
Chapter 5
General Theory

This chapter starts the second part of the book, where neutral type time-delay
systems are studied. Issues related to the existence, uniqueness, and continuation
of solutions of an initial value problem for such systems are discussed. In addition,
stability concepts and basic stability results obtained with the use of the Lyapunov–
Krasovskii approach, mainly in the form of necessary and sufficient conditions, are
presented here.

5.1 System Description

We consider a neutral type time-delay system of the form

d
dt

[x(t)−Dx(t − h)] = f (t,xt ). (5.1)

Here the functional f (t,ϕ) is defined for t ∈ [0,∞) and ϕ ∈ PC1 ([−h,0] ,Rn),

f : [0,∞)×PC1 ([−h,0] ,Rn)−→ Rn,

and is continuous in both arguments. The matrix D is a given n× n matrix, delay
h > 0. The information needed to begin the computation of a particular solution of
the system includes an initial time instant t0 ≥ 0 and an initial function ϕ : [−h,0]→
Rn, and it is assumed that

x(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0]. (5.2)

As usual, the state of the system at the time instant t ≥ t0 is defined as the restriction,

xt : θ → x(t +θ ), θ ∈ [−h,0],
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174 5 General Theory

of the solution x(t) on the segment [t−h, t]. If the initial condition (t0,ϕ) is indicated
explicitly, then we use the notations x(t, t0,ϕ) and xt(t0,ϕ). In the case of time-
invariant systems we usually assume that t0 = 0 and omit the argument t0 in these
notations.

We will use initial functions from the space PC1 ([−h,0],Rn)⊂ PC ([−h,0],Rn).
Here it is assumed that a function ϕ ∈ PC ([−h,0],Rn) belongs to PC1 ([−h,0],Rn)
if on each continuity interval (α,β ) ∈ [−h,0] the function is continuously differ-
entiable and the first derivative of the function, ϕ ′(θ ), has a finite right-hand-side
limit at θ = α , ϕ ′(α + 0) = limε→0 ϕ ′(α + |ε|), and a finite left-hand-side limit
at θ = β , ϕ ′(β − 0) = limε→0 ϕ ′(β − |ε|). On the one hand, such a choice creates
certain technical difficulties. But on the other hand, it provides several advantages
in the formulations and proofs of some statements presented in the chapter. In
particular, it follows from Theorem 5.1 that if ϕ ∈ PC1 ([−h,0],Rn), then xt(t0,ϕ) ∈
PC1 ([−h,0],Rn) for t > t0.

Henceforth we assume that the following assumptions hold.

Assumption 5.1. The difference x(t, t0,ϕ) − Dx(t − h, t0,ϕ) is continuous and
differentiable for t ≥ t0, except possibly for a countable number of points. This does
not imply that x(t, t0,ϕ) is differentiable, or even continuous, for t ≥ t0.

Assumption 5.2. In Eq. (5.1) the right-hand-side derivative of the difference
x(t, t0,ϕ)−Dx(t−h, t0,ϕ) is assumed at the point t = t0. By default, such agreement
remains valid in situations where only a one-sided variation of the independent
variable is allowed.

Let x(t) be a solution of the initial value problem (5.1)–(5.2); then

x(t) = Dx(t − h)+ [ϕ(0)−Dϕ(−h)]+

t∫

t0

f (s,xs)ds, t ≥ t0. (5.3)

System (5.3) is the integral form of the initial value problem. In some sense it is
more convenient to consider the integral system than the original one. For example,
the choice of PC ([−h,0],Rn) as the space of initial functions for system (5.3) seems
natural. The integral form substantially simplifies the study of discontinuity points
of the solutions of system (5.1). If θ1 ∈ [−h,0] is a discontinuity point of ϕ , then,
according to Assumption 5.1, the function

z(t) = Dx(t − h)+ [ϕ(0)−Dϕ(−h)]

has a jump discontinuity at t1 = t0 + θ1 + h and the size of the jump at the point is
such that

Δx(t1) = DΔϕ(θ1),
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where Δx(t1) = x(t1 + 0)− x(t1 − 0). If x(t) is defined for t ∈ [t0 − h,∞), then, as
follows from Eq. (5.3), the solution suffers a jump discontinuity at the points tk =
t0 +θ1 + kh, k ≥ 0, and the jumps are subjected to the equation

Δx(tk+1) = DΔx(tk), k ≥ 0.

One of the special features of neutral type time-delay systems is the following. The
discontinuity of a solution results in the discontinuity of the derivative on the left-
hand side of system (5.1). Indeed, consider the system

d
dt

[x(t)−Dx(t − h)] = F(x(t),x(t − h)).

If θ1 ∈ [−h,0] is a discontinuity point of ϕ , then

lim
t→t1−0

d
dt

[x(t,ϕ)−Dx(t − h,ϕ)] = F(x(t1 − 0,ϕ),ϕ(θ1 − 0))

and

lim
t→t1+0

d
dt

[x(t,ϕ)−Dx(t − h,ϕ)] = F(x(t1 −0,ϕ)+Δx(t1,ϕ),ϕ(θ1 −0)+Δϕ(θ1)).

This means that the left-hand-side and right-hand-side derivatives at t = t1 may not
coincide. The following assumption makes it possible to overcome this technical
difficulty.

Assumption 5.3. It is assumed that x(t, t0,ϕ), t ∈ [t0 − h, t0 + τ], where τ > 0, is a
solution of system (5.1) if it satisfies the system almost everywhere on [t0, t0 + τ].

5.2 Existence Issue

We start with the following existence result.

Theorem 5.1. Let the functional

f : [0,∞)×PC1 ([−h,0] ,Rn)−→ Rn

satisfy the following conditions:

(i) For any H > 0 there exists M(H)> 0 such that

‖ f (t,ϕ)‖ ≤ M(H), (t,ϕ) ∈ [0,∞)×PC1 ([−h,0] ,Rn) , ‖ϕ‖h ≤ H.
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(ii) The functional f (t,ϕ) is continuous with respect to both arguments.
(iii) The functional f (t,ϕ) is Lipschitz with respect to the second argument, i.e., for

any H > 0 there exists a Lipschitz constant L(H) such that the inequality

∥∥∥ f (t,ϕ(1))− f (t,ϕ(2))
∥∥∥≤ L(H)

∥∥∥ϕ(1)−ϕ(2)
∥∥∥

h

holds for t ≥ 0, ϕ(k) ∈ PC1 ([−h,0] ,Rn), and
∥∥∥ϕ(k)

∥∥∥
h
≤ H, k = 1,2.

Then, for given t0 ≥ 0 and an initial function ϕ ∈ PC1 ([−h,0] ,Rn) there exists
τ > 0 such that the initial value problem (5.1)–(5.2) admits a unique solution
defined on the segment [t0 − h, t0 + τ].

Proof. Given t0 ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), we introduce the function

z(t) = Dϕ(t − t0 − h)+ϕ(0)−Dϕ(−h), t ∈ [t0, t0 + h].

Let us select H > 0 such that the following inequality holds:

H > H0 = max

{
sup

θ∈[−h,0]
‖ϕ(θ )‖ , sup

t∈[t0,t0+h]
‖z(t)‖

}
.

Now we can define the corresponding values M = M(H) and L = L(H); see
conditions (i) and (iii) of the theorem.

Let τ ∈ (0,h) be such that

τL < 1 and τM < H −H0.

Denote by Θ the set of discontinuity points of the initial function ϕ , and define a
piecewise continuous function u : [t0 − h, t0 + τ]→ Rn as follows:

u(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0],

and any discontinuity point t∗ ∈ (t0, t0+τ] of the function is such that t∗−t0−h∈Θ.
Finally, assume that the following inequality holds:

‖u(t)− z(t)‖ ≤ (t − t0)M, t ∈ [t0, t0 + τ].

The preceding inequality implies that

‖u(t)‖ ≤ H0 + τM < H, t ∈ [t0, t0 + τ].

It follows from the definition of the function that

‖u(t)‖ ≤ H0 < H, t ∈ [t0 − h, t0].
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We denote by U the set of all such functions. On the set U we define an operator A
that acts on the functions of the set

A(u)(t) =

⎧⎪⎪⎨
⎪⎪⎩

ϕ(t − t0), t ∈ [t0 − h, t0],

z(t)+

t∫

t0

f (s,us)ds, t ∈ [t0, t0 + τ].

Here us : θ → u(s+ θ ), θ ∈ [−h,0] and ‖us‖h ≤ H for s ∈ [t0, t0 + τ]. It is easy
to verify that the theorem conditions (i) and (ii) guarantee that the transformed
function, A(u), belongs to the same set U ,

u ∈U ⇒A(u) ∈U.

Any solution x̃(t) of the initial value problem (5.1)–(5.2) defines a fixed point of the
operator,

x̃(t) =A(x̃)(t), t ∈ [t0 − h, t0 + τ].

Observe that

A(u(1))(t)−A(u(2))(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t ∈ [t0 − h, t0],
t∫

t0

[ f (s,u(1)s )− f (s,u(2)s )]ds, t ∈ [t0, t0 + τ].

Hence, for t ∈ [t0 − h, t0]

∥∥∥A(u(1))(t)−A(u(2))(t)
∥∥∥= 0

and for t ∈ [t0, t0 + τ]

∥∥∥A(u(1))(t)−A(u(2))(t)
∥∥∥≤

t0+τ∫

t0

∥∥∥ f (s,u(1)s )− f (s,u(2)s )
∥∥∥ds.

Because ‖u(1)s ‖h ≤ H and ‖u(2)s ‖h ≤ H, the Lipschitz condition (iii) implies that the
inequality

∥∥∥A(u(1))(t)−A(u(2))(t)
∥∥∥ ≤ L

t0+τ∫

t0

∥∥∥u(1)s − u(2)s

∥∥∥
h

ds

≤ τL sup
s∈[t0−h,t0+τ]

∥∥∥u(1)(s)− u(2)(s)
∥∥∥
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holds for t ∈ [t0, t0+τ]. Since the preceding inequality holds for all t ∈ [t0−h, t0+τ],
we conclude that

sup
s∈[t0−h,t0+τ]

∥∥∥A(u(1))(t)−A(u(2))(t)
∥∥∥≤ τL sup

s∈[t0−h,t0+τ]

∥∥∥u(1)(s)− u(2)(s)
∥∥∥ .

Now, because Lτ < 1, the operator A satisfies the conditions of the contraction
mapping theorem, and there exists a unique fixed point of the operator u(∗) ∈ U .
This means that

u(∗)(t) =A(u(∗))(t) =

⎧⎪⎪⎨
⎪⎪⎩

ϕ(t − t0), t ∈ [t0 − h, t0],

z(t)+

t∫

t0

f (s,u(∗)s )ds, t ∈ [t0, t0 + τ],

i.e.,

u(∗)(t)−Du(∗)(t − h) = ϕ(0)−Dϕ(−h)+

t∫

t0

f (s,u(∗)s )ds, t ∈ [t0, t0 + τ].

The functional f (t,ϕ) is continuous, and u(∗)(t) is piecewise continuous; therefore,
the right-hand side of the last equality is differentiable on [t0, t0 + τ], except at most
a finite number of points, and we arrive at the conclusion that the following equality
holds almost everywhere:

d
dt

[
u(∗)(t)−Du(∗)(t − h)

]
= f (t,u(∗)t ), t ∈ [t0, t0 + τ].

Because function u(∗)(t) satisfies Eq. (5.2), it is the unique solution of the initial
value problem (5.1)–(5.2). ��
Remark 5.1. We can take t1 = t0 +τ as a new initial time instant and define the new
initial function

ϕ(1)(θ ) = u(∗)(t1 +θ ), θ ∈ [−h,0].

Then the construction process can be repeated, and we extend the solution to the next
segment [t1, t1 + τ̃ ]. This extension process can be continued as far as the solution
remains bounded.

For each solution there exists a maximal interval [t0, t0+T ) on which the solution
is defined. Here we present conditions under which any solution of system (5.1) is
defined on the interval [t0,∞).

Theorem 5.2. Let system (5.1) satisfy the conditions of Theorem 5.1. Assume
additionally that f (t,ϕ) satisfies the inequality

‖ f (t,ϕ)‖ ≤ η(‖ϕ‖h), t ≥ 0, ϕ ∈ PC1 ([−h,0] ,Rn) ,
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where the function η(r), r ∈ [0,∞), is continuous, nondecreasing, and such that for
any r0 ≥ 0 the following condition holds:

lim
R→∞

R∫

r0

dr
η(r)

= ∞.

Then any solution x(t, t0,ϕ) of the system is defined on [t0,∞).

Proof. Given t0 ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), there exists a maximal interval
[t0, t0 +T ) on which the corresponding solution x(t, t0,ϕ) is defined. For the sake
of simplicity we denote x(t, t0,ϕ) by x(t).

Denote by [t0, t0 + T ) the maximal interval on which the solution is defined.
Assume by contradiction that T < ∞, and define the smallest entire N such that
T ≤ Nh. There exists an increasing sequence {tk}∞

k=1 such that

lim
k→∞

tk = t0 +T

and
lim
k→∞

‖x(tk)‖ → ∞.

Otherwise, by Remark 5.1, the solution can be defined on a wider segment [t0, t0 +
T + τ], τ > 0.

The solution satisfies the equality

x(t) = Dx(t − h)+ [ϕ(0)−Dϕ(−h)]+

t∫

t0

f (s,xs)ds, t ∈ [t0, t0 +T ).

For a given t ∈ [t0, t0+T ) we define an integer k such that t ∈ [t0+(k− 1)h, t0+kh).
Now, iterating the preceding equality k− 1 times, we obtain that

x(t) = Dkx(t − kh)+
k−1

∑
j=0

D j[ϕ(0)−Dϕ(−h)]+
k−1

∑
j=0

D j

t− jh∫

t0

f (s,xs)ds.

There exist d ≥ 1 and ρ > 0 such that
∥∥Dk

∥∥≤ dρk for k ≥ 0. Thus

‖x(t)‖ ≤ κ ‖ϕ‖h +κ

t∫

t0

‖ f (s,xs)‖ds, t ∈ [t0, t0 +T ),

where

κ = d
N−1

∑
j=0

ρ j, κ = max
{

d,dρN}+(1+ρ)κ.
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For θ ∈ [−h,0] the following inequality holds:

‖x(t +θ )‖ ≤ κ ‖ϕ‖h +κ

max{t+θ ,t0}∫

t0

‖ f (s,xs)‖ds

≤ κ ‖ϕ‖h +κ

t∫

t0

‖ f (s,xs)‖ds;

hence we arrive at the inequality

‖xt‖h ≤ κ ‖ϕ‖h +κ

t∫

t0

‖ f (s,xs)‖ds, t ∈ [t0, t0 +T).

It follows from the theorem conditions that

‖xt‖h ≤ κ ‖ϕ‖h +κ

t∫

t0

η(‖xs‖h)ds, t ∈ [t0, t0 +T ).

Denote the right-hand side of the last inequality by v(t); then

dv(t)
dt

= κη(‖xt‖h)≤ κη(v(t)), t ∈ [t0, t0 +T).

This implies that

tk∫

t0

dv(s)
η(v(s))

≤ κ (tk − t0) , k = 1,2,3, . . . .

On the one hand, since
tk∫

t0

dv(s)
η(v(s))

=

rk∫

r0

dξ
η(ξ )

,

where r0 = v(t0) = κ ‖ϕ‖h ≥ 0, and

rk = v(tk)≥
∥∥xtk

∥∥
h ≥ ‖x(tk)‖→ ∞, as k → ∞,

we conclude that

lim
k→∞

tk∫

t0

dv(s)
η(v(s))

= ∞.
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On the other hand,
lim
k→∞

κ (tk − t0) = κT ;

therefore T = ∞. This contradicts our assumption that T < ∞. The contradiction
concludes the proof of the theorem. ��

5.3 Continuity of Solutions

In this section we analyze the continuity properties of the solutions of system (5.1)
with respect to initial conditions as well as the system right-hand-side perturbations.
These continuity properties are a direct consequence of the following theorem.

Theorem 5.3. Assume that the right-hand side of system (5.1), f (t,ϕ), satisfies the
conditions of Theorem 5.1. Let x(t, t0,ϕ) be a solution of system (5.1) with the initial
condition

x(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0].

Given a perturbed system of the form

d
dt

[y(t)−Dy(t − h)] = f (t,yt)+ g(t,yt), t ≥ 0,

where the functional g(t,ϕ) is continuous on the set [0,∞)× PC1 ([−h,0] ,Rn),
the functional g(t,ϕ) satisfies the Lipschitz condition with respect to the second
argument and

‖g(t,ϕ)‖ ≤ m, t ≥ 0, ϕ ∈ PC1 ([−h,0] ,Rn) .

Let y(t, t0,ψ) be a solution of the perturbed system with the initial condition

y(t0 +θ ) = ψ(θ ), θ ∈ [−h,0].

If both solutions are defined for t ∈ [t0, t0 +T ], where 0 < T < ∞, then there exist
positive constants α,β ,γ such that the following inequality holds:

‖x(t, t0,ϕ)− y(t, t0,ψ)‖ ≤ (α ‖ψ −ϕ‖h +β m)eγ(t−t0), t ∈ [t0, t0 +T ].

Proof. For the matrix D there exist d ≥ 1 and ρ > 0 such that
∥∥Dk

∥∥≤ dρk for k ≥ 0.
For the sake of simplicity we will use the following shorthand notations for the

solutions x(t, t0,ϕ) = x(t) and y(t, t0,ψ) = y(t). Observe that for t ≥ t0

d
dt

[x(t)−Dx(t − h)]− d
dt

[y(t)−Dy(t − h)] = f (t,xt)− f (t,yt)− g(t,yt).
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Integrating the preceding equality we obtain that

x(t)− y(t) = D [x(t − h)− y(t− h)]

+[ϕ(0)−Dϕ(−h)]− [ψ(0)−Dψ(−h)]

+

t∫

t0

[ f (s,xs)− f (s,ys)− g(s,ys)]ds, t ≥ t0.

Let us first define the smallest integer N such that T ≤ hN. Then for a given t ∈
[t0, t0 + T ] we define an integer k such that t ∈ [t0 +(k− 1)h, t0 + kh). Now, after
k− 1 iterations we arrive at the equality

x(t)− y(t) = Dk [x(t − kh)− y(t− kh)]+
k−1

∑
j=0

D j [ϕ(0)−ψ(0)]

−
k−1

∑
j=0

D j+1 [ϕ(−h)−ψ(−h)]

+
k−1

∑
j=0

D j

t− jh∫

t0

[ f (s,xs)− f (s,ys)− g(s,ys)]ds. (5.4)

Since t − kh ∈ [t0 − h, t0], we conclude that

∥∥∥Dk [x(t − kh)− y(t− kh)]
∥∥∥≤ dρk ‖ϕ −ψ‖h ≤ max

{
d,dρN}‖ϕ −ψ‖h .

It is obvious that the following two inequalities hold:

∥∥∥∥∥
k−1

∑
j=0

D j [ϕ(0)−ψ(0)]

∥∥∥∥∥≤ κ ‖ϕ −ψ‖h ,

where

κ = d
N−1

∑
j=0

ρ j

and ∥∥∥∥∥
k−1

∑
j=0

D j+1 [ϕ(−h)−ψ(−h)]

∥∥∥∥∥≤ κρ ‖ϕ −ψ‖h .
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Finally, we find that
∥∥∥∥∥∥

k−1

∑
j=0

D j

t− jh∫

t0

[ f (s,xs)− f (s,ys)]ds

∥∥∥∥∥∥ ≤ κ

t∫

t0

‖ f (s,xs)− f (s,ys)‖ds

≤ κL1

t∫

t0

‖xs − ys‖h ds

and ∥∥∥∥∥∥
k−1

∑
j=0

D j

t− jh∫

t0

g(s,ys)ds

∥∥∥∥∥∥≤ κ

t∫

t0

‖g(s,ys)‖ds ≤ κm(t − t0).

Here L1 = L(H1) and

H1 = max

{
sup

t∈[t0−h,t0+T ]
‖x(t)‖ , sup

t∈[t0−h,t0+T ]
‖y(t)‖

}
.

Now equality (5.4) implies that for t ∈ [t0, t0 +T ] the inequality

‖x(t)− y(t)‖ ≤ κ ‖ϕ −ψ‖h +κm(t − t0)+κL1

t∫

t0

‖xs − ys‖h ds

holds, where
κ = max

{
d,dρN}+κ(1+ρ).

Applying arguments similar to that used in the proof of Theorem 5.2 we obtain that

‖xt − yt‖h ≤ κ ‖ϕ −ψ‖h +κm(t − t0)+κL1

t∫

t0

‖xs − ys‖h ds, t ∈ [t0, t0 +T ].

Denote the right-hand side of the last inequality by v(t); then

dv(t)
dt

= κm+κL1 ‖xt − yt‖h , t ∈ [t0, t0 +T ].

Direct integration of this inequality leads to the desired result

‖x(t, t0,ϕ)− y(t, t0,ψ)‖ ≤ ‖xt(t0,ϕ)− yt(t0,ψ)‖h

≤ κ ‖ψ −ϕ‖h eκL1(t−t0) +
m
L

eκL1(t−t0)

≤ (α ‖ψ −ϕ‖h +β m)eγ(t−t0), t ∈ [t0, t0 +T ],

where α = κ , β = L−1
1 , and γ = κL1. ��
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Corollary 5.1. Let g(t,ϕ) ≡ 0, then m = 0, and both x(t, t0,ϕ) and y(t, t0,ψ) are
solutions of system (5.1). Assume that these solutions are defined for t ∈ [t0, t0 +T ].
Then for any ε > 0 there exists δ > 0 such that if ‖ψ −ϕ‖h < δ , then the following
inequality holds:

‖x(t, t0,ϕ)− x(t, t0,ψ)‖< ε, t ∈ [t0, t0 +T ].

In other words, x(t, t0,ϕ) depends continuously on the initial function ϕ .

Proof. The statement follows directly from Theorem 5.3 if we set δ = εα−1e−γT .��
Corollary 5.2. Let ψ(θ ) = ϕ(θ ), θ ∈ [−h,0]; then the solutions x(t, t0,ϕ) and
y(t, t0,ψ) have the same initial function. Assume that these solutions are defined
for t ∈ [t0, t0 +T ]. Then for any ε > 0 there exists δ > 0 such that if m < δ , then the
following inequality holds:

‖x(t, t0,ϕ)− y(t, t0,ϕ)‖< ε, t ∈ [t0, t0 +T ].

This means that the solutions depend continuously on the right-hand side of
system (5.1).

Proof. The statement follows directly from Theorem 5.3 if we set δ = εβ−1e−γT .��

5.4 Stability Concepts

In the rest of the chapter we assume that system (5.1) satisfies the conditions of
Theorem 5.1 and additionally that it admits the trivial solution, i.e., the following
identity holds:

f (t,0h)≡ 0, for t ≥ 0.

Definition 5.1. The trivial solution of system (5.1) is said to be stable if for any
ε > 0 and t0 ≥ 0 there exists δ (ε, t0) > 0 such that for every initial function ϕ ∈
PC1([−h,0],Rn), with ‖ϕ‖h < δ (ε, t0), the following inequality holds:

‖x(t, t0,ϕ)‖< ε, t ≥ t0.

If δ (ε, t0) can be chosen independently of t0, then the trivial solution is said to be
uniformly stable.

Definition 5.2. The trivial solution of system (5.1) is said to be asymptotically
stable if for any ε > 0 and t0 ≥ 0 there exists Δ(ε, t0)> 0 such that for every initial
function ϕ ∈ PC1([−h,0],Rn), with ‖ϕ‖h < Δ(ε, t0), the following conditions hold.
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1. ‖x(t, t0,ϕ)‖< ε , for t ≥ t0.
2. x(t, t0,ϕ)→ 0, as t − t0 → ∞.

If Δ(ε, t0) can be chosen independently of t0 and there exists H1 > 0 such that
x(t, t0,ϕ) → 0, because t − t0 −→ ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈
PC1([−h,0],Rn), with ‖ϕ‖h ≤H1, then the trivial solution is said to be uniformly
asymptotically stable.

Definition 5.3. The trivial solution of system (5.1) is said to be exponentially
stable if there exist Δ0 > 0, σ > 0, and γ ≥ 1 such that for every t0 ≥ 0 and
ϕ ∈ PC1([−h,0],Rn), with ‖ϕ‖h < Δ0, the following inequality holds:

‖x(t, t0,ϕ)‖ ≤ γe−σ(t−t0) ‖ϕ‖h , t ≥ t0.

As mentioned in Sect. 5.1, if an initial function ϕ admits a jump point θ1, then
the corresponding solution, x(t, t0,ϕ), has jump discontinuity at the points tk = t0 +
θ1 + kh, k ≥ 1, and the jumps at these points satisfy the jump equation

Δx(tk+1) = DΔx(tk), k ≥ 1.

As a consequence, we observe that system (5.1) cannot be stable if the matrix D
admits an eigenvalue with magnitude greater than one. Otherwise, for any δ > 0
there exists an initial function ϕ ∈ PC1([−h,0],Rn), with ‖ϕ‖h < δ , such that the
corresponding solution x(t, t0,ϕ) has a sequence of jumps, and the size of the jumps
tends to infinity. This observation motivates the following assumption.

Assumption 5.4. In the rest of the chapter we assume that matrix D is Schur stable,
i.e., the spectrum of the matrix lies in the open unit disc of the complex plane.

5.5 Lyapunov–Krasovskii Approach

We will use the following concept of positive-definite functionals for system (5.1).

Definition 5.4. The functional v(t,ϕ) is said to be positive definite if there exists
H > 0 such that the following conditions are satisfied:

1. The functional v(t,ϕ) is defined for t ≥ 0 and ϕ ∈PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤
H.

2. v(t,0h) = 0, t ≥ 0.
3. There exists a positive-definite function v1 (x) such that

v1(ϕ(0)−Dϕ(−h))≤ v(t,ϕ) ,

t ≥ 0, ϕ ∈ PC1 ([−h,0] ,Rn) , with ‖ϕ‖h ≤ H.
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4. For any given t0 ≥ 0 the functional v(t0,ϕ) is continuous in ϕ at the point 0h,
i.e., for any ε > 0 there exists δ > 0 such that the inequality ‖ϕ‖h < δ implies

|v(t0,ϕ)− v(t0,0h)|= v(t0,ϕ)< ε.

We are now ready to present some basic results of the Lyapunov–Krasovskii
approach.

Theorem 5.4. The trivial solution of system (5.1) is stable if and only if there exists
a positive-definite functional v(t,ϕ) such that along the solutions of the system
v(t,xt), as a function of t, does not increase.

Proof. Sufficiency: Since the matrix D is Schur stable, there exist d ≥ 1and ρ ∈
(0,1) such that the inequality

∥∥Dk
∥∥≤ dρk holds for k ≥ 0. The positive definiteness

of the functional v(t,ϕ) implies that there exists a positive-definite function v1(x)
satisfying Definition 5.4. Let H > 0 be that of Definition 5.4.

For a given ε ∈ (0,H) we first set

ε1 =
1−ρ

d
ε > 0

and then introduce the positive value

λ (ε1) = min
‖x‖=ε1

v1(x). (5.5)

Since for a given t0 ≥ 0 functional v(t0,ϕ) is continuous in ϕ at the point 0h, there
exists δ1(ε, t0) > 0 such that v(t0,ϕ) < λ (ε1) for any ϕ ∈ PC1 ([−h,0] ,Rn), with
‖ϕ‖h ≤ δ1(ε, t0).

It is clear that δ1(ε, t0) ≤ ε1; otherwise we can present an initial function ϕ ∈
PC1 ([−h,0] ,Rn) such that ‖ϕ‖h < δ1(ε, t0) and ‖ϕ(0)−Dϕ(−h)‖ = ε1. On the
one hand, for this initial function we have v1(ϕ(0)−Dϕ(−h)) ≥ λ (ε1). On the
other hand, v1(ϕ(0)−Dϕ(−h)) ≤ v(t0,ϕ) < λ (ε1). The contradiction proves the
desired inequality.

Now we define the positive value

δ (ε, t0) =
δ1(ε, t0)
1+ dρ

.

Let ϕ ∈ PC1 ([−h,0] ,Rn) with ‖ϕ‖h < δ (ε, t0). Then the theorem condition implies
that

v1(x(t, t0,ϕ)−Dx(t − h, t0,ϕ)) ≤ v(t,xt(t0,ϕ))

≤ v(t0,ϕ)< λ (ε1), t ≥ t0. (5.6)
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We prove that
‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε1, t ≥ t0.

Assume by contradiction that there exists a time instant t1 ≥ t0 for which

‖x(t1, t0,ϕ)−Dx(t1 − h, t0,ϕ)‖ ≥ ε1.

Since

‖x(t0, t0,ϕ)−Dx(t0 − h, t0,ϕ)‖ = ‖ϕ(0)−Dϕ(−h)‖
≤ (1+ dρ)‖ϕ‖h < δ1(ε, t0)≤ ε1

and ‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ is a continuous function of t, there exists t∗ ∈
[t0, t1] such that

‖x(t∗, t0,ϕ)−Dx(t∗− h, t0,ϕ)‖= ε1.

On the one hand, it follows from Eq. (5.5) that

v1(x(t
∗, t0,ϕ)−Dx(t∗− h, t0,ϕ))≥ λ (ε1).

On the other hand, Eq. (5.6) provides the opposite inequality

v1(x(t
∗, t0,ϕ)−Dx(t∗− h, t0,ϕ))< λ (ε1).

The contradiction proves that our assumption is wrong, and

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε1, t ≥ t0.

The preceding inequality means that

x(t, t0,ϕ) = Dx(t − h, t0,ϕ)+ ξ (t), t ≥ t0, (5.7)

where ξ (t) is such that ‖ξ (t)‖< ε1, t ≥ t0.
For a given t ≥ t0 we define the entire number k such that t ∈ [t0 +(k− 1)h, t0 +

kh). Iterating equality (5.7) k− 1 times we obtain that

x(t, t0,ϕ) = Dkx(t − kh, t0,ϕ)+
k−1

∑
j=0

D jξ (t − jh).

Since t − kh ∈ [t0 − h, t0],

‖x(t − kh, t0,ϕ)‖ ≤ ‖ϕ‖h < δ (ε, t0)≤ ε1,
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t

‖x‖

H

t0

Fig. 5.1 Value of ‖x(t, t0,ϕ‖, the first case

and we arrive at the following inequality:

‖x(t, t0,ϕ)‖ ≤
∥∥∥Dk

∥∥∥‖x(t − kh, t0,ϕ)‖+
k−1

∑
j=0

∥∥D j
∥∥‖ξ (t − jh)‖

< dρkδ (ε, t0)+
k−1

∑
j=0

dρ jε1 <
d

1−ρ
ε1 = ε, t ≥ t0.

This means that δ (ε, t0) satisfies Definition 5.1, and the trivial solution of Eq. (5.1)
is stable.

Necessity: Now, the trivial solution of system (5.1) is stable, and we must prove
that there exists a functional v(t,ϕ) that satisfies the theorem conditions.

Construction of the functional: Since the trivial solution of system (5.1) is stable,
for ε = H there exists δ (H, t0)> 0 such that the inequality ‖ϕ‖h < δ (H, t0) implies
that ‖x(t, t0,ϕ)‖< H for t ≥ t0. We define the functional v(t,ϕ) as follows:

v(t0,ϕ) =

⎧⎨
⎩

sup
t≥t0

‖x(t, t0,ϕ)−Dx(t − h, t0ϕ)‖ , if ‖x(t, t0,ϕ)‖ < H, for t ≥ t0,

(1+ dρ)H if there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖ ≥ H.

(5.8)

These two possibilities are illustrated in Figs. 5.1 and 5.2, respectively.
We verify first that the functional is positive definite. To this end, we must verify

that it satisfies the conditions of Definition 5.4.

Condition 1: Actually, Eq. (5.8) allows us to compute v(t0,ϕ) for any t0 ≥ 0 and
ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H.
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t

‖x‖

H

t0 T

Fig. 5.2 Value of ‖x(t, t0,ϕ‖, the second case

Condition 2: Since for ϕ = 0h the corresponding solution is trivial, x(t, t0,0h) = 0,
t ≥ t0, then v(t0,0h) = 0.

Condition 3: The function v1 (x) = ‖x‖ is positive definite. In the case where
‖x(t, t0,ϕ)‖< H for t ≥ t0, we have

v1 (ϕ(0)−Dϕ(−h)) = ‖ϕ(0)−Dϕ(−h)‖
≤ sup

t≥t0
‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖= v(t0,ϕ).

And in the other case where there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖ ≥ H, the
following inequality holds:

v1 (ϕ(0)−Dϕ(−h)) = ‖ϕ(0)−Dϕ(−h)‖ ≤ (1+ dρ)H = v(t0,ϕ).

Condition 4: Given t0 ≥ 0, the stability of the trivial solution means that for any
ε > 0 there exists δ1 = δ ( ε

1+dρ , t0)> 0 such that ‖ϕ‖h < δ1 implies

‖x(t, t0,ϕ)‖ < ε
1+ dρ

, t ≥ t0.

This means that

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ ≤ ‖x(t, t0,ϕ)‖+ dρ ‖x(t − h, t0,ϕ)‖< ε, t ≥ t0.

The preceding inequality demonstrates that

|v(t0,ϕ)− v(t0,0h)|= v(t0,ϕ)≤ ε.
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This observation makes it clear that for a fixed t0 ≥ 0 the functional v(t0,ϕ) is
continuous in ϕ at the point 0h.

Now we check that functional (5.8) satisfies the theorem condition. First, we
consider the case where ‖x(t, t0,ϕ)‖ < H for t ≥ t0. In this case, given two time
instants t1 and t2 such that t2 > t1 ≥ t0, we have that

v(t1,xt1(t0,ϕ)) = sup
t≥t1

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖

and
v(t2,xt2(t0,ϕ)) = sup

t≥t2
‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ .

Since for the second value the range of the supremum is smaller than that for the
first one, we conclude that

v(t2,xt2(t0,ϕ))≤ v(t1,xt1(t0,ϕ)).

This means that along the solution the functional v(t,xt(t0,ϕ)) does not increase as a
function of t. In the second case, where there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖ ≥
H, we have the equality

v(t2,xt2(t0,ϕ)) = v(t1,xt1(t0,ϕ)) = (1+ dρ)H,

and, once again, the functional does not increase along the solution of system (5.1).��
Remark 5.2. On the one hand, functional (5.8) has only an academic value.
Obviously, we cannot use such functionals in applications. On the other hand,
it demonstrates that the Lyapunov–Krasovskii approach is universal: for any
system with a stable trivial solution there are positive-definite functionals satisfying
Theorem 5.4.

Theorem 5.5. The trivial solution of system (5.1) is uniformly stable if and only if
there exists a positive-definite functional v(t,ϕ) such that the following conditions
are satisfied:

1. The value of the functional along the solutions of the system, v(t,xt), as a
function of t does not increase.

2. The functional is continuous in ϕ at the point 0h, uniformly for t ≥ 0.

Proof. Sufficiency: We use notations from the proof of the sufficiency part of
Theorem 5.4. Now the functional v(t,ϕ) is continuous in ϕ at the point 0h,
uniformly for t ≥ 0, so there exists a positive value δ1(ε) such that the inequality
v(t0,ϕ)< λ (ε1) holds for any t0 ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h < δ1(ε).
Therefore, the value

δ (ε) =
δ1(ε)

1+ dρ
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does not depend on t0. The remainder of the sufficiency part of the proof coincides
with that of Theorem 5.4.

Necessity: The uniform stability of the trivial solution of system (5.1) implies that δ
can be chosen independently of t0, δ = δ (ε). We show that functional (5.8) satisfies
the second condition of the theorem. Let us select for a given ε > 0(ε < H) the
value

δ1 = δ
(

ε
1+ dρ

)
.

Then, for any ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h < δ1 and t0 ≥ 0, we have that

‖x(t, t0,ϕ)‖< ε
1+ dρ

, for t ≥ t0.

This means that

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ ≤ ‖x(t, t0,ϕ)‖+ dρ ‖x(t − h, t0,ϕ)‖< ε, t ≥ t0.

The preceding inequality demonstrates that

|v(t0,ϕ)− v(t0,0h)|= v(t0,ϕ)≤ ε, t0 ≥ 0.

In other words, functional (5.8) is continuous in ϕ at the point 0h, uniformly with
respect to t0 ≥ 0. ��
Corollary 5.3. Let the condition of Theorem 5.4 be fulfilled, and let the functional
v(t,ϕ) admit an upper estimate of the form

v(t,ϕ)≤ v2(ϕ), t ≥ 0, ϕ ∈ PC1 ([−h,0] ,Rn) , with ‖ϕ‖h ≤ H,

with a positive-definite functional v2(ϕ); then the trivial solution of system (5.1) is
uniformly stable.

Theorem 5.6. The trivial solution of system (5.1) is asymptotically stable if and
only if the following conditions hold.

1. There exists a positive-definite functional v(t,ϕ), defined for t ≥ 0 and ϕ ∈
PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H such that along the solutions of the system
v(t,xt), as a function of t, does not increase.

2. For any t0 ≥ 0 there exists a positive value μ(t0) such that if ϕ ∈PC1 ([−h,0] ,Rn)
and ‖ϕ‖h < μ(t0), then v(t,xt(t0,ϕ)) decreases monotonically to zero as
t − t0 → ∞.

Proof. Sufficiency: Since the matrix D is Schur stable, there exists d ≥ 1 and ρ ∈
(0,1) such that the inequality

∥∥Dk
∥∥≤ dρk holds for k ≥ 0. The first condition of the
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theorem implies the stability of the trivial solution of system (5.1); see Theorem 5.4.
Thus, for any ε ∈ (0,H) and t0 ≥ 0 there exists δ (ε, t0) > 0 such that if ‖ϕ‖h <
δ (ε, t0), then ‖x(t, t0,ϕ)‖< ε for t ≥ t0. Let us define the value

Δ(ε, t0) = min{δ (ε, t0) ,μ(t0)} .

Now, given an initial function ϕ ∈ PC1 ([−h,0] ,Rn) such that ‖ϕ‖h < Δ(ε, t0), we
will demonstrate that x(t, t0,ϕ)→ 0 as t − t0 → ∞. The functional v(t,ϕ) is positive
definite, so there exists a positive-definite function v1(x)such that

v1(ϕ(0)−Dϕ(−h))≤ v(t,ϕ)

for t ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H. For a given ε1 > 0(ε1 < ε) we
set

ε2 =
1−ρ

2d
ε1 > 0

and define the positive value

α = min
ε2≤‖x‖≤ε

v1(x).

By the second condition of the theorem, there exists T > 0 such that v(t,xt(t0,ϕ))<
α for t ≥ t0 +T and

v1(x(t, t0,ϕ)−Dx(t − h, t0,ϕ))≤ v(t,xt(t0,ϕ))< α, t − t0 ≥ T,

so we must conclude that

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε2, t − t0 ≥ T.

This means that

x(t, t0,ϕ) = Dx(t − h, t0,ϕ)+ν(t), t − t0 ≥ T, (5.9)

where
‖ν(t)‖< ε2, t − t0 ≥ T.

For a given t ≥ t0 +T we define the integer number k such that t ∈ [t0 +T +(k−
1)h, t0 +T + kh). Then, iterating equality (5.9) (k− 1) times, we obtain that

x(t, t0,ϕ) =
k−1

∑
j=0

D jν(t − jh)+Dkx(t − kh, t0,ϕ)
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and

‖x(t, t0,ϕ)‖ ≤
k−1

∑
j=0

dρ jε2 + dρkε <
d

1−ρ
ε2 + dρkε ≤ 1

2
ε1 + dρkε, t − t0 ≥ T.

Since ρk → 0 as k → ∞, then, starting from some k0, the following inequality holds:

dρkε <
1
2

ε1, k ≥ k0.

This means that ‖x(t, t0,ϕ)‖ < ε1for t ≥ t0 + T + k0h, and we conclude that
x(t, t0,ϕ) → 0 as t − t0 → ∞. Hence, the previously defined value Δ(t0,ε) satisfies
Definition 5.2.

Necessity: In this part of the proof we make use of functional (5.8). In the proof of
Theorem 5.4 it was demonstrated that the functional is positive definite and does not
increase along the solutions of system (5.1). This means that the functional satisfies
the first condition of the theorem.

We address the second condition of the theorem and choose the value μ(t0) as
follows:

μ(t0) = Δ(H, t0)> 0.

Now for any initial function ϕ ∈PC1 ([−h,0] ,Rn), with ‖ϕ‖h < μ(t0), we know that
x(t, t0,ϕ)→ 0 as t − t0 → ∞. This means that for any ε1 > 0 there exists t1 ≥ t0such
that

‖x(t, t0,ϕ)‖< 1
1+ dρ

ε1, t ≥ t1.

According to Eq. (5.8), we have

v(t,xt(t0,ϕ)) = sup
s≥t

‖x(s, t0,ϕ)−Dx(s− h, t0,ϕ)‖

≤ 1
1+ dρ

ε1 +
dρ

1+ dρ
ε1 = ε1, t ≥ t1 + h.

The preceding observation proves that v(t,xt(t0,ϕ)) tends to zero as t − t0 → ∞. ��
The following statement gives sufficient conditions for the asymptotic stability

of the trivial solution of system (5.1).

Theorem 5.7. The trivial solution of system (5.1) is asymptotically stable if there
exist a positive-definite functional v(t,ϕ) and a positive-definite function w(x) such
that along the solutions of the system the functional v(t,ϕ) is differentiable and its
time derivative satisfies the inequality

dv(t,xt)

dt
≤−w(x(t)−Dx(t − h)).
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Proof. Since the matrix D is Schur stable, there exists d ≥ 1 and ρ ∈ (0,1) such that
the inequality

∥∥Dk
∥∥≤ dρk holds for k ≥ 0.

Observe first that the theorem conditions imply that of Theorem 5.4; therefore,
the trivial solution of system (5.1) is stable, i.e., for any t0 ≥ 0 and ε > 0 there exists
δ (ε, t0)> 0, which satisfies Definition 5.1. Let us set

Δ(ε, t0) = δ (
ε

1+ dρ
, t0)> 0.

Given t0 ≥ 0 and an initial function ϕ ∈ PC1 ([−h,0] ,Rn) such that ‖ϕ‖h <
Δ(ε, t0), we have that

‖x(t, t0,ϕ)‖< ε
1+ dρ

, t ≥ t0,

and
‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε, t ≥ t0 + h. (5.10)

First we demonstrate that

x(t, t0,ϕ)−Dx(t − h, t0,ϕ)→ 0, as t − t0 → ∞. (5.11)

Assume by contradiction that this is not the case; then there exists α > 0 and a
sequence {tk}∞

k=1, tk − t0 → ∞, as k → ∞ such that

‖x(tk, t0,ϕ)−Dx(tk − h, t0,ϕ)‖ ≥ α, k ≥ 1.

Without loss of generality we may assume that tk+1 − tk ≥ h for k ≥ 0. It follows
from system (5.1) that

x(t, t0,ϕ)−Dx(t − h, t0,ϕ) = [x(tk, t0,ϕ)−Dx(tk − h, t0,ϕ)]

+

t∫

tk

f (s,xs(t0,ϕ))ds, t ≥ tk,

and since ‖x(tk, t0,ϕ)−Dx(tk − h, t0,ϕ)‖ ≥ α , then

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ ≥ α −M(ε)(t − tk), t ≥ tk

(see condition (i) of Theorem 5.1). Hence, for any k ≥ 1 the following inequality
holds:

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ ≥ α
2
, t ∈ [tk, tk + τ],
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where

τ = min

{
h,

α
2M(ε)

}
.

Because the function w(x) is positive definite, we have that

β = min
α
2 ≤‖x‖≤ε

w(x) > 0.

The second condition of the theorem implies that

v(t,xt(t0,ϕ)) ≤ v(t0,ϕ)−
t∫

t0

w(x(s, t0,ϕ)−Dx(s− h, t0,ϕ))ds

≤ v(t0,ϕ)− τβ N(t),

where N(t) denotes the number of segments [tk, tk + τ] that belong to [t0, t].
Since N(t) → ∞ as t − t0 → ∞, we have that v(t,xt(t0,ϕ)) becomes negative for
sufficiently large t, which contradicts the positive definiteness of the functional. The
contradiction proves Eq. (5.11). This means that

x(t, t0,ϕ) = Dx(t − h, t0,ϕ)+ ξ (t), t ≥ t0,

and ξ (t)→ 0 as t − t0 → ∞. Given a positive value ε1 < ε , there exists t1 > t0 such
that

‖ξ (t)‖< 1−ρ
2d

ε1, t ≥ t1.

Let us define k0 such that dρkε < 1
2 ε1 for k ≥ k0. Now for any t ≥ t1 + k0h we have

x(t, t0,ϕ) =
k0−1

∑
j=0

D jξ (t − jh)+Dk0x(t − k0h, t0,ϕ)

and

‖x(t, t0,ϕ)‖ ≤
k0−1

∑
j=0

∥∥D j
∥∥‖ξ (t − jh)‖+

∥∥∥Dk0

∥∥∥‖x(t − k0h, t0,ϕ)‖

<
d

1−ρ

(
1−ρ

2d
ε1

)
+ dρk0ε < ε1,

and we arrive at the conclusion that x(t, t0,ϕ) → 0 as t − t0 → ∞. This means that
the previously defined positive value Δ(ε, t0) satisfies Definition 5.2, and the trivial
solution of system (5.1) is asymptotically stable. ��
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Now we provide a criterion of the uniform asymptotic stability of the trivial
solution of system (5.1).

Theorem 5.8. The trivial solution of system (5.1) is uniformly asymptotically stable
if and only if there exists a positive-definite functional v(t,ϕ) such that the following
conditions hold.

1. The functional is continuous in ϕ at the point 0h, uniformly for t ≥ 0.
2. There exists a positive value μ1 such that v(t,xt(t0,ϕ)) decreases monotonically

to zero as t− t0 → ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈ PC1 ([−h,0] ,Rn),
with ‖ϕ‖h ≤ μ1.

Proof. Sufficiency: Comparing this theorem with Theorems 5.5 and 5.6 we conclude
that the trivial solution of system (5.1) is uniformly stable and asymptotically stable.
Therefore, for a given ε > 0 there exists

Δ(ε) = min

{
1
2

δ (ε),μ1

}
> 0

such that the following properties hold.

1. Given t0 ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ Δ(ε), we have that
‖x(t, t0,ϕ)‖< ε for t ≥ t0.

2. x(t, t0,ϕ)→ 0, as t − t0 → ∞.

Now we define the positive value

H1 = Δ(H).

The functional v(t,ϕ) is positive definite, so there exists a positive-definite function
v1(x) such that for t ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H, the following
inequality holds:

v1(ϕ(0)−Dϕ(−h))≤ v(t,ϕ) .

For a given ε1 > 0(ε1 < ε) we set

ε2 =
1−ρ

2d
ε1 > 0

and define the positive value

α = min
ε2≤‖x‖≤ε

v1(x).

By the second condition of the theorem, there exists T > 0 such that for any t0 ≥ 0
and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H1, the following inequality holds:

v(t,xt(t0,ϕ))< α, t − t0 ≥ T.
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This implies that

v1(x(t, t0,ϕ)−Dx(t − h, t0,ϕ))< α, t − t0 ≥ T,

and we conclude that

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε2, t − t0 ≥ T,

for any t0 ≥ 0, and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H1. And we again arrive at
equality (5.9). Applying the arguments used in the proof of the sufficiency part of
Theorem 5.6 we obtain the inequality

‖x(t, t0,ϕ)‖ ≤ 1
2

ε1 + dρkH, t − t0 ≥ T.

Since ρk → 0 as k → ∞, then, starting from some k0, the following inequality holds:

dρkH <
1
2

ε1, k ≥ k0.

This means that ‖x(t, t0,ϕ)‖ < ε1for t − t0 ≥ max{T,k0h}, and we conclude
that x(t, t0,ϕ) → 0 as t − t0 → ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈
PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H1. Therefore, the previously defined values Δ(ε)
and H1 satisfy Definition 5.2. This concludes the proof of the sufficiency part of the
theorem.

Necessity: The uniform asymptotic stability of the trivial solution of system (5.1)
implies that functional (5.8) satisfies the first condition of the theorem. Set

μ1 =
1
2

Δ(H),

where Δ(ε) is from Definition 5.2. Now, given ε1 > 0, then for any t0 ≥ 0 and
ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ μ1, there exists T > 0 such that

‖x(t, t0,ϕ)‖< ε1

1+ dρ
, t − t0 ≥ T,

and
‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε1, t − t0 ≥ T + h.

This means that functional (5.8) satisfies the inequality

v(t,xt(t0,ϕ))≤ ε1, t − t0 ≥ T + h,

for any t0 ≥ 0, and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ μ1. In other words, under
the conditions of the theorem, the value v(t,xt(t0,ϕ)) decreases monotonically to
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zero as t − t0 → ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈ PC1 ([−h,0] ,Rn), with
‖ϕ‖h ≤ μ1. This concludes the proof of the necessity part. ��
Theorem 5.9. The trivial solution of system (5.1) is exponentially stable if there
exists a positive-definite functional v(t,ϕ) such that the following conditions are
satisfied.

1. There are two positive constants α1,α2 for which the inequalities

α1 ‖ϕ(0)−Dϕ(−h)‖2 ≤ v(t,ϕ)≤ α2 ‖ϕ‖2
h

hold for t ≥ 0, and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H.
2. The functional is differentiable along the solutions of the system, and there exists

a positive constant σ1 such that

d
dt

v(t,xt)+ 2σ1v(t,xt)≤ 0.

Proof. Because the matrix D is Schur stable, there exist d ≥ 1 and ρ ∈ (0,1) such
that the inequality

∥∥Dk
∥∥ ≤ dρk holds for k ≥ 0. There exists σ2 > 0 such that ρ =

e−σ2h.
If we define the positive-definite function v1(x) = α1 ‖x‖2 and the positive-

definite functional v2(ϕ) = α2 ‖ϕ‖2
h, then it becomes evident that the functional

v(t,ϕ) satisfies the conditions of Theorem 5.5. Therefore, the trivial solution of
system (5.1) is uniformly stable. This means that for every ε > 0 there exists
δ (ε) > 0 such that the inequality ‖ϕ‖h < δ (ε) implies ‖x(t, t0,ϕ)‖ < ε for t ≥ t0.
Let us set

Δ0 = Δ(H).

We will demonstrate that this value satisfies Definition 5.3. To this end, we assume
that t0 ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), ‖ϕ‖h < Δ0. The corresponding solution
x(t, t0,ϕ) is such that

‖x(t, t0,ϕ)‖ < H, t ≥ t0.

The second condition of the theorem implies

v(t,xt(t0,ϕ))≤ v(t0,ϕ)e−2σ1(t−t0), t ≥ t0.

Applying the first condition we obtain the inequalities

α1 ‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖2 ≤ v(t0,ϕ)e−2σ1(t−t0)

≤ α2 ‖ϕ‖2
h e−2σ1(t−t0), t ≥ t0.

And, finally, we arrive at the exponential estimate

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ ≤ γ1 ‖ϕ‖h e−σ1(t−t0), t ≥ t0,
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where

γ1 =

√
α2

α1
.

This means that

x(t, t0,ϕ) = Dx(t − h, t0,ϕ)+η(t), t ≥ t0, (5.12)

where
‖η(t)‖ ≤ γ1 ‖ϕ‖h e−σ1(t−t0), t ≥ t0.

For a given t ≥ t0 we define an integer number k such that t ∈ [t0 +(k−1)h, t0+kh).
After k− 1 iterations of equality (5.12) we obtain

x(t, t0,ϕ) =
k−1

∑
j=0

D jη(t − jh)+Dkx(t − kh, t0,ϕ).

The last equality implies that

‖x(t, t0,ϕ)‖ ≤
k−1

∑
j=0

∥∥D j
∥∥‖η(t − jh)‖+

∥∥∥Dk
∥∥∥‖ϕ‖h

≤
k−1

∑
j=0

(
de−σ2 jh

)(
γ1 ‖ϕ‖h e−σ1(t− jh−t0)

)
+ de−σ2kh ‖ϕ‖h

≤ γ1d

(
k−1

∑
j=0

e−σ2 jhe−σ1(t− jh−t0)

)
‖ϕ‖h + de−σ2kh ‖ϕ‖h .

If we set σ0 = min{σ1,σ2}, then

‖x(t, t0,ϕ)‖ ≤ d
[
γ1ke−σ0(t−t0) + e−σ0kh

]
‖ϕ‖h .

It follows from the definition of k that (k− 1)h ≤ t − t0 < kh, hence

‖x(t, t0,ϕ)‖ ≤ d

[
γ1

(
t − t0

h
+ 1

)
+ 1

]
e−σ0(t−t0) ‖ϕ‖h

=

(
d

[
γ1

(
t − t0

h
+ 1

)
+ 1

]
e−μ(t−t0)

)
e−(σ0−μ)(t−t0) ‖ϕ‖h ,

where μ ∈ (0,σ). Observe that the function

d

[
γ1

(
t − t0

h
+ 1

)
+ 1

]
e−μ(t−t0) → 0, as t − t0 → ∞,
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i.e., the function is bounded,

d

[
γ1

(
t − t0

h
+ 1

)
+ 1

]
e−μ(t−t0) ≤ γ, t ≥ t0,

and we arrive at the exponential estimate for the solutions of system (5.1):

‖x(t, t0,ϕ)‖ ≤ γe−σ(t−t0) ‖ϕ‖h , t ≥ t0,

where γ ≥ 1 and σ = σ0 − μ > 0. ��

5.6 Notes and References

There are several forms in which to present neutral type time-delay systems. In
this book we use the one proposed in the fundamental monograph [23]. This
form assumes that solutions may have discontinuity points, but the difference
x(t)−Dx(t−h) remains continuous for t ≥ t0 (Assumption 5.1). The main reason to
restrict our study to the case of systems with this simple difference operator is that a
highly complicated stability analysis of more general classes of difference operators
would be required. To the best of our knowledge, even in the case of several delays,
stability conditions often become extremely sensitive to small variations in delays.
An exhaustive stability study of more general classes of difference operators can be
found in [23].

In the exposition of the existence and uniqueness theorem in Sect. 5.2 we follow
an excellent source [19]. For the continuity properties of the solutions see [3,19,23].

A comprehensive treatise on the Lyapunov–Krasovskii approach to the stability
analysis of neutral type time-delay systems is given in [44]. Our method of
presenting basic stability results in Sect. 5.5 was inspired by [19, 72].

A list of contributions with sufficient stability results, mainly presented in the
form of special linear matrix inequalities, can be found in [64]; see also [58] and
references therein.
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