
Chapter 10
A Uniform Tauberian Theorem in Optimal
Control

Miquel Oliu-Barton and Guillaume Vigeral

Abstract In an optimal control framework, we consider the value VT (x) of the
problem starting from state x with finite horizon T , as well as the value Wλ (x) of
the λ -discounted problem starting from x. We prove that uniform convergence (on
the set of states) of the values VT (·) as T tends to infinity is equivalent to uniform
convergence of the values Wλ (·) as λ tends to 0, and that the limits are identical.
An example is also provided to show that the result does not hold for pointwise
convergence. This work is an extension, using similar techniques, of a related result
by Lehrer and Sorin in a discrete-time framework.

Keywords Tauberian theorem • Optimal control • Asymptotic value • Game
theory

10.1 Introduction

Finite horizon problems of optimal control have been studied intensively since the
pioneer work of Stekhov, Pontryagin, Boltyanskii [27], Hestenes [18], Bellman
[9] and Isaacs [19, 20] during the cold war—see for instance [7, 22, 23] for major
references, or [14] for a short, clear introduction. A classical model considers the
following controlled dynamic over R+
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{
y′(s) = f (y(s),u(s))

y(0) = y0

(10.1)

where y is a function from R+ to R
n, y0 is a point in R

n, u is the control function
which belongs toU, the set of Lebesgue-measurable functions from R+ to a metric
space U and the function f : Rn ×U → R

n satisfies the usual conditions, that is:
Lipschitz with respect to the state variable, continuous with respect to the control
variable and bounded by a linear function of the state variable, for any control u.

Together with the dynamic, an objective function g is given, interpreted as the
cost function which is to be minimized and assumed to be Borel-measurable from
R

n ×U to [0,1]. For each finite horizon t ∈]0,+∞[, the average value of the optimal
control problem with horizon t is defined as

Vt(y0) = inf
u∈U

1
t

∫ t

0
g(y(s,u,y0),u(s))ds. (10.2)

It is quite natural to define, whenever the trajectories considered are infinite, for any
discount factor λ > 0, the λ -discounted value of the optimal control problem, as

Wλ (y0) = inf
u∈U

λ
∫ +∞

0
e−λ sg(y(s,u,y0),u(s))ds. (10.3)

In this framework the problem was initially to know whether, for a given finite
horizon T and a given starting point y0, a minimizing control u existed, solution
of the optimal control problem (T,y0). Systems with large, but fixed horizons
were considered and, in particular, the class of “ergodic” systems (that is, those
in which any starting point in the state space Ω is controllable to any point in Ω )
has been thoroughly studied [2, 3, 5, 6, 8, 11, 25]. These systems are asymptotically
independent of the starting point as the horizon goes to infinite. When the horizon is
infinite, the literature on optimal control has mainly focussed on properties of given
trajectories as the time tends to infinity. This approach corresponds to the uniform
approach in a game theoretical framework and is often opposed to the asymptotic
approach (described below), which we have considered in what follows, and which
has received considerably less attention.

In a game-theoretical, discrete time framework, the same kind of problem was
considered since [29], but with several differences in the approach: (1) the starting
point may be chosen at random (a probability μ may be given on Ω , which
randomly determines the point from which the controller will start the play); (2)
the controllability-ergodicity condition is generally not assumed; (3) because of the
inherent recursive structure of the process played in discrete time, the problem is
generally considered for all initial states and time horizons.

For these reasons, what is called the ”asymptotic approach”—the behavior of
Vt(·) as the horizon t tends to infinity, or of Wλ (·) as the discount factor λ tends
to zero—has been more studied in this discrete-time setup. Moreover, when it is
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considered in Optimal Control, in most cases [4,10] an ergodic assumption is made
which not only ensures the convergence of Vt(y0) to some V , but also forces the limit
function V to be independent of the starting point y0. The general asymptotic case,
in which no ergodicity condition is assumed, has been to our knowledge studied
for the first time recently. In [11, 28] the authors prove in different frameworks the
convergence of Vt(·) and Wλ (·) to some non-constant function V (y0).

Some important, closely related questions are the following : does the con-
vergence of Vt(·) imply the convergence of Wλ (·)? Or vice versa? If they both
converge, does the limit coincide? A partial answer to these questions goes back
to the beginning of the twentieth century, when Hardy and Littlewood proved (see
[17]) that for any sequence of bounded real numbers, the convergence of the Cesaro
means is equivalent to the convergence of their Abel means, and that the limits are
then the same :

Theorem 10.1 ([17]). For any bounded sequence of reals {an}n≥1, define Vn =
1
n ∑n

i=1 ai and Wλ = λ ∑+∞
i=1(1−λ )i−1ai. Then,

liminf
n→+∞

Vn ≤ liminf
λ→0

Wλ ≤ limsup
λ→0

Wλ ≤ limsup
n→+∞

Vn.

Moreover, if the central inequality is an equality, then all inequalities are equalities.

Noticing that {an} can be viewed as a sequence of costs for some deterministic
(uncontrolled) dynamic in discrete-time, this results gives the equivalence between
the convergence of Vt and the convergence of Wλ , to the same limit. In 1971, setting
Vt =

1
t

∫ t
0 g(s)ds and Wλ = λ

∫ +∞
0 e−λ sg(s)ds, for a given Lebesgue-measurable,

bounded, real function g, Feller proved that the same result holds for continuous-
time uncontrolled dynamics (particular case of Theorem 2, p. 445 in [15]).

Theorem 10.2 ([15]).

liminf
n→+∞

Vn ≤ liminf
λ→0

Wλ ≤ limsup
λ→0

Wλ ≤ limsup
n→+∞

Vn.

Moreover, if the central inequality is an equality, then all inequalities are equalities.

In 1992, Lehrer and Sorin [24] considered a discrete-time controlled dynamic,
defined by a correspondenceΓ : Ω ⇒Ω , with nonempty values, and by g, a bounded
real cost function defined on Ω . A feasible play at z ∈ Ω is an infinite sequence
y = {yn}n≥1 such that y1 = z and yn+1 ∈ Γ (yn). The average and discounted
value functions are defined respectively by Vn(z) = inf 1

n ∑n
i=1 g(yi) and Wλ (y0) =

inf λ ∑+∞
i=1(1−λ )i−1g(yi), where the infima are taken over the feasible plays at z.

Theorem 10.3 ([24]).

lim
n→+∞

Vn(z) =V (z) uniformly on Ω ⇐⇒ lim
λ→0

Wλ (z) =V (z) uniformly on Ω .

This result establishes the equivalence between uniform convergence of Wλ (y0)
when λ tends to 0 and uniform convergence of Vn(y0) as n tends to infinity, in
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the general case where the limit may depend on the starting point y0. The uniform
condition is necessary: in the same article, the authors provide an example where
only pointwise convergence holds and the limits differs.

In 1998, Arisawa (see [4]) considered a continuous-time controlled dynamic and
proved the equivalence between the uniform convergence of Wλ and the uniform
convergence of Vt in the specific case of limits independent of the starting point.

Theorem 10.4 ([4]). Let d ∈ R, then

lim
t→+∞

Vt(z) = d, uniformly on Ω ⇐⇒ lim
λ→0+

Wλ (z) = d, uniformly on Ω .

This does not settle the general case, in which the limit function may depend on the
starting point.1 For a continuous-time controlled dynamic in which Vt(y0) converges
to some function V (y0), dependent on the state variable y0, as t goes to infinity, we
prove the following

Theorem 10.5. Vt(y0) converges to V (y0) uniformly on Ω , if and only if Wλ (y0)
converges to V (y0) uniformly on Ω .

In fact, we will prove this result in a more general framework, as described
in Sect. 10.2. Some basic lemmas which occur to be important tools will also be
proven on that section. Section 10.3 will be devoted to the proof of our main result.
Section 10.4 will conclude by pointing out, via an example, the fact that uniform
convergence is a necessary requirement for the Theorem 10.5 to hold. A very simple
dynamic is described, in which the pointwise limits of Vt(·) and Wλ (·) exist but
differ. It should be noted that our proofs (as well as the counterexample in Sect. 10.4)
are adaptations in this continuous-time framework of ideas employed in a discrete-
time setting in [24]. In the appendix we also point out that an alternative proof of our
theorem is obtained using the main theorem in [24] as well as a discrete/continuous
equivalence argument.

For completeness, let us mention briefly this other approach, mentioned
above as the uniform approach, and which has also been deeply studied, see
for exemple [12, 13, 16]. In these models, the optimal average cost value is not
taken over a finite period of time [0, t], which is then studied for t growing
to infinite, as in [4, 15, 17, 24, 28] or in our framework. On the contrary, only
infinite trajectories are considered, among which the value Vt is defined as
infu∈U supτ≥t

1
τ
∫ τ

0 g(y(s,u,y0),u(s))ds, or some other closely related variation.
The asymptotic behavior, as t tends to infinity, of the function Vt has also been
studied in that framework. In [16], both λ -discounted and average evaluations of an
infinite trajectory are considered and their limits are compared. However, we stress

1Lemma 6 and Theorem 8 in [4] deal with this general setting, but we believe them to be incorrect
since they are stated for pointwise convergence and, consequently, are contradicted by the example
in Sect. 10.4.
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out that the asymptotic behavior of those quantities is in general2 not related to the
asymptotic behavior of Vt and Wλ .

Finally, let us point out that in the framework of zero-sum differential games, that
is when the dynamic is controlled by two players with opposite goals, a Tauberian
theorem is given in the ergodic case by Theorem 2.1 in [1]. However, to our
knowledge the general, non ergodic case is still an open problem.

10.2 Model

10.2.1 General Framework

We consider a deterministic dynamic programming problem in continuous time,
defined by a measurable set of states Ω , a subset T of Borel-measurable functions
from R+ to Ω , and a bounded Borel-measurable real-valued function g defined
on Ω . Without loss of generality we assume g : Ω → [0,1]. For a given state x,
define Γ (x) := {X ∈ T , X(0) = x} the set of all feasible trajectories starting from
x. We assume Γ (x) to be non empty, for all x ∈ Ω . Furthermore, the correspondence
Γ is closed under concatenation: given a trajectory X ∈ Γ (x) with X(s) = y, and a
trajectory Y ∈ Γ (y), the concatenation of X and Y at time s is

X ◦s Y :=

{
X(t) if t ≤ s
Y (t − s) if t ≥ s

(10.4)

and we assume that X ◦s Y ∈ Γ (x).
We are interested in the asymptotic behavior of the average and the discounted

values. It is useful to denote the average payoff of a play (or trajectory) X ∈Γ (x) by:

γt(X) :=
1
t

∫ t

0
g(X(s))ds (10.5)

νλ (X) := λ
∫ +∞

0
e−λ sg(X(s))ds. (10.6)

This is defined for t,λ ∈]0,+∞[. Naturally, we define the values as:

Vt(x) = inf
X∈Γ (x)

γt(X) (10.7)

Wλ (x) = inf
X∈Γ (x)

νλ (X). (10.8)

2The reader may verify that this is indeed not the case in the example of Sect. 10.4.
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Our main contribution is Theorem 10.5:

(A) Wλ −→
λ→0

V, uniformly on Ω ⇐⇒ (B) Vt −→
t→∞

V, uniformly on Ω . (10.9)

Notice that our model is a natural adaptation to the continuous-time framework
of deterministic dynamic programming problems played in discrete time ; as it was
pointed out during the introduction, this theorem is an extension to the continuous-
time framework of the main result of [24], and our proof uses similar techniques.

This result can be applied to the model presented in Sect. 10.1: let Ω̃ =
R

d ×U and for any (y0,u0) ∈ Ω̃ , define Γ̃ (y0,u0) = {(y(·),u(·)) |u ∈U,u(0) =
u0 and y is the solution of (10.1)}. Then Ω̃ , Γ̃ and g satisfy the assumptions of this
section. Defining Ṽt and W̃λ as in (10.7) and (10.8) respectively, since the solution
of (10.1) does not depend on u(0) we get that

Ṽt(y0,u0) = Vt(y0)

W̃λ (y0,u0) = Wλ (y0).

Theorem 10.5 applied to Ṽ and W̃ thus implies that Vt converges uniformly to a
function V in Ω if and only if Wλ converges uniformly to V in Ω .

10.2.2 Preliminary Results

We follow the ideas of [24], and start by proving two simple lemmas yet important
tools, that will be used in the proof. The first establishes that the value increases
along the trajectories. Then, we prove a convexity result linking the finite horizon
average payoffs and the discounted evaluations on any given trajectory.

Lemma 10.1. Monotonicity (compare with Proposition 1 in [24]). For all X ∈ T ,
for all s ≥ 0, we have

liminf
t→∞

Vt(X(0)) ≤ liminf
t→∞

Vt(X(s)) (10.10)

liminf
λ→0

Wλ (X(0)) ≤ liminf
λ→0

Wλ (X(s)). (10.11)

Proof. Set y := X(s) and x := X(0). For ε > 0, take T ∈ R+ such that s
s+T < ε .

Let t > T and take an ε-optimal trajectory for Vt , i.e. Y ∈ Γ (y) such that γt(Y ) ≤
Vt(y)+ ε . Define the concatenation of X and Y at time s as in (10.4), where X ◦s Y
is in ∈ Γ (x) by assumption. Hence

Vt+s(x)≤ γt+s(X ◦s Y ) =
s

t + s
γs(X)+

t
t + s

γt(Y )

≤ ε + γt(Y )

≤ 2ε +Vt(y).
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Since this is true for any t ≥ T the result follows.
Similarly, for the discounted case let λ0 > 0 be such that

λ0

∫ s

0
e−λ0r dr = 1− eλ0s < ε.

Let λ ∈]0,λ0] and take Y ∈ Γ (y) an ε-optimal trajectory for Wλ (y). Then:

Wλ (x)≤ νλ (X ◦s Y ) = λ
∫ s

0
e−λ rg(X(r))dr+λ

∫ +∞

s
e−λ rg(Y (r− s))dr

≤ ε + e−λ sνλ (Y )

≤ 2ε +Wλ (y).

Again, this is true for any λ ∈]0,λ0], and the result follows. 
�
Lemma 10.2. Convexity (compare with Eq. (10.1) in [24]). For any play X ∈ T ,
for any λ > 0:

νλ (X) =

∫ +∞

0
γs(X)μλ (s)ds, (10.12)

where μλ (s)ds := λ 2se−λ sds is a probability density on [0,+∞].

Proof. It is enough to notice that the following relation holds, by integration by
parts:

νλ (X) = λ
∫ +∞

0
e−λ sg(X(s))ds = λ 2

∫ +∞

0
se−λ s

(
1
s

∫ s

0
g(X(r))dr

)
ds,

and that
∫+∞

0 λ 2se−λ sds = 1. 
�
The probability measure μλ plays an important role in the rest of the paper.

Denoting

M(α,β ;λ ) :=
∫ β

α
μλ (s)ds = e−λ α(1+λ α)− e−λ β(1+λ β ),

we prove here two estimates that will be helpful in the next section.

Lemma 10.3. The two following results hold (compare with Lemma 3 in [24]):

(i) ∀t > 0,∃ε0 such that ∀ε ≤ ε0,M
(
(1− ε)t, t; 1

t

)≥ ε
2e .

(ii) ∀δ > 0,∃ε0 such that ∀ε ≤ ε0, ∀t > 0, M
(

εt,(1− ε)t; 1
t
√

ε

)
≥ 1− δ .

Proof. Notice that in these particular cases, M does not depend on t:

(i) M(t(1−ε), t; 1
t )= (2−ε)e−1+ε −2e−1 = 1

e (ε+o(ε))≥ ε
2e , for ε small enough.

(ii) M(tε, t(1− ε); 1
t
√

ε ) = (1+
√

ε)e−
√

ε − (1− 1/
√

ε +
√

ε)exp
(−1/

√
ε +

√
ε
)
.

This expression tends to 1 as ε → 0, hence the result. 
�



206 M. Oliu-Barton and G. Vigeral

10.3 Proof of Theorem 10.5

10.3.1 From Vt to Wλ

Assume (B) : Vt(·) converges to some V (·) as t goes to infinity, uniformly on Ω . Our
proof follows Proposition 4 and Lemmas 8 and 9 in [24].

Proposition 10.1. For all ε > 0, there exists λ0 > 0 such that Wλ (x)≥V (x)−ε for
every x ∈ Ω and for all λ ∈]0,λ0].

Proof. Let T be such that ‖Vt −V‖∞ ≤ ε/2 for every t ≥ T . Choose λ0 > 0 such that

λ 2
∫ +∞

T
se−λ s ds = 1− (1+λ T)e−λ T ≥ 1− ε

4

for every λ ∈]0,λ0]. Fix λ ∈]0,λ0] and take a play Y ∈ Γ (x) which is ε/4-optimal
for Wλ (x). Since γs(X)≥ 0, the convexity formula (10.12) from Lemma 10.2 gives:

Wλ (x)+
ε
4
≥ νλ (Y ) ≥ 0+λ 2

∫ +∞

T
se−λ sγs(Y )ds

≥ λ 2
∫ +∞

T
se−λ sVs(x)ds

≥
(

1− ε
4

)(
V (x)− ε

2

)

= V (x)− ε
4

V (x)− ε
2
+

ε2

8

≥ V (x)− 3ε
4
. 
�

Lemma 10.4. ∀ε > 0,∃M such that for all t ≥ M,∀x ∈ Ω , there is a play X ∈ Γ (x)
such that γs(X)≤V (x)+ ε for all s ∈ [εt,(1− ε)t].

Proof. By (B) there exists M such that ‖Vr−V‖ ≤ ε2/3 for all r ≥ εM. Given t ≥M
and x ∈ Ω , let X ∈ Γ (x) be a play (from x) such that γt(X)≤Vt(x)+ ε2/3. For any
s ≤ (1 − ε)t, we have that t − s ≥ εt ≥ εM so Proposition 10.1 (Monotonicity)
imply that

Vt−s(X(s))≥V (X(s))− ε2

3
≥V (x)− ε2

3
. (10.13)

Since V (x)+ ε2/3 ≥Vt(x), we also have:

t

(
V (x)+

2ε2

3

)
≥ t

(
Vt(x)+

ε2

3

)

≥ tγt(X) =

∫ s

0
g(X(r))dr+

∫ t

s
g(X(r))dr
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≥ sγs(X)+ (t − s)Vt−s(X(s))

≥ sγs(X)+ (t − s)

(
V (x)− ε2

3

)
, by (10.13).

Isolating γs(X) we get:

γs(X) ≤ V (x)+
tε2

s

≤ V (x)+ ε, for s/ε ≥ t,

and we have proved the result for all s ∈ [εt,(1− ε)t]. 
�
Proposition 10.2. ∀δ > 0,∃λ0 such that ∀x ∈ Ω , for all λ ∈]0,λ0], we have
Wλ (x)≤V (x)+ δ .

Proof. By Lemma 10.3(ii), one can choose ε small enough such that

M

(
εt,(1− ε)t;

1

t
√

ε

)
≥ 1− δ

2
,

for any t. In particular, we can take ε ≤ δ/2. Using Lemma 10.4 with δ/2, we get
that for t ≥ t0 (and thus for λ (t) := 1

t
√

ε ≤ 1
t0
√

ε ) and for any x ∈ Ω , there exists a

play X ∈ Γ (x) such that

νλ (t)(X) ≤ δ
2
+λ (t)2

∫ (1−ε)t

εt
sesλ (t)γs(X)ds

≤ δ
2
+V(x)+

δ
2
. 
�

Propositions 10.1 and 10.2 establish the first part of Theorem 10.5: (B)⇒ (A).

10.3.2 From Wλ to Vt

Now assume (A) : Wλ (·) converges to some W (·) as λ goes to 0, uniformly on Ω .
Our proof follows Proposition 2 and Lemmas 6 and 7 in [24]. Start by a technical
Lemma:

Lemma 10.5. Let ε > 0. For all x ∈ Ω and t > 0, and for any trajectory Y ∈ Γ (x)
which is ε/2-optimal for the problem with horizon t, there is a time L ∈ [0, t(1−
ε/2)] such that, for all T ∈]0, t −L]:

1
T

∫ L+T

L
g(Y (s))ds ≤Vt(x)+ ε.
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Proof. Fix Y ∈ Γ (x) some ε/2-optimal play for Vt(x). The function s �→ γs(Y ) is
continuous on ]0, t] and satisfies γt(Y ) ≤ Vt(x)+ ε/2. The bound on g implies that
γr(Y )≤Vt(x)+ ε for all r ∈ [t(1− ε/2), t].

Consider now the set {s ∈]0, t] | γs(Y )>Vt(x)+ε}. If this set is empty, then take
L = 0 and observe that for any r ∈]0, t],

1
r

∫ r

0
g(Y (s))ds ≤Vt(x)+ ε.

Otherwise, let L be the superior bound of this set. Notice that L < t(1−ε/2) and
that by continuity γL(Y ) =Vt(x)+ ε . Now, for any T ∈ [0, t −L],

Vt(x)+ ε ≥ γL+T (Y )

=
L

L+T
γL(Y )+

T
L+T

(
1
T

∫ L+T

L
g(Y (s))ds

)

=
L

L+T
(Vt(x)+ ε)+

T
L+T

(
1
T

∫ L+T

L
g(Y (s))ds

)

and the result follows. 
�
Proposition 10.3. ∀ε > 0,∃T such that for all t ≥ T we have Vt(x)≥W (x)−ε , for
all x ∈ Ω .

Proof. Let λ be such that ‖Wλ −W‖ ≤ ε/8, and T such that

λ 2
∫ +∞

T ε/4
se−λ s ds <

ε
8
.

Proceed by contradiction and suppose that ε > 0 is such that for every T , there exists
t0 ≥ T and a state x0 ∈ Ω such that Vt0(x0)<W (x0)− ε .

Using Lemma 10.5 with ε/2, we get a play Y ∈ Γ (x0) and a time L ∈ [0, t0
(1− ε/4)] such that, ∀s ∈ [0, t0 −L] (and, in particular, ∀s ∈ [0, t0ε/4]),

1
s

∫ L+s

L
g(Y (r)) dr ≤Vt0(x0)+

ε
2
<W (x0)− ε

2
.

Thus,

W (Y (L))− ε
8
≤ Wλ (Y (L))

≤ λ
∫ +∞

0
e−λ sg(Y (L+ s))ds

≤ λ 2
∫ t0ε/4

0
se−λ s

(
1
s

∫ L+s

L
g(Y (r)) dr

)
ds+

ε
8
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≤ W (x0)− ε
2
+

ε
8

= W (x0)− 3ε
8
.

This gives us W (Y (L)) ≤ W (x0) − ε/4, contradicting Proposition 10.1
(Monotonicity). 
�
Proposition 10.4. ∀ε > 0,∃T such that for all t ≥ T we have Vt(x)≤W (x)+ε , for
all x ∈ Ω .

Proof. Otherwise, ∃ε > 0 such that ∀T, ∃t ≥ T and x ∈ Ω with Vt(x) >
W (x)+ ε. For any X ∈ Γ (x) consider the (continuous in s) payoff function
γs(X) = 1

s

∫ s
0 g(X(r))dr. Of course, γt(X)≥Vt(x)>W (x)+ε . Furthermore, because

of the bound on g,

γr(X)≥W (x)+ ε/2, ∀r ∈ [t (1− ε/2), t] .

By Lemma 10.3, we can take ε small enough, so that for all t,

M

(
t(1− ε/2), t;

1
t
≥ ε

4e

)

holds. We set δ := ε
4e . By Proposition 10.3, there is a K such that Vt ≥W (x)− δε

8 ,
for all t ≥ K. Fix K and consider

M(0,K;1/t) = 1− e−K/t(1+K/t)

as a function of t. Clearly, it tends to 0 as t tends to infinity, so let t be such that
this quantity is smaller than δε

16 . Also, let t be big enough so that ‖W1/t −W‖ < δε
5 ,

which is a consequence of assumption (A).
We now set λ̃ := 1/t and consider the λ̃ -payoff of some play X ∈ Γ (x). We split

[0,+∞] in three parts :K = [0,K],R= [t(1−ε/2), t], and (K ∪R)c. The three parts
are disjoint for t large enough, so by the Convexity formula (10.12), for any λ > 0,

νλ̃ (X) =

(∫
K

γs(X)μλ̃ (ds)+
∫
R

γs(X)μλ̃ (ds)+
∫
(K∪R)c

γs(X)μλ̃ (ds)

)

where μλ (s)ds = λ 2se−λ s ds. Recall that

γs(X)|K ≥ 0

γs(X)|(K∪R)c ≥ W (x)− δε
8

γs(X)|R ≥ W (x)+
ε
2
.
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It is thus straightforward that

νλ̃ (X) ≥ 0+ δ ×
(

W (x)+
ε
2

)
+

(
1− δ − δε

16

)
×
(

W (x)− δε
8

)

≥ W (x)+ δε
(

1
2
− 1

16
− 1

8
− δ

8
+

δε
64

)

≥ W (x)+
δε
8
.

This is true for any play, so its infimum also satisfies Wλ̃ (x)≥W (x)+ δε
4 , which is

a contradiction, for we assumed that Wλ̃ (x)<W (x)+ δε
5 . 
�

Propositions 10.3 and 10.4 establish the second half of Theorem 10.5: (A)⇒ (B).

10.4 A Counter Example for Pointwise Convergence

In this section we give an example of an optimal control problem in which both
Vt(·) and Wλ (·) converge pointwise on the state space, but to two different limits.
As implied by Theorem 10.5, the convergence is not uniform on the state space.

Lehrer and Sorin were the first to construct such an example [24], in the
discrete-time framework. We consider here one of its adaptations to continuous
time, which was studied as Example 5 in [28],3 where the notations are the same
that in Sect. 10.1:

• The state space is Ω = R
2
+.

• The payoff function is given by g(x,y) = 0 if x ∈ [1,2], 1 otherwise.
• The set of control is U = [0,1].
• The dynamic is given by f (x,y,u) = (y,u) (thus Ω is forward invariant).

An interpretation is that the couple (x(t),y(t)) represents the position and the speed
of some mobile moving along an axis, and whose acceleration u(t) is controlled.
Observe that since U = [0,1], the speed y(t) increases during any play. We claim
that for any (x0,y0) ∈ R

2
+, Vt(x0,y0) (resp Wλ (x0,y0)) converges to V (x0,y0) as t

goes to infinity (respectively converges to W (x0,y0) as λ tends to 0), where:

V (x0,y0) =

⎧⎪⎪⎨
⎪⎪⎩

1 if y0 > 0 or x0 > 2

0 if y0 = 0 and 1 ≤ x0 ≤ 2
1−x0
2−x0

if y0 = 0 and x0 < 1

3We thank Marc Quincampoix for pointing out this example to us, which is simpler that our original
one.
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W (x0,y0) =

⎧⎪⎪⎨
⎪⎪⎩

1 if y0 > 0 or x0 > 2

0 if y0 = 0 and 1 ≤ x0 ≤ 2

1− (1−x0)
1−x0

(2−x0)
2−x0

if y0 = 0 and x0 < 1.

Here we only prove that V (0,0) = 1
2 and W (0,0) = 3

4 ; the proof for y0 = 0 and
0 < x0 < 1 is similar and the other cases are easy.

First of all we prove that for any t or λ and any admissible trajectory (that is,
any function X(t) = (x(t),y(t)) compatible with a control u(t)) starting from (0,0),
γt(X)≥ 1

2 and νλ (X)≥ 3
4 . This is clear if x(t) is identically 0, so consider this is not

the case. Since the speed y(t) is increasing, we can define t1 and t2 as the times at
which x(t1) = 1 and x(t2) = 2 respectively, and moreover we have t2 ≤ 2t1. Then,

γt(X) =
1
t

(∫ min(t,t1)

0
ds+

∫ t

min(t,t2)
ds

)

= 1+min
(

1,
t1
t

)
−min

(
1,

t2
t

)
≥ 1+min

(
1,

t2
2t

)
−min

(
1,

t2
t

)

≥ 1
2

and

νλ (X) =

∫ t1

0
λ e−λ s ds+

∫ +∞

t2
λ e−λ s ds

= 1− exp(−λ t1)+ exp(−λ t2)

≥ 1− exp(−λ t1)+ exp(−2λ t1)

≥ min
a>0

{1− a+ a2}

=
3
4
.

On the other hand, one can prove [28] that limsupVt(0,0) ≤ 1/2 : in the problem
with horizon t, consider the control “u(s) = 1 until s = 2/t and then 0”. Similarly
one proves that limsupWλ (0,0) ≤ 3/4: in the λ -discounted problem, consider the
control “u(s) = 1 until s = λ/ln2 and then 0”.

So the functions Vt and Wλ converge pointwise on Ω , but their limits V and
W are different, since we have just shown V (0,0) �= W (0,0). One can verify that
neither convergence is uniform on Ω by considering Vt(1,ε) and Wλ (1,ε) for small
positive ε .
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Remark 10.1. One may object that this example is not very regular since the payoff
g is not continuous and the state space is not compact. However a related, smoother
example can easily be constructed:

1. The set of controls is still [0,1].
2. The continuous cost g(x) is equal to 1 outside the segment [0.9,2.1], to 0 on [1,2],

and linear on the two remainings intervals.
3. The compact state space is Ω = {(x,y)|0 ≤ y ≤√

2x ≤ 2
√

2}.
4. The dynamic is the same that in the original example for x∈ [0,3], and f (x,y,u) =

((4−x)y,(4−x)u) for 3 ≤ x ≤ 4. The inequality y(t)y′(t)≤ x′(t) is thus satisfied
on any trajectory, which implies that Ω is forward invariant under this dynamic.

With these changes the values Vt(·) and Wλ (·) still both converge pointwise on Ω to
some Ṽ (·) and W̃ (·) respectively, and Ṽ (0,0) �= W̃ (0,0).

10.5 Possible Extensions

• We considered the finite horizon problem and the discounted one, but it should
be possible to establish similar Tauberian theorems for other, more complex,
evaluations of the payoff. This was settled in the discrete time case in [26].

• It would be very fruitful to establish necessary or sufficient conditions for
uniform convergence to hold. In this direction we mention [28] in which
sufficient conditions for the stronger notion of Uniform Value (meaning that
there are controls that are nearly optimal no matter the horizon, provided it is
large enough) are given in a general setting.

• In the discrete case an example is constructed in [26] in which there is no uniform
value despite uniform convergence of the families Vt and Wλ . It would be of
interest to construct such an example in continuous time, in particular in the
framework of Sect. 10.1.

• It would be very interesting to study Tauberian theorems for dynamic systems
that are controlled by two conflicting controllers. In the framework of differential
games this has been done recently (Theorem 2.1 in [1]): an extension of
Theorem 10.4 has been accomplished for two player games in which the limit
of VT or Wλ is assumed to be independent of the starting point. The similar result
in the discrete time framework is a consequence of Theorems 1.1 and 3.5 in [21].
Existence of Tauberian theorems in the general setup of two-persons zero-sum
games with no ergodicity condition remains open in both the discrete and the
continuous settings.

Acknowledgements This article was done as part of the PhD of the first author. Both authors wish
to express their many thanks to Sylvain Sorin for his numerous comments and his great help. We
also thank Hélène Frankowska and Marc Quincampoix for helpful remarks on earlier drafts.
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Appendix

We give here another proof4 of Theorem 10.5 by using the analoguous result in
discrete time [24] as well as an argument of equivalence between discrete and
continuous dynamic.

Consider a deterministic dynamic programming problem in continuous time as
defined in Sect. 10.2.1, with a state space Ω , a payoff g and a dynamic Γ . Recall
that, for any ω ∈ Ω , Γ (ω) is the non empty set of feasible trajectories, starting
from ω . We construct an associated deterministic dynamic programming problem
in discrete time as follows.

Let Ω̃ = Ω × [0,1] be the new state space and let g̃ be the new cost function,
given by g̃(ω ,x) = x. We define a multivalued-function with nonempty values Γ̃ :
Ω̃ ⇒ Ω̃ by

(ω ,x) ∈ Γ̃ (ω ′,x′)⇐⇒∃X ∈ Γ (ω ′), with X(1) = ω and
∫ 1

0
g(X(t))dt = x.

Following [24], we define, for any initial state ω̃ = (ω ,x)

vn(ω̃) = inf
1
n

n

∑
i=1

g̃(ω̃i)

wλ (ω̃) = infλ
+∞

∑
i=1

(1−λ )i−1g̃(ω̃i)

where the infima are taken over the set of sequences {ω̃i}i∈N such that ω̃0 = ω̃ and
ω̃i+1 ∈ Γ̃ (ω̃i) for every i ≥ 0.

Theorem 10.5 is then the consequence of the following three facts.
Firstly, the main theorem of Lehrer and Sorin in [24], which states that uniform

convergence (on Ω̃ ) of vn to some v is equivalent to uniform convergence of wλ to
the same v.

Secondly, the concatenation hypothesis (10.4) on Γ implies that for any
(ω ,x)∈Ω̃

vn(ω ,x) =Vn(ω)

where Vt(ω) = infX∈Γ (ω)
1
t

∫ n
0 g(X(s))ds, as defined in equation (10.7). Conse-

quently, because of the bound on g, for any t ∈ R+ we have

|Vt(ω)− v�t�(ω ,x)| ≤ 2
�t�

where �t� stands for the integer part of t.

4We thank Frédéric Bonnans for the idea of this proof.
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Finally, again because of hypothesis (10.4), for any λ ∈]0,1],

wλ (ω ,x) = inf
X∈Γ (ω)

λ
∫ +∞

0
(1−λ )�t�g(X(t))dt.

Hence, by equation (10.8) and the bound on the cost function, for any λ ∈]0,1],

|Wλ (ω)−wλ (ω ,x)| ≤ λ
∫ +∞

0

∣∣∣(1−λ )�t� − e−λ t
∣∣∣dt

which tends uniformly (with respect to x and ω) to 0 as λ goes to 0 by virtue of the
following lemma.

Lemma 10.6. The function

λ �→ λ
∫ +∞

0

∣∣∣(1−λ )�t� − e−λ t
∣∣∣dt

converges to 0 as λ tends to 0.

Proof. Since λ
∫ +∞

0 (1 − λ )�t� = λ
∫ +∞

0 e−λ tdt = 1, for any λ > 0, the lemma is
equivalent to the convergence to 0 of

E(λ ) := λ
∫ +∞

0

[
(1−λ )�t� − e−λ t

]
+

dt

where [x]+ denotes the positive part of x. Now, from the relation 1 − λ ≤ e−λ ,
true for any λ , one can easily deduce that, for any λ > 0, t ≥ 0, the relation
(1−λ )�t�eλ t ≤ eλ holds. Hence,

E(λ ) = λ
∫ +∞

0
e−λ t

[
(1−λ )�t�eλ t − 1

]
+

dt

≤ λ
∫ +∞

0
e−λ t(eλ − 1)dt

= eλ − 1

which converges to 0 as λ tends to 0. 
�
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