
Chapter 8
A Constrained Optimization Problem
with Applications to Constrained MDPs

Xianping Guo, Qingda Wei, and Junyu Zhang

8.1 Introduction

Constrained optimization problems form an important aspect in control theory, for
instance, constrained Markov decision processes (MDPs) [2, 3, 10–13, 15–21, 24,
25, 27, 29–33, 35, 36], and constrained diffusion processes [4–9]. In this chapter,
we are concerned with a constrained optimization problem, in which the objective
function is defined on the product space of a linear space and a convex set. The
constrained optimization problem is to maximize the values of the function with
any fixed variable in the linear space, over a constrained subset of the convex set
which is given by the function with another fixed variable from the linear space and
with a given constraint. The basic idea for the constrained optimization problem
comes from the studies on the discounted and average optimality for discrete- and
continuous-time MDPs with a constraint. We aim to develop a unified approach to
dealing with such constrained MDPs. More precisely, for discrete- and continuous-
time MDPs with a constraint, the linear space can be taken as a set of some real-
valued functions such as reward and cost functions in such MDPs, and the convex set
can be chosen as the set of all randomized Markov policies, the set of all randomized
stationary policies, or the set of all the occupation measures according to a specified
case of MDPs with different criteria. The objective function can be taken as one of
the expected discounted (average) criteria, while the first variable in the objective
function can be taken as the reward/cost functions in MDPs and the second one as
a policy in a class of policies. Thus, MDPs with a constraint can be reduced to our
constrained optimization problem.
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A fundamental question on the constrained optimization problem is whether
there exists a constrained-optimal solution. The Lagrange multiplier technique is
a classical approach to proving the existence of a constrained-optimal solution
for such an optimization problem. There are several authors using the Lagrange
multiplier technique to study MDPs with a constraint; see, for instance, discrete-
time constrained MDPs with the discounted and average criteria [3, 32, 33] and
continuous-time constrained MDPs with the discounted and average criteria [18,
20,35]. All the aforementioned works [3,18,20,32,33,35] require the nonnegativity
assumption on the costs. We also apply this approach to analyze the constrained
optimization problem. Following the arguments in [3, 18, 20, 32, 33, 35], we give
conditions under which we prove the existence of a constrained-optimal solution
to the constrained optimization problem, and also give a characterization of a
constrained-optimal solution for a particular case.

Then, we apply our main results to discrete- and continuous-time constrained
MDPs with discounted and average criteria. More precisely, in Sect. 8.4.1, we use
the results to show the existence of a constrained-optimal policy for the discounted
discrete-time MDPs with a constraint in which the state space is a Polish space
and the rewards/costs may be unbounded from above and from below. To the
best of our knowledge, there are no any existing works dealing with constrained
discounted discrete-time MDPs in Borel spaces and with unbounded rewards/costs.
In Sect. 8.4.2, we investigate an application of the main results to constrained
discrete-time MDPs with state-dependent discount factors and extend the results in
[32] to the case in which discount factors can depend on states and rewards/costs
can be unbounded from above and from below. In Sects. 8.4.3 and 8.4.4, we
consider the average and discounted continuous-time MDPs with a constraint,
respectively. Removing the nonnegativity assumption on the cost function as in
[18,20,35], we prove that the results in [18,20,35] still hold using the results in this
chapter.

The rest of this chapter is organized as follows. In Sect. 8.2, we introduce the
constrained optimization problem under consideration and give some preliminary
facts needed to prove the existence of a constrained-optimal solution to the opti-
mization problem. In Sect. 8.3, we state and prove our main results on the existence
of a constrained-optimal solution. In Sect. 8.4, we provide some applications of our
main results to constrained MDPs with different optimality criteria.

8.2 A Constrained Optimization Problem

In this section, we state the constrained optimization problem under consideration
and give some preliminary results needed to prove the existence of a constrained-
optimal solution. To do so, we introduce some notation below:

1. Let C be a linear space and D a convex set.
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2. Suppose that G is a real-valued function on the product space C × D and
satisfies the following property:

G(k1c1 + k2c2,d) = k1G(c1,d)+ k2G(c2,d) (8.1)

for any c1,c2 ∈C, d ∈ D and any constants k1,k2 ∈ R := (−∞,+∞).

For any fixed c ∈C, let

U :=
{

d ∈ D : G(c,d)≤ ρ
}
,

which depends on the given c and a so-called constraint constant ρ .
Then, for another given r ∈ C, we consider a constrained optimization problem

below:

Maximize G(r, ·) over U. (8.2)

Definition 8.2.1. d∗ ∈U is said to be a constrained-optimal solution to the problem
(8.2) if d∗ maximizes G(r,d) over d ∈U, that is,

G(r,d∗) = sup
d∈U

G(r,d).

Remark 8.2.1. When D is a compact and convex metric space, and G(r,d) and
G(c,d) are continuous in d ∈ D, it follows from the Weierstrass theorem [1, p.40]
that there exists a constrained-optimal solution. In general, however, D may be
unmetrizable in some cases, such as the set of all randomized Markov policies in
continuous-time MDPs [20, p.10]; see continuous-time constrained MDPs with the
discounted criteria in Sect. 8.4.4. In order to solve (8.2), we assume that there exists
a subset D′ ⊆ D, which is assumed to be a compact metric space throughout this
chapter.

To analyze problem (8.2), we define the following unconstrained optimization
problem by introducing a Lagrange multiplier λ ≥ 0,

bλ := r−λ c, G∗(bλ ) := sup
d∈D

G(bλ ,d), (8.3)

and then give the conditions below.

Assumption 8.2.1

(i) For each fixed λ ≥ 0, D∗
λ :=

{
dλ ∈ D′ | G(bλ ,dλ ) = G∗(bλ )

} �= /0.
(ii) There exists a constant M > 0, such that max

{|G(r,d)|, |G(c,d)|}≤ M for all
d ∈ D.

(iii) G(r,d) and G(c,d) are continuous in d ∈ D′.
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Assumption 8.2.1(i) implies that there exists at least an element dλ ∈ D′ such
that G(bλ , ·) attains its maximum. In addition, the boundedness and continuity
hypotheses in Assumptions 8.2.1(ii) and (iii) are commonly used in optimization
control theory.

Assumption 8.2.2 For the given c ∈ C, there exists an element d′ ∈ D (depending
on c) such that G(c,d′)< ρ , which means that

{
d ∈ D | G(c,d)< ρ

} �= /0.

Remark 8.2.2. Assumption 8.2.2 is a Slater-like hypothesis, typical for the con-
strained optimization problems; see, for instance, [3, 17, 18, 20, 32, 33, 35].

In order to prove the existence of a constrained-optimal solution, we need the
following preliminary lemmas.

Lemma 8.2.1. Suppose that Assumption 8.2.1(i) holds. Then, G(c,dλ ) is nonin-
creasing in λ ∈ [0,∞), where dλ ∈ D∗

λ is arbitrary but fixed for each λ ≥ 0.

Proof. For each d ∈ D, by (8.1) and (8.3), we have

G(bλ ,d) = G(r,d)−λ G(c,d) for all λ ≥ 0.

Moreover, since G(bλ ,dλ ) = G∗(bλ ) for all λ ≥ 0 and dλ ∈ D∗
λ , we have, for any

h > 0,

−hG(c,dλ ) = G(bλ+h,dλ )−G(bλ ,dλ )

≤ G(bλ+h,dλ+h)−G(bλ ,dλ )

≤ G(bλ+h,dλ+h)−G(bλ ,dλ+h)

= −hG(c,dλ+h),

which implies that
G(c,dλ )≥ G(c,dλ+h).

Hence, G(c,dλ ) is nonincreasing in λ ∈ [0,∞). �

Remark 8.2.3. Under Assumption 8.2.1(i), it follows from Lemma 8.2.1 that the
following nonnegative constant

λ̃ := inf
{

λ ≥ 0 : G(c,dλ )≤ ρ ,dλ ∈ D∗
λ
}

(8.4)

is well defined.

Lemma 8.2.2. Suppose that Assumptions 8.2.1(i), (ii) and 8.2.2 hold. Then, the
constant λ̃ in (8.4) is finite; that is, λ̃ is in [0,∞).

Proof. Let κ := ρ −G(c,d
′
)> 0, with d′ as in Assumption 8.2.2. Since lim

λ→∞
2M
λ = 0

for the constant M as in Assumption 8.2.1(ii), there exists δ > 0 such that
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2M
λ

−κ < 0 for all λ ≥ δ . (8.5)

Thus, for any dλ ∈ D∗
λ with λ ≥ δ , we have

G(r,dλ )−λ G(c,dλ ) = G(bλ ,dλ )≥ G(bλ ,d
′
) = G(r,d

′
)−λ G(c,d

′
).

That is,

G(r,dλ )−G(r,d
′
)

λ
+G(c,d

′
)−ρ ≥ G(c,dλ )−ρ ,

which, together with Assumption 8.2.1(ii) and (8.5), yields

G(c,dλ )−ρ ≤ |G(r,dλ )|+ |G(r,d
′
)|

λ
−κ ≤ 2M

λ
−κ < 0 for all λ ≥ δ . (8.6)

Hence, it follows from (8.6) that λ̃ ≤ δ < ∞. �

Lemma 8.2.3. Suppose that Assumptions 8.2.1(i) and (iii) hold. If lim
k→∞

λk = λ , and

dλk ∈ D∗
λk

(for each k ≥ 1) is such that lim
k→∞

dλk = d ∈ D′, then d ∈ D∗
λ .

Proof. As dλk ∈ D∗
λk

for all k ≥ 1, by (8.1) and (8.3), we have

G(r,dλk)−λkG(c,dλk) = G(bλk ,dλk)≥ G(bλk ,d) = G(r,d)−λkG(c,d) (8.7)

for all d ∈ D. Letting k → ∞ in (8.7) and using Assumption 8.2.1(iii), we get

G(bλ ,d) = G(r,d)−λ G(c,d)≥ G(r,d)−λ G(c,d) = G(bλ ,d) for all d ∈ D.

Thus, d ∈ D∗
λ . �

Lemma 8.2.4. If there exist λ0 ≥ 0 and d∗ ∈U such that

G(c,d∗) = ρ and G(bλ0 ,d∗) = G∗(bλ0),

then d∗ is a constrained-optimal solution to the problem (8.2).

Proof. For any d ∈U , since G(bλ0 ,d∗) = G∗(bλ0)≥ G(bλ0 ,d), we have

G(r,d∗)−λ0G(c,d∗)≥ G(r,d)−λ0G(c,d). (8.8)

As G(c,d∗) = ρ and G(c,d)≤ ρ (because d ∈U), from (8.8) we get

G(r,d∗)≥ G(r,d∗)+λ0(G(c,d)−ρ)≥ G(r,d) for all d ∈U,

which implies the desired result. �
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8.3 Main Results

In this section, we focus on the existence of a constrained-optimal solution. To do so,
in addition to Assumptions 8.2.1 and 8.2.2, we also impose the following condition.

Assumption 8.3.1

(i) For each θ ∈ [0,1], d1,d2 ∈ D∗
λ̃

, dθ := θd1 +(1− θ )d2 satisfies G(bλ̃ ,dθ ) =

G∗(bλ̃ ).
(ii) G(c,dθ ) is continuous in θ ∈ [0,1].

Remark 8.3.4. For each fixed c1 ∈C, if G(c1, ·) satisfies the following property

G(c1,dθ ) = θG(c1,d1)+ (1−θ )G(c1,d2)

for all d1,d2 ∈ D and θ ∈ [0,1], then Assumption 8.3.1 is obviously true.

Now we give our first main result on the problem (8.2).

Theorem 8.3.1. Under Assumptions 8.2.1, 8.2.2, and 8.3.1, the following state-
ments hold:

(a) If λ̃ = 0, then there exists a constrained-optimal solution d̃ ∈ D′.
(b) If λ̃ > 0, then a constrained-optimal solution d∗ ∈ D exists, and moreover, there

exist a number θ ∗ ∈ [0,1] and d1,d2 ∈ D∗
λ̃

such that

G(c,d1)≥ ρ , G(c,d2)≤ ρ , and d∗ = θ ∗d1 +(1−θ ∗)d2.

Proof. (a) The case λ̃ = 0: By the definition of λ̃ , there exists a sequence dλk ∈
D∗

λk
⊂ D′ such that λk ↓ 0 as k → ∞. Because D′ is compact, without loss of

generality, we may assume that dλk → d̃ ∈ D′. Thus, by Lemma 8.2.1, we have
G(c,dλk) ≤ ρ for all k ≥ 1, and then it follows from Assumption 8.2.1(iii) that
d̃ ∈ U . Moreover, for each d ∈U , we have G∗(bλk) = G(bλk ,dλk)≥ G(bλk ,d),
which, together with Assumption 8.2.1(ii), implies

G(r,dλk )−G(r,d)≥ λk(G(c,dλk)−G(c,d))≥−2λkM. (8.9)

Letting k → ∞ in (8.9), by Assumption 8.2.1(iii), we have

G(r, d̃)≥ G(r,d) for all d ∈U,

which means that d̃ is a constrained-optimal solution.
(b) The case λ̃ ∈ (0,∞): Since λ̃ is in (0,∞), there exist two sequences of positive

numbers {λk} and {δk} such that dλk ∈ D∗
λk

, dδk ∈ D∗
δk

, λk ↑ λ̃ , and δk ↓ λ̃
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as k → ∞. By the compactness of D′, we may suppose that dλk → d1 ∈ D′ and
dδk → d2 ∈D′. By Lemma 8.2.3, we have d1,d2 ∈D∗

λ̃
. By Assumption 8.2.1(iii)

and Lemma 8.2.1, we have

G(c,d1)≥ ρ and G(c,d2)≤ ρ . (8.10)

Define the following map:

θ 
→ G(c,θd1 +(1−θ )d2) for each θ ∈ [0,1].

Thus, it follows from Assumption 8.3.1(ii) and (8.10) that there exists θ ∗ ∈ [0,1]
such that

G(c,θ ∗d1 +(1−θ ∗)d2) = ρ . (8.11)

Let d∗ := θ ∗d1+(1−θ ∗)d2. Then, by Assumption 8.3.1(i), we have G(bλ̃ ,d∗)=
G∗(bλ̃ ), which together with (8.11) and Lemma 8.2.4 yields that d∗ ∈ D is a
constrained-optimal solution. �

To further characterize a constrained-optimal solution, we next consider a
particular case of the problem (8.2).

A special case: Let X := {1,2, . . .}, Y be a metric space, and P(Y ) the set of
all probability measures on Y . For each i ∈ X , Y (i)⊂ Y is assumed to be a compact
metric space. Let D := {ψ | ψ : X → P(Y ) such that ψ(·|i) ∈ P(Y (i)) ∀ i ∈ X},
and D′ := {d| d : X → Y such that d(i) ∈Y (i) ∀ i ∈ X}.
Remark 8.3.5. (a) The set D is convex. That is, if ψk(k = 1,2) are in D, and

ψ p(·|i) := pψ1(·|i)+ (1− p)ψ2(·|i) for any p ∈ [0,1] and i ∈ X , then ψ p ∈ D.
(b) A function d ∈ D′ may be identified with the element ψ ∈ D, for which ψ(i) is

the Dirac measure at the point d(i) for all i ∈ X . Hence, we have D′ ⊂ D.
(c) Note that D′ can be written as the product space D′ = ∏i∈X Y (i). Hence, by the

compactness of Y (i) and the Tychonoff theorem, D′ is a compact metric space.

In order to obtain the characterization of a constrained-optimal solution for this
particular case, we also need the following condition.

Assumption 8.3.2 For each λ ≥ 0, if d1,d2 ∈ D∗
λ , then d ∈ D∗

λ for each d ∈ {
d ∈

D′ : d(i) ∈ {d1(i),d2(i)} ∀ i ∈ X
}

.

Then, we have the second main result on the problem (8.2) as follows.

Theorem 8.3.2. (For the special case.) Suppose that Assumptions 8.2.1, 8.2.2,
8.3.1, and 8.3.2 hold for the special case. Then there exists a constrained-optimal
solution d∗, which is of one of the following two forms (i) and (ii): (i) d∗ ∈ D′
and (ii) there exist g1,g2 ∈ D∗

λ̃
, a point i∗ ∈ X, and a number θ0 ∈ [0,1] such that

g1(i) = g2(i) for all i �= i∗, and, in addition,
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d∗(y|i) =
⎧
⎨

⎩

θ0 f or y = g1(i) when i = i∗,
1−θ0 f or y = g2(i) when i = i∗,
1 f or y = g1(i) when i �= i∗.

Proof. Let λ̃ be as in (8.4). If λ̃ = 0, by Theorem 8.3.1 we have d∗ ∈ D′. Thus,
we only need to consider the other case λ̃ > 0. By Theorem 8.3.1(b), there exist
d1,d2 ∈ D∗

λ̃
such that G(c,d1)≥ ρ and G(c,d2)≤ ρ . If G(c,d1) (or G(c,d2))= ρ , it

follows from Lemma 8.2.4 that d1 (or d2) is a constrained-optimal solution. Hence,
to complete the proof, we shall consider the following case:

G(c,d1)> ρ and G(c,d2)< ρ . (8.12)

Using d1 and d2, we construct a sequence {dn} as follows. For all n ≥ 1 and i ∈ X ,
let

dn(i) =

{
d1(i) i < n,
d2(i) i ≥ n.

Obviously, d1 = d2 and lim
n→∞

dn = d1. Since d1,d2 ∈ D∗
λ̃

, by Assumption 8.3.2, we

see that dn ∈ D∗
λ̃

for all n ≥ 1. As d1 = d2, by (8.12) we have G(c,d1)< ρ . If there

exists n∗ such that G(c,dn∗) = ρ , then dn∗ is a constrained-optimal solution (by
Lemma 8.2.4). Thus, in the remainder of the proof, we may assume that G(c,dn) �= ρ
for all n ≥ 1. If G(c,dn)< ρ for all n ≥ 1, then by Assumption 8.2.1(iii), we have

lim
n→∞

G(c,dn) = G(c,d1)≤ ρ ,

which is a contradiction to (8.12). Hence, there exists some n > 1 such that
G(c,dn)> ρ , which, together with G(c,d1)< ρ , gives the existence of some ñ such
that

G(c,dñ)< ρ and G(c,dñ+1)> ρ . (8.13)

Obviously, dñ and dñ+1 differ in at most the point ñ.
Let g1 := dñ, g2 := dñ+1 and i∗ := ñ. For any θ ∈ [0,1], using g1 and g2, we

construct dθ ∈ D as follows. For each i ∈ X ,

dθ (y|i) =
⎧
⎨

⎩

θ for y = g1(i) when i = i∗,
1−θ for y = g2(i) when i = i∗,
1 for y = g1(i) when i �= i∗.

Then, we have

dθ (·|i) = θδg1(i)(·)+ (1−θ )δg2(i)(·) (8.14)
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for all i ∈ X and θ ∈ [0,1], where δy(·) denotes the Dirac measure at any point y.
Hence, by (8.13), (8.14), and Assumption 8.3.1, there exists θ0 ∈ (0,1) such that

G(c,dθ0) = ρ and G(bλ̃ ,dθ0) = G∗(bλ̃ ),

which, together with Lemma 8.2.4, yield that dθ0 is a constrained-optimal solution.
Obviously, dθ0 randomizes between g1 and g2, which differ in at most the point i∗,
and so the theorem follows. �

8.4 Applications to MDPs with a Constraint

In this section, we show applications of the constrained optimization problem
to MDPs with a constraint. In Sect. 8.4.1, we use Theorem 8.3.1 to show the
existence of a constrained-optimal policy for the constrained discounted discrete-
time MDPs in a Polish space and with unbounded rewards/costs. In Sect. 8.4.2,
we investigate an application of Theorem 8.3.2 to discrete-time constrained MDPs
with state-dependent discount factors. In Sects. 8.4.3 and 8.4.4, we will improve the
corresponding results in [18, 20, 35] using Theorem 8.3.2 above.

8.4.1 Discrete-Time Constrained MDPs with Discounted
Criteria

The constrained discounted discrete-time MDPs with a constant discount factor
have been studied; see, for instance, [2, 11, 32] for the case of a countable state
space and [15, 16, 24, 27, 29] for the case of a Borel state space. Except [2] dealing
with the case in which the rewards may be unbounded from above and from below,
all the aforementioned works investigate the case in which rewards are assumed to
be bounded from above. To the best of our knowledge, in this subsection we first
deal with the case in which the state space is a Polish space and the rewards may be
unbounded from above and from below.

The model of discrete-time constrained MDPs under consideration is as follows
[22, 23]:

{
X ,A,(A(x),x ∈ X),Q(·|x,a),r(x,a),c(x,a),ρ}, (8.15)

where X and A are state and action spaces, which are assumed to be Polish spaces
with Borel σ -algebras B(X) and B(A), respectively. We denote by A(x) ∈ B(A)
the set of admissible actions at state x ∈ X . Let K := {(x,a)|x ∈ X ,a ∈ A(x)}, which
is assumed to be a closed subset of X ×A. Furthermore, the transition law Q(·|x,a)
with (x,a) ∈ K is a stochastic kernel on X given K. Finally, the function r(x,a) on
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K denotes rewards, while the function c(x,a) on K and the number ρ denote costs
and a constraint, respectively. We assume that r(x,a) and c(x,a) are real-valued
Borel-measurable on K.

We denote by Π , Φ , and F the classes of all randomized history-dependent
policies, randomized stationary policies, and stationary policies, respectively; see
[22, 23] for details.

Let Ω := (X ×A)∞ and F the corresponding product σ -algebra. Then, for an
arbitrary policy π ∈ Π and an arbitrary initial distribution ν on X , the well-known
Tulcea theorem [22, p.178] gives the existence of a unique probability measure Pπ

ν
on (Ω ,F ) and a stochastic process {(xk,ak),k ≥ 0}. The expectation operator with
respect to Pπ

ν is denoted by Eπ
ν , and we write Eπ

ν as Eπ
x when ν({x}) = 1.

Fix a discount factor α ∈ (0,1) and an initial distribution ν on X . We define
the expected discounted reward V (r,π) and the expected discounted cost V (c,π) as
follows:

V (r,π) := Eπ
ν

[ ∞

∑
k=0

αkr(xk,ak)

]
and V (c,π) := Eπ

ν

[ ∞

∑
k=0

αkc(xk,ak)

]
for all π ∈ Π .

Then, the constrained optimization problem for the model (8.15) is as follows:

Maximize V (r, ·) over U1 :=
{

π ∈ Π | V (c,π)≤ ρ
}
. (8.16)

To solve (8.16), we consider the following conditions:

(B1) There exist a continuous function ω1 ≥ 1 on X and positive constants L1, m,
and β1 < 1 such that, for each (x,a) ∈ K,

|r(x,a)| ≤ L1ω1(x), |c(x,a)| ≤ L1ω1(x), and
∫

X
ω2

1 (y)Q(dy|x,a)≤ β1ω2
1 (x)+m.

(B2) The function ω1 is a moment function on K, that is, there exists a nonde-
creasing sequence of compact sets Kn ↑ K such that lim

n→∞
inf

{
ω1(x) : (x,a) /∈

Kn
}
= ∞.

(B3) ν(ω2
1 ) :=

∫
X ω2

1 (x)ν(dx)< ∞.
(B4) Q(·|x,a) is weakly continuous on K, that is, the function

∫
X u(y)Q(dy|x,a)

is continuous in (x,a) ∈ K for each bounded continuous function u on X .
(B5) The functions r(x,a) and c(x,a) are continuous on K.
(B6) There exists π ′ ∈ Π such that V (c,π ′)< ρ .

Remark 8.4.6. (a) Condition (B1) is known as the statement of the Lyapunov-
like inequality and the growth condition on the rewards/costs. Conditions (B4)
and (B5) are the usual continuity conditions. Condition (B6) is the Slater-like
condition.

(b) Conditions (B1) and (B3) are used to guarantee the finiteness of the expected
discounted rewards/costs. The role of condition (B2) is to prove the compact-
ness of the set of all the discount occupation measures in the ω1-weak topology
(see Lemma 8.4.5).
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To state our main results of Sect. 8.4.1, we need to introduce some notation.
Let ω1 be as in condition (B1). We denote by Bω1(X) the Banach space of real-

valued measurable functions u on X with the finite norm ‖u‖ω1 := sup
x∈X

|u(x)|
ω1(x)

, that

is, Bω1(X) := {u| ‖u‖ω1 < ∞}. Moreover, we say that a function v on K belongs
to Bω1(K) if x 
→ sup

a∈A(x)
|v(x,a)| is in Bω1(X). We denote by Cω1(K) the set of all

continuous functions on K which also belong to Bω1(K), and Mω1(K) stands for
the set of all measures μ on B(K) such that

∫
K ω1(x)μ(dx,da) < ∞. Moreover,

Mω1(K) is endowed with ω1-weak topology. Recall that the ω1-weak topology on
Mω1(K) is the coarsest topology for which all mappings μ 
→ ∫

K v(x,a)μ(dx,da) are
continuous for each v ∈Cω1(K). Since X and A are both Polish spaces, by Corollary
A.44 in [14, p.423] we see that Mω1(K) is metrizable with respect to the ω1-weak
topology.

By Lemma 24 in [29, p.141], it suffices to consider the discount occupation
measures induced by randomized stationary policies in Φ . For each ϕ ∈ Φ , we
define the discount occupation measure by

ηϕ (B×E) :=
∞

∑
k=0

αkPϕ
ν (xk ∈ B,ak ∈ E) for all B ∈ B(X) and E ∈ B(A).

The set of all the discount occupation measures is denoted by N , i.e., N := {ηϕ :
ϕ ∈ Φ}. From the conditions (B1) and (B3), we have

∫

K
ω1(x)ηϕ (dx,da) =

∞

∑
k=0

αkEϕ
ν
[
ω1(xk)

] ≤ ν(ω2
1 )

1−α
+

m
(1−β1)(1−α)

< ∞

(8.17)

for all ϕ ∈ Φ , which yields N ⊂ Mω1(K).
Then, the constrained optimization problem (8.16) is equivalent to the following

form:

Maximize
∫

K
r(x,a)η(dx,da) over

{
η ∈ N |

∫

K
c(x,a)η(dx,da)≤ ρ

}
=: Uo.

(8.18)

Now we provide a characterization of the discount occupation measures below.

Lemma 8.4.5. Under conditions (B1)–(B4), the following statements hold:

(a) If η ∈ Mω1(K), then η is in N if and only if

∫

K
u(x)η(dx,da) =

∫

X
u(x)ν(dx)+α

∫

K

∫

X
u(y)Q(dy|x,a)η(dx,da)

for each bounded continuous function u on X.
(b) N is convex and compact in the ω1-weak topology.



136 X. Guo et al.

Proof. (a) See Lemma 25 in [29, p.141] for the proof of part (a).
(b) The convexity property follows directly from part (a). To prove that N is

compact, we will first show that N is closed in the ω1-weak topology. Let{
ηϕn

} ⊂ N be a sequence converging to some measure η on X × A in the
ω1-weak topology. Thus, there exists a positive integer N1 such that for each
n ≥ N1, we have

∣
∣
∣
∣

∫

K
ω1(x)ηϕn(dx,da)−

∫

X×A
ω1(x)η(dx,da)

∣
∣
∣
∣≤ 1,

which together with (8.17) yields

∫

X×A
ω1(x)η(dx,da)≤ ν(ω2

1 )

1−α
+

m
(1−β1)(1−α)

+ 1 < ∞,

and so η ∈ Mω1(X ×A). Moreover, since K is assumed to be closed and ηϕn

weakly converges to η , by Theorem A.38 in [14, p.420] we have

0 = liminf
n→∞

ηϕn(Kc)≥ η(Kc)≥ 0,

which implies that η concentrates on K, where Kc denotes the complement of
K. In addition, by part (a) we have

∫

K
u(x)ηϕn(dx,da) =

∫

X
u(x)ν(dx)+α

∫

K

∫

X
u(y)Q(dy|x,a)ηϕn(dx,da)

for each bounded continuous function u on X , which together with condition
(B4) yields

∫

K
u(x)η(dx,da) =

∫

X
u(x)ν(dx)+α

∫

K

∫

X
u(y)Q(dy|x,a)η(dx,da).

Hence, by part (a) we see that η ∈ N , and so N is closed.
To prove the compactness of N , it suffices to show that N is relatively compact

in the ω1-weak topology. By (8.17) we have

sup
η∈N

∫

K
ω1(x)η(dx,da) = sup

ϕ∈Φ

∫

K
ω1(x)ηϕ (dx,da)

≤ ν(ω2
1 )

1−α
+

m
(1−β1)(1−α)

< ∞. (8.19)

On the other hand, from condition (B2), we see that ϖn := inf{ω1(x) : (x,a) /∈
Kn} ↑ ∞. Then, by conditions (B1) and (B3), we have

ϖn

∫

Kc
n

ω1(x)ηϕ (dx,da) ≤
∫

K
ω2

1 (x)η
ϕ (dx,da)

≤ ν(ω2
1 )

1−α
+

m
(1−β1)(1−α)

(8.20)
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for all ϕ ∈ Φ . Thus, by (8.20) we see that for any ε > 0, there exists an integer
N2 > 0 such that

sup
ϕ∈Φ

∫

Kc
N2

ω1(x)ηϕ (dx,da)≤ ε. (8.21)

Hence, by (8.19), (8.21), and Corollary A.46 in [14, p.424], we conclude that N
is relatively compact in the ω1-weak topology. Therefore, N is compact in the ω1-
weak topology. �

Under conditions (B1)–(B5), from Lemma 8.4.5 and (8.18), we define a real-
valued function G on C×D :=Cω1(K)×N as follows:

G(c,η) :=
∫

K
c(x,a)η(dx,da) for (c,η) ∈C×D =Cω1(K)×N . (8.22)

Obviously, the function G defined in (8.22) satisfies (8.1). Moreover, let D′ := N .
Now we provide our main result of Sect. 8.4.1 on the existence of constrained-

optimal policies for (8.16).

Proposition 8.4.1. Under conditions (B1)–(B6), there exists a constrained-optimal
policy ϕ∗ ∈ Φ for the constrained MDPs in (8.16), that is, V (r,ϕ∗) = sup

π∈U1

V (r,π).

Proof. We first verify Assumption 8.2.1. From conditions (B1) and (B5), we see that
for each λ ≥ 0, the mapping ηϕ 
→ ∫

K(r(x,a)−λ c(x,a))ηϕ (dx,da) is continuous
on N . Thus, Assumption 8.2.1(i) follows from the compactness of N . Moreover,
by condition (B1) and (8.17), we have

max
{|G(r,η)|, |G(c,η)|} ≤ L1ν(ω2

1 )

1−α
+

mL1

(1−β1)(1−α)
=: M

for all η ∈ N , and so Assumption 8.2.1(ii) follows. By conditions (B1) and (B5),
we see that Assumption 8.2.1(iii) is obviously true.

Secondly, Assumption 8.2.2 follows from condition (B6) and Lemma 24 in [29,
p.141].

Finally, since G(c,θη1 +(1− θ )η2) = θG(c,η1)+ (1− θ )G(c,η2) for all θ ∈
[0,1] and η1,η2 ∈ N , Assumption 8.3.1 is obviously true.

Hence, Theorem 8.3.1 gives the existence of η∗ ∈ N such that

∫

K
r(x,a)η∗(dx,da) = sup

η∈Uo

∫

K
r(x,a)η(dx,da),

which together with Theorem 6.3.7 in [22] implies Proposition 8.4.1. �
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8.4.2 Constrained MDPs with State-Dependent Discount
Factors

In this subsection, we use discrete-time constrained MDPs with state-dependent
discount factors to present another application of the constrained optimization
problem. Discrete-time unconstrained MDPs with nonconstant discount factors are
studied in [26, 34]. Moreover, [36] deals with discrete-time constrained MDPs with
state-dependent discount factors in which the costs are assumed to be bounded from
below by a convex analytic approach, and here we use Theorem 8.3.1 above to deal
with the case in which the costs are allowed to be unbounded from above and from
below.

The model of discrete-time constrained MDPs with state-dependent discount
factors is as follows:

{
X ,A,(A(i), i ∈ X),Q(·|i,a),(α(i), i ∈ X),r(i,a),c(i,a),ρ

}
,

where the state space X is the set of all positive integers, α(i) ∈ (0,1) are given
discount factors depending on state i ∈ X , and the other components are the same as
in (8.15), with ik here in lieu of xk in Sect. 8.4.1.

Fix any initial distribution ν on X . The discounted criteria, W (r,π) and W (c,π),
are defined by

W (r,π) := Eπ
ν

[
r(i0,a0)+

∞

∑
n=1

n−1

∏
k=0

α(ik)r(in,an)

]
,

W (c,π) := Eπ
ν

[
c(i0,a0)+

∞

∑
n=1

n−1

∏
k=0

α(ik)c(in,an)

]
for all π ∈ Π .

Then, the constrained optimization problem is as follows:

sup
π∈Π

W (r,π) subject to W (c,π)≤ ρ . (8.23)

To ensure the existence of a constrained-optimal policy π∗ for (8.23) (i.e.,
W (r,π∗) ≥ W (r,π) for all π such that W (c,π) ≤ ρ), we consider the following
conditions from [34]:

(C1) There exists a constant α ∈ (0,1) such that 0 < α(i)≤ α for all i ∈ X .
(C2) There exist constants L2 > 0 and β2, with 1 ≤ β2 <

1
α and a function ω2 ≥ 1

on X such that, for each (i,a) ∈ K,

|r(i,a)| ≤ L2ω2(i), |c(i,a)| ≤ L2ω2(i), and ∑
j∈X

ω2( j)Q( j|i,a) ≤ β2ω2(i).

(C3) ν(ω2) := ∑
i∈X

ω2(i)ν(i) < ∞.
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(C4) For each i ∈ X , A(i) is compact.
(C5) For each i, j ∈ X , the functions r(i,a), c(i,a), Q( j|i,a), and ∑

k∈X
ω2(k)Q(k|i,a)

are continuous in a ∈ A(i).
(C6) There exists π̃ ∈ Π such that W (c, π̃)< ρ .

Remark 8.4.7. Conditions (C1)–(C3) are known as the finiteness conditions. Con-
ditions (C4) and (C5) are the usual continuity-compactness conditions. Condition
(C6) is the Slater-like condition.

Under conditions (C1)–(C5), we define a real-valued function G on C ×D :=
Cω2(K)×Π as follows:

G(c,π) :=W (c,π) for (c,π) ∈C×D =Cω2(K)×Π . (8.24)

Obviously, since the set Π is convex, the function G defined in (8.24) satisfies (8.1).
Let D′ := F . Then, we state our main result of Sect. 8.4.2 on the existence of

constrained-optimal policies for (8.23).

Theorem 8.4.3. Suppose that conditions (C1)–(C6) hold. Then there exists a
constrained-optimal policy for (8.23), which is either a stationary policy or a
randomized stationary policy that randomizes between two stationary policies
differing in at most one state; that is, there exist two stationary policies f 1, f 2,
a state i∗ ∈ X, and a number p∗ ∈ [0,1] such that f 1(i) = f 2(i) for all i �= i∗, and, in
addition, the randomized stationary policy π p∗(·|i) is constrained-optimal, where

π p∗(a|i) =
⎧
⎨

⎩

p∗ f or a = f 1(i) when i = i∗,
1− p∗ f or a = f 2(i) when i = i∗,
1 f or a = f 1(i) when i �= i∗.

Remark 8.4.8. Theorem 8.4.3 extends the corresponding one in [32] for a constant
discount factor to the case of state-dependent discount factors. Moreover, we remove
the nonnegativity assumption on the costs as in [32].

We will prove Theorem 8.4.3 using Theorem 8.3.2. To do so, we introduce the
notation below.

For each ϕ ∈ Φ, i ∈ X , and π ∈ Π , define

Wr(i,π) := Eπ
i

[
r(i0,a0)+

∞

∑
n=1

n−1

∏
k=0

α(ik)r(in,an)

]
,

Wc(i,π) := Eπ
i

[
c(i0,a0)+

∞

∑
n=1

n−1

∏
k=0

α(ik)c(in,an)

]
,

bλ (i,a) := r(i,a)−λ c(i,a) for all (i,a) ∈ K,



140 X. Guo et al.

W λ (i,π) := Eπ
i

[
bλ (i0,a0)+

∞

∑
n=1

n−1

∏
k=0

α(ik)b
λ (in,an)

]
,

W ∗
λ (i) := sup

π∈Π
W λ (i,π),

and

u(i,ϕ) :=
∫

A(i)
u(i,a)ϕ(da|i), for u(i,a) = bλ (i,a),r(i,a),c(i,a),

Q( j|i,ϕ) :=
∫

A(i)
Q( j|i,a)ϕ(da|i) for j ∈ X .

Then, we give three lemmas below, which are used to prove Theorem 8.4.3.

Lemma 8.4.6. Under conditions (C1)–(C5), the following assertions hold:

(a) |W (r,π)| ≤ L2ν(ω2)
1−αβ2

and |W (c,π)| ≤ L2ν(ω2)
1−αβ2

for all π ∈ Π .

(b) For each fixed ϕ ∈ Φ , Wu(·,ϕ) (u = r,c) is the unique solution in Bω2(X) to the
following equation:

v(i) = u(i,ϕ)+α(i) ∑
j∈X

v( j)Q( j|i,ϕ) f or all i ∈ X .

(c) W (r, f ) and W (c, f ) are continuous in f ∈ F.

Proof. For the proofs of (a) and (b), see Theorem 3.1 in [34].
(c) We only prove the continuity of W (r, f ) in f ∈F because the other case is similar.
Let fn → f as n → ∞, and fix any i ∈ X . Choose any subsequence {Wr(i, fnm)} of
{Wr(i, fn)} converging to some point v(i) as m → ∞. Then, since X is denumerable,
the Tychonoff theorem, together with the part (a) and fn → f , gives the existence of
subsequence {Wr( j, fnk ), j ∈ X} of {Wr( j, fnm ), j ∈ X} such that

lim
k→∞

Wr( j, fnk ) =: v′( j), v′(i) = v(i), and lim
k→∞

fnk( j) = f ( j) for all j ∈ X . (8.25)

Furthermore, by Theorem 3.1 in [34], we have |v′( j)| ≤ L2ω2( j)
1−αβ2

for all j ∈ X , which

implies that v′ ∈ Bω2(X). On the other hand, for the given i ∈ X and all k ≥ 1, by
part (b) we have

Wr(i, fnk ) = r(i, fnk )+α(i) ∑
j∈X

Wr( j, fnk )Q( j|i, fnk ). (8.26)

Then, it follows from (8.25), (8.26), condition (C5), and Lemma 8.3.7 in [23, p.48]
that

v′(i) = r(i, f )+α(i) ∑
j∈X

v′( j)Q( j|i, f ).
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Hence, part (b) yields

v′(i) =Wr(i, f ). (8.27)

Thus, as the above subsequence {Wr(i, fnm)} and i ∈ X are arbitrarily chosen and
(by (8.27)) all such subsequences have the same limit Wr(i, f ), we have

lim
n→∞

Wr(i, fn) =Wr(i, f ) for all i ∈ X .

Therefore, from condition (C3) and Theorem A.6 in [22, p.171], we get

lim
n→∞

W (r, fn) = ∑
i∈X

[
lim
n→∞

Wr(i, fn)

]
ν(i) = ∑

i∈X
Wr(i, f )ν(i) =W (r, f ),

which gives the desired conclusion, W (r, fn)→W (r, f ) as n → ∞. �

Lemma 8.4.7. Suppose that conditions (C1), (C2), (C4), and (C5) hold. Then we
have

(a) W ∗
λ is the unique solution of the following equation in Bω2(X):

v(i) = sup
a∈A(i)

{
bλ (i,a)+α(i) ∑

j∈X
v( j)Q( j|i,a)

}
for all i ∈ X . (8.28)

(b) There exists a function f ∗ ∈ F such that f ∗(i) ∈ A(i) attains the maximum in
(8.28) for each i ∈ X, that is,

W ∗
λ (i) = bλ (i, f ∗)+α(i) ∑

j∈X

W ∗
λ ( j)Q( j|i, f ∗) for all i ∈ X , (8.29)

and f ∗ ∈ F is optimal. Conversely, if f ∗ ∈ F is optimal, it satisfies (8.29).

Proof. See Theorem 3.2 in [34]. �

Remark 8.4.9. Under conditions (C1), (C2), (C4), and (C5), for each λ ≥ 0,
let D∗

λ (e) :=
{

f ∈ F : W λ (i, f ) = W ∗
λ (i) for all i ∈ X

}
. Then, it follows from

Lemma 8.4.7 that D∗
λ (e) �= /0, and that f ∈ D∗

λ (e) if and only if f ∈ F satisfies
(8.29).

Lemma 8.4.8. Suppose that conditions (C1)–(C5) hold. Then, for each f1, f2 ∈
D∗

λ (e) (with any fixed λ ≥ 0), and 0 ≤ p ≤ 1, define a policy π p by π p(·|i) :=
pδ f1(i)(·)+ (1− p)δ f2(i)(·) for all i ∈ X. Then,

(a) W λ (i,π p) =W ∗
λ (i) for all i ∈ X.

(b) W (c,π p) is continuous in p ∈ [0,1].
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Proof. (a) Since

bλ (i,π p) = pbλ (i, f1)+ (1− p)bλ(i, f2), (8.30)

Q( j|i,π p) = pQ( j|i, f1)+ (1− p)Q( j|i, f2), (8.31)

by Lemma 8.4.7 and the definition of D∗
λ (e), we have

W ∗
λ (i) = bλ (i, fl)+α(i) ∑

j∈X
W ∗

λ ( j)Q( j|i, fl ) for all i ∈ X and l = 1,2,

which together with (8.30) and (8.31) gives

W ∗
λ (i) = bλ (i,π p)+α(i) ∑

j∈X
W ∗

λ ( j)Q( j|i,π p) for all i ∈ X . (8.32)

Therefore, by Lemma 8.4.6(b) and (8.32), we have W λ (i,π p) = W ∗
λ (i) for all

i ∈ X , and so part (a) follows.
(b) For any p ∈ [0,1] and any sequence {pm} in [0,1] such that lim

m→∞
pm = p, by

Lemma 8.4.6, we have

Wc(i,π pm)=c(i,π pm)+α(i) ∑
j∈X

Wc( j,π pm)Q( j|i,π pm) for all i ∈ X and m≥1.

(8.33)

Hence, as in the proof of Lemma 8.4.6, from (8.33), the definition of π pm and
Theorem A.6 in [22, p.171], we have

lim
m→∞

W (c,π pm) =W (c,π p),

and so W (c,π p) is continuous in p ∈ [0,1]. �

Proof of Theorem 8.4.3. By Lemmas 8.4.6–8.4.8 and (8.24), we see that As-
sumptions 8.2.1 and 8.3.1 hold. Moreover, Assumptions 8.2.2 and 8.3.2 follow
from condition (C6) and Lemma 8.4.7, respectively. Hence, by Theorem 8.3.2, we
complete the proof. �

8.4.3 Continuous-Time Constrained MDPs with Average
Criteria

In this subsection, removing the nonnegativity assumption on the cost function as
in [20, 35], we will prove that the corresponding results in [20, 35] still hold using
Theorem 8.3.2 above.

The model of continuous-time constrained MDPs is of the form [18, 20, 30, 35]:

{
X ,A,(A(i), i ∈ X),q(·|i,a),r(i,a),c(i,a),ρ}, (8.34)
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where X is assumed to be a denumerable set. Without loss of generality, we assume
that X is the set of all positive integers. Furthermore, the transition rates q( j|i,a),
which satisfy q( j|i,a) ≥ 0 for all (i,a) ∈ K and j �= i. We also assume that the
transition rates q( j|i,a) are conservative, i.e., ∑

j∈X
q( j|i,a) = 0 for all (i,a) ∈ K, and

stable, which means that q∗(i) := sup
a∈A(i)

−q(i|i,a) < ∞ for all i ∈ X . In addition,

q( j|i,a) is measurable in a ∈ A(i) for each fixed i, j ∈ X . The other components are
the same as in (8.15), with a state i here in lieu of a state x in Sect. 8.4.1.

We denote by Πm, Φ and F the classes of all randomized Markov policies, ran-
domized stationary policies, and stationary policies, respectively; see [18,20,30,35]
for details.

To guarantee the regularity of the Q-process, we impose the following drift
condition from [30]:

(D1) There exists a nondecreasing function ω3 ≥ 1 on X such that lim
i→∞

ω3(i) = ∞.

(D2) There exist constants γ1 ≥ κ1 > 0 and a state i0 ∈ X such that

∑
j∈X

q( j|i,a)ω2
3 ( j)≤−κ1ω2

3 (i)+ γ1Ii0(i) for all (i,a) ∈ K,

where IB(·) denotes the indicator function of any set B.
Let T := [0,∞), and let (Ω ,B(Ω)) be the canonical product measurable space with
(X ×A)T being the set of all maps from T to X ×A. Fix an initial distribution ν on
X . Then, under conditions (D1) and (D2), by Theorem 2.3 in [20, p.14], for each
policy π ∈ Πm, there exist a unique probability measure Pπ

ν on (Ω ,B(Ω)) and a
stochastic process {(x(t),a(t)), t ≥ 0}. The expectation operator with respect to Pπ

ν
is denoted by Eπ

ν .
For each π ∈ Πm, we define the expected average criteria, V (r,π) and V (c,π), as

follows:

V (r,π) : = liminf
T→∞

Eπ
ν

[
∫ T

0 r(x(t),a(t))dt

]

T
,

V (c,π) : = limsup
T→∞

Eπ
ν

[
∫ T

0 c(x(t),a(t))dt

]

T
.

Then, the constrained optimization problem for the average criteria is as follows:

sup
π∈Πm

V (r,π) subject to V (c,π)≤ ρ . (8.35)

To guarantee the existence of a constrained-optimal policy π∗ for (8.35) (i.e.,
V (r,π∗)≥V (r,π) for all π such that V (c,π)≤ ρ), we need the following conditions
from [20, 30, 35]:
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(D3) There exists a constant L3 > 0 such that

|r(i,a)| ≤ L3ω3(i) and |c(i,a)| ≤ L3ω3(i) for all (i,a) ∈ K.

(D4) For each i ∈ X , A(i) is compact.
(D5) For each i ∈ X , q∗(i)≤ ω3(i).
(D6) ν(ω2

3 ) := ∑
i∈X

ω2
3 (i)ν(i) < ∞.

(D7) For each i, j ∈ X , the functions r(i,a), c(i,a), q( j|i,a), and ∑
k∈X

ω3(k)q(k|i,a)
are continuous in a∈ A(i). (D8) For each ϕ ∈ Φ , the corresponding Markov process
with transition rates q( j|i,ϕ) is irreducible, where q( j|i,ϕ) :=

∫
A(i) q( j|i,a)ϕ(da|i)

for all i, j ∈ X .
(D9) There exists ϕ ′ ∈ Φ such that V (c,ϕ ′)< ρ .

From conditions (D1), (D2), and (D8), by Theorem 4.2 in [28], for each ϕ ∈ Φ ,
the corresponding Markov process with transition rates q( j|i,ϕ) has a unique
invariant probability measure μϕ on X . Moreover, under conditions (D1)–(D4),
(D7), and (D8), by Theorem 7.2 in [30] we have

V (r,ϕ) = lim
T→∞

1
T

Eϕ
ν

[∫ T

0
r(x(t),a(t))dt

]
= ∑

i∈X
r(i,ϕ)μϕ (i) (8.36)

and

V (c,ϕ) = lim
T→∞

1
T

Eϕ
ν

[∫ T

0
c(x(t),a(t))dt

]
= ∑

i∈X
c(i,ϕ)μϕ(i), (8.37)

where

r(i,ϕ) :=
∫

A(i)
r(i,a)ϕ(da|i) and c(i,ϕ) :=

∫

A(i)
c(i,a)ϕ(da|i) for all i ∈ X .

For each ϕ ∈ Φ , we define the average occupation measure μ̂ϕ by

μ̂ϕ ({i}×B) := μϕ(i)ϕ(B|i) for all i ∈ X and B ∈ B(A(i)).

The set of all the average occupation measures is denoted by N1, i.e., N1 := {μ̂ϕ :
ϕ ∈ Φ}.

Then, we have the following result.

Lemma 8.4.9. Suppose that conditions (D1)–(D8) hold. Then, for any π ∈ Πm with
V (c,π)≤ ρ , there exists μ̂ϕ0 ∈ N1 such that V (r,ϕ0)≥V (r,π) and V (c,ϕ0)≤ ρ .

Proof. For each fixed π ∈ Πm with V (c,π) ≤ ρ and n ≥ 1, we define a measure
μn by

μn({i}×B) :=
1
n

∫ n

0
Eπ

ν
[
I{i}×B(x(t),a(t))

]
dt for all i ∈ X and B ∈ B(A(i)).

(8.38)
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Then, by conditions (D2) and (D6), Lemma 6.3 in [20, p.90], and (8.38), we have

∑
i∈X

∫

A(i)
ω2

3 (i)μn(i,da) =
1
n

∫ n

0
Eπ

ν
[
ω2

3 (x(t))
]
dt

≤ 1
n

∫ n

0
∑
i∈X

[
e−κ1tω2

3 (i)+
γ1

κ1
(1− e−κ1t)

]
ν(i)dt

≤ ν(ω2
3 )+

γ1

κ1
< ∞. (8.39)

On the other hand, from conditions (D1) and (D4), we see that the sets {(i,a) ∈ K :
ω2

3 (i) ≤ zω3(i)} are compact in K for each z ≥ 1. Hence, by (8.39) and Corollary
A.46 in [14, p.424], we conclude that the sequence {μn} is relatively compact in the
ω3-weak topology. Thus, there exist a subsequence {μnl} of {μn} and a probability
measure μ ∈Mω3(X ×A) such that μnl converges to μ in the ω3-weak topology. By
condition (D4), we see that K is closed. Then, since μnl weakly converges to μ , by
Theorem A.38 in [14, p.420], we have

0 = liminf
l→∞

μnl (K
c)≥ μ(Kc)≥ 0,

which implies μ(K) = 1. Moreover, for each bounded function v on X , a direct
calculation together with condition (D5), the Fubini theorem, the Kolmogorov
forward equation, and Theorem 2.3 in [20, p.14] gives

∑
i∈X

∫

A

[

∑
j∈X

q( j|i,a)v( j)

]
μnl (i,da)

=
1
nl

∫ nl

0
∑
i∈X

∫

A

[

∑
j∈X

q( j|i,a)v( j)

]
Pπ

ν (x(t) = i,a(t) ∈ da)dt

=
1
nl

∫ nl

0
∑
k∈X

∑
i∈X

∫

A

[

∑
j∈X

q( j|i,a)v( j)

]
Pπ

k (x(t) = i)πt(da|i)ν(k)dt

=
1
nl

∫ nl

0
∑
k∈X

∑
j∈X

v( j)

[

∑
i∈X

q( j|i,πt)pπ(0,k, t, i)

]
ν(k)dt

=
1
nl

∫ nl

0
∑
k∈X

∑
j∈X

v( j)
∂ pπ (0,k, t, j)

∂ t
ν(k)dt

=
1
nl

∑
k∈X

∑
j∈X

v( j)

[
pπ(0,k,nl , j)− pπ(0,k,0, j)

]
ν(k)

=
1
nl

Eπ
ν
[
v(x(nl))

]− 1
nl

∑
k∈X

v(k)ν(k), (8.40)
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where pπ(0, i, t, j) denotes the minimal transition function with transition rates
q( j|i,πt) :=

∫
A(i) q( j|i,a)πt(da|i) for all i, j ∈ X and t ≥ 0. Letting l → ∞ in (8.40),

by conditions (D5), (D7), and (8.39), we have

∑
i∈X

∫

A

[

∑
j∈X

q( j|i,a)v( j)

]
μ(i,da) = 0

for each bounded function v on X , which together with Lemma 4.6 in [30] yields
μ ∈ N1. Hence, there exists ϕ0 ∈ Φ such that μ = μ̂ϕ0 . Furthermore, by condition
(D3), (8.38), and (8.39), we have

V (c,π)≥ limsup
n→∞

∑
i∈X

∫

A
c(i,a)μn(i,da) and V (r,π)≤ liminf

n→∞ ∑
i∈X

∫

A
r(i,a)μn(i,da),

which together with conditions (D3) and (D7) yield

ρ ≥V (c,π)≥ ∑
i∈X

∫

A
c(i,a)μ̂ϕ0(i,da) =V (c,ϕ0),

and
V (r,π)≤ ∑

i∈X

∫

A
r(i,a)μ̂ϕ0(i,da) =V (r,ϕ0).

This completes the proof of the lemma. �

By Lemma 8.4.9 we see that the constrained optimization problem (8.35) is
equivalent to the following form:

sup
ϕ∈Φ

V (r,ϕ) subject to V (c,ϕ)≤ ρ . (8.41)

Under conditions (D1)–(D8), from (8.41) we define a real-valued function G on
C×D :=Cω3(K)×Φ as follows:

G(c,ϕ) :=V (c,ϕ) for (c,ϕ) ∈C×D =Cω3(K)×Φ. (8.42)

Then, by (8.36) and (8.37), we see that the function G defined in (8.42) satisfies
(8.1). Moreover, let D′ := F .

Now we state our main result of Sect. 8.4.3 on the existence of constrained-
optimal policies for (8.35).

Proposition 8.4.2. Suppose that conditions (D1)–(D9) hold. Then there exists a
constrained-optimal policy for (8.35), which may be a stationary policy or a
randomized stationary policy that randomizes between two stationary policies
differing in at most one state.
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Proof. It follows from Lemma 7.2, Theorem 7.8, and Lemma 12.5 in [20] that
Assumptions 8.2.1 and 8.3.2 hold. Obviously, condition (D9) implies Assump-
tion 8.2.2. Finally, from Lemma 12.6 and the proof of Theorem 12.4 in [20], we
see that Assumption 8.3.1 holds. Hence, by Theorem 8.3.2, we complete the proof.
�

Remark 8.4.10. Proposition 8.4.2 shows that the nonnegativity assumption on the
costs as in [20, 35] is not required.

8.4.4 Continuous-Time Constrained MDPs with Discounted
Criteria

In this subsection, we consider the following discounted criteria J(r,π) and J(c,π)
in (8.43) below for the model (8.34), in lieu of the average criteria above. Removing
the nonnegativity assumption on the cost function as in [18, 20], we will prove that
the corresponding results in [18, 20] still hold using Theorem 8.3.2 above.

With the same components as in the model (8.34), we consider the following drift
condition from [18, 20]:

(E1) There exists a function ω4 ≥ 1 on X and constants γ2 ≥ 0, κ2 �= 0, and L > 0
such that

q∗(i)≤ Lω4(i) and ∑
j∈X

ω4( j)q( j|i,a) ≤ κ2ω4(i)+ γ2 for all (i,a) ∈ K.

Fix a discount factor α > 0 and an initial distribution ν on X . For each π ∈ Πm, we
define the discounted criteria, J(r,π) and J(c,π), as follows:

J(r,π) : =Eπ
ν

[∫ ∞

0
e−αt r(x(t),a(t))dt

]
, J(c,π) : =Eπ

ν

[∫ ∞

0
e−αt c(x(t),a(t))dt

]
.

(8.43)

Then, the constrained optimization problem for the discounted criteria is as follows:

sup
π∈Πm

J(r,π) subject to J(c,π)≤ ρ . (8.44)

To ensure the existence of a constrained-optimal policy π∗ for (8.44) (i.e., J(r,π∗)≥
J(r,π) for all π such that J(c,π) ≤ ρ), we consider the following conditions from
[18, 20]:
(E2) There exists a constant L4 > 0 such that

|r(i,a)| ≤ L4ω4(i) and |c(i,a)| ≤ L4ω4(i) for all (i,a) ∈ K.
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(E3) The positive discount factor α verifies that α > κ2, with κ2 as in (E1).
(E4) ν(ω4) := ∑

i∈X
ω4(i)ν(i) < ∞.

(E5) For each i ∈ X , A(i) is compact.
(E6) For each i, j ∈ X , the functions r(i,a), c(i,a), q( j|i,a) and ∑

k∈X
ω4(k)q(k|i,a)

are continuous in a ∈ A(i).
(E7) There exist a nonnegative function ω ′ on X and constants γ3 ≥ 0, κ3 > 0, and
L′ > 0 such that

q∗(i)ω4(i)≤ L′ω ′(i) and ∑
j∈X

ω ′( j)q( j|i,a) ≤ κ3ω ′(i)+ γ3 for all (i,a) ∈ K.

(E8) There exists π̂ ∈ Πm such that J(c, π̂)< ρ .

Note that the set Πm is convex. That is, if π1 and π2 are in Πm, and for any
p ∈ [0,1], i ∈ X , and t ∈ [0,∞), π p

t (·|i) := pπ1
t (·|i)+ (1− p)π2

t (·|i), then π p ∈ Π .
Under conditions (E1)–(E6), we define a real-valued function G on C ×D :=

Cω4(K)×Πm as follows:

G(c,π) := J(c,π), for (c,π) ∈C×D =Cω4(K)×Πm. (8.45)

Obviously, the function G defined in (8.45) satisfies (8.1). Moreover, let D′ := F .
Now we state our main result of Sect. 8.4.4 on the existence of constrained-

optimal policies for (8.44).

Proposition 8.4.3. Suppose that conditions (E1)–(E8) hold. Then there exists a
constrained-optimal policy for (8.44), which may be a stationary policy or a
randomized stationary policy that randomizes between two stationary policies
differing in at most one state.

Proof. It follows from Theorems 6.5 and 6.10 and Lemma 11.6 in [20] that Assump-
tions 8.2.1 and 8.3.2 hold. Obviously, condition (E8) implies Assumption 8.2.2.
Finally, from Lemma 11.7 and the proof of Theorem 11.4 in [20], we see that
Assumption 8.3.1 holds. Hence, by Theorem 8.3.2, we complete the proof. �

Remark 8.4.11. Proposition 8.4.3 shows that the nonnegativity assumption on the
costs as in [18, 20] is not required.
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