
Chapter 6
L-Moments of Residual Life and Partial
Moments

Abstract The residual life distribution and various descriptive measures derived
from it form the basis of modelling, characterization and ageing concepts in
reliability theory. Of these, the moment-based descriptive measures such as mean,
variance and coefficient of variation of residual life and their quantile forms were
all discussed earlier in Chaps. 2 and 4. The role of L-moments as alternatives
to conventional moments in all forms of statistical analysis was also highlighted
in Chap. 1. L-moments generally outperform the usual moments in providing
smaller sampling variance, robustness against outliers and easier characterization of
distributional characteristics, especially in the case of models with explicit quantile
functions but no tractable distribution functions. For this reason, we discuss in this
chapter the properties of the first two L-moments of residual life. After introducing
the definitions, several identities that connect L-moments of residual life with the
hazard quantile function, and mean and variance of residual quantile function, are
derived. A comparison between the second L-moment and variance of residual
life points out the situations in which the former is better. Expressions for the
L-moments of residual life of quantile function models of Chap. 3 are derived and
their behaviour is discussed in relation to the mean residual quantile function.
Characterization of lifetime models based on the functional form of the second
L-moment as well as in terms of its relationship with the hazard and mean residual
quantile functions are also presented. The upper and lower partial moments have
been found to be of use in reliability analysis, economics, insurance and risk theory.
Quantile-based definitions of these moments and their relationships with various
reliability functions are presented in this chapter. Many of the results on L-moments
of residual life have potential applications in economics. For example, income
distributions can be characterized by means of some simple properties of concepts
like income gap ratio, truncated Gini index and poverty measures. Quantile forms of
all these measures are defined and their usefulness in establishing characterizations
are explored.
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200 6 L-Moments of Residual Life and Partial Moments

6.1 Introduction

The notion of residual life, based on the information that a unit has functioned
satisfactorily for a specified period of time, has been fundamental in reliability
theory and practice. As seen already in Chaps. 2 and 4, the residual life distribution
and various descriptive measures derived from it form the basis for the definition
of various ageing concepts. Of these measures, the moment-based descriptive
measures such as mean, variance and coefficient of variation of residual life
are used commonly in modelling lifetime data, characterizing life distributions,
defining classes of life distributions, and in evolving strategies for maintenance and
repair of equipments. The Lorenz curve and Bonferroni curve used in measuring
income inequality in economics and the Leimkuhler curve in informatics are all
characterized by the mean residual life and variance residual life along with other
reliability functions; see Chap. 5 for details. Upper and lower partial moments of X
are closely related to the moments of residual life. If X has finite moment of order r,
the rth upper partial moment (also called the stop-loss moment) about x is defined as

pr(x) = E[(X − x)+]r =
∫ ∞

x
(t − x)rdF(t),

where (X − x)+ = max(X − x,0). The quantity (X − x)+ is interpreted as a residual
life in the context of lifelength studies (Lin [401]) and the moments pr(x) are used in
actuarial studies in the analysis of risks (Denuit [170]). In the assessment of income
tax, x can be taken as the tax exemption level, so that (X − x)+ then becomes the
taxable income. Obviously, from the expression

m(x) = F̄(x)p1(x),

various identities connecting p1(x) and the different reliability functions follow. For
characterizations of distributions using pr(x) for r = 1 and in the general case, we
refer to Chong [147], Nair [438], Lin [401], Sunoj [554] and Abraham et al. [14]. If
we consider

(X − x)− =

{
x−X if X ≤ x

0 if X > x
,

we have similarly the lower partial moments as E[(X −x)−]r. Sunoj and Maya [555]
have discussed characterizations of distributions and various applications of lower
partial moments in the context of risk analysis and income analysis for the poor.

The use of L-moments as an alternative to the conventional moments, for all
purposes in which the latter is prescribed, is well known. Our discussions and the
references earlier in Chap. 1 do emphasize this aspect. L-moments generally outper-
form the usual moments in providing smaller sampling variance, robustness against
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outliers and easier characterization of distributional characteristics, especially for
models with explicit quantile functions but no tractable distribution functions. All
these considerations apply to lifetime data analysis as well as in the discussion of
properties of residual life distributions. Heavy-tailed distributions occur as models
of reliability data in which case the usual sample moments lack efficiency. Nair
and Vineshkumar [452] pointed out the usefulness of L-moments of residual life in
reliability analysis and then studied their properties in comparison with the mean
and variance of residual life.

6.2 Definition and Properties of L-Moments of Residual Life

Recall from Sect. 1.6 that the L-moment of order r is given by

Lr =
1
r

r−1

∑
k=0

(−1)k
(

r− 1
k

)
E(Xr−k:r), r = 1,2, . . .

=
r−1

∑
k=0

(−1)k
(

r− 1
k

)2 ∫ ∞

0
x(F(x))r−k−1(1−F(x))k f (x)dx. (6.1)

The truncated variable X(t) = X |(X > t) has its survival function as

F̄(t)(x) =
F̄(x)
F̄(t)

, x > t,

so that the L-moment of X(t) is given by

Lr(t) =
r−1

∑
k=0

(−1)k
(

r− 1
k

)2 ∫ ∞

t
x

(
F̄(t)− F̄(x)

F̄(t)

)r−k−1( F̄(x)
F̄(t)

)k f (x)
F̄(t)

dx. (6.2)

In particular, setting r = 1 in (6.2), we obtain

L1(t) =
1

F̄(t)

∫ ∞

t
x f (x)dx = E[X |(X > t)]

which is the conditional mean function studied in Chap. 3. Further, r = 2 in (6.2)
leads to

L2(t) =
1

∑
k=0

(−1)k
(

1
k

)2 ∫ ∞

t
x

(
F̄(t)− F̄(x)

F̄(t)

)1−k ( F̄(x)
F̄(t)

)k f (x)
F̄(t)

dx

=
1

F̄2(t)

∫ ∞

t
x[F̄(t)− 2F̄(x)] f (x)dx
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=
1

F̄(t)

∫ ∞

t
x f (x)dx− 2

F̄2(t)

∫ ∞

t
xF̄(x) f (x)dx

= L1(t)− t − 1
F̄2(t)

∫ ∞

t
F̄2(x)dx

= m(t)− 1
F̄2(t)

∫ ∞

t
F̄2(x)dx, (6.3)

where m(t) is the usual mean residual life function. It thus follows that L2(t)≤m(t),
where the equality sign does not hold for any non-degenerate distribution. Thus,
L2(t) is strictly less than the mean residual life function for all non-degenerate
distributions. Differentiating (6.2) and simplifying the resulting expression,
we get

L′
2(t) = h(t)(2L2(t)−m(t)). (6.4)

Now, setting F(x) = p and F(t) = u in (6.2), we get

lr(u) = Lr(Q(u))

=
r−1

∑
k=0

(−1)k
(

r− 1
k

)2 ∫ 1

u

(
p− u
1− u

)r−k−1(1− p
1− u

)k Q(p)
1− u

d p.

In particular, we have

l1(u) = (1− u)−1
∫ 1

u
Q(p)d p (6.5)

and

l2(u) = (1− u)−2
∫ 1

u
(2p− u− 1)Q(p)d p. (6.6)

The properties of l1(u), equivalent to E[X |(X > t)], have been studied rather
extensively and so we concentrate here more on l2(u). However, notice that l1(u)
uniquely determines the distribution through the formula

Q(u) = l1(u)− (1− u)l′1(u) (6.7)

which is evident from (6.5). From (6.6), as u → 0, we have

l2(0) =
∫ 1

0
(2p− 1)Q(p)d p=

∫ 1

0
p(1− p)q(p)d p = 2Δ ,

where Δ is the mean difference of X as defined in (1.12).
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Theorem 6.1. The functions l1(u), l2(u) and M(u) determine each other and Q(u)
uniquely.

Proof. We begin with M(u), and the identity

M(u) = l1(u)−Q(u)

= l1(u)−{l1(u)− (1− u)l′1(u)}
= (1− u)l′1(u). (6.8)

Differentiating (6.6), we have

(1− u)2l′2(u)− 2(1− u)l2(u) =−2uQ(u)+ (u+ 1)Q(u)−
∫ 1

u
Q(p)d p

= Q(u)− uQ(u)−
∫ 1

u
Q(p)d p

= Q(u)− uQ(u)− (1− u)(M(u)+Q(u))

=−(1− u)M(u),

or equivalently

M(u) = 2l2(u)− (1− u)l′2(u). (6.9)

Finally, from (2.38), we have

Q(u) = μ −M(u)+
∫ u

0

M(p)
1− p

d p, (6.10)

and thus M(u) determines Q(u), and l1(u) and l2(u) determine M(u). In the case of
l1(u), we have

l1(u) =
∫ u

0

M(p)
1− p

d p (6.11)

=

∫ u

0

2l2(p)− (1− u)l′2(p)
1− p

d p. (6.12)

Equations (6.11) and (6.12) express l1(u) in terms of M(u), while l2(u) and (6.7)
recover Q(u) from l1(u). We also have

l2(u) = (1− u)−2
∫ 1

u
(1− p)M(p)d p

= (1− u)−2
∫ 1

u
(1− p)2l′1(p)d p
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determining l2(u) from M(u) and l1(u). Given l2(u), M(u) is derived from (6.9) and
so Q(u) from (6.10). This completes the proof of the theorem.

Gini’s mean difference of X(t) is

G(t) = 2
∫ ∞

t
F(t)(x)F̄(t)(x)dx.

In terms of quantile functions, we have

Δ(u) = G(Q(u)) = 2
∫ 1

u

(1− p)(p− u)
(1− u)2 q(p)d p. (6.13)

Integrating the RHS of (6.13) by parts, we obtain

Δ(u) = 2l2(u).

Thus, the second L-moment of the conditional distribution of X |(X > t) is half the
mean difference of X |(X > t). Since the mean difference is location invariant, the
second L-moment of X(t) is the same as that of Xt = X − t|(X > t), and so we refer
to l2(u) as the second L-moment of residual life. Mean difference is a measure of
dispersion and so l2(u) will be treated as a measure of variation in the residual life.
Thus, l2(u) can be viewed as an alternative to the variance residual life in future
discussions.

In addition to the mean residual quantile function, other quantile-based reliability
functions are also connected with l2(u). Some typical examples are worked out
below. The others can be obtained by exploiting various identities presented earlier
in Chap. 2. Invoking (2.36), we have

l2(u) = (1− u)−2
∫ 1

u

(∫ 1

p
H−1(s)ds

)
d p.

Similarly, from (2.46), we have

V (u) =
1

1− u

∫ 1

u
M2(p)d p

=
1

1− u

∫ 1

u

{
2l2(p)− (1− u)l′2(p)

}2
d p.

Using the relation (2.36) once again, the total time on test transform satisfies

l2(u) =
1

(1− u)2

∫ 1

u
(μ −T (p))d p.
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Table 6.1 Second L-moment of residual life for some distributions

Distribution l2(u)

Exponential (2λ )−1

Pareto II
αc

(c−1)(2c−1)
(1−u)−

1
c

Rescaled beta
Rc

(c+1)(2c+1)
(1−u)−

1
c

Half-logistic
2σ

(1−u)2

{
1−u− (1+u) log

( 2
1+u

)}

Power
α

(1+β )(1−u)2

{
β +(β +1−u)u

1
β
}

Exponential geometric
1− p

p(1−u)2

{
1− pu

p
log

(
1− pu
1− p

)
− (1−u)

}

Example 6.1. The linear hazard quantile distribution is specified by

q(u) = [(1− u)(a+ bu)]−1

and so

l2(u) =
1

(1− u)2

∫ 1

u
(1− p)(p− u)q(p)d p

=
1

(1− u)2

∫ 1

u

p− u
a+ bp

d p

=
1

b(1− u)2

{
1− u+

a+ bu
b

log

(
a+ bu
a+ b

)}
.

The expressions of l2(u) of some life distributions are presented in Table 6.1.

Since both variance residual life quantile function and l2(u) are measures of
variability, it is appropriate to compare the two. The functional form of l2(u)
characterizes the life distribution and hence it can be used to identify the distribution.
Although V (u) also characterizes the distribution, unlike l2(u), there is no simple
expression that relates Q(u) in terms of V (u) or between F̄(x) and σ2(x). See
the corresponding discussion in Sect. 2.1.3. Yitzhaki [596] has pointed out that
the mean difference is a better measure than variance in deriving properties of
distributions which are non-normal. Nair and Vineshkumar [452] have provided
empirical evidence that supports this observation. They simulated random samples
from the exponential population with varying parameter values. Using V (u) = λ−2

and l2(u) = (2λ )−1, the parameter λ was estimated by equating the sample and
population values. They then noted that l2(u) gave a better approximation to the
model as well as estimates with less bias in at least 75 % of the samples.
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Another important advantage of the L-moments is that, if the mean exists, all
higher-order L-moments exist, which may not be the case with the usual moments.
The data on annual flood discharge rates of Floyd river at James, Iowa, considered
by Mudholkar and Hutson [423], was reanalysed using the power-Pareto law which
gave a good fit at the parameter values ĉ = 3,495.2, λ̂1 = 0.6226 and λ̂2 = 0.5946.
Note that, since λ2 > 0.5, the function V (u) does not exist for the distribution, while
l2(u) can be used for further analysis.

The variance residual quantile function has an important role in analysing the
ageing aspects. Some additional life distributions were identified based on their
monotone behaviour, such as DVRL and IVRL classes (Chap. 4). An important
implication observed earlier was that decreasing (increasing) mean residual quantile
function implied decreasing (increasing) V (u). By comparison, V (u) and l2(u) may
not show the same type of monotonicity. Even when V (u) increases for larger u,
l2(u) may show a decreasing trend. For example, for the distribution

Q(u) = 4u3 − 3u4, 0 ≤ u ≤ 1,

after performing some algebra, we obtain

V (u) =
1

175

{
22− 6u− 34u2− 62u3+ 50u4+ 78u5+ 106u6+ 9u7− 38u8

}
.

Thus,

dV (u)
du

=
1

175

{
−6− 68u− 186u2+ 200u3+ 390u4+ 636u6+ 63u6− 304u7

}
,

from which we find that V (u) decreases in (0,u0) and then increases in (u0,1) with
the change point u0 which is approximately 0.554449. At the same time, we have

l2(u) =
(1− u2)2

5

and

dl2(u)
du

=−4
5

u(1− u2)< 0

showing that l2(u) is decreasing for all u in (0,1). Neither the implications between
the mean residual quantile function M(u) and V (u) hold good when V (u) is replaced
by l2(u). This is well established in the following illustrations that involve some
quantile function models discussed earlier in Chap. 3.

Example 6.2. The generalized Tukey-lambda distribution of Freimer et al. [203]
with
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Fig. 6.1 Plot of M(u) and l2(u) for the data on lifetimes of aluminum coupons

Q(u) = λ1 +λ−1
2

{
uλ3 − 1

λ3
− (1− u)λ4 − 1

λ4

}

has

M(u) =
(1− u)λ4

λ2(λ4 + 1)
− uλ3

λ2λ3
+

1− uλ3+1

λ2(1+λ3)(1− u)

and

l2(u) =
1− u
λ2λ4

− 2(1− uλ3+2)

λ2λ3(λ3 + 1)(λ3 + 2)(1− u)2 +
1− uλ4

λ2(1+λ4)(2+λ4)

+
(1− u)(1+ uλ3+1)

λ2λ3(λ3 + 1)(1− u)2 .

The distribution provides satisfactory fit to the aluminum coupon data discussed
earlier (first 100 observations) with parameter values

λ̂1 = 1382.18, λ̂2 = 0.0033, λ̂3 = 0.2706 and λ̂4 = 0.2211.

The graphs of M(u) and l2(u) given in Fig. 6.1 show that both are decreasing
functions of u.

Example 6.3. Govindarajulu [224] fitted the distribution

Q(u) = ((β + 1)uβ −β uβ+1)
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Fig. 6.2 Plot of M(u) and l2(u) for the data on failure times of a set of refrigerators

to the data on failure times of a set of refrigerators, with the estimate of β being
β̂ = 2.94. The mean residual quantile function and the second L-moment function
for the distribution are

M(u) =
2− (β + 1)(β + 2)uβ + 2β (β + 2)uβ+1−β (β + 1)uβ+2

(β + 2)(1− u)

and

l2(u) =
2β − 2(β + 3)u+(β + 2)(β + 3)uβ+1− 2β (β + 3)uβ+2+β (β + 1)uβ+3

(β + 2)(β + 3)(1− u)2 .

In the case of the data mentioned above, M(u) initially increases and then decreases
with approximate change point u= 0.2673, but l2(u) decreases for all u, as displayed
in Fig. 6.2.

Example 6.4. Consider the power-Pareto distribution with

Q(u) =Cuλ1(1− u)−λ2, C,λ1,λ2 > 0,

for which

M(u) = c(1− u)−1{B1−u(λ1 + 1,1−λ2)− uλ1(1− u)1−λ2}

and

l2(u) = c(1− u)−2{2B1−u(λ1 + 2,1−λ2)− (u+ 1)B1−u(λ1 + 1,1−λ2)},
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Fig. 6.3 Plot of M(u) and l2(u) for the data on failure times of electric carts

where

Bu(p,q) =
∫ u

0
t p−1(1− t)q−1dt

is the incomplete beta integral. Applying the model to the times of failure of 20
electric carts reported in Zimmer et al. [604], the fit by the method of L-moments
with

λ̂1 = 0.234612, λ̂2 = 0.09669912, Ĉ = 1530.53,

is observed to be satisfactory. Both M(u) and l2(u) are seen to possess the similar
behaviour, decreasing first and then increasing, as displayed in Fig. 6.3.

Arising from the mean and variance of residual life, the coefficient of variation of
residual life is also of importance in reliability. We refer to Sects. 2.1.3 and 2.5 for
pertinent definitions and other details. Just as the coefficient of variation of residual
life uniquely determines a distribution, it is possible to show that the L-coefficient of
variation c(u) = l2(u)

l1(u)
also possesses a similar property. Nair and Vineshkumar [452]

have shown that if C(u) is differentiable, from the definitions of l2(u) and l1(u), we
can write

∫ 1

0
(2p− u− 1)Q(p)d p= (1− u)c(u)

∫ 1

u
Q(p)d p.

Differentiating this expression and simplifying, we obtain

Q(u)∫ 1
u Q(p)d p

=
(1− u)c′(u)− c(u)+ 1

(1− u)(1+ c(u))
.
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Upon integrating, we get

− log
∫ 1

u
Q(p)d p =

∫
(1− u)c′(u)− c(u)+ 1

(1− u)(1+ c(u))
du

so that

Q(u) = g(u)exp

{
−
∫

g(u)du

}
, (6.14)

where

g(u) =
(1− u)c′(u)− c(u)+ 1

(1− u)(1+ c(u))
.

Equation (6.14) retrieves Q(u) from c(u) only up to a change of scale. We illustrate
this result in the next theorem.

Theorem 6.2. X has L-coefficient of variation of the form

c(u) =
1− u

3(1+ u)
(6.15)

if and only if it has uniform distribution.

Proof. When X has uniform distribution over (α,β ), 0 < α < β , we have Q(u) =
u(β −α),

l1(u) =
(β −α)

2
(1+ u)

and

l2(u) =
(β −α)

6
(1− u)

giving (6.15). Conversely, applying (6.14) with c(u) as in (6.15), we get

g(u) =
2u

(1− u)(1+ u)
.

Upon substituting this in (6.14), we obtain

Q(u) = 2u

which is uniform (with a change of scale).
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6.3 L-Moments of Reversed Residual Life

On lines similar to those in the preceding section, we can look at the L-moments of

tX = X |(X ≤ t) whose distribution function is F(x)
F(t) , 0 < x ≤ t. Using (6.1), the rth

L-moment of tX has the expression

Br(t) =
r−1

∑
k=0

(−1)k
(

r− 1
k

)2 ∫ t

0
x
(F(x)

F(t)

)r−k−1(
1− F(x)

F(t)

)k f (x)
F(t)

dx.

In particular, we have

B1(t) =
∫ t

0

x f (x)
F(t)

dx = E[X |X ≤ x], (6.16)

B2(t) =
1

F2(t)

∫ t

0
(2F(x)−F(t))x f (x)dx. (6.17)

Setting u = F(t) and p = F(x), we have

θ1(u) = B1(Q(u)) = u−1
∫ u

0
Q(p)d p (6.18)

and

θ2(u) = B2(Q(u)) = u−2
∫ u

0
(2p− u)Q(p)d p. (6.19)

By differentiating (6.16) and using the definitions of the reversed hazard rate in
(2.22) and the reversed mean residual life in (2.24), we get

λ (t) =
B′

1(t)
t −B1(t)

and

r(t) = t −B1(t)

so that

λ (t) = B′
1(t)r(t).

Also, by differentiating (6.17) and simplifying, we get

B′
2(t) = λ (t)[r(t)− 2B2(t)].
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Table 6.2 Expressions of θ2(u) for some quantile models

Distribution θ2(u)

Power
αβ

(β +1)(2β +1)
u

1
β

Govindarajulu
σβ uβ

(β +2)(β +3)
{β +3− (β +1)u}

Generalized lambda 1
u2

[ λ3uλ3+2

λ2(λ3 +1)

+ 1
λ2(λ4+1)

(
u{(1−u)λ3+1 −1}+ 2

λ4+2{(1−u)λ4+2 −1}
)]

Power Pareto Cu−2{2Bu(λ1 +2,1−λ2)−uB(λ1 +1,1−λ2)}

Likewise, we have the following relationships connecting θ1(u) and θ2(u) with the
reliability functions

R(u) = Q(u)−θ1(u)

= θ1(u)+ uθ ′
1(u)−θ1(u) = uθ ′

1(u),

θ2(u) =
1
u2

∫ u

0
pR(p)d p,

Q(u) = R(u)+
∫ u

0
p−1R(p)d p,

(6.20)

and

R(u) = uθ ′
2(u)+ 2θ2(u).

As in Sect. 6.2, each of Q(u), θ1(u), R(u) and θ2(u) determine others uniquely. We
further have

D(u) = u−1
∫ u

0
p{θ ′

2(p)+ 2θ2(p)}2d p.

Examples of θ2(u) for some quantile models are presented in Table 6.2.

The L-coefficient of variation of tX , i.e., θ (u) = θ2(u)
θ1(u)

, determines the distribution
of X up to a change of scale through the formula

Q(u) =
uθ ′(u)+θ (u)+ 1

u(1−θ (u))
exp

{∫
uθ ′(u)+θ (u)+ 1

u(1−θ (u))
du

}
.

Theorem 6.3. X follows the power distribution if and only if θ (u) is a constant.

Proof. For the power distribution with
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Q(u) = αu
1
β , 0 ≤ u ≤ 1, β �= 0,β > 0,

we have

θ1(u) =
αβ

1+β
u

1
β and θ2(u) =

αβ
(β + 1)(2β + 1)

u
1
β

so that

θ (u) =
1

2β + 1
,

a constant. Conversely when θ (u) = c, a constant, the expression given above for
Q(u) in terms of θ (u) yields

Q(u) =
c+ 1

u(1− c)
exp

{∫
c+ 1

u(1− c)
du

}

=
c+ 1
1− c

u
2c

1−c , c �= 1,

which corresponds to a power distribution. Hence, the theorem.

The relevance of this characterization in economics is explained later in Sect. 6.5.

6.4 Characterizations

Like other reliability functions, the second L-moments l2(u) and θ2(u) also charac-
terize life distributions through special relationships. We now present several such
results. The first result is the characterization of the generalized Pareto distribution
by simple relationships between l2(u), M(u) and l1(u).

Theorem 6.4. Let X be a continuous non-negative random variable with
E(X)< ∞. Then, X follows the generalized Pareto distribution with

Q(u) =
b
a

{
(1− u)−

a
a+1 − 1

}
, a >−1, b > 0, (6.21)

if and only if the following conditions are satisfied:

(i) l2(u) =CM(u), 0 <C < 1;
(ii) l2(u) = a1l1(u)+ a2, a1 >−1, a2 > 0;

(iii) l1(u) = AM(u)+B.
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Proof. First, we calculate l1(u), l2(u) and M(u), using (6.21), to be

l1(u) = ba−1(a+ 1)
{
(1− u)−

a
a+1 − 1

}
,

l2(u) = b(a+ 1)(a+ 2)−1(1− u)−
a

a+1 ,

M(u) = b(1− u)−
a

a+1 ,

so that

l2(u) =
a+ 1
a+ 2

M(u),

l2(u) =
a

a+ 2
l1(u)+

b(a+ 1)
a+ 2

,

l1(u) =
a

a+ 1
M(u)− ba

a+ 1
.

Thus, the conditions (i), (ii) and (iii) are satisfied for the generalized Pareto
distribution. Conversely, condition (i) is equivalent to

C(1− u)2M(u) =
∫ 1

0
(1− p)M(p)d p

or

(1− u)M(u)∫ 1
u (1− p)M(p)d p

=
1

C(1− u)
.

Upon solving the last equation, we get

M(u) = K(1− u)
1−2C

C , (6.22)

where K is found to be K = M(0) = μ . Since 0 <C < 1, we can write it as C = a+1
a+2

for a >−1 and obtain (6.21). To prove the sufficiency of (ii), we note that it implies

(1− u)−2
∫ 1

u
(2p− u− 1)Q(p)d p= (1− u)−1a1

∫ 1

u
Q(p)d p+ a2.

Differentiating the above equation twice, we get

Q′(u)− 2a1Q(u)
(1+ a1)(1− u)

=
2a2

(1+ a1)(1− u)
. (6.23)

Noticing that (6.23) is a first-order linear differential equation with integrating factor

(1− u)
2a1

1+a1 , we have its unique solution as

(1− u)
2a1

1+a1 Q(u) = K − a2

a1
(1− u)

2a1
1+a1 .
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Evaluating K at u = 0, we obtain K = a2
a1

, and thus

Q(u) =
a2

a1

{
(1− u)

− 2a1
1+a1 − 1

}

which corresponds to a generalized Pareto
(
reduces to (6.21) when a1 = a

a+2 ,

a2 =
b

a+2

)
. The result in (iii) is a consequence of (i) and (ii), and this completes the

proof of the theorem.

Remark 6.1. Conditions (i), (ii) and (iii) show that each of l1(u), l2(u) and M(u) is
a linear function of the other.

Remark 6.2. The generalized Pareto law reduces to the exponential distribution as
a → 0, rescaled beta for −1 < a < 0, and Pareto II for a > 0. Thus, the exponential
(rescaled beta; Pareto II) is characterized by l2(u) =

1
2 M(u)

(
< 1

2 M(u); > 1
2 M(u)

)
corresponding to the values C = 1

2

(
< 1

2 , >
1
2

)
in result (i).

Remark 6.3. It is seen from direct calculations that

V (u) =
1+ a
1− a

b2(1− u)−
2a

a+1 = Kl2
2(u), with K =

(a+ 2)2

1− a2 .

But, Nair and Vineshkumar [452] have shown that this is not a characteristic
property of the generalized Pareto.

Life distributions characterized by simple forms of various reliability functions
have been of interest in reliability theory. They are quite useful in modelling lifetime
data. The linear and quadratic hazard rate distributions belong to this category. One
may refer to Bain [45, 46], Sen and Bhattacharya [525] and Gore et al. [223] for
details. A second example is the generalized Pareto distribution which is uniquely
determined by a linear mean residual life function (also by a reciprocal linear hazard
rate function). It has been seen that L2(t) = c (l2(u) = c), where c is a constant
characterizing the exponential law. In the same manner, let us consider the linearity

L2(t) = A+Bt,

or equivalently

l2(u) = A+BQ(u) (6.24)

and identify the corresponding life distribution. Using (6.9), we then have

M(u) = 2A+ 2BQ(u)−B(1−u)q(u.)

To express the RHS also in terms of M(u), we make use of (2.38) and (2.39) to
arrive at
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M(u) = 2A+ 2B

{∫ u

0

M(p)d p
1− p

−M(u)+ μ
}
−B[M(u)− (1− u)M′(u)].

Differentiating with respect to u and simplifying the resulting expression, we obtain
the homogeneous linear differential equation of order two with variable coefficients

B(1− u)2M′′(u)− (4B+ 1)(1− u)M′(u)+ 2BM(u) = 0. (6.25)

To solve (6.25), we set M(u) = (1− u)m to get the auxiliary equation

Bm(m− 1)+ (4B+ 1)m+2B= 0,

or the quadratic equation (in m)

Bm2 +(3B+ 1)m+ 2B= 0. (6.26)

Suppose (6.26) has two distinct roots m1 and m2. Then, the general solution of (6.25)
is of the form

M(u) =C1(1− u)m1 +C2(1− u)m2. (6.27)

As u tends to zero, we get

μ =C1 +C2. (6.28)

Thus, from (6.27), the distribution satisfying (2.26) is recovered as

Q(u) =
∫ u

0

M(p)
1− p

d p−M(u)+ μ

= μ +C1

{
1

m1
− 1

m1 + 1
(1− u)m1

}
+C2

(
1

m2
− 1

m2 + 1

)
(1− u)m2 .

Upon substituting for μ from (6.28), we obtain the final expression

Q(u) =C1
1+m1

m1
{1− (1− u)m1}+C2

1+m2

m2
{1− (1− u)m2}. (6.29)

When the roots are equal, we must have

(3B+ 1)2− 8B2 = 0,

or equivalently

B2 + 6B+ 1= 0. (6.30)
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Also, in this situation, we have

m1 =− (1+ 3B)
2B

.

Since the product of the roots is 2, m1 =±√
2, and therefore from (6.30), we have

B =− 1

−3− 2
√

2
=−3+ 2

√
2

or

B =− 1

−3+ 2
√

2
=−3− 2

√
2.

Both values satisfy (6.30). We then use the method of variation of parameters to
extract the solution of (6.25). Assume that the solution in (6.27), of the form

M(u) =C1M1(u)+C2M2(u),

where Mi(u) = (1− u)mi , i = 1,2, is such that M2(u) = yM1(u) is a solution with y
being some function of u. Then,

M′
2(u) = yM′

1(u)+ y′M1(u)

and

M′′
2 (u) = yM′′

1 (u)+ 2y′M′
1(u)+M1(u)y

′′.

Substituting these in (6.25), we get

[B(1− u2)M′′
1 (u)− 4(B+ 1)(1− u)M′

1(u)+ 2BM1(u)]y

+(1− u)2M1(y)y
′′ − (4B+ 1)(1− u)y′M1(u)+ 2(1− u)2y′M′

1(u) = 0.

Since M1(u) is a particular solution of (6.25), the first term vanishes and so we get

(1− u)2M1(u)y
′′ − (4B+ 1)(1− u)y′M1(u)+ 2(1− u)B2y′M′

1(u) = 0. (6.31)

The transformation

M1(u) = (1− u)−
3B+1

2B

in (6.31) shows that

(1− u)y′′ −By′ = 0,
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which has its solution as

y′ = (1− u)−B

or

y =
(1− u)1−B

B− 1
.

Thus, we have

M2(u) =
(1− u)1−B

B− 1
M1(u)

which gives the second solution corresponding to m1 = m2 as

M(u) =C1M1(u)+C2
(1− u)1−B

B− 1
M1(u)

=

{
C1 +

C2

B− 1
(1− u)1−B

}
(1− u)m1 .

(6.32)

The quantile function corresponding to (6.32) is calculated from (2.38) as

Q(u) =C1
m1 + 1

m1
{1− (1− u)m1}+ c2(m1 −B+ 2)

(B− 1)(m1 −B+ 1)
{1− (1− u)m1−B+1}.

(6.33)
To complete the required characterization, it remains to be shown that the identity
in (6.24) holds for the quantile functions in (6.28) and (6.33). By direct calculation
from (6.28), we see that

l2(u) =
c1(1− u)m1

m1 + 2
+

c2(1− u)m2

m2 + 2

=
c1(1− u)m1

m1 + 2
+

c2m1(1− u)
2

m1

2(1+m1)
,

where we have used the fact that m1m2 = 2. Then, (6.24) holds with

A =
C1

2+m1
+

C2m1

2(1+m1)
,

B = − m1

(1+m1)(2+m2)
.

In the second case, A = C1
m1+1

m1
+ C2(m1−B+2)

(B−1)(m1−B+1) , where m1 and B have the values
determined earlier.

Thus, we have established the following theorem.
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Theorem 6.5. A continuous non-negative random variable X with finite mean
satisfies

l2(u) = A+BQ(u) (L2(t) = A+Bt)

if and only if its distribution is specified by the quantile functions (6.29) or (6.33).

Remark 6.4. The conditions on the parameters are determined such that Q(u) is
a quantile function. Notice also that the quantile functions in this case cannot be
inverted into analytically tractable distribution functions.

Remark 6.5. The generalized Pareto distribution arises as a particular solution when
C2 = 0 and m1 =− a

a+1 .

The next result is based on a simple relationship between l2(u) and the hazard
quantile function H(u).

Theorem 6.6. A continuous non-negative random variable with finite mean
satisfies

l2(u) = K[H(u)]−1, K > 0, (6.34)

for all 0 < u < 1, if and only if

Q(u) =C1
1+m1

m1
{1− (1− u)m1}+C2

1+m2

m2
{1− (1− u)m2}, (6.35)

where m1 and m2 are the roots of the quadratic equation

Km2 + 3Km+(2K− 1) = 0.

Proof. The condition (6.34) is equivalent to

1
(1− u)2

∫ 1

u
(1− p)M(p)d p = K{M(u)− (1− u)M′(u)},

or

∫ 1

u
(1− p)M(p)d p = K(1− u)2M(u)−K(1− u)3M′(u).

Differentiating and simplifying the expression, we get

K(1− u)2M′′(u)− 4K(1− u)M′(u)+ (1− 2K)M(u) = 0. (6.36)

Now by setting M(u) = (1− u)m and proceeding as in the previous theorem, we
have the auxiliary equation
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Km2 + 3Km+ 2K− 1 = 0.

Let m1 and m2 be the roots of this quadratic equation. Then, a general solution to
(6.36) is

M(u) =C1(1− u)m1 +C2(1− u)m2,

where m1 +m2 =−3. Then,

Q(u) =
C1(1+m1)

m1
{1− (1− u)m1}+C2

1+m2

m2
{1− (1− u)m2}.

If the roots are the same, the condition for this is

K2 + 4K = 0.

However, the roots K = 0 and K = −4 are both inadmissible. Hence, (6.35)
represents the unique distribution satisfying (6.34).

Now, for the distribution (6.35), we have

l2(u) =
C1(1− u)m1

m1 + 2
+

C2(1− u)m2

m2 + 2

and

q(u) =C1(1+m1)(1− u)m1−1 +C2(1+m2)(1− u)m2−1.

Hence,

H(u) = {(1− u)q(u)}−1

= {C1(1+m1)(1− u)m1 +C2(1+m2)(1− u)m2}−1.

Since (1+m1)(2+m1) = (1+m2)(2+m2) by virtue of m1 +m2 =−3, we have

l2(u) = K(H(u))−1 with K = (1+m1)(2+m2).

The proof of the theorem is thus completed.

There exist similar results for the reversed hazard quantile functions. Since the
proof proceeds along the same lines, we just briefly outline the proofs.

Theorem 6.7. If X is a continuous non-negative random variable with finite mean,
then

θ2(u)Λ(u) =C, (6.37)
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a positive constant, if and only if

Q(u) =
1+m1

m1
C1um1 +

1+m2

m2
C2um2 , (6.38)

where C1 and C2 are the roots of the quadratic equation

Cm2 + 3Cm+ 2C− 1 = 0.

Proof. Condition (6.37) is same as

1
u2

∫ u

0
pR(p)d p =C{R(u)+R′(u)}

leading to

Cu2R′′(u)+ 4CuR′(u)+ (2C− 1)R(u) = 0.

Assuming R(u) = um, the auxiliary equation becomes

Cm(m− 1)+ 4m+(2C− 1) = 0,

and so

R(u) =C1um1 +C2um2

which gives Q(u) in (6.38) on applying (2.51). The condition for equal roots is
C =−4 or 0, which are both inadmissible.

Conversely, when (6.38) holds, we have

θ2(u) =
C1um1

m1 + 2
+

C2um2

m2 + 2

=C∧ (u),

where C−1 = (1+m1)(m1 + 2) = (1+m2)(m2 + 2), on using m1 +m2 =−3.

Theorem 6.8. If X is a non-negative random variable with finite mean, the identity

θ2(u) =CR(u) (6.39)

holds if and only if X has power distribution

Q(u) = αu1/θ , i.e., F(x) =
( x

α

)β
, 0 ≤ x ≤ α. (6.40)
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Proof. For the power distribution, we have

θ2(u) =
αβ

(β + 1)(2β + 1)
u

1
β

and

R(u) =
α

β + 1
u

1
β

so that (6.39) is satisfied with C = β
(2β+1) . Conversely, (6.39) means that

1
u2

∫ u

0
pR(p)d p = cR(u),

or equivalently

CuR′(u) = (1− 2c)R(u).

The last equation yields the solution as

R(u) = Ku
1−2c

c and Q(u) =
K(1− c)

1− 2c
u

1−2c
c

which is of the from (6.40) with C = β
1+2β and α = K(1−C)

1−2C .

Theorem 6.9. If X is a non-negative random variable with finite mean, the identity

θ2(u) = AQ(u) (6.41)

holds if and only if X has a distribution with

Q(u) =C1

(
1+m1

m1

)
um1 +C2

(
1+m2

m2

)
um2 , (6.42)

where m1 and m2 are the distinct roots of

Am2 +(3A− 1)m+ 2A= 0. (6.43)

If (6.43) has equal roots, then

Q(u) =

{
C1

(
1+m1

m1

)
+C2

1+m1

m1
logu− C2

m2
1

}
um1 (6.44)

with m1 =
3
√

2−4
3−2

√
2

and A = 3− 2
√

2.
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Proof. Let us assume the identity in (6.41). Then, from (2.51) and (6.20), we have

1
u2

∫ u

0
pR(p)d p = AR(u)+A

∫ u

0

R(p)
p

d p.

Differentiation of this equation yields

Au2R′′(u)+ (4A− 1)uR′(u)+ 2AR(u) = 0.

Substitution of R(u) = um gives the auxiliary equation

Am2 +(3A− 1)m+ 2A= 0. (6.45)

When the roots of the quadratic equation in (6.45) are distinct, we get

R(u) =C1um1 +C2um2 (6.46)

and then for (2.51)

Q(u) =C1
1+m1

m1
um1 +C2

1+m2

m2
um2 ,

where m1 and m2 are such that

m1m2 = 2 and m1 +m2 =
1− 3A

A
. (6.47)

Using (6.46), we have

θ2(u) =
1
u2

∫ u

0
pR(p)d p =

C1um1

m1 + 2
+

C2um2

m2 + 2
.

One can verify that

θ2(u) = AQ(u)

with

A =
m1

(1+m1)(m1 + 2)
=

m2

(1+m2)(m2 + 2)
,

where the last equality holds since m1m2 = 2. When the roots of (6.45) are equal,
say m1, we see that

A2 − 6A+ 1= 0

holds whenever A = 3± 2
√

2 both of which are admissible values. Taking
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R(u) =C1um1 +C2um2 =C1R1(u)+C2R2(u)

from (6.46) and setting R2(u) = yR1(u), we get, by the method of variation of
parameters,

Au2R1(u)y
′′+ 2Au2R′

1(u)y
′+ u(4A− 1)R1(u)y

′ = 0

when R1(u) = u 1−3A
2A ,

Au2y′′+Auy′ = 0

or

uy′′+ y′ = 0.

The solution is y = logu, and so the quantile function simplifies to

Q(u) =C1
1+m1

m1
um1 +C2

1+m1

m1
um1 logu− C2um1

m2
1

,

as in (6.44). Notice that Q(u) becomes a quantile function only when m1 > 0. In this

case, m1 =
3
√

2−4
3−2

√
2

and

θ2(u) =

{
C1

m1 + 2
+

C2

m1 + 2
logu− C2

(m1 + 2)2

}
um1

= 2(3− 2
√

2)Q(u).

This completes the proof of the theorem.

6.5 Ageing Properties

When conceived as a reliability function, the L-moment l2(u) can also be employed
in distinguishing life distributions based on its monotone behaviour. Since l2(u)
is twice the mean difference residual quantile function, we have the following
definitions.

Definition 6.1. A lifetime random variable X is said to have increasing (decreasing)
mean difference residual quantile function, IMDR (DMDR), according to whether
l2(u) is an increasing (decreasing) function of u.

Example 6.5. From the expressions in Table 6.1, the Pareto II distribution has
increasing mean difference residual quantile function, while the rescaled beta has
decreasing mean difference residual quantile function.
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The mean difference residual quantile function is known to be

Δ(u) = 2l2(u),

and accordingly, from (6.9), we have

Δ ′(u) =
2

1− u
(Δ(u)−M(u)).

Thus, a necessary and sufficient condition that Δ(u) is increasing (decreasing) is
Δ(u) ≥ (≤)M(u). It is evident that the graph of Δ(u) lies above (below) that of
M(u) when the former is increasing (decreasing). Also, when Δ(u) crosses M(u) at
some point u0 from below (above), then it is a change point of Δ(u) that indicates
Δ(u) is increasing (decreasing) first and then decreasing (increasing). Since Δ(u) is
directly related to M(u), it is also clear that

X is DMRL (IMRL) ⇔ 3Δ ′(u)≤ (≥)(1− u)Δ ′′(u).

The comparison of the implications of monotonicities of V (u), Δ(u) and M(u) have
all been addressed earlier in Sect. 6.2.

6.6 Partial Moments

The partial moments, whose definitions were given earlier in Sect. 6.1, can also be
viewed as reliability functions. Since the first two moments are of interest to the
concepts discussed earlier, we recall their definitions as

p1(x) = E[(X − x)+] =
∫ ∞

x
(t − x) f (t)dt (6.48)

and

p2(x) = E[(X − x)+2] =

∫ ∞

x
(t − x)2 f (t)dt. (6.49)

Gupta and Gupta [231] have discussed the general properties of the rth partial
moment. They proved that the rth moment determines the underlying distribution
for any positive real r. Also, when r is a positive integer, there exists a recurrence re-
lation between two consecutive partial moments. Earlier, Chong [147] characterized
the exponential distribution by the property

E(X − t − s)+E(X) = E(X − t)+E(X − s)+.
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The expression for the survival function in terms of pr(x) is

F̄(x) =
(−1)r

r!
dr pr(x)

dxr ;

see Navarro et al. [465] and Sunoj [554]. Sunoj [554] also obtained the partial
moments of the length-biased distribution, equilibrium distribution and charac-
terizations thereof. Gupta [236] extended this result to show that the kth order
equilibrium distribution has survival function

SK(x) =
E[(X − x)+]k

E(Xk)
.

Lin [401] and Abraham et al. [14] characterized the exponential, beta and Lomax
distributions by relationships between the partial moments. The quantile forms of
(6.48) and (6.49) are

P1(u) = p1(Q(u)) =
∫ 1

u
(Q(p)−Q(u))d p (6.50)

=
∫ 1

u
(1− p)q(p)d p

= (1− u)M(u)

and

P2(u) = p2(Q(u)) =
∫ 1

u
[Q(p)−Q(u)]2d p.

Accordingly, the variance of (X − x)+ has the form

V+(u) =
∫ 1

u
[Q(p)−Q(u)]2d p−P2

1 (u). (6.51)

We then have

P′
1(u) =−(1− u)q(u) (6.52)

and

V+(u) =
∫ 1

u
Q2(p)d p− 2Q(u)

∫ 1

u
Q(p)d p+(1− u)Q2(u)−P2

1 (u)

=

∫ 1

u
Q2(p)d p− 2Q(u)[P1(u)+ (1− u)Q(u)]+ (1−u)Q2(u)−P2

1 (u)

=

∫ 1

u
Q2(p)d p− [P1(u)+Q(u)]2 + uQ2(u).
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Differentiating the above expression, we get

V ′
+(u) =−2[P1(u)+Q(u)][P′

1(u)+ q(u)]+ 2uQ(u)q(u).

Eliminating Q(u) and q(u) by using (6.50) and (6.52), we obtain

V ′
+(u) =

2uP1(u)P′
1(u)

1− u
. (6.53)

Equation (6.53) shows that both P1(u) and V+(u) determine each other as

V+(u) =−
∫ 1

u

2pP1(p)P′
1(p)

1− p
d p

and

P2
1 (u) =−

∫ 1

u

(1− p)
p

V ′
+(p)d p.

Thus, for all practical purposes, it is enough if the first partial moment (stop loss
transform) is available. The relationships that the partial moments have with the
reliability functions is immediate from the above discussions. We notice that

H(u) =− 1
P′

1(u)
, (6.54)

M(u) = (1− u)−1P1(u),

V (u) =
1

(1− u)

∫ 1

u
(1− p)−2P1(p)d p,

T (u) = μ −P1(u,) (6.55)

and

(1− u)P1(u) = 2l2(u)− (1− u)l′2(u).

The ageing properties of X can also be characterized in terms of P1(u). These can be
expressed with the use of Theorems in Sect. 5.4 and (6.55). Some examples are

(i) X is IHR (DHR) if and only if P1(u) is convex (concave). This result follows
from Theorem 5.2 and (6.54);

(ii) A necessary and sufficient condition that X is DMTTF (IMTTF) is that μ−P1(u)
μu

is decreasing (increasing), which simplifies to

P1(u)− uP′
1(u)< μ .

The other ageing properties result from Theorems 5.4–5.6.
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Table 6.3 Stop-loss transforms for some distributions

Distribution P1(u)

Exponential λ−1(1−u)

Pareto II α
C−1 (1−u)−

1
c +1

Rescaled beta C
R+1 (1−u)

1
c +1

Half logistic 2σ log 2
1+u

Exponential geometric 1−p
λ p log 1−pu

1−p

Power α
1+β {β − (1+β )u

1
β +u

1
β +1}

Linear hazard quantile 1
b log a+b

a+bu

Generalized lambda 1
λ2

{
λ4

1+λ4
(1−u)λ4+1 + (1−uλ3+1)

1+λ3
− (1−u)uλ3

}

Generalized Tukey lambda (1−u)
{

(1−u)λ4

λ2(λ4+1) +
1−uλ3+1

λ2λ3(1+λ3)(1−u) − uλ3
λ2λ3

}

van Staden and Loots λ2

[
(1−λ3)

λ4

{
1−uλ4+1

λ4+1 − (1−u)uλ4

}
+ λ3

λ4+1 (1−u)λ4+1
]

Generalized Weibull σα

λ α (1−u)B(1−u)λ ( 1
λ +1,α)

Power-Pareto c(1−u){λ1B1−u(2−λ2,λ1)+λ2B1−u(1−λ2,λ1)}

Govindarajulu σ
β+2{2− (β +1)(β +2)uβ +2β (β +2)uβ+1 −β (β +1)uβ+2}

The stop-loss transforms of several distributions are presented in Table 6.3.
The lower partial moments of order r in the case of a non-negative random

variable is defined as

p∗r (t) = E[(X − t)−]r,

where

(X − t)− =

{
t −X , X ≤ t

0, X ≥ t
.

The first two moments, in terms of quantile functions, become

P∗
1 (u) = p∗1(Q(u)) =

∫ u

0
[Q(u)−Q(p)]d p

=
∫ u

0
pq(p)d p, (6.56)

P∗
2 (u) = p∗2(Q(u) =

∫ u

0
[Q(u)−Q(p)]2d p. (6.57)
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From (6.56) and (6.57), the variance of (X − t)− is obtained as

v−(u) =
∫ u

0
[Q(u)−Q(p)]2 − [P∗

1 (u)]
2d p.

Using now the relations

∫ u

0
Q(p)d p = P∗

1 (u)− uQ(u),

dP∗
1 (u)
du

= uq(u),

we can eliminate Q(u) and q(u) from

v′−(u) = 2q(u)P∗
1 (u)− 2uQ(u)q(u)− 2uQ(u)q(u)

to arrive at the identity

v′−(u) =
2(1− u)

u
P∗

1 (u)
dP∗

1 (u)
du

. (6.58)

Thus, P∗
1 (u) determines v−(u) uniquely as

v−(u) =
∫ u

0

2(1− p)
p

P∗
1 (p)

dP∗
1

d p
d p,

and conversely

[P∗
1 (u)]

2 =
∫ u

0

pv′−(p)

1− p
d p.

From the reliability theory perspective, the partial mean is useful in defining the
reversed quantile functions. The basic relationships are as follows:

Λ(u) =
dP∗

1 (u)
du

,

R(u) = u−1P∗
1 (u),

D(u) =
1
u

∫ u

0
R2(p)d p =

1
u

∫ u

0

{
P∗(p)

p

}2

d p.
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6.7 Some Applications

The L-moments and the two kinds of partial moments discussed so far are known
in some other disciplines than reliability for their applications. We now give a brief
account of the important ones, partly because the models discussed have relevance
in reliability theory as well. One major application is related to income analysis in
economics. Let X denote the non-negative continuous random variable representing
incomes of individuals in a population. Income is often conceived as an indicator to
differentiate between the strata of the society, notably the poor and the affluent, with
generally more attention to the former. A poverty line X = t is set such that those
having income below t is considered poor. Then, α = F(t) represents the proportion
of poor in the population, and their income has the distribution

tF(x) =

{
F(x)
F(t) , x ≤ t

1, x > t
.

The extent to which poverty exists among the poor is measured by the income gap
ratio defined as

G(t) = 1−E

[
X
t
|(X ≤ t)

]

= 1− 1
t

E[X |(X ≤ t)] = 1− B1(t)
t

. (6.59)

In terms of quantile functions, we have

g(u) = G(Q(u)) = 1− θ1(u)
Q(u)

. (6.60)

Traditionally, the income gap ratio is computed from the income distribution; but,
the reverse process is also valid. Nair et al. [440] have shown that there exists a
one-to-one relationship between income gap ratio and the income distribution and
the latter can be retrieved from the former as explained in the following theorems.
Empirically, it is possible to draw some ideas about the approximate form of G(t)
from the data.

Theorem 6.10. If X has a finite mean and income gap ratio G(t), then the
distribution of X is

F(x) = exp

{
−
∫ ∞

x

1−G(t)− tG′(t)
tG(t)

dt

}
, x > 0.

Remark 6.6. Using the above theorem, it follows that the only continuous distribu-
tion for which G(t) = a constant is the power distribution.
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Remark 6.7. The analogue of Theorem 6.10 is

Q(u) =
μ

u(1− g(u))
exp

{
−
∫ 1

u

d p
p(1− g(p))

}
.

A popular measure for the income inequality in a population is the Gini index
defined as

I = 1− 2
μ

∫ ∞

0
xF̄(x) f (x)dx.

In the case of the poor (below the poverty line or X ≤ t), the index has the form

I(t) = 1− 2
E[X |(X ≤ t)]

∫ t

0
x

(
1− F(x)

F(t)

)
f (x)
F(t)

dx. (6.61)

Using the transformation x = Q(u), we have the quantile version as

i(u) = I(Q(u)) = 1− 2
θ1(u)

∫ u

0
Q(p)

(
u− p

u2

)
d p. (6.62)

From (6.18) and (6.19), we then have

∫ u

0
Q(p)d p = uθ1(u) (6.63)

and

∫ u

0
pQ(p)d p =

u2

2
(θ1(u)+θ2(u)). (6.64)

Eliminating the integral on the right-hand side of (6.62) with the use of (6.63) and
(6.64), we obtain

i(u) =
θ2(u)
θ1(u)

,

which is the L-coefficient of variation θ (u) considered earlier in Sect. 6.3. By virtue
of Theorem 6.10, we conclude that i(u) = a constant if and only if X has power
distribution. Theorem 6.10 leaves scope for characterizing income distributions by
the form of their truncated Gini index. A further example is that the form

i(u) =
(β + 3)− (β + 1)u

(β + 2)−β u

determines the Govindarajulu distribution.
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The income gap ratio and truncated Gini index play a crucial role in defining
index of poverty. For example, Sen [524] suggested the index

s(t) = F(t)[G(t)+ (1−G(t))I(t)]

for a measure of poverty. This turns out to be equivalent to

S(u) = u[g(u)+ (1− g(u))i(u)]

= u

{
1− θ1(u)

θ (u)
+

θ2(u)
θ1(u)

(
θ1(u)
Q(u)

)}
.

Since Q(u) = uθ ′
1(u)+θ1(u), we have on simplification

S(u) = u

[
uθ ′

1(u)+θ2(u)
uθ ′

1(u)+θ1(u)

]
. (6.65)

Instead of distribution functions as models of income, Tarsitano [562] used the
generalized lambda distribution and Haritha et al. [260] employed the generalized
Tukey lambda distribution. Since both these distributions do not have closed-form
expressions for their distribution functions, the expressions in (6.57), (6.62) and
(6.65) become important.

Theorem 6.11. Let X be a non-negative random variable with finite mean. Then,
S(u) = cu if and only if X has power distribution of the form

Q(u) = αu
1
β , α,β > 0, 0 ≤ u ≤ 1.

Proof. In the case of the power distribution, we have

θ1(u) =
αβ

β + 1
u

1
β ,

θ2(u) =
αβ

(β + 1)(1+ 2β )
u

1
β ,

and so from (6.65), we obtain

S(u) =
1+ 3β

(1+β )(1+ 2β )
u

which proves the ‘if’ part. Conversely, when S(u) = cu, (6.1) provides

c[uθ ′
1(u)+θ1(u)] = uθ ′

1(u)+ uθ2(u)

or equivalently
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cu2Q(u) = u2Q(u)− 2u
∫ u

0
Q(p)d p+ 2

∫ u

0
pQ(p)d p

upon using the expressions of θ1(u) and θ2(u). Differentiating and simplifying the
resulting expression, we get

(c− 1)u2Q′′(u)+ 4(c− 1)uQ′(u)+ 2cQ(u) = 0. (6.66)

Now, by setting Q(u) = um, the auxiliary equation for the solution of (6.66) is

(c− 1)m2+ 3(c− 1)m+ 2c= 0,

which has its roots as

m =−3(c− 1)±
√

a(c− 1)2− 8c(c− 1)
2(c− 1)

,

that simplify to

m =−3
2
± 1

2

√
c− 9
c− 1

.

Hence, the solution of (6.66) becomes

Q(u) =C1u−
3
2+

1
2 (

c−9
c−1 )

1
2
+C2u−

3
2− 1

2 (
c−9
c−1 )

1
2
.

Since Q(u) has to be increasing for all u, C2 = 0 and so

Q(u) = αu
1
β ,

which corresponds to the power distribution with β = 1
2 [(

c−9
c−1)

1
2 − 3] and α = C1.

This completes the proof of the theorem.

The lower partial moments have an important role in the measurement of risk
associated with management, industrial and insurance strategies. Sunoj and Maya
[555] discussed their role in stochastic modelling that includes characterization of
distributions, weighted and equilibrium models. In p∗r (t) defined earlier, t is a target,
that separates gains and losses and the main interest is in ‘downside risk’ measured
by p∗1(t). Portfolio theory is concerned about maximizing the return for a given risk,
where X stands for the random return and t the target return. In this context, lower
partial moments provides summary measures of downside risk. The second moment
p∗2(t) is called target semi-variance which fits investors’ risk preference better than
the traditional variance. Some references in this connection are Bawa [81], Fishburn
[199], Harlow [261], Brogan and Stidham [121], Willmot et al. [582] and Hesselager
et al. [270].
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