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Foreword

Quantile functions are a fundamental, and often the most natural, way of rep-
resenting probability distributions and data samples. In much of environmental
science, finance, and risk management, there is a need to know the event magnitude
corresponding to a given return period or exceedance probability, and the quantile
function provides the most direct expression of the solution. The book Statistical
Modelling with Quantile Functions by Warren Gilchrist provides an extensive
survey of quantile-based methods of inference for complete distributions.

Reliability analysis is another field in which quantile-based methods are partic-
ularly useful. In many applications one must deal with censored data and truncated
distributions, and concepts such as hazard rate and residual life become important.
Quantile-based methods need some extensions to deal with these issues, and the
present book goes beyond Prof. Gilchrist’s and provides a thorough grounding in
the relevant theory and practical methods for reliability analysis.

I have been fortunate in having been able for over 20 years to develop a theory
of L-moments, statistics that are simple and effective inferences about probability
distributions. Although not restricted to quantile-based inference, L-moments lend
themselves well to quantile methods since many of the key results regarding
L-moments are most conveniently expressed in terms of the quantile function.
As with quantile methods generally, an L-moment-based approach to reliability
analysis has not been developed in detail. In this book the authors have made
significant progress, and in particular the development of L-moment methods for
residual life analysis is a major step forward. I congratulate the authors on their
achievements, and I invite the readers of this book to enjoy a survey of material that
is rich in both theoretical depth and practical utility.

Yorktown Heights, NY J.R.M. Hosking
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Preface

Reliability theory has taken rapid strides in the last four decades to become
an independent discipline that influences our daily lives and schedules through
our dependence on good and reliable functioning of devices and systems that
we constantly use. The extensive literature on reliability theory, along with its
applications, is scattered over various disciplines including statistics, engineering,
applied probability, demography, economics, medicine, survival analysis, insurance
and public policy. Life distributions specified by their distribution functions and
various concepts and characteristics derived from it occupy a big portion of
reliability analysis. Although quantile functions also represent life distributions and
would facilitate one to carry out all the principal functions enjoyed by distribution
functions in the existing theory and practice, this feature is neither fully appreciated
nor exploited. The objective of this book is to attempt a systematic study of various
aspects of reliability analysis with the aid of quantile functions, so as to provide
alternative methodologies, new models and inferential results that are sometimes
difficult to accomplish through the conventional approach.

Due to the stated objective, the material presented in this book is loaded with a
quantile flavour. However, all through the discussion, we first present a concept or
methodology in terms of the conventional approach and only introduce the quantile-
based counterpart. This will enable the reader to transfer the methodology from one
form to the other and to choose the one that fits his/her taste and need. Being an
introductory text in quantile-based reliability methods, there is scope for further
improvements and extensions of the results discussed here.

The book is biased towards the mathematical theory, with examples intended to
clarify various notions and applications to real data being limited to demonstrate the
utility of quantile functions. For those with interest in practical aspects of quantile-
based model building, relevant tools and descriptive data analysis, the book by
Gilchrist would provide a valuable guidance.

This book is organized into nine chapters. Chapter 1 deals with the definition,
properties and various descriptive measures based on the quantile functions. Various
reliability concepts like hazard rate, and mean residual life, in the conventional form
as well as their quantile equivalents, are discussed in Chap. 2. This is followed, in
Chap. 3, by a detailed presentation of the distributional and reliability aspects of

ix



x Preface

quantile function models along with some applications to real data. Different ageing
concepts in quantile versions are described in Chap. 4. Total time on test transforms,
an essentially quantile-based notion, is detailed in Chap. 5. As alternatives to the
conventional moments, the L-moments and partial moments in relation to residual
life are presented. In Chap. 6, the definitions, properties and characterizations of
these concepts are explained along with their use in inferential methods. Bathtub
hazard models are considered in Chap. 7 along with their quantile counterparts and
some new quantile functions that exhibit nonmonotone hazard quantile functions.
The definitions and properties of various stochastic orders encountered in reliability
theory are described in Chap. 8. Finally, Chap. 9 deals with various methods of
estimation and modelling problems. A more detailed account of the contents of
each chapter is provided in the Abstract at the beginning of each chapter.

Within the space available for this book, it has not been possible to include all
the topics pertinent to reliability analysis. Likewise, the work of many authors who
have contributed to these topics, as well as to those in the text, could not be included
in the book. Our sincere apologies for these shortcomings. Any suggestion for the
improvement in the contents and/or indication of possible errors in the book are
wholeheartedly welcomed.

Finally, we wish to thank Sanjai Varma, Vinesh Kumar and K. P. Sasidharan for
their contributions to the cause of this work. We are grateful to the colleagues in the
Department of Statistics and Administration of the Cochin University of Science
and Technology. Our sincere thanks also go to Ms. Debbie Iscoe for her help with
the final typesetting and production of the volume.

Finally, we would like to state formally that this project was catalysed and
supported by the Department of Science and Technology, Government of India,
under its Utilisation of Scientific Expertise of Retired Scientist Scheme.

Cochin, India N. Unnikrishnan Nair
Cochin, India P.G. Sankaran
Hamilton, ON, Canada N. Balakrishnan
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Chapter 1
Quantile Functions

Abstract A probability distribution can be specified either in terms of the distri-
bution function or by the quantile function. This chapter addresses the problem of
describing the various characteristics of a distribution through its quantile function.
We give a brief summary of the important milestones in the development of
this area of research. The definition and properties of the quantile function with
examples are presented. In Table 1.1, quantile functions of various life distributions,
representing different data situations, are included. Descriptive measures of the
distributions such as location, dispersion and skewness are traditionally expressed
in terms of the moments. The limitations of such measures are pointed out and some
alternative quantile-based measures are discussed. Order statistics play an important
role in statistical analysis. Distributions of order statistics in quantile forms, their
properties and role in reliability analysis form the next topic in the chapter. There
are many problems associated with the use of conventional moments in modelling
and analysis. Exploring these, and as an alternative, the definition, properties and
application of L-moments in describing a distribution are presented. Finally, the
role of certain graphical representations like the Q-Q plot, box-plot and leaf-plot are
shown to be useful tools for a preliminary analysis of the data.

1.1 Introduction

As mentioned earlier, a probability distribution can be specified either in terms of
the distribution function or by the quantile function. Although both convey the same
information about the distribution, with different interpretations, the concepts and
methodologies based on distribution functions are traditionally employed in most
forms of statistical theory and practice. One reason for this is that quantile-based
studies were carried out mostly when the traditional approach either is difficult
or fails to provide desired results. Except in a few isolated areas, there have been
no systematic parallel developments aimed at replacing distribution functions in
modelling and analysis by quantile functions. However, the feeling that through

N.U. Nair et al., Quantile-Based Reliability Analysis, Statistics for Industry
and Technology, DOI 10.1007/978-0-8176-8361-0 1,
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2 1 Quantile Functions

an appropriate choice of the domain of observations, a better understanding of a
chance phenomenon can be achieved by the use of quantile functions, is fast gaining
acceptance.

Historically, many facts about the potential of quantiles in data analysis were
known even before the nineteenth century. It appears that the Belgian sociologist
Quetelet [499] initiated the use of quantiles in statistical analysis in the form of the
present day inter-quantile range. A formal representation of a distribution through
a quantile function was introduced by Galton (1822–1911) [206] who also initiated
the ordering of observations along with the concepts of median, quartiles and
interquartile range. Subsequently, the research on quantiles was directed towards
estimation problems with the aid of sample quantiles, their large sample behaviour
and limiting distributions (Galton [207, 208]). A major development in portraying
quantile functions to represent distributions is the work of Hastings et al. [264], who
introduced a family of distributions by a quantile function. This was refined later
by Tukey [568]. The symmetric distribution of Tukey [568] and his articulation
of exploratory data analysis sparked considerable interest in quantile functional
forms that continues till date. Various aspects of the Tukey family and general-
izations thereto were studied by a number of authors including Hogben [273],
Shapiro and Wilk [536], Filliben [197], Joiner and Rosenblatt [304], Ramberg
and Schmeiser [504], Ramberg [501], Ramberg et al. [502], MacGillivray [407],
Freimer et al. [203], Gilchrist [215] and Tarsitano [563]. We will discuss all these
models in Chap. 3. Another turning point in the development of quantile functions
is the seminal paper by Parzen [484], in which he emphasized the description
of a distribution in terms of the quantile function and its role in data modelling.
Parzen [485–487] exhibits a sequential development of the theory and application
of quantile functions in different areas and also as a tool in unification of various
approaches.

Quantile functions have several interesting properties that are not shared by
distributions, which makes it more convenient for analysis. For example, the sum
of two quantile functions is again a quantile function. There are explicit general dis-
tribution forms for the quantile function of order statistics. In Sect. 1.2, we mention
these and some other properties. Moreover, random numbers from any distribution
can be generated using appropriate quantile functions, a purpose for which lambda
distributions were originally conceived. The moments in different forms such as raw,
central, absolute and factorial have been used effectively in specifying the model,
describing the basic characteristics of distributions, and in inferential procedures.
Some of the methods of estimation like least squares, maximum likelihood and
method of moments often provide estimators and/or their standard errors in terms
of moments. Outliers have a significant effect on the estimates so derived. For
example, in the case of samples from the normal distribution, all the above methods
give sample mean as the estimate of the population mean, whose values change
significantly in the presence of an outlying observation. Asymptotic efficiency of the
sample moments is rather poor for heavy tailed distributions since the asymptotic
variances are mainly in terms of higher order moments that tend to be large in this
case. In reliability analysis, a single long-term survivor can have a marked effect
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on mean life, especially in the case of heavy tailed models which are commonly
encountered for lifetime data. In such cases, quantile-based estimates are generally
found to be more precise and robust against outliers. Another advantage in choosing
quantiles is that in life testing experiments, one need not wait until the failure of
all the items on test, but just a portion of them for proposing useful estimates.
Thus, there is a case for adopting quantile functions as models of lifetime and base
their analysis with the aid of functions derived from them. Many other facets of
the quantile approach will be more explicit in the sequel in the form of alternative
methodology, new opportunities and unique cases where there are no corresponding
results if one adopts the distribution function approach.

1.2 Definitions and Properties

In this section, we define the quantile function and discuss some of its general
properties. The random variable considered here has the real line as its support, but
the results are valid for lifetime random variables which take on only non-negative
values.

Definition 1.1. Let X be a real valued continuous random variable with distribution
function F(x) which is continuous from the right. Then, the quantile function Q(u)
of X is defined as

Q(u) = F−1(u) = inf{x : F(x)≥ u}, 0 ≤ u ≤ 1. (1.1)

For every −∞< x < ∞ and 0 < u < 1, we have

F(x)≥ u if and only if Q(u)≤ x.

Thus, if there exists an x such that F(x) = u, then F(Q(u)) = u and Q(u) is the
smallest value of x satisfying F(x) = u. Further, if F(x) is continuous and strictly
increasing, Q(u) is the unique value x such that F(x) = u, and so by solving the
equation F(x) = u, we can find x in terms of u which is the quantile function of X .
Most of the distributions we consider in this work are of this form and nature.

Definition 1.2. If f (x) is the probability density function of X , then f (Q(u)) is
called the density quantile function. The derivative of Q(u), i.e.,

q(u) = Q′(u),

is known as the quantile density function of X . By differentiating F(Q(u)) = u, we
find

q(u) f (Q(u)) = 1. (1.2)
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Some important properties of quantile functions required in the sequel are as
follows.

1. From the definition of Q(u) for a general distribution function, we see that

(a) Q(u) is non-decreasing on (0,1) with Q(F(x)) ≤ x for all −∞ < x < ∞ for
which 0 < F(x)< 1;

(b) F(Q(u))≥ u for any 0 < u < 1;
(c) Q(u) is continuous from the left or Q(u−) = Q(u);
(d) Q(u+) = inf{x : F(x)> u} so that Q(u) has limits from above;
(e) Any jumps of F(x) are flat points of Q(u) and flat points of F(x) are jumps

of Q(u).

2. If U is a uniform random variable over [0,1], then X = Q(U) has its distribution
function as F(x). This follows from the fact that

P(Q(U)≤ x) = P(U ≤ F(x)) = F(x).

This property enables us to conceive a given data set as arising from the uniform
distribution transformed by the quantile function Q(u).

3. If T (x) is a non-decreasing function of x, then T (Q(u)) is a quantile function.
Gilchrist [215] refers to this as the Q-transformation rule. On the other hand, if
T (x) is non-increasing, then T (Q(1− u)) is also a quantile function.

Example 1.1. Let X be a random variable with Pareto type II (also called Lomax)
distribution with

F(x) = 1−αc(x+α)−c, x > 0; α,c > 0.

Since F(x) is strictly increasing, setting F(x) = u and solving for x, we obtain

x = Q(u) = α[(1− u)−
1
c − 1].

Taking T (X) = Xβ , β > 0, we have a non-decreasing transformation which
results in

T (Q(u)) = αβ [(1− u)−
1
c − 1]β .

When T (Q(u)) = y, we obtain, on solving for u,

u = G(y) = 1−
⎛
⎝1+

y
1
β

α

⎞
⎠

−c

which is a Burr type XII distribution with T (Q(u)) being the corresponding
quantile function.
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Example 1.2. Assume X has Pareto type I distribution with

F(x) = 1−
( x
σ

)α
, x > σ ; α > 0, σ > 0.

Then, working as in the previous example, we see that

Q(u) = σ(1− u)−
1
α .

Apply the transformation T (X) = Y = X−1, which is non-increasing, we have

T (Q(1− u)) = σ−1u
1
α

and equating this to y and solving, we get

G(y) = (yσ)α , 0 ≤ y ≤ 1
σ
.

G(y) is the distribution function of a power distribution with T (Q(1− u)) being
the corresponding quantile function.

4. If Q(u) is the quantile function of X with continuous distribution function
F(x) and T (u) is a non-decreasing function satisfying the boundary conditions
T (0) = 0 and T (1) = 1, then Q(T (u)) is a quantile function of a random variable
with the same support as X .

Example 1.3. Consider a non-negative random variable with continuous distri-

bution function F(x) and quantile function Q(u). Taking T (u) = u
1
θ , for θ > 0,

we have T (0) = 0 and T (1) = 1. Then,

Q1(u) = Q(T (u)) = Q(u
1
θ ).

Further, if y = Q1(u), u
1
θ = y and so the distribution function corresponding to

Q1(u) is

G(x) = Fθ (x).

The random variable Y with distribution function G(x) is called the proportional
reversed hazards model of X . There is considerable literature on such models in
reliability and survival analysis. If we take X to be exponential with

F(x) = 1− e−λ x, x > 0; λ > 0,

so that

Q(u) = λ−1(− log(1− u)),
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then

Q1(u) = λ−1(− log(1− u
1
θ ))

provides

G(x) = (1− e−λ x)θ ,

the generalized or exponentiated exponential law (Gupta and Kundu [250]). In a
similar manner, Mudholkar and Srivastava [429] take the baseline distribution as
Weibull. For some recent results and survey of such models, we refer the readers
to Gupta and Gupta [240]. In Chap. 3, we will come across several quantile
functions that represent families of distributions containing some life distribu-
tions as special cases. They are highly flexible empirical models capable of
approximating many continuous distributions. The above transformation on these
models generates new proportional reversed hazards models of a general form.
The analysis of lifetime data employing such models seems to be an open issue.

Remark 1.1. From the form of G(x) above, it is clear that for positive integral
values of θ , it is simply the distribution function of the maximum of a random
sample of size θ from the exponential population with distribution function F(x)
above. Thus, G(x) may be simply regarded as the distribution function of the
maximum from a random sample of real size θ (instead of an integer). This
viewpoint was discussed by Stigler [547] under the general idea of ‘fractional
order statistics’; see also Rohatgi and Saleh [509].

Remark 1.2. Just as G(x) can be regarded as the distribution function of the
maximum from a random sample of (real) size θ from the population with
distribution function F(x), we can consider G∗(x) = 1 − (1 − F(x))θ as a
generalized form corresponding to the minimum of a random sample of (real)
size θ . The model G∗(x) is, of course, the familiar proportional hazards model.
It is important to mention here that these two models are precisely the ones
introduced by Lehmann [382], as early as in 1953, as stochastically ordered
alternatives for nonparametric tests of equality of distributions.

Remark 1.3. It is useful to bear in mind that for distributions closed under
minima such as exponential and Weibull (i.e., the distributions for which the
minima have the same form of the distribution but with different parameters),
the distribution function G(x) would provide a natural generalization while,
for distributions closed under maxima such as power and inverse Weibull (i.e.,
the distributions for which the maxima have the same form of the distribution
but with different parameters), the distribution function G∗(x) would provide a
natural generalization.

5. The sum of two quantile functions is again a quantile function. Likewise,
two quantile density functions, when added, produce another quantile density
function.
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6. The product of two positive quantile functions is a quantile function. In this case,
the condition of positivity cannot be relaxed, as in general, there may be negative
quantile functions that affect the increasing nature of the product. Since we are
dealing primarily with lifetimes, the required condition will be automatically
satisfied.

7. If X has quantile function Q(u), then 1
X has quantile function 1/Q(1− u).

Remark 1.4. Property 7 is illustrated in Example 1.2. Chapter 3 contains some
examples wherein quantile functions are generated as sums and products of
quantile functions of known distributions. It becomes evident from Properties
3–7 that they can be used to produce new distributions from the existing ones.
Thus, in our approach, a few basic forms are sufficient to begin with since
new forms can always be evolved from them that match our requirements and
specifications. This is in direct contrast to the abundance of probability density
functions built up, each to satisfy a particular data form in the distribution
function approach. In data analysis, the crucial advantage is that if one quantile
function is not an appropriate model, the features that produce lack of fit can
be ascertained and rectification can be made to the original model itself. This
avoids the question of choice of an altogether new model and the repetition of all
inferential procedures for the new one as is done in most conventional analyses.

8. The concept of residual life is of special interest in reliability theory. It represents
the lifetime remaining in a unit after it has attained age t. Thus, if X is the original
lifetime with quantile function Q(u), the associated residual life is the random
variable Xt = (X − t|X > t). Using the definition of conditional probability, the
survival function of Xt is

F̄t(x) = P(Xt > x) =
F̄(x+ t)

F̄(t)
,

where F̄(x) = P(X > x) = 1−F(x) is the survival function. Thus, we have

Ft(x) =
F(x+ t)−F(t)

1−F(t)
. (1.3)

Let F(t) = u0, F(x+ t) = v and Ft(x) = u. Then, with

x+ t = Q(v), x = Q1(u), say,

we have

Q1(u) = Q(v)−Q(u0)

and consequently from (1.3),

u(1− u0) = v− u0
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or

v = u0 +(1− u0)u.

Thus, the quantile function of the residual life Xt becomes

Q1(u) = Q(u0 +(1− u0)u)−Q(u0). (1.4)

Equation (1.4) will be made use of later in defining mean residual quantile
function in Chap. 2.

9. In some reliability and quality control situations, truncated forms of lifetime
models arise naturally, and the truncation may be on the right or on the left or
on both sides. Suppose F(x) is the underlying distribution function and Q(u) is
the corresponding quantile function. Then, if the distribution is truncated on the
right at x = U (i.e., the observations beyond U cannot be observed), then the
corresponding distribution function is

FRT (x) =
F(x)
F(U)

, 0 ≤ x ≤U,

and its quantile function is

QRT (x) = Q(uQ−1(U)).

Similarly, if the distribution is truncated on the left at x = L (i.e., the obser-
vations below L cannot be observed), then the corresponding distribution func-
tion is

FLT (x) =
F(x)−F(L)

1−F(L)
, x ≥ L,

and its quantile function is

QLT (u) = Q(u+(1− u)Q−1(L)).

Finally, if the distribution is truncated on the left at x = L and also on the right at
x =U , then the corresponding distribution function is

FDT (x) =
F(x)−F(L)
F(U)−F(L)

, L ≤ x ≤U,

and its quantile function is

QDT (u) = Q(uQ−1(U)+ (1− u)Q−1(L)).
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Example 1.4. Suppose the underlying distribution is logistic with distribution
function F(x) = 1/(1 + e−x) on the whole real line R. It is easily seen that
the corresponding quantile function is Q(u) = log

(
u

1−u

)
. Further, suppose we

consider the distribution truncated on the left at 0, i.e., L = 0, for proposing a
lifetime model. Then, from the expression above and the fact that Q−1(0) = 1

2 ,
we arrive at the quantile function

QLT (u) = Q

(
u+(1− u)

1
2

)
= log

(
u+ 1

2(1− u)

1− u− 1
2 (1− u)

)
= log

(
1+ u
1− u

)

corresponding to the half-logistic distribution of Balakrishnan [47, 48]; see
Table 1.1.

1.3 Quantile Functions of Life Distributions

As mentioned earlier, we concentrate here on distributions of non-negative random
variables representing the lifetime of a component or unit. The distribution function
of such random variables is such that F(0−) = 0. Often, it is more convenient to
work with

F̄(x) = 1−F(x) = P(X > x),

which is the probability that the unit survives time (referred to as the age of the unit)
x. It is also called the reliability or survival function since it expresses the probability
that the unit is still reliable at age x.

In the previous section, some examples of quantile functions and a few methods
of obtaining them were explained. We now present in Table 1.1 quantile functions of
many distributions considered in the literature as lifetime models. The properties of
these distributions are discussed in the references cited below each of them. Models
like gamma, lognormal and inverse Gaussian do not find a place in the list as their
quantile functions are not in a tractable form. However, in the next chapter, we will
see quantile forms that provide good approximations to them.

1.4 Descriptive Quantile Measures

The advent of the Pearson family of distributions was a major turning point in
data modelling using distribution functions. The fact that members of the family
can be characterized by the first four moments gave an impetus to the extensive
use of moments in describing the properties of distributions and their fitting to
observed data. A familiar pattern of summary measures took the form of mean
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Table 1.1 Quantile functions of some lifetime distributions

No. Distribution F̄(x) Q(u)

1 Exponential exp[−λx] λ−1(− log(1−u))
(Marshall and Olkin [412]) x > 0; λ > 0

2 Weibull exp[−( x
σ )
λ ] σ (− log(1−u))

1
λ

(Murthy et al. [434], x > 0; λ ,σ > 0
Hahn and Shapiro [257])

3 Pareto II αc(x+α)−c α [(1−u))−
1
c −1]

(Marshall and Olkin [412]) x > 0; α ,c > 0

4 Rescaled beta (1− x
R )

c R[1− (1−u))
1
c ]

(Marshall and Olkin [412]) 0 ≤ x ≤ R; c,R > 0

5 Half-logistic 2
[
1+ exp

(
x
σ
)]−1 σ log

(
1+u
1−u

)
(Balakrishnan [47, 48], x > 0; σ > 0
Balakrishnan and Wong [61])

6 Power 1− ( x
α )
β αu

1
β

(Marshall and Olkin [412]) 0 ≤ x ≤ α ; α ,β > 0

7 Pareto I ( x
σ )

−α σ (1−u)−
1
α

(Marshall and Olkin [412]) x > σ > 0; α ,σ > 0

8 Burr type XII (1+ xc)−k [(1−u)
1
k −1]

1
c

(Zimmer et al. [604], x > 0; c,k > 0
Fry [204])

9 Gompertz exp[−B(Cx−1)
logC ] 1

logC [1− logC log(1−u)
B ]

(Lai and Xie [368]) x > 0; B,C > 0

10 Greenwich [225] (1+ x2

b2 )
− a

2 b[(1−u)
2
a −1]

1
2

x ≥ 0; a,b > 0

11 Kus [364] 1−eλe−βx

1−eλ
− 1
β log[λ−1 log{1− (1−u)

x > 0; λ ,β > 0 (1− e−λ )}]
12 Logistic exponential 1+(eλθ−1)k

1+(eλ(x+θ )−1)k
1
λ log[1+{ (eλθ−1)k+u

1−u } 1
k ]

(Lan and Leemis [372]) x ≥ 0; λ > 0,
k > 0, θ ≥ 0

13 Dimitrakopoulou et al. [178] exp[1− (1+λxβ )α ] λ−1[{1− log(1−u)} 1
α −1]

1
β

x > 0; α ,β ,λ > 0

14 Log Weibull exp[−(log(1+ρx))k] ρ−1[exp(− log(1−u))
1
k −1]

(Avinadav and Raz [41]) x > 0; ρ ,k > 0

15 Modified Weibull exp[−ασ (e( x
σ )
λ −1)] σ [log(1+ log(1−u)

ασ )]
1
λ

extension (Xie et al. [595]) x > 0; α ,σ ,λ > 0

16 Exponential power exp[e−(λ t)α −1] 1
λ [− log(1+ log(1−u))]

1
α

(Paranjpe et al. [482]) x > 0; λ ,α > 0

17 Generalized Pareto (1+ ax
b )−

a+1
a b

a [(1−u)−
a

a+1 −1]
(Lai and Xie [368]) x > 0,b > 0,a >−1

18 Inverse Weibull 1− exp[−( σx )
λ ] σ (− logu)−

1
λ

(Erto [188]) x > 0; σ ,λ > 0

(continued)
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Table 1.1 (continued)

No. Distribution F̄(x) Q(u)

19 Extended Weibull
θ exp[−( x

σ )λ ]

1−(1−θ)exp[−( x
σ )
λ ]

σ [log θ+(1−θ)(1−u)
1−u ]

1
λ

(Marshall and Olkin [411]) x > 0; θ ,λ ,σ > 0

20 Generalized exponential 1− [1− exp(− x
σ )]

θ σ [− log(1−u
1
θ )]

(Gupta et al. [239]) x > 0; σ ,θ > 0

21 Exponentiated Weibull 1− [1− exp(− x
σ )
λ ]θ σ [− log(1−u

1
θ )]

1
λ

(Mudholkar et al. [427]) x > 0; σ ,θ ,λ > 0

22 Generalized Weibull [1−λ ( x
β )
α ][

1
λ ] β [ 1−(1−u)λ

λ ]
1
α , λ �= 0

(Mudholkar and Kollia [426]) x > 0 for λ ≤ 0

0 < x < β
λ

1
α

, λ > 0 β [− log(1−u)]
1
α , λ = 0

α ,β > 0
23 Exponential geometric (1− p)e−λx(1− pe−λx)−1 1

λ log( 1−pu
1−u )

(Adamidis and
Loukas [18])

x > 0, λ > 0, 0 < p < 1

24 Log logistic (1+(αx)β )−1 α−1( u
1−u )

1
β

(Gupta et al. [237]) x > 0, α ,β > 0

25 Generalized half-logistic 2(1−kx)1/k

1+(1−kx)1/k
1
k

{
1− (

1−u
1+u

)k
}

(Balakrishnan and
Sandhu [59],

0 ≤ x ≤ 1
k , k ≥ 0

Balakrishnan and
Aggarwala [49])

for location, variance for dispersion, and the Pearson’s coefficients β1 =
μ2

3
μ3

2
for

skewness and β2 =
μ4
μ2

2
for kurtosis. While the mean and variance claimed universal

acceptance, several limitations of β1 and β2 were subsequently exposed. Some of
the concerns with regard to β1 are: (1) it becomes arbitrarily large or even infinite
making it difficult for comparison and interpretation as relatively small changes in
parameters produce abrupt changes, (2) it does not reflect the sign of the difference
(mean-median) which is a traditional basis for defining skewness, (3) there exist
asymmetric distributions with β1 = 0 and (4) instability of the sample estimate of
β1 while matching with the population value. Similarly, for a standardized variable
X , the relationship

E(X4) = 1+V(X2) (1.5)

would mean that the interpretation of kurtosis depends on the concentration of the
probabilities near μ±σ as well as in the tails of the distribution.

The specification of a distribution through its quantile function takes away the
need to describe a distribution through its moments. Alternative measures in terms
of quantiles that reduce the shortcomings of the moment-based ones can be thought
of. A measure of location is the median defined by
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M = Q(0.5). (1.6)

Dispersion is measured by the interquartile range

IQR = Q3 −Q1, (1.7)

where Q3 = Q(0.75) and Q1 = Q(0.25).
Skewness is measured by Galton’s coefficient

S =
Q1 +Q3 − 2M

Q3 −Q1
. (1.8)

Note that in the case of extreme positive skewness, Q1 → M while in the case of
extreme negative skewness Q3 → M so that S lies between −1 and +1. When the
distribution is symmetric, M = Q1+Q3

2 and hence S = 0. Due to the relation in (1.5),
kurtosis can be large when the probability mass is concentrated near the mean or in
the tails. For this reason, Moors [421] proposed the measure

T = [Q(0.875)−Q(0.625)+Q(0.375)−Q(0.125)]/IQR (1.9)

as a measure of kurtosis. As an index, T is justified on the grounds that the
differences Q(0.875)−Q(0.625) and Q(0.375)−Q(0.125) become large (small)
if relatively small (large) probability mass is concentrated around Q3 and Q1

corresponding to large (small) dispersion in the vicinity of μ±σ .
Given the form of Q(u), the calculations of all the coefficients are very simple,

as we need to only substitute the appropriate fractions for u. On the other hand,
calculation of moments given the distribution function involves integration, which
occasionally may not even yield closed-form expressions.

Example 1.5. Let X follow the Weibull distribution with (see Table 1.1)

Q(u) = σ(− log(1− u))
1
λ .

Then, we have

M = Q

(
1
2

)
= σ(log2)

1
λ ,

S =
(log4)

1
λ +(log 4

3 )
1
λ − 2(log2)

1
λ

(log4)
1
λ − (

log 4
3

) 1
λ

,

IQR = σ

[
(log4)

1
λ −

(
log

4
3

) 1
λ
]
,
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and

T =
(log8)

1
λ − (

log 8
3

) 1
λ +

(
log 8

5

) 1
λ − (

log 8
7

) 1
λ

(log4)
1
λ − (

log 4
3

) 1
λ

.

The effect of a change of origin and scale on Q(u) and the above four measures
are of interest in later studies. Let X and Y be two random variables such that Y =
aX + b. Then,

FY (y) = P(Y ≤ y) = P

(
X ≤ y− b

a

)
= FX

(
y− a

b

)
.

If QX(u) and QY (u) denote the quantile functions of X and Y , respectively,

FX

(
y− a

b

)
= u ⇒ QX(u) =

y− b
a

=
QY (u)− b

a

or

QY (u) = aQX(u)+ b.

So, we simply have

MY = QY (0.5) = aQX(0.5)+ b = aMX + b.

Similar calculations using (1.7), (1.8) and (1.9) yield

IQRY = aIQRX , SY = SX and TY = TX .

Other quantile-based measures have also been suggested for quantifying spread,
skewness and kurtosis. One measure of spread, similar to mean deviation in
the distribution function approach, is the median of absolute deviation from the
median, viz.,

A = Med(|X −M|). (1.10)

For further details and justifications for (1.10), we refer to Falk [194]. A second
popular measure that has received wide attention in economics is Gini’s mean
difference defined as

Δ =

∫ ∞

−∞

∫ ∞

−∞
|x− y| f (x) f (y)dxdy

= 2
∫ ∞

−∞
F(x)(1−F(x))dx, (1.11)

where f (x) is the probability density function of X . Setting F(x) = u in (1.11), we
have
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Δ = 2
∫ 1

0
u(1− u)q(u)du (1.12)

= 2
∫ 1

0
(2u− 1)Q(u)du. (1.13)

The expression in (1.13) follows from (1.12) by integration by parts. One
may use (1.12) or (1.13) depending on whether q(u) or Q(u) is specified.
Gini’s mean difference will be further discussed in the context of reliability in
Chap. 4.

Example 1.6. The generalized Pareto distribution with (see Table 1.1)

Q(u) =
b
a

{
(1− u)−

a
a+1 − 1

}

has its quantile density function as

q(u) =
b

a+ 1
(1− u)−

a
a+1−1.

Then, from (1.12), we obtain

Δ =
2b

a+ 1

∫ 1

0
u(1− u)−

a
a+1 du =

2b
a+ 1

B

(
2,

1
a+ 1

)
,

where B(m,n) =
∫ 1

0 tm−1(1− t)n−1dt is the complete beta function. Thus, we obtain
the simplified expression

Δ =
2b(a+ 1)

a+ 2
.

Hinkley [271] proposed a generalization of Galton’s measure of skewness of the
form

S(u) =
Q(u)+Q(1− u)− 2Q(0.5)

Q(u)−Q(1− u)
. (1.14)

Obviously, (1.14) reduces to Galton’s measure when u = 0.75. Since (1.14)
is a function of u and u is arbitrary, an overall measure of skewness can be
provided as

S2 = sup
1
2≤u≤1

S(u).

Groeneveld and Meeden [227] suggested that the numerator and denominator
in (1.14) be integrated with respect to u to arrive at the measure
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S3 =

∫ 1
1
2
{Q(u)+Q(1− u)− 2Q(0.5)}du

∫ 1
1
2
{Q(u)+Q(1− u)}du

.

Now, in terms of expectations, we have

∫ 1

1
2

Q(u)du =

∫ x

M
x f (x)dx,

∫ 1

1
2

Q(1− u)du =

∫ 1
2

0
Q(u)du =

∫ M

0
x f (x)dx,

∫ 1

1
2

Q(0.5)du =
1
2

M,

and thus

S3 =
E(X)−M∫ ∞

M x f (x)dx− ∫ M
0 x f (x)dx

=
μ−M

E(|X −M|) . (1.15)

The numerator of (1.15) is the traditional term (being the difference between the
mean and the median) indicating skewness and the denominator is a measure of
spread used for standardizing S3. Hence, (1.15) can be thought of as an index of
skewness in the usual sense. If we replace the denominator by the standard deviation
σ of X , the classical measure of skewness will result.

Example 1.7. Consider the half-logistic distribution with (see Table 1.1)

Q(u) = σ log

(
1+ u
1− u

)
,

μ =

∫ 1

0
Q(u)du = σ log4,

∫ 1

1
2

Q(u)du = σ
(

log16− 3
2

log3

)
,

∫ 1
2

0
Q(u)du = σ

(
3
2

log3− 2log2

)
,

and hence S3 = log( 4
3 )/ log( 64

27).

Instead of using quantiles, one can also use percentiles to define skewness.
Galton [206] in fact used the middle 50 % of observations, while Kelly’s measure
takes 90 % of observations to propose the measure

S4 =
Q(0.90)+Q(0.10)− 2M

Q(0.90)−Q(0.10)
.
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For further discussion of alternative measures of skewness and kurtosis, a review of
the literature and comparative studies, we refer to Balanda and MacGillivray [63],
Tajuddin [559], Joannes and Gill [299], Suleswki [552] and Kotz and Seier [355].

1.5 Order Statistics

In life testing experiments, a number of units, say n, are placed on test and the
quantity of interest is their failure times which are assumed to follow a distribution
F(x). The failure times X1,X2, . . . ,Xn of the n units constitute a random sample
of size n from the population with distribution function F(x), if X1,X2, . . . ,Xn are
independent and identically distributed as F(x). Suppose the realization of Xi in
an experiment is denoted by xi. Then, the order statistics of the random sample
(X1,X2, . . . ,Xn) are the sample values placed in ascending order of magnitude de-
noted by X1:n ≤ X2:n ≤ ·· · ≤ Xn:n, so that X1:n =min1≤i≤n Xi and Xn:n = max1≤i≤n Xi.
The sample median, denoted by m, is the value for which approximately 50 % of the
observations are less than m and 50 % are more than m. Thus

m =

⎧⎨
⎩

Xn+1
2 :n if n is odd

1
2(Xn

2 :n +Xn
2+1:n) if n is even.

(1.16)

Generalizing, we have the percentiles. The 100p-th percentile, denoted by xp, in
the sample corresponds to the value for which approximately np observations are
smaller than this value and n(1 − p) observations are larger. In terms of order
statistics we have

xp =

{
X[np]:n if 1

2n < p < 0.5

X(n+1)−[n(1−p)] if 0.5 < p < 1− 1
2n

, (1.17)

where the symbol [t] is defined as [t] = r whenever r − 0.5 ≤ t < r + 0.5, for all
positive integers r. We note that in the above definition, if xp is the ith smallest
observation, then the ith largest observation is x1−p. Obviously, the median m is the
50th percentile and the lower quartile q1 and the upper quartile q3 of the sample are,
respectively, the 25th and 75th percentiles. The sample interquartile range is

iqr = q3 − q1. (1.18)

All the sample descriptive measures are defined in terms of the sample median,
quartiles and percentiles analogous to the population measures introduced in
Sect. 1.4. Thus, iqr in (1.18) describes the spread, while

s =
q3 + q1 − 2m

q3 − q1
(1.19)
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and

t =
e7 − e5 + e3 − e1

iqr
, (1.20)

where ei =
i
8 , i = 1,3,5,7, describes the skewness and kurtosis.

Parzen [484] introduced the empirical quantile function

Q̄(u) = F−1
n (u) = inf(x : Fn(x)≥ u),

where Fn(x) is the proportion of X1,X2, . . . ,Xn that is at most x. In other words,

Q̄(u) = Xr:n for
r− 1

n
< u <

r
n
, r = 1,2, . . . ,n, (1.21)

which is a step function with jump 1
n . For u = 0, Q̄(u) is taken as X1:n or a

natural minimum if one is available. In the case of lifetime variables, this becomes
Q̄(0). When a smooth function is required for Q̄(u), Parzen [484] suggested the
use of

Q̄1(u) = n
( r

n
− u

)
Xr−1:n + n

(
u− r− 1

n

)
Xr:n

for r−1
n ≤ u ≤ r

n , r = 1,2, . . . ,n. The corresponding empirical quantile density
function is

q̄1(u) =
d

du
Q̄1(u) = n(Xr:n −Xr−1:n), for

r− 1
n

< u <
r
n
.

In this set-up, we have qi = Q̄( i
4 ), i = 1,3 and ei = Q̄( i

8 ), i = 1,3,7,8.
It is well known that the distribution of the rth order statistic Xr:n is given by

Arnold et al. [37]

Fr(x) = P(Xr:n ≤ x) =
n

∑
k=r

(
n
k

)
Fk(x)(1−F(x))n−k. (1.22)

In particular, Xn:n and X1:n have their distributions as

Fn(x) = Fn(x) (1.23)

and

F1(x) = 1− (1−F(x))n. (1.24)
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Recalling the definitions of the beta function

B(m,n) =
∫ 1

0
tm−1(1− t)n−1dt, m,n > 0,

and the incomplete beta function ratio

Ix(m,n) =
Bx(m,n)
B(m,n)

,

where

Bx(m,n) =
∫ x

0
tm−1(1− t)n−1dt,

we have the upper tail of the binomial distribution and the incomplete beta function
ratio to be related as (Abramowitz and Stegun [15])

n

∑
k=r

(
n
k

)
pk(1− p)n−k = Ip(r,n− r+ 1). (1.25)

Comparing (1.22) and (1.25) we see that, if a sample of n observations from a
distribution with quantile function Q(u) is ordered, then the quantile function of
the rth order statistic is given by

Qr(ur) = Q(I−1
ur

(r,n− r+ 1)), (1.26)

where

ur = Iu(r,n− r+ 1) (1.27)

and I−1 is the inverse of the beta function ratio I. Thus, the quantile function of
the rth order statistic has an explicit distributional form, unlike the expression for
distribution function in (1.22). However, the expression for Qr(ur) is not explicit
in terms of Q(u). This is not a serious handicap as the Iu(·, ·) function is tabulated
for various values of n and r (Pearson [489]) and also available in all statistical
softwares for easy computation. The distributions of Xn:n and X1:n have simple
quantile forms

Qn(un) = Q

(
u

1
n
n

)

and

Q1(u1) = Q[1− (1− u1)
1
n ].
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The probability density function of Xr:n becomes

fr(x) =
n!

(r− 1)!(n− r)!
Fr−1(x)(1−F(x))n−r f (x)

and so

μr:n = E(Xr:n) =

∫
x fr(x)dx

=
n!

(r− 1)!(n− 1)!

∫ 1

0
ur−1(1− u)n−rQ(u)du. (1.28)

This mean value is referred to as the rth mean rankit of X . For reasons explained
earlier with reference to the use of moments, often the median rankit

Mr:n = Q(I−1
0.5(r,n− r+ 1)), (1.29)

which is robust, is preferred over the mean rankit.
The importance and role of order statistics in the study of quantile function

become clear from the discussions in this section. Added to this, there are several
topics in reliability analysis in which order statistics appear quite naturally. One of
them is system reliability. We consider a system consisting of n components whose
lifetimes X1,X2, . . . ,Xn are independent and identically distributed. The system is
said to have a series structure if it functions only when all the components are func-
tioning, and the lifetime of this system is the smallest among the Xi’s or X1:n. In the
parallel structure, on the other hand, the system functions if and only if at least one
of the components work, so that the system life is Xn:n. These two structures are em-
bedded in what is called a k-out-of-n system, which functions if and only if at least
k of the components function. The lifetime of such a system is obviously Xn−k+1:n.

In life testing experiments, when n identical units are put on test to ascertain
their lengths of life, there are schemes of sampling wherein the experimenter need
not have to wait until all units fail. The experimenter may choose to observe only
a prefixed number of failures of, say, n − r units and terminate the experiment
as soon as the (n − r)th unit fails. Thus, the lifetimes of r units that are still
working get censored. This sampling scheme is known as type II censoring. The
data consists of realizations of X1:n,X2:n, . . . ,Xn−r:n. Another sampling scheme is
to prefix a time T ∗ and observe only those failures that occur up to time T ∗. This
scheme is known as type I censoring, and in this case the number of failures to
be observed is random. One may refer to Balakrishnan and Cohen [51] and Cohen
[154] for various methods of inference for type I and type II censored samples from
a wide array of lifetime distributions. Yet another sampling scheme is to prefix the
number of failures at n− r and also a time T ∗. If (n− r) failures occur before time
T ∗, then the experiment is terminated; otherwise, observe all failures until time
T ∗. Thus, the time of truncation of the experiment is now min(T,Xn−r:n). This is
referred to as type I hybrid censoring; see Balakrishnan and Kundu [53] for an
overview of various developments on this and many other forms of hybrid censoring
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schemes. A third important application of order statistics is in the construction of
tests regrading the nature of ageing of a device; see Lai and Xie [368]. For an
encyclopedic treatment on the theory, methods and applications of order satistics,
one may refer to Balakrishnan and Rao [56, 57].

1.6 Moments

The emphasis given to quantiles in describing the basic properties of a distribution
does not in any way minimize the importance of moments in model specification and
inferential problems. In this section, we look at various types of moments through
quantile functions. The conventional moments

μ ′
r = E(Xr) =

∫ ∞

0
xr f (x)dx

are readily expressible in terms of quantile functions, by the substitution x =
Q(u), as

μ ′
r =

∫ 1

0
{Q(u)}rdu. (1.30)

In particular, as already seen, the mean is

μ =

∫ 1

0
Q(u)du =

∫ 1

0
(1− u)q(u)du. (1.31)

The central moments and other quantities based on it are obtained through the well-
known relationships they have with the raw moments μ ′

r in (1.30).
Some of the difficulties experienced while employing the moments in descriptive

measures as well as in inferential problems have been mentioned in the previous
sections. The L-moments to be considered next can provide a competing alternative
to the conventional moments. Firstly, by definition, they are expected values of
linear functions of order statistics. They have generally lower sampling variances
and are also robust against outliers. Like the conventional moments, L-moments can
be used as summary measures (statistics) of probability distributions (samples), to
identify distributions and to fit models to data. The origin of L-moments can be
traced back to the work on linear combination of order statistics in Sillito [537] and
Greenwood et al. [226]. It was Hosking [276] who presented a unified theory on
L-moments and made a systematic study of their properties and role in statistical
analysis. See also Hosking [277, 279, 280] and Hosking and Wallis [282] for more
elaborate details on this topic.

The rth L-moment is defined as

Lr =
1
r

r−1

∑
k=0

(−1)k
(

r− 1
k

)
E(Xr−k:r), r = 1,2,3, . . . (1.32)
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Using (1.28), we can write

Lr =
1
r

r−1

∑
k=0

(−1)k
(

r− 1
k

)
r!

(r− k− 1)!k!

∫ 1

0
ur−k−1(1− u)kQ(u)du.

Expanding (1− u)k in powers of u using binomial theorem and combining powers
of u, we get

Lr =
∫ 1

0

r−1

∑
k=0

(−1)r−1−k
(

r− 1
k

)(
r− 1+ k

k

)
ukQ(u)du. (1.33)

Jones [306] has given an alternative method of establishing the last relationship. In
particular, we obtain:

L1 =
∫ 1

0
Q(u)du = μ , (1.34)

L2 =

∫ 1

0
(2u− 1)Q(u)du, (1.35)

L3 =
∫ 1

0
(6u2 − 6u+ 1)Q(u)du, (1.36)

L4 =

∫ 1

0
(20u3 − 30u2+ 12u− 1)Q(u)du. (1.37)

Sometimes, it is convenient (to avoid integration by parts while computing the
integrals in (1.34)–(1.37)) to work with the equivalent formulas

L1 =

∫ 1

0
(1− u)q(u)du, (1.38)

L2 =
∫ 1

0
(u− u2)q(u)du, (1.39)

L3 =

∫ 1

0
(3u2 − 2u3 − u)q(u)du, (1.40)

L4 =
∫ 1

0
(u− 6u2+ 10u3− 5u4)q(u)du. (1.41)

Example 1.8. For the exponential distribution with parameter λ , we have

Q(u) =−λ−1 log(1− u) and q(u) =
1

λ (1− u)
.
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Hence, using (1.38)–(1.41), we obtain

L1 =

∫ 1

0

1
λ

du = λ−1,

L2 =
∫ 1

0
u(1− u)q(u)du=

∫ 1

0

u
λ

du = (2λ )−1,

L3 =

∫ 1

0
u(1− u)(2u− 1)q(u)du= (6λ )−1,

L4 =
∫ 1

0
u(1− u)(1− 5u+ 5u2)q(u)du = (12λ )−1.

More examples are presented in Chap. 3 when properties of various distributions are
studied.

The L-moments have the following properties that distinguish themselves from
the usual moments:

1. The L-moments exist whenever E(X) is finite, while additional restrictions may
be required for the conventional moments to be finite for many distributions;

2. A distribution whose mean exists is characterized by (Lr : r = 1,2, . . .). This
result can be compared with the moment problem discussed in probability theory.
However, any set that contains all L-moments except one is not sufficient to
characterize a distribution. For details, see Hosking [279, 280];

3. From (1.12), we see that L2 = 1
2Δ , and so L2 is a measure of spread. Thus,

the first (being the mean) and second L-moments provide measures of location
and spread. In a recent comparative study of the relative merits of the variance
and the mean difference Δ , Yitzhaki [596] noted that the mean difference is
more informative than the variance in deriving properties of distributions that
depart from normality. He also compared the algebraic structure of variance
and Δ and examined the relative superiority of the latter from the stochastic
dominance, exchangability and stratification viewpoints. For further comments
on these aspects and some others in the reliability context, see Chap. 7;

4. Forming the ratios τr =
Lr
L2

, r = 3,4, . . ., for any non-degenerate X with μ <∞, the
result |τr|< 1 holds. Hence, the quantities τr’s are dimensionless and bounded;

5. The skewness and kurtosis of a distribution can be ascertained through the
moment ratios. The L-coefficient of skewness is

τ3 =
L3

L2
(1.42)

and the L-coefficient of kurtosis is

τ4 =
L4

L2
. (1.43)

These two measures satisfy the criteria presented for coefficients of skewness
and kurtosis in terms of order relations. The range of τ3 is (−1,1) while that
of τ4 is 1

4(5τ
2
3 − 1) ≤ τ4 < 1. These results are proved in Hosking [279] and
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Jones [306] using different approaches. It may be observed that both τ3 and τ4

are bounded and do not assume arbitrarily large values as β1 (for example, in the
case of F(x) = 1− x−3, x > 1);

6. The ratio

τ2 =
L2

L1
(1.44)

is called L-coefficient of variation. Since X is non-negative in our case, L1 > 0,
L2 > 0 and further

L2 =

∫ 1

0
u(1− u)q(u)du<

∫ 1

0
(1− u)q(u)du= L1

so that 0 < τ2 < 1.

The above properties of L-moments have made them popular in diverse applications,
especially in hydrology, civil engineering and meteorology. Several empirical
studies (as the one by Sankarasubramonian and Sreenivasan [517]) comparing L-
moments and the usual moments reveal that estimates based on the former are less
sensitive to outliers. Just as matching the population and sample moments for the
estimation of parameters, the same method (method of L-moments) can be applied
with L-moments as well. Asymptotic approximations to sampling distributions are
better achieved with L-moments. An added advantage is that standard errors of
sample L-moments exist whenever the underlying distribution has a finite variance,
whereas for the usual moments this may not be enough in many cases.

When dealing with the conventional moments, the (β1,β2) plot is used as a
preliminary tool to discriminate between candidate distributions for the data. For
example, if one wishes to choose a distribution from the Pearson family as a model,
(β1,β2) provide exclusive classification of the members of this family. Distributions
with no shape parameters are represented by points in the β1-β2 plane, those with a
single shape parameter have their (β1,β2) values lie on the line 2β2 − 3β1 − 6 = 0,
while two shape parameters in the distribution ensure that for them, (β1,β2) falls in
a region between the lines 2β2 − 3β1 − 6 = 0 and β2 −β1 − 1 = 0. These cases are,
respectively, illustrated by the exponential distribution (which has (β1,β2) = (4,9)
as a point), the gamma family and the beta family; see Johnson et al. [302]
for details. In a similar manner, one can construct (τ2,τ3)-plots or (τ3,τ4)-plots
for distribution functions or quantile functions to give a visual identification of
which distribution can be expected to fit a given set of observations. Vogel and
Fennessey [574] articulate the need for such diagrams and provide several examples
on how to construct them. Some refinements of the L-moments are also studied in
the name of trimmed L-moments (Elamir and Seheult [187], Hosking [281]) and
LQ-moments (Mudholkar and Hutson [424]).

Example 1.9. The L-moments of the exponential distribution were calculated ear-
lier in Example 1.8. Applying the formulas for τ2, τ3 and τ4 in (1.44), (1.42)
and (1.43), we have
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τ2 =
1
2
, τ3 =

1
3
, τ4 =

1
6
.

Thus, (τ2,τ3) = ( 1
2 ,

1
3) and (τ3,τ4) = ( 1

3 ,
1
6) are points in the τ2-τ3 and τ3-τ4 planes,

respectively.

Example 1.10. The random variable X has generalized Pareto distribution with

Q(u) =
b
a
{(1− u)−

a
a+1 − 1}, a >−1, b > 0.

Then, straightforward calculations yield

L1 = b, L2 = b(a+ 1)(a+ 2)−1,

L3 = b(a+ 1)(2a+ 1)[(2a+3)(a+2)]−1,

L4 = b(a+ 1)(6a2+ 7a+ 2)[(a+ 2)(2a+3)(3a+4)]−1,

so that

τ2 =
a+ 1
a+ 2

, τ3 =
2a+ 1
2a+ 3

and τ4 =
6a2 + 7a+ 2

6a2 + 17a+ 12
.

Then, eliminating a between τ2 and τ3, we obtain

τ3 =
3τ2 − 1
τ2 + 1

.

Thus, the plot of (τ2,τ3) for all values of a and b lies on the curve
(τ2 + 1)(3− τ3) = 4. Note that the exponential plot is ( 1

2 ,
1
3) which lies on the curve

when a → 0. The estimation and other related inferential problems are discussed
in Chap. 7.

We now present probability weighted moments (PWM) which is a forerunner
to the concept of L-moments. Introduced by Greenwood et al. [226], PWMs are of
considerable interest when the distribution is expressed in quantile form. The PWMs
are defined as

Mp,r,s = E[X pFr(X)F̄s(X)], (1.45)

where p,r,s are non-negative real numbers and E|X |p < ∞. Two special cases
of (1.45) in general use are

βp,r = E(X pFr(X))

=

∫
xpFr(x) f (x)dx

=
∫ 1

0
(Q(u))purdu (1.46)
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and

αp,s = E(X pF̄s(X))

=

∫ 1

0
(Q(u))p(1− u)sdu. (1.47)

Like L-moments, PWMs are more robust to outliers in the data. They have less bias
in estimation even for small samples and converge rapidly to asymptotic normality.

Example 1.11. The PWMs of the Pareto distribution with (see Table1.1)

Q(u) = σ(1− u)−
1
α , σ ,α > 0,

are

αp,s = σ
∫ 1

0
(1− u)−

p
α+sdu =

σα
α(s+ 1)− p

, α(s+ 1)> p.

Similarly, for the power distribution with (see Table 1.1)

Q(u) = αu
1
β , α,β > 0,

we have

βp,r = α
∫ 1

0
u
− p
β +r

du =
αβ

1+β (r+ 1)
.

Further specializing (1.46) for p = 1, we see that the L-moments are linear
combination of the PW moments. The relationships are

L1 = β1,0,

L2 = 2β1,1 −β1,0,

L3 = 6β1,2 − 6β1,1+β1,0,

L4 = 20β1,3− 30β1,2+ 12β1,1−β1,0

in the first four cases. Generally, we have the relationship

Lr+1 =
r

∑
k=0

(−1)r−k(r+ k)!
(k!)2(r− k)!

β1,k.

The conventional moments can also be deduced as Mp,0,0 or βp,0 or αp,0. The
role of PW moments in reliability analysis will be taken up in the subsequent
chapters. In spite of its advantages, Chen and Balakrishnan [140] have pointed out
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some infeasibility problems in estimation. While estimating the parameters of some
distributions like the generalized forms of Pareto, the estimated distributions have
an upper or lower bound and one or more of the data values lie outside this bound.

1.7 Diagrammatic Representations

In this section, we demonstrate a few graphical methods other than the conventional
ones. The primary goal is fixed as the choice of model for the data represented by a
quantile function. An important tool in this category is the Q-Q plot. The Q-Q plot
is the plot of points (Q(ur),xr:n), r = 1,2, . . . ,n, where ur =

r−0.5
n .1 For application

purposes, we may replace Q(ur) by the fitted quantile function. One use of this plot
is to ascertain whether the sample could have arisen from the target population Q(u).
In the ideal case, the graph should show a straight line that bisects the axes, since
we are plotting the sample and population quantiles. However, since the sample is
random and the fitted values of Q(u) are used, the points lying approximately around
the line is indicative of the model being adequate. The points in the Q-Q plot are
always non-decreasing when viewed from left to right.

The Q-Q plot can also be used for comparing two competing models by
plotting the rth quantile of one against the rth quantile of the other. When the
two distributions are similar, the points on the graph should show approximately
the straight line y = x. A general trend in the plot, like steeper (flatter) than y = x,
will mean that the distribution plotted on the y-axis (x-axis) is more dispersed. On
the other hand, S-shaped plots often suggest that one of the distributions exhibits
more skewness or tail-heaviness. It should also be noted that the relationship in
quantile plot can be linear when the constituent distributions are linearly related.
This procedure is direct when the data sets from two distributions contain the
same number of observations. Otherwise, it is necessary to use interpolated quantile
estimates in the shorter set to equal the number in the larger sets. Often, Q-Q plots
are found to be more powerful and informative than histogram comparisons.

Example 1.12. The times to failure of a set of 10 units are given as 16, 34, 53, 75,
93, 120, 150, 191, 240 and 390 h (Kececioglu [322]). A Weibull distribution with
quantile function

Q(u) = σ(− log(1− u))1/λ

is proposed for the data. The parameters of the model were estimated by the method
of maximum likelihood as σ̂ = 146.2445 and λ̂ = 1.973. The Q-Q plot pertaining
to the model is presented in Fig. 1.1. From the figure, it is seen that the above model
seems to be adequate.

1There are different choices for these plotting points and recently Balakrishnan et al. [52] discussed
the determination of optimal plotting points by the use of Pitman closeness criterion.
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Fig. 1.1 Q-Q plot for Example 1.12

A second useful graphical representation is the box plot introduced by Tukey
[569]. It depicts graph of the numerical data through a five-figure summary in the
form of extremes, quartiles and the median. The steps required for constructing a
box plot are (Parzen [484])

(i) compute the median m = Q̄(0.50), the lower quartile q1 = Q̄(0.25) and the
upper quartile q3 = Q̄(0.75);

(ii) draw a vertical box of arbitrary width and length equal to q3 − q1;
(iii) a solid line is marked within the box at a distance m− q1 above the lower end

of the box. Dashed lines are extended from the lower and upper ends of the
box at distances equal to xn:n − q3 and x1:n − q1. This constitutes the H-plot,
H standing for hinges or quartiles. Instead, one can use Q̄(0.125) = e1 and
Q̄(0.875) = e7 resulting in E-box plots. Similarly, the quantiles Q̄(0.0625) and
Q̄(0.9375) constitute the D-box plots;

(iv) A quantile box plot consists of the graph of Q̄(u) on [0,1] along with the three
boxes in (iii), superimposed on it.

Parzen [484] proposed the following information to be drawn from the plot. By
drawing a perpendicular line to the median line at its midpoint and of length±n−

1
2 −

(q3 −q1), a confidence interval for the median can be obtained. The graph x = Q̄(u)
exhibiting sharp rises is likely to have a density with more than one mode. If such
points lie inside the H-box, the presence of several distinct populations generating
the data is to be suspected, while, if they are outside the D-box, presence of outliers
is indicated. Horizontal segments in the graph may be the results of the discrete
distributions. By calculating

Q̄( 1
2 )− 1

2 [Q̄(u)+ Q̄(1− u)]

Q̄(1− u)− Q̄(u)
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Fig. 1.2 Box plot for the data given in Example 1.12

for u values, one can get a feel for skewness with a value near zero suggesting
symmetry. Parzen [484] also suggested some measures of tail classification.

Example 1.13. The box plot corresponding to the data in Example 1.12 is exhibited
in Fig. 1.2. It may be noticed that the observation 390 is a likely outlier.

A stem-leaf plot can also be informative about some meaningful characteristics
of the data. To obtain such a plot, we first arrange the observations in ascending
order. The leaf is the last digit in a number. The stem contains all other digits (When
the data consists of very large numbers, rounded values to a particular place, like
hundred or thousand, are used a stem and leaves). In the leaf plot, there are two
columns, first representing the stem, separated by a line from the second column
representing the leaves. Each stem is listed only once and the leaves are entered in
a row. The plot helps to understand the relative density of the observations as well
as the shape. The mode is easily displayed along with the potential outliers. Finally,
the descriptive statistics can be easily worked out from the diagram.

Example 1.14. We illustrate the stem-leaf plot for a small data set: 36, 57, 52, 44,
47, 51, 46, 63, 59, 68, 66, 68, 72, 73, 75, 81, 84, 106, 76, 88, 91, 41, 84, 68, 34,
38, 54.

3 4 6 8
4 1, 4, 6, 7
5 1 2 4 7 9
6 3 6 8 8 8
7 2 3 5 6
8 1, 4, 4, 8
9 1

10 6



Chapter 2
Quantile-Based Reliability Concepts

Abstract There are several functions in reliability theory used to describe the
patterns of failure in different mechanisms or systems as a function of age. The
functional forms of many of these concepts characterize the life distribution and
therefore enable the identification of the appropriate model. In this chapter, we
discuss these basic concepts, first using the distribution function approach and
then introduce their analogues in terms of quantile functions. Various important
concepts introduced here include the hazard rate, mean residual life, variance
residual life, percentile residual life, coefficient of variation of residual life, and
their counterparts in reversed time. The expressions for all these functions for
standard life distributions are given in the form of tables to facilitate easy reference.
Formulas for the determination of the distribution from these functions, their
characteristic properties and characterization theorems for different life distributions
by relationships between various functions are reviewed. Many of the quantile
functions in the literature do not have closed-form expressions for their distributions,
and they have to be evaluated numerically. This renders analytic manipulation
of these reliability functions based on the distribution function rather difficult.
Accordingly, we introduce equivalent definitions and properties of the traditional
concepts in terms of quantile functions. This leads to hazard quantile function, mean
residual quantile function and so on. The interrelationships between these functions
are presented along with characterizations. Various examples given in the sequel
illustrate how the quantile based reliability functions can be found directly from the
quantile functions of life distributions. Expressions of such functions for standard
life distributions can also be read from the tables provided in each case.

2.1 Concepts Based on Distribution Functions

The notion of reliability, in the statistical sense, is the probability that an equipment
or unit will perform the required function, under conditions specified for its
operation, for a given period of time. In Sect. 1.3, we defined life distributions and

N.U. Nair et al., Quantile-Based Reliability Analysis, Statistics for Industry
and Technology, DOI 10.1007/978-0-8176-8361-0 2,
© Springer Science+Business Media New York 2013
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gave several examples of such distributions used in the literature under different
contexts. When a unit does not perform its intended function, we say that it has
failed. This can happen in different forms such as mechanical breakdown, decrease
in performance below an assigned level, defective performance, and so on. The
primary concern in reliability theory is to understand the patterns in which failures
occur, for different mechanisms and under varying operating environments, as a
function of age. Accordingly, several concepts have been developed that help in
evaluating the effect of age, based on the distribution function of the lifetime random
variable X and its residual life Xt introduced earlier in Sect. 1.2. In this section, we
present some key concepts and their properties as background material for later
discussions using the quantile functions as the basic fabric.

2.1.1 Hazard Rate Function

The hazard rate of X is defined as

h(x) = lim
δ↓0

P(x ≤ X < x+ δ |X > x)
δ

(2.1)

so that δh(x) is approximately the conditional probability that a unit will fail in the
next small interval of time δ , given that the unit has survived age x. When F(x) is
absolutely continuous with probability density function f (x), (2.1) reduces to

h(x) =
f (x)
F̄(x)

=−d logF̄(x)
dx

(2.2)

for all x for which F̄(x)> 0. Treated as a function of age x, the hazard rate function
is also referred to as the failure rate function, instantaneous death rate, force of
mortality, and intensity function in other areas of study like survival analysis,
actuarial science, biosciences, demography and extreme value theory. The origin
of hazard rate can be traced back to the ‘force of mortality’ used in connection with
the construction of life tables as models of human mortality.

Integrating (2.2) over (0,x) and using F(0) = 0, we get

F̄(x) = exp

{
−

∫ x

0
h(t)dt

}
. (2.3)

The inversion formula in (2.3) is often used to characterize life distributions in terms
of the functional form of h(x), that could be postulated from the physical properties
of the failure rate patterns. While postulating the form of h(x), the following theorem
is helpful in the choice of h(x).

Theorem 2.1 (Marshall and Olkin [412]). A necessary and sufficient condition
that a function h(x) is the hazard rate of a distribution is that
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(i) h(x)≥ 0;
(ii)

∫ x
0 h(t)dt < ∞ for some x > 0;

(iii)
∫ ∞

0 h(t)dt = ∞;
(iv)

∫ x
0 h(t)dt = ∞ implies h(y) = ∞ for every y > x.

Example 2.1. The exponential power model has survival function

F̄(x) = exp[−(e(λ x)α − 1)], x > 0.

The probability density function is

f (x) =−dF̄(x)
dx

= λααxα−1 exp[−(e(λ x)α − 1)]e(λ x)α ,

and so

h(x) =
f (x)
F̄(x)

= αλαxα−1 exp[(λx)α ].

Example 2.2. Let X1,X2, . . . ,Xn be independent random variables and Z = min(X1,
X2, . . . ,Xn). Then,

P(Z > x) = P(X1 > x,X2 > x, . . . ,Xn > x)

or

F̄Z(x) = F̄X1(x) . . . F̄Xn(x).

Logarithmic differentiation leads to

hz(x) = hX1(x)+ · · ·+ hXn(x). (2.4)

The above model constitutes a series system with n independent components having
life distributions FX1 , . . . ,FXn . This is more general than the system illustrated in
Sect. 1.5, since the components here are not identically distributed. Formula (2.4)
could be employed to construct new life distributions from standard ones.

Hjorth [272] chose X1 to be Pareto II (see Table 1.1) and X2 to be Rayleigh with

F̄X2(x) = exp

(
−1

2
αx2

)
, x > 0,

to obtain the model

F̄(x) = e−
αx2

2 (1+θx)−β .
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The resulting hazard rate is

h(x) = αx+βθ (1+θx)−1.

In a similar manner, Jaisingh et al. [291] considered a three-component model
consisting of exponential, Pareto II and Weibull (see Table 1.1) to produce the model

F̄(x) = βθ (x+β )−θ exp[−αx−λ−1δxλ ], x > 0,

with corresponding hazard rate

h(x) = α+θ (x+β )−1+ δλxλ−1.

Further examples of similar models can be seen in Wang [577] and Jiang and Murthy
[294]. The linear failure rate distribution and quadratic failure rate distribution (Gore
et al. [223]) with respective hazard functions

h1(x) = a+ bx

and

h2(x) = a+ bx+ cx2

can also be interpreted in the same manner, although they have been derived
independently without such assumptions. Some of these distributions also figure
in the context of additive hazards models considered in Nair and Sankaran [446].

The hazard rate functions of various distributions, their analysis with extensive
references are given in Lai and Xie [368]. We have presented in Table 2.1 the
expressions for h(x) of the life distributions given in Table 1.1. It may be noticed
that all the distributions in Example 2.2 do not have closed-form expressions for
Q(u) and therefore do not form part of Table 1.1

2.1.2 Mean Residual Life Function

Another important notion is based on the residual life introduced earlier in Sect. 1.2.
For a unit which has survived until x, the lifetime remaining to it is (X − x|X > x)
with survival function (1.3)

F̄x(t) =
F̄(x+ t)

F̄(x)
.
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Table 2.1 Hazard rate functions of distributions in Table 1.1

No. Distribution Hazard rate

1 Exponential λ
2 Weibull λσ−λxλ−1

3 Pareto II c(x+α)−1

4 Rescaled beta c(R− x)−1

5 Half-logistic e
x
σ [σ (1+ e

x
σ )]−1

6 Power βxβ−1(αβ − xβ )−1

7 Pareto I αx−1

8 Burr XII kcxc−1(1+ xc)−1

9 Gompertz BCx

10 Log logistic βαβxβ−1(1+αβ xβ )

11 Exponential geometric λ (1− pe−λx)−1

12 Generalized Weibull αxα−1(βα −λxα)−1

13 Exponentiated Weibull
λθ ( x

σ )
λ−1[1− exp(− x

σ )
λ ]θ−1 exp[−( x

σ )
λ ]

1− [1− exp(− x
σ )
λ ]θ

14 Generalized exponential
θ (1− e−

x
σ )θ−1e−

x
σ

σ [1− (1− e−
x
σ )θ ]

15 Extended Weibull λσ−λxλ−1[1− (1−θ )e−( x
σ )
λ
]−1

16 Inverse Weibull
λσλx−λ−1e−( x

σ )
λ

[1− e−( σx )
λ
]

17 Generalized Pareto
a+1
ax+b

18 Exponential power αλαxα−1 exp[−(λx)α ]

19 Modified Weibull αλ ( x
σ )
λ−1 exp[ x

σ ]
λ

20 Log Weibull kρ
1+ρx [log(1+ρx)]k−1

21 Dimitrakopoulou et al. αλβxβ−1(1+λxβ )α−1

22 Logistic exponential
keλ (x+θ)(eλ (x+θ) −1)k−1

1+(eλ (x+θ)−1)k

23 Kus
βλe−βx exp[λe−βx]

1− exp[λe−βx]

24 Greenwich ax(b2 + x2)−1

25 Generalized half-logistic (1−kx)−1

1+(1−kx)1/k
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The expected value of the distribution F̄x(t) is called the mean residual life function
and is denoted by m(x). Thus, when E(X)< ∞,

m(x) =
∫ ∞

0

F̄(t + x)
F̄(x)

dt =
1

F̄(x)

∫ ∞

x
F̄(t)dt (2.5)

for all x for which F̄(x)> 0. When F̄(x) has a density f (x), we have

m(x) =
1

F̄(x)

∫ ∞

x
(t − x) f (t)dt. (2.6)

Like the hazard rate function, the origin of mean residual life also traces back to
the life table function ‘expectation of life’, used by actuaries. It is called the mean
excess function in actuarial science.

Differentiating (2.5) with respect to x and rearranging the terms, the identity

h(x) =
1+m′(x)

m(x)
(2.7)

results. The function m(x) determines the distribution of X uniquely by virtue of the
formula

F̄(x) =
μ

m(x)
exp

{
−

∫ x

0

dt
m(t)

}
. (2.8)

Both the hazard function and the mean residual life function are conditional on the
survival until x. The former provides information in an infinitesimal interval after
x, while the latter contributes to the entire interval [x,∞). For further comparison
of the two measures, we refer to Muth [436]. Guess and Proschan [228] and Nanda
et al. [458] have both reviewed the basic results and various applications of the mean
residual life function and associated orderings and properties.

Example 2.3. Consider the Weibull distribution with survival function

F̄(x) = exp

{
−
( x
σ

) 1
2
}
, x > 0.

Then,

m(x) =
1

F̄(x)

∫ ∞

x
e−( t

σ )
1
2 dt

= 2e(
x
σ )

1
2
∫ ∞

x
1
2

ye−σ
− 1

2 ydy (with y = x
1
2 )

= 2σ
1
2 (σ

1
2 + x

1
2 ).
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Table 2.2 Mean residual life functions of some distributions

Distribution m(x)

Exponential λ−1

Power
(β +1)αβ (1− x)+ xβ+1 −1

(β +1)(αβ − xβ )

Pareto II
x+α
c−1

Rescaled beta
R− x
R+1

Pareto (α−1)−1x

Half-logistic σ (1+ e
x
σ ) log(1+ e−

x
σ )

Exponential geometric −(λ p)−1eλx(1− pe−λx) log(1− pe−λx)

Exponential geometric extension −{β (1−θ )}−1eβx[1− (1−θ )e−βx]

log[1− (1−θ )e−βx]

Adamidis et al. [17] (F̄(x) = θe−βx[1− (1−θ )e−βx]−1, x > 0)

Example 2.4. Let X be distributed as exponential geometric with

F̄(x) = (1− p)e−λ x(1− pe−λ x)−1.

Then,

m(x) =
1− pe−λ x

(1− p)e−λ x

∫ ∞

x

(1− p)e−λ x

1− pe−λ x
dx

=−(λ p)−1e−λ x(1− pe−λ x) log(1− pe−λ x).

Further examples of mean residual life functions are presented in Table 2.2.
Not every function can be the mean residual life function of a life distribution.

The following theorem helps to conclude whether a given function can represent a
mean residual life.

Theorem 2.2 (Guess and Proschan [228] and Nanda et al. [458]). A necessary
and sufficient condition for m(x) to be a mean residual life function is that

(i) m(x) has range [0,∞) for all x ≥ 0;
(ii) m(0) = μ > 0;

(iii) m(x) is right continuous;
(iv) m(x)+ x is increasing;
(v) when there exists an x0 satisfying limx↓x0 m(x) = 0, then m(x) = 0 holds for x in

[x0,∞). If there is no x0 for which the above limit is 0, then
∫ ∞

0
dx

m(x) = ∞.

The formula in (2.7) makes it easy to find the hazard function when m(x)
is given. However, the problem is with the converse. When h(x) is known, the
differential equation resulting from (2.7) in m(x) is difficult to solve for most
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distributions. Hence, efforts were put in to finding simpler relationships between
m(x) and h(x) satisfied by distributions. The price paid for simplicity in such cases
is the limitation to the range of applicability. Starting with individual distributions
like gamma and negative binomial (Osaki and Li [475]), the work in this direction
progressed to characterization of Pearson family (Nair and Sankaran [442]), the
exponential family (Consul [155]), mixtures of distributions (Abraham and Nair
[12]), generalized Pearson system (Sankaran et al. [516]) and other generalizations
(Gupta and Bradley [238]). The general relationship

E(C(X)|X > x) = μC +σCh(x)g(x), (2.9)

for some g(x) and a measurable function C(x) with μC =EC(X) and σ2
C =V (C(X)),

is seen to hold for the class of distributions satisfying

f ′(x)
f (x)

=
μC −C(x)− g′(x)

σCg(x)

and conversely (Nair and Sudheesh [449]). The special case C(X) = X gives
the necessary relationship in terms of m(x) and h(x). Apart from providing such
relationships for a wider class of distributions, (2.9) was employed to develop
lower bound to the variance that compares favourably with the well-known Cramer–
Rao and Chapman–Robbins inequalities. Details can be seen in Nair and Sudheesh
[449, 450] and also in the references in Nair and Sankaran [442]. In an alternative
approach, Nair and Sankaran [443] viewed the mean residual life function as the
expectation of the conditional distribution of residual life given age, arising from
the joint distribution of age and residual life in renewal theory.

2.1.3 Variance Residual Life Function

For a lifetime random variable X with E(X2)<∞, the variance residual life function
is defined as

σ2(x) =V (X − x|X > x) =V (X |X > x)

= E(X − x2|X > x)−m2(x)

=
1

F̄(x)

∫ ∞

x
(t − x)2 f (t)dt −m2(x). (2.10)

The integral on the right side can be simplified by integration by parts as
∫ ∞

x
(t − x)2 f (t)dt = 2

∫ ∞

x
(t − x)F̄(t)dt = 2

∫ ∞

x

∫ ∞

u
F̄(t) dt du
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and therefore

σ2(x) = 2[F̄(x)]−1
∫ ∞

x

∫ ∞

u
F̄(t) dt du−m2(x). (2.11)

Apart from the usual meaning as a measure of spread of the residual life distribution
and its role in finding the variance of the sample mean residual life, σ2(x) has some
other important applications in reliability analysis. Launer [377], who introduced
this concept, used it to distinguish life distributions based on its monotonic
properties while Gupta and Kirmani [243, 245] considered characterizations using
σ2(x) (see also Gupta [234] and Gupta et al. [246]). Gupta [234] established that

d
dx
σ2(x) = h(x)(σ2(x)−m2(x)). (2.12)

It follows from (2.3) that (Abouammoh et al. [8])

F̄(x) = exp

[
−

∫ x

0

dσ2(t)
dt

σ2(t)−m2(t)

]
. (2.13)

Equation (2.13) makes it clear that both σ2(x) and m(x) are required to retrieve
F(x). With the variance and mean in place, the coefficient of variation of residual
life becomes

C(x) =
σ(x)
m(x)

. (2.14)

Gupta [234] showed that

d
dx
σ2(x) = m(x)(1+m′(x))(C2(x)− 1)

which arises from (2.12), (2.14) and (2.7). In a later work, Gupta and Kirmani [243]
found

m(x) = (1+C2(x))−1
{∫ x

0
C2(t)dt +m(1+C2(0))− x

}
. (2.15)

Since m(x) characterizes F(x) and m(x) is expressed uniquely in terms of C(x)
by (2.15), it is evident that C(x) also determines F(x) uniquely. They also showed
that if two life distributions F(x) and G(x) have the same means and equal residual
coefficient of variation for all x, then F = G. This was further strengthened in
Gupta and Kirmani [243] by the conditions mF(x0) = mG(x0) for some x0 ≥ 0 and
σ2

F(x) = σ2
G(x), for the equality of F(x) and G(x) for all x.

Unlike the hazard and mean residual life functions, there is no direct formula
that expresses F(x) in terms of σ2(x) only. This brings in the importance of
characterizing specific distributions or families by the functional form of σ2(x).
The works of Dallas [166], Adatia et al. [19], Koicheva [351], Ghitany et al. [213],
Navarro et al. [465] and El-Arishi [184] all belong to this category. Most of these
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results are subsumed in the general formula given in Nair and Sudheesh [451], which
states that if (2.9) holds, then

V (C(X)|X > x) = σCE[C′(X)g(X)|X > x]+ (μC −M(x))(M(x)−C(x)), (2.16)

where M(x) = E(C(X)|X > x). Conversely, if there exists a measurable function
C(x) for which C′(x) �= 0 for all x > 0, satisfying (2.15), then (2.9) holds and

f ′(x)
f (x)

=
μC −C(x)− g′(x)

σCg(x)
.

When C(X) = X , the implication to σ2(x) from (2.16) is obvious.

Example 2.5. The generalized Pareto distribution has survival function

F̄(x) =
(

1+
ax
b

)− a+1
a
, x > 0;b > 0, a >−1. (2.17)

The form of this distribution is quite amenable to deriving several characterizations
based on reliability functions. It consists of three distributions, viz., the exponential
(a → 0), the Pareto II when a = (C−1 − 1) and b = aα , and the rescaled beta when
a = −(1+C−1) and b = Ra; see Table 1.1 for details. All the three constituent
distributions are important models in reliability on their own accord. For the model
in (2.17), we have

m(x) =
(

1+
ax
b

) a+1
a

∫ ∞

x

(
1+

at
b

)− a+1
a

dt = ax+ b.

Hence, a linear mean residual life function characterizes the generalized Pareto
model of which, the exponential has m(x) = b (a = 0), Pareto II has a > 0 so that
m(x) is increasing, and rescaled beta has −1 < a < 0 giving a decreasing mean
residual life.

Notice also that the hazard rate of (2.16) is

h(x) =
(a+ 1)
(ax+ b)

.

Hence,

m(x)h(x) = constant,

a relationship that affords another characterization; see Mukherjee and Roy [431]
for further details.
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Again, we have

σ2(x) = 2
(

1+
ax
b

) a+1
a

∫ ∞

x

∫ ∞

u

(
1+

at
b

)− a+1
a

dt du

from (2.11). After simplification, we obtain

σ2(x) =
a+ 1
1− a

b2(ax+ b)2.

Thus, we have the identity

σ2(x) = Km2(x). (2.18)

Conversely, if we assume (2.18), upon substituting it in (2.13), we get

m′(x) =
k− 1
k+ 1

which implies that m(x) is linear and X is distributed as generalized Pareto.

2.1.4 Percentile Residual Life Function

The mean and variance of residual life are popular measures in lifelength analysis
with potential applications in other fields of study. However, there are instances
like censored data, or observations from heavily skewed distributions in which the
empirical counterparts of the two functions are difficult to compute. Moreover,
the other limitations that were described in Chap. 1 in connection with the use of
conventional moments are also true for m(x) and σ2(x). An alternative in such
cases is the percentile residual life function first studied by Haines and Singpurwalla
[258]; see also Launer [376].

For any 0 < α < 1, the αth percentile residual life function is the αth percentile
of the residual life distribution of X . Thus, recalling from (2.4) the expression for
the survival function of the residual life, the αth percentile residual life function,
denoted by pα(x), is

pα(x) = F−1
x (α)

= inf{x|Fx(t)≥ α}

= inf

{
x|1− F̄(x+ t)

F̄(x)
≥ α

}
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= inf{y|F̄(y)≤ (1−α)F̄(x)}− x

= F−1(1− (1−α)F̄(x))− x. (2.19)

Thus, pα(x) can be expressed in terms of the baseline distribution function F(x).
From (2.19), it is clear that pα(x) is a solution of the functional equation

F(pα(x)+ x) = 1− (1−α)F̄(x) = α+(1−α)F(x). (2.20)

We interpret pα(x) as the age that will be survived, on the average, by 100(1−α)%
of units that have lived beyond age x.

Example 2.6. The exponential distribution F̄(x) = e−x, x > 0, has pα(x) defined by
(2.20) as

1− e−(x+pα) = 1− (1−α)e−x

which simplifies to

pα =− log(1−α)

which is a constant, independent of x for any choice of α in (0,1). On the other
hand, choosing (Song and Cho [545])

F̄(x) = e−x(1+θ sinx), x ≥ 0, |θ |< 2−
1
2 ,

and α = 1− e−2π , (2.20) yields

F̄(pα(x)+ x) = 1− e−2πe−x(1+θ sinx)

= 1− e−(2π+x)(1+θ sin(x+ 2π))

= F̄(2π+ x).

Since F is continuous and strictly increasing, we get

pα(x) = 2π

which is the same as that of the exponential when α = 1− e−2π .

It is clear from the above example that the percentile residual life function
does not determine F(x) uniquely. Thus, the problem of searching conditions for
characterizing distributions in terms of pα(x) has received the attention of many
researchers like Schmittlein and Morrison [523], Arnold and Brockett [38], Gupta
and Langford [247], Joe [300], Song and Cho [545], Lillo [399] and Lin [402].
A comprehensive solution was offered by Gupta and Langford [247] (see also Joe
[300]) who identified (2.20) as a particular case of the Schroder functional equation
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R(φ(t)) = uR(t), 0 ≤ t <∞, (2.21)

where 0 < u < 1 and φ(t) is a continuous and strictly increasing function on [0,∞]
satisfying φ(t) > t for all t. The general solution of (2.22) is

R(t) = R0(t)K(logR0(t)),

where K(·) is a periodic function with period − logu and R0(t) is a particular
solution of (2.21) which is positive, continuous and strictly decreasing such that
R(0)= 1. Thus, there is no unique solution to (2.20). Song and Cho [545] (correcting
a result of Arnold and Brockett [38]) proved that if F is continuous and strictly
increasing and if for 0 < α1 < α2 < 1, log(1−α1)

log(1−α2)
is irrational, then F is uniquely

determined by pα1(x) and pα2(x). More general results due to Lin [402] are the
following:

1. If F(x) and G(x) are continuous distributions on [0,∞) such that F(0) = G(0) =
u0 in [0,1), then for a fixed number α , pα ,F(x) = pα ,G(x) if and only if

F̄(x) = ḠK1(− log Ḡ(x)) 0 ≤ x < r,

Ḡ(x) = F̄K2(− log F̄(x)) 0 ≤ x < r,

where Ki, i = 1,2, are periodic functions with the same period 1−α and r is the
common right extremity of the supports of F and G;

2. For real numbers αi in (0,1) such that log(1−α1)
log(1−α2)

is irrational and pαi,F(x) =

pαi,G(x), i = 1,2, we have F(x) = G(x).

2.2 Reliability Functions in Reversed Time

2.2.1 Reversed Hazard Rate

In this section, we consider functions similar to those explained in Sect. 2.1 but are
conditioned on the event X ≤ x, that is, the unit is assumed to have a lifetime less
than or equal to x. The primary notion in this connection is the reversed hazard rate
λ (x) given by

lim
Δ→0

P(x−Δ < X ≤ x|X ≤ x)
Δ

(2.22)

and hence

Δλ (x) = P(x−Δ < X < x|X ≤ x)+ o(Δ).
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Thus, for all x for which F(x)> 0,

λ (x) =
d
dx

logF(x) =
f (x)
F(x)

.

Hence, the probability that a unit with life X which has survived age x− Δ will
fail in the next small interval of time Δ given that it will not survive age x
is Δλ (x). Introduced by Keilson and Sumita [323], the function λ (x) has been
used in various contexts such as estimation and modelling for left censored data,
stochastic orderings, characterization of distributions, and in developing repair and
maintenance strategies. Block et al. [111] have shown that there does not exist a
non-negative random variable having increasing or constant reversed hazard rate
function. If X has support (a,b), −∞ ≤ a < b ≤ ∞, then λ−X(x) = hX(−x) where
x, −x ∈ (a,b) which is a duality property that justifies the adjective ‘reversed’
associated with λ (x). Finkelstein [198] observed that for possible application of
λ (x) in reliability studies, the above duality property is not relevant. Moreover, with
the upper extremity of the interval of support being usually infinity, the properties
of the reversed hazard rate for non-negative random variables cannot be formally
observed from the corresponding properties of h(x). Like h(x), we can use λ (x)
also to recover the distribution of X by means of the relation

F(x) = exp

{
−

∫ ∞

x
λ (t)dt

}
(2.23)

obtained by integrating (2.22) over (x,∞).

Example 2.7. The generalized exponential distribution with (see Table 1.1)

F(x) = (1− e−λ x)θ , x > 0; λ ,θ > 0,

has

f (x) = λθ (1− e−λ x)θ−1e−λ x,

and so

λ (x) = θλ (eλ x − 1)−1.

Example 2.8. Let X1,X2, . . . ,Xn be independent random variables and W =max(X1,
X2, . . ., Xn). Then,

P(W ≤ x) = P(X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x).

Logarithmic differentiation leads to

λW (x) = λX1(x)+λX2(x)+ · · ·+λXn(x).
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Table 2.3 Reversed hazard rate functions of some life distributions

Distribution F(x) λ (x)
Power ( x

α )
β , 0 ≤ x ≤ α βx−1

Reciprocal exponential exp(− λ
x ), x > 0, λ > 0 λx−2

Reciprocal Lomax (1+ 1
αx )

−c, x > 0
c

x(1+αx)

Reciprocal Weibull exp[−( 1
σx )

λ ], x > 0
λ

σλxλ+1

Reciprocal beta (1− 1
Rx )

c,
C

x(Rx−1)
1
R < x < ∞

Reciprocal Gompertz exp[−B(Cx−1−1)
logC ] B

x2 C
1
x

Generalized exponential (1− e−λx)θ , x > 0
θλ

eλx −1

Burr (1+ x−C)−k, x > 0
kc

x(1+ xC)

Generalized power (1− x−β )θ , x > 1
βθ

x(xβ −1)

Negative Weibull exp[−θ (x−β−1)]
θβ

xβ+1

This model constitutes a parallel system with n independent components with life
distribution functions FX1 , . . . ,FXn .

A review of the main results and applications of λ (x) are given in Nair and Asha
[439]. For many of the distributions in Table 1.1, the reversed hazard functions are
complicated, though they can be obtained as in the above example. A useful result
that enables one to get models with simple expressions for λ (x) is the following.

Theorem 2.3. For a non-negative random variable X with hazard rate h(x), its
reciprocal 1

X has reversed hazard rate λ ∗(x) that satisfies

h(x) =
1
x2 λ

∗
(

1
x

)

or

λ ∗(x) =
1
x2 h

(
1
x

)
.

Table 2.3 contains some distributions belonging to the above category.

2.2.2 Reversed Mean Residual Life

The random variable (x−X |X ≤ x) is called the inactivity time or reversed residual
life of X . It represents the time elapsed since the failure of a unit given that its
lifetime is at most x. We can write the distribution function of the reversed residual
life as
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Fx(t) = P((x−X)≤ t|X ≤ x)

=
F(x)−F(x− t)

F(x)

with corresponding density function

fx(t) =
f (x− t)
F(x)

.

Accordingly, the mean inactivity time (reversed mean residual life) becomes

r(x) =
∫ x

0

t f (x− t)
F(x)

dt =
1

F(x)

∫ x

0
F(t)dt (2.24)

and

r(x)F(x) =
∫ x

0
F(t)dt.

Differentiating with respect to x and using the definition of λ (x), we obtain

λ (x) =
1− r′(x)

r(x)
. (2.25)

Hence, from (2.23), we get

F(x) = exp

{
−

∫ ∞

x

1− r′(t)
r(t)

dt

}
. (2.26)

As in the case of the mean residual life function, for a chosen function r(x) to
be a reversed mean residual life function, the following conditions have to be
satisfied.

Theorem 2.4 (Finkelstein [198]). A function r(x) is a reversed mean residual life
of a non-negative random variable X if and only if

(i) r(x)≥ 0 for all x > 0, with r(0) = 0;

(ii) r′(x)< 1;

(iii)
∫ ∞

0
1−r′(t)

r(t) dt = ∞;

(iv)
∫ ∞

x
1−r′(t)

r(t) dt < ∞ for x > 0.
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2.2.3 Some Other Functions

Kundu and Nanda [360] discussed the properties of the reversed variance residual
life function

v(x) =V (x−X |X ≤ x)

= E((x−X)2|X ≤ x)− r2(x)

=
2

F(x)

∫ x

0

∫ u

0
F(t) dt du− r2(x) (2.27)

and also the corresponding coefficient of variation given by

a(x) =
[v(x)]

1
2

r(x)
.

They obtained the identity

dv(x)
dx

= λ (x)r2(x)[1− a2(x)]

and used it to characterize the distribution

F(x) =
[{(2b− μ)C2− μ}+(1−C2)x]

2C2

1−C2

(b− μ)(1+C2)
,
μ+(μ− 2b)C2

1−C2 < x < b,

by the property a(x) =C.

Example 2.9. In the case of the power distribution with

F(x) =
( x
α

)β
, 0 ≤ x ≤ α,

f (x) = α−β βxβ−1,

we have λ (x) = βx−1. Again, r(x) = (β + 1)x, and so

r(x)λ (x) = β (β + 1)−1, a constant.

Upon using

∫ x

0

∫ u

0
F(t)dtdu =

2

αβ
xβ+2

(β + 1)(β + 2)
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and (2.27), we obtain

v(x) =
βx2

(β + 2)(β + 1)2 =
β

β + 2
r2(x).

One can prove that all these are characterizations, with the help of (2.23), (2.26),
(2.25) and (2.27). Note the similarity between the above and those of the generalized
Pareto distribution in Example 2.3.

The reversed percentile residual life qα(x), for 0 < α < 1, is defined as (Nair and
Vineshkumar [453])

qα(x) = F−1
x (α) = inf[t|Fx(t)≥ α]

= inf[t|F(x− t)≤ (1−α)F(x)]
= x−F−1[(1−α)F(x)].

The functional equation that solves for qα(x) is

F(x− qα(x)) = (1−α)F(x). (2.28)

By obtaining a solution of the form

F(x) = G(x)K(− log(x)),

where K(·) is a periodic function with period − log(1−α) and G(x) is a particular
solution, Nair and Vineshkumar [453] concluded that F(x) is uniquely determined

by two percentile functions qα(x) and qβ (x), with log(1−α)
log(1−β ) being irrational. They

also showed that qα(x) and λ (x) are related through

q′α(x) = 1− λ (x)
λ (x− qα(x))

.

2.3 Hazard Quantile Function

We have seen several distribution functions for which the corresponding quantile
functions cannot be obtained in explicit algebraic form. In practice, the solution
of F(x) = u is obtained numerically. Similarly, there are quantile functions that
do not permit closed-form expressions for F(x). Hence, the reliability functions
introduced in the last two sections and their properties are of limited use for
algebraic manipulations and analysis. In view of this, we need translation of the
definitions and properties in terms of quantile functions. This approach will facilitate
all forms of analysis with the same scope and strength as in the distribution function
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approach. In addition, they offer new results and opportunities by way of models and
methods of analysis. The main source of the discussions in the rest of this chapter is
Nair and Sankaran [444]. We assume that F(x) is continuous and strictly increasing
so that all quantile related functions are well defined.

Setting x = Q(u) in (2.2) and using the relationship

f (Q(u)) = [q(u)]−1,

we have the definition of the hazard quantile function as

H(u) = h(Q(u)) = [(1− u)q(u)]−1. (2.29)

In this definition, H(u) is interpreted as the conditional probability of the failure of
a unit in the next small interval of time given the survival of the unit at 100(1−u)%
point of the distribution. Gilchrist [215] refers to (2.29) as the p-hazard (with p
taking the place of u in our notation) and points out some forms of hazard functions.
From (2.29), we have

q(u) = [(1− u)H(u)]−1 (2.30)

and so

Q(u) =
∫ u

0

d p
(1− p)H(p)

. (2.31)

The last two equations can be employed for the unique determination of the
distribution of X as illustrated in the following examples.

Example 2.10. Taking

Q(u) = uθ+1(1+θ (1− u)), θ > 0,

we have

q(u) = uθ [1+θ (θ+ 1)(1− u)]

and so

H(u) = [(1− u)uθ(1+θ (θ+ 1)(1− u))]−1.

Note that there is no analytic solution for x = Q(u) that gives F(x) in terms of x.

Example 2.11. Given the hazard quantile function of a distribution as

H(u) =
a+ 1

b
(1− u)

a
a+1 ,
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from (2.30), we have

q(u) =
b

a+ 1
(1− u)−

a
a+1−1,

and so from (2.31), we obtain

Q(u) =
b
a
[(1− u)−

a
a+1 − 1],

the quantile function of the generalized Pareto distribution.

The hazard quantile functions that characterize the life distributions in Table 1.1 are
presented in Table 2.4. More examples are available in Chap. 3 wherein we discuss
new models.

Example 2.12. Suppose we are given the hazard quantile function of a distribu-
tion as

H(u) =
1
2

(
1+ u
1− u

)k+1

for k > 0.

Then, from (2.30), we have the quantile density function as

q(u) =
1

(1− u)H(u)
= 2

(1− u)k

(1+ u)k+1 .

So, from (2.31), we obtain the quantile function of the distribution as

Q(u) =
∫ u

0
q(p)d p = 2

∫ u

0

(1− p)k

(1+ p)k+1 d p =
1
k

{
1−

(
1− u
1+ u

)k
}
,

which is the quantile function of the generalized half-logistic distribution as
presented in Table 1.1.

The application of hazard quantile functions is not limited to the appraisal of
the mechanism of failures in a specific failure time model. It can also provide the
identification of the model in a given data situation by means of characterization
theorems. The characterization problems discussed earlier and elsewhere in the
distribution function approach automatically hold for quantile functions under the
transformation x = Q(u). Other than these, we can find new characterizations
exclusively in the quantile set-up, which is illustrated in the following theorem.
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Table 2.4 Hazard quantile functions of distributions in Table 1.1

Distribution H(u)

Exponential λ
Weibull λσ−1(− log(1−u))1− 1

λ

Pareto II cα−1(1−u)1/c

Rescaled beta cR−1(1−u)−
1
c

Half-logistic (2σ )−1(1+u)

Power βα−1(1−u)−1u
1− 1

β

Pareto ασ−1(1−u)
1
α

Burr XII ck(1−u)
1
k [(1−u)−

1
k −1]1−

1
c

Loglogistic αβ (1−u)
1
β u

1− 1
β

Exponential geometric λ (1− p)−1(1− pu)

Generalized Weibull αβ−1(1−u)−λ [1− (1−u)λ

λ ]1−
1
α

Exponentiated Weibull λθ (1−u
1
θ )(− log(1−u

1
θ )1− 1

λ

(1−u)−1u1− 1
θ

Generalized exponential σ−1θ (1−u
1
θ )(1−u)−1u1− 1

θ

Exponential power λα [1+ log(1−u)]

[− log(1+ log(1−u))]1−
1
α

Modified Weibull extension λσ−1[ασ− log(1−u)]

[log(1− log(1−u)
ασ )]1−

1
λ

Log Weibull ρkexp[−(− log(1−u))
1
k ]

[− log(1−u)]1−
1
k

Greenwich ab−1(1−u)−
2
a [(1−u)

2
a −1]

1
2

Extended Weibull λ
θσ [log θ+(1−θ)(1−u)

1−u ]1−
1
λ

(θ +(1−θ )(1−u))

Inverse Weibull λσ−1u(1−u)−1(− logu)
1
λ +1

Generalized Pareto b−1(a+1)(1−u)
a

a+1

Generalized half-logistic 1
2

(
1+u
1−u

)k+1

Theorem 2.5. Let X be a non-negative random variable with absolutely continuous
distribution function F(x) and quantile function Q(u). Then, the hazard quantile
function of X is of the linear form

H(u) = a+ bu, a > 0, (2.32)

for all 0 < u < 1, if and only if
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Q(u) = log

(
a+ bu

a(1− u)

) 1
a+b

. (2.33)

Proof. When X has its quantile function as in (2.33), we have

q(u) = [(1− u)(a+ bu)]−1

and so

H(u) = a+ bu.

To prove the sufficiency, we obtain from (2.32) that

q(u) = [(1− u)(a+ bu)]−1,

and upon integrating it from 0 to u, we get

Q(u) = (a+ b)−1 log

(
a+ bu
1− u

)
+C.

Setting u = 0, the condition Q(0) = 0 readily gives C = − loga
a+b , and conse-

quently (2.33) holds. We notice that (2.33) represents a family of distributions with
some well-known models as particular cases. For the special case when b = 0,
a = λ−1, λ > 0, we have the exponential distribution; for the case when a = b =
(2σ)−1 > 0, we have the half-logistic distribution; the case a = λ (1− p)−1 > 0, b=
− pλ

1−p =−pa < 0 corresponds to the exponential geometric, and finally a = 1
α > 0,

b =− 1
α =−1 < 0 leads to Pareto II distribution with parameter (α,1). �

The above characterization theorem can be used to identify the adequacy of
the model for a given data in the following manner. Using (2.29), we obtain the
empirical version of H(u) as

H̄(u) = [(1− u)q̄(u)]−1.

If the points (u, H̄(u)) plotted on a graph for different values of u in (0,1) lie
approximately on a straight line, it suggests the distribution in (2.33). The specific
member of the model is identified on the basis of the estimates of a and b derived
from the plot, for example.

The family of distributions in (2.33) will be referred to in the sequel as the
linear hazard quantile family. It is easy to invert (2.33) to obtain the distribution
function as
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F(x) =
1− e−(a+b)x

1+ b
a e−(a+b)x

x > 0, a > 0.

2.4 Mean Residual Quantile Function

Recall that the mean residual life function is defined as

m(x) =
1

F̄(x)

∫ ∞

x
t f (t)dt − x.

In terms of quantiles, the mean residual quantile function is thus given by

M(u) = m(Q(u)) =
1

1− u

∫ 1

u
Q(p)d p−Q(u)

= (1− u)−1
∫ 1

u
[Q(p)−Q(u)]d p. (2.34)

The same expression can also be obtained from (1.4). Also

M(u) = (1− u)−1
∫ 1

u
(1− p)q(p)d p. (2.35)

We interpret M(u) as the average remaining life beyond the 100(1− u)% of the
distribution.

Equivalence of (2.34) and (2.35) is readily verified by integrating by parts the
RHS of (2.35). From (2.35) and the definition of the hazard quantile function H(u)
in (2.29), we have

M(u) = (1− u)−1
∫ 1

u

d p
H(p)

. (2.36)

Differentiating (2.35) with respect to u, we obtain

(1− u)q(u) = M(u)− (1− u)M′(u)

or

[H(u)]−1 = M(u)− (1− u)M′(u), (2.37)

where M′(u) is the derivative of M(u) with respect to u. The last two equations
determine M(u) from H(u) and vice versa. Finally, the distribution of X is recovered
from M(u) when (2.37) is inserted into (2.31) as
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Table 2.5 Mean residual quantile functions

Distribution M(u)

Exponential λ−1

Pareto II rescaled α
c−1 (1−u)−

1
c

Beta R
c+1 (1−u)

1
c

Half-logistic 2σ
1−u log 2

1+u

Exponential geometric 1−p
λ p(1−u) log 1−pu

1−p

Power α
1−u [1−u

1
β − (β +1)−1(1−u

1+ 1
β )]

Generalized Pareto b(1−u)−
a

a+1

Q(u) =
∫ u

0

M(p)− (1− p)M′(p)
1− p

d p

=
∫ u

0

M(p)
1− p

d p−M(u)+ μ since M(0) = μ . (2.38)

Since the quantile density function also specifies the distribution, a simpler
formula is

q(u) = (1− u)−1M(u)−M′(u). (2.39)

Example 2.13. Let

Q(u) = uθ+1[1+θ (1− u)], θ > 0.

Then, we have

q(u) = uθ [1+θ (θ+ 1)(1− u)]

and so

M(u) =
∫ 1

u
(pθ − pθ+1)[1+θ (θ + 1)(1− p)] d p

=
3+θ (2θ+ 3)

(θ + 1)(θ + 2)(θ + 3)
− uθ+1

(θ + 1)(θ + 2)

×
[
{(1+(1− u)(1+θ ))(1+θ (θ+ 1)(1− u))}

− θ (θ + 1)
θ + 3

u(2+(1− u)(1+θ ))
]
.

The expressions for M(u) for most distributions are quite complicated involving
special functions. A few simple cases are presented in Table 2.5.
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We now prove a characterization result by the functional form of M(u).

Theorem 2.6. A lifetime random variable X has the linear hazard quantile distri-
bution in (2.33) if and only if, for all 0 < u < 1,

M(u) =
1

b(1− u)
log

(
a+ b
a+ bu

)
. (2.40)

Proof. From Theorem 2.5, we use the expression for q(u) to write

M(u) =
1

1− u

∫ 1

u
(1− p)[(1− p)(a+ bp)]−1d p

which leads to (2.40) and the ‘only if’ part. Conversely, from (2.40), we have

M′u) =
1
b

[
1

(1− u)2 log
a+ b
a+ bu

− b
(1− u)(a+ bu)

]

and so (2.37) yields

H(u) = a+ bu.

Hence, by Theorem 2.4, X has its quantile function as (2.33). The special cases are
slightly different from Theorem 2.4 and so need enumeration. Firstly, for the Pareto
II case with parameter (α,1), the mean does not exist and so it is not a member of
the class for which (2.40) is true.

Secondly, the case of the exponential distribution needs the evaluation of M(u)
as a limit when b → 0 using L’Hospital rule. In fact,

M(u) = lim
b→0

1
b(1− u)

[log(a+ b)− log(a+ bu)]

= lim
b→0

1
1− u

[
1

a+ b
− u

a+ bu

]

=
1
a
.

The other cases are as in Theorem 2.4 and this completes the proof. �
Another characterization is, as in the distribution function approach, from the

relationship between M(u) and H(u).

Theorem 2.7. The relationship

M(u) = (1− u)−1[A+B logH(u)], (2.41)

for all 0 < u < 1, holds for a lifetime random variable X if and only if it has linear
hazard quantile distribution in (2.33).
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Proof. First, we assume X has distribution specified by (2.33). Then,

M(u) =
1

b(1− u)
[log(a+ b)− log(a+ bu)]

= (1− u)−1[A+B logH(u)],

where A = b−1 log(a+ b) and B =−b−1. Conversely, let (2.41) hold. Then

∫ 1

u
(1− p)q(p)d p = A+B logH(u)

which yields, on differentiation,

−(1− u)q(u) =
B

H(u)
H ′(u)

or

− 1
H(u)

=
BH ′(u)
H(u)

giving H(u) as a linear function. This completes the proof. �

2.5 Residual Variance Quantile Function

From the definition of the variance residual life function in (2.10), the corresponding
quantile-based function takes on the form

V (u) = σ2(Q(u)) = (1− u)−1
∫ 1

u
Q2(p)d p− [(1− u)−1

∫ 1

u
Q(p)d p]2

= (1− u)−1
∫ 1

u
Q2(p)d p− (M(u)+Q(u))2. (2.42)

Since

(1− u)(M(u)+Q(u)) =
∫ 1

u
Q(p)d p, (2.43)

upon differentiating (2.43), we obtain

(1− u)(M′(u)+Q′(u))− (M(u)+Q(u)) =−Q(u)
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giving

M(u) = (1− u)(M′(u)+Q′(u)). (2.44)

Also, from (2.42), we have

(1− u)V(u) =
∫ 1

u
Q2(p)d p− (1− u)(M(u)+Q(u))2.

Differentiating this and on using (2.44), we obtain

(1− u)V ′(u)−V(u) = Q2(u)− 2(1− u)(M(u)+Q(u))(M′(u)+Q′(u))

+(M(u)+Q(u))2

= −M2(u),

where V ′(u) is the derivative of V (u) with respect to u. Thus, the mean residual
quantile function is determined from the residual variance quantile function as

M2(u) =V (u)− (1− u)V ′(u). (2.45)

Integrating this over (u,1), we get

V (u) = (1− u)−1
∫ 1

u
M2(p) d p. (2.46)

Equation (2.46) expresses the fact that the residual variance quantile function is
determined from the mean residual quantile function. In view of the characterization
of the distribution by M(u), it follows from (2.45) and (2.46) that V (u) characterizes
the life distribution. This result is stronger than the one currently available in the
literature and mentioned earlier in Sect. 2.1.3. Notice also that both h(x) and m(x)
are present in the identity (2.12), but (2.46) needs only the knowledge of M(u) to
derive V (u). With simple forms of M(u) being not available for many common
distributions, and even where they are available, the integral in (2.46) leads to no
closed-form solutions, characterizations are rare to find.

The coefficient of variation C∗(u) is defined in the quantile formulation as

C∗2(u) =
V (u)

M2(u)
. (2.47)

Then, we have

1
C∗2(u)

=
V (u)− (1− u)V ′(u)

V (u)

= 1− (1− u)
V ′(u)
V(u)
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or

d logV (u)
du

= (1− u)−1(1− (C∗(u))−2). (2.48)

Example 2.14. For the generalized Pareto distribution, we have

Q(u) =
b
a
[(1− u)−

a
a+1 − 1],

M(u) = b(1− u)−
a

a+1 .

Hence, from (2.46), we find

V (u) = (1− u)−1
∫ 1

u
b2(1− p)−

2a
a+1 d p

=
1+ a
1− a

b2(1− u)−
2a

a+1 ;

also, we have

V (u) = K M2(u), K =
1+ a
1− a

.

Compare these with the results in Example 2.5 when the definitions based on the
distribution function are applied to the corresponding functions. The coefficient of
variation in this case is C(u) = K

1
2 , a constant.

2.6 Other Quantile Functions

We briefly mention some other quantile functions required for the discussions in the
sequel. The αth percentile residual quantile function is obtained from (2.19) as

Pα(u) = pα(Q(u)) = Q[1− (1−α)(1− u)]−Q(u). (2.49)

Lillo [399] has pointed out that Q(u) is uniquely determined from the knowledge of
Pα(u) and the quantile function in an interval, viz.,

G(u) = Q(u), 0 ≤ u ≤ B1 =Wα(0),

where G(u) is a continuous increasing function defined on [0,Wα(0)), satisfying
G(0) = 0 and Wα(u) = Q[1− (1−α)(1− u)].
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Table 2.6 Reversed hazard quantile functions of distributions in Table 2.3

Distribution Q(u) Λ(u)

Power αu
1
β β (αu

1
β )−1

Reciprocal exponential − 1
λ (logu)−1 λ−1(logu)2

Reciprocal beta [R(1−u
1
c )]−1 Rc(1−u

1
c )2u−

1
c

Reciprocal Pareto II (Lomax) [α(u−
1
c −1)]−1 cα(1−u

1
c )2u−

1
c

Reciprocal Weibull σ (− logu)
1
λ σλ (− logu)1+ 1

λ

Generalized exponential −λ−1 log(1−u
1
θ ) λ (1−u

1
θ )u−

1
θ

Burr (u−
1
k −1)−

1
c ck(u

1
k −1)1+ 1

c u
1
k

Generalized power (1−u
1
θ )

− 1
β θβ (1−u

1
θ )

1+ 1
β u−

1
θ

Negative Weibull (1− logu
1
θ )

− 1
β βθ (1− logu

1
θ )

1+ 1
β

Various reliability functions in reversed time can also be defined in a manner
similar to those in Sect. 2.2. Since the algebra is almost parallel, we give only the
relevant results.

The reversed hazard quantile function is

Λ(u) = λ (Q(u)) = [uq(u)]−1,

and it determines the distribution through the formula

Q(u) =
∫ u

0
[pΛ(p)]−1d p. (2.50)

The reversed hazard quantile functions of some distributions are presented in
Table 2.6.

Similarly, the reversed mean residual quantile function is given by

R(u) = r(Q(u)) = u−1
∫ u

0
[Q(u)−Q(p)]d p

= u−1
∫ u

0
pq(p)d p. (2.51)

Furthermore, we have

Q(u) = R(u)+
∫ u

0
p−1R(p)d p, (2.52)

[Λ(u)]−1 = R(u)+ uR′(u),

R(u) = u−1
∫ u

0
[Λ(p)]−1d p,

H(u) = (1− u)−1uΛ(u),

(1− u)M(u) = μ+ uR(u)−Q(u).
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The reversed variance residual quantile function given by

D(u) = u−1
∫ u

0
Q2(p)d p− (Q(u)−R(u))2 (2.53)

satisfies the relation

R2(u) = D(u)+ uD′(u),

and so

D(u) = u−1
∫ u

0
R2(p)d p.

where D′(u) is the derivative of D(u) with respect to u.

Example 2.15. The one-parameter family with

Q(u) = u1+θ (θu+ 1−θ ), 0 ≤ u ≤ 1; 0 < θ ≤ 1,

has its quantile density function as

q(u) = uθ (θu+(θu+(θu+ 1−θ )(1+θ )).

Hence,

Λ(u) = [uθ+1(1+θ 2 +θ (θ + 2)u)]

and so

R(u) =
∫ u

0
p q(p)d p

=
uθ+1

(θ + 2)(θ + 3)
[(1−θ 2)(3+θ )+ (θ+ 2)2u].

Two other important concepts of interest in quantile-based reliability theory are
the total time on test transforms and the L-moments of residual life. These will be
discussed separately in Chaps. 5 and 6, respectively.



Chapter 3
Quantile Function Models

Abstract One of the objectives of quantile-based reliability analysis is to make
use of quantile functions as models in lifetime data analysis. Accordingly, in
this chapter, we discuss the characteristics of certain quantile functions known in
the literature. The models considered are the generalized lambda distribution of
Ramberg and Schmeiser, the generalized Tukey lambda family of Freimer, Kollia,
Mudholkar and Lin, the four-parameter distribution of van Staden and Loots,
the five-parameter lambda family and the power-Pareto model of Gilchrist, the
Govindarajulu distribution and the generalized Weibull family of Mudholkar and
Kollia.

The shapes of the different systems and their descriptive measures of location,
dispersion, skewness and kurtosis in terms of conventional moments, L-moments
and percentiles are provided. Various methods of estimation based on moments,
percentiles, L-moments, least squares and maximum likelihood are reviewed. Also
included are the starship method, the discretized approach specifically introduced
for the estimation of parameters in the quantile functions and details of the packages
and tables that facilitate the estimation process.

In analysing the reliability aspects, one also needs various functions that describe
the ageing phenomenon. The expressions for the hazard quantile function, mean
residual quantile function, variance residual quantile function, percentile residual
life function and their counter parts in reversed time given in the preceding chapters
provide the necessary tools in this direction. Some characterization theorems
show the relationships between reliability functions unique to various distributions.
Applications of selected models and the estimation procedures are also demon-
strated by fitting them to some data on failure times.

3.1 Introduction

Probability distributions facilitate characterization of the uncertainty prevailing in a
data set by identifying the patterns of variation. By summarizing the observations
into a mathematical form that contains a few parameters, distributions also provide

N.U. Nair et al., Quantile-Based Reliability Analysis, Statistics for Industry
and Technology, DOI 10.1007/978-0-8176-8361-0 3,
© Springer Science+Business Media New York 2013
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means to analyse the basic structure that generates the observations. In finding
appropriate distributions that adequately describe a data set, there are in general
two approaches. One is to make assumptions about the physical characteristics that
govern the data generating mechanism and then to find a model that satisfies such
assumptions. This can be done either by deriving the model from the basic assump-
tions and relations or by adapting one of the conventional models from other dis-
ciplines, such as physical, biological or social sciences with appropriate conceptual
interpretations. These theoretical models are later tested against the observations by
the use of a goodness-of-fit test, for example. A second approach to modeling is
entirely data dependent. Models derived in this manner are called empirical or black
box models. In situations wherein there is a lack of understanding of the data gener-
ating process, the objective is limited to finding the best approximation to the data or
because of the complexity of the model involved, a distribution is selected to fit the
data. The usual procedure in such cases is to first make a preliminary assessment of
the features of the available observations and then decide upon a mathematical for-
mulation of the distribution that can approximate it. Empirical modelling problems
usually focus attention on flexible families of distributions with enough parameters
capable of producing different shapes and characteristics. The Pearson family,
Johnson system, Burr family of distributions, and some others, which include
several commonly occurring distributions, provide important aids in this regard. In
this chapter, we discuss some families of distributions specified by their quantile
functions that can be utilized for modelling lifetime data. Various quantile-based
properties of distributions and concepts in reliability presented in the last two chap-
ters form the background material for the ensuing discussion. The main distributions
discussed here are the lambda distributions, power-Pareto model, Govindarajulu
distribution and the generalized Weibull family. We also demonstrate that these
models can be used as lifetime distributions while modelling real lifetime data.

3.2 Lambda Distributions

A brief historical account of developments on the lambda distributions was provided
in Sect. 1.1. During the past 60 years, considerable efforts were made to generalize
the basic model of Hastings et al. [264] and Tukey [567] and also to find new appli-
cations and inferential procedures. In general, the applications of different versions
span a variety of fields such as inventory control (Silver [540]), logistic regression
(Pregibon [497]), meteorology (Osturk and Dale [476]), survival analysis (Lefante
Jr. [380]), queueing theory (Robinson and Chan [508]), random variate generation
and goodness-of-fit tests (Cao and Lugosi [128]), fatigue studies (Bigerelle et al.
[100]) process control (Fournier et al. [200]), biochemistry (Ramos-Fernandez et al.
[505]), economics (Haritha et al. [260]), corrosion (Najjar et al. [456]) and reliability
analysis (Nair and Vineshkumar [452]).

The basic model from which all other generalizations originate is the Tukey
lambda distribution with quantile function
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Q(u) =
uλ − (1− u)λ

λ
, 0 ≤ u ≤ 1, (3.1)

defined for all non-zero lambda values. As λ → 0, we have

Q(u) = log

(
u

1− u

)

corresponding to the logistic distribution. van Dyke [571] compared a normalized
version of (3.1) with the t-distribution. Model (3.1) was studied by Filliben [197]
who used it to approximate symmetric distributions with varying tail weights.
Joiner and Rosenblatt [304] studied the sample range and Ramberg and Schmeiser
[503] discussed the application of the distribution in generating symmetric random
variables. For λ = 1 and λ = 2, it is easy to verify that (3.1) becomes uniform over
(−1,1) and (− 1

2 ,
1
2 ), respectively. The density functions are U shaped for 1 < λ < 2

and unimodal for λ < 1 or λ > 2. With (3.1) being symmetric and having range for
negative values of X , it has limited use as a lifetime model.

Remark 3.1. The Tukey lambda distribution defined in (3.1) is an extremal distri-
bution that gets characterized by means of largest order statistics. To see this, let
X1:n < · · · < Xn:n be the order statistics from a random sample of size n from a
symmetric distribution F with mean 0 and variance σ2. Then, due to the symmetry
of the distribution, we have E(Xn:n) = −E(X1:n), and so we can write from (1.23)
and (1.24) that

E(Xn:n) =
1
2

∫ 1

0
Q(u)n(un−1 − (1− u)n−1)du. (3.2)

By applying Cauchy–Schwarz inequality to (3.2), we readily find

E(Xn:n) ≤ σ
2

{∫ 1

0
n2 (u2n−2 +(1− u)2n−2− 2un−1(1− u)n−1)du

}1/2

=
σn√

2

{
1

2n− 1
−B(n,n)

}1/2

, (3.3)

where B(a,b) = Γ (a)Γ (b)/Γ (a+ b), a,b > 0, is the complete beta function. Note
that, from (3.3), by setting n = 2 and n = 3, we obtain the bounds

E(X2:2)≤ σ√
3

and E(X3:3)≤ σ
√

3
2

.

The bound in (3.3) was established originally by Hartley and David [263] and
Gumbel [229]. It is useful to note that the bound in (3.3), derived from (3.2), is
attained if and only if

Q(u) ∝ un−1 − (1− u)n−1, u ∈ (0,1).
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When n = 2 and 3, we thus find Q(u) ∝ 2u− 1, which corresponds to the uniform
distribution; see Balakrishnan and Balasubramanian [50] for some additional insight
into this characterization result. Thus, we observe from (3.2) that the Tukey lambda
distribution with integral values of λ is an extremal distribution and is characterized
by the mean of the largest order statistic in (3.3). The same goes for the Tukey
lambda distribution in (3.1) for positive real values in terms of fractional order
statistics, in view of Remark 1.1.

3.2.1 Generalized Lambda Distribution

Asymmetric versions of (3.1) in various forms such as

Q(u) = Auλ +B(1− u)θ +C

and

Q(u) = auλ − (1− u)λ

were studied subsequently (Joiner and Rosenblatt [304], Shapiro and Wilk [536]).
All such versions are subsumed in the more general form

Q(u) = λ1 +
1
λ2

(uλ3 − (1− u)λ4) (3.4)

introduced by Ramberg and Schmeiser [503], which is called the generalized
lambda distribution. This is the most discussed member of the various lambda
distributions, because of its versatility and special properties. In (3.4), λ1 is a
location parameter, λ2 is a scale parameter, while λ3 and λ4 determine the shape.
The distribution takes on different supports depending on the parameters λ2,λ3 and
λ4, while λ1, being the location parameter, can take values on the real line in all
cases (Table 3.1).

As a life distribution, the required constraint on the parameters is

Q(0) = λ1 − 1
λ2

≥ 0.

The quantile density function is

q(u) = λ−1
2 [λ3uλ3−1 +λ4(1− u)λ4−1] (3.5)

and accordingly the density quantile function is

f (Q(u)) = λ2[λ3uλ3−1 +λ4(1− u)λ4−1]−1 (3.6)
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Table 3.1 Supports for the generalized lambda distribution

Region λ2 λ3 λ4 Support

1 < 0 <−1 > 1 (−∞,λ1 +
1
λ2
)

2 < 0 > 1 <−1 (λ1 − 1
λ2
,∞)

> 0 > 0 > 0 (λ1 − 1
λ2
,λ1 +

1
λ2
)

3 > 0 = 0 > 0 (λ1,λ1 +
1
λ2
)

> 0 > 0 = 0 (λ1 − 1
λ2
,λ2)

< 0 < 0 < 0 (−∞,∞)
4 < 0 = 0 < 0 (λ1,∞)

< 0 < 0 = 0 (−∞,λ1)

which has to remain non-negative for (3.4) to represent a proper distribution. This
places constraints on the parameter space. A special feature of (3.4) is that it is a
valid distribution only in the regions (λ3 ≤−1, λ4 ≥ 1), (λ3 ≥ 1, λ4 ≤−1), (λ3 ≥ 0,
λ4 ≥ 0), (λ3 ≤ 0, λ4 ≤ 1), and for values in (−1 < λ3 < 0, λ4 > 0) for which

(1−λ3)
1−λ3

(λ4 −λ3)λ4−λ3
(λ4 − 1)λ4−1 <−λ3

λ4
,

and values in (λ3 > 1,−1 < λ4 < 0) for which

(1−λ4)
1−λ4

(λ3 −λ4)λ3−λ4
(λ3 − 1)λ3−1 <−λ4

λ3
;

see Karian and Dudewicz [314] for a detailed study in this respect. Since

E(Xr) =

∫ 1

0

[
λ1 +

pλ3 − (1− p)λ4

λ2

]r

d p

from (1.30), the mean is simply

E(X) = μ = λ1 +
1
λ2

(
1

λ3 + 1
− 1
λ4 + 1

)
. (3.7)

Since λ1 is not present in the central moments, we set λ1 = 0. Ramberg et al. [502]
find that

E(Xr) = λ−r
2

r

∑
i=0

(
r
i

)
(−1)iB(λ3(r− i)+ 1,λ4i+ 1)
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from which we obtain the following central moments:

σ2 =
B−A2

λ 2
2

, (3.8)

μ3 =
C− 3AB+A3

λ 3
2

, (3.9)

μ4 =
D− 4AC+ 6A2B− 3A4

λ 4
2

, (3.10)

where

A =
1

λ3 + 1
− 1
λ4 + 1

,

B =
1

2λ3 + 1
+

1
2λ4 + 1

− 2B(λ3+ 1,λ4 + 1) ,

C =
1

3λ3 + 1
− 3B(2λ3+ 1,λ4 + 1)+ 3B(λ3+ 1,2λ4+ 1)− 1

3λ4 + 1
,

and

D =
1

4λ3 + 1
− 4B(2λ3+ 1,λ4 + 1)+ 6B(2λ3+ 1,2λ4+ 1)

− 4B(λ3+ 1,3λ4 + 1)+
1

4λ4 + 1
.

The rth moment exists only if − 1
r < min(λ3,λ4). When λ3 = λ4, it is verified

that μ3 = 0 and the generalized lambda distribution is symmetric in this case. A
detailed study of the skewness and kurtosis for different values of λ3 and λ4 is
given in Karian and Dudewicz [315]. The (β1,β2) diagram includes the skewness
values corresponding to the uniform, t, F , normal, Weibull, lognormal and some
beta distributions. One limitation that needs to be mentioned regarding skewness
is that the generalized lambda family does not cover the entire area as some other
systems (like the Pearson system) do; but, it also covers some new areas that are not
covered by others. This four-parameter distribution includes a wide range of shapes
for its density function; see Fig. 3.1 for some selection shapes.

The basic characteristics of the distribution can also be expressed in terms of the
percentiles. Using (1.6)–(1.9), we have the following:

the median

M = λ1 +
1
λ2

[(
1
2

)λ3

−
(

1
2

)λ4
]
, (3.11)



3.2 Lambda Distributions 65

0.45

0

a

d e
f

b c

2
x x x4 6

f(
x) f(
x)

f(
x)

f(
x)

f(
x)f(
x)

0.35

0.15

0.05
0

1 2.5

1.5

0.5

2

1

0
0 0.5

x
1 2 2.51.5

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 1 2 3 4

0.3
0.25
0.2

0.1

0.4 0.7 1
0.8
0.6
0.4
0.2

2.5
2

2 3

1.5
1

1

0.5
0

0

0
0 1 2

xx

3 4

0.6
0.5
0.4
0.3
0.2
0.1

0
8 9 10 11 12

Fig. 3.1 Density plots of the generalized lambda distribution (Ramberg and Schmeiser [503]
model) for different choices of (λ1,λ2,λ3,λ4). (a) (1,0.2,0.13,0.13); (b) (1,0.6,1.5,-1.5);
(c) (1,0.6,1.75,1.2); (d) (1,0.2,0.13,0.013); (e) (1,0.2,0.0013,0.13); (f) (1,1,0.5,4)

the interquantile range

IQR =
1
λ2

[
3λ3 − 1

4λ3
+

3λ4 − 1

4λ4

]
, (3.12)

Galton’s measure of skewness

S =
4−λ3(3λ3 − 2λ3+1 − 1)− 4λ4(1+ 3λ4 − 2λ4+1)

3λ3−1
4λ3

+ 3λ4−1
4λ4

, (3.13)

and Moors’ measure of kurtosis

T =
8−λ3(1+ 3λ3 + 5λ3 + 7λ3)− 8−λ4(1+ 3λ4 + 5λ4 + 7λ4)

4−λ3(3λ3 − 1)+ 4−λ4(3λ4 − 1)
. (3.14)

For this distribution, the L-moments have comparatively simpler expressions than
the conventional moments. One can use (1.34)–(1.37) to calculate these. To simplify
their expressions, we employ the notation

(n)(r) = n(n+ 1) · · ·(n+ r− 1)

and

(n)(r) = n(n− 1) · · ·(n− r+ 1)

to denote the ascending and descending factorials, respectively. Then, the first four
L-moments are as follows (Asquith [40]):
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L1 = λ1 +
1
λ2

(
1

λ3 + 1
− 1
λ4 + 1

)
, (3.15)

L2 =
1
λ2

(
λ3

(λ3 + 1)(2)
+

λ4

(λ4 + 1)(2)

)
, (3.16)

L3 =
1
λ2

(
λ (2)

3

(λ3 + 1)(3)
− λ (2)

4

(λ4 + 1)(3)

)
, (3.17)

L4 =
1
λ2

(
λ (3)

3

(λ3 + 1)(4)
− λ (3)

4

(λ4 + 1)(4)

)
. (3.18)

Thus, the L-skewness and L-kurtosis become

τ3 =
λ (2)

3 (λ4 + 1)(3)−λ (2)
4 (λ3 + 1)(3)

λ3(λ3 + 3)(λ4 + 1)(3) +λ4(λ4 + 3)(λ3 + 1)(3)
(3.19)

and

τ4 =
(λ3)

(3)(λ4 + 1)(4) + (λ4)
(3)(λ3 + 1)(4)

λ3(λ3 + 3)(λ3 + 4)(λ4 + 1)(4)−λ4(λ4 + 3)(λ3 + 1)(4)
. (3.20)

All the L-moments exist for every λ3,λ4 >−1. On the other hand, the conventional
moments require λ3,λ4 > − 1

4 for the evaluation of Pearson’s skewness β1 and
kurtosis β2. Thus, L-skewness and kurtosis permit a larger range of values in the
parameter space. The problem of characterizing the generalized lambda distribution
has been considered in Karvanen and Nuutinen [313]. For the symmetric case,
they have derived the boundaries analytically and in the general case, numerical
methods have been used. They found that with an exception of the smallest values
of τ4, the family (3.4) covers all possible (τ3,τ4) pairs and often there are two
or more distributions sharing the same τ3 and τ4. A wider set of generalized
lambda distributions can be characterized when L-moments are used than by the
conventional moments. This is an important advantage in the context of data analysis
while seeking appropriate models.

The moments of order statistics have closed forms as well. For example,
the expectation of order statistics from a random sample of size n is obtained
from (1.28) as

E(Xr:n) = λ1 +
1
λ2

Γ (λ3 + r)
Γ (r)

Γ (n+ 1)
Γ (λ3 + n+ 1)

+
1
λ2

Γ (n+λ4 − r+ 1)Γ (n+ 1)
Γ (n+λ4+ 1)Γ (n− r)

. (3.21)
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In particular, from (3.21), we obtain

E(Xn:n) = λ1 +
n

λ2(λ3 + n)
− n!
λ2(λ4 + 1)(n)

,

E(X1:n) = λ1 +
n!

λ2(λ3 + 1)(n)
− n
λ2(n+λ4)

.

Also, the distributions of X1:n and Xn:n are given by

Q1(u) = λ1 +
1
λ2

[
(1− (1− u)

1
n )λ3 − (1− u)

λ4
n

]
,

Qn(u) = λ1 +
1
λ2

[
u
λ3
n − (1− u

1
n )λ4

]
.

Since there exist members of generalized lambda family with support on the
positive real line, its scope as a lifetime model is apparent. However, this fact
has not been exploited much. The hazard quantile function (2.30) has the simple
form

H(u) =
λ2

(1− u)[λ3uλ3−1 +λ4(1− u)λ4−1]
. (3.22)

Similarly, the mean residual quantile function is obtained from (2.43) as

M(u) =
1

1− u

∫ 1

u
(1− p)q(p)d p

=
1

λ2(1− u)

[
λ4

λ4 + 1
(1− u)λ4+1 +

1− uλ3+1

λ3 + 1
− (1− u)uλ3

]
.

Note that, in this case,

M(0) =
∫ 1

0
Q(p)d p−Q(0)

or

μ = Q(0)+M(0).

The above expression is a general condition to be used whenever the left end
of the support is greater than zero. The variance residual quantile function is
calculated as
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V (u) =
1

1− u

∫ 1

u
Q2(p)d p−

[
1

1− u

∫ 1

u
Q(p)d p

]2

= A1(u)−A2
2(u),

where

A1(u) =
1

λ 2
2 (1− u)

[
1− u2λ3+1

2λ3 + 1
+

(1− u)2λ4+1

2λ4 + 1
− 2B1−u(λ4 + 1,λ3 + 1)

]
,

A2(u) =
1

λ2(1− u)

[
1− uλ3+1

λ3 + 1
− (1− u)λ4+1

λ4 + 1

]

and Bx(m,n) =
∫ x

0 tm−1(1− t)n−1dt is the incomplete beta function.
The term

μ(u) =
1

1− u

∫ 1

u
Q(p)d p (3.23)

is of interest in reliability analysis, being the quantile version of E(X |X > x). It is
called the conditional mean life or the vitality function. One may refer to Kupka
and Loo [363] for a detailed exposition of the properties of the vitality function
and its role in explaining the ageing process. We see that from (3.23), Q(u) can be
recovered up to an additive constant as

Q(u) =− d
du

(1− u)μ(u),

and therefore functional forms of μ(u) will enable us to identify the life distribution.
Thus, a generalized lambda distribution is determined as

a− d
du

(1− u)μ(u)

if the conditional mean quantile function μ(u) satisfies

μ(u) = a+ b

[
1− uc

c
− (1− u)d

d

]

for real a,b,c and d for which Q(0)≥ 0.
The αth percentile residual life is calculated from (2.50) as

Pα(u) =
1
λ2

[(α+ u−αu)λ3 − uλ3 − (1− u)λ4(1− (1−α)λ4)].
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Various functions in reversed time presented in (2.50), (2.51) and (2.53) yield

Λ(u) = λ2[u(λ3uλ3−1 +λ4(1− u)λ4−1)]−1,

R(u) =
1
λ2

[
λ3

λ3 + 1
uλ3 − (1− u)λ4 +

1− (1− u)λ4+1

(λ4 + 1)u

]
,

D∗(u) = B1(u)−B2
2(u),

where

B1(u) =
1
λ 2u

[
u2λ3+1

2λ3 + 1
− (1− u)2λ4+1 − 1

2λ4 + 1
− 2Bu(λ3 + 1,λ4 + 1)

]

and

B2(u) =
1
λ2u

[
uλ3+1

λ3 + 1
− (1− u)λ4+1 − 1

λ4 + 1

]
.

Like the function μ(u), one can also consider

θ (u) =
1
u

∫ u

0
Q(p)d p (3.24)

which is the quantile formulation of E(X |X ≤ x). This latter function’s relationship
with reversed hazard function has been used in Nair and Sudheesh [451] to
characterize distributions. It has applications in several other fields like economics
and risk analysis. For example, when X is interpreted as the income and x
is the poverty level, the above expectation denotes the average income of the
poor people and is an essential component for the evaluation of poverty index
and income inequality. The form of (3.24) is convenient in identifying models,
like

θ (u) = a+ b

[
uc−1

c
+

(1− u)d − 1
du

]

determining the generalized lambda distribution. The formula for calculating Q(u)
from θ (u) is

Q(u) = a+
d
du

uθ (u). (3.25)

Finally, the reversed percentile residual life function is (2.50)
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qα(u) =
1
λ2

[
uλ3 − ((1−α)u)λ3 −{(1− u)λ4 − (1− (1−α)u)λ4}

]

=
1
λ2

[
uλ3 − (1− (1−α)λ3)− (1− u)λ4 +(1− u+αu)λ4

]
.

There is no conflict of opinion regarding the potential of the generalized lambda
family in empirical data modelling because of its flexibility to represent different
kinds of data situations. However, the difficulties experienced in the estimation
problem, especially on the computational front, have stimulated extensive research
on various methods, conventional as well as new. A popular approach for estimation
of parameters of quantile functions is the method of moments, in which the
first four moments of the generalized lambda distribution are matched with the
corresponding moments of the sample. Instead of choosing the first four moments
directly, Ramberg and Schmeiser [504] opted for the equations

μ =
1
n

n

∑
i=1

xi , (3.26)

σ2 =
1
n

n

∑
i=1

(xi − x̄)2 , (3.27)

r1 =
n1/2∑(xi − x̄)3

[∑(xi − x̄)2]3/2
, (3.28)

r2 =
n∑(xi − x̄)4

[∑(xi − x̄)2]2
, (3.29)

where μ and σ2 are as given in (3.7) and (3.8), γ1 = μ3
σ3 and γ2 = μ4

σ4 with values
for μ3 and μ4 as in (3.9) and (3.10). Since γ1 and γ2 contain only λ3 and λ4, the
solutions of (3.28) and (3.29) give λ3 and λ4. From the remaining two equations,
λ1 and λ2 can be readily found. Even though theoretically the method looks simple,
in practice, one has to apply numerical methods to solve the equations as they are
nonlinear. Dudewicz and Karian [181] have provided extensive tables from which
the parameters can be determined for a given choice of skewness and kurtosis of the
data. They also describe an algorithm that summarizes the steps in the calculation.
A second method to obtain a best solution is to use computer programs that ensure
the solutions of (3.26)–(3.29) to satisfy

max(|μ− μ̂|, |σ2 − σ̂2|, |γ1 − γ̂1|, |γ2 − γ̂2|)< ε (3.30)

for some prefixed tolerance ε > 0. This is accomplished by starting with a good
set of initial values for the parameters. Then search is made through algorithms
that satisfy (3.30). However, there is no guarantee that a given set of initial values
necessarily end up resulting in a solution nor that it improves upon the value
of ε in each iteration. See Karian and Dudewicz [315] for such a computational
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program. In both the methods described above, the region specified by 1+ γ2
1 <

γ2 < 1.8+1.7γ2
1 is not attained and one may not arrive at a set of lambda values that

satisfy a goodness-of-fit test. These and other problems are explained in Karian and
Dudewicz [315, 317].

A similar logic applies to the method of L-moments prescribed in Asquith [40]
and Karian and Dudewicz [315]. The equations to be solved in the latter work are

Li = li, i = 1,2, (3.31)

τ3 = t3, (3.32)

τ4 = t4, (3.33)

where L1,L2,τ3 and τ4 have the expressions in (3.15), (3.16), (3.19) and (3.20),
where

t3 =
l3
l2
, t4 =

l4
l2
,

lr =
r−1

∑
j=0

pr jb j, r = 1,2, . . . ,n

where

b j =
1
n

n

∑
i= j+1

(i− 1)( j)

(n− 1)(r)
x j:n.

Clearly, (3.32) and (3.33) do not contain λ1 and λ2 and are therefore solvable for λ3

and λ4. The other two parameters are then found from (3.31) by using the estimates
of λ3 and λ4.

In the work of Asquith [40], estimates of λ3 and λ4 are values that minimize

ε = (t3 − τ̂3)
2 +(t4 − τ̂4)

2, (3.34)

where τ̂i (i = 3,4) is the estimated value of τi. After choosing initial values of λ3

and λ4, we arrive at the optimal value according to (3.34) and then check whether
the solutions obtained meet the requirements −1 < τ3 < 1 and 1

4 (5τ
2
3 −1)≤ τ4 < 1.

If not, we need to choose another set of initial values and repeat the above steps.
After solving for λ2 from (3.31), compute τ̂5 using the expression

τ5 =
(λ3)

(4)(λ4 + 1)(4)− (λ4)
(4)(λ3 + 1)(4)

(λ3 + 3)(3)(λ4 + 3)(3)[λ3(λ4 + 1)(2)λ4(λ3 + 1)(2)]

and seek the values that minimize (t5 − τ̂5). Finally, we need to substitute it
into (3.31) to find λ̂1.
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A third method is to match the percentiles of the distribution with those of the
data. As a first step, the sample percentiles are computed as

ξp = Xr:n +
a
b
(Xr+1:n −Xr:n),

where (n+ 1)p = r+ a
b in which r is a positive integer and 0 < a

b < 1. Karian and
Dudewicz [315] considered the following four equations:

ξ0.5 = Q(0.5) = λ1 +
(0.5)λ3 − (0.5)λ4

λ2
,

ξ0.9 − ξ0.1 = Q(0.9)−Q(0.1) =
(0.9)λ3 − (0.1)λ4 +(0.9)λ4 − (0.1)λ3

λ2
,

ξ0.5 − ξ0.1

ξ0.9 − ξ0.5
=

Q(0.5)−Q(0.1)
Q(0.9)−Q(0.5)

=
(0.9)λ4 − (0.1)λ3 +(0.5)λ3 − (0.5)λ4

(0.9)λ3 − (0.1)λ4 +(0.5)λ4 − (0.5)λ3
,

ξ0.75 − ξ0.25

ξ0.9 − ξ0.1
=

Q(0.75)−Q(0.25)
Q(0.9)−Q(0.5)

=
(0.75)λ3 − (0.25)λ4 +(0.75)λ4 − (0.25)λ3

(0.9)λ3 − (0.1)λ4 +(0.9)λ4 − (0.1)λ3
.

Solving the above system of equations, we obtain the percentile-based estimates.
For this purpose, either numerical methods have to be resorted to or refer to the
tables in Appendix D of Karian and Dudewicz [315] which gives the values of
λ1, λ2, λ3 and λ4 based on the sample values for the LHS of the above four
equations.

In all the three methods discussed so far, the question of more than one set
of lambda values in the admissible regions may be possible. The choice of the
appropriate set depends on the data and some goodness-of-fit procedure. Karian and
Dudewicz [314] compared the relative merits of the two-moment approaches and
the percentile method. Using the p-values of the chi-square goodness-of-fit test, the
quality of fit was ascertained. They noted that, in general, percentile and L-moment
methods gave better fits more frequently. Further, in terms of the L2-norm, which
measures the discrepancy between two functions f (x) and g(x) by

∫
|g(x)− f (x)|2dx,

the method of percentiles was found to be better than the method of moments over
a broad range of values in the (r1,r2) space in samples of size 1,000.

Another useful estimation procedure based on the least-square approach was
proposed by Osturk and Dale [477]. Let Xr:n (r = 1, . . . ,n) denote the order statistics
of the data and Ur:n the order statistics of the corresponding uniformly distributed
random variable F(X) for r = 1,2, . . . ,n. The least-square method is to find λi

such that the sum of squared differences between the observed and expected order
statistics is minimum. This is achieved by minimizing
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A(λ1,λ2,λ3,λ4) =
n

∑
r=1

{
xr:n −λ1 − 1

λ2
(E(Uλ3

r:n − (1−Ur:n)
λ4))

}2

. (3.35)

From the density function of uniform order statistics given by (Arnold et al. [37])

fr(xr) =
1

B(r,n− r+ 1)
xr−1

r (1− xr)
n−r, 0 < xr < 1, (3.36)

we have

Mr = E(Uλ3
r:n) =

Γ (n+ 1)Γ (λ3 + r)
Γ (r)Γ (n+λ3 + 1)

=
n!

(r− 1)(λ3 + r)(n+1)

and similarly

Nr = E(1−Ur:n)
λ4 =

n!

(n− r)!(λ4+ n)(r)
.

Owing to the difficulties in simultaneously minimizing (3.35) with respect to the
four parameters, first minimize (3.35) with respect to λ1 and λ2 by treating λ3 and
λ4 as constants. As in the case of simple linear regression, setting the derivatives
of (3.35) to zero, we can solve for λ1 and λ2 as

λ̂2 =
∑n

r=1(xr:n − x̄)(νr − ν̄)
∑n

r=1(νr − ν̄)2 (3.37)

and

λ̂1 = x̄ = ν̄ λ̄2, (3.38)

where νr = Mr − Nr and ν̄ = 1
n ∑νr. Then, upon substituting (3.37) and (3.38)

in (3.35), we get

A(λ3,λ4) =
n

∑
r=1

(xr:n−x̄)
2
[

1− (∑n
r=1(xr:n − x̄)(νr − ν̄))2

∑n
r=1(νr − ν̄)2∑n

r=1(xr:n − x̄)2

]
.

Thus, λ3 and λ4 are found by minimizing

− [∑n
r=1(xr:n − x̄)(νr − ν̄)]2

∑n
r=1(νr − ν̄)2∑n

r=1(xr:n − x̄)2 . (3.39)

Finally, the solutions from (3.39), when substituted into (3.37) and (3.38), give λ̂1

and λ̂2.
A second version of percentile method in Karian and Dudewicz [314] proposes

equating the population median M, the interdecile range
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IDR = Q(1− u)−Q(u),

the tail weight ratio

TWR =
Q( 1

2)−Q(u)

Q(1− u)−Q( 1
2)

,

and the tail weight factor

TWF =
IQR
IDR

with the corresponding sample quantities. These give rise to the equations

λ1 +
(0.5)λ3 − (0.5)λ4

λ2
= m, (3.40)

1
λ2

[(1− u)λ3 − uλ4 +(1− u)λ4 − uλ3] = ξ1−u − ξu, (3.41)

(1− u)λ4 − uλ3 +(0.5)λ3 − (0.5)λ4

(1− u)λ3 − uλ4 +(0.5)λ4 − (0.5)λ3
=
ξ0.5 − ξu

ξ1−u − ξu
, (3.42)

(0.75)λ3 − (0.25)λ4 +(0.75)λ4 − (0.25)λ3

(1− u)λ3 − uλ4 +(1− u)λ4 − uλ3
=
ξ0.75 − ξ0.25

ξ1−u − ξu
. (3.43)

Since (3.42) and (3.43) involve only λ3 and λ4, they are solved first and then insert
these values in (3.40) and (3.41) to estimate λ1 and λ2. All the equations involve
u and therefore a choice of u lying between 0 and 1

4 is suggested by Karian and
Dudewicz [314]. They also provide a table of

[
ξ0.5 − ξu

ξ1−u − ξ0.5
,
ξ0.75 − ξ0.25

ξ1−u − ξu

]

as pairs of values and the corresponding solutions, the algorithm and illustrations of
how to use the tables.

King and MacGillivray [326] have introduced a new procedure called the starship
method, which involves estimation of the parameters along with a goodness-of-fit
test. Laying a four-dimensional grid over a region in the four-dimensional space
that covers the range of the parameter values, a goodness of fit is performed over
the points in the grid. If the fit is not satisfied with one point, another is selected
and so on, with the procedure terminating with parameter values that have the best
measure of fit. Lakhany and Mausser [371] and Fournier et al. [201] have pointed
out that the starship method is quite time consuming especially for large samples.

In practice, in most of the methods described above, the parameters obtained need
not produce an adequate model. There can also be cases where multiple solutions
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exist and the solutions do not span the entire data set. So, goodness-of-fit tests have
to be carried out separately after estimation or such a test must be embedded in the
procedure as with the starship method. There have been several attempts to device
procedures that automate the restart of the algorithms and also do the necessary tests.
Lakhany and Mausser [371] devised a modification to the starship method. Instead
of using a full four-dimensional grid, they used successive simplex from random
starting points until the goodness of fit does not reject the distribution. It cannot,
however, be said that always the best fit is realized. The GLIDEX package provides
fitting methods using discretized and numerical maximum likelihood approach (Su
[549]) and the starship methods. King and MacGillvray [327] have suggested a
method of estimation with the aid of location and scale free shape functionals

S(u) =
Q(u)+Q(1− u)− 2M

Q(u)−Q(1− u)

and

d(u,v) = Q(u)+Q(1− u)− Q(v)+Q(1− v)
Q(v)−Q(1− v)

by minimizing the distance between the sample and population values of the
functionals. Fournier et al. [201] proposed another method that minimizes the
D = max |Sn(x)− F(x)|, where Sn(x) is the empirical distribution function in a
two-dimensional grid representing the (λ3,λ4) space. Two other works in this
context are the estimation of parameters for grouped data (Tarsitano [564]) and for
censored data (Mercy and Kumaran [416]). Karian and Dudewicz [316] discuss
the computational difficulties encountered in the estimation procedure of the
generalized lambda distribution.

3.2.2 Generalized Tukey Lambda Family

A major limitation of the generalized lambda family discussed above is that the
distribution is valid only for certain regions in the parameter space. Freimer et al.
[203] introduced a modified generalized lambda distribution defined by

Q(u) = λ1 +
1
λ2

[
uλ3 − 1
λ3

− (1− u)λ4 − 1
λ4

]
(3.44)

which is well defined for the values of the shape parameters λ3 and λ4 over the entire
two-dimensional space. The quantile density function has the simple form

q(u) =
1
λ2

[uλ3−1 +(1− u)λ4−1].
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Since our interest in (3.44) is as a life distribution, we should have

Q(0) = λ1 − 1
λ2λ3

≥ 0

in which case the support becomes (λ1− 1
λ2λ3

,λ1+
1

λ2λ4
) whenever λ3 > λ4 > 0 and

(λ1 − 1
λ2λ3

,∞) if λ3 > 0 and λ4 ≤ 0. This is a crucial point to be verified when the
distribution is used to model data pertaining to non-negative random variables. The
exponential distribution is a particular case of the family as λ3 → ∞ and λ4 → 0.
All the approximation that are valid for the modified generalized lambda family are
valid in (3.44) as well.

The first four raw moments of this distribution are as follows:

μ = λ1 − 1
λ2

[
1

λ3 + 1
− 1
λ4 + 1

]
,

μ ′
2 =

1

λ 2
2

[
1

λ 2
3 (2λ3 + 1)

− 1

λ 2
4 (2λ4 + 1)

− 2
λ3λ4

B(λ3 + 1,λ4 + 1)

]
,

μ ′
3 =

1

λ 3
2

[
1

λ 3
3 (3λ3 + 1)

− 1

λ 3
4 (3λ4 + 1)

− 3

λ 2
3λ4

B(2λ3 + 1,λ4 + 1)

+
3

λ3λ 2
4

B(λ3 + 1,2λ4 + 1)

]
,

μ ′
4 =

1

λ 4
2

[
1

λ 4
3 (4λ3 + 1)

+
1

λ 4
4 (4λ4 + 1)

+
6

λ 2
3λ 2

4

B(2λ3 + 1,2λ4 + 1)

− 4

λ 3
3λ4

B(3λ3 + 1,λ4 + 1)+
4

λ3λ 3
4

B(λ3 + 1,3λ4+ 1)

]
.

In order to have a finite moment of order k, it is necessary that min(λ3,λ4) > − 1
k .

An elaborate discussion on the skewness and kurtosis has been carried out in
Freimer et al. [203]. The family completely covers the β1 values with two disjoint
curves corresponding to any

√
β1 except zero. As one of the parameters is held

fixed, the behaviour of skewness is as follows. At λ3 = − 1
3 ,

√
β1 = −∞ then

increases monotonically to zero for λ3 in (− 1
3 ,1) and then tends to ∞ as λ3 → ∞.

Similarly, as λ2 increases from − 1
3 to 1 to ∞,

√
β1 decreases from ∞ to 0 and

to −∞. The family attains symmetry at λ3 = λ4, but
√
β1 may be zero even if

λ3 �= λ4. Considerable richness is seen in density shapes, there being members that
are unimodal, U-shaped, J-shaped and monotone, which are symmetric or skew
with short, medium and long tails; see, e.g., Fig. 3.2. Also, there are members with
arbitrarily large values for kurtosis, though it does not contain the lowest possible
β2 for a given β1. There can be more than one set of (λ3,λ4) corresponding to a
given (β1,β2).
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Fig. 3.2 Density plots of the GLD (Freimer et al. model) for different choices of (λ1,λ2,λ3,λ4).
(a) (2,1,2,0.5); (b) (2,1,0.5,2); (c) (2,1,0.5,0.5); (d) (3,1,1.5,2.5); (e) (3,1,1.5,1.6,); (f) (1,1,2,0.1);
(g) (5,1,0.1,2)

Compared to the conventional central moments, the L-moments have much
simpler expressions:

L1 = μ = λ1 − 1
λ2

[
1

λ3 + 1
− 1
λ4 + 1

]
, (3.45)

L2 =
1
λ2

[
1

(λ3 + 1)(2)
− 1

(λ4 + 1)(2)

]
, (3.46)

L3 =
1
λ2

[
λ3 − 1

(λ3 + 1)(3)
− λ4 − 1

(λ4 + 1)(3)

]
, (3.47)

L4 =
1
λ2

[
(λ3 − 1)(2)

(λ3 + 1)(4)
− (λ4 − 1)(2)

(λ4 + 1)(4)

]
. (3.48)

The measures of location, spread, skewness and kurtosis based on percentiles are as
follows:

M = λ1 +
1
λ2

[
( 1

2 )
λ3 − 1

λ3
− ( 1

2 )
λ4 − 1

λ4

]
, (3.49)
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IQR =
1

2λ2

(
( 3

4 )
λ3 − ( 1

4)
λ3

λ3
− ( 3

4)
λ4 − ( 1

4)
λ4

λ2

)
, (3.50)

S =
λ4

{
( 3

4 )
λ3 − 2( 1

2)
λ3 +( 1

4)
λ3
}−λ3

{
( 3

4 )
λ4 − 2( 1

2)
λ4 +( 1

4)
λ4
}

λ4
{
( 3

4 )
λ3 − ( 1

4)
λ3
}
+λ3

{
( 3

4 )
λ4 − ( 1

4)
λ4
} , (3.51)

T =
λ4

{
( 7

8 )
λ3 − ( 5

8)
λ3 +( 3

8)
λ3 − ( 1

8)
λ3
}−λ3

{
( 7

8)
λ4 − ( 5

8)
λ4 +( 3

8)
λ4 − ( 1

8)
λ4
}

λ4
{
( 3

4 )
λ3 − ( 1

4)
λ3
}
+λ3

{
( 3

4)
λ4 − ( 1

4)
λ4
} .

(3.52)

It could be seen that when λ3 = 1, λ4 → ∞ and also when λ3 → ∞ and λ4 = 1, we
have S = 0. The expected value of the rth order statistic Xr:n is

μr:n = E(Xr:n) = λ1 − 1
λ2λ3

+
1
λ2λ4

+
1
λ2λ3

Γ (λ3 + r)
Γ (n+λ3+ 1)

n!
r!

− 1
λ2λ4

n!
(n− r)!

Γ (n+λ3− r+ 1)
Γ (n+λ4+ 1)

.

Setting r = 1 and n, we get

E(X1:n) = λ1 − 1
λ2λ3

+
1
λ2λ4

+
n!

λ2(λ3)(n+1)
− n
λ2λ4(λ4 + n)

and

E(Xn:n) = λ1 − 1
λ2λ3

+
1
λ2λ4

+
n

λ2λ3(λ3 + n)
− n!
λ2(λ4)(n+1)

.

The distributions of X1:n and Xn:n are given by

Q1(u) = λ1 +
1
λ2

⎡
⎣ [1− (1− u1/n)]λ3 − 1

λ3
− (1− u)

λ4
n − 1

λ4

⎤
⎦

and

Qn(u) = λ1 +
1
λ2

⎛
⎝u

λ3
n − 1
λ3

− (1− u
1
n )λ4 − 1
λ4

⎞
⎠ .

Various reliability functions of the model have closed-form algebraic expres-
sions, except for the variances which contain beta functions. The hazard quantile
function is
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H(u) = λ2[(1− u)λ4 +(1− u)uλ3−1]. (3.53)

Mean residual quantile function simplifies to

M(u) =
(1− u)λ4

λ2(λ4 + 1)
+

1− uλ3+1

λ2(1+λ3)(1− u)
− uλ3

λ2λ3
. (3.54)

The variance residual quantile function is

V (u) = A1(u)−A2
2(u),

where

A1(u) =
1− u2λ3+1

λ 2
2 (2λ3 + 1)(1− u)

+
(1− u)2λ4

λ2λ4(2λ4 + 1)
− 2B1−u(λ4 + 1,λ3+ 1)

λ 2
2 λ3λ4(1− u)

and

A2(u) =
1− uλ3+1

λ2λ3(1+λ3)(1− u)
− (1− u)λ4+1

λ2λ4(λ4 + 1)
.

Percentile residual life function becomes

Pα(u) =
1
λ2

[(1− (1−α)(1− u))λ3 +(1− u)λ4(1− (1−α)λ4)− uλ3].

Expression for the reversed hazard quantile function is

Λ(u) =
[

u
λ2

(uλ3−1 +(1− u)λ4−1)

]−1

.

The reversed mean residual quantile function is

R(u) =
1
λ2

[
uλ3

λ3 + 1
− (1− u)λ4

λ4 + 1
− (1− u)λ4+1

λ4(λ4 + 1)u
+

1
λ4(λ4 + 1)u

]
,

the reversed percentile residual life function is

qα(u) =
uλ3

λ2λ3
(1− (1−α)λ3)− 1

λ2λ4
[(1− u(1−α))λ4 − (1− u)λ4],
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and the reversed variance residual quantile function is

D∗(u) = B1(u)−B2
2(u),

where

B1(u) =
u2λ3

λ 2
2λ 2

3 (2λ3 + 1)
+

(1− u)2λ4+1 − 1

λ 2
2 λ 2

4 (2λ4 + 1)u
− 2Bu(λ3 + 1,λ4 + 1)

uλ 2
2λ3λ4

and

B2(u) =
uλ3

λ2λ3(λ3 + 1)
− (1− u)λ4+1 − 1
λ2λ3(λ4 + 1)u

.

Although the problem of estimating the parameters of (3.44) is quite similar
and all the methods described earlier for the generalized lambda distribution are
applicable in this case also, there is comparatively less literature available on
this subject. The moment matching method and the least-square approach were
discussed by Lakhany and Massuer [371]. Since these methods involved only
replacement of the corresponding expressions for (3.44) in the previous section,
the details are not presented here for the sake of brevity. Su [550] discussed two
new approaches—the discretized approach and the method of maximum likelihood
for the estimation problem, by tackling it on two fronts: (a) finding suitable initial
values and (b) selecting the best fit through an optimization scheme. For the
distribution in (3.44), the initial values of λ3 and λ4 consist of low discrepancy
quasi-random numbers ranging from −0.25 to 1.5. After generating these random
values, they were used to derive λ1 and λ2 by the method of moments as in
Lakhany and Massuer [371]. From these initial values, the GLDEX package (Su
[551]) is employed to find the best set of initial values for the optimization
process. In the discretized approach, the range of the data is divided into equally
spaced classes, and after arranging the observations in ascending order of mag-
nitude, the proportion falling in each class is ascertained. Then, the differences
between the observed (di) and theoretical (ti) proportions are minimized through
either

k

∑
i=1

(di − ti)
2 or

k

∑
i=1

di(di − ti)
2,

where k is the number of classes.
In the maximum likelihood method, the ui values corresponding to each xi in the

data are to be computed first using Q(u). A numerical method such as the Newton-
Raphson can be employed for this purpose. Then, with the help of Nelder–Simplex
algorithm, the log likelihood function

logL =
n

∑
i=1

log

(
λ2

uλ3−1
i +(1− ui)λ4−1

)
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is maximized to get the final estimates. The GLDEX package provides diagnostic
tests that assess the quality of the fit through the Kolmogorov–Smirnov test, quantile
plots and agreement between the measures of location, spread, skewness and
kurtosis of the data with those of the model fitted to the observations.

Haritha et al. [260] adopted a percentile method in which they matched the
measures of location (median, M), spread (interquartile range), skewness (Galton’s
coefficient, S) and kurtosis (Moors’ measure, T ) of the population in (3.49)–
(3.52) and the data. Among the solutions of the resulting equations, they chose the
parameter values that gave

e = max(|M̂ −m|, | ˆIQR− iqr|, |Ŝ−Δ |, |T̂ − t|)< ε

for the smallest ε .

3.2.3 van Staden–Loots Model

A four-parameter distribution that belongs to lambda family proposed by van Staden
and Loots [572], but different from the two versions discussed in Sects. 3.2.1
and 3.2.2, will be studied in this section. The distribution is generated by considering
the generalized Pareto model in the form

Q1(u) =

{
1
λ4
(1− (1− u)λ4) λ4 �= 0

− log(1− u) λ4 = 0

and its reflection

Q2(u) =

{
1
λ4
(uλ4 − 1) λ4 �= 0

logu λ4 = 0.

A weighted sum of these two quantile functions with respective weights λ3 and
1− λ3, 0 ≤ λ3 ≤ 1, along with the introduction of a location parameter λ1 and
a scale parameter λ2, provide the new form. Thus, the quantile function of this
model is

Q(u) = λ1 +λ2

[
(1−λ3)

uλ4 − 1
λ4

−λ3
(1− u)λ4 − 1

λ4

]
, λ2 > 0. (3.55)

Equation (3.55) includes the exponential, logistic and uniform distributions as
special cases. The support of this distribution is as follows for different choices
of λ3 and λ4:
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Region λ3 λ4 Support
1 0 ≤ 0 (−∞,λ1)

> 0
(
λ1 − λ2

λ4
,λ1

)

2 (0,1) ≤ 0 (−∞,∞)
> 0

(
λ1 − λ2(1−λ3)

λ4
,λ1 +

λ3λ2
λ4

)

3 1 ≤ 0 (λ1,∞)
> 0

(
λ1,λ1 +

λ2
λ4

)

For (3.55) to be a life distribution, one must have λ1−λ2(1−λ3)λ−1
4 ≥ 0. This gives

members with both finite and infinite support, depending on whether λ4 is positive
or negative.

As for descriptive measures, the mean and variance are given by

μ = λ1 − λ2

(1+λ4)
(1− 2λ3)

and

σ2 =
λ 2

2

(1+λ4)2

[
λ 2

3 +(1−λ3)
2

1+ 2λ4
− 2λ3(1−λ3)

λ3
((1+λ4)

2B(1+λ4,1+λ4)− 1)

]
.

One attractive feature of this family is that its L-moments have very simple forms,
and they exist for all λ4 >−1, and are as follows:

L1 = μ ,

L2 =
λ2

(λ4 + 1)(λ4 + 2)
,

Lr = λ2(1− 2λ3)
S (λ4 − 1)(r−2)

(λ4 + 1)(r)
, r = 3,4, . . . ,

where S = 1 when r is odd and S = 0 when r is even. These values give L-skewness
and L-kurtosis to be

τ3 =
(λ4 − 1)(1− 2λ3)

λ4 + 3

and

τ4 =
(λ4 − 1)(λ4 − 2)
(λ4 + 3)(λ4 + 4)

,
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respectively. van Staden and Loots [572] note that, as in the case of the two four-
parameter lambda families discussed in the last two sections, there is no unique
(λ3,λ4) pair for a given value of (τ3,τ4). When λ3 = − 1

2 , the distribution is
symmetric.

L-skewness covers the entire permissible span (−1,1) and the kurtosis is
independent of λ3 with a minimum attained at λ4 =

√
6− 1. The percentile-based

measures also have simple explicit forms and are given by

M = λ1 +
λ2(1− 2λ3)

λ4

((
1
2

)λ4

− 1

)
, (3.56)

In the symmetric case, M = μ = λ1, (3.57)

IQR =
λ2(3λ4 − 1)

λ44λ4
, (3.58)

S =
(1− 2λ3)(1+ 3λ4 − 2λ4+1)

3λ4 − 1
, (3.59)

T =
(1− 2λ3)2λ4(7λ4 + 5λ4 + 3λ4 + 1)

3λ4 − 1
. (3.60)

The quantile density function is

q(u) = λ2[(1−λ3)u
λ4−1 +λ3(1− u)λ4−1]

and so the density quantile function is

f (Q(u)) = λ−1
2 [(1−λ3)u

λ4−1 +λ3(1− u)λ4−1]−1.

Figure 3.3 displays some shapes of the density function.
The expectations of the order statistics from (3.55) are as follows:

E(Xr:n) = λ1 +
λ2

λ4

[
(1−λ3)Γ (λ4 + 1)

Γ (r)
− λ3Γ (n+λ4− r+ 1)

Γ (n− r+ 1)

]
n!

Γ (λ4 + n+ 1)

+
λ2

λ4
(2λ3 − 1), r = 1,2, . . . ,n,

E(X1:n) = λ1 +
λ2

λ4
(2λ3 − 1)+

λ2

λ4

[
n!(1−λ3)

(λ4 + 1)(n)
− nλ3

λ4 + n

]
,

E(Xn:n) = λ1 +
λ2

λ4
(2λ3 − 1)+

λ2

λ4

[
n(1−λ3)

λ4 + n
− λ3n!

(λ4 + 1)(n)

]
.

Since there are members of the family with support on the positive real line, the
model will be useful for describing lifetime data. In this context, the hazard quantile
function is
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H(u) = {λ2(1− u)((1−λ3)u
λ4−1 +λ3(1− u)λ4−1)}−1. (3.61)

Similarly, the mean residual quantile function is

M(u) = λ2

[
1−λ3

λ4

(
1− uλ4+1

(1− u)(λ4 + 1)
− uλ4

)
− λ3

λ4 + 1
(1− u)λ4

]
, (3.62)

the reversed hazard quantile function is

Λ(u) =
[
λ2u

{
(1−λ3)u

λ4−1 +λ3(1− u)λ4−1
}]−1

,

and the reversed mean residual quantile function is

R(u) = λ2

[
(1−λ3)

λ4 + 1
uλ4 − (1− u)λ4

λ4
+

(1− u)λ4+1 − 1
uλ4(λ4 + 1)

]
.

Further, the form

u θ (u) = A+B((1−α)uC+α(1− u)c)

determines the quantile function in (3.55) as

Q(u) = A+
d

du
u θ (u),

where θ (u) is as defined in (3.24).
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van Staden and Loots [572] prescribed the method of L-moments for the
estimation of the parameters. With the aid of

λ̂4 =
3+ 7t4± (t2

4 + 98t4+ 1)
1
2

2(1− t4)
,

where t4 is the sample L-kurtosis, λ4 can be estimated. Using λ̂4, the estimate λ̂3 of
λ3 can be determined from

λ̂3 =

⎧⎨
⎩

1
2 [1− t3(λ̂3+3)

λ̂4−1
] , λ̂4 �= 1

1
2 , λ̂4 = 1

,

where t3 is the sample L-skewness. The other two-parameter estimates are com-
puted as

λ̂2 = l2(λ̂4 + 1)(λ̂4 + 2),

λ̂1 = l1 +
λ̂2(1− 2λ̂3)

λ̂4 + 1
,

with l1 and l2 being the usual first two sample L-moments.
The method of percentiles can also be applied for parameter estimation. In fact,

t
s
=

2λ4(7λ4 + 5λ4 + 3λ4 + 1)

3λ4 + 1− 2λ4+1

provides λ4, t and s being the Moors and Galton measures, respectively, evaluated
from the data. This is used in (3.59) to find λ̂3, and then λ̂2 and λ̂1 are determined
from (3.56) and (3.58) by equating IQR and M with iqr and m, respectively.

3.2.4 Five-Parameter Lambda Family

Gilchrist [215] proposed a five-parameter family of distributions with quantile
function

Q(u) = λ1 +
λ2

2

[
(1−λ3)

(
uλ4 − 1
λ4

)
− (1+λ3)

(
(1− u)λ5 − 1

λ5

)]
(3.63)

as an extension to the Freimer et al. [203] model in (3.44). Tarsitano [564] studied
this model and evaluated various estimation methods for this family. The family has
its quantile density function as
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q(u) = λ2

[
1−λ3

2
uλ4−1 +

1−λ3

2
(1− u)λ5−1

]
.

In (3.63), λ1 controls the location parameter though not exclusively, λ2 ≥ 0 is a scale
parameter and λ3, λ4 and λ5 are shape parameters. It is evident that the generalized
Tukey lambda family in (3.44) is a special case when λ3 = 0. The support of the
distribution is given by

(
λ1 −λ2

(1−λ3)

2
,λ1 +λ2

(1+λ3)

2

)
when λ4 > 0, λ5 > 0,

(
λ1 −λ2

(1−λ3)

2
,∞

)
when λ4 > 0, λ5 ≤ 0,

(
−∞,λ1 +λ2

(1+λ3)

2

)
when λ4 ≤ 0, λ5 > 0.

In the case of non-negative random variables, the condition

λ1 − λ2

2λ4
(1−λ3)≥ 0

would become necessary. The density function may be unimodal with or without
truncated tails, U-shaped, S-shaped or monotone. The family also includes the
exponential distribution when λ4 → ∞ and λ5 → 0, the generalized Pareto distri-
bution when λ4 → ∞ and |λ5| < ∞, and the power distribution when λ5 → 0 and
|λ4|<∞. Some typical shapes of the distribution are displayed in Fig. 3.4. Tarsitano
[564] has provided close approximations to various symmetric and asymmetric
distributions using (3.63) and went on to recommend the usage of the model when a
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particular distributional form cannot be suggested from the physical situation under
consideration. Setting Z = 2(X−λ1)

λ2
, Tarsitano [564] expressed the raw moments in

the form

E(Zr) =
r

∑
j=0

(−1) j
(

r
j

)(
1−λ3

λ4

)r− j (1+λ3

λ5

) j

B(1+(r− j)λ4,1+ jλ5)

provided λ4 and λ5 are greater than 1
r , where B(·, ·) is the complete beta function,

as before. The mean and variance are deduced from the above expression as

μ = λ1 − λ2(1−λ3)

2(1+λ4)
+
λ2(1+λ3)

2(1+λ5)
,

σ2 =
(1−λ3)

2

λ 2
4 (2λ4 + 1)

+
(λ3 + 1)2

λ 2
5 (2λ5 + 1)

− 2(1−λ3)

λ4λ5
B(λ4 + 1,λ5 + 1).

The L-moments take on simpler expressions in this case, and the first four are as
follows:

L1 = μ ,

L2 =
λ2(1−λ3)

2(λ4 + 1)(2)
+
λ2(1+λ3)

2(λ5 + 1)(2)
,

L3 =
λ2(1−λ3)(λ4 − 1)

2(λ4 + 1)(3)
− λ2(1+λ3)(λ5 − 1)

2(λ5 + 1)(3)
,

L4 =
λ2(1−λ3)(λ4 − 1)(2)

2(λ4 + 1)(4)
− λ2(1+λ3)(λ5 − 1)(2)

2(λ5 + 1)(4)
.

Percentile-based measures of location, spread, skewness and kurtosis can also
be presented, but they involve rather cumbersome expressions. For example, the
median is given by

M = λ1− λ2(1−λ3)

2λ4
+
λ2(1+λ3)

2λ5
+
λ2(1−λ3)

λ4

(
1
2

)λ4+1

− λ2(1−λ3)

λ5

(
1
2

)λ5+1

.

The means of order statistics are as follows:

E(Xr:n) = λ1 +
λ2

2

[
1+λ3

λ5
− 1−λ3

λ4

]
+
λ2(1−λ3)

2λ4

B(λ4 + r− 1,n− r+ 1)
B(r,n− r+ 1)

−λ2(1+λ3)

2λ5

B(r,λ1 + n− r+ 1)
B(r,n− r+ 1)

, r = 1, . . . ,n, (3.64)
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E(X1:n) = λ1 +
λ2

2

[
1+λ3

λ5
− 1−λ3

λ4

]
+

n!
(λ4)(n)

− n
λ2

2λ5

(1+λ3)

n+λ5
,

E(Xn:n) = λ1 +
λ2

2

[
1+λ3

λ5
− 1−λ3

λ4

]
+

nλ2(1−λ3)

2λ4(λ4 + n− 1)
− λ2(1+λ3)n!

2(λ5 + 1)(n)
.

Tarsitano [564] discussed the estimation problem through nonlinear least-squares
and least absolute deviation approaches. For a random sample X1,X2, . . . ,Xn of size
n from (3.59), under the least-squares approach, we consider

Xr:n = E(Xr:n)+ εr, r = 1,2, . . . ,n,

and then seek the parameter values that minimize

n

∑
r=1

[Xr:n −E(Xr:n)]
2. (3.65)

In terms of expectations of order statistics in (3.60), realize that Xr:n is an estimate of
the expectation in (3.64), which incidentally is linear in λ1, λ2 and λ3 and nonlinear
in λ4 and λ5. So, as in the case of Osturk and Dale method discussed earlier, we may
fix (λ4,λ5) and determine λ1,λ2 and λ3. Then, (λ4,λ5) can be found such that (3.65)
is minimized. In the least absolute deviation procedure, the objective function to be
minimized is

n

∑
r=1

|Xr:n −Q(u∗r )|,

where

u∗r = Q(B−1
u (r,n− r+ 1)).

3.3 Power-Pareto Distribution

As seen earlier in Table 1.1, the quantile function of the power distribution is of the
form

Q1(u) = αuλ1 , 0 ≤ u ≤ 1; α,λ1 > 0,

while that of the Pareto distribution is

Q2(u) = σ(1− u)−λ2, 0 ≤ u ≤ 1; σ ,λ2 > 0.

A new quantile function can then be formed by taking the product of these two as



3.3 Power-Pareto Distribution 89

2 1.2

0.0015

0.0005

0
0 1000 2000 3000

0.001

0.8
0.6
0.4
0.2

0
0 1 2 3

1
1.5

0.5

0.6

8
6
4
2
0

2.5
2

1.5
1

0

0 0.5 1 1.5

0.5

0 0.5 1 1.5

0.5
0.4
0.3
0.2
0.1

0
0 5 10

1

0
0 0.5

x

a

d e f

b c

x x

xxx

f(
x) f(
x)

f(
x)

f(
x) f(

x)
f(

x)

1 1.5

Fig. 3.5 Density plots of power-Pareto distribution for some choices of (C,λ1,λ2).
(a) (1,0.5,0.01); (b) (1,1,0.2); (c) (1,0.2,0.1); (d) (1,0.1,1); (e) (1,0.5,0.001); (f) (1,2,0.001)

Q(u) =
Cuλ1

(1− u)λ2
, 0 ≤ u ≤ 1, (3.66)

where C > 0, λ1,λ2 > 0 and one of the λ ’s may be equal to zero. The distribution of
a random variable X with (3.66) as its quantile function is called the power-Pareto
distribution. Gilchrist [215] and Hankin and Lee [259] have studied the properties
of this distribution. It has the quantile density function as

q(u) =
Cuλ1−1

(1− u)λ2+1
[λ1(1− u)+λ2u]. (3.67)

In (3.66), C is a scale parameter, λ1 and λ2 are shape parameters, with λ1 controlling
the left tail and λ2 the right tail. The shape of the density function is displayed in
Fig. 3.5 for some parameter values when the scale parameter C = 1.

Conventional moments of (3.66) are given by

E(Xr) =

∫ 1

0

[
Cuλ1

(1− u)λ2

]r

du =CrB(1+ rλ1,1− rλ2)

which exists whenever λ2 <
1
r . From this, the mean and variance are obtained as

μ =
CΓ (1+λ1)Γ (1−λ2)

Γ (2+λ1−λ2)
(3.68)

and
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σ2 =C2
{
Γ (1+ 2λ1,1− 2λ1)

Γ (2+ 2λ1− 2λ2)
− Γ

2(1+λ1)Γ 2(1−λ2)

Γ (2+λ1 −λ2)

}
.

The range of skewness and kurtosis is evaluated over the range λ1 > 0, 0 ≤
λ2 < 1

4 . Minimum skewness and minimum kurtosis are both attained at λ2 =
0, and both these measures show increasing trend with respect to λ1 and λ2.
Kurtosis is also seen to be as an increasing function of skewness. Hankin and Lee
[259] have mentioned that the distribution is more suitable for positively skewed
data and can provide good approximations to gamma, Weibull and lognormal
distributions.

Percentile-based measures are simpler and are given by

M =C2λ2−λ1 ,

IQR =C4λ2−λ1(3λ1 − 3−λ2),

S =
3λ1 + 3−λ2 − 2λ2−λ1+1

3λ1 − 3−λ2
,

T =
2λ2−λ1(7λ1 − 5λ13−λ2 + 3λ15−λ2 − 7−λ2)

3λ1 − 3−λ2
.

Further, the first four L-moments are as follows:

L1 = μ ,

L2 =
C(λ1 +λ2)

λ1 −λ2 + 2
B(λ1 + 1,1−λ2) ,

L3 =
C(λ 2

1 +λ 2
2 + 4λ1λ2 +λ2 −λ1)B((λ1 + 1,1−λ2))

(λ1 −λ2 + 2)(2)
,

L4 =
C(λ1 +λ2)(λ 2

1 +λ 2
2 + 8λ1λ2 − 3λ1 + 3λ2+ 2)

(λ1 −λ2 + 2)(3)
B(λ1 + 1,1−λ2),

where B(·, ·) is the complete beta function. From these expressions, we readily
obtain the L-skewness and L-kurtosis measures as

τ3 =
λ 2

1 −λ 2
2 + 4λ1λ2 +λ2 −λ1

(λ1 −λ2 + 3)

and

τ4 =
λ 2

1 −λ 2
2 + 8λ1λ2 − 3λ1 + 3λ2 + 2

(λ1 −λ2 + 3)(λ1 −λ2 + 4)
.
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The expected value of the rth order statistic is

E(Xr:n) =C
B(λ1 + r,n−λ2− r)

B(r,n− r+ 1)
n > λ2 + r, r = 1,2, . . . ,n,

while the quantile functions of X1:n and Xn:n are given by

Q1(u) =C
{1− (1− u1/n)}λ1

(1− u)n/λ2

and

Qn(u) =C
u
λ1
n

(1− u
1
n )λ2

.

It is easily seen that the hazard quantile function is

H(u) = (1− u)λ2{Cuλ1−1(λ1(1− u)+λ2u)}−1, (3.69)

the mean residual quantile function is

M(u) =
1

1− u
Bu(1−λ2,1+λ1)− Cuλ1

(1− u)λ2
, (3.70)

the reversed hazard quantile function is

Λ(u) = (1− u)λ2+1[Cuλ1(λ1(1− u)+λ2u)]−1, (3.71)

and the reversed mean residual quantile function is

R(u) =
Cuλ1

(1− u)λ2
− 1

u
Bu(λ1 + 1,1−λ2). (3.72)

Next, upon denoting the quantile function of the distribution by Q(u;C,λ1,λ2),
we have the following characterization results for this family of distributions (Nair
and Sankaran [443]).

Theorem 3.1. A non-negative variable X is distributed as Q(u;C,λ1,0) if and
only if

(i) H(u) = k1u[(1− u)Q(u)]−1, k1 > 0;
(ii) M(u) = k1[Q(u)]−1;

(iii) R(u) = k2Q(u), k2 < 1;
(iv) Λ(u)R(u) = k3, k2 < 1,

where ki’s are constants.
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Theorem 3.2. A non-negative random variable X is distributed as Q1(u;C,0,λ2) if
and only if

1. H(u) = A1[Q1(u)]−1, A1 > 0;
2. Λ(u) = A1(1− u)[uQ1(u)]−1;
3. M(u) = A2Q1(u);
4. M(u)H(u) = A3, A3 > 0,

where A1,A2 and A3 are constants.

An interesting special case of (3.66) arises when λ1 = λ2 = λ > 0 in which
case it becomes the loglogistic distribution (see Table 1.1). A detailed analysis of
theloglogistic model and its applications in reliability studies have been made by
Cox and Oakes [158] and Gupta et al. [237]. In this case, we deduce the following
characterizations from the above.

Theorem 3.3. A non-negative random variable X has loglogistic distribution with

Q(u) =C

(
u

1− u

)λ
, C,λ > 0,

if and only if one of the following conditions hold:

(i) H(u) = ku
Q(u) ;

(ii) Λ(u) = k(1−u)
Q(u) .

Hankin and Lee [259] proposed two methods of estimation—the least-squares
and the maximum likelihood. In the least-squares method, they use

E(logXr:n) = logC+λ1E(logUr:n)−λ2E(log(1−Ur:n)), (3.73)

since logXr:n and logQ(Ur:n) have the same distribution, where Ur:n is the rth order
statistic from a sample of size n from the uniform distribution. Thus, from (3.36),
we have

E(logUr:n) =
1

B(r,n− r+ 1)
=

∫ 1

0
(logu)ur−1(1− u)n−rdu

=−
(

1
r
+

1
r+ 1

+ · · ·+ 1
n

)
(3.74)

and

E(log(1−Ur:n)) =−
(

1
n− r

+
1

n− r+ 1
+ · · ·+ 1

n

)
. (3.75)
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Then, the model parameters estimated by minimizing

∑[logXr:n −E(logXr:n)]
2.

Substituting (3.74) and (3.75) into the expression of E(logXr:n) in (3.73), we have
an ordinary linear regression problem and is solved by standard programs available
for the purpose. Maximum likelihood estimates are calculated as described earlier
in Sect. 3.2.2 by following the steps described in Hankin and Lee [259]. In a
comparison of the two methods by means of simulated variances, Hankin and
Lee [259] found the least-squares method to be better for small samples when the
parameters λ1 and λ2 are roughly equal and the maximum likelihood method to be
better otherwise.

3.4 Govindarajulu’s Distribution

Govindarajulu’s [224] model is the earliest attempt to introduce a quantile function,
not having an explicit form of distribution function, for modelling data on failure
times. He considered the quantile function

Q(u) = θ +σ
{
(β + 1)uβ −βuβ+1

}
, 0 ≤ u ≤ 1; σ ,β > 0. (3.76)

He used it to model the data on the failure times of a set of 20 refrigerators that
were run to destruction under advanced stress conditions. Even though the validity
of the model and its application to nonparametric inference were studied by him, the
properties of the distribution were not explored. We now present a detailed study of
its properties and applications.

The support of the distribution in (3.76) is (θ ,θ + σ). Since we treat it as a
lifetime model, θ is set to be zero so that (3.76) reduces to

Q(u) = σ
{
(β + 1)uβ −βuβ+1

}
, 0 ≤ u ≤ 1. (3.77)

Note that there is no loss of generality in studying the properties of this distribution
based on (3.77) since the transformation Y = X + θ , where X has its quantile
function Q(u) as in (3.77), will provide the corresponding results for (3.76).
From (3.77), the quantile density function is

q(u) = σβ (β + 1)uβ−1(1− u). (3.78)

Equation (3.78) yields the density function of X as

f (x) = [σβ (β + 1)]−1F1−β (x)(1−F(x))−1. (3.79)

Thus, this model belongs to the class of distributions, possessing density function
explicitly in terms of the distribution function, discussed by Jones [307]. Further, by
differentiating (3.78), we get
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Fig. 3.6 Density plots of Govindarajulu’s distribution for some choices of β . (a) β = 3;
(b) β = 0.5; (c) β = 2

q′(u) = σβ (β + 1)uβ−2[(β − 1)−βu]

from which we observe that the density function is monotone decreasing for β ≤ 1,
and q′(u) = 0 gives u0 = β−1(β −1). Thus, when β > 1, there is an antimode at u0.
Figure 3.6 shows the shapes of the density function for some choices of β .

The raw moments are given by

E(Xr) =
∫ 1

0
[Q(p)]rd p = σ r

r

∑
j=0

(−1) j
(

r
j

)
(β + 1)r− jβ j/(β r+ j+ 1).

In particular, the mean and variance are

μ = 2σ(β + 2)−1,

var =
β 2(5β + 7)σ2

(2β + 1)(2β + 2)(β + 2)2 .

Moreover, we have the median as

M = σ2−(β+1)(β + 2),

the interquartile range as

IQR = σ4−(β+1)[3β (β + 4)− (3β + 4)],

the skewness as

S =
σ [(β + 1) 3β+1

4β
− β (3β+1+1)

4β
+ β+2

2β
]

IQR

and the kurtosis as

T =
σ
[
(β + 1) (7

β−5β+3β−1)
8β

− β (7β+1−5β+1+3β+1−1)
8β+1

]

IQR
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as percentile-based descriptive measures. Much simpler expressions are available
for the L-moments as follows:

L1 = μ ,

L2 =
2βσ

(β + 2)(β + 3)
,

L3 =
2β (β − 2)σ
(β + 2)(3)

,

L4 =
2β 3 − 12β 2+ 10β )σ

(β + 2)(4)
.

Consequently, we have

τ3 =
β − 2
β + 4

and τ4 =
(β − 5)(β − 1)
(β + 4)(β + 5)

.

With τ3 being an increasing function of β , its limits are obtained as β → 0 and β →
∞. These limits show that τ3 lies between (− 1

2 ,1), and so it does not cover the entire
range (−1,1). But the distribution has negatively skewed, symmetric (at β = 2) and
positively skewed members. The L-kurtosis τ4 is nonmonotone, decreasing initially,
reaching a minimum in the symmetric case, and then increasing to unity.

A particularly interesting property of Govindarajulu’s distribution is the distribu-
tion of its order statistics. The density function of Xr:n is

fr(x) =
1

B(r,n− r+ 1)
f (x)Fr−1(x)(1−F(x))n−r

=
1

σβ (β + 1)B(r,n− r+ 1)
Fr−β (x)(1−F(x))n−r−1,

(3.80)

upon using (3.79). So, we have

E(Xr:n) =
1

B(r,n− r+ 1)

∫ 1

0
Q(u)ur−1(1− u)n−rdu

=
n!Γ (β + r)σ

(r− 1)!Γ (n+β + 2)
{(n+ 1)(β + 1)−β (r− 1)}.

(3.81)

In particular,

E(X1:n) =
(n+ 1)!σΓ (β + 2)
Γ (n+β + 2)

=
(n+ 1)!σ
(β + 2)(n)
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and

E(Xn:n) =
n(n+ 2β+ 1)σ

(n+β )(n+β+ 1)
.

The quantile functions of X1:n and Xn:n are

Q1(u) = σ [(1− (1− u)
1
n )]β [1+β (1− u)

1
n ]

and

Qn(u) = σ [(β + 1)u
β
n −βu

β+1
n ].

All the reliability functions also have tractable forms. The hazard quantile function
is given by

H(u) = [σβ (β + 1)uβ−1(1− u)2]−1

and the mean residual quantile function is

M(u) = [2− (β + 1)(β + 2)uβ +β (β + 2)uβ+1−β (β + 1)uβ+2]

×[(β + 2)(1− u)]−1σ .

From the expression of the quantile function, it is evident that the parameter β
largely controls the left tail and therefore facilitates in modelling reliability concepts
in reversed time. Accordingly, the reversed hazard and reversed mean residual
quantile functions are given by

Λ(u) = [σβ (β + 1)uβ (1− u)]−1,

R(u) =
βσ
β + 2

[β + 2− (β + 1)u]uβ ,

respectively. The reversed variance residual quantile function has the expression

D(u) = u−1
∫ u

0
R2(p)d p

=
σ2β 2u2β

(β + 2)2

{
(β + 1)2u2

2β + 3
− (β + 2)u+

(β + 1)2

2β + 1

}
.

We further note that the function

R(u)Λ(u) =
(β + 1)−1 − (β + 2)−1u

1− u
(3.82)

is a homographic function of u.
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Characterization problems of life distributions by the relationship between the
reversed hazard rate and the reversed mean residual life in the distribution function
approach have been discussed in literature; see Chandra and Roy [135]. In this spirit,
from (3.82), we have the following theorem.

Theorem 3.4. For a non-negative random variable X, the relationship

R(u)Λ(u) =
a+ bu
1− u

(3.83)

holds for all 0 < u < 1 if and only if

Q(u) = K

(
a

1− a
u

1
a−1 − au

1
a

)
(3.84)

provided that a and b are real numbers satisfying

1
a
+

1
b
=−1. (3.85)

Proof. Suppose (3.83) holds. Then, we have

{
1
u

∫ u

0
pq(p)d p

}[
uq(u)

]−1
=

a+ bu
1− u

. (3.86)

Equation (3.86) simplifies to

uq(u)∫ u
0 pq(p)d p

=
1− u

u(a+ bu)
=

1
au

− a+ b
a(a+ bu)

.

Upon integrating the above equation, we obtain

log
∫ u

0
pq(p)d p =

1
a

logu− a+ b
ab

log(a+ bu)+ logK,

or

∫ u

0
pq(p)d p = Ku

1
a (a+ bu)

with the use of (3.85). By differentiation, we then obtain

q(u) = Ku
1
a−2(1− u).

Integrating the last expression from 0 to u and setting Q(0) = 0, we get (3.84). The
converse part follows from the equations
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Λ(u) = [Ku
1
a−1(1− u)]−1

and

R(u) =
Ka

a+ 1
u

1
a−1 (a+ 1− u).

Remark 3.2. Govindarajulu’s distribution is secured when a = (1 + β )−1. The
condition imposed on a and b in (3.85) can be relaxed to provide a more general
family of quantile functions.

Regarding the estimation of the parametersσ and β , all the conventional methods
like method of moments, percentiles, least-squares and maximum likelihood can be
applied to the distribution quite easily. For example, in the method of moments,
equating the mean and variance, we obtain

X̄ =
2σ
β + 2

and S2 =
β 2(5β + 7)σ2

(2β + 1)(2β + 2)(β + 2)2 . (3.87)

Thus, we get

X̄2

S2 =
4(2β + 1)(2β + 2)
β 2(5β + 7)

which may be solved to get β . Then, by substituting it in (3.87), the estimate of
σ can be found. There may be more than one solution for β and in this case
a goodness of fit may then be applied to locate the best solution. The method
of L-moments and some results comparing the different methods are presented
in Sect. 3.6. Compared to the more flexible quantile functions discussed in the
earlier sections, the estimation problem is easily resolvable in this case with no
computational complexities. One of the major limitations of Govindarajulu’s model,
as mentioned earlier, is that it cannot cover the entire skewness range. In the
admissible range, however, it provides good approximations to other distributions
as will be seen in Sect. 3.6.

3.5 Generalized Weibull Family

This particular family of distributions is different from the distributions discussed so
far in this chapter in the sense that it has a closed-form expression for the distribution
function. So, all conventional methods of analysis are possible in this case. As a
generalization of the Weibull distribution, the generalized Weibull family is defined
by Mudholkar et al. [428] as
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Q(u) =

⎧⎨
⎩
σ
[

1−(1−u)λ

λ

]α
, λ �= 0

σ(− log(1− u))α , λ = 0
, (3.88)

for α,σ > 0 and real λ . The corresponding distribution function is

F(x) = 1−
{

1−λ
( x
σ

) 1
α
} 1
λ

with support (0,∞) for λ ≤ 0 and (0, σλα ) for λ > 0. The quantile density function
has the form

q(u) = σα

[
1− (1− u)λ

λ

]α−1

(1− u)λ−1. (3.89)

The density function has a wide variety of shapes that include U-shaped, unimodal
and monotone increasing or decreasing shapes. The raw moments are given by

E(Xr) =

⎧⎨
⎩

B( 1
λ ,rα+1)

λ rα+1 σ r , λ > 0
B(−rα− 1

λ ,rα+1)

(−λ )rα+1 σ r , λ < 0
.

Moments of all orders exist for α > 0, λ > 0. If λ < 0, then E(Xr) exists if αλ >
−r−1. The expressions for the percentile-based descriptive measures are as follows:

M =

(
1− (

1
2

)λ
λ

)α
σ ,

IQR =
σ
λ 2

[(
1−

(
1
4

)λ)α
−
(

1−
(

3
4

)λ)α]
,

S =

(
1− ( 1

4)
λ)α + (

1− ( 3
4)
λ )α − 2

(
1− ( 1

2)
λ)

(
1− ( 1

4)
λ
)α − (

1− ( 3
4)
λ
)α ,

T =

(
1− ( 1

8)
λ)α − (

1− ( 3
8)
λ )α + (

1− ( 5
8)
λ )α − (

1− ( 7
8)
λ )α ](

1− ( 1
4)
λ
)α − (

1− ( 3
4)
λ
)α .

For the calculation of L-moments, we use the result

∫ 1

0
urQ(u)du =

r

∑
y=0

(−1)y
(r

y

)
σ

λα+1 B

(
y+ 1
λ

,α+ 1

)
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in (1.34)–(1.37). Various reliability characteristics are determined as follows:

H(u) =

⎡
⎣σα

(
1− (1− u)λ

λ

)α−1

(1− u)λ

⎤
⎦
−1

,

M(u) =
σα
λα

B(1−u)λΛ(u),

Λ(u) =

⎡
⎣uσα

(
1− (1− u)λ

λ

)α−1

(1− u)λ−1

⎤
⎦
−1

,

R(u) =
σα
uλα

[(
1− (1− u)λ

λ

)α
−B

(
1
λ
+ 1,α

)
+B(1−u)α

(
α,

1
λ + 1

)]
.

The parameters of the model are estimated by the method of maximum likelihood
as discussed in Mudholkar et al. [428]. Due to the variety of shapes that the hazard
functions can assume (see Chap. 4 for details), it is a useful model for survival data.
This distribution has also appeared in some other discussions including assessment
of tests of exponentiality (Mudholkar and Kollia [425]), approximations to sampling
distributions, analysis of censored survival data (Mudholkar et al. [428]), and
generating samples and approximating other distributions. Chi-squared goodness-
of-fit tests for this family of distributions have been discussed by Voinov et al. [575].

3.6 Applications to Lifetime Data

In order to emphasize the applications of quantile function in reliability analysis, we
demonstrate here that some of the models discussed in the preceding sections can
serve as useful lifetime distributions. The conditions in the parameters that make
the underlying random variables non-negative have been obtained. We now fit these
models for some real data on failure times. Three representative models, one each
from the lambda family, the power-Pareto and Govindarajulu’s distributions, will be
considered for this purpose. The first two examples have been discussed in Nair and
Vineshkumar [452].

The four-parameter lambda distribution in (3.44) is applied to the data of 100
observations on failure times of aluminum coupons (data source: Birnbaum and
Saunders [104] and quoted in Lai and Xie [368]). The last observation in the data
is excluded from the analysis to extract equal frequencies in the bins. Distribute
the data into ten classes, each containing ten observations in ascending order of
magnitude. For estimating the parameters, we use the method of L-moments. The
first four sample L-moments are l1 = 1,391.79, l2 = 215.683, l3 = 3.570 and l4 =
20.7676. Thus, the model parameters need to be solved from
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Fig. 3.7 Q-Q plot for the data on lifetimes of aluminum coupons

λ1 +
1
λ2

(
1

λ4 + 1
− 1
λ3 + 1

)
= 1,391.79,

1
λ2

(
1

(λ3 + 1)(λ3 + 2)
)+

1
(λ4 + 1)(λ4 + 2)

)
= 215.683,

1
λ2

(
λ3 − 1

(λ3 + 1)(λ3 + 2)(λ3 + 4)
− λ4 − 1

(λ4 + 1)(λ4 + 2)(λ4 + 3)

)
= 3.570,

1
λ2

(
(λ3 − 1)(λ3 − 2)

(λ3 + 1)(λ3 + 2)(λ3 + 3)(λ3 + 4)
− (λ4 − 1)(λ4 − 2)

(λ4 + 1)(λ4 + 2)(λ4 + 3)(λ4 + 4)

)

= 20.7676.

Among the solutions, the best fitting one, determined by the chi-square test (i.e., the
parameter estimates that gave the least chi-square value), is

λ̂1 = 1,382.18, λ̂2 = 0.0033, λ̂3 = 0.2706 and λ̂4 = 0.2211. (3.90)

Further, the upper limit of the support is 2,750.7, and thus the estimated support
(256.28, 2,750.7) covers the range of observations (370, 2,240) in the data.
Using (3.44) for u = 1

10 ,
2
10 , · · · , and the fact that if U has a uniform distribution on

[0,1] then X and Q(u) have identical distributions, we find the observed frequencies
in the classes to be 10, 10, 9, 12, 8, 11, 8, 12 and 10. Of course, under the uniform
model, the expected frequencies are 10 in each class. Thus, the optimized chi-square
value for the fit is χ2 = 1.8 which does not lead to rejection of the model in (3.44)
for the given data. The Q-Q plot corresponding to the model is presented in Fig. 3.7.

The second example concerns the power-Pareto distribution in (3.66). To ascer-
tain the potential of the model, we fit it to the data on the times to first failure of
20 electric carts, presented by Zimmer et al. [604], and also quoted in Lai and Xie
[368]. Here again, the method of L-moments is adopted. The sample L-moments are



102 3 Quantile Function Models

60

50

40

30

20

10

0
0 10 20 30

Q(u)

40 50 60

x

Fig. 3.8 Q-Q plot for the data on times to first failure of electric carts
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Fig. 3.9 Q-Q plot for the data on failure times of devices using Govindarajulu’s model

l1 = 14.675, l2 = 7.335 and l3 = 2.4678. Equating the population L-moments L1,L2

and L3 presented in Sect. 3.3 to l1, l2 and l3 and solving the resulting equations, we
obtain

λ̂1 = 0.2346, λ̂2 = 0.0967 and Ĉ = 1,530.3.

The corresponding Q-Q plot is presented in Fig. 3.8.
Govindarajulu’s distribution has already been shown as a suitable model for

failure times in the original paper of Govindarajulu [224]. We reinforce this by
fitting it to the data on the failure times of 50 devices, reported in Lai and Xie [368].
Equating the first two L-moments with those of the sample, the estimates of the
model parameters are obtained as

σ̂ = 93.463 and β̂ = 2.0915.
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Dividing the data into five groups of ten observations each, we find by proceeding
as in the first example that the chi-square value is 1.8, which does not lead to
the rejection of the considered model. Figure 3.9 presents the Q-Q plot of the fit
obtained.

The objectives of these illustrations were limited to the purpose of demonstrating
the use of quantile function models in reliability analysis. A full theoretical analysis
and demonstration to real data situations of all the reliability functions vis-a-vis their
ageing properties will be taken up subsequently in Chap. 4.



Chapter 4
Ageing Concepts

Abstract A considerable part of reliability theory is dedicated to the study of
ageing concepts, their properties, implications and applications. In this chapter,
we review some of the important results in this area and translate the basic
definitions to make them amenable for a quantile-based analysis. Ageing represents
the phenomenon by which the residual life of a unit is affected by its age in
some probabilistic sense. It can be positive ageing, negative ageing or no ageing,
according to whether the residual lifetime decreases, increases or remains the
same as age advances. Generally, one investigates whether a given ageing concept
preserves certain reliability operations such as formation of coherent structures,
mixtures and convolutions. We first introduce the basic ideas behind convergence,
mixtures, convolutions, shock models and equilibrium distributions. The ageing
concepts are studied under three broad categories—based on hazard functions,
residual life functions and survival functions. The IHR, IHR(2), IGHR, NBUHR,
NBUHRA, SIHR, IHRA, DMTTF, IHRA* t0 classes and their duals along with
their properties come under ageing notions related to the hazard function. In the
class of concepts based on residual life, we discuss DMRL, DMRLHA, UBA,
UBAE, HUBAE, DRMRL, DVRL, DVRLA, NDMRL, NDVRL, IPRL-α , DMERL
classes and their duals. Those defined in terms of the survival function include
NBU, NBU-t0, NBU* t0, NBU(2), SNBU, NBUE, NBU(2)-t0, NBUL, NBUP-
α , NBUE, HNBUE, L -class, M -class and the renewal notions NBRU, RNBU,
RNBUE, RNBRU and RNBRUE. A brief discussion is also made on classes of
distributions possessing monotonic properties for reliability concepts in reversed
time. The ageing properties of the quantile function models introduced in Chap. 3
are presented. Finally, some definitions and results on relative ageing are detailed.

4.1 Introduction

A considerable part of reliability theory is dedicated to the study of ageing concepts,
their properties, implications and applications. We review here some important
results in this area and translate the basic results to make them amenable for a

N.U. Nair et al., Quantile-Based Reliability Analysis, Statistics for Industry
and Technology, DOI 10.1007/978-0-8176-8361-0 4,
© Springer Science+Business Media New York 2013
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quantile-based analysis. We recall that the lifetime of a unit is the time up to
which the unit performs as it is required to do. The age of the unit is the time
up to which the unit fails to function. By the term ageing of a mechanical or
biological unit with a lifetime distribution, we mean that the residual life of the
unit is affected by its age in some probabilistic sense. This description includes the
cases in which a unit experiences no ageing, positive ageing or negative ageing.
Positive ageing simply means that the residual lifetime decreases when the age of
the unit increases and it reflects an adverse effect of age on the random lifetime of
the unit. This is a common feature of equipments or mechanical systems that are
subject to gradual wear and tear while in operation. Negative ageing, which is the
dual concept of positive ageing, has a beneficial effect on the life of the unit as
age progresses. A well-known example is that of human beings where the average
remaining life increases after infancy. This is also the case with mechanical devices
that suffer from designing or manufacturing errors or operation by inexperienced
hands initially which improves their performance later, as well as systems that
undergo preventive maintenance which reduces wear out failures. No ageing
applies to units whose remaining life continues to be the same at all ages. This
situation is identified by equating the lifetime distribution with its residual lifetime
distribution, i.e.,

F̄(x+ t)
F̄(t)

= F̄(x) ∀ x, t. (4.1)

It is known that the exponential distribution is the only lifetime model that
satisfies (4.1). Sometimes, (4.1) is referred to as the lack of memory property of the
exponential distribution, and it plays a key role in the definitions of various ageing
criteria.

There are several advantages in studying ageing concepts. Primarily, they reveal
in some sense the pattern in which a unit deteriorates or improves in its functioning
with respect to age. This, of course, imparts valuable information about the
reliability of a unit. Secondly, life distributions are classified on the basis of their
ageing behaviour. In practice, a knowledge of this ageing behaviour could be
used effectively for model selection. Nonparametric inferential methods generally
make few assumptions about the population from which observations are drawn.
Ageing behaviour is an advantage in such situations, especially when the ageing
class has geometric properties like convexity, star shapedness, etc. Moreover, these
classes have several desirable properties in their own right such as bounds on the
reliability function, distributional properties like unimodality, inequalities among
moments and preservation properties under various reliability operations. Further,
the identification of the no ageing property of the exponential law becomes a base
in the construction of tests of hypothesis of exponentiality against different ageing
criteria. Often, reliability classes, with appropriate interpretations, form the basis
of model selection in other disciplines. While discussing different ageing classes
and criteria, we distinguish them as based on the hazard quantile function, residual
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quantile function and some other properties. The quantile-based definitions of the
ageing concepts discussed here are available in Nair and Vineshkumar [454].

4.2 Reliability Operations

Before defining ageing concepts, we provide some preliminary details which are
vital to reliability theory. It is customary to investigate whether a given life distri-
bution possessing a specific ageing property preserves it under various reliability
operations. Important among the operations are formation of coherent structures of
independent components, addition of lifelengths or convolution and formation of
mixtures of distributions.

4.2.1 Coherent Systems

Coherent systems, introduced by Birnbaum et al. [103], helped to a great extent in
laying the foundation of reliability theory as a separate discipline. Here, we consider
systems that can be in only one of two states, functioning or failed. A structure
function φ of a coherent system of n components (or a coherent system of order n)
is such that, with xi = 1 if the ith component functions and xi = 0 if it fails,

(i) φ(1,1, . . . ,1) = 1,
(ii) φ(0,0, . . . ,0) = 0,

(iii) φ(x1,x2, . . . ,xn)≥ φ(y1,y2, . . . ,yn), whenever xi ≥ yi, i = 1,2, . . . ,n.

For example, the structure function of series and parallel systems described in
Chap. 1 are

φ(x1,x2, . . .xn) = x1x2 . . .xn

and

φ(x1,x2, . . .xn) = 1− (1− x1)(1− x2) . . . (1− xn),

respectively. The states of the components of a coherent system are represented by
Bernoulli random variables and the reliability function of the system is then

R(p1, p2, . . . pn) = E(φ(X1,X2, . . . ,Xn)), with pi = P(Xi = 1),

where X1,X2, . . . ,Xn are independent. Introducing a concept of time T now, let
X(t) = 0 or 1 depending on whether the unit is failed or functioning at time t, we
have

P(X(t) = 1) = F̄(t) (4.2)
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as the survival function of T . For a coherent system of order n, φ(X1(t), . . . , Xn(t))
is the performance process and the system life T has survival function

F̄(t) = R(F̄1(t), . . . , F̄n(t)),

where F̄i is the survival function of the component lifelengths as defined in (4.2).
For further details and properties, one may refer to Barlow and Proschan [69].

4.2.2 Convolution

Let X and Y be two independent random variables with distribution functions F(x)
and G(x). The distribution of X +Y , specified by the distribution function

H1(x) =
∫ x

0
F(x− t)dG(t), (4.3)

is referred to as the convolution of X and Y , and is usually denoted by H1 = F ∗G.
In the reliability context, convolution is interpreted as the operation of adding
lifelength X to Y . When a spare part is available as the replacement of the original
part, in case of failure of the latter, the two together acts as a system of two
components and the available total lifetime in this case is X +Y , the sum of the
lengths of lives of the original and spare parts. Also, if the component with life
Y fails at any time t preceding x, while component with life X fails during the
remaining interval of time x− t, then (4.3) is the probability that the sum X +Y
does not exceed x.

4.2.3 Mixture

Assuming that F(x|θ ), θ ∈Θ , be a family of distributions and G(θ ) be a distribution
onΘ , the mixture of F with G is given by

H2(x) =
∫

Θ
F(x|θ )dG(θ ). (4.4)

The hazard rate of (4.4) is

h∗(x) =
∫
Θ f (x|θ )dG(θ )∫
Θ F̄(x|θ )dG(θ )

.

If the hazard rate of F(x|θ ) is bounded by h1 < h(x|θ ) < h2 for all θ in the
support of G, then h1 < h∗(x)< h2. A particular case of interest in practice is when
the population consists of observations belonging to two different categories with
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proportions α and 1−α having distribution functions F1 and F2. Then, the mixture
distribution in (4.4) becomes

H2(x) = αF1(x)+ (1−α)F2(x),

which is commonly referred to as the two-component mixture model. In this case,

h∗(x) = α(x)h1(x)+ (1−α(x))h2(x),

where hi(x) is the hazard rate corresponding to Fi, and

α(x) =
α1F̄1(x)

α1F̄1(x)+α2F̄2(x)
;

furthermore, we have

min(h1(x),h2(x))≤ h∗(x)≤ max(h1(x),h2(x)).

For an elaborate discussion on mixtures of life distributions, one may refer to
Marshall and Olkin [412].

4.2.4 Shock Models

A unit may fail because of the changes within it or due to the changes in the
environment. An approach to describe the state of the system over time is through
a stochastic process, and the unit is deemed to have failed when the designated
process surpasses a threshold level. For units that deteriorate over time, the failure
occurs as a result of accumulated shocks received over time. Let (N(t), t ≥ 0) be the
number of shocks received by the unit in the time interval [0, t] and P̄K = P(K > k),
the probability that a unit survives k shocks, k = 1,2, . . . . Then, the survival function
of the unit is given by

H̄3(x) =
∞

∑
k=0

[P(N(x) = k)]P̄K , x ≥ 0. (4.5)

Different models for N(t), like Poisson process, birth process and so on, have been
considered in the literature. In the case of a Poisson process, (4.5) simplifies to

H̄3(x) =
∞

∑
k=0

P̄Ke−λ x (λx)k

k!
. (4.6)

Attention is usually given to the problem of ascertaining whether or not a concept
of ageing admits a shock model interpretation; for details, see Esary et al. [189].
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4.2.5 Equilibrium Distributions

A topic that is quite useful in the analysis of the ageing phenomenon is that of
equilibrium distributions. Assume that we have a set of n units. We start working
with a new unit at time zero, replace it upon failure by a second unit, and so on.
If the failure times Xi, i = 1,2, . . . ,n, of the units are independent and identically
distributed, then the sequence of points (Sn), where Sn =X1+X2+ · · ·+Xn constitute
a renewal process (Cox [157]). Let F(x) be the common distribution function of Xi’s,
satisfying F(0) = 0 and μ = E(Xi) < ∞. Upon denoting the age and remaining life
of the unit in use at time T by UT and VT , respectively, the asymptotic distribution
of UT and VT turn out to be

Ḡ(x) = μ−1
∫ ∞

x
F̄(t)dt, (4.7)

which is called the equilibrium distribution corresponding to F . We shall denote by
Z the random variable with survival function in (4.7).

For a non-negative and absolutely continuous random variable X with E(Xn) <
∞, Fagiouli and Pellerey [191] extended (4.7) by defining the nth order equilibrium
recursively through the survival functions

Sn(x) = μ−1
n−1

∫ ∞

x
Sn−1(t)dt, n = 1,2,3, . . . , (4.8)

where μn =
∫ ∞

0 Sn(t)dt. Notice that S1(x) = F̄(x), S2(x) = Ḡ(x) and S0(x) =
f (x)
f (0) ,

which is a survival function iff f (x) is continuous and decreasing. If Zn is the random
variable corresponding to (4.8), we also have Z1 = X and Z2 = Z according to the
earlier notation. The relationships between the survival functions F̄ and Sn, hazard
rates h(x) and hn(x), and mean residual life functions m(x) and mn(x) of X and Zn,
respectively, are as follows (Nair and Preeth [441]):

Sn(x) =
E[(X − x)n−1|X > x]

E(Xn−1)
F̄(x),

hn(x) = [mn−1(x)]
−1,

mn−1(x) =
mn(x)

1+m′
n(x)

,

hn−1(x) = hn(x)− h′n(x)
hn(x)

n = 2,3, . . . ,

mn(x) =
E[(X − x)n|X > x]

nE[(X − x)n−1|X > x]
.

Nair and Preeth [441] also established that the generalized Pareto distribution (see
Table 1.1) is characterized by any one of the relations



4.2 Reliability Operations 111

mn(x) =Cnm(x),

hn(x) = Knh(x),

E[(X − x)n|X > x] = Anmn(x),

where Cn, An and Kn are positive constants, and the two-component exponential
mixture distribution

F̄(x) = αe−λ1x +(1−α)e−λ2x, x > 0; α ≥ 0, 0 < λ1 < λ2,

by

mn(x) = α1 −α2 −α1α2hn(x),

where

αi = λ−1
i , i = 1,2.

Various distributional properties and reliability aspects have been discussed by
Gupta [233], Nanda et al. [460], Stein and Dattero [546] and Gupta [236].

Quantile-based analysis of equilibrium distributions is straightforward. Setting
x = Q(u) in (4.7), we have

G(QX (u)) = μ−1
∫ u

0
(1− p)q(p)d p, (4.9)

where the integral

TX (u) =
∫ u

0
(1− p)q(p)d p

is the well-known total time on test transform of the random variable X . The
properties and reliability implications of TX(u) will be taken up later on in Chap. 5.
Thus, from (4.9), we have

QX (u) = μ−1QZ(TX(u))

or

QZ(u) = μQX(T
−1

X (u)).

Note that T−1
X (u) is a distribution function on [0,1] since T (u) is a quantile function.

Example 4.1. Let X be distributed as generalized Pareto with quantile function

Q(u) =
b
a

[
(1− u)−

a
a+1 − 1

]
.
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Then,

T (u) =
∫ u

0
(1− p)q(p)d p = b

[
1− (1− u)−

1
a+1

]

and

μ−1T (u) = 1− (1− u)−
1

a+1 .

Hence, the equilibrium distribution has its quantile function as

QZ(u) = Q[T−1(u)] = Q
[
1− (1− u)−(a+1)

]
=

b
a

[
(1− u)−a− 1

]
.

We note from (4.9) that

Ḡ(QX (u)) = 1− μ−1
∫ u

0
(1− p)q(p)d p

= μ−1
[
μ−

∫ u

0
(1− p)q(p)d p

]

= μ−1
∫ 1

u
(1− p)q(p)d p.

Differentiating logarithmically, we obtain

g(QX(u))

Ḡ(QX (u))
q(u) =

(1− u)q(u)∫ 1
u (1− p)q(p)d p

or

HZ(u) = [MX (u)]
−1, (4.10)

thus revealing that the hazard quantile function of the equilibrium random variable
is simply the reciprocal of the mean residual quantile function of the baseline
distribution. Since Zn is in the equilibrium version of Zn−1, we have

Hn(u) = [Mn−1(u)]
−1, n = 2,3, . . . , (4.11)

and so

Mn−1(u) = Mn(u)− (1− u)M′
n(u). (4.12)

Equation (4.10) can also be used to derive the quantile function of Z.
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Example 4.2. The generalized lambda distribution with

QX(u) = λ1 +λ−1
2 (u− (1− u)λ4), λ1 − 1

λ2
≥ 0,

has the mean residual quantile function as

MX(u) = λ−1
2

[
λ4(1+λ4)

−1(1− u)λ4 +
1− u

2

]
.

Hence,

HZ(u) =
λ2

λ2(1+λ4)−1(1− u)λ4 + 1−u
2

.

The corresponding quantile function can then be obtained as

QZ(u) =
1
λ2

[
u
2
+

1
1+λ4

(1− (1− u)λ4)

]
.

4.3 Classes Based on Hazard Quantile Function

4.3.1 Monotone Hazard Rate Classes

These classes of life distributions are defined by the nature of the monotonicity of
the hazard function, h(x). In the sequel, we use the term increasing (decreasing) in
the sense of non-decreasing (non-increasing). We say that the random variable X or
its distribution has increasing hazard rate, or X is IHR in short, if and only if for all
t such that F̄(t)> 0,

F̄t(x) =
F̄(t + x)

F̄(t)

is decreasing (increasing) in t for all x ≥ 0. This means that the residual life
distribution is stochastically decreasing (increasing) in t. It is immediate that this
definition also implies that X is IHR if and only if the hazard rate h(x) = f (x)

F̄(x)
is

increasing. Similarly, X has decreasing hazard rate iff h(x) is decreasing, and we
say in this case that X is DHR. If h(x) is differentiable, it follows that X is IHR
(DHR) according as h′(x)≥ (≤)0. Since

h′(x) =
dh(x)

dx
=

dh(Q(u))
du

du
dQ(u)

= H ′(u)
1

q(u)
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and q(u) > 0, we can present the following definition in terms of hazard quantile
functions.

Definition 4.1. A lifetime random variable is IHR (DHR) if and only if its hazard
quantile function satisfies

H ′(u)≥ (≤) 0 for 0 < u < 1.

Thus, all distributions specified in terms of F(x) that are IHR (DHR) preserve
the same property when specified by Q(u) as well. We will retain the conventional
nomenclature IHR (DHR) in the case of the quantile approach as well. Sometimes,
it is easier to establish the IHR property by using any of the following equivalent
conditions:

(i) H(u2)≥ H(u1) for all 0 < u1 < u2 < 1,
(ii) The quantile function of the residual life

Q(u0 +(1− u0)u)−Q(u0) is a decreasing function of u0.

Property (i) is obvious. To prove Property (ii), we note that

Q(u0 +(1− u)u0)−Q(u0) is decreasing

⇒ q(u0 +(1− u0)u)(2− u)− q(u0)≤ 0

⇒ 1
(1− u0)q(u0)

≤ 1
(1− (u0+(1− u0)u))(q(u0 +(1− u0)u))

⇒ H(u0)≤ H(u0 +(1− u0)u)

⇒ IHR by (i).

The inverse implication also holds by taking u2 = u1 +(1−u1)u so that u2 ≥ u1 for
every 0 < u < 1. Taking u1 = u0 and retracing the steps in the above proof, we get
the required result.

Example 4.3. The generalized exponential law with quantile function (see
Table 1.1)

Q(u) = σ [− log(1− u1/θ)]

has its hazard quantile function as

H(u) =
θ

σ(1− u)
[u1− 1

θ − u],

and

H ′(u) =
θ

σ(1− u)2

[
θ − 1+ u

θ
u−

1
θ − 1

]
.
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Hence, H ′(u) > 0 for θ > 1, H ′(u) < 0 for θ < 1, and H(u) is constant for θ = 1.
Thus, X is IHR for θ ≥ 1 and DHR for θ ≤ 1.

Not all hazard quantile functions are monotone in nature. It may belong to some
other categories like bathtub or upside bathtub-shape, periodic, roller-coaster shape
and polynomial type. These alternative forms will be discussed now briefly.

Definition 4.2. The random variable X is said to have a bathtub-shaped hazard
quantile function, or X is BT, if

H(u) =

⎧⎪⎪⎨
⎪⎪⎩

H1(u) u ≤ u1

c, u1 ≤ u ≤ u2

H2(u) u ≥ u2

,

where c is a constant, H1(u) is strictly decreasing and H2(u) is strictly increasing.
When u1,u2 → 0, X is IHR and when u1,u2 → 1, X is DHR. We also say that u1 and
u2 are change points of H(u). On the other hand, if H1(u) is strictly increasing and
H2(u) is strictly decreasing, an upside-down bathtub-shaped (UBT) hazard quantile
function results.

Often, many life distributions have only one change point in which case the
following definition is more convenient.

Definition 4.3. Assuming differentiability of H(u), X is BT (UBT) if and only if
H ′(u)< (>) 0 for u in (0,u0), H ′(u0) = 0 and H ′(u)> (<) 0 in (u0,1).

Bathtub-shaped curves arise in different scenarios. In some cases, the life of a
unit is affected by a mixture of defects with varying intensities. Those with serious
defects at the initial stages have a high rate of failure, but as the unit functions
without failure, such defects no longer persist so that the hazard function decreases
and later becomes steady with almost a constant rate. Finally, when the adverse
effect of age surfaces, the hazard quantile exhibits increasing tendency until the unit
fails to function. Other factors such as changes in the hazard conditions due to the
unit or environment, wear out of items with flaws, introduction of tests, inspection
or maintenance that limits the occurrence of failures can also give rise to BT or
UBT distributions. There are cases in which a proportion of items come from an
IHR distribution and the remaining come from a DHR distribution, producing BT-
shaped hazard for the combined set of observations, as Kao [310] has demonstrated.
Table 4.1 presents the behaviour of the hazard quantile functions of standard life
distributions presented earlier in Table 2.1. When failures are caused by fatigue
or corrosion, X follows unimodal or UBT distributions such as lognormal, inverse
Gaussian and inverted gamma, which do not have tractable quantile functions.
Further details can be seen in Jiang et al. [292].

Glaser [220] established a general theorem that facilitates the determination of

whether X is IHR, DHR, BT or UBT. He made use of the function η(x) = − f ′(x)
f (x)

which is identified with
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Table 4.1 Nature of hazard quantile functions of distributions in Table 2.1

Distribution Shape of H(u)

Exponential Constant
Weibull Increasing for λ > 1,

constant for λ = 1,
decreasing for λ < 1.

Pareto II Decreasing
Rescaled beta Increasing
Half-logistic Increasing
Power Increasing for β ≥ 1

and BT for β < 1
Pareto I Decreasing
Burr type XII Decreasing for c ≤ 1

and UBT for c > 2
Geompertz Increasing for C > 1,

decreasing for C < 1,
and constant for C = 1.

Log logistic Decreasing for β ≤ 1
and UBT for β > 1

Exponential geometric Decreasing
Exponentiated Weibull λ ≤ 1, λθ ≤ 1 decreasing

λ ≥ 1, λθ ≥ 1 increasing
λ < 1, λθ > 1 UBT
λ > 1, λθ < 1 BT

Generalized exponentiated θ ≤ 1 decreasing
θ ≥ 1 increasing

Extended Weibull θ ≥ 1 λ ≥ 1 increasing
θ ≤ 1 λ ≤ 1 decreasing
λ > 1 (< 1) initially increasing (decreasing) and
eventually increasing (decreasing) but there may be
and interval in which decreasing (increasing)

Inverse Weibull UBT
Generalized Pareto a < 0 increasing

a > 0 increasing
a → 0 constant

Exponential power α ≥ 1 increasing, α < 1 BT
Modified Weibull extension α ≥ 1 increasing, 0 < α < 1 BT
Log Weibull 0 ≤ k ≤ 1 decreasing, k > 1 UBT
Dimitrakopoulou et al. α > 1, β ≥ 1, α < 1, β ≤ 1 increasing

α ≥ 1, β < 1 and αβ ≤ 1(> 1), Increasing (BT)
αβ < 1 unimodel, α ≥ 1 increasing

Geometric Weibull 0 < α ≤ 1 decreasing, α > 1 increasing
Logistic exponential 0 < k < 1 BT, k > 1 UBT, k = 1 constant
Kus Decreasing
Greenwich UBT
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J(u) =
q′(u)
q2(u)

. (4.13)

Parzen [484] refers to J(u) as the score function, and it proves to be quite useful
in classifying probability distributions according to tail length. In terms of J(u), we
have the following adaptation of Glaser’s result.

Theorem 4.1. (a) X is IHR (DHR) according to J(u) being increasing (decreas-
ing) for all u;

(b) Let J(u) be BT (UBT) in the sense of Definition 4.3. Then, if there exist a u0

for which J(u0) = H(u0), X is BT (UBT). If there is no such u0, then X is IHR
(DHR).

Theorem 4.2. Let

lim
u→0

1
q(u)

= α and lim
u→0

J(u)
H(u)

= β .

Then,

(a) if J(u) is BT, X is IHR if either α = 0 or β < 1, and X is BT if either α = ∞ or
β > 1;

(b) if J(u) is UBT, X is DHR if α = ∞ or β > 1, and UBT if α = 0 or β < 1.

Remark 4.1. Notice that, in the above two theorems, J(u) is increasing or decreas-
ing according to

J′(u) = q(u)q′′(u)− [q′(u)]2

being ≥ or ≤ 0, and

J(u)
H(u)

=
(1− u)q′(u)

q(u)
,

so that the relevant quantities can be directly obtained from the quantile density
function q(u).

Example 4.4. Consider the inverse Gaussian law with probability density function

f (x) =

(
λ

2πx3

) 1
2

exp

[
− λ

2μ2x
(x− μ)2

]
, x > 0; λ ,μ > 0.

The distribution has no tractable quantile function. Yet, we can write

[q(u)]−1 =

(
λ
2π

) 1
2
{

Q− 3
2 (u)exp

[
− λ

2μ2

(
Q(u)− 2μ+

μ2

Q(u)

)]}
, 0 ≤ u ≤ 1,

(4.14)
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and

J(u) =
d

du
[q(u)]−1

=

(
λ
2π

) 1
2

exp

[
− (Q(u)− μ)2

2μ2Q(u)

]
q(u)Q− 5

2 (u)
2μ2

(
3μ2Q(u)+λ (Q2(u)− μ2)

Q(u)

)

=
3μ2Q(u)+λ (Q2(u)− μ2)

2μ2Q(u)
,

on using (4.14). Hence,

J′(u) =
q(u)

2Q3(μ)
(2λ − 3Q(u))

which is increasing for Q(u) < 2λ
3 and decreasing for Q(u) > 2λ

3 . Hence, J(u)

is UBT with change point satisfying Q(u) = 2λ
3 . By Theorem 4.1 or Part (b) of

Theorem 4.2, X is UBT. The same method works well for other distributions with
Q(u) being not of closed form.

Gupta and Warren [249] have extended Glaser’s results to cover cases with more
than one change point. Their result can be translated into quantile functions as
below.

Theorem 4.3. If Q(u) is strictly increasing and q(u) is twice differentiable and
J′(u) = 0 has n solutions 0 < u1 < u2 · · ·< un < 1, there exists at most one solution
for H ′(u) = 0 in [uk−1,uk], k = 1,2, . . . ,n.

There is a vast literature on BT models including various formulations, methods
of construction and applications. We will return to these issues in Chap. 8. In spite of
the popularity of BT- and UBT-shaped hazard functions, there have been criticism
against its indiscriminate usage and caution to the extent that they are more of a
myth than reality; see, for example, Tabot [558] and Wong [586]. Klutke et al. [343]
pointed out that a bimodal density function as a mixture of subpopulations does not
yield a decreasing hazard function early in life. This means that a bathtub hazard
rate cannot accommodate this feature of early failures. Further, if the hazard rate
is decreasing in an interval, the density must also decrease in that interval. In a
series of papers, Wong [587–589] advocated the concept of roller-coaster-shaped
hazard functions citing the following physical characteristics for the hazard function
to take such a shape. The shape is initially generated by basic failure mechanisms
which lead to decreasing hazard rate and then humps are created by changing hazard
conditions, wear out, distribution of flawed items, etc. Roller-coaster curves thus
exhibit alternate monotonicities repeatedly.

Definition 4.4. If there exist points 0< u1 < u2 · · ·< uk < 1 such that in the interval
[uk−1,uk], 1 ≤ k ≤ n+ 1, u0 = 0, un+1 = 1, H(u) is strictly monotone and it has
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opposite monotonicity in any two adjacent such intervals, we say that X has roller-
coaster-shaped hazard quantile function with change points u1,u2, . . . ,uk.

Another typical criterion of interest in this context is that of periodic hazard rate.
A hazard function h(x) is periodic if

B(x, t) = B(x+ nc, t)

n ≥ 0 is an integer and C ≥ 0, where

B(x, t) =
F(x+ t)−F(x)

1−F(x)
.

Prakasa Rao [496] has shown that distributions with periodic hazard rates will be of
the form

F̄(x) = p(x)e−αx, x ≥ 0; α > 0,

or exponential, where p(·) is a periodic function with period c and support contained
in the set (nc,n ≥ 0). This follows from the fact that the hazard function is either a
constant (in which case the definition is trivially satisfied since X is exponential) or
has the form

h(x) =
α p(x)− p′(x)

p(x)

along with the fact that p(x) being periodic, p′(x) is also periodic. It can also be seen
that (Chukova and Dimitrov [148] and Chukova et al. [149]) a non-negative random
variable with continuous density function has periodic hazard rate if and only if it
has almost lack of memory property. The almost lack of memory property means
that there exists a sequence of distinct constants (an) such that

P(X ≥ b+ x|X ≥ b) = P(X ≥ x)

holds for any b = an, n = 1,2,3, . . . and all x ≥ 0. Castillo and Sieworek [130] have
considered the reliability of computing systems and showed that hard disk failures
seem to follow the work load. The influence of this work load can be accounted
for by addition of a periodic hazard rate. More details are present in Chukova and
Dimitrov [148], Boyan [119], Dimitrov et al. [179] and Tanguy [561].

Apart from providing monotone hazard rates, the IHR and DHR classes of
distributions possess some other important properties, which are as follows:

1. If X1 and X2 are IHR, their convolution is IHR, while DHR does not preserve
convolution;

2. It is not true that a coherent system of independent IHR components is
necessarily IHR. The DHR class is also not closed under the formation of
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coherent systems. A parallel system of independent and identical IHR units is
IHR while a series system of IHR units, not necessarily identical, is also IHR;

3. The operation of formation of mixtures is preserved under DHR class and is not
preserved for the IHR class;

4. The harmonic mean of two IHR survival probabilities is an IHR survival
probability;

5. If X is IHR (DHR), then log F̄(x) is concave (convex);
6. If X is IHR (DHR) and ξp is the pth percentile, then

F̄(x) ≥ (≤) e−αx, x ≤ ξp

≤ (≥) e−αx, x ≥ ξp

,

where α =− log(1−p)
ξp

;
7. If X is IHR, then

F̄(x)≥
{

e−
x
μ , t < μ

0, t ≥ μ
,

or equivalently

Q(u)≥−μ log(1− u) for t < μ ;

8. If X is IHR, then

−μ log(1− u)≤ ξu ≤−μ log(1− u)
u

, u ≤ 1− e−1,

and

μ ≤ ξu ≤−μ log(1− u)
u

, μ ≥ 1− e−1;

9. If X is DHR, then

Q(u)≤−μ log(1− u), Q(u)≤ μ ,

≤ μe−1

(1− u)
, Q(u)≥ μ ;

10. If X1 and X2 are IHR with hazard rates h1(x) and h2(x), then the hazard rate of
the convolution hc(x) satisfies hc(x)≤ min(h1(x),h2(x));

11. The quantile density function of an IHR random variable is increasing;
12. We define the kth spacing between order statistics X1:n, . . . ,Xn:n by Xk:n −Xk−1:n.

The order statistics of IHR distributions are IHR, but the spacings of IHR
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distributions are not IHR. In the case of DHR class, the spacings are DHR,
while order statistics are not;

13. In life testing experiments, some units may not fail at all during the course
of the test. Hence, one cannot calculate the sample mean life for estimat-
ing μ . If M is the median, using Property 9 above, the mean can then be
estimated as

M
2log2

≤ μ ≤ M
log2

;

14. If X1 and X2 are identically distributed and IHR, then (Ahmad [21])

2
(r+2)(r−1)

2 E(min(X1,X2))
r ≥ r!μ r, r ≥ 2,

and

E(min(X1,X2))
2r+2 ≥

(
2r+ 2
2r+ 1

)(
1
2

)2r+2

(μ ′
r+1)

2;

15. If X is IHR (DHR), its residual life Xt is also IHR (DHR);
16. If X is IHR (DHR), Z is also IHR (DHR). The converse is true if and only if the

ratio of their densities f (x)
g(x) is increasing (decreasing).

Results 1–12 are discussed in Barlow and Proschan [70] while 15 and 16 are
presented in Gupta and Kirmani [242].

The equilibrium distribution discussed in Sect. 4.2 is a particular case of a more
general class of distributions called weighted distributions. The random variable Y
with density function

g(x) =
w(x) f (x)
Ew(X)

, w(x)> 0, Ew(X)< ∞,

specifies the weighted distribution corresponding to the random variable X . Then,

hY (x) =
w(x)

E[w(X)|X > x]
hX(x).

The equilibrium distribution results as a special case when w(x) = 1
h(x) . For

various identities connecting reliability functions of X and Y and conditions on the
distribution of X for preserving DHR/IHR property of X , one may refer to Jain
et al. [290], Gupta and Kirmani [242], Oluyede [473], Bartoszewicz and
Skolimowska [77] and Misra et al. [417]. Returning to the quantile approach,

G(x) =

∫ x
0 w(x) f (x)dx

μw
, with μw = E[w(X)],
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becomes

F∗(u) = G(Q(u)) =

∫ u
0 W (p)d p
μW

, with W (p) = w(Q(p)),

which is a distribution function on (0,1).
Blazej [107] has shown that if X is IHR and C(u) is an increasing positive

function on (0,1) such that

∫ 1

0

C(u)du
1− u

=+∞,

then Y is IHR. For a choice of C(u), one can choose it as a constant, a positive
increasing function on (0,1), or a positive decreasing function φ such that φ(x) >
a > 0.

Lariviere and Porteus [375] refer to the ratio t(x) = x f (x)
F̄(x)

as a generalized hazard

rate and if t(x) is non-decreasing, X is said to be increasing generalized hazard rate
(IGHR). Lariviere [374] has shown that X is IGHR is equivalent to logX being
IHR. Further, if logX is IHR (IGHR), then α + β logX (αXβ ) is IHR (IGHR).
The concept of generalized hazard rate is primarily intended for use in operations
management. Occasionally, the above results on IGHR becomes handy in verifying
whether X is IHR.

4.3.2 Increasing Hazard Rate(2)

The notion of stochastic dominance plays a role in defining certain ageing classes.
If X1 and X2 are two lifetime random variables with distribution functions F1 and
F2, respectively, then X1 has stochastic dominance over X2 of the first order, D1, if
F1(x)≤ F2(x). The dominance of order 2, D2, is defined as

∫ x

0
F1(t)dt ≤

∫ x

0
F2(t)dt

and D̄2 as

∫ ∞

x
F̄1(t)dt ≥

∫ ∞

x
F̄2(t)dt,

while the third order stochastic dominance D3 and D̄3 are

∫ y

0

∫ x

0
F1(t)dtdx ≤

∫ y

0

∫ x

0
F2(t)dtdx
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and
∫ ∞

y

∫ ∞

x
F̄1(t)dtdx ≥

∫ ∞

y

∫ ∞

x
F̄2(t)dtdx,

respectively. Implications among these orders are as follows:

D1 ⇒ D2(D̄2)⇒ D3(D̄3).

Deshpande et al. [172] defined increasing hazard rate of order 2 (IHR(2)) by
requiring the residual life Xt1 to have stochastic dominance D2 over Xt2 . In other
words, X is IHR(2) if and only if for every fixed x ≥ 0, one of the following
conditions are satisfied:

(a)
∫ x

0
F̄(t+s)

F̄(t) ds is non-decreasing in s;

(b)
∫ x

0
F̄(t+s)

F̄(t) dt ≤ ∫ x
0

F̄(t+v)
F̄(t) dt ∀x ≥ 0, s ≥ v.

Definition 4.5. A lifetime random variable X is IHR(2) if and only if
∫ u

0
[Q(t +(1− t)v)−Q(t)]dt ≥

∫ u

0
Q[(t +(1− t)s)−Q(t)]dt (4.15)

for all u ≥ 0 and t ≤ s.

When X is IFR, we have

Q(t +(1− t)v)−Q(t)≥ Q(t +(1− t)s)−Q(t)

which implies (4.15) on integrating the last inequality over (0,u). Hence, IHR ⇒
IHR(2). Since g1(x) ≥ g2(x) does not always imply dg1

dx ≥ dg2
dx , IHR(2) need not

imply IHR, thus proving IHR(2) contains IHR. However, this class does not seem
to have received much attention in practice.

4.3.3 New Better Than Used in Hazard Rate

This concept uses the idea that at the initial age the hazard rate will be less than
that of a used one, indicating positive ageing. We say that X is new better than used
in hazard rate (NBUHR) if h(0)≤ h(x) for x ≥ 0. The dual class is new worse than
used in hazard rate (NWUHR) if h(0)≥ h(x) for x ≥ 0. When the term failure rate is
used instead of hazard rate, the abbreviation becomes NBUFR, which is often used
in the literature (Loh [404]).

Definition 4.6. A lifetime X is new better (worse) than used in hazard rate if and
only if H(0)≤ (≥) H(u) for u ≥ 0.

An associated concept is that of new better than used in hazard rate average
(NBUHRA). Let F(x) be such that F(0) = 0 and
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log F̄(x)
x

≤ lim
x→0

log F̄(x)
x

.

Then, X is NBUHRA. If F̄(x) is continuously differentiable over (0,ε) for some
ε > 0, then the above condition is also equivalent to

h(0)≤ 1
x

∫ x

0
h(t)dt, x ≥ 0. (4.16)

In this case, the hazard rate of a new component is less than its average hazard rate
in (0,x) for all x ≥ 0 (Loh [404]). Further, X is new worse than used in hazard
rate average (NWUHRA) if the inequality in (4.16) is reversed. The NBUHRA and
NWUHRA classes are also denoted by NBUFRA and NWUFRA in the literature.
We now rewrite the definitions of the classes by making use of (4.16) in terms of
hazard quantile function.

Definition 4.7. We say that X is NBUHRA (NWUHRA) if and only if the hazard
quantile function H(u) satisfies

H(0)≤ (≥)
− log(1− u)

Q(u)
for all u. (4.17)

Definition 4.7 can also be seen as

Q(u)≤− 1
H(0)

log(1− u)

meaning that the quantile function of X is less than that of the exponential
distribution with the same hazard rate as X . In the first order stochastic dominance
mentioned above, the lifetime X is worse than the exponential and hence X ages
positively if it is NBUHRA. The process of averaging visible in (4.16) is also
implicit in (4.17) if one rewrites it as

H(0)≤ (≥)

∫ u
0 H(p)q(p)d p∫ u

0 q(p)d p
.

The right side acts as a weighted average with weight q(u)
Q(u) . Evidently,

IHR ⇒ NBUHR

and furthermore

NBUHR ⇒ H(0)≤ H(u)⇒
∫ u

0
H(0)q(p)d p ≤

∫ u

0
H(p)q(p)d p

⇒ NBUHRA,
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but not conversely. A closely related measure of positive ageing, given in Bryson
and Siddiqui [122], based on the interval-average hazard rate defined by

A(t,s) =
1
t

∫ s+t

s
h(x)dx,

is increasing interval average hazard rate when

A(t2,s)≥ A(t1,s), t2 ≥ t1 ≥ 0, s ≥ 0.

They have shown that this criterion is equivalent to IHR. The properties of the
above two classes have been discussed in Abouammoh and Ahmed [5], Gohout
and Kunhert [222] and El-Bassiouny et al. [185]. It has been shown that

1. NBUHR is not preserved under convolution,
2. NBUHR class is closed under the formation of mixtures,
3. NBUHR class is closed under formation of coherent systems with independent

components,

4. μ ′
r ≥ (≤)

f (0)μ ′r+1
(r+1) according to X being NBUHR (NWUHR)

4.3.4 Stochastically Increasing Hazard Rates

The monotonicity of hazard rates can also be evaluated in random intervals of time
giving a further extension of IHR and DHR concepts.

Definition 4.8. Let X0 = 0,X1, . . . ,Xk, . . . be a sequence of independent and iden-
tically distributed exponential random variables each with mean μ , and Y be
independent of Xk. Then, Y is said to have stochastically increasing hazard rate,
or Y is SIHR, if and only if (Singh and Deshpande [542])

P

[
k

∑
0

Xi ≤ Y <
k+1

∑
0

Xi|Y ≥
k

∑
0

Xi

]
≥ P

[
k−1

∑
0

Xi ≤ Y <
k

∑
0

Xi|Y ≤
k−1

∑
0

Xi

]
.

This means that the conditional probability of a unit with lifetime Y will not fail
before the random time ∑k

1 Xi given that it has not failed in ∑k−1
0 Xi, is decreasing

in k = 1,2,3, . . . . The dual class SDHR is defined similarly. It may be noted
that

IHR ⇒ SIHR

and that both SIHR and SDHR hold if and only if Y is exponential. This concept has
not been used much in reliability analysis.
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4.3.5 Increasing Hazard Rate Average

Introduced by Birnbaum et al. [102], the increasing hazard rate average (IHRA)
class and its dual decreasing hazard rate average (DHRA) class are among the basic
classes of life distributions. A lifetime X is IHRA (DHRA) if and only if

− log F̄(x)
x

is increasing (decreasing) in x > 0.

Since − log F̄(x) =
∫ x

0 h(t)dt, X is IHRA means that the average hazard rate in (0,x)
defined by

1
x

∫ x

0
h(t)dt is increasing.

A real valued function φ(x) on [0,∞) is star-shaped if φ(0) = 0 and φ(x)
x is increasing

in x > 0. Hence, X is IHRA if and only if log F̄(x) is star-shaped.

Definition 4.9. We say that X is IHRA (DHRA) if and only if Q(u)
− log(1−u) is

decreasing (increasing) in 0 < u < 1.

Theorem 4.4. The following conditions are equivalent:

(i) X is IHRA;

(ii)
∫ u

0 H(p)q(p)d p∫ u
0 q(p)d p is increasing;

(iii) H(u)≥ Z(u)
Q(u) , with Z(u) =− log(1− u).

Proof. (i) ⇔ (ii)

X is IHRA ⇔− log(1− u)
Q(u)

is increasing

⇔ (ii), since − log(1− u) =
∫ u

0
H(p)q(p)d p.

(ii) ⇔ (iii). From (ii), we have

∫ u
0 H(p)q(p)d p∫ u

0 q(p)d p
is increasing ⇔ Q(u)H(u)q(u)− q(u)

∫ u

0
H(p)q(p)d p ≥ 0

⇔ Q(u)
1− u

− q(u)Z(u)≥ 0

⇔ 1
(1− u)q(u)

≥ Z(u)
Q(u)

⇔ H(u)≥ Z(u)
Q(u)

.
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We now list some key properties of the IHRA and DHRA classes.

1. IHR ⇒ IHRA. The converse need not be true. Marshall and Olkin [412] have
shown that

F̄(x) = e−λ1x + e−λ2x − e−(λ1+λ2)x

is IHRA, but X is UBT.
2. If X is IHRA, then F̄(x)

F̄Z(x)
is decreasing, where as before Z is the equilibrium

random variable.
3. If X belongs to the one-parameter exponential family of distributions and

E(Z) = E(X), then X has exponential distribution.
4. hZ(x) = chX(x), where c > 0 is a constant, if and only if X follows generalized

Pareto distribution.
5. When X is IHRA, its survival function F̄(x) can cross the survival function of

any exponential at most once and only from above.
6. An IHRA distribution has finite moments of all orders.
7. The class of IHRA distributions is closed under the formation of coherent

systems. It is the smallest class containing the exponential law, while DHRA
class is not closed. Both IHRA and DHRA preserve formation of series systems.

8. The IHRA class is closed under convolution and its dual DHRA class does not
possess such a property.

9. Mixtures of IHRA distributions are not necessarily IHRA, while if each F(x;θ )
is DHRA, then the mixture is also DHRA.

10. Every IHRA distribution can be obtained as a limit in distribution of a
sequence of coherent systems of components having exponential or degenerate
distributions.

11. IHRA distributions arise when shocks occur according to a Poisson process in
time, each independently causing random damage to the unit. The unit fails
when accumulated damages exceed a threshold level.

12. We have

μ ′
r ≤(≥) Γ (r+ 1)μ r, 0 < r < 1

μ ′
r ≥(≤) Γ (r+ 1)μ r, 1 < r < ∞.

13. We have

F̄(x)

{
≥ (≤) e−αx, 0 < x < ξ p

≤ (≥) e−αx, x > ξ p, α =− 1
ξ p log(1− p).

14. The coefficient of variation is ≤ (≥)1 according to X being IHRA (DHRA).
15. E(Xr+1

1 ) ≥ E[min(X1
α , X2

1−α )]
r+1, where X1 and X2 are independent and iden-

tically distributed IHRA variables (with r being an integer); see Ahmad and
Mugadi [26].
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16. For fixed x > 0, when X is IHRA,

F̄(x)≤
{

1 , x ≤ μ
e−ωx , x > μ

,

where ω is a function of x satisfying 1−ωμ = e−ωx.
17. When X1,X2, . . . ,Xn are iid IHRA, for all integers r ≥ 0, k ≥ 2, we have (Ahmad

and Mugadi [26])

E(min(X1,X2, . . . ,Xn))
r ≥ μ ′

r+1

r+ 1
.

18. Let X be IHRA (DHRA). Then, [ μ ′r
Γ (r+1) ]

1
r is decreasing (increasing) in r ≥ 0.

19. If X is IHRA (DHRA) and C(u) is an increasing (decreasing) function on (0,1),

then G(x) =
∫ x

0 w(x) f (x)
μx

is IHRA (DHRA) (Blazej [107]).

Proofs and further details of many of the above results can be found in Barlow and
Proschan [69]. For results concerning weighted distributions, see Misra et al. [417],
Bartoszewicz and Skolimowska [77] and Oluyede [473].

4.3.6 Decreasing Mean Time to Failure

The IHR and IHRA arise in evolving maintenance strategies in reliability engi-
neering. In order that a unit functions satisfactorily without failures or disruption,
reliability engineers adopt several types of maintenance strategies. These strategies
spell out schemes of replacement before failure. One such method is to resort to
an age-replacement policy in which a unit is replaced either when it fails or at an
age T whichever is earlier. The number of failures N(x) in (0,x) with no planned
replacements is a renewal process and NA(x,T ) and the number of in-service failures
under the age-replacement policy is also a renewal process. If F̄(x) is the survival
function of Xi, the length of time between the (i−1)th and ith failures in the process
N(x), the distribution of Xi,A, the length of time between the (i−1)th and ith failures
in NA(x,T ) for fixed T > 0, is specified by

ST (x) = [F̄(T )]nF̄(x− nT), nT ≤ x < (n+ 1)T, n = 0,1,2, . . . (4.18)

A yardstick for the effectiveness of the strategy is to study the properties of the mean
time to failure (MTTF) derived as the mean of (4.18), viz.,

M(T ) =
1

F(T )

∫ T

0
F̄(t)dt. (4.19)
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Equation (4.19) makes it clear that the behaviour of M(T ) is associated with ageing
properties of F . Thus, the class of distributions for which M(T ) is decreasing
(DMTTF) and increasing (IMTTF) have been studied in literature by many authors
including Klefsjö [334], Knopik [344, 345] and Asha and Nair [39]. We can
rewrite (4.19) as

μ(u) = M(Q(u)) = u−1
∫ u

0
(1− p)q(p)d p (4.20)

which gives the average time to failure at the 100(1− u)% point of the distribution.

Definition 4.10. We say that ST (x) is decreasing (increasing) MTTF according to
μ ′(u)≤ (≥) 0. Then, we have the identities

μ(u) = u−1[μ− (1− u)R(u)],

uμ ′(u)+ μ(u) = [H(u)]−1.

Thus, μ(u) is increasing or decreasing according to μ(u) ≥ (H(u))−1 or μ(u) ≤
[H(u)]−1, for all u in (0,1). The MTTF is BT (UBT) when H(u)μ(u) = 1 and
H ′(u0) ≤ (≥)0 at u0, where u0 is the solution of the equation H(u)μ(u) = 1. Li
and Xu [393] have shown that

IHR ⇒ IHRA ⇒ DMTTF.

Asha and Nair [39] have further proved that if μ(u) is decreasing and concave, then
X is IHR and hence IHRA. Knopik [344,345] has established the following closure
properties:

1. If the lifetimes of the components are independent with absolutely continuous
distributions which are DMTTF, then any parallel system is also DMTTF, and
moreover if the components are identically distributed also, then a series system
of DMTTF components is DMTTF;

2. The DMTTF family is closed under convolution and weak convergence of
distributions.

Li and Li [398] introduced the IHRA* t0 (DHRA* t0) classes which imply that
the average hazard rate begins to increase (decrease) after t0.

Definition 4.11. A random life X is IHRA* t0, for all x ≥ t0 > 0 and all t0
x ≤ b < 1,

if and only if F̄(bx)≥ F̄b(x).

This class of IHRA* t0 distributions satisfies the following properties:

1. IHRA ⇒ IHRA* t0;
2. Let F be a life distribution with strictly increasing hazard rate. Denote the

cumulative hazard rate of F by CF(x) =
∫ x

0 h(t)dt and
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C∗(x) =

{
CF(x) , 0 ≤ x ≤ t0

CG(x)−CG(t0)+CF(t0) , x ≥ t0
.

If CF(t0) ≤ CG(t0), then the life distribution determined by C∗ is IHRA* t0, but

not IHRA. For example, take F̄(x) = ax1/2
, 0 < a < 1, Ḡ(x) = e−x2

, x ≥ 0, t3/2
0 ≥

− loga;
3. If F̄i is the survival function of an IHRA ∗ti unit, i = 1,2, . . . ,n, of a system, then

the coherent system is IHRA ∗t0, where t0 = max
1≤i≤n

ti.

4.4 Classes Based on Residual Quantile Function

In this section, we discuss various classes of life distributions arising from the
monotonic nature of the mean, variance and percentile residual functions. As
in the case of the hazard rate notions, the classes are identical irrespective of
whether the definitions based on distribution functions or quantile functions are
implemented.

4.4.1 Decreasing Mean Residual Life Class

For defining increasing hazard function classes, we utilized the fact that the quantile
function of the residual life is decreasing in u0. A weaker class can be obtained
if we consider instead the monotonicity of the mean of the distribution. Thus, we
have the decreasing (increasing) mean residual life DMRL (IMRL) class if m(x) is
a decreasing (increasing) function in x > 0.

Definition 4.12. A random variable X is said to have decreasing (increasing) mean
residual quantile function if

M(u1)≤ (≥)M(u2) for 0 ≤ u2 ≤ u1 < 1,

or equivalently

∫ 1

0
[Q(u+(1− u)p)−Q(u)]d p

is a decreasing (increasing) function of u.

Setting v = u+(1− u)p, we see that

∫ 1

0
[Q(u+(1− u)p)−Q(u)]d p= (1− u)−1

∫ 1

u
Q(v)dv−Q(u) = M(u).
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If M(u) is differentiable, then X is DMRL (IMRL) according to M′(u)≤ (≥)0.

Example 4.5. Let

Q(u) = σ(1− (1− u)
1
α ), σ ,α > 0.

Then, we have

M(u) =
σ

α+ 1
(1− u)

1
α

so that

M′(u) =− σ
α(α+ 1)

(1− u)
1
α−1 < 0.

Hence, X is DMRL.

Abouammoh and El-Neweihi [4], Abouammoh et al. [6], Gupta and Kirmani
[242], Abu-Youssef [16] and Ahmad and Mugadi [26] have all discussed various
properties of the classes of distributions generated by monotonic mean residual life
function. Some of these properties are as follows:

1. If X is IHR (DHR), then X is DMRL (IMRL). This follows from the implica-
tions

X is IHR ⇒ Z is IHR ⇒ Hz(u) =
1

MX (u)
is increasing

⇒ MX(u) is decreasing.

The converse need not be true. However, if X is DMRL and m(x) is convex, then
X is IHR.

2. X is DMRL if and only if hX(x)≤ hZ(x) or HX (u)≤HZ(u). We note from (2.37)
that

HX(u)≤ HZ(u) ⇔ HX (u)≤ 1
MX (u)

⇔ HX (u)MX(u)≤ 1

⇔ 1−HX(u)(1− u)M′
X(u)≤ 1

⇔ M′
X (u)< 0.

3. From Property 1, it follows that X is DMRL if and only if Z is IHR.
4. X is DMRL (IMRL) if and only if Eφ(X − x|X > x) is decreasing (increasing)

for all convex increasing functions φ .
5. The mixture of IMRL distributions is IMRL, provided the mixture has a finite

mean. Generally, DMRL distributions are not closed under the formation of
mixtures. However, for the mixture of non-crossing life distributions, IMRL
class is closed.
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6. Both IMRL and DMRL classes are not closed under the formation of coherent
systems.

7. The convolution of both IMRL and DMRL distributions need not be of the same
class.

8. We have

(r+ 1)E[X1(minX1,X2)
r]≥ (≤)(r+ 2)ν(r+1)

2 ,

where X1 and X2 are independent and identically distributed, νr =
E(minX1,X2)

r, and also

ν2 ≥ (≤)
μ2

2

when F is DMRL (IMRL).
9. MZ(u)≤ (≥)MX (u) if and only if X is DMRL.

10. If θ (u) is increasing and X is DMRL, then X is IHR. Recall the definition of

θ (u) =
1

1− u

∫ 1

u
Q(p)d p

as the mean quantile function. Then, upon differentiation, we find

(1− u)θ ′(u)−θ (u) =−Q(u)

and

M(u)+Q(u) = θ (u),

which together yields

θ ′(u)
M(u)

=
1

1− u
= q(u)H(u).

11. Let

A1(x,y) =
1

F̄(x)

∫ y

x
w(t) f (t)dt, x < y.

If X is DMRL (IMRL), A1(x,y) is increasing (decreasing) on the support of
X , and log convex (log concave) for x satisfying f (x) > 0, then the weighted
random variable XW is DMRL (IMRL) (Misra et al. [417]).

12. If m(x) is strictly convex (concave) on [0,∞) and decreasing (increasing) for x ≥
0, then h(x) is strictly increasing (decreasing) on [0,∞) (Kupka and Loo [363]).



4.4 Classes Based on Residual Quantile Function 133

13. A random variable with E(Xn) < ∞, n = 1,2, . . . , is generalized Pareto if and
only if Mn(u) =CnM(u), where Mn(u) is as defined in (4.12).

14. IHRA does not imply DMRL.

When the mean residual life declines in the interval (0, t0) and thereafter never
greater than what it was at age t0 (Kulasekera and Park [356]), the class of
distributions is called BMRL-t0 (better mean residual life at age t0).

Bryson and Siddiqui [122] introduced net decreasing mean residual lifetime of X
if and only if m(x)≤ m(0) for all x ≥ 0. This translates into the following definition.

Definition 4.13. We say that X has net decreasing mean residual lifetime
(NDMRL) if and only if M(u)≤ M(0) for 0 ≤ u < 1.

The NDMRL has the following implications:

IHR ⇒ DMRL ⇒ NDMRL,

IHR ⇒ IHRA ⇒ NDMRL.

The dual class is defined by reversing the inequality and the implications among
corresponding negative ageing concepts follow. Another criterion based on mean
residual quantile function takes the harmonic averages in (0,x). A distribution
is decreasing mean residual life in harmonic average (DMRLHA) if and only if
(Deshpande et al. [172])

[
1
x

∫ x

0

dt
m(t)

]−1

is decreasing in x.

Accordingly, we have the following definition in terms of quantile functions.

Definition 4.14. We say that X is DMRLHA (IMRLHA) if and only if

∫ u
0

q(p)
M(p)d p

∫ u
0 q(p)d p

is decreasing (increasing) in u. It is easy to see that

(i) DMRL ⇒ DMRLHA ⇒ NBUE;
(ii) Since HZ(u) = 1

MX (u)
, we have

∫ u
0

q(p)
M(p)d p

∫ u
0 q(p)d p

=

∫ u
0 HZ(p)q(p)d p∫ u

0 q(p)d p
.

Thus, X is DMRLHA ⇔ Z is IFRA.
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Honfeng and Yi [275] compared the failure rates of X and Z in defining what is
called the new better (worse) than equilibrium hazard rate, NBEHR (NWEHR), if
and only if hX(x)≤ hZ(x). It is obvious that when E(X)< ∞,

NBEHR ⇔ hX(x)≤ hZ(x)⇔ hX(x)≤ 1
mX (x)

⇔ hX mX (x)≤ 1

⇔ 1+m′(x)≤ 1

⇔ X is DMRL.

Like the IHRA notion comparison with the class of DMTTF distributions (see
Definition 4.9), we see that DMRL �⇒ DMTTF and DMTTF �⇒ DMRL (Li and
Xu [393]).

4.4.2 Used Better Than Aged Class

When a unit is working with unknown age, to assess its ageing behaviour,
Alzaid [36] introduced the used better than aged (UBA) and its dual used worse
than aged (UWA) classes of life distributions. Two induced classes from these are
the UBAE (used better than aged in expectation) and UWAE (used worse than aged
in expectation). When E(X) < ∞ and 0 < m(∞) < ∞, the UBA (UWA) class is
specified by

F̄(x+ t)≥ (≤)F̄(t)e
− x

m(∞) , x ≥ 0, t ≥ 0.

Accordingly, we have the following definitions.

Definition 4.15. The random variable X is UBA (UWA) if and only if

Q(v+(1− v)u)−Q(v)≥ (≤)−M(1) log(1− u) (4.21)

for all 0 ≤ u, v < 1, provided 0 < M(1)< ∞.

Definition 4.16. We say that X is UBAE (UWAE) if and only if 0 < M(1)<∞ and

M(u)≥ (≤)M(1) for all u. (4.22)

The following properties hold for these four classes of life distributions:

1. IHR ⇒ DMRL ⇒ UBA ⇒ UBAE (see Alzaid [36] and Willmot and Cai [581]
for proofs).

2. X is UBAE (UWAE) ⇔ F̄Z(x+ t)≥ (≤)F̄Z(t)e
− x

m(∞) .
3. X is UBAE (UWAE) if and only if Z is UBA (UWA).
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4. If

Ḡ(x) =

∫ ∞
0 e−αt Ā(x+ t)dt∫ ∞

0 e−αt Ā(t)dt
, x ≥ 0, −∞< α < ∞,

then 1− Ā is UBA (UBAE) ⇒ G is UBA (UBAE). It may be observed that Ḡ(x)
given above is a generalization of the equilibrium distribution.

5. If X is such that E(Xr+s+2)< ∞, then

μ ′
r+s+2

(r+ s+ 2)!
≥ μ ′

r+1(m(∞))s+1

(r+ 1)!
if X is UBA.

6. The moment generating function φ(t) of X satisfies

φ(t) ≤ 1+
μt

1− tm(∞)
if X is UBA,

φ(t) ≤ 1+
μt + t2(

μ ′2
2 − μm(∞))

1− tm(∞)
if X is UBAE.

7. When X is UBA (UBAE) and E(X) < ∞ (E(X2) < ∞), then all moments of X
exist and are finite.

8. When X is UBAE, we have

μ ′
r+s+3

(r+ s+ 3)!
≥ μ ′

r+2

(r+ 2)!
(m(∞))s+1.

Properties 5–8 are taken from Ahmad [22] while Properties 1–4 are from Willmot
and Lin [583].

A weaker condition than UBAE is given in Kotlyar [353] as NUABE defined by

∫ ∞

x
F̄(t)dt ≥ μe

− x
m(∞) .

Nair and Sankaran [445] introduced another version of mean residual life function
which is the expected value of the asymptotic conditional distribution of residual
life given age in a renewal process. This function

m∗(x) =
∫ ∞

x (t − x)F̄(t)dt∫ ∞
x F̄(t)dt

=
E((X − x)2|X > x)

2m(x)
(4.23)

is called the renewal mean residual life function (RMRL). In the quantile formula-
tion, (4.23) is equivalent to

e(u) = m∗(Q(v)) =

∫ 1
u [Q(p)−Q(u)](1− p)q(p)d p∫ 1

u (1− p)q(p)d p
. (4.24)
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They then showed that m∗(x) is similar to the conventional mean residual
life function m(x) and can be employed in all applications just as m(x).
Differentiating

e(u)
∫ 1

u
(1− p)q(p)d p =

∫ 1

u
[Q(p)−Q(u)](1− p)q(p)d p

and simplifying using

M(u) =
1

1− u

∫ 1

u
(1− p)q(p)d p,

we get

M(u) =
e(u)q(u)

q(u)+ e′(u)

or

e′(u) = q(u)

[
e(u)−M(u)

M(u)

]
. (4.25)

Definition 4.17. The random variable X belongs to the decreasing renewal mean
residual life (DRMRL) or increasing renewal mean residual life (IRMRL) class
according to e(u) being decreasing (increasing) in u.

The DRMRL (IRMRL) class has the following properties:

1. X is DRMRL (IRMRL) if and only if e(u)≤ (≥) M(u);
2. If X is DMRL (IMRL), then X is DRMRL (IRMRL);
3. If X is DRMRL (IRMRL), then X is DVRL (IVRL);
4. The exponential distribution is characterized by a constant e(u);
5. X is DRMRL (IRMRL) if and only if C∗(u)≤ (≥)1;
6. X is DRMRL (IRMRL) if and only if Mz(u) = MX (u);
7. If Xt and Zt are residual lives of X and Z, respectively, then

MXt (u)≥ Mzt (u)⇔ X is DRMRL.

The closure properties with respect to various reliability operations in this case
seems to be an open problem.

4.4.3 Decreasing Variance Residual Life

Recall from (2.10) and (2.42) that the variance residual life is given by
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σ2(x) =
2

F̄(x)

∫ ∞

x

∫ ∞

u
F̄(t)dtdu−m2(x),

and the corresponding quantile definition is

V (u) = (1− u)−1
∫ 1

u
Q2(p)d p− (M(u)+Q(u))2

= (1− u)−1
∫ 1

u
M2(p)d p.

When σ2(x) is decreasing (increasing), we say that X is decreasing variance residual
life—DVRL (increasing variance residual life—IVRL).

Definition 4.18. A lifetime random variable X is DVRL (IVRL) if V (u) is decreas-
ing (increasing) in u.

From a practical point of view, the class of DVRL distributions is studied as it
indicates positive ageing, and also the uncertainty in the system behaviour decreases
with age. Some characteristics of these two ageing criteria are as follows:

1. V (u) is increasing (decreasing) if and only if C∗2(u)≥ (≤ 1);
2. DMRL ⇒ DVRL.

To prove this implication in terms of quantile functions, we note that

V (u) =
1

1− u

∫ 1

u
[Q(p)−Q(u)]2d p−M2(u)

=
2

1− u

∫ 1

u
(1− p)(Q(p)−Q(u))q(p)d p−M2(u)

=
2

1− u

∫ 1

u

∫ 1

p
q(p)(1− t)q(t)d pdt−M2(u)

=
2

1− u

∫ 1

u
(1− p)q(p)M(p)d p−M2(u).

Hence,

V (u)−M2(u) =
2

1− u

∫ 1

u
(1− p)(M(p)−M(u))q(p)d p.

Since X is DMRL, M(p)−M(u)≤ 0 for all u ≤ p, and so we have

V (u)−M2(u)≤ 1 or C∗2(u)≤ 1,

and thus X is DVRL.
3. When F is strictly increasing, Zn is DVRL if and only if Z is DMRL. This

follows from the fact that
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mZ(t) =
E(X2

t )

E(Xt)
,

which is a decreasing function of t.
4. We have

MZ(u)
MX (u)

=
1
2
(1+C∗2(u)),

so that if F is strictly increasing, then X is DVRL if and only if MZ(u)≤ M(u).
5. In general, the DVRL class is not closed under mixing.
6. A family of distributions Fθ obeys the non-crossing property if, for any α1

and α2, the graphs of Fα1 and Fα2 do not intersect on their common support.
Stoyanov and Al-sadi [548] proved that if Fα is IVRL for each α > 0 and obeys
the non-crossing property, then their mixture is IVRL.

7. Both DVRL and IVRL distributions are not closed under convolution.
8. Both DVRL and IVRL do not preserve the formation of coherent systems.
9. If X1 and X2 are independent copies of X and Y = min(X1,X2), then Al-Zahrani

and Stoyanov [32] established that

μ ′
1μ ′

2 ≤ 4E(X2Y 2)− 8
3

E(Y 3)

and

μ ′
2

2 ≤ 16
3

E(X2Y 3)− 4E(Y4)

with equality sign holding in the two cases if and only if X is exponential.
10. We have

F̄(x)≤ μ
σ(x)+ x

, x ≥ μ−σ(x)

for DVRL distributions, and

F̄(x)≥ μ− x
σ(x)

for IVRL distributions (Launer [377]).
11. If X is DVRL (IVRL), then

E(X2|X ≥ x)≤ (≥)E2(X |X ≥ x)+ [E(X |X > x)− x]2.

For a comprehensive account of the above results and other properties of
monotone variance residual life classes, we refer to Gupta [234], Gupta et al. [246],
Abouammoh et al. [8] and Gupta and Kirmani [244].
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Just as in the case of the mean residual quantile function, other concepts can be
formulated for the variance as well. From Launer [377] and Abouammoh et al. [8],
we have the following new classes.

Definition 4.19. A lifetime random variable X is net decreasing in variance residual
quantile function (NDVRL) or net increasing in variance residual quantile function
(NIVRL) according to V (u)≤ (≥) σ2.

Definition 4.20. We say that X has decreasing (increasing) variance residual life
average DVRLA (IVRLA) if and only if

∫ u
0 V (p)q(p)d p∫ u

0 q(p)d p

is decreasing (increasing). Further, X is new worse (better) than average variance
residual life if and only if

∫ u
0 V (p)q(p)d p∫ u

0 q(p)d p
≤ (≥) σ2.

We have the implications DVRL ⇒ NDVRL and NBUE ⇒ NDVRL (see Defini-
tion 4.29 for NBUE).

4.4.4 Decreasing Percentile Residual Life Functions

Haines and Singpurwalla [258] discussed classes of life distributions based on
the monotonic behaviour of the percentile residual life function pα(x) defined
in (2.19).

Definition 4.21. The random variable X has decreasing (increasing) percentile life
DPRL (α) (IPRL (α)) if F(0) = 0 and pα(x) is decreasing (increasing) in x. In
terms of quantile functions, the conditions become Q(0) = 0 or Pα(u) defined in
(2.19) is decreasing (increasing) in u. If X has a constant pα(x) (Pα(u)), it is both
DPRL (α) and IPRL (α). Joe and Proschan [301] studied the distinguishing features
of these two classes of distributions.

Recalling from (2.49) that

Pα(u) = Q(α+(1−α)u)−Q(u),

we have

P′
α(u) = [(1−α)q(α+(1−α)u)− q(u)]q(u).
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Hence,

X is DPRL(α)⇔ (1−α)q(α+(1−α)u)≤ q(u)

⇔ 1
q(α+(1−α)u) ≥

1−α
q(u)

⇔ 1−α− u+αu
1− (α+ u−αu)q(α+ u−αu)

≥ (1−α)(1− u)
(1− u)q(u)

⇔ H(u+α(1− u))≥ H(u)

⇔ X is IHR.

We see that X is IHR when X is DPRL (α) for all α in (0,1). However, if X is DPRL
(α) for some α , it is not necessary that X is IHR. Moreover, it is not necessary
that DPRL (α) implies DPRL (β ) for β > α . Haines and Singpurwalla [258]
showed that DPRL (α) class is not closed under formation of coherent systems
or convolution or mixture of distributions.

A particular case of the α-percentile residual life is the median percentile life
when α = 1

2 . Lillo [399] pointed out that this measure is preferred over the mean
residual life in view of its robustness and use in regression models; see also Kottas
and Gelfand [354] and Csorgo and Csorgo [160]. Denoting decreasing median
residual life function by DMERL and increasing median residual life by IMERL,
we have the following properties:

1. IHR implies DMERL;
2. DMRL does not imply DMERL and DMERL does not imply DMRL;
3. IMRL and IMERL also have no mutual implications either.

4.5 Concepts Based on Survival Functions

There are several criteria available in the literature based on the comparison of
survival functions (quantile functions) or their integral versions, and we describe
them in this section.

4.5.1 New Better Than Used

A distribution with F(0) = 0 is said to be new better than used (NBU) if

F̄(x+ t)≤ F̄(x)F̄(t) (4.26)

for all x, t > 0. When the inequality in (4.26) is reversed, we say that the distribution
is new worse than used (NWU). Here, we are comparing the residual life Xt and X of
a unit and the definition says that a new unit has stochastically larger (smaller) life
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than one of age t, and therefore NBU (NWU) represents positive (negative) ageing.
The equality in (4.26) holds if and only if

F̄(x+ t) = F̄(x)F̄(t)

which is a Cauchy functional equation with the only continuous solution of the form
F̄(x) = e−λ x, or X is exponential. One may refer to Rao and Shanbhag [506] for a
thorough discussion on characterizations of distributions based on such functional
equations.

Definition 4.22. A random variable X with Q(0) = 0 is said to be NBU (NWU) if
and only if

Q(u+ v− uv)−Q(v)≤ Q(u) (4.27)

for 0 ≤ u < v < 1.

The equality in (4.27) holds when

Q(u+ v− uv)= Q(u)+Q(v)

or

Q(1− (1− u)(1− v))= Q(1− (1− u))+Q(1− (1− v)),

which reduces to the form

Q(1− x1y1) = Q(1− x1)+Q(1− y1).

The last equation has the continuous solution as

Q(u) =−k log(1− u),

which means X is exponential.
The NBU property has several other implications as listed below:

1. IHRA (DHRA) ⇒ NBU (NWU).
To see this result in the quantile form, we take 0 < u < v < 1 and express

X is IHRA ⇒
∫ u

0 H(p)q(p)d p
Q(u)

is increasing in u

⇒
∫ u+v(1−u)

0 H(p)q(p)d p

Q(u+ v(1− u))
≥

∫ u
0 H(p)q(p)d p

Q(u)

⇒ Q(u+ v− uv)
Q(u)

≤
∫ u+v(1−u)

0 (1− p)−1d p∫ u
0 (1− p)−1d p

= 1+
log(1− u)
log(1− v)
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⇒ Q(u+ v− uv)
Q(u)

− 1 ≤
∫ u

0 H(p)q(p)d p∫ v
0 H(p)q(p)d p

≤ Q(v)
Q(u)

[∫ u
0 H(p)q(p)d p

Q(u)

/∫ v
0 H(p)q(p)d p

Q(v)

]

≤ Q(v)
Q(u)

.

Thus,

Q(u+ v− u)≤ Q(u)+Q(v)⇒ X is NBU.

2. An equivalent condition for X to be NBU is

∫
g(αx)h[(1−α)x]dF(x)≤

∫
g(x)dF(x)

∫
h(x)dF(x)

for all non-negative increasing functions g and h and all 0 < α < 1 (Block et al.
[111]).

3. If X is NBU, it has finite moments of all positive orders, which is a stronger
result than those for IHR and IHRA classes.

4. If X has a density, the NBU (NWU) implies NBUHR (NWUHR):

X is NBU ⇔ Q(u+ v− uv)≤ Q(u)+Q(v)

⇔ Q(u+ v− uv)−Q(u)
v(1− u)

≤ Q(v)
v(1− u)

⇒ Q′(u)≤ Q′(0)
1− u

on taking limits as v → 0

⇒ (1− u)q(u)≤ q(0)⇒ H(u)≥ H(0)

⇔ X is NBUHR.

5. If each component of a coherent system is NBU, then the system life is also
NBU.

6. Convolution of two NBU distributions is NBU.
7. The residual life of an NBU distribution is not NBU. A necessary and sufficient

condition for this to hold is that X is IHR.
8. The mixture of two NBU distributions is NBU, provided that the distributions

of the components do not cross.
9. For a sequence (Xn) of independent lifetime random variables with NBU

distributions, SN = X1 + X2 + · · ·+ XN , where N is a positive integer-valued
random variable, is also NBU.

10. When X is NBU, we have
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F̄(x)≥ [F̄(t)]
1
k ,

t
k+ 1

< x <
t
k
, k = 0,1,2, . . .

≤ [F̄(t)]k, kt < x < (k+ 1)t,

and when X is NWU,

F̄(x)≤ [F̄(t)]
1

k+1 ,
t

k+ 1
< x <

t
k
,

≥ [F̄(t)]k+1, kt < x < (k+ 1)t.

11. When X is NBU (NWU), we have

μ ′
r+s+2

Γ (r+ s+ 3)
≥ (≤)

μ ′
r+1

Γ (r+ 2)
μ ′

s

Γ (s+ 2)
r,s ≥ 0.

12. NBU does not imply DMTTF.
13. If X is NBU and C∗(u) is increasing, then Z is NBU.
14. If a coherent system from independent NBU components has exponential life,

then it is essentially a series system with exponential components. We refer
the readers to Shaked [530], Abouammoh and El-Neweihi [4] and Barlow and
Proschan [70] for some further details in this regard.

There are several variants of the NBU concept presented in the literature. In
situations wherein a unit or system deteriorates over time, say, up to an instant t0, to
make the system more effective, replacement or repairs are often thought of. But, by
this operation, the system may not revert to the same effectiveness as at t0. An ageing
concept that is relevant in such a situation is to assume that the system lifelength is
smaller from t0 onwards compared to a new one. This idea gives rise to the NBU-t0
(NWU-t0) class of life distributions that satisfy (Hollander et al. [274])

F̄(t0 + x)≤ (≥)F̄(t0)F̄(x), x ≥ 0.

Definition 4.23. We say that X is NBU-u0 (NWU-u0) if and only if, for some 0 ≤
u0 < 1, we have

Q(u+ u0− uu0)≤ (≥) Q(u)+Q(u0) for all 0 ≤ u < 1.

The class of distributions that are both NBU-t0 and NWU-t0 is not confined
to exponential distributions as in the case of other ageing notions. Along with
exponential laws, all distributions with periodic hazard quantile functions and those
distributions whose quantile functions are specified by Q(u) = Q1(u), 0 ≤ u ≤
u0, where Q1(0) = 0, are also both NBU-t0 and NWU-t0. Some other important
properties of these two classes are as follows:
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1. If HX (u)≤HY (u), 0≤ u≤ v0, HX(u) =HY (u) in (v0,1), and HX(u) is decreasing
in [0,v1], 0< v1 < v0, then X is NBU-v0, but not NBU. In general, NBU ⇒ NBU-
u0;

2. NBU-t0 property is preserved under the formation of coherent systems, but
NWU-t0 is not;

3. Both NBU-t0 and NWU-t0 are not preserved under convolution;
4. NBU-t0 is preserved under mixtures of non-crossing distributions, but not for

arbitrary mixtures. NWU-t0 is not closed with respect to formation of mixtures;
see Park [483] for more details.

Kayid [318] has presented a generalization of the NBU and NBU-t0 classes. If A
denotes the set of functions a(u) satisfying a(u)> 0 in (0,1) and a(u)= 0 otherwise,
X is said to be NBU with respect to a(u), denoted by NBU(a), if and only if

∫ F−1
t (u)

0
a(Ft(x))dx ≤

∫ F−1(p)

0
a(F(x))dx,

where Ft is the usual residual life distribution of Xt = X − t|(X > t). When a(·) is a
constant, it is evident that NBU(a) reduces to NBU, and when the time is fixed as t0,
NBU(a) ⇔ NBU-t0. For a non-negative X with continuous F , if X is NBU (NBU(a))
and a(u) is decreasing, then X is NBU(a) (NBU).

A slightly different concept is NBU* t0 (NWU* t0), defined by Li and Li [398]
through the relationship

F̄(x+ y)≤ (≥)F̄(x)F̄(y)

for all x ≥ 0, y ≥ t0 > 0. The difference between NBU-t0 and NBU*t0 is that in the
former t0 is a fixed time while in the latter it extends beyond t0. From the above, we
have the following definition.

Definition 4.24. We say that X is NBU*u0 (NWU*u0) if and only if the quantile
function satisfies

Q(u+ v− uv)≤ (≥)Q(u)+Q(v) for all 0 ≤ u < 1 and v ≥ u0.

The two classes NBU*u0 and NWU*u0 possess the following properties:

1. NBU ⇒ NBU * u0 ⇒ NBU * u1, u1 ≥ u0;
2. IHRA * u0 need not imply NBU * u0;
3. If X1,X2, . . . ,Xn are independent and NBU * ti, i = 1,2, . . . ,n, then the life of the

coherent system with Xi as lifetimes of the components is also NBU * t0, where
t0 = max(t1, t2, . . . , tn). As a consequence, a coherent system with n independent
components each of which is NBU * t0 is also NBU * t0;

4. If X1 and X2 are independent NBU * t0 lifetimes, their convolution is also
NBU * t0;

5. If a life distribution is NBU * t0, it is also NBU-t0. Thus, we have
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NBU ⇒ NBU∗ t0 ⇒ NBU -t0.

Another generalization of the NBU class has been provided by Deshpande
et al. [172] using second order stochastic dominance, called the new better (worse)
than used in second order dominance, NBU(2) (NWU(2)).

Definition 4.25. A lifetime random variable X is said to be NBU(2) (NWU(2)) if
and only if

∫ x

0
F̄(y)dy ≥

∫ x

0

F̄(t + y)
F̄(t)

dy

for all t,x ≥ 0, or equivalently,

∫ u

0
(1− p)q(p)d p ≥ 1

1− v

∫ u

0
[1−Q−1(Q(p)+Q(v))]q(p)d p

for all 0 ≤ u,v < 1.

Obviously,

NBU (NWU) ⇒ NBU (2)(NWU(2)).

Li and Kochar [389] have shown that NBU(2) class is closed under the formation
of series systems and convolution. Li [396, 397] further established that NBU(2)
class is closed with respect to formation of mixtures and parallel systems. The
convolution of X1 and X2 which are NBU(2) is also NBU(2) (Hu and Xie [287]).
Some limited converse results on the closure properties have been discussed in Li
and Yam [394]. If a system possesses a particular ageing property, the problem
is to examine whether components satisfy the same property. Li and Yam [394]
have shown that if parallel and series systems consisting of independent and
identically distributed components are NWU (2), then the components are also
NWU (2).

A stochastic version of the NBU property has been discussed by Singh and
Deshpande [542] along the lines of stochastically increasing hazard rates presented
earlier.

Definition 4.26. A lifetime X is said to be stochastically new better than used
(SNBU) if

P

(
X ≥

k+1

∑
i=0

Yi|X ≥
k

∑
i=0

Yi

)
≤ P(X ≥ Yk+1),

where Y0,Y1, . . . ,Yn, . . . , with Y0 = 0, is a sequence of independent and identically
distributed exponential random variables each with mean μ , and X is independent
of the Yi’s. It has been established that
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SIHR ⇒ SNBU and NBU ⇒ SNBU.

Yet another extension of the NBU and NWU property of ageing systems in the
context of comparison of the reliability of new and used systems by the use of
dynamic signatures has been provided by Samaniego et al. [514]. Recall that the
signature of a system with n independent and identically distributed components
is an n-dimensional vector whose ith component is the probability that the ith
ordered component failure is fatal to the system. System signatures have found key
applications in the study and comparison of engineered systems; see, for example,
Samaniego [513]. Now, when a working used system is inspected at time t and it
is observed that precisely k failures have occurred by that time, then the (n− k)-
dimensional vector whose jth element is the probability that the (k+ j)th ordered
component failure is fatal to the system has been termed the dynamic signature by
Samaniego et al. [514]. It is indeed a distribution-free measure of the design of the
residual system. With such a notion of dynamic signature, these authors presented
the following dynamic versions of NBU (NWU).

Definition 4.27. Let T denote the lifetime of a coherent system with n components
whose lifetimes X1, . . . ,Xn are independent and identically distributed with a
continuous distribution function F over (0,∞). Let X1:n ≤ ·· · ≤ Xn:n denote the order
statistics of X1, . . . ,Xn, and Ei be the event that {X1:n ≤ t < Xi+1:n}, with X0:n ≡ 0.
Then, for fixed i ∈ {0,1, . . . ,n−1}, T is said to be conditionally NBU, given i failed
components, denoted by i-NBU, if for all t > 0, either P(Ei ∩{T > t}) = 0, or

P(T > x)≥ P(T > x+ t | Ei ∩{T > t}) for all x > 0.

Definition 4.28. A n-component is said to be uniformly new better than used,
denoted by UNBU, if it is i-NBU for i ∈ {0,1, . . . ,n− 1}.

Samaniego et al. [514] have illustrated the use of these concepts in the perfor-
mance evaluation of burn-in systems.

4.5.2 New Better Than Used in Convex Order

Cao and Wang [127] discussed a new class of distributions called new better than
used in convex order (NBUC) and its dual new worse than used in convex order
(NWUC). The NBUC (NWUC) class satisfies

∫ ∞

x
F̄y(t)dy ≤ (≥)

∫ ∞

x
F̄(t)dt.

In terms of quantiles, we have the following definition.

Definition 4.29. We say that X is NBUC (NWUC) if and only if
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1
1− v

∫ 1

u
[1−Q−1(Q(p)+Q(v))]q(p)d p ≤ (≥)

∫ 1

u
(1− p)q(p)d p.

These two classes possess the following properties:

1. NBU (NWU) ⇒ NBUC (NWUC), as NBUC is the integrated version of NBU;
2. A parallel system of independent and identically distributed NBUC components

is NBUC (Hendi et al. [269] and Li et al. [390]). Even when the components are
independent and non-identical, NBUC class is preserved under the formation of
parallel systems (Cai and Wu [124]);

3. The convolution of two independent NBUC variables is NBUC (Hu and
Xie [287]);

4. The NBUC property is preserved under monotonic antistar-shaped transforma-
tion and under nonhomogeneous Poisson shock models (Li and Qiu [391]);

5. Under the formation of mixtures, the NBUC class is preserved (Li [397]);
6. If X is NBUC, then (Ahmad and Mugadi [26])

(r+ 2)!(s+ 1)!E(Xr+s+3)≤ (r+ s+ 3)!E(Xr+2)E(Xs+1).

As an application of the concept, Belzunce et al. [87] compared the age
replacement (block) policies and a renewal process with no planned replacements
when the lifetime of the unit is NBUC.

A further extension of the NBUC class is the NBUCA class defined by

∫ ∞

0

∫ ∞

x
F̄(u+ t)dudx ≤ F̄(t)

∫ ∞

0

∫ ∞

x
F̄(u)dudx for all t ≥ 0.

For properties and further details, we refer the readers to Ahmad and Mugadi [26].
Elabatal [186] studied the extensions of NBU(2) and NBUC classes at a specific

age t0, called NBU(2)-t0 and NBUC-t0, which can be defined as follows.

Definition 4.30. The NBU(2)-v0 class of distributions is one that satisfies

1
1− v0

∫ u

0
[1−Q−1(Q(p)+Q(v0))]q(p)d p ≤

∫ u

0
(1− p)q(p)d p

for some 0 ≤ v0 < 1.

Definition 4.31. X is said to be NBUC-v0 if, for some 0 ≤ v0 < 1, we have

1
1− v0

∫ 1

u
[1−Q−1(Q(p)+Q(v0))]q(p)d p ≤

∫ 1

u
(1− p)q(p)d p.

It is known that if X1 and X2 are independent NBUC-t0 variables, then the
convolution is also NBUC-t0. The class is also closed under the formation of a
parallel system of iid components which are NBUC-t0. As Poisson shock model
interpretation H̄(x) is NBUC-t0 if (Pk) has discrete NBUC-t0 property that satisfies
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∞

∑
j=k

P̄i+ j ≤ P̄i

∞

∑
j=k

P̄j, P̄K = 1−PK.

Based on survival function, Hendi [268] introduced the increasing cumulative
(decreasing) survival class, denoted by ICSS (DCSS), through the property

∫ x

0
F̄t1(y)du ≤ (≥)

∫ x

0
F̄t2(y)dy

for all x > 0, 0 ≤ t1 ≤ t2 <∞. It can be seen that the ICSS (DCSS) class is equivalent
to the IHR(2) (DHR(2)). However, Hendi [268] proved that DCSS is preserved
under convolution, while ICSS is not closed under the formation of convolution
and coherent structures. These properties could be read in conjunction with those of
the IHR(2) class discussed earlier.

Yet another variant of the NBU distributions is the new better (worse) than used
in Laplace order, denoted by NBUL (NWUL).

Definition 4.32. Yue and Cao [598] defined the NBUL (NWUL) class as one that
satisfies the inequality

∫ ∞

0
e−sxF̄(t + x)dx ≤ (≥)

∫ ∞

0
e−sxF̄(x)dx.

This concept has different interpretations in the context of ageing. One of them
is by considering the mean life of a series system of two independent components,
one having exponential survival function and the other having survival function F̄ .
In two such systems A and B, if A has used component of age t while B has a used
component with survival function F̄ , then F is NBUL means that the mean life of A
is not larger than that of B. These classes have the following properties:

1. NBU ⇒ NBU(2) ⇒ NBUL;
2. Let X and Y be independent random variables with survival functions F̄ and e−λ x,

respectively, and W = min(X ,Y ). Then, X is NBUL (NWUL) if and only if W
is NBUE (NWUE), and some details of NBUE (NWUE) classes are presented in
the next section;

3. NBUL is not closed under the formation of series systems. However, if the com-
ponent survival functions are completely monotone, then the closure property
holds. The NBUL concept is used in connection with replacement policies. For a
detailed study of the properties of the classes and their applications, we refer to
Yue and Cao [598], Al-Wasel [31], and Li and Qiu [391].

Joe and Proschan [301] have provided a classification of life distributions based
on percentiles, which are as follows.

A lifetime random variable X is new better (worse) than used with respect to the
α-percentile, denoted by NBUP-α (NWUP-α), if F(0) = 0 and pα(0)≥ (≤)pα(x)
for all x ≥ 0.
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They then established the following properties:

1. NBU ⇔ NBUP-α for all 0 < α < 1;
2. DPRL-α ⇒ NBUP-α for any 0 < α < 1;
3. If X is NBUP-α , then F̄(x) ≤ (1−α)n, npα(0) ≤ x < (n+ 1)pα(0) for n =

0,1,2, . . ., and if F is continuous, F̄(x)≤ (1−α)n+1, npα(0)≤ x< (n+1)pα(0);

4. An NBUP-α distribution has a finite mean that is bounded above by pα (0)
α . If F

is continuous, F has a mean (possibly infinite) that is bounded from below by
(1−α)pα(0)

α ;
5. An NBUP-α distribution has finite moment of order r > 0;
6. The closure properties with respect to formation of coherent systems, convolution

and mixtures do not hold for NBUP-α and NWUP-α distributions.

4.5.3 New Better Than Used in Expectation

Instead of comparing a life distribution with its residual life distribution, a weaker
concept results when expectations are considered for this comparison. This leads to
new better than used in expectation (NBUE) and its dual new worse than used in
expectation. If E(X)< ∞, X is said to be NBUE (NWUE) if and only if

μ ≥ (≤)
∫ ∞

0

F̄(x+ t)
F̄(t)

dx = m(x)

for all t ≥ 0 for which F̄(t)> 0. This says that a used unit of any age has a smaller
mean residual life than a new unit with the same life distribution.

Definition 4.33. We say that a lifetime X is NBUE if and only if

1
1− v

∫ 1

0
{1−Q−1(Q(p)+Q(v))}q(p)d p ≤ μ =

∫ 1

0
(1− p)q(p)d p,

or

1
1− u

∫ 1

u
(1− p)q(p)d p ≤ μ .

The NBUE and NWUE classes have the following properties:

1. NBU (NWU) ⇒ NBUC (NWUC) ⇒ NBUE (NWUE);
2. NBU(2) (NWU(2)) ⇒ NBUE (NWUE);
3. DMRL (IMRL) ⇒ NBUE (NWUE);
4. NBUE (NWUE) ⇒ NDVRL (NIVRL);
5. NBUE (NWUE) ⇒ M(u) ≤ (≥)M(0). The last inequality is equivalent to

HZ(u) ≥ (≤) HX (0), and so
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X is NBUE (NWUE) ⇒ Z is NBUHR (NWUHR);

6. Both NBUE and NWUE classes are not closed under the formation of coherent
systems;

7. The convolution of two NBUE distributions is NBUE, but this preservation
property is not true for NWUE;

8. The mixture of two NBUE (NWUE) life distributions is not in general NBUE
(NWUE), while the mixture of NWUE distributions, no two of which cross,
is again NWUE. This property is not shared by NBUE class. For proofs of
Properties 6–8, see Marshall and Proschan [413];

9. If X is NBUE (NWUE), then
∫ ∞

x F̄(t)dt ≤ μe−
x
μ ;

10. When X is NBUE, we have

F̄(x)≥
{

1− x
μ , x ≤ μ

0 , x ≥ μ
,

and when X is NWUE, we have

F̄(x)≤ μ
μ+ x

, x ≥ 0 (Haines and Singpurwalla [258]);

11. When X is NBUE, we have

F(x)≥ σ2 + μ2 − x2

σ2 +(μ+ x)2 − x2 , x ≤ (μ ′
2)

1
2 ,

and in the case of NWUE, we have

F(x)≤ σ2

σ2 +(μ+ x)2 , 0 < x <
2σ2

μ

≥ σ2

σ2 + x2 , x ≥ 2σ2

μ
(Launer [377]);

12. In the case of NBUE (NWUE) distributions, we have

μ ′
r+1

Γ (r+ 2)
≤ (≥)

μ ′
r

Γ (r+ 1)
μ (Barlow and Proschan [70]);

13. X is NBU does not imply Z is NBUE, nor X is NBUE implies Z is NBUE;
14. Neither DVRL ⇒ NBUE nor NBUE ⇒ DVRL. A common property shared by

the two concepts is that the coefficient of variation of X is ≤ 1, provided F is
strictly increasing;

15. If X is NBUE (NWUE), then F̄Z(x)≤ (≥)F̄X(x);
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16. If X is NBUE and E(X) = E(Z), then X is exponential and converse is true as
well. For details on Properties 14–16, see Gupta [233];

17. DMTTF ⇒ NBUE.

4.5.4 Harmonically New Better Than Used

The harmonically new better (worse) than used in expectation HNBUE (HNWUE)
class of life distribution, introduced by Rolski [512], consists of distributions for
which

∫ ∞

x
F̄(t)dt ≤ (≥) μe−

x
μ , x ≥ 0. (4.28)

An equivalent definition is presented below.

Definition 4.34. A lifetime random variable X is HNBUE (HNWUE) if and only if
one of the following conditions are satisfied:

(i)

∫ 1

u
(1− p)q(p)d p ≤ (≥) μe−

Q(u)
μ ;

(ii)

⎧⎨
⎩

∫ u
0

q(p)d p
M(p)∫ u

0 q(p)d p

⎫⎬
⎭

−1

≤ (≥) μ .

The first definition follows directly from (4.28). To prove the equivalence of (i)
and (ii), we observe that

(ii) ⇔
∫ u

0
q(p)

(
1

1− p

∫ 1

p
(1− t)q(t)dt

)−1

d p ≥ Q(u)
μ

⇔
∫ u

0

[
q(p)(1− p)∫ 1

p (1− t)q(t)dt

]
d p ≥ Q(u)

μ

⇔ logμ− log
∫ u

0
(1− p)q(p)d p)≥ Q(u)

μ

⇔ (i).

Thus, the HNBUE concept says that the harmonic mean of the mean residual
hazard quantile function of a unit of age x is not grater than the harmonic mean life
of a new unit. The two classes HNBUE and HNWUE enjoy the following properties:
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1. NBUE (NWUE) ⇒ HNBUE (HNWUE), which follows from

NBUE ⇒ M(u)≤ M(0)

⇒ q(u)
M(u)

≥ q(u)
M(0)

⇒
∫ u

0
q(p)
M(p)d p

Q(u)
≥

∫ u
0 q(p)d p

M(0)Q(u)
⇒ HNBUE;

2. A necessary and sufficient condition that X is HNBUE (HNWUE) is that

Eφ(X)≤ (≥) Eφ(X∗)

for all non-decreasing convex functions φ on (0,∞) with φ(0+) = 0, where X∗
is exponential with the same mean μ as X ;

3. X is HNBUE if and only if Qz(u)≤ QX∗(u);
4. The HNBUE class is closed under the operation of forming non-negative linear

combination of HNBUE random variables;
5. Both classes are not preserved under the formation of coherent structures;
6. The HNWUE class is preserved under mixing, but HNWUE is not;
7. We have

F̄(x)≤
{

1 , x < μ
e μ−x

x , , x > μ
,

when X is HNBUE;
8. μ r+3 ≥ μr+3

(r+3)! if X is HNBUE;

9. H̄(t) = ∑∞k=0 P(N(t) = k) P̄k is HNBUE (HNWUE), where N(t) is a counting
process governing the shocks and the interarrival times of shocks are independent
HNBUE (HNWUE). For further details, one may refer to Klefsjö [332], Bhat-
tacharjee and Kandar [98], Al-Ruzaize et al. [30], Basu and Bhattacharjee [79]
and Cheng and Lam [144]. The kth order HNBUE has been studied by Basu and
Ebrahimi [80].

Definition 4.35. A lifetime random variable is (k-HNBUE) if

1
x

∫ x

0
m−k(t)dt ≤ (≥)μk for all x > 0,

or

∫ u
0 M−k(p)q(p)d p∫ u

0 q(p)d p
≤ (≥)μk for 0 < u < 1,
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where k = 1 corresponds to the usual HNBUE. It is known that whenever X is
(k+ 1)-HNBUE, it is also k-HNBUE.

Using stochastic dominance of order three, the HNBUE concept can be general-
ized, which results in HNBUE(3) (HNWUE(3)) defined by

∫ ∞

0

∫ ∞

t
F̄(u)dudt ≤ (≥)μ2e−

x
μ for all x, t ≥ 0.

It is evident that HNBUE ⇒ HNBUE(3).

4.5.5 L and M Classes

A still larger class than the HNBUE can be constructed using transforms.
Klefsjö [337] introduced the L -class by considering the Laplace transform of
the survival function.

Definition 4.36. We say that a random variable X with finite mean μ belongs to the
L -class (L̄ -class) if and only if

∫ ∞

0
e−sxF̄(x)dx ≥ (≤)

μ
1+ sμ

.

Chaudhury [138] found that for X in the L -class, the coefficient of variation is
≤ 1. However, the exponential distribution is not characterized by the property that
the coefficient of variation is unity. Further,

X is HNBUE (HNWUE) ⇒ X is L (L̄ ).

Chaudhury [139] also established that if (Fn) is a sequence of life distributions
in L and Fn converges weakly to F , then F also belongs to L . Consider a
sequence X1,X2, . . . , of independent and identically distributed random variables,
and N as a geometric random variable over the set of positive integers. If N is
independent of the Xi’s, then the sum S = ∑N

i=1 Xi is called a geometric compound.
Lin and Hu [403] established the preservation of the L class under geometric
compounding. Several other interesting properties are presented in Bhattacharjee
and Sengupta [97] Lin [400], and Nanda [457].

Klar [330] has given an example of a distribution that belongs to L with the
property that its hazard rate tends to zero and mean residual life tends to infinity,
which led to some doubts about the L -class representing positive ageing. To
overcome this limitation, Klar and Muller [331] presented an ageing class in which
the Laplace transform is replaced by the moment generating function, and referred
to it as the M class.
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Definition 4.37. We say that X belongs to the M class if
∫ ∞

0
etxdF(t)≤ 1

1− μx
, 0 ≤ x <

1
μ
,

or
∫ ∞

0
F̄(t)etxdx ≤ μ

1− μx
,

where 1
1−μx is the moment generating function of the exponential distribution.

Notice that since E(etX ) has to be finite, x < 1
μ , and so the case h(x) → 0 as

x → ∞ does not arise. We have the following properties for the M class:

1. The M class contains all HNBUE distributions.
2. Distributions in the M class are closed under convolution of independent random

variables;
3. The M class contains all random variables with P(a < X < b) = 1 and E(X)≥

a+b
2 , 0 ≤ a < b, and also all symmetric distributions;

4. Let XY = X −Y |(X > Y ). Then, X is in L if E(XY )< μ for all Y independent of
X , and have a density function of the form

gt(x) =
etxF̄(x)∫
etxF̄(x)dx

.

On the other hand, X is in M if E(XY )< Y for all Y independent of X , and have
density gt(x) above for some 0 < t < μ−1;

5. X is in M ⇒ X is in L , and

Xi is in M ⇒∑αiXi is in M , with αi ≥ 0, ∑αi = 1,

and the Xi’s have a common mean.

4.5.6 Renewal Ageing Notions

The renewal ageing concepts essentially compare the reliability functions of four
random variables—X , its residual life Xt , the equilibrium random variable Z, and
the corresponding residual life Zt . Results in this direction are due to Abouammoh
et al. [7], Bon and Illayk [116], Abouammoh and Qamber [10] and Abdel-Aziz [2].

Definition 4.38. We say that X is new better (worse) than renewal used, denoted by
NBRU (NWRU), if and only if, for all t ≥ 0,

∫ ∞

x+t

F̄(u)du
F̄(x)

≤ (≥)
∫ ∞

x
F̄(u)du.
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Definition 4.39. Renewal new is better (worse) than used, denoted by RNBU
(RNWU), if and only if, for all t,

F̄(x+ t)
F̄(t)

≤ (≥)
1
μ

∫ ∞

x
F̄(u)du.

Definition 4.40. Renewal new is better (worse) than used in expectation, denoted
by RNBUE (RNWUE), if and only if

2μ
∫ ∞

x
F̄(u)du ≤ μ ′

2F̄(x) or E(Xt)≤ E(Z).

Definition 4.41. Renewal new is better (worse) than renewal used, denoted by
RNBRU (RNWRU), if and only if

μ
∫ ∞

x+t
F̄(u)du ≤

(∫ ∞

x
F̄(u)du

)(∫ ∞

t
F̄(u)du

)
.

Definition 4.42. Renewal new is better (worse) than renewal used, denoted by
RNBRUE (RNWRUE), if and only if E(Zt)≤ E(Z), or

2μ
∫ ∞

x

∫ ∞

t
F̄(u)dudt ≤ μ ′

2

∫ ∞

x
F̄(u)du.

Definition 4.43. The random variable X has generalized increasing mean residual
life (GIMRL) property if and only if, for all x ≥ 0,

∫ ∞
t F̄(u)du
F̄(t + x)

is increasing in t.

Definition 4.44. Harmonically new renewal better than used in expectation, de-
noted by HRNBUE, if

F̄Z(t)≤ e
− t
μZ .

The implications among these classes are as follows:

GIMRL ⇒ RNBU ⇒ RNBUE ⇒ HRNBUE, (4.29)

NBU ⇒ NBRU.

By comparing the above definitions, we see that NBRU property is the same as
NBUC discussed earlier. Bon and Illayk [116] established that if the first two
moments of X are finite and if X has HRNBUE property, then X has an exponential
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distribution. Thus, all classes implied in (4.29) are gathered in the exponential class.
The conversion of Definitions 4.38–4.44 can be accomplished in the same manner
as in the earlier cases.

Since we have discussed a large number of classes based on ageing concepts
and given separate implications, a consolidated diagram showing all the classes and
mutual implications is presented in Fig. 4.1 for a quick reference.

4.6 Classes Based on Concepts in Reversed Time

Parallel developments have been attempted to generate life distributions based on
the monotonicity properties of the reversed hazard rate function, reversed mean
residual life function, and so on. However, a special feature of such criteria is that
for lifetime random variables, they have monotonicity in only one direction (either
decreasing or increasing). Hence, they fail to distinguish life distributions and are
therefore of limited use in representing different types of ageing characteristics. But,
other properties possessed by these classes could be of advantage in the analysis of
data.

Definition 4.45. A lifetime random variable is decreasing reversed hazard rate
(DRHR) if and only if Λ(u)(λ (x)) is decreasing for all 0 < u < 1 (x > 0).

The quantile function corresponding to the reversed residual life, t −x|(X ≤ t), is

Qu0(u) = Q(u)−Q((1− u)u0) =

∫ u0

u0(1−u)
q(p)d p.

Hence, Definition 4.45 is equivalent to saying that X is DRHR if and only if

Qu0(u)≤ Qu1(u), 0 < u1 ≤ u2 < 1.

Block et al. [111] have proved that there does not exist a non-negative random vari-
able that has increasing reversed hazard rate function. A large class of distributions
including those that are IHR like the Weibull, gamma, and Pareto are DRHR. The
DRHR distributions are closed under the formation of coherent systems (Nanda
et al. [462]).

Definition 4.46. A life distribution has increasing reversed mean residual life time
(increasing mean inactivity time) IMIT if and only if r(x) (R(u)) is increasing
in x(u).

There is no non-negative random variable which has decreasing MIT over
the entire domain (0,∞). Further, DRHR ⇒ IMIT (Nanda et al. [462]).
Similarly, the monotonicity of the reversed variance residual life D(u) can be
studied.
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Definition 4.47. We say that X is increasing reversed variance residual life
(IRVRL) if and only if v(x) (D(u)) is increasing in x(u).

Nanda et al. [462] have established that IMIT ⇒ IRVRL and if X is IRVRL, the
coefficient of variation of reversed residual life cannot exceed unity. Li an Xu [393]
introduced a new concept based on MTTF.

Definition 4.48. A random life X is NBURh (new better than renewal used in the
reversed hazard rate order) if and only if

F(x)∫ x
0 F̄(t)dt

increases in x ≥ 0.

It is easy to see from (4.19) that NBURh is the same as DMTTF. Some properties
of the class discussed by them include the following:

1. DMTTF does not imply DMRL and DMRL does not necessarily imply DMTTF.
Similarly, neither NBU nor NBUC imply DMTTF;

2. If X is absolutely continuous, then for any strictly increasing and concave
(convex) function φ with φ(0) = 0, is also DMTTF (IMTTF);

3. DMTTF is not closed under the operation of mixtures;
4. IMTTF is not closed under convolution;
5. IMTTF is not closed under parallel systems;
6. If {PK} is discrete DMTTF (that is, ∑k−1

0 P̄i/Pk is decreasing), H̄(t) under a
homogeneous Poisson shock model is also DMTTF. Properties 1–6 supplement
those given earlier in the section on DMTTF.

4.7 Applications

One of the objectives of transforming the ageing concepts in the distribution
function approach to quantile forms is to analyse lifetime data using quantile
functions which do not have tractable distribution functions. We have introduced
several quantile functions of this nature earlier in Chap. 3. Accordingly, applying
the quantile form definitions of ageing criteria, we attempt an analysis of the ageing
behaviour in these models. A second topic dealt with here is relative ageing. Ageing
concepts are found to be of great use in evolving tests of hypothesis that the data
come from a specific class of life distributions. We give the pertinent references at
the end of the section.

4.7.1 Analysis of Quantile Functions

Govindarajulu’s distribution in (3.81) with
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Q(u) = σ [(β + 1)uβ −βuβ+1]

has hazard quantile function as

H(u) = [σβ (β + 1uβ−1(1− u)2]−1.

Accordingly,

H ′(u) =
u(1+β )+ (1−β )
σβ (β + 1)uβ (1− u)3

. (4.30)

It is evident from (3.33) that H(u) is increasing for β ≤ 1 and for β > 1, H ′(u) = 0 at
u0 =

β−1
β+1 . Hence, X is IHR for 0 < β < 1, and BT for β > 1, with change point u0.

The mean residual quantile function from Sect. 3.4 is

M(u) =
σ

(β + 2)(1− u)

[
2− (β + 1)(β + 2)uβ + 2β (β + 2)uβ+1−β (β + 1)uβ+2

]

which is decreasing for β < 1. At β = 1,

M(u) =
2σ(1− u)2

3

again decreases. But, at β = 2,

M(u) =
σ
2
(1− u)2(1+ 3u)

and so M′(u) = 0 at u = 1
9 . We see that M(u) is nonmonotone, being increasing

in (0, 1
9 ) and then decreasing in ( 1

9 ,1) with change point u0 = 1
9 . Thus, M(u) is

of UBT shape. Notice that at β = 2, the change point of the failure rate is u0 =
1
3

and at this value M(u) is decreasing. In the case of the refrigerator failure data
studied in Sect. 3.4, the parameters are σ = 1 and β̂ = 2.94. We have M(u) initially
increasing and then decreasing with change point u

.
= 0.2673, while the hazard

quantile function is BT shaped with change point u0
.
= 0.493. Thus, the change

point occurs earlier for the mean residual quantile function. Figure 4.2 presents the
shapes of the hazard quantile function for selected values of the parameters.

Consider the power-Pareto distribution with its hazard quantile function as

H(u) = (1− u)λ2[cuλ1−1{λ1(1− u)+λ2u}]−1.

The nature of the hazard rate function for some values of C1, λ1 and λ2 is exhibited
in Fig. 4.3. Differentiating H(u), we see that the sign of H(u) depends on
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Fig. 4.2 Plots of hazard quantile function when (1) β = 0.1, σ = 1 and (2) β = 2, σ = 1 for
Govindarajalu’s distribution
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Fig. 4.3 Plots of hazard quantile function when (1) C = 0.1, λ1 = 0.5, λ2 = 0.01; (2) C = 0.5,
λ1 = 2, λ2 = 0.01; (3) C = 0.01, λ1 = 2, λ2 = 0.5; (4) C = 0.01, λ1 = 0.5, λ2 = 0.5, for the
power-Pareto distribution

g(u) =−[(λ1 −λ2)
2u2 +(λ1 − 2λ 2

1 + 2λ1λ2)u+λ1(λ1 − 1)].

Denoting the admissible roots of g(u) = 0 by u1 and u2 with u1 > u2, we see that
H(u) is decreasing when

λ1(1− 4λ2)+ 4λ 2
2 ≤ 0 or λ1 = 0

for all u. Further, H(u) decreases when

λ1(1− 4λ2)+ 4λ 2
2 > 0 for all u outside the interval (u2,u1),

and increases within (u2,u1). If there is only one root for H ′(u) = 0, that is, u1 =
u2 = u0, then H(u) is decreasing. For λ2 = 0, H(u) is increasing. Summarizing the
shape of H(u), we have
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Fig. 4.4 Plots of hazard quantile function when (1) λ1 = 0, λ2 = 100, λ3 =−0.5, λ4 =−0.1; (2)
λ1 = 0, λ2 = 500, λ3 = 3, λ4 = 2; (3) λ1 = 0, λ2 = 2, λ3 = 10, λ4 = 5; (4) λ1 = 0, λ2 = 100, λ3 = 2,
λ4 = 0.5; (5) λ1 = 0, λ2 = 250, λ3 = 2, λ4 = 0.001, for the generalized Tukey lambda distribution

X is DHR for λ1 = 0 or λ1(1− 4λ2)+ 4λ 2
2 ≤ 0,

X is IHR for λ2 = 0,

and H(u) has opposite monotonicities to that in (u2,u1) where it is increasing. It can
be verified that X is IHR when λ1 = 2, λ2 = 0, DHR when λ1 = 3, λ2 = 2, and
non-monotonic when λ1 = λ2 = 1

2 . For an application to real data, we return to
Sect. 3.6, where the power-Pareto distribution did provide a good fit for the data on
the failure times of 20 electric carts. The hazard quantile function is

H(u) = (1− u)0.0967[1530.53u−0.7654(0.2346(1− u)+ 0.0967u)]−1.

Here, λ1(1−4λ2)+4λ 2
2 > 0 and so the hazard curve is initially increasing and then

becomes BT shaped.
The generalized Tukey lambda distribution of Freimer et al. [203] has its hazard

quantile function as

H(u) = λ2[(1− u)λ4 + uλ3−1(1− u)]−1.

The sign of H ′(u) depends on the function

g(u) = λ2[λ4(1− u)λ4−1 +λ3uλ3−1 +(1−λ3)u
λ3−2].

The hazard quantile function can take on a wide variety of shapes as can be seen
in Fig. 4.4. It is easy to see that X is IHR when λ2 > 0, λ4 > 0 and 0< λ3 < 1, subject
to the condition λ1 − 1

λ2λ3
≥ 0 which is required for X to have a life distribution.

When λ4 = 0,

g(u) = λ2[u
λ3−2(λ3u+ 1−λ3)]
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Fig. 4.5 Plots of hazard quantile function when (1) λ1 = 1, λ2 = 100, λ3 = 0.05, λ4 = 0.5; (2)
λ1 = 0, λ2 =−1000, λ3 = 0, λ4 =−2; (3) λ1 = 1, λ2 = 10, λ3 = 2, λ4 = 0; (4) λ1 = 0, λ2 =−1000,
λ3 =−2, λ4 =−1, for the generalized lambda distribution

so that H ′(u) = 0 has a solution u = λ3−1
λ3

. In this case, H(u) is BT-shaped. An
exhaustive analysis using g(u) given above is difficult and for this reason we have
presented above only some illustrative cases that exhibits the flexibility of H(u) to
adopt to different kinds of ageing behaviour.

The generalized lambda distribution, like the Freimer et al. [203] model, has quite
a flexible hazard quantile function. Recall from (3.5) that the distribution has

H(u) = λ2[(1− u)(λ3uλ3−1 +λ4(1− u)λ4−1)]−1.

We shall now take some special cases. When λ3 = 0, λ4 > 0,

H(u) =
λ2

λ4(1− u)λ4

and so X is IHR if λ2 > 0, and DHR when λ2 < 0. Setting λ4 = 0,

H(u) =
λ2

(1− u)uλ3−1

showing that X is IHR for 0 < λ3 < 1, and BT for λ3 > 1 with change point u0 =
λ3−1
λ3

. Finally, when λ3 = 2, λ4 = 1,

H(u) =
λ2

(1− u)[2u+ 1]
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Fig. 4.6 Plots of hazard quantile function when (1) λ1 = 0, λ2 = 0.01, λ3 = 0.5, λ4 = −2; (2)
λ1 = 0, λ2 = 100, λ3 = 0.5, λ4 = 10; (3) λ1 = 0, λ2 = 1, λ3 = 0.6, λ4 = 0.5; (4) λ1 = 0, λ2 = 0.1,
λ3 = 1, λ4 =−5, for the van Staden–Loots model

so that when λ2 > 0, H ′(u) = 0 at u = 1
4 and X is UBT with change point u0 =

1
4 .

The shapes of the hazard function can also be seen from Fig. 4.5 for some selected
choices of the four parameters.

Finally, the van Staden–Loots model defined in (3.26), characterized by

H(u) = λ2(1− u)[(1−λ3)u
λ4−1 +λ3(1− u)λ4−1],

also possesses different shapes of hazard quantile functions. Figure 4.6 presents the
plot of H(u) for some selected parameter values showing different shapes.

4.7.2 Relative Ageing

The role of relative ageing concepts is either to compare the ageing patterns of two
units at a fixed time or to ascertain whether the same unit is ageing more positively
or more negatively at different points of time.

Consider two units whose lifetimes follow the same distribution F(x), and let y
be the chronological age of one unit and the other is new. Bryson and Siddiqui [122]

then argued that F̄(y+x)
F̄(y) is the probability that the older system will survive the same

duration x given its survival up to time y as the new one with survival probability
F̄(x). They define the specific ageing factor as

A(x,y) =
F̄(y)F̄(x)
F̄(x+ y)

, x,y > 0,

which compares the two survival probabilities. Note that A(x,y)> (< 1) will mean
that the older system has aged in the sense that it has less (more) probability of
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survival than a new unit. It is shown that increasing specific age factor

A(y1,x)≥ A(y2,x) for all x ≥ 0, y2 ≥ y1

is equivalent to IHR.
Instead of comparing survival functions, Sengupta and Deshpande [526] made

use of the failure rates hX(x) and hY (x) of two lifetimes X and Y . Defining HG(x) =∫ x
0 h(t)dt as the cumulative hazard rate of X , they expressed relative ageing concepts

as follows:

1. The random variable X ages faster than Y if Z = HG(X) is IHR;
2. X is ageing faster than Y in average if Z is IHRA;
3. The random variable X is ageing faster than Y in quantile if Z is NBU.

They also obtained bounds and inequalities on F̄(x) in all three cases. Jiang
et al. [292] dealt with unimodal hazard rates and defined the ageing intensity

function as

L(x) =
xh(x)
H (x)

which, in terms of quantile functions, becomes

l(u) = L(Q(u)) =
Q(u)H(u)∫ u

0 H(p)q(p)d p
.

When X is IHR,

H(u)≥
∫ u

0 H(p)q(p)d p∫ u
0 q(p)d p

and hence l(u) > 1. Thus, the value of l(u) quantifies the intensity of ageing. In a
different setting, Abraham and Nair [13] denoted the remaining life of an old unit
of lifelength X which has the same probability of survival as a new unit of age y by
g(x,y). They then showed that

g(x,y) = H −1(H (x)+H (y))− x

is a necessary and sufficient condition for

P(X > g(x,y)+ x|X > x) = P(X > y).

That is, if y is the αth quantile of X , then g(x,y) is the αth quantile of the residual
life distribution of X . A relative ageing factor is
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B(x,y) = y−1g(x,y)

which reveals the rate at which an old unit is losing or gaining life in relation to a
new unit with identical life distribution. They showed that X is IHR if and only if
B(x,y) is decreasing in x for every y > 0, and g(x,y) < y if and only if X is NBU.
Theories on the quantification of ageing are still at the formative stage, but that
they have interesting relationships with ageing concepts is evident from the above
discussion.

For the application of the ageing concept in a real situation, it is desirable to have
a test procedure. The tests are usually performed by assuming the null hypothesis
that the population distribution is exponential against the alternative that it belongs
to some specific ageing class, excluding exponential. As a basis for the test, one
often uses moment inequalities, inequalities for survival functions, total time on test
transformation (see next chapter), order statistics, stochastic orders (Chap. 8) and
so on. A comprehensive survey of various tests available for this purpose has been
provided by Lai and Xie [368].

The various ageing properties discussed in this chapter will be revisited in
Chap. 8 in terms of stochastic orders. Some general theorems and properties
established there will shed additional light on their relevance in reliability theory
and other applied disciplines.



Chapter 5
Total Time on Test Transforms

Abstract The total time on test transform is essentially a quantile-based concept
developed in the early 1970s. Apart from its applications in reliability problems,
it has also been found useful in other areas like stochastic modelling, maintenance
scheduling, risk assessment of strategies and energy sales. When several units are
tested for studying their life lengths, some of the units would fail while others may
survive the test period. The sum of all observed and incomplete life lengths is the
total time on test statistic. As the number of units on test tends to infinity, the limit
of this statistic is called the total time on test transform (TTT). The definitions and
properties of these two concepts are discussed and the functional forms of TTT for
several life distributions are presented in Table 5.1. We discuss the Lorenz curve,
Bonferroni curve and the Leimkuhler curve which are closely related to the TTT.
Identities connecting various curves, characterizations of distributions in terms of
these curves and their relationships with various reliability functions are detailed
subsequently. In view of the ageing classes in the quantile set-up introduced in
Chap. 4, it is possible to characterize these classes in terms of TTT. Accordingly,
we give necessary and sufficient conditions for IHR, IHRA, DMRL, NBU, NBUE,
HNBUE, NBUHR, NBUHRA, IFHA*t0, UBAE, DMRLHA, DVRL, and NBU-t0
classes in terms of the total time on test transform. Another interesting property
of the TTT is that it uniquely determines the lifetime distribution. There have
been several generalizations of the TTT. We discuss these extensions and their
properties, with special reference to the TTT of order n. Relationships between the
reliability functions of the baseline model and those of the TTT of order n (which
is also a quantile function) are described and then utilized to describe the pattern
of ageing of the transformed distributions. Some life distributions are characterized.
The discussion of the applications of TTT in modelling includes derivation of the
L-moments and other descriptive measures of the original distribution. Some of the
areas in reliability engineering that widely use TTT are preventive maintenance,
availability, replacement problems and burn-in strategies.

N.U. Nair et al., Quantile-Based Reliability Analysis, Statistics for Industry
and Technology, DOI 10.1007/978-0-8176-8361-0 5,
© Springer Science+Business Media New York 2013
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5.1 Introduction

The concept of total time on test transform (TTT) was studied in the early 1970s;
see, e.g., Barlow and Doksum [67] and Barlow et al. [65]. When several units are
tested for studying their life lengths, some of the units would fail while others may
survive the test duration. The sum of all observed and incomplete life lengths is
generally visualized as the total time on test statistic. When the number of items
placed on test tends to infinity, the limit of this statistic is called the total time on test
transform. A formal definition of these two concepts will be introduced in the next
section. The TTT is essentially a quantile-based concept, although it is discussed
often in the literature in terms of F(x).

Many papers on TTT concentrate on reliability and its engineering applications.
This include analysis of life lengths and new classes of ageing; see Abouammoh
and Khalique [9], Ahmad et al. [25] and Kayid [318]. A special characteristic of
TTT is that the basic ageing properties can be interpreted and determined through
it. The works of Barlow and Campo [66], Bergman [89], Klefsjö [334], Abouammoh
and Khalique [9] and Perez-Ocon et al. [492] are all of this nature. Properties
of TTT were used for construction of bathtub-shaped distributions by Haupt and
Schabe [266] and Nair et al. [447]. Much of the literature has focused on developing
test procedures, most of which are for exponentially against alternatives like IHR,
IHRA, NBUE, DMRL and HNBUE. For this, one may refer to Bergman [90],
Klefsjö [335, 336], Kochar and Deshpande [348], Aarset [1], Xie [592, 593],
Bergman and Klefsjö [96], Wei [579] and Ahmed et al. [25].

Applications of TTT can be found in a variety of fields. Of these, the role
of TTT in reliability engineering will be taken up separately in Sect. 5.5. The
optimal quantum of energy that may be sold under long-term contracts using TTT
is discussed in Campo [125] and risk assessment of strategies in Zhao et al. [601].
TTT plotting of censored data (Westberg and Klefsjö [578]), problem of repairable
limits (Dohi et al. [180]), normalized TTT plots and spacings (Ebrahimi and
Spizzichino [183]), maintenance scheduling (Kumar and Westberg [357], Klefsjö
and Westberg [340]), estimation in stationary observations (Csorgo and Yu [161])
and stochastic modelling (Vera and Lynch [573]) are some of the other topics
discussed in the context of total time on test.

5.2 Definitions and Properties

We now give formal definitions of various concepts based on total time on test.

Definition 5.1. Suppose n items are under test and successive failures are observed
at X1:n ≤ X2:n ≤ ·· · ≤ Xn:n, and let Xr:n < t ≤ Xr+1:n, where Xr:n’s are order statistics
from the distribution of a lifetime random variable X with absolutely continuous
distribution function F(x). Then, the total time on test statistic during (0, t) is
defined as
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τ(t) = nX1:n+(n− 1)(X2:n−X1:n)+ · · ·+(n− r+ 1)(Xr:n−Xr−1:n)

+ (n− r)(t−Xr:n). (5.1)

The above expression is arrived at by noting that the test time observed between
0 and X1:n is nX1:n, that between X1:n and X2:n is (n− 1)(X2:n−X1:n) and so on, and
finally that between Xr:n and t is (n− r)(t −Xr:n). Also, the total time up to the rth
failure is

τ(Xr:n) = nX1:n +(n− 1)(X2:n−X1:n)+ · · ·+(n− r+ 1)(Xr:n−Xr−1:n). (5.2)

It may also be noted that (5.1) is equivalent to

τ(t) = X1:n +X2:n + · · ·+Xr:n +(n− r)t.

Definition 5.2. The quantity

φr:n =
τ(Xr:n)

τ(Xn:n)
=
∑r

j=1(n− j+ 1)(Xj:n−Xj−1:n)

∑n
j=1(n− j+ 1)(Xj:n−Xj−1:n)

, with X0:n = 0, (5.3)

is called the scaled total time on test statistic (scaled TTT statistic).

Noting that X̄n =
1
n(X1:n + · · ·+Xn:n) is the sample mean of the n order statistics,

we have φr:n = τ(Xr:n)
nX̄n

. The empirical distribution function defined in terms of the
order statistics is

Fn(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t < X1:n,
r
n , Xr:n ≤ t < Xr+1:n, r = 1,2, . . . ,n− 1,

1, t ≥ Xn:n.

If there exists an inverse function

F−1
n (t) = inf[x ≥ 0|Fn(x)> t],

we can verify that

∫ F−1
n ( r

n )

0
F̄n(t)dt =

r

∑
j=1

(
1− j− 1

n

)
(Xj:n −Xj−1:n) =

τ(Xr:n)

n

and

lim
n→∞ lim

r
n→u

∫ F−1
n ( r

n )

0
F̄n(t)dt =

∫ F−1(u)

0
F̄(t)dt (5.4)
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uniformly in u belonging to [0,1]. The expression on the right side of (5.4), viz.,

∫ F−1(u)

0
F̄(t)dt = H−1

F (u), (5.5)

is called the total time on test transform. Accordingly we have, with a slightly
different notation T (u) for H−1

F (u), the following definition.

Definition 5.3. The TTT of a lifetime random variable X is defined as

T (u) =
∫ u

0
(1− p)q(p)d p. (5.6)

Example 5.1. The linear hazard quantile function family of distributions specified
by

Q(u) = log
( a+ bu

a(1− u)

) 1
a+b

(see Chap. 2) has

q(u) = [(1− u)(a+ bu)]−1,

and so, from (5.6), we find

T (u) =
1
b

log
(a+ bu

a

)
.

The expressions for TTT for some specific life distributions are presented in
Table 5.1.

Some important properties of the TTT in (5.6) are the following:

1. T (0) = 0, T (1) = μ . T (u) is an increasing function if and only if F is continuous.
In this case, T (u) is a quantile function and the corresponding distribution is
called the transformed distribution;

2. The baseline distribution F is uniquely determined by T (u). To see this, we
differentiate (5.6) to get

T ′(u) = (1− u)q(u), (5.7)

and thence

Q(u) =
∫ u

0

T ′(p)
1− p

d p;

3. From Table 5.1, we see that the graph of the TTT of the exponential distribution
is the diagonal line in the unit square;
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Table 5.1 Total time on test transforms for some specific life distributions

Distribution T (u)

Exponential λ−1u

Pareto II
α

c−1
[1− (1−u)

c−1
c ]

Rescaled beta
R

c+1
[1− (1−u)

c+1
c ]

Weibull
σ

λn1/λ I−n log(1−u)(
1
λ )

Half-logistic 2σ log(1+u)

Power
αu

1
β

(1+β )
(1+β −u)

Govindarajulu σ (β +1)uβ [(1−u)2 +2(β +1)−1u(1−u)
+((β +1)(β +2))−1u2]

Generalized lambda λ−1
2

{
uλ3

λ3 +1
(1+λ3(1−u))+

λ4

λ4 +1
(1− (1−u)λ4+1)

}

Generalized Tukey lambda λ−1
2

{
uλ3

λ3(λ3 +1)
(1+λ3(1−u))+

1
λ4 +1

(1− (1−u)λ4+1)

}

van Staden–Loots λ−1
2

{
(1−λ3)uλ4

λ4

(1+λ4(1−u))
(λ4 +1)

+
λ3

λ4 +1
(1− (1−u)λ4 )

}

Power-Pareto C[λ1Bu(λ1,2−λ2)+λ2Bu(λ1 +1,1−λ2)]

4. Many identities exist between T (u) and the basic reliability functions introduced
earlier in Sects. 2.3–2.6. Directly from (5.7) and (2.30), we have

T ′(u) =
1

H(u)
. (5.8)

Again from (2.35), we find

T (u) = μ−
∫ 1

u
(1− p)q(p)d p = μ− (1− u)M(u)

and consequently

M(u) =
μ−T (u)

1− u
, (5.9)

which relates TTT and the mean residual quantile function. On the other hand, from
(2.46), we find

V (u) =
1

1− u

∫ 1

u
M2(p)d p
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and hence

V (u) =
1

1− u

∫ 1

u

(
μ−T(p)

1− p

)2

d p, (5.10)

or equivalently

T (u) = μ− (1− u)[(1− u)V ′(u)−V(u)]
1
2 . (5.11)

Next, with regard to functions in reversed time, we have

T (u) = Q(u)−
∫ u

0
pq(p)d p

or

uq(u) = [Q(u)−T(u)]′,

and so

Λ(u) =
1

[Q(u)−T (u)]′
. (5.12)

Also from (2.50), the reversed mean residual quantile function satisfies

uR(u) =
∫ u

0
pq(p)d p

and

uR(u) = Q(u)−T(u),

and consequently

T (u) = Q(u)− uR(u). (5.13)

Finally, we use the reversed variance quantile function

D(u) =
1
u

∫ u

0
R2(p)d p

to write

D(u) =
1
u

∫ u

0

Q(p)−T (p)
p2 d p.
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These relationships are used in the next section to characterize the ageing properties
in terms of total time on test transform.

Definition 5.4. We say that

φ(u) =
∫ u

0 (1− p)q(p)d p∫ 1
0 (1− p)q(p)d p

=
T (u)
μ

(5.14)

is the scaled total time on test transform, or scaled transform in short, of the random
variable X .

Definition 5.5. The plot of the points ( r
n ,φr,n), r = 1,2, . . . ,n, when connected by

consecutive straight lines, is called the TTT-plot.

The statistic 1
nτ(Xr:n) converges uniformly in u to the TTT as n → ∞ and

r
n → u. Now, we present the asymptotic distribution, which is due to Barlow and

Campo [66]. Let φr,n =
{
φn(p) = H−1

n (p)
H−1

n (1)
, 0 ≤ p ≤ 1

}
be the scaled TTT process.

Define

Sn(p) =
√

n

{
H−1

n (p)

∑n
1 Xj:n

−φ(p)

}

for j−1
n ≤ p ≤ j

n and 1 ≤ j ≤ n, with Sn(0) = Sn(1) = 0. Upon using

φ(u) =
1
μ

{
(1− u)Q(u)+

∫ u

0
Q(p)d p

}
,

we see that

H−1
n ( j

n )

H−1
n (1)

=
∫ j/n

0

F−1
n (u)

∑Xj:n
dνn(u)du+

(
1− j

n

)
Xj:n

∑Xj:n

converges to

∫ u

0

Q(p)
μ

d p+
(1− u)
μ

Q(u)

with probability one and uniformly in 0 ≤ u ≤ 1 as n → ∞, where νn(u) puts mass
1
n at u = j

n . Next,

Sn

(
j
n

)
=
√

n

(
H−1

n ( j
n)

∑Xj:n
−φ(u)

)

.
=

∫ j
n

0

√
n

(
X[nu]:n

∑Xj:n
− Q(u)

μ

)
dνn(u)+

(
1− j

n

)(
Xj:n

∑Xj:n
− F−1( j

n)

μ

)
,
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where [t] denotes the greatest integer contained in t. Then,

lim
n→∞

√
n

(
H−1

n (p)

∑Xj:n
−φ(u)

)
=

∫ u

0
θ (p)d p+(1− u)θ (u),

with

θ (u) =−q(u)
μ

A(u)+
Q(u)
μ2

∫ 1

0
A(p)q(p)d p

and

lim
n→∞

√
n

{
H−1

n (u)

∑Xj:n
−φ(u)

}
= A(u).

In the above, {A(u),0 ≤ u ≤ 1} is the Brownian bridge process.

5.3 Relationships with Other Curves

The similarity between the Lorenz curve used in economics and the TTT and the
corresponding results have been discussed by Chandra and Singpurwalla [134] and
Pham and Turkkan [493]. If X is a non-negative random variable with finite mean,
the Lorenz curve is defined as

L(u) =
1
μ

∫ u

0
Q(p)d p, (5.15)

which is itself a continuous distribution function with L(0) = 0 and L(1) = 1. It
is a bow-shaped curve below the diagonal of the unit square. Used as a measure
of inequality in economics, we note that as the bow is more bent, the amount of
inequality increases. Also L(u) is convex, increasing and is such that L(u) ≤ u,
0 ≤ u ≤ 1. The Lorenz curve determines the distribution of F up to a scale. Two
well-known measures of inequality that are related to the Lorenz curve are the Gini
index and the Pietra index. There are many analytic expressions for calculating the
Gini index, including

G = 2
∫ 1

0
(u−L(u))du = 1− 2

∫ 1

0
L(u)du. (5.16)

In addition,

G = 1− 2μ−1
∫ 1

0

∫ u

0
Q(p)dydu = 1− μ−1E(X1:2),

where X1:2 is the smallest of a sample of size 2 from the population.



5.3 Relationships with Other Curves 175

Next, the Pietra index is obtained from the maximum vertical deviation between
L(u) and the line L(u) = u, given by

P = μ−1
∫ F(μ)

0
(μ−Q(p))d p = F(μ)−L(F(μ)). (5.17)

It can be seen that P is 1
2μ

∫ ∞
0 |x− μ | f (x)dx, half the relative mean deviation. A

detailed account of the results concerning L(u) and G can be found in Kleiber and
Kotz [341].

The cumulative Lorenz curve of X is given by

CL(u) =
∫ 1

0
L(u)du =

1
μ

∫ 1

0

∫ u

0
Q(p)dud p. (5.18)

Chandra and Singpurwalla [133] observed that both L(u) and L−1(u) are distribution
functions, L is convex, L−1 is concave, and that L(u) is related to the mean residual
life function m(x). In the quantile set-up, the Lorenz curve can be related to all the
basic reliability functions. For example, we have from (2.34) and (5.15) that

Q(u)+M(u) =
1

1− u

∫ 1

u
Q(p)d p,

μ−
∫ u

0
Q(p)d p = (1− u)(Q(u)+M(u)),

μ [1−L(u)] = (1− u)(Q(u)+M(u)),

and so

M(u) =
μ(1−L(u))

1− u
−Q(u) = μ

[
1−L(u)

1− u
−L′(u)

]
.

Now, H(u) is recovered from (2.37) and V (u) from (2.46), after substituting for
M(u). A much simpler expression results for the reversed mean residual quantile
function R(u) as

R(u) = Q(u)− μL(u)
u

= μ [L′(u)− u−1L(u)].

Also,

[Λ(u)]−1 = R(u)+ uR′(u)

and

D(u) =
1
u

∫ u

0
R2(p)d p.
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Example 5.2. The Pareto distribution is one of the basic distributions used in
modelling income data and it plays a role similar to the exponential distribution
in reliability. Its quantile function is (Table 1.1)

Q(u) = σ(1− u)−
1
α

and so we obtain the following expressions:

L(u) = 1− (1− u)1− 1
α since μ =

σα
α− 1

, α > 1,

M(u) =
σα[(1− u)1− 1

α ]

(α− 1)1− u
−σ(1− u)−

1
α =

σ
α− 1

(1− u)−
1
α ,

H(u) = [M(u)− (1− u)M′(u)]−1 =
α(1− u)

1
α

σ
,

V (u) =
1

1− u

∫ 1

u
M2(p)d p =

σ2α
(α− 1)2(α− 2)

(1− u)−
2
α .

Also, the functionsΛ(u), R(u) and D(u) can also be similarly found.

Chandra and Singpurwalla [134] obtained the following relationships between
T (u), L(u) and the sample analogs corresponding to them:

(a)

T (u) = (1− u)Q(u)+ μL(u). (5.19)

Equation (5.19) is obtained by integrating by parts the right-hand side of (5.6)
and then using (5.15). Since Q(u) = μL′(u), (5.19) has the alternative form

T (u) = μ [(1− u)L′(u)+L(u)],

or equivalently

φ(u) = (1− u)L′(u)+L(u).

Now, upon treating the last relationship as a linear differential equation in u and
solving it, we obtain an integral expression for L(u) as

L(u) = (1− u)
∫ u

0

φ(p)
(1− p)2 d p.

(b) We also have

Cφ(u) = 2CL(u),
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where Cφ(u) =
∫ 1

0 φ(p)d p = 1
μ
∫ 1

0 T (p)d p is called the cumulative total time on
test transform. To establish the above assertion, we note that

∫ 1

0

∫ u

0
Q(p)d p =−

∫ 1

0

(
d

d p
(1− p)

∫ u

0
Q(p)d p

)
du

=
∫ 1

0
(1− p)Q(p)d p (by partial integration),

∫ u

0
(1− p)q(p)d p = (1− u)Q(u)+

∫ u

0
Q(p)d p.

Thus, we get

Cφ(u) =
1
μ

∫ 1

0

∫ u

0
(1− p)q(p)d pdu

=
1
μ

∫ 1

0

{
(1− u)Q(u)+

∫ u

0
Q(p)d p

}
du

=
1
μ

∫ 1

0

{∫ u

0
Q(p)d p

}
du+

1
μ

∫ 1

0

{∫ u

0
Q(p)d p

}
du

= 2CL(u),

as required.
(c) G = 1−Cφ(u), which is seen as follows:

G = 1− 2μ−1
∫ 1

0

{∫ u

0
Q(p)d p

}
du

= 1− 2CL(u) = 1−Cφ(u) (by using (b)).

If we denote the sample Lorenz curve and the sample Gini index by

Ln(u) =
∑[nu]

r=1 Xr:n

∑n
r=1 Xr:n

,

and

Gn =
∑n−1

r=1 r(n− r)(Xr+1:n −Xr:n)

(n− 1)∑n
r=1 Xr:n

,

respectively, and the cumulative total time on test statistic by

Vn =
1

n− 1

n−1

∑
r=1
φr:n,
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then we have

φr:n = Ln

( r
n

)
+

(n− r)Xr:n

∑n
j=1 Xr:n

and

Vn = 1−Gn.

Chandra and Singpurwalla [134] also pointed out the potential of the Lorenz
curve in comparing the heterogeneity in survival data and also in characterizing
the extremes of life distributions. The latter aspect is illustrated by the following
theorem.

Theorem 5.1. If X is IHR with mean μ , then

LG(u)≤ LF(u)≤ LD(u), 0 ≤ u ≤ 1,

and if X is DHR with mean μ , then

LF(u)

⎧⎪⎪⎨
⎪⎪⎩

≤ LG(u), 0 < u ≤ 1

≥ 0, 0 ≤ u < 1

= 1, u = 1.

Here, F and G are the distribution functions of X and exponential variable with
same mean μ , respectively, and D is the distribution degenerate at μ .

The distribution which is degenerate at μ has h(x) = ∞ at μ and so LD(u) = u
characterizes distributions which are most IHR. Likewise, distributions with
L(u) = 0 for u < 1 and L(u) = 1 for μ = 1 are the most DHR.

Pham and Turkkan [493] established more results in this direction. They pointed
out that φ(u) strictly increases in the unit square with φ(0) = 0 and φ(1) = 1.
Moreover,

(a) φ(F(μ)) = 1−E(|X − μ |);
(b) φ(Med X) = 1

2 +
(MedX−E|X−MedX |)

2μ ;
(c) In the unit square, the area between φ(u) and L(u) equals the area below L(u).

The area above φ(u) is G;

(d) L(u) = (1− u)
∫ u

0

φ(p)
(1− p)2 d p;

(e) If X is NBUE, then the Pietra index is less than the reliability at μ and
E(|X −MedX |)< MedX ;

(f) When 1
2 < G ≤ 1 (0 ≤ G < 1

2 ) and F(x) is a family of IHR (DHR) distributions
with common mean μ , F(x) becomes more IHR (DHR) when L(u) gets closer to
the diagonal and φ(u) get closer to the upper (lower) side. Further, when G = 1

2 ,
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F(x) is exponential. When 0 ≤ P < e−1, X is IHR and the closer P is to zero,
the more IHR X becomes. X is exponential when P = e−1. Also, e−1 < P < 1
provides DHR and P → 1 corresponding to the most DHR.

Another curve that has been used in the context of income inequality is
the Bonferroni curve. For a non-negative random variable X , the first moment
distribution of X is defined by the distribution function

F1(x) =

∫ x
0 t f (t)dt

μ
.

The Bonferroni curve is defined in the orthogonal plane as (F(x),B1(x)) within the
unit square, where

B1(x) =
F1(x)
F(x)

.

In terms of quantile functions, we have

B(u) = B1(Q(u)) =

∫ u
0 Q(p)d p
μu

. (5.20)

One may refer to Giorgi [218], Giorgi and Crescenzi [219] and Pundir et al. [498]
and the references therein for a study of (5.20) and its properties. As u → 0, B(u)
has the indeterminate form 0

0 and hence the curve does not begin from the origin.
It is strictly increasing but can be convex or concave in parts of the plane. Several
results concerning B1(x) have been given by Pundir et al. [498]. We now make a
comparative study of B(u) with L(u) and φ(u). First, we note that B(u) characterizes
the distribution of X through

Q(u) = μ(B(u)+ uB′(u)). (5.21)

Also,

B(u) = u−1L(u)

and

φ(u) =
(1− u)Q(u)

μ
+

1
μ

∫ u

0
Q(p)d p,

or equivalently

φ(u) = B(u)+ u(1− u)B′(u). (5.22)

Solving (5.22) as a linear differential equation, we get

B(u) =
1− u

u

∫ u

0

φ(p)
(1− p)2 d p,
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relating scaled TTT and the Bonferroni curve. Equation (5.20) verifies

μuB(u) =
∫ u

0
Q(p)d p = μ−

∫ 1

u
Q(p)d p,

and hence

M(u) =
μ(1− uB(u))

1− u
−Q(u) = μ

{
1−B(u)

1− u
− uB′(u)

}

by virtue of (5.21). Rewriting the above equation as

B′(u)+
B(u)

u(1− u)
=

1
u(1− u)

− M(u)
uμ

and solving it, we see that B(u) is uniquely determined by M(u) as

B(u) =
1− u

u

∫ u

0

1
p

{
1

1− p
− M(p)

μ

}
d p.

A more concise relationship exists between B(u) and the reversed mean residual
quantile function R(u) in the form

R(u) = μuB′(u).

As in the case of L(u), all other reliability functions can be derived using the
relations they have with M(u) and R(u). Pundir et al. [498] showed that the
Bonferroni index

B = 1−
∫ 1

0
B(u)du

is such that

B ≤ 1
2
(1+G) and B ≤ 1− V

2
, V = 1−G.

The Leimkuhler curve, which is closely related to the Lorenz curve, is also
discussed recently for its relationships with the reliability functions. It is used in
economics as a plot of cumulative proportion of productivity against cumulative
proportion of sources and is also used in studying concentration of bibliometric
distributions in information sciences. A general definition of the curve is given in
Sarabia [518] and methods of generating such curves have been detailed in Sarabia
et al. [519]. Balakrishnan et al. [60] have pointed out the relationships between
reliability functions and the Leimkuhler curve. The Leimkuhler curve is defined in
terms of quantile function as
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K(u) =
1
μ

∫ 1

1−u
Q(p)d p

=
1
μ

{∫ 1

0
Q(p)d p−

∫ 1−u

0
Q(p)d p

}

= 1− 1
μ

∫ 1−u

0
Q(p)d p. (5.23)

Evidently,

K(u) = 1−L(1− u) or K(1− u) = 1−L(u)

and so K(u) characterizes the distribution of X . The relation in (5.23) gives

M(u) =
μ{1−K(1− u)}

1− u
−Q(u)

= μ
{

1−K(1− u)
1− u

−K′(1− u)

}
.

Similarly, from

μ(1−K(u)) =
∫ 1−u

0
Q(p)d p

and the definition of R(u), we obtain

μ(1−K(u)) = (1− u){Q(1− u)−R(1−u)}.

Since

Q(1− u) = μK−1(u),

upon combining the expressions, we obtain

R(u) = μu−1[K′(1− u)+K(1− u)−1].

Regarding the geometric properties, it is seen from the definition that K(u) is
continuous, concave and increasing with K(0) = 0 and K(1) = 1. The main
difference between the Lorenz curve and the Leimkuhler curve K(u) is that in the
Lorenz curve the sources are arranged in increasing order of productivity, while in
the Leimkuhler curve the sources are arranged in decreasing order. The expressions
of B(u), L(u) and K(u) for some distributions are presented in Table 5.2.
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Table 5.2 Expressions of L(u), B(u) and K(u) for some distributions

Distribution L(u) B(u) K(u)

Power u
1
β +1

u
1
β 1− (1−u)

1
β +1

Exponential u+(1−u) log(1−u) 1+ 1−u
u log(1−u) u(1− logu)

Pareto II c(1− (1−u)1− 1
c )−u(c−1) c(1−(1−u))1− 1

c

u − (c−1) u[1− c+ cu−
1
c ]

Rescaled beta c(1− (1−u)1+ 1
c −1)+u(1+ c) 1+ c+ c

u ((1−u)1+ 1
c −1) u[c+1− cu

1
c ]

Pareto I α [1− (1−u)−
1
α +1] α

u [1− (1−u)−
1
α +1] αu−

1
α +1

5.4 Characterizations of Ageing Concepts

In this section, we discuss the role of TTT in detecting different ageing properties.
In this regard, the new definitions offered below in terms of TTT provide alternative
ways of interpreting and analysing lifetime data. The proofs given here assume that
F is continuous and strictly increasing.

Theorem 5.2 (Barlow and Campo [66]). A lifetime random variable X is IHR
(DHR) if and only if the scaled transform φ(u) is concave (convex) for 0 ≤ u ≤ 1.

From (5.8), we have

T ′(u) =
1

H(u)

and so

1
H2(u)

H ′(u) =−T ′′(u).

Thus, H ′(u) is positive (negative) or X is IHR (DHR) if and only if T ′′(u) is negative
(positive). This is equivalent to the concavity (convexity) of T (u) or φ(u). It now
follows that if φ(u) has an inflexion point u0 such that 0< u0 < 1 and φ(u) is convex
(concave) on [0,u0], and concave (convex) on [u0,1], then X has a bathtub (upside-
down bathtub)-shaped hazard quantile function. This can be used for constructing
life distributions with BT (UBT) hazard quantile functions.

Barlow and Campo [66] have also shown that if X is IHRA (DHRA), then φ(u)
u

is decreasing (increasing) in 0 < u < 1. This condition is not sufficient as seen from
the following life distribution (Barlow [64]) which is not IHRA, but at the same time
φ(u)

u is decreasing:

F(x) =

{
0, 0 ≤ x < 1

2

1− exp[−(c+ x)], x ≥ 1
2 .

In this regard, we have the following results.
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Theorem 5.3 (Asha and Nair [39]). A necessary and sufficient condition for X to
be DMTTF (IMTTF) is that φ(u)u is decreasing (increasing).

Theorem 5.4. A necessary and sufficient condition for X to be IHRA (DHRA) is
that

1
t(u)

∫ u

0

t(p)
1− p

d p ≥ (≤)− log(1− u), (5.24)

where t(u) = T ′(u).

The proof follows from (5.7), (5.8) and the definition of IHRA distributions.

Remark 5.1. Since T (u) is the quantile function of the transformed distribution,
t(u) is the corresponding quantile density function. From (5.7), t(u) = (1− u)q(u)
and so (5.24) is equivalent to

t(u)≤ (≥)− Q(u)
log(1− u)

. (5.25)

Bergman [89] has proved that X is NBUE (NWUE) if and only if φ(u)≥ u (φ(u)≤
u). This follows from

φ(u)≥ u ⇔ 1
μ

∫ u

0
(1− p)q(p)d p ≥ u

⇔ 1
μ
[μ(1− u)M(u)]≥ u

⇔ M(u)≤ μ .

The proof in the case of NWUE involves simply reversing the inequalities.

Theorem 5.5 (Klefsjö [333]). A lifetime random variable X is

(a) DMRL (IMRL) if and only if 1−φ(u)
1−u is decreasing (increasing) in u;

(b) HNBUE (HNWUE) if and only if

φ(u)≤ (≥)1− exp[−Q(u)
μ

], 0 ≤ u ≤ 1.

These results are direct consequences of (5.9) and the definition of HNBUE
(HNWUE).

In view of the definitions of ageing concepts in the quantile set-up in Chap. 4
and the identities between T (u), Q(u), H(u) and M(u), more ageing classes can be
characterized in terms of T (u) or φ(u) as follows.
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Theorem 5.6. We say that X is

(a) NBUHR (NWUHR) if and only if t(u)≤ (≥)t(0);

(b) NBUFHA (NWUHRA) if and only if − log(1−u)
Q(u) ≤ (≥)t(0);

(c) IHRA*t0 if and only if

∫ u

0

t(p)
(1− p)

d p ≥ Q(u0)

log(1− u0)
log(1− u) for all u ≥ u0;

(d) UBAE (UWAE) if and only if T (u) ≤ (≥)μ − (1 − u)M(1), where T (1) =
limu→1− T (u) is finite;

(e) DMRLHA (IMRLHA) if and only if

− 1
Q(u)

log(1−φ(u))

is increasing (decreasing) in u;
(f) DVRL (IVRL) if and only if

∫ 1

u

(
1−φ(p)

1− p

)2

d p ≤ (≥)
(1−φ(u))2

1− u
;

(g) NBU (NWU) if and only if

∫ u+v−uv

0

t(p)d p
1− p

≤ (≥)Q(u)+Q(v), 0 < v < 1, u+ v−w < 1;

(h) NBU-t0 (NWU-u0) if and only if

∫ u+u0−uv

0

t(p)d p
1− p

≤ (≥)Q(u)+Q(u0)

for some 0 < u0 < 1 and all u;
(i) NBU*u0 (NWU*u0) if and only if

∫ u+v−uv

0

t(p)
1− p

d p ≤ (≥)Q(u+Q(v))

for some v ≥ u0 and all u.

Note that in (g)–(i), Q(s) is evaluated as
∫ s

0
t(p)d p

1−p .

Ahmad et al. [25] defined a new ageing class of life distributions called the new
better than used in total time on test transform order (NBUT). They defined the class
as distributions for which the inequality
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∫ F−1
t (u)

0
F̄(x+ t)dt ≤ F̄(t)

∫ F−1(u)

0
F̄(x)dx

is satisfied. It was proved that the NBUT class has the following preservation
properties:

(i) Let X1,X2, . . . ,XN be a sequence of independent and identically distributed
random variables and N be independent of the Xi’s. If Xi’s are NBUT, so is
min(X1,X2, . . . ,XN);

(ii) The NBUT class is preserved under the formation of series systems pro-
vided that the constituent lifetime variables are independent and identically
distributed;

(iii) If X1,X2 and X3 are independent and identically distributed, then

E min(X1,X2,X3)≥ 2
3

E min(X1,X2).

This result is used to test exponentiality against non-exponential NBUT alternatives.

5.5 Some Generalizations

Several generalizations of the TTT have been proposed in the literature. The earliest
one is that of Barlow and Doksum [67]. If F and G are absolutely continuous
distribution functions with positive right continuous densities f and g, respectively,
then the generalized total time on test transform is defined as

H−1
F (x) =

∫ F−1(x)

F−1(0)
g[G−1F(t)]dt, 0 ≤ x ≤ 1.

As before, HF(·) is a distribution function and H−1
G (u) = u, 0 ≤ u ≤ 1.

The generalized version can also be shown to possess properties similar to T (u).
For instance, the density CF of HF is such that

CF(H
−1
F (u)) =

f (QF(u))
g(QG(u))

= hF(Q(u)), 0 ≤ u ≤ 1,

where

hF(x) =
f (x)

g[G−1(F(x))]

is referred to as the generalized failure rate function. Further, if Sn(·) is the empirical
distribution function based on a sample of size n from life distribution F , then H−1

F
is estimated as
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H−1
Sn

(u) =
∫ S−1

n

0
g[G−1Sn(t)]dt

and so

H−1
Sn

( r
n

)
=

∫ Xr:n

0
g[G−1Fn(u)]du =

r

∑
j=1

gG−1
(

j− 1
n

)
(Xj:n −Xj−1:n)

for r = 1,2, . . . ,n. Neath and Samaniego [468] proved that if G is exponential and F

is IFRA, then H−1
F
u is decreasing in u. Many reliability properties of the generalized

transform like those of T (u) are still open problems. For a study of the order
relations of the general form, we refer to Bartoszewicz [73]. Yet another extension
due to Li and Shaked [388] is of the form

T2(u) =
∫ u

0
h(p)q(p)d p,

where h(u) is positive on (0,1) and zero elsewhere. The usual TTT results when
h(p) = 1− p. While the main focus of Li and Shaked [388] is on stochastic orders,
they also point out some applications of the order considered by them in reliability
context. Various results regarding orderings can be seen in Bartoszewicz [74, 75]
and Bartoszewicz and Benduch [76].

In a slightly different direction, Nair et al. [447] studied higher order TTT by
applying Definition 5.3, recursively, to the transformed distributions.

Definition 5.6. The TTT transform of order n (TTT-n) of the random variable X is
defined recursively as

Tn(u) =
∫ u

0
(1− p)tn−1(p)d p, n = 1,2, . . . , (5.26)

where T0(u) = Q(u) and tn(u) =
dTn(u)

du , provided that μn−1 =
∫ 1

0 Tn−1(p)d p < ∞.

The primary reasons for defining the above generalization are (i) the hierarchy of
distributions generated by the iterative process reveals more clearly the reliability
characteristics of the transformed models than that of T (u) and (ii) the results
obtained from (3.27) subsume those for T (u) = T1(u) and will generate new models
and properties. We denote by Yn the random variable with quantile function Tn(u),
mean μn, hazard quantile function Hn(u), and mean residual quantile function
Mn(u). Recall that T (u), the transform of order one, is a quantile function and
consequently the successive transforms Tn, n = 2,3, . . . , are also quantile functions
with support (0,μn). Differentiating (5.26), we obtain the quantile density function
of Yn as

tn(u) = (1− u)tn−1(u) = (1− u)nt0(u) = (1− u)nq(u), (5.27)
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and hence

tn(u) = [Hn−1(u)]
−1 = (1− u)n−1(H(u))−1,

where H(u) is the hazard quantile function of X = Y0. Thus, we have an identity
connecting the hazard quantile function of the baseline distribution F(x) of X and
that of Yn in the form

H(u) = (1− u)nHn(u), n = 0,1,2, . . . . (5.28)

Using (5.9), we have

Tn+1(u) = μn − (1− u)Mn(u),

or equivalently

tn+1(u) = Mn(u)− (1− u)M′
n(u).

This, along with tn+1(u) = (1− u)nt1(u) and

t1(u) = t(u) = M(u)− (1− u)M′(u),

yields a relationship between the mean residual quantile functions of X and Yn as

Mn(u)− (1− u)M′
n(u) = (1− u)n{M(u)− (1− u)M′(u)}. (5.29)

Incidentially, the definition in (5.26) is also true for negative integers, since Q(u)
can be thought of as a transform of T−1(u) and so on. Thus,

t−n(u) = (1− u)−nq(u)

and

H(u) = (1− u)−nH−n(u), n = 1,2, . . .

A remarkable feature of the recurrent transform Tn(u) is that the sequence 〈Hn(u)〉
increases for positive n and decreases for negative n. Thus, Yn provides a life
distribution whose failure rate is larger (smaller) than that of Yn−1 when n is positive
(negative). It is therefore of interest to know and compare the ageing patterns of Yn

and Yn−1.

Theorem 5.7. (i) If X is IHR, then Yn is IHR for all n;
(ii) If X is DHR, then Yn is DHR (IHR) if Q(u)≥ (≤)QL(k, 1

n ) and is bathtub shaped
if there exists a u0 for which Q(u)≥ QL(k, 1

n ) in [0,u0] and Q(u)≤ QL(k, 1
n ) in

[u0,1], where QL(α,C) is the quantile function of the Lomax distribution (see
Table 1.1).
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Proof. Since tn+1(u) = (1− u)nt1(u), we have

t ′n+1(u) = (1− u)n−1{(1− u)t ′1(u)− nt1(u)}.

Thus,

X is IHR ⇒ t1(u) is decreasing

⇒ t ′n+1(u)< 0

⇒ Tn+1(u) is concave

⇒ Yn is IHR.

Similarly, when X is DHR, T1(u) is convex and accordingly

Yn is DHR (IHR) ⇒ (1− u)t ′1(u)≥ (≤)nt1(u)

⇒ t1(u)≥ (≤)k(1− u)−n

⇒ Q(u)≥ (≤)QL

(
k,

1
n

)
.

The last part follows from the definition of bathtub-shaped hazard quantile function
in Chap. 4.

In a similar manner, by backward iteration of a Q(u) = T0(u) and using

t ′1(u) = (1− u)−n(n(1− u)−1tn+1(u)+ t ′n+1(u)),

we get the following result.

Theorem 5.8. (i) If Yn is DHR, then X is DHR;
(ii) If Yn is IHR, then X is IHR (DHR) if Tn(u)≤ (≥)QB(k(n+1)−1,(n+1)−1), and

is upside-down bathtub shaped if there exists a u0 for which Tn(u)≤ Qβ (k(n+
1)−1,(n+1)−1) in [0,u0] and Tn(u)≥QB(k(n+1)−1,(n+1)−1) in [u0,1]. Here,
QB(R,C) denotes the quantile function of the rescaled beta distribution.

Using Theorems 5.7 and 5.8, it is possible to construct BT and UBT distributions
with finite range. Generation of BT distributions is facilitated by the choice of DHR
distributions for which tn+1(u) has a point of inflexion. On the other hand, IHR
distributions can provide UBT models provided tn+1(u) has an inflexion point for
negative integers n. The following examples illustrate the procedure.

Example 5.3. Consider the Weibull distribution with

Q(u) = σ(− log(1− u))
1
λ .
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In this case, we have

q(u) =
σ

λ (1− u)
(− log(1− u))

1
λ −1

and

tn(u) =
σ
λ
(1− u)n−1(− log(1− u))

1
λ −1.

Hence,

t ′n(u) =
σ
λ
(1− u)n−2(− log(1− u))

1
λ −2

[
1
λ
− 1+(n− 1) log(1− u)

]
.

Thus, when 0 < λ ≤ 1, Tn+1(u) is convex in [0,u0] and concave in [u0,1], where

u0 = 1− exp

{
λ − 1

(n− 1)λ

}
.

It follows that Yn has BT hazard quantile function for n ≥ 1. Notice that with
increasing values of n, the change point u0 becomes larger. For λ ≥ 1 and every
n, Yn is IHR.

Example 5.4. The Burr distribution with k = 1 (see Table 1.1) has

Q(u) = u1/λ (1− u)−
1
λ

and

t ′n+1(u) =
1
λ

u
1
λ −2(1− u)n− 1

λ −1
{

1
λ
− 1− u(n− 1)

}
.

Therefore, u0 =
1
λ −1
n−1 is a point of inflexion when nλ > 1. Thus, Yn is BT in this

case.

Theorem 5.9. (i) X is DMRL implies that Yn is DMRL;
(ii) Yn is IMRL implies that X is IMRL.

Proof. Theorem 5.3 gives the necessary and sufficient condition for X to be DMRL
as (1− u)−1(μ−T1(u)) is decreasing in u. This condition is equivalent to

μ−T1(u)− (1− u)t1(u)≤ 0. (5.30)

Further,

Tn+1(u) =
∫ u

0
(1− p)nt1(p)d p = (1− u)nT1(u)+A(u),
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where

A(u) = n
∫ u

0
(1− p)n−1T1(p)d p > 0 for all u.

This gives

μn −Tn+1(u)− (1− u)tn+1(u) = μn − (1− u)nT1(u)− (1− u)n+1tn+1(u)−A(u)

≤ μn − (1− u)nT1(u)− (1− u)n+1tn+1(u)

≤ μ1 −T1(u)− (1− u)t1(u)≤ 0.

Hence, X is DMRL according to (5.29). This proves (i) and the proof of (ii) follows
similarly by taking n as a negative integer.

Theorem 5.10. (i) X is IHRA implies that Xn is IHRA;
(iii) Xn is DHRA implies that X is DHRA.

Proof. We prove only (i) since the proof of (ii) follows on the same lines. In view
of Theorem 5.2, X is IHRA if and only if u−1T1(u) is decreasing, or equivalently

t1(u)≤ u−1T (u). (5.31)

Considering Tn(u), we can write

tn+1(u)− u−1Tn+1(u) = (1− u)nt1(u)− u−1(1− u)nT1(u)− u−1A(u)

≤ (1− u)n(t1(u)− u−1T1(u))

≤ t1 − u−1T1(u)≤ 0.

Result in (i) now follows by using (5.31).

Theorem 5.11. (i) X is NBUE implies that Yn is NBUE;
(ii) Yn is NWUE implies that Xn is NWUE.

Proof. Recall that X is NBUE if and only if μ−1T1(u)> μ for all u. Hence,

u−1Tn(u)− μn = u−1{(1− u)nT1(u)+A(u)}− μn

≥ u−1(1− u)nT1(u)− μ1

≥ (1− u)n{u−1T1(u)− μ1} ≥ 0

which implies that Yn is NBUE. Part (ii) follows similarly.

From the above theorems, it is evident that when X is ageing positively,
the successive transforms are also ageing positively. Similar results can also be
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established in the case of other ageing concepts discussed in Chap. 4. It is important
to mention that the converses of the above theorems need not be true (see next
section).

5.6 Characterizations of Distributions

Various identities between the hazard quantile function, mean residual quantile
function and the density quantile function of X and Yn enable us to mutually
characterize the distributions of X and Yn. A preliminary result is that Tn(u)
characterizes the distribution of X . This follows from

tn(u) = (1− u)nq(u)

and

Q(u) =
∫ u

0
(1− p)−ntn(p)d p.

The following theorems have been proved by Nair et al. [447].

Theorem 5.12. The random variable Yn, n= 1,2, . . . , has rescaled beta distribution

Q(u) = R(1− (1− u)
1
c )

if and only if X is distributed as either exponential, Lomax or rescaled beta.

Proof. To prove the if part, we observe that in the exponential case

tn(u) = (1− u)nq(u) = λ−1(1− u)n−1

and

Tn(u) =
∫ u

0
tn(p)d p = (λn)−1{1− (1− u)n}

which is the quantile function of the rescaled beta distribution with parameters
((λn)−1,n−1) in the support (0, 1

nλ ). Similar calculations show that when X is
Lomax, Yn is rescaled beta (α(nC − 1)−1,C(nC − 1)−1) with support (0,α(nC −
1)−1), and when X is rescaled beta (R,C), Yn has the same distribution with
parameters (R(1+ nC)−1,C(1+ nC)−1). Conversely, if we now assume that Yn is
rescaled beta, its quantile function has the form

Tn(u) = Rn(1− (1− u)
1

Cn )

for some constants Rn and Cn > 0. This gives

tn(u) =
Rn

Cn
(1− u)

1
Cn

−1 = (1− u)nq(u).
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The last equation means that (1− u)n is a factor of the left-hand side and so

1
Cn

= kn + n

for some real kn. Thus,

q(u) = (kn + n)(1− u)kn−1Rn.

Since q(u) is independent of n, taking n = 1, we have

Q(u) = k−1
1 R1(k1 + 1){1− (1− u)k1}.

Hence, for k1 > 0, X follows rescaled beta distribution (0,R1k−1
1 (k1 + 1)), Lomax

law for −1 < k1 < 0, and exponential distribution as k1 → 0. Hence, the theorem.

Theorem 5.13. The random variable X follows the generalized Pareto distribution
with quantile function (see Table 1.1)

Q(u) =
b
a

{
(1− u)−

a
a+1 − 1

}
a >−1, b > 0, (5.32)

if and only if, for all n = 0,1,2, . . . and 0 < u < 1,

Mn(u) = (na+ n+ 1)−1(1− u)nM(u). (5.33)

Proof. Assuming (5.33) to hold, we have

Mn(u)− (1− u)M′
n(u) =

1
na+ n+ 1

{M(u)− (1− u)M′(u)+ nM(u)},

and then using the identity (5.29), we get

1
na+ n+ 1

[M(u)− (1− u)M′(u)+ nM(u)] = M(u)− (1− u)M′(u).

The above equation simplifies to

aM(u) = (a+ 1)(1− u)M′(u)

solving which we get

M(u) = K(1− u)−
a

a+1 .

Noting that M(0) = μ = b, we have K = b. Since the mean residual quantile function
determines the distribution uniquely, we see from (2.48) that X has a generalized
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Pareto distribution with parameters (a,b). Next, we assume that X has the specified
generalized Pareto distribution. Then,

q(u) =
b

a+ 1
(1− u)−

a
a+1−1

and

Mn(u) =
∫ 1

u
(1− p)nq(p)d p,

and so

Mn(u) =
b

na+ n+ 1
(1− u)n− a

a+1 .

Using the expression (see Table 2.5)

M(u) = b(1− u)−
a

a+1 ,

the relationship in (5.33) is easily verified. Hence, the theorem.

There are other directions in which characterizations can be established. For
instance, the relationship T (u) has with any reliability function is a characteristic
property. It is easy to see that the simple identity

T (u) = A+B logH(u)

holds true if and only if X follows the linear hazard quantile distribution. Recall that
T (u) is also a quantile function representing some distribution. Thus, when X has
a life distribution, the corresponding T (u) may also be a known life distribution.
As an example, X follows power distribution if and only if the associated T (u)
corresponds to the Govindarajulu distribution.

5.7 Some Applications

A direct approach to see the application of TTT in data analysis is through the
model selection for an observed data. One can either derive a model based on
physical conditions or postulate one that gives a reasonable fit. The TTT can then be
derived and the data is analysed therefrom. An alternative approach is to start with a
functional form of TTT and then choose the parameter values that give a satisfactory
fit for the observations. The main point here is that the functional form should be
flexible enough to represent different data situations. Since many of the quantile
functions discussed in Chap. 3 provide great flexibility, their TTTs can provide
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candidates for this purpose. In such cases, to compute the descriptive measures of
the distribution, one need not revert the TTT to the corresponding quantile function.
We show that the descriptors can be obtained directly from T (u) and its derivative
t(u).

For this purpose, we recall (1.38)–(1.41) and the identity t(u) = (1− u)q(u).
Then, the first four L-moments are as follows:

L1 =

∫ 1

0
(1− p)q(p)d p =

∫ 1

0
t(p)d p,

L2 =

∫ 1

0
(p− p2)q(p)d p =

∫ 1

0
pt(p)d p,

L3 =

∫ 1

0
(3p2 − 2p3− p)q(p)d p =

∫ 1

0
p(2p− 1)t(p)d p,

L4 =

∫ 1

0
(p− 6p2+ 10p3− 5p4)q(p)d p =

∫ 1

0
p(1− 5p+ 5p2)t(p)d p.

Example 5.5. The quantile function of the generalized Pareto distribution (see
Table 1.1) yields

t(u) =
b

a+ 1
(1− u)−

a
a+1 .

Then, direct calculations using the above formulas result in

L1 = b, L2 =
b(a+ 1)

a+ 2
,

L3 =
b(a+ 1)(2a+ 1)
(a+ 2)(2a+ 3)

, L4 =
b(a+ 1)(2a+ 1)(3a+2)
(a+ 2)(2a+ 3)(3a+4)

.

With these L-moments, descriptive measures like L-skewness and L-kurtosis can be
readily derived from the formulas presented in Chap. 1.

In preventive maintenance policies, TTT has an effective role to play. At time
x = 0, a unit starts functioning and is replaced upon age T or its failure which ever
occurs first, with respective costs C1 and C2, with C1 <C2. If the unit lifetime is X ,
the first renewal occurs at Z = min(X ,T ) and

E(Z) =
∫ T

0
F̄(x)dx.

The mean cost for one renewal period is

F̄(T )C1 +(1− F̄(T ))C2
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and so the cost per unit time under age replacement model is

C(T ) =
F̄(T )C1 +(1− F̄(T ))C2∫ T

0 F̄(x)dx
.

This is equivalent to

C(T ) =
C1 +KF(T )∫ T

0 F̄(x)dx
, (5.34)

where K = C2 −C1. The simple replacement problem is to find an optimal interval
T = T ∗ such that it minimizes (5.34). In practice, one may not know the life
distribution but only some observations, and so the optimal age replacement interval
has to be estimated from the data. Assuming K = 1, without loss of generality, a
value u∗ determined by u∗ = F(T ∗) maximizes

1
C(Q(u))

=
T (u)

u+C1
, 0 ≤ u ≤ 1,

or one that maximizes

φ(u)
u+C1

.

Bergman [89] and Bergman and Klefsjö [95] provide a nonparametric estimation
concerning age replacement policies. Let (X1:n,X2:n, . . . ,Xn:n) be an ordered sample
from an absolutely continuous distribution. For estimating φ(u), we use

ur =
H−1

n ( r
n)

H−1
n (1)

and determine

T̂n = xν:n,

where v is such that

uν
ν
n +C1

= max
1≤r≤n

ur

( r
n)+C1

.

Then,

(i) C(T̂n) tends with probability one to C(T ∗) as n → ∞;
(ii) the optimal cost C(T ∗) may be estimated by Cn(T̂n), where

Cn(Xr:n) =
C1 +Fn(Xr:n)∫ Xr:n

0 F̄n(t)dt
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which is strongly consistent. If a unique optimal age replacement interval exists,
then T̂n is strongly consistent. Bergman [89] explains a graphical method of
determining T ∗. Draw the line passing through (−C

K ,0) which touches the
scaled transform φ(u) and has the largest slope. The abscissa of the point
of contact is u∗. One important advantage of the graphical method is that
it is convenient for performing sensitivity analysis. For example, T ∗ may be
compared for different combinations of K and C1. Suppose that instead of
age replacement at T ∗, replacement can be thought of at T1 and T2 satisfying
T1 < T ∗ < T2. Which of these ages give the minimum cost per unit time can
also be addressed with the help of TTT (Bergman [91]).

The term availability refers to the probability that a system is performing
satisfactorily at a given time and is equal to the reliability if no repair takes place. A
second optimality criterion is to replace the unit at age T for which the asymptotic
availability is maximized. This is equivalent to minimizing

A(T ) =
m1 +(m1 −m2)F(T )∫ T

0 F̄(t)dt
,

where m1 is the mean time of preventive maintenance and m2 is the mean time of
repair (Chan and Downs [132]). Since this expression is similar to (5.34), the same
method of analysis can be adopted here as well.

Klefsjö [338] discusses the age replacement problem with discounted costs,
minimal repair and replacements to extend system life. When costs have to be
discounted at a constant rate α , the problem ends up to minimizing

C(α,T ) =
C1 +K(1− e−αTF̄(T ))

α
∫ T

0 e−αt F̄(t)dt
−α(C1 +K)

∫ T

0
e−αT F̄(t)dt;

see Bergman and Klefsjö [92] for details. The above expression has a minimum at
the same value of T as

C1 +K(1− e−αTF̄(T ))∫ T
0 e−αt F̄(t)dt

,

which is of the same form as (5.34) in which F̄(t) is replaced by Ḡ(t) = e−αT F̄(t).
Consequently, the optimization problem permits the usual analysis with φ(u) for Ḡ.
The estimation problem is also dealt with likewise by minimizing

C+KGn(T )∫ T
0 Ḡn(t)dt

,

where

Ḡn(t) = e−αt
(

1− r
n

)
,

Xr:n ≤ t ≤ Xr+1:n, for r = 0,1, . . . ,n− 1.
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The condition of replacement that the unit replacing the older one is as good as
new is not always tenable. We assume a milder condition that the replacement is
done by a new unit with probability p and a minimal repair is accomplished with
probability (1− p). In other words, the unit is repaired to the same state with the
same hazard rate as just before failure.

If C∗ denotes the average repair cost, the long run average cost per unit is
(Cleroux et al. [151])

Cp(t) =
C1 +(K + C∗

P )F p(T )
∫ T

0 F−p(t)dt
.

Using the transform of F p, the above expression can also be brought to the standard
form in (5.34). When the costs are discounted, the same kind of analysis is available
in this case also.

Assume that the main objective is to extend system life, where the system has a
vital component for which n spares are available. When the vital component fails,
the system fails. Derman et al. [171] and Bergman and Klefsjö [93] then discussed
the schedule of replacements of the vital component such that the system life is as
long as possible. If vn is the expected life when an optimal schedule is used, they
showed that v0 = μ and

vn = vn−1 + μ max
0≤u≤1

{
φ(u)− vn−1

μ
u

}
.

Draw a line touching the φ(u) curve which is parallel to the line y =
vn−1
μ . If the

touching point is (un,φ(u0)), then the optimal replacement age is xn obtained by
solving F(xn) = un.

It is customary to test certain devices, which have high initial hazard rates
under conditions of field operation, to eliminate or reduce such early failures before
sending them to the customers. Such an operation of screening equipments for the
above purpose is called burn-in. If the burn-in is excessive, it will result in a loss to
the manufacturer in terms of several kinds of costs. On the other hand, if burn-in is
on a reduced scale, the problem of early failures may still persist among a percentage
of products thus resulting in a return cost. So, an important problem in conducting
the test is the determination of the optimal time point up to which the test has to be
carried out. Test procedures based on hazard rate, mean residual life, coefficient of
variation of residual life and so on have been proposed in the literature. Consider
the case when a non-repairable component is scrapped if it fails during the burn-in
period. Our problem is to determine the length T0 of the burn-in period for which
C(T ), the expected long run cost per unit time of useful operation is minimized. Let
b be the fixed cost per unit and d be the cost per unit time of burn-in. A unit which
fails in useful operation after the burn-in results in a cost C1. Then, Bergman and
Klefsjö [94] have shown that

C(T ) =
1+ b+C1F̄(T )+ d

∫ T
0 F̄(t)dt

μ− ∫ T
0 F̄(t)dt
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which is minimized for the same value of T as

α−F(T )

1− ∫ T
0 F̄(t)dt

,

where α = (1 + b + dμ +C1)C
−1
1 . Hence, T0 is obtained by first graphically

determining the value of u, say u0, for which

α− u
1−φ(u)

is minimized and then solving F(T0) = u0; see Klefsjö [339]. Klefsjö and West-
berg [340] point out that if the life distribution F̄(T ) is not known, it has to be
estimated from the data. For complete samples, the empirical distribution function
is the estimate of F . If the data is censored, i.e., in a set of n observations, k parts are
observed to fail and n− k are withdrawn from observation, then the Kaplan–Meier
estimator

FK
n (t) = 1−∏

r

n− r
n− r+ 1

,

where r runs through integer values for which t j:n ≤ t and t j:n are observed failure
times, could be used. The optimal replacement age is found by (1) drawing the TTT
plot based on times to failure, (2) drawing a line from (−C1

K ,0) which touches TTT
plot and has largest possible slope, and (3) taking the optimum replacement age
as the failure time corresponding to the optimal point of contact. If the point of
contact is (1,1), no preventive maintenance is necessary. Another major aspect of
analysis of failure data for repairable systems is the possible trend in inter-failure
times. Kvaloy and Lindqvist [365] used some tests based on TTT for this purpose.
Some test statistics have also been proposed for testing exponentiality against IFRA
alternative (Bergman [89]), for testing whether one distribution is more IFR than
another (Wie [580]) and for testing exponentiality against IFR (DFR) alternative
(Wie [579]).



Chapter 6
L-Moments of Residual Life and Partial
Moments

Abstract The residual life distribution and various descriptive measures derived
from it form the basis of modelling, characterization and ageing concepts in
reliability theory. Of these, the moment-based descriptive measures such as mean,
variance and coefficient of variation of residual life and their quantile forms were
all discussed earlier in Chaps. 2 and 4. The role of L-moments as alternatives
to conventional moments in all forms of statistical analysis was also highlighted
in Chap. 1. L-moments generally outperform the usual moments in providing
smaller sampling variance, robustness against outliers and easier characterization of
distributional characteristics, especially in the case of models with explicit quantile
functions but no tractable distribution functions. For this reason, we discuss in this
chapter the properties of the first two L-moments of residual life. After introducing
the definitions, several identities that connect L-moments of residual life with the
hazard quantile function, and mean and variance of residual quantile function, are
derived. A comparison between the second L-moment and variance of residual
life points out the situations in which the former is better. Expressions for the
L-moments of residual life of quantile function models of Chap. 3 are derived and
their behaviour is discussed in relation to the mean residual quantile function.
Characterization of lifetime models based on the functional form of the second
L-moment as well as in terms of its relationship with the hazard and mean residual
quantile functions are also presented. The upper and lower partial moments have
been found to be of use in reliability analysis, economics, insurance and risk theory.
Quantile-based definitions of these moments and their relationships with various
reliability functions are presented in this chapter. Many of the results on L-moments
of residual life have potential applications in economics. For example, income
distributions can be characterized by means of some simple properties of concepts
like income gap ratio, truncated Gini index and poverty measures. Quantile forms of
all these measures are defined and their usefulness in establishing characterizations
are explored.

N.U. Nair et al., Quantile-Based Reliability Analysis, Statistics for Industry
and Technology, DOI 10.1007/978-0-8176-8361-0 6,
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6.1 Introduction

The notion of residual life, based on the information that a unit has functioned
satisfactorily for a specified period of time, has been fundamental in reliability
theory and practice. As seen already in Chaps. 2 and 4, the residual life distribution
and various descriptive measures derived from it form the basis for the definition
of various ageing concepts. Of these measures, the moment-based descriptive
measures such as mean, variance and coefficient of variation of residual life
are used commonly in modelling lifetime data, characterizing life distributions,
defining classes of life distributions, and in evolving strategies for maintenance and
repair of equipments. The Lorenz curve and Bonferroni curve used in measuring
income inequality in economics and the Leimkuhler curve in informatics are all
characterized by the mean residual life and variance residual life along with other
reliability functions; see Chap. 5 for details. Upper and lower partial moments of X
are closely related to the moments of residual life. If X has finite moment of order r,
the rth upper partial moment (also called the stop-loss moment) about x is defined as

pr(x) = E[(X − x)+]r =
∫ ∞

x
(t − x)rdF(t),

where (X − x)+ = max(X − x,0). The quantity (X − x)+ is interpreted as a residual
life in the context of lifelength studies (Lin [401]) and the moments pr(x) are used in
actuarial studies in the analysis of risks (Denuit [170]). In the assessment of income
tax, x can be taken as the tax exemption level, so that (X − x)+ then becomes the
taxable income. Obviously, from the expression

m(x) = F̄(x)p1(x),

various identities connecting p1(x) and the different reliability functions follow. For
characterizations of distributions using pr(x) for r = 1 and in the general case, we
refer to Chong [147], Nair [438], Lin [401], Sunoj [554] and Abraham et al. [14]. If
we consider

(X − x)− =

{
x−X if X ≤ x

0 if X > x
,

we have similarly the lower partial moments as E[(X −x)−]r. Sunoj and Maya [555]
have discussed characterizations of distributions and various applications of lower
partial moments in the context of risk analysis and income analysis for the poor.

The use of L-moments as an alternative to the conventional moments, for all
purposes in which the latter is prescribed, is well known. Our discussions and the
references earlier in Chap. 1 do emphasize this aspect. L-moments generally outper-
form the usual moments in providing smaller sampling variance, robustness against
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outliers and easier characterization of distributional characteristics, especially for
models with explicit quantile functions but no tractable distribution functions. All
these considerations apply to lifetime data analysis as well as in the discussion of
properties of residual life distributions. Heavy-tailed distributions occur as models
of reliability data in which case the usual sample moments lack efficiency. Nair
and Vineshkumar [452] pointed out the usefulness of L-moments of residual life in
reliability analysis and then studied their properties in comparison with the mean
and variance of residual life.

6.2 Definition and Properties of L-Moments of Residual Life

Recall from Sect. 1.6 that the L-moment of order r is given by

Lr =
1
r

r−1

∑
k=0

(−1)k
(

r− 1
k

)
E(Xr−k:r), r = 1,2, . . .

=
r−1

∑
k=0

(−1)k
(

r− 1
k

)2 ∫ ∞

0
x(F(x))r−k−1(1−F(x))k f (x)dx. (6.1)

The truncated variable X(t) = X |(X > t) has its survival function as

F̄(t)(x) =
F̄(x)
F̄(t)

, x > t,

so that the L-moment of X(t) is given by

Lr(t) =
r−1

∑
k=0

(−1)k
(

r− 1
k

)2 ∫ ∞

t
x

(
F̄(t)− F̄(x)

F̄(t)

)r−k−1( F̄(x)
F̄(t)

)k f (x)
F̄(t)

dx. (6.2)

In particular, setting r = 1 in (6.2), we obtain

L1(t) =
1

F̄(t)

∫ ∞

t
x f (x)dx = E[X |(X > t)]

which is the conditional mean function studied in Chap. 3. Further, r = 2 in (6.2)
leads to

L2(t) =
1

∑
k=0

(−1)k
(

1
k

)2 ∫ ∞

t
x

(
F̄(t)− F̄(x)

F̄(t)

)1−k ( F̄(x)
F̄(t)

)k f (x)
F̄(t)

dx

=
1

F̄2(t)

∫ ∞

t
x[F̄(t)− 2F̄(x)] f (x)dx
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=
1

F̄(t)

∫ ∞

t
x f (x)dx− 2

F̄2(t)

∫ ∞

t
xF̄(x) f (x)dx

= L1(t)− t − 1
F̄2(t)

∫ ∞

t
F̄2(x)dx

= m(t)− 1
F̄2(t)

∫ ∞

t
F̄2(x)dx, (6.3)

where m(t) is the usual mean residual life function. It thus follows that L2(t)≤m(t),
where the equality sign does not hold for any non-degenerate distribution. Thus,
L2(t) is strictly less than the mean residual life function for all non-degenerate
distributions. Differentiating (6.2) and simplifying the resulting expression,
we get

L′
2(t) = h(t)(2L2(t)−m(t)). (6.4)

Now, setting F(x) = p and F(t) = u in (6.2), we get

lr(u) = Lr(Q(u))

=
r−1

∑
k=0

(−1)k
(

r− 1
k

)2 ∫ 1

u

(
p− u
1− u

)r−k−1(1− p
1− u

)k Q(p)
1− u

d p.

In particular, we have

l1(u) = (1− u)−1
∫ 1

u
Q(p)d p (6.5)

and

l2(u) = (1− u)−2
∫ 1

u
(2p− u− 1)Q(p)d p. (6.6)

The properties of l1(u), equivalent to E[X |(X > t)], have been studied rather
extensively and so we concentrate here more on l2(u). However, notice that l1(u)
uniquely determines the distribution through the formula

Q(u) = l1(u)− (1− u)l′1(u) (6.7)

which is evident from (6.5). From (6.6), as u → 0, we have

l2(0) =
∫ 1

0
(2p− 1)Q(p)d p=

∫ 1

0
p(1− p)q(p)d p = 2Δ ,

where Δ is the mean difference of X as defined in (1.12).
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Theorem 6.1. The functions l1(u), l2(u) and M(u) determine each other and Q(u)
uniquely.

Proof. We begin with M(u), and the identity

M(u) = l1(u)−Q(u)

= l1(u)−{l1(u)− (1− u)l′1(u)}
= (1− u)l′1(u). (6.8)

Differentiating (6.6), we have

(1− u)2l′2(u)− 2(1− u)l2(u) =−2uQ(u)+ (u+ 1)Q(u)−
∫ 1

u
Q(p)d p

= Q(u)− uQ(u)−
∫ 1

u
Q(p)d p

= Q(u)− uQ(u)− (1− u)(M(u)+Q(u))

=−(1− u)M(u),

or equivalently

M(u) = 2l2(u)− (1− u)l′2(u). (6.9)

Finally, from (2.38), we have

Q(u) = μ−M(u)+
∫ u

0

M(p)
1− p

d p, (6.10)

and thus M(u) determines Q(u), and l1(u) and l2(u) determine M(u). In the case of
l1(u), we have

l1(u) =
∫ u

0

M(p)
1− p

d p (6.11)

=

∫ u

0

2l2(p)− (1− u)l′2(p)
1− p

d p. (6.12)

Equations (6.11) and (6.12) express l1(u) in terms of M(u), while l2(u) and (6.7)
recover Q(u) from l1(u). We also have

l2(u) = (1− u)−2
∫ 1

u
(1− p)M(p)d p

= (1− u)−2
∫ 1

u
(1− p)2l′1(p)d p
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determining l2(u) from M(u) and l1(u). Given l2(u), M(u) is derived from (6.9) and
so Q(u) from (6.10). This completes the proof of the theorem.

Gini’s mean difference of X(t) is

G(t) = 2
∫ ∞

t
F(t)(x)F̄(t)(x)dx.

In terms of quantile functions, we have

Δ(u) = G(Q(u)) = 2
∫ 1

u

(1− p)(p− u)
(1− u)2 q(p)d p. (6.13)

Integrating the RHS of (6.13) by parts, we obtain

Δ(u) = 2l2(u).

Thus, the second L-moment of the conditional distribution of X |(X > t) is half the
mean difference of X |(X > t). Since the mean difference is location invariant, the
second L-moment of X(t) is the same as that of Xt = X − t|(X > t), and so we refer
to l2(u) as the second L-moment of residual life. Mean difference is a measure of
dispersion and so l2(u) will be treated as a measure of variation in the residual life.
Thus, l2(u) can be viewed as an alternative to the variance residual life in future
discussions.

In addition to the mean residual quantile function, other quantile-based reliability
functions are also connected with l2(u). Some typical examples are worked out
below. The others can be obtained by exploiting various identities presented earlier
in Chap. 2. Invoking (2.36), we have

l2(u) = (1− u)−2
∫ 1

u

(∫ 1

p
H−1(s)ds

)
d p.

Similarly, from (2.46), we have

V (u) =
1

1− u

∫ 1

u
M2(p)d p

=
1

1− u

∫ 1

u

{
2l2(p)− (1− u)l′2(p)

}2
d p.

Using the relation (2.36) once again, the total time on test transform satisfies

l2(u) =
1

(1− u)2

∫ 1

u
(μ−T (p))d p.
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Table 6.1 Second L-moment of residual life for some distributions

Distribution l2(u)

Exponential (2λ )−1

Pareto II
αc

(c−1)(2c−1)
(1−u)−

1
c

Rescaled beta
Rc

(c+1)(2c+1)
(1−u)−

1
c

Half-logistic
2σ

(1−u)2

{
1−u− (1+u) log

( 2
1+u

)}

Power
α

(1+β )(1−u)2

{
β +(β +1−u)u

1
β
}

Exponential geometric
1− p

p(1−u)2

{
1− pu

p
log

(
1− pu
1− p

)
− (1−u)

}

Example 6.1. The linear hazard quantile distribution is specified by

q(u) = [(1− u)(a+ bu)]−1

and so

l2(u) =
1

(1− u)2

∫ 1

u
(1− p)(p− u)q(p)d p

=
1

(1− u)2

∫ 1

u

p− u
a+ bp

d p

=
1

b(1− u)2

{
1− u+

a+ bu
b

log

(
a+ bu
a+ b

)}
.

The expressions of l2(u) of some life distributions are presented in Table 6.1.

Since both variance residual life quantile function and l2(u) are measures of
variability, it is appropriate to compare the two. The functional form of l2(u)
characterizes the life distribution and hence it can be used to identify the distribution.
Although V (u) also characterizes the distribution, unlike l2(u), there is no simple
expression that relates Q(u) in terms of V (u) or between F̄(x) and σ2(x). See
the corresponding discussion in Sect. 2.1.3. Yitzhaki [596] has pointed out that
the mean difference is a better measure than variance in deriving properties of
distributions which are non-normal. Nair and Vineshkumar [452] have provided
empirical evidence that supports this observation. They simulated random samples
from the exponential population with varying parameter values. Using V (u) = λ−2

and l2(u) = (2λ )−1, the parameter λ was estimated by equating the sample and
population values. They then noted that l2(u) gave a better approximation to the
model as well as estimates with less bias in at least 75 % of the samples.
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Another important advantage of the L-moments is that, if the mean exists, all
higher-order L-moments exist, which may not be the case with the usual moments.
The data on annual flood discharge rates of Floyd river at James, Iowa, considered
by Mudholkar and Hutson [423], was reanalysed using the power-Pareto law which
gave a good fit at the parameter values ĉ = 3,495.2, λ̂1 = 0.6226 and λ̂2 = 0.5946.
Note that, since λ2 > 0.5, the function V (u) does not exist for the distribution, while
l2(u) can be used for further analysis.

The variance residual quantile function has an important role in analysing the
ageing aspects. Some additional life distributions were identified based on their
monotone behaviour, such as DVRL and IVRL classes (Chap. 4). An important
implication observed earlier was that decreasing (increasing) mean residual quantile
function implied decreasing (increasing) V (u). By comparison, V (u) and l2(u) may
not show the same type of monotonicity. Even when V (u) increases for larger u,
l2(u) may show a decreasing trend. For example, for the distribution

Q(u) = 4u3 − 3u4, 0 ≤ u ≤ 1,

after performing some algebra, we obtain

V (u) =
1

175

{
22− 6u− 34u2− 62u3+ 50u4+ 78u5+ 106u6+ 9u7− 38u8

}
.

Thus,

dV (u)
du

=
1

175

{
−6− 68u− 186u2+ 200u3+ 390u4+ 636u6+ 63u6− 304u7

}
,

from which we find that V (u) decreases in (0,u0) and then increases in (u0,1) with
the change point u0 which is approximately 0.554449. At the same time, we have

l2(u) =
(1− u2)2

5

and

dl2(u)
du

=−4
5

u(1− u2)< 0

showing that l2(u) is decreasing for all u in (0,1). Neither the implications between
the mean residual quantile function M(u) and V (u) hold good when V (u) is replaced
by l2(u). This is well established in the following illustrations that involve some
quantile function models discussed earlier in Chap. 3.

Example 6.2. The generalized Tukey-lambda distribution of Freimer et al. [203]
with
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Fig. 6.1 Plot of M(u) and l2(u) for the data on lifetimes of aluminum coupons

Q(u) = λ1 +λ−1
2

{
uλ3 − 1
λ3

− (1− u)λ4 − 1
λ4

}

has

M(u) =
(1− u)λ4

λ2(λ4 + 1)
− uλ3

λ2λ3
+

1− uλ3+1

λ2(1+λ3)(1− u)

and

l2(u) =
1− u
λ2λ4

− 2(1− uλ3+2)

λ2λ3(λ3 + 1)(λ3 + 2)(1− u)2 +
1− uλ4

λ2(1+λ4)(2+λ4)

+
(1− u)(1+ uλ3+1)

λ2λ3(λ3 + 1)(1− u)2 .

The distribution provides satisfactory fit to the aluminum coupon data discussed
earlier (first 100 observations) with parameter values

λ̂1 = 1382.18, λ̂2 = 0.0033, λ̂3 = 0.2706 and λ̂4 = 0.2211.

The graphs of M(u) and l2(u) given in Fig. 6.1 show that both are decreasing
functions of u.

Example 6.3. Govindarajulu [224] fitted the distribution

Q(u) = ((β + 1)uβ −βuβ+1)
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Fig. 6.2 Plot of M(u) and l2(u) for the data on failure times of a set of refrigerators

to the data on failure times of a set of refrigerators, with the estimate of β being
β̂ = 2.94. The mean residual quantile function and the second L-moment function
for the distribution are

M(u) =
2− (β + 1)(β + 2)uβ + 2β (β + 2)uβ+1−β (β + 1)uβ+2

(β + 2)(1− u)

and

l2(u) =
2β − 2(β + 3)u+(β+ 2)(β + 3)uβ+1− 2β (β + 3)uβ+2+β (β + 1)uβ+3

(β + 2)(β + 3)(1− u)2 .

In the case of the data mentioned above, M(u) initially increases and then decreases
with approximate change point u= 0.2673, but l2(u) decreases for all u, as displayed
in Fig. 6.2.

Example 6.4. Consider the power-Pareto distribution with

Q(u) =Cuλ1(1− u)−λ2, C,λ1,λ2 > 0,

for which

M(u) = c(1− u)−1{B1−u(λ1 + 1,1−λ2)− uλ1(1− u)1−λ2}

and

l2(u) = c(1− u)−2{2B1−u(λ1 + 2,1−λ2)− (u+ 1)B1−u(λ1 + 1,1−λ2)},
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Fig. 6.3 Plot of M(u) and l2(u) for the data on failure times of electric carts

where

Bu(p,q) =
∫ u

0
t p−1(1− t)q−1dt

is the incomplete beta integral. Applying the model to the times of failure of 20
electric carts reported in Zimmer et al. [604], the fit by the method of L-moments
with

λ̂1 = 0.234612, λ̂2 = 0.09669912, Ĉ = 1530.53,

is observed to be satisfactory. Both M(u) and l2(u) are seen to possess the similar
behaviour, decreasing first and then increasing, as displayed in Fig. 6.3.

Arising from the mean and variance of residual life, the coefficient of variation of
residual life is also of importance in reliability. We refer to Sects. 2.1.3 and 2.5 for
pertinent definitions and other details. Just as the coefficient of variation of residual
life uniquely determines a distribution, it is possible to show that the L-coefficient of
variation c(u) = l2(u)

l1(u)
also possesses a similar property. Nair and Vineshkumar [452]

have shown that if C(u) is differentiable, from the definitions of l2(u) and l1(u), we
can write

∫ 1

0
(2p− u− 1)Q(p)d p= (1− u)c(u)

∫ 1

u
Q(p)d p.

Differentiating this expression and simplifying, we obtain

Q(u)∫ 1
u Q(p)d p

=
(1− u)c′(u)− c(u)+ 1

(1− u)(1+ c(u))
.
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Upon integrating, we get

− log
∫ 1

u
Q(p)d p =

∫
(1− u)c′(u)− c(u)+ 1

(1− u)(1+ c(u))
du

so that

Q(u) = g(u)exp

{
−

∫
g(u)du

}
, (6.14)

where

g(u) =
(1− u)c′(u)− c(u)+ 1

(1− u)(1+ c(u))
.

Equation (6.14) retrieves Q(u) from c(u) only up to a change of scale. We illustrate
this result in the next theorem.

Theorem 6.2. X has L-coefficient of variation of the form

c(u) =
1− u

3(1+ u)
(6.15)

if and only if it has uniform distribution.

Proof. When X has uniform distribution over (α,β ), 0 < α < β , we have Q(u) =
u(β −α),

l1(u) =
(β −α)

2
(1+ u)

and

l2(u) =
(β −α)

6
(1− u)

giving (6.15). Conversely, applying (6.14) with c(u) as in (6.15), we get

g(u) =
2u

(1− u)(1+ u)
.

Upon substituting this in (6.14), we obtain

Q(u) = 2u

which is uniform (with a change of scale).
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6.3 L-Moments of Reversed Residual Life

On lines similar to those in the preceding section, we can look at the L-moments of

tX = X |(X ≤ t) whose distribution function is F(x)
F(t) , 0 < x ≤ t. Using (6.1), the rth

L-moment of tX has the expression

Br(t) =
r−1

∑
k=0

(−1)k
(

r− 1
k

)2 ∫ t

0
x
(F(x)

F(t)

)r−k−1(
1− F(x)

F(t)

)k f (x)
F(t)

dx.

In particular, we have

B1(t) =
∫ t

0

x f (x)
F(t)

dx = E[X |X ≤ x], (6.16)

B2(t) =
1

F2(t)

∫ t

0
(2F(x)−F(t))x f (x)dx. (6.17)

Setting u = F(t) and p = F(x), we have

θ1(u) = B1(Q(u)) = u−1
∫ u

0
Q(p)d p (6.18)

and

θ2(u) = B2(Q(u)) = u−2
∫ u

0
(2p− u)Q(p)d p. (6.19)

By differentiating (6.16) and using the definitions of the reversed hazard rate in
(2.22) and the reversed mean residual life in (2.24), we get

λ (t) =
B′

1(t)
t −B1(t)

and

r(t) = t −B1(t)

so that

λ (t) = B′
1(t)r(t).

Also, by differentiating (6.17) and simplifying, we get

B′
2(t) = λ (t)[r(t)− 2B2(t)].
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Table 6.2 Expressions of θ2(u) for some quantile models

Distribution θ2(u)

Power
αβ

(β +1)(2β +1)
u

1
β

Govindarajulu
σβuβ

(β +2)(β +3)
{β +3− (β +1)u}

Generalized lambda 1
u2

[ λ3uλ3+2

λ2(λ3 +1)

+ 1
λ2(λ4+1)

(
u{(1−u)λ3+1 −1}+ 2

λ4+2{(1−u)λ4+2 −1}
)]

Power Pareto Cu−2{2Bu(λ1 +2,1−λ2)−uB(λ1 +1,1−λ2)}

Likewise, we have the following relationships connecting θ1(u) and θ2(u) with the
reliability functions

R(u) = Q(u)−θ1(u)

= θ1(u)+ uθ ′1(u)−θ1(u) = uθ ′1(u),

θ2(u) =
1
u2

∫ u

0
pR(p)d p,

Q(u) = R(u)+
∫ u

0
p−1R(p)d p,

(6.20)

and

R(u) = uθ ′2(u)+ 2θ2(u).

As in Sect. 6.2, each of Q(u), θ1(u), R(u) and θ2(u) determine others uniquely. We
further have

D(u) = u−1
∫ u

0
p{θ ′2(p)+ 2θ2(p)}2d p.

Examples of θ2(u) for some quantile models are presented in Table 6.2.

The L-coefficient of variation of tX , i.e., θ (u) = θ2(u)
θ1(u)

, determines the distribution
of X up to a change of scale through the formula

Q(u) =
uθ ′(u)+θ (u)+ 1

u(1−θ (u)) exp

{∫
uθ ′(u)+θ (u)+ 1

u(1−θ (u)) du

}
.

Theorem 6.3. X follows the power distribution if and only if θ (u) is a constant.

Proof. For the power distribution with
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Q(u) = αu
1
β , 0 ≤ u ≤ 1, β �= 0,β > 0,

we have

θ1(u) =
αβ

1+β
u

1
β and θ2(u) =

αβ
(β + 1)(2β + 1)

u
1
β

so that

θ (u) =
1

2β + 1
,

a constant. Conversely when θ (u) = c, a constant, the expression given above for
Q(u) in terms of θ (u) yields

Q(u) =
c+ 1

u(1− c)
exp

{∫
c+ 1

u(1− c)
du

}

=
c+ 1
1− c

u
2c

1−c , c �= 1,

which corresponds to a power distribution. Hence, the theorem.

The relevance of this characterization in economics is explained later in Sect. 6.5.

6.4 Characterizations

Like other reliability functions, the second L-moments l2(u) and θ2(u) also charac-
terize life distributions through special relationships. We now present several such
results. The first result is the characterization of the generalized Pareto distribution
by simple relationships between l2(u), M(u) and l1(u).

Theorem 6.4. Let X be a continuous non-negative random variable with
E(X)< ∞. Then, X follows the generalized Pareto distribution with

Q(u) =
b
a

{
(1− u)−

a
a+1 − 1

}
, a >−1, b > 0, (6.21)

if and only if the following conditions are satisfied:

(i) l2(u) =CM(u), 0 <C < 1;
(ii) l2(u) = a1l1(u)+ a2, a1 >−1, a2 > 0;

(iii) l1(u) = AM(u)+B.
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Proof. First, we calculate l1(u), l2(u) and M(u), using (6.21), to be

l1(u) = ba−1(a+ 1)
{
(1− u)−

a
a+1 − 1

}
,

l2(u) = b(a+ 1)(a+ 2)−1(1− u)−
a

a+1 ,

M(u) = b(1− u)−
a

a+1 ,

so that

l2(u) =
a+ 1
a+ 2

M(u),

l2(u) =
a

a+ 2
l1(u)+

b(a+ 1)
a+ 2

,

l1(u) =
a

a+ 1
M(u)− ba

a+ 1
.

Thus, the conditions (i), (ii) and (iii) are satisfied for the generalized Pareto
distribution. Conversely, condition (i) is equivalent to

C(1− u)2M(u) =
∫ 1

0
(1− p)M(p)d p

or

(1− u)M(u)∫ 1
u (1− p)M(p)d p

=
1

C(1− u)
.

Upon solving the last equation, we get

M(u) = K(1− u)
1−2C

C , (6.22)

where K is found to be K = M(0) = μ . Since 0 <C < 1, we can write it as C = a+1
a+2

for a >−1 and obtain (6.21). To prove the sufficiency of (ii), we note that it implies

(1− u)−2
∫ 1

u
(2p− u− 1)Q(p)d p= (1− u)−1a1

∫ 1

u
Q(p)d p+ a2.

Differentiating the above equation twice, we get

Q′(u)− 2a1Q(u)
(1+ a1)(1− u)

=
2a2

(1+ a1)(1− u)
. (6.23)

Noticing that (6.23) is a first-order linear differential equation with integrating factor

(1− u)
2a1

1+a1 , we have its unique solution as

(1− u)
2a1

1+a1 Q(u) = K − a2

a1
(1− u)

2a1
1+a1 .
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Evaluating K at u = 0, we obtain K = a2
a1

, and thus

Q(u) =
a2

a1

{
(1− u)

− 2a1
1+a1 − 1

}

which corresponds to a generalized Pareto
(
reduces to (6.21) when a1 = a

a+2 ,

a2 =
b

a+2

)
. The result in (iii) is a consequence of (i) and (ii), and this completes the

proof of the theorem.

Remark 6.1. Conditions (i), (ii) and (iii) show that each of l1(u), l2(u) and M(u) is
a linear function of the other.

Remark 6.2. The generalized Pareto law reduces to the exponential distribution as
a → 0, rescaled beta for −1 < a < 0, and Pareto II for a > 0. Thus, the exponential
(rescaled beta; Pareto II) is characterized by l2(u) =

1
2 M(u)

(
< 1

2 M(u); > 1
2 M(u)

)
corresponding to the values C = 1

2

(
< 1

2 , >
1
2

)
in result (i).

Remark 6.3. It is seen from direct calculations that

V (u) =
1+ a
1− a

b2(1− u)−
2a

a+1 = Kl2
2(u), with K =

(a+ 2)2

1− a2 .

But, Nair and Vineshkumar [452] have shown that this is not a characteristic
property of the generalized Pareto.

Life distributions characterized by simple forms of various reliability functions
have been of interest in reliability theory. They are quite useful in modelling lifetime
data. The linear and quadratic hazard rate distributions belong to this category. One
may refer to Bain [45, 46], Sen and Bhattacharya [525] and Gore et al. [223] for
details. A second example is the generalized Pareto distribution which is uniquely
determined by a linear mean residual life function (also by a reciprocal linear hazard
rate function). It has been seen that L2(t) = c (l2(u) = c), where c is a constant
characterizing the exponential law. In the same manner, let us consider the linearity

L2(t) = A+Bt,

or equivalently

l2(u) = A+BQ(u) (6.24)

and identify the corresponding life distribution. Using (6.9), we then have

M(u) = 2A+ 2BQ(u)−B(1−u)q(u.)

To express the RHS also in terms of M(u), we make use of (2.38) and (2.39) to
arrive at
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M(u) = 2A+ 2B

{∫ u

0

M(p)d p
1− p

−M(u)+ μ
}
−B[M(u)− (1− u)M′(u)].

Differentiating with respect to u and simplifying the resulting expression, we obtain
the homogeneous linear differential equation of order two with variable coefficients

B(1− u)2M′′(u)− (4B+ 1)(1− u)M′(u)+ 2BM(u) = 0. (6.25)

To solve (6.25), we set M(u) = (1− u)m to get the auxiliary equation

Bm(m− 1)+ (4B+ 1)m+2B= 0,

or the quadratic equation (in m)

Bm2 +(3B+ 1)m+ 2B= 0. (6.26)

Suppose (6.26) has two distinct roots m1 and m2. Then, the general solution of (6.25)
is of the form

M(u) =C1(1− u)m1 +C2(1− u)m2. (6.27)

As u tends to zero, we get

μ =C1 +C2. (6.28)

Thus, from (6.27), the distribution satisfying (2.26) is recovered as

Q(u) =
∫ u

0

M(p)
1− p

d p−M(u)+ μ

= μ+C1

{
1

m1
− 1

m1 + 1
(1− u)m1

}
+C2

(
1

m2
− 1

m2 + 1

)
(1− u)m2 .

Upon substituting for μ from (6.28), we obtain the final expression

Q(u) =C1
1+m1

m1
{1− (1− u)m1}+C2

1+m2

m2
{1− (1− u)m2}. (6.29)

When the roots are equal, we must have

(3B+ 1)2− 8B2 = 0,

or equivalently

B2 + 6B+ 1= 0. (6.30)
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Also, in this situation, we have

m1 =− (1+ 3B)
2B

.

Since the product of the roots is 2, m1 =±√
2, and therefore from (6.30), we have

B =− 1

−3− 2
√

2
=−3+ 2

√
2

or

B =− 1

−3+ 2
√

2
=−3− 2

√
2.

Both values satisfy (6.30). We then use the method of variation of parameters to
extract the solution of (6.25). Assume that the solution in (6.27), of the form

M(u) =C1M1(u)+C2M2(u),

where Mi(u) = (1− u)mi , i = 1,2, is such that M2(u) = yM1(u) is a solution with y
being some function of u. Then,

M′
2(u) = yM′

1(u)+ y′M1(u)

and

M′′
2 (u) = yM′′

1 (u)+ 2y′M′
1(u)+M1(u)y

′′.

Substituting these in (6.25), we get

[B(1− u2)M′′
1 (u)− 4(B+ 1)(1− u)M′

1(u)+ 2BM1(u)]y

+(1− u)2M1(y)y
′′ − (4B+ 1)(1− u)y′M1(u)+ 2(1− u)2y′M′

1(u) = 0.

Since M1(u) is a particular solution of (6.25), the first term vanishes and so we get

(1− u)2M1(u)y
′′ − (4B+ 1)(1− u)y′M1(u)+ 2(1− u)B2y′M′

1(u) = 0. (6.31)

The transformation

M1(u) = (1− u)−
3B+1

2B

in (6.31) shows that

(1− u)y′′ −By′ = 0,
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which has its solution as

y′ = (1− u)−B

or

y =
(1− u)1−B

B− 1
.

Thus, we have

M2(u) =
(1− u)1−B

B− 1
M1(u)

which gives the second solution corresponding to m1 = m2 as

M(u) =C1M1(u)+C2
(1− u)1−B

B− 1
M1(u)

=

{
C1 +

C2

B− 1
(1− u)1−B

}
(1− u)m1 .

(6.32)

The quantile function corresponding to (6.32) is calculated from (2.38) as

Q(u) =C1
m1 + 1

m1
{1− (1− u)m1}+ c2(m1 −B+ 2)

(B− 1)(m1 −B+ 1)
{1− (1− u)m1−B+1}.

(6.33)
To complete the required characterization, it remains to be shown that the identity
in (6.24) holds for the quantile functions in (6.28) and (6.33). By direct calculation
from (6.28), we see that

l2(u) =
c1(1− u)m1

m1 + 2
+

c2(1− u)m2

m2 + 2

=
c1(1− u)m1

m1 + 2
+

c2m1(1− u)
2

m1

2(1+m1)
,

where we have used the fact that m1m2 = 2. Then, (6.24) holds with

A =
C1

2+m1
+

C2m1

2(1+m1)
,

B = − m1

(1+m1)(2+m2)
.

In the second case, A = C1
m1+1

m1
+ C2(m1−B+2)

(B−1)(m1−B+1) , where m1 and B have the values
determined earlier.

Thus, we have established the following theorem.
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Theorem 6.5. A continuous non-negative random variable X with finite mean
satisfies

l2(u) = A+BQ(u) (L2(t) = A+Bt)

if and only if its distribution is specified by the quantile functions (6.29) or (6.33).

Remark 6.4. The conditions on the parameters are determined such that Q(u) is
a quantile function. Notice also that the quantile functions in this case cannot be
inverted into analytically tractable distribution functions.

Remark 6.5. The generalized Pareto distribution arises as a particular solution when
C2 = 0 and m1 =− a

a+1 .

The next result is based on a simple relationship between l2(u) and the hazard
quantile function H(u).

Theorem 6.6. A continuous non-negative random variable with finite mean
satisfies

l2(u) = K[H(u)]−1, K > 0, (6.34)

for all 0 < u < 1, if and only if

Q(u) =C1
1+m1

m1
{1− (1− u)m1}+C2

1+m2

m2
{1− (1− u)m2}, (6.35)

where m1 and m2 are the roots of the quadratic equation

Km2 + 3Km+(2K− 1) = 0.

Proof. The condition (6.34) is equivalent to

1
(1− u)2

∫ 1

u
(1− p)M(p)d p = K{M(u)− (1− u)M′(u)},

or

∫ 1

u
(1− p)M(p)d p = K(1− u)2M(u)−K(1− u)3M′(u).

Differentiating and simplifying the expression, we get

K(1− u)2M′′(u)− 4K(1− u)M′(u)+ (1− 2K)M(u) = 0. (6.36)

Now by setting M(u) = (1− u)m and proceeding as in the previous theorem, we
have the auxiliary equation
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Km2 + 3Km+ 2K− 1 = 0.

Let m1 and m2 be the roots of this quadratic equation. Then, a general solution to
(6.36) is

M(u) =C1(1− u)m1 +C2(1− u)m2,

where m1 +m2 =−3. Then,

Q(u) =
C1(1+m1)

m1
{1− (1− u)m1}+C2

1+m2

m2
{1− (1− u)m2}.

If the roots are the same, the condition for this is

K2 + 4K = 0.

However, the roots K = 0 and K = −4 are both inadmissible. Hence, (6.35)
represents the unique distribution satisfying (6.34).

Now, for the distribution (6.35), we have

l2(u) =
C1(1− u)m1

m1 + 2
+

C2(1− u)m2

m2 + 2

and

q(u) =C1(1+m1)(1− u)m1−1 +C2(1+m2)(1− u)m2−1.

Hence,

H(u) = {(1− u)q(u)}−1

= {C1(1+m1)(1− u)m1 +C2(1+m2)(1− u)m2}−1.

Since (1+m1)(2+m1) = (1+m2)(2+m2) by virtue of m1 +m2 =−3, we have

l2(u) = K(H(u))−1 with K = (1+m1)(2+m2).

The proof of the theorem is thus completed.

There exist similar results for the reversed hazard quantile functions. Since the
proof proceeds along the same lines, we just briefly outline the proofs.

Theorem 6.7. If X is a continuous non-negative random variable with finite mean,
then

θ2(u)Λ(u) =C, (6.37)
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a positive constant, if and only if

Q(u) =
1+m1

m1
C1um1 +

1+m2

m2
C2um2 , (6.38)

where C1 and C2 are the roots of the quadratic equation

Cm2 + 3Cm+ 2C− 1 = 0.

Proof. Condition (6.37) is same as

1
u2

∫ u

0
pR(p)d p =C{R(u)+R′(u)}

leading to

Cu2R′′(u)+ 4CuR′(u)+ (2C− 1)R(u) = 0.

Assuming R(u) = um, the auxiliary equation becomes

Cm(m− 1)+ 4m+(2C− 1) = 0,

and so

R(u) =C1um1 +C2um2

which gives Q(u) in (6.38) on applying (2.51). The condition for equal roots is
C =−4 or 0, which are both inadmissible.

Conversely, when (6.38) holds, we have

θ2(u) =
C1um1

m1 + 2
+

C2um2

m2 + 2

=C∧ (u),

where C−1 = (1+m1)(m1 + 2) = (1+m2)(m2 + 2), on using m1 +m2 =−3.

Theorem 6.8. If X is a non-negative random variable with finite mean, the identity

θ2(u) =CR(u) (6.39)

holds if and only if X has power distribution

Q(u) = αu1/θ , i.e., F(x) =
( x
α

)β
, 0 ≤ x ≤ α. (6.40)
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Proof. For the power distribution, we have

θ2(u) =
αβ

(β + 1)(2β + 1)
u

1
β

and

R(u) =
α
β + 1

u
1
β

so that (6.39) is satisfied with C = β
(2β+1) . Conversely, (6.39) means that

1
u2

∫ u

0
pR(p)d p = cR(u),

or equivalently

CuR′(u) = (1− 2c)R(u).

The last equation yields the solution as

R(u) = Ku
1−2c

c and Q(u) =
K(1− c)

1− 2c
u

1−2c
c

which is of the from (6.40) with C = β
1+2β and α = K(1−C)

1−2C .

Theorem 6.9. If X is a non-negative random variable with finite mean, the identity

θ2(u) = AQ(u) (6.41)

holds if and only if X has a distribution with

Q(u) =C1

(
1+m1

m1

)
um1 +C2

(
1+m2

m2

)
um2 , (6.42)

where m1 and m2 are the distinct roots of

Am2 +(3A− 1)m+ 2A= 0. (6.43)

If (6.43) has equal roots, then

Q(u) =

{
C1

(
1+m1

m1

)
+C2

1+m1

m1
logu− C2

m2
1

}
um1 (6.44)

with m1 =
3
√

2−4
3−2

√
2

and A = 3− 2
√

2.
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Proof. Let us assume the identity in (6.41). Then, from (2.51) and (6.20), we have

1
u2

∫ u

0
pR(p)d p = AR(u)+A

∫ u

0

R(p)
p

d p.

Differentiation of this equation yields

Au2R′′(u)+ (4A− 1)uR′(u)+ 2AR(u) = 0.

Substitution of R(u) = um gives the auxiliary equation

Am2 +(3A− 1)m+ 2A= 0. (6.45)

When the roots of the quadratic equation in (6.45) are distinct, we get

R(u) =C1um1 +C2um2 (6.46)

and then for (2.51)

Q(u) =C1
1+m1

m1
um1 +C2

1+m2

m2
um2 ,

where m1 and m2 are such that

m1m2 = 2 and m1 +m2 =
1− 3A

A
. (6.47)

Using (6.46), we have

θ2(u) =
1
u2

∫ u

0
pR(p)d p =

C1um1

m1 + 2
+

C2um2

m2 + 2
.

One can verify that

θ2(u) = AQ(u)

with

A =
m1

(1+m1)(m1 + 2)
=

m2

(1+m2)(m2 + 2)
,

where the last equality holds since m1m2 = 2. When the roots of (6.45) are equal,
say m1, we see that

A2 − 6A+ 1= 0

holds whenever A = 3± 2
√

2 both of which are admissible values. Taking
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R(u) =C1um1 +C2um2 =C1R1(u)+C2R2(u)

from (6.46) and setting R2(u) = yR1(u), we get, by the method of variation of
parameters,

Au2R1(u)y
′′+ 2Au2R′

1(u)y
′+ u(4A− 1)R1(u)y

′ = 0

when R1(u) = u 1−3A
2A ,

Au2y′′+Auy′ = 0

or

uy′′+ y′ = 0.

The solution is y = logu, and so the quantile function simplifies to

Q(u) =C1
1+m1

m1
um1 +C2

1+m1

m1
um1 logu− C2um1

m2
1

,

as in (6.44). Notice that Q(u) becomes a quantile function only when m1 > 0. In this

case, m1 =
3
√

2−4
3−2

√
2

and

θ2(u) =

{
C1

m1 + 2
+

C2

m1 + 2
logu− C2

(m1 + 2)2

}
um1

= 2(3− 2
√

2)Q(u).

This completes the proof of the theorem.

6.5 Ageing Properties

When conceived as a reliability function, the L-moment l2(u) can also be employed
in distinguishing life distributions based on its monotone behaviour. Since l2(u)
is twice the mean difference residual quantile function, we have the following
definitions.

Definition 6.1. A lifetime random variable X is said to have increasing (decreasing)
mean difference residual quantile function, IMDR (DMDR), according to whether
l2(u) is an increasing (decreasing) function of u.

Example 6.5. From the expressions in Table 6.1, the Pareto II distribution has
increasing mean difference residual quantile function, while the rescaled beta has
decreasing mean difference residual quantile function.
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The mean difference residual quantile function is known to be

Δ(u) = 2l2(u),

and accordingly, from (6.9), we have

Δ ′(u) =
2

1− u
(Δ(u)−M(u)).

Thus, a necessary and sufficient condition that Δ(u) is increasing (decreasing) is
Δ(u) ≥ (≤)M(u). It is evident that the graph of Δ(u) lies above (below) that of
M(u) when the former is increasing (decreasing). Also, when Δ(u) crosses M(u) at
some point u0 from below (above), then it is a change point of Δ(u) that indicates
Δ(u) is increasing (decreasing) first and then decreasing (increasing). Since Δ(u) is
directly related to M(u), it is also clear that

X is DMRL (IMRL) ⇔ 3Δ ′(u)≤ (≥)(1− u)Δ ′′(u).

The comparison of the implications of monotonicities of V (u), Δ(u) and M(u) have
all been addressed earlier in Sect. 6.2.

6.6 Partial Moments

The partial moments, whose definitions were given earlier in Sect. 6.1, can also be
viewed as reliability functions. Since the first two moments are of interest to the
concepts discussed earlier, we recall their definitions as

p1(x) = E[(X − x)+] =
∫ ∞

x
(t − x) f (t)dt (6.48)

and

p2(x) = E[(X − x)+2] =

∫ ∞

x
(t − x)2 f (t)dt. (6.49)

Gupta and Gupta [231] have discussed the general properties of the rth partial
moment. They proved that the rth moment determines the underlying distribution
for any positive real r. Also, when r is a positive integer, there exists a recurrence re-
lation between two consecutive partial moments. Earlier, Chong [147] characterized
the exponential distribution by the property

E(X − t − s)+E(X) = E(X − t)+E(X − s)+.
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The expression for the survival function in terms of pr(x) is

F̄(x) =
(−1)r

r!
dr pr(x)

dxr ;

see Navarro et al. [465] and Sunoj [554]. Sunoj [554] also obtained the partial
moments of the length-biased distribution, equilibrium distribution and charac-
terizations thereof. Gupta [236] extended this result to show that the kth order
equilibrium distribution has survival function

SK(x) =
E[(X − x)+]k

E(Xk)
.

Lin [401] and Abraham et al. [14] characterized the exponential, beta and Lomax
distributions by relationships between the partial moments. The quantile forms of
(6.48) and (6.49) are

P1(u) = p1(Q(u)) =
∫ 1

u
(Q(p)−Q(u))d p (6.50)

=
∫ 1

u
(1− p)q(p)d p

= (1− u)M(u)

and

P2(u) = p2(Q(u)) =
∫ 1

u
[Q(p)−Q(u)]2d p.

Accordingly, the variance of (X − x)+ has the form

V+(u) =
∫ 1

u
[Q(p)−Q(u)]2d p−P2

1 (u). (6.51)

We then have

P′
1(u) =−(1− u)q(u) (6.52)

and

V+(u) =
∫ 1

u
Q2(p)d p− 2Q(u)

∫ 1

u
Q(p)d p+(1− u)Q2(u)−P2

1 (u)

=

∫ 1

u
Q2(p)d p− 2Q(u)[P1(u)+ (1− u)Q(u)]+ (1−u)Q2(u)−P2

1 (u)

=

∫ 1

u
Q2(p)d p− [P1(u)+Q(u)]2 + uQ2(u).
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Differentiating the above expression, we get

V ′
+(u) =−2[P1(u)+Q(u)][P′

1(u)+ q(u)]+ 2uQ(u)q(u).

Eliminating Q(u) and q(u) by using (6.50) and (6.52), we obtain

V ′
+(u) =

2uP1(u)P′
1(u)

1− u
. (6.53)

Equation (6.53) shows that both P1(u) and V+(u) determine each other as

V+(u) =−
∫ 1

u

2pP1(p)P′
1(p)

1− p
d p

and

P2
1 (u) =−

∫ 1

u

(1− p)
p

V ′
+(p)d p.

Thus, for all practical purposes, it is enough if the first partial moment (stop loss
transform) is available. The relationships that the partial moments have with the
reliability functions is immediate from the above discussions. We notice that

H(u) =− 1
P′

1(u)
, (6.54)

M(u) = (1− u)−1P1(u),

V (u) =
1

(1− u)

∫ 1

u
(1− p)−2P1(p)d p,

T (u) = μ−P1(u,) (6.55)

and

(1− u)P1(u) = 2l2(u)− (1− u)l′2(u).

The ageing properties of X can also be characterized in terms of P1(u). These can be
expressed with the use of Theorems in Sect. 5.4 and (6.55). Some examples are

(i) X is IHR (DHR) if and only if P1(u) is convex (concave). This result follows
from Theorem 5.2 and (6.54);

(ii) A necessary and sufficient condition that X is DMTTF (IMTTF) is that μ−P1(u)
μu

is decreasing (increasing), which simplifies to

P1(u)− uP′
1(u)< μ .

The other ageing properties result from Theorems 5.4–5.6.
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Table 6.3 Stop-loss transforms for some distributions

Distribution P1(u)

Exponential λ−1(1−u)

Pareto II α
C−1 (1−u)−

1
c +1

Rescaled beta C
R+1 (1−u)

1
c +1

Half logistic 2σ log 2
1+u

Exponential geometric 1−p
λ p log 1−pu

1−p

Power α
1+β {β − (1+β )u

1
β +u

1
β +1}

Linear hazard quantile 1
b log a+b

a+bu

Generalized lambda 1
λ2

{
λ4

1+λ4
(1−u)λ4+1 + (1−uλ3+1)

1+λ3
− (1−u)uλ3

}

Generalized Tukey lambda (1−u)
{

(1−u)λ4

λ2(λ4+1) +
1−uλ3+1

λ2λ3(1+λ3)(1−u) − uλ3
λ2λ3

}

van Staden and Loots λ2

[
(1−λ3)
λ4

{
1−uλ4+1

λ4+1 − (1−u)uλ4

}
+ λ3
λ4+1 (1−u)λ4+1

]

Generalized Weibull σα
λα (1−u)B(1−u)λ (

1
λ +1,α)

Power-Pareto c(1−u){λ1B1−u(2−λ2,λ1)+λ2B1−u(1−λ2,λ1)}

Govindarajulu σ
β+2{2− (β +1)(β +2)uβ +2β (β +2)uβ+1 −β (β +1)uβ+2}

The stop-loss transforms of several distributions are presented in Table 6.3.
The lower partial moments of order r in the case of a non-negative random

variable is defined as

p∗r (t) = E[(X − t)−]r,

where

(X − t)− =

{
t −X , X ≤ t

0, X ≥ t
.

The first two moments, in terms of quantile functions, become

P∗
1 (u) = p∗1(Q(u)) =

∫ u

0
[Q(u)−Q(p)]d p

=
∫ u

0
pq(p)d p, (6.56)

P∗
2 (u) = p∗2(Q(u) =

∫ u

0
[Q(u)−Q(p)]2d p. (6.57)
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From (6.56) and (6.57), the variance of (X − t)− is obtained as

v−(u) =
∫ u

0
[Q(u)−Q(p)]2 − [P∗

1 (u)]
2d p.

Using now the relations

∫ u

0
Q(p)d p = P∗

1 (u)− uQ(u),

dP∗
1 (u)
du

= uq(u),

we can eliminate Q(u) and q(u) from

v′−(u) = 2q(u)P∗
1 (u)− 2uQ(u)q(u)− 2uQ(u)q(u)

to arrive at the identity

v′−(u) =
2(1− u)

u
P∗

1 (u)
dP∗

1 (u)
du

. (6.58)

Thus, P∗
1 (u) determines v−(u) uniquely as

v−(u) =
∫ u

0

2(1− p)
p

P∗
1 (p)

dP∗
1

d p
d p,

and conversely

[P∗
1 (u)]

2 =
∫ u

0

pv′−(p)

1− p
d p.

From the reliability theory perspective, the partial mean is useful in defining the
reversed quantile functions. The basic relationships are as follows:

Λ(u) =
dP∗

1 (u)
du

,

R(u) = u−1P∗
1 (u),

D(u) =
1
u

∫ u

0
R2(p)d p =

1
u

∫ u

0

{
P∗(p)

p

}2

d p.
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6.7 Some Applications

The L-moments and the two kinds of partial moments discussed so far are known
in some other disciplines than reliability for their applications. We now give a brief
account of the important ones, partly because the models discussed have relevance
in reliability theory as well. One major application is related to income analysis in
economics. Let X denote the non-negative continuous random variable representing
incomes of individuals in a population. Income is often conceived as an indicator to
differentiate between the strata of the society, notably the poor and the affluent, with
generally more attention to the former. A poverty line X = t is set such that those
having income below t is considered poor. Then, α = F(t) represents the proportion
of poor in the population, and their income has the distribution

tF(x) =

{
F(x)
F(t) , x ≤ t

1, x > t
.

The extent to which poverty exists among the poor is measured by the income gap
ratio defined as

G(t) = 1−E

[
X
t
|(X ≤ t)

]

= 1− 1
t

E[X |(X ≤ t)] = 1− B1(t)
t

. (6.59)

In terms of quantile functions, we have

g(u) = G(Q(u)) = 1− θ1(u)
Q(u)

. (6.60)

Traditionally, the income gap ratio is computed from the income distribution; but,
the reverse process is also valid. Nair et al. [440] have shown that there exists a
one-to-one relationship between income gap ratio and the income distribution and
the latter can be retrieved from the former as explained in the following theorems.
Empirically, it is possible to draw some ideas about the approximate form of G(t)
from the data.

Theorem 6.10. If X has a finite mean and income gap ratio G(t), then the
distribution of X is

F(x) = exp

{
−

∫ ∞

x

1−G(t)− tG′(t)
tG(t)

dt

}
, x > 0.

Remark 6.6. Using the above theorem, it follows that the only continuous distribu-
tion for which G(t) = a constant is the power distribution.
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Remark 6.7. The analogue of Theorem 6.10 is

Q(u) =
μ

u(1− g(u))
exp

{
−

∫ 1

u

d p
p(1− g(p))

}
.

A popular measure for the income inequality in a population is the Gini index
defined as

I = 1− 2
μ

∫ ∞

0
xF̄(x) f (x)dx.

In the case of the poor (below the poverty line or X ≤ t), the index has the form

I(t) = 1− 2
E[X |(X ≤ t)]

∫ t

0
x

(
1− F(x)

F(t)

)
f (x)
F(t)

dx. (6.61)

Using the transformation x = Q(u), we have the quantile version as

i(u) = I(Q(u)) = 1− 2
θ1(u)

∫ u

0
Q(p)

(
u− p

u2

)
d p. (6.62)

From (6.18) and (6.19), we then have

∫ u

0
Q(p)d p = uθ1(u) (6.63)

and

∫ u

0
pQ(p)d p =

u2

2
(θ1(u)+θ2(u)). (6.64)

Eliminating the integral on the right-hand side of (6.62) with the use of (6.63) and
(6.64), we obtain

i(u) =
θ2(u)
θ1(u)

,

which is the L-coefficient of variation θ (u) considered earlier in Sect. 6.3. By virtue
of Theorem 6.10, we conclude that i(u) = a constant if and only if X has power
distribution. Theorem 6.10 leaves scope for characterizing income distributions by
the form of their truncated Gini index. A further example is that the form

i(u) =
(β + 3)− (β+ 1)u

(β + 2)−βu

determines the Govindarajulu distribution.
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The income gap ratio and truncated Gini index play a crucial role in defining
index of poverty. For example, Sen [524] suggested the index

s(t) = F(t)[G(t)+ (1−G(t))I(t)]

for a measure of poverty. This turns out to be equivalent to

S(u) = u[g(u)+ (1− g(u))i(u)]

= u

{
1− θ1(u)

θ (u)
+
θ2(u)
θ1(u)

(
θ1(u)
Q(u)

)}
.

Since Q(u) = uθ ′1(u)+θ1(u), we have on simplification

S(u) = u

[
uθ ′1(u)+θ2(u)
uθ ′1(u)+θ1(u)

]
. (6.65)

Instead of distribution functions as models of income, Tarsitano [562] used the
generalized lambda distribution and Haritha et al. [260] employed the generalized
Tukey lambda distribution. Since both these distributions do not have closed-form
expressions for their distribution functions, the expressions in (6.57), (6.62) and
(6.65) become important.

Theorem 6.11. Let X be a non-negative random variable with finite mean. Then,
S(u) = cu if and only if X has power distribution of the form

Q(u) = αu
1
β , α,β > 0, 0 ≤ u ≤ 1.

Proof. In the case of the power distribution, we have

θ1(u) =
αβ
β + 1

u
1
β ,

θ2(u) =
αβ

(β + 1)(1+ 2β )
u

1
β ,

and so from (6.65), we obtain

S(u) =
1+ 3β

(1+β )(1+ 2β )
u

which proves the ‘if’ part. Conversely, when S(u) = cu, (6.1) provides

c[uθ ′1(u)+θ1(u)] = uθ ′1(u)+ uθ2(u)

or equivalently
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cu2Q(u) = u2Q(u)− 2u
∫ u

0
Q(p)d p+ 2

∫ u

0
pQ(p)d p

upon using the expressions of θ1(u) and θ2(u). Differentiating and simplifying the
resulting expression, we get

(c− 1)u2Q′′(u)+ 4(c− 1)uQ′(u)+ 2cQ(u) = 0. (6.66)

Now, by setting Q(u) = um, the auxiliary equation for the solution of (6.66) is

(c− 1)m2+ 3(c− 1)m+ 2c= 0,

which has its roots as

m =−3(c− 1)±
√

a(c− 1)2− 8c(c− 1)
2(c− 1)

,

that simplify to

m =−3
2
± 1

2

√
c− 9
c− 1

.

Hence, the solution of (6.66) becomes

Q(u) =C1u−
3
2+

1
2 (

c−9
c−1 )

1
2
+C2u−

3
2− 1

2 (
c−9
c−1 )

1
2
.

Since Q(u) has to be increasing for all u, C2 = 0 and so

Q(u) = αu
1
β ,

which corresponds to the power distribution with β = 1
2 [(

c−9
c−1)

1
2 − 3] and α = C1.

This completes the proof of the theorem.

The lower partial moments have an important role in the measurement of risk
associated with management, industrial and insurance strategies. Sunoj and Maya
[555] discussed their role in stochastic modelling that includes characterization of
distributions, weighted and equilibrium models. In p∗r (t) defined earlier, t is a target,
that separates gains and losses and the main interest is in ‘downside risk’ measured
by p∗1(t). Portfolio theory is concerned about maximizing the return for a given risk,
where X stands for the random return and t the target return. In this context, lower
partial moments provides summary measures of downside risk. The second moment
p∗2(t) is called target semi-variance which fits investors’ risk preference better than
the traditional variance. Some references in this connection are Bawa [81], Fishburn
[199], Harlow [261], Brogan and Stidham [121], Willmot et al. [582] and Hesselager
et al. [270].



Chapter 7
Nonmonotone Hazard Quantile Functions

Abstract The existence of nonmonotonic hazard rates was recognized from the
study of human mortality three centuries ago. Among such hazard rates, ones with
bathtub or upside-down bathtub shape have received considerable attention during
the last five decades. Several models have been suggested to represent lifetimes
possessing bathtub-shaped hazard rates. In this chapter, we review the existing
results and also discuss some new models based on quantile functions. We discuss
separately bathtub-shaped distributions with two parameters, three parameters, and
then more flexible families. Among the two-parameter models, the Topp-Leone dis-
tribution, exponential power, lognormal, inverse Gaussian, Birnbaum and Saunders
distributions, Dhillon’s model, beta, Haupt-Schäbe models, loglogistic, Avinadev
and Raz model, inverse Weibull, Chen’s model and a flexible Weibull extension are
presented along with their quantile functions. The quadratic failure rate distribution,
truncated normal, cubic exponential family, Hjorth model, generalized Weibull
model of Mudholkar and Kollia, exponentiated Weibull, Marshall-Olkin family,
generalized exponential, modified Weibull extension, modified Weibull, generalized
power Weibull, logistic exponential, generalized linear failure rate distribution,
generalized exponential power, upper truncated Weibull, geometric-exponential,
Weibull-Poisson and transformed model are some of the distributions considered
under three-parameter versions. Distributions with more than three parameters
introduced by Murthy et al., Jiang et al., Xie and Lai, Phani, Agarwal and Kalla,
Kalla, Gupta and Lvin, and Carrasco et al. are presented as more flexible families.
We also introduce general methods that enable the construction of distributions with
nonmonotone hazard functions. In the case of many of the models so far specified,
the hazard quantile functions and their analysis are also presented to facilitate a
quantile-based study. Finally, the properties of total time on test transforms and
Parzen’s score function are utilized to develop some new methods of deriving
quantile functions that have bathtub hazard quantile functions.

N.U. Nair et al., Quantile-Based Reliability Analysis, Statistics for Industry
and Technology, DOI 10.1007/978-0-8176-8361-0 7,
© Springer Science+Business Media New York 2013
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7.1 Introduction

The recognition of the existence of nonmonotonic hazard rates dates back to
three centuries in the study of human mortality when researchers found that the
force of mortality (alternative name for hazard rate) first decreases, then remains
more or less constant and then increases. Since then, the problem of modelling
such curves through different distributions has been taken up in many disciplines
such as reliability, survival analysis, demography and actuarial science. Among
nonmonotonic hazard rates, those with bathtub shape or upside-down bathtub shape
have received much attention during the last 5 decades. There is an extensive
literature on finding appropriate models for representing them and also on methods
of analysing their behaviour, in several practical problems. Earlier in Sect. 4.3,
we have introduced the notions of bathtub (BT) and upside-down bathtub (UBT)
hazard rates and the corresponding hazard quantile functions. Recall that a random
variable X with differentiable h(x)(H(u)) possesses a BT hazard rate (hazard
quantile function) if and only if h′(x)(H ′(u)) < 0 for x(u) in (0,x0)((0,u0)),
h′(x0) = 0 (H ′(u0) = 0) and h′(x)(H ′(u)) > 0 for x(u) in (x0,∞)((u0,1)). In the
UBT case, H ′(u)> 0 for u in (0,u0), H ′(u0) = 0 and H ′(u0) < u0 in (u0,1). Thus,
BT distributions are characterized by a hazard rate (hazard quantile function) that
is first decreasing and then increasing with a unique change point. A more general
definition that considers H(u) as a constant in an interval (see Definition 4.2) is also
available, but this extended definition will not be considered in the sequel. The three
phases of a BT hazard rate represent an ‘infant mortality’ period in which H(u)
decreases, a ‘useful period’ in which H(u) is approximately constant, and a ‘wear
out’ stage in which the hazard function increases leading to the ultimate failure of
a unit. To avoid infant mortality in large proportions, ‘burn-in’ procedures are often
employed to enhance the reliability of products. On the other hand, replacement
policies aim at improving the reliability of units by eliminating those with short
lives before the wear out process is at an advanced stage. We make use of the sign
of the derivative of H(u) (h(x)) to ascertain the nonmonotonicity. In case when
the survival function is not tractable, giving complicated expressions for H(u) or
h(x), Theorems 4.1 and 4.2 will be employed, as demonstrated in Example 4.4.
Several methods of construction of models with BT or UBT have been proposed in
the literature. However, in the following discussion, we will distinguish the models
by the number of parameters they involve. Quantile functions and corresponding
hazard quantile functions are presented whenever the proposed distributions have
such functions in tractable forms. A review of bathtub-shaped distributions is given
in Rajarshi and Rajarshi [500] and Lai et al. [369],

7.2 Two-Parameter BT and UBT Hazard Functions

The Topp-Leone [566] distribution with density function
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f (x) =
2α
θ

( x
θ

)α−1(
1− x

θ

)(
2− x

θ

)α−1
, 0 ≤ x ≤ θ , 0 < α < 1,

has its survival function as

F(x) = 1−
( x
θ

)α (
2− x

θ

)α
, 0 ≤ x ≤ θ . (7.1)

Thus, the hazard rate turns out to be

h(x) =
2α
θ

( x
θ )
α−1(1− x

θ )(2− x
θ )
α−1

1− ( x
θ )
α(2− x

θ )
α .

By differentiating h(x), it can be seen that h(x) has a bathtub shape with change
point x0 for every α , where x0 satisfies the equation

(x0

θ

)α
+

2α(θ − x0)

2θ − x0
− 1 = 0.

The distribution in (7.1) admits a convenient quantile function. Applying the
transformation Y = 1− X

θ to (7.1), we have

FY (x) = (1− x2)α

and so

QY (u) = (1− u
1
α )

1
2 .

Retransforming this expression to X , we readily obtain

QX(u) = θ −θQY (u)

= θ
{

1− (1− u
1
α )

1
2

}
.

The corresponding hazard quantile function is

H(u) =
1

(1− u)q(u)
=

2α
θ

(1− u
1
α )

1
2

u
1
α −1(1− u)

.

Smith and Bain [544] introduced the exponential power model with survival
function

F(x) = exp[−e(λ x)α + 1], 0 < x < ∞. (7.2)

Notice that the hazard rate is

h(x) = λααxα−1e(λ x)α , (7.3)
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which is strictly convex in (0,∞) satisfying
∫ ∞

0 h(x)dx=∞. Sometimes, the choice of
such a function is adopted as a method of deriving a BT distribution. A feature of the
function (7.3) is that h(x)→∞when x→ 0 or∞. The hazard function is BT forα < 1

with a change point at x0 = (1−α)
(λα)

1
α

. For further detailed study of the distribution

including the estimation of parameters and applications to other disciplines, one
may refer to Dhillon [175], Paranjpe and Rajarshi [481], Leemis [379] and Chen
[141]. A closed-form expression is available for the quantile function of (7.2) as

Q(u) =
1
λ
[log{1− log(1− u)}] 1

α ,

which can be used to simulate observations from the distribution from the uniform
(0,1) random numbers. Observing that the quantile density function is

q(u) =
[log(1− log(1− u))]

1
α−1

λα(1− u)(1− log(1− u))
,

it becomes clear that

H(u) =
λα(1− log(1− u))

[log(1− log(1− u))]
1
α −1

.

Two standard distributions possessing nonmonotone hazard rates that were
considered reliability analysis are the lognormal and the inverse Gaussian. The
lognormal distribution has its density function as

f (x) =
1

x
√

2πσ
exp

[
− (logx− μ)2

2σ2

]
, x ≥ 0, −∞< μ < ∞, σ > 0, (7.4)

and survival function as

F(x) = 1−Φ
(

logx− x
σ

)
= 1−Φ[log(αx)

1
σ ], with α = e−μ ,

whereΦ is the distribution function of the standard normal distribution. The hazard
rate is

h(x) =
1√

2πσx

exp[−(logαx)2/2σ2]

1−Φ(log(αx)/σ)
.

A detailed study of the hazard rate has been carried out by Sweet [556]. The book
by Crow and Shimizu [159] details all methods and applications of lognormal
distribution. Moreover, from Marshall and Olkin [412] and Johnson et al. [303],
we note the following properties:
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1. h(x) = σ−1hN(t)exp[−σ t − μ ], where t = σ−1(logx − μ) and hN(x) is the
hazard rate of the normal distribution;

2. For all real θ ,

lim
x→0

xθh(x) = 0, lim
x→∞h(x) = 0;

3. h(x) is unimodal with mode at exp(σx∗ + μ), where x∗ is the unique solution
of the equation hN(x) = x+σ . This solution is less than exp[1+ μ−σ2], but
greater than exp[μ −σ2]. As σ → ∞, x∗ → exp[μ −σ2] and so for large σ , we
have

maxh(x)
.
=

exp(μ− σ2

2 )

σ
√

2π
;

as σ → 0, x∗ → exp[μ−σ2 + 1] and so for small σ , we have

maxh(x)
.
= {σ2 exp(μ−σ2 + 1)}−1.

The quantile function corresponding to (7.4) is

Q(u) = exp[μ+σΦ−1(u)]

and so H(u) does not have a nice algebraic form for manipulations.

Inverse Gaussian distribution, discussed in detail by Chhikara and Folks [146]
and Seshadri [528] as a lifetime model, has its density function as

f (x) =
θμ

(2π3x3)
1
2

exp

{
− (θx− μ)2

2θx

}
, x,θ ,μ > 0. (7.5)

Its survival function is

F(x) =
1
2

[
G

(
(θx− μ)2

θx

)
− e2μG

(
(θx+ μ)2

θx

)]
,

where

G(y) =
∫ ∞

y
(2πx)−

1
2 e−

x
2 dx

is the survival function of a chi-square variable with one degree of freedom.
Needless to say, the hazard rate function is of a complicated form to study its
behaviour explicitly. The hazard rate is UBT with change point x0 that is the solution
of the equation
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h(x) =
3
2x

+
θ
2
− μ2

2θx2 .

For various applications in reliability and lifetime data analysis, we refer the
readers to Padgett and Tsai [479] and Bhattacharya and Fries [99], and similarly
to Hougaard [283] in survival analysis and Feaganes and Suchindran [195] as a
distribution of frailty.

A distribution that is related to the inverse Gaussian, but derived independently
as a lifetime model based on shocks that arrive at regular intervals of time
causing random damages, was derived by Birnbaum and Saunders [105, 106]. It
models fatigue life of metals subject to periodic stress. The distribution has density
function

f (x) =
λ

2α
√

2π
1√
λx

(
1+

1
λx

)
exp

{
− 1

2α2

(
λx− 2+

1
λx

)}
. (7.6)

Desmond [174] pointed out that (7.6) can be written as a mixture in equal pro-
portions of an inverse Gaussian and a reciprocal inverse Gaussian. The distribution
function is given by

F(x) =Φ(α−1g(λx)), (7.7)

where λ ,α > 0 and Φ is the standard normal distribution function and

g(x) = x
1
2 − x−

1
2 .

Note the resemblance between (7.7) and the distribution of the lognormal law
in which case g(x) = logx. Various properties and inferential procedures of the
distribution have been discussed by Chang and Tang [136,137], Johnson et al. [302],
Dupuis and Mills [182], Rieck [507], Ng et al. [470, 471], Owen [478], Leomonte
et al. [384], Balakrishnan and Zhu [62] and Xie and Wei [591]. Recently, Kundu
et al. [359] expressed the hazard rate function of the Birnbaum-Saunders distribution
in (7.6) as

h(x,α) =
1√
2π g′(x)exp

{
− 1

2α2 g2(x)
}

Φ(e−
g(x)
α )

by taking λ = 1, without loss of generality, since λ is a scale parameter. They then
showed that h(x) is UBT for all x > 0 and for all α and λ . The change point x0 is
the solution of the equation

Φ
(
− 1
α

g(x)

){−(g′(x))2g(x)+α2g′′(x)
}
+αΦ

(
− 1
α

g(x)

)
(g′(x))2 = 0,
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which has to be solved by numerical methods. An approximation has been
given as

x0 = (−0.4604+ 1.8417α)−2, α > 0.25;

see also Bebbington et al. [84]. A comparison of the hazard rates of (7.7) and the
lognormal has been made by Nelson [469].

Some useful generalizations of the Birnbaum-Saunders distribution have been
developed in order to provide more flexible models in terms of the range of skewness
as well as varying shapes of the hazard function. For example, with the choice
of the function g(x) = x

1
2 − x−

1
2 , instead of basing the distribution in (7.7) on a

normal distribution, one could base it on general family of elliptically contoured
distributions or scale-mixture distributions; see, for example, Diaz-Garcia and Leiva
[176], Leiva et al. [386] and Balakrishnan et al. [54]. Properties of such models and
their reliability characteristics have also been studied; for instance, Azevedo et al.
[42] recently discussed the shape and change points of the hazard function of the
BS-t (Birnbaum-Saunders model based on t-distribution) model.

Dhillon [175] introduced a two-parameter survival function

F(x) = exp
[
−{log(λx+ 1)}β+1

]
, x ≥ 0, β ≥ 0, λ > 0, (7.8)

and density function

f (x) =
λ (β + 1)
λx+ 1

{log(λx+ 1)}β exp
[
−{log(λx+ 1)}β+1

]
.

The corresponding hazard rate is

h(x) =
(β + 1)λ{log(λx+ 1)}β

λx+ 1
.

It can be seen that h(x) is UBT with change point x0 = λ−1(eβ − 1). We see that
(7.8) is also expressible as

Q(u) =
1
λ
[e−{log(1−u)}

1
β+1 − 1].

Its hazard quantile function is

H(u) =
(β + 1)λ exp

[
{log(1− u)} 1

β+1

]

{log(1− u)} 1
β+1−1

,

which becomes UBT with change point

u0 = 1− e−β (β+1).
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Mukherjee and Islam [430] and Lai and Mukherjee [367] considered the power
distribution with

F(x) =
( x
α

)β
, 0 ≤ x ≤ α, β < 1, (7.9)

and hazard rate

h(x) =
βxβ−1

αβ − xβ

which has a BT shape with change point x0 = α(1−β )
1
β . The quantile function of

this distributions and its properties has been discussed several times in the preceding
chapters. The distribution in (7.9) forms a special case of the beta distribution with
density function

f (x) =
1

B(p,q)
xp−1(1− x)q−1, 0 ≤ x ≤ 1, p,q > 0, (7.10)

when q = 1 and then rescaled to the interval (0,θ ). Pham and Turkkan [494] have
considered standby systems with component lives distributed as beta and Ganter
[209] used it in the context of accelerated test of electronic assemblies. However,
a detailed analysis of the hazard rate and mean residual life has been carried out
much later by Gupta and Gupta [232] and Ghitany [212]. The hazard rate of the
beta model is

h(x) =
xp−1(1− x)

B(p,q)−Bx(p,q)
,

where

Bx(p,q) =
∫ x

0
t p−1(1− t)q−1dt

is the incomplete beta integral. Ghitany [212] has shown that Glaser’s result
mentioned earlier in Sect. 4.3 is valid only when the upper end of the support is
∞ and f (∞) = 0, and that it fails to determine the shape of the hazard rate when the
support of a distribution is (0,b) with b < ∞. He then modified Glaser’s result as
follows.

Theorem 7.1. Let X be a continuous random variable on (0,b), b < ∞, with twice

differentiable density f (x). Define η(x) =− f ′(x)
f (x) . Then:

(a) If η(x) is decreasing and f (b) = 0, then h(x) is decreasing;
(b) If η(x) is increasing, then h(x) is increasing;
(c) If η(x) is BT and f (0) = 0 ( f (0) = ∞), then h(x) is increasing (BT);
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(d) If η(x) is UBT, f (0) = 0 ( f (0) = ∞), and f (b) = 0, then h(x) is UBT
(decreasing);

(e) If η(x)≤ 0 and f (b)> 0, then h(x) is decreasing;
(f) If η(x) is decreasing and f (0) = f (b) = ∞, then h(x) is BT.

In Theorem 7.1, the monotonicities involved are strict. Using the above results,
it has been shown that the hazard rate of the beta distribution is BT (increasing)
if p < 1 (p ≥ 1). Also, the mean residual life is UBT (decreasing) if p < 1
(p ≥ 1). Notice that the adaptation of Glaser’s result in Theorem 4.1 also requires
corresponding changes in the cases discussed in Theorem 7.1. For more details on
beta distribution and its applications, one may refer to the volume by Gupta and
Nadarajah [230].

Haupt and Schäbe [265] proposed the distribution with

F(x) =

{
1, x ≥ x0

−β +
√
β 2 +

(1+2β )x
x0

, 0 ≤ x ≤ x0
. (7.11)

In this model, β is a shape parameter and it varies over (− 1
2 ,∞) and x0 is a scale

parameter. The corresponding hazard rate is

h(x) =
1+ 2β

2x0

(
β 2 +

(1+2β )x
x0

) 1
2
{

1+β −
(
β 2 +

(1+2β )x
x0

) 1
2
}

which is BT for 1
3 < β < 1 and decreasing for β ≥ 1 and β ≤− 1

3 . Construction of
lifetime distributions with bathtub-shaped hazard rates from DHR distributions was
proposed by Schäbe [522]. For 0 < θ < ∞, let us define

G(x) =
F(x)
F(θ )

, x ≤ θ .

Then, G(x) has BT hazard rate if

h′(x)[F(x)−F(θ )]+ h2(x)F(θ )

has one and only one zero in the interval (0,θ ) and changes its sign from − to +.
An illustration of this result has been given with the Pareto II distribution.

Paranjpe and Rajarshi [481] suggested the survival function

F(x) = exp [−exp{exp(βxα)− 1}] , β > 0, α < 1, (7.12)

to model BT hazard rates. The hazard rate function has the form

h(x) = βαxα−1 exp(βxα)exp{exp(βxα )− 1}.
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The quantile function of (7.12) becomes

Q(u) =
1
β
[log{1+ log(− log(1− u))}] 1

α

with hazard quantile function of the form

H(u) =−βα log(1− u){1+ log(− log(1− u))}
[log{1+ log(− log(1− u))}] 1

α−1
.

Another distribution of interest proposed by Lai et al. [366] has hazard rate

h(x) = xa−1(1− x)b−1{a− (a+ b)x}, 0 < x < 1, a > 0, b < 1. (7.13)

In both (7.12) and (7.13), h(x) tends to infinity at both end points of the support thus
supporting the BT shape.

A method of constructing BT-shaped hazard rates is given in Haupt and
Schäbe [266]. Let G(u) be a twice differentiable function satisfying the following
conditions:

(a) G(0) = 0, G(1) = 1, 0 ≤ G(u)≤ 1;
(b) the solution F(x) of the differential equation

θG(F(x))dF(x)

F(x)
= dx, θ = T (1)> 0,

where T (u) is the TTT;
(c) the scaled TTT φ(u) (see Chap. 5 for pertinent details) has one inflexion point

u0 such that 0 < u0 < 1 and φ(u) is convex on [0,u0] and concave on [u0,1] .

They then illustrated this method for

G(u) =−1
3
αu3 +

1
2
(α−αβ )u2 +αβu

to arrive at the model in (7.11), discussed earlier by Haupt and Schäbe [266]. It
appears that (a) and (b) are redundant, since (c) alone can produce a BT curve (see
Theorem 5.2).

The loglogistic distribution with density function

f (x) =
αραxα−1

(1+ραxα)2 x > 0, α,ρ > 0,

has its survival function as

S(x) = (1+ραxα)−1, (7.14)
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and thus the hazard rate as

h(x) =
αραxα−1

1+ραxα

which is UBT for α > 1 with change point x0 = ρ−1(α − 1)
1
α . It is easy to convert

(7.14) into a quantile function in the simple form

Q(u) =
1
ρ

(
u

1− u

) 1
α

giving the hazard quantile function

H(u) =
ρα(1− u)

1
α

u
1
α −1

.

A direct differentiation of H(u) shows that it is UBT with change point at u0 =
α−1
α .

For a detailed discussion of the model in reliability analysis, see Bennet [88] and
Gupta et al. [237]. One may also refer to Balakrishnan et al. [55] and Balakrishnan
and Saleh [58] for some inferential methods for this model based on censored
lifetime data.

Employing what is referred to as the logWeibull time displacement
transformation,

y = log(1+ρx),

to the Weibull survival function G(y) = exp(−yα), Avinadav and Raz [41] obtained
the distribution with survival function

F(x) = exp[−{log(1+ρx)}α]. (7.15)

The corresponding density function is

f (x) =
αρ

(1+ρx)
{log(1+ρx)}α−1 exp[−{log(1+ρx)}α ],

and so

h(x) =
αρ{log(1+ρx)}α−1

1+ρx
.

Forα > 1, h(x) has upside-down bathtub shape with maximum value at x0 =
eα−1−1
ρ .

A quantile analysis of the distribution can be made with

Q(u) =
1
ρ

[
exp

[
{− log(1− u)} 1

α
]
− 1

]
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and

H(u) =
ρα

e{− log(1−u)} 1
α {− log(1− u)} 1

α−1
.

An interesting feature of the distribution is that it is closer to the loglogistic
distribution until a certain point of time and then becomes closer to the Weibull
law.

Remark 7.1. Upon comparing the survival function in (7.15) with that of the
Dhillon model in (7.8), we immediately observe that the above distribution is
identical to the two-parameter Dhillon model in (7.8) with λ = ρ and β = α− 1.

Applying transformation X = β 2

Y when Y is a two-parameter Weibull distribution
with survival function

G(y) = exp

{
−
(

y
β

)α}
, y > 0; α > 0, β > 0,

we obtain the inverse Weibull law with distribution function

F(x) = exp

{
−
(
β
x

)α}
, α,β > 0; x > 0, (7.16)

and density function

f (x) = αβαx−α−1 exp

{
−
(
β
x

)α}
.

Applications of (7.16) in lifetime modelling has been discussed by Erto [188] and
Jiang et al. [297]. In this case, we have

h(x) =
αβαx−α−1 exp[−(βx )

α ]

1+ exp[−(βx )
α ]

which is UBT shaped with change point x0 as the solution of the equation

(βx )
α

1− e−(
β
x )
α
=
α+ 1
α

.

The quantile function has a simple form

Q(u) = β (− logu)−
1
α
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and

H(u) =
αu(− logu)

1
α+1

β (1− u)
.

Differentiation of H(u) yields the change point as u0 satisfying the equation

logu0 +
α+ 1
α

(1− u0) = 0.

Cooray [156] and de Gusmao et al. [168] have discussed a generalization of the
inverse Weibull distribution.

Chen [142] modified the exponential power distribution in (7.2) by setting λ = 1
and introducing a new parameter by taking the survival function as

F(x) = exp[−λ (exα − 1)]. (7.17)

The hazard rate function has the modified form

h(x) = λαxα−1exα .

Since the parameter λ does not alter the monotonic behaviour of h(x), we have its
shape identified to that of (7.3). However, the form (7.17) becomes amenable to
developing a three-parameter model as discussed later (see also Tang et al. [560]).
Bebbington et al. [83] proposed a flexible Weibull extension by the model

F(x) = exp
[
e−αx − β

x

]
, x > 0; α,β > 0, (7.18)

with its hazard rate given by

h(x) =
(
α+

β
x2

)
exp

(
αx− β

x

)
.

In this case, limx→0 h(x) = 0 and so a pure bathtub curve is not envisaged. When
αβ < 27

64 , the hazard rate is strictly increasing in (0,x0), strictly decreasing in
(x0,x1), and strictly increasing on (x1,∞), where

x0 =
1
2

[
− 4β

3α
+A+B

]1
2 − 1

2

[
8β
3α

−A−B+
4β

α2(− 4β
3α +A+B)

1
2

] 1
2

,

x1 =
1
2

[
− 4β

3α
+A+B

]1
2
+

1
2

[
8β
3α

−A−B+
4β

α2(− 4β
3α +A+B)

1
2

] 1
2

,
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with

A =
2

11
3 β 2

3[27α2β 2 − 32α3β 3 + 3
√

3(27α4β 4 − 64α5β 5)
1
2 ]

1
3

and

B = 2
1
3 [27α2β 2 − 32α3β 3 + 3

√
3(27α4β 4 − 64α5β 5)

1
2 ]

1
3 .

7.3 Three-Parameter BT and UBT Models

A majority of models described in the context of nonmonotonic hazard functions
contain three parameters, some of them being extensions of two-parameter versions
discussed in the preceding section. Some others are postulated in terms of hazard
rates, rather than distribution functions. The quadratic hazard rate

h(x) = a+ bx+ cx2, a ≥ 0,−2(ac)
1
2 ≤ b < 0, c > 0,

generating the survival function

F(x) = exp

[
−
(

ax+
bx2

2
+

cx3

3

)]
, x > 0, (7.19)

is one such model discussed at some length in Bain [45, 46] and Gore et al. [223].
The parameters of the model are estimated by the method of maximum likelihood or
by regression of the empirical hazard rate on a quadratic polynomial. Hazard rates
of the form

h(x) = exp(a0 + a1x+ a2x2)

were studied by Lewis and Shedler [385, 387] using simulations of homogeneous
Poisson process. The truncated normal distribution as a failure time model, with
only one failure mechanism, has been studied by Bosch [118]. Generalizing this,
Glaser [220], Cobb [152] and Cobb et al. [153] have studied the distribution with
density function

f (x) =C exp[−αx−βx2+ r logx], x > 0,

with α real, β > 0, γ > −1 or α > 0, β = 0 and γ > −1 (giving also extended
gamma densities) which gives a BT hazard rate for γ < 0. They also discussed the
cubic exponential family with density function
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f (x) =C exp[−αx−βx2 − γx3]

with C < α resulting in BT hazard rate.
The lifetime model introduced by Hjorth [272] is an interesting one as it has some

physical interpretations. Relying upon the practical interest in mechanical units that
are subject to wear, a distribution with minimal number of parameters and with
enough flexibility lead to the study of a distribution with survival function

F(x) =
exp

(
−α x2

2

)

(1+βx)
θ
β

x ≥ 0, α,β ,θ > 0, α+θ > 0, (7.20)

and density function

f (x) =
(1+βx)αx+θ

(1+βx)
θ
β +1

e−
αx2

2 .

So, the hazard rate is given by

h(x) = αx+
θ

1+βx
.

As special cases, we have the Rayleigh distribution (θ = 0), exponential (α =
β = 0), decreasing hazard (α = 0), increasing hazard (α ≥ θβ ), and the bathtub
curve (0 < α < θβ ). Hjorth [272] has given two physical interpretations for the
model in (7.20). Assuming that every produced or maintained unit has linear
hazard rate

h∗(x) = u+αx,

where α is the same for all units, but u is the realization from the gamma distribution
with density

g(u) =
ua−1e

− u
β

β aΓ a
,

we have

F(x) =
1

(1+βx)a exp

(
−αx2

2

)

which is of the same form as (7.20). Alternatively, if failures are classified as type A
and type B caused by hA(x) = αx or hB(x) = θ

(1+β x) , then (7.20) is the distribution

of min(XA,XB), where XA and XB are independent lifetimes with hazard rates hA
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and hB, respectively. Maximum likelihood method can be used to estimate the
parameters. We can also see that (7.20) belongs to the class of additive hazard
models discussed in Nair and Sankaran [446].

Let X be a lifetime random variable with hazard rate h(x) and Y be a non-negative
random variable representing changes in the conditions so that h has an additive
effect on X through the relationship

h(x|y) = a(y)+ h(x) (7.21)

for some positive function a(y). If X∗ is the random variable corresponding to X
satisfying the relationship in (7.21), then the survival function of X∗ is

S∗(x) = S(x)SE(x),

where

SE(x) =
∫ ∞

0
e−xa(y)g(y)dy

and g(y) is the density function of Y . Equivalently, we arrive at the additive hazard
model

h∗(x) = h(x)+ hE(x),

where h∗(·) and hE(·) are the hazard rates of S∗(x) and SE(x), respectively. Now,
when

g(y) = [Γ (α)]−1cλCαyCα−1 exp[−(λy)c],

and a(y) = yc for c > 0, we get

SE(x) = λ cα(x+λ c)−α .

Then, the additive model takes on the form

h∗(x) = h(x)+α(x+λ c)−1.

It is easy to see that the Hjorth model arises from a particular choice of the hazard
rate function h∗(x) = αx.

Mudholkar and Kollia [426] and Mudholkar et al. [428] introduced a generaliza-
tion of the Weibull distribution with its survival function as

F(x) =

{
1−λ

( x
α

)β} 1
λ
, α,β > 0, (7.22)
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where X has support (0,∞) for λ ≤ 0 and

(
0, α

λ
1
β

)
for λ > 0. It is easy to see that,

as λ → 0,

F(x) = exp
[
−
( x
α

)β]
,

which is the standard two-parameter Weibull model. The hazard rate corresponding
to (7.22) is

h(x) =
β ( x

α )
β−1

α
{

1−λ ( x
α )
β
} ,

which is BT for β < 1, λ > 0; UBT for β > 1, λ < 0; IHR for β ≥ 1, λ > 0;
and DHR for β ≤ 1, λ ≤ 0. For the estimation of parameters, they discussed the
maximum likelihood method. Corresponding to (7.22), the quantile function is

Q(u) =

⎧⎨
⎩
α
{

1−(1−u)λ

λ

} 1
β
, λ �= 0

α{− log(1− u)} 1
β , λ = 0

,

which has been discussed in detail in Chap. 3. Another modification to the Weibull
model is the exponentiated Weibull distribution with distribution function

F(x) =

{
1− exp

(
−
( x
α

)β)}θ
, α,β ,θ > 0, x ≥ 0, (7.23)

density function

f (x) =
βαθ
αβ

e−( x
α )
β
{

1− exp
(
−
( x
α

)β)}θ−1

,

and hazard function

h(x) =
βθe−( x

α )
β {

1− exp(−( x
α )
β )
}θ−1

1−{
1− exp(−( x

α )
β )
}θ .

The nature of h(x) within the parameter space, other properties, and estimation of
parameters have all been discussed by Mudholkar et al. [428], Mudholkar and
Hutson [423], Jiang and Murthy [296], Nassar and Eissa [463, 464], Singh et al.
[543] and Shanmukhapriya and Lakshmi [534]. It is seen that h(x) is BT for β > 1,
βθ < 1; UBT for β < 1, βθ > 1; IHR for β ≥ 1, βθ ≥ 1 and DHR for β ≤ 1; and
βθ ≤ 1. Reverting to quantile function, (7.23) becomes
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Q(u) = α
{
− log(1− u

1
θ )
} 1
β
.

The hazard quantile function is then

H(u) =
βθ (1− u

1
θ )

α(1− u)u
1
θ −1

{
− log(1− u

1
θ )
} 1
β −1

. (7.24)

Differentiating (7.24), we find that the change points in (7.24) are the solutions of

{
1− u−θ (1− u

1
θ )
}

log(1− u
1
θ ) =

1−β
β

(1− u)u
1
θ .

Marshall and Olkin [411] devised a new method of introducing more flexibility
to a given distribution G(x) by adding a new parameter. Their scheme is to construct
distribution F(x) from G(x) through the formula

F(x) =
θG(x)

1− (1−θ )G(x) , θ > 0. (7.25)

Assuming G(x) to be a two-parameter Weibull, G(x) = exp
{−( x

α )
β}, for example,

we find from (7.25) that

F(x) =
θ exp

{−( x
α )
β}

1− (1−θ )exp
{−( x

α )
β
}

yielding the density function

f (x) =
θg(x)

[1− (1−θ )G(x)]2

=
θβ
α

( x
α )
β−1 exp

{−( x
α )
β}

{
1− (1−θ )exp(−( x

α )
β )
}2

and hazard rate

h(x) =
( βα )(

x
α )
β−1

1− (1−θ )exp
{−( x

α
}β

)
.

Teiling and Xie [565] have carried out a failure time data analysis by using (7.25).
It is of interest to know the quantile version of (7.25) for studying the properties

of the new distribution further. Setting x = Q(u), where Q is the quantile function
of G, after writing
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F(x) =
1−G(x)

1− (1−θ )G(x) ,

F(Q(u)) =
u

1− (1−θ )(1− u)
=

u
u+θ−θu

,

we have

Q(u) = Q1

(
u

u+θ −θu

)

with Q1(u) being the quantile function corresponding to F(x). Equivalently, we have

Q1(u) = Q

(
uθ

1− (1−θ )u
)
. (7.26)

Applying (7.26) in the case of the Weibull distribution for which

Q(u) = α{− log(1− u)} 1
β ,

we obtain

Q1(u) = α
{
− log

(
1− u

1− u+ uθ

)} 1
β
.

The hazard quantile of Q1(u) is

H(u) =
β (1− u+ uθ )

αθ
{− log

( 1−u
1−u+uθ

)} 1
β −1

.

The sign of H ′(u) depends on the expression

(θ − 1) log
1− u+ uθ

1− u
− θ (1−β )
β (1− u)

and F(x) is IHR for θ > 1, β > 1, and DHR for 0 < θ < 1 and 0 < β < 1. Change
points of H(u) are the solutions of the equation

(1− u) log
1− u+ uθ

1− u
=
θ (1−β )
β (θ − 1)

.

A special case of the exponentiated Weibull distribution is the exponentiated
exponential distribution considered in Gupta et al. [239] and Gupta and Kundu
[250, 253]. We look at the general form with survival function
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F(x) =

{
1− exp

(
− x− μ

σ

)}α
, x > μ ; α,σ > 0. (7.27)

We find the expression for the hazard rate as

h(x) =
α
σ

{
1− exp(− x−μ

σ )
}α−1

exp(− x−μ
σ )

1−
[
1−{

1− exp(− x−μ
σ )

}α] .

It could be seen that h(x) = 1
σ for α = 1, increases from 0 to 1

σ for α > 1, and
decreases from∞ to 1

σ for α < 1. Quantile analysis of (7.27) is straightforward with

Q(u) = μ−σ log(1− u
1
α )

and

H(u) =
σ
α

u
1
α −1

1− u
1
α
.

A comparative study of (7.27) with the gamma, Weibull and lognormal distributions
has been carried out by Gupta and Kundu [251], Kundu et al. [358] and Gupta and
Kundu [252].

The two-parameter Chen’s [142] model in (7.17) has been generalized by Xie
et al. [595] to provide a new distribution with survival function

F(x) = exp

[
−λα

{
exp

( x
α

)β − 1

}]
, x ≥ 0; α,β ,λ > 0, (7.28)

called the modified Weibull extension. From the corresponding density function

f (x) = exp

[
−λα

{
exp

( x
α

)β − 1

}]
λβe(

x
α )
β
( x
α

)β−1
,

we obtain the hazard function as

h(x) = λβe(
x
α )
β
( x
α

)β−1
.

The name Weibull extension comes from the fact that (7.28) reduces to the Weibull
distribution when λ→α in such a way that αβ−1λ−1 remains constant. Two special
cases are the exponential power distribution in (7.2) when λ = 1 and the Chen’s
model when α = 1. When β ≥ 1, h(x) is IHR and when 0 < α < 1, h(x) → ∞ as

x → 0 or ∞. In this case, we have BT shape with change point x0 = α
(

1−β
β

) 1
β . The



7.3 Three-Parameter BT and UBT Models 255

change point increases as β decreases from 1 to 0. The quantile function of (7.28)
takes on the expression

Q(u) = α
[

log

{
1− log(1− u)

λα

}] 1
β

and therefrom we get

H(u) =
β (λα− log(1− u))

α
[
log

{
1− log(1−u)

λα

}] 1
β −1

.

Yet another extension of the Weibull law is due to Lai et al. [370], called the
modified Weibull distribution. It has its density function as

f (x) = β (α+λx)xα−1 exp{λx−βxαeλ x} (7.29)

and survival function as

F(x) = exp(−βxαeλ x).

As λ → 0, we have the usual Weibull distribution. Note that (7.29) has a hazard rate
of the form

h(x) = β (α+λx)xα−1eλ x,

so that the shape of h(x) is independent of β and λ . For α ≥ 1, the distribution is

IHR, and for 0 < α < 1, we have BT shape with change point x0 =
α

1
2 −α
λ . There is

no simple closed-form expression for the quantile function. Nikulin and Haghighi
[472] (see also Dimitrakopoulas et al. [178]) proposed a generalized power Weibull
distribution with survival function

F(x) = exp

[
1−

{
1+

( x
β

)α}θ]
, x ≥ 0, α,β > 0, θ > 0, (7.30)

which is a general family consisting of Weibull (θ = 1) and exponential (θ = 1,
α = 1) distributions as particular members.

The transformation Y = 1 + (X
β )
α gives the Weibull distribution with

parameters 1 and θ in (1,∞). Similarly, transforming by log
{

1+( x
α )
β} and

[
log

{
1+( x

α )
β}] 1

β , respectively, we obtain the modified extreme value distribution
and the power exponential distribution of Smith and Bain [544] in (7.2). From the
density function
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f (x) =
θα
βα

exp

[
1−

{
1+

( x
β

)α}θ]{
1+

( x
β

)α}θ−1

xα−1,

we obtain the hazard function as

h(x) =
θα
βα

{
1+

( x
β

)α}θ−1

xα−1.

The above expression yields flexible hazard rate shapes, like IHR if either α > 1
and α > 1

θ or α = 1 and θ > 1, DHR if either 0 < α < 1 and α < 1
θ or αθ = 1 and

0 < α < 1, and UBT whenever 1
θ > α > 1. For a quantile-based analysis, we can

use

Q(u) = β
[
{1− log(1− u)} 1

θ − 1
] 1
α

and

H(u) =
αθ
β

[
{1− log(1− u)} 1

θ − 1
]1− 1

α {1− log(1− u)}1− 1
θ .

Differentiating H(u) and setting H ′(u) = 0, we find the change point u0 as

u0 = 1− exp

{
1−

(αθ −α
1−αθ

)θ}
.

Lan and Leemis [372] presented the logistic exponential distribution as a model
for lifetimes with flexible hazard rate shapes. Their two-parametric version has its
survival function as

F(x) =
{

1+(eλ x− 1)k
}−1

, x ≥ 0. (7.31)

Clearly, the distribution reduces to the exponential case when k = 1 having constant
hazard rate. In general, the hazard function is

h(x) =
λkeλ x(eλ x − 1)k−1

1+(eλ x− 1)k
.

For 0 < k < 1, h(x) is BT, while for k > 1, it is UBT. The change point in both
cases is

x0 = λ−1 log(xk + 1),

where xk is the positive root of the equation
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kx− xk = 1− k.

It can be shown that the quantile function of (7.31) is

Q(u) =
1
λ

log

{
1+

( u
1− u

) 1
k
}

and

H(u) = kλ
u

1
k +(1− u)

1
k

u
1
k − 1

.

The change point of H(u) is the solution of the equation

ku
1
k +(1− u)

1
k −1(k− ku− 1) = 0.

Introducing yet another parameter into (7.31), we have the more general model with
survival function

F(x) =
1+(eλθ − 1)k

1+ {eλ (x+θ)− 1}k
, θ ≥ 0, k > 0,λ > 0, (7.32)

and corresponding hazard function

h(x) =
Cλk{eλ (x+θ)− 1}k−1eλ (x+θ)

1+ {eλ (x+θ)− 1}k
,

where

c = 1+(eλθ − 1)k.

By proceeding along the same lines as in the reduced model, we see that F(x) has
highly flexible hazard rate being exponential for k = 1; BT for 0 < k < 1, λθ <

log(xk +1) with minimum at log(1+xk)
λ −θ ; IHR for 0< k < 1 and λθ > log(xk +1);

and UBT for k > 1 and λθ > log(1+xk). The quantile function, with a slightly more
complicated from than the two-parameter version, given by

Q(u) =
1
λ2

log

{
1+

(c+ u− 1
1− u

) 1
k −θ

}

can be employed to find H(u) and its change points as done before.
By exponentiating the linear failure rate model, Sarhan and Kundu [520] arrived

at the generalized linear failure rate distribution with survival function



258 7 Nonmonotone Hazard Quantile Functions

F(x) =

[
1− exp

{
−
(

ax+
b
2

x2
)}]θ

, x ≥ 0. (7.33)

It contains as special cases the linear failure rate model, the generalized exponential
distribution in (7.27) and generalized Rayleigh distribution discussed by Kundu and
Raqab [361]. The hazard rate becomes

h(x) =
θ (a+ bx)

[
1− exp

{−(
ax+ b

2 x2
)}]θ−1

exp
{
−(ax+ bx2

2 )
}

1−
[
1− exp

{
−(ax+ bx2

2 )
}]θ .

Analysing h(x), it is seen that the hazard rate is constant or increasing when θ = 1,
increasing when θ > 1, either decreasing (b = 0) or bathtub (b > 0) when θ < 1.
The same approach is made by Barreto-Souza and Cribari-Neto [71] to extend the
exponential Poisson distribution of Kus [364] given by

F(x) =
1− exp(−λ +λe−β x)

1− e−λ
, x,λ ,β > 0,

to the general form

F(x) =

{
1− exp(−λ +λe−β x)

1− e−λ

}θ
, x,θ > 0. (7.34)

The hazard rate of (7.34) is given by

h(x) =
θλβ (1− e−λ+λ e−βx

)θ−1e−λ−β x+λ e−βx

(1− e−λ)θ −{1− exp(−λ +λe−β x)}θ

which can be IHR, DHR or UBT. A closed-form quantile function for (7.34) is
given by

Q(u) =
1
β

log

[
− 1
λ

log
{

1− (1− e−λ)u
1
θ
}]

.

When the baseline distribution in (7.33) or (7.34) is changed to the exponential
power distribution in (7.2), we have the model proposed by Barriga et al. [72], for
which the survival function is

F(x) = 1−
[

1− exp

{
1− exp

( x
α

)β}]θ
, x > 0. (7.35)
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The corresponding hazard rate function

h(x) =
βθxβ−1 exp

{
1+( x

α )
β − exp( x

α )
β}exp

[
1− exp

{
1− exp( x

α )
β}]θ−1

αβ [1−{1− exp(1− exp( x
α )
β )}]θ

has the following properties:

(i) h(0) = 0 for β > 1 and h(0) = 1
α for β = 1, θ = 1;

(ii) h(x) is increasing for β > 1, θ ≤ 1;
(iii) h(x) is decreasing for βθ ≤ 1, θ > 1;
(iv) h(x) is UBT for β < 1, βθ > 1;
(v) h(x) is BT for θ ≤ 1 or β > 1 and βθ < 1.

The parameter estimation is carried out by the maximum likelihood method.
Distribution (7.35) is specified by the quantile function

Q(u) = α
[
log

{
1− log(1− u)

1
θ
}] 1

β
.

Zhang and Xie [600] considered the upper truncated Weibull distribution
given by

G(x) =
F(x)−F(a)
F(T )−F(a)

, a ≤ x < T,

with

F(x) = 1− exp

{
−
( x
α

)β}

yielding a hazard rate

h(x) =
(βη )(

x
η )
β−1 exp

{
−
(

x
η

)β}

F(T )−F(x)
, a ≤ x < T,

which is increasing for β ≥ 1 and BT for β < 1.
Silva et al. [539] introduced the generalized geometric exponential distribution

with distribution function

F(x) =

(
1− e−px

1− pe−β x

)θ
, x > 0, 0 < p < 1, θ ,β > 0. (7.36)

When θ > 0 is an integer, (7.36) is the distribution of X = max1≤i≤α Yi, where
Y1,Y2, . . . ,Yα is a random sample from the exponential geometric distribution. Note
that
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h(x) =
θβ (1− p)e−β x(1− e−β x)θ−1

(1− pe−β x){(1− pe−β x)α − (1− e−β x)α}

which has the following properties:

(a) decreasing for p and α in (0,1);
(b) increasing for p in (0, α−1

α+1) and α in (1,∞);
(c) UBT for p in (α−1

α+1 ,1) and α in (1,∞).

Let Y1,Y2, . . . ,YN be a random sample from a Weibull distribution with density
function

f (y) = βαβ yβ−1e−(αy)β , y,α,β > 0,

where N is a zero-truncated Poisson random variable with probability mass function

P(N = n) =
e−λλ n

Γ (n+ 1)(1− e−λ)
, n = 1,2, . . . .

Assuming that Yi and N are independent, the distribution of X = min(Y1,Y2, . . . ,YN)
is called a Weibull-Poisson distribution by Hemmati et al. [267]. It has density
function

f (x) =
λβα

1− e−λ
(αx)β−1 exp

{
−λ − (αx)β +λe−(αx)β

}

and survival function

F(x) =
{

1− exp(λe−(αx)β )
}
(1− e−λ)−1.

The corresponding hazard rate is

h(x) =
λβα

1− e−λ
(αx)β−1(1− eλ)exp

{
−λ − (αx)β +λe−(αx)β

}
{

1− exp(λe−(αx)β )
}

which can be either increasing, decreasing or modified bathtub shaped.
A lifetime model for bathtub failure rate data by transforming them to the

Weibull was considered in Mudholkar et al. [422]. Consider the data in the form
of pairs of independent and identically distributed random variables (Xi,δi), where
Xi = min(Ti,Ci) and δi = 1 when Ti ≤ Ci (uncensored case) and δi = 0 if Ti > Ci

(censored case), with Ti as the lifetime and Ci as the censoring time. Mudholkar
et al. [422] assumed that there exists a transformation

y = g(x,θ ) =
x

1−θx
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that transforms the data to the Weibull form F(y) = e−( y
α )
β
. The range of the

transformation is (0,α); g(x,θ ) should be invertible and θ can be zero in which
case the original data is retained. We have x = y

y+θ , and so

F(x) = P
( Y

1+θY
> x

)
= exp

{
−
( 1
α

x
1+θx

)β}
, 0 < x <

1
θ
.

The corresponding hazard rate

h(x) =
β
αβ

xβ−1

(1−θx)β+1

has

h′(x) = (1−θx)βxβ−2(β − 1+θx)

which reveals that h(x) is increasing for β > 1 and BT for 0 < β < 1. The
distribution has its quantile function as

Q(u) =
α{− log(1− u)} 1

β

1+θα{− log(1− u)} 1
β
.

7.4 More Flexible Hazard Rate Functions

When we examine the models in the last two sections chronologically, it is seen
that model parsimony was an important concern in earlier works with many two-
parametric models. With improvement in computational technology, the number
of parameters and complexities in estimating them became less problematic.
Consequently, models with more than one shape parameter that provide more
richness in the shapes of the hazard rate began to appear. In this section, we deal
with such models that have at least four parameters.

Models with hazard rates as a sum were proposed by many. These include

h(x) =
θ

1+βx
+λαxα−1, θ ,β ,λ ,α > 0, (7.37)

suggested by Murthy et al. [435]. Note that the first term is the hazard rate of a
Pareto II distribution, while the second is that of the Weibull. Here, h(0) = θ and
h(∞) = ∞ suggesting a bathtub shape. The Hjorth model in (7.20) is a special case
of this family with survival function



262 7 Nonmonotone Hazard Quantile Functions

F(x) =
e−λ xα

(1+βx)
θ
β
.

Jaising et al. [291] extended the hazard rate in (7.37) to the form

h(x) = λ +
θ

x+β
+λxδ , (7.38)

while Canfield and Borgman [126] considered the representation

h(x) = α1β1xβ1−1 +α2β2xβ2−1 +α3 (7.39)

with β2 > 2 and β1 < 1. Notice that (7.38) is a construction of the hazard rates of
exponential Pareto II and Weibull, while (7.39) considers the sum of an exponential
and two Weibull hazard rates.

In the case of (7.39), the change point is given by

x0 =
(α1β1(1−β1)

α2β2

) 1
β2−β1 , β1 < 1.

Similar representation of h(x) with only two Weibull hazard rates as components
was also discussed by Xie and Lai [594], Jiang and Murthy [293] and Usagaonkar
and Maniappan [570]. Instead of two Weibull distributions, if we take the hazard
rates of Burr distributions with survival functions

Fi(x) =
1

(1+( x
ai
)ci)ki

, i = 1,2,

we get the hazard rate

h(x) =
k1c1xc1−1

ac1
1 {1+( x

a1
)c1} +

k2c2xc2−1

ac2
2 {1+( x

a2
)c2} , (7.40)

for k1,k2,a1,a2 ≥ 0, 0 < c1 < 1 and c2 > 2. A bathtub model arising from the above
hazard rate has been discussed by Wang [577].

Phani [495] considered a new distribution with survival function

F(x) = exp

{
−λ (x−α)

θ1

(β − x)θ2

}
, λ > 0, β1,β2 > 0, 0 ≤ θ1 ≤ x ≤ θ2, (7.41)

and corresponding hazard rate as

h(x) =
λ (x−α)θ1−1(β − x)θ2−1{θ1(β − x)+θ2(x−α)}

(β − x)2θ2
.
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The sign of h(x) is determined by a quadratic function in x, and so provides a
BT shape. In the reduced case of θ1 = θ2, the condition for BT is 0 < θ1 < 1.
Subsequently, Moore and Lai [420] proposed the version

h(x) = c(x+ p)a−1(q− x)b−1, 0 < a < 1, b <−1, c > 0, p ≥ 0, 0 ≤ x < q,

which also gives a BT form since h(0) = cpa−1qb−1 and h(x) → ∞. The change
point is x0 = (a+ b− 2)−1{(a− 1)q− (b− 1)p}.

Mixtures of distributions form an important aspect in the consideration of
bathtub-shaped models. Many authors like Glaser [221], Kunitz and Pamme [362],
Pamme and Kunitz [480] and Gupta and Warren [249] have focused on this
formulation. If f1(x) and f2(x) are density functions with hazard rates h1(x) and
h2(x), respectively, the two-component mixture

f (x) = α f1(x)+ (1−α) f2(x), 0 < α < 1,

has its hazard rate as

h(x) =
α f1(x)+ (1−α) f2(x)

αF1(x)+ (1−α)F2(x)
;

see the discussion in Sect. 4.2. Assuming

fi(x) =
1

βαi
i Γ (αi)

xαi−1e
− t
βi , i = 1,2

Gupta and Warren [249] showed that h(x) is BT in the cases (i) β1 = β2 = β and
α1 > 1, α2 > 1; (ii) α2 = 1, α1 > 2; (iii) α1 > 1, α2 > 1. With α1 −α2 > 1 and
(α1 −α2 − 1)2 − 4(α2 − 1)> 0, h(x) can be UBT.

The properties of mixtures of Weibull distributions have been studied by Jiang
and Murthy [295] and Wondamagegnehu [584]. Assuming F1(x) = exp(−λ1xα)
and F2(x) = exp(−λ2xα), the mixture hazard rate given by

h(x) =
pe−λ1xα λ1αxα−1 +(1− p)e−λ2xα λ2αxα−1

pe−λ1xα +(1− p)e−λ2xα

will be modified BT shaped when 0< p < θ and IHR when θ ≤ p < 1, where α > 1
and

θ =
α(β − 1)+A

2α(β − 1)exp
[
(α−1)(β+1)+A

α(β−1)

] ,

A = (α2(β − 1)2 + 4(α− 1)2β )
1
2 ,

β =
λ2

λ1
.
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While the mixtures can have IHR, DHR, UBT, modified bathtub or roller-coaster
type, they cannot be BT.

Navarro and Hernandez [466] have discussed the nature of the failure rates of
truncated normal mixtures. They considered the truncated normal density function

f (x) =
1√

2πσΦ( μσ )
exp

(
− (x− μ)2

2σ2

)
, x > 0, (7.42)

where Φ(x) is the standard normal distribution function, and formed the mixture

f (x) = p f1(x)+ (1− p) f2(x), 0 < p < 1, (7.43)

where fi(x) is distributed as (7.42) with parameters (μ0,σ0) and (μ1,σ1). When

σ1 = σ0 and δ =
σ2

0
(μ0−μ1)2 , they proved that if

(i) δ > 1
4 , f (x) is IHR;

(ii) δ ≤ 1
4 , w(0)≤ 1

2 and w(0)(1−w(0))< δ , f (x) is IHR or BT;
(iii) δ ≤ 1

4 , w(0)≤ 1
2 and w(0)(1−w(0))≥ δ , f (x) is IHR or BT;

(iv) δ ≤ 1
4 , w(0)< 1

2 and w(0)(1−w(0))≤ δ , f (x) is IHR, BT or modified BT,

where

w(t) =

{
1+

1− p
p

f1(x)
f2(x)

}−1

.

Further, the change points of η(x) =− f ′(x)
f (x) in (7.43) is found from the equation

w(x)(1−w(x)) = δ .

In the general case when the variances are unequal, let us assume σ1 > σ0,

x0 =
σ2

1 μ0 −σ2
0μ1

σ2
1 −σ2

0

> 0,

θ (x) =
w(x)
σ2

1
− (1−w(x))

σ2
0

w(x)(1−w(x))
−
(x− μ1

σ2
1

− x− μ2

σ2
0

)2
,

and

y1 = w(x1).

Then, the following results hold:

1. If w(x0)≥ y1, then f is IHR;
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2. If w(x0)< y1 and

(a) w(0)< y1, θ (0)≥ 0 and θ (x1)≥ 0, then f is IHR;
(b) w(0)< y1, θ (0)< 0 and θ (x1)≥ 0, then f is IHR or BT;
(c) w(0) < y1, θ (0) ≥ 0 and θ (x1) < 0, then f is IHR, BT or modified BT

(MBT);
(d) w(0)< y1, θ (0)< 0 and θ (x1)< 0, then f is IHR, BT, MBT or BBT (BT in

(0,x0) and BT in (x0,∞));
(e) w(0)≥ y1, θ (0)> 0 and θ (x1)≥ 0 and θ (x2)≥ 0, then f is IHR;
(f) w(0)≥ y1, θ (0)≤ 0 and θ (x2)≥ 0, then f is IHR or BT;
(g) w(0)≥ y1, θ (0)> 0 and θ (xi)≥ 0 for i = 1 or 2, then f is IHR, BT or MBT;
(h) w(0)≥ y1, θ (0)≤ 0 and θ (x2)< 0, then f is IHR, BT, MBT or BBT;
(i) w(0) ≥ y1, θ (0) > 0 and θ (x1) < 0, θ (x2) < 0, then f is IHR, BT, MBT,

BBT or IBT.

Sultan et al. [553] considered a mixture of inverse Weibull distributions with
survival function

F(x) = p
{

1− exp(−α1x)−β1

}
+(1− p)

{
1− exp(−α2x)−β2

}

and the corresponding hazard rate

h(x) =
pβ1α

−β1
1 x−(β1+1)e−(α1x)−β1 +(1− p)β2α

−β2
2 x−(β2+1)e−(α2x)−β1

p{1− e−(α1x)−β1 }+(1− p){1− e−(α2x)−β2 }

which can be unimodal and bimodal.
From the above illustrations, one might have noticed that the analysis of hazard

rates of mixtures is quite complicated. Also, the shape of the hazard rates changes
with the mixing proportion p and the component distributions. In most cases, the
quantile functions are not invertible into explicit forms and so have to be evaluated
numerically. There are several discussions on the shapes of hazard rates in the
general case as well as for mixtures of distributions with specified components. For
more details, one may refer to Gurland and Sethuraman [255], Lynch [405], AL-
Hussaini and Sultan [29], Shaked and Spizzichino [532], Block et al. [109,110,112],
Wondamagegnehu et al. [585], Bebbington et al. [82], Sultan et al. [553] and Ahmed
et al. [27].

Agarwal and Kalla [20] studied a generalized gamma model of the form

f (x) =
xme−δx(n+ x)λ

δλ−mΓλ (m+ 1,nδ )
, x > 0, λ ,δ ,n,m > 0,

where

Γλ (m,n) =
∫ ∞

0

e−ttm−1

(t + n)λ
dt
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which was further extended by Kalla et al. [309] to the model

f (x) =
βxm+β−1e−δxβ (n+ xβ )λ

δλ−
m
β Γλ (m

β + 1,nδ )
. (7.44)

The distribution in (7.44) includes the Stacy distribution when λ = 1 and appropriate
reparametrization that gives

f (x) =Cxαβ−1 exp
{
−
( x
θ

)α}
. (7.45)

The gamma distribution and Weibull distribution are particular cases of (7.45) when
α = 1 and β = 1, respectively. Glaser [220] and McDonald and Richards [414,415]
have discussed the shape of the hazard rate and conditions on the parameters that
produce IHR, DHR, BT and UBT curves. The most general form in (7.44) has been
analysed by Gupta and Lvin [248].

In order to accommodate early failures, Muraleedharan and Lathika [433]
proposed mixing a Weibull distribution with a singular distribution at x = δ , where
δ is small and specified in advance. Thus, their model has the representation

F(x) = (1−α)F1(x)+αF2(x),

where F1 is the singular component and F2 is Weibull. Mitra and Basu [418]
considered the life distribution of a device subject to a sequence of shocks occurring
randomly in time according to a homogeneous Poisson process:

H(t) =
∞

∑
k=0

e−λ t (λ t)k

k!
PK , 1 = P0 ≥ P1 ≥ P2 ≥ ·· · .

They derived conditions under which H(t) has a BT hazard rate in terms of certain
properties of PK .

Mitra and Basu [419] have presented some general properties of BT distributions.
Their main results resemble the properties of ageing concepts described earlier in
Chap. 4. Suppose F has a BT hazard rate with a change point x0. Then:

1. F(x)< G(x), where G is exponential with mean [h(x0)]
−1;

2. μ ′
r ≤ Γ (r+1)

[h(x0)]k
with equality sign holding true when X is exponential;

3. BT-shaped hazard rate distributions are not preserved under convolution or
mixing. They are also not closed under the formation of parallel systems.
However, if each component in a series system has a BT hazard rate with change
point x0, then the system also has a BT hazard rate with x0 as one of the change
points.

The modified Weibull distribution was further generalized by Carrasco et al.
[129] to a density function of the form
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f (x) =
αβxr−1(r+λ t)exp(λx−αxreλ x)

{1− exp(−αxreλ x)}1−β . (7.46)

Correspondingly, the hazard rate function is

h(x) =
αβxr−1(r+λx)exp(λx−αxreλ x){1− exp(αxreλ x)}

1−{1− exp(−αxreλ x)}β .

Special cases of the distribution are Weibull (λ = 0, β = 1), type I extreme value
(r = 0,β = 1), exponentiated Weibull (λ = 0), exponentiated exponential (λ = 0,
r = 1), generalized Rayleigh (r = 2, λ = 0), and modified Weibull (β = 1). We
see that h(x) is increasing for r ≥ 1, 0 < β < 1, decreasing for 0 < r < 1, β > 1,
unimodal for 0 < r < 1, β → ∞, and BT for λ = 0, r > 1, rβ < 1.

In the past three sections, we have reviewed only models of a representative
nature. Further models, inference procedures, and applications to data analysis
can all be seen from the papers cited in the text and the references therein. More
references and details are available in Lai and Xie [368], Lai et al. [369], Bebbington
et al. [85], Nadarajah [437] and Silva et al. [538].

7.5 Some General Methods of Construction

In this section, we present some general methods that lead to the construction of a
model with BT-shaped hazard function.

• Using Glaser’s theorem
Let X a non-negative random with positive density function f (x) that is twice

differentiable. Define η(x) = − f ′(x)
f (x) and g(x) = [h(x)]−1. If there exists a point

x0 such that η ′(x)< 0 for x < x0, η ′(x0) = 0 and η ′(x)> 0 for x > x0, and further
there exists a y0 such that

g′(y0) =
∫ ∞

y0

f (y)
f (y0)

[η(y0)−η(y)]dy.

Then, the corresponding distribution has BT-shaped hazard rate. Verification of
the BT nature of several distributions discussed earlier like (7.4), (7.5), (7.45)
and mixtures of gamma is in fact accomplished in this manner.

• From convex functions
A BT hazard rate distribution emerges from a strictly convex positive function

on (0,α) satisfying the condition
∫

h(x)dx = ∞. Also, a strictly increasing
function of BT hazard rate is also a BT hazard rate. Models (7.12) and (7.19)
are examples of this form.
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• Series systems (Addition of hazard rates)
The hazard rate of a series system with n independent components is the sum

of the hazard rates of the components. By choosing some hazard rates to be IHR
and the rest to be DHR, one may arrive at a BT hazard rate. Models (7.19),
(7.20), (7.38), (7.39) and (7.40) all belong to this category. Generalizing this
idea, lifetime distributions with hazard functions of the form

h(x) = A1h1(x)+A2h2(x), x > 0,

were investigated by Shaked [529]. In the above formulation, A1 and A2 are
independent of h1(x) and h2(x), while both h1(x) and h2(x) may be assumed to be
of known forms. Shaked [529] chose h1(x) = 1 and h2(x) = sinx, for example, in
modelling hazard rate influenced by periodic fluctuations of temperature. Gaver
and Acar [210] discussed models with hazard rates of the form

h(x) = h1(x)+λ + h2(x),

where h1(x) is positive and decreasing and tends to zero as x → ∞, and h2(x)
is increasing. One can see several hazard functions of the above two forms in
our earlier discussions. Closely related to these are distributions with polynomial
form for h(x).

• Stochastic hazard rates
Rajarshi and Rajarshi [500] identified a stochastic hazard rate as

h∗(x) = u+ h1(x),

where u is the realization of a continuous positive random variable U , and h1(x)
need not be a hazard rate, and h∗(x) is the hazard rate of X given U = u. It is
obvious that the above representation is a special case of the additive hazard rate
model of Nair and Sankaran [446] discussed in connection with the Hjorth [272]
model. The BT-shaped hazard functions obtained earlier as the sum of hazard
rate models of Murthy et al. [435], Shaked [529] and Davis and Feldstein [167]
also belong to this category. The ageing properties and stochastic order relations
connecting the random variable X∗ (corresponding to h∗(x)) and the baseline
variable X have been studied in Nair and Sankaran [446]).

• Mixtures
Mixtures of two distributions, with one of the components being IHR and the

other being DHR, may yield a BT-shaped hazard rate model. See the mixture
distributions discussed in Sect. 7.4 for illustration.

• Introduction of additional parameters
Introducing additional parameters that influence the shape of a baseline

distribution has become a standard practice to generate new models with BT
hazard rates. One simple method is exponentiation, i.e., to consider [F(x)]θ ,
θ > 0, where F(x) is a life distribution. The exponentiated Weibull, generalized
exponential, and generalized linear failure rate distributions are all examples of
this kind.
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Another method is to use the Marshall-Olkin [411] method. A given survival
function G(x) is modified into the form

F(x) =
θG(x)

1− (1−θ )G(x) .

Several such models are discussed, along with their hazard rates, by Marshall
and Olkin [411]. See also various generalizations arising from the Weibull
distributions in Sects. 7.4 and 7.5.

• Upside-down mean residual life models
Like the hazard rate, the mean residual life function can also have BT and

UBT shapes. The following theorem, from Ghai and Mi [211], is of interest in
the pursuit of BT or UBT hazard rates.

Theorem 7.2. Let x0 be the unique change point of a UBT (BT) mean residual life
function m(x). Suppose there exists a t0 ∈ [x0,∞) such that m(x) is concave (convex)
in [0, t0] and convex (concave) in [t0,∞). If m′(x) is convex (concave) in [x0, t0), then
either of the following is true:

(a) h(x) exhibits a BT (UBT) that has two change points x1 < x2, where x0 ≤ x1 <
x2 ≤ t0;

(b) h(x) exhibits a BT (UBT) that has a unique change point x∗, where x0 ≤ x∗ ≤ t0.

Hence, a known mean residual life satisfying Theorem 7.2 can generate a BT or
UBT hazard rate. Other methods of obtaining BT shapes for the hazard rate function
will be discussed in the following section.

7.6 Quantile Function Models

So far, we have discussed in this chapter models based on distribution functions
that possess nonmonotone hazard rates. Since many of the models have tractable
quantile functions, a quantile-based analysis is possible in all such cases. While
analysing the standard quantile functions in Chap. 3, the nonmonotonicity of their
hazard quantile functions was witnessed to make use of them in data analysis. The
primary objective of the present section is to enrich the domain of applications by
finding some more new quantile functions.

7.6.1 Bathtub Hazard Quantile Functions Using Total
Time on Test Transforms

Recall from Chap. 5 that the total time on test transform (TTT) of order n of a non-
negative random variable with quantile functions Q(u) is defined as



270 7 Nonmonotone Hazard Quantile Functions

Tn(u) =
∫ u

0
(1− p)tn−1(p)d p, n = 1,2,3, . . . , (7.47)

with T0(u) = Q(u) and tn(u) = T ′
n(n), provided μn−1 =

∫ 1
0 Tn−1(p)d p < ∞. Since

Tn(u) is also a quantile function, let us denote by Xn the corresponding random
variable. Let μn = E(Xn) and Hn(u) be the hazard quantile function of Xn. We then
have

tn(u) = (1− u)tn−1(u) = [Hn−1(u)]
−1

and

tn(u) = (1− u)nt0(u) = (1− u)nq(u) =
(1− u)n−1

H(u)
.

Finally,

H(u) = (1− u)nHn(u), n = 0,1,2,3, . . . (7.48)

Definition (7.47) applies to negative integers as well; for example, Q(u) can be
thought of as the transform of T−1(u). In that case, the hazard quantile function
H−n(u) corresponds to

H−n(u) = (1− u)nH(u), n = 0,1,2,3, . . . . (7.49)

Equation (7.48) reveals that, in successive transforms, the hazard quantile function
increases when n is positive and decreases when n is negative. The following results
(Nair et al. [448]) are useful in this connection.

Theorem 7.3. 1. The random variable X has BT hazard quantile function if there
exists a u0 for which Q(u) ≥ L(u) in [0,u0] and Q(u) ≤ L(u) in [u0,1], where
L(u) is the quantile function of the Pareto II distribution with parameters (k, 1

n ).
Then, u0 will be the change point;

2. The random variable Xn has UBT hazard quantile function if there exists a u0

for which Tn(u) ≤ B(u) in [0,y0] and Tn(u) ≥ B(u) in [u0,1], where B(u) is the
quantile function of the rescaled beta distribution with parameters ( k

n+1 ,
1

n+1 ).
Then, we have u0 as the change point.

From (7.48) and (7.49), we see that for DHR (IHR) distributions the hazard
quantile function of Xn has a tendency to increase (decrease). In effect, we look at
the successive transforms where a change point occurs in the corresponding hazard
quantile function to construct a model with BT- or UBT-shaped hazard quantile
function. This technique will be used to develop new quantile functions with the
above property from some standard distributions.
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• Weibull distribution

It has been seen in the previous sections that many of the models with nonmonotone
hazard rates were generated by either generalizing or modifying the Weibull
distribution. In the same spirit, the present example also considers the Weibull
distribution with survival function

F(x) = exp

{
−
( x
α

)β}
, x > 0; α,β > 0,

and mean μ = αΓ (1+ 1
β ), as the baseline model. Using the quantile function

Q(u) = α{− log(1− u)} 1
β ,

we have

H(u) = βα−1{− log(1− u)}1− 1
β

and from (7.48),

Hn(u) = βα−1(1− u)−n{− log(1− u)}1− 1
β

and

H ′
n(u) = βα

−1{− log(1− u)}− 1
β (1− u)−n+1

{
1− 1

β
− n log(1− u)

}
. (7.50)

Since Hn(u) has the tendency to increase with n, the only possibility to get a BT
hazard quantile function is to consider DHR distributions. Accordingly, we take the
DHR Weibull distribution with β ≤ 1. Equation (7.50) reveals that Hn(u) is concave
in [u0,1] and convex on [0,u0], where u0 = 1− exp(β−1

nβ ), β ≤ 1. Hence, Xn has BT
distribution for n ≥ 1. As seen from the expression for u0, the change point u0 also
increases with n so that Xn becomes IHR for a larger range, along with increasing n.

Take the case when n = 1. We have the random variable X1 in the support of
(0,μ) with quantile function T1(u) and hazard quantile function as

H1(u) = βα−1(1− u)−1{− log(1− u)}1− 1
β .

The quantile density function is

t1(u) = αβ−1{− log(1− u)}1− 1
β , 0 ≤ u ≤ 1, (7.51)

which is bathtub-shaped hazard quantile function with change point u0 = 1 −
exp(β−1

β ). We can find the distributional characteristics of X1 from (7.50). Quantile



272 7 Nonmonotone Hazard Quantile Functions

function corresponding to (7.50) is expressed in terms of the incomplete gamma
function as

T1(u) =
α
β
Γ− log(1−u)

(
1
β

)
, 0 < β < ∞,

where

Γx(p) =
∫ x

0
e−tt p−1dt.

The first four L-moments of the distribution are as follows:

L1 = E(X) =
αΓ

(
1
β

)

β2
1
β

,

L2 =
α
β

(
2−

1
β − 3−

1
β
)
Γ
(

1
β

)
,

L3 =
α
β

{
2−

1
β − 3(3−

1
β )+ 2(4−

1
β )

}
Γ
(

1
β

)
,

L4 =
α
β

{
2−

1
β − 6(3−

1
β )+ 10(4−

1
β )− 5(5−

1
β )

}
Γ
(

1
β

)
.

Thus, the L-skewness has the simple expression

τ3 =
2−θ − 31−θ + 4

1
2−θ

2−θ − 3−θ

= 1− 2(3−θ − 4−θ)
2−θ − 3−θ

= 1− 2
{

1− ( 3
4)
θ}

( 3
2 )
θ − 1

, with θ = β−1.

As θ→∞ or β→ 0, we see that τ3 tends to 1, and as θ→ 0, we have τ3 appropriately
−0.53. Hence, the distribution covers skewness in the range (−0.53,1). On the other
hand, the L-kurtosis is

τ4 = 1− 5− ( 3
4)
θ + 5( 3

5)
θ

( 3
2 )
θ − 1

which tends to 1 as β → 0. The parameters of the distribution allows easy estimation
by equating the first two L-moments of the sample with those of the population.
Thus, (7.50) gives a two-parameter life distribution with BT-shaped hazard quantile
function.
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7.6.2 Models Using Properties of Score Function

The results discussed here are mainly based on the work of Nair et al. [448]. Recall
from Sect. 4.3 that the definition of the score function is

J(u) =
q′(u)
q2(u)

,

where q(u) is the quantile density function of the lifetime X . We see that

J(u) =− d
du

1
q(u)

=− d
du

(1− u)H(u),

or equivalently

(1− u)H ′(u) = H(u)− J(u).

Thus, X is I(D) according as H(u) ≥ J(u) for all u. Further, if H(u) is nonmono-
tonic, the change points of H(u) are zeros of H(u)− J(u). Geometrically, for
increasing (decreasing) H(u), the H(u) curve lies above (below) that of J(u) and
for BT (UBT) hazard quantile function H(u) crosses J(u) from below (above). An
interesting property of J(u) is that there exists some simple relationships between
J(u) and H(u) that characterize many life distributions.

Theorem 7.4. The random variable X is distributed as generalized Pareto with

Q(u) = ba−1
{
(1− u)−

a
a+1 − 1

}
, a >−1, b > 0, (7.52)

if and only if

J(u) = cH(u) (7.53)

for a positive constant c.

Proof. Assuming (7.50), we find J(u) and H(u) as

J(u) =
2a+ 1

b
(1− u)

a
a+1

and

H(u) =
a+ 1

b
(1− u)

a
a+1 .

This readily verifies (7.53) with c = 2a+1
a+1 . Conversely, if (7.53) applies to a random

variable X , then
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H ′(u)
H(u)

=
1− c
1− u

and

H(u) = K(1− u)c−1,

q(u) = K(1− u)c−1,

which is the quantile density function of the generalized Pareto with c = 2a+1
a+1 .

Hence, the theorem.

Remark 7.2. When c = 1, we have the exponential distribution and c > (<)1 leads
to the Pareto II (rescaled beta) model. It is apparent that by generalizing the identity
in (7.53), we can obtain more flexible models. This fact is illustrated in the following
theorems.

Theorem 7.5. The relationship

J(u) = AH(u)+B

is satisfied for all u and real constants A and B if and only if the distribution of X is
given by

Q(u) =

⎧⎪⎨
⎪⎩

log

{(
1+ B

1−A

) 1
B
(

c+ B
1−A(1− u)1−A

)− 1
B
}
, c ≤ 1, A �= 1

1
B log

{
c

c+B log(1−u)

}
, A = 1, c > 0.

(7.54)

Theorems 7.4 and 7.5 do not provide models with nonmonotone hazard quantile
functions. The distribution in Theorem 7.5 contains known models like the exponen-
tial, Pareto, rescaled beta, half-logistic and Gompertz as special cases. In general,
H(u) is increasing for (7.54) when A < 1, 0 < c ≤ 1 or A > 1, C < 0 and decreasing
when A > 1, C < 0 or A > 1, 0 < c ≤ 1. Some other properties of the distribution
have been studied by Nair et al. [448].

Returning to the construction of bathtub-shaped H(u), we have the follow-
ing characterization that generates a distribution with BT-shaped hazard quantile
function.

Theorem 7.6. If the functions J(u) and H(u) are such that

J(u) =
(

A+
α
u

)
H(u) (7.55)

for all u, then it is necessary and sufficient that the distribution is specified by the
quantile density function

q(u) = Kuα(1− u)−(A+α), (7.56)

where α,A and K are real constants.
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Proof. Equation (7.55) is equivalent to

q′(u)
q2(u)

=
(A+ α

u )

(1− u)q(u)
,

or

d logq(u)
du

=
A+ α

u

(1− u)
.

Integrating the above equation, we obtain (7.56). Conversely, if the distribution is of
the form (7.56), then by direct calculations, we have

H(u) = K−1u−α(1− u)A+α−1

and

J(u) = K−1u−α−1(1− u)A+α−1(uA+α),

thus verifying (7.55).
The family of distributions in (7.55) includes several well-known distributions as

special cases. Of these are

• the exponential (α = 0,A = 1) with constant H(u);
• Pareto II (α = 0,A < 1) with decreasing H(u);
• rescaled beta (α = 0,A > 1) with increasing H(u);
• loglogistic (A = 2,α = λ − 1), specified by

F(x) =
x

1
λ

α
1
λ + x

1
λ
, x > 0, λ ,α > 0.

The reliability aspects of this distribution have been studied by Gupta et al. [237].
Since

J(u) =
2u+α− 1

u
H(u)

in this case, X is UBT with change point at u0 = 1−λ ;
• Govindarajulu’s distribution with

Q(u) = θ +σ
{
(β + 1)uβ −βuβ+1

}

on setting α = β − 1, A = −β and K = σβ (β + 1). See Chap. 3 and Nair et al.
[448] for a detailed discussion on the properties and reliability implications. For
A > −1, H(u) is increasing while for A < −1, H(u) has bathtub shape with
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Table 7.1 Observed and expected frequencies for the gastric carcinoma data

Class
intervals 0–111.8111.8–197197–289.4289.4–401401–550.3550.3–782782–1265.5> 1265.5

Observed 13 10 9 15 14 10 14 10
frequencies

Expected 12 12 12 12 12 12 12 11
frequencies

change point u= A+1
A−1 . The hazard quantile can be differentiated to study its shape

for various values of the parameters. We have

H ′(u) = K−1u−α−1(1− u)A+α−2{−α+ u(1−A)}.

Thus, H(u) is increasing for α < 0, A < 1, and decreasing for α < 0, A > 1 for all
u giving the IHR and DHR cases. The BT and UBT cases also hold, respectively,
when α > 0, A < 1 and α �< 0, A > 1. Accordingly, the model can cover all the
cases.

Example 7.1. The use of the model was tested against the data on survival times in
days from a clinical trial on gastric carcinoma on 90 patients, as given by Kleinbaum
[342], by considering the survival times alone in a single set. In order to estimate
the parameters of the model, the 25th, 50th and 75th percentiles of the sample and
the population are matched. This procedure results in the estimates

α̂ =−0.3128, Â = 1.7693 and K̂ = 296.267.

We then calculated the observed and expected frequencies for various classes and
these are reported in Table 7.1. The χ2 value of 3.14 does not reject the model in
(7.56) for the data at 5 % level of significance.

Some distributional aspects of (7.56) will also be interest in further analysis. The
first four L-moments, for example, are as follows:

L1 = KB(α+ 1,2−A−α), with A+α < 2,

L2 = KB(α+ 2,2−A−α),
L3 = K{B(α+ 3,2−A−α)−B(α+ 2,3−A−α)},
L4 = K{B(α+ 2,2−A−α)− 5B(α+ 3,3−A−α)}.

Hence, as a location measure, the mean is

μ = KB(α+ 1,2−A−α)

and as a dispersion measure, the mean difference is
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Δ = 2KB(α+ 1,2−A−α).

The L-skewness is

τ3 =
L3

L2
=

(α+ 2)− (2−A−α)(4−A)
(4−A)

,

and the L-Kurtosis is

τ4 = 1− 5(α+ 2)(2−A−α)
(5−A)(4−A)

.

Theorem 7.7. The relationship

J(u) = [A+M{log(1− u)}−1]H(u) (7.57)

is satisfied for all u and real A and M if and only if

q(u) = K(1− u)−A{− log(1− u)}−M. (7.58)

Proof. Rewriting (7.57) as

q′(u)
q2(u)

=
[
A+M{log(1− u)}−1] 1

(1− u)q(u)
,

we have

q′(u)
q(u)

=
A

1− u
+

M
(1− u)q(u)

.

Integrating, we obtain (7.58). Conversely, logarithmic differentiation of (7.58) leads
to (7.57). Hence, the theorem.

We can write the quantile function in terms of special function as

Q(u) = K(1−A)M−1I(1−M, log(1− u)A+1),

where

I(a,x) =
∫ x

0
e−t ta−1dt

is the incomplete gamma function. The density function of X can be written in terms
of the survival function as

f (x) =C[F(x)]A{1− logF(x)}M, x > 0.
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Some special cases of (7.58) are

• The Weibull distribution with shape parameter λ and scale parameter σ = Kλ ,
and in particular, exponential and Rayleigh distributions when λ = 1 and 2,
respectively;

• Pareto II (A > 1, M = 0), rescaled beta (A < 1, M = 0), and uniform (A = 0,
M = 0).

Thus, (7.58) is a generalized Weibull model belonging to the category of several
such models discussed in the preceding sections. The hazard quantile function has
the form

H(u) = K−1(1− u)A−1{− log(1− u)}M.

Upon taking the derivative, we get

H ′(u) = K−1(1− u)A−2{− log(1− u)}M−1{M+(A− 1) log(1− u)}. (7.59)

Equation (7.59) shows that H(u) is capable of taking on different shapes. In fact,

X is IHR when A ≤ 1, M > 0; A < 1,M = 0;

X is DHR when A ≤ 1, M < 0; A > 1,M = 0;

X is BT when A < 1, M < 0;

X is UBT when A > 1, M > 0;

X is exponential when A = 1, M = 0.

We now look at some distributional properties of this family. First, we see that the
members of the family are either unimodal or monotonic with modal value at u0 =
1− exp(M

A ). The summary measures can be described in terms of the quantiles or.
We have the first four L-moments as follows:

L1 =
KΓ (1−M)

(2−A)1−M , M < 1, A < 2,

L2 =

{
1−

(2−A
3−A

)1−M
}

L1,

L3 =

{
1− 3

(2−A
3−A

)1−M
+ 2

(1−A
4−A

)1−M
}

L1,

L4 =

{
1− 6

(2−A
3−A

)1−M
+ 10

(2−A
4−A

)1−M − 5
(2−A

3−A

)1−M
}

L1.

The mean, mean difference, L-skewness and L-kurtosis are all readily obtained from
the above expressions.
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Table 7.2 Observed and expected frequencies of the failure time data

Class intervals 0–3.184 3.184–13.5 13.5–29.48 29.48–48.5 48.5–67.47 67.47–83.25 > 83.25

Observed freq. 9 4 6 6 9 6 8
Expected freq. 6 6 6 6 6 6 14

For an empirical validation of the model, the data on the failure times of 50
devices given in Lai and Xie [368, p. 353] is considered. Matching the 25th, 50th and
75th percentiles of the sample with the corresponding percentiles of the population,
the estimates of the model parameters are found to be

Â =−1.8224, M̂ =−1.2576 and K̂ = 875.927.

A χ2 value of 4.509 is found from the observed and expected frequencies presented
in Table 7.2, which does not lead to rejection of the model.

The methods suggested in this section, using the total time on test transform as
well as the relationship between J(u) and H(u), are quite general in nature. The
above examples illustrate how we can work with them. It will, of course, be of
interest to develop more flexible families of distributions that generalize the existing
distributions and present varying shapes and characteristics to become practically
useful!



Chapter 8
Stochastic Orders in Reliability

Abstract Stochastic orders enable global comparison of two distributions in terms
of their characteristics. Specifically, for a given characteristic A, stochastic order
says that the distribution of X has lesser (greater) A than the distribution of Y . For
example, one may use hazard rate or mean residual life for such a comparison. In
this chapter, we discuss various stochastic orders useful in reliability modelling and
analysis.

The stochastic order treated here are the usual stochastic order, hazard rate order,
mean residual life order, harmonic mean residual life order, renewal and harmonic
renewal mean residual life orders, variance residual life order, percentile residual life
order, reversed hazard rate order, mean inactivity time order, variance inactivity time
order, the total time on test transform order, the convex transform (IHR) order, star
(IHRA) order, DMRL order, superadditive (NBU) order, NBUE order, NBUHR and
NBUHRA orders and MTTF order. The interpretation of ageing concepts, preser-
vation properties with reference to convolution, mixing and coherent structures are
also discussed in relation to each of these orders. Implications among the different
orders are also presented. Examples of the stochastic orders and counter examples
where certain implications do not hold are also provided. Some special models used
in reliability like proportional hazard and reverse hazard models, mean residual life
models and weighted distributions have been discussed in earlier chapters. Some
applications of these stochastic models are reviewed as well.

8.1 Introduction

There are many situations in practice wherein we need to compare the characteristics
of two distributions. In certain cases, descriptive measures like mean and variance
have been used for this purpose. Since these measures are summary measures of the
data, they become less informative and so cannot capture all the essential features
inherent in the data. An alternative approach to assess the relative behaviour of the
properties of distributions is provided by stochastic orders which provide a global

N.U. Nair et al., Quantile-Based Reliability Analysis, Statistics for Industry
and Technology, DOI 10.1007/978-0-8176-8361-0 8,
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comparison by taking into account different features of the underlying models.
Specifically, for a given characteristic A, a stochastic order says that the distribution
FX of a random variable X has lesser (greater) A than the distribution FY of Y and
we express it as FX ≤A FY (FX ≥A FY ), or equivalently in terms of the random
variables X ≤A Y (X ≥A Y ). For example, in the context of reliability theory, if
two manufacturers produce devices for the same purpose, the natural interest is
to know which is more reliable. The reliability functions of the two devices then
become natural objects for comparison and the characteristic in question may be
their mean lives. But, when both devices were working for a specified time, the
characteristic in question may change to the mean residual life and the comparison
confirms which one of the two has more remaining life on an average. In all cases of
comparison, the characteristic of comparison should have an appropriate measure
ω(A), which should satisfy ωX(A) ≤ ωY (A). Marshall and Olkin [412] point out
that Mann and Whitney [409] used this approach initially and Birnbaum [101]
subsequently to study peakedness. There is a phenomenal growth in the study of
stochastic orders in recent years in such diverse fields as reliability theory, queueing
theory, survival studies, biology, economics, insurance, operations research, actu-
arial science and management. In this chapter, we take up such stochastic orders
and present results relevant to reliability analysis using quantile functions. Details
of other orderings, proofs of results using the distribution function approach and
so on are well documented; see, e.g., Szekli [557] and Shaked and Shantikumar
[531].

Some notation need to be introduced first for the developments in subsequent
discussions. Let Ω be a nonempty set. A binary relation ≤ on this set is called a
preorder if

(i) x ≤ x, x ∈Ω (reflexivity),
(ii) x ≤ y, y ≤ z ⇒ x ≤ z (transitivity).

If, in addition, we also have

(iii) x ≤ y, y ≤ x ⇒ x = y (anti-symmetry),
then ≤ is called a partial order. The term stochastic order considered here
include both preorders and partial orders.

Let F and G be distribution functions of random variables X and Y , respectively.
Then, the function

ψF,G(x) = G−1(F(x)), (8.1)

for all real x, is called the relative inverse function of F and G. If F is continuous
and supported by an interval of reals, then ψ(X) and Y are identically distributed. If
U is uniformly distributed over [0,1], then ψFU ,G(U) has the same distribution as Y .
On the other hand, if Y is exponential, ψExp,F(Y ) has the same distribution as X for
X ≥ 0. These are easy to verify from the definition of the ψ function. Further, if F
and G are strictly increasing with derivatives f and g, then
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d
dx
ψ(x) =

f (x)
g(G−1F(x))

(8.2)

and

d
dx

FG−1(x) =
f (G−1(x))
gG−1(x)

. (8.3)

If G is continuous with interval support, then

ψ−1
F,G(x) = ψG,F(x). (8.4)

8.2 Usual Stochastic Order

The usual stochastic order is basic in the sense that it compares the distribution
functions of two random variables.

Definition 8.1. Let X and Y be random variables with quantile functions QX (u) and
QY (u), respectively. We say that X is smaller than Y in the usual stochastic order,
denoted by X ≤st Y , if and only if

QX(u)≤ QY (u) for all u in (0,1).

The ≤st ordering is usually employed to compare the distributions of two random
variable X and Y or to compare the distribution of X at two chosen parameter values.

Example 8.1. Let X follow Pareto II distribution with

QX(u) = (1− u)−
1
c − 1, c > 0,

and Y follow the beta distribution with

QY (u) = 1− (1− u)
1
c , c > 0.

Then,

QY (u)−QX(u) = 1− (1− u)
1
c − 1− (1− u)

1
c

(1− u)
1
c

= −(1− u)−
1
c

{
1− (1− u)

1
c

}2

≤ 0 for all u.

Thus, X ≥st Y .
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Example 8.2. Assume that Xλ has exponential distribution with

Q(u) =− 1
λ

log(1− u)

for λ > 0. It is easy to verify that for λ1 < λ2, Xλ1
≤st Xλ2

.

There are several equivalent forms of Definition 8.1 that are useful in establishing
stochastic ordering results. We list them in the following theorem.

Theorem 8.1. The following conditions are equivalent:

(i) X ≤st Y ;
(ii) FX(x)≤ FY (x) or FX(x)≥ FY (x) for all x;

(iii) Eφ(X)≤ Eφ(Y ) for all increasing functions φ for which the expectations exist.
As a consequence, it is apparent that if φ(x) = xr, then

X ≤st Y ⇒
{

E(Xr)≤ E(Y r), r ≥ 0

E(Xr)≥ E(Y r), r ≤ 0

which connects the moments of the two distributions. Another function of
interest is φ(x) = etx, with which we have a comparison of moment generating
functions as

X ≤st Y ⇒
{

E(etX )≤ E(etY ), t ≥ 0

E(etX )≥ E(etY ), t ≤ 0.

Proof of the main result is available in Szekli [557]. If φ is strictly increasing
and X ≤st Y , then X and Y are identically distributed if Eφ(X) = Eφ(Y );

(iv) φ(X)≤st φ(Y ) for all increasing functions φ ;
(v) Q−1

Y (QX(u))≤ u;
(vi) φ(X ,Y ) ≤st φ(Y,X) for all φ(x,y), where φ(x,y) is increasing in x and

decreasing in y and X and Y are independent.

One important advantage of studying stochastic orders is that many of the ageing
concepts discussed earlier in Chap. 4 can be expressed in terms of some ordering.
This in turn assists us in deriving many new properties and bounds based on the
properties of the orderings, which are otherwise not explicit. We now present some
theorems defining the IHR (DHR), NBU (NWU), NBUE, NBUC, RNBU, DMRL
and RNBRU classes discussed in Chap. 4.

Theorem 8.2. The lifetime variable X is IHR (DHR) if and only if Xt ≤st (≥)Xt′
whenever t < t ′, where Xt = (X − t|X > t) is the residual life.

Proof. The quantile function of the residual life at t is given by (1.4) as

Q1(u) = Q(u0 +(1− u0)u)−Q(u0),
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where u0 = F(t) and Q(·) is the quantile function of X . Similarly, for Xt′ , we have

Q2(u) = Q(u1 +(1− u1)u)−Q(u1),

with u1 = F(t ′)> u0. Now assume that Xt ≤st Xt′ . Then, by Definition 8.1, we have

Q(u0 +(1− u0)u)−Q(u0)≤ Q(u1 +(1− u1)u)−Q(u1)

⇔ Q(u1)−Q(u0)≤ Q(u1 +(1− u1)u)−Q(u0+(1− u0)u)

⇔ Q(u1)−Q(u0)

(1− u)(u1− u0)
≤ Q(u1 +(1− u1)u)−Q(u0 +(1− u0)u)

(u1 +(1− u1)u)− (u0 +(1− u0)u)

⇒ 1
1− u

q(u0)≤ q(u0 +(1− u0)u) (8.5)

⇒ 1
(1− u0)q(u0)

≤ 1
(1− u0− (1− u0)u)q(u0 +(1− u0)u)

⇒ H(u0)≤ H(u0 +(1− u0)u) for every u0 in (0,1).

⇒ X is IHR.

Conversely, when X is IHR, we can retrace the above steps up to (8.5). However,
(8.5) is equivalent to

d
du0

{
1

1− u
Q(u0)− 1

1− u
Q(u0 +(1− u0))u

}
≤ 0

which means that

Q(u0)−Q(u0 +(1− u0)u)

is a decreasing function of u0. Hence,

Q(u0)−Q(u0+(1− u0)u)≥ Q(u1)−Q(u1 +(1− u1)u)

for u1 > u0 or Q1(u)≤ Q2(u) as we wished to prove. The proof of the DHR case is
obtained by simply reversing the above inequalities.

Theorem 8.3. A lifetime X is NBU (NWU) if and only if X ≥st (≤st)Xt .

The result is a straightforward application of Definition 4.22.

Theorem 8.4. If X is a lifetime random variable with E(X) < ∞, then X is NBUE
(NWUE) if and only if X ≥st (≤st)Z, where Z is the equilibrium random variable
with survival function (4.7).

Proof. Assume that X ≥st Z. Then, from (4.9), we have

QX(u)≥ QZ(u) = μQX(T
−1

X (u)),
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where TX (x) =
∫ u

0 (1− p)q(p)d p and μ = E(X). This gives

X ≥st Z ⇔ QX(TX (u))≥ QX (μu)⇔
∫ u

0
(1− p)q(p)d p ≥ μu

⇔ μ−
∫ 1

u
(1− p)q(p)d p ≥ μu

⇔ 1
1− μ

∫ 1

u
(1− p)q(p)d p ≤ μ ⇔ X is NBUE.

from Definition 4.33.

Theorem 8.5 (Nair and Sankaran [446]).

(a) X ≥st Zt for all t ≥ 0 ⇔ X is NBUC, where Zt = Z − t|(Z > t) is the residual
life of Z;

(b) Z ≥st Xt ⇔ X is RNBU;
(c) Xt ≥st Zt ⇔ X is DMRL;
(d) Z ≥st Zt ⇔ X is RNBRU.

As with ageing criteria, it is customary to study the preservation properties of
stochastic orders. With regard to the usual stochastic order, the following properties
hold:

1. Let (X1,X2, . . . ,Xn) and (Y1,Y2, . . . ,Yn) be two sets of independent random
variables. For every increasing function φ , we have

φ(X1,X2, . . . ,Xn)≤st φ(Y1,Y2, . . . ,Yn)

whenever Xi ≤st Yi. Hence, if Xi ≤st Yi, then

n

∑
i=1

Xi ≤st

n

∑
i=1

Yi.

Thus the usual stochastic order preserves convolution property or is closed under
the formation of additional lifelengths.

2. The ordering ≤st is preserved under convergence in distribution. That is, if (Xn)
and (Yn) are sequences such that Xn → X and Yn → Y as n → ∞ in distribution
and if Xn ≤st Yn, n = 1,2, . . . , then X ≤st Y .

3. Under the formulation of mixture distributions, ≤st is closed. This means that if
X ,Y andΘ are random variables satisfying

[X |Θ = θ ]≤st [Y |Θ = θ ]

for all θ ∈Θ , then X ≤st Y .
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4. A further extension of Property 1 above for random convolution is possible. If
Xi’s and Yi’s are non-negative, M is a non-negative integer valued random variable
independent of the Xi’s and N is non-negative integer valued random variable and
independent of the Yi’s, then

Xi ≤st Yi ⇒
M

∑
i=1

Xi ≤st

N

∑
i=1

Yi

provided M ≤st N.
5. The ordering X ≤st Y is closed under shifting and scaling meaning that

X ≤st Y ⇒CX ≤st CY

and

X ≤st Y ⇒ X + a ≤st Y + a.

More properties of the ≤st ordering will appear in connection with other orderings
discussed later. Further properties of ≤st can be found in Muller and Stoyan [432],
Scarsini and Shaked [521], Barlow and Proschan [68] and Ma [406].

8.3 Hazard Rate Order

In hazard rate ordering, we compare two distributions by means of the relative
magnitude of their hazard rates. The idea behind this comparison is that when the
hazard rate becomes larger, the variable becomes stochastically smaller.

Definition 8.2. If X and Y are lifetime random variables with absolutely continuous
distribution functions, we say that X is smaller than Y in hazard rate order, denoted
by X ≤hr Y , if

HX (u)≥ H∗
Y (u),

where HX(u) = hX(QX(u)) and H∗
Y (u) = hY (QX (u)) and h(·) denotes the hazard rate

function.

Example 8.3. The hazard quantile function of the Pareto II distribution
(Table 2.4) is

HX(u) =
c(1− u)

1
c

α

and the hazard rate function of the beta distribution with R = 1 is hY (x) = c
1−x .

Hence,
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H∗
Y (u) = hY (QX(u)) = hY ((1− u)−

1
c − 1)

=
c

2− (1− u)−
1
c

.

It is easy to check that for 0 < u < 1, HX(u)< H∗
Y (u) and so X ≥hr Y .

Some equivalent conditions that ensure hazard rate order are presented in the
following theorem.

Theorem 8.6. X is less than Y in hazard rate order if and only if

(i) u−1FY (QX(1− u)) is decreasing in u;

(ii) u−1[1−FX(QY (1− u))] is decreasing in u;

(iii) FY (x)
FX (x)

is increasing in x;

(iv) FX(x)FY (y)≥ FX(y)FY (x) for all x ≤ y;

(v) FX (x+y)
FX (x)

≤ FY (x+y)
FY (x)

for all x,y ≥ 0;

(vi) (X |X > x)≤st (Y |Y > x).

Proof. (i) From (8.3), we have

FY (QX(1−u))
u

is decreasing in u ⇔ u fY (QX(1−u))qX(1−u)−FY (QX(1−u))≤ 0

⇔ fY (QX(1−u))

Fy(QX(1−u))
≤ 1

uqX(1−u)

⇔ hY (QX (1−u))≤ HX (1−u)

⇔ H∗
Y (1−u)≤ HX(1−u) for all 0 < u < 1

⇔ X ≤hr Y.

The proof of (ii) is exactly similar. Result (iii) is obtained from (i) by setting u =
F(x) and noting that since u = F(x) when u is decreasing x is increasing. Notice
that (iv) is a consequence of (iii) while (v) is equivalent to (iv) and (vi) to (v).

When different stochastic orders are studied, the implications, if any, between
them is also an important aspect. The relationship between ≤st and ≤hr, e.g., is
explained in the following theorem.

Theorem 8.7.

X ≤hr Y ⇒ X ≤st Y,

but not conversely.
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Proof.

X ≤hr Y ⇔ FX(x+ y)

FX(x)
≤ FY (x+ y)

FY (x)
, for all x ≤ y

⇒ FX(y)≤ FY (y) for all y > 0, when x → 0.

⇒ X ≤st Y.

To prove that the converse need not be true, let X be distributed as exponential with
QX(u) =− log(1− u) and Y follow distribution with survival function

FY = e−x + e−2x− e−3x, x > 0.

Since FX (x) = e−x, it is easy to verify that FX(x) ≤ FY (x) and so X ≤st Y . On the
other hand,

Q(1− u) = F
−1
(u) =− logu

and so

u−1FY (Q(1− u)) =
FY (− logu)

u
= 1+ u− u2.

The last expression is increasing for u in (0, 1
2 ] and decreasing for u in [ 1

2 ,1).
The hazard rates are therefore not ordered by (i) of Theorem 8.6. Hazard ordering
allows definition of certain ageing classes encountered previously in Chap. 4 as the
following theorems illustrate.

Theorem 8.8. The random variable X is IHR (DHR) if and only if any one of the
following conditions hold:

(i) (X − t|X > t)≥hr (≤hr)(X − s|X > s) for all t ≤ s;
(ii) X ≥hr (X − t|X > t) for all t ≥ 0;

(iii) X + t ≤hr X + s, t ≤ s.

The proof of the theorem rests on the fact that (X − t|X > t) has its hazard rate as
h(x+ t).

Theorem 8.9. If E(X)< ∞, then:

(a) X is DMRL ⇔ X ≥hr Z;
(b) X is IMRL ⇔ X ≤hr Z.

Proof. (a) We see that

X ≥hr Z ⇔ HX(u)≤ HZ(u) =
1

MX (u)

⇔ HX(u)MX (u)≤ 1

⇔ 1− (1− u)HX(u)M
′
X(u)≤ 1

⇔ M′
X (u)≤ 0 ⇔ X is DMRL.
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The proof of (b) is obtained by reversing the inequalities in the above argument.

Theorem 8.10. If E(X)< ∞, then:

(a) Z ≥hr (Z − t|Z > t)⇔ X is DMRL;
(b) Zt1 ≥hr Zt2 for 0 < t1 < t2 ⇔ X is DMRL.

Proof. By Part (ii) of Theorem 8.8, we see that

Z ≥hr (Z − t|Z > t)⇔ Z is IHR ⇔ X is DMRL.

From proving (b), we use Part (i) of Theorem 8.8 and the same argument as for (a).

Some preservation properties useful in reliability analysis concerning the hazard
rate ordering are as follows:

1. For every increasing function φ(x), φ(X)≤hr φ(Y ), whenever X ≤hr Y ;
2. In general, convolution is not preserved under hazard rate ordering. However, if

X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn are both independent collections such that Xi ≤hr

Yi, i = 1,2, . . . ,n, and Xi and Yi are IHR for all i, then

n

∑
i=1

Xi ≤hr

n

∑
i=1

Yi.

3. If X1,X2, . . . ,Xn is a sequence of independent IHR lifetime variables and M and
N are discrete positive integer valued random variables such that M ≤hr N and
are independent of the Xi’s, then

M

∑
i=1

Xi ≤hr

N

∑
i=1

Xi.

Thus, the ordering ‘≤hr’ is only conditionally closed under the formation of
random convolutions.

4. If X ,Y and Θ are random variables such that X |(Θ = θ ) ≤hr Y |(Θ = θ ′) for all
θ and θ ′ in the support ofΘ , then X ≤hr Y (Lehmann and Rojo [383]).

5. For 0 < a ≤ 1 and X is IHR, aX ≤hr X (Kochar [346]).
6. If X1,X2, . . . ,Xn are independent, then:

(a) Xk:n ≤hr Xk+1:n (Boland et al. [114, 115]);
(b) X1:1 ≥hr X1:2 ≥hr · · · ≥hr X1:n;
(c) Xk:n−1 ≥hr Xk:n, k = 1,2, . . . ,n− 1.

The results in (b) and (c) are due to Korwar [352] in connection with k-out-of-n
system. Proofs of the above properties along with some more general results are
given in Sect. 1.B of Shaked and Shantikumar [531].

7. If the hazard rate h(x) of X is such that xh(x) is increasing, then Y = aX , a ≥ 1,
satisfies X ≤hr Y .



8.4 Mean Residual Life Order 291

8.4 Mean Residual Life Order

Let X be a non-negative random variable representing the lifetime of a device with
E(X) = μ <∞. Then, the comparison of the mean residual lives of X and Y by their
magnitudes provides a stochastic ordering of the distributions of X and Y . Assume
also that E(Y )< ∞.

Definition 8.3. X is said to be smaller than Y in mean residual quantile function
order if

MX (u)≤ M∗
Y (u),

written as X ≤mrl Y , where

MX(u) = mX(QX (u)) and M∗
Y (u) = mY (QX(u)).

Example 8.4. Let X and Y have distributions with quantile functions

QX(u) = 1− (1− u)
1
c , c > 0,

and

QY (u) = 1− (1− u)−
1
c − 1, c > 0,

respectively. Then,

FY (x) = (1+ x)−c, x > 0.

We have

MX (u) =
1

1− u

∫ 1

u
(1− p)q(p)d p =

(1− u)
1
c

c+ 1
,

MY (x) =
1+ x
c− 1

,

and

M∗
Y (u) = mY (QX(u)) =

2− (1− u)
1
c

c− 1
, c > 1,

MX (u)−M∗
Y (u) = 2c(1− u)

1
c − 2(c+ 1)

= 2c

{
(1− u)

1
c − c+ 1

c

}
< 0.

Hence, X ≤mrl Y .
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There are several equivalent conditions for the validity of X ≤mrl Y as presented
in the following theorem.

Theorem 8.11. X ≤mrl Y if and only if any of the following conditions hold:

(a) mX (x)≤ mY (x) for all x > 0;

(b)
∫ ∞

x FY (t)dt∫ ∞
x FX (t)dt

is an increasing function of x, or equivalently

1

FY (QX (u))

∫ ∞

QX (u)
FY (x)dx ≥ 1

1− u

∫ 1

u
(1− p)qX(p)d p;

(c) PX (u)
P∗

Y (x)
is an increasing function of u, when PX(u) is the partial mean

PX(u) =
∫ 1

u
(1− p)q(p)d p

defined in (6.47) and

P∗
Y (u) = PY (QX (u)) =

∫ ∞

QX (u)
FY (t)dt.

Notice that (a) is the definition of the mean residual life order in the distribution
function approach. Differentiating (b) and noting that the derivative is non-negative,
we get (a). Setting x = Q(u) in (b), we obtain (c) which is equivalent to (b).

The classes of life distributions induced by ≤mrl are presented in the following
theorem.

Theorem 8.12. (a) X is DMRL if and only if any one of the following properties
hold:

(i) Xt ≥mrl Xt′ for t ′ ≥ t;
(ii) X ≥mrl Xt;

(iii) X + t ≤mrl X + t ′.

(b) X is DRMRL if and only if any one of the following properties hold:

(i) X ≥mrl Z;
(ii) Xt ≥mrl Zt ;

(iii) Z ≤mrl Zt .

Part (a) follows readily from the fact that the mean residual life of Xt is m(x+ t)
and the definition of ≤mrl. To prove (b), recall Definition 4.17. X is said to DRMRL
if and only if eX(u)≤ MX (u), where (4.24)

e(u) =

∫ 1
u [Q(p)−Q(u)](1− p)q(p)d p∫ 1

u (1− p)q(p)
.
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The mean residual functions of X , Z, Xt and Zt are, respectively, m(x), e(x), m(x+ t)
and m∗(x+ t) (4.23). Hence, (i) implies

X ≥mrl Z ⇔ m(x)≥ e(x)

⇔ MX (u)≥ eX (u)

⇔ X is DRMRL.

Other properties follow similarly.
Regarding the closure properties enjoyed by ≤mrl, some of the important ones

are as follows:

1. For every increasing convex function φ(x), X ≤mrl Y implies φ(X)≤mrl φ(Y ).
2. The mean residual life order is closed with respect to the formation of mixtures

under certain conditions only. If X |(Θ = θ ) ≤ Y |(Θ = θ ′) for all θ , θ ′ in the
support ofΘ , then X ≤mrl Y (Nanda et al. [460]).

3. (Xi,Yi), i = 1,2, . . . ,n, are independent pairs of IHR random variables such that
Xi ≤mrl Yi for all i, then (Pellerey [490])

n

∑
i=1

Xi ≤mrl

n

∑
i=1

Yi.

4. For a sequence {Xn}, n= 1,2, . . . , of independent and identically distributed IHR
random variables,

M

∑
i=1

Xi ≤mrl

N

∑
i=1

Xi,

where M and N are positive integer valued random variables such that M ≤mrl N
(Pellerey [490]).

5. If X is DMRL and 0 < a ≤ 1, then aX ≤mrl X .
6. Let X1,X2, . . .Xn be independent. If Xi ≤mrl Xn, for i = 1,2, . . . ,n− 1, then

Xn−1:n−1 ≤mrl Xn:n.
7. Let U be a random variable with mixture distribution function αFX(x) + (1−
α)FY (x), 0 < α < 1. If X ≤mrl Y , then X ≤mrl U ≤mrl Y .

The hazard quantile function and the mean residual quantile function are closely
related and determine each other. Moreover, the IHR class of life distributions is
a subclass of the DMRL class. We now examine how the orderings based on the
hazard quantile and mean residual quantile functions imply each other.

Theorem 8.13. If X ≤hr Y , then X ≤mrl Y , but the converse need not be true.
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Proof. We have

X ≤hr Y ⇒ HX (u)≥ H∗
Y (u)

⇒
∫ 1

u

d p
HX(p)

≤
∫ 1

u

d p
HY ∗(p)

⇒
∫ 1

u
(1− p)qX(p)d p ≤

∫ ∞

Q(u)

FY (t)dt
fY (t)

⇒ MX (u)≤ M∗
Y (u)

⇒ X ≤mrl Y.

To prove the second part, let X have standard exponential distribution with

QX(u) =− log(1− u)

so that E(X) = 1, and Y be Weibull with

QY (u) = σ(− log(1− u))
1
λ .

The parameters of Y be chosen such that λ > 1 and E(Y ) < 1. Since λ > 1, Y is
IHR and hence NBUE. This means that

MY (u)≤ 1 = E(X) = MX (u) for all 0 < u < 1.

Thus, Y ≤mrl X . On the other hand, HX(u) = 1 and

hY (x) =
λ
σλ

xλ−1.

This gives

H∗
Y (u) =

λ
σλ

(− log(1− u))λ−1

or

HX (u)−H∗
Y (u) = 1− λ

σλ
(− log(1− u))λ−1.

We can see that X and Y are not ordered in hazard rate since

HX(u)≤ H∗
Y (u) for u in

⎛
⎝0,1− exp

(
σλ

λ

) 1
λ−1

⎞
⎠

and

HX(u)≥ H∗
Y (u) in

⎛
⎝1− exp

(
σλ

λ

) 1
λ−1

,1

⎞
⎠ .
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The above result leads us to seek conditions under which the ≤hr ordering can be
generated from the ≤mrl ordering.

Theorem 8.14 (Belzunce et al. [86]).

1. X ≤hr Y ⇒ min(X ,Z) ≤mrl min(Y,Z) for any non-negative random variable Z
independent of X and Y;

2. X ≤hr Y ⇒ 1− e−sX ≤mrl 1− e−sY , s > 0.

A result that is helpful in establishing the mrl ordering is stated in the following
theorem.

Theorem 8.15. If X and Y have finite means,

X ≤mrl Y ⇔ ZX ≤hr ZY ,

where ZX and ZY denote the equilibrium random variables corresponding to X and
Y , respectively.

This result is immediate from the fact that the hazard quantile function of ZX (ZY )
is the reciprocal of the mean residual quantile function of X(Y ). A comparison
between the usual stochastic order and the mrl order is even more interesting.
Although the mean residual life function determines the distribution uniquely, there
is no implication between ≤st and ≤mrl. This is seen from the following examples
furnished by Gupta and Kirmani [241]. Upon choosing

FX(x) =

⎧⎨
⎩

e−x, 0 ≤ x < 1,

e−x
1
2 , x ≥ 1,

and

FY (x) = e−x
1
2 , x > 0,

we see that FY (x) ≤ FX(x) or X ≥hr Y . At the same time, mX(x) and mY (x) are not
ordered. Secondly, in the counter example in Theorem 8.13, FX (x)−FY (x) can have
both negative and positive signs ruling out either X ≤hr Y or X ≥hr Y . But, X ≥mrl Y .
With additional assumptions on X and Y , implications between the two orders can
be established as provided in the following theorem.

Theorem 8.16 (Gupta and Kirmani [241]).

1. If MX (u)
M∗

Y (u)
is increasing in u, then

X ≤mrl Y ⇒ X ≤hr Y ⇒ X ≤st Y ;

2. If MX (u)
M∗

Y (u)
≥ E(X)

E(Y) , then

X ≤mrl Y ⇒ X ≤st Y.
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We have conditions under which the mrl order ensures stochastic equality of X
and Y . If X ≥mrl Y , E(Y ) > 0, E(X) = E(Y ) and V (X) = V (Y ), then X and Y
have the same distribution.

For some additional results on mrl ordering, one may refer to Alzaid [35], Ahmed
[28], Joag-Dev et al. [298], Fagiouli and Pellerey [190, 192], Hu et al. [288], Zhao
and Balakrishnan [602] and Nanda et al. [459].

Another stochastic order that involves the mean residual life is the harmonic
mean residual life order defined as follows.

Definition 8.4. X is said to be smaller than Y in harmonically mean residual life
order, denoted by X ≤hmrl Y , if and only if

{
1
x

∫ x

0

dt
mX(t)

}−1

≤
{

1
x

∫ x

0

dt
mY (t)

}−1

,

or equivalently

∫ u

0

qX(p)d p
MX (p)

≥
∫ u

0

qX(p)d p
MY (QX (p))

.

Example 8.5. Let X be distributed as Pareto I with FX(x) = ( x
σ )

−α1 . Then, we have

QX(u) = σ(1− u)
− 1
α1 ,

MX(u) = σ
(1− u)

− 1
α1

α1 − 1
,

∫ u

0

qX(p)d p
MX(p)

=
α1 − 1
α1

(− log(1− u)).

Assume that Y has Pareto distribution with

FY (x) =
( x
σ

)−α2
,

MY (QX(u)) = σ
(1− u)

− 1
α1

α2 − 1
,

∫ u

0

qX(p)d p
M∗

Y (p)
=
α2 − 1
α1

(− log(1− u)).

Hence, X ≤hmrl Y if and only if α1 ≥ α2.

Some equivalent conditions for X ≤hmrl Y are as follows:

(i) ∫ ∞
x FX (t)dt

E(X)
≤

∫ ∞
x G(t)dt

E(Y )

(∫ 1
u (1− p)q(p)d p

E(X)
≤

∫ ∞
QX (u)

G(t)dt

E(Y )

)
;
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(ii) Eφ(X)
E(X) ≤ Eφ(Y )

E(Y) for all increasing convex functions φ(x);

(iii) PX (u)
E(X) ≤ P∗

Y (u)
E(Y ) , where P∗

Y (u) is as in Part (c) of Theorem 8.11.
As a further consequence of the hmrl order, we also have

X ≤hmrl Y ⇒ E(X)≤ E(Y )

and in addition if Y is NWUE (Kirmani [328, 329]), then

V (X)≤V (Y );

(iv) ZX ≤st ZY .

The preservation properties enjoyed by the hmrl order are summarized in the
following theorem. Here, all the variables involved X ,Y,Xi and Yi are non-negative.
For proofs and other details, we refer the reader to Pellerey [490] and Nanda et al.
[460].

Theorem 8.17. (a) (Xi,Yi), i = 1,2, . . . ,n, are independent pairs of random vari-
ables such that Xi ≤hmrl Yi for all i. If Xi,Yi are all NBUE, then

n

∑
i=1

Xi ≤hmrl

n

∑
i=1

Yi;

(b) (Xn) and (Yn) are sequences of NBUE independent and identically distributed
random variables satisfying Xn ≤hmrl Yn, n = 1,2, . . . . If M and N are positive
integer-valued random variables independent of the sequences {Xn} and {Yn}
such that M ≤hmrl N, then

M

∑
i=1

Xi ≤hmrl

N

∑
j=1

Yj;

(c) Let X, Y andΘ be random variables with X |(Θ = θ )≤hmrl Y |(Θ = θ ′) for all
θ and θ ′ in the support ofΘ . Then, X ≤hmrl Y ;

(d) If X ,Y andΘ are random variables such that X |(Θ = θ )≤hmrl Y |(Θ = θ ) for
all θ in the support ofΘ along with the additional condition

E(Y |Θ = θ ) = kE(X |Θ = θ ),

where k is independent of θ , then X ≤hmrl Y ;
(e) If E(X),E(Y ) > 0 and E(X) ≤ E(Y ), then X =hmrl Y if and only if X =st UY ,

where U is a Bernoulli variable independent of Y ;
(f) If U has mixture distribution

FU(x) = αFX(x)+ (1−α)FY(x), 0 < α < 1,
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then

X ≤hmrl Y ⇒ X ≤hmrl U ≤hmrl Y.

The DMRL class and NBUE class of life distributions can be characterized by
the hmrl order as given in the following theorem.

Theorem 8.18. (i) X is DMRL ⇔ Xt ≥hmrl Xt′ , t ′ ≥ t ≥ 0;
(ii) X is NBUE ⇔ X ≤hmrl Y , where Y is independent of X and E(Y )> 0;

(iii) X is NBUE ⇔ X +Y1 ≤hmrl X +Y2, where Y1 and Y2, are independent of X,
E(Yi)< ∞, i = 1,2, and Y1 ≤hmrl Y2.

The results in Parts (ii) and (iii) are due to Lefevre and Utev [381].
Finally, we study the relationships the hmrl order have with some other orders.

First of all, by the increasing nature of harmonic averages, we have

X ≤mrl Y ⇒ X ≤hmrl Y.

Even otherwise, in terms of quantile functions,

X ≤mrl Y ⇒ MX (u)≤ M∗
Y (u), where M∗

Y (u) = MY (QX (u)).

⇒ qX(u)
MX (u)

≥ qX(u)
MY ∗(u)

⇒
∫ u

0

qX(p)d p
MX(p)

≥
∫ u

0

qX(p)d p
M∗

Y (p)d p

⇔ X ≤hmrl Y.

The converse need not be true and so the ≤hmrl order is weaker than the ≤mrl order.
Moreover, neither the usual stochastic order nor the hmrl order imply the other (see
Deshpande et al. [173]).

8.5 Renewal and Harmonic Renewal Mean Residual
Life Orders

Recall the definition of the renewal mean residual life function (4.23)

m∗(x) =
∫ ∞

x (t − x)F(t)dt∫ ∞
x F(t)dt

, (8.6)

which is an alternative to the traditional mean residual life function, as it facilitates
all the functions and calculations enjoyed by the latter. The quantile-based defini-
tion is
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e(u) = m∗(Q(u)) =

∫ 1
u [Q(p)−Q(u)](1− p)q(p)d p∫ 1

u (1− p)q(p)d p

=

{∫ 1

u
(1− p)q(p)d p

}−1 ∫ 1

u

∫ 1

p
(1− t)q(t)q(p)dtd p.

(8.7)

In this section, we discuss the properties of a stochastic order based on the e(u) in
(8.7), and these results are taken from Nair and Sankaran [446].

Definition 8.5. The random variable X is said to be less (greater) than Y in renewal
mean residual life order, denoted by X ≤rmrl Y , if and only if

m∗
X (x)≤ (≥)m∗

Y (x) for all x ≥ 0,

or equivalently

eX (u)≤ (≥)e∗Y (u) for all 0 < u < 1,

where e∗Y (u) = m∗
Y (QX(u)) and eX(u) = m∗

X (QX(u)).

Example 8.6. Let X be distributed with quantile function

QX(u) = 1− (1− u)
1
3

and Y have its quantile function as

QY (u) = (1− u)−
1

12 − 1.

Then, from (8.7), we have

eX (u) =
(1− u)

1
3

5
.

Again, m∗
Y (x) =

2+x
10 so that

e∗Y (u) =
3− (1− u)

1
3

10
.

It is easy to see that eX(u)≤ e∗Y (u) for all u, and so X ≤rmrl Y .
Some other conditions that characterize the rmrl order are as follows:

(a)
∫ ∞

x
∫ ∞

u FX (t)dtdu∫ ∞
x

∫ ∞
u FY (t)dtdu

is increasing in x over {x|∫ ∞x FY (t)dt > 0};

(b) (
∫ ∞

x FY (t)dt)(
∫ ∞

x

∫ ∞
u FX (t)dtdu)≤ (

∫ ∞
x FX (t)dt)(

∫ ∞
x

∫ ∞
u FY (t)dtdu);

(c)
∫ ∞

x E(X−t)+dt∫ ∞
x E(Y−t)+dt is decreasing.
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By the methods used earlier, the results in (a), (b) and (c) above can also be
expressed in terms of quantile functions.

One issue of primary interest is the relationship between the usual mrl order and
the rmrl order, which is described in the following theorem.

Theorem 8.19. If X ≤mrl Y , then X ≤rmrl Y . But, the converse is not true.

Proof. For simplicity, we write QX (u) = Q(u) throughout the proof. We have

X ≤mrl Y ⇒ 1
1− u

∫ 1

u
(1− p)q(p)d p ≤ 1

G(Q(u))

∫ 1

u
G(Q(p))q(p)d p

⇒ 1− u∫ 1
u (1− p)q(p)d p

≥ GQ(u)∫ 1
u G(Q(p))q(p)d p

⇒ d
du

log
∫ 1

u
(1− p)q(p)d p ≤ d

du
log

∫ 1

u
G(Q(p))q(p)d p

⇒
∫ u

p

( d
dt

log
∫ 1

t
(1− p)q(p)d pdt

)
≤

∫ u

p

( d
dt

log
∫ 1

t
G(Q(p))q(p)d p

)

⇒
∫ 1

u (1− p)q(p)d p∫ 1
p (1− t)q(t)dt

≤
∫ 1

u G(Q(p))q(p)d p∫ 1
p G(Q(t))q(t)dt

⇒
∫ 1

p

∫ 1
u (1− t)q(t)q(u)du
∫ 1

p (1− t)q(t)dt
≤

∫ 1
p

∫ 1
u G(Q(t))q(t)q(u)du
∫ 1

p GQ(t)q(t)dt

⇒ eX(p)≤ e∗Y (p)⇔ X ≤rmrl Y.

To prove the latter part of the theorem, we reconsider Example 8.5 wherein we had
established that for the random variables X and Y described therein, X ≤rmrl Y . In
this case, we also have

MX(u) =
(1− u)

1
3

4

and

mY (x) =
2+ x
11

giving

M∗
Y (u) =

3− (1− u)
1
3

11
.

Thus,

MX (u)−M∗
Y (u) =

3
44

{
5(1− u)

1
3 − 4

}
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which is decreasing in (0, 61
125) and increasing in ( 61

125 ,1). Hence, X and Y are not
ordered in mrl.

Remark. One could see that the ≤rmrl order is strictly weaker than the ≤mrl order
and consequently generates a larger class of life distributions.

As was done in the mrl order, we consider conditions under which the two orders
become equivalent in the following theorem.

Theorem 8.20. If eX (u)
e∗Y (u)

, is an increasing function of u, then

X ≤mrl Y ⇔ X ≤rmrl Y.

Proof. Since eX (u)
e∗Y (u)

is an increasing function of u, we have

e′X(u)
eX(u)

≥ e∗′Y (u)
e∗Y (u)

. (8.8)

From (4.25), we have

MX(u) =
eX(u)qX(u)

qX(u)+ e′X(u)
. (8.9)

But, by definition, we have

e∗Y (u) = m∗
Y (QX (u))

=

∫ ∞
QX (u)

(t − x)FY (t)dt
∫ ∞

QX (u)
FY (t)dt

=

∫ 1
u

∫ 1
p FY (QX (t))qX(t)dt

∫ 1
u FY (QX(p))qX (p)d p

.

Differentiating and simplifying, we obtain

M∗
Y (u) =

e∗Y (u)qX(u)
qX(u)+ e′X(u)

(8.10)

From (8.8), (8.9) and (8.10), whenever X ≤rmrl Y , we must have

1
MX(u)

=
1

eX (u)
+

e′X (u)
eX (u)

=
1

e∗Y (u)
+

e∗′Y (u)
e∗Y (u)

=
1

M∗
Y (u)
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and so

MX (u)≤ M∗
Y (u)⇔ X ≤mrl Y.

The reverse inequality X ≤mrl Y ⇒ X ≤rmrl Y has already been established in
Theorem 8.8 and this completes the proof.

The procedure of taking harmonic averages and then comparing life distributions
based on them is also possible with renewal mean residual life functions as described
below.

Definition 8.6. X is said to be smaller than Y in harmonic renewal mean residual
life, denoted by X ≤hrmrl Y , if and only if

1
x

∫ x

0

dt
m∗

X (t)
≤ 1

x

∫ x

0

dt
m∗

Y (t)
.

An equivalent definition is

∫ u

0

qX(p)d p
eX(p)

≥
∫ u

0

qX(p)d p
e∗Y (p)

. (8.11)

It can be shown that (8.11) is equivalent to

E[(X − x)+]2

E(X2)
≤ E[(Y − x)+]2

E(Y 2)
.

The following properties hold for the ≤hrmrl ordering:

(i) If eX (u)
e∗Y (u)

, is increasing in u, then X ≤hrmrl Y ⇔ X ≤hrmrl Y ;

(ii) In general,

X ≤hmrl Y ⇒ X ≤hrmrl Y ;

(iii) X ≤rmrl Y ⇒ X ≤hrmrl Y .

The preservation properties and other implications of the rmrl and hrmrl orders have
not yet been studied in detail.

8.6 Variance Residual Life Order

Earlier in Sect. 4.3, we have defined the variance residual life of X as

σ2(x) =
2

F(x)

∫ ∞

x

∫ ∞

u
F(t)dtdu−m2(x),
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or in terms of quantile function as

V (u) = σ2Q(u) = (1− u)−1
∫ 1

u
M2(p)d p, (8.12)

where M(u) is the mean residual quantile function.

Definition 8.7. We say that X is smaller than Y in variance residual life, denoted
by X ≤vrl Y , if and only if any of the following equivalent conditions hold:

(i) σ2
X(x)≤ σ2

Y (x) for all x > 0;
(ii) VX(u)≤V ∗

Y (u) for all 0 < u < 1, where V ∗
Y (u) = σ2

Y (QX(u)).

For the definition in (i) and properties of the vrl ordering, one may refer to Singh
[541].

Connection of the ≤vrl ordering with the ≤mrl ordering is presented in the next
theorem.

Theorem 8.21. If X ≤mrl Y , then X ≤vrl Y .

Proof. The result easily follows from the fact

X ≤mrl Y ⇒ MX(u)≤ M∗
Y (u)

and (8.12).

If F1 and F2 are survival functions of the equilibrium random variables of X and Y ,
respectively, Fagiouli and Pellery [192] defined

X ≤vrl Y if

∫ ∞
x F1(t)dt∫ ∞
x F2(t)dt

is nonincreasing in x ≥ 0. There has not been much investigation on the preservation
properties and other aspects of the vrl order.

8.7 Percentile Residual Life Order

The percentile life ordering was introduced by Joe and Proschan [301] in the context
of testing the hypothesis of the equality of two distributions. Earlier, we have defined
the αth percentile residual life function for any 0 < α < 1 as

pα(x) = F−1(1− (1−α)F(x))− x

or

pα(u) = pα(Q(u)) = Q[1− (1−α)(1− u)]−Q(u).
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Franco-Pereira et al. [202] have discussed some properties of the percentile order.

Definition 8.8. We say that X is smaller than Y in the α-percentile residual life,
denoted by X ≤prl−α Y , if and only if

pα ,X(x)≤ pα ,Y (x) (Pα ,X(u)≤ P∗
α ,Y (u))

for all x (for all u) and P∗
α ,Y (u) = pα ,Y (Q(u)).

One specific aspect about the prl order is that, unlike other orderings we have
discussed, it is indexed by α which can take any value in (0,1). Moreover, the
percentile residual life function Pα(u), for a given α , does not determine the
distribution uniquely. If X ≤prl−α Y , then the upper end point of the support of X
cannot exceed that of Y , but it is not necessary that a corresponding result hold for
the left end point of the supports of the random variables.

Example 8.7. Consider the distribution (Pareto) with quantile function

Q(u) = (1− u)−
1
α , 0 < u < 1

Pα(u) = [1−{1− (1−α)(1−u)}]− 1
α − (1− u)−

1
α

= (1− u)−
1
α [(1− u)−

1
α − 1].

Let X and Y be random variables with the above distribution with parameters α1

and α2, respectively. Then, we find

Pα ,X(u)−P∗
α ,Y (u) = (1− u)

− 1
α1

{
(1−α)− 1

α1 − (1−α)− 1
α2

}
,

and so

X ≤prl−α Y for α2 ≤ α1.

Two useful characterizations of the ≤prl order, one in terms of quantile functions and
the other in terms of distribution functions, are presented in the following theorem
both of which are direct consequences of the definition.

Theorem 8.22. X ≤prl−α Y and only if

(i) QX(α+(1−α)u)≤ QY (α+(1−α)Q−1
Y (QX(u))),

(ii) FY (QX (u))
u ≤ FY (QX (1−α)(u))

(1−α)u for all 0 < u < 1.

The following relationships exist between the prl order and some other orders we
have discussed:
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(a) X ≤hr Y ⇔ X ≤prl−α Y for all α in (0,1);
(b) For a specific α , X ≤hr Y ⇒ X ≤prl−α Y . So, the result in (a) is not practically

useful;
(c) Percentile life orders do not preserve expectations and as such ≤prl−α neither

implies the usual stochastic order, mean residual life order, and hmrl order,
for any α . Further, stochastic order does not imply prl order, or mrl or hmrl
orders;

(d) If, for 0 < β < 1, X ≤prl−α Y for every α in (0,β ), then X ≤hr Y . Naturally, if
X ≤prl−α Y for all α in (0,β ), then X ≤prl−α Y for all α .

Some interesting preservation properties, established by Franco-Pereira et al.
[202], are as follows:

1. For an increasing function φ(·), we have

X ≤prl−α Y ⇔ φ(X)≤prl−α φ(Y );

2. Let (Xn), (Yn), n = 1,2, . . . , be two sequences of random variables such that
Xn → X and Yn → Y in distribution as n → ∞. If X and Y have continuous
distributions with interval support, then for any α , if Xn ≤prl−α Yn holds, n =
1,2, . . . , then X ≤prl−α Y ;

3. Let Xθ , θ ∈ Θ , and Yθ , θ ∈ Θ , be two families of random variables with
continuous distributions. If

FW (x) =
∫

Θ
FX(x|θ )dH(θ )

and

FZ(x) =
∫

Θ
FY (x|θ )dH(θ ),

where H is some distribution function onΘ and U is a random variable such that

Xθ ≤prl−α U ≤prl−α Yθ for all θ ∈Θ ,

then

W ≤prl−α Z.

In particular, if W has the mixture distribution function

FW = pFX +(1− p)FY

for some 0 ≤ p ≤ 1, then

X ≤prl−α Y ⇒ X ≤prl−α W ≤prl−α Y ;
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4. The prl-α order is not closed under the formation of parallel or series systems.
However, if Xi, Yi, i = 1,2, . . . ,n, are independent and identically distributed
random variables with continuous distributions, satisfying X1 ≤prl−α Y1, then

min(X1,X2, . . . ,Xn)≤prl−β (Y1,Y2, . . . ,Yn),

where β = 1− (1−α)n.

8.8 Stochastic Order by Functions in Reversed Time

Earlier in Sect. 2.4, we have defined and given examples of reliability functions
in reversed time like the reversed hazard quantile function and the reversed mean
residual quantile function. These functions have also been used in Sect. 4.5 to
introduce various ageing classes. It is therefore possible to order life distributions
on the basis of their magnitudes, and this is the focus of the present section.

8.8.1 Reversed Hazard Rate Order

Let X and Y be two absolutely continuous random variables with reversed hazard
rates

λX(x) =
fX (x)
FX(x)

and λY (x) =
fY (x)
FY (x)

,

respectively.

Definition 8.9. X is said to be smaller than Y in reversed hazard rate order, denoted
by X ≤rh Y , if and only if

λX(x)≤ λY (x) for all x > 0,

or equivalently

ΛX(u)≤Λ∗
Y (u) for all 0 < u < 1,

where Λ∗
Y (u) = λY (QX(u)) (see (2.50)).

Some other conditions that characterize the ≤rh order are presented in the
following theorem.
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Theorem 8.23. X ≤rh Y if and only if

(a)
Q−1

Y (QX (u))
u ≤ Q−1

Y QX (v)
v for all 0 < u ≤ v < 1;

(b) FY (x)
FX (x)

increases in x;

(c) X |(X ≤ x)≤st Y |(Y ≤ x) for all x > 0.

Nanda and Shaked [461] have proved a basic relationship between the ≤hr order and
the ≤rh order as presented in the following theorem, and it simplifies the proofs of
many results.

Theorem 8.24. For two continuous random variables X and Y ,

X ≤hr Y ⇒ φ(X)≥rh φ(Y )

for any continuous function φ which is strictly decreasing on (a1,b2), where a1

is the lower end of the support of X and b2 is the upper end of the support of Y .
Furthermore,

X ≤rh Y ⇒ φ(X)≤rh φ(Y )

when φ is strictly increasing.

Various properties of the ≤rh order have been studied by many authors including
Kebir [321], Shaked and Wang [533], Kijima [325], Block et al. [111], Hu and He
[285], Nanda and Shaked [461], Gupta and Nanda [254], Yu [597], Zang and Li
[599] and Brito et al. [120]. There exists a relationship between the ≤st and the ≤rh

orders which is stated in the following theorem.

Theorem 8.25. If X ≤rh Y , then X ≤st Y .

Proof. We observe that

X ≤rh Y ⇒ λX(u)≤ λY (QX (u))⇒ 1
uq(u)

≤ 1
FY (QX(u))qY (QX (u))

⇒− logu ≤− logFY (QX(u))⇒ 1
u
≤ 1

FY (QX(u))

⇒ QX (u)≤ QY (u)⇒ X ≤st Y,

as required.
The preservation properties enjoyed by the ≤rh order are as follows:

(i) Convolution property Let (Xi,Yi), i = 1,2, . . . ,n, be n pairs of random variables
such that Xi ≤rh Yi for all i. If all Xi,Yi have decreasing reversed hazard rates,
then

n

∑
i=1

Xi ≤rh

n

∑
i=1

Yi;

(ii) Mixture function If X |(Θ = θ ) ≤rh Y |(Θ = θ ′) for all θ ,θ ′ in the support of
Θ , then X ≤rh Y ;
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(iii) Order statistics

(a) If Xi are independent, i = 1,2, . . . ,n, then

Xk:n ≤rh Xk+1:n, k = 1,2, . . . ,n− 1;

(b) If Xn ≤rh Xi for i = 1,2, . . . ,n− 1, then

Xk−1:n−1 ≤rh Xk:n, k = 2,3, . . . ,n;

(c) Let Xi,Yi be pairs of independent absolutely continuous random variables
with Xi ≤rh Yi, i = 1,2, . . . ,n. If the Xi’s and Yi’s are also identically
distributed, then

Xk:n ≤rh Yk:n, k = 1,2, . . .m.

Under slightly different conditions, without the assumption of identical distributions
for (X1,X2, . . . ,Xn) and (Y1,Y2, . . . ,Ym), if Xi ≤rh Yj for all i, j, i = 1,2, . . . ,n, j =
1,2, . . . ,m, the result that

Xi:n ≤rh Yj:m

holds for i− j ≥ max(0,m− n).

8.8.2 Other Orders in Reversed Time

The reversed mean residual life function and the corresponding reversed mean
residual quantile function have been defined earlier as

r(x) = E[x−X |X ≤ x] =
1

F(x)

∫ x

0
F(t)dt

and

R(u) = r(Q(u)) =
1
u

∫ u

0
pq(p)d p.

Nanda et al. [459] introduced an ordering of reversed mean residual life, and their
definition and the equivalent version in terms of quantile function are presented in
the following theorem.

Definition 8.10. The random variable X is said to be smaller than the random
variable Y in reversed mean residual life, denoted by X ≤MIT Y , if and only if

rX (x)≥ rY (x) for all x,
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or equivalently

RX(u)≥ R∗
Y (u) for all 0 < u < 1,

where R∗
Y (u) = rY (QX(u)).

Sometimes, the reversed mean residual life is also called the mean inactivity time
and so the corresponding ordering is called the mean inactivity time order or simply
the MIT order. The relationship of the MIT order to some other orders has been
discussed in the literature; see, e.g., Nanda et al. [462], Kayid and Ahmad [319]
and Ahmed et al. [24]. It has been shown that, for 0 < t1 < t2, X is DRHR if and
only if

(i) X(t1) ≤st X(t2), X(t) = t −X |(X ≤ t) is the inactivity time;
(ii) X(t1) ≤hr X(t2);

(iii) for all positive integers m and n,

Fm+n(x)≥ Fm
( n

m
x
)

Fn
(m

n
x
)
.

Further,

X ≤rh Y ⇒ X ≤MIT Y,

but the converse need not be true.
Ahmed and Kayid [23] have shown that if rX (x)

rY (x)
is an increasing function of x,

then the ≤rh order and the ≤MIT order are equivalent. Li and Xu [393] have made
a comparison of the residual Xt and the inactivity time X(t) of series and parallel
systems. Instead of considering the life at a specified time t, Li and Zuo [395]
discussed the residual life at a random time Y through the random residual life of
the form

XY = (X −Y )|(X > Y )

and the inactivity at the random time of the form

X(Y ) = (Y −X)|(X ≤ Y ).

Notice that the distribution function of XY then becomes

P(XY ≤ x) = P(X −Y ≤ x|X > Y )

=

∫ ∞
0 [FX(y+ x)−FX(y)]dFY (y)∫ ∞

0 FY (y)dF(y)
.

They then established that X has increasing mean inactivity time if and only if
X ≤MIT X +Y for any Y independent of X . Moreover, if φ is a strictly increasing
concave function with φ(0) = 0, then
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X ≤MIT Y ⇒ φ(X)≤MIT φ(Y ).

Ortega [474] has some additional results concerning the ≤rh and ≤MIT orders
presented in the following theorem.

Theorem 8.26. When X and Y are absolutely continuous random variables,

X ≤rh Y ⇔ exp[sX ]≤MIT exp(sY ) for all s > 0.

It may be noted that Theorem 8.26 characterizes the ≤rh order in terms of the ≤MIT

order. Conversely, the reverse characterization is apparent from

X ≤MIT Y ⇔ logX
1
S ≤rh logY

1
S for all s > 0.

The MIT order is also related to the mrl order as

X ≤MIT Y ⇒ φ(X)≥mrl φ(Y )

for any strictly decreasing convex function φ : [0,∞)→ [0,∞).
The following preservation properties of order statistics and convolutions hold in

this case.

Theorem 8.27. (i) Let (X1,X2, . . . ,Xn) and (Y1,Y2, . . . ,Ym) be two sets of inde-
pendent and identically distributed random variable with support [0,∞). Then,

X1 ≤MIT Y1 ⇒ Xk:n ≤rh Yl:m, k ≥ l and n− k ≤ m− l;

(ii) If Xn ≤MIT Xi, i = 1,2, . . . ,n− 1, then

Xk+1:n ≤rh Xk:n−1, k = 1,2, . . . ,m− 1;

also, when X1,X2, . . . ,Xn are independent absolutely continuous random vari-
ables with Xi ≤MIT Yj for all i, j, then:

(a) Xl:n ≤rh Yl:n, l = 1,2, . . . ,n;
(b) Xk:n ≤rh Yl:n, k ≥ l, n ≤ m.

Theorem 8.28. Let X = ∑N
i=1 Xi and Y = ∑M

i=1 Yi, where (Xi,Yi) are independent
pairs of random variables such that Xi has decreasing reversed hazard rate, Yi also
has decreasing reversed hazard rate, and Xi ≥MIT Yi, i = 1,2, . . . , and N ≥rh M, then
X ≥MIT Y .

Another function in reversed time for which stochastic orders can be defined is the
reversed variance residual life (variance of inactivity time, VIT) given by
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v(x) = E
[
(x−X)2|X ≤ x

]− r2(x)

=
2

F(x)

∫ x

0

∫ y

0
F(t)dtdy− r2(x),

or equivalently in quantile form as

D(u) =
1
u

∫ u

0
R2(p)d p

(see (2.53)). Mahdy [408] has then defined the following stochastic order.

Definition 8.11. We say that X is smaller than Y in variance inactivity time order,
denoted by X ≤VIT Y , if and only if

∫ x
0

∫ t
0 FX(y)dydt
FX(x)

≥
∫ x

0

∫ t
0 FY (y)dydt
FY (x)

for all x ≥ 0. In other words,

1
u

∫ u

0
R2

X(p)d p ≥ 1
FY (QX (u))

∫ u

0
R∗2

X (p)d p

for all u in (0,1), where R∗
Y (p) = vY (QX(p))

Some properties of the ≤VIT order are as follows:

1. A necessary and sufficient condition for X ≤VIT Y is that

∫ x
0

∫ t
0 FX(y)dydt∫ x

0

∫ t
0 FY (y)dydt

is an increasing function of x;
2. X has increasing VIT ⇔ X ≤VIT X +Y , where Y is independent of X ;
3. If φ is strictly increasing and concave with φ(0) = 0, then

X ≤VIT⇒ φ(X)≤VIT φ(Y );

4. If X1, . . . ,Xn and Y1, . . . ,Yn are independent copies of X and Y , respectively, then

max
1≤i≤n

Xi ≤VIT max
1≤i≤n

Yi ⇒ X ≤VIT Y.

8.9 Total Time on Test Transform Order

Recall from (5.6) that the total time on test transform (TTT) of X is defined as

T (u) =
∫ u

0
(1− p)q(p)d p.
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The role of this function in characterizing life distributions, ageing properties and
in various other applications have been described earlier in Chap. 5. Here, T (u)
represents the quantile function of a random variable, say XT , in the support of
[0,μ ], where μ = E(X). In this section, we define and study some properties of an
order obtained through the comparison of the TTT’s of two random variables; for
further details, one may refer to Kochar et al. [349] and Li and Shaked [392].

Definition 8.12. A random variable X is said to be smaller than another random
variable Y in total time on test transform order, denoted by X ≤TTT Y , if

TX(u)≤ TY (u)

for all u ∈ (0,1).

Example 8.8. Let X be exponential with mean 1
4 , i.e.,

QX(u) =−4log(1− u),

and Y be uniform with

QY (u) = u.

Then, we have TX(u) = u
4 and TY (u) =

u(2−u)
4 so that

TX (u)−TY (u) =
4
u
(u− 1)< 0 for all 0 < u < 1.

Hence, X ≤TTT Y .

Some interesting relationships possessed by the ≤TTT order are presented in the
following theorem.

Theorem 8.29. (i) X ≤st Y ⇒ X ≤TTT Y ;

(ii) X ≤TTT Y ⇒ aX ≤TTT aY , a > 0;

(iii) XT ≤st YT ⇔ X ≤TTT Y , where XT denotes the random variable with quantile
function T (u);

(iv) X ≤TTT Y ⇒ XT ≤TTT YT ;

(v) X ≤st Y ⇒ XT ≤st YT .

Proof. (i) We note that

T (u) =
∫ u

0
(1− p)q(p)d p

= (1− u)Q(u)+
∫ u

0
Q(p)d p.
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Now,

X ≤st Y ⇒ QX(u)≤ QY (u)

⇒ (1− u)QX(u)+
∫ u

0
QX(p)d p ≤ (1− u)QY (u)+

∫ u

0
QY (p)d p

⇒ TX(u)≤ TY (u)⇒ X ≤TTT Y.

Part (ii) follows from the fact that QaX (a) = aQX(u) and (iii) is obvious from the
definitions of the stochastic and TTT orders. To prove Part (iv), we note that the
transform of XT is

TXT (u) =
∫ u

0
(1− u)tX(u),

where tX(u) = T ′
X (u), the quantile density function of XT . The last equation, using

integration by parts, becomes

TXT (u) = (1− u)TX(u)+
∫ u

0
TX(p)d p.

The proof of Part (iv) is then similar to that of (i). Part (v) is a direct consequence
of Parts (iii) and (i).

Theorem 8.30. If X and Y have zero as the common left end point of their supports,
then for an increasing concave function φ with φ(0) = 0,

X ≤TTT Y ⇒ φ(X)≤TTT φ(Y ).

Theorem 8.31 (Li and Zuo [395]). Let {Xn}, {Yn}, n= 1,2, . . . , be two sequences
of independent and identically distributed random variables and N be a positive
integer valued random variable independent of the X’s and Y ’s. If X1 ≤TTT Y1,
then

min
1≤i≤N

Xi ≤TTT min
1≤i≤N

Yi.

Extensions of the above results are possible if we consider total time on test
transform of order n (TTT− n) introduced earlier in (5.26). Recall that TTT−n is
defined as

Tn(u) =
∫ u

0
(1− p)tn−1(p)d p, n = 1,2, . . . ,

with T0(u) = Q(u) and tn(u) =
dTn(u)

du , provided μn−1 =
∫ 1

0 Tn−1(u)du < ∞.
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Definition 8.13. X is said to be smaller than Y in TTT of order n, written as
X ≤TTT−n Y , if and only if Tn+1,X ≤ Tn+1,Y for all u in (0,1). Denote by Xn and
Yn the random variables with quantile functions Tn,X(u) and Tn,Y (u), respectively.

As in the case of the first order transforms T (u), we have the following
relationships:

(i) X ≤TTT−n Y ⇔ Xn+1 ≤st Yn+1;
(ii) X ≤TTT Y ⇒ X ≤TTT−n Y .

If (X1,X2, . . .Xn) and (Y1,Y2, . . .Yn) are independent copies of X and Y that
are identically distributed and X ≤TTT−n Y , then min(X1,X2, . . . ,Xn) ≤TTT−n

min(Y1,Y2, . . . ,Yn). For further results and other aspects of TTT−n order, we refer
the reader to Nair et al. [447].

8.10 Stochastic Orders Based on Ageing Criteria

So far, our attention has focussed on partial orders that compare life distributions
on the basis of reliability concepts. In view of the predominant role ageing criteria
have in modelling and in the analysis of reliability data, it will be natural to consider
similar comparisons that spell out which of the two given distributions is more
positively ageing than the other in terms of concepts like IHR, IHRA, NBU, etc.
This idea has resulted in some partial orders that are discussed in this section.

We begin with the convex transform order defined by Barlow and Proschan [68].

Definition 8.14. Let X and Y have continuous distributions with FX(0) = FY (0) =
0, and FY (x) be strictly increasing on an interval support. Then, we say that X is less
than Y in convex transform order, denoted by X ≤c Y , if F−1

Y (FX(x)) is a convex
function in x on the support of X , assumed to be an interval.

Notice that according to (8.1), ψFX ,FY (x) = F−1
Y (F(x)) is the relative inverse

function of FX and FY , and it enjoys the properties of ψ mentioned earlier in
Sect. 8.1. An immediate consequence of Definition 8.14 is that if Y is exponential,
then

ψFX ,FY (x) = F−1
Y FX(x) =− 1

λ
log(1−F(x))

is convex, which means that

ψ ′(x) =
1
λ

f (x)

F(x)
=

1
λ

h(x)

is increasing, or X is IHR. It is easy to see that the converse also holds. Thus, we
have an equivalent condition for X to be IHR in terms of ≤c as follows.
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Theorem 8.32. X is IHR if and only if X ≤c Y , where Y is exponential.

In the above result, Y can have any scale parameter. In general, in terms of
distribution function,

FX <c FY ⇔ FX(αx) <c FY (βx)

for all α,β > 0, and so <c is unaffected by scaling. Kochar and Wiens [350] have
developed an ordering based on IHR from the above facts.

Definition 8.15. We say that X is more IHR than Y if X ≤c Y . Making use of (8.3)
and (8.2) and assuming that X and Y have densities, we find

d
dx

F−1
Y FX(x) =

fX (F
−1
X (x))

fY (F
−1

Y (x))

=
fX (QX(u))
fY (QY (u))

=
qY (u)
qX(u)

.

Hence, X ≤c Y if and only if qY (u)
qX (u)

is increasing in u in [0,1].

Theorem 8.33.

X ≤c Y ⇔ XT ≤c YT .

Proof. From the above discussion, we have seen that X ≤c Y if and only if the ratio
of the quantile density functions qY (u)

qX (u)
of X and Y is increasing in u. The quantile

density functions of XT and YT are

tXT (u) = (1− u)qX(u)

and

tYT (u) = (1− u)qY(u).

Since qY
qX

is increasing by hypothesis,
tYT
tXT

is also increasing by virtue of the fact that
tYT
tXT

= qY
qX

. Hence, XT ≤c YT , as required.

There is a preservation property for the order statistics as well as described below.

Theorem 8.34. Let {Xn}, {Yn} be two sequences of independent and identically
distributed random variables and N be a positive integer valued random variable
independent of the Xi’s and Yi’s. If X1 ≤c Y1, then

min
1≤i≤N

Xi ≤c min
1≤i≤N

Yi and max
1≤i≤N

Xi ≤c max
1≤i≤N

Yi.
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A weaker order than the convex transform order is the star order defined as
follows.

Definition 8.16. We say that X is smaller than Y in star order, written as X ≤∗ Y , if
and only if F−1

Y (FX(x)) is star-shaped in x.

By definition of star-shaped functions, it means that, for X ≤∗ Y , we should have
1
x F−1

Y (FX(x)) increasing in x ≥ 0. Now,

xqY (FX(x)) fX (x)−QY (FX(x)) ≥ 0

⇒ qY (u)
QX (u)
qX(u)

−QY (u)≥ 0

⇒ QX(u)qY (u)−QY (u)qX(u)≥ 0

⇒ QY (u)
QX(u)

is increasing in u.

Since X ≤c Y implies qY
qX

is increasing, it follows that

X ≤c Y ⇒ X ≤∗ Y.

The converse need not be true. Bartoszewicz and Skolimowska [78] have shown
that

(a) if X ≤∗ Y , logQY is convex and logQX is concave, then X ≤c Y ;
(b) if FX and FY are absolutely continuous and X ≤∗ Y , x fX (x) is increasing and

xgX(x) is decreasing, then X ≤c Y .

Assume that Y is exponential with scale parameter λ . Then,

X ≤∗ Y ⇒− 1
λ

log(1− u)
Q(u)

is increasing. Hence, by Definition 4.9, X is IHRA. Thus, the star ordering can be
used to define increasing hazard quantile distributions, giving an ordering of IHRA
distributions as follows.

Definition 8.17. X is said to be more IHRA than Y if and only if X ≤∗ Y .

The star ordering enjoys properties similar to the convex transform ordering, and
they are:

(i) X ≤∗ Y ⇒ XT ≤∗ YT ;
(ii) Theorem 8.34 holds when ≤c is replaced by ≤∗;

(iii) X ≤∗ Y ⇒ X p ≤∗ Y p for any p �= 0.

Ordering life distributions by the NBU property requires the superadditive property
which is defined as follows.
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Definition 8.18. We say that X is more NBU than Y if F−1
Y (FX(x)) is superadditive

in x, i.e., if

F−1
Y FX(x+ y)≥ F−1

Y (FX(x))+F−1
Y (FX(y)) for all x,y ≥ 0. (8.13)

This is denoted by X ≤su Y .

To justify the above definition, we note that when Y is exponential, (8.13) becomes

− 1
λ

log(1−FX(x+ y))≥− 1
λ

log(1−FX(x))− 1
λ

log(1−FY(x)),

or

F(x+ y)≤ F(x)F(y).

Hence, X is NBU by (4.26). Thus, we have the following theorem.

Theorem 8.35. When Y is exponential, X ≤su Y ⇔ X is NBU.

Some other properties of the ≤su order are:

(a) X ≤∗ Y ⇒ X ≤su Y ;
(b) Theorem 8.34 holds when ≤c is replaced by ≤su.

A more general result holds for order statistics that involves all three orders
discussed in this section in the context of k-out-of-n systems as stated in the
following theorem.

Theorem 8.36. If (Xi,Yi), i = 1,2, . . . ,n, are independent pairs of random variables
with the property Xi ≤c (≤∗,≤su)Yi for all i, and Xi’s and Yi’s are identically
distributed, then

Xk:n ≤c (≤∗,≤su)Yk:n, k = 1,2, . . . ,n.

The orderings with respect to other ageing criteria discussed below are due to
Kochar and Weins [350] and Kochar [347].

Definition 8.19. We say that X is more decreasing mean residual life than Y ,
denoted by X <DMRL Y , if

MX(u)
MY (u)

is nonincreasing in u.

Since the reciprocal of the hazard quantile function of Z is the mean residual quantile
function of X , an equivalent condition for X ≤DMRL Y is that

HZ,X(u)
HZ,Y (u)

is non-decreasing in u,
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where HZ,X is the hazard quantile function of the equilibrium distribution of X .
Observe that the definition

MX(u) = mX(QX (u)) =
1

1− u

∫ 1

u
(1− p)qX(p)d p

is the mean residual quantile of X , and similarly

MY (u) = mY (QY (u)) =
1

1− u

∫ 1

u
(1− p)qY(p)d p.

Theorem 8.37. If Y is exponential, then

X ≤DMRL Y ⇔ X is DMRL.

The proof is immediate upon substituting MY (u) = 1
λ in Definition 8.19.

Theorem 8.38.

X ≤DMRL Y ⇔ μY −TY (u)
μX −TX(u)

is increasing in u.

Proof. We have

X ≤DMRL Y ⇔ MX (u)
MY (u)

is increasing

⇔
∫ 1

u (1− p)qX(p)d p∫ 1
u (1− p)qY (p)d p

is increasing

The proof is completed simply by noting that
∫ 1

u (1− p)qX(p)d p = μ−T (u).

Theorem 8.39.

X ≤c Y ⇒ X ≤DMRL Y.

In other words, the IHR order implies the DMRL order.

Definition 8.20. X is said to be smaller than Y in NBUE order (X is more NBUE
than Y ) if and only if

MX (u)
MY (u)

≤ μX

μY
for all u in [0,1],

and we denote it by X ≤NBUE Y .
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Two equivalent conditions for the ≤NBUE order are:

(a)
HZ,X (u)
HZ,Y (u)

≥ μY
μX

;

(b) TX (u)
TY (u)

≥ μX
μY

.

Theorem 8.40. Let Y be an exponential random variable. Then,

X ≤NBUE Y ⇔ X is NBUE.

Proof. Since MY (u) = μY = 1
λ , the definition of ≤NBUE gives the desired result.

Theorem 8.41. If X and Y have supports of the form [0,a), then:

(i) X ≤DMRL Y ⇒ X ≤NBUE Y;
(ii) X ≤∗ Y ⇒ X ≤NBUE Y .

The proof of Part (i) is straightforward from the definitions of the two orderings. To
prove Part (ii), we note that

X ≤∗ Y ⇒ XT ≤∗ YT

⇒ TY (u)
TX(u)

is increasing in u

⇒ TY (u)
TX(u)

≤ TY (1)
TX (1)

=
μY

μX

⇒ X ≤NBUE Y.

The characterization of the class of distributions for which X ≤su Y implies X ≤NBUE

Y remains open.

Definition 8.21. We say that F is more NBUHR (new better than used in hazard
rate) if d

dxψFX ,FY (x)≥ ψ ′(0), and is denoted by X ≤NBUHR Y .

From this definition, we see that

d
dx
ψ(x) =

d
dx

F−1
Y F(x) =

HX(u)
HY (u)

from the discussion following Definition 8.15. Hence,

X ≤NBUHR Y ⇔ HX(u)
HX(0)

>
HY (u)
HY (0)

,

using which we obtain the interpretation in the following theorem.

Theorem 8.42. If Y is exponential, then X ≤NBUHR Y ⇔ X is NBUHR.
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Proof. We observe that

X ≤NBUHR Y ⇔ d
dx
ψ(x)≥ ψ ′(0)

⇔ HX (u)
λ

≥ HX(0)
λ

⇔ X is NBUHR

by Definition 4.6.

A similar definition for the NBUHRA order can be provided as follows.

Definition 8.22. X is more NBUHRA (new better than used in hazard rate average
than Y ), denoted by X ≤NBUHRA Y , if and only if

ψ(x)≥ xψ ′(0).

We then have

X ≤NBUHRA Y ⇒ X is NBUHRA

and

X ≤NBU Y ⇒ X ≤NBUHRA Y ⇒ X ≤NBUHRA Y.

8.11 MTTF Order

Earlier in Sect. 4.2, we have defined the mean time to failure (MTTF) in an age
replacement model as (see (4.19)).

M(T ) =
1

F(T )

∫ T

0
F(t)dt.

Another formulation of MTTF is

μ(u) = M(Q(u)) =
1
u

∫ u

0
(1− p)q(p)d p.

Now, a comparison of life distributions by the magnitude of MTTF is possible by
considering an appropriate stochastic order.

Definition 8.23. A lifetime random variable X is smaller than another lifetime
random variable Y in MTTF order, denoted by X ≤MTTF Y , if and only if μX(u) ≤
μ∗

Y (u) for all u in (0,1) (or equivalently, MX (T ) ≤ MY (T ) for all T > 0), where
μ∗

Y (u) = MY (QX (u)).
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First, we discuss the relationship of the MTTF order with other stochastic orders
discussed earlier.

Theorem 8.43. If X ≤st Y , then X ≤MTTF Y , but the converse is not always true.

The proof of this result and a counter example are given in Asha and Nair [39].
Resulting from Theorem 8.43, we have the following chain of implications:

X ≤hr Y ⇒ X ≤st Y ⇒ X ≤MTTF Y

⇑
X ≤rh Y.

Two other basic reliability orders are ≤mrl and ≤MIT, comparing the mean residual
life and the mean inactivity time. As already seen, the hr order implies the mrl order
and the hr order also implies the MTTF order. Hence, the point of interest is to
know whether there exist any implications between the ≤mrl and the ≤MTTF orders.
By taking

fY (x) =
1
2

exp
(
− x

2

)

and

fX (x) = xe−x, x > 0,

we see that X ≥MTTF Y , but X ≤mrl Y .
Conditions under which the ≤st and the ≤mrl orders have implications with the

≤MTTF order are of interest. These are presented in the next theorem. The conditions
can be stated in terms of quantiles by setting x = Q(u) as usual.

Theorem 8.44. (a) If
∫ x

0 FX (t)dt∫ x
0 FY (t)dt is decreasing, then X ≥MTTF Y ⇒ X ≥st Y ;

(b) If mX (x)
mY (x)

is decreasing, then X ≥mrl Y ⇒ X ≥MTTF Y .

A similar result holds for the MIT order as well. It has been mentioned earlier
that if rX (x)

rY (x)
is an increasing function of x, then the ≤rh and the ≤MIT orders are

equivalent. Accordingly, when rX (x)
rY (x)

is decreasing,

X ≥MIT Y ⇒ X ≥MT T F Y.

Further, if X ≥st Y, then X ≥MTTF Y ⇒ X ≥hmrl Y. Returning to decreasing mean
time to failure as an ageing concept (see Sect. 4.3), we have a stochastic order
comparison based on DMTTF as follows.

Definition 8.24. X has more DMTTF than Y if μX (u)
μY (u)

is decreasing in u for all 0 ≤
u ≤ 1, and we denote it by X ≤DMTTF Y .
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Suppose Y is exponential. Then, μY (u) = 1
λ and so in this particular case, we have

X ≥DMTTF Y ⇔ X is DMTTF.

Two other properties of this ordering are as follows:

1. X ≥DMRL Y ⇒ X ≤DMTTF Y ;
2. X ≤NBUE Y ⇔ μX (u)

μx
≥ μY (u)

μY
.

8.12 Some Applications

When X represents a continuous lifetime with distribution function F(x), the
proportional reversed hazard model is represented by a non-negative absolutely
continuous random variable U whose distribution function is

FU(x) = [FX(x)]
θ ,

where θ is a positive real number (see Example 1.3). When F(x) is strictly
increasing, FX(x) = u gives the quantile function of U as

QU(θ ) = QX(u
1
θ ).

For this model, the reversed hazard rates of U and X are proportional, i.e., λU(x) =
θλX(x) or Λ∗

U(u) = θΛX(u), where

Λ∗
U(u) = λU(QX (u)).

Gupta et al. [239] and Di Crecenzo [177] have studied the order relationship between
X and U and also between two random variable X and Y and their proportional
reversed hazard models U and V . Let

H (x) =− logFX(x) =
∫ ∞

x
λ (t)dt

be the cumulative reversed hazard rate of X .

Theorem 8.45. Let [H (x)]−1 be star-shaped (antistarshaped). Then:

(i) If θ < 1, θX ≤st U(θX)≥st U;
(ii) If θ > 1, θX ≥st U(θX)≤st U.

Theorem 8.46. (i) X ≤st Y ⇔U ≤st V ;
(ii) X ≤rh Y ⇔U ≤rh V ;

(iii) X ≤hr Y and θ > 1 ⇔U ≤hr V .
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Gupta and Nanda [254] have considered Xi, i= 1,2, with distribution functions Fi(x)
and Ui as proportional reversed hazards models of Xi with distribution functions
[Fi(x)]θi , i = 1,2.

Theorem 8.47. θ1 ≥ θ2 and X1 ≥rh X2 ⇒ Y1 ≥rh Y2.

In particular, if

Si(x) = 1− e
−( x

σi
)λ
,

then X1 ≥rh X2 if and only if σ1 ≥ σ2 (> 0), irrespective of the value of λ . Similarly,
for the exponentiated Weibull distribution with

Fi(x) = [1− e
−( x

σi
)α
]θ ,

X1 ≥rh X2 if and only if σ1 ≥ σ2. If X1,X2, . . . are independent and identically
distributed random variables and N is geometric with P(N = n) = p(1 − p)n−1,
n = 1,2, . . . , independent of the Xi’s, then the sum

SN = X1 + · · ·+XN

is said to be a geometric compound. It is easy to see that SN belongs to the random
convolution discussed earlier. Hu and Lin [284] have given several characterizations
of the exponential distribution using stochastic orders, some of which are presented
in the following theorem.

Theorem 8.48. 1. If F, the common distribution function of the Xi’s, is NWU
and pSN ≤st T min(X1, . . . ,XT ), then F is exponential, where T is an integer
valued random variable. If F is NBU and T min(X1 . . .XT ) ≤st pSN, then F is
exponential;

2. If pSN ≤st X1, then F is exponential;
3. In the renewal process (Sn)

∞
n=1, Sn =∑n

k=1 Xk and r(t)= SN(t)+1−t is the residual
life at time t, if F is NBU and pSN ≤st r(t), then F is exponential.

Nanda et al. [458] have discussed stochastic orderings in terms of the propor-
tional mean residual life model. Let X be a non-negative random variable with
absolutely continuous distribution function and finite mean and V be another non-
negative random variable with the same properties. Then, we say that V is the
proportional mean residual life model (PMRLM) of X if

mV (x) = cmX(x),

where mX (x) is as usual the mean residual life function. An equivalent condition is

M∗
V (u) = cMX(u),
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where M∗
V (u) = mv(QX(u)). For this model, we have the following properties:

(i) X ≤hr (≥)V if c > (< 1);
(ii) Let X ≤st Y . If either (a) c < 1 and

mY (x)
μY

≥ mX(x)
μX

,

or (b) c > 1 and

mY (x)
μY

≤ mX(x)
μX

,

then VX ≤st VY , where VX(VY ) is the PMRLM corresponding to X(Y );
(iii) X ≤hr (≥hr)Y and c < 1 ⇒VX ≤hr (≥hr)VY ;
(iv) X ≤mrl (≥mrl)Y ⇔VX ≤mrl (≥mrl)VY ;
(v) X ≤hmrl (≥hmrl)Y ⇔VX ≤hmrl (≥hmrl)VY .

The preservation of stochastic orders among weighted distributions has been
discussed in Misra et al. [417]. Let X1 and Y1 be weighted versions of X and Y
defined as

FX1(x) =

∫ x
0 w1(t) fX (t)dt

EW1(X)

and

FY1(x) =

∫ x
0 w2(t) fY (t)dt

EW2(Y )
.

We then have the following results.

Theorem 8.49. (i) If X ≤st Y , w1(·) is decreasing and w2(·) is increasing, then
X1 ≤st Y1;

(ii) If X and Y have a common support, X ≤hr Y and w(x) = w1(x) = w2(x) is
increasing, then X1 ≤hr Y1;

(iii) If in (ii) w(·) is decreasing and X ≤rh Y , then X1 ≤rh Y1;

(iv) Let X ≤hr Y (X ≤rh Y ), w2(x) is increasing (w1(x) is decreasing) and w2(x1)
w1(x1)

is increasing on the intersection of the supports, then X1 ≤hr Y1 (X1 ≤rh Y1)
provided that l1 ≤ l2, u1 ≤ u2, where (l1,u1) and (l2,u2) are the supports of X1

and Y1, respectively.

Yu [597] has discussed stochastic comparisons between exponential family of
distributions and their mixtures with respect to various stochastic orders. Members
of this family have been frequently used in reliability analysis and for this reason
we present some results relevant in this regard. The exponential family is expressed
by the probability density function
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f (x,θ ) = a(x)eb(θ)xh(θ ),

where the support is (0,∞). Let

g(x) =
∫

f (x;t)dμ(t)

be the mixture of f (x,θ ). Then we have the order relations, between X and Y , the
random variables corresponding to f (x;θ ) and g(x), as follows:

(a) X ≤st Y (X ≤hr Y ) if and only if
∫

h(t)dμ(t)≤ h(θ );
(b) X ≤rh Y if and only if

b(θ )≤
∫

b(t)h(t)dμ(t)∫
h(t)dμ(t)

.

Let X = ∑∞i=1βiXi, where Xi is gamma (αi,1) independently and βi > 0. The
order relations between X and Y which is gamma (∑n

i=1αi,β ) have been discussed
by many authors. When Xi’s are independent exponential with different scale
parameters (i.e., when αi = 1), Boland et al. [114] have established that

β ≤ n

∑n
i=1β

−1
i

⇒ X ≤rh Y

and Bon and Paltanea [117] have extended this result to

Y ≤st X ⇔ Y ≤hr X ⇔ β ≤
(

n

∏
i=1
βi

) 1
n

.

Yu [597] has further established that

Y ≤st X(Y ≤hr X) if and only if β ≤
(

n

∏
i=1
βαi

i

)∑n
i

1
αi

,

Y ≤rh X if and only if β ≤ ∑n
1αi

∑n
i
αi
βi

.

These results are useful in developing bounds for the hazard rate of X through
simpler hazard rate of Y .

If X and Y are lifetime variables with cumulative hazard functions HX (x) and
HY (x), Sengupta and Deshpande [526] have defined X to be ageing faster than Y if
and only if H1H

−1
2 is superadditive, i.e.,

H1H
−1

2 (x+ y)≥ H1H
−1

2 (x)+H1H
−1

2 (y).
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Abraham and Nair [13] have proposed a relative ageing factor

B(x,y) =
H −1(H (x)+H (y))− x

y

between a new component and an old component that survived up to time x. They
then defined an order X ≤B:NBU Y by the relation BX (x,y)≤ BY (x,y) for all x,y > 0.
They provided the result that

BX(x,y)≤ BY (x,y)⇔ X is NBU,

where the NBU part arises from the fact that Y is exponential. The relative ageing
defined by the superadditive order now becomes

X ≤su Y ⇔ X ≤B:NBU Y.

Thus, an ageing criterion is prescribed in terms of B(x,y) to assess the concept of
‘X ageing faster than Y ’.

If X is a random variable with survival function F(x) and Z has survival function
F2(x) = [F(x)]θ , θ > 0, then FZ(x) is called the proportional hazards model
corresponding to X . The terminology is evident from the fact that hZ(x) = θhX(x).
There are other interpretations also for Z. If θ < 1, Z represents the lifetime
of a component in which the original lifetime of the component X is subjected
imperfect repair procedure, where θ is the probability of a minimal repair. If θ = n,
obviously we have (F(x))n as the survival function of a series system consisting of n
independent and identical components whose lifetimes are distributed as X . Franco-
Pereira et al. [202] have shown that if X and Y are continuous random variables on
interval supports, the α-percentile life order satisfies

X ≤prl−α Y ⇒ ZX ≤prl−β ZY ,

where β = 1− (1−α)θ and ZX (ZY ) is the proportional hazards model correspond-
ing to X(Y ).

Extensions of some of the stochastic orders discussed above as well as a variety
of applications of all these stochastic orders can be found in Kayid et al. [320],
Aboukalam and Kayid [11], Li and Shaked [388], Boland et al. [115], Navarro
and Lai [467], Zhang and Li [599], Hu and Wei [286], and Da et al. [164] and
the references contained therein.



Chapter 9
Estimation and Modelling

Abstract Earlier in Chaps. 3 and 7, several types of models for lifetime data were
discussed through their quantile functions. These will be candidate distributions in
specific situations. The selection of one of them or a new one is dictated by how
well it can justify the data generating mechanisms and satisfy well other criteria like
goodness of fit. Once the question of an initial choice of the model is resolved, the
problem is then to test its adequacy against the observed data. This is accomplished
by first estimating the parameters of the model and then carrying out a goodness-
of-fit test. This chapter addresses the problem of estimation as well as some other
modelling aspects.

In choosing the estimates, our basic objective is to get estimated values that are as
close as possible to the true values of the model parameters. One method is to seek
estimate that match the basic characteristics of the model with those in the sample.
This includes the method of percentiles and the method of moments that involve
the conventional moments, L-moments and probability weighted moments. These
methods of estimation are explained along with a discussion of the properties of
these estimates. In the quantile form of analysis, the method of maximum likelihood
can also be employed. The approach of this method, when there is no tractable
distribution function, is described. Many functions required in reliability analysis
are estimated by nonparametric methods. These include the quantile function itself
and other functions such as quantile density function, hazard quantile function and
percentile residual quantile function. We review some important results in these
cases that furnish the asymptotic distribution of the estimates and the proximity of
the proposed estimates to the true values.

9.1 Introduction

In Chaps. 3 and 7, we have seen several types of models, specified by their
quantile functions, that can provide adequate representations of lifetime data. These
will be candidate distributions in specific real situations. The selection of one of

N.U. Nair et al., Quantile-Based Reliability Analysis, Statistics for Industry
and Technology, DOI 10.1007/978-0-8176-8361-0 9,
© Springer Science+Business Media New York 2013
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them or a new one is dictated by finding out how well it can justify the data
generating mechanism and satisfy well other criteria like goodness of fit. Perhaps,
the most important requirement in all modelling problems is that the chosen lifetime
distribution captures the failure patterns that are inherent in the empirical data.
Often, the features of the failure mechanism are assessed from the data with the
aid of the ageing concepts discussed earlier in Chap. 5. For instance, it could be
the shape of the hazard or mean residual quantile function, assessed from a plot of
the observed failure times. Based on this preliminary knowledge, the choice of the
distribution can be limited to one from the corresponding ageing class discussed
in Chap. 4. Once the question of a suitable model is resolved as an initial choice,
the problem then is to test its adequacy against the observed failure times. This
is accomplished by first estimating the parameters of the distribution and then
carrying out a goodness-of-fit test. Alternatively, nonparametric methods can also
be employed to infer various reliability characteristics. In this chapter, we address
both general parametric methods and nonparametric procedures from a quantile-
based perspective.

Our basic objective in estimation is to find estimates that are as close as possible
to the true values of the model parameters. There are different criteria which
ensure proximity between the estimate and the true parameter value and accordingly
different approaches can be prescribed that meet the desired criteria. One method
is to seek estimates by matching the basic characteristics of the chosen model
with those in the sample. This includes the method of percentiles, method of
moments involving conventional moments, L-moments and probability weighted
moments, and then identifying basic characteristics such as location, dispersion,
skewness, kurtosis and tail behaviour. A second category of estimation procedures
are governed by optimality conditions that renders the difference between the
fitted model and the observed data as small as possible or that provides estimates
which are most probable. In the following sections, we describe various methods of
estimation as well as the properties of these estimates.

9.2 Method of Percentiles

Recall from Chap. 1 that the pth percentile in a set of observations is the value that
has 100p % of values below it and 100(1− p)% values above it. Let X1,X2, . . . ,Xn

be a random sample from a population with distribution function F(x;Θ), or
equivalently quantile function Q(u;Θ), whereΘ is a vector of parameters consisting
of one or more elements. The sample observations are arranged in order of
magnitude with Xr:n being the rth order statistic. Then, the sample (empirical)
distribution function is defined as

Fn(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ≤ X1:n
i
n , Xi−1:n < x ≤ Xi:n for i = 1,2, . . .n− 1

1, x ≥ Xn:n.
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Obviously, Fn(x) is the fraction of the sample observations that does not exceed x.
The empirical (sample) quantile function then becomes

Qn(p) = F−1
n (p) = inf[x|Fn(x)≥ p] (9.1)

which is a step function with jump 1
n . Notice that (9.1) can be interpreted as a

function ξp such that the number of observations ≤ ξp is ≥ [np] and the number
of observations ≥ ξp is ≥ [n(1− p)]. Thus, e.g.,

ξp = X[np]+1:n if np is not an integer

= X[np]:n if np is an integer.

In practice, some of the other methods of calculating ξp are as follows:

(i) Set p(n+1)= k+a, n being the sample size, k an integer, and 0≤ a< 1. Then,

ξp =

⎧⎪⎪⎨
⎪⎪⎩

Xk:n + a(Xk+1:n −Xk:n), 0 < k < n

X1:n, k = 0

Xn:n, k = n

(see Sect. 3.2.1);
(ii) In some software packages, the setting is 1+ p(n− 1)= k+ a;

(iii) Calculate np. If it is not an integer, round it up to the next higher integer k and
Xk:n is the value. If np is an integer k, take

ξp =
1
2
[Xk:n +Xk+1:n].

The value X[np]+1:n is popular as it assures the monotonic nature of ξp in the
sense that if x is the p-quantile and y is the q-quantile with p < q, then y < x.

Some properties of ξp as an estimate of Q(p) are described in the following
theorems.

Theorem 9.1. If there is a unique value of Q(p) satisfying

P(X ≤ Q(p))≥ p and P(X ≥ Q(p))≥ 1− p,

then ξp → Q(p) as n → ∞ with probability 1.

Theorem 9.2. Let F(x) have a density f (x) which is continuous. If Q(p) is unique
and f (Q(p)) > 0, then

(i)
√

n(ξp −Q(p)) = n
1
2 {p−Fn(Q(p))}[ f (Q(p))]−1 +O(n−

1
4 (logn)

3
4 );

(ii)
√

n(ξp −Q(p)) is asymptotically distributed as
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N

(
0,

p(1− p)
n[ f (Q(p))]2

)
.

In particular, the asymptotic distribution of the sample median is normal with mean

as the population median and variance [ f (M)]−2

4n , where M = Q( 1
2) is the population

median. For proofs of the above theorems and further results on the asymptotic
behaviour of ξp, one may refer to Bahadur [44], Kiefer [324], Serfling [527]
and Csorgo and Csorgo [160]. Sometimes, the following bound may be useful in
evaluating the bias involved in estimating Q(p) by ξp. For 0 < p < 1 and unique
Q(p), for all n and every ε > 0,

P[|ξp −Q(p)|> ε]≤ 2exp[−2nδ 2],

where δ = min(F(Q(p)+ ε)− p, p−F(Q(p)− ε)).
A multivariate generalization of Theorem 9.2 is as follows; see Serfling [527].

Theorem 9.3. Let 0 < p1 < · · · < pk < 1. Suppose F has a density f in
the neighbourhood of Q(p1), . . . ,Q(pk) and f is positive and continuous at
Q(p1) . . .Q(pk). Then, (ξp1 ,ξp2 , . . . ,ξpk) is asymptotically normal with mean vector
(Q(p1), . . . ,Q(pk)) and covariance 1

nσi j , where

σi j =
pi(1− p j)

f (Q(pi)) f (Q(p j))
, i ≤ j,

and σi j = σ ji for i > j.

Since the order statistic Xk:n is equivalent to the sample distribution function
Fn(x), the sample quantile may be expressed as

ξp =

{
X[np]:n, np is an integer

X[np]+1:n, np is not an integer.

By inverting this relation, we get

Xk:n = ξ k
n
, 1 ≤ k ≤ n,

and so any discussion of order statistics could be carried out in terms of sample
quantiles and vice versa.

Bahadur [44] has given representations for sample quantiles and order statistics.
His results with subsequent modifications are of the following form:

1. If F is twice differentiable at Q(p), 0 < p < 1, with q(p)> 0, then

ξp = Q(p)+ [p−Fn(Q(p))]q(p)+Rn,
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where, with probability 1,

Rn = O(n−
3
4 (logn)

3
4 ), n → ∞.

Alternatively,

n
1
2 (ξp −Q(p)) = n

1
2 {p−Fn(Q(p))}q(p)+O(n−

1
4 (logn)

3
4 ),

n → ∞;
2. n

1
2 (ξp − Q(p)) and n

1
2 [p − Fn(Q(p))]q(p) each converge in distribution to

N(0, p(1− p)q2(p));
3. Writing Yi = Q(p)+ [p− I(Xi ≤ Q(p))]q(p), i = 1,2, . . . ,

ξp =
1
n

n

∑
i=1

Yi +O(n−
3
4 (logn)

3
4 ), n → ∞,

or with probability 1. ξp is asymptotically the mean of the first n values of
Yi. Thus, we have a representation of the sample quantile as a sample mean.
Consider a sequence of order statistics Xkn:n for which kn

n has a limit. Provided

kn

n
= p+

k

n
1
2

O

(
1

n
1
2

)
, n → ∞,

n
1
2 (Xkn:n−ξp) converge to k q(p) with probability 1, and n

1
2 (Xkn:n−Q(p)) converge

in distribution to N(kq(p), p(1− p)q2(p)).
In other words, Xkn:n and ξp are roughly equivalent as estimates of Q(p). Rojo

[510] considered the problem of estimation of a quantile function when it is more
dispersed than distribution function, based on complete and censored samples.
Rojo [511] subsequently developed an estimator of quantile function under the
assumption that the survival function is increasing hazard rate on the average
(IHRA). The estimator of the quantile function in the censored sample case is also
given. He has shown that estimators of Q(u) are uniformly strongly consistent.

The percentiles of the population are, in general, functions of the parameter
Θ in the model. In the percentile method of estimation, we choose as many
percentile points as there are model parameters. Equating these percentile points of
the population with the corresponding sample percentiles and solving the resulting
equations, we obtain the estimate of Θ . This method ensures that the model fits
exactly at the specific points chosen. Since the method does not specify which
percentiles are to be chosen in a practical situation, some judgement is necessary
in the choice of the percentile points. Issues such as the interpretation of the model
parameters and the purpose for which the model is constructed could be some of the
guidelines. Shapiro and Gross [535] pointed out that it is a good practice to choose
percentiles where inferences are drawn and not to estimate a percentile where
interpolation is required between two highest or two lowest values. As a general
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practice, they recommended using p = 0.05 and p = 0.95 for moderate samples and
p = 0.01 and p = 0.99 for somewhat larger samples. In the case of two parameters,
one of the above two sets, when there are three parameters augment these by the
median p = 0.50, and when there are four parameters, the two extreme points
along with the quartiles p = 0.25 and p = 0.75 are their recommendations. The
percentile estimators are generally biased, less sensitive to the outliers, and may not
guarantee that the mean and variance of the approximating distribution correspond
to the sample values.

Example 9.1. Suppose we have a sample of 100 observations from the loglogistic
distribution with

Q(u) =
1
α

( u
1− u

) 1
β
, α,β > 0.

Choosing the values p = 0.05 and p = 0.95 for matching the population and sample
quantiles, we look at the order statistics X5:100 and X95:100. Then, we have the
equations

1
α

(0.05
0.95

) 1
β
= X5:100, (9.2)

1
α

(0.95
0.05

) 1
β
= X95:100, (9.3)

yielding

1
α2 = X5:100 ×X95:100

or α̂ = [X5:100 ×X95:100]
− 1

2 .

Upon substituting α̂ in either (9.2) or (9.3) and solving for β , we obtain the estimate
of β as

β̂ =

(
log19

log α̂X5:100

)
.

Instead of using percentiles as such, various quantile-based descriptors of the
distribution such as median (M), interquantile range (IQR), measures of skewness
(S) and Kurtosis (T ), mentioned earlier in Sect. 1.4, may also be matched with
the corresponding measures in the sample. The idea is that the fitted distribution
has approximately the same distributional characteristics as the observed one. The
number of equations should be the same as the number of parameters and the
characteristics are so chosen that all the parameters are represented. If there is a
parameter representing location (scale), it is a good idea to equate it to the median M
(IQR). Some results concerning the asymptotic distributions involving the statistics
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are relevant in this context. See Sects. 1.4 and 1.5 for the definitions of various
measures and Chap. 3 in which percentile method is applied for various quantile
functions.

Theorem 9.4. The sample interquartile range

iqr =
1
2
(ξ 3

4
− ξ 1

4
)

is asymptotically normal

N

(
1
2

(
Q

(
3
4

)
−Q

(
1
4

))
,

1
64n

(
3

f
(
Q
( 3

4

)) − 2

f
(
Q
( 1

4

))
f
(
Q
( 3

4

)) + 3

f 2
(
Q
( 1

4

))
))

.

Note that IQR = 1
2

(
Q( 3

4 )−Q( 1
4)
)

, and that iqr is strongly consistent for IQR.

Theorem 9.5. The sample skewness s and the sample Moor’s kurtosis t possess the
following properties:

(s, t) is consistent for (S,T )

and

√
n(s− S, t−T )∗ has asymptotic bivariate normal distribution

with mean (0,0)∗ and dispersion matrix φ ′(c)A(φ ′(c))∗, where

A = (σi j), σi j =
i(8− j)

64 f (Ei) f (E j)
, i ≤ j,

φ(c) = (S,T )∗, Ei =
i
8
, i, j = 1,3,5,7.

and ∗ denotes the transpose.

Some other nonparametric estimators of Q(u) have been suggested in literature.
Kaigh and Lachenbruch [308] suggested consideration of a subsample of size k
without replacement from a complete sample of size n. Then, by defining the total
sample estimator of Q(u) as the average of all possible subsamples of size k, they
arrived at

Q̂1(p) =
k

∑
r=1

wrXr:n,

where
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wr =

(r−1
j−1

)(n−r
k− j

)
(n

k

) and j = (k+ 1)p.

The choice of k is such that the extreme order statistics should have negligible
weight. A somewhat different estimator is proposed in Harrell and Davis [262] of
the form

Q̂2(p) =
n

∑
r=1

wrXr:n,

where

wr = I r
n
(p(n+ 1),(1− p)(n+ 1))− I r−1

n
(p(n+ 1),(1− p)(n+ 1))

with Ix(a,b) being the incomplete beta function. Both Q̂1(p) and Q̂2(p) have
asymptotic normal distribution. Specific cases of estimation of the exponential and
Weibull quantile functions have been discussed by Lawless [378] and Mann and
Fertig [410].

9.3 Method of Moments

The method of moments is also a procedure that matches the sample and population
characteristics. We consider three such characteristics here, viz., the conventional
moments, L moments and probability weighted moments.

9.3.1 Conventional Moments

In this case, either the raw moments μ ′
r = E(Xr) or the central moments μr = E(X −

μ)r are equated to the same type of sample moments. When μ ′
r is used, we construct

the equations

μ ′
r =

1
n

n

∑
i=1

Xr
i = m′

r, r = 1,2,3, . . .

where X1,X2, . . . ,Xn are independent and identically distributed and the number of
such equations is the same as the number of parameters in the distribution. The
sample moments

m′
r =

∫ ∞

0
xrdFn(x)
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as the estimate of μ ′
r have the following properties:

(i) m′
r is strongly consistent for μ ′

r;
(ii) E(m′

r) = μ ′
r, i.e., the estimates are unbiased;

(iii) V (m′
r) =

μ ′2r−μ ′r2

n ;
(iv) If μ2r

′ < ∞, the random vector n−1(m′
1 − μ ′

1,m
′
2 − μ ′

2, . . . ,m
′
n − μ ′

n) converges
in distribution to a n-variate normal distribution with mean vector (0,0, . . . ,0)
and covariance matrix [σi j], i, j = 1,2, . . . ,n, where σi j = μ ′

i+ j − μ ′
iμ ′

j.

On the other hand, if we use the central moments, the equations to be considered
become

μr =
1
n

n

∑
i=1

(Xi − X̄)r = mr, X̄ = m′
1.

The statistic mr estimates μr with the following properties:

(a) mr is strongly consistent for μr;

(b) E(mr) = μr +
1
2 r(r−1)μr−2μ2−rμr

n +O(n−2);
(c) V (mr) =

1
n (μ2r − μ2

r − 2rμr−1μr+1 + r2μ2μ2
r−1)+O( 1

n2 );

(d) If μ2r <∞, the random vector n
1
2 (m2−μ2, . . . ,mr−μr) converges in distribution

to (r − 1) dimensional normal distribution with mean vector (0,0, . . . ,0) and
covariance matrix [σi j], i, j = 2,3, . . . ,r, where

σi j = μi+ j+2−μi+1μ j+1−(i+1)μiμ j+2−( j+1)μi+2μ j+(i+1)( j+1)μiμ jμ2.

In general, mr gives biased estimator of μr. The correction factor required to make
them unbiased and the corresponding statistics are

M2 =
n

n− 1
m2,

M3 =
n

(n− 1)(n− 2)
m3,

M4 =
n(n2 − 2n+ 3)

(n− 1)(n− 2)(n− 3)
m4 − 3n(2n− 3)

(n− 1)(n− 2)(n− 3)
m2

2.

Occasionally, the parameters are also estimated by matching μ ′
1, μ2, β1 and β2 with

the corresponding sample values. For example, the estimation of parameters of the
lambda distributions is often done in this manner.

Example 9.2. Consider the generalized Pareto model (Table 1.1) with

Q(u) =
b
a
[(1− u)−

a
a+1 − 1].
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In this case, the first two moments are

μ ′
1 =

∫ 1

0
Q(p)d p = b

and

μ ′
2 =

∫ 1

0
Q2(p)d p =

2b2

1− a
.

Hence, we form the equations

b =
1
n

n

∑
i=1

Xi = X̄ ,

2b2

1− a
=

1
n∑X2

i ,

and solve them to obtain the moment estimates of a and b as

â = 1− 2nX̄2

∑X2
i

and b̂ = X̄ .

9.3.2 L-Moments

In the method of L-moments, the logic is the same as in the case of usual moments
except that we equate the population L-moments with those of the sample and then
solve for the parameters. Here again, the number of equations to be considered is the
same as the number of parameters to be estimated. Thus, we consider r equations

Lr = lr, r = 1,2, . . . ,

where

Lr =
∫ 1

0

r−1

∑
k=0

(−1)r−k
(

r
k

)(
r+ k

k

)
ukQ(u)du

and

lr =
1
n

r−1

∑
j=0

pr j

(
n

∑
r=1

(r− 1)( j)

(n− 1)( j)

)
(9.4)

with

pi j =
(−1)i−1− j(i+ j− 1)!

( j!)2(i− j− 1)!
,
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when the model to be fitted contains r parameters. The expressions for the first four
L-moments L1 through L4 are given in (1.34)–(1.37) (or equivalently (1.38)–(1.41)).
Next, we have the sample counterparts as

l1 =
1
n

n

∑
i=1

X(i) = X̄ ,

l2 =
1

n(n− 1)

n

∑
i=1

(2i− 1− n)Xi:n,

l3 =
1

n(n− 1)(n2)

n

∑
i=1

{6(i− 1)(i− 2)− 6(i−1)(n−2)

+(n− 1)(n− 2)}Xi:n,

l4 =
1

n(n− 1)(n2)(n− 3)

n

∑
i=1

{20(i− 1)(i− 2)(i− 3)−30(i−1)(i−2)(n−3)

+12(i− 1)(n− 2)(n−3)− (n−1)(n−2)(n−3)}Xi:n.

Regarding properties of lr as estimates of Lr, we note that lr is unbiased, consistent
and asymptotically normal (Hosking [276]). Elamir and Seheult [187] have obtained
expressions for the exact variances of the sample L-moments. They have used an
equivalent representation of (9.4) in the form

lr =
r−1

∑
k=0

p∗r−1,kbk, (9.5)

where

p∗r−1,k = (−1)r−k
(

r
k

)(
r+ k

k

)

and

bk =
1

n(k+1)

n

∑
i=1

(i− 1)(k)Xi:n.

For a sample of size n, (9.5) is also expressible in the vector form

l = bCT

with l = (l1, l2, . . . , ln) and b = (b0,b1, . . . ,bk−1) and C is a triangular matrix with
entries p∗r−1,k. So,

V (l) =CΘCT , Θ =V (b). (9.6)
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As special cases, we have

V (l1) =
σ2

n
, (9.7)

where σ2 is the population variance and

V (l2) =
1

n(n− 1)

[4(n− 2)
3

{E(Y 2
3:3)+E(Y1:3Y2:3)+E(Y2:3Y3:3)}

− 2(n− 3)E(Y1:2Y2:2)− 2(n− 2)E(Y2
2:2)+ (n− 1)E(Y2

1:1)

− 2(2n− 3)E(Y2
2:2)+E(Y1:1){4(2n− 3)E(Y2:2− 5(n− 1)E(Y1:1)}

]
.

(9.8)

In the case of the first four sample moments,

C =

⎛
⎜⎜⎝

1 0 0 0
−1 2 0 0
−1 −6 6 0
−1 12 −30 20

⎞
⎟⎟⎠

along with

V (l1) = θ00,

V (l2) = 4θ11 − 4θ01 +θ00,

were used to derive the expressions in (9.7) and (9.8). Furthermore,

Cov(l1, l2) =
1

3n
[E(Y3:3 −Y2:3)

2 −E(Y2:3 −Y1:3)
2]

and

Cov(l1, lr) =
1
n

[∫ 1

0
u2P∗

r−1(u)du−
∫ 1

0

∫ u

0
[uvF(P∗

r−1(u))]
′dudv

− (−1)r
∫ 1

0

∫ v

0
uv[(1−G)P∗

r−1(u)(1−G)
]′

dudv,

where G(y) = v and F(x) = u. Also, if we define

θkl = Cov(bk,bl), (9.9)

then



9.3 Method of Moments 339

θ̂kl = bkbl − 1
n(n+l+2)

∑
1≤i< j≤n

[(i− 1)(k)( j− k− 2)(l)

+(i− 1)(l)( j− l − 2)(k)]Xi:nXj:n

is a distribution-free unbiased estimator of (9.9). In the above discussion, Yr:n

denotes the conceptual order statistics of the population. The expression for V (l2) is
equivalent to the estimate of Nair [455]. In finding the variance of the ratio of two
sample L-moments, the approximation

V
(X

Y

)
.
=

[ V (X)

E(X)2 +
V (Y )
E(Y )2 − 2Cov(X ,Y )

E(X)E(Y )

](E(X)

E(Y )

)2

is useful. Thus, approximate variances of the sample L-skewness and kurtosis can
be obtained. The sample L-moment ratios are consistent but not unbiased.

A more general sampling scheme involving censoring of observations has been
discussed recently. Let T1,T2, . . . ,Tn be independent and identically distributed life-
times following distribution function F(x). Assume that lifetimes are censored on
the right by independent and identically distributed random variables Y1,Y2, . . . ,Yn

having common distribution function H(x). Further, let Yi’s be independent of the
Ti’s. Thus, we observe only the right censored data of the form Xi = min(Ti,Yi).
Define indicator variables

Δi =

{
1 if Ti ≤ Yi

0 if Ti > Yi

so that Δi = 1 indicates Ti is uncensored and Δi = 0 indicates Ti is censored. The
distribution of each Xi is then

G(x) = 1− (1−F(x))(1−H(x)).

To estimate the distribution function of the censored samples (Xi,Δi), the Kaplan–
Meir [311] product limit estimator is popular.

The estimator of the survival function is

Sn(t) = ∏
j:x( j)≤t

(
n− j

n− j+ 1

)Δ ( j)

, t ≤ X(n),

where X(1) ≤ ·· · ≤ X(n) are ordered Xi’s and Δ( j) is the censoring status correspond-
ing to X( j).

The estimator of the rth L-moment for right censored data (Wang et al. [576]) is

L̂r =
n

∑
j=1

X( j)Uj(r),
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where

Uj(r) =
j−1

∑
k=0

r−1
(

r− 1
k

)[
Bp,q(1− Sn(X( j)))−Bp,q(1− Sn(X( j−1)))

]

with X(0) = 0, p = r− k and q = k+ 1.
Now, let T = min(X ,C), where X denotes the failure time and C denotes the

noninformative censoring time. For a constant 0 ≤ u0 < 1 and Q(u0) < T ∗, where
T ∗ is the minimum of the upper most support points of the failure time X and the
censoring time C, suppose that F ′′(x) is bounded on [0,Q(u0) + Δ ], Δ > 0 and
inf0≤u≤u0 f (Q(u)) > 0. Then (Cheng [145]),

(i) with probability one

sup
0≤u≤u0

|Q̂(u)−Q(u)|= O(n−
1
2 (log logn)

1
2 ),

(ii)

sup
0≤u≤u0

|n 1
2 f (Q(u))(Q̂(u)−Q(u)−Gn(u)|= O(n−

1
3 (logn)

3
2 ),

where Gn(u) is a sequence of identically distributed Gaussian process with zero
mean and covariance function

Cov(Gn(u1),Gn(u2)) = (1− u1)(1− u2)

∫ n

0

dt
(1− t)2[1−H(F−1(t))]

,

with u1 ≤ u2, H(x) = 1− (1 − F(x)(1−G(x))) and G(x) is the distribution
function of the censoring time C.

Under the above regularity conditions, Wang et al. [576] have shown that, as
n → ∞,

(i) L̂r = Lr + o(n−
1
2 (log logn)

1
2 );

(ii) n
1
2 (L̂r − Lr), r = 1,2, . . . ,n converges in distribution to multivariate normal

(0,Σ), where Σ has its elements as

Σrs =

∫∫

x≤y

P∗
r−1(x)P

∗
s−1(y)+P∗

s−1(x)P
∗
r−1(y)

f (Q(x)) f (Q(y))
Cov(Gn(x),Gn(y))dxdy,

with

P∗
r−1(u) =

r−1

∑
k=0

(−1)r−1−k
(

r− 1
k

)(
r+ k− 1

k

)
uk

is the (r− 1)th shifted Legendre polynomial;
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(iii) the vector

n
1
2 (L̂1 −L1, L̂2 −L2, τ̂3 − τ3,(τ̂3 − τ3) . . . (τ̂m − τm))

converges in distribution to multivariate normal (0,Λ), where Λ has its
elements as

Λrs =

⎧⎪⎪⎨
⎪⎪⎩

Σrs, r ≤ 2, s ≤ 2
(Σrs−τrΣ2s)

L2
, r ≥ 2, s ≤ 2

Σrs−τrΣ2s−τsΣ2r+τrτsΣ22
L2

2
, r ≥ 3, s ≥ 3.

There are several papers that deal with L-moments of specific distributions and
comparison of the method of L-moments with other methods of estimation.
Reference may be made, e.g., to Hosking [277], Pearson [488], Guttman [256],
Gingras and Adamowski [217], Hosking [278], Sankarasubramonian and Sreeni-
vasan [517], Chadjiconstantinidis and Antzoulakos [131], Hosking [280], Karvanen
[312], Ciumara [150], Abdul-Moniem [3], Asquith [40] and Delicade and Goria
[169]. Illustration of the method of L-moments with some real data can be seen in
Sect. 3.6 for different models.

9.3.3 Probability Weighted Moments

Earlier in Sect. 1.4, we defined the probability weighted moment (PVM) of order
(p,r,s) as

Mp,r,s = E(X pFr(X)F̄s(X))

which is the same as

Mp,r,s =

∫ ∞

0
xpFr(x)F̄s(x) f (x)dx

=
∫ 1

0
[Q(u)]pur(1− u)sdu,

provided that E(|X |P)< ∞. Commonly used quantities are

βr =
∫ 1

0
[Q(u)]urdu

and

αr =

∫ 1

0
[Q(u)](1− u)rdu,
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which are the special cases M(1,r,0) and M(1,0,r). Since

αr =
r

∑
s=0

(
r
s

)
(−1)sβs and βr =

r

∑
s=0

(
r
s

)
(−1)sαs,

characterization of a distribution with finite mean by αr or βr is interchangeable. A
natural estimate of αr (also called the nonparametric maximum likelihood estimate)
based on ordered observations X1:n,X2:n, . . . ,Xn:n is

α̂r =

∫ α

0
x(1−Fn(x))

rdFn(x) =
1
n

n

∑
i=1

Xi:n

(
1− i

n

)r

.

The asymptotic covariance of the estimator is

σrs = Cov (α̂r, α̂s)

=
1
n

∫∫

x<y

[1−F(x)]r[1−F(y)]sF(x)(1−F(x))dxdy.

Similarly, the estimate of βr is

β̂r =

∫ ∞

0
x[Fn(x)]

rdFn(x) =
1
n

n

∑
i=1

Xi:n

(
i
n

)r

,

with asymptotic covariance

Cov(β̂r, β̂s) =
1
n

∫∫

x<y

[F(x)]r[F(y)]sF(x)[1−F(y)]dy.

Landwehr and Matalas [373] have shown that

br =
1
n

n

∑
i=1

(i− 1)(i− 2) . . .(i− r)
(n− 1)(n− 2) . . .(n− r)

Xi:n (9.10)

is an unbiased estimator of βr. Similarly, for αr, we have the estimator

ar =
1
n

n

∑
i=1

(n− i)(n− i− 1)(n− i+ r− 1)
(n− 1)(n− 2) . . .(n− r)

.

Hosking [278] has developed estimates based on censored samples. In Type I
censoring from a sample of size n, m are observed and (n−m) are censored above
a known threshold T so that m is a random variable with binomial distribution. The
estimate based on the uncensored sample of m values is (9.10) with m replacing n
and when the n−m censored values are replaced by T , the estimate is given by
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b̄r =
1
n

[
m

∑
j=1

(i− 1)(i− 2) . . .(i− r)
(n− 1)(n− 2) . . .(n− r)

Xi:n +
m

∑
i=m+1

(i− 1) . . .(i− r)
(n− 1) . . .(n− r)

T

]
.

Assume that F(t) = v. Conditioned on the achieved value of m, the uncensored
values are a random sample of size m from the distribution with quantile function
Q(uv), 0 < u < 1. The population PWM’s for this distribution are

βr,m =
1

vr+1

∫ v

0
urQ(u)du.

On the other hand, the completed sample is of size n from the distribution with
quantile function

Q1(u) =

{
Q(u), 0 < u < v

Q(v), v ≤ u < 1

and hence its PWM’s are

βr,n =

∫ 1

0
urQ1(u)du

=

∫ v

0
urQ(u)du+

1− vr+1

r+ 1
Q(v).

The asymptotic distributions in this case are derived as in the case of the usual
PWM’s. Furrer and Naveau [205] have examined the small-sample properties of
probability weighted moments.

As in the case of the other two moments, we equate the sample and population
probability weighted moments for the estimation of the parameters. In such cases,
it is useful to adopt the formulas

b̄r =
1
n

n

∑
i=1

x(i)pr
(i)

and

ār =
1
n

n

∑
i=1

x(i)(1− p(i))

with p(i) as some ordered suitably chosen probabilities. Gilchrist [215] has
prescribed the choice for p(i) as i

n+1 , or inverse of the beta function (0.5, i,n− i+1),

or pi =
i−0.5

n .
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Example 9.3. Consider the Govindarajulu distribution with

Q(u) = σ((β + 1)uβ −βuβ+1)

βr = σ
∫ 1

0
[(β + 1)uβ −βuβ+1]urdu,

=
σ(2β + r+ 2)

(β + r+ 1)(β + r+ 2)
.

Since we have only two parameters in this case to estimate, the equations to be
considered are

βr = b̄r, r = 0,1,

or

2σ
β + 2

= X̄ = b̄0

and

σ(2β + 3)
(β + 2)(β + 3)

=
1

n(n+ 1)∑ iX(i) = b̄1.

Upon solving these equations, we obtain the estimates

β̂ =
3b̄0 − 6b̄1

2(b̄1 − b̄0)
, σ̂ =

b̄0(b̄0 + 2b̄1)

4(b̄0 − b̄1)
.

9.4 Method of Maximum Likelihood

We proceed by writing the likelihood function based on a random sample
x1, . . . ,xn as

L(θ ) = f (x1;θ ) f (x2;θ ) . . . f (xn;θ ).

Taking xi = Q(ui;θ ), we then have

L(θ ) = f (Q(u1,θ )) f (Q(u2,θ )) . . . f (Q(un,θ ))

= [q(u1;θ )q(u2;θ ) . . .q(un;θ )]−1.

The estimate of θ is the solution that maximizes L(θ ), or equivalently, we have to
solve the equation
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d logL
dθ

=−
∑
i

d logq(ui;θ )

dθ
= 0

for θ . Notice that, in practice, the calculation of L(θ ) requires the derivation of
ui from the equation xi = Q(ui;θ ). If ui = F(xi;θ ) is explicitly available, a direct
solution of the ui’s are possible from the observed xi in the fit of F(x) after
substituting the estimated values for the parameters. Otherwise, one has to use
some numerical method to extract ui. The observations are ordered. When U is a
uniform random variable, X and Q(U) have identical distributions. Let Q̂(u) be a
fitted quantile function and x(r) = Q(u(r)). If ψ0 is an initial estimate of u for a given
x value, using the first two terms of the Taylor expansion, we have

Q(ψ) = Q(u0)+ (u− u0)Q
′(u0)

as an approximation. Solving for u, we get

u
.
= u0 +

x−Q(u0)

q(u0)
. (9.11)

In practical problems, the initial value could be u(r) =
r

n+1 . With this value, (9.11)
is used iteratively until x differs from Q(u) by ε , a small pre-set tolerance value,
in a trial. Gilchrist [215] has provided a detailed discussion on the subject and an
example of the estimation of the parameters of the generalized lambda distribution
and layout for the calculations. The properties of the maximum likelihood estimates,
though widely known, is included here for the sake of completeness.

Theorem 9.6. Let X1,X2, . . .Xn be independent and identically distributed with
distribution function F(x : θ ) where θ belongs to an open intervalΘ in R, satisfying
the following conditions:

(a)

∂ log f (x;θ )
∂θ

,
∂ 2 log f (x;θ )

∂θ
,
∂ 3 log f (x;θ )

∂θ

exist for all x;
(b) for each θ0 ∈Θ , there exist functions gi(x) in the neighbourhood of θ0 such that

∣∣∣∣
∂ f
∂θ

∣∣∣∣≤ g1(x),

∣∣∣∣
∂ 2 f
∂θ 2

∣∣∣∣≤ g2(x),

∣∣∣∣
∂ 3 log f
∂θ 3

∣∣∣∣≤ g3(x)

for all x, and
∫

g1(x)dx <∞,
∫

g2(x)dx < ∞, Eg3(X)dx < ∞

in the neighbourhood of θ0;
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(c) 0 < E
(∂ log f (X ;θ )

∂θ

)2
< M < ∞ for each θ , then with probability 1, the

likelihood equations

∂L
∂θ

= 0

admit a sequence of solutions {θ̂n} with the following properties:

(i) θ̂n is strongly consistent for θ ;
(ii) θ̂n is asymptotically distributed as

N

⎛
⎜⎝θ , 1

nE
(
∂ log f (X ;θ)

∂θ

)2

⎞
⎟⎠ .

When θ contains more than one element, then also the sequence of vector values
(θ̂n) satisfies consistency and asymptotic normality (θ , 1

nI(θ) ) where I(θ ), called
the information matrix, has its elements as

E

(
∂ log f (X ;θ )

∂θi
,
∂ log f (X ;θ )

∂θi

)

where θ = (θ1, . . . ,θK) and I(θ ) has order K×K.

9.5 Estimation of the Quantile Density Function

The quantile density function q(u) is a vital component in the definitions of
reliability concepts like hazard quantile function, mean residual quantile function
and total time on test transforms. Moreover, it appears in the asymptotic variances
of different quantile-based statistics. Babu [43] has pointed out that the estimate of
the bootstrap variance of the sample median needs consistent estimates of q(u).

Assume that q(p)≥ 0. Then,

Q(v)−Q(p)
v− p

= q(p)+ o(1)

as v → p. Thus, to get an approximation for q(p), it is enough to consider Q(v)−
Q(p) for v ≥ u near u. As Q(p) is not known, it is replaced by Qn(p). Since all

quantiles Qn(v)−Q(p)
v−p are close to q(p), a linear combination of these two also will be

near q(p). With this as the motivating point, Babu [43] has provided the following
results.
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Let h be a function on the positive real line such that h(y)ey is a polynomial of
degree not exceeding k (k ≥ 2 is an integer) and

∫ ∞

0
h(y)y jdy =

{
1, j = 0,1

0, j = 2,3, . . .k.

Then,

σ2(x) =
∫ x

0

∫ x

0
h(p)h(v)min(p,v)d pdv

and

σ2 =

∫ ∞

0

∫ ∞

0
h(p)h(v)min(p,v)dudv.

Defining J = (p − ε, p + ε) ⊂ (0,1), for independent variables X1, . . . ,Xn with
common distribution function F(x), we have the following two results.

Theorem 9.7. If F(x) is k times continuously differentiable at Q(p) for p ∈ J such
that f (x) at Q(p) is positive and E(X2)< ∞, then uniformly in x > 0,

n2βE

(
D(x,n)
q(p)

− 1

)2

= σ2(x)+ o(1)+ n2β(1−L(x,n))2,

where

D(x,n) = nδ
∫ x

0
[Qn(p+ vn−δ)−Qn(p)]h(v)dv,

L(x,n) = nδb−1
1

∫ x

0
b(vn−δ )h(v)dv,

δ = (2k− 1)−1, β =
1− δ

2
, b j =

1
j!

d jQ(p)
d p j at p ∈ J, and b(p) =

k

∑
j=1

b j p
j.

Theorem 9.8. Let fi(x) =
∫ ∞

x yih(y)dy and f j and f1 do not have common positive
roots for any 2 ≤ j ≤ k− 1. If the jth derivative of Q at p is non-zero, for 2 ≤ j ≤
k− 1, then

n2βE

(
D(x,n)
q(p)

− 1

)2

≥ σ2 + o(1)

and that the equality occurs at x = logn. As a result, D(logn,n) is an efficient esti-
mator of q(u) in the mean square sense among the class of estimators {D(x,n)|x >
0}. Also, nβ (D(logn,n)( 1

q(p) − 1)) is asymptotically distributed as N(0,σ2).
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A histogram type estimator of the form

An(p) =
Qn(p+αn)−Qn(p−αn)

2αn
, αn > 0,

has been discussed by Bloch and Gastwirth [108] and Bofinger [113]. Its asymptotic
distribution is presented in the following theorem.

Theorem 9.9 (Falk [193]). Let 0 < p1 < · · · < pr < 1 and Q(p) be twice
differentiable near p j with bounded second derivative, j = 1,2, . . . ,r. Then, if
αn j → 0 and nα jn → ∞, j = 1,2, . . .r,

(2nα jn)
1
2

{
A jn(p j)− Q(p j +α jn)−Q(p j −α jn)

2α jn

}r

j=1
,

where

A jn(p j) =
Qn(p j +α jn)−Qn(p j −α jn)

2α jn
,

converges in distribution to ∏r
j=1 N(0,q2(p j)), with Π denoting the product

measure.

In the above result, if we further assume that nα3
jn → 0, then

Q(p j+α jn)−Q(p j−α jn)
2α jn

can

be replaced q(p j). Moreover, if Q is three times differentiable near p with bounded
third derivative which is continuous at p, an optimal bandwidth α∗

n in the sense of
mean square is

α∗
n =

⎧⎨
⎩

6

2
1
2

q(p)

q3(p)

⎫⎬
⎭

2
5

n−
1
5 .

Falk [193] considered a kernel estimator of q(p) defined by

k̂n(Fn) =

∫ 1

0
Qn(x)α−2

n h
( p− x
αn

)
dx,

where h is a real valued kernel function with bounded support and
∫

h(x)dx = 0.
Notice that kn(p) is a linear combination of order statistics of the form ∑n

i=1 CinXi:n,
where

Cin =
1
α2

n

∫ i
n

i−1
n

h
( p− x
αn

)
dx, i = 1,2, . . . ,n.

Some key properties of the above kernel estimator are presented in the following
theorem.
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Theorem 9.10. Let 0 < p1 < · · · < pr < 1 and Q be twice differentiable near p j

with bounded second derivative, j = 1,2, . . . ,r. Then, if h j has the properties of h
given above and α jn → 0, nα2

jn → ∞,

[
(nα jn)

1
2 (k̂ jn(p j)− k jn(p j))

]r
j=1

converges to ∏r
j=1 N(0,q2(p j))

∫
H2

j (y)dy, where ∏ is the product measure,

Hj(y) =
∫ y

−∞
h j(x)dx,

k̂n j(p j) =

∫ 1

0
Qn(x)α−2

jn h j

( p j − x

α jn

)
dx,

and

k̂n j(p j) =
∫ 1

0
Q(x)α−2

jn h j

( p− x
α jn

)
dx.

Using additional conditions
∫

xh(x)dx = −1 and nα3
n → 0, kn(p) in Theorem 9.4

can be replaced by q(p). Further, if Q is differentiable (m+ 1) times with bounded
derivatives which are continuous at p, with nα3m+1

n → 0, the approximate bias of
k̂n(p) becomes

kn(p)− q(p) = o(αm
n )

and the optimal bandwidth that minimizes the mean squared error E(k̂n(p)−q(p))2

is

α∗
n =

(m+ 1)!(
∫

H2(y)dy)
1
2 q(p)

Qm+1(p)
∫

xm+1h(x)dx
.

Mean squared error of the kernel quantile density estimator is compared with that of
the estimate g̃(u) in Jones [305], where g̃(u) is the reciprocal of the kernel density
estimator given by

g̃(u) =
1

f̂ (Qn(u))
.

It is proved that the former estimator is better than the latter one in terms of the
mean squared error.

Estimation of q(p) in a more general framework and for different sampling
strategies has been discussed by Xiang [590], Zhou and Yip [603], Cheng [143]
and Buhamra et al. [123].
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9.6 Estimation of the Hazard Quantile Function

The hazard quantile function in reliability analysis, as described in the preceding
chapters, plays a key role in describing the patterns of failure and also in the
selection of the model. Sankaran and Nair [515] have provided the methodology for
the nonparametric estimation of the hazard function, by suggesting two estimators,
with one based on the empirical quantile density function and the other based
on a kernel density approach. The properties of the kernel-based estimator and
comparative study of the two estimators have also provided by them. Recall that
the hazard quantile function is defined as

H(p) = [(1− p)q(p)]−1, 0 < p < 1.

Suppose that the lifetime X is censored by a non-negative random variable Z. We
observe (T,Δ), where T = min(X ,Z) and Δ = I(X ≤ Z), with

T (X ≤ Z) =

{
1, X ≤ Z

0, X > Z.

If G(x) and L(x) are the distribution functions of Z and T , respectively, under the
assumption that Z and X are independent, we have

1−L(x) = (1−F(x))(1−G(x)).

Let (Ti,Δi), i = 1,2, . . . ,n, be independent and identically distributed and each
(Ti,Δi) has the same distribution as (T,Δ). This framework includes time censored
observations if all the Zi’s are fixed constants, a Type I censoring when all Zi’s are
the same constant, and Type II censoring if Zi = Xr:n for all i. The first estimator
proposed by Sankaran and Nair [515] is

Ĥ(p) =
1

[1−Fn(Qn(p))]qn(p)
,

where

qn(p) = n(Tj:n −Tj−1:n),
j− 1

n
≤ p ≤ j

n
,

and T0:n ≡ 0. From Parzen [486], it follows that qn(p) is asymptotically exponential
with mean q(p). Thus, qn(p) is not a consistent estimator of q(p) nor Ĥ(p) is for
H(p).

A second estimator has been proposed by considering a real valued function K(·)
such that
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(i) K(x)≥ 0 for all x and
∫

K(x)dx = 1,
(ii) K(x) has finite support, i.e., K(x) = 0 for |x|> c for some constant c > 0,

(iii) K(x) is symmetric about zero,
(iv) K(x) satisfies the Lipschitz condition

|K(x)−H(y)| ≤ M|x− y|

for some constant M. Further, let {hn} be a sequence of positive numbers such
that hn → 0 as n → ∞. Define a new estimator as

Hn(p) =
1
hn

∫ 1

0

1
[1−Fn(Qn(t))]qn(t)

K
( t − p

hn

)
dt (9.12)

=
1
hn

u

∑
i=1

1
[1−Fn(Ti:n)]n[Ti:n −Ti−1:n]

∫ si:n

si−1:n

K
( t − p

hn

)
dt, (9.13)

where

Si:n =

⎧⎪⎪⎨
⎪⎪⎩

0, i = 0

Fn(Ti:n), i = 1,2, . . . ,n− 1

1, i = n.

When Si:n−Si−1:n is small, by the first mean value theorem, (9.13) is approximately
equal to

H∗
n (p) =

1
hn

n

∑
i=1

Si:n − Si−1:n

[1−Fn(Ti:n)]n(Ti:n −Ti−1:n)
K
(Si:n − p

hn

)
.

When no censoring is present, Si:n − Si−1:n = i
n for all i. When heavy censoring

is present, Si:n − Si−1:n is large for i = n so that H∗
i (p) need not be a good

approximation for Hn(p).
When F is continuous and K(·) satisfies Conditions (i)–(iv) given above, the

estimator Hn(p) is uniformly strongly consistent and for 0 < p < 1, (
√

nHn(p)−
H(p)) is asymptotically normal with mean zero and variance

σ2(p) =
n

(h(n))2 E
[∫ 1

0
Qn(t)dM′(t, p)+

∫ 1

0
Fn(Qn(t))

M(t, p)
(1− t)

q(t)dt
]2
.

A simulation was carried out in order to make a small sample comparison of
Hn(p) and Ĥ(p) in terms of mean squared error. The random censorship model
with F(t) = 1− eλ t was used by varying λ . Observations were censored with the
uniform distribution U(0,1) with probability 0.3, so that 30 % of the observations
were censored. As a choice of the kernel function, the triangular density

K(x) = (1−|x|)I(|x| ≤ 1)
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was used. The ratios of the mean squared error of Ĥ(p) to that of Hn(p) were
compared in the study, which revealed the following points:

(a) Hn(p) gave reasonable performance for hn ≤ 0.50;
(b) When 0.05 < hn < 0.50, for each value of p, there is a range of widths hn for

which Hn(p) has smaller mean square error. For large hn values hn = 0.15 gives
the smallest discrepancy between the two estimators;

(c) The two estimators Ĥ(p) and Hn(p) do not perform well when p becomes large.
The method of estimation has also been illustrated with a real data by Sankaran
and Nair [515].

9.7 Estimation of Percentile Residual Life

As we have seen in the preceding chapters, the residual life distribution plays a
fundamental role in inferring the lifetime remaining to a device given that it has
survived a fixed time in operation. The percentiles of the residual life quantile
function are the percentile residual life defined in (2.19) and its quantile form in
(2.19). Classes of lifetime distributions based on monotone percentile residual life
functions have been discussed in Sect. 4.3. The (1− p)th percentile life function,
according to the definition in (2.19), is

P(x) = Q[1− p(1−F(x))]− x, x > 0. (9.14)

As before, assume that X1:n ≤ ·· · ≤ Xn:n are the ordered observations in a random
sample of size n from the distribution with quantile function Q(p). The sample
analogue of (9.14) is then

pn(x) = Qn[1− p(1−Fn(x))]− x. (9.15)

Csorgo and Csorgo [160] have discussed the asymptotic distribution of pn(x) for
different cases consisting of pn(x), (a) as a stochastic process in x for fixed 0 < p <
1, (b) as a stochastic process in p for a fixed x > 0, and (c) a two-parameter process
in (p,x). Using the density function of X , define

g(x) = [ f (P(x))+ x]−1,

rn(x) =

√
n

g(x)
[pn(x)−P(x)],

H(x) = B[1− p(1−F(x))− pB(F(x))],

where B is a Brownian bridge over (0,1). For a fixed x > 0, H(x) is distributed as
N(0, p(1− p)(1−F(x))). For a fixed p, provided q(p) is positive and continuous
at 1− p(1−F(x)), rn(x) is asymptotically N(0, p(1− p)(1−F(x))). In addition, if
f (x)> 0 on (Q(1− p),∞) and some r > 0,
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sup
x>Q(1−p)

[
F(x)(1−F(x))

| f ′(x)|
f 2(x)

]
≤ γ

and f (x) is ultimately non-increasing as x → ∞, then almost surely

sup
0<x<∞

|rn(x)−H(x)|= o(δn)

with

δn =
( loglogn

n

) 1
4
(logn)

1
2 as n → ∞.

A smooth version of the empirical estimator has been studied by Feng and
Kulasekera [196]. Following this, as n → ∞, Alam and Kulasekera [33] have
established that under the above assumptions,

rn(x) =
1

g(x)

∫ ∞

−∞
rn(u)g(u)K

(u− x
λ

)du
λ

is asymptotically normal as

H̄(x) =
1

g(x)

∫ ∞

−∞
H(u)g(u)K

(u− x
λ

)du
λ

and also

|r̄n(x)− H̄(x)|= o(δn)

almost surely. Since

EH̄(x) = 0

and

E[H̄(x)]2 =
1

g2(x)

∫ ∞

−∞

∫ ∞

−∞
μ(u,w)g(u)g(w)K

(u− x
λ

)
K
(w− x
λ

)dudw
λ 2

= vλ (x), (9.16)

the asymptotic normal distribution has mean zero and variance vλ (x). It is easy
to see that the function K(·) denotes the kernel, which the authors assume to be
a probability density function centred at the origin. The efficiency of the Csorgo’s
estimator rn(x) relative to that of r̄n(x) is now

e =
vλ (x)

p(1− p)(1−F(x))
.
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The term μ(u,w) occurring in (9.16) is

μ(u,w) = EG(u)G(w)

= p(1− p)+ (p+ p2)(F(u)∧F(w))

− p{F(u)∧ ((1− p)(1−F(w)))+F(w)∧ ((1− p)(1−F(u)))}.

Assuming that

∫ ∞

−∞
g(u)K

( p− x
λ

)du
λ

< ∞,

we have

sup
0<x<∞

E(r2
n(x)− v∗(x)) = o(n−

1
4 )

and

sup
0<x<∞

E(r̄2
n(x)− v∗λ (x)) = o(n−

1
4 )

as n → ∞. In the above results,

v∗(x) = p[1− p(1−F(x))][1−F(x)]

and

v∗λ (x)) =
( p
λg(x)

)2 ∫ ∞

−∞

∫ ∞

−∞
[F(u)F(w)][1−F(u)F(w)]g(u)g(w)

×K
(u− x
λ

)
K
(w− x
λ

)
dudw+ vλ(x).

The asymptotic value of the normalized difference between r̄n(x) and the empirical
estimator is given by

n[MSE(pn(x))−MSE(p̄n(x))]
λg2(x)

= v∗0(x),

where

p̄n(x) =
∫ ∞

−∞
pn(u)K

( (u− t)
λ

)du
λ
.
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Alam and Kulasekera [33] have also presented a Monte Carlo study when the
underlying distribution is exponential and Weibull using uniform distribution over
[−1,1] as the kernel. It has been observed through this study that the kernel estimator
provides better results for moderate sample sizes and chosen values of λ .

More properties of Pn(x) have been given by Csorgo and Mason [162], Aly [34]
and Csorgo and Viharos [163].

Pereira et al. [491] have studied properties of the class of distributions with
decreasing percentile residual life (DPRL). They introduced a nonparametric
estimator of P(x) based on the fact that

P(x) is DPRL ⇔ P(x) = inf
y≤x

P(y).

Thus, the estimator of P(x) is given by

P̃(x) = I(x,∞)(Xn:n) inf
y≤x

Pn(y), (9.17)

where I(x,∞) denotes the indicator function of the indicated interval. Note that P̃(x)
is the largest decreasing function that lies below the empirical Pn(x) . In practice, the
estimator P̃(x) can be computed easily in the following way. When X1:n ≤ ·· · ≤ Xn:n

are the ordered observations in a random sample of size n from the distribution
F(x), find the number of distinct values in the sample, say k. Let Y1 < · · · < Yk be
the resulting ordered values with no ties. Then, the estimate P̃(x) is given by

P̃(x) =

⎧⎪⎪⎨
⎪⎪⎩

Pn(Y1−)+Y1 − x if x < Y1

min{Pn(Y1−),Pn(Y2−),Pn(Yj−),Pn(Yj+1−)+Yj+1 − x} if Yj ≤ x < Yj+1

0 if x > Yk.

The strong uniform consistency of the estimator P̃(x) is presented in the following
theorem.

Theorem 9.11. Let X be a random variable having DPRL property. If the distri-
bution function F(x) of X has a continuous positive density function f (x) such
that inf0≤p≤1 fx(Q(p)) > 0, then P̃(x) is a strongly uniformly consistent estimator
of P(x).

Note that in order to estimate p(x) under the condition that it increases, an
estimator that is a modification of the estimator given in (9.15) can be obtained.
It is also strongly uniformly consistent.

9.8 Modelling Failure Time Data

In this and in the subsequent sections, we consider various aspects of the process
of modelling lifetime data using distributions. As a problem solving activity, the
statistical concepts expressed in terms of quantile functions offer new perspectives
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that are not generally available in the distribution function approach or at least
provides an alternative approach with possibly different interpretations with almost
equivalent results. Several factors have to be considered while constructing a model.
Generally, the model builder will have some information about the phenomenon
under consideration or will be able to extract some features from a preliminary
assessment of the observations. The background information about the variables
and possible distributions along with the necessary level of details required for the
analysis are crucial points. Choice of the appropriate model also depends on the data
available to ensure its adequacy and the method of estimation of the parameters.
Finally, model parsimony is an attractive feature that prefers a simpler model to
a more complex one. For example, models with lesser number of parameters or
functional forms that have simpler structure (like constancy or linearity as against
nonlinear) will be easier to build and analyse. Qualities such as tractability of
the model, ease of analysis and interpretation are often prime considerations. This
should be consistent with the ability of the model to represent the essential features
of the life distribution that are inherent in the observations. In practice, there are
three essential steps in building a model. They are identification of the appropriate
model, fitting the model and finally checking its adequacy.

9.9 Model Identification

The procedure involved in model choice is to try out possible candidates and choose
the best among them. We have seen in previous chapters (see Table 1.1 and the
review of bathtub models in Chap. 7) that a plethora of lifetime distributions have
been proposed to represent lifetimes in the distribution function approach. This
adds to the complexity of determining the potential initial choice. A generalized
version may fit in many practical situations, but more parsimonious solution that
render easy analysis and interpretations may exist. The problem is somewhat of a
lesser degree when quantile functions are used. We have the generalized lambda
distribution (Sect. 3.2.1) or the generalized Tukey lambda family (Sect. 3.2.2) that
can take care of a wide variety of practical problems in view of their ability
to provide reasonable approximations to many continuous distributions. See the
discussion on the structural properties of the two quantile functions. The reliability
properties of the models, methods of estimating the parameters and examples of
fitting them (Sect. 3.6) have been described in detail in Chap. 3. When there are
multiple solutions that give models which fit the data, the one which captures the
observed features of the reliability characteristics more closely may be preferred.
The reliability characteristic may be the hazard quantile function, mean residual
quantile function or any other for which the fitted model is put to good use. We
can also make use of other models including those suggested in the distribution
function approach with tractable quantile functions. A look at the admissible range
of skewness and kurtosis values for the proposed distribution will indicate if it
covers the distributional shape that fits the observations. The skewness and kurtosis
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coefficients of the sample values have to be within the ranges prescribed for the
chosen model.

Another useful method to arrive at a realistic model is to compare any of the basic
reliability functions that uniquely determines the life distribution, with its sample
counterpart. The hazard quantile function, mean residual quantile function, etc. can
be used for this purpose. To use the hazard quantile function, recall its definition

H(u) =
1

(1− u)q(u)
.

Let X1:n ≤ X2:n ≤ ·· · ≤ Xn:n be an ordered set of observations on failure times. Then,
the quantile function of the distribution of Xr:n is (1.26)

Qr(ur)≡ Q(I−1(r,n− r+ 1)).

If U has a uniform distribution, then X , where x = Q(p), has quantile function Q(u).
Hence, the ordered Ur, say u(r), leads to xr:n = Q(u(r)). So, as an approximation,
either the mean

EQ(U(n)) = Q
( r− 0.5

n

)
,

or the median

Mr = Q(I−1(0.5,r,n− r+ 1)),

or equivalently

u∗(r) = I−1(0.5,r,n− r+ 1), u∗(r) = Q−1(Mr) = F(Mr),

can be used. Gilchrist [215] refers to the function I−1 as BETAINV and points out
that it is a crucial standard function in most spreadsheets and statistical software.
The empirical quantile density function q̂(u) can be obtained from the data, ur, from
the median probability. Thus, from the above formula, q(u∗(r)) can be plotted against
u∗r . Once a graph of

Ĥ(u) =
1

(1− u∗r)q(u∗r )

is obtained, its functional form can be obtained by comparing the plot with one of
the hazard quantile function forms. Several such forms are available from Table 2.4,
Chaps. 3 and 7.

A third alternative in model identification is to start with a simple model and
then modify it to accommodate the features of the data. Various properties of
quantile functions described in Sect. 1.2 can assist in this regard. For example, the
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power distribution has an increasing H(u), while the Pareto II has a decreasing
hazard quantile function. The product of these two is the power-Pareto distribution
discussed in Chap. 3, with a highly flexible form for H(u). We can also use various
kinds of transformations to arrive at new models from the initially assumed one. An
excellent discussion of these methods along with various illustrations is available in
Gilchrist [215].

9.10 Model Fitting and Validation

Once the data is collected and a specific model form is assumed, the next goal
is to estimate the parameters. One of the methods of estimation discussed in the
preceding sections of this chapter can be employed for this purpose. The only
remaining step in the model building process is to ascertain whether the model
with the estimated parameters describes the data adequately. This is called model
validation. Since the parameters have been estimated from the data using some
optimality criteria, the reproducibility of the model will be enhanced if its validation
is made by another set of data if it exists. When the data is large, part of it can be
used for identification and fitting while the remaining for validation. Sometimes,
cross-validation is made use of wherein part of the data used for fitting and the
remaining part of the data used for validation are interchanged and the two acts are
repeated.

There are graphical methods to ascertain the goodness of fit. One is the Q-
Q plot and the other is the box plot mentioned in Chap. 1. The Q-Q plots were
illustrated in the modelling of real data using lambda distribution, the power-Pareto
and the Govindarajulu distributions in Chap. 3; see, for example, Figs. 3.7–3.9. An
advantage of the Q-Q plot is that it can be used to specifically compare the tail
areas. We can consider the plots comparing x(r) with its values at 0.90 or 0.95 or
0.05, using the median rankits

Q̂(I−1(0.05,r,n− r+ 1)), Q̂(I−1(0.025,r,n− r+ 1)), Q̂(I−1(0.975,r,n− r+ 1)).

The recent work of Balakrishnan et al. [52] constructing optimal plotting points
based on Pitman closeness and its performance as a good of fit and comparison
with other plotting points is of special interest here. A second method is to apply
some goodness-of-fit tests like chi-square. Suppose there are n observations and
are divided into m groups each containing the same number of observations. Take
u j =

j
m , u0 = 0, um = 1, r = 0, . . . ,m− 1. If p j = Q̂(ur) and f j is the frequency of

observations in (pr−1, pr), the expected value of fr is n
m for all value of r. Then, the

statistic

∑
[ fr − ( n

m)
2

( n
m)

]
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has approximately a chi-square distribution with n− 1 degrees of freedom. This
scheme is more easier to apply than the conventional chi-square procedure. For
elaborate details on chi-squared tests and their power properties, one may refer to
the recent book by Voinov et al. [575]. The general references on different forms of
goodness-of-fit tests of D’Agostino and Stephens [165] and Huber-Carol et al. [289]
will also provide valuable information in this regard. See also Gilchrist [214,215] for
methods of estimators when quantile functions are used in modelling statistical data.
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95. Bergman, B., Klefsjö, B.: The TTT-concept and replacements to extend system life. Eur. J.

Oper. Res. 28, 302–307 (1987)
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340. Klefsjö, B., Westberg, U.: TTT plotting and maintenance policies. Qual. Eng. 9, 229–235
(1996–1997)

341. Kleiber, C., Kotz, S.: Statistical Size Distributions in Economics and Actuarial Sciences.
Wiley, Hoboken (2003)

342. Kleinbaum, D.G.: Survival Analysis-A Self Learning Text. Springer, New York (1996)
343. Klutke, G., Kiessler, C., Wortman, M.A.: A critical look at the bathtub curve. IEEE Trans.

Reliab. 52, 125–129 (2003)
344. Knopik, L.: Some results on ageing class. Contr. Cybern. 34, 1175–1180 (2005)
345. Knopik, L.: Characterization of a class of lifetime distributions. Contr. Cybern. 35, 407–414

(2006)
346. Kochar, S.C.: Distribution free comparison of two probability distributions with reference to

their hazard rates. Biometrika 66, 437–441 (1979)
347. Kochar, S.C.: On extensions of DMRL and related partial orderings of life distributions.

Comm. Stat. Stoch. Model. 5, 235–245 (1989)
348. Kochar, S.C., Deshpande, J.V.: On exponential scores for testing against positive ageing. Stat.

Probab. Lett. 3, 71–73 (1985)
349. Kochar, S.C., Li, X., Shaked, M.: The total time on test transform and the excess wealth

stochastic orders of distributions. Adv. Appl. Probab. 34, 826–845 (2002)
350. Kochar, S.C., Wiens, D.: Partial orderings of life distributions with respect to their ageing

properties. Nav. Res. Logist. 34, 823–829 (1987)
351. Koicheva, M.: A characterization of gamma distribution in terms of conditional moments.

Appl. Math. 38, 19–22 (1993)
352. Korwar, R.: On stochastic orders for the lifetime of k-out-of-n system. Probab. Eng. Inform.

Sci. 17, 137–142 (2003)
353. Kotlyar, V.Y.: A class of ageing distributions. Cybern. Syst. Anal. 28, 170–176 (1992)
354. Kottas, A., Gelfand, A.E.: Bayesian semiparametric median regression modelling. J. Am. Stat.

Assoc. 96, 1458–1468 (2001)
355. Kotz, S., Seier, E.: An analysis of quantile measures of kurtosis, center and tails. Stat. Paper.

50, 553–568 (2009)
356. Kulasekera, K.B., Park, H.D.: The class of better mean residual life at age t0. Microelectron.

Reliab. 27, 725–735 (1987)
357. Kumar, D., Westberg, U.: Maintenance scheduling under age replacement policy using

proportional hazards model and TTT-plotting. Eur. J. Oper. Res. 99, 507–515 (1997)
358. Kundu, D., Gupta, R.D., Manglick, A.: Discriminating between lognormal and generalized

exponential distributions. J. Stat. Plann. Infer. 127, 213–227 (2005)
359. Kundu, D., Kannan, N., Balakrishnan, N.: On the hazard function of the Birnbaum-Saunders

distribution and associated inference. Comput. Stat. Data Anal. 52, 2692–2702 (2008)
360. Kundu, D., Nanda, A.K.: Some reliability properties of the inactivity time. Comm. Stat. Theor.

Meth. 39, 899–911 (2010)
361. Kundu, D., Raqab, M.Z.: Generalized Rayleigh distribution. Comput. Stat. Data Anal. 49,

187–200 (2005)
362. Kunitz, H., Pamme, H.: The mixed gamma ageing model in life data analysis. Stat. Paper. 34,

303–318 (1993)
363. Kupka, J., Loo, S.: The hazard and vitality measures of ageing. J. Appl. Probab. 26, 532–542

(1989)
364. Kus, C.: A new lifetime distribution. Comput. Stat. Data Anal. 51, 4497–4509 (2007)
365. Kvaloy, J.T., Lindqvist, B.H.: TTT based tests for trend in repairable systems data. Reliab.

Eng. Syst. Saf. 60, 13–28 (1998)
366. Lai, C.D., Moore, T., Xie, M.: The beta integrated failure rate model. In: Proceedings of the

International Workshop on Reliability Modelling Analysis – From Theory to Practice, pp.
153–159. National University of Singapore, Singapore (1998)

367. Lai, C.D., Mukherjee, S.P.: A note on a finite range distribution of failure times. Microelec-
tron. Reliab. 26, 183–189 (1986)



References 375

368. Lai, C.D., Xie, M.: Stochastic Ageing and Dependence for Reliability. Springer, New York
(2006)

369. Lai, C.D., Xie, M., Murthy, D.N.P.: Bathtub shaped failure rate life distributions. In:
Balakrishnan, N., Rao, C.R. (eds.) Handbook of Statistics, vol. 20. Advances in Reliability,
pp. 69–104. North-Holland, Amsterdam (2001)

370. Lai, C.D., Xie, M., Murthy, D.N.P.: Modified Weibull model. IEEE Trans. Reliab. 52, 33–37
(2003)

371. Lakhany, A., Mausser, H.: Estimating parameters of the generalized lambda distribution. Algo
Res. Q. 3, 47–58 (2000)

372. Lan, Y., Leemis, L.M.: Logistic exponential survival function. Nav. Res. Logist. 55, 252–264
(2008)

373. Landwehr, J.M., Matalas, N.C.: Probability weighted moments compared with some tradi-
tional techniques in estimating Gumbel parameters and quantiles. Water Resour. Res. 15,
1055–1064 (1979)

374. Lariviere, M.A.: A note on probability distributions with generalized failure rates. Oper. Res.
54, 602–605 (2006)

375. Lariviere, M.A., Porteus, E.L.: Setting to a news vendor: An analysis of price-only contracts.
Manuf. Serv. Oper. Manag. 3, 293–305 (2001)

376. Launer, R.L.: Graphical techniques for analysing failure time data with percentile residual
life. IEEE Trans. Reliab. 42, 71–80 (1983)

377. Launer, R.L.: Inequalities for NBUE and NWUE life distributions. Oper. Res. 32, 660–667
(1984)

378. Lawless, J.F.: Construction of tolerance bounds for the extreme-value and Weibull distribu-
tions. Technometrics 17, 255–261 (1975)

379. Leemis, L.M.: Lifetime distribution identities. IEEE Trans. Reliab. 35, 170–174 (1986)
380. Lefante, J.J., Jr.: The generalized single hit model. Math. Biosci. 83, 167–177 (1987)
381. Lefevre, C., Utev, S.: Comparison of individual risk models. Insur. Math. Econ. 28, 21–30

(2001)
382. Lehmann, E.L.: The power of rank tests. Ann. Math. Stat. 24, 23–42 (1953)
383. Lehmann, E.L., Rojo, J.: Invariant directional orderings. Ann. Stat. 20, 2100–2110 (1992)
384. Lemonte, A.J., Cribari-Neto, F., Vasconcellos, K.L.P.: Improved statistical inference for two

parameter Birnbaum-Saunders distribution. Comput. Stat. Data Anal. 51, 4656–4681 (2007)
385. Lewis, P.A.W., Sheldler, G.S.: Simulation of nonhomogeneous Poisson process with log linear

rate function. Biometrika 61, 501–505 (1976)
386. Leiva, V., Riquelme, N., Balakrishnan, N., Sanhueza, A.: Lifetime analysis based on the

generalized Birnbaum-Saunders distribution. Comput. Stat. Data Anal. 52, 2079–2097 (2008)
387. Lewis, P.A.W., Sheldler, G.S.: Simulation of nonhomogeneous Poisson process with degree

two exponential polynomial rate function. Oper. Res. 27, 1026–1041 (1979)
388. Li, H., Shaked, M.: A general family of univariate stochastic orders. J. Stat. Plann. Infer. 137,

3601–3610 (2007)
389. Li, X., Kochar, S.C.: Some new results involving the NBU(2) class of life distributions.

J. Appl. Probab. 35, 242–247 (2001)
390. Li, X., Li, Z., Jing, B.: Some results about NBUC class of life distributions. Stat. Probab. Lett.

61, 235–236 (2003)
391. Li, X., Qiu, G.: Some preservation results of NBUC ageing properties with applications. Stat.

Paper. 48, 581–594 (2007)
392. Li, X., Shaked, M.: The observed total time on test and the observed excess wealth. Stat.

Probab. Lett. 68, 247–258 (2004)
393. Li, X., Xu, M.: Reversed hazard rate order of equilibrium distributions and a related ageing

notion. Stat. Paper. 49, 749–767 (2007)
394. Li, X., Yam, R.C.M.: Reversed properties of some negative ageing properties with application.

Stat. Paper. 46, 65–68 (2005)
395. Li, X., Zuo, M.J.: Preservation of stochastic orders for random minima and maxima with

applications. Nav. Res. Logist. 51, 332–344 (2000)



376 References

396. Li, Y.: Closure of NBU(2) class under formation of parallel system. Stat. Probab. Lett. 67,
57–63 (2004)

397. Li, Y.: Preservation of NBUC and NBU(2) classes under mixtures. Probab. Eng. Inform. Sci.
19, 277–298 (2005)

398. Li, Z., Li, X.: {IFR∗ t0} and {NBU ∗ t0} classes of life distributions. J. Stat. Plann. Infer. 70,
191–200 (1998)

399. Lillo, R.E.: On the median residual lifetime and its aging properties: A characterization
theorem and applications. Nav. Res. Logist. 52, 370–380 (2005)

400. Lin, G.D.: Characterization of the L -class of life distributions. Stat. Probab. Lett. 40,
259–266 (1998)

401. Lin, G.D.: Characterization of the exponential distribution via residual life time. Sankhyā Ser.
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