
Chapter 1
General Theory

This chapter serves as a brief introduction to the theory of the retarded type
time-delay system. It starts with a discussion of such basic notions as solutions,
initial conditions, and the state of a time-delay system. Then some results on the
existence and uniqueness of an initial value problem are presented. Continuity
properties of the solutions are discussed as well. The main part of the chapter
is devoted to stability analysis. Here we define concepts of stability, asymptotic
stability, and exponential stability of the trivial solution of a time-delay system.
Classical stability results, obtained using the Lyapunov–Krasovskii approach, are
given in the form of necessary and sufficient conditions. A short section with
historical comments concludes the chapter.

1.1 Preliminaries

We begin with a class of retarded type time-delay systems of the form

dx(t)
dt

= g(t,x(t),x(t − h)), (1.1)

where x ∈ Rn and the time delay h > 0. Let the vector-valued function g(t,x,y) be
defined for t ≥ 0, x ∈ Rn, and y ∈ Rn. We assume that this function is continuous in
the variables.

1.1.1 Initial Value Problem

It is well known that a particular solution of a delay-free system, ẋ = G(t,x), is
defined by its initial conditions, which include an initial time instant t0 and an initial
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4 1 General Theory

state x0 ∈ Rn. This is not the case when dealing with a solution of system (1.1).
Here the knowledge of t0 and x0 is not sufficient even to define the value of the time
derivative of x(t) at the initial time instant t0. To define a solution of system (1.1),
one needs to select an initial time instant t0 ≥ 0 and an initial function ϕ : [−h,0]→
Rn. The initial value problem for system (1.1) is formulated as follows. Given an
initial time instant t0 ≥ 0 and an initial function ϕ , find a solution of the system that
satisfies the condition

x(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0]. (1.2)

The initial function ϕ belongs to a certain functional space. It may be the space of
continuous functions, C ([−h,0],Rn), the space of piecewise continuous functions,
PC ([−h,0],Rn), or some other functional space. The choice of the space is dictated
by a specific problem under investigation. In our case we assume that initial
functions belong to the space PC ([−h,0],Rn). Recall that the function ϕ belongs
to the space if it admits at most a finite number of discontinuity points and for each
continuity interval (α,β ) ∈ [−h,0] the function has a finite right-hand-side limit at
θ = α , ϕ(α + 0) = limε→0 ϕ(α + |ε|), and a finite left-hand-side limit at θ = β ,
ϕ(β − 0) = limε→0 ϕ(β −|ε|).

The Euclidean norm is used for vectors and the corresponding induced norm for
matrices. The space PC ([−h,0],Rn) is supplied with the standard uniform norm [24,
65, 66],

‖ϕ‖h = sup
θ∈[−h,0]

‖ϕ(θ )‖ .

On the one hand, the fact that initial functions belong to a functional space
gives rise to the interpretation of time-delay systems as a particular class of infinite-
dimensional systems. On the other hand, the trajectories of a time-delay system lie
in Rn+1; therefore, to some extent such systems can also be treated as systems in the
finite-dimensional space.

1.1.2 Solutions

In this section we discuss the existence issue for the initial value problem (1.1)–
(1.2). The approach presented here is known as the “step-by-step” method [3].

First, we consider a system on the segment [t0, t0 + h]. Here t − h ∈ [t0 − h, t0],
and x(t − h) is defined by Eq. (1.2), x(t − h) = ϕ(t − t0 − h), and the system takes
the form of the following auxiliary system of ordinary differential equations:

dx
dt

= G(1)(t,x) = g(t,x,ϕ(t − t0 − h)), t ∈ [t0, t0 + h].

We are looking for a solution of the system that satisfies the condition x(t0) = ϕ(0).
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If such a solution x̃(t) can be defined on the whole segment [t0, t0 + h], then we
address the next segment [t0 +h, t0 +2h]. Here t −h ∈ [t0, t0 +h], and the delay state
x(t − h) was already defined in the previous step, x(t − h) = x̃(t − h). Thus, on this
segment system (1.1) is a delay-free system of the form

dx
dt

= G(2)(t,x) = g(t,x, x̃(t − h)), t ∈ [t0 + h, t0 + 2h],

and we are looking for a solution of the initial value problem x(t0 + h) = x̃(t0 + h).
Applying the step-by-step method, we reduce the computation of a solution of

the initial value problem (1.1)–(1.2) to a series of standard initial value problems for
a set of auxiliary systems of ordinary differential equations.

1.1.3 State Concept

In the theory of dynamic systems the concept of a system state occupies center stage.
In general, we can say that the state of a system at a given time instant t1 ≥ t0 should
include the minimal information that allows one to continue the dynamic for t ≥ t1.
If we adopt this point of view, then the state should be defined in the same manner
as it was for the initial value problem.

The definition of the initial conditions and the step-by-step method of construc-
tion of the system solutions presented previously demonstrate that we need to know
x(t1 +θ ), for θ ∈ [−h,0], in order to continue a solution for t ≥ t1. Therefore, along
a given solution of system (1.1) the state of the system at a time instant t ≥ t0
is defined as the restriction of the solution on the segment [t − h, t]. We use the
following notation for the system state

xt : θ → x(t +θ ), θ ∈ [−h,0].

In the case where the initial condition (t0,ϕ) should be indicated explicitly we use
the notations x(t, t0,ϕ) and xt(t0,ϕ). For time-invariant systems we usually assume
that t0 = 0 and omit the argument t0 in these notations.

1.2 Existence and Uniqueness Issues

The dynamic of a time-delay system may depend not only on a delay state, x(t −h),
as happens in system (1.1), but on the complete state, xt , of the system. An example
of such a situation is given by the system

dx(t)
dt

=

0
∫

−h

g(t,x(t +θ ))dθ .
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Here the right-hand side of the system depends on the values of x(t+θ ), θ ∈ [−h,0].
This means that the right-hand side is no longer a function but a functional that is
defined on a particular functional space. It is clear that for such systems the step-by-
step method is no longer applicable. Thus, we must look for an alternative procedure
to compute solutions. Here we present such a procedure, but first we introduce a
definition.

Definition 1.1 ([45]). Given a functional

F : PC ([−h,0] ,Rn)→ Rn,

we say that the functional is continuous at a point ϕ0 ∈ PC ([−h,0] ,Rn) if for
any ε > 0 there exists δ > 0 such that for ϕ ∈ PC ([−h,0] ,Rn) the inequality
‖ϕ −ϕ0‖h < δ implies that

‖F(ϕ)−F(ϕ0)‖ < ε.

Functional F is said to be continuous on a set Φ⊂ PC ([−h,0] ,Rn) if it is continuous
at each point of the set.

Now we consider a functional

f : [0,∞)×PC ([−h,0] ,Rn)−→ Rn.

The functional defines the time-delay system

dx(t)
dt

= f (t,xt). (1.3)

Theorem 1.1. Given a time-delay system (1.3), where the functional

f : [0,∞)×PC ([−h,0] ,Rn)−→ Rn

satisfies the following conditions:

(i) For any H > 0 there exists M(H)> 0 such that

‖ f (t,ϕ)‖ ≤ M(H), (t,ϕ) ∈ [0,∞)×PC ([−h,0] ,Rn) , and ‖ϕ‖h ≤ H;

(ii) The functional f (t,ϕ) is continuous on the set [0,∞)×PC ([−h,0] ,Rn) with
respect to both arguments;

(iii) The functional f (t,ϕ) satisfies the Lipschitz condition with respect to the
second argument, i.e., for any H > 0 there exists a Lipschitz constant L(H)> 0
such that the inequality

∥

∥

∥
f (t,ϕ(1))− f (t,ϕ(2))

∥

∥

∥
≤ L(H)

∥

∥

∥
ϕ(1)−ϕ(2)

∥

∥

∥

h
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holds for t ≥ 0, ϕ(k) ∈ PC1 ([−h,0] ,Rn), and
∥

∥

∥
ϕ(k)

∥

∥

∥

h
≤ H, k = 1,2.

Then, for a given t0 ≥ 0 and an initial function ϕ ∈ PC ([−h,0] ,Rn) there exists
τ > 0 such that the system admits a unique solution x(t) of the initial value
problem (1.2), and the solution is defined on the segment [t0 − h, t0 + τ].

Proof. Given t0 ≥ 0 and ϕ ∈ PC ([−h,0] ,Rn), let us select H > 0 such that the
inequality

H > H0 = ‖ϕ‖h

holds. Now we can define the corresponding values M = M(H) and L = L(H).
Let us select τ > 0 such that

τL < 1, and τM < H −H0,

and let us define a function u : [t0 − h, t0 + τ]→ Rn such that

u(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0],

and the function is continuous on [t0, t0 +τ]. Assume additionally that the following
inequality holds:

‖u(t)−ϕ(0)‖ ≤ (t − t0)M, t ∈ [t0, t0 + τ].

It follows from the definition that

‖u(t)‖ ≤ ‖ϕ(0)‖+(t − t0)M ≤ ‖ϕ‖h + τM < H, t ∈ [t0, t0 + τ].

We denote by U the set of all such functions. On the set U we define the operator A
that acts on the functions of the set as follows:

A(u)(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ(t − t0), t ∈ [t0 − h, t0],

ϕ(0)+
t

∫

t0

f (s,us)ds, t ∈ [t0, t0 + τ],

where us : θ → u(s+θ ), θ ∈ [−h,0]. It is a matter of simple calculation to check
that the theorem conditions (i) and (ii) guarantee that the transformed function A(u)
belongs to the same set U :

u ∈U ⇒A(u) ∈U.

Let x(t, t0,ϕ) be a solution of the initial value problem (1.3)–(1.2); then
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x(t, t0,ϕ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ(t − t0), t ∈ [t0 − h, t0],

ϕ(0)+
t

∫

t0

f (s,xs(t0,ϕ))ds, t ∈ [t0, t0 + τ],

and we conclude that this solution defines a fixed point of the operator A.
Observe that

A(u(1))(t)−A(u(2))(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, t ∈ [t0 − h, t0],
t

∫

t0

[

f (s,u(1)s )− f (s,u(2)s )
]

ds, t ∈ [t0, t0 + τ].

Hence for t ∈ [t0 − h, t0]

∥

∥

∥A(u(1))(t)−A(u(2))(t)
∥

∥

∥= 0,

and for t ∈ [t0, t0 + τ]

∥

∥

∥A(u(1))(t)−A(u(2))(t)
∥

∥

∥ ≤
∥

∥

∥

∥

∥

∥

t
∫

t0

[ f (s,u(1)s )− f (s,u(2)s )]ds

∥

∥

∥

∥

∥

∥

≤
t0+τ
∫

t0

∥

∥

∥ f (s,u(1)s )− f (s,u(2)s )
∥

∥

∥ds.

The Lipschitz condition (iii) implies that for t ∈ [t0, t0 + τ]

∥

∥

∥A(u(1))(t)−A(u(2))(t)
∥

∥

∥ ≤
t0+τ
∫

t0

L
∥

∥

∥u(1)s − u(2)s

∥

∥

∥

h
ds

≤ τL sup
s∈[t0−h,t0+τ]

∥

∥

∥u(1)(s)− u(2)(s)
∥

∥

∥ .

Since the preceding inequality holds for all t ∈ [t0 − h, t0 + τ], we conclude that

sup
s∈[t0−h,t0+τ]

∥

∥

∥A(u(1))(t)−A(u(2))(t)
∥

∥

∥≤ τL sup
s∈[t0−h,t0+τ]

∥

∥

∥u(1)(s)− u(2)(s)
∥

∥

∥ .

Now, as τL < 1, the operator A satisfies the conditions of the contraction mapping
theorem [45], and there exists a unique function u(∗) ∈U such that
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u(∗)(t) =A(u(∗))(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ(t − t0), t ∈ [t0 − h, t0],

ϕ(0)+
t

∫

t0

f (s,u(∗)s )ds, t ∈ [t0, t0 + τ].

The functional f (t,ϕ) is continuous, so differentiating the preceding equality,

du(∗)(t)
dt

= f (t,u(∗)t ), t ∈ [t0, t0 + τ],

we arrive at the conclusion that u(∗)(t) is the unique solution of the initial value
problem (1.3)–(1.2). 
�
Remark 1.1. We can take the new initial time instant, t1 = t0+τ , and define the new
initial function

ϕ(1)(θ ) = u(∗)(t1 +θ ), θ ∈ [−h,0].

Then the procedure can be repeated, and we extend the solution to the next segment
[t1, t1 + ˜τ]. This extension process can be continued as long as the solution remains
bounded.

For each solution there exists a maximal interval [t0, t0+T ) on which the solution
is defined. Here we present conditions under which any solution of system (1.3) is
defined on [t0,∞).

Theorem 1.2. Let system (1.3) satisfy the conditions of Theorem 1.1. Assume
additionally that f (t,ϕ) satisfies the inequality

‖ f (t,ϕ)‖ ≤ η(‖ϕ‖h), t ≥ 0, ϕ ∈ PC ([−h,0] ,Rn) ,

where the function η(r), r ∈ [0,∞), is continuous, nondecreasing, and such that for
any r0 ≥ 0 the following condition holds:

lim
R→∞

R
∫

r0

dr
η(r)

= ∞.

Then any solution x(t, t0,ϕ) of the system is defined on [t0,∞).

Proof. Given t0 ≥ 0 and ϕ ∈ PC ([−h,0] ,Rn), there exists a maximal interval
[t0, t0 +T ) on which the corresponding solution x(t, t0,ϕ) is defined. For the sake
of simplicity we denote x(t, t0,ϕ) by x(t).

Assume by contradiction that T < ∞. Then there exists a sequence {tk}∞
k=1 such

that tk ∈ [t0, t0 +T ),

lim
k→∞

tk = t0 +T,
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and
lim
k→∞

‖x(tk)‖→ ∞;

otherwise, by Remark 1.1, the solution can be defined on a wider segment [t0, t0 +
T + τ], where τ > 0.

The solution satisfies the equality

x(t) = ϕ(0)+
t

∫

t0

f (s,xs)ds, t ∈ [t0, t0 +T).

It follows from the preceding equality and the theorem conditions that

‖xt‖h ≤ ‖ϕ‖h +

t
∫

t0

η(‖xs‖h)ds, t ∈ [t0, t0 +T ).

Denote the right-hand side of the last inequality by v(t); then

dv(t)
dt

= η(‖xt‖h)≤ η(v(t)), t ∈ [t0, t0 +T ).

This implies that
tk
∫

t0

dv(s)
η(v(s))

≤ tk − t0, k = 1,2,3, . . . .

On the one hand, as
tk
∫

t0

dv(s)
η(v(s))

=

rk
∫

r0

dξ
η(ξ )

,

where r0 = v(t0) = ‖ϕ‖h ≥ 0, and

rk = v(tk)≥
∥

∥xtk

∥

∥

h ≥ ‖x(tk)‖→ ∞, as k → ∞,

then

lim
k→∞

tk
∫

t0

dv(s)
η(v(s))

= ∞.

On the other hand,
lim
k→∞

(tk − t0) = T.

Therefore, T =∞, and we arrive at the contradiction with our assumption that T <∞.
This ends the proof of the statement. 
�
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1.3 Continuity Properties

In this section we analyze the continuity properties of the solutions of system (1.3)
with respect to the initial conditions and with respect to the system perturbations.
These continuity properties are a direct consequence of the following theorem.

Theorem 1.3. Assume that f (t,ϕ) satisfies the conditions of Theorem 1.1. Let
x(t, t0,ϕ) be a solution of system (1.3) such that

x(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0].

Given the perturbed system

dy(t)
dt

= f (t,yt )+ g(t,yt),

where the functional g(t,ϕ) is continuous on the set [0,∞)× PC ([−h,0] ,Rn),
satisfies the Lipschitz condition with respect to the second argument, and

‖g(t,ϕ)‖ ≤ m, t ≥ 0, ϕ ∈ PC ([−h,0] ,Rn) ,

let y(t, t0,ψ) be a solution of the perturbed system with the initial condition

y(t0 +θ ) = ψ(θ ), θ ∈ [−h,0].

If the solutions are defined for t ∈ [t0 − h, t0 +T ], and if H is such that

‖x(t, t0,ϕ)‖ ≤ H, ‖y(t, t0,ψ)‖ ≤ H, t ∈ [t0 − h, t0 +T ],

then the inequality

‖x(t, t0,ϕ)− y(t, t0,ψ)‖ ≤ ‖xt(t0,ϕ)− yt(t0,ψ)‖h

≤
(

‖ψ −ϕ‖h +
m

L(H)

)

eL(H)(t−t0)

holds for t ∈ [t0, t0 +T ].

Proof. For the sake of simplicity we will use the following shorthand notations for
the solutions x(t) = x(t, t0,ϕ) and y(t) = y(t, t0,ψ). Observe that

d
dt

[x(t)− y(t)] = f (t,xt )− f (t,yt)− g(t,yt), t ∈ [t0, t0 +T ].
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Integrating the preceding equality we obtain

x(t)− y(t) = ϕ(0)−ψ(0)+

t
∫

t0

[ f (s,xs)− f (s,ys)− g(s,ys)]ds, t ∈ [t0, t0 +T ].

The last equality implies that for t ∈ [t0, t0 +T ] the following inequalities hold:

‖x(t)− y(t)‖ ≤ ‖ϕ(0)−ψ(0)‖+
t

∫

t0

‖ f (s,xs)− f (s,ys)− g(s,ys)‖ds

≤ ‖ϕ(0)−ψ(0)‖+m(t − t0)+L(H)

t
∫

t0

‖xs − ys‖h ds.

Since ‖ϕ(0)−ψ(0)‖ ≤ ‖ψ −ϕ‖h, we have

‖x(t)− y(t)‖ ≤ ‖ϕ −ψ‖h +m(t − t0)

+L(H)

t
∫

t0

‖xs − ys‖h ds, t ∈ [t0, t0 +T ].

Using similar arguments we can conclude that for t1 ∈ [t − h, t], the inequality

‖x(t1)− y(t1)‖ ≤ ‖ϕ −ψ‖h +m(t − t0)+L(H)

t
∫

t0

‖xs − ys‖h ds

holds, which implies

sup
t1∈[t−h,t]

‖x(t1)− y(t1)‖ ≤ ‖ϕ −ψ‖h +m(t − t0)+L(H)

t
∫

t0

‖xs − ys‖h ds.

So we have

‖xt − yt‖h ≤ ‖ϕ −ψ‖h +m(t − t0)

+L(H)

t
∫

t0

‖xs − ys‖h ds, t ∈ [t0, t0 +T ].

Denote the right-hand side of the preceding inequality by v(t); then

dv(t)
dt

= m+L(H)‖xt − yt‖h ≤ m+L(H)v(t), t ∈ [t0, t0 +T ].
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Integrating this inequality we arrive at the desired one:

‖x(t, t0,ϕ)− y(t, t0,ψ)‖ ≤ ‖xt(t0,ϕ)− yt(t0,ψ)‖h

≤ ‖ψ −ϕ‖h eL(H)(t−t0) +
m

L(H)
(eL(H)(t−t0)− 1)

≤
(

‖ψ −ϕ‖h +
m

L(H)

)

eL(H)(t−t0), t ∈ [t0, t0 +T ]. 
�

Corollary 1.1. Let g(t,ϕ) ≡ 0; then m = 0, and both x(t, t0,ϕ) and y(t, t0,ψ) are
solutions of system (1.3). Assume that these solutions are defined for t ∈ [t0, t0 +T ].
For any ε > 0 there exists δ > 0 such that if ‖ψ −ϕ‖h < δ , then the following
inequality holds:

‖x(t, t0,ϕ)− x(t, t0,ψ)‖< ε, t ∈ [t0, t0 +T ].

In other words, x(t, t0,ϕ) depends continuously on ϕ .

Proof. The statement follows directly from Theorem 1.3 if we set δ = εe−L(H)T .

�

Corollary 1.2. Let ψ(θ ) = ϕ(θ ), θ ∈ [−h,0]; this means that the solutions
x(t, t0,ϕ) and y(t, t0,ψ) have the same initial conditions. Assume that these solutions
are defined for t ∈ [t0, t0 +T ]. For any ε > 0 there exists δ > 0 such that if m < δ ,
then

‖x(t, t0,ϕ)− y(t, t0,ϕ)‖< ε, t ∈ [t0, t0 +T ].

This means that x(t, t0,ϕ) depends continuously on the right-hand side of
system (1.3).

Proof. The statement follows directly from Theorem 1.3 if we set δ=L(H)e−L(H)T ε.

�

1.4 Stability Concepts

In this section we introduce some stability concepts for system (1.3). Let the system
satisfy the conditions of Theorem 1.1. Assume additionally that the system admits
a trivial solution, i.e., f (t,0h)≡ 0, for t ≥ 0. Here 0h stands for the trivial function,
0h : θ → 0 ∈ Rn, θ ∈ [−h,0].

Definition 1.2 ([46]). The trivial solution of system (1.3) is said to be stable if for
any ε > 0 and t0 ≥ 0 there exists δ (ε, t0) > 0 such that for every initial function
ϕ ∈ PC([−h,0],Rn), ‖ϕ‖h < δ (ε, t0), the following inequality holds:

‖x(t, t0,ϕ)‖< ε, t ≥ t0.
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If δ (ε, t0) can be chosen independently of t0, then the trivial solution is said to be
uniformly stable.

Remark 1.2. The value δ (ε, t0) is always smaller than or equal to ε .

Proof. Assume that for some ε > 0 and t0 ≥ 0 we have δ (ε, t0) > ε; then there is
ϕ ∈ PC([−h,0],Rn) such that ‖ϕ‖h < δ (ε, t0), and ‖ϕ(0)‖ > ε . On the one hand,
the corresponding solution x(t, t0,ϕ) should satisfy the inequality

‖x(t, t0,ϕ)‖< ε, t ≥ t0,

and, in particular, ‖x(t0, t0,ϕ)‖ < ε . On the other hand, x(t0, t0,ϕ) = ϕ(0), so
‖x(t0, t0,ϕ)‖= ‖ϕ(0)‖> ε . This contradiction proves the remark. 
�
Definition 1.3. The trivial solution of system (1.3) is said to be asymptotically
stable if for any ε > 0 and t0 ≥ 0 there exists Δ(ε, t0) > 0 such that for every
initial function ϕ ∈ PC([−h,0],Rn), with ‖ϕ‖h < Δ(ε, t0), the following conditions
hold.

1. ‖x(t, t0,ϕ)‖< ε , for t ≥ t0.
2. x(t, t0,ϕ)→ 0 as t − t0 −→ ∞.

If Δ(ε, t0) can be chosen independently of t0 and there exists H1 > 0 such
that x(t, t0,ϕ) → 0 as t − t0 −→ ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈
PC([−h,0],Rn), with ‖ϕ‖h ≤ H1, then the trivial solution is said to be uniformly
asymptotically stable.

Definition 1.4. The trivial solution of system (1.3) is said to be exponentially stable
if there exist Δ0 > 0, σ > 0, and γ ≥ 1 such that for every t0 ≥ 0 and any initial
function ϕ ∈ PC([−h,0],Rn), with ‖ϕ‖h < Δ0, the following inequality holds:

‖x(t, t0,ϕ)‖ ≤ γ ‖ϕ‖h e−σ(t−t0), t ≥ t0.

1.5 Lyapunov–Krasovskii Approach

First we show why the direct application of the classical Lyapunov approach does
not work for time-delay systems. To this end, we consider a scalar linear equation
of the form

dx(t)
dt

= ax(t)+ bx(t − h) , t ≥ 0,

where a,b are real constants. Since the equation is linear, it seems natural to
apply the positive-definite Lyapunov function v(x) = x2. The time derivative of the
function along the solutions of the equation is

dv(x(t))
dt

= 2x(t) [ax(t)+ bx(t − h)] = 2ax2 (t)+ 2bx(t)x(t − h).
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For the case b = 0 the equation is delay free, and the time derivative is negative
definite when a < 0. According to the Lyapunov stability theory, this implies the
asymptotic stability of the equation.

The situation becomes different when b 
= 0. In this case the time derivative
includes two terms and, despite the fact that the first term remains negative definite
for a< 0, we are not able to state the same about the time derivative because nothing
certain can be said about the sign and the value of the second term, 2bx(t)x(t − h).
Therefore, some modifications of the Lyapunov approach should be made if we
would like to apply it to a stability analysis of time-delay systems.

Such modifications have been proposed in two distinct ways.

1. The first one is due to N. N. Krasovskii, who proposed to replace classical
Lyapunov functions that depend on the instant state, x(t), of a system by
functionals that depend on the true state, xt . This modification is now known
as the Lyapunov–Krasovskii approach [46–48].

2. The other modification was proposed by Razumikhin [61,62]. It uses the classical
Lyapunov functions but adds an additional condition that allows one to compare
the values of x(t) and x(t − h) and provides negativity conditions for the time
derivative of the functions along the solutions of the system.

In this book we do not treat the Razumikhin approach but concentrate on
the Lyapunov–Krasovskii one. We start with the definition of positive-definite
functions.

Definition 1.5. A function v1 (x) is said to be positive definite if there exists H >
0 such that the function is continuous on the set {x |‖x‖ ≤ H } and satisfies the
following conditions:

1. v1 (0) = 0;
2. v1 (x)> 0 for 0 < ‖x‖ ≤ H.

Now we extend the positive-definiteness concept to the case of functionals.

Definition 1.6. Functional v(t,ϕ) is said to be positive definite if there exists H > 0
such that the following conditions are satisfied.

1. The functional v(t,ϕ) is defined for t ≥ 0 and any ϕ ∈ PC ([−h,0] ,Rn) with
‖ϕ‖h ≤ H.

2. v(t,0h) = 0, t ≥ 0.
3. There exists a positive-definite function v1 (x) such that

v1(ϕ(0))≤ v(t,ϕ) , t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn) , ‖ϕ‖h ≤ H.

4. For any given t0 ≥ 0 the functional v(t0,ϕ) is continuous in ϕ at the point 0h, i.e.,
for any ε > 0 there exists δ > 0 such that the inequality ‖ϕ‖h < δ implies

|v(t0,ϕ)− v(t0,0h)|= v(t0,ϕ)< ε.
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We are now ready to present some basic statements of the Lyapunov–Krasovskii
approach.

Theorem 1.4. The trivial solution of system (1.3) is stable if and only if there exists
a positive-definite functional v(t,ϕ) such that along the solutions of the system the
value of the functional v(t,xt) as a function of t does not increase.

Proof. Sufficiency: The positive definiteness of the functional v(t,ϕ) implies that
there exists a positive-definite function v1(x) such that

v1(ϕ(0))≤ v(t,ϕ) , t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn) , ‖ϕ‖h ≤ H.

For a given ε > 0 (ε < H) we define the positive value

λ (ε) = min
‖x‖=ε

v1(x). (1.4)

Since for a given t0 ≥ 0 the functional v(t0,ϕ) is continuous in ϕ at the point
0h, there exists δ > 0 such that v(t0,ϕ) < λ (ε) for any ϕ ∈ PC ([−h,0] ,Rn) with
‖ϕ‖h<δ .

It is clear that δ ≤ ε; otherwise we could present an initial function ϕ ∈
PC ([−h,0] ,Rn) such that ‖ϕ‖h < δ and ‖ϕ(0)‖= ε . On the one hand, for this initial
function we have v1(ϕ(0))≥ λ (ε). On the other hand, v1(ϕ(0))≤ v(t0,ϕ)< λ (ε).
The contradiction proves the inequality δ ≤ ε .

Now let ϕ ∈PC ([−h,0] ,Rn), with ‖ϕ‖h < δ . Then the theorem condition implies
that

v1(x(t, t0,ϕ))≤ v(t,xt(t0,ϕ))≤ v(t0,ϕ)< λ (ε), t ≥ t0. (1.5)

Assume by contradiction that there exists a time instant t1 ≥ t0 for which
‖x(t1, t0,ϕ)‖ ≥ ε . Since for t ≥ t0 the function ‖x(t, t0,ϕ)‖ is continuous in t,
and since ‖x(t0, t0,ϕ)‖= ‖ϕ(0)‖ ≤ ‖ϕ‖h < δ ≤ ε , there exists t∗ ∈ [t0, t1] such that
‖x(t∗, t0,ϕ)‖ = ε . So, on the one hand, by Eq. (1.4), we know that

v1(x(t
∗, t0,ϕ))≥ λ (ε).

On the other hand, inequality (1.5) implies the inequality

v1(x(t
∗, t0,ϕ))< λ (ε),

which contradicts the previous one. The contradiction proves that our assumption is
wrong, and the following inequality holds:

‖x(t, t0,ϕ)‖< ε, t ≥ t0.

This means that δ satisfies Definition 1.2, and therefore the trivial solution of
system (1.3) is stable.
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t

‖x‖

H

t0

Fig. 1.1 Value of ‖x(t, t0,ϕ‖, the first case

Necessity: Now, the trivial solution of system (1.3) is stable, and we must prove
that there exists a functional v(t,ϕ) that satisfies the theorem condition.

Construction of the functional: Since the trivial solution of system (1.3) is stable,
for ε = H there exists δ (H, t0)> 0 such that the inequality ‖ϕ‖h < δ (H, t0) implies
that ‖x(t, t0,ϕ)‖< H for t ≥ t0. We define the functional v(t,ϕ) as follows:

v(t0,ϕ) =

⎧

⎨

⎩

sup
t≥t0

‖x(t, t0,ϕ)‖ , if ‖x(t, t0,ϕ)‖< H, for t ≥ t0,

H, if there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖ = H.
(1.6)

These two possibilities are illustrated in Figs. 1.1 and 1.2, respectively.
We check first that the functional v(t,ϕ) is positive definite. To this end, we must

verify that it satisfies the conditions of Definition 1.6.

Condition 1: The value v(t0,ϕ) is defined for all t0 ≥ 0, and every initial function
ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H.

Condition 2: For the trivial initial function, ϕ = 0h, the corresponding solution is
trivial, x(t, t0,0h) = 0, for t ≥ t0. Thus v(t0,0h) = 0, t0 ≥ 0.

Condition 3: The function v1 (x) = ‖x‖ is positive definite. Given t0 ≥ 0 and ϕ ∈
PC ([−h,0] ,Rn) , with ‖ϕ‖h ≤ H, in the case where ‖x(t, t0,ϕ)‖ < H, for t ≥ t0,
we have

v1 (ϕ(0)) = ‖ϕ(0)‖ ≤ sup
t≥t0

‖x(t, t0,ϕ)‖ = v(t0,ϕ).

In the other case, where there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖= H, we have

v1 (ϕ(0)) = ‖ϕ(0)‖ ≤ H = v(t0,ϕ).
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T

‖x‖

t0

H

t

Fig. 1.2 Value of ‖x(t, t0,ϕ‖, the second case

Condition 4: Given t0 ≥ 0, the stability of the trivial solution means that for any
ε > 0 there exists δ > 0 such that ‖ϕ‖h < δ implies ‖x(t, t0,ϕ)‖ < ε for t ≥ t0.
In other words, for any ε > 0 there exists δ > 0 such that ‖ϕ‖h < δ implies

v(t0,ϕ) = |v(t0,ϕ)− v(t0,0h)| ≤ ε.

This observation makes it clear that for a fixed t0 ≥ 0 the functional v(t0,ϕ) is
continuous in ϕ at the point 0h.
Now we check that functional (1.6) satisfies the theorem condition. First, we
consider the case where ‖x(t, t0,ϕ)‖ < H for t ≥ t0. In this case, given two time
instants, t1 and t2, such that t2 > t1 ≥ t0, we compare the values

v(t1,xt1(t0,ϕ)) = sup
t≥t1

‖x(t, t0,ϕ)‖

and
v(t2,xt2(t0,ϕ)) = sup

t≥t2
‖x(t, t0,ϕ)‖ .

Since for the second value the range of the supremum is smaller than that for the
first value, we conclude that

v(t2,xt2(t0,ϕ))≤ v(t1,xt1(t0,ϕ)).

This means that the functional v(t,xt(t0,ϕ)) does not increase along the solution.
In the second case, where there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖=H, we have
the equality

v(t2,xt2(t0,ϕ)) = v(t1,xt1(t0,ϕ)) = H,

and, once again, the functional does not increase along the solution of
system (1.3). 
�
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Remark 1.3. The functional v(t,ϕ), defined in the proof of the necessity part of
Theorem 1.4, is of academic interest only. Obviously, we cannot use such function-
als in applications. The computation of practically useful Lyapunov functionals is
not a simple task.

Theorem 1.5. The trivial solution of system (1.3) is uniformly stable if and only if
there exists a positive-definite functional v(t,ϕ) such that the following conditions
are satisfied.

1. The value of the functional along the solutions of the system, v(t,xt), does not
increase.

2. The functional is continuous in ϕ at the point 0h, uniformly for t ≥ 0.

Proof. Sufficiency: In the proof of the sufficiency part of Theorem 1.4 the value
δ = δ (ε, t0) was chosen such that for any ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h < δ , the
value of the functional for a given t0 ≥ 0 satisfies the inequality v(t0,ϕ) < λ (ε).
Since now the functional is continuous in ϕ at the point 0h, uniformly for t ≥ 0, the
value δ can be chosen independently of t0.

Necessity: The uniform stability of the trivial solution of system (1.3) implies that
δ can be chosen independently of t0, δ = δ (ε). It was demonstrated in the proof of
Theorem 1.4 that functional (1.6) is positive definite and does not increase along the
solutions of system (1.3). We show that this functional satisfies the second condition
of the theorem. For any ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h < δ (ε), and any t0 ≥ 0 we
have that ‖x(t, t0,ϕ)‖ < ε for t ≥ t0. This means that

|v(t0,ϕ)− v(t0,0h)|= v(t0,ϕ)≤ ε.

In other words, functional (1.6) is continuous in ϕ at the point 0h, uniformly for
t ≥ 0. 
�
Remark 1.4. The second condition of Theorem 1.5 is satisfied when v(t,ϕ) admits
an upper estimate of the form

v(t,ϕ)≤ v2(ϕ), t ≥ 0, ϕ ∈ PC ([−h,0] ,Rn) , ‖ϕ‖h ≤ H,

with a positive-definite functional v2(ϕ).

Theorem 1.6. The trivial solution of system (1.3) is asymptotically stable if and
only if there exists a positive-definite functional v(t,ϕ) such that the following
conditions hold.

1. The value of the functional along the solutions of the system, v(t,xt), does not
increase.

2. For any t0 ≥ 0 there exists a positive value μ(t0) such that if ϕ ∈ PC ([−h,0] ,Rn)
and ‖ϕ‖h < μ(t0), then v(t,xt(t0,ϕ)) decreases monotonically to zero as t −
t0→∞.
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Proof. Sufficiency: The first condition of the theorem implies the stability of the
trivial solution of system (1.3) (Theorem 1.4). Thus, for any ε > 0 (ε < H) and
t0 ≥ 0 there exists δ (ε, t0)> 0 such that if ‖ϕ‖h < δ (ε, t0), then ‖x(t, t0,ϕ)‖< ε for
t ≥ t0. Let us define the value

Δ(ε, t0) = min{δ (ε, t0),μ(t0)} .

For any given initial function ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h < Δ(ε, t0), the
following inequality holds:

‖x(t, t0,ϕ)‖< ε, t ≥ t0.

We will demonstrate that x(t, t0,ϕ) → 0 as t − t0 → ∞. The functional v(t,ϕ) is
positive definite, so there exists a positive-definite function v1(x) such that

v1(ϕ(0))≤ v(t,ϕ) , for t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn) ,‖ϕ‖h ≤ H.

The function v1(x) is continuous, so for any given ε1 > 0 (ε1 < ε) we may define
the positive value

α = min
ε1≤‖x‖≤ε

v1(x).

By the second condition of the theorem, there exists T > 0 such that v(t,xt(t0,ϕ))<
α for t ≥ t0 +T . This implies the inequality

v1(x(t, t0,ϕ))< α, t ≥ t0 +T,

and we conclude that
‖x(t, t0,ϕ)‖< ε1, t ≥ t0 +T.

This means that x(t, t0,ϕ)→ 0 as t− t0 → ∞, and we must accept that the previously
defined value Δ(t0,ε) satisfies Definition 1.3.

Necessity: In this part of the proof we make use of functional (1.6). In the proof of
Theorem 1.4 it was demonstrated that the functional is positive definite and does not
increase along the solutions of system (1.3). This means that the functional satisfies
the first condition of the theorem.

We address the second condition of the theorem and choose the value μ(t0) as
follows:

μ(t0) = Δ(H, t0)> 0.

Now, for any initial function ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h < μ(t0), we know that
x(t, t0,ϕ)→ 0 as t − t0 → ∞. This means that for any ε1 > 0 there exists T > 0 such
that ‖x(t, t0,ϕ)‖< ε1 for t ≥ t0 +T . According to Eq. (1.6), we have

v(t,xt(t0,ϕ)) = sup
s≥t

‖x(s, t0,ϕ)‖ ≤ ε1, for t ≥ t0 +T.
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The preceding observation means that v(t,xt(t0,ϕ)) tends to zero as t → ∞. 
�
Theorem 1.7. The trivial solution of system (1.3) is uniformly asymptotically stable
if and only if there exists a positive-definite functional v(t,ϕ) such that the following
conditions hold.

1. The value of the functional along the solutions of the system, v(t,xt), does not
increase.

2. The functional is continuous in ϕ at the point 0h, uniformly for t ≥ 0.
3. There exists a positive value μ1 such that v(t,xt(t0,ϕ)) decreases monotonically

to zero as t − t0 → ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn),
with ‖ϕ‖h ≤ μ1.

Proof. Sufficiency: Comparing this theorem with Theorem 1.5 we conclude that the
trivial solution of system (1.3) is uniformly stable. Therefore, for a given ε > 0 the
value

Δ(ε) = min{μ1,δ (ε)} > 0

is such that the following properties hold:

1. Given t0 ≥ 0 and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h < Δ(ε), then ‖x(t, t0,ϕ)‖ < ε
for t ≥ t0.

2. v(t,xt(t0,ϕ))→ 0 as t − t0 → ∞.

Now we define

H1 =
1
2

Δ(H)> 0.

The functional v(t,ϕ) is positive definite, so there exists a positive-definite function
v1(x) such that

v1(ϕ(0))≤ v(t,ϕ) , for t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn) , ‖ϕ‖h ≤ H.

The function v1(x) is continuous; therefore, for any ε1 > 0 (ε1 < H) we may define
the positive value

α = min
ε1≤‖x‖≤H

v1(x).

By the third condition of the theorem there exists T > 0 such that for any t0 ≥ 0 and
ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H1, the following inequality holds:

v(t,xt(t0,ϕ))< α, t − t0 ≥ T.

This implies that
v1(x(t, t0,ϕ))< α, t − t0 ≥ T,

and we conclude that
‖x(t, t0,ϕ)‖< ε1, t − t0 ≥ T,
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for any t0 ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H1. Therefore, the previously
defined values Δ(ε) and H1 satisfy Definition 1.3. This ends the proof of the
sufficiency part of the theorem.

Necessity: The uniform asymptotic stability of the trivial solution of system (1.3)
implies that functional (1.6) satisfies the first two conditions of the theorem. Let
us set

μ1 =
1
2

Δ(H),

where Δ(ε) is from Definition 1.3. Now, given ε1 > 0, for any t0 ≥ 0 and ϕ ∈
PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ μ1, there exists T > 0 such that

‖x(t, t0,ϕ)‖< ε1, t − t0 ≥ T.

This means that functional (1.6) satisfies the inequality

v(t,xt(t0,ϕ)) = sup
s≥0

‖x(s, t0,ϕ)‖ ≤ ε1, t − t0 ≥ T,

i.e., the functional decreases monotonically to zero as t − t0 → ∞, uniformly with
respect to t0 ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ μ1. This ends the proof of
the necessity part. 
�

The following statement provides sufficient conditions of the uniform asymptotic
stability of the trivial solution of system (1.3).

Theorem 1.8 ([46]). The trivial solution of system (1.3) is uniformly asymptoti-
cally stable if there exist two positive-definite functionals, v(t,ϕ) and v2(ϕ), and a
positive-definite function w(x) such that the following two conditions hold.

1. v(t,ϕ)≤ v2 (ϕ), for t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H.
2. The value of the functional along the solutions of the system is differentiable by

t, and its time derivative satisfies the inequality

dv(t,xt)

dt
≤−w(x(t)).

Proof. Observe that the first condition of the theorem implies that the functional
v(t,ϕ) is continuous in ϕ at the point 0h, uniformly for t ≥ 0 (Corollary 1.4). This
means that the second condition of Theorem 1.7 is satisfied. The first condition of
Theorem 1.7 follows directly from the second condition of this theorem.

Now we show that the third condition of Theorem 1.7 is also satisfied. It is
evident that the theorem conditions guarantee that the trivial solution is uniformly
stable, i.e., for any ε > 0 there exists δ (ε) > 0 that satisfies the definition of the
uniform stability. The functional v2 (ϕ) is positive definite, so there exists a positive
value η such that the following inequality holds:
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v2 (ϕ)< H, ϕ ∈ PC ([−h,0] ,Rn) , with ‖ϕ‖h ≤ η .

Let us set

μ1 = min

{

1
2

δ (H),η
}

.

We are going to demonstrate that for any given α > 0 there exists T > 0 such that if
t − t0 ≥ T , then the inequality

v(t,xt(t0,ϕ))< α

holds for any t0 ≥ 0 and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ μ1. Since the functional
v2 (ϕ) is positive definite, there exists β > 0 such that the inequality ‖ϕ‖h < β
implies v2 (ϕ) < α . The function w(x) is positive definite, and we can define a
positive constant γ as follows:

γ = min
β
2 ≤‖x‖≤H

w(x).

For any function ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H, we have

‖ f (t,ϕ)‖ ≤ M(H), for t ≥ 0.

Now we set

τ = min

{

h,
β

2M(H)

}

and select an entire number N satisfying the inequality

H − γτN < 0.

Finally, we define a positive value T as follows:

T = 2hN.

Given an initial instant t0 ≥ 0 and function ϕ ∈ PC ([−h,0] ,Rn) such that ‖ϕ‖h ≤
μ1, we will demonstrate that v(t,xt(t0,ϕ)) < α for t − t0 ≥ T . First we observe
that the second condition of the theorem implies that v(t,xt(t0,ϕ)) is a decreasing
function of t, so it is enough to check that v

(

t0 +T,xt0+T (t0,ϕ)
)

< α . Assume by
contradiction that this is not the case, and v

(

t0 +T,xt0+T (t0,ϕ)
) ≥ α . This means

that
α ≤ v(t,xt(t0,ϕ))≤ v2 (xt(t0,ϕ))

for t ∈ [t0, t0 +T ]. The inequality α ≤ v2 (xt(t0,ϕ)) implies that ‖xt(t0,ϕ)‖h ≥
β for t ∈ [t0, t0 +T ], i.e., in each segment [t − h, t] ⊂ [t0, t0 +T ] there exists a
point t∗ ∈ [t − h, t] such that ‖x(t∗, t0,ϕ)‖ ≥ β . These arguments demonstrate that
we can define an increasing sequence, {t j}N

j=1, such that at the points of the
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sequence
∥

∥x(t j , t0,ϕ)
∥

∥≥ β . Without any loss of generality we assume that any two
consecutive points of the sequence satisfy the inequalities h < t j+1 − t j < 2h.

According to the choice of the initial function ϕ , we know that ‖x(t, t0,ϕ)‖ < H
for t ≥ t0, and at the points of the sequence the following inequality holds:

β ≤ ∥

∥x(t j, t0,ϕ)
∥

∥ , j = 1,2, . . . ,N.

Now observe that

x(t, t0,ϕ) = x(t j, t0,ϕ)+
t

∫

t j

f (s,xs(t0,ϕ))ds, t ≥ t j,

and, since ‖ f (s,xs(t0,ϕ))‖ ≤ M(H), for t ≥ 0 we have

∥

∥x(t, t0,ϕ)− x(t j, t0,ϕ)
∥

∥ ≤
t

∫

t j

‖ f (s,xs (t0,ϕ))‖ds

≤ τM(H), for t ∈ [t j, t j + τ].

According to our choice of τ , we conclude that for t ∈ [t j, t j + τ]

∥

∥x(t, t0,ϕ)− x(t j, t0,ϕ)
∥

∥≤ β
2
.

As
∥

∥x(t j, t0,ϕ)
∥

∥≥ β , the inequality

‖x(t, t0,ϕ)‖ ≥ β
2
, t ∈ [t j, t j + τ],

holds for j = 1,2, . . . ,N. It is evident that

w(x(t, t0,ϕ))≥ γ, t ∈ [t j, t j + τ], j = 1,2, . . . ,N,

and the second condition of the theorem implies that

v(t0 +T,xt0+T (t0,ϕ)) ≤ v(t0,ϕ)−
t0+T
∫

t0

w(x(s, t0,ϕ)ds

≤ H − γτN < 0.

This means that v(t0 + T,xt0+T (t0,ϕ)) is negative, which contradicts the positive
definiteness of the functional v(t,ϕ). The contradiction proves that
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v(t,xt(t0,ϕ))< α, for t − t0 ≥ T.

Now to end the proof, it is enough to refer to Theorem 1.7. 
�

Theorem 1.9. The trivial solution of system (1.3) is exponentially stable if there
exists a positive-definite functional v(t,ϕ) such that the following conditions hold.

1. There are two positive constants α1,α2 for which

α1 ‖ϕ(0)‖2 ≤ v(t,ϕ)≤ α2 ‖ϕ‖2
h , for t ≥ 0,

for t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn) with ‖ϕ‖h ≤ H.
2. The functional is differentiable along the solutions of the system, and there exists

a positive constant σ such that

d
dt

v(t,xt)+ 2σv(t,xt)≤ 0.

Proof. Let us define the positive-definite function v1(x) = α1 ‖x‖2 and the positive-
definite functional v2(ϕ) = α1 ‖ϕ‖2

h. It is evident that the functional v(t,ϕ) satisfies
the conditions of Theorem 1.5. Therefore, the trivial solution of system (1.3)
is uniformly stable, and for every ε > 0 there exists δ (ε) > 0 such that the
inequality ‖ϕ‖h < δ (ε) implies ‖x(t, t0,ϕ)‖ < ε for t ≥ t0. We will show that
the value Δ0 = δ (H) satisfies Definition 1.4. To this end, assume that t0 ≥ 0 and
ϕ ∈ PC ([−h,0] ,Rn) , ‖ϕ‖h < Δ0. The corresponding solution x(t, t0,ϕ) is such that

‖x(t, t0,ϕ)‖< H, for t ≥ t0.

The second condition of the theorem implies the inequality

v(t,xt(t0,ϕ))≤ v(t0,ϕ)e−2σ(t−t0), t ≥ t0.

Applying the first condition of the theorem we obtain that

α1 ‖x(t, t0,ϕ)‖2 ≤ v(t0,ϕ)e−2σ(t−t0) ≤ α2 ‖ϕ‖2
h e−2σ(t−t0), t ≥ t0.

The preceding inequalities provide the desired exponential estimate

‖x(t, t0,ϕ)‖ ≤
√

α2

α1
‖ϕ‖h e−σ(t−t0), t ≥ t0. 
�
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1.6 Notes and References

The origins of the time-delay systems go back to such giants as L. Euler,
J. L. Lagrange, and P. Laplace. A systematic development of the theory of functional
differential equations began in the twentieth century with Volterra [69, 70],
Myshkis [57], Krasovskii [46], Bellman and Cooke [3], Halanay [19], and Hale [21],
to mention just the principal contributors.

The restriction of a solution, xt : θ → x(t +θ ), θ ∈ [−h,0], as the true state of a
time-delay system was introduced by Krasovskii [48]. This allowed him to develop
the stability theory of time-delay systems to the same level as that of ordinary
differential equations [46].

In the exposition of the basic existence and continuity results we follow the
excellent book by Halanay [19]; see also [3, 6, 10, 11, 20, 23, 49].

The foundations of the Lyapunov second approach for time-delay systems,
which is now known as the Lyapunov–Krasovskii approach, were developed by
Krasovskii [46–48]; see also [44,58]. The form of presentation of the stability results
in Sect. 1.5 was inspired by Zubov [72].
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