
Chapter 9
Optimal Execution of Derivatives: A Taylor
Expansion Approach

Gerardo Hernandez-del-Valle and Yuemeng Sun

9.1 Introduction

The problem of optimal execution is a very general problem in which a trader who
wishes to buy or sell a large position K of a given asset S—for instance, wheat,
shares, derivatives, etc.—is confronted with the dilemma of executing slowly or as
quick as possible. In the first case, he/she would be exposed to volatility, and in the
second, to the laws of offer and demand. Thus, the trader must hedge between the
market impact (due to his trade) and the volatility (due to the market).

The main aim of this chapter is to study and characterize the so-called Markowitz-
optimal open-loop execution trajectory of contingent claims.

The problem of minimizing expected overall liquidity costs has been analyzed
using different market models by [1, 6, 8], and [2], just to mention a few. However,
some of these approaches miss the volatility risk associated with time delay.
Instead, [3, 4] suggested studying and solving a mean-variance optimization for
sales revenues in the class of deterministic strategies. Further on, [5] allowed
for intertemporal updating and proved that this can strictly improve the mean-
variance performance. Nevertheless, in [9], the authors study the original problem
of expected utility maximization with CARA utility functions. Their main result
states that for CARA investors there is surprisingly no added utility from
allowing for intertemporal updating of strategies. Finally, we mention that the
Hamilton-Jacobi-Bellman approach has also recently been studied in [7].
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The chapter is organized as follows: in Sect. 9.2, we state the optimal execution
contingent claim problem. Next, in Sect. 9.3, we provide its closed form solution. In
Sect. 9.4, a numerical example is studied, and finally we conclude in Sect. 9.5 with
some final remarks and comments.

9.2 The Problem

The Model. A trader wishes to execute K = k0+ · · ·+kn units of a contingent claim
C with underlying S by time T . The quantity to optimize is given by the so-called
execution shortfall, defined as

Y =
n

∑
j=0

k jCj −KC0,

and the problem is then to find k0, . . . ,kn such that attain the minimum

min
k0,...,kn

(E[Y ]+λ V[Y ]) ,

for some λ > 0. Assuming the derivative C is smooth in terms of its underlying S, it
follows from the Taylor series expansion that

Cj = f (S0)+ f ′(S0)(S̃ j − S0)+
1
2

f ′′(S0)(S̃ j − S0)
2 +R3,

where S̃ is the effective price and R3 is the remainder which is o((S̃ j −S0)
3). Hence,

n

∑
j=0

k jCj =
n

∑
j=0

k j f (S0)+
n

∑
j=0

f ′(S0)k j(S̃ j − S0)+
1
2

f ′′(S0)
n

∑
j=0

k j(S̃ j − S0)
2 +

n

∑
j=0

k jR3

= KC0 + f ′(S0)

(
n

∑
j=0

k jS̃ j −KS0

)
s+

1
2

f ′′(S0)
n

∑
j=0

k j(S̃ j − S0)
2 +

n

∑
j=0

k jR3.

That is,

Y =
n

∑
j=0

k jCj −KC0

= f ′(S0)

(
n

∑
j=0

k jS̃ j −KS0

)
+

1
2

f ′′(S0)
n

∑
j=0

k j(S̃ j − S0)
2 +

n

∑
j=0

k jR3. (9.1)

Note that if we use only the first-order approximation, then our optimization
problem has already been solved and corresponds to [4] trading trajectory.
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9.3 Second-Order Taylor Approximation

In this section, we extend [4] market impact model for the case of a contingent
claim. We provide our main result which is the closed form objective function by
adapting a second order-Taylor approximation.

9.3.1 Effective Price Process

Let ξ1,ξ2, . . . be a sequence of i.i.d. Gaussian random variables with mean zero and
variance 1, and let the execution times be equally spaced, that is, τ := T/n. Then,
the price and “effective” processes are respectively defined as

S j = S j−1 − τg

(
k j

τ

)
+στ1/2ξ j,

S̃ j = S j − h

(
k j

τ

)
,

and the permanent and temporary market impact will be modeled, for simplicity, as

g

(
k j

τ

)
= α

k j

τ
, h

(
k j

τ

)
= β

k j

τ
,

for some constant α and β . Hence, letting

x j := K −
j

∑
m=0

km and

Wj :=
j

∑
m=1

ξm, i.e. Wj ∼ N(0, j), Cov(Wj ,Wi) = min(i, j),

it follows that

S̃ j − S0 = στ1/2Wj −α(K − x j)− β
τ

k j. (9.2)

9.3.2 Second-Order Approximation

From (9.1) and (9.2), the second-order approximation of the execution shortfall Y is
given by
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Y ≈ f ′(S0)
n

∑
j=0

k j

(
στ1/2Wj −α(K − x j)− β

τ
k j

)

+
1
2

f ′′(S0)
n

∑
j=0

k j

(
στ1/2Wj −α(K − x j)− β

τ
k j

)2

. (9.3)

Next, expanding the squared term, we get

(
στ1/2Wj −α(K − x j)− β

τ
k j

)2

= σ2τW 2
j +α2(K − x j)

2 +
β 2

τ2 k2
j − 2

β σ
τ1/2

k jWj

− 2αστ1/2(K − x j)Wj + 2
αβ
τ

k j(K − x j),

Thus the expected value of Y is approximately

E[Y ] = f ′(S0)
n

∑
j=0

k j

(
−α(K − x j)− β

τ
k j

)

+
1
2

f ′′(S0)
n

∑
j=0

k j

[
σ2τ j+α2(K − x j)

2 +
β 2

τ2 k2
j + 2

αβ
τ

k j(K − x j)

]
,

(9.4)

to compute the variance V of Y we rearrange (9.3) as

Y ≈
n

∑
j=0

ν jk jWj +
n

∑
j=0

η jk jW
2
j +D,

where D are all the deterministic terms and

ν j := f ′(S0)στ1/2 − f ′′(S0)

[
αστ1/2(K − x j)+

β σ
τ1/2

k j

]

η j :=
1
2

f ′′(S0)σ2τ.

It follows that the variance of Y is

V[Y ] = V

[
n

∑
j=0

ν jk jWj

]
+V

[
n

∑
j=0

η jk jW
2
j

]
+ 2Cov

(
n

∑
j=0

ν jk jWj,
n

∑
j=0

η jk jW
2
j

)

=
n

∑
j=0

v2
j k

2
j j+ 2 ∑

0≤i< j≤n

vikiv jk ji+
n

∑
j=0

η2
j k2

j ·2 j2 + 2 ∑
0≤i< j≤n

ηikiη jk j ·2i2

(9.5)

and the last term equals zero.
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9.3.3 Optimal Trading Schedule for the Second-Order
Approximation

To find the optimal trading schedule for the second-order approximation of Y , we
need find the sequence of k0, . . . ,kn such that

E[Y ]+λ V[Y ]

is minimized for a given λ and where E[Y ] and V[Y ] are as in (9.4) and (9.5),
respectively. After some simplification,

E[Y ]+λ V[Y ] = f ′(S0)
n

∑
j=0

k j

[
α(x j −K)− β

τ
k j

]

+
1
2

f ′′(S0)
n

∑
j=0

k j

[
σ2τ j+α2(K − x j)

2 +
β 2

τ2 k2
j +

2αβ
τ

(K − x j)k j

]

+λ
n

∑
j=0

jk j

[
v2

jk j + 2 jk jη2
j + 2v j

n

∑
m= j+1

vmkm + 4 jη j

n

∑
m= j+1

ηmkm

]
.

9.4 Numerical Solution

For Y as in (9.3), the optimization problem we aim to solve is

min
k0,k1,...,kn

(E[Y ]+λ V[Y ])

subject to

n

∑
j=0

k j = K.

We solve the problem using fmincon in the Matlab.

Example 9.4.1. For this example let

n = 2; K = 1000; α = 0.1; β = 0.5; λ = 0.4; τ = 1;

δ = f ′(S0) = 0.5; γ = f ′(S0) = 0.2; σ = 0.5,

the optimal trading strategy is

k0 = 333.3348, k1 = 333.3336, k2 = 333.3316,

and the optimal objective function is 5.5736× 108.
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Remark 9.4.1. The trading trajectory has a downward trend. Intuitively, and on
contrast to executing a large size at a single transaction, our result suggests to split
the overall position in almost even trades. The linear assumption that we made on the
temporary and the permanent impacts seems to explain the almost equal execution
quantities.

9.5 Concluding Remarks

In this work, we study the Markowitz-optimal execution trajectory of contingent
claims. In order to do so, we use a second-order Taylor approximation with respect
to the contingent claim C evaluated at the initial value of the underlying S. We obtain
the closed form objective function given a risk averse criterion. Our approach allows
us to obtain the explicit numerical solution and we provide an example.
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