
Chapter 7
Nonmonotone Hazard Quantile Functions

Abstract The existence of nonmonotonic hazard rates was recognized from the
study of human mortality three centuries ago. Among such hazard rates, ones with
bathtub or upside-down bathtub shape have received considerable attention during
the last five decades. Several models have been suggested to represent lifetimes
possessing bathtub-shaped hazard rates. In this chapter, we review the existing
results and also discuss some new models based on quantile functions. We discuss
separately bathtub-shaped distributions with two parameters, three parameters, and
then more flexible families. Among the two-parameter models, the Topp-Leone dis-
tribution, exponential power, lognormal, inverse Gaussian, Birnbaum and Saunders
distributions, Dhillon’s model, beta, Haupt-Schäbe models, loglogistic, Avinadev
and Raz model, inverse Weibull, Chen’s model and a flexible Weibull extension are
presented along with their quantile functions. The quadratic failure rate distribution,
truncated normal, cubic exponential family, Hjorth model, generalized Weibull
model of Mudholkar and Kollia, exponentiated Weibull, Marshall-Olkin family,
generalized exponential, modified Weibull extension, modified Weibull, generalized
power Weibull, logistic exponential, generalized linear failure rate distribution,
generalized exponential power, upper truncated Weibull, geometric-exponential,
Weibull-Poisson and transformed model are some of the distributions considered
under three-parameter versions. Distributions with more than three parameters
introduced by Murthy et al., Jiang et al., Xie and Lai, Phani, Agarwal and Kalla,
Kalla, Gupta and Lvin, and Carrasco et al. are presented as more flexible families.
We also introduce general methods that enable the construction of distributions with
nonmonotone hazard functions. In the case of many of the models so far specified,
the hazard quantile functions and their analysis are also presented to facilitate a
quantile-based study. Finally, the properties of total time on test transforms and
Parzen’s score function are utilized to develop some new methods of deriving
quantile functions that have bathtub hazard quantile functions.

N.U. Nair et al., Quantile-Based Reliability Analysis, Statistics for Industry
and Technology, DOI 10.1007/978-0-8176-8361-0 7,
© Springer Science+Business Media New York 2013

235



236 7 Nonmonotone Hazard Quantile Functions

7.1 Introduction

The recognition of the existence of nonmonotonic hazard rates dates back to
three centuries in the study of human mortality when researchers found that the
force of mortality (alternative name for hazard rate) first decreases, then remains
more or less constant and then increases. Since then, the problem of modelling
such curves through different distributions has been taken up in many disciplines
such as reliability, survival analysis, demography and actuarial science. Among
nonmonotonic hazard rates, those with bathtub shape or upside-down bathtub shape
have received much attention during the last 5 decades. There is an extensive
literature on finding appropriate models for representing them and also on methods
of analysing their behaviour, in several practical problems. Earlier in Sect. 4.3,
we have introduced the notions of bathtub (BT) and upside-down bathtub (UBT)
hazard rates and the corresponding hazard quantile functions. Recall that a random
variable X with differentiable h(x)(H(u)) possesses a BT hazard rate (hazard
quantile function) if and only if h′(x)(H ′(u)) < 0 for x(u) in (0,x0)((0,u0)),
h′(x0) = 0 (H ′(u0) = 0) and h′(x)(H ′(u)) > 0 for x(u) in (x0,∞)((u0,1)). In the
UBT case, H ′(u)> 0 for u in (0,u0), H ′(u0) = 0 and H ′(u0) < u0 in (u0,1). Thus,
BT distributions are characterized by a hazard rate (hazard quantile function) that
is first decreasing and then increasing with a unique change point. A more general
definition that considers H(u) as a constant in an interval (see Definition 4.2) is also
available, but this extended definition will not be considered in the sequel. The three
phases of a BT hazard rate represent an ‘infant mortality’ period in which H(u)
decreases, a ‘useful period’ in which H(u) is approximately constant, and a ‘wear
out’ stage in which the hazard function increases leading to the ultimate failure of
a unit. To avoid infant mortality in large proportions, ‘burn-in’ procedures are often
employed to enhance the reliability of products. On the other hand, replacement
policies aim at improving the reliability of units by eliminating those with short
lives before the wear out process is at an advanced stage. We make use of the sign
of the derivative of H(u) (h(x)) to ascertain the nonmonotonicity. In case when
the survival function is not tractable, giving complicated expressions for H(u) or
h(x), Theorems 4.1 and 4.2 will be employed, as demonstrated in Example 4.4.
Several methods of construction of models with BT or UBT have been proposed in
the literature. However, in the following discussion, we will distinguish the models
by the number of parameters they involve. Quantile functions and corresponding
hazard quantile functions are presented whenever the proposed distributions have
such functions in tractable forms. A review of bathtub-shaped distributions is given
in Rajarshi and Rajarshi [500] and Lai et al. [369],

7.2 Two-Parameter BT and UBT Hazard Functions

The Topp-Leone [566] distribution with density function
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f (x) =
2α
θ

( x
θ

)α−1(
1− x

θ

)(
2− x

θ

)α−1
, 0 ≤ x ≤ θ , 0 < α < 1,

has its survival function as

F(x) = 1−
( x

θ

)α (
2− x

θ

)α
, 0 ≤ x ≤ θ . (7.1)

Thus, the hazard rate turns out to be

h(x) =
2α
θ

( x
θ )

α−1(1− x
θ )(2− x

θ )
α−1

1− ( x
θ )

α(2− x
θ )

α .

By differentiating h(x), it can be seen that h(x) has a bathtub shape with change
point x0 for every α , where x0 satisfies the equation

(x0

θ

)α
+

2α(θ − x0)

2θ − x0
− 1 = 0.

The distribution in (7.1) admits a convenient quantile function. Applying the
transformation Y = 1− X

θ to (7.1), we have

FY (x) = (1− x2)α

and so

QY (u) = (1− u
1
α )

1
2 .

Retransforming this expression to X , we readily obtain

QX(u) = θ −θQY (u)

= θ
{

1− (1− u
1
α )

1
2

}
.

The corresponding hazard quantile function is

H(u) =
1

(1− u)q(u)
=

2α
θ

(1− u
1
α )

1
2

u
1
α −1(1− u)

.

Smith and Bain [544] introduced the exponential power model with survival
function

F(x) = exp[−e(λ x)α
+ 1], 0 < x < ∞. (7.2)

Notice that the hazard rate is

h(x) = λ ααxα−1e(λ x)α
, (7.3)



238 7 Nonmonotone Hazard Quantile Functions

which is strictly convex in (0,∞) satisfying
∫ ∞

0 h(x)dx=∞. Sometimes, the choice of
such a function is adopted as a method of deriving a BT distribution. A feature of the
function (7.3) is that h(x)→∞ when x→ 0 or ∞. The hazard function is BT for α < 1

with a change point at x0 = (1−α)

(λ α)
1
α

. For further detailed study of the distribution

including the estimation of parameters and applications to other disciplines, one
may refer to Dhillon [175], Paranjpe and Rajarshi [481], Leemis [379] and Chen
[141]. A closed-form expression is available for the quantile function of (7.2) as

Q(u) =
1
λ
[log{1− log(1− u)}] 1

α ,

which can be used to simulate observations from the distribution from the uniform
(0,1) random numbers. Observing that the quantile density function is

q(u) =
[log(1− log(1− u))]

1
α −1

λ α(1− u)(1− log(1− u))
,

it becomes clear that

H(u) =
λ α(1− log(1− u))

[log(1− log(1− u))]
1
α −1

.

Two standard distributions possessing nonmonotone hazard rates that were
considered reliability analysis are the lognormal and the inverse Gaussian. The
lognormal distribution has its density function as

f (x) =
1

x
√

2πσ
exp

[
− (logx− μ)2

2σ2

]
, x ≥ 0, −∞ < μ < ∞, σ > 0, (7.4)

and survival function as

F(x) = 1−Φ
(

logx− x
σ

)
= 1−Φ[log(αx)

1
σ ], with α = e−μ ,

where Φ is the distribution function of the standard normal distribution. The hazard
rate is

h(x) =
1√

2πσx

exp[−(logαx)2/2σ2]

1−Φ(log(αx)/σ)
.

A detailed study of the hazard rate has been carried out by Sweet [556]. The book
by Crow and Shimizu [159] details all methods and applications of lognormal
distribution. Moreover, from Marshall and Olkin [412] and Johnson et al. [303],
we note the following properties:
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1. h(x) = σ−1hN(t)exp[−σ t − μ ], where t = σ−1(logx − μ) and hN(x) is the
hazard rate of the normal distribution;

2. For all real θ ,

lim
x→0

xθ h(x) = 0, lim
x→∞

h(x) = 0;

3. h(x) is unimodal with mode at exp(σx∗ + μ), where x∗ is the unique solution
of the equation hN(x) = x+σ . This solution is less than exp[1+ μ −σ2], but
greater than exp[μ −σ2]. As σ → ∞, x∗ → exp[μ −σ2] and so for large σ , we
have

maxh(x)
.
=

exp(μ − σ 2

2 )

σ
√

2π
;

as σ → 0, x∗ → exp[μ −σ2 + 1] and so for small σ , we have

maxh(x)
.
= {σ2 exp(μ −σ2 + 1)}−1.

The quantile function corresponding to (7.4) is

Q(u) = exp[μ +σΦ−1(u)]

and so H(u) does not have a nice algebraic form for manipulations.

Inverse Gaussian distribution, discussed in detail by Chhikara and Folks [146]
and Seshadri [528] as a lifetime model, has its density function as

f (x) =
θ μ

(2π3x3)
1
2

exp

{
− (θx− μ)2

2θx

}
, x,θ ,μ > 0. (7.5)

Its survival function is

F(x) =
1
2

[
G

(
(θx− μ)2

θx

)
− e2μG

(
(θx+ μ)2

θx

)]
,

where

G(y) =
∫ ∞

y
(2πx)−

1
2 e−

x
2 dx

is the survival function of a chi-square variable with one degree of freedom.
Needless to say, the hazard rate function is of a complicated form to study its
behaviour explicitly. The hazard rate is UBT with change point x0 that is the solution
of the equation
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h(x) =
3
2x

+
θ
2
− μ2

2θx2 .

For various applications in reliability and lifetime data analysis, we refer the
readers to Padgett and Tsai [479] and Bhattacharya and Fries [99], and similarly
to Hougaard [283] in survival analysis and Feaganes and Suchindran [195] as a
distribution of frailty.

A distribution that is related to the inverse Gaussian, but derived independently
as a lifetime model based on shocks that arrive at regular intervals of time
causing random damages, was derived by Birnbaum and Saunders [105, 106]. It
models fatigue life of metals subject to periodic stress. The distribution has density
function

f (x) =
λ

2α
√

2π
1√
λ x

(
1+

1
λ x

)
exp

{
− 1

2α2

(
λ x− 2+

1
λ x

)}
. (7.6)

Desmond [174] pointed out that (7.6) can be written as a mixture in equal pro-
portions of an inverse Gaussian and a reciprocal inverse Gaussian. The distribution
function is given by

F(x) = Φ(α−1g(λ x)), (7.7)

where λ ,α > 0 and Φ is the standard normal distribution function and

g(x) = x
1
2 − x−

1
2 .

Note the resemblance between (7.7) and the distribution of the lognormal law
in which case g(x) = logx. Various properties and inferential procedures of the
distribution have been discussed by Chang and Tang [136,137], Johnson et al. [302],
Dupuis and Mills [182], Rieck [507], Ng et al. [470, 471], Owen [478], Leomonte
et al. [384], Balakrishnan and Zhu [62] and Xie and Wei [591]. Recently, Kundu
et al. [359] expressed the hazard rate function of the Birnbaum-Saunders distribution
in (7.6) as

h(x,α) =

1√
2π g′(x)exp

{
− 1

2α2 g2(x)
}

Φ(e−
g(x)

α )

by taking λ = 1, without loss of generality, since λ is a scale parameter. They then
showed that h(x) is UBT for all x > 0 and for all α and λ . The change point x0 is
the solution of the equation

Φ
(
− 1

α
g(x)

){−(g′(x))2g(x)+α2g′′(x)
}
+αΦ

(
− 1

α
g(x)

)
(g′(x))2 = 0,
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which has to be solved by numerical methods. An approximation has been
given as

x0 = (−0.4604+ 1.8417α)−2, α > 0.25;

see also Bebbington et al. [84]. A comparison of the hazard rates of (7.7) and the
lognormal has been made by Nelson [469].

Some useful generalizations of the Birnbaum-Saunders distribution have been
developed in order to provide more flexible models in terms of the range of skewness
as well as varying shapes of the hazard function. For example, with the choice
of the function g(x) = x

1
2 − x−

1
2 , instead of basing the distribution in (7.7) on a

normal distribution, one could base it on general family of elliptically contoured
distributions or scale-mixture distributions; see, for example, Diaz-Garcia and Leiva
[176], Leiva et al. [386] and Balakrishnan et al. [54]. Properties of such models and
their reliability characteristics have also been studied; for instance, Azevedo et al.
[42] recently discussed the shape and change points of the hazard function of the
BS-t (Birnbaum-Saunders model based on t-distribution) model.

Dhillon [175] introduced a two-parameter survival function

F(x) = exp
[
−{log(λ x+ 1)}β+1

]
, x ≥ 0, β ≥ 0, λ > 0, (7.8)

and density function

f (x) =
λ (β + 1)
λ x+ 1

{log(λ x+ 1)}β exp
[
−{log(λ x+ 1)}β+1

]
.

The corresponding hazard rate is

h(x) =
(β + 1)λ{log(λ x+ 1)}β

λ x+ 1
.

It can be seen that h(x) is UBT with change point x0 = λ−1(eβ − 1). We see that
(7.8) is also expressible as

Q(u) =
1
λ
[e−{log(1−u)}

1
β+1 − 1].

Its hazard quantile function is

H(u) =
(β + 1)λ exp

[
{log(1− u)} 1

β+1

]

{log(1− u)} 1
β+1−1

,

which becomes UBT with change point

u0 = 1− e−β (β+1).
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Mukherjee and Islam [430] and Lai and Mukherjee [367] considered the power
distribution with

F(x) =
( x

α

)β
, 0 ≤ x ≤ α, β < 1, (7.9)

and hazard rate

h(x) =
β xβ−1

αβ − xβ

which has a BT shape with change point x0 = α(1−β )
1
β . The quantile function of

this distributions and its properties has been discussed several times in the preceding
chapters. The distribution in (7.9) forms a special case of the beta distribution with
density function

f (x) =
1

B(p,q)
xp−1(1− x)q−1, 0 ≤ x ≤ 1, p,q > 0, (7.10)

when q = 1 and then rescaled to the interval (0,θ ). Pham and Turkkan [494] have
considered standby systems with component lives distributed as beta and Ganter
[209] used it in the context of accelerated test of electronic assemblies. However,
a detailed analysis of the hazard rate and mean residual life has been carried out
much later by Gupta and Gupta [232] and Ghitany [212]. The hazard rate of the
beta model is

h(x) =
xp−1(1− x)

B(p,q)−Bx(p,q)
,

where

Bx(p,q) =
∫ x

0
t p−1(1− t)q−1dt

is the incomplete beta integral. Ghitany [212] has shown that Glaser’s result
mentioned earlier in Sect. 4.3 is valid only when the upper end of the support is
∞ and f (∞) = 0, and that it fails to determine the shape of the hazard rate when the
support of a distribution is (0,b) with b < ∞. He then modified Glaser’s result as
follows.

Theorem 7.1. Let X be a continuous random variable on (0,b), b < ∞, with twice

differentiable density f (x). Define η(x) =− f ′(x)
f (x) . Then:

(a) If η(x) is decreasing and f (b) = 0, then h(x) is decreasing;
(b) If η(x) is increasing, then h(x) is increasing;
(c) If η(x) is BT and f (0) = 0 ( f (0) = ∞), then h(x) is increasing (BT);
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(d) If η(x) is UBT, f (0) = 0 ( f (0) = ∞), and f (b) = 0, then h(x) is UBT
(decreasing);

(e) If η(x)≤ 0 and f (b)> 0, then h(x) is decreasing;
(f) If η(x) is decreasing and f (0) = f (b) = ∞, then h(x) is BT.

In Theorem 7.1, the monotonicities involved are strict. Using the above results,
it has been shown that the hazard rate of the beta distribution is BT (increasing)
if p < 1 (p ≥ 1). Also, the mean residual life is UBT (decreasing) if p < 1
(p ≥ 1). Notice that the adaptation of Glaser’s result in Theorem 4.1 also requires
corresponding changes in the cases discussed in Theorem 7.1. For more details on
beta distribution and its applications, one may refer to the volume by Gupta and
Nadarajah [230].

Haupt and Schäbe [265] proposed the distribution with

F(x) =

{
1, x ≥ x0

−β +
√

β 2 +
(1+2β )x

x0
, 0 ≤ x ≤ x0

. (7.11)

In this model, β is a shape parameter and it varies over (− 1
2 ,∞) and x0 is a scale

parameter. The corresponding hazard rate is

h(x) =
1+ 2β

2x0

(
β 2 +

(1+2β )x
x0

) 1
2
{

1+β −
(

β 2 +
(1+2β )x

x0

) 1
2
}

which is BT for 1
3 < β < 1 and decreasing for β ≥ 1 and β ≤− 1

3 . Construction of
lifetime distributions with bathtub-shaped hazard rates from DHR distributions was
proposed by Schäbe [522]. For 0 < θ < ∞, let us define

G(x) =
F(x)
F(θ )

, x ≤ θ .

Then, G(x) has BT hazard rate if

h′(x)[F(x)−F(θ )]+ h2(x)F(θ )

has one and only one zero in the interval (0,θ ) and changes its sign from − to +.
An illustration of this result has been given with the Pareto II distribution.

Paranjpe and Rajarshi [481] suggested the survival function

F(x) = exp [−exp{exp(β xα)− 1}] , β > 0, α < 1, (7.12)

to model BT hazard rates. The hazard rate function has the form

h(x) = β αxα−1 exp(β xα)exp{exp(β xα )− 1}.
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The quantile function of (7.12) becomes

Q(u) =
1
β
[log{1+ log(− log(1− u))}] 1

α

with hazard quantile function of the form

H(u) =−β α log(1− u){1+ log(− log(1− u))}
[log{1+ log(− log(1− u))}] 1

α −1
.

Another distribution of interest proposed by Lai et al. [366] has hazard rate

h(x) = xa−1(1− x)b−1{a− (a+ b)x}, 0 < x < 1, a > 0, b < 1. (7.13)

In both (7.12) and (7.13), h(x) tends to infinity at both end points of the support thus
supporting the BT shape.

A method of constructing BT-shaped hazard rates is given in Haupt and
Schäbe [266]. Let G(u) be a twice differentiable function satisfying the following
conditions:

(a) G(0) = 0, G(1) = 1, 0 ≤ G(u)≤ 1;
(b) the solution F(x) of the differential equation

θG(F(x))dF(x)

F(x)
= dx, θ = T (1)> 0,

where T (u) is the TTT;
(c) the scaled TTT φ(u) (see Chap. 5 for pertinent details) has one inflexion point

u0 such that 0 < u0 < 1 and φ(u) is convex on [0,u0] and concave on [u0,1] .

They then illustrated this method for

G(u) =−1
3

αu3 +
1
2
(α −αβ )u2 +αβ u

to arrive at the model in (7.11), discussed earlier by Haupt and Schäbe [266]. It
appears that (a) and (b) are redundant, since (c) alone can produce a BT curve (see
Theorem 5.2).

The loglogistic distribution with density function

f (x) =
αραxα−1

(1+ραxα)2 x > 0, α,ρ > 0,

has its survival function as

S(x) = (1+ραxα)−1, (7.14)
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and thus the hazard rate as

h(x) =
αρα xα−1

1+ραxα

which is UBT for α > 1 with change point x0 = ρ−1(α − 1)
1
α . It is easy to convert

(7.14) into a quantile function in the simple form

Q(u) =
1
ρ

(
u

1− u

) 1
α

giving the hazard quantile function

H(u) =
ρα(1− u)

1
α

u
1
α −1

.

A direct differentiation of H(u) shows that it is UBT with change point at u0 =
α−1

α .
For a detailed discussion of the model in reliability analysis, see Bennet [88] and
Gupta et al. [237]. One may also refer to Balakrishnan et al. [55] and Balakrishnan
and Saleh [58] for some inferential methods for this model based on censored
lifetime data.

Employing what is referred to as the logWeibull time displacement
transformation,

y = log(1+ρx),

to the Weibull survival function G(y) = exp(−yα), Avinadav and Raz [41] obtained
the distribution with survival function

F(x) = exp[−{log(1+ρx)}α]. (7.15)

The corresponding density function is

f (x) =
αρ

(1+ρx)
{log(1+ρx)}α−1 exp[−{log(1+ρx)}α ],

and so

h(x) =
αρ{log(1+ρx)}α−1

1+ρx
.

For α > 1, h(x) has upside-down bathtub shape with maximum value at x0 =
eα−1−1

ρ .
A quantile analysis of the distribution can be made with

Q(u) =
1
ρ

[
exp

[
{− log(1− u)} 1

α
]
− 1

]
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and

H(u) =
ρα

e{− log(1−u)} 1
α {− log(1− u)} 1

α −1
.

An interesting feature of the distribution is that it is closer to the loglogistic
distribution until a certain point of time and then becomes closer to the Weibull
law.

Remark 7.1. Upon comparing the survival function in (7.15) with that of the
Dhillon model in (7.8), we immediately observe that the above distribution is
identical to the two-parameter Dhillon model in (7.8) with λ = ρ and β = α − 1.

Applying transformation X = β 2

Y when Y is a two-parameter Weibull distribution
with survival function

G(y) = exp

{
−
(

y
β

)α}
, y > 0; α > 0, β > 0,

we obtain the inverse Weibull law with distribution function

F(x) = exp

{
−
(

β
x

)α}
, α,β > 0; x > 0, (7.16)

and density function

f (x) = αβ α x−α−1 exp

{
−
(

β
x

)α}
.

Applications of (7.16) in lifetime modelling has been discussed by Erto [188] and
Jiang et al. [297]. In this case, we have

h(x) =
αβ α x−α−1 exp[−(β

x )
α ]

1+ exp[−(β
x )

α ]

which is UBT shaped with change point x0 as the solution of the equation

(β
x )

α

1− e−(
β
x )

α
=

α + 1
α

.

The quantile function has a simple form

Q(u) = β (− logu)−
1
α
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and

H(u) =
αu(− logu)

1
α +1

β (1− u)
.

Differentiation of H(u) yields the change point as u0 satisfying the equation

logu0 +
α + 1

α
(1− u0) = 0.

Cooray [156] and de Gusmao et al. [168] have discussed a generalization of the
inverse Weibull distribution.

Chen [142] modified the exponential power distribution in (7.2) by setting λ = 1
and introducing a new parameter by taking the survival function as

F(x) = exp[−λ (exα − 1)]. (7.17)

The hazard rate function has the modified form

h(x) = λ αxα−1exα
.

Since the parameter λ does not alter the monotonic behaviour of h(x), we have its
shape identified to that of (7.3). However, the form (7.17) becomes amenable to
developing a three-parameter model as discussed later (see also Tang et al. [560]).
Bebbington et al. [83] proposed a flexible Weibull extension by the model

F(x) = exp
[
e−αx − β

x

]
, x > 0; α,β > 0, (7.18)

with its hazard rate given by

h(x) =
(

α +
β
x2

)
exp

(
αx− β

x

)
.

In this case, limx→0 h(x) = 0 and so a pure bathtub curve is not envisaged. When
αβ < 27

64 , the hazard rate is strictly increasing in (0,x0), strictly decreasing in
(x0,x1), and strictly increasing on (x1,∞), where

x0 =
1
2

[
− 4β

3α
+A+B

]1
2 − 1

2

[
8β
3α

−A−B+
4β

α2(− 4β
3α +A+B)

1
2

] 1
2

,

x1 =
1
2

[
− 4β

3α
+A+B

]1
2
+

1
2

[
8β
3α

−A−B+
4β

α2(− 4β
3α +A+B)

1
2

] 1
2

,
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with

A =
2

11
3 β 2

3[27α2β 2 − 32α3β 3 + 3
√

3(27α4β 4 − 64α5β 5)
1
2 ]

1
3

and

B = 2
1
3 [27α2β 2 − 32α3β 3 + 3

√
3(27α4β 4 − 64α5β 5)

1
2 ]

1
3 .

7.3 Three-Parameter BT and UBT Models

A majority of models described in the context of nonmonotonic hazard functions
contain three parameters, some of them being extensions of two-parameter versions
discussed in the preceding section. Some others are postulated in terms of hazard
rates, rather than distribution functions. The quadratic hazard rate

h(x) = a+ bx+ cx2, a ≥ 0,−2(ac)
1
2 ≤ b < 0, c > 0,

generating the survival function

F(x) = exp

[
−
(

ax+
bx2

2
+

cx3

3

)]
, x > 0, (7.19)

is one such model discussed at some length in Bain [45, 46] and Gore et al. [223].
The parameters of the model are estimated by the method of maximum likelihood or
by regression of the empirical hazard rate on a quadratic polynomial. Hazard rates
of the form

h(x) = exp(a0 + a1x+ a2x2)

were studied by Lewis and Shedler [385, 387] using simulations of homogeneous
Poisson process. The truncated normal distribution as a failure time model, with
only one failure mechanism, has been studied by Bosch [118]. Generalizing this,
Glaser [220], Cobb [152] and Cobb et al. [153] have studied the distribution with
density function

f (x) =C exp[−αx−β x2+ r logx], x > 0,

with α real, β > 0, γ > −1 or α > 0, β = 0 and γ > −1 (giving also extended
gamma densities) which gives a BT hazard rate for γ < 0. They also discussed the
cubic exponential family with density function
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f (x) =C exp[−αx−β x2 − γx3]

with C < α resulting in BT hazard rate.
The lifetime model introduced by Hjorth [272] is an interesting one as it has some

physical interpretations. Relying upon the practical interest in mechanical units that
are subject to wear, a distribution with minimal number of parameters and with
enough flexibility lead to the study of a distribution with survival function

F(x) =
exp

(
−α x2

2

)

(1+β x)
θ
β

x ≥ 0, α,β ,θ > 0, α +θ > 0, (7.20)

and density function

f (x) =
(1+β x)αx+θ

(1+β x)
θ
β +1

e−
αx2

2 .

So, the hazard rate is given by

h(x) = αx+
θ

1+β x
.

As special cases, we have the Rayleigh distribution (θ = 0), exponential (α =
β = 0), decreasing hazard (α = 0), increasing hazard (α ≥ θβ ), and the bathtub
curve (0 < α < θβ ). Hjorth [272] has given two physical interpretations for the
model in (7.20). Assuming that every produced or maintained unit has linear
hazard rate

h∗(x) = u+αx,

where α is the same for all units, but u is the realization from the gamma distribution
with density

g(u) =
ua−1e

− u
β

β aΓ a
,

we have

F(x) =
1

(1+β x)a exp

(
−αx2

2

)

which is of the same form as (7.20). Alternatively, if failures are classified as type A
and type B caused by hA(x) = αx or hB(x) = θ

(1+β x) , then (7.20) is the distribution

of min(XA,XB), where XA and XB are independent lifetimes with hazard rates hA
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and hB, respectively. Maximum likelihood method can be used to estimate the
parameters. We can also see that (7.20) belongs to the class of additive hazard
models discussed in Nair and Sankaran [446].

Let X be a lifetime random variable with hazard rate h(x) and Y be a non-negative
random variable representing changes in the conditions so that h has an additive
effect on X through the relationship

h(x|y) = a(y)+ h(x) (7.21)

for some positive function a(y). If X∗ is the random variable corresponding to X
satisfying the relationship in (7.21), then the survival function of X∗ is

S∗(x) = S(x)SE(x),

where

SE(x) =
∫ ∞

0
e−xa(y)g(y)dy

and g(y) is the density function of Y . Equivalently, we arrive at the additive hazard
model

h∗(x) = h(x)+ hE(x),

where h∗(·) and hE(·) are the hazard rates of S∗(x) and SE(x), respectively. Now,
when

g(y) = [Γ (α)]−1cλCα yCα−1 exp[−(λ y)c],

and a(y) = yc for c > 0, we get

SE(x) = λ cα(x+λ c)−α .

Then, the additive model takes on the form

h∗(x) = h(x)+α(x+λ c)−1.

It is easy to see that the Hjorth model arises from a particular choice of the hazard
rate function h∗(x) = αx.

Mudholkar and Kollia [426] and Mudholkar et al. [428] introduced a generaliza-
tion of the Weibull distribution with its survival function as

F(x) =

{
1−λ

( x
α

)β
} 1

λ
, α,β > 0, (7.22)
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where X has support (0,∞) for λ ≤ 0 and

(
0, α

λ
1
β

)
for λ > 0. It is easy to see that,

as λ → 0,

F(x) = exp
[
−
( x

α

)β]
,

which is the standard two-parameter Weibull model. The hazard rate corresponding
to (7.22) is

h(x) =
β ( x

α )
β−1

α
{

1−λ ( x
α )

β
} ,

which is BT for β < 1, λ > 0; UBT for β > 1, λ < 0; IHR for β ≥ 1, λ > 0;
and DHR for β ≤ 1, λ ≤ 0. For the estimation of parameters, they discussed the
maximum likelihood method. Corresponding to (7.22), the quantile function is

Q(u) =

⎧
⎨
⎩

α
{

1−(1−u)λ

λ

} 1
β
, λ �= 0

α{− log(1− u)} 1
β , λ = 0

,

which has been discussed in detail in Chap. 3. Another modification to the Weibull
model is the exponentiated Weibull distribution with distribution function

F(x) =

{
1− exp

(
−
( x

α

)β)}θ
, α,β ,θ > 0, x ≥ 0, (7.23)

density function

f (x) =
β αθ
αβ e−( x

α )β
{

1− exp
(
−
( x

α

)β)}θ−1

,

and hazard function

h(x) =
β θe−( x

α )β {
1− exp(−( x

α )
β )
}θ−1

1−{
1− exp(−( x

α )
β )
}θ .

The nature of h(x) within the parameter space, other properties, and estimation of
parameters have all been discussed by Mudholkar et al. [428], Mudholkar and
Hutson [423], Jiang and Murthy [296], Nassar and Eissa [463, 464], Singh et al.
[543] and Shanmukhapriya and Lakshmi [534]. It is seen that h(x) is BT for β > 1,
β θ < 1; UBT for β < 1, β θ > 1; IHR for β ≥ 1, β θ ≥ 1 and DHR for β ≤ 1; and
β θ ≤ 1. Reverting to quantile function, (7.23) becomes



252 7 Nonmonotone Hazard Quantile Functions

Q(u) = α
{
− log(1− u

1
θ )
} 1

β
.

The hazard quantile function is then

H(u) =
β θ (1− u

1
θ )

α(1− u)u
1
θ −1

{
− log(1− u

1
θ )
} 1

β −1
. (7.24)

Differentiating (7.24), we find that the change points in (7.24) are the solutions of

{
1− u−θ (1− u

1
θ )
}

log(1− u
1
θ ) =

1−β
β

(1− u)u
1
θ .

Marshall and Olkin [411] devised a new method of introducing more flexibility
to a given distribution G(x) by adding a new parameter. Their scheme is to construct
distribution F(x) from G(x) through the formula

F(x) =
θG(x)

1− (1−θ )G(x)
, θ > 0. (7.25)

Assuming G(x) to be a two-parameter Weibull, G(x) = exp
{−( x

α )
β}, for example,

we find from (7.25) that

F(x) =
θ exp

{−( x
α )

β}

1− (1−θ )exp
{−( x

α )
β
}

yielding the density function

f (x) =
θg(x)

[1− (1−θ )G(x)]2

=
θβ
α

( x
α )

β−1 exp
{−( x

α )
β}

{
1− (1−θ )exp(−( x

α )
β )
}2

and hazard rate

h(x) =
( β

α )(
x
α )

β−1

1− (1−θ )exp
{−( x

α
}β

)
.

Teiling and Xie [565] have carried out a failure time data analysis by using (7.25).
It is of interest to know the quantile version of (7.25) for studying the properties

of the new distribution further. Setting x = Q(u), where Q is the quantile function
of G, after writing
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F(x) =
1−G(x)

1− (1−θ )G(x)
,

F(Q(u)) =
u

1− (1−θ )(1− u)
=

u
u+θ −θu

,

we have

Q(u) = Q1

(
u

u+θ −θu

)

with Q1(u) being the quantile function corresponding to F(x). Equivalently, we have

Q1(u) = Q

(
uθ

1− (1−θ )u

)
. (7.26)

Applying (7.26) in the case of the Weibull distribution for which

Q(u) = α{− log(1− u)} 1
β ,

we obtain

Q1(u) = α
{
− log

(
1− u

1− u+ uθ

)} 1
β
.

The hazard quantile of Q1(u) is

H(u) =
β (1− u+ uθ )

αθ
{− log

( 1−u
1−u+uθ

)} 1
β −1

.

The sign of H ′(u) depends on the expression

(θ − 1) log
1− u+ uθ

1− u
− θ (1−β )

β (1− u)

and F(x) is IHR for θ > 1, β > 1, and DHR for 0 < θ < 1 and 0 < β < 1. Change
points of H(u) are the solutions of the equation

(1− u) log
1− u+ uθ

1− u
=

θ (1−β )
β (θ − 1)

.

A special case of the exponentiated Weibull distribution is the exponentiated
exponential distribution considered in Gupta et al. [239] and Gupta and Kundu
[250, 253]. We look at the general form with survival function
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F(x) =

{
1− exp

(
− x− μ

σ

)}α
, x > μ ; α,σ > 0. (7.27)

We find the expression for the hazard rate as

h(x) =
α
σ

{
1− exp(− x−μ

σ )
}α−1

exp(− x−μ
σ )

1−
[
1−{

1− exp(− x−μ
σ )

}α] .

It could be seen that h(x) = 1
σ for α = 1, increases from 0 to 1

σ for α > 1, and
decreases from ∞ to 1

σ for α < 1. Quantile analysis of (7.27) is straightforward with

Q(u) = μ −σ log(1− u
1
α )

and

H(u) =
σ
α

u
1
α −1

1− u
1
α
.

A comparative study of (7.27) with the gamma, Weibull and lognormal distributions
has been carried out by Gupta and Kundu [251], Kundu et al. [358] and Gupta and
Kundu [252].

The two-parameter Chen’s [142] model in (7.17) has been generalized by Xie
et al. [595] to provide a new distribution with survival function

F(x) = exp

[
−λ α

{
exp

( x
α

)β − 1

}]
, x ≥ 0; α,β ,λ > 0, (7.28)

called the modified Weibull extension. From the corresponding density function

f (x) = exp

[
−λ α

{
exp

( x
α

)β − 1

}]
λ β e(

x
α )β

( x
α

)β−1
,

we obtain the hazard function as

h(x) = λ β e(
x
α )β

( x
α

)β−1
.

The name Weibull extension comes from the fact that (7.28) reduces to the Weibull
distribution when λ →α in such a way that αβ−1λ−1 remains constant. Two special
cases are the exponential power distribution in (7.2) when λ = 1 and the Chen’s
model when α = 1. When β ≥ 1, h(x) is IHR and when 0 < α < 1, h(x) → ∞ as

x → 0 or ∞. In this case, we have BT shape with change point x0 = α
(

1−β
β

) 1
β . The
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change point increases as β decreases from 1 to 0. The quantile function of (7.28)
takes on the expression

Q(u) = α
[

log

{
1− log(1− u)

λ α

}] 1
β

and therefrom we get

H(u) =
β (λ α − log(1− u))

α
[
log

{
1− log(1−u)

λ α

}] 1
β −1

.

Yet another extension of the Weibull law is due to Lai et al. [370], called the
modified Weibull distribution. It has its density function as

f (x) = β (α +λ x)xα−1 exp{λ x−β xαeλ x} (7.29)

and survival function as

F(x) = exp(−β xα eλ x).

As λ → 0, we have the usual Weibull distribution. Note that (7.29) has a hazard rate
of the form

h(x) = β (α +λ x)xα−1eλ x,

so that the shape of h(x) is independent of β and λ . For α ≥ 1, the distribution is

IHR, and for 0 < α < 1, we have BT shape with change point x0 =
α

1
2 −α
λ . There is

no simple closed-form expression for the quantile function. Nikulin and Haghighi
[472] (see also Dimitrakopoulas et al. [178]) proposed a generalized power Weibull
distribution with survival function

F(x) = exp

[
1−

{
1+

( x
β

)α
}θ

]
, x ≥ 0, α,β > 0, θ > 0, (7.30)

which is a general family consisting of Weibull (θ = 1) and exponential (θ = 1,
α = 1) distributions as particular members.

The transformation Y = 1 + (X
β )

α gives the Weibull distribution with

parameters 1 and θ in (1,∞). Similarly, transforming by log
{

1+( x
α )

β} and
[
log

{
1+( x

α )
β}] 1

β , respectively, we obtain the modified extreme value distribution
and the power exponential distribution of Smith and Bain [544] in (7.2). From the
density function
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f (x) =
θα
β α exp

[
1−

{
1+

( x
β

)α
}θ

]{
1+

( x
β

)α
}θ−1

xα−1,

we obtain the hazard function as

h(x) =
θα
β α

{
1+

( x
β

)α
}θ−1

xα−1.

The above expression yields flexible hazard rate shapes, like IHR if either α > 1
and α > 1

θ or α = 1 and θ > 1, DHR if either 0 < α < 1 and α < 1
θ or αθ = 1 and

0 < α < 1, and UBT whenever 1
θ > α > 1. For a quantile-based analysis, we can

use

Q(u) = β
[
{1− log(1− u)} 1

θ − 1
] 1

α

and

H(u) =
αθ
β

[
{1− log(1− u)} 1

θ − 1
]1− 1

α {1− log(1− u)}1− 1
θ .

Differentiating H(u) and setting H ′(u) = 0, we find the change point u0 as

u0 = 1− exp

{
1−

(αθ −α
1−αθ

)θ
}
.

Lan and Leemis [372] presented the logistic exponential distribution as a model
for lifetimes with flexible hazard rate shapes. Their two-parametric version has its
survival function as

F(x) =
{

1+(eλ x− 1)k
}−1

, x ≥ 0. (7.31)

Clearly, the distribution reduces to the exponential case when k = 1 having constant
hazard rate. In general, the hazard function is

h(x) =
λ keλ x(eλ x − 1)k−1

1+(eλ x− 1)k
.

For 0 < k < 1, h(x) is BT, while for k > 1, it is UBT. The change point in both
cases is

x0 = λ−1 log(xk + 1),

where xk is the positive root of the equation
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kx− xk = 1− k.

It can be shown that the quantile function of (7.31) is

Q(u) =
1
λ

log

{
1+

( u
1− u

) 1
k
}

and

H(u) = kλ
u

1
k +(1− u)

1
k

u
1
k − 1

.

The change point of H(u) is the solution of the equation

ku
1
k +(1− u)

1
k −1(k− ku− 1) = 0.

Introducing yet another parameter into (7.31), we have the more general model with
survival function

F(x) =
1+(eλ θ − 1)k

1+ {eλ (x+θ)− 1}k
, θ ≥ 0, k > 0,λ > 0, (7.32)

and corresponding hazard function

h(x) =
Cλ k{eλ (x+θ)− 1}k−1eλ (x+θ)

1+ {eλ (x+θ)− 1}k
,

where

c = 1+(eλ θ − 1)k.

By proceeding along the same lines as in the reduced model, we see that F(x) has
highly flexible hazard rate being exponential for k = 1; BT for 0 < k < 1, λ θ <

log(xk +1) with minimum at log(1+xk)
λ −θ ; IHR for 0< k < 1 and λ θ > log(xk +1);

and UBT for k > 1 and λ θ > log(1+xk). The quantile function, with a slightly more
complicated from than the two-parameter version, given by

Q(u) =
1
λ2

log

{
1+

(c+ u− 1
1− u

) 1
k −θ

}

can be employed to find H(u) and its change points as done before.
By exponentiating the linear failure rate model, Sarhan and Kundu [520] arrived

at the generalized linear failure rate distribution with survival function
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F(x) =

[
1− exp

{
−
(

ax+
b
2

x2
)}]θ

, x ≥ 0. (7.33)

It contains as special cases the linear failure rate model, the generalized exponential
distribution in (7.27) and generalized Rayleigh distribution discussed by Kundu and
Raqab [361]. The hazard rate becomes

h(x) =
θ (a+ bx)

[
1− exp

{−(
ax+ b

2 x2
)}]θ−1

exp
{
−(ax+ bx2

2 )
}

1−
[
1− exp

{
−(ax+ bx2

2 )
}]θ .

Analysing h(x), it is seen that the hazard rate is constant or increasing when θ = 1,
increasing when θ > 1, either decreasing (b = 0) or bathtub (b > 0) when θ < 1.
The same approach is made by Barreto-Souza and Cribari-Neto [71] to extend the
exponential Poisson distribution of Kus [364] given by

F(x) =
1− exp(−λ +λ e−β x)

1− e−λ , x,λ ,β > 0,

to the general form

F(x) =

{
1− exp(−λ +λ e−β x)

1− e−λ

}θ

, x,θ > 0. (7.34)

The hazard rate of (7.34) is given by

h(x) =
θλ β (1− e−λ+λ e−βx

)θ−1e−λ−β x+λ e−βx

(1− e−λ)θ −{1− exp(−λ +λ e−β x)}θ

which can be IHR, DHR or UBT. A closed-form quantile function for (7.34) is
given by

Q(u) =
1
β

log

[
− 1

λ
log

{
1− (1− e−λ)u

1
θ
}]

.

When the baseline distribution in (7.33) or (7.34) is changed to the exponential
power distribution in (7.2), we have the model proposed by Barriga et al. [72], for
which the survival function is

F(x) = 1−
[

1− exp

{
1− exp

( x
α

)β
}]θ

, x > 0. (7.35)
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The corresponding hazard rate function

h(x) =
β θxβ−1 exp

{
1+( x

α )
β − exp( x

α )
β}exp

[
1− exp

{
1− exp( x

α )
β}]θ−1

αβ [1−{1− exp(1− exp( x
α )

β )}]θ

has the following properties:

(i) h(0) = 0 for β > 1 and h(0) = 1
α for β = 1, θ = 1;

(ii) h(x) is increasing for β > 1, θ ≤ 1;
(iii) h(x) is decreasing for β θ ≤ 1, θ > 1;
(iv) h(x) is UBT for β < 1, β θ > 1;
(v) h(x) is BT for θ ≤ 1 or β > 1 and β θ < 1.

The parameter estimation is carried out by the maximum likelihood method.
Distribution (7.35) is specified by the quantile function

Q(u) = α
[
log

{
1− log(1− u)

1
θ
}] 1

β
.

Zhang and Xie [600] considered the upper truncated Weibull distribution
given by

G(x) =
F(x)−F(a)
F(T )−F(a)

, a ≤ x < T,

with

F(x) = 1− exp

{
−
( x

α

)β
}

yielding a hazard rate

h(x) =
(β

η )(
x
η )

β−1 exp

{
−
(

x
η

)β
}

F(T )−F(x)
, a ≤ x < T,

which is increasing for β ≥ 1 and BT for β < 1.
Silva et al. [539] introduced the generalized geometric exponential distribution

with distribution function

F(x) =

(
1− e−px

1− pe−β x

)θ
, x > 0, 0 < p < 1, θ ,β > 0. (7.36)

When θ > 0 is an integer, (7.36) is the distribution of X = max1≤i≤α Yi, where
Y1,Y2, . . . ,Yα is a random sample from the exponential geometric distribution. Note
that
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h(x) =
θβ (1− p)e−β x(1− e−β x)θ−1

(1− pe−β x){(1− pe−β x)α − (1− e−β x)α}

which has the following properties:

(a) decreasing for p and α in (0,1);
(b) increasing for p in (0, α−1

α+1) and α in (1,∞);

(c) UBT for p in (α−1
α+1 ,1) and α in (1,∞).

Let Y1,Y2, . . . ,YN be a random sample from a Weibull distribution with density
function

f (y) = β αβ yβ−1e−(αy)β
, y,α,β > 0,

where N is a zero-truncated Poisson random variable with probability mass function

P(N = n) =
e−λ λ n

Γ (n+ 1)(1− e−λ)
, n = 1,2, . . . .

Assuming that Yi and N are independent, the distribution of X = min(Y1,Y2, . . . ,YN)
is called a Weibull-Poisson distribution by Hemmati et al. [267]. It has density
function

f (x) =
λ β α

1− e−λ (αx)β−1 exp
{
−λ − (αx)β +λ e−(αx)β

}

and survival function

F(x) =
{

1− exp(λ e−(αx)β
)
}
(1− e−λ)−1.

The corresponding hazard rate is

h(x) =
λ β α

1− e−λ

(αx)β−1(1− eλ)exp
{
−λ − (αx)β +λ e−(αx)β

}
{

1− exp(λ e−(αx)β
)
}

which can be either increasing, decreasing or modified bathtub shaped.
A lifetime model for bathtub failure rate data by transforming them to the

Weibull was considered in Mudholkar et al. [422]. Consider the data in the form
of pairs of independent and identically distributed random variables (Xi,δi), where
Xi = min(Ti,Ci) and δi = 1 when Ti ≤ Ci (uncensored case) and δi = 0 if Ti > Ci

(censored case), with Ti as the lifetime and Ci as the censoring time. Mudholkar
et al. [422] assumed that there exists a transformation

y = g(x,θ ) =
x

1−θx
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that transforms the data to the Weibull form F(y) = e−( y
α )β

. The range of the
transformation is (0,α); g(x,θ ) should be invertible and θ can be zero in which
case the original data is retained. We have x = y

y+θ , and so

F(x) = P
( Y

1+θY
> x

)
= exp

{
−
( 1

α
x

1+θx

)β
}
, 0 < x <

1
θ
.

The corresponding hazard rate

h(x) =
β

αβ
xβ−1

(1−θx)β+1

has

h′(x) = (1−θx)β xβ−2(β − 1+θx)

which reveals that h(x) is increasing for β > 1 and BT for 0 < β < 1. The
distribution has its quantile function as

Q(u) =
α{− log(1− u)} 1

β

1+θα{− log(1− u)} 1
β
.

7.4 More Flexible Hazard Rate Functions

When we examine the models in the last two sections chronologically, it is seen
that model parsimony was an important concern in earlier works with many two-
parametric models. With improvement in computational technology, the number
of parameters and complexities in estimating them became less problematic.
Consequently, models with more than one shape parameter that provide more
richness in the shapes of the hazard rate began to appear. In this section, we deal
with such models that have at least four parameters.

Models with hazard rates as a sum were proposed by many. These include

h(x) =
θ

1+β x
+λ αxα−1, θ ,β ,λ ,α > 0, (7.37)

suggested by Murthy et al. [435]. Note that the first term is the hazard rate of a
Pareto II distribution, while the second is that of the Weibull. Here, h(0) = θ and
h(∞) = ∞ suggesting a bathtub shape. The Hjorth model in (7.20) is a special case
of this family with survival function
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F(x) =
e−λ xα

(1+β x)
θ
β
.

Jaising et al. [291] extended the hazard rate in (7.37) to the form

h(x) = λ +
θ

x+β
+λ xδ , (7.38)

while Canfield and Borgman [126] considered the representation

h(x) = α1β1xβ1−1 +α2β2xβ2−1 +α3 (7.39)

with β2 > 2 and β1 < 1. Notice that (7.38) is a construction of the hazard rates of
exponential Pareto II and Weibull, while (7.39) considers the sum of an exponential
and two Weibull hazard rates.

In the case of (7.39), the change point is given by

x0 =
(α1β1(1−β1)

α2β2

) 1
β2−β1 , β1 < 1.

Similar representation of h(x) with only two Weibull hazard rates as components
was also discussed by Xie and Lai [594], Jiang and Murthy [293] and Usagaonkar
and Maniappan [570]. Instead of two Weibull distributions, if we take the hazard
rates of Burr distributions with survival functions

Fi(x) =
1

(1+( x
ai
)ci)ki

, i = 1,2,

we get the hazard rate

h(x) =
k1c1xc1−1

ac1
1 {1+( x

a1
)c1} +

k2c2xc2−1

ac2
2 {1+( x

a2
)c2} , (7.40)

for k1,k2,a1,a2 ≥ 0, 0 < c1 < 1 and c2 > 2. A bathtub model arising from the above
hazard rate has been discussed by Wang [577].

Phani [495] considered a new distribution with survival function

F(x) = exp

{
−λ

(x−α)θ1

(β − x)θ2

}
, λ > 0, β1,β2 > 0, 0 ≤ θ1 ≤ x ≤ θ2, (7.41)

and corresponding hazard rate as

h(x) =
λ (x−α)θ1−1(β − x)θ2−1{θ1(β − x)+θ2(x−α)}

(β − x)2θ2
.
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The sign of h(x) is determined by a quadratic function in x, and so provides a
BT shape. In the reduced case of θ1 = θ2, the condition for BT is 0 < θ1 < 1.
Subsequently, Moore and Lai [420] proposed the version

h(x) = c(x+ p)a−1(q− x)b−1, 0 < a < 1, b <−1, c > 0, p ≥ 0, 0 ≤ x < q,

which also gives a BT form since h(0) = cpa−1qb−1 and h(x) → ∞. The change
point is x0 = (a+ b− 2)−1{(a− 1)q− (b− 1)p}.

Mixtures of distributions form an important aspect in the consideration of
bathtub-shaped models. Many authors like Glaser [221], Kunitz and Pamme [362],
Pamme and Kunitz [480] and Gupta and Warren [249] have focused on this
formulation. If f1(x) and f2(x) are density functions with hazard rates h1(x) and
h2(x), respectively, the two-component mixture

f (x) = α f1(x)+ (1−α) f2(x), 0 < α < 1,

has its hazard rate as

h(x) =
α f1(x)+ (1−α) f2(x)

αF1(x)+ (1−α)F2(x)
;

see the discussion in Sect. 4.2. Assuming

fi(x) =
1

β αi
i Γ (αi)

xαi−1e
− t

βi , i = 1,2

Gupta and Warren [249] showed that h(x) is BT in the cases (i) β1 = β2 = β and
α1 > 1, α2 > 1; (ii) α2 = 1, α1 > 2; (iii) α1 > 1, α2 > 1. With α1 −α2 > 1 and
(α1 −α2 − 1)2 − 4(α2 − 1)> 0, h(x) can be UBT.

The properties of mixtures of Weibull distributions have been studied by Jiang
and Murthy [295] and Wondamagegnehu [584]. Assuming F1(x) = exp(−λ1xα)
and F2(x) = exp(−λ2xα), the mixture hazard rate given by

h(x) =
pe−λ1xα λ1αxα−1 +(1− p)e−λ2xα λ2αxα−1

pe−λ1xα
+(1− p)e−λ2xα

will be modified BT shaped when 0< p < θ and IHR when θ ≤ p < 1, where α > 1
and

θ =
α(β − 1)+A

2α(β − 1)exp
[
(α−1)(β+1)+A

α(β−1)

] ,

A = (α2(β − 1)2 + 4(α − 1)2β )
1
2 ,

β =
λ2

λ1
.
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While the mixtures can have IHR, DHR, UBT, modified bathtub or roller-coaster
type, they cannot be BT.

Navarro and Hernandez [466] have discussed the nature of the failure rates of
truncated normal mixtures. They considered the truncated normal density function

f (x) =
1√

2πσΦ( μ
σ )

exp
(
− (x− μ)2

2σ2

)
, x > 0, (7.42)

where Φ(x) is the standard normal distribution function, and formed the mixture

f (x) = p f1(x)+ (1− p) f2(x), 0 < p < 1, (7.43)

where fi(x) is distributed as (7.42) with parameters (μ0,σ0) and (μ1,σ1). When

σ1 = σ0 and δ =
σ 2

0
(μ0−μ1)2 , they proved that if

(i) δ > 1
4 , f (x) is IHR;

(ii) δ ≤ 1
4 , w(0)≤ 1

2 and w(0)(1−w(0))< δ , f (x) is IHR or BT;
(iii) δ ≤ 1

4 , w(0)≤ 1
2 and w(0)(1−w(0))≥ δ , f (x) is IHR or BT;

(iv) δ ≤ 1
4 , w(0)< 1

2 and w(0)(1−w(0))≤ δ , f (x) is IHR, BT or modified BT,

where

w(t) =

{
1+

1− p
p

f1(x)
f2(x)

}−1

.

Further, the change points of η(x) =− f ′(x)
f (x) in (7.43) is found from the equation

w(x)(1−w(x)) = δ .

In the general case when the variances are unequal, let us assume σ1 > σ0,

x0 =
σ2

1 μ0 −σ2
0 μ1

σ2
1 −σ2

0

> 0,

θ (x) =
w(x)
σ 2

1
− (1−w(x))

σ 2
0

w(x)(1−w(x))
−
(x− μ1

σ2
1

− x− μ2

σ2
0

)2
,

and

y1 = w(x1).

Then, the following results hold:

1. If w(x0)≥ y1, then f is IHR;
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2. If w(x0)< y1 and

(a) w(0)< y1, θ (0)≥ 0 and θ (x1)≥ 0, then f is IHR;
(b) w(0)< y1, θ (0)< 0 and θ (x1)≥ 0, then f is IHR or BT;
(c) w(0) < y1, θ (0) ≥ 0 and θ (x1) < 0, then f is IHR, BT or modified BT

(MBT);
(d) w(0)< y1, θ (0)< 0 and θ (x1)< 0, then f is IHR, BT, MBT or BBT (BT in

(0,x0) and BT in (x0,∞));
(e) w(0)≥ y1, θ (0)> 0 and θ (x1)≥ 0 and θ (x2)≥ 0, then f is IHR;
(f) w(0)≥ y1, θ (0)≤ 0 and θ (x2)≥ 0, then f is IHR or BT;
(g) w(0)≥ y1, θ (0)> 0 and θ (xi)≥ 0 for i = 1 or 2, then f is IHR, BT or MBT;
(h) w(0)≥ y1, θ (0)≤ 0 and θ (x2)< 0, then f is IHR, BT, MBT or BBT;
(i) w(0) ≥ y1, θ (0) > 0 and θ (x1) < 0, θ (x2) < 0, then f is IHR, BT, MBT,

BBT or IBT.

Sultan et al. [553] considered a mixture of inverse Weibull distributions with
survival function

F(x) = p
{

1− exp(−α1x)−β1

}
+(1− p)

{
1− exp(−α2x)−β2

}

and the corresponding hazard rate

h(x) =
pβ1α−β1

1 x−(β1+1)e−(α1x)−β1 +(1− p)β2α−β2
2 x−(β2+1)e−(α2x)−β1

p{1− e−(α1x)−β1 }+(1− p){1− e−(α2x)−β2 }

which can be unimodal and bimodal.
From the above illustrations, one might have noticed that the analysis of hazard

rates of mixtures is quite complicated. Also, the shape of the hazard rates changes
with the mixing proportion p and the component distributions. In most cases, the
quantile functions are not invertible into explicit forms and so have to be evaluated
numerically. There are several discussions on the shapes of hazard rates in the
general case as well as for mixtures of distributions with specified components. For
more details, one may refer to Gurland and Sethuraman [255], Lynch [405], AL-
Hussaini and Sultan [29], Shaked and Spizzichino [532], Block et al. [109,110,112],
Wondamagegnehu et al. [585], Bebbington et al. [82], Sultan et al. [553] and Ahmed
et al. [27].

Agarwal and Kalla [20] studied a generalized gamma model of the form

f (x) =
xme−δx(n+ x)λ

δ λ−mΓλ (m+ 1,nδ )
, x > 0, λ ,δ ,n,m > 0,

where

Γλ (m,n) =
∫ ∞

0

e−ttm−1

(t + n)λ dt
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which was further extended by Kalla et al. [309] to the model

f (x) =
β xm+β−1e−δxβ

(n+ xβ )λ

δ λ−m
β Γλ (

m
β + 1,nδ )

. (7.44)

The distribution in (7.44) includes the Stacy distribution when λ = 1 and appropriate
reparametrization that gives

f (x) =Cxαβ−1 exp
{
−
( x

θ

)α}
. (7.45)

The gamma distribution and Weibull distribution are particular cases of (7.45) when
α = 1 and β = 1, respectively. Glaser [220] and McDonald and Richards [414,415]
have discussed the shape of the hazard rate and conditions on the parameters that
produce IHR, DHR, BT and UBT curves. The most general form in (7.44) has been
analysed by Gupta and Lvin [248].

In order to accommodate early failures, Muraleedharan and Lathika [433]
proposed mixing a Weibull distribution with a singular distribution at x = δ , where
δ is small and specified in advance. Thus, their model has the representation

F(x) = (1−α)F1(x)+αF2(x),

where F1 is the singular component and F2 is Weibull. Mitra and Basu [418]
considered the life distribution of a device subject to a sequence of shocks occurring
randomly in time according to a homogeneous Poisson process:

H(t) =
∞

∑
k=0

e−λ t (λ t)k

k!
PK , 1 = P0 ≥ P1 ≥ P2 ≥ ·· · .

They derived conditions under which H(t) has a BT hazard rate in terms of certain
properties of PK .

Mitra and Basu [419] have presented some general properties of BT distributions.
Their main results resemble the properties of ageing concepts described earlier in
Chap. 4. Suppose F has a BT hazard rate with a change point x0. Then:

1. F(x)< G(x), where G is exponential with mean [h(x0)]
−1;

2. μ ′
r ≤ Γ (r+1)

[h(x0)]k
with equality sign holding true when X is exponential;

3. BT-shaped hazard rate distributions are not preserved under convolution or
mixing. They are also not closed under the formation of parallel systems.
However, if each component in a series system has a BT hazard rate with change
point x0, then the system also has a BT hazard rate with x0 as one of the change
points.

The modified Weibull distribution was further generalized by Carrasco et al.
[129] to a density function of the form
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f (x) =
αβ xr−1(r+λ t)exp(λ x−αxreλ x)

{1− exp(−αxreλ x)}1−β . (7.46)

Correspondingly, the hazard rate function is

h(x) =
αβ xr−1(r+λ x)exp(λ x−αxreλ x){1− exp(αxreλ x)}

1−{1− exp(−αxreλ x)}β .

Special cases of the distribution are Weibull (λ = 0, β = 1), type I extreme value
(r = 0,β = 1), exponentiated Weibull (λ = 0), exponentiated exponential (λ = 0,
r = 1), generalized Rayleigh (r = 2, λ = 0), and modified Weibull (β = 1). We
see that h(x) is increasing for r ≥ 1, 0 < β < 1, decreasing for 0 < r < 1, β > 1,
unimodal for 0 < r < 1, β → ∞, and BT for λ = 0, r > 1, rβ < 1.

In the past three sections, we have reviewed only models of a representative
nature. Further models, inference procedures, and applications to data analysis
can all be seen from the papers cited in the text and the references therein. More
references and details are available in Lai and Xie [368], Lai et al. [369], Bebbington
et al. [85], Nadarajah [437] and Silva et al. [538].

7.5 Some General Methods of Construction

In this section, we present some general methods that lead to the construction of a
model with BT-shaped hazard function.

• Using Glaser’s theorem
Let X a non-negative random with positive density function f (x) that is twice

differentiable. Define η(x) = − f ′(x)
f (x) and g(x) = [h(x)]−1. If there exists a point

x0 such that η ′(x)< 0 for x < x0, η ′(x0) = 0 and η ′(x)> 0 for x > x0, and further
there exists a y0 such that

g′(y0) =
∫ ∞

y0

f (y)
f (y0)

[η(y0)−η(y)]dy.

Then, the corresponding distribution has BT-shaped hazard rate. Verification of
the BT nature of several distributions discussed earlier like (7.4), (7.5), (7.45)
and mixtures of gamma is in fact accomplished in this manner.

• From convex functions
A BT hazard rate distribution emerges from a strictly convex positive function

on (0,α) satisfying the condition
∫

h(x)dx = ∞. Also, a strictly increasing
function of BT hazard rate is also a BT hazard rate. Models (7.12) and (7.19)
are examples of this form.
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• Series systems (Addition of hazard rates)
The hazard rate of a series system with n independent components is the sum

of the hazard rates of the components. By choosing some hazard rates to be IHR
and the rest to be DHR, one may arrive at a BT hazard rate. Models (7.19),
(7.20), (7.38), (7.39) and (7.40) all belong to this category. Generalizing this
idea, lifetime distributions with hazard functions of the form

h(x) = A1h1(x)+A2h2(x), x > 0,

were investigated by Shaked [529]. In the above formulation, A1 and A2 are
independent of h1(x) and h2(x), while both h1(x) and h2(x) may be assumed to be
of known forms. Shaked [529] chose h1(x) = 1 and h2(x) = sinx, for example, in
modelling hazard rate influenced by periodic fluctuations of temperature. Gaver
and Acar [210] discussed models with hazard rates of the form

h(x) = h1(x)+λ + h2(x),

where h1(x) is positive and decreasing and tends to zero as x → ∞, and h2(x)
is increasing. One can see several hazard functions of the above two forms in
our earlier discussions. Closely related to these are distributions with polynomial
form for h(x).

• Stochastic hazard rates
Rajarshi and Rajarshi [500] identified a stochastic hazard rate as

h∗(x) = u+ h1(x),

where u is the realization of a continuous positive random variable U , and h1(x)
need not be a hazard rate, and h∗(x) is the hazard rate of X given U = u. It is
obvious that the above representation is a special case of the additive hazard rate
model of Nair and Sankaran [446] discussed in connection with the Hjorth [272]
model. The BT-shaped hazard functions obtained earlier as the sum of hazard
rate models of Murthy et al. [435], Shaked [529] and Davis and Feldstein [167]
also belong to this category. The ageing properties and stochastic order relations
connecting the random variable X∗ (corresponding to h∗(x)) and the baseline
variable X have been studied in Nair and Sankaran [446]).

• Mixtures
Mixtures of two distributions, with one of the components being IHR and the

other being DHR, may yield a BT-shaped hazard rate model. See the mixture
distributions discussed in Sect. 7.4 for illustration.

• Introduction of additional parameters
Introducing additional parameters that influence the shape of a baseline

distribution has become a standard practice to generate new models with BT
hazard rates. One simple method is exponentiation, i.e., to consider [F(x)]θ ,
θ > 0, where F(x) is a life distribution. The exponentiated Weibull, generalized
exponential, and generalized linear failure rate distributions are all examples of
this kind.
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Another method is to use the Marshall-Olkin [411] method. A given survival
function G(x) is modified into the form

F(x) =
θG(x)

1− (1−θ )G(x)
.

Several such models are discussed, along with their hazard rates, by Marshall
and Olkin [411]. See also various generalizations arising from the Weibull
distributions in Sects. 7.4 and 7.5.

• Upside-down mean residual life models
Like the hazard rate, the mean residual life function can also have BT and

UBT shapes. The following theorem, from Ghai and Mi [211], is of interest in
the pursuit of BT or UBT hazard rates.

Theorem 7.2. Let x0 be the unique change point of a UBT (BT) mean residual life
function m(x). Suppose there exists a t0 ∈ [x0,∞) such that m(x) is concave (convex)
in [0, t0] and convex (concave) in [t0,∞). If m′(x) is convex (concave) in [x0, t0), then
either of the following is true:

(a) h(x) exhibits a BT (UBT) that has two change points x1 < x2, where x0 ≤ x1 <
x2 ≤ t0;

(b) h(x) exhibits a BT (UBT) that has a unique change point x∗, where x0 ≤ x∗ ≤ t0.

Hence, a known mean residual life satisfying Theorem 7.2 can generate a BT or
UBT hazard rate. Other methods of obtaining BT shapes for the hazard rate function
will be discussed in the following section.

7.6 Quantile Function Models

So far, we have discussed in this chapter models based on distribution functions
that possess nonmonotone hazard rates. Since many of the models have tractable
quantile functions, a quantile-based analysis is possible in all such cases. While
analysing the standard quantile functions in Chap. 3, the nonmonotonicity of their
hazard quantile functions was witnessed to make use of them in data analysis. The
primary objective of the present section is to enrich the domain of applications by
finding some more new quantile functions.

7.6.1 Bathtub Hazard Quantile Functions Using Total
Time on Test Transforms

Recall from Chap. 5 that the total time on test transform (TTT) of order n of a non-
negative random variable with quantile functions Q(u) is defined as
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Tn(u) =
∫ u

0
(1− p)tn−1(p)d p, n = 1,2,3, . . . , (7.47)

with T0(u) = Q(u) and tn(u) = T ′
n(n), provided μn−1 =

∫ 1
0 Tn−1(p)d p < ∞. Since

Tn(u) is also a quantile function, let us denote by Xn the corresponding random
variable. Let μn = E(Xn) and Hn(u) be the hazard quantile function of Xn. We then
have

tn(u) = (1− u)tn−1(u) = [Hn−1(u)]
−1

and

tn(u) = (1− u)nt0(u) = (1− u)nq(u) =
(1− u)n−1

H(u)
.

Finally,

H(u) = (1− u)nHn(u), n = 0,1,2,3, . . . (7.48)

Definition (7.47) applies to negative integers as well; for example, Q(u) can be
thought of as the transform of T−1(u). In that case, the hazard quantile function
H−n(u) corresponds to

H−n(u) = (1− u)nH(u), n = 0,1,2,3, . . . . (7.49)

Equation (7.48) reveals that, in successive transforms, the hazard quantile function
increases when n is positive and decreases when n is negative. The following results
(Nair et al. [448]) are useful in this connection.

Theorem 7.3. 1. The random variable X has BT hazard quantile function if there
exists a u0 for which Q(u) ≥ L(u) in [0,u0] and Q(u) ≤ L(u) in [u0,1], where
L(u) is the quantile function of the Pareto II distribution with parameters (k, 1

n ).
Then, u0 will be the change point;

2. The random variable Xn has UBT hazard quantile function if there exists a u0

for which Tn(u) ≤ B(u) in [0,y0] and Tn(u) ≥ B(u) in [u0,1], where B(u) is the
quantile function of the rescaled beta distribution with parameters ( k

n+1 ,
1

n+1 ).
Then, we have u0 as the change point.

From (7.48) and (7.49), we see that for DHR (IHR) distributions the hazard
quantile function of Xn has a tendency to increase (decrease). In effect, we look at
the successive transforms where a change point occurs in the corresponding hazard
quantile function to construct a model with BT- or UBT-shaped hazard quantile
function. This technique will be used to develop new quantile functions with the
above property from some standard distributions.
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• Weibull distribution

It has been seen in the previous sections that many of the models with nonmonotone
hazard rates were generated by either generalizing or modifying the Weibull
distribution. In the same spirit, the present example also considers the Weibull
distribution with survival function

F(x) = exp

{
−
( x

α

)β
}
, x > 0; α,β > 0,

and mean μ = αΓ (1+ 1
β ), as the baseline model. Using the quantile function

Q(u) = α{− log(1− u)} 1
β ,

we have

H(u) = β α−1{− log(1− u)}1− 1
β

and from (7.48),

Hn(u) = β α−1(1− u)−n{− log(1− u)}1− 1
β

and

H ′
n(u) = β α−1{− log(1− u)}− 1

β (1− u)−n+1
{

1− 1
β
− n log(1− u)

}
. (7.50)

Since Hn(u) has the tendency to increase with n, the only possibility to get a BT
hazard quantile function is to consider DHR distributions. Accordingly, we take the
DHR Weibull distribution with β ≤ 1. Equation (7.50) reveals that Hn(u) is concave
in [u0,1] and convex on [0,u0], where u0 = 1− exp(β−1

nβ ), β ≤ 1. Hence, Xn has BT
distribution for n ≥ 1. As seen from the expression for u0, the change point u0 also
increases with n so that Xn becomes IHR for a larger range, along with increasing n.

Take the case when n = 1. We have the random variable X1 in the support of
(0,μ) with quantile function T1(u) and hazard quantile function as

H1(u) = β α−1(1− u)−1{− log(1− u)}1− 1
β .

The quantile density function is

t1(u) = αβ−1{− log(1− u)}1− 1
β , 0 ≤ u ≤ 1, (7.51)

which is bathtub-shaped hazard quantile function with change point u0 = 1 −
exp(β−1

β ). We can find the distributional characteristics of X1 from (7.50). Quantile
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function corresponding to (7.50) is expressed in terms of the incomplete gamma
function as

T1(u) =
α
β

Γ− log(1−u)

(
1
β

)
, 0 < β < ∞,

where

Γx(p) =
∫ x

0
e−tt p−1dt.

The first four L-moments of the distribution are as follows:

L1 = E(X) =
αΓ

(
1
β

)

β 2
1
β

,

L2 =
α
β

(
2−

1
β − 3−

1
β
)

Γ
(

1
β

)
,

L3 =
α
β

{
2−

1
β − 3(3−

1
β )+ 2(4−

1
β )
}

Γ
(

1
β

)
,

L4 =
α
β

{
2−

1
β − 6(3−

1
β )+ 10(4−

1
β )− 5(5−

1
β )
}

Γ
(

1
β

)
.

Thus, the L-skewness has the simple expression

τ3 =
2−θ − 31−θ + 4

1
2−θ

2−θ − 3−θ

= 1− 2(3−θ − 4−θ)

2−θ − 3−θ

= 1− 2
{

1− ( 3
4)

θ}

( 3
2 )

θ − 1
, with θ = β−1.

As θ →∞ or β → 0, we see that τ3 tends to 1, and as θ → 0, we have τ3 appropriately
−0.53. Hence, the distribution covers skewness in the range (−0.53,1). On the other
hand, the L-kurtosis is

τ4 = 1− 5− ( 3
4)

θ + 5( 3
5)

θ

( 3
2 )

θ − 1

which tends to 1 as β → 0. The parameters of the distribution allows easy estimation
by equating the first two L-moments of the sample with those of the population.
Thus, (7.50) gives a two-parameter life distribution with BT-shaped hazard quantile
function.
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7.6.2 Models Using Properties of Score Function

The results discussed here are mainly based on the work of Nair et al. [448]. Recall
from Sect. 4.3 that the definition of the score function is

J(u) =
q′(u)
q2(u)

,

where q(u) is the quantile density function of the lifetime X . We see that

J(u) =− d
du

1
q(u)

=− d
du

(1− u)H(u),

or equivalently

(1− u)H ′(u) = H(u)− J(u).

Thus, X is I(D) according as H(u) ≥ J(u) for all u. Further, if H(u) is nonmono-
tonic, the change points of H(u) are zeros of H(u)− J(u). Geometrically, for
increasing (decreasing) H(u), the H(u) curve lies above (below) that of J(u) and
for BT (UBT) hazard quantile function H(u) crosses J(u) from below (above). An
interesting property of J(u) is that there exists some simple relationships between
J(u) and H(u) that characterize many life distributions.

Theorem 7.4. The random variable X is distributed as generalized Pareto with

Q(u) = ba−1
{
(1− u)−

a
a+1 − 1

}
, a >−1, b > 0, (7.52)

if and only if

J(u) = cH(u) (7.53)

for a positive constant c.

Proof. Assuming (7.50), we find J(u) and H(u) as

J(u) =
2a+ 1

b
(1− u)

a
a+1

and

H(u) =
a+ 1

b
(1− u)

a
a+1 .

This readily verifies (7.53) with c = 2a+1
a+1 . Conversely, if (7.53) applies to a random

variable X , then
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H ′(u)
H(u)

=
1− c
1− u

and

H(u) = K(1− u)c−1,

q(u) = K(1− u)c−1,

which is the quantile density function of the generalized Pareto with c = 2a+1
a+1 .

Hence, the theorem.

Remark 7.2. When c = 1, we have the exponential distribution and c > (<)1 leads
to the Pareto II (rescaled beta) model. It is apparent that by generalizing the identity
in (7.53), we can obtain more flexible models. This fact is illustrated in the following
theorems.

Theorem 7.5. The relationship

J(u) = AH(u)+B

is satisfied for all u and real constants A and B if and only if the distribution of X is
given by

Q(u) =

⎧
⎪⎨
⎪⎩

log

{(
1+ B

1−A

) 1
B
(

c+ B
1−A(1− u)1−A

)− 1
B
}
, c ≤ 1, A �= 1

1
B log

{
c

c+B log(1−u)

}
, A = 1, c > 0.

(7.54)

Theorems 7.4 and 7.5 do not provide models with nonmonotone hazard quantile
functions. The distribution in Theorem 7.5 contains known models like the exponen-
tial, Pareto, rescaled beta, half-logistic and Gompertz as special cases. In general,
H(u) is increasing for (7.54) when A < 1, 0 < c ≤ 1 or A > 1, C < 0 and decreasing
when A > 1, C < 0 or A > 1, 0 < c ≤ 1. Some other properties of the distribution
have been studied by Nair et al. [448].

Returning to the construction of bathtub-shaped H(u), we have the follow-
ing characterization that generates a distribution with BT-shaped hazard quantile
function.

Theorem 7.6. If the functions J(u) and H(u) are such that

J(u) =
(

A+
α
u

)
H(u) (7.55)

for all u, then it is necessary and sufficient that the distribution is specified by the
quantile density function

q(u) = Kuα(1− u)−(A+α), (7.56)

where α,A and K are real constants.
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Proof. Equation (7.55) is equivalent to

q′(u)
q2(u)

=
(A+ α

u )

(1− u)q(u)
,

or

d logq(u)
du

=
A+ α

u

(1− u)
.

Integrating the above equation, we obtain (7.56). Conversely, if the distribution is of
the form (7.56), then by direct calculations, we have

H(u) = K−1u−α(1− u)A+α−1

and

J(u) = K−1u−α−1(1− u)A+α−1(uA+α),

thus verifying (7.55).
The family of distributions in (7.55) includes several well-known distributions as

special cases. Of these are

• the exponential (α = 0,A = 1) with constant H(u);
• Pareto II (α = 0,A < 1) with decreasing H(u);
• rescaled beta (α = 0,A > 1) with increasing H(u);
• loglogistic (A = 2,α = λ − 1), specified by

F(x) =
x

1
λ

α
1
λ + x

1
λ
, x > 0, λ ,α > 0.

The reliability aspects of this distribution have been studied by Gupta et al. [237].
Since

J(u) =
2u+α − 1

u
H(u)

in this case, X is UBT with change point at u0 = 1−λ ;
• Govindarajulu’s distribution with

Q(u) = θ +σ
{
(β + 1)uβ −β uβ+1

}

on setting α = β − 1, A = −β and K = σβ (β + 1). See Chap. 3 and Nair et al.
[448] for a detailed discussion on the properties and reliability implications. For
A > −1, H(u) is increasing while for A < −1, H(u) has bathtub shape with
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Table 7.1 Observed and expected frequencies for the gastric carcinoma data

Class
intervals 0–111.8111.8–197197–289.4289.4–401401–550.3550.3–782782–1265.5> 1265.5

Observed 13 10 9 15 14 10 14 10
frequencies

Expected 12 12 12 12 12 12 12 11
frequencies

change point u= A+1
A−1 . The hazard quantile can be differentiated to study its shape

for various values of the parameters. We have

H ′(u) = K−1u−α−1(1− u)A+α−2{−α + u(1−A)}.

Thus, H(u) is increasing for α < 0, A < 1, and decreasing for α < 0, A > 1 for all
u giving the IHR and DHR cases. The BT and UBT cases also hold, respectively,
when α > 0, A < 1 and α �< 0, A > 1. Accordingly, the model can cover all the
cases.

Example 7.1. The use of the model was tested against the data on survival times in
days from a clinical trial on gastric carcinoma on 90 patients, as given by Kleinbaum
[342], by considering the survival times alone in a single set. In order to estimate
the parameters of the model, the 25th, 50th and 75th percentiles of the sample and
the population are matched. This procedure results in the estimates

α̂ =−0.3128, Â = 1.7693 and K̂ = 296.267.

We then calculated the observed and expected frequencies for various classes and
these are reported in Table 7.1. The χ2 value of 3.14 does not reject the model in
(7.56) for the data at 5 % level of significance.

Some distributional aspects of (7.56) will also be interest in further analysis. The
first four L-moments, for example, are as follows:

L1 = KB(α + 1,2−A−α), with A+α < 2,

L2 = KB(α + 2,2−A−α),

L3 = K{B(α + 3,2−A−α)−B(α+ 2,3−A−α)},
L4 = K{B(α + 2,2−A−α)− 5B(α+ 3,3−A−α)}.

Hence, as a location measure, the mean is

μ = KB(α + 1,2−A−α)

and as a dispersion measure, the mean difference is
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Δ = 2KB(α + 1,2−A−α).

The L-skewness is

τ3 =
L3

L2
=

(α + 2)− (2−A−α)(4−A)
(4−A)

,

and the L-Kurtosis is

τ4 = 1− 5(α + 2)(2−A−α)

(5−A)(4−A)
.

Theorem 7.7. The relationship

J(u) = [A+M{log(1− u)}−1]H(u) (7.57)

is satisfied for all u and real A and M if and only if

q(u) = K(1− u)−A{− log(1− u)}−M. (7.58)

Proof. Rewriting (7.57) as

q′(u)
q2(u)

=
[
A+M{log(1− u)}−1] 1

(1− u)q(u)
,

we have

q′(u)
q(u)

=
A

1− u
+

M
(1− u)q(u)

.

Integrating, we obtain (7.58). Conversely, logarithmic differentiation of (7.58) leads
to (7.57). Hence, the theorem.

We can write the quantile function in terms of special function as

Q(u) = K(1−A)M−1I(1−M, log(1− u)A+1),

where

I(a,x) =
∫ x

0
e−t ta−1dt

is the incomplete gamma function. The density function of X can be written in terms
of the survival function as

f (x) =C[F(x)]A{1− logF(x)}M, x > 0.
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Some special cases of (7.58) are

• The Weibull distribution with shape parameter λ and scale parameter σ = Kλ ,
and in particular, exponential and Rayleigh distributions when λ = 1 and 2,
respectively;

• Pareto II (A > 1, M = 0), rescaled beta (A < 1, M = 0), and uniform (A = 0,
M = 0).

Thus, (7.58) is a generalized Weibull model belonging to the category of several
such models discussed in the preceding sections. The hazard quantile function has
the form

H(u) = K−1(1− u)A−1{− log(1− u)}M.

Upon taking the derivative, we get

H ′(u) = K−1(1− u)A−2{− log(1− u)}M−1{M+(A− 1) log(1− u)}. (7.59)

Equation (7.59) shows that H(u) is capable of taking on different shapes. In fact,

X is IHR when A ≤ 1, M > 0; A < 1,M = 0;

X is DHR when A ≤ 1, M < 0; A > 1,M = 0;

X is BT when A < 1, M < 0;

X is UBT when A > 1, M > 0;

X is exponential when A = 1, M = 0.

We now look at some distributional properties of this family. First, we see that the
members of the family are either unimodal or monotonic with modal value at u0 =
1− exp(M

A ). The summary measures can be described in terms of the quantiles or.
We have the first four L-moments as follows:

L1 =
KΓ (1−M)

(2−A)1−M , M < 1, A < 2,

L2 =

{
1−

(2−A
3−A

)1−M
}

L1,

L3 =

{
1− 3

(2−A
3−A

)1−M
+ 2

(1−A
4−A

)1−M
}

L1,

L4 =

{
1− 6

(2−A
3−A

)1−M
+ 10

(2−A
4−A

)1−M − 5
(2−A

3−A

)1−M
}

L1.

The mean, mean difference, L-skewness and L-kurtosis are all readily obtained from
the above expressions.
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Table 7.2 Observed and expected frequencies of the failure time data

Class intervals 0–3.184 3.184–13.5 13.5–29.48 29.48–48.5 48.5–67.47 67.47–83.25 > 83.25

Observed freq. 9 4 6 6 9 6 8
Expected freq. 6 6 6 6 6 6 14

For an empirical validation of the model, the data on the failure times of 50
devices given in Lai and Xie [368, p. 353] is considered. Matching the 25th, 50th and
75th percentiles of the sample with the corresponding percentiles of the population,
the estimates of the model parameters are found to be

Â =−1.8224, M̂ =−1.2576 and K̂ = 875.927.

A χ2 value of 4.509 is found from the observed and expected frequencies presented
in Table 7.2, which does not lead to rejection of the model.

The methods suggested in this section, using the total time on test transform as
well as the relationship between J(u) and H(u), are quite general in nature. The
above examples illustrate how we can work with them. It will, of course, be of
interest to develop more flexible families of distributions that generalize the existing
distributions and present varying shapes and characteristics to become practically
useful!
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