
Chapter 3
Quantile Function Models

Abstract One of the objectives of quantile-based reliability analysis is to make
use of quantile functions as models in lifetime data analysis. Accordingly, in
this chapter, we discuss the characteristics of certain quantile functions known in
the literature. The models considered are the generalized lambda distribution of
Ramberg and Schmeiser, the generalized Tukey lambda family of Freimer, Kollia,
Mudholkar and Lin, the four-parameter distribution of van Staden and Loots,
the five-parameter lambda family and the power-Pareto model of Gilchrist, the
Govindarajulu distribution and the generalized Weibull family of Mudholkar and
Kollia.

The shapes of the different systems and their descriptive measures of location,
dispersion, skewness and kurtosis in terms of conventional moments, L-moments
and percentiles are provided. Various methods of estimation based on moments,
percentiles, L-moments, least squares and maximum likelihood are reviewed. Also
included are the starship method, the discretized approach specifically introduced
for the estimation of parameters in the quantile functions and details of the packages
and tables that facilitate the estimation process.

In analysing the reliability aspects, one also needs various functions that describe
the ageing phenomenon. The expressions for the hazard quantile function, mean
residual quantile function, variance residual quantile function, percentile residual
life function and their counter parts in reversed time given in the preceding chapters
provide the necessary tools in this direction. Some characterization theorems
show the relationships between reliability functions unique to various distributions.
Applications of selected models and the estimation procedures are also demon-
strated by fitting them to some data on failure times.

3.1 Introduction

Probability distributions facilitate characterization of the uncertainty prevailing in a
data set by identifying the patterns of variation. By summarizing the observations
into a mathematical form that contains a few parameters, distributions also provide
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60 3 Quantile Function Models

means to analyse the basic structure that generates the observations. In finding
appropriate distributions that adequately describe a data set, there are in general
two approaches. One is to make assumptions about the physical characteristics that
govern the data generating mechanism and then to find a model that satisfies such
assumptions. This can be done either by deriving the model from the basic assump-
tions and relations or by adapting one of the conventional models from other dis-
ciplines, such as physical, biological or social sciences with appropriate conceptual
interpretations. These theoretical models are later tested against the observations by
the use of a goodness-of-fit test, for example. A second approach to modeling is
entirely data dependent. Models derived in this manner are called empirical or black
box models. In situations wherein there is a lack of understanding of the data gener-
ating process, the objective is limited to finding the best approximation to the data or
because of the complexity of the model involved, a distribution is selected to fit the
data. The usual procedure in such cases is to first make a preliminary assessment of
the features of the available observations and then decide upon a mathematical for-
mulation of the distribution that can approximate it. Empirical modelling problems
usually focus attention on flexible families of distributions with enough parameters
capable of producing different shapes and characteristics. The Pearson family,
Johnson system, Burr family of distributions, and some others, which include
several commonly occurring distributions, provide important aids in this regard. In
this chapter, we discuss some families of distributions specified by their quantile
functions that can be utilized for modelling lifetime data. Various quantile-based
properties of distributions and concepts in reliability presented in the last two chap-
ters form the background material for the ensuing discussion. The main distributions
discussed here are the lambda distributions, power-Pareto model, Govindarajulu
distribution and the generalized Weibull family. We also demonstrate that these
models can be used as lifetime distributions while modelling real lifetime data.

3.2 Lambda Distributions

A brief historical account of developments on the lambda distributions was provided
in Sect. 1.1. During the past 60 years, considerable efforts were made to generalize
the basic model of Hastings et al. [264] and Tukey [567] and also to find new appli-
cations and inferential procedures. In general, the applications of different versions
span a variety of fields such as inventory control (Silver [540]), logistic regression
(Pregibon [497]), meteorology (Osturk and Dale [476]), survival analysis (Lefante
Jr. [380]), queueing theory (Robinson and Chan [508]), random variate generation
and goodness-of-fit tests (Cao and Lugosi [128]), fatigue studies (Bigerelle et al.
[100]) process control (Fournier et al. [200]), biochemistry (Ramos-Fernandez et al.
[505]), economics (Haritha et al. [260]), corrosion (Najjar et al. [456]) and reliability
analysis (Nair and Vineshkumar [452]).

The basic model from which all other generalizations originate is the Tukey
lambda distribution with quantile function
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Q(u) =
uλ − (1− u)λ

λ
, 0 ≤ u ≤ 1, (3.1)

defined for all non-zero lambda values. As λ → 0, we have

Q(u) = log

(
u

1− u

)

corresponding to the logistic distribution. van Dyke [571] compared a normalized
version of (3.1) with the t-distribution. Model (3.1) was studied by Filliben [197]
who used it to approximate symmetric distributions with varying tail weights.
Joiner and Rosenblatt [304] studied the sample range and Ramberg and Schmeiser
[503] discussed the application of the distribution in generating symmetric random
variables. For λ = 1 and λ = 2, it is easy to verify that (3.1) becomes uniform over
(−1,1) and (− 1

2 ,
1
2 ), respectively. The density functions are U shaped for 1 < λ < 2

and unimodal for λ < 1 or λ > 2. With (3.1) being symmetric and having range for
negative values of X , it has limited use as a lifetime model.

Remark 3.1. The Tukey lambda distribution defined in (3.1) is an extremal distri-
bution that gets characterized by means of largest order statistics. To see this, let
X1:n < · · · < Xn:n be the order statistics from a random sample of size n from a
symmetric distribution F with mean 0 and variance σ2. Then, due to the symmetry
of the distribution, we have E(Xn:n) = −E(X1:n), and so we can write from (1.23)
and (1.24) that

E(Xn:n) =
1
2

∫ 1

0
Q(u)n(un−1 − (1− u)n−1)du. (3.2)

By applying Cauchy–Schwarz inequality to (3.2), we readily find

E(Xn:n) ≤ σ
2

{∫ 1

0
n2 (u2n−2 +(1− u)2n−2− 2un−1(1− u)n−1)du

}1/2

=
σn√

2

{
1

2n− 1
−B(n,n)

}1/2

, (3.3)

where B(a,b) = Γ (a)Γ (b)/Γ (a+ b), a,b > 0, is the complete beta function. Note
that, from (3.3), by setting n = 2 and n = 3, we obtain the bounds

E(X2:2)≤ σ√
3

and E(X3:3)≤ σ
√

3
2

.

The bound in (3.3) was established originally by Hartley and David [263] and
Gumbel [229]. It is useful to note that the bound in (3.3), derived from (3.2), is
attained if and only if

Q(u) ∝ un−1 − (1− u)n−1, u ∈ (0,1).
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When n = 2 and 3, we thus find Q(u) ∝ 2u− 1, which corresponds to the uniform
distribution; see Balakrishnan and Balasubramanian [50] for some additional insight
into this characterization result. Thus, we observe from (3.2) that the Tukey lambda
distribution with integral values of λ is an extremal distribution and is characterized
by the mean of the largest order statistic in (3.3). The same goes for the Tukey
lambda distribution in (3.1) for positive real values in terms of fractional order
statistics, in view of Remark 1.1.

3.2.1 Generalized Lambda Distribution

Asymmetric versions of (3.1) in various forms such as

Q(u) = Auλ +B(1− u)θ +C

and

Q(u) = auλ − (1− u)λ

were studied subsequently (Joiner and Rosenblatt [304], Shapiro and Wilk [536]).
All such versions are subsumed in the more general form

Q(u) = λ1 +
1
λ2

(uλ3 − (1− u)λ4) (3.4)

introduced by Ramberg and Schmeiser [503], which is called the generalized
lambda distribution. This is the most discussed member of the various lambda
distributions, because of its versatility and special properties. In (3.4), λ1 is a
location parameter, λ2 is a scale parameter, while λ3 and λ4 determine the shape.
The distribution takes on different supports depending on the parameters λ2,λ3 and
λ4, while λ1, being the location parameter, can take values on the real line in all
cases (Table 3.1).

As a life distribution, the required constraint on the parameters is

Q(0) = λ1 − 1
λ2

≥ 0.

The quantile density function is

q(u) = λ−1
2 [λ3uλ3−1 +λ4(1− u)λ4−1] (3.5)

and accordingly the density quantile function is

f (Q(u)) = λ2[λ3uλ3−1 +λ4(1− u)λ4−1]−1 (3.6)
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Table 3.1 Supports for the generalized lambda distribution

Region λ2 λ3 λ4 Support

1 < 0 <−1 > 1 (−∞,λ1 +
1

λ2
)

2 < 0 > 1 <−1 (λ1 − 1
λ2
,∞)

> 0 > 0 > 0 (λ1 − 1
λ2
,λ1 +

1
λ2
)

3 > 0 = 0 > 0 (λ1,λ1 +
1

λ2
)

> 0 > 0 = 0 (λ1 − 1
λ2
,λ2)

< 0 < 0 < 0 (−∞,∞)

4 < 0 = 0 < 0 (λ1,∞)

< 0 < 0 = 0 (−∞,λ1)

which has to remain non-negative for (3.4) to represent a proper distribution. This
places constraints on the parameter space. A special feature of (3.4) is that it is a
valid distribution only in the regions (λ3 ≤−1, λ4 ≥ 1), (λ3 ≥ 1, λ4 ≤−1), (λ3 ≥ 0,
λ4 ≥ 0), (λ3 ≤ 0, λ4 ≤ 1), and for values in (−1 < λ3 < 0, λ4 > 0) for which

(1−λ3)
1−λ3

(λ4 −λ3)λ4−λ3
(λ4 − 1)λ4−1 <−λ3

λ4
,

and values in (λ3 > 1,−1 < λ4 < 0) for which

(1−λ4)
1−λ4

(λ3 −λ4)λ3−λ4
(λ3 − 1)λ3−1 <−λ4

λ3
;

see Karian and Dudewicz [314] for a detailed study in this respect. Since

E(Xr) =

∫ 1

0

[
λ1 +

pλ3 − (1− p)λ4

λ2

]r

d p

from (1.30), the mean is simply

E(X) = μ = λ1 +
1
λ2

(
1

λ3 + 1
− 1

λ4 + 1

)
. (3.7)

Since λ1 is not present in the central moments, we set λ1 = 0. Ramberg et al. [502]
find that

E(Xr) = λ−r
2

r

∑
i=0

(
r
i

)
(−1)iB(λ3(r− i)+ 1,λ4i+ 1)
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from which we obtain the following central moments:

σ2 =
B−A2

λ 2
2

, (3.8)

μ3 =
C− 3AB+A3

λ 3
2

, (3.9)

μ4 =
D− 4AC+ 6A2B− 3A4

λ 4
2

, (3.10)

where

A =
1

λ3 + 1
− 1

λ4 + 1
,

B =
1

2λ3 + 1
+

1
2λ4 + 1

− 2B(λ3+ 1,λ4 + 1) ,

C =
1

3λ3 + 1
− 3B(2λ3+ 1,λ4 + 1)+ 3B(λ3+ 1,2λ4+ 1)− 1

3λ4 + 1
,

and

D =
1

4λ3 + 1
− 4B(2λ3+ 1,λ4 + 1)+ 6B(2λ3+ 1,2λ4+ 1)

− 4B(λ3+ 1,3λ4 + 1)+
1

4λ4 + 1
.

The rth moment exists only if − 1
r < min(λ3,λ4). When λ3 = λ4, it is verified

that μ3 = 0 and the generalized lambda distribution is symmetric in this case. A
detailed study of the skewness and kurtosis for different values of λ3 and λ4 is
given in Karian and Dudewicz [315]. The (β1,β2) diagram includes the skewness
values corresponding to the uniform, t, F , normal, Weibull, lognormal and some
beta distributions. One limitation that needs to be mentioned regarding skewness
is that the generalized lambda family does not cover the entire area as some other
systems (like the Pearson system) do; but, it also covers some new areas that are not
covered by others. This four-parameter distribution includes a wide range of shapes
for its density function; see Fig. 3.1 for some selection shapes.

The basic characteristics of the distribution can also be expressed in terms of the
percentiles. Using (1.6)–(1.9), we have the following:

the median

M = λ1 +
1
λ2

[(
1
2

)λ3

−
(

1
2

)λ4
]
, (3.11)
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Fig. 3.1 Density plots of the generalized lambda distribution (Ramberg and Schmeiser [503]
model) for different choices of (λ1,λ2,λ3,λ4). (a) (1,0.2,0.13,0.13); (b) (1,0.6,1.5,-1.5);
(c) (1,0.6,1.75,1.2); (d) (1,0.2,0.13,0.013); (e) (1,0.2,0.0013,0.13); (f) (1,1,0.5,4)

the interquantile range

IQR =
1
λ2

[
3λ3 − 1

4λ3
+

3λ4 − 1

4λ4

]
, (3.12)

Galton’s measure of skewness

S =
4−λ3(3λ3 − 2λ3+1 − 1)− 4λ4(1+ 3λ4 − 2λ4+1)

3λ3−1
4λ3

+ 3λ4−1
4λ4

, (3.13)

and Moors’ measure of kurtosis

T =
8−λ3(1+ 3λ3 + 5λ3 + 7λ3)− 8−λ4(1+ 3λ4 + 5λ4 + 7λ4)

4−λ3(3λ3 − 1)+ 4−λ4(3λ4 − 1)
. (3.14)

For this distribution, the L-moments have comparatively simpler expressions than
the conventional moments. One can use (1.34)–(1.37) to calculate these. To simplify
their expressions, we employ the notation

(n)(r) = n(n+ 1) · · ·(n+ r− 1)

and

(n)(r) = n(n− 1) · · ·(n− r+ 1)

to denote the ascending and descending factorials, respectively. Then, the first four
L-moments are as follows (Asquith [40]):
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L1 = λ1 +
1
λ2

(
1

λ3 + 1
− 1

λ4 + 1

)
, (3.15)

L2 =
1
λ2

(
λ3

(λ3 + 1)(2)
+

λ4

(λ4 + 1)(2)

)
, (3.16)

L3 =
1
λ2

(
λ (2)

3

(λ3 + 1)(3)
− λ (2)

4

(λ4 + 1)(3)

)
, (3.17)

L4 =
1
λ2

(
λ (3)

3

(λ3 + 1)(4)
− λ (3)

4

(λ4 + 1)(4)

)
. (3.18)

Thus, the L-skewness and L-kurtosis become

τ3 =
λ (2)

3 (λ4 + 1)(3)−λ (2)
4 (λ3 + 1)(3)

λ3(λ3 + 3)(λ4 + 1)(3) +λ4(λ4 + 3)(λ3 + 1)(3)
(3.19)

and

τ4 =
(λ3)

(3)(λ4 + 1)(4) + (λ4)
(3)(λ3 + 1)(4)

λ3(λ3 + 3)(λ3 + 4)(λ4 + 1)(4)−λ4(λ4 + 3)(λ3 + 1)(4)
. (3.20)

All the L-moments exist for every λ3,λ4 >−1. On the other hand, the conventional
moments require λ3,λ4 > − 1

4 for the evaluation of Pearson’s skewness β1 and
kurtosis β2. Thus, L-skewness and kurtosis permit a larger range of values in the
parameter space. The problem of characterizing the generalized lambda distribution
has been considered in Karvanen and Nuutinen [313]. For the symmetric case,
they have derived the boundaries analytically and in the general case, numerical
methods have been used. They found that with an exception of the smallest values
of τ4, the family (3.4) covers all possible (τ3,τ4) pairs and often there are two
or more distributions sharing the same τ3 and τ4. A wider set of generalized
lambda distributions can be characterized when L-moments are used than by the
conventional moments. This is an important advantage in the context of data analysis
while seeking appropriate models.

The moments of order statistics have closed forms as well. For example,
the expectation of order statistics from a random sample of size n is obtained
from (1.28) as

E(Xr:n) = λ1 +
1
λ2

Γ (λ3 + r)
Γ (r)

Γ (n+ 1)
Γ (λ3 + n+ 1)

+
1
λ2

Γ (n+λ4 − r+ 1)Γ (n+ 1)
Γ (n+λ4+ 1)Γ (n− r)

. (3.21)
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In particular, from (3.21), we obtain

E(Xn:n) = λ1 +
n

λ2(λ3 + n)
− n!

λ2(λ4 + 1)(n)
,

E(X1:n) = λ1 +
n!

λ2(λ3 + 1)(n)
− n

λ2(n+λ4)
.

Also, the distributions of X1:n and Xn:n are given by

Q1(u) = λ1 +
1
λ2

[
(1− (1− u)

1
n )λ3 − (1− u)

λ4
n

]
,

Qn(u) = λ1 +
1
λ2

[
u

λ3
n − (1− u

1
n )λ4

]
.

Since there exist members of generalized lambda family with support on the
positive real line, its scope as a lifetime model is apparent. However, this fact
has not been exploited much. The hazard quantile function (2.30) has the simple
form

H(u) =
λ2

(1− u)[λ3uλ3−1 +λ4(1− u)λ4−1]
. (3.22)

Similarly, the mean residual quantile function is obtained from (2.43) as

M(u) =
1

1− u

∫ 1

u
(1− p)q(p)d p

=
1

λ2(1− u)

[
λ4

λ4 + 1
(1− u)λ4+1 +

1− uλ3+1

λ3 + 1
− (1− u)uλ3

]
.

Note that, in this case,

M(0) =
∫ 1

0
Q(p)d p−Q(0)

or

μ = Q(0)+M(0).

The above expression is a general condition to be used whenever the left end
of the support is greater than zero. The variance residual quantile function is
calculated as
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V (u) =
1

1− u

∫ 1

u
Q2(p)d p−

[
1

1− u

∫ 1

u
Q(p)d p

]2

= A1(u)−A2
2(u),

where

A1(u) =
1

λ 2
2 (1− u)

[
1− u2λ3+1

2λ3 + 1
+

(1− u)2λ4+1

2λ4 + 1
− 2B1−u(λ4 + 1,λ3 + 1)

]
,

A2(u) =
1

λ2(1− u)

[
1− uλ3+1

λ3 + 1
− (1− u)λ4+1

λ4 + 1

]

and Bx(m,n) =
∫ x

0 tm−1(1− t)n−1dt is the incomplete beta function.
The term

μ(u) =
1

1− u

∫ 1

u
Q(p)d p (3.23)

is of interest in reliability analysis, being the quantile version of E(X |X > x). It is
called the conditional mean life or the vitality function. One may refer to Kupka
and Loo [363] for a detailed exposition of the properties of the vitality function
and its role in explaining the ageing process. We see that from (3.23), Q(u) can be
recovered up to an additive constant as

Q(u) =− d
du

(1− u)μ(u),

and therefore functional forms of μ(u) will enable us to identify the life distribution.
Thus, a generalized lambda distribution is determined as

a− d
du

(1− u)μ(u)

if the conditional mean quantile function μ(u) satisfies

μ(u) = a+ b

[
1− uc

c
− (1− u)d

d

]

for real a,b,c and d for which Q(0)≥ 0.
The αth percentile residual life is calculated from (2.50) as

Pα(u) =
1
λ2

[(α + u−αu)λ3 − uλ3 − (1− u)λ4(1− (1−α)λ4)].
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Various functions in reversed time presented in (2.50), (2.51) and (2.53) yield

Λ(u) = λ2[u(λ3uλ3−1 +λ4(1− u)λ4−1)]−1,

R(u) =
1
λ2

[
λ3

λ3 + 1
uλ3 − (1− u)λ4 +

1− (1− u)λ4+1

(λ4 + 1)u

]
,

D∗(u) = B1(u)−B2
2(u),

where

B1(u) =
1

λ 2u

[
u2λ3+1

2λ3 + 1
− (1− u)2λ4+1 − 1

2λ4 + 1
− 2Bu(λ3 + 1,λ4 + 1)

]

and

B2(u) =
1

λ2u

[
uλ3+1

λ3 + 1
− (1− u)λ4+1 − 1

λ4 + 1

]
.

Like the function μ(u), one can also consider

θ (u) =
1
u

∫ u

0
Q(p)d p (3.24)

which is the quantile formulation of E(X |X ≤ x). This latter function’s relationship
with reversed hazard function has been used in Nair and Sudheesh [451] to
characterize distributions. It has applications in several other fields like economics
and risk analysis. For example, when X is interpreted as the income and x
is the poverty level, the above expectation denotes the average income of the
poor people and is an essential component for the evaluation of poverty index
and income inequality. The form of (3.24) is convenient in identifying models,
like

θ (u) = a+ b

[
uc−1

c
+

(1− u)d − 1
du

]

determining the generalized lambda distribution. The formula for calculating Q(u)
from θ (u) is

Q(u) = a+
d
du

uθ (u). (3.25)

Finally, the reversed percentile residual life function is (2.50)
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qα(u) =
1
λ2

[
uλ3 − ((1−α)u)λ3 −{(1− u)λ4 − (1− (1−α)u)λ4}

]

=
1
λ2

[
uλ3 − (1− (1−α)λ3)− (1− u)λ4 +(1− u+αu)λ4

]
.

There is no conflict of opinion regarding the potential of the generalized lambda
family in empirical data modelling because of its flexibility to represent different
kinds of data situations. However, the difficulties experienced in the estimation
problem, especially on the computational front, have stimulated extensive research
on various methods, conventional as well as new. A popular approach for estimation
of parameters of quantile functions is the method of moments, in which the
first four moments of the generalized lambda distribution are matched with the
corresponding moments of the sample. Instead of choosing the first four moments
directly, Ramberg and Schmeiser [504] opted for the equations

μ =
1
n

n

∑
i=1

xi , (3.26)

σ2 =
1
n

n

∑
i=1

(xi − x̄)2 , (3.27)

r1 =
n1/2 ∑(xi − x̄)3

[∑(xi − x̄)2]3/2
, (3.28)

r2 =
n∑(xi − x̄)4

[∑(xi − x̄)2]2
, (3.29)

where μ and σ2 are as given in (3.7) and (3.8), γ1 = μ3
σ 3 and γ2 = μ4

σ 4 with values
for μ3 and μ4 as in (3.9) and (3.10). Since γ1 and γ2 contain only λ3 and λ4, the
solutions of (3.28) and (3.29) give λ3 and λ4. From the remaining two equations,
λ1 and λ2 can be readily found. Even though theoretically the method looks simple,
in practice, one has to apply numerical methods to solve the equations as they are
nonlinear. Dudewicz and Karian [181] have provided extensive tables from which
the parameters can be determined for a given choice of skewness and kurtosis of the
data. They also describe an algorithm that summarizes the steps in the calculation.
A second method to obtain a best solution is to use computer programs that ensure
the solutions of (3.26)–(3.29) to satisfy

max(|μ − μ̂|, |σ2 − σ̂2|, |γ1 − γ̂1|, |γ2 − γ̂2|)< ε (3.30)

for some prefixed tolerance ε > 0. This is accomplished by starting with a good
set of initial values for the parameters. Then search is made through algorithms
that satisfy (3.30). However, there is no guarantee that a given set of initial values
necessarily end up resulting in a solution nor that it improves upon the value
of ε in each iteration. See Karian and Dudewicz [315] for such a computational
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program. In both the methods described above, the region specified by 1+ γ2
1 <

γ2 < 1.8+1.7γ2
1 is not attained and one may not arrive at a set of lambda values that

satisfy a goodness-of-fit test. These and other problems are explained in Karian and
Dudewicz [315, 317].

A similar logic applies to the method of L-moments prescribed in Asquith [40]
and Karian and Dudewicz [315]. The equations to be solved in the latter work are

Li = li, i = 1,2, (3.31)

τ3 = t3, (3.32)

τ4 = t4, (3.33)

where L1,L2,τ3 and τ4 have the expressions in (3.15), (3.16), (3.19) and (3.20),
where

t3 =
l3
l2
, t4 =

l4
l2
,

lr =
r−1

∑
j=0

pr jb j, r = 1,2, . . . ,n

where

b j =
1
n

n

∑
i= j+1

(i− 1)( j)

(n− 1)(r)
x j:n.

Clearly, (3.32) and (3.33) do not contain λ1 and λ2 and are therefore solvable for λ3

and λ4. The other two parameters are then found from (3.31) by using the estimates
of λ3 and λ4.

In the work of Asquith [40], estimates of λ3 and λ4 are values that minimize

ε = (t3 − τ̂3)
2 +(t4 − τ̂4)

2, (3.34)

where τ̂i (i = 3,4) is the estimated value of τi. After choosing initial values of λ3

and λ4, we arrive at the optimal value according to (3.34) and then check whether
the solutions obtained meet the requirements −1 < τ3 < 1 and 1

4 (5τ2
3 −1)≤ τ4 < 1.

If not, we need to choose another set of initial values and repeat the above steps.
After solving for λ2 from (3.31), compute τ̂5 using the expression

τ5 =
(λ3)

(4)(λ4 + 1)(4)− (λ4)
(4)(λ3 + 1)(4)

(λ3 + 3)(3)(λ4 + 3)(3)[λ3(λ4 + 1)(2)λ4(λ3 + 1)(2)]

and seek the values that minimize (t5 − τ̂5). Finally, we need to substitute it
into (3.31) to find λ̂1.
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A third method is to match the percentiles of the distribution with those of the
data. As a first step, the sample percentiles are computed as

ξp = Xr:n +
a
b
(Xr+1:n −Xr:n),

where (n+ 1)p = r+ a
b in which r is a positive integer and 0 < a

b < 1. Karian and
Dudewicz [315] considered the following four equations:

ξ0.5 = Q(0.5) = λ1 +
(0.5)λ3 − (0.5)λ4

λ2
,

ξ0.9 − ξ0.1 = Q(0.9)−Q(0.1) =
(0.9)λ3 − (0.1)λ4 +(0.9)λ4 − (0.1)λ3

λ2
,

ξ0.5 − ξ0.1

ξ0.9 − ξ0.5
=

Q(0.5)−Q(0.1)
Q(0.9)−Q(0.5)

=
(0.9)λ4 − (0.1)λ3 +(0.5)λ3 − (0.5)λ4

(0.9)λ3 − (0.1)λ4 +(0.5)λ4 − (0.5)λ3
,

ξ0.75 − ξ0.25

ξ0.9 − ξ0.1
=

Q(0.75)−Q(0.25)
Q(0.9)−Q(0.5)

=
(0.75)λ3 − (0.25)λ4 +(0.75)λ4 − (0.25)λ3

(0.9)λ3 − (0.1)λ4 +(0.9)λ4 − (0.1)λ3
.

Solving the above system of equations, we obtain the percentile-based estimates.
For this purpose, either numerical methods have to be resorted to or refer to the
tables in Appendix D of Karian and Dudewicz [315] which gives the values of
λ1, λ2, λ3 and λ4 based on the sample values for the LHS of the above four
equations.

In all the three methods discussed so far, the question of more than one set
of lambda values in the admissible regions may be possible. The choice of the
appropriate set depends on the data and some goodness-of-fit procedure. Karian and
Dudewicz [314] compared the relative merits of the two-moment approaches and
the percentile method. Using the p-values of the chi-square goodness-of-fit test, the
quality of fit was ascertained. They noted that, in general, percentile and L-moment
methods gave better fits more frequently. Further, in terms of the L2-norm, which
measures the discrepancy between two functions f (x) and g(x) by

∫
|g(x)− f (x)|2dx,

the method of percentiles was found to be better than the method of moments over
a broad range of values in the (r1,r2) space in samples of size 1,000.

Another useful estimation procedure based on the least-square approach was
proposed by Osturk and Dale [477]. Let Xr:n (r = 1, . . . ,n) denote the order statistics
of the data and Ur:n the order statistics of the corresponding uniformly distributed
random variable F(X) for r = 1,2, . . . ,n. The least-square method is to find λi

such that the sum of squared differences between the observed and expected order
statistics is minimum. This is achieved by minimizing
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A(λ1,λ2,λ3,λ4) =
n

∑
r=1

{
xr:n −λ1 − 1

λ2
(E(Uλ3

r:n − (1−Ur:n)
λ4))

}2

. (3.35)

From the density function of uniform order statistics given by (Arnold et al. [37])

fr(xr) =
1

B(r,n− r+ 1)
xr−1

r (1− xr)
n−r, 0 < xr < 1, (3.36)

we have

Mr = E(Uλ3
r:n) =

Γ (n+ 1)Γ (λ3 + r)
Γ (r)Γ (n+λ3 + 1)

=
n!

(r− 1)(λ3 + r)(n+1)

and similarly

Nr = E(1−Ur:n)
λ4 =

n!

(n− r)!(λ4+ n)(r)
.

Owing to the difficulties in simultaneously minimizing (3.35) with respect to the
four parameters, first minimize (3.35) with respect to λ1 and λ2 by treating λ3 and
λ4 as constants. As in the case of simple linear regression, setting the derivatives
of (3.35) to zero, we can solve for λ1 and λ2 as

λ̂2 =
∑n

r=1(xr:n − x̄)(νr − ν̄)
∑n

r=1(νr − ν̄)2 (3.37)

and

λ̂1 = x̄ = ν̄ λ̄2, (3.38)

where νr = Mr − Nr and ν̄ = 1
n ∑νr. Then, upon substituting (3.37) and (3.38)

in (3.35), we get

A(λ3,λ4) =
n

∑
r=1

(xr:n−x̄)
2
[

1− (∑n
r=1(xr:n − x̄)(νr − ν̄))2

∑n
r=1(νr − ν̄)2 ∑n

r=1(xr:n − x̄)2

]
.

Thus, λ3 and λ4 are found by minimizing

− [∑n
r=1(xr:n − x̄)(νr − ν̄)]2

∑n
r=1(νr − ν̄)2 ∑n

r=1(xr:n − x̄)2 . (3.39)

Finally, the solutions from (3.39), when substituted into (3.37) and (3.38), give λ̂1

and λ̂2.
A second version of percentile method in Karian and Dudewicz [314] proposes

equating the population median M, the interdecile range
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IDR = Q(1− u)−Q(u),

the tail weight ratio

TWR =
Q( 1

2)−Q(u)

Q(1− u)−Q( 1
2)

,

and the tail weight factor

TWF =
IQR
IDR

with the corresponding sample quantities. These give rise to the equations

λ1 +
(0.5)λ3 − (0.5)λ4

λ2
= m, (3.40)

1
λ2

[(1− u)λ3 − uλ4 +(1− u)λ4 − uλ3] = ξ1−u − ξu, (3.41)

(1− u)λ4 − uλ3 +(0.5)λ3 − (0.5)λ4

(1− u)λ3 − uλ4 +(0.5)λ4 − (0.5)λ3
=

ξ0.5 − ξu

ξ1−u − ξu
, (3.42)

(0.75)λ3 − (0.25)λ4 +(0.75)λ4 − (0.25)λ3

(1− u)λ3 − uλ4 +(1− u)λ4 − uλ3
=

ξ0.75 − ξ0.25

ξ1−u − ξu
. (3.43)

Since (3.42) and (3.43) involve only λ3 and λ4, they are solved first and then insert
these values in (3.40) and (3.41) to estimate λ1 and λ2. All the equations involve
u and therefore a choice of u lying between 0 and 1

4 is suggested by Karian and
Dudewicz [314]. They also provide a table of

[
ξ0.5 − ξu

ξ1−u − ξ0.5
,

ξ0.75 − ξ0.25

ξ1−u − ξu

]

as pairs of values and the corresponding solutions, the algorithm and illustrations of
how to use the tables.

King and MacGillivray [326] have introduced a new procedure called the starship
method, which involves estimation of the parameters along with a goodness-of-fit
test. Laying a four-dimensional grid over a region in the four-dimensional space
that covers the range of the parameter values, a goodness of fit is performed over
the points in the grid. If the fit is not satisfied with one point, another is selected
and so on, with the procedure terminating with parameter values that have the best
measure of fit. Lakhany and Mausser [371] and Fournier et al. [201] have pointed
out that the starship method is quite time consuming especially for large samples.

In practice, in most of the methods described above, the parameters obtained need
not produce an adequate model. There can also be cases where multiple solutions
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exist and the solutions do not span the entire data set. So, goodness-of-fit tests have
to be carried out separately after estimation or such a test must be embedded in the
procedure as with the starship method. There have been several attempts to device
procedures that automate the restart of the algorithms and also do the necessary tests.
Lakhany and Mausser [371] devised a modification to the starship method. Instead
of using a full four-dimensional grid, they used successive simplex from random
starting points until the goodness of fit does not reject the distribution. It cannot,
however, be said that always the best fit is realized. The GLIDEX package provides
fitting methods using discretized and numerical maximum likelihood approach (Su
[549]) and the starship methods. King and MacGillvray [327] have suggested a
method of estimation with the aid of location and scale free shape functionals

S(u) =
Q(u)+Q(1− u)− 2M

Q(u)−Q(1− u)

and

d(u,v) = Q(u)+Q(1− u)− Q(v)+Q(1− v)
Q(v)−Q(1− v)

by minimizing the distance between the sample and population values of the
functionals. Fournier et al. [201] proposed another method that minimizes the
D = max |Sn(x)− F(x)|, where Sn(x) is the empirical distribution function in a
two-dimensional grid representing the (λ3,λ4) space. Two other works in this
context are the estimation of parameters for grouped data (Tarsitano [564]) and for
censored data (Mercy and Kumaran [416]). Karian and Dudewicz [316] discuss
the computational difficulties encountered in the estimation procedure of the
generalized lambda distribution.

3.2.2 Generalized Tukey Lambda Family

A major limitation of the generalized lambda family discussed above is that the
distribution is valid only for certain regions in the parameter space. Freimer et al.
[203] introduced a modified generalized lambda distribution defined by

Q(u) = λ1 +
1
λ2

[
uλ3 − 1

λ3
− (1− u)λ4 − 1

λ4

]
(3.44)

which is well defined for the values of the shape parameters λ3 and λ4 over the entire
two-dimensional space. The quantile density function has the simple form

q(u) =
1
λ2

[uλ3−1 +(1− u)λ4−1].
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Since our interest in (3.44) is as a life distribution, we should have

Q(0) = λ1 − 1
λ2λ3

≥ 0

in which case the support becomes (λ1− 1
λ2λ3

,λ1+
1

λ2λ4
) whenever λ3 > λ4 > 0 and

(λ1 − 1
λ2λ3

,∞) if λ3 > 0 and λ4 ≤ 0. This is a crucial point to be verified when the
distribution is used to model data pertaining to non-negative random variables. The
exponential distribution is a particular case of the family as λ3 → ∞ and λ4 → 0.
All the approximation that are valid for the modified generalized lambda family are
valid in (3.44) as well.

The first four raw moments of this distribution are as follows:

μ = λ1 − 1
λ2

[
1

λ3 + 1
− 1

λ4 + 1

]
,

μ ′
2 =

1

λ 2
2

[
1

λ 2
3 (2λ3 + 1)

− 1

λ 2
4 (2λ4 + 1)

− 2
λ3λ4

B(λ3 + 1,λ4 + 1)

]
,

μ ′
3 =

1

λ 3
2

[
1

λ 3
3 (3λ3 + 1)

− 1

λ 3
4 (3λ4 + 1)

− 3

λ 2
3 λ4

B(2λ3 + 1,λ4 + 1)

+
3

λ3λ 2
4

B(λ3 + 1,2λ4 + 1)

]
,

μ ′
4 =

1

λ 4
2

[
1

λ 4
3 (4λ3 + 1)

+
1

λ 4
4 (4λ4 + 1)

+
6

λ 2
3 λ 2

4

B(2λ3 + 1,2λ4 + 1)

− 4

λ 3
3 λ4

B(3λ3 + 1,λ4 + 1)+
4

λ3λ 3
4

B(λ3 + 1,3λ4+ 1)

]
.

In order to have a finite moment of order k, it is necessary that min(λ3,λ4) > − 1
k .

An elaborate discussion on the skewness and kurtosis has been carried out in
Freimer et al. [203]. The family completely covers the β1 values with two disjoint
curves corresponding to any

√
β1 except zero. As one of the parameters is held

fixed, the behaviour of skewness is as follows. At λ3 = − 1
3 ,
√

β1 = −∞ then
increases monotonically to zero for λ3 in (− 1

3 ,1) and then tends to ∞ as λ3 → ∞.

Similarly, as λ2 increases from − 1
3 to 1 to ∞,

√
β1 decreases from ∞ to 0 and

to −∞. The family attains symmetry at λ3 = λ4, but
√

β1 may be zero even if
λ3 	= λ4. Considerable richness is seen in density shapes, there being members that
are unimodal, U-shaped, J-shaped and monotone, which are symmetric or skew
with short, medium and long tails; see, e.g., Fig. 3.2. Also, there are members with
arbitrarily large values for kurtosis, though it does not contain the lowest possible
β2 for a given β1. There can be more than one set of (λ3,λ4) corresponding to a
given (β1,β2).
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Fig. 3.2 Density plots of the GLD (Freimer et al. model) for different choices of (λ1,λ2,λ3,λ4).
(a) (2,1,2,0.5); (b) (2,1,0.5,2); (c) (2,1,0.5,0.5); (d) (3,1,1.5,2.5); (e) (3,1,1.5,1.6,); (f) (1,1,2,0.1);
(g) (5,1,0.1,2)

Compared to the conventional central moments, the L-moments have much
simpler expressions:

L1 = μ = λ1 − 1
λ2

[
1

λ3 + 1
− 1

λ4 + 1

]
, (3.45)

L2 =
1
λ2

[
1

(λ3 + 1)(2)
− 1

(λ4 + 1)(2)

]
, (3.46)

L3 =
1
λ2

[
λ3 − 1

(λ3 + 1)(3)
− λ4 − 1

(λ4 + 1)(3)

]
, (3.47)

L4 =
1
λ2

[
(λ3 − 1)(2)

(λ3 + 1)(4)
− (λ4 − 1)(2)

(λ4 + 1)(4)

]
. (3.48)

The measures of location, spread, skewness and kurtosis based on percentiles are as
follows:

M = λ1 +
1
λ2

[
( 1

2 )
λ3 − 1

λ3
− ( 1

2 )
λ4 − 1

λ4

]
, (3.49)
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IQR =
1

2λ2

(
( 3

4 )
λ3 − ( 1

4)
λ3

λ3
− ( 3

4)
λ4 − ( 1

4)
λ4

λ2

)
, (3.50)

S =
λ4
{
( 3

4 )
λ3 − 2( 1

2)
λ3 +( 1

4)
λ3
}−λ3

{
( 3

4 )
λ4 − 2( 1

2)
λ4 +( 1

4)
λ4
}

λ4
{
( 3

4 )
λ3 − ( 1

4)
λ3
}
+λ3

{
( 3

4 )
λ4 − ( 1

4)
λ4
} , (3.51)

T =
λ4
{
( 7

8 )
λ3 − ( 5

8)
λ3 +( 3

8)
λ3 − ( 1

8)
λ3
}−λ3

{
( 7

8)
λ4 − ( 5

8)
λ4 +( 3

8)
λ4 − ( 1

8)
λ4
}

λ4
{
( 3

4 )
λ3 − ( 1

4)
λ3
}
+λ3

{
( 3

4)
λ4 − ( 1

4)
λ4
} .

(3.52)

It could be seen that when λ3 = 1, λ4 → ∞ and also when λ3 → ∞ and λ4 = 1, we
have S = 0. The expected value of the rth order statistic Xr:n is

μr:n = E(Xr:n) = λ1 − 1
λ2λ3

+
1

λ2λ4
+

1
λ2λ3

Γ (λ3 + r)
Γ (n+λ3+ 1)

n!
r!

− 1
λ2λ4

n!
(n− r)!

Γ (n+λ3− r+ 1)
Γ (n+λ4+ 1)

.

Setting r = 1 and n, we get

E(X1:n) = λ1 − 1
λ2λ3

+
1

λ2λ4
+

n!
λ2(λ3)(n+1)

− n
λ2λ4(λ4 + n)

and

E(Xn:n) = λ1 − 1
λ2λ3

+
1

λ2λ4
+

n
λ2λ3(λ3 + n)

− n!
λ2(λ4)(n+1)

.

The distributions of X1:n and Xn:n are given by

Q1(u) = λ1 +
1
λ2

⎡
⎣ [1− (1− u1/n)]λ3 − 1

λ3
− (1− u)

λ4
n − 1

λ4

⎤
⎦

and

Qn(u) = λ1 +
1
λ2

⎛
⎝u

λ3
n − 1
λ3

− (1− u
1
n )λ4 − 1
λ4

⎞
⎠ .

Various reliability functions of the model have closed-form algebraic expres-
sions, except for the variances which contain beta functions. The hazard quantile
function is
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H(u) = λ2[(1− u)λ4 +(1− u)uλ3−1]. (3.53)

Mean residual quantile function simplifies to

M(u) =
(1− u)λ4

λ2(λ4 + 1)
+

1− uλ3+1

λ2(1+λ3)(1− u)
− uλ3

λ2λ3
. (3.54)

The variance residual quantile function is

V (u) = A1(u)−A2
2(u),

where

A1(u) =
1− u2λ3+1

λ 2
2 (2λ3 + 1)(1− u)

+
(1− u)2λ4

λ2λ4(2λ4 + 1)
− 2B1−u(λ4 + 1,λ3+ 1)

λ 2
2 λ3λ4(1− u)

and

A2(u) =
1− uλ3+1

λ2λ3(1+λ3)(1− u)
− (1− u)λ4+1

λ2λ4(λ4 + 1)
.

Percentile residual life function becomes

Pα(u) =
1
λ2

[(1− (1−α)(1− u))λ3 +(1− u)λ4(1− (1−α)λ4)− uλ3].

Expression for the reversed hazard quantile function is

Λ(u) =

[
u
λ2

(uλ3−1 +(1− u)λ4−1)

]−1

.

The reversed mean residual quantile function is

R(u) =
1
λ2

[
uλ3

λ3 + 1
− (1− u)λ4

λ4 + 1
− (1− u)λ4+1

λ4(λ4 + 1)u
+

1
λ4(λ4 + 1)u

]
,

the reversed percentile residual life function is

qα(u) =
uλ3

λ2λ3
(1− (1−α)λ3)− 1

λ2λ4
[(1− u(1−α))λ4 − (1− u)λ4],
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and the reversed variance residual quantile function is

D∗(u) = B1(u)−B2
2(u),

where

B1(u) =
u2λ3

λ 2
2 λ 2

3 (2λ3 + 1)
+

(1− u)2λ4+1 − 1

λ 2
2 λ 2

4 (2λ4 + 1)u
− 2Bu(λ3 + 1,λ4 + 1)

uλ 2
2 λ3λ4

and

B2(u) =
uλ3

λ2λ3(λ3 + 1)
− (1− u)λ4+1 − 1

λ2λ3(λ4 + 1)u
.

Although the problem of estimating the parameters of (3.44) is quite similar
and all the methods described earlier for the generalized lambda distribution are
applicable in this case also, there is comparatively less literature available on
this subject. The moment matching method and the least-square approach were
discussed by Lakhany and Massuer [371]. Since these methods involved only
replacement of the corresponding expressions for (3.44) in the previous section,
the details are not presented here for the sake of brevity. Su [550] discussed two
new approaches—the discretized approach and the method of maximum likelihood
for the estimation problem, by tackling it on two fronts: (a) finding suitable initial
values and (b) selecting the best fit through an optimization scheme. For the
distribution in (3.44), the initial values of λ3 and λ4 consist of low discrepancy
quasi-random numbers ranging from −0.25 to 1.5. After generating these random
values, they were used to derive λ1 and λ2 by the method of moments as in
Lakhany and Massuer [371]. From these initial values, the GLDEX package (Su
[551]) is employed to find the best set of initial values for the optimization
process. In the discretized approach, the range of the data is divided into equally
spaced classes, and after arranging the observations in ascending order of mag-
nitude, the proportion falling in each class is ascertained. Then, the differences
between the observed (di) and theoretical (ti) proportions are minimized through
either

k

∑
i=1

(di − ti)
2 or

k

∑
i=1

di(di − ti)
2,

where k is the number of classes.
In the maximum likelihood method, the ui values corresponding to each xi in the

data are to be computed first using Q(u). A numerical method such as the Newton-
Raphson can be employed for this purpose. Then, with the help of Nelder–Simplex
algorithm, the log likelihood function

logL =
n

∑
i=1

log

(
λ2

uλ3−1
i +(1− ui)λ4−1

)
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is maximized to get the final estimates. The GLDEX package provides diagnostic
tests that assess the quality of the fit through the Kolmogorov–Smirnov test, quantile
plots and agreement between the measures of location, spread, skewness and
kurtosis of the data with those of the model fitted to the observations.

Haritha et al. [260] adopted a percentile method in which they matched the
measures of location (median, M), spread (interquartile range), skewness (Galton’s
coefficient, S) and kurtosis (Moors’ measure, T ) of the population in (3.49)–
(3.52) and the data. Among the solutions of the resulting equations, they chose the
parameter values that gave

e = max(|M̂ −m|, | ˆIQR− iqr|, |Ŝ−Δ |, |T̂ − t|)< ε

for the smallest ε .

3.2.3 van Staden–Loots Model

A four-parameter distribution that belongs to lambda family proposed by van Staden
and Loots [572], but different from the two versions discussed in Sects. 3.2.1
and 3.2.2, will be studied in this section. The distribution is generated by considering
the generalized Pareto model in the form

Q1(u) =

{
1

λ4
(1− (1− u)λ4) λ4 	= 0

− log(1− u) λ4 = 0

and its reflection

Q2(u) =

{
1

λ4
(uλ4 − 1) λ4 	= 0

logu λ4 = 0.

A weighted sum of these two quantile functions with respective weights λ3 and
1− λ3, 0 ≤ λ3 ≤ 1, along with the introduction of a location parameter λ1 and
a scale parameter λ2, provide the new form. Thus, the quantile function of this
model is

Q(u) = λ1 +λ2

[
(1−λ3)

uλ4 − 1
λ4

−λ3
(1− u)λ4 − 1

λ4

]
, λ2 > 0. (3.55)

Equation (3.55) includes the exponential, logistic and uniform distributions as
special cases. The support of this distribution is as follows for different choices
of λ3 and λ4:
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Region λ3 λ4 Support
1 0 ≤ 0 (−∞,λ1)

> 0
(

λ1 − λ2
λ4
,λ1

)
2 (0,1) ≤ 0 (−∞,∞)

> 0
(

λ1 − λ2(1−λ3)
λ4

,λ1 +
λ3λ2

λ4

)
3 1 ≤ 0 (λ1,∞)

> 0
(

λ1,λ1 +
λ2
λ4

)

For (3.55) to be a life distribution, one must have λ1−λ2(1−λ3)λ−1
4 ≥ 0. This gives

members with both finite and infinite support, depending on whether λ4 is positive
or negative.

As for descriptive measures, the mean and variance are given by

μ = λ1 − λ2

(1+λ4)
(1− 2λ3)

and

σ2 =
λ 2

2

(1+λ4)2

[
λ 2

3 +(1−λ3)
2

1+ 2λ4
− 2λ3(1−λ3)

λ3
((1+λ4)

2B(1+λ4,1+λ4)− 1)

]
.

One attractive feature of this family is that its L-moments have very simple forms,
and they exist for all λ4 >−1, and are as follows:

L1 = μ ,

L2 =
λ2

(λ4 + 1)(λ4 + 2)
,

Lr = λ2(1− 2λ3)
S (λ4 − 1)(r−2)

(λ4 + 1)(r)
, r = 3,4, . . . ,

where S = 1 when r is odd and S = 0 when r is even. These values give L-skewness
and L-kurtosis to be

τ3 =
(λ4 − 1)(1− 2λ3)

λ4 + 3

and

τ4 =
(λ4 − 1)(λ4 − 2)
(λ4 + 3)(λ4 + 4)

,
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respectively. van Staden and Loots [572] note that, as in the case of the two four-
parameter lambda families discussed in the last two sections, there is no unique
(λ3,λ4) pair for a given value of (τ3,τ4). When λ3 = − 1

2 , the distribution is
symmetric.

L-skewness covers the entire permissible span (−1,1) and the kurtosis is
independent of λ3 with a minimum attained at λ4 =

√
6− 1. The percentile-based

measures also have simple explicit forms and are given by

M = λ1 +
λ2(1− 2λ3)

λ4

((
1
2

)λ4

− 1

)
, (3.56)

In the symmetric case, M = μ = λ1, (3.57)

IQR =
λ2(3λ4 − 1)

λ44λ4
, (3.58)

S =
(1− 2λ3)(1+ 3λ4 − 2λ4+1)

3λ4 − 1
, (3.59)

T =
(1− 2λ3)2λ4(7λ4 + 5λ4 + 3λ4 + 1)

3λ4 − 1
. (3.60)

The quantile density function is

q(u) = λ2[(1−λ3)u
λ4−1 +λ3(1− u)λ4−1]

and so the density quantile function is

f (Q(u)) = λ−1
2 [(1−λ3)u

λ4−1 +λ3(1− u)λ4−1]−1.

Figure 3.3 displays some shapes of the density function.
The expectations of the order statistics from (3.55) are as follows:

E(Xr:n) = λ1 +
λ2

λ4

[
(1−λ3)Γ (λ4 + 1)

Γ (r)
− λ3Γ (n+λ4− r+ 1)

Γ (n− r+ 1)

]
n!

Γ (λ4 + n+ 1)

+
λ2

λ4
(2λ3 − 1), r = 1,2, . . . ,n,

E(X1:n) = λ1 +
λ2

λ4
(2λ3 − 1)+

λ2

λ4

[
n!(1−λ3)

(λ4 + 1)(n)
− nλ3

λ4 + n

]
,

E(Xn:n) = λ1 +
λ2

λ4
(2λ3 − 1)+

λ2

λ4

[
n(1−λ3)

λ4 + n
− λ3n!

(λ4 + 1)(n)

]
.

Since there are members of the family with support on the positive real line, the
model will be useful for describing lifetime data. In this context, the hazard quantile
function is
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H(u) = {λ2(1− u)((1−λ3)u
λ4−1 +λ3(1− u)λ4−1)}−1. (3.61)

Similarly, the mean residual quantile function is

M(u) = λ2

[
1−λ3

λ4

(
1− uλ4+1

(1− u)(λ4 + 1)
− uλ4

)
− λ3

λ4 + 1
(1− u)λ4

]
, (3.62)

the reversed hazard quantile function is

Λ(u) =
[
λ2u

{
(1−λ3)u

λ4−1 +λ3(1− u)λ4−1
}]−1

,

and the reversed mean residual quantile function is

R(u) = λ2

[
(1−λ3)

λ4 + 1
uλ4 − (1− u)λ4

λ4
+

(1− u)λ4+1 − 1
uλ4(λ4 + 1)

]
.

Further, the form

u θ (u) = A+B((1−α)uC+α(1− u)c)

determines the quantile function in (3.55) as

Q(u) = A+
d

du
u θ (u),

where θ (u) is as defined in (3.24).



3.2 Lambda Distributions 85

van Staden and Loots [572] prescribed the method of L-moments for the
estimation of the parameters. With the aid of

λ̂4 =
3+ 7t4± (t2

4 + 98t4+ 1)
1
2

2(1− t4)
,

where t4 is the sample L-kurtosis, λ4 can be estimated. Using λ̂4, the estimate λ̂3 of
λ3 can be determined from

λ̂3 =

⎧⎨
⎩

1
2 [1− t3(λ̂3+3)

λ̂4−1
] , λ̂4 	= 1

1
2 , λ̂4 = 1

,

where t3 is the sample L-skewness. The other two-parameter estimates are com-
puted as

λ̂2 = l2(λ̂4 + 1)(λ̂4 + 2),

λ̂1 = l1 +
λ̂2(1− 2λ̂3)

λ̂4 + 1
,

with l1 and l2 being the usual first two sample L-moments.
The method of percentiles can also be applied for parameter estimation. In fact,

t
s
=

2λ4(7λ4 + 5λ4 + 3λ4 + 1)

3λ4 + 1− 2λ4+1

provides λ4, t and s being the Moors and Galton measures, respectively, evaluated
from the data. This is used in (3.59) to find λ̂3, and then λ̂2 and λ̂1 are determined
from (3.56) and (3.58) by equating IQR and M with iqr and m, respectively.

3.2.4 Five-Parameter Lambda Family

Gilchrist [215] proposed a five-parameter family of distributions with quantile
function

Q(u) = λ1 +
λ2

2

[
(1−λ3)

(
uλ4 − 1

λ4

)
− (1+λ3)

(
(1− u)λ5 − 1

λ5

)]
(3.63)

as an extension to the Freimer et al. [203] model in (3.44). Tarsitano [564] studied
this model and evaluated various estimation methods for this family. The family has
its quantile density function as
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q(u) = λ2

[
1−λ3

2
uλ4−1 +

1−λ3

2
(1− u)λ5−1

]
.

In (3.63), λ1 controls the location parameter though not exclusively, λ2 ≥ 0 is a scale
parameter and λ3, λ4 and λ5 are shape parameters. It is evident that the generalized
Tukey lambda family in (3.44) is a special case when λ3 = 0. The support of the
distribution is given by

(
λ1 −λ2

(1−λ3)

2
,λ1 +λ2

(1+λ3)

2

)
when λ4 > 0, λ5 > 0,

(
λ1 −λ2

(1−λ3)

2
,∞
)

when λ4 > 0, λ5 ≤ 0,

(
−∞,λ1 +λ2

(1+λ3)

2

)
when λ4 ≤ 0, λ5 > 0.

In the case of non-negative random variables, the condition

λ1 − λ2

2λ4
(1−λ3)≥ 0

would become necessary. The density function may be unimodal with or without
truncated tails, U-shaped, S-shaped or monotone. The family also includes the
exponential distribution when λ4 → ∞ and λ5 → 0, the generalized Pareto distri-
bution when λ4 → ∞ and |λ5| < ∞, and the power distribution when λ5 → 0 and
|λ4|< ∞. Some typical shapes of the distribution are displayed in Fig. 3.4. Tarsitano
[564] has provided close approximations to various symmetric and asymmetric
distributions using (3.63) and went on to recommend the usage of the model when a
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particular distributional form cannot be suggested from the physical situation under
consideration. Setting Z = 2(X−λ1)

λ2
, Tarsitano [564] expressed the raw moments in

the form

E(Zr) =
r

∑
j=0

(−1) j
(

r
j

)(
1−λ3

λ4

)r− j(1+λ3

λ5

) j

B(1+(r− j)λ4,1+ jλ5)

provided λ4 and λ5 are greater than 1
r , where B(·, ·) is the complete beta function,

as before. The mean and variance are deduced from the above expression as

μ = λ1 − λ2(1−λ3)

2(1+λ4)
+

λ2(1+λ3)

2(1+λ5)
,

σ2 =
(1−λ3)

2

λ 2
4 (2λ4 + 1)

+
(λ3 + 1)2

λ 2
5 (2λ5 + 1)

− 2(1−λ3)

λ4λ5
B(λ4 + 1,λ5 + 1).

The L-moments take on simpler expressions in this case, and the first four are as
follows:

L1 = μ ,

L2 =
λ2(1−λ3)

2(λ4 + 1)(2)
+

λ2(1+λ3)

2(λ5 + 1)(2)
,

L3 =
λ2(1−λ3)(λ4 − 1)

2(λ4 + 1)(3)
− λ2(1+λ3)(λ5 − 1)

2(λ5 + 1)(3)
,

L4 =
λ2(1−λ3)(λ4 − 1)(2)

2(λ4 + 1)(4)
− λ2(1+λ3)(λ5 − 1)(2)

2(λ5 + 1)(4)
.

Percentile-based measures of location, spread, skewness and kurtosis can also
be presented, but they involve rather cumbersome expressions. For example, the
median is given by

M = λ1− λ2(1−λ3)

2λ4
+

λ2(1+λ3)

2λ5
+

λ2(1−λ3)

λ4

(
1
2

)λ4+1

− λ2(1−λ3)

λ5

(
1
2

)λ5+1

.

The means of order statistics are as follows:

E(Xr:n) = λ1 +
λ2

2

[
1+λ3

λ5
− 1−λ3

λ4

]
+

λ2(1−λ3)

2λ4

B(λ4 + r− 1,n− r+ 1)
B(r,n− r+ 1)

−λ2(1+λ3)

2λ5

B(r,λ1 + n− r+ 1)
B(r,n− r+ 1)

, r = 1, . . . ,n, (3.64)
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E(X1:n) = λ1 +
λ2

2

[
1+λ3

λ5
− 1−λ3

λ4

]
+

n!
(λ4)(n)

− n
λ2

2λ5

(1+λ3)

n+λ5
,

E(Xn:n) = λ1 +
λ2

2

[
1+λ3

λ5
− 1−λ3

λ4

]
+

nλ2(1−λ3)

2λ4(λ4 + n− 1)
− λ2(1+λ3)n!

2(λ5 + 1)(n)
.

Tarsitano [564] discussed the estimation problem through nonlinear least-squares
and least absolute deviation approaches. For a random sample X1,X2, . . . ,Xn of size
n from (3.59), under the least-squares approach, we consider

Xr:n = E(Xr:n)+ εr, r = 1,2, . . . ,n,

and then seek the parameter values that minimize

n

∑
r=1

[Xr:n −E(Xr:n)]
2. (3.65)

In terms of expectations of order statistics in (3.60), realize that Xr:n is an estimate of
the expectation in (3.64), which incidentally is linear in λ1, λ2 and λ3 and nonlinear
in λ4 and λ5. So, as in the case of Osturk and Dale method discussed earlier, we may
fix (λ4,λ5) and determine λ1,λ2 and λ3. Then, (λ4,λ5) can be found such that (3.65)
is minimized. In the least absolute deviation procedure, the objective function to be
minimized is

n

∑
r=1

|Xr:n −Q(u∗r )|,

where

u∗r = Q(B−1
u (r,n− r+ 1)).

3.3 Power-Pareto Distribution

As seen earlier in Table 1.1, the quantile function of the power distribution is of the
form

Q1(u) = αuλ1 , 0 ≤ u ≤ 1; α,λ1 > 0,

while that of the Pareto distribution is

Q2(u) = σ(1− u)−λ2, 0 ≤ u ≤ 1; σ ,λ2 > 0.

A new quantile function can then be formed by taking the product of these two as
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Q(u) =
Cuλ1

(1− u)λ2
, 0 ≤ u ≤ 1, (3.66)

where C > 0, λ1,λ2 > 0 and one of the λ ’s may be equal to zero. The distribution of
a random variable X with (3.66) as its quantile function is called the power-Pareto
distribution. Gilchrist [215] and Hankin and Lee [259] have studied the properties
of this distribution. It has the quantile density function as

q(u) =
Cuλ1−1

(1− u)λ2+1
[λ1(1− u)+λ2u]. (3.67)

In (3.66), C is a scale parameter, λ1 and λ2 are shape parameters, with λ1 controlling
the left tail and λ2 the right tail. The shape of the density function is displayed in
Fig. 3.5 for some parameter values when the scale parameter C = 1.

Conventional moments of (3.66) are given by

E(Xr) =

∫ 1

0

[
Cuλ1

(1− u)λ2

]r

du =CrB(1+ rλ1,1− rλ2)

which exists whenever λ2 <
1
r . From this, the mean and variance are obtained as

μ =
CΓ (1+λ1)Γ (1−λ2)

Γ (2+λ1−λ2)
(3.68)

and
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σ2 =C2
{

Γ (1+ 2λ1,1− 2λ1)

Γ (2+ 2λ1− 2λ2)
− Γ 2(1+λ1)Γ 2(1−λ2)

Γ (2+λ1 −λ2)

}
.

The range of skewness and kurtosis is evaluated over the range λ1 > 0, 0 ≤
λ2 < 1

4 . Minimum skewness and minimum kurtosis are both attained at λ2 =
0, and both these measures show increasing trend with respect to λ1 and λ2.
Kurtosis is also seen to be as an increasing function of skewness. Hankin and Lee
[259] have mentioned that the distribution is more suitable for positively skewed
data and can provide good approximations to gamma, Weibull and lognormal
distributions.

Percentile-based measures are simpler and are given by

M =C2λ2−λ1 ,

IQR =C4λ2−λ1(3λ1 − 3−λ2),

S =
3λ1 + 3−λ2 − 2λ2−λ1+1

3λ1 − 3−λ2
,

T =
2λ2−λ1(7λ1 − 5λ13−λ2 + 3λ15−λ2 − 7−λ2)

3λ1 − 3−λ2
.

Further, the first four L-moments are as follows:

L1 = μ ,

L2 =
C(λ1 +λ2)

λ1 −λ2 + 2
B(λ1 + 1,1−λ2) ,

L3 =
C(λ 2

1 +λ 2
2 + 4λ1λ2 +λ2 −λ1)B((λ1 + 1,1−λ2))

(λ1 −λ2 + 2)(2)
,

L4 =
C(λ1 +λ2)(λ 2

1 +λ 2
2 + 8λ1λ2 − 3λ1 + 3λ2+ 2)

(λ1 −λ2 + 2)(3)
B(λ1 + 1,1−λ2),

where B(·, ·) is the complete beta function. From these expressions, we readily
obtain the L-skewness and L-kurtosis measures as

τ3 =
λ 2

1 −λ 2
2 + 4λ1λ2 +λ2 −λ1

(λ1 −λ2 + 3)

and

τ4 =
λ 2

1 −λ 2
2 + 8λ1λ2 − 3λ1 + 3λ2 + 2

(λ1 −λ2 + 3)(λ1 −λ2 + 4)
.
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The expected value of the rth order statistic is

E(Xr:n) =C
B(λ1 + r,n−λ2− r)

B(r,n− r+ 1)
n > λ2 + r, r = 1,2, . . . ,n,

while the quantile functions of X1:n and Xn:n are given by

Q1(u) =C
{1− (1− u1/n)}λ1

(1− u)n/λ2

and

Qn(u) =C
u

λ1
n

(1− u
1
n )λ2

.

It is easily seen that the hazard quantile function is

H(u) = (1− u)λ2{Cuλ1−1(λ1(1− u)+λ2u)}−1, (3.69)

the mean residual quantile function is

M(u) =
1

1− u
Bu(1−λ2,1+λ1)− Cuλ1

(1− u)λ2
, (3.70)

the reversed hazard quantile function is

Λ(u) = (1− u)λ2+1[Cuλ1(λ1(1− u)+λ2u)]−1, (3.71)

and the reversed mean residual quantile function is

R(u) =
Cuλ1

(1− u)λ2
− 1

u
Bu(λ1 + 1,1−λ2). (3.72)

Next, upon denoting the quantile function of the distribution by Q(u;C,λ1,λ2),
we have the following characterization results for this family of distributions (Nair
and Sankaran [443]).

Theorem 3.1. A non-negative variable X is distributed as Q(u;C,λ1,0) if and
only if

(i) H(u) = k1u[(1− u)Q(u)]−1, k1 > 0;
(ii) M(u) = k1[Q(u)]−1;

(iii) R(u) = k2Q(u), k2 < 1;
(iv) Λ(u)R(u) = k3, k2 < 1,

where ki’s are constants.
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Theorem 3.2. A non-negative random variable X is distributed as Q1(u;C,0,λ2) if
and only if

1. H(u) = A1[Q1(u)]−1, A1 > 0;
2. Λ(u) = A1(1− u)[uQ1(u)]−1;
3. M(u) = A2Q1(u);
4. M(u)H(u) = A3, A3 > 0,

where A1,A2 and A3 are constants.

An interesting special case of (3.66) arises when λ1 = λ2 = λ > 0 in which
case it becomes the loglogistic distribution (see Table 1.1). A detailed analysis of
theloglogistic model and its applications in reliability studies have been made by
Cox and Oakes [158] and Gupta et al. [237]. In this case, we deduce the following
characterizations from the above.

Theorem 3.3. A non-negative random variable X has loglogistic distribution with

Q(u) =C

(
u

1− u

)λ
, C,λ > 0,

if and only if one of the following conditions hold:

(i) H(u) = ku
Q(u) ;

(ii) Λ(u) = k(1−u)
Q(u) .

Hankin and Lee [259] proposed two methods of estimation—the least-squares
and the maximum likelihood. In the least-squares method, they use

E(logXr:n) = logC+λ1E(logUr:n)−λ2E(log(1−Ur:n)), (3.73)

since logXr:n and logQ(Ur:n) have the same distribution, where Ur:n is the rth order
statistic from a sample of size n from the uniform distribution. Thus, from (3.36),
we have

E(logUr:n) =
1

B(r,n− r+ 1)
=

∫ 1

0
(logu)ur−1(1− u)n−rdu

=−
(

1
r
+

1
r+ 1

+ · · ·+ 1
n

)
(3.74)

and

E(log(1−Ur:n)) =−
(

1
n− r

+
1

n− r+ 1
+ · · ·+ 1

n

)
. (3.75)
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Then, the model parameters estimated by minimizing

∑[logXr:n −E(logXr:n)]
2.

Substituting (3.74) and (3.75) into the expression of E(logXr:n) in (3.73), we have
an ordinary linear regression problem and is solved by standard programs available
for the purpose. Maximum likelihood estimates are calculated as described earlier
in Sect. 3.2.2 by following the steps described in Hankin and Lee [259]. In a
comparison of the two methods by means of simulated variances, Hankin and
Lee [259] found the least-squares method to be better for small samples when the
parameters λ1 and λ2 are roughly equal and the maximum likelihood method to be
better otherwise.

3.4 Govindarajulu’s Distribution

Govindarajulu’s [224] model is the earliest attempt to introduce a quantile function,
not having an explicit form of distribution function, for modelling data on failure
times. He considered the quantile function

Q(u) = θ +σ
{
(β + 1)uβ −β uβ+1

}
, 0 ≤ u ≤ 1; σ ,β > 0. (3.76)

He used it to model the data on the failure times of a set of 20 refrigerators that
were run to destruction under advanced stress conditions. Even though the validity
of the model and its application to nonparametric inference were studied by him, the
properties of the distribution were not explored. We now present a detailed study of
its properties and applications.

The support of the distribution in (3.76) is (θ ,θ + σ). Since we treat it as a
lifetime model, θ is set to be zero so that (3.76) reduces to

Q(u) = σ
{
(β + 1)uβ −β uβ+1

}
, 0 ≤ u ≤ 1. (3.77)

Note that there is no loss of generality in studying the properties of this distribution
based on (3.77) since the transformation Y = X + θ , where X has its quantile
function Q(u) as in (3.77), will provide the corresponding results for (3.76).
From (3.77), the quantile density function is

q(u) = σβ (β + 1)uβ−1(1− u). (3.78)

Equation (3.78) yields the density function of X as

f (x) = [σβ (β + 1)]−1F1−β (x)(1−F(x))−1. (3.79)

Thus, this model belongs to the class of distributions, possessing density function
explicitly in terms of the distribution function, discussed by Jones [307]. Further, by
differentiating (3.78), we get
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Fig. 3.6 Density plots of Govindarajulu’s distribution for some choices of β . (a) β = 3;
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q′(u) = σβ (β + 1)uβ−2[(β − 1)−β u]

from which we observe that the density function is monotone decreasing for β ≤ 1,
and q′(u) = 0 gives u0 = β−1(β −1). Thus, when β > 1, there is an antimode at u0.
Figure 3.6 shows the shapes of the density function for some choices of β .

The raw moments are given by

E(Xr) =
∫ 1

0
[Q(p)]rd p = σ r

r

∑
j=0

(−1) j
(

r
j

)
(β + 1)r− jβ j/(β r+ j+ 1).

In particular, the mean and variance are

μ = 2σ(β + 2)−1,

var =
β 2(5β + 7)σ2

(2β + 1)(2β + 2)(β + 2)2 .

Moreover, we have the median as

M = σ2−(β+1)(β + 2),

the interquartile range as

IQR = σ4−(β+1)[3β (β + 4)− (3β + 4)],

the skewness as

S =
σ [(β + 1) 3β+1

4β − β (3β+1+1)
4β + β+2

2β ]

IQR

and the kurtosis as

T =
σ
[
(β + 1) (7

β−5β+3β−1)
8β − β (7β+1−5β+1+3β+1−1)

8β+1

]
IQR
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as percentile-based descriptive measures. Much simpler expressions are available
for the L-moments as follows:

L1 = μ ,

L2 =
2β σ

(β + 2)(β + 3)
,

L3 =
2β (β − 2)σ
(β + 2)(3)

,

L4 =
2β 3 − 12β 2+ 10β )σ

(β + 2)(4)
.

Consequently, we have

τ3 =
β − 2
β + 4

and τ4 =
(β − 5)(β − 1)
(β + 4)(β + 5)

.

With τ3 being an increasing function of β , its limits are obtained as β → 0 and β →
∞. These limits show that τ3 lies between (− 1

2 ,1), and so it does not cover the entire
range (−1,1). But the distribution has negatively skewed, symmetric (at β = 2) and
positively skewed members. The L-kurtosis τ4 is nonmonotone, decreasing initially,
reaching a minimum in the symmetric case, and then increasing to unity.

A particularly interesting property of Govindarajulu’s distribution is the distribu-
tion of its order statistics. The density function of Xr:n is

fr(x) =
1

B(r,n− r+ 1)
f (x)Fr−1(x)(1−F(x))n−r

=
1

σβ (β + 1)B(r,n− r+ 1)
Fr−β (x)(1−F(x))n−r−1,

(3.80)

upon using (3.79). So, we have

E(Xr:n) =
1

B(r,n− r+ 1)

∫ 1

0
Q(u)ur−1(1− u)n−rdu

=
n!Γ (β + r)σ

(r− 1)!Γ (n+β + 2)
{(n+ 1)(β + 1)−β (r− 1)}.

(3.81)

In particular,

E(X1:n) =
(n+ 1)!σΓ (β + 2)

Γ (n+β + 2)
=

(n+ 1)!σ
(β + 2)(n)
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and

E(Xn:n) =
n(n+ 2β + 1)σ

(n+β )(n+β + 1)
.

The quantile functions of X1:n and Xn:n are

Q1(u) = σ [(1− (1− u)
1
n )]β [1+β (1− u)

1
n ]

and

Qn(u) = σ [(β + 1)u
β
n −β u

β+1
n ].

All the reliability functions also have tractable forms. The hazard quantile function
is given by

H(u) = [σβ (β + 1)uβ−1(1− u)2]−1

and the mean residual quantile function is

M(u) = [2− (β + 1)(β + 2)uβ +β (β + 2)uβ+1−β (β + 1)uβ+2]

×[(β + 2)(1− u)]−1σ .

From the expression of the quantile function, it is evident that the parameter β
largely controls the left tail and therefore facilitates in modelling reliability concepts
in reversed time. Accordingly, the reversed hazard and reversed mean residual
quantile functions are given by

Λ(u) = [σβ (β + 1)uβ (1− u)]−1,

R(u) =
β σ

β + 2
[β + 2− (β + 1)u]uβ ,

respectively. The reversed variance residual quantile function has the expression

D(u) = u−1
∫ u

0
R2(p)d p

=
σ2β 2u2β

(β + 2)2

{
(β + 1)2u2

2β + 3
− (β + 2)u+

(β + 1)2

2β + 1

}
.

We further note that the function

R(u)Λ(u) =
(β + 1)−1 − (β + 2)−1u

1− u
(3.82)

is a homographic function of u.
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Characterization problems of life distributions by the relationship between the
reversed hazard rate and the reversed mean residual life in the distribution function
approach have been discussed in literature; see Chandra and Roy [135]. In this spirit,
from (3.82), we have the following theorem.

Theorem 3.4. For a non-negative random variable X, the relationship

R(u)Λ(u) =
a+ bu
1− u

(3.83)

holds for all 0 < u < 1 if and only if

Q(u) = K

(
a

1− a
u

1
a−1 − au

1
a

)
(3.84)

provided that a and b are real numbers satisfying

1
a
+

1
b
=−1. (3.85)

Proof. Suppose (3.83) holds. Then, we have

{
1
u

∫ u

0
pq(p)d p

}[
uq(u)

]−1
=

a+ bu
1− u

. (3.86)

Equation (3.86) simplifies to

uq(u)∫ u
0 pq(p)d p

=
1− u

u(a+ bu)
=

1
au

− a+ b
a(a+ bu)

.

Upon integrating the above equation, we obtain

log
∫ u

0
pq(p)d p =

1
a

logu− a+ b
ab

log(a+ bu)+ logK,

or

∫ u

0
pq(p)d p = Ku

1
a (a+ bu)

with the use of (3.85). By differentiation, we then obtain

q(u) = Ku
1
a−2(1− u).

Integrating the last expression from 0 to u and setting Q(0) = 0, we get (3.84). The
converse part follows from the equations
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Λ(u) = [Ku
1
a−1(1− u)]−1

and

R(u) =
Ka

a+ 1
u

1
a−1 (a+ 1− u).

Remark 3.2. Govindarajulu’s distribution is secured when a = (1 + β )−1. The
condition imposed on a and b in (3.85) can be relaxed to provide a more general
family of quantile functions.

Regarding the estimation of the parameters σ and β , all the conventional methods
like method of moments, percentiles, least-squares and maximum likelihood can be
applied to the distribution quite easily. For example, in the method of moments,
equating the mean and variance, we obtain

X̄ =
2σ

β + 2
and S2 =

β 2(5β + 7)σ2

(2β + 1)(2β + 2)(β + 2)2 . (3.87)

Thus, we get

X̄2

S2 =
4(2β + 1)(2β + 2)

β 2(5β + 7)

which may be solved to get β . Then, by substituting it in (3.87), the estimate of
σ can be found. There may be more than one solution for β and in this case
a goodness of fit may then be applied to locate the best solution. The method
of L-moments and some results comparing the different methods are presented
in Sect. 3.6. Compared to the more flexible quantile functions discussed in the
earlier sections, the estimation problem is easily resolvable in this case with no
computational complexities. One of the major limitations of Govindarajulu’s model,
as mentioned earlier, is that it cannot cover the entire skewness range. In the
admissible range, however, it provides good approximations to other distributions
as will be seen in Sect. 3.6.

3.5 Generalized Weibull Family

This particular family of distributions is different from the distributions discussed so
far in this chapter in the sense that it has a closed-form expression for the distribution
function. So, all conventional methods of analysis are possible in this case. As a
generalization of the Weibull distribution, the generalized Weibull family is defined
by Mudholkar et al. [428] as
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Q(u) =

⎧⎨
⎩

σ
[

1−(1−u)λ

λ

]α
, λ 	= 0

σ(− log(1− u))α , λ = 0
, (3.88)

for α,σ > 0 and real λ . The corresponding distribution function is

F(x) = 1−
{

1−λ
( x

σ

) 1
α
} 1

λ

with support (0,∞) for λ ≤ 0 and (0, σ
λ α ) for λ > 0. The quantile density function

has the form

q(u) = σα

[
1− (1− u)λ

λ

]α−1

(1− u)λ−1. (3.89)

The density function has a wide variety of shapes that include U-shaped, unimodal
and monotone increasing or decreasing shapes. The raw moments are given by

E(Xr) =

⎧⎨
⎩

B( 1
λ ,rα+1)

λ rα+1 σ r , λ > 0
B(−rα− 1

λ ,rα+1)

(−λ )rα+1 σ r , λ < 0
.

Moments of all orders exist for α > 0, λ > 0. If λ < 0, then E(Xr) exists if αλ >
−r−1. The expressions for the percentile-based descriptive measures are as follows:

M =

(
1− (1

2

)λ

λ

)α

σ ,

IQR =
σ
λ 2

[(
1−

(
1
4

)λ
)α

−
(

1−
(

3
4

)λ
)α]

,

S =

(
1− ( 1

4)
λ)α

+
(
1− ( 3

4)
λ )α − 2

(
1− ( 1

2)
λ)(

1− ( 1
4)

λ
)α − (1− ( 3

4)
λ
)α ,

T =

(
1− ( 1

8)
λ)α − (1− ( 3

8)
λ )α

+
(
1− ( 5

8)
λ )α − (1− ( 7

8)
λ )α

](
1− ( 1

4)
λ
)α − (1− ( 3

4)
λ
)α .

For the calculation of L-moments, we use the result

∫ 1

0
urQ(u)du =

r

∑
y=0

(−1)y
(r

y

)
σ

λ α+1 B

(
y+ 1

λ
,α + 1

)
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in (1.34)–(1.37). Various reliability characteristics are determined as follows:

H(u) =

⎡
⎣σα

(
1− (1− u)λ

λ

)α−1

(1− u)λ

⎤
⎦
−1

,

M(u) =
σα
λ α B(1−u)λ Λ(u),

Λ(u) =

⎡
⎣uσα

(
1− (1− u)λ

λ

)α−1

(1− u)λ−1

⎤
⎦
−1

,

R(u) =
σα
uλ α

[(
1− (1− u)λ

λ

)α

−B

(
1
λ
+ 1,α

)
+B(1−u)α

(
α,

1
λ + 1

)]
.

The parameters of the model are estimated by the method of maximum likelihood
as discussed in Mudholkar et al. [428]. Due to the variety of shapes that the hazard
functions can assume (see Chap. 4 for details), it is a useful model for survival data.
This distribution has also appeared in some other discussions including assessment
of tests of exponentiality (Mudholkar and Kollia [425]), approximations to sampling
distributions, analysis of censored survival data (Mudholkar et al. [428]), and
generating samples and approximating other distributions. Chi-squared goodness-
of-fit tests for this family of distributions have been discussed by Voinov et al. [575].

3.6 Applications to Lifetime Data

In order to emphasize the applications of quantile function in reliability analysis, we
demonstrate here that some of the models discussed in the preceding sections can
serve as useful lifetime distributions. The conditions in the parameters that make
the underlying random variables non-negative have been obtained. We now fit these
models for some real data on failure times. Three representative models, one each
from the lambda family, the power-Pareto and Govindarajulu’s distributions, will be
considered for this purpose. The first two examples have been discussed in Nair and
Vineshkumar [452].

The four-parameter lambda distribution in (3.44) is applied to the data of 100
observations on failure times of aluminum coupons (data source: Birnbaum and
Saunders [104] and quoted in Lai and Xie [368]). The last observation in the data
is excluded from the analysis to extract equal frequencies in the bins. Distribute
the data into ten classes, each containing ten observations in ascending order of
magnitude. For estimating the parameters, we use the method of L-moments. The
first four sample L-moments are l1 = 1,391.79, l2 = 215.683, l3 = 3.570 and l4 =
20.7676. Thus, the model parameters need to be solved from
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Fig. 3.7 Q-Q plot for the data on lifetimes of aluminum coupons

λ1 +
1
λ2

(
1

λ4 + 1
− 1

λ3 + 1

)
= 1,391.79,

1
λ2

(
1

(λ3 + 1)(λ3 + 2)
)+

1
(λ4 + 1)(λ4 + 2)

)
= 215.683,

1
λ2

(
λ3 − 1

(λ3 + 1)(λ3 + 2)(λ3 + 4)
− λ4 − 1

(λ4 + 1)(λ4 + 2)(λ4 + 3)

)
= 3.570,

1
λ2

(
(λ3 − 1)(λ3 − 2)

(λ3 + 1)(λ3 + 2)(λ3 + 3)(λ3 + 4)
− (λ4 − 1)(λ4 − 2)

(λ4 + 1)(λ4 + 2)(λ4 + 3)(λ4 + 4)

)

= 20.7676.

Among the solutions, the best fitting one, determined by the chi-square test (i.e., the
parameter estimates that gave the least chi-square value), is

λ̂1 = 1,382.18, λ̂2 = 0.0033, λ̂3 = 0.2706 and λ̂4 = 0.2211. (3.90)

Further, the upper limit of the support is 2,750.7, and thus the estimated support
(256.28, 2,750.7) covers the range of observations (370, 2,240) in the data.
Using (3.44) for u = 1

10 ,
2
10 , · · · , and the fact that if U has a uniform distribution on

[0,1] then X and Q(u) have identical distributions, we find the observed frequencies
in the classes to be 10, 10, 9, 12, 8, 11, 8, 12 and 10. Of course, under the uniform
model, the expected frequencies are 10 in each class. Thus, the optimized chi-square
value for the fit is χ2 = 1.8 which does not lead to rejection of the model in (3.44)
for the given data. The Q-Q plot corresponding to the model is presented in Fig. 3.7.

The second example concerns the power-Pareto distribution in (3.66). To ascer-
tain the potential of the model, we fit it to the data on the times to first failure of
20 electric carts, presented by Zimmer et al. [604], and also quoted in Lai and Xie
[368]. Here again, the method of L-moments is adopted. The sample L-moments are
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Fig. 3.8 Q-Q plot for the data on times to first failure of electric carts
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Fig. 3.9 Q-Q plot for the data on failure times of devices using Govindarajulu’s model

l1 = 14.675, l2 = 7.335 and l3 = 2.4678. Equating the population L-moments L1,L2

and L3 presented in Sect. 3.3 to l1, l2 and l3 and solving the resulting equations, we
obtain

λ̂1 = 0.2346, λ̂2 = 0.0967 and Ĉ = 1,530.3.

The corresponding Q-Q plot is presented in Fig. 3.8.
Govindarajulu’s distribution has already been shown as a suitable model for

failure times in the original paper of Govindarajulu [224]. We reinforce this by
fitting it to the data on the failure times of 50 devices, reported in Lai and Xie [368].
Equating the first two L-moments with those of the sample, the estimates of the
model parameters are obtained as

σ̂ = 93.463 and β̂ = 2.0915.
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Dividing the data into five groups of ten observations each, we find by proceeding
as in the first example that the chi-square value is 1.8, which does not lead to
the rejection of the considered model. Figure 3.9 presents the Q-Q plot of the fit
obtained.

The objectives of these illustrations were limited to the purpose of demonstrating
the use of quantile function models in reliability analysis. A full theoretical analysis
and demonstration to real data situations of all the reliability functions vis-a-vis their
ageing properties will be taken up subsequently in Chap. 4.
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