
Chapter 8
Stochastic Orders in Reliability

Abstract Stochastic orders enable global comparison of two distributions in terms
of their characteristics. Specifically, for a given characteristic A, stochastic order
says that the distribution of X has lesser (greater) A than the distribution of Y . For
example, one may use hazard rate or mean residual life for such a comparison. In
this chapter, we discuss various stochastic orders useful in reliability modelling and
analysis.

The stochastic order treated here are the usual stochastic order, hazard rate order,
mean residual life order, harmonic mean residual life order, renewal and harmonic
renewal mean residual life orders, variance residual life order, percentile residual life
order, reversed hazard rate order, mean inactivity time order, variance inactivity time
order, the total time on test transform order, the convex transform (IHR) order, star
(IHRA) order, DMRL order, superadditive (NBU) order, NBUE order, NBUHR and
NBUHRA orders and MTTF order. The interpretation of ageing concepts, preser-
vation properties with reference to convolution, mixing and coherent structures are
also discussed in relation to each of these orders. Implications among the different
orders are also presented. Examples of the stochastic orders and counter examples
where certain implications do not hold are also provided. Some special models used
in reliability like proportional hazard and reverse hazard models, mean residual life
models and weighted distributions have been discussed in earlier chapters. Some
applications of these stochastic models are reviewed as well.

8.1 Introduction

There are many situations in practice wherein we need to compare the characteristics
of two distributions. In certain cases, descriptive measures like mean and variance
have been used for this purpose. Since these measures are summary measures of the
data, they become less informative and so cannot capture all the essential features
inherent in the data. An alternative approach to assess the relative behaviour of the
properties of distributions is provided by stochastic orders which provide a global
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comparison by taking into account different features of the underlying models.
Specifically, for a given characteristic A, a stochastic order says that the distribution
FX of a random variable X has lesser (greater) A than the distribution FY of Y and
we express it as FX ≤A FY (FX ≥A FY ), or equivalently in terms of the random
variables X ≤A Y (X ≥A Y ). For example, in the context of reliability theory, if
two manufacturers produce devices for the same purpose, the natural interest is
to know which is more reliable. The reliability functions of the two devices then
become natural objects for comparison and the characteristic in question may be
their mean lives. But, when both devices were working for a specified time, the
characteristic in question may change to the mean residual life and the comparison
confirms which one of the two has more remaining life on an average. In all cases of
comparison, the characteristic of comparison should have an appropriate measure
ω(A), which should satisfy ωX(A) ≤ ωY (A). Marshall and Olkin [412] point out
that Mann and Whitney [409] used this approach initially and Birnbaum [101]
subsequently to study peakedness. There is a phenomenal growth in the study of
stochastic orders in recent years in such diverse fields as reliability theory, queueing
theory, survival studies, biology, economics, insurance, operations research, actu-
arial science and management. In this chapter, we take up such stochastic orders
and present results relevant to reliability analysis using quantile functions. Details
of other orderings, proofs of results using the distribution function approach and
so on are well documented; see, e.g., Szekli [557] and Shaked and Shantikumar
[531].

Some notation need to be introduced first for the developments in subsequent
discussions. Let Ω be a nonempty set. A binary relation ≤ on this set is called a
preorder if

(i) x ≤ x, x ∈ Ω (reflexivity),
(ii) x ≤ y, y ≤ z ⇒ x ≤ z (transitivity).

If, in addition, we also have

(iii) x ≤ y, y ≤ x ⇒ x = y (anti-symmetry),
then ≤ is called a partial order. The term stochastic order considered here
include both preorders and partial orders.

Let F and G be distribution functions of random variables X and Y , respectively.
Then, the function

ψF,G(x) = G−1(F(x)), (8.1)

for all real x, is called the relative inverse function of F and G. If F is continuous
and supported by an interval of reals, then ψ(X) and Y are identically distributed. If
U is uniformly distributed over [0,1], then ψFU ,G(U) has the same distribution as Y .
On the other hand, if Y is exponential, ψExp,F(Y ) has the same distribution as X for
X ≥ 0. These are easy to verify from the definition of the ψ function. Further, if F
and G are strictly increasing with derivatives f and g, then
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d
dx

ψ(x) =
f (x)

g(G−1F(x))
(8.2)

and

d
dx

FG−1(x) =
f (G−1(x))
gG−1(x)

. (8.3)

If G is continuous with interval support, then

ψ−1
F,G(x) = ψG,F(x). (8.4)

8.2 Usual Stochastic Order

The usual stochastic order is basic in the sense that it compares the distribution
functions of two random variables.

Definition 8.1. Let X and Y be random variables with quantile functions QX (u) and
QY (u), respectively. We say that X is smaller than Y in the usual stochastic order,
denoted by X ≤st Y , if and only if

QX(u)≤ QY (u) for all u in (0,1).

The ≤st ordering is usually employed to compare the distributions of two random
variable X and Y or to compare the distribution of X at two chosen parameter values.

Example 8.1. Let X follow Pareto II distribution with

QX(u) = (1− u)−
1
c − 1, c > 0,

and Y follow the beta distribution with

QY (u) = 1− (1− u)
1
c , c > 0.

Then,

QY (u)−QX(u) = 1− (1− u)
1
c − 1− (1− u)

1
c

(1− u)
1
c

= −(1− u)−
1
c

{
1− (1− u)

1
c

}2

≤ 0 for all u.

Thus, X ≥st Y .
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Example 8.2. Assume that Xλ has exponential distribution with

Q(u) =− 1
λ

log(1− u)

for λ > 0. It is easy to verify that for λ1 < λ2, Xλ1
≤st Xλ2

.

There are several equivalent forms of Definition 8.1 that are useful in establishing
stochastic ordering results. We list them in the following theorem.

Theorem 8.1. The following conditions are equivalent:

(i) X ≤st Y ;
(ii) FX(x)≤ FY (x) or FX(x)≥ FY (x) for all x;

(iii) Eφ(X)≤ Eφ(Y ) for all increasing functions φ for which the expectations exist.
As a consequence, it is apparent that if φ(x) = xr, then

X ≤st Y ⇒
{

E(Xr)≤ E(Y r), r ≥ 0

E(Xr)≥ E(Y r), r ≤ 0

which connects the moments of the two distributions. Another function of
interest is φ(x) = etx, with which we have a comparison of moment generating
functions as

X ≤st Y ⇒
{

E(etX )≤ E(etY ), t ≥ 0

E(etX )≥ E(etY ), t ≤ 0.

Proof of the main result is available in Szekli [557]. If φ is strictly increasing
and X ≤st Y , then X and Y are identically distributed if Eφ(X) = Eφ(Y );

(iv) φ(X)≤st φ(Y ) for all increasing functions φ ;
(v) Q−1

Y (QX(u))≤ u;
(vi) φ(X ,Y ) ≤st φ(Y,X) for all φ(x,y), where φ(x,y) is increasing in x and

decreasing in y and X and Y are independent.

One important advantage of studying stochastic orders is that many of the ageing
concepts discussed earlier in Chap. 4 can be expressed in terms of some ordering.
This in turn assists us in deriving many new properties and bounds based on the
properties of the orderings, which are otherwise not explicit. We now present some
theorems defining the IHR (DHR), NBU (NWU), NBUE, NBUC, RNBU, DMRL
and RNBRU classes discussed in Chap. 4.

Theorem 8.2. The lifetime variable X is IHR (DHR) if and only if Xt ≤st (≥)Xt′
whenever t < t ′, where Xt = (X − t|X > t) is the residual life.

Proof. The quantile function of the residual life at t is given by (1.4) as

Q1(u) = Q(u0 +(1− u0)u)−Q(u0),



8.2 Usual Stochastic Order 285

where u0 = F(t) and Q(·) is the quantile function of X . Similarly, for Xt′ , we have

Q2(u) = Q(u1 +(1− u1)u)−Q(u1),

with u1 = F(t ′)> u0. Now assume that Xt ≤st Xt′ . Then, by Definition 8.1, we have

Q(u0 +(1− u0)u)−Q(u0)≤ Q(u1 +(1− u1)u)−Q(u1)

⇔ Q(u1)−Q(u0)≤ Q(u1 +(1− u1)u)−Q(u0+(1− u0)u)

⇔ Q(u1)−Q(u0)

(1− u)(u1− u0)
≤ Q(u1 +(1− u1)u)−Q(u0 +(1− u0)u)

(u1 +(1− u1)u)− (u0 +(1− u0)u)

⇒ 1
1− u

q(u0)≤ q(u0 +(1− u0)u) (8.5)

⇒ 1
(1− u0)q(u0)

≤ 1
(1− u0− (1− u0)u)q(u0 +(1− u0)u)

⇒ H(u0)≤ H(u0 +(1− u0)u) for every u0 in (0,1).

⇒ X is IHR.

Conversely, when X is IHR, we can retrace the above steps up to (8.5). However,
(8.5) is equivalent to

d
du0

{
1

1− u
Q(u0)− 1

1− u
Q(u0 +(1− u0))u

}
≤ 0

which means that

Q(u0)−Q(u0 +(1− u0)u)

is a decreasing function of u0. Hence,

Q(u0)−Q(u0+(1− u0)u)≥ Q(u1)−Q(u1 +(1− u1)u)

for u1 > u0 or Q1(u)≤ Q2(u) as we wished to prove. The proof of the DHR case is
obtained by simply reversing the above inequalities.

Theorem 8.3. A lifetime X is NBU (NWU) if and only if X ≥st (≤st)Xt .

The result is a straightforward application of Definition 4.22.

Theorem 8.4. If X is a lifetime random variable with E(X) < ∞, then X is NBUE
(NWUE) if and only if X ≥st (≤st)Z, where Z is the equilibrium random variable
with survival function (4.7).

Proof. Assume that X ≥st Z. Then, from (4.9), we have

QX(u)≥ QZ(u) = μQX(T
−1

X (u)),
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where TX (x) =
∫ u

0 (1− p)q(p)d p and μ = E(X). This gives

X ≥st Z ⇔ QX(TX (u))≥ QX (μu)⇔
∫ u

0
(1− p)q(p)d p ≥ μu

⇔ μ −
∫ 1

u
(1− p)q(p)d p ≥ μu

⇔ 1
1− μ

∫ 1

u
(1− p)q(p)d p ≤ μ ⇔ X is NBUE.

from Definition 4.33.

Theorem 8.5 (Nair and Sankaran [446]).

(a) X ≥st Zt for all t ≥ 0 ⇔ X is NBUC, where Zt = Z − t|(Z > t) is the residual
life of Z;

(b) Z ≥st Xt ⇔ X is RNBU;
(c) Xt ≥st Zt ⇔ X is DMRL;
(d) Z ≥st Zt ⇔ X is RNBRU.

As with ageing criteria, it is customary to study the preservation properties of
stochastic orders. With regard to the usual stochastic order, the following properties
hold:

1. Let (X1,X2, . . . ,Xn) and (Y1,Y2, . . . ,Yn) be two sets of independent random
variables. For every increasing function φ , we have

φ(X1,X2, . . . ,Xn)≤st φ(Y1,Y2, . . . ,Yn)

whenever Xi ≤st Yi. Hence, if Xi ≤st Yi, then

n

∑
i=1

Xi ≤st

n

∑
i=1

Yi.

Thus the usual stochastic order preserves convolution property or is closed under
the formation of additional lifelengths.

2. The ordering ≤st is preserved under convergence in distribution. That is, if (Xn)
and (Yn) are sequences such that Xn → X and Yn → Y as n → ∞ in distribution
and if Xn ≤st Yn, n = 1,2, . . . , then X ≤st Y .

3. Under the formulation of mixture distributions, ≤st is closed. This means that if
X ,Y and Θ are random variables satisfying

[X |Θ = θ ]≤st [Y |Θ = θ ]

for all θ ∈Θ , then X ≤st Y .
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4. A further extension of Property 1 above for random convolution is possible. If
Xi’s and Yi’s are non-negative, M is a non-negative integer valued random variable
independent of the Xi’s and N is non-negative integer valued random variable and
independent of the Yi’s, then

Xi ≤st Yi ⇒
M

∑
i=1

Xi ≤st

N

∑
i=1

Yi

provided M ≤st N.
5. The ordering X ≤st Y is closed under shifting and scaling meaning that

X ≤st Y ⇒CX ≤st CY

and

X ≤st Y ⇒ X + a ≤st Y + a.

More properties of the ≤st ordering will appear in connection with other orderings
discussed later. Further properties of ≤st can be found in Muller and Stoyan [432],
Scarsini and Shaked [521], Barlow and Proschan [68] and Ma [406].

8.3 Hazard Rate Order

In hazard rate ordering, we compare two distributions by means of the relative
magnitude of their hazard rates. The idea behind this comparison is that when the
hazard rate becomes larger, the variable becomes stochastically smaller.

Definition 8.2. If X and Y are lifetime random variables with absolutely continuous
distribution functions, we say that X is smaller than Y in hazard rate order, denoted
by X ≤hr Y , if

HX (u)≥ H∗
Y (u),

where HX(u) = hX(QX(u)) and H∗
Y (u) = hY (QX (u)) and h(·) denotes the hazard rate

function.

Example 8.3. The hazard quantile function of the Pareto II distribution
(Table 2.4) is

HX(u) =
c(1− u)

1
c

α

and the hazard rate function of the beta distribution with R = 1 is hY (x) = c
1−x .

Hence,
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H∗
Y (u) = hY (QX(u)) = hY ((1− u)−

1
c − 1)

=
c

2− (1− u)−
1
c

.

It is easy to check that for 0 < u < 1, HX(u)< H∗
Y (u) and so X ≥hr Y .

Some equivalent conditions that ensure hazard rate order are presented in the
following theorem.

Theorem 8.6. X is less than Y in hazard rate order if and only if

(i) u−1FY (QX(1− u)) is decreasing in u;

(ii) u−1[1−FX(QY (1− u))] is decreasing in u;

(iii) FY (x)
FX (x)

is increasing in x;

(iv) FX(x)FY (y)≥ FX(y)FY (x) for all x ≤ y;

(v) FX (x+y)
FX (x)

≤ FY (x+y)
FY (x)

for all x,y ≥ 0;

(vi) (X |X > x)≤st (Y |Y > x).

Proof. (i) From (8.3), we have

FY (QX(1−u))
u

is decreasing in u ⇔ u fY (QX(1−u))qX(1−u)−FY (QX(1−u))≤ 0

⇔ fY (QX(1−u))

Fy(QX(1−u))
≤ 1

uqX(1−u)

⇔ hY (QX (1−u))≤ HX (1−u)

⇔ H∗
Y (1−u)≤ HX(1−u) for all 0 < u < 1

⇔ X ≤hr Y.

The proof of (ii) is exactly similar. Result (iii) is obtained from (i) by setting u =
F(x) and noting that since u = F(x) when u is decreasing x is increasing. Notice
that (iv) is a consequence of (iii) while (v) is equivalent to (iv) and (vi) to (v).

When different stochastic orders are studied, the implications, if any, between
them is also an important aspect. The relationship between ≤st and ≤hr, e.g., is
explained in the following theorem.

Theorem 8.7.

X ≤hr Y ⇒ X ≤st Y,

but not conversely.
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Proof.

X ≤hr Y ⇔ FX(x+ y)

FX(x)
≤ FY (x+ y)

FY (x)
, for all x ≤ y

⇒ FX(y)≤ FY (y) for all y > 0, when x → 0.

⇒ X ≤st Y.

To prove that the converse need not be true, let X be distributed as exponential with
QX(u) =− log(1− u) and Y follow distribution with survival function

FY = e−x + e−2x− e−3x, x > 0.

Since FX (x) = e−x, it is easy to verify that FX(x) ≤ FY (x) and so X ≤st Y . On the
other hand,

Q(1− u) = F
−1
(u) =− logu

and so

u−1FY (Q(1− u)) =
FY (− logu)

u
= 1+ u− u2.

The last expression is increasing for u in (0, 1
2 ] and decreasing for u in [ 1

2 ,1).
The hazard rates are therefore not ordered by (i) of Theorem 8.6. Hazard ordering
allows definition of certain ageing classes encountered previously in Chap. 4 as the
following theorems illustrate.

Theorem 8.8. The random variable X is IHR (DHR) if and only if any one of the
following conditions hold:

(i) (X − t|X > t)≥hr (≤hr)(X − s|X > s) for all t ≤ s;
(ii) X ≥hr (X − t|X > t) for all t ≥ 0;

(iii) X + t ≤hr X + s, t ≤ s.

The proof of the theorem rests on the fact that (X − t|X > t) has its hazard rate as
h(x+ t).

Theorem 8.9. If E(X)< ∞, then:

(a) X is DMRL ⇔ X ≥hr Z;
(b) X is IMRL ⇔ X ≤hr Z.

Proof. (a) We see that

X ≥hr Z ⇔ HX(u)≤ HZ(u) =
1

MX (u)

⇔ HX(u)MX (u)≤ 1

⇔ 1− (1− u)HX(u)M
′
X(u)≤ 1

⇔ M′
X (u)≤ 0 ⇔ X is DMRL.
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The proof of (b) is obtained by reversing the inequalities in the above argument.

Theorem 8.10. If E(X)< ∞, then:

(a) Z ≥hr (Z − t|Z > t)⇔ X is DMRL;
(b) Zt1 ≥hr Zt2 for 0 < t1 < t2 ⇔ X is DMRL.

Proof. By Part (ii) of Theorem 8.8, we see that

Z ≥hr (Z − t|Z > t)⇔ Z is IHR ⇔ X is DMRL.

From proving (b), we use Part (i) of Theorem 8.8 and the same argument as for (a).

Some preservation properties useful in reliability analysis concerning the hazard
rate ordering are as follows:

1. For every increasing function φ(x), φ(X)≤hr φ(Y ), whenever X ≤hr Y ;
2. In general, convolution is not preserved under hazard rate ordering. However, if

X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn are both independent collections such that Xi ≤hr

Yi, i = 1,2, . . . ,n, and Xi and Yi are IHR for all i, then

n

∑
i=1

Xi ≤hr

n

∑
i=1

Yi.

3. If X1,X2, . . . ,Xn is a sequence of independent IHR lifetime variables and M and
N are discrete positive integer valued random variables such that M ≤hr N and
are independent of the Xi’s, then

M

∑
i=1

Xi ≤hr

N

∑
i=1

Xi.

Thus, the ordering ‘≤hr’ is only conditionally closed under the formation of
random convolutions.

4. If X ,Y and Θ are random variables such that X |(Θ = θ ) ≤hr Y |(Θ = θ ′) for all
θ and θ ′ in the support of Θ , then X ≤hr Y (Lehmann and Rojo [383]).

5. For 0 < a ≤ 1 and X is IHR, aX ≤hr X (Kochar [346]).
6. If X1,X2, . . . ,Xn are independent, then:

(a) Xk:n ≤hr Xk+1:n (Boland et al. [114, 115]);
(b) X1:1 ≥hr X1:2 ≥hr · · · ≥hr X1:n;
(c) Xk:n−1 ≥hr Xk:n, k = 1,2, . . . ,n− 1.

The results in (b) and (c) are due to Korwar [352] in connection with k-out-of-n
system. Proofs of the above properties along with some more general results are
given in Sect. 1.B of Shaked and Shantikumar [531].

7. If the hazard rate h(x) of X is such that xh(x) is increasing, then Y = aX , a ≥ 1,
satisfies X ≤hr Y .
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8.4 Mean Residual Life Order

Let X be a non-negative random variable representing the lifetime of a device with
E(X) = μ < ∞. Then, the comparison of the mean residual lives of X and Y by their
magnitudes provides a stochastic ordering of the distributions of X and Y . Assume
also that E(Y )< ∞.

Definition 8.3. X is said to be smaller than Y in mean residual quantile function
order if

MX (u)≤ M∗
Y (u),

written as X ≤mrl Y , where

MX(u) = mX(QX (u)) and M∗
Y (u) = mY (QX(u)).

Example 8.4. Let X and Y have distributions with quantile functions

QX(u) = 1− (1− u)
1
c , c > 0,

and

QY (u) = 1− (1− u)−
1
c − 1, c > 0,

respectively. Then,

FY (x) = (1+ x)−c, x > 0.

We have

MX (u) =
1

1− u

∫ 1

u
(1− p)q(p)d p =

(1− u)
1
c

c+ 1
,

MY (x) =
1+ x
c− 1

,

and

M∗
Y (u) = mY (QX(u)) =

2− (1− u)
1
c

c− 1
, c > 1,

MX (u)−M∗
Y (u) = 2c(1− u)

1
c − 2(c+ 1)

= 2c

{
(1− u)

1
c − c+ 1

c

}
< 0.

Hence, X ≤mrl Y .
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There are several equivalent conditions for the validity of X ≤mrl Y as presented
in the following theorem.

Theorem 8.11. X ≤mrl Y if and only if any of the following conditions hold:

(a) mX (x)≤ mY (x) for all x > 0;

(b)
∫ ∞

x FY (t)dt∫ ∞
x FX (t)dt

is an increasing function of x, or equivalently

1

FY (QX (u))

∫ ∞

QX (u)
FY (x)dx ≥ 1

1− u

∫ 1

u
(1− p)qX(p)d p;

(c) PX (u)
P∗

Y (x)
is an increasing function of u, when PX(u) is the partial mean

PX(u) =
∫ 1

u
(1− p)q(p)d p

defined in (6.47) and

P∗
Y (u) = PY (QX (u)) =

∫ ∞

QX (u)
FY (t)dt.

Notice that (a) is the definition of the mean residual life order in the distribution
function approach. Differentiating (b) and noting that the derivative is non-negative,
we get (a). Setting x = Q(u) in (b), we obtain (c) which is equivalent to (b).

The classes of life distributions induced by ≤mrl are presented in the following
theorem.

Theorem 8.12. (a) X is DMRL if and only if any one of the following properties
hold:

(i) Xt ≥mrl Xt′ for t ′ ≥ t;
(ii) X ≥mrl Xt;

(iii) X + t ≤mrl X + t ′.

(b) X is DRMRL if and only if any one of the following properties hold:

(i) X ≥mrl Z;
(ii) Xt ≥mrl Zt ;

(iii) Z ≤mrl Zt .

Part (a) follows readily from the fact that the mean residual life of Xt is m(x+ t)
and the definition of ≤mrl. To prove (b), recall Definition 4.17. X is said to DRMRL
if and only if eX(u)≤ MX (u), where (4.24)

e(u) =

∫ 1
u [Q(p)−Q(u)](1− p)q(p)d p∫ 1

u (1− p)q(p)
.
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The mean residual functions of X , Z, Xt and Zt are, respectively, m(x), e(x), m(x+ t)
and m∗(x+ t) (4.23). Hence, (i) implies

X ≥mrl Z ⇔ m(x)≥ e(x)

⇔ MX (u)≥ eX (u)

⇔ X is DRMRL.

Other properties follow similarly.
Regarding the closure properties enjoyed by ≤mrl, some of the important ones

are as follows:

1. For every increasing convex function φ(x), X ≤mrl Y implies φ(X)≤mrl φ(Y ).
2. The mean residual life order is closed with respect to the formation of mixtures

under certain conditions only. If X |(Θ = θ ) ≤ Y |(Θ = θ ′) for all θ , θ ′ in the
support of Θ , then X ≤mrl Y (Nanda et al. [460]).

3. (Xi,Yi), i = 1,2, . . . ,n, are independent pairs of IHR random variables such that
Xi ≤mrl Yi for all i, then (Pellerey [490])

n

∑
i=1

Xi ≤mrl

n

∑
i=1

Yi.

4. For a sequence {Xn}, n= 1,2, . . . , of independent and identically distributed IHR
random variables,

M

∑
i=1

Xi ≤mrl

N

∑
i=1

Xi,

where M and N are positive integer valued random variables such that M ≤mrl N
(Pellerey [490]).

5. If X is DMRL and 0 < a ≤ 1, then aX ≤mrl X .
6. Let X1,X2, . . .Xn be independent. If Xi ≤mrl Xn, for i = 1,2, . . . ,n− 1, then

Xn−1:n−1 ≤mrl Xn:n.
7. Let U be a random variable with mixture distribution function αFX(x) + (1−

α)FY (x), 0 < α < 1. If X ≤mrl Y , then X ≤mrl U ≤mrl Y .

The hazard quantile function and the mean residual quantile function are closely
related and determine each other. Moreover, the IHR class of life distributions is
a subclass of the DMRL class. We now examine how the orderings based on the
hazard quantile and mean residual quantile functions imply each other.

Theorem 8.13. If X ≤hr Y , then X ≤mrl Y , but the converse need not be true.
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Proof. We have

X ≤hr Y ⇒ HX (u)≥ H∗
Y (u)

⇒
∫ 1

u

d p
HX(p)

≤
∫ 1

u

d p
HY ∗(p)

⇒
∫ 1

u
(1− p)qX(p)d p ≤

∫ ∞

Q(u)

FY (t)dt
fY (t)

⇒ MX (u)≤ M∗
Y (u)

⇒ X ≤mrl Y.

To prove the second part, let X have standard exponential distribution with

QX(u) =− log(1− u)

so that E(X) = 1, and Y be Weibull with

QY (u) = σ(− log(1− u))
1
λ .

The parameters of Y be chosen such that λ > 1 and E(Y ) < 1. Since λ > 1, Y is
IHR and hence NBUE. This means that

MY (u)≤ 1 = E(X) = MX (u) for all 0 < u < 1.

Thus, Y ≤mrl X . On the other hand, HX(u) = 1 and

hY (x) =
λ

σλ xλ−1.

This gives

H∗
Y (u) =

λ
σλ (− log(1− u))λ−1

or

HX (u)−H∗
Y (u) = 1− λ

σλ (− log(1− u))λ−1.

We can see that X and Y are not ordered in hazard rate since

HX(u)≤ H∗
Y (u) for u in

⎛
⎝0,1− exp

(
σλ

λ

) 1
λ−1

⎞
⎠

and

HX(u)≥ H∗
Y (u) in

⎛
⎝1− exp

(
σλ

λ

) 1
λ−1

,1

⎞
⎠ .
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The above result leads us to seek conditions under which the ≤hr ordering can be
generated from the ≤mrl ordering.

Theorem 8.14 (Belzunce et al. [86]).

1. X ≤hr Y ⇒ min(X ,Z) ≤mrl min(Y,Z) for any non-negative random variable Z
independent of X and Y;

2. X ≤hr Y ⇒ 1− e−sX ≤mrl 1− e−sY , s > 0.

A result that is helpful in establishing the mrl ordering is stated in the following
theorem.

Theorem 8.15. If X and Y have finite means,

X ≤mrl Y ⇔ ZX ≤hr ZY ,

where ZX and ZY denote the equilibrium random variables corresponding to X and
Y , respectively.

This result is immediate from the fact that the hazard quantile function of ZX (ZY )
is the reciprocal of the mean residual quantile function of X(Y ). A comparison
between the usual stochastic order and the mrl order is even more interesting.
Although the mean residual life function determines the distribution uniquely, there
is no implication between ≤st and ≤mrl. This is seen from the following examples
furnished by Gupta and Kirmani [241]. Upon choosing

FX(x) =

⎧
⎨
⎩

e−x, 0 ≤ x < 1,

e−x
1
2 , x ≥ 1,

and

FY (x) = e−x
1
2 , x > 0,

we see that FY (x) ≤ FX(x) or X ≥hr Y . At the same time, mX(x) and mY (x) are not
ordered. Secondly, in the counter example in Theorem 8.13, FX (x)−FY (x) can have
both negative and positive signs ruling out either X ≤hr Y or X ≥hr Y . But, X ≥mrl Y .
With additional assumptions on X and Y , implications between the two orders can
be established as provided in the following theorem.

Theorem 8.16 (Gupta and Kirmani [241]).

1. If MX (u)
M∗

Y (u)
is increasing in u, then

X ≤mrl Y ⇒ X ≤hr Y ⇒ X ≤st Y ;

2. If MX (u)
M∗

Y (u)
≥ E(X)

E(Y) , then

X ≤mrl Y ⇒ X ≤st Y.
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We have conditions under which the mrl order ensures stochastic equality of X
and Y . If X ≥mrl Y , E(Y ) > 0, E(X) = E(Y ) and V (X) = V (Y ), then X and Y
have the same distribution.

For some additional results on mrl ordering, one may refer to Alzaid [35], Ahmed
[28], Joag-Dev et al. [298], Fagiouli and Pellerey [190, 192], Hu et al. [288], Zhao
and Balakrishnan [602] and Nanda et al. [459].

Another stochastic order that involves the mean residual life is the harmonic
mean residual life order defined as follows.

Definition 8.4. X is said to be smaller than Y in harmonically mean residual life
order, denoted by X ≤hmrl Y , if and only if

{
1
x

∫ x

0

dt
mX(t)

}−1

≤
{

1
x

∫ x

0

dt
mY (t)

}−1

,

or equivalently

∫ u

0

qX(p)d p
MX (p)

≥
∫ u

0

qX(p)d p
MY (QX (p))

.

Example 8.5. Let X be distributed as Pareto I with FX(x) = ( x
σ )

−α1 . Then, we have

QX(u) = σ(1− u)
− 1

α1 ,

MX(u) = σ
(1− u)

− 1
α1

α1 − 1
,

∫ u

0

qX(p)d p
MX(p)

=
α1 − 1

α1
(− log(1− u)).

Assume that Y has Pareto distribution with

FY (x) =
( x

σ

)−α2
,

MY (QX(u)) = σ
(1− u)

− 1
α1

α2 − 1
,

∫ u

0

qX(p)d p
M∗

Y (p)
=

α2 − 1
α1

(− log(1− u)).

Hence, X ≤hmrl Y if and only if α1 ≥ α2.

Some equivalent conditions for X ≤hmrl Y are as follows:

(i) ∫ ∞
x FX (t)dt

E(X)
≤
∫ ∞

x G(t)dt
E(Y )

(∫ 1
u (1− p)q(p)d p

E(X)
≤
∫ ∞

QX (u)
G(t)dt

E(Y )

)
;
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(ii) Eφ(X)
E(X) ≤ Eφ(Y )

E(Y) for all increasing convex functions φ(x);

(iii) PX (u)
E(X) ≤ P∗

Y (u)
E(Y ) , where P∗

Y (u) is as in Part (c) of Theorem 8.11.
As a further consequence of the hmrl order, we also have

X ≤hmrl Y ⇒ E(X)≤ E(Y )

and in addition if Y is NWUE (Kirmani [328, 329]), then

V (X)≤V (Y );

(iv) ZX ≤st ZY .

The preservation properties enjoyed by the hmrl order are summarized in the
following theorem. Here, all the variables involved X ,Y,Xi and Yi are non-negative.
For proofs and other details, we refer the reader to Pellerey [490] and Nanda et al.
[460].

Theorem 8.17. (a) (Xi,Yi), i = 1,2, . . . ,n, are independent pairs of random vari-
ables such that Xi ≤hmrl Yi for all i. If Xi,Yi are all NBUE, then

n

∑
i=1

Xi ≤hmrl

n

∑
i=1

Yi;

(b) (Xn) and (Yn) are sequences of NBUE independent and identically distributed
random variables satisfying Xn ≤hmrl Yn, n = 1,2, . . . . If M and N are positive
integer-valued random variables independent of the sequences {Xn} and {Yn}
such that M ≤hmrl N, then

M

∑
i=1

Xi ≤hmrl

N

∑
j=1

Yj;

(c) Let X, Y and Θ be random variables with X |(Θ = θ )≤hmrl Y |(Θ = θ ′) for all
θ and θ ′ in the support of Θ . Then, X ≤hmrl Y ;

(d) If X ,Y and Θ are random variables such that X |(Θ = θ )≤hmrl Y |(Θ = θ ) for
all θ in the support of Θ along with the additional condition

E(Y |Θ = θ ) = kE(X |Θ = θ ),

where k is independent of θ , then X ≤hmrl Y ;
(e) If E(X),E(Y ) > 0 and E(X) ≤ E(Y ), then X =hmrl Y if and only if X =st UY ,

where U is a Bernoulli variable independent of Y ;
(f) If U has mixture distribution

FU(x) = αFX(x)+ (1−α)FY(x), 0 < α < 1,
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then

X ≤hmrl Y ⇒ X ≤hmrl U ≤hmrl Y.

The DMRL class and NBUE class of life distributions can be characterized by
the hmrl order as given in the following theorem.

Theorem 8.18. (i) X is DMRL ⇔ Xt ≥hmrl Xt′ , t ′ ≥ t ≥ 0;
(ii) X is NBUE ⇔ X ≤hmrl Y , where Y is independent of X and E(Y )> 0;

(iii) X is NBUE ⇔ X +Y1 ≤hmrl X +Y2, where Y1 and Y2, are independent of X,
E(Yi)< ∞, i = 1,2, and Y1 ≤hmrl Y2.

The results in Parts (ii) and (iii) are due to Lefevre and Utev [381].
Finally, we study the relationships the hmrl order have with some other orders.

First of all, by the increasing nature of harmonic averages, we have

X ≤mrl Y ⇒ X ≤hmrl Y.

Even otherwise, in terms of quantile functions,

X ≤mrl Y ⇒ MX (u)≤ M∗
Y (u), where M∗

Y (u) = MY (QX (u)).

⇒ qX(u)
MX (u)

≥ qX(u)
MY ∗(u)

⇒
∫ u

0

qX(p)d p
MX(p)

≥
∫ u

0

qX(p)d p
M∗

Y (p)d p

⇔ X ≤hmrl Y.

The converse need not be true and so the ≤hmrl order is weaker than the ≤mrl order.
Moreover, neither the usual stochastic order nor the hmrl order imply the other (see
Deshpande et al. [173]).

8.5 Renewal and Harmonic Renewal Mean Residual
Life Orders

Recall the definition of the renewal mean residual life function (4.23)

m∗(x) =
∫ ∞

x (t − x)F(t)dt∫ ∞
x F(t)dt

, (8.6)

which is an alternative to the traditional mean residual life function, as it facilitates
all the functions and calculations enjoyed by the latter. The quantile-based defini-
tion is
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e(u) = m∗(Q(u)) =

∫ 1
u [Q(p)−Q(u)](1− p)q(p)d p∫ 1

u (1− p)q(p)d p

=

{∫ 1

u
(1− p)q(p)d p

}−1 ∫ 1

u

∫ 1

p
(1− t)q(t)q(p)dtd p.

(8.7)

In this section, we discuss the properties of a stochastic order based on the e(u) in
(8.7), and these results are taken from Nair and Sankaran [446].

Definition 8.5. The random variable X is said to be less (greater) than Y in renewal
mean residual life order, denoted by X ≤rmrl Y , if and only if

m∗
X (x)≤ (≥)m∗

Y (x) for all x ≥ 0,

or equivalently

eX (u)≤ (≥)e∗Y (u) for all 0 < u < 1,

where e∗Y (u) = m∗
Y (QX(u)) and eX(u) = m∗

X (QX(u)).

Example 8.6. Let X be distributed with quantile function

QX(u) = 1− (1− u)
1
3

and Y have its quantile function as

QY (u) = (1− u)−
1

12 − 1.

Then, from (8.7), we have

eX (u) =
(1− u)

1
3

5
.

Again, m∗
Y (x) =

2+x
10 so that

e∗Y (u) =
3− (1− u)

1
3

10
.

It is easy to see that eX(u)≤ e∗Y (u) for all u, and so X ≤rmrl Y .
Some other conditions that characterize the rmrl order are as follows:

(a)
∫ ∞

x
∫ ∞

u FX (t)dtdu∫ ∞
x
∫ ∞

u FY (t)dtdu
is increasing in x over {x|∫ ∞

x FY (t)dt > 0};

(b) (
∫ ∞

x FY (t)dt)(
∫ ∞

x

∫ ∞
u FX (t)dtdu)≤ (

∫ ∞
x FX (t)dt)(

∫ ∞
x

∫ ∞
u FY (t)dtdu);

(c)
∫ ∞

x E(X−t)+dt∫ ∞
x E(Y−t)+dt is decreasing.
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By the methods used earlier, the results in (a), (b) and (c) above can also be
expressed in terms of quantile functions.

One issue of primary interest is the relationship between the usual mrl order and
the rmrl order, which is described in the following theorem.

Theorem 8.19. If X ≤mrl Y , then X ≤rmrl Y . But, the converse is not true.

Proof. For simplicity, we write QX (u) = Q(u) throughout the proof. We have

X ≤mrl Y ⇒ 1
1− u

∫ 1

u
(1− p)q(p)d p ≤ 1

G(Q(u))

∫ 1

u
G(Q(p))q(p)d p

⇒ 1− u∫ 1
u (1− p)q(p)d p

≥ GQ(u)∫ 1
u G(Q(p))q(p)d p

⇒ d
du

log
∫ 1

u
(1− p)q(p)d p ≤ d

du
log
∫ 1

u
G(Q(p))q(p)d p

⇒
∫ u

p

( d
dt

log
∫ 1

t
(1− p)q(p)d pdt

)
≤
∫ u

p

( d
dt

log
∫ 1

t
G(Q(p))q(p)d p

)

⇒
∫ 1

u (1− p)q(p)d p∫ 1
p (1− t)q(t)dt

≤
∫ 1

u G(Q(p))q(p)d p∫ 1
p G(Q(t))q(t)dt

⇒
∫ 1

p

∫ 1
u (1− t)q(t)q(u)du
∫ 1

p (1− t)q(t)dt
≤
∫ 1

p

∫ 1
u G(Q(t))q(t)q(u)du
∫ 1

p GQ(t)q(t)dt

⇒ eX(p)≤ e∗Y (p)⇔ X ≤rmrl Y.

To prove the latter part of the theorem, we reconsider Example 8.5 wherein we had
established that for the random variables X and Y described therein, X ≤rmrl Y . In
this case, we also have

MX(u) =
(1− u)

1
3

4

and

mY (x) =
2+ x
11

giving

M∗
Y (u) =

3− (1− u)
1
3

11
.

Thus,

MX (u)−M∗
Y (u) =

3
44

{
5(1− u)

1
3 − 4

}
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which is decreasing in (0, 61
125) and increasing in ( 61

125 ,1). Hence, X and Y are not
ordered in mrl.

Remark. One could see that the ≤rmrl order is strictly weaker than the ≤mrl order
and consequently generates a larger class of life distributions.

As was done in the mrl order, we consider conditions under which the two orders
become equivalent in the following theorem.

Theorem 8.20. If eX (u)
e∗Y (u)

, is an increasing function of u, then

X ≤mrl Y ⇔ X ≤rmrl Y.

Proof. Since eX (u)
e∗Y (u)

is an increasing function of u, we have

e′X(u)
eX(u)

≥ e∗′Y (u)
e∗Y (u)

. (8.8)

From (4.25), we have

MX(u) =
eX(u)qX(u)

qX(u)+ e′X(u)
. (8.9)

But, by definition, we have

e∗Y (u) = m∗
Y (QX (u))

=

∫ ∞
QX (u)

(t − x)FY (t)dt
∫ ∞

QX (u)
FY (t)dt

=

∫ 1
u

∫ 1
p FY (QX (t))qX(t)dt

∫ 1
u FY (QX(p))qX (p)d p

.

Differentiating and simplifying, we obtain

M∗
Y (u) =

e∗Y (u)qX(u)
qX(u)+ e′X(u)

(8.10)

From (8.8), (8.9) and (8.10), whenever X ≤rmrl Y , we must have

1
MX(u)

=
1

eX (u)
+

e′X (u)
eX (u)

=
1

e∗Y (u)
+

e∗′Y (u)
e∗Y (u)

=
1

M∗
Y (u)
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and so

MX (u)≤ M∗
Y (u)⇔ X ≤mrl Y.

The reverse inequality X ≤mrl Y ⇒ X ≤rmrl Y has already been established in
Theorem 8.8 and this completes the proof.

The procedure of taking harmonic averages and then comparing life distributions
based on them is also possible with renewal mean residual life functions as described
below.

Definition 8.6. X is said to be smaller than Y in harmonic renewal mean residual
life, denoted by X ≤hrmrl Y , if and only if

1
x

∫ x

0

dt
m∗

X (t)
≤ 1

x

∫ x

0

dt
m∗

Y (t)
.

An equivalent definition is

∫ u

0

qX(p)d p
eX(p)

≥
∫ u

0

qX(p)d p
e∗Y (p)

. (8.11)

It can be shown that (8.11) is equivalent to

E[(X − x)+]2

E(X2)
≤ E[(Y − x)+]2

E(Y 2)
.

The following properties hold for the ≤hrmrl ordering:

(i) If eX (u)
e∗Y (u)

, is increasing in u, then X ≤hrmrl Y ⇔ X ≤hrmrl Y ;

(ii) In general,

X ≤hmrl Y ⇒ X ≤hrmrl Y ;

(iii) X ≤rmrl Y ⇒ X ≤hrmrl Y .

The preservation properties and other implications of the rmrl and hrmrl orders have
not yet been studied in detail.

8.6 Variance Residual Life Order

Earlier in Sect. 4.3, we have defined the variance residual life of X as

σ2(x) =
2

F(x)

∫ ∞

x

∫ ∞

u
F(t)dtdu−m2(x),
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or in terms of quantile function as

V (u) = σ2Q(u) = (1− u)−1
∫ 1

u
M2(p)d p, (8.12)

where M(u) is the mean residual quantile function.

Definition 8.7. We say that X is smaller than Y in variance residual life, denoted
by X ≤vrl Y , if and only if any of the following equivalent conditions hold:

(i) σ2
X(x)≤ σ2

Y (x) for all x > 0;
(ii) VX(u)≤V ∗

Y (u) for all 0 < u < 1, where V ∗
Y (u) = σ2

Y (QX(u)).

For the definition in (i) and properties of the vrl ordering, one may refer to Singh
[541].

Connection of the ≤vrl ordering with the ≤mrl ordering is presented in the next
theorem.

Theorem 8.21. If X ≤mrl Y , then X ≤vrl Y .

Proof. The result easily follows from the fact

X ≤mrl Y ⇒ MX(u)≤ M∗
Y (u)

and (8.12).

If F1 and F2 are survival functions of the equilibrium random variables of X and Y ,
respectively, Fagiouli and Pellery [192] defined

X ≤vrl Y if

∫ ∞
x F1(t)dt∫ ∞
x F2(t)dt

is nonincreasing in x ≥ 0. There has not been much investigation on the preservation
properties and other aspects of the vrl order.

8.7 Percentile Residual Life Order

The percentile life ordering was introduced by Joe and Proschan [301] in the context
of testing the hypothesis of the equality of two distributions. Earlier, we have defined
the αth percentile residual life function for any 0 < α < 1 as

pα(x) = F−1(1− (1−α)F(x))− x

or

pα(u) = pα(Q(u)) = Q[1− (1−α)(1− u)]−Q(u).
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Franco-Pereira et al. [202] have discussed some properties of the percentile order.

Definition 8.8. We say that X is smaller than Y in the α-percentile residual life,
denoted by X ≤prl−α Y , if and only if

pα ,X(x)≤ pα ,Y (x) (Pα ,X(u)≤ P∗
α ,Y (u))

for all x (for all u) and P∗
α ,Y (u) = pα ,Y (Q(u)).

One specific aspect about the prl order is that, unlike other orderings we have
discussed, it is indexed by α which can take any value in (0,1). Moreover, the
percentile residual life function Pα(u), for a given α , does not determine the
distribution uniquely. If X ≤prl−α Y , then the upper end point of the support of X
cannot exceed that of Y , but it is not necessary that a corresponding result hold for
the left end point of the supports of the random variables.

Example 8.7. Consider the distribution (Pareto) with quantile function

Q(u) = (1− u)−
1
α , 0 < u < 1

Pα(u) = [1−{1− (1−α)(1−u)}]− 1
α − (1− u)−

1
α

= (1− u)−
1
α [(1− u)−

1
α − 1].

Let X and Y be random variables with the above distribution with parameters α1

and α2, respectively. Then, we find

Pα ,X(u)−P∗
α ,Y (u) = (1− u)

− 1
α1

{
(1−α)

− 1
α1 − (1−α)

− 1
α2

}
,

and so

X ≤prl−α Y for α2 ≤ α1.

Two useful characterizations of the ≤prl order, one in terms of quantile functions and
the other in terms of distribution functions, are presented in the following theorem
both of which are direct consequences of the definition.

Theorem 8.22. X ≤prl−α Y and only if

(i) QX(α +(1−α)u)≤ QY (α +(1−α)Q−1
Y (QX(u))),

(ii) FY (QX (u))
u ≤ FY (QX (1−α)(u))

(1−α)u for all 0 < u < 1.

The following relationships exist between the prl order and some other orders we
have discussed:
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(a) X ≤hr Y ⇔ X ≤prl−α Y for all α in (0,1);
(b) For a specific α , X ≤hr Y ⇒ X ≤prl−α Y . So, the result in (a) is not practically

useful;
(c) Percentile life orders do not preserve expectations and as such ≤prl−α neither

implies the usual stochastic order, mean residual life order, and hmrl order,
for any α . Further, stochastic order does not imply prl order, or mrl or hmrl
orders;

(d) If, for 0 < β < 1, X ≤prl−α Y for every α in (0,β ), then X ≤hr Y . Naturally, if
X ≤prl−α Y for all α in (0,β ), then X ≤prl−α Y for all α .

Some interesting preservation properties, established by Franco-Pereira et al.
[202], are as follows:

1. For an increasing function φ(·), we have

X ≤prl−α Y ⇔ φ(X)≤prl−α φ(Y );

2. Let (Xn), (Yn), n = 1,2, . . . , be two sequences of random variables such that
Xn → X and Yn → Y in distribution as n → ∞. If X and Y have continuous
distributions with interval support, then for any α , if Xn ≤prl−α Yn holds, n =
1,2, . . . , then X ≤prl−α Y ;

3. Let Xθ , θ ∈ Θ , and Yθ , θ ∈ Θ , be two families of random variables with
continuous distributions. If

FW (x) =
∫

Θ
FX(x|θ )dH(θ )

and

FZ(x) =
∫

Θ
FY (x|θ )dH(θ ),

where H is some distribution function on Θ and U is a random variable such that

Xθ ≤prl−α U ≤prl−α Yθ for all θ ∈Θ ,

then

W ≤prl−α Z.

In particular, if W has the mixture distribution function

FW = pFX +(1− p)FY

for some 0 ≤ p ≤ 1, then

X ≤prl−α Y ⇒ X ≤prl−α W ≤prl−α Y ;
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4. The prl-α order is not closed under the formation of parallel or series systems.
However, if Xi, Yi, i = 1,2, . . . ,n, are independent and identically distributed
random variables with continuous distributions, satisfying X1 ≤prl−α Y1, then

min(X1,X2, . . . ,Xn)≤prl−β (Y1,Y2, . . . ,Yn),

where β = 1− (1−α)n.

8.8 Stochastic Order by Functions in Reversed Time

Earlier in Sect. 2.4, we have defined and given examples of reliability functions
in reversed time like the reversed hazard quantile function and the reversed mean
residual quantile function. These functions have also been used in Sect. 4.5 to
introduce various ageing classes. It is therefore possible to order life distributions
on the basis of their magnitudes, and this is the focus of the present section.

8.8.1 Reversed Hazard Rate Order

Let X and Y be two absolutely continuous random variables with reversed hazard
rates

λX(x) =
fX (x)
FX(x)

and λY (x) =
fY (x)
FY (x)

,

respectively.

Definition 8.9. X is said to be smaller than Y in reversed hazard rate order, denoted
by X ≤rh Y , if and only if

λX(x)≤ λY (x) for all x > 0,

or equivalently

ΛX(u)≤ Λ∗
Y (u) for all 0 < u < 1,

where Λ∗
Y (u) = λY (QX(u)) (see (2.50)).

Some other conditions that characterize the ≤rh order are presented in the
following theorem.
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Theorem 8.23. X ≤rh Y if and only if

(a)
Q−1

Y (QX (u))
u ≤ Q−1

Y QX (v)
v for all 0 < u ≤ v < 1;

(b) FY (x)
FX (x)

increases in x;

(c) X |(X ≤ x)≤st Y |(Y ≤ x) for all x > 0.

Nanda and Shaked [461] have proved a basic relationship between the ≤hr order and
the ≤rh order as presented in the following theorem, and it simplifies the proofs of
many results.

Theorem 8.24. For two continuous random variables X and Y ,

X ≤hr Y ⇒ φ(X)≥rh φ(Y )

for any continuous function φ which is strictly decreasing on (a1,b2), where a1

is the lower end of the support of X and b2 is the upper end of the support of Y .
Furthermore,

X ≤rh Y ⇒ φ(X)≤rh φ(Y )

when φ is strictly increasing.

Various properties of the ≤rh order have been studied by many authors including
Kebir [321], Shaked and Wang [533], Kijima [325], Block et al. [111], Hu and He
[285], Nanda and Shaked [461], Gupta and Nanda [254], Yu [597], Zang and Li
[599] and Brito et al. [120]. There exists a relationship between the ≤st and the ≤rh

orders which is stated in the following theorem.

Theorem 8.25. If X ≤rh Y , then X ≤st Y .

Proof. We observe that

X ≤rh Y ⇒ λX(u)≤ λY (QX (u))⇒ 1
uq(u)

≤ 1
FY (QX(u))qY (QX (u))

⇒− logu ≤− logFY (QX(u))⇒ 1
u
≤ 1

FY (QX(u))

⇒ QX (u)≤ QY (u)⇒ X ≤st Y,

as required.
The preservation properties enjoyed by the ≤rh order are as follows:

(i) Convolution property Let (Xi,Yi), i = 1,2, . . . ,n, be n pairs of random variables
such that Xi ≤rh Yi for all i. If all Xi,Yi have decreasing reversed hazard rates,
then

n

∑
i=1

Xi ≤rh

n

∑
i=1

Yi;

(ii) Mixture function If X |(Θ = θ ) ≤rh Y |(Θ = θ ′) for all θ ,θ ′ in the support of
Θ , then X ≤rh Y ;
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(iii) Order statistics

(a) If Xi are independent, i = 1,2, . . . ,n, then

Xk:n ≤rh Xk+1:n, k = 1,2, . . . ,n− 1;

(b) If Xn ≤rh Xi for i = 1,2, . . . ,n− 1, then

Xk−1:n−1 ≤rh Xk:n, k = 2,3, . . . ,n;

(c) Let Xi,Yi be pairs of independent absolutely continuous random variables
with Xi ≤rh Yi, i = 1,2, . . . ,n. If the Xi’s and Yi’s are also identically
distributed, then

Xk:n ≤rh Yk:n, k = 1,2, . . .m.

Under slightly different conditions, without the assumption of identical distributions
for (X1,X2, . . . ,Xn) and (Y1,Y2, . . . ,Ym), if Xi ≤rh Yj for all i, j, i = 1,2, . . . ,n, j =
1,2, . . . ,m, the result that

Xi:n ≤rh Yj:m

holds for i− j ≥ max(0,m− n).

8.8.2 Other Orders in Reversed Time

The reversed mean residual life function and the corresponding reversed mean
residual quantile function have been defined earlier as

r(x) = E[x−X |X ≤ x] =
1

F(x)

∫ x

0
F(t)dt

and

R(u) = r(Q(u)) =
1
u

∫ u

0
pq(p)d p.

Nanda et al. [459] introduced an ordering of reversed mean residual life, and their
definition and the equivalent version in terms of quantile function are presented in
the following theorem.

Definition 8.10. The random variable X is said to be smaller than the random
variable Y in reversed mean residual life, denoted by X ≤MIT Y , if and only if

rX (x)≥ rY (x) for all x,
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or equivalently

RX(u)≥ R∗
Y (u) for all 0 < u < 1,

where R∗
Y (u) = rY (QX(u)).

Sometimes, the reversed mean residual life is also called the mean inactivity time
and so the corresponding ordering is called the mean inactivity time order or simply
the MIT order. The relationship of the MIT order to some other orders has been
discussed in the literature; see, e.g., Nanda et al. [462], Kayid and Ahmad [319]
and Ahmed et al. [24]. It has been shown that, for 0 < t1 < t2, X is DRHR if and
only if

(i) X(t1) ≤st X(t2), X(t) = t −X |(X ≤ t) is the inactivity time;
(ii) X(t1) ≤hr X(t2);

(iii) for all positive integers m and n,

Fm+n(x)≥ Fm
( n

m
x
)

Fn
(m

n
x
)
.

Further,

X ≤rh Y ⇒ X ≤MIT Y,

but the converse need not be true.
Ahmed and Kayid [23] have shown that if rX (x)

rY (x)
is an increasing function of x,

then the ≤rh order and the ≤MIT order are equivalent. Li and Xu [393] have made
a comparison of the residual Xt and the inactivity time X(t) of series and parallel
systems. Instead of considering the life at a specified time t, Li and Zuo [395]
discussed the residual life at a random time Y through the random residual life of
the form

XY = (X −Y )|(X > Y )

and the inactivity at the random time of the form

X(Y ) = (Y −X)|(X ≤ Y ).

Notice that the distribution function of XY then becomes

P(XY ≤ x) = P(X −Y ≤ x|X > Y )

=

∫ ∞
0 [FX(y+ x)−FX(y)]dFY (y)∫ ∞

0 FY (y)dF(y)
.

They then established that X has increasing mean inactivity time if and only if
X ≤MIT X +Y for any Y independent of X . Moreover, if φ is a strictly increasing
concave function with φ(0) = 0, then
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X ≤MIT Y ⇒ φ(X)≤MIT φ(Y ).

Ortega [474] has some additional results concerning the ≤rh and ≤MIT orders
presented in the following theorem.

Theorem 8.26. When X and Y are absolutely continuous random variables,

X ≤rh Y ⇔ exp[sX ]≤MIT exp(sY ) for all s > 0.

It may be noted that Theorem 8.26 characterizes the ≤rh order in terms of the ≤MIT

order. Conversely, the reverse characterization is apparent from

X ≤MIT Y ⇔ logX
1
S ≤rh logY

1
S for all s > 0.

The MIT order is also related to the mrl order as

X ≤MIT Y ⇒ φ(X)≥mrl φ(Y )

for any strictly decreasing convex function φ : [0,∞)→ [0,∞).
The following preservation properties of order statistics and convolutions hold in

this case.

Theorem 8.27. (i) Let (X1,X2, . . . ,Xn) and (Y1,Y2, . . . ,Ym) be two sets of inde-
pendent and identically distributed random variable with support [0,∞). Then,

X1 ≤MIT Y1 ⇒ Xk:n ≤rh Yl:m, k ≥ l and n− k ≤ m− l;

(ii) If Xn ≤MIT Xi, i = 1,2, . . . ,n− 1, then

Xk+1:n ≤rh Xk:n−1, k = 1,2, . . . ,m− 1;

also, when X1,X2, . . . ,Xn are independent absolutely continuous random vari-
ables with Xi ≤MIT Yj for all i, j, then:

(a) Xl:n ≤rh Yl:n, l = 1,2, . . . ,n;
(b) Xk:n ≤rh Yl:n, k ≥ l, n ≤ m.

Theorem 8.28. Let X = ∑N
i=1 Xi and Y = ∑M

i=1 Yi, where (Xi,Yi) are independent
pairs of random variables such that Xi has decreasing reversed hazard rate, Yi also
has decreasing reversed hazard rate, and Xi ≥MIT Yi, i = 1,2, . . . , and N ≥rh M, then
X ≥MIT Y .

Another function in reversed time for which stochastic orders can be defined is the
reversed variance residual life (variance of inactivity time, VIT) given by
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v(x) = E
[
(x−X)2|X ≤ x

]− r2(x)

=
2

F(x)

∫ x

0

∫ y

0
F(t)dtdy− r2(x),

or equivalently in quantile form as

D(u) =
1
u

∫ u

0
R2(p)d p

(see (2.53)). Mahdy [408] has then defined the following stochastic order.

Definition 8.11. We say that X is smaller than Y in variance inactivity time order,
denoted by X ≤VIT Y , if and only if

∫ x
0

∫ t
0 FX(y)dydt
FX(x)

≥
∫ x

0

∫ t
0 FY (y)dydt
FY (x)

for all x ≥ 0. In other words,

1
u

∫ u

0
R2

X(p)d p ≥ 1
FY (QX (u))

∫ u

0
R∗2

X (p)d p

for all u in (0,1), where R∗
Y (p) = vY (QX(p))

Some properties of the ≤VIT order are as follows:

1. A necessary and sufficient condition for X ≤VIT Y is that

∫ x
0

∫ t
0 FX(y)dydt∫ x

0

∫ t
0 FY (y)dydt

is an increasing function of x;
2. X has increasing VIT ⇔ X ≤VIT X +Y , where Y is independent of X ;
3. If φ is strictly increasing and concave with φ(0) = 0, then

X ≤VIT⇒ φ(X)≤VIT φ(Y );

4. If X1, . . . ,Xn and Y1, . . . ,Yn are independent copies of X and Y , respectively, then

max
1≤i≤n

Xi ≤VIT max
1≤i≤n

Yi ⇒ X ≤VIT Y.

8.9 Total Time on Test Transform Order

Recall from (5.6) that the total time on test transform (TTT) of X is defined as

T (u) =
∫ u

0
(1− p)q(p)d p.
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The role of this function in characterizing life distributions, ageing properties and
in various other applications have been described earlier in Chap. 5. Here, T (u)
represents the quantile function of a random variable, say XT , in the support of
[0,μ ], where μ = E(X). In this section, we define and study some properties of an
order obtained through the comparison of the TTT’s of two random variables; for
further details, one may refer to Kochar et al. [349] and Li and Shaked [392].

Definition 8.12. A random variable X is said to be smaller than another random
variable Y in total time on test transform order, denoted by X ≤TTT Y , if

TX(u)≤ TY (u)

for all u ∈ (0,1).

Example 8.8. Let X be exponential with mean 1
4 , i.e.,

QX(u) =−4log(1− u),

and Y be uniform with

QY (u) = u.

Then, we have TX(u) = u
4 and TY (u) =

u(2−u)
4 so that

TX (u)−TY (u) =
4
u
(u− 1)< 0 for all 0 < u < 1.

Hence, X ≤TTT Y .

Some interesting relationships possessed by the ≤TTT order are presented in the
following theorem.

Theorem 8.29. (i) X ≤st Y ⇒ X ≤TTT Y ;

(ii) X ≤TTT Y ⇒ aX ≤TTT aY , a > 0;

(iii) XT ≤st YT ⇔ X ≤TTT Y , where XT denotes the random variable with quantile
function T (u);

(iv) X ≤TTT Y ⇒ XT ≤TTT YT ;

(v) X ≤st Y ⇒ XT ≤st YT .

Proof. (i) We note that

T (u) =
∫ u

0
(1− p)q(p)d p

= (1− u)Q(u)+
∫ u

0
Q(p)d p.



8.9 Total Time on Test Transform Order 313

Now,

X ≤st Y ⇒ QX(u)≤ QY (u)

⇒ (1− u)QX(u)+
∫ u

0
QX(p)d p ≤ (1− u)QY (u)+

∫ u

0
QY (p)d p

⇒ TX(u)≤ TY (u)⇒ X ≤TTT Y.

Part (ii) follows from the fact that QaX (a) = aQX(u) and (iii) is obvious from the
definitions of the stochastic and TTT orders. To prove Part (iv), we note that the
transform of XT is

TXT (u) =
∫ u

0
(1− u)tX(u),

where tX(u) = T ′
X (u), the quantile density function of XT . The last equation, using

integration by parts, becomes

TXT (u) = (1− u)TX(u)+
∫ u

0
TX(p)d p.

The proof of Part (iv) is then similar to that of (i). Part (v) is a direct consequence
of Parts (iii) and (i).

Theorem 8.30. If X and Y have zero as the common left end point of their supports,
then for an increasing concave function φ with φ(0) = 0,

X ≤TTT Y ⇒ φ(X)≤TTT φ(Y ).

Theorem 8.31 (Li and Zuo [395]). Let {Xn}, {Yn}, n= 1,2, . . . , be two sequences
of independent and identically distributed random variables and N be a positive
integer valued random variable independent of the X’s and Y ’s. If X1 ≤TTT Y1,
then

min
1≤i≤N

Xi ≤TTT min
1≤i≤N

Yi.

Extensions of the above results are possible if we consider total time on test
transform of order n (TTT− n) introduced earlier in (5.26). Recall that TTT−n is
defined as

Tn(u) =
∫ u

0
(1− p)tn−1(p)d p, n = 1,2, . . . ,

with T0(u) = Q(u) and tn(u) =
dTn(u)

du , provided μn−1 =
∫ 1

0 Tn−1(u)du < ∞.
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Definition 8.13. X is said to be smaller than Y in TTT of order n, written as
X ≤TTT−n Y , if and only if Tn+1,X ≤ Tn+1,Y for all u in (0,1). Denote by Xn and
Yn the random variables with quantile functions Tn,X(u) and Tn,Y (u), respectively.

As in the case of the first order transforms T (u), we have the following
relationships:

(i) X ≤TTT−n Y ⇔ Xn+1 ≤st Yn+1;
(ii) X ≤TTT Y ⇒ X ≤TTT−n Y .

If (X1,X2, . . .Xn) and (Y1,Y2, . . .Yn) are independent copies of X and Y that
are identically distributed and X ≤TTT−n Y , then min(X1,X2, . . . ,Xn) ≤TTT−n

min(Y1,Y2, . . . ,Yn). For further results and other aspects of TTT−n order, we refer
the reader to Nair et al. [447].

8.10 Stochastic Orders Based on Ageing Criteria

So far, our attention has focussed on partial orders that compare life distributions
on the basis of reliability concepts. In view of the predominant role ageing criteria
have in modelling and in the analysis of reliability data, it will be natural to consider
similar comparisons that spell out which of the two given distributions is more
positively ageing than the other in terms of concepts like IHR, IHRA, NBU, etc.
This idea has resulted in some partial orders that are discussed in this section.

We begin with the convex transform order defined by Barlow and Proschan [68].

Definition 8.14. Let X and Y have continuous distributions with FX(0) = FY (0) =
0, and FY (x) be strictly increasing on an interval support. Then, we say that X is less
than Y in convex transform order, denoted by X ≤c Y , if F−1

Y (FX(x)) is a convex
function in x on the support of X , assumed to be an interval.

Notice that according to (8.1), ψFX ,FY (x) = F−1
Y (F(x)) is the relative inverse

function of FX and FY , and it enjoys the properties of ψ mentioned earlier in
Sect. 8.1. An immediate consequence of Definition 8.14 is that if Y is exponential,
then

ψFX ,FY (x) = F−1
Y FX(x) =− 1

λ
log(1−F(x))

is convex, which means that

ψ ′(x) =
1
λ

f (x)

F(x)
=

1
λ

h(x)

is increasing, or X is IHR. It is easy to see that the converse also holds. Thus, we
have an equivalent condition for X to be IHR in terms of ≤c as follows.
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Theorem 8.32. X is IHR if and only if X ≤c Y , where Y is exponential.

In the above result, Y can have any scale parameter. In general, in terms of
distribution function,

FX <c FY ⇔ FX(αx) <c FY (β x)

for all α,β > 0, and so <c is unaffected by scaling. Kochar and Wiens [350] have
developed an ordering based on IHR from the above facts.

Definition 8.15. We say that X is more IHR than Y if X ≤c Y . Making use of (8.3)
and (8.2) and assuming that X and Y have densities, we find

d
dx

F−1
Y FX(x) =

fX (F
−1
X (x))

fY (F
−1

Y (x))

=
fX (QX(u))
fY (QY (u))

=
qY (u)
qX(u)

.

Hence, X ≤c Y if and only if qY (u)
qX (u)

is increasing in u in [0,1].

Theorem 8.33.

X ≤c Y ⇔ XT ≤c YT .

Proof. From the above discussion, we have seen that X ≤c Y if and only if the ratio
of the quantile density functions qY (u)

qX (u)
of X and Y is increasing in u. The quantile

density functions of XT and YT are

tXT (u) = (1− u)qX(u)

and

tYT (u) = (1− u)qY(u).

Since qY
qX

is increasing by hypothesis,
tYT
tXT

is also increasing by virtue of the fact that
tYT
tXT

= qY
qX

. Hence, XT ≤c YT , as required.

There is a preservation property for the order statistics as well as described below.

Theorem 8.34. Let {Xn}, {Yn} be two sequences of independent and identically
distributed random variables and N be a positive integer valued random variable
independent of the Xi’s and Yi’s. If X1 ≤c Y1, then

min
1≤i≤N

Xi ≤c min
1≤i≤N

Yi and max
1≤i≤N

Xi ≤c max
1≤i≤N

Yi.
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A weaker order than the convex transform order is the star order defined as
follows.

Definition 8.16. We say that X is smaller than Y in star order, written as X ≤∗ Y , if
and only if F−1

Y (FX(x)) is star-shaped in x.

By definition of star-shaped functions, it means that, for X ≤∗ Y , we should have
1
x F−1

Y (FX(x)) increasing in x ≥ 0. Now,

xqY (FX(x)) fX (x)−QY (FX(x)) ≥ 0

⇒ qY (u)
QX (u)
qX(u)

−QY (u)≥ 0

⇒ QX(u)qY (u)−QY (u)qX(u)≥ 0

⇒ QY (u)
QX(u)

is increasing in u.

Since X ≤c Y implies qY
qX

is increasing, it follows that

X ≤c Y ⇒ X ≤∗ Y.

The converse need not be true. Bartoszewicz and Skolimowska [78] have shown
that

(a) if X ≤∗ Y , logQY is convex and logQX is concave, then X ≤c Y ;
(b) if FX and FY are absolutely continuous and X ≤∗ Y , x fX (x) is increasing and

xgX(x) is decreasing, then X ≤c Y .

Assume that Y is exponential with scale parameter λ . Then,

X ≤∗ Y ⇒− 1
λ

log(1− u)
Q(u)

is increasing. Hence, by Definition 4.9, X is IHRA. Thus, the star ordering can be
used to define increasing hazard quantile distributions, giving an ordering of IHRA
distributions as follows.

Definition 8.17. X is said to be more IHRA than Y if and only if X ≤∗ Y .

The star ordering enjoys properties similar to the convex transform ordering, and
they are:

(i) X ≤∗ Y ⇒ XT ≤∗ YT ;
(ii) Theorem 8.34 holds when ≤c is replaced by ≤∗;

(iii) X ≤∗ Y ⇒ X p ≤∗ Y p for any p 
= 0.

Ordering life distributions by the NBU property requires the superadditive property
which is defined as follows.
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Definition 8.18. We say that X is more NBU than Y if F−1
Y (FX(x)) is superadditive

in x, i.e., if

F−1
Y FX(x+ y)≥ F−1

Y (FX(x))+F−1
Y (FX(y)) for all x,y ≥ 0. (8.13)

This is denoted by X ≤su Y .

To justify the above definition, we note that when Y is exponential, (8.13) becomes

− 1
λ

log(1−FX(x+ y))≥− 1
λ

log(1−FX(x))− 1
λ

log(1−FY(x)),

or

F(x+ y)≤ F(x)F(y).

Hence, X is NBU by (4.26). Thus, we have the following theorem.

Theorem 8.35. When Y is exponential, X ≤su Y ⇔ X is NBU.

Some other properties of the ≤su order are:

(a) X ≤∗ Y ⇒ X ≤su Y ;
(b) Theorem 8.34 holds when ≤c is replaced by ≤su.

A more general result holds for order statistics that involves all three orders
discussed in this section in the context of k-out-of-n systems as stated in the
following theorem.

Theorem 8.36. If (Xi,Yi), i = 1,2, . . . ,n, are independent pairs of random variables
with the property Xi ≤c (≤∗,≤su)Yi for all i, and Xi’s and Yi’s are identically
distributed, then

Xk:n ≤c (≤∗,≤su)Yk:n, k = 1,2, . . . ,n.

The orderings with respect to other ageing criteria discussed below are due to
Kochar and Weins [350] and Kochar [347].

Definition 8.19. We say that X is more decreasing mean residual life than Y ,
denoted by X <DMRL Y , if

MX(u)
MY (u)

is nonincreasing in u.

Since the reciprocal of the hazard quantile function of Z is the mean residual quantile
function of X , an equivalent condition for X ≤DMRL Y is that

HZ,X(u)
HZ,Y (u)

is non-decreasing in u,
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where HZ,X is the hazard quantile function of the equilibrium distribution of X .
Observe that the definition

MX(u) = mX(QX (u)) =
1

1− u

∫ 1

u
(1− p)qX(p)d p

is the mean residual quantile of X , and similarly

MY (u) = mY (QY (u)) =
1

1− u

∫ 1

u
(1− p)qY(p)d p.

Theorem 8.37. If Y is exponential, then

X ≤DMRL Y ⇔ X is DMRL.

The proof is immediate upon substituting MY (u) = 1
λ in Definition 8.19.

Theorem 8.38.

X ≤DMRL Y ⇔ μY −TY (u)
μX −TX(u)

is increasing in u.

Proof. We have

X ≤DMRL Y ⇔ MX (u)
MY (u)

is increasing

⇔
∫ 1

u (1− p)qX(p)d p∫ 1
u (1− p)qY (p)d p

is increasing

The proof is completed simply by noting that
∫ 1

u (1− p)qX(p)d p = μ −T (u).

Theorem 8.39.

X ≤c Y ⇒ X ≤DMRL Y.

In other words, the IHR order implies the DMRL order.

Definition 8.20. X is said to be smaller than Y in NBUE order (X is more NBUE
than Y ) if and only if

MX (u)
MY (u)

≤ μX

μY
for all u in [0,1],

and we denote it by X ≤NBUE Y .
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Two equivalent conditions for the ≤NBUE order are:

(a)
HZ,X (u)
HZ,Y (u)

≥ μY
μX

;

(b) TX (u)
TY (u)

≥ μX
μY

.

Theorem 8.40. Let Y be an exponential random variable. Then,

X ≤NBUE Y ⇔ X is NBUE.

Proof. Since MY (u) = μY = 1
λ , the definition of ≤NBUE gives the desired result.

Theorem 8.41. If X and Y have supports of the form [0,a), then:

(i) X ≤DMRL Y ⇒ X ≤NBUE Y;
(ii) X ≤∗ Y ⇒ X ≤NBUE Y .

The proof of Part (i) is straightforward from the definitions of the two orderings. To
prove Part (ii), we note that

X ≤∗ Y ⇒ XT ≤∗ YT

⇒ TY (u)
TX(u)

is increasing in u

⇒ TY (u)
TX(u)

≤ TY (1)
TX (1)

=
μY

μX

⇒ X ≤NBUE Y.

The characterization of the class of distributions for which X ≤su Y implies X ≤NBUE

Y remains open.

Definition 8.21. We say that F is more NBUHR (new better than used in hazard
rate) if d

dx ψFX ,FY (x)≥ ψ ′(0), and is denoted by X ≤NBUHR Y .

From this definition, we see that

d
dx

ψ(x) =
d
dx

F−1
Y F(x) =

HX(u)
HY (u)

from the discussion following Definition 8.15. Hence,

X ≤NBUHR Y ⇔ HX(u)
HX(0)

>
HY (u)
HY (0)

,

using which we obtain the interpretation in the following theorem.

Theorem 8.42. If Y is exponential, then X ≤NBUHR Y ⇔ X is NBUHR.



320 8 Stochastic Orders in Reliability

Proof. We observe that

X ≤NBUHR Y ⇔ d
dx

ψ(x)≥ ψ ′(0)

⇔ HX (u)
λ

≥ HX(0)
λ

⇔ X is NBUHR

by Definition 4.6.

A similar definition for the NBUHRA order can be provided as follows.

Definition 8.22. X is more NBUHRA (new better than used in hazard rate average
than Y ), denoted by X ≤NBUHRA Y , if and only if

ψ(x)≥ xψ ′(0).

We then have

X ≤NBUHRA Y ⇒ X is NBUHRA

and

X ≤NBU Y ⇒ X ≤NBUHRA Y ⇒ X ≤NBUHRA Y.

8.11 MTTF Order

Earlier in Sect. 4.2, we have defined the mean time to failure (MTTF) in an age
replacement model as (see (4.19)).

M(T ) =
1

F(T )

∫ T

0
F(t)dt.

Another formulation of MTTF is

μ(u) = M(Q(u)) =
1
u

∫ u

0
(1− p)q(p)d p.

Now, a comparison of life distributions by the magnitude of MTTF is possible by
considering an appropriate stochastic order.

Definition 8.23. A lifetime random variable X is smaller than another lifetime
random variable Y in MTTF order, denoted by X ≤MTTF Y , if and only if μX(u) ≤
μ∗

Y (u) for all u in (0,1) (or equivalently, MX (T ) ≤ MY (T ) for all T > 0), where
μ∗

Y (u) = MY (QX (u)).
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First, we discuss the relationship of the MTTF order with other stochastic orders
discussed earlier.

Theorem 8.43. If X ≤st Y , then X ≤MTTF Y , but the converse is not always true.

The proof of this result and a counter example are given in Asha and Nair [39].
Resulting from Theorem 8.43, we have the following chain of implications:

X ≤hr Y ⇒ X ≤st Y ⇒ X ≤MTTF Y

⇑
X ≤rh Y.

Two other basic reliability orders are ≤mrl and ≤MIT, comparing the mean residual
life and the mean inactivity time. As already seen, the hr order implies the mrl order
and the hr order also implies the MTTF order. Hence, the point of interest is to
know whether there exist any implications between the ≤mrl and the ≤MTTF orders.
By taking

fY (x) =
1
2

exp
(
− x

2

)

and

fX (x) = xe−x, x > 0,

we see that X ≥MTTF Y , but X ≤mrl Y .
Conditions under which the ≤st and the ≤mrl orders have implications with the

≤MTTF order are of interest. These are presented in the next theorem. The conditions
can be stated in terms of quantiles by setting x = Q(u) as usual.

Theorem 8.44. (a) If
∫ x

0 FX (t)dt∫ x
0 FY (t)dt is decreasing, then X ≥MTTF Y ⇒ X ≥st Y ;

(b) If mX (x)
mY (x)

is decreasing, then X ≥mrl Y ⇒ X ≥MTTF Y .

A similar result holds for the MIT order as well. It has been mentioned earlier
that if rX (x)

rY (x)
is an increasing function of x, then the ≤rh and the ≤MIT orders are

equivalent. Accordingly, when rX (x)
rY (x)

is decreasing,

X ≥MIT Y ⇒ X ≥MT T F Y.

Further, if X ≥st Y, then X ≥MTTF Y ⇒ X ≥hmrl Y. Returning to decreasing mean
time to failure as an ageing concept (see Sect. 4.3), we have a stochastic order
comparison based on DMTTF as follows.

Definition 8.24. X has more DMTTF than Y if μX (u)
μY (u)

is decreasing in u for all 0 ≤
u ≤ 1, and we denote it by X ≤DMTTF Y .
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Suppose Y is exponential. Then, μY (u) = 1
λ and so in this particular case, we have

X ≥DMTTF Y ⇔ X is DMTTF.

Two other properties of this ordering are as follows:

1. X ≥DMRL Y ⇒ X ≤DMTTF Y ;
2. X ≤NBUE Y ⇔ μX (u)

μx
≥ μY (u)

μY
.

8.12 Some Applications

When X represents a continuous lifetime with distribution function F(x), the
proportional reversed hazard model is represented by a non-negative absolutely
continuous random variable U whose distribution function is

FU(x) = [FX(x)]
θ ,

where θ is a positive real number (see Example 1.3). When F(x) is strictly
increasing, FX(x) = u gives the quantile function of U as

QU(θ ) = QX(u
1
θ ).

For this model, the reversed hazard rates of U and X are proportional, i.e., λU(x) =
θλX(x) or Λ∗

U(u) = θΛX(u), where

Λ∗
U(u) = λU(QX (u)).

Gupta et al. [239] and Di Crecenzo [177] have studied the order relationship between
X and U and also between two random variable X and Y and their proportional
reversed hazard models U and V . Let

H (x) =− logFX(x) =
∫ ∞

x
λ (t)dt

be the cumulative reversed hazard rate of X .

Theorem 8.45. Let [H (x)]−1 be star-shaped (antistarshaped). Then:

(i) If θ < 1, θX ≤st U(θX)≥st U;
(ii) If θ > 1, θX ≥st U(θX)≤st U.

Theorem 8.46. (i) X ≤st Y ⇔U ≤st V ;
(ii) X ≤rh Y ⇔U ≤rh V ;

(iii) X ≤hr Y and θ > 1 ⇔U ≤hr V .
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Gupta and Nanda [254] have considered Xi, i= 1,2, with distribution functions Fi(x)
and Ui as proportional reversed hazards models of Xi with distribution functions
[Fi(x)]θi , i = 1,2.

Theorem 8.47. θ1 ≥ θ2 and X1 ≥rh X2 ⇒ Y1 ≥rh Y2.

In particular, if

Si(x) = 1− e
−( x

σi
)λ
,

then X1 ≥rh X2 if and only if σ1 ≥ σ2 (> 0), irrespective of the value of λ . Similarly,
for the exponentiated Weibull distribution with

Fi(x) = [1− e
−( x

σi
)α
]θ ,

X1 ≥rh X2 if and only if σ1 ≥ σ2. If X1,X2, . . . are independent and identically
distributed random variables and N is geometric with P(N = n) = p(1 − p)n−1,
n = 1,2, . . . , independent of the Xi’s, then the sum

SN = X1 + · · ·+XN

is said to be a geometric compound. It is easy to see that SN belongs to the random
convolution discussed earlier. Hu and Lin [284] have given several characterizations
of the exponential distribution using stochastic orders, some of which are presented
in the following theorem.

Theorem 8.48. 1. If F, the common distribution function of the Xi’s, is NWU
and pSN ≤st T min(X1, . . . ,XT ), then F is exponential, where T is an integer
valued random variable. If F is NBU and T min(X1 . . .XT ) ≤st pSN, then F is
exponential;

2. If pSN ≤st X1, then F is exponential;
3. In the renewal process (Sn)

∞
n=1, Sn =∑n

k=1 Xk and r(t)= SN(t)+1−t is the residual
life at time t, if F is NBU and pSN ≤st r(t), then F is exponential.

Nanda et al. [458] have discussed stochastic orderings in terms of the propor-
tional mean residual life model. Let X be a non-negative random variable with
absolutely continuous distribution function and finite mean and V be another non-
negative random variable with the same properties. Then, we say that V is the
proportional mean residual life model (PMRLM) of X if

mV (x) = cmX(x),

where mX (x) is as usual the mean residual life function. An equivalent condition is

M∗
V (u) = cMX(u),
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where M∗
V (u) = mv(QX(u)). For this model, we have the following properties:

(i) X ≤hr (≥)V if c > (< 1);
(ii) Let X ≤st Y . If either (a) c < 1 and

mY (x)
μY

≥ mX(x)
μX

,

or (b) c > 1 and

mY (x)
μY

≤ mX(x)
μX

,

then VX ≤st VY , where VX(VY ) is the PMRLM corresponding to X(Y );
(iii) X ≤hr (≥hr)Y and c < 1 ⇒VX ≤hr (≥hr)VY ;
(iv) X ≤mrl (≥mrl)Y ⇔VX ≤mrl (≥mrl)VY ;
(v) X ≤hmrl (≥hmrl)Y ⇔VX ≤hmrl (≥hmrl)VY .

The preservation of stochastic orders among weighted distributions has been
discussed in Misra et al. [417]. Let X1 and Y1 be weighted versions of X and Y
defined as

FX1(x) =

∫ x
0 w1(t) fX (t)dt

EW1(X)

and

FY1(x) =

∫ x
0 w2(t) fY (t)dt

EW2(Y )
.

We then have the following results.

Theorem 8.49. (i) If X ≤st Y , w1(·) is decreasing and w2(·) is increasing, then
X1 ≤st Y1;

(ii) If X and Y have a common support, X ≤hr Y and w(x) = w1(x) = w2(x) is
increasing, then X1 ≤hr Y1;

(iii) If in (ii) w(·) is decreasing and X ≤rh Y , then X1 ≤rh Y1;

(iv) Let X ≤hr Y (X ≤rh Y ), w2(x) is increasing (w1(x) is decreasing) and w2(x1)
w1(x1)

is increasing on the intersection of the supports, then X1 ≤hr Y1 (X1 ≤rh Y1)
provided that l1 ≤ l2, u1 ≤ u2, where (l1,u1) and (l2,u2) are the supports of X1

and Y1, respectively.

Yu [597] has discussed stochastic comparisons between exponential family of
distributions and their mixtures with respect to various stochastic orders. Members
of this family have been frequently used in reliability analysis and for this reason
we present some results relevant in this regard. The exponential family is expressed
by the probability density function
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f (x,θ ) = a(x)eb(θ)xh(θ ),

where the support is (0,∞). Let

g(x) =
∫

f (x;t)dμ(t)

be the mixture of f (x,θ ). Then we have the order relations, between X and Y , the
random variables corresponding to f (x;θ ) and g(x), as follows:

(a) X ≤st Y (X ≤hr Y ) if and only if
∫

h(t)dμ(t)≤ h(θ );
(b) X ≤rh Y if and only if

b(θ )≤
∫

b(t)h(t)dμ(t)∫
h(t)dμ(t)

.

Let X = ∑∞
i=1 βiXi, where Xi is gamma (αi,1) independently and βi > 0. The

order relations between X and Y which is gamma (∑n
i=1 αi,β ) have been discussed

by many authors. When Xi’s are independent exponential with different scale
parameters (i.e., when αi = 1), Boland et al. [114] have established that

β ≤ n

∑n
i=1 β−1

i

⇒ X ≤rh Y

and Bon and Paltanea [117] have extended this result to

Y ≤st X ⇔ Y ≤hr X ⇔ β ≤
(

n

∏
i=1

βi

) 1
n

.

Yu [597] has further established that

Y ≤st X(Y ≤hr X) if and only if β ≤
(

n

∏
i=1

β αi
i

)∑n
i

1
αi

,

Y ≤rh X if and only if β ≤ ∑n
1 αi

∑n
i

αi
βi

.

These results are useful in developing bounds for the hazard rate of X through
simpler hazard rate of Y .

If X and Y are lifetime variables with cumulative hazard functions HX (x) and
HY (x), Sengupta and Deshpande [526] have defined X to be ageing faster than Y if
and only if H1H

−1
2 is superadditive, i.e.,

H1H
−1

2 (x+ y)≥ H1H
−1

2 (x)+H1H
−1

2 (y).
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Abraham and Nair [13] have proposed a relative ageing factor

B(x,y) =
H −1(H (x)+H (y))− x

y

between a new component and an old component that survived up to time x. They
then defined an order X ≤B:NBU Y by the relation BX (x,y)≤ BY (x,y) for all x,y > 0.
They provided the result that

BX(x,y)≤ BY (x,y)⇔ X is NBU,

where the NBU part arises from the fact that Y is exponential. The relative ageing
defined by the superadditive order now becomes

X ≤su Y ⇔ X ≤B:NBU Y.

Thus, an ageing criterion is prescribed in terms of B(x,y) to assess the concept of
‘X ageing faster than Y ’.

If X is a random variable with survival function F(x) and Z has survival function
F2(x) = [F(x)]θ , θ > 0, then FZ(x) is called the proportional hazards model
corresponding to X . The terminology is evident from the fact that hZ(x) = θhX(x).
There are other interpretations also for Z. If θ < 1, Z represents the lifetime
of a component in which the original lifetime of the component X is subjected
imperfect repair procedure, where θ is the probability of a minimal repair. If θ = n,
obviously we have (F(x))n as the survival function of a series system consisting of n
independent and identical components whose lifetimes are distributed as X . Franco-
Pereira et al. [202] have shown that if X and Y are continuous random variables on
interval supports, the α-percentile life order satisfies

X ≤prl−α Y ⇒ ZX ≤prl−β ZY ,

where β = 1− (1−α)θ and ZX (ZY ) is the proportional hazards model correspond-
ing to X(Y ).

Extensions of some of the stochastic orders discussed above as well as a variety
of applications of all these stochastic orders can be found in Kayid et al. [320],
Aboukalam and Kayid [11], Li and Shaked [388], Boland et al. [115], Navarro
and Lai [467], Zhang and Li [599], Hu and Wei [286], and Da et al. [164] and
the references contained therein.
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