
Chapter 5
Total Time on Test Transforms

Abstract The total time on test transform is essentially a quantile-based concept
developed in the early 1970s. Apart from its applications in reliability problems,
it has also been found useful in other areas like stochastic modelling, maintenance
scheduling, risk assessment of strategies and energy sales. When several units are
tested for studying their life lengths, some of the units would fail while others may
survive the test period. The sum of all observed and incomplete life lengths is the
total time on test statistic. As the number of units on test tends to infinity, the limit
of this statistic is called the total time on test transform (TTT). The definitions and
properties of these two concepts are discussed and the functional forms of TTT for
several life distributions are presented in Table 5.1. We discuss the Lorenz curve,
Bonferroni curve and the Leimkuhler curve which are closely related to the TTT.
Identities connecting various curves, characterizations of distributions in terms of
these curves and their relationships with various reliability functions are detailed
subsequently. In view of the ageing classes in the quantile set-up introduced in
Chap. 4, it is possible to characterize these classes in terms of TTT. Accordingly,
we give necessary and sufficient conditions for IHR, IHRA, DMRL, NBU, NBUE,
HNBUE, NBUHR, NBUHRA, IFHA*t0, UBAE, DMRLHA, DVRL, and NBU-t0
classes in terms of the total time on test transform. Another interesting property
of the TTT is that it uniquely determines the lifetime distribution. There have
been several generalizations of the TTT. We discuss these extensions and their
properties, with special reference to the TTT of order n. Relationships between the
reliability functions of the baseline model and those of the TTT of order n (which
is also a quantile function) are described and then utilized to describe the pattern
of ageing of the transformed distributions. Some life distributions are characterized.
The discussion of the applications of TTT in modelling includes derivation of the
L-moments and other descriptive measures of the original distribution. Some of the
areas in reliability engineering that widely use TTT are preventive maintenance,
availability, replacement problems and burn-in strategies.
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168 5 Total Time on Test Transforms

5.1 Introduction

The concept of total time on test transform (TTT) was studied in the early 1970s;
see, e.g., Barlow and Doksum [67] and Barlow et al. [65]. When several units are
tested for studying their life lengths, some of the units would fail while others may
survive the test duration. The sum of all observed and incomplete life lengths is
generally visualized as the total time on test statistic. When the number of items
placed on test tends to infinity, the limit of this statistic is called the total time on test
transform. A formal definition of these two concepts will be introduced in the next
section. The TTT is essentially a quantile-based concept, although it is discussed
often in the literature in terms of F(x).

Many papers on TTT concentrate on reliability and its engineering applications.
This include analysis of life lengths and new classes of ageing; see Abouammoh
and Khalique [9], Ahmad et al. [25] and Kayid [318]. A special characteristic of
TTT is that the basic ageing properties can be interpreted and determined through
it. The works of Barlow and Campo [66], Bergman [89], Klefsjö [334], Abouammoh
and Khalique [9] and Perez-Ocon et al. [492] are all of this nature. Properties
of TTT were used for construction of bathtub-shaped distributions by Haupt and
Schabe [266] and Nair et al. [447]. Much of the literature has focused on developing
test procedures, most of which are for exponentially against alternatives like IHR,
IHRA, NBUE, DMRL and HNBUE. For this, one may refer to Bergman [90],
Klefsjö [335, 336], Kochar and Deshpande [348], Aarset [1], Xie [592, 593],
Bergman and Klefsjö [96], Wei [579] and Ahmed et al. [25].

Applications of TTT can be found in a variety of fields. Of these, the role
of TTT in reliability engineering will be taken up separately in Sect. 5.5. The
optimal quantum of energy that may be sold under long-term contracts using TTT
is discussed in Campo [125] and risk assessment of strategies in Zhao et al. [601].
TTT plotting of censored data (Westberg and Klefsjö [578]), problem of repairable
limits (Dohi et al. [180]), normalized TTT plots and spacings (Ebrahimi and
Spizzichino [183]), maintenance scheduling (Kumar and Westberg [357], Klefsjö
and Westberg [340]), estimation in stationary observations (Csorgo and Yu [161])
and stochastic modelling (Vera and Lynch [573]) are some of the other topics
discussed in the context of total time on test.

5.2 Definitions and Properties

We now give formal definitions of various concepts based on total time on test.

Definition 5.1. Suppose n items are under test and successive failures are observed
at X1:n ≤ X2:n ≤ ·· · ≤ Xn:n, and let Xr:n < t ≤ Xr+1:n, where Xr:n’s are order statistics
from the distribution of a lifetime random variable X with absolutely continuous
distribution function F(x). Then, the total time on test statistic during (0, t) is
defined as
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τ(t) = nX1:n+(n− 1)(X2:n−X1:n)+ · · ·+(n− r+ 1)(Xr:n−Xr−1:n)

+ (n− r)(t−Xr:n). (5.1)

The above expression is arrived at by noting that the test time observed between
0 and X1:n is nX1:n, that between X1:n and X2:n is (n− 1)(X2:n−X1:n) and so on, and
finally that between Xr:n and t is (n− r)(t −Xr:n). Also, the total time up to the rth
failure is

τ(Xr:n) = nX1:n +(n− 1)(X2:n−X1:n)+ · · ·+(n− r+ 1)(Xr:n−Xr−1:n). (5.2)

It may also be noted that (5.1) is equivalent to

τ(t) = X1:n +X2:n + · · ·+Xr:n +(n− r)t.

Definition 5.2. The quantity

φr:n =
τ(Xr:n)

τ(Xn:n)
=

∑r
j=1(n− j+ 1)(Xj:n−Xj−1:n)

∑n
j=1(n− j+ 1)(Xj:n−Xj−1:n)

, with X0:n = 0, (5.3)

is called the scaled total time on test statistic (scaled TTT statistic).

Noting that X̄n =
1
n(X1:n + · · ·+Xn:n) is the sample mean of the n order statistics,

we have φr:n = τ(Xr:n)
nX̄n

. The empirical distribution function defined in terms of the
order statistics is

Fn(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, t < X1:n,
r
n , Xr:n ≤ t < Xr+1:n, r = 1,2, . . . ,n− 1,

1, t ≥ Xn:n.

If there exists an inverse function

F−1
n (t) = inf[x ≥ 0|Fn(x)> t],

we can verify that

∫ F−1
n ( r

n )

0
F̄n(t)dt =

r

∑
j=1

(

1− j− 1
n

)

(Xj:n −Xj−1:n) =
τ(Xr:n)

n

and

lim
n→∞

lim
r
n→u

∫ F−1
n ( r

n )

0
F̄n(t)dt =

∫ F−1(u)

0
F̄(t)dt (5.4)
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uniformly in u belonging to [0,1]. The expression on the right side of (5.4), viz.,

∫ F−1(u)

0
F̄(t)dt = H−1

F (u), (5.5)

is called the total time on test transform. Accordingly we have, with a slightly
different notation T (u) for H−1

F (u), the following definition.

Definition 5.3. The TTT of a lifetime random variable X is defined as

T (u) =
∫ u

0
(1− p)q(p)d p. (5.6)

Example 5.1. The linear hazard quantile function family of distributions specified
by

Q(u) = log
( a+ bu

a(1− u)

) 1
a+b

(see Chap. 2) has

q(u) = [(1− u)(a+ bu)]−1,

and so, from (5.6), we find

T (u) =
1
b

log
(a+ bu

a

)
.

The expressions for TTT for some specific life distributions are presented in
Table 5.1.

Some important properties of the TTT in (5.6) are the following:

1. T (0) = 0, T (1) = μ . T (u) is an increasing function if and only if F is continuous.
In this case, T (u) is a quantile function and the corresponding distribution is
called the transformed distribution;

2. The baseline distribution F is uniquely determined by T (u). To see this, we
differentiate (5.6) to get

T ′(u) = (1− u)q(u), (5.7)

and thence

Q(u) =
∫ u

0

T ′(p)
1− p

d p;

3. From Table 5.1, we see that the graph of the TTT of the exponential distribution
is the diagonal line in the unit square;
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Table 5.1 Total time on test transforms for some specific life distributions

Distribution T (u)

Exponential λ−1u

Pareto II
α

c−1
[1− (1−u)

c−1
c ]

Rescaled beta
R

c+1
[1− (1−u)

c+1
c ]

Weibull
σ

λ n1/λ I−n log(1−u)(
1
λ )

Half-logistic 2σ log(1+u)

Power
αu

1
β

(1+β )
(1+β −u)

Govindarajulu σ (β +1)uβ [(1−u)2 +2(β +1)−1u(1−u)
+((β +1)(β +2))−1u2]

Generalized lambda λ−1
2

{
uλ3

λ3 +1
(1+λ3(1−u))+

λ4

λ4 +1
(1− (1−u)λ4+1)

}

Generalized Tukey lambda λ−1
2

{
uλ3

λ3(λ3 +1)
(1+λ3(1−u))+

1
λ4 +1

(1− (1−u)λ4+1)

}

van Staden–Loots λ−1
2

{
(1−λ3)uλ4

λ4

(1+λ4(1−u))
(λ4 +1)

+
λ3

λ4 +1
(1− (1−u)λ4 )

}

Power-Pareto C[λ1Bu(λ1,2−λ2)+λ2Bu(λ1 +1,1−λ2)]

4. Many identities exist between T (u) and the basic reliability functions introduced
earlier in Sects. 2.3–2.6. Directly from (5.7) and (2.30), we have

T ′(u) =
1

H(u)
. (5.8)

Again from (2.35), we find

T (u) = μ −
∫ 1

u
(1− p)q(p)d p = μ − (1− u)M(u)

and consequently

M(u) =
μ −T (u)

1− u
, (5.9)

which relates TTT and the mean residual quantile function. On the other hand, from
(2.46), we find

V (u) =
1

1− u

∫ 1

u
M2(p)d p
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and hence

V (u) =
1

1− u

∫ 1

u

(
μ −T(p)

1− p

)2

d p, (5.10)

or equivalently

T (u) = μ − (1− u)[(1− u)V ′(u)−V(u)]
1
2 . (5.11)

Next, with regard to functions in reversed time, we have

T (u) = Q(u)−
∫ u

0
pq(p)d p

or

uq(u) = [Q(u)−T(u)]′,

and so

Λ(u) =
1

[Q(u)−T (u)]′
. (5.12)

Also from (2.50), the reversed mean residual quantile function satisfies

uR(u) =
∫ u

0
pq(p)d p

and

uR(u) = Q(u)−T(u),

and consequently

T (u) = Q(u)− uR(u). (5.13)

Finally, we use the reversed variance quantile function

D(u) =
1
u

∫ u

0
R2(p)d p

to write

D(u) =
1
u

∫ u

0

Q(p)−T (p)
p2 d p.



5.2 Definitions and Properties 173

These relationships are used in the next section to characterize the ageing properties
in terms of total time on test transform.

Definition 5.4. We say that

φ(u) =
∫ u

0 (1− p)q(p)d p
∫ 1

0 (1− p)q(p)d p
=

T (u)
μ

(5.14)

is the scaled total time on test transform, or scaled transform in short, of the random
variable X .

Definition 5.5. The plot of the points ( r
n ,φr,n), r = 1,2, . . . ,n, when connected by

consecutive straight lines, is called the TTT-plot.

The statistic 1
n τ(Xr:n) converges uniformly in u to the TTT as n → ∞ and

r
n → u. Now, we present the asymptotic distribution, which is due to Barlow and

Campo [66]. Let φr,n =
{

φn(p) = H−1
n (p)

H−1
n (1)

, 0 ≤ p ≤ 1
}

be the scaled TTT process.

Define

Sn(p) =
√

n

{
H−1

n (p)

∑n
1 Xj:n

−φ(p)

}

for j−1
n ≤ p ≤ j

n and 1 ≤ j ≤ n, with Sn(0) = Sn(1) = 0. Upon using

φ(u) =
1
μ

{

(1− u)Q(u)+
∫ u

0
Q(p)d p

}

,

we see that

H−1
n ( j

n )

H−1
n (1)

=
∫ j/n

0

F−1
n (u)

∑Xj:n
dνn(u)du+

(

1− j
n

)
Xj:n

∑Xj:n

converges to

∫ u

0

Q(p)
μ

d p+
(1− u)

μ
Q(u)

with probability one and uniformly in 0 ≤ u ≤ 1 as n → ∞, where νn(u) puts mass
1
n at u = j

n . Next,

Sn

(
j
n

)

=
√

n

(
H−1

n ( j
n)

∑Xj:n
−φ(u)

)

.
=

∫ j
n

0

√
n

(
X[nu]:n

∑Xj:n
− Q(u)

μ

)

dνn(u)+

(

1− j
n

)(
Xj:n

∑Xj:n
− F−1( j

n)

μ

)

,
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where [t] denotes the greatest integer contained in t. Then,

lim
n→∞

√
n

(
H−1

n (p)

∑Xj:n
−φ(u)

)

=

∫ u

0
θ (p)d p+(1− u)θ (u),

with

θ (u) =−q(u)
μ

A(u)+
Q(u)
μ2

∫ 1

0
A(p)q(p)d p

and

lim
n→∞

√
n

{
H−1

n (u)

∑Xj:n
−φ(u)

}

= A(u).

In the above, {A(u),0 ≤ u ≤ 1} is the Brownian bridge process.

5.3 Relationships with Other Curves

The similarity between the Lorenz curve used in economics and the TTT and the
corresponding results have been discussed by Chandra and Singpurwalla [134] and
Pham and Turkkan [493]. If X is a non-negative random variable with finite mean,
the Lorenz curve is defined as

L(u) =
1
μ

∫ u

0
Q(p)d p, (5.15)

which is itself a continuous distribution function with L(0) = 0 and L(1) = 1. It
is a bow-shaped curve below the diagonal of the unit square. Used as a measure
of inequality in economics, we note that as the bow is more bent, the amount of
inequality increases. Also L(u) is convex, increasing and is such that L(u) ≤ u,
0 ≤ u ≤ 1. The Lorenz curve determines the distribution of F up to a scale. Two
well-known measures of inequality that are related to the Lorenz curve are the Gini
index and the Pietra index. There are many analytic expressions for calculating the
Gini index, including

G = 2
∫ 1

0
(u−L(u))du = 1− 2

∫ 1

0
L(u)du. (5.16)

In addition,

G = 1− 2μ−1
∫ 1

0

∫ u

0
Q(p)dydu = 1− μ−1E(X1:2),

where X1:2 is the smallest of a sample of size 2 from the population.
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Next, the Pietra index is obtained from the maximum vertical deviation between
L(u) and the line L(u) = u, given by

P = μ−1
∫ F(μ)

0
(μ −Q(p))d p = F(μ)−L(F(μ)). (5.17)

It can be seen that P is 1
2μ
∫ ∞

0 |x− μ | f (x)dx, half the relative mean deviation. A
detailed account of the results concerning L(u) and G can be found in Kleiber and
Kotz [341].

The cumulative Lorenz curve of X is given by

CL(u) =
∫ 1

0
L(u)du =

1
μ

∫ 1

0

∫ u

0
Q(p)dud p. (5.18)

Chandra and Singpurwalla [133] observed that both L(u) and L−1(u) are distribution
functions, L is convex, L−1 is concave, and that L(u) is related to the mean residual
life function m(x). In the quantile set-up, the Lorenz curve can be related to all the
basic reliability functions. For example, we have from (2.34) and (5.15) that

Q(u)+M(u) =
1

1− u

∫ 1

u
Q(p)d p,

μ −
∫ u

0
Q(p)d p = (1− u)(Q(u)+M(u)),

μ [1−L(u)] = (1− u)(Q(u)+M(u)),

and so

M(u) =
μ(1−L(u))

1− u
−Q(u) = μ

[
1−L(u)

1− u
−L′(u)

]

.

Now, H(u) is recovered from (2.37) and V (u) from (2.46), after substituting for
M(u). A much simpler expression results for the reversed mean residual quantile
function R(u) as

R(u) = Q(u)− μL(u)
u

= μ [L′(u)− u−1L(u)].

Also,

[Λ(u)]−1 = R(u)+ uR′(u)

and

D(u) =
1
u

∫ u

0
R2(p)d p.
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Example 5.2. The Pareto distribution is one of the basic distributions used in
modelling income data and it plays a role similar to the exponential distribution
in reliability. Its quantile function is (Table 1.1)

Q(u) = σ(1− u)−
1
α

and so we obtain the following expressions:

L(u) = 1− (1− u)1− 1
α since μ =

σα
α − 1

, α > 1,

M(u) =
σα[(1− u)1− 1

α ]

(α − 1)1− u
−σ(1− u)−

1
α =

σ
α − 1

(1− u)−
1
α ,

H(u) = [M(u)− (1− u)M′(u)]−1 =
α(1− u)

1
α

σ
,

V (u) =
1

1− u

∫ 1

u
M2(p)d p =

σ2α
(α − 1)2(α − 2)

(1− u)−
2
α .

Also, the functions Λ(u), R(u) and D(u) can also be similarly found.

Chandra and Singpurwalla [134] obtained the following relationships between
T (u), L(u) and the sample analogs corresponding to them:

(a)

T (u) = (1− u)Q(u)+ μL(u). (5.19)

Equation (5.19) is obtained by integrating by parts the right-hand side of (5.6)
and then using (5.15). Since Q(u) = μL′(u), (5.19) has the alternative form

T (u) = μ [(1− u)L′(u)+L(u)],

or equivalently

φ(u) = (1− u)L′(u)+L(u).

Now, upon treating the last relationship as a linear differential equation in u and
solving it, we obtain an integral expression for L(u) as

L(u) = (1− u)
∫ u

0

φ(p)
(1− p)2 d p.

(b) We also have

Cφ(u) = 2CL(u),
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where Cφ(u) =
∫ 1

0 φ(p)d p = 1
μ
∫ 1

0 T (p)d p is called the cumulative total time on
test transform. To establish the above assertion, we note that

∫ 1

0

∫ u

0
Q(p)d p =−

∫ 1

0

(
d

d p
(1− p)

∫ u

0
Q(p)d p

)

du

=
∫ 1

0
(1− p)Q(p)d p (by partial integration),

∫ u

0
(1− p)q(p)d p = (1− u)Q(u)+

∫ u

0
Q(p)d p.

Thus, we get

Cφ(u) =
1
μ

∫ 1

0

∫ u

0
(1− p)q(p)d pdu

=
1
μ

∫ 1

0

{

(1− u)Q(u)+
∫ u

0
Q(p)d p

}

du

=
1
μ

∫ 1

0

{∫ u

0
Q(p)d p

}

du+
1
μ

∫ 1

0

{∫ u

0
Q(p)d p

}

du

= 2CL(u),

as required.
(c) G = 1−Cφ(u), which is seen as follows:

G = 1− 2μ−1
∫ 1

0

{∫ u

0
Q(p)d p

}

du

= 1− 2CL(u) = 1−Cφ(u) (by using (b)).

If we denote the sample Lorenz curve and the sample Gini index by

Ln(u) =
∑[nu]

r=1 Xr:n

∑n
r=1 Xr:n

,

and

Gn =
∑n−1

r=1 r(n− r)(Xr+1:n −Xr:n)

(n− 1)∑n
r=1 Xr:n

,

respectively, and the cumulative total time on test statistic by

Vn =
1

n− 1

n−1

∑
r=1

φr:n,
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then we have

φr:n = Ln

( r
n

)
+

(n− r)Xr:n

∑n
j=1 Xr:n

and

Vn = 1−Gn.

Chandra and Singpurwalla [134] also pointed out the potential of the Lorenz
curve in comparing the heterogeneity in survival data and also in characterizing
the extremes of life distributions. The latter aspect is illustrated by the following
theorem.

Theorem 5.1. If X is IHR with mean μ , then

LG(u)≤ LF(u)≤ LD(u), 0 ≤ u ≤ 1,

and if X is DHR with mean μ , then

LF(u)

⎧
⎪⎪⎨

⎪⎪⎩

≤ LG(u), 0 < u ≤ 1

≥ 0, 0 ≤ u < 1

= 1, u = 1.

Here, F and G are the distribution functions of X and exponential variable with
same mean μ , respectively, and D is the distribution degenerate at μ .

The distribution which is degenerate at μ has h(x) = ∞ at μ and so LD(u) = u
characterizes distributions which are most IHR. Likewise, distributions with
L(u) = 0 for u < 1 and L(u) = 1 for μ = 1 are the most DHR.

Pham and Turkkan [493] established more results in this direction. They pointed
out that φ(u) strictly increases in the unit square with φ(0) = 0 and φ(1) = 1.
Moreover,

(a) φ(F(μ)) = 1−E(|X − μ |);
(b) φ(Med X) = 1

2 +
(MedX−E|X−MedX |)

2μ ;
(c) In the unit square, the area between φ(u) and L(u) equals the area below L(u).

The area above φ(u) is G;

(d) L(u) = (1− u)
∫ u

0

φ(p)
(1− p)2 d p;

(e) If X is NBUE, then the Pietra index is less than the reliability at μ and
E(|X −MedX |)< MedX ;

(f) When 1
2 < G ≤ 1 (0 ≤ G < 1

2 ) and F(x) is a family of IHR (DHR) distributions
with common mean μ , F(x) becomes more IHR (DHR) when L(u) gets closer to
the diagonal and φ(u) get closer to the upper (lower) side. Further, when G = 1

2 ,
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F(x) is exponential. When 0 ≤ P < e−1, X is IHR and the closer P is to zero,
the more IHR X becomes. X is exponential when P = e−1. Also, e−1 < P < 1
provides DHR and P → 1 corresponding to the most DHR.

Another curve that has been used in the context of income inequality is
the Bonferroni curve. For a non-negative random variable X , the first moment
distribution of X is defined by the distribution function

F1(x) =

∫ x
0 t f (t)dt

μ
.

The Bonferroni curve is defined in the orthogonal plane as (F(x),B1(x)) within the
unit square, where

B1(x) =
F1(x)
F(x)

.

In terms of quantile functions, we have

B(u) = B1(Q(u)) =

∫ u
0 Q(p)d p

μu
. (5.20)

One may refer to Giorgi [218], Giorgi and Crescenzi [219] and Pundir et al. [498]
and the references therein for a study of (5.20) and its properties. As u → 0, B(u)
has the indeterminate form 0

0 and hence the curve does not begin from the origin.
It is strictly increasing but can be convex or concave in parts of the plane. Several
results concerning B1(x) have been given by Pundir et al. [498]. We now make a
comparative study of B(u) with L(u) and φ(u). First, we note that B(u) characterizes
the distribution of X through

Q(u) = μ(B(u)+ uB′(u)). (5.21)

Also,

B(u) = u−1L(u)

and

φ(u) =
(1− u)Q(u)

μ
+

1
μ

∫ u

0
Q(p)d p,

or equivalently

φ(u) = B(u)+ u(1− u)B′(u). (5.22)

Solving (5.22) as a linear differential equation, we get

B(u) =
1− u

u

∫ u

0

φ(p)
(1− p)2 d p,
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relating scaled TTT and the Bonferroni curve. Equation (5.20) verifies

μuB(u) =
∫ u

0
Q(p)d p = μ −

∫ 1

u
Q(p)d p,

and hence

M(u) =
μ(1− uB(u))

1− u
−Q(u) = μ

{
1−B(u)

1− u
− uB′(u)

}

by virtue of (5.21). Rewriting the above equation as

B′(u)+
B(u)

u(1− u)
=

1
u(1− u)

− M(u)
uμ

and solving it, we see that B(u) is uniquely determined by M(u) as

B(u) =
1− u

u

∫ u

0

1
p

{
1

1− p
− M(p)

μ

}

d p.

A more concise relationship exists between B(u) and the reversed mean residual
quantile function R(u) in the form

R(u) = μuB′(u).

As in the case of L(u), all other reliability functions can be derived using the
relations they have with M(u) and R(u). Pundir et al. [498] showed that the
Bonferroni index

B = 1−
∫ 1

0
B(u)du

is such that

B ≤ 1
2
(1+G) and B ≤ 1− V

2
, V = 1−G.

The Leimkuhler curve, which is closely related to the Lorenz curve, is also
discussed recently for its relationships with the reliability functions. It is used in
economics as a plot of cumulative proportion of productivity against cumulative
proportion of sources and is also used in studying concentration of bibliometric
distributions in information sciences. A general definition of the curve is given in
Sarabia [518] and methods of generating such curves have been detailed in Sarabia
et al. [519]. Balakrishnan et al. [60] have pointed out the relationships between
reliability functions and the Leimkuhler curve. The Leimkuhler curve is defined in
terms of quantile function as
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K(u) =
1
μ

∫ 1

1−u
Q(p)d p

=
1
μ

{∫ 1

0
Q(p)d p−

∫ 1−u

0
Q(p)d p

}

= 1− 1
μ

∫ 1−u

0
Q(p)d p. (5.23)

Evidently,

K(u) = 1−L(1− u) or K(1− u) = 1−L(u)

and so K(u) characterizes the distribution of X . The relation in (5.23) gives

M(u) =
μ{1−K(1− u)}

1− u
−Q(u)

= μ
{

1−K(1− u)
1− u

−K′(1− u)

}

.

Similarly, from

μ(1−K(u)) =
∫ 1−u

0
Q(p)d p

and the definition of R(u), we obtain

μ(1−K(u)) = (1− u){Q(1− u)−R(1−u)}.

Since

Q(1− u) = μK−1(u),

upon combining the expressions, we obtain

R(u) = μu−1[K′(1− u)+K(1− u)−1].

Regarding the geometric properties, it is seen from the definition that K(u) is
continuous, concave and increasing with K(0) = 0 and K(1) = 1. The main
difference between the Lorenz curve and the Leimkuhler curve K(u) is that in the
Lorenz curve the sources are arranged in increasing order of productivity, while in
the Leimkuhler curve the sources are arranged in decreasing order. The expressions
of B(u), L(u) and K(u) for some distributions are presented in Table 5.2.
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Table 5.2 Expressions of L(u), B(u) and K(u) for some distributions

Distribution L(u) B(u) K(u)

Power u
1
β +1

u
1
β 1− (1−u)

1
β +1

Exponential u+(1−u) log(1−u) 1+ 1−u
u log(1−u) u(1− logu)

Pareto II c(1− (1−u)1− 1
c )−u(c−1) c(1−(1−u))1− 1

c

u − (c−1) u[1− c+ cu−
1
c ]

Rescaled beta c(1− (1−u)1+ 1
c −1)+u(1+ c) 1+ c+ c

u ((1−u)1+ 1
c −1) u[c+1− cu

1
c ]

Pareto I α [1− (1−u)−
1
α +1] α

u [1− (1−u)−
1
α +1] αu−

1
α +1

5.4 Characterizations of Ageing Concepts

In this section, we discuss the role of TTT in detecting different ageing properties.
In this regard, the new definitions offered below in terms of TTT provide alternative
ways of interpreting and analysing lifetime data. The proofs given here assume that
F is continuous and strictly increasing.

Theorem 5.2 (Barlow and Campo [66]). A lifetime random variable X is IHR
(DHR) if and only if the scaled transform φ(u) is concave (convex) for 0 ≤ u ≤ 1.

From (5.8), we have

T ′(u) =
1

H(u)

and so

1
H2(u)

H ′(u) =−T ′′(u).

Thus, H ′(u) is positive (negative) or X is IHR (DHR) if and only if T ′′(u) is negative
(positive). This is equivalent to the concavity (convexity) of T (u) or φ(u). It now
follows that if φ(u) has an inflexion point u0 such that 0< u0 < 1 and φ(u) is convex
(concave) on [0,u0], and concave (convex) on [u0,1], then X has a bathtub (upside-
down bathtub)-shaped hazard quantile function. This can be used for constructing
life distributions with BT (UBT) hazard quantile functions.

Barlow and Campo [66] have also shown that if X is IHRA (DHRA), then φ(u)
u

is decreasing (increasing) in 0 < u < 1. This condition is not sufficient as seen from
the following life distribution (Barlow [64]) which is not IHRA, but at the same time
φ(u)

u is decreasing:

F(x) =

{
0, 0 ≤ x < 1

2

1− exp[−(c+ x)], x ≥ 1
2 .

In this regard, we have the following results.
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Theorem 5.3 (Asha and Nair [39]). A necessary and sufficient condition for X to
be DMTTF (IMTTF) is that φ(u)

u is decreasing (increasing).

Theorem 5.4. A necessary and sufficient condition for X to be IHRA (DHRA) is
that

1
t(u)

∫ u

0

t(p)
1− p

d p ≥ (≤)− log(1− u), (5.24)

where t(u) = T ′(u).

The proof follows from (5.7), (5.8) and the definition of IHRA distributions.

Remark 5.1. Since T (u) is the quantile function of the transformed distribution,
t(u) is the corresponding quantile density function. From (5.7), t(u) = (1− u)q(u)
and so (5.24) is equivalent to

t(u)≤ (≥)− Q(u)
log(1− u)

. (5.25)

Bergman [89] has proved that X is NBUE (NWUE) if and only if φ(u)≥ u (φ(u)≤
u). This follows from

φ(u)≥ u ⇔ 1
μ

∫ u

0
(1− p)q(p)d p ≥ u

⇔ 1
μ
[μ(1− u)M(u)]≥ u

⇔ M(u)≤ μ .

The proof in the case of NWUE involves simply reversing the inequalities.

Theorem 5.5 (Klefsjö [333]). A lifetime random variable X is

(a) DMRL (IMRL) if and only if 1−φ(u)
1−u is decreasing (increasing) in u;

(b) HNBUE (HNWUE) if and only if

φ(u)≤ (≥)1− exp[−Q(u)
μ

], 0 ≤ u ≤ 1.

These results are direct consequences of (5.9) and the definition of HNBUE
(HNWUE).

In view of the definitions of ageing concepts in the quantile set-up in Chap. 4
and the identities between T (u), Q(u), H(u) and M(u), more ageing classes can be
characterized in terms of T (u) or φ(u) as follows.
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Theorem 5.6. We say that X is

(a) NBUHR (NWUHR) if and only if t(u)≤ (≥)t(0);

(b) NBUFHA (NWUHRA) if and only if − log(1−u)
Q(u) ≤ (≥)t(0);

(c) IHRA*t0 if and only if

∫ u

0

t(p)
(1− p)

d p ≥ Q(u0)

log(1− u0)
log(1− u) for all u ≥ u0;

(d) UBAE (UWAE) if and only if T (u) ≤ (≥)μ − (1 − u)M(1), where T (1) =
limu→1− T (u) is finite;

(e) DMRLHA (IMRLHA) if and only if

− 1
Q(u)

log(1−φ(u))

is increasing (decreasing) in u;
(f) DVRL (IVRL) if and only if

∫ 1

u

(
1−φ(p)

1− p

)2

d p ≤ (≥)
(1−φ(u))2

1− u
;

(g) NBU (NWU) if and only if

∫ u+v−uv

0

t(p)d p
1− p

≤ (≥)Q(u)+Q(v), 0 < v < 1, u+ v−w < 1;

(h) NBU-t0 (NWU-u0) if and only if

∫ u+u0−uv

0

t(p)d p
1− p

≤ (≥)Q(u)+Q(u0)

for some 0 < u0 < 1 and all u;
(i) NBU*u0 (NWU*u0) if and only if

∫ u+v−uv

0

t(p)
1− p

d p ≤ (≥)Q(u+Q(v))

for some v ≥ u0 and all u.

Note that in (g)–(i), Q(s) is evaluated as
∫ s

0
t(p)d p

1−p .

Ahmad et al. [25] defined a new ageing class of life distributions called the new
better than used in total time on test transform order (NBUT). They defined the class
as distributions for which the inequality
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∫ F−1
t (u)

0
F̄(x+ t)dt ≤ F̄(t)

∫ F−1(u)

0
F̄(x)dx

is satisfied. It was proved that the NBUT class has the following preservation
properties:

(i) Let X1,X2, . . . ,XN be a sequence of independent and identically distributed
random variables and N be independent of the Xi’s. If Xi’s are NBUT, so is
min(X1,X2, . . . ,XN);

(ii) The NBUT class is preserved under the formation of series systems pro-
vided that the constituent lifetime variables are independent and identically
distributed;

(iii) If X1,X2 and X3 are independent and identically distributed, then

E min(X1,X2,X3)≥ 2
3

E min(X1,X2).

This result is used to test exponentiality against non-exponential NBUT alternatives.

5.5 Some Generalizations

Several generalizations of the TTT have been proposed in the literature. The earliest
one is that of Barlow and Doksum [67]. If F and G are absolutely continuous
distribution functions with positive right continuous densities f and g, respectively,
then the generalized total time on test transform is defined as

H−1
F (x) =

∫ F−1(x)

F−1(0)
g[G−1F(t)]dt, 0 ≤ x ≤ 1.

As before, HF(·) is a distribution function and H−1
G (u) = u, 0 ≤ u ≤ 1.

The generalized version can also be shown to possess properties similar to T (u).
For instance, the density CF of HF is such that

CF(H
−1
F (u)) =

f (QF(u))
g(QG(u))

= hF(Q(u)), 0 ≤ u ≤ 1,

where

hF(x) =
f (x)

g[G−1(F(x))]

is referred to as the generalized failure rate function. Further, if Sn(·) is the empirical
distribution function based on a sample of size n from life distribution F , then H−1

F
is estimated as
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H−1
Sn

(u) =
∫ S−1

n

0
g[G−1Sn(t)]dt

and so

H−1
Sn

( r
n

)
=

∫ Xr:n

0
g[G−1Fn(u)]du =

r

∑
j=1

gG−1
(

j− 1
n

)

(Xj:n −Xj−1:n)

for r = 1,2, . . . ,n. Neath and Samaniego [468] proved that if G is exponential and F

is IFRA, then H−1
F
u is decreasing in u. Many reliability properties of the generalized

transform like those of T (u) are still open problems. For a study of the order
relations of the general form, we refer to Bartoszewicz [73]. Yet another extension
due to Li and Shaked [388] is of the form

T2(u) =
∫ u

0
h(p)q(p)d p,

where h(u) is positive on (0,1) and zero elsewhere. The usual TTT results when
h(p) = 1− p. While the main focus of Li and Shaked [388] is on stochastic orders,
they also point out some applications of the order considered by them in reliability
context. Various results regarding orderings can be seen in Bartoszewicz [74, 75]
and Bartoszewicz and Benduch [76].

In a slightly different direction, Nair et al. [447] studied higher order TTT by
applying Definition 5.3, recursively, to the transformed distributions.

Definition 5.6. The TTT transform of order n (TTT-n) of the random variable X is
defined recursively as

Tn(u) =
∫ u

0
(1− p)tn−1(p)d p, n = 1,2, . . . , (5.26)

where T0(u) = Q(u) and tn(u) =
dTn(u)

du , provided that μn−1 =
∫ 1

0 Tn−1(p)d p < ∞.

The primary reasons for defining the above generalization are (i) the hierarchy of
distributions generated by the iterative process reveals more clearly the reliability
characteristics of the transformed models than that of T (u) and (ii) the results
obtained from (3.27) subsume those for T (u) = T1(u) and will generate new models
and properties. We denote by Yn the random variable with quantile function Tn(u),
mean μn, hazard quantile function Hn(u), and mean residual quantile function
Mn(u). Recall that T (u), the transform of order one, is a quantile function and
consequently the successive transforms Tn, n = 2,3, . . . , are also quantile functions
with support (0,μn). Differentiating (5.26), we obtain the quantile density function
of Yn as

tn(u) = (1− u)tn−1(u) = (1− u)nt0(u) = (1− u)nq(u), (5.27)
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and hence

tn(u) = [Hn−1(u)]
−1 = (1− u)n−1(H(u))−1,

where H(u) is the hazard quantile function of X = Y0. Thus, we have an identity
connecting the hazard quantile function of the baseline distribution F(x) of X and
that of Yn in the form

H(u) = (1− u)nHn(u), n = 0,1,2, . . . . (5.28)

Using (5.9), we have

Tn+1(u) = μn − (1− u)Mn(u),

or equivalently

tn+1(u) = Mn(u)− (1− u)M′
n(u).

This, along with tn+1(u) = (1− u)nt1(u) and

t1(u) = t(u) = M(u)− (1− u)M′(u),

yields a relationship between the mean residual quantile functions of X and Yn as

Mn(u)− (1− u)M′
n(u) = (1− u)n{M(u)− (1− u)M′(u)}. (5.29)

Incidentially, the definition in (5.26) is also true for negative integers, since Q(u)
can be thought of as a transform of T−1(u) and so on. Thus,

t−n(u) = (1− u)−nq(u)

and

H(u) = (1− u)−nH−n(u), n = 1,2, . . .

A remarkable feature of the recurrent transform Tn(u) is that the sequence 〈Hn(u)〉
increases for positive n and decreases for negative n. Thus, Yn provides a life
distribution whose failure rate is larger (smaller) than that of Yn−1 when n is positive
(negative). It is therefore of interest to know and compare the ageing patterns of Yn

and Yn−1.

Theorem 5.7. (i) If X is IHR, then Yn is IHR for all n;
(ii) If X is DHR, then Yn is DHR (IHR) if Q(u)≥ (≤)QL(k, 1

n ) and is bathtub shaped
if there exists a u0 for which Q(u)≥ QL(k, 1

n ) in [0,u0] and Q(u)≤ QL(k, 1
n ) in

[u0,1], where QL(α,C) is the quantile function of the Lomax distribution (see
Table 1.1).
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Proof. Since tn+1(u) = (1− u)nt1(u), we have

t ′n+1(u) = (1− u)n−1{(1− u)t ′1(u)− nt1(u)}.

Thus,

X is IHR ⇒ t1(u) is decreasing

⇒ t ′n+1(u)< 0

⇒ Tn+1(u) is concave

⇒ Yn is IHR.

Similarly, when X is DHR, T1(u) is convex and accordingly

Yn is DHR (IHR) ⇒ (1− u)t ′1(u)≥ (≤)nt1(u)

⇒ t1(u)≥ (≤)k(1− u)−n

⇒ Q(u)≥ (≤)QL

(

k,
1
n

)

.

The last part follows from the definition of bathtub-shaped hazard quantile function
in Chap. 4.

In a similar manner, by backward iteration of a Q(u) = T0(u) and using

t ′1(u) = (1− u)−n(n(1− u)−1tn+1(u)+ t ′n+1(u)),

we get the following result.

Theorem 5.8. (i) If Yn is DHR, then X is DHR;
(ii) If Yn is IHR, then X is IHR (DHR) if Tn(u)≤ (≥)QB(k(n+1)−1,(n+1)−1), and

is upside-down bathtub shaped if there exists a u0 for which Tn(u)≤ Qβ (k(n+
1)−1,(n+1)−1) in [0,u0] and Tn(u)≥QB(k(n+1)−1,(n+1)−1) in [u0,1]. Here,
QB(R,C) denotes the quantile function of the rescaled beta distribution.

Using Theorems 5.7 and 5.8, it is possible to construct BT and UBT distributions
with finite range. Generation of BT distributions is facilitated by the choice of DHR
distributions for which tn+1(u) has a point of inflexion. On the other hand, IHR
distributions can provide UBT models provided tn+1(u) has an inflexion point for
negative integers n. The following examples illustrate the procedure.

Example 5.3. Consider the Weibull distribution with

Q(u) = σ(− log(1− u))
1
λ .
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In this case, we have

q(u) =
σ

λ (1− u)
(− log(1− u))

1
λ −1

and

tn(u) =
σ
λ
(1− u)n−1(− log(1− u))

1
λ −1.

Hence,

t ′n(u) =
σ
λ
(1− u)n−2(− log(1− u))

1
λ −2

[
1
λ
− 1+(n− 1) log(1− u)

]

.

Thus, when 0 < λ ≤ 1, Tn+1(u) is convex in [0,u0] and concave in [u0,1], where

u0 = 1− exp

{
λ − 1

(n− 1)λ

}

.

It follows that Yn has BT hazard quantile function for n ≥ 1. Notice that with
increasing values of n, the change point u0 becomes larger. For λ ≥ 1 and every
n, Yn is IHR.

Example 5.4. The Burr distribution with k = 1 (see Table 1.1) has

Q(u) = u1/λ (1− u)−
1
λ

and

t ′n+1(u) =
1
λ

u
1
λ −2(1− u)n− 1

λ −1
{

1
λ
− 1− u(n− 1)

}

.

Therefore, u0 =
1
λ −1
n−1 is a point of inflexion when nλ > 1. Thus, Yn is BT in this

case.

Theorem 5.9. (i) X is DMRL implies that Yn is DMRL;
(ii) Yn is IMRL implies that X is IMRL.

Proof. Theorem 5.3 gives the necessary and sufficient condition for X to be DMRL
as (1− u)−1(μ −T1(u)) is decreasing in u. This condition is equivalent to

μ −T1(u)− (1− u)t1(u)≤ 0. (5.30)

Further,

Tn+1(u) =
∫ u

0
(1− p)nt1(p)d p = (1− u)nT1(u)+A(u),
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where

A(u) = n
∫ u

0
(1− p)n−1T1(p)d p > 0 for all u.

This gives

μn −Tn+1(u)− (1− u)tn+1(u) = μn − (1− u)nT1(u)− (1− u)n+1tn+1(u)−A(u)

≤ μn − (1− u)nT1(u)− (1− u)n+1tn+1(u)

≤ μ1 −T1(u)− (1− u)t1(u)≤ 0.

Hence, X is DMRL according to (5.29). This proves (i) and the proof of (ii) follows
similarly by taking n as a negative integer.

Theorem 5.10. (i) X is IHRA implies that Xn is IHRA;
(iii) Xn is DHRA implies that X is DHRA.

Proof. We prove only (i) since the proof of (ii) follows on the same lines. In view
of Theorem 5.2, X is IHRA if and only if u−1T1(u) is decreasing, or equivalently

t1(u)≤ u−1T (u). (5.31)

Considering Tn(u), we can write

tn+1(u)− u−1Tn+1(u) = (1− u)nt1(u)− u−1(1− u)nT1(u)− u−1A(u)

≤ (1− u)n(t1(u)− u−1T1(u))

≤ t1 − u−1T1(u)≤ 0.

Result in (i) now follows by using (5.31).

Theorem 5.11. (i) X is NBUE implies that Yn is NBUE;
(ii) Yn is NWUE implies that Xn is NWUE.

Proof. Recall that X is NBUE if and only if μ−1T1(u)> μ for all u. Hence,

u−1Tn(u)− μn = u−1{(1− u)nT1(u)+A(u)}− μn

≥ u−1(1− u)nT1(u)− μ1

≥ (1− u)n{u−1T1(u)− μ1} ≥ 0

which implies that Yn is NBUE. Part (ii) follows similarly.

From the above theorems, it is evident that when X is ageing positively,
the successive transforms are also ageing positively. Similar results can also be
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established in the case of other ageing concepts discussed in Chap. 4. It is important
to mention that the converses of the above theorems need not be true (see next
section).

5.6 Characterizations of Distributions

Various identities between the hazard quantile function, mean residual quantile
function and the density quantile function of X and Yn enable us to mutually
characterize the distributions of X and Yn. A preliminary result is that Tn(u)
characterizes the distribution of X . This follows from

tn(u) = (1− u)nq(u)

and

Q(u) =
∫ u

0
(1− p)−ntn(p)d p.

The following theorems have been proved by Nair et al. [447].

Theorem 5.12. The random variable Yn, n= 1,2, . . . , has rescaled beta distribution

Q(u) = R(1− (1− u)
1
c )

if and only if X is distributed as either exponential, Lomax or rescaled beta.

Proof. To prove the if part, we observe that in the exponential case

tn(u) = (1− u)nq(u) = λ−1(1− u)n−1

and

Tn(u) =
∫ u

0
tn(p)d p = (λ n)−1{1− (1− u)n}

which is the quantile function of the rescaled beta distribution with parameters
((λ n)−1,n−1) in the support (0, 1

nλ ). Similar calculations show that when X is
Lomax, Yn is rescaled beta (α(nC − 1)−1,C(nC − 1)−1) with support (0,α(nC −
1)−1), and when X is rescaled beta (R,C), Yn has the same distribution with
parameters (R(1+ nC)−1,C(1+ nC)−1). Conversely, if we now assume that Yn is
rescaled beta, its quantile function has the form

Tn(u) = Rn(1− (1− u)
1

Cn )

for some constants Rn and Cn > 0. This gives

tn(u) =
Rn

Cn
(1− u)

1
Cn

−1 = (1− u)nq(u).
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The last equation means that (1− u)n is a factor of the left-hand side and so

1
Cn

= kn + n

for some real kn. Thus,

q(u) = (kn + n)(1− u)kn−1Rn.

Since q(u) is independent of n, taking n = 1, we have

Q(u) = k−1
1 R1(k1 + 1){1− (1− u)k1}.

Hence, for k1 > 0, X follows rescaled beta distribution (0,R1k−1
1 (k1 + 1)), Lomax

law for −1 < k1 < 0, and exponential distribution as k1 → 0. Hence, the theorem.

Theorem 5.13. The random variable X follows the generalized Pareto distribution
with quantile function (see Table 1.1)

Q(u) =
b
a

{
(1− u)−

a
a+1 − 1

}
a >−1, b > 0, (5.32)

if and only if, for all n = 0,1,2, . . . and 0 < u < 1,

Mn(u) = (na+ n+ 1)−1(1− u)nM(u). (5.33)

Proof. Assuming (5.33) to hold, we have

Mn(u)− (1− u)M′
n(u) =

1
na+ n+ 1

{M(u)− (1− u)M′(u)+ nM(u)},

and then using the identity (5.29), we get

1
na+ n+ 1

[M(u)− (1− u)M′(u)+ nM(u)] = M(u)− (1− u)M′(u).

The above equation simplifies to

aM(u) = (a+ 1)(1− u)M′(u)

solving which we get

M(u) = K(1− u)−
a

a+1 .

Noting that M(0) = μ = b, we have K = b. Since the mean residual quantile function
determines the distribution uniquely, we see from (2.48) that X has a generalized
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Pareto distribution with parameters (a,b). Next, we assume that X has the specified
generalized Pareto distribution. Then,

q(u) =
b

a+ 1
(1− u)−

a
a+1−1

and

Mn(u) =
∫ 1

u
(1− p)nq(p)d p,

and so

Mn(u) =
b

na+ n+ 1
(1− u)n− a

a+1 .

Using the expression (see Table 2.5)

M(u) = b(1− u)−
a

a+1 ,

the relationship in (5.33) is easily verified. Hence, the theorem.

There are other directions in which characterizations can be established. For
instance, the relationship T (u) has with any reliability function is a characteristic
property. It is easy to see that the simple identity

T (u) = A+B logH(u)

holds true if and only if X follows the linear hazard quantile distribution. Recall that
T (u) is also a quantile function representing some distribution. Thus, when X has
a life distribution, the corresponding T (u) may also be a known life distribution.
As an example, X follows power distribution if and only if the associated T (u)
corresponds to the Govindarajulu distribution.

5.7 Some Applications

A direct approach to see the application of TTT in data analysis is through the
model selection for an observed data. One can either derive a model based on
physical conditions or postulate one that gives a reasonable fit. The TTT can then be
derived and the data is analysed therefrom. An alternative approach is to start with a
functional form of TTT and then choose the parameter values that give a satisfactory
fit for the observations. The main point here is that the functional form should be
flexible enough to represent different data situations. Since many of the quantile
functions discussed in Chap. 3 provide great flexibility, their TTTs can provide
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candidates for this purpose. In such cases, to compute the descriptive measures of
the distribution, one need not revert the TTT to the corresponding quantile function.
We show that the descriptors can be obtained directly from T (u) and its derivative
t(u).

For this purpose, we recall (1.38)–(1.41) and the identity t(u) = (1− u)q(u).
Then, the first four L-moments are as follows:

L1 =

∫ 1

0
(1− p)q(p)d p =

∫ 1

0
t(p)d p,

L2 =

∫ 1

0
(p− p2)q(p)d p =

∫ 1

0
pt(p)d p,

L3 =

∫ 1

0
(3p2 − 2p3− p)q(p)d p =

∫ 1

0
p(2p− 1)t(p)d p,

L4 =

∫ 1

0
(p− 6p2+ 10p3− 5p4)q(p)d p =

∫ 1

0
p(1− 5p+ 5p2)t(p)d p.

Example 5.5. The quantile function of the generalized Pareto distribution (see
Table 1.1) yields

t(u) =
b

a+ 1
(1− u)−

a
a+1 .

Then, direct calculations using the above formulas result in

L1 = b, L2 =
b(a+ 1)

a+ 2
,

L3 =
b(a+ 1)(2a+ 1)
(a+ 2)(2a+ 3)

, L4 =
b(a+ 1)(2a+ 1)(3a+2)
(a+ 2)(2a+ 3)(3a+4)

.

With these L-moments, descriptive measures like L-skewness and L-kurtosis can be
readily derived from the formulas presented in Chap. 1.

In preventive maintenance policies, TTT has an effective role to play. At time
x = 0, a unit starts functioning and is replaced upon age T or its failure which ever
occurs first, with respective costs C1 and C2, with C1 <C2. If the unit lifetime is X ,
the first renewal occurs at Z = min(X ,T ) and

E(Z) =
∫ T

0
F̄(x)dx.

The mean cost for one renewal period is

F̄(T )C1 +(1− F̄(T ))C2
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and so the cost per unit time under age replacement model is

C(T ) =
F̄(T )C1 +(1− F̄(T ))C2

∫ T
0 F̄(x)dx

.

This is equivalent to

C(T ) =
C1 +KF(T )
∫ T

0 F̄(x)dx
, (5.34)

where K = C2 −C1. The simple replacement problem is to find an optimal interval
T = T ∗ such that it minimizes (5.34). In practice, one may not know the life
distribution but only some observations, and so the optimal age replacement interval
has to be estimated from the data. Assuming K = 1, without loss of generality, a
value u∗ determined by u∗ = F(T ∗) maximizes

1
C(Q(u))

=
T (u)

u+C1
, 0 ≤ u ≤ 1,

or one that maximizes

φ(u)
u+C1

.

Bergman [89] and Bergman and Klefsjö [95] provide a nonparametric estimation
concerning age replacement policies. Let (X1:n,X2:n, . . . ,Xn:n) be an ordered sample
from an absolutely continuous distribution. For estimating φ(u), we use

ur =
H−1

n ( r
n)

H−1
n (1)

and determine

T̂n = xν:n,

where v is such that

uν
ν
n +C1

= max
1≤r≤n

ur

( r
n)+C1

.

Then,

(i) C(T̂n) tends with probability one to C(T ∗) as n → ∞;
(ii) the optimal cost C(T ∗) may be estimated by Cn(T̂n), where

Cn(Xr:n) =
C1 +Fn(Xr:n)
∫ Xr:n

0 F̄n(t)dt
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which is strongly consistent. If a unique optimal age replacement interval exists,
then T̂n is strongly consistent. Bergman [89] explains a graphical method of
determining T ∗. Draw the line passing through (−C

K ,0) which touches the
scaled transform φ(u) and has the largest slope. The abscissa of the point
of contact is u∗. One important advantage of the graphical method is that
it is convenient for performing sensitivity analysis. For example, T ∗ may be
compared for different combinations of K and C1. Suppose that instead of
age replacement at T ∗, replacement can be thought of at T1 and T2 satisfying
T1 < T ∗ < T2. Which of these ages give the minimum cost per unit time can
also be addressed with the help of TTT (Bergman [91]).

The term availability refers to the probability that a system is performing
satisfactorily at a given time and is equal to the reliability if no repair takes place. A
second optimality criterion is to replace the unit at age T for which the asymptotic
availability is maximized. This is equivalent to minimizing

A(T ) =
m1 +(m1 −m2)F(T )

∫ T
0 F̄(t)dt

,

where m1 is the mean time of preventive maintenance and m2 is the mean time of
repair (Chan and Downs [132]). Since this expression is similar to (5.34), the same
method of analysis can be adopted here as well.

Klefsjö [338] discusses the age replacement problem with discounted costs,
minimal repair and replacements to extend system life. When costs have to be
discounted at a constant rate α , the problem ends up to minimizing

C(α,T ) =
C1 +K(1− e−αTF̄(T ))

α
∫ T

0 e−αt F̄(t)dt
−α(C1 +K)

∫ T

0
e−αT F̄(t)dt;

see Bergman and Klefsjö [92] for details. The above expression has a minimum at
the same value of T as

C1 +K(1− e−αTF̄(T ))
∫ T

0 e−αt F̄(t)dt
,

which is of the same form as (5.34) in which F̄(t) is replaced by Ḡ(t) = e−αT F̄(t).
Consequently, the optimization problem permits the usual analysis with φ(u) for Ḡ.
The estimation problem is also dealt with likewise by minimizing

C+KGn(T )
∫ T

0 Ḡn(t)dt
,

where

Ḡn(t) = e−αt
(

1− r
n

)
,

Xr:n ≤ t ≤ Xr+1:n, for r = 0,1, . . . ,n− 1.



5.7 Some Applications 197

The condition of replacement that the unit replacing the older one is as good as
new is not always tenable. We assume a milder condition that the replacement is
done by a new unit with probability p and a minimal repair is accomplished with
probability (1− p). In other words, the unit is repaired to the same state with the
same hazard rate as just before failure.

If C∗ denotes the average repair cost, the long run average cost per unit is
(Cleroux et al. [151])

Cp(t) =
C1 +(K + C∗

P )F p(T )
∫ T

0 F−p(t)dt
.

Using the transform of F p, the above expression can also be brought to the standard
form in (5.34). When the costs are discounted, the same kind of analysis is available
in this case also.

Assume that the main objective is to extend system life, where the system has a
vital component for which n spares are available. When the vital component fails,
the system fails. Derman et al. [171] and Bergman and Klefsjö [93] then discussed
the schedule of replacements of the vital component such that the system life is as
long as possible. If vn is the expected life when an optimal schedule is used, they
showed that v0 = μ and

vn = vn−1 + μ max
0≤u≤1

{

φ(u)− vn−1

μ
u

}

.

Draw a line touching the φ(u) curve which is parallel to the line y =
vn−1

μ . If the
touching point is (un,φ(u0)), then the optimal replacement age is xn obtained by
solving F(xn) = un.

It is customary to test certain devices, which have high initial hazard rates
under conditions of field operation, to eliminate or reduce such early failures before
sending them to the customers. Such an operation of screening equipments for the
above purpose is called burn-in. If the burn-in is excessive, it will result in a loss to
the manufacturer in terms of several kinds of costs. On the other hand, if burn-in is
on a reduced scale, the problem of early failures may still persist among a percentage
of products thus resulting in a return cost. So, an important problem in conducting
the test is the determination of the optimal time point up to which the test has to be
carried out. Test procedures based on hazard rate, mean residual life, coefficient of
variation of residual life and so on have been proposed in the literature. Consider
the case when a non-repairable component is scrapped if it fails during the burn-in
period. Our problem is to determine the length T0 of the burn-in period for which
C(T ), the expected long run cost per unit time of useful operation is minimized. Let
b be the fixed cost per unit and d be the cost per unit time of burn-in. A unit which
fails in useful operation after the burn-in results in a cost C1. Then, Bergman and
Klefsjö [94] have shown that

C(T ) =
1+ b+C1F̄(T )+ d

∫ T
0 F̄(t)dt

μ − ∫ T
0 F̄(t)dt
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which is minimized for the same value of T as

α −F(T )

1− ∫ T
0 F̄(t)dt

,

where α = (1 + b + dμ +C1)C
−1
1 . Hence, T0 is obtained by first graphically

determining the value of u, say u0, for which

α − u
1−φ(u)

is minimized and then solving F(T0) = u0; see Klefsjö [339]. Klefsjö and West-
berg [340] point out that if the life distribution F̄(T ) is not known, it has to be
estimated from the data. For complete samples, the empirical distribution function
is the estimate of F . If the data is censored, i.e., in a set of n observations, k parts are
observed to fail and n− k are withdrawn from observation, then the Kaplan–Meier
estimator

FK
n (t) = 1−∏

r

n− r
n− r+ 1

,

where r runs through integer values for which t j:n ≤ t and t j:n are observed failure
times, could be used. The optimal replacement age is found by (1) drawing the TTT
plot based on times to failure, (2) drawing a line from (−C1

K ,0) which touches TTT
plot and has largest possible slope, and (3) taking the optimum replacement age
as the failure time corresponding to the optimal point of contact. If the point of
contact is (1,1), no preventive maintenance is necessary. Another major aspect of
analysis of failure data for repairable systems is the possible trend in inter-failure
times. Kvaloy and Lindqvist [365] used some tests based on TTT for this purpose.
Some test statistics have also been proposed for testing exponentiality against IFRA
alternative (Bergman [89]), for testing whether one distribution is more IFR than
another (Wie [580]) and for testing exponentiality against IFR (DFR) alternative
(Wie [579]).
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