
Chapter 4
Systems with Distributed Delay

In this chapter a linear retarded type system with distributed delays is studied. First,
we introduce quadratic functionals and Lyapunov matrices for the system. Then
we present the existence and uniqueness conditions for the matrices and provide
some numerical schemes for the computation of the matrices. In the last part of the
chapter functionals of the complete type are introduced, and some applications of
the functionals are discussed.

4.1 System Description

We start with the following retarded type time-delay system:

d
dt

x(t) = A0x(t)+A1x(t − h)+

0∫

−h

G(θ )x(t +θ )dθ , t ≥ 0. (4.1)

Here A0 and A1 are given real n×n matrices, delay h > 0, and G(θ ) is a continuous
matrix defined for θ ∈ [−h,0].

4.2 Quadratic Functionals

Given a symmetric matrix W , we are looking for a quadratic functional

v0 : PC([−h,0],Rn)→ R
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134 4 Systems with Distributed Delay

such that along the solutions of system (4.1) the following equality holds:

d
dt

v0(xt) =−xT (t)Wx(t), t ≥ 0. (4.2)

Definition 4.1. The matrix U(τ) is said to be a Lyapunov matrix of system (4.1)
associated with a symmetric matrix W if it satisfies the following properties:

1. Dynamic property:

d
dτ

U(τ) =U(τ)A0 +U(τ − h)A1 +

0∫

−h

U(τ +θ )G(θ )dθ , τ ≥ 0; (4.3)

2. Symmetry property:

U(−τ) =UT (τ), τ ≥ 0; (4.4)

3. Algebraic property:

−W = U(0)A0 +U(−h)A1+

0∫

−h

U(θ )G(θ )dθ +AT
0 U(0)

+ AT
1 U(h)+

0∫

−h

GT (θ )U(−θ )dθ . (4.5)

Remark 4.1. The algebraic property can also be written as

U ′(+0)−U ′(−0) =−W. (4.6)

For a given matrix U(τ) we define on PC([−h,0],Rn) a functional of the form

v0(ϕ) = ϕT (0)U(0)ϕ(0)+ 2ϕT (0)

0∫

−h

U(−h−θ )A1ϕ(θ )dθ

+

0∫

−h

ϕT (θ1)A
T
1

⎛
⎝

0∫

−h

U(θ1 −θ2)A1ϕ(θ2)dθ2

⎞
⎠dθ1

+ 2ϕT (0)

0∫

−h

⎛
⎝

θ∫

−h

U(ξ −θ )G(ξ )dξ

⎞
⎠ϕ(θ )dθ
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+ 2

0∫

−h

ϕT (θ1)A
T
1

⎛
⎝

0∫

−h

⎡
⎣

θ2∫

−h

U(h+θ1−θ2 + ξ )G(ξ )dξ

⎤
⎦ϕ(θ2)dθ2

⎞
⎠dθ1

+

0∫

−h

ϕT (θ1)

⎧⎨
⎩

0∫

−h

⎡
⎣

θ1∫

−h

GT (ξ1)

⎛
⎝

θ2∫

−h

U(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2

⎞
⎠dξ1

⎤
⎦

× ϕ(θ2)dθ2

⎫⎬
⎭dθ1. (4.7)

We can now prove the theorem.

Theorem 4.1. Let U(τ) be a Lyapunov matrix of system (4.1) associated with W.
Then the time derivative of functional (4.7) along the solutions of the system satisfies
equality (4.2).

Proof. Let x(t), t ≥ 0, be a solution of system (4.1); then

v0(xt) = xT (t)U(0)x(t)+ 2xT (t)

0∫

−h

U(−h−θ )A1x(t +θ )dθ

+

0∫

−h

xT (t +θ1)A
T
1

⎛
⎝

0∫

−h

U(θ1 −θ2)A1x(t +θ2)dθ2

⎞
⎠dθ1

+2xT (t)

0∫

−h

⎡
⎣

θ∫

−h

U(ξ −θ )G(ξ )dξ

⎤
⎦x(t +θ )dθ

+2

0∫

−h

xT (t +θ1)A
T
1

⎡
⎣

0∫

−h

⎛
⎝

θ2∫

−h

U(h+θ1−θ2 + ξ2)G(ξ2)dξ2

⎞
⎠

× x(t +θ2)dθ2

⎤
⎦dθ1

+

0∫

−h

xT (t +θ1)

⎛
⎝

0∫

−h

⎡
⎣

θ1∫

−h

GT (ξ1)

⎛
⎝

θ2∫

−h

U(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2

⎞
⎠dξ1

⎤
⎦

× x(t +θ2)dθ2

⎞
⎠dθ1.

At the first stage we compute the time derivative of each term of the functional.
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For the first term, R0(t) = xT (t)U(0)x(t), the time derivative is computed as

d
dt

R0(t) = 2xT (t)U(0)A0x(t)+ 2xT (t)U(0)A1x(t − h)

+2xT (t)U(0)

0∫

−h

G(θ )x(t +θ )dθ .

The time derivative of the term

R1(t) = 2xT (t)

0∫

−h

U(−h−θ )A1x(t +θ )dθ

= 2xT (t)

t∫

t−h

[U(h+ s− t)]T A1x(s)ds

is equal to

d
dt

R1(t) = 2

[
dx(t)

dt

]T t∫

t−h

U(t − s− h)A1x(s)ds

︸ ︷︷ ︸
+2xT (t)U(−h)A1x(t)− 2xT (t)U(0)A1x(t − h)

−2xT (t)

t∫

t−h

[
d

dτ
U(τ)

∣∣∣∣
τ=h+s−t

]T

A1x(s)ds

︸ ︷︷ ︸︸ ︷︷ ︸
.

For the term

R2(t) =

0∫

−h

xT (t +θ1)A
T
1

⎛
⎝

0∫

−h

U(θ1 −θ2)A1x(t +θ2)dθ2

⎞
⎠dθ1

=

t∫

t−h

xT (s1)A
T
1

⎛
⎝

t∫

t−h

U(s1 − s2)A1x(s2)ds2

⎞
⎠ds1

we have

d
dt

R2(t) = xT (t)AT
1

t∫

t−h

U(t − s)A1x(s)ds

−xT (t − h)AT
1

t∫

t−h

U(t − h− s)A1x(s)ds
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+

⎛
⎝

t∫

t−h

xT (s)AT
1 U(s− t)ds

⎞
⎠A1x(t)

−
⎛
⎝

t∫

t−h

xT (s)AT
1 U(s− t + h)ds

⎞
⎠A1x(t − h)

= 2xT (t)

t∫

t−h

[U(s− t)A1]
T A1x(s)ds

︸ ︷︷ ︸︸ ︷︷ ︸

−2xT (t − h)AT
1

t∫

t−h

U(t − s− h)A1x(s)ds

︸ ︷︷ ︸
.

Now we consider the term

R3(t) = 2xT (t)

0∫

−h

⎡
⎣

θ∫

−h

U(ξ −θ )G(ξ )dξ

⎤
⎦x(t +θ )dθ

= 2xT (t)

t∫

t−h

⎡
⎣

s−t∫

−h

UT (−ξ + s− t)G(ξ )dξ

⎤
⎦x(s)ds.

Its time derivative is given as

d
dt

R3(t) = 2

[
dx(t)

dt

]T t∫

t−h

⎡
⎣

s−t∫

−h

U(ξ − s+ t)G(ξ )dξ

⎤
⎦x(s)ds

+ 2xT (t)

⎡
⎣

0∫

−h

U(ξ )G(ξ )dξ

⎤
⎦x(t)− 2xT (t)U(0)

t∫

t−h

G(s− t)x(s)ds

−2xT (t)

t∫

t−h

⎛
⎝

s−t∫

−h

[
d

dτ
U(τ)

∣∣∣∣
τ=−ξ+s−t

]T

G(ξ )dξ

⎞
⎠x(s)ds.
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The time derivative of the next term

R4(t) = 2

0∫

−h

xT (t +θ1)A
T
1

⎡
⎣

0∫

−h

⎛
⎝

θ2∫

−h

U(h+θ1−θ2 + ξ )G(ξ )dξ

⎞
⎠x(t +θ2)dθ2

⎤
⎦dθ1

= 2

t∫

t−h

xT (s1)A
T
1

⎡
⎣

t∫

t−h

⎛
⎝

s2−t∫

−h

U(h+ s1− s2 + ξ )G(ξ )dξ

⎞
⎠x(s2)ds2

⎤
⎦ds1

is equal to

d
dt

R4(t) = 2xT (t)

t∫

t−h

⎛
⎝

s−t∫

−h

AT
1 U(h+ t− s+ ξ )G(ξ )dξ

⎞
⎠x(s)ds

−2 [A1x(t − h)]T
t∫

t−h

⎛
⎝

s−t∫

−h

U(t − s+ ξ )G(ξ )dξ

⎞
⎠x(s)ds

+2

⎡
⎣

t∫

t−h

xT (s)

⎛
⎝

0∫

−h

AT
1 U(h+ s− t+ ξ )G(ξ )dξ

⎞
⎠ds

⎤
⎦x(t)

︸ ︷︷ ︸︸ ︷︷ ︸

−2

t∫

t−h

t∫

t−h

xT (s1)A
T
1 U(h+ s1 − t)G(s2 − t)x(s2)ds1ds2

︸ ︷︷ ︸
.

And, finally, the time derivative of the last term,

R5(t) =

0∫

−h

xT (t +θ1)

⎛
⎝

0∫

−h

⎡
⎣

θ1∫

−h

GT (ξ1)

⎛
⎝

θ2∫

−h

U(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2

⎞
⎠dξ1

⎤
⎦

× x(t +θ2)dθ2

⎞
⎠dθ1

=

t∫

t−h

xT (s1)

⎛
⎝

t∫

t−h

⎡
⎣

s1−t∫

−h

GT (ξ1)

⎛
⎝

s2−t∫

−h

U(s1 − s2 − ξ1 + ξ2)G(ξ2)dξ2

⎞
⎠dξ1

⎤
⎦

× x(s2)ds2

⎞
⎠ds1,
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can be computed as

d
dt

R5(t) = xT (t)

t∫

t−h

⎡
⎣

0∫

−h

GT (ξ1)

⎛
⎝

s−t∫

−h

U(t − s−ξ1 +ξ2)G(ξ2)dξ2

⎞
⎠dξ1

⎤
⎦x(s)ds

+

⎛
⎝

t∫

t−h

xT (s)

⎡
⎣

s−t∫

−h

GT (ξ1)

⎛
⎝

0∫

−h

U(s1 − t −ξ1 +ξ2)G(ξ2)dξ2

⎞
⎠dξ1

⎤
⎦ds

⎞
⎠x(t)

−
t∫

t−h

xT (s1)

⎛
⎝

t∫

t−h

⎡
⎣

s2−t∫

−h

GT (s1 − t)U(−s2 + t +ξ )G(ξ )dξ

⎤
⎦ x(s2)ds2

⎞
⎠ds1

−
t∫

t−h

xT (s1)

⎛
⎝

t∫

t−h

⎡
⎣

s1−t∫

−h

GT (ξ )U(s1 −ξ − t)G(s2 − t)dξ

⎤
⎦x(s2)ds2

⎞
⎠ds1

= 2xT (t)

t∫

t−h

⎡
⎣

0∫

−h

GT (ξ1)

⎛
⎝

s−t∫

−h

U(t − s−ξ1 +ξ2)G(ξ2)dξ2

⎞
⎠dξ1

⎤
⎦x(s)ds

− 2

⎡
⎣

t∫

t−h

G(s1 − t)x(s1)ds1

⎤
⎦

T ⎡
⎣

t∫

t−h

⎛
⎝

s2−t∫

−h

U(−s2 + t +ξ )G(ξ )dξ

⎞
⎠x(s2)ds2

⎤
⎦.

At the next stage we collect terms in the computed time derivatives. We start with
the terms that are underlined by a single straight line. Their sum is

S1(t) = 2xT (t)U(0)A0x(t)+ 2xT (t)U(−h)A1x(t)+ 2xT (t)

⎡
⎣

0∫

−h

U(ξ )G(ξ )dξ

⎤
⎦x(t)

= xT (t)

⎛
⎝U(0)A0 +U(−h)A1+

0∫

−h

U(ξ )G(ξ )dξ

+ AT
0 U(0)+AT

1 UT (−h)+

0∫

−h

GT (ξ )UT (ξ )dξ

⎞
⎠x(t)

= −xT (t)Wx(t).
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Now we collect the terms underlined by a single curved line. Their sum is

S2(t) = 2

⎡
⎣dx(t)

dt
−A1x(t − h)−

0∫

−h

G(θ )x(t +θ )dθ

⎤
⎦

T

×
t∫

t−h

U(t − s− h)A1x(s)ds

= 2xT (t)AT
0

t∫

t−h

U(t − s− h)A1x(s)ds. (4.8)

The sum of the terms underlined by a double curved line is equal to

S3(t) = 2xT (t)

t∫

t−h

⎡
⎣ − d

dτ
U(τ)+U(τ − h)A1

+

0∫

−h

U(τ + ξ )G(ξ )dξ

∣∣∣∣∣∣
τ=h+s−t

⎤
⎦

T

A1x(s)ds

= −2xT (t)AT
0

t∫

t−h

U(t − s− h)A1x(s)ds,

and it is cancelled by (4.8). The sum of the terms underlined by a double straight
line is equal to

S4(t) = 2

⎡
⎣dx(t)

dt
−A1x(t − h)−

0∫

−h

G(θ )x(t +θ )dθ

⎤
⎦

T

×
t∫

t−h

⎛
⎝

s−t∫

−h

U(ξ − s+ t)G(ξ )dξ

⎞
⎠x(s)ds

= 2xT (t)AT
0

t∫

t−h

⎛
⎝

s−t∫

−h

U(ξ − s+ t)G(ξ )dξ

⎞
⎠x(s)ds. (4.9)

Finally, the sum of the nonunderlined terms is
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S5(t) = 2xT (t)

t∫

t−h

⎡
⎢⎣

s−t∫

−h

⎛
⎜⎝− d

dτ
U(τ)+U(τ − h)A1

+

0∫

−h

U(τ + ξ2)G(ξ2)dξ2

∣∣∣∣∣∣
τ=−ξ+s−t

⎞
⎟⎠

T

G(ξ )dξ

⎤
⎥⎦x(s)ds

= − 2xT (t)AT
0

t∫

t−h

⎛
⎝

s−t∫

−h

U(t − s+ ξ )G(ξ )dξ

⎞
⎠x(s)ds,

and it is cancelled by (4.9).
Summarizing our computations we arrive at the conclusion that the time deriva-

tive of the functional v0(ϕ) along the solutions of system (4.1) satisfies equal-
ity (4.2). ��

4.3 Lyapunov Matrices: Existence Issue

In this section we study the existence issue for the Lyapunov matrices of sys-
tem (4.1).

The characteristic function of the system is of the form

f (s) = det

⎛
⎝sI−A0 − e−shA1 −

0∫

−h

esθ G(θ )dθ

⎞
⎠ . (4.10)

We define the matrix

H(s) =

⎛
⎝sI −A0 − e−shA1 −

0∫

−h

esθ G(θ )dθ

⎞
⎠

−1

.

The poles of H(s) form the spectrum,

Λ = { s | f (s) = 0} ,

of the system. If system (4.1) satisfies the Lyapunov condition, then the spectrum
can be divided into two parts; the first one, Λ(+), includes eigenvalues with positive
real part, whereas the second one, Λ(−), includes eigenvalues with negative real part.
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Theorem 4.2 ([26]). Let system (4.1) satisfy the Lyapunov condition; then for any
symmetric matrix W matrix

Ũ(τ) =
V.P.
2π i

i∞∫

−i∞

HT (ξ )WH(−ξ )e−τξ dξ + ∑
s0∈Λ(+)

Res
{

HT (s)W H(−s)e−τs,s0
}

+ ∑
s0∈Λ(+)

Res
{

HT (−s)W H(s)eτs,s0
}

(4.11)

is a Lyapunov matrix of the system associated with W .

Proof. System (4.1) satisfies the Lyapunov condition, so neither the matrix H(s)
nor the matrix H(−s) has a pole on the imaginary axis of the complex plane. Let ξ
be a real number; then for sufficiently large |ξ | the matrix HT (iξ )WH(−iξ )e−iτξ is
of the order |ξ |−2. This means that the improper integral on the right-hand side of
(4.11) is well defined for all real τ .

Part 1: The proof of symmetry property (4.4) coincides with that of Theorem 3.5.
Part 2: We address now the algebraic property. To check (4.5), we compute the

following matrix:

O = Ũ(0)A0 +Ũ(−h)A1 +

0∫

−h

Ũ(θ )G(θ )dθ +AT
0 Ũ(0)

+ AT
1 Ũ(h)+

0∫

−h

GT (θ )Ũ(−θ )dθ

=
V.P.
2π i

i∞∫

−i∞

⎛
⎝HT (ξ )WH(−ξ )

⎡
⎣A0 + eξ hA1 +

0∫

−h

e−ξ θ G(θ )dθ

⎤
⎦

+

⎡
⎣A0 + e−ξ hA1 +

0∫

−h

eξ θ G(θ )dθ

⎤
⎦

T

HT (ξ )WH(−ξ )

⎞
⎠dξ

+ ∑
s0∈Λ(+)

Res

⎧⎨
⎩HT (s)W H(−s)

⎡
⎣A0 + eshA1 +

0∫

−h

e−sθ G(θ )dθ

⎤
⎦ ,s0

⎫⎬
⎭

+ ∑
s0∈Λ(+)

Res

⎧⎨
⎩HT (−s)W H(s)

⎡
⎣A0 + e−shA1 +

0∫

−h

esθ G(θ )dθ

⎤
⎦ ,s0

⎫⎬
⎭
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+ ∑
s0∈Λ(+)

Res

⎧⎨
⎩
⎡
⎣A0 + e−shA1 +

0∫

−h

esθ G(θ )dθ

⎤
⎦

T

HT (s)W H(−s),s0

⎫⎬
⎭

+ ∑
s0∈Λ(+)

Res

⎧⎨
⎩
⎡
⎣A0 + eshA1 +

0∫

−h

e−sθ G(θ )dθ

⎤
⎦

T

HT (−s)WH(s),s0

⎫⎬
⎭ .

It is a matter of simple calculation to verify the identities

H(s)

⎡
⎣A0 + e−sh +

0∫

−h

esθ G(θ )dθ

⎤
⎦= sH(s)− I

and

H(−s)

⎡
⎣A0 + eshA1 +

0∫

−h

e−sθ G(θ )dθ

⎤
⎦=−sH(−s)− I.

Additionally,

V.P.
2π i

i∞∫

−i∞

W H(−ξ )dξ = 〈λ =−ξ 〉= V.P.
2π i

i∞∫

−i∞

WH(λ )dλ .

Now, the matrix O can be written as

O = −V.P.
2π i

i∞∫

−i∞

[
HT (ξ )W +WH(ξ )

]
dξ

− ∑
s0∈Λ(+)

Res
{

HT (s)W,s0
}− ∑

s0∈Λ(+)

Res
{

HT (s)W,s0
}

− ∑
s0∈Λ(+)

Res
{

HT (−s)W,s0
}− ∑

s0∈Λ(+)

Res
{

HT (−s)W,s0
}
.

Since the Lyapunov condition implies that no poles of the matrix H(−s) lie in
the set Λ(+), the last two sums on the right-hand side of the preceding equality
disappear and

O =−V.P.
2π i

i∞∫

−i∞

[
HT (ξ )W +WH(ξ )

]
dξ − ∑

s0∈Λ(+)

Res
{

HT (s)W +WH(s),s0
}
.

The remainder of the proof of this part is identical to that of Theorem 3.5.
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Part 3: Let us address property (4.3). For a given τ > 0 we compute the matrix

F(τ) =
d

dτ
Ũ(τ)−Ũ(τ)A0 −Ũ(τ −h)A1 −

∫ 0

−h
Ũ(τ +θ )G(θ )dθ

=
V.P.
2πi

i∞∫

−i∞

HT (ξ )W H(−ξ )

⎡
⎣−ξ I −A0 −eξ hA1 −

0∫

−h

e−ξ θ G(θ )dθ

⎤
⎦e−τξ dξ

+ ∑
s0∈Λ(+)

Res

⎧⎨
⎩HT (s)W H(−s)

⎡
⎣−sI −A0 −eshA1 −

0∫

−h

e−sθ G(θ )dθ

⎤
⎦e−τs,s0

⎫⎬
⎭

+ ∑
s0∈Λ(+)

Res

⎧⎨
⎩HT (−s)W H(s)

⎡
⎣sI −A0 −e−shA1 −

0∫

−h

esθ G(θ )dθ

⎤
⎦eτs,s0

⎫⎬
⎭

=
V.P.
2πi

i∞∫

−i∞

HT (ξ )W e−τξ dξ + ∑
s0∈Λ(+)

Res
{

HT (s)W e−τs,s0

}

+ ∑
s0∈Λ(+)

Res
{

HT (−s)W eτs,s0

}
.

Since the matrix H(−s) has no poles in the set Λ(+), the sum

∑
s0∈Λ(+)

Res
{

HT (−s)Weτs,s0
}
= 0n×n,

and we obtain

F(τ) =
V.P.
2π i

i∞∫

−i∞

HT (ξ )W e−τξ dξ + ∑
s0∈Λ(+)

Res
{

HT (s)W e−τs,s0
}
.

The remainder of the proof of this part repeats that of Theorem 3.5. ��
Corollary 4.1. If system (4.1) is exponentially stable, then the Lyapunov matrix
associated with a symmetric matrix W can be written as

U(τ) =
V.P.
2π i

i∞∫

−i∞

HT (ξ )W H(−ξ )e−τξ dξ

=

∞∫

0

K(t)WK(t + τ)dτ.

Here K(t) is the fundamental matrix of the system.
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4.4 Lyapunov Matrices: Uniqueness Issue

Here we study the uniqueness issue for Lyapunov matrices.

Lemma 4.1. Given an integral-differential system of the form

d
dτ

z(τ) = Az(τ)+
τ∫

0

B(s,τ)z(s)ds τ ≥ 0, (4.12)

where A is a constant matrix and B(s,τ) is a continuous bivariate matrix, the only
solution of the system that satisfies the condition z(0) = 0 is the trivial one.

Proof. Given H > 0, let us consider the system on the segment [0,H]. Compute the
values

a = ‖A‖ , b = max
(s,τ)∈[0,H]2

‖B(s,τ)‖ .

Integrating Eq. (4.12) from 0 to τ we obtain

z(τ) = z(0)+A

τ∫

0

z(ξ )dξ +

τ∫

0

⎛
⎝

ξ∫

0

B(s,ξ )z(s)ds

⎞
⎠dξ .

Thus,

‖z(τ)‖ ≤ ‖z(0)‖+ a

τ∫

0

‖z(ξ )‖dξ + b

τ∫

0

⎛
⎝

ξ∫

0

‖z(s)‖ds

⎞
⎠dξ

= ‖z(0)‖+ a

τ∫

0

‖z(ξ )‖dξ + b

τ∫

0

(τ − s)‖z(s)‖ds

≤ ‖z(0)‖+(a+ bH)

τ∫

0

‖z(s)‖ds.

Now, by the Gronwall lemma,

‖z(τ)‖ ≤ e(a+bH)τ ‖z(0)‖ , τ ∈ [0,H].

In our case z(0) = 0, and we arrive at the conclusion that

z(τ) = 0, τ ∈ [0,H]. ��

Theorem 4.3. Let system (4.1) satisfy the Lyapunov condition. Then for any
symmetric matrix W there exists a unique Lyapunov matrix associated with W.
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Proof. Part 1: The fact that under the theorem condition matrix (4.11) satisfies
Definition 4.1 was demonstrated in Theorem 4.2. Assume that for a given
symmetric matrix W there exist two Lyapunov matrices, U (1)(τ) and

U (2)(τ). Each of the matrices defines the corresponding functional, v( j)
0 (ϕ),

j = 1,2, of the form (4.7). The functionals satisfy the equality

d
dt

v( j)
0 (xt) =−xT (t)Wx(t), j = 1,2,

along the solutions of system (4.1). The difference, Δv(xt) = v(2)0 (xt)−
v(1)0 (xt), is such that

d
dt

Δv(xt) = 0, t ≥ 0,

and we obtain that for any ϕ ∈ PC([−h,0],Rn) the identity

Δv(xt(ϕ)) = Δv(ϕ), t ≥ 0, (4.13)

holds along the solution x(t,ϕ) of the system. In the case where system
(4.1) is exponentially stable, xt(ϕ) → 0h as t → ∞, and we arrive at the
conclusion that

Δv(ϕ) = 0, ϕ ∈ PC([−h,0],Rn). (4.14)

If system (4.1) is not exponentially stable, then by the Lyapunov condition it
has no eigenvalues on the imaginary axis of the complex plane, and there is a
finite number of the eigenvalues in the open right half-plane of the complex
plane. Let χ > 0 be an upper bound for the real part of the eigenvalues
in the right half-plane. Only a finite number of the system eigenvalues,
s1,s2, . . . ,sN , lies in the vertical stripe

Z = { s | − χ ≤ Re(s)≤ χ }

of the complex plane. Every solution x(t,ϕ) of the system can be presented
as the sum

x(t,ϕ) = x(1)(t)+ x(2)(t),

where x(1)(t) corresponds to the part of the system spectrum that lies in Z
and x(2)(t) corresponds to the rest of the spectrum, which lies to the left of
the vertical line Re(s) =−χ .

The first term, x(1)(t), is a finite sum of the form

x(1)(t) =
N

∑
�=1

es�t p(�)(t),
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where p(�)(t) is a polynomial with vector coefficients of degree less than
the multiplicity of s� as a zero of the system characteristic function (4.10),
�= 1,2, . . . ,N.

The second term, x(2)(t), admits an upper estimate of the form

∥∥∥x(2)(t)
∥∥∥≤ ce−(χ+ε)t , t ≥ 0. (4.15)

Here c is a positive constant and ε is a small positive number.
The functional Δv(xt(ϕ)) can be decomposed as follows:

Δv(xt(ϕ)) = Δv
(

x(1)t

)
+ 2Δz

(
x(1)t ,x(2)t

)
+Δv

(
x(2)t

)
,

where

Δz
(

x(1)t ,x(2)t

)
=
[
x(1)(t)

]T
ΔU(0)x(2)(t)

+
[
x(1)(t)

]T
0∫

−h

ΔU(−h−θ )A1x(2)(t +θ )dθ

+
[
x(2)(t)

]T
0∫

−h

ΔU(−h−θ )A1x(1)(t +θ )dθ

+
[
x(1)(t)

]T
0∫

−h

⎡
⎣

θ∫

−h

ΔU(ξ −θ )G(ξ )dξ

⎤
⎦x(2)(t +θ )dθ

+
[
x(2)(t)

]T
0∫

−h

⎡
⎣

θ∫

−h

ΔU(ξ −θ )G(ξ )dξ

⎤
⎦x(1)(t +θ )dθ

+

0∫

−h

[
x(1)(t +θ1)

]T
AT

1

⎛
⎝

0∫

−h

ΔU(θ1 −θ2)A1x(2)(t +θ2)dθ2

⎞
⎠dθ1

+

0∫

−h

[
x(1)(t +θ1)

]T
AT

1

⎡
⎣

0∫

−h

⎛
⎝

θ2∫

−h

ΔU(h+θ1−θ2 + ξ2)G(ξ2)dξ2

⎞
⎠

×x(2)(t +θ2)dθ2

]
dθ1

+

0∫

−h

[
x(2)(t +θ1)

]T
AT

1

⎡
⎣

0∫

−h

⎛
⎝

θ2∫

−h

ΔU(h+θ1−θ2 + ξ2)G(ξ2)dξ2

⎞
⎠
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×x(1)(t +θ2)dθ2

]
dθ1

+

0∫

−h

[
x(1)(t +θ1)

]T

⎧⎨
⎩

0∫

−h

⎛
⎝

θ1∫

−h

GT (ξ1)

×
⎡
⎣

θ2∫

−h

ΔU(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2

⎤
⎦dξ1

⎞
⎠x(2)(t +θ2)dθ2

⎫⎬
⎭dθ1.

On the one hand, since x(1)(t) and x(2)(t) are solutions of system (4.1),

Δv
(

x(1)t

)
and Δv

(
x(2)t

)
maintain constant values, and we conclude that

Δz
(

x(1)t ,x(2)t

)
is also constant. On the other hand, the choice of χ and

inequality (4.15) guarantee that

Δv
(

x(2)t

)
→ 0, and Δz

(
x(1)t ,x(2)t

)
→ 0, as t → ∞.

This means that

Δv
(

x(2)t

)
= 0, and Δz

(
x(1)t ,x(2)t

)
= 0, t ≥ 0.

The first summand, Δv
(

x(1)t

)
, can be written as follows:

Δv
(

x(1)t

)
=

N

∑
�=1

N

∑
r=1

e(s�+sr)tα�r(t),

where the functions α�r(t), �,r = 1,2, . . . ,N, are of the form

α�r(t) =
[

p(�)(t)
]T

ΔU(0)p(r) (t)+2
[

p(�)(t)
]T

0∫

−h

ΔU(−h−θ )A1esrθ p(r)(t +θ )dθ

+2
[

p(�)(t)
]T

0∫

−h

⎡
⎣

θ∫

−h

ΔU(ξ −θ )G(ξ )dξ

⎤
⎦esrθ2 p(r)(t +θ )dθ

+

0∫

−h

[
es�θ1 p(�)(t +θ1)

]T
AT

1

⎛
⎝

0∫

−h

ΔU(θ1 −θ2)A1esrθ2 p(r)(t +θ2)dθ2

⎞
⎠dθ1

+2

0∫

−h

[
es�θ1 p(�)(t +θ1)

]T
AT

1
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×
⎡
⎣

0∫

−h

⎛
⎝

θ2∫

−h

ΔU(h+θ1 −θ2 +ξ2)G(ξ2)dξ2

⎞
⎠esr θ2 p(r)(t +θ2)dθ2

⎤
⎦dθ1

+

0∫

−h

[
es�θ1 p(�)(t +θ1)

]T

×
⎧⎨
⎩

0∫

−h

⎛
⎝

θ1∫

−h

GT (ξ1)

⎡
⎣

θ2∫

−h

ΔU(θ1 −θ2 −ξ1 +ξ2)G(ξ2)dξ2

⎤
⎦dξ1

⎞
⎠

× esr θ2 p(r)(t +θ2)dθ2

⎫⎬
⎭dθ1.

A careful inspection of α�r(t) reveals that it is a polynomial in t of
degree less than the sum of the multiplicities of s� and sr as zeros of the
characteristic function (4.10). This means that identity (4.13) takes the form

N

∑
�=1

N

∑
r=1

e(s�+sr)tα�r(t) = e0tΔv(ϕ), t ≥ 0.

Part 2: According to the Lyapunov condition, no one of the sums (s�+ sr), �,r ∈
{1,2, . . . ,N}, is equal to zero. Therefore, by Lemma 3.8, we conclude
from the last identity that equality (4.14) holds for any initial function
ϕ ∈ PC([−h,0],Rn).

Part 3: Equality (4.14) can be written as follows:

0 = ϕT (0)ΔU(0)ϕ(0)

+2ϕT (0)

0∫

−h

⎡
⎣ΔU(−h−θ )A1+

θ∫

−h

ΔU(ξ −θ )G(ξ )dξ

⎤
⎦ϕ(θ )dθ

+

0∫

−h

0∫

−h

ϕT (θ1)

⎡
⎣AT

1 ΔU(θ1 −θ2)A1

+ 2

θ2∫

−h

AT
1 ΔU(h+θ1−θ2 + ξ2)G(ξ2)dξ2

+

θ1∫

−h

θ2∫

−h

GT (ξ1)ΔU(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2dξ1

⎤
⎦ϕ(θ2)dθ2dθ1.

(4.16)
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For a given vector γ ∈ Rn we define the initial function

ϕ(1)(θ ) =
{

γ, for θ = 0
0, for θ ∈ [−h,0)

.

For this function equality (4.16) takes the form

γT ΔU(0)γ = 0.

Since the last equality holds for any vector γ and the matrix ΔU(0) is
symmetric, we conclude that

ΔU(0) = 0n×n. (4.17)

Now, given vectors γ ∈ Rn and μ ∈ Rn, let us select τ ∈ (0,h] and ε > 0 such
that −τ + ε < 0. Then we define the following initial function:

ϕ(2)(θ ) =

⎧⎨
⎩

γ, for θ = 0,
μ , for θ ∈ [−τ,−τ + ε],
0, for all other points of segment [−h,0].

For this initial function equality (4.16) takes the form

0 = 2εγT

⎡
⎣ΔU(τ − h)A1+

−τ∫

−h

ΔU(τ + ξ )G(ξ )dξ

⎤
⎦μ + o(ε),

where

lim
ε→+0

o(ε)
ε

= 0.

Since γ and μ are arbitrary vectors and ε > 0 may be arbitrarily small, we
conclude that the equality

ΔU(τ − h)A1 +

−τ∫

−h

ΔU(τ + ξ )G(ξ )dξ = 0n×n

holds for τ ∈ (0,h]. By continuity arguments, we obtain

ΔU(τ − h)A1+

−τ∫

−h

ΔU(τ + ξ )G(ξ )dξ = 0n×n, τ ∈ [0,h]. (4.18)
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The matrix ΔU(τ) satisfies the equation

d
dτ

ΔU(τ) = ΔU(τ)A0 +ΔU(τ −h)A1 +

0∫

−h

ΔU(τ +θ )G(θ )dθ , τ ∈ [0,h].

Condition (4.18) makes it possible to present the preceding equation in the
form

d
dτ

ΔU(τ) = ΔU(τ)A0 +

0∫

−τ

ΔU(τ +θ )G(θ )dθ , τ ∈ [0,h]

or

d
dτ

ΔU(τ) = ΔU(τ)A0 +

τ∫

0

ΔU(s)G(s− τ)ds, τ ∈ [0,h].

We are looking for a solution of this equation that satisfies condition (4.17).
By Lemma 4.1, the solution is trivial, and

ΔU(τ) =U (2)(τ)−U (1)(τ) = 0n×n, τ ∈ [0,h]. ��

4.5 Lyapunov Matrices: Computational Issue

In this section we present some approaches to the computation of Lyapunov
matrices for system (4.1). The main difficulty that appears in the computation of the
matrices as solutions of delay equation (4.3) is the luck of the corresponding initial
conditions. To some extent, symmetry condition (4.4) compensates this deficiency,
but the computation problem remains complicated.

4.5.1 A Particular Case

In what follows we show that in the case of a polynomial matrix

G(θ ) =
m

∑
j=1

θ j−1B j, (4.19)
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where B1, . . . ,Bm are constant n × n matrices, a Lyapunov matrix U(τ) may
be computed as a solution of an auxiliary delay-free system of linear ordinary
differential matrix equations. To this end, we first define the matrices

Z(τ) =U(τ), V (τ) =U(τ − h), τ ∈ [0,h],

and the set of 2m auxiliary matrices

Xj(τ) =
0∫

−h

θ j−1U(τ +θ )dθ , Yj(τ) =
0∫

−h

θ j−1U(τ −θ − h)dθ , j = 1, . . . ,m.

Then Eq. (4.3) can be written as

dZ(τ)
dτ

= Z(τ)A0 +V(τ)A1 +
m

∑
j=1

Xj(τ)B j .

Now we compute the first derivative of the matrix V (τ):

dV (τ)
dτ

=
d

dτ
[U(h− τ)]T

= −
⎡
⎣U(h− τ)A0 +U(−τ)A1 +

0∫

−h

θ j−1U(h− τ+θ )dθB j

⎤
⎦

T

.

Observe that
U(h− τ) =V T (τ), U(−τ) = ZT (τ)

and

0∫

−h

θ j−1U(h− τ +θ )dθ =

⎡
⎣

0∫

−h

θ j−1U(τ −θ − h)dθ

⎤
⎦

T

= Y T
j (τ), j = 1,2, . . . ,m,

hence
dV (τ)

dτ
=−AT

0 V (τ)−AT
1 Z(τ)−

m

∑
j=1

BT
j Yj(τ).

The first derivatives of the matrices X1(τ) and Y1(τ) are

dX1(τ)
dτ

=U(τ)−U(τ − h) = Z(τ)−V (τ),

dY1(τ)
dτ

=−V (τ)+V(τ + h) =−V(τ)+Z(τ).
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Now, for j = 2, . . . ,m,

dXj(τ)
dτ

= −(−h) j−1U(τ − h)− ( j− 1)

0∫

−h

θ j−2U(τ +θ )dθ

= −(−h) j−1V (τ)− ( j− 1)Xj−1(τ)

and

dYj(τ)
dτ

= (−h) j−1U(τ)+ ( j− 1)

0∫

−h

θ j−2U(τ −θ − h)dθ

= (−h) j−1Z(τ)+ ( j− 1)Yj−1(τ).

As a result, we arrive at the conclusion that the set of matrices

{Z(τ),V (τ),X1(τ), . . . ,Xm(τ),Y1(τ), . . . ,Ym(τ)}

satisfies the following delay-free system of 2(m+ 1) ordinary differential matrix
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dτ

Z = ZA0 +VA1+
m

∑
j=1

XjB j,

d
dτ

V =−AT
1 Z −AT

0 V −
m

∑
j=1

BT
j Yj,

d
dτ

X1 = Z −V,

d
dτ

Y1 = Z −V,

d
dτ

Xj =−(−h) j−1V − ( j− 1)Xj−1, j = 2, . . . ,m,

d
dτ

Yj = (−h) j−1Z +( j− 1)Yj−1, j = 2, . . . ,m.

(4.20)

Lemma 4.2. The spectrum of system (4.20) is symmetrical with respect to the
origin of the complex plane.

Proof. A complex number s0 is an eigenvalue of system (4.20) if and only if there
exists a nontrivial set of n× n matrices

{
Z(0),V (0),X (0)

1 , . . . ,X (0)
m ,Y (0)

1 , . . . ,Y (0)
m

}
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satisfying the following system of matrix equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0Z(0) = Z(0)A0 +V (0)A1 +
m

∑
j=1

X (0)
j B j,

s0V (0) =−AT
1 Z(0)−AT

0 V (0)−
m

∑
j=1

BT
j Y (0)

j ,

s0X (0)
1 = Z(0)−V (0),

s0Y (0)
1 = Z(0)−V (0),

s0X (0)
j =−(−h) j−1V (0)− ( j− 1)X (0)

j−1, j = 2, . . . ,m,

s0Y (0)
j = (−h) j−1Z(0) + ( j− 1)Y (0)

j−1, j = 2, . . . ,m.

(4.21)

It is easy to check that the matrices

Z̃(0) =
(

V (0)
)T

, Ṽ (0) =
(

Z(0)
)T

, X̃ (0)
j =

(
Y (0)

j

)T
,

Ỹ (0)
j =

(
X (0)

j

)T
, j = 1, . . . ,m,

satisfy the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−s0Z̃(0) = Z̃(0)A0 + Ṽ (0)A1 +
m

∑
j=1

X̃ (0)
j B j,

−s0Ṽ (0) =−AT
1 Z̃(0)−AT

0 Ṽ (0)−
m

∑
j=1

BT
j Ỹ (0)

j ,

−s0X̃ (0)
1 = Z̃(0)− Ṽ (0),

−s0Ỹ (0)
1 = Z̃(0)− Ṽ (0),

−s0X̃ (0)
j =−(−h) j−1Ṽ (0)− ( j− 1) X̃ (0)

j−1, j = 2, . . . ,m,

−s0Ỹ (0)
j = (−h) j−1Z̃(0) + ( j− 1)Ỹ (0)

j−1, j = 2, . . . ,m.

This means that −s0 belongs to the spectrum of system (4.20). ��
The solution of system (4.20) defined by the matrix U(τ) satisfies also the

following set of boundary value conditions:

Z(0) =V T (h),
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Xj(0) =

0∫

−h

θ j−1U(θ )dθ =

⎡
⎣

0∫

−h

θ j−1U(h−θ − h)dθ

⎤
⎦

T

= Y T
j (h), j = 1, . . . ,m,

Yj(0) =

0∫

−h

θ j−1U(−θ − h)dθ =

⎡
⎣

0∫

−h

θ j−1U(h+θ )dθ

⎤
⎦

T

= XT
j (h), j = 1, . . . ,m,

as well as the algebraic condition

Z(0)A0 +V(0)A1 +
m

∑
j=1

Xj(0)B j +AT
0 V (h)+AT

1 Z(h)+
m

∑
j=1

BT
j Yj(h) =−W.

We finally arrive at the following statement.

Theorem 4.4. Given a time-delay system (4.1), where matrix G(θ ) is of the form
(4.19), let U(τ) be a Lyapunov matrix of the system associated with the matrix W.
Then the set of matrices

{Z(τ),V (τ),X1(τ), . . . ,Xm(τ),Y1(τ), . . . ,Ym(τ)}

is a solution of system (4.20) that satisfies the boundary value conditions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Z(0) =V T (h),

Xj(0) = Y T
j (h), and Yj(0) = XT

j (h), j = 1, . . . ,m,

Z(0)A0 +V(0)A1 +∑m
j=1 Xj(0)B j +AT

0 V (h)+AT
1 Z(h)

+∑m
j=1 BT

j Yj(h) =−W.

(4.22)

There exist some relations between the auxiliary matrices that are described in
the following lemma.

Lemma 4.3. The auxiliary matrices Xj(τ) and Yj(τ), j = 1, . . . ,m, satisfy the
relations

Xj(τ) = (−1) j−1
j−1

∑
k=0

( j− 1)!
k!( j− k− 1)!

hkYj−k(τ), j = 1, . . . ,m,
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and

Yj(τ) = (−1) j−1
j−1

∑
k=0

( j− 1)!
k!( j− k− 1)!

hkXj−k(τ), j = 1, . . . ,m.

Proof. The first set of relations can be easily obtained as follows:

Xj(τ) =
0∫

−h

θ j−1U(τ +θ + h− h)dθ

= 〈ξ =−θ − h〉=
0∫

−h

(−h− ξ ) j−1 U(τ − ξ − h)dξ

= (−1) j−1
j−1

∑
k=0

( j− 1)!
k!( j− k− 1)!

hk

0∫

−h

ξ j−k−1U(τ − ξ − h)dξ

= (−1) j−1
j−1

∑
k=0

( j− 1)!
k!( j− k− 1)!

hkYj−k(τ).

The second set of relations can be obtained in a similar way. ��
Lemma 4.3 provides a reduction of system (4.20). We have the sum

m

∑
j=1

BT
j Yj(τ) =

m

∑
j=1

(−1) j−1BT
j

(
j−1

∑
k=0

( j− 1)!
k!( j− k− 1)!

hkXj−k(τ)

)
.

If we define the matrix

B(ξ ) =
m

∑
j=1

(−ξ ) j−1BT
j ,

then we obtain the sum

m

∑
j=1

BT
j Yj(τ) =

m

∑
k=1

[
1

(k− 1)!
B(k−1)(h)

]
Xk(τ),

where

B(k−1)(h) =
dk−1B(ξ )

dξ k−1

∣∣∣∣
ξ=h

, k = 1,2, . . . ,m.

The second equation of system (4.20) takes the form

dV (τ)
dτ

=−AT
1 Z(τ)−AT

0 V (τ)−
m

∑
k=1

[
1

(k− 1)!
B(k−1)(h)

]
Xk(τ).
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Therefore, system (4.20) is reduced to the following system of (m + 2) matrix
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dτ

Z = ZA0 +VA1+
m

∑
j=1

XjB j,

d
dτ

V =−AT
1 Z −AT

0 V −
m

∑
j=1

[
1

(k− 1)!
B(k−1)(h)

]
Xk(τ),

d
dτ

X1 = Z−V,

d
dτ

Xj =−(−h) j−1V − ( j− 1)Xj−1, j = 2, . . . ,m.

(4.23)

In a similar way, the set of boundary value conditions (4.22) is reduced to the next
one:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Z(0) =V T (h),

Xk(0) = (−1)k−1
k−1

∑
j=0

(k− 1)!
j!(k− j− 1)!

h jXT
k− j(h), k = 1, . . . ,m,

Z(0)A0 +AT
0 Z(0)+V(0)A1 +AT

1 V T (0)+
m

∑
j=1

[
Xj(0)B j +BT

j XT
j (0)

]
=−W.

In the following statement we show that the spectrum of system (4.1) and that of
system (4.20) are connected.

Theorem 4.5. Given a time-delay system (4.1), where the matrix G(θ ) is of the
form (4.19), let s0 be an eigenvalue of the time-delay system such that −s0 is also
an eigenvalue of the system. Then s0 belongs to the spectrum of delay-free system
(4.20).

Proof. The characteristic matrix of system (4.1) is

G(s) = sI −A0 − e−hsA1 −
m

∑
k=1

f (k−1)(s)Bk,

where

f (0)(s) =
1− e−hs

s
, and f (k−1)(s) =

dk−1 f (s)
dsk−1 , ,k = 2, . . . ,m.

Because s0 and −s0 are eigenvalues of the system, there exist nonzero vectors γ and
μ such that

γT G(s0) = 0, GT (−s0)μ = 0. (4.24)

A complex number s0 belongs to the spectrum of system (4.20) if and only if there
exists a nontrivial set of n× n matrices
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{
Z(0),V (0),X (0)

1 , . . . ,X (0)
m ,Y (0)

1 , . . . ,Y (0)
m

}

that satisfies (4.21). Multiplying the first equality in (4.24) by μ from the left and
the second equality by −e−hs0γT from the right we obtain

s0μγT − μγT A0 − e−hs0 μγT A1 −
m

∑
k=1

f (k−1)(s0)μγT Bk = 0n×n

and

s0e−hs0 μγT +AT
0 e−hs0 μγT +AT

1 μγT +
m

∑
k=1

e−hs0 f (k−1)(−s0)B
T
k μγT = 0n×n.

If we introduce the nontrivial matrices

Z(0) = μγT , V (0) = e−hs0 μγT ,

X (0)
j = f ( j−1)(s0)μγT , Y (0)

j = e−hs0 f ( j−1)(−s0)μγT , j = 1, . . . ,m,

then the preceding equalities take the form

s0Z(0)−Z(0)A0 −V (0)A1 −
m

∑
k=1

X (0)
k Bk = 0n×n,

s0V (0) +AT
0 V (0) +AT

1 Z(0) +
m

∑
k=1

BT
k Y (0)

k = 0n×n.

In other words, the matrices satisfy the first two equations of system (4.21). To
verify that these matrices satisfy the remaining 2(m+1) matrix equations in (4.21),
we multiply the identity

s f (0)(s) = 1− e−hs

by the matrix μγT and set s = s0; then we obtain the equality

s0X (0)
1 = Z(0)−V (0).

Now we compute the derivatives

d j−1

ds j−1

[
s f (0)(s)

]
= s f ( j−1)(s)+ ( j− 1) f ( j−2)(s)

= −(−h) j−1e−hs, j = 2, . . . ,m− 1.

This means that the following identities hold:
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s f ( j−1)(s) =−(−h) j−1e−hs − ( j− 1) f ( j−2)(s), j = 2, . . . ,m.

If we multiply these identities by the matrix μγT and set s = s0, then we obtain the
desired set of matrix equalities

s0X (0)
j =−(−h) j−1V (0)− ( j− 1)X (0)

j−1, j = 2, . . . ,m.

In a similar way one can verify the remaining equalities in (4.21).
It is evident that the set of matrices introduced previously,

{
Z(0),V (0),X (0)

1 , . . . ,X (0)
m ,Y (0)

1 , . . . ,Y (0)
m

}
,

is not trivial. Therefore, the complex value s0 belongs to the spectrum of system
(4.20). The same is true for −s0. ��
Remark 4.2. The statement remains valid if we replace in Theorem 4.5 system
(4.20) by the reduced system (4.23).

4.5.2 A Special Case

Now we consider the case where the matrix G(θ ) is of the form

G(θ ) =
m

∑
j=1

η j(θ )B j, (4.25)

where B1, . . . ,Bm are given n×n matrices and the scalar functions η1(θ ), . . . ,ηm(θ )
are such that

dη j(θ )
dθ

=
m

∑
k=1

α jkηk(θ ), j = 1, . . . ,m.

Remark 4.3. In the previous subsection we had η j(θ ) = θ j−1, j = 1, . . . ,m. These
functions satisfy the equations

dη1(θ )
dθ

= 0,
dη j(θ )

dθ
= ( j− 1)η j−1(θ ), j = 2, . . . ,m.

The time-delay matrix equation for U(τ) is now of the form

dU(τ)
dτ

=U(τ)A0 +U(τ − h)A1 +
m

∑
j=1

0∫

−h

η j(θ )U(τ +θ )B jdθ , τ ≥ 0. (4.26)
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Let us define for τ ∈ [0,h] the matrices Z(τ) =U(τ), V (τ) =U(τ − h), and

Xj(τ) =
0∫

−h

η j(θ )U(τ +θ )dθ , Yj(τ) =
0∫

−h

η j(θ )U(τ −θ − h)dθ , j = 1, . . . ,m.

Then Eq. (4.26) has the form

dZ(τ)
dτ

= Z(τ)A0 +V(τ)A1 +
m

∑
j=1

Xj(τ)B j , τ ∈ [0,h],

and
dV (τ)

dτ
=−AT

1 Z(τ)−AT
0 V (τ)−

m

∑
j=1

BT
j Yj(τ).

Now

dXj(τ)
dτ

=
d

dτ

⎛
⎝

0∫

−h

η j(θ )U(τ +θ )dθ

⎞
⎠

= η j(0)U(τ)−η j(−h)U(τ − h)−
0∫

−h

dη j(θ )
dθ

U(τ +θ )dθ

= η j(0)Z(τ)−η j(−h)V (τ)−
m

∑
k=1

α jkXk(τ), j = 1, . . . ,m,

and

dYj(τ)
dτ

=
d

dτ

⎛
⎝

0∫

−h

η j(θ )U(τ −θ − h)dθ

⎞
⎠

= −η j(0)U(τ − h)+η j(−h)U(τ)+
0∫

−h

dη j(θ )
dθ

U(τ −θ − h)dθ

= η j(−h)Z(τ)−η j(0)V (τ)+
m

∑
k=1

α jkYk(τ), j = 0,1, . . . ,m.

We arrive at the following system of delay-free matrix equations:



4.5 Lyapunov Matrices: Computational Issue 161

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dτ

Z = ZA0 +VA1+
m

∑
j=1

XjB j,

d
dτ

V =−AT
0 V −AT

1 Z −
m

∑
j=1

BT
j Yj,

d
dτ

Xj = η j(0)Z −η j(−h)V −
m

∑
k=1

α jkXk, j = 1, . . . ,m,

d
dτ

Yj = η j(−h)Z −η j(0)V +
m

∑
k=1

α jkYk, j = 1, . . . ,m.

(4.27)

Because the auxiliary matrices Z(τ), V (τ), Xj(τ), Yj(τ), j = 1, . . . ,m, satisfy the
boundary value conditions (4.22), the following result holds.

Theorem 4.6. Given a time-delay system (4.1), where the matrix G(θ ) is of the
form (4.25), let U(τ) be a Lyapunov matrix of the delay system associated with the
matrix W. Then the matrices Z(τ), V (τ), Xj(τ), Yj(τ), j = 1, . . . ,m, define a solution
of the auxiliary boundary value problem (4.27), (4.22).

For the special case the statement of Theorem 4.5 remains true.

Theorem 4.7. Given a time-delay system (4.1), where the matrix G(θ ) is of the
form (4.25), let s0 be an eigenvalue of the time-delay system such that −s0 is also
an eigenvalue of the system. Then s0 belongs to the spectrum of system (4.27).

Sometimes it is possible to perform a reduction of delay-free system (4.27). This
happens when the functions η j(θ ), j = 1, . . . ,m, satisfy the conditions

η j(−θ − h) =
m

∑
k=1

γ jkηk(θ ), θ ∈ [−h,0], j = 1, . . . ,m.

In this case

Yj(τ) =
0∫

−h

η j(θ )U(τ −θ − h)dθ = 〈ξ =−θ − h〉

=

0∫

−h

η j(−ξ − h)U(τ + ξ )dξ =
m

∑
k=1

γ jk

0∫

−h

ηk(ξ )U(τ + ξ )dξ

=
m

∑
k=1

γ jkXk(τ), j = 1, . . . ,m,

and one can exclude the matrices Yj(τ) of system (4.27), as well as those of
boundary value conditions (4.22).
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4.5.3 Numerical Scheme

In this section we propose a numerical scheme to approximate Lyapunov matrices.
Given a symmetric matrix W , we are looking for an approximate initial condition

for the Lyapunov matrix associated with W of the form

Φ(θ ) =
m

∑
j=0

θ jΦ j, θ ∈ [−h,0],

where Φ j, j = 0,1, . . . ,m, are n × n constant matrices. We address symmetry
property (4.4). According to this property,

dkU(τ)
dτk

∣∣∣∣
τ=+0

= (−1)k
[

dkU(τ)
dτk

∣∣∣∣
τ=−0

]T

, k ≥ 0. (4.28)

Here dkU(τ)
dτk

∣∣∣
τ=+0

and dkU(τ)
dτk

∣∣∣
τ=−0

stand for the right-hand side and the left-hand

side derivatives of U(τ) of the order k at τ = 0, respectively. It follows from (4.3)
that

dk+1U(τ)
dτk+1

∣∣∣∣
τ=+0

=

(
dkU(τ)

dτk

∣∣∣∣
τ=+0

)
A0 +

(
dkU(τ)

dτk

∣∣∣∣
τ=−h+0

)
A1

+

0∫

−h

dkU(θ )
dθ k G(θ )dθ , k ≥ 0.

If we replace U(θ ) in the preceding equality by Φ(θ ), then we obtain that

dk+1Û(τ)
dτk+1

∣∣∣∣∣
τ=+0

=

(
dkÛ(τ)

dτk

∣∣∣∣∣
τ=+0

)
A0 +

m

∑
j=k

j( j− 1) . . . ( j− k− 1)Φ j

×
⎡
⎣(−h) j−kA1 +

0∫

−h

θ j−kG(θ )dθ

⎤
⎦ , k ≥ 0.

For k = 0 we have

dÛ(τ)
dτ

∣∣∣∣∣
τ=+0

= Φ0A0 +
m

∑
j=0

(−h) j Φ jA1 +
m

∑
j=0

Φ j

0∫

−h

θ jG(θ )dθ

=
m

∑
j=0

Φ jL
(1)
j ,
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where

L(1)
0 = A0 +A1 +

0∫

−h

G(θ )dθ , L(1)
j = (−h) j A1 +

0∫

−h

θ jG(θ )dθ , j = 1,2, . . . ,m.

For k = 1

d2Û(τ)
dτ2

∣∣∣∣∣
τ=+0

=

(
dÛ(τ)

dτ

∣∣∣∣∣
τ=+0

)
A0 +

m

∑
j=1

jΦ j

⎡
⎣(−h) j−1A1 +

0∫

−h

θ j−1G(θ )dθ

⎤
⎦

=
m

∑
j=0

Φ jL
(2)
j ,

where
L(2)

0 = L(1)
0 A0, L(2)

j = L(1)
j A0 + jL(1)

j−1, j = 1,2, . . . ,m.

On the one hand, repeating this process we obtain the following expressions for the
right-hand-side derivatives:

dkÛ(τ)
dτk

∣∣∣∣∣
τ=+0

=
m

∑
j=0

Φ jL
(k)
j , k = 1,2, . . . ,m.

Here

L(k)
j =

{
L(k−1)

j A0, j = 0,1, . . . ,k− 2,

L(k−1)
j A0 + j( j− 1) . . .( j− k+ 2)L(1)

j−k+1, j = k− 1,k, . . . ,m.

On the other hand, the left-hand-side derivatives at τ = 0 are of the form

dkÛ(τ)
dτk

∣∣∣∣∣
τ=−0

= k!Φk, k = 1,2, . . . ,m.

Substituting these expressions into (4.28) we obtain a system of (m+ 1) matrix
equations for (m+ 1) matrices Φ j, j = 0,1, . . . ,m:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)kk!ΦT
k =

m

∑
j=0

Φ jL
(k)
j , k = 1,2, . . . ,m,

m

∑
j=0

Φ jL
(1)
j +ΦT

1 =−W.
(4.29)

The last equation of this system is property (4.6), written in terms of the matrices.
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If system (4.29) admits a solution, Φ j , j = 0,1, . . . ,m, then we arrive at the matrix

Φ(θ ) =
m

∑
j=0

θ j
j Φ j, θ ∈ [−h,0].

The desired approximation of the Lyapunov matrix associated with W is now of the
form

Û(τ) = [Φ(−τ)]T , τ ∈ [0,h].

4.6 Complete Type Functionals

Here we define a new class of quadratic functionals. But first we prove the statement.

Theorem 4.8. Define for the given symmetric matrices W0, W1, and W2 the
functional

w(ϕ) = ϕT (0)W0ϕ(0)+ϕT (−h)W1ϕ(−h)

+

0∫

−h

ϕT (θ )W2ϕ(θ )dθ , ϕ ∈ PC([−h,0],Rn). (4.30)

Let there exist a Lyapunov matrix U(τ) associated with matrix

W =W0 +W1 + hW2.

This Lyapunov matrix defines the functional v0(ϕ); see (4.7). The time derivative of
the functional

v(ϕ) = v0(ϕ)+
0∫

−h

ϕT (θ ) [W1 +(h+θ )W2]ϕ(θ )dθ , ϕ ∈PC([−h,0],Rn), (4.31)

along the solutions of system (4.1) is such that

d
dt

v(xt) =−w(xt), t ≥ 0.

Proof. The proof is similar to that of Theorem 3.4. ��
Definition 4.2. We say that functional (4.31) is of the complete type if the matrices
W0, W1, and W2 are positive definite.
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Lemma 4.4. Let system (4.1) be exponentially stable. Given the positive-definite
matrices W0, W1, and W2, the complete type functional (4.31) admits a lower bound
of the form

β1 ‖ϕ(0)‖2 +β2

0∫

−h

‖ϕ(θ )‖2 dθ ≤ v(ϕ), ϕ ∈ PC([−h,0],Rn),

where β1 and β2 are positive constants.

Proof. We define an auxiliary functional of the form

ṽ(ϕ) = v(ϕ)−β1‖ϕ(0)‖2 −β2

0∫

−h

‖ϕ(θ )‖2 dθ ,

where β1 and β2 are assumed to be positive constants. The time derivative of the
functional along the solution of system (4.1) is

d
dt

ṽ(xt) =−w̃(xt),

where

w̃(xt) = w(xt)+ 2β1xT (t)

⎡
⎣A0x(t)+A1x(t − h)+

0∫

−h

G(θ )x(t +θ )dθ

⎤
⎦

+ β2xT (t)x(t)−β2xT (t − h)x(t − h), t ≥ 0.

The functional w̃(ϕ) admits a lower estimation of the form

w̃(ϕ)≥ [ϕT (0),ϕT (−h)]R1(β1,β2)

[
ϕ(0)

ϕ(−h)

]
+

0∫

−h

ϕT (θ )R2(θ ,β1)ϕ(θ )dθ ,

where

R1(β1,β2) =

(
W0 0n×n

0n×n W1

)
+β1

(
A0 +AT

0 − hI A1

AT
1 0n×n

)
+β2

(
I 0n×n

0n×n −I

)

and
R2(θ ,β1) =W2 −β1GT (θ )G(θ ).

The matrices W0, W1, and W2 are positive definite, so there exist β1 > 0 and β2 > 0
such that the following inequalities hold

R1(β1,β2)≥ 0, R2(θ ,β1)≥ 0, θ ∈ [−h,0].
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For these β1 β2 we have

w̃(ϕ)≥ 0, ϕ ∈ PC([−h,0],Rn).

Therefore,

ṽ(ϕ) =
∞∫

0

w̃(xt(ϕ))dt ≥ 0, ϕ ∈ PC([−h,0],Rn),

and we arrive at the conclusion that

β1 ‖ϕ(0)‖2 +β2

0∫

−h

‖ϕ(θ )‖2 dθ ≤ v(ϕ), ϕ ∈ PC([−h,0],Rn). ��

Corollary 4.2. If we assume β2 = 0 and set β1 = α1, then there exists α1 > 0 such
that the following inequalities hold:

R1(α1,0)≥ 0, R2(θ ,α1)≥ 0, θ ∈ [−h,0].

Therefore, the complete type functional v(ϕ) admits a lower bound of the form

α1 ‖ϕ(0)‖2 ≤ v(ϕ), ϕ ∈ PC([−h,0],Rn). (4.32)

Lemma 4.5. Let system (4.1) satisfy the Lyapunov condition. Given the symmetric
matrices W0, W1, and W2, there exist positive constants δ1 and δ2 such that
functional (4.31) admits an upper bound of the form

v(ϕ)≤ δ1 ‖ϕ(0)‖2 + δ2

0∫

−h

‖ϕ(θ )‖2 dθ , ϕ ∈ PC([−h,0],Rn). (4.33)

Proof. The Lyapunov condition implies that there exists a Lyapunov matrix U(τ)
associated with matrix W =W0 +W1 + hW2. We define the following constants:

ν = max
τ∈[0,h]

‖U(τ)‖ , a = ‖A1‖ , g = max
θ∈[−h,0]

‖G(θ )‖ .

Now we estimate the summands that constitute functional (4.31). The sum of the
first two terms admits the upper bound
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R1 +R2 = ϕT (0)U(0)ϕ(0)+ 2ϕT(0)

0∫

−h

U(−h−θ )A1ϕ(θ )dθ

≤ ν (1+ ha)‖ϕ(0)‖2 +νa

0∫

−h

‖ϕ(θ )‖2 dθ .

The sum of the next two terms can be estimated as follows:

R3 +R4 = 2ϕT (0)

0∫

−h

⎛
⎝

θ∫

−h

U(ξ −θ )G(ξ )dξ

⎞
⎠ϕ(θ )dθ

+

0∫

−h

ϕT (θ1)A
T
1

⎡
⎣

0∫

−h

U(θ1 −θ2)A1ϕ(θ2)dθ2

⎤
⎦dθ1

≤ 2νg‖ϕ(0)‖
0∫

−h

(h+θ )‖ϕ(θ )‖dθ +νa2

⎛
⎝

0∫

−h

‖ϕ(θ )‖dθ

⎞
⎠

2

≤ νgh‖ϕ(0)‖2 +νh

(
gh
3

+ a2
) 0∫

−h

‖ϕ(θ )‖2 dθ .

The fifth term admits the estimation

R5 = 2

0∫

−h

ϕT (θ1)A
T
1

⎛
⎝

0∫

−h

⎡
⎣

θ2∫

−h

U(h+θ1−θ2 + ξ2)G(ξ2)dξ2

⎤
⎦ϕ(θ2)dθ2

⎞
⎠dθ1

≤ 2νag

⎛
⎝

0∫

−h

‖ϕ(θ1)‖dθ1

⎞
⎠
⎛
⎝

0∫

−h

(h+θ2)‖ϕ(θ2)‖dθ2

⎞
⎠

≤ 2νag

⎛
⎝
√

h
∫ 0

−h
‖ϕ(θ1)‖2 dθ1

⎞
⎠
⎛
⎝
√

h3

3

∫ 0

−h
‖ϕ(θ2)‖2 dθ2

⎞
⎠

≤ 2√
3

νh2ag

0∫

−h

‖ϕ(θ )‖2 dθ .
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The next term can be estimated as follows:

R6 =

0∫

−h

ϕT (θ1)

⎧⎨
⎩

0∫

−h

⎡
⎣

θ1∫

−h

GT (ξ1)

⎛
⎝

θ2∫

−h

U(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2

⎞
⎠dξ1

⎤
⎦

× ϕ(θ2)dθ2

⎫⎬
⎭dθ1

≤ νg2

⎛
⎝

0∫

−h

(h+θ1)‖ϕ(θ1)‖dθ1

⎞
⎠
⎛
⎝

0∫

−h

(h+θ2)‖ϕ(θ2)‖dθ2

⎞
⎠

≤ 1
3

νh3g2

0∫

−h

‖ϕ(θ )‖2 dθ .

And, finally,

R7 =

0∫

−h

ϕT (θ ) [W1 +(h+θ )W2]ϕ(θ )dθ

≤ (‖W1‖+ h‖W2‖)
0∫

−h

‖ϕ(θ )‖2 dθ .

If we collect the estimations, then inequality (4.33) holds for

δ1 = ν (1+ ha+ hg),

δ2 = νa(1+ ha)+
1
3

νgh2
(

1+ 2
√

3a+ hg
)
+ ‖W1‖+ h‖W2‖ . ��

Corollary 4.3. If we assume that α2 = δ1 + hδ2, then functional (4.31) admits an
upper bound of the form

v(ϕ)≤ α2 ‖ϕ‖2
h , ϕ ∈ PC([−h,0],Rn). (4.34)

4.7 Exponential Estimates

Lemma 4.6. Given the positive-definite matrices W0, W1, and W2, functional (4.30)
admits the following exponential estimate:
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λmin(W0)‖ϕ(0)‖2 +λmin(W2)

0∫

−h

‖ϕ(θ )‖2 dθ ≤ w(ϕ), ϕ ∈ PC([−h,0],Rn).

Proof. The proof follows directly from (4.30). ��
Lemma 4.7. Let system (4.1) be exponentially stable. Given the positive-definite
matrices W0, W1, and W2, there exists σ > 0 such that the complete type functional
(4.31) satisfies the inequality

dv(xt)

dt
+ 2σv(xt)≤ 0, t ≥ 0, (4.35)

along the solutions of the system.

Proof. On the one hand, by Lemma 4.5, there exist positive constants δ1 and δ2

such that

v(ϕ)≤ δ1 ‖ϕ(0)‖2 + δ2

0∫

−h

‖ϕ(θ )‖2 dθ .

On the other hand, Lemma 4.6 provides the estimate

dv(xt)

dt
=−w(xt)≤−λmin(W0)‖x(t)‖2 −λmin(W2)

0∫

−h

‖x(t +θ )‖2 dθ .

Therefore, any σ > 0 that satisfies the inequalities

2σδ1 ≤ λmin(W0) and 2σδ2 ≤ λmin(W2)

also satisfies (4.35). ��
Theorem 4.9. Let system (4.1) be exponentially stable. Given the positive-definite
matrices W0, W1, and W2, the inequality

‖x(t,ϕ)‖ ≤
√

α2

α1
‖ϕ‖h e−σt , t ≥ 0,

holds for any solution of the system. Here α1 and α2 are as defined in Corollaries 4.2
and 4.3, respectively, and σ > 0 is as computed in Lemma 4.7.

Proof. Let σ > 0 satisfy Lemma 4.7. Then, integrating inequality (4.35), we obtain
that

v(xt(ϕ))≤ v(ϕ)e−2σt , t ≥ 0.
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Now inequalities (4.32) and (4.34) imply that

α1 ‖x(t,ϕ)‖2 ≤ v(xt(ϕ))≤ v(ϕ)e−2σt ≤ α2 ‖ϕ‖2
h e−2σt , t ≥ 0.

The desired exponential estimate is a direct consequence of the preceding
inequalities. ��
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