n+1)/2 = 31/2‖Pn‖2
‖Qn‖2 ≤ |Qn(x)| ≤ 3(n+1)/2 = 31/2‖Qn‖2
‖Rn‖2 ≤ |Rn(x)| ≤ 3(n+1)/2 = 31/2‖Rn‖2

In this example the polynomials are determined by the parameter r. Let Pn,r be the
polynomial Pn defined above using matrix M(r). The coefficients of P2,0, P2,1 and
P2,2 are

P2,0 : 1 1 1 1 1 1 1 1 1
P2,1 : 1 1 1 1 ζ ζ 2 1 ζ 2 ζ 4

P2,2 : 1 1 1 1 ζ 2 ζ 4 1 ζ 4 ζ 8, (39)
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where ζ = exp(2π i/3). Next define

A2,0(x) = P2,0(x)+P2,1(x)+P2,2(x)

A2,1(x) = P2,0(x)+αP2,1(x)+α2P2,2(x)

A2,2(x) = P2,0(x)+α2P2,1(x)+α4P2,2(x), (40)

where α = exp(−2π i/3). Computing the A2,r we find the coefficients to be

A2,0 : 3 3 3 3 0 0 3 0 0
A2,1 : 0 0 0 0 0 3 0 3 0
A2,2 : 0 0 0 0 3 0 0 0 3. (41)

Note that, remarkably, the coefficients in the A2,r are either 0 or 3. Furthermore,
letting

S2,r =
{

0≤ k ≤ 8 | Â2,r(k) = 3
}
, (42)

where Â2,r(k) is the coefficient of exp(2π ikx) in A2,r we see that S2,0, S2,1 and S2,2

form a partition of {0,1, . . . ,8}.
This example can be extended beyond the case 3×3 case to the p× p case where

p is prime. It turns out that the sets Sn,r define thin arrays having asymptotic density
1/p with optimal sidelobes. Proving this is the content of the next section.

4 A Thin Phased Array Design Algorithm

In this section we will solve the problem formulated at the end of Sect. 2. In partic-
ular we will use the theory of generalized Golay–Rudin–Shapiro polynomials [1] to
accomplish this. Our solution is not completely general since we require the p to be
a prime number.

Definition 1. For integers p ≥ 1 and n ≥ 1 let q and k be integers in the interval
0≤ q≤ pn− 1 and 0≤ k≤ pn− 1. Write

k = ω0 +ω1 p+ · · ·+ωn−1pn−1 (43)

and

q = ν0 +ν1 p+ · · ·+νn−1 pn−1 (44)

so that the n-tuples (ω0, . . . ,ωn−1) and (ν0, . . . ,νn−1) are the base-p digits of k and
q, respectively. Define φn by

φn(q,k) =
n−1

∑
j=0

νn−1− jω j +
n−2

∑
j=0

ω jω j+1 (45)

for n≥ 2 and φ1(q,k) = ν0ω0.
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Our thin array design algorithm is the following.

Algorithm 1. Given an integer n≥ 1 and a prime p ≥ 2,

1. Choose any 0≤ q≤ pn− 1.
2. Choose any 0≤ l ≤ p− 1.
3. Define E(n, p, l,q) by

E(n, p, l,q) = {0≤ k≤ pn− 1 |φn(q,k)≡ l mod p} . (46)

The set Λ = E(n, p, l,q) which determines the set of sensor positions of our array
is a subset of the integer interval 0,1, . . . , pn− 1. While we cannot say exactly how
many elements there are in Λ , we will show that the order is asymptotically pn−1 so
that the array has asymptotic density 1/p.

Definition 2. For p, n, k and q as in Definition 1 and 0 ≤ r ≤ p− 1 define the
trigonometric polynomial

Ar,n,q(x) =
pn−1

∑
k=0

exp

(
2π ir

p
φn(q,k)

)
exp(2π ikx). (47)

Theorem 1. For p, k, q, and r as in Definition 2, and n≥ 2

Ar,n,q(x) =
p−1

∑
λ=0

exp

(
2π i

rν0λ
p

)
exp

(
2π iλ pn−1x

)
Ar,n−1,S(q,λ )(x) (48)

were

S(q,λ ) = ((ν1 +λ )mod p)+ν2 p+ν3 p2 + · · ·+νn−1pn−2 (49)

is the integer between 0 and pn−1− 1 with base-p digits

((ν1 +λ )mod p,ν2, . . . ,νn−1) . (50)

Proof.

φn(q,k) = νn−1ω0 +νn−2ω1 + · · ·+ν1ωn−2 +ν0ωn−1

+ω0ω1 + · · ·+ωn−3ωn−2 +ωn−2ωn−1. (51)

Isolating the term ν0ωn−1 and combining the two terms involving ωn−2, we obtain

φn(q,k) = νn−1ω0 +νn−2ω1 + · · ·+ν2ωn−3 +(ν1 +ωn−1)ωn−2

+ω0ω1 + · · ·+ωn−4ωn−3 +ωn−3ωn−2

+ν0ωn−1. (52)
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Let φ∗n (q,k) be defined by

φ∗n (q,k) = νn−1ω0 +νn−2ω1 + · · ·+ν2ωn−3 +((ν1 +ωn−1)mod p)ωn−2

+ω0ω1 + · · ·+ωn−4ωn−3 +ωn−3ωn−2

+ν0ωn−1. (53)

Since

exp

(
2π i

r
p
(ν1 +ωn−1)ωn−2

)
= exp

(
2π i

r
p
((ν1 +ωn−1)mod p)ωn−2

)
(54)

it follows that

exp

(
2π i

r
p

φn(q,k)

)
= exp

(
2π i

r
p

φ∗n (q,k)
)
. (55)

Note that

φ∗n (q,k) = φn−1(s,m)+ν0ωn−1, (56)

where s and m are between 0 and pn−1− 1 with n− 1 base-p digits

((ν1 +ωn−1)mod p,ν2,ν3, . . . ,νn−1) for s (57)

and

(ω0,ω1, . . . ,ωn−2) for m. (58)

Next, writing k = m+λ pn−1, where λ = ωn−1, we have

Ar,n,q(x) =
pn−1

∑
k=0

exp

(
2π i

r
q

φn(q,k)

)
exp(2π ikx)

=
p−1

∑
λ=0

pn−1−1

∑
m=0

exp

(
2π i

r
p

φn
(
q,m+λ pn−1)

)

× exp(2π imx)exp
(
2π iλ pn−1x

)
. (59)

However

exp

(
2π i

r
p

φn
(
q,m+λ pn−1)

)
= exp

(
2π i

r
p

φn (q,k)

)

= exp

(
2π i

r
p

φ∗n (q,k)
)
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= exp

(
2π i

r
p
(φn−1 (s,m)+ν0λ )

)

= exp

(
2π i

r
p
(φn−1 (s,m))

)

× exp

(
2π i

r
p

ν0λ
)
. (60)

Hence

Ar,n,q(x) =
p−1

∑
λ=0

exp

(
2π i

r
p

ν0λ
)

exp
(
2π iλ pn−1x

)

×
pn−1−1

∑
m=0

exp

(
2π i

r
p

φn−1(s,m)

)
exp(2π imx)

=
p−1

∑
λ=0

exp

(
2π i

r
p

ν0λ
)

exp
(
2π iλ pn−1x

)
Ar,n−1,s(x). (61)

��
Theorem 2. For p,n, and k as above, let 1≤ r ≤ p− 1 and let p be prime. Then

p−1

∑
ν0=0

∣
∣Ar,n,q(x)

∣
∣2 = p

p−1

∑
ν1=0

∣
∣Ar,n−1,q′(x)

∣
∣2 , (62)

where q = ν0 +ν1 p+ · · ·+νn−1 pn−1 and q′ = ν1 +ν2 p+ · · ·+νn−1 pn−2.

Proof. By Theorem 1

p−1

∑
ν0=0

∣
∣Ar,n,q(x)

∣
∣2

=
p−1

∑
ν0=0

p−1

∑
λ=0

p−1

∑
λ ′=0

exp

(
2π i

r
p

ν0λ
)

exp
(
2π iλ pn−1x

)
Ar,n−1,S(q,λ )(x)

× exp

(
2π i

r
p

ν0λ ′
)

exp
(
2π iλ ′pn−1x

)
Ar,n−1,S(q,λ ′)(x)

=
p−1

∑
λ=0

p−1

∑
λ ′=0

(
p−1

∑
ν0=0

exp

(
2π i

r
p

ν0
(
λ −λ ′

)
))

exp
(
2π i

(
λ −λ ′

)
pn−1x

)

×Ar,n−1,S(q,λ )(x)Ar,n−1,S(q,λ ′)(x). (63)
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Consider the p-th roots of unity

exp

(
2π i

r (λ −λ ′)ν0

p

)
(64)

as ν0 runs from 0 to p− 1. Since 1 ≤ r ≤ p− 1 and −(p− 1)≤ λ −λ ′ ≤ (p− 1)
and p is prime, r(λ −λ ′) is not a multiple of p unless λ −λ ′ = 0. Hence if λ �= λ ′
the numbers

exp

(
2π i

r (λ −λ ′)ν0

p

)
(65)

constitute a full set of the p-th roots of unity as ν0 runs from 0 to p− 1. Therefore

p−1

∑
ν0=0

exp

(
2π i

r (λ −λ ′)ν0

p

)
=

{
p i f λ = λ ′

0 i f λ �= λ ′.
(66)

Consequently the right side of Eq. (63) becomes

p
p−1

∑
λ=0

∣
∣Ar,n−1,S(q,λ )(x)

∣
∣2 . (67)

However, as λ runs from 0 to p− 1, (ν1 +λ )mod p also takes on all values from 0
to p− 1. Therefore the previous sum can also be written as

p
p−1

∑
ν1=0

∣
∣Ar,n−1,q′(x)

∣
∣2 , (68)

where q′ = ν1 +ν2 p+ · · ·+νn−1 pn−2. ��
Corollary 1. Let p,n, and k be as above, let 1 ≤ r ≤ p− 1 and let p be prime.
Fix digits ν1,ν2, . . . ,νn−1, let ν0 run from 0 to p− 1 and set q = ν0 + ν1 p+ · · ·+
νn−1 pn−1. Then

p−1

∑
ν0=0

∣
∣Ar,n,q(x)

∣
∣2 = pn+1. (69)

Proof. Repeated application of Theorem 2 gives

p−1

∑
ν0=0

∣
∣Ar,n,q(x)

∣
∣2 = pn−1

p−1

∑
λ=0

∣
∣Ar,1,λ (x)

∣
∣2 . (70)

Since

Ar,1,λ (x) =
p−1

∑
k=0

exp

(
2π irλ k

p

)
exp(2π ikx) (71)
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we have

p−1

∑
λ=0

∣
∣Ar,1,λ (x)

∣
∣2 =

p−1

∑
λ=0

p−1

∑
k=0

p−1

∑
k′=0

exp

(
2π irλ (k− k′)

p

)
exp

(
2π i

(
k− k′

)
x
)

=
p−1

∑
k=0

p−1

∑
k′=0

(
p−1

∑
λ=0

exp

(
2π irλ (k− k′)

p

))

× exp
(
2π i

(
k− k′

)
x
)
. (72)

As in the proof of Theorem 2, the inner sum vanishes unless k = k′ in which case
it equals p. Therefore, the right side of Eq. (72) becomes p2. Using this in Eq. (70)
gives Eq. (69). ��
Corollary 2. Let p,n and k be as above, let 1≤ r ≤ p−1, and let p be prime. Then
for 0≤ q≤ pn− 1

∣
∣Ar,n,q(x)

∣
∣≤ p(n+1)/2 = p1/2

∥
∥Ar,n,q

∥
∥

2 . (73)

Proof. Choosing a single term in the sum in Eq. (69) yields the first inequality. Since
the coefficients in Ar,n,q(x) all have modulus 1 and Ar,n,q(x) has pn terms, Parseval’s
theorem gives

∥
∥Ar,n,q

∥
∥

2 = pn/2. (74)

��
Definition 3. For integers n≥ 1, p ≥ 2, 0≤ q≤ pn− 1 and 0≤ l ≤ p− 1, define

Hl,n,q(x) =
1
p

p−1

∑
r=0

exp

(−2π irl
p

)
Ar,n,q(x). (75)

Theorem 3. For integers n ≥ 1, prime p ≥ 2, 0 ≤ q ≤ pn− 1 and 0 ≤ l ≤ p− 1
write

Hl,n,q(x) =
pn−1

∑
r=0

hl,n,q(k)exp(2π ikx) . (76)

then

hl,n,q(k) =

{
1 if φn(q,k)≡ l mod p,
0 if φn(q,k) �≡ l mod p.

(77)

Proof. From the definition of Ar,n,q(x) we have
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Hl,n,q(x) =
1
p

p−1

∑
r=0

pn−1

∑
k=0

exp

(−2π irl
p

)
exp

(
2π i

r
p

φn(q,k)

)
exp(2π ikx)

=
pn−1

∑
k=0

(
1
p

p−1

∑
r=0

exp

(
2π i

r
p
(φn(q,k)− l)

))

exp(2π ikx) . (78)

The inner sum equals 1 if φn(q,k)− l is a multiple of p and equals 0 otherwise. ��
Theorem 4. For n, p, q and l as in Theorem 3, and p prime

∣
∣Hl,n,q(x)

∣
∣≤

∣
∣
∣
∣
sinπ pnx
psinπx

∣
∣
∣
∣+(p− 1)p(n−1)/2. (79)

Proof.

∣
∣Hl,n,q(x)

∣
∣ =

∣
∣
∣
∣∣
1
p

p−1

∑
r=0

exp

(−2π irl
p

)
Ar,n,q(x)

∣
∣
∣
∣∣

=

∣
∣
∣
∣
∣
1
p

A0,n,q(x)+
1
p

p−1

∑
r=1

exp

(−2π irl
p

)
Ar,n,q(x)

∣
∣
∣
∣
∣

≤ 1
p

∣
∣A0,n,q(x)

∣
∣+

1
p

p−1

∑
r=1

∣
∣Ar,n,q(x)

∣
∣ . (80)

Note that

A0,n,q(x) =
pn−1

∑
k=0

exp(2π ikx) (81)

and therefore

∣
∣A0,n,q(x)

∣
∣=

∣
∣
∣
∣
sinπ pnx
psinπx

∣
∣
∣
∣ . (82)

This fact together with the estimate in Corollary 2 give the result. ��
Definition 4. Let n, p, q and l be integers as in Theorem 3. Define the set

Sl,n,q =
{

0≤ k ≤ pn− 1 |hl,n,q(k) = 1
}
. (83)

Theorem 5. Let n, p, q and l be integers as in Theorem 3, and let
∣
∣Sl,n,q

∣
∣ denote the

number of elements in the set Sl,n,q. Then

pn−1− (p− 1)2p(n−1)/2 ≤ ∣
∣Sl,n,q

∣
∣≤ pn−1 +(p− 1)p(n−1)/2. (84)
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Proof. Since

Hl,n,q(x) = ∑
k∈Sl,n,q

exp(2π ikx) (85)

it follows that
∣
∣Sl,n,q

∣
∣= Hl,n,q(0). (86)

Using the estimate from Theorem 4 gives

Hl,n,q(0)≤ pn−1 +(p− 1)p(n−1)/2 (87)

which therefore establishes the upper bound for
∣∣Sl,n,q

∣∣. From the definition of Sl,n,q

and the representation of hl,n,q(k) given in Theorem 3, it follows that the sets Sl,n,q

for 0≤ l ≤ p−1 form a partition of the integer interval {0,1, . . . , pn− 1}. Therefore

pn =
p−1

∑
l=0

∣
∣Sl,n,q

∣
∣ (88)

which for any fixed choice of l can be rearranged to be
∣
∣Sl,n,q

∣
∣= pn−∑

j �=l

∣
∣S j,n,q

∣
∣ . (89)

Using the upper bound shown in the earlier part of this proof gives

∣
∣Sl,n,q

∣
∣ ≥ pn− (p− 1)

(
pn−1 +(p− 1)p(n−1)/2

)

= pn−1− (p− 1)2p(n−1)/2. (90)

��
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Abstract Large data sets arise in a wide variety of applications and are often
modeled as samples from a probability distribution in high-dimensional space.
It is sometimes assumed that the support of such probability distribution is
well approximated by a set of low intrinsic dimension, perhaps even a low-
dimensional smooth manifold. Samples are often corrupted by high-dimensional
noise. We are interested in developing tools for studying the geometry of such
high-dimensional data sets. In particular, we present here a multiscale transform
that maps high-dimensional data as above to a set of multiscale coefficients that
are compressible/sparse under suitable assumptions on the data. We think of this
as a geometric counterpart to multi-resolution analysis in wavelet theory: whereas
wavelets map a signal (typically low dimensional, such as a one-dimensional
time series or a two-dimensional image) to a set of multiscale coefficients, the
geometric wavelets discussed here map points in a high-dimensional point cloud to a
multiscale set of coefficients. The geometric multi-resolution analysis (GMRA) we
construct depends on the support of the probability distribution, and in this sense it
fits with the paradigm of dictionary learning or data-adaptive representations, albeit
the type of representation we construct is in fact mildly nonlinear, as opposed to
standard linear representations. Finally, we apply the transform to a set of synthetic
and real-world data sets.
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1 Introduction

We are interested in developing tools for harmonic analysis and processing of large
data set that arise in wide variety of applications, such as sounds, images (RGB or
hyperspectral, [16]), gene arrays, EEG signals [9], and manifold-valued data [44],
to name a few. These data sets are often modeled as samples from a probability
distribution in R

D, but it is sometimes assumed that the support of such probability
distribution is in fact a set of low intrinsic dimension, perhaps with some nice
geometric properties, for example, those of a smooth manifold.

Approximating and learning functions in high-dimensional spaces is hard be-
cause of the curse of high dimensionality, it is natural to try to exploit the
intrinsic low dimensionality of the data: this idea has attracted wide interest across
different scientific disciplines and various applications. One example of exploitation
of low intrinsic dimension is to map the data to low-dimensional space, while
preserving salient properties of data [3, 19, 21, 27, 28, 30, 31, 46, 52, 54]. Another
example is the construction of dictionaries of functions supported on the data
[7, 17, 18, 38–40, 49, 50]. Yet another possibility is modeling the data as a union of
low-dimensional subspaces, which is related to the ideas of sparse representations
and dictionary learning ([1, 2, 10, 11, 51] and references therein).

When performing dimensionality reduction/manifold learning, the objective is
mapping data to a low-dimensional space. The maps used are often nonlinear, and
in at least two problems arise: that of extending the map from a training data set to
new data points and that of inverting such a map, i.e., going from a low-dimensional
representation of a data point back to its higher-dimensional original representation.
Both problems seem to be rather hard (depending of course of the map used) and to
require some form of high-dimensional interpolation/extrapolation.

We will work directly in the high-dimensional space, but by taking advantage
of the assumed low intrinsic dimensionality of the data and its geometry. One
advantage of this approach is that while our representations will be low-dimensional,
we will not have to produce inverse maps from low dimensions to high dimensions.
We construct geometric multi-resolution analysis (GMRA) for analyzing intrinsi-
cally low-dimensional data in high-dimensional spaces, modeled as samples from a
d-dimensional set M (in particular, a manifold) embedded in R

D, in the regime
d & D. Data may be sampled from a class of signals of interest; in harmonic
analysis, a linear infinite-dimensional function space F often models the class of
signals of interest, and linear representations in the form f = ∑i αiφi, for f ∈ F
in terms of a dictionary of atoms Φ := {φi} ⊆ F are studied. Such dictionaries
may be bases or frames and are constructed so that the sequence of coefficients
{αi}i has desirable properties, such as some form of sparsity, or a distribution highly
concentrated at zero. Several such dictionaries have been constructed for function
classes modeling one- and two-dimensional signals of interest [8,12,14,20,22,47]
and are proven to provide optimal representations (in a suitably defined sense) for
certain function spaces and/or for operators on such spaces. A more recent trend
[1,12,41–43,51,55], motivated by the desire to model classes of signals that are not
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well modeled by the linear structure of function spaces, has been that of constructing
data-adapted dictionaries: an algorithm is allowed to see samples from a class
of signals F (not necessarily a linear function space) and constructs a dictionary
Φ := {φi}i that optimizes some functional, such as the sparsity of the coefficients
for signals in F .

There are several parameters in this problem: given training data from F , one
seeks Φ with I elements, such that every element in the training set may be
represented, up to a certain precision ε , by at most m elements of the dictionary.
The smaller I and m are, for a given ε , the better the dictionary.

Several current approaches may be summarized as follows [42]: consider a finite
training set of signals Xn = {xi}n

i=1 ⊂ R
D, which we may represent by a R

D×n

matrix, and optimize the cost function

fn(Φ) =
1
n

n

∑
i=1

�(xi,Φ),

where Φ ∈ R
D×I is the dictionary, and � a loss function, for example,

�(x,Φ) := min
α∈RI

1
2
||x−Φα||2

RD +λ ||α||1,

where λ is a regularization parameter. This is basis pursuit [12] or lasso [53]. One
typically adds constraints on the size of the columns of Φ , for example, ||φi||RD ≤ 1
for all i, which we can write as Φ ∈ C for some convex set C . The overall problem
may then be written as a matrix factorization problem with a sparsity penalty:

min
Φ∈C ,α∈RI×n

1
2
||Xn−Φα||2F +λ ||α||1,1,

where ||α||1,1 := ∑i1,i2 |αi1,i2 |. We refer the reader to [42] and references therein for
techniques for attacking this optimization problem.

In this chapter we make additional assumptions on the data, specifically that it
is well approximated by a smooth low-dimensional manifold, and we exploit this
geometric assumption to construct data-dependent dictionaries. We use a multiscale
approach that will lead to a GMRA of the data: this is inspired not only by
quantitative geometric analysis techniques in geometric measure theory (see, e.g.,
[25, 32]) but also from multiscale approximation of functions in high dimensions
[5, 6]. These dictionaries are structured in a multiscale fashion and, under suitable
assumptions on the data, are computed efficiently; the expansion of a data point on
the dictionary elements is guaranteed to have a certain degree of sparsity, m, and
may also be computed by fast algorithms; the growth of the number of dictionary
elements I as a function of ε is controlled depending on geometric properties of
the data. This may be thought of as a wavelet analysis for data sets rather than for
functions, where the geometry of a set of points is approximated, rather than a single
function.



262 G. Chen et al.

2 Geometric Multi-resolution Analysis

Let μ be a probability measure in R
D and M its support. In this chapter we will

consider the case in which M is endowed with the structure of a Riemannian
manifold, but the examples will show that the construction is robust enough to
extend and be useful when this assumption is severely violated. In this setting we
have a Riemannian metric g and a volume measure dvol. The geodesic distance on
M associated with g will be denoted by ρ . We shall assume that dμ is absolutely
continuous with respect to dvol, with dμ/dvol bounded above and below. We are
interested in the case when the “dimension” d of M is much smaller than the
dimension of the ambient space R

D. While d is typically unknown in practice,
efficient (multiscale, geometric) algorithms for its estimation are available (see [37],
which also contains many references to previous work on this problem), under
additional assumptions on the geometry of M .

2.1 Dyadic Cubes

We start by constructing dyadic cubes on M . This may be thought of as an analogue
of dyadic cubes in Euclidean space. It is a collection of (measurable) subsets
{Q j,k}k∈K j , j≥J0 of M with the following properties [13, 23, 24]:

• For every j ∈ Z, μ(M \∪k∈K j Q j,k) = 0.
• For j′ ≥ j and k′ ∈K j′ , either Q j′,k′ ⊆ Q j,k or μ(Q j′,k′ ∩Q j,k) = 0.
• For j < j′ and k′ ∈K j′ , there exists a unique k ∈K j such that Q j′,k′ ⊆ Q j,k.
• Each Q j,k contains a point c j,k such that BM

c1·2− j (c j,k) ⊆ Q j,k ⊆ BM
2− j(c j,k), for a

constant c1 depending on intrinsic geometric properties of M . Here BM
r (x) is

the ρ-ball inside M of radius r > 0 centered at x ∈M . In particular, we have
μ(Q j,k)∼ 2−d j.

Let T be the tree structure associated to the decomposition above: for any j ∈Z and
k ∈K j, we let ch( j,k) =

{
k′ ∈K j+1 : Q j+1,k′ ⊆ Q j,k

}
. We use the notation ( j,x)

to represent the unique ( j,k(x)),k(x) ∈K j such that x ∈Q j,k(x).

2.2 Multiscale SVD and Intrinsic Dimension Estimation

An introduction to the use of the ideas we present for the estimation of intrinsic
dimension of point clouds is in [37] and references therein (see [35, 36] for
previous short accounts). These types of constructions are motivated by ideas in
both multiscale geometric measure theory [24, 26, 33] and adaptive approximation
of functions in high dimensions[5, 6].
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In each dyadic cell Q j,k we consider the mean

m j,k := Eμ [x|x ∈ Q j,x] =
1

μ(Q j,k)

∫

Qj,k

xdμ(x) ∈ R
D (1)

and the local covariance

cov j,k = Eμ [(x−m j,k)(x−m j,k)
∗|x ∈ Q j,k] ∈ R

D×D, (2)

where vectors in R
D are considered d-dimensional column vectors. Let the rank-d

singular value decomposition (SVD) [29] of cov j,k be

cov j,k ≈Φ j,kΣ j,kΦ∗
j,k, (3)

where Φ j,k is an orthonormal D× d matrix and Σ is a diagonal d× d matrix. Let

V j,k :=Vj,k +m j,k, Vj,k = 〈Φ j,k〉, (4)

where 〈A〉 denotes the span of the columns of A, so that V j,k is the affine subspace of
dimension d parallel to Vj,k and passing through m j,k. It is an approximate tangent
space to M at location m j,k and scale 2− j; in fact by the properties of the SVD it
provides the best d j,k-dimensional planar approximation to M in the least squares
sense:

V j,k = argmin
Π

∫

Qj,k

||x−PΠ(x)||2 dμ(x), (5)

where Π is taken on the set of all affine d j,k-planes and PΠ is the orthogonal
projection onto the affine plane Π . Let P j,k be the associated affine projection

P j,k(x) := PV j,k (x) = Φ j,kΦ∗
j,k(x−m j,k)+m j,k, x ∈ Q j,k. (6)

The behavior of the singular values in the matrix Σ j,x in Eq. (3) as a function of
the scale j, for x fixed, contains a lot of useful information about the geometry of
the data around x. In particular they may be used to detect the intrinsic dimension
of the data in a neighborhood of x. We need to introduce several definition before
stating some results. Because of space constraints, we will consider here the case
when M is a manifold of co-dimension one, leaving the discussion of the general
case (M with arbitrary co-dimension and M not a manifold) to [2, 37]. Let

λ =
d

d+ 2
, κ =

d
(d+ 2)2(d+ 4)

[
d+ 1

2

d

∑
i=1

κ2
i −∑

i< j
κiκ j

]
,

where κi’s are the sectional curvatures of the manifold. We refer the reader to [37]
for an extended discussion of these quantities, which arise naturally in the study
of multiscale SVD of manifolds. When M has co-dimension larger than 1 more
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complicate functions of the curvatures arise [similar to those in Eq. (18)]; in the non-
manifold case a notion of L2 that generalizes the above may be used [37]. Suppose
we sample n points x1, . . . ,xn i.i.d. from the volume measure on the manifold, and
each is perturbed by i.i.d. realizations of white Gaussian noise in R

D with variance
σ2ID. We denote by X̃n,z̃,r the set of noisy samples xi+ηi that are in Bz+ηz(r), where
ηz is the noise corresponding to the data point z: this is the data being observed,
which is sampled and noisy, at disposal of an algorithm. We denote by Xz,r a random
variable distributed in Bz(r)∩M according to volume measure: this is the ideal data,
uncorrupted by noise and sampling. Finally, we let r2

= := r2− 2σ2D.
Let r = 2− j and Xz,r = M ∩Bz(r). The behavior of the ideal covariance of Xz,r

(which is comparable to cov j,k) as a function of r reveals interesting properties of the
data, for example, it may be used to measure intrinsic dimension and L2-curvature
of M around a point z, since the d largest singular values will grow quadratically
in r, and the remaining ones will measure L2-curvatures. In particular for r small
the largest gap between these singular values will be the dth gap, leading to an
estimator of intrinsic dimension. However, since we do not have access to Xz,r, we
are interested in the behavior of the empirical covariance matrix of the noisy samples
X̃n,z̃,r as a function of r. In particular, we ask how close it is to cov(Xz,r) and when is
the dth gap of cov(X̃n,z̃,r) the largest, so that we may use it to estimate the intrinsic
dimension of M ? Observe that while we would like to choose r small, since then
the difference in the behavior of the top d singular values and the remaining ones
is largest, we are not allowed to do that anymore: having only n samples forces a
lower bound on r, since in small balls we will have too small a number of samples to
estimate the covariances. Moreover, the presence of noise also puts a lower bound on
the interesting range of r: since the expected length of a noise vector is σ

√
D, and the

covariance of the noise has norm σ , we expect that r should be larger than a function
of these quantities in order for cov(X̃n,z̃,r) to provide meaningful information about
the geometric of M .

Here and in what follows C,C1, and C2 will denote numerical constants whose
value may change with each occurrence.

Theorem 1 (n→ ∞). Fix z ∈M ; assume D≥C, σ
√

D≤
√

d
2
√

2κ ,

r ∈
(

Rmin + 4σ
√

D+
1

6κ
,Rmax−σ

√
D− 1

6κ

)
∩
(

3σ
(√

D∨d
)
,

√
d

κ

)

. (7)

Then for n large enough, with probability at least 1−Ce−C
√

D, we have

||cov(X̃n,z̃,r)− cov(Xz,r=)|| ≤C

(
κ2r4

=

d
+σ2 +

λ κr3
=

d

(
λ κr=

λ 2−Cκ2r2
=

∧1

))
. (8)
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Fig. 1 We consider 4,000 points uniformly sampled on a 16-dimensional unit sphere, embedded
in R

100, with η ∼ 0.1N (0, I100) Gaussian noise added to each point. We plot empirical mean
(over data points z̃) of the squared singular values of the empirical covariance matrix cov(X̃n,z̃,r),
as a function of r: in the “reasonable” range of scales, above the size of the noise, we see 16
singular values corresponding to the approximate tangent planes, at 17th squared singular value
corresponding to curvature, and all the other squared singular values of size comparable to the
energy of the noise 10−2. The algorithm detects a range of scales, above the scale of the noise,
where the 16th gap between the squared singular values is largest, i.e., noise is small compared to
curvature, which is in turn small compared to elongation along the tangent plane. It is remarkable,
albeit predicted by our results, that only 4,000 points (typically considered a small number if 16
(even more in 100) dimensions), perturbed by large noise (note that e[||η ||]∼ 1), are enough to
obtain accurate geometric information

Moreover, in the range of scales

C1
σ
√

d√
λ 2− δ 2

≤ r= ≤C2
λ 2− δ 2

λ κ
, (9)

Δk(X̃n,z̃,r) is the largest gap, with the probability as above.

Theorem 1 essentially says that if we have O(d logd) points in μ(Bz(r)), and the
noise variance σ is not too large compared to curvature, then the largest gap in the
empirical covariance matrix of the data in Bz(r) is the dth gap, with high probability,
for r in the range:

C1σ2 ≤ r2

d
≤C2

λ 2

κ2d
.
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The upper bound λ
κ is dictated by curvature, while the lower bound σ

√
D is forced

by the noise level: the lower bound is comparable to the size of the covariance of
the noise, the upper bound is comparable to the size of the covariance of the data
computed at the largest radius λ/κ where the curvature is not too large, and the term
in the middle is comparable to the size of the data along the local approximating
plane.

Our second theorem explores the regime where the ambient dimension D goes to
infinity, but the number of samples n is fixed, dependent on the intrinsic dimension.
While of course n samples certainly lie in an n-dimensional affine subspace,
because of the ambient noise such subspace is unreliable at small scales, and this
regime captures the range of scales where we have independence from the ambient
dimension and the essentially linear dependence on d for the minimal needed
number of points in Bz(r=).

Theorem 2 (D→∞, σ
√

D = O(1)). Fix z ∈M . Let the assumptions of Theorem 1
and the restriction (7) hold. Fix t ∈ (C,Cd) and assume ε := εr=,n,t ≤ 1

2 . Then for
D≥C and m≤ D, and σ0 constant, for r in the range of scales (7) intersected with

r ∈

⎛

⎜
⎝

4σ0

(
1∨ d√

D
∨λmaxε

)

λ 2
min− δ 2λmaxε− ε2

λ 2
min

(
Cσ0d

r ∨ 1
m

)
− σ0κ

t

,
λmax

4 ∧√d

κ

⎞

⎟
⎠ ,

the following hold, with probability at least 1−Ce−Ct2
:

(i) Δk(cov(X̃n,z̃,r)) is the largest gap of cov(X̃n,z̃,r).

(ii) ||cov(X̃n,z̃,r)−cov(Xz,r=)−σ2ID|| ≤
(

σ2
0 ε+λmaxσ0r+

(
λmax + 2σ0κ + ε

m

)
r2+

O
(

r3

ε

))
ε
d .

These bounds, and in fact the finer bounds of [37], may of course be trivially
used to obtain perturbation bounds for the empirical noisy tangent spaces estimated
by looking at the top d singular vectors of the empirical covariance matrix of the
data in Bz̃(r) (a slightly better approach, taken in [37], uses Wieland’s lemma before
applying the usual sine theorems). It turns out that, since the noise essentially “to
first order” adds only a multiple to the identity matrix, the approximate tangent
space computed in this fashion is very stable, even in the regime of Theorem 2 [37].

This is the subject of [37], where it is shown that under rather general conditions
on the geometry of the data (much more general than the manifold case) and
under sampling and ambient noise, one may use these multiscale singular values to
estimate the intrinsic dimension of the data. Moreover, under suitable assumptions,
the number of samples in a ball around x required in order to do so is linear in the
intrinsic dimension and independent of the ambient dimension. We refer the reader
to [10, 35–37]. We now proceed by using not only the information in the singular
values but also in the singular vectors in the SVD decomposition in Eq. (3).
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Fig. 2 An illustration of the geometric wavelet decomposition. The centers m j,x’s are represented
as lying on M while in fact they are only close to M , and the corresponding planes V j,x are
represented as tangent planes, albeit they are only an approximation to them. Art courtesy of E.
Monson

2.3 Geometric Scaling Functions

Then P j,k(Q j,k) is the projection of Q j,k onto the local linear approximation given by
the affine subspace in Eq. (4). The fact that this linear subspaces are affine will have
various implications in our construction, creating mild nonlinearities and forcing
us to construct a different transform and data representation which is not simply
in the form of linear combination of certain atoms. On the other hand it seems an
extremely natural construction, and not only the nonlinearities involved will not
cause conceptual or computational overheads, but in fact we shall obtain algorithms
which are faster than those needed to compute sparse linear representations in the
standard dictionary learning setting. {Φ j,k}k∈K j are the geometric analogue of a
family of scaling functions at scale j, and therefore we call them geometric scaling
functions. They “span” an approximate piecewise linear manifold at scale j

M j := {P j,k(Q j,k)}k∈K j (10)

Under general conditions, M j →M in the Hausdorff distance, as j → +∞. It is
natural to define the nonlinear projection of M onto M j by

x j ≡ PM j (x) := P j,k(x), x ∈ Q j,k. (11)

Note that in general M j is not contained in M j+1, due to the nonlinearity of the
underlying manifold M . This is important as we move into the next section when
we will encode “the difference” between M j and M j+1.
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2.4 Geometric Wavelets

In wavelet analysis, wavelets span the difference between scaling function spaces
and are contained in the finer scale scaling function space. In our setting that would
correspond to encoding the difference needed to go from M j to M j+1: for a fixed
x∈M , x j+1−x j ∈R

D, but in general not contained in M j+1, due to the nonlinearity
of M j and M j+1. The main observation is that nevertheless the collection of vectors
x j+1− x j for x varying in Q j+1,x is in fact contained in a low-dimensional subspace
and may be therefore encoded efficiently in terms of a basis of that subspace. We
proceed as follows: for j ≤ J− 1 we let

QM j+1(x) : = x j+1− x j = x j+1−P j,x(x j+1)+P j,x(x j+1)−P j,x(x)

= (I−Pj,x)(x j+1− c j,x)+Pj,x(x j+1− x)

= (I−Pj,x)(x j+1− c j+1,x︸ ︷︷ ︸
∈Vj+1,x

+c j+1,x− c j,x)−Pj,x(x− x j+1). (12)

Let Wj+1,x := (I−Pj,x)Vj+1,x, Q j+1,x be the orthogonal projection onto Wj+1,x, and
let Ψj+1,x be an orthonormal basis for Wj+1,x, which we will call a geometric wavelet
basis. Observe dimWj+1,x≤ dimVj+1,x = d j+1,x. We define several quantities below:

t j+1,x : = c j+1,x− c j,x,wj+1,x := (I−Pj,x)t j+1,x;

Q j+1,x(x) := Q j+1,x(x− c j+1,x)+wj+1,x.

Then we may rewrite Eq. (12) as

QM j+1(x) = Q j+1,x(x j+1− c j+1,x)︸ ︷︷ ︸
∈Wj+1,x

+wj+1,x−Pj,x

(

x− xJ +
J−1

∑
l= j+1

(xl+1− xl)

)

=Q j+1,x(x j+1)−Pj,x

J−1

∑
l= j+1

(xl+1− xl)−Pj,x(x− xJ)

=Q j+1,x(x j+1)−Pj,x

J−1

∑
l= j+1

QMl+1(x)−Pj,x(x− xJ), (13)

where J ≥ j+1 is the index of the finest scale (and the last term vanishes as J→
+∞, under general conditions). Note that this multiscale expansion contains terms
that involve not only the current scale j+ 1 and the previous scale j but terms from
finer scales as well, all the way to the finest scale J. This is once again due to the
nonlinearity of M and of the whole construction: knowing PM j+1(x) is not enough
to construct PM j(x), since the whole local nonlinear structure of M determines the
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Fig. 3 We represent in this table the triangular array summarizing the geometric wavelet
expansion of a term in the first column in terms of geometric wavelets, according to the multiscale
relations (15) and the equalities in Eq. (13)

locally optimal projection PM j (x). In [2] we describe a variation of the transform
where optimality is relaxed and a “two-scale equation” is obtained.

In terms of the geometric scaling functions and wavelets, the above may be
written as

x j+1− x j =Ψj+1,xΨ∗
j+1,x

(
x j+1−m j+1,x

)
+wj+1,x−Φ j,xΦ∗

j,x

J−1

∑
l= j+1

QMl+1(x)

−Φ j,xΦ∗
j,x (x− xJ) . (14)

This shows that the difference x j+1−x j can be expressed as the sum of a component
in Wj+1,x, a second component that only depends on the cell ( j + 1,x) (but not on
the point x itself) which accounts for the translation of centers and lying in V⊥j,x (but
not necessarily in Wj+1,x), and a sum of projections on Vj,x of differences xl+1− xl

at finer scales. By construction we have the two-scale equation

PM j+1(x) = PM j(x)+QM j+1(x), x ∈M (15)

which can be iterated across scales, leading to a multiscale decomposition along
low-dimensional subspaces, with efficient encoding and algorithms. We think of
Pj,k as being attached to the node ( j,k) of T and the Q j+1,k′ as being attached to
the edge connecting the node ( j+ 1,k′) to its parent.

We say that the set of multiscale piecewise affine operators {PM j} and {QM j+1}
form a geometric multi-resolution analysis or GMRA for short.

2.5 Approximation for Manifolds

We analyze the error of approximation to a d-dimensional manifold in R
D by

using geometric wavelets representation. Our analysis gives a full explanation of
the examples in Sect. 4.1. We have the following theorem from [2]:
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Theorem 3. Let (M ,ρ ,μ) be a compact C 1+α Riemannian manifold of dimension
d isometrically embedded in R

D, with α ∈ (0,1], and μ absolutely continuous with
respect to the volume measure on M . Let {PM j ,QM j+1} be a GMRA for (M ,ρ ,μ).
For any x ∈M , there exists a scale j0 = j0(x) such that for any j ≥ j0 and any
p > 0, if we let dμ j,x := μ(Q j,x)

−1dμ ,

∥
∥
∥
∥
∥
∥z−PM j(z)

∥
∥
∥
RD

∥
∥
∥

Lp(Qj,x,dμ j,x(z))
=

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

z−PM j0
(z)−

j−1

∑
l= j0

QMl+1(z)

∥
∥
∥
∥
∥
RD

∥
∥
∥
∥
∥

Lp(Qj,x,dμ j,x(z))

≤ ||κ ||L∞(Qj,x) 2−(1+α) j + o(2−(1+α) j). (16)

If α < 1, κ(x) depends on the C 1+α norm of a coordinate chart from Tx(M ) to

Q j,x ⊆M and on
∥
∥
∥ dμ

dvol

∥
∥
∥

L∞(Qj,x)
.

If α = 1,

κ(x) =
∥∥
∥
∥

dμ
dvol

∥∥
∥
∥

L∞(Qj,x)

min(κ1(x),κ2(x)), (17)

with

κ1(x) :=
1
2

max
i∈{1,...,D−d}

||Hi(x)||;

κ2
2 (x) := max

w∈SD−d

d(d+1)
4(d+ 2)(d+ 4)

⎡

⎣

∥
∥
∥
∥
∥

D−d

∑
l=1

wlHl(x)

∥
∥
∥
∥
∥

2

F

− 1
d+ 2

(
D−d

∑
l=1

wlTr(Hl(x))

)2
⎤

⎦ ,

(18)
and the D− d matrices Hl(x) are the d-dimensional Hessians of M at x.

Observe that κ2 can be smaller than κ1 (by a constant factor) or larger (by factors
depending on d2), depending on the spectral properties and commutativity relations
between the Hessians Hl . κ2

2 may be unexpectedly small, in the sense that it may
scale as d−2r4 as a function of d and r, as observed in [37]. For the proof we refer
the reader to [2].

3 Algorithms

We present in this section algorithms implementing the construction of the GMRA
and the corresponding geometric wavelet transform (GWT).
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3.1 Construction of Geometric Multi-resolution Analysis

The first step in the construction of the geometric wavelets is to perform a geometric
nested partition of the data set, forming a tree structure. For this end, one may
consider various methods listed below:

• Use of METIS [34]: a multiscale variation of iterative spectral partitioning. We
construct a weighted graph as done for the construction of diffusion maps [15,
21]: we add an edge between each data point and its k nearest neighbors and
assign to any such edge between xi and x j the weight e−||xi−x j ||2/σ . Here k and
σ are parameters whose selection we do not discuss here (but see [45] for a
discussion in the context of molecular dynamics data). In practice, we choose
k between 10 and 50 and choose σ adaptively at each point xi as the distance
between xi and its "k/2# nearest neighbor.

• Use of cover trees [4].
• Use of iterated PCA: at scale 1, compute the top d principal components of data

and partition the data based on the sign of the (d + 1)-st singular vector. Repeat
on each of the two partitions.

• Iterated k-means: at scale 1 partition the data based on k-means clustering, then
iterate on each of the elements of the partition.

Each construction has pros and cons, in terms of performance and guarantees.
For (I) we refer the reader to [34], for (II) to [4] (which also discussed several
other constructions), and for (III) and (IV) to [48]. Only (II) provides the needed
properties for the cells Q j,k. However constructed, we denote by {Q j,k} the family
of resulting dyadic cells and let T be the associated tree structure, as in Section 2.1.

In Fig. 4 we display pseudo-code for the GMRA of a data set Xn given a precision
ε > 0 and a method τ0 for choosing local dimensions (e.g., using thresholds or a
fixed dimension). The code first constructs a family of multiscale dyadic cells (with
local centers c j,k and bases Φ j,k) and then computes the geometric wavelets Ψj,k and
translations wj,k at all scales. In practice, we use METIS [34] to construct a dyadic
(not 2d-adic) tree T and the associated cells Q j,k.

3.2 The Fast Geometric Wavelet Transform and Its Inverse

For simplicity of presentation, we shall assume x = xJ; otherwise, we may first
project x onto the local linear approximation of the cell QJ,x and use xJ instead of x
from now on. That is, we will define x j;J = PM j (xJ), for all j < J, and encode the
differences x j+1;J− x j;J using the geometric wavelets. Note also that ‖x j;J− x j‖ ≤
‖x− xJ‖ at all scales.

The geometric scaling and wavelet coefficients {p j,x},{q j+1,x}, for j ≥ 0, of a
point x ∈M are chosen to satisfy the equations
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Fig. 4 Pseudo-code for the construction of geometric wavelets

PM j(x) = Φ j,x p j,x +m j,x; (19)

QM j+1(x) =Ψj+1,xq j+1,x+wj+1,x−Pj,x

J−1

∑
l= j+1

QMl+1(x). (20)

The computation of the coefficients, from fine to coarse, is simple and fast: since
we assume x = xJ , we have

p j,x = Φ∗
j,x(xJ− c j,x) = Φ∗

j,x(ΦJ,x pJ,x + cJ,x− c j,x)

=
(
Φ∗

j,xΦJ,x
)

pJ,x +Φ∗
j,x(cJ,x− c j,x). (21)

Moreover the wavelet coefficients q j+1,x [defined in Eq. (20)] are obtained from
Eq. (14):

q j+1,x =Ψ∗
j+1,x(x j+1− c j+1,x) =

(
Ψ∗

j+1,xΦ j+1,x
)

p j+1,x. (22)

Note that Φ∗
j,xΦJ,x and Ψ ∗

j+1,xΦ j+1,x are both small matrices (at most d j,x×d j,x) and
are the only matrices we need to compute and store (once for all, and only up to a
specified precision) in order to compute all the wavelet coefficients q j+1,x and the
scaling coefficients p j,x, given pJ,x at the finest scale.
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Fig. 5 Pseudo-code for the forward geometric wavelet transform

Fig. 6 Pseudo-code for the inverse geometric wavelet transform

In Figs. 5 and 6 we display pseudo-codes for the computation of the forward and
inverse geometric wavelet transforms (F/IGWT). The input to FGWT is a GMRA
object, as returned by GeometricMultiResolutionAnalysis, and a point
x ∈M . Its output is the wavelet coefficients of the point x at all scales, which are
then used by IGWT for reconstruction of the point at all scales.

For any x ∈MJ , the set of coefficients

qx = (qJ,x;qJ−1,x; . . . ;q1,x; p0,x) (23)

is called the discrete GWT of x. Letting dw
j,x = rank(Ψj+1,x), the length of the

transform is d +∑ j>0 dw
j,x, which is bounded by (J + 1)d in the case of samples

from a d-dimensional manifold (due to dw
j,x ≤ d).



274 G. Chen et al.

Fig. 7 Toy data sets for the following examples of GMRA

4 Examples

We conduct numerical experiments in this section to demonstrate the performance
of the algorithm (i.e., Figs. 4–6).

4.1 Low-Dimensional Smooth Manifolds

To illustrate the construction presented so far, we consider simple synthetic data
sets: a SwissRoll, an S-Manifold, and an Oscillating2DWave, all two-dimensional
manifolds but embedded in R

50 (see Fig. 7). We apply the algorithm to construct the
GMRA and obtain the FGWT of the sampled data (10,000 points, without noise) in
Fig. 8. We use the manifold dimension d j,k = d = 2 at each node of the tree when
constructing scaling functions and choose the smallest finest scale for achieving an
absolute precision .001 in each case. We compute the average magnitude of the
wavelet coefficients at each scale and plot it as a function of scale in Fig. 8. The
reconstructed manifolds obtained by the inverse geometric wavelets transform (at
selected scales) are shown in Fig. 9, together with a plot of relative approximation
errors,

E rel
j,2 =

1
√

Var(Xn)

√√√
√1

n ∑
x∈Xn

( ||x−Pj,x(x)||
||x||

)2

, (24)

where Xn is the training data of n samples. Both the approximation error and the
magnitude of the wavelet coefficients decrease quadratically with respect to scale as
expected.
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Fig. 8 Top row: wavelet coefficients obtained by the algorithm for the three data sets in Fig. 7.
The horizontal axis indexes the points (arranged according to the tree), and the vertical axis multi-
indexes the wavelet coefficients, from coarse (top) to fine (bottom) scales: the block of entries
(x, j),x ∈ Q j,k displays log10 |q j,x|, where q j,x is the vector of geometric wavelet coefficients of
x at scale j (see Sect. 3). In particular, each row indexes multiple wavelet elements, one for each
k ∈K j . Bottom row: magnitude of wavelet coefficients decreasing quadratically as a function of
scale

We threshold the wavelet coefficients to study the compressibility of the wavelet
coefficients and the rate of change of the approximation errors (using compressed
wavelet coefficients). For this end, we use a smaller precision 10−5 so that the
algorithm can examine a larger interval of thresholds. We threshold the wavelet
coefficients of the Oscillating2DWave data at the level .01 and plot in Fig. 10 the
reduced matrix of wavelet coefficients and the corresponding best reconstruction of
the manifold (i.e., at the finest scale).
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Fig. 9 Top and middle: reconstructions by the algorithm of the three toy data sets in Fig. 7 at two
selected scales. Bottom: reconstruction errors as a function of scale
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Fig. 10 The wavelet coefficients of the Oscillating2DWave data may be thresholded leading to
adaptive approximation. Left: after sorting the points so that the x-axis orders them as going
from left to right on the manifold, we see that when the manifold oscillates more, larger wavelet
coefficients arise at fine scales. By threshold at the level of .01 and prune the dyadic tree
accordingly, we reconstruct the manifold at the corresponding precision (right)

4.2 Data Sets

4.2.1 MNIST Handwritten Digits

We first consider the MNIST data set of images of handwritten digits,1 each of size
28×28. We use the digits 0 and 1 and randomly sample for each digit 3,000 images
from the database. We apply the algorithm to construct the geometric wavelets and
show the wavelet coefficients and the reconstruction errors at all scales in Fig. 11.
We select local dimensions for scaling functions by keeping 50% and 95% of the
variance, respectively, at the nonleaf and leaf nodes. We observe that the magnitudes
of the coefficients stop decaying after a certain scale. This indicates that the data is
not on a smooth manifold. We expect optimization of the tree and of the wavelet
dimensions in future work to lead to a more efficient representation in this case.

We then fix a data point (or equivalently an image), for each digit, and show in
Fig. 12 its reconstructed coordinates at all scales and the corresponding dictionary
elements (all of which are also images). We see that at every scale we have a
handwritten digit, which is an approximation to the fixed image, and those digits
are refined successively to approximate the original data point. The elements of the
dictionary quickly fix the orientation and the thickness, and then they add other
distinguishing features of the image being approximated.

1Available at http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/.
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Fig. 11 From left to right: geometric wavelet representation of the MNIST digits data set for 1
and 0. As usual, the vertical axis multi-indexes the wavelet coefficients, from coarse (top) to fine
(bottom) scales: the block of entries at (x, j),x ∈ Q j,k is log10 |q j,x|, where q j,x is the vector of
geometric wavelet coefficients of x at scale j (see Sect. 3). In particular, each row indexes multiple
wavelet elements, one for each k ∈K j . Top right: dimensions of the wavelet subspaces (with the
same convention as in the previous plot): even if the data lies in 784 dimensions, the approximating
planes used have mostly dimension 1–6, except for some planes at the leaf nodes. Rightmost inset:
reconstruction error as functions of scale. The decay is nonlinear and not what we would expect
from a manifold structure

Fig. 12 Left: in each figure we plot coarse-to-fine geometric wavelet approximations of the
original data point (represented in the last image). Right: elements of the wavelet dictionary
(ordered from coarsest to finest scales) used in the expansion of the data point on the left

Example: A Connection to Fourier Analysis and FFT

Consider band-limited functions of band B:

BFB = { f : supp. f̂ ⊆ [−Bπ ,Bπ ]}.
Classes of smooth functions (e.g., W k,2) are essentially characterized by their L2-
energy in dyadic spectral bands of the form [−2 j+1π ,−2 jπ ]∪ [2 jπ ,2 j+1π ], i.e., by
the L2-size of their projection onto BF2 j+1-BF2 j (some care is of course needed in
that smooth frequency cutoff, but this issue is not relevant for our purposes here).
We generate random smooth (band-limited!) functions as follows:



Multi-Resolution Geometric Analysis for Data in High Dimensions 279

points

sc
al

es

2000 4000 6000 8000 10000

1

2

3

4

5

6

7

8

9
0

5

10

15

20

25

30

35

0 0.05 0.1 0.15 0.2 0.25 0.3

−1.2

−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

Error against scale (log−log plot) − clean data

y = − 1.5*x − 0.73

data 1
linear

points

sc
al

es

2000 4000 6000 8000 10000

1

2

3

4

5

6

7

8

9
0

10

20

30

40

50

60

70

Fig. 13 We construct an orthogonal geometric multi-resolution analysis (see [2]) on a random
sample of 10,000 band-limited functions. Left: dimension of the GMRA wavelet subspaces.
Center: approximation error as a function of scale. Right: dominant frequency in each GMRA
subspace, showing that frequencies are sorted from low (top, coarse GMRA scales) to high (bottom,
fine GMRA scales). This implies that the geometric scaling function subspaces roughly correspond
to a Littlewood–Paley decomposition, and the GWT of a function f corresponds to a rough standard
wavelet transform

f (x) =
J

∑
j=0

a j(ω)cos( jx)

with a j random Gaussian (or bounded) with mean 2−"
j
J #α and standard deviation

2−"
j
J #α · 1

5 . The GMRA associated with a random sample of this family of functions
takes advantage of the multiscale nature of the data and organizes this family
of functions in a Littlewood–Paley type of decomposition: the scaling function
subspace at scale j roughly corresponds to BF2 j+1-BF2 j , and the GMRA of a point
is essentially a block Fourier transform, where coefficients in the same dyadic band
are grouped together. Observe that the cost of the GMRA of a point f is comparable
to the cost of the fast Fourier transform.

5 Data Representation, Compression, and Computational
Considerations

A set of n points in R
D can trivially be stored in space Dn; if it lies, up to a least

squares error ε in a linear subspace of dimension dε &D, we could encode n points
in space dε(D+ n) (cost of encoding a basis for the linear subspace, plus encoding
of the coefficients of the points on that basis). This is much less than the trivial
encoding for dε & D. It can be shown [2] that the cost of encoding with a GMRA a
C 2 manifold M of dimension d sampled at n points, for a fixed precision ε > 0 and
n large, is O(ε− d

2 dD+ nd log2 ε− 1
2 ).

Also, the cost of the algorithm is

O(nD(log(n)+ d2))+Od,D(n logn),



280 G. Chen et al.

Fig. 14 Approximations of the probability distribution concentrated on a S-shaped 2-dimensional
manifold within the GMRA framework. From left to right, top to bottom: 4,000 samples drawn
from our approximate distribution, constructed at scale 4, 6, and 8, respectively, from 2,000
training samples. Bottom right: as a function of scale, the Hausdorff distance between points
generated by the SVD model and GWT models and the training data, as well as the Hausdorff
distance variability of the generated data and true data. We see that pM j has small distance to the
training set and decreasingly so for models constructed at finer scales, while pSV D j , being a model
in the ambient space, generates points farther from the distribution. Looking at the plots of the
in-model Hausdorff distance variability, we see that such measure increases for pM j as a function
of j (reflecting the increasing expression power of the model). Samples from the SVD model look
like a Gaussian point cloud, as the kernel density estimator did not have enough training samples
to adapt to the low-dimensional manifold structure

while the cost of performing the FGWT of a point is

O(2dD logn+ dD+ d2 logε−
1
2 ).

The cost of the IGWT is similar but without the first term.
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Fig. 15 Left and right columns: a training set of 2,000 digits 2 (respectively, 3) from the MNIST
data set are used to train probability models with GMRA (pM j , one for each scale j in the GMRA
of the training set) and SVD (pSV D j , one for each GMRA scale, see text). Left: 32 digits drawn
from pM5 , pSV D5 : the quality of pM5 is qualitatively better than that of pSV D5 . Center: plots of
the Hausdorff distance to training set and in-model Hausdorff distance variability. Right: a similar
experiment with a training set of 2,000 points from a SwissRoll-shaped manifold with no noise:
the finest scale GMRA-based models perform best (in terms of both approximation and variability,
the SVD-based models are once again unable to take advantage of the low intrinsic dimension)

6 Multiscale Models of Densities

We present a simple example of how our techniques may be used to model measures
supported on low-dimensional sets which are well approximated by the multiscale
planes we constructed; results from more extensive investigations will be reported
in an upcoming publication.

We sample n training points from a point cloud M and, for a fixed scale j, we
consider the coarse approximation M j [defined in Eq. (10)], and on each local linear
approximating plane Vj,k we use the training set to construct a multifactor Gaussian
model on Q j,k: let π j,k be the estimated distribution. We also estimate from the
training data the probability π j(k) that a given point in M belongs to Q j,k (recall
that j is fixed, so this is a probability distribution over the |K j| labels of the planes at
scale j). We may then generate new data points by drawing a k ∈K j according to π j
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and then drawing a point in Vj,k from the distribution π j,k: this defines a probability
distribution supported on M j that we denote by pM j .

In this way we may generate new data points which are consistent with both
the geometry of the approximating planes Vj,k and with the distribution of the data
on each such plane. In Fig. 14 we display the result of such modeling on a simple
manifold. In Fig. 15 we construct pM j by training on 2,000 handwritten 2s and
3s from the MNIST database, and on the same training set we train two other
algorithms: the first one is based on projecting the data on the first a j principal
components, where a j is chosen so that the cost of encoding the projection and
the projected data is the same as the cost of encoding the GMRA up to scale j
and the GMRA of the data and then running the same multifactor Gaussian model
used above for generating π j,k. This leads to a probability distribution we denote
by pSVDj . In order to test the quality of these models, we consider the following
two measures. The first measure is simply the Hausdorff distance between 2,000
randomly chosen samples according to each model and the training set: this is
measuring how close the generated samples are to the training set. The second
measure quantifies if the model captures the variability of the true data and is
computed by generating multiple point clouds of 2,000 points for a fixed model
and looking at the pairwise Hausdorff distances between such point clouds, called
the within-model Hausdorff distance variability.

The bias–variance trade-off in the models pM j is the following: as j increases
the planes better model the geometry of the data (under our usual assumptions), so
that the bias of the model (and the approximation error) decreases as j increases;
on the other hand the sampling requirements for correctly estimating the density
of Q j,k projected on Vj,k increases with j as less and less training points fall in
Q j,k. A pruning greedy algorithm that selects, in each region of the data, the correct
scale for obtaining the correct bias–variance trade-off, depending on the samples
and the geometry of the data, similar in spirit to the what has been studied in the
case of multiscale approximation of functions, will be presented in a forthcoming
publication. It should be remarked that such a model would be very complicated in
the wavelet domain, as one would need to model very complex dependencies among
wavelet coefficients, in both space and scale.
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was concluded that the flatness function is independent of the lower edge of the
high-pass signal component B, as expected of an fBm.
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tion • Self-similarity and scale invariance
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1 Introduction

The use of multifractal processes for modeling complex systems has gained wide
acceptance in the mathematics, engineering, and physical sciences communities,
as it has grown in leaps and bounds in the past 40 years. Simple fractal processes
are divided into deterministic, e.g., the Cantor set, and random fractals, such
as Brownian motion and fractional Brownian motion (fBm). Fractal patterns are
observed in complex dynamical systems composed of many nonlinearly interacting
parts. They often exhibit properties such as long-range correlation and intermittent
or bursty behavior. Long-range correlation is the tendency of a system to interact
with its parts across extended spatial and temporal scales. Complex patterns emerge
that cannot be explained from an analysis of individual parts. Intermittency is an
indication of global change in a complex system and is related to the relative
sensitivity of the system to small changes in its internal states. MITRE has applied
complexity theory to agent-based simulation, where processes unfold in a highly
unpredictable manner. One of these modeling areas is combat simulation, where
small changes in one part of the battle space produce profound effects in another.
Multifractal techniques were necessary in the development of the underlying
complexity-based analysis tools.

This short chapter examines the flatness function, a measure of the intermittency
of a random process, for an fBm. The focus of the development is the derivation of
the fourth-order structure function, on which the flatness depends. The fourth-order
structure function is derived by integration in terms of the generalized trispectrum
to find the fourth-order correlation function. Section 2 contains the theoretical
development, Sect. 3 the results, while the conclusions are contained in Sect. 4.

2 Theory

Important properties of fBm are self-similarity and scale invariance. It obeys the
generalized scaling relation:

x(λ t)→ “law”λ Hx(t), (1)

where→ “law” means that the relation is a “law” or equivalence for all probability
distributions and H is called the Hurst parameter. Brownian motion is a special case
of this scaling law when H = 1/2.

Scaling properties of the correlation function are related to analogous scaling
properties of the power spectrum of a random fractal process. The second-order
structure function, formally defined, is the second moment of the increment process,
E(|x(t + τ)− x(t)|2). For the increments of an fBm process:

E[|x(t + τ)− x(t)|2] = σ2VH |τ|2H , (2)
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where VH is a function of the Hurst parameter and E[x] denotes the expectation value
of x. Therefore, even though fBm is not stationary, its increments are. The flatness
function F(B) for a zero-mean stationary random process x(t) is defined as the ratio
of the fourth-order moment to the square of the second-order moment [1]:

F(B) = E
[
x4

B(t)
]
/E
[
x2

B(t)
]2
, (3)

where B represents the lower band edge frequency of the high-pass component of
the signal and xB(t) represents the signal components above that frequency. Let
X( f ) denote the Fourier transform of the waveform x(t). The high-pass component
of the waveform is obtained using an ideal high-pass filter with perfect response
characteristics:

xB(t) =
∫

| f |≥B
X( f )exp(2π i f t)d f . (4)

The flatness function is a measure of the intermittency or burstiness of a random
process at small scales. If F(B) increases without bound as B increases, the
multifractal process is said to be intermittent. If the process x(t) is not stationary,
then the stationary increments x(t + τ)− x(t) are used. Here we use the stationary
increments (xB(t + τ)− xB(t)) of the generally nonstationary process xB(t):

F(B) = E
[
(xB(t + τ)− xB(t))

4]/E
[
(xB(t + τ)− xB(t))

2]2
, (5)

where τ is the time increment. As Bτ → 0, we regain the full signal, and E
[
(xB(t +

τ)− xB(t))4
] → E

[
(x(t + τ)− x(t))4

]
. In this chapter, we examine the case of

Bτ → 0, for which the multifractal scaling law predicts E
[
(x(t + τ)− x(t))q

]
=

c(q)|τ|τ(q)+1, where c(q) is a constant and τ(q) is the scaling or generating function
[2]. In order to calculate the flatness function, one must derive expressions for both
the second- and fourth-order structure functions of a process.

We assume a real fBm model for x(t), which is useful in describing processes
with long-term correlations, i.e., 1/ωn spectral behavior, where ω is the angular
frequency. Because fBm is not a stationary process, however, it is difficult to define
or interpret a power spectrum. In [3], it was shown that it is possible to construct
fBm from a white-noise-type process through a stochastic integral in frequency of
a stationary uncorrelated random process, in this case the time increments of fBm.
A spectral representation of x(t) was obtained assuming it is driven by a stationary
white noise process W (t), not necessarily Gaussian. Specifically, it was shown that

x(t) =
1

2π

∫ ∞

−∞
(eiωt − 1)

(
1

iω

)n

dβ (ω), (6)

where n = H + 1/2, H being the fractal scaling parameter or Hurst coefficient, 0 <
H < 1. The quantity

β (ω)≡
∫ ω

0
F(ω ′)dω ′, (7)
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is a complex-valued Wiener process in frequency of orthogonal increments, where

F(ω ′) =
∫ ∞

−∞
e−iω ′tW (t)dt (8)

is the Fourier transform of the white noise process. If W (t) is Gaussian, the incre-
ments are also independent. In general, if the increments in β (ω) are infinitesimal,
it is shown in [3] that

E [dβ ∗(ω1)dβ (ω2)] = 2πγw
2 δ (ω1−ω2)dω1dω2, (9)

where δ (ω) is the Dirac delta function and γw
2 is a constant related to the power

of the white noise driving force. Using the spectral representation of x(t), one
can derive an expression for the second-order structure function, or generalized
correlation

E[(x(t1)− x(t))(x(t2)− x(t))] =

(
1

2π

)2 ∫ ∞

−∞

∫ ∞

−∞

[
eiω1t1 − eiω1t]

(
1

iω1

)n

× [
e−iω2t2 − e−iω2t]

(
1

−iω2

)n

E [dβ ∗(ω1)dβ (ω2)]

× dω1dω2

= γw
2

Vn

2

(|t1− t|2n−1 + |t2− t|2n−1−|t2− t1|2n−1) ,

Vn =

(
2
π

)
Γ [1− 2n]sin(nπ), (10)

where 3
2 > n > 1

2 for convergence. If t2 = t1 = τ + t, then E
[
|(x(τ + t)− x(t))|2

]
=

γw
2 Vn|τ|2n−1.

Here, we would like to derive the corresponding expression for the fourth-order
structure function of an fBm process. We begin by first finding the fourth-order
correlation

E [dβ ∗(ω4)dβ (ω1)dβ (ω2)dβ (ω3)]

of the differential increment dβ (ω) = F(ω)dω . The fourth-order correlation
function of the white noise process was derived in [4] as

E
[
W (t1)W (t2)W (t3)W (t4)

]
= γw

4 δ (t1− t4)δ (t2− t4)δ (t3− t4), (11)

where γw
4 is a constant. Therefore,

E [dβ ∗(ω4)dβ (ω1)dβ (ω2)dβ (ω3)]

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
eiω4t4 e−iω1t1 e−iω2t2 e−iω3t3
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×E [W (t1)W (t2)W (t3)W (t4)]dt1dt2dt3dt4

×dω1dω2dω3dω4 = γw
4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
eiω4t4 e−iω1t1

×e−iω2t2 e−iω3t3 δ (t1− t4)δ (t2− t4)δ (t3− t4)

×dt1dt2dt3dt4dω1dω2dω3dω4

= γw
4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ei(ω4−ω1−ω2−ω3)t4

×dt4dω1dω2dω3dω4

= γw
4 (2π)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ (ω4−ω1−ω2−ω3)

×dω1dω2dω3dω4. (12)

By analogy to Eq. (10) one may derive the general correlation of four arbitrary
increments in x(t):

E
[
(x(t1)− x(t))(x(t2)− x(t))× (x(t3)− x(t))(x(t4)− x(t))

]

=

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[
eiω1t1 − eiω1t]

(
1

iω1

)n

×[eiω2t2 − eiω2t]
(

1
iω2

)n [
eiω3t3 − eiω3t]

(
1

iω3

)n

×[e−iω4t4 − e−iω4t]
(

1
−iω4

)n

×E [dβ (ω1)dβ (ω2)dβ (ω3)dβ ∗(ω4)]

=

(
1

2π

)4 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[
eiω1t1 − eiω1t]

(
1

iω1

)n

×[eiω2t2 − eiω2t]
(

1
iω2

)n [
eiω3t3 − eiω3t]

(
1

iω3

)n

×[e−iω4t4 − e−iω4t]
(

1
−iω4

)n

(2π)γw
4

×δ (ω4−ω1−ω2−ω3)dω1dω2dω3dω4

=

(
1

2π

)3

γw
4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[
eiω1t1 − eiω1t]

×[eiω2t2 − eiω2t][eiω3t3 − eiω3t]
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×
[
e−i(ω1+ω2+ω3)t4 − e−i(ω1+ω2+ω3)t

]( 1
iω1

)n( 1
iω2

)n

×
(

1
iω3

)n( 1
−i(ω1 +ω2 +ω3)

)n

dω1dω2dω3, (13)

which is the expression for the fourth-order correlation in terms of a “generalized
trispectrum” [5, 6]:

ΦT (ω1,ω2,ω3)∼ 1
ωn

1 ωn
2 ωn

3 (−ω1−ω2−ω3)n . (14)

Now, if t1 = t2 = t3 = t4 = t + τ , Eq. (13) is precisely the fourth-order structure
function of x(t). It can easily be seen that the phase factors in t will then cancel out
and only phase factors in τ will appear.

Transforming to the variables γ =
[
ω1 +

ω2+ω3
2

]
, α = [ω2 +ω3] , β =

[ω3
2 − ω2

2

]
,

Eq. (13) becomes

E
[|(x(t + τ)− x(t))|4])

=

(
1

2π

)3

4γw
4

∫ ∞

−∞

∫ ∞

−∞

(
cos(α

2 τ)− cos(γτ)
)

(
α2

4 − γ2
)n dγ

∫ ∞

−∞

(
cos(α

2 τ)− cos(β τ)
)

(
α2

4 −β 2
)n dβ dα. (15)

We see that the integrals over β and γ are identical, have even integrands, and for
arbitrary n will contain real and imaginary parts. A simultaneous change of sign in
both denominators implies that

⎡

⎣
∫ ∞

0

(
cos(α

2 τ)− cos(β τ)
)

(
α2

4 −β 2
)n dβ

⎤

⎦

2

=

⎡

⎣
∫ ∞

0

(
cos(α

2 τ)− cos(β τ)
)

(
β 2− α2

4

)n dβ

⎤

⎦

2

.

(16)

Equation (16) in turn implies that

∫ a/2

0

(
cos(α

2 τ)− cos(β τ)
)

(
α2

4 −β 2
)n dβ =

∫ ∞

a/2

(
cos(α

2 τ)− cos(β τ)
)

(
β 2− α2

4

)n dβ . (17)

Now, for α > 0, the values of these integrals are
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∫ a/2

0

(
cos(α

2 τ)− cos(β τ)
)

(
α2

4 −β 2
)n dβ

=−
(

α
1
2−2n√πΓ [1− n]

(

−
(

4n√α cos
(a

2

))

+2anJ 1
2−n

(a
2

)
Γ
[

3
2
− n

]))(
1

4Γ
[

3
2 − n

]

)

;

∫ ∞

a/2

(
cos(α

2 τ)− cos(β τ)
)

(
β 2− α2

4

)n dβ

=

(

α
1
2−2nΓ [1− n]

(

4n√α cos
(a

2

)
Γ
[
−1

2
+ n

]

+2anπ

(

J 1
2−n

(a
2

)
sec(nπ)− Jn− 1

2

(a
2

)
tan(nπ)

)))(
1

4
√

π

)
;

(18)

([7], p. 427, Eqs. 8 and 9), where Jν (x) is the Bessel function of order ν . Simple
plots of these results versus α easily demonstrate that the two expressions are in
fact not the same. Therefore α cannot be positive but must equal zero in order for
the above integrals to exist. For α=0 Eq. (15) then becomes

E
[|(x(t + τ)− x(t))|4]

=

(
1

2π

)3

16γw
4 |τ|m−3

∫ ∞

−∞
2πδ (α)

∫ ∞

0

(
cos(α

2 )− cos(γ)
)

(
α2

4 − γ2
)n dγ

∫ ∞

0

(
cos(α

2 )− cos(β )
)

(
α2

4 −β 2
)n dβ dα

=

(
1

2π

)2

16γw
4 |τ|m−3

[∫ ∞

0

(1− cos(β ))
(β 2)n dβ

]2

=

(
1

2π

)2

16γw
4 |τ|m−3 [Γ [1− 2n]sin(nπ)]2 , (19)

where we have divided the variables α, β , γ by a scale factor τ , and m = 4n+ 1.1

The integral
∫ ∞

0
(1−cos(β ))
(β 2)

n dβ will converge at infinity if −2n+ 1 < 0 or n > 1/2

1δ (α
τ ) = τδ (α).
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Fig. 1 Behavior of fourth-order correlation versus n

since the numerator remains finite. Near β = 0, the numerator behaves as ∼ β 2;
therefore the integral remains finite if −2n+ 3 > 0 or n < 3/2. This implies that
7 > m > 3 for convergence. The behavior of the fourth-order structure function in
Eq. (19) is shown as a function of n in Figs. 1 and 2. Figure 2 is a detailed view of the
larger-scale behavior in Fig. 1. The physical region for the fBm process lies between
n = 1/2 and n = 3/2, as it does in the case of the second-order structure function
in Eq. (10). It is interesting to note that the large-scale behavior of the logarithm of
E
[|(x(t + τ)− x(t)|4] versus n resembles a hyperbola.

3 Results

Let us evaluate the integral in Eq. (15) directly for n = 1. Since

∫ ∞

−∞

(
cos(α

2 )− cos(γ)
)

(
α2

4 − γ2
) dγ = 2

π
α

sin
(α

2

)
, (20)

([7], p. 407, Eq. 9), we have

∫ ∞

−∞
4π2 sin2 (α

2

)

α2 dα = 8π2 π
4
= 2π3, (21)
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([7], p. 414, Eq. 3). Alternatively, inserting the delta function in Eq. (15) and setting
α = 0, we have

∫ ∞

−∞

(1− cos(γ))
(γ2)

dγ = 2
π
2
, (22)

which when squared and combined with the factor 2π from the delta function gives
us 2π3, the same answer as above. Thus, the fourth-order structure function for
fBm is nonzero only along the normal submanifold α = 0 of the three-dimensional
frequency space.

Dividing Eq. (19) by Eq. (10) squared for t1 = t2 = τ+t, we obtain for the flatness
function the quantity γw

4 /(γ
w
2 )

2, which, as expected, is a constant for the increments
of an fBm. This then implies that the fBm is also not intermittent.

4 Conclusions

In trying to model complex behavior on the battlefield through agent-based sim-
ulation, it became necessary to use the theory of complexity, in particular that of
multifractal processes. Generalized fractal phenomena are characterized by long-
range correlation and intermittency. This work examined the properties of an fBM
process, whose increments are stationary. Specifically, in order to determine the
intermittency characteristics, it was necessary to calculate the flatness function,
the ratio of the fourth-order structure function to the square of the second-order
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structure function of the increments of an fBm. The focus was on the derivation of
the fourth-order structure function through the use of the generalized trispectrum of
the process. It was found that the flatness function is independent of the lower edge
frequency of the high-pass signal component, which leads to the conclusion that an
fBm is not intermittent.
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Harmonic Analysis of Databases and Matrices

Ronald R. Coifman and Matan Gavish

Abstract We describe methods to organize and process matrices/databases through
a bi-multiscale tensor product harmonic analysis on row and column functions. The
goal is to reorganize the matrix so that its entries exhibit smoothness or predictability
relative to the tensor row column geometry. In particular we show that approximate
bi-Holder smoothness follows from simple l p entropy conditions. We describe
various applications both for the analysis of matrices of linear transformations, as
well for the extraction of information and structure in document databases.

Keywords Databases • Tensor Haar • Tensor harmonic analysis • Bi-Holder •
Partition trees • Machine learning • Diffusion geometry

1 Introduction

In this chapter, we describe a program in analysis, designed to integrate ideas from
harmonic analysis and geometry with ideas and methods from machine learning.

Digital data is usually represented as sets of points in high-dimensional Euclidean
space. A text document, for example, may be converted to a point, whose coor-
dinates are the list of occurrence frequencies of words in a lexicon. A corpus of
documents is then represented as a collection of such points.

Consider now the task of organizing such a dataset. Continuing our example, the
documents are to be organized according to their mutual relevance. We can view
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this data set as a cloud of points in high-dimensional Euclidean space. Our goal
is to build both a geometry and a corresponding harmonic analysis so that various
functions on the data are efficiently represented.

We can also view this dataset as a matrix, in which each column is a document
whose entries are the frequencies of occurrence of a given word in a lexicon. In a
dual fashion, each row is a word whose entries are labeled by the documents. Below,
we review a recently introduced organization scheme, which jointly organizes the
language (namely, the rows) and the documents (the columns) into a coherent
product structure. In this scheme, tensor harmonic analysis of the product set
{rows}×{columns} plays a central role.

The common ground, or underlying geometric fabric, is provided through the
construction of various graphs, on which analysis is performed. In mathematics we
have seen extensions of tools from harmonic analysis to Riemannian manifolds, or
more generally to subsets of Rn. One of the most powerful approaches consisted in
the study of the geometry of a manifold through the properties of functions and
operators on the manifold. In particular, the Laplace-Beltrami operator, as well
as pseudo-differential or singular integral operators, has played a central role in
revealing deep connections between geometry and analysis. Here, we describe the
interplay of such analytic tools with the geometry and combinatorics of data and
information. We will provide a range of illustrations and application to the analysis
of operators and, at the same time, to the analysis of documents and questionnaires.

The following topics are interlaced below:

• Geometries of point clouds
• From local to global—the role of eigenfunctions
• Diffusion geometries in original coordinates and organization
• Coupled dual geometries: duality between rows and columns, tensor product

geometries
• Sparse tensor product grids and efficient processing of data
• Harmonic analysis, Haar systems, tensor Besov and bi-Hölder functions,

Calderon–Zygmund decomposition
• Applications: to mathematics organization of operators the dual geometries of

eigenvectors

2 Organization of Point Clouds in R
n by Eigenvector

Embeddings

When representing the dataset as a collection of points in high-dimensional
Euclidean space, a naı̈ve organization scheme might be to construct a distance
(or similarity) between two documents through the Euclidean distance or the inner
product of their corresponding vectors. However, already in moderate dimensions,
most points are far away or essentially orthogonal. The distances in high dimensions
are informative only when they are quite small. In our document example, if the
empirical distributions of the vocabulary in two documents are very close, we can
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infer that they deal with a similar topic. In this case we can link the two documents
and weigh the link by a weight reflecting the probability that the documents are
dealing with the same topic. We construct a nondirected, weighted graph whose
nodes are the documents, as well as a corresponding random walk (or diffusion
process) and a Laplace operator on this graph. This linkage structure provides a
local model for the relationship between document, we claim that the eigenvectors
of the corresponding diffusion operator enable a global “integration/organization of
the data”.

This result is remarkable even in the case of Riemannian manifolds, where a local
infinitesimal metric defines a Laplace operator or a heat diffusion process and the
first few eigenvectors of the Laplace operator provide an explicit global embedding
of the manifold in R

n .
We claim that the basic concepts of differential calculus can be restated in terms

of eigenvectors of appropriate local linear transformations. Let us illustrate this
process of the local-to-global integration in analysis by two concrete examples.

The first example is a nonlinear reformulation of the fundamental theorem of
calculus [16]. Consider the following basic problem posed by Cauchy, also known
as the sensor localization problem: Assume, for example, that you know some of the
distances between points in the plane (or in high dimension) and assume also that
enough distances are known to determine the system. The problem is to reconstruct
the point set, up to a global rigid transformation. If enough local triangles with
known length, are given, we can compute a local map which can be assembled
bit by bit like a puzzle, in a process analogous to integration. A more powerful
equivalent method is obtained by writing each point as the center of mass of its
known neighbors, namely,

Pi = ∑
j: j∼i

Ai jPj (sum over the neighbors of i),

where ∑ j: j∼i Ai j = 1. This equation, which is invariant under rigid motion and
scaling, tells us that the vector of x coordinates of all points is an eigenvector
corresponding to eigenvalue 1 of the matrix A. Similarly, the vector of y coordinates
as well as all of the vectors whose entries equal 1 are in the same space. We thus
see that the solution to the rigidity problem is obtained by finding a basis of this
space and expressing three points in this basis (using their mutual distances). Indeed,
the power iteration algorithm for computing eigenvectors consists of iterating and
rescaling matrix A as it acts on the iterates of a random vector. This is effectively a
process of integration.

Observe, for example, that if the points are of the form (i, f (i)) and we know
the differences | f (i)− f (i− 1)| and | f (i)− f (i− 2)|, then we know the distance in
the plane between neighbors and therefore can determine f . This is a simple (but
nonlinear) version of the fundamental theorem of calculus.

As a second example, let Δ = I − A where A is an averaging operator, and
consider the Poisson-type equation

Δu = f . (1)
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We claim that we can find the solution u as an eigenvector

Bu = u,

where

B = 2A−A2− δAσ(I−A)

with σ = sgn( f ) and δ = Δ f
A(| f |) . Both scalars δ and σ are diagonal multiplications.

This casts the difference equation as a fixed point equation. In other words, the
solution of the local discrete infinitesimal model (1) is given in terms of eigenvectors
of a corresponding local “affinity” matrix B.

More generally for a cloud of points, similar to the body of text documents
mentioned above, we can define a diffusion linking points by building appropriate
linear models or affinity kernels, whose eigenvectors are going to map out the data.

The affinity between two points Xp, Xq is defined using the Markov matrix

Ap,q =

exp

(
−
∣
∣
∣Xp−Xq

∣
∣
∣
2
/ε
)

∑q exp

(
−
∣∣
∣Xp−Xq

∣∣
∣
2
/ε
)

or, alternatively, as a bi-Markovian version

Ap,q =

exp

(
−
∣
∣
∣Xp−Xq

∣
∣
∣
2
/ε
)

ω(p)ω(q)
,

where the weights are selected so that A is Markov in both p and q.
Let us mention two examples where this diffusion operator A arises in clas-

sical analysis. First, consider points that are uniformly distributed on a smooth
submanifold of Euclidean space, Δ = 1

ε (I−A) is an approximation of the induced
Laplace-Beltrami operator on the manifold, and the eigenvectors of A approximate
the eigenvectors of the Laplace operator. Moreover the powers of A correspond to
diffusion on the manifold scaled by ε [4, 5, 9].

Second, consider data generated by a stochastic Langevin equation (namely,
a stochastic gradient descent differential equation). In this case, Δ = 1

ε (I − A)
approximates the corresponding Fokker–Planck operator [9, 11].

Generally, we have the following organization scheme. We view A as a local
model for point affinities (or diffusion probabilities). We diagonalize it and write

Ap,q = ∑λ 2
� ϕ�(Xp)ϕ�(Xq).

We then use the eigenvectors ϕ� to define a t-dependent family of embeddings
Xp �→ X̃t

p. The t-th embedding integrates all local interrelations to range t:

X̃t
p =

(
λ t

1ϕ1(Xp) , . . .λ t
mϕm(Xp)

)
.
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Fig. 1 An embedding of the science news document dataset in R
3

For a given t we determine m so that λ t
m+1 is negligible, and embed the data into

m-dimensional Euclidean space.
The diffusion distance at time t between Xp and Xq is then defined as

d2
t (p,q) = At

p,p +At
q,q− 2At

p,q

= ∑λ 2t
� (ϕ�(Xp)−ϕ�(Xq))

2

= ||X̃t
p− X̃t

q||2.

The diffusion distance at time t is interpreted as the distance in L2 between the
kernels of the diffusion operator at time t starting at p and the one starting at q.

Figure 1 shows a diffusion map embedding in R
3 of the “Science News” database

of documents [15], which has been converted to point cloud in high dimension
as described above. Note that this low-dimensional embedding already provides a
topic organization of the documents: evidently, different disciplines correspond to
different colors or different regions in the embedding.

To recap, in this approach, data points are represented as points in high-
dimensional Euclidean space; a diffusion operator on this point set is constructed,
based on distances between neighboring points; and finally, eigenvectors of a power
of this operator that correspond to large eigenvalues are used to embed the data set
in a lower-dimensional Euclidean space and to organize it.
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3 Organization of Databases Using Coupled Partition Trees

We now turn to an alternative organization method, in which a dataset is viewed as
a matrix—a function on a product structure—rather than as a collection of points in
Euclidean space. The rows and columns of the matrix are treated on equal footing
and are jointly organized.

3.1 Partition Trees

Let us consider a multiscale approach to achieve local-to-global integration of local
affinities, this is the combinatorial analogue of the diagonalization of a local affinity
operator (similar to the relation between wavelets and Fourier series in the classical
context). We can collect neighboring points into “folders,” or sets, and collect the
folders into super-folders, and so on. This yields an organization of the point set
through a hierarchical partition tree [7, 8, 12].

A minimal multiscale partition tree organizing a set X at different levels of
granularity can be obtained as follows. The first partition, at level � = 0, consists
of singletons. Assume that the partition at level �, denoted by X =

⊎
x�j, has been

obtained and that a metric d� (or an affinity) on the set {x�j} is available.

Let x�+1
j be a maximal subcollection of points in x�j such that d�

(
x�+1

j ,x�+1
i

)
>

1/2. Clearly, each point is at distance less than 1/2 at scale � from one of the selected
key-points. This allows us to create the next partition, at level �+ 1, by assigning
each point to the nearest point in the key-point grid, that is the point minimizing
d�
(
x,x�+1

i

)
.

This yields a partition tree of disjoint sets at each level �. We refer to this
increasingly refined set of partitions as partition tree (Fig. 2).

Given a set X equipped with an affinity matrix A, we let d� be the diffusion
distance at time 2l . We can thus use the local-scaled affinities defined by the powers
of A to build a multiscale (in diffusion time) partition tree on X . Observe that this is
the usual construction of a vector quantization tree in the Euclidean case.

This construction when applied to text documents (equipped with semantic
coordinates) builds an automatic folder structure with corresponding key-documents
characterizing the folders or contexts; when applied to the vocabulary, it yields
a hierarchy of conceptual word bags. Note that this construction is a well-known
stochastic construction used in the past to achieve optimal low-dimensional metric
embeddings [2, 3].

For example, Fig. 3 shows an image patch dataset. We consider the dataset of
all 8× 8 image patches (right panel) taken from a simple image (left panel). The
diffusion embedding organizes this dataset as a sphere (lower panel). Using local
Euclidean distances in R

64 between image patches as affinities, we can alternatively
organize this dataset by constructing a partition tree. The folders correspond to
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Fig. 2 Hierarchical partition tree

Fig. 3 Organizing an image patch dataset

patches with a similar proportion of black to white and a similar orientation (e.g.,
the red folder on the lower panel corresponds to the patches indicated on the right
panel). Consequently, the tree organization is nothing but a multiscale hierarchy on
the sphere.

3.2 Haar Bases

A hierarchical partition tree on a dataset X allows harmonic analysis of real-valued
functions on X , as it induces special orthonormal bases called Haar bases [13].



304 R.R. Coifman and M. Gavish

A Haar basis is obtained from a partition tree as follows. Suppose that a node in
the tree has n children, that is, that the set described by the node decomposes into n
subsets in the next, more refined, level. Then this node contributes n− 1 functions
to the basis. These functions are all supported on the set described by the node, are
piecewise constant on its n subsets, all mutually orthogonal, and are orthogonal to
the constant function on the set.

Observe that just like the classical Haar functions, coefficients of an expansion
in a Haar basis measure variability of the conditional expectations of the function in
sub-nodes of a given node.

Tasks such as compression of functions on the dataset, as well as subsampling,
denoising, and learning of such functions, can be performed in Haar coefficient
space using methods familiar from Euclidean harmonic analysis and signal process-
ing [13].

Some results for the classical Haar basis on [0,1] extend to generalized Haar
bases. Recall that the classical Haar functions are given by

h�(x) =
(
|I|− 1

2

)
(χ−− χ+) ,

where χ− is the indicator of the left half of I and χ+ is the indicator of the right
half of I.

Let us first note that the classical Haar basis on [0,1] is the Haar basis induced
by the partition tree of dyadic subintervals of [0,1]. This tree defines a natural
dyadic distance d(x,y) on [0,1], defined as the length of the smallest dyadic interval
containing both points. Hölder classes in the metric d are characterized by the Haar
coefficients aI =

∫
f (x)hI(x)dx:

|aI|< c|I| 1
2+β ⇔ | f (x)− f (x′)|< c ·d(x,x′)β .

This theorem holds for any Haar basis when d is the tree metric induced by the
partition tree, and |I|= #I

#X is the normalized size of the folder I.

3.3 Coupled Partition Trees

Let us return to the text document example above. Consider a matrix M whose
columns are the terms-frequency vectors, so that columns correspond to documents
and rows correspond to terms. The partition tree construction can be applied to the
columns of M, where the affinity matrix A is obtained from local distances between
the columns as vectors in Euclidean space. Each partition in the resulting partition
tree can be interpreted as a division of the documents into contexts, or subjects.
However, it can also be applied to the set of rows of M, resulting in partitions of the
terms into concepts or word bags.
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Coupling the construction of the two partition trees—on the columns and the
rows—takes us away from the representation of the dataset as a point cloud in
Euclidean space toward representation of the dataset as a function on the product
set {rows}×{columns}. We now consider data matrix M and assume two partition
trees—one on the column set of M and one on the row set of M—have already been
constructed. Each tree induces a Haar basis and a tree metric as above.

The tensor product of the Haar bases is an orthonormal basis for the space of
matrices of the same dimensions as M. We now consider an analysis of M in this
basis.

Denote by |R| = |I× J| a “rectangle” of entries of M, where I is a folder in the
column tree and J is a folder in the row tree. Denote by |R| = |I||J| the volume of
the rectangle R. Indexing Haar functions by their support folders, we write hI(x) for
a Haar function on the rows. This allows us to index basis functions in the tensor
product basis by rectangles and write hR(x,y) = hI(x)hJ(y).

Analysis and synthesis of the matrix M is in the tensor Haar basis is simply

aR =
∫

M(x,y)hR(x,y)dxdy

M(x,y) = ∑
R

aRhR(x,y).

The characterization of Hölder functions mentioned above extends to mixed-
Hölder matrices [7, 8, 12]:

∣
∣
∣aR

∣
∣
∣< c

∣
∣
∣R
∣
∣
∣
1/2+β ⇔

∣
∣
∣ f (x,y)− f (x′,y)− f (x,y′)+ f (x′,y′)

∣
∣
∣≤ cd(x,x′)β D(y,y′)β ,

where d and D are the tree metrics induced by the partition trees on the rows and
columns, respectively.

Simplicity or sparsity of an expansion is quantified by an entropy such as

eα( f ) =
(
∑
∣∣aR

∣∣α
)1/α

for some α < 2.
The relation between this entropy, efficiency of the representation in tensor Haar

basis and the mixed-Hölder condition, is given by the following two propositions
[7, 8, 12].

Proposition 1. Assume eα( f ) = (∑
∣
∣aR

∣
∣α) ≤ 1. Then the number of coefficients

needed to approximate the expansion to precision ε1−α/2 does not exceed ε−α , and
we need only consider large coefficients corresponding to Haar functions whose
support is large. Specifically, we have

∫ ∣
∣
∣
∣
∣
f − ∑

|R|>ε, |aR|>ε
aRhR(x)

∣
∣
∣
∣
∣

α

dx < ε1−α/2
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The next proposition shows that eα( f ) estimates the rate at which f can be
approximated by Hölder functions outside sets of small measure.

Proposition 2. Let f be such that eα ≤ 1. Then there is a decreasing sequence of
sets E� such that |E�| ≤ 2−� and a decomposition of Calderon–Zygmund type f =
g�+ b�. Here, b� is supported on E� and g� is Hölder β = 1/α− 1/2 with constant
2(�+1)/α . Equivalently, g� has Haar coefficients satisfying |aR| ≤ 2(�+1)/α |R|1/α .

To connect the bounded entropy condition with classical Euclidean harmonic
analysis, consider the tensor product of smooth wavelet basis on [0,1] with itself,
yielding an orthonormal basis for L2

(
[0,1]2

)
. The class of functions, whose wavelet

expansion has finite entropy, has been characterized in [10]. There, it is shown that
this class is independent of the wavelet used and equals the class of functions having
a harmonic extension whose corresponding fractional derivative is integrable in the
disk (or bi-disk). The dual spaces are also characterized as Bloch spaces, which
in our dyadic structure case are just functions with bounded Haar coefficients.
Also observe that for f : [0,1]2 → R f = ∑ |R|1/2aR|R|−1/2hR is a special atomic

decomposition of
(

∂
∂x

)1/2( ∂
∂y

)1/2
f which is therefore in the Hardy space H1 of

the bi-disk. A similar result holds for the other entropies, implying a fractional
derivative in the Hardy space.

Proposition 2 decomposes any matrix into a “good,” or mixed-Hölder part, and a
“bad” part with small support.

Mixed-Hölder matrices indeed deserve to be called “good” matrices, as they can
be substantially subsampled. To see this, note that the number of samples needed to
recover the functions to a given precision is of the order of the number of tensor
Haar coefficients needed for that precision. For balanced partition trees, this is
approximately the number of bi-folders R, whose area exceeds the precision ε . This
number is of the order of 1/ε log(1/ε).

Details of the sampling and reconstruction schemes are available in [12]. The
sampling patterns that allow approximate reconstruction of a matrix M from
1/ε log(1/ε) samples is analogous to a sparse grid [6], a sampling pattern in
Euclidean space originally introduced by Smolyak [17].

Propositions 1 and 2 imply that the entropy condition quantifies the compatibility
between the pair of partition trees (on the rows and on the columns) and the matrix
on which they are constructed. In other words, to construct useful trees, we should
seek to minimize the entropy in the induced tensor Haar basis.

For a given matrix M, finding a partition tree pair, which is a global minimum of
the entropy, is computationally intractable and not sensible, as the matrix could be
the superposition of different structures , corresponding to conflicting organizations.
At best we should attempt to peel off organized structured layers.

Let us describe iterative, heuristic procedures for building tree pairs that often
perform well in practice.

Observe that the simplest geometry that can be built to fit a given function is
to postulate that level sets are points whose proximity is defined by the values of
the function, this corresponds to rearranging the functions level sets by decreasing
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values of the function. In reality we are always confronting a collection of functions
such as the coordinates of our cloud of points in high dimensions (or the rows of
a matrix viewed as a collection of functions on the columns, representing points in
space) and are therefore forced to tune the geometry to render all coordinates as
smooth as possible.

If, instead of rearranging scalars, we organize the columns in a quantization tree,
as in the construction of partition trees above, then tautologically each coordinate
(row) is Hölder relative to the tree metric on the points, enabling us to organize
the rescaled (or differentiated) Haar coefficients of the rows in a quantization
tree thereby guaranteeing that the matrix is mixed-Hölder. The procedure can then
be iterated.

We illustrate a simpler procedure on the example of a questionnaire matrix
M, where Mi, j is the response of person j to question i. In other words, columns
correspond to persons and rows correspond to questions in the questionnaire.

We start by building an affinity graph on the columns (persons) using correlation
or any other affinity measure between columns. Bottom-up hierarchical clustering
is then performed on the resulting graph, producing a partition tree on the
columns. Folders in the different partitions correspond to demographic groups in
the population. We append the demographic groups as new pseudo-persons to the
dataset. The response of a demographic group “pseudo-person” to question i is the
average response to this question along the demographic group. With this extended
population at hand, we proceed to build an affinity graph on the questions using
correlation or any other affinity measure between the extended rows. Namely, the
affinity between rows i1 and i2 is the correlation (say) along the answers of both
real persons and demographic groups. The process is now iterated, replacing rows
and columns: bottom-up hierarchical clustering is performed on the resulting graph
on the questions (rows), producing a partition tree on the rows. Folders in this tree
correspond to conceptual groups of questions. We append conceptual group as new
pseudo-questions to the data set. The response of person j to a conceptual group
“pseudo-question” is their average response along that group of questions.

This procedure thus alternates between construction of partition trees on rows
and on columns. Empirically, the entropy of the tree pair converges after a few
iterations. Figure 4 shows the resulting organization of persons (columns) and
questions (rows) in a personality questionnaire. The resulting partition tree pair—a
partition tree of demographic groups, or contexts, on the persons, and a partition
tree of conceptual groups on the questions is illustrated in Fig. 6.

4 Harmonic Analysis of Operators and Organization
of Eigenfunctions

We conclude by relating the methodologies described above to a variety of methods
of harmonic analysis.
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Fig. 4 Organization of a questionnaire

Fig. 5 Diffusion embedding of population and questions

Consider applying the matrix organization described above to an operator matrix,
rather than to a dataset matrix. Consider the Hilbert transform or a potential operator
that is restricted to discrete sets of sources and receivers. Namely, let ϕ(x,y) be a
potential interaction between x,y ∈R

3, let {y j} be a set of locations of sources, and
let {xi} be a set of locations of receivers. Consider the matrix Mi, j = ϕ (xi,y j). The
matrix columns correspond to sources, and specifically, the j-th columns contains
the field generated by source j as sampled by the various receivers. A partition tree
on the columns thus organizes the sources by their impact on different receivers,
while a partition tree on the rows organizes the receivers by the similarity of the
fields that they measure.

When potential function and the spatial layout of the sources and receivers are
given, namely, when ϕ(x,y) and the sets {xi} and {y j} are known, the sources
and columns can be organized to yield an efficient representation of the matrix M.
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Fig. 6 Concept tree and context tree

The tree of the columns is an adapted Calderon–Zygmund tree organizing the
sources, with the corresponding receiver tree. This organization is precisely a
generalization of the one introduced by Rokhlin to implement his fast multipole
algorithms [14]. The Haar basis provides a low-precision approximation to this
algorithm, which can easily be refined by using hierarchical orthogonal polynomials
of low degree on each partition as done by Alpert [1]. The point is that these
hierarchies are the scaffold of a more interesting and powerful harmonic analysis
even for more complex oscillatory transforms.

In fact, for oscillatory systems, the notion of matrix organization may prove to be
a powerful harmonic analysis tool. For example, consider a set {xi} ⊂R

d uniformly
sampled from a compact manifold embedded in R

d . Let {ψ j} be the eigenfunctions
of the Laplace operator on our manifold, and consider the matrix Mi, j = ψ j(xi).

The geometry of the set {ψ j} is in some sense dual to the geometry of the
manifold itself. Traditionally, Laplacian eigenfunctions are only organized by their
eigenvalues alone, which measures the frequency of oscillation. This is a one-
dimensional organization, regardless of d, that does not reflect more detailed relation
(such as direction of oscillation) between the eigenfunctions. Organization of the
rows and columns of the matrix M, even without information on the manifold
and the sampling points {xi}, reveals the geometry of the manifold and the dual
geometry of the eigenfunction, respectively.

The matrix organization method we reviewed is needed to organize M. Globally,
the eigenfunctions are orthogonal, so they are all equidistant. However, when we
correlate them on the various sets of a multiscale partition tree on the manifold, as
long as a subset of the tree is such that the product of two eigenfunctions does not
oscillate on it, we have a contribution to their affinity. It is a simple exercise to show
that for the case of the two-dimensional torus, we recover an affinity corresponding
to the distance in the dual grid in two dimensions. This procedure generates a tree
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of eigenfunctions dual to the geometric grid on the manifold. Of course there are
different possible geometric grids which will result in different organization of
eigenfunctions. We mention all of this, as it opens up new ways of organizing and
understanding oscillatory operators like the Fourier transform, or more generally
a Fourier integral operator where this procedure generalizes “microlocalization”
geometry [7].

Acknowledgements MG is supported by a William R. and Sara Hart Kimball Stanford Graduate
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References

1. Alpert, B., Beylkin, G., Coifman, R., Rokhlin, V.: Wavelet-like bases for the fast solution of
second-kind integral equations. SIAM J. Scientific Comput. 14(1), 159–184 (1993)

2. Bartal, Y.: In: Proceedings of 37th Conference on Foundations of Computer Science,
pp. 184–193 (1996)

3. Bartal, Y.: In: Proceedings of the 30th annual ACM Symposium on Theory of computing,
ACM, pp. 161–168 (1998)

4. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in Neural Information Processing Systems 14, 585–591 (2001)

5. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representa-
tion. Neural Comput. 13, 1373–1397 (2003)

6. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13,147–269 (2004)
7. Coifman, R.R., Gavish, M.: Harmonic analysis of digital data bases. In: Cohen, J., Zayed, A.

(eds.) Wavelets and Multiscale Analysis. Birkhäuser, Boston (2011)
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The Structure of Sidelobe-Preserving
Operator Groups

Gregory E. Coxson

Abstract This chapter considers the structure of groups of operators preserving the
aperiodic autocorrelation peak sidelobe level of mth root codes. These groups are
shown to be helpful for efficient enumeration of codes by peak sidelobe level for a
given m and given code length N. In the binary case, it is shown that there is a single
Abelian group of order 8 generated by sidelobe-preserving operators. Furthermore,
it is shown that shared symmetry in the binary Barker codes can be discovered in a
natural way by considering degeneracies of group actions. The group structure for
m = 4 (the quad-phase case) is shown to have higher complexity; in fact, instead of
a single group, there are four groups (two pairs of isomorphic groups), and they are
no longer Abelian. Group structure is identified for the cases of odd code lengths N,
leaving group structure for even-length cases mostly unresolved. Moving to general
mth roots codes, it is shown that results found for the quad-phase case generalize
quite well. In particular, it is shown that there are 4m2 groups. All m groups are
identified for any odd m. When m is even, the structure for odd code lengths N is
identified. The group structure for m even and N even is left unresolved.

Keywords Barker code • Skew-symmetry • Autocorrelation sidelobes • Binary
code • Polyphase code • Unimodular code • Group action

1 Introduction

In signal processing terminology, a code is a finite sequence of complex scalars,
called code elements. A code is called unimodular if each of its elements has
modulus 1 (hence unimodularity refers to the elements rather than to the code which,
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if it has N elements, has size
√

N ). A subset of the unimodular codes is the set of
polyphase codes, for which all elements have elements that are mth roots of unity
for some n. Polyphase codes with n= 2 are called binary codes; all elements are±1.

Binary and polyphase codes that achieve low aperiodic autocorrelation (AAC)
average or peak sidelobe levels are valuable for radar and communications appli-
cations. This is due to the fact that the autocorrelation function approximates the
response for the matched (or North) filter for phase-coded signals [16]. The matched
filter is optimal for signal-to-noise ratio, and hence can pull signals out of receiver
inputs where the signal is buried in noise.

If it is desired to find the lowest peak sidelobe level for a given code length, or
codes which achieve it, the most approach is exhaustive search. Taking the search
space as all mth root codes for some m and some length N, it is helpful to consider
a partition of this space into equivalence classes relative to a group generated by
sidelobe-preserving operators. If a method can be found which involves searching
single representatives from each equivalence class, the search may be expedited.
Furthermore, listing the best representative (for some measure of sidelobe level of
interest) is more efficient than listing the best codes from the search space.

Because search techniques quickly grow computationally costly, even
prohibitive-ly so, as code length grows, it is tempting to try and identify patterns in
codes that might allow the construction of codes with a good chance of providing
low sidelobe levels. Here is possibly another opening for the use of sidelobe-
preserving operator groups, (SPGs) may provide some help. For the most notable
example of low-sidelobe codes, the binary Barker codes, those of odd length share
a skew-symmetric property closely linked to degeneracies in actions of the sidelobe
preserving group on these codes. Knowledge of such a symmetry can narrow the
search space greatly. For example, for odd-length binary codes of length N, if, rather
than searching all the codes, only skew-symmetric codes are searched, the search
space is reduced from size 2N to size 2(N−1)/2. This computational cost benefit
comes at the cost of possibly missing optimal-sidelobe-level codes.

It is natural to ask whether something like skew symmetry, and its connection
to a group degeneracy, can be found for non-binary codes. In order to suggest this
possibility, this chapter will examine a quad-phase code with Barker-level sidelobes
that satisfies a symmetry much like skew symmetry. Furthermore, it will be shown
that an operator in the associated group maps this code to itself, meaning that
the isometry subgroup for this code has more than one element, and hence its
equivalence class degenerates under group action.

The chapter is organized as follows. After an introduction (Sect. 1) and notation
and terminology (Sect. 2), Sect. 3 will discuss motivation for examining SPGs.
Section 4 will look at the group structure for the binary case. Section 5 will show
that consideration of degeneracies in group actions for odd-length binary Barkers
leads in a naturalway to the uncovering of their skew-symmetry-property. Section 6
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will then consider the group structure for the quad phase case. Finally, Sect. 7 will
discuss general mth root, to which findings for the quad-phase case are found to
generalize quite well.

2 Basic Notation and Terminology

Let Qm represent the set of mth roots of unity or the set of m complex numbers z
such that zm = 1. For a specified value of m≥ 2, let

x = [x1,x2, . . . ,xN ] (1)

denote an N-length code, each of whose elements resides in Qm. Furthermore, let
(Qm)N mean the set of codes x with elements in Qm that is,

(Qm)N = {x : |x|= N,xi ∈ Qm, i = 1, . . . ,N}. (2)

Clearly, |(Qm)N |= mN . For the special case of m = 2, the codes x ∈ (Q2)N will be
referred to as binary codes of length N.

The AAC sequence for an x ∈ (Qm)N has length 2N− 1 and is defined by

AACx = x∗ xc, (3)

where ∗ means acyclic convolution, x means the reversal of a code x, and xc

means elementwise complex conjugation. The elements of the AAC of x may be
represented explicitly in terms of sums of pairwise products of elements of x in the
following way:

AACx(k) =
N−|k−N|

∑
i=1

xix
c
i+|k−N| (4)

for k = 1, . . . ,2N− 1. In the binary case, the elements of x are real (either 1 or −1),
so the complex conjugation operation can be ignored.

The “peak” of the autocorrelation is AACx(N). The peak is equal to N, since

AACx(N) = x1xc
1 + · · ·+ xNxc

N = |x|2 = N. (5)

Elements for indices k �= N are referred to as “sidelobes” of the autocorrelation. The
autocorrelation is symmetric with respect to the peak; that is,

AACx(k) = AACc
x(2N− k) (6)

for k = 1, . . . ,2N− 1.
The “peak sidelobe level” for a code x is defined to be

PSL x = max
k �=N

|AACx(k)|. (7)
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The lowest achievable value of PSL x for x ∈ (Qm)N for any m ≥ 2 and N ≥ 1 is 1.
This is because when k = 1 or k = 2N−1, the sidelobe is a x1xN , so its modulus is 1.
The binary codes x that achieve PSL x = 1 are called Barker codes, after the author
of an early paper identifying these codes [1]. When m > 2, codes x ∈ (Qm)N that
achieve PSL x = 1 are called generalized Barker sequences [7] or polyphase Barker
sequences [6].

Finally, some notation is needed for discussing groups and group actions. An
expression of the form < g1,g2, . . . ,gk > will mean the group generated by the
elements g1, . . . ,gk. Given a group G and two elements g,h∈G, the notation gh will
be shorthand for the conjugation of g by h, that is, hg−1 (this is not to be confused
with complex conjugation). Given two groups G and H, the notation G×H will
represent the Cartesian product of G with H, and GH will represent a semidirect
product of G and H (see, e.g., [2]).

3 PSL-Preserving Operator Groups: Motivation

Codes with low peak sidelobe level are desired in applications such as radar and
communications where match filtering is used for detection (see [11, 14, 16]). For
a given length, it is useful to know the lowest achievable PSL and some or all
the codes which achieve it. Although there exist some well-known construction
techniques for codes with low sidelobe levels, often the lowest-PSL codes must
be found by random or exhaustive searches. As code length grows, random and
exhaustive searches tend to become prohibitively computationally costly.

It can be informative to know how many codes achieve these lowest, or at least
relatively low, PSL values. Such enumeration efforts inevitably necessitate a deci-
sion about whether to list or enumerate all such codes or to list representatives from
code equivalence classes, where the equivalence is defined relative to operations that
preserve autocorrelation sidelobe level.

A sidelobe-preserving operator will be understood to mean a transformation that
preserves the magnitude of every sidelobe of the autocorrelation AACx for each
x ∈ (Qm)N , for some m and N. Golomb and Win [8] list four sidelobe-preserving
operator, for general polyphase codes. They are:

1. Reversal x
2. Complex conjugation xc

3. Constant multiple transformation (CMT): given any unit-modulus complex
number α , form the product αx

4. Progressive multiplication transformation (PMT): given any unit-modulus com-
plex number ρ , multiply the ith element, xi, by ρ i for i = 1, . . . ,N

For N-length binary codes x (i.e., m = 2), involving only real quantities, the set
of four transformations identified by Golomb and Win reduces to a set of three
somewhat simpler transformations:
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1. Reversal x
2. Negation −x
3. Alternating-sign: multiply element xi by (−1)i, i = 1, . . . ,N

To illustrate the usefulness of these transformations for enumeration, suppose
that for N = 13, there is a need to determine the lowest achievable PSL for a binary
code of length N and the binary codes that achieve it. This length is small enough
that an exhaustive search is practical. The simplest, most naive approach would
generate each of the 213 codes, compute their PSL values, and keep only those
with the lowest PSL. Four codes would be found having the Barker-level PSL of 1,
optimal not just for length 13 but for any length. Examination of these codes would
lead to the observation that any one of the four could be found by applying various
compositions of the three binary transformations listed above. Hence, rather than
listing all four, it is enough to list a single representative, say [16]:

x =
[

1 1 1 1 1 −1 −1 1 1 −1 1 −1 1
]
. (8)

Behind the efficiency of this use of representatives are an equivalence relation,
and a partition of the search space into equivalence classes. Given that there are
three transformations being applied in various orders, these equivalence classes
would be expected to hold eight codes, in general, rather than the four found
having the optimal PSL for length 13. Indeed, if all eight permutations of the binary
transformations are applied to the length-13 Barker code given above, and the set
of eight resulting codes are tabulated, this set can be arranged into four sets of
twin codes. In other words, the size-8 equivalence class degenerates into one of
size 4. This suggests that the code has special structure and the structure is related
to “actions” of the three transformations under composition.

Skolnik [16] lists the lowest optimal PSL values for lengths from 3 to 40, which
was the best list available in 1990, along with the number of binary codes achieving
these values. Skolnik uses the term “allomorphic” for codes transformable into each
other by the composition of sidelobe-preserving operations (“allo-” being the Greek
root for “other” and “morph” being the Greek root for “form”). The first three
columns of Table 1 list these results, along with similar figures for N = 2.

Interestingly, the values tabulated in [16] were developed using only two of the
three binary code sidelobe-preserving operators (negation and reversal). If the third
one is taken into account as well, the result is for most code lengths a reduction in
the number of representative codes; the results are listed in the fourth column of
Table 1. For most of the lengths, the number of representative codes is reduced by
half. However, there is a small set of lengths for which the extra transformation fails
to change this number; this means that for these lengths, the third transformation
maps the set of minimum-PSL codes into itself. Furthermore, this set of lengths,
{3,5,7,11,13}, is special in that it is the set of odd lengths for which Barker codes
exist.

At the least, the behavior of sidelobe-preserving operators is useful for efficient
representation of codes of interest for their low peak sidelobe levels. However, it also
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Table 1 Adding a third operator changes the number of representatives

Number of representatives,
Number of representatives, for negation, reversal

N Best PSL for negation and reversal and alternating sign

2 1 2 1
3 1 1 1
4 1 2 1
5 1 1 1
6 2 8 4
7 1 1 1
8 2 16 8
9 2 20 10
10 2 10 5
11 1 1 1
12 2 32 16
13 1 1 1
14 2 18 9
15 2 26 13
16 2 20 10
17 2 8 4
18 2 4 2
19 2 2 1
20 2 6 3
21 2 6 3
22 3 756 378
23 3 1,021 515
24 3 1,716 858
25 2 2 1
26 3 484 242
27 3 774 388
28 2 4 2
29 3 561 283
30 3 172 86
31 3 502 251
32 3 844 422
33 3 278 139
34 3 102 51
35 3 222 111
36 3 322 161
37 3 110 52
38 3 34 17
39 3 60 30
40 3 114 57

appears that degeneracies in the “actions” of compositions of these transformations
can uncover structures in codes having low peak sidelobe levels. These ideas will be
made more precise in the following sections.
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4 Sidelobe-Preserving Operator Groups: The Binary Case

The binary case has the nice property that the sidelobe-preserving transformations
can each be effected by matrix operations. Hence, consider defining

1. g1 =−xIN

2. g2 = xJN

3. g3 = xAN

where IN is the order-N identity matrix, JN is the order-N matrix defined by

JN =

⎛

⎜
⎜
⎜
⎜⎜
⎝

0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎠

(9)

and AN is the matrix

AN =

⎛

⎜
⎜
⎜
⎜⎜
⎝

−1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . (−1)N−1 0
0 0 . . . 0 (−1)N

⎞

⎟
⎟
⎟
⎟⎟
⎠
. (10)

Then g1 and g2 preserve the autocorrelation sequence of any binary code, as can
be seen by recalling that AACx = x ∗ x. The third operator, g3, which switches
the sign of every other element of a code x, has the effect on the autocorrelation
of switching the sign of every other sidelobe. However, the magnitude of every
sidelobe is preserved.

The three operators g1, g2, and g3 generate a group of order 8. To see this,
consider five additional operators:

1. g0 = IN

2. g4 = g1 ◦ g2

3. g5 = g1 ◦ g3

4. g6 = g2 ◦ g3

5. g7 = g1 ◦ g2 ◦ g3

where the symbol ◦ refers to composition of operations (Table 2). The 8× 8 multi-
plication table is given in Table 2 (where composition is used as the multiplication
operator).

These eight operations constitute a group G under composition, as can be
checked by showing that the result of composing any two elements lies in the group
(i.e., the closure property), that the group includes an identity, that each element
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Table 2 Multiplication table
for the binary operators

◦ g0 g1 g2 g3 g4 g5 g6 g7

g0 g0 g1 g2 g3 g4 g5 g6 g7

g1 g1 g0 g4 g5 g2 g3 g7 g6

g2 g2 g4 g0 g6 g1 g7 g3 g5

g3 g3 g5 g6 g0 g7 g1 g2 g4

g4 g4 g2 g1 g7 g0 g6 g5 g3

g5 g5 g3 g7 g1 g6 g0 g4 g2

g6 g6 g7 g3 g2 g5 g4 g0 g1

g7 g7 g6 g5 g4 g3 g2 g1 g0

has an inverse relative to the identity, and that the associativity property holds [2].
Furthermore, G is Abelian, and isomorphic to Z2×Z2× Z2 (see [3]), and indeed,
G =< g1 > × < g2 > × < g3 >. The group generator relations are simple ones,
essentially stating that the three generators are each of order 2 and that the group
multiplication is commutative:

1. g1 ◦ g1 = g2 ◦ g2 = g3 ◦ g3 = g0

2. g1 ◦ g2 = g2 ◦ g1

3. g2 ◦ g3 = g3 ◦ g2

4. g1 ◦ g3 = g3 ◦ g1

Note that the only time when it is important to take note of the code length N is
when using matrix representation for the operators. It is notable that this same 8×8
group applies to binary codes of all lengths. On the other hand, properties of actions
of the group elements on sets of codes can depend on code structure, the parity of
N, and on congruence of N modulo 4, as will be shown in the next section.

The next sections will look at group structure for more general mth-root-of-unity
codes. A group generated by sidelobe-preserving operators for some m and N will
be referred to as a SPG.

5 Equivalence Classes, Group Actions, and the Odd-Length
Barker Codes

Consider again the binary case, and the group G defined in the previous section.
Furthermore, define two codes x,y ∈ (Q2)N to be equivalent if y = gkx for some
gk ∈ G. This induces a partition of (Q2)N into equivalence classes of size 8 or less.

An interesting question for computational searches is whether it is possible
to generate single representatives of each equivalence class by a deterministic
algorithm. The answer is that it is possible; one such algorithm was provided in
Coxson et al. [4].

As indicated earlier, the odd-length Barker codes provide examples of size-4
equivalence classes. This suggests a shared symmetry that results in degenerate
orbits. The theory of group actions suggests that there exists a non-trivial identity
(or non-trivial identities, as is actually the case) for the odd-length Barker codes. It
is an instructive exercise to find them.
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The following candidates can be ruled out quickly:

1. g1: g1x =−x has no fixed points in (Q2)N for any N > 0.
2. g3: g3x = xAN has no fixed points in (Q2)N for any N > 0.
3. g5: g5x =−xAN has no fixed points in (Q2)N for any N > 0.

Two more can be ruled out almost as quickly:

1. g2: g2x = x fixes symmetric codes x, none of which can achieve PSLx = 1 for
N > 2.

2. g3: g4x =−x fixes some x ∈ (Q2)N , but only when N is even.

That leaves g6 and g7 as the only possibilities for nontrivial identities.
Consider first g7. Matrix representation helps rule out possibilities for

solutions to
0 = g7x− x =−(xAN + x).

Indeed, based on simple considerations in the solution of sets of linear equations, it
is possible to rule out any solutions when N is even or when N ≡ 3 mod 4. However,
when N ≡ 1 mod 4, one arrives at the following linear equation (making use of the
matrix representation available in the binary case):

0 = g7x− x = x

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

−1 0 0 . . . 0 . . . 0 0 1
0 −1 0 . . . 0 . . . 0 −1 0
0 0 −1 . . . 0 . . . 1 0 0
...

...
... . . .

... . . .
...

...
...

0 0 0 . . . 0 . . . 0 0 0
...

...
... . . .

... . . .
...

...
...

0 0 1 . . . 0 . . . −1 0 0
0 −1 0 . . . 0 . . . 0 −1 0
−1 0 0 . . . 0 . . . 0 0 1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

. (11)

Since the matrix on the right-hand side has a zero row, and is hence singular,
there exists a solution in RN . It remains to show that there exists a solution in
(Q2)N . However, the simple form of the set of equations in this case leads in a
straightforward way to a set of solutions of the form

x =
[

z y −zA(N−1)/2

]
, (12)

where z can be chosen arbitrarily from (Q2)(N−1)/2 and y ∈ {1,−1}.
By a similar process, it is possible to conclude that g6 has a solution only when

N ≡ 3 mod 4, and the solutions are of the form

x =
[

z y zA(N−1)/2

]
, (13)

where z can be chosen arbitrarily from (Q2)(N−1)/2 and y ∈ {1,−1}.
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This shared structure of the odd-length Barker codes is well-known (see, for
instance, [17]) and is often credited to Golay and referred to as (Golay) skew
symmetry (see, e.g., [12]). It is interesting, nonetheless, to rediscover this property
using the theory of group actions.

Note that if x has the skew symmetry property, then any code equivalent to it is
also skew-symmetric. To see this, let x and y be two members of (Q2)N for N ≡
3 mod 4 and let y = gkx for some gk ∈ G. Then g6x = x implies

g6(y) = (g6 ◦ gk)x = (gk ◦ g6)x = (gk)x = y. (14)

A similar argument can be made using g7 for N ≡ 1 mod 4.
It is easy to check that the odd-length Barker codes are skew-symmetric.

Representatives of every odd-length Barker are listed here (see [16]):

1. N = 3: [
1 1 −1

]
. (15)

2. N = 5: [
1 1 1 −1 1

]
. (16)

3. N = 7: [
1 1 1 −1 −1 1 −1

]
. (17)

4. N = 11: [
1 1 1 −1 −1 −1 1 −1 −1 1 −1

]
. (18)

5. N = 13: [
1 1 1 1 1 −1 −1 1 1 −1 1 −1 1

]
. (19)

It needs to be mentioned that while the odd-length Barker codes are skew-
symmetric and achieve the lowest possible PSL, this does not mean that skew-
symmetry implies low sidelobe level. If an exhaustive search is done, and a count
made of the number of equivalence classes of odd-length binary skew-symmetric
codes, for lengths between 3 and 25, the result is the set of tallies given in the table
below.

In Table 3, notice that the number of equivalence classes for high PSL values
is nearly as high as those for low sidelobe level. The reason that only even values
of PSL are listed is that odd-length skew-symmetric binary codes can have only
odd PSL (a nice exercise for the reader). This means that for some lengths N, in
particular those where the lowest PSL is even, a search over skew-symmetric codes
will not be able to find the optimal codes. Nonetheless, such searches will find codes
with near-optimal PSL for a considerable savings in computational cost.

Here we see that shared structure in a very special set of codes (those having the
lowest achievable peak sidelobe level) can be uncovered by studying degeneracies
in group actions for a group generated by sidelobe-preserving operations. A natural
question to ask is whether this is a coincidence, and furthermore, if it is not a
coincidence, why this connection should exist. These questions are not going to be
answered in this chapter. The following sections will pursue the structure of operator
groups for a more general set of codes.
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Table 3 Number of skew-symmetric binary codes, N = 3–25

N 1 3 5 7 9 11 13 15 17 19 21 23

3 1 0 0 0 0 0 0 0 0 0 0 0
5 1 1 0 0 0 0 0 0 0 0 0 0
7 1 2 1 0 0 0 0 0 0 0 0 0
9 0 5 2 1 0 0 0 0 0 0 0 0
11 1 4 8 2 1 0 0 0 0 0 0 0
13 1 9 9 10 2 1 0 0 0 0 0 0
15 0 6 26 24 11 2 1 0 0 0 0 0
17 0 5 45 40 23 12 2 1 0 0 0 0
19 0 4 68 82 59 27 13 2 1 0 0 0
21 0 8 68 195 115 79 30 14 2 1 0 0
23 0 9 107 270 335 154 98 33 15 2 1 0
25 0 3 128 515 552 475 201 119 36 16 2 1

6 Sidelobe-Preserving Operator Group Structure
for Quad-Phase Codes

Moving from the binary case to the quad-phase case, the elements of a code x ∈
(Q4)N are chosen not from the set {−1,1} but the set {−1,1, i,−i}, where i =√−1. The longest known quad-phase code with PSL = 1 (i.e., a generalized Barker
sequence) is the length-15 code [13]

x =
[

1 1 1 i i 1 −i −i i −1 −i i 1 −1 1
]
. (20)

Interestingly, this code satisfies x = −xA15, where A15 is the 15× 15 diagonal
matrix that effects an alternating-sign transformation on the elements of x; that is,
it has diagonal elements −1,1,−1, . . . ,(−1)15. Hence, this code obeys the same
symmetry as the binary Barker codes for lengths N ≡ 1 mod 4.

As will be shown, this means dealing with added complications in the sidelobe-
preserving group. One of the complications is that instead of a single group, there are
now four, depending on the congruence of code length N modulo 4. Furthermore,
the groups have size 64 and are no longer Abelian. Finally, it will no longer be
possible to represent transformations in terms of matrix operations.

Before examining this case, it is useful to look at the sidelobe-preserving
operations in a more general setting, the general unimodular case where code
elements can lie anywhere on the unit circle. For consistency with the notation
used previously, let Q∞ represent the unit circle and let (Q∞)N represent the set
of N-length codes whose elements are drawn from the unit circle. Golomb and Win
[8] provide a list of the sidelobe-preserving transformations for this quite general
case. Let x ∈ (Q∞)N . Then the following operations each preserve the magnitudes
of the AAC sequence and hence the peak sidelobe level (using simpler notation than
previously, to facilitate the discussions to come):
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1. C: elementwise complex conjugation, xc

2. R: reversal, x
3. Mμ : multiplication by μ ∈ Q∞ to give μx
4. Pρ : progressive multiplication (or phase ramp) using ρ ∈ Q∞

What is meant by progressive multiplication is that element xi is multiplied by ρ i for
i = 1, . . . ,N. Note that complex conjugation operation cannot be represented using
matrix multiplication.

The transformations R and Mμ preserve the autocorrelation sequence, while the
operations C and Pρ preserve the magnitudes of the sidelobes (and hence the peak
sidelobe level) but do not preserve the autocorrelation sequence in general.

Moving to the quad-phase case, let x be an arbitrary member of (Q4)N for
N > 0, and consider the following specialization of the generalized list of sidelobe-
preserving operations given above:

1. C: elementwise complex conjugation
2. R: reversal, x
3. Mi: multiplication by μ = i
4. Pi: progressive multiplication by ρ = i

No loss of generality results from the particular choice of values for μ and ρ since
in each case, the choice of i specifies a generator for the order-4 cyclic group
containing every other possibility.

The four operators generate a group of order 64. To see this, first fix N > 0. Then
< R,Pi > (the group generated by R and Pi) is a dihedral group of order 8. Also,
Mi generates a cyclic group of order 4, < Mi >. It follows that < Mi,R,Pi > has a
normal subgroup, < Mi >, modulo in its dihedral-8 subgroup < R,Pi >. Hence

|< Mi,R,Pi > |= (4)(8) = 32. (21)

Now consider the group < Mi,R,Pi,C >. Every element may be written RaPb
i CdMe

i
where a,d ∈ {0,1} and b,c ∈ {0,1,2,3}. So

|< Mi,R,Pi,C > | ≤ (2)(2)(4)(4) = 64. (22)

Since C has order 2 and does not belong to < Mi,R,Pi >,

|< Mi,R,Pi,C > | ≥ (2)(32) = 64. (23)

Therefore G =< Mi,R,Pi,C > has size 64.
Let g0 be the group identity. Then with some effort, the list of generator relations

is found to be

1. C2 = R2 = g0

2. M4
i = P4

i = g0

3. RC =CR
4. PiMi = MiPi
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5. MiR = RMi

6. CMi = M−1
i C =−MiC

7. CPi = P−1
i C

8. RPi = MN+1
i P−1

i R

Note that the last of these relation, depends on N or, more to the point, the value
of N modulo 4. Hence, there are four apparently different sets of relations, yielding
four possibly different groups.

To simplify the following discussions, let Gi refer to the group for N ≡ i mod 4,
for i = 0, . . . ,3. When the value of N is not specified, and the discussion applies to
all four cases, the notation G will be used.

There exist 267 distinct groups of order 64 (see, e.g., [3]). A first hint at group
structure for the four quad-phase groups results from counting the orders of group
elements. In the case of G3, the count of group elements of order 2 is 35. Fortunately,
there is a single group of the 267 groups of order 64 having 35 elements of order 2,
and that is the Cartesian product of two dihedral-8 groups. Hence G3 is isomorphic
to D8×D8. The count of order-2 elements for G1 is also 35, suggesting that G1 and
G3 are isomorphic.

Identification of the group structure for the two remaining cases, G0 and G2, is
left unresolved for now.

1. 27 elements of order 2
2. 20 elements of order 4
3. 16 elements of order 8

This narrows the possible order-64 group structures to three in these two cases
(see [3]).

Element order counts can sometimes be unreliable. Fortunately, it is possible to
do better than order tallies. Martin Isaacs, of the Department of Mathematics at
University of Wisconsin Madison, has suggested the following approach involving
semidirect products and automorphisms on subgroups [10].

Let A =< Mi,Pi >. Since Mi and Pi have order 4 and commute, A is Abelian and
isomorphic to Z4×Z4, where Z4 is the integers modulo 4 with respect to addition.
Next, let U =<C,R >. Since C and R commute and have order 2, U is noncyclic of
order 4, and isomorphic to Z2×Z2.

Note that the intersection of U and A contains only the identity. Then G = AU ,
that is, G is the semidirect product of A with U acting on it (in other words, U
normalizes A), by the following observations:

1. CMiC−1 = MC
i = M−1

i and PC
i = P−1

i imply that C normalizes A.
2. RMiR−1 =MR

i =Mi and PR
i =P−1

i Mk
i where k =N+1 imply that R normalizes A.

Determination of the structure of G now depends on knowing what automorphisms
of A are induced by conjugation by C and R.

Automorphisms of A can be represented as 2× 2 matrices over Z4. Invertibility
of a matrix over Z4 will mean the determinant is ±1 modulo 4.
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Conjugation of Pi and Mi by C gives

1. PC
i =CPiC−1 = P−1

i
2. MC

i =CMiC−1 = M−1
i

These two relationships will be encapsulated in the matrix −I2, the negative of the
2× 2 identity matrix.

Similarly, conjugation of Pi and Mi by R gives PR
i = RP−1

i R−1 = Mk
i P−1

i and
MC

i =CMiC−1 = Mi, where k = N + 1. Conjugation of Pi twice by R gives

R(Mk
i P−1

i )R−1 = (RMk
i R−1)(RP−1

i R−1

= Mk
i R(RPi)

−1

= Mk
i R(Mk

i P−1
i R)−1

= Mk
i PiM

−1
i

= Pi. (24)

A 2× 2 matrix to represent this is then
(

1 0
k −1

)
, (25)

the square of which, modulo 4, is the identity.
The subgroup U is essentially the multiplicative group generated by the two

matrices. The easiest case is for k = N + 1 ≡ 0 mod 4, that is, G3. An equivalent
set of generators, then, after setting k = 0, is

(
1 0
0 −1

)
(26)

and (
1 0
0 −1

)
. (27)

It follows that:

1. Conjugation by C leaves M alone but inverts P.
2. Conjugation by R inverts M and leaves P alone.

Together, these imply that G3 is isomorphic to D8×D8, the same conclusion arrived
at from the group element order tally.

Next, if R and C are conjugated by the same invertible matrix, this simply changes
the “basis” for A, leaving the group unchanged. Consider using

(
1 0
1 3

)
, (28)
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whose inverse modulo 4 is (
1 0
3 1

)
. (29)

Then the matrix for C is unchanged by the conjugation, but the matrix for R becomes

(
1 0

k− 2 −1

)
. (30)

It follows that the four groups fall into two pairs of isomorphic groups, with
G3 and G1 isomorphic and G0 and G2 isomorphic. Furthermore, G1 and G3 are
isomorphic to D8×D8, the Cartesian product of the dihedral-8 group with itself.
The automorphism argument above means G3 =< RC,Mi >×< R,Pi >.

To achieve a similar identification of G1 detailing the generators of the two
dihedral-8 groups in the Cartesian product, note that the only generator relation
that differs for G3 and G1 is the final one. Starting with the form of this last relation
that holds for G1, which is RPi = M2

i P−1
i R, observe that it may be rewritten

R(M−1
i Pi) = (M−1

i Pi)
−1R. (31)

Defining a new operator, P̃i = M−1
i Pi, it is straightforward to check that P̃i can

replace Pi wherever it appears in the list of generators relations, without affecting
the validity of any of the relations. All that has changed is that the “phase ramp”
starts at −i rather than i; the element-to-element phase increment remains π/2. It
follows that G1 =< RC,Mi >×< R,M−1

i Pi > .
Consider again the generalized Barker sequence of length 15:

x =
[

1 1 1 ii 1 −i −ii −1 −ii 1 −1 1
]
. (32)

As noted earlier, this code satisfies x = −xA15, meaning that the composition of
operators (M2

i ) ◦R ◦ (P2
i ) maps x to itself. Then (M2

i ) ◦R ◦ (P2
i ) is a group element

of G3, since the order-4 cyclic group generated by Mi is a subgroup of the dihedral
group < RC,Mi > and the order-4 cyclic group generated by Pi is a subgroup of the
dihedral group < R,Pi > (and hence R ◦P2

i is an element of < R,Pi >). So, as in
the binary Barker case, x is a quad-phase of optimally low peak sidelobe level for
which a nonidentity element of the associated SPG fixes x, causing its equivalence
class to degenerate. This is due to the fact that the isometry subgroup of x contains
an element other than the group identity and therefore has size 2 or greater; then, by
Lagrange’s orbit-stabilizer theorem [15], the equivalence class of x degenerates to
size 32= 64/2 or smaller [5,9]. By applying combinations of operators to this code,
it is easy to establish that the equivalence class must be at least size 32; hence it is
exactly size 32. This example provides further anecdotal support for a link between
low-peak-sidelobe codes and degeneracies in SPG group actions.
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7 Generalizing from Quad-Phase to mth Roots of Unity

Turning from the quad-phase codes x ∈ (Q2)N to the more general mth roots codes
x ∈ (Qm)N for m ≥ 3, it will be seen that the approach used in the quad-phase case
generalizes well. First, the set of sidelobe preservers becomes:

1. C: elementwise complex conjugation
2. R: reversal, x
3. Mμ : multiplication by μ = ei2π/m

4. Pμ : progressive multiplication by μ = ei2π/m

No loss of generality results from the particular choice of values for μ . This is
because with value ei2π/m, μ is a generator for a cyclic group of order m containing
the other mth roots of unity. Similarly, Pμ is the generator for an order-m cyclic
group of “phase ramps” (or progressive multiplication transformations), and hence
contains all possible choices for this operator. These cycle groups are subgroups of
the SPG or SPGs.

Two of the SPG group generators have order 2 and the other two have order m.
The argument for quad-phase group order can be generalized in a natural way to
give (2)(2)(m)(m) = 4m2 for group order.

The set of generator relations is:

1. C2 = R2 = g0

2. Mm
μ = Pm

μ = g0

3. RC =CR
4. PμMμ = MμPμ
5. Mμ R = RMμ
6. CMμ = M−1

μ C
7. CPμ = P−1

μ C
8. RPμ = MN+1

μ P−1
μ R

Here, as before, g0 represents the group identity. The final relation has a different
form for each of m powers of μ , implying that there are as many as m groups of
order 4m2. Let Gi represent the SPG for N ≡ i mod m, i = 0,1, . . . ,m− 1.

Similar arguments as for the quad-phase case (m = 4) work here to conclude that
Gm−1 =< RC,Mμ >×< R,Pμ > (i.e., when N+1≡ 0 mod m). Then, turning to the
case N+1≡ 2 mod m, it is possible to conclude that by attaching an M−1

μ term to Pμ

(as was done in the quad-phase case), leads to G1 =< RC,Mμ > ×< R,M−1
μ Pμ >.

This process of incrementing i by 2 and attaching an additional M−1
μ can be repeated

as many times as needed, allowing

G2k−1 =< RC,Mμ >×< R,(M−1
μ )kPμ >

for any m− 1≥ k ≥ 0.
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Now notice that whenever m is odd, every one of the m SPGs has the structure
< RC,Mμ > × < R,(M−1

μ )kPμ >. This is because when m is odd, every one of the
m SPGs is encountered in no more than m jumps, by repeatedly incrementing j by
2, starting with j = 0, in N + 1≡ j mod m. Therefore, when m is odd, every SPG is
isomorphic to D2m×D2m.

When m is even, it happens that the groups fall into two classes, those for N odd
and those for N even. When N is odd,

G2k−1 =< RC,Mμ >×< R,(M−1
μ )kPμ >

for any k ≥ 0, by the same argument used for m odd. Hence, G is isomorphic to
D2m×D2m when m is even and N is odd. The group structure when m is even and N
is even is left for others to resolve.

8 Conclusions

This chapter considers the structure of groups of peak-sidelobe-preserving operators
for the AAC of mth root codes. These groups are shown to be helpful for efficient
enumeration of codes for a given m, by peak sidelobe level. In the binary case, it
is shown that the group is an Abelian group of order 8. Furthermore, it is shown
that shared symmetry in the binary Barker codes can be discovered in a natural way
from considering degeneracies the group actions. The group structure for m = 4 (the
quad-phase case) is shown to have increased complexity; in fact, instead of a single
group, there are four groups (two pairs of isomorphic groups). Group structure is
identified for the cases of odd N. Moving to general mth roots codes, it is shown
that results found for the quad-phase case generalize quite well. It is shown that
there are 4m2 groups. All m groups are identified for any odd m. When m is even,
the structure for any odd N is identified. The group structure for m even and N even
is left unresolved.
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Zeros of Some Self-Reciprocal Polynomials

David Joyner

Abstract We say that a polynomial p of degree n is self-reciprocal polynomial if
p(z) = zn p(1/z), i.e., if its coefficients are “symmetric.” This chapter surveys the
literature on zeros of this family of complex polynomials, with the focus on criteria
determining when such polynomials have all their roots on the unit circle. The last
section contains a new conjectural criteria which, if true, would have very interesting
applications.

Keywords Alexander polynomial • Artin–Weil zeta polynomial (of a curve)
• Barker polynomial • Duursma zeta function • Duursma’s conjecture • Error-
correcting code • Frobenius polynomial (of a curve) • Littlewood polynomial •
Littlewood’s “two-sided” conjecture • Reciprocal polynomial • Reverse polyno-
mial • Self-reciprocal polynomial

1 Introduction

This talk is about zeros of a certain family of complex polynomials which arise
naturally in several areas of mathematics but are also of independent interest. We
are especially interested in polynomials which have all their zeros in the unit circle

S1 = {z ∈ C | |z|= 1}.

Let p be a polynomial

p(z) = a0 + a1z+ · · ·+ anzn ai ∈C, (1)
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and let p∗ denote1 the reciprocal polynomial or reverse polynomial

p∗(z) = an + an−1z+ · · ·+ a0zn = zn p(1/z).

We say p is self-reciprocal if p = p∗, i.e., if its coefficients are “symmetric.”
The types of polynomials we will be most interested in this talk are self-

reciprocal polynomials. The first several sections are surveys. The last section
contains a conjecture which is vague enough to probably be new and sufficiently
general to hopefully have interesting applications, if true.

2 Where These Self-reciprocal Polynomials Occur

Self-reciprocal polynomials occur in many areas of mathematics—coding theory,
algebraic curves over finite fields, knot theory, and linear feedback shift registers, to
name several. This section discusses some of these.

2.1 Littlewood Polynomials

This section discusses a very interesting class of polynomials named after the late
British mathematician J. E. Littlewood, famous for his collaboration with G. Hardy
in the early 1900s. Although the main questions about these polynomials do not
involve their zeros, so this section is a bit tangential, there are some aspects related
to our main theme. Basically, we present just enough to whet the readers’ taste to
perhaps pursue the literature further on their own.

This section recalls some relevant facts from Mercer’s thesis [16].
A polynomial p(z) as in (1) is a Littlewood polynomial if ai ∈ {±1}, for all i,

where ai = ai(p) is the ith coefficient of the polynomial p. Let Ln denote the set of
all Littlewood polynomials of degree n.

Conjecture 1 (Littlewood’s “two-sided” conjecture). There are positive constants
K1,K2 such that, for all n > 1, there exists a p ∈ Ln such that

K1
√

n≤ |p(z)| ≤ K2
√

n. (2)

The autocorrelations of the sequence {ai}n
i=0 are the elements of the sequence

given by

ck = ck(p) =
n−k

∑
j=0

a ja j+k, 0≤ k ≤ n. (3)

1Some authors, such as Chen [2], have p∗ denote the complex conjugate of the reverse polynomial.
It will not matter for us, since we will eventually assume that the coefficients are real.
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One can show that

p(z)p∗(z) = cn + cn−1z+ · · ·+ c1zn−1 + c0zn + c1zn+1 + · · ·+ cnz2n.

Littlewood polynomials are studied in an attempt to gain further understanding of
pseudorandom sequences of ±1’s. In this connection, one is especially interested
in Littlewood polynomials with “small” autocorrelations. A Littlewood polynomial
having the property that |ck| ≤ 1 is called a Barker polynomial. It is an open problem
to find a Barker polynomial for n > 13 (or show one does not exist). Let

b(n) = minp∈Lnmax1≤k≤n|ck(p)|,

where ck is as in (3). If b(n) > 1 then there is no Barker polynomial of degree n.
The asymptotic growth of b(n), as n→ ∞, is an open question, although there is a
conjecture of Turyn that

b(n)∼ K log(n),

for some constant K > 0. It is known that b(n) = O(
√

n log(n)).
The zeros of Littlewood polynomials on the unit circle are of tangential interest

to this question. It is known that self-reciprocal Littlewood polynomials have at
least one zero on S1. Such a polynomial would obviously violate (2). A Littlewood
polynomial p as in (1) is skewreciprocal if, for all j, ad+ j = (−1) jad− j, where d =
m/2 (m even) or d = (m−1)/2 (m odd). A Skewreciprocal Littlewood polynomials
have no zeros on S1. (The Littlewood polynomials having small autocorrelations
also tend to be skew-reciprocal.)

We refer to Mercer [16] for more details.

2.2 Algebraic Curves Over a Finite Field

Let X be a smooth projective curve of genus2 g over a finite field GF(q).

Example 1. The curve
y2 = x5− x,

over GF(31) is a curve of genus 2.

Suppose X is defined by a polynomial equation F(x,y) = 0, where F is a
polynomial with coefficients in GF(q). Let Nk denote the number of solutions in
GF(qk) and create the generating function

G(z) = N1z+N2z2/2+N3z3/3+ · · · .

2These terms will not be defined precisely here. Please see standard texts for a rigorous treatment.
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Define the (Artin–Weil) zeta function of X by the formal power series

ζ (z) = ζX(z) = exp(G(z)) (4)

so ζ (0) = 1. The logarithmic derivative of ζX is the generating function of the
sequence of counting numbers {N1,N2, . . .}. In particular, the logarithmic derivative
of ζ (z) has integral coefficients.

It is known that ζ is a rational function of the form

ζ (z) =
P(z)

(1− z)(1− qz)
,

where P = PX is a polynomial,3 of degree 2g where g is the genus of X . This has a
“functional equation” of the form

P(z) = qgz2gP

(
1
qz

)
.

The Riemann hypothesis (RH) for curves over finite fields states that the roots
of P have absolute value q−1/2. It is well-known that the RH holds for ζX (this is a
theorem of André Weil from the 1940s). By a suitable change-of-variable (namely,
replacing z by z/

√
q), we thus see that curves over finite fields give rise to a large

class of self-reciprocal polynomials having roots on the unit circle.

Example 2. We use Sage to compute an example.
Sage

sage: R.<x> = PolynomialRing(GF(31))
sage: H = HyperellipticCurve(xˆ5 - x)
sage: time H.frobenius_polynomial()
CPU times: user 0.04 s, sys: 0.01 s, total: 0.05 s
Wall time: 0.16 s
xˆ4 + 62*xˆ2 + 961
sage: C.<z> = PolynomialRing(CC, "z")
sage: f = zˆ4+62*zˆ2+961
sage: rts = f.roots()
sage: [abs(z[0]) for z in rts]
[5.56776436283002, 5.56776436283002]
sage: RR(sqrt(31))
5.56776436283002

In other words, the zeta polynomial

PH(z) = 961z4 + 62z2 + 1

associated to the hyperelliptic curve H defined by y2 = x5− x over GF(31) satisfies
the RH. The polynomial p(z) = PH(z/

√
31) is self-reciprocal, having all its zeros

on S1.

3Sometimes called the reciprocal of the Frobenius polynomial, or the zeta polynomial.
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It can be shown that if X1 and X2 are “isomorphic” curves then the corresponding
zeta polynomials are equal. Therefore, these polynomials can be used to help
classify curves.

2.3 Error-Correcting Codes

Let F= GF(q) denote a finite field, for some prime power q.

Definition 1. Fix once and for all a basis for the vector space V = F
n. A subset C

of V = F
n is called a code of length n. A subspace of V is called a linear code of

length n. If F= GF(2) then C is called a binary code. The elements of a code C are
called codewords.

If · denotes the usual inner product,

v ·w = v1w1 + · · ·+ vnwn,

where v = (v1, . . . ,vn) ∈ V and w = (w1, . . . ,wn) ∈V , then we define the dual code
C⊥ by

C⊥ = {v ∈V | v · c = 0, ∀c ∈C}.
We say C is self-dual if C =C⊥.

For each vector v ∈V , let

supp(v) = {i | vi �= 0}

denote the support of the vector. The weight of the vector v is wt(v) = |supp(v)|.
The weight distribution vector or spectrum of a code C ⊂ F

n is the vector

A(C) = spec(C) = [A0,A1, . . . ,An],

where Ai = Ai(C) denote the number of codewords in C of weight i, for 0 ≤ i ≤ n.
Note that for a linear code C, A0(C) = 1, since any vector space contains the zero
vector. The weight enumerator polynomial AC is defined by

AC(x,y) =
n

∑
i=0

Aix
n−iyi = xn +Adxn−dyd + · · ·+Anyn.

Denote the smallest nonzero weight of any codeword in C by d = dC (this is the
minimum distance of C) and the smallest nonzero weight of any codeword in C⊥ by
d⊥ = dC⊥ .

Example 3. Let F= GF(2) and

C = {(0,0,0,0),(1,0,0,1),(0,1,1,0),(1,1,1,1)}.
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This is a self-dual linear binary code which is a two-dimensional subspace of V =
GF(2)4.

The connection between the weight enumerator of C and that of its dual is very
close, as the following well-known result shows.

Theorem 1 (MacWilliams’ identity). If C is a linear code over GF(q) then

AC⊥(x,y) = |C|−1AC(x+(q− 1)y,x− y).

2.4 Duursma Zeta Function

Let C ⊂ GF(q)n be a linear error-correcting code.

Definition 2. A polynomial P = PC for which

(xT +(1−T)y)n

(1−T)(1− qT)
P(T ) = · · ·+ AC(x,y)− xn

q− 1
T n−d + . . . .

is called a Duursma zeta polynomial of C [5]. The Duursma zeta function is defined
in terms of the zeta polynomial by means of

ζC(T ) =
P(T )

(1−T)(1− qT)
.

It can be shown that if C1 and C2 are “equivalent” codes then the corresponding
zeta polynomials are equal. Therefore, these polynomials can be used to help
classify codes.

Proposition 1. The Duursma zeta polynomial P=PC exists and is unique, provided
d⊥ ≥ 2. In that case, its degree is n+ 2− d− d⊥.

This is proven, for example, in Joyner–Kim [9].
It is a consequence of the MacWilliams identity that if C is self-dual (i.e., C =

C⊥), then associated Duursma zeta polynomial satisfies a functional equation of the
form

P(T ) = qgT 2gP

(
1

qT

)
,

where g = n + 1− k− d. Therefore, after making a suitable change-of-variable
(namely, replacing T by T/

√
q), these polynomials are self-reciprocal.

Unfortunately, the analog of the Riemann hypothesis for curves does not hold
for the Duursma zeta polynomials of self-dual codes. Some counterexamples can be
found, for example, in [9].
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Example 4. We use Sage to compute an example.
Sage

sage: MS = MatrixSpace(GF(2),4,8)
sage: G = MS([[1,1,1,1,0,0,0,0],[0,0,1,1,1,1,0,0],

[0,0,0,0,1,1,1,1],[1,0,1,0,1,0,1,0]])
sage: C = LinearCode(G)
sage: C == C.dual_code()
True
sage: C.zeta_polynomial()
2/5*Tˆ2 + 2/5*T + 1/5
sage: C.<z> = PolynomialRing(CC, "z")
sage: f = (2*zˆ2+2*z+1)/5
sage: rts = f.roots()
sage: [abs(z[0]) for z in rts]
[0.707106781186548, 0.707106781186548]
sage: RR(sqrt(2))
1.41421356237310
sage: RR(1/sqrt(2))
0.707106781186548

In other words, the Duursma zeta polynomial

PC(T ) = (2T 2 + 2T + 1)/5

associated to “the” binary self-dual code of length 8 satisfies the analog of the RH.
The polynomial p(z) = P(z/

√
2) is self-reciprocal, with all roots on S1.

2.4.1 Duursma’s Conjecture

There is an infinite family of Duursma zeta functions for which Duursma has
conjecture that the analog of the Riemann hypothesis always holds. The linear codes
used to construct these zeta functions are so-called “extremal self-dual codes.”

To be more precise, we must take a more algebraic approach and replace
“codes” by “weight enumerators.” This tactic avoids some constraints which hold
for codes and not for weight enumerators. We briefly describe how to do this. (For
details, see Joyner–Kim [9], Chapter 2.) If F(x,y) = xn +∑n

i=d Aixn−iyi ∈ Z[x,y] is
a homogeneous polynomial with Ad �= 0 then we call n the length of F and d the
minimum distance of F . We say F is virtually self-dual weight enumerator (over
GF(q)) if and only if F satisfies the invariance condition

F(x,y) = F

(
x+(q− 1)y√

q
,

x− y√
q

)
. (5)

Assume F is a virtually self-dual weight enumerator. We say F is extremal, Type I if
q = 2, n is even, and d = 2[n/8]+2. We say F is extremal, Type II if q = 2, 8|n, and
d = 4[n/24]+ 8. We say F is extremal, Type III if q = 3, 4|n, and d = 3[n/12]+ 3.
We say F is extremal, Type IV if q = 4, n is even, and d = 2[n/6]+ 2.
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If F is an extremal virtually self-dual weight enumerator then the zeta function
Z = ZF can be explicitly computed. First, some notation. If F is a virtually self-dual
weight enumerator of minimum distance d and P = PF is its zeta polynomial then
define

Q(T ) =

⎧
⎪⎪⎨

⎪⎪⎩

P(T ), Type I,
P(T )(1− 2T + 2T2), Type II,
P(T )(1+ 3T2), Type III,
P(T )(1+ 2T), Type IV.

(6)

Let (a)m = a(a+1) . . .(a+m−1) denote the rising generalized factorial and write
Q(T ) = ∑ j q jT j, for some q j ∈Q. Let

γ1(n,d,b) = (n− d)(d− b)b+1Ad/(n− b− 1)b+2,

and

γ2(n,d,b,q) = (d− b)b+1
Ad

(q− 1)(n− b)b+1
,

where recall Ad denoted the coefficient of xn−dyd in the virtual weight enumerator
F(x,y).

Theorem 2 (Duursma [6]). If F is an extremal virtually self-dual weight enumer-
ator then the coefficients of Q(T ) satisfy the following conditions

(a) If F is Type I then

2m+2ν

∑
i=0

(
4m+ 2ν

m+ i

)
qiT

i = γ1(n,d,2) · (1+T)m(1+ 2T)m(1+ 2T + 2T2)ν ,

where m = d− 3, 4m+ 2ν = n− 4, b = q = 2, 0≤ ν ≤ 3.
(b) If F is Type II then

∑4m+8ν
i=0

(
6m+ 8ν

m+ i

)
qiT i

= γ1(n,d,2) · (1+T)m(1+ 2T)m(1+ 2T + 2T 2)mB(T )ν ,

where m = d − 5, 6m+ 8ν = n− 6, b = 4, q = 2, 0 ≤ ν ≤ 2, and B(T ) =
W5(1+T,T), where W5(x,y) = x8+14x4y4 +y8 is the weight enumerator of the
Type II [8,4,4] self-dual code.

(c) If F is Type III then

2m+4ν

∑
i=0

(
4m+ 4ν

m+ i

)
qiT

i = γ2(n,d,3,3) · (1+ 3T + 3T2)mB(T )ν ,
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where m = d− 4, 4m+ 4ν = n− 4, b = q = 3, 0 ≤ ν ≤ 2, and B(T ) =W9(1+
T,T ), where W9(x,y) = x4 + 8xy3 is the weight enumerator of the Type III self-
dual ternary code.

(d) If F is Type VI then

m+2ν

∑
i=0

(
3m+ 2ν

m+ i

)
qiT

i = γ2(n,d,2,4) · (1+ 2T)m(1+ 2T + 4T2)ν ,

where m = d− 3, 3m+ 2ν = n− 3, b = 2, q = 4, and 0≤ ν ≤ 2.

Although the construction of these codes is fairly technical (see [9] for an
expository treatment), we can give some examples.

Example 5. Let P be a Duursma zeta polynomial as above, and let

p(z) = a0 + a1z+ · · ·+ aNzN

denote the normalized Duursma zeta polynomial, p(z) = P(z/
√

q). By the func-
tional equation for P, p is self-reciprocal. Some examples of the lists of coefficients
a0,a1, . . . , computed using Sage, are given below. We have normalized the
coefficients so that they sum to 10 and represented the rational coefficients as
decimal approximations to give a feeling for their relative sizes. The notation for
m below is that in (6) and Theorem 2:

• Case Type I
m = 2: [1.1309, 2.3990, 2.9403, 2.3990, 1.1309]
m = 3: [0.45194, 1.2783, 2.0714, 2.3968, 2.0714, 1.2783, 0.45194]
m = 4: [0.18262, 0.64565, 1.2866, 1.8489, 2.0724, 1.8489, 1.2866, 0.64565, 0.18262]

• Case Type II
m = 2: [0.43425, 0.92119, 1.3028, 1.5353, 1.6129, 1.5353, 1.3028, 0.92119, 0.43425]
m = 3: [0.12659, 0.35805, 0.63295, 0.89512, 1.1052, 1.2394, 1.2854, 1.2394, 1.1052,

0.89512, 0.63295, 0.35805, 0.12659]
m = 4: [0.037621, 0.13301, 0.28216, 0.46554, 0.65783, 0.83451, 0.97533, 1.0656, 1.0967,

1.0656, 0.97533, 0.83451, 0.65783, 0.46554, 0.28216, 0.13301, 0.037621]
• Case Type III

m = 2: [1.3397, 2.3205, 2.6795, 2.3205, 1.3397]
m = 3: [0.58834, 1.3587, 1.9611, 2.1836, 1.9611, 1.3587, 0.58834]
m = 4: [0.26170, 0.75545, 1.3085, 1.7307, 1.8874, 1.7307, 1.3085, 0.75545, 0.26170]

• Case Type IV
m = 2: [2.8571, 4.2857, 2.8571]
m = 3: [1.6667, 3.3333, 3.3333, 1.6667]
m = 4: [0.97902, 2.4476, 3.1469, 2.4476, 0.97902]

Hopefully it is clear that, at least in these examples, these “normalized, extremal”
Duursma zeta functions have coefficients which have “increasing symmetric form.”
We discuss this further in Sect. 6.
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Fig. 1 Examples of knots

2.5 Knots

A knot is an embedding of S1 into R
3. If K is a knot then the Alexander polynomial

is a polynomial ΔK(t) ∈ Z[t, t−1] which is a topological invariant of the knot. For
the definition, we refer, for example, to [1]. One of the key properties is the fact that

ΔK(t
−1) = ΔK(t).

If

ΔK(t) =
d

∑
−d

ait
i,

then the polynomial p(t) = tdΔK(t) is a self-reciprocal polynomial in Z[t]. There is
a special class of knots (“special alternating knots”) which have the property that all
its roots lie on the unit circle (see [17, 18]).

Kulikov [10] constructed an analogous Alexander polynomial Δ associated to a
complex plane algebraic curve. Under certain technical conditions, such a Δ is a
self-reciprocal polynomial in Z[t], all of whose roots lie on the unit circle.

Example 6. In Fig. 1, we give several examples of knots. These figures can be found
in several places, for example, from [20].

The Alexander polynomial of the “unknot” is the constant function ΔS1(t) = 1.
The Alexander polynomials of the other knots in Fig. 1 are:
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Δ31 (t) = t−1−1+ t, Δ71 (t) = t−3− t−2 + t−1−1+ t− t2 + t3,

Δ41(t) =−t−1 +3− t, Δ72 (t) = 3t−1−5+3t,
Δ51 (t) = t−2− t−1 +1− t + t2, Δ73 (t) = 2t−2−3t−1 +3+3t +2t2,

Δ52(t) = 2t−1−3+2t, Δ74 (t) = 4t−1−7+4t,
Δ61 (t) =−2t−1 +5−2t, Δ75(t) = t−2−4t−1 +5−4t +2t2,

Δ62(t) =−t−2 +3t−1−3+3t− t2, Δ76 (t) =−t−2 +5t−1−7+5t− t2,

Δ63 (t) = t−2−3t−1 +5−3t + t2, Δ76(t) = t−2−5t−1 +9−5t + t2.

We use Sage [19] to compute their roots in several examples.
Sage

sage: t = var(’t’)
sage: RC.<z> = PolynomialRing(CC,"z")
sage: z = RC.gen()

sage: Delta51 = (tˆ(-2)-tˆ(-1)+1-t+tˆ2)*tˆ2
sage: f = RC(expand(Delta51)(t=z))
sage: [r.abs() for r in f.complex_roots()]
[1.00000000000000, 1.00000000000000, 1.00000000000000,
1.00000000000000]

sage: Delta63 = (tˆ(-2)-3*tˆ(-1)+5-3*t+tˆ2)*tˆ2
sage: f = RC(expand(Delta63)(t=z))
sage: [r.abs() for r in f.complex_roots()]
[0.580691831992952, 0.580691831992952, 1.72208380573904,
1.72208380573904]

sage: Delta71 = (tˆ(-3)-tˆ(-2)+tˆ(-1)-1+t-tˆ2+tˆ3)*tˆ3
sage: f = RC(expand(Delta71)(t=z))
sage: [r.abs() for r in f.complex_roots()]
[1.00000000000000, 1.00000000000000, 1.00000000000000,
1.00000000000000, 1.00000000000000, 1.00000000000000]

sage: Delta75 = (2*tˆ(-2)-4*tˆ(-1)+5-4*t+2*tˆ2)*tˆ2
sage: f = RC(expand(Delta75)(t=z))
sage: [r.abs() for r in f.complex_roots()]
[1.00000000000000, 1.00000000000000, 1.00000000000000,
1.00000000000000]

sage: Delta77 = (tˆ(-2)-5*tˆ(-1)+9-5*t+tˆ2)*tˆ2
sage: f = RC(expand(Delta77)(t=z))
sage: [r.abs() for r in f.complex_roots()]
[0.422082440385454, 0.422082440385454, 2.36920540709247,
2.36920540709247]
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2.6 Cryptography and Related Fields

The class of self-reciprocal polynomials also arise naturally in the field of cryptog-
raphy (e.g., in the construction of “symmetric” linear feedback shift registers) and
coding theory (e.g., in the construction of “symmetric” cyclic codes). However, such
polynomials have coefficients in a finite field, so would take us away from our main
topic. We refer the interested reader, for example, to Gulliver [8] and Massey [15].

3 Characterizing Self-reciprocal Polynomials

Let

R[z]m = {p ∈ R[z] | deg(p)≤ m}
denote the real vector space of polynomials of degree m or less. Let

Rm = {p ∈R[z]m | p = p∗}

denote the subspace of self-reciprocal ones.
Here is a basic fact about even degree self-reciprocal polynomials. Let

p(z) = a0 + a1z+ · · ·+ a2nz2n, ai ∈ R.

Lemma 1 ([4], Section 2.1; see also [12]). The polynomial p ∈ R[z]2n is self-
reciprocal if and only if it can be written

p(z) = zn · (an + an+1 · (z+ z−1)+ · · ·+ a2n · (zn + z−n)),

if and only if it can be written

p(z) = a2n ·
n

∏
k=1

(1−αkz+ z2), (7)

for some real αk ∈R.

Example 7. Note

1+ z+ z2+ z3 + z4 = (1+φ · z+ z2)(1+φ · z+ z2),

where φ = 1+
√

5
2 = 1.618 . . . is the “golden ratio,” and φ = 1−√5

2 =−0.618 . . . is its
“conjugate.”
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The Chebyshev transformation T : R2n → R[x]n is defined on the subset4 of
polynomials of degree 2n by

Tp(x) = a2n

n

∏
k=1

(x−αk),

where x = z+ z−1, and p and the αi’s are as in (7).
The following statement is proven in Lakatos [12].

Lemma 2. The Chebyshev transformation T : R2n → R[x]n is a vector space
isomorphism.

For any Xi ∈ C (1≤ i≤ n), let

e0(X1,X2, . . . ,Xn) = 1,
e1(X1,X2, . . . ,Xn) = ∑1≤ j≤n Xj,

e2(X1,X2, . . . ,Xn) = ∑1≤ j<k≤n XjXk,

e3(X1,X2, . . . ,Xn) = ∑1≤ j<k<l≤n XjXkXl ,
...
en(X1,X2, . . . ,Xn) = X1X2 · · ·Xn.

It is possible to describe explicitly how the αk’s determine the a j’s in (7). The
following result is proven in Losonczi [13].

Lemma 3. For each n≥ 1 and αi ∈ C, we have

n

∏
k=1

(z2−αkz+ 1) =
2n

∑
k=1

c2n,kzk,

where c2n,k = c2n,2n−k and

c2n,k = (−1)k
[k/2]

∑
�=1

(
n− k+ 2�

�

)
ek−2�(α1, . . . ,αn),

for 0≤ k ≤ n.

4 Those with All Roots on S1

There are several results concerning the set of self-reciprocal polynomials all of
whose roots lie on S1.

4In this definition, we assume for simplicity a2n �= 0; see [12] for the general definition of p �→ Tp.
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Remark 1. Note that if p ∈ Rm is a real self-reciprocal polynomial of degree m then
f (z) = z−m/2 p(z) is invariant under z �→ z−1. Therefore, f (z) is a real-valued on S1,
which implies that it is a cosine transform of its coefficients. Saying p(z) has all its
roots on S1 is equivalent to saying f (eiθ ) has n zeros on [0,2π).

One of the simplest examples of a polynomial in Rm with all its zeros on S1 is

cm(z) = 1+ z+ · · ·+ zm.

If m is even then cm does not have ±1 as roots. Many results in the theory fall into
the following category.

Metatheorem: If p∈Rm is “close” to cm then p has all its roots in the unit circle S1.
For example, the polynomials cm above satisfy this.

Theorem 3 (Lakatos [11]). Take the notation as in Lemma 1. The polynomial p ∈
R2n has all its roots in S1 if and only if −2≤ αk ≤ 2 for all k.

Here’s another one of those metatheorem-type results.

Theorem 4 (Lakatos [11]). The polynomial p ∈ Rm given by

p(z) =
m

∑
j=0

a jz
j

has all its roots on S1, provided the coefficients satisfy the following condition:

|am| ≥
m

∑
j=0
|a j− am|.

Example 8. Let p(z) = p(t,z) = c2(z)+ t · z. The theorem above says, in this case,
|t| ≤ 1 implies all roots of p(z) belong to S1.

There are several other characterizations of self-reciprocal polynomials all of
whose roots lie on S1. Those due to Cohn, Chinen, Chen, and Fell, are discussed
next.

Theorem 5 (Schur-Cohn5). Let p ∈ C[z]n be as in (1). The polynomial p has all
its zeros on S1 if and only if:

(a) There is a μ ∈ S1 such that, for all k with 0≤ k ≤ n, we have an−k = μ ·ak.
(b) All the zeros of p′ lie inside or on S1.

5See, for example, Chen [2], Section 1.
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According to Chen [2], this result of Cohn, published in 1922, is closely related6

to a result of Schur, published in 1918. The following result is an immediate
corollary of this theorem.

Corollary 1. p∈ Rm has all its zeros on S1 if and only if all the zeros of p′ lie inside
or on S1.

Remark 2.

• As a corollary to the corollary, by “version 2” of the Eneström-Kakeya theorem
(see Remark 3 ), if p ∈ Rm is “near” cm, then the coefficients of p′ are increasing
and positive, so all roots of p′ are inside S1.

• For example, if |ai− ai−1| < ai−1/i for all i, then the corollary above and the
Eneström-Kakeya theorem imply that (all roots of p′ are inside S1 and so) p(z)
has all its roots on S1. However, this rate of growth is not sufficient for application
to the Duursma zeta polynomials of extremal type.

The next result was proven by Chen [2] and later independently by Chinen7 [3].
It provides a very large class of self-reciprocal polynomials having roots on the unit
circle.

Theorem 6 (Chen–Chinen). If p ∈ Rm has “decreasing symmetric form”

p(z) = a0 + a1z+ · · ·+ akzk + akzm−k + ak−1zm−k+1 + · · ·+ a0zm,

with a0 > a1 > · · ·> ak > 0, then all roots of p(z) lie on S1, provided m≥ k.

We prove the following more general version of this.

Theorem 7. If g(z) = a0 +a1z+ · · ·+akzk and 0 < a0 < · · ·< ak−1 < ak, then, for
each r ≥ 0, the roots of zrg(z)+ g∗(z) all lie on the unit circle.

Proof. We shall adapt some ideas from Chinen [3] for our argument. ��
The proof requires recalling the following well-known theorem, discovered

independently by Eneström (in the late 1800s) and Kakeya (in the early 1900s).

Theorem 8 (Eneström–Kakeya, version 1). Let f (z) = a0 + a1z + · · · + akzk

satisfy a0 > a1 > · · ·> ak > 0. Then f (z) has no roots in |z| ≤ 1.

Remark 3. Replacing the polynomial by its reverse, here is “version 2” of the
Eneström–Kakeya theorem: Let f (z) = a0 + a1z+ · · ·+ akzk satisfy 0 < a0 < a1 <
· · ·< ak. Then f (z) has no roots in |z| ≥ 1.

Back to the proof of Theorem 7.

Claim. g∗(z) has no roots in |z| ≤ 1.

6In fact, both are exercises in Marden [14].
7In one sense, Chinen’s version is slightly stronger, and it is that version which we are stating.
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Proof. This is equivalent to the statement of the Eneström–Kakeya theorem
(Theorem 8). ��
Claim. g(z) has no roots in |z| ≥ 1.

Proof. This follows from the previous claim and the observation that the roots of
g(z) correspond to the inverse of the roots of g∗(z). ��
Claim. |g(z)|< |g∗(z)| on |z|< 1.

Proof. By the above claims, the function φ(z) = g(z)/g∗(z) is holomorphic on
|z| ≤ 1. Since g(z−1) = g(z) on |z| = 1, we have |g(z)| = |g∗(z)| on |z| = 1. The
claim follows from the maximum modulus principle. ��
Claim. The roots of zrg(z)+ g∗(z) all lie on the unit circle, r ≥ 0.

Proof. By the previous claim, zrg(z)+g∗(z) has the same number of zeros as g∗(z)
in the unit disc |z| < 1 (indeed, the function zrg(z)+g∗(z)

g∗(z) = 1+ zrg(z)
g∗(z) has no zeros).

Since g∗(z) has no roots in |z| < 1, neither does zrg(z)+ g∗(z). But since zrg(z)+
g∗(z) is self-reciprocal, it has no zeros in |z|> 1 either. ��

This proves Theorem 7. If P0(z) and P1(z) are polynomials, let

Pa(z) = (1− a)P0(z)+ aP1(z),

for 0 ≤ a ≤ 1. Next, we recall an interesting characterization of polynomials (not
necessarily self-reciprocal ones) with roots on S1, due to Fell [7].

Theorem 9 (Fell). Let P0(z) and P1(z) be real monic polynomials of degree n
having zeros on S1−{1,−1}. Denote the zeros of P0(z) by w1,w2, . . . ,wn and of
P1(z) by z1,z2, . . . ,zn. Assume

wi �= z j,

for 1≤ i, j ≤ n. Assume also that

0 < arg(wi)≤ arg(wj)< 2π ,

0 < arg(zi)≤ arg(z j)< 2π ,

for 1 ≤ i, j ≤ n. Let Ai be the smaller open arc of S1 bounded by wi and zi, for
1 ≤ i ≤ n. Then the locus of Pa(z), 0 ≤ a ≤ 1 is contained on S1 if and only if the
arcs Ai are all disjoint.

This theorem is used in the “heuristic argument” given in Sect. 6.
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5 Smoothness of Roots

A natural question to ask about zeros of polynomials is how “smoothly” do they
vary as a function of the coefficients of the polynomial?

To address this, suppose that the coefficients ai of the polynomial p are functions
of a real parameter t. Abusing notation slightly, identify p(z) = p(t,z) with a
function of two variables (t ∈R, z∈C). Let r = r(t) denote a root of this polynomial,
regarded as a function of t:

p(t,r(t)) = 0.

Using the two-dimensional chain rule,

0 =
d
dt

p(t,r(t)) = pt(t,r(t))+ r′(t) · pz(t,r(t)),

so r′(t) = −pt(t,r(t))/pz(t,r(t)). Since pz(t,r(t)) = p′(r), the denominator of this
expression for r′(t) is zero if and only if r is a double root of p (i.e., a root of
multiplicity 2 or more).

In answer to the above question, we have proven the following result on the
“smoothness of roots.”

Lemma 4. r = r(t) is smooth (i.e., continuously differentiable) as a function of t,
provided t is restricted to an interval on which p(t,z) has no double roots.

Example 9. Let

p(z) = 1+(1+ t) · z+ z2,

so we may take

r(t) =
−1− t+

√
(1+ t)2− 4

2
.

Note that r(t) is smooth provided t lies in an interval which does not contain 1 or
−3. We can directly verify the lemma holds in this case. Observe (for later) that if
−3 < t < 1 then |r(t)|= 1.

Let p(z) = p(t,z) and r = r(t) be as before. Consider the distance function

d(t) = |r(t)|

of the root r. Another natural question is how smooth is the distance function of a
root as a function of the coefficients of the polynomial p?

The analog to Lemma 4 holds, with one extra condition.

Lemma 5. d(t) = |r(t)| is smooth (i.e., continuously differentiable) as a function
of t, provided t is restricted to an interval one which p(t,z) has no double roots and
r(t) �= 0.
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Fig. 2 Size of largest root of
the polynomial
1+(1+ t)z+ z2, −5 < t < 3.
The plot was created using
Sage’s list plot
command, though the axes
labels were modified using
GIMP for ease of reading

Proof. This is basically an immediate consequence of the above lemma and the
chain rule,

d
dt
|r(t)|= r′(t) ·

(
d|x|
dx
|x=r(t)

)
.

��
Example 10. This is a continuation of the previous Example 9. Figure 2 is a plot of
d(t) in the range−5 < t < 3.

In the next section, we will find this “smoothness” useful.

6 A Conjecture

Are there conditions under which self-reciprocal polynomials with in “increasing
symmetric form” have all their zeros on S1?

We know that self-reciprocal polynomial with “decreasing symmetric form”
have all their roots on S1. Under what conditions is the analogous statement true
for functions with “increasing symmetric form?” The remainder of this section
considers this question for polynomials of even degree.

Let d be an odd integer and let f (z) = f0 + f1z+ · · · fd−1zd−1 ∈ Rd−1 be a self-
reciprocal polynomial with “increasing symmetric form”

0 < f0 < f1 < · · ·< f d−1
2
.
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For each c≥ f d−1
2

, the polynomial

g(z) = c · (1+ z+ · · ·+ zd−1)− f (z) = g0 + g1z+ · · ·gd−1zd−1 ∈ Rd−1,

is a self-reciprocal polynomial having nonnegative coefficients with “decreasing
symmetric form.” If c > f d−1

2
, the Chen–Chinen theorem (Theorem 7) implies, all

the zeros of g(z) are on S1. Let

P0(z) =
g(z)
gd−1

, P1(z) =
f (z)
fd−1

, Pa(z) = (1− a)P0(z)+ aP1(z),

for 0≤ a≤ 1. By the Chen–Chinen theorem, there is a t0 ∈ (0,1) such that all zeros
of Pt(z) are on S1 for 0≤ t < t0. In fact, if

t =
f d−1

2
− fd−1

f d−1
2

,

then Pt(z) is a multiple of 1+ z+ · · ·+ zd−1.
Do any of the polynomials Pt(z) have multiple roots (0 < t < 1)? Using the

notation of Sect. 5, in the case p(t,z) = Pt(z), we have

r′(t) =−pt(t,r(t))/pz(t,r(t)) =
P1(r(t))−P0(r(t))

P′t (r(t))
.

If no Pt(z) has a multiple root, then by the second “smoothness of roots lemma”
(Lemma 5), all the roots of f (z) are also on S1. This heuristic argument supports the
hope expressed in the following statement.

Conjecture 2. Let s : Z>0 →R>0 be a “slowly increasing” function.

• Odd degree case. If g(z) = a0 + a1z+ · · ·+ adzd , where ai = s(i), then the roots
of p(z) = g(z)+ zd+1g∗(z) all lie on the unit circle.

• Even degree case. The roots of

p(z) = a0 + a1z+ · · ·+ ad−1zd−1 + adzd + ad−1zd+1 + · · ·+ a1z2d−1 + a0z2d

all lie on the unit circle.

Remark 4.

• Though this is supported by some numerical evidence, I don’t know what “slowly
increasing” should be here.8 In any case, the correct statement of this form,
whatever it is, would hopefully allow for the inclusion of the extremal type
Duursma polynomials!

8For example, numerical experiments suggest “linear growth” seems too fast but “logarithmic
growth” seems sufficient.
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• Note that if p(z) is as above and m denotes the degree then f (z) = z−m/2 p(z) is a
real-valued function on S1. Therefore, the above conjecture can be reformulated
as a statement about zeros of cosine transforms.

Acknowledgment I thank Mark Kidwell for discussions of knots and the references in Sect. 2.5,
Geoff Price for pointing out the applications in Sect. 2.6, and George Benke for helpful suggestions.
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Several applications of data processing are included in this part. The five chapters
cover areas of signal processing and information theory. Specifically the papers by
Claussen et al., Patel et al., and Teolis et al. deal with audio signal processing, image
signal processing, and eddy current signal processing, respectively. The paper by
Tyagi et al. addresses a problem of channel coding.

The first chapter of this part is by HEIKO CLAUSSEN, JUSTINIAN ROSCA,
VISWANATHAN RAMASUBRAMANIAN, and SUBRAMANI THIYAGARAJAN. The
authors consider the signal detection problem where the signal of interest is
corrupted additively by structured perturbations. Specifically, a set of measurements
is collected as columns of a D×N matrix X . The authors estimate the signal of
interest as the vector given by w = X(XT X + λ I)−11, where λ is a scalar that
parameterizes the generalized mutual interdependence analysis (GMIA) solution.
Next the authors apply this estimate to the problem of voice activity detection for
hearing-aid devices. They compare performance of GMIA with MFCC and cepstral-
mean features.

VISHAL M. PATEL and RAMA CHELLAPPA study shape and image reconstruc-
tion from gradient field information. In particular they discuss four methods: a
Poisson-based method, a Fourier-based method (the Frankot–Chellappa algorithm),
the shapelet approach, and a wavelet-based algorithm. In the second part of this
chapter, the authors discuss image recovery from partial Fourier measurements
using inversion of the estimated gradient field. Numerical comparisons with the
inversion algorithm using total variation are also presented.

ANTHONY TEOLIS analyzes the linear system response to analytic signals, which
are functions in the Hardy space H2. Specifically, he considers input signals of
the form p(t) = A(t)e jΦ(t), where Φ(t) = 2π

∫ t
t0

f (s)ds. Here f (s) denotes the
instantaneous frequency. This chapter considers linear systems which are small
perturbations of the identity; “small” is with respect to the operator norm on L2(R).
The instantaneous frequency of the output signal is computed in terms of the input
signal and the linear system impulse response. In the last part of the chapter, the
author applies these results to two classes of signals: chirps and FM chirps.

The fourth chapter of this part is by CAROLE TEOLIS, DAVID GENT, CHRISTINE

KIM, ANTHONY TEOLIS, JAMES PADUANO, and MICHELLE BRIGHT. The authors
present an algorithm for gas turbine monitoring and stall detection using eddy cur-
rent sensors. First, they analyze the eddy current sensor signal using a combination
of band-pass filter center around the second harmonic, followed by a narrowband
wavelet filterbank. The engine-dependent signature corresponds to the narrowband
channel output where the maximum occurs. A simplified implementation of this
algorithm uses the second derivative of the instantaneous phase, which is also the
first derivative of the instantaneous frequency. The authors test these algorithms on
real data obtained at the NASA Glenn W8 compressor test facility.

The last chapter of this part is by HIMANSHU TYAGI and PRAKASH NARAYAN.
The authors discuss the fundamental problem of reliable channel coding in infor-
mation theory. They consider the case of a state-dependent discrete memoryless
channel with known underlying state process distribution. Additionally it is assumed
that the transmitter knows the channel state. Two classical results on state-dependent
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channel capacity are due to Shannon (when the encoder is causal) and Gelfand and
Pinsker (when the encoder is noncausal). It was known that Shannon’s result admits
a strong converse. The authors prove a strong converse for the Gelfand–Pinsker
theorem. During this exposition they also obtain upper bounds on the reliability
function (the exponent for which transmission error decays to zero) for both channel
models.
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about the channel, or transfer function from each source to the microphone, which
could be reliably exploited for signal detection and classification. In this chapter
we employ a nonconventional method called generalized mutual interdependence
analysis (GMIA) that proposes a model for the computation of this hidden invariant
information present across multiple measurements. Such information turns out to
be a good characteristic feature of a signal source, transformation, or composition
that fits the model. This chapter introduces a unitary and succinct description of the
underlying model of GMIA, and the formulation and solution of the corresponding
optimization problem. We apply GMIA for feature extraction in the problem of own-
voice activity detection, which aims at classification of a near-field channel based
on access to prior information about GMIA features of the channel. It is extremely
challenging to recognize the presence of voice in noisy scenarios with interference
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1 Introduction

Our goal is to compute a simplified statistical data representation that retains
invariant information that is necessary for subsequent tasks such as classification
or prediction. Methods such as Fisher’s linear discriminant analysis (FLDA) [10],
canonical correlation analysis (CCA) [14], or ridge regression [23] extract “optimal”
representations of a dataset. For instance, FLDA defines a projection space that
maximizes the ratio of the between- and within-class scatter of the training data
to reduce the dimensionality of the input. CCA assumes one common source in
two datasets. The dimensionality of the data is reduced by retaining the space that
is spanned by pairs of projecting directions in which the datasets are maximally
correlated. In contrast, ridge regression finds a linear combination of the inputs
that best fits a desired response. In this chapter, we review an alternative second-
order statistical criterion to find an “optimal” dataset representation, called GMIA.
We aim to define an invariant computation or feature of high dimensional instances
of a single class, which does not change within its class, where the number of input
instances N is smaller than their dimensionality D.

We further consider the application of GMIA to the system identification problem
of an acoustical channel, as follows. Multiple people (representing the multiple
inputs of a linear acoustic system) could be engaged in conversational speech.
Audio could be captured using multiple microphones, which are the system outputs
available for identification of the linear time invariant system representing the
channels. Each transfer function input to output can be modeled as an FIR filter,
and the system can be modeled as a MIMO FIR acoustic system. Such a scenario,
encountered not just in acoustics but also in communications and other areas, is
conventionally addressed by blind source separation (for source estimation) and
blind channel identification techniques (for channel identification).

In this section we are interested in one sensor only, and we aim to exploit
partial additional information about the channel or source in order to recognize if
a particular channel, and consequently its source, is active. For example, practical
problems abstracted by this scenario are the own-voice activity detection (OVAD)
for hearing aids and headsets. The channel of interest corresponds to the invariant
channel of the owner’s voice to a single microphone. Detecting when the owner’s
voice is active, in contrast to external active speakers or noises, is of importance
for automatic processing (e.g., in the hearing aid). We are interested in a semi-blind
solution to OVAD, which exploits training information about the owner’s channel
(and possibly the owner’s voice) to assess if the currently identified active channel
fits the owner in contrast to external sources of sound.

Methods to blindly or semi-blindly identify the channel include second order
and higher-order statistical approaches. The latter require large amounts of data to
achieve good recognition performance, while second-order methods promise speed
and efficiency. We will apply GMIA, a second-order method, to effectively capture
the invariant own-voice channel information in noisy scenarios. Other applications,
in addition to OVAD for hearing aids and headsets, are the detection of the owner’s
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voice in videoconferencing, the detection and tracking of slowly varying dynamic
speech channels in interactive speech gaming, or the detection of active speech
channels in hands free communication. All could exploit a GMIA-based approach
to the corresponding single-input single-output (SISO) problem to address more
complex MIMO channel detection solutions.

The outline of this chapter is as follows. In Sect. 2 we discuss the importance of
voice detection applications and present related work. Section 3 revisits the gener-
alized mutual interdependence analysis (GMIA) method [4–7]. In Sect. 4 we bring
in a generative model for GMIA(λ ) parameterized by λ and demonstrate the effect
of noise on the extracted features. Section 5 analyzes the applicability of GMIA for
channel extraction and classification from monaural speech. In Sect. 6 we evaluate
the performance of GMIA for OVAD and compare these results with mel-frequency
cepstral coefficients (MFCC) and cepstral-mean (CM)-based approaches. We draw
conclusions in Sect. 7.

2 Motivation and Related Work

Signal detection in continuous or discrete time is a cornerstone problem in signal
processing. One particularly well-studied instance in speech and acoustic processing
is voice detection, which subsumes a solution to the problem of distinguishing
the most likely hypothesis between one assuming speech presence and a second
assuming the presence of noise. Furthermore, when multiple people are speaking, it
is difficult to determine if the captured audio signal is from a speaker of interest or
from other people. Speech coding, speech/signal processing in noisy conditions, and
speech recognition are important applications where a good voice/signal detection
algorithm can substantially increase the performance of the respective system.

Traditionally, voice detection approaches used energy criteria such as short-time
SNR estimation based on long-term noise estimation [22], likelihood ratio test
of the signal and exploiting a statistical model of the signal [3], or attempted to
extract robust features (e.g., the presence of a pitch [9], the formant shape [15], or
the cepstrum [13]) and compare them to a speech model. Diffuse, nonstationary
noise, with a time-varying spectral coherence, plus the presence of a superposition
of spatially localized but simultaneous sources make this problem extremely
challenging when using a single sensor (microphone).

Not surprisingly, during the last decade, researchers have focused on
multimodality sensing to make this problem tractable. Multiple channel voice
detection algorithms take advantage of the extra information provided by additional
sensors. For example, [21] blindly identify the mixing model and estimates
a signal with maximal signal-to-interference-ratio (SIR) obtainable through
linear filtering. Although the filtered signal contains large artifacts and is unsuitable
for signal estimation it was proven ideal for signal detection. Another example,
is the WITTY (Who is Talking to You) project from Microsoft [24], which deals
with the voice detection problem by means of integrated heterogeneous sensors
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(e.g., a combination of a close-talk microphone and a bone-conductive microphone).
Even further, multimodal systems using both microphones and cameras have been
studied [17].

The main motivation for our present work is to perform voice (or signal)
detection for the source of interest with the reliability of multimodal approaches
such as WITTY but in the absence of additional sensors such as a bone-conducting
microphone. We will demonstrate that a single microphone signal contains invariant
information about what may be the channel, or transfer function from each source
to the microphone, which could be reliably exploited for signal detection and
classification (e.g., OVAD). We use GMIA [6] to extract this invariant information
for both reference (training) and testing, and further to compare classification
performance on the OVAD problem to MFCC and CM-based approaches.

Mutual interdependence analysis (MIA) was first introduced by Claussen et al.
[4] to extract a representation, also called common or mutual component, which
is equally correlated with all the inputs. After successfully applying MIA to text-
independent speaker verification and illumination-robust face recognition [5], the
method was generalized to GMIA [6] to account for different noise levels and to
relax the requirement for equal correlation of the common component with each
input. A conclusive up-to-date statement of GMIA is presented in [7]. In the next
section we review GMIA and some of its properties.

3 Generalized Mutual Interdependence Analysis

In the following let xi ∈ R
D denote the ith input vector i = 1 . . .N and a column of

the input matrix X. Moreover, μ = 1
N ∑N

i=1 xi, 1 is a vector of ones and I represents
the identity matrix.

Extracting a common component s∈R
D in the inputs X can be defined as finding

a direction in R
D that is equally correlated with the inputs. That is:

ζ1 = XT · s where ζ is a constant. (1)

This is an underdetermined problem if D≥ N. MIA finds an estimate of s, i.e., a
direction denoted by wMIA ∈ R

D that minimizes the projection scatter of the inputs
xi, under the linearity constraint to be in the span of X. That is, w = X ·c. Generally,
MIA is used to extract a common component from high-dimensional data D ≥ N.
Its cost function is given as:

wMIA = argmin
w,w=X·c

(
wT · (X− μ ·1T ) · (X− μ ·1T )T ·w

)
. (2)

By solving Eq. (2) in the span of the original inputs rather than mean subtracted
inputs, a closed-form solution can be found [4]:

wMIA = ζX · (XT ·X)−1 ·1. (3)
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The properties of MIA are captured in the following theorems:

Theorem 1. The minimum of the criterion in Eq. (2) is zero if the inputs xi are
linearly independent.

If inputs are linearly independent and span a space of dimensionality N ≤ D,
then the subspace of the mean subtracted inputs in Eq. (2) has dimensionality N−1.
There exists an additional dimension in R

N , orthogonal to this subspace. Thus, the
scatter of the mean subtracted inputs can be made zero. The existence of a solution
where the criterion in Eq. (2) becomes zero is indicative of an invariance property
of the data.

Theorem 2. The solution of Eq. (2) is unique (up to scaling) if the inputs xi are
linearly independent.

This is shown by the existence of the closed-form solution in Eq. (3). However,
it is important to note that, if w is not constrained to the span of the inputs, any
combination ŵMIA+b with b in the nullspace of X is also a solution. Also, the MIA
problem has no defined solution if the inputs are zero mean, that is, if X · 1 = 0.
The reason is that there exists w = 0 in the span of the inputs as a trivial solution to
Eq. (2).

The MIA data model in Eq. (1) is extended in [6] to incorporate measurement
noise n∼N (0,Cn) and to relax the equal correlation constraint from ζ1 to r:

r = XT ·w+n. (4)

We assume w to be a random variable. Our goal is to estimate w ∼ N (μw,Cw)
assuming that w and n are statistically independent. Given the model in Eq. (4), the
generalized MIA criterion (GMIA) is defined as:

wGMIA = μw +Cw ·X ·
(
XT ·Cw ·X+Cn

)−1 · (r−XT ·μw
)

(5)

= μw +
(
X ·C−1

n ·XT +C−1
w
)−1 ·X ·C−1

n · (r−XT ·μw
)
. (6)

Throughout the remainder of the document, the GMIA parameters are Cw = I,
Cn = λ I, r = ζ1 and μw = 0. We refer to this parameterization by

GMIA(λ ) = ζX · (XT ·X+λ I
)−1 ·1. (7)

When λ → ∞, the GMIA solution represents the mean of the inputs. Indeed,
the inverse

(
XT ·X+λ I

)−1 → 1
λ I simplifying the solution to wGMIA → ζ

λ X · 1.
Furthermore, MIA [solution to Eq. (3)] is equivalent to GMIA(λ ) when λ = 0.
In the rest of this chapter, we denote MIA by GMIA(0) to emphasize their common
theoretical foundation.
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4 Generative Signal Model for GMIA

This section evaluates the behavior of GMIA(λ ) for different types and intensities
of additive distortions. In particular, we evaluate the effect of noise components
that are either recurring uncorrelated components or Gaussian noise. We use the
generative signal model in [7] to generate synthetic data with various properties.
In contrast to published work we show a gradual change in the intensities of the
different noise types and compare the feature extraction result to the true feature
desired. This allows an interpretation of GMIA(λ ) and analysis of its performance
on data with unknown noise conditions from the field.

Assume the following generative model for input data x:

x1 = α1 s+ f1 +n1

x2 = α2 s+ f2 +n2
...
xN = αN s+ fN +nN ,

(8)

where s is a common, invariant component or feature we aim to extract from the
inputs, αi, i = 1, . . . ,N are scalars (typically all close to 1), fi, i = 1, . . . ,N are
combinations of basis functions from a given orthogonal dictionary such that any
two are orthogonal, and ni, i = 1, . . . ,N are Gaussian noises. We will show that
GMIA estimates the invariant component s, inherent in the inputs x.

Let us make this model precise. As before, D and N denote the dimensionality
and the number of observations. Additionally, K is the size of a dictionary B of
orthogonal basis functions. Let B = [b1, . . . ,bK ] with bk ∈R

D. Each basis vector bk

is generated as a weighted mixture of maximally J elements of the Fourier basis
which are not reused ensuring orthogonality of B. The actual number of mixed
elements is chosen uniformly at random, Jk ∈ N and Jk ∼ U (1,J). For bk, the
weights of each Fourier basis element i are given by wjk ∼N (0,1), j = 1, . . . ,Jk.
For i= 1, . . . ,D (analogous to a time dimension) the basis functions are generated as:

bk (i) =
∑Jk

j=1 wjk sin
(

2π iα jk
D +β jk

π
2

)

√
D
2 ∑Jk

j=1 w2
jk

with

α jk ∈
[

1, . . . ,
D
2

]
;β jk ∈ [0,1] ;

[
α jk,β jk

] �= [
αl p,βl p

]∀ j �= l or k �= p.

In the following, one of the basis functions bk is randomly selected to be the
common component s ∈ [b1, . . . ,bK ]. The common component is excluded from the
basis used to generate uncorrelated additive functions fn, n = 1, . . . ,N. Thus only
K− 1 basis functions can be combined to generate the additive functions fn ∈ R

D.
The actual number of basis functions Jn is randomly chosen, similarly to Jk, with
J = K− 1. The randomly correlated additive components are given by:



Generalized Mutual Interdependence Analysis of Noisy Channels 359

fn (i) =
∑Jn

j=1 wjnc jn (i)
√

∑Jn
j=1 w2

jn

with

c jn ∈ [b1, . . . ,bK ] ; c jn �= s, ∀ j,n; c jn �= cl p, ∀ j �= l and n = p.

Note that ‖s‖ = ‖fn‖ = ‖nn‖ = 1,∀n = 1, . . . ,N. To control the mean and variance
of the norms of common, additive, and noise components in the inputs, each
component is multiplied by the random variable a1 ∼N (m1,σ2

1 ), a2∼N (m2,σ2
2 )

and a3 ∼N (m3,σ2
3 ), respectively. Finally, the synthetic inputs are generated as:

xn = a1s+ a2fn + a3nn (9)

with ∑D
i=1 xn (i) ≈ 0. The parameters of the artificial data generation model are

chosen as D = 1,000, K = 10, J = 10, and N = 20.
Throughout the experiments we keep the parameters m1 = 1, σ1 = 0.1, σ2 =

0.1 and m3 = 0 of the distributions for a1, a2, and a3 constant. We vary the mean
amplitude m2 of the recurring uncorrelated components and the variance σ3 of the
Gaussian noise and illustrate its effect on GMIA(0), GMIA(λ ), and the sample mean
in Fig. 1. The figure shows a matrix of 3D histograms for different parameters m2

and σ3. Each point in a histogram represents an experiment for a given value of
λ (x-axis). The y-axis indicates the correlation of the GMIA solution with s, the
true common component. The intensity (z-axis) of the point represents the number
of experiments, in a series of random experiments, where we obtain this specific
correlation value for the given λ . Overall, we performed 1,000 random experiments
with randomly generated inputs using various values of λ per histogram.

Results show that a change in the mean amplitude m2 of the recurring uncor-
related components fi has a minimal effect on GMIA(0) but greatly affects the
correlation coefficient of s with the sample mean. That is, the sample mean results
is a good representation of s only if m2 is low and the common component s is
dominant in the data. Moreover, this indicates that GMIA(0) succeeds in finding a
good representation of s.

The second row of Fig. 1 shows that an increased variance σ3 of the noise
can improve the GMIA(0) result. The increased noise level appears to acts as a
regularization in the matrix inversion when computing GMIA. This has the same
effect as an increased value of the regularization parameter λ .

Moreover, the experiments show that the results for all λ suffer for high noise
variances σ3, but that the spectral mean is affected the most. In all experiments,
GMIA(λ ) performs equally or outperforms GMIA(0) and the spectral mean. This
demonstrates that GMIA is more versatile than the spectral mean in extracting a
common component from data with an unknown and possibly varying distortion.
In the following section we evaluate how the extraction results are affected for
nonstationary, real-world data such as speech.
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Fig. 1 Histograms of GMIA(λ ) extraction performance for different levels of additive Gaussian
noise and uncorrelated additive components fi. The mean of the inputs extracts the common
component s well for low energy contributions of fi. Small levels of Gaussian noise result in a
drop of the GMIA(0) performance. Larger amount of Gaussian noise results first in an improved
GMIA(0) performance and later in a reduced extraction result overall λ . High levels of noise are
better addressed by GMIA(0) then the mean

S1

Hc
Near

S2

Hc
Far

Fig. 2 Own-voice activity detection (OVAD) scenario: person is wearing a headset; speech from
near-field (own), S1, or far-field (external sources), S2, is recorded on a single nearby microphone.
The signal incorporates channel information, e.g., HNear

c or HFar
c , respectively

5 Channel Extraction from Mono Speech Recordings

Lets us consider a single microphone recording of near-field and far-field nonover-
lapping conversational speech as in Fig. 2. As noted in Sect. 2, a potential application
of GMIA is to extract channel features in the context of owner speech detection for
hearing aids. This problem has been referred to as OVAD, to imply the recognition
of when the wearer of the hearing-aid (owner) is talking and when an external
speaker is talking in a conversation (between the owner and the external speaker).
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Such a detection facilitates, e.g., the hearing aid signal processing to be adapted
dynamically to own-voice (OV) or external-speaker (EXT) characteristics.

We aim for an understanding of the domain and timescales where real-world
acoustic data (e.g., conversational speech) fits the generative model studied in
Eq. (9). As a first step, in this section, we review the model for the recorded signal
and its dependence on speaker and channel characteristics. We use data from one or
more speakers for fixed positions (i.e., exhibiting common channels), as in Fig. 2,
to extract channel information using GMIA. Later, in Sect. 6, we address the OVAD
problem.

5.1 Speech and Channel Models

A speech signal can be modeled as an excitation that is convolved with a linear
dynamic filter, which represents the channel including the microphone charac-
teristic, the channel impulse response of the environment, and the vocal tract.
The excitation signal can be modeled for voiced speech as a periodic signal and

for unvoiced speech as random noise [8, p. 50]. Let E(p), H(p)
v , Hc, and S(p) be

the spectral representations of the excitation or pitch signal (covering the lungs
and vocal chords), the vocal tract filter (covering the mouth, tongue, teeth, lips,
and nasal cavity), the external channel impulse response, and the speech signal
parts of person p, respectively. Note that the channel impulse response implicitly
depends on the spatial location of the receiver. This can vary substantially from near-
field to far-field, or even over different far-field only or near-field only locations.
If the environment of the speaker is invariant (e.g., the speaker does not move
significantly) and we make simplifying assumptions to idealize the spectrum and
capture important features at the timescale of interest, assume the data can be

modeled as: S(p) = E(p) ·H(p)
v ·Hc. For person p and instance1 i, we obtain:

logS(p)
i = logE(p)

i + logH(p)
v + logHc. (10)

E(p)
i is nonstationary in general for timescales larger than the pitch period.2

H(p)
v may capture invariant characteristics of the speaker’s vocal tract as well as

phoneme-specific characteristics (and underlying speech neural control) that can be
considered stationary and hence invariant within phonetic timescales, in keeping
with the quasistationary assumptions of the speech process.3 This fundamental

1The instance i implicitly represents the timescale of interest, e.g., a timescale of the order of the
pitch period (10–20 ms) or of the order of the average word period (500 ms).
2The spectrum of the excitation changes slowly for voiced sounds and appears unchanged although
radically different over the duration of a consonant, at the phonetic timescale.
3A detailed analysis of these components of the speech production model is beyond present scope.
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model of speech production extended with the external channel transfer function
is the basis for defining inputs xi and the corresponding timescales where various
components play the role of s and fn from Eq. (9).

For example, [7] use training data from different nonlinearly distorted channels
for each person from various portions of the NTIMIT database [11]. The intuition
was that the channel variation results in a low contribution of the channel in the
GMIA extract while the vocal tract characteristic logH(p)

v is retained. In contrast,
in this chapter, we considered training instances xi from multiple people exploring
an identical external channel Hc (e.g., from the same external position and using
the same microphone, which is the case for own-voice recordings in OVR). In this

case the logE(p)
i and logH(p)

v components in Eq. (10) play the role of the orthogonal
components fn in our synthetic model (Eq. (9)), while logHc is the invariant. In such
a setup, GMIA can be used to identify invariant characteristics of the channel (e.g.,
near-field channel for OVR).

We use various portions of the TIMIT database [12] for our experiments in
this section. TIMIT contains speech from 630 speakers that is recorded with a
high quality microphone in a recording studio like environment. Each speaker is
represented by 10 utterances. We convolve the TIMIT speech with a head-related
transfer function (HRTF) to simulate various invariant channels. The output of an
algorithm for channel identification can thus be compared directly with the true
HRTF used to generate the data.

We chose a HRTF from a position on the right side of a dummy head with a
source distance of 20 cm, azimuth of 0◦ and at an elevation of −30◦ as invariant
channel, and a HRTF for the right side of the dummy head with a source distance of
160 cm, azimuth of 0◦ and at an elevation of 0◦ as external channel. The HRTF data
has been obtained from [18]. Thereafter, the data is windowed with half overlapping
Hann windows of 0.2 s length and transferred into the power spectral domain.

Our goal is to apply GMIA to extract channel information and evaluate if GMIA
representations can be used to distinguish different channels. Person-dependent

information is minimized by introducing variation in the excitation E(p)
i using

speech from both voiced and unvoiced signals. Note that speech signals contain
silence periods where no channel information is present. Furthermore, voiced
speech is sparse in the spectral domain. Therefore, not all parts of the channel
characteristic are fully represented at all times. Clearly, the channel does not equally
correlate with the spectral information of the speech from different time windows.
A GMIA representation will be computed separately from speech of the same or
multiple speakers.

5.2 Speaker Model

For one person p0, consider the vector xi obtained from a speech clip i:

xi = logS(p0)
i =

(
logHc + logH(p0)

v

)
+
(

logE(p0)
i

)
≈ s+ fi. (11)
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Fig. 3 Histograms as vertical slices of the plot of the correlation coefficients between GMIA(λ ),
for a fixed value of λ , from single-speaker data and two different HRTF’s. Dark gray bins
represent a large number and light gray bins a low number of instances with a particular correlation
coefficient. (a) The HRTF used to generate the speech data is well represented by the GMIA(λ )
result for λ = 101, resulting in a mean correlation coefficient of 0.9. (b) An HRTF that is not
contained in the speech data minimally correlates with the GMIA extract

We use data as above for one single person and with channels for near- and
far-field given by the HRTFs to the right side of the dummy head. According to
the data model in Eq. (11) we expect that GMIA computes a common component
capturing information about both the channel and the speaker characteristics.

Indeed, logHc + logH(p0)
v is invariant to the actual clip i used as input. Next we

compute GMIA and correlate the result with known channel information (HRTF) to
verify our hypothesis.

All experiments are repeated for 100 speakers and various values of λ . Figure 3a
illustrates the histogram of the correlation coefficients of the GMIA extract from the
near-field speech with the ground truth near-field HRTF for a 20 cm source/receiver
distance. Note that both wGMIA(10−4) ≈ wMIA and wGMIA(104) ≈ μ (the mean of the
inputs) do not compute maximal correlation coefficients. The median correlation
value at λ = 101 is 0.9, demonstrating that GMIA can extract good representations
of the original HRTF. In contrast, Fig. 3b shows histograms of the correlation coeffi-
cients with the HRTF from a far-field position (160 cm source/receiver distance) that
was not used in the data generation. The low correlation coefficients indicate that
channel characteristics are well separable with the extracted GMIA representations.

Note that Fig. 3a is similar to Fig. 1 for σ3 = 0.1 and m2 = 5, which represents the
case where the common component intensity varies over different training instances.
This confirms that for speech the channel is not equally correlated with the spectral
information from different time windows.

5.3 Channel Model

The previous subsection shows that the GMIA projection correlates well with the
channel and that it can be used as feature for channel detection or as classifier of the
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Fig. 4 Histograms (vertical slices of the plot) of the correlation coefficients between GMIA(λ )
from multiple-speaker data and two different HRTF’s. Dark gray bins represent a large number
and light gray bins a low number of instances with a particular correlation coefficient. (a) The
HRTF that is convolved with the data is well extracted for GMIA(λ ) with λ = 101 resulting in
a mean correlation coefficient of 0.9. The variance of the result is lower than for GMIA(λ ) from
single-speaker data (see Fig. 3) (b) The HRTF that is not contained in the data only minimally
correlates with the GMIA extract

channel. We would like to make the model in Eq. (11) more precise and eliminate
the speaker dependence as much as possible. For this we use data from multiple
speakers pi with i = 1 . . .N as follows:

xi = logS(pi)
i = (logHc)+

(
logE(pi)

i + logH(pi)
v

)
≈ s+ fi. (12)

We expect to compute a common component that better captures the channel.
The experiment is performed as follows. First, a number of speakers, corresponding
to the number of training instances N in Sect. 5.2, are selected randomly from the
TIMIT database. One of their 10 utterances is randomly selected and convoluted
with the previously chosen near-field HRTF. Thereafter, one speech segment (e.g.,
0.2 s long) is randomly selected from each speaker. These segments are thereafter
used to extract a GMIA representation in the log-spectral domain. The experiment
is repeated for 100 randomly selected sets of speakers and various values of λ .
Figure 4a shows a histogram of the correlation coefficients of the GMIA result
and the ground truth for the channel, the near-field HRTF. Figure 4b illustrates the
correlation coefficients between the GMIA extract and the HRTF from the external
channel (160 cm source/receiver distance) that was not used in the data generation.

Indeed, Fig. 4 shows a reduced variance of the correlation coefficients for
different speakers compared to Fig. 3 and thus a more reliable extraction of the
channel. GMIA will be further used for channel estimation in the OVAD problem.

6 Own Voice Activity Detection

Section 5 demonstrated the efficacy of GMIA to extract channel features using a
known HRTF as the channel convolved with the TIMIT speaker data under both
speaker model and channel model formulations. In this section, we extend this
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further to a realistic scenario of OVAD using the same large speaker database
convolved with near-field and far-field HRTFs to closely approximate own-voice
speakers and external speakers.

In the experimental scenarios used here with such data for OVAD, though the
underlying HRTF information is available (as was used in Sect. 5 for measuring the
correlation coefficients between extracted MIA features and the reference HRTF),
we assume the underlying HRTF information to be unknown and unavailable,
thereby treating them as implicit in the speech data (as is the case with real recorded
OV and EXT speaker data at an hearing aid); for this purpose, the underlying OV and
EXT channel information are equivalently considered only in the form as available
by means of estimates of channel information from held-out reference data, such
as by the GMIA extraction proposed here. Thus, in this scenario, how well the
GMIA-based features offer a good own-voice recognition performance when set
in a channel detection framework will serve to demonstrate the effectiveness of
GMIA to extract the underlying channel information from the actual OV and EXT
speech data.

Toward this, we demonstrate in this section the use of GMIA-based channel
features for OVAD in a verification framework posed as an hypotheses testing
problem. Further, in order to provide a comparative reference for the GMIA-based
approach, we consider two alternate approaches: one using cepstral mean as an
alternate channel feature and set in the same verification framework, and the other
using the conventional speech feature, namely, MFCC, set in a speaker verification
framework. We work with a 100-speaker database convolved with near-field and far-
field HRTFs to closely represent own-voice and external speakers. The performance
of these three verification systems are given and compared in terms of the equal-
error-rate (EER) measure. Additionally, given that GMIA is specifically formulated
to handle real-world data with additive noise, we also demonstrate the effectiveness
of GMIA for noisy data by considering three noise conditions, namely, street, car,
and music noises, at different SNRs (clean, 20 dB, 10 dB, 0 dB,−10 dB and−20 dB)
and show how its parameterization (in terms of λ —the assumed noise variance)
allows a superior performance at a range of optimal λ , in comparison to the other
two approaches (cepstral-mean- and MFCC-based speaker-verification).

6.1 GMIA Based Verification Framework for OVAD

Given the conversational speech signal, the OVAD problem can be reduced to that
of detecting the underlying channel. This in turn involves extracting the channel
feature from the speech signal and classifying it as own-voice or external-speaker
channel, thereby comprising a 2-class problem. Alternately, this can also be viewed
as a “own-voice verification” problem (e.g., as in speaker-verification), set in a
hypothesis testing framework of deciding between the two hypotheses:

H0: Input speech segment is own voice.
H1: Input speech segment is not own voice (i.e., external speaker).
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The verification framework adopted here is essentially as in speaker-verification,
which is well established [2, 19]. We outline this here as adopted to the channel
verification task: Given a set of OV and EXT speakers, a test OV speaker is verified
as OV speaker with respect to a set of OV channel features extracted from another
set of OV speakers. The latter is referred to as “reference” OV channel features, and
serves to represent the underlying unknown OV channel, as extracted by GMIA;
such a channel information, by virtue of being speech- and speaker independent,
can be expected to be invariant across a set of OV speakers and to generalize to an
unseen test OV speaker. Likewise, a test external (EXT) speaker can be verified as
“not OV” speaker against the same set of reference OV channel features. In general,
a set of test OV/EXT speakers represented in terms of their channel features are
verified in this manner with respect to another set of reference OV channel features,
thus constituting a statistically robust channel verification task.

Ideally, the OV test GMIA features ought to yield high correlation scores
(or alternately, low distance scores) with OV reference channel features, while
the EXT test GMIA features yield low correlation scores with the OV reference
channel features. If the features represent the OV and EXT channels well and
offer good separability in the GMIA feature space, the corresponding OV and EXT
score distributions are also well separated. An optimal threshold is determined on
the OV and EXT score distributions which minimizes false rejections (fr, which
is the number of true OV features rejected as “not OV”) and false acceptances
(fa, which is the number of true EXT features accepted as “OV”). The corresponding
EER of (Prob(fr), Prob(fa)) is reported as the OVR system performance, with lower
EER implying a better performance.

6.2 Alternate Approaches

In order to provide a baseline reference to the OVAD by GMIA-based channel
features as discussed above, we also consider two other alternatives to OVAD:
one using an alternate channel feature extraction, namely, the “cepstral mean,” and
another using a speaker-verification approach wherein OVR is carried out in terms
of verifying whether the input speaker is the wearer or not.

6.2.1 Cepstral-Mean-Based OVAD

The mean vector obtained from GMIA for large λ (λ → ∞) corresponds to the
mean of the log-spectral vectors in a clip (analysis window for extracting a GMIA
vector). Alternately, one can consider the mean of the cepstral vectors derived by
an inverse FFT or DCT of the log-spectral vectors, as is done for deriving cepstral
coefficients or MFCCs in speech recognition [16]. This mean vector, referred to
as “cepstral-mean” (CM) in speech recognition, is popularly used in the context
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of cepstral mean normalization (CMN) for channel compensation [1, 16]. Here, it
is already a well established concept that the cepstral mean of the log spectra of
long speech intervals approximates the channel cepstra and that subtraction of this
long-term averaged cepstral-mean from the individual frames of cepstral features
removes the channel effect, thereby rendering the resultant cepstral vectors robust
to channel variability (such as arising from channel differences in telephony speech
recognition due to differences in handset, physical channel media, wireless network
channels, etc., particularly between training and test conditions).

6.2.2 Speaker-Verification-Based OVAD

In a OVAD task, the OV speaker is fixed and given and can be made to provide
training data to define OV models that characterize the OV speaker. By this,
the OVAD task can be alternately defined as a conventional speaker-verification
task of treating the OV speaker as the target speaker and EXT speakers as the
impostor speakers. For this, it becomes necessary to use conventional “speaker”
feature representations, such as MFCC [2, 19]. In this case, the OV speaker is
represented by a statistical model (GMM) or a nonparametric model (VQ) in the
MFCC feature space.

The distribution of the MFCC vectors (and the GMM- or VQ-based
representation of this distribution) of a speaker characterizes the unique acoustic
signature or footprint of that speaker in the MFCC feature space as manifesting
in the unique spectral characteristics of his voice, manner of articulation of the
different sounds of the language (phonemes), and spectral dynamics (which can
be potentially captured in the delta and delta-delta MFCCs). The OV and EXT
speaker data occupy different regions in the feature space, by virtue of the fact
that the spectral characteristics of each of these speech is a result of convolution
with different channels (here, HRTF). An OV speaker model thereby offers a
better match with OV test speaker data than with EXT test speaker data, which
then becomes the primary basis of OVAD by MFCC-based speaker verification.
The verification task is thus essentially as described in Sect. 6.1, but constituting a
“speaker” verification (as against “channel” verification, since the MFCC features
here serve as “speaker” features) in this case taking the form of computing OV
scores between OV test MFCC vectors and the OV models and EXT scores between
EXT test MFCC vectors and the OV models, subsequently forming the OV and EXT
score distributions and then determining the EER.

6.3 Experimental Setup

Here, we present the experimental details of the three OVAD tasks, namely,
GMIA-based channel verification, cepstral-mean (CM)-based channel verification,
and MFCC-based speaker-verification. These three frameworks are as described
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generically earlier in Sects. 6.1 and 6.2. While the three tasks have specific
differences due to their underlying idiosyncratic frameworks, they share an overall
experimental scenario, comprising the following common aspects.

All the OVAD experiments use a randomly selected (but fixed) subset of 100
speakers from the TIMIT database (of 630 speakers) as the test set of OV and
EXT speakers, with each speaker having 10 sentences, each 3 to 4 s duration. The
fixed subset of 100 test speakers is convolved with single fixed near-field and far-
field HRTFs to generate the own voice and external type of speakers, respectively
(referred to as OV and EXT henceforth); the HRTFs used here are as described in
Sect. 5. In order to examine the noise robustness of GMIA and the two alternate
approaches, we consider three different noise conditions, namely, street, car, and
music, and five SNRs for each of these noise conditions (20 dB, 10 dB, 0 dB,
−10 dB, and 20 dB), in addition to the clean case. The specific noise data is added
to the original clean TIMIT sentences at the desired SNR subsequent to the HRTF
convolutions, i.e., to the OV and EXT data.

We now describe the specific variations in the experiments for each of the three
OVAD tasks.

6.3.1 GMIA-Based OVAD

While the 100 speakers as defined above constitutes the test data, GMIA
experiments use a set of 300 speakers (different from the 100 test speakers) to
define the “reference” OV channel feature. This is motivated by the channel model
formulation in Sect. 5.3, where a GMIA vector is extracted in a speaker-independent
manner. Here, a single GMIA reference vector is extracted from the 300-speaker
clean data, i.e., with N = 300, as defined in Sect. 5.3.

For the noise-added experiments, only the test data is made noisy, while the
above reference GMIA vector is extracted and kept fixed from clean 300 speaker
data. For the purposes of examining and establishing the noise-robust advantage
intrinsic to GMIA through its parameter λ , the GMIA-based channel verification
experiments are conducted for λ varying over the range of [10−4 to 104]. One such
experiment (for a given λ ) consists of using 100 test OV and EXT speaker data
and computing 1 GMIA vector for each speaker (from the entire duration of 30
to 40 s of that speaker, corresponding to N = 300–400 in X of Eq. (7)). The test
database of 100 speakers thus yields 100 OV and EXT scores, from which the EER
corresponding to the given λ is obtained. For a given noise-type and SNR, EER is
obtained as a function of λ over the range [10−4 to 104]. Such an EER-vs-λ curve
is obtained for all the 6 SNRs (clean, 20 dB, 10 dB, 0 dB, −10 dB, and 20 dB), for
each noise type (street, car, and music).

6.3.2 Cepstral-Mean-Based OVAD

The experimental framework for this task uses the identical test set of 100 speakers
as above, while differing only in the way the reference cepstral-mean channel
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feature vector is derived and in how the test set scores are computed in a leave-
one-out framework, in order to offer a statistically robust verification task; this is
outlined below.

For a given speaker (OV or EXT), a cepstral-mean vector is computed from the
entire duration of that speaker (30 to 40 s, yielding 300–400 cepstral vectors, each
obtained using framesize of 200 ms and overlap of 100 ms). The cepstral vector for
each frame is obtained by a DCT of the log-spectral vector.

For a given test OV speaker (among 100 test speakers), the remaining 99 OV
speakers are defined as the reference channel speakers. 1 cepstral-mean vector is
computed for each of these 99 speakers (from clean data), thereby providing 99
clean reference channel vectors (for that test OV speaker). One score is computed
between the test cepstral-mean vector (from the entire duration of that test speaker)
and the reference cepstral-mean vector (from among the 99 reference vectors) which
has the highest correlation with the test cepstral-mean vector. For the given test
OV speaker, the corresponding EXT speaker (the same speaker in the 100 speaker
database, but now from the EXT set) is used to compute the EXT score with respect
to the same OV reference channel vectors.

The above is repeated for each of the 100 test OV speakers as the test speaker
(with the remaining 99 speakers forming the reference channel set), thereby yielding
100 OV and EXT scores, from which the score distribution is formed and EER
determined; this corresponds to a specific noise type and SNR. EERs are obtained
for all 5 SNRs and clean cases for the 3 noise types (street, car, and music).

6.3.3 MFCC-Based OVAD

This OVAD task differs in several respects from the above two channel verification
tasks, in that it is essentially a speaker verification task and therefore has a fairly
different experimental setup, though sharing the broad parameters with the above
tasks to allow for a fair comparison.

The primary feature for this task is the MFCC vector computed with a framesize
of 20 ms and overlap of 10 ms, constituting quasistationary timescales as required
to derive spectral information of speech data. This yields 100 MFCC vectors per
second of speech data, and each TIMIT speaker (of duration 30–40 s) has about
3000–4000 vectors. The MFCC feature vector used here is derived with a set of
40 triangular filters applied on the log spectra of a frame followed by DCT on the
filter energy outputs to yield the cepstral coefficients; the MFCC vector used is of
dimension 36, consisting of 12 cepstral coefficients (coefficients 2 to 13, with the
first energy co-efficient not used, thereby making the feature insensitive to signal
energy), 12 delta and 12 delta-delta coefficients.

The verification task here is set in the leave-one-out framework (as defined for the
cepstral-mean task). For a given test speaker, the remaining 99 speakers are used to
define the reference OV speakers against which the test speaker MFCCs are scored.
Each of these 99 speakers is represented by a VQ codebook of size 64, considered
adequate from established speaker-identification tasks [20].
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A scoring window is defined for the test data for deriving a score with respect to
the reference VQ codebooks. The scoring windows used here are 1, 2, 4, 8, 16 and
30 s. For a specific scoring window duration, an accumulated dissimilarity (distance)
score is computed for the window with respect to each of the 99 VQ codebooks.
The accumulated score for a VQ codebook is the sum of the individual scores of
the MFCC vectors in the window, the individual score of a vector being the distance
between the vector and the nearest codevector in the VQ codebook. The final score
of the test window is determined as the minimum across the 99 VQ codebooks, i.e.,
a window of test vectors has a single score with respect to the best scoring reference
VQ codebook.

For a given test window duration, OV and EXT scores are computed over the test
data duration of a speaker and score distributions formed from such scores from all
test speakers in the above leave-one-out framework; an EER is obtained for each test
window duration for a given noise type and SNR. For the different noise types and
SNRs, only the test data is subjected to noise, while the reference VQ codebooks
are maintained as derived from clean data.

6.4 OVAD Results Analysis

In this section, we present results of the above three OVAD tasks (GMIA based
channel verification, CM-based channel verification, and MFCC-based speaker-
verification) for different noise types and SNRs. The performance of the three
verification approaches are given in terms of EER, as defined earlier in Sect. 6.1,
in street, car, and music noises, respectively, for different SNRs.

6.4.1 OVAD for GMIA, CM, and MFCC in Noisy Conditions

Figure 5a–c show EER as a function of λ for GMIA. As expected, the EER shows
a pronounced dependence on λ , consequently offering the best performance at
λ = 100 consistently for both clean and noisy cases. This is in agreement with
the similar dependence and optimality shown by the correlation coefficients for the
experiments reported in Sect. 5.3. Optimal results are obtained similarly for values
of λ = 0.1–10. This validates the importance of the parameterization of GMIA in
terms of λ to handle real-world noisy data.

�
Fig. 5 Own-voice activity detection with GMIA(λ ), MFCC, and CM for various noise types and
levels. (a) Street noise above 0, dB SNRs enables GMIA-based own-voice activity detection with
EERs below 10 %. GMIA(100) achieves best results. (b) Car noise above −10 dB SNRs enables
GMIA-based own-voice activity detection with EERs below 5 %. There is a clear improvement
for λ = 100 over the spectral mean. (c) Music noise is least affecting the GMIA-based own-voice
activity detection. (d) CM performs mostly below the spectral mean and by a large margin below
GMIA(100). MFCC performs below GMIA(100) for high SNRs and at level for low SNRs
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More specifically, it can be noted that for low SNRs and for all noise types, the
optimal λ results in a prominent dip in EER, when compared to MIA (for λ = 10−4)
and the spectral mean (for λ = 104). This is in line with the basis of the channel
model formulation in Sect. 5.3, indicating the ability of GMIA (at optimal λ ) to
extract an invariant component in the presence of a higher degree of uncorrelated
additive components fi [in Eq. (12)], in this case corresponding to large variability
in log-spectral components corrupted with higher levels of noise (lower SNRs).

With regard to MFCCs, Fig. 5d shows that MFCC offers competitive perfor-
mance to GMIA (comparable or even lower EERs at times, such as for street noise
at −20 dB and −10 dB and car noise at −20 dB) for lower SNRs, while the optimal
GMIA performances are better than MFCC for high SNRs. The better performance
of GMIA over MFCCs (particularly for high SNR cases) is accounted for as follows.
MFCC-based speaker-verification approach attempts to model the OV (or EXT)
space as the feature space spanned by the speech of the owner (or external) speaker
(i.e., spanned by all the phonetic realizations as is unique to a speaker) and hence
implicitly captures both the channel and speaker information. This in turn makes
the feature space occupied by the OV and EXT speaker data to be large and
diffuse, leading to potentially higher overlap of their feature spaces and a consequent
higher overlap of the OV and EXT score distributions with associated higher EERs.
In contrast, the GMIA features represent the channel information directly with
minimal associated speaker information (as was evident from the results in Fig. 4,
where the channel model, being extracted in a speaker-independent manner, offers
lower variance of the correlation coefficients) and consequently better separability
between the OV and EXT spaces and associated lower EERs.

Within the channel modeling framework, the alternative cepstral-mean features
(Fig. 5d) have higher EERs than the “spectral mean” of GMIA at λ = 104 (i.e.,
the asymptotic performance for GMIA for λ → ∞), particularly for lower SNRs.
Moreover, the EERs for cepstral mean are significantly higher than the best GMIA
EERs for all noise types and SNRs. In general, while CM offers reasonably
comparable performance at clean conditions, it degrades severely with increase
in noise levels and has poor noise robustness. When compared to MFCC, MFCC
clearly outperforms CM for all cases.

6.4.2 OVAD for GMIA, CM, and MFCC for Varying Test Durations

Figure 6 shows an important computational aspect of GMIA—the duration over
which a single GMIA vector is computed. In this figure, EER-vs-λ is shown for
varying durations (1, 2, 4, 8, and 16 s) over which the GMIA vector is computed
in the test data. GMIA exhibits no particular sensitivity to this duration (at the
optimal λ ) for clean case (Fig. 6a). Even 1 s of data is sufficient to realize a 0 %
EER for the clean case at the optimal λ .

However, for the noisy case (car noise at 0 dB) in Fig. 6b, the EER curve worsens
with decrease in the duration (from 16 s to 1 s). For 1 s data, even the EER at
optimal λ is as high as ∼30 % and it needs 4 s of data to enable EERs ∼8 %.
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Fig. 6 Own-voice activity detection with GMIA(λ ) and MFCC for various test durations.
(a) GMIA(100) and the spectral mean both outperform the MFCC in case of no noise.
(b) GMIA(100) outperforms MFCC for car noise with long test durations and achieves similar
results for short test durations. MFCC performs better then the spectral mean

This shows that channel extraction with GMIA requires large amounts of data
to enable noise-robust extraction, i.e., larger data implying sufficient uncorrelated
components [f in Eq. (12)] to enable their cancellation and reliable extraction of the
common channel component. This will impact online applications, where shorter
durations (over which an OVAD decision is reported) will be clearly preferred.

Considering MFCC, GMIA(100) offers better performance than MFCC for the
clean case. For the noisy case (Fig. 6b), GMIA(100) is again better than MFCC for
longer durations, but comparable for shorter durations. The dependence of MFCC
on longer durations is consistent with previously reported results on MFCC-based
speaker verification where it is known that test durations of the order of 5–10 s are
necessary to achieve optimal performance [20]; this is primarily due to the fact that
such speaker verification relies on having long acoustic signature of the speaker to
yield a sufficiently discriminating accumulated score.

Considering CM, for clean cases, CM has comparable performance to the
spectral mean (GMIA(104)); however, for the noisy case, CM is worse than MFCC
and also the spectral mean (GMIA(104)), indicating that CM is more sensitive to
noise than GMIA, though it can offer comparable performance to the spectral mean
for clean conditions.
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7 Conclusion

GMIA is a low-complexity second-order statistical method for projecting data in a
subspace that captures invariant properties of the data. This chapter summarizes
the theory behind GMIA in a unitary presentation and most importantly carries
the reader through a succession of increasingly difficult application examples.
The examples come from a conspicuous albeit well-studied signal processing
problem: voice (signal) activity detection and classification. We show how real-
world conversational speech data should be modeled to fit the GMIA assumptions.
From there, low-complexity GMIA computations can induce reliable features that
are used for classification under noisy conditions and operate with small amounts
of data. Furthermore, our results push the state of the art and are intriguing. For
example, GMIA features perform better than cepstral power and mel-frequency
cepstral coefficient features, particularly in noisy conditions, and are amenable to
online (real-time) detection algorithms. More significantly, the approach opens the
door for a large number of possible applications where a signal source (e.g., a
speaker), characterized by a slow varying or invariant channel that is learned can be
tracked from single channel data. The GMIA approach derived and applied in this
chapter resonates with the principle of doing more with less, which will certainly
find new applications in discrete time signal processing in the near future.
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Approximation Methods for the Recovery
of Shapes and Images from Gradients

Vishal M. Patel and Rama Chellappa

Abstract Recovery of shapes and images from gradients is an important problem
in many fields such as computer vision, computational photography, and remote
sensing. For instance, techniques such as photometric stereo and shape from
Shading recover the underlying 3D shape by integrating an estimated surface
gradient field or surface normals. In applications such as image stitching and image
editing, gradients of given images are first manipulated. The final image is then
reconstructed from the modified gradient field. The estimated or modified gradient
field is usually nonintegrable due to the presence of noise, outliers in the estimation
process, and inherent ambiguities. This chapter reviews some approximation-based
methods for surface reconstruction from the given nonintegrable gradient field with
applications to 3D modeling and image reconstruction.

Keywords Photometric stereo • Shape from shading • Image gradients • Image
recovery • Compressive sampling • Poisson solver • Shapelets • Shape recov-
ery • Surface reconstruction • Sparsity

1 Introduction

Reconstruction of images from gradient fields is an important problem in many
applications such as shape from shading (SfS) [9, 10, 12, 29], photometric stereo
(PS) [28], compressive sampling (CS) [19], computational photography [26], phase
unwrapping [8], high dynamic range compression [5], image editing [20], and image
matting [24]. Given an estimate of gradient field, the final surface or image is
obtained by integrating the available gradient field.
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For instance, in image editing [20], the gradient fields of one or more images
are manipulated to obtain the desired goal and the final image is recovered by
integrating the modified gradient field. In PS [28], multiple images of an object
under varying illumination are captured to first estimate a surface gradient field.
The estimated surface gradient field is then integrated to obtain the final shape
of an object. In [19], a method for recovering images from their partial Fourier
measurements is presented. Given partial Fourier measurements of an image and
using the fact that the Fourier transform of the gradients of an image are precisely
equal to a diagonal transformation of the Fourier transform of the original image,
CS methods are utilized to directly recover the horizontal and vertical differences of
the desired image. The final image is then reconstructed by integrating the estimated
gradient field.

The gradient field of a scalar surface or an image should be integrable
(conservative). That is, the integral along any closed curve should be equal to
zero and the reconstruction should not depend on the path of the integration.
However, this is often not the case when inherent noise during the estimation process
contaminates the gradient field. In this chapter, we review a few approaches for
enforcing integrability. We first briefly describe the idea behind SfS and photometric
stereo.

1.1 Shape from Shading

SfS attempts to recover 3D shape from a single image. In this method, the
reflectance map is assumed to be known or given. Let s denote the direction of
the light source

s =
1

√
1+ p2

s + q2
s

(−ps,−qs,1)
T ,

for some ps and qs. Let Z be the surface height and p =
∂Z(x,y)

∂x , q =
∂Z(x,y)

∂y .
The surface normal n is then given by

n =
1

√
1+ p2+ q2

(−p,−q,1)T .

For a Lambertian surface, the image intensity I(x,y) is modeled as

I(x,y) = ρ(x,y)n(x,y).s

= ρ
1+ pps+ qqs√

1+ p2
s + q2

s

√
1+ p2 + q2

,

where ρ is the albedo of the surface and. denotes dot product. Often times, ρ is
assumed to be constant over the surface. In that case, one can also write the image
irradiance equation as
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I(x,y) = R(p,q)

=
1+ pps+ qqs√

1+ p2
s + q2

s

√
1+ p2+ q2

,

where R(p,q) is called the reflectance map. Given an estimate of the light source
direction, the general SfS problem then reduces to estimating the surface gradients
p and q from the image intensity I.

One can use the algorithm by Brooks and Horn for SfS [9]. The algorithm
assumes a Lambertian reflectance model for the surfaces. At each iteration, new

estimates of the surface gradients

[
p̂
q̂

]

k+1

are obtained from the previous estimates
[

p̂
q̂

]

k

as

[
p̂
q̂

]

k+1

=

[
ˆ̂p
ˆ̂q

]

k

+λ (I−R)

[
Rx

Ry

]
,

where ˆ̂pk and ˆ̂qk denote the smoothed values of p̂k and q̂k, respectively, I is the
input image, R is the reflectance map, and Rx,Ry are the corresponding derivatives.
In the next section, we present more sophisticated algorithms that can be used
to incorporate integrability at each iteration of this algorithm by projecting the
nonintegrable gradient fields onto the basis functions such as Fourier, wavelet, and
shapelet.

1.2 Photometric Stereo

Photometric stereo attempts to estimate the 3D shape of an object from images
taken from the same viewpoint but illuminated from distant point light sources
from multiple directions. In this method, a minimum of three images are required to
estimate the shape with the constraint that the direction of light sources should not be
coplanar. If I1, . . . , In are n images captured under distant point light sources whose
directions are given by s1, . . . ,sn, then under the Lambertian reflectance assumption,
one can write

Ii(x,y) = ρ(x,y)n(x,y).si i = 1, . . . ,n.

If the light source directions are known, then for each pixel, one can write a linear
system for the scaled albedo a(x,y)= ρ(x,y)n(x,y) by stacking the image intensities

⎡

⎢
⎢
⎢
⎣

sT
1

sT
2
...

sT
n

⎤

⎥
⎥
⎥
⎦

a(x,y) =

⎡

⎢
⎢
⎢
⎣

I1(x,y)
I2(x,y)

...
In(x,y)

⎤

⎥
⎥
⎥
⎦
.
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This linear system is solved to estimate the scaled albedo a. The albedo, ρ , can be
obtained as the norm of a

ρ(x,y) = |a(x,y)|.
The surface normal n(x,y) is given by

n(x,y)
a(x,y)
|a(x,y)| .

Given n(x,y) = [nx,ny,nz]
T , the surface gradients can be obtained as p = − nx

nz
and

q = − ny
nz
. The problem then reduces to estimating Z from the estimated gradient

field (p,q).
The rest of this chapter is organized as follows: Sect. 2 presents various methods

for reconstructing images and surfaces from gradient fields. In particular, Poisson-
based, Fourier-based, wavelet-based, and shapelet-based methods are described in
detail. Finally, in Sect. 3, a method for reconstructing images from their partial
Fourier measurements that use gradient information is presented.

2 Shape Recovery from Gradients

In this section, we present various methods for recovering shapes from the estimated
gradients. In particular, we discuss a Poisson-based method [23], Fourier-based
method [6], shapelet approach [15], and a wavelet-based algorithm [27] in detail.

2.1 Poisson Solver

Let Z(x,y) be a 2D real-valued scalar function on a H×W rectangular grid (x,y)
of image pixels. Let {p(y,x),q(y,x)} denote the given nonintegrable gradient field
over the grid. Define the curl and divergence operators as

curl(p,q) =
∂ p
∂y
− ∂q

∂x

div(p,q) =
∂ p
∂x
− ∂q

∂y
.

Given (p,q), the objective is to obtain a surface Z. Let (Zx,Zy) denote the gradient
field of Z. A common approach is to minimize the least square error functional
given by

J(Z) =
∫ ∫

((Zx− p)2− (Zy− q)2) dx dy. (1)
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The corresponding Euler–Lagrange equation gives

∂J
∂Z
− ∂

∂x
∂J
∂Zx

− ∂
∂y

∂J
∂Zy

= 0

∂
∂x

(Zx− p)+
∂
∂y

(Zy− q) = 0

∂ 2Z
∂x2 +

∂ 2Z
∂y2 =

∂ p
∂x

+
∂q
∂y

∇2Z = div(p,q).

This is the Poisson equation [10], where ∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 is the Laplacian operator.
This method is often referred to as the Poisson solver [23]. The integrable gradient
field is found by differentiating the estimated surface Z. Thus, (Zx,Zy) is the
integrable gradient field corresponding to the given nonintegrable gradient field
(p,q). Note that

div(Zx,Zy) =
∂Zx

∂x
+

∂Zy

∂y
= ∇2Z = div(p,q).

In other words, the Poisson solver enforces integrability by finding a zero curl
gradient field which has the same divergence as the given non-integrable gradient
field.

Assuming Neumann boundary conditions given by ∇Z.n̂ = 0, one can discretize
the Poisson equation as

LZ = u,

where u = div(p,q), u = [u(1,1), . . . ,u(H,W )]T , and L is the sparse Laplacian
matrix of size HW ×HW . Each row of L has −4 at the diagonal entry and four 1’s
corresponding to the isotropic Laplacian kernel ∇2. With this, Z can be obtained as
Z = L−1u. See [23] for more details.

2.2 Frankot–Chellappa Algorithm

In [6], Frankot and Chellappa present a method for projecting a gradient field to
the nearest integrable solution. They suggested to use a set of integrable basis
functions to represent the surface slopes so as to minimize the distance between
the integrable gradient field and a nonintegrable one. Suppose that Z(x,y) denotes
the reconstructed height at the image location with coordinates (x,y). As discussed
earlier, the integrability condition for the surface requires that the height function
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does not depend on the integration path. This implies that the surface must satisfy
the following condition:

Zxy = Zyx, (2)

where Zxy = ∂ 2Z(x,y)
∂x∂y and Zyx = ∂ 2Z(x,y)

∂y∂x . This condition can also be regarded as
a smoothness constraint, since the partial derivative of the surface needs to be
continuous in order that it can be integrable.

An integrable surface Z can be represented by the basis expansion

Z̃(x,y) = ∑
ωωω∈Ω

C̃(ωωω)ϕ(x,y,ωωω), (3)

where ϕ(x,y,ωωω) are the basis functions, ωωω =(ωx,ωy) is a two-dimensional index, Ω
is a finite set of indexes, and the members of ϕ(x,y,ωωω) are not necessarily mutually
orthogonal. If each ϕ(ωωω) satisfies (2), then it follows that Z does as well. The first
partial derivatives of Z̃ can be expressed in terms of this set of basis functions as

∂ Z̃(x,y)
∂x

= ∑
ωωω∈Ω

C̃(ωωω)ϕx(x,y,ωωω) (4)

and

∂ Z̃(x,y)
∂y

= ∑
ωωω∈Ω

C̃(ωωω)ϕy(x,y,ωωω), (5)

where ϕx = ∂ϕ
∂x and ϕy = ∂ϕ

∂y . Since these are the first partial derivatives of an

integrable surface, they share the same set of coefficients C̃(ωωω). Similarly, the non-
integrable gradient field can be represented as

∂ Ẑ(x,y)
∂x

= ∑
ωωω∈Ω

Ĉ1(ωωω)ϕx(x,y,ωωω)

and

∂ Ẑ(x,y)
∂y

= ∑
ωωω∈Ω

Ĉ2(ωωω)ϕy(x,y,ωωω).

Since this set of first partial derivatives is not integrable, their corresponding
transform coefficients are not the same. That is Ĉ1(ωωω) �= Ĉ2(ωωω). One can minimize
the distance between the transform coefficients of the non-integrable and the
integrable gradient fields by making Ĉ1(ωωω) = Ĉ(ωωω) = Ĉ2(ωωω). This requires the
minimization of the following quantity:

d
[
(Ẑx, Ẑy),(Z̃x, Z̃y)

]
=

∫ ∫
‖Z̃x− Ẑx‖2 + ‖Z̃y− Ẑy‖2 dx dy. (6)

The following proposition is proven in [6].
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Proposition 1. The expansion coefficients C(ωωω) in (3) that minimize (6) given a
possibly non-integrable estimate of surface slopes Ẑx(x,y), Ẑy(x,y) are given by

C̃(ωωω) =
Px(ωωω)Ĉ1(ωωω)+Py(ωωω)Ĉ2(ωωω)

Px(ωωω)+Py(ωωω)
(7)

for each ωωω ∈ Ω where Px(ωωω) =
∫ ∫ |ϕx(x,y,ωωω)|2 dx dy and Py(ωωω) =∫ ∫ |ϕy(x,y,ωωω)|2 dx dy. The integrated surface Z̃(x,y) and integrable surface slopes

Z̃x(x,y), Z̃y(x,y) are then obtained by substituting C̃(ωωω) into the expansions (3), (4),
and (5).

In the case when Fourier basis functions are used, ϕ(x,y,ω) = exp(2π iωxx +
2π iωyy), one can show that (6) is minimized by taking

C̃(ωωω) =
−iωxĈx(ωωω)− iωyĈy(ωωω)

ω2
x +ω2

y
,

with the Fourier coefficients of the constrained surface slopes given by

C̃x(ωωω) = iωxC̃(ωωω),

C̃y(ωωω) = iωyC̃(ωωω).

In this setting, one can recover the surface Z̃ up to an unknown scaling factor. This
method is also robust to noise. In the following sections, we show how this method
can be generalized using cosine basis functions as well as by using well-localized
basis functions such as those found in wavelets [11, 13], and shapelets [15].

2.3 Wavelet-Based Methods

The method proposed in the previous section can be extended using wavelet basis
functions. One such method for SfS was proposed by Hsieh et al. in [11]. Karacali
and Snyder use a reconstruction approach based on constructing an orthonormal
set of gradient field that span a feasible subspace of the gradient space using
wavelets [13]. They adapt wavelet shrinkage methods to successfully reduce the
influence of noise during the reconstruction process. Another approach based on
using Daubechies wavelet basis and connection coefficients was proposed by Wei
and Klette in [27]. In what follows, we briefly describe this method.
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2.4 Connection Coefficients

Let φ(x) and ψ(x) be the Daubechies scaling function and wavelet, respectively,
defined as

φ(x) = ∑
k∈Z

akφ(2x− k),

ψ(x) = ∑
k∈Z

(−1)ka1−kφ(2x− k),

where ak are the wavelet filter coefficients. Let L2(R) be the space of square
integrable functions on the real line. Let Vj be the closure of this space spanned
by φ j,k(x) = 2 j/2φ(2 jx− k), j,k ∈ Z, and suppose that Wj, the orthogonal com-
plementary of Vj in Vj+1, be the closure of the function subspace generated by
ψ j,k(x) = 2 j/1ψ(2 jx− k), k ∈ Z. Then the function subspaces Vj and Wj have the
following properties: Vj ⊆ Vj+1 for all j ∈ Z; ∩ j∈ZVj = {0}; ∪ j∈ZVj = L2(R);
Vj+1 = V0 ⊕W0 ⊕W1 ⊕ ·· · ⊕Wj, where ⊕ denotes the orthogonal direct sum.
The scaling functions {φ j,k(x),k ∈ Z} form an orthonormal basis for Vj for each
fixed scale j. Similarly, the wavelets {ψ j,k(x),k ∈ Z} form an orthonormal basis for
Wj. The set of subspaces Vj is often known as a multiresolution analysis of L2(R).
Let J be a positive integer. A function f (x) ∈VJ can be represented as

f (x) = ∑
k∈Z

cJ,kφJ,k(x),

where the coefficients cJ,k are found by cJ,k =
∫

f (x)φJ,k(x) dx. Alternatively, f can
be represented as

f (x) = ∑
k∈Z

c0,kφ0,k(x)+
J−1

∑
j=0

∑
k∈Z

d j,kψ j,k(x).

Assume that the scaling function φ(x) has N vanishing moments. For k ∈ Z, we
define that

Γ 0
k =

∫
φ(x)φ(x− k) dx,

Γ 1
k =

∫
φ (x)(x)φ(x− k) dx,

Γ 2
k =

∫
φ (x)(x)φ (x)(x− k) dx,

where φ (x) denotes the derivative of φ with respect to x. The connection coefficients
have the following properties: For a scaling function φ(x) with N vanishing
moments, Γ 1

0 = 0, Γ 1
k = Γ 2

k = 0, k /∈ [−2N + 2,2N − 2]; and Γ 0
k = 1 for k = 0

and 0 otherwise.
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2.5 Wavelet-Based Reconstruction from Gradients

Assume that the size of the domain of the surface Z(x,y) is M×M and the surface
Z(x,y) can be represented by a linear combination of a set of the Daubechies scaling
functions as

Z(x,y) =
M−1

∑
m=0

M−1

∑
n=0

zm,nφm,n(x,y), (8)

where zm,n are the coefficients and φm,n(x,y) = φ(x−m)φ(y− n). For the given
gradient values p(x,y) and q(x,y), we assume that

p(x,y) =
M−1

∑
m=0

M−1

∑
n=0

pm,nφm,n(x,y), (9)

q(x,y) =
M−1

∑
m=0

M−1

∑
n=0

qm,nφm,n(x,y), (10)

where the coefficients pm,n and qm,n can be found by

pm,n =

∫ ∫
p(x,y)φm,n(x,y) dx dy,

qm,n =

∫ ∫
q(x,y)φm,n(x,y) dx dy.

Substituting (8), (9), and (9) into (1), we have

d =
∫ ∫ (

∑
m

∑
n

zm,nφ (x)
m,n(x,y)−∑

m
∑
n

pm,nφm,n(x,y)

)2

+

(

∑
m

∑
n

zm,nφ (y)
m,n(x,y)−∑

m
∑
n

qm,nφm,n(x,y)

)2

dx dy

= d1 + d2,

where φ (x)
m,n(x,y) =

∂φm,n(x,y)
∂x and φ (y)

m,n(x,y) =
∂φm,n(x,y)

∂y .

To derive the iterative scheme for Z, let Δzi, j represent the updating amount of
zi, j in the iterative equation, z′i, j be the value after update. Then, z′i, j = zi, j +Δzi, j .
Substituting z′i, j into d1, it will be changed by the following amount d′1 = d1 +Δd1.
Similarly, using the d2 will be changed as d′2 = d2 +Δd2. Using d′1 and d′2, it can be
shown that

Δd = Δd1 +Δd2

= 2Δzi, j ∑
m,n

zm,n(Γ 2
i−mΓ 0

j−n +Γ 0
i−mΓ 2

j−n)
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−2Δzi, j ∑
m,n

pm,nΓ 1
i−mΓ 0

j−n

−2Δzi, j ∑
m,n

qm,nΓ 0
i−mΓ 1

j−n + 2Δz2
i, jΓ

2
0 .

In order to make the cost function decrease as fast as possible, Δd must be
maximized. From ∂Δd

∂Δ zi, j
= 0, we have

Δzi, j =
1

2Γ 2
0

2N−2

∑
k=−2N+2

[
(pi−k, j + qi, j−k)Γ 1

k − (zi−k, j + zi, j−k)Γ 2
k

]
.

With the initial values set to zero, we get the following iterative equation:

z[t+1]
i, j = z[t]i, j +Δzi, j.

2.6 Shapelet-Based Method

The motivation behind this method is that correlation between the gradients of a
signal and the gradients of a basis function can provide information equivalent to
direct correlation between the signal and basis function up to a signal offset because
differentiation is linear [15]. If the surface gradient information is correlated with
the gradients of a bank of shapelet1 basis functions, one can reconstruct the surface
shape, up to an offset, by simply adding the correlation results. Summation of the
basis correlations automatically imposes a continuity constraint and performs an
implicit integration of the surface from its gradients. However, a shapelet function
must satisfy certain properties [15]. With a properly chosen shapelet and assuming
that we know the slant and tilt values over the surface, one can recover a shape from
its gradients as follows.

Correlation of the surface and shapelet slants is calculated by

|∇|= tan(σ),

where σ is the slant and ∇ = (p,q) are the gradients. The gradient correlation is
then calculated as

A∇i = |∇Z |� |∇si|,
where ∇Z and ∇si are the gradients of the surface and shapelet at scale i. Without
tilt information, this correlation matches positive and negative gradients equally
because only gradient magnitudes are considered. Hence, shape tilt information

1The term shapelet is used to describe any basis function of finite support used for representing a
shape.
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needs to be considered. To form the tilt correlation between a shapelet at scale i
and the surface, one can use the cosine of the tilt differences between points on
the surface and shapelet and use the standard trigonometric difference equation to
overcome any angle wraparound problem at the origin. Thus,

Aτi = cos(τZ)� cos(τsi)+ sin(τZ)� sin(τsi),

where τZ and τsi denote the tilts of the surface and shapelet at scale i, respectively.
With this, one can obtain the overall correlation between surface and shapelet at
scale i by taking the point-wise product of the gradient and tilt correlations

Ai = A∇i.Aτi

= [|∇Z |� |∇si|] . [cos(τZ)� cos(τsi)+ sin(τZ)� sin(τsi)]

= [|∇Z |.cos(τZ)]� [|∇si|.cos(τsi)]+ [|∇Z|.sin(τZ)]� [|∇si|.sin(τsi)],

where denotes point-wise multiplication. This process can be performed over
multiple scales, and the results are summed to form the reconstruction

Z̃ = ∑
i

Ai.

This method was also shown to be robust to noise [15].

2.7 Other Methods

Many other methods have been proposed for recovering shapes from their gradients.
For instance, a discrete cosine transform-based method was proposed in [7].
A Gaussian kernel-based method was recently proposed in [17]. Motivated by
the recent advances in sparse representation and compressed sensing, a robust
method for enforcing integrability was proposed in [21]. Some of the other methods
include [1, 2]. See [14, 29], and the references therein for more details on surface
reconstruction from gradients.

2.8 Numerical Examples

In this section, we show some examples of reconstruction obtained by applying
various methods to the problem of shape recovery from gradients. In particular,
using a synthetic surface, we compare the performance of different algorithms such
as a Poisson solver-based method [23], shapelet-based approach [15], Frankot–
Chellappa algorithm [6], and an �1-minimization approach [21]. We used a synthetic
surface shown in Fig. 1a to generate the gradient field. We then contaminated
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Fig. 1 Reconstructed surface when the gradient field is corrupted by both outliers (at 3%
locations) and noise (Gaussian with σ = 7%). (a) Original surface. (b) Image plot of the surface
shown in (a). (c) Surface normal needle plot of the original surface. (d) Surface normal needle plot
corresponding to the noisy gradients. (e) Reconstruction using Poisson solver. (f) Reconstruction
using Frankot–Chellappa method. (g) Reconstruction using shapelets. (h) Reconstruction using
�1-minimization method



Approximation Methods for the Recovery of Shapes and Images from Gradients 389

the gradient field by adding Gaussian noise and outliers. The noisy gradient
field was then used as input to different integration methods. Figure 1 shows
the reconstructions from different methods. As can be seen from the figure, the
Poisson-based method suffers the most from outliers and noise producing very
poor reconstruction. Both shapelet-based method and an �1-minimization approach
produce good results. Frankot–Chellappa method performs significantly better
compared to the Poisson-based method.

3 Image Recovery from Partial Fourier Measurements

Reconstruction of imagery from an incomplete set of samples from a Fourier
representation is an important goal to improve several scanning technologies such
as magnetic resonance imaging (MRI) [16] and synthetic aperture radar (SAR) [18].
Solutions to such a problem would allow significant reductions in collection times
and improve the capacity to collect very time sensitive events.

The images of interest tend to enjoy the property of being sparse or compressible
in some transform domain (e.g., wavelet, gradient, Fourier). Images such as an-
giograms are inherently sparse in the pixel domain or gradient domain. For instance,
if the image is piecewise constant, then a gradient representation would only contain
nonzero values near boundary positions. The redundancies in these images suggest
a possible dimensionality reduction that should allow for Fourier sampling at sub-
Nyquist rates. An example of a sparse-gradient image along with an image of its
edges is shown in Fig. 2.

Let X ∈ C
N×N denote an image. Any particular pixel of X will be denoted as

Xn,m. The discrete directional derivatives on X are defined pixel-wise as

(Xx)n,m =Xn,m−Xn−1,m,

(Xy)n,m =Xn,m−Xn,m−1. (11)

Fig. 2 512×512 Shepp-Logan phantom image and its edges
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Based on these, the discrete gradient operator ∇ where ∇X ∈ C
N×N×2 is defined as

(∇X)n,m = ((Xx)n,m,(Xy)n,m).

From these operators, one can define the discrete total-variational operator TV or
|∇| on X as

(TV [X ])n,m = (|∇|(X))n,m

=
√
|(Xx)n,m|2 + |(Xy)n,m|2, (12)

from which one can also define the total-variation seminorm of X as

‖X‖TV = ‖TV (X)‖1, (13)

where ‖ · ‖p for 0 < p < ∞ is the �p norm defined as

‖X‖p =

(
N

∑
n=1

N

∑
m=1

|Xn,m|p
) 1

p

.

For p = 0, we have the quasi-norm

‖X‖0 = {#(n,m) : Xn,m �= 0},

i.e., ‖X‖0 is the number of non-zero pixels in X . It is said that an image X is K-sparse
if ‖X‖0 = K. It is also said that X is K-sparse in gradient (or in the total-variational
sense) if ‖|∇|(X)‖0 = K.

The objective is to recover an image X that is K-sparse in gradients from a set of
M & N2 Fourier measurements. To that end, define a set Ω of M two-dimensional
frequencies ωk = (ωx,k,ωy,k), 1≤ k≤M chosen according to a particular sampling
pattern from {0,1, . . . ,N− 1}2. Let F denote the two-dimensional DFT of X

F (ωx,ωy) =
N−1

∑
n=0

N−1

∑
m=0

X(n,m)exp
(
−2π i

(nωx

N
,

mωy

N

))

and F−1 its inverse

F−1{F (ωx,ωy)}= X(n,m) =
1

N2

N−1

∑
ωx=0

N−1

∑
ωy=0

F (ωx,ωy)exp
(

2π i
(nωx

N
,

mωy

N

))
.

Next define the operator FΩ : CN×N → C
M as

(FΩ X)k = (FX)ωk
,
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i.e., Fourier transform operator restricted to Ω . F ∗
Ω will represent its conjugate

adjoint. Equipped with the above notation, the main problem can be formally stated
as follows:

Problem 1. Given a set Ω of M & N2 frequencies and Fourier observations of a
K-sparse in gradient image X given by FΩ X , how can one estimate X accurately
and efficiently?

The most popular method of solving this problem is to find the image of the
least total variation that satisfies the given Fourier constraints. This corresponds to
solving the following convex optimization problem:

X̃ = argmin
Y

‖Y‖TV s.t. FΩY = FΩ X . (14)

Based on an extension of Theorem 1.5 in [4] and the result in [22] regarding Fourier
measurements, one can prove the following proposition:

Proposition 2. Let X be a real-valued K-sparse in gradient image. If M =
O(K log4 N), then the solution X̃ of (14) is unique and equal to X with probability
at least 1−O(N−M).

In the case of an image corrupted by noise, the measurements take the form

b = FΩ X +η ,

where η is the measurement noise with ‖η‖2 = ε .
It was shown in [19] that instead of reconstructing an image by TV minimization,

one can reconstruct the image by separately reconstructing the gradients and then
solving for the image. This allows one to reconstruct the image with a far fewer
number of measurements than required by the TV0-minimization method. Figure 3
presents an important comparison in the sparsity of Xx,Xy, and the TV measure. The
plots of the sorted absolute values of the coefficients of the gradients Xx, Xy, and the
TV measure for the Shepp-Logan phantom image (Fig. 2) indicate that Xx and Xy

decay much faster than the TV measure. In fact, it is easy to see from the expression
of TV [Eq. (12)] that the coefficients of Xx and Xy will always decay faster than
the coefficients of TV . This means, one can take advantage of this and be able to
reconstruct an image with far fewer measurements than that required by using the
TV -based method.

4 Image Gradient Estimation

Given Fourier observations FΩ X over some set of frequencies Ω , one can obtain
the Fourier observations of Xx and Xy over Ω via the equations

(FΩ Xx)k = (1− e−2π iωx,k/N)(FΩ X)k, (15)

(FΩ Xy)k = (1− e−2π iωy,k/N)(FΩ X)k. (16)
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Fig. 3 The magnitude of TV (black) and Xx (red) and Xy (blue) coefficients in decreasing order
for the Shepp-Logan phantom image (see Fig. 2)

After this is done, any one of many CS recovery algorithms can be used to recover Xx

and Xy from their respective Fourier observations. For instance, taking into account
the presence of additive noise during the measurement process, gradients can be
estimated by solving the following two optimization problems:

X̃x = argmin
X ′x
‖X ′x‖1 s. t. ‖FΩ X ′x− bx‖2 ≤ εx, (17)

X̃y = argmin
X ′y
‖X ′y‖1 s. t. ‖FΩ X ′y− by‖2 ≤ εy, (18)

where we have assumed that the measurements are of the following form:

bx = FΩ Xx +ηx,

by = FΩ Xy +ηy

with (ηx)k = (1− e−2π iωx,k/N)(η)k , εx = ‖ηx‖2, (ηy)k = (1− e−2π iωy,k/N)(η)k, and
εy = ‖ηy‖2.

Note that the recovery of sparse gradients from their respective Fourier
measurements will depend on the RIP of the resulting sensing matrix. It is very
difficult to prove any general claim that the resulting CS matrix satisfies the RIP
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for any particular restriction set Ω . However, empirical studies have shown that
RIP holds for many practical measurement schemes arising in medical imaging
[4, 16, 25].

5 Image Reconstruction from Gradients

After obtaining estimates X̃x and X̃y of Xx and Xy, respectively, some kind of
integration must be performed to recover an estimate X̃ of X . To obtain X from
X̃x and X̃y, the following optimization problem was proposed in [19]:

X̃ = argmin
Y

∥
∥
∥Yx− X̃x

∥
∥
∥

2

2
+
∥
∥
∥Yy− X̃y

∥
∥
∥

2

2
+β ‖Yx‖2

2 +β
∥
∥Yy

∥
∥2

2 +λ ‖FΩY − b‖2
2 ,

where β and λ are penalty parameters that determine the degrees to which the TV
minimization and Fourier constraints are enforced.

Now observe that if hats are used to denote the Fourier transform operator, it is
possible to use the Parseval’s theorem to rewrite (19) as the following equivalent
problem in the Fourier domain:

ˆ̃X = argmin
Ŷ

∥
∥
∥
(

1− e−2π iω1/N
)

Ŷ − ̂̃Xx

∥
∥
∥

2

2
+
∥
∥
∥
(

1− e−2π iω2/N
)

Ŷ − ̂̃Xy

∥
∥
∥

2

2

+β
(∥
∥
∥
(

1− e−2π iω1/N
)

Ŷ
∥
∥
∥

2

2

)
+β

(∥
∥
∥
(

1− e−2π iω2/N
)

Ŷ
∥
∥
∥

2

2

)

+λ
∥∥(Ŷ −B

)
1Ω

∥∥2
2 . (19)

Here 1Ω denotes an indicator function which is 1 on Ω and 0 otherwise. Similarly, B
is an N×N matrix that is equal to b on Ω and 0 otherwise. Based on this convenient
alternative formulation of the problem, the following result was derived in [19]:

Proposition 3. The least squares problem (19) can be solved element-wise by (20).
Furthermore, if one lets λ → ∞, then this solution will take the piecewise form (21).

ˆ̃Xω1,ω2 =

(
1− e2π iω1/N

)
(
̂̃Xx)ω1,ω2 +

(
1− e2π iω2/N

)
(
̂̃Xy)ω1,ω2 +λ Bω1,ω2 1Ω

(1+β )
(∣
∣1− e−2π iω1/N

∣
∣2 +

∣
∣1− e−2π iω2/N

∣
∣2
)
+λ 1Ω

.

(20)

ˆ̃Xω1,ω2 =

⎧
⎪⎨

⎪⎩

Bω1,ω2 if(ω1,ω2) ∈Ω
(1−e2πiω1/N)( ̂̃Xx)ω1,ω2+(1−e2πiω2/N)( ̂̃Xy)ω1,ω2

(1+β )
(
|1−e−2πiω1/N|2+|1−e−2πiω2/N |2

) otherwise
. (21)
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One can obtain X̃ by simply inverting the Fourier transform. Now observe that if
λ →∞, β = 0, and the edge approximations are exact, i.e., X̃x =Xx and X̃y =Xy, then
it follows that X̃ = X . In general, selecting β > 0 will only attenuate the magnitude
of any Fourier coefficients outside the set Ω . If one lets β → ∞ (with λ = ∞, then
the solution becomes equivalent to that obtained by naive Fourier back-projection,
i.e., selecting X̃ = F ∗

Ω FΩ X . This produces poor results. As a result, it is prudent to
simply leave β = 0.

With the choice of λ = ∞ and β = 0, it was shown that the solution to (21)
satisfies the following reconstruction performance guarantee [19].

Proposition 4. Given approximations X̃x and X̃y of Xx and Xy, then the solution X̃
of Eq. (21) will satisfy

∥
∥X̃−X

∥
∥

2 ≤ O

⎛

⎝ N
√

k2
1 + k2

2

⎞

⎠max
(∥∥
∥X̃x−Xx

∥
∥
∥

2
,
∥
∥
∥X̃y−Xy

∥
∥
∥

2

)
,

where

(k1,k2) = argmin
(ω1,ω2)/∈Ω

ω2
1 +ω2

2 .

Proof. Observe that for each (ω1,ω2) ∈Ω ,

| ˆ̃Xω1,ω2 − X̂ω1,ω2 |2 = 0

by definition. Outside of Ω ,

| ˆ̃Xω1,ω2 − X̂ω1,ω2 |2

=

∣
∣
∣∣
∣
∣

(
1− e2π iω1/N

)
(
̂̃Xx)ω1,ω2 +

(
1− e2π iω2/N

)
(
̂̃Xy)ω1,ω2∣

∣1− e−2π iω1/N
∣
∣2 +

∣
∣1− e−2π iω2/N

∣
∣2

−
(
1− e2π iω1/N

)
(X̂x)ω1,ω2 +

(
1− e2π iω2/N

)
(X̂y)ω1,ω2∣

∣1− e−2π iω1/N
∣
∣2 +

∣
∣1− e−2π iω2/N

∣
∣2

∣
∣
∣
∣
∣

2

=

∣∣
∣
∣
∣
∣
∣

(
1− e2π iω1/N

)(
(
̂̃Xx)ω1,ω2 − (X̂x)ω1,ω2

)

∣
∣1− e−2π iω1/N

∣
∣2 +

∣
∣1− e−2π iω2/N

∣
∣2

+

(
1− e2π iω2/N

)(
(
̂̃Xy)ω1,ω2 − (X̂y)ω1,ω2

)

∣
∣1− e−2π iω1/N

∣
∣2 +

∣
∣1− e−2π iω2/N

∣
∣2

∣
∣∣
∣
∣
∣
∣

2

.



Approximation Methods for the Recovery of Shapes and Images from Gradients 395

Now utilize the fact that for any a,b ∈ C, |a + b|2 = |a|2 + |b|2 + 2Re(ab) ≤ 4
max(|a|2, |b|2), and assume without loss of generality (so it isn’t necessary to keep
on writing out maximums) that

∣∣1− e2π ik1/N
∣∣

∣
∣1− e−2π ik1/N

∣
∣2 +

∣
∣1− e−2π ik2/N

∣
∣2

∣
∣
∣(̂̃Xx)ω1,ω2 − (X̂x)ω1,ω2

∣
∣
∣

≥
∣
∣1− e2π ik2/N

∣
∣

∣
∣1− e−2π ik1/N

∣
∣2 +

∣
∣1− e−2π ik2/N

∣
∣2

∣
∣
∣(̂̃Xy)ω1,ω2 − (X̂y)ω1,ω2

∣
∣
∣

to obtain that:

| ˆ̃Xω1,ω2 − X̂ω1,ω2 |2

≤
4
∣
∣1− e−2π ik1/N

∣
∣2
∣
∣
∣(̂̃Xx)ω1,ω2 − (X̂x)ω1,ω2

∣
∣
∣
2

(∣
∣1− e−2π ik1/N

∣
∣2 +

∣
∣1− e−2π ik2/N

∣
∣2
)2

≤
4
∣
∣
∣(̂̃Xx)ω1,ω2 − (X̂x)ω1,ω2

∣
∣
∣
2

∣
∣1− e−2π ik1/N

∣
∣2 +

∣
∣1− e−2π ik2/N

∣
∣2
.

Now simply use the Taylor expansion of the denominator and Parseval’s theorem to
get the desired result. ��

As can be seen, the performance of this method depends on the selection of Ω .

If Ω contains all the low frequencies within some radius r =
√

k2
1 + k2

2, then the

final reconstruction error will be O(N/r) times worse than the maximum edge
reconstruction error. In general, if Ω contains mostly low frequencies, then this
method will generate better results than if Ω contained mostly high frequencies.
As a result, this “integration” is very appropriate in applications such as CT where Ω
will consist of radial lines that congregate near the DC frequency. For the same
reason, it may also be useful in MRI applications where the Fourier space is
sampled according to a spiral trajectory (see [16, 25]). This method is referred to
as GradientRec-LS in [19].

5.1 Numerical Examples

Figure 4 shows the reconstruction of a 512× 512 Shepp-Logan phantom image
using naive Fourier back-projection (i.e., selecting X̃ = F ∗

Ω FΩ X), the L1TV
method [16], and GradientRec-LS [19]. Only 5% of its Fourier coefficients were
used. The Fourier coefficients were restricted to a radial sampling pattern as
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Fig. 4 512×512 Shepp-Logan phantom example. (a) Fourier domain sampling pattern. (b) Back-
projection. (c) L1TV reconstruction. (d) GradientRec-LS reconstruction

shown in Fig. 4a. Figure 4b shows the result of classical Fourier back-projection
which gives a relative error equal to 0.4953. The reconstruction from a TV -
minimization method using the L1TV method [16] is shown in Fig. 4c, which gives
a relative error equal to 0.2346. Figure 4d shows the GradientRec-LS reconstruction.
The recovery is near perfect with relative errors obeying 1.59× 10−5.

The reason why TV minimization fails to recover the image perfectly is
the following: As can be seen from Fig. 3, ‖Xx‖0 = 2,972,‖Xy‖0 = 2,132, and
‖TV (X)‖0 = 4,386. It has been observed by many researchers that in practice, for
a good reconstruction, the number of Fourier samples should be about three to five
times the number of sparse coefficients [3,16]. This means that GradientRec-LS can
recover gradients perfectly from 13,107 = 0.05× 512× 512 compressive measure-
ments, which is approximately 6.15×‖Xy‖0 and 4.4×‖Xx‖0. Whereas for a good
reconstruction, TV minimization requires about 4×4,386 = 17,544 measurements.
Hence, 13,107 measurements are not enough for the TV minimization to recover
the underlying sparse-gradient image.
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FM Perturbations due to Near-Identity
Linear Systems

Anthony Teolis

Abstract Considered here is the disturbance induced in the frequency modulation
(FM) of a signal passed through a linear system. For the case that the linear
system is close to an identity system, closed-form approximations to the induced
FM perturbations are derived. Taking the form of a linear operator acting on a
system impulse response, the operator represents a well-behaved approximation
to the true ill-behaved underlying non-linear operator. In its approximate linear
form, the operator is amenable to standard linear theory. In addition, practical
constraints including passband smoothness, zero group delay, and time localization
are facilitated in the analysis. In general, the theory is suitable to determine practical
and useful performance bounds in terms of system parameters and induced FM
deviation. As an example, the FM perturbation analysis is applied in this chapter to
determine systems that would produce maximal FM distortions in particular signals.

Keywords Frequency modulation • Perturbation • Near-identity linear system •
Singular value decomposition • Passband smoothness • Zero group delay • In-
duced FM deviation • Maximal FM distortion • Non-linear operator • RF systems

1 Introduction

Radio-frequency (RF) system designers strive to build devices that exhibit ideally
flat transfer function responses over all operating conditions of interest. For a given
operating condition, e.g., center frequency and power input or output, the system
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p rH

Fig. 1 A linear system H
with input p and output r

may be modeled1 as a linear system H. Typically the front-end analog components
are presented to a digitizer so that subsequent processing is conducted in the digital
domain. The system designer would like the analog signal to arrive at the digitizer in
a form uncorrupted by the analog components. This translates into the requirement
that H be ideally flat over the bandwidths of operation. Since the goal of an
ideally flat response is a practically unachievable one, H, will always exhibit some
systematic deviation from the desired ideal system.

1.1 Arbitrary Linear Systems

One important aspect of a signal to be processed in an RF system is its frequency
modulation (FM). Many RF systems rely either explicitly or implicitly on the FM
characteristics of the signals with which they operate. Figure 1 shows the very basic
linear system block diagram of the composite system H.

Passage of a signal p through the composite system H will result in the output
signal r with a necessarily different FM from that of the input p. The relevant
question to be addressed is

What is the frequency modulation of a signal after it is passed through an
arbitrary linear system?

A closed-form solution to this problem for arbitrary linear systems is complicated
by the non-linear and unbounded nature of the operators involved. The distortion of
frequency-modulated and phase-modulated waveforms due to linear systems has
been previously addressed in early work including [1–4]. These analyses provide
solutions in terms of asymptotic expansions. For special cases of linear system
disturbances the issue has been examined in [5–8]. In general, the results take a
highly nonlinear form and do not directly lend themselves to tractable analyses for
RF signal and system design. Fortunately, constraining the perturbing system to be
well-behaved in the sense that it is not too far from an identity (non-perturbing)
system provides a tractable way forward.

1RF systems commonly used in radar and communications process signals through various
analog components to perform their function. Depending on operating conditions, the overall
concatenation of these components may be modeled as a composite linear system, H.
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Fig. 2 A near-identity
system model

1.2 Near-Identity Linear Systems

If the perturbing system in question is close to an identity system (as is the case
when the intent of the designer is to have no effect on the FM), a tractable solution is
possible. A near-identity system model is depicted in Fig. 2. In this case the question
may be recast as

How is the frequency modulation of a signal perturbed after passage through
a linear system that is close to an identity system?

This is the main question that is addressed in this chapter.
Accordingly, the analysis conducted here limits consideration to linear systems

that are near-identity systems, i.e., those that are small deviations from ideal (flat)
systems. It is demonstrated in this chapter (see Sect. 6.3) that even systems that
deviate only slightly (e.g., less than 1 dB amplitude variation) from ideal can induce
relatively large perturbations in the frequency modulation of a pulsed signal that is
passed through them.

Concisely, the analysis presented here is based on the linear approximation

(∂ ln(I−G) − ∂ ln) p ≈ Dpg,

where ∂ is a derivative operator [9], p is a signal, G is a linear system with impulse
response g such that ‖G‖ & 1, and Dp is a linear operator. It will be seen that the
induced FM deviation due to a systematic disturbance G is directly related to the
imaginary part of the above approximation.

2 Preliminaries

This section provides the notation and mathematical constructs that are used in the
rest of the chapter.
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2.1 Basic Symbols and Spaces

The symbols Z, R, and C denote the integers, real numbers, and complex numbers,
respectively. Lp(IR) is the space of complex-valued (finite energy for p = 2) signals
defined on the real line IR.

2.2 Fourier Transform

The (continuous-time) Fourier transform is a mapping L1(IR) �→ L2(IR) and is well
defined as

f̂ (γ) =
∫

f (t)e− j2πγtdt

since the integral converges absolutely and γ ∈ IR. The “̂ ” notation is used to indicate
the forward Fourier transform and “ ∨ ” to indicate the inverse Fourier transform.

2.3 Analytic Signals

An analytic2 signal p(t) has a representation in terms of its magnitude and phase

p(t) = A(t) · e jφ(t).

The frequency modulation (FM) associated with p(t) is defined as the time
derivative of the phase. Thus, p also admits the representation

p(t) = A(t) · e j2π
(

f0+
∫ t

t0
f (s) ds

)

, t ≥ t0, (1)

where f is the signal FM and f0 is its starting frequency and t0 is an arbitrary start
time. Clearly, the phase and frequency are related as

φ(t) = 2π
(

f0 +
∫ t

t0
f (s) ds

)
and f (t) =

1
2π
· φ̇(t).

Thus, an analytic signal p may be specified as a triple (A, f , f0). Due to the fact that
pure phase shifts are often inconsequential (in single-pulse analyses) the value of
the constant f0 may be set to zero in order to simplify the discussion. In the sequel
it is assumed that f0 = 0. With this understanding, an analytic signal p is specified

2 Here an analytic signal is one whose Fourier transform vanishes for all negative frequencies.
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by the AM/FM pair (A, f ), i.e.,
p≡ (A, f ). (2)

2.4 Frequency Modulation

Given an analytic signal p≡ (A, f ) a useful expression for the FM is

f (t) =
1

2π
· Im

{
d
dt

ln p(t)

}
. (3)

This expression may be validated by direct computation using (1). In terms of an
operator theoretic view of the modulation process, this expression exposes the FM
operator as

F
.
=

1
2π
· Im ∂ ln .

With this definition the FM of the signal p may be written as f = F p. In general,
F is not a well-behaved operator. It is unbounded and non-linear (it is not even
homogeneous on the complex numbers).

2.5 Soft Inverse

The soft inverse is defined with respect to a threshold value δ > 0

p†(t)
.
=

⎧
⎨

⎩

p−1(t), |p(t)|> δ ,

(3δ−2|p(t)|− 2δ−3|p(t)|2)e− jφp(t), |p(t)| ≤ δ ,

where φp is the phase of the signal p. The intent of the soft inverse is to provide
a bounded and smooth approximation to the inverse of signals with finite support.
The approximation is exact when the magnitude of the argument is greater than the
threshold δ . For magnitudes that are smaller than the δ the soft inverse follows a
parabola f (x) = c2x2 + c1x where c1 and c2 are chosen such that f (δ ) = δ−1 and
f ′(δ ) =−δ−2 (to match the derivative of 1/x at δ ).

It has the important properties that

p(t) · p†(t) = 1, ∀t / |p(t)| ≥ δ ,

and
|p(t) · p†(t)|< 1, ∀t / |p(t)|< δ .
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2.6 Window Functions

A window function, wT , for the set T is one that has the following properties:

1. 0≤ wT (t)≤ 1, t ∈ T
2. wT (t) = 0, t ∈ T c

3. w′T (t)< B, ∀t,

where w′ denotes the derivative of w, B < ∞ is a scalar constant, and T c denotes the
complement of the set T .

3 FM Perturbation Theory

3.1 Problem Setting

Consider the near-identity linear system H depicted in Fig. 2 with analytic input p
and output r. The input and output both admit the AM/FM representations [c.f., (2)]

p≡ (Ap, fp) and r ≡ (Ar, fr).

We are interested in determining the change in frequency modulation

Δ f = F r−F p = fr− fp

from input to output due to the action of the linear system H. The quantity Δ f is the
FM perturbation due to H.

In general, H may be arbitrary as shown in Fig. 1, though it is constrained here
to come from the class of “near-identity” systems. That is to say that H is supposed
to differ from an identity system I by only a small systematic deviation G so that

r = H p = (I−G)p.

Here r is the perturbed version of p and q = Gp is the deviation. Figure 2 shows the
deviation-based block diagram of the system H. Formally, a system H is defined to
be near-identity if

H = I−G, ‖G‖& 1,

where ‖G‖ is the operator norm of G

‖G‖ .
= sup

p

‖Gp‖
‖p‖ .

Clearly, the smaller the ‖G‖ the closer H is to the identity system. It can be shown
[10] that for a linear system G with impulse response g, ‖G‖= ‖g‖, i.e., the operator
norm of the system G is the same as the L2 norm of the impulse response g.
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Because H and G are linear operators (stemming from linear systems) they may
be specified by a convolution in the time domain between the input signal and the
impulse responses, h and g of the filters, respectively. Explicitly,

(H p)(t) = (p ∗ h)(t) =

∫
p(t− s) ·h(s) ds,

(Gp)(t) = (p ∗ g)(t) =

∫
p(t− s) ·g(s) ds,

where “*” denotes the convolution operator.

3.2 Main Result

It shall be seen that under the near-identity system assumption, the FM perturbation
Δ f is given by an input-signal-dependent integral linear operator Dp acting on the
impulse response g of the deviation from ideal system. In symbols,

Δ f ≈ 1
2π
· Im{

Dpg
}

on supp p, (4)

where Dp is the linear integral operator

(Dpg)(t)
.
=

∫
Dp(s, t) ·g(s) ds

having the kernel

Dp(s, t) =
∂
∂ t

p(t− s)
p(t)

.

It is worth stressing that this approximation is an instantaneous one as it provides an
estimate of the FM perturbation at each time value t. Clearly, (4) is not well defined
when |p(t)| is very small. For this reason the formula is restricted to values of t for
which the pulse p does not vanish, i.e., t ∈ supp p.

The approximation of (4) is remarkable because it provides a kind of “factoriza-
tion” of the FM perturbation (dependent on an ill-behaved operator F ) in terms of
a linear (well-behaved) operator. One factor (the linear operator) is dependent only
on the signal input to the system, and the other factor (the system deviation impulse
response) is dependent only on the system itself. In the sequel, Dp is called the
perturbation operator, and its composition with the imaginary projection, Im Dp, is
called the FM perturbation operator.
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3.3 Proof of Result

This section presents a proof of Eq. (4). Under the assumption of a small systematic
perturbation ‖G‖& 1, it shall be shown that

Δ f (t) =
1

2π
· Im

{∫
Dp(s, t) ·g(s) ds

}
+ O

(∣
∣∣
∣
Gp(t)
p(t)

∣
∣∣
∣

2
)

, (5)

where (Dpg)(t)
.
=

∫
Dp(s, t) ·g(s) ds is the integral operator with kernel Dp(s, t).

Two signal-dependent kernels, Rp(s, t) and Dp(s, t), are of interest here. The first is
the instantaneous power-normalized autocorrelation function3

Rp(s, t)
.
=

p(t− s)
p(t)

,

and the second is its derivative with respect to time, i.e.,

Dp(s, t)
.
=

∂
∂ t

Rp(s, t).

It should be noted that the quantity |Gp(t)/p(t)| determines the instantaneous
quality of the approximation (smaller is better). The condition that ‖G‖ & 1 does
not explicitly bound the instantaneous approximation error, but it does imply that it
cannot be too large over significant periods of time in the support of p.

Proof. Using (3) the FM perturbation may be written as

2π ·Δ f (t) = Im

{
d
dt

lnr(t)

}
− Im

{
d
dt

ln p(t)

}

= Im

{
d
dt

lnr(t)− d
dt

ln p(t)

}

= Im

{
d
dt

(lnr(t)− ln p(t))

}

= Im

{
d
dt

ln

(
r(t)
p(t)

)}
.

A Taylor expansion of the logarithm yields

ln

(
r
p

)
= ln

(
1− Gp

p

)
=

∞

∑
k=1

1
k
·
(

Gp
p

)k

=
Gp
p

+ O

(∣
∣
∣
∣
Gp
p

∣
∣
∣
∣

2
)

.

3 It is called the power-normalized autocorrelation because Rp(s, t) = p(t− s) · p(t)/|p(t)|2.
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Since
(Gp)(t)

p(t)
=

1
p(t)

∫
g(s)p(t− s) ds =

∫
Rp(t,s) ·g(s) ds,

this gives, in turn, that

d
dt

ln

(
r(t)
p(t)

)
≈ d

dt

∫
Rp(t,s) ·g(s) ds

=
∫

Dp(t,s) ·g(s) ds. ��

3.4 Utility of the FM Perturbation Operator

Equation (4) provides the means to ask and answer a number of important questions
regarding the design and operation of systems that use frequency modulation in a
fundamental way. It shows that the FM perturbation through a near-identity linear
system H is linear with respect to the systematic deviation. For a given signal p, the
analysis is supported by the linear theory. For example, some pertinent questions in
RF system design and operation are the following:

1. (Worst systematic deviation): What near-identity linear system H will produce
the greatest FM perturbation for a given signal p?

2. (Worst signal): For a given near-identity system, H, what signal p will incur the
greatest FM perturbation when passed through H?

3. (Bounded perturbation): What constraints should be placed on the systematic
deviation G so that the resulting FM perturbation incurred by any signal is
bounded by some given value?

As posed, these questions are qualitative in nature. In this chapter, the first question
is explicitly considered. A more precise version of question 1 is stated formally as
Problem 1.

Problem 1 (Worst systematic deviation). Under the constraint that ‖G‖ < a <
1, find a linear system H = I −G such that the FM perturbation norm ‖Δ f‖ is
maximized.

For small enough values of a, the solution to this problem is directly facilitated via
the singular value decomposition (SVD) of the perturbation operator Dp. The next
section discusses the SVD and the associated solution of Problem 1.



408 A. Teolis

4 Singular Value Decomposition

Recall that the SVD [11,12] factors a bounded linear operator T into three terms as
T = USV ∗ where U and V are unitary4 operators and S is a diagonal matrix with
real entries. The real values {sk} from the diagonal of S are the singular values. As
unitary operators U and V define corresponding orthonormal bases {uk} and {vk}
for L2(IR) such that

T vk = skuk, k ∈ Z.

In words, T operating on vk yields a scaled version of uk. In terms of energy,
‖Tvk‖2 = ‖skuk‖2 = s2

k , i.e., the energy in the input is scaled by s2
k . If sk∗ is the

largest singular value,5 then passing vk∗ through T yields the response with the
largest energy of all possible inputs with unit energy.

As applied to the perturbation operator Dp the SVD would result in an orthonor-
mal set of systematic deviations {vk} and an orthonormal set of corresponding
perturbations {uk}. The singular value sk has the interpretation as a multiplier to
the perturbation. That is to say that if the systematic deviation is taken to be avk

then the perturbation induced on p by passing it through the system H = 1+ av̂k is
askuk. If k∗ denotes the index of the largest singular value then g = vk∗ is the unit
norm systematic deviation that results in the largest perturbation.

The remainder of this section details the use of the SVD to address Problem 1.
Equation (7) represents the key result. It describes the FM perturbation in terms of
the singular values associated with the real and imaginary projected versions of the
perturbation operator.

First, Sect. 4.1 considers the SVD of the perturbation operator Dp as a full
complex operator. This establishes the technique with a minimum of extraneous
manipulations but yields a result that is not directly applicable to the problem
outlined above. Second, a singular value analysis is carried out on the imaginary
projection of the perturbation operator in Sect. 4.2. This approach yields results that
directly solve the problem.

Section 5 goes on to discuss additional constraints on the solution to the
problem so as to eliminate cases where the solution has little relevance to practical
systems. Unconstrained solutions may result in perturbation systems that are not
characteristic of those encountered in real systems. Maximally perturbing systems
as determined by the unconstrained solution will likely have unrealistic group
delays. Additionally, the energy in the resulting perturbation may be concentrated
in time intervals that are not of practical importance to RF system performance,
e.g., in the leading and trailing edges of a pulse. Thus, the incorporation of
constraint mechanisms is very important in order to yield results that are of practical
significance.

4 Recall a unitary operator, U , has the properties that it is self-adjoint and its own inverse, i.e.,
U∗U = I.
5 It should be mentioned that the largest singular value s∗ of an operator T is the same as its
operator norm, i.e., s∗ = supx ‖Tx‖/‖x‖.



FM Perturbations due to Near-Identity Linear Systems 409

4.1 Full Complex Perturbation

For convenience, we drop the explicit dependence on the signal p of the perturbation
operator and let D = Dp be its matrix representation.6 Let the SVD of D be

D =USV ∗.

The SVD of the perturbation operator D is illuminating because the V matrix
contains an orthonormal set of systems V = {vk} and (the imaginary portion of) the
U matrix contains the associated set of FM perturbations U = {uk}. This is so since
DV =US and, in particular,

Dvk = skuk, ∀k ∈ Z.

Relating this to the FM perturbation, the systems vk are the impulse responses
associated with the systematic deviation G from the ideal system. Since ‖vk‖ = 1
and the near-identity assumption requires ‖G‖ & 1, linear systems H appropriate
for consideration have transfer functions of the form

ĥ = 1− a · v̂k,

where a∈ IR is a positive scalar free parameter and ĥ and v̂k are the Fourier transform
of the impulse response h and vk, respectively. Hence, we identify ĝ = av̂k where
a > 0 is chosen such that ‖G‖= ‖ĝ‖= a · ‖v̂k‖= a& 1. A typical value is a = 0.2.

Thus, if the signal p is passed through the linear system H determined by vk then
the FM of the output will deviate from that of the input (the FM perturbation) as

Δ f ≈ 1
2π
·a · sk · Im{uk} .

From this it is seen that candidate systems for creating large FM perturbations are
those with the largest singular values. Unfortunately, the analysis guarantees only
uk has unit energy and provides no constraint on how much of that energy resides
in the imaginary portion. No firm conclusion can be made about the magnitude of
the resulting FM perturbation due to this situation. For this reason, the imaginary
portion of the operator is explicitly considered in the next section.

6 Bounded linear operators admit matrix representations. Technically, the perturbation operator Dp

need not be bounded due to the fact that p is pulsed (decays to zero off a finite interval). Practically,
we constrain Dp to be bounded by defining it as Dp(s, t) =

∂
∂ t p†(t) · p(t−s) where p†(t) is the soft

inverse of p(t), viz., 2.5.
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4.2 Imaginary Projection

Explicitly including the imaginary projection into the singular value analysis results
in dual sets of singular values stemming from the real and imaginary portions of the
perturbation operator. Since the FM perturbation is determined from the imaginary
portion of D only, it is convenient to write out all operators in their explicit complex

form, e.g., D = Dr + jDi where the elements of Dr
.
= Re{D} and Di

.
= Im{D}

are all real values. Similarly, g = gr + jgi. Using this notation, we have

Im{Dg} = Digr +Drgi = UiSiV
∗
i gr + UrSrV

∗
r gi,

where Di =UiSiV ∗i and Dr =UrSrV ∗r are the SVDs of Di and Dr with singular values
{(si)m} and {(sr)n}, respectively. Let ai and ar be such that a2

i +a2
r = a2 < 1. If one

picks the systematic deviation to be

g = ai · (vi)m + j ·ar · (vr)n (6)

for some m and n ∈ Z then ‖g‖= a, then the induced FM perturbation is

Δ f ≈ 1
2π
· (ai · (si)m(ui)m + ar · (sr)n(ur)n) . (7)

Equation (6) will prove useful for controlling the symmetry properties of the transfer
function associated with the systematic deviation. This and other constraints are the
topic of the Sect. 5.

4.3 Unconstrained Solution

As touched on in the previous sections, the fact that it is the imaginary part of
the response to the perturbation operator that yields the FM deviation is a slight
complication in the application of the SVD analysis. This complication may be
addressed by considering a composite operator ID made up of the real and imaginary
portions of the full complex perturbation operator, i.e.,

ID
.
= [Di Dr] .

More precisely, the solution to Problem 1 is given by the SVD of the composite
operator ID since

Im{Dg} = Digr +Drgi = [Di Dr]

[
gr

gi

]
= IDg,
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where g is the corresponding composite vector g
.
= [gr gi]

′. If the SVD of ID is

ID =USV∗,

then the maximal FM perturbing systemic deviation is determined by v1. Thus, for
a given value a < 1, the near-identity linear system ĥ = 1−a · v̂1 is the one that most
disturbs the FM of the signal p and that maximal FM perturbation is

Δ f ≈ 1
2π
· s1 ·Lu1, (8)

where L is the half shift and add operator that folds a length 2N vector x ∈ IR2N into
a length N vector y ∈ IRN by yn = xn + x(n+N) for n = 1,2, . . . ,N. It has the matrix
representation [I I].

5 Constraints on the Systematic Deviation

Because real RF systems have characteristics that are somewhat well behaved, it is
likely that the SVDs as presented above will yield maximal perturbing systems that
have unrealistic properties. Since such systems are not of a practical concern the
extremal results obtained using them are likely of little practical concern as well.

A more practical analysis may be gained by constraining the candidate systems to
have properties more aligned to those found in real systems. Properties considered
here are amplitude deviation, group delay, symmetry, amplitude smoothness, and
time localization. Such constraints are also useful in determining general properties
of systematic deviations that may or may not contribute to FM perturbations.

5.1 Amplitude Deviation

Given a systematic deviation g, the amplitude peak-to-peak deviation of the
associated near-identity system may be controlled by simple scaling. This action
is facilitated by the selection of the parameter a in the near-identity system model

ĥ = 1− a · ĝ.
Note that small values of a > 0 are needed to satisfy the near-identity assumption.

5.2 Symmetry

The explicit complex decomposition of systematic deviation g given in (6) provides
a mechanism to control the symmetry of its transfer function ĝ (and, hence, the
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symmetry of ĥ). For example, if g is chosen to be purely real (ai = 0), then ĝ
is necessarily an even function (symmetric around 0). Similarly, choosing g to be
purely imaginary (ar = 0) results in odd symmetry for ĝ.

5.3 Zero Group Delay

Another important constraint is one placed on the allowable group delay of the
perturbing system. It is not surprising that systems that possess large and greatly
varying group delays would adversely Effect the FM of signals passed through
them. Since a near-identity system as defined here has no explicit constraint on the
behavior of its group delay, it is likely that unconstrained SVDs will yield maximal
perturbing systems that have unrealistic group delays. The extremal constraint in
this regard is to allow no variation in the group delay.

To constrain a system to have zero group delay it is sufficient to require that the
impulse response function g be involutive,7 i.e., that g = g̃ where g̃ is the involution
of g given as

g̃(t)
.
= g(−t).

Such a function g will be denoted g0 and may be defined in terms of a second
function h as

g0
.
= h+ h̃.

The action of the perturbation on the involutive function g0 is

Dpg0 = Dp(h+ h̃)

= Dph+Dph̃

= Dph+
∫

h̃(s)Dp(s, t) ds

= Dph+
∫

h(−s)Dp(s, t) ds

= Dph+
∫

h(u)Dp(−u, t) du

= Dph+
(
D̃ph

)
,

where the new operator D̃p has the kernel

D̃p(s, t)
.
= Dp(−s, t).

In other words, the kernel of D̃p is the involuted (in s) version of the kernel Dp(s, t).

7 An involutive function has a Fourier transform that is purely real.
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Applying the projection onto the imaginary portion yields

Im
{
Dpg0

}
= Im

{
Dph

}− Im
{
D̃ph

}

= Im
{(

Dp− D̃p
)

h
}
.

Thus, the analysis of Sect. 4.2 follows identically with the following modifications:

1. The SVDs are conducted on the operator Dp − D̃p to yield (Ur,Sr,Hr) and
(Ui,Si,Hi).

2. The systemic perturbations {(vr)k} and {(vi)k} are taken to be

(vr)k =
1
2

(
hr + h̃r

)
, and (vi)k =

1
2

(
hi + h̃i

)
.

Accordingly, Eqs. (7) and (8) also hold under these modifications.

5.4 Time Localization

It has been seen that the SVD analysis of Sect. 4.2 will result in two sets of
orthonormal FM perturbation bases. Though any one of these basis elements will
have unit energy, how that energy is distributed in time is constrained only by the
support of the signal p under analysis. It is desirable in many instances to focus the
analysis on particular regions in time in a given pulse.

Time localization is facilitated directly by modifying the perturbation kernel
D(s, t) to have zero value outside time values of interest. Letting T denote the set of
times of interest, the kernel modification would be

DT (s, t) = D(s, t) ·wT (t)

where wT is a window function as defined in Sect. 2.6. Windowing the kernel in
time forces the SVD to consider only those uk that place all their energy in the set
T , i.e., supp uk = T .

5.5 Amplitude Smoothness

Amplitude smoothness of the system H refers to the variation of the transfer function
ĥ. For ĥ to smooth it is sufficient that g be will be localized in the frequency domain.
In this sense amplitude smoothness may be viewed as the dual to time localization.

Amplitude smoothness may be facilitated directly by modifying the perturbation
kernel D(s, t) to have zero value for shifts that are greater in absolute value than
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a given value s0. Letting S = {s : |s|< s0} denote the set of shifts of interest, the
kernel modification would be

DS(s, t) = D(s, t) ·wS(s),

where wS is a window function as defined in Sect. 2.6.

6 Numerical Examples

Two synthetic signal types are defined and used to illustrate the FM perturbation
theory developed in the previous sections. Specific instances of the types are
specified for use in a numerical simulation. The signals are created with identical
magnitudes and hence only differ in their instantaneous frequencies.

The next two subsections describe each of the synthetic signals, respectively. In
addition to a specific realization of a signal of that form, key computational graphics
that illustrate the FM perturbation theory are also presented. Various constraints are
placed on the kernels as described in Table 1. The two types of signals are labeled
in terms of their underlying frequency modulation as linear (a chirp) and chirped
(chirping FM). For these signals the following graphics are presented:

1. Full complex kernel Dp

(a) First two modes arranged in a 2× 3 array of plots where each row i = 1,2
corresponds to the mode and each column represents the induced deviation
ui, the magnitude of the perturbing system, |H|, and its group delay,
respectively, e.g., Fig. 4.

(b) Approximation performance of the predicted systematic deviation when
passed through the near-identity system, H = 1− av̂i where a = 0.1.

2. Zero group delay constrained kernel ZDp

(a) First two modes arranged in a 2× 2 array of plots where each row i = 1,2
corresponds to the mode and each column represents the induced deviation
ui and the magnitude of the perturbing system, |H|, e.g., Fig. 8.

(b) Approximation performance of the predicted systematic deviation when
passed through the near-identity system, H = 1− av̂i where a = 0.1.

Two additional kernel constraints are illustrated for the case of the signal ChirpFM.
These are as follows:

Table 1 Kernel modifiers Kernel modifier Description

Ta,b Time-limit in the interval (a,b)
Sd Delay-limit of d > 0
Z Zero group delay constraint



FM Perturbations due to Near-Identity Linear Systems 415

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

1
LFM

Time (μs)

Time (μs)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−1

−0.5

0

0.5

1
FREQ(LFM).*win6dB

Fr
eq

ue
nc

y 
(M

H
z)

Fig. 3 The signal LFM: (top) real, imaginary, and magnitude; (bottom) instantaneous frequency

1. Delay limited and zero group delay constrained kernel SdZDp where d = 0.2μs.
2. Time limited, delay limited, and zero group delay constrained kernel Ta,bSdZDp

where d = 0.2μs, and (a,b) = (0.6,1.0)μs.

Each of these kernels has additional graphics identical to those described in items 2
(a) and (b) above.

6.1 Chirp (LFM)

A chirp is an analytic signal p≡ (A, f ) with an FM that has the form

f (t) = αt +β ,

where α,β ∈ IR. The parameter-α is called the chirp rate and has units of MHz/μs.
Figure 3 shows a 1 μs long chirp signal with parameters α = 2.5 MHz/μs and
β =−1 MHz. The top plot shows the real, imaginary, and magnitude portions
overlayed, and the bottom plot shows the FM.
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6.1.1 Full Perturbation SVD (LFM) (Figs. 4 and 5)
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Fig. 4 Full perturbation kernel magnitude for the signal LFM
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Fig. 5 First two SVD modes (i = 1,2) for the LFM signal: (left) FM perturbations ui; (middle)
magnitude of H = 1− v̂i; (right) group delay of H
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6.1.2 Full Perturbation Approximation (LFM) (Figs. 6 and 7)
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Fig. 6 FM deviation associated with largest singular value for signal LFM: (top) magnitude of
H = 1−av̂1; (bottom) actual and approximated perturbations due to H
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6.1.3 Zero Group Delay Constrained Perturbation SVD (LFM) (Figs. 8
and 9)
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Fig. 8 Perturbation kernel magnitude constrained to zero group delay for the signal LFM
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6.1.4 Zero Group Delay Constrained Perturbation Approximation (LFM)
(Figs. 10 and 11)
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Fig. 10 FM deviation with zero group delay associated with largest singular value for signal LFM:
(top) magnitude of H = 1−av̂1; (bottom) actual and approximated perturbations due to H
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Fig. 11 FM deviation with zero group delay associated with second largest singular value for
signal LFM: (top) magnitude of H = 1−av̂2; (bottom) actual and approximated perturbations due
to H
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6.2 Chirping Modulation (ChirpFM)

Standard chirp signals have FMs that are linear. An FM chirp has an FM that is itself
chirping. An FM chirp is an analytic signal p≡ (A, f ) with an FM that has the form

f (t) = M sin
(
π(αt2 +β t + γ)

)
,

where M > 0, and α,β ,γ ∈ IR. Figure 12 shows a chirped FM signal with parameters
M = 1, α = 32, and β = γ = 0.
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Fig. 12 The signal ChirpFM: (top) real, imaginary, and magnitude; (bottom) instantaneous
frequency
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6.2.1 Full Perturbation SVD (ChirpFM) (Figs. 13 and 14)
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Fig. 13 Full perturbation kernel magnitude for the signal ChirpFM

Fig. 14 First two SVD modes (i = 1,2) for the ChirpFM signal: (left) FM perturbations ui;
(middle) magnitude of H = 1− v̂i; (right) group delay of H
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6.2.2 Full Perturbation Approximation (ChirpFM) (Figs. 15 and 16)
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Fig. 15 FM deviation associated with largest singular value for signal ChirpFM: (top) magnitude
of H = 1−av̂1; (bottom) actual and approximated perturbations due to H
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Fig. 16 FM deviation associated with second largest singular value for signal ChirpFM: (top)
magnitude of H = 1−av̂2; (bottom) actual and approximated perturbations due to H
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6.2.3 Zero Group Delay Constrained Perturbation SVD (ChirpFM)
(Figs. 17 and 18)
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Fig. 17 Perturbation kernel magnitude constrained to zero group delay for the signal ChirpFM

Fig. 18 First two, i = 1,2, SVD (constrained to zero group delay) elements for the ChirpFM
signal: (left) FM perturbations ui; (right) magnitude of H = 1− v̂i;
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6.2.4 Zero Group Delay Constrained Perturbation Approximation
(ChirpFM) (Figs. 19 and 20)
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Fig. 19 FM deviation with zero group delay associated with largest singular value for signal
ChirpFM: (top) magnitude of H = 1− av̂1; (bottom) actual and approximated perturbations due
to H
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6.2.5 Delay Limit Constrained Perturbation SVD (ChirpFM) (Figs. 21
and 22)
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Fig. 21 Delay limit constrained perturbation kernel magnitude for the signal ChirpFM

Fig. 22 First two SVD elements under the delay limit constraint for the ChirpFM signal: (left) FM
perturbations ui; (right) magnitude of H = 1− v̂i



426 A. Teolis

6.2.6 Delay Limit Constrained Perturbation Approximation (ChirpFM)
(Figs. 23 and 24)
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signal ChirpFM: (top) magnitude of H = 1−av̂1; (bottom) actual and approximated perturbations
due to H

−30 −20 −10 0 10 20 30
−1

−0.5

0

0.5

1

Frequency (MHz)

dB

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.1

−0.05

0

0.05

0.1

F
re

qu
en

cy
 (

M
H

z)

Δ f
approx(Δ f)

20 log10(|Ha|)

[Δ f, approx(Δ f)]

Time (μs)

T0.45,1.15S0.20ZD [sig=”ChirpFM”, a=0.1, s2]

Fig. 24 FM deviation associated with second largest singular value of delay limit constrained
kernel for signal ChirpFM: (top) magnitude of H = 1− av̂2; (bottom) actual and approximated
perturbations due to H
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6.2.7 Time-Delay Limit Constrained Perturbation SVD (ChirpFM)
(Figs. 25 and 26)
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Fig. 25 Time-delay limit constrained perturbation kernel magnitude for the signal ChirpFM

Fig. 26 First two SVD elements under the time-delay limit constraint for the ChirpFM signal:
(left) FM perturbations ui; (right) magnitude of H = 1− v̂i
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6.2.8 Time-Delay Limit Constrained Perturbation Approximation
(ChirpFM) (Figs. 27 and 28)

Fig. 27 FM deviation associated with largest singular value of time-delay limit constrained
kernel for signal ChirpFM: (top) magnitude of H = 1− av̂1; (bottom) actual and approximated
perturbations due to H

Fig. 28 FM deviation associated with second largest singular value of time-delay limit constrained
kernel for signal ChirpFM: (top) magnitude of H = 1− av̂2; (bottom) actual and approximated
perturbations due to H
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6.3 Discussion

A review of the numerical examples presented in Sect. 6 yields the following
observations:

1. Approximation validation: In the cases tested, the expected FM deviation agrees
with the approximation (4) within an error8 of about 10−2.

2. Full kernel perturbations: The worst-case systematic deviations resulting from a
full kernel SVD analysis are associated with systems that may have unrealistic
group delays. Constraints that reign in the possible space of all perturbations are
needed to yield solutions that are realistic, the need for constraints that reign
in the possible space of all perturbations. Various constraints on the maximally
perturbing system have been formulated as specific preprocessing operations
on the Kernel function. System group delay and the energy concentration and
rate of variation of the resulting FM perturbation are two quantities that may
be constrained by specific operations on the kernel function. A group delay
constraint is discussed in the following item.

3. Zero group delay limited perturbations: Group delay in a system is one contribut-
ing source of FM perturbation. To completely remove the possibility of the SVD
analysis to yield maximal perturbing systems with unrealistic group delays one
may enforce a zero group delay constraint. This is an extremal constraint in that it
allows no group delay to occur in the perturbing system. Even so, the numerical
examples presented here support the notion that a zero group delay constraint
does not substantially impact the magnitude of the FM perturbations associated
with the maximally perturbing system as computed using the SVD analyses.
Typical reductions are anecdotally seen to be given by about a factor of 2 when
comparing the full kernel SVD analysis to the zero group delay constrained
kernel SVD analysis. This situation suggests that constraining the group delay to
be zero is a reasonable method to achieve near worst-case performance. An area
of future investigation is the allowance of nonzero group delay with a specified
bound.

4. FM sensitivity: It is desirable to create a measure of FM sensitivity that quantifies
how much a system will perturb the FM of a signal in terms of peak-to-peak
deviations. As a first attempt, one might define the FM sensitivity as the ratio of
the peak-to-peak variations in the magnitude (measured in dB) of the perturbing
system |H| and that of the percentage of induced FM deviation with units of
%/dB.

As an example, consider the chirpFM signal and the system and perturbation
corresponding to the largest singular value. Figure 23 on page 426 displays the
pertinent curves. From the figure it can be seen that the peak-to-peak variation
in the magnitude H of the system is about 0.6 dB. Similarly the peak-to-peak
variation in the resulting FM deviation is 0.15 MHz, or 0.15/2×100%= 7.5%

8 To be precise this is only true over an interval strictly contained in the support of p.
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(recall the unperturbed peak-to-peak FM variation is 2 MHz for all the synthetic
signals). Thus, for the case of the chirpFM signal, the FM sensitivity is

7.5
0.6

= 12.5

(
%
dB

)
.

Due to the linearity of the FM perturbation for small perturbations, this relation
will scale linearly as well. It is reasonable to conclude, for instance, that scaling
the systematic deviation so that the peak-to-peak variation in H is 4 dB will lead
to an FM deviation of 50%.

5. Performance significant modes: It is important to note that the modes correspond-
ing to the largest singular values may not be those that are most important to
specific performance criteria.

Because of the pulsed nature of the signals, the FM is most sensitive at the
leading and trailing edges. This can be seen in the examination of a typical kernel
plot, e.g., Fig. 4 on page 416. The largest contributions to the kernel are indicated
by the trapezoidal outline displayed in the kernel magnitude. For this reason, the
SVD analysis may favor perturbations that spike in these areas. This leads to
the situation where the largest singular value may correspond to a case where
all FM perturbation energy is concentrated in the leading and/or trailing edges.
In this case, the FM perturbation is very small throughout the duration of the
pulse. For many RF systems leading and trailing edge perturbations may not be
a cause for concern. Thus, the full unconstrained kernel solutions corresponding
to the largest singular values may not be the ones that are most detrimental to
an RF system’s performance. RF system performance and kernel constraints are
discussed in the next item.

6. Largest SVD versus peak-peak variation: One potentially practically useful
measure of RF system parameter may be defined in terms of peak-to-peak
quantities. In particular, the peak-to-peak variation induced in the FM of signal
passed through a linear system is a measure of the systems FM integrity. Because
the SVD theory yields the perturbation with the largest energy (an L2 norm), it
does not translate directly to peak-to-peak variation (an L∞ norm). However, it
has been seen that placing kernel constraints on time duration and delay provides
a mechanism to focus perturbation energy to regions that are significant with
respect to RF system performance. In this way, the inherent smoothing associated
with the kernel constraints provides maximal perturbations determined by the
SVD theory that are more closely coupled to their peak-to-peak variations.

7 Conclusion

It has been seen that under the assumption of a near-identity system model the FM
deviation induced by the system is given by a signal-dependent linear operator.



FM Perturbations due to Near-Identity Linear Systems 431

This operator has been called the FM perturbation operator. The linearization of the
problem allows standard linear analyses to be applied.

As such, a SVD of the FM perturbation operator has been used to yield
the most FM perturbing (worst-case) system for a given signal. The validity of
the approximation has been numerically verified and applied to the problem of
determining the worst case system in terms of induced FM deviation.

Because the unconstrained solution may yield maximally perturbing systems that
have properties (group delay and amplitude deviation) that do not reflect practical
systems, further realistic constraints have been embodied in formulation. Under
such constraints, the FM perturbation theory has been used to construct realistic
near-identity systems that induce relatively large FM perturbations. In particular,
it has been seen that systems having FM sensitivities as great as 12 %/dB may be
constructed.
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Eddy Current Sensor Signal Processing
for Stall Detection

Carole Teolis, David Gent, Christine Kim, Anthony Teolis, James Paduano,
and Michelle Bright

Abstract This chapter presents algorithms that use data from eddy-current sensors
mounted in the engine casing for the purpose of gas turbine engine stability
monitoring. To date, most signal-processing techniques using blade tip sensors
have been limited to simple parametric measurements associated with the sensor
waveform, for example measurement of zero-crossing locations for time of arrival
information or maxima for tip clearance information. Using this type of parametric
information, many computations require more than one sensor per stage. The use of
a minimal number of sensors is an extremely important practical consideration since
each pound that is added to an aircraft engine adds considerable costs over the life
cycle of the engine. Because of this we have focused on developing algorithms that
allow the reduction in the number of sensors needed for fault prognosis. Using our
algorithms we have been able to demonstrate the detection of stall cell precursors
using a single ECS. These algorithms have been demonstrated in real time in tests at
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the NASA Glenn W8 single-stage axial-flow compressor facility. The rotor tested,
designated NASA Rotor 67, is a fan with 22 blades.

Keywords Eddy current sensor • Gas turbine engine • Engine health monitor-
ing • Stall detection • Stall precursors (prestall behavior) • Harmonic analysis •
Real-time implementation • Direct FM • Fast Fourier transform (FFT) • Instanta-
neous frequency

1 Introduction

Development of a system to detect and compensate for potentially catastrophic
engine failures and instability is the primary objective of this work. Such a system
would enable increased performance, reliability, and safety of gas turbine (jet)
engines through active and automatic control. The system would be suitable for
integration into both military and commercial jet airplanes and provide a level of air
safety heretofore unattainable.

Current gas turbine engine design practice is to base fan and compressor stall
margin requirements on a worst-case scenario of destabilizing factors with an added
margin for engine-to-engine variability. These factors include external destabilizing
factors such as inlet distortion, as well as internal factors such as large tip clearances.
This approach results in larger than necessary design stall margin requirement
with a corresponding reduction in performance and/or increase in weight [1]. The
availability of a sensor system that could detect the onset of stall could allow these
margins to be safely decreased.

NASA Glenn Research Center, in their high stability engine control (HISTEC)
program, has pursued two approaches to avoiding engine instability (stall and surge)
while maximizing performance. The first, which has already been demonstrated
in flight tests, is distortion tolerant control [1, 2]. The idea is to increase the stall
margin on line as the engine face pressure distortion is encountered. The HISTEC
implementation adjusts the engine operating point based on distortion inputs from
the disturbance estimation system (DES) to maintain sufficient stall margin through
stability management and control [2]. The second approach, active stall control, has
been demonstrated in research compressors, for example see [3–6], but not yet in
flight tests.

Our goal, in the NASA tests described in this chapter as follows: first, to
demonstrate that precursors to onset of stall could be detected reliably with eddy-
current sensors (ECSs) and, second, to prevent the onset of stall using NASA
designed discrete tip injections [7]. We were unable to complete the second goal
but are still pursuing this objective.

Using two ECS, one at the leading and one at the trailing edge, it has already
been demonstrated by GDATS that the ECS can detect rotating stall cells (Fig. 1).
Using the same test data, we have extended this result to detect stall cells using
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only one ECS, thus demonstrating the feasibility of using the ECS information to
enhance and/or replace the pressure sensors for stall disturbance estimation and with
the additional benefit that vibration and tip clearance can also be measured [8].

This chapter is organized as follows: Sects. 2 and 3 give background material
on stall inception, stall detection, and control in gas turbine engines, Sect. 4 gives
background on the GDAIS ECS. Sections 5 through 7 present the main results of
the chapter. Section 5 proposes methods for stall detection using a single GDAIS
ECS. Section 6 discusses the direct “FM” implementation of the stall algorithms
and presents some test results from the real-time algorithms. Section 7 presents
post-processing results from a single-sensor parametric stall detection algorithm.

2 Stall in Gas Turbine Engines

Day [9] showed through experimental studies on two different compressors that the
modal perturbations predicted by the Moore–Greitzer model [10] are not always
present prior to stall. He showed that there are two routes to rotating stall in axial
compressors: two-dimensional long-length scale “modal waves” that extend axially
through the compressor and three-dimensional short-length scale, “spike” or “pip,”
disturbances. Subsequent stall experiments in test rigs [11–14] and in engines [15,
16] have served to confirm Day’s findings and expand understanding of prestall
behavior.

The modal oscillations1 were predicted by Moore and Greitzer [10] before being
observed by McDougall et al. [17]. Modal oscillations are small amplitude, essen-
tially two-dimensional long-wavelength disturbances that extend axially through
the compressor2 and appear close to the peak of the total-to-static pressure rise
characteristic. They typically rotate at 0.2–0.5 times the rotor speed [6, 11], though
they have been observed at higher proportional frequencies in high-speed machines
[18]. Two-dimensional linearized stability analysis [10, 19] has been shown to give
an approximation of the modal wave shape, phase speed, and growth rate for many
compressors.

The three dimensional spike disturbances are localized to the tip region of a
specific blade row in a multistage compressor and have a length scale on the order of
the blade pitch. When the spike first emerges, it is small in circumferential extent and
thus propagates quickly around the annulus. Spikes typically initially rotate at 0.7–
0.8 times the rotor speed. As the spike begins to propagate it rapidly increases in size
and its speed of rotation reduces to 0.2–0.5 the rotor speed before developing into
a full stall cell [13]. The inception process is fundamentally non-linear, in contrast

1A first-order mode would have a wavelength equal to the circumference of the compressor; a
second-order mode would have a wavelength equal to half of the circumference of the compressor,
and so on.
2Stage mismatching can limit the disturbance to a particular axial region.
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to the essentially linear behavior seen in modal stall inception. The time between
detecting a spike and the development of the full stall cell is typically much shorter
than for modal stall development.

The three-dimensional nature of spike disturbances makes them more difficult to
detect since the best axial placement for sensors is unclear at this point. In low-speed
compressors, the first rotor row seems to be the most susceptible to spike initiation.
It is thought that this is because the deviation angle of the flow leaving the inlet
guide vanes is approximately constant as stall is approached, whereas the deviation
angles from the downstream stator rows increase. Thus near the point of stall the
first rotor operates at higher incidence than the downstream rotors, and therefore it
is this row that first succumbs to flow separation [13].

However, spike-type stalling is not confined to the first stage. The formation of
spikes in the rear stages of high-speed compressors has also been observed [15].
In a high-speed compressor, stage matching changes automatically as the speed
of rotation changes. Due to compressibility effects, the position of highest loading
shifts from the front to the rear of the compressor as the speed of rotation increases.
Thus, at low speed the front stages are heavily loaded and most likely to stall, at
medium speed all stages are evenly matched near the stall point, and at high speed
the rear stages are the most likely to stall.

As discussed by Moore and Greitzer [10], modal oscillations appear close to
the peak of the total-to-static pressure rise characteristic. At this point some or
all of the blade rows are operating close to their stalling limit; hence any modal-
induced velocity deficit may be sufficient to initiate flow separation. Transition to
stall from a modal oscillation can happen in a couple of different ways. When a
modal oscillation develops smoothly into full stall, detailed measurements have
shown that the low velocity trough in the modal pattern initiates flow breakdown
over a wide sector of the annulus. This results in a broad stall cell, which, because of
its size, rotates comparatively slowly, at a speed close to that of the fully developed
cell. The formation of a broad, slow-moving cell is thought to be associated with
flow separation near the hub [13]. In other situations, the low-velocity trough in
the modal wave will trigger flow separation in a localized region near the tip of
one particular blade row [13]. In such cases the transition from modal oscillation to
rotating stall occurs via a spike disturbance.

Modal waves do not necessarily precede spike formation. Hoss et al. reported
stall inception measurements taken from the compressor section of a two-spool
turbofan engine at various power settings [16]. In their tests they observed that at low
engine speed, stall originates from spike-type precursors, while modal waves were
observed prior to stall at mid-speed for undistorted inlet flow. At high engine speed,
the rotor shaft unbalancing dominates the stall inception process as an external
forcing function. In the case of distorted inlet flow, they found spike-type stall
inception behavior dominates throughout the speed range.
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Fig. 1 Eddy-current sensor versus kulite pressure transducer

3 Current Detection Methods

There are several methods in the literature for prestall detection, a few of which are
summarized in this section. Predominantly the detection methods rely on data from
high-bandwidth pressure sensor data with the exception of the general dynamics re-
sults where two ECS are positioned, one on the leading and one on the trailing edge
of the blade row. After processing the two ECS are shown to get similar results of a
single pressure sensor [20]; see Fig. 1 which has been reproduced from that paper.

3.1 Traveling Wave Energy

Tryfondis et al. [11] introduce the idea of using traveling wave energy (TWE) as a
real-time measure of compressor stability. The idea is motivated by a linearization of
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the hydrodynamic theory of compressor stability developed by Moore and Greitzer3

[10]. The Moore–Greitzer model predicts the development of circumferential waves
of perturbation pressure, termed modal perturbations, which become under-damped
near the stall inception point. The TWE analysis provides a means of detecting the
growth of these small-amplitude perturbations.

In the development of the TWE analysis, the circumferential pressure perturba-
tions are written as a Fourier series, i.e., broken into a sum of sinusoidal components.
According to the linearized hydrodynamic theory of compressor stability, the
spatial Fourier coefficients of the pressure perturbations evolve independently
and thus constitute the fundamental states of the system.4 Several sensors are
needed to resolve the circumferential sinusoidal harmonics. Given N circumferential
measurements of the engine pressure perturbations δPx(θ , t), i.e., measurements
taken from the same axial location x, an approximation of the Fourier coefficients
ak(t) is given by

ak(t) =
1
N

N

∑
n=1

δP(θn, t)e
ikθn ,

where N ≥ 2k + 1 as dictated by the Nyquist criterion. The sensor locations, θn,
should be evenly (or nearly evenly) spaced to insure that harmonics below the
Nyquist frequency do not alias into the estimate of ak(t).

In the work of Hoss et al. [15,16], five wall-static pressure transducers were used
in front of each of the two engine stages of their test rig. The five sensors allowed the
circumferentially distributed pressure fluctuations to be resolved up to the second-
order sinusoidal harmonic. It was thought that 2 harmonics were sufficient since
in most cases where the modal waves have been observed the first two spatial
harmonics dominated the inception process. Other researchers have used up to 8
transducers in order to resolve the first 3 harmonics.

Further information about flow phenomena in the circumferential direction can
be extracted from the pressure signals by computing the power spectral density
(PSD) of their spatial Fourier coefficients. The PSD gives the development of the
power of separate frequencies as a function of time without the phase information.
In choosing the length of the spectral window a trade-off must be made: the longer
the window, the less the variance due to noise. However, choosing a window that is
too long will smooth out the transients of interest. Tryfondis et al. used a 50 rotor
revolution window.

The TWE is obtained by overlaying the negative half of the PSD spectrum5 with
the positive and integrating the resulting differences over a fixed frequency range
for every step in time. Tryfondis et. al. integrated TWE for frequencies between

3Moore and Greitzer developed a model for low-speed compressors which was later extended to
for analysis of high-speed machines by Feullner et al. [30] and others.
4In contrast, the pressure perturbation at a given circumferential position is correlated to that at any
other position.
5Because the Fourier coefficients are complex functions of time, the PSD’s are not symmetric with
respect to zero frequency.
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12 % and 125 % of the rotor frequency. Since standing wave phenomenon yields
symmetric PSD’s with respect to zero frequency, they do not contribute to the TWE.
Thus in cases where the compressor exhibits stall via modal wave, a stall warning
indication could be given when the TWE crossed a certain threshold. The TWE
could be computed essentially as is in real time.

Since the TWE analysis is based on a linearized model, the analysis only applies
to the “small-signal region” preceding stall. As the waves grow to large amplitude,
the assumption that the dynamics of each spatial harmonic and each mode evolve
independently is no longer valid.

3.2 Chaotic Time Series Analysis

Bright et al. [12, 14] introduce two different chaotic time series analysis methods,
correlation integral and structure function, for prestall detection using a single
sensor upstream of the stage. These methods, which were developed in the nonlinear
dynamics and chaos communities [21, 22], attempt to distinguish between low-
dimensional dynamics and randomness in measured time series.

Bright et al. [12] deduce that a single pressure transducer carries the underlying
dynamics of the compressor by computing the Kolmogorov entropy for the pressure
sensor data and showing that it is different from the Kolmogorov entropy of a
surrogate data set. A surrogate data set is a data set with the same Fourier magnitude
but randomized phase. The entropy in the sensor data is found to be an order of
magnitude lower than the entropy in the surrogate data. Differences in the statistic
are indications of nonlinearities in the sensor data.

The correlation integral has been shown to be an effective measure of changes
in the prestall behavior in high-speed compressors and has been able to detect both
pips and modal disturbances [14]. However, Bright et al. suggest that due to the
computational complexity of the correlation integral, this method is best suited for
post processing of data and that the structure function algorithm [22] is more suited
for real-time computations.

The structure function can be used to detect modal stall precursors as well as pip
structures. The structure function algorithm is closely related to the reconstruction
signal strength statistic from chaos theory. It is also related to the correlation
function. The structure function (SF) is often more convenient to use in cases when
one is not concerned with absolute quantities but only with pressure differences at
distinct instants of time. This is very effective for noting local disturbances rather
than monitoring magnitude pressure rise [23, 24].

3.3 Frequency of Prestall Dynamics

In order to determine the frequency of the dynamics of interest Bright et al. [14]
examined pressure sensor data sampled at 20 kHz and anti-alias filtered at 10 kHz
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while the engine was transitioned into stall through slow closure of the throttle.
This data was then filtered in three different frequency regions and the CI results
compared: (1) The data were low-pass filtered at 500 Hz. In this case, the CI value
begins to rapidly decrease approximately 292 rotor revolutions before stall. (2) The
data were low-pass filtered at 100 Hz. In this case, the CI value does not begin to
rapidly decrease until approximately 140 rotor revolutions before stall, coincident
with the observation of modes in the pressure traces. (3) The data were band-pass
filtered between 4,000 and 7,000 Hz commensurate with blade-passage frequencies.
In this case the CI value does not begin to rapidly decrease until approximately 100
rotor revolutions before stall.

The analysis of data sets in 2 and 3 above points to the occurrence of blade-
passage frequency events in addition to low-frequency events that occur simulta-
neously before rotating stall. While these results imply that it is the events in the
100–500 Hz range that give the first indication of stall, there is some indication
that blade motion, which is what we need for ECS detection, may be significant in
advance of stall.

3.4 Wavelet Analysis

The great advantage of the wavelet transform over the windowed Fourier transform
is that while in the Fourier transform the same time window is used (and therefore
the maximum resolution is limited by the window length), the wavelet transform
uses a window in which the time resolution varies with frequency. When dealing
with lower frequencies the time window length is larger, and with higher frequencies
the length is smaller. Among the first investigations of wavelets to detect stall
precursors were performed by Liao and Chen [25]. Cheng et al. [26] continued
to pursue the wavelet detection method. Cheng et al. use two-dimensional wavelet
image-processing techniques to analyze data from a single pressure sensor located
near the blade tip sampled at 237,500 Hz. A pressure image created by forming a
2-D array with the data by taking a fixed number of samples (nominally one rotation
of sensor data at a fixed speed) to form each subsequent row. The data is then
analyzed at three different length scales, where the three different scales correspond
to the half blade-passage scale (small), the blade-passage scale (medium), and the
several fold blade-passage scale (large). For each scale, the intensity of the wavelet
transform of the pressure image is summed over frequency for each time to yield
a stall indicator curve. Cheng et al. found that for the small scale, the indicator
curve began to increase in magnitude at 230 revolutions before stall, while at medial
scale the indicator curve began to decrease 230 revolutions before stall. At the large
scale or stall cell scale, an increase was seen abruptly as the engine stalled.

Hoss et al. [16] pursue one-dimensional wavelet processing as a method of
detecting stall precursors. Because of its similarity to the footprint of a spike
in the pressure signal, the Daubechies wavelet is used as the analyzing wavelet.
Considering the magnitude of the wavelet transform they generate a stall indicator
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function by first enforcing a low-magnitude threshold to reduce the contribution
of noise,6 and then breaking each frequency band7 into time windows (they use
0.1 s) and essentially averaging the magnitude values within the time window. More
recently Lin et al. [27, 28] have extended these results using continuous wavelet
transform and addressed practical issues of choice of wavelet basis functions.

3.5 Stall Control

In recent years there has been a flurry of research on compressor modeling and
stability control. Most of the theoretical efforts focus on modal stall inception
mechanism. The controls are typically based on the model developed by Moore
and Greitzer [10, 29], a simple three-state nonlinear model that describes the basic
dynamics of modal stall and surge and their interaction in low-speed compressors.
There are many modifications/extensions to the Moore–Greitzer model, for exam-
ple, to extend it to higher speed compressors [30], to allow non-cubic compressor
characteristics [31, 32], or to allow distorted flow [33, 34]. Most controls are
developed based on a bifurcation theoretic approach that changes the characteristic
of the pitchfork bifurcation at the stall inception point from hard subcritical to
soft supercritical, thus avoiding an abrupt transition into rotating stall [35, 36].
The control proposed by Liaw and Abed modifies the throttle characteristic and
can be realized experimentally through the use of a bleed valve. To reduce the rate
requirement on the bleed valve actuator, it may be coupled with air injection [37,38].

Both rotating stall and surge impose limits on the low flow operating range of
compressors. Surge is characterized by violent oscillations in the annulus-averaged
flow throughout the compression system. Rotating stall is a two-dimensional (modal
oscillations) or three-dimensional (pip) disturbance localized to the compressor and
characterized by regions of reduced or reversed flow that rotate around the annulus
of the compressor. Many of the control papers focus on stall independently of surge;
however they are not independent in high-speed compressors operating regimes.
Eveker et al. address the integrated control of rotating stall and surge [39].

In the applications cited above which use sensors (including the HISTEC flight
test [2]) the sensors used are high-response static pressure sensors (6 +). In Yeung
and Murray’s work amplitude and phase of the first and second mode of the pressure
perturbation are needed for active stall control [37, 38]. In the HISTEC controller,
the pressure sensors are needed to give a disturbance estimate [1, 2].

6Since noise is generally a broadband, low-power disturbance, the wavelet transform of the noise
would have a low-amplitude contribution for each frequency and time. Thus setting to zero any
value below a low-amplitude threshold is usually an effective means of reducing noise.
7The wavelet transform can be implemented as a bank of filters, where the frequency bands are the
outputs associated with a particular filter.
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Fig. 2 GDAIS eddy-current
sensor

4 The GDAIS ECS

ECSs for engine monitoring were originally developed as a tip clearance sensor.
Since their development it has been demonstrated that they are capable of measuring
foreign object damage (FOD), blade vibration, and stall/surge in addition to tip
clearance. Thus an ECS is a very valuable multifunctional sensor to have in an
engine.

Previous methods for stall detection with ECS require two sensors. By position-
ing sensors at the leading and trailing edge of the blade passage, the sensors are
able to measure the blade twist that occurs as the blades pass through the low-
pressure stall cell. Thus it has been demonstrated that the blade motion during stall
is sufficient to be an indicator of stall.

Two important questions that we will address here are the following: (1) can
the number of sensors used be reduced? (2) is the blade motion sufficient to detect
prestall events? Here we present two methods of detecting stall with only one ECS
and we present preliminary evidence of the capability to detect stall precursors based
on the ECS signatures.

4.1 The Eddy-Current Sensor

In our tests we use the general dynamics advanced information systems (GDAIS)
ECS; see Fig. 2. The GDAIS ECS is well suited for permanent installation in
operational units and can measure a large number of blade parameters while
remaining light in weight, small, and relatively inexpensive [40].
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Fig. 3 ECS operation

Fig. 4 ECS signature

The sensor operates by creating a time-varying magnetic field, then measuring
the field change caused by induced eddy currents which are created in a conducting
object, for example, a turbine blade, when it enters the field. The sensor is rpm
independent and relatively insensitive to temperature. It can monitor individual
blades from the fan through the turbine with only materials changes. Initial tests
on the fan blades of a next-generation gas turbine engine have proved the sensor
capable of accurately detecting blade vibration, tip clearance, bent blades, missing
blade tips, flutter, and pitch angle. Sensor power consumption is less than 1

4 watt,
and the S/N ratio achieved was better than 60 dB [40]. Figure 3 shows the principle
of operation of the blade tip ECS, and Fig. 4, a sample of sensor signal output.
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5 ECS for Prestall Detection

Degradation of transient stall margin due to mechanical wear of the engine has
been shown to be potentially significant, and procedures for early detection of
this degradation have been demonstrated. As described above, deducing precursors
to rotating stall and flutter using a single sensor has been attempted by various
researchers [12, 14, 26], but these researchers always used information that was
“continuously available” from the sensors. Thus for instance static pressure at the
casing wall or over the rotor, measured by a single sensor, has been used in full-scale
engines to deduce the transient stall margin of the engine.

Performing these functions using ECSs adds a significant challenge to overall
algorithm development. First, ECSs indirectly measure blade displacement, rather
than wall-static pressure, which is a quantity more sensitive to flow perturbations.
The second challenge associated with ECSs is that they measure discrete passage
events of multiple blades as they spin past the sensor. Establishing a link between
pre-stall perturbations and blade motion has been one of the goals of this work.

5.1 ECS Engine Test Data

GDAIS has given us access to various sets of ECS test data. The data used in
the first analysis is data from an experiment performed by General Dynamics in
collaboration with Pratt and Whitney to assess the effectiveness of the ECS in
detecting (and classifying) blade features and engine performance [40]. We obtained
samples of the data from these experiments and conducted a preliminary analysis of
the signals using wavelet transform methods. The results, while very preliminary,
indicated the potential of the methods for diagnostics of the blades and for detection
of prestall conditions.

The traces we consider are from an ECS mounted in the outer casing of a
Pratt and Whitney experimental gas turbine engine viewing the first set of rotor
fan blades. The engine was operated over a significant portion of its performance
envelope, and measurements were taken using the ECS. In this section we shall
only discuss a small sample of the total experimental data. One 5 s data file from
each of steady, accelerating, and prestall operating conditions was available. The
signals in Fig. 5 correspond to the engine in steady-state operation: (1) ECS012,
steady operation at 5,700 rpm; (2) ECS802, accelerating from 5,770 to 9,100 rpm
and (3) ECS552, engine in prestall at 9,800 rpm. The traces correspond to a single
revolution of the turbine; the elements of each curve correspond to the signatures of
individual blades passing the sensor.
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Fig. 5 OCWT of ECS test data: (a) constant speed, (b) acceleration, (c) prestall

5.2 Wavelet Analysis of ECS Data

Wavelet analyses of a small sample of the ECS data from the Pratt and Whitney
engine were performed using the Morlet analyzing wavelet.8 The preliminary
analyses show the potential of the wavelet transform to differentiate between normal
operation modes and prestall conditions.

The results of the analysis are displayed in Fig. 5. The top plot displays the
time signal, and the bottom plot the over complete wavelet transform (OCWT).
In the OCWT, time is plotted on the horizontal axis, and wavelet filter-bank
center frequency is plotted on the vertical axis. A color map is used to indicate
the magnitude of the (2D) transform signal. Low magnitudes are dark, and high
magnitudes are light.

Each of the data sets consists of one revolution of data. The data was taken from
the beginning of each of the files. Harmonics of the blade-passage speed are seen
as horizontal bands. Some information from the individual blade signatures can be
seen at the higher frequencies. The steady speed and acceleration data are taken at
approximately the same rotor speed. It is interesting that in the acceleration data
most of the energy is concentrated in the primary harmonic, and there is almost
no energy in the higher frequency filter bands where the information from the
individual blade signatures is observable. The prestall data, the right-hand plot in
Fig. 5, is taken a higher rotor speed. In the prestall data a time-localized disturbance
is visible in all of the harmonics of the blade speed near blade 4.9

8For more details on wavelet analysis refer to [41].
9The blade numbering begins with 1 after the rising edge of the synchronization pulse. This
numbering may be inconsistent with the physical blade numbers from the experiment, which are
unavailable to us at this time.



446 C. Teolis et al.

Fig. 6 Harmonic signature generation

5.3 Harmonic Processing

From the wavelet transform in Fig. 5, the embedded harmonic structure can plainly
be seen as stripes. Note the deviations in each stripe. What are brought out by a
time-frequency transform are these fine-frequency fluctuations over time associated
with each harmonic.

The underlying harmonic structure of the ECS data leads us to consider a
harmonic-based approach to extracting an engine-dependent signature. The fine
fluctuations associated with each harmonic are tied to the physical makeup of the
fan blades and their motions. For this reason it was reasonable to expect that changes
in the physical makeup or their motions would lead to changes in the fine harmonic
structure of the sensed ECS data.

One of the techniques we implemented to extract the harmonic signature is
described pictorially in Fig. 6. It was predicated on the idea of a time-frequency
analysis and subsequent frequency extraction at a specific harmonic (or harmonics)
of the data. The primary computational element of the scheme is a filter bank with
fine-frequency resolution. Such a bank may be configured to track very small, i.e.,
fine, frequency deviations in particular harmonics. If we assume a constant engine
speed, the first step in the process is to estimate the fundamental harmonic and then
shift the input signal in frequency such that the chosen harmonic, say the second, is
in the center of the filter-bank frequency coverage range. Passing the shifted signal
through the wavelet filter bank yields the wavelet transform restricted to a small
band of frequencies, say 100 Hz. This followed by an arg-maximum operation yields
a fine-frequency fluctuation curve around the given harmonic.
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Underlying this approach is the (analytic) signal model

s(t) =
N

∑
k=1

Ak(t)e
j2π

∫ t
0(k f0+ fk(s))ds,

where f0 is the fundamental harmonic and the fk(t) describe, the characteristic
fine-frequency variation in the kth harmonic. The hope is that one or some
combination of these functions fk will be sufficient to detect and characterize fault
conditions in a given fan blade assembly.

Signature extraction may be accomplished using either wavelet or WFFT time-
frequency representations. In addition, the signature extraction may be implemented
in a “direct FM” method described below which sacrifices robustness to noise for
increased computational speed.

During stall tests on the NASA Glenn compressor rig taken in 1999, GDAIS
collected data from both an ECS and a pressure sensor simultaneously. Here we
use the data set 99-204-1009-04, the same one used to demonstrate the two sensor
detection in Fig. 1. The tests allow the comparison of the capability of the ECS to
that of a pressure sensor, the current standard for stall prediction research. Figure 7
shows a direct comparison of the ECS data to that of the pressure sensor data. The
stall cell is clearly evident in the pressure data (bottom), whereas it is not obvious
from the raw ECS data (top).

Results of the signature analysis using the direct FM method in the figure below
show potential for the prediction of stall from a single ECS. In the top plot is shown
the fourth-harmonic signature extracted from a single ECS as the engine approaches
stall. In the bottom plot is the data from a Kulite pressure sensor over the same
interval. As can be seen from the figure, the stall cells are evident in the ECS signals
by their effect on the frequency fluctuations of the blades.
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Fig. 7 ECS data versus pressure sensor data (zoom)

6 FM Algorithm Implementation

The direct FM algorithm is described first in its post processing form. In this case
we take in all the data including the stall and process it in batch mode. In order
to implement the algorithm for real-time detection of stall precursors the algorithm
is modified to work on smaller segments of data. In the real-time implementation
sampling rate becomes a critical issue because the time it takes to compute the FFT
grows significantly with the number of sample points. The real-time implementation
is discussed next along with determinations of the minimum acceptable sampling
rate.

6.1 Basic FM Algorithm

The basic flow diagram for the direct FM implementation of the algorithm is shown
in the figure stall detection processing I below.
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The ECS data is sampled by an A/D converter. The FFT (fast Fourier transform)
of the data is taken. The frequency of the mth local maximum of the FFT is
computed. This is the frequency of the mth harmonic of the ECS data. An interval
of data around the maxima is extracted, and the inverse FFT of this data is
taken. While the original sampled data was real, because we have created an
odd frequency spectrum by extracting an interval around the maxima only on the
positive frequency axis, the signal {xk} resulting from the inverse FFT of the
interval is complex. From the complex data we can compute the angle at each
sample as θk = tan−1(ℑ(xk)/ℜ(xk)). The derivative of this angle is the instantaneous
frequency. The derivative of the instantaneous frequency is our stall detector output.

High-bandwidth pressure sensors are the industry standard sensors for stall
detection. The output of our detector versus a high-bandwidth kulite pressure sensor
is shown on the previous page.

6.2 Real-Time Algorithm

In order to obtain quick detection information we segmented the data into blocks for
processing. The block size is directly related to the delay in obtaining the detector
output. There is a trade-off because a larger block tends to yield better results but
smaller blocks lead to less delay in detection. Besides the actual time to collect the
block of data, a main constraint was that the blocks be small enough that the FFT
could be computed in a reasonable amount of time. We used blocks of size 2k, where
k& 18. We were able, increase processing speed also by reducing the sampling rate.
Figure 8 shows the Fourier spectrum of ECS data plotted on a dB scale. The ECS
data was taken in a NASA W8 Compressor test facility, described briefly in Sect. 6,
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and sampled at 800 kHz. From the figure it is clear that the bandwidth of the signal
is 100 KHz. Thus reducing the sampling rate to 200 KHz appears to be sufficient to
capture all harmonics.

A flow diagram of the “segmented stall detection algorithm” that was used for
the real-time implementation of the algorithm is shown below.

The algorithm proceeds as follows. First, we collect a 2k point buffer of data
sampled at 200 KHz. As above, the FFT of the data is taken. The frequency of the
mth local maximum of the FFT is computed. A 4 Khz interval of data around the
maxima is extracted. In the real-time implementation, we then zero pad the extracted
interval data to the next highest power of 2. The effect of the zero padding is to (1)
improve the performance of the FFT because the FFT is optimized to work on data
sets that are powers of 2 in size and (2) interpolate the inverse FFT results using Sync
interpolation. At this point the data rate is 6.25 KHz. Next the inverse FFT of this
data is taken. From the complex results of the inverse FFT, we compute the angle
at each sample time and then the derivative of this angle to obtain the instantaneous
frequency. Following this we low-pass filter the data which reduces the final data
rate to 0.39 KHz from the original 200 KHz.
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Fig. 9 Segmented stall detection

The results of the segmented (real-time) processing algorithms are shown in
Fig. 9. The bottom plot is again the high bandwidth pressure sensor data. The top
plot shows the stall detector output for each of the first three harmonics. We have
found that in general harmonic 3 seems to be the best indicator, but the others will
also work. In the stall detector output, each segment covers 10 ms and consists of 8
samples. Leading and trailing samples contain transient response of lowpass filter
but the overall shape of harmonic segments follows the envelope of non-segmented
stall detector output.

We implemented the FM algorithm in C on a RT Linux platform, using one of the
many FFT libraries available. We used a high-speed DAQ board capable of sampling
4 channels at 200 KHz.

6.3 Testing

The FM algorithm was tested in real time at NASA Glenn W8 compressor test
facility; see Fig. 10. The test article used in the testing was a research fan designated
Rotor 67. The fan has a relatively low aspect ratio of 1.56, a tip speed of 429 m/s,
and an inlet relative tip Mach number of 1.38.

The W8 facility is well suited for stall testing. A circumferential array of high-
response pressure sensors placed upstream of the compressor was available for
verification purposes. In addition, a throttle that can be moved very smoothly and
slowly has been developed, allowing slow, accurate approaches to stall.

We completed 3 separate sets of tests in December 2003, February 2004,
and June 2004 respectively. The first two tests were completed in a rotor only
configuration, i.e., there was not a complete engine stage; there was a rotor but no
stator. In this configuration data was collected with both clean and radially distorted
inlet flows.
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Fig. 10 NASA W8 compressor test facility schematic

The data taken was a more complete set including:

(1) Stalls at 70, 80, 80, and 100 % of design speed (induced by closing the throttle
valve to reduce the mass flow) with clean and distorted inlet flow.

(2) Stalls induced by acceleration and deceleration with clean and distorted inlet
flow.

The third tests were completed with a full engine stage and casing-mounted
injectors. The casing-mounted injectors (Fig. 11) were located upstream of the rotor.
The injectors were designed to generate a jet along the casing wall. The injected
flow was aligned with the inlet annulus flow in the downstream axial direction to
minimize mixing between the annulus flow and the injected flow. The injectors were
connected to recirculation vent that takes air from behind the stage and reinjects it
in front of the stage. Stall measurements were taken with the recirculation vent open
and with it closed off. The effect of the recirculation was increased rotor stability.10

The detection algorithms were not adversely affected by the recirculation (Fig. 11).
In all of the tests at constant speed, modal waves were observed in the pressure
data preceding stall. Surge was not observed. In the tests where stall was entered by
increasing or decreasing rotor speed our algorithms had problems with detection.

10The recirculation tests were performed as part of another testing effort and the results of the
stability performance are reported elsewhere.
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Fig. 11 Left—injector and recirculation apparatus. Right—mounted on rig casing

Fig. 12 Real-time processor output: top 3—harmonics of ECS output and bottom—pressure
sensor data

Figure 12 shows output of the real-time processor for clean inlet flow. The top
3 plots are the first 3 harmonics of the ECS data. The bottom plot is raw pressure
sensor data.

Our goal was to attempt to actively control the injectors, i.e., to detect stall pre-
cursors (or at worst stall onset) and only then turn on the injectors. In the active
control setup, the injectors were connected to a torus that was supplied with air
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at ambient temperature from an external source. During active stall control, the
injectors would be able to be turned on and off using an electromechanical valve,
and the flow rate would be able to be adjusted. Unfortunately the tests were unable
to be completed while the rig was available to us.

7 Threshold-Based Stall Detection

While we were able to demonstrate with the direct FM algorithm the capability
to reliably detect stall using one ECS, we felt that the algorithms used were
complex and questioned whether the detection could be accomplished with one
ECS using a computationally simpler method, for example, a parametric method. To
understand which signature parameters would be most effective for stall detection
a good understanding of the blade motion during prestall was needed as well as an
understanding of how the sensor signature changes because of the motion.

It was our contention that some measurement of blade twist due to the modal
variations in pressure would be the key information to extract. Blade twist affects
the signature shape by changing the width of the positive and negative lobes of the
signature (as well as the time of arrival depending on sensor location relative to the
twist axis).

Instead of measuring lobe width directly, i.e., signature start to zero crossing
and then zero crossing to signature end, we picked an arbitrary positive threshold
greater than the noise floor and considered the widths between threshold crossings.
Threshold crossings have the advantage that they can be easily measured in
hardware, whereas extrema and zero crossings (due to noise) are more difficult to
accurately detect with simple hardware.

A threshold point is defined as a point where the absolute value of the sensor
signature crosses the threshold, where the threshold value is a positive real number.
As shown in Fig. 13, the GDAIS ECS blade signature has four threshold points,
two points corresponding to the threshold value and two points corresponding to the
negative of the threshold value.

The time elapsed from when the blade signature hits its first threshold point to
when it hits its last is what we have termed the approximate sensor aperture. The
time elapsed between the first and second threshold points is termed threshold width
(1) or δ tL, and the time elapse between the third and fourth threshold points is
termed threshold width (2) or δ tR.

For the GDAIS ECS, the threshold widths as well as other functions of the
threshold width, for example their difference and their ratio, are good indicators
of stall. We expect that functions of thresholds will be useful for other types of
blade tip sensors such as other ECS designs and capacitive sensors both of which
typically have a single lobe for each blade passage.
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Fig. 13 ECS blade signature with threshold at +/− 1.3 V

7.1 Effect of Stall on Threshold Widths

Interestingly our tests showed that preceding a stall event, threshold width (1)
responds in the opposite direction to threshold width (2). Threshold width (2)
decreases abruptly with each stall cell, while threshold width (1) increases. We hy-
pothesize that this is related to blade twist.

Another property of the two threshold widths in each blade signature is that they
are usually unequal. In other words, the blade signature is asymmetric. This has
to do with the imperfection in alignment of the ECS with the blade. In addition,
dynamic loading causes the alignment to change with speed because the loading
causes the blades to twist from their rest state. The results from the NASA data
indicate that the threshold ratio can be used to predict stall in situations with both
clean and distorted inlet flow.

While extrema remain essentially constant until 9.514 s, Fig. 14 shows that
moving averages of the threshold widths show trends of slowly increasing or
decreasing, beginning approximately at 6 s into the data set.

Building on this result, a detector is developed that looks at the variance of the
threshold ratio to find a stall indicator. The variance of the threshold ratio gives a
good stall warning indicator at about 2 s, or 540.54 revolutions before the stall event
see Fig. 15. The data is taken at 100 % of design speed as the compressor is throttled
into stall. The top plot of Fig. 15 shows the threshold ratio, the middle plot shows the
variance of the threshold ratio, and the bottom plot the stall detector output. Results
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Fig. 14 Top: raw ECS data, Middle: moving average of threshold width (1). Bottom: moving
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Fig. 15 Threshold ratio, variance of threshold ratio, and stall detector performance
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Fig. 16 Pressure sensor, threshold ratio, and stall detector output at 90 % of design speed

as the compressor is throttled into stall at 90 % and 70 % of design speed are shown
in Figs. 16 and 17, respectively. In the figures, the top plots are the pressure sensor
data, the middle plots are the threshold ration data, and the bottom plots are the stall
detector output.

8 Conclusions

We have demonstrated in testing that a single ECS can be used to detect stall pre-
cursors. We have also shown the ECS data can be processed to output a data stream
that closely follows pressure sensor data. This makes the ECS a possible candidate
for replacing a pressure sensor in a stall control scenario, with the added advantage
that other engine health data can be collected from the ECS as well.

Because the blade motion is a secondary affect of the pressure and flow variations
that precede stall, algorithms to detect stall with ECS will most likely not be as
sensitive to stall precursors, though a thorough study has not yet been performed to
compare the results of single pressure-sensor detection algorithms to those of the
ECS.

Because the ECS data can be processed to yield a data stream that closely follows
pressure sensor data some of the techniques for stall detection using pressure sensors
may apply.
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Fig. 17 Pressure sensor, threshold ratio, and stall detector output at 70 % of design speed
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dependent discrete memoryless channel, in which the underlying state process is
independent and identically distributed with known probability distribution, and for
which the channel output at any time instant depends on the inputs and states only
through their current values. For this channel, we provide a strong converse result for
its capacity, explaining the structure of optimal transmission codes. Exploiting this
structure, we obtain upper bounds for the reliability function when the transmitter
is provided channel state information causally and noncausally. Instrumental to
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1 Introduction

The information theoretic model of a communication channel for message trans-
mission is described by the conditional probability law of the channel output given
the input. For instance, the binary symmetric channel is a model for describing the
communication of binary data in which noise may cause random bit-flips with a
fixed probability. A reliable encoded transmission of a message generally entails
multiple uses of the channel. In several applications, such as mobile wireless
communication, digital fingerprinting, and storage memories, the probability law
characterizing the channel can change with time. This time-varying behavior of the
channel probability is described typically in terms of the evolution of the underlying
channel condition, termed “state.” The availability of channel state information
(CSI) at the transmitter or receiver can enhance overall communication performance
(cf. [1, 6, 7]).

We consider a state-dependent discrete memoryless channel (DMC), in which
the underlying state process is independent and identically distributed (i.i.d.) with
known probability mass function (PMF), and for which the channel output at any
time instant depends on the inputs and states only through their current values. We
address the cases of causal and noncausal CSI at the transmitter. In the former case,
the transmitter has knowledge of all the past channel states as well as the current
state; this model was introduced by Shannon [8]. In the latter case, the transmitter
is provided access at the outset to the entire state sequence prevailing during the
transmission of a message; see Gelfand–Pinsker [5]. We restrict ourselves to the
situation where the receiver has no CSI, for receiver CSI can be accommodated by
considering the states, too, as channel outputs.

Two information theoretic performance measures are of interest: Channel
capacity and reliability function. The channel capacity characterizes the largest
rate of encoded transmission for reliable communication. The reliability function
describes the best exponential rate of decay of decoding error probability with
transmission duration for coding rates below capacity. The capacities of the
models above with causal and noncausal CSI were characterized in classic papers
by Shannon [8] and Gelfand–Pinsker [5]. The reliability function is not fully
characterized even for a DMC without states; however, good upper and lower
bounds are known, which coincide at rates close to capacity [3, 9, 10].

Our contributions are twofold. First, we provide a strong converse for the
capacity of state-dependent channels, which explains the structure of optimal
codes. Second, exploiting this structure, we obtain upper bounds for the reliability
functions of the causal and noncausal CSI models. Instrumental to our proofs is
a new technical result which provides an upper bound on the rate of codes with
code words that are “conditionally typical over large message-dependent subsets of
a typical set of state sequences.” This technical result is a nonstraightforward analog
of [3, Lemma 2.1.4] for a DMC without states; the latter provides a bound on the rate
of a good code with codewords of a fixed composition. A preliminary conference
version of this work is in [11].
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In the next section, we compile pertinent technical concepts and tools that will
be used to prove our results. These standard staples can be found, for instance, in
[2, 3]. The channel models are described in Sect. 3. Sections 4–6 contain our main
results.

2 Preliminaries: Types, Typical Sets and Image Sets

Let X be a finite set. For a sequence x ∈X n, the type of x, denoted by Qx, is a
pmf on X , where Qx(x) is the relative frequency of x in x. Similarly, joint types are
pmfs on product spaces. For example, the joint type of two given sequences x∈X n

s ∈S n is a pmf Q on X ×S , where Qx,s(x,s) is the relative frequency of the tuple
(x,s) among the tuples (xt ,st), t = 1, . . . ,n. Joint types of several n-length sequences
are defined similarly.

The number of types of sequences in X n is bounded above by (n + 1)|X |.
Denoting by T

(n)
Q the set of all sequences in X n of type Q, we note that

(n+ 1)−‖X ‖ exp[nH(Q)]≤
∥
∥∥T (n)

Q

∥
∥∥≤ exp[nH(Q)]. (1)

For any pmf P on X , and type Q on X n,

Pn(x) =
n

∏
t=1

P(xt) = ∏
x∈X

P(x)nQ(x)

= exp[−n(D(P‖Q)+H(Q))], x ∈ T
(n)

Q ,

from which, along with (1), it follows that

(n+ 1)−‖X ‖ exp[−n(D(P‖Q)]≤ Pn
(
T

(n)
Q

)
≤ exp[−n(D(P‖Q)].

Next, for a pmf P on X and δ > 0, a sequence x ∈X n is P typical with constant
δ if

max
x∈X

|Qx(x)−P(x)| ≤ δ ,

and P(x) = 0 implies Qx(x) = 0. The set of all P-typical sequences with constant

δ , is called the P-typical set, denoted T
(n)
[P] (where the dependence on δ is not

displayed explicitly). Thus,

T
(n)
[P] =

⋃

types Q :
max
x∈X

|Qx(x)−P(x)| ≤ δ

T
(n)

Q .
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In general, δ = δn and is assumed to satisfy the “δ -convention” [3], namely

δn → 0,
√

nδn → ∞ as n→ ∞. (2)

The typical set has large probability. Precisely, for δ = δn as in (2),

Pn
(
T

(n)
Q

)
≥ 1− ‖X ‖

4nδ 2 . (3)

Consider sequences x ∈X n, y ∈ Y n of joint type Qx,y. The sequence y ∈ Y n has
conditional type V if Qx,y = QxV , for some stochastic matrix V : X → Y . Given a
stochastic matrix W : X →Y , and x∈X n, a sequence y∈Y n of conditional type
V is W -conditionally typical if for all x ∈X :

max
y∈Y

|V (y | x)−W(y | x)| ≤ δ ,

and W (y | x) = 0 implies V (y | x) = 0. The set of all W -conditionally typical

sequences conditioned on x ∈X n is denoted by T
(n)
[W ]

(x). In a manner similar to
(3), it holds that

W n
(
T

(n)
[W ]

(x) | x
)
≥ 1− ‖X ‖‖Y ‖

4nδ 2 .

For a subset A of X , we shall require also estimates of the minimum cardinality
of sets in Y with significant W -conditional probability given x ∈ A. Precisely, a set
B ⊆ Y is an ε-image (0 < ε ≤ 1) of A ⊆X under W : X → Y if W (B | x) ≥ ε
for all x ∈ A. The minimum cardinality of ε-images of A is termed the image
size of A (under W ), and is denoted by gW (A,ε). Coding theorems in information
theory use estimates of the rates of the image size of A ⊆ X n under W n, i.e.,
(1/n) loggWn(A,ε). In particular, for multiterminal systems, we compare the rates
of image sizes of A ⊆ X n under two different channels W n and V n. Precisely,
given stochastic matrices W : X → Y and V : X → S , for every 0 < ε < 1,

δ > 0 and for every A ⊆ T
(n)
[PX ]

, there exists an auxiliary rv U and associated pmfs
PUXY = PU|XPXW and PUXZ = PU|XPXV such that

∣
∣
∣
∣
1
n

loggWn(B(m0),ε)−H(Y |U)− t

∣
∣
∣
∣< δ , (4)

∣
∣
∣
∣
1
n

loggV n(B(m0),ε)−H(S|U)− t

∣
∣
∣
∣< δ ,

where 0≤ t ≤min{I(U ∧Y ), I(U ∧S)}.
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3 Channels with States

Consider a state-dependent DMC W : X ×S → Y with finite input, state, and
output alphabets X , S , and Y , respectively. The S -valued state process {St}∞

t=1
is i.i.d. with known pmf PS. The probability law of the DMC is specified by

W n(y | x,s) =
n

∏
t=1

W (yt | xt ,st), x ∈X n ,s ∈S n, y ∈ Y n.

An (M,n)-code with encoder CSI consists of the mappings ( f ,φ) where the encoder
mapping f = ( f1, . . . , fn) is either causal, i.e.,

ft : M ×S t →X , t = 1, . . . ,n,

or noncausal, i.e.,

ft : M ×S n →X , t = 1, . . . ,n.

with M = {1, . . . ,M} being the set of messages. The decoder φ is a mapping

φ : Y n →M .

We restrict ourselves to the situation where the receiver has no CSI. When the
receiver, too, has CSI, our results apply in a standard manner by considering an
associated DMC with augmented output alphabet Y ×S .

The rate of the code is (1/n) logM. The corresponding (maximum) probability
of error is

e( f ,φ) = max
m∈M

∑
s∈S n

PS(s)W n((φ−1(m))c | f (m,s),s), (5)

where φ−1(m) = {y ∈ Y n : φ(y) = m} and (·)c denotes complement.

Definition 1. Given 0 < ε < 1, a number R > 0 is ε-achievable if for every δ > 0
and for all n sufficiently large, there exist (M,n)-codes ( f ,φ) with (1/n) logM >
R− δ and e( f ,φ) < ε . The supremum of all ε-achievable rates is denoted by C(ε).
The capacity of the DMC is

C = lim
ε→0

C(ε).

If C(ε) = C for 0 < ε < 1, the DMC is said to satisfy a strong converse [12]. This
terminology reflects the fact that for rates R>C, e( f ,φ)> ε for n≥N(ε), 0< ε < 1.
(In contrast, a standard converse shows that for R >C, e( f ,φ) cannot be driven to 0
as n→ ∞.)
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For a given pmf PX̃ S̃ on X ×S and an rv U with values in a finite set U , let
P (PX̃ S̃,W ) denote the set of all pmfs PUXSY on U ×X ×S ×Y with

X = h(U,S) (6)

for some mapping h,

U−◦−X ,S−◦−Y, PX ,S,Y = PX̃ S̃W. (7)

For γ ≥ 0, let Pγ (PX̃ S̃,W ) be the subset of P (PX̃ S̃,W ) with I(U ∧S)≤ γ; note that
P0 (PX̃ S̃,W ) corresponds to the subset of P (PX̃ S̃,W ) with U independent of S.

The classical results on the capacity of a state-dependent channel are due to
Shannon [8] when the encoder CSI is causal and Gelfand and Pinsker [5] when
the encoder CSI is noncausal.

Theorem 1. For the case with causal CSI, the capacity is

CSh = max
PX |S

max
P0(PX |SPS,W)

I(U ∧Y ),

and holds with the strong converse.

Remark. The capacity formula was derived by Shannon [8], and the strong converse
was proved later by Wolfowitz [12].

Theorem 2 (Gelfand–Pinsker [5]). For the case with noncausal CSI, the capac-
ity is

CGP = max
PX |S

max
P(PX |SPS,W)

I(U ∧Y )− I(U ∧S).

One main result below is to show that the previous result, too, holds with a strong
converse.

Definition 2. The reliability function E(R), R ≥ 0, of the DMC W is the largest
number E ≥ 0 such that for every δ > 0 and for all sufficiently large n, there exist
n-length block codes ( f ,φ) with causal or noncausal CSI as above of rate greater
than R− δ and e( f ,φ) ≤ exp [−n(E− δ )] (see, for instance, [3]).

4 A Technical Lemma

For a DMC without states, the result in [3, Corollary 6.4] provides, in effect, an
image size characterization of a good codeword set; this does not involve any
auxiliary rv. In the same spirit, our key technical lemma below provides an image
size characterization for good codeword sets for the causal and noncausal DMC
models, which now involves an auxiliary rv.
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Lemma 1. Let ε,τ > 0 be such that ε + τ < 1. Given a pmf PS̃ on S and
conditional pmf P̃X |S, let ( f ,φ) be a (M,n)-code as above. For each m ∈ M , let
A(m) be a subset of S n which satisfies the following conditions:

A(m)⊆T n
[PS̃]

, (8)

‖A(m)‖ ≥ exp
[
n
(

H(PS̃)−
τ
6

)]
, (9)

f (m,s) ∈ T n
[PX̃ |S̃]

(s), s ∈ A(m). (10)

Furthermore, let ( f ,φ) satisfy one of the following two conditions:

W n(φ−1(m) | f (m,s),s) ≥ 1− ε, s ∈ A(m), (11a)

1
‖A(m)‖ ∑

s∈A(m)

W n(φ−1(m) | f (m,s),s) ≥ 1− ε. (11b)

(a) In the causal CSI case, for n≥ N(‖X ‖,‖S ‖,‖Y ‖,τ,ε),1 it holds that

1
n

logM ≤ I(U ∧Y )+ τ,

for some PUXSY ∈Pτ(PX̃ |S̃PS̃,W ).
(b) In the noncausal CSI case, for n≥ N(‖X ‖,‖S ‖,‖Y ‖,τ,ε), it holds that

1
n

logM ≤ I(U ∧Y )− I(U ∧S)+ τ,

for some PUXSY ∈P(PX̃ |S̃PS̃,W ).

Furthermore, in both cases it suffices to restrict the rv U to take values in a finite
set U with ‖U ‖ ≤ ‖X ‖‖S ‖+ 1.

Proof. Our proof below is for the case when (11a) holds. The case when (11b) holds
can be proved similarly with minor modifications; specifically, in the latter case, we
can find subsets A′(m) of A(m), m ∈M , that satisfy (8)–(10) and (11a) for some
ε ′,τ ′ > 0 with ε ′+ τ ′ < 1 for all n sufficiently large.

With (11a) holding, set

B(m) = {( f (m,s),s) ∈X n×S n : s ∈ A(m)}, m ∈M .

1In our assertions, we indicate the validity of a statement “for all n≥ N(.)” by showing the explicit
dependency of N; however, the standard picking of the “largest such N” from (finitely many) such
Ns is not indicated.
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Let PỸ = PX̃ S̃W be a pmf on Y defined by

PỸ (y) = ∑
s,x
PS̃X̃ (s,x)W (y | x,s), y ∈ Y .

Consequently,

W n(T n
[PỸ ]
| f (m,s),s) > ε + τ, s ∈ A(m), (12)

for all n≥ N(‖X ‖, |S ‖, |Y ‖,τ,ε) (not depending on m and s in A(m)). Denoting

C(m) = φ−1(m)∩T n
[PỸ ]

,

we see from (11a) and (12) that

W n(C(m) | f (m,s),s) > τ > 0, ,( f (m,s),s) ∈ B(m),

so that

‖C(m)‖ ≥ gW n(B(m),τ),

where gW n(B(m),τ) denotes the smallest cardinality of a subset D of Y n with

W n(D | ( f (m,s),s)) > τ, ( f (m,s),s) ∈ B(m). (13)

With m0 = argmin1≤m≤M ‖C(m)‖, we have

M‖C(m0)‖ ≤
M

∑
m=1

‖C(m)‖= ‖T n
[PỸ ]
‖ ≤ expn

(
H(PỸ )+

τ
6

)
.

Consequently,

1
n

logM ≤ H(PỸ )+
τ
6
− 1

n
loggWn(B(m0),τ). (14)

The remainder of the proof entails relating the “image size” of B(m0), i.e.,
gWn(B(m0),τ), to ‖A(m0)‖, and is completed below separately for the cases of
causal and noncausal CSI.

First consider the causal CSI case. For a rv Ŝn distributed uniformly over A(m0),
we have from (9) that

1
n

H(Ŝn) =
1
n

log‖A(m0)‖ ≥ H(PS̃)−
τ
6
. (15)
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Since
1
n

H(Ŝn) =
1
n

n

∑
i=1

H(Ŝi | Ŝi−1) = H(ŜI | ŜI−1, I),

where the rv I is distributed uniformly over the set {1, . . . ,n} and is independent of
all other rvs, the previous identity, together with (15), yields

H(PS̃)−H(ŜI | ŜI−1, I)≤ τ
3
. (16)

Next, denote by X̂n the rv f (m0, Ŝn) and by Ŷ n the rv which conditioned on X̂n, Ŝn,
has (conditional) distribution W n, i.e., Ŷ n is the random output of the DMC W when
the input is set to

(
X̂n, Ŝn

)
. Then, using [3, Lemma 15.2], we get

1
n

loggW n(B(m0),τ)≥ 1
n

H(Ŷ n)− τ
6
, (17)

for all n sufficiently large. Furthermore,

1
n

H(Ŷ n) =
1
n

n

∑
i=1

H(Ŷi | Ŷ i−1)

≥ H(ŶI | X̂ I−1, ŜI−1,Ŷ I−1, I)

= H(ŶI | X̂ I−1, ŜI−1, I)

= H(ŶI | ŜI−1, I),

where the last-but-one equality follows from the DMC assumption, and the last
equality holds since X̂ I−1 = f (m0, ŜI−1). The inequality above, along with (17) and
(14) gives

1
n

logM ≤ H(PỸ )−H(ŶI | ŜI−1, I)+
τ
3
. (18)

Denote by Û the rv (ŜI−1, I) and note that the following Markov property holds:

ŶI−◦− X̂I, ŜI−◦−Û.

Also, from the definition of B(m0),

PX̂I ,ŜI
(x,s) =

1
n

n

∑
i=1

PX̂i,Ŝi
(x,s)

=
1
n

n

∑
i=1

∑
x,s∈B(m0)

1(xi = x,si = s)
‖B(m0)‖

=
1

‖B(m0)‖ ∑
x,s∈B(m0)

Qx,s(x,s),
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where Qx,s(x,s) is the joint type of x,s, and the last equation follows upon
interchanging the order of summation. It follows from (8) and (10) that ‖PX̂I ,ŜI

−
PX̃ S̃‖ ≤ δn for some δn → 0 satisfying the delta convention. Furthermore,

‖PŶI
−PỸ‖= ∑

y

∣
∣
∣∣
∣∑x,s

W (y|x,s)PX̃ S̃(x,s)−∑
x,s

W (y|x,s)PX̂I ŜI
(x,s)

∣
∣
∣∣
∣

≤∑
x,s

∑
y

W (y|x,s)
∣
∣
∣PX̃ S̃(x,s)−PX̂I ŜI

(x,s)
∣
∣
∣

= ‖PX̃ S̃−PX̂I ŜI
‖ ≤ δn.

Let the rvs X̃ , S̃,Ỹ have a joint distribution PX̃ S̃Ỹ . Define a rv U which takes values in
the same set as Û , has PÛ |X̂I ŜI

as its conditional distribution given X ,S, and satisfies
the Markov relation

Y −◦−X ,S−◦−U.

Then using the continuity of the entropy function and the arguments above, (18)
yields

1
n

logM ≤ I(U ∧Y )+ τ,

and (16) yields
I(U ∧S)≤ τ,

for all n sufficiently large, where PUXSY ∈Pτ(PX̃ S̃,W ).
Turning to the case with noncausal CSI, define a stochastic matrix V :

X ×S →S with

V (s′ | x,s) = 1(s′ = s),

and let gV n be defined in a manner analogous to gWn above with S n in the role of
Y n in (13). For any m ∈M and subset E of S n, observe that

V n(E | f (m,s),s) = 1(s ∈ E), s ∈S n.

In particular, if E satisfies

V n(E | f (m,s),s) > τ, s ∈ A(m), (19)

it must be that A(m)⊆ E , and since E = A(m) satisfies (19), we get that

‖A(m)‖= gV n(B(m),τ) (20)

using the definition of B(m). Using the image size characterization in (4) [3,
Theorem 15.11], there exists an auxiliary rv U and associated pmf PUXSY =
PU|XSPX̃ S̃W such that
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∣
∣
∣∣
1
n

loggWn(B(m0),τ)−H(Y |U)− t

∣
∣
∣∣<

τ
6
,

∣
∣
∣
∣
1
n

loggV n(B(m0),τ)−H(S|U)− t

∣
∣
∣
∣<

τ
6
, (21)

where 0≤ t ≤min{I(U ∧Y ), I(U ∧S)}. Then, using (14), (20), and (21) we get

1
n

logM ≤ I(U ∧Y )+H(S |U)− 1
n

log‖A(m0)‖+ τ
2
,

which, by (9), yields

1
n

logM ≤ I(U ∧Y )− I(U ∧S)+ τ.

In (21), PUXSY ∈ P(PX̃ |S̃PS̃,W ) but need not satisfy (6). Finally, the asserted
restriction to PUXSY ∈ P(PX̃ |S̃PS̃,W ) follows from the convexity of I(U ∧Y )−
I(U ∧S) in PX |US for a fixed PUS (as observed in [5]).

Lastly, it follows from the support lemma [3, Lemma 15.4] that it suffices to
consider those rvs U for which ‖U ‖ ≤ ‖X ‖‖S ‖+ 1. ��

5 The Strong Converse

Theorem 3 (Strong converse). Given 0 < ε < 1 and a sequence of (Mn,n) codes
( fn,φn) with e( fn,φn)< ε , it holds that

limsup
n

1
n

logMn ≤C,

where C =CSh and CGP for the cases of causal and noncausal CSI, respectively.

Proof. Given 0< ε < 1 and a (M,n)-code ( f ,φ) with e( f ,φ)≤ ε , the proof involves
the identification of sets A(m), m ∈M , satisfying (8)–(10) and (11a). The assertion
then follows from Lemma 1. Note that e( f ,φ) ≤ ε implies

∑
s∈S n

PS (s)W n(φ−1(m) | f (m,s),s) ≥ 1− ε

for all m ∈M . Since PS

(
T n

[PS]

)
→ 1 as n→ ∞, we get that for every m ∈M ,

PS

({
s ∈ T n

[PS]
: W n(φ−1(m) | f (m,s),s) >

1− ε
2

})
≥ 1− ε

3
(22)
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for all n ≥ N(‖S ‖,ε). Denoting the set

{
·
}

in (22) by Â(m), clearly for every

m ∈M ,

W n(φ−1(m) | f (m,s),s) ≥ 1− ε
2

, s ∈ Â(m),

and

PS
(
Â(m)

)≥ 1− ε
3

for all n≥ N(‖S ‖,ε), whereby for an arbitrary δ > 0, we get

‖Â(m)‖ ≥ exp [n(H(PS)− δ )]

for all n ≥ N(‖S ‖,δ ). Partitioning Â(m), m ∈ M , into sets according to the
(polynomially many) conditional types of f (m,s) given s in Â(m), we obtain a subset
A(m) of Â(m) for which

f (m,s) ∈ T n
m (s), s ∈ A(m),

‖A(m)‖ ≥ exp [n(H(PS)− 2δ )],

for all n ≥ N(‖S ‖,‖X ‖,δ ), where T n
m (s) represents a set of those sequences in

X n that have the same conditional type (depending only on m).
Once again, the polynomial size of such conditional types yields a subset M ′ of

M such that f (m,s) has a fixed conditional type (not depending on m) given s in
A(m), and with

1
n

log‖M ′‖ ≥ 1
n

logM− δ

for all n ≥ N(‖S ‖,‖X ‖,δ ). Finally, the strong converse follows by applying
Lemma 1 to the subcode corresponding to M ′ and noting that δ > 0 is arbitrary. ��

6 Outer Bound on Reliability Function

An upper bound for the reliability function E(R), 0 < R < C, of a DMC without
states is derived in [3] using a strong converse for codes with codewords of a
fixed type. The key technical Lemma 1 gives an upper bound on the rate of
codes with codewords that are conditionally typical over large message-dependent
subsets of the typical set of state sequences and serves, in effect, as an analog of
[3, Corollary 6.4] for state-dependent channels to derive an upper bound on the
reliability function.
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Theorem 4 (Sphere packing bound). Given δ > 0, for 0 < R <C, it holds that

E(R)≤ ESP(1+ δ )+ δ ,

where

ESP = min
PS̃

max
PX̃ |S̃

min
V∈V (R,PX̃ S̃)

[
D(PS̃‖PS)+D(V‖W | PX̃ S̃)

]
(23)

with

V (R,PX̃ S̃) = VSh(R,PX̃ S̃) =
{

V : X ×S → Y : max
PUXSY∈P0(PX̃ S̃,V )

I(U ∧Y )< R
}
,

(24)

and

V (R,PX̃ S̃) = VGP(R,PX̃ S̃)

=
{

V : X ×S → Y : max
PUXSY∈P(PX̃ S̃,V )

I(U ∧Y )− I(U ∧S)< R
}
, (25)

for the causal and noncausal CSI cases, respectively.

Remark. In (23), the terms D(PS̃‖PS) and D(V‖W | PS̃PX̃ |S̃) account, respectively,
for the shortcomings of a given code for corresponding “bad” state pmf and “bad”
channel.

Proof. Consider sequences of type PS̃ in S n. Picking Â(m) = T n
PS̃

, m ∈M , in the
proof of Theorem 3, and following the arguments therein to extract the subset A(m)
of Â(m), we have for a given δ > 0 that for all n≥ N(‖S ‖,‖X ‖,δ ), there exists a
subset M ′ of M and a fixed conditional type, say PX̃ |S̃ (not depending on m), such
that for every m ∈M ′,

A(m)⊆ Â(m) = T n
PS̃
,

‖A(m)‖ ≥ exp [n(H(PS̃)− δ )],

f (m,s) ∈ T n
PX̃ |S̃(s), s ∈ A(m),

1
n

log‖M ′‖ ≥ R− δ .

Then for every V ∈ V (R,PX̃ S̃), we obtain using Lemma 1 (in its version with
condition (11b)), that for every δ ′ > 0, there exists m ∈M ′ (possibly depending
on δ ′ and V ) with

1
‖A(m)‖ ∑

s∈A(m)

V n((φ−1(m))c | f (m,s),s) ≥ 1− δ ′
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for all n≥ N(‖S ‖,‖X ‖,‖Y ‖,δ ′). Since the average V n-(conditional) probability
of
(
φ−1(m)

)c
is large, its W n-(conditional) probability cannot be too small. To that

end, for this m, apply [3, Theorem 10.3, (10.21)] with the choices

Z = Y n×A(m),

S = (φ−1(m))c×A(m),

Q1(y,s) =
V n(y | f (m,s),s)

‖A(m)‖ ,

Q2(y,s) =
W n(y | f (m,s),s)

‖A(m)‖ ,

for (y,s) ∈ Z, to obtain

1
‖A(m)‖ ∑

s∈A(m)

W n((φ−1(m))c | f (m,s),s) ≥ exp

(

−nD(V‖W | PX̃ |S̃PS̃)+ 1

1− δ ′

)

.

Finally,

e( f ,φ) ≥ ∑
s∈A(m)

PS (s)W n((φ−1(m))
c | f (m,s),s)

≥ exp[−n(D(PS̃‖PS)+D(V‖W | PX̃ |S̃PS̃)(1+ δ )+ δ )]

for n ≥ N(‖S ‖,‖X ‖,‖Y ‖,δ ,δ ′), whereby it follows for the noncausal CSI
case that

limsup
n
−1

n
loge( f ,φ)≤min

PS̃

max
PX̃ |S̃

min
V∈V (R,PX̃ S̃)

[D(PS̃‖PS)

+D(V‖W | PX̃ |S̃PS̃)(1+ δ )+ δ ]

for every δ > 0. Similarly, for the case of causal CSI, for τ > 0, letting

Vτ(R,PX̃ S̃) =
{

V : X ×S → Y : max
PUXSY∈Pτ (PX̃ S̃,V )

I(U ∧Y )< R
}
, (26)

we get

limsup
n
−1

n
loge( f ,φ) ≤min

PS̃

max
PX̃ |S̃

min
V∈Vτ (R,PX̃ S̃)

[D(PS̃‖PS)+D(V‖W | PX̃ |S̃PS̃)].

The continuity of the right side of (26), as shown in the Appendix, yields the claimed
expression for ESP in (23) and (24). ��
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Appendix: Continuity of the Right Side of (26)

Let

f (R,PUX̃S̃) = min
V :I(U∧Y)<R
PY |X̃ S̃=V

D(PS̃‖PS)+D(V‖W | PX̃ |S̃PS̃). (27)

Further, let

g(PS̃,τ) = max
PUX̃|S̃:I(U∧S̃)≤τ

U−◦−X̃,S̃−◦−Y

f (R,PUX̃S̃), (28)

and

g(τ) = min
PS̃

g(PS̃,τ). (29)

To show the continuity of g(τ) at τ = 0, first note that g(τ) ≥ g(0) for all τ ≥ 0.
Next, let P0

S̃
attain the minimum in (29) for τ = 0. Clearly,

g(P0
S̃,τ) ≥ g(τ). (30)

Also, let Pτ
UX̃ |S̃ attain the maximum of g(P0

S̃
,τ) in (28). For the associated joint pmf

P0
S̃
Pτ

UX̃ |S̃, let Pτ
U denote the resulting U-marginal pmf, and consider the joint pmf

Pτ
UP

0
S̃
Pτ

X̃ |US̃
. Then, using (28) and (29) and the observations above,

f (R,Pτ
UP

0
S̃P

τ
X̃ |US̃)≤ g(0)≤ g(τ)≤ g(P0

S̃,τ) = f (R,P0
S̃P

τ
UX̃ |S̃).

The continuity of g(τ) at τ = 0 will follow upon showing that

f (R,P0
S̃P

τ
UX̃ |S̃)− f (R,Pτ

UP
0
S̃P

τ
X̃ |US̃)→ 0 as τ → 0.

The constraint on the mutual information (28) gives by Pinsker’s inequality [3, 4]
that,

τ ≥ D
(
Pτ

U|S̃P
0
S̃‖Pτ

UP
0
S̃

)
≥ 2

∥
∥
∥Pτ

U|S̃P
0
S̃−Pτ

UP
0
S̃

∥
∥
∥

2
,
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i.e.,

∥
∥∥Pτ

U|S̃P
0
S̃−Pτ

UP
0
S̃

∥
∥∥≤

√
τ
2
. (31)

For PUX̃ S̃ = Pτ
UP

0
S̃
Pτ

X̃ |US̃
, let V 0 attain the minimum in (26), i.e.,

PY |X̃ S̃ =V 0, I(U ∧Y )< R, and

f (R,Pτ
UP

0
S̃P

τ
X̃ |US̃) = D(PS̃‖PS)+D(V 0‖W | PX̃ |S̃PS̃).

By (31), for PUX̃S̃ = P0
S̃
Pτ

UX̃ |US̃
and PY |X̃ S̃ = V 0, by standard continuity arguments,

we have
I(U ∧Y )< R+ν,

and
D(PS̃‖PS)+D(V 0‖W | PX̃ |S̃PS̃)≤ f (R,Pτ

UP
0
S̃P

τ
X̃ |US̃)+ν,

where ν = ν(τ)→ 0 as τ → 0. Consequently,

f (R,P0
S̃P

τ
UX̃ |US̃)≤ D(PS̃‖PS)+D(V 0‖W | PX̃ |S̃PS̃)≤ f (R,Pτ

UP
0
S̃P

τ
X̃ |US̃)+ν.

Finally, noting the continuity of f (R,PUX̃S̃) in R [3, Lemma 10.4], the proof is
completed. ��
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