
Chapter 1
Quantile Functions

Abstract A probability distribution can be specified either in terms of the distri-
bution function or by the quantile function. This chapter addresses the problem of
describing the various characteristics of a distribution through its quantile function.
We give a brief summary of the important milestones in the development of
this area of research. The definition and properties of the quantile function with
examples are presented. In Table 1.1, quantile functions of various life distributions,
representing different data situations, are included. Descriptive measures of the
distributions such as location, dispersion and skewness are traditionally expressed
in terms of the moments. The limitations of such measures are pointed out and some
alternative quantile-based measures are discussed. Order statistics play an important
role in statistical analysis. Distributions of order statistics in quantile forms, their
properties and role in reliability analysis form the next topic in the chapter. There
are many problems associated with the use of conventional moments in modelling
and analysis. Exploring these, and as an alternative, the definition, properties and
application of L-moments in describing a distribution are presented. Finally, the
role of certain graphical representations like the Q-Q plot, box-plot and leaf-plot are
shown to be useful tools for a preliminary analysis of the data.

1.1 Introduction

As mentioned earlier, a probability distribution can be specified either in terms of
the distribution function or by the quantile function. Although both convey the same
information about the distribution, with different interpretations, the concepts and
methodologies based on distribution functions are traditionally employed in most
forms of statistical theory and practice. One reason for this is that quantile-based
studies were carried out mostly when the traditional approach either is difficult
or fails to provide desired results. Except in a few isolated areas, there have been
no systematic parallel developments aimed at replacing distribution functions in
modelling and analysis by quantile functions. However, the feeling that through
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2 1 Quantile Functions

an appropriate choice of the domain of observations, a better understanding of a
chance phenomenon can be achieved by the use of quantile functions, is fast gaining
acceptance.

Historically, many facts about the potential of quantiles in data analysis were
known even before the nineteenth century. It appears that the Belgian sociologist
Quetelet [499] initiated the use of quantiles in statistical analysis in the form of the
present day inter-quantile range. A formal representation of a distribution through
a quantile function was introduced by Galton (1822–1911) [206] who also initiated
the ordering of observations along with the concepts of median, quartiles and
interquartile range. Subsequently, the research on quantiles was directed towards
estimation problems with the aid of sample quantiles, their large sample behaviour
and limiting distributions (Galton [207, 208]). A major development in portraying
quantile functions to represent distributions is the work of Hastings et al. [264], who
introduced a family of distributions by a quantile function. This was refined later
by Tukey [568]. The symmetric distribution of Tukey [568] and his articulation
of exploratory data analysis sparked considerable interest in quantile functional
forms that continues till date. Various aspects of the Tukey family and general-
izations thereto were studied by a number of authors including Hogben [273],
Shapiro and Wilk [536], Filliben [197], Joiner and Rosenblatt [304], Ramberg
and Schmeiser [504], Ramberg [501], Ramberg et al. [502], MacGillivray [407],
Freimer et al. [203], Gilchrist [215] and Tarsitano [563]. We will discuss all these
models in Chap. 3. Another turning point in the development of quantile functions
is the seminal paper by Parzen [484], in which he emphasized the description
of a distribution in terms of the quantile function and its role in data modelling.
Parzen [485–487] exhibits a sequential development of the theory and application
of quantile functions in different areas and also as a tool in unification of various
approaches.

Quantile functions have several interesting properties that are not shared by
distributions, which makes it more convenient for analysis. For example, the sum
of two quantile functions is again a quantile function. There are explicit general dis-
tribution forms for the quantile function of order statistics. In Sect. 1.2, we mention
these and some other properties. Moreover, random numbers from any distribution
can be generated using appropriate quantile functions, a purpose for which lambda
distributions were originally conceived. The moments in different forms such as raw,
central, absolute and factorial have been used effectively in specifying the model,
describing the basic characteristics of distributions, and in inferential procedures.
Some of the methods of estimation like least squares, maximum likelihood and
method of moments often provide estimators and/or their standard errors in terms
of moments. Outliers have a significant effect on the estimates so derived. For
example, in the case of samples from the normal distribution, all the above methods
give sample mean as the estimate of the population mean, whose values change
significantly in the presence of an outlying observation. Asymptotic efficiency of the
sample moments is rather poor for heavy tailed distributions since the asymptotic
variances are mainly in terms of higher order moments that tend to be large in this
case. In reliability analysis, a single long-term survivor can have a marked effect
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on mean life, especially in the case of heavy tailed models which are commonly
encountered for lifetime data. In such cases, quantile-based estimates are generally
found to be more precise and robust against outliers. Another advantage in choosing
quantiles is that in life testing experiments, one need not wait until the failure of
all the items on test, but just a portion of them for proposing useful estimates.
Thus, there is a case for adopting quantile functions as models of lifetime and base
their analysis with the aid of functions derived from them. Many other facets of
the quantile approach will be more explicit in the sequel in the form of alternative
methodology, new opportunities and unique cases where there are no corresponding
results if one adopts the distribution function approach.

1.2 Definitions and Properties

In this section, we define the quantile function and discuss some of its general
properties. The random variable considered here has the real line as its support, but
the results are valid for lifetime random variables which take on only non-negative
values.

Definition 1.1. Let X be a real valued continuous random variable with distribution
function F(x) which is continuous from the right. Then, the quantile function Q(u)
of X is defined as

Q(u) = F−1(u) = inf{x : F(x)≥ u}, 0 ≤ u ≤ 1. (1.1)

For every −∞ < x < ∞ and 0 < u < 1, we have

F(x)≥ u if and only if Q(u)≤ x.

Thus, if there exists an x such that F(x) = u, then F(Q(u)) = u and Q(u) is the
smallest value of x satisfying F(x) = u. Further, if F(x) is continuous and strictly
increasing, Q(u) is the unique value x such that F(x) = u, and so by solving the
equation F(x) = u, we can find x in terms of u which is the quantile function of X .
Most of the distributions we consider in this work are of this form and nature.

Definition 1.2. If f (x) is the probability density function of X , then f (Q(u)) is
called the density quantile function. The derivative of Q(u), i.e.,

q(u) = Q′(u),

is known as the quantile density function of X . By differentiating F(Q(u)) = u, we
find

q(u) f (Q(u)) = 1. (1.2)
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Some important properties of quantile functions required in the sequel are as
follows.

1. From the definition of Q(u) for a general distribution function, we see that

(a) Q(u) is non-decreasing on (0,1) with Q(F(x)) ≤ x for all −∞ < x < ∞ for
which 0 < F(x)< 1;

(b) F(Q(u))≥ u for any 0 < u < 1;
(c) Q(u) is continuous from the left or Q(u−) = Q(u);
(d) Q(u+) = inf{x : F(x)> u} so that Q(u) has limits from above;
(e) Any jumps of F(x) are flat points of Q(u) and flat points of F(x) are jumps

of Q(u).

2. If U is a uniform random variable over [0,1], then X = Q(U) has its distribution
function as F(x). This follows from the fact that

P(Q(U)≤ x) = P(U ≤ F(x)) = F(x).

This property enables us to conceive a given data set as arising from the uniform
distribution transformed by the quantile function Q(u).

3. If T (x) is a non-decreasing function of x, then T (Q(u)) is a quantile function.
Gilchrist [215] refers to this as the Q-transformation rule. On the other hand, if
T (x) is non-increasing, then T (Q(1− u)) is also a quantile function.

Example 1.1. Let X be a random variable with Pareto type II (also called Lomax)
distribution with

F(x) = 1−αc(x+α)−c, x > 0; α,c > 0.

Since F(x) is strictly increasing, setting F(x) = u and solving for x, we obtain

x = Q(u) = α[(1− u)−
1
c − 1].

Taking T (X) = Xβ , β > 0, we have a non-decreasing transformation which
results in

T (Q(u)) = αβ [(1− u)−
1
c − 1]β .

When T (Q(u)) = y, we obtain, on solving for u,

u = G(y) = 1−
⎛
⎝1+

y
1
β

α

⎞
⎠

−c

which is a Burr type XII distribution with T (Q(u)) being the corresponding
quantile function.
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Example 1.2. Assume X has Pareto type I distribution with

F(x) = 1−
( x

σ

)α
, x > σ ; α > 0, σ > 0.

Then, working as in the previous example, we see that

Q(u) = σ(1− u)−
1
α .

Apply the transformation T (X) = Y = X−1, which is non-increasing, we have

T (Q(1− u)) = σ−1u
1
α

and equating this to y and solving, we get

G(y) = (yσ)α , 0 ≤ y ≤ 1
σ
.

G(y) is the distribution function of a power distribution with T (Q(1− u)) being
the corresponding quantile function.

4. If Q(u) is the quantile function of X with continuous distribution function
F(x) and T (u) is a non-decreasing function satisfying the boundary conditions
T (0) = 0 and T (1) = 1, then Q(T (u)) is a quantile function of a random variable
with the same support as X .

Example 1.3. Consider a non-negative random variable with continuous distri-

bution function F(x) and quantile function Q(u). Taking T (u) = u
1
θ , for θ > 0,

we have T (0) = 0 and T (1) = 1. Then,

Q1(u) = Q(T (u)) = Q(u
1
θ ).

Further, if y = Q1(u), u
1
θ = y and so the distribution function corresponding to

Q1(u) is

G(x) = Fθ (x).

The random variable Y with distribution function G(x) is called the proportional
reversed hazards model of X . There is considerable literature on such models in
reliability and survival analysis. If we take X to be exponential with

F(x) = 1− e−λ x, x > 0; λ > 0,

so that

Q(u) = λ−1(− log(1− u)),
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then

Q1(u) = λ−1(− log(1− u
1
θ ))

provides

G(x) = (1− e−λ x)θ ,

the generalized or exponentiated exponential law (Gupta and Kundu [250]). In a
similar manner, Mudholkar and Srivastava [429] take the baseline distribution as
Weibull. For some recent results and survey of such models, we refer the readers
to Gupta and Gupta [240]. In Chap. 3, we will come across several quantile
functions that represent families of distributions containing some life distribu-
tions as special cases. They are highly flexible empirical models capable of
approximating many continuous distributions. The above transformation on these
models generates new proportional reversed hazards models of a general form.
The analysis of lifetime data employing such models seems to be an open issue.

Remark 1.1. From the form of G(x) above, it is clear that for positive integral
values of θ , it is simply the distribution function of the maximum of a random
sample of size θ from the exponential population with distribution function F(x)
above. Thus, G(x) may be simply regarded as the distribution function of the
maximum from a random sample of real size θ (instead of an integer). This
viewpoint was discussed by Stigler [547] under the general idea of ‘fractional
order statistics’; see also Rohatgi and Saleh [509].

Remark 1.2. Just as G(x) can be regarded as the distribution function of the
maximum from a random sample of (real) size θ from the population with
distribution function F(x), we can consider G∗(x) = 1 − (1 − F(x))θ as a
generalized form corresponding to the minimum of a random sample of (real)
size θ . The model G∗(x) is, of course, the familiar proportional hazards model.
It is important to mention here that these two models are precisely the ones
introduced by Lehmann [382], as early as in 1953, as stochastically ordered
alternatives for nonparametric tests of equality of distributions.

Remark 1.3. It is useful to bear in mind that for distributions closed under
minima such as exponential and Weibull (i.e., the distributions for which the
minima have the same form of the distribution but with different parameters),
the distribution function G(x) would provide a natural generalization while,
for distributions closed under maxima such as power and inverse Weibull (i.e.,
the distributions for which the maxima have the same form of the distribution
but with different parameters), the distribution function G∗(x) would provide a
natural generalization.

5. The sum of two quantile functions is again a quantile function. Likewise,
two quantile density functions, when added, produce another quantile density
function.
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6. The product of two positive quantile functions is a quantile function. In this case,
the condition of positivity cannot be relaxed, as in general, there may be negative
quantile functions that affect the increasing nature of the product. Since we are
dealing primarily with lifetimes, the required condition will be automatically
satisfied.

7. If X has quantile function Q(u), then 1
X has quantile function 1/Q(1− u).

Remark 1.4. Property 7 is illustrated in Example 1.2. Chapter 3 contains some
examples wherein quantile functions are generated as sums and products of
quantile functions of known distributions. It becomes evident from Properties
3–7 that they can be used to produce new distributions from the existing ones.
Thus, in our approach, a few basic forms are sufficient to begin with since
new forms can always be evolved from them that match our requirements and
specifications. This is in direct contrast to the abundance of probability density
functions built up, each to satisfy a particular data form in the distribution
function approach. In data analysis, the crucial advantage is that if one quantile
function is not an appropriate model, the features that produce lack of fit can
be ascertained and rectification can be made to the original model itself. This
avoids the question of choice of an altogether new model and the repetition of all
inferential procedures for the new one as is done in most conventional analyses.

8. The concept of residual life is of special interest in reliability theory. It represents
the lifetime remaining in a unit after it has attained age t. Thus, if X is the original
lifetime with quantile function Q(u), the associated residual life is the random
variable Xt = (X − t|X > t). Using the definition of conditional probability, the
survival function of Xt is

F̄t(x) = P(Xt > x) =
F̄(x+ t)

F̄(t)
,

where F̄(x) = P(X > x) = 1−F(x) is the survival function. Thus, we have

Ft(x) =
F(x+ t)−F(t)

1−F(t)
. (1.3)

Let F(t) = u0, F(x+ t) = v and Ft(x) = u. Then, with

x+ t = Q(v), x = Q1(u), say,

we have

Q1(u) = Q(v)−Q(u0)

and consequently from (1.3),

u(1− u0) = v− u0
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or

v = u0 +(1− u0)u.

Thus, the quantile function of the residual life Xt becomes

Q1(u) = Q(u0 +(1− u0)u)−Q(u0). (1.4)

Equation (1.4) will be made use of later in defining mean residual quantile
function in Chap. 2.

9. In some reliability and quality control situations, truncated forms of lifetime
models arise naturally, and the truncation may be on the right or on the left or
on both sides. Suppose F(x) is the underlying distribution function and Q(u) is
the corresponding quantile function. Then, if the distribution is truncated on the
right at x = U (i.e., the observations beyond U cannot be observed), then the
corresponding distribution function is

FRT (x) =
F(x)
F(U)

, 0 ≤ x ≤U,

and its quantile function is

QRT (x) = Q(uQ−1(U)).

Similarly, if the distribution is truncated on the left at x = L (i.e., the obser-
vations below L cannot be observed), then the corresponding distribution func-
tion is

FLT (x) =
F(x)−F(L)

1−F(L)
, x ≥ L,

and its quantile function is

QLT (u) = Q(u+(1− u)Q−1(L)).

Finally, if the distribution is truncated on the left at x = L and also on the right at
x =U , then the corresponding distribution function is

FDT (x) =
F(x)−F(L)
F(U)−F(L)

, L ≤ x ≤U,

and its quantile function is

QDT (u) = Q(uQ−1(U)+ (1− u)Q−1(L)).
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Example 1.4. Suppose the underlying distribution is logistic with distribution
function F(x) = 1/(1 + e−x) on the whole real line R. It is easily seen that
the corresponding quantile function is Q(u) = log

(
u

1−u

)
. Further, suppose we

consider the distribution truncated on the left at 0, i.e., L = 0, for proposing a
lifetime model. Then, from the expression above and the fact that Q−1(0) = 1

2 ,
we arrive at the quantile function

QLT (u) = Q

(
u+(1− u)

1
2

)
= log

(
u+ 1

2(1− u)

1− u− 1
2 (1− u)

)
= log

(
1+ u
1− u

)

corresponding to the half-logistic distribution of Balakrishnan [47, 48]; see
Table 1.1.

1.3 Quantile Functions of Life Distributions

As mentioned earlier, we concentrate here on distributions of non-negative random
variables representing the lifetime of a component or unit. The distribution function
of such random variables is such that F(0−) = 0. Often, it is more convenient to
work with

F̄(x) = 1−F(x) = P(X > x),

which is the probability that the unit survives time (referred to as the age of the unit)
x. It is also called the reliability or survival function since it expresses the probability
that the unit is still reliable at age x.

In the previous section, some examples of quantile functions and a few methods
of obtaining them were explained. We now present in Table 1.1 quantile functions of
many distributions considered in the literature as lifetime models. The properties of
these distributions are discussed in the references cited below each of them. Models
like gamma, lognormal and inverse Gaussian do not find a place in the list as their
quantile functions are not in a tractable form. However, in the next chapter, we will
see quantile forms that provide good approximations to them.

1.4 Descriptive Quantile Measures

The advent of the Pearson family of distributions was a major turning point in
data modelling using distribution functions. The fact that members of the family
can be characterized by the first four moments gave an impetus to the extensive
use of moments in describing the properties of distributions and their fitting to
observed data. A familiar pattern of summary measures took the form of mean
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Table 1.1 Quantile functions of some lifetime distributions

No. Distribution F̄(x) Q(u)

1 Exponential exp[−λ x] λ−1(− log(1−u))
(Marshall and Olkin [412]) x > 0; λ > 0

2 Weibull exp[−( x
σ )

λ ] σ (− log(1−u))
1
λ

(Murthy et al. [434], x > 0; λ ,σ > 0
Hahn and Shapiro [257])

3 Pareto II αc(x+α)−c α [(1−u))−
1
c −1]

(Marshall and Olkin [412]) x > 0; α ,c > 0

4 Rescaled beta (1− x
R )

c R[1− (1−u))
1
c ]

(Marshall and Olkin [412]) 0 ≤ x ≤ R; c,R > 0

5 Half-logistic 2
[
1+ exp

(
x
σ
)]−1 σ log

(
1+u
1−u

)
(Balakrishnan [47, 48], x > 0; σ > 0
Balakrishnan and Wong [61])

6 Power 1− ( x
α )β αu

1
β

(Marshall and Olkin [412]) 0 ≤ x ≤ α ; α ,β > 0

7 Pareto I ( x
σ )

−α σ (1−u)−
1
α

(Marshall and Olkin [412]) x > σ > 0; α ,σ > 0

8 Burr type XII (1+ xc)−k [(1−u)
1
k −1]

1
c

(Zimmer et al. [604], x > 0; c,k > 0
Fry [204])

9 Gompertz exp[−B(Cx−1)
logC ] 1

logC [1− logC log(1−u)
B ]

(Lai and Xie [368]) x > 0; B,C > 0

10 Greenwich [225] (1+ x2

b2 )
− a

2 b[(1−u)
2
a −1]

1
2

x ≥ 0; a,b > 0

11 Kus [364] 1−eλe−βx

1−eλ − 1
β log[λ−1 log{1− (1−u)

x > 0; λ ,β > 0 (1− e−λ )}]
12 Logistic exponential 1+(eλθ−1)k

1+(eλ(x+θ )−1)k
1
λ log[1+{ (eλθ−1)k+u

1−u } 1
k ]

(Lan and Leemis [372]) x ≥ 0; λ > 0,
k > 0, θ ≥ 0

13 Dimitrakopoulou et al. [178] exp[1− (1+λ xβ )α ] λ−1[{1− log(1−u)} 1
α −1]

1
β

x > 0; α ,β ,λ > 0

14 Log Weibull exp[−(log(1+ρx))k] ρ−1[exp(− log(1−u))
1
k −1]

(Avinadav and Raz [41]) x > 0; ρ ,k > 0

15 Modified Weibull exp[−ασ (e(
x
σ )λ −1)] σ [log(1+ log(1−u)

ασ )]
1
λ

extension (Xie et al. [595]) x > 0; α ,σ ,λ > 0

16 Exponential power exp[e−(λ t)α −1] 1
λ [− log(1+ log(1−u))]

1
α

(Paranjpe et al. [482]) x > 0; λ ,α > 0

17 Generalized Pareto (1+ ax
b )−

a+1
a b

a [(1−u)−
a

a+1 −1]
(Lai and Xie [368]) x > 0,b > 0,a >−1

18 Inverse Weibull 1− exp[−( σ
x )

λ ] σ (− logu)−
1
λ

(Erto [188]) x > 0; σ ,λ > 0

(continued)
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Table 1.1 (continued)

No. Distribution F̄(x) Q(u)

19 Extended Weibull
θ exp[−( x

σ )λ ]

1−(1−θ)exp[−( x
σ )λ ]

σ [log θ+(1−θ)(1−u)
1−u ]

1
λ

(Marshall and Olkin [411]) x > 0; θ ,λ ,σ > 0

20 Generalized exponential 1− [1− exp(− x
σ )]

θ σ [− log(1−u
1
θ )]

(Gupta et al. [239]) x > 0; σ ,θ > 0

21 Exponentiated Weibull 1− [1− exp(− x
σ )

λ ]θ σ [− log(1−u
1
θ )]

1
λ

(Mudholkar et al. [427]) x > 0; σ ,θ ,λ > 0

22 Generalized Weibull [1−λ ( x
β )

α ][
1
λ ] β [ 1−(1−u)λ

λ ]
1
α , λ �= 0

(Mudholkar and Kollia [426]) x > 0 for λ ≤ 0

0 < x < β
λ

1
α

, λ > 0 β [− log(1−u)]
1
α , λ = 0

α ,β > 0
23 Exponential geometric (1− p)e−λx(1− pe−λx)−1 1

λ log( 1−pu
1−u )

(Adamidis and
Loukas [18])

x > 0, λ > 0, 0 < p < 1

24 Log logistic (1+(αx)β )−1 α−1( u
1−u )

1
β

(Gupta et al. [237]) x > 0, α ,β > 0

25 Generalized half-logistic 2(1−kx)1/k

1+(1−kx)1/k
1
k

{
1− ( 1−u

1+u

)k
}

(Balakrishnan and
Sandhu [59],

0 ≤ x ≤ 1
k , k ≥ 0

Balakrishnan and
Aggarwala [49])

for location, variance for dispersion, and the Pearson’s coefficients β1 =
μ2

3
μ3

2
for

skewness and β2 =
μ4
μ2

2
for kurtosis. While the mean and variance claimed universal

acceptance, several limitations of β1 and β2 were subsequently exposed. Some of
the concerns with regard to β1 are: (1) it becomes arbitrarily large or even infinite
making it difficult for comparison and interpretation as relatively small changes in
parameters produce abrupt changes, (2) it does not reflect the sign of the difference
(mean-median) which is a traditional basis for defining skewness, (3) there exist
asymmetric distributions with β1 = 0 and (4) instability of the sample estimate of
β1 while matching with the population value. Similarly, for a standardized variable
X , the relationship

E(X4) = 1+V(X2) (1.5)

would mean that the interpretation of kurtosis depends on the concentration of the
probabilities near μ ±σ as well as in the tails of the distribution.

The specification of a distribution through its quantile function takes away the
need to describe a distribution through its moments. Alternative measures in terms
of quantiles that reduce the shortcomings of the moment-based ones can be thought
of. A measure of location is the median defined by
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M = Q(0.5). (1.6)

Dispersion is measured by the interquartile range

IQR = Q3 −Q1, (1.7)

where Q3 = Q(0.75) and Q1 = Q(0.25).
Skewness is measured by Galton’s coefficient

S =
Q1 +Q3 − 2M

Q3 −Q1
. (1.8)

Note that in the case of extreme positive skewness, Q1 → M while in the case of
extreme negative skewness Q3 → M so that S lies between −1 and +1. When the
distribution is symmetric, M = Q1+Q3

2 and hence S = 0. Due to the relation in (1.5),
kurtosis can be large when the probability mass is concentrated near the mean or in
the tails. For this reason, Moors [421] proposed the measure

T = [Q(0.875)−Q(0.625)+Q(0.375)−Q(0.125)]/IQR (1.9)

as a measure of kurtosis. As an index, T is justified on the grounds that the
differences Q(0.875)−Q(0.625) and Q(0.375)−Q(0.125) become large (small)
if relatively small (large) probability mass is concentrated around Q3 and Q1

corresponding to large (small) dispersion in the vicinity of μ ±σ .
Given the form of Q(u), the calculations of all the coefficients are very simple,

as we need to only substitute the appropriate fractions for u. On the other hand,
calculation of moments given the distribution function involves integration, which
occasionally may not even yield closed-form expressions.

Example 1.5. Let X follow the Weibull distribution with (see Table 1.1)

Q(u) = σ(− log(1− u))
1
λ .

Then, we have

M = Q

(
1
2

)
= σ(log2)

1
λ ,

S =
(log4)

1
λ +(log 4

3 )
1
λ − 2(log2)

1
λ

(log4)
1
λ − (log 4

3

) 1
λ

,

IQR = σ

[
(log4)

1
λ −

(
log

4
3

) 1
λ
]
,
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and

T =
(log8)

1
λ − (log 8

3

) 1
λ +

(
log 8

5

) 1
λ − (log 8

7

) 1
λ

(log4)
1
λ − (log 4

3

) 1
λ

.

The effect of a change of origin and scale on Q(u) and the above four measures
are of interest in later studies. Let X and Y be two random variables such that Y =
aX + b. Then,

FY (y) = P(Y ≤ y) = P

(
X ≤ y− b

a

)
= FX

(
y− a

b

)
.

If QX(u) and QY (u) denote the quantile functions of X and Y , respectively,

FX

(
y− a

b

)
= u ⇒ QX(u) =

y− b
a

=
QY (u)− b

a

or

QY (u) = aQX(u)+ b.

So, we simply have

MY = QY (0.5) = aQX(0.5)+ b = aMX + b.

Similar calculations using (1.7), (1.8) and (1.9) yield

IQRY = aIQRX , SY = SX and TY = TX .

Other quantile-based measures have also been suggested for quantifying spread,
skewness and kurtosis. One measure of spread, similar to mean deviation in
the distribution function approach, is the median of absolute deviation from the
median, viz.,

A = Med(|X −M|). (1.10)

For further details and justifications for (1.10), we refer to Falk [194]. A second
popular measure that has received wide attention in economics is Gini’s mean
difference defined as

Δ =

∫ ∞

−∞

∫ ∞

−∞
|x− y| f (x) f (y)dxdy

= 2
∫ ∞

−∞
F(x)(1−F(x))dx, (1.11)

where f (x) is the probability density function of X . Setting F(x) = u in (1.11), we
have
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Δ = 2
∫ 1

0
u(1− u)q(u)du (1.12)

= 2
∫ 1

0
(2u− 1)Q(u)du. (1.13)

The expression in (1.13) follows from (1.12) by integration by parts. One
may use (1.12) or (1.13) depending on whether q(u) or Q(u) is specified.
Gini’s mean difference will be further discussed in the context of reliability in
Chap. 4.

Example 1.6. The generalized Pareto distribution with (see Table 1.1)

Q(u) =
b
a

{
(1− u)−

a
a+1 − 1

}

has its quantile density function as

q(u) =
b

a+ 1
(1− u)−

a
a+1−1.

Then, from (1.12), we obtain

Δ =
2b

a+ 1

∫ 1

0
u(1− u)−

a
a+1 du =

2b
a+ 1

B

(
2,

1
a+ 1

)
,

where B(m,n) =
∫ 1

0 tm−1(1− t)n−1dt is the complete beta function. Thus, we obtain
the simplified expression

Δ =
2b(a+ 1)

a+ 2
.

Hinkley [271] proposed a generalization of Galton’s measure of skewness of the
form

S(u) =
Q(u)+Q(1− u)− 2Q(0.5)

Q(u)−Q(1− u)
. (1.14)

Obviously, (1.14) reduces to Galton’s measure when u = 0.75. Since (1.14)
is a function of u and u is arbitrary, an overall measure of skewness can be
provided as

S2 = sup
1
2≤u≤1

S(u).

Groeneveld and Meeden [227] suggested that the numerator and denominator
in (1.14) be integrated with respect to u to arrive at the measure
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S3 =

∫ 1
1
2
{Q(u)+Q(1− u)− 2Q(0.5)}du
∫ 1

1
2
{Q(u)+Q(1− u)}du

.

Now, in terms of expectations, we have

∫ 1

1
2

Q(u)du =

∫ x

M
x f (x)dx,

∫ 1

1
2

Q(1− u)du =

∫ 1
2

0
Q(u)du =

∫ M

0
x f (x)dx,

∫ 1

1
2

Q(0.5)du =
1
2

M,

and thus

S3 =
E(X)−M∫ ∞

M x f (x)dx− ∫M
0 x f (x)dx

=
μ −M

E(|X −M|) . (1.15)

The numerator of (1.15) is the traditional term (being the difference between the
mean and the median) indicating skewness and the denominator is a measure of
spread used for standardizing S3. Hence, (1.15) can be thought of as an index of
skewness in the usual sense. If we replace the denominator by the standard deviation
σ of X , the classical measure of skewness will result.

Example 1.7. Consider the half-logistic distribution with (see Table 1.1)

Q(u) = σ log

(
1+ u
1− u

)
,

μ =

∫ 1

0
Q(u)du = σ log4,

∫ 1

1
2

Q(u)du = σ
(

log16− 3
2

log3

)
,

∫ 1
2

0
Q(u)du = σ

(
3
2

log3− 2log2

)
,

and hence S3 = log( 4
3 )/ log( 64

27).

Instead of using quantiles, one can also use percentiles to define skewness.
Galton [206] in fact used the middle 50 % of observations, while Kelly’s measure
takes 90 % of observations to propose the measure

S4 =
Q(0.90)+Q(0.10)− 2M

Q(0.90)−Q(0.10)
.
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For further discussion of alternative measures of skewness and kurtosis, a review of
the literature and comparative studies, we refer to Balanda and MacGillivray [63],
Tajuddin [559], Joannes and Gill [299], Suleswki [552] and Kotz and Seier [355].

1.5 Order Statistics

In life testing experiments, a number of units, say n, are placed on test and the
quantity of interest is their failure times which are assumed to follow a distribution
F(x). The failure times X1,X2, . . . ,Xn of the n units constitute a random sample
of size n from the population with distribution function F(x), if X1,X2, . . . ,Xn are
independent and identically distributed as F(x). Suppose the realization of Xi in
an experiment is denoted by xi. Then, the order statistics of the random sample
(X1,X2, . . . ,Xn) are the sample values placed in ascending order of magnitude de-
noted by X1:n ≤ X2:n ≤ ·· · ≤ Xn:n, so that X1:n =min1≤i≤n Xi and Xn:n = max1≤i≤n Xi.
The sample median, denoted by m, is the value for which approximately 50 % of the
observations are less than m and 50 % are more than m. Thus

m =

⎧⎨
⎩

Xn+1
2 :n if n is odd

1
2(Xn

2 :n +Xn
2+1:n) if n is even.

(1.16)

Generalizing, we have the percentiles. The 100p-th percentile, denoted by xp, in
the sample corresponds to the value for which approximately np observations are
smaller than this value and n(1 − p) observations are larger. In terms of order
statistics we have

xp =

{
X[np]:n if 1

2n < p < 0.5

X(n+1)−[n(1−p)] if 0.5 < p < 1− 1
2n

, (1.17)

where the symbol [t] is defined as [t] = r whenever r − 0.5 ≤ t < r + 0.5, for all
positive integers r. We note that in the above definition, if xp is the ith smallest
observation, then the ith largest observation is x1−p. Obviously, the median m is the
50th percentile and the lower quartile q1 and the upper quartile q3 of the sample are,
respectively, the 25th and 75th percentiles. The sample interquartile range is

iqr = q3 − q1. (1.18)

All the sample descriptive measures are defined in terms of the sample median,
quartiles and percentiles analogous to the population measures introduced in
Sect. 1.4. Thus, iqr in (1.18) describes the spread, while

s =
q3 + q1 − 2m

q3 − q1
(1.19)
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and

t =
e7 − e5 + e3 − e1

iqr
, (1.20)

where ei =
i
8 , i = 1,3,5,7, describes the skewness and kurtosis.

Parzen [484] introduced the empirical quantile function

Q̄(u) = F−1
n (u) = inf(x : Fn(x)≥ u),

where Fn(x) is the proportion of X1,X2, . . . ,Xn that is at most x. In other words,

Q̄(u) = Xr:n for
r− 1

n
< u <

r
n
, r = 1,2, . . . ,n, (1.21)

which is a step function with jump 1
n . For u = 0, Q̄(u) is taken as X1:n or a

natural minimum if one is available. In the case of lifetime variables, this becomes
Q̄(0). When a smooth function is required for Q̄(u), Parzen [484] suggested the
use of

Q̄1(u) = n
( r

n
− u
)

Xr−1:n + n

(
u− r− 1

n

)
Xr:n

for r−1
n ≤ u ≤ r

n , r = 1,2, . . . ,n. The corresponding empirical quantile density
function is

q̄1(u) =
d

du
Q̄1(u) = n(Xr:n −Xr−1:n), for

r− 1
n

< u <
r
n
.

In this set-up, we have qi = Q̄( i
4 ), i = 1,3 and ei = Q̄( i

8 ), i = 1,3,7,8.
It is well known that the distribution of the rth order statistic Xr:n is given by

Arnold et al. [37]

Fr(x) = P(Xr:n ≤ x) =
n

∑
k=r

(
n
k

)
Fk(x)(1−F(x))n−k. (1.22)

In particular, Xn:n and X1:n have their distributions as

Fn(x) = Fn(x) (1.23)

and

F1(x) = 1− (1−F(x))n. (1.24)



18 1 Quantile Functions

Recalling the definitions of the beta function

B(m,n) =
∫ 1

0
tm−1(1− t)n−1dt, m,n > 0,

and the incomplete beta function ratio

Ix(m,n) =
Bx(m,n)
B(m,n)

,

where

Bx(m,n) =
∫ x

0
tm−1(1− t)n−1dt,

we have the upper tail of the binomial distribution and the incomplete beta function
ratio to be related as (Abramowitz and Stegun [15])

n

∑
k=r

(
n
k

)
pk(1− p)n−k = Ip(r,n− r+ 1). (1.25)

Comparing (1.22) and (1.25) we see that, if a sample of n observations from a
distribution with quantile function Q(u) is ordered, then the quantile function of
the rth order statistic is given by

Qr(ur) = Q(I−1
ur

(r,n− r+ 1)), (1.26)

where

ur = Iu(r,n− r+ 1) (1.27)

and I−1 is the inverse of the beta function ratio I. Thus, the quantile function of
the rth order statistic has an explicit distributional form, unlike the expression for
distribution function in (1.22). However, the expression for Qr(ur) is not explicit
in terms of Q(u). This is not a serious handicap as the Iu(·, ·) function is tabulated
for various values of n and r (Pearson [489]) and also available in all statistical
softwares for easy computation. The distributions of Xn:n and X1:n have simple
quantile forms

Qn(un) = Q

(
u

1
n
n

)

and

Q1(u1) = Q[1− (1− u1)
1
n ].
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The probability density function of Xr:n becomes

fr(x) =
n!

(r− 1)!(n− r)!
Fr−1(x)(1−F(x))n−r f (x)

and so

μr:n = E(Xr:n) =

∫
x fr(x)dx

=
n!

(r− 1)!(n− 1)!

∫ 1

0
ur−1(1− u)n−rQ(u)du. (1.28)

This mean value is referred to as the rth mean rankit of X . For reasons explained
earlier with reference to the use of moments, often the median rankit

Mr:n = Q(I−1
0.5(r,n− r+ 1)), (1.29)

which is robust, is preferred over the mean rankit.
The importance and role of order statistics in the study of quantile function

become clear from the discussions in this section. Added to this, there are several
topics in reliability analysis in which order statistics appear quite naturally. One of
them is system reliability. We consider a system consisting of n components whose
lifetimes X1,X2, . . . ,Xn are independent and identically distributed. The system is
said to have a series structure if it functions only when all the components are func-
tioning, and the lifetime of this system is the smallest among the Xi’s or X1:n. In the
parallel structure, on the other hand, the system functions if and only if at least one
of the components work, so that the system life is Xn:n. These two structures are em-
bedded in what is called a k-out-of-n system, which functions if and only if at least
k of the components function. The lifetime of such a system is obviously Xn−k+1:n.

In life testing experiments, when n identical units are put on test to ascertain
their lengths of life, there are schemes of sampling wherein the experimenter need
not have to wait until all units fail. The experimenter may choose to observe only
a prefixed number of failures of, say, n − r units and terminate the experiment
as soon as the (n − r)th unit fails. Thus, the lifetimes of r units that are still
working get censored. This sampling scheme is known as type II censoring. The
data consists of realizations of X1:n,X2:n, . . . ,Xn−r:n. Another sampling scheme is
to prefix a time T ∗ and observe only those failures that occur up to time T ∗. This
scheme is known as type I censoring, and in this case the number of failures to
be observed is random. One may refer to Balakrishnan and Cohen [51] and Cohen
[154] for various methods of inference for type I and type II censored samples from
a wide array of lifetime distributions. Yet another sampling scheme is to prefix the
number of failures at n− r and also a time T ∗. If (n− r) failures occur before time
T ∗, then the experiment is terminated; otherwise, observe all failures until time
T ∗. Thus, the time of truncation of the experiment is now min(T,Xn−r:n). This is
referred to as type I hybrid censoring; see Balakrishnan and Kundu [53] for an
overview of various developments on this and many other forms of hybrid censoring
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schemes. A third important application of order statistics is in the construction of
tests regrading the nature of ageing of a device; see Lai and Xie [368]. For an
encyclopedic treatment on the theory, methods and applications of order satistics,
one may refer to Balakrishnan and Rao [56, 57].

1.6 Moments

The emphasis given to quantiles in describing the basic properties of a distribution
does not in any way minimize the importance of moments in model specification and
inferential problems. In this section, we look at various types of moments through
quantile functions. The conventional moments

μ ′
r = E(Xr) =

∫ ∞

0
xr f (x)dx

are readily expressible in terms of quantile functions, by the substitution x =
Q(u), as

μ ′
r =

∫ 1

0
{Q(u)}rdu. (1.30)

In particular, as already seen, the mean is

μ =

∫ 1

0
Q(u)du =

∫ 1

0
(1− u)q(u)du. (1.31)

The central moments and other quantities based on it are obtained through the well-
known relationships they have with the raw moments μ ′

r in (1.30).
Some of the difficulties experienced while employing the moments in descriptive

measures as well as in inferential problems have been mentioned in the previous
sections. The L-moments to be considered next can provide a competing alternative
to the conventional moments. Firstly, by definition, they are expected values of
linear functions of order statistics. They have generally lower sampling variances
and are also robust against outliers. Like the conventional moments, L-moments can
be used as summary measures (statistics) of probability distributions (samples), to
identify distributions and to fit models to data. The origin of L-moments can be
traced back to the work on linear combination of order statistics in Sillito [537] and
Greenwood et al. [226]. It was Hosking [276] who presented a unified theory on
L-moments and made a systematic study of their properties and role in statistical
analysis. See also Hosking [277, 279, 280] and Hosking and Wallis [282] for more
elaborate details on this topic.

The rth L-moment is defined as

Lr =
1
r

r−1

∑
k=0

(−1)k
(

r− 1
k

)
E(Xr−k:r), r = 1,2,3, . . . (1.32)
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Using (1.28), we can write

Lr =
1
r

r−1

∑
k=0

(−1)k
(

r− 1
k

)
r!

(r− k− 1)!k!

∫ 1

0
ur−k−1(1− u)kQ(u)du.

Expanding (1− u)k in powers of u using binomial theorem and combining powers
of u, we get

Lr =
∫ 1

0

r−1

∑
k=0

(−1)r−1−k
(

r− 1
k

)(
r− 1+ k

k

)
ukQ(u)du. (1.33)

Jones [306] has given an alternative method of establishing the last relationship. In
particular, we obtain:

L1 =
∫ 1

0
Q(u)du = μ , (1.34)

L2 =

∫ 1

0
(2u− 1)Q(u)du, (1.35)

L3 =
∫ 1

0
(6u2 − 6u+ 1)Q(u)du, (1.36)

L4 =

∫ 1

0
(20u3 − 30u2+ 12u− 1)Q(u)du. (1.37)

Sometimes, it is convenient (to avoid integration by parts while computing the
integrals in (1.34)–(1.37)) to work with the equivalent formulas

L1 =

∫ 1

0
(1− u)q(u)du, (1.38)

L2 =
∫ 1

0
(u− u2)q(u)du, (1.39)

L3 =

∫ 1

0
(3u2 − 2u3 − u)q(u)du, (1.40)

L4 =
∫ 1

0
(u− 6u2+ 10u3− 5u4)q(u)du. (1.41)

Example 1.8. For the exponential distribution with parameter λ , we have

Q(u) =−λ−1 log(1− u) and q(u) =
1

λ (1− u)
.
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Hence, using (1.38)–(1.41), we obtain

L1 =

∫ 1

0

1
λ

du = λ−1,

L2 =
∫ 1

0
u(1− u)q(u)du=

∫ 1

0

u
λ

du = (2λ )−1,

L3 =

∫ 1

0
u(1− u)(2u− 1)q(u)du= (6λ )−1,

L4 =
∫ 1

0
u(1− u)(1− 5u+ 5u2)q(u)du = (12λ )−1.

More examples are presented in Chap. 3 when properties of various distributions are
studied.

The L-moments have the following properties that distinguish themselves from
the usual moments:

1. The L-moments exist whenever E(X) is finite, while additional restrictions may
be required for the conventional moments to be finite for many distributions;

2. A distribution whose mean exists is characterized by (Lr : r = 1,2, . . .). This
result can be compared with the moment problem discussed in probability theory.
However, any set that contains all L-moments except one is not sufficient to
characterize a distribution. For details, see Hosking [279, 280];

3. From (1.12), we see that L2 = 1
2 Δ , and so L2 is a measure of spread. Thus,

the first (being the mean) and second L-moments provide measures of location
and spread. In a recent comparative study of the relative merits of the variance
and the mean difference Δ , Yitzhaki [596] noted that the mean difference is
more informative than the variance in deriving properties of distributions that
depart from normality. He also compared the algebraic structure of variance
and Δ and examined the relative superiority of the latter from the stochastic
dominance, exchangability and stratification viewpoints. For further comments
on these aspects and some others in the reliability context, see Chap. 7;

4. Forming the ratios τr =
Lr
L2

, r = 3,4, . . ., for any non-degenerate X with μ <∞, the
result |τr|< 1 holds. Hence, the quantities τr’s are dimensionless and bounded;

5. The skewness and kurtosis of a distribution can be ascertained through the
moment ratios. The L-coefficient of skewness is

τ3 =
L3

L2
(1.42)

and the L-coefficient of kurtosis is

τ4 =
L4

L2
. (1.43)

These two measures satisfy the criteria presented for coefficients of skewness
and kurtosis in terms of order relations. The range of τ3 is (−1,1) while that
of τ4 is 1

4(5τ2
3 − 1) ≤ τ4 < 1. These results are proved in Hosking [279] and



1.6 Moments 23

Jones [306] using different approaches. It may be observed that both τ3 and τ4

are bounded and do not assume arbitrarily large values as β1 (for example, in the
case of F(x) = 1− x−3, x > 1);

6. The ratio

τ2 =
L2

L1
(1.44)

is called L-coefficient of variation. Since X is non-negative in our case, L1 > 0,
L2 > 0 and further

L2 =

∫ 1

0
u(1− u)q(u)du<

∫ 1

0
(1− u)q(u)du= L1

so that 0 < τ2 < 1.

The above properties of L-moments have made them popular in diverse applications,
especially in hydrology, civil engineering and meteorology. Several empirical
studies (as the one by Sankarasubramonian and Sreenivasan [517]) comparing L-
moments and the usual moments reveal that estimates based on the former are less
sensitive to outliers. Just as matching the population and sample moments for the
estimation of parameters, the same method (method of L-moments) can be applied
with L-moments as well. Asymptotic approximations to sampling distributions are
better achieved with L-moments. An added advantage is that standard errors of
sample L-moments exist whenever the underlying distribution has a finite variance,
whereas for the usual moments this may not be enough in many cases.

When dealing with the conventional moments, the (β1,β2) plot is used as a
preliminary tool to discriminate between candidate distributions for the data. For
example, if one wishes to choose a distribution from the Pearson family as a model,
(β1,β2) provide exclusive classification of the members of this family. Distributions
with no shape parameters are represented by points in the β1-β2 plane, those with a
single shape parameter have their (β1,β2) values lie on the line 2β2 − 3β1 − 6 = 0,
while two shape parameters in the distribution ensure that for them, (β1,β2) falls in
a region between the lines 2β2 − 3β1 − 6 = 0 and β2 −β1 − 1 = 0. These cases are,
respectively, illustrated by the exponential distribution (which has (β1,β2) = (4,9)
as a point), the gamma family and the beta family; see Johnson et al. [302]
for details. In a similar manner, one can construct (τ2,τ3)-plots or (τ3,τ4)-plots
for distribution functions or quantile functions to give a visual identification of
which distribution can be expected to fit a given set of observations. Vogel and
Fennessey [574] articulate the need for such diagrams and provide several examples
on how to construct them. Some refinements of the L-moments are also studied in
the name of trimmed L-moments (Elamir and Seheult [187], Hosking [281]) and
LQ-moments (Mudholkar and Hutson [424]).

Example 1.9. The L-moments of the exponential distribution were calculated ear-
lier in Example 1.8. Applying the formulas for τ2, τ3 and τ4 in (1.44), (1.42)
and (1.43), we have



24 1 Quantile Functions

τ2 =
1
2
, τ3 =

1
3
, τ4 =

1
6
.

Thus, (τ2,τ3) = ( 1
2 ,

1
3) and (τ3,τ4) = ( 1

3 ,
1
6) are points in the τ2-τ3 and τ3-τ4 planes,

respectively.

Example 1.10. The random variable X has generalized Pareto distribution with

Q(u) =
b
a
{(1− u)−

a
a+1 − 1}, a >−1, b > 0.

Then, straightforward calculations yield

L1 = b, L2 = b(a+ 1)(a+ 2)−1,

L3 = b(a+ 1)(2a+ 1)[(2a+3)(a+2)]−1,

L4 = b(a+ 1)(6a2+ 7a+ 2)[(a+ 2)(2a+3)(3a+4)]−1,

so that

τ2 =
a+ 1
a+ 2

, τ3 =
2a+ 1
2a+ 3

and τ4 =
6a2 + 7a+ 2

6a2 + 17a+ 12
.

Then, eliminating a between τ2 and τ3, we obtain

τ3 =
3τ2 − 1
τ2 + 1

.

Thus, the plot of (τ2,τ3) for all values of a and b lies on the curve
(τ2 + 1)(3− τ3) = 4. Note that the exponential plot is ( 1

2 ,
1
3) which lies on the curve

when a → 0. The estimation and other related inferential problems are discussed
in Chap. 7.

We now present probability weighted moments (PWM) which is a forerunner
to the concept of L-moments. Introduced by Greenwood et al. [226], PWMs are of
considerable interest when the distribution is expressed in quantile form. The PWMs
are defined as

Mp,r,s = E[X pFr(X)F̄s(X)], (1.45)

where p,r,s are non-negative real numbers and E|X |p < ∞. Two special cases
of (1.45) in general use are

βp,r = E(X pFr(X))

=

∫
xpFr(x) f (x)dx

=
∫ 1

0
(Q(u))purdu (1.46)
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and

αp,s = E(X pF̄s(X))

=

∫ 1

0
(Q(u))p(1− u)sdu. (1.47)

Like L-moments, PWMs are more robust to outliers in the data. They have less bias
in estimation even for small samples and converge rapidly to asymptotic normality.

Example 1.11. The PWMs of the Pareto distribution with (see Table1.1)

Q(u) = σ(1− u)−
1
α , σ ,α > 0,

are

αp,s = σ
∫ 1

0
(1− u)−

p
α +sdu =

σα
α(s+ 1)− p

, α(s+ 1)> p.

Similarly, for the power distribution with (see Table 1.1)

Q(u) = αu
1
β , α,β > 0,

we have

βp,r = α
∫ 1

0
u
− p

β +r
du =

αβ
1+β (r+ 1)

.

Further specializing (1.46) for p = 1, we see that the L-moments are linear
combination of the PW moments. The relationships are

L1 = β1,0,

L2 = 2β1,1 −β1,0,

L3 = 6β1,2 − 6β1,1+β1,0,

L4 = 20β1,3− 30β1,2+ 12β1,1−β1,0

in the first four cases. Generally, we have the relationship

Lr+1 =
r

∑
k=0

(−1)r−k(r+ k)!
(k!)2(r− k)!

β1,k.

The conventional moments can also be deduced as Mp,0,0 or βp,0 or αp,0. The
role of PW moments in reliability analysis will be taken up in the subsequent
chapters. In spite of its advantages, Chen and Balakrishnan [140] have pointed out
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some infeasibility problems in estimation. While estimating the parameters of some
distributions like the generalized forms of Pareto, the estimated distributions have
an upper or lower bound and one or more of the data values lie outside this bound.

1.7 Diagrammatic Representations

In this section, we demonstrate a few graphical methods other than the conventional
ones. The primary goal is fixed as the choice of model for the data represented by a
quantile function. An important tool in this category is the Q-Q plot. The Q-Q plot
is the plot of points (Q(ur),xr:n), r = 1,2, . . . ,n, where ur =

r−0.5
n .1 For application

purposes, we may replace Q(ur) by the fitted quantile function. One use of this plot
is to ascertain whether the sample could have arisen from the target population Q(u).
In the ideal case, the graph should show a straight line that bisects the axes, since
we are plotting the sample and population quantiles. However, since the sample is
random and the fitted values of Q(u) are used, the points lying approximately around
the line is indicative of the model being adequate. The points in the Q-Q plot are
always non-decreasing when viewed from left to right.

The Q-Q plot can also be used for comparing two competing models by
plotting the rth quantile of one against the rth quantile of the other. When the
two distributions are similar, the points on the graph should show approximately
the straight line y = x. A general trend in the plot, like steeper (flatter) than y = x,
will mean that the distribution plotted on the y-axis (x-axis) is more dispersed. On
the other hand, S-shaped plots often suggest that one of the distributions exhibits
more skewness or tail-heaviness. It should also be noted that the relationship in
quantile plot can be linear when the constituent distributions are linearly related.
This procedure is direct when the data sets from two distributions contain the
same number of observations. Otherwise, it is necessary to use interpolated quantile
estimates in the shorter set to equal the number in the larger sets. Often, Q-Q plots
are found to be more powerful and informative than histogram comparisons.

Example 1.12. The times to failure of a set of 10 units are given as 16, 34, 53, 75,
93, 120, 150, 191, 240 and 390 h (Kececioglu [322]). A Weibull distribution with
quantile function

Q(u) = σ(− log(1− u))1/λ

is proposed for the data. The parameters of the model were estimated by the method
of maximum likelihood as σ̂ = 146.2445 and λ̂ = 1.973. The Q-Q plot pertaining
to the model is presented in Fig. 1.1. From the figure, it is seen that the above model
seems to be adequate.

1There are different choices for these plotting points and recently Balakrishnan et al. [52] discussed
the determination of optimal plotting points by the use of Pitman closeness criterion.
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Fig. 1.1 Q-Q plot for Example 1.12

A second useful graphical representation is the box plot introduced by Tukey
[569]. It depicts graph of the numerical data through a five-figure summary in the
form of extremes, quartiles and the median. The steps required for constructing a
box plot are (Parzen [484])

(i) compute the median m = Q̄(0.50), the lower quartile q1 = Q̄(0.25) and the
upper quartile q3 = Q̄(0.75);

(ii) draw a vertical box of arbitrary width and length equal to q3 − q1;
(iii) a solid line is marked within the box at a distance m− q1 above the lower end

of the box. Dashed lines are extended from the lower and upper ends of the
box at distances equal to xn:n − q3 and x1:n − q1. This constitutes the H-plot,
H standing for hinges or quartiles. Instead, one can use Q̄(0.125) = e1 and
Q̄(0.875) = e7 resulting in E-box plots. Similarly, the quantiles Q̄(0.0625) and
Q̄(0.9375) constitute the D-box plots;

(iv) A quantile box plot consists of the graph of Q̄(u) on [0,1] along with the three
boxes in (iii), superimposed on it.

Parzen [484] proposed the following information to be drawn from the plot. By
drawing a perpendicular line to the median line at its midpoint and of length±n−

1
2 −

(q3 −q1), a confidence interval for the median can be obtained. The graph x = Q̄(u)
exhibiting sharp rises is likely to have a density with more than one mode. If such
points lie inside the H-box, the presence of several distinct populations generating
the data is to be suspected, while, if they are outside the D-box, presence of outliers
is indicated. Horizontal segments in the graph may be the results of the discrete
distributions. By calculating

Q̄( 1
2 )− 1

2 [Q̄(u)+ Q̄(1− u)]

Q̄(1− u)− Q̄(u)



28 1 Quantile Functions

Fig. 1.2 Box plot for the data given in Example 1.12

for u values, one can get a feel for skewness with a value near zero suggesting
symmetry. Parzen [484] also suggested some measures of tail classification.

Example 1.13. The box plot corresponding to the data in Example 1.12 is exhibited
in Fig. 1.2. It may be noticed that the observation 390 is a likely outlier.

A stem-leaf plot can also be informative about some meaningful characteristics
of the data. To obtain such a plot, we first arrange the observations in ascending
order. The leaf is the last digit in a number. The stem contains all other digits (When
the data consists of very large numbers, rounded values to a particular place, like
hundred or thousand, are used a stem and leaves). In the leaf plot, there are two
columns, first representing the stem, separated by a line from the second column
representing the leaves. Each stem is listed only once and the leaves are entered in
a row. The plot helps to understand the relative density of the observations as well
as the shape. The mode is easily displayed along with the potential outliers. Finally,
the descriptive statistics can be easily worked out from the diagram.

Example 1.14. We illustrate the stem-leaf plot for a small data set: 36, 57, 52, 44,
47, 51, 46, 63, 59, 68, 66, 68, 72, 73, 75, 81, 84, 106, 76, 88, 91, 41, 84, 68, 34,
38, 54.

3 4 6 8
4 1, 4, 6, 7
5 1 2 4 7 9
6 3 6 8 8 8
7 2 3 5 6
8 1, 4, 4, 8
9 1

10 6
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