
Chapter 9
Estimation and Modelling

Abstract Earlier in Chaps. 3 and 7, several types of models for lifetime data were
discussed through their quantile functions. These will be candidate distributions in
specific situations. The selection of one of them or a new one is dictated by how
well it can justify the data generating mechanisms and satisfy well other criteria like
goodness of fit. Once the question of an initial choice of the model is resolved, the
problem is then to test its adequacy against the observed data. This is accomplished
by first estimating the parameters of the model and then carrying out a goodness-
of-fit test. This chapter addresses the problem of estimation as well as some other
modelling aspects.

In choosing the estimates, our basic objective is to get estimated values that are as
close as possible to the true values of the model parameters. One method is to seek
estimate that match the basic characteristics of the model with those in the sample.
This includes the method of percentiles and the method of moments that involve
the conventional moments, L-moments and probability weighted moments. These
methods of estimation are explained along with a discussion of the properties of
these estimates. In the quantile form of analysis, the method of maximum likelihood
can also be employed. The approach of this method, when there is no tractable
distribution function, is described. Many functions required in reliability analysis
are estimated by nonparametric methods. These include the quantile function itself
and other functions such as quantile density function, hazard quantile function and
percentile residual quantile function. We review some important results in these
cases that furnish the asymptotic distribution of the estimates and the proximity of
the proposed estimates to the true values.

9.1 Introduction

In Chaps. 3 and 7, we have seen several types of models, specified by their
quantile functions, that can provide adequate representations of lifetime data. These
will be candidate distributions in specific real situations. The selection of one of
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328 9 Estimation and Modelling

them or a new one is dictated by finding out how well it can justify the data
generating mechanism and satisfy well other criteria like goodness of fit. Perhaps,
the most important requirement in all modelling problems is that the chosen lifetime
distribution captures the failure patterns that are inherent in the empirical data.
Often, the features of the failure mechanism are assessed from the data with the
aid of the ageing concepts discussed earlier in Chap. 5. For instance, it could be
the shape of the hazard or mean residual quantile function, assessed from a plot of
the observed failure times. Based on this preliminary knowledge, the choice of the
distribution can be limited to one from the corresponding ageing class discussed
in Chap. 4. Once the question of a suitable model is resolved as an initial choice,
the problem then is to test its adequacy against the observed failure times. This
is accomplished by first estimating the parameters of the distribution and then
carrying out a goodness-of-fit test. Alternatively, nonparametric methods can also
be employed to infer various reliability characteristics. In this chapter, we address
both general parametric methods and nonparametric procedures from a quantile-
based perspective.

Our basic objective in estimation is to find estimates that are as close as possible
to the true values of the model parameters. There are different criteria which
ensure proximity between the estimate and the true parameter value and accordingly
different approaches can be prescribed that meet the desired criteria. One method
is to seek estimates by matching the basic characteristics of the chosen model
with those in the sample. This includes the method of percentiles, method of
moments involving conventional moments, L-moments and probability weighted
moments, and then identifying basic characteristics such as location, dispersion,
skewness, kurtosis and tail behaviour. A second category of estimation procedures
are governed by optimality conditions that renders the difference between the
fitted model and the observed data as small as possible or that provides estimates
which are most probable. In the following sections, we describe various methods of
estimation as well as the properties of these estimates.

9.2 Method of Percentiles

Recall from Chap. 1 that the pth percentile in a set of observations is the value that
has 100p % of values below it and 100(1− p)% values above it. Let X1,X2, . . . ,Xn

be a random sample from a population with distribution function F(x;Θ), or
equivalently quantile function Q(u;Θ), where Θ is a vector of parameters consisting
of one or more elements. The sample observations are arranged in order of
magnitude with Xr:n being the rth order statistic. Then, the sample (empirical)
distribution function is defined as

Fn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x ≤ X1:n
i
n , Xi−1:n < x ≤ Xi:n for i = 1,2, . . .n− 1

1, x ≥ Xn:n.
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Obviously, Fn(x) is the fraction of the sample observations that does not exceed x.
The empirical (sample) quantile function then becomes

Qn(p) = F−1
n (p) = inf[x|Fn(x)≥ p] (9.1)

which is a step function with jump 1
n . Notice that (9.1) can be interpreted as a

function ξp such that the number of observations ≤ ξp is ≥ [np] and the number
of observations ≥ ξp is ≥ [n(1− p)]. Thus, e.g.,

ξp = X[np]+1:n if np is not an integer

= X[np]:n if np is an integer.

In practice, some of the other methods of calculating ξp are as follows:

(i) Set p(n+1)= k+a, n being the sample size, k an integer, and 0≤ a< 1. Then,

ξp =

⎧
⎪⎪⎨

⎪⎪⎩

Xk:n + a(Xk+1:n −Xk:n), 0 < k < n

X1:n, k = 0

Xn:n, k = n

(see Sect. 3.2.1);
(ii) In some software packages, the setting is 1+ p(n− 1)= k+ a;

(iii) Calculate np. If it is not an integer, round it up to the next higher integer k and
Xk:n is the value. If np is an integer k, take

ξp =
1
2
[Xk:n +Xk+1:n].

The value X[np]+1:n is popular as it assures the monotonic nature of ξp in the
sense that if x is the p-quantile and y is the q-quantile with p < q, then y < x.

Some properties of ξp as an estimate of Q(p) are described in the following
theorems.

Theorem 9.1. If there is a unique value of Q(p) satisfying

P(X ≤ Q(p))≥ p and P(X ≥ Q(p))≥ 1− p,

then ξp → Q(p) as n → ∞ with probability 1.

Theorem 9.2. Let F(x) have a density f (x) which is continuous. If Q(p) is unique
and f (Q(p)) > 0, then

(i)
√

n(ξp −Q(p)) = n
1
2 {p−Fn(Q(p))}[ f (Q(p))]−1 +O(n−

1
4 (logn)

3
4 );

(ii)
√

n(ξp −Q(p)) is asymptotically distributed as
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N

(

0,
p(1− p)

n[ f (Q(p))]2

)

.

In particular, the asymptotic distribution of the sample median is normal with mean

as the population median and variance [ f (M)]−2

4n , where M = Q( 1
2) is the population

median. For proofs of the above theorems and further results on the asymptotic
behaviour of ξp, one may refer to Bahadur [44], Kiefer [324], Serfling [527]
and Csorgo and Csorgo [160]. Sometimes, the following bound may be useful in
evaluating the bias involved in estimating Q(p) by ξp. For 0 < p < 1 and unique
Q(p), for all n and every ε > 0,

P[|ξp −Q(p)|> ε]≤ 2exp[−2nδ 2],

where δ = min(F(Q(p)+ ε)− p, p−F(Q(p)− ε)).
A multivariate generalization of Theorem 9.2 is as follows; see Serfling [527].

Theorem 9.3. Let 0 < p1 < · · · < pk < 1. Suppose F has a density f in
the neighbourhood of Q(p1), . . . ,Q(pk) and f is positive and continuous at
Q(p1) . . .Q(pk). Then, (ξp1 ,ξp2 , . . . ,ξpk) is asymptotically normal with mean vector
(Q(p1), . . . ,Q(pk)) and covariance 1

n σi j , where

σi j =
pi(1− p j)

f (Q(pi)) f (Q(p j))
, i ≤ j,

and σi j = σ ji for i > j.

Since the order statistic Xk:n is equivalent to the sample distribution function
Fn(x), the sample quantile may be expressed as

ξp =

{
X[np]:n, np is an integer

X[np]+1:n, np is not an integer.

By inverting this relation, we get

Xk:n = ξ k
n
, 1 ≤ k ≤ n,

and so any discussion of order statistics could be carried out in terms of sample
quantiles and vice versa.

Bahadur [44] has given representations for sample quantiles and order statistics.
His results with subsequent modifications are of the following form:

1. If F is twice differentiable at Q(p), 0 < p < 1, with q(p)> 0, then

ξp = Q(p)+ [p−Fn(Q(p))]q(p)+Rn,
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where, with probability 1,

Rn = O(n−
3
4 (logn)

3
4 ), n → ∞.

Alternatively,

n
1
2 (ξp −Q(p)) = n

1
2 {p−Fn(Q(p))}q(p)+O(n−

1
4 (logn)

3
4 ),

n → ∞;
2. n

1
2 (ξp − Q(p)) and n

1
2 [p − Fn(Q(p))]q(p) each converge in distribution to

N(0, p(1− p)q2(p));
3. Writing Yi = Q(p)+ [p− I(Xi ≤ Q(p))]q(p), i = 1,2, . . . ,

ξp =
1
n

n

∑
i=1

Yi +O(n−
3
4 (logn)

3
4 ), n → ∞,

or with probability 1. ξp is asymptotically the mean of the first n values of
Yi. Thus, we have a representation of the sample quantile as a sample mean.
Consider a sequence of order statistics Xkn:n for which kn

n has a limit. Provided

kn

n
= p+

k

n
1
2

O

(
1

n
1
2

)

, n → ∞,

n
1
2 (Xkn:n−ξp) converge to k q(p) with probability 1, and n

1
2 (Xkn:n−Q(p)) converge

in distribution to N(kq(p), p(1− p)q2(p)).
In other words, Xkn:n and ξp are roughly equivalent as estimates of Q(p). Rojo

[510] considered the problem of estimation of a quantile function when it is more
dispersed than distribution function, based on complete and censored samples.
Rojo [511] subsequently developed an estimator of quantile function under the
assumption that the survival function is increasing hazard rate on the average
(IHRA). The estimator of the quantile function in the censored sample case is also
given. He has shown that estimators of Q(u) are uniformly strongly consistent.

The percentiles of the population are, in general, functions of the parameter
Θ in the model. In the percentile method of estimation, we choose as many
percentile points as there are model parameters. Equating these percentile points of
the population with the corresponding sample percentiles and solving the resulting
equations, we obtain the estimate of Θ . This method ensures that the model fits
exactly at the specific points chosen. Since the method does not specify which
percentiles are to be chosen in a practical situation, some judgement is necessary
in the choice of the percentile points. Issues such as the interpretation of the model
parameters and the purpose for which the model is constructed could be some of the
guidelines. Shapiro and Gross [535] pointed out that it is a good practice to choose
percentiles where inferences are drawn and not to estimate a percentile where
interpolation is required between two highest or two lowest values. As a general
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practice, they recommended using p = 0.05 and p = 0.95 for moderate samples and
p = 0.01 and p = 0.99 for somewhat larger samples. In the case of two parameters,
one of the above two sets, when there are three parameters augment these by the
median p = 0.50, and when there are four parameters, the two extreme points
along with the quartiles p = 0.25 and p = 0.75 are their recommendations. The
percentile estimators are generally biased, less sensitive to the outliers, and may not
guarantee that the mean and variance of the approximating distribution correspond
to the sample values.

Example 9.1. Suppose we have a sample of 100 observations from the loglogistic
distribution with

Q(u) =
1
α

( u
1− u

) 1
β
, α,β > 0.

Choosing the values p = 0.05 and p = 0.95 for matching the population and sample
quantiles, we look at the order statistics X5:100 and X95:100. Then, we have the
equations

1
α

(0.05
0.95

) 1
β
= X5:100, (9.2)

1
α

(0.95
0.05

) 1
β
= X95:100, (9.3)

yielding

1
α2 = X5:100 ×X95:100

or α̂ = [X5:100 ×X95:100]
− 1

2 .

Upon substituting α̂ in either (9.2) or (9.3) and solving for β , we obtain the estimate
of β as

β̂ =

(
log19

log α̂X5:100

)

.

Instead of using percentiles as such, various quantile-based descriptors of the
distribution such as median (M), interquantile range (IQR), measures of skewness
(S) and Kurtosis (T ), mentioned earlier in Sect. 1.4, may also be matched with
the corresponding measures in the sample. The idea is that the fitted distribution
has approximately the same distributional characteristics as the observed one. The
number of equations should be the same as the number of parameters and the
characteristics are so chosen that all the parameters are represented. If there is a
parameter representing location (scale), it is a good idea to equate it to the median M
(IQR). Some results concerning the asymptotic distributions involving the statistics
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are relevant in this context. See Sects. 1.4 and 1.5 for the definitions of various
measures and Chap. 3 in which percentile method is applied for various quantile
functions.

Theorem 9.4. The sample interquartile range

iqr =
1
2
(ξ 3

4
− ξ 1

4
)

is asymptotically normal

N

(
1
2

(

Q

(
3
4

)

−Q

(
1
4

))

,
1

64n

(
3

f
(
Q
( 3

4

)) − 2

f
(
Q
( 1

4

))
f
(
Q
( 3

4

)) +
3

f 2
(
Q
( 1

4

))

))

.

Note that IQR = 1
2

(
Q( 3

4 )−Q( 1
4)
)

, and that iqr is strongly consistent for IQR.

Theorem 9.5. The sample skewness s and the sample Moor’s kurtosis t possess the
following properties:

(s, t) is consistent for (S,T )

and

√
n(s− S, t−T )∗ has asymptotic bivariate normal distribution

with mean (0,0)∗ and dispersion matrix φ ′(c)A(φ ′(c))∗, where

A = (σi j), σi j =
i(8− j)

64 f (Ei) f (E j)
, i ≤ j,

φ(c) = (S,T )∗, Ei =
i
8
, i, j = 1,3,5,7.

and ∗ denotes the transpose.

Some other nonparametric estimators of Q(u) have been suggested in literature.
Kaigh and Lachenbruch [308] suggested consideration of a subsample of size k
without replacement from a complete sample of size n. Then, by defining the total
sample estimator of Q(u) as the average of all possible subsamples of size k, they
arrived at

Q̂1(p) =
k

∑
r=1

wrXr:n,

where
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wr =

(r−1
j−1

)(n−r
k− j

)

(n
k

) and j = (k+ 1)p.

The choice of k is such that the extreme order statistics should have negligible
weight. A somewhat different estimator is proposed in Harrell and Davis [262] of
the form

Q̂2(p) =
n

∑
r=1

wrXr:n,

where

wr = I r
n
(p(n+ 1),(1− p)(n+ 1))− I r−1

n
(p(n+ 1),(1− p)(n+ 1))

with Ix(a,b) being the incomplete beta function. Both Q̂1(p) and Q̂2(p) have
asymptotic normal distribution. Specific cases of estimation of the exponential and
Weibull quantile functions have been discussed by Lawless [378] and Mann and
Fertig [410].

9.3 Method of Moments

The method of moments is also a procedure that matches the sample and population
characteristics. We consider three such characteristics here, viz., the conventional
moments, L moments and probability weighted moments.

9.3.1 Conventional Moments

In this case, either the raw moments μ ′
r = E(Xr) or the central moments μr = E(X −

μ)r are equated to the same type of sample moments. When μ ′
r is used, we construct

the equations

μ ′
r =

1
n

n

∑
i=1

Xr
i = m′

r, r = 1,2,3, . . .

where X1,X2, . . . ,Xn are independent and identically distributed and the number of
such equations is the same as the number of parameters in the distribution. The
sample moments

m′
r =

∫ ∞

0
xrdFn(x)
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as the estimate of μ ′
r have the following properties:

(i) m′
r is strongly consistent for μ ′

r;
(ii) E(m′

r) = μ ′
r, i.e., the estimates are unbiased;

(iii) V (m′
r) =

μ ′
2r−μ ′

r
2

n ;
(iv) If μ2r

′ < ∞, the random vector n−1(m′
1 − μ ′

1,m
′
2 − μ ′

2, . . . ,m
′
n − μ ′

n) converges
in distribution to a n-variate normal distribution with mean vector (0,0, . . . ,0)
and covariance matrix [σi j], i, j = 1,2, . . . ,n, where σi j = μ ′

i+ j − μ ′
i μ ′

j.

On the other hand, if we use the central moments, the equations to be considered
become

μr =
1
n

n

∑
i=1

(Xi − X̄)r = mr, X̄ = m′
1.

The statistic mr estimates μr with the following properties:

(a) mr is strongly consistent for μr;

(b) E(mr) = μr +
1
2 r(r−1)μr−2μ2−rμr

n +O(n−2);
(c) V (mr) =

1
n (μ2r − μ2

r − 2rμr−1μr+1 + r2μ2μ2
r−1)+O( 1

n2 );

(d) If μ2r <∞, the random vector n
1
2 (m2−μ2, . . . ,mr−μr) converges in distribution

to (r − 1) dimensional normal distribution with mean vector (0,0, . . . ,0) and
covariance matrix [σi j], i, j = 2,3, . . . ,r, where

σi j = μi+ j+2−μi+1μ j+1−(i+1)μiμ j+2−( j+1)μi+2μ j+(i+1)( j+1)μiμ jμ2.

In general, mr gives biased estimator of μr. The correction factor required to make
them unbiased and the corresponding statistics are

M2 =
n

n− 1
m2,

M3 =
n

(n− 1)(n− 2)
m3,

M4 =
n(n2 − 2n+ 3)

(n− 1)(n− 2)(n− 3)
m4 − 3n(2n− 3)

(n− 1)(n− 2)(n− 3)
m2

2.

Occasionally, the parameters are also estimated by matching μ ′
1, μ2, β1 and β2 with

the corresponding sample values. For example, the estimation of parameters of the
lambda distributions is often done in this manner.

Example 9.2. Consider the generalized Pareto model (Table 1.1) with

Q(u) =
b
a
[(1− u)−

a
a+1 − 1].
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In this case, the first two moments are

μ ′
1 =

∫ 1

0
Q(p)d p = b

and

μ ′
2 =

∫ 1

0
Q2(p)d p =

2b2

1− a
.

Hence, we form the equations

b =
1
n

n

∑
i=1

Xi = X̄ ,

2b2

1− a
=

1
n ∑X2

i ,

and solve them to obtain the moment estimates of a and b as

â = 1− 2nX̄2

∑X2
i

and b̂ = X̄ .

9.3.2 L-Moments

In the method of L-moments, the logic is the same as in the case of usual moments
except that we equate the population L-moments with those of the sample and then
solve for the parameters. Here again, the number of equations to be considered is the
same as the number of parameters to be estimated. Thus, we consider r equations

Lr = lr, r = 1,2, . . . ,

where

Lr =
∫ 1

0

r−1

∑
k=0

(−1)r−k
(

r
k

)(
r+ k

k

)

ukQ(u)du

and

lr =
1
n

r−1

∑
j=0

pr j

(
n

∑
r=1

(r− 1)( j)

(n− 1)( j)

)

(9.4)

with

pi j =
(−1)i−1− j(i+ j− 1)!

( j!)2(i− j− 1)!
,



9.3 Method of Moments 337

when the model to be fitted contains r parameters. The expressions for the first four
L-moments L1 through L4 are given in (1.34)–(1.37) (or equivalently (1.38)–(1.41)).
Next, we have the sample counterparts as

l1 =
1
n

n

∑
i=1

X(i) = X̄ ,

l2 =
1

n(n− 1)

n

∑
i=1

(2i− 1− n)Xi:n,

l3 =
1

n(n− 1)(n2)

n

∑
i=1

{6(i− 1)(i− 2)− 6(i−1)(n−2)

+(n− 1)(n− 2)}Xi:n,

l4 =
1

n(n− 1)(n2)(n− 3)

n

∑
i=1

{20(i− 1)(i− 2)(i− 3)−30(i−1)(i−2)(n−3)

+12(i− 1)(n− 2)(n−3)− (n−1)(n−2)(n−3)}Xi:n.

Regarding properties of lr as estimates of Lr, we note that lr is unbiased, consistent
and asymptotically normal (Hosking [276]). Elamir and Seheult [187] have obtained
expressions for the exact variances of the sample L-moments. They have used an
equivalent representation of (9.4) in the form

lr =
r−1

∑
k=0

p∗r−1,kbk, (9.5)

where

p∗r−1,k = (−1)r−k
(

r
k

)(
r+ k

k

)

and

bk =
1

n(k+1)

n

∑
i=1

(i− 1)(k)Xi:n.

For a sample of size n, (9.5) is also expressible in the vector form

l = bCT

with l = (l1, l2, . . . , ln) and b = (b0,b1, . . . ,bk−1) and C is a triangular matrix with
entries p∗r−1,k. So,

V (l) =CΘCT , Θ =V (b). (9.6)
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As special cases, we have

V (l1) =
σ2

n
, (9.7)

where σ2 is the population variance and

V (l2) =
1

n(n− 1)

[4(n− 2)
3

{E(Y 2
3:3)+E(Y1:3Y2:3)+E(Y2:3Y3:3)}

− 2(n− 3)E(Y1:2Y2:2)− 2(n− 2)E(Y2
2:2)+ (n− 1)E(Y2

1:1)

− 2(2n− 3)E(Y2
2:2)+E(Y1:1){4(2n− 3)E(Y2:2− 5(n− 1)E(Y1:1)}

]
.

(9.8)

In the case of the first four sample moments,

C =

⎛

⎜
⎜
⎝

1 0 0 0
−1 2 0 0
−1 −6 6 0
−1 12 −30 20

⎞

⎟
⎟
⎠

along with

V (l1) = θ00,

V (l2) = 4θ11 − 4θ01 +θ00,

were used to derive the expressions in (9.7) and (9.8). Furthermore,

Cov(l1, l2) =
1

3n
[E(Y3:3 −Y2:3)

2 −E(Y2:3 −Y1:3)
2]

and

Cov(l1, lr) =
1
n

[∫ 1

0
u2P∗

r−1(u)du−
∫ 1

0

∫ u

0
[uvF(P∗

r−1(u))]
′dudv

− (−1)r
∫ 1

0

∫ v

0
uv[(1−G)P∗

r−1(u)(1−G)
]′

dudv,

where G(y) = v and F(x) = u. Also, if we define

θkl = Cov(bk,bl), (9.9)

then
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θ̂kl = bkbl − 1
n(n+l+2)

∑
1≤i< j≤n

[(i− 1)(k)( j− k− 2)(l)

+(i− 1)(l)( j− l − 2)(k)]Xi:nXj:n

is a distribution-free unbiased estimator of (9.9). In the above discussion, Yr:n

denotes the conceptual order statistics of the population. The expression for V (l2) is
equivalent to the estimate of Nair [455]. In finding the variance of the ratio of two
sample L-moments, the approximation

V
(X

Y

)
.
=
[ V (X)

E(X)2 +
V (Y )
E(Y )2 − 2Cov(X ,Y )

E(X)E(Y )

](E(X)

E(Y )

)2

is useful. Thus, approximate variances of the sample L-skewness and kurtosis can
be obtained. The sample L-moment ratios are consistent but not unbiased.

A more general sampling scheme involving censoring of observations has been
discussed recently. Let T1,T2, . . . ,Tn be independent and identically distributed life-
times following distribution function F(x). Assume that lifetimes are censored on
the right by independent and identically distributed random variables Y1,Y2, . . . ,Yn

having common distribution function H(x). Further, let Yi’s be independent of the
Ti’s. Thus, we observe only the right censored data of the form Xi = min(Ti,Yi).
Define indicator variables

Δi =

{
1 if Ti ≤ Yi

0 if Ti > Yi

so that Δi = 1 indicates Ti is uncensored and Δi = 0 indicates Ti is censored. The
distribution of each Xi is then

G(x) = 1− (1−F(x))(1−H(x)).

To estimate the distribution function of the censored samples (Xi,Δi), the Kaplan–
Meir [311] product limit estimator is popular.

The estimator of the survival function is

Sn(t) = ∏
j:x( j)≤t

(
n− j

n− j+ 1

)Δ ( j)

, t ≤ X(n),

where X(1) ≤ ·· · ≤ X(n) are ordered Xi’s and Δ( j) is the censoring status correspond-
ing to X( j).

The estimator of the rth L-moment for right censored data (Wang et al. [576]) is

L̂r =
n

∑
j=1

X( j)Uj(r),
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where

Uj(r) =
j−1

∑
k=0

r−1
(

r− 1
k

)[
Bp,q(1− Sn(X( j)))−Bp,q(1− Sn(X( j−1)))

]

with X(0) = 0, p = r− k and q = k+ 1.
Now, let T = min(X ,C), where X denotes the failure time and C denotes the

noninformative censoring time. For a constant 0 ≤ u0 < 1 and Q(u0) < T ∗, where
T ∗ is the minimum of the upper most support points of the failure time X and the
censoring time C, suppose that F ′′(x) is bounded on [0,Q(u0) + Δ ], Δ > 0 and
inf0≤u≤u0 f (Q(u)) > 0. Then (Cheng [145]),

(i) with probability one

sup
0≤u≤u0

|Q̂(u)−Q(u)|= O(n−
1
2 (log logn)

1
2 ),

(ii)

sup
0≤u≤u0

|n 1
2 f (Q(u))(Q̂(u)−Q(u)−Gn(u)|= O(n−

1
3 (logn)

3
2 ),

where Gn(u) is a sequence of identically distributed Gaussian process with zero
mean and covariance function

Cov(Gn(u1),Gn(u2)) = (1− u1)(1− u2)

∫ n

0

dt
(1− t)2[1−H(F−1(t))]

,

with u1 ≤ u2, H(x) = 1− (1 − F(x)(1−G(x))) and G(x) is the distribution
function of the censoring time C.

Under the above regularity conditions, Wang et al. [576] have shown that, as
n → ∞,

(i) L̂r = Lr + o(n−
1
2 (log logn)

1
2 );

(ii) n
1
2 (L̂r − Lr), r = 1,2, . . . ,n converges in distribution to multivariate normal

(0,Σ), where Σ has its elements as

Σrs =

∫∫

x≤y

P∗
r−1(x)P

∗
s−1(y)+P∗

s−1(x)P
∗
r−1(y)

f (Q(x)) f (Q(y))
Cov(Gn(x),Gn(y))dxdy,

with

P∗
r−1(u) =

r−1

∑
k=0

(−1)r−1−k
(

r− 1
k

)(
r+ k− 1

k

)

uk

is the (r− 1)th shifted Legendre polynomial;
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(iii) the vector

n
1
2 (L̂1 −L1, L̂2 −L2, τ̂3 − τ3,(τ̂3 − τ3) . . . (τ̂m − τm))

converges in distribution to multivariate normal (0,Λ), where Λ has its
elements as

Λrs =

⎧
⎪⎪⎨

⎪⎪⎩

Σrs, r ≤ 2, s ≤ 2
(Σrs−τrΣ2s)

L2
, r ≥ 2, s ≤ 2

Σrs−τrΣ2s−τsΣ2r+τrτsΣ22
L2

2
, r ≥ 3, s ≥ 3.

There are several papers that deal with L-moments of specific distributions and
comparison of the method of L-moments with other methods of estimation.
Reference may be made, e.g., to Hosking [277], Pearson [488], Guttman [256],
Gingras and Adamowski [217], Hosking [278], Sankarasubramonian and Sreeni-
vasan [517], Chadjiconstantinidis and Antzoulakos [131], Hosking [280], Karvanen
[312], Ciumara [150], Abdul-Moniem [3], Asquith [40] and Delicade and Goria
[169]. Illustration of the method of L-moments with some real data can be seen in
Sect. 3.6 for different models.

9.3.3 Probability Weighted Moments

Earlier in Sect. 1.4, we defined the probability weighted moment (PVM) of order
(p,r,s) as

Mp,r,s = E(X pFr(X)F̄s(X))

which is the same as

Mp,r,s =

∫ ∞

0
xpFr(x)F̄s(x) f (x)dx

=
∫ 1

0
[Q(u)]pur(1− u)sdu,

provided that E(|X |P)< ∞. Commonly used quantities are

βr =
∫ 1

0
[Q(u)]urdu

and

αr =

∫ 1

0
[Q(u)](1− u)rdu,
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which are the special cases M(1,r,0) and M(1,0,r). Since

αr =
r

∑
s=0

(
r
s

)

(−1)sβs and βr =
r

∑
s=0

(
r
s

)

(−1)sαs,

characterization of a distribution with finite mean by αr or βr is interchangeable. A
natural estimate of αr (also called the nonparametric maximum likelihood estimate)
based on ordered observations X1:n,X2:n, . . . ,Xn:n is

α̂r =

∫ α

0
x(1−Fn(x))

rdFn(x) =
1
n

n

∑
i=1

Xi:n

(

1− i
n

)r

.

The asymptotic covariance of the estimator is

σrs = Cov (α̂r, α̂s)

=
1
n

∫∫

x<y

[1−F(x)]r[1−F(y)]sF(x)(1−F(x))dxdy.

Similarly, the estimate of βr is

β̂r =

∫ ∞

0
x[Fn(x)]

rdFn(x) =
1
n

n

∑
i=1

Xi:n

(
i
n

)r

,

with asymptotic covariance

Cov(β̂r, β̂s) =
1
n

∫∫

x<y

[F(x)]r[F(y)]sF(x)[1−F(y)]dy.

Landwehr and Matalas [373] have shown that

br =
1
n

n

∑
i=1

(i− 1)(i− 2) . . .(i− r)
(n− 1)(n− 2) . . .(n− r)

Xi:n (9.10)

is an unbiased estimator of βr. Similarly, for αr, we have the estimator

ar =
1
n

n

∑
i=1

(n− i)(n− i− 1)(n− i+ r− 1)
(n− 1)(n− 2) . . .(n− r)

.

Hosking [278] has developed estimates based on censored samples. In Type I
censoring from a sample of size n, m are observed and (n−m) are censored above
a known threshold T so that m is a random variable with binomial distribution. The
estimate based on the uncensored sample of m values is (9.10) with m replacing n
and when the n−m censored values are replaced by T , the estimate is given by
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b̄r =
1
n

[
m

∑
j=1

(i− 1)(i− 2) . . .(i− r)
(n− 1)(n− 2) . . .(n− r)

Xi:n +
m

∑
i=m+1

(i− 1) . . .(i− r)
(n− 1) . . .(n− r)

T

]

.

Assume that F(t) = v. Conditioned on the achieved value of m, the uncensored
values are a random sample of size m from the distribution with quantile function
Q(uv), 0 < u < 1. The population PWM’s for this distribution are

βr,m =
1

vr+1

∫ v

0
urQ(u)du.

On the other hand, the completed sample is of size n from the distribution with
quantile function

Q1(u) =

{
Q(u), 0 < u < v

Q(v), v ≤ u < 1

and hence its PWM’s are

βr,n =

∫ 1

0
urQ1(u)du

=

∫ v

0
urQ(u)du+

1− vr+1

r+ 1
Q(v).

The asymptotic distributions in this case are derived as in the case of the usual
PWM’s. Furrer and Naveau [205] have examined the small-sample properties of
probability weighted moments.

As in the case of the other two moments, we equate the sample and population
probability weighted moments for the estimation of the parameters. In such cases,
it is useful to adopt the formulas

b̄r =
1
n

n

∑
i=1

x(i)pr
(i)

and

ār =
1
n

n

∑
i=1

x(i)(1− p(i))

with p(i) as some ordered suitably chosen probabilities. Gilchrist [215] has
prescribed the choice for p(i) as i

n+1 , or inverse of the beta function (0.5, i,n− i+1),

or pi =
i−0.5

n .
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Example 9.3. Consider the Govindarajulu distribution with

Q(u) = σ((β + 1)uβ −β uβ+1)

βr = σ
∫ 1

0
[(β + 1)uβ −β uβ+1]urdu,

=
σ(2β + r+ 2)

(β + r+ 1)(β + r+ 2)
.

Since we have only two parameters in this case to estimate, the equations to be
considered are

βr = b̄r, r = 0,1,

or

2σ
β + 2

= X̄ = b̄0

and

σ(2β + 3)
(β + 2)(β + 3)

=
1

n(n+ 1)∑ iX(i) = b̄1.

Upon solving these equations, we obtain the estimates

β̂ =
3b̄0 − 6b̄1

2(b̄1 − b̄0)
, σ̂ =

b̄0(b̄0 + 2b̄1)

4(b̄0 − b̄1)
.

9.4 Method of Maximum Likelihood

We proceed by writing the likelihood function based on a random sample
x1, . . . ,xn as

L(θ ) = f (x1;θ ) f (x2;θ ) . . . f (xn;θ ).

Taking xi = Q(ui;θ ), we then have

L(θ ) = f (Q(u1,θ )) f (Q(u2,θ )) . . . f (Q(un,θ ))

= [q(u1;θ )q(u2;θ ) . . .q(un;θ )]−1.

The estimate of θ is the solution that maximizes L(θ ), or equivalently, we have to
solve the equation
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d logL
dθ

=−
∑
i

d logq(ui;θ )

dθ
= 0

for θ . Notice that, in practice, the calculation of L(θ ) requires the derivation of
ui from the equation xi = Q(ui;θ ). If ui = F(xi;θ ) is explicitly available, a direct
solution of the ui’s are possible from the observed xi in the fit of F(x) after
substituting the estimated values for the parameters. Otherwise, one has to use
some numerical method to extract ui. The observations are ordered. When U is a
uniform random variable, X and Q(U) have identical distributions. Let Q̂(u) be a
fitted quantile function and x(r) = Q(u(r)). If ψ0 is an initial estimate of u for a given
x value, using the first two terms of the Taylor expansion, we have

Q(ψ) = Q(u0)+ (u− u0)Q
′(u0)

as an approximation. Solving for u, we get

u
.
= u0 +

x−Q(u0)

q(u0)
. (9.11)

In practical problems, the initial value could be u(r) =
r

n+1 . With this value, (9.11)
is used iteratively until x differs from Q(u) by ε , a small pre-set tolerance value,
in a trial. Gilchrist [215] has provided a detailed discussion on the subject and an
example of the estimation of the parameters of the generalized lambda distribution
and layout for the calculations. The properties of the maximum likelihood estimates,
though widely known, is included here for the sake of completeness.

Theorem 9.6. Let X1,X2, . . .Xn be independent and identically distributed with
distribution function F(x : θ ) where θ belongs to an open interval Θ in R, satisfying
the following conditions:

(a)

∂ log f (x;θ )
∂θ

,
∂ 2 log f (x;θ )

∂θ
,

∂ 3 log f (x;θ )
∂θ

exist for all x;
(b) for each θ0 ∈Θ , there exist functions gi(x) in the neighbourhood of θ0 such that

∣
∣
∣
∣
∂ f
∂θ

∣
∣
∣
∣≤ g1(x),

∣
∣
∣
∣
∂ 2 f
∂θ 2

∣
∣
∣
∣≤ g2(x),

∣
∣
∣
∣
∂ 3 log f

∂θ 3

∣
∣
∣
∣≤ g3(x)

for all x, and
∫

g1(x)dx < ∞,

∫

g2(x)dx < ∞, Eg3(X)dx < ∞

in the neighbourhood of θ0;
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(c) 0 < E
(∂ log f (X ;θ )

∂θ

)2
< M < ∞ for each θ , then with probability 1, the

likelihood equations

∂L
∂θ

= 0

admit a sequence of solutions {θ̂n} with the following properties:

(i) θ̂n is strongly consistent for θ ;
(ii) θ̂n is asymptotically distributed as

N

⎛

⎜
⎝θ ,

1

nE
(

∂ log f (X ;θ)
∂θ

)2

⎞

⎟
⎠ .

When θ contains more than one element, then also the sequence of vector values
(θ̂n) satisfies consistency and asymptotic normality (θ , 1

nI(θ) ) where I(θ ), called
the information matrix, has its elements as

E

(
∂ log f (X ;θ )

∂θi
,

∂ log f (X ;θ )
∂θi

)

where θ = (θ1, . . . ,θK) and I(θ ) has order K×K.

9.5 Estimation of the Quantile Density Function

The quantile density function q(u) is a vital component in the definitions of
reliability concepts like hazard quantile function, mean residual quantile function
and total time on test transforms. Moreover, it appears in the asymptotic variances
of different quantile-based statistics. Babu [43] has pointed out that the estimate of
the bootstrap variance of the sample median needs consistent estimates of q(u).

Assume that q(p)≥ 0. Then,

Q(v)−Q(p)
v− p

= q(p)+ o(1)

as v → p. Thus, to get an approximation for q(p), it is enough to consider Q(v)−
Q(p) for v ≥ u near u. As Q(p) is not known, it is replaced by Qn(p). Since all

quantiles Qn(v)−Q(p)
v−p are close to q(p), a linear combination of these two also will be

near q(p). With this as the motivating point, Babu [43] has provided the following
results.
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Let h be a function on the positive real line such that h(y)ey is a polynomial of
degree not exceeding k (k ≥ 2 is an integer) and

∫ ∞

0
h(y)y jdy =

{
1, j = 0,1

0, j = 2,3, . . .k.

Then,

σ2(x) =
∫ x

0

∫ x

0
h(p)h(v)min(p,v)d pdv

and

σ2 =

∫ ∞

0

∫ ∞

0
h(p)h(v)min(p,v)dudv.

Defining J = (p − ε, p + ε) ⊂ (0,1), for independent variables X1, . . . ,Xn with
common distribution function F(x), we have the following two results.

Theorem 9.7. If F(x) is k times continuously differentiable at Q(p) for p ∈ J such
that f (x) at Q(p) is positive and E(X2)< ∞, then uniformly in x > 0,

n2β E

(
D(x,n)
q(p)

− 1

)2

= σ2(x)+ o(1)+ n2β(1−L(x,n))2,

where

D(x,n) = nδ
∫ x

0
[Qn(p+ vn−δ)−Qn(p)]h(v)dv,

L(x,n) = nδ b−1
1

∫ x

0
b(vn−δ )h(v)dv,

δ = (2k− 1)−1, β =
1− δ

2
, b j =

1
j!

d jQ(p)
d p j at p ∈ J, and b(p) =

k

∑
j=1

b j p
j.

Theorem 9.8. Let fi(x) =
∫ ∞

x yih(y)dy and f j and f1 do not have common positive
roots for any 2 ≤ j ≤ k− 1. If the jth derivative of Q at p is non-zero, for 2 ≤ j ≤
k− 1, then

n2β E

(
D(x,n)
q(p)

− 1

)2

≥ σ2 + o(1)

and that the equality occurs at x = logn. As a result, D(logn,n) is an efficient esti-
mator of q(u) in the mean square sense among the class of estimators {D(x,n)|x >
0}. Also, nβ (D(logn,n)( 1

q(p) − 1)) is asymptotically distributed as N(0,σ2).
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A histogram type estimator of the form

An(p) =
Qn(p+αn)−Qn(p−αn)

2αn
, αn > 0,

has been discussed by Bloch and Gastwirth [108] and Bofinger [113]. Its asymptotic
distribution is presented in the following theorem.

Theorem 9.9 (Falk [193]). Let 0 < p1 < · · · < pr < 1 and Q(p) be twice
differentiable near p j with bounded second derivative, j = 1,2, . . . ,r. Then, if
αn j → 0 and nα jn → ∞, j = 1,2, . . .r,

(2nα jn)
1
2

{

A jn(p j)− Q(p j +α jn)−Q(p j −α jn)

2α jn

}r

j=1
,

where

A jn(p j) =
Qn(p j +α jn)−Qn(p j −α jn)

2α jn
,

converges in distribution to ∏r
j=1 N(0,q2(p j)), with Π denoting the product

measure.

In the above result, if we further assume that nα3
jn → 0, then

Q(p j+α jn)−Q(p j−α jn)
2α jn

can

be replaced q(p j). Moreover, if Q is three times differentiable near p with bounded
third derivative which is continuous at p, an optimal bandwidth α∗

n in the sense of
mean square is

α∗
n =

⎧
⎨

⎩

6

2
1
2

q(p)

q3(p)

⎫
⎬

⎭

2
5

n−
1
5 .

Falk [193] considered a kernel estimator of q(p) defined by

k̂n(Fn) =

∫ 1

0
Qn(x)α−2

n h
( p− x

αn

)
dx,

where h is a real valued kernel function with bounded support and
∫

h(x)dx = 0.
Notice that kn(p) is a linear combination of order statistics of the form ∑n

i=1 CinXi:n,
where

Cin =
1

α2
n

∫ i
n

i−1
n

h
( p− x

αn

)
dx, i = 1,2, . . . ,n.

Some key properties of the above kernel estimator are presented in the following
theorem.
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Theorem 9.10. Let 0 < p1 < · · · < pr < 1 and Q be twice differentiable near p j

with bounded second derivative, j = 1,2, . . . ,r. Then, if h j has the properties of h
given above and α jn → 0, nα2

jn → ∞,

[
(nα jn)

1
2 (k̂ jn(p j)− k jn(p j))

]r
j=1

converges to ∏r
j=1 N(0,q2(p j))

∫
H2

j (y)dy, where ∏ is the product measure,

Hj(y) =
∫ y

−∞
h j(x)dx,

k̂n j(p j) =

∫ 1

0
Qn(x)α−2

jn h j

( p j − x

α jn

)
dx,

and

k̂n j(p j) =
∫ 1

0
Q(x)α−2

jn h j

( p− x
α jn

)
dx.

Using additional conditions
∫

xh(x)dx = −1 and nα3
n → 0, kn(p) in Theorem 9.4

can be replaced by q(p). Further, if Q is differentiable (m+ 1) times with bounded
derivatives which are continuous at p, with nα3m+1

n → 0, the approximate bias of
k̂n(p) becomes

kn(p)− q(p) = o(αm
n )

and the optimal bandwidth that minimizes the mean squared error E(k̂n(p)−q(p))2

is

α∗
n =

(m+ 1)!(
∫

H2(y)dy)
1
2 q(p)

Qm+1(p)
∫

xm+1h(x)dx
.

Mean squared error of the kernel quantile density estimator is compared with that of
the estimate g̃(u) in Jones [305], where g̃(u) is the reciprocal of the kernel density
estimator given by

g̃(u) =
1

f̂ (Qn(u))
.

It is proved that the former estimator is better than the latter one in terms of the
mean squared error.

Estimation of q(p) in a more general framework and for different sampling
strategies has been discussed by Xiang [590], Zhou and Yip [603], Cheng [143]
and Buhamra et al. [123].
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9.6 Estimation of the Hazard Quantile Function

The hazard quantile function in reliability analysis, as described in the preceding
chapters, plays a key role in describing the patterns of failure and also in the
selection of the model. Sankaran and Nair [515] have provided the methodology for
the nonparametric estimation of the hazard function, by suggesting two estimators,
with one based on the empirical quantile density function and the other based
on a kernel density approach. The properties of the kernel-based estimator and
comparative study of the two estimators have also provided by them. Recall that
the hazard quantile function is defined as

H(p) = [(1− p)q(p)]−1, 0 < p < 1.

Suppose that the lifetime X is censored by a non-negative random variable Z. We
observe (T,Δ), where T = min(X ,Z) and Δ = I(X ≤ Z), with

T (X ≤ Z) =

{
1, X ≤ Z

0, X > Z.

If G(x) and L(x) are the distribution functions of Z and T , respectively, under the
assumption that Z and X are independent, we have

1−L(x) = (1−F(x))(1−G(x)).

Let (Ti,Δi), i = 1,2, . . . ,n, be independent and identically distributed and each
(Ti,Δi) has the same distribution as (T,Δ). This framework includes time censored
observations if all the Zi’s are fixed constants, a Type I censoring when all Zi’s are
the same constant, and Type II censoring if Zi = Xr:n for all i. The first estimator
proposed by Sankaran and Nair [515] is

Ĥ(p) =
1

[1−Fn(Qn(p))]qn(p)
,

where

qn(p) = n(Tj:n −Tj−1:n),
j− 1

n
≤ p ≤ j

n
,

and T0:n ≡ 0. From Parzen [486], it follows that qn(p) is asymptotically exponential
with mean q(p). Thus, qn(p) is not a consistent estimator of q(p) nor Ĥ(p) is for
H(p).

A second estimator has been proposed by considering a real valued function K(·)
such that
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(i) K(x)≥ 0 for all x and
∫

K(x)dx = 1,
(ii) K(x) has finite support, i.e., K(x) = 0 for |x|> c for some constant c > 0,

(iii) K(x) is symmetric about zero,
(iv) K(x) satisfies the Lipschitz condition

|K(x)−H(y)| ≤ M|x− y|

for some constant M. Further, let {hn} be a sequence of positive numbers such
that hn → 0 as n → ∞. Define a new estimator as

Hn(p) =
1
hn

∫ 1

0

1
[1−Fn(Qn(t))]qn(t)

K
( t − p

hn

)
dt (9.12)

=
1
hn

u

∑
i=1

1
[1−Fn(Ti:n)]n[Ti:n −Ti−1:n]

∫ si:n

si−1:n

K
( t − p

hn

)
dt, (9.13)

where

Si:n =

⎧
⎪⎪⎨

⎪⎪⎩

0, i = 0

Fn(Ti:n), i = 1,2, . . . ,n− 1

1, i = n.

When Si:n−Si−1:n is small, by the first mean value theorem, (9.13) is approximately
equal to

H∗
n (p) =

1
hn

n

∑
i=1

Si:n − Si−1:n

[1−Fn(Ti:n)]n(Ti:n −Ti−1:n)
K
(Si:n − p

hn

)
.

When no censoring is present, Si:n − Si−1:n = i
n for all i. When heavy censoring

is present, Si:n − Si−1:n is large for i = n so that H∗
i (p) need not be a good

approximation for Hn(p).
When F is continuous and K(·) satisfies Conditions (i)–(iv) given above, the

estimator Hn(p) is uniformly strongly consistent and for 0 < p < 1, (
√

nHn(p)−
H(p)) is asymptotically normal with mean zero and variance

σ2(p) =
n

(h(n))2 E
[∫ 1

0
Qn(t)dM′(t, p)+

∫ 1

0
Fn(Qn(t))

M(t, p)
(1− t)

q(t)dt
]2
.

A simulation was carried out in order to make a small sample comparison of
Hn(p) and Ĥ(p) in terms of mean squared error. The random censorship model
with F(t) = 1− eλ t was used by varying λ . Observations were censored with the
uniform distribution U(0,1) with probability 0.3, so that 30 % of the observations
were censored. As a choice of the kernel function, the triangular density

K(x) = (1−|x|)I(|x| ≤ 1)
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was used. The ratios of the mean squared error of Ĥ(p) to that of Hn(p) were
compared in the study, which revealed the following points:

(a) Hn(p) gave reasonable performance for hn ≤ 0.50;
(b) When 0.05 < hn < 0.50, for each value of p, there is a range of widths hn for

which Hn(p) has smaller mean square error. For large hn values hn = 0.15 gives
the smallest discrepancy between the two estimators;

(c) The two estimators Ĥ(p) and Hn(p) do not perform well when p becomes large.
The method of estimation has also been illustrated with a real data by Sankaran
and Nair [515].

9.7 Estimation of Percentile Residual Life

As we have seen in the preceding chapters, the residual life distribution plays a
fundamental role in inferring the lifetime remaining to a device given that it has
survived a fixed time in operation. The percentiles of the residual life quantile
function are the percentile residual life defined in (2.19) and its quantile form in
(2.19). Classes of lifetime distributions based on monotone percentile residual life
functions have been discussed in Sect. 4.3. The (1− p)th percentile life function,
according to the definition in (2.19), is

P(x) = Q[1− p(1−F(x))]− x, x > 0. (9.14)

As before, assume that X1:n ≤ ·· · ≤ Xn:n are the ordered observations in a random
sample of size n from the distribution with quantile function Q(p). The sample
analogue of (9.14) is then

pn(x) = Qn[1− p(1−Fn(x))]− x. (9.15)

Csorgo and Csorgo [160] have discussed the asymptotic distribution of pn(x) for
different cases consisting of pn(x), (a) as a stochastic process in x for fixed 0 < p <
1, (b) as a stochastic process in p for a fixed x > 0, and (c) a two-parameter process
in (p,x). Using the density function of X , define

g(x) = [ f (P(x))+ x]−1,

rn(x) =

√
n

g(x)
[pn(x)−P(x)],

H(x) = B[1− p(1−F(x))− pB(F(x))],

where B is a Brownian bridge over (0,1). For a fixed x > 0, H(x) is distributed as
N(0, p(1− p)(1−F(x))). For a fixed p, provided q(p) is positive and continuous
at 1− p(1−F(x)), rn(x) is asymptotically N(0, p(1− p)(1−F(x))). In addition, if
f (x)> 0 on (Q(1− p),∞) and some r > 0,
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sup
x>Q(1−p)

[
F(x)(1−F(x))

| f ′(x)|
f 2(x)

]
≤ γ

and f (x) is ultimately non-increasing as x → ∞, then almost surely

sup
0<x<∞

|rn(x)−H(x)|= o(δn)

with

δn =
( loglogn

n

) 1
4
(logn)

1
2 as n → ∞.

A smooth version of the empirical estimator has been studied by Feng and
Kulasekera [196]. Following this, as n → ∞, Alam and Kulasekera [33] have
established that under the above assumptions,

rn(x) =
1

g(x)

∫ ∞

−∞
rn(u)g(u)K

(u− x
λ

)du
λ

is asymptotically normal as

H̄(x) =
1

g(x)

∫ ∞

−∞
H(u)g(u)K

(u− x
λ

)du
λ

and also

|r̄n(x)− H̄(x)|= o(δn)

almost surely. Since

EH̄(x) = 0

and

E[H̄(x)]2 =
1

g2(x)

∫ ∞

−∞

∫ ∞

−∞
μ(u,w)g(u)g(w)K

(u− x
λ

)
K
(w− x

λ

)dudw
λ 2

= vλ (x), (9.16)

the asymptotic normal distribution has mean zero and variance vλ (x). It is easy
to see that the function K(·) denotes the kernel, which the authors assume to be
a probability density function centred at the origin. The efficiency of the Csorgo’s
estimator rn(x) relative to that of r̄n(x) is now

e =
vλ (x)

p(1− p)(1−F(x))
.
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The term μ(u,w) occurring in (9.16) is

μ(u,w) = EG(u)G(w)

= p(1− p)+ (p+ p2)(F(u)∧F(w))

− p{F(u)∧ ((1− p)(1−F(w)))+F(w)∧ ((1− p)(1−F(u)))}.

Assuming that

∫ ∞

−∞
g(u)K

( p− x
λ

)du
λ

< ∞,

we have

sup
0<x<∞

E(r2
n(x)− v∗(x)) = o(n−

1
4 )

and

sup
0<x<∞

E(r̄2
n(x)− v∗λ (x)) = o(n−

1
4 )

as n → ∞. In the above results,

v∗(x) = p[1− p(1−F(x))][1−F(x)]

and

v∗λ (x)) =
( p

λ g(x)

)2 ∫ ∞

−∞

∫ ∞

−∞
[F(u)F(w)][1−F(u)F(w)]g(u)g(w)

×K
(u− x

λ

)
K
(w− x

λ

)
dudw+ vλ(x).

The asymptotic value of the normalized difference between r̄n(x) and the empirical
estimator is given by

n[MSE(pn(x))−MSE(p̄n(x))]
λ g2(x)

= v∗0(x),

where

p̄n(x) =
∫ ∞

−∞
pn(u)K

( (u− t)
λ

)du
λ
.
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Alam and Kulasekera [33] have also presented a Monte Carlo study when the
underlying distribution is exponential and Weibull using uniform distribution over
[−1,1] as the kernel. It has been observed through this study that the kernel estimator
provides better results for moderate sample sizes and chosen values of λ .

More properties of Pn(x) have been given by Csorgo and Mason [162], Aly [34]
and Csorgo and Viharos [163].

Pereira et al. [491] have studied properties of the class of distributions with
decreasing percentile residual life (DPRL). They introduced a nonparametric
estimator of P(x) based on the fact that

P(x) is DPRL ⇔ P(x) = inf
y≤x

P(y).

Thus, the estimator of P(x) is given by

P̃(x) = I(x,∞)(Xn:n) inf
y≤x

Pn(y), (9.17)

where I(x,∞) denotes the indicator function of the indicated interval. Note that P̃(x)
is the largest decreasing function that lies below the empirical Pn(x) . In practice, the
estimator P̃(x) can be computed easily in the following way. When X1:n ≤ ·· · ≤ Xn:n

are the ordered observations in a random sample of size n from the distribution
F(x), find the number of distinct values in the sample, say k. Let Y1 < · · · < Yk be
the resulting ordered values with no ties. Then, the estimate P̃(x) is given by

P̃(x) =

⎧
⎪⎪⎨

⎪⎪⎩

Pn(Y1−)+Y1 − x if x < Y1

min{Pn(Y1−),Pn(Y2−),Pn(Yj−),Pn(Yj+1−)+Yj+1 − x} if Yj ≤ x < Yj+1

0 if x > Yk.

The strong uniform consistency of the estimator P̃(x) is presented in the following
theorem.

Theorem 9.11. Let X be a random variable having DPRL property. If the distri-
bution function F(x) of X has a continuous positive density function f (x) such
that inf0≤p≤1 fx(Q(p)) > 0, then P̃(x) is a strongly uniformly consistent estimator
of P(x).

Note that in order to estimate p(x) under the condition that it increases, an
estimator that is a modification of the estimator given in (9.15) can be obtained.
It is also strongly uniformly consistent.

9.8 Modelling Failure Time Data

In this and in the subsequent sections, we consider various aspects of the process
of modelling lifetime data using distributions. As a problem solving activity, the
statistical concepts expressed in terms of quantile functions offer new perspectives
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that are not generally available in the distribution function approach or at least
provides an alternative approach with possibly different interpretations with almost
equivalent results. Several factors have to be considered while constructing a model.
Generally, the model builder will have some information about the phenomenon
under consideration or will be able to extract some features from a preliminary
assessment of the observations. The background information about the variables
and possible distributions along with the necessary level of details required for the
analysis are crucial points. Choice of the appropriate model also depends on the data
available to ensure its adequacy and the method of estimation of the parameters.
Finally, model parsimony is an attractive feature that prefers a simpler model to
a more complex one. For example, models with lesser number of parameters or
functional forms that have simpler structure (like constancy or linearity as against
nonlinear) will be easier to build and analyse. Qualities such as tractability of
the model, ease of analysis and interpretation are often prime considerations. This
should be consistent with the ability of the model to represent the essential features
of the life distribution that are inherent in the observations. In practice, there are
three essential steps in building a model. They are identification of the appropriate
model, fitting the model and finally checking its adequacy.

9.9 Model Identification

The procedure involved in model choice is to try out possible candidates and choose
the best among them. We have seen in previous chapters (see Table 1.1 and the
review of bathtub models in Chap. 7) that a plethora of lifetime distributions have
been proposed to represent lifetimes in the distribution function approach. This
adds to the complexity of determining the potential initial choice. A generalized
version may fit in many practical situations, but more parsimonious solution that
render easy analysis and interpretations may exist. The problem is somewhat of a
lesser degree when quantile functions are used. We have the generalized lambda
distribution (Sect. 3.2.1) or the generalized Tukey lambda family (Sect. 3.2.2) that
can take care of a wide variety of practical problems in view of their ability
to provide reasonable approximations to many continuous distributions. See the
discussion on the structural properties of the two quantile functions. The reliability
properties of the models, methods of estimating the parameters and examples of
fitting them (Sect. 3.6) have been described in detail in Chap. 3. When there are
multiple solutions that give models which fit the data, the one which captures the
observed features of the reliability characteristics more closely may be preferred.
The reliability characteristic may be the hazard quantile function, mean residual
quantile function or any other for which the fitted model is put to good use. We
can also make use of other models including those suggested in the distribution
function approach with tractable quantile functions. A look at the admissible range
of skewness and kurtosis values for the proposed distribution will indicate if it
covers the distributional shape that fits the observations. The skewness and kurtosis
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coefficients of the sample values have to be within the ranges prescribed for the
chosen model.

Another useful method to arrive at a realistic model is to compare any of the basic
reliability functions that uniquely determines the life distribution, with its sample
counterpart. The hazard quantile function, mean residual quantile function, etc. can
be used for this purpose. To use the hazard quantile function, recall its definition

H(u) =
1

(1− u)q(u)
.

Let X1:n ≤ X2:n ≤ ·· · ≤ Xn:n be an ordered set of observations on failure times. Then,
the quantile function of the distribution of Xr:n is (1.26)

Qr(ur)≡ Q(I−1(r,n− r+ 1)).

If U has a uniform distribution, then X , where x = Q(p), has quantile function Q(u).
Hence, the ordered Ur, say u(r), leads to xr:n = Q(u(r)). So, as an approximation,
either the mean

EQ(U(n)) = Q
( r− 0.5

n

)
,

or the median

Mr = Q(I−1(0.5,r,n− r+ 1)),

or equivalently

u∗(r) = I−1(0.5,r,n− r+ 1), u∗(r) = Q−1(Mr) = F(Mr),

can be used. Gilchrist [215] refers to the function I−1 as BETAINV and points out
that it is a crucial standard function in most spreadsheets and statistical software.
The empirical quantile density function q̂(u) can be obtained from the data, ur, from
the median probability. Thus, from the above formula, q(u∗(r)) can be plotted against
u∗r . Once a graph of

Ĥ(u) =
1

(1− u∗r)q(u∗r )

is obtained, its functional form can be obtained by comparing the plot with one of
the hazard quantile function forms. Several such forms are available from Table 2.4,
Chaps. 3 and 7.

A third alternative in model identification is to start with a simple model and
then modify it to accommodate the features of the data. Various properties of
quantile functions described in Sect. 1.2 can assist in this regard. For example, the
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power distribution has an increasing H(u), while the Pareto II has a decreasing
hazard quantile function. The product of these two is the power-Pareto distribution
discussed in Chap. 3, with a highly flexible form for H(u). We can also use various
kinds of transformations to arrive at new models from the initially assumed one. An
excellent discussion of these methods along with various illustrations is available in
Gilchrist [215].

9.10 Model Fitting and Validation

Once the data is collected and a specific model form is assumed, the next goal
is to estimate the parameters. One of the methods of estimation discussed in the
preceding sections of this chapter can be employed for this purpose. The only
remaining step in the model building process is to ascertain whether the model
with the estimated parameters describes the data adequately. This is called model
validation. Since the parameters have been estimated from the data using some
optimality criteria, the reproducibility of the model will be enhanced if its validation
is made by another set of data if it exists. When the data is large, part of it can be
used for identification and fitting while the remaining for validation. Sometimes,
cross-validation is made use of wherein part of the data used for fitting and the
remaining part of the data used for validation are interchanged and the two acts are
repeated.

There are graphical methods to ascertain the goodness of fit. One is the Q-
Q plot and the other is the box plot mentioned in Chap. 1. The Q-Q plots were
illustrated in the modelling of real data using lambda distribution, the power-Pareto
and the Govindarajulu distributions in Chap. 3; see, for example, Figs. 3.7–3.9. An
advantage of the Q-Q plot is that it can be used to specifically compare the tail
areas. We can consider the plots comparing x(r) with its values at 0.90 or 0.95 or
0.05, using the median rankits

Q̂(I−1(0.05,r,n− r+ 1)), Q̂(I−1(0.025,r,n− r+ 1)), Q̂(I−1(0.975,r,n− r+ 1)).

The recent work of Balakrishnan et al. [52] constructing optimal plotting points
based on Pitman closeness and its performance as a good of fit and comparison
with other plotting points is of special interest here. A second method is to apply
some goodness-of-fit tests like chi-square. Suppose there are n observations and
are divided into m groups each containing the same number of observations. Take
u j =

j
m , u0 = 0, um = 1, r = 0, . . . ,m− 1. If p j = Q̂(ur) and f j is the frequency of

observations in (pr−1, pr), the expected value of fr is n
m for all value of r. Then, the

statistic

∑
[ fr − ( n

m)
2

( n
m)

]
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has approximately a chi-square distribution with n− 1 degrees of freedom. This
scheme is more easier to apply than the conventional chi-square procedure. For
elaborate details on chi-squared tests and their power properties, one may refer to
the recent book by Voinov et al. [575]. The general references on different forms of
goodness-of-fit tests of D’Agostino and Stephens [165] and Huber-Carol et al. [289]
will also provide valuable information in this regard. See also Gilchrist [214,215] for
methods of estimators when quantile functions are used in modelling statistical data.


	9 Estimation and Modelling
	9.1 Introduction
	9.2 Method of Percentiles
	9.3 Method of Moments
	9.3.1 Conventional Moments
	9.3.2 L-Moments
	9.3.3 Probability Weighted Moments

	9.4 Method of Maximum Likelihood
	9.5 Estimation of the Quantile Density Function
	9.6 Estimation of the Hazard Quantile Function
	9.7 Estimation of Percentile Residual Life
	9.8 Modelling Failure Time Data
	9.9 Model Identification
	9.10 Model Fitting and Validation


