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Preface

Although stability is one of the most studied topics in the theory of time-delay
systems, the corresponding chapters of classic works on time-delay systems (see,
e.g., [3,23,44]) do not include a comprehensive study of a counterpart of the classic
Lyapunov theory for linear delay-free systems. The principal aim of this volume is
to fill this gap and provide the reader with a detailed treatment of the basic concepts
of the Lyapunov–Krasovskii approach to the stability analysis of linear time-delay
systems.

There are two types of stability results. Results of the first type are obtained in
the following manner. First, a positive-definite functional is selected, then its time
derivative along the solutions of a system is computed, and, finally, some negativity
conditions for the derivative are proposed. This is how the majority of LMI type
stability conditions have been obtained. A good account of such stability results can
be found in [16, 17, 31, 54, 58, 64]. The scheme to obtain results of the second type
is different. First, a desired time derivative is selected, and then a functional with
this time derivative along the solutions is computed. Finally, one needs to check
whether or not the functional is positive definite. Usually, functionals obtained in
this way are more complex than those used to derive results of the first type. But
since these functionals are adjusted to the system under consideration, they provide
more complete information about system behavior. It would be naive to expect that
the second scheme could be successfully applied to general classes of time-delay
systems. Of course, such results should be available for the case of linear time-delay
systems.

This book is divided into two parts. The first part, consisting of four chapters,
considers the case of retarded type time-delay systems. The first chapter of this
part is of the compilation character. The chapter discusses such basic notions as
initial conditions and system state. In the exposition of the existence and uniqueness
results presented in this chapter we follow [19]. Classical stability results based on
the Lyapunov–Krasovskii approach are presented in a form inspired by [72].

In Chap. 2 the class of linear systems with one delay is studied. We start
with a computation of the solutions of such systems. Then we explain in detail a
general scheme used for the computation of Lyapunov functionals with a prescribed
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time derivative. Here matrix-valued functions that define these functionals are
introduced. They are a counterpart of the classic Lyapunov matrices that appear
as solutions of the classical Lyapunov matrix equation in the context of Lyapunov
quadratic forms for the case of linear delay-free systems. We call them Lyapunov
matrices for time-delay systems. A substantial part of this chapter is devoted to
an analysis of the basic properties of Lyapunov matrices. Such issues as existence,
uniqueness, and computation are treated. Next, we introduce Lyapunov functionals
that admit quadratic lower and upper bounds. These are functionals of the complete
type. Complete type functionals are then used to derive exponential estimates for
the solutions of time-delay systems and robustness bounds for perturbed systems.
The chapter ends with a brief historical survey, where the results of the principal
contributors to the subject are presented.

The material presented in Chaps. 1 and 2 is recommended for an introductory
course on the stability of time-delay systems. Such courses have been given for
several years in the Department of Automatic Control at CINVESTAV in Mexico
City and now in the Faculty of Applied Mathematics and Control Processes of Saint
Petersburg State University in Russia.

In Chap. 3 we address the case of retarded type linear time-delay systems with
multiple delays. Applying the scheme presented in the previous chapter, we obtain
a general form of quadratic functionals with a prescribed time derivative along the
solutions of such time-delay systems. A special system of matrix equations that
defines the Lyapunov matrices is derived. It is shown that the special system admits
a unique solution if and only if the spectrum of the time-delay system does not
contain points arranged symmetrically with respect to the origin of the complex
plane. This spectrum property is known as the Lyapunov condition. Two numerical
schemes for the computation of Lyapunov matrices are presented. The first one is
applicable to the case where time delays are multiple to a basic one. The other one
allows one to compute approximate Lyapunov matrices in the case of general time
delays. A measure that makes it possible to estimate the quality of an approximation
is provided as well. Quadratic functionals of the complete type are defined, and
several important applications of the functionals are presented in the final part of
the chapter.

In Chap. 4 a linear retarded type system with distributed delay is studied. First,
we introduce quadratic functionals and Lyapunov matrices for the system. Then we
present the existence and uniqueness conditions for the matrices and provide some
numerical schemes for the computation of the Lyapunov matrices. Finally, we derive
a class of time-delay system with distributed delay for which Lyapunov matrices are
solutions of a boundary value problem for an auxiliary system of linear delay-free
matrix differential equations.

The second part of the book, comprising three chapters, is devoted to the case
of neutral type time-delay systems. In Chap. 5 we extend the results presented
in Chap. 1 to the case of neutral type time-delay systems. Issues of existence,
uniqueness, and continuation of solutions of the initial value problem for such
systems are discussed. Stability concepts and basic stability results obtained using
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the Lyapunov–Krasovskii approach, mainly in the form of necessary and sufficient
conditions, are presented.

In Chap. 6 we consider the class of neutral type linear systems with one delay. We
define the fundamental matrix of such a system and present the Cauchy formula for
the solution of an initial value problem. This formula is used to compute a quadratic
functional with a given time derivative along the solutions of the time-delay system.
It is demonstrated that this functional is defined by a Lyapunov matrix for the time-
delay system. A thorough analysis of the basic properties of this Lyapunov matrix
is conducted. Complete type functionals are introduced, and various applications of
the functionals are discussed.

The last chapter is dedicated to the case of neutral type linear systems with
distributed delay. The structure of quadratic functionals with prescribed time
derivatives along the solutions of such a system is defined, and the corresponding
Lyapunov matrices are introduced. A system of matrix equations that defines the
Lyapunov matrices is given. It is proven that under some conditions this system
admits a unique solution. A class of systems with distributed delay for which
Lyapunov matrices are the solutions of standard boundary value problems for
an auxiliary system of linear matrix ordinary differential equations is presented.
Complete type functionals are defined. It is shown that these functionals can be
presented in a special form that is more convenient for the computation of lower
and upper bounds for the functionals.

The book’s bibliography does not pretend to cover all aspects of the stability
analysis of time-delay systems. It includes entries that are closely related to the
problems discussed in the book. More complete lists of literature can be found
in [18, 23, 41, 43, 58].

To conclude this preface, I would like to acknowledge the fruitful collaboration
and friendly support of my colleagues Alexei Zhabko, Diederich Hinrichsen, Sabine
Mondie, Alexander Alexandrov, and Silviu-Iulian Niculescu. I greatly appreciate
their comments and suggestions.

Special thanks go to my former doctoral students Marco-Ivan Ramirez Sosa
Moran, Daniel Melchor Aguilar, Eduardo Rodrigues Angeles, Hiram Garcia
Lozano, Joaquin Santos Luna, Omar Santos Sanchez, Manuel-Benjamin Ortiz
Moctezuma, Eduardo Velazquez Velazquez, and Gilberto Ochoa Ortega, now
working at various institutions throughout Mexico, for their collaboration with
me on the research that led to the results presented in this book.

Peterhof, Saint Petersburg, Russia Vladimir L. Kharitonov
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Notations and Symbols

R Field of real numbers
Rn Space of n-vectors with entries in R
i Imaginary unit, i2 =−1
C Field of complex numbers
Cn Space of n-vectors with entries in C
0n×n Zero n× n matrix
I Identity matrix
Re(s), Im(s) Real and imaginary parts of a complex number s ∈C
‖x‖ Euclidean (Hermitian) norm of a vector x ∈ Rn (x ∈Cn)

‖A‖ Induced norm of a matrix A, ‖A‖= max‖x‖=1‖Ax‖
C([−h,0],Rn) Space of Rn-valued continuous functions on [−h,0]
PC([−h,0],Rn) Space of Rn-valued piecewise continuous functions on [−h,0]
C1([−h,0],Rn) Space of Rn-valued continuously differentiable functions on

[−h,0]
PC1([−h,0],Rn) Space of Rn-valued piecewise continuously differentiable func-

tions on [−h,0]
0h Rn-valued trivial function, 0h(θ ) = 0 ∈ Rn, θ ∈ [−h,0]
f (t + 0) Right-hand-side limit of f (t) at a point t, f (t + 0) =

limε→0 f (t + |ε|)
f (t − 0) Left-hand-side limit of f (t) at a point t, f (t −0) = limε→0 f (t −

|ε|)
‖ϕ‖h Uniform norm, ‖ϕ‖h = sup−h≤θ≤0‖ϕ(θ )‖
x′(t) First derivative of x(t)
x′′(t) Second derivative of x(t)
xt Restriction of x(t), xt : θ → x(t +θ ), θ ∈ [−h,0]
Res{ f (s),s0} Residue of an analytical function f (s) at a pole s0

AT Transpose of a matrix A
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A∗ Hermitian conjugate of a matrix A
A > 0 (A ≥ 0) Symmetric matrix A is positive definite (positive semidefinite)
λ (A) Eigenvalue of a matrix A
λmax(A), λmin(A) Maximum, minimum eigenvalue of a symmetric matrix A
σ(A) Spectrum of a square matrix A
A⊗B Kronecker product of matrices A and B
vec(A) Vector of stacked columns of a matrix A
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Retarded Type Systems



Chapter 1
General Theory

This chapter serves as a brief introduction to the theory of the retarded type
time-delay system. It starts with a discussion of such basic notions as solutions,
initial conditions, and the state of a time-delay system. Then some results on the
existence and uniqueness of an initial value problem are presented. Continuity
properties of the solutions are discussed as well. The main part of the chapter
is devoted to stability analysis. Here we define concepts of stability, asymptotic
stability, and exponential stability of the trivial solution of a time-delay system.
Classical stability results, obtained using the Lyapunov–Krasovskii approach, are
given in the form of necessary and sufficient conditions. A short section with
historical comments concludes the chapter.

1.1 Preliminaries

We begin with a class of retarded type time-delay systems of the form

dx(t)
dt

= g(t,x(t),x(t − h)), (1.1)

where x ∈ Rn and the time delay h > 0. Let the vector-valued function g(t,x,y) be
defined for t ≥ 0, x ∈ Rn, and y ∈ Rn. We assume that this function is continuous in
the variables.

1.1.1 Initial Value Problem

It is well known that a particular solution of a delay-free system, ẋ = G(t,x), is
defined by its initial conditions, which include an initial time instant t0 and an initial

V.L. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,
Control Engineering, DOI 10.1007/978-0-8176-8367-2 1,
© Springer Science+Business Media, LLC 2013
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state x0 ∈ Rn. This is not the case when dealing with a solution of system (1.1).
Here the knowledge of t0 and x0 is not sufficient even to define the value of the time
derivative of x(t) at the initial time instant t0. To define a solution of system (1.1),
one needs to select an initial time instant t0 ≥ 0 and an initial function ϕ : [−h,0]→
Rn. The initial value problem for system (1.1) is formulated as follows. Given an
initial time instant t0 ≥ 0 and an initial function ϕ , find a solution of the system that
satisfies the condition

x(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0]. (1.2)

The initial function ϕ belongs to a certain functional space. It may be the space of
continuous functions, C ([−h,0],Rn), the space of piecewise continuous functions,
PC ([−h,0],Rn), or some other functional space. The choice of the space is dictated
by a specific problem under investigation. In our case we assume that initial
functions belong to the space PC ([−h,0],Rn). Recall that the function ϕ belongs
to the space if it admits at most a finite number of discontinuity points and for each
continuity interval (α,β ) ∈ [−h,0] the function has a finite right-hand-side limit at
θ = α , ϕ(α + 0) = limε→0 ϕ(α + |ε|), and a finite left-hand-side limit at θ = β ,
ϕ(β − 0) = limε→0 ϕ(β −|ε|).

The Euclidean norm is used for vectors and the corresponding induced norm for
matrices. The space PC ([−h,0],Rn) is supplied with the standard uniform norm [24,
65, 66],

‖ϕ‖h = sup
θ∈[−h,0]

‖ϕ(θ )‖ .

On the one hand, the fact that initial functions belong to a functional space
gives rise to the interpretation of time-delay systems as a particular class of infinite-
dimensional systems. On the other hand, the trajectories of a time-delay system lie
in Rn+1; therefore, to some extent such systems can also be treated as systems in the
finite-dimensional space.

1.1.2 Solutions

In this section we discuss the existence issue for the initial value problem (1.1)–
(1.2). The approach presented here is known as the “step-by-step” method [3].

First, we consider a system on the segment [t0, t0 + h]. Here t − h ∈ [t0 − h, t0],
and x(t − h) is defined by Eq. (1.2), x(t − h) = ϕ(t − t0 − h), and the system takes
the form of the following auxiliary system of ordinary differential equations:

dx
dt

= G(1)(t,x) = g(t,x,ϕ(t − t0 − h)), t ∈ [t0, t0 + h].

We are looking for a solution of the system that satisfies the condition x(t0) = ϕ(0).
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If such a solution x̃(t) can be defined on the whole segment [t0, t0 + h], then we
address the next segment [t0 +h, t0 +2h]. Here t −h ∈ [t0, t0 +h], and the delay state
x(t − h) was already defined in the previous step, x(t − h) = x̃(t − h). Thus, on this
segment system (1.1) is a delay-free system of the form

dx
dt

= G(2)(t,x) = g(t,x, x̃(t − h)), t ∈ [t0 + h, t0 + 2h],

and we are looking for a solution of the initial value problem x(t0 + h) = x̃(t0 + h).
Applying the step-by-step method, we reduce the computation of a solution of

the initial value problem (1.1)–(1.2) to a series of standard initial value problems for
a set of auxiliary systems of ordinary differential equations.

1.1.3 State Concept

In the theory of dynamic systems the concept of a system state occupies center stage.
In general, we can say that the state of a system at a given time instant t1 ≥ t0 should
include the minimal information that allows one to continue the dynamic for t ≥ t1.
If we adopt this point of view, then the state should be defined in the same manner
as it was for the initial value problem.

The definition of the initial conditions and the step-by-step method of construc-
tion of the system solutions presented previously demonstrate that we need to know
x(t1 +θ ), for θ ∈ [−h,0], in order to continue a solution for t ≥ t1. Therefore, along
a given solution of system (1.1) the state of the system at a time instant t ≥ t0
is defined as the restriction of the solution on the segment [t − h, t]. We use the
following notation for the system state

xt : θ → x(t +θ ), θ ∈ [−h,0].

In the case where the initial condition (t0,ϕ) should be indicated explicitly we use
the notations x(t, t0,ϕ) and xt(t0,ϕ). For time-invariant systems we usually assume
that t0 = 0 and omit the argument t0 in these notations.

1.2 Existence and Uniqueness Issues

The dynamic of a time-delay system may depend not only on a delay state, x(t −h),
as happens in system (1.1), but on the complete state, xt , of the system. An example
of such a situation is given by the system

dx(t)
dt

=

0
∫

−h

g(t,x(t +θ ))dθ .
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Here the right-hand side of the system depends on the values of x(t+θ ), θ ∈ [−h,0].
This means that the right-hand side is no longer a function but a functional that is
defined on a particular functional space. It is clear that for such systems the step-by-
step method is no longer applicable. Thus, we must look for an alternative procedure
to compute solutions. Here we present such a procedure, but first we introduce a
definition.

Definition 1.1 ([45]). Given a functional

F : PC ([−h,0] ,Rn)→ Rn,

we say that the functional is continuous at a point ϕ0 ∈ PC ([−h,0] ,Rn) if for
any ε > 0 there exists δ > 0 such that for ϕ ∈ PC ([−h,0] ,Rn) the inequality
‖ϕ −ϕ0‖h < δ implies that

‖F(ϕ)−F(ϕ0)‖ < ε.

Functional F is said to be continuous on a set Φ⊂ PC ([−h,0] ,Rn) if it is continuous
at each point of the set.

Now we consider a functional

f : [0,∞)×PC ([−h,0] ,Rn)−→ Rn.

The functional defines the time-delay system

dx(t)
dt

= f (t,xt). (1.3)

Theorem 1.1. Given a time-delay system (1.3), where the functional

f : [0,∞)×PC ([−h,0] ,Rn)−→ Rn

satisfies the following conditions:

(i) For any H > 0 there exists M(H)> 0 such that

‖ f (t,ϕ)‖ ≤ M(H), (t,ϕ) ∈ [0,∞)×PC ([−h,0] ,Rn) , and ‖ϕ‖h ≤ H;

(ii) The functional f (t,ϕ) is continuous on the set [0,∞)×PC ([−h,0] ,Rn) with
respect to both arguments;

(iii) The functional f (t,ϕ) satisfies the Lipschitz condition with respect to the
second argument, i.e., for any H > 0 there exists a Lipschitz constant L(H)> 0
such that the inequality

∥

∥

∥
f (t,ϕ(1))− f (t,ϕ(2))

∥

∥

∥
≤ L(H)

∥

∥

∥
ϕ(1)−ϕ(2)

∥

∥

∥

h



1.2 Existence and Uniqueness Issues 7

holds for t ≥ 0, ϕ(k) ∈ PC1 ([−h,0] ,Rn), and
∥

∥

∥
ϕ(k)

∥

∥

∥

h
≤ H, k = 1,2.

Then, for a given t0 ≥ 0 and an initial function ϕ ∈ PC ([−h,0] ,Rn) there exists
τ > 0 such that the system admits a unique solution x(t) of the initial value
problem (1.2), and the solution is defined on the segment [t0 − h, t0 + τ].

Proof. Given t0 ≥ 0 and ϕ ∈ PC ([−h,0] ,Rn), let us select H > 0 such that the
inequality

H > H0 = ‖ϕ‖h

holds. Now we can define the corresponding values M = M(H) and L = L(H).
Let us select τ > 0 such that

τL < 1, and τM < H −H0,

and let us define a function u : [t0 − h, t0 + τ]→ Rn such that

u(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0],

and the function is continuous on [t0, t0 +τ]. Assume additionally that the following
inequality holds:

‖u(t)−ϕ(0)‖ ≤ (t − t0)M, t ∈ [t0, t0 + τ].

It follows from the definition that

‖u(t)‖ ≤ ‖ϕ(0)‖+(t − t0)M ≤ ‖ϕ‖h + τM < H, t ∈ [t0, t0 + τ].

We denote by U the set of all such functions. On the set U we define the operator A
that acts on the functions of the set as follows:

A(u)(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ(t − t0), t ∈ [t0 − h, t0],

ϕ(0)+
t

∫

t0

f (s,us)ds, t ∈ [t0, t0 + τ],

where us : θ → u(s+θ ), θ ∈ [−h,0]. It is a matter of simple calculation to check
that the theorem conditions (i) and (ii) guarantee that the transformed function A(u)
belongs to the same set U :

u ∈U ⇒A(u) ∈U.

Let x(t, t0,ϕ) be a solution of the initial value problem (1.3)–(1.2); then
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x(t, t0,ϕ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ(t − t0), t ∈ [t0 − h, t0],

ϕ(0)+
t

∫

t0

f (s,xs(t0,ϕ))ds, t ∈ [t0, t0 + τ],

and we conclude that this solution defines a fixed point of the operator A.
Observe that

A(u(1))(t)−A(u(2))(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, t ∈ [t0 − h, t0],
t

∫

t0

[

f (s,u(1)s )− f (s,u(2)s )
]

ds, t ∈ [t0, t0 + τ].

Hence for t ∈ [t0 − h, t0]

∥

∥

∥A(u(1))(t)−A(u(2))(t)
∥

∥

∥= 0,

and for t ∈ [t0, t0 + τ]

∥

∥

∥A(u(1))(t)−A(u(2))(t)
∥

∥

∥ ≤

∥

∥

∥

∥

∥

∥

t
∫

t0

[ f (s,u(1)s )− f (s,u(2)s )]ds

∥

∥

∥

∥

∥

∥

≤
t0+τ
∫

t0

∥

∥

∥ f (s,u(1)s )− f (s,u(2)s )
∥

∥

∥ds.

The Lipschitz condition (iii) implies that for t ∈ [t0, t0 + τ]

∥

∥

∥A(u(1))(t)−A(u(2))(t)
∥

∥

∥ ≤
t0+τ
∫

t0

L
∥

∥

∥u(1)s − u(2)s

∥

∥

∥

h
ds

≤ τL sup
s∈[t0−h,t0+τ]

∥

∥

∥u(1)(s)− u(2)(s)
∥

∥

∥ .

Since the preceding inequality holds for all t ∈ [t0 − h, t0 + τ], we conclude that

sup
s∈[t0−h,t0+τ]

∥

∥

∥A(u(1))(t)−A(u(2))(t)
∥

∥

∥≤ τL sup
s∈[t0−h,t0+τ]

∥

∥

∥u(1)(s)− u(2)(s)
∥

∥

∥ .

Now, as τL < 1, the operator A satisfies the conditions of the contraction mapping
theorem [45], and there exists a unique function u(∗) ∈U such that
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u(∗)(t) =A(u(∗))(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ(t − t0), t ∈ [t0 − h, t0],

ϕ(0)+
t

∫

t0

f (s,u(∗)s )ds, t ∈ [t0, t0 + τ].

The functional f (t,ϕ) is continuous, so differentiating the preceding equality,

du(∗)(t)
dt

= f (t,u(∗)t ), t ∈ [t0, t0 + τ],

we arrive at the conclusion that u(∗)(t) is the unique solution of the initial value
problem (1.3)–(1.2). �

Remark 1.1. We can take the new initial time instant, t1 = t0+τ , and define the new
initial function

ϕ(1)(θ ) = u(∗)(t1 +θ ), θ ∈ [−h,0].

Then the procedure can be repeated, and we extend the solution to the next segment
[t1, t1 + ˜τ]. This extension process can be continued as long as the solution remains
bounded.

For each solution there exists a maximal interval [t0, t0+T ) on which the solution
is defined. Here we present conditions under which any solution of system (1.3) is
defined on [t0,∞).

Theorem 1.2. Let system (1.3) satisfy the conditions of Theorem 1.1. Assume
additionally that f (t,ϕ) satisfies the inequality

‖ f (t,ϕ)‖ ≤ η(‖ϕ‖h), t ≥ 0, ϕ ∈ PC ([−h,0] ,Rn) ,

where the function η(r), r ∈ [0,∞), is continuous, nondecreasing, and such that for
any r0 ≥ 0 the following condition holds:

lim
R→∞

R
∫

r0

dr
η(r)

= ∞.

Then any solution x(t, t0,ϕ) of the system is defined on [t0,∞).

Proof. Given t0 ≥ 0 and ϕ ∈ PC ([−h,0] ,Rn), there exists a maximal interval
[t0, t0 +T ) on which the corresponding solution x(t, t0,ϕ) is defined. For the sake
of simplicity we denote x(t, t0,ϕ) by x(t).

Assume by contradiction that T < ∞. Then there exists a sequence {tk}∞
k=1 such

that tk ∈ [t0, t0 +T ),

lim
k→∞

tk = t0 +T,
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and
lim
k→∞

‖x(tk)‖→ ∞;

otherwise, by Remark 1.1, the solution can be defined on a wider segment [t0, t0 +
T + τ], where τ > 0.

The solution satisfies the equality

x(t) = ϕ(0)+
t

∫

t0

f (s,xs)ds, t ∈ [t0, t0 +T).

It follows from the preceding equality and the theorem conditions that

‖xt‖h ≤ ‖ϕ‖h +

t
∫

t0

η(‖xs‖h)ds, t ∈ [t0, t0 +T ).

Denote the right-hand side of the last inequality by v(t); then

dv(t)
dt

= η(‖xt‖h)≤ η(v(t)), t ∈ [t0, t0 +T ).

This implies that
tk
∫

t0

dv(s)
η(v(s))

≤ tk − t0, k = 1,2,3, . . . .

On the one hand, as
tk
∫

t0

dv(s)
η(v(s))

=

rk
∫

r0

dξ
η(ξ )

,

where r0 = v(t0) = ‖ϕ‖h ≥ 0, and

rk = v(tk)≥
∥

∥xtk

∥

∥

h ≥ ‖x(tk)‖→ ∞, as k → ∞,

then

lim
k→∞

tk
∫

t0

dv(s)
η(v(s))

= ∞.

On the other hand,
lim
k→∞

(tk − t0) = T.

Therefore, T =∞, and we arrive at the contradiction with our assumption that T <∞.
This ends the proof of the statement. �
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1.3 Continuity Properties

In this section we analyze the continuity properties of the solutions of system (1.3)
with respect to the initial conditions and with respect to the system perturbations.
These continuity properties are a direct consequence of the following theorem.

Theorem 1.3. Assume that f (t,ϕ) satisfies the conditions of Theorem 1.1. Let
x(t, t0,ϕ) be a solution of system (1.3) such that

x(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0].

Given the perturbed system

dy(t)
dt

= f (t,yt )+ g(t,yt),

where the functional g(t,ϕ) is continuous on the set [0,∞)× PC ([−h,0] ,Rn),
satisfies the Lipschitz condition with respect to the second argument, and

‖g(t,ϕ)‖ ≤ m, t ≥ 0, ϕ ∈ PC ([−h,0] ,Rn) ,

let y(t, t0,ψ) be a solution of the perturbed system with the initial condition

y(t0 +θ ) = ψ(θ ), θ ∈ [−h,0].

If the solutions are defined for t ∈ [t0 − h, t0 +T ], and if H is such that

‖x(t, t0,ϕ)‖ ≤ H, ‖y(t, t0,ψ)‖ ≤ H, t ∈ [t0 − h, t0 +T ],

then the inequality

‖x(t, t0,ϕ)− y(t, t0,ψ)‖ ≤ ‖xt(t0,ϕ)− yt(t0,ψ)‖h

≤
(

‖ψ −ϕ‖h +
m

L(H)

)

eL(H)(t−t0)

holds for t ∈ [t0, t0 +T ].

Proof. For the sake of simplicity we will use the following shorthand notations for
the solutions x(t) = x(t, t0,ϕ) and y(t) = y(t, t0,ψ). Observe that

d
dt

[x(t)− y(t)] = f (t,xt )− f (t,yt)− g(t,yt), t ∈ [t0, t0 +T ].
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Integrating the preceding equality we obtain

x(t)− y(t) = ϕ(0)−ψ(0)+

t
∫

t0

[ f (s,xs)− f (s,ys)− g(s,ys)]ds, t ∈ [t0, t0 +T ].

The last equality implies that for t ∈ [t0, t0 +T ] the following inequalities hold:

‖x(t)− y(t)‖ ≤ ‖ϕ(0)−ψ(0)‖+
t

∫

t0

‖ f (s,xs)− f (s,ys)− g(s,ys)‖ds

≤ ‖ϕ(0)−ψ(0)‖+m(t − t0)+L(H)

t
∫

t0

‖xs − ys‖h ds.

Since ‖ϕ(0)−ψ(0)‖ ≤ ‖ψ −ϕ‖h, we have

‖x(t)− y(t)‖ ≤ ‖ϕ −ψ‖h +m(t − t0)

+L(H)

t
∫

t0

‖xs − ys‖h ds, t ∈ [t0, t0 +T ].

Using similar arguments we can conclude that for t1 ∈ [t − h, t], the inequality

‖x(t1)− y(t1)‖ ≤ ‖ϕ −ψ‖h +m(t − t0)+L(H)

t
∫

t0

‖xs − ys‖h ds

holds, which implies

sup
t1∈[t−h,t]

‖x(t1)− y(t1)‖ ≤ ‖ϕ −ψ‖h +m(t − t0)+L(H)

t
∫

t0

‖xs − ys‖h ds.

So we have

‖xt − yt‖h ≤ ‖ϕ −ψ‖h +m(t − t0)

+L(H)

t
∫

t0

‖xs − ys‖h ds, t ∈ [t0, t0 +T ].

Denote the right-hand side of the preceding inequality by v(t); then

dv(t)
dt

= m+L(H)‖xt − yt‖h ≤ m+L(H)v(t), t ∈ [t0, t0 +T ].
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Integrating this inequality we arrive at the desired one:

‖x(t, t0,ϕ)− y(t, t0,ψ)‖ ≤ ‖xt(t0,ϕ)− yt(t0,ψ)‖h

≤ ‖ψ −ϕ‖h eL(H)(t−t0) +
m

L(H)
(eL(H)(t−t0)− 1)

≤
(

‖ψ −ϕ‖h +
m

L(H)

)

eL(H)(t−t0), t ∈ [t0, t0 +T ]. �

Corollary 1.1. Let g(t,ϕ) ≡ 0; then m = 0, and both x(t, t0,ϕ) and y(t, t0,ψ) are
solutions of system (1.3). Assume that these solutions are defined for t ∈ [t0, t0 +T ].
For any ε > 0 there exists δ > 0 such that if ‖ψ −ϕ‖h < δ , then the following
inequality holds:

‖x(t, t0,ϕ)− x(t, t0,ψ)‖< ε, t ∈ [t0, t0 +T ].

In other words, x(t, t0,ϕ) depends continuously on ϕ .

Proof. The statement follows directly from Theorem 1.3 if we set δ = εe−L(H)T .
�

Corollary 1.2. Let ψ(θ ) = ϕ(θ ), θ ∈ [−h,0]; this means that the solutions
x(t, t0,ϕ) and y(t, t0,ψ) have the same initial conditions. Assume that these solutions
are defined for t ∈ [t0, t0 +T ]. For any ε > 0 there exists δ > 0 such that if m < δ ,
then

‖x(t, t0,ϕ)− y(t, t0,ϕ)‖< ε, t ∈ [t0, t0 +T ].

This means that x(t, t0,ϕ) depends continuously on the right-hand side of
system (1.3).

Proof. The statement follows directly from Theorem 1.3 if we set δ=L(H)e−L(H)T ε.
�

1.4 Stability Concepts

In this section we introduce some stability concepts for system (1.3). Let the system
satisfy the conditions of Theorem 1.1. Assume additionally that the system admits
a trivial solution, i.e., f (t,0h)≡ 0, for t ≥ 0. Here 0h stands for the trivial function,
0h : θ → 0 ∈ Rn, θ ∈ [−h,0].

Definition 1.2 ([46]). The trivial solution of system (1.3) is said to be stable if for
any ε > 0 and t0 ≥ 0 there exists δ (ε, t0) > 0 such that for every initial function
ϕ ∈ PC([−h,0],Rn), ‖ϕ‖h < δ (ε, t0), the following inequality holds:

‖x(t, t0,ϕ)‖< ε, t ≥ t0.
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If δ (ε, t0) can be chosen independently of t0, then the trivial solution is said to be
uniformly stable.

Remark 1.2. The value δ (ε, t0) is always smaller than or equal to ε .

Proof. Assume that for some ε > 0 and t0 ≥ 0 we have δ (ε, t0) > ε; then there is
ϕ ∈ PC([−h,0],Rn) such that ‖ϕ‖h < δ (ε, t0), and ‖ϕ(0)‖ > ε . On the one hand,
the corresponding solution x(t, t0,ϕ) should satisfy the inequality

‖x(t, t0,ϕ)‖< ε, t ≥ t0,

and, in particular, ‖x(t0, t0,ϕ)‖ < ε . On the other hand, x(t0, t0,ϕ) = ϕ(0), so
‖x(t0, t0,ϕ)‖= ‖ϕ(0)‖> ε . This contradiction proves the remark. �

Definition 1.3. The trivial solution of system (1.3) is said to be asymptotically
stable if for any ε > 0 and t0 ≥ 0 there exists Δ(ε, t0) > 0 such that for every
initial function ϕ ∈ PC([−h,0],Rn), with ‖ϕ‖h < Δ(ε, t0), the following conditions
hold.

1. ‖x(t, t0,ϕ)‖< ε , for t ≥ t0.
2. x(t, t0,ϕ)→ 0 as t − t0 −→ ∞.

If Δ(ε, t0) can be chosen independently of t0 and there exists H1 > 0 such
that x(t, t0,ϕ) → 0 as t − t0 −→ ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈
PC([−h,0],Rn), with ‖ϕ‖h ≤ H1, then the trivial solution is said to be uniformly
asymptotically stable.

Definition 1.4. The trivial solution of system (1.3) is said to be exponentially stable
if there exist Δ0 > 0, σ > 0, and γ ≥ 1 such that for every t0 ≥ 0 and any initial
function ϕ ∈ PC([−h,0],Rn), with ‖ϕ‖h < Δ0, the following inequality holds:

‖x(t, t0,ϕ)‖ ≤ γ ‖ϕ‖h e−σ(t−t0), t ≥ t0.

1.5 Lyapunov–Krasovskii Approach

First we show why the direct application of the classical Lyapunov approach does
not work for time-delay systems. To this end, we consider a scalar linear equation
of the form

dx(t)
dt

= ax(t)+ bx(t − h) , t ≥ 0,

where a,b are real constants. Since the equation is linear, it seems natural to
apply the positive-definite Lyapunov function v(x) = x2. The time derivative of the
function along the solutions of the equation is

dv(x(t))
dt

= 2x(t) [ax(t)+ bx(t − h)] = 2ax2 (t)+ 2bx(t)x(t − h).
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For the case b = 0 the equation is delay free, and the time derivative is negative
definite when a < 0. According to the Lyapunov stability theory, this implies the
asymptotic stability of the equation.

The situation becomes different when b �= 0. In this case the time derivative
includes two terms and, despite the fact that the first term remains negative definite
for a< 0, we are not able to state the same about the time derivative because nothing
certain can be said about the sign and the value of the second term, 2bx(t)x(t − h).
Therefore, some modifications of the Lyapunov approach should be made if we
would like to apply it to a stability analysis of time-delay systems.

Such modifications have been proposed in two distinct ways.

1. The first one is due to N. N. Krasovskii, who proposed to replace classical
Lyapunov functions that depend on the instant state, x(t), of a system by
functionals that depend on the true state, xt . This modification is now known
as the Lyapunov–Krasovskii approach [46–48].

2. The other modification was proposed by Razumikhin [61,62]. It uses the classical
Lyapunov functions but adds an additional condition that allows one to compare
the values of x(t) and x(t − h) and provides negativity conditions for the time
derivative of the functions along the solutions of the system.

In this book we do not treat the Razumikhin approach but concentrate on
the Lyapunov–Krasovskii one. We start with the definition of positive-definite
functions.

Definition 1.5. A function v1 (x) is said to be positive definite if there exists H >
0 such that the function is continuous on the set {x |‖x‖ ≤ H } and satisfies the
following conditions:

1. v1 (0) = 0;
2. v1 (x)> 0 for 0 < ‖x‖ ≤ H.

Now we extend the positive-definiteness concept to the case of functionals.

Definition 1.6. Functional v(t,ϕ) is said to be positive definite if there exists H > 0
such that the following conditions are satisfied.

1. The functional v(t,ϕ) is defined for t ≥ 0 and any ϕ ∈ PC ([−h,0] ,Rn) with
‖ϕ‖h ≤ H.

2. v(t,0h) = 0, t ≥ 0.
3. There exists a positive-definite function v1 (x) such that

v1(ϕ(0))≤ v(t,ϕ) , t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn) , ‖ϕ‖h ≤ H.

4. For any given t0 ≥ 0 the functional v(t0,ϕ) is continuous in ϕ at the point 0h, i.e.,
for any ε > 0 there exists δ > 0 such that the inequality ‖ϕ‖h < δ implies

|v(t0,ϕ)− v(t0,0h)|= v(t0,ϕ)< ε.
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We are now ready to present some basic statements of the Lyapunov–Krasovskii
approach.

Theorem 1.4. The trivial solution of system (1.3) is stable if and only if there exists
a positive-definite functional v(t,ϕ) such that along the solutions of the system the
value of the functional v(t,xt) as a function of t does not increase.

Proof. Sufficiency: The positive definiteness of the functional v(t,ϕ) implies that
there exists a positive-definite function v1(x) such that

v1(ϕ(0))≤ v(t,ϕ) , t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn) , ‖ϕ‖h ≤ H.

For a given ε > 0 (ε < H) we define the positive value

λ (ε) = min
‖x‖=ε

v1(x). (1.4)

Since for a given t0 ≥ 0 the functional v(t0,ϕ) is continuous in ϕ at the point
0h, there exists δ > 0 such that v(t0,ϕ) < λ (ε) for any ϕ ∈ PC ([−h,0] ,Rn) with
‖ϕ‖h<δ .

It is clear that δ ≤ ε; otherwise we could present an initial function ϕ ∈
PC ([−h,0] ,Rn) such that ‖ϕ‖h < δ and ‖ϕ(0)‖= ε . On the one hand, for this initial
function we have v1(ϕ(0))≥ λ (ε). On the other hand, v1(ϕ(0))≤ v(t0,ϕ)< λ (ε).
The contradiction proves the inequality δ ≤ ε .

Now let ϕ ∈PC ([−h,0] ,Rn), with ‖ϕ‖h < δ . Then the theorem condition implies
that

v1(x(t, t0,ϕ))≤ v(t,xt(t0,ϕ))≤ v(t0,ϕ)< λ (ε), t ≥ t0. (1.5)

Assume by contradiction that there exists a time instant t1 ≥ t0 for which
‖x(t1, t0,ϕ)‖ ≥ ε . Since for t ≥ t0 the function ‖x(t, t0,ϕ)‖ is continuous in t,
and since ‖x(t0, t0,ϕ)‖= ‖ϕ(0)‖ ≤ ‖ϕ‖h < δ ≤ ε , there exists t∗ ∈ [t0, t1] such that
‖x(t∗, t0,ϕ)‖ = ε . So, on the one hand, by Eq. (1.4), we know that

v1(x(t
∗, t0,ϕ))≥ λ (ε).

On the other hand, inequality (1.5) implies the inequality

v1(x(t
∗, t0,ϕ))< λ (ε),

which contradicts the previous one. The contradiction proves that our assumption is
wrong, and the following inequality holds:

‖x(t, t0,ϕ)‖< ε, t ≥ t0.

This means that δ satisfies Definition 1.2, and therefore the trivial solution of
system (1.3) is stable.
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t

‖x‖

H

t0

Fig. 1.1 Value of ‖x(t, t0,ϕ‖, the first case

Necessity: Now, the trivial solution of system (1.3) is stable, and we must prove
that there exists a functional v(t,ϕ) that satisfies the theorem condition.

Construction of the functional: Since the trivial solution of system (1.3) is stable,
for ε = H there exists δ (H, t0)> 0 such that the inequality ‖ϕ‖h < δ (H, t0) implies
that ‖x(t, t0,ϕ)‖< H for t ≥ t0. We define the functional v(t,ϕ) as follows:

v(t0,ϕ) =

⎧

⎨

⎩

sup
t≥t0

‖x(t, t0,ϕ)‖ , if ‖x(t, t0,ϕ)‖< H, for t ≥ t0,

H, if there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖ = H.
(1.6)

These two possibilities are illustrated in Figs. 1.1 and 1.2, respectively.
We check first that the functional v(t,ϕ) is positive definite. To this end, we must

verify that it satisfies the conditions of Definition 1.6.

Condition 1: The value v(t0,ϕ) is defined for all t0 ≥ 0, and every initial function
ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H.

Condition 2: For the trivial initial function, ϕ = 0h, the corresponding solution is
trivial, x(t, t0,0h) = 0, for t ≥ t0. Thus v(t0,0h) = 0, t0 ≥ 0.

Condition 3: The function v1 (x) = ‖x‖ is positive definite. Given t0 ≥ 0 and ϕ ∈
PC ([−h,0] ,Rn) , with ‖ϕ‖h ≤ H, in the case where ‖x(t, t0,ϕ)‖ < H, for t ≥ t0,
we have

v1 (ϕ(0)) = ‖ϕ(0)‖ ≤ sup
t≥t0

‖x(t, t0,ϕ)‖ = v(t0,ϕ).

In the other case, where there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖= H, we have

v1 (ϕ(0)) = ‖ϕ(0)‖ ≤ H = v(t0,ϕ).
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T

‖x‖

t0

H

t

Fig. 1.2 Value of ‖x(t, t0,ϕ‖, the second case

Condition 4: Given t0 ≥ 0, the stability of the trivial solution means that for any
ε > 0 there exists δ > 0 such that ‖ϕ‖h < δ implies ‖x(t, t0,ϕ)‖ < ε for t ≥ t0.
In other words, for any ε > 0 there exists δ > 0 such that ‖ϕ‖h < δ implies

v(t0,ϕ) = |v(t0,ϕ)− v(t0,0h)| ≤ ε.

This observation makes it clear that for a fixed t0 ≥ 0 the functional v(t0,ϕ) is
continuous in ϕ at the point 0h.
Now we check that functional (1.6) satisfies the theorem condition. First, we
consider the case where ‖x(t, t0,ϕ)‖ < H for t ≥ t0. In this case, given two time
instants, t1 and t2, such that t2 > t1 ≥ t0, we compare the values

v(t1,xt1(t0,ϕ)) = sup
t≥t1

‖x(t, t0,ϕ)‖

and
v(t2,xt2(t0,ϕ)) = sup

t≥t2
‖x(t, t0,ϕ)‖ .

Since for the second value the range of the supremum is smaller than that for the
first value, we conclude that

v(t2,xt2(t0,ϕ))≤ v(t1,xt1(t0,ϕ)).

This means that the functional v(t,xt(t0,ϕ)) does not increase along the solution.
In the second case, where there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖=H, we have
the equality

v(t2,xt2(t0,ϕ)) = v(t1,xt1(t0,ϕ)) = H,

and, once again, the functional does not increase along the solution of
system (1.3). �
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Remark 1.3. The functional v(t,ϕ), defined in the proof of the necessity part of
Theorem 1.4, is of academic interest only. Obviously, we cannot use such function-
als in applications. The computation of practically useful Lyapunov functionals is
not a simple task.

Theorem 1.5. The trivial solution of system (1.3) is uniformly stable if and only if
there exists a positive-definite functional v(t,ϕ) such that the following conditions
are satisfied.

1. The value of the functional along the solutions of the system, v(t,xt), does not
increase.

2. The functional is continuous in ϕ at the point 0h, uniformly for t ≥ 0.

Proof. Sufficiency: In the proof of the sufficiency part of Theorem 1.4 the value
δ = δ (ε, t0) was chosen such that for any ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h < δ , the
value of the functional for a given t0 ≥ 0 satisfies the inequality v(t0,ϕ) < λ (ε).
Since now the functional is continuous in ϕ at the point 0h, uniformly for t ≥ 0, the
value δ can be chosen independently of t0.

Necessity: The uniform stability of the trivial solution of system (1.3) implies that
δ can be chosen independently of t0, δ = δ (ε). It was demonstrated in the proof of
Theorem 1.4 that functional (1.6) is positive definite and does not increase along the
solutions of system (1.3). We show that this functional satisfies the second condition
of the theorem. For any ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h < δ (ε), and any t0 ≥ 0 we
have that ‖x(t, t0,ϕ)‖ < ε for t ≥ t0. This means that

|v(t0,ϕ)− v(t0,0h)|= v(t0,ϕ)≤ ε.

In other words, functional (1.6) is continuous in ϕ at the point 0h, uniformly for
t ≥ 0. �

Remark 1.4. The second condition of Theorem 1.5 is satisfied when v(t,ϕ) admits
an upper estimate of the form

v(t,ϕ)≤ v2(ϕ), t ≥ 0, ϕ ∈ PC ([−h,0] ,Rn) , ‖ϕ‖h ≤ H,

with a positive-definite functional v2(ϕ).

Theorem 1.6. The trivial solution of system (1.3) is asymptotically stable if and
only if there exists a positive-definite functional v(t,ϕ) such that the following
conditions hold.

1. The value of the functional along the solutions of the system, v(t,xt), does not
increase.

2. For any t0 ≥ 0 there exists a positive value μ(t0) such that if ϕ ∈ PC ([−h,0] ,Rn)
and ‖ϕ‖h < μ(t0), then v(t,xt(t0,ϕ)) decreases monotonically to zero as t −
t0→∞.
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Proof. Sufficiency: The first condition of the theorem implies the stability of the
trivial solution of system (1.3) (Theorem 1.4). Thus, for any ε > 0 (ε < H) and
t0 ≥ 0 there exists δ (ε, t0)> 0 such that if ‖ϕ‖h < δ (ε, t0), then ‖x(t, t0,ϕ)‖< ε for
t ≥ t0. Let us define the value

Δ(ε, t0) = min{δ (ε, t0),μ(t0)} .

For any given initial function ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h < Δ(ε, t0), the
following inequality holds:

‖x(t, t0,ϕ)‖< ε, t ≥ t0.

We will demonstrate that x(t, t0,ϕ) → 0 as t − t0 → ∞. The functional v(t,ϕ) is
positive definite, so there exists a positive-definite function v1(x) such that

v1(ϕ(0))≤ v(t,ϕ) , for t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn) ,‖ϕ‖h ≤ H.

The function v1(x) is continuous, so for any given ε1 > 0 (ε1 < ε) we may define
the positive value

α = min
ε1≤‖x‖≤ε

v1(x).

By the second condition of the theorem, there exists T > 0 such that v(t,xt(t0,ϕ))<
α for t ≥ t0 +T . This implies the inequality

v1(x(t, t0,ϕ))< α, t ≥ t0 +T,

and we conclude that
‖x(t, t0,ϕ)‖< ε1, t ≥ t0 +T.

This means that x(t, t0,ϕ)→ 0 as t− t0 → ∞, and we must accept that the previously
defined value Δ(t0,ε) satisfies Definition 1.3.

Necessity: In this part of the proof we make use of functional (1.6). In the proof of
Theorem 1.4 it was demonstrated that the functional is positive definite and does not
increase along the solutions of system (1.3). This means that the functional satisfies
the first condition of the theorem.

We address the second condition of the theorem and choose the value μ(t0) as
follows:

μ(t0) = Δ(H, t0)> 0.

Now, for any initial function ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h < μ(t0), we know that
x(t, t0,ϕ)→ 0 as t − t0 → ∞. This means that for any ε1 > 0 there exists T > 0 such
that ‖x(t, t0,ϕ)‖< ε1 for t ≥ t0 +T . According to Eq. (1.6), we have

v(t,xt(t0,ϕ)) = sup
s≥t

‖x(s, t0,ϕ)‖ ≤ ε1, for t ≥ t0 +T.
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The preceding observation means that v(t,xt(t0,ϕ)) tends to zero as t → ∞. �

Theorem 1.7. The trivial solution of system (1.3) is uniformly asymptotically stable
if and only if there exists a positive-definite functional v(t,ϕ) such that the following
conditions hold.

1. The value of the functional along the solutions of the system, v(t,xt), does not
increase.

2. The functional is continuous in ϕ at the point 0h, uniformly for t ≥ 0.
3. There exists a positive value μ1 such that v(t,xt(t0,ϕ)) decreases monotonically

to zero as t − t0 → ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn),
with ‖ϕ‖h ≤ μ1.

Proof. Sufficiency: Comparing this theorem with Theorem 1.5 we conclude that the
trivial solution of system (1.3) is uniformly stable. Therefore, for a given ε > 0 the
value

Δ(ε) = min{μ1,δ (ε)} > 0

is such that the following properties hold:

1. Given t0 ≥ 0 and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h < Δ(ε), then ‖x(t, t0,ϕ)‖ < ε
for t ≥ t0.

2. v(t,xt(t0,ϕ))→ 0 as t − t0 → ∞.

Now we define

H1 =
1
2

Δ(H)> 0.

The functional v(t,ϕ) is positive definite, so there exists a positive-definite function
v1(x) such that

v1(ϕ(0))≤ v(t,ϕ) , for t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn) , ‖ϕ‖h ≤ H.

The function v1(x) is continuous; therefore, for any ε1 > 0 (ε1 < H) we may define
the positive value

α = min
ε1≤‖x‖≤H

v1(x).

By the third condition of the theorem there exists T > 0 such that for any t0 ≥ 0 and
ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H1, the following inequality holds:

v(t,xt(t0,ϕ))< α, t − t0 ≥ T.

This implies that
v1(x(t, t0,ϕ))< α, t − t0 ≥ T,

and we conclude that
‖x(t, t0,ϕ)‖< ε1, t − t0 ≥ T,
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for any t0 ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H1. Therefore, the previously
defined values Δ(ε) and H1 satisfy Definition 1.3. This ends the proof of the
sufficiency part of the theorem.

Necessity: The uniform asymptotic stability of the trivial solution of system (1.3)
implies that functional (1.6) satisfies the first two conditions of the theorem. Let
us set

μ1 =
1
2

Δ(H),

where Δ(ε) is from Definition 1.3. Now, given ε1 > 0, for any t0 ≥ 0 and ϕ ∈
PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ μ1, there exists T > 0 such that

‖x(t, t0,ϕ)‖< ε1, t − t0 ≥ T.

This means that functional (1.6) satisfies the inequality

v(t,xt(t0,ϕ)) = sup
s≥0

‖x(s, t0,ϕ)‖ ≤ ε1, t − t0 ≥ T,

i.e., the functional decreases monotonically to zero as t − t0 → ∞, uniformly with
respect to t0 ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ μ1. This ends the proof of
the necessity part. �

The following statement provides sufficient conditions of the uniform asymptotic
stability of the trivial solution of system (1.3).

Theorem 1.8 ([46]). The trivial solution of system (1.3) is uniformly asymptoti-
cally stable if there exist two positive-definite functionals, v(t,ϕ) and v2(ϕ), and a
positive-definite function w(x) such that the following two conditions hold.

1. v(t,ϕ)≤ v2 (ϕ), for t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H.
2. The value of the functional along the solutions of the system is differentiable by

t, and its time derivative satisfies the inequality

dv(t,xt)

dt
≤−w(x(t)).

Proof. Observe that the first condition of the theorem implies that the functional
v(t,ϕ) is continuous in ϕ at the point 0h, uniformly for t ≥ 0 (Corollary 1.4). This
means that the second condition of Theorem 1.7 is satisfied. The first condition of
Theorem 1.7 follows directly from the second condition of this theorem.

Now we show that the third condition of Theorem 1.7 is also satisfied. It is
evident that the theorem conditions guarantee that the trivial solution is uniformly
stable, i.e., for any ε > 0 there exists δ (ε) > 0 that satisfies the definition of the
uniform stability. The functional v2 (ϕ) is positive definite, so there exists a positive
value η such that the following inequality holds:
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v2 (ϕ)< H, ϕ ∈ PC ([−h,0] ,Rn) , with ‖ϕ‖h ≤ η .

Let us set

μ1 = min

{

1
2

δ (H),η
}

.

We are going to demonstrate that for any given α > 0 there exists T > 0 such that if
t − t0 ≥ T , then the inequality

v(t,xt(t0,ϕ))< α

holds for any t0 ≥ 0 and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ μ1. Since the functional
v2 (ϕ) is positive definite, there exists β > 0 such that the inequality ‖ϕ‖h < β
implies v2 (ϕ) < α . The function w(x) is positive definite, and we can define a
positive constant γ as follows:

γ = min
β
2 ≤‖x‖≤H

w(x).

For any function ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H, we have

‖ f (t,ϕ)‖ ≤ M(H), for t ≥ 0.

Now we set

τ = min

{

h,
β

2M(H)

}

and select an entire number N satisfying the inequality

H − γτN < 0.

Finally, we define a positive value T as follows:

T = 2hN.

Given an initial instant t0 ≥ 0 and function ϕ ∈ PC ([−h,0] ,Rn) such that ‖ϕ‖h ≤
μ1, we will demonstrate that v(t,xt(t0,ϕ)) < α for t − t0 ≥ T . First we observe
that the second condition of the theorem implies that v(t,xt(t0,ϕ)) is a decreasing
function of t, so it is enough to check that v

(

t0 +T,xt0+T (t0,ϕ)
)

< α . Assume by
contradiction that this is not the case, and v

(

t0 +T,xt0+T (t0,ϕ)
)

≥ α . This means
that

α ≤ v(t,xt(t0,ϕ))≤ v2 (xt(t0,ϕ))

for t ∈ [t0, t0 +T ]. The inequality α ≤ v2 (xt(t0,ϕ)) implies that ‖xt(t0,ϕ)‖h ≥
β for t ∈ [t0, t0 +T ], i.e., in each segment [t − h, t] ⊂ [t0, t0 +T ] there exists a
point t∗ ∈ [t − h, t] such that ‖x(t∗, t0,ϕ)‖ ≥ β . These arguments demonstrate that
we can define an increasing sequence, {t j}N

j=1, such that at the points of the
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sequence
∥

∥x(t j , t0,ϕ)
∥

∥≥ β . Without any loss of generality we assume that any two
consecutive points of the sequence satisfy the inequalities h < t j+1 − t j < 2h.

According to the choice of the initial function ϕ , we know that ‖x(t, t0,ϕ)‖ < H
for t ≥ t0, and at the points of the sequence the following inequality holds:

β ≤
∥

∥x(t j, t0,ϕ)
∥

∥ , j = 1,2, . . . ,N.

Now observe that

x(t, t0,ϕ) = x(t j, t0,ϕ)+
t

∫

t j

f (s,xs(t0,ϕ))ds, t ≥ t j,

and, since ‖ f (s,xs(t0,ϕ))‖ ≤ M(H), for t ≥ 0 we have

∥

∥x(t, t0,ϕ)− x(t j, t0,ϕ)
∥

∥ ≤
t

∫

t j

‖ f (s,xs (t0,ϕ))‖ds

≤ τM(H), for t ∈ [t j, t j + τ].

According to our choice of τ , we conclude that for t ∈ [t j, t j + τ]

∥

∥x(t, t0,ϕ)− x(t j, t0,ϕ)
∥

∥≤ β
2
.

As
∥

∥x(t j, t0,ϕ)
∥

∥≥ β , the inequality

‖x(t, t0,ϕ)‖ ≥
β
2
, t ∈ [t j, t j + τ],

holds for j = 1,2, . . . ,N. It is evident that

w(x(t, t0,ϕ))≥ γ, t ∈ [t j, t j + τ], j = 1,2, . . . ,N,

and the second condition of the theorem implies that

v(t0 +T,xt0+T (t0,ϕ)) ≤ v(t0,ϕ)−
t0+T
∫

t0

w(x(s, t0,ϕ)ds

≤ H − γτN < 0.

This means that v(t0 + T,xt0+T (t0,ϕ)) is negative, which contradicts the positive
definiteness of the functional v(t,ϕ). The contradiction proves that
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v(t,xt(t0,ϕ))< α, for t − t0 ≥ T.

Now to end the proof, it is enough to refer to Theorem 1.7. �

Theorem 1.9. The trivial solution of system (1.3) is exponentially stable if there
exists a positive-definite functional v(t,ϕ) such that the following conditions hold.

1. There are two positive constants α1,α2 for which

α1 ‖ϕ(0)‖2 ≤ v(t,ϕ)≤ α2 ‖ϕ‖2
h , for t ≥ 0,

for t ≥ 0, and ϕ ∈ PC ([−h,0] ,Rn) with ‖ϕ‖h ≤ H.
2. The functional is differentiable along the solutions of the system, and there exists

a positive constant σ such that

d
dt

v(t,xt)+ 2σv(t,xt)≤ 0.

Proof. Let us define the positive-definite function v1(x) = α1 ‖x‖2 and the positive-
definite functional v2(ϕ) = α1 ‖ϕ‖2

h. It is evident that the functional v(t,ϕ) satisfies
the conditions of Theorem 1.5. Therefore, the trivial solution of system (1.3)
is uniformly stable, and for every ε > 0 there exists δ (ε) > 0 such that the
inequality ‖ϕ‖h < δ (ε) implies ‖x(t, t0,ϕ)‖ < ε for t ≥ t0. We will show that
the value Δ0 = δ (H) satisfies Definition 1.4. To this end, assume that t0 ≥ 0 and
ϕ ∈ PC ([−h,0] ,Rn) , ‖ϕ‖h < Δ0. The corresponding solution x(t, t0,ϕ) is such that

‖x(t, t0,ϕ)‖< H, for t ≥ t0.

The second condition of the theorem implies the inequality

v(t,xt(t0,ϕ))≤ v(t0,ϕ)e−2σ(t−t0), t ≥ t0.

Applying the first condition of the theorem we obtain that

α1 ‖x(t, t0,ϕ)‖2 ≤ v(t0,ϕ)e−2σ(t−t0) ≤ α2 ‖ϕ‖2
h e−2σ(t−t0), t ≥ t0.

The preceding inequalities provide the desired exponential estimate

‖x(t, t0,ϕ)‖ ≤
√

α2

α1
‖ϕ‖h e−σ(t−t0), t ≥ t0. �
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1.6 Notes and References

The origins of the time-delay systems go back to such giants as L. Euler,
J. L. Lagrange, and P. Laplace. A systematic development of the theory of functional
differential equations began in the twentieth century with Volterra [69, 70],
Myshkis [57], Krasovskii [46], Bellman and Cooke [3], Halanay [19], and Hale [21],
to mention just the principal contributors.

The restriction of a solution, xt : θ → x(t +θ ), θ ∈ [−h,0], as the true state of a
time-delay system was introduced by Krasovskii [48]. This allowed him to develop
the stability theory of time-delay systems to the same level as that of ordinary
differential equations [46].

In the exposition of the basic existence and continuity results we follow the
excellent book by Halanay [19]; see also [3, 6, 10, 11, 20, 23, 49].

The foundations of the Lyapunov second approach for time-delay systems,
which is now known as the Lyapunov–Krasovskii approach, were developed by
Krasovskii [46–48]; see also [44,58]. The form of presentation of the stability results
in Sect. 1.5 was inspired by Zubov [72].



Chapter 2
Single Delay Case

In this chapter we consider the class of retarded type linear systems with one delay.
There are several reasons for restricting our attention to this class before proceeding
to more general ones. First, from a methodological point of view, it seems that
dealing with single-delay systems simplifies the understanding of basic concepts
and creates a firm basis for developing the concepts for more general cases. Second,
for the case of single delay we often obtain more complete results than in a more
general setting. Finally, results for the single-delay case are not as cumbersome as
those for the more general classes of time-delay systems.

We introduce the fundamental matrix of such a system and provide an explicit
expression for the solution of an initial value problem. Exponential stability
conditions, both in terms of characteristic eigenvalues of the system and in terms
of Lyapunov functionals, are presented. The general scheme for the computation of
quadratic functionals with prescribed time derivatives along the solutions of a time-
delay system is explained in detail. It is demonstrated that the functionals are defined
by special matrix-valued functions. We show that these matrix-valued functions
are natural counterparts of the classical Lyapunov matrices that appear in the
computation of Lyapunov quadratic forms for a delay-free linear system; therefore,
they are known as Lyapunov matrices for a time-delay system. A substantial part
of the chapter is devoted to an analysis of the basic properties of the Lyapunov
matrices. Then, Lyapunov functionals that admit various quadratic lower and upper
bounds are introduced. They are called functionals of the complete type. Finally,
we make use of complete type functionals to derive exponential estimates of
the solutions of time-delay systems, robustness bounds for perturbed systems,
evaluation of quadratic performance indices, and computation of critical values of
system parameters.

V.L. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,
Control Engineering, DOI 10.1007/978-0-8176-8367-2 2,
© Springer Science+Business Media, LLC 2013
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2.1 Preliminaries

We consider a retarded type time-delay system of the form

dx(t)
dt

= A0x(t)+A1x(t − h), t ≥ 0. (2.1)

Here A0, A1 are given real n× n matrices, and h is a positive time delay.
Let ϕ : [−h,0]→ Rn be an initial function. We assume that the function belongs

to the space, PC([−h,0],Rn), of piecewise continuous functions defined on the
segment [−h,0]. Let x(t,ϕ) stand for the solution of system (2.1) under the initial
condition

x(θ ,ϕ) = ϕ(θ ), θ ∈ [−h,0],

and let xt(ϕ) denote the restriction of the solution to the segment [t − h, t]

xt(ϕ) : θ → x(t +θ ,ϕ), θ ∈ [−h,0].

We omit the argument ϕ in these notations and write x(t) and xt instead of x(t,ϕ)
and xt(ϕ) where no confusion may arise.

Recall that the Euclidean norm is used for vectors and the induced matrix norm
for matrices. For elements of the space PC([−h,0],Rn) we use the uniform norm

‖ϕ‖h = sup
θ∈[−h,0]

‖ϕ(θ )‖ .

The principal objective of this section is to present an explicit expression for the
solutions of system (2.1) in terms of their initial functions.

2.1.1 Fundamental Matrix

The key element needed to derive this expression is the fundamental matrix of
the system. In many respects, the fundamental matrix plays the same role for
system (2.1) as the matrix exponent does for linear delay-free systems.

Definition 2.1 ([3]). It is said that the n× n matrix K(t) is the fundamental matrix
of system (2.1) if it satisfies the matrix equation

d
dt

K(t) = K(t)A0 +K(t − h)A1, t ≥ 0, (2.2)

and K(t) = 0n×n for t < 0, K(0) = I. Here I is the identity matrix.
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Remark 2.1. The fundamental matrix also satisfies the matrix equation

d
dt

K(t) = A0K(t)+A1K(t − h), t ≥ 0.

This does not mean that matrix K(t) commutes individually with the coefficient
matrices Ak, k = 0,1.

Proof. To verify this remark, it is sufficient to compare the Laplace image of the
fundamental matrix as a solution of matrix Eq. (2.2) with that of the matrix equation
given in the remark. �

2.1.2 Cauchy Formula

Now we are ready to present the main result of this section.

Theorem 2.1 ([3]). Given an initial function ϕ ∈ PC([−h,0],Rn), the following
equality holds:

x(t,ϕ) = K(t)ϕ(0)+
0
∫

−h

K(t −θ − h)A1ϕ(θ )dθ , t ≥ 0. (2.3)

This expression for x(t,ϕ) is known as the Cauchy formula.

Proof. Let t > 0 and assume that ξ ∈ (0, t); then

∂
∂ξ

[K(t − ξ )x(ξ ,ϕ)] = − [K(t − ξ )A0 +K(t − ξ − h)A1]x(ξ ,ϕ)

+K(t − ξ ) [A0x(ξ ,ϕ)+A1x(ξ − h,ϕ)] .

Integrating the last equality by ξ from 0 to t we obtain that

x(t,ϕ)−K(t)ϕ(0) =−
t

∫

0

K(t − ξ − h)A1x(ξ ,ϕ)dξ +

t
∫

0

K(t − ξ )A1x(ξ − h,ϕ)dξ .

The second integral on the right-hand side of the preceding equality can be
transformed as follows:

t
∫

0

K(t − ξ )A1x(ξ − h,ϕ)dξ = 〈θ = ξ − h〉=
t−h
∫

−h

K(t −θ − h)A1x(θ ,ϕ)dθ .
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Since the matrix K(θ ) = 0n×n for θ ∈ [−h,0), the upper limit of the integral on the
right-hand side can be increased up to t,

t−h
∫

−h

K(t −θ − h)A1x(θ ,ϕ)dθ =

t
∫

−h

K(t −θ − h)A1x(θ ,ϕ)dθ .

As a result we arrive at the equality

x(t,ϕ) = K(t)ϕ(0)+
0
∫

−h

K(t −θ − h)A1x(θ ,ϕ)dθ , t ≥ 0.

As x(θ ,ϕ) = ϕ(θ ) for θ ∈ [−h,0], the preceding equality coincides with (2.3). �

2.2 Exponential Stability

We now introduce the stability concept that will be used for system (2.1) in the
remainder of this part of the book.

Definition 2.2 ([3]). System (2.1) is said to be exponentially stable if there exist
γ ≥ 1 and σ > 0 such that any solution x(t,ϕ) of the system satisfies the inequality

‖x(t,ϕ)‖ ≤ γe−σt ‖ϕ‖h , t ≥ 0. (2.4)

Remark 2.2. It is well known that the exponential stability of system (2.1) is
equivalent to the asymptotic stability of the system; see [3].

Definition 2.3. A complex number s0 is said to be an eigenvalue of system (2.1) if
it is a root of the characteristic function,

f (s) = det
(

sI −A0 − e−shA1

)

,

of the system. The set
Λ = {s | f (s) = 0}

is known as the spectrum of the system.

The next statement shows that the property of exponential stability depends on
the location of the spectrum of system (2.1).

Theorem 2.2 ([3]). System (2.1) is exponentially stable if and only if the spectrum
of the system lies in the open left half-plane of the complex plane,

Re(s0)< 0, s0 ∈ Λ.
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The following result is a simplified version of the Krasovskii theorem 1.8.
It provides sufficient conditions for the exponential stability of system (2.1).

Theorem 2.3. System (2.1) is exponentially stable if there exists a functional

v : PC([−h,0],Rn)→ R

such that the following conditions hold.

1. For some positive α1,α2

α1 ‖ϕ(0)‖2 ≤ v(ϕ)≤ α2 ‖ϕ‖2
h , ϕ ∈ PC([−h,0],Rn).

2. For some β > 0 the inequality

d
dt

v(xt)≤−β ‖x(t)‖2 , t ≥ 0,

holds along the solutions of the system.

2.3 Problem Formulation

Motivated by Theorem 2.3 we address in this section the construction of quadratic
functionals that satisfy the theorem conditions. Our approach is based on one of the
principal ideas of the direct Lyapunov method, which can be formulated in our case
as follows. First, select a time derivative, and then compute the functional whose
time derivative along the solution of system (2.1) coincides with the selected one.
Since the system is linear and time invariant, it seems natural to start with the case
where the time derivative is a quadratic form. One technical assumption needed at
the beginning, and which will be dropped later, is that system (2.1) is exponentially
stable.

Problem 2.1. Let system (2.1) be exponentially stable. Given a quadratic form
w(x) = xTWx, find a functional v0(ϕ), defined on PC([−h,0],Rn), such that along
the solutions of the system the following equality holds:

d
dt

v0(xt) =−xT (t)Wx(t), t ≥ 0. (2.5)
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2.4 Delay-Free Case

Here we would like to explain, using the case of a delay-free system, some principal
ideas behind our approach to the solution of Problem 2.1. Let us consider an
exponentially stable system of the form

dx
dt

= Ax. (2.6)

By x(t,x0) we denote the solution of the system with a given initial condition
x(0,x0) = x0. If the initial condition is not important, then we will use the shorthand
notation x(t) instead of x(t,x0).

Given a quadratic form w(x) = xTWx, we are looking for a Lyapunov function
v(x) such that the following equality holds:

d
dt

v(x)

∣

∣

∣

∣

(2.6)
=−w(x). (2.7)

Control theory textbooks, see [24, 30, 71], teach us that the desired Lyapunov
function is also a quadratic form, v(x) = xTVx. The function satisfies the preceding
equality if matrix V is a solution of the classical Lyapunov matrix equation

ATV +VA =−W. (2.8)

The evident simplicity of the construction of the Lyapunov function v(x) is achieved
due to the valuable information that the function is a quadratic form. Let us assume
now that this information is not available. This is exactly the situation that we
have now in Problem 2.1. The question is: Is it possible to reveal the form of the
Lyapunov function during the construction of v(x)? To answer this question, we
address ourselves to the Eq. (2.7). First, we observe that if we substitute into (2.7) a
solution of system (2.6), then the equation takes the form

d
dt

v(x(t)) =−w(x(t)).

It is evident that the preceding equation defines the function v(x(t)) up to an additive
constant. To define the constant correctly, we recall that the desired Lyapunov
function v(x) should be equal to zero for x = 0, v(0) = 0. Now we integrate the
last equality on the segment [0,T ], where T > 0,

v(x(T,x0))− v(x0) =−
T
∫

0

xT (t,x0)Wx(t,x0)dt.
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Since system (2.6) is exponentially stable, x(T,x0) → 0 and v(x(T,x0)) → 0, as
T → ∞. At the limit we obtain the equality

v(x0) =

∞
∫

0

xT (t,x0)W x(t,x0)dt. (2.9)

The improper integral on the right-hand side of the preceding equality converges
due to exponential stability of system (2.6). It is well known that

x(t,x0) = eAtx0.

Replacing x(t,x0) in (2.9) by this expression we arrive at the equality

v(x0) = xT
0

⎛

⎝

∞
∫

0

eAT tW eAtdt

⎞

⎠x0,

which demonstrates that the Lyapunov function is a quadratic form, v(x) = xTVx,
with the matrix

V =

∞
∫

0

eAT tWeAtdt. (2.10)

It is a matter of simple calculation to verify that the matrix satisfies Eq. (2.8).
We summarize now the essential elements of the presented construction process.

First, the exponential stability assumption allows us to justify formula (2.9). Second,
the explicit expression of the solutions of system (2.6) allows us to clarify the form
of the desired function. Finally, we see that there is no need to evaluate the improper
integral (2.10) to compute the matrix since the matrix Eq. (2.8) serves the same
purpose.

It will be shown that this approach to the construction of Lyapunov functions
can be extended to the case of time-delay systems in the sense that it is possible to
compute a Lyapunov functional that solves Problem 2.1.

2.5 Computation of v0(ϕ)

In this section an important step toward the construction of quadratic functionals
that satisfy Theorem 2.3 will be made. That is, we derive an explicit formula for
a functional that solves Problem 2.1. We also introduce a Lyapunov matrix that
defines the functional.
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Equation (2.5) defines the functional v0(ϕ) up to an additive constant. It follows
from the first condition of Theorem 2.3 that this additive constant should be set
in such a way that for the trivial initial function 0h ∈ PC([−h,0],Rn), v0(0h) = 0.
Integrating Eq. (2.5) from t = 0 to t = T > 0 we obtain

v0(xT (ϕ))− v0(ϕ) =−
T
∫

0

x(t,ϕ)W x(t,ϕ)dt.

Since system (2.1) is exponentially stable, xT (ϕ)→ 0h as T → ∞, and we arrive at
the expression

v0(ϕ) =
∞
∫

0

xT (t,ϕ)W x(t,ϕ)dt, ϕ ∈ PC([−h,0],Rn).

The exponential stability of system (2.1) implies that the improper integral on the
right-hand side of the preceding equality is well defined. If we replace x(t,ϕ) under
the integral sign by Cauchy formula (2.3), then

v0(ϕ) =
∞
∫

0

⎡

⎣K(t)ϕ(0)+
0
∫

−h

K(t − h−θ1)A1ϕ(θ1)dθ1

⎤

⎦

T

W

×

⎡

⎣K(t)ϕ(0)+
0
∫

−h

K(t − h−θ2)A1ϕ(θ2)dθ2

⎤

⎦dt

= ϕT (0)

⎡

⎣

∞
∫

0

KT (t)W K(t)dt

⎤

⎦ϕ(0)

+2ϕT (0)

∞
∫

0

KT (t)W

⎡

⎣

0
∫

−h

K(t − h−θ )A1ϕ(θ )dθ

⎤

⎦dt

+

∞
∫

0

⎡

⎣

0
∫

−h

K(t−h−θ1)A1ϕ(θ1)dθ1

⎤

⎦

T

W

⎡

⎣

0
∫

−h

K(t−h−θ2)A1ϕ(θ2)dθ2

⎤

⎦dt.

Here for the first time we encounter the matrix

U(τ) =
∞
∫

0

KT (t)W K(t + τ)dt, (2.11)
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which will play a crucial role in the following study. Since the columns of the
fundamental matrix K(t) are solutions of (2.1) with specific initial conditions, it
is easy to verify that the matrix admits an upper exponential estimate of the form

‖K(t)‖ ≤ γe−σt , t ≥ 0. (2.12)

This estimate guarantees that the matrix U(τ) is well defined for τ ∈ R.

Lemma 2.1. Given τ0 ∈ R, the improper integral (2.11) converges absolutely and
uniformly with respect to τ ∈ [τ0,∞).

Proof. Given τ0 ∈ R, it follows directly from (2.12) that

∥

∥KT (t)WK(t + τ)
∥

∥≤ γ2 ‖W‖e−σ(2t+τ), t ≥ 0.

Now, let τ ∈ [τ0,∞); then the inequality

∞
∫

0

∥

∥KT (t)W K(t + τ)
∥

∥dt ≤ γ2

2σ
‖W‖e−στ0

proves the statement. �

We will demonstrate now that matrix (2.11) allows us to present the functional
v0(ϕ) in a form more suitable for subsequent analysis. To begin with, we observe
that the first term of the functional can be written as

R1 = ϕT (0)

⎡

⎣

∞
∫

0

KT (t)WK(t)dt

⎤

⎦ϕ(0) = ϕT (0)U(0)ϕ(0).

Lemma 2.1 justifies the following change in the integration order in the second term:

R2 = 2ϕT (0)

∞
∫

0

KT (t)W

⎡

⎣

0
∫

−h

K(t − h−θ )A1ϕ(θ )dθ

⎤

⎦dt

= 2ϕT (0)

0
∫

−h

U(−h−θ )A1ϕ(θ )dθ .

To present the last term in a similar form, we consider the integral

J =

∞
∫

0

KT (t − τ1)W K(t − τ2)dt,



36 2 Single Delay Case

where τ1 and τ2 are two nonnegative constants. This integral can be transformed as
follows:

J =

∞
∫

0

KT (t − τ1)W K(t − τ2)dt =

∞
∫

−τ1

KT (ξ )WK(ξ + τ1 − τ2)dξ

=

0
∫

−τ1

KT (ξ )WK(ξ + τ1 − τ2)dξ +U(τ1 − τ2).

Since K(ξ ) = 0n×n, for ξ ∈ [−τ1,0), the first summand on the right-hand side of the
preceding line of equalities disappears, and we obtain

J =U(τ1 − τ2).

Now, based on Lemma 2.1, we present the last term in the form

R3 =

∞
∫

0

⎡

⎣

0
∫

−h

K(t − h−θ1)A1ϕ(θ1)dθ1

⎤

⎦

T

W

⎡

⎣

0
∫

−h

K(t − h−θ2)A1ϕ(θ2)dθ2

⎤

⎦dt

=

0
∫

−h

ϕT (θ1)A
T
1

⎡

⎣

0
∫

−h

⎛

⎝

∞
∫

0

KT (t − h−θ1)WK(t − h−θ2)dt

⎞

⎠A1ϕ(θ2)dθ2

⎤

⎦dθ1

=

0
∫

−h

ϕT (θ1)A
T
1

⎡

⎣

0
∫

−h

U(θ1 −θ2)A1ϕ(θ2)dθ2

⎤

⎦dθ1.

These transformations show that the quadratic functional v0(ϕ) can be written as

v0(ϕ) = ϕT (0)U(0)ϕ(0)+ 2ϕT (0)

0
∫

−h

U(−h−θ )A1ϕ(θ )dθ

+

0
∫

−h

ϕT (θ1)A
T
1

⎡

⎣

0
∫

−h

U(θ1 −θ2)A1ϕ(θ2)dθ2

⎤

⎦dθ1. (2.13)

Observe that all the terms on the right-hand side of (2.13) depend on the matrix
U(τ). This is the first, but not the last, reason to call this matrix a Lyapunov matrix
of system (2.1).

Definition 2.4. Matrix (2.11) is called a Lyapunov matrix of system (2.1) associ-
ated with matrix W .
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In the following sections the Lyapunov matrices of system (2.1) will be studied
in detail. Here we prove only that they are continuous functions of τ .

Lemma 2.2. Lyapunov matrix (2.11) depends continuously on τ ≥ 0.

Proof. The statement is a direct consequence of Lemma 2.1 and the fact that K(t)
is continuous for t ≥ 0. �

2.6 Lyapunov Matrices: Basic Properties

As was mentioned at the end of the previous section, matrix (2.11) depends
continuously on τ . In this section we launch a more detailed analysis of the basic
properties of the matrix. Some of the properties will allow us to provide a new
definition of the matrix.

Lemma 2.3. The Lyapunov matrix U(τ) satisfies the dynamic property

d
dτ

U(τ) =U(τ)A0 +U(τ − h)A1, τ ≥ 0. (2.14)

Proof. Let t ≥ 0 and τ > 0; then

∂
∂τ

[

KT (t)WK(t + τ)
]

= KT (t)W [K(t + τ)A0 +K(t + τ − h)A1] .

The exponential stability of system (2.1) implies that

∥

∥

∥

∥

∂
∂τ

[

KT (t)WK(t + τ)
]

∥

∥

∥

∥

≤ ‖K(t)‖‖W‖‖K(t + τ)‖‖A0‖

+‖K(t)‖‖W‖‖K(t + τ − h)‖‖A1‖

≤ γ2e−σ(2t+τ) ‖W‖
(

‖A0‖+ eσh‖A1‖
)

≤ γ2eσhe−2σt ‖W‖(‖A0‖+ ‖A1‖) .

On the one hand, since the integral

∞
∫

0

γ2eσhe−2σt ‖W‖(‖A0‖+ ‖A1‖)dt
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converges, the integral
∞
∫

0

∂
∂τ

[

KT (t)WK(t + τ)
]

dt

converges absolutely and uniformly with respect to τ ≥ 0, which in turn implies the
equality

∞
∫

0

∂
∂τ

[

KT (t)W K(t + τ)
]

dt =
d

dτ

⎛

⎝

∞
∫

0

KT (t)WK(t + τ)dt

⎞

⎠=
dU(τ)

dτ
.

On the other hand,

∞
∫

0

∂
∂τ

[

KT (t)W K(t + τ)
]

dt =

⎛

⎝

∞
∫

0

KT (t)W K(t + τ)dt

⎞

⎠A0

+

⎛

⎝

∞
∫

0

KT (t)W K(t + τ − h)dt

⎞

⎠A1 =U(τ)A0 +U(τ − h)A1,

and we arrive at the dynamic property (2.14). �

Lemma 2.4. A Lyapunov matrix satisfies the symmetry property

U(−τ) =UT (τ), τ ≥ 0. (2.15)

Proof. The matrix

U(−τ) =
∞
∫

0

KT (t)WK(t − τ)dt =

∞
∫

−τ

KT (ξ + τ)WK(ξ )dξ

=

0
∫

−τ

KT (ξ + τ)WK(ξ )dξ +UT (τ).

Since the matrix K(ξ ) = 0n×n, ξ ∈ [−τ,0), the integral term on the right-hand side
of the preceding line of equalities disappears, and we arrive at (2.15). �

Corollary 2.1. It follows from (2.15) that matrix U(0) is symmetric, UT (0)=U(0).

Corollary 2.2. Lyapunov matrix (2.11) is infinitely many times differentiable for
τ ∈ (0,h).



2.6 Lyapunov Matrices: Basic Properties 39

Indeed, the symmetry property (2.15) and Lemma 2.2 imply that the initial
condition for matrix U(τ) as a solution of Eq. (2.14) is continuous, so the Lyapunov
matrix is continuously differentiable. This means, in turn, that the initial condition
is continuously differentiable, so the Lyapunov matrix is two times continuously
differentiable. It is evident that this process may be continued up to infinity.

Lemma 2.5. The Lyapunov matrix satisfies the algebraic property

U(0)A0 +U(−h)A1+AT
0 U(0)+AT

1 U(h) =−W. (2.16)

Proof. We first differentiate the product

d
dt

[

KT (t)W K(t)
]

= [K(t)A0 +K(t − h)A1]
T WK(t)

+KT (t)W [K(t)A0 +K(t − h)A1] , t ≥ 0,

and then, integrating the preceding equality from t = 0 to t = ∞, we get

−W =

∞
∫

0

[K(t)A0 +K(t − h)A1]
T WK(t)dt

+

∞
∫

0

KT (t)W [K(t)A0 +K(t − h)A1]dt

= AT
0 U(0)+AT

1 U(h)+U(0)A0+U(−h)A1. �

The symmetry property indicates that the first derivative of the Lyapunov matrix
suffers discontinuity at the point τ = 0.

Lemma 2.6. Algebraic property (2.16) can be written in the form

U ′(+0)−U ′(−0) =−W.

Here U ′(+0) and U ′(−0) stand respectively for the right-hand-side and the left-
hand-side derivatives of the matrix U(τ) at τ = 0.

Proof. Observe first that

U ′(+0) = lim
τ→+0

dU(τ)
dτ

=U(0)A0 +U(−h)A1.
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Differentiating the symmetry property we first get

dU(−τ)
dτ

=

[

dU(τ)
dτ

]T

, τ > 0

and then

lim
τ→−0

dU(τ)
dτ

=− [U(0)A0 +U(−h)A1]
T .

Now the statement of the lemma is a simple consequence of the equality

lim
τ→+0

dU(τ)
dτ

− lim
τ→−0

dU(τ)
dτ

= U(0)A0 +U(−h)A1

+[U(0)A0 +U(−h)A1]
T

and algebraic property (2.16). �

Despite the fact that functional (2.13) was computed from Eq. (2.5), it seems to
be instructive to demonstrate directly that the functional satisfies the equation.

Theorem 2.4. Functional (2.13), with U(τ) given by (2.11), satisfies Eq. (2.5).

Proof. Let x(t) be a solution of system (2.1); then

v0(xt) = xT (t)U(0)x(t)
︸ ︷︷ ︸

R1(t)

+ 2xT (t)

0
∫

−h

U(−h−θ )A1x(t +θ )dθ

︸ ︷︷ ︸

R2(t)

+

0
∫

−h

xT (t +θ1)A
T
1

⎡

⎣

0
∫

−h

U(θ1 −θ2)A1x(t +θ2)dθ2

⎤

⎦dθ1

︸ ︷︷ ︸

R3(t)

.

We will differentiate the summands on the right-hand side of the preceding equality
one by one.

It is easy to see that for the first term

d
dt

R1(t) = 2xT (t)U(0) [A0x(t)+A1x(t − h)]

= xT (t)
[

U(0)A0 +AT
0 U(0)

]

x(t)+ 2xT (t)U(0)A1x(t − h).

By a simple change of the integration variable we present the second term in a form
more suitable for subsequent differentiation:

R2(t) = 2xT (t)

t
∫

t−h

U(−h− ξ + t)A1x(ξ )dξ .



2.6 Lyapunov Matrices: Basic Properties 41

Then,

d
dt

R2(t) = 2 [A0x(t)+A1x(t − h)]T
t

∫

t−h

U(−h− ξ + t)A1x(ξ )dξ

+2xT (t)U(−h)A1x(t)− 2xT (t)U(0)A1x(t − h)

+2xT (t)

t
∫

t−h

(

∂
∂ t

U(−h− ξ + t)

)

A1x(ξ )dξ

= 2xT (t)AT
0

t
∫

t−h

U(−h− ξ + t)A1x(ξ )dξ

+2xT (t − h)AT
1

t
∫

t−h

U(−h− ξ + t)A1x(ξ )dξ

+2xT (t)

t
∫

t−h

(

∂
∂ t

U(−h− ξ + t)

)

A1x(ξ )dξ

+xT (t)
[

U(−h)A1 +AT
1 U(h)

]

x(t)

−2xT (t)U(0)A1x(t − h).

Applying to the last term a similar change of the integration variables we have

R3(t) =

t
∫

t−h

xT (ξ1)A
T
1

⎡

⎣

t
∫

t−h

U(ξ1 − ξ2)A1x(ξ2)dξ2

⎤

⎦dξ1.

The time derivative of the term is

d
dt

R3(t) = xT (t)AT
1

t
∫

t−h

U(t − ξ )A1x(ξ )dξ

−xT (t − h)AT
1

t
∫

t−h

U(t − h− ξ )A1x(ξ )dξ
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+

⎛

⎝

t
∫

t−h

xT (ξ )AT
1 U(ξ − t)dξ

⎞

⎠A1x(t)

−

⎛

⎝

t
∫

t−h

xT (ξ )AT
1 U(ξ − t + h)dξ

⎞

⎠A1x(t − h).

Since the term

J1(t) =

⎛

⎝

t
∫

t−h

xT (ξ )AT
1 U(ξ − t)dξ

⎞

⎠A1x(t)

= xT (t)AT
1

t
∫

t−h

U(t − ξ )A1x(ξ )dξ

and the term

J2(t) =

⎛

⎝

t
∫

t−h

xT (ξ )AT
1 U(ξ − t + h)dξ

⎞

⎠A1x(t − h)

= xT (t − h)AT
1

t
∫

t−h

U(t − h− ξ )A1x(ξ )dξ ,

we obtain that

d
dt

R3(t) = 2xT (t)AT
1

t
∫

t−h

U(t − ξ )A1x(ξ )dξ

−2xT (t − h)AT
1

t
∫

t−h

U(t − h− ξ )A1x(ξ )dξ .

In the computed time derivatives we first collect all terms that include an integral
factor. The sum of such terms is

S1(t) = 2xT (t)

t
∫

t−h

[

AT
0 U(−h− ξ + t)+AT

1 U(t − ξ )+
∂
∂ t

U(−h−ξ+t)

]

A1x(ξ )dξ .
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Applying symmetry property (2.15) we find that

∂
∂ t

U(−h− ξ + t) =

[

∂
∂ t

U(h+ ξ − t)

]T

=−
[

(

d
dτ

U(τ)
)∣

∣

∣

∣

τ=h+ξ−t

]T

.

As ξ ∈ [t − h, t], the variable τ = h+ξ −t ≥ 0 and properties (2.14) and (2.15) imply
that

∂
∂ t

U(−h− ξ + t) =−AT
0 U(−h− ξ + t)−AT

1U(−ξ + t).

The preceding equality means that the sum of the terms with an integral factor
disappears.

Now we collect in the computed time derivatives the algebraic terms. The sum
of the terms is

S2(t) = xT (t)
[

U(0)A0 +AT
0 U(0)+U(−h)A1+AT

1 U(h)
]

x(t).

Property (2.16) implies that the preceding quadratic form coincides with −w(x(t));
therefore

d
dt

v0(xt) =−xT (t)Wx(t), t ≥ 0. �

2.7 Lyapunov Matrices: Limit Case

It is interesting to see what happens with Lyapunov matrices of system (2.1) when
the delay term disappears. It may occur in two cases.

In the first case matrix A1 tends to 0n×n, and the limit system is of the form

dx(t)
dt

= A0x(t).

Assume that matrix A1 tends to 0n×n in such a way that the system remains
exponentially stable. It follows from (2.13) that in this case the functional v0(xt)
tends to the quadratic form xT (t)U(0)x(t). The symmetry property (2.15) implies
that matrix U(0) is symmetric, and the algebraic property (2.16) turns into the
classical Lyapunov matrix equation for U(0):

U(0)A0 +AT
0 U(0) =−W.

In the second case, the delay tends to zero, h →+0, and the new limit system is
of the form

dx(t)
dt

= (A0 +A1)x(t).
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Once again, assume that the system remains exponentially stable when h →+0;
then functional (2.13) tends to the quadratic form xT (t)U(0)x(t). Symmetry prop-
erty (2.15) implies that matrix U(0) is symmetric, and algebraic property (2.16)
takes the form of the classical Lyapunov matrix equation

U(0) [A0 +A1]+ [A0 +A1]
T U(0) =−W

for the new limit system.
This brief analysis provides an additional justification for calling matrix U(τ) a

Lyapunov matrix of system (2.1).

2.8 Lyapunov Matrices: New Definition

Two serious limitations are associated with the definition of Lyapunov matrices by
means of improper integral (2.11). The first one is that this definition is applicable
to exponentially stable systems only. The second one is that the definition is of
little help from a computational point of view. Indeed, it demands a preliminary
computation of the fundamental matrix K(t) for t ∈ [0,∞), which by itself is a
difficult task, and the consequent evaluation of integral (2.11) for different values
of τ .

In this section we remove the assumption that system (2.1) is exponentially stable
and propose a new definition of the Lyapunov matrices, which will serve for unstable
systems as well. But first we prove the following result.

Theorem 2.5. Let ˜U(τ) be a solution of Eq. (2.14) that satisfies properties (2.15)
and (2.16). If we define the functional ṽ0(ϕ), ϕ ∈PC([−h,0],Rn), by formula (2.13),
where the matrix U(τ) is replaced by the matrix ˜U(τ), then the functional is such
that along the solutions of system (2.1) the following equality holds:

d
dt

ṽ0(xt) =−xT (t)Wx(t), t ≥ 0.

Proof. A direct inspection shows that the only properties of the matrix U(τ) that
were used in the proof of Theorem 2.4 are those given in (2.14)–(2.16). Since the
matrix ˜U(τ) satisfies the properties, the functional ṽ0(ϕ) satisfies Eq. (2.5) as well.

�

Theorem 2.5 justifies the following definition.

Definition 2.5. We say that the matrix U(τ) is a Lyapunov matrix of system (2.1)
associated with a symmetric matrix W if it satisfies properties (2.14)–(2.16).

On the one hand, the new definition makes it possible to overcome the first
limitation of the original definition of the Lyapunov matrices – the exponential
stability assumption. On the other hand, it poses a new question: Does Definition 2.5
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define for the case of exponentially stable system (2.1) the same Lyapunov matrix
as that defined by improper integral (2.11)? The following statement provides an
affirmative answer to this question.

Theorem 2.6. Let system (2.1) be exponentially stable. Then matrix (2.11) is the
unique solution of Eq. (2.14) that satisfies properties (2.15) and (2.16).

Proof. Indeed, matrix (2.11) satisfies Eq. (2.14) and properties (2.15) and (2.16)
(Lemmas 2.3–2.5). Assume that there are two matrices, Uj(τ), j = 1,2, that satisfy
these three properties. We define two functionals of the form (2.13). The first one,

v(1)0 (ϕ), with matrix U(τ) =U1(τ), and the other one, v(2)0 (ϕ), with matrix U(τ) =
U2(τ). Then, by Theorem 2.5,

d
dt

v( j)
0 (xt) =−xT (t)Wx(t), j = 1,2.

Since the difference Δv(xt) = v(2)0 (xt)− v(1)0 (xt) satisfies the equality

d
dt

Δv(xt) = 0, t ≥ 0,

we conclude that the identity

Δv(xt(ϕ)) = Δv(ϕ), t ≥ 0,

holds along any solution of system (2.1). The exponential stability of the system
implies that xt(ϕ)→ 0h as t tends to ∞. This means that Δv(xt(ϕ))→ 0 as t tend to
∞, and we arrive at the conclusion that for any initial function ϕ ∈ PC([−h,0],Rn)
the following equality holds:

0 = Δv(ϕ) = ϕT (0)ΔU(0)ϕ(0)+ 2ϕT (0)

0
∫

−h

ΔU(−h−θ )A1ϕ(θ )dθ

+

0
∫

−h

ϕT (θ1)A
T
1

⎡

⎣

0
∫

−h

ΔU(θ1 −θ2)A1ϕ(θ2)dθ2

⎤

⎦dθ1. (2.17)

Here matrix ΔU(τ) =U2(τ)−U1(τ).
Let us select a vector γ ∈ Rn and define the initial function

ϕ(1)(θ ) =
{

0, θ ∈ [−h,0)
γ, θ = 0

.

For the initial function equality (2.17) takes the form

0 = Δv(ϕ(1)) = γT ΔU(0)γ.
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The preceding equality holds for an arbitrary vector γ . Because matrix ΔU(0) is
symmetric, we obtain that

ΔU(0) = 0n×n. (2.18)

Given two vectors γ,μ ∈Rn and τ ∈ (0,h], let us select ε > 0 such that −τ+ε < 0
and define the new initial function

ϕ(2)(θ ) =

⎧

⎨

⎩

μ , θ ∈ [−τ,−τ + ε),
γ, θ = 0,
0, for all other points of segment [−h,0].

It is a matter of direct calculations to demonstrate that

Δv(ϕ(2)) = 2

−τ+ε
∫

−τ

γT ΔU(−h−θ )A1μdθ

+

−τ+ε
∫

−τ

⎡

⎣

−τ+ε
∫

−τ

μT AT
1 ΔU(θ1 −θ2)A1μdθ2

⎤

⎦dθ1.

Let ε be sufficiently small; then

2

−τ+ε
∫

−τ

γT ΔU(−h−θ )A1μdθ = 2εγT ΔU(τ − h)A1μ + o(ε)

and
−τ+ε
∫

−τ

⎡

⎣

−τ+ε
∫

−τ

μT AT
1 ΔU(θ1 −θ2)A1μdθ2

⎤

⎦dθ1 = o(ε).

Here the notation o(ε) stands for a quantity that satisfies the condition

lim
ε→+0

o(ε)
ε

= 0.

Since the equality Δv(ϕ(2)) = 0 holds for any sufficiently small ε > 0, we conclude
that

2γT ΔU(τ − h)A1μ = 0.

Because the preceding equality holds for any choice of vectors γ,μ ∈ Rn, we obtain
that

ΔU(τ − h)A1 = 0n×n. (2.19)

This is true for any τ ∈ (0,h]. By continuity arguments we obtain that equality (2.19)
remains true on the closed segment [0,h].
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The matrices Uj(τ), j = 1,2, satisfy Eq. (2.14), so the matrix ΔU(τ) does the
same:

d
dτ

ΔU(τ) = ΔU(τ)A0 +ΔU(τ − h)A1, τ ≥ 0.

Condition (2.19) implies that

d
dτ

ΔU(τ) = ΔU(τ)A0, τ ∈ [0,h].

Because matrix ΔU(τ) satisfies (2.18), we immediately obtain the identity

ΔU(τ) = 0n×n, τ ∈ [0,h],

which means that U2(τ) = U1(τ). This ends the proof. �

2.9 Lyapunov Matrices: Existence and Uniqueness Issues

Definition 2.5 raises the question of when a Lyapunov matrix exists. In other words,
we are interested in conditions under which Eq. (2.14) admits a solution that satisfies
properties (2.15) and (2.16). Theorem 2.6 provides a partial answer to the question.
Here we give a detailed account of the existence and uniqueness of Lyapunov
matrices.

First we prove that a Lyapunov matrix U(τ) provides a solution of a special
boundary value problem for an auxiliary system of delay-free linear matrix differ-
ential equations. To this end we introduce two auxiliary matrices:

Y (τ) =U(τ), Z(τ) =U(τ − h), τ ∈ [0,h] . (2.20)

Lemma 2.7. Let U(τ) be a Lyapunov matrix associated with a symmetric matrix
W; then auxiliary matrices (2.20) satisfy the delay-free system of matrix equations

d
dτ

Y (τ) = Y (τ)A0 +Z(τ)A1,
d

dτ
Z(τ) =−AT

1 Y (τ)−AT
0 Z(τ) (2.21)

and the boundary value conditions

Y (0) = Z(h), AT
0 Y (0)+Y(0)A0 +AT

1 Y (h)+Z(0)A1 =−W. (2.22)

Proof. The first equation in (2.21) is a direct consequence of Eq. (2.14). To derive
the second equation, we observe that Z(τ) =UT (h− τ), τ ∈ [0,h], so

d
dτ

Z(τ) =
[

d
dτ

U(h− τ)
]T

=− [U(h− τ)A0 +U(−τ)A1]
T

= −AT
1 U(τ)−AT

0 U(τ − h) =−AT
1 Y (τ)−AT

0 Z(τ).
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The first boundary value condition follows immediately from (2.20), whereas the
second one is the algebraic property (2.16) written in the terms of the auxiliary
matrices. �

Now we show that, conversely, any solution of the boundary value problem (2.21)
and (2.22) generates a Lyapunov matrix associated with W .

Theorem 2.7. If a pair (Y (τ),Z(τ)) satisfies (2.21) and (2.22), then the matrix

U(τ) =
1
2

[

Y (τ)+ZT (h− τ)
]

,τ ∈ [0,h], (2.23)

is a Lyapunov matrix associated with W if we extend it to [−h,0) by setting U(−τ)=
UT (τ) for τ ∈ (0,h].

Proof. We check that matrix (2.23) satisfies the conditions of Definition 2.5.
Since we define this matrix on [−h,0) by setting U(−τ) = UT (τ), to verify the

symmetry property we only need to check that the matrix

U(0) =
1
2

[

Y (0)+ZT (h)
]

is symmetric. The first boundary value condition, Y (0) = Z(h), implies that

U(0) =
1
2

[

Y (0)+YT (0)
]

,

which proves the desired symmetry property.
Now we address the algebraic property. First we observe that the following

matrix equalities hold:

U(0)A0 +AT
0 U(0) =

1
2

[

Y (0)+YT (0)
]

A0 +
1
2

AT
0

[

Y (0)+YT (0)
]

=
1
2

[

Y (0)A0 +AT
0 Y (0)

]

+
1
2

[

Y (0)A0 +AT
0 Y (0)

]T

and

U(−h)A1 +AT
1 U(h) =

1
2

[

Y (h)+ZT (0)
]T

A1 +
1
2

AT
1

[

Y (h)+ZT (0)
]

=
1
2

[

Z(0)A1 +AT
1 Y (h)

]

+
1
2

[

Z(0)A1 +AT
1 Y (h)

]T
.

Therefore,

R = U(0)A0 +AT
0 U(0)+U(−h)A1+AT

1 U(h)
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=
1
2

[

Y (0)A0 +AT
0 Y (0)+Z(0)A1+AT

1 Y (h)
]

+
1
2

[

Y (0)A0 +AT
0 Y (0)+Z(0)A1 +AT

1 Y (h)
]T

.

The second boundary value condition in (2.22) implies that

R =−1
2

W − 1
2

W T =−W.

Finally, we check the dynamic property. The matrix U(τ) satisfies the equation

d
dτ

U(τ) =
1
2

dY (τ)
dτ

+
1
2

dZT (h− τ)
dτ

=
1
2
[Y (τ)A0 +Z(τ)A1]−

1
2

[

−AT
1 Y (h− τ)−AT

0 Z(h− τ)
]T

=
1
2

[

Y (τ)+ZT (h− τ)
]

A0 +
1
2

[

Y (h− τ)+ZT(τ)
]T

A1

= U(τ)A0 +U(τ − h)A1, τ ∈ [0,h].

Thus, by Definition 2.5, matrix (2.23) is a Lyapunov matrix associated with W .
�

Corollary 2.3. If the boundary value problem (2.21) and (2.22) admits a unique
solution (Y (τ),Z(τ)), then the matrix

U(τ) = Y (τ), τ ∈ [0,h],

is a unique Lyapunov matrix associated with W .

Proof. First we show that if a pair (Y (τ),Z(τ)) satisfies (2.21) and (2.22), then the
pair

(

˜Y (τ), ˜Z(τ)
)

=
(

ZT (h− τ),YT (h− τ)
)

(2.24)

also satisfies the conditions. It follows directly from (2.24) that

d
dτ

˜Y (τ) =−
[

−AT
1 Y (h− τ)−AT

0 Z(h− τ)
]T

= ˜Y (τ)A0 + ˜Z(τ)A1,

d
dτ

˜Z(τ) =− [Y (h− τ)A0 +Z(h− τ)A1]
T =−AT

1
˜Y (τ)−AT

0
˜Z(τ).

Now, we check that matrices (2.24) satisfy the first boundary value condition
in (2.22):

˜Y (0)− ˜Z(h) = [Z(h)−Y(0)]T = 0n×n.
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And, finally, let us check the second boundary value condition in (2.22):

˜R = ˜Y (0)A0 +AT
0
˜Y (0)+AT

1
˜Y (h)+ ˜Z(0)A1

= ZT (h)A0 +AT
0 ZT (h)+AT

1 ZT (0)+YT (h)A1

=
[

AT
0 Y (0)+Y(0)A0 +Z(0)A1 +AT

1 Y (h)
]T

= −W.

Because the boundary value problem (2.21) and (2.22) admits a unique solution, we
conclude that

Y (τ) = ZT (h− τ), τ ∈ [0,h],

and therefore

U(τ) =
1
2

[

Y (τ)+ZT (h− τ)
]

= Y (τ), τ ∈ [0,h],

is a Lyapunov matrix associated with W . �

We present now an important condition for system (2.1). For the delay-free case
this condition is well known and guarantees that the classical Lyapunov matrix
Eq. (2.11) admits a unique solution for any matrix W .

Definition 2.6. We say that system (2.1) satisfies the Lyapunov condition if the
spectrum of the system,

Λ =
{

s | det
(

sI−A0 − e−shA1

)

= 0
}

,

does not contain a point s0 such that −s0 also belongs to the spectrum, or, put another
way, there are no eigenvalues of the system arranged symmetrically with respect to
the origin of the complex plane.

Remark 2.3. If system (2.1) satisfies the Lyapunov condition, then it has no
eigenvalues on the imaginary axis of the complex plane.

The following statement will play an important role in the proof of Theorem 2.8.

Lemma 2.8. If system (2.21) admits a solution (Y (τ),Z(τ)) of the boundary value
problem (2.22) with W = 0n×n, then

Y (τ) = Z(h+ τ), τ ∈ R. (2.25)

Proof. We verify first that the matrices Y (τ) and Z(τ) satisfy the second-order
matrix differential equation

d2X
dτ2 =

dX
dτ

A0 −AT
0

dX
dτ

+AT
0 XA0 −AT

1 XA1. (2.26)
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To this end, we differentiate the first equation of system (2.21):

d2Y (τ)
dτ2 =

dY (τ)
dτ

A0 +
dZ(τ)

dτ
A1.

The last term on the right-hand side of the preceding equality can be expressed by
means of the second equation of (2.21) as follows:

dZ(τ)
dτ

A1 =−AT
1 Y (τ)A1 −AT

0 Z(τ)A1.

Then
d2Y (τ)

dτ2 =
dY (τ)

dτ
A0 −AT

1 Y (τ)A1 −AT
0 Z(τ)A1.

The first equation of (2.21) allows us to present the last term on the right-hand side
of the preceding equality in the form

−AT
0 Z(τ)A1 =−AT

0

[

dY (τ)
dτ

−Y(τ)A0

]

.

And we arrive at the conclusion that Y (τ) satisfies Eq. (2.26). Similar manipulations
prove that the matrix Z(τ) is a solution of the equation as well.

Any solution of (2.26) is uniquely determined by the initial conditions, X(τ0),
X ′(τ0). For W = 0n×n the second condition in (2.22) can be transformed as follows:

0n×n = Y (0)A0 +Z(0)A1 +AT
0 Z(h)+AT

1 Y (h)

= Y ′(0)−Z′(h).

If we add to the preceding equality the first condition from (2.22), Y (0) = Z(h), then
the identity (2.25) becomes evident. �

Now everything is ready to present the main result of the section.

Theorem 2.8. System (2.1) admits a unique Lyapunov matrix associated with a
given symmetric matrix W if and only if the system satisfies the Lyapunov condition.

Proof. Sufficiency: Given a symmetric matrix W , according to Theorem 2.7, we
can compute a Lyapunov matrix associated with W if there exists a solution of the
boundary value problem (2.21) and (2.22). In what follows, we demonstrate that
under the Lyapunov condition the boundary value problem admits a unique solution.

Let system (2.1) satisfy the Lyapunov condition. System (2.21) is linear and
time invariant. To define a particular solution of the system, one must know the
initial matrices Y0 = Y (0), Z0 = Z(0). This means that, in total, the initial matrices
have 2n2 unknown components. Conditions (2.22) provide a system of 2n2 scalar
linear algebraic equations in 2n2 unknown components of the initial matrices. The
algebraic system admits a unique solution if and only if the unique solution of the
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system with W = 0n×n is the trivial one. Assume by contradiction that there exists
a nontrivial solution, (Y0,Z0), of the algebraic system with W = 0n×n. The initial
matrices generate a nontrivial solution, (Y (τ),Z(τ)), τ ∈ [0,h], of the boundary
value problem (2.21) and (2.22) with W = 0n×n. The nontrivial solution can be
presented as a sum of eigenmotions of system (2.21):

Y (τ) =
N

∑
ν=0

esν τ Pν(τ), Z(τ) =
N

∑
ν=0

esν τ Qν(τ).

Here sν , ν = 0,1, . . . ,N, are distinct eigenvalues of system (2.21) and Pν(τ)
and Qν(τ) are polynomials with matrix coefficients. The solution (Y (τ),Z(τ)) is
nontrivial, so at least one of the polynomials Pν(τ), say P0(τ), is nontrivial, because
otherwise Y (τ)≡ 0n×n, and identity (2.25) implies that Z(τ)≡ 0n×n. Let polynomial
P0(τ) be of degree �,

P0(τ) =
�

∑
j=0

τ jB j,

where B j, j = 0,1, . . . �, are constant n× n matrices, and B� �= 0n×n. It follows from
Lemma 2.8 that Y (τ) = Z(h+ τ), and therefore

P0(τ) = es0hQ0(τ + h).

Hence Q0(τ) is also a nontrivial polynomial of degree �,

Q0(τ) =
�

∑
j=0

τ jCj,

where C� = e−s0hB�.
Taking into account (2.25), we present the first matrix equation in (2.21) as

follows:
d

dτ
Y (τ) = Y (τ)A0 +Y(τ − h)A1.

And we obtain that

0n×n =
N

∑
ν=0

esν τ
[

sν Pν(τ)+
dPν(τ)

dτ

]

−
N

∑
ν=0

esν τ
[

Pν(τ)A0 + e−sν hPν(τ − h)A1

]

.

Because all eigenvalues sν , ν = 0,1, . . . ,N, are distinct, the preceding equality
implies that for each ν the polynomial identity

0n×n = sν Pν(τ)+
dPν(τ)

dτ
−Pν(τ)A0 − e−sν hPν(τ − h)A1
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holds. In the polynomial identity for ν = 0 we collect the terms of the highest
degree �. The sum of these terms is equal to a zero matrix, so we arrive at the
matrix equality

B�

(

s0I −A0 − e−s0hA1

)

= 0n×n.

Because B� �= 0n×n, the preceding equality holds only if

det
(

s0I −A0 − e−s0hA1

)

= 0,

and we conclude that s0 is an eigenvalue of the original system (2.1).
The second equation of system (2.21) and the identity Y (τ) = Z(τ + h) imply

that
d

dτ
Z(τ) =−AT

1 Z(τ + h)−AT
0 Z(τ).

The preceding identity generates the new set of polynomial identities

0n×n = sν Qν(τ)+
dQν(τ)

dτ
+AT

1 Qν (τ + h)+AT
0 Qν(τ), ν = 0,1, . . . ,N.

If in the identity for ν = 0 we collect the terms of the highest degree �, then

[

s0I+A0 + ds0hA1

]T
C� = 0n×n.

As C� �= 0n×n, the preceding equality holds only if

det
[

(−s0)I −A0 − d−(−s0)hA1

]

= 0.

And we conclude that −s0 is an eigenvalue of system (2.1). This means that
system (2.1) does not satisfy the Lyapunov condition. But this contradicts the
theorem condition. The contradiction proves that the only solution of the boundary
value problem (2.21), (2.22), with W = 0n×n, is the trivial one. Therefore, the
boundary value problem (2.21), (2.22) admits a unique solution for any symmetric
W , and this solution generates a Lyapunov matrix associated with W (Theorem 2.7).

Necessity: Now let us assume that system (2.1) does not satisfy the Lyapunov
condition, i.e., the spectrum of the system contains a point s0 such that −s0 also
belongs to the spectrum. Then there exist nonzero vectors γ,μ ∈Cn such that

μT
[

s0I−A0 − e−s0hA1

]

= 0,
[

(−s0)I −A0 − e−(−s0)hA1

]T
γ = 0.

We show that in this case there exists a nontrivial solution (Y (τ),Z(τ)), τ ∈ [0,h],
of the boundary value problem (2.21), (2.22) with W = 0n×n. To check this, we set
Y (τ) = es0τ γμT and Z(τ) = es0(τ−h)γμT . Then
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d
dτ

Y (τ) = s0es0τ γμT = es0τ γμT (A0 + e−s0hA1)

= Y (τ)A0 +Z(τ)A1,

d
dτ

Z(τ) = s0es0(τ−h)γμT = es0(τ−h)(−AT
0 − es0hAT

1 )γμT

=−AT
1 Y (τ)−AT

0 Z(τ).

It is evident that Y (τ) = Z(τ + h), so

Y (0) = Z(h), and
d

dτ
Y (τ)

∣

∣

∣

∣

τ=0
=

d
dτ

Z(τ)
∣

∣

∣

∣

τ=h
.

By Theorem 2.7, the nontrivial solution generates the following nontrivial Lyapunov
matrix associated with W = 0n×n:

U0(τ) =
1
2

[

Y (τ)+ZT (h− τ)
]

=
1
2

[

es0τ γμT + e−s0τ μγT ] .

Assume now that for a given symmetric matrix W there exists a Lyapunov matrix
U(τ). It is evident that the matrix U(τ)+U0(τ) is also a Lyapunov matrix associated
with W . This contradicts the theorem condition. The contradiction shows that our
assumption that (2.1) does not satisfy the Lyapunov condition is wrong. This ends
the proof of the necessity part. �

Corollary 2.4. The Lyapunov matrix U(τ) associated with W satisfies the second-
order delay-free matrix equation

d2U(τ)
dτ2 =

dU(τ)
dτ

A0 −AT
0

dU(τ)
dτ

+AT
0 U(τ)A0 −AT

1 U(τ)A0, τ ≥ 0,

and the following boundary value conditions:

dU(τ)
dτ

∣

∣

∣

∣

τ=+0
=U(0)A0 +UT (h)A1,

dU(τ)
dτ

∣

∣

∣

∣

τ=+0
+

(

dU(τ)
dτ

∣

∣

∣

∣

τ=+0

)T

= −W.

Let us now see what happens when system (2.1) does not satisfy the Lyapunov
condition. But first we prove a needed technical result.

Lemma 2.9. Given two nontrivial vectors γ,μ ∈ Cn, there exists a real symmetric
matrix W0 such that γTW0μ �= 0.
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Proof. If there exists an index j such that γ jμ j �= 0, then the matrix W0 = e jeT
j ,

where e j denotes the jth unit column vector, satisfies the desired condition γTW0μ =
γ jμ j �= 0. If γ jμ j = 0 for all j, then there exist indices j and k, j �= k, such that γ j �= 0
and γk = 0, while μ j = 0 and μk �= 0. Hence, setting W0 = e jeT

k + ekeT
j we obtain

γTW0μ = γ jμk �= 0. �

Theorem 2.9. If system (2.1) does not satisfy the Lyapunov condition, then there
is a symmetric matrix W for which a Lyapunov matrix associated with W does not
exist.

Proof. Assume by contradiction that for any symmetric matrix W there exists
a Lyapunov matrix associated with W . Since system (2.1) does not satisfy the
Lyapunov condition, then there exists an eigenvalue s0 such that −s0 is also an
eigenvalue of the system. Let γ and μ be eigenvectors corresponding to these
eigenvalues. System (2.1) admits two solutions of the form

x(1)(t) = es0tγ, x(2)(t) = e−s0t μ .

By Lemma 2.9, there exists a symmetric matrix W0 such that γTW0μ �= 0. According
to our assumption, there is a Lyapunov matrix U(τ) associated with W0. Let us
define the bilinear functional

z(ϕ ,ψ) = ϕT (0)U(0)ψ(0)+ϕT (0)

0
∫

−h

U(−h−θ )A1ψ(θ )dθ

+

⎛

⎝

0
∫

−h

ϕT (θ )AT
1 U(h+θ )dθ

⎞

⎠ψ(0)

+

0
∫

−h

ϕT (θ1)A
T
1

⎡

⎣

0
∫

−h

U(θ1 −θ2)A1ψ(θ2)dθ2

⎤

⎦dθ1.

Here it is assumed that ϕ ,ψ ∈ PC([−h,0],Rn). Given two solutions of (2.1), x(t,ϕ)
and x(t,ψ), one can verify by direct calculation that

dz(xt(ϕ),xt(ψ))

dt
=−xT (t,ϕ)W0x(t,ψ), t ≥ 0.

On the one hand, this means that

d
dt z(x(1)t ,x(2)t ) =−

[

x(1)(t)
]T

W0x(2)(t) =−γTW0μ �= 0. (2.27)

On the other hand, the direct substitution of the solutions into the bilinear functional
yields
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z(x(1)t ,x(2)t ) = γT

[

U(0)+

0
∫

−h

U(−h−θ )A1es0θ dθ +

0
∫

−h

AT
1 U(h+θ )e−s0θ dθ

+

0
∫

−h

es0θ1AT
1

⎛

⎝

0
∫

−h

e−s0θ2U(θ1 −θ2)dθ2

⎞

⎠A1dθ1

]

μ .

Observe that the matrix in the square brackets on the right-hand side of the preceding
equality does not depend on t and

d
dt

z(x(1)t ,x(2)t ) = 0, t ≥ 0.

But this contradicts inequality (2.27). Hence, our assumption is not true, and for
symmetric matrix W0 the associated Lyapunov matrix does not exist. �

2.10 Lyapunov Matrices: Computational Issue

It is evident that the availability of constructive procedures for the computation of
the Lyapunov matrices is crucial for a successful application of the quadratic func-
tionals to the analysis of time-delay systems. It was shown in the previous section
that the computation of Lyapunov matrices can be reduced to the construction of
a solution of a special boundary value problem for a system of delay-free linear
matrix differential equations (see Theorem 2.7). In Theorem 2.8 it was shown that
the Lyapunov condition guarantees that the boundary value problem admits a unique
solution.

With the help of the Kronecker product of matrices [13, 15, 25] the matrix
boundary value problem (2.21), (2.22) can be written in vector form, which
simplifies the computation of the solution of the problem. To this end, we define
the vectorization operation

vec(Q) = q,

where q ∈ Rn2
is obtained from Q ∈ Rn×n by stacking up its columns. The operation

satisfies the equality
vec(AQB) = (A⊗B)q,

where the matrix

A⊗B =

⎛

⎜

⎜

⎜

⎝

b11A b21A · · · bn1A
b12A b22A · · · bn2A

...
...

. . .
...

b1nA b21A bnnA

⎞

⎟

⎟

⎟

⎠

is known as the Kronecker product of matrices A and B.
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System (2.28) takes the vector form

d
dτ

(

y(τ)
z(τ)

)

= L

(

y(τ)
z(τ)

)

, L =

(

I ⊗A0 I⊗A1

−AT
1 ⊗ I −AT

0 ⊗ I

)

. (2.28)

Here y(τ) = vec(Y (τ)) and z(τ) = vec(Z(τ)). Boundary value conditions (2.22)
take the form

M

(

y(0)
z(0)

)

+N

(

y(h)
z(h)

)

=−
(

0
w

)

, (2.29)

where w = vec(W ) and

M =

(

I⊗ I 0n×n ⊗ 0n×n

AT
0 ⊗ I+ I⊗A0 I⊗A1

)

, N =

(

0n×n ⊗ 0n×n −I⊗ I
AT

1 ⊗ I 0n×n ⊗ 0n×n

)

. (2.30)

It follows from system (2.28) that

(

y(h)
z(h)

)

= eLh
(

y(0)
z(0)

)

.

Substituting the preceding equality into boundary value condition (2.29) we obtain
the algebraic system for the initial vectors

[

M+NeLh
]

(

y(0)
z(0)

)

=−
(

0
w

)

. (2.31)

Assume that the preceding system admits a solution; then this solution generates the
corresponding solution of system (2.28),

(

y(τ)
z(τ)

)

= eLτ
(

y(0)
z(0)

)

,

and a solution (Y (τ),Z(τ)) of the boundary value problem (2.21), (2.22). By
Theorem 2.7 we obtain a Lyapunov matrix, associated with W ; see (2.23).

We conclude this section with a criterion that system (2.1) satisfies the Lyapunov
condition.

Theorem 2.10. System (2.1) satisfies the Lyapunov condition if and only if the
following condition holds:

det
(

M+NeLh
)

�= 0.

Proof. Necessity: System (2.1) satisfies the Lyapunov condition. It has been shown
in the proof of the necessity part of Theorem 2.8 that under this condition the only
solution of boundary value problem (2.21), (2.22), with W = 0n×n, is the trivial one.
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Therefore, the only solution of system (2.31), with w = 0, is the trivial one. This
implies that the matrix

(

M+NeLh
)

is nonsingular.

Sufficiency: Because the matrix
(

M+NeLh
)

is nonsingular, for any given w sys-
tem (2.31) admits a unique solution. Therefore, by Corollary 2.3, for any symmetric
matrix W system (2.1) admits a unique Lyapunov matrix U(τ). According to
Theorem 2.8, this implies that system (2.1) satisfies the Lyapunov condition. �

2.11 Complete Type Functionals

One of the conditions of Theorem 2.3 states that the functional v(ϕ) should admit a
quadratic lower bound of the form

α1 ‖ϕ(0)‖2 ≤ v(ϕ), ϕ ∈ PC([−h,0],Rn),

where α1 > 0. Surprisingly enough, no such bound has been found for func-
tional (2.13). An attempt, undertaken in [26], resulted only in a local cubic lower
bound for the functional. The following example confirms that no such quadratic
lower bound for the functional exists.

Example 2.1 (A.P. Zhabko). The scalar equation

dx(t)
dt

=−x(t − 1), t ≥ 0,

is exponentially stable. This means that there exist γ ≥ 1 and σ > 0 such that the
inequality

|x(t,ϕ)| ≤ γe−σt ‖ϕ‖1 , t ≥ 0,

holds along any solution of the equation.
For a given ε ∈ (0,1) we define the initial function

˜ϕ(θ ) =

⎧

⎨

⎩

ε, θ ∈ [−1,−1+ ε)
0, θ ∈ [−1+ ε,0)
ε2, θ = 0.

It is clear that ‖˜ϕ‖1 = supθ∈[−1,0] |˜ϕ(θ )| = ε . The corresponding solution, x(t, ˜ϕ),
evaluated by the step-by-step method is of the following form:

For t ∈ [0,1]

x(t, ˜ϕ) =
{

ε (ε − t) , t ∈ [0,ε],
0, t ∈ (ε,1];
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For t ∈ [1,2]

x(t, ˜ϕ) =
{

−ε2 (t − 1)+ 1
2 ε (t − 1)2 , t ∈ [1,1+ ε],

− 1
2 ε3, t ∈ (1+ ε,2].

Since |x(t, ˜ϕ)| ≤ 1
2 ε3 for t ∈ [1,2], the exponential stability of the equation implies

that the inequality

|x(t, ˜ϕ)| ≤ γ
1
2

ε3e−σ(t−2)

holds for t ≥ 2. We now estimate the value v0(˜ϕ):

v0(˜ϕ) =
∞
∫

0

x2(t, ˜ϕ)dt =

1
∫

0

x2(t, ˜ϕ)dt +

2
∫

1

x2(t, ˜ϕ)dt +

∞
∫

2

x2(t, ˜ϕ)dt

≤ 1
3

ε5 +
1
4

(

1+
γ2

2σ

)

ε6.

This demonstrates that the functional v0(ϕ) does not allow a quadratic lower bound
of the form α1 |ϕ(0)|2 ≤ v0(ϕ) with α1 > 0; otherwise the inequality

α1ε2 ≤ 1
3

ε5 +
1
4

(

1+
γ2

2σ

)

ε6

should hold for any ε ∈ (0,1).

The preceding example shows that to obtain a functional satisfying the conditions
of Theorem 2.3, we need a certain modification of functional (2.13). We are now
ready to present this modification.

Theorem 2.11. Given three symmetric matrices Wj, j = 0,1,2, let us define the
functional

w(ϕ) = ϕT (0)W0ϕ(0)+ϕT (−h)W1ϕ(−h)+

0
∫

−h

ϕT (θ )W2ϕ(θ )dθ . (2.32)

If there exists a Lyapunov matrix U(τ) associated with the matrix W = W0 +
W1 + hW2 and v0(ϕ) is functional (2.13) with this Lyapunov matrix, then the time
derivative of the modified functional

v(ϕ) = v0(ϕ)+
0
∫

−h

ϕT (θ ) [W1 +(h+θ )W2]ϕ(θ )dθ (2.33)
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along the solutions of system (2.1) is such that the following equality holds:

d
dt

v(xt) =−w(xt) , t ≥ 0.

Proof. Indeed, the time derivative of the first term, v0(xt), is equal to

d
dt

v0(xt) =−xT (t) [W0 +W1 + hW2]x(t).

The time derivative of the second term

R(t) =

0
∫

−h

xT (t +θ ) [W1 +(h+θ )W2]x(t +θ )dθ

=

t
∫

t−h

xT (s) [W1 +(h+ s− t)W2]x(s)ds

is equal to

d
dt

R(t) = xT (t) [W1 + hW2]x(t)− xT (t − h)W1x(t − h)−
t

∫

t−h

xT (s)W2x(s)ds.

The sum of the time derivatives coincides with −w(xt). �

Definition 2.7. We say that functional (2.33) is of the complete type if matrices Wj,
j = 0,1,2, are positive definite.

Lemma 2.10. Let system (2.1) be exponentially stable. Given positive-definite ma-
trices Wj, j = 0,1,2, there exists α1 > 0 such that the complete type functional (2.33)
admits the following quadratic lower bound:

α1 ‖ϕ(0)‖2 ≤ v(ϕ), ϕ ∈ PC([−h,0],Rn). (2.34)

Proof. Consider the modified functional

ṽ(ϕ) = v(ϕ)−α ‖ϕ(0)‖2 .

Here α is a real parameter. Then

d
dt

ṽ(xt) =−w̃(xt),
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where

w̃(xt) = w(xt )+ 2αxT (t) [A0x(t)+A1x(t − h)]

≥ (xT (t),xT (t − h))W(α)

(

x(t)
x(t − h)

)

.

The matrix

W (α) =

(

W0 0n×n

0n×n W1

)

+α
(

A0 +AT
0 A1

AT
1 0n×n

)

.

Since the block diagonal matrix on the right-hand side of the preceding equality
is positive definite, there exists α = α1 > 0 such that the matrix W (α1) is positive
definite, too. This means that for α = α1 the functional w̃(xt)≥ 0. The exponential
stability of system (2.1) makes it possible to present the modified functional as
follows:

ṽ(ϕ) =
∞
∫

0

w̃(xt(ϕ))dt ≥ 0.

The last inequality proves that (2.34) holds for α1 > 0. �

Lemma 2.11. Let system (2.1) satisfy the Lyapunov condition (Definition 2.6).
Given symmetric matrices Wj, j = 0,1,2, for some positive α2 functional (2.33)
satisfies the inequality

v(ϕ)≤ α2 ‖ϕ‖2
h , ϕ ∈ PC([−h,0],Rn).

Proof. To prove the inequality, we introduce the following notations:

ν = max
θ∈[0,h]

‖U(θ )‖ , a = ‖A1‖ .

Now we estimate the terms of functional (2.33). It is evident that

R1 = ϕT (0)U(0)ϕ(0)≤ ν ‖ϕ(0)‖2 ≤ ν ‖ϕ‖2
h

and

R2 = 2ϕT (0)

0
∫

−h

U(−h−θ )A1ϕ(θ )dθ ≤ 2νah‖ϕ‖2
h .

For the next term we have

R3 =

0
∫

−h

ϕT (θ1)A
T
1

⎡

⎣

0
∫

−h

U(θ1 −θ2)A1ϕ(θ2)dθ2

⎤

⎦dθ1

≤ νa2h2‖ϕ‖2
h .
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Finally, we estimate the additional term as follows:

R4 =

0
∫

−h

ϕT (θ ) [W1 +(h+θ )W2]ϕ(θ )dθ

≤ h(‖W1‖+ h‖W2‖)‖ϕ‖2
h .

Collecting the estimations we conclude that

v(ϕ)≤ α2 ‖ϕ‖2
h ,

where
α2 = ν (1+ ah)2 + h(‖W1‖+ h‖W2‖) .

�

We return now to Theorem 2.3 and show that its conditions are necessary for the
exponential stability of system (2.1).

Theorem 2.12. System (2.1) is exponentially stable if and only if there exists a
functional v : PC([−h,0],Rn)→R such that the following conditions are satisfied.

1. α1 ‖ϕ(0)‖2 ≤ v(ϕ)≤ α2 ‖ϕ‖2
h, for some positive α1, α2.

2. For some β > 0 the inequality

d
dt

v(xt)≤−β ‖x(t)‖2 , t ≥ 0,

holds along the solutions of the system.

Proof. Sufficiency follows from Theorem 2.3.

Necessity is a direct consequence of Lemmas 2.10 and 2.11. �

2.12 Applications

In this section we present some applications of Lyapunov matrices and quadratic
functionals.

2.12.1 Quadratic Performance Index

We consider a control system of the form
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dx(t)
dt

= Ax(t)+Bu(t),

y(t) = Cx(t).

Given a control law
ũ(t) = Mx(t − h), t ≥ 0, (2.35)

a closed-loop system is of the form

dx(t)
dt

= A0x(t)+A1x(t − h), t ≥ 0, (2.36)

where A0 = A and A1 = BM.
Assume that the closed-loop system is exponentially stable, and define the value

of the quadratic performance index

J(ũ) =

∞
∫

0

[

yT (t)Py(t)+ uT (t)Qu(t)
]

dt. (2.37)

Here P and Q are given symmetric matrices of the appropriate dimensions. The
value of the index can be presented in the form

J(ũ) =

∞
∫

0

[

xT (t,ϕ)W0x(t,ϕ)+ xT (t − h,ϕ)W1x(t − h,ϕ)
]

dt,

where ϕ ∈ PC([−h,0],Rn) is an initial function of the solution x(t,ϕ) of the closed-
loop system (2.36) and the matrices W0 =CT PC and W1 = MT QM.

Theorem 2.13. The value of the performance index (2.37) for the stabilizing
control law (2.35) is equal to

J(ũ) = v0(ϕ)+
0
∫

−h

ϕT (θ )W1ϕ(θ )dθ ,

where v0(ϕ) is functional (2.13) computed for the Lyapunov matrix U(τ) associated
with the matrix W =W0 +W1 =CT PC+MT QM.

2.12.2 Exponential Estimates

In this section we apply the complete type functionals, defined in the previous
section, to derive an exponential estimate for the solutions of system (2.1). We begin
with the following statement.
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Lemma 2.12. Let system (2.1) be exponentially stable. Given positive-definite
matrices Wj, j = 0,1,2, for the complete type functional (2.33), there exist positive
constants β�, �= 1,2, such that

β1‖ϕ(0)‖2 +β2

0
∫

−h

‖ϕ(θ )‖2 dθ ≤ v(ϕ), ϕ ∈ PC([−h,0],Rn). (2.38)

Proof. To prove inequality (2.38), we consider the functional

ṽ(ϕ) = v(ϕ)−β1‖ϕ(0)‖2 −β2

0
∫

−h

‖ϕ(θ )‖2 dθ ,

where β1 and β2 are real parameters. Along the solutions of system (2.1) the
functional is such that

d
dt

ṽ(xt) =−w̃(xt), t ≥ 0.

Here

w̃(xt) = w(xt )+ 2β1xT (t) [A0x(t)+A1x(t − h)]+β2

[

‖x(t)‖2 −‖x(t − h)‖2
]

≥
[

xT (t),xT (t − h)
]

Q(β1,β2)

[

x(t)
x(t − h)

]

.

The matrix

Q(β1,β2) =

(

W0 0n×n

0n×n W1

)

+β1

(

A0 +AT
0 A1

AT
1 0n×n

)

+β2

(

I 0n×n

0n×n −I

)

.

Since the matrices W0 and W1 are positive definite, there exist positive constants
β1,β2 for which the matrix Q(β1,β2) is positive definite. For such a choice of the
parameters the following inequality holds along the solutions of system (2.1):

w̃(xt)≥ 0, t ≥ 0.

The preceding inequality implies that

ṽ(ϕ) =
∞
∫

0

w̃(xt(ϕ))dt ≥ 0,

whence (2.38) follows immediately. �

Lemma 2.13. Let system (2.1) satisfy the Lyapunov condition (Definition 2.6).
Given symmetric matrices Wj, j = 0,1,2, for functional (2.33), there exist positive
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constants δ�, �= 1,2,such that

v(ϕ)≤ δ1 ‖ϕ(0)‖2 + δ2

0
∫

−h

‖ϕ(θ )‖2 dθ , ϕ ∈ PC([−h,0],Rn). (2.39)

Proof. We will use the notations introduced in the proof of Lemma 2.11. It is evident
that the first two terms of the complete type functional (2.33) admit the upper bounds

R1 = ϕT (0)U(0)ϕ(0)≤ ν ‖ϕ(0)‖2

and

R2 = 2ϕT (0)

0
∫

−h

U(−h−θ )A1ϕ(θ )dθ

≤ νah‖ϕ(0)‖2 +νa

0
∫

−h

‖ϕ(θ )‖2 dθ .

For the next term we have

R3 =

0
∫

−h

ϕT (θ1)A
T
1

⎡

⎣

0
∫

−h

U(θ1 −θ2)A1ϕ(θ2)dθ2

⎤

⎦dθ1

≤ νa2

⎡

⎣

0
∫

−h

‖ϕ(θ )‖dθ

⎤

⎦

2

≤ νa2h

0
∫

−h

‖ϕ(θ )‖2 dθ .

Finally, we estimate the additional term

R4 =

0
∫

−h

ϕT (θ ) [W1 +(h+θ )W2]ϕ(θ )dθ

≤ (‖W1‖+ h‖W2‖)
0
∫

−h

‖ϕ(θ )‖2 dθ .

Collecting the estimations we conclude that

v(ϕ)≤ δ1 ‖ϕ(0)‖2 + δ2

0
∫

−h

‖ϕ(θ )‖2 dθ ,
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where

δ1 = ν (1+ ah), δ2 = aδ1 +(‖W1‖+ h‖W2‖) .
�

We show how an exponential estimate for the solutions of system (2.1) can be
derived with the use of complete type functionals.

Theorem 2.14. System (2.1) is exponentially stable if and only if it admits a
complete type functional v(ϕ) such that for some α1 > 0 and α2 > 0 the following
condition is satisfied:

α1 ‖ϕ(0)‖2 ≤ v(ϕ)≤ α2 ‖ϕ‖2
h , ϕ ∈ PC([−h,0],Rn).

Proof. Sufficiency: Let v(ϕ) be a complete type functional that satisfies the theorem
conditions. There exist positive-definite matrices Wj, j = 0,1,2 such that the
functional satisfies the equality

d
dt

v(xt) =−w(xt), t ≥ 0,

where

w(xt) = xT (t)W0x(t)+ xT (t − h)W1x(t − h)+

0
∫

−h

xT (t +θ )W2x(t +θ )dθ .

First we show that there exists σ > 0 for which the inequality

dv(xt)

dt
+ 2σv(xt)≤ 0, t ≥ 0, (2.40)

holds. Indeed, on the one hand, according to Lemma 2.13, we can find positive
δ1 > 0 and δ2 > 0 such that

v(ϕ)≤ δ1 ‖ϕ(0)‖2 + δ2

0
∫

−h

‖ϕ(θ )‖2 dθ , ϕ ∈ PC([−h,0],Rn).

On the other hand, it is evident that

w(ϕ)≥ λmin(W0)‖ϕ(0)‖2 +λmin(W2)

0
∫

−h

‖ϕ(θ )‖2 dθ , ϕ ∈ PC([−h,0],Rn),

where λmin(W ) stands for the minimal eigenvalue of a symmetric matrix W . We take
σ > 0, which satisfies the inequalities
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2σδ1 ≤ λmin(W0), 2σδ2 ≤ λmin(W2).

It is evident that such σ satisfies (2.40).
Now, inequality (2.40) implies that

v(xt(ϕ))≤ v(ϕ)e−2σt , t ≥ 0.

Then the theorem condition makes it possible to derive the inequalities

α1 ‖x(t,ϕ)‖2 ≤ v(xt(ϕ))≤ v(ϕ)e−2σt ≤ α2 ‖ϕ‖2
h e−2σt , t ≥ 0.

And we arrive at the desired exponential estimate

‖x(t,ϕ)‖ ≤ γ ‖ϕ‖h e−σt , t ≥ 0,

where

γ =

√

α2

α1
.

Necessity: This part of the proof follows from Theorem 2.11 and Lemmas 2.10
and 2.11. �

Remark 2.4. It is worth mentioning that the exponential estimate obtained by
Theorem 2.14 depends on the choice of positive-definite matrices Wj, j = 0,1,2.
These matrices may serve as free parameters for optimization of the estimate. A
special choice of matrices Wj, j = 0,1,2, may result in a tighter exponential estimate
for the solutions of system (2.1). We do not try here to optimize the estimate.

We can obtain an exponential estimate for the solutions of a time-delay system
even if it is not exponentially stable. Indeed, assume that the spectrum of sys-
tem (2.1),

Λ =
{

s
∣

∣

∣ det
(

sI−A0 − e−shA1

)

= 0
}

,

lies in the half-plane

Γ = {s |Re(s)< Δ} .

Then the spectrum of the modified system,

d
dt

y(t) = (A0 −ΔI)y(t)+ e−ΔhA1y(t − h), t ≥ 0,

is as follows:

˜Λ =
{

s
∣

∣

∣ det
[

(s+Δ)I −A0 − e−(s+Δ)hA1

]

= 0
}

= {s−Δ | s ∈ Λ} .
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This implies that the modified system is exponentially stable. Observe that the
solutions of these systems satisfy the identity

y(t, ˜ϕ) = e−Δtx(t,ϕ), t ≥−h, (2.41)

where ˜ϕ(θ ) = e−Δθ ϕ(θ ), θ ∈ [−h,0]. Since the modified system is exponentially
stable, we can apply Theorem 2.14 to the system and compute ˜γ ≥ 1 and ˜σ > 0 such
that

‖y(t, ˜ϕ)‖ ≤ ˜γ ‖˜ϕ‖h e−˜σt , t ≥ 0.

It follows from identity (2.41) that the solutions of system (2.1) satisfy the inequality

‖x(t,ϕ)‖ ≤ γ ‖ϕ‖h eσt , t ≥ 0,

where γ = e|Δ|h˜γ , and σ = ˜σ +Δ. We may apply this procedure for Δ = Δ0 + ε ,
where

Δ0 = max
s∈Λ

Re(s)

and ε is a given positive number.

2.12.3 Critical Values of Delay

In this section an interesting connection between the spectrum of the original
system (2.1) and that of the auxiliary system (2.21) will be established. But first
we prove the following theorem.

Theorem 2.15. Let λ0 be an eigenvalue of system (2.21). Then −λ0 is also an
eigenvalue of the system.

Proof. Because λ0 is an eigenvalue of system (2.21), there exists a nontrivial pair
(Y0,Z0) of n× n matrices such that

λ0Y0 = Y0A0 +Z0A1, λ0Z0 =−AT
1 Y0 −AT

0 Z0.

Applying the transposition to the preceding matrix equalities we obtain that the pair

(Y1,Z1) =
(

ZT
0 ,Y

T
0

)

satisfies the following matrix equalities:

−λ0Y1 = Y1A0 +Z1A1, −λ0Z1 =−AT
1 Y1 −AT

0 Z1.

This means that −λ0 is also an eigenvalue of system (2.21). �
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The following theorem provides a connection between the spectrum of
time-delay system (2.1) and that of delay-free system (2.21). This connection
may be effectively used for the computation of critical delay values of system (2.1),
i.e., the values for which system (2.1) admits an eigenvalue on the imaginary axis
of the complex plane.

Theorem 2.16. If s0 is an eigenvalue of time-delay system (2.1) such that −s0 is
also an eigenvalue of the system, then s0 and − s0 belong to the spectrum of delay-
free system (2.21).

Proof. Since points s0 and −s0 belong to the spectrum of time-delay system (2.1),
there exist two nonzero vectors γ,μ ∈ C

n such that

μT
[

s0I −A0 − e−s0hA1

]

= 0,

[

(−s0)I −A0 − e−(−s0)hA1

]T
γ = 0.

Now, premultiplying the first equality by γ and postmultiplying the second one by
e−s0hμT , we obtain

γμT
[

s0I −A0 − e−s0hA1

]

= 0n×n,

[

(−s0)I −A0 − e−(−s0)hA1

]T
e−s0hγμT = 0n×n.

If we set Y0 = γμT and Z0 = e−s0hγμT , then the preceding equalities take the form

s0Y0 = Y0A0 +Z0A1, and s0Z0 =−AT
1 Y0 −AT

0 Z0.

This means that s0 belongs to the spectrum of delay-free system (2.21). By
Theorem 2.15, −s0 belongs to the spectrum as well. �

Remark 2.5. The spectrum Λ of delay system (2.1) depends on the delay value
h, whereas the spectrum of delay-free system (2.21) does not depend on h. In
particular, this means that system (2.1) remains exponentially stable (unstable) for
all values of delay h ≥ 0 if the spectrum of system (2.21) has no common points
with the imaginary axis of the complex plane. On the other hand, the common points
represent possible crossing points of the imaginary axis through which eigenvalues
of system (2.1) may migrate from one half-plane to the other as the system delay h
varies.

2.12.4 Robustness Bounds

It is well known that Lyapunov functions for delay-free systems are effectively used
for estimating the robustness bounds for perturbed systems. The main contribution
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of this section consists in the demonstration that complete type functionals may also
provide reasonable robustness bounds for time-delay systems.

Consider a perturbed system of the form

dy(t)
dt

= (A0 +Δ0)y(t)+ (A1 +Δ1)y(t − h), t ≥ 0. (2.42)

Here matrices Δ0 and Δ1 are unknown but such that

‖Δk‖ ≤ ρk, k = 0,1. (2.43)

Let system (2.1) be exponentially stable. We would like to find some conditions
on ρ0 and ρ1 under which system (2.42) remains stable for all Δ0 and Δ1

satisfying (2.43). To this end, we will use a complete type functional v(ϕ) defined
by formula (2.33).

We compute the time derivative of the functional along the solutions of perturbed
system (2.42).

Lemma 2.14. The time derivative of functional (2.33) along the solutions of
perturbed system (2.42) is of the form

d
dt

v(yt) =−w(yt)+ 2 [Δ0y(t)+Δ1y(t − h)]T l(yt), t ≥ 0,

where

l(yt) =U(0)y(t)+

0
∫

−h

U(−h−θ )A1y(t +θ )dθ .

Proof. Recall that v(yt) is written as follows:

v0(yt) = yT (t)U(0)y(t)+ 2yT(t)

0
∫

−h

U(−h−θ )A1y(t +θ )dθ

+

0
∫

−h

yT (t +θ1)A
T
1

⎡

⎣

0
∫

−h

U(θ1 −θ2)A1y(t +θ2)dθ2

⎤

⎦dθ1

+

0
∫

−h

yT (t +θ ) [W1 +(h+θ )W2]y(t +θ )dθ .

The time derivative of the first term,

R1(t) = yT (t)U(0)y(t),

is
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dR1(t)
dt

= 2yT (t)U(0) [(A0 +Δ0)y(t)+ (A1 +Δ1)y(t − h)] .

For the next term,

R2(t) = 2yT (t)

0
∫

−h

U(−h−θ )A1y(t +θ )dθ ,

we have

dR2(t)
dt

= 2 [(A0 +Δ0)y(t)+ (A1 +Δ1)y(t − h)]T
0
∫

−h

U(−h−θ )A1y(t +θ )dθ

+2yT (t)U(−h)A1y(t)− 2yT (t)U(0)A1y(t − h)

−2yT (t)

0
∫

−h

[

U ′(h+θ )
]T

A1y(t +θ )dθ .

The time derivative of the double integral

R3(t) =

0
∫

−h

yT (t +θ1)A
T
1

⎡

⎣

0
∫

−h

U(θ1 −θ2)A1y(t +θ2)dθ2

⎤

⎦dθ1

is of the form

dR3(t)
dt

= 2yT (t)

0
∫

−h

[U(θ )A1]
T A1y(t +θ )dθ

−2yT (t − h)AT
1

0
∫

−h

U(−h−θ )A1y(t +θ )dθ .

And, finally, the time derivative of the last term,

R4 =

0
∫

−h

yT (t +θ ) [W1 +(h+θ )W2]y(t +θ )dθ ,

is

dR4(t)
dt

= yT (t) [W1 + hW2]y(t)− yT (t − h)W1y(t − h)

−
0
∫

−h

yT (t +θ )W2y(t +θ )dθ .
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Now, repeating the arguments applied in the proof of Theorem 2.4 we arrive at the
desired expression for the derivative of v(yt). �

Let

ν = max
θ∈[0,h]

‖U(θ )‖ , a = ‖A1‖ .

Then the following estimates hold:

J1(t) = 2yT (t)ΔT
0 U(0)y(t)≤ 2νρ0 ‖y(t)‖2 ,

J2(t) = 2yT (t − h)ΔT
1 U(0)y(t)≤ νρ1

[

‖y(t)‖2 + ‖y(t − h)‖2
]

,

J3(t) = 2yT (t)ΔT
0

0
∫

−h

U(−h−θ )A1y(t +θ )dθ

≤ hνρ0a‖y(t)‖2 +νρ0a

0
∫

−h

‖y(t +θ )‖2 dθ ,

J4(t) = 2yT (t − h)ΔT
1

0
∫

−h

U(−h−θ )A1y(t +θ )dθ

≤ hνρ1a‖y(t − h)‖2 +νρ1a

0
∫

−h

‖y(t +θ )‖2 dθ .

From the preceding inequalities we obtain that

d
dt

v(yt) ≤ −w(yt)+ν [2ρ0 + hρ0a+ρ1]‖y(t)‖2 +νρ1 [1+ ha]‖y(t − h)‖2

+ν [ρ0 +ρ1]a

0
∫

−h

‖y(t +θ )‖2 dθ ,

and we arrive at the following statement.

Theorem 2.17. Let system (2.1) be exponentially stable. Given positive-definite
matrices W0,W1,W2, system (2.42) remains exponentially stable for all Δ0 and Δ1

satisfying (2.43) if the following inequalities hold:

1. λmin(W0)≥ ν [2ρ0 + hρ0a+ρ1],
2. λmin(W1)≥ νρ1 [1+ ha],
3. λmin (W2)≥ ν [ρ0 +ρ1]a.

Remark 2.6. Theorem 2.17 remains true if we assume that the uncertain matrices
Δ0 and Δ1 are continuous functions of t and xt .
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2.13 Notes and References

The first work dedicated to the construction of quadratic Lyapunov functionals
with a given time derivative was that by Repin [63]. In this seminal contribution
a quadratic functional of a general form was suggested. The time derivative of
the functional was computed, and then, equating the derivative to the prescribed
one, a system of equations for the matrices that define the functional was derived.
The system includes a linear matrix partial differential equation, ordinary matrix
differential equations, and algebraic relations between the matrices. Under some
simplifying assumptions the system was reduced to a system of two matrix
differential equations similar to that given by (2.21). Many essential elements
needed for the computation of Lyapunov matrices, some in explicit form and some
in implicit form, can be found there. Without a doubt this three-page contribution
has had a profound impact on research in the area.

In the paper by Datko, [7], the main object was a presentation of an infinite-
dimensional version of the Lyapunov–Krasovskii approach to the stability analysis
of linear time-delay systems. In particular, the paper provides an interpretation from
the operator point of view of the results given in [63].

The paper by Castelan and Infante [4] is dedicated to the following initial value
problem:

dQ(τ)
dτ

= AQ(τ)+BQT (h− τ), Q

(

h
2

)

= K, (2.44)

where K is a given n× n matrix. It is worth mentioning that the dynamic property
in [63] was written in this form. In that paper, it was shown that for any given K
the initial value problem admits a unique solution. An exhaustive analysis of the
solution space of Eq. (2.44) is presented in the paper as well. The reader may find
there interesting observations on the spectrum of an auxiliary system, similar to that
presented in Sect. 2.12.3.

More interesting for us is the second paper by the same authors, [28]. There,
for the first time, the three basic properties of Lyapunov matrices are explicitly
indicated. Once again, following the tradition established in [63], the dynamic
property was written in the form of Eq. (2.44). The symmetry property did not
receive its due attention but was simply mentioned as a property of a matrix ˜Q(τ)
similar to that of the improper integral (2.11). The algebraic property was introduced
as a bridge connecting the matrices Q(τ) and ˜Q(τ). What is very important for us
is that the paper discusses functionals similar to that of the complete type. For these
functionals quadratic lower and upper bounds of the form given in Lemmas 2.12 and
2.13 were provided. The main goal of the paper was to demonstrate that functionals
may be effectively applied to the computation of upper exponential estimates of
the solutions of time-delay systems. Unfortunately, at one of the intermediate
steps, namely, in the computation of an upper bound for a functional, the desired
exponential estimate was explicitly used. The paper also contains a remark that for
the case of exponentially stable systems functionals of the form (2.13) do not admit
quadratic lower bounds.
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The next serious breakthrough in this direction was made in the paper by
Huang [26], where the existence of lower bounds for functionals of the form (2.13)
is studied. The paper demonstrates, for the case of exponentially stable systems, that
functionals admit local cubic lower bounds of the form

α ‖ϕ(0)‖3 ≤ v0(ϕ), ϕ ∈C([−h,0],Rn), and ‖ϕ‖h ≤ H,

where α and H are two positive constants. It is important to note here that this
result, as well as others in the present contribution, have been proven for a very
general class of linear time-delay systems. This was probably the first paper to state
explicitly that Lyapunov matrices are completely defined by three basic properties:
dynamic, symmetry, and algebraic properties. The most important result presented
in that paper is the existence theorem. The theorem states that if a time-delay
system satisfies the Lyapunov condition, then for any symmetric matrix W there
exists a corresponding Lyapunov matrix. Additionally, an explicit frequency domain
expression for the Lyapunov matrix is given as well.

Theorem 2.8 was proven in [40]. The complete type functionals were introduced
in [42], where some robustness bounds are derived as well. Complete type func-
tionals are applied to the computation of exponential estimates of the solutions
of system (2.1) in [38]. A brief account of the theory of Lyapunov matrices and
functionals appears in [36].

A detailed account of the application of functionals of the form (2.13) to the
computation of various quadratic performance indices can be found in an interesting
book [55]; see also [8, 9, 14, 22, 27, 51, 52].

In the paper by Louisell [53] a relation between the spectrum of a time-delay
system and that of an auxiliary delay-free system of matrix equations is established.
That is, it is shown that any pure imaginary eigenvalue of a time-delay system is
also an eigenvalue of an auxiliary system. The statement was obtained for the case
of neutral type systems with one delay. In some sense the statement of Theorem 2.16
is a generalization of this important result.

The following open problem is one of the most important problems related to
Lyapunov matrices and deserves to be mentioned here: Find the conditions of the
exponential stability of system (2.1) expressed in the terms of a Lyapunov matrix
U(τ), associated with a positive-definite matrix W . The first result in this direction
was obtained by Mondie [56], where some necessary and sufficient conditions are
derived for the case of scalar equations.



Chapter 3
Multiple Delay Case

In this chapter we address the case of retarded type linear time-delay systems with
multiple delays. The fundamental matrix of such a system is defined. Then this
matrix is used to derive an explicit expression for the solution of an initial value
problem. Applying the scheme presented in the previous chapter, a general form
of quadratic functionals with prescribed time derivatives along the solutions of the
time-delay systems is obtained. It is shown that the functionals are defined by special
matrix valued functions known as Lyapunov matrices for the system. A special
system of matrix equations that defines Lyapunov matrices is derived. It is shown
that the system admits a unique solution if and only if the spectrum of the time-delay
system does not contain points arranged symmetrically with respect to the origin of
the complex plane. This spectrum property is known as a Lyapunov condition. Two
numerical schemes for the computation of Lyapunov matrices are presented. The
first one is applicable to the case where time delays are multiple to a basic one.
The other one makes it possible to compute approximate Lyapunov matrices in the
case of general time delays. A measure that allows one to estimate the quality of the
approximation is provided as well. Quadratic functionals of the complete type are
defined, and several important applications of the functionals are presented in the
final part of the chapter.

3.1 Preliminaries

We consider now a retarded type time-delay system of the form

dx(t)
dt

=
m

∑
j=0

A jx(t − h j), t ≥ 0, (3.1)

where A j, j = 0,1, . . . ,m, are given real n×n matrices and 0= h0 < h1 < · · ·< hm =
h are time delays.

V.L. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,
Control Engineering, DOI 10.1007/978-0-8176-8367-2 3,
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Definition 3.1 ([3]). The n×n matrix K(t) is said to be the fundamental matrix for
any system of the form (3.1) there is only one fundamental matrix

d
dt

K(t) =
m

∑
j=0

K(t − h j)A j, t ≥ 0, (3.2)

and K(t) = 0n×n for t < 0, K(0) = I.

Theorem 3.1 ([3]). Given an initial function ϕ ∈ PC([−h,0],Rn), the following
equality holds:

x(t,ϕ) = K(t)ϕ(0)+
m

∑
j=1

0
∫

−h j

K(t −θ − h j)A jϕ(θ )dθ , t ≥ 0. (3.3)

This equality is known as the Cauchy formula for system (3.1).

Proof. Assume that t > 0, and compute for ξ ∈ (0, t) the partial derivative

∂
∂ξ

[K(t − ξ )x(ξ ,ϕ)] = −
[

m

∑
j=0

K(t − ξ − h j)A j

]

x(ξ ,ϕ)

+K(t − ξ )

[

m

∑
j=0

A jx(ξ − h j,ϕ)

]

=
m

∑
j=1

[K(t − ξ )A jx(ξ − h j,ϕ)−K(t − ξ − h j)A jx(ξ ,ϕ)] .

Integrating the preceding equality by ξ on the segment [0, t], we obtain that the
integral of the left-hand side is equal to

t
∫

0

(

∂
∂ξ

[K(t − ξ )x(ξ ,ϕ)]
)

dξ = x(t,ϕ)−K(t)ϕ(0).

Before computing the integral on the right-hand side we evaluate the integral

J =

t
∫

0

[K(t − ξ )A jx(ξ − h j,ϕ)−K(t − ξ − h j)A jx(ξ ,ϕ)]dξ

=

t−h j
∫

−h j

K(t −θ − h j)A jx(θ ,ϕ)dθ −
t

∫

0

K(t − ξ − h j)A jx(ξ ,ϕ)dξ

+

0
∫

−h j

K(t −θ − h j)A jx(θ ,ϕ)dθ −
t

∫

t−h j

K(t − ξ − h j)A jx(ξ ,ϕ)dξ .
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Since t −ξ −h j < 0 for ξ ∈ (t −h j, t], matrix K(t −ξ −h j) = 0n×n, and the second
integral on the right-hand side of the last equality disappears. We arrive at the
equality

J =

0
∫

−h j

K(t −θ − h j)A jx(θ ,ϕ)dθ .

As a result, we conclude that

x(t,ϕ)−K(t)ϕ(0) =
m

∑
j=1

0
∫

−h j

K(t −θ − h j)A jx(θ ,ϕ)dθ .

The initial value condition x(θ ,ϕ) = ϕ(θ ) for θ ∈ [−h,0] implies that the preceding
equality coincides with (3.3). �

3.2 Quadratic Functionals

The statement of Theorem 2.3 remains valid for system (3.1), too. In this section we
derive for system (3.1) functionals that satisfy the theorem conditions.

Like the case of single-delay systems we first define a quadratic functional v0(ϕ),
ϕ ∈ PC([−h,0],Rn), that satisfies the equality

d
dt

v0(xt) =−xT (t)Wx(t), t ≥ 0, (3.4)

along the solutions of system (3.1). Here W is a given symmetric matrix.
If system (3.1) is exponentially stable, then the functional admits the integral

representation

v0(ϕ) =
∞
∫

0

xT (t,ϕ)W x(t,ϕ)dt, ϕ ∈ PC([−h,0],Rn). (3.5)

We replace x(t,ϕ) under the integral sign on the right-hand side of (3.5) by Cauchy
formula (3.3), and, after some straightforward manipulations, similar to that done in
Sect. 2.5, we arrive at the following expression for the functional:

v0(ϕ) = ϕT (0)U(0)ϕ(0)+
m

∑
j=1

2ϕT (0)

0
∫

−h j

U(−θ − h j)A jϕ(θ )dθ

+
m

∑
k=1

m

∑
j=1

0
∫

−hk

ϕT (θ1)A
T
k

⎛

⎜

⎝

0
∫

−h j

U(θ1 + hk −θ2 − h j)A jϕ(θ2)dθ2

⎞

⎟

⎠
dθ1,

(3.6)
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where the matrix

U(τ) =
∞
∫

0

KT (t)WK(t + τ)dt (3.7)

is the Lyapunov matrix of system (3.1) associated with W .

Lemma 3.1. Let system (3.1) be exponentially stable. The matrix U(τ) is continu-
ous for τ ≥ 0.

Proof. The matrix KT (t)WK(t + τ) is continuous for t ≥ 0 and τ ≥ 0. The
exponential stability of system (3.1) implies that there exist γ ≥ 1 and σ > 0 such
that

‖K(t)‖ ≤ γe−σt , t ≥ 0.

Hence

∥

∥KT (t)W K(t + τ)
∥

∥≤ ‖K(t)‖‖W‖‖K(t + τ)‖ ≤ γ2 ‖W‖e−2σt .

Since the integral

∞
∫

0

γ2 ‖W‖e−2σtdt

converges, the improper integral on the right-hand side of (3.7) converges absolutely
and uniformly with respect to τ , on the set [0,∞), and therefore the integral is a
continuous function of the variable τ for τ ≥ 0. �

Lemma 3.2. Let system (3.1) be exponentially stable. Lyapunov matrix (3.7)
satisfies the following properties:

1. Dynamic property:

dU(τ)
dτ

=
m

∑
j=0

U(τ − h j)A j, τ ≥ 0; (3.8)

2. Symmetry property:

U(−τ) =UT (τ); (3.9)

3. Algebraic property:

m

∑
j=0

[

U(−h j)A j +AT
j U(h j)

]

=−W. (3.10)
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Proof. Dynamic property: Let τ > 0; then

∂
∂τ

[

KT (t)WK(t + τ)
]

=
m

∑
j=0

KT (t)WK(t + τ − h j)A j, t ≥ 0.

The exponential stability of system (3.1) implies that

∥

∥

∥

∥

∂
∂τ

[

KT (t)WK(t + τ)
]

∥

∥

∥

∥

≤
m

∑
j=0

‖K(t)‖‖W‖
∥

∥K(t + τ − h j)
∥

∥

∥

∥A j
∥

∥

≤
m

∑
j=0

‖W‖
∥

∥A j
∥

∥γ2e−σ(2t+τ−h j)

≤ γ2eσh‖W‖
(

m

∑
j=0

∥

∥A j
∥

∥

)

e−2σt , t ≥ 0.

On the one hand, since the integral

∞
∫

0

γ2eσh‖W‖
(

m

∑
j=0

∥

∥A j
∥

∥

)

e−2σtdt

converges, the integral
∞
∫

0

∂
∂τ

[

KT (t)WK(t + τ)
]

dt

converges absolutely and uniformly with respect to τ on the set [0,∞), which implies
the equality

∞
∫

0

∂
∂τ

[

KT (t)W K(t + τ)
]

dt =
d

dτ

⎛

⎝

∞
∫

0

KT (t)WK(t + τ)dt

⎞

⎠

=
dU(τ)

dτ
, τ ≥ 0.

On the other hand, for τ > 0

∞
∫

0

∂
∂τ

[

KT (t)WK(t + τ)
]

dt =

∞
∫

0

KT (t)W

[

m

∑
j=0

K(t + τ − h j)A j

]

dt

=
m

∑
j=0

U(τ − h j)A j,

and we arrive at (3.8).
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Symmetry property: The property follows directly from (3.7).

Algebraic property: To derive this property, we consider the time derivative

d
dt

[

KT (t)W K(t)
]

=

[

m

∑
j=0

K(t − h j)A j

]T

WK(t)

+KT (t)W

[

m

∑
j=0

K(t − h j)A j

]

, t ≥ 0.

Now, integrating the preceding equality from 0 to ∞, we arrive at the equality

−W =
m

∑
j=0

[

AT
j UT (−h j)+U(−h j)A j

]

.

If we take into account (3.9), then it becomes evident that this equality coincides
with (3.10). �

Lemma 3.3. The first derivative of Lyapunov matrix (3.7) suffers discontinuity at
τ = 0, namely,

U ′(+0)−U ′(−0) =−W.

Proof. The proof of the lemma is similar to that of Lemma 2.6. �

Theorem 3.2. Let the matrix ˜U(τ), τ ∈ [−h,h], satisfy properties (3.8)–(3.10). If
we define the functional ṽ0(ϕ) by formula (3.6), where the matrix U(τ) is replaced
by the matrix ˜U(τ), then the functional is such that along the solutions of system
(3.1) the following equality holds:

d
dt

ṽ0(xt) =−xT (t)Wx(t), t ≥ 0.

Proof. Given a solution x(t) of system (3.1),

ṽ0(xt) = xT (t)˜U(0)x(t)
︸ ︷︷ ︸

R0(t)

+
m

∑
j=1

2xT (t)

0
∫

−h j

˜U(−θ − h j)A jx(t +θ )dθ

︸ ︷︷ ︸

R j(t)

+
m

∑
k=1

m

∑
j=1

0
∫

−hk

xT (t+θ1)A
T
k

⎛

⎜

⎝

0
∫

−h j

˜U(θ1+hk−θ2 − h j)A jx(t +θ2)dθ2

⎞

⎟

⎠
dθ1

︸ ︷︷ ︸

Rk j(t)

.



3.2 Quadratic Functionals 81

Let us differentiate term by term the summands on the right-hand side of the
preceding equality.

The time derivative of the first term is

dR0(t)
dt

= 2xT (t)˜U(0)

[

m

∑
j=0

A jx(t − h j)

]

.

The time derivative of the term

R j(t) = 2xT (t)

0
∫

−h j

˜U(−θ −h j)A jx(t +θ )dθ = 2xT (t)

t
∫

t−h j

˜U(−ξ + t−h j)A jx(ξ )dξ

is equal to

dR j(t)

dt
= 2

[

m

∑
k=0

Akx(t − hk)

]T t
∫

t−h j

˜U(−ξ + t − h j)A jx(ξ )dξ

+ 2xT (t)˜U(−h j)A jx(t)− 2xT (t)˜U(0)A jx(t − h j)

+ 2xT (t)

t
∫

t−h j

(

∂
∂ t

˜U(−ξ + t − h j)

)

A jx(ξ )dξ .

The time derivative of the term

Rk j(t) =

0
∫

−hk

xT (t +θ1)A
T
k

⎛

⎜

⎝

0
∫

−h j

˜U(θ1 + hk −θ2 − h j)A jx(t +θ2)dθ2

⎞

⎟

⎠
dθ1

=

t
∫

t−hk

xT (ξ1)A
T
k

⎛

⎜

⎝

t
∫

t−h j

˜U(ξ1 + hk − ξ2 − h j)A jx(ξ2)dξ2

⎞

⎟

⎠
dξ1

is written as

dRk j(t)

dt
= xT (t)AT

k

t
∫

t−h j

˜U(t + hk − ξ − h j)A jx(ξ )dξ

−xT (t − hk)A
T
k

t
∫

t−h j

˜U(t − ξ − h j)A jx(ξ )dξ
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+

⎛

⎝

t
∫

t−hk

xT (ξ )AT
k
˜U(ξ + hk − t − h j)dξ

⎞

⎠A jx(t)

−

⎛

⎝

t
∫

t−hk

xT (ξ )AT
k
˜U(ξ + hk − t)dξ

⎞

⎠A jx(t − h j)

= xT (t)AT
k

t
∫

t−h j

˜U(t + hk − ξ − h j)A jx(ξ )dξ

− xT (t − hk)A
T
k

t
∫

t−h j

˜U(t − ξ − h j)A jx(ξ )dξ

+ xT (t)AT
j

t
∫

t−hk

˜U(−ξ − hk + t + h j)Akx(ξ )dξ

− xT (t − h j)A
T
j

t
∫

t−hk

˜U(−ξ − hk + t)Akx(ξ )dξ .

Observe now that

m

∑
j=1

dR j(t)

dt
= 2

[

m

∑
k=0

Akx(t − hk)

]T m

∑
j=1

t
∫

t−h j

˜U(−ξ + t − h j)A jx(ξ )dξ

+ 2xT (t)

[

m

∑
j=1

˜U(−h j)A j

]

x(t)− 2xT (t)˜U(0)

[

m

∑
j=1

A jx(t − h j)

]

+ 2xT (t)
m

∑
j=1

t
∫

t−h j

(

∂
∂ t

˜U(−ξ + t − h j)

)

A jx(ξ )dξ

and

m

∑
k=1

m

∑
j=1

dRk j(t)

dt
= 2xT (t)

m

∑
j=1

t
∫

t−h j

[

m

∑
k=1

˜U(−t − hk + ξ + h j)Ak

]T

A jx(ξ )dξ

−2

[

m

∑
k=1

Akx(t − hk)

]T m

∑
j=1

t
∫

t−h j

˜U(t − ξ − h j)A jx(ξ )dξ .
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Let us collect in the computed time derivatives all terms that have no integral factor.
The sum of these terms is

S1(t) = 2xT (t)˜U(0)

[

m

∑
j=0

A jx(t − h j)

]

+ 2xT (t)

[

m

∑
j=1

˜U(−h j)A j

]

x(t)

−2xT (t)˜U(0)

[

m

∑
j=1

A jx(t − h j)

]

= 2xT (t)

[

m

∑
j=0

˜U(−h j)A j

]

x(t)

= xT (t)

⎡

⎣

(

m

∑
j=0

˜U(−h j)A j

)

+

(

m

∑
j=0

˜U(−h j)A j

)T
⎤

⎦x(t).

Since matrix ˜U(τ) satisfies the symmetry and algebraic properties, the sum

S1(t) =−xT (t)W x(t).

Now we collect all terms that include an integral factor:

S2(t) = 2

[

m

∑
k=0

Akx(t − hk)

]T m

∑
j=1

t
∫

t−h j

˜U(−ξ + t − h j)A jx(ξ )dξ

+ 2xT (t)
m

∑
j=1

t
∫

t−h j

∂ ˜U(−ξ + t − h j)

∂ t
A jx(ξ )dξ

+ 2xT (t)
m

∑
j=1

t
∫

t−h j

[

m

∑
k=1

˜U(−t − hk + ξ + h j)Ak

]T

A jx(ξ )dξ

− 2

[

m

∑
k=1

Akx(t − hk)

]T m

∑
j=1

t
∫

t−h j

˜U(t − ξ − h j)A jx(ξ )dξ

= 2xT (t)
m

∑
j=1

t
∫

t−h j

[

m

∑
k=0

˜U(τ − hk)Ak −
d˜U(τ)

dτ

]T

τ=ξ−t+h j

A jx(ξ )dξ .

In the integral

t
∫

t−h j

[

m

∑
k=0

˜U(τ − hk)Ak −
d˜U(τ)

dτ

]T

τ=ξ−t+h j

A jx(ξ )dξ ,
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the argument τ = ξ −t+h j ∈ [0,h j]. The matrix ˜U(τ) satisfies the dynamic property
(3.8), so we conclude that this integral is equal to zero. Therefore, S2(t) = 0n×n, and
we arrive at the equality

d
dt

ṽ0(xt) =−xT (t)Wx(t), t ≥ 0. �

Remark 3.1. In the proof of Theorem 3.2 we do not assume that system (3.1) is
exponentially stable.

As in the case of single-delay systems, Theorem 3.2 lays the foundation for a
new definition of the Lyapunov matrices.

Definition 3.2. Let the n × n matrix U(τ) satisfy Eq. (3.8). We say that it is a
Lyapunov matrix of system (3.1) associated with a symmetric matrix W if it satisfies
properties (3.9) and (3.10).

Because there are two definitions of a Lyapunov matrix, we must verify that they
define the same matrix. During this verification we must keep in mind that (3.7) is
valid for the exponentially stable systems only.

Theorem 3.3. Let system (3.1) be exponentially stable; then matrix (3.7) is a
unique solution of Eq. (3.8) that satisfies properties (3.9) and (3.10).

Proof. Part 1: It was shown in Lemma 3.2 that matrix (3.7) satisfies Eq. (3.8)
and properties (3.9) and (3.10). Thus, we need only prove the uniqueness of
the solution. Assume that for a given W Eq. (3.8) admits two solutions, U1(τ)
and U2(τ), that satisfy (3.9) and (3.10). Then we define two functionals v( j)

0 (ϕ),
j = 1,2, of the form (3.6), the first one with the matrix U1(τ), the second one
with the matrix U2(τ). By Theorem 3.2, we know that the equalities

d
dt

v( j)
0 (xt) =−xT (t)W x(t), j = 1,2,

hold along the solutions of system (3.1). Hence, the difference Δv(xt) = v(2)0 (xt)−
v(1)0 (xt) is such that

d
dt

Δv(xt) = 0, t ≥ 0.

The preceding equality implies that for any initial function ϕ ∈ PC([−h,0],Rn)
the following identity holds:

Δv(xt(ϕ)) = Δv(ϕ), t ≥ 0.

Since system (3.1) is exponentially stable, xt(ϕ) → 0h as t → ∞ and
Δv(xt(ϕ)) → 0 as t → ∞. This means that Δv(ϕ) = 0 for any initial function
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ϕ ∈ PC([−h,0],Rn) or, in explicit form,

0 = ϕT (0)ΔU(0)ϕ(0)+
m

∑
j=1

2ϕT (0)

0
∫

−h j

ΔU(−θ − h j)A jϕ(θ )dθ

+
m

∑
k=1

m

∑
j=1

0
∫

−hk

ϕT (θ1)A
T
k

⎛

⎜

⎝

0
∫

−h j

ΔU(θ1 + hk −θ2 − h j)A jϕ(θ2)dθ2

⎞

⎟

⎠
dθ1.

(3.11)

Here the matrix ΔU(τ) = U2(τ)−U1(τ) satisfies Eq. (3.8) and properties (3.9)
and (3.10) with W = 0n×n.

Part 2: Now, given a vector γ ∈ Rn, consider the piecewise continuous initial
function

ϕ(1)(θ ) =

{

γ, θ = 0,

0, θ ∈ [−h,0).

For this initial function equality (3.11) takes the form

0 = Δv(ϕ(1)) = γT ΔU(0)γ.

Since γ is an arbitrary vector and ΔU(0) is a symmetric matrix, the following
equality holds:

ΔU(0) = 0n×n. (3.12)

Let us fix an index i ∈ {1,2 . . . ,m} and choose τ ∈ (hi−1,hi]and ε > 0 such that
−τ + ε <−hi−1. Now, for given vectors γ,η ∈ Rn we define the initial function

ϕ(2)(θ ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ, θ = 0,

η , θ ∈ [−τ,−τ + ε],
0, for all other θ ∈ [−h,0).

For this initial function, equality (3.11) is of the form

0 =

−τ+ε
∫

−τ

2γT

[

m

∑
j=i

ΔU(−h j −θ )A j

]

ηdθ

+
m

∑
k=i

m

∑
j=i

−τ+ε
∫

−τ

⎛

⎝

−τ+ε
∫

−τ

ηT AT
k ΔU(θ1 + hk −θ2 − h j)A jηdθ2

⎞

⎠dθ1.
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For sufficiently small ε > 0 the first integral on the right-hand side of the
preceding equality is of the order ε , whereas the double integrals are of the
order ε2. This means that the preceding equality can be written as

0 = 2εγT

(

m

∑
j=i

ΔU(τ − h j)A j

)

η + o(ε),

where o(ε)
ε → 0 as ε → +0. As γ and η are arbitrary vectors and ε can be made

arbitrarily small, it follows from the preceding equality that

m

∑
j=i

ΔU(τ − h j)A j = 0n×n, for τ ∈ (hi−1,hi]. (3.13)

Equality (3.13) holds for each i = 1,2, . . . ,m. Since for i = 1 we have

m

∑
j=1

ΔU(τ − h j)A j = 0n×n, τ ∈ (0,h1],

on the segment (0,h1] differential equation (3.8) for matrix ΔU(τ) takes the form

d
dτ

ΔU(τ) = ΔU(τ)A0, τ ∈ (0,h1].

Now equality (3.12) implies that ΔU(τ) = 0n×n for τ ∈ [0,h1]. On the interval
(h1,h2] Eq. (3.8) and equality (3.13) for i = 2 yield the delay equation

d
dτ

ΔU(τ) = ΔU(τ)A0 +ΔU(τ − h1)A1, τ ∈ (h1,h2].

It has been shown that ΔU(τ) = 0n×n on the interval [0,h1]; therefore, ΔU(τ) =
0n×n for τ ∈ (h1,h2] as well. Continuing this process we conclude that ΔU(τ) =
0n×n for τ ∈ [0,h], i.e., U1(τ) =U2(τ) for all τ ∈ [−h,h]. And the unique solution
of Eq. (3.8) that satisfies properties (3.9) and (3.10) is given by (3.7).

�

Theorem 3.4. Given the symmetric matrices Wj, j = 0,1, . . . ,2m, let us define the
functional

w(ϕ) =
m

∑
k=0

ϕT (−hk)Wkϕ(−hk)

+
m

∑
j=1

0
∫

−h j

ϕT (θ )Wm+ jϕ(θ )dθ , ϕ ∈ PC ([−h,0],Rn) . (3.14)
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If there exists a Lyapunov matrix U(τ) associated with the matrix

W =W0 +
m

∑
j=1

(Wj + h jWm+ j) ,

and v0(ϕ) is the functional (3.6) with this Lyapunov matrix, then the time derivative
of the functional

v(ϕ) = v0(ϕ)+
m

∑
j=1

0
∫

−h j

ϕT (θ ) [Wj +(h j +θ )Wm+ j]ϕ(θ )dθ (3.15)

along the solutions of system (3.1) is such that

d
dt

v(xt) =−w(xt), t ≥ 0.

Proof. We know that

d
dt

v0(xt) =−xT (t)Wx(t) =−xT (t)

[

W0 +
m

∑
j=1

(Wj + h jWm+ j)

]

x(t).

A simple change of the integration variable provides the equality

Q j(t) =

0
∫

−h j

xT (t +θ ) [Wj +(h j +θ )Wm+ j]x(t +θ )dθ

=

t
∫

t−h j

xT (ξ ) [Wj +(h j + ξ − t)Wm+ j]x(ξ )dξ ;

therefore,

m

∑
j=1

d
dt

Q j(t) = xT (t)

[

m

∑
j=1

(Wj + h jWm+ j)

]

x(t)

−
m

∑
j=1

xT (t − h j)Wjx(t − h j)−
m

∑
j=1

0
∫

−h j

xT (t +θ )Wm+ jx(t +θ )dθ .
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The theorem statement follows directly from the preceding expressions for the time
derivatives. �

Definition 3.3. We say that functional (3.15) is of the complete type if the matrices
Wj, j = 0,1, . . . ,2m, are positive definite.

Lemma 3.4. Let system (3.1) be exponentially stable. Given the positive-definite
matrices Wj, j = 0,1, . . . ,2m, there exists a positive constant α1 such that the
complete type functional (3.15) satisfies the inequality

α1 ‖ϕ(0)‖2 ≤ v(ϕ), ϕ ∈ PC([−h,0],Rn).

Proof. To prove the inequality, we consider a modified functional of the form

ṽ(ϕ) = v(ϕ)−α ‖ϕ(0)‖2 = v(ϕ)−αϕT (0)ϕ(0),

where α is a real parameter. Then

d
dt

ṽ(xt) =−w̃(xt), t ≥ 0.

Here

w̃(xt) = w(xt)+ 2αxT (t)

[

m

∑
j=0

A jx(t − h j)

]

≥
(

xT (t),xT (t − h1), . . . ,x
T (t − hm)

)

L(α)

⎛

⎜

⎜

⎜

⎝

x(t)
x(t − h1)

...
x(t − hm)

⎞

⎟

⎟

⎟

⎠

.

The matrix

L(α) =

⎛

⎜

⎜

⎜

⎝

W0 0n×n · · · 0n×n

0n×n W1 · · · 0n×n
...

...
. . .

...
0n×n 0n×n · · · Wm

⎞

⎟

⎟

⎟

⎠

+α

⎛

⎜

⎜

⎜

⎝

A0 +AT
0 A1 · · · Am

AT
1 0n×n · · · 0n×n
...

...
. . .

...
AT

m 0n×n · · · 0n×n

⎞

⎟

⎟

⎟

⎠

.

Because the matrices Wj, j = 0,1, . . . ,m, are positive definite, there exists α1 > 0
such that the matrix L(α1) is positive definite, and we conclude that

w̃(xt)≥ 0.
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The exponential stability of system (3.1) makes it possible to present ṽ(ϕ) in the
form

ṽ(ϕ) =
∞
∫

0

w̃(x(t,ϕ))dt ≥ 0.

The preceding inequality demonstrates that α1 ‖ϕ(0)‖2 ≤ v(ϕ). �

Lemma 3.5. Given the symmetric matrices Wj, j = 0,1, . . . ,2m, assume that system
(3.1) admits a Lyapunov matrix associated with the matrix

W =W0 +
m

∑
j=1

(Wj + h jWm+ j) .

Then there exists a positive constant α2 such that the complete type functional (3.15)
satisfies the inequalities

v(ϕ)≤ α2 ‖ϕ‖2
h , ϕ ∈ PC([−h,0],Rn).

Proof. First we introduce the notations

ν = max
τ∈[0,h]

‖U(τ)‖ , a j =
∥

∥A j
∥

∥ , j = 1,2, . . . ,m.

The following estimates hold for the terms of functional (3.15):

R0 = ϕT (0)U(0)ϕ(0)≤ ν ‖ϕ‖2
h ;

now, for j = 1,2, . . . ,m,

R j = 2ϕT (0)

0
∫

−h j

U(−θ − h j)A jϕ(θ )dθ ≤ 2νa jh j ‖ϕ‖2
h

for j,k ∈ {1,2, . . . ,m},

Rk j =

0
∫

−hk

ϕT (θ1)A
T
k

⎛

⎜

⎝

0
∫

−h j

U(θ1 + hk −θ2 − h j)A jϕ(θ2)dθ2

⎞

⎟

⎠
dθ1

≤ νaka jhkh j ‖ϕ‖2
h ,
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and, finally,

R =

0
∫

−h j

ϕT (θ ) [Wj +(h j +θ )Wm+ j]ϕ(θ )dθ

≤ h j
(∥

∥Wj
∥

∥+ h j
∥

∥Wm+ j
∥

∥

)

‖ϕ‖2
h .

As a result, we arrive at an upper estimation of the form

v(ϕ)≤ α2 ‖ϕ‖2
h ,

where

α2 = ν

(

1+
m

∑
j=1

a jh j

)2

+
m

∑
j=1

h j
(∥

∥Wj
∥

∥+ h j
∥

∥Wm+ j
∥

∥

)

. �

Lemma 3.6. Let system (3.1) be exponentially stable. Given the positive-definite
matrices Wj, j = 0,1, . . . ,2m, there exist positive constants β j, j = 0,1, . . . ,m, such
that the complete type functional (3.15) admits a lower estimate of the form

β0 ‖ϕ(0)‖2 +
m

∑
j=1

β j

0
∫

−h j

‖ϕ(θ )‖2 dθ ≤ v(ϕ), ϕ ∈ PC([−h,0],Rn). (3.16)

Proof. To prove the inequality, we consider the functional

ṽ(ϕ) = v(ϕ)−β0‖ϕ(0)‖2 −
m

∑
j=1

β j

0
∫

−h j

‖ϕ(θ )‖2 dθ .

Along the solutions of system (3.1) the functional is such that

d
dt

ṽ(xt) =−w̃(xt), t ≥ 0,

where

w̃(xt) = w(xt )+ 2β0xT (t)

[

m

∑
k=0

Akx(t − hk)

]

+
m

∑
j=1

β j

[

‖x(t)‖2 −
∥

∥x(t − h j)
∥

∥

2
]

≥
[

xT (t),xT (t − h1), . . . ,x
T (t − hm)

]

Q(β0,β1, . . . ,βm)

⎡

⎢

⎢

⎢

⎣

x(t)
x(t − h1)

...
x(t − hm)

⎤

⎥

⎥

⎥

⎦

.
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Here the matrix

Q(β0,β1, . . . ,βm) =

⎛

⎜

⎜

⎜

⎝

W0 0n×n · · · 0n×n

0n×n W1 0n×n
...

. . .
...

0n×n 0n×n · · · Wm

⎞

⎟

⎟

⎟

⎠

+β0

⎛

⎜

⎜

⎜

⎝

A0 +AT
0 A1 · · · Am

AT
1 0n×n 0n×n
...

. . .
...

AT
m 0n×n · · · 0n×n

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

(β1 +β2 + · · ·+βm) I 0n×n · · · 0n×n

0n×n −β1I 0n×n
...

. . .
...

0n×n 0n×n · · · −βmI

⎞

⎟

⎟

⎟

⎠

.

Since the matrices Wj, j = 0,1, . . . ,m, are positive definite, there exist positive
constants β j, j = 0,1,2, . . . ,m, for which the matrix Q(β0,β1, . . . ,βm) is positive
definite. For such a choice of the constants we have that

w̃(xt)≥ 0, t ≥ 0.

The preceding inequality implies that

ṽ(ϕ) =
∞
∫

0

w̃(xt(ϕ))dt ≥ 0, ϕ ∈ PC([−h,0],Rn),

from where the desired inequality (3.16) follows immediately. �

Lemma 3.7. Given the symmetric matrices Wj, j = 0,1, . . . ,2m, assume that system
(3.1) admits a Lyapunov matrix associated with the matrix

W =W0 +
m

∑
j=1

(Wj + h jWm+ j) .

Then for functional (3.15) there exist positive constants δ j , j = 0,1, . . . ,m, such that
the following inequality holds:

v(ϕ)≤ δ0 ‖ϕ(0)‖2 +
m

∑
j=1

δ j

0
∫

−h j

‖ϕ(θ )‖2 dθ , ϕ ∈ PC([−h,0],Rn). (3.17)

Proof. In the proof of the statement we make use of the notations introduced in the
proof of Lemma 3.5.

It is evident that for the first term of functional (3.15) the following inequality
holds:

R0 = ϕT (0)U(0)ϕ(0)≤ ν ‖ϕ(0)‖2 .
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The term

R j = 2ϕT (0)

0
∫

−h j

U(−h j −θ )A jϕ(θ )dθ

admits the upper bound

R j ≤ νa jh j ‖ϕ(0)‖2 +νa j

0
∫

−h j

‖ϕ(θ )‖2 dθ .

Now for the term

Rk j =

0
∫

−hk

ϕT (θ1)A
T
k

⎡

⎢

⎣

0
∫

−h j

U(θ1 + hk −θ2 − h j)A jϕ(θ2)dθ2

⎤

⎥

⎦
dθ1

we have

Rk j ≤ νaka j

⎡

⎣

0
∫

−hk

‖ϕ(θ )‖dθ

⎤

⎦

⎡

⎢

⎣

0
∫

−h j

‖ϕ(θ )‖dθ

⎤

⎥

⎦

≤ 1
2

νaka j

⎡

⎣

0
∫

−hk

‖ϕ(θ )‖dθ

⎤

⎦

2

+
1
2

νaka j

⎡

⎢

⎣

0
∫

−h j

‖ϕ(θ )‖dθ

⎤

⎥

⎦

2

≤ 1
2

νaka jhk

0
∫

−hk

‖ϕ(θ )‖2 dθ +
1
2

νaka jh j

0
∫

−h j

‖ϕ(θ )‖2 dθ .

Finally, we estimate the term

R =

0
∫

−h j

ϕT (θ ) [Wj +(h+θ )Wm+ j]ϕ(θ )dθ

≤
(∥

∥Wj
∥

∥+ h j
∥

∥Wm+ j
∥

∥

)

0
∫

−h j

‖ϕ(θ )‖2 dθ .

Collecting the obtained estimations we conclude that

v(ϕ)≤ δ0 ‖ϕ(0)‖2 +
m

∑
j=1

δ j

0
∫

−h j

‖ϕ(θ )‖2 dθ ,
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where

δ0 = ν

(

1+
m

∑
j=1

a jh j

)

,

δ j = νa j

(

1+ h j

m

∑
k=1

ak

)

+
(∥

∥Wj
∥

∥+ h j
∥

∥Wm+ j
∥

∥

)

, j = 1,2, . . . ,m. �

3.3 Lyapunov Matrices

Let us define the Laplace image of the fundamental matrix K(t) of system (3.1),

H(s) =

∞
∫

0

e−stK(t)dt =

(

sI−
m

∑
j=0

e−sh j A j

)−1

.

The function

f (s) = det

(

sI −
m

∑
j=0

e−sh j A j

)

(3.18)

is the characteristic function of the system. The zeros of the function form the

spectrum
Λ = {s | f (s) = 0}

of the system. These zeros are poles of H(s). If system (3.1) satisfies the Lyapunov
condition, i.e., the set Λ does not contain a point s0 such that −s0 ∈ Λ, then the
spectrum Λ can be split into two sets; the first one, Λ(+), includes the system
eigenvalues with positive real part, whereas the second one, Λ(−), includes the
system eigenvalues with negative real part.

3.3.1 Exponentially Stable Case

In the case where system (3.1) is exponentially stable, the set Λ(+) is empty. The
Lyapunov matrix associated with a symmetric matrix W can be written as follows:

U(τ) =
∞
∫

0

KT (t)W K(t + τ)dt;
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see (3.7). The fundamental matrix K(t) = 0n×n for t < 0. Because the components
of the matrix belong to the intersection of the spaces L1(−∞,+∞) and L2(−∞,+∞),
the Fourier image [1] of the matrix is of the form

H(iω) =

∞
∫

−∞

K(t)e−iωtdt =

∞
∫

0

K(t)e−iωtdt,

and the Fourier image of K(t + τ) is

∞
∫

−∞

K(t + τ)e−iωtdt = eiωτ
∞
∫

−∞

K(t + τ)e−iω(t+τ)dt = eiωτ H(iω).

Application of Plansherel’s theorem [45] leads to the following expression for the
Lyapunov matrix:

U(τ) =
V.P.
2π i

i∞
∫

−i∞

HT (ξ )W H(−ξ )e−τξ dξ ,

where the notation V.P.(Valeur Principle) is defined as follows:

V.P.
2π i

i∞
∫

−i∞

F(ξ )dξ = lim
r→∞

1
2π i

ir
∫

−ir

F(ξ )dξ .

3.3.2 General Case

We present now an extension to the general case of the preceding expression for the
Lyapunov matrices proven in [26]. But first we denote by

Res{F(s),s0}

the residue of F(s) at the point s0.

Theorem 3.5. Let system (3.1) satisfy the Lyapunov condition. Then for any
symmetric matrix W , the matrix

˜U(τ) =
V.P.
2π i

i∞
∫

−i∞

HT (ξ )WH(−ξ )e−τξ dξ

+ ∑
s0∈Λ(+)

Res
{

HT (s)W H(−s)e−τs,s0
}

+ ∑
s0∈Λ(+)

Res
{

HT (−s)W H(s)eτs,s0
}

(3.19)

is a Lyapunov matrix of the system associated with W .
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Proof. System (3.1) satisfies the Lyapunov condition, so the matrices H(s) and
H(−s) have no poles on the imaginary axis of the complex plane. Let y be a real
number; then for sufficiently large |y| the matrix HT (iy)W H(−iy)e−iτy is of the
order |y|−2. This means that the improper integral on the right-hand side of (3.19) is
well defined for all real τ .

Since for the case of exponentially stable systems the existence statement
has already been proven (Theorem 3.3), we assume that system (3.1) is not
exponentially stable. In this case Λ(+) is not empty and contains a finite set of
complex numbers.

Part 1: Let us check first that matrix (3.19) satisfies symmetry property (3.9). By
direct inspection of the matrices

˜U(−τ) =
V.P.
2π i

i∞
∫

−i∞

HT (ξ )WH(−ξ )eτξ dξ

+ ∑
s0∈Λ(+)

Res
{

HT (s)WH(−s)eτs,s0
}

+ ∑
s0∈Λ(+)

Res
{

HT (−s)WH(s)e−τs,s0
}

〈making a change in the integration variable λ =−ξ 〉

=
V.P.
2π i

i∞
∫

−i∞

HT (−λ )WH(λ )e−τλ dλ

+ ∑
s0∈Λ(+)

Res
{

HT (s)WH(−s)eτs,s0
}

+ ∑
s0∈Λ(+)

Res
{

HT (−s)WH(s)e−τs,s0
}

and

[

˜U(τ)
]T

=
V.P.
2π i

i∞
∫

−i∞

HT (−ξ )WH(ξ )e−τξ dξ

+ ∑
s0∈Λ(+)

Res
{

HT (−s)W H(s)e−τs,s0
}

+ ∑
s0∈Λ(+)

Res
{

HT (s)W H(−s)eτs,s0
}

,

we conclude that they are equal.
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Part 2: We address now algebraic property (3.10). To verify it, we compute the
following matrix:

O =
m

∑
j=0

˜U(−h j)A j +
m

∑
j=0

AT
j
˜U(h j)

=
V.P.
2π i

i∞
∫

−i∞

(

HT (ξ )WH(−ξ )

[

m

∑
j=0

eh jξ A j

]

+

[

m

∑
j=0

e−h jξ A j

]T

HT (ξ )WH(−ξ )

⎞

⎠dξ

+ ∑
s0∈Λ(+)

Res

{

HT (s)W H(−s)

[

m

∑
j=0

eh jsA j

]

,s0

}

+ ∑
s0∈Λ(+)

Res

{

HT (−s)W H(s)

[

m

∑
j=0

e−h jsA j

]

,s0

}

+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

[

m

∑
j=0

e−h jsA j

]T

HT (s)W H(−s),s0

⎫

⎬

⎭

+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

[

m

∑
j=0

eh jsA j

]T

HT (−s)WH(s),s0

⎫

⎬

⎭

.

It is a matter of simple calculation to check the identities

H(s)

[

m

∑
j=0

e−h jsA j

]

= sH(s)− I

and

H(−s)

[

m

∑
j=0

eh jsA j

]

=−sH(−s)− I.
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Additionally,

V.P.
2π i

i∞
∫

−i∞

W H(−ξ )dξ = 〈λ =−ξ 〉= V.P.
2π i

i∞
∫

−i∞

WH(λ )dλ .

Now, the matrix O has the form

O =
V.P.
2π i

i∞
∫

−i∞

[

−HT (ξ )W −WH(ξ )
]

dξ

+ ∑
s0∈Λ(+)

Res
{

−HT (s)W,s0
}

+ ∑
s0∈Λ(+)

Res
{

−HT (s)W,s0
}

+ ∑
s0∈Λ(+)

Res
{

−HT (−s)W,s0
}

+ ∑
s0∈Λ(+)

Res
{

−HT (−s)W,s0
}

.

The Lyapunov condition implies that no poles of the matrix H(−s) lie in the set
Λ(+), so the last two sums on the right-hand side of the preceding equality are
zero matrices, and

O = −V.P.
2π i

i∞
∫

−i∞

[

HT (ξ )W +WH(ξ )
]

dξ

− ∑
s0∈Λ(+)

Res
{

HT (s)W +WH(s),s0
}

. (3.20)

By the residue theorem [1, 50],

∑
s0∈Λ(+)

Res
{

HT (s)W +WH(s),s0
}

= lim
r→∞

1
2π i

∮

Γ(r)

[

HT (ξ )W +WH(ξ )
]

dξ ,

where Γ(r) is the Nyquist contour, consisting of the semicircle C(r) =
{

reiϕ ∣

∣ϕ ∈
[

− π
2 ,

π
2

]}

and the segment [ir,−ir] of the imaginary axis.
The contour integral

J(r) =
1

2π i

∮

Γ(r)

[

HT (ξ )W +WH(ξ )
]

dξ

= − 1
2π i

ir
∫

−ir

[

HT (ξ )W +WH(ξ )
]

dξ

+
1

2π

π
2

∫

− π
2

[

HT (reiϕ)W +WH(reiϕ)
]

reiϕ dϕ ;
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therefore

lim
r→∞

J(r) = −V.P.
2π i

i∞
∫

−i∞

[

HT (ξ )W +WH(ξ )
]

dξ

+ lim
r→∞

1
2π

π
2

∫

− π
2

[

HT (reiϕ )W +WH(reiϕ )
]

reiϕdϕ .

Since H(reiϕ)reiϕ → I as r → ∞, uniformly by ϕ ∈
[

− π
2 ,

π
2

]

,

S = ∑
s0∈Λ(+)

Res
{

HT (s)W +WH(s),s0
}

= −V.P.
2π i

i∞
∫

−i∞

[

HT (ξ )W +WH(ξ )
]

dξ +W.

Substituting the preceding equality into (3.20) we obtain that O = −W . Thus
matrix (3.19) satisfies (3.10).

Part 3: Let us address dynamic property (3.8). For a given τ > 0 we compute the
matrix

F(τ) =
d

dτ
˜U(τ)−

m

∑
j=0

˜U(τ − h j)A j

=
V.P.
2π i

i∞
∫

−i∞

HT (ξ )WH(−ξ )

[

−ξ I−
m

∑
j=0

eh jξ A j

]

e−τξ dξ

+ ∑
s0∈Λ(+)

Res

{

HT (s)W H(−s)

[

−sI−
m

∑
j=0

eh jsA j

]

e−τs,s0

}

+ ∑
s0∈Λ(+)

Res

{

HT (−s)W H(s)

[

sI −
m

∑
j=0

e−h jsA j

]

eτs,s0

}

=
V.P.
2π i

i∞
∫

−i∞

HT (ξ )We−τξ dξ + ∑
s0∈Λ(+)

Res
{

HT (s)W e−τs,s0
}

+ ∑
s0∈Λ(+)

Res
{

HT (−s)Weτs,s0
}

.
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Because the matrix H(−s) has no poles in the set Λ(+), the sum

∑
s0∈Λ(+)

Res
{

HT (−s)Weτs,s0
}

= 0n×n,

and we obtain

F(τ) =
V.P.
2π i

i∞
∫

−i∞

HT (ξ )W e−τξ dξ + ∑
s0∈Λ(+)

Res
{

HT (s)W e−τs,s0
}

.

Once again, applying the residue theorem,

S1 = ∑
s0∈Λ(+)

Res
{

HT (s)W e−τs,s0
}

= lim
r→∞

1
2π i

∮

Γ(r)

HT (ξ )We−τξ dξ

= −V.P.
2π i

i∞
∫

−i∞

HT (ξ )We−τξ dξ + lim
r→∞

1
2π

π
2

∫

− π
2

HT (reiϕ)W reiϕe−τreiϕ
dϕ .

By Jordan’s theorem [1, 50], the equality

lim
r→∞

1
2π

π
2

∫

− π
2

HT (reiϕ)W reiϕe−τreiϕ
dϕ = 0n×n

holds for any τ > 0, and we arrive at the conclusion that

F(τ) =
d

dτ
˜U(τ)−

m

∑
j=0

˜U(τ − h j)A j = 0n×n, τ > 0.

The preceding equality remains valid when τ → +0, so matrix (3.19) satisfies
property (3.8) for τ ≥ 0. This concludes the proof. �

We now show that the Lyapunov condition provides the uniqueness of the
Lyapunov matrices. But first we recall the following statement; see [2].

Lemma 3.8. Given a quasipolynomial

f (t) =
m

∑
j=1

ez jt p j(t),
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where z j, j = 1, . . . ,m, are complex numbers such that z j �= zk for j �= k and p j(t),
j = 1, . . . ,m, are polynomials, the identity f (t) = 0, t ≥ 0, implies p j(t) ≡ 0, for
j = 1, . . . ,m.

Theorem 3.6. Let system (3.1) satisfy the Lyapunov condition. Then for any
symmetric matrix W there exists a unique Lyapunov matrix of the system associated
with W.

Proof. Since for exponentially stable systems the statement was proven in The-
orem 3.3, we restrict our attention here to the case where system (3.1) is not
exponentially stable.

It was shown in Theorem 3.5 that for a given symmetric matrix W there exists
a Lyapunov matrix U(τ) associated with W . Thus, in the remainder of the proof
we concentrate on the uniqueness issue. Assume that there are two such matrices,

Uj(τ), j = 1,2. Then, by Theorem 3.2, the functionals v( j)
0 (ϕ), j = 1,2, computed

by formula (3.6) with these matrices are such that the equalities

d
dt

v( j)
0 (xt) =−w(x(t)), t ≥ 0; j = 1,2,

hold along the solutions of system (3.1). The difference Δv(xt) = v(2)0 (xt)− v(1)0 (xt)
is such that

d
dt

Δv(xt) = 0, t ≥ 0.

We obtain that for any ϕ ∈ PC([−h,0],Rn) the identity

Δv(xt(ϕ)) = Δv(ϕ), t ≥ 0, (3.21)

holds along the solution x(t,ϕ) of system (3.1). This means that along any solution
x(t) of the system Δv(xt) maintains a constant value.

The rest of the proof is divided into two parts. In the first one we show that under
the Lyapunov condition the functional Δv(ϕ) is trivial, i.e., for any initial function
ϕ ∈ PC([−h,0],Rn) the following equality holds:

0 = Δv(ϕ). (3.22)

In the other part we demonstrate that equality (3.22) implies that

ΔU(τ) =U2(τ)−U1(τ) = 0n×n, τ ∈ [0,h].

Part 1: Let χ > 0 be an upper bound for the real parts of the system eigenvalues.
Only a finite number of the system eigenvalues, s1,s2, . . . ,sN , lie in the vertical
stripe

Z = { s | − χ ≤ Re(s) ≤ χ }

of the complex plane; see [3].
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Every solution x(t,ϕ) of the system can be presented as the sum

x(t,ϕ) = x(1)(t)+ x(2)(t),

where x(1)(t) corresponds to the part of the system spectrum that lies in Z and
x(2)(t) corresponds to the rest of the spectrum, which lies to the left of the vertical
line Re(s) =−χ .
The first term, x(1)(t), is a finite sum of the form

x(1)(t) =
N

∑
�=1

es�t p(�)(t), (3.23)

where p(�)(t) is a polynomial with vector coefficients of degree less than the
multiplicity of s� as a zero of the characteristic function (3.18), �= 1,2, . . . ,N.
The second term, x(2)(t), admits an upper estimate of the form

∥

∥

∥x(2)(t)
∥

∥

∥≤ ce−(χ+ε)t , t ≥ 0. (3.24)

Here c is a positive constant and ε is a small positive number.
The functional Δv(xt(ϕ)) can be decomposed as follows:

Δv(xt(ϕ)) = Δv
(

x(1)t

)

+ 2Δz
(

x(1)t ,x(2)t

)

+Δv
(

x(2)t

)

,

where

Δz
(

x(1)t ,x(2)t

)

=
[

x(1)(t)
]T

ΔU(0)x(2)(t)

+
[

x(1)(t)
]T m

∑
j=1

0
∫

−h j

ΔU(−h j −θ )A jx
(2)(t +θ )dθ

+
[

x(2)(t)
]T m

∑
j=1

0
∫

−h j

ΔU(−h j −θ )A jx
(1)(t +θ )dθ

+
m

∑
k=1

m

∑
j=1

0
∫

−hk

[

x(1)(t +θ1)
]T

×

⎡

⎢

⎣

0
∫

−h j

AT
k ΔU(θ1 + hk −θ2 − h j)A jx

(2)(t +θ2)dθ2

⎤

⎥

⎦
dθ1.
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On the one hand, since x(1)(t) and x(2)(t) satisfy system (3.1), Δv(x(1)t ) and

Δv(x(2)t ) maintain constant values, and we obtain that Δz(x(1)t ,x(2)t ) is also a
constant. On the other hand, the choice of χ and inequality (3.24) guarantee
that

Δv
(

x(2)t

)

→ 0, and Δz
(

x(1)t ,x(2)t

)

→ 0, as t → ∞.

This means that

Δv
(

x(2)t

)

= 0, and Δz
(

x(1)t ,x(2)t

)

= 0, t ≥ ∞,

and we arrive at the identity

Δv
(

x(1)t

)

= Δv(ϕ), t ≥ 0. (3.25)

Here

Δv(x(1)t ) =
[

x(1)(t)
]T

ΔU(0)x(1)(t)
︸ ︷︷ ︸

I1(t)

+2
[

x(1)(t)
]T m

∑
j=1

0
∫

−h j

ΔU(−h j −θ )A jx
(1)(t +θ )dθ

︸ ︷︷ ︸

I2(t)

+
m

∑
k=1

m

∑
j=1

0
∫

−hk

[

x(1)(t +θ1)
]T

AT
k

⎡

⎢

⎣

0
∫

−h j

ΔU(θ1 +hk −θ2 −h j)A jx
(1)(t +θ2)dθ2

⎤

⎥

⎦
dθ1

︸ ︷︷ ︸

.

I3(t)

Expression (3.23) provides that

R1(t) =
[

x(1)(t)
]T

ΔU(0)x(1)(t) =
N

∑
�=1

N

∑
r=1

e(s�+sr)t
[

p(�)(t)
]T

ΔU(0)p(r)(t).

Here
[

p(�)(t)
]T

ΔU(0)p(r)(t) is a polynomial in t of degree less than the sum of

the multiplicities of s� and sr.
The second term

R2(t) = 2
m

∑
j=1

[

x(1)(t)
]T

0
∫

−h j

ΔU(−h j −θ )A jx
(1)(t +θ )dθ

= 2
m

∑
j=1

⎛

⎜

⎝

N

∑
�=1

N

∑
r=1

e(s�+sr)t
[

p(�)(t)
]T

0
∫

−h j

ΔU(−h j−θ )A jesrθ p(r)(t +θ )dθ

⎞

⎟

⎠
.
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It is easy to verify that

[

p(�)(t)
]T

0
∫

−h j

ΔU(−h j −θ )A je
srθ p(r)(t +θ )dθ

is also a polynomial in t of degree less than the sum of the multiplicities of s�
and sr.
The last term

R3(t) =
m

∑
k=1

m

∑
j=1

0
∫

−hk

[

x(1)(t +θ1)
]T

×

⎡

⎢

⎣

0
∫

−h j

AT
k ΔU(θ1 + hk −θ2 − h j)A jx

(1)(t +θ2)dθ2

⎤

⎥

⎦
dθ1

= 2
m

∑
k=1

m

∑
j=1

⎛

⎝

N

∑
�=1

N

∑
r=1

e(s�+sr)t

0
∫

−hk

[

es�θ1 p(�)(t +θ1)
]T

×

⎛

⎜

⎝

0
∫

−h j

AT
k ΔU(θ1 + hk −θ2 − h j)A jesrθ2 p(r)(t +θ2)dθ2

⎞

⎟

⎠
dθ1

⎞

⎟

⎠
,

and, once again, the function

0
∫

−hk

[

es�θ1 p(�)(t+θ1)
]T

⎛

⎜

⎝

0
∫

−h j

AT
k ΔU(θ1+hk−θ2−h j)A jesrθ2 p(r)(t +θ2)dθ2

⎞

⎟

⎠
dθ1

is a polynomial in t of degree less than the sum of the multiplicities of s� and sr.

This analysis demonstrates that Δv
(

x(1)t

)

is a function of the form

Δv
(

x(1)t

)

=
N

∑
�=1

N

∑
r=1

e(s�+sr)tα�r(t),

where α�r(t), �,r = 1,2, . . . ,N, are polynomials. Now identity (3.25) takes the
form

N

∑
�=1

N

∑
r=1

e(s�+sr)tα�r(t) = e0tΔv(ϕ), t ≥ 0.
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Because no one of the sums (s�+ sr), �,r ∈ {1,2, . . . ,N}, is equal to zero, by
Lemma 3.8, the preceding identity implies that Δv(ϕ) = 0.
We may summarize our analysis as follows. If system (3.1) satisfies the Lyapunov
condition, then equality (3.22) holds for any initial function ϕ ∈ PC([−h,0],Rn).

Part 2: In the proof of Theorem 3.3 it was demonstrated (see Part 2 of the proof)
how equality (3.22) implies the uniqueness of the Lyapunov matrix associated
with W . This concludes the proof. �

We now consider the situation with Lyapunov matrices where the Lyapunov
condition fails.

Theorem 3.7. Suppose system (3.1) does not satisfy the Lyapunov condition. Then
there exists a nontrivial Lyapunov matrix of the system associated with W = 0n×n.

Proof. According to the theorem condition, there exists an eigenvalue s0 of system
(3.1) such that −s0 is also an eigenvalue of the system. The characteristic matrix of
system (3.1) is of the form

G(s) = sI−
m

∑
k=0

e−hksAk.

Since matrices G(s0) and G(−s0) are singular, there exist nonzero vectors γ and μ
such that

γT G(s0) = 0, μT G(−s0) = 0.

Let us define the following matrix:

U0(τ) = μγT es0τ + γμT e−s0τ .

It is evident that the matrix is nontrivial. We verify that U0(τ) is a Lyapunov matrix
associated with W = 0n×n. First we note that the matrix satisfies the symmetry
property

U0(−τ) = μγT e−s0τ + γμT es0τ =UT
0 (τ).

Then we verify that the matrix satisfies the dynamic property

d
dτ

U0(τ)−
m

∑
k=0

U0(τ − hk)Ak = μγT G(s0)e
s0τ + γμT G(−s0)e

−s0τ

= 0n×n.

According to Lemma 3.3, the algebraic property can be written as

U ′(+0)−U ′(−0) =−W.
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Since the matrix U0(τ) is differentiable at τ = 0, we conclude that

U ′
0(+0)−U ′

0(−0) = 0n×n.

This concludes the proof. �

Corollary 3.1. If U0(τ) is a complex valued matrix, then matrices X(τ) =
Re{U0(τ)} and Y (τ) = Im{U0(τ)} are real Lyapunov matrices of system (3.1)
associated with W = 0n×n.

Corollary 3.2. Let system (3.1) admit an eigenvalue s0 such that −s0 is also an
eigenvalue of the system. If there exists a Lyapunov matrix U(τ) associated with a
symmetric matrix W, then for any constant α the matrix U(τ)+αU0(τ) is also a
Lyapunov matrix associated with W .

Theorem 3.8. Suppose system (3.1) does not satisfy the Lyapunov condition. Then
there exists a symmetric matrix W such that there is no Lyapunov matrix associated
with W.

Proof. According to the theorem condition, there exists an eigenvalue s0 of system
(3.1) such that −s0 is also an eigenvalue of the system. System (3.1) admits two
solutions of the form

x(1)(t) = es0tγ, x(2)(t) = e−s0t μ ,

where γ and μ are nontrivial vectors. Assume by contradiction that for any
symmetric matrix W there is a Lyapunov matrix associated with W . According to
Lemma 2.9, there exists a symmetric matrix W0 such that γTW0μ �= 0. Let U(τ) be
a Lyapunov matrix associated with W0. Let us define the bilinear functional

z(ϕ ,ψ) = ϕT (0)U(0)ψ(0)+
m

∑
j=1

ϕT (0)

0
∫

−h j

U(−h j −θ )A jψ(θ )dθ

+
m

∑
j=1

⎛

⎜

⎝

0
∫

−h j

ϕT (θ )AT
j U(h j +θ )dθ

⎞

⎟

⎠
ψ(0)

+
m

∑
k=1

m

∑
j=1

0
∫

−hk

ϕT (θ1)A
T
k

⎡

⎢

⎣

0
∫

−h j

U(θ1 + hk −θ2 − h j)A jψ(θ2)dθ2

⎤

⎥

⎦
dθ1.

Given two solutions of system (3.1), x(t,ϕ) and x(t,ψ), one can verify by direct
calculation that

d
dt

z(xt(ϕ),xt(ψ)) =−xT (t,ϕ)W0x(t,ψ).
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In particular, for the solutions x(1)(t) and x(2)(t) we obtain

d
dt

z(x(1)t ,x(2)t ) =−
[

x(1)(t)
]T

W0x(2)(t) =−γTW0μ �= 0. (3.26)

On the other hand, direct substitution of these solutions into the bilinear functional
yields

z(x(1)t ,x(2)t ) = γT

⎡

⎢

⎣
U(0)+

m

∑
j=1

0
∫

−h j

(

U(−h j −θ )A je−s0θ +AT
j U(h j +θ )es0θ

)

dθ

+
m

∑
k=1

m

∑
j=1

0
∫

−hk

e−s0θ1

⎛

⎜

⎝

0
∫

−h j

es0θ2AT
k U(θ1+hk−θ2−h j)A jdθ2

⎞

⎟

⎠
dθ1

⎤

⎥

⎦
μ .

Observe that the matrix in the square brackets does not depend on t, therefore

d
dt

z(x(1)t ,x(2)t ) = 0.

But this contradicts (3.26). Thus, no Lyapunov matrix associated with the selected
W0 exists. �

3.4 Computational Schemes

3.4.1 Semianalytic Method

Here a system with one basic delay h≥ 0 is considered, i.e., we study the case where

hk = kh, k = 1, . . . ,m.

Delay matrix Eq. (3.8) is now of the form

dU(τ)
dτ

=
m

∑
k=0

U(τ − kh)Ak, τ ≥ 0. (3.27)

Let us define for ξ ∈ [0,h] the auxiliary matrices

Yj(ξ ) =U( jh+ ξ ), j =−m,−m+ 1, . . . ,0, . . . ,m− 1. (3.28)
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Lemma 3.9. Let U(τ) be a Lyapunov matrix associated with W. Then for ξ ∈ [0,h]
auxiliary matrices (3.28) satisfy the system of linear delay-free matrix differential
equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d
dξ

Yj(ξ ) =
m

∑
k=0

Yj−k(ξ )Ak, j = 0,1, . . . ,m− 1,

d
dξ

Y− j(ξ ) =−
m

∑
k=0

AT
k Y− j+k(ξ ), j = 1,2, . . . ,m

(3.29)

and the boundary value conditions

Yj(0) = Yj−1(h), j =−m+ 1,−m+ 2, . . .,0, . . . ,m− 1, (3.30)

−W =
m−1

∑
k=0

[

Y−k(0)Ak +AT
k Yk(0)

]

+Ym−1(h)Am +AT
mY−m(0). (3.31)

Proof. First, we observe that for j ∈ {0,1, . . . ,m− 1}

d
dξ

Yj(ξ ) =
d

dξ
U( jh+ ξ ) =

m

∑
k=0

U( jh+ ξ − kh)Ak

=
m

∑
k=0

Yj−k(ξ )Ak.

Now, assume that j ∈ {1,2, . . . ,m}; then

Y− j(ξ ) =U(− jh+ ξ ) =UT ( jh− ξ ),

and for ξ ∈ [0,h] we have

d
dξ

Y− j(ξ ) =
[

d
dξ

U( jh− ξ )
]T

=−
[

m

∑
k=0

U( jh− ξ − kh)Ak

]T

= −
m

∑
k=0

AT
k U(− jh+ ξ + kh)

= −
m

∑
k=0

AT
k Y− j+k(ξ ).

Conditions (3.30) follow directly from the definition of matrices (3.28). The last
boundary value condition is algebraic property (3.10) written in the terms of the
auxiliary matrices. �

Theorem 3.9. Assume that the boundary value problem (3.29)–(3.31) admits a
solution

{Ym−1(ξ ),Ym−2(ξ ), . . . ,Y0(ξ ), . . . ,Y−m(ξ )} , ξ ∈ [0,h].
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Then the matrix U(τ), defined for τ ∈ [0,mh] by the expressions

U( jh+ ξ ) =
1
2

[

Yj(ξ )+YT
− j−1(h− ξ )

]

, ξ ∈ [0,h], j = 0,1, . . . ,m− 1, (3.32)

is a Lyapunov matrix associated with W if we extend it to [−mh,0) by setting
U(−τ) =UT (τ) for τ ∈ (0,mh].

Proof. We prove that the matrices

˜Yj(ξ ) = Y T
− j−1(h− ξ ), j =−m,−m+ 1, . . . ,0, . . . ,m− 1,

satisfy boundary value problem (3.29)–(3.31) as well. To this end, we verify first
that the matrices satisfy system (3.29). For j ∈ {0,1, . . . ,m− 1} we have

d
dξ

˜Yj(ξ ) =
[

d
dξ

Y− j−1(h− ξ )
]T

=−
[

−
m

∑
k=0

AT
k Y− j−1+k(h− ξ )

]T

=
m

∑
k=0

˜Yj−k(ξ )Ak,

and for j ∈ {1,2, . . . ,m}

d
dξ

˜Y− j(ξ ) =
[

d
dξ

Yj−1(h− ξ )
]T

=−
[

m

∑
k=0

Yj−1−k(h− ξ )Ak

]T

= −
m

∑
k=0

AT
k
˜Y− j+k(ξ ).

Then we verify conditions (3.30)

˜Yj(0)− ˜Yj−1(h) =
[

Y− j−1(h)−Y− j(0)
]T

= 0n×n,

j = −m+ 1,−m+ 2, . . .,0, . . . ,m− 1.

And, finally, we address condition (3.31). If we take into account the equalities

˜Yj(0) = Y T
− j−1(h) = Y T

− j(0), j =−m+ 1,−m+ 2, . . .,m− 1,

and

˜Y−m(0) = Y T
m−1(h), ˜Ym−1(h) = Y T

−m(0),
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then

˜R =
m−1

∑
k=0

[

˜Y−k(0)Ak +AT
k
˜Yk(0)

]

+ ˜Ym−1(h)Am +AT
m
˜Y−m(0)

=
m−1

∑
k=0

[

Y T
k (0)Ak +AT

k Y T
−k(0)

]

+Y T
−m(0)Am +AT

mY T
m−1(h)

=

(

m−1

∑
k=0

[

AT
k Yk(0)+Y−k(0)Ak

]

+AT
mY−m(0)+Ym−1(h)Am

)T

= −W T =−W.

Using the matrices ˜Yj(ξ ), j = −m,−m+ 1, . . . ,0, . . . ,m− 1 we present the matrix
U(τ), τ ∈ [0,mh], in the form

U( jh+ ξ ) =
1
2

[

Yj(ξ )+ ˜Yj(ξ )
]

, ξ ∈ [0,h].

Now we check that the matrix U(τ) defined by (3.32) satisfies Definition 3.2. We
start with symmetry property (3.9). Since we define this matrix on [−mh,0) by
setting U(−τ) = UT (τ), we only have to show that the matrix U(0) is symmetric.
It follows from (3.32) and (3.30) that

U(0) =
1
2

[

Y0(0)+YT
−1(h)

]

=
1
2

[

Y0(0)+YT
0 (0)

]

=UT (0).

Then we verify algebraic property (3.10). Here we observe that

U( jh) =
1
2

[

Yj(0)+ ˜Yj(0)
]

, j =−m,−m+ 1, . . . ,m− 1,

and

U(mh) =
1
2

[

Ym−1(h)+ ˜Ym−1(h)
]

.

Substituting the preceding expressions for the matrices U( jh) into (3.10) we obtain
that

J =
m

∑
j=0

[

AT
j U( jh)+U(− jh)A j

]

=
1
2

(

m−1

∑
j=0

[

AT
j Yj(0)+Y− j(0)A j

]

+AT
mYm−1(h)+Y−m(0)Am

)
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+
1
2

(

m−1

∑
j=0

[

AT
j
˜Yj(0)+˜Y− j(0)A j

]

+AT
m
˜Ym−1(h)+ ˜Y−m(0)Am

)

= −1
2

W − 1
2

W =−W.

Finally, we show that matrix (3.32) satisfies for τ ∈ [0,mh] dynamic property (3.27).
We have already seen that for j ∈ {0,1, . . . ,m− 1} the following expression holds:

U( jh+ ξ ) =
1
2

[

Yj(ξ )+ ˜Yj(ξ )
]

, ξ ∈ [0,h].

Now for j ∈ {1,2, . . . ,m} we have

U(− jh+ ξ ) = UT ( jh− ξ ) =UT (( j− 1)h+h− ξ )

=
1
2

[

Yj−1(h− ξ )+˜Yj−1(h− ξ )
]T

=
1
2

[

˜Y− j(ξ )+Y− j(ξ )
]

, ξ ∈ [0,h].

Keeping in mind these expressions we compute the first derivative of the matrix
U(τ). Let τ = jh+ ξ , where j ∈ {0,1, . . . ,m− 1} and ξ ∈ (0,h); then

d
dτ

U(τ) =
d

dξ
U( jh+ ξ ) =

d
dξ

(

1
2

[

Yj(ξ )+ ˜Yj(ξ )
]

)

=
m

∑
k=0

1
2

[

Yj−k(ξ )+˜Yj−k(ξ )
]

Ak =
m

∑
k=0

U( jh+ ξ − kh)Ak

=
m

∑
k=0

U(τ − kh)Ak.

It is left to check that for j ∈ {1,2, . . . ,m} the right-hand-side limit of the derivative
of U(τ) at τ = jh coincides with the left-hand-side limit of the derivative at the
point. The right-hand-side limit is equal to

m

∑
k=0

1
2

[

Yj−k(0)+˜Yj−k(0)
]

Ak,

whereas the left-hand-side limit is

m

∑
k=0

1
2

[

Yj−1−k(h)+ ˜Yj−1−k(h)
]

Ak.
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The equality of these two limits is a direct consequence of the fact that the matrices
Yj(ξ ) and ˜Yj(ξ ) satisfy boundary value conditions (3.30). �

Corollary 3.3. If boundary value problem (3.29)–(3.31) admits a unique solution

{Ym−1(ξ ),Ym−2(ξ ), . . . ,Y0(ξ ), . . . ,Y−m(ξ )} , ξ ∈ [0,h],

then there exists a unique Lyapunov matrix U(τ) associated with the matrix W, and
the matrix is defined on [0,mh] by the equalities

U( jh+ ξ ) = Yj(ξ ), ξ ∈ [0,h], j = 0,1, . . . ,m− 1.

Remark 3.2. The size of delay-free system (3.29) may become very large even for
a reasonably simple time-delay system. To illustrate this, let us consider a system
with two delays, h1 = 0.571 and h2 = 1. The basic delay here is equal to h= 0.001.
Therefore, in this case the number of auxiliary matrices in system (3.29) is equal to
2,000.

3.4.2 Scalar Equation

We consider a scalar time-delay equation of the form

dx(t)
dt

=
m

∑
j=0

a jx(t − jh), t ≥ 0, (3.33)

where a j, j = 0,1, . . . ,m, are real coefficients and h> 0 is a basic time delay.
For Eq. (3.33) Lyapunov matrices are scalar functions, and we call them scalar

Lyapunov functions. Here W is a 1× 1 matrix, and in this section we will use the
lowercase letter μ instead of W . According to Definition 3.2, a scalar Lyapunov
function associated with a given scalar value μ is a function that satisfies the
following three properties:

1. Dynamic property:

du(τ)
dτ

=
m

∑
j=0

a ju(τ − jh), τ ≥ 0;

2. Symmetry property:
u(−τ) = u(τ), τ ≥ 0;

3. Algebraic property:

2
m

∑
j=0

a ju( jh) =−μ .
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Remark 3.3. If u(τ) is a scalar Lyapunov function associated with μ = 1, then
αu(τ) is a scalar Lyapunov function associated with μ = α . Therefore, in the scalar
case it is sufficient to compute the scalar Lyapunov function u(τ) associated with
μ = 1. The algebraic property for this function is of the form

m

∑
j=0

a ju( jh) =−1
2
. (3.34)

Let us introduce for ξ ∈ [0,h] the auxiliary functions

y j(ξ ) = u( jh+ ξ ), j =−m,−m+ 1, . . . ,0,1, . . . ,m− 1.

Delay-free system (3.29) is now of the form

d
dξ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ym−1
...

y0

y−1
...

y−m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= L

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ym−1
...

y0

y−1
...

y−m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.35)

where

L =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a0 a1 · · · · · · am

0 a0 a1 · · · · · · am
. . .

. . .
. . .

a0 a1 · · · · · · am

−am −am−1 · · · · · · −a0

−am −am−1 · · · · · · −a0
. . .

. . .
. . .

−am −am−1 · · · · · · −a0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and boundary value conditions (3.30) and (3.31) are written as

y j(0) = y j−1(h), j = −m+ 1,−m+ 2, . . .,0, . . . ,m− 1,

m−1

∑
k=0

akyk(0)+ amym−1(h) = − 1
2
.

Remark 3.4. The matrix L in system (3.35) is the resultant matrix of the
polynomials

p1(s) = a0sm + a1sm−1 + · · ·+ am,

p2(s) = −amsm − am−1sm−1 −·· ·− a0 =−sm p1
(

s−1) .
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3.4.3 Numerical Scheme

Let us return to the case of general delays. The dynamic equation for the Lyapunov
matrices is now of the form (3.8). We propose a computational scheme that consists
of two stages. At the first one a piecewise linear approximation of the initial
condition for the Lyapunov matrix is computed. Then, at the second stage, this
initial condition is used for the computation of the approximate Lyapunov matrix
as a solution of Eq. (3.8).

Initial Conditions

In this subsection we present an algorithm for the computation of a continuous
piecewise linear approximation of the initial condition for a Lyapunov matrix U(τ).

First, we divide the interval [−h,0] into N equal segments [−(k+ 1)r,−kr], k =
0,1, . . . ,N − 1, where r = h

N . Then we introduce N + 1 auxiliary matrices Φ j, j =
0,1, . . . ,N, and define the continuous piecewise linear matrix valued function

Φ(θ ) =

{(

1+ θ+ jr
r

)

Φ j +
(

− jr+θ
r

)

Φ j+1, θ ∈ [−( j+ 1)r,− jr],

j = 0,1, . . . ,N − 1.
(3.36)

It follows directly from Eq. (3.8) that the solution of the equation with the initial
matrix function Φ(θ ), θ ∈ [−h,0], satisfies the equality

U(τ,Φ)e−A0τ = Φ0 +
m

∑
k=1

τ
∫

0

U(ξ − hk,Φ)Ake−A0ξ dξ .

For τ = jr we have

U( jr,Φ)e−A0 jr = Φ0 +
m

∑
k=1

jr
∫

0

U(ξ − hk,Φ)Ake−A0ξ dξ .

Comparing matrices U( jr,Φ) and U(( j+ 1)r,Φ) we arrive at the equality

U(( j+ 1)r,Φ)e−A0r −U( jr,Φ) =
m

∑
k=1

( j+1)r
∫

jr

U(ξ − hk,Φ)Ake−A0(ξ− jr)dξ .
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Let us express delays hk as hk = jkr + θk, θk ∈ [0,r), and introduce the matrices
Uk = U(kr,Φ), k = 0,1,2, . . . ,N. If we define the new integration variable by η =
ξ −θk − jr, then the previous equality can be written as

Uj+1e−A0r −Uj =
m

∑
k=1

r−θk
∫

−θk

U(( j− jk)r+η ,Φ)Ake−A0(η+θk)dη . (3.37)

Each integral on the right-hand side of (3.37) can be written as follows:

Lk =

r−θk
∫

−θk

U(( j− jk) r+η ,Φ)Ake−A0ηdηe−A0θk

=

0
∫

−θk

U(( j− jk)r+η ,Φ)Ake−A0η dηe−A0θk

+

r−θk
∫

0

U(( j− jk)r+η ,Φ)Ake−A0η dηe−A0θk . (3.38)

To obtain an approximate value of the integral we replace the matrix U(τ,Φ) under
the integral by its piecewise linear approximation

̂U(τ) =

{

(

1− τ− jr
r

)

Uj +
(

τ− jr
r

)

Uj+1, τ ∈ [ jr,( j+ 1)r],

j = 0,1, . . . ,N − 1.

The sign of the argument of U(·) under the integral (3.38) depends on the factor ( j−
jk). The following lemma provides evaluations of the integral for different values of
the factor.

Lemma 3.10. The piecewise linear approximation ̂U(τ) provides the following
expressions for integral (3.38).

• If j− jk ≥ 1, then the integral

̂Lk =

r−θk
∫

−θk

̂U(( j− jk)r+η)Ake−A0(η+θk)dη

= Uj− jk−1Pk +Uj− jkQk +Uj−k+1Rk;
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• If j− jk ≤−1, then the integral

̂Lk =

r−θk
∫

−θk

̂U(( j− jk)r+η)Ake−A0(η+θk)dη

= Φ jk− j+1Pk +Φ jk− jQk +Φ jk− j−1Rk;

• If j− jk = 0, then the integral

̂Lk =

r−θk
∫

−θk

̂U(( j− jk)r+η)Ake−A0(η+θk)dη

= Φ1Pk +U0Qk +U1Rk,

where the matrices

Pk = Ak

⎡

⎣

0
∫

−θk

(

−η
r

)

e−A0η dη

⎤

⎦e−A0θk ,

Qk = Ak

⎡

⎣

0
∫

−θk

(

1+
η
r

)

e−A0ηdη +

r−θk
∫

0

(

1− η
r

)

e−A0ηdη

⎤

⎦e−A0θk ,

Rk = Ak

⎡

⎣

r−θk
∫

0

(η
r

)

e−A0ηdη

⎤

⎦e−A0θk .

Thus, all the summands on the right-hand side of (3.37) can be expressed in the
terms of the matrices Φk and Uj, and we arrive at the set of N linear matrix equations
for these matrices. Application of the symmetry property at the partition points

Uj = ΦT
j , j = 0,1, . . . ,N, (3.39)

makes it possible to exclude the matrices Uj from these matrix equations and obtain
a set of N matrix equations for N + 1 matrices Φk, k = 0,1, . . . ,N. If we add to this
set algebraic condition (3.31) expressed in the terms of the matrices

−W = AT
0 Φ0 +Φ0A0 +

m

∑
k=1

AT
k

[(

1− θk

r

)

ΦT
jk
+

(

θk

r

)

ΦT
jk+1

]

+
m

∑
k=1

[(

1− θk

r

)

Φ jk +

(

θk

r

)

Φ jk+1

]

Ak,
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then we finally obtain the system of N + 1 matrix equations for the matrices.
The solution of the system provides the matrices Φk, k = 0,1, . . . ,N. Now

formula (3.36) defines the desired approximation of the initial matrix function.

Approximate Lyapunov Matrices

Now with the piecewise linear initial matrix Φ(θ ), θ ∈ [−h,0], computed at the
previous stage, we compute the corresponding solution of matrix equation (3.8).
This can be done by the step-by-step method. The computed solution, ̂U(τ,Φ),
defines the desired approximation of the Lyapunov matrix U(τ).

3.4.4 Error Estimation

In the case of general delays the semianalytic method is not applicable, so it is
not possible to evaluate the quality of the approximate Lyapunov matrix by means
of direct comparison with the exact Lyapunov matrix obtained by the semianalytic
method. In this section we provide a different approach to the estimation of the
quality of the approximate Lyapunov matrices.

By construction, the matrix ̂U(τ) = ̂U(τ,Φ) satisfies dynamic property (3.8), and
̂U(0) = Φ0 is symmetric. But it is not required that properties (3.9) and (3.10) be
satisfied. The error matrix

Δ(τ) = ̂U(τ)−ΦT (−τ), τ ∈ [0,h],

describes the discrepancy of the symmetry property. The algebraic property (3.10)
can be written in the form

m

∑
j=0

[

UT (h j)A j +AT
j U(h j)

]

=−W.

Let us define the matrix ̂W as follows:

m

∑
j=0

(

[

̂U(h j)
]T

A j +AT
j
̂U(h j)

)

=− ̂W .

Then the matrix ΔW =W − ̂W evaluates the violation of the algebraic property.
Given the positive-definite matrices Wj, j = 0,1, . . . ,2m, let system (3.1) satisfy

the Lyapunov condition. Then there exists a Lyapunov matrix U(τ) associated with
W = W0 +∑m

j=1 (Wj + h jWm+ j). The Lyapunov matrix defines the complete type
functional (3.15). It is convenient to present the functional in the form
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v(ϕ) = ϕT (0)U(0)ϕ(0)+
m

∑
j=1

2ϕT (0)

0
∫

−h j

UT (θ + h j)A jϕ(θ )dθ

+
m

∑
k=1

m

∑
j=1

0
∫

−hk

ϕT (θ1)A
T
k

⎛

⎜

⎝

0
∫

−h j

UT (θ2 + h j −θ1 − hk)A jϕ(θ2)dθ2

⎞

⎟

⎠
dθ1

+
m

∑
j=1

0
∫

−h j

ϕT (θ ) [Wj +(h j +θ )Wm+ j]ϕ(θ )dθ .

Let us replace matrix U(τ) in the preceding functional by the approximate matrix
̂U(τ) and denote the new functional by v̂(ϕ):

v̂(ϕ) = ϕT (0)̂U(0)ϕ(0)+
m

∑
j=1

2ϕT (0)

0
∫

−h j

[

̂U(θ + h j)
]T

A jϕ(θ )dθ

+
m

∑
k=1

m

∑
j=1

0
∫

−hk

ϕT (θ1)A
T
k

⎛

⎜

⎝

0
∫

−h j

[

̂U(θ2 + h j −θ1 − hk)
]T

A jϕ(θ2)dθ2

⎞

⎟

⎠
dθ1

+
m

∑
k=1

0
∫

−hk

ϕT (θ ) [Wk +(hk +θ )Wm+k]ϕ(θ )dθ .

Lemma 3.11. The time derivative of v̂(ϕ) along the solutions of system (3.1) is
equal to

d
dt

v̂(xt) = −ŵ(xt)

= −w(xt)+ xT (t)

(

W +
m

∑
j=0

[

(

̂U(h j)
)T

A j +AT
j
̂U(h j)

]

)

x(t)

+
m

∑
k=1

m

∑
j=1

xT (t)AT
j

0
∫

−hk

(

̂U(−θ − hk + h j)

−
[

̂U(θ + hk − h j)
]T
)

Akx(t +θ )dθ

+
m

∑
j=1

m

∑
k=1

xT (t − h j)A
T
j

0
∫

−hk

(

[

̂U(θ + hk)
]T

−̂U(−θ − hk)

)

Akx(t +θ )dθ , t ≥ 0.
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Proof. We first compute the time derivative of the individual terms of the functional.
For the first term,

̂R0(t) = xT (t)̂U(0)x(t),

we have

d̂R0(t)
dt

= 2xT (t)̂U(0)

[

n

∑
j=0

A jx(t − h j)

]

.

The time derivative of the term

̂R j(t) = 2xT (t)

0
∫

−h j

[

̂U(θ + h j)
]T

A jx(t +θ )dθ

is equal to

d̂R j(t)

dt
= 2

[

n

∑
j=0

A jx(t − h j)

]T 0
∫

−h j

[

̂U(θ + h j)
]T

A jx(t +θ )dθ

+2xT (t)

(

[

̂U(h j)
]T

A jx(t)−
[

̂U(0)
]T

A jx(t − h j)

−
0
∫

−h j

[

d̂U(τ)
dτ

]T

τ=θ+h j

A jx(t +θ )dθ

)

.

Now we compute the time derivative of the term

̂Rk j(t) =

0
∫

−hk

xT (t +θ1)A
T
k

⎛

⎜

⎝

0
∫

−h j

[

̂U(θ2 + h j −θ1 − hk)
]T

A jx(t +θ2)dθ2

⎞

⎟

⎠
dθ1.

It is equal to the expression

d̂Rk j(t)

dt
= xT (t)AT

k

⎛

⎜

⎝

0
∫

−h j

[

̂U(θ + h j − hk)
]T

A jx(t +θ )dθ

⎞

⎟

⎠

−xT (t − hk)A
T
k

⎛

⎜

⎝

0
∫

−h j

[

̂U(θ + h j)
]T

A jx(t +θ )dθ

⎞

⎟

⎠
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+ xT (t)AT
j

⎛

⎝

0
∫

−hk

̂U(−θ + h j − hk)Akx(t +θ )dθ

⎞

⎠

− xT (t − h j)A
T
j

⎛

⎝

0
∫

−hk

̂U(−θ − hk)Akx(t +θ )dθ

⎞

⎠ .

The time derivative of the term

̂Jk(t) =

0
∫

−hk

xT (t +θ ) [Wk +(hk +θ )Wm+k]x(t +θ )dθ

is of the form

d̂Jk(t)
dt

= xT (t) [Wk + hkWm+k]x(t)− xT (t − hk)Wkx(t − hk)

−
0
∫

−hk

xT (t +θ )Wm+kx(t +θ )dθ .

Now, collecting the computed time derivatives we obtain

d
dt

v̂(xt) = xT (t)

(

m

∑
j=0

[

(

̂U(h j)
)T

A j +AT
j
̂U(h j)

]

)

x(t)

+
m

∑
j=1

2xT (t)

0
∫

−h j

[

−d̂U(τ)
dτ

+ ̂U(τ)A0 +
m

∑
k=1

̂U(τ − hk)Ak

]T

τ=θ+h j

A jx(t +θ )dθ

+
m

∑
k=1

m

∑
j=1

xT (t)

0
∫

−hk

AT
j

(

̂U(−θ − hk + h j)−
[

̂U(θ + hk − h j)
]T
)

Akx(t +θ )dθ

+
m

∑
j=1

m

∑
k=1

xT (t − h j)A
T
j

0
∫

−hk

(

[

̂U(θ + hk)
]T

− ̂U(−θ − hk)

)

Akx(t +θ )dθ

+ XT (t)

[

m

∑
k=1

(Wk + hkWm+k)

]

x(t)−
m

∑
k=1

xT (t − hk)Wkx(t − hk)

−
m

∑
k=1

0
∫

−hk

xT (t +θ )Wm+kx(t +θ )dθ .
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Since for θ ∈ [−h j,0], θ + h j ≥ 0, then

2xT (t)

0
∫

−h j

[

−d̂U(τ)
dτ

+ ̂U(τ)A0 +
m

∑
k=1

̂U(τ − hk)A0

]T

τ=θ+h j

A jx(t +θ )dθ = 0, j = 1,2, . . . ,m,

and we arrive at the equality

d
dt

v̂(xt) = −w(xt)+ xT (t)

(

W +
m

∑
j=0

[

(

̂U(h j)
)T

A j +AT
j
̂U(h j)

]

)

x(t)

+
m

∑
k=1

m

∑
j=1

xT (t)

0
∫

−hk

AT
j

(

̂U(−θ − hk + h j)

−
[

̂U(θ + hk − h j)
]T

)

Akx(t +θ )dθ

+
m

∑
j=1

m

∑
k=1

xT (t − h j)A
T
j

0
∫

−hk

(

[

̂U(θ + hk)
]T

−̂U(−θ − hk)

)

Akx(t +θ )dθ .

For θ ∈ [−hk,0], θ + hk ≥ 0, hence

Gk(θ ) =
[

̂U(θ + hk)
]T

− ̂U(−θ − hk) =
[

̂U(θ + hk)
]T

−Φ(−θ − hk)

= ΔT (θ + hk), k = 1,2, . . . ,m,

and

Fk j(θ ) = ̂U(−θ − hk + h j)−
[

̂U(θ + hk − h j)
]T

=

{

−ΔT (θ + hk − h j), if θ + hk − h j ≥ 0
Δ(−θ − hk + h j), if θ + hk − h j < 0.

We propose to evaluate the quality of the approximate matrix ̂U(τ) comparing the
time derivative of the functional v̂(xt) with that of the functional v(xt): the smaller
the difference between the time derivatives, the better the approximation. To this
end, we define the quantities
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ρ0 =
∥

∥

∥
W − ̂W

∥

∥

∥
, ρ1 = sup

τ∈[0,h]
‖Δ(τ)‖ , ai = ‖Ai‖, i = 1, . . . ,m.

Observe that

J1(t) = xT (t)

(

W +
m

∑
j=0

[

(

̂U(h j)
)T

A j +AT
j
̂U(h j)

]

)

x(t)

= xT (t)
(

W − ̂W
)

x(t);

thus
|J1(t)| ≤ ρ0‖x(t)‖2 .

Now we estimate the term

J2(t) = xT (t − h j)A
T
j

0
∫

−hk

[

(

̂U(θ + hk)
)T

− ̂U(−θ − hk)

]

Akx(t +θ )dθ

= xT (t − h j)A
T
j

0
∫

−hk

Gk(θ )Akx(t +θ )dθ .

Here we have

|J2(t)| ≤
ρ1

2
a jak

⎛

⎝hk
∥

∥x(t − h j)
∥

∥

2
+

0
∫

−hk

‖x(t +θ )‖2 dθ

⎞

⎠.

In a similar way we obtain the estimation of the term

J3(t) = xT (t)AT
j

0
∫

−hk

[

̂U(−θ − hk + h j)−
(

̂U(θ + hk − h j)
)T

]

Akx(t +θ )dθ

= xT (t)AT
j

0
∫

−hk

Fk j(θ )Akx(t +θ )dθ ,

|J3(t)| ≤
ρ1

2
a jak

⎛

⎝hk ‖x(t)‖2 +

0
∫

−hk

‖x(t +θ )‖2 dθ

⎞

⎠.
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Finally, we arrive at the inequality

∣

∣

∣

∣

dv̂(xt)

dt
− dv(xt)

dt

∣

∣

∣

∣

≤
m

∑
k=0

εk‖x(t − hk)‖2 +
m

∑
k=1

εm+k

0
∫

−hk

‖x(t +θ )‖2dθ , (3.40)

where

ε0 = ρ0 +
ρ1

2

(

m

∑
k=1

ak

)(

m

∑
j=1

a jh j

)

,

εk =
ρ1

2
ak

(

m

∑
j=1

a jh j

)

, εm+k = ρ1ak

(

m

∑
j=1

a j

)

, k = 1,2, . . . ,m. �

Remark 3.5. If λmin(Wk) > εk, k = 0,1, . . . ,m, and λmin(Wm+ j) > εm+ j ,
j = 1, . . . ,m, then the time derivative of the functional v̂(xt) remains negative
definite.

The quantity

χ = max
l=0,1,...,2m

{

εl

λmin(Wl)

}

(3.41)

is proposed as a qualitative measure of the approximation of a Lyapunov matrix: the
smaller the measure, the better the approximation.

3.5 Exponential Estimates

In this section we show how one can use the complete type functionals to obtain
exponential estimates for the solutions of system (3.1).

Theorem 3.10. Assume we have two functionals v,w : PC([−h,0],Rn) → R such
that the following conditions are satisfied:

1. α1 ‖ϕ(0)‖2 ≤ v(ϕ)≤ α2 ‖ϕ‖2
h for some positive α1, α2.

2. There exists σ > 0 for which 2σv(ϕ)≤ w(ϕ).
3. Along the solutions of system (3.1) the following equality holds:

d
dt

v(xt) =−w(xt), t ≥ 0.

Then the solutions of the system admit the exponential estimate

‖x(t,ϕ)‖ ≤
√

α2

α1
e−σt ‖ϕ‖h , t ≥ 0. (3.42)
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Proof. Given any ϕ ∈ PC([−h,0],Rn), conditions 1 and 3 imply that

d
dt

v(xt(ϕ))+ 2σv(xt(ϕ))≤ 0, t ≥ 0.

Integrating this inequality we get

v(xt(ϕ))≤ v(ϕ)e−2σt , t ≥ 0.

Then condition 1 yields

α1 ‖x(t,ϕ)‖2 ≤ v(xt(ϕ))≤ v(ϕ)e−2σt ≤ α2 ‖ϕ‖2
h e−2σt , t ≥ 0.

Comparing the left- and right-hand sides of the preceding inequalities we arrive at
the exponential estimate (3.42). �

We will now show that, conversely, if system (3.1) is exponentially stable, then a
complete type functional (3.15) satisfies the conditions of Theorem 3.10.

Theorem 3.11. If system (3.1) is exponentially stable and W0,W1, . . . ,W2m are
positive-definite n× n matrices, then there exist positive constants α1,α2,σ such
that complete type functional (3.15) and functional (3.14) satisfy the conditions of
Theorem 3.10.

Proof. We have already seen that the exponential stability of system (3.1) implies
that functionals (3.15) and (3.14) satisfy the last condition of Theorem 3.10.
Lemmas 3.4 and 3.5 provide positive α1,α2 that satisfy the first condition of
Theorem 3.10. It is evident that

m

∑
k=0

λmin(Wk)‖ϕ(−hk)‖2 +
m

∑
j=1

λmin(Wm+ j)

0
∫

−h j

‖ϕ(θ )‖2 dθ ≤ w(ϕ).

By Lemma 3.7, there exist positive constants δr, r = 0,1, . . . ,m, such that

v(ϕ)≤ δ0 ‖ϕ(0)‖2 +
m

∑
j=1

δ j

0
∫

−h j

‖ϕ(θ )‖2 dθ .

Comparing the last two inequalities we conclude that if σ > 0 satisfies the
inequalities

2σδ0 ≤ λmin(W0), and 2σδ j ≤ λmin(Wm+ j), j = 1,2, . . . ,m,

then the second condition of Theorem 3.10 is satisfied. This concludes the proof.
�
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Remark 3.6. The preceding proof shows that the first (m+ 1) terms in (3.14) are
needed to prove that the corresponding complete type functional (3.15) satisfies the
left-hand-side inequality of the first condition of Theorem 3.10. The last m terms
in (3.14), along with the first one, are used to derive the second inequality of the
condition.

Remark 3.7. Clearly the exponential estimate obtained in Theorem 3.11 depends
on the choice of positive-definite matrices Wj, j = 0,1, . . . ,2m. These matrices may
serve as free parameters in an optimization of the estimate.

3.6 Robustness Bounds

3.6.1 Robust Stability Conditions: General Case

Assume that system (3.1) is exponentially stable, and consider a perturbed system
of the form

dy(t)
dt

= (A0 +Δ0)y(t)+
m

∑
k=1

(Ak +Δk)y(t − hk), t ≥ 0, (3.43)

where Δk, k = 0,1, . . . ,m, are unknown but the norm bounded matrices

‖Δk‖ ≤ ρk, k = 0,1, . . . ,m. (3.44)

We would like to estimate the bounds ρk for which perturbed system (3.43) remains
exponentially stable for all possible perturbations Δk satisfying (3.44).

Lemma 3.12. Given the positive-definite matrices Wj, j = 0,1, . . . ,2m, and func-
tional (3.15), the time derivative of the functional along the solutions of perturbed
system (3.43) is equal to

d
dt

v(yt) =−w(yt)+ 2

[

Δ0y(t)+
m

∑
k=1

Δky(t − hk)

]T

l(yt), t ≥ 0,

where

l(yt) =U(0)y(t)+
m

∑
k=1

0
∫

−hk

U(−θ − hk)Aky(t +θ )dθ .

Proof. The proof of the lemma is similar to that of Lemma 2.14. �
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Let us define the following constants:

λmin = min
0≤ j≤2m

{

λmin(Wj)
}

, a j =
∥

∥A j
∥

∥ , j = 1, . . . ,m, ν = max
τ∈[0,h]

‖U(τ)‖ .

It is not difficult to show that

d
dt

v(yt)≤−w(yt)

⎡

⎣1− 2ν
λmin

‖ρ‖
(

1+
m

∑
k=1

hka2
k

) 1
2
⎤

⎦ ,

where ‖ρ‖=
(

ρ2
0 +ρ2

1 + · · ·+ρ2
m

) 1
2 . And we arrive at the following statement.

Theorem 3.12. Let system (3.1) be exponentially stable. Given the positive-definite
matrices Wk, k = 0,1, . . . ,2m, perturbed system (3.43) remains exponentially stable
for all possible perturbations satisfying (3.44) if

‖ρ‖< λmin

2ν

(

1+
m

∑
k=1

hka2
k

)− 1
2

.

3.6.2 Robust Stability Conditions: Scalar Case

Let us consider scalar equation (3.33). Assume that it is exponentially stable, and
consider the scalar perturbed equation

dy(t)
dt

=
m

∑
j=0

(a j +Δ j)y(t − jh), t ≥ 0. (3.45)

Here unknown values Δ j, j = 0,1, . . . ,m, are assumed to satisfy the inequalities

∣

∣Δ j
∣

∣≤ ρ j, j = 0,1, . . . ,m, (3.46)

where ρ j are nonnegative numbers. We are going to find bounds on ρ j, j =
0,1, . . . ,m, such that the perturbed equation remains exponentially stable for all Δ j,
j = 0,1, . . . ,m, satisfying (3.46).

To derive such bounds, we apply functional (3.15) constructed for the nominal
equation (3.33). The first time derivative of the functional along the solutions of
Eq. (3.45) is
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d
dt

v(yt) = −w(yt)

+2μ

[

m

∑
j=0

Δ jy(t − jh)

]

⎡

⎣u(0)y(t)+
m

∑
k=1

ak

0
∫

−kh

u(kh+θ )y(t +θ )dθ

⎤

⎦

= −w(yt)+ 2μ
m

∑
j=0

Δ jy(t − jh)u(0)y(t)

+2μ
m

∑
j=0

m

∑
k=1

Δ jy(t − jh)ak

0
∫

−kh

u(kh+θ )y(t +θ )dθ ,

where μ = μ0 +∑m
j=1 (μ j + jhμm+ j).

We estimate the term

Jj(t) =
∣

∣2Δ jy(t − jh)u(0)y(t)
∣

∣≤ ρ ju(0)
[

y2(t)+ y2(t − jh)
]

.

Now consider the term

Jjk(t) =

∣

∣

∣

∣

∣

∣

2Δ jy(t − jh)ak

0
∫

−kh

u(kh+θ )y(t +θ )dθ

∣

∣

∣

∣

∣

∣

≤ ρ j |ak|
0
∫

−kh

|u(kh+θ )| [y2(t − jh)+ y2(t +θ )]dθ

= ρ j |ak|y2(t − jh)

0
∫

−kh

|u(kh+θ )|dθ +ρ j |ak|
0
∫

−kh

|u(kh+θ )|y2(t +θ )dθ .

These estimations generate the following upper bound for the time derivative:

d
dt

v(yt) ≤ −μ

⎡

⎣

μ0

μ
−
(

ρ0 +
m

∑
j=0

ρ j

)

u(0)−ρ0

m

∑
k=1

|ak|
0
∫

−kh

|u(kh+θ )|dθ

⎤

⎦y2(t)

−
m

∑
k=1

μ

⎡

⎣

μk

μ
−ρku(0)−ρk

m

∑
j=1

∣

∣a j
∣

∣

0
∫

− jh

|u( jh+θ )|dθ

⎤

⎦y2(t − kh)

−
m

∑
j=1

μ
0
∫

− jh

[

μm+ j

μ
−
∣

∣a ju( jh+θ )
∣

∣

m

∑
k=0

ρk

]

y2(t +θ )dθ .

The next theorem follows directly from the last inequality.



3.7 Applications 127

Theorem 3.13. Let Eq. (3.33) be exponentially stable. Then system (3.45) remains
stable for all perturbations satisfying (3.46) if the values ρ j, j = 0,1, . . . ,m, are such
that the following inequalities hold:

•

μ0

μ
≥
(

ρ0 +
m

∑
j=0

ρ j

)

u(0)+ρ0

m

∑
k=1

|ak|
0
∫

−kh

|u(kh+θ )|dθ ;

• For k = 1,2, . . . ,m

μk

μ
≥ ρku(0)+ρk

m

∑
j=1

∣

∣a j
∣

∣

0
∫

− jh

|u( jh+θ )|dθ ;

• For j = 1,2, . . .m

μm+ j

μ
>
∣

∣a ju( jh+θ )
∣

∣

m

∑
k=0

ρk, θ ∈ [− jh,0].

Remark 3.8. If ρ j, j = 0,1, . . . ,m, satisfy the conditions of Theorem 3.13, then the
trivial solution of Eq. (3.45) remains exponentially stable even if the perturbations
Δ j, j = 0,1, . . . ,m, are time varying or depend on yt . The only two assumptions
needed are that they are continuous with respect to their arguments and satisfy (3.46)
for all values of the arguments.

3.7 Applications

3.7.1 Critical Values

A system with one basic delay is considered, i.e., we study the case where hk = kh,
k = 1, . . . ,m, so the delay system is now of the form

dx(t)
dt

=
m

∑
k=0

Akx(t − kh), t ≥ 0. (3.47)

Here h > 0 is the basic delay and Ak ∈ Rn×n, k = 0, . . . ,m. The characteristic
quasipolynomial of the system is written as

f (s) = det

(

sI−
m

∑
k=0

e−hksAk

)

. (3.48)
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It was shown in Lemma 3.9 that for the computation of the Lyapunov matrix of
the system one must find a special solution of the delay-free system of matrix
Eqs. (3.29).

The spectrum of delay system (3.47) and that of delay-free system (3.29) are
connected, as is explained in the following statement.

Theorem 3.14. Let s0 be an eigenvalue of system (3.47) such that −s0 is also an
eigenvalue of the system. Then s0 belongs to the spectrum of delay-free system
(3.29). Furthermore, the spectrum of the delay-free system is symmetrical with
respect to the imaginary axis of the complex plane.

Proof. The characteristic matrix of system (3.47) is

G(s) = sI −
m

∑
k=0

Ake−khs.

Since s0 and −s0 are eigenvalues of the systems, there exist nonzero vectors γ and
μ such that

γT G(s0) = 0, GT (−s0)μ = 0. (3.49)

A complex number s belongs to the spectrum of delay-free system (3.29) if and only

if there exists a nontrivial set of 2m constant matrices X (0)
j , j =−m, . . . ,0, . . . ,m−1

of dimension n× n such that
⎧

⎨

⎩

sX (0)
j = ∑m

k=0 X (0)
j−kAk, j = 0,1, . . . ,m− 1

sX (0)
j =−∑m

k=0 AT
k X (0)

j+k, j =−m,−m+ 1, . . . ,−1.
(3.50)

Multiplying the first equality in (3.49) on the left-hand side by e jhs0 μ , j = 0, . . . ,m−
1, and the second equality (3.49) on the right-hand side by e jhs0γT , j =−m, . . . ,−1,
we obtain

{

s0e jhs0 μγT −∑m
k=0 μγT e( j−k)hs0Ak = 0n×n, j = 0, . . . ,m− 1

−s0e jhs0 μγT −∑m
k=0 AT

k e( j+k)hs0 μγT = 0n×n, j =−m,−m+ 1, . . . ,−1.

If we define the matrices X (0)
j = μγT e jhs0 , j = −m, . . . ,−1,0,1, . . . ,m − 1, then

these equalities take the form

⎧

⎨

⎩

s0X (0)
j = ∑m

k=0 X (0)
j−kAk, j = 0,1, . . . ,m− 1

s0X (0)
j =−∑m

k=0 AT
k X (0)

j+k, j =−m,−m+ 1, . . . ,−1.
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Since the matrices X (0)
j , j = −m, . . . ,−1,0,1, . . . ,m − 1, are not trivial, s0 is an

eigenvalue of the delay-free system of matrix equations (3.29). The same is true
for −s0.

The fact that the spectrum of system (3.29) is symmetrical with respect to the
imaginary axis follows directly from the observation that if for s there exists a

nontrivial set of matrices X (0)
j , j = −m, . . . ,0, . . . ,m − 1, satisfying (3.50), then,

applying the transposition operation to the equalities in (3.50), one can check that

the matrices ̂X (0)
j = [X (0)

− j−1]
T , j =−m, . . . ,0, . . . ,m− 1, satisfy (3.50) for −s. �

The following observations are useful for the analysis of the roots of the system
of matrix equations (3.29).

Remark 3.9. The characteristic polynomial p(s) of system (3.29) is of degree 2mn2.
Because of the symmetry of the system spectrum with respect to the imaginary axis,
the polynomial can be written as p1(λ ), where λ = s2. A numerically important
consequence of this fact is that the problem of determining the purely imaginary
roots of p(s) reduces to finding nonpositive real roots of the real polynomial p1(λ )
of degree mn2.

Remark 3.10. System (3.29) does not depend on the value of h. Thus the spectrum
of this system does not depend on h either. On the other hand, the spectrum of the
original system (3.47) depends on h.

When the matrices of system (3.47) depend continuously on parameters or the
value of the basic delay h is not fixed, we can exploit Theorem 3.14 to compute
the critical values of the parameters, i.e., the values for which system (3.47) admits
eigenvalues on the imaginary axis of the complex plane. As the first step, one must
find the set K of parameters for which the polynomial p1(λ ) of Remark 3.9 has
negative real roots. The knowledge of the roots allows one to define for every
member of the set K the corresponding set S of candidate critical frequencies of
system (3.47). Then for each member of the set K one must compute the values
of quasipolynomial (3.48) at the points of the corresponding set of the candidate
critical frequencies. A candidate critical frequency for which the quasipolynomial
vanishes is a critical frequency, and the corresponding system parameters are critical
parameter values.

Let us consider the case where the only free system parameter is the basic delay h.
In this case all the coefficients of the polynomial p1(λ ) are given real numbers. The
set of negative real roots of this polynomial defines the set S of candidate critical
frequencies of system (3.47). Clearly, when this set is empty and system (3.47) is
stable (unstable) for the zero basic delay, the system is delay independent stable
(unstable). If this set is not empty, one can substitute the elements of S into the
characteristic quasipolynomial of system (3.47) and compute the critical values
of h for which the quasipolynomial vanishes. Using these critical values one can
determine the stability and instability intervals of the basic delay by applying
methods reported in the literature.

Finally, we illustrate how the results of this section can be employed in the
stability analysis of time-delay systems with delays that are multiple of a basic delay.
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3.7.2 The H2 Norm of a Transfer Matrix

In some applications it is important to compute the value of the H2 norm of the
transfer matrix of a control system. In this section we consider an exponentially
stable control system of the form

dx(t)
dt

=
m

∑
k=0

[Akx(t − hk)+Bku(t − hk)] , t ≥ 0, (3.51)

y(t) = Cx(t − h).

The transfer matrix of the system is of the form

F(s) = e−hsC

(

sI−
m

∑
k=0

e−hksAk

)−1( m

∑
j=0

e−h jsB j

)

= e−hsCH(s)B(s),

where the matrix H(s) is the Laplace image of the fundamental matrix K(t) of
control system (3.51),

H(s) =

∞
∫

0

K(t)e−stdt =

(

sI −
m

∑
k=0

e−hksAk

)−1

.

The H2 norm of the transfer matrix is defined as follows:

‖F‖2
H2

=
1

2π i

i∞
∫

−i∞

Trace
{

FT (ξ )F(−ξ )
}

dξ

= Trace

⎧

⎨

⎩

1
2π i

i∞
∫

−i∞

BT (ξ )HT (ξ )CTCH(−ξ )B(−ξ )dξ

⎫

⎬

⎭

=
m

∑
p=0

m

∑
q=0

Trace

⎧

⎨

⎩

BT
p

⎡

⎣

1
2π i

i∞
∫

−i∞

HT (ξ )CTCH(−ξ )e−(hp−hq)ξ dξ

⎤

⎦Bq

⎫

⎬

⎭

.

Here Trace{Q} is the trace of a square n× n matrix Q,

Trace{Q}=
n

∑
j=1

q j j.
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Applying the frequency domain expression for Lyapunov matrices (Sect. 3.3.1) we
obtain the equality

1
2π i

i∞
∫

−i∞

HT (ξ )CTCH(−ξ )e−(hp−hq)ξ dξ =U(hp − hq),

where the matrix U(τ) on the right-hand side of the preceding equality is the
Lyapunov matrix U(τ) of system (3.51), with the trivial input u(t) ≡ 0 associated
with matrix W =CTC.

As a result we arrive at the following expression for the H2 norm of the transfer
matrix:

‖F‖H2
=

(

m

∑
p=0

m

∑
q=0

Trace
{

BT
pU(hp − hq)Bq

}

) 1
2

.

3.8 Notes and References

Lyapunov matrices and functionals for an exponentially stable system (3.1) are
studied in [55]; see also [33, 39, 42, 59].

The piecewise linear approximation of Lyapunov matrices and error estimation
are presented in [12]; see also [29]. Upper and lower bounds for quadratic Lyapunov
functionals (Lemmas 3.4–3.17) are reported in [42] and [38]. These bounds are
used to derive exponential estimates for the solutions of time-delay systems in [38]
(Theorem 3.11); for the robustness analysis of an uncertain time-delay system in
[42], see Theorem 3.12.

As was mentioned in Sect. 2.13, in [26] an explicit expression for Lyapunov
matrices of a general time-delay system is obtained. The proof of Theorem 3.5 is an
adaptation of the original proof of the theorem in [26] to the case of systems with
multiple delays. A detailed analysis of Theorem 3.5 in the case of scalar time-delay
equations can be found in [23]. The uniqueness statement of Theorem 3.6 is proven
in [37]. The results presented in Sect. 3.4.1 are reported in [60].

Theorem 3.14 was obtained in [40]. The special case of the statement, namely,
the case of eigenvalues of system (3.1) on an imaginary axis, was first reported in
[53], where the idea of exploiting the fact that these eigenvalues are also roots of the
characteristic polynomial of delay-free system (3.29) in the computation of critical
delay values was proposed; see also [36] and references therein.

Application of Lyapunov matrices to the computation of the H2 norm of the
transfer matrix of control system (3.51) presented in Sect. 3.7.2 is due to [29].



Chapter 4
Systems with Distributed Delay

In this chapter a linear retarded type system with distributed delays is studied. First,
we introduce quadratic functionals and Lyapunov matrices for the system. Then
we present the existence and uniqueness conditions for the matrices and provide
some numerical schemes for the computation of the matrices. In the last part of the
chapter functionals of the complete type are introduced, and some applications of
the functionals are discussed.

4.1 System Description

We start with the following retarded type time-delay system:

d
dt

x(t) = A0x(t)+A1x(t − h)+

0
∫

−h

G(θ )x(t +θ )dθ , t ≥ 0. (4.1)

Here A0 and A1 are given real n×n matrices, delay h > 0, and G(θ ) is a continuous
matrix defined for θ ∈ [−h,0].

4.2 Quadratic Functionals

Given a symmetric matrix W , we are looking for a quadratic functional

v0 : PC([−h,0],Rn)→ R

V.L. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,
Control Engineering, DOI 10.1007/978-0-8176-8367-2 4,
© Springer Science+Business Media, LLC 2013
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such that along the solutions of system (4.1) the following equality holds:

d
dt

v0(xt) =−xT (t)Wx(t), t ≥ 0. (4.2)

Definition 4.1. The matrix U(τ) is said to be a Lyapunov matrix of system (4.1)
associated with a symmetric matrix W if it satisfies the following properties:

1. Dynamic property:

d
dτ

U(τ) =U(τ)A0 +U(τ − h)A1 +

0
∫

−h

U(τ +θ )G(θ )dθ , τ ≥ 0; (4.3)

2. Symmetry property:

U(−τ) =UT (τ), τ ≥ 0; (4.4)

3. Algebraic property:

−W = U(0)A0 +U(−h)A1+

0
∫

−h

U(θ )G(θ )dθ +AT
0 U(0)

+ AT
1 U(h)+

0
∫

−h

GT (θ )U(−θ )dθ . (4.5)

Remark 4.1. The algebraic property can also be written as

U ′(+0)−U ′(−0) =−W. (4.6)

For a given matrix U(τ) we define on PC([−h,0],Rn) a functional of the form

v0(ϕ) = ϕT (0)U(0)ϕ(0)+ 2ϕT (0)

0
∫

−h

U(−h−θ )A1ϕ(θ )dθ

+

0
∫

−h

ϕT (θ1)A
T
1

⎛

⎝

0
∫

−h

U(θ1 −θ2)A1ϕ(θ2)dθ2

⎞

⎠dθ1

+ 2ϕT (0)

0
∫

−h

⎛

⎝

θ
∫

−h

U(ξ −θ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ
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+ 2

0
∫

−h

ϕT (θ1)A
T
1

⎛

⎝

0
∫

−h

⎡

⎣

θ2
∫

−h

U(h+θ1−θ2 + ξ )G(ξ )dξ

⎤

⎦ϕ(θ2)dθ2

⎞

⎠dθ1

+

0
∫

−h

ϕT (θ1)

⎧

⎨

⎩

0
∫

−h

⎡

⎣

θ1
∫

−h

GT (ξ1)

⎛

⎝

θ2
∫

−h

U(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2

⎞

⎠dξ1

⎤

⎦

× ϕ(θ2)dθ2

⎫

⎬

⎭

dθ1. (4.7)

We can now prove the theorem.

Theorem 4.1. Let U(τ) be a Lyapunov matrix of system (4.1) associated with W.
Then the time derivative of functional (4.7) along the solutions of the system satisfies
equality (4.2).

Proof. Let x(t), t ≥ 0, be a solution of system (4.1); then

v0(xt) = xT (t)U(0)x(t)+ 2xT (t)

0
∫

−h

U(−h−θ )A1x(t +θ )dθ

+

0
∫

−h

xT (t +θ1)A
T
1

⎛

⎝

0
∫

−h

U(θ1 −θ2)A1x(t +θ2)dθ2

⎞

⎠dθ1

+2xT (t)

0
∫

−h

⎡

⎣

θ
∫

−h

U(ξ −θ )G(ξ )dξ

⎤

⎦x(t +θ )dθ

+2

0
∫

−h

xT (t +θ1)A
T
1

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

U(h+θ1−θ2 + ξ2)G(ξ2)dξ2

⎞

⎠

× x(t +θ2)dθ2

⎤

⎦dθ1

+

0
∫

−h

xT (t +θ1)

⎛

⎝

0
∫

−h

⎡

⎣

θ1
∫

−h

GT (ξ1)

⎛

⎝

θ2
∫

−h

U(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2

⎞

⎠dξ1

⎤

⎦

× x(t +θ2)dθ2

⎞

⎠dθ1.

At the first stage we compute the time derivative of each term of the functional.
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For the first term, R0(t) = xT (t)U(0)x(t), the time derivative is computed as

d
dt

R0(t) = 2xT (t)U(0)A0x(t)+ 2xT (t)U(0)A1x(t − h)

+2xT (t)U(0)

0
∫

−h

G(θ )x(t +θ )dθ .

The time derivative of the term

R1(t) = 2xT (t)

0
∫

−h

U(−h−θ )A1x(t +θ )dθ

= 2xT (t)

t
∫

t−h

[U(h+ s− t)]T A1x(s)ds

is equal to

d
dt

R1(t) = 2

[

dx(t)
dt

]T t
∫

t−h

U(t − s− h)A1x(s)ds

︸ ︷︷ ︸

+2xT (t)U(−h)A1x(t)− 2xT (t)U(0)A1x(t − h)

−2xT (t)

t
∫

t−h

[

d
dτ

U(τ)
∣

∣

∣

∣

τ=h+s−t

]T

A1x(s)ds

︸ ︷︷ ︸

︸ ︷︷ ︸

.

For the term

R2(t) =

0
∫

−h

xT (t +θ1)A
T
1

⎛

⎝

0
∫

−h

U(θ1 −θ2)A1x(t +θ2)dθ2

⎞

⎠dθ1

=

t
∫

t−h

xT (s1)A
T
1

⎛

⎝

t
∫

t−h

U(s1 − s2)A1x(s2)ds2

⎞

⎠ds1

we have

d
dt

R2(t) = xT (t)AT
1

t
∫

t−h

U(t − s)A1x(s)ds

−xT (t − h)AT
1

t
∫

t−h

U(t − h− s)A1x(s)ds
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+

⎛

⎝

t
∫

t−h

xT (s)AT
1 U(s− t)ds

⎞

⎠A1x(t)

−

⎛

⎝

t
∫

t−h

xT (s)AT
1 U(s− t + h)ds

⎞

⎠A1x(t − h)

= 2xT (t)

t
∫

t−h

[U(s− t)A1]
T A1x(s)ds

︸ ︷︷ ︸

︸ ︷︷ ︸

−2xT (t − h)AT
1

t
∫

t−h

U(t − s− h)A1x(s)ds

︸ ︷︷ ︸

.

Now we consider the term

R3(t) = 2xT (t)

0
∫

−h

⎡

⎣

θ
∫

−h

U(ξ −θ )G(ξ )dξ

⎤

⎦x(t +θ )dθ

= 2xT (t)

t
∫

t−h

⎡

⎣

s−t
∫

−h

UT (−ξ + s− t)G(ξ )dξ

⎤

⎦x(s)ds.

Its time derivative is given as

d
dt

R3(t) = 2

[

dx(t)
dt

]T t
∫

t−h

⎡

⎣

s−t
∫

−h

U(ξ − s+ t)G(ξ )dξ

⎤

⎦x(s)ds

+ 2xT (t)

⎡

⎣

0
∫

−h

U(ξ )G(ξ )dξ

⎤

⎦x(t)− 2xT (t)U(0)

t
∫

t−h

G(s− t)x(s)ds

−2xT (t)

t
∫

t−h

⎛

⎝

s−t
∫

−h

[

d
dτ

U(τ)
∣

∣

∣

∣

τ=−ξ+s−t

]T

G(ξ )dξ

⎞

⎠x(s)ds.
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The time derivative of the next term

R4(t) = 2

0
∫

−h

xT (t +θ1)A
T
1

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

U(h+θ1−θ2 + ξ )G(ξ )dξ

⎞

⎠x(t +θ2)dθ2

⎤

⎦dθ1

= 2

t
∫

t−h

xT (s1)A
T
1

⎡

⎣

t
∫

t−h

⎛

⎝

s2−t
∫

−h

U(h+ s1− s2 + ξ )G(ξ )dξ

⎞

⎠x(s2)ds2

⎤

⎦ds1

is equal to

d
dt

R4(t) = 2xT (t)

t
∫

t−h

⎛

⎝

s−t
∫

−h

AT
1 U(h+ t− s+ ξ )G(ξ )dξ

⎞

⎠x(s)ds

−2 [A1x(t − h)]T
t

∫

t−h

⎛

⎝

s−t
∫

−h

U(t − s+ ξ )G(ξ )dξ

⎞

⎠x(s)ds

+2

⎡

⎣

t
∫

t−h

xT (s)

⎛

⎝

0
∫

−h

AT
1 U(h+ s− t+ ξ )G(ξ )dξ

⎞

⎠ds

⎤

⎦x(t)

︸ ︷︷ ︸

︸ ︷︷ ︸

−2

t
∫

t−h

t
∫

t−h

xT (s1)A
T
1 U(h+ s1 − t)G(s2 − t)x(s2)ds1ds2

︸ ︷︷ ︸

.

And, finally, the time derivative of the last term,

R5(t) =

0
∫

−h

xT (t +θ1)

⎛

⎝

0
∫

−h

⎡

⎣

θ1
∫

−h

GT (ξ1)

⎛

⎝

θ2
∫

−h

U(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2

⎞

⎠dξ1

⎤

⎦

× x(t +θ2)dθ2

⎞

⎠dθ1

=

t
∫

t−h

xT (s1)

⎛

⎝

t
∫

t−h

⎡

⎣

s1−t
∫

−h

GT (ξ1)

⎛

⎝

s2−t
∫

−h

U(s1 − s2 − ξ1 + ξ2)G(ξ2)dξ2

⎞

⎠dξ1

⎤

⎦

× x(s2)ds2

⎞

⎠ds1,
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can be computed as

d
dt

R5(t) = xT (t)

t
∫

t−h

⎡

⎣

0
∫

−h

GT (ξ1)

⎛

⎝

s−t
∫

−h

U(t − s−ξ1 +ξ2)G(ξ2)dξ2

⎞

⎠dξ1

⎤

⎦x(s)ds

+

⎛

⎝

t
∫

t−h

xT (s)

⎡

⎣

s−t
∫

−h

GT (ξ1)

⎛

⎝

0
∫

−h

U(s1 − t −ξ1 +ξ2)G(ξ2)dξ2

⎞

⎠dξ1

⎤

⎦ds

⎞

⎠x(t)

−
t

∫

t−h

xT (s1)

⎛

⎝

t
∫

t−h

⎡

⎣

s2−t
∫

−h

GT (s1 − t)U(−s2 + t +ξ )G(ξ )dξ

⎤

⎦ x(s2)ds2

⎞

⎠ds1

−
t

∫

t−h

xT (s1)

⎛

⎝

t
∫

t−h

⎡

⎣

s1−t
∫

−h

GT (ξ )U(s1 −ξ − t)G(s2 − t)dξ

⎤

⎦x(s2)ds2

⎞

⎠ds1

= 2xT (t)

t
∫

t−h

⎡

⎣

0
∫

−h

GT (ξ1)

⎛

⎝

s−t
∫

−h

U(t − s−ξ1 +ξ2)G(ξ2)dξ2

⎞

⎠dξ1

⎤

⎦x(s)ds

− 2

⎡

⎣

t
∫

t−h

G(s1 − t)x(s1)ds1

⎤

⎦

T ⎡

⎣

t
∫

t−h

⎛

⎝

s2−t
∫

−h

U(−s2 + t +ξ )G(ξ )dξ

⎞

⎠x(s2)ds2

⎤

⎦.

At the next stage we collect terms in the computed time derivatives. We start with
the terms that are underlined by a single straight line. Their sum is

S1(t) = 2xT (t)U(0)A0x(t)+ 2xT (t)U(−h)A1x(t)+ 2xT (t)

⎡

⎣

0
∫

−h

U(ξ )G(ξ )dξ

⎤

⎦x(t)

= xT (t)

⎛

⎝U(0)A0 +U(−h)A1+

0
∫

−h

U(ξ )G(ξ )dξ

+ AT
0 U(0)+AT

1 UT (−h)+

0
∫

−h

GT (ξ )UT (ξ )dξ

⎞

⎠x(t)

= −xT (t)Wx(t).
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Now we collect the terms underlined by a single curved line. Their sum is

S2(t) = 2

⎡

⎣

dx(t)
dt

−A1x(t − h)−
0
∫

−h

G(θ )x(t +θ )dθ

⎤

⎦

T

×
t

∫

t−h

U(t − s− h)A1x(s)ds

= 2xT (t)AT
0

t
∫

t−h

U(t − s− h)A1x(s)ds. (4.8)

The sum of the terms underlined by a double curved line is equal to

S3(t) = 2xT (t)

t
∫

t−h

⎡

⎣ − d
dτ

U(τ)+U(τ − h)A1

+

0
∫

−h

U(τ + ξ )G(ξ )dξ

∣

∣

∣

∣

∣

∣

τ=h+s−t

⎤

⎦

T

A1x(s)ds

= −2xT (t)AT
0

t
∫

t−h

U(t − s− h)A1x(s)ds,

and it is cancelled by (4.8). The sum of the terms underlined by a double straight
line is equal to

S4(t) = 2

⎡

⎣

dx(t)
dt

−A1x(t − h)−
0
∫

−h

G(θ )x(t +θ )dθ

⎤

⎦

T

×
t

∫

t−h

⎛

⎝

s−t
∫

−h

U(ξ − s+ t)G(ξ )dξ

⎞

⎠x(s)ds

= 2xT (t)AT
0

t
∫

t−h

⎛

⎝

s−t
∫

−h

U(ξ − s+ t)G(ξ )dξ

⎞

⎠x(s)ds. (4.9)

Finally, the sum of the nonunderlined terms is
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S5(t) = 2xT (t)

t
∫

t−h

⎡

⎢

⎣

s−t
∫

−h

⎛

⎜

⎝
− d

dτ
U(τ)+U(τ − h)A1

+

0
∫

−h

U(τ + ξ2)G(ξ2)dξ2

∣

∣

∣

∣

∣

∣

τ=−ξ+s−t

⎞

⎟

⎠

T

G(ξ )dξ

⎤

⎥

⎦
x(s)ds

= − 2xT (t)AT
0

t
∫

t−h

⎛

⎝

s−t
∫

−h

U(t − s+ ξ )G(ξ )dξ

⎞

⎠x(s)ds,

and it is cancelled by (4.9).
Summarizing our computations we arrive at the conclusion that the time deriva-

tive of the functional v0(ϕ) along the solutions of system (4.1) satisfies equal-
ity (4.2). �

4.3 Lyapunov Matrices: Existence Issue

In this section we study the existence issue for the Lyapunov matrices of sys-
tem (4.1).

The characteristic function of the system is of the form

f (s) = det

⎛

⎝sI−A0 − e−shA1 −
0
∫

−h

esθ G(θ )dθ

⎞

⎠ . (4.10)

We define the matrix

H(s) =

⎛

⎝sI −A0 − e−shA1 −
0
∫

−h

esθ G(θ )dθ

⎞

⎠

−1

.

The poles of H(s) form the spectrum,

Λ = { s | f (s) = 0} ,

of the system. If system (4.1) satisfies the Lyapunov condition, then the spectrum
can be divided into two parts; the first one, Λ(+), includes eigenvalues with positive
real part, whereas the second one, Λ(−), includes eigenvalues with negative real part.
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Theorem 4.2 ([26]). Let system (4.1) satisfy the Lyapunov condition; then for any
symmetric matrix W matrix

˜U(τ) =
V.P.
2π i

i∞
∫

−i∞

HT (ξ )WH(−ξ )e−τξ dξ + ∑
s0∈Λ(+)

Res
{

HT (s)W H(−s)e−τs,s0
}

+ ∑
s0∈Λ(+)

Res
{

HT (−s)W H(s)eτs,s0
}

(4.11)

is a Lyapunov matrix of the system associated with W .

Proof. System (4.1) satisfies the Lyapunov condition, so neither the matrix H(s)
nor the matrix H(−s) has a pole on the imaginary axis of the complex plane. Let ξ
be a real number; then for sufficiently large |ξ | the matrix HT (iξ )WH(−iξ )e−iτξ is
of the order |ξ |−2. This means that the improper integral on the right-hand side of
(4.11) is well defined for all real τ .

Part 1: The proof of symmetry property (4.4) coincides with that of Theorem 3.5.
Part 2: We address now the algebraic property. To check (4.5), we compute the

following matrix:

O = ˜U(0)A0 + ˜U(−h)A1 +

0
∫

−h

˜U(θ )G(θ )dθ +AT
0
˜U(0)

+ AT
1
˜U(h)+

0
∫

−h

GT (θ )˜U(−θ )dθ

=
V.P.
2π i

i∞
∫

−i∞

⎛

⎝HT (ξ )WH(−ξ )

⎡

⎣A0 + eξ hA1 +

0
∫

−h

e−ξ θ G(θ )dθ

⎤

⎦

+

⎡

⎣A0 + e−ξ hA1 +

0
∫

−h

eξ θ G(θ )dθ

⎤

⎦

T

HT (ξ )WH(−ξ )

⎞

⎠dξ

+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

HT (s)W H(−s)

⎡

⎣A0 + eshA1 +

0
∫

−h

e−sθ G(θ )dθ

⎤

⎦ ,s0

⎫

⎬

⎭

+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

HT (−s)W H(s)

⎡

⎣A0 + e−shA1 +

0
∫

−h

esθ G(θ )dθ

⎤

⎦ ,s0

⎫

⎬

⎭
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+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

⎡

⎣A0 + e−shA1 +

0
∫

−h

esθ G(θ )dθ

⎤

⎦

T

HT (s)W H(−s),s0

⎫

⎬

⎭

+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

⎡

⎣A0 + eshA1 +

0
∫

−h

e−sθ G(θ )dθ

⎤

⎦

T

HT (−s)WH(s),s0

⎫

⎬

⎭

.

It is a matter of simple calculation to verify the identities

H(s)

⎡

⎣A0 + e−sh +

0
∫

−h

esθ G(θ )dθ

⎤

⎦= sH(s)− I

and

H(−s)

⎡

⎣A0 + eshA1 +

0
∫

−h

e−sθ G(θ )dθ

⎤

⎦=−sH(−s)− I.

Additionally,

V.P.
2π i

i∞
∫

−i∞

W H(−ξ )dξ = 〈λ =−ξ 〉= V.P.
2π i

i∞
∫

−i∞

WH(λ )dλ .

Now, the matrix O can be written as

O = −V.P.
2π i

i∞
∫

−i∞

[

HT (ξ )W +WH(ξ )
]

dξ

− ∑
s0∈Λ(+)

Res
{

HT (s)W,s0
}

− ∑
s0∈Λ(+)

Res
{

HT (s)W,s0
}

− ∑
s0∈Λ(+)

Res
{

HT (−s)W,s0
}

− ∑
s0∈Λ(+)

Res
{

HT (−s)W,s0
}

.

Since the Lyapunov condition implies that no poles of the matrix H(−s) lie in
the set Λ(+), the last two sums on the right-hand side of the preceding equality
disappear and

O =−V.P.
2π i

i∞
∫

−i∞

[

HT (ξ )W +WH(ξ )
]

dξ − ∑
s0∈Λ(+)

Res
{

HT (s)W +WH(s),s0
}

.

The remainder of the proof of this part is identical to that of Theorem 3.5.
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Part 3: Let us address property (4.3). For a given τ > 0 we compute the matrix

F(τ) =
d

dτ
˜U(τ)− ˜U(τ)A0 − ˜U(τ −h)A1 −

∫ 0

−h
˜U(τ +θ )G(θ )dθ

=
V.P.
2πi

i∞
∫

−i∞

HT (ξ )W H(−ξ )

⎡

⎣−ξ I −A0 −eξ hA1 −
0
∫

−h

e−ξ θ G(θ )dθ

⎤

⎦e−τξ dξ

+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

HT (s)W H(−s)

⎡

⎣−sI −A0 −eshA1 −
0
∫

−h

e−sθ G(θ )dθ

⎤

⎦e−τs,s0

⎫

⎬

⎭

+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

HT (−s)W H(s)

⎡

⎣sI −A0 −e−shA1 −
0
∫

−h

esθ G(θ )dθ

⎤

⎦eτs,s0

⎫

⎬

⎭

=
V.P.
2πi

i∞
∫

−i∞

HT (ξ )W e−τξ dξ + ∑
s0∈Λ(+)

Res
{

HT (s)W e−τs,s0

}

+ ∑
s0∈Λ(+)

Res
{

HT (−s)W eτs,s0

}

.

Since the matrix H(−s) has no poles in the set Λ(+), the sum

∑
s0∈Λ(+)

Res
{

HT (−s)Weτs,s0
}

= 0n×n,

and we obtain

F(τ) =
V.P.
2π i

i∞
∫

−i∞

HT (ξ )W e−τξ dξ + ∑
s0∈Λ(+)

Res
{

HT (s)W e−τs,s0
}

.

The remainder of the proof of this part repeats that of Theorem 3.5. �

Corollary 4.1. If system (4.1) is exponentially stable, then the Lyapunov matrix
associated with a symmetric matrix W can be written as

U(τ) =
V.P.
2π i

i∞
∫

−i∞

HT (ξ )W H(−ξ )e−τξ dξ

=

∞
∫

0

K(t)WK(t + τ)dτ.

Here K(t) is the fundamental matrix of the system.
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4.4 Lyapunov Matrices: Uniqueness Issue

Here we study the uniqueness issue for Lyapunov matrices.

Lemma 4.1. Given an integral-differential system of the form

d
dτ

z(τ) = Az(τ)+
τ
∫

0

B(s,τ)z(s)ds τ ≥ 0, (4.12)

where A is a constant matrix and B(s,τ) is a continuous bivariate matrix, the only
solution of the system that satisfies the condition z(0) = 0 is the trivial one.

Proof. Given H > 0, let us consider the system on the segment [0,H]. Compute the
values

a = ‖A‖ , b = max
(s,τ)∈[0,H]2

‖B(s,τ)‖ .

Integrating Eq. (4.12) from 0 to τ we obtain

z(τ) = z(0)+A

τ
∫

0

z(ξ )dξ +

τ
∫

0

⎛

⎝

ξ
∫

0

B(s,ξ )z(s)ds

⎞

⎠dξ .

Thus,

‖z(τ)‖ ≤ ‖z(0)‖+ a

τ
∫

0

‖z(ξ )‖dξ + b

τ
∫

0

⎛

⎝

ξ
∫

0

‖z(s)‖ds

⎞

⎠dξ

= ‖z(0)‖+ a

τ
∫

0

‖z(ξ )‖dξ + b

τ
∫

0

(τ − s)‖z(s)‖ds

≤ ‖z(0)‖+(a+ bH)

τ
∫

0

‖z(s)‖ds.

Now, by the Gronwall lemma,

‖z(τ)‖ ≤ e(a+bH)τ ‖z(0)‖ , τ ∈ [0,H].

In our case z(0) = 0, and we arrive at the conclusion that

z(τ) = 0, τ ∈ [0,H]. �

Theorem 4.3. Let system (4.1) satisfy the Lyapunov condition. Then for any
symmetric matrix W there exists a unique Lyapunov matrix associated with W.
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Proof. Part 1: The fact that under the theorem condition matrix (4.11) satisfies
Definition 4.1 was demonstrated in Theorem 4.2. Assume that for a given
symmetric matrix W there exist two Lyapunov matrices, U (1)(τ) and

U (2)(τ). Each of the matrices defines the corresponding functional, v( j)
0 (ϕ),

j = 1,2, of the form (4.7). The functionals satisfy the equality

d
dt

v( j)
0 (xt) =−xT (t)Wx(t), j = 1,2,

along the solutions of system (4.1). The difference, Δv(xt) = v(2)0 (xt)−
v(1)0 (xt), is such that

d
dt

Δv(xt) = 0, t ≥ 0,

and we obtain that for any ϕ ∈ PC([−h,0],Rn) the identity

Δv(xt(ϕ)) = Δv(ϕ), t ≥ 0, (4.13)

holds along the solution x(t,ϕ) of the system. In the case where system
(4.1) is exponentially stable, xt(ϕ) → 0h as t → ∞, and we arrive at the
conclusion that

Δv(ϕ) = 0, ϕ ∈ PC([−h,0],Rn). (4.14)

If system (4.1) is not exponentially stable, then by the Lyapunov condition it
has no eigenvalues on the imaginary axis of the complex plane, and there is a
finite number of the eigenvalues in the open right half-plane of the complex
plane. Let χ > 0 be an upper bound for the real part of the eigenvalues
in the right half-plane. Only a finite number of the system eigenvalues,
s1,s2, . . . ,sN , lies in the vertical stripe

Z = { s | − χ ≤ Re(s)≤ χ }

of the complex plane. Every solution x(t,ϕ) of the system can be presented
as the sum

x(t,ϕ) = x(1)(t)+ x(2)(t),

where x(1)(t) corresponds to the part of the system spectrum that lies in Z
and x(2)(t) corresponds to the rest of the spectrum, which lies to the left of
the vertical line Re(s) =−χ .

The first term, x(1)(t), is a finite sum of the form

x(1)(t) =
N

∑
�=1

es�t p(�)(t),
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where p(�)(t) is a polynomial with vector coefficients of degree less than
the multiplicity of s� as a zero of the system characteristic function (4.10),
�= 1,2, . . . ,N.

The second term, x(2)(t), admits an upper estimate of the form

∥

∥

∥x(2)(t)
∥

∥

∥≤ ce−(χ+ε)t , t ≥ 0. (4.15)

Here c is a positive constant and ε is a small positive number.
The functional Δv(xt(ϕ)) can be decomposed as follows:

Δv(xt(ϕ)) = Δv
(

x(1)t

)

+ 2Δz
(

x(1)t ,x(2)t

)

+Δv
(

x(2)t

)

,

where

Δz
(

x(1)t ,x(2)t

)

=
[

x(1)(t)
]T

ΔU(0)x(2)(t)

+
[

x(1)(t)
]T

0
∫

−h

ΔU(−h−θ )A1x(2)(t +θ )dθ

+
[

x(2)(t)
]T

0
∫

−h

ΔU(−h−θ )A1x(1)(t +θ )dθ

+
[

x(1)(t)
]T

0
∫

−h

⎡

⎣

θ
∫

−h

ΔU(ξ −θ )G(ξ )dξ

⎤

⎦x(2)(t +θ )dθ

+
[

x(2)(t)
]T

0
∫

−h

⎡

⎣

θ
∫

−h

ΔU(ξ −θ )G(ξ )dξ

⎤

⎦x(1)(t +θ )dθ

+

0
∫

−h

[

x(1)(t +θ1)
]T

AT
1

⎛

⎝

0
∫

−h

ΔU(θ1 −θ2)A1x(2)(t +θ2)dθ2

⎞

⎠dθ1

+

0
∫

−h

[

x(1)(t +θ1)
]T

AT
1

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

ΔU(h+θ1−θ2 + ξ2)G(ξ2)dξ2

⎞

⎠

×x(2)(t +θ2)dθ2

]

dθ1

+

0
∫

−h

[

x(2)(t +θ1)
]T

AT
1

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

ΔU(h+θ1−θ2 + ξ2)G(ξ2)dξ2

⎞

⎠
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×x(1)(t +θ2)dθ2

]

dθ1

+

0
∫

−h

[

x(1)(t +θ1)
]T

⎧

⎨

⎩

0
∫

−h

⎛

⎝

θ1
∫

−h

GT (ξ1)

×

⎡

⎣

θ2
∫

−h

ΔU(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2

⎤

⎦dξ1

⎞

⎠x(2)(t +θ2)dθ2

⎫

⎬

⎭

dθ1.

On the one hand, since x(1)(t) and x(2)(t) are solutions of system (4.1),

Δv
(

x(1)t

)

and Δv
(

x(2)t

)

maintain constant values, and we conclude that

Δz
(

x(1)t ,x(2)t

)

is also constant. On the other hand, the choice of χ and

inequality (4.15) guarantee that

Δv
(

x(2)t

)

→ 0, and Δz
(

x(1)t ,x(2)t

)

→ 0, as t → ∞.

This means that

Δv
(

x(2)t

)

= 0, and Δz
(

x(1)t ,x(2)t

)

= 0, t ≥ 0.

The first summand, Δv
(

x(1)t

)

, can be written as follows:

Δv
(

x(1)t

)

=
N

∑
�=1

N

∑
r=1

e(s�+sr)tα�r(t),

where the functions α�r(t), �,r = 1,2, . . . ,N, are of the form

α�r(t) =
[

p(�)(t)
]T

ΔU(0)p(r) (t)+2
[

p(�)(t)
]T

0
∫

−h

ΔU(−h−θ )A1esrθ p(r)(t +θ )dθ

+2
[

p(�)(t)
]T

0
∫

−h

⎡

⎣

θ
∫

−h

ΔU(ξ −θ )G(ξ )dξ

⎤

⎦esrθ2 p(r)(t +θ )dθ

+

0
∫

−h

[

es�θ1 p(�)(t +θ1)
]T

AT
1

⎛

⎝

0
∫

−h

ΔU(θ1 −θ2)A1esrθ2 p(r)(t +θ2)dθ2

⎞

⎠dθ1

+2

0
∫

−h

[

es�θ1 p(�)(t +θ1)
]T

AT
1
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×

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

ΔU(h+θ1 −θ2 +ξ2)G(ξ2)dξ2

⎞

⎠esr θ2 p(r)(t +θ2)dθ2

⎤

⎦dθ1

+

0
∫

−h

[

es�θ1 p(�)(t +θ1)
]T

×

⎧

⎨

⎩

0
∫

−h

⎛

⎝

θ1
∫

−h

GT (ξ1)

⎡

⎣

θ2
∫

−h

ΔU(θ1 −θ2 −ξ1 +ξ2)G(ξ2)dξ2

⎤

⎦dξ1

⎞

⎠

× esr θ2 p(r)(t +θ2)dθ2

⎫

⎬

⎭

dθ1.

A careful inspection of α�r(t) reveals that it is a polynomial in t of
degree less than the sum of the multiplicities of s� and sr as zeros of the
characteristic function (4.10). This means that identity (4.13) takes the form

N

∑
�=1

N

∑
r=1

e(s�+sr)tα�r(t) = e0tΔv(ϕ), t ≥ 0.

Part 2: According to the Lyapunov condition, no one of the sums (s�+ sr), �,r ∈
{1,2, . . . ,N}, is equal to zero. Therefore, by Lemma 3.8, we conclude
from the last identity that equality (4.14) holds for any initial function
ϕ ∈ PC([−h,0],Rn).

Part 3: Equality (4.14) can be written as follows:

0 = ϕT (0)ΔU(0)ϕ(0)

+2ϕT (0)

0
∫

−h

⎡

⎣ΔU(−h−θ )A1+

θ
∫

−h

ΔU(ξ −θ )G(ξ )dξ

⎤

⎦ϕ(θ )dθ

+

0
∫

−h

0
∫

−h

ϕT (θ1)

⎡

⎣AT
1 ΔU(θ1 −θ2)A1

+ 2

θ2
∫

−h

AT
1 ΔU(h+θ1−θ2 + ξ2)G(ξ2)dξ2

+

θ1
∫

−h

θ2
∫

−h

GT (ξ1)ΔU(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2dξ1

⎤

⎦ϕ(θ2)dθ2dθ1.

(4.16)
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For a given vector γ ∈ Rn we define the initial function

ϕ(1)(θ ) =
{

γ, for θ = 0
0, for θ ∈ [−h,0)

.

For this function equality (4.16) takes the form

γT ΔU(0)γ = 0.

Since the last equality holds for any vector γ and the matrix ΔU(0) is
symmetric, we conclude that

ΔU(0) = 0n×n. (4.17)

Now, given vectors γ ∈ Rn and μ ∈ Rn, let us select τ ∈ (0,h] and ε > 0 such
that −τ + ε < 0. Then we define the following initial function:

ϕ(2)(θ ) =

⎧

⎨

⎩

γ, for θ = 0,
μ , for θ ∈ [−τ,−τ + ε],
0, for all other points of segment [−h,0].

For this initial function equality (4.16) takes the form

0 = 2εγT

⎡

⎣ΔU(τ − h)A1+

−τ
∫

−h

ΔU(τ + ξ )G(ξ )dξ

⎤

⎦μ + o(ε),

where

lim
ε→+0

o(ε)
ε

= 0.

Since γ and μ are arbitrary vectors and ε > 0 may be arbitrarily small, we
conclude that the equality

ΔU(τ − h)A1 +

−τ
∫

−h

ΔU(τ + ξ )G(ξ )dξ = 0n×n

holds for τ ∈ (0,h]. By continuity arguments, we obtain

ΔU(τ − h)A1+

−τ
∫

−h

ΔU(τ + ξ )G(ξ )dξ = 0n×n, τ ∈ [0,h]. (4.18)
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The matrix ΔU(τ) satisfies the equation

d
dτ

ΔU(τ) = ΔU(τ)A0 +ΔU(τ −h)A1 +

0
∫

−h

ΔU(τ +θ )G(θ )dθ , τ ∈ [0,h].

Condition (4.18) makes it possible to present the preceding equation in the
form

d
dτ

ΔU(τ) = ΔU(τ)A0 +

0
∫

−τ

ΔU(τ +θ )G(θ )dθ , τ ∈ [0,h]

or

d
dτ

ΔU(τ) = ΔU(τ)A0 +

τ
∫

0

ΔU(s)G(s− τ)ds, τ ∈ [0,h].

We are looking for a solution of this equation that satisfies condition (4.17).
By Lemma 4.1, the solution is trivial, and

ΔU(τ) =U (2)(τ)−U (1)(τ) = 0n×n, τ ∈ [0,h]. �

4.5 Lyapunov Matrices: Computational Issue

In this section we present some approaches to the computation of Lyapunov
matrices for system (4.1). The main difficulty that appears in the computation of the
matrices as solutions of delay equation (4.3) is the luck of the corresponding initial
conditions. To some extent, symmetry condition (4.4) compensates this deficiency,
but the computation problem remains complicated.

4.5.1 A Particular Case

In what follows we show that in the case of a polynomial matrix

G(θ ) =
m

∑
j=1

θ j−1B j, (4.19)
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where B1, . . . ,Bm are constant n × n matrices, a Lyapunov matrix U(τ) may
be computed as a solution of an auxiliary delay-free system of linear ordinary
differential matrix equations. To this end, we first define the matrices

Z(τ) =U(τ), V (τ) =U(τ − h), τ ∈ [0,h],

and the set of 2m auxiliary matrices

Xj(τ) =
0
∫

−h

θ j−1U(τ +θ )dθ , Yj(τ) =
0
∫

−h

θ j−1U(τ −θ − h)dθ , j = 1, . . . ,m.

Then Eq. (4.3) can be written as

dZ(τ)
dτ

= Z(τ)A0 +V(τ)A1 +
m

∑
j=1

Xj(τ)B j .

Now we compute the first derivative of the matrix V (τ):

dV (τ)
dτ

=
d

dτ
[U(h− τ)]T

= −

⎡

⎣U(h− τ)A0 +U(−τ)A1 +

0
∫

−h

θ j−1U(h− τ+θ )dθB j

⎤

⎦

T

.

Observe that
U(h− τ) =V T (τ), U(−τ) = ZT (τ)

and

0
∫

−h

θ j−1U(h− τ +θ )dθ =

⎡

⎣

0
∫

−h

θ j−1U(τ −θ − h)dθ

⎤

⎦

T

= Y T
j (τ), j = 1,2, . . . ,m,

hence
dV (τ)

dτ
=−AT

0 V (τ)−AT
1 Z(τ)−

m

∑
j=1

BT
j Yj(τ).

The first derivatives of the matrices X1(τ) and Y1(τ) are

dX1(τ)
dτ

=U(τ)−U(τ − h) = Z(τ)−V (τ),

dY1(τ)
dτ

=−V (τ)+V(τ + h) =−V(τ)+Z(τ).
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Now, for j = 2, . . . ,m,

dXj(τ)
dτ

= −(−h) j−1U(τ − h)− ( j− 1)

0
∫

−h

θ j−2U(τ +θ )dθ

= −(−h) j−1V (τ)− ( j− 1)Xj−1(τ)

and

dYj(τ)
dτ

= (−h) j−1U(τ)+ ( j− 1)

0
∫

−h

θ j−2U(τ −θ − h)dθ

= (−h) j−1Z(τ)+ ( j− 1)Yj−1(τ).

As a result, we arrive at the conclusion that the set of matrices

{Z(τ),V (τ),X1(τ), . . . ,Xm(τ),Y1(τ), . . . ,Ym(τ)}

satisfies the following delay-free system of 2(m+ 1) ordinary differential matrix
equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d
dτ

Z = ZA0 +VA1+
m

∑
j=1

XjB j,

d
dτ

V =−AT
1 Z −AT

0 V −
m

∑
j=1

BT
j Yj,

d
dτ

X1 = Z −V,

d
dτ

Y1 = Z −V,

d
dτ

Xj =−(−h) j−1V − ( j− 1)Xj−1, j = 2, . . . ,m,

d
dτ

Yj = (−h) j−1Z +( j− 1)Yj−1, j = 2, . . . ,m.

(4.20)

Lemma 4.2. The spectrum of system (4.20) is symmetrical with respect to the
origin of the complex plane.

Proof. A complex number s0 is an eigenvalue of system (4.20) if and only if there
exists a nontrivial set of n× n matrices

{

Z(0),V (0),X (0)
1 , . . . ,X (0)

m ,Y (0)
1 , . . . ,Y (0)

m

}
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satisfying the following system of matrix equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

s0Z(0) = Z(0)A0 +V (0)A1 +
m

∑
j=1

X (0)
j B j,

s0V (0) =−AT
1 Z(0)−AT

0 V (0)−
m

∑
j=1

BT
j Y (0)

j ,

s0X (0)
1 = Z(0)−V (0),

s0Y (0)
1 = Z(0)−V (0),

s0X (0)
j =−(−h) j−1V (0)− ( j− 1)X (0)

j−1, j = 2, . . . ,m,

s0Y (0)
j = (−h) j−1Z(0) + ( j− 1)Y (0)

j−1, j = 2, . . . ,m.

(4.21)

It is easy to check that the matrices

˜Z(0) =
(

V (0)
)T

, ˜V (0) =
(

Z(0)
)T

, ˜X (0)
j =

(

Y (0)
j

)T
,

˜Y (0)
j =

(

X (0)
j

)T
, j = 1, . . . ,m,

satisfy the system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−s0˜Z(0) = ˜Z(0)A0 + ˜V (0)A1 +
m

∑
j=1

˜X (0)
j B j,

−s0˜V (0) =−AT
1
˜Z(0)−AT

0
˜V (0)−

m

∑
j=1

BT
j
˜Y (0)

j ,

−s0 ˜X
(0)
1 = ˜Z(0)− ˜V (0),

−s0˜Y
(0)
1 = ˜Z(0)− ˜V (0),

−s0 ˜X
(0)
j =−(−h) j−1

˜V (0)− ( j− 1) ˜X (0)
j−1, j = 2, . . . ,m,

−s0˜Y
(0)
j = (−h) j−1

˜Z(0) + ( j− 1)˜Y (0)
j−1, j = 2, . . . ,m.

This means that −s0 belongs to the spectrum of system (4.20). �

The solution of system (4.20) defined by the matrix U(τ) satisfies also the
following set of boundary value conditions:

Z(0) =V T (h),
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Xj(0) =

0
∫

−h

θ j−1U(θ )dθ =

⎡

⎣

0
∫

−h

θ j−1U(h−θ − h)dθ

⎤

⎦

T

= Y T
j (h), j = 1, . . . ,m,

Yj(0) =

0
∫

−h

θ j−1U(−θ − h)dθ =

⎡

⎣

0
∫

−h

θ j−1U(h+θ )dθ

⎤

⎦

T

= XT
j (h), j = 1, . . . ,m,

as well as the algebraic condition

Z(0)A0 +V(0)A1 +
m

∑
j=1

Xj(0)B j +AT
0 V (h)+AT

1 Z(h)+
m

∑
j=1

BT
j Yj(h) =−W.

We finally arrive at the following statement.

Theorem 4.4. Given a time-delay system (4.1), where matrix G(θ ) is of the form
(4.19), let U(τ) be a Lyapunov matrix of the system associated with the matrix W.
Then the set of matrices

{Z(τ),V (τ),X1(τ), . . . ,Xm(τ),Y1(τ), . . . ,Ym(τ)}

is a solution of system (4.20) that satisfies the boundary value conditions

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Z(0) =V T (h),

Xj(0) = Y T
j (h), and Yj(0) = XT

j (h), j = 1, . . . ,m,

Z(0)A0 +V(0)A1 +∑m
j=1 Xj(0)B j +AT

0 V (h)+AT
1 Z(h)

+∑m
j=1 BT

j Yj(h) =−W.

(4.22)

There exist some relations between the auxiliary matrices that are described in
the following lemma.

Lemma 4.3. The auxiliary matrices Xj(τ) and Yj(τ), j = 1, . . . ,m, satisfy the
relations

Xj(τ) = (−1) j−1
j−1

∑
k=0

( j− 1)!
k!( j− k− 1)!

hkYj−k(τ), j = 1, . . . ,m,
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and

Yj(τ) = (−1) j−1
j−1

∑
k=0

( j− 1)!
k!( j− k− 1)!

hkXj−k(τ), j = 1, . . . ,m.

Proof. The first set of relations can be easily obtained as follows:

Xj(τ) =
0
∫

−h

θ j−1U(τ +θ + h− h)dθ

= 〈ξ =−θ − h〉=
0
∫

−h

(−h− ξ ) j−1 U(τ − ξ − h)dξ

= (−1) j−1
j−1

∑
k=0

( j− 1)!
k!( j− k− 1)!

hk

0
∫

−h

ξ j−k−1U(τ − ξ − h)dξ

= (−1) j−1
j−1

∑
k=0

( j− 1)!
k!( j− k− 1)!

hkYj−k(τ).

The second set of relations can be obtained in a similar way. �

Lemma 4.3 provides a reduction of system (4.20). We have the sum

m

∑
j=1

BT
j Yj(τ) =

m

∑
j=1

(−1) j−1BT
j

(

j−1

∑
k=0

( j− 1)!
k!( j− k− 1)!

hkXj−k(τ)

)

.

If we define the matrix

B(ξ ) =
m

∑
j=1

(−ξ ) j−1BT
j ,

then we obtain the sum

m

∑
j=1

BT
j Yj(τ) =

m

∑
k=1

[

1
(k− 1)!

B(k−1)(h)

]

Xk(τ),

where

B(k−1)(h) =
dk−1B(ξ )

dξ k−1

∣

∣

∣

∣

ξ=h
, k = 1,2, . . . ,m.

The second equation of system (4.20) takes the form

dV (τ)
dτ

=−AT
1 Z(τ)−AT

0 V (τ)−
m

∑
k=1

[

1
(k− 1)!

B(k−1)(h)

]

Xk(τ).
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Therefore, system (4.20) is reduced to the following system of (m + 2) matrix
equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d
dτ

Z = ZA0 +VA1+
m

∑
j=1

XjB j,

d
dτ

V =−AT
1 Z −AT

0 V −
m

∑
j=1

[

1
(k− 1)!

B(k−1)(h)

]

Xk(τ),

d
dτ

X1 = Z−V,

d
dτ

Xj =−(−h) j−1V − ( j− 1)Xj−1, j = 2, . . . ,m.

(4.23)

In a similar way, the set of boundary value conditions (4.22) is reduced to the next
one:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Z(0) =V T (h),

Xk(0) = (−1)k−1
k−1

∑
j=0

(k− 1)!
j!(k− j− 1)!

h jXT
k− j(h), k = 1, . . . ,m,

Z(0)A0 +AT
0 Z(0)+V(0)A1 +AT

1 V T (0)+
m

∑
j=1

[

Xj(0)B j +BT
j XT

j (0)
]

=−W.

In the following statement we show that the spectrum of system (4.1) and that of
system (4.20) are connected.

Theorem 4.5. Given a time-delay system (4.1), where the matrix G(θ ) is of the
form (4.19), let s0 be an eigenvalue of the time-delay system such that −s0 is also
an eigenvalue of the system. Then s0 belongs to the spectrum of delay-free system
(4.20).

Proof. The characteristic matrix of system (4.1) is

G(s) = sI −A0 − e−hsA1 −
m

∑
k=1

f (k−1)(s)Bk,

where

f (0)(s) =
1− e−hs

s
, and f (k−1)(s) =

dk−1 f (s)
dsk−1 , ,k = 2, . . . ,m.

Because s0 and −s0 are eigenvalues of the system, there exist nonzero vectors γ and
μ such that

γT G(s0) = 0, GT (−s0)μ = 0. (4.24)

A complex number s0 belongs to the spectrum of system (4.20) if and only if there
exists a nontrivial set of n× n matrices
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{

Z(0),V (0),X (0)
1 , . . . ,X (0)

m ,Y (0)
1 , . . . ,Y (0)

m

}

that satisfies (4.21). Multiplying the first equality in (4.24) by μ from the left and
the second equality by −e−hs0γT from the right we obtain

s0μγT − μγT A0 − e−hs0 μγT A1 −
m

∑
k=1

f (k−1)(s0)μγT Bk = 0n×n

and

s0e−hs0 μγT +AT
0 e−hs0 μγT +AT

1 μγT +
m

∑
k=1

e−hs0 f (k−1)(−s0)B
T
k μγT = 0n×n.

If we introduce the nontrivial matrices

Z(0) = μγT , V (0) = e−hs0 μγT ,

X (0)
j = f ( j−1)(s0)μγT , Y (0)

j = e−hs0 f ( j−1)(−s0)μγT , j = 1, . . . ,m,

then the preceding equalities take the form

s0Z(0)−Z(0)A0 −V (0)A1 −
m

∑
k=1

X (0)
k Bk = 0n×n,

s0V (0) +AT
0 V (0) +AT

1 Z(0) +
m

∑
k=1

BT
k Y (0)

k = 0n×n.

In other words, the matrices satisfy the first two equations of system (4.21). To
verify that these matrices satisfy the remaining 2(m+1) matrix equations in (4.21),
we multiply the identity

s f (0)(s) = 1− e−hs

by the matrix μγT and set s = s0; then we obtain the equality

s0X (0)
1 = Z(0)−V (0).

Now we compute the derivatives

d j−1

ds j−1

[

s f (0)(s)
]

= s f ( j−1)(s)+ ( j− 1) f ( j−2)(s)

= −(−h) j−1e−hs, j = 2, . . . ,m− 1.

This means that the following identities hold:
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s f ( j−1)(s) =−(−h) j−1e−hs − ( j− 1) f ( j−2)(s), j = 2, . . . ,m.

If we multiply these identities by the matrix μγT and set s = s0, then we obtain the
desired set of matrix equalities

s0X (0)
j =−(−h) j−1V (0)− ( j− 1)X (0)

j−1, j = 2, . . . ,m.

In a similar way one can verify the remaining equalities in (4.21).
It is evident that the set of matrices introduced previously,

{

Z(0),V (0),X (0)
1 , . . . ,X (0)

m ,Y (0)
1 , . . . ,Y (0)

m

}

,

is not trivial. Therefore, the complex value s0 belongs to the spectrum of system
(4.20). The same is true for −s0. �

Remark 4.2. The statement remains valid if we replace in Theorem 4.5 system
(4.20) by the reduced system (4.23).

4.5.2 A Special Case

Now we consider the case where the matrix G(θ ) is of the form

G(θ ) =
m

∑
j=1

η j(θ )B j, (4.25)

where B1, . . . ,Bm are given n×n matrices and the scalar functions η1(θ ), . . . ,ηm(θ )
are such that

dη j(θ )
dθ

=
m

∑
k=1

α jkηk(θ ), j = 1, . . . ,m.

Remark 4.3. In the previous subsection we had η j(θ ) = θ j−1, j = 1, . . . ,m. These
functions satisfy the equations

dη1(θ )
dθ

= 0,
dη j(θ )

dθ
= ( j− 1)η j−1(θ ), j = 2, . . . ,m.

The time-delay matrix equation for U(τ) is now of the form

dU(τ)
dτ

=U(τ)A0 +U(τ − h)A1 +
m

∑
j=1

0
∫

−h

η j(θ )U(τ +θ )B jdθ , τ ≥ 0. (4.26)
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Let us define for τ ∈ [0,h] the matrices Z(τ) =U(τ), V (τ) =U(τ − h), and

Xj(τ) =
0
∫

−h

η j(θ )U(τ +θ )dθ , Yj(τ) =
0
∫

−h

η j(θ )U(τ −θ − h)dθ , j = 1, . . . ,m.

Then Eq. (4.26) has the form

dZ(τ)
dτ

= Z(τ)A0 +V(τ)A1 +
m

∑
j=1

Xj(τ)B j , τ ∈ [0,h],

and
dV (τ)

dτ
=−AT

1 Z(τ)−AT
0 V (τ)−

m

∑
j=1

BT
j Yj(τ).

Now

dXj(τ)
dτ

=
d

dτ

⎛

⎝

0
∫

−h

η j(θ )U(τ +θ )dθ

⎞

⎠

= η j(0)U(τ)−η j(−h)U(τ − h)−
0
∫

−h

dη j(θ )
dθ

U(τ +θ )dθ

= η j(0)Z(τ)−η j(−h)V (τ)−
m

∑
k=1

α jkXk(τ), j = 1, . . . ,m,

and

dYj(τ)
dτ

=
d

dτ

⎛

⎝

0
∫

−h

η j(θ )U(τ −θ − h)dθ

⎞

⎠

= −η j(0)U(τ − h)+η j(−h)U(τ)+
0
∫

−h

dη j(θ )
dθ

U(τ −θ − h)dθ

= η j(−h)Z(τ)−η j(0)V (τ)+
m

∑
k=1

α jkYk(τ), j = 0,1, . . . ,m.

We arrive at the following system of delay-free matrix equations:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d
dτ

Z = ZA0 +VA1+
m

∑
j=1

XjB j,

d
dτ

V =−AT
0 V −AT

1 Z −
m

∑
j=1

BT
j Yj,

d
dτ

Xj = η j(0)Z −η j(−h)V −
m

∑
k=1

α jkXk, j = 1, . . . ,m,

d
dτ

Yj = η j(−h)Z −η j(0)V +
m

∑
k=1

α jkYk, j = 1, . . . ,m.

(4.27)

Because the auxiliary matrices Z(τ), V (τ), Xj(τ), Yj(τ), j = 1, . . . ,m, satisfy the
boundary value conditions (4.22), the following result holds.

Theorem 4.6. Given a time-delay system (4.1), where the matrix G(θ ) is of the
form (4.25), let U(τ) be a Lyapunov matrix of the delay system associated with the
matrix W. Then the matrices Z(τ), V (τ), Xj(τ), Yj(τ), j = 1, . . . ,m, define a solution
of the auxiliary boundary value problem (4.27), (4.22).

For the special case the statement of Theorem 4.5 remains true.

Theorem 4.7. Given a time-delay system (4.1), where the matrix G(θ ) is of the
form (4.25), let s0 be an eigenvalue of the time-delay system such that −s0 is also
an eigenvalue of the system. Then s0 belongs to the spectrum of system (4.27).

Sometimes it is possible to perform a reduction of delay-free system (4.27). This
happens when the functions η j(θ ), j = 1, . . . ,m, satisfy the conditions

η j(−θ − h) =
m

∑
k=1

γ jkηk(θ ), θ ∈ [−h,0], j = 1, . . . ,m.

In this case

Yj(τ) =
0
∫

−h

η j(θ )U(τ −θ − h)dθ = 〈ξ =−θ − h〉

=

0
∫

−h

η j(−ξ − h)U(τ + ξ )dξ =
m

∑
k=1

γ jk

0
∫

−h

ηk(ξ )U(τ + ξ )dξ

=
m

∑
k=1

γ jkXk(τ), j = 1, . . . ,m,

and one can exclude the matrices Yj(τ) of system (4.27), as well as those of
boundary value conditions (4.22).
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4.5.3 Numerical Scheme

In this section we propose a numerical scheme to approximate Lyapunov matrices.
Given a symmetric matrix W , we are looking for an approximate initial condition

for the Lyapunov matrix associated with W of the form

Φ(θ ) =
m

∑
j=0

θ jΦ j, θ ∈ [−h,0],

where Φ j, j = 0,1, . . . ,m, are n × n constant matrices. We address symmetry
property (4.4). According to this property,

dkU(τ)
dτk

∣

∣

∣

∣

τ=+0
= (−1)k

[

dkU(τ)
dτk

∣

∣

∣

∣

τ=−0

]T

, k ≥ 0. (4.28)

Here dkU(τ)
dτk

∣

∣

∣

τ=+0
and dkU(τ)

dτk

∣

∣

∣

τ=−0
stand for the right-hand side and the left-hand

side derivatives of U(τ) of the order k at τ = 0, respectively. It follows from (4.3)
that

dk+1U(τ)
dτk+1

∣

∣

∣

∣

τ=+0
=

(

dkU(τ)
dτk

∣

∣

∣

∣

τ=+0

)

A0 +

(

dkU(τ)
dτk

∣

∣

∣

∣

τ=−h+0

)

A1

+

0
∫

−h

dkU(θ )
dθ k G(θ )dθ , k ≥ 0.

If we replace U(θ ) in the preceding equality by Φ(θ ), then we obtain that

dk+1
̂U(τ)

dτk+1

∣

∣

∣

∣

∣

τ=+0

=

(

dk
̂U(τ)

dτk

∣

∣

∣

∣

∣

τ=+0

)

A0 +
m

∑
j=k

j( j− 1) . . . ( j− k− 1)Φ j

×

⎡

⎣(−h) j−kA1 +

0
∫

−h

θ j−kG(θ )dθ

⎤

⎦ , k ≥ 0.

For k = 0 we have

d̂U(τ)
dτ

∣

∣

∣

∣

∣

τ=+0

= Φ0A0 +
m

∑
j=0

(−h) j Φ jA1 +
m

∑
j=0

Φ j

0
∫

−h

θ jG(θ )dθ

=
m

∑
j=0

Φ jL
(1)
j ,
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where

L(1)
0 = A0 +A1 +

0
∫

−h

G(θ )dθ , L(1)
j = (−h) j A1 +

0
∫

−h

θ jG(θ )dθ , j = 1,2, . . . ,m.

For k = 1

d2
̂U(τ)

dτ2

∣

∣

∣

∣

∣

τ=+0

=

(

d̂U(τ)
dτ

∣

∣

∣

∣

∣

τ=+0

)

A0 +
m

∑
j=1

jΦ j

⎡

⎣(−h) j−1A1 +

0
∫

−h

θ j−1G(θ )dθ

⎤

⎦

=
m

∑
j=0

Φ jL
(2)
j ,

where
L(2)

0 = L(1)
0 A0, L(2)

j = L(1)
j A0 + jL(1)

j−1, j = 1,2, . . . ,m.

On the one hand, repeating this process we obtain the following expressions for the
right-hand-side derivatives:

dk
̂U(τ)

dτk

∣

∣

∣

∣

∣

τ=+0

=
m

∑
j=0

Φ jL
(k)
j , k = 1,2, . . . ,m.

Here

L(k)
j =

{

L(k−1)
j A0, j = 0,1, . . . ,k− 2,

L(k−1)
j A0 + j( j− 1) . . .( j− k+ 2)L(1)

j−k+1, j = k− 1,k, . . . ,m.

On the other hand, the left-hand-side derivatives at τ = 0 are of the form

dk
̂U(τ)

dτk

∣

∣

∣

∣

∣

τ=−0

= k!Φk, k = 1,2, . . . ,m.

Substituting these expressions into (4.28) we obtain a system of (m+ 1) matrix
equations for (m+ 1) matrices Φ j, j = 0,1, . . . ,m:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(−1)kk!ΦT
k =

m

∑
j=0

Φ jL
(k)
j , k = 1,2, . . . ,m,

m

∑
j=0

Φ jL
(1)
j +ΦT

1 =−W.
(4.29)

The last equation of this system is property (4.6), written in terms of the matrices.
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If system (4.29) admits a solution, Φ j , j = 0,1, . . . ,m, then we arrive at the matrix

Φ(θ ) =
m

∑
j=0

θ j
j Φ j, θ ∈ [−h,0].

The desired approximation of the Lyapunov matrix associated with W is now of the
form

̂U(τ) = [Φ(−τ)]T , τ ∈ [0,h].

4.6 Complete Type Functionals

Here we define a new class of quadratic functionals. But first we prove the statement.

Theorem 4.8. Define for the given symmetric matrices W0, W1, and W2 the
functional

w(ϕ) = ϕT (0)W0ϕ(0)+ϕT (−h)W1ϕ(−h)

+

0
∫

−h

ϕT (θ )W2ϕ(θ )dθ , ϕ ∈ PC([−h,0],Rn). (4.30)

Let there exist a Lyapunov matrix U(τ) associated with matrix

W =W0 +W1 + hW2.

This Lyapunov matrix defines the functional v0(ϕ); see (4.7). The time derivative of
the functional

v(ϕ) = v0(ϕ)+
0
∫

−h

ϕT (θ ) [W1 +(h+θ )W2]ϕ(θ )dθ , ϕ ∈PC([−h,0],Rn), (4.31)

along the solutions of system (4.1) is such that

d
dt

v(xt) =−w(xt), t ≥ 0.

Proof. The proof is similar to that of Theorem 3.4. �

Definition 4.2. We say that functional (4.31) is of the complete type if the matrices
W0, W1, and W2 are positive definite.



4.6 Complete Type Functionals 165

Lemma 4.4. Let system (4.1) be exponentially stable. Given the positive-definite
matrices W0, W1, and W2, the complete type functional (4.31) admits a lower bound
of the form

β1 ‖ϕ(0)‖2 +β2

0
∫

−h

‖ϕ(θ )‖2 dθ ≤ v(ϕ), ϕ ∈ PC([−h,0],Rn),

where β1 and β2 are positive constants.

Proof. We define an auxiliary functional of the form

ṽ(ϕ) = v(ϕ)−β1‖ϕ(0)‖2 −β2

0
∫

−h

‖ϕ(θ )‖2 dθ ,

where β1 and β2 are assumed to be positive constants. The time derivative of the
functional along the solution of system (4.1) is

d
dt

ṽ(xt) =−w̃(xt),

where

w̃(xt) = w(xt)+ 2β1xT (t)

⎡

⎣A0x(t)+A1x(t − h)+

0
∫

−h

G(θ )x(t +θ )dθ

⎤

⎦

+ β2xT (t)x(t)−β2xT (t − h)x(t − h), t ≥ 0.

The functional w̃(ϕ) admits a lower estimation of the form

w̃(ϕ)≥ [ϕT (0),ϕT (−h)]R1(β1,β2)

[

ϕ(0)
ϕ(−h)

]

+

0
∫

−h

ϕT (θ )R2(θ ,β1)ϕ(θ )dθ ,

where

R1(β1,β2) =

(

W0 0n×n

0n×n W1

)

+β1

(

A0 +AT
0 − hI A1

AT
1 0n×n

)

+β2

(

I 0n×n

0n×n −I

)

and
R2(θ ,β1) =W2 −β1GT (θ )G(θ ).

The matrices W0, W1, and W2 are positive definite, so there exist β1 > 0 and β2 > 0
such that the following inequalities hold

R1(β1,β2)≥ 0, R2(θ ,β1)≥ 0, θ ∈ [−h,0].
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For these β1 β2 we have

w̃(ϕ)≥ 0, ϕ ∈ PC([−h,0],Rn).

Therefore,

ṽ(ϕ) =
∞
∫

0

w̃(xt(ϕ))dt ≥ 0, ϕ ∈ PC([−h,0],Rn),

and we arrive at the conclusion that

β1 ‖ϕ(0)‖2 +β2

0
∫

−h

‖ϕ(θ )‖2 dθ ≤ v(ϕ), ϕ ∈ PC([−h,0],Rn). �

Corollary 4.2. If we assume β2 = 0 and set β1 = α1, then there exists α1 > 0 such
that the following inequalities hold:

R1(α1,0)≥ 0, R2(θ ,α1)≥ 0, θ ∈ [−h,0].

Therefore, the complete type functional v(ϕ) admits a lower bound of the form

α1 ‖ϕ(0)‖2 ≤ v(ϕ), ϕ ∈ PC([−h,0],Rn). (4.32)

Lemma 4.5. Let system (4.1) satisfy the Lyapunov condition. Given the symmetric
matrices W0, W1, and W2, there exist positive constants δ1 and δ2 such that
functional (4.31) admits an upper bound of the form

v(ϕ)≤ δ1 ‖ϕ(0)‖2 + δ2

0
∫

−h

‖ϕ(θ )‖2 dθ , ϕ ∈ PC([−h,0],Rn). (4.33)

Proof. The Lyapunov condition implies that there exists a Lyapunov matrix U(τ)
associated with matrix W =W0 +W1 + hW2. We define the following constants:

ν = max
τ∈[0,h]

‖U(τ)‖ , a = ‖A1‖ , g = max
θ∈[−h,0]

‖G(θ )‖ .

Now we estimate the summands that constitute functional (4.31). The sum of the
first two terms admits the upper bound
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R1 +R2 = ϕT (0)U(0)ϕ(0)+ 2ϕT(0)

0
∫

−h

U(−h−θ )A1ϕ(θ )dθ

≤ ν (1+ ha)‖ϕ(0)‖2 +νa

0
∫

−h

‖ϕ(θ )‖2 dθ .

The sum of the next two terms can be estimated as follows:

R3 +R4 = 2ϕT (0)

0
∫

−h

⎛

⎝

θ
∫

−h

U(ξ −θ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ

+

0
∫

−h

ϕT (θ1)A
T
1

⎡

⎣

0
∫

−h

U(θ1 −θ2)A1ϕ(θ2)dθ2

⎤

⎦dθ1

≤ 2νg‖ϕ(0)‖
0
∫

−h

(h+θ )‖ϕ(θ )‖dθ +νa2

⎛

⎝

0
∫

−h

‖ϕ(θ )‖dθ

⎞

⎠

2

≤ νgh‖ϕ(0)‖2 +νh

(

gh
3

+ a2
) 0
∫

−h

‖ϕ(θ )‖2 dθ .

The fifth term admits the estimation

R5 = 2

0
∫

−h

ϕT (θ1)A
T
1

⎛

⎝

0
∫

−h

⎡

⎣

θ2
∫

−h

U(h+θ1−θ2 + ξ2)G(ξ2)dξ2

⎤

⎦ϕ(θ2)dθ2

⎞

⎠dθ1

≤ 2νag

⎛

⎝

0
∫

−h

‖ϕ(θ1)‖dθ1

⎞

⎠

⎛

⎝

0
∫

−h

(h+θ2)‖ϕ(θ2)‖dθ2

⎞

⎠

≤ 2νag

⎛

⎝

√

h
∫ 0

−h
‖ϕ(θ1)‖2 dθ1

⎞

⎠

⎛

⎝

√

h3

3

∫ 0

−h
‖ϕ(θ2)‖2 dθ2

⎞

⎠

≤ 2√
3

νh2ag

0
∫

−h

‖ϕ(θ )‖2 dθ .
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The next term can be estimated as follows:

R6 =

0
∫

−h

ϕT (θ1)

⎧

⎨

⎩

0
∫

−h

⎡

⎣

θ1
∫

−h

GT (ξ1)

⎛

⎝

θ2
∫

−h

U(θ1 −θ2 − ξ1 + ξ2)G(ξ2)dξ2

⎞

⎠dξ1

⎤

⎦

× ϕ(θ2)dθ2

⎫

⎬

⎭

dθ1

≤ νg2

⎛

⎝

0
∫

−h

(h+θ1)‖ϕ(θ1)‖dθ1

⎞

⎠

⎛

⎝

0
∫

−h

(h+θ2)‖ϕ(θ2)‖dθ2

⎞

⎠

≤ 1
3

νh3g2

0
∫

−h

‖ϕ(θ )‖2 dθ .

And, finally,

R7 =

0
∫

−h

ϕT (θ ) [W1 +(h+θ )W2]ϕ(θ )dθ

≤ (‖W1‖+ h‖W2‖)
0
∫

−h

‖ϕ(θ )‖2 dθ .

If we collect the estimations, then inequality (4.33) holds for

δ1 = ν (1+ ha+ hg),

δ2 = νa(1+ ha)+
1
3

νgh2
(

1+ 2
√

3a+ hg
)

+ ‖W1‖+ h‖W2‖ . �

Corollary 4.3. If we assume that α2 = δ1 + hδ2, then functional (4.31) admits an
upper bound of the form

v(ϕ)≤ α2 ‖ϕ‖2
h , ϕ ∈ PC([−h,0],Rn). (4.34)

4.7 Exponential Estimates

Lemma 4.6. Given the positive-definite matrices W0, W1, and W2, functional (4.30)
admits the following exponential estimate:
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λmin(W0)‖ϕ(0)‖2 +λmin(W2)

0
∫

−h

‖ϕ(θ )‖2 dθ ≤ w(ϕ), ϕ ∈ PC([−h,0],Rn).

Proof. The proof follows directly from (4.30). �

Lemma 4.7. Let system (4.1) be exponentially stable. Given the positive-definite
matrices W0, W1, and W2, there exists σ > 0 such that the complete type functional
(4.31) satisfies the inequality

dv(xt)

dt
+ 2σv(xt)≤ 0, t ≥ 0, (4.35)

along the solutions of the system.

Proof. On the one hand, by Lemma 4.5, there exist positive constants δ1 and δ2

such that

v(ϕ)≤ δ1 ‖ϕ(0)‖2 + δ2

0
∫

−h

‖ϕ(θ )‖2 dθ .

On the other hand, Lemma 4.6 provides the estimate

dv(xt)

dt
=−w(xt)≤−λmin(W0)‖x(t)‖2 −λmin(W2)

0
∫

−h

‖x(t +θ )‖2 dθ .

Therefore, any σ > 0 that satisfies the inequalities

2σδ1 ≤ λmin(W0) and 2σδ2 ≤ λmin(W2)

also satisfies (4.35). �

Theorem 4.9. Let system (4.1) be exponentially stable. Given the positive-definite
matrices W0, W1, and W2, the inequality

‖x(t,ϕ)‖ ≤
√

α2

α1
‖ϕ‖h e−σt , t ≥ 0,

holds for any solution of the system. Here α1 and α2 are as defined in Corollaries 4.2
and 4.3, respectively, and σ > 0 is as computed in Lemma 4.7.

Proof. Let σ > 0 satisfy Lemma 4.7. Then, integrating inequality (4.35), we obtain
that

v(xt(ϕ))≤ v(ϕ)e−2σt , t ≥ 0.
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Now inequalities (4.32) and (4.34) imply that

α1 ‖x(t,ϕ)‖2 ≤ v(xt(ϕ))≤ v(ϕ)e−2σt ≤ α2 ‖ϕ‖2
h e−2σt , t ≥ 0.

The desired exponential estimate is a direct consequence of the preceding
inequalities. �



Part II
Neutral Type Systems



Chapter 5
General Theory

This chapter starts the second part of the book, where neutral type time-delay
systems are studied. Issues related to the existence, uniqueness, and continuation
of solutions of an initial value problem for such systems are discussed. In addition,
stability concepts and basic stability results obtained with the use of the Lyapunov–
Krasovskii approach, mainly in the form of necessary and sufficient conditions, are
presented here.

5.1 System Description

We consider a neutral type time-delay system of the form

d
dt

[x(t)−Dx(t − h)] = f (t,xt ). (5.1)

Here the functional f (t,ϕ) is defined for t ∈ [0,∞) and ϕ ∈ PC1 ([−h,0] ,Rn),

f : [0,∞)×PC1 ([−h,0] ,Rn)−→ Rn,

and is continuous in both arguments. The matrix D is a given n× n matrix, delay
h > 0. The information needed to begin the computation of a particular solution of
the system includes an initial time instant t0 ≥ 0 and an initial function ϕ : [−h,0]→
Rn, and it is assumed that

x(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0]. (5.2)

As usual, the state of the system at the time instant t ≥ t0 is defined as the restriction,

xt : θ → x(t +θ ), θ ∈ [−h,0],

V.L. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,
Control Engineering, DOI 10.1007/978-0-8176-8367-2 5,
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of the solution x(t) on the segment [t−h, t]. If the initial condition (t0,ϕ) is indicated
explicitly, then we use the notations x(t, t0,ϕ) and xt(t0,ϕ). In the case of time-
invariant systems we usually assume that t0 = 0 and omit the argument t0 in these
notations.

We will use initial functions from the space PC1 ([−h,0],Rn)⊂ PC ([−h,0],Rn).
Here it is assumed that a function ϕ ∈ PC ([−h,0],Rn) belongs to PC1 ([−h,0],Rn)
if on each continuity interval (α,β ) ∈ [−h,0] the function is continuously differ-
entiable and the first derivative of the function, ϕ ′(θ ), has a finite right-hand-side
limit at θ = α , ϕ ′(α + 0) = limε→0 ϕ ′(α + |ε|), and a finite left-hand-side limit
at θ = β , ϕ ′(β − 0) = limε→0 ϕ ′(β − |ε|). On the one hand, such a choice creates
certain technical difficulties. But on the other hand, it provides several advantages
in the formulations and proofs of some statements presented in the chapter. In
particular, it follows from Theorem 5.1 that if ϕ ∈ PC1 ([−h,0],Rn), then xt(t0,ϕ) ∈
PC1 ([−h,0],Rn) for t > t0.

Henceforth we assume that the following assumptions hold.

Assumption 5.1. The difference x(t, t0,ϕ) − Dx(t − h, t0,ϕ) is continuous and
differentiable for t ≥ t0, except possibly for a countable number of points. This does
not imply that x(t, t0,ϕ) is differentiable, or even continuous, for t ≥ t0.

Assumption 5.2. In Eq. (5.1) the right-hand-side derivative of the difference
x(t, t0,ϕ)−Dx(t−h, t0,ϕ) is assumed at the point t = t0. By default, such agreement
remains valid in situations where only a one-sided variation of the independent
variable is allowed.

Let x(t) be a solution of the initial value problem (5.1)–(5.2); then

x(t) = Dx(t − h)+ [ϕ(0)−Dϕ(−h)]+

t
∫

t0

f (s,xs)ds, t ≥ t0. (5.3)

System (5.3) is the integral form of the initial value problem. In some sense it is
more convenient to consider the integral system than the original one. For example,
the choice of PC ([−h,0],Rn) as the space of initial functions for system (5.3) seems
natural. The integral form substantially simplifies the study of discontinuity points
of the solutions of system (5.1). If θ1 ∈ [−h,0] is a discontinuity point of ϕ , then,
according to Assumption 5.1, the function

z(t) = Dx(t − h)+ [ϕ(0)−Dϕ(−h)]

has a jump discontinuity at t1 = t0 + θ1 + h and the size of the jump at the point is
such that

Δx(t1) = DΔϕ(θ1),
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where Δx(t1) = x(t1 + 0)− x(t1 − 0). If x(t) is defined for t ∈ [t0 − h,∞), then, as
follows from Eq. (5.3), the solution suffers a jump discontinuity at the points tk =
t0 +θ1 + kh, k ≥ 0, and the jumps are subjected to the equation

Δx(tk+1) = DΔx(tk), k ≥ 0.

One of the special features of neutral type time-delay systems is the following. The
discontinuity of a solution results in the discontinuity of the derivative on the left-
hand side of system (5.1). Indeed, consider the system

d
dt

[x(t)−Dx(t − h)] = F(x(t),x(t − h)).

If θ1 ∈ [−h,0] is a discontinuity point of ϕ , then

lim
t→t1−0

d
dt

[x(t,ϕ)−Dx(t − h,ϕ)] = F(x(t1 − 0,ϕ),ϕ(θ1 − 0))

and

lim
t→t1+0

d
dt

[x(t,ϕ)−Dx(t − h,ϕ)] = F(x(t1 −0,ϕ)+Δx(t1,ϕ),ϕ(θ1 −0)+Δϕ(θ1)).

This means that the left-hand-side and right-hand-side derivatives at t = t1 may not
coincide. The following assumption makes it possible to overcome this technical
difficulty.

Assumption 5.3. It is assumed that x(t, t0,ϕ), t ∈ [t0 − h, t0 + τ], where τ > 0, is a
solution of system (5.1) if it satisfies the system almost everywhere on [t0, t0 + τ].

5.2 Existence Issue

We start with the following existence result.

Theorem 5.1. Let the functional

f : [0,∞)×PC1 ([−h,0] ,Rn)−→ Rn

satisfy the following conditions:

(i) For any H > 0 there exists M(H)> 0 such that

‖ f (t,ϕ)‖ ≤ M(H), (t,ϕ) ∈ [0,∞)×PC1 ([−h,0] ,Rn) , ‖ϕ‖h ≤ H.
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(ii) The functional f (t,ϕ) is continuous with respect to both arguments.
(iii) The functional f (t,ϕ) is Lipschitz with respect to the second argument, i.e., for

any H > 0 there exists a Lipschitz constant L(H) such that the inequality

∥

∥

∥ f (t,ϕ(1))− f (t,ϕ(2))
∥

∥

∥≤ L(H)
∥

∥

∥ϕ(1)−ϕ(2)
∥

∥

∥

h

holds for t ≥ 0, ϕ(k) ∈ PC1 ([−h,0] ,Rn), and
∥

∥

∥ϕ(k)
∥

∥

∥

h
≤ H, k = 1,2.

Then, for given t0 ≥ 0 and an initial function ϕ ∈ PC1 ([−h,0] ,Rn) there exists
τ > 0 such that the initial value problem (5.1)–(5.2) admits a unique solution
defined on the segment [t0 − h, t0 + τ].

Proof. Given t0 ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), we introduce the function

z(t) = Dϕ(t − t0 − h)+ϕ(0)−Dϕ(−h), t ∈ [t0, t0 + h].

Let us select H > 0 such that the following inequality holds:

H > H0 = max

{

sup
θ∈[−h,0]

‖ϕ(θ )‖ , sup
t∈[t0,t0+h]

‖z(t)‖
}

.

Now we can define the corresponding values M = M(H) and L = L(H); see
conditions (i) and (iii) of the theorem.

Let τ ∈ (0,h) be such that

τL < 1 and τM < H −H0.

Denote by Θ the set of discontinuity points of the initial function ϕ , and define a
piecewise continuous function u : [t0 − h, t0 + τ]→ Rn as follows:

u(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0],

and any discontinuity point t∗ ∈ (t0, t0+τ] of the function is such that t∗−t0−h∈Θ.
Finally, assume that the following inequality holds:

‖u(t)− z(t)‖ ≤ (t − t0)M, t ∈ [t0, t0 + τ].

The preceding inequality implies that

‖u(t)‖ ≤ H0 + τM < H, t ∈ [t0, t0 + τ].

It follows from the definition of the function that

‖u(t)‖ ≤ H0 < H, t ∈ [t0 − h, t0].



5.2 Existence Issue 177

We denote by U the set of all such functions. On the set U we define an operator A
that acts on the functions of the set

A(u)(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ(t − t0), t ∈ [t0 − h, t0],

z(t)+

t
∫

t0

f (s,us)ds, t ∈ [t0, t0 + τ].

Here us : θ → u(s+ θ ), θ ∈ [−h,0] and ‖us‖h ≤ H for s ∈ [t0, t0 + τ]. It is easy
to verify that the theorem conditions (i) and (ii) guarantee that the transformed
function, A(u), belongs to the same set U ,

u ∈U ⇒A(u) ∈U.

Any solution x̃(t) of the initial value problem (5.1)–(5.2) defines a fixed point of the
operator,

x̃(t) =A(x̃)(t), t ∈ [t0 − h, t0 + τ].

Observe that

A(u(1))(t)−A(u(2))(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, t ∈ [t0 − h, t0],
t

∫

t0

[ f (s,u(1)s )− f (s,u(2)s )]ds, t ∈ [t0, t0 + τ].

Hence, for t ∈ [t0 − h, t0]

∥

∥

∥A(u(1))(t)−A(u(2))(t)
∥

∥

∥= 0

and for t ∈ [t0, t0 + τ]

∥

∥

∥
A(u(1))(t)−A(u(2))(t)

∥

∥

∥
≤

t0+τ
∫

t0

∥

∥

∥
f (s,u(1)s )− f (s,u(2)s )

∥

∥

∥
ds.

Because ‖u(1)s ‖h ≤ H and ‖u(2)s ‖h ≤ H, the Lipschitz condition (iii) implies that the
inequality

∥

∥

∥A(u(1))(t)−A(u(2))(t)
∥

∥

∥ ≤ L

t0+τ
∫

t0

∥

∥

∥u(1)s − u(2)s

∥

∥

∥

h
ds

≤ τL sup
s∈[t0−h,t0+τ]

∥

∥

∥
u(1)(s)− u(2)(s)

∥

∥

∥
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holds for t ∈ [t0, t0+τ]. Since the preceding inequality holds for all t ∈ [t0−h, t0+τ],
we conclude that

sup
s∈[t0−h,t0+τ]

∥

∥

∥A(u(1))(t)−A(u(2))(t)
∥

∥

∥≤ τL sup
s∈[t0−h,t0+τ]

∥

∥

∥u(1)(s)− u(2)(s)
∥

∥

∥ .

Now, because Lτ < 1, the operator A satisfies the conditions of the contraction
mapping theorem, and there exists a unique fixed point of the operator u(∗) ∈ U .
This means that

u(∗)(t) =A(u(∗))(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ(t − t0), t ∈ [t0 − h, t0],

z(t)+

t
∫

t0

f (s,u(∗)s )ds, t ∈ [t0, t0 + τ],

i.e.,

u(∗)(t)−Du(∗)(t − h) = ϕ(0)−Dϕ(−h)+

t
∫

t0

f (s,u(∗)s )ds, t ∈ [t0, t0 + τ].

The functional f (t,ϕ) is continuous, and u(∗)(t) is piecewise continuous; therefore,
the right-hand side of the last equality is differentiable on [t0, t0 + τ], except at most
a finite number of points, and we arrive at the conclusion that the following equality
holds almost everywhere:

d
dt

[

u(∗)(t)−Du(∗)(t − h)
]

= f (t,u(∗)t ), t ∈ [t0, t0 + τ].

Because function u(∗)(t) satisfies Eq. (5.2), it is the unique solution of the initial
value problem (5.1)–(5.2). �

Remark 5.1. We can take t1 = t0 +τ as a new initial time instant and define the new
initial function

ϕ(1)(θ ) = u(∗)(t1 +θ ), θ ∈ [−h,0].

Then the construction process can be repeated, and we extend the solution to the next
segment [t1, t1 + ˜τ ]. This extension process can be continued as far as the solution
remains bounded.

For each solution there exists a maximal interval [t0, t0+T ) on which the solution
is defined. Here we present conditions under which any solution of system (5.1) is
defined on the interval [t0,∞).

Theorem 5.2. Let system (5.1) satisfy the conditions of Theorem 5.1. Assume
additionally that f (t,ϕ) satisfies the inequality

‖ f (t,ϕ)‖ ≤ η(‖ϕ‖h), t ≥ 0, ϕ ∈ PC1 ([−h,0] ,Rn) ,
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where the function η(r), r ∈ [0,∞), is continuous, nondecreasing, and such that for
any r0 ≥ 0 the following condition holds:

lim
R→∞

R
∫

r0

dr
η(r)

= ∞.

Then any solution x(t, t0,ϕ) of the system is defined on [t0,∞).

Proof. Given t0 ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), there exists a maximal interval
[t0, t0 +T ) on which the corresponding solution x(t, t0,ϕ) is defined. For the sake
of simplicity we denote x(t, t0,ϕ) by x(t).

Denote by [t0, t0 + T ) the maximal interval on which the solution is defined.
Assume by contradiction that T < ∞, and define the smallest entire N such that
T ≤ Nh. There exists an increasing sequence {tk}∞

k=1 such that

lim
k→∞

tk = t0 +T

and
lim
k→∞

‖x(tk)‖ → ∞.

Otherwise, by Remark 5.1, the solution can be defined on a wider segment [t0, t0 +
T + τ], τ > 0.

The solution satisfies the equality

x(t) = Dx(t − h)+ [ϕ(0)−Dϕ(−h)]+

t
∫

t0

f (s,xs)ds, t ∈ [t0, t0 +T ).

For a given t ∈ [t0, t0+T ) we define an integer k such that t ∈ [t0+(k− 1)h, t0+kh).
Now, iterating the preceding equality k− 1 times, we obtain that

x(t) = Dkx(t − kh)+
k−1

∑
j=0

D j[ϕ(0)−Dϕ(−h)]+
k−1

∑
j=0

D j

t− jh
∫

t0

f (s,xs)ds.

There exist d ≥ 1 and ρ > 0 such that
∥

∥Dk
∥

∥≤ dρk for k ≥ 0. Thus

‖x(t)‖ ≤ κ ‖ϕ‖h +κ

t
∫

t0

‖ f (s,xs)‖ds, t ∈ [t0, t0 +T ),

where

κ = d
N−1

∑
j=0

ρ j, κ = max
{

d,dρN}+(1+ρ)κ.
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For θ ∈ [−h,0] the following inequality holds:

‖x(t +θ )‖ ≤ κ ‖ϕ‖h +κ

max{t+θ ,t0}
∫

t0

‖ f (s,xs)‖ds

≤ κ ‖ϕ‖h +κ

t
∫

t0

‖ f (s,xs)‖ds;

hence we arrive at the inequality

‖xt‖h ≤ κ ‖ϕ‖h +κ

t
∫

t0

‖ f (s,xs)‖ds, t ∈ [t0, t0 +T).

It follows from the theorem conditions that

‖xt‖h ≤ κ ‖ϕ‖h +κ

t
∫

t0

η(‖xs‖h)ds, t ∈ [t0, t0 +T ).

Denote the right-hand side of the last inequality by v(t); then

dv(t)
dt

= κη(‖xt‖h)≤ κη(v(t)), t ∈ [t0, t0 +T).

This implies that

tk
∫

t0

dv(s)
η(v(s))

≤ κ (tk − t0) , k = 1,2,3, . . . .

On the one hand, since
tk
∫

t0

dv(s)
η(v(s))

=

rk
∫

r0

dξ
η(ξ )

,

where r0 = v(t0) = κ ‖ϕ‖h ≥ 0, and

rk = v(tk)≥
∥

∥xtk

∥

∥

h ≥ ‖x(tk)‖→ ∞, as k → ∞,

we conclude that

lim
k→∞

tk
∫

t0

dv(s)
η(v(s))

= ∞.
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On the other hand,
lim
k→∞

κ (tk − t0) = κT ;

therefore T = ∞. This contradicts our assumption that T < ∞. The contradiction
concludes the proof of the theorem. �

5.3 Continuity of Solutions

In this section we analyze the continuity properties of the solutions of system (5.1)
with respect to initial conditions as well as the system right-hand-side perturbations.
These continuity properties are a direct consequence of the following theorem.

Theorem 5.3. Assume that the right-hand side of system (5.1), f (t,ϕ), satisfies the
conditions of Theorem 5.1. Let x(t, t0,ϕ) be a solution of system (5.1) with the initial
condition

x(t0 +θ ) = ϕ(θ ), θ ∈ [−h,0].

Given a perturbed system of the form

d
dt

[y(t)−Dy(t − h)] = f (t,yt)+ g(t,yt), t ≥ 0,

where the functional g(t,ϕ) is continuous on the set [0,∞)× PC1 ([−h,0] ,Rn),
the functional g(t,ϕ) satisfies the Lipschitz condition with respect to the second
argument and

‖g(t,ϕ)‖ ≤ m, t ≥ 0, ϕ ∈ PC1 ([−h,0] ,Rn) .

Let y(t, t0,ψ) be a solution of the perturbed system with the initial condition

y(t0 +θ ) = ψ(θ ), θ ∈ [−h,0].

If both solutions are defined for t ∈ [t0, t0 +T ], where 0 < T < ∞, then there exist
positive constants α,β ,γ such that the following inequality holds:

‖x(t, t0,ϕ)− y(t, t0,ψ)‖ ≤ (α ‖ψ −ϕ‖h +β m)eγ(t−t0), t ∈ [t0, t0 +T ].

Proof. For the matrix D there exist d ≥ 1 and ρ > 0 such that
∥

∥Dk
∥

∥≤ dρk for k ≥ 0.
For the sake of simplicity we will use the following shorthand notations for the

solutions x(t, t0,ϕ) = x(t) and y(t, t0,ψ) = y(t). Observe that for t ≥ t0

d
dt

[x(t)−Dx(t − h)]− d
dt

[y(t)−Dy(t − h)] = f (t,xt)− f (t,yt)− g(t,yt).
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Integrating the preceding equality we obtain that

x(t)− y(t) = D [x(t − h)− y(t− h)]

+[ϕ(0)−Dϕ(−h)]− [ψ(0)−Dψ(−h)]

+

t
∫

t0

[ f (s,xs)− f (s,ys)− g(s,ys)]ds, t ≥ t0.

Let us first define the smallest integer N such that T ≤ hN. Then for a given t ∈
[t0, t0 + T ] we define an integer k such that t ∈ [t0 +(k− 1)h, t0 + kh). Now, after
k− 1 iterations we arrive at the equality

x(t)− y(t) = Dk [x(t − kh)− y(t− kh)]+
k−1

∑
j=0

D j [ϕ(0)−ψ(0)]

−
k−1

∑
j=0

D j+1 [ϕ(−h)−ψ(−h)]

+
k−1

∑
j=0

D j

t− jh
∫

t0

[ f (s,xs)− f (s,ys)− g(s,ys)]ds. (5.4)

Since t − kh ∈ [t0 − h, t0], we conclude that

∥

∥

∥Dk [x(t − kh)− y(t− kh)]
∥

∥

∥≤ dρk ‖ϕ −ψ‖h ≤ max
{

d,dρN}‖ϕ −ψ‖h .

It is obvious that the following two inequalities hold:

∥

∥

∥

∥

∥

k−1

∑
j=0

D j [ϕ(0)−ψ(0)]

∥

∥

∥

∥

∥

≤ κ ‖ϕ −ψ‖h ,

where

κ = d
N−1

∑
j=0

ρ j

and
∥

∥

∥

∥

∥

k−1

∑
j=0

D j+1 [ϕ(−h)−ψ(−h)]

∥

∥

∥

∥

∥

≤ κρ ‖ϕ −ψ‖h .
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Finally, we find that
∥

∥

∥

∥

∥

∥

k−1

∑
j=0

D j

t− jh
∫

t0

[ f (s,xs)− f (s,ys)]ds

∥

∥

∥

∥

∥

∥

≤ κ

t
∫

t0

‖ f (s,xs)− f (s,ys)‖ds

≤ κL1

t
∫

t0

‖xs − ys‖h ds

and
∥

∥

∥

∥

∥

∥

k−1

∑
j=0

D j

t− jh
∫

t0

g(s,ys)ds

∥

∥

∥

∥

∥

∥

≤ κ

t
∫

t0

‖g(s,ys)‖ds ≤ κm(t − t0).

Here L1 = L(H1) and

H1 = max

{

sup
t∈[t0−h,t0+T ]

‖x(t)‖ , sup
t∈[t0−h,t0+T ]

‖y(t)‖
}

.

Now equality (5.4) implies that for t ∈ [t0, t0 +T ] the inequality

‖x(t)− y(t)‖ ≤ κ ‖ϕ −ψ‖h +κm(t − t0)+κL1

t
∫

t0

‖xs − ys‖h ds

holds, where
κ = max

{

d,dρN}+κ(1+ρ).

Applying arguments similar to that used in the proof of Theorem 5.2 we obtain that

‖xt − yt‖h ≤ κ ‖ϕ −ψ‖h +κm(t − t0)+κL1

t
∫

t0

‖xs − ys‖h ds, t ∈ [t0, t0 +T ].

Denote the right-hand side of the last inequality by v(t); then

dv(t)
dt

= κm+κL1 ‖xt − yt‖h , t ∈ [t0, t0 +T ].

Direct integration of this inequality leads to the desired result

‖x(t, t0,ϕ)− y(t, t0,ψ)‖ ≤ ‖xt(t0,ϕ)− yt(t0,ψ)‖h

≤ κ ‖ψ −ϕ‖h eκL1(t−t0) +
m
L

eκL1(t−t0)

≤ (α ‖ψ −ϕ‖h +β m)eγ(t−t0), t ∈ [t0, t0 +T ],

where α = κ , β = L−1
1 , and γ = κL1. �
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Corollary 5.1. Let g(t,ϕ) ≡ 0, then m = 0, and both x(t, t0,ϕ) and y(t, t0,ψ) are
solutions of system (5.1). Assume that these solutions are defined for t ∈ [t0, t0 +T ].
Then for any ε > 0 there exists δ > 0 such that if ‖ψ −ϕ‖h < δ , then the following
inequality holds:

‖x(t, t0,ϕ)− x(t, t0,ψ)‖< ε, t ∈ [t0, t0 +T ].

In other words, x(t, t0,ϕ) depends continuously on the initial function ϕ .

Proof. The statement follows directly from Theorem 5.3 if we set δ = εα−1e−γT .�

Corollary 5.2. Let ψ(θ ) = ϕ(θ ), θ ∈ [−h,0]; then the solutions x(t, t0,ϕ) and
y(t, t0,ψ) have the same initial function. Assume that these solutions are defined
for t ∈ [t0, t0 +T ]. Then for any ε > 0 there exists δ > 0 such that if m < δ , then the
following inequality holds:

‖x(t, t0,ϕ)− y(t, t0,ϕ)‖< ε, t ∈ [t0, t0 +T ].

This means that the solutions depend continuously on the right-hand side of
system (5.1).

Proof. The statement follows directly from Theorem 5.3 if we set δ = εβ−1e−γT .�

5.4 Stability Concepts

In the rest of the chapter we assume that system (5.1) satisfies the conditions of
Theorem 5.1 and additionally that it admits the trivial solution, i.e., the following
identity holds:

f (t,0h)≡ 0, for t ≥ 0.

Definition 5.1. The trivial solution of system (5.1) is said to be stable if for any
ε > 0 and t0 ≥ 0 there exists δ (ε, t0) > 0 such that for every initial function ϕ ∈
PC1([−h,0],Rn), with ‖ϕ‖h < δ (ε, t0), the following inequality holds:

‖x(t, t0,ϕ)‖< ε, t ≥ t0.

If δ (ε, t0) can be chosen independently of t0, then the trivial solution is said to be
uniformly stable.

Definition 5.2. The trivial solution of system (5.1) is said to be asymptotically
stable if for any ε > 0 and t0 ≥ 0 there exists Δ(ε, t0)> 0 such that for every initial
function ϕ ∈ PC1([−h,0],Rn), with ‖ϕ‖h < Δ(ε, t0), the following conditions hold.
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1. ‖x(t, t0,ϕ)‖< ε , for t ≥ t0.
2. x(t, t0,ϕ)→ 0, as t − t0 → ∞.

If Δ(ε, t0) can be chosen independently of t0 and there exists H1 > 0 such that
x(t, t0,ϕ) → 0, because t − t0 −→ ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈
PC1([−h,0],Rn), with ‖ϕ‖h ≤H1, then the trivial solution is said to be uniformly
asymptotically stable.

Definition 5.3. The trivial solution of system (5.1) is said to be exponentially
stable if there exist Δ0 > 0, σ > 0, and γ ≥ 1 such that for every t0 ≥ 0 and
ϕ ∈ PC1([−h,0],Rn), with ‖ϕ‖h < Δ0, the following inequality holds:

‖x(t, t0,ϕ)‖ ≤ γe−σ(t−t0) ‖ϕ‖h , t ≥ t0.

As mentioned in Sect. 5.1, if an initial function ϕ admits a jump point θ1, then
the corresponding solution, x(t, t0,ϕ), has jump discontinuity at the points tk = t0 +
θ1 + kh, k ≥ 1, and the jumps at these points satisfy the jump equation

Δx(tk+1) = DΔx(tk), k ≥ 1.

As a consequence, we observe that system (5.1) cannot be stable if the matrix D
admits an eigenvalue with magnitude greater than one. Otherwise, for any δ > 0
there exists an initial function ϕ ∈ PC1([−h,0],Rn), with ‖ϕ‖h < δ , such that the
corresponding solution x(t, t0,ϕ) has a sequence of jumps, and the size of the jumps
tends to infinity. This observation motivates the following assumption.

Assumption 5.4. In the rest of the chapter we assume that matrix D is Schur stable,
i.e., the spectrum of the matrix lies in the open unit disc of the complex plane.

5.5 Lyapunov–Krasovskii Approach

We will use the following concept of positive-definite functionals for system (5.1).

Definition 5.4. The functional v(t,ϕ) is said to be positive definite if there exists
H > 0 such that the following conditions are satisfied:

1. The functional v(t,ϕ) is defined for t ≥ 0 and ϕ ∈PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤
H.

2. v(t,0h) = 0, t ≥ 0.
3. There exists a positive-definite function v1 (x) such that

v1(ϕ(0)−Dϕ(−h))≤ v(t,ϕ) ,

t ≥ 0, ϕ ∈ PC1 ([−h,0] ,Rn) , with ‖ϕ‖h ≤ H.
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4. For any given t0 ≥ 0 the functional v(t0,ϕ) is continuous in ϕ at the point 0h,
i.e., for any ε > 0 there exists δ > 0 such that the inequality ‖ϕ‖h < δ implies

|v(t0,ϕ)− v(t0,0h)|= v(t0,ϕ)< ε.

We are now ready to present some basic results of the Lyapunov–Krasovskii
approach.

Theorem 5.4. The trivial solution of system (5.1) is stable if and only if there exists
a positive-definite functional v(t,ϕ) such that along the solutions of the system
v(t,xt), as a function of t, does not increase.

Proof. Sufficiency: Since the matrix D is Schur stable, there exist d ≥ 1and ρ ∈
(0,1) such that the inequality

∥

∥Dk
∥

∥≤ dρk holds for k ≥ 0. The positive definiteness
of the functional v(t,ϕ) implies that there exists a positive-definite function v1(x)
satisfying Definition 5.4. Let H > 0 be that of Definition 5.4.

For a given ε ∈ (0,H) we first set

ε1 =
1−ρ

d
ε > 0

and then introduce the positive value

λ (ε1) = min
‖x‖=ε1

v1(x). (5.5)

Since for a given t0 ≥ 0 functional v(t0,ϕ) is continuous in ϕ at the point 0h, there
exists δ1(ε, t0) > 0 such that v(t0,ϕ) < λ (ε1) for any ϕ ∈ PC1 ([−h,0] ,Rn), with
‖ϕ‖h ≤ δ1(ε, t0).

It is clear that δ1(ε, t0) ≤ ε1; otherwise we can present an initial function ϕ ∈
PC1 ([−h,0] ,Rn) such that ‖ϕ‖h < δ1(ε, t0) and ‖ϕ(0)−Dϕ(−h)‖ = ε1. On the
one hand, for this initial function we have v1(ϕ(0)−Dϕ(−h)) ≥ λ (ε1). On the
other hand, v1(ϕ(0)−Dϕ(−h)) ≤ v(t0,ϕ) < λ (ε1). The contradiction proves the
desired inequality.

Now we define the positive value

δ (ε, t0) =
δ1(ε, t0)
1+ dρ

.

Let ϕ ∈ PC1 ([−h,0] ,Rn) with ‖ϕ‖h < δ (ε, t0). Then the theorem condition implies
that

v1(x(t, t0,ϕ)−Dx(t − h, t0,ϕ)) ≤ v(t,xt(t0,ϕ))

≤ v(t0,ϕ)< λ (ε1), t ≥ t0. (5.6)
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We prove that
‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε1, t ≥ t0.

Assume by contradiction that there exists a time instant t1 ≥ t0 for which

‖x(t1, t0,ϕ)−Dx(t1 − h, t0,ϕ)‖ ≥ ε1.

Since

‖x(t0, t0,ϕ)−Dx(t0 − h, t0,ϕ)‖ = ‖ϕ(0)−Dϕ(−h)‖

≤ (1+ dρ)‖ϕ‖h < δ1(ε, t0)≤ ε1

and ‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ is a continuous function of t, there exists t∗ ∈
[t0, t1] such that

‖x(t∗, t0,ϕ)−Dx(t∗− h, t0,ϕ)‖= ε1.

On the one hand, it follows from Eq. (5.5) that

v1(x(t
∗, t0,ϕ)−Dx(t∗− h, t0,ϕ))≥ λ (ε1).

On the other hand, Eq. (5.6) provides the opposite inequality

v1(x(t
∗, t0,ϕ)−Dx(t∗− h, t0,ϕ))< λ (ε1).

The contradiction proves that our assumption is wrong, and

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε1, t ≥ t0.

The preceding inequality means that

x(t, t0,ϕ) = Dx(t − h, t0,ϕ)+ ξ (t), t ≥ t0, (5.7)

where ξ (t) is such that ‖ξ (t)‖< ε1, t ≥ t0.
For a given t ≥ t0 we define the entire number k such that t ∈ [t0 +(k− 1)h, t0 +

kh). Iterating equality (5.7) k− 1 times we obtain that

x(t, t0,ϕ) = Dkx(t − kh, t0,ϕ)+
k−1

∑
j=0

D jξ (t − jh).

Since t − kh ∈ [t0 − h, t0],

‖x(t − kh, t0,ϕ)‖ ≤ ‖ϕ‖h < δ (ε, t0)≤ ε1,
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t

‖x‖

H

t0

Fig. 5.1 Value of ‖x(t, t0,ϕ‖, the first case

and we arrive at the following inequality:

‖x(t, t0,ϕ)‖ ≤
∥

∥

∥Dk
∥

∥

∥‖x(t − kh, t0,ϕ)‖+
k−1

∑
j=0

∥

∥D j
∥

∥‖ξ (t − jh)‖

< dρkδ (ε, t0)+
k−1

∑
j=0

dρ jε1 <
d

1−ρ
ε1 = ε, t ≥ t0.

This means that δ (ε, t0) satisfies Definition 5.1, and the trivial solution of Eq. (5.1)
is stable.

Necessity: Now, the trivial solution of system (5.1) is stable, and we must prove
that there exists a functional v(t,ϕ) that satisfies the theorem conditions.

Construction of the functional: Since the trivial solution of system (5.1) is stable,
for ε = H there exists δ (H, t0)> 0 such that the inequality ‖ϕ‖h < δ (H, t0) implies
that ‖x(t, t0,ϕ)‖< H for t ≥ t0. We define the functional v(t,ϕ) as follows:

v(t0,ϕ) =

⎧

⎨

⎩

sup
t≥t0

‖x(t, t0,ϕ)−Dx(t − h, t0ϕ)‖ , if ‖x(t, t0,ϕ)‖ < H, for t ≥ t0,

(1+ dρ)H if there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖ ≥ H.

(5.8)

These two possibilities are illustrated in Figs. 5.1 and 5.2, respectively.
We verify first that the functional is positive definite. To this end, we must verify

that it satisfies the conditions of Definition 5.4.

Condition 1: Actually, Eq. (5.8) allows us to compute v(t0,ϕ) for any t0 ≥ 0 and
ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H.
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t

‖x‖

H

t0 T

Fig. 5.2 Value of ‖x(t, t0,ϕ‖, the second case

Condition 2: Since for ϕ = 0h the corresponding solution is trivial, x(t, t0,0h) = 0,
t ≥ t0, then v(t0,0h) = 0.

Condition 3: The function v1 (x) = ‖x‖ is positive definite. In the case where
‖x(t, t0,ϕ)‖< H for t ≥ t0, we have

v1 (ϕ(0)−Dϕ(−h)) = ‖ϕ(0)−Dϕ(−h)‖

≤ sup
t≥t0

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖= v(t0,ϕ).

And in the other case where there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖ ≥ H, the
following inequality holds:

v1 (ϕ(0)−Dϕ(−h)) = ‖ϕ(0)−Dϕ(−h)‖ ≤ (1+ dρ)H = v(t0,ϕ).

Condition 4: Given t0 ≥ 0, the stability of the trivial solution means that for any
ε > 0 there exists δ1 = δ ( ε

1+dρ , t0)> 0 such that ‖ϕ‖h < δ1 implies

‖x(t, t0,ϕ)‖ <
ε

1+ dρ
, t ≥ t0.

This means that

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ ≤ ‖x(t, t0,ϕ)‖+ dρ ‖x(t − h, t0,ϕ)‖< ε, t ≥ t0.

The preceding inequality demonstrates that

|v(t0,ϕ)− v(t0,0h)|= v(t0,ϕ)≤ ε.
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This observation makes it clear that for a fixed t0 ≥ 0 the functional v(t0,ϕ) is
continuous in ϕ at the point 0h.

Now we check that functional (5.8) satisfies the theorem condition. First, we
consider the case where ‖x(t, t0,ϕ)‖ < H for t ≥ t0. In this case, given two time
instants t1 and t2 such that t2 > t1 ≥ t0, we have that

v(t1,xt1(t0,ϕ)) = sup
t≥t1

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖

and
v(t2,xt2(t0,ϕ)) = sup

t≥t2
‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ .

Since for the second value the range of the supremum is smaller than that for the
first one, we conclude that

v(t2,xt2(t0,ϕ))≤ v(t1,xt1(t0,ϕ)).

This means that along the solution the functional v(t,xt(t0,ϕ)) does not increase as a
function of t. In the second case, where there exists T ≥ t0 such that ‖x(T, t0,ϕ)‖ ≥
H, we have the equality

v(t2,xt2(t0,ϕ)) = v(t1,xt1(t0,ϕ)) = (1+ dρ)H,

and, once again, the functional does not increase along the solution of system (5.1).�

Remark 5.2. On the one hand, functional (5.8) has only an academic value.
Obviously, we cannot use such functionals in applications. On the other hand,
it demonstrates that the Lyapunov–Krasovskii approach is universal: for any
system with a stable trivial solution there are positive-definite functionals satisfying
Theorem 5.4.

Theorem 5.5. The trivial solution of system (5.1) is uniformly stable if and only if
there exists a positive-definite functional v(t,ϕ) such that the following conditions
are satisfied:

1. The value of the functional along the solutions of the system, v(t,xt), as a
function of t does not increase.

2. The functional is continuous in ϕ at the point 0h, uniformly for t ≥ 0.

Proof. Sufficiency: We use notations from the proof of the sufficiency part of
Theorem 5.4. Now the functional v(t,ϕ) is continuous in ϕ at the point 0h,
uniformly for t ≥ 0, so there exists a positive value δ1(ε) such that the inequality
v(t0,ϕ)< λ (ε1) holds for any t0 ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h < δ1(ε).
Therefore, the value

δ (ε) =
δ1(ε)

1+ dρ
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does not depend on t0. The remainder of the sufficiency part of the proof coincides
with that of Theorem 5.4.

Necessity: The uniform stability of the trivial solution of system (5.1) implies that δ
can be chosen independently of t0, δ = δ (ε). We show that functional (5.8) satisfies
the second condition of the theorem. Let us select for a given ε > 0(ε < H) the
value

δ1 = δ
(

ε
1+ dρ

)

.

Then, for any ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h < δ1 and t0 ≥ 0, we have that

‖x(t, t0,ϕ)‖<
ε

1+ dρ
, for t ≥ t0.

This means that

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ ≤ ‖x(t, t0,ϕ)‖+ dρ ‖x(t − h, t0,ϕ)‖< ε, t ≥ t0.

The preceding inequality demonstrates that

|v(t0,ϕ)− v(t0,0h)|= v(t0,ϕ)≤ ε, t0 ≥ 0.

In other words, functional (5.8) is continuous in ϕ at the point 0h, uniformly with
respect to t0 ≥ 0. �

Corollary 5.3. Let the condition of Theorem 5.4 be fulfilled, and let the functional
v(t,ϕ) admit an upper estimate of the form

v(t,ϕ)≤ v2(ϕ), t ≥ 0, ϕ ∈ PC1 ([−h,0] ,Rn) , with ‖ϕ‖h ≤ H,

with a positive-definite functional v2(ϕ); then the trivial solution of system (5.1) is
uniformly stable.

Theorem 5.6. The trivial solution of system (5.1) is asymptotically stable if and
only if the following conditions hold.

1. There exists a positive-definite functional v(t,ϕ), defined for t ≥ 0 and ϕ ∈
PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H such that along the solutions of the system
v(t,xt), as a function of t, does not increase.

2. For any t0 ≥ 0 there exists a positive value μ(t0) such that if ϕ ∈PC1 ([−h,0] ,Rn)
and ‖ϕ‖h < μ(t0), then v(t,xt(t0,ϕ)) decreases monotonically to zero as
t − t0 → ∞.

Proof. Sufficiency: Since the matrix D is Schur stable, there exists d ≥ 1 and ρ ∈
(0,1) such that the inequality

∥

∥Dk
∥

∥≤ dρk holds for k ≥ 0. The first condition of the
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theorem implies the stability of the trivial solution of system (5.1); see Theorem 5.4.
Thus, for any ε ∈ (0,H) and t0 ≥ 0 there exists δ (ε, t0) > 0 such that if ‖ϕ‖h <
δ (ε, t0), then ‖x(t, t0,ϕ)‖< ε for t ≥ t0. Let us define the value

Δ(ε, t0) = min{δ (ε, t0) ,μ(t0)} .

Now, given an initial function ϕ ∈ PC1 ([−h,0] ,Rn) such that ‖ϕ‖h < Δ(ε, t0), we
will demonstrate that x(t, t0,ϕ)→ 0 as t − t0 → ∞. The functional v(t,ϕ) is positive
definite, so there exists a positive-definite function v1(x)such that

v1(ϕ(0)−Dϕ(−h))≤ v(t,ϕ)

for t ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H. For a given ε1 > 0(ε1 < ε) we
set

ε2 =
1−ρ

2d
ε1 > 0

and define the positive value

α = min
ε2≤‖x‖≤ε

v1(x).

By the second condition of the theorem, there exists T > 0 such that v(t,xt(t0,ϕ))<
α for t ≥ t0 +T and

v1(x(t, t0,ϕ)−Dx(t − h, t0,ϕ))≤ v(t,xt(t0,ϕ))< α, t − t0 ≥ T,

so we must conclude that

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε2, t − t0 ≥ T.

This means that

x(t, t0,ϕ) = Dx(t − h, t0,ϕ)+ν(t), t − t0 ≥ T, (5.9)

where
‖ν(t)‖< ε2, t − t0 ≥ T.

For a given t ≥ t0 +T we define the integer number k such that t ∈ [t0 +T +(k−
1)h, t0 +T + kh). Then, iterating equality (5.9) (k− 1) times, we obtain that

x(t, t0,ϕ) =
k−1

∑
j=0

D jν(t − jh)+Dkx(t − kh, t0,ϕ)
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and

‖x(t, t0,ϕ)‖ ≤
k−1

∑
j=0

dρ jε2 + dρkε <
d

1−ρ
ε2 + dρkε ≤ 1

2
ε1 + dρkε, t − t0 ≥ T.

Since ρk → 0 as k → ∞, then, starting from some k0, the following inequality holds:

dρkε <
1
2

ε1, k ≥ k0.

This means that ‖x(t, t0,ϕ)‖ < ε1for t ≥ t0 + T + k0h, and we conclude that
x(t, t0,ϕ) → 0 as t − t0 → ∞. Hence, the previously defined value Δ(t0,ε) satisfies
Definition 5.2.

Necessity: In this part of the proof we make use of functional (5.8). In the proof of
Theorem 5.4 it was demonstrated that the functional is positive definite and does not
increase along the solutions of system (5.1). This means that the functional satisfies
the first condition of the theorem.

We address the second condition of the theorem and choose the value μ(t0) as
follows:

μ(t0) = Δ(H, t0)> 0.

Now for any initial function ϕ ∈PC1 ([−h,0] ,Rn), with ‖ϕ‖h < μ(t0), we know that
x(t, t0,ϕ)→ 0 as t − t0 → ∞. This means that for any ε1 > 0 there exists t1 ≥ t0such
that

‖x(t, t0,ϕ)‖<
1

1+ dρ
ε1, t ≥ t1.

According to Eq. (5.8), we have

v(t,xt(t0,ϕ)) = sup
s≥t

‖x(s, t0,ϕ)−Dx(s− h, t0,ϕ)‖

≤ 1
1+ dρ

ε1 +
dρ

1+ dρ
ε1 = ε1, t ≥ t1 + h.

The preceding observation proves that v(t,xt(t0,ϕ)) tends to zero as t − t0 → ∞. �

The following statement gives sufficient conditions for the asymptotic stability
of the trivial solution of system (5.1).

Theorem 5.7. The trivial solution of system (5.1) is asymptotically stable if there
exist a positive-definite functional v(t,ϕ) and a positive-definite function w(x) such
that along the solutions of the system the functional v(t,ϕ) is differentiable and its
time derivative satisfies the inequality

dv(t,xt)

dt
≤−w(x(t)−Dx(t − h)).
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Proof. Since the matrix D is Schur stable, there exists d ≥ 1 and ρ ∈ (0,1) such that
the inequality

∥

∥Dk
∥

∥≤ dρk holds for k ≥ 0.
Observe first that the theorem conditions imply that of Theorem 5.4; therefore,

the trivial solution of system (5.1) is stable, i.e., for any t0 ≥ 0 and ε > 0 there exists
δ (ε, t0)> 0, which satisfies Definition 5.1. Let us set

Δ(ε, t0) = δ (
ε

1+ dρ
, t0)> 0.

Given t0 ≥ 0 and an initial function ϕ ∈ PC1 ([−h,0] ,Rn) such that ‖ϕ‖h <
Δ(ε, t0), we have that

‖x(t, t0,ϕ)‖<
ε

1+ dρ
, t ≥ t0,

and
‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε, t ≥ t0 + h. (5.10)

First we demonstrate that

x(t, t0,ϕ)−Dx(t − h, t0,ϕ)→ 0, as t − t0 → ∞. (5.11)

Assume by contradiction that this is not the case; then there exists α > 0 and a
sequence {tk}∞

k=1, tk − t0 → ∞, as k → ∞ such that

‖x(tk, t0,ϕ)−Dx(tk − h, t0,ϕ)‖ ≥ α, k ≥ 1.

Without loss of generality we may assume that tk+1 − tk ≥ h for k ≥ 0. It follows
from system (5.1) that

x(t, t0,ϕ)−Dx(t − h, t0,ϕ) = [x(tk, t0,ϕ)−Dx(tk − h, t0,ϕ)]

+

t
∫

tk

f (s,xs(t0,ϕ))ds, t ≥ tk,

and since ‖x(tk, t0,ϕ)−Dx(tk − h, t0,ϕ)‖ ≥ α , then

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ ≥ α −M(ε)(t − tk), t ≥ tk

(see condition (i) of Theorem 5.1). Hence, for any k ≥ 1 the following inequality
holds:

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ ≥
α
2
, t ∈ [tk, tk + τ],
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where

τ = min

{

h,
α

2M(ε)

}

.

Because the function w(x) is positive definite, we have that

β = min
α
2 ≤‖x‖≤ε

w(x) > 0.

The second condition of the theorem implies that

v(t,xt(t0,ϕ)) ≤ v(t0,ϕ)−
t

∫

t0

w(x(s, t0,ϕ)−Dx(s− h, t0,ϕ))ds

≤ v(t0,ϕ)− τβ N(t),

where N(t) denotes the number of segments [tk, tk + τ] that belong to [t0, t].
Since N(t) → ∞ as t − t0 → ∞, we have that v(t,xt(t0,ϕ)) becomes negative for
sufficiently large t, which contradicts the positive definiteness of the functional. The
contradiction proves Eq. (5.11). This means that

x(t, t0,ϕ) = Dx(t − h, t0,ϕ)+ ξ (t), t ≥ t0,

and ξ (t)→ 0 as t − t0 → ∞. Given a positive value ε1 < ε , there exists t1 > t0 such
that

‖ξ (t)‖< 1−ρ
2d

ε1, t ≥ t1.

Let us define k0 such that dρkε < 1
2 ε1 for k ≥ k0. Now for any t ≥ t1 + k0h we have

x(t, t0,ϕ) =
k0−1

∑
j=0

D jξ (t − jh)+Dk0x(t − k0h, t0,ϕ)

and

‖x(t, t0,ϕ)‖ ≤
k0−1

∑
j=0

∥

∥D j
∥

∥‖ξ (t − jh)‖+
∥

∥

∥Dk0

∥

∥

∥‖x(t − k0h, t0,ϕ)‖

<
d

1−ρ

(

1−ρ
2d

ε1

)

+ dρk0ε < ε1,

and we arrive at the conclusion that x(t, t0,ϕ) → 0 as t − t0 → ∞. This means that
the previously defined positive value Δ(ε, t0) satisfies Definition 5.2, and the trivial
solution of system (5.1) is asymptotically stable. �
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Now we provide a criterion of the uniform asymptotic stability of the trivial
solution of system (5.1).

Theorem 5.8. The trivial solution of system (5.1) is uniformly asymptotically stable
if and only if there exists a positive-definite functional v(t,ϕ) such that the following
conditions hold.

1. The functional is continuous in ϕ at the point 0h, uniformly for t ≥ 0.
2. There exists a positive value μ1 such that v(t,xt(t0,ϕ)) decreases monotonically

to zero as t− t0 → ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈ PC1 ([−h,0] ,Rn),
with ‖ϕ‖h ≤ μ1.

Proof. Sufficiency: Comparing this theorem with Theorems 5.5 and 5.6 we conclude
that the trivial solution of system (5.1) is uniformly stable and asymptotically stable.
Therefore, for a given ε > 0 there exists

Δ(ε) = min

{

1
2

δ (ε),μ1

}

> 0

such that the following properties hold.

1. Given t0 ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ Δ(ε), we have that
‖x(t, t0,ϕ)‖< ε for t ≥ t0.

2. x(t, t0,ϕ)→ 0, as t − t0 → ∞.

Now we define the positive value

H1 = Δ(H).

The functional v(t,ϕ) is positive definite, so there exists a positive-definite function
v1(x) such that for t ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H, the following
inequality holds:

v1(ϕ(0)−Dϕ(−h))≤ v(t,ϕ) .

For a given ε1 > 0(ε1 < ε) we set

ε2 =
1−ρ

2d
ε1 > 0

and define the positive value

α = min
ε2≤‖x‖≤ε

v1(x).

By the second condition of the theorem, there exists T > 0 such that for any t0 ≥ 0
and ϕ ∈ PC ([−h,0] ,Rn), with ‖ϕ‖h ≤ H1, the following inequality holds:

v(t,xt(t0,ϕ))< α, t − t0 ≥ T.



5.5 Lyapunov–Krasovskii Approach 197

This implies that

v1(x(t, t0,ϕ)−Dx(t − h, t0,ϕ))< α, t − t0 ≥ T,

and we conclude that

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε2, t − t0 ≥ T,

for any t0 ≥ 0, and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H1. And we again arrive at
equality (5.9). Applying the arguments used in the proof of the sufficiency part of
Theorem 5.6 we obtain the inequality

‖x(t, t0,ϕ)‖ ≤
1
2

ε1 + dρkH, t − t0 ≥ T.

Since ρk → 0 as k → ∞, then, starting from some k0, the following inequality holds:

dρkH <
1
2

ε1, k ≥ k0.

This means that ‖x(t, t0,ϕ)‖ < ε1for t − t0 ≥ max{T,k0h}, and we conclude
that x(t, t0,ϕ) → 0 as t − t0 → ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈
PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H1. Therefore, the previously defined values Δ(ε)
and H1 satisfy Definition 5.2. This concludes the proof of the sufficiency part of the
theorem.

Necessity: The uniform asymptotic stability of the trivial solution of system (5.1)
implies that functional (5.8) satisfies the first condition of the theorem. Set

μ1 =
1
2

Δ(H),

where Δ(ε) is from Definition 5.2. Now, given ε1 > 0, then for any t0 ≥ 0 and
ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ μ1, there exists T > 0 such that

‖x(t, t0,ϕ)‖<
ε1

1+ dρ
, t − t0 ≥ T,

and
‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖< ε1, t − t0 ≥ T + h.

This means that functional (5.8) satisfies the inequality

v(t,xt(t0,ϕ))≤ ε1, t − t0 ≥ T + h,

for any t0 ≥ 0, and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ μ1. In other words, under
the conditions of the theorem, the value v(t,xt(t0,ϕ)) decreases monotonically to
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zero as t − t0 → ∞, uniformly with respect to t0 ≥ 0, and ϕ ∈ PC1 ([−h,0] ,Rn), with
‖ϕ‖h ≤ μ1. This concludes the proof of the necessity part. �

Theorem 5.9. The trivial solution of system (5.1) is exponentially stable if there
exists a positive-definite functional v(t,ϕ) such that the following conditions are
satisfied.

1. There are two positive constants α1,α2 for which the inequalities

α1 ‖ϕ(0)−Dϕ(−h)‖2 ≤ v(t,ϕ)≤ α2 ‖ϕ‖2
h

hold for t ≥ 0, and ϕ ∈ PC1 ([−h,0] ,Rn), with ‖ϕ‖h ≤ H.
2. The functional is differentiable along the solutions of the system, and there exists

a positive constant σ1 such that

d
dt

v(t,xt)+ 2σ1v(t,xt)≤ 0.

Proof. Because the matrix D is Schur stable, there exist d ≥ 1 and ρ ∈ (0,1) such
that the inequality

∥

∥Dk
∥

∥ ≤ dρk holds for k ≥ 0. There exists σ2 > 0 such that ρ =

e−σ2h.
If we define the positive-definite function v1(x) = α1 ‖x‖2 and the positive-

definite functional v2(ϕ) = α2 ‖ϕ‖2
h, then it becomes evident that the functional

v(t,ϕ) satisfies the conditions of Theorem 5.5. Therefore, the trivial solution of
system (5.1) is uniformly stable. This means that for every ε > 0 there exists
δ (ε) > 0 such that the inequality ‖ϕ‖h < δ (ε) implies ‖x(t, t0,ϕ)‖ < ε for t ≥ t0.
Let us set

Δ0 = Δ(H).

We will demonstrate that this value satisfies Definition 5.3. To this end, we assume
that t0 ≥ 0 and ϕ ∈ PC1 ([−h,0] ,Rn), ‖ϕ‖h < Δ0. The corresponding solution
x(t, t0,ϕ) is such that

‖x(t, t0,ϕ)‖ < H, t ≥ t0.

The second condition of the theorem implies

v(t,xt(t0,ϕ))≤ v(t0,ϕ)e−2σ1(t−t0), t ≥ t0.

Applying the first condition we obtain the inequalities

α1 ‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖2 ≤ v(t0,ϕ)e−2σ1(t−t0)

≤ α2 ‖ϕ‖2
h e−2σ1(t−t0), t ≥ t0.

And, finally, we arrive at the exponential estimate

‖x(t, t0,ϕ)−Dx(t − h, t0,ϕ)‖ ≤ γ1 ‖ϕ‖h e−σ1(t−t0), t ≥ t0,
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where

γ1 =

√

α2

α1
.

This means that

x(t, t0,ϕ) = Dx(t − h, t0,ϕ)+η(t), t ≥ t0, (5.12)

where
‖η(t)‖ ≤ γ1 ‖ϕ‖h e−σ1(t−t0), t ≥ t0.

For a given t ≥ t0 we define an integer number k such that t ∈ [t0 +(k−1)h, t0+kh).
After k− 1 iterations of equality (5.12) we obtain

x(t, t0,ϕ) =
k−1

∑
j=0

D jη(t − jh)+Dkx(t − kh, t0,ϕ).

The last equality implies that

‖x(t, t0,ϕ)‖ ≤
k−1

∑
j=0

∥

∥D j
∥

∥‖η(t − jh)‖+
∥

∥

∥Dk
∥

∥

∥‖ϕ‖h

≤
k−1

∑
j=0

(

de−σ2 jh
)(

γ1 ‖ϕ‖h e−σ1(t− jh−t0)
)

+ de−σ2kh ‖ϕ‖h

≤ γ1d

(

k−1

∑
j=0

e−σ2 jhe−σ1(t− jh−t0)

)

‖ϕ‖h + de−σ2kh ‖ϕ‖h .

If we set σ0 = min{σ1,σ2}, then

‖x(t, t0,ϕ)‖ ≤ d
[

γ1ke−σ0(t−t0) + e−σ0kh
]

‖ϕ‖h .

It follows from the definition of k that (k− 1)h ≤ t − t0 < kh, hence

‖x(t, t0,ϕ)‖ ≤ d

[

γ1

(

t − t0
h

+ 1

)

+ 1

]

e−σ0(t−t0) ‖ϕ‖h

=

(

d

[

γ1

(

t − t0
h

+ 1

)

+ 1

]

e−μ(t−t0)
)

e−(σ0−μ)(t−t0) ‖ϕ‖h ,

where μ ∈ (0,σ). Observe that the function

d

[

γ1

(

t − t0
h

+ 1

)

+ 1

]

e−μ(t−t0) → 0, as t − t0 → ∞,
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i.e., the function is bounded,

d

[

γ1

(

t − t0
h

+ 1

)

+ 1

]

e−μ(t−t0) ≤ γ, t ≥ t0,

and we arrive at the exponential estimate for the solutions of system (5.1):

‖x(t, t0,ϕ)‖ ≤ γe−σ(t−t0) ‖ϕ‖h , t ≥ t0,

where γ ≥ 1 and σ = σ0 − μ > 0. �

5.6 Notes and References

There are several forms in which to present neutral type time-delay systems. In
this book we use the one proposed in the fundamental monograph [23]. This
form assumes that solutions may have discontinuity points, but the difference
x(t)−Dx(t−h) remains continuous for t ≥ t0 (Assumption 5.1). The main reason to
restrict our study to the case of systems with this simple difference operator is that a
highly complicated stability analysis of more general classes of difference operators
would be required. To the best of our knowledge, even in the case of several delays,
stability conditions often become extremely sensitive to small variations in delays.
An exhaustive stability study of more general classes of difference operators can be
found in [23].

In the exposition of the existence and uniqueness theorem in Sect. 5.2 we follow
an excellent source [19]. For the continuity properties of the solutions see [3,19,23].

A comprehensive treatise on the Lyapunov–Krasovskii approach to the stability
analysis of neutral type time-delay systems is given in [44]. Our method of
presenting basic stability results in Sect. 5.5 was inspired by [19, 72].

A list of contributions with sufficient stability results, mainly presented in the
form of special linear matrix inequalities, can be found in [64]; see also [58] and
references therein.



Chapter 6
Linear Systems

In this chapter we consider the class of neutral type linear systems with one delay.
We define the fundamental matrix of such a system and present the Cauchy formula
for the solution of an initial value problem. This formula is used to compute
a quadratic functional with a given time derivative along the solutions of the
time-delay system. It is demonstrated that this functional is defined by a special
matrix valued function, which is called a Lyapunov matrix for a time-delay system.
A thorough analysis of the basic properties of the matrix is included. Complete type
functionals are introduced, and various applications of the functionals are discussed.

6.1 Preliminaries

In this chapter we consider a linear neutral type time-delay system of the form

d
dt
[x(t)−Dx(t − h)] = A0x(t)+A1x(t − h), t ≥ 0, (6.1)

where h > 0 and A0, A1, and D are given real n× n matrices. The system is time
invariant, so we assume that t0 = 0 and

x(θ ) = ϕ(θ ), θ ∈ [−h,0].

We set PC1([−h,0],Rn) as the space of initial functions.

Remark 6.1. Recall our agreement (Assumptions 5.1–5.3) that the following con-
ditions hold:

1. The difference x(t)−Dx(t −h) is continuous and differentiable for t ≥ t0, except
for possibly a countable number of points.

V.L. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,
Control Engineering, DOI 10.1007/978-0-8176-8367-2 6,
© Springer Science+Business Media, LLC 2013
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2. In (6.1) the right-hand-side derivative is assumed in the origin, t = 0. By default,
such an agreement remains valid in those situations where only a one-sided
variation of the independent variable is allowed.

3. A solution x(t) satisfies system (6.1) almost everywhere.

6.1.1 Fundamental Matrix

Definition 6.1. Let the n× n matrix K(t) be a solution of the matrix equation

d
dt

[K(t)−K(t − h)D] = K(t)A0 +K(t − h)A1, t ≥ 0,

that satisfies the following conditions:

1. Initial condition: K(t) = 0n×n, for t < 0, and K(0) = I;
2. Sewing condition: K(t)−K(t − h)D is continuous for t ≥ 0.

Then K(t) is known as the fundamental matrix of system (6.1).

Remark 6.2. The fundamental matrix K(t) is also a solution of the equation

d
dt

[K(t)−DK(t − h)] = A0K(t)+A1K(t − h), t ≥ 0.

It follows from Definition 6.1 that the matrix K(t) is piecewise continuous. In
fact, the sewing condition implies that

ΔK(t) = ΔK(t − h)D, t ≥ 0. (6.2)

Here ΔK(t) = K(t + 0)−K(t− 0). The set of discontinuity points of K(t) is

T = {νh | ν = 0,1,2, . . .} .

To compute the size of the jumps at these points, one must compute the solution of
the jump Eq. (6.2) with the initial condition

ΔK(θ ) = 0n×n, for θ ∈ [−h,0), and ΔK(0) = I.

Lemma 6.1. It follows directly from Eq. (6.2) that

ΔK(t) =

{

0n×n, t �= νh
Dν , t = νh; ν ≥ 0.

The value of the fundamental matrix K(t) at a discontinuity point coincides with its
right-hand-side limit at the point

K(νh) = K(νh+ 0) = lim
ε→+0

K(νh+ ε).
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6.1.2 Cauchy Formula

Theorem 6.1. Given an initial function ϕ ∈ PC1([−h,0],Rn), the solution x(t,ϕ)
of system (6.1) admits the following explicit expression:

x(t,ϕ) = [K(t)−K(t− h)D]ϕ(0)

+

0
∫

−h

K(t − h−θ )
[

Dϕ ′(θ )+A1ϕ(θ )
]

dθ , t ≥ 0. (6.3)

This expression is known as the Cauchy formula for system (6.1).

Proof. Let t > 0 and ξ ∈ (0, t). We compute the partial derivative

J =
∂

∂ξ
[K(t − ξ )−K(t− ξ − h)D]x(ξ ,ϕ)

= − [K(t − ξ )A0 −K(t − ξ − h)A1]x(ξ ,ϕ)

+ [K(t − ξ )−K(t− ξ − h)D]x′(ξ ,ϕ).

Since x(t,ϕ) is a solution of system (6.1), we have that

J1 = [K(t − ξ )−K(t− ξ − h)D]x′(ξ ,ϕ)

= K(t − ξ )
[

Dx′(ξ − h,ϕ)+A0x(ξ ,ϕ)+A1x(ξ − h,ϕ)
]

− K(t − ξ − h)Dx′(ξ ,ϕ),

and we obtain the equality

J =
∂

∂ξ
[K(t − ξ )−K(t− ξ − h)D]x(ξ ,ϕ)

= K(t − ξ )A1x(ξ − h,ϕ)−K(t− ξ − h)A1x(ξ ,ϕ)

+ K(t − ξ )Dx′(ξ − h,ϕ)−K(t− ξ − h)Dx′(ξ ,ϕ).

Integrating the preceding equality by ξ from 0 to t we obtain that

x(t,ϕ) = [K(t)−K(t − h)D]ϕ(0)

+

t
∫

0

K(t − ξ )A1x(ξ − h,ϕ)dξ −
t

∫

0

K(t − ξ − h)A1x(ξ ,ϕ)dξ

+

t
∫

0

K(t − ξ )Dx′(ξ − h,ϕ)dξ −
t

∫

0

K(t − ξ − h)Dx′(ξ ,ϕ)dξ
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= [K(t)−K(t − h)D]ϕ(0)

+

0
∫

−h

K(t − ξ − h)A1x(ξ )dξ +

0
∫

−h

K(t − ξ − h)Dx′(ξ )dξ .

Because x(ξ ) = ϕ(ξ ), ξ ∈ [−h,0], the desired Cauchy formula is a direct conse-
quence of the foregoing equalities. �

6.2 Lyapunov Matrices: Stable Case

Definition 6.2. System (6.1) is said to be exponentially stable if there exist σ > 0
and γ ≥ 1 such that every solution of the system satisfies the inequality

‖x(t,ϕ)‖ ≤ γe−σt ‖ϕ‖h , t ≥ 0.

Here ‖ϕ‖h = supθ∈[−h,0] ‖ϕ(θ )‖.

Definition 6.3 ([23]). A complex number s0 is said to be an eigenvalue of sys-
tem (6.1) if it is a root of the characteristic function,

f (s) = det
(

sI − se−shD−A0− e−shA1

)

,

of the system. The set

Λ = { s | f (s) = 0}

is known as the spectrum of the system.

The next statement shows that the property of exponential stability depends on
the location of the spectrum of system (6.1).

Theorem 6.2 ([23]). System (6.1) is exponentially stable if and only if there exists
ε > 0 such that the spectrum of the system lies to the left of the vertical line Re(s) =
−ε of the complex plane,

Re(s0)<−ε, s0 ∈ Λ.

Remark 6.3. If system (6.1) is exponentially stable, then any eigenvalue λ0 of the
matrix D lies in the open unit disc of the complex plane, |λ0|< 1 (Sect. 5.4).

Lemma 6.2. Let system (6.1) be exponentially stable; then there exist γ1 ≥ 1 and
σ1 > 0 such that the following inequality holds:

‖K(t)‖ ≤ γ1e−σ1t , t ≥ 0.
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Proof. Since the columns of the matrix K(t)−K(t − h)D are solutions of system
(6.1) with special initial conditions, we have that

‖K(t)−K(t − h)D‖ ≤ γe−σt , t ≥ 0.

This means that the fundamental matrix K(t) satisfies the equality

K(t)−K(t − h)D = Φ(t), t ≥ 0,

where ‖Φ(t)‖ ≤ γe−σt , t ≥ 0. Define for a given t ≥ 0 an integer number k such
that t ∈ [(k− 1)h,kh). Iterating the preceding equality k− 1 times we obtain that

K(t) = K(t − kh)Dk +
k−1

∑
j=0

Φ(t − jh)D j.

Because t − kh < 0, the first term on the right-hand side of this equality disappears.
The matrix D is Schur stable, so there exist d ≥ 1 and ρ ∈ (0,1) for which

∥

∥D j
∥

∥≤ dρ j, j = 0,1,2, . . .

It is clear that ρ = e−˜σh for some ˜σ > 0. Now we arrive at the inequality

‖K(t)‖ ≤
k−1

∑
j=0

‖Φ(t − jh)‖
∥

∥D j
∥

∥≤ γd
k−1

∑
j=0

e−σ(t− jh)e− j˜σh.

If we introduce the value σ0 = min{σ , ˜σ}, then the following inequality holds:

‖K(t)‖ ≤ γdke−σ0t .

Since (k− 1)h ≤ t,

k ≤ t + h
h

,

and we obtain the inequality

‖K(t)‖ ≤ γd

(

t + h
h

)

e−σ0t = γd

(

t + h
h

)

e−μte−(σ0−μ)t .

For any μ > 0 the function

γd

(

t + h
h

)

e−μt

is bounded for t ∈ [0,∞). This means that there exists γ1 > 1 such that

γd

(

t + h
h

)

e−μt ≤ γ1, t ≥ 0.

If μ ∈ (0,σ0), then

‖K(t)‖ ≤ γ1e−σ1t , t ≥ 0,

where σ1 = σ0 − μ > 0. �
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Definition 6.4. Given a symmetric matrix W , let system (6.1) be exponentially
stable; then the n× n matrix

U(τ) =
∞
∫

0

KT (t)WK(t + τ)dt (6.4)

is known as a Lyapunov matrix of the system associated with W .

Lemma 6.2 justifies the convergence of the improper integral on the right-hand
side of (6.4).

Lemma 6.3. Let system (6.1) be exponentially stable. Then the Lyapunov matrix
U(τ) is continuous for τ ≥ 0.

Proof. The following inequality holds for τ ≥ 0:
∥

∥KT (t)W K(t + τ)
∥

∥≤ γ2
1 ‖W‖e−σ1(2t+τ), t ≥ 0.

For a given τ0 ≥ 0 we have the difference

U(τ0 + ξ )−U(τ0) =

∞
∫

0

KT (t)W [K(t + τ0 + ξ )−K(t+ τ0)]dt.

Assume that |ξ |< δ ; then
∥

∥KT (t)WK(t + τ0 + ξ )
∥

∥≤ γ2
1 ‖W‖e−σ1(2t+τ0−δ ), t ≥ 0.

Given ε > 0, there exists T such that

∞
∫

T

∥

∥KT (t)WK(t + τ0 + ξ )
∥

∥dt <
1
4

ε, |ξ |< δ .

This implies that

‖U(τ0 + ξ )−U(τ0)‖ ≤
T
∫

0

∥

∥KT (t)W [K(t + τ0 + ξ )−K(t+ τ0)]
∥

∥dt

+

∞
∫

T

∥

∥KT (t)WK(t + τ0 + ξ )
∥

∥dt

+

∞
∫

T

∥

∥KT (t)WK(t + τ0)
∥

∥dt

< γ1 ‖W‖
T
∫

0

‖K(t + τ0 + ξ )−K(t+ τ0)‖dt +
1
2

ε.
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Now we estimate the integral

T
∫

0

‖K(t + τ0 + ξ )−K(t+ τ0)‖dt ≤
T+τ0
∫

0

‖K(s+ ξ )−K(s)‖ds.

The matrix K(t) is continuous for t ≥ 0 except for points of the set T (Sect. 6.1.1).
We denote by N the smallest integer such that Nh ≥ τ0 + T , and we assume that
2δ < h; then

T+τ0
∫

0

‖K(s+ ξ )−K(s)‖ds ≤
N

∑
j=0

jh+δ
∫

jh−δ

‖K(s+ ξ )−K(s)‖dt

+
N−1

∑
j=0

( j+1)h−δ
∫

jh+δ

‖K(s+ ξ )−K(s)‖ds.

It is evident that

jh+δ
∫

jh−δ

‖K(s+ ξ )−K(s)‖dt ≤ 4γ1δ , j = 0,1, . . . ,N.

Since the difference K(s+ ξ )−K(s) is continuous in s and ξ for s ∈ [ jh+ δ ,( j+
1)h− δ ], |ξ |< δ , there exists ε(δ )→ 0 as δ → 0 such that the inequalities

( j+1)h−δ
∫

jh+δ

‖K(s+ ξ )−K(s)‖dt < ε(δ ), j = 0,1, . . . ,N − 1,

hold for any ξ , with |ξ |< δ . If we select δ > 0 such that

4γ2
1 ‖W‖(N + 1)δ <

1
4

ε , and γ1N ‖W‖ε(δ ) <
1
4

ε,

then for any ξ with |ξ |< δ

‖U(τ0 + ξ )−U(τ0)‖< ε.

This proves the continuity property. �

Lemma 6.4. Let system (6.1) be exponentially stable. Lyapunov matrix (6.4)
satisfies the following properties.

1. Dynamic property:

d
dτ

[U(τ)−U(τ − h)D] =U(τ)A0 +U(τ − h)A1, τ ≥ 0; (6.5)
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2. Symmetry property:

U(−τ) =UT (τ); (6.6)

3. Algebraic property:

−W = AT
0 U(0)+U(0)A0−AT

0 U(−h)D−DTU(h)A0

+AT
1 U(h)+U(−h)A1−AT

1 U(0)D−DTU(0)A1. (6.7)

Proof. Dynamic property: By definition of the Lyapunov matrix,

U(τ)−U(τ − h)D =

∞
∫

0

KT (t)W [K(t + τ)−K(t+ τ − h)D]dt, τ ≥ 0.

It follows from Lemma 6.2 that the improper integral on the right-hand side of the
preceding equality converges absolutely and uniformly with respect to τ ≥ 0. For
t + τ ≥ 0 the matrix K(t + τ)−K(t + τ − h)D is differentiable and

∂
∂τ

[K(t + τ)−K(t+ τ − h)D] = K(t + τ)A0 +K(t + τ − h)A1.

For similar reasons the integral

J =

∞
∫

0

KT (t)W

(

∂
∂τ

[K(t + τ)−K(t + τ − h)D]

)

dt

=

∞
∫

0

KT (t)W [K(t + τ)A0 +K(t + τ − h)A1]dt

converges absolutely and uniformly with respect to τ ≥ 0. Therefore, we con-
clude that

d
dτ

[U(τ)−U(τ − h)D] =

∞
∫

0

KT (t)W

(

∂
∂τ

[K(t + τ)−K(t + τ − h)D]

)

dt

= U(τ)A0 +U(τ − h)A1, τ ≥ 0.

It is important to recall (Remark 6.1) that at τ = 0 we understand in (6.5) the right-
hand-side derivative.

Symmetry property: Equality (6.6) is a direct consequence of (6.4).

Algebraic property: To check this property, we first differentiate the product
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R(t) = [K(t)−K(t − h)D]T W [K(t)−K(t − h)D] ,

d
dt

R(t) = [K(t)A0 +K(t − h)A1]
T W [K(t)−K(t − h)D]

+[K(t)−K(t − h)D]T W [K(t)A0 +K(t − h)A1] ,

and then integrate the obtained equality by t from 0 to ∞.
On the one hand, the exponential stability of system (6.1) provides that the

integral of the left-hand side of the preceding equality is equal to −W .
On the other hand, a direct application of (6.4) shows that the integration of the

right-hand side leads to the equality

−W = AT
0 U(0)−AT

0 U(−h)D+AT
1 UT (−h)−AT

1 U(0)D

+ U(0)A0 +U(−h)A1 −DTUT (−h)A0 −DTU(0)A1,

which after some minor transformations coincides with (6.7). �

Corollary 6.1. It follows from Lemma 6.3 and property (6.6) that the matrix U(τ)
is continuous for τ ≤ 0.

Corollary 6.2. The derivative

d
dτ

[U(τ)−U(τ − h)D]

is continuous for τ ≥ 0.

Lemma 6.5. Let system (6.1) be exponentially stable. The first derivative of the
matrix U(τ) is continuous for τ ∈ [0,h].

Proof. According to Remark 6.1, at τ = 0 and τ = h we understand the right-hand-
side derivative and the left-hand-side derivative, respectively.

The matrix U(τ) satisfies Eq. (6.5). Since

[

−DTU(τ)+U(τ − h)
]T

=U(h− τ)−U(−τ)D

and h− τ ≥ 0 for τ ∈ [0,h], then by (6.5),

d
dτ

[

−DTU(τ)+U(τ − h)
]T

= − [U(h− τ)A0 +U(−τ)A1]

= −
[

AT
1 U(τ)+AT

0 U(τ − h)
]T

.

and we arrive at the equality

d
dτ

[

−DTU(τ)+U(τ − h)
]

=−AT
1 U(τ)−AT

0 U(τ − h), τ ∈ [0,h].



210 6 Linear Systems

Now we multiply the preceding equality by the matrix D from the right-hand side
and sum the result with (6.5):

d
dτ

[

U(τ)−DTU(τ)D
]

= U(τ)A0 +U(τ − h)A1

−AT
1 U(τ)D−AT

0 U(τ − h)D, τ ∈ [0,h]. (6.8)

All eigenvalues of the matrix D lie in the open unit disc (Remark 6.3). This implies
that the Schur operator S(X)=X−DT XD is regular. The right-hand-side expression
in (6.8) is continuous (Lemma 6.3 and Corollary 6.1). It proves the continuity
property of the first derivative of the Lyapunov matrix. �

We may present now property (6.7) in an alternative form.

Lemma 6.6. The algebraic property (6.7) of the Lyapunov matrix U(τ) can be
written as

−W = ΔU ′(0)−DT ΔU ′(0)D, (6.9)

where

ΔU ′(0) =U ′(+0)−U ′(−0) = lim
τ→+0

dU(τ)
dτ

− lim
τ→−0

dU(τ)
dτ

.

Proof. On the one hand, we may conclude from (6.8) that

U ′(+0)−DTU ′(+0)D =U(0)A0 +U(−h)A1−AT
1 U(0)D−AT

0 U(−h)D.

On the other hand, according to (6.6),

dU(−τ)
dτ

=

[

dU(τ)
dτ

]T

,

so U ′(−0) =− [U ′(+0)]T , and we obtain that

U ′(−0)−DTU ′(−0)D =−
[

U(0)A0 +U(−h)A1−AT
1 U(0)−AT

0 U(−h)D
]T

.

Now,

ΔU ′(0)−DT ΔU ′(0)D = U(0)A0 +U(−h)A1−AT
1 U(0)D−AT

0 U(−h)D

+
[

U(0)A0 +U(−h)A1−AT
1 U(0)D−AT

0 U(−h)D
]T

= − W. �

Remark 6.4. The new form of the algebraic property demonstrates that ΔU ′(0) = P,
where P satisfies the matrix equation

P−DT PD =−W. (6.10)
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6.3 Functional v0(ϕ)

Assume that system (6.1) is exponentially stable. Then, for a given quadratic form
xTWx there exists a quadratic functional v0(ϕ), ϕ ∈ PC1([−h,0],Rn), such that
along the solutions of system (6.1) the following equality holds:

d
dt

v0(xt) =−xT (t)Wx(t), t ≥ 0. (6.11)

Equation (6.11) defines the functional v0(ϕ) up to an additive constant. We select
this constant in such a way that v0(0h) = 0. Integrating the equation from t = 0 to
t = T > 0 we obtain

v0(xT (ϕ))− v0(ϕ) =−
T
∫

0

xT (t)Wx(t)dt.

The exponential stability of Eq. (6.1) implies that xT (ϕ) → 0h as T → ∞, and we
arrive at the equality

v0(ϕ) =
∞
∫

0

xT (t,ϕ)Wx(t,ϕ)dt, ϕ ∈ PC1([−h,0],Rn).

If we replace in the preceding equality x(t,ϕ) by Cauchy formula (6.3), then

v0(ϕ) = ϕT (0)

⎛

⎝

∞
∫

0

[K(t)−K(t − h)D]T W [K(t)−K(t − h)D]dt

⎞

⎠ϕ(0)

+ 2ϕT (0)

0
∫

−h

⎛

⎝

∞
∫

0

[K(t)−K(t− h)D]T W K(t − h−θ )dt

⎞

⎠

×
[

Dϕ ′(θ )+A1ϕ(θ )
]

dθ

+

0
∫

−h

0
∫

−h

[

Dϕ ′(θ1)+A1ϕ(θ1)
]T

⎛

⎝

∞
∫

0

KT (t − h−θ1)W K(t − h−θ2)dt

⎞

⎠

×
[

Dϕ ′(θ2)+A1ϕ(θ2)
]

dθ2dθ1.

Let U(τ) be a Lyapunov matrix associated with W ; then the quadratic functional is
of the form

v0(ϕ) = ϕT (0)
[

U(0)−DTU(h)−U(−h)D+DTU(0)D
]

ϕ(0)

+ 2ϕT (0)

0
∫

−h

[

U(−h−θ )−DTU(−θ )
][

Dϕ ′(θ )+A1ϕ(θ )
]

dθ
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+

0
∫

−h

[

Dϕ ′(θ1)+A1ϕ(θ1)
]T

×

⎛

⎝

0
∫

−h

U(θ1 −θ2)
[

Dϕ ′(θ2)+A1ϕ(θ2)
]

dθ2

⎞

⎠dθ1. (6.12)

6.4 Lyapunov Matrices: General Case

Given a symmetric matrix W , the associated Lyapunov matrix of system (6.1)
is defined as the improper integral (6.4), where K(t) is the fundamental matrix
of system (6.1). Certainly, this definition makes sense only for the case where
system (6.1) is exponentially stable; otherwise the improper integral is not well
defined. Now we provide an alternative definition of Lyapunov matrices that does
not require the exponential stability of system (6.1).

Definition 6.5. Given a symmetric matrix W , a Lyapunov matrix of system (6.1)
associated with W is a solution of Eq. (6.5) that satisfies properties (6.6) and (6.7).

First we check that functional (6.12) with a newly defined Lyapunov matrix U(τ)
satisfies Eq. (6.11).

Theorem 6.3. Let the matrix U(τ) in functional (6.12) satisfy Definition 6.5.
Then the time derivative of the functional along the solutions of system (6.1)
satisfies (6.11).

Proof. Let x(t) be a solution of system (6.1). We start with the first term of v0(xt)
[see (6.12)]:

R0(t) = xT (t)
[

U(0)−DTU(h)−U(−h)D+DTU(0)D
]

x(t).

The time derivative of the term is

d
dt

R0(t) = 2xT (t)
[

U(0)−DTU(h)−U(−h)D+DTU(0)D
]

x′(t).

Consider the term

R1(t) = 2xT (t)

0
∫

−h

[

U(−h−θ )−DTU(−θ )
][

Dx′(t +θ )+A1x(t +θ )
]

dθ

= 2xT (t)

t
∫

t−h

[U(h+ s− t)−U(s− t)D]T
[

Dx′(s)+A1x(s)
]

ds.
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For this term

d
dt

R1(t) = 2
[

x′(t)
]T

t
∫

t−h

[U(h+ s− t)−U(s− t)D]T
[

Dx′(s)+A1x(s)
]

ds

+ 2xT (t) [U(h)−U(0)D]T
[

Dx′(t)+A1x(t)
]

− 2xT (t) [U(0)−U(−h)D]T
[

Dx′(t − h)+A1x(t − h)
]

+ 2xT (t)

t
∫

t−h

(

∂
∂ t

[U(h+ s− t)−U(s− t)D]

)T
[

Dx′(s)+A1x(s)
]

ds,

or, if we return to the original integration variables and use the fact that the matrix
U(τ) satisfies dynamic property (6.5),

d
dt

R1(t) = 2xT (t)
[

U(−h)D−DTU(0)D
]

x′(t)

+ xT (t)
[

U(−h)A1 +AT
1 U(h)−DTU(0)A1 −AT

1 U(0)D
]

x(t)

− 2xT (t) [U(0)−U(−h)D]T
[

Dx′(t − h)+A1x(t − h)
]

+ 2
[

x′(t)
]T

0
∫

−h

[U(h+θ )−U(θ )D]T
[

Dx′(t +θ )+A1x(t +θ )
]

dθ

− 2xT (t)

0
∫

−h

[U(h+θ )A0+U(θ )A1]
T [Dx′(t +θ )+A1x(t +θ )

]

dθ .

We now address the term

R2(t) =

0
∫

−h

[

Dx′(t +θ1)+A1x(t +θ1)
]T

×

⎛

⎝

0
∫

−h

U(θ1 −θ2)
[

Dx′(t +θ2)+A1x(t +θ2)
]

dθ2

⎞

⎠dθ1

=

t
∫

t−h

[

Dx′(s1)+A1x(s1)
]T

⎛

⎝

t
∫

t−h

U(s1 − s2)
[

Dx′(s2)+A1x(s2)
]

ds2

⎞

⎠ds1.
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The time derivative of this term is the following

d
dt

R2(t) =
[

Dx′(t)+A1x(t)
]T

t
∫

t−h

U(t − s2)
[

Dx′(s2)+A1x(s2)
]

ds2

−
[

Dx′(t − h)+A1x(t − h)
]T

t
∫

t−h

U(t − h− s2)
[

Dx′(s2)+A1x(s2)
]

ds2

+

⎛

⎝

t
∫

t−h

[

Dx′(s1)+A1x(s1)
]T

U(s1 − t)ds1

⎞

⎠

[

Dx′(t)+A1x(t)
]

−

⎛

⎝

t
∫

t−h

[

Dx′(s1)+A1x(s1)
]T

U(s1 − t + h)ds1

⎞

⎠

×
[

Dx′(t − h)+A1x(t − h)
]

.

And applying the symmetry property (6.6) we arrive at the following expression:

d
dt

R2(t) = 2
[

Dx′(t)+A1x(t)
]T

0
∫

−h

[U(θ )]T
[

Dx′(t +θ )+A1x(t +θ )
]

dθ

− 2
[

Dx′(t − h)+A1x(t − h)
]T

×
0
∫

−h

[U(h+θ )]T
[

Dx′(t +θ )+A1x(t +θ )
]

dθ .

Now, collecting the computed derivatives we obtain

d
dt

v0(xt) = −xT (t)
[

U(−h)A1 −DTU(0)A1 +AT
1 U(h)−AT

1 U(0)D
]

x(t)

+ 2xT (t) [U(0)−U(−h)D]T
(

d
dt

[x(t)−Dx(t − h)]−A1x(t − h)

)

+ 2

(

d
dt

[x(t)−Dx(t − h)]−A0x(t)−A1x(t − h)

)T

×
0
∫

−h

[U(h+θ )]T
[

Dx′(t +θ )+A1x(t +θ )
]

dθ .

The last term on the right-hand side of the preceding equality is equal to zero since
x(t) is a solution of system (6.1). By the same reason we have the equality
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d
dt

[x(t)−Dx(t − h)]−A1x(t − h) = A0x(t).

This means that

d
dt

v0(xt) = xT (t)
[

U(−h)A1 −DTU(0)A1 +AT
1 U(h)−AT

1 U(0)D
]

x(t)

+ xT (t)
[

AT
0 U(0)−AT

0 U(−h)D+U(0)A0−DTU(h)A0
]

x(t).

According to algebraic property (6.7), the right-hand side of the preceding equality
is equal to −xT (t)Wx(t), and we arrive at the final conclusion that

d
dt

v0(xt) =−xT (t)Wx(t), t ≥ 0. �

Now we check that Definition 6.5 is consistent with Definition 6.4.

Theorem 6.4. Let system (6.1) be exponentially stable. Then matrix (6.4) is a
unique solution of Eq. (6.5), which satisfies properties (6.6) and (6.7).

Proof. The fact that matrix (6.4) is a continuous solution of Eq. (6.5) and satisfies
properties (6.6) and (6.7) was proven in Lemmas 6.3 and 6.4.

We show now that this solution is unique. Assume by contradiction that for a
given symmetric matrix W there are two such solutions, Uj(τ), j = 1,2. Then we

define two functionals, v( j)
0 (ϕ), j = 1,2, of the form (6.12), the first one with U(τ) =

U1(τ) and the other with U(τ) = U2(τ). Both U1(τ) and U2(τ) satisfy (6.5)–(6.7),
so by Theorem 6.3,

d
dt

v( j)
0 (xt) =−xT (t)W x(t), t ≥ 0; for j = 1,2.

This observation implies that the difference Δv0(xt) = v(2)0 (xt)−v(1)0 (xt) is such that

Δv0(xt(ϕ)) = Δv0(ϕ), t ≥ 0.

System (6.1) is exponentially stable, so xt(ϕ)→ 0h as t → ∞, and we conclude that
0 = Δv0(ϕ) for any initial function ϕ ∈ PC1([−h,0],Rn). We write this equality in
the explicit form

0 = ϕT (0)
[

ΔU(0)−DT ΔU(h)−ΔU(−h)D+DTΔU(0)D
]

ϕ(0)

+ 2ϕT (0)

0
∫

−h

[ΔU(h+θ )−ΔU(θ )D]T
[

Dϕ ′(θ )+A1ϕ(θ )
]

dθ

+

0
∫

−h

[

Dϕ ′(θ1)+A1ϕ(θ1)
]T

⎛

⎝

0
∫

−h

ΔU(θ1 −θ2)
[

Dϕ ′(θ2)+A1ϕ(θ2)
]

dθ2

⎞

⎠dθ1.

(6.13)
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Here the matrix ΔU(τ) =U2(τ)−U1(τ).
By definition, the matrix ΔU(τ) is a solution of Eq. (6.5), which satisfies

properties (6.6) and (6.7) with W = 0n×n.
Consider the following initial function:

ϕ(θ ) =
{

γ, for θ ∈ [−ε,0]
0, for θ ∈ [−h,−ε),

(6.14)

where γ is a constant vector and ε is a sufficiently small positive value. For this
function condition (6.13) has the form

0 = γT [ΔU(0)−DTΔU(h)−ΔU(−h)D+DTΔU(0)D
]

γ

+ 2γT [ΔU(h− ε)−ΔU(−ε)D]T Dγ

+ 2εγT [ΔU(h)−ΔU(0)D]T A1γ + γT [DT ΔU(0)D
]

γ

+ 2εγT [ΔU(0)D]T A1γ + o(ε),

where o(ε)
ε → 0, as ε →+0. The preceding equality may be written as

0 = α0 + εα1 + o(ε),

from which we deduce that both coefficients α0 and α1 should be equal to zero. The
first coefficient

α0 = γT [ΔU(0)−DT ΔU(h)−ΔU(−h)D+DTΔU(0)D
]

γ

+2γT [ΔU(h)−ΔU(0)D]T Dγ + γT [DT ΔU(0)D
]

γ

= γT ΔU(0)γ.

Because γ is an arbitrary vector and matrix ΔU(0) is symmetric, we conclude that

ΔU(0) = 0n×n. (6.15)

By Lemma 6.6, the matrices Uj(τ), j = 1,2, satisfy (6.9). This means that the matrix
ΔU(τ) satisfies the equality

[

ΔU ′(+0)−ΔU ′(−0)
]

−DT [ΔU ′(+0)−ΔU ′(−0)
]

D = 0n×n.

Since the matrix D is Schur stable (Remark 6.3), the last equality implies that

ΔU ′(+0)−ΔU ′(−0) = 0n×n. (6.16)

The same result follows from the equality α1 = 0.
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Now we consider an initial function of the form

ϕ(θ ) =

⎧

⎨

⎩

γ, for θ ∈ [−ε,0],
μ , for θ ∈ [−τ0,−τ0 + ε],
0, for all other points of [−h,0].

(6.17)

It is assumed here that γ and μ are two constant vectors, τ0 ∈ (0,h), and ε > 0
is such that −τ0 + 2ε < 0. Substituting this function into (6.13) and taking into
account (6.15) we observe that the first term

R1 = ϕT (0)
[

ΔU(0)−DTΔU(h)−ΔU(−h)D+DTΔU(0)D
]

ϕ(0)

= − γT [DT ΔU(h)+ΔU(−h)D
]

γ.

The term

R2 = 2ϕT (0)

0
∫

−h

[ΔU(h+θ )−ΔU(θ )D]T
[

Dϕ ′(θ )+A1ϕ(θ )
]

dθ

= 2γT [ΔU(h− τ0)−ΔU(−τ0)D]T Dμ

− 2γT [ΔU(h− τ0+ ε)−ΔU(−τ0 + ε)D]T Dμ

+2γT [ΔU(h− ε)−ΔU(−ε)D]T Dγ

+ 2γT

⎛

⎝

−τ0+ε
∫

−τ0

[ΔU(h+θ )−ΔU(θ )D]T dθ

⎞

⎠A1μ

+ 2γT

⎛

⎝

0
∫

−ε

[ΔU(h+θ )−ΔU(θ )D]T dθ

⎞

⎠A1γ.

For sufficiently small ε we have

R2 = 2γT [ΔU(h)−ΔU(0)D]T Dγ − 2εγT [ΔU ′(h− τ0)−ΔU ′(−τ0)D
]T

Dμ

− 2εγT [ΔU ′(h− 0)−ΔU ′(−0)D
]T

Dγ

+ 2εγT [ΔU(h− τ0)−ΔU(−τ0)D]T A1μ

+ 2εγT [ΔU(h)−ΔU(0)D]T A1γ + o(ε).
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We split the last term into three summands as follows:

R3 =

0
∫

−h

[

Dϕ ′(θ1)+A1ϕ(θ1)
]T

⎛

⎝

0
∫

−h

ΔU(θ1 −θ2)
[

Dϕ ′(θ2)+A1ϕ(θ2)
]

dθ2

⎞

⎠dθ1

=

0
∫

−h

[

Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

ΔU(θ1 −θ2)Dϕ ′(θ2)dθ2

⎞

⎠dθ1

+ 2

0
∫

−h

[

Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

ΔU(θ1 −θ2)A1ϕ(θ2)dθ2

⎞

⎠dθ1

+

0
∫

−h

[A1ϕ(θ1)]
T

⎛

⎝

0
∫

−h

ΔU(θ1 −θ2)A1ϕ(θ2)dθ2

⎞

⎠dθ1.

We start with the term

R31 =

0
∫

−h

[

Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

ΔU(θ1 −θ2)Dϕ ′(θ2)dθ2

⎞

⎠dθ1

= μT DT [ΔU(0)Dμ −ΔU(−ε)Dμ +ΔU(−τ0 + ε)Dγ]

− μT DT [ΔU(ε)Dμ −ΔU(0)Dμ +ΔU(−τ0 + 2ε)Dγ]

+γT DT [ΔU(τ0 − ε)Dμ −ΔU(τ0 − 2ε)Dμ +ΔU(0)Dγ]

= γT DT ΔU(0)Dγ − εμT DT [ΔU ′(+0)−ΔU ′(−0)
]

Dμ

− 2εμT DT ΔU ′(−τ0)Dγ + o(ε).

Then we evaluate the term

R32 = 2

0
∫

−h

[

Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

ΔU(θ1 −θ2)A1ϕ(θ2)dθ2

⎞

⎠dθ1

= 2

−τ0+ε
∫

−τ0

[

μT DT ΔU(−τ0 −θ )

−μT DT ΔU(−τ0 + ε −θ )+ γTDT ΔU(−ε −θ )
]

A1μdθ
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+2

0
∫

−ε

[

μT DT ΔU(−τ0 −θ )

−μT DT ΔU(−τ0 + ε −θ )+ γTDT ΔU(−ε −θ )
]

A1γdθ

= 2εγT DT ΔU(τ0)A1μ + o(ε).

Finally, we observe that the term

R33 =

0
∫

−h

[A1ϕ(θ1)]
T

⎛

⎝

0
∫

−h

ΔU(θ1 −θ2)A1ϕ(θ2)dθ2

⎞

⎠dθ1 = o(ε).

Taking into account equalities (6.15) and (6.16) we obtain that

R1 +R2 +R3 = −2εγT [ΔU ′(h− τ0)−ΔU ′(−τ0)D
]T

Dμ

− 2εγT [ΔU ′(h− 0)−ΔU ′(−0)D
]T

Dγ

+ 2εγT [ΔU(h− τ0)−ΔU(−τ0)D]T A1μ

+ 2εγT [ΔU(h)−ΔU(0)D]T A1γ − 2εμT DT ΔU ′(−τ0)Dγ

+ 2εγT DT ΔU(τ0)A1μ + o(ε).

Since for μ = 0 function (6.17) coincides with (6.14), the sum of the quadratic terms
with respect to γ in I1 + I2 + I3 disappears. As a result,

R1 +R2 +R3 = −2εγT [ΔU ′(h− τ0)
]T

Dμ + 2εγT [ΔU(h− τ0)]
T A1μ + o(ε)

= 2εγT [ΔU ′(τ0 − h)D+ΔU(τ0− h)A1
]

μ + o(ε).

It follows from this analysis that for function (6.17) equality (6.13) takes the form

2εγT [ΔU ′(τ0 − h)D+ΔU(τ0− h)A1
]

μ + o(ε) = 0.

The preceding equality holds for arbitrarily small positive ε , so

γT [ΔU ′(τ0 − h)D+ΔU(τ0− h)A1
]

μ = 0

for any given vectors γ and μ . This implies that

ΔU ′(τ0 − h)D+ΔU(τ0− h)A1 = 0n×n.

Recall that τ0 is an arbitrary value from (0,h), so

ΔU ′(τ − h)D+ΔU(τ− h)A1 = 0n×n, τ ∈ (0,h).
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From this equality and Lemmas 6.3–6.5 we conclude that Eq. (6.5) for the matrix
ΔU(τ) takes the form

ΔU ′(τ) = ΔU(τ)A0, τ ∈ [0,h].

Condition (6.15) implies that ΔU(τ) = 0n×n, τ ∈ [0,h], or

U2(τ) =U1(τ), τ ∈ [0,h]. �

6.5 Existence and Uniqueness of Lyapunov Matrices

With this new definition of the Lyapunov matrices we do not need to assume that
system (6.1) is exponentially stable, but it is important to know the conditions under
which the matrices do (or do not) exist. In this section we study the existence issue,
as well as the uniqueness one.

For a given Lyapunov matrix U(τ) we define two auxiliary matrices

Y (τ) =U(τ), Z(τ) =U(τ − h), τ ∈ [0,h] . (6.18)

Lemma 6.7. Let U(τ) be a Lyapunov matrix associated with W; then auxiliary
matrices (6.18) satisfy the following delay-free system of matrix equations:

⎧

⎨

⎩

d
dτ [Y (τ)−Z(τ)D] = Y (τ)A0 +Z(τ)A1,

d
dτ
[

−DTY (τ)+Z(τ)
]

=−AT
1 Y (τ)−AT

0 Z(τ),
(6.19)

and the boundary value conditions
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Y (0) = Z(h),

−W = Y (0)A0 +Z(0)A1 +AT
0 Z(h)+AT

1 Y (h)
−DT [Y (h)A0 +Z(h)A1]−

[

AT
0 Z(0)+AT

1 Y (0)
]

D.

(6.20)

Proof. The first equation in (6.19) is a direct consequence of (6.5) and (6.18). To
derive the second equation, we observe that Z(τ) =UT (h− τ), τ ∈ [0,h], so

d
dτ

[

−DTY (τ)+Z(τ)
]

=
d

dτ
[U(h− τ)−U((h− τ)− h)D]T

= − [U(h− τ)A0+U(−τ)A1]
T

= −AT
1 Y (τ)−AT

0 Z(τ).



6.5 Existence and Uniqueness of Lyapunov Matrices 221

The first boundary value condition follows directly from (6.18). The second one is
the algebraic property (6.7) written in the terms of the auxiliary matrices. �

Theorem 6.5. Given a symmetric matrix W, if a pair (Y (τ),Z(τ)) satisfies (6.19)
and (6.20), then

U(τ) =
1
2

[

Y (τ)+ZT (h− τ)
]

, τ ∈ [0,h], (6.21)

is a Lyapunov matrix associated with W if we extend it to [−h,0) by setting U(−τ)=
UT (τ) for τ ∈ (0,h].

Proof. Symmetry property: By definition, the matrix U(τ) satisfies symmetry
property (6.6) for τ ∈ (0,h], and we only need to check the property for τ = 0.
To do this, we observe that the first equality in (6.20) implies that

U(0) =
1
2

[

Y (0)+ZT (h)
]

=
1
2

[

Y (0)+Y T (0)
]

=UT (0).

Algebraic property : It is easy to see that the following equalities hold:

U(0) =
1
2

[

Y (0)+ZT (h)
]

=
1
2

[

Z(h)+YT (0)
]

and

U(h) =
1
2

[

Y (h)+ZT (0)
]

, U(−h) =
1
2

[

Y T (h)+Z(0)
]

.

With these equalities in mind we find that

U(0)A0 +U(−h)A1 =
1
2

[

Y (0)+ZT (h)
]

A0 +
1
2

[

Y T (h)+Z(0)
]

A1

and

AT
0 U(0)+AT

1 U(h) =
1
2

AT
0

[

Z(h)+YT (0)
]

+
1
2

AT
1

[

Y (h)+ZT (0)
]

.

Therefore,

J1 = U(0)A0 +U(−h)A1+AT
0 U(0)+AT

1 U(h)

=
1
2

[

Y (0)A0 +Z(0)A1 +AT
0 Z(h)+AT

1 Y (h)
]

+
1
2

[

Y (0)A0 +Z(0)A1 +AT
0 Z(h)+AT

1 Y (h)
]T

.
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In a similar way we obtain that

U(h)A0 +U(0)A1 =
1
2

[

Y (h)+ZT (0)
]

A0 +
1
2

[

Z(h)+YT (0)
]

A1

=
1
2
[Y (h)A0 +Z(h)A1]+

1
2

[

AT
0 Z(0)+AT

1 Y (0)
]T

and

AT
0 U(−h)+AT

1 U(0) =
1
2

AT
0

[

Y T (h)+Z(0)
]

+
1
2

AT
1

[

Y (0)+ZT (h)
]

=
1
2
[Y (h)A0 +Z(h)A1]

T +
1
2

[

AT
0 Z(0)+AT

1 Y (0)
]

,

so

J2 = −DT [U(h)A0 +U(0)A1]−
[

AT
0 U(−h)+AT

1U(0)
]

D

= −1
2

(

DT [Y (h)A0 +Z(h)A1]+
[

AT
0 Z(0)+AT

1 Y (0)
]

D
)

−1
2

(

DT [Y (h)A0 +Z(h)A1]+
[

AT
0 Z(0)+AT

1 Y (0)
]

D
)T

.

We arrive at the following equality:

J1 + J2 = U(0)A0 +U(−h)A1+AT
0 U(0)+AT

1 U(h)

−DT [U(h)A0 +U(0)A1]−
[

AT
0 U(−h)+AT

1U(0)
]

D

=
1
2

{

Y (0)A0 +Z(0)A1 +AT
0 Z(h)+AT

1 Y (h)

− DT [Y (h)A0 +Z(h)A1]−
[

AT
0 Z(0)+AT

1 Y (0)
]

D
}

+
1
2

{

Y (0)A0 +Z(0)A1 +AT
0 Z(h)+AT

1 Y (h)

− DT [Y (h)A0 +Z(h)A1]−
[

AT
0 Z(0)+AT

1 Y (0)
]

D
}T

= − W.

This ends the proof of algebraic property (6.7).

Dynamic property: Observe first that for τ ∈ [0,h]

U(τ − h) =UT (h− τ) =
1
2

[

Y T (h− τ)+Z(τ)
]

.
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Finally, we compute the derivative

d
dτ

[U(τ)−U(τ − h)D]

=
d

dτ

(

1
2

[

Y (τ)+ZT (h− τ)
]

− 1
2

[

Y T (h− τ)+Z(τ)
]

D

)

=
d

dτ

(

1
2
[Y (τ)−Z(τ)D]+

1
2

[

−DTY (h− τ)+Z(h− τ)
]T
)

=
1
2
[Y (τ)A0 +Z(τ)A1]−

1
2

[

−AT
1 Y (h− τ)−AT

0 Z(h− τ)
]T

=
1
2

[

Y (τ)+ZT (h− τ)
]

A0 +
1
2

[

Y T (h− τ)+Z(τ)
]

A1

=U(τ)A0 +U(τ − h)A1, τ ∈ [0,h].

This proves dynamic property (6.5).
Hence, according to Definition 6.5, the matrix U(τ) is a Lyapunov matrix

associated with W . �

Theorem 6.5 raises the existence and uniqueness issues for boundary value
problem (6.19)–(6.20). We will address them, but first we introduce the following
definition.

Definition 6.6. We say that system (6.1) satisfies the Lyapunov condition if there
exists ε > 0 such that the sum of any two eigenvalues, s1,s2, of the system has a
module greater than ε ,

|s1 + s2|> ε.

Lemma 6.8. System (6.1) satisfies the Lyapunov condition if and only if the
following two conditions hold:

1. System (6.1) has no eigenvalue s0 such that −s0 is also an eigenvalue of the
system.

2. The matrix D has no eigenvalue λ0 such that λ−1
0 is also an eigenvalue of the

matrix.

Proof. Necessity: Because system (6.1) satisfies the Lyapunov condition, the first
condition of the lemma obviously holds.

We now address the second condition. Let ˜λ be a nonzero eigenvalue of the
matrix D. Then there exists a complex number s̃ such that ˜λ = e−hs̃. It is well known
– see, for example, [3] – that ˜λ generates a neutral type chain of eigenvalues of
system (6.1) of the form

sk = s̃+ i
2kπ

h
+ ξk, k =±1,±2, . . . ,
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where ξk → 0 as |k| → ∞. Here i is the imaginary unit. Assume that the second
condition fails and there exists an eigenvalue λ0 of the matrix D such that λ−1

0 is
also an eigenvalue of the matrix. Then there exists a complex number s0 such that
λ0 = e−hs0 and λ−1

0 = ehs0 . For any given ε > 0 there is a sufficiently large integer
N such that system (6.1) has an eigenvalue

s(1) = s0 + i
2Nπ

h
+ ξ (1),

where
∣

∣

∣ξ (1)
∣

∣

∣< ε
2 , and an eigenvalue

s(2) =−s0 − i
2Nπ

h
+ ξ (2),

where
∣

∣

∣ξ (2)
∣

∣

∣< ε
2 . As a consequence

∣

∣

∣s(1) + s(2)
∣

∣

∣≤
∣

∣

∣ξ (1)
∣

∣

∣+
∣

∣

∣ξ (2)
∣

∣

∣< ε.

This contradicts the Lyapunov condition. The contradiction proves the second
condition of the lemma.

Sufficiency: For any R > 0 at most a finite set of eigenvalues of system (6.1) lies in
the disc

K(R) = { s | |s| ≤ R } .

When R is sufficiently large, the eigenvalues of a system with magnitude greater
than R are distributed among a finite number of asymptotic chains of eigenvalues.
Some of the chains are of the retarded type. The real part of eigenvalues in such
a chain tends to −∞ as the magnitude of the eigenvalues tends to ∞. The other
chains are of the neutral type. They are generated by nonzero eigenvalues of the

matrix D. Assume by contradiction that there exists a sequence
{(

s(k)1 ,s(k)2

)}∞

k=1
of

eigenvalue pairs such that

s(k)1 + s(k)2 → 0, as k → ∞.

The first condition of the lemma implies that for any given R > 0 there exists ε > 0
such that for the eigenvalues from the disc K(R) the following inequality holds:

|s1 + s2|> ε.

This implies that
∣

∣

∣
s(k)1

∣

∣

∣
→ ∞ and

∣

∣

∣
s(k)2

∣

∣

∣
→ ∞ as k → ∞. Since

Re
(

s(k)1 + s(k)2

)

→ 0, as k → ∞,
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the eigenvalues of the sequence belong to neutral type chains of eigenvalues. The
chains are generated by nonzero eigenvalues, λ1,λ2, of the matrix D. Since

λ1 = lim
k→∞

ehs
(k)
1 , λ2 = lim

k→∞
ehs

(k)
2 ,

we have that

λ1λ2 = lim
k→∞

e
h
(

s
(k)
1 +s

(k)
2

)

= 1.

This contradicts the second condition of the lemma. The contradiction ends the
proof of the sufficiency part. �

Remark 6.5. Let system (6.1) satisfy the Lyapunov condition. Then delay-free
system (6.19) is regular and can be written as

{

Y ′(τ)−Z′(τ)D = Y (τ)A0 +Z(τ)A1

−DTY ′(τ)+Z′(τ) =−AT
1 Y (τ)−AT

0 Z(τ),

where

Y ′(τ) =
dY (τ)

dτ
and Z′(τ) =

dZ(τ)
dτ

.

Proof. Let us add to the first equation of system (6.19) the second one multiplied
from the right-hand side by the matrix D; then

d
dτ

[

Y (τ)−DTY (τ)D
]

= Y (τ)A0 +Z(τ)A1 −AT
1 Y (τ)D−AT

0 Z(τ)D. (6.22)

Because the matrix D has no eigenvalue λ0 such that λ−1
0 is also an eigenvalue of

the matrix, the Schur operator S(X) = X −DT XD is regular. This means that the
preceding equation defines the first derivative of the matrix Y (τ). Now, if we add to
the second equation of system (6.19) the first one multiplied from the left-hand side
by the matrix DT , then

d
dτ

[

Z(τ)−DT Z(τ)D
]

=−AT
1 Y (τ)−AT

0 Z(τ)+DTY (τ)A0 +DT Z(τ)A1, (6.23)

and for the same reason this equation defines the first derivative of the matrix Z(τ).�

Remark 6.6. Let system (6.1) satisfy the Lyapunov condition. Then the second
boundary value condition in (6.20) can be presented in the form

[

Y ′(0)−Z′(h)
]

−DT [Y ′(0)−Z′(h)
]

D =−W,

where

Y ′(0) =
dY (τ)

dτ

∣

∣

∣

∣

τ=+0
, and Z′(h) =

dZ(τ)
dτ

∣

∣

∣

∣

τ=h−0
.
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Proof. It follows from Eqs. (6.22) and (6.23) that

Y ′(0)−DTY ′(0)D = Y (0)A0 +Z(0)A1 −AT
1 Y (0)D−AT

0 Z(0)D

and

Z′(h)−DT Z′(h)D =−AT
1 Y (h)−AT

0 Z(h)+DTY (h)A0 +DT Z(h)A1.

Therefore,

Y ′(0)−DTY ′(0)D+Z′(h)−DT Z′(h)D =−W. �

The following auxiliary result will be needed in the proof of Theorem 6.6.

Lemma 6.9. Let system (6.1) satisfy the Lyapunov condition. If system (6.19)
admits a solution (Y (τ),Z(τ)) that satisfies the boundary value conditions (6.20)
with W = 0n×n, then

Y (τ) = Z(h+ τ), τ ∈ R. (6.24)

Proof. We check first that the matrices Y (τ) and Z(τ) satisfy the second-order
delay-free matrix differential equation

d2X
dτ2 −DT d2X

dτ2 D =
dX
dτ

A0 −AT
0

dX
dτ

+DT dX
dτ

A1

−AT
1

dX
dτ

D+AT
0 XA0 −AT

1 XA1. (6.25)

To this end, we differentiate Eq. (6.22)

d2Y (τ)
dτ2 −DT d2Y (τ)

dτ2 D =
dY (τ)

dτ
A0 +

dZ(τ)
dτ

A1 −AT
1

dY (τ)
dτ

D−AT
0

dZ(τ)
dτ

D.

There are two terms on the right-hand side of the last equality that depend on dZ(τ)
dτ .

The second equation of system (6.19) implies that the first of the terms can be
expressed as

dZ(τ)
dτ

A1 = DT dY (τ)
dτ

A1 −AT
1 Y (τ)A1 −AT

0 Z(τ)A1,

whereas the first equation of the system makes it possible to present the second term
in the form

−AT
0

dZ(τ)
dτ

D =−AT
0

dY (τ)
dτ

+AT
0 Y (τ)A0 +AT

0 Z(τ)A1.
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Substituting these expressions we arrive at the conclusion that Y (τ) satisfies
Eq. (6.25). Similar manipulations prove that the matrix Z(τ) is also a solution of
the equation.

Note that the Lyapunov condition implies that the matrix D has no eigenvalue λ0

such that λ−1
0 is also an eigenvalue of the matrix (Lemma 6.8). This means that the

Schur operator, S(X) = X −DT XD, is nonsingular. Therefore, Eq. (6.25) is regular,
and any solution of the equation is uniquely determined by its initial conditions
X(0), X ′(0). According to Remark 6.6, the second condition in (6.20) can be written
as follows:

[

Y ′(0)−Z′(h)
]

−DT [Y ′(0)−Z′(h)
]

D = 0n×n.

Since the Schur operator S(X) is nonsingular, the preceding equality implies that

Y ′(0)−Z′(h) = 0n×n.

If we add the first condition from Eq. (6.20), Y (0) = Z(h), then identity (6.24)
becomes evident. �

Corollary 6.3. Let system (6.1) satisfy the Lyapunov condition. Then the Lyapunov
matrix U(τ) associated with W satisfies the second-order delay-free matrix equation

d2X(τ)
dτ2 −DT d2X(τ)

dτ2 D =
dX(τ)

dτ
A0 −AT

0
dX(τ)

dτ
+DT dX(τ)

dτ
A1

−AT
1

dX(τ)
dτ

D+AT
0 X(τ)A0

−AT
1 X(τ)A1, τ ∈ [0,h], (6.26)

and the boundary value conditions

X ′(0)−
[

X ′(h)
]T

D = X(0)A0 +XT (h)A1

and
−W =

[

X ′(0)+
(

X ′(0)
)T
]

−DT
[

X ′(0)+
(

X ′(0)
)T
]

D.

Theorem 6.6. System (6.1) admits a unique Lyapunov matrix associated with a
given symmetric matrix W if and only if the system satisfies the Lyapunov condition.

Proof. Sufficiency: Given a symmetric matrix W , according to Theorem 6.5, we
can compute a Lyapunov matrix associated with W if there exists a solution of the
boundary value problem (6.19)–(6.20). In what follows, we demonstrate that under
the Lyapunov condition the boundary value problem admits a unique solution for
any symmetric matrix W .

System (6.19) is linear and time invariant. To define a particular solution of the
system, one must know the initial matrices Y0 = Y (0) and Z0 = Z(0). The initial
matrices have 2n2 unknown components. Conditions (6.20) provide a system of 2n2
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scalar linear algebraic equations in 2n2 unknown components of the initial matrices.
This algebraic system admits a unique solution for any symmetric matrix W if and
only if the unique solution of the system with W = 0n×n is a trivial one. Assume by
contradiction that there exists a nontrivial solution, (Y0,Z0), of the algebraic system
with W = 0n×n. These initial matrices generate a nontrivial solution, (Y (τ),Z(τ)), of
boundary value problem (6.19)–(6.20) with W = 0n×n. By Lemma 6.9, the matrices
Y (τ) and Z(τ) satisfy identity (6.24). The nontrivial solution can be presented as a
sum of the eigenmotions of system (6.19):

(Y (τ),Z(τ)) =
N

∑
ν=0

esν τ (Pν(τ),Qν (τ)) .

Here sν , ν = 0,1, . . . ,N, are distinct eigenvalues of system (6.19) and Pν(τ) and
Qν(τ) are polynomials with matrix coefficients. At least one of the polynomials
Pν(τ), say P0(τ), is nontrivial because otherwise Y (τ) ≡ 0n×n, and identity (6.24)
implies that Z(τ) ≡ 0n×n. Let polynomial P0(τ) be of degree �

P0(τ) =
�

∑
j=0

τ jB j,

where B j, j = 0,1, . . . �, are n × n constant matrices and B� �= 0n×n. It follows
from (6.24) that

P0(τ) = es0hQ0(τ + h).

Hence Q0(τ) is also a nontrivial polynomial of degree �

Q0(τ) =
�

∑
j=0

τ jCj

and C� = e−s0hB� �= 0n×n.
By (6.24) the first matrix equation in (6.19) can be written in the form

d
dτ

[Y (τ)−Y (τ − h)D] = Y (τ)A0 +Y(τ − h)A1,

and we obtain that

0n×n =
N

∑
ν=0

esν τ
[

sν Pν(τ)+
dPν(τ)

dτ
− sνe−sν hPν(τ − h)D− e−sνh dPν(τ − h)

dτ
D

]

−
N

∑
ν=0

esν τ
[

Pν(τ)A0 + e−sν hPν(τ − h)A1

]

.
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Since all eigenvalues sν , ν = 0,1, . . . ,N, are distinct, for each ν we have the
polynomial identity

0n×n = sν Pν(τ)+
dPν(τ)

dτ
− sνe−sν hPν(τ − h)D− e−sνh dPν(τ − h)

dτ
D

−Pν(τ)A0 − e−sν hPν(τ − h)A1, ν = 0,1, . . . ,N.

If in the polynomial identity for ν = 0 we collect the terms of the highest degree �,
then we arrive at the matrix equality

B�

(

s0I− s0e−s0hD−A0− e−s0hA1

)

= 0n×n.

Because B� �= 0n×n, the preceding equality holds only if

det
(

s0I− s0e−s0hD−A0− e−s0hA1

)

= 0,

and we conclude that s0 is an eigenvalue of the original system (6.1).
Once again, identity (6.24) make it possible to present the second equation of

system (6.19) as

d
dτ

[

−DT Z(τ + h)+Z(h)
]

=−AT
1 Z(τ + h)−AT

0 Z(τ).

And we arrive at the new set of polynomial equalities

0n×n = −sνesν hDT Qν(τ + h)− esνhDT dQν(τ + h)
dτ

+ sνQν(τ)+
dQν(τ)

dτ
+AT

1 Qν(τ + h)+AT
0 Qν (τ), ν = 0,1, . . . ,N.

If in the equality for ν = 0 we collect the terms of the highest degree �, then

−
[

(−s0) I− (−s0)e
−(−s0)hD−A0 − e−(−s0)hA1

]T
C� = 0n×n.

Because C� �= 0n×n, the preceding equality holds only if

det
[

(−s0)I − (−s0)e
−(−s0)hD−A0− e−(−s0)hA1

]

= 0,

and we conclude that −s0 is also an eigenvalue of the original system (6.1). This
means that system (6.1) does not satisfy the Lyapunov condition. But this contradicts
the theorem condition. The contradiction proves that the only solution of boundary
value problem (6.19)–(6.20), with W = 0n×n, is the trivial one. As was mentioned
previously, this implies that for any symmetric W boundary value problem (6.19)–
(6.20) admits a unique solution, and this solution generates a unique Lyapunov
matrix associated with W .
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Necessity: Suppose that system (6.1) does not satisfy the Lyapunov condition. By
Lemma 6.8, this means that either the spectrum of the system contains a point s0,
such that −s0 also belongs to the spectrum, or there is an eigenvalue λ0 of the
matrix D, such that λ−1

0 is also an eigenvalue of the matrix.
In the first case, there exist nontrivial vectors γ,μ ∈Cn such that

μT
[

s0

(

I− e−s0hD
)

−A0 − e−s0hA1

]

= 0,

[

−s0

(

I− es0hD
)

−A0 − es0hA1

]T
γ = 0.

We demonstrate now that there exists a nontrivial solution (Y (τ),Z(τ)) of boundary
value problem (6.19)–(6.20), with W = 0n×n. To see this, we set Y (τ) = es0τ γμT

and Z(τ) = es0(τ−h)γμT ; then

d
dτ

[Y (τ)−Z(τ)D] = es0τ γμT s0

(

I − e−s0hD
)

= es0τ γμT (A0 + e−s0hA1)

= Y (τ)A0 +Z(τ)A1

and

d
dτ

[

−DTY (τ)+Z(τ)
]

= s0

(

I− es0hD
)T

es0(τ−h)γμT

= (−AT
0 − es0hAT

1 )e
s0(τ−h)γμT

=−AT
1 Y (τ)−AT

0 Z(τ).

It is evident that Y (τ) = Z(τ + h), so

Y (0) = Z(h), and Y ′(0)−Z′(h) =
dY (τ)

dτ

∣

∣

∣

∣

τ=0
− dZ(τ)

dτ

∣

∣

∣

∣

τ=h
= 0n×n.

This implies that the matrices Y (τ) = es0τ γμT and Z(τ) = es0(τ−h)γμT satisfy
boundary value conditions (6.20), with W = 0n×n.

In the second case, when the matrix D has an eigenvalue λ0 such that λ−1
0 is

also an eigenvalue of the matrix, the Schur operator S(X) = X −DT XD is singular.
Therefore, for some symmetric matrix W , Eq. (6.9) is inconsistent. �

Corollary 6.4. Let system (6.1) satisfy the Lyapunov condition. If (Y (τ),Z(τ)) is
the unique solution of boundary value problem (6.19)–(6.20) with a symmetric
matrix W , then the Lyapunov matrix U(τ) associated with W is such that

U(τ) = Y (τ), τ ∈ [0,h].
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Proof. We prove first that if the pair (Y (τ),Z(τ)) is a solution of the boundary value
problem, then the pair

(

˜Y (τ), ˜Z(τ)
)

=
(

ZT (h− τ),Y T (h− τ)
)

is also a solution of the problem. To this end, we observe that

d
dτ

[

˜Y (τ)− ˜Z(τ)D
]

=
d

dτ
[

Z(h− τ)−DTY (h− τ)
]T

=−
[

−AT
1 Y (h− τ)−AT

0 Z(h− τ)
]T

= ˜Y (τ)A0 + ˜Z(τ)A1

and

d
dτ

[

−DT
˜Y (τ)+ ˜Z(τ)

]

=
d

dτ
[Y (h− τ)−Z(h− τ)D]T

= − [Y (h− τ)A0 +Z(h− τ)A1]
T

= −AT
1
˜Y (τ)−AT

0
˜Z(τ).

Then we have

˜Y (0)− ˜Z(h) = [Z(h)−Y (0)]T = 0n×n

and
[

˜Y ′(0)− ˜Z′(h)
]

−DT
[

˜Y ′(0)− ˜Z′(h)
]

D =
{[

Y ′(0)−Z′(h)
]

−DT [Y ′(0)−Z′(h)
]

D
}T

= −WT =−W.

Since (Y (τ),Z(τ)) is the unique solution of boundary value problem (6.19)–(6.20),
we have that

˜Y (τ) = Y (τ), τ ∈ [0,h],

and matrix (6.21) can be written as

U(τ) =
1
2

[

Y (τ)+ ˜Y (τ)
]

= Y (τ), τ ∈ [0,h]. �

Theorem 6.7. Let system (6.1) not satisfy the Lyapunov condition. Then there exists
a symmetric matrix W for which Eq.(6.5) has no solution satisfying properties (6.6)
and (6.7).
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Proof. By Lemma 6.8, the theorem condition means that either there exists an
eigenvalue s0 of system (6.1), such that −s0 is also an eigenvalue of the system,
or there exists an eigenvalue λ0 of matrix D, such that λ−1

0 is also an eigenvalue of
the matrix.

In the first case system (6.1) admits two solutions of the form

x(1)(t) = es0tγ, x(2)(t) = e−s0t μ ,

where γ,μ , are nontrivial vectors.
Recall that by Lemma 2.9 there exists a symmetric matrix ˜W such that

γT
˜W μ �= 0.

Let us set in (6.7) W = ˜W . Assume that Eq. (6.5) admits a solution, ˜U(τ), that
satisfies properties (6.6) and (6.7).

Now we define the bilinear functional

z(ϕ ,ψ) = ϕT (0)
[

˜U(0)−DT
˜U(h)− ˜U(−h)D+DT

˜U(0)D
]

ψ(0)

+ ϕT (0)

0
∫

−h

[

˜U(h+θ)− ˜U(θ)D
]T [

D
·

ψ(θ)+A1ψ(θ)
]

dθ

+

0
∫

−h

[

Dϕ ′(θ)+A1ϕ(θ)
]T

[

˜U(h+θ)− ˜U(θ)D
]

dθψ(0)

+

0
∫

−h

[

Dϕ ′(θ1)+A1ϕ(θ1)
]T

⎛

⎝

0
∫

−h

˜U(θ1−θ2)
[

D
·

ψ(θ2)+A1ψ(θ2)
]

dθ1

⎞

⎠dθ2.

Here ϕ ,ψ ∈ PC1([−h,0],Rn). Let x(t) and y(t) be two solutions of system (6.1).
We compute the time derivative of the function

z(xt ,yt) = xT (t)
[

˜U(0)−DT
˜U(h)− ˜U(−h)D+DT

˜U(0)D
]

y(t)

+ xT (t)
∫ 0

−h

[

˜U(h+θ )− ˜U(θ )D
]T [

Dy′(t +θ )+A1y(t +θ )
]

dθ

+

(

∫ 0

−h

[

Dx′(t +θ )+A1x(t +θ )
]T

[

˜U(h+θ )− ˜U(θ )D
]

dθ
)

y(t)

+

∫ 0

−h

[

Dx′(t +θ1)+A1x(t +θ1)
]T

×
(

∫ 0

−h
˜U(θ1 −θ2)

[

Dy′(t +θ2)+A1y(t +θ2)
]

dθ2

)

dθ1.
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The time derivative of the first term is equal to

dR1(t)
dt

=
[

x′(t)
]T

[

˜U(0)−DT
˜U(h)− ˜U(−h)D+DT

˜U(0)D
]

y(t)

+xT (t)
[

˜U(0)−DT
˜U(h)− ˜U(−h)D+DT

˜U(0)D
]

y′(t).

The time derivative of the second term is

dR2(t)
dt

=
[

x′(t)
]T

∫ 0

−h

[

˜U(h+θ )− ˜U(θ )D
]T

[

Dy′(t +θ )+A1y(t +θ )
]

dθ

+ xT (t)
[

˜U(h)− ˜U(0)D
]T

[

Dy′(t)+A1y(t)
]

− xT (t)
[

˜U(0)− ˜U(−h)D
]T [

Dy′(t − h)+A1y(t − h)
]

− xT (t)
∫ 0

−h

[

˜U(h+θ )A0+ ˜U(θ )A1

]T [
Dy′(t +θ )+A1y(t +θ )

]

dθ .

Now the time derivative of the third term has the form

dR3(t)
dt

=
[

y′(t)
]T

∫ 0

−h

[

˜U(h+θ )− ˜U(θ )D
]T

[

Dx′(t +θ )+A1x(t +θ )
]

dθ

+ yT (t)
[

˜U(h)− ˜U(0)D1

]T [
Dx′(t)+A1x(t)

]

− yT (t)
[

˜U(0)− ˜U(−h)D
]T

[

Dx′(t − h)+A1x(t − h)
]

− yT (t)
∫ 0

−h

[

˜U(h+θ )A0 + ˜U(θ )A1

]T
[

Dx′(t +θ )+A1x(t +θ )
]

dθ .

Finally, the time derivative of the last term is equal to

dR4(t)
dt

=
[

Dx′(t)+A1x(t)
]T

∫ 0

−h

[

˜U(θ )
]T [

Dy′(t +θ )+A1y(t +θ )
]

dθ

−
[

Dx′(t − h)+A1x(t − h)
]T

×
∫ 0

−h

[

˜U(θ + h)
]T [

Dy′(t +θ )+A1y(t +θ )
]

dθ

+
[

Dy′(t)+A1y(t)
]T

∫ 0

−h

[

˜U(θ )
]T [

Dx′(t +θ )+A1x(t +θ )
]

dθ

−
[

Dy′(t − h)+A1y(t − h)
]T

×
∫ 0

−h

[

˜U(θ + h)
]T

[

Dx′(t +θ )+A1x(t +θ )
]

dθ .
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We replace in the derivatives the terms

Dx′(t − h)+A1x(t − h), and Dy′(t − h)+A1y(t − h)

by
x′(t)−A0x(t), and y′(t)−A0y(t),

respectively. Then we collect all terms that have no integral factor, and the sum of
such terms is equal to

S1(t) =
[

x′(t)
]T

[

˜U(0)−DT
˜U(h)− ˜U(−h)D+DT

˜U(0)D
]

y(t)

+ xT (t)
[

˜U(0)−DT
˜U(h)− ˜U(−h)D+DT

˜U(0)D
]

y′(t)

+ xT (t)
[

˜U(−h)−DT
˜U(0)

]

[

Dy′(t)+A1y(t)
]

− xT (t)
[

˜U(0)−DT
˜U(h)

]

[

y′(t)−A0y(t)
]

+ yT (t)
[

˜U(−h)−DT
˜U(0)

]

[

Dx′(t)+A1x(t)
]

− yT (t)
[

˜U(0)−DT
˜U(h)

]

[

x′(t)−A0x(t)
]

.

After evident reductions the sum takes the form

S1(t) = xT (t)
{

˜U(−h)A1 −DT
˜U(0)A1 + ˜U(0)A0 −DT

˜U(h)A0

+ AT
1
˜U(h)−AT

1
˜U(0)D+AT

0
˜U(0)−AT

0
˜U(−h)D

}

y(t).

By (6.7) this sum is equal to −xT (t)Wy(t).
Now we collect all terms that contain an integral factor and start with xT (t) or

[x′(t)]T . Their sum is

S2(t) =
[

x′(t)
]T

∫ 0

−h

[

˜U(h+θ )− ˜U(θ )D
]T [

Dy′(t +θ )+A1y(t +θ )
]

dθ

−xT (t)
∫ 0

−h

[

˜U(h+θ )A0+ ˜U(θ )A1

]T
[

Dy′(t +θ )+A1y(t +θ )
]

dθ

+
[

Dx′(t)+A1x(t)
]T

∫ 0

−h

[

˜U(θ )
]T [

Dy′(t +θ )+A1y(t +θ )
]

dθ

−
[

x′(t)−A0x(t)
]T

∫ 0

−h

[

˜U(θ + h)
]T

[

Dy′(t +θ )+A1y(t +θ )
]

dθ .

It is obvious that the sum is equal to zero.
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The terms that contain an integral factor and start with y(t) or y′(t) are as follows:

S3(t) =
[

y′(t)
]T

∫ 0

−h

[

˜U(h+θ )− ˜U(θ )D
]T [

Dx′(t +θ )+A1x(t +θ )
]

dθ

−yT (t)
∫ 0

−h

[

˜U(h+θ )A0 + ˜U(θ )A1

]T
[

Dx′(t +θ )+A1x(t +θ )
]

dθ

+
[

Dy′(t)+A1y(t)
]T

∫ 0

−h

[

˜U(θ )
]T [

Dx′(t +θ )+A1x(t +θ )
]

dθ

−
[

y′(t)−A0y(t)
]T

∫ 0

−h

[

˜U(θ + h)
]T [

Dx′(t +θ )+A1x(t +θ )
]

dθ .

This sum is also equal to zero. And we arrive at the final conclusion that the time
derivative of the bivariate functional is equal to −xT (t)Wy(t).

On the one hand,

d
dt

z(x(1)t ,x(2)t ) =−e(s0−s0)tγT
˜W μ =−γT

˜W μ �= 0. (6.27)

On the other hand, a direct substitution shows that

z(x(1)t ,x(2)t ) =−e(s0−s0)tγT Qμ = γT Qμ ,

where the matrix

Q = ˜U(0)−DT
˜U(h)− ˜U(−h)D+DT

˜U(0)D

+

0
∫

−h

[

˜U(h+θ )− ˜U(θ )D
]T

[−s0D+A1]e
−s0θ dθ

+

0
∫

−h

[s0D+A1]
T
[

˜U(h+θ )− ˜U(θ )D
]

es0θ dθ

+

0
∫

−h

[s0D+A1]
T

⎛

⎝

0
∫

−h

˜U(θ1 −θ2) [−s0D+A1]e
s0(θ1−θ2)dθ1

⎞

⎠dθ2

does not depend on t, so

d
dt

z(x(1)t ,x(2)t ) =
d
dt

γT Qμ = 0.
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The last equality contradicts inequality (6.27); therefore, our assumption that
Eq. (6.5) admits a solution that satisfies properties (6.6) and (6.7), with W = ˜W ,
is wrong.

In the second case, when the matrix D has an eigenvalue λ0 such that λ−1
0

is also an eigenvalue of the matrix, for some symmetric matrices W Eq. (6.9) is
inconsistent, so there are no Lyapunov matrices associated with such W , either. �

6.6 Computational Issue

It is important to have an efficient numerical procedure for the computation of
Lyapunov matrices. In this section we present such a procedure.

We have already seen that if boundary value problem (6.19)–(6.20) has a
solution, then, by Theorem 6.5, this solution generates a Lyapunov matrix associated
with a given W . In the case where the boundary value problem admits a unique
solution, (Y (τ),Z(τ)), we have

U(τ) = Y (τ), τ ∈ [0,h].

According to Theorem 6.6 the Lyapunov condition (Definition 6.6) guarantees the
existence of a unique solution of boundary value problem (6.19)–(6.20) with an
arbitrary symmetric matrix W . In the rest of this section we assume that system (6.1)
satisfies this condition.

In vector form, system (6.19) is written

(

I⊗ I −I⊗D
−DT ⊗ I I⊗ I

)

d
dτ

(

y(τ)
z(τ)

)

=

(

I⊗A0 I ⊗A1

−AT
1 ⊗ I −AT

0 ⊗ I

)(

y(τ)
z(τ)

)

. (6.28)

Here y(τ) = vec(Y (τ)) and z(τ) = vec(Z(τ)). Since under the Lyapunov condition
system (6.19) is regular (Remark 6.5), system (6.28) can be written as

d
dτ

(

y(τ)
z(τ)

)

= L

(

y(τ)
z(τ)

)

,

where

L =

(

I ⊗ I −I⊗D
−DT ⊗ I I⊗ I

)−1(
I⊗A0 I ⊗A1

−AT
1 ⊗ I −AT

0 ⊗ I

)

.

Boundary value conditions (6.20) take the form

M

(

y(0)
z(0)

)

+N

(

y(h)
z(h)

)

=−
(

0
w

)

, (6.29)
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where w = vec(W ) and

M =

(

I ⊗ I 0n×n ⊗ 0n×n

I ⊗A0 −AT
1 ⊗D I ⊗A1 −AT

0 ⊗D

)

,

N =

(

0n×n ⊗ 0n×n −I⊗ I
AT

1 ⊗ I−DT ⊗A0 AT
0 ⊗ I−DT ⊗A1

)

.

It follows from system (6.28) that
(

y(h)
z(h)

)

= eLh
(

y(0)
z(0)

)

.

Substituting the preceding equality into boundary value condition (2.29) we obtain
an algebraic system for the initial vectors

[

M+NeLh
]

(

y(0)
z(0)

)

=−
(

0
w

)

. (6.30)

Under the Lyapunov condition the algebraic system admits a unique solution, which
generates the corresponding solution of system (6.28),

(

y(τ)
z(τ)

)

= eLτ
(

y(0)
z(0)

)

,

and a solution (Y (τ),Z(τ)) of boundary value problem (6.19)–(6.20). Finally, we
arrive at the Lyapunov matrix associated with W :

U(τ) = Y (τ), τ ∈ [0,h].

We conclude this section with a criterion that system (6.1) satisfies the Lyapunov
condition.

Theorem 6.8. System (6.1) satisfies the Lyapunov condition if and only if the
following condition holds:

det
(

M+NeLh
)

�= 0.

Proof. The proof is similar to that of Theorem 2.10. �

6.7 Spectral Properties

The spectrum of system (6.1) consists of all complex numbers s for which the
characteristic matrix of the system,

G(s) = s
(

I− e−shD
)

−A0 − e−shA1,
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is singular:

Λ = {s0 | detG(s0) = 0} .

The spectrum of system (6.19) consists of all complex numbers s for which the
system of algebraic matrix equations

{

P(sI −A0)−Q(sD+A1) = 0n×n
(

−sDT +AT
1

)

P+
(

sI +AT
0

)

Q = 0n×n
(6.31)

admits a nontrivial solution (P,Q).

Lemma 6.10. The spectrum of system (6.19) is symmetric with respect to the origin.

Proof. Let s be an eigenvalue of system (6.19). Then there exists a nontrivial
solution (P,Q) of (6.31). If we transpose these equalities, then it becomes evident
that the pair (P1,Q1) =

(

QT ,PT
)

satisfies the equations

{

P1 ((−s) I−A0)−Q1 ((−s)D+A1) = 0n×n,
(

−(−s)DT +AT
1

)

P1 +
(

(−s) I+AT
0

)

Q1 = 0n×n.

Since the new pair is nontrivial, −s is an eigenvalue of system (6.19). �

Theorem 6.9. Let system (6.1) have an eigenvalue s0 such that −s0 is also an
eigenvalue of the system. Then s0 belongs to the spectrum of system (6.19).

Proof. Observe first that there exist two nontrivial vectors γ and μ such that

γT G(s0) = γT (s0I−A0)− e−s0hγT (s0D+A1) = 0

and

GT (−s0)μ =
(

−s0I−AT
0

)

μ − es0h (−s0DT +AT
1

)

μ = 0.

Let us multiply the first equality by μ from the left-hand side,

μγT (s0I−A0)− e−s0hμγT (s0D+A1) = 0n×n,

and the second one by −e−s0hγT from the right-hand side,

(

s0I +AT
0

)

e−s0hμγT +
(

−s0DT +AT
1

)

μγT = 0n×n.

This means that the matrices P = μγT and Q = e−s0hμγT satisfy system (6.31) for
s = s0. As these matrices are nontrivial, we arrive at the final conclusion that s0

belongs to the spectrum of system (6.19). The same is true for −s0. �
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6.8 A New Form for Lyapunov Functionals

Here we present functional (6.12) in a new form. The main feature of this new form
is that it does not involve the derivative of the function ϕ(θ ). In other words, we
transform all terms of the functional that include the derivative in such a way that
the new expressions for them do not include it. We assume in what follows that the
initial functions are continuously differentiable, ϕ ∈C1([−h,0],Rn).

Functional (6.12) can be written as

v0(ϕ) = ϕT (0)
[

U(0)−DTU(h)−U(−h)D+DTU(0)D
]

ϕ(0)

+ 2ϕT (0)

0
∫

−h

[U(h+θ )−U(θ )D]T Dϕ ′(θ )dθ

+ 2ϕT (0)

0
∫

−h

[U(h+θ )−U(θ )D]T A1ϕ(θ )dθ

+

0
∫

−h

ϕT (θ1)A
T
1

⎛

⎝

0
∫

−h

U(θ1 −θ2)A1ϕ(θ2)]dθ2

⎞

⎠dθ1

+ 2

0
∫

−h

[

Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

U(θ1 −θ2)A1ϕ(θ2)dθ2

⎞

⎠dθ1

+

0
∫

−h

[

Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

U(θ1 −θ2)Dϕ ′(θ2)dθ2

⎞

⎠dθ1.

Here we underline the terms that depend on ϕ ′(θ ).
The first one is

J1 = 2ϕT (0)

0
∫

−h

[U(h+θ )−U(θ )D]T Dϕ ′(θ )dθ

= 2ϕT (0)
[

U(−h)D−DTU(0)D
]

ϕ(0)

− 2ϕT (0)
[

U(0)D−DTU(h)D
]

ϕ(−h)

− 2ϕT (0)

0
∫

−h

[U(h+θ )A0+U(θ )A1]
T Dϕ(θ )dθ .
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Now, we transform the second one,

J2 = 2

0
∫

−h

[

Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

U(θ1 −θ2)A1ϕ(θ2)dθ2

⎞

⎠dθ1

= 2ϕT (0)

0
∫

−h

DTU(−θ )A1ϕ(θ )dθ − 2ϕT (−h)

0
∫

−h

DTU(−h−θ )A1ϕ(θ )dθ

−2

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

DTU ′(θ1 −θ2)A1ϕ(θ2)dθ2

⎞

⎠dθ1.

Finally, we address the term

J3 =

∫ 0

−h

[

Dϕ ′(θ1)
]T

⎛

⎜

⎜

⎝

∫ 0

−h
U(θ1 −θ2)Dϕ ′(θ2)dθ2

︸ ︷︷ ︸

R

⎞

⎟

⎟

⎠

dθ1.

First, we transform the internal integral

R =U(θ1)Dϕ(0)−U(θ1 + h)Dϕ(−h)+

0
∫

−h

U ′(θ1 −θ2)Dϕ(θ2)dθ2,

hence the term

J3 =

⎛

⎝

0
∫

−h

[

Dϕ ′(θ )
]T

U(θ )Ddθ

⎞

⎠ϕ(0)

︸ ︷︷ ︸

J31

−

⎛

⎝

0
∫

−h

[

Dϕ ′(θ )
]T

U(θ + h)Ddθ

⎞

⎠ϕ(−h)

︸ ︷︷ ︸

J32

+

0
∫

−h

[

Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

U ′(θ1 −θ2)Dϕ(θ2)dθ2

⎞

⎠dθ1

︸ ︷︷ ︸

J33

.

Here

J31 =

⎛

⎝

0
∫

−h

[

Dϕ ′(θ )
]T

U(θ )Ddθ

⎞

⎠ϕ(0)

= ϕT (0)DTU(0)Dϕ(0)−ϕT (−h)DTU(−h)Dϕ(0)
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−

⎛

⎝

0
∫

−h

ϕT (θ )DTU ′(θ )Ddθ

⎞

⎠ϕ(0),

J32 = −

⎛

⎝

0
∫

−h

[

Dϕ ′(θ )
]T

U(θ + h)Ddθ

⎞

⎠ϕ(−h)

= − ϕT (0)DTU(h)Dϕ(−h)+ϕT (−h)DTU(0)Dϕ(−h)

+

⎛

⎝

0
∫

−h

ϕT (θ )DTU ′(h+θ )Ddθ

⎞

⎠ϕ(−h),

and

J33 =

0
∫

−h

[

Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

U ′(θ1 −θ2)Dϕ(θ2)

⎞

⎠dθ1

= ϕT (0)

0
∫

−h

DTU ′(−θ )Dϕ(θ )dθ −ϕT (−h)

0
∫

−h

DTU ′(−h−θ )Dϕ(θ )dθ

−
0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

DTU ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎞

⎠dθ1.

Remark 6.7. In the computation of I33 one must remember that U ′(τ) suffers
discontinuity at τ = 0; therefore

−
0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

DTU ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎞

⎠dθ1

= −
0
∫

−h

ϕT (θ1)D
T

⎡

⎣

θ1−0
∫

−h

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

+

0
∫

θ1+0

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎤

⎦dθ1

−
0
∫

−h

ϕT (θ )DT [U ′(+0)−U ′(−0)
]

Dϕ(θ )dθ .
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And we arrive at the following expression for the term J3:

J3 = ϕT (0)DTU(0)Dϕ(0)− 2ϕT (0)DTU(h)Dϕ(−h)+ϕT(−h)DTU(0)Dϕ(−h)

+2ϕT (0)DT

0
∫

−h

U ′(−θ )Dϕ(θ )dθ − 2ϕT (−h)DT

0
∫

−h

U ′(−θ − h)Dϕ(θ )dθ

−
0
∫

−h

ϕT (θ1)D
T

⎛

⎝

θ1−0
∫

−h

U ′′(θ1−θ2)ϕ(θ2)dθ2+

0
∫

θ1+0

U ′′(θ1−θ2)ϕ(θ2)dθ2

⎞

⎠dθ1

−
0
∫

−h

ϕT (θ )DT [U ′(+0)−U ′(−0)
]

Dϕ(θ )dθ .

Substituting these expressions for J1, J2, J3 in v0(ϕ) and collecting similar terms
we arrive at the desired new form of the functional

v0(ϕ) = [ϕ(0)−Dϕ(−h)]T U(0) [ϕ(0)−Dϕ(−h)]

+2 [ϕ(0)−Dϕ(−h)]T
0
∫

−h

[

U ′(−h−θ )D+U(−h−θ)A1
]

ϕ(θ )dθ

+

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

AT
1 U(θ1 −θ2)A1ϕ(θ2)dθ2

⎞

⎠dθ1

−
0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

[

DTU ′(θ1 −θ2)A1 −AT
1 U ′(θ1 −θ2)D

]

ϕ(θ2)dθ2

⎞

⎠dθ1

−
0
∫

−h

ϕT (θ1)D
T

⎛

⎝

θ1−0
∫

−h

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

+

0
∫

θ1+0

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎞

⎠dθ1

−
0
∫

−h

ϕT (θ )DT PDϕ(θ )dθ . (6.32)

Here P is the solution of the Schur matrix equation (6.10) (Remark 6.4).
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Remark 6.8. It follows from Eq. (6.26) that

AT
1 U(τ)A1 −DTU ′(τ)A1 +AT

1 U ′(τ)D−DTU ′′(τ)D

= AT
0 U(τ)A0 +U ′(τ)A0 −AT

0 U ′(τ)−U ′′(τ), τ ∈ [0,h],

so the functional can also be written as

v0(ϕ) = [ϕ(0)−Dϕ(−h)]T U(0) [ϕ(0)−Dϕ(−h)]

+2 [ϕ(0)−Dϕ(−h)]T
0
∫

−h

[

U ′(−h−θ )D+U(−h−θ )A1
]

ϕ(θ )dθ

+

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

[

AT
0 U(θ1 −θ2)A0 +U ′(θ1 −θ2)A0

−AT
0 U ′(θ1 −θ2)

]

ϕ(θ2)dθ2

)

dθ1

−
0
∫

−h

ϕT (θ1)D
T

⎛

⎝

θ1−0
∫

−h

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

+

0
∫

θ1+0

U ′′(θ1 −θ2)Dϕ(θ2)]dθ2

⎞

⎠dθ1 −
0
∫

−h

ϕT (θ )DT PDϕ(θ )dθ .

6.9 Complete Type Functionals

Given symmetric matrices Wj, j = 0,1,2, one can define the functional

w(ϕ) = ϕT (0)W0ϕ(0)+ϕT (−h)W1ϕ(−h)

+

0
∫

−h

ϕT (θ )W2ϕ(θ )dθ , ϕ ∈ PC1([−h,0],Rn).

Theorem 6.10. Let system (6.1) satisfy the Lyapunov condition. Then the functional

v(ϕ) = v0(ϕ)+
0
∫

−h

ϕT (θ ) [W1 +(h+θ )W2]ϕ(θ )dθ , ϕ ∈ PC1([−h,0],Rn),

(6.33)
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where v0(ϕ) is defined by (6.32) with the Lyapunov matrix U(τ) associated with
W =W0 +W1 + hW2, is such that

d
dt

v(xt) =−w(xt), t ≥ 0,

along the solutions of the system.

Proof. The proof is similar to that of Theorem 2.11. �

Remark 6.9. Functional (6.33) can be written as

v(ϕ) = [ϕ(0)−Dϕ(−h)]T U(0) [ϕ(0)−Dϕ(−h)]

+2 [ϕ(0)−Dϕ(−h)]T
0
∫

−h

[

U ′(−h−θ )D+U(−h−θ )A1
]

ϕ(θ )dθ

+

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

AT
1 U(θ1 −θ2)A1ϕ(θ2)dθ2

⎞

⎠dθ1

+

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

[

AT
1 U ′(θ1 −θ2)D−DTU ′(θ1 −θ2)A1

]

ϕ(θ2)dθ2

⎞

⎠dθ1

−
0
∫

−h

ϕT (θ1)D
T

⎛

⎝

θ1−0
∫

−h

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

+

0
∫

θ1+0

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

)

dθ1

+

0
∫

−h

ϕT (θ )
(

W1 +(h+θ )W2−DT PD
)

ϕ(θ )dθ . (6.34)

Definition 6.7. We say that functional (6.33) [(6.34)] is of the complete type if the
matrices Wj, j = 0,1,2, are positive definite.

6.10 Quadratic Bounds

Lemma 6.11. Let system (6.1) be exponentially stable. If the matrices Wj, j =
0,1,2, are positive definite, then there exists α1 > 0 such that the complete type
functional (6.34) satisfies the inequality

α1 ‖ϕ(0)−Dϕ(−h)‖2 ≤ v(ϕ), ϕ ∈ PC1([−h,0],Rn).
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Proof. Consider the functional

ṽ(ϕ) = v(ϕ)−α ‖ϕ(0)−Dϕ(−h)‖2 .

Its time derivative along the solutions of system (6.1) is equal to

d
dt

ṽ(xt) =−w̃(xt), t ≥ 0,

where

w̃(xt) = w(xt )+ 2α [x(t)−Dx(t − h)]T [A0x(t)+A1x(t − h)]

≥
[

xT (t),xT (t − h)
]

L(α)

[

x(t)
x(t − h)

]

and the matrix

L(α) =

(

W0 0n×n

0n×n W1

)

+α
(

A0 +AT
0 A1 −AT

0 D
AT

1 −DT A0 −DT A1 −AT
1 D

)

.

It is evident that there exists α = α1 > 0 such that the matrix L(α1) is positive
definite. For α = α1 the inequality w̃(xt) ≥ 0 holds, and as a consequence we
conclude that

ṽ(ϕ) =
∞
∫

0

w̃(xt(ϕ))dt ≥ 0.

The preceding inequality implies that

α1 ‖ϕ(0)−Dϕ(−h)‖2 ≤ v(ϕ). �

Lemma 6.12. Let system (6.1) satisfy the Lyapunov condition. Given the symmetric
matrices W0, W1, and W2, there exists α2 > 0 such that functional (6.34) satisfies the
inequality

v(ϕ)≤ α2 ‖ϕ‖2
h , ϕ ∈ PC1([−h,0],Rn).

Proof. Let us introduce the following quantities:

u0 = ‖U(0)‖ , u1 = sup
τ∈(0,h)

∥

∥−DTU ′(τ)+AT
1 U(τ)

∥

∥ ,

and

u2 = sup
τ∈(0,h)

∥

∥−DTU ′′(τ)D1 +AT
1 U(τ)A1 −DTU ′(τ)A1 +AT

1 U ′(τ)D
∥

∥ .
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The first term in (6.34) admits the upper estimation

R1 = [ϕ(0)−Dϕ(−h)]T U(0) [ϕ(0)−Dϕ(−h)]≤ u0 (1+ ‖D‖)2 ‖ϕ‖2
h .

The second term in (6.34) can be estimated as follows:

R2 = 2 [ϕ(0)−Dϕ(−h)]T
0
∫

−h

[

−DTU ′(h+θ )+AT
1U(h+θ )

]T ϕ(θ )dθ

≤ 2hu1 (1+ ‖D‖)‖ϕ‖2
h .

The double integral admits the estimation

R3 =

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

[

AT
1 U(θ1 −θ2)A1 −DTU ′(θ1 −θ2)A1

+AT
1 U ′(θ1 −θ2)D

]

ϕ(θ2)dθ2

)

dθ1

−
0
∫

−h

ϕT (θ1)D
T

⎡

⎣

θ1−0
∫

−h

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

+

0
∫

θ1+0

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎤

⎦dθ1

≤ h2u2‖ϕ‖2
h .

Finally, the term

R4 =

0
∫

−h

ϕT (θ )
[

W1 +(h+θ )W2+DT PD
]

ϕ(θ )dθ

≤ h
(

‖W1‖+ h‖W2‖+
∥

∥DT PD
∥

∥

)

‖ϕ‖2
h .

As a result, we arrive at the following quadratic upper bound for the functional

v(ϕ)≤ α2 ‖ϕ‖2
h ,

where

α2 = u0 (1+ ‖D‖)2 + 2hu1 (1+ ‖D‖)+ h2u2 + h‖W1‖+ h‖W2‖+ h
∥

∥DT PD
∥

∥ .

�

We derive now slightly different upper and lower quadratic bounds for the
functionals.
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Lemma 6.13. Let system (6.1) be exponentially stable. Given the positive-definite
matrices W0, W1, and W2, there exist β j > 0, j = 1,2, such that the complete type
functional (6.34) satisfies the inequality

β1 ‖ϕ(0)−Dϕ(−h)‖2 +β2

0
∫

−h

‖ϕ(θ )‖2 dθ ≤ v(ϕ), ϕ ∈ PC1([−h,0],Rn).

Proof. Consider the functional

ṽ(ϕ) = v(ϕ)−β1‖ϕ(0)−Dϕ(−h)‖2 −β2

0
∫

−h

‖ϕ(θ )‖2 dθ .

Its time derivative along the solutions of system (6.1) is equal to

d
dt

ṽ(xt) =−w̃(xt),

where

w̃(xt) = w(xt)+ 2β1 [x(t)−Dx(t − h)]T [A0x(t)+A1x(t − h)]

+β2

[

‖x(t)‖2 −‖x(t − h)‖2
]

≥
[

xT (t),xT (t − h)
]

L(β1,β2)

[

x(t)
x(t − h)

]

and the matrix

L(β1,β2) =

(

W0 0n×n

0n×n W1

)

+β1

(

A0 +AT
0 A1 −AT

0 D
AT

1 −DT A0 −DT A1 −AT
1 D

)

+β2

(

I 0n×n

0n×n −I

)

.

The matrix

L(0,0) =

(

W0 0n×n

0n×n W1

)

is positive definite, so there exist β1 > 0 and β2 > 0 such that L(β1,β2) ≥ 0. For
these values of β1 and β2, w̃(xt)≥ 0 and

ṽ(ϕ) =
∞
∫

0

w̃(xt(ϕ))dt ≥ 0.

The last inequality justifies the statement of the lemma. �
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Lemma 6.14. Let system (6.1) satisfy the Lyapunov condition. Given the symmetric
matrices W0, W1, and W2, there exist δ j > 0, j = 1,2, such that functional (6.34)
satisfies the inequality

v(ϕ)≤ δ1 ‖ϕ(0)−Dϕ(−h)‖2 + δ2

0
∫

−h

‖ϕ(θ )‖2 dθ , ϕ ∈ PC1([−h,0],Rn).

Proof. Using notations introduced in the proof of Lemma 6.12 we derive the
following inequalities:

R1 = [ϕ(0)−Dϕ(−h)]T U(0) [ϕ(0)−Dϕ(−h)]≤ u0‖ϕ(0)−Dϕ(−h)‖2 ,

R2 = 2 [ϕ(0)−Dϕ(−h)]T
0
∫

−h

[

−DT
1 U ′(h+θ )+AT

1U(h+θ )
]T ϕ(θ )dθ

≤ u1

⎡

⎣h‖ϕ(0)−Dϕ(−h)‖2 +

0
∫

−h

‖ϕ(θ )‖2 dθ

⎤

⎦ ,

R3 =

0
∫

−h

ϕT (θ )
[

W1 +(h+θ )W2+DT PD
]

ϕ(θ )dθ

≤
(

‖W1‖+ h‖W2‖+
∥

∥DT PD
∥

∥

)

0
∫

−h

‖ϕ(θ )‖2 dθ ,

R4 =

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

[

AT
1 U(θ1 −θ2)A1 −DTU ′(θ1 −θ2)A1

+AT
1 U ′(θ1 −θ2)D

]

ϕ(θ2)dθ2

)

dθ1

−
0
∫

−h

ϕT (θ1)D
T

⎡

⎣

θ1−0
∫

−h

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

+

0
∫

θ1+0

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎤

⎦dθ1

≤ hu2

0
∫

−h

‖ϕ(θ )‖2 dθ .
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Hence, we arrive at the inequality

v(ϕ)≤ δ1 ‖ϕ(0)−Dϕ(−h)‖2 + δ2

0
∫

−h

‖ϕ(θ )‖2 dθ ,

where

δ1 = u0 + hu1, and δ2 = u1 + ‖W1‖+ h‖W2‖+
∥

∥DT PD
∥

∥+ hu2. �

6.11 Applications

We present here some applications of the Lyapunov matrices and quadratic func-
tionals studied in this chapter.

6.11.1 Exponential Estimates

In this section we apply the complete type functionals to derive exponential
estimates for the solutions of system (6.1).

Lemma 6.15. Let system (6.1) be exponentially stable. Given the positive-definite
matrices W0, W1, and W2, there exists σ1 > 0 such that the complete type func-
tional (6.34) satisfies the inequality

d
dt

v(xt)+ 2σ1v(xt)≤ 0, t ≥ 0,

along the solutions of the system.

Proof. On the one hand, we have for σ1 > 0 the inequality

2σ1v(xt)≤ 2σ1δ1 ‖x(t)−Dx(t − h)‖2 + 2σ1δ2

0
∫

−h

‖x(t +θ )‖2 dθ , t ≥ 0,

where δ1 and δ2 are defined in Lemma 6.14.
On the other hand, we know that

d
dt

v(xt) =−xT (t)W0x(t)− xT (t − h)W1x(t − h)−
0
∫

−h

xT (t +θ )W2x(t +θ )dθ .
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Therefore,

d
dt

v(xt)+ 2σ1v(xt) ≤ −
[

xT (t),xT (t − h)
]

L(σ1)

[

x(t)
x(t − h)

]

−
0
∫

−h

xT (t +θ ) [W2 − 2σ1δ2I]x(t +θ )dθ , t ≥ 0.

Here the matrix

L(σ1) =

(

W0 0n×n

0n×n W1

)

− 2σ1δ1

(

I −D
−DT DT D

)

.

Thus, if σ1 satisfies the inequalities

L(σ1)≥ 0, and W2 ≥ 2σ1δ2I,

then
d
dt

v(xt)+ 2σ1v(xt)≤ 0, t ≥ 0. �

Corollary 6.5. Lemma 6.15 and Lemmas 6.11 and 6.12 imply the following
exponential estimate for the solutions of system (6.1):

‖x(t,ϕ)−Dx(t − h,ϕ)‖ ≤ μ ‖ϕ‖h e−σ1t , t ≥ 0,

where

μ =

√

α2

α1
.

Lemma 6.16. Consider the system

x(t)−Dx(t − h) = f (t), t ≥ 0, (6.35)

where

‖ f (t)‖ ≤ μ ‖ϕ‖h e−σ1t , t ≥ 0.

Let the matrix D be Schur stable; then there exist γ > 0 and σ > 0 such that the
solution x(t,ϕ), ϕ ∈ PC1([−h,0],Rn), of system (6.35) satisfies the inequality

‖x(t,ϕ)‖ ≤ γ ‖ϕ‖h e−σt , t ≥ 0.

Proof. The matrix D is Schur stable, so there exist d ≥ 1 and ρ ∈ (0,1) such that
∥

∥D j
∥

∥≤ dρ j, j ≥ 0. There exists σ2 > 0 for which ρ = e−hσ2 .
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For a given t ≥ 0 we define the integer k such that t ∈ [(k − 1)h,kh). Iterating
Eq. (6.35) k− 1 times we arrive at the equality

x(t,ϕ) = Dkϕ(ξ )+
k−1

∑
j=0

D j f (t − jh). (6.36)

Now equality (6.36) implies that for t ≥ 0

‖x(t,ϕ)‖ ≤ d

[

e−khσ2 + μ
k−1

∑
j=0

e− jhσ2e−(t− jh)σ1

]

‖ϕ‖h .

If we select σ0 = min{σ1,σ2}, then e−(t− jh)σ1 ≤ e−(t− jh)σ0 and e− jhσ2 ≤ e− jhσ0 ,
j = 1, . . . ,k− 1. Now we have

‖x(t,ϕ)‖ ≤ d [1+ μk]e−σ0t ‖ϕ‖h .

Since t ∈ [(k− 1)h,kh), we have that kh ≤ t + h and

1+ μk ≤ 1+ μ +
μ
h

t.

It is easy to verify that for any ε > 0

max
t≥0

{

te−εt}=
1
eε

,

so if we select

σ = σ0 − ε , where ε ∈ (0,σ0), and γ = d
[

1+ μ +
μ

heε

]

,

then we immediately arrive at the desired inequality. �

We are now able to state the main result of this section.

Theorem 6.11. Let system (6.1) be exponentially stable. Given the positive-definite
matrices W0, W1, W2, the solutions of the system satisfy the inequality

‖x(t,ϕ)‖ ≤ γ ‖ϕ‖h e−σt , t ≥ 0.

Here γ and σ are as computed in the proof of Lemma 6.16.
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6.11.2 Quadratic Performance Index

We consider a control system of the form

d
dt

[x(t)−Dx(t − h)] = A0x(t)+ ˜A1x(t − h)+Bu(t), t ≥ 0,

y(t) = Cx(t).

Given a control law

ũ(t) = Mx(t − h), t ≥ 0, (6.37)

a closed-loop system is of the form

d
dt

[x(t)−Dx(t − h)] = A0x(t)+A1x(t − h), t ≥ 0, (6.38)

where A1 = ˜A1 +BM.
Assume that the closed-loop system is exponentially stable, and define the value

of the quadratic performance index

J(ũ) =

∞
∫

0

[

yT (t)Py(t)+ uT (t)Qu(t)
]

dt. (6.39)

Here P and Q are given symmetric matrices of the appropriate dimensions. The
value of the index can now be written as

J(ũ) =

∞
∫

0

[

xT (t,ϕ)W0x(t,ϕ)+ xT (t − h,ϕ)W1x(t − h,ϕ)
]

dt,

where ϕ ∈ PC1([−h,0],Rn) is an initial function of the solution x(t,ϕ) of closed-
loop system (6.38) and the matrices W0 =CT PC and W1 = MT QM.

Theorem 6.12. The value of performance index (6.39) for the stabilizing control
law (6.37) has the form

J(ũ) = v0(ϕ)+
0
∫

−h

ϕT (θ )W1ϕ(θ )dθ ,

where v0(ϕ) is the functional (6.12) computed with the Lyapunov matrix U(τ)
associated with the matrix W =W0 +W1 =CT PC+MT QM.
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6.11.3 Robustness Bounds

In this section we demonstrate how complete type functionals may be used for the
robust stability analysis of a time-delay system. Consider the following perturbed
system:

d
dt

[y(t)−Dy(t − h)] = (A0 +Δ0)y(t)+ (A1 +Δ1)y(t − h), t ≥ 0, (6.40)

where Δ0 and Δ1 are unknown but norm-bounded matrices
∥

∥Δ j
∥

∥≤ r j, j = 0,1. (6.41)

Under the assumption that system (6.1) is exponentially stable, we derive bounds
for r0 and r1 such that system (6.40) remains stable for all perturbation matrices
satisfying (6.41).

We start with functional (6.34) computed for the nominal system (6.1). The time
derivative of the functional along the solutions of system (6.40) is of the form

d
dt

v(yt) = −w(yt)+ 2 [y(t)−Dy(t − h)]T U(0) [Δ0y(t)+Δ1y(t − h)]

+2 [Δ0y(t)+Δ1y(t − h)]T

×
0
∫

−h

[

U ′(−h−θ )D+U(−h−θ)A1
]

y(t +θ )dθ .

If we introduce the values

u0 = ‖U(0)‖ , u1 = sup
τ∈(0,h)

∥

∥−DTU ′(τ)+AT
1 U(τ)

∥

∥ ,

then the following inequalities hold:

J1(t) = 2 [y(t)−Dy(t − h)]T U(0) [Δ0y(t)+Δ1y(t − h)]

≤ u0 [r1 + r0(2+ ‖D‖)]‖y(t)‖2 + u0 [r1 +(r0 + 2r1)‖D‖]‖y(t − h)‖2

and

J2(t) = 2 [Δ0y(t)+Δ1y(t − h)]T
0
∫

−h

[

−DTU ′(h+θ )+AT
1U(h+θ )

]T
y(t +θ )dθ

≤ hu1r0 ‖y(t)‖2 + hu1r1 ‖y(t − h)‖2 + u1(r0 + r1)

0
∫

−h

‖y(t +θ )‖2 dθ .

Therefore, we arrive at the statement.
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Theorem 6.13. Let the nominal system (6.1) be exponentially stable. Given the
positive-definite matrices Wj, j = 0,1,2, and the Lyapunov matrix U(τ) associated
with W =W0 +W1 +hW2, perturbed system (6.40) remains exponentially stable for
all perturbations satisfying (6.41) if r0 and r1 satisfy the following inequalities:

1. λmin(W0)> [r1 + r0(2+ ‖D‖)]u0 + hr0u1,

2. λmin(W1)> [r1 +(r0 + 2r1)‖D‖]u0 + hr1u1,

3. λmin(W2)> (r0 + r1)u1.

Corollary 6.6. In Theorem 6.13 one may assume that the perturbation matrices Δ0

and Δ1 depend continuously on t and yt .

6.12 Notes and References

The classical volume [23] is a basic source of information about neutral type time-
delay systems. It discusses, in a very general context, the principal properties of
fundamental matrices and their application to the computation of the solutions of
linear neutral type systems.

It seems that the first contribution dedicated to the computation of Lyapunov
functionals with a given time derivative in the case of linear neutral type systems was
written by Castelan and Infante [5]. In this contribution the authors first compute a
quadratic functional for a difference approximation of system (6.1). Then the desired
Lyapunov functional appears as a result of an appropriate limiting procedure. It is
shown that the functional is determined by a special matrix valued function, the
Lyapunov matrix in our terminology. The reader can find in this paper the three
basic properties of a matrix valued function – the dynamic, the symmetry, and the
algebraic – as well as the fact that the computation of the matrix is reduced to a
special delay-free system of the form (6.19). The principal aim of this paper was
to demonstrate that the presented functionals could be used in the computation of
exponential estimates of the solutions of system (6.1). Unfortunately, this aim is not
fulfilled since the attempt suffers on the same technical error as that in [28]; see
Sect. 2.13 for details.

The observation that critical delay values can be computed on the basis of the
spectrum of system (6.19) is made in [53].

Several aspects of the problem studied in this chapter are also discussed in the
papers [32, 34, 35, 68].

It is worth mentioning that many of the results presented in this chapter can be
extended to the case of systems with several delays multiple to a basic one at the
expense of much more complicated formulas and expressions.



Chapter 7
Distributed Delay Case

This chapter is dedicated to the case of neutral type linear systems with distributed
delay. The structure of quadratic functionals that have prescribed time derivatives
along the solutions of such a system is defined, and the corresponding Lyapunov
matrices are introduced. A system of matrix equations that defines Lyapunov
matrices is given. It is proven that under some conditions this system admits a unique
solution. A general class of system with distributed delay for which Lyapunov
matrices are solutions of special standard boundary value problems for an auxiliary
system of linear matrix ordinary differential equations is presented. Complete type
functionals are defined. It is shown that these functionals can be presented in a
special form that is more convenient for the computation of lower and upper bounds
for the functionals.

7.1 Preliminaries

Let us consider the time-delay system

d
dt

[x(t)−Dx(t − h)] = A0x(t)+A1x(t − h)+

0
∫

−h

G(θ )x(t +θ )dθ , t ≥ 0. (7.1)

Here A0, A1, and D are given real n × n matrices, delay h > 0, and G(θ ) is a
continuous matrix valued function defined for θ ∈ [−h,0].

Remark 7.1. It is worth noting that a system of the form

d
dt

⎡

⎣x(t)−Dx(t − h)−
0
∫

−h

P(θ )x(t +θ )dθ

⎤

⎦

= ˜A0x(t)+ ˜A1x(t − h)+

0
∫

−h

˜G(θ )x(t +θ )dθ

V.L. Kharitonov, Time-Delay Systems: Lyapunov Functionals and Matrices,
Control Engineering, DOI 10.1007/978-0-8176-8367-2 7,
© Springer Science+Business Media, LLC 2013
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can be written as (7.1) with

A0 = ˜A0 +P(0), A1 = ˜A1 −P(−h), and G(θ ) = ˜G(θ )− dP(θ )
dθ

.

7.1.1 Fundamental Matrix

Let the n× n matrix K(t) satisfy the matrix equation

d
dt

[K(t)−K(t − h)D] = K(t)A0 +K(t − h)A1

+

0
∫

−h

K(t +θ )G(θ )dθ , t ≥ 0,

with initial condition

K(t) = 0n×n, t < 0, K(0) = I,

and sewing condition

K(t)−K(t − h)D is continuous for t ≥ 0.

Matrix K(t) is known as the fundamental matrix of system (7.1).

7.1.2 Cauchy Formula

Given an initial function ϕ ∈ PC1([−h,0],Rn), the corresponding solution, x(t,ϕ),
admits the following representation:

x(t,ϕ) = [K(t)−K(t − h)D]ϕ(0)

+

0
∫

−h

K(t −θ − h)
[

A1ϕ(θ )+Dϕ ′(θ )
]

dθ

+

0
∫

−h

⎛

⎝

θ
∫

−h

K(t −θ + ξ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ , t ≥ 0. (7.2)

This expression is known as the Cauchy formula for system (7.1).
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7.2 Lyapunov Functionals

Assume that system (7.1) is exponentially stable. Given a symmetric matrix W , there
exists a quadratic functional v0(ϕ), defined on PC1([−h,0],Rn), such that along the
solutions of system (7.1) the following equality holds:

d
dt

v0(xt) =−xT (t)Wx(t), t ≥ 0.

The functional may be presented as

v0(ϕ) =
∞
∫

0

xT (t,ϕ)W x(t,ϕ)dt.

Substituting on the right-hand side of the last equality x(t,ϕ) by formula (7.2) we
arrive, after some direct calculations, at the following explicit expression for the
quadratic functional:

v0(ϕ) = ϕT (0)
[

U(0)−U(−h)D−DTU(h)+DTU(0)D
]

ϕ(0)

+2ϕT (0)

0
∫

−h

[

U(−h−θ )−DTU(−θ )
]

[A1ϕ(θ )+Dϕ ′(θ )]dθ

+2ϕT (0)

0
∫

−h

⎛

⎝

θ
∫

−h

[

U(−θ + ξ )−DTU(−θ + ξ + h)
]

G(ξ )dξ

⎞

⎠ϕ(θ )dθ

+

0
∫

−h

[

A1ϕ(θ1)+Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

U(θ1 −θ2)
[

A1ϕ(θ2)+Dϕ ′(θ2)
]

dθ2

⎞

⎠dθ1

+2

0
∫

−h

[

A1ϕ(θ1)+Dϕ ′(θ1)
]T

×

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

U(θ1 + h−θ2+ ξ )G(ξ )dξ

⎞

⎠ϕ(θ2)dθ2

⎤

⎦dθ1

+

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

⎡

⎣

θ1
∫

−h

GT (ξ1)

⎛

⎝

θ2
∫

−h

U(θ1 − ξ1 −θ2 + ξ2)G(ξ2)dξ2

⎞

⎠dξ1

⎤

⎦

×ϕ(θ2)dθ2

⎞

⎠dθ1. (7.3)
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Here matrix

U(τ) =
∞
∫

0

KT (t)WK(t + τ)dt, τ ∈ R, (7.4)

is known as a Lyapunov matrix of system (7.1) associated with the matrix W .

7.3 Lyapunov Matrices

Formula (7.3) makes evident the importance of Lyapunov matrices in the construc-
tion of the Lyapunov functionals for system (7.1).

Theorem 7.1. Given a symmetric matrix W, Lyapunov matrix (7.4) satisfies the
following properties:

• Dynamic property:

d
dτ

[U(τ)−U(τ − h)D] =U(τ)A0+U(τ−h)A1+

0
∫

−h

U(τ+θ )G(θ )dθ , τ ≥ 0;

(7.5)

• Symmetry property:

U(−τ) =UT (τ), τ ≥ 0; (7.6)

• Algebraic property:

[

U ′(+0)−U ′(−0)
]

−DT [U ′(+0)−U ′(−0)
]

D =−W. (7.7)

Proof. The first two properties can be easily verified by direct calculation. We now
address the third property. Differentiating the symmetry property (7.6) we obtain
the equality

dU(−τ)
dτ

=

[

dU(τ)
dτ

]T

, τ > 0.

In particular, when τ →+0, the equality takes the form −U ′(−0) = [U ′(+0)]T .
Now, differentiating the product

J(t) = [K(t)−K(t − h)D]T W [K(t)−K(t − h)D]
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we obtain

d
dt

J(t) = [K(t)−K(t − h)D]TW

⎡

⎣K(t)A0 +K(t − h)A1 +

0
∫

−h

K(t +θ )G(θ )dθ

⎤

⎦

+

⎡

⎣K(t)A0 +K(t − h)A1 +

0
∫

−h

K(t +θ )G(θ )dθ

⎤

⎦

T

W [K(t)−K(t − h)D] .

Integrating the left-hand side of the last equality by t from 0 to ∞ we find that

∞
∫

0

d
dt

[K(t)−K(t − h)D]T W [K(t)−K(t − h)D]dt =−W.

Compute now the integral of the first term on the right-hand side of the equality

J1 =

∞
∫

0

[K(t)−K(t − h)D]TW

×

⎡

⎣K(t)A0 +K(t − h)A1 +

0
∫

−h

K(t +θ )G(θ )dθ

⎤

⎦dt

=

⎡

⎣U(0)A0 +U(−h)A1+

0
∫

−h

U(θ )G(θ )dθ

⎤

⎦

−DT

⎡

⎣U(h)A0 +U(0)A1 +

0
∫

−h

U(h+θ )G(θ )dθ

⎤

⎦

=
[

U ′(+0)−U ′(−h+ 0)D
]

−DT [U ′(h− 0)−U ′(−0)D
]

.

The value of the integral of the second term on the right-hand-side of the preceding
equality is as follows:

J2 =

∞
∫

0

⎡

⎣K(t)A0 +K(t − h)A1 +

0
∫

−h

K(t +θ )G(θ )dθ

⎤

⎦

T

×W [K(t)−K(t − h)D]dt

=
[

U ′(+0)−U ′(−h+ 0)D
]T −

[

U ′(h− 0)−U ′(−0)D
]T

D

= −U ′(−0)+DTU ′(h− 0)+U ′(−h+ 0)D−DTU ′(+0)D.

And we arrive at equality (7.7). �
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Remark 7.2. In explicit form property (7.7) has the form

−W = U(0)A0 +U(−h)A1+

0
∫

−h

U(θ )G(θ )dθ

−DT

⎡

⎣U(h)A0 +U(0)A1+

0
∫

−h

U(h+θ )G(θ )dθ

⎤

⎦

+AT
0 U(0)+AT

1 U(h)+

0
∫

−h

GT (θ )U(−θ )dθ

−

⎡

⎣AT
0 U(−h)+AT

1U(0)+

0
∫

−h

GT (θ )U(−h−θ )dθ

⎤

⎦D. (7.8)

7.4 Lyapunov Matrices: New Definition

In this section we continue our study of the Lyapunov matrices. We start with a new
definition of the matrices that neither assumes the exponential stability of system
(7.1) nor demands knowledge of the fundamental matrix of the system.

Definition 7.1. Given a symmetric matrix W , we say that the n× n matrix valued
function U(τ) is called a Lyapunov matrix of system (7.1) associated with W if it
satisfies properties (7.5)–(7.7).

Then we check that matrices satisfying Definition 7.1 can be used in for-
mula (7.3).

Theorem 7.2. Let matrix U(τ) satisfy Definition 7.1. Then functional (7.3) with the
matrix is such that

d
dt

v0(xt) =−xT (t)Wx(t), t ≥ 0,

along the solutions of system (7.1).

Proof. We present functional (7.3) in a form more suitable for the computation of
the time derivative along the solutions of system (7.1):

v0(xt) = xT (t)
[

U(0)−U(−h)D−DTU(h)+DTU(0)D
]

x(t)

+2xT (t)

t
∫

t−h

[U(ξ − t + h)−U(ξ − t)D]T [A1x(ξ )+Dx′(ξ )]dξ
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+2xT (t)

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

[U(ξ − t −θ )−U(ξ − t − h)D]T G(θ )dθ

⎞

⎠x(ξ )dξ

+

t
∫

t−h

[

A1x(ξ1)+Dx′(ξ1)
]T

×

⎛

⎝

t
∫

t−h

U(ξ1 − ξ2)
[

A1x(ξ2)+Dx′(ξ2)
]

dξ2

⎞

⎠dξ1

+2

t
∫

t−h

[

A1x(ξ1)+Dx′(ξ1)
]T

×

⎡

⎣

t
∫

t−h

⎛

⎝

ξ2−t
∫

−h

U(ξ1 + h− ξ2+θ )G(θ )dθ

⎞

⎠x(ξ2)dξ2

⎤

⎦dξ1

+

t
∫

t−h

xT (ξ1)

⎧

⎨

⎩

t
∫

t−h

⎡

⎣

ξ1−t
∫

−h

⎛

⎝

ξ2−t
∫

−h

GT (θ1)U(ξ1 − ξ2 −θ1 +θ2)G(θ2)dθ2

⎞

⎠dθ1

⎤

⎦

× x(ξ2)dξ2

⎫

⎬

⎭

dξ1.

The time derivative of the first term,

R1(t) = xT (t)
[

U(0)−U(−h)D−DTU(h)+DTU(0)D
]

x(t),

is equal to

dR1(t)
dt

= 2xT (t)
[

U(0)−U(−h)D−DTU(h)+DTU(0)D
]

x′(t).

The time derivative of the second term,

R2(t) = 2xT (t)

t
∫

t−h

[U(ξ − t + h)−U(ξ − t)D]T [A1x(ξ )+Dx′(ξ )]dξ ,

is computed as follows:
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dR2(t)
dt

= 2
[

x′(t)
]T

t
∫

t−h

[U(ξ − t + h)−U(ξ − t)D]T [A1x(ξ )+Dx′(ξ )]dξ

+ 2xT (t)
[

U(−h)−DTU(0)
]

[A1x(t)+Dx′(t)]

− 2xT (t)
[

U(0)−DTU(h)
]

[A1x(t − h)+Dx′(t − h)]

+ 2xT (t)

t
∫

t−h

(

∂
∂ t

[U(ξ − t + h)−U(ξ − t)D]T
)

[A1x(ξ )+Dx′(ξ )]dξ .

We now address the next term,

R3(t) = 2xT (t)

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

[U(ξ − t −θ )−U(ξ − t −θ − h)D]T G(θ )dθ

⎞

⎠x(ξ )dξ .

Its time derivative is

dR3

dt
= 2

[

x′(t)
]T

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

[U(ξ − t −θ )−U(ξ − t −θ − h)D]T G(θ )dθ

⎞

⎠x(ξ )dξ

+ 2xT (t)

⎛

⎝

0
∫

−h

[

U(θ )−DTU(θ + h)
]

G(θ )dθ

⎞

⎠x(t)

− 2xT (t)
[

U(0)−DTU(h)
]

t
∫

t−h

G(ξ − t)x(ξ )dξ

+ 2xT (t)

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

(

∂
∂ t

[U(ξ−t−θ )−U(ξ−t−θ − h)D]

)T

G(θ )dθ

⎞

⎠x(ξ )dξ .

The time derivative of the fourth term,

R4(t) =

t
∫

t−h

[

A1x(ξ1)+Dx′(ξ1)
]T

⎛

⎝

t
∫

t−h

U(ξ1 − ξ2)
[

A1x(ξ2)+Dx′(ξ2)
]

dξ2

⎞

⎠dξ1,
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is equal to

dR4(t)
dt

= 2
[

A1x(t)+Dx′(t)
]T

t
∫

t−h

U(t − ξ )
[

A1x(ξ )+Dx′(ξ )
]

dξ

− 2
[

A1x(t − h)+Dx′(t − h)
]T

t
∫

t−h

U(t − ξ − h)
[

A1x(ξ )+Dx′(ξ )
]

dξ .

Now we differentiate the term

R5(t) = 2

t
∫

t−h

[

A1x(ξ1)+Dx′(ξ1)
]T

⎡

⎣

t
∫

t−h

⎛

⎝

ξ2−t
∫

−h

U(ξ1 + h− ξ2+θ )G(θ )dθ

⎞

⎠x(ξ2)dξ2

⎤

⎦dξ1.

Here

dR5(t)
dt

= 2
[

A1x(t)+Dx′(t)
]T

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

U(t − ξ + h+θ )G(θ )dθ

⎞

⎠x(ξ )dξ

− 2
[

A1x(t − h)+Dx′(t − h)
]T

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

U(t − ξ +θ )G(θ )dθ

⎞

⎠x(ξ )dξ

− 2xT (t)

t
∫

t−h

⎛

⎝

0
∫

−h

GT (θ )U(t − ξ − h−θ )dθ

⎞

⎠

[

A1x(ξ )+Dx′(ξ )
]

dξ

− 2

⎡

⎣

0
∫

−h

G(θ )x(t +θ )dθ

⎤

⎦

T t
∫

t−h

U(t − ξ − h)
[

A1x(ξ )+Dx′(ξ )
]

dξ .

Finally, we address the term

R6(t) =

t
∫

t−h

xT (ξ1)

⎧

⎨

⎩

t
∫

t−h

⎡

⎣

ξ1−t
∫

−h

⎛

⎝

ξ2−t
∫

−h

GT (θ1)U(ξ1 − ξ2 −θ1 +θ2)G(θ2)dθ2

⎞

⎠

× dθ1

]

x(ξ2)dξ2

⎫

⎬

⎭

dξ1.
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The time derivative of this term is as follows:

dR6(t)
dt

= 2xT (t)

t
∫

t−h

⎡

⎣

0
∫

−h

⎛

⎝

ξ−t
∫

−h

GT (θ1)U(t − ξ −θ1 +θ2)G(θ2)dθ2

⎞

⎠dθ1

⎤

⎦x(ξ )dξ

−2

⎡

⎣

0
∫

−h

G(θ1)x(t +θ1)dθ1

⎤

⎦

T t
∫

t−h

⎛

⎝

ξ−t
∫

−h

U(t − ξ +θ2)G(θ2)dθ2

⎞

⎠x(ξ )dξ .

Now we collect in the computed time derivatives the terms underlined with one solid
line. The sum of these terms is

S1(t) = 2
[

x′(t)
]T

t
∫

t−h

[U(ξ − t + h)−U(ξ − t)D]T [A1x(ξ )+Dx′(ξ )]dξ

+ 2xT (t)

t
∫

t−h

(

∂
∂ t

[U(ξ − t + h)−U(ξ − t)D]T
)

[A1x(ξ )+Dx′(ξ )]dξ

+ 2
[

A1x(t)+Dx′(t)
]T

t
∫

t−h

[U(ξ − t)]T
[

A1x(ξ )+Dx′(ξ )
]

dξ

− 2
[

A1x(t − h)+Dx′(t − h)
]T

t
∫

t−h

[U(ξ − t + h)]T
[

A1x(ξ )+Dx′(ξ )
]

dξ

− 2xT (t)

t
∫

t−h

⎛

⎝

0
∫

−h

GT (θ )U(t − ξ − h−θ )dθ

⎞

⎠

[

A1x(ξ )+Dx′(ξ )
]

dξ

− 2

⎡

⎣

0
∫

−h

G(θ )x(t +θ )dθ

⎤

⎦

T t
∫

t−h

[U(ξ − t + h)]T
[

A1x(ξ )+Dx′(ξ )
]

dξ .

After simple rearrangement we obtain

S1(t) = 2

⎡

⎣

d
dt

[x(t)−Dx(t − h)]−A1x(t − h)−
0
∫

−h

G(θ )x(t +θ )dθ

⎤

⎦

T

×
t

∫

t−h

[U(ξ − t + h)]T
[

A1x(ξ )+Dx′(ξ )
]

dξ
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+ 2
[

−Dx′(t)+A1x(t)+Dx′(t)
]T

t
∫

t−h

[U(ξ − t)]T
[

A1x(ξ )+Dx′(ξ )
]

dξ

+ 2xT (t)

t
∫

t−h

⎛

⎝

∂
∂ t

[U(ξ−t+h)−U(ξ−t)D]+

0
∫

−h

U(ξ−t+h+θ )GT (θ )dθ

⎞

⎠

T

×[A1x(ξ )+Dx′(ξ )]dξ .

Because x(t) is a solution of system (7.1), we have that

d
dt

[x(t)−Dx(t − h)]−A1x(t − h)−
0
∫

−h

G(θ )x(t +θ )dθ = A0x(t), t ≥ 0,

and we obtain

S1(t) = 2xT (t)

t
∫

t−h

[U(ξ − t + h)A0]
T [A1x(ξ )+Dx′(ξ )

]

dξ

+ 2xT (t)

t
∫

t−h

[U(ξ − t)A1]
T [A1x(ξ )+Dx′(ξ )

]

dξ

+ 2xT (t)

t
∫

t−h

⎛

⎝

∂
∂ t

[U(ξ−t+h)−U(ξ−t)D]+

0
∫

−h

U(ξ−t+h+θ )GT (θ )dθ

⎞

⎠

T

×[A1x(ξ )+Dx′(ξ )]dξ .

Since ξ − t + h ≥ 0 for ξ ∈ [t − h, t], we have

∂
∂ t

[U(ξ − t + h)−U(ξ − t)D] = −U(ξ − t + h)A0 −U(ξ − t)A1

−
0
∫

−h

U(ξ − t + h+θ )GT(θ )dθ ,

and we conclude that S1(t) = 0.
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Now we collect in the time derivatives the double underlined terms. The sum of
these terms is

S2(t) = 2
[

x′(t)
]T

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

[U(ξ − t −θ )−U(ξ − t −θ − h)D]T G(θ )dθ

⎞

⎠x(ξ )dξ

+ 2xT (t)

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

(

∂
∂ t

[U(ξ−t−θ )−U(ξ−t−θ−h)D]

)T

G(θ )dθ

⎞

⎠x(ξ )dξ

+ 2
[

A1x(t)+Dx′(t)
]T

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

U(t − ξ + h+θ )G(θ )dθ

⎞

⎠x(ξ )dξ

− 2
[

A1x(t − h)+Dx′(t − h)
]T

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

U(t − ξ +θ )G(θ )dθ

⎞

⎠x(ξ )dξ

+ 2xT (t)

t
∫

t−h

⎡

⎣

0
∫

−h

⎛

⎝

ξ−t
∫

−h

GT (θ1)U(t − ξ −θ1 +θ2)G(θ2)dθ2

⎞

⎠dθ1

⎤

⎦x(ξ )dξ

− 2

⎡

⎣

0
∫

−h

G(θ1)x(t +θ1)dθ1

⎤

⎦

T t
∫

t−h

⎛

⎝

ξ−t
∫

−h

U(t − ξ +θ2)G(θ2)dθ2

⎞

⎠x(ξ )dξ .

Rearranging the terms we obtain

S2(t) = 2

⎡

⎣

d
dt

[x(t)−Dx(t − h)]−A1x(t − h)−
0
∫

−h

G(θ1)x(t +θ1)dθ1

⎤

⎦

T

×
t

∫

t−h

⎛

⎝

ξ−t
∫

−h

U(t − ξ +θ )G(θ )dθ

⎞

⎠x(ξ )dξ

+ 2
[

−Dx′(t)+A1x(t)+Dx′(t)
]T

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

U(t − ξ + h+θ )G(θ )dθ

⎞

⎠x(ξ )dξ

+ 2xT (t)

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

(

∂
∂ t

[U(ξ − t −θ)−U(ξ − t −θ − h)D]

)T

G(θ )dθ

⎞

⎠x(ξ )dξ

+ 2xT (t)

t
∫

t−h

⎡

⎣

0
∫

−h

⎛

⎝

ξ−t
∫

−h

GT (θ1)U(t − ξ −θ1 +θ2)G(θ2)dθ2

⎞

⎠dθ1

⎤

⎦x(ξ )dξ .
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Because

d
dt

[x(t)−Dx(t − h)]−A1x(t − h)−
0
∫

−h

G(θ1)x(t +θ1)dθ1 = A0x(t), t ≥ 0,

we have that

S2(t) = 2xT (t)

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

[U(ξ − t −θ )A0]G(θ )dθ

⎞

⎠x(ξ )dξ

+ 2xT (t)

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

[U(ξ − t − h−θ )A1]G(θ )dθ

⎞

⎠x(ξ )dξ

+ 2xT (t)

t
∫

t−h

⎛

⎝

ξ−t
∫

−h

(

∂
∂ t

[U(ξ−t−θ )−U(ξ−t−θ−h)D]

)T

G(θ )dθ

⎞

⎠x(ξ )dξ

+ 2xT (t)

t
∫

t−h

⎡

⎣

ξ−t
∫

−h

⎛

⎝

0
∫

−h

U(ξ − t −θ +η)G(η)dη

⎞

⎠

T

G(θ )dθ

⎤

⎦x(ξ )dξ .

Since ξ − t −θ ≥ 0 for ξ ∈ [t − h, t] and θ ∈ [−h,ξ − t], property (7.5) implies the
equality

∂
∂ t

[U(ξ − t −θ )−U(ξ − t −θ − h)D] = −U(ξ − t −θ )A0 −U(ξ − t −θ − h)A1

−
0
∫

−h

U(ξ − t −θ +θ1)G(θ1)dθ1,

and we arrive at the conclusion that S2(t) = 0.
We now collect the nonunderlined terms:

S3(t) = 2xT (t)
[

U(0)−U(−h)D−DTU(h)+DTU(0)D
]

x′(t)

+ 2xT (t)
[

U(−h)−DTU(0)
]

[A1x(t)+Dx′(t)]

− 2xT (t)
[

U(0)−DTU(h)
]

[A1x(t − h)+Dx′(t − h)]

+ 2xT (t)

⎛

⎝

0
∫

−h

[

U(θ )−DTU(θ + h)
]

G(θ )dθ

⎞

⎠x(t)

− 2xT (t)
[

U(0)−DTU(h)
]

t
∫

t−h

G(ξ − t)x(ξ )dξ .
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Rearranging them as

S3(t) = 2xT (t)
[

U(0)−DTU(h)
]

×

⎡

⎣

d
dt

[x(t)−Dx(t − h)]−A1x(t − h)−
0
∫

−h

G(θ )x(t +θ )dθ

⎤

⎦

+ 2xT (t)
[

U(−h)−DTU(0)
]

[−Dx′(t)+A1x(t)+Dx′(t)]

+ 2xT (t)

⎛

⎝

0
∫

−h

[

U(θ )−DTU(θ + h)
]

G(θ )dθ

⎞

⎠x(t),

we obtain the equality

S3(t) = 2xT (t)

⎡

⎣U(0)A0 +U(−h)A1+

0
∫

−h

U(θ )G(θ )dθ

⎤

⎦x(t)

− 2xT (t)DT

⎡

⎣U(h)A0 +U(0)A1 +

0
∫

−h

U(θ + h)G(θ )dθ

⎤

⎦x(t).

Since

U(0)A0 +U(−h)A1+

0
∫

−h

U(θ )G(θ )dθ = lim
τ→+0

d
dτ

[U(τ)−U(τ − h)D]

= U ′(+0)−U ′(−h+ 0)D

and

U(h)A0 +U(0)A1 +

0
∫

−h

U(θ + h)G(θ )dθ = lim
τ→h−0

d
dτ

[U(τ)−U(τ − h)D]

= U ′(h− 0)−U ′(−0)D,

we have that

S3(t) = 2xT (t)
[

U ′(+0)−U ′(−h+ 0)D
]

x(t)

− 2xT (t)DT [U ′(h− 0)−U ′(−0)D
]

x(t).
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Property (7.6) implies that

d
dτ

U(−τ) =
[

d
dτ

U(τ)
]T

,

so
[

U ′(+0)−U ′(−h+ 0)D
]T

=−U ′(−0)+DTU ′(h− 0)

and
(

DT [U ′(h− 0)−U ′(−0)D
])T

=−U ′(−h+ 0)D+DTU ′(+0)D.

Simple symmetrization of the preceding expression for S3(t) shows that

S3(t) = xT (t)
([

U ′(+0)−U ′(−0)
]

−DT [U ′(+0)−U ′(−0)
]

D
)

x(t)

= −xT (t)Wx(t).

The last equality follows directly from property (7.7).
The preceding computations demonstrate that

d
dt

v0(xt) =−xT (t)Wx(t), t ≥ 0. �

Finally, we prove that Definition 7.1 does not contradict the initial definition of
Lyapunov matrices.

Lemma 7.1. Let system (7.1) be exponentially stable. Then matrix (7.4) is a unique
solution of delay matrix Eq. (7.5), which satisfies properties (7.6) and (7.7).

Proof. Recall that matrix (7.4) satisfies properties (7.5)–(7.7); see Theorem 7.1.
Let there exist two matrices U1(τ) and U2(τ) that satisfy (7.5)–(7.7). We define

two functionals (7.3), v( j)
0 (ϕ), j = 1,2, one with U(τ) = U1(τ), the other with

U(τ) =U2(τ). By Theorem 7.2,

d
dt

v( j)
0 (xt) =−xT (t)W x(t), t ≥ 0, j = 1,2.

Thus, the difference, Δv0(xt) = v(2)0 (xt)− v(1)0 (xt), is such that

d
dt

Δv0(xt) = 0, t ≥ 0.

Integrating the last equality by t from 0 to T ≥ 0 we obtain

Δv0(xT (ϕ)) = Δv0(ϕ), T ≥ 0.
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System (7.1) is exponentially stable, so xT (ϕ)→ 0h as T → ∞, and we arrive at the
conclusion that for any initial function ϕ ∈ PC1([−h,0],Rn) the following equality
holds:

Δv0(ϕ) = 0.

In explicit form this equality is written as

0 = ϕT (0)
[

ΔU(0)−ΔU(−h)D−DT ΔU(h)+DT ΔU(0)D
]

ϕ(0)
︸ ︷︷ ︸

ΔR1

+ 2ϕT (0)

0
∫

−h

[

ΔU(−h−θ )−DT ΔU(−θ )
]

[A1ϕ(θ )+Dϕ ′(θ )]dθ

︸ ︷︷ ︸

ΔR2

+ 2ϕT (0)

0
∫

−h

⎛

⎝

θ
∫

−h

[

ΔU(−θ +ξ )−DT ΔU(−θ +ξ +h)
]

G(ξ )dξ

⎞

⎠ϕ(θ )dθ

︸ ︷︷ ︸

ΔR3

+

0
∫

−h

[

A1ϕ(θ1)+Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

ΔU(θ1 −θ2)
[

A1ϕ(θ2)+Dϕ ′(θ2)
]

dθ2

⎞

⎠dθ1

︸ ︷︷ ︸

ΔR4

+ 2

0
∫

−h

[

A1ϕ(θ1)+Dϕ ′(θ1)
]T

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

ΔU(θ1+h−θ2+ξ )G(ξ )dξ

⎞

⎠ϕ(θ2)dθ2

⎤

⎦dθ1

︸ ︷︷ ︸

ΔR5

+

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

⎡

⎣

θ1
∫

−h

⎛

⎝

θ2
∫

−h

GT (ξ1)ΔU(θ1 −ξ1 −θ2 +ξ2)G(ξ2)dξ2

⎞

⎠dξ1

⎤

⎦ϕ(θ2)dθ2

⎞

⎠dθ1

︸ ︷︷ ︸

ΔR6

.

(7.9)

Here the matrix ΔU(τ) =U2(τ)−U1(τ).
Let γ and μ be two constant vectors, τ ∈ (0,h], and ε > 0 is such that −τ+ε < 0.

Then we define the initial function

ϕ(θ ) =

⎧

⎨

⎩

γ, for θ = 0,
μ , for θ ∈ [−τ,−τ + ε],
0, at all other points of [−h,0].

Substitute this function into (7.9). The first term

ΔR1 = γT [ΔU(0)−ΔU(−h)D−DTΔU(h)+DT ΔU(0)D
]

γ.
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The second term

ΔR2 = 2γT [ΔU(−h)−DTΔU(0)
]

Dγ

+ 2εγT [ΔU(τ − h)A1 −DT ΔU(τ)A1

+ ΔU ′(τ − h)D−DTΔU ′(τ)D
]

μ + o(ε).

Here o(ε) stands for a quantity that satisfies the condition

lim
ε→+0

o(ε)
ε

= 0.

Now the third term

ΔR3 = 2εγT

⎛

⎝

−τ
∫

−h

[

ΔU(τ + ξ )−DTΔU(τ + h+ ξ )
]

G(ξ )dξ

⎞

⎠μ + o(ε).

The term

ΔR4 = γT DT ΔU(0)Dγ + 2εγT DT [ΔU(τ)A1 +ΔU ′(τ)D
]

μ

− εμT DT [ΔU ′(+0)−ΔU ′(−0)
]

Dμ + o(ε).

The fifth term

ΔR5 = 2εγT DT

⎛

⎝

−τ
∫

−h

ΔU(τ + h+ ξ )G(ξ )dξ

⎞

⎠μ + o(ε).

Finally,

ΔR6 = o(ε).

For this initial function equality (7.9) takes the form

0 = γT ΔU(0)γ + 2εγT

⎛

⎝ΔU(τ − h)A1 +ΔU ′(τ − h)D+

−τ
∫

−h

ΔU(τ + ξ )G(ξ )dξ

⎞

⎠μ

− εμT DT [ΔU ′(+0)−ΔU ′(−0)
]

Dμ + o(ε).
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In the preceding equality let μ = 0. Then 0 = γT ΔU(0)γ , and since γ is an arbitrary
vector and the matrix ΔU(0) is symmetric, we conclude that

ΔU(0) = 0n×n. (7.10)

For similar reasons

DT [ΔU ′(+0)−ΔU ′(−0)
]

D = 0n×n,

which in light of (7.7) means that

ΔU ′(+0)−ΔU ′(−0) = 0n×n.

Finally, because the vectors γ and μ are arbitrary, we conclude that

ΔU(τ − h)A1 +ΔU ′(τ − h)D+

−τ
∫

−h

ΔU(τ + ξ )G(ξ )dξ = 0n×n, τ ∈ (0,h]. (7.11)

By definition, the matrix ΔU(τ) satisfies the equation

ΔU ′(τ)−ΔU ′(τ − h)D = ΔU(τ)A0 +ΔU(τ − h)A1

+

0
∫

−h

ΔU(τ + ξ )G(ξ )dξ , τ ≥ 0.

Applying conditions (7.10) and (7.11), we arrive at the conclusion that the matrix
ΔU(τ) is a solution of the matrix equation

ΔU ′(τ) = ΔU(τ)A0 +

−τ
∫

0

ΔU(τ + ξ )G(ξ )dξ

= ΔU(τ)A0 +

τ
∫

0

ΔU(θ )G(θ − τ)dθ , τ ≥ 0,

with the trivial initial condition ΔU(0)= 0n×n. By Lemma 4.1, the solution is trivial,
that is,

ΔU(τ) =U (2)(τ)−U (1)(τ) = 0n×n, τ ∈ [0,h]. �
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7.5 Existence Issue

The characteristic function of system (7.1) is of the form

f (s) = det

⎛

⎝sI− se−shD−A0 − e−shA1 −
0
∫

−h

esθ G(θ )dθ

⎞

⎠ . (7.12)

Here the matrix

H(s) =

⎛

⎝sI − se−shD−A0 − e−shA1 −
0
∫

−h

esθ G(θ )dθ

⎞

⎠

−1

is known as the characteristic matrix of the system.
The spectrum of the system consists of the zeros of the characteristic function

Λ = {s | f (s) = 0} .

If system (7.1) satisfies the Lyapunov condition (Definition 6.6), then the spectrum
can be divided into two parts; the first one, Λ(+), includes eigenvalues with positive
real part, the second one, Λ(−), includes eigenvalues with negative real part.

Remark 7.3. If the matrix D is Schur stable, then Λ(+) either is empty or contains at
most a finite number of points. In the first case system (7.1) is exponentially stable.

Theorem 7.3. Let the matrix D be Schur stable. If system (7.1) satisfies the
Lyapunov condition, then the matrix

˜U(τ) =
V.P.
2π i

i∞
∫

−i∞

HT (ξ )WH(−ξ )e−τξ dξ

+ ∑
s0∈Λ(+)

Res
{

HT (s)W H(−s)e−τs,s0
}

+ ∑
s0∈Λ(+)

Res
{

HT (−s)W H(s)eτs,s0
}

(7.13)

is a Lyapunov matrix of the system associated with W .

Proof. The matrix D is Schur stable, and system (7.1) satisfies the Lyapunov
condition. Thus, neither the matrix H(s) nor H(−s) has a pole on the imaginary
axis of the complex plane. Let ξ be a real number; then for sufficiently large |ξ | the
matrix HT (iξ )WH(−iξ )e−iτξ is of the order |ξ |−2. This means that the improper
integral on the right-hand side of (7.13) is well defined for all real τ .
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Part 1: The proof of symmetry property (7.6) coincides with that of Theorem 3.5.
Part 2: We check that matrix (7.13) satisfies the algebraic property in the form

(7.8). To this end, we compute the following matrix:

O = ˜U(0)A0 + ˜U(−h)A1 +

0
∫

−h

˜U(θ )G(θ )dθ +AT
0
˜U(0)+AT

1
˜U(h)

+

0
∫

−h

GT (θ )˜U(−θ )dθ

− DT

⎡

⎣˜U(h)A0 + ˜U(0)A1 +

0
∫

−h

˜U(h+θ )G(θ )dθ

⎤

⎦

−

⎡

⎣AT
0
˜U(−h)+AT

1
˜U(0)+

0
∫

−h

GT (θ )˜U(−h−θ )dθ

⎤

⎦D.

Observe first that

O1 = ˜U(0)A0 + ˜U(−h)A1 +

0
∫

−h

˜U(θ )G(θ )dθ

=
V.P.
2π i

i∞
∫

−i∞

HT (ξ )WH(−ξ )

⎡

⎣A0 + eξ hA1 +

0
∫

−h

e−ξ θ G(θ )dθ

⎤

⎦dξ

+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

HT (s)WH(−s)

⎡

⎣A0 + eshA1 +

0
∫

−h

e−sθ G(θ )dθ

⎤

⎦ ,s0

⎫

⎬

⎭

+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

HT (−s)WH(s)

⎡

⎣A0 + e−shA1 +

0
∫

−h

esθ G(θ )dθ

⎤

⎦ ,s0

⎫

⎬

⎭

and

O2 = AT
0
˜U(0)+AT

1
˜U(h)+

0
∫

−h

GT (θ )˜U(−θ )dθ

=
V.P.
2π i

i∞
∫

−i∞

⎡

⎣A0 + e−ξ hA1 +

0
∫

−h

eξ θ G(θ )dθ

⎤

⎦

T

HT (ξ )WH(−ξ )dξ
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+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

⎡

⎣A0 + e−shA1 +

0
∫

−h

esθ G(θ )dθ

⎤

⎦

T

HT (s)W H(−s),s0

⎫

⎬

⎭

+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

⎡

⎣A0 + eshA1 +

0
∫

−h

e−sθ G(θ )dθ

⎤

⎦

T

HT (−s)W H(s),s0

⎫

⎬

⎭

.

Now

O3 = −DT

⎡

⎣˜U(h)A0 + ˜U(0)A1 +

0
∫

−h

˜U(h+θ )G(θ )dθ

⎤

⎦

= −V.P.
2π i

i∞
∫

−i∞

DT HT (ξ )WH(−ξ )e−ξ h

⎡

⎣A0 + eξ hA1 +

0
∫

−h

e−ξ θ G(θ )dθ

⎤

⎦dξ

− ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

DT HT (s)W H(−s)e−sh

×

⎡

⎣A0 + eshA1 +

0
∫

−h

e−sθ G(θ )dθ

⎤

⎦ ,s0

⎫

⎬

⎭

− ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

DT HT (−s)W H(s)esh

×

⎡

⎣A0 + e−shA1 +

0
∫

−h

esθ G(θ )dθ

⎤

⎦ ,s0

⎫

⎬

⎭

and

O4 = −

⎡

⎣AT
0
˜U(−h)+AT

1
˜U(0)+

0
∫

−h

GT (θ )˜U(−h−θ )dθ

⎤

⎦D

= −V.P.
2π i

i∞
∫

−i∞

⎡

⎣A0 + e−ξ hA1 +

0
∫

−h

eξ θ G(θ )dθ

⎤

⎦

T

×eξ hHT (ξ )WH(−ξ )Ddξ

− ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

⎡

⎣A0 + e−shA1 +

0
∫

−h

esθ G(θ )dθ

⎤

⎦

T
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× eshHT (s)W H(−s)D,s0

⎫

⎬

⎭

− ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

⎡

⎣A0 + eshA1 +

0
∫

−h

e−sθ G(θ )dθ

⎤

⎦

T

×e−shHT (−s)W H(s)D,s0

⎫

⎬

⎭

.

It is a matter of simple calculation to check the identities

H(s)

⎡

⎣A0 + e−shA1 +

0
∫

−h

esθ G(θ )dθ

⎤

⎦=−I+ sH(s)
(

I − e−shD
)

and

H(−s)

⎡

⎣A0 + eshA1 +

0
∫

−h

e−sθ G(θ )dθ

⎤

⎦=−I− sH(−s)
(

I− eshD
)

.

Using these identities we present the matrices O j as follows:

O1 =
V.P.
2π i

i∞
∫

−i∞

[

−HT (ξ )W − ξ HT (ξ )WH(−ξ )
(

I − eξ hD
)]

dξ

+ ∑
s0∈Λ(+)

Res
{

−HT (s)W − sHT (s)W H(−s)
(

I− eshD
)

,s0

}

+ ∑
s0∈Λ(+)

Res
{

−HT (−s)W + sHT (−s)WH(s)
(

I − e−shD
)

,s0

}

,

O2 =
V.P.
2π i

i∞
∫

−i∞

[

−WH(−ξ )+ ξ
(

I− e−ξ hD
)T

HT (ξ )WH(−ξ )
]

dξ

+ ∑
s0∈Λ(+)

Res

{

−WH(−s)+ s
(

I − e−shD
)T

HT (s)W H(−s),s0

}

+ ∑
s0∈Λ(+)

Res

{

−WH(s)− s
(

I− eshD
)T

HT (−s)WH(s),s0

}

,
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O3 =
V.P.
2π i

i∞
∫

−i∞

{

e−ξ hDT HT (ξ )W

+ξ e−ξ hDT HT (ξ )WH(−ξ )
(

I− eξ hD
)}

dξ

+ ∑
s0∈Λ(+)

Res
{

e−shDT HT (s)W

+se−shDT HT (s)W H(−s)
(

I − eshD
)

,s0

}

+ ∑
s0∈Λ(+)

Res
{

eshDT HT (−s)W

−seshDT HT (−s)WH(s)
(

I − e−shD
)

,s0

}

,

O4 =
V.P.
2π i

i∞
∫

−i∞

{

eξ hWH(−ξ )D

−ξ eξ h
(

I− e−ξ hD
)T

HT (ξ )WH(−ξ )D
}

dξ

+ ∑
s0∈Λ(+)

Res

{

eshWH(−s)D

−sesh
(

I− e−shD
)T

HT (s)W H(−s)D,s0

}

+ ∑
s0∈Λ(+)

Res

{

e−shW H(s)D

+se−sh
(

I − eshD
)T

HT (−s)W H(s)D,s0

}

.

Collecting similar terms we obtain that

O = −V.P.
2π i

i∞
∫

−i∞

[

(

I− e−ξ hD
)T

HT (ξ )W +WH(−ξ )
(

I − eξ hD
)

]

dξ

− ∑
s0∈Λ(+)

Res

{

(

I− e−shD
)T

HT (s)W +WH(−s)
(

I− eshD
)

,s0

}

− ∑
s0∈Λ(+)

Res

{

(

I− eshD
)T

HT (−s)W +WH(s)
(

I − e−shD
)

,s0

}

.
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If we take into account the equality

V.P.
2π i

i∞
∫

−i∞

WH(−ξ )
(

I− eξ hD
)

dξ = 〈λ =−ξ 〉

=
V.P.
2π i

i∞
∫

−i∞

WH(λ )
(

I − e−λ hD
)

dλ

and the fact that the Lyapunov condition implies that the matrices

WH(−s)
(

I − eshD
)

,
(

I− eshD
)T

HT (−s)W

have no poles in the set Λ(+), then

O = −V.P.
2π i

i∞
∫

−i∞

[

(

I − e−ξ hD
)T

HT (ξ )W +WH(ξ )
(

I − e−ξ hD
)

]

dξ (7.14)

− ∑
s0∈Λ(+)

Res

{

(

I − e−shD
)T

HT (s)W +WH(s)
(

I− e−shD
)

,s0

}

.

By the residue theorem

S1 = ∑
s0∈Λ(+)

Res

{

(

I − e−shD
)T

HT (s)W +WH(s)
(

I− e−shD
)

,s0

}

= lim
r→∞

1
2π i

∮

Γ(r)

[

(

I − e−ξ hD
)T

HT (ξ )W +WH(ξ )
(

I − e−ξ hD
)

]

dξ ,

where Γ(r) is the Nyquist contour consisting of the semicircle C(r) =
{

reiϕ
∣

∣ϕ ∈
[

− π
2 ,

π
2

]}

and the segment [ir,−ir] of the imaginary axis.
The contour integral is

J1(r) =
1

2π i

∮

Γ(r)

[

(

I− e−ξ hD
)T

HT (ξ )W +WH(ξ )
(

I− e−ξ hD
)

]

dξ

= − 1
2π i

ir
∫

−ir

[

(

I − e−ξ hD
)T

HT (ξ )W +WH(ξ )
(

I − e−ξ hD
)

]

dξ

+
1

2π

π
2

∫

− π
2

[

(

I−e−hreiϕ
D
)T

HT (reiϕ)W+W H(reiϕ)
(

I−e−hreiϕ
D
)

]

reiϕ dϕ .
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Therefore,

lim
r→∞

J1(r) = −V.P.
2π i

i∞
∫

−i∞

[

(

I− e−ξ hD
)T

HT (ξ )W +WH(ξ )
(

I− e−ξ hD
)

]

dξ

+ lim
r→∞

1
2π

π
2

∫

− π
2

[

(

I− e−hreiϕ
D
)T

HT (reiϕ )W

+WH(reiϕ)
(

I − e−hreiϕ
D
)]

reiϕdϕ .

Since H(reiϕ)
(

I− e−hreiϕ
D
)

reiϕ → I, as r → ∞, uniformly by ϕ ∈
[

− π
2 ,

π
2

]

, we

conclude that

S1 =−V.P.
2π i

i∞
∫

−i∞

[

(

I− e−ξ hD
)T

HT (ξ )W +WH(ξ )
(

I− e−ξ hD
)

]

dξ +W.

Comparing the preceding equality with (7.14) we conclude that O = −W . Thus
matrix (7.13) satisfies property (7.7).

Part 3: Let us address property (7.5). For a given τ > 0 we compute the matrix

F(τ) =
d

dτ

[

˜U(τ)− ˜U(τ−h)D
]

−˜U(τ)A0−˜U(τ−h)A1−
∫ 0

−h
˜U(τ +θ )G(θ )dθ

=
V.P.
2π i

i∞
∫

−i∞

HT (ξ )WH(−ξ )
[

−ξ I+ ξ eξ hD−A0 − eξ hA1

×−
∫

−h

0e−ξ θ G(θ )dθ
]

e−τξ dξ + ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

HT (s)W H(−s)

×

⎡

⎣−sI+ seshD−A0− eshA1 −
0
∫

−h

e−sθ G(θ )dθ

⎤

⎦e−τs,s0

⎫

⎬

⎭

+ ∑
s0∈Λ(+)

Res

⎧

⎨

⎩

HT (−s)WH(s)

×

⎡

⎣sI− se−shD−A0 − e−shA1 −
0
∫

−h

esθ G(θ )dθ

⎤

⎦eτs,s0

⎫

⎬

⎭
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=
V.P.
2π i

i∞
∫

−i∞

HT (ξ )We−τξ dξ

+ ∑
s0∈Λ(+)

Res
{

HT (s)W e−τs,s0
}

+ ∑
s0∈Λ(+)

Res
{

HT (−s)Weτs,s0
}

.

Since the matrix H(−s) has no poles in the set Λ(+), we have the sum

∑
s0∈Λ(+)

Res
{

HT (−s)Weτs,s0
}

= 0n×n,

and we obtain

F(τ) =
V.P.
2π i

i∞
∫

−i∞

HT (ξ )W e−τξ dξ + ∑
s0∈Λ(+)

Res
{

HT (s)W e−τs,s0
}

.

Applying the residue theorem,

S2 = ∑
s0∈Λ(+)

Res
{

HT (s)W e−τs,s0
}

= lim
r→∞

1
2π i

∮

Γ(r)

HT (ξ )We−τξ dξ

= −V.P.
2π i

i∞
∫

−i∞

HT (ξ )We−τξ dξ + lim
r→∞

1
2π

π
2

∫

− π
2

HT (reiϕ)W reiϕe−τreiϕ
dϕ .

By Jordan’s theorem, the equality

lim
r→∞

1
2π

π
2

∫

− π
2

HT (reiϕ)W reiϕe−τreiϕ
dϕ = 0n×n

holds for any τ > 0, and we arrive at the conclusion that for τ > 0

d
dτ

[

˜U(τ)− ˜U(τ − h)D
]

− ˜U(τ)A0− ˜U(τ−h)A1−
∫ 0

−h
˜U(τ+θ )G(θ )dθ = 0n×n.

Since the preceding equality remains true as τ → +0, matrix (7.13) satisfies
property (7.5) for τ ≥ 0. This concludes the proof. �
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Corollary 7.1. In the case where system (7.1) is exponentially stable the following
expression for the Lyapunov matrix holds:

U(τ) =
V.P.
2π i

i∞
∫

−i∞

HT (ξ )W H(−ξ )e−τξ dξ ,

and the matrix is a unique solution of Eq. (7.5) that satisfies properties (7.6)
and (7.7).

7.6 Computation Issue

In this section we address the computation of Lyapunov matrices. In general we
must apply numerical schemes to compute an approximate Lyapunov matrix. But
in some cases Lyapunov matrices can be found as solutions of a special boundary
value problem for an auxiliary delay-free system of matrix differential equations.

7.6.1 A Particular Case

We begin with the case where the matrix G(θ ) is a polynomial of the form

G(θ ) =
m

∑
j=1

θ j−1B j. (7.15)

Here B1, . . . ,Bm are given constant n× n matrices.
Let U(τ) be a Lyapunov matrix of system (7.1). We define for τ ∈ [0,h] the

following set of 2(m+ 1) auxiliary matrices:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Z(τ) =U(τ), Xj(τ) =
0
∫

−h

θ j−1U(τ +θ )dθ , j = 1, . . . ,m,

V (τ) =U(τ − h), Yj(τ) =
0
∫

−h

θ j−1U(τ −θ − h)dθ , j = 1, . . . ,m.

(7.16)

Property (7.5) can be written in the form

d
dτ

[Z(τ)−V (τ)D] = Z(τ)A0 +V (τ)A1 +
m

∑
j=1

Xj(τ)B j.
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At the same time,

d
dτ

[

−DT Z(τ)+V(τ)
]

=
d

dτ
[U(h− τ)−U(−τ)D]T

= − [U(h− τ)A0−U(−τ)A1

−
m

∑
j=1

⎛

⎝

0
∫

−h

θ j−1U(h− τ+θ )dθ

⎞

⎠B j

⎤

⎦

T

.

Observe that

UT (h− τ) =V (τ), UT (−τ) = Z(τ)

and

⎡

⎣

0
∫

−h

θ j−1U(h− τ+θ )dθ

⎤

⎦

T

= XT
j (h− τ) =Yj(τ), j = 1, . . . ,m.

Thus,

d
dτ

[

−DT Z(τ)+V (τ)
]

=−AT
0 V (τ)−AT

1 Z(τ)−
m

∑
j=1

BT
j Yj(τ).

The first derivative of the auxiliary matrices X1(τ) and Y1(τ) is

dX1(τ)
dτ

=
dY1(τ)

dτ
= Z(τ)−V(τ).

Now

dXj(τ)
dτ

= −(−h) j−1U(τ − h)− ( j− 1)

0
∫

−h

θ j−2U(τ +θ )dθ

= −(−h) j−1V (τ)− ( j− 1)Xj−1(τ), j = 2, . . . ,m,

and

dYj(τ)
dτ

= (−h) j−1U(τ)+ ( j− 1)

0
∫

−h

θ j−2U(τ −θ − h)dθ

= (−h) j−1Z(τ)+ ( j− 1)Yj−1(τ), j = 2, . . . ,m.
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And we arrive at the following system of delay-free matrix differential equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d
dτ

[Z(τ)−V (τ)D] = Z(τ)A0 +V(τ)A1 +
m

∑
j=1

Xj(τ)B j ,

d
dτ
[

−DT Z(τ)+V (τ)
]

=−AT
1 Z(τ)−AT

0 V (τ)−
m

∑
j=1

BT
j Yj(τ),

d
dτ

X1(τ) = Z(τ)−V(τ),

d
dτ

Y1(τ) = Z(τ)−V (τ),

d
dτ

Xj(τ) =−(−h) j−1V (τ)− ( j− 1)Xj−1(τ), j = 2, . . . ,m,

d
dτ

Yj(τ) = (−h) j−1Z(τ)+ ( j− 1)Yj−1(τ), j = 2, . . . ,m.

(7.17)

The auxiliary matrices also satisfy some boundary value conditions: It follows from
(7.16) that

Z(0) =V T (h)

and

Xj(h) =

0
∫

−h

θ j−1U(h+θ )dθ =

⎡

⎣

0
∫

−h

θ j−1U(−θ − h)dθ

⎤

⎦

T

= Y T
j (0), j = 1, . . . ,m,

Yj(h) =

0
∫

−h

θ j−1U(h−θ − h)dθ =

⎡

⎣

0
∫

−h

θ j−1U(θ )dθ

⎤

⎦

T

= XT
j (0), j = 1, . . . ,m.

The algebraic property written in the terms of the auxiliary matrices has the form

−W = Z(0)A0 +V(0)A1 +
m

∑
j=1

Xj(0)B j

−DT

[

Z(h)A0 +V(h)A1 +
m

∑
j=1

Xj(h)B j

]
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+AT
0 V (h)+AT

1 Z(h)A1 +
m

∑
j=1

BT
j Yj(h)

−
[

AT
0 V (0)+AT

1 Z(0)+
m

∑
j=1

BT
j Yj(0)

]

D.

We summarize the results of our analysis in the following statement.

Theorem 7.4. Given a time-delay system (7.1), where the matrix G(θ ) is of the
form (7.15), let U(τ) be a Lyapunov matrix of the system associated with a
symmetric matrix W . Then there exists a solution

{Z(τ),V (τ),X1(τ), . . . ,Xm(τ),Y1(τ), . . . ,Ym(τ)}

of the delay-free system (7.17) such that Z(τ) = U(τ), τ ∈ [0,h]. The solution
satisfies the following set of boundary value conditions:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Z(0) =V T (h),

Xj(h) = Y T
j (0), and Yj(h) = XT

j (0), j = 1, . . . ,m,

−W = Z(0)A0 +V(0)A1 +
m

∑
j=1

Xj(0)B j

−DT

[

Z(h)A0 +V(h)A1 +
m

∑
j=1

Xj(h)B j

]

+AT
0 V (h)+AT

1 Z(h)A1 +
m

∑
j=1

BT
j Yj(h)

−
[

AT
0 V (0)+AT

1 Z(0)+
m

∑
j=1

BT
j Yj(0)

]

D.

(7.18)

Remark 7.4. System (7.17) is regular if and only if the spectrum of the matrix D
does not contain a point λ0 such that λ−1

0 also belongs to the spectrum.

The following lemma demonstrates that some relations exist between the auxil-
iary matrices.

Lemma 7.2. The auxiliary matrices Xk(τ) and Yk(τ), k = 1, . . . ,m, satisfy the
relations

Xk(τ) = (−1)k−1
k−1

∑
j=0

(k− 1)!
j!(k− 1− j)!

h jYk− j(τ), k = 1, . . . ,m,
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and

Yk(τ) = (−1)k−1
k−1

∑
j=0

(k− 1)!
j!(k− 1− j)!

h jXk− j(τ), k = 1, . . . ,m.

Proof. The first set of relations can be easily obtained as follows. By definition,

Xk(τ) =
0
∫

−h

θ k−1U(τ +θ + h− h)dθ = 〈ξ =−θ − h〉

=

0
∫

−h

(−h− ξ )k−1 U(τ − ξ − h)dξ

= (−1)k−1
k−1

∑
j=0

(k− 1)!
j!(k− 1− j)!

h jYk− j(τ).

The second set of relations can be verified in a similar way. �

Lemma 7.2 provides a substantial reduction of system (7.17). Observe that
the sum

m

∑
j=1

BT
j Yj(τ) =

m

∑
j=1

(−1) j−1BT
j

(

j−1

∑
ν=0

( j− 1)!
ν!( j− 1−ν)!

hν−1Xj−ν(τ)

)

.

Thus, if we define the matrix

B(ξ ) =
m

∑
j=1

(−ξ ) j−1BT
j ,

then
m

∑
j=1

BT
j Yj(τ) =

m

∑
k=1

1
(k− 1)!

B(k−1)(h)Xk(τ),

and the second equation of system (7.17) takes the form

d
dτ

[

−DT Z(τ)+V(τ)
]

=−AT
1 Z(τ)−AT

0 V (τ)−
m

∑
k=1

1
(k− 1)!

B(k−1)(h)Xk(τ).
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Therefore, system (7.17) is reduced to the following set of (m+2) matrix equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d
dτ

[Z(τ)−V (τ)D] = Z(τ)A0 +V (τ)A1 +
m

∑
j=1

Xj(τ)B j,

d
dτ

[

V (τ)−DT Z(τ)
]

=−AT
1 Z(τ)−AT

0 V (τ)−
m

∑
k=1

1
(k− 1)!

B(k−1)(h)Xk(τ),

d
dτ

X1(τ) = Z(τ)−V (τ),

d
dτ

Xj(τ) =−(−h) jV (τ)− jXj−1(τ), j = 2, . . . ,m.

(7.19)
The set of boundary value conditions (7.18) is now of the form

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Z(0) =V (h),

XT
k (0) = (−1)k−1

k−1

∑
j=0

(k− 1)!
j!(k− j− 1)!

h jXk− j(h), k = 1, . . . ,m,

− W = Z(0)A0 +V(0)A1 +
m

∑
j=1

Xj(0)B j

− DT

[

Z(h)A0 +V(h)A1 +
m

∑
j=1

Xj(h)B j

]

+ AT
0 V (h)+AT

1 Z(h)A1 +
m

∑
j=1

BT
j XT

j (0)

−
[

AT
0 V (0)+AT

1 Z(0)+
m

∑
j=1

BT
j XT

j (h)

]

D.

(7.20)

There is a certain connection between the spectrum of time-delay system (7.1)
and that of delay-free system (7.17).

Theorem 7.5. Given a time-delay system (7.1), where the matrix G(θ ) is of the
form (7.15), let s0 be an eigenvalue of the system such that −s0 is also an eigenvalue
of the system. Then s0 belongs to the spectrum of delay-free system (7.17).

Proof. The characteristic matrix of system (7.1) is of the form

G(s) = sI − se−hsD−A0 − e−hsA1 −
m

∑
k=1

f (k−1)(s)Bk,

where

f (0)(s) =
1− e−hs

s
, and f ( j)(s) =

d j f (0)(s)
ds j , j = 1,2, . . . ,m− 1.
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Because s0 and −s0 are eigenvalues of the system, there exist two nontrivial vectors
γ and μ such that

γT G(s0) = 0, GT (−s0)μ = 0. (7.21)

On the other hand, a complex number s belongs to the spectrum of delay-free system
(7.17) if and only if there exists a nontrivial set of n× n constant matrices

{

Z(0),V (0),X (0)
1 , . . . ,X (0)

m ,Y (0)
1 , . . . ,Y (0)

m

}

such that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

sZ(0)− sV (0)D = Z(0)A0 +V (0)A1 +
m

∑
j=1

X (0)
j B j,

−sDT Z(0) + sV (0) =−AT
1 Z(0)−AT

0 V (0)−
m

∑
j=1

BT
j Y (0)

j ,

sX (0)
1 = Z(0)−V (0),

sY (0)
1 = Z(0)−V (0),

sX (0)
j =−(−h) j−1V (0)− ( j− 1)X (0)

j−1, j = 2, . . . ,m,

sY (0)
j = (−h) j−1Z(0) + ( j− 1)Y (0)

j−1, j = 2, . . . ,m.

(7.22)

Multiplying the first equality in (7.21) by μ from the left-hand side and the second
equality by −e−hs0γT from the right-hand side we obtain

0n×n = s0μγT − s0e−hs0 μγT D− μγT A0 − e−hs0μγT A1 −
m

∑
k=1

f (k−1)(s0)μγT Bk

and

0n×n = s0e−hs0 μγT − s0DT μγT +AT
0 e−hs0 μγT +AT

1 μγT

+
m

∑
k=1

e−hs0 f (k−1)(−s0)B
T
k μγT .

Let us introduce the matrices

Z(0) = μγT , V (0) = e−hs0 μγT

and

X (0)
j = f ( j−1)(s0)μγT ,Y (0)

j = e−hs0 f ( j−1)(−s0)μγT , j = 1, . . . ,m.
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Then the preceding equalities take the form

s0Z(0)− s0V (0)D−Z(0)A0 −V (0)A1 −
m

∑
k=1

X (0)
k Bk = 0n×n,

−s0DT Z(0) + s0V (0) +AT
0 V (0) +AT

1 Z(0) +
m

∑
k=1

BT
k Y (0)

k = 0n×n.

That is, for s = s0 the matrices satisfy the first two equations of system (7.22). It is
a matter of simple calculation to show that for s = s0 the matrices also satisfy the
remaining 2m matrix equations in (7.22). It is evident that the introduced set of
matrices

{

Z(0),V (0),X (0)
1 , . . . ,X (0)

m ,Y (0)
1 , . . . ,Y (0)

m

}

is not trivial. Therefore, the complex value s0 belongs to the spectrum of system
(7.17). The same is true also for −s0. �

Remark 7.5. The statement of Theorem 7.5 remains valid if we replace system
(7.17) by the reduced system (7.19).

7.6.2 A Special Case

Now we consider the case where the matrix G(θ ) is of the form

G(θ ) =
m

∑
j=1

η j(θ )B j, (7.23)

where B1, . . . ,Bm are given n×n matrices and the scalar functions η1(θ ), . . . ,ηm(θ )
are such that

dη j(θ )
dθ

=
m

∑
k=1

α jkηk(θ ), j = 1, . . . ,m. (7.24)

Remark 7.6. In the previous subsection η j(θ ) = θ j−1, j = 1, . . . ,m. These func-
tions satisfy the equations

dη1(θ )
dθ

= 0,
dη j(θ )

dθ
= ( j− 1)η j−1(θ ), j = 2, . . . ,m.

Matrix equation (7.5) for U(τ) is now of the form
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d
dτ

[U(τ)−U(τ − h)D] = U(τ)A0 +U(τ − h)A1

+
m

∑
j=1

⎛

⎝

0
∫

−h

η j(θ )U(τ +θ )dθ

⎞

⎠B j, τ ≥ 0. (7.25)

Once again, we introduce the matrices Z(τ) =U(τ), V (τ) =U(τ − h), and

Xj(τ) =
0
∫

−h

η j(θ )U(τ +θ )dθ , Yj(τ) =
0
∫

−h

η j(θ )U(τ −θ − h)dθ , j = 1, . . . ,m.

Then Eq. (7.25) has the form

d
dτ

[Z(τ)−V (τ)D] = Z(τ)A0 +V(τ)A1 +
m

∑
j=1

Xj(τ)B j , τ ∈ [0,h]

and
d

dτ
[

−DT Z(τ)+V (τ)
]

=−AT
1 Z(τ)−AT

0 V (τ)−
m

∑
j=1

BT
j Yj(τ).

Now,

d
dτ

Xj(τ) = η j(0)Z(τ)−η j(−h)V (τ)−
0
∫

−h

dη j(θ )
dθ

U(τ +θ )dθ

= η j(0)Z(τ)−η j(−h)V (τ)−
m

∑
k=1

α jkXk(τ), j = 1, . . . ,m,

whereas

d
dτ

Yj(τ) = −η j(0)V (τ)+η j(−h)Z(τ)+
0
∫

−h

dη j(θ )
dθ

U(τ −θ − h)dθ

= η j(−h)Z(τ)−η j(0)V (τ)+
m

∑
k=1

α jkYk(τ), j = 1, . . . ,m.

And we arrive at the following system of delay-free matrix equations:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d
dτ

[Z(τ)−V(τ)D] = Z(τ)A0 +V(τ)A1 +
m

∑
j=1

Xj(τ)B j,

d
dτ

[

−DT Z(τ)+V (τ)
]

=−AT
0 V (τ)−AT

1 Z(τ)−
m

∑
j=1

BT
j Yj(τ),

d
dτ

Xj(τ) = η j(0)Z(τ)−η j(−h)V(τ)−
m

∑
k=1

α jkXk(τ), j = 1, . . . ,m,

d
dτ

Yj(τ) = η j(−h)Z(τ)−η j(0)V (τ)+
m

∑
k=1

α jkYk(τ), j = 1, . . . ,m.

(7.26)

As in the previous case, we obtain the following result.

Theorem 7.6. Given a time-delay system (7.1), where the matrix G(θ ) is of the
form (7.23), let U(τ) be a Lyapunov matrix of the system associated with a
symmetric matrix W . There exists a solution,

{Z(τ),V (τ),X1(τ), . . . ,Xm(τ),Y1(τ), . . . ,Ym(τ)} ,

of the delay-free system of matrix Eqs. (7.26) such that U(τ) = Z(τ), τ ∈ [0,h]. The
solution satisfies boundary value conditions (7.18).

The statement of Theorem 7.5 remains true for this new case.

Theorem 7.7. Given a time-delay system (7.1), where the matrix G(θ ) is of the
form (7.23), let s0 be an eigenvalue of the system such that −s0 is also an eigenvalue
of the system. Then s0 belongs to the spectrum of delay-free system (7.26).

Let functions η j(θ ), j = 1, . . . ,m, satisfy, for θ ∈ [−h,0], the equalities

η j(−θ − h) =
m

∑
k=1

γ jkηk(θ ), j = 1, . . . ,m,

with constant coefficients γ jk. Then

Yj(τ) =
0
∫

−h

η j(θ )U(τ −θ − h)dθ = 〈ξ =−θ − h〉

=

0
∫

−h

η j(−ξ − h)U(τ + ξ )dξ

=
m

∑
k=1

γ jk

0
∫

−h

ηk(ξ )U(τ + ξ )dξ =
m

∑
k=1

γ jkXk(τ),

and one can exclude the matrices Yj(τ) of system (7.26) and boundary value
conditions (7.18).
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7.7 A New Form of Lyapunov Functionals

Here we present functional (7.3) in a new form that does not include terms that
depend on ϕ ′. To this end, we assume here that ϕ ∈ C1([−h,0],Rn). We will
transform three terms in (7.3).

The first one is the term

J1 = 2ϕT (0)

0
∫

−h

[

U(−h−θ )−DTU(−θ )
]

[A1ϕ(θ )+Dϕ ′(θ )]dθ

= 2ϕT (0)

0
∫

−h

[

U(−h−θ )−DTU(−θ )
]

A1ϕ(θ )dθ

+ 2ϕT (0)
[

U(−h)−DTU(0)
]

Dϕ(0)− 2ϕT (0)
[

U(0)−DTU(h)
]

Dϕ(−h)

+ 2ϕT (0)

0
∫

−h

[

U ′(−h−θ )−DTU ′(−θ )
]

Dϕ(θ )dθ .

The second term is

J2 =

0
∫

−h

[

A1ϕ(θ1)+Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

U(θ1 −θ2)
[

A1ϕ(θ2)+Dϕ ′(θ2)
]

dθ2

⎞

⎠dθ1

=

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

AT
1 U(θ1 −θ2)A1ϕ(θ2)dθ2

⎞

⎠dθ1

+ 2

0
∫

−h

[A1ϕ(θ1)]
T

⎛

⎝

0
∫

−h

U(θ1 −θ2)Dϕ ′(θ2)dθ2

⎞

⎠dθ1

+

0
∫

−h

[

Dϕ ′(θ1)
]T

⎛

⎝

0
∫

−h

U(θ1 −θ2)Dϕ ′(θ2)dθ2

⎞

⎠dθ1.

Since the integral

J =

0
∫

−h

U(θ1 −θ2)Dϕ ′(θ2)dθ2

= U(θ1)Dϕ(0)−U(θ1 + h)Dϕ(−h)+

0
∫

−h

U ′(θ1 −θ2)Dϕ(θ2)dθ2,
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then

J2 =

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

[

AT
1 U(θ1 −θ2)A1ϕ(θ2)dθ2 + 2AT

1 U ′(θ1 −θ2)D
]

⎞

⎠dθ1

−
0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

DTU ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎞

⎠dθ1

+ 2ϕT (0)DT

0
∫

−h

[

U(−θ )A1 +U ′(−θ )D
]

ϕ(θ )dθ

− 2ϕT (−h)DT

0
∫

−h

[

U(−θ − h)A1 +U ′(−θ − h)D
]

ϕ(θ )dθ

+ ϕT (0)DTU(0)Dϕ(0)− 2ϕT (0)DTU(h)Dϕ(−h)

+ ϕT (−h)DTU(0)Dϕ(−h).

Remark 7.7. In the computation of the term

Q =−
0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

DTU ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎞

⎠dθ1

one must remember that the first derivative of the Lyapunov matrix, U ′(τ), suffers
a jump discontinuity at the point τ = 0; see Eq. (7.7). Therefore, this term can be
presented as

Q = −
0
∫

−h

ϕT (θ )DT [U ′(+0)−U ′(−0)
]

Dϕ(θ )dθ

−
0
∫

−h

ϕT (θ1)

⎛

⎝

θ1−0
∫

−h

DTU ′′(θ1 −θ2)Dϕ(θ2)dθ2

+

0
∫

θ1+0

DTU ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎞

⎠dθ1.
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Finally, we consider the term

J3 = 2

0
∫

−h

[

A1ϕ(θ1)+Dϕ ′(θ1)
]T

×

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

U(θ1 + h−θ2+ ξ )G(ξ )dξ

⎞

⎠ϕ(θ2)dθ2

⎤

⎦dθ1

= 2

0
∫

−h

ϕT (θ1)

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

AT
1 U(θ1 + h−θ2+ ξ )G(ξ )dξ

⎞

⎠ϕ(θ2)dθ2

⎤

⎦dθ1

+ 2ϕT (0)

0
∫

−h

⎛

⎝

θ
∫

−h

DTU(h−θ + ξ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ

− 2ϕT (−h)

0
∫

−h

⎛

⎝

θ
∫

−h

DTU(−θ + ξ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ

− 2

0
∫

−h

ϕT (θ1)

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

DTU ′(θ1 + h−θ2+ ξ )G(ξ )dξ

⎞

⎠ϕ(θ2)dθ2

⎤

⎦dθ1.

Now we substitute into (7.3) these new expressions and collect similar terms. We
start with the terms that do not include an integral factor. The sum of the terms is

S1 = ϕT (0)
[

U(0)−U(−h)D−DTU(h)+DTU(0)D
]

ϕ(0)

+ 2ϕT (0)
[

U(−h)−DTU(0)
]

Dϕ(0)− 2ϕT (0)
[

U(0)−DTU(h)
]

Dϕ(−h)

+ ϕT (0)DTU(0)Dϕ(0)−ϕT (0)DTU(h)Dϕ(−h)

− ϕT (−h)DTU(−h)Dϕ(0)+ϕT(−h)DTU(0)Dϕ(−h)

= [ϕ(0)−Dϕ(−h)]T U(0) [ϕ(0)−Dϕ(−h)] .

Then we collect terms that include the factor ϕT (0) and an integral factor

S2 = 2ϕT (0)

0
∫

−h

[

U(−h−θ )−DTU(−θ )
]

A1ϕ(θ )dθ

+ 2ϕT (0)

0
∫

−h

[

U ′(−h−θ )−DTU ′(−θ )
]

Dϕ(θ )dθ
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+ 2ϕT (0)

0
∫

−h

DTU(−θ )A1ϕ(θ )dθ + 2ϕT (0)

0
∫

−h

DTU ′(−θ )Dϕ(θ )dθ

+ 2ϕT (0)

0
∫

−h

⎛

⎝

θ
∫

−h

DTU(h−θ + ξ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ

+ 2ϕT (0)

0
∫

−h

⎛

⎝

θ
∫

−h

[

U(−θ + ξ )−DTU(−θ + ξ + h)
]

G(ξ )dξ

⎞

⎠ϕ(θ )dθ

= 2ϕT (0)

0
∫

−h

⎛

⎝U(−h−θ )A1+U ′(−h−θ )D

+

θ
∫

−h

U(−θ + ξ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ

= 2ϕT (0)

0
∫

−h

⎛

⎝U ′(−θ )−U(−θ )A0−
0
∫

θ

U(−θ + ξ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ .

Now we collect terms that include the factor ϕT (−h) and an integral factor

S3 = − 2ϕT (−h)

0
∫

−h

DTU(−θ − h)A1ϕ(θ )dθ

− 2ϕT (−h)

0
∫

−h

DTU ′(−θ − h)Dϕ(θ )dθ

− 2ϕT (−h)

0
∫

−h

⎛

⎝

θ
∫

−h

DTU(−θ + ξ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ

= − 2 [Dϕ(−h)]T
0
∫

−h

⎛

⎝U(−θ − h)A1 +U ′(−θ − h)D

+

θ
∫

−h

U(−θ + ξ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ
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= − 2 [Dϕ(−h)]T
0
∫

−h

⎛

⎝U ′(−θ )−U(−θ )A0−
0
∫

θ

U(−θ + ξ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ .

Thus,

S2 + S3 = 2 [ϕ(0)−Dϕ(−h)]T
0
∫

−h

(

U ′(−θ )−U(−θ )A0

−
0
∫

θ

U(−θ + ξ )G(ξ )dξ

⎞

⎠ϕ(θ )dθ .

We arrive at the desired new form of the functional

v0(ϕ) = [ϕ(0)−Dϕ(−h)]T U(0) [ϕ(0)−Dϕ(−h)]

+2 [ϕ(0)−Dϕ(−h)]T
0
∫

−h

⎡

⎣U(−h−θ )A1+U ′(−h−θ )D

+

θ
∫

−h

U(−θ + ξ )G(ξ )dξ

⎤

⎦ϕ(θ )dθ

−
0
∫

−h

ϕT (θ1)D
T

⎛

⎝

θ1−0
∫

−h

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

+

0
∫

θ1+0

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎞

⎠dθ1

−
0
∫

−h

ϕT (θ )DT [U ′(+0)−U ′(−0)
]

Dϕ(θ )dθ

+

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

[

AT
1 U(θ1 −θ2)A1 +AT

1 U ′(θ1 −θ2) D

−DTU ′(θ1 −θ2)A1
]

ϕ(θ2)dθ2
)

dθ1

+

0
∫

−h

ϕT (θ1)

⎧

⎨

⎩

0
∫

−h

⎛

⎝

θ1
∫

−h

GT (ξ1)
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×

⎡

⎣

θ2
∫

−h

U(θ1 − ξ1 −θ2 + ξ2)G(ξ2)dξ2

⎤

⎦dξ1

⎞

⎠ϕ(θ2)dθ2

⎫

⎬

⎭

dθ1

+2

0
∫

−h

ϕT (θ1)

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

AT
1 U(θ1 + h−θ2+ ξ )G(ξ )dξ

⎞

⎠ϕ(θ2)dθ2

⎤

⎦dθ1

−2

0
∫

−h

ϕT (θ1)

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

DTU ′(θ1 + h−θ2+ ξ )G(ξ )dξ

⎞

⎠ϕ(θ2)dθ2

⎤

⎦dθ1.

(7.27)

7.8 Complete Type Functionals

For the given symmetric matrices Wj, j = 0,1,2, we define the functional

w(ϕ) = ϕT (0)W0ϕ(0)+ϕT (−h)W1ϕ(−h)

+

0
∫

−h

ϕT (θ )W2ϕ(θ )dθ , ϕ ∈ PC1([−h,0],Rn).

Theorem 7.8. Let U(τ) be a Lyapunov matrix of system (7.1) associated with the
matrix

W =W0 +W1 + hW2.

Then the functional

v(ϕ) = v0(ϕ)+
0
∫

−h

ϕT (θ ) [W1 +(h+θ )W2]ϕ(θ )dθ , ϕ ∈ PC1([−h,0],Rn),

(7.28)
where v0(ϕ) is defined by (7.3) with this Lyapunov matrix, is such that

d
dt

v(xt) =−w(xt), t ≥ 0,

along the solutions of the system.

Definition 7.2. We say that functional (7.28) is of the complete type if the matrices
Wj, j = 0,1,2, are positive definite.
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In explicit form functional (7.28) has the form

v(ϕ) = [ϕ(0)−Dϕ(−h)]T U(0) [ϕ(0)−Dϕ(−h)]

+2 [ϕ(0)−Dϕ(−h)]T
0
∫

−h

⎡

⎣U(−h−θ )A1+U ′(−h−θ )D

+

θ
∫

−h

U(−θ + ξ )G(ξ )dξ

⎤

⎦ϕ(θ )dθ

−
0
∫

−h

ϕT (θ1)D
T

⎛

⎝

θ1−0
∫

−h

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

+

0
∫

θ1+0

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎞

⎠dθ1

+

0
∫

−h

ϕT (θ )
(

W1 +(h+θ )W2−DT [U ′(+0)−U ′(−0)
]

D
)

ϕ(θ )dθ

+

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

[

AT
1 U(θ1 −θ2)A1 +AT

1 U ′(θ1 −θ2) D

−DTU ′(θ1 −θ2)A1
]

ϕ(θ2)dθ2
)

dθ1

+

0
∫

−h

ϕT (θ1)

⎧

⎨

⎩

0
∫

−h
⎛

⎝

θ1
∫

−h

GT (ξ1)

⎡

⎣

θ2
∫

−h

U(θ1 − ξ1 −θ2 + ξ2)G(ξ2)dξ2

⎤

⎦dξ1

⎞

⎠ϕ(θ2)dθ2

⎫

⎬

⎭

dθ1

+2

0
∫

−h

ϕT (θ1)

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

AT
1 U(θ1 + h−θ2+ ξ )G(ξ )dξ

⎞

⎠ϕ(θ2)dθ2

⎤

⎦dθ1

−2

0
∫

−h

ϕT (θ1)

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

DTU ′(θ1 + h−θ2+ ξ )G(ξ )dξ

⎞

⎠ϕ(θ2)dθ2

⎤

⎦dθ1.

(7.29)
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7.9 Quadratic Bounds

Lemma 7.3. Let system (7.1) be exponentially stable. If the matrices Wj, j = 0,1,2,
are positive definite, then there exists α1 > 0 such that the complete type functional
(7.28) satisfies the inequality

α1 ‖ϕ(0)−Dϕ(−h)‖2 ≤ v(ϕ), ϕ ∈ PC1([−h,0],Rn).

Proof. Consider the functional

ṽ(ϕ) = v(ϕ)−α ‖ϕ(0)−Dϕ(−h)‖2 .

The time derivative of the functional along the solutions of system (7.1) is equal to

d
dt

ṽ(xt) =−w̃(xt), t ≥ 0,

where

w̃(xt) = w(xt)+ 2α [x(t)−Dx(t − h)]T

×

⎡

⎣A0x(t)+A1x(t − h)+

0
∫

−h

G(θ )x(t +θ )dθ

⎤

⎦ .

Observe that if α ≥ 0, then

2α [x(t)−Dx(t − h)]T
0
∫

−h

G(θ )x(t +θ )dθ

≥−αh [x(t)−Dx(t − h)]T [x(t)−Dx(t − h)]

−α
0
∫

−h

xT (t +θ )GT (θ )G(θ )x(t +θ )dθ .

This implies the inequality

w̃(xt) ≥
[

xT (t),xT (t − h)
]

L(α)

[

x(t)
x(t − h)

]

+

0
∫

−h

xT (t +θ )
[

W2 −αGT (θ )G(θ )
]

x(t +θ )dθ ,

where the matrix

L(α) =

(

W0 0n×n

0n×n W1

)

+α
(

A0 +AT
0 − hI A1 −AT

0 D− hD
AT

1 −DT A0 − hDT −DT A1 −AT
1 D− hDT D

)

.
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It is evident that there exists α = α1 > 0 such that the following conditions hold.

1. The matrix L(α1) is positive definite.
2. The matrix W2 −α1GT (θ )G(θ ) is positive definite for θ ∈ [−h,0].

For α = α1 the inequality w̃(xt)≥ 0 holds, and we conclude that

ṽ(ϕ) =
∞
∫

0

w̃(xt(ϕ))dt ≥ 0.

This means that

α1 ‖ϕ(0)−Dϕ(−h)‖2 ≤ v(ϕ).

�

Lemma 7.4. Let system (7.1) satisfy the Lyapunov condition. Given the symmetric
matrices W0, W1, and W2, there exists α2 > 0 such that functional (7.28) satisfies the
inequality

v(ϕ)≤ α2 ‖ϕ‖2
h , ϕ ∈ PC1([−h,0],Rn).

Proof. Let us introduce the quantities

u0 = sup
τ∈(0,h)

‖U(τ)‖ , u1 = sup
τ∈(0,h)

∥

∥U ′(τ)
∥

∥ , u2 = sup
τ∈(0,h)

∥

∥U ′′(τ)
∥

∥

and

a1 = ‖A1‖ , d = ‖A1‖ , g =

0
∫

−h

‖G(θ )‖dθ .

The first term in (7.29) admits the upper estimation

R1 = [ϕ(0)−Dϕ(−h)]T U(0) [ϕ(0)−Dϕ(−h)]≤ (1+ d)2 u0 ‖ϕ‖2
h .

The second term in (7.29),

R2 = 2 [ϕ(0)−Dϕ(−h)]T
0
∫

−h

⎡

⎣U(−h−θ )A1+U ′(−h−θ )D

+

θ
∫

−h

U(−θ + ξ )G(ξ )dξ

⎤

⎦ϕ(θ )dθ ,

can be estimated as follows:

R2 ≤ 2h(1+ d)(a1u0 + du1+ gu0)‖ϕ‖2
h .



300 7 Distributed Delay Case

The third term,

R3 = −
0
∫

−h

ϕT (θ1)D
T

⎛

⎝

θ1−0
∫

−h

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

+

0
∫

θ1+0

U ′′(θ1 −θ2)Dϕ(θ2)dθ2

⎞

⎠dθ1,

admits the estimation

R3 ≤ h2d2u2 ‖ϕ‖2
h .

The next term,

R4 =

0
∫

−h

ϕT (θ )
(

W1 +(h+θ )W2−DT [U ′(+0)−U ′(−0)
]

D
)

ϕ(θ )dθ ,

can be estimated as

R4 ≤ h
(

‖W1‖+ h‖W2‖)+ 2d2u1
)

‖ϕ‖2
h .

For the term

R5 =

0
∫

−h

ϕT (θ1)

⎛

⎝

0
∫

−h

[

AT
1 U(θ1 −θ2)A1 +AT

1 U ′(θ1 −θ2) D

−DTU ′(θ1 −θ2)A1
]

ϕ(θ2)dθ2

⎞

⎠dθ1

we obtain

R5 ≤ h2 (a2
1u0 + 2a1du1

)

‖ϕ‖2
h .

The term

R6 =

0
∫

−h

ϕT (θ1)

⎧

⎨

⎩

0
∫

−h

⎛

⎝

θ1
∫

−h

GT (ξ1)

×

⎡

⎣

θ2
∫

−h

U(θ1 − ξ1 −θ2 + ξ2)G(ξ2)dξ2

⎤

⎦dξ1

⎞

⎠ϕ(θ2)dθ2

⎫

⎬

⎭

dθ1
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admits the upper bound

R6 ≤ h2g2u0 ‖ϕ‖2
h .

For the sum of the last two terms

R7 +R8 = 2

0
∫

−h

ϕT (θ1)

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

AT
1 U(θ1 + h−θ2+ ξ )G(ξ )dξ

⎞

⎠ϕ(θ2)dθ2

⎤

⎦dθ1

−2

0
∫

−h

ϕT (θ1)

⎡

⎣

0
∫

−h

⎛

⎝

θ2
∫

−h

DTU ′(θ1 + h−θ2+ ξ )G(ξ )dξ

⎞

⎠ϕ(θ2)dθ2

⎤

⎦dθ1

we have the following upper bound:

R7 +R8 ≤ 2h2g(a1u0 + du1)‖ϕ‖2
h .

As a result, we arrive at the following quadratic upper bound for the functional:

v(ϕ)≤ α2 ‖ϕ‖2
h ,

with

α2 = h(‖W1‖+ h‖W2‖)+ (1+ d+ ha1 + hg)2u0

+2hd [1+ 2d+ ha1 + hg]u1 + h2d2u2. �

We present here new upper and lower quadratic bounds for functional (7.28).

Lemma 7.5. Let system (7.1) be exponentially stable. Given the positive-definite
matrices W0, W1, and W2, there exist β j > 0, j = 1,2, such that the complete type
functional (7.28) satisfies the inequality

β1 ‖ϕ(0)−Dϕ(−h)‖2 +β2

0
∫

−h

‖ϕ(θ )‖2 dθ ≤ v(ϕ), ϕ ∈ PC1([−h,0],Rn).

Proof. Consider the functional

ṽ(ϕ) = v(ϕ)−β1‖ϕ(0)−Dϕ(−h)‖2 −β2

0
∫

−h

‖ϕ(θ )‖2 dθ .

Its time derivative along the solutions of system (7.1) is equal to

d
dt

ṽ(xt) =−w̃(xt),
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where

w̃(xt) = w(xt )+ 2β1 [x(t)−Dx(t − h)]T

×

⎡

⎣A0x(t)+A1x(t − h)+

0
∫

−h

G(θ )x(t +θ )dθ

⎤

⎦

+β2

[

‖x(t)‖2 −‖x(t − h)‖2
]

≥
[

xT (t),xT (t − h)
]

L(β1,β2)

[

x(t)
x(t − h)

]

+

0
∫

−h

xT (t +θ )
[

W2 −β1GT (θ )G(θ )
]

x(t +θ )dθ .

Here

L(β1,β2) =

(

W0 0n×n

0n×n W1

)

+β1

(

A0 +AT
0 − hI A1 −AT

0 D− hD
AT

1 −DT A0 − hDT −DT A1 −AT
1 D− hDT D

)

+β2

(

I 0n×n

0n×n −I

)

.

It is evident that there exist β1 > 0 and β2 > 0 such that

1. The matrix L(β1,β2) is positive definite;
2. The matrix W2 −β1GT (θ )G(θ ) is positive definite for θ ∈ [−h,0].

For these values of β1 and β2, w̃(xt)≥ 0 and

ṽ(ϕ) =
∞
∫

0

w̃(xt(ϕ))dt ≥ 0.

The last inequality proves the statement of the lemma. �

Lemma 7.6. Let system (7.1) satisfy the Lyapunov condition. Given symmetric
matrices W0, W1, and W2, there exist δ j > 0, j = 1,2, such that functional (7.28)
satisfies the inequality

v(ϕ)≤ δ1 ‖ϕ(0)−Dϕ(−h)‖2 + δ2

0
∫

−h

‖ϕ(θ )‖2 dθ , ϕ ∈C1([−h,0],Rn).
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Proof. Using the notations introduced in the proof of Lemma 7.4 we may derive the
following inequalities:

R1 = [ϕ(0)−Dϕ(−h)]T U(0) [ϕ(0)−Dϕ(−h)]≤ u0 ‖ϕ(0)−Dϕ(−h)‖2 ,

R2 ≤ [(a1 + g)u0+ du1]

⎛

⎝h‖ϕ(0)−Dϕ(−h)‖2 +

0
∫

−h

‖ϕ(θ )‖2 dθ

⎞

⎠ ,

R3 ≤ ha1 (a1u0 + 2du1)

0
∫

−h

‖ϕ(θ )‖2 dθ ,

R4 +R5 ≤ d2 (2u1 + hu2)

0
∫

−h

‖ϕ(θ )‖2 dθ ,

R6 + R7 +R8 ≤ hg(2a1u0 + gu0+ 2du1)

0
∫

−h

‖ϕ(θ )‖2 dθ .

And we arrive at the upper estimation of functional (7.29):

v(ϕ)≤ δ1 ‖ϕ(0)−Dϕ(−h)‖2 + δ2

0
∫

−h

‖ϕ(θ )‖2 dθ ,

with

δ1 = [1+ h(a1+ g)]u0 + hdu1,

δ2 = ‖W1‖+ h‖W2‖+(a1 + g) [1+ h(a1 + g)]u0

+d [1+ 2d+ 2h(a1 + g)]u1 + hu2. �

7.10 The H2 Norm of a Transfer Matrix

We compute here the value of the H2 norm of the transfer matrix of an exponentially
stable control system of the form

d
dt

[x(t)−Dx(t − h)] = A0x(t)+A1x(t − h)+

0
∫

−h

G(θ )x(t +θ )dθ

+B0u(t)+B1u(t − h)



304 7 Distributed Delay Case

+

0
∫

−h

Q(θ )u(t +θ )dθ , t ≥ 0, (7.30)

y(t) = Cx(t − h).

The transfer matrix of the system is of the form

F(s) = e−shCH(s)B(s),

where the matrix H(s) is the Laplace image of the fundamental matrix K(t) of
control system (7.30),

H(s) =

∞
∫

0

K(t)e−stdt =

⎛

⎝sI− se−shD−A0 − e−hsA1 −
0
∫

−h

eθsG(θ )dθ

⎞

⎠

−1

,

and the matrix

B(s) = B0 + e−hsB1 +

0
∫

−h

eθsQ(θ )dθ .

The H2 norm of the transfer matrix is defined as follows:

‖F‖2
H2

=
1

2π i

i∞
∫

−i∞

Trace
{

FT (ξ )F(−ξ )
}

dξ

= Trace

⎧

⎨

⎩

1
2π i

i∞
∫

−i∞

BT (ξ )HT (ξ )CTCH(−ξ )B(−ξ )dξ

⎫

⎬

⎭

.

Applying Corollary 7.1 we arrive at the equality

‖F‖2
H2

= Trace
{

BT
0 U(0)B0 +BT

1 U(0)B1 + 2BT
1 U(h)B0

}

+2

0
∫

−h

Trace
{[

BT
0 U(θ )+BT

1 U(h+θ )
]

Q(θ )
}

dθ

+

0
∫

−h

0
∫

−h

Trace
{

QT (θ1)U(θ2 −θ1)Q(θ2)
}

dθ2dθ1,

where U(τ) is the Lyapunov matrix of system (7.30) associated with the matrix
W =CTC.
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retarded type distributed delay system, 133
retarded type multiple delay system, 77
retarded type single delay system, 36

Fundamental matrix
neutral type distributed delay system, 256
neutral type single delay systems, 202
retarded type multiple delay systems, 76
retarded type single delay system, 28

G
General time delay systems

neutral type, 173
retarded type, 3

General time-delay systems
retarded type, 6

I
Initial conditions

neutral type systems, 174
retarded type systems, 3

Initial function
neutral type systems, 173
retarded type systems, 4

Initial value problem
neutral type systems, 174
retarded type systems, 4

J
Jump equation, 185

K
Kroneker product, 56

L
Linear neutral type time delay system
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Lyapunov matrix, approximate
retarded type multiple delay case, 113

Lyapunov–Krasovskii approach
neutral type systems, 186

Lyapunov-Krasovskii approach
retarded type systems, 14

N
Norm

euclidean, 4
H 2 norm, 130, 304
induced matrix, 4
uniform, 4

Nyquist contour, 97

P
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Scalar perturbed equation, 125
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Spectrum
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Stability
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Stability asymptotic
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Stability exponential
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Stability uniform
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neutral type systems, 173
retarded type systems, 5

Step by step method, 4
Symmetry property
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